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Abstract

Subtype constraints were introduced in advanced programming language research for
designing subtype systems and program analysis algorithms. Two logical problems
arise in this context: subtype satisfiability and subtype entailment. Subtype satis-
fiability underlies subtype inference; subtype entailment is for simplifying subtyping
constraints in the same application.

In this thesis, we investigate both problems systematically for a number of dialects of
subtyping constraint languages that may vary in the following dimensions: types may
be simple (finite) or recursive (infinite), type constants may be ordered in lattices
or in general partially ordered sets, subtyping can be structural or non-structural,
depending on whether least and greatest types are permitted. We use and develop
new formal reasoning techniques based on automata, unification, and modal logic.

Subtype satisfiability is well understood for all dialects with constants ordered in a
lattice. Although cubic time algorithms are given by Palsberg and O’Keefe (1995),
Pottier (1996), and Palsberg, Wand, and O’Keefe (1997), little is known about dialects
where constants belong to arbitrary partially ordered sets. We present a uniform
treatment to determine the complexities of all these classes. As a consequence, we
settle a problem left open by Tiuryn and Wand in 1993 and also subsume complexity
bounds given by Wand and Tiuryn (1993), Tiuryn (1992), and Frey (2002). Our
results are based on a new connection between modal logic and subtype constraints
that we present.

Subtype entailment is known to be hard even for simple subtype constraint languages.
Rehof and Henglein determined the complexity of structural subtype entailment with
type constants ordered in a lattice. They proved coNP-completeness for simple types
(1997) and PSPACE-completeness for recursive types (1998). Furthermore, they
showed that non-structural subtype entailment is PSPACE-hard and is conjectured
PSPACE-complete for the case with only two type constants for the least and greatest
types respectively (1998). Yet the problem still remains open today. We argue that
the difficulty occurs due to effects linked to non-regular word languages. In order
to do so, we precisely characterize subtype entailment by finite word automata with
word equations. This characterization induces new results on non-structural subtype
entailment, constituting a promising starting point for future investigation on decid-
ability.





Ausführliche Zusammenfassung

Teiltyp-Constraints stammen aus der programmiersprachlichen Typinferenz und
Programmanalyse. Hier sind zwei logische Probleme von besonderem Interesse:
Erfüllbarkeit und Subsumption. Das Lösen von Teiltyp-Constraints ist eine Kern-
aufgabe von Typinferenzsystemen mit Teiltypen. Erfüllbarkeit wird getestet, um Pro-
gramme mit Typfehlern auszuschließen. Subsumption nützt in dieser Anwendung zur
Vereinfachung von Typconstraints.

Diese Arbeit untersucht beide Probleme systematisch für verschiedene Teiltyp-
Constraintsprachen. Hierbei variieren wir die Typsprachen und die Teiltyp-Ordnung:
Typen sind entweder einfach (endlich) oder rekursiv (unendlich); die Ordnung auf Ty-
pkonstanten ist entweder durch einen Verband festgelegt oder durch eine allgemeinere
partielle Ordnung gegeben; die Teiltyp-Ordnung ist entweder strukturell oder nicht-
strukturell, in Abhängigkeit davon, ob wir die Existenz des kleinsten beziehungsweise
größten Typen annehmen. Wir benutzen und entwickeln spezielle Methoden der com-
putationalen Logik, insbesondere Automaten Theorie, Unifikation, und Modallogik.

Teiltyp-Erfüllbarkeit ist für Constraintsprachen wohl verstanden, deren Typkonstan-
ten in einem Verband angeordnet sind. Palsberg und O’Keefe (1995), Pottier (1996)
und Palsberg, Wand und O’Keefe (1997) entwickelten kubische Algorithmen für der-
artige Probleme. Hingegen ist wenig über allgemeinere Dialekte bekannt, in denen
Typkonstanten lediglich partiell geordnet sind. Wir entwickeln einen neuen univer-
sellen Ansatz, der es uns ermöglicht, die Komplexität von Erfüllbarkeit von Teiltyp-
Constraintsprachen in allen genannten Dimensionen zu bestimmen.

Wir lösen ein Komplexitätsproblem zu Teiltyp-Erfüllbarkeit, das Wand und Tiuryn
1993 offen ließen. Unser Resultat beruht auf einem neuen Zusammenhang zwischen
Teiltyp-Constraints und Modallogik, den wir aufzeigen. Den regulären Fall lösen wir
durch äquivalente Übersetzung in ein passendes Fragment der aussagenlogischen dyna-
mischen Logik (PDL). Erfüllbarkeit dieser PDL-Variante ist DEXPTIME-vollständig,
wie wir mithilfe von Baumautomaten zeigen. Den endlichen Fall lösen wir analog durch
äquivalente Übersetzung in eine Teilsprache von K-normaler Modallogik. Erfüllbarkeit
dieser Modallogik beweisen wir als PSPACE-vollständig, indem wir Ideen von Spaan
(1993, 2000) verallgemeinern.

Teiltyp-Subsumption ist selbst für einfache Constraintsprachen wegen seiner hohen
Komplexität bekannt. Rehof und Henglein bestimmten die Komplexität für den struk-
turellen Verbandfall mit zwei Typkonstanten. Sie zeigten coNP-Vollständigkeit für ein-
fache Typen (1997) und PSPACE-Vollständigkeit für rekursive Typen (1998). Deswei-
teren zeigten sie PSPACE-Härte im nicht-strukturellen Fall und vermuteten PSPACE-
Vollständigkeit für den nicht-strukturellen Fall (ohne weitere Typkonstante). Bis heute



konnte jedoch noch nicht einmal die Entscheidbarkeit dieses Problems gezeigt wer-
den.

In dieser Arbeit untersuchen wir nicht-strukutelle Teiltyp-Subsumption im einfachs-
ten Fall (mit einem einzigen Typkonstruktor und ohne weitere Typkonstanten). Wir
argumentieren, dass spezielle Wortgleichungen das Problem schwierig machen, die
bekannterweise nicht-reguläre Phänomene verursachen. Hierzu charakterisiseren wir
Teiltyp-Subsumption mittels endlicher Automaten und Wortgleichungen; unsere Cha-
rakterisierung läßt sich im ∀∃∗ Fragment der erststufigen Theorie von Wortgleichun-
gen mit regulären Constraints formulieren, welches Durnev (1995) als unentscheidbar
zeigte. Alternativ können wir sie mit speziellen nicht-regulären endlichen Automaten
darstellen, die wir entwickeln. Für eine Teilklasse dieser Automaten formulieren wir
ein Entscheidungsverfahren für Sprachuniversalität. Wir isolieren somit ein Fragment
einer nicht-strukturellen Teiltyp-Constraintsprache, für das Subsumption entscheid-
bar ist. Es bleibt jedoch offen, ob sich dieses Verfahren auf volle Teiltyp-Subsumption
erweitern läßt. In jeden Fall liefert wir dazu einen neuen Ansatz.



Kurze Zusammenfassung

Diese Arbeit untersucht zwei logische Probleme der programmiersprachlichen Typin-
ferenz: Erfüllbarkeit und Subsumption von Teiltyp-Constraints. Wir untersuchen diese
Probleme systematisch für eine Reihe von Constraintsprachen. Dabei greifen wir auf
Methoden der computationalen Logik, Unifikations- und Automatentheorie zurück.

Teiltyp-Erfüllbarkeit ist für den Fall wohl verstanden, dass die Typkonstanten in ei-
nem Verband angeordnet sind (Palsberg und O’Keefe (1995), Pottier (1996), Pals-
berg, Wand und O’Keefe (1997)). Der allgemeinere Fall mit beliebig angeordneten
Konstanten wurde bislang weniger untersucht. Wir stellen einen ersten universellen
Ansatz vor, indem wir erstmals einen Zusammenhang zwischen Teiltyp-Constraints
und Modallogik aufzeigen. Dadurch lösen wir unter Anderem ein seit 1993 offenes
Komplexitätsproblem von Wand und Tiuryn.

Teiltyp-Subsumption ist selbst für einfachste Constraintsprachen von hoher Komple-
xität. Rehof und Henglein zeigten dies für den strukturellen Verbandsfall (mit zwei
Typkonstanten 1997, 1998), ließen jedoch den nicht-strukturellen Fall offen. In die-
ser Arbeit betrachten wir den einfachsten nicht-strukturellen Fall. Hier zeigen wir,
dass versteckte Wortgleichungen neue Schwierigkeiten verursachen. Hierzu charakte-
risieren wir Teiltyp-Subsumption durch spezielle endliche Automaten mit Wortglei-
chungen. Unsere Charakterisierung liefert partielle Entscheidbarkeitsresulte zur nicht-
strukturellen Teiltyp-Subsumption und kann als Grundlage für künftige Untersuchun-
gen dienen.
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1 Introduction

Type systems[Mit96, Pie02] play a central role in modern programming lan-
guages, e.g. Caml, Java, Haskell, Standard ML, Alice, etc [WL99, GJS96, Jon03,
MTH90, Prob]. Types classify the values that programs can manipulate according
to operations that they permit. As opposed to dynamic typing, type systems allow
us to detect programming errors statically at compile time; they can be used to
specify module interfaces and to validate them. Types help reasoning about pro-
grams; they can be seen as invariants preserved by program execution. The power
of type systems however, is limited by the algorithmic complexity of the services
they provide, which in turn depends on the expressiveness of the underlying type
language. This is why programming language designers have to carefully design
programming languages together with their type systems.

Type checking and type inference are the most important services of type sys-
tems [DM82, Hin69]. Type checking requires programmers to annotate types to
values; the consistency of these annotations can then be validated by the type
system. In Java, for instance, a programmer has to annotate types to all vari-
ables, objects, and classes. Type inference, in contrast relieves the programmer
of the burden of annotating types. Languages in the ML family (Caml, SML,
Haskell, Alice) require type annotations for data types and modules; automatic
type inference is supported in the core language. ML style type inference relies on
first-order unification.

Subtyping is induced by a binary relation on types that orders types into a hierar-
chy [Mit84, Mit91, WO89, Tiu92]. All values of a type belong to all its subtypes
too. The same value may thus be given by multiple types, i.e., subtyping provides
a form of polymorphism. Many varieties of subtyping have been investigated. Ex-
amples are the sub-classing mechanisms in object-oriented programming languages
such as C++ and Java. Another example is automatic conversion of integers into
floating point numbers. Subtyping is often combined with other forms of polymor-
phism: parametric polymorphism in Caml, modules in ML, and templates in Java.

Types may be nested recursively; they form trees. Most typically, pair, record, and
function types contain other types as subtrees. Type inference for tree-shaped types
without subtyping (as in SML) amounts to first-order unification, i.e., equation
solving over finite trees. Type inference in the presence of subtyping becomes
more difficult. First-order unification needs to be generalized when solving subtype
constraints to conjunctive logic formulas that describe types and their subtype
ordering [Tiu97, Ben97, TW93, KPS94, HM95, Reh98, FM90].

1



1 Introduction

In this thesis, we investigate multiple dialects of subtype constraints with respect
to two logical problems: satisfiability and entailment. Satisfiability testing is sub-
sumed by constraint solving, while entailment testing was proposed for constraint
simplification during type inference.

This introduction presents a short essay on subtype inference which motivates our
work in subtype constraints. We summarize our contributions and discuss related
work.

1.1 Types in programming languages

Type systems [Mit96, Pie02] play a central role in modern programming languages.
This applies for statically typed languages such as Standard ML, Caml, Java, Haskell,
Alice, Mercury, and Scala [MTH90, WL99, GJS96, Jon03, Prob, SHC95, Proa] as well
as for dynamically typed languages such as Mozart, Python and Erlang [Moz99, sf,
sE].

1.1.1 Type systems

We are mainly interested in programming languages with static type inference, the
majority of which belong to the ML family (Caml, Haskell, Standard ML, and Al-
ice). The type systems of such languages is decomposed into a type system for basic
values (integers, strings, tuples, functions, etc.) and an orthogonal type system for
modules.

Module types specify the interface of a module, i.e., the values of a module that can
now be used. Interfaces are to be defined explicitly by the programmer. The module
type system provides type checking, which tests whether the implementation of the
module is consistent with its interface.

The type system of the base language allows for the explicit definition of a recursive
data type, and type inference for all other types, including the inference of type
schemas for resolving parametric polymorphism.

For instance, we can define function composition in the core language of O’Caml, a
dialect of ML, such that compose(f, g)(u) = f(g(u)) for all functions f, g such that
outputs of f are accepted as inputs of g and values u in the input type of f :

val compose = fun f -> fun g -> fun u -> g(f(u))

This functions is polymorphic in that it can be given many types rather than a unique
type. More precisely, for every type x, y, z it can be assigned to the following type:

2



1.1 Types in programming languages

compose : (x→ y)→ (y → z)→ (x→ z)

We could also look at this type as a type schemata that is parametric in polymorphic
type variables x, y, z from an infinite repository.

Our second example, again purely functional, shows an counter object in O’Caml.
Counters are parametrized by a number n; they consist of a get method which returns
the up-to-date counted number n and an inc method which gives access to a similar
counter but incremented by 1:

let rec counter = fun n ->

object

method get = n

method inc = counter (n+1)

end

More formally, counter is defined as a function that creates objects, i.e. records of
values that here are called methods. The argument n received at counter creation
needs to be an integer. Otherwise, the term n+1 used in the inc method were ill-
typed. The number 1 is an integer in O’Caml, not a float as 1.0. Addition is permitted
only on numbers of the same type. The function counter should thus be assigned to
the type int→ τ where τ is the record’s type:

τ = < get : int; inc : τ >

Records are like tuples but at the same time they associate names to tuple components.
Similarly, record types extend on tuple types. Note that records may be recursive as
well as their types.

In this thesis we will mostly ignore the naming aspect of records, so that we can
simplify them into tuples. Let × the constructor for pair types. We then represent
the recursive record type above by the recursive pair type below:

(1) τ = int× τ

In contrast to good practice in O’Caml and many other programming languages, but in
agreement with standard mathematical convenience, one could imagine that number
1 is polymorphic, either a integer or a float. In this case, the above counter would
become polymorphic too.

Other forms of polymorphism are highly relevant to modern type systems, even though
less important for type inference: existential types are mainly used for information
hiding in module systems, dependent types [Mac86] form the foundation for the ML
module type system, and row polymorphism is the foundation for subtyping objects
in O’Caml [RV98].

3



1 Introduction

1.1.2 Principal types in type inference

In this thesis, we focus on aspects of type inference, one of the most preferable service
of type systems. In order to deal with existing polymorphism compositionally it is
important to infer most general types, that are often called principal types.

The above type schema for compose function was principal; it is automatically inferred
by O’Caml’s type inference. The recursive type of counter objects is principle, too,
but unique. It is again inferred by O’Caml’s type system, which does not reject
recursive types in objects.

This thesis contributes to type inference for basic values. Type quantifiers as in
parametric polymorphism or module types are not in scope. As a consequence, we
restrict ourselves to fairly unexpressive type languages, those that are relevant to the
type inference.

First of all, there are type constants; these are types of primitive data objects like
integers, characters, strings, floating point units. Second, types τ1, τ2 can be com-
posed into pairs types τ1 × τ2 or more general tuple types, which are able to encode
record types where labels are restricted to consecutive numbers. Third, types can
be composed into function types τ1 → τ2, i.e., the type of functions from τ1 to τ2.
Function types are most important in programming languages where functions are
first-class values (as in the ML family), that can be passed around, computed at run
time, and nested into data structures. Finally, there are recursive types, which are
like the previous types but possibly of infinite nesting depth.

1.1.3 Representing types as trees

Our example of a counter shows that types may be nested recursively so that they
form trees. Simple types are finitely nested; they are finite trees, i.e., ground terms
build from constants, pair, tuple and function type constructors.

Recursive types can be modeled by infinite trees over the same signature. Alterna-
tively, we can consider the class of regular trees, i.e. possibly infinite trees with at
most finitely many different subtrees. Regular trees permit finite representations, by
recursive equation systems or equivalently by mu terms [KPS95]. Note that we do not
permit recursive types with sums (i.e., disjoint unions of types, as needed for defining
the type of lists). This limitation in expressiveness is essential for feasibility of type
inference.

For instance, the recursive equation (1) is satisfied by the following regular tree (left)
which is finitely represented by a rooted labelled graph (right):

4



1.1 Types in programming languages

×

int ×

int ×

int . . .

×

int

1
2

1.1.4 Type inference as constraint satisfaction

Traditionally in the lambda calculus, two styles of type systems were investigated. In
Church style, all program variables are explicitly annotated by types; the consistency
at these annotations is then checked by a type system. In Curry style, no types are
annotated, so they need to be reconstructed from the program expression by type
inference. This is the task of many contemporary type systems in todays high-level
programming languages.

Type inference is usually organized in two phases. The first phase is syntax-driven:
fresh type variables are assigned to all subexpressions of a program; type constraints
for these variables are then inferred from the program and its annotation by type
variables. In the case of the lambda calculus, for instance, one may wish to impose
equality between the requested and obtained argument type of functions.

In the second phase, the accumulated set of type constraints is send to a constraint
solver. The solver will solve the type constraints, or simply test their satisfiability.
Programs with unsatisfiable type constraints are rejected as ill-typed. For well-typed
programs, the types of values may be displayed on demand. In any case, type inference
has to solve constraint satisfaction problems.

In case ML style type inference, constraint solving is restricted to first-order unifica-
tion; most general unifier represent principal types. For instance, let us derive the
principal type of the ML expression compose given above. We start to label each
node in the standard tree representation of compose by a type variable y1, . . . , y8. We
always use fresh type variables except for leaves labeled by the same constant:

5



1 Introduction

y1: fun

y3: fun

y5: fun

y7: @

y8: @

y6:u

y2: f

y4: g

y6:u

y4: g

y2: f

The type of compose needs to satisfy the schema:

y1 = y2 → y4 → y6 → y7.

The two application nodes prove that f and g are functions satisfying the following
type constraints:

y4 = y8→y7

y2 = y6→y8

Solving all these equations yields what we expected, with somehow arbitrary names
for type variables:

y1 = (y6→y8)→ (y8→y7)→ y6 → y7

Since the set of generated constraints is linear in the size of the program, the typing’s
complexity is chiefly determined by the complexity of constraint satisfiability. The
constraints of first-order unification can be solved efficiently in quasi-linear time. A
challenge these days is to design more expressive type systems that still permit type
inference with low time and memory complexity.

1.2 Subtype systems and constraints

Subtyping in the context of programming languages dates back to the 1960s, where it
appeared in Simula [DN66] and its relatives. Subtype systems were proposed in the
early 1980’s by Reynolds [Rey80] and Cardelli [Car88]. The goal was to enrich the
expressiveness of type languages in type inference systems. The interest on subtyp-
ing grew in the 1990s when studying type systems for object-oriented programming
languages [CM94]. Independently, subtyping received some interest for program spec-
ification [GM96] and computational linguistics [PS94].

6



1.2 Subtype systems and constraints

×

int

≤

×

float

Fig. 1.2.1. An example for structural recursive subtyping.

1.2.1 Subtype orderings

Types are syntactic counterparts of sets: a type represents the set of all its values.
Subtyping [Mit84] is an ordering on types that corresponds to set inclusion. This
means that all values of a subtype do also satisfy all supertypes. Subtyping intro-
duces a form of polymorphism. Functions with domain type τ must be sufficiently
polymorphic to accept all arguments in subtypes of τ .

Atomic subtyping is a subtype order on type constants. In mathematics, for instance,
one usually considers integers as real number. This can be expressed by the subtyping
relation:

int ≤ float

Structural subtyping [Mit84, AC93, Pot96, HR97] lifts atomic subtyping structurally
to tuple and function types. If integers are floats then pairs of integers should be pairs
of floats. This is expressed by the structural subtype relation int×int ≤ float×float:

× ×

int int
≤

float float

Similarly, a function of type float→ int should be a function of type int→ int simply
by restricting its domain. In turn, such functions should be of type int → float by
extending its co-domain. Note that the domains are contra-variant: smaller domains
yield larger function types. Co-domains, in contrast, are co-variant: larger co-domains
yield larger function types.

→ →

int float
≤

float int

Two examples for structural recursive subtyping are given in Figures 1.2.1 and 1.2.2.
The first use co-variant the second contra-variant function symbols. In both examples,

7



1 Introduction

→

int→

float

≤

→

float→

int

→

int→

float→

int→

... float

≤

→

float→

int→

float→

int...

Fig. 1.2.2. Structural subtyping ordering ≤ on regular trees given by rooted graphs and their infinite
unfoldings. All anti-monotonic nodes are grey underlined.

record

int

get
inc

≤

record

float

get
inc

tick

Fig. 1.2.3. Non-structural recursive subtyping on record types:
(counter n) yields a subtype of (timer n) when assuming int ≤ float.

related types have the same structure so that integers can be recursively converted
into floats.

Non-structural subtyping can lift atomic subtyping to objects, so that objects can
be extended by methods while increasing their type. For illustration, we continue to
assume int ≤ float in contrast to O’Camls practice. We can then refine counters into
timers, with inc methods to count hours and tick methods to count minutes, i.e.,
1/60 of hours.

let rec timer = fun n ->

object

method get = n

method inc = timer (n+1)

method tick = timer (n+1/66)

end

Such timers are ill-typed in O’Caml but well-typed when assuming int ≤ float. Thanks
to subtyping, timer can be assigned to the type float→ τ where:

τ = < get : float; inc : τ ; tick : τ >

8



1.2 Subtype systems and constraints

The recursive type pictured on the right of Figure 1.2.3 types the application (timer

n) for arbitrary floats n. We assign it to be a subtype of the type of (counter n)

illustrated on the left of Figure 1.2.3. The subtyping relation reflects that timers have
more methods than counters.

A technically simpler version of non-structural subtyping is obtained when assuming
the existence of the least type ⊥ or the greatest type > which satisfy for all other
types τ :

⊥ ≤ τ ≤ >

An example is the following non-structural subtype relationship that clearly orders
trees with different shapes:

× ×

× ⊥ ≤ > ×

> > ⊥ ⊥

Many other forms of subtyping were proposed in the literature. O’Caml uses row
polymorphism [RV98], the XML processing language CDuce is based on semantic
subtyping [FCB02]. Partial types consist a least type but not a greatest type; they
were considered in type inference [Tha94] and program flow analysis [PO95].

1.2.2 Summary

Let us summarize the subtype orderings that we will investigate in this thesis. We
will study all versions of structural and non-structural subtyping presented so far,
except for record types. A type τ will be a possibly infinite tree over the following
vocabulary:

1. constants in a partially ordered set (C,≤C)

2. the pair type constructor ×,

3. the function type constructor →,

4. the least and greatest type ⊥,>.

The subtyping relation for such types will be the largest relation ≤ that satisfies the
following rules for all constants c1, c2 ∈ C and types τ, τ1, . . . , τ4:

9



1 Introduction

constants: c1 ≤ c2 iff c1 ≤C c2

pair types: τ1×τ2 ≤ τ3 × τ4 iff τ1 ≤ τ3 and τ2 ≤ τ4;

function types: τ1→τ2 ≤ τ3 → τ4 iff τ3 ≤ τ1 and τ2 ≤ τ4;

least and greatest types: ⊥ ≤ τ ≤ >.

We call subtyping structural if the least and greatest type are not permitted and non-
structural otherwise. We will consider subtyping relations where the constants are
ordered in lattices or else in posets. We will investigate simple types where all trees
are finite, regular recursive types where all trees have at most finitely many distinct
subtrees, and arbitrary recursive types.

1.2.3 Subtype constraints

Subtype constraints are positive conjunctive logical formulas that describe types via
their subtype relation. The base ingredients of subtype constraint are type variables
x, y, z.

Let terms t be build from variables and the constructors of our vocabulary:

t ::= x | c | t1 × t2 | t1 → t2 | ⊥ | >

A subtype constraint ϕ is a conjunction of subtype literals:

t1 ≤ t
′
1 ∧ . . . ∧ tn ≤ t

′
n

A solution of a subtype constraint ϕ is a variable assignment into types that renders
all literals of ϕ true. A subtype constraint is satisfiable if it has a solution. Entailment
ϕ |= ϕ′ holds if all solutions of ϕ do also solve ϕ′.

This thesis studies two logical problems for subtype languages: satisfiability and entail-
ment. Satisfiability is the question of whether a given subtype constraint is satisfiable.
Entailment is the question for two input constraints ϕ and ϕ′ whether ϕ |= ϕ′.

Subtype satisfiability has been exhaustively studied for constants that are ordered in
a lattice [Tiu92, PWO97, PO95, JP99]. Partial complexity results are known for the
more general case of constants in posets [Tiu92, TW93, Fre02]. All missing results
will be contributed in this thesis.

Henglein and Rehof [HR97, HR98] showed that structural subtype entailment is hard.
In the simplest finite case they proved coNP-hardness, and in the recursive case
PSPACE-completeness. Whether non-structural subtype entailment is decidable re-
mains open until today. This was one of the motivating questions behind the research
of this thesis.

10



1.3 Contribution

1.2.4 Subtype inference

Subtype inference [Tiu97, Ben97, TW93, KPS94, HM95, Reh98, FM90, Pot98b, Su02]
is considered to be practical if it can be reduced to a polynomial time subtype satis-
fiability problem. This imposes strong restrictions on the constant ordering in prac-
tice [KPS94, Pot96, Mit91].

The type inference algorithms of ML can be easily adapted in order to take subtyping
into account. It is sufficient to consider application nodes:

x: @

y: . . . z: . . .

Previously, we have proposed to impose the type equality y = (z→ x). In the per-
spective of subtyping is is sufficient to require a subtype constraint y ≤ (z→ x).

In practice, even cubic time subtype constraint solver turned out to be problematic.
Subtype simplification was proposed as a way out of the trouble [EST95a, Reh97,
Pot96, Pot98a]. Simplification operations can be formulated on the basis of subtype
entailment [Pot98b, NP99, NP03, HR97, HR98, Reh98, Pot96, TS96, FF99].

Rehof [Reh98] calls satisfiability to be the combinatorial bottleneck problem in decid-
ing typability and entailment the combinatorical bottleneck problem in representing
typings.

1.3 Contribution

We contribute to the open questions on subtype satisfiability and entailment. Our
key results show the following:

– recursive structural subtype satisfiability over posets is DEPTIME-complete.
This settles a open problem form 1993 by Tiuryn and Wand [TW93].

– Non-structural subtype entailment over the restrictive signature {⊥,×,>} is
equivalently characterizable by universality of regular expressions augmented
by certain word equations. This characterization induces new results on an
extensively attacked problem in [Su02, Reh98, HR97, HR98, Pot96, Pot98b,
Pot01, TS96, FF99, AWP99, FA96, MW97].

In what follows, we will discuss both results in some more details and related them
to existing results in the literature.

11



1 Introduction

structural non-structural

lattice ordering lattice ordering

finite trees O(n3) O(n3)

Tiuryn [Tiu92] Palsberg, Wand, O’Keefe [PWO97]

regular or O(n3) O(n3)

infinite trees Jim,Palsberg [JP99] Palsberg,O’Keefe [PO95]

Table 1.1: Subtype satisfiability over a lattice.

1.3.1 Subtype satisfiability

Subtype satisfiability is well understood when constants are ordered in a lattice, see
Table 1.1. All four case can be solved by the methods given in [JP99].

Cubic time algorithms for non-structural subtype satisfiability are given by Palsberg,
Wand, and O’Keefe [PWO97] for finite trees and by Palsberg and O’Keefe [PO95]
for regular trees and one constant only. All satisfiabilty results in the lattice case are
based on a closure algorithms for checking consistency. Tiuryn [Tiu97] and Benke
[Ben97, Ben99] also give a polynomial algorithms for representing solution by finite
automata.

For subtype satisfiability over posets, there exist only partial answers, see Table
1.2. Tiuryn and Wand show that recursive structural satisfiability is in DEX-
PTIME [TW93]. Tiuryn shows that finite structural satisfiability is PSPACE-
hard [Tiu92], and subsequently Frey shows that it is in PSPACE and thus PSPACE-
complete [Fre02]. Frey also makes use of his PSPACE algorithm in a type inference
system for Jazz, an academic programming language for hardware verification [Fre].

Decidability and complexity of non-structural subtype satisfiability are open for both
finite and recursive types.

We base our results on a new approach, connecting subtype constraints and modal
logic. As an intermediate result we introduce a new subtype language of uniform sub-
type constraints and show that their satisfiability problem is polynomial time equiv-
alent to that of a dialect of propositional dynamic logic [FL79, BMV94, BAHP82],
which is subsumed by the monadic second-order logic SnS of the complete infinite
n-ary tree [Rab69]. With this connection, we completely characterize the exact com-
plexity of subtype satisfiability over posets in all cases: finite versus recursive types,
and structural versus non-structural orderings.

Second, we reprove NP-completeness of subtype satisfiability over constants ordered
over a poset where we exclude all constructors ×,→ [PT96]. Here our characterization
by modal logic scales down to Boolean logic.

12



1.3 Contribution

structural non-structural

ordering over posets ordering over posets

in PSPACE

finite trees Frey [Fre02] PSPACE-complete

PSPACE-hard

Tiuryn [Tiu92] [this thesis]

in DEXPTIME

regular or Tiuryn,Wand [TW93] DEXPTIME-complete
infinite trees DEXPTIME-hard

[this thesis] [this thesis]

Table 1.2: Complexity of subtype satisfiability with constants ordered in a poset. All
stated results are proven in this thesis.

Tables 1.1 and 1.2 summarize complexity results regarding subtype satisfiability over
lattices and posets. In particular, we show that recursive structural satisfiability is
DEXPTIME-hard, finite non-structural satisfiability is PSPACE-complete, and recur-
sive non-structural satisfiability is DEXPTIME-complete. This settles a longstanding
problem left open by Tiuryn and Wand in 1993 [TW93].

1.3.2 Subtype entailment

Understanding the algorithmic properties of subtype entailment remains challenging.
Even for weak type languages designing an efficient algorithm turned out to be sur-
prisingly difficult; Table 1.3 summarizes the state of the art. The structural case was
clarified by Rehof [Reh98]. For a restricted lattice of two ordered constants Rehof
and Henglein showed that structural subtype entailment is coNP-complete [HR97]
for finite trees (simple types) and PSPACE-complete [HR98] for regular or infinite
trees.

Despite extensive efforts over many years, even the decidability of non-structural
subtype entailment (NSSE) has been a prominent open problem in programming
language theory. Only a PSPACE lower bound is known which holds in both cases, for
finite and infinite trees [HR98]. The signature {⊥,×,>} is enough to prove PSPACE
hardness. Yet this result does not explain why finding a decision procedure for NSSE
is so difficult. On the other hand, only a fragment of NSSE could be proved decidable
[NP99] (and PSPACE-complete).

Our contribution to entailment yields a new characterization of NSSE that uses regular
expressions and word equations [Mak77, Pla99]. More precisely we map NSSE to the
question whether so called cap set expressions do contain all words over an alphabet

13



1 Introduction

structural non-structural

ordering over {int, real,×,→} ordering over {⊥,>,×}

finite trees coNP-complete universality of cap set expressions

Henglein, Rehof [HR97] [this thesis]

regular or PSPACE-complete universality of cap set expressions

infinite trees Henglein, Rehof [HR98] [this thesis]

Table 1.3: Complexity of subtype entailment.

(universality problem). Cap set expressions extend regular expressions R by new
operators accepting the prefix closure of non-regular sets

⋃

{ π∗ | π ∈ R }.

The universality problem of cap set expressions (Table 1.3) is reducible to the positive
∀∃∗ fragment of the first-order theory of word equations with regular constraints.
Unfortunately, even the positive ∀∃3 fragment of a single word equation is undecidable
[Dur95] except if the alphabet is infinite [BS96] or a singleton [VR83]. Therefore, it
remains open whether NSSE is decidable or not.

To narrow the problem, we translate the universality of certain cap expressions also
back to NSSE. It becomes clear that the difficulty is raised by word equations hidden
behind cap set expressions which spoil the usual pumping arguments from automata
theory. They also clarify why NSSE differs so significantly from seemingly similar
entailment problems [MNT98, NMT99].

Our characterization constitutes a promising starting point to further investigate de-
cidability of NSSE. For instance, we can infer two new decidability results for sub-
classes of NSSE where × is refined to be monadic or the corresponding cap expressions
of NSSE are built over restricted regular expressions.

1.4 Related work

1.4.1 Automata theory for subtyping

We motivate our and related automata approaches for subtype satisfiability and en-
tailment.

Automata theory has been successfully used and partly developed to describe compu-
tational aspects of logical languages. Its key result is to correlate satisfiability of some
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1.4 Related work

(weak) second-order monadic formula ϕ to emptiness of some appropriate automaton
Aϕ [Büc60, Nau66, Rab69, TW69].

The regular part of our entailment characterization is based on a similar idea given by
Kozen, Palsberg, and Schwartzbach [KPS95]. They apply finite automata theory to
improve a classical DEXPTIME result of Amadio and Cardelli [AC93]: whether two
mu terms are in the subtype relation. This problem is defined as non-structural satis-
fiability restricted to only one variable free literal t1 ≤ t2 where t1, t2 are in a subtype
language enriched by a mu operator. Its semantic is given by nested substitutions
[./.]:

µx. t = t[x/µx. t]

which describes an infinite unfolding of t. We consider for example the valid subtyp-
ing

µy.(y×⊥) ≤ µy.(>×y).

Kozen and Palsberg’s approach first represents solutions of the left and right mu term
by two finite automata (Figure 1.6 and 1.7) and second builds the product automaton
of both (Figure 1.8). Subtyping applies if the product automaton contains no node
where the left label is greater than the right label assuming ⊥ ≤ × ≤ >.

×

⊥×

⊥×

⊥. . .

×

⊥

2
1

×

> ×

> ×

> . . .

×

>

1
2

××

×> ⊥×

1
2

1.6. Regular tree and cor-
responding finite automa-
ton satifying µy.(y×⊥).

1.7. The same for µy.(>×y). 1.8. Subtyping is reduced to pro-
duct automaton.

A similar automata theoretical approach is also known for the more general problem
of subtype satisfiability [KPS94, PWO97].

We recently proposed an alternative tree automata based approach to non-structural
subtype entailment [SAN+02]. It is completely unrelated to the present approach
where we only deal with word automata. Tree automata are used in the alternative
proposal of recognizing the set of all solutions of a subtype constraint. Every solution
is seen as tuples of trees [CDG+02] that is recognized by tuple tree automata with
equality constraints. But unfortunately, the emptiness problem of tuple tree automata
with equality constraints is undecidable [SAN+, Tre00].
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1 Introduction

1.4.2 Constrained types

Corresponding to polymorphic type schemes in ML, polymorphic subtype systems
could be expressed by constrained types, i.e., types which are restricted by a set of
subtype constraints [AW93, EST95a, EST95b]. Decidability of the question of whether
or not one constrained type is a subtype of another one is a prominent open problem
[Su02], a decidable approximation was presented in [TS96]. This and related open
questions on constrained types can be reduced to the ∃∀∗ fragment of the first-order
theory over subtype constraints.

1.4.3 First-order theory over subtype constraints

The question of whether the first-order theory of subtype constraints is decidable
or not, naturally extends our question on entailment’s decidability. We have shown
that the first-order theory of non-structural subtype constraints is undecidable via a
reduction from Post’s Correspondence Problem; this is shown for all three models:
finite, regular, and infinite trees. It was shown recently that the first-order theory of
structural subtyping over finite trees is decidable [KR03]. The decidability of the full
first-order theory of structural subtyping over regular trees is still open.

structural non-structural

ordering over {int, real,×,→, ...} ordering over {⊥,>,×}

finite trees decidable undecidable

Kuncak, Rinard [KR03] Su,Aiken,Niehren,Priesnitz,Treinen [SAN+02]

regular or open (at least non-elementary) undecidable

infinte trees Kuncak, Rinard [KR03] Su,Aiken,Niehren,Priesnitz,Treinen [SAN+02]

Table 1.4: Decidability of subtype first order theory.

1.4.4 Partial types

The presence of ⊥ complicates type inference in contrast to the present of > which
could even simplify type inference (see [Pie02] for a discussion). For this reason
Thatte [Tha94] introduced partial types: a subtype language which supports > but
not ⊥. Partial type inference is considered for various calculi including Abadi and
Cardelli’s object calculus [AC96] and system F equipped with bounded polymorphism
[CMMS94], a feature which arises when polymorphism and subtyping are combined.

Thatte gives a semi-decision procedure for type inference and satisfiability for finite
trees in the absence of any constant besides >. Decidability for satisfiability of partial
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1.5 Publications

types is shown in [KPS94] for finite trees and in [OW92] for infinite trees. A process
of closure and consistency checking proves both problems in P.

In the case of infinite trees and constants ordered in a lattice, Jim and Palsberg [JP99]
found a new generic approach which subsumes complexity bounds for structural, non-
structural subtyping (second line in Table 1.1) and partial types. Their idea is to
refine the subtype relation by simulations, an idea from concurrency theory [Mil99].
They do so by:

≤ =df

⋃

{R |R is a simulation }.

Using the principle of co-induction this leads to a very elegant polynomial algorithm
for satisfiability of subtypes and partial types over several constant orderings.

So far the problem of entailment of partial types has not been addressed.

1.5 Publications

The material presented in this thesis has been published except of the new decidability
result in the last chapter which remains to be unpublished. In the following we
summarize all publications.

The first three publication of the author develop the results that characterize non-
structural subtype entailment:

– with Joachim Niehren. Non-structural subtype entailment in automata theory.
Information and Computation, 186(2):319–354, 2003.

– with Joachim Niehren. Non-structural subtype entailment in automata the-
ory. In International Symposium on Theoretical Aspects of Computer Software,
Lecture Notes in Computer Science 2215, page 360–384. Springer-Verlag,
2001.

– with Joachim Niehren. Entailment of non-structural subtype constraints. In
Asian Computer Science Conference, Lecture Notes in Computer Science 1742,
pages 251–265. Springer-Verlag, 1999.

The next two publications contain the results on subtype satisfiability over posets:

– with Joachim Niehren and Zhendong Su. Complexity of subtype satisfiabil-
ity over posets. In European Symposium on Programming, Lecture Notes in
Computer Science. Springer-Verlag, 2005. To appear.

– with Joachim Niehren. Satisfiability of structural subtype constraints. In
International Workshop on Unification, pages 79–80, (best student award pa-
per). Universidad Politécnica de Valencia, 2003.
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Two further publications report results of the author on the first-order theory of
non-structural subtype constraints that are not elaborated in this thesis.

– with Zhendong Su, Alexander Aiken, Joachim Niehren, and Ralf Treinen.
First-order theory of subtyping constraints. ACM Transactions on Program-
ming Languages and Systems. To appear 2005.

– with Zhendong Su, Alexander Aiken, Joachim Niehren, and Ralf Treinen.
First-order theory of subtyping constraints. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 203–216, ACM
Press, 2002.
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2 Subtype Constraints

2.1 Basic concepts

We start with fundamental preliminaries for this work: finite, regular, and infinite
trees over Σ. Finite trees model simple types while regular or infinite trees model
recursive types. We use a standard definition of trees, whose idea is to identify
every node of a tree with the word that addresses it relative to the root.

A word over an alphabet A is a finite sequence of letters in A. We denote words by π,
µ, or ν and the set of words over A with A∗. The empty word is written as ε and the
free-monoid concatenation of words π and µ by juxtaposition πµ, with the property
that επ = πε = π. A prefix of a word π is a word µ for which there exists a word ν
such that π = µν. If µ is a prefix of π then we write µ ≤ π and if µ is a proper prefix
of π then we write µ < π.

Types can be viewed as trees over some ranked alphabet Σ, the signature of the
given type language. A signature consists of a finite set of function symbols (also
called type constructors). Each function symbol f has an associated arity(f) ≥ 0,
indicating the number of arguments that f expects, and for all 1 ≤ i ≤ arity(f) a
polarity pol (f, i) ∈ {1,−1}. We call a position i of symbol f covariant if pol (f, i) = 1
and contravariant otherwise. Symbols with arity zero are type constants.

We consider trees over Σ as partial functions τ : N
∗  Σ which map words over

natural numbers to function symbols. The words in Dτ ⊆ N
∗ are called the nodes or

paths of the tree. We require that every tree has a root ε ∈ Dτ and that tree domains
Dτ are always prefix closed and arity-consistent. The latter means for all trees τ ,
nodes π ∈ Dτ , and naturals i ∈ N that πi ∈ Dτ if and only if 1 ≤ i ≤ arity(τ(π)). A
tree τ is finite if its domain Dτ is finite and otherwise infinite. We write treeΣ for the
set of possibly infinite trees over Σ.

We call τ ′ the subtree of τ at path π if τ(ππ′) = τ ′(π′) holds for all π ∈ Dτ ′ . We write
τ.π for the subtree of τ at node π under the presupposition π ∈ Dτ . A tree is regular
if it has at most finitely many distinct subtrees.

We will freely interpret function symbols in Σ as tree constructors. To make clear
distinctions, we will write =Σ for equality of symbols in Σ and = for equality of trees
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2 Subtype Constraints

over Σ. Given g ∈ Σ and trees τ1, . . . , τarity(g) we define τ = g(τ1, . . . , τarity(g)) by
τ(ε) =Σ g and τ(iπ) =Σ τi(π) for all π ∈ Dτi

and 1 ≤ i ≤ arity(g). We thus consider
ground terms over Σ as (finite) trees, for instance f(⊥,>) or ⊥. Thereby, we have
overloaded our notation since a constant a ∈ Σ can also be seen as the tree τ with
τ(ε) = a. But this should never lead to confusion.

We define the polarities of nodes in trees as follows:

pol τ (ε) =df 1
pol f(τ1,...,τn)(iπ) =df pol (f, i) ∗ pol τi

(π)

2.2 Subtype orders

Subtype orders ≤ are partial orders on trees over some signature Σ. Two subtype
orders arise naturally, structural subtyping and non-structural subtyping.

2.2.1 Structural subtyping

We investigate structural subtyping over standard signatures with posets. These are
parametrized by posets (B,≤B) of constants and have the form: Σ = B ∪ {×,→}.
The product type constructor × is a binary function symbol that is covariant in
both positions (pol (×, 1) = pol (×, 2) = 1), while the function type constructor → is
contravariant in its first and covariant in its second argument (pol (→, 1) = −1 and
pol (→, 2) = 1).

Structural subtype orders ≤ are partial orders on trees over structural signatures Σ.
They are obtained by lifting the ordering on constants (B,≤B) in Σ to trees. More
formally, ≤ is the smallest binary relation ≤ on treeΣ such that for all b, b′ ∈ B and
types τ1, τ2, τ

′
1, τ

′
2 in treeΣ:

• b ≤ b′ iff b ≤B b′;

• τ1 × τ2 ≤ τ ′1 × τ
′
2 iff τ1 ≤ τ ′1 and τ2 ≤ τ ′2;

• τ1 → τ2 ≤ τ ′1 → τ ′2 iff τ ′1 ≤ τ1 and τ2 ≤ τ ′2.

Notice that × is monotonic in both of its arguments while → is anti-monotonic in its
first argument and monotonic in its second. For more general signatures, monotonic
arguments are specified by covariant positions of function symbols, and anti-monotonic
arguments by contravariant positions.

For structural subtyping, two types are related only if they have exactly the same
shape, i.e., tree domain. Notice that structural subtype orders are indeed partial
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2.2 Subtype orders

orders. We do not restrict ourselves to lattices (B,≤B) in contrast to most previous
work.

2.2.2 Non-structural subtyping

In the non-structural subtype order, two distinguished constants are added to struc-
tural type languages, a smallest type ⊥ and a largest type >. The ordering is
parametrized by a poset (B,≤B) and has the signature: Σ = B ∪ {×,→} ∪ {⊥,>}.
For the non-structural subtype order, besides the three structural rules earlier, there
is an additional rule: ⊥ ≤ τ ≤ > for any τ ∈ treeΣ. Again ≤ is a reflexive, transitive,
and anti-symmetric relation and thus, a partial order.

2.2.3 Uniform subtyping

We introduce uniform subtyping as an intermediate ordering for two reasons: (i) to
capture both structural and non-structural subtyping effects and (ii) to use it as a
bridge from uniform subtype constraints to modal logic.

We call a signature Σ uniform if all symbols in Σ have the same non-zero arity and
the same polarities. All trees over Σ are complete infinite n-ary trees, where n is
the arity common to all function symbols in Σ. Hence, all trees have the same shape.
Furthermore, the polarities of nodes π ∈ {1, . . . , n}∗ in trees τ over uniform signatures
do not depend on τ . We therefore write pol (π) instead of pol τ (π).

The signatures {×} and {→}, for instance, are both uniform, while {×,→} or
{⊥,>,×} are not. The idea to model the non-structural signature {⊥,>,×} uni-
formly is to raise the arities of ⊥ and > to 2 and to order them by ⊥ ≤Σ × ≤Σ >.

A uniform subtype order ≤ is defined over a partially-ordered uniform signature (Σ,≤Σ

). It satisfies for all trees τ1, τ2 ∈ treeΣ:

τ1 ≤ τ2 iff ∀π ∈ {1, . . . , n}∗ : τ1(π) ≤
pol(π)
Σ τ2(π)

where n is the arity of the function symbols in Σ. For simplicity, we will often write

≤π
Σ instead of ≤

pol(π)
Σ .
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2 Subtype Constraints

2.3 Subtype constraints

In a subtype system, type variables are used to denote unknown types. We assume an
infinite set of tree valued type variables that we denote by x, y, z, u, v, w. A subtype
constraint ϕ is a conjunction of literals with the following abstract syntax:

ϕ ::= x=f(x1, . . . , xn) | x≤y | ϕ ∧ ϕ

where n is the arity of f ∈ Σ. We interpret constraints ϕ in the structure of trees over
Σ with non-structural subtyping. We distinguish three cases, the structure of finite
trees, of regular trees, or else of possibly infinite trees. We interpret function symbols
in both cases as tree constructors and the predicate symbol ≤ by the non-structural
subtype relation. Again, this overloads notation: we use the same symbol ≤ for the
subtype relation on trees and the predicate symbol denoting the subtype relation in
constraints. Again, this should not raise confusion.

We also use an alternative subtype constraint language in the first Chapter 3 of Part
I and in all chapters of Part II where we forbid formulas x≤y:

ϕ ::= x≤f(y1, . . . , yn) | f(y1, . . . , yn)≤x | x=c | ϕ ∧ ϕ′

where n 6= 0 is the arity of a non-constant f ∈ Σ and c ∈ Σ is a constant. This
choice will help us to simplify our presentation essentially. It is, however, irrelevant
from the point of view of expressiveness. We can still express x≤y by using existential
quantifiers:

x≤y ↔ ∃z∃u (f(x, u, . . . , u)≤z ∧ z≤f(y, u, . . . , u))

As in this equivalence, we will sometimes use first-order formulas Φ built from con-
straints and the usual first-order connectives. We will write V (Φ) for the set of free
variables occurring in Φ.

2.4 Subtype satisfiability

A solution of Φ is a variable assignment α into the set of finite (resp. regular or
possibly infinite) trees which satisfies the required subtype relations; we write α |= Φ
if α solves Φ and say that Φ is satisfiable.

EXAMPLE. The constraint x≤f(x) is satisfiable, even when interpreted over finite
trees. We can solve it by mapping x to ⊥. In contrast, the equality constraint
x≤f(x) ∧ f(x)≤x is unsatisfiable over finite trees. It can however be solved by
mapping x to the infinite tree f(f(f(. . .))).
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2.5 Subtype entailment

We distinguish three subtype satisfiability problems, each of which has various variants
depending on interpretation over finite, regular, or possibly infinite trees and constants
ordered in a lattice or a poset.

Structural subtype satisfiability is the problem to decide whether a structural sub-
type constraint is satisfiable. The arguments of this problem are a lattice or
posets (B,≤B) and a constraint ϕ over the signature B ∪ {×,→}.

Non-structural subtype satisfiability is the problem to decide whether a non-
structural subtype constraint is satisfiable. The arguments are a lattice or poset
(B,≤B) and a constraint ϕ over signature B ∪ {×,→} ∪ {⊥,>}.

Uniform subtype satisfiability is the the problem to decide whether a uniform sub-
type constraint is satisfiable. The arguments are a partially-ordered uniform
signature (Σ,≤Σ) and a subtype constraint ϕ over this signature.

2.5 Subtype entailment

A formula Φ1 entails Φ2 (we write Φ1 |= Φ2) if all solutions α |= Φ1 satisfy α |= Φ2.
We will consider entailment judgments that are triples of the form (ϕ, x, y) that we
write as ϕ |=? x≤y.

Non-structural subtype entailment (NSSE) is the problem to decide whether entail-
ment ϕ |= x≤y holds. The argument is an entailment judgment ϕ |=? x≤y over
a restricted signature {f,⊥,>} with a single non-constant function symbol f
that is covariant.

The choice of such signatures imposes two restrictions: first, we do not allow for
contravariant type constructors. These could be covered in our framework even though
this is not fully obvious. Second, we do not treat larger signatures with more than
one non-constant function symbol or other constants beside ⊥ and →. This is a true
restriction that cannot be circumvented easily.

Note that entailment judgments of the simple form ϕ |=? x≤y can express general
entailment judgments, where both sides are conjunctions of inequations t1≤t2 between
nested terms or variables (i.e. t ::= x | f(t1, . . . , tn) | ⊥ | >). The main trick is to
replace a judgment ϕ |=? t1≤t2 with terms t1 and t2 by ϕ ∧ x=t1 ∧ y=t2 |=

? x≤y
where x and y are fresh variables. Note also that the omission of formulas u≤v on the
left hand side does not restrict the problem. (Existential quantifier on the left hand
side of an entailment judgment can be removed.)
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2 Subtype Constraints

EXAMPLE. The prototypical example where NSSE holds somehow surprisingly is:

x≤f(y) ∧ f(x)≤y |=? x≤y (yes)

To see this, note that all finite trees in the unary case are of the form f . . . f(⊥)
or f . . . f(>). Thus, x≤y ∨ y<x is valid in this case. Next let us contradict the
assumption that there is a solution α |= y<x ∧ x≤f(y) ∧ f(x)≤y. Transitivity yields
α(y)≤f(α(y)) and then also f(α(x))≤f(α(y)). Hence α(x)≤α(y) which contradicts
α(y)<α(x).
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Part I

Subtype Satisfiability
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Satisfiability

3 Subtyping over a Lattice

4 Subtyping over a Poset

For non-structural subtype satisfiability over a lattice we re-
peat a well-known closure and consistency test. In a second
step we extend it by a first-order unification test to obtain
a procedure for structural subtype satisfiability.

We prove all complexities of subtype satisfiability over posets
by connecting subtype constraints and modal logic. For the
regular or infinite case we choose a dialect of propositional
dynamic logic which we proved to be DEXPTIME-complete
by automata theory; in case of finite trees we choose a sub-
language of K-normal modal logic which we prove to be
PSPACE-complete by an idea of Spaan [Spa93, Hem00].
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3 Subtyping over a Lattice

We presents satisfiability tests for structural and non-structural subtype constraints
where we consider the two cases of possibly infinite and resp. regular trees first and
then turn to the third and more difficult case of finite trees. Satisfiability of infinite
trees was studied by Palsberg and O’Keefe [PO95], and additionally by Pottier [Pot96].
The case of finite trees was solved by Palsberg, Wand, and O’Keefe [PWO97]. An
earlier approach [KPS94] treats the simpler problem of partial types which includes
a greatest but no least type ⊥. As they do, we will construct solutions with smallest
shape for satisfiable constraints. In the infinite and regular cases, we will construct
least and greatest solutions. These will prove extremely useful for proving the com-
pleteness of our non-structural entailment test in the next part of this thesis.

To simplify our presentation we omit the contravariant function symbol → in the
signature during this chapter; all given proofs would also work in the present of →
but require a more elaborated form of syntactic support which based on polarities.

3.1 Non-structural subtyping over infinite trees

Let ϕ be a subtype constraint over a signature {⊥,>, f} ∪ B where B is a lattice of
constants, i.e. a partial order in which every set has a least upper and greatest lower
bound.

reflexive ϕ ` x≤x for variables x ∈ V (ϕ)

trans. ϕ ` x≤z if ϕ ` x≤y and ϕ ` y≤z

decomp. ϕ ` xi≤yi if 1≤i≤n, ϕ ` x≤y, f(x1, . . . , xn)≤x ∧ y≤f(y1, . . . , yn) in ϕ

Table 3.1: Syntactic support of inequalities.
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3 Subtyping over a Lattice

ϕ ` x≤i(z) if ϕ ` x≤x′, x′≤f(y1, . . . , yn) in ϕ, ϕ ` yi≤z, and 1 ≤ i ≤ arity(f)

ϕ ` i(z)≤x if ϕ ` z≤yi, f(y1, . . . , yn)≤x′ in ϕ, ϕ ` x′≤x, and 1 ≤ i ≤ arity(f)

Table 3.2: Syntactic support of lower and upper bounds for i-th children.

3.1.1 Closure algorithm

As a prerequisite for our satisfiability and entailment test, we use a closure algorithm.
This algorithm computes a set of inequalities of the form x≤y that are syntactically
supported by a constraint ϕ.

In contrast to other closure algorithms, we cannot simply add supported inequalities
to the initial constraint ϕ. The reason is that for our later entailment characterization
we are restricted to use the second defined subtype language in the last Chapter 2:

ϕ ::= x≤f(y1, . . . , yn) | f(y1, . . . , yn)≤x | x=c | ϕ ∧ ϕ′

where n 6= 0 is the arity of a non-constant f ∈ Σ and c ∈ Σ is a constant.

Instead, Table 3.1 defines judgments ϕ ` x≤y which state that ϕ supports x≤y
syntactically. The definition consists of three standard rules. The first two rules
express the reflexivity and transitivity of the subtype ordering. Finally and most
importantly, the definition of syntactic support accounts for decomposition which can
be applied recursively.

To keep our proofs simple, Table 3.2 define two further forms of syntactic support:
ϕ ` x≤i(y) means that y is an upper bound of the i-th child of x and ϕ ` i(y)≤x
states the symmetric lower bound for x at i.

Lemma 3.1
For all ϕ, x, y, and 1 ≤ i ≤ n = arity(f) if ϕ ` x≤i(z) then:

ϕ |= ∃y1 . . . ∃yi−1∃yi+1 . . . ∃yn. x≤f(y1, . . . , yi−1, z, yi+1, . . . , yn).

The symmetric property for lower bound ϕ ` i(z)≤x is valid too.

proof. Obvious from Lemma 3.2 and Table 3.2.
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3.1 Non-structural subtyping over infinite trees

C1. ϕ ` x≤y and x=c1 ∧ y=c2 in ϕ for c1, c2 ∈ B ∪ {⊥,>} : c1 >Σ c2

C2. ϕ ` x≤y and x=c ∧ y≤f(y1, . . . , yn) in ϕ for c ∈ B ∪ {>}

C3. ϕ ` x≤y and f(x1, . . . , xn)≤x ∧ y=c in ϕ for c ∈ B ∪ {⊥}

Table 3.3: Label clashes (the definition of judgments ϕ ` x≤y is in Table 3.1).

3.1.2 Closure clash

A label clash in a ϕ imposes an unsatisfiable condition on the root label of some tree
described by ϕ. Table 3.3 collects three kinds of label clashes. Clash C1 requires two
constants c1, c2 with c1≤c2 and c1 >Σ c2, clash C2 needs c≤f for some c6=⊥, and C3
imposes f≤c for some c6=>.

Lemma 3.2
For all ϕ, x, and y: if ϕ ` x≤y then ϕ |= x≤y.

proof. By induction on the definition of syntactic support of inequalities.

Lemma 3.3
If ϕ contains a label clash then it is unsatisfiable over possibly infinite trees (and thus
also over regular or finite trees).

proof. We only consider the case where ϕ contains a label clash of form C1. The
two remaining cases C2 and C3 are analogous. If ϕ contains a label clash of form C1
then:

x=c1 in ϕ, y=c2 ∈ ϕ, and ϕ ` x≤y

for some variables x, y in V (ϕ) and constants c1 >Σ c2. Lemma 3.2 yields ϕ |= x≤y.
Thus, ϕ |= c1≤c2 which requires that ϕ is unsatisfiable.

Proposition 3.1
A constraint is satisfiable over the structure of possibly infinite trees if and only if it
does not contain any label clash (see Table 3.3).

One direction of Proposition 3.1 coincides with Lemma 3.3. The converse is proved
below.

In order to construct least or greatest solutions, we need the notions of lower and
upper bounds in subtree positions. Let u, v be variables and π ∈{1, . . ., arity (f)}∗
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3 Subtyping over a Lattice

ϕ ` x≤ε(y) if ϕ ` x≤y

ϕ ` ε(x)≤y if ϕ ` x≤y

ϕ ` x≤πi(y) if ϕ ` x≤π(z), z≤f(z1, . . . zi . . . , zn) in ϕ, ϕ ` zi≤y

ϕ ` πi(x)≤y if ϕ ` π(z)≤y, f(z1, . . . zi . . . , zn)≤z in ϕ, ϕ ` x≤zi

Table 3.4: Syntactic support of lower and upper bounds.

paths. Let terms u.π to denote the subtree of the value of u at node π under the
presupposition of existence. We define two first-order formulas by:

u≤π(v) =def ∃w : u≤w ∧ w.π = v
π(u)≤v =def ∃w : w≤v ∧ w.π = u

The formula u≤π(v) means that v is an upper bound of u at node π. It is satisfied
by variables assignments α where either α(u)(π ′) = ⊥ for some prefix π′ of π or
α(u).π ≤ α(v). Symmetrically, π(u)≤v states that u is a lower bound of v at π. It is
satisfied by variables assignments α where either α(v)(π ′) = > for some prefix π′ of π
or α(u) ≤ α(v).π.

Table 3.4 defines syntactic support of lower and upper bounds at subtree positions.
This generalizes both notions of syntactic support for inequations and children posi-
tions in Tables 3.1 and 3.2. Note in particular that both judgments ϕ ` x≤ε(y) and
ϕ ` ε(x)≤y are equivalent to ϕ ` x≤y.

Lemma 3.4
If ϕ ` π(x)≤y then ϕ |= π(x)≤y and if ϕ ` y≤π(x) then ϕ |= y≤π(x).

proof. By induction on the derivation of syntactic support. The base case relies on
Lemma 3.1.

Lemma 3.5 (Decomposition)

1. If ϕ ` π(w)≤u and ϕ ` u≤ππ′(v) then ϕ ` w≤π′(v).

2. If ϕ ` ππ′(v)≤u and ϕ ` u≤π(w) then ϕ ` π′(v)≤w.

proof. By induction on the length of the path π.

proof(Proof of Proposition 3.1). We have to construct solutions for constraints ϕ
that do not have label clashes. The basic idea is to construct the least solution by
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3.1 Non-structural subtyping over infinite trees

mapping variables x of V (ϕ) to the least upper bound of all lower bounds of x in ϕ.
Symmetrically, we could also choose the greatest solution.

The construction will use additional judgments ϕ ` π(g)≤x where g ∈ Σ. Such
judgments say that ϕ syntactically supports g to be a lower bound for the label of x
at path π. It is defined as follows:

ϕ ` π(c)≤x if ϕ ` y=c in ϕ and ϕ ` π(y)≤x

ϕ ` π(f)≤x if ϕ ` f(y1, . . . , yn)≤y in ϕ and ϕ ` π(y)≤x

Symmetric judgments of the forms ϕ ` x≤π(c) and ϕ ` x≤π(f) are defined in anal-
ogy.

We now specify variable assignments leastϕ which map variables z ∈ V (ϕ) to the least
upper bound of all lower bounds of z in ϕ. We define leastϕ(z)(π) by induction on the
length of π. Given a word π for which leastϕ(z)(π′) /∈ {⊥,>} for all proper prefixes
π′ < π, we set:

leastϕ(z)(π) = sup{ g | ϕ ` π(g)≤z }

Otherwise, we leave leastϕ(z)(π) undefined. The definition is sound since all subsets
of Σ have a least upper bound. Note also that ⊥ is the least upper bound of the
empty subset of Σ.

Clearly, leastϕ(z) is a tree over Σ: its domain is prefix closed and arity consistent
by definition. Note that leastϕ(z) may be infinite, for instance, if ϕ is the constraint
f(z)≤z.

It remains to show that leastϕ is indeed a solution of ϕ, i.e., that it satisfies all literals
of ϕ. To prove this we distinguish all possible kinds of literals.

1. Case z=⊥ in ϕ. In this case: leastϕ(z)(ε) = ⊥. Otherwise, ϕ ` ε(>)≤z or
ϕ ` ε(f)≤z. But ϕ then contains a label clash by C1 or C3 which contradicts
our assumption.

2. Case z=> in ϕ. Obviously, leastϕ(z)(ε) = >.

3. Case z=c in ϕ. Also obviously, leastϕ(z)(ε) = c.

4. Case f(z1, . . . , zn)≤z in ϕ. Let π be in the common domain of leastϕ(z) and
leastϕ(f(z1, . . . , zn)).

a) Case π = ε. Thus, ϕ ` ε(f)≤z so that the least solution satisfies
leastϕ(z)(ε) ≥Σ f = leastϕ(f(z1, . . . , zn))(ε).
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3 Subtyping over a Lattice

b) Case π = iπ′ for some 1 ≤ i ≤ n. Note that leastϕ(f(z1, . . . , zn)) is
equal to f(leastϕ(z1), . . . , leastϕ(zn)) so that π′ must belong to the domain
of leastϕ(zi) since π belongs to the domain of leastϕ(f(z1,...,zn)). This
implies that leastϕ(z)(π′) is defined and equal to sup{g | ϕ ` π′(g)≤zi}.
But if ϕ ` π′(g)≤zi then ϕ ` iπ′(g)≤z, and hence:

leastϕ(z)(iπ′) = sup{ g | ϕ ` π(g)≤z }
≥Σ sup{ g | ϕ ` π′(g)≤zi }
= leastϕ(zi)(π

′) = leastϕ(f(z1, . . . , zn))(iπ′)

5. Case z≤f(z1, . . . , zn) in ϕ. Let π be in the common domain of leastϕ(z) and
leastϕ(f(z1, . . . , zn)).

a) Case π = ε. Since ϕ does not contain any label clash of kind C2, it cannot
hold that ϕ ` ε(>)≤z and hence leastϕ(z)(ε) ≤Σ f .

b) Case π = iπ′ for some 1 ≤ i ≤ n. Whenever ϕ ` iπ′(g)≤z then ϕ ` π′(g)≤zi
by decomposition with Lemma 3.5. Hence:

leastϕ(z)(π) = sup{ g | ϕ ` π′(g)≤z }
≤Σ sup{ g | ϕ ` π′(g)≤zi }
= leastϕ(zi)(π

′) = leastϕ(f(z1, . . . , zn))(iπ′)

By inspection of the proof of Proposition 3.1 we obtain the following additional result
on the existence and form of least and greatest solutions. This result is of its own
relevance but also important with respect to entailment.

Proposition 3.2
Every constraints that is satisfiable over possibly infinite trees permits a least solution
leastϕ and a greatest solution greatϕ (over possibly infinite trees). These solutions
satisfy for all variables z ∈ V (ϕ) and nodes π ∈ Dleastϕ(z) resp. π ∈ Dgreatϕ(z):

leastϕ(z)(π) = sup{ g | ϕ ` π(g)≤z }
greatϕ(z)(π) = inf{ g | ϕ ` z≤π(g) }

proof. The proof of Proposition 3.1 shows that leastϕ is indeed solutions of ϕ; and
this solution is clearly smaller than all other solutions of ϕ. By symmetry, the result
for greatϕ follows.
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3.2 Non-structural subtyping over finite trees

3.1.3 Regular trees

Least solutions always map variables to regular trees. This has the following conse-
quence:

Proposition 3.3
A subtype constraint is satisfiable over finite trees if and only if it is satisfiable over
regular trees.

proof. Let ϕ be a constraint that is satisfiable over finite trees, i.e. which does
not have any label clash. We show that the least solution leastϕ of ϕ maps to regular
trees only. Proposition 3.2 shows that the least solution leastϕ satisfies:

leastϕ(z)(π) = sup{ g | ϕ ` π(g)≤z }

for all z ∈ V (ϕ) where leastϕ(z)(π′) /∈ {⊥,>} for all proper prefixes π′ < π, and that
leastϕ(z)(π) is undefined otherwise. We next fix a variable z ∈ V (ϕ) and show that
leastϕ(z) has only finitely many distinct subtrees. We define for all paths π ∈ AΣ :

V (ϕ)(z, π) = { y | ϕ ` π(y)≤z }

The following claim follows straightforwardly from the definition of least solutions.
For all π, π′ ∈ Dleastϕ(z):

leastϕ(z).π = leastϕ(z).π′ if and only if V (ϕ)(z, π) = V (ϕ)(z, π′)

This claim implies that the number of distinct subtrees of leastϕ(z) is uniformly
bounded for all z ∈ V (ϕ) by the number of subsets of V (ϕ), and this number is
finite.

3.2 Non-structural subtyping over finite trees

Satisfiability becomes more tedious in the case of finite trees where we have to care
about unsatisfiable cycles. Most typically, x≤f(x) ∧ f(x)≤x is unsatisfiable while
f(x)≤x is satisfiable over finite trees. These two examples illustrate that only two-
sided cycles in upper and lower bounds are unsatisfiable of finite trees, while one-side
cycles can be satisfied. The general form of cycle clashes is given by rule C4 in Table
3.5.

Lemma 3.6
A constraint with cycle clash is unsatisfiable over finite trees.
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3 Subtyping over a Lattice

C4. ∃π 6= ε : ϕ ` π(x)≤x and ϕ ` x≤y and ϕ ` y≤π(y)

Table 3.5: Cycle clashes.

To simplify the presentation we will consider no constants besides ⊥ and > in the
signature Σ. The most problematic fact about satisfiability over finite trees is that
satisfiable constraints need not have least or greatest solutions, in contrast to possibly
infinite or regular trees (Proposition 3.2). But fortunately, there always exist solutions
with least shape (i.e. least tree domain) for all constraints without label clashes
[PWO97]. And least-shape solutions are always finite for constraints without cycle
clashes.

The constraint f(x)≤x, for instance, does not have a least solution when interpreted
over finite trees. Its finite solutions map x to some tree of the form f(f(f(. . . (>) . . .))),
none of which is smaller than all others. The solution mapping of x to > has the least
shape but is greater than all others. Over possible infinite trees, there exists a least
solution which maps x to the infinite tree f(f(f(. . .))).

Proposition 3.4
A constraint ϕ is satisfiable over the structure of finite trees if and only if it does not
contain a label clash nor a cycle clash.

We have already shown the correctness of our clash rules (Lemmas 3.3 and 3.6); it
remains to prove that constraints without label and cycle clash are satisfiable. This
will be the content of Lemmas 3.7 and 3.8.

Given a satisfiable constraint ϕ we now define an assignment sϕ which maps variables
to trees with the least possible shape for satisfying ϕ, i.e., with the least possible tree
domain. Let z ∈ V (ϕ) and π ∈ {1, . . . , arity(f)}∗. We define sϕ(z)(π) by induction
on the length of π so that we can assume that sϕ(z)(π′) = f for all proper prefixes of
π′ of π:

sϕ(z)(π) =







f if ϕ ` π(f)≤z and ϕ ` z≤π(f)
⊥ if ϕ 6` π(f)≤z and ϕ ` z≤π(g) where g ∈ {⊥, f}
> else

Lemma 3.7
If ϕ is free of label clashes then sϕ |= ϕ over possibly infinite trees.

proof. We show that sϕ satisfies all literals of ϕ.
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3.2 Non-structural subtyping over finite trees

1. Case z=⊥ in ϕ. The second clause of the definition of sϕ(z)(ε) applies since
ϕ ` ε(f)≤z would prove a label clash of kind C3 otherwise. Hence sϕ(z) = ⊥.

2. Case z=> in ϕ. The first two clauses of the definition of sϕ(z)(ε) cannot apply
in the absence of label clashes of forms C1 and C2. Hence, sϕ(z) = >.

3. Case f(z1, . . . , zn)≤z in ϕ. Let π be in the common domain of sϕ(z) and
sϕ(f(z1, . . . , zn)). Note that sϕ(f(z1, . . . , zn)) = f(sϕ(z1), . . . , sϕ(zn)). It re-
mains to prove sϕ(f(z1, . . . , zn))(π) ≤Σ sϕ(z)(π).

a) Subcase π = ε. Since f(z1, . . . , zn)≤z in ϕ, sϕ(z)(ε) cannot be defined by
the second clause, and thus sϕ(z)(ε) ≥Σ f .

b) Subcase π = iπ′ for some 1 ≤ i ≤ n. We must prove sϕ(zi)(π
′) ≤Σsϕ(z)(π)

under the assumption that both values are defined. Clearly, this holds in
the case sϕ(z)(π) = >. If sϕ(z)(π) =Σ f then ϕ ` z≤π(f) so that the
decomposition Lemma 3.5 yields ϕ ` zi≤π

′(f). Hence, sϕ(zi)(π
′) ≤Σ f =

sϕ(z)(π). Otherwise, sϕ(z)(π) = ⊥ so that ϕ 6` π(f)≤z and ϕ ` z≤π(g)
for some g ∈ {f,⊥}. Hence, ϕ 6` π′(f)≤zi and ϕ ` zi≤π

′(g). This implies
sϕ(zi)(π

′) = ⊥.

4. Case z≤f(z1, . . . , zn) in ϕ. For given a word π in the domains of sϕ(z) and
sϕ(f(z1, . . . , zn)) we prove sϕ(z)(π) ≤Σsϕ(f(z1, . . . , zn))(π).

a) Subcase π = ε. Since z≤f(z1, . . . , zn) in ϕ one of the first two clauses
defines sϕ(z)(ε) so that sϕ(z)(ε) = f as required.

b) Subcase π = iπ′ for some 1 ≤ i ≤ n. We show sϕ(z)(π) ≤Σ sϕ(zi)(π
′). This

clearly holds if sϕ(zi)(π
′) = >. If sϕ(zi)(π

′) = ⊥ then ϕ 6` π′(f)≤zi and
ϕ ` zi≤π

′(g) for some g ∈ {⊥, f}. Hence, ϕ 6` π(f)≤z according to the
decomposition Lemma 3.5. Furthermore, ϕ ` z≤π(g) so that sϕ(z)(π) = ⊥.
The final case is sϕ(zi)(π

′) = f . Now, ϕ ` zi≤π
′(f) and also ϕ ` π′(f)≤zi.

Thus, ϕ ` z≤π(f) so that sϕ(z)(π)≤Σf .

Lemma 3.8
If ϕ doesn’t contain cycle clashes then sϕ(z) is finite for all z ∈V (ϕ).

proof. Suppose that sϕ(z) is infinite for some z ∈ Vϕ. Then there exists an infinite
word ω over the alphabet {1, . . . , arity(f)} such that sϕ(z)(π) = f for all finite prefixes
π of ω. This yields ϕ ` π(f)≤z and ϕ ` z≤π(f) for all such prefixes. Hence, there
exists variables xπ, yπ ∈ Vϕ for all prefixes π of ω such that z = xε = yε and for all
prefixes ππ′ of ω:

ϕ ` π′(xππ′)≤xπ and ϕ ` xπ≤yπ and ϕ ` yπ≤π
′(yππ′)
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3 Subtyping over a Lattice

sh(x≤f(y1, . . . , yn)) =df x=f(y1, . . . , yn)

sh(f(y1, . . . , yn)≤x) =df x=f(y1, . . . , yn)

sh(x=c′) for c′∈Σ =df x=c

sh(ϕ1 ∧ ϕ2) =df sh(ϕ1) ∧ sh(ϕ2)

Table 3.6: Defining a subtype constraint sh(ϕ) over {f, c} for a subtype constraint ϕ
over Σ.

Since there are only finitely many distinct pairs (xπ, yπ) of variables in Vϕ, at least
one such pair must be repeated for sufficiently large π and π ′. This pumping argument
establishes a cycle clash C4 in ϕ which contradicts our assumption. Thus, sϕ(z) must
be finite for all z ∈ Vϕ.

3.3 Structural subtyping

We show how to reduce structural to non-structural satisfiability. To distinguish
between the structural and non structural case, we consider the subtype constraint:

x≤f(y) ∧ x≤f(z) ∧ z≤f(y) ∧ y=c

which is satisfiable over a non-structural signature {⊥,>, f, c}, e.g. x7→⊥, but not
over any structural signature.

Therefore, we need an auxiliary shape test which verifies that a structural subtype
constraint entails at most one unique shape for each of its variables. For this we use
a standard technique [Tiu92] to characterize all shapes of solutions by a second, new
constructed structural subtype constraint sh(ϕ) defined over a shrunken signature
{f, c}. Let ϕ be a subtype constraint, the constraint sh(ϕ) is defined as ϕ where
(1) all constants are substituted by c and (2) all inequalities are complicated to be
equalities (see Table 3.6).

The origin constraint ϕ is called weakly unifiable (over finite, regular, resp. possibly
infinite trees) if and only if sh(ϕ) is satisfiable (over finite, regular, resp. possibly
infinite trees). Since sh(ϕ) is a conjunction of equality constraints, its satisfiability
can be checked by first-order unification. We refer to Baader and Siekmann [BS94]
for an introduction in unification theory. In case of finite trees, weakly unifiabil-
ity also subsumes the cycle clash which we have defined for non-structural subtype
satisfiability.
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3.4 Summary and complexity analysis

Proposition 3.5
A structural subtype constraint is satisfiable over finite, regular, resp. possibly infinite
trees if and only if it does not contain any label clash and it is weakly unifiable over
finite, regular, resp. possibly infinite trees.

Its proof mainly depends on the following lemma which is independently shown by
Frey [Fre02] and also by Tiuryn [Tiu92]:

Lemma 3.9
If ϕ is satisfiable, let α be a solution of sh(ϕ). Then ϕ has a solution β that is of the
same shape as α, i.e., for all x ∈ V (ϕ) = V (sh(ϕ)), sh(α(x) = β(x)) is unifiable.

3.4 Summary and complexity analysis

So far, we have seen that we can decide satisfiability of structural and non-structural
subtype constraints by testing for the existence of different kinds of clashes.

Definition 3.1
We call a constraint ϕ clash free for the structure of

1. possibly infinite trees if it does not contain any label clash,

2. regular trees if it does not contain any label clash,

3. finite trees if it does neither contain a label clash nor a cycle clash.

We now consider efficiency issues.

The existence of a label clash in a constraint ϕ can be tested in cubic time in the
size of ϕ. First, one computes a table of quadratic size that stores all valid judgments
ϕ ` u≤v. Second, one compares the labels required by ϕ for all u and v with ϕ ` u≤v.
The existence of a cycle clash can also be tested in cubic time.

In case of structural constraints we have additionally to check weakly unifiability
which corresponds to classical first-order unification. Complete algorithms for first-
order unification over finite [Rob65] and regular or infinite trees [MM82] were given
and enhanced in its worst case complexity [PW78]. Finally, first-order unification
is shown to be linear for finite trees and quasi-linear for regular or infinite trees.
Altogether, this yields the following result:
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3 Subtyping over a Lattice

THEOREM 3.1
A subtype constraint ϕ is satisfiable (over finite, regular, resp. possibly infinite trees)
if and only if it is clash-free (over finite, regular, resp. possibly infinite trees) and in
the structural case it is additionally weakly unifiable. In all cases, satisfiability can
be tested in cubic time in the size of ϕ. Least and greatest solutions of satisfiable
constraints exist for the non-structural infinite and regular cases, but not necessarily
over finite trees.

proof. From Propositions 3.1, 3.2, 3.5, 3.3, 3.4 and the above discussion on effi-
ciency.
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4 Subtyping over a Poset

So far we have investigated subtype satisfiability where constants are ordered in a
lattice. In this chapter we generalize subtype satisfiability by constants ordered in an
arbitrary poset.

For subtype satisfiability over posets, there exist only partial answers [TW93, Tiu92,
Fre02]. The complexity of structural subtype satisfiability is not settled in case of
recursive types. Decidability and complexity of non-structural subtype satisfiability
are open for both finite and recursive types.

We present a uniform treatment to determine the complexities of all these classes:
finite versus recursive types, and structural versus non-structural orderings. It based
on a new approach, connecting subtype constraints and modal logic. As an interme-
diate result we introduce a new subtype language of uniform subtype constraints and
show that their satisfiability problem is polynomial time equivalent to that of a dialect
of propositional dynamic logic.

4.1 Propositional dynamic logic over trees

Propositional dynamic logic (PDL) is a modal logic that extends Boolean logic to
directed graphs of possible worlds. The same proposition may hold in some node of
the graph and be wrong in others. Nodes are connected by labeled edges, that can be
talked about modal operators.

In this paper, we consider the modal logic PDLn, the PDL language for the complete
infinite n-ary tree. PDLn is naturally subsumed by the monadic second-order logic
SnS of the complete n-ary tree [Rab69].

4.1.1 Other PDL dialects

Propositional dynamic logic (PDL) over directed edge-labeled graphs goes back to
Fischer and Ladner [FL79], who restricted Pratt’s dynamic logic to the propositional
fragment. It is well known that PDL has the tree property : every satisfiable PDL
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4 Subtyping over a Poset

R ::= i | R ∪R′ | RR′ | R∗ where 1 ≤ i ≤ n
D ::= p | ¬D | D ∧D′ | [R]D

Figure 4.1: Syntax of PDLn.

formula can be satisfied in a rooted edge-labeled tree. Deterministic PDL [HKT00,
BAHP82, VW86] restricts the model class to graphs whose edge labels are functional
in that they determine successor nodes. Deterministic PDL with edge labels {1, . . . , n}
is the closest relative to our language PDLn, due to the tree property.

Besides of PDLn, a large variety of PDL dialects with tree models were proposed in the
literature. These differ in the classes of tree models, the permitted modal operators,
and the logical connectives. Three different dialects of PDL over finite, binary, or
n-ary trees were proposed in [BMV94, Kra97, Pal99], see [BGM03] for a comparison.
PDL over finite unranked ordered trees were proposed for computational linguistics
applications [BMV94] and found recent interest for querying XML documents.

4.1.2 PDLn and its fragments

For every n ≥ 1 we define a logic PDLn as the PDL logic, for describing the complete
infinite n-ary tree.

The syntax of PDLn expressions1 A is given in Figure 4.1. Starting from some infinite
set Prop of propositional variables p, it extends the Boolean logic over these vari-
ables by universal modalities [R]A, where R is a regular expression over the alphabet
{1, . . . , n}.

We frequently use the modality [∗] as an abbreviation of [{1, . . . , n}∗], and sometimes
[+] as a shorthand for [{1, . . . , n}+]. We freely use definable logical connective for
implication→, equivalence↔, disjunction ∨, exclusive disjunction ∨

+
, and the Boolean

constants true and false. Furthermore, we can define existential modalities 〈R〉D by
¬[R]¬D.

We interpret formulas of PDLn over the complete infinite n-ary trees. Tree nodes are
labeled by the set of propositions that are valid there. Formally, a model M of a
formula in PDLn assigns Boolean values 0, 1 to propositional variables in every node
in {1, . . . , n}∗: M : Prop× {1, . . . , n}∗ → {0, 1}. Table 4.1 defines when a formula D
holds in some node π of some model M , in formulas: M,π |= D. A formula [R]D is

1We could allow for test ?A in regular expressions, which frequently occur in PDL dialects but we
will not need them.
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4.1 Propositional dynamic logic over trees

M,π |= p if M(p, π) = 1
M,π |= D1 ∧D2 if M,π |= D1 and M,π |= D2

M,π |= ¬D if not M,π |= D
M,π |= [R]D if for all π′ ∈ L(R): M,ππ′ |= D

Table 4.1: Semantics of PDLn.

valid for some node π of a tree M if D holds in all R descendants of π in M , i.e., in
all nodes ππ′ where π′ belongs to the language L(R) of R.

Let us recall some logical notations. A formula D is valid in a model M if it holds
in the root of M : M |= D iff M, ε |= D. A formula D is satisfiable if it is valid in
some model; it is valid it is valid in all models: |= D iff ∀M.M |= D. Two formulas
D, D′ are equivalent if D ↔ D′ is valid: D |=| D′ iff |= D ↔ D′ . For instance,
〈i〉A |=| [i]A holds for all 1 ≤ i ≤ n and all A, since nodes of the n-ary tree have
unique i successors.

Note that PDLn respects the substitution property: whenever D1 |=| D2 then
D[D1/D2] |=| D. To see this note that if D1 |=| D2 then the equivalence D ↔ D′ is
valid not only at the root of all models but also at all other nodes of all models. This
is because all subtrees of complete n-ary trees are again complete n-ary trees.

THEOREM 4.1
Satisfiability of PDLn formulas is in DEXPTIME.

A PDLn formula is satisfiable iff it can be satisfied by a deterministic rooted graph
with edge labels in {1, . . . , n}. The proposition thus follows from the DEXPTIME
upper bound for deterministic PDL [HKT00, BAHP82], which is a corollary to the
analogous result for PDL.

4.1.3 Flat core PDLn

We next investigate lower complexity bounds for PDLn. It is known from Vardi and
Wolper [VW86] that satisfiability of deterministic PDL is DEXPTIME-complete. This
result clearly carries over to PDLn.

An analysis of Spaan’s proofs [Spa93] reveals that nested [∗] modalities are not needed
for DEXPTIME-hardness. But we can even do better, i.e., restrict the language
further.
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4 Subtyping over a Poset

B ::= p1 ∧ p2 | ¬p | [i]p where 1 ≤ i ≤ n
C ::= p | [∗] (p↔ B) | C1 ∧ C2

Figure 4.2: Syntax of flat core PDLn.

We define the fragment flat core PDLn in Figure 4.2. A formula of flat core PDLn

is a conjunction of propositional variables and expressions of the form [∗] (p ↔ B).
Note that [∗] modalities cannot be nested. Furthermore, all Boolean sub-formulas B
are flat in that Boolean connectives only apply to variables.

THEOREM 4.2
Satisfiability of flat core PDLn formulas is DEXPTIME-complete.

We prove that satisfiability of flat core PDLn is DEXPTIME-hard and thus
DEXPTIME-complete (Theorem 4.1).

We proceeds in two steps. We first introduce a new dialect of PDLn that we call
the core of PDLn , and express emptiness of intersections of tree automata in that
language. This proofs DEXPTIME hardness [Sei94] of core PDLn. In the second step,
we normalize core PDLn into flat core PDLn. This relies on a flattening procedure
inspired by techniques of Spaan [Spa93].

4.1.4 Core PDLn

The core of PDLn is a fragment of PDLn that is slightly richer than flat core PDLn.
Formulas C of core PDLn are conjunctions of propositional variables and expression
[∗]B, where B is an arbitrary, possibly non-flat Boolean expression.

B ::= p | ¬B | B ∧B ′ | B ↔ B′ | [i]B
C ::= B | [∗]B | C ∧ C

The modalities are again restricted to immediate [i] successors (where 1 ≤ i ≤ n) and
arbitrary [∗] descendants such that [∗] cannot be nested below other modalities.

In Table 4.2 we define a set of standard operators on Boolean expressions in core
PDLn formulas. Note that all operators affect the size of formulas linearly. Our
syntax provides for equivalences, to avoid the exponential blow up in the standard:

D1 ↔ D2 |=| D1 → D2 ∧D2 → D1

But expressing nested equivalences through two-sided implications might blow up sizes
exponentially.

44



4.1 Propositional dynamic logic over trees

or. B1 ∨B2 =df ¬(¬B1 ∧ ¬B2)
implication. B1 → B2 =df ¬B1 ∨B2

exclusive or. B1∨
+
B2 =df ¬(B1 ↔ B2)

false value. false =df p0 ∧ ¬p0

for some p0 ∈ Prop
true value. true =df ¬false

Table 4.2: Operators on Boolean expressions.

Proposition 4.1
Satisfiability of core PDLn formulas is DEXPTIME-hard.

proof. This can be proved by a closer inspection of DEXPTIME-hardness proofs
for PDL [Spa93, HKT00, BdRV01] or deterministic PDL [VW86]. Here, we give a
new direct proof by encoding emptiness of intersections of tree automata.

Let Σ be a finite ranked signature. A tree automaton A over a signature Σ con-
sists of a finite set states(A) of states, a subset final (A) ⊆ states(A) of final
states, and a set rules(A) of transition rules of the form f(q1, . . . , qn) → q where
q1, . . . , qn, q ∈ states(Ai) and n = arityΣ(f). The language of a tree automaton L(A)
contains all those ground terms over Σ that can be evaluated into a final state by rule
application.

We first encode trees over Σ in PDLn with max successors where max is the maximal
arity of function symbols in Σ. We introduce fresh propositional variables pf for
every symbol f ∈ Σ to represent f -labeled nodes, and a propositional variable pdom

to express tree domains. A model M encodes a tree τ if for all π ∈ {1, . . . ,max}∗:

M,π |= pdom iff π ∈ dom(τ) and
M,π |= pf iff τ(π) = f

Lemma 4.1
There exists a formula treeΣ in the core of PDLn whose models represent precisely
the trees in treeΣ.

proof. We use a couple of well-formedness conditions for representations of possibly
infinite trees. Formula labelΣ says that the root of every ground term belongs to its
domain and every node of the domain is labeled in Σ.

labelΣ =df pdom ∧ [∗](pdom →
∨

f∈Σ

+
pf )
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4 Subtyping over a Poset

Condition arityΣ requires that every node of a tree fulfills the arity required by its
label.

arityΣ =df [∗](
∧

f∈Σ pf → (
∧arityΣ(f)

i=1 [i]pdom∧
∧max

j=1+arityΣ(f)[j]¬pdom ))

Property prefix restricts tree domains of ground terms to be prefixed-closed:

prefix =df [∗]pdom →

(

max
∧

i=1

[i] pdom

)

Possibly infinite trees are now definable:

treeΣ =df labelΣ ∧ arityΣ ∧ prefix

We next want to restrict models to representation ground terms, i.e., to finite trees over
Σ, but unfortunately, finiteness cannot be expressed in PDLn. Lemma 4.2 indicates
a way out of this problem. It is sufficient to restrict the depth of terms exponentially,
rather then to impose finiteness.

Lemma 4.2
Let (Ai)

n
i=1 be a finite sequence of tree automata over the same signature. If the

intersection ∩n
i=1L(Ai) is nonempty, then it contains some tree of depth bounded by

∏n
i=1 |states(Ai)|.

proof. We can construct a tree automaton for the intersection with at most
∏n

i=1 |states(Ai)| and then apply the pumping lemma for regular tree languages.

It is thus sufficient to encode ground terms whose depth is bounded exponentially in
the size of the given intersection of tree automata. This can be expressed by a PDLn

formula of polynomial size, which simulates a counter.

Lemma 4.3
For every n ≥ 0, there exists a formula ground−termΣ(n) in the core of PDLn de-
scribing all finite trees over Σ with depth bounded by 2n.

proof. Condition counter (n) describes an n-bit counter that counts the depth of
nodes starting from the root. We consider tree models with propositional variables
(pi)

n
i=1 that represent the n bits of the counter. Lets identify the Boolean values

t with the digit 1 and f with 0. For every model M and node π the sequence
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4.1 Propositional dynamic logic over trees

M(pn, π) . . . M(p1, π) is the binary representation of the depth of node π in tree M ,
modulo 2n.

all(n) =df
∧n

i=1 pi

counter (0) =df true
counter (n) =df counter(n−1) ∧ ¬pn

∧[∗]((¬pn ∧ ¬all(n−1))→ ∧n
i=1[i]¬pn)

∧[∗]((¬pn ∧ all(n−1))→ ∧n
i=1[i]pn)

∧[∗]((pn ∧ ¬all(n−1))→ ∧n
i=1[i]pn)

∧[∗]((pn ∧ all(n−1))→ ∧n
i=1[i]¬pn)

The formula depth(n) bounds the depth of nodes in the domain to 2n.

depth(n) =df counter (n) ∧ [∗](all (n)→ ¬pdom)

We can now define ground terms:

ground−termΣ(n) =df treeΣ ∧ depth(n)

Let (Ai)
n
i=1 be a sequence of tree automata over a signature Σ with disjunct state

sets. We encode simultaneously accepting runs of all tree automata (Ai)
n
i=1. We use

propositional variables pq for all states q ∈ ]n
i=1states(Ai).

run(Ai) =df [∗] (∧q∈states(A) ((pq ∧ pf )→
∨ f(q1,...,qn)→q∈rules(Ai) ∧

n
i=1 [i]pqi

))

accept(Ai) =df ∨q∈final(Ai)pq ∧ run(Ai)

Lemma 4.4
The intersection ∩n

i=1L(Ai) is the set of ground terms that yield models of the following
PDLn formula for k = maxn

i=1 |states(Ai)| :

ground−term(dlog(k)e ∗ n) ∧ ∧n
i=1accept(Ai)

4.1.5 Flattening

Proposition 4.2
Every core PDLn formula C is satisfaction equivalent to some flat core PDLn formula,
that can be computed in linear time.
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4 Subtyping over a Poset

flat(p) =df [∗] (Pp ↔ p ∧ p)
flat(¬B) =df [∗] (P¬B ↔ ¬PB) ∧ flat(B)

flat(B ∧B′) =df [∗] (PB∧B′ ↔ (PB∧PB′))
∧flat(B) ∧ flat(B ′)

flat([i]B) =df [∗] (P[i]B ↔ [i]PB) ∧ flat(B)

flat(B ↔ B′) =df [∗] (PB↔B′ ↔ (PB→B′∧PB′→B))
∧flat(B→B ′) ∧ flat(B′→B)

flat2(B) =df PB ∧ flat(B)
flat2([∗]B) =df [∗]PB ∧ flat(B)

flat2(C ∧ C) =df flat2(C) ∧ flat 2(C
′)

Table 4.3: Flattening core PDLn formulas.

The idea of the proof is to introduce new propositional variables for all sub-term
positions of a given PDLn formula. We fix a finite set Prop0 of propositional variables
and an injective generator function:

P : PDLn → (Prop− Prop0)

that maps a PDLn formulas D to propositional variables PD. Given this generator,
Table 4.3 defines two flattening functions flat and flat 2, for core PDLn formulas of
type B and C respectively.

Formulas flat(B) and flat 2(C) are clearly flat core PDLn formulas for all core PDLn

formulas B and flat2(C), except for sub-formulas [∗]PB which can be expressed
through [∗](PB ↔ true) and thus by the flat formula: [∗](PB ↔ Ptrue ∧ Ptrue) ∧
flat(true).

The sizes of flat(B) and flat 2(C) remain linear in those of B and C respectively, when
sharing common subconstraints flat(B1) and flat(B2) in translations of equivalences
flat(B1 ↔ B2), i.e., in flat(B1 → B2) and flat(B2 → B1).

Lemma 4.5 (Correctness)
For all core PDLn formulas C with Prop(C) ⊆ Prop0:

C |=| ∃Prop−Prop0. flat2(C)

The proof relies on the following two Lemmas.
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4.1 Propositional dynamic logic over trees

M ′(p, π) =df M(p, π) if p ∈ Prop0

M ′(p, π) =df arbitrary if p 6∈ Prop0 ∪ P (B)
M ′(Pp, π) =df M ′(p, π)

M ′(P¬B , π) =df ¬M
′(B, π)

M ′(PB1∧B2 , π) =df M ′(B1, π) ∧M ′(B2, π)
M ′(PB1↔B2 , π) =df M ′(B1, π)↔M ′(B2, π)

M ′(P[i]B, π) =df ∀ 1 ≤ i ≤ n.M ′(B, πi)

Figure 4.3: Extending models to new variables PB .

Lemma 4.6
For all core PDLn formulas B with variables Prop(B) ⊆ Prop0:

|= ∀Prop0 ∃Prop−Prop0. flat(B)

proof. We fix a model M : Prop × {1, . . . n}∗ → {0, 1} of B and define a model
M ′ : Prop×{1, . . . n}∗ → {0, 1} of flat(B) in Figure 4.3. The definition of M ′(PB , π)
is by induction on the structure of terms B. Clearly, M ′ differs from M only on
variables in Prop − Prop0. We can show M ′ |= flat(B) for all formulas B with
variables Prop(B) ⊆ Prop0 by induction on the structure of B.

Lemma 4.7
flat(B) |= [∗] (PB ↔ B) for all core PDLn formulas B.

proof. By induction on the structure of formulas B.

1. Let B = p then flat(p) |= [∗] (Pp ↔ p) (Table 4.3).

2. Let B = B1∧B2 (the remaining cases B = ¬B ′ or B = B1 ↔ B2 are analogous).
It holds that flat(B) |= [∗] (PB ↔ (PB1 ∧ PB2) (Table 4.3). It further holds
for i ∈ {1, 2} that flat(B) |= [∗] (PBi

↔ Bi) by induction on Bi. We conclude
flat(B) |= [∗] (PB ↔ B1 ∧B2).

3. Case B = [i]B ′. It hold that flat(B) |= [∗] (PB ↔ [i]PB′ ) (Table 4.3) and
flat(B) |= [∗] (PB′ ↔ B′) by induction on B ′. It follows that flat(B) |=
[∗][i] (PB′ ↔ B′) also holds. Again we conclude flat(B) |= [∗] (PB ↔ [i]B′).

proof. [of Correctness Lemma 4.5] by induction on C. Let C = [∗]B (the case
C = B will be subsumed). To prove is [∗]B |=| ∃Prop−Prop0 ([∗]PB ∧ flat(B)) for
all core PDLn formulas B with Prop(B) ⊆ Prop0 (see Table 4.3). Lemma 4.7 yields
flat(B) |= [∗] (PB ↔ B) and thus [∗]PB ∧ flat(B) |= [∗]B. Since Prop(B) ⊆ Prop0
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4 Subtyping over a Poset

this is equivalent to ∃Prop−Prop0.[∗]PB ∧flat(B) |= [∗]B. The converse follows from
Lemma 4.6:

[∗]B |=| [∗]B ∧ ∀Prop0. ∃Prop−Prop0. flat(B)
|= [∗]B ∧ ∃Prop−Prop0. flat(B)
|= ∃Prop−Prop0 ([∗]B ∧ flat(B))

4.1.6 Inverted PDLn

The modal operator [R] of PDLn addresses all R descendants of the actual world.
We now consider a variant of PDLn with inverted modalities [R]−, which address all
nodes π′π reached by prefixing some π′ ∈ L(R) to the actual node π:

root

π′ π

π′π

[R] [π]

[π] [R−]

Thus, [R][R′]− equals to [R′][R]. We define:

M,π |= [R−]D if for all π′ ∈ L(R): M,π′π |= D.

Inverted flat core PDLn is defined in analogy to flat core PDLn except that all
modalities are inverted.

B ::= p1 ∧ p2 | ¬p | [i]−p for 1 ≤ i ≤ n
C ::= p | [∗] (p↔ B) | C1 ∧ C2

We will freely omit inversion for [∗] operators, as these are never nested below modal-
ities. We can translate flat core PDLn formulas C into formulas C− of the inverted
flat core, and vice versa, by replacing the operators [i] through [i]−. Models can be
inverted too: M−(p, π) = M(p, π−1) where π−1 is the inversion of π.

Lemma 4.8
M |= C iff M− |= C−.

The following figures compare a model with its inversion (all nodes changing its posi-
tion due to path inversion are grey underlined):
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4.2 Uniform subtype satisfiability
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1− 2−
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5.1. A tree model . . . 5.2. compared with its inversion.

[[x=f(x1, . . . , xn)]] =df Px=f ∧
∧

g∈Σ

∧

1≤i≤n[∗] (Pxi=g ↔ [i]−Px=g)

[[x≤y]] =df [∗]
∨

f≤Σg(Px=f ∧ Py=g)

[[ϕ1 ∧ ϕ2]] =df [[ϕ1]] ∧ [[ϕ2]]

Table 4.4: Expressing uniform covariant subtype constraints in inverted PDLn.

4.2 Uniform subtype satisfiability

In this section, we investigate the complexity of uniform subtype satisfiability. We
first show how to encode uniform subtype constraints into inverted PDLn. We then
give a translation from inverted flat core PDLn back to uniform subtype satisfiabil-
ity. Both translations are polynomial time and preserve satisfiability (Proposition 4.4
and 9.1). The complexity of PDLn (Theorem 4.2) thus carries over to uniform subtype
satisfiability.

THEOREM 4.3
Uniform subtype satisfiability over possibly infinite trees is DEXPTIME-complete.

4.2.1 Uniform subtype constraints into PDLn

We encode uniform subtype constraints over infinite trees into inverted PDLn. The
translation relies on ideas of Tiuryn and Wand [TW93], but it is simpler with modal
logics as the target language, rather than infinite sets of regular path constraints.
We first present our translation for covariant uniform signatures and then sketch the
contravariant case.

Let Σ be a uniform covariant signature and n > 1 the arity of its function symbols.
We fix a finite set of type variables V and consider subtype constraints ϕ over Σ with
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4 Subtyping over a Poset

V (ϕ) ⊆ V . For all x ∈ V and f ∈ Σ we introduce propositional variables Px=f that
are true at all nodes π ∈ {1, . . . , n}∗ where the label of x is f .

The well-formedness formula wff V states that all nodes of tree values of all x ∈ V
carry a unique label f :

wff V =df
∧

x∈V [∗] (
∨+

f∈ΣPx=f ).

A polynomial time encoding of subtype constraints is presented in Table 4.4. Inverted
modalities [i]− are needed to translate x=f(x1, . . . , xn) since α |= x=f(x1, . . . , xn) if
and only if α(x)(ε) = f and α(x)(iπ) = α(xi)(π) for all words iπ ∈ {1, . . . , n}∗.

Proposition 4.3
A uniform subtype constraint ϕ over a covariant signature Σ with V (ϕ) ⊆ V is
satisfiable if and only if wff V ∧ [[ϕ]] is satisfiable.

proof. A solution of ϕ is a function α : V → treeΣ. Let n be the arity of function
symbols in Σ, so that all trees in treeΣ are complete n-ary trees with nodes labeled
in Σ, i.e., total functions of type {1, . . . , n}∗ → Σ. A variable assignment α thus
defines a PDLn model Mα : Prop× {1, . . . , n}∗ → Σ that satisfies for all x ∈ V and
π ∈ {1, . . . , n}∗:

Mα(Px=f , π) ↔ α(x)(π) = f.

We can now show by induction on the structure of ϕ that α |= ϕ iff Mα, ε |= wff V ∧
[[ϕ]].

Proposition 4.4
Uniform subtype satisfiability with covariant signatures over possibly infinite trees is
in DEXPTIME.

proof. It remains to show that our reduction is in polynomial time. This might
seem obvious, but it needs some care. Exclusive disjunctions of the form p1∨

+
. . .∨

+
pn

as used in the well-formedness formula can be encoded in quadratic time through
∨n

i=1(pi∧
∧

1≤j 6=i≤n¬pj). Equivalences p↔ ¬p′ as used can be encoded in linear time
by (p ∧ ¬p′) ∨ (¬p ∧ p′).

Contravariance. Our approach smoothly extends to uniform subtyping with con-
travariant signatures. The key idea is that we can express polarities in inverted flat
core PDLn by using a new propositional variable ppol . For example, consider the
uniform signature Σ = {→}, where → is the usual function type constructor. The
variable ppol is true in nodes with polarity 1 and false otherwise:

ppol ∧ [∗] (ppol ↔ [1]−¬ppol ) ∧ [∗] (ppol ↔ [2]−ppol ).
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4.2 Uniform subtype satisfiability

Limitation due to Inversion. Inversion is crucial to our translation and has a number
of consequences. Most importantly, we cannot express the formula [∗](p → [+]p ′) in
inverted PDLn, which states that whenever p holds at some node then p′ holds for in
all proper descendants.

As a consequence, we cannot directly translate subtype constraints over standard
signatures into PDLn (which we consider in Sections 4.3). The difficulty is to encode
tree domains in the presence of leafs. Suppose we want to define that p holds for all
nodes outside the tree domain. We could do so by imposing [∗](pc → [+]p) for all
constants c, but this is impossible in inverted PDLn.

This is not a problem for uniform signatures, because every tree is complete n-ary.
Thus we do not need to express tree domains when considering satisfiability. Un-
fortunately, the same technique does not extend to entailment and other first-order
fragments that require negations.

4.2.2 Back translation

To prove DEXPTIME-hardness of uniform subtype satisfiability, we show how to
express inverted flat core PDLn by uniform subtype constraints, indeed only with
covariant signatures. Our encoding of Boolean logic is inspired by Tiuryn [Tiu92],
while the idea to lift this encoding to PDLn is new.

Let C be a formula of inverted flat core PDLn. We aim to find a subtype constraints
[[C]]−1 which preserves satisfiability. The critical point is how to translate PDLn’s
negation since it is absent in our target language of uniform subtype constraints.

We work around by constructing a uniform subtype constraints with function symbols
ordered in a crown: Σ(n) = {0, 0̄, 1, 1̄}.

1 0̄

0 1̄

All function symbols have arity n and satisfy x ≤Σ(n) y for all x ∈ {0, 1̄}, y ∈ {1, 0̄}.
The symbols 0 and 1 model PDLn’s underlying boolean lattice bool = {0 , 1}; the
additional two symbols are introduced to define negation by diag(c) = c for c ∈ bool .

Next, Table 4.5 shows how to define diag by a subtype constraint. For every proposi-
tional variable p we introduce a new type variables Xp in the subtype constraint we
are constructing to. The subtype constraint all-c(x) holds for the unique trees that
is completely labeled by some c ∈ Σ(n). The subtype constraint all-bool(x) holds for
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all-c(x) =df x=c(x, . . . , x) for some c ∈ Σ(n)
all-bool(x) =df ∃y∃z. all-0(x) ∧ x≤y≤z ∧ all-1(z)

all-bool(x) =df ∃y∃z. all-1̄(x) ∧ x≤y≤z ∧ all-0̄(z)
upper(x, y) =df ∃z. x≤z ∧ y≤z
lower(x, y) =df ∃z. z≤x ∧ z≤y
diag(x, y) =df all-bool(x) ∧ all-bool(y) ∧ upper(x, y) ∧ lower(x, y)

all(p1 ∨ p2 ∨ ¬p3 ∨ ¬p4) =df ∃z.
∧

1≤i≤4 all-bool(Xpi
)

∧upper(z,Xp4) ∧ upper(z, diag(Xp2))
∧lower(z,Xp1) ∧ lower(z, diag(Xp3))

all(p1 ∨ p2) =df ∃Xq. all(p1 ∨ p2 ∨ ¬q ∨ ¬q) ∧ all-1(Xq)

Table 4.5: Boolean operations expressed by subtype constraints.

trees that are labeled in bool . The constraints lower(x, y) and upper(x, y) require the
existence of lower and upper bounds respectively for trees x and y. These bounds are
used to define the diagonal pairs diag(x, y) in the crown.

Lemma 4.9
diag(x, y) |=| ∀π. (x(π) = 0 ∧ y(π) = 0̄) ∨ (x(π) = 1 ∧ y(π) = 1̄).

proof. Since x is a tree labeled in bool , all nodes π satisfy α(x)(π)=0 or α(x)(π)=1.
In the first case (the second is analogous) the constraint lower(x, y) entails α(y)(π) 6=1̄.
Since y is a bool tree, α(y)(π)=0̄.

The subtype constraint all(p1 ∨ p2 ∨ ¬p3 ∨ ¬p4) expresses a universally valid Boolean
clause. In its definition, we use the diagonal operator in functional syntax diag(bool) →
bool to increase readability. Solutions of such subtype constraints are variable assign-
ments

α : Prop→ {1, . . . , n}∗ → Σ(n).

For variable assignments α into trees over Booleans, we define PDLn-models Mα :
Prop× {1, . . . , n}∗ → bool by Currying:

Mα(p, π) = α(Xp)(π).

Lemma 4.10
Let D be the Boolean formula p1 ∨ p2 ∨ ¬p3 ∨ ¬p4. For all variable assignments α to
trees over Σ(n), α |= all(D) if and only if Mα is defined and Mα |= [∗]D.
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4.2 Uniform subtype satisfiability

[[p]]−1 =df ∃x1 . . . ∃xm. all-bool(Xp) ∧Xp=1(x1, . . . , xm)

[[[∗] (p↔ [i]−q)]]−1 =df all-bool(Xp) ∧ all-bool(Xq)
∧ ∃x1 . . . ∃xm.(0(x1, ..., xm)≤Xq≤1(x1, ..., xm) ∧Xp=xi)

[[[∗] (p↔ ¬q)]]−1 =df all(p ∨ q) ∧ all(¬p ∨ ¬q)

[[[∗] (p↔ (q1 ∧ q2))]]
−1 =df all(¬p ∨ q1) ∧ all(¬p ∨ q2) ∧ all(p ∨ ¬q1 ∨ ¬q2)

[[C1 ∧ C2]]
−1 =df [[C1]]

−1 ∧ [[C2]]
−1

Table 4.6: Inverted core flat PDLn in subtype constraints.

proof. We assume α |= all(D). The model Mα exists since all(D) |=
∧

1≤i≤4 all-bool(Xpi
). We show Mα |= [∗]D by contradicting the existence of a path

π with:
α |= Xp1(π)=0 ∧Xp2(π)=0 ∧Xp3(π)=1 ∧Xp4(π)=1.

Each of these four disjuncts forbids one of four possible values for α(z)(π), as we
argue below, where z is the existentially quantified variable in all(D). This is clearly
impossible.

1. if α(Xp1)(π)=0 then α(z)(π) 6= 1̄ since α |= lower(z,Xp1);

2. if α(Xp2)(π)=0 then α |= diag(Xp2)(π)=0̄ (Lemma 4.9). This implies α(z)(π) 6=
1 since α |= upper(z, diag(Xp2)).

3. if α(Xp3)(π)=1 then α |= diag(Xp3)(π)=1̄ (Lemma 4.9). This implies α(z)(π) 6=
0 since α |= lower(z, diag(Xp3)).

4. if α(Xp4)(π)=1 then α(z)(π) 6= 0̄ since α |= upper(z,Xp4).

The back translation [[C]]−1 of inverted flat core PDLn into subtype constraints is
shown in Table 4.6. All Boolean formulas used there can be expressed by p1 ∧ p2 ∧
¬p3 ∧ ¬p4 which we have shown how to encode.

Proposition 4.5
Let C be a flat core inverted PDLn formula. For all variable assignments α to trees

over Σ(n), α |= [[C]]−1 if and only if Mα is defined and Mα |= C.

For n = 0, subtype constraints become ordering constraints for some given ordering,
while PDL0 satisfiability becomes a Boolean satisfiability problem that is well-known
to be NP-complete. We thus obtain a new NP-completeness proof for ordering con-
straints interpreted over posets [PT96].
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4.3 Equivalence of subtype problems

We next show the equivalence of uniform subtype satisfiability with structural and
non-structural subtype satisfiabilities over possibly infinite trees. Subtype satisfiabil-
ity over finite trees will be treated in Section 4.4.

THEOREM 4.4
Structural, non-structural, and uniform subtype satisfiability over possibly infinite
trees are equivalent and DEXPTIME-complete.

The proof relies on so called 1-subtype orders which are subtype orders over signatures
with a single non-constant, and the corresponding constraints.

1-subtype satisfiability is the satisfiability problem of subtype constraints over 1-
subtype orders. This problem is parametric in the arities and polarities of the
non-constant, the partial order on constants (B,B≤), and whether or not {⊥,>}
is included in the signature.

We present the proof in four steps. We first show how to reduce structural subtype
satisfiability to 1-subtype satisfiability (Section 4.3.1) and then do the same for the
non-structural case (Section 4.3.2). Next, we reduce 1-subtype satisfiability to uniform
subtype satisfiability (Section 4.3.3). Finally, we translate uniform subtype satisfiabil-
ity back to both structural and non-structural subtype satisfiability (Section 4.3.4).

4.3.1 Structural to 1-subtype satisfiability

In this part, we show how to reduce structural to 1-subtype satisfiability. We first use
a standard technique to characterize the shapes of solutions to a structural subtype
constraints. We consider type expressions as terms over Σ.

Definition 4.1
Let ϕ be a constraint over Σ and ? be an arbitrary, fixed constant. For any type
expression t, t? denotes the same type expression as t except all constants in t are
replaced with ?. Define the shape constraint sh(ϕ) as:

sh(t1 = t2) =df t?1 = t?2

sh(x≤y) =df x = y

sh(ϕ1 ∧ ϕ2) =df sh(ϕ1) ∧ sh(ϕ2)

The constraint ϕ is called weakly unifiable iff sh(ϕ) is unifiable.
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Consider a signature Σ = B ∪ {×,→}. We construct a signature s(Σ) =df B ∪ {f, c},
where f is function symbol of arity four and c is a fresh constant. Our approach is
to use f to capture both × and →, i.e., all the non-constant function symbols in Σ.
The first two arguments of f are used to model the two arguments of × and the next
two to model the two arguments of →. Thus, f is co-variant in all arguments except
the third one.

Given a constraint ϕ over Σ, we construct s(ϕ) over s(Σ):

s(x = y × z) =df x = f(y, z, c, c)

s(x = y → z) =df x = f(c, c, y, z)

s(x = b) =df x = b ∀b ∈ B

s(x≤y) =df x≤y

s(ϕ1 ∧ ϕ2) =df s(ϕ1) ∧ s(ϕ2)

Lemma 4.11
If ϕ is weakly unifiable, then ϕ is satisfiable over Σ iff s(ϕ) is satisfiable over s(Σ).

Its proof follows from Lemma 3.9 given in Section 3.3.

4.3.2 Non-structural to 1-subtype satisfiability

We handle non-structural signatures Σ = B ∪ {⊥,>,×,→}, similarly. The new
signature is defined in exactly the same way as for the structural case by s(Σ) =
B ∪ {⊥,>, f, c}. Constraints are also transformed in the same way, except including
two extra rules for ⊥ and >:

s(x = ⊥) =df x = ⊥

s(x = >) =df x = >

However, weak unifiability is not sufficient for the initial satisfiability check. To see
that, consider, for example, x≤y × z ∧ x≤u→ v, which is satisfiable, but not weakly
unifiable. To address this problem, we introduce a notion of weak satisfiability. It is
similar to weak unifiability, except subtype ordering is also retained.

Definition 4.2
Let ϕ be a constraint over Σ, and ? be an arbitrary and fixed constant. We define t?

as before, except ⊥? =df ⊥ and >? =df >. Define the weak satisfiability constraint
ws(ϕ) as:
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ws(t1 = t2) =df t?1 = t?2

ws(x≤y) =df x≤y

ws(ϕ1 ∧ ϕ2) =df ws(ϕ1) ∧ ws(ϕ2)

The constraint ϕ is called weakly satisfiable iff ws(ϕ) is satisfiable.

Lemma 4.12
If ϕ is weakly satisfiable, then ϕ is satisfiable over Σ iff s(ϕ) is satisfiable over s(Σ).

The proof of this lemma requires the following result. Let ϕ be a constraint over a
non-structural signature Σ. If ws(ϕ) is satisfiable, then ws(ϕ) has a minimum shape
solution α by a simple extension of a theorem of Palsberg, Wand and OKeefe on
non-structural subtype satisfiability over lattices [PWO97]. We claim that if ϕ is
satisfiable, then ϕ also has a minimum shape solution that is of the same shape as
α.

Lemma 4.13
If ϕ is satisfiable over Σ, let α be a minimum shape solution for ws(ϕ), and in addition,
α is such a solution with the least number of leaves assigned ?. Then ϕ has a solution
β that is of the same shape as α, i.e., for all x ∈ V (ϕ) = V (ws(ϕ)), sh(α(x) = β(x))
is unifiable. Furthermore, β is a minimum shape solution of ϕ.

proof. Let γ be a solution for ϕ. We construct a variable assignment β for ϕ from
α and γ:

β(x)(π) =df

{

γ(x)(π) if α(x)(ϕ) = ?
α(x)(π) otherwise.

One can show that dom(α) = dom(β), because if α(x)(π) = ?, γ(x)(π) must be a
constant. We verify that β |= ϕ:

• Consider a literal of the form x = f(x1, . . . , xn) for n > 0. Both
α(x) = f(α(x1), . . . , α(xn)) and γ(x) = f(γ(x1), . . . , γ(xn)). Thus,
if α(x)(π) = ? = (f(α(x1), . . . , α(xn))(π), β(x)(π) = γ(x)(π) =
f(γ(x1), . . . , γ(xn))(π) = f(β(x1), . . . , β(xn))(π). Otherwise, β(x)(π) =
α(x)(π) = f(α(x1), . . . , α(xn))(π) = f(β(x1), . . . , β(xn))(π).

• Consider a literal of the form x = b for b ∈ B ∪ {⊥,>}. Clearly, β(x) = b.

• Consider a literal of the form x≤y. We use a simple case analysis on the possible
values of α(x)(π) and α(y)(π) for each address π.
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Lemma 3.9 and Lemma 4.13 together imply the following corollary, which is used next
in Section 4.4 to treat subtype satisfiability interpreted over finite trees.

Corollary 4.1
A subtype constraint ϕ is satisfiable over finite trees if and only if ϕ is satisfiable over
finite trees of height bounded by |ϕ|. This holds for both structural and non-structural
signatures.

4.3.3 1-subtype to uniform satisfiability

In this part, we give a reduction from 1-subtype to uniform subtype satisfiability. This
reduction is uniform for subtyping with and without ⊥ and >.

Proposition 4.6
Over possibly infinite trees, 1-subtype satisfiability is linear time reducible to uniform
subtype satisfiability.

proof. Let Σ be a 1-subtype signature. We define a uniform signature s(Σ ) by
extending the arities of all function symbols to the maximal arity of Σ (i.e., the arity
of the only non-trivial function symbol), such that:

• s(Σ ) =df Σ ;

• ∀f ∈ s(Σ).arity s(Σ)(f) =df max;

• ≤s(Σ)=df≤Σ,

where max is the maximal arity of Σ.

We next translate a subtype constraint ϕ over Σ to a constraint s(ϕ) over s(Σ ):

s(x=f (x1 , . . . , xmax)) =df x=f(x1, . . . , xmax) (4.1)

s(x=b) =df x=b(y1, . . . , ymax) (4.2)

s(x1 ≤ x2 ) =df x1 ≤ x2 (4.3)

s(ϕ1 ∧ ϕ2 ) =df s(ϕ1 ) ∧ s(ϕ2 ) (4.4)

s(x=⊥) =df x=⊥(u1, . . . , umax) (4.5)

s(x=>) =df x=>(v1, . . . , vmax) (4.6)

where the yi’s, ui’s, and vi’s are fresh variables, and rules (5) and (6) are additional
ones for a non-structural signature.
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Lemma 4.14
A subtype constraint ϕ over a standard signature Σ is satisfiable if and only if s(ϕ)
is satisfiable over the uniform signature s(Σ ).

proof of (⇐). For this implication, we define a transformation of cut : tree s(Σ) →
treeΣ:

• cut(f(τ1, . . . , τmax)) =df f , if f ∈ Σ0;

• cut(f(τ1, . . . , τmax)) =df f(cut(τ1), . . . , cut(τmax)), otherwise.

We fix a solution α of s(ϕ) and show that the variable assignment cut ◦ α satisfies ϕ
over Σ. We need to verify that cut ◦ α satisfies all literals of ϕ:

1. Consider a literal of the form x=f(x1, . . . , xmax) in ϕ (for arity(f) = max).
We know that α |= x = f(x1, . . . , xmax). In addition, the following sequence of
implications holds:

α |= x=f(x1, . . . , xmax)
⇔ α(x) = f(α(x1), . . . , α(xmax))
⇒ cut(α(x)) = f(cut(α(x1)), . . . , cut(α(xmax)))
⇔ cut ◦ α |= x=f(x1, . . . , xmax)

2. Consider a literal of the form x=b in ϕ. We know α |= x = b(y1, . . . , ymax) for
some fresh variables yi. Similarly, we have the following sequence of implications:

α |= x=b(y1, . . . , ymax)
⇔ α(x) = b(α(y1), . . . , α(ymax))
⇒ cut(α(x)) = b
⇔ cut ◦ α |= x=b

3. Consider a literal of the form x ≤ y in ϕ. We know D2 = dom(cut(α(x))) ∩
dom(cut(α(y))) ⊆ dom(α(x)) ∩ dom(α(y)) = D1. We thus have:

α |= x ≤ y
⇔ α(x) ≤ α(y)
⇔ ∀π ∈ D1.α(x)(π) ≤Σ α(y)(π)
⇒ ∀π ∈ D2.cut(α(x)(π)) ≤Σ cut(α(y)(π))
⇔ cut ◦ α |= x ≤ y

4. For a non-structural signature, literals of the form x=⊥ and x=> are treated
similarly as x=b in the second case.
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proof of (⇒) We now consider the inverse implication. We first define a mapping
ext : treeΣ → trees(Σ):

• ext(f(τ1, . . . , τmax)) =df f(ext(τ1), . . . , ext(τmax))

• ext(b) =df b(?
∞, . . . , ?∞), where ? is an arbitrary, fixed constant in B of Σ, and

?∞ denotes the complete, infinite tree where each node is labeled ?, i.e., the
unique solution to the equation x = ?(x, . . . , x).

• For a non-structural signature, ext(⊥) and ext(>) are defined respectively as
the smallest tree and the greatest tree (over the two max-ary symbols ⊥ and >
in s(Σ )). They are defined mutually recursively and are unique solutions to the
following equations:

x = ⊥(x1, . . . , xmax)

y = >(y1, . . . , ymax)

where xi = x and yi = y if the i-th argument is co-variant; and xi = y and
yi = x otherwise.

As an example, for a standard signature with the function type constructor →,
ext(⊥) and ext(>) give the unique solution to the equations x = ⊥(y, x) and
y = >(x, y).

We first state and prove the following lemma regarding ext .

Lemma 4.15
If τ1 ≤ τ2, then ext(τ1) ≤ ext(τ2).

proof. We use a proof by contradiction. We prove for a non-structural signature.
For structural signatures, the proof is exactly the same, except discarding all cases
involving ⊥ or >.

For τ1 ≤ τ2, assume that ext(τ1) 6≤ ext(τ2). Then there is a shortest path π such
that ext(τ1)(π) 6≤π ext(τ2)(π). Clearly, π 6= ε, and we let π = π′.i for some π′ and
i ∈ {1, . . . ,max}. We have a few cases:

1. When π ∈ dom(τ1)∧π ∈ dom(τ2): This case is impossible because it contradicts
the assumption that τ1 ≤ τ2.

2. When π ∈ dom(τ1) ∧ π 6∈ dom(τ2): ext(τ2)(π
′) must be > if par (π′) = 1 or

⊥ if par (π′) = −1 . In either case, it is clear that ext(τ1)(π) ≤π ext(τ2)(π), a
contradiction.

3. When π 6∈ dom(τ1) ∧ π ∈ dom(τ2): This case is symmetric to the previous one.
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4. When π 6∈ dom(τ1) ∧ π 6∈ dom(τ2): We know ext(τ1)(π
′) and ext(τ2)(π

′) must
be constants. In addition, ext(τ1)(π

′) ≤π′

ext(τ2)(π
′), because π is the shortest

path such that ext(τ1)(π) 6≤π ext(τ2)(π). This would, however, imply that
ext(τ1)(π) ≤π ext(τ2)(π), a contradiction.

We can now finish the proof of Lemma 4.14. Let α |= ϕ. We construct a variable
assignment β for s(ϕ):

• β(x) =df ext(α(x)) for all variables x ∈ V (ϕ);

• β(x) =df ?
∞ for the yi’s;

• β(x) =df ext(⊥) for a co-variant ui or contra-variant vi;

• β(x) =df ext(>) for a contra-variant ui or co-variant vi.

We need to show that β |= s(ϕ). There are a few kinds of literals in s(ϕ):

1. Consider a literal of the form x = f(x1, . . . , xmax) of s(ϕ), derived from x =
f(x1, . . . , xmax) of ϕ. We know that α |= x = f(x1, . . . , xmax), i.e., α(x) =
f(α(x1), . . . , α(xmax)). Thus, we have:

β(x) = ext(f(α(x1), . . . , α(xmax)))

= f(ext(α(x1)), . . . , ext(α(xmax)))

= f(β(x1), . . . , β(xmax))

= β(f(x1, . . . , xmax))

Hence, β |= x = f(x1, . . . , xmax).

2. Consider a literal of the form x = b(y1, . . . , ymax), derived from x = b in ϕ. We
know that α |= x = b, i.e., α(x) = b. We thus have:

β(x) = ext(α(x))

= ext(b)

= b(β(y1), . . . , β(ymax))

= β(b(y1, . . . , ymax))

Hence, β |= x = b(y1, . . . , ymax).

3. Consider a literal of the form x ≤ y, derived from x ≤ y in ϕ. We know
α |= x ≤ y, i.e., α(x) ≤ α(y). By Lemma 4.15, we have β(x) = ext(α(x)) ≤
ext(α(y)) = β(y). Thus, β |= x ≤ y.
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4. For a non-structural signature, we have literals of the form x=⊥(u1, . . . , umax)
and x=>(v1, . . . , vmax). For the case with ⊥, we know α |= x = ⊥. We thus
have:

β(x) = ext(α(x))

= ext(⊥)

= ⊥(β(u1), . . . , β(umax))

= β(⊥(u1, . . . , umax))

The case for > is similar.

With Lemma 4.14, we have finished the proof of Proposition 4.6.

4.3.4 Uniform to (non-)structural satisfiability

In this part, we prove the last step of the equivalence (Theorem 4.4), namely, how to
reduce uniform subtype satisfiability to structural and non-structural subtype satisfi-
abilities.

Proposition 4.7
Uniform subtype satisfiability is linear time reducible to structural and non-structural
subtype satisfiability over possibly infinite trees.

To simplify its proof we assume a uniform subtype problem where all function symbols
have arity three with their first two arguments being contravariant and the last one
covariant. This proof can be easily adapted to uniform signatures with other arities
and polarities.

We construct a reverse translation ¯̄s of s (defined in Section 4.3.3) in two steps. Let
Σ be a uniform signature with symbols of arity three. We first define a standard
signature s̄(Σ) by including symbols in Σ as constants and adding →:

s̄(Σ) =df Σ ∪ {→}

∀g ∈ Σ. arity s̄(Σ)(g) =df 0

arity s̄(Σ)(→) =df 2

≤s̄(Σ) =df ≤Σ
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We now translate a subtype constraint ϕ over Σ to a constraint s̄(ϕ) over s̄(Σ):

s̄(x=g(x1, x2, x3)) =df x=(x3 → x2)→ (x1 → g)
s̄(x1 ≤ x2) =df x1 ≤ x2

s̄(ϕ1 ∧ ϕ2) =df s̄(ϕ1) ∧ s̄(ϕ2)

where we use a non-flat constraint in the first line for a simpler presentation.
The arguments x1, x2 are again contravariant and x3 is covariant in the constraint
s̄(x=g(x1, x2, x3)). Thus, s̄ preserves all polarities.

In our second step, we force every variable to be mapped to the following fixed, infinite
shape:

→

→ →

c

Therefor, we extend s̄(Σ) to ¯̄s(Σ ) with four new constants a1, a2, a3, and a4 with the
following ordering: a1 ≤ c ≤ a3 ∧ a2 ≤ c ≤ a4, for all constants c ∈ s̄(Σ). We define
¯̄s(ϕ) as the conjunction of s̄(Σ) and the following constraints:

(1) u1 ≤ x ∧ u2 ≤ x ∧ x ≤ u3 ∧ x ≤ u4, for each variable x ∈ V (s̄(Σ));

(2)
∧

i=1,2,3,4 ui=(ui → ui)→ (ui → ai)

The constraints (1) and (2) in ¯̄s(ϕ) determine the shape of any variable x ∈ V (s̄(ϕ)).
We claim, in the following lemma, that any solution to ¯̄s(ϕ) must be of a particular
shape and must also map variables x ∈ V (s̄(ϕ)) to trees over s̄(Σ).

Lemma 4.16
When the constraint ¯̄s(ϕ) is interpreted over any (non-)structural signature ¯̄s(Σ )
or ¯̄s(Σ ) ∪ {⊥,>}, every variable assignment α |= ¯̄s(ϕ) satisfies that for all paths
π ∈ (1(1∪2) ∪ 21)∗:

α(x)(π′) = → if π′ is a prefix of π

α(x)(π22) =

{

ai if x = ui

c ∈ Σ otherwise.

proof by definition of ¯̄s(ϕ).
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Lemma 4.17
A subtype constraint ϕ over a uniform signature Σ is satisfiable if and only if the
constraint ¯̄s(ϕ) over ¯̄s(Σ ) is satisfiable. This statement also holds if we replace the
structural signature ¯̄s(Σ ) by the non-structural signature ¯̄s(Σ ) ∪ {⊥,>}.

proof. We define a transformation of map : treeΣ → tree¯̄s(Σ) on trees for all
g ∈ Σ:

map(g(τ1, τ2, τ3)) =df (map(τ3)→ map(τ2))
→ (map(τ1)→ g)

With that it can be easily verified that if there exists a solution α |= ϕ over an
uniform signature Σ then map(α) |= ¯̄s(ϕ) holds over ¯̄s(Σ ). For the other direction we
assume an assignment α |= ¯̄s(ϕ). Then there also exists an assignment β = map−1(α)
according to the shape of any solution of ¯̄s(ϕ) stated in Lemma 4.16. Again, it can
be easily verified that β |= Σ.

The proof also holds in the case where we add ⊥ and > to ¯̄s(Σ ) since both symbols
cannot occur in any node of any solution of ¯̄s(Σ ) (again Lemma 4.16).

4.4 Finite subtype satisfiability over posets

The complexity of finite structural subtype satisfiability was shown to be PSPACE-
complete by Tiuryn [Tiu92] and Frey [Fre02]. Here, we establish the same complexity
for the non-structural case.

4.4.1 PSPACE-hardness

Proposition 4.8
Non-structural subtype satisfiability over finite trees is PSPACE-hard.

The analogous result for the structural case was shown by Tiuryn [Tiu92]). To lift this
result, we show how to reduce non-structural to structural subtype satisfiability.

Lemma 4.18
Structural subtype satisfiability is polynomial time reducible to non-structural subtype
satisfiability (both for finite and infinite trees).

proof. Let Σ be a structural signature. We construct a non-structural signature:

s(Σ) =df Σ ∪ {⊥,>, a1, a2, a3, a4}
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4 Subtyping over a Poset

with the ai’s four new constants. In addition,

≤s(Σ) =df ≤Σ ∪{(a1, c), (a2, c), (c, a3), (c, a4) | c ∈ Σ0}

Let ϕ be a constraint over Σ. We construct s(ϕ) over s(Σ). Consider ϕ’s shape
constraint sh(ϕ) (see Definition 4.1). If sh(ϕ) is not unifiable, we simply let s(ϕ) =df

>≤⊥. Otherwise, consider the most general unifier (m.g.u.) γ of sh(ϕ). We let sh(ϕ) ′

be the same as sh(ϕ) except each occurrence of ? is replaced with a fresh variable.
We make two copies of sh(ϕ)′, sh(ϕ)′L and sh(ϕ)′R (for left and right), where each
variable x is distinguished as xL and xR respectively. For each variable x ∈ V (ϕ), if
γ(x) is either ? or belongs to V (ϕ), we say x is atomic. For a variable x, let force(x)
denote the constraint:

a1≤x ∧ a2≤x ∧ x≤a3 ∧ x≤a4.

Notice that Lemma 4.18 holds both for finite and infinite trees.

We can now construct s(ϕ), which is the conjunction of the following components:
(1) ϕ itself; (2) sh(ϕ)′L; (3) sh(ϕ)′R; (4) For each atomic x ∈ V (ϕ), force(xL) and
force(xR); (5) For each fresh variable x in sh(ϕ)′L and sh(ϕ)′R, force(x); and (6) For
each variable x ∈ V (ϕ), xL≤x≤xR. One can show that ϕ is satisfiable over Σ iff s(ϕ)
is satisfiable over s(Σ).

4.4.2 A PSPACE algorithm

THEOREM 4.5
Finite non-structural subtype satisfiability is PSPACE-complete.

It remains to prove membership in PSPACE which subsumes the proof of Frey [Fre02].
We present a new proof idea based on K-normal modal logic which applies uniformly
to the non-structural and the structural cases.

We assume a signature Σ that contains at least one constant c and non-constant
symbol f . Satisfiability would be trivial otherwise. We adapt our reduction to uniform
signature for the finite case. Let s(Σ) be the uniform signature for Σ. With the
following formulas we define an additional subtype ordering @s(Σ) by g@s(Σ)f for all
g ∈ s(Σ) and one fixed symbol f :

finiten(x) =df ∃y1...∃yn+1. xvy1

∧ ∧n
i=1yi=f(yi+1, ...yi+1)

∧ yn+1=c(yn+1, ...yn+1)

finiten(V ) =df ∧x∈V finiten(x)
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4.5 Summary

The following proposition holds by Theorem 4.4 and Corollary 4.1.

Proposition 4.9
A subtype constraint ϕ is satisfiable over finite Σ-trees if and only if the constraint
s(ϕ) ∧ finite|ϕ|(V (ϕ)) is satisfiable over uniform signatures s(Σ).

proof by Theorem 4.4 and Corollary 4.1.

We can easily adapt the translation of subtype constraints over uniform signatures
into inverted core PDLn from Table 4.4 to handle the formulas finite|ϕ|(V (ϕ)) as well.
This yields a satisfiability preserving encoding into inverted core PDLn for the finite
case. We finally alter this encoding to a translation into the following modal logic:

D ::= B | [{1, . . . , n}|ϕ|]B | D1 ∧D2

Because all trees in finite solutions of ϕ have at most linear depth it is correct to
replace all [∗] modalities by [{1, . . . , n}|ϕ|], both, in the reduction of Table 4.4 and in
the well-formedness property wff V . This gives a translation into formulas D.

Proposition 4.10
Satisfiability of inverted linearly depth-bounded PDLn formulas D is in PSPACE.

proof. We translate the problem to satisfiability of K-normal modal logic over the
complete infinite n-ary tree (which is known to be in PSPACE [Spa93]). It is defined
by the syntax of PDLn formulas A restricted to the single modality [{1, 2}]:

E ::= p | ¬E | E ∧E ′ | E ↔ E′ | �E

We denote i repetitions of � by �i. The only complication is to translate formulas
[i]B. In the case of binary trees (other cases of n are analogous) we do so by translating
[1]B to �(p→ B) and [2]B to �(¬p→ B), where we use a new variable p that is true
at all paths π1 and false at paths π2. Following [Hem00] p can be axiomatized by:

∧m
i=1�

i−1(〈{1, 2}〉�m−ip ∧ 〈{1, 2}〉�m−i¬p).

4.5 Summary

We have given a complete characterization of the complexity of subtype satisfiability
over posets through a new connection of subtype satisfiability with modal logics, which
have well understood satisfiability problems. Our technique yields a uniform and
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4 Subtyping over a Poset

systematic treatment of different choices of subtype orderings: finite versus recursive
types, structural versus non-structural subtyping, and considerations of symbols with
co- and contra-variant arguments.
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Non-Structural Subtype Entailment
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Non-Structural Entailment (NSSE)

5 Characterization

6 Cap Automata and Cap Sets

7 Automata Construction

8 Restricted Cap Set Expressions

9 Back Translation

10 Arity Equivalence

11 A Decidable Fragment

We investigate non-structural subtype entailment (NSSE)
for a restricted signature {⊥,>, f}. Our contribution to en-
tailment yields a new characterization of NSSE that uses reg-
ular expressions and word equations [Mak77, Pla99]. More
precisely we map NSSE to the question whether so called
cap set expressions do contain all words over an alphabet
(universality problem). In a next step we translate the uni-
versality of certain cap expressions also back to NSSE. For
the proof of both directions we introduce new automata: cap
automata which exactly recognize the same languages as cap
set expressions. Our NSSE characterization also based on
the satisfiability tests for subtype constraints which we have
given in Chapter 3. Finally, we prove a fragment of NSSE to
be decidable by reducing it to satisfiability of word equations
with regular constraints.
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5 Characterization of NSSE

We now formulate our main result and discuss its relevance (Theorem 5.1). This
is a new characterization of NSSE which is based on a new class of extended
regular expressions: cap set expressions that we introduce first.

We start with regular expressions R over some alphabet A that are defined as usual:

R := a | ε | R1R2 | R
∗ | R1∪R2 | ∅ where a ∈ A

Every regular expression R describes a regular language of words L(R) ⊆ A∗. We
next introduce cap set expressions E over A. (Their name will be explained in Section
6.2.)

E ::= R1R
◦
2 | E1 ∪E2

Cap set expressions E denote sets of words L(E) ⊆ A∗ that we call cap sets. We have
to define the cap set operator ◦ on sets of words, i.e., we must define the set S◦ ⊆ A∗

for all sets S ⊆ A∗. Let pr be the prefix operator lifted to sets of words. We set:

S◦ = {π | π ∈ pr (µ∗), µ ∈ S}

A word π belongs to S◦ if π is a prefix of a power µ . . . µ of some word µ ∈ S. Note
that cap set expressions subsume regular expressions: indeed, L(R) = L(Rε◦) for all
R. But the cap operator adds new expressiveness when applied to an infinite set:
there exist regular expression R such that the language of the cap set expression R◦ is
neither regular nor context free. Consider for instance (21∗)◦ which denotes the set of
all prefixes of words 21n 21n . . . 21n where n ≥ 0. Clearly this set is not context-free.

We will derive appropriate restrictions on cap set expressions (Def. 8.1) such that the
following theorem becomes true.

THEOREM 5.1 (Characterization)
The decidability of NSSE for a signature {⊥, f,>} with a single function symbol of
arity n ≥ 1 is equivalent to the decidability of the universality problem for the class of
restricted cap set expressions over the alphabet {1, . . . , n}. This result holds equally
for finite, regular, and possibly infinite trees.
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5 Characterization of NSSE

The theorem allows us to derive the following robustness result of NSSE against
variations from automata transformations (Section 10.1).

Corollary 5.1
All variants of NSSE with signature {⊥, f,>} where the arity of f is at least n ≥ 2
are equivalent. It does not even matter whether finite, regular, or infinite trees are
considered.

Theorem 5.1 can also be used to relate NSSE to word equations. The idea is to express
membership in cap sets in the positive existential fragment of word equations with
regular constraints [Sch91]. The reduction can easily be based on the following lemma
that is well known in the field of string unification.

Lemma 5.1
For all words π ∈ A∗ and nonempty words µ ∈ A+ it holds that π ∈ pr (µ∗) if and
only if π ∈ pr(µπ).

proof. If π ∈ pr (µ∗) then there is a natural number n ≥ 1 such that µn−1 ≤ π ≤ µn.
Hence, π ≤ µµn−1 ≤ µπ as required. For the converse, let π ≤ µπ where µ 6= ε. We
prove π ∈ pr (µ∗) by induction on the length of π. If |π| ≤ |µ| then π ≤ µ and
thus π ∈ pr (µ∗) as required. Otherwise, there exists a path π ′ with π = µπ′ and
thus π′ ≤ µπ′ by our assumption that π ≤ µπ. Note that π ′ is a proper prefix of
π since µ 6= ε. The induction hypothesis applied to π ′ yields π′ ∈ pr (µ∗) such that
π ∈ pr (µ∗).

Lemma 5.1 states that all sets S ⊆ A+ of nonempty words satisfy:

π ∈ S◦ ↔ ∃µ∃ν (µ ∈ S ∧ πν=µπ)

Theorem 5.1 thus implies that we can express the universality problem of cap set
expressions E in the positive ∀∃∗ fragment of the first-order theory of word equations
with regular constraints.

Corollary 5.2
NSSE with a single function symbol of arity n ≥ 1 can be expressed in the positive
∀∃∗ fragment of the first-order theory of word equations with regular constraints over
the alphabet {1, . . . , n}.

Unfortunately, even the positive ∀∃3 fragment of a single word equation is undecidable
[Dur95] except if the alphabet is infinite [BS96] or a singleton [VR83]. Therefore,
it remains open whether NSSE is decidable or not. But it becomes clear that the
difficulty is raised by word equations hidden behind cap set expressions R◦, i.e. the
equation πν=µπ in Lemma 5.1.
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Theorem 5.1 constitutes a promising starting point to further investigate decidability
of NSSE. For instance, we can infer a new decidability result for the monadic case
directly from Corollary 5.2.

Corollary 5.3
NSSE is decidable for the signature {⊥, f,>} if f is unary.
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6.1 Safety

The goal of this section is to characterize NSSE by properties of sets of words, that we
call safety properties. Appropriate safety properties can be verified by P-automata as
we will show in Chapter 7.

We use terms x(π) to denote the node label of the value of x at path π. Whenever we
use this term, we presuppose the existence of π in the tree domain of the value of x.
For instance, the formula x(12) ≤Σ> is satisfied by a variable assignment if and only
if the tree assigned to x contains the node 12.

We next recall the notion of safety from [NP99]. Let ϕ |=? x≤y be an entailment
judgment and π a word in {1, . . . , arity(f)}∗. We call π safe for ϕ |=? x≤y if entail-
ment cannot be contradicted at π, i.e. if ϕ ∧ y(π) <Σ x(π) is unsatisfiable. Clearly
entailment ϕ |= x≤y is equivalent to that all paths are safe for ϕ |=? x≤y.

For a restricted class of entailment judgments it is shown in [NP99] that the above
notion of safety can be checked by testing universality of P-automata. Unfortunately,
it is unclear how to lift this result to the general case. To work around, we will refine
the notion of safety into two dual notions: left (l) safety and right (r) safety. These
notions will be defined on formulas:

prefgπ(x) =def

∨

π′≤π

x(π′) =Σg

for some function symbol g ∈ Σ, word π, and variable x. It requires x to denote a
tree that is labeled by g at some prefix π ′ of π. We now define l-safety for words
π ∈ {1, . . . , arity(f)}∗ with respect to judgments ϕ |=? x≤y:

π is l-safe for ϕ |=? x≤y iff ϕ |= pref>π (x)→ pref>π (y)

If π is l-safe for judgment ϕ |=? x≤y then entailment contradicted by a solution α
of ϕ that maps the left hand side x to some tree where α(x)(π) =Σ >, except if
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6 Cap Automata and Cap Sets

α(x)(π′) =Σ > and α(y)(π′′) =Σ > for some prefixes π′ and π′′ of π. The notion of
r-safety is analogous; here one tries to contradict with ⊥ at the right hand side y:

π is r-safe for ϕ |=? x≤y iff ϕ |= pref⊥π (y)→ pref⊥π (x)

We define a variable assignment α to be l-safe or r-safe for α |=? x≤y by replacing ϕ
literally with α in the above definitions. Note that our safety notions depend on the
chosen structure of trees over which we interpret our formulas.

We first illustrate these concepts by a judgment with a unary function symbol:

z=> ∧ f(z)≤y |=? x≤y (no)

Here, ε is r-safe but not l-safe. All other paths π ∈ 1+ are both l-safe and r-safe.
There is a variable assignment α which contradicts entailment: α(x) = >, α(z) =
>, α(y) = f(>). This shows that ε is indeed not l-safe for α |=? x≤y.

Proposition 6.1
Entailment ϕ |= x≤y holds if and only if all words π ∈ {1, . . . , arity(f)}∗ are l-safe

and r-safe for ϕ |=? x≤y.

proof. We first assume that entailment does not hold and show that either l-safety
or r-safety can be contradicted for some path. As argued above, there exists an unsafe
path π such that ϕ ∧ y(π) <Σx(π) is satisfiable. Let α be a solution of this formula.

1. If α(y)(π) =Σ⊥ then α |= pref⊥π (y). Since α |= y(π) <Σx(π) it holds α(x)(π) ∈
{f,>} which implies α |= ¬pref⊥π (x). Thus, π is not r-safe.

2. Otherwise α(y)(π) =Σ f which implies α |= ¬pref>π (y). Further, it holds
α(x)(π) =Σ> which implies α |= pref>π (x). Thus, π is not l-safe.

For the converse, we assume entailment ϕ |= x≤y and show that all paths are l-safe
and r-safe for ϕ |=? x≤y. We fix a path π and solution α of ϕ, and show that π is
l-safe and r-safe for α |=? x≤y. Let π′ be the longest prefix of π which belongs to
Dα(x) ∩Dα(y).

1. If α(x)(π′) =Σ⊥ then α |=¬pref>π (x) so that π is l-safe for α |=? x≤y, and also
α |=pref⊥π (x) such that π is r-safe for α |=? x≤y.

2. Suppose α(x)(π′) =Σ>. Since α |= ϕ and ϕ |= x≤y, we know that α |= x≤y.
Since π′ is a node of both trees it follows that α(x)(π ′) ≤Σ α(y)(π′) and thus
α(y)(π′) =Σ>. Since π′ ≤ π, α |=pref>π (y) ∧ ¬pref⊥π (y). Thus, π is l-safe and
r-safe for α |=? x≤y.
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6.2 Cap automata and cap sets

3. The last possibility is α(x)(π′) =Σ f . We can infer from entailment that
α(y)(π′) ∈ {f,>}. If α(y)(π′) =Σ > we are done as before. Otherwise,
α(y)(π′) =Σ α(x)(π′) =Σ f such that the maximality of π′ and arity(f) ≥ 1
yields π = π′. Now, α |= ¬pref⊥π (y) so that π is r-safe, and also α |= ¬pref>π (x)
such that π is l-safe for α |=? x≤y.

EXAMPLE. The surprising effect of Example 2.5 seems to go away if one replaces the
unary function symbol there by a binary function symbol:

x≤f(y, y) ∧ f(x, x)≤y |=? x≤y (no)

Now, all words in 1∗ ∪ 2∗ are l-safe and r-safe, but 12 is neither. Entailment
can be contradicted by variable assignments mapping x to f(f(⊥,>),⊥) and y to
f(f(>,⊥),>).

EXAMPLE. This example is a little more complicated. Its purpose is to show that
entailment in the binary case can also be raised by a similar effect as in Example 2.5.
How to understand this effect in general will be explained in Chapter 7.

x≤f(y, y) ∧ f(z, z)≤y ∧ f(u, u)≤z ∧ u=> |=? x≤y (yes)

6.2 Cap automata and cap sets

We need a notion of automata that can recognize cap sets. Therefore, we restrict the
class of P-automata introduced in [NP99] to the class of so called cap automata1. We
then show that the class of languages recognized by cap automata is precisely the
class of cap sets, i.e. those sets of words described by cap set expressions.

A finite automaton A over alphabet A consists of a set Q of states, a set I ⊆ Q
of initial states, a set F ⊆ Q of final states, and a set ∆ ⊆ Q × (A ∪ {ε}) × Q of
transitions. Note that ∆ permits ε transitions and single letter transitions. We will
write A ` q if q ∈ Q is a state of A, A ` q if q ∈ F is a final state of A, and A ` q

if q ∈ I is an initial state of A. The statement A ` q
π
−→ q′ says that A started at q

permits a sequence of transitions consuming π and ending in q ′. Note that A ` q
ε
−→ q

1Cap automata are the same objects as P-automata, i.e. finite automata with a set of P-edges. The
difference between both concepts concerns only the corresponding language definitions. Both def-
initions coincide for those automata P that satisfy the following condition (the proof is straight-

forward): if P ` q1
π

−→ q2
µ

−→ q3 q1 then q2 is a final state in P. This condition can be
assumed w.l.o.g for all cap automata, since it is satisfied by all those constructed in the proof of
Proposition 6.2. Thus, cap automata are properly subsumed by the P-automata.
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Figure 6.1: A cap automaton with a non context-free language (21∗)◦.

holds for all states q ∈ Q. We call A complete if for every word π ∈ A∗ there exists
states q0 and q1 such that A ` q0

π
−→ q1.

Definition 6.1
A cap automaton P over alphabet A consists of a finite automaton A over A and a
set of P-edges P ⊆ Q×Q. We write P ` q q′ if P has a P-edge (q, q′) ∈ P . A cap
automaton P over A recognizes the following language L(P) ⊆ A∗:

L(P) = {π | P ` q0
π
−→ q1} ∪ {πµ

′ | µ′ ∈ pr (µ∗),P ` q0
π
−→ q1

µ
−→ q2 q1}

The first set is the language of the finite automaton underlying P. The second set
adds the contribution of P-edges: if a cap automaton traverses a P-edge P ` q2 q1
then it must have reached q2 from q1 of some word µ, i.e. P ` q1

µ
−→ q2 q1; in the

sequel the automaton can loop through µ∗ and quit the loop at any time.

Fig. 6.1 contains a cap automaton over the alphabet {1, 2} that recognizes the non-
context free cap set from the introduction, i.e. described by the cap set expression
(21∗)◦. We generally draw cap automata as one draws finite automata but with
additional dashed arrows to indicate P-edges.

The tree on the right in Fig. 6.1 represents the language recognized by this cap
automaton. The language of a cap automaton P with alphabet {1, . . . , n} is drawn
as a n-ary class tree. This is a complete infinite n-ary tree whose nodes are labeled
by classes A, P, and C. Each node of the class tree is a word in {1, . . . , n}∗ that is
labeled by the class that P adjoins to it. We assign the class C to all words in the
complement of L(P) of a cap automaton P. The words with class A are recognized
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6.2 Cap automata and cap sets

A1 A2q1 q2ε ε ε

Figure 6.2: Construction of a cap automaton for the language L(A1)L(A2)
◦.

by the finite automaton underlying P. All remaining words belong to class P. These
are accepted by P but not by the underlying finite automaton.

We now explain the name cap: it is an abbreviation for the regular expression (C ∪
A+P∗ )∗. Branches in class trees of cap automata always satisfy that expression. This
means that all nodes of class P in a class tree have a mother node in either of the
classes A or P. To see this, note first that root nodes of class trees can never belong
to class P. Thus, all P nodes must have a mother. Furthermore, the mother of a P
node cannot belong to the C class due to the cap property.

Proposition 6.2
Cap set expressions and cap automata recognize precisely the same class of languages.
Universality of cap set expressions and cap automata are equivalent modulo determin-
istic polynomial time transformations.

proof. For the one direction, let Rq1,q2 be a regular expression for the set {π | P `

q1
π
−→ q2} then the language of a cap automaton is equal to the union of ∪P` q0∪P`q1

Rq0,q1 and ∪P` q0 ∪P`q1 ∪P`q2 q1Rq0,q1(Rq1,q2)
◦. The needed regular expressions

can be computed in polynomial time

For the converse, we first note that the class of languages recognized by cap automata
is closed under union since cap automata may have several initial states. There thus
only remains to build cap automata for expressions R1R

◦
2. Let A1 and A2 be finite

automata that recognize R1 respectively R2. W.l.o.g. we can assume that both
automata have a unique initial and a unique final state. Multiple initial or final states
of finite automata (but not of cap automata) can be eliminated by introducing new
ε-transitions. We now compose A1 and A2 into a new cap automaton that recognizes
the language of R1R

◦
2 as illustrated in Fig. 6.2: we add two fresh final states q1 and q2

and link A1 and A2 over these states. This requires 3 new ε-edges and a new P-edge
from q2 to q1. To account for the prefix closure within the ◦ operator, we finally turn
all states of A2 into additional final states.
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7 Automata Construction

We present a construction for cap automata that can test l-safety and r-safety
for entailment judgments. The same construction applies for the three structures
of finite, regular, and possibly infinite trees. The only difference is hidden in a
subroutine for testing satisfiability (see Chapter 3).

7.1 Left and right automata

As a prerequisite for our automata construction, we use the closure algorithm of
Chapter 3. This algorithm computes a set of inequalities of the form x≤y that are
syntactically supported by a constraint ϕ.

The automata construction is given in Table 7.1. For each entailment judgment ϕ |=?

x≤y we construct a left automaton Pl(ϕ |=
? x≤y) and a right automaton Pr(ϕ |=

?

x≤y). The left automaton is supposed to accept all l-safe paths for ϕ |=? x≤y, and
the right automaton all r-safe paths (up to appropriate assumptions). Entailment
then holds if and only if the languages of both cap automata are universal. Note
that it remains open whether the set of simultaneously l-safe and r-safe paths can be
recognized by a single cap automaton. The problem is that cap automata are not
closed under intersection (proof omitted).

The left and right automata always have the same states, transitions, and initial
states. When testing for ϕ |=? x≤y the only initial state is (x, y). A state (u, s)
of the left automaton is made final if there is an upper bound u≤f(u1, . . . , un) in ϕ,
which proves that the actual path is l-safe. The descend rule can also be applied
in that case. The safety check then continues in some state (ui, s

′) and extends the
actual path by i. It can chose s′ = while ignoring the right hand side, or if s is also
a variable descend simultaneously on the right hand side. There are three rules that
prove that the actual path and all its extensions are l-safe: bot, top, and reflexivity.
Finally there is a single rule that adds P-edges to the left automaton. The rules for
the right automaton are symmetric.

When drawing the constructed left and right automata (Fig. 7.1 and 7.2), we always
share the states and transitions for reasons of economy. Different elements of the two
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alphabet AΣ = {1, . . . , arity(f)}

states Pθ ` (s, s′) if s, s′ ∈ V (ϕ) ∪ {x, y, }
Pθ ` all

initial state Pθ ` (x, y)

final states Pl ` (u, s) if ϕ ` u≤i(u′), i ∈ AΣ

Pr ` (s, v) if ϕ ` i(v′)≤v, i ∈ AΣ

descend Pθ ` (u, s)
i
−→ (u′, ) if ϕ ` u≤i(u′), i ∈ AΣ

Pθ ` (s, v)
i
−→ ( , v′) if ϕ ` i(v′)≤v, i ∈ AΣ

Pθ ` (u, v)
i
−→ (u′, v′) if ϕ ` u≤i(u′), ϕ ` i(v′)≤v, i ∈ AΣ

bot Pθ ` (u, s)
i
−→ all if ϕ ` u≤u′, u′=⊥ in ϕ, i ∈ AΣ

top Pθ ` (s, v)
i
−→ all if ϕ ` v′≤v, v′=> in ϕ, i ∈ AΣ

reflexivity Pθ ` (u, v)
i
−→ all if ϕ ` u≤v, i ∈ AΣ

all Pθ ` all
i
−→ all if i ∈ AΣ

P−edges Pl ` (u, s) (v, u)
Pr ` (s, v) (v, u)

Table 7.1: Construction of the cap automata Pθ = Pθ(ϕ |=
? x≤y) for both sides

θ ∈ {l, r}.

x y y x1

l, r
AA

PP

PP

P∗P∗x≤f(y) ∧ f(x)≤y |=? x≤y

Figure 7.1: Automata construction for Example 2.5. Entailment holds.

automata carry extra annotations. Final states of the left (right) automaton are put
into a left (right) double circle. If a state is final for both automata then it is drawn
within a complete double circle. We annotate P-edges of the left automaton by l and
of the right automaton with r.
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x y y z u all
1,2 1,2 1,2

l
1,2 O

O O

O O O O

O O O O O O O

AA

PA PA

A∗A∗ A∗A∗A∗A∗ A∗A∗x≤f(y, y) ∧ f(z, z)≤y ∧ f(u, u)≤z ∧ u=> |=? x≤y

Figure 7.2: Automata construction for Example 6.1. Entailment holds.

7.2 Examples

We first illustrate the automata construction for the unary Example 2.5, recalled in
Fig. 7.1. The alphabet of both automata is the singleton {1}. The relevant states are
{(x, y), (y, x)}; all others are either unreachable or do not lead to a final state. The
constraints x≤f(y) and f(x)≤y let both cap automata descend simultaneously by

the transition (x, y)
1
−→ (y, x) and turn (x, y) into a final state of both automata.

There are P-edges (y, x) (x, y) for both cap automata. Note that we ignore the
symmetric P-edges (x, y) (y, x) in the picture since they don’t contribute to the
respective languages.

Fig. 7.1 also contains the class trees for both cap automata but in an overlaid fashion.
The languages of both cap automata are universal due to their P-edges. Given that
our construction is sound (see Sec. 7.4) this proves entailment.

We now consider the more complex binary Example 6.1 in Fig. 7.2 where the alphabet
is {1, 2}. The constraint f(u, u)≤z permits to descend from (y, z) while ignoring the

variable y on the left hand side; this justifies the transition (y, z)
1,2
−→ ( , u). Since

the left hand side is ignored, the state (y, z) is only put to the final states of the
right automaton. The top rule can be applied to u=>; hence there are transitions

( , u)
1,2
−→ all where ( , u) and all are universal states according to the all rule. Finally,

there is a P-edge (y, z) (x, y) for the left cap automaton. We again ignore the
symmetric P-edge (x, y) (y, z) since it does not contribute to the language. The
languages of both automata are again universal, in case of the left automaton because
of a P-edge.

The next example shows that decomposition closure as provided by the notion of
syntactic support is needed for completeness. We consider

f(x)≤z ∧ z≤f(z) ∧ f(z)≤y |=? x≤y (yes)

Let ϕ be the left hand side. Since ϕ contains f(x)≤z ∧ z≤f(z), it supports ϕ ` x≤z
syntactically. Thus, ϕ |= x≤f(z)≤y so that entailment holds. This can also be proved
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through our automaton construction. First note that ϕ ` x≤1(z) holds (since ϕ ` x≤z
and z≤f(z) in ϕ). Furthermore, f(z)≤y in ϕ so that ϕ ` 1(z)≤y. Hence, we can
descend to the first child simultaneously for x and y with the transition:

Pθ(ϕ |=
? x≤y) ` (x, y)

1
−→ (z, z)

This applies for both sides θ ∈ {l, r} and proves that ε is l-safe and r-safe for ϕ |=? x≤y.
Reflexivity shows that all words in 1+ are l-safe and r-safe too. Thus, our automata
construction proves entailment to hold as well.

7.3 Result

The automata construction is sound and complete for both cases, the structures of
finite resp. possibly infinite trees.

Proposition 7.1 (Soundness and Completeness)
Let θ ∈ {l, r} a side, ϕ be a constraint and x, y ∈ V (ϕ) variables. If ϕ is satisfiable

then Pθ(ϕ |=
? x≤y) accepts the set of all those paths that are θ-safe for ϕ |=? x≤y .

Soundness will be proved in Section 7.4 (Proposition 7.2) and completeness in Section
7.5 (Proposition 7.5).

Lemma 7.1
The automata construction for judgments ϕ |=? x≤y can be performed in deterministic
polynomial time in the size of ϕ.

proof. The closure algorithm can compute all valid judgments of the form ϕ ` u≤v
where u, v are variables in V (ϕ) in time O(m3) and store its result in a O(m2) table
where m is the size of ϕ. The left and right automata have O(m2) many states. We
have to show that we can apply all construction rules in polynomial time. This is
non-obvious for the three descend rules, at least not at first sight. But note that the
set

{z | ϕ ` x≤i(z)}

can be computed in polynomial time for a given x and 1 ≤ i ≤ n = arity(f): First, one
computes all variables x′ such that ϕ ` x≤x′ in time O(m). Second, one loops over
all such x′ while computing all yi for which there exists some literal x′≤f(y1, . . . , yn)
in ϕ. This requires time O(m) for each individual x′. Finally one loops for all such
yi while computing all z such that ϕ ` yi≤z. This can be done in time O(m) again.
Thus, we obtain an O(m3) algorithm to compute the above set for a given x and i.
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This set {z | ϕ ` x≤i(z)} has to be computed for all x ∈ V (ϕ) and 1 ≤ i ≤ n, i.e.,
for O(m2) many pairs. Thus, the overall automata construction requires time at most
O(m6) in the size of ϕ. (We did not try to improve on this upper bound.)

THEOREM 7.1 (Reduction)
NSSE for a signature {⊥, f,>} can be reduced in deterministic polynomial time to
the universality problem of cap automata over the alphabet {1, . . . , arity(f)}. This
holds equally for finite, regular, or possibly infinite trees.

proof. The reduction works as follows. Given an entailment judgment ϕ |=? x≤y
we first test whether ϕ is satisfiable. This tests can be done in polynomial time as
we have proved in Theorem 3.1 of Chapter 3. Note that this satisfiability test is the
single step of the reduction that differs for finite, resp. regular, or possibly infinite
trees.

If ϕ is unsatisfiable, then entailment holds. Otherwise we construct the left and right
automata for ϕ |=? x≤y. This requires at most polynomial time according to Lemma
7.1. Entailment now holds if and only if the languages of both constructed automata
are universal as stated by Propositions 7.1 and 6.1.

7.4 Soundness

In this section, we prove the soundness of the automata construction. The proof is
non-trivial and requires a new argument compared to [NP99]. This argument (see the
proof of Proposition 7.4) is based on Lemma 5.1 from Chapter 5.

Proposition 7.2 (Soundness)
For all ϕ, variables x, y, and sides θ ∈ {l, r} it holds that all paths accepted by

Pθ(ϕ |=
? x≤y) are θ-safe for ϕ |=? x≤y.

We only consider the left side θ = l. We proceed in two steps: we first treat accepted
words in class A (Proposition 7.3) and second in class P (Proposition 7.4). For both
steps, we have to characterize transitions of the constructed automata.

Lemma 7.2 (Transitions without all states)
For all constraints ϕ, variables x, y, u, v, sides θ ∈ {l, r}, and nonempty words π ∈
{1, . . . , arity(f)}+:

1. Pθ(ϕ |=
? x≤y) ` (u, s)

π
−→ (v, s′) for some s, s′ if and only if ϕ ` u≤π(v).

2. Pθ(ϕ |=
? x≤y) ` (s, u)

π
−→ (s′, v) for some s, s′ if and only if ϕ ` π(v)≤u.
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This lemma would fail for π = ε. But this does not matter since if ϕ ` u≤v then
reflexivity yields for all non-empty words π:

Pθ(ϕ |=
? x≤y) ` (u, v)

π
−→ all

proof. We only prove the first statement for the upper bounds for the implication
from right to left. (The second property is analogous but for lower bounds.) The
proof is by induction on the length of π 6= ε.

First, assume π = i is a single letter path where i ∈ AΣ. The supported upper bound

ϕ ` u≤i(v) permits to apply the descend rule. Hence Pθ(ϕ |=
? x≤y) ` (u, )

i
−→

(v, ) for arbitrary θ ∈ {l, r}.

Second, consider a path π of length at least two. We can decompose π into π = π ′i
for some nonempty path π′ and i ∈ AΣ. Also we can decompose ϕ ` u≤π(v) into
ϕ ` u≤π′(v′) and ϕ ` v′≤i(v) for some variable v′. The induction hypothesis applies

twice and yields Pθ(ϕ |=
? x≤y) ` (u, )

π
−→ (v′, ) and ` (v′, )

i
−→ (v, ).

Lemma 7.3 (Bounds and safety)

1. If α |= x≤π(u) then all proper prefixes of π are l-safe for α |=? x≤y.

2. If α |= x≤π(u) ∧ u=⊥ then all paths ππ ′ with π′ ∈ AΣ
∗

are l-safe for α |=? x≤y.

3. If α |= x≤π(u) ∧ π(u)≤y then all paths ππ ′ with π′ ∈ AΣ
∗
are l-safe for α |=? x≤y.

proof. We only prove 1 (the other two cases are similar). Let π ′ be a proper prefix
of π. Every solution α |= x≤π(u) satisfies either α(x)(π ′) =Σf or there exists a path
ν < π′ with α(x)(ν) =Σ⊥; thus all π′ are l-safe for α |=? x≤y.

Proposition 7.3 (Soundness for class A)
For all ϕ, variables x, y it holds that all paths π with class A accepted by Pl(ϕ |=

? x≤y)

are l-safe for ϕ |=? x≤y.

proof. We have to consider all recognizing transitions of the constructed finite
automaton. According to the automaton construction there are three possibilities for
doing this.

1. Assume that the path is accepted in a state to which the final states rule
applies, i.e. π is recognized by a transition of the following form:

Pl(ϕ |=
? x≤y) ` (x, y)

π
−→ (u, s)

i
−→ (u′, s′).
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Lemma 7.2 yields ϕ |= x≤πi(u′). Thus π is l-safe for ϕ |=? x≤y by Lemma 7.3
case 1.

2. Assume π is accepted by the reflexivity rule. Then, π must be of the form
π1π2, where we can identify transition of the following form where ϕ ` u≤u′:

Pl(ϕ |=
? x≤y) ` (x, y)

π1−→ (u, u′).

Lemma 7.2 yields ϕ |= x≤π1(u). By symmetrical reasoning ϕ |= π1(u
′)≤y and

thus ϕ |= π1(u)≤y. Case 3 of Lemma 7.3 shows that π is l-safe for ϕ |=? x≤y.

3. Assume π is accepted by the bot rule (the case that the top rule fires is anal-
ogous). Then, π must be of the form π1π2, where we can identify transition of
the following form:

Pl(ϕ |=
? x≤y) ` (x, y)

π1−→ (u, s), ϕ ` u≤u′, and u′=⊥ in ϕ.

Again Lemma 7.2 yields ϕ |= x≤π1(u
′). Therefore π is l-safe for ϕ |=? x≤y by

Lemma 7.3 case 2.

We now approach the soundness of P-edges. It mainly relies on Lemma 7.4 in combi-
nation with Lemma 5.1 on word equations.

Lemma 7.4 (Safety and word equations)
Let π 6= ε be a path, u, v variables, and α |= u≤π(v). All words π ′ with π′ ∈ pr (ππ′)

are l-safe for α |=? u≤v.

proof. We distinguish whether π′ belongs to Dα(v) or not.

a. Case π′ ∈ Dα(v). It follows in this case from α |= u≤π(v), that α |=

∃v′(u≤ππ′(v′)). By Lemma 7.3 all proper prefixes of ππ′ are l-safe for α |=? u≤v.
Thus π′ has this property since π′ is a prefix of ππ′ and π 6= ε by assumption.

b. Case π′ 6∈ Dα(v). Let π′′ be the maximal prefix of π′ in Dα(v). Hence, α(v)(π′′) ∈
{⊥,>}. First we assume the case α(v)(π ′′) =Σ> which implies that all paths
σ with π′′ ≤ σ, in particular π′, are l-safe. Second we assume the left case
α(v)(π′′) =Σ⊥. Since α |= u≤π(v), there exists a path π ′′′ with π′′′ ≤ ππ′ such
that α(u)(π′′′) =Σ ⊥. Both together, π′′′ ≤ ππ′ and the assumption π′ ≤ ππ′

show that the paths π′′′ and π′ are comparable: if π′ ≥ π′′′ then π′ is l-safe
according to the definition of l-safe. Otherwise, π ′ < π′′′ holds and α(u)(π′) =Σf
implies π′ to be l-safe.

Lemma 7.5 (Composing safety)
If α |= x≤π(u), α |= π(v)≤y, and π′ is l-safe for α |=? u≤v then ππ′ is l-safe for

α |=? x≤y.
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proof. It follows from the assumption π ′ is l-safe for α |=? u≤v that α(u)(π′) =Σf
or that there exists π′′≤π′ with α(u)(π′′) =Σ ⊥ or α(v)(π′′) =Σ >. The assumption
α |= x≤π(u) and α |= π(v)≤y imply that α(x)(ππ ′) =Σf or there exists π′′≤ππ′ with
α(x)(π′′) =Σ⊥ or α(y)(π′′) =Σ>; thus ππ′ is l-safe for α |=? x≤y.

Proposition 7.4 (Soundness for class P)
For all ϕ and variables x, y, all paths of class P accepted by Pl(ϕ |=

? x≤y) are l-safe

for ϕ |=? x≤y.

proof. A path ν of class P can only be recognized by using a P-edge. Thus, there
exist words µ, µ′, π such that ν = πµ′, µ′ ∈ pr(µ∗) and for some u, v ∈ V (ϕ) ∪ {x, y}
and s ∈ V (ϕ) ∪ {x, y, }:

Pl(ϕ |=
? x≤y) ` (x, y)

π
−→ (u, v)

µ
−→ (v, s) (u, v)

Lemma 7.2 yields ϕ |= x≤π(u), ϕ |= π(v)≤y, and ϕ |= u≤µ(v). We fix an arbitrary
solution α |= ϕ and show that ν is l-safe for α |= x≤y. Note that µ 6= ε since ν would
belong to class A otherwise. We can thus apply Lemma 5.1 on word equations
to our assumption µ′ ∈ pr (µ∗) to derive µ′ ∈ pr(µµ′). This verifies the assumptions
of Lemma 7.4 which shows that µ′ is l-safe for α |=? u≤v. Finally, the composition
Lemma 7.5 shows that πµ′ is l-safe for α |=? x≤y as required.

7.5 Completeness

We prove the completeness of the automata construction. The proof is simplified in
many aspects compared to its relatives [NP99].

Proposition 7.5 (Completeness)
Let ϕ be a constraint with variables x, y ∈ V (ϕ) and θ ∈ {l, r} a side. If ϕ is satisfiable

(for finite, regular, resp. possibly infinite trees) then Pθ(ϕ |=
? x≤y) accepts all paths

that are θ-safe for ϕ |=? x≤y (with respect to the considered structure of finite,
regular, resp. possibly infinite trees).

In a first step, we reduce Proposition 7.5 to simpler statements in Proposition 7.6 and
7.7. By symmetry, we can restrict ourselves to the case of r-safety. This notion can
be reformulated on basis of standard logical transformations.

Lemma 7.6
Let ν be a word in {1, . . . arity(f)}∗ and ϕ |=? x≤y and entailment judgment. Then

ν is not r-safe for ϕ |=? x≤y if and only if ϕ ∧ pref⊥ν (y) ∧ ¬pref⊥ν (x) is satisfiable.
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proof. The word ν is r-safe for ϕ |=? x≤y iff ϕ |= pref⊥ν (y) → pref⊥ν (x) iff
ϕ ∧ ¬(pref⊥ν (y)→ pref⊥ν (x)) is unsatisfiable, i.e., if ϕ ∧ pref⊥ν (y) ∧ ¬pref⊥ν (x) is satis-
fiable.

In order to prove Proposition 7.5 we can assume a satisfiable constraint ϕ with vari-
ables x, y, and a path ν in {1, . . . , arity(f)}∗ that does not belong to the language of
Pl(ϕ |=

? x≤y). We then have to prove that ν is not r-safe for ϕ |=? x≤y. Using the
above Lemma, this is equivalent to the satisfiability of the following formula:

ϕ ∧ pref⊥ν (y) ∧ ¬pref⊥ν (x)

We can eliminate the negative subformula ¬pref⊥ν (x) by a simple trick. Let

xε =def x

and fix a set Fν(x) of fresh and distinct variables xµ for finitely many nonempty paths
µ that are successors of prefixes of ν:

Fν(x) =def { xπi | ε ≤ π ≤ ν, 1 ≤ i ≤ arity(f) }

Note that Fν(x) does not contain xε. Next, we define a constraint lowν(f) (x) which
imposes the lower bound ν(f) on x:

lowν(f) (x) =def

∧

ε≤π≤ν

f(xπ1, . . . , xπn) ≤ xπ

Lemma 7.7
The constraint lowν(f) (x) is satisfaction equivalent to ¬pref⊥ν (x).

proof. Indeed, the existential formula ∃Fν(x). lowν(f) (x) is equivalent to ¬pref⊥ν (x).
Note first that lowν(f) (x) ` ν(f)≤x and hence, ∃Fν(x). lowν(f) (x) |= ν(f)≤x. Clearly,
the converse holds as well, i.e., both formulas are equivalent. Finally, note that ν(f)≤x
is also equivalent to ¬pref⊥ν (x).

According to Lemma 7.7, the remaining goal is to prove the satisfiability of the for-
mula: ϕ ∧ pref⊥ν (y) ∧ lowν(f) (x). The cases of possibly infinite or regular trees will
be proved in Proposition 7.6. The existence of finite solutions is then derived from
the existence of possibly infinite solutions in Proposition 7.7. Before proving these
proposition, we formulate some needed properties of the constraint lowν(f) (x) in two
technical Lemmas 7.8 and 7.9.

Lemma 7.8
The following properties hold for a constraint ϕ with variables x, u, v ∈ V (ϕ), words
ν, π, µ ∈ {1, . . . , arity(f)}∗ such that xµ ∈ Fν(x). Recall that Fν(x) is a set of fresh
variables disjoint from V (ϕ). Let ϕ′ = ϕ ∧ lowν(f) (x).
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(1) ϕ′ ` u≤π(v) if and only if ϕ ` u≤π(v).

(2) ϕ′ ` xµ≤π(v) if and only if ϕ ` x≤µ(x′), ϕ ` x′≤π(v) for some x′.

(3) ϕ′ ` π(u)≤v if and only if ϕ ` π(u)≤v.

(4) ϕ′ ` π(xµ)≤v if and only if ϕ ` x≤µ′(x′) and ϕ ` π′(x′)≤v
where µ=µ′ν, π=π′ν for some µ′, π′, ν, x′.

(5) ϕ′ ` µ′i(xµµ′i)≤xµ if µµ′ ≤ ν and i ∈ {1, . . . , arity(f)}.

(6) ϕ′ ` ε(xµ)≤xµ and ϕ′ ` xµ≤ε(xµ).

proof. The proofs of these properties are tedious but not difficult. Note that (5)
and (6) are trivial but they will simplify the proof.

All inverse implications are straightforward so that we only treat the most complicated
property (4) explicitly. Let the right hand side of (4) be true. Since µ ∈ Vν(X) we
have lowν(f) (x) ` µ(xµ)≤x and thus lowν(f) (x) ` µ

′ν(xµ)≤x. Because of ϕ ` x≤µ′(x′)
we can apply the decomposition Lemma 7.2 which yields ϕ′ ` ν(xµ)≤x′. Combined
with ϕ ` π′(x′)≤v this implies ϕ′ ` π′ν(xµ)≤v and hence ϕ′ ` π(xµ)≤v as required.

We prove all remaining implications of (1)–(5) together with (6) simultaneously. For
this we define a new set Cϕ′ of path constraints: a constraint ψ is in Cϕ′ if and only
if one of the properties (1)–(6) licenses ϕ′ ` ψ. In the rest of the proof we do not
distinguish between ε(x)≤y in Cϕ′ and x≤ε(y) in Cϕ′ . We also write x≤y in Cϕ′ in
each of both cases. It remains to prove that Cϕ′ is closed under the conditions given
in Table 3.4 of lower and upper bounds. We restricted ourself to prove that Cϕ′ is
again closed under reflexivity, transitivity, decomposition. The set Cϕ′ is closed under
reflexivity for all variables in V (ϕ) by property (1) and for all variables in Fν(x) by
(6). For transitivity and decomposition we have to consider literals of the restricted
form u≤v where u and v are distinct variables. Such literals are defined in (1)–(4)
where π = ε. They are not defined in (5) or (6).

We prove that Cϕ′ is closed under transitivity. There is only one interesting case
left where the transitivity rule can be applied. Let v≤u in Cϕ′ with v, u ∈ V (ϕ) be
contributed by ϕ ` v≤u in the case of property (1) or (3). Also let xµ≤v in Cϕ′ be
contributed by (2) or (4) which require ϕ ` x≤µ(x′), ϕ ` x′≤v for some x, x′, v, µ.
Following Lemma 3.5 it holds ϕ ` x≤µ(u) and thus, xµ≤u in Cϕ′ again by (2).

We prove Cϕ′ to be closed under decomposition.

1. Assume u≤f(. . . , ui, . . .)∧ f(. . . , vi, . . .)≤v in ϕ for variables u, ui, v, vi ∈ V (ϕ).
Also assume v≤u in Cϕ′ by (1) or (3) contributed by ϕ ` v≤u. Then, ϕ ` vi≤ui

and also vi≤ui in Cϕ′ by (2).
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2. Assume u≤f(. . . , ui, . . .) in ϕ with u, ui ∈ V (ϕ) and f(x1, . . . , xn) ≤ xε in
lowν(f) (x). Note that xε = x, x ∈ V (ϕ) by assumption. Also assume x≤u in Cϕ′

which is contributed by (1) or (3) with ϕ ` x≤u. Then, xi≤ui in Cϕ′ by (2).

3. Assume u≤f(. . . , ui, . . .) in ϕ with u, ui ∈ V (ϕ) and f(xπ1, . . . , xπn) ≤ xπ in
lowν(f) (x) where π 6= ε. Thus, xπ ∈ Fν(x). Then, xi≤ui in Cϕ′ by (2).

Lemma 7.9
Let ν ∈ {1, . . . , arity(f)}∗ and let ϕ be a constraint with variables x, y. It holds that
ϕ ∧ lowν(f) (x) ` ν(f)≤y if and only if

1. ϕ ` ν(f)≤y, or

2. there exist a state z and paths π1≤ν, π2 such that ϕ ` π1π2(z)≤y, ϕ ` x≤π1(z),
and if π2 6= ε then also ν ∈ π1 pr(π∗2).

proof. From right to left. Clearly, ϕ ` ν(f)≤y implies ϕ ∧ lowν(f) (x) ` ν(f)≤y.
So let ϕ ` π1π2(z)≤y and ϕ ` x≤π1(z). Let ν ′ be an arbitrary path and ν = π1ν

′.
If ψ ` π1π2(z)≤y, ψ ` x≤π1(z), and ψ ` π1ν

′(f)≤x then ψ ` π1π2ν
′(f)≤y according

to Lemma 3.5. Note that lowν(f) (x) ` ν(f)≤x. Thus, ϕ ∧ lowν(f) (x) ` π1π2ν
′(f)≤y

which also implies ϕ ∧ lowν(f) (x) ` π1π(f)≤y for every prefix π ≤ π2ν
′. The case

π = ν ′, which was to prove, holds for π2 = ε or ν ′ ∈ pr (π∗2) according to Lemma
5.1.

From left to right. Let assume ϕ∧ lowν(f) (x) ` ν(f)≤y, y ∈ V (ϕ) which is equivalent
to ϕ ∧ lowν(f) (x) ` ν(u)≤y together with either (1) ϕ ` ε(f)≤u where u ∈ V (ϕ) or
(2) lowν(f) (x) ` ε(f)≤u where (2a) u = x or (2b) u ∈ Fν(x). Let us assume case (1).
By Lemma 7.8 also ϕ ` ν(u)≤y since y, u ∈ V (ϕ). Our case assumption ϕ ` ε(f)≤u
implies ϕ ` ν(f)≤y.

Next, assume case (2a). Again by Lemma 7.8 also ϕ ` ν(x)≤y since y, u ∈ V (ϕ).
Then, there exist π1 = ε, π2 = ν, z with ϕ ` π1π2(z)≤y and ϕ ` x≤z. Also ν ∈
pr(π∗1).

At last assume the remaining case (2b). Our assumption lowν(f) (x) ` ε(f)≤u, u ∈
Fν(x) holds in the case u = xπ where π ≤ ν. Lemma 7.8.4 together with our
assumption ϕ ∧ lowν(f) (x) ` ν(xπ)≤y implies ϕ ` x≤π′(x′), ϕ ` ν ′(x′)≤y where
π=π′ν ′′, ν=ν ′ν ′′ for some ν ′, ν ′′, x′. Since π ≤ ν, we get π′ν ′′ ≤ ν = ν ′ν ′′. This
implies π′ ≤ ν ′. So, let ν ′ = π′π′′ for some π′′. Then we identify ϕ ` π′π′′(x′)≤y
and ϕ ` x≤π′(x′) where π′ ≤ ν. Since π′ν ′′ ≤ ν ′ν ′′ and ν ′ = π′π′′ it holds that
π′ν ′′ ≤ π′π′′ν ′′ and thus, ν ′′ ≤ π′′∗ for π′′ 6= ε according to Lemma 5.1. It holds that
ν = π′π′′ν ′′ ∈ π′ pr (π′′∗) in the case π′′ 6= ε.
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7 Automata Construction

We now return to the main line of the completeness proof, i.e., we show that ϕ ∧
lowν(f) (x) ∧ pref⊥ν (y) is satisfiable.

Proposition 7.6
Consider the structure of possibly infinite or of regular trees respectively. Let ν be

a word in {1, . . . , arity(f)}∗ that does not belong to the language of Pr(ϕ |=
? x≤y).

Let ϕ be a satisfiable constraint with variables x, y ∈ V (ϕ). Then the least solution
of the constraint ϕ ∧ lowν(f) (x) exists and satisfies pref⊥ν (y) simultaneously.

proof. Let ϕ′ =def ϕ∧ lowν(f) (x). In order to show that ϕ′ permits a least solution,
we first show that it does not contain any label clash (Theorem 3.1). Assume the
contrary, i.e., that ϕ′ contains a label clash. Then there exists variables u, v ∈ V (ϕ′)
with ϕ′ ` u≤v such that ϕ′ requires contradicting label bounds for u and v according
to C1, C2, or C3 in Table 3.3. Since lowν(f) (x) does not impose any upper label
bounds, it follows that v ∈ V (ϕ). If the lower bound for u belongs already to ϕ then
ϕ contains a label clash. Hence, lowν(f) (x) imposes the lower bound on u. But the
only lower bounds that lowν(f) (x) imposes are f -bounds for some variables xπ; thus
u = xπ for some π. Furthermore, lower f -bounds clash only with upper ⊥-bounds,
i.e., we have a label clash of kind C3:

f(...)≤xπ in lowν(f) (x), ϕ′ ` xπ≤v, and v=⊥ in ϕ.

Because of f(...)≤xπ in lowν(f) (x) it follows that ε ≤ π ≤ ν. We next show that
ϕ ` x≤π(v). If π = ε then xπ ∈ V (ϕ) so that part 1 of Lemma 7.8 yields ϕ ` x≤π(v).
Otherwise, π 6= ε so that xπ ∈ Fν(x). Part 2 of Lemma 7.8 yield ϕ ` x≤π(v) in this
case, so it holds in all cases.

Lemma 7.2 implies that the automaton Pr(ϕ |=
? x≤y) reaches state (v, ) over word π.

Since v=⊥ in ϕ, the bot rule of the automata construction (Table 7.1) lets Pr(ϕ |=
?

x≤y) accepts all words that π is a prefix of. And π ≤ ν so that ν is accepted by the
right automaton, in contrast to our assumption.

Recall that the least solution leastϕ′ is regular but possibly infinite. In order to prove
leastϕ′ |= pref⊥ν (y) we assume the contrary. By definition of leastϕ′ (Section 3.2) the
contrary holds if and only if ϕ′ one of the following lower bounds for y: either π(>)
for some prefix π ≤ ν or ν(f):

ϕ′ ` π(>)≤y or ϕ′ ` ν(f)≤y

In the first case, there exists some equation z=> in ϕ′ such that ϕ′ ` π(z)≤y. But
z=> cannot belong to lowν(f) (x). It thus belongs to ϕ so that z ∈ V (ϕ). Part 3 of
Lemma 7.8 yields ϕ ` π(z)≤y. Lemma 7.2 shows that the automaton Pr(ϕ |=

? x≤y)
reaches state ( , z) over word π. Because of the top rule of the automata construction
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7.5 Completeness

(Table 7.1) Pr(ϕ |=
? x≤y) accepts all words of which π is a prefix, and thus ν, in

contrast to our assumption.

The remaining second case ϕ′ ` ν(f)≤y is the crucial step in this proof. Lemma 7.9
leaves only two possibilities that we distinguish:

1. Case ϕ ` ν(f)≤y. Hence, there exists z such that ϕ ` ν(z)≤y and f(. . .) ≤ z
in ϕ. Lemma 7.2 proves that Pr(ϕ |=

? x≤y) can reach state ( , z) over word ν.
And this state is final since the final state rule applies given f(. . .) ≤ z in ϕ.

2. In the other case, there exist π1 ≤ ν, π2, and z with ϕ ` π1π2(z)≤y, ϕ `
x≤π1(z).

a) In the case π1 = π2 = ε it holds that ϕ ` x≤y. The initial state and
reflexivity prove all words including ν to be in in the language of Pr(ϕ |=

?

x≤y).

b) Let π2 = ε but π1 6= ε. Lemma 7.2 and initial state imply

Pr(ϕ |=
? x≤y) ` (x, y)

π1−→ (z, z).

Since π1 ≤ ν reflexivity proves ν to be in in the language of Pr(ϕ |=
? x≤y).

c) Let π1 6= ε and also π1 6= ε. Then, there is also the assumption ν ∈
π1 pr (π∗2). Lemma 7.2 shows for some token s:

Pr(ϕ |=
? x≤y) ` (x, y)

π1−→ (z, s)
π2−→ ( , z) (z, s)

Again, ν is contained in the language of Pr(ϕ |=
? x≤y) according to the

second P-edge rule.

d) The remaining case is π1 = ε, but π2 6= ε. Again, ν ∈ π1 pr(π∗2). Since
ϕ ` x≤z and ϕ ` π2(z)≤y it holds also ϕ ` π2(x)≤y. Lemma 7.2 shows:

Pr(ϕ |=
? x≤y) ` (x, y)

π2−→ ( , x) (x, y)

Again, ν is contained in the language of Pr(ϕ |=
? x≤y).

We finally treat the case of finite trees. We reuse satisfiability for the infinite case
rather then restarting from scratch. This requires another trick which is hidden in
the proof of the next proposition.

Proposition 7.7
Let ν be a word in {1, . . . , arity(f)}∗ that does not belong to the language of Pr(ϕ |=

?

x≤y) and ϕ be a constraint that is satisfiable over finite trees and contains variables
x, y ∈ V (ϕ). Then the constraint ϕ ∧ lowν(f) (x) ∧ pref⊥ν (y) is also satisfiable in the
structure of finite trees.
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7 Automata Construction

proof. In a first step, we express the formula pref⊥ν (y) by a satisfaction the equiv-
alent constraint upν(⊥)

(y):

upν(⊥)
(y) =def yν=⊥ ∧

∧

ε≤π<ν

yπ≤f(yπ1, . . . , yπn)

where yε =def y and Fν(y) is a set of fresh and distinct variables as before. Since
ϕ ∧ lowν(f) (x) ∧ pref⊥ν (y) is satisfiable over possibly infinite trees by Proposition 7.6,
we know that

ϕ′ =def ϕ ∧ lowν(f) (x) ∧ upν(⊥)
(y)

is also satisfiable over possibly infinite trees. Now comes the trick: The constraint ϕ ′

cannot contain a label clash. (Otherwise it were unsatisfiable over possibly infinite
trees by Proposition 3.1.) Furthermore, ϕ′ cannot have a cycle clash, given that ϕ
doesn’t (by Proposition 3.4) and since the addition of lowν(f) (x) ∧ upν(⊥)

(y) leaves
this property invariant. Hence, Proposition 3.4 shows that ϕ′ has a finite solution;
and the satisfaction equivalent formula ϕ∧ lowν(f) (x)∧pref⊥ν (y) has a finite solution,
too.

7.6 Restrictions of constructed automata

Constructed cap automata satisfy a set of restrictions that we must assume for the
back translation in Section 9.

Definition 7.1
We call a cap automaton P over A restricted if it is strictly epsilon free, gap universal,
strictly cap, and shuffled.

strictly epsilon free: P has a unique initial state and no ε-transition.

gap universal: If a final state q2 can be reached from a non-final state q1 over

some transition P ` q1
i
−→ q2 with i ∈ A then q2 is universal, i.e., for all π ∈ A∗

there exists a final state q3 that can be reach over π from q2: P ` q2
π
−→ q3.

strictly cap: If P ` q2
π
−→ q3 q1 with π 6= ε then q2 is a final state.

shuffled: If there are transitions P ` q
π
←− q0

π
−→ q′ q where P ` q0 is the

initial state and q 6= q′ then the language {π′ | ππ′ ∈ L(P)} is universal.
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q0

q1 q2
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a suffered extension, and
corresponding entailment judgment

x≤f(y, u) ∧ f(x, v)≤y
∧ x≤f(x, u) ∧ f(y, v)≤y

}

|=? x≤y

Figure 7.3: An example for the shuffle property.

We conjecture that these restrictions don’t truly restrict the universality problem
of cap automata but cannot prove this so far. Indeed, every cap automaton whose
underlying finite automaton is deterministic can be made restricted. Again, this is not
obvious. The proof exploits that “deterministic” cap automata are always shuffled.
But unfortunately, the usual determination procedure fails for cap automata.

However, the shuffle property might be problematic, as illustrated by the example in
Table 7.3. On the top, it presents a cap automaton over the alphabet {1, 2} which
violates the shuffle property at word 1. This automaton rejects all words in 1∗2(1∪2)∗.
Below, a shuffled extension of this automaton is given; the additional nodes are marked
in grey. The extended automaton recognizes more words as it only rejects the words
in 2(1∪2)∗ but is still not universal. A corresponding entailment judgment is also
given: our automata construction applied to this judgment (for both left and right
side) generates the shuffled extension of the original automaton.

The example shows that we cannot simply make an automaton shuffled without ex-
tending its language. There are also examples, where the shuffle extension of a non-
universal automata becomes universal. So it remains open, whether assuming the
shuffle property restricts the universality problem of cap automata or not.

Proposition 7.8
Constructed cap automata Pθ(ϕ |=

? x≤y) are restricted.

proof. Let Pl = Pl(ϕ |=
? x≤y) be a constructed cap automaton for the left

side. Pl is clearly strictly epsilon free, as it has a unique initial state (x, y) and no
ε-transitions. To see that it is gap universal, suppose that there is a transition from
a non-final to a final state in Pl. The second form of the descend rule is the only
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7 Automata Construction

rule which may license such a transition. It thus has the form Pl ` (s, u)
i
−→ ( , v)

for some u, v ∈ V (ϕ), and s ∈ V (ϕ) ∪ { }. The only rule which can turn ( , v) into
a final state is the top rule, but this rule turns ( , v) directly into a universal state.
(The final states rule does not apply because of the underscore on the left.)

To prove that Pl is shuffled, we assume a path π and two different states q and q ′

with Pl ` q
π
←− q0

π
−→ q′ q. We unify the states q0, q, q

′ with the rules of Table 7.1
and get Pl ` (v, u)

π
←− (x, y)

π
−→ (u, s) (v, u) for some u, v ∈ V (ϕ) ∪ {x, y} and

s ∈ V (ϕ) ∪ {x, y, }. By construction of the automaton (Table 7.1), Pl ` (x, y)
π
−→

(u, u) must also hold. By reflexivity and all, the language {π ′ | ππ′ ∈ L(Pl)} is
universal.

We finally prove the strict cap property. All P-edges of Pl are of the form
P ` (u, s) q for some state q. The last transition in all transition sequences
reaching (u, s) must be licensed by the descend rule, and thus is of the form

P ` (v, s0)
i
−→ (u, s). Now, the final states rule applies to (v, s0). Repeating

this argument inductively shows that all states leading to (v, s0) are final too.
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8 Restricted Cap Set Expressions

We now formulate corresponding restrictions for cap set expressions. Thereby, we
obtain the restrictions needed for Theorem 5.1 to hold.

Definition 8.1
We call a cap set expression over alphabet A restricted if it is a shuffled expression
with the following abstract syntax where R1, R2, R range over regular expressions
over A:

F ::= pr(R1R
◦
2) | RA∗ | F1 ∪ F2

A cap set expression of sort F is called shuffled if all its components of the form
pr(R1R

◦
2) with L(R2) 6= {ε} satisfy:

shuffle: for all words π ∈ L(R1) ∩ L(R1R2) it holds that πA∗ ⊆ L(R1 ).

Proposition 8.1
Universality of restricted cap set expressions and restricted cap automata are equiva-
lent modulo deterministic polynomial time transformations.

proof. It is easy to see that those cap automata are gap-universal, strictly cap, and
shuffled that the proof of Proposition 6.2 constructs for restricted cap expressions.
They can be made strictly ε-free in addition, as we will see in Lemma 8.2.

Conversely, given a restricted cap automaton P, we can express the regular part of
P by a restricted cap set expression pr (R1ε

◦) ∪ R2A
∗, because of P is gap universal.

The cap automaton P is also strictly cap, so we can translate every P-edge of P in
a restricted cap set expression pr(R1R

◦
2). All build restricted cap set expressions are

shuffled since P is shuffled.

In order to complete the preceding proof, we must show how to make cap automata
strictly ε-free. We call a state q of a cap automaton P normalized if q has no in-going
transitions and no out-going P-edges.

Lemma 8.1
If a cap automaton P has a unique initial state then this state can be normalized,
while preserving the language of the automaton, gap-universality, strict cap, and the
shuffle property.
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8 Restricted Cap Set Expressions

proof. Let P be a cap automaton with one initial state q0. We construct a new
automaton P ′ by adding a state q′0 to P which inherits all out-going ∆-transitions
and in-going P-edges from q0. We let q′0 be the unique initial state of P ′. This state
is normalized.

Lemma 8.2 (Epsilon elimination)
Every cap automaton can be made strictly ε-free in polynomial time, while preserving
the language and the properties: gap-universal, strictly cap, and shuffle.

proof. First, we eliminate ε-edges in the underlying finite automaton. This yields
a cap automaton which may have more than one initial state. We assume w.l.o.g that
this automaton consists of n independent parts where each part has exactly one initial
state. Second, we normalize all n initial states according to Lemma 8.1.

We prove that the ε-elimination does not affect the language. Let P ε be the cap
automaton that results after ε-elimination in a cap automaton Pε. By induction it
holds that Pε ` q1

π
−→ q2 if and only if P ε ` q1

π
−→ q2 where π 6= ε. Further it holds

Pε ` q0
ε
−→ q′0 if and only if P ε ` q′0. This implies

Pε ` q0
π
−→ q1

µ
−→ q2 q1 if and only if P ε ` q′0

π
−→ q1

µ
−→ q2 q1.

So L(Pε) and L(P ε) are equal.

Second, we copy the whole cap automaton n-times where n is the number of the initial
states. The result is a big cap automaton which consists of n independent parts, each
has a single initial state.

Third, we unify all n initial states into a single initial state. The unified initial state
inherits all P- and ∆-edges of the unified initial states. It is final if and only if one
of the previous initial states was. Since all initial states are normalized this step does
neither change the language of P, nor gap-universal, the strict cap nor the shuffle
property.

100



9 Back Translation for Restricted Cap
Automata

We now encode universality of restricted cap automata over alphabet {1, . . . , n} back
to NSSE over the signature {⊥, f,>} where arity(f) = n. Again, our construction
applies to finite, regular, and possibly infinite trees.

Definition 9.1
Given a restricted cap automaton we assume two fresh variables l(q) and r(q) for each
state P ` q. The judgment J (P) of a restricted cap automaton P with initial state
P ` q0 is ϕP |=

? l(q0)≤r(q0) where ϕP is the least constraint with the properties in
Table 9.1.

The judgment J (P) is defined such that P recognizes exactly the set of l-safe words
for J (P) whereas the set of r-safe words for J (P) is A∗.

Proposition 9.1 (Correctness)
Every complete and restricted cap automaton P with initial state P ` q0 over
alphabet A satisfies:

L(P) = L(Pl(J (P)) and A∗ = L(Pr (J (P)).

For proof we need an auxiliary lemma.

left l(q)≤f(l(q1), . . . , l(qn)) in ϕP if P ` q
i
−→ qi for all 1 ≤ i ≤ n.

right f(r(q1), . . . , r(qn))≤r(q) in ϕP if P ` q
i
−→ qi for all 1 ≤ i ≤ n

top r(q′)=> in ϕP if P ` q
i
−→ q′, q not final

P-edges l(q)≤i[ r(q2) ] in ϕP if P ` q
i
−→ q1 q2, q1 6=q2

Table 9.1: Back translation: the constraint ϕP of a restricted cap automaton P.
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9 Back Translation for Restricted Cap Automata

x y y1 p q1

l

x≤f(y) |=? x≤y l(p)≤f(l(q)) ∧ f(r(q))≤r(p) ∧ l(p)≤f(r(p)) |=? l(p)≤r(p)

Figure 9.1: A judgment, its pair of cap automata, and the back translation of the left
cap automaton.

Lemma 9.1
If J (P) ` u≤v then u = v.

proof. By structural induction on derivations J (P) ` u≤v . The derivation rules are
given in Table 3.1. The consideration for the rules reflexive and trans. are obvious.
So, we can restrict ourself to the decomp. rule. So assume that the decomposition
rule derives J (P) ` u≤v . Hence, f(. . .)≤u and v≤f(. . .) in J (P) while J (P) ` u≤v .
The induction hypothesis yields u = v. The construction of J (P) in Table 9.1 implies
that u = r(q) and v = l(q) for some states p, q. Hence r(q) = l(q) which is impossible
so that the decomp. rule cannot be applicable.

proof(Proof of Proposition 9.1).

1. The language L(Pr(J (P))) is universal: Since P is complete such that the right
rule implies for all words π ∈ A∗ that there exists a state P ` q satisfying
ϕP |= π(r(q))≤r(q0). Thus, Pr(J (P)) ` (l(q0 ), r(q0 ))

π
−→ ( , l(q)) by the

second case of the descend rule, i.e. π is accepted by Pr(J (P)).

2. We omit the proof for L(P) ⊆ L(Pl(J (P))) which only requires the completeness
of P and the strictly cap property.

3. The remaining inclusion L(Pl(J (P))) ⊆ L(P) is most interesting. Note that
according to Lemma 9.1 we have not to consider any support J (P) ` u≤v in
the construction of the appendant cap automata Pl(J (P)). We start with an
auxiliary claim: If P provides transitions

Pl(J (P) ` (l(q0 ), s0 )
π
−→ (l(qn), sn )

i
−→ (l(q), s)

then there exist transitions P ` q0
π
−→ qn. This claim can be proved as follows:

All transitions must be licensed by a constraint in ϕP which is of the form
l(qi)≤f(. . . , l(qi+1), . . .) where 1 ≤ i ≤ n. Such constraints can only be created
by the left rule. There thus exist transitions P ` q0

π
−→ qn such P ` qi for all

0 ≤ i < n. We can infer P ` qn as required.
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We now come back to the main proof. Suppose π ∈ L(Pl(J (P))). There are
three kinds of transitions by which π can be recognized.

a) We first consider transitions using the reflexivity rule to recognize π.
These contain a transition sequence of the following form for some prefix
π′ ≤ π:

Pl(J (P)) ` (l(q0 ), r(q0 ))
π′

−→ (r(qn ), r(qn))

Either π′ = π or this sequence can be continued to recognize π in the state
all . The first continuation step is by the reflexivity rule itself and all
subsequent steps are due to the all rule.

Note that n ≥ 1. We first consider the descendants on the left hand side,
which starts from state l(r0) and continues over l(ln−1) to r(qm). The
last step must be induced by a constraint in ϕP that is contributed by
the P-edges rule. This and the preceding claim yield the existence of the
following transitions for some state q 6= qn:

P ` q0
π′

−→ q qn

We next consider the descendants on the right hand side. They must be
induced by constraints in ϕP that are inherited form the following transition
sequence:

P ` q0
π′

−→ qn

Now we can apply that P is shuffled which shows that the language {π ′′ |
π′π′′ ∈ L(P)} is universal (since q 6= qn)). Thus, π ∈ L(P) as required.

b) Second, we consider transitions using the top rule. These contain a part
of the following form for some prefix π ′ ≤ π and such that r(qn)=> in ϕP .

Pl(J (P)) ` (l(q0 ), r(q0 ))
π′

−→ (sn , r(qn ))

Again, either π′ = π or this sequence can be continued to recognize π in
the state all . The first continuation step is by the top rule itself and all
subsequent steps are due to the all rule.

The above transitions of Pl(J (P)) are induced by the following transition
sequence in P where qn−1 is not final:

P ` q0
π′

−→ qn

The gap universal property which holds for P by assumption yields that

{π′′ | P ` qn
π′′

−→ qn} is universal. Thus, π ∈ L(P).
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9 Back Translation for Restricted Cap Automata

c) Third, we consider the last case where the class of π is A in Pl(J (P)). The
recognizing transition has to apply the rule for final states:

Pl(J (P)) ` (l(q0 ), r(q0 ))
π
−→ (l(qn ), sn ))

i
−→ (θ(q), p(π))

All transitions except the last one must be contributed by the left rule.
The P-edges can only apply at the end. In this case however, we can
freely exchange the last transition by another using the left rule as well.
Given this, we can apply our initial claim which yields:

P ` q0
π
−→ qn

Thus, we have shown that π ∈ L(P) for this case too.

d) Finally, we have to consider transitions that recognize π through P-edges
of Pl(J (P)). Here we have transitions where π is a prefix of π1π

k
2 for some

k ≥ 0: Pl(J (P)) `

(l(q0), r(q0))
π1−→ (l(qi), r(qi))

π2−→ (r(qn), sn) (l(qi), r(qi))

The P-edges rule in the construction of Pl requires qn = qi. The automa-
ton P thus has the following transitions for some state q:

P ` q0
π1−→ qi

π2−→ q qi

This transition and the strictly cap property allows P to recognize all pre-
fixes of π1π

k
2 for all k ≥ 0, i.e. π ∈ L(P).

For illustration, we reconstruct an entailment judgment for Pl(x≤f(y) |=? x≤y) given
in Table 9.1. Before we start we rename the states of Pl(x≤f(y) |=? x≤y) to p and q.

We translate the edge p
1
−→ q to the constraint l(p)≤f(l(q)) ∧ f(r(q))≤r(p) (rule left

and right of Table 9.1). The rule P-edges maps the P-edge q p to the constraint
l(p)≤f(r(p)). If we now construct the left automaton of the computed constraint, we
get the original automaton back.

Lemma 9.2
Let P be a restricted cap automaton with initial state P ` q. The constructed
constraint ϕP is satisfiable over finite and infinite trees.

THEOREM 9.1 (Back translation)
Universality of restricted cap automata over the alphabet {1, . . . , arity(f)} can be
reduced in polynomial time to NSSE with signature {⊥, f,>} (respectively over finite,
regular, or possibly infinite trees).
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proof. Let P be complete and restricted cap automaton. Universality of L(P) is
equivalent to universality of both languages: L(Pl(J (P))) and L(Pr(J (P))) (Propo-
sition 9.1). Since ϕP is clash-free (Lemma 9.2), the latter is equivalent to that NSSE
holds for the judgment J (P) (Theorem 7.1).

proof(Proof of Proposition 9.1).

1. The language L(Pr(J (P))) is universal: Since P is complete such that the right
rule implies for all words π ∈ A∗ that there exists a state P ` q satisfying
ϕP |= π(r(q))≤r(q0). Thus, Pr(J (P)) ` (l(q0 ), r(q0 ))

π
−→ ( , l(q)) by the

second case of the descend rule, i.e. π is accepted by Pr(J (P)).

2. We omit the proof for L(P) ⊆ L(Pl(J (P))) which only requires the completeness
of P and the strictly cap property.

3. The remaining inclusion L(Pl(J (P))) ⊆ L(P) is most interesting. Note that
according to Lemma 9.1 we have not to consider any support J (P) ` u≤v in
the construction of the appendant cap automata Pl(J (P)). We start with an
auxiliary claim: If P provides transitions

Pl(J (P) ` (l(q0 ), s0 )
π
−→ (l(qn ), sn )

i
−→ (l(q), s)

then there exist transitions P ` q0
π
−→ qn. This claim can be proved as follows:

All transitions must be licensed by a constraint in ϕP which is of the form
l(qi)≤f(. . . , l(qi+1), . . .) where 1 ≤ i ≤ n. Such constraints can only be created
by the left rule. There thus exist transitions P ` q0

π
−→ qn such P ` qi for all

0 ≤ i < n. We can infer P ` qn as required.

We now come back to the main proof. Suppose π ∈ L(Pl(J (P))). There are
three kinds of transitions by which π can be recognized.

a) We first consider transitions using the reflexivity rule to recognize π.
These contain a transition sequence of the following form for some prefix
π′ ≤ π:

Pl(J (P)) ` (l(q0 ), r(q0 ))
π′

−→ (r(qn ), r(qn))

Either π′ = π or this sequence can be continued to recognize π in the state
all . The first continuation step is by the reflexivity rule itself and all
subsequent steps are due to the all rule.

Note that n ≥ 1. We first consider the descendants on the left hand side,
which starts from state l(r0) and continues over l(ln−1) to r(qm). The
last step must be induced by a constraint in ϕP that is contributed by
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9 Back Translation for Restricted Cap Automata

the P-edges rule. This and the preceding claim yield the existence of the
following transitions for some state q 6= qn:

P ` q0
π′

−→ q qn

We next consider the descendants on the right hand side. They must be
induced by constraints in ϕP that are inherited form the following transition
sequence:

P ` q0
π′

−→ qn

Now we can apply that P is shuffled which shows that the language {π ′′ |
π′π′′ ∈ L(P)} is universal (since q 6= qn)). Thus, π ∈ L(P) as required.

b) Second, we consider transitions using the top rule. These contain a part
of the following form for some prefix π ′ ≤ π and such that r(qn)=> in ϕP .

Pl(J (P)) ` (l(q0 ), r(q0 ))
π′

−→ (sn , r(qn ))

Again, either π′ = π or this sequence can be continued to recognize π in
the state all . The first continuation step is by the top rule itself and all
subsequent steps are due to the all rule.

The above transitions of Pl(J (P)) are induced by the following transition
sequence in P where qn−1 is not final:

P ` q0
π′

−→ qn

The gap universal property which holds for P by assumption yields that

{π′′ | P ` qn
π′′

−→ qn} is universal. Thus, π ∈ L(P).

c) Third, we consider the last case where the class of π is A in Pl(J (P)). The
recognizing transition has to apply the rule for final states:

Pl(J (P)) ` (l(q0 ), r(q0 ))
π
−→ (l(qn ), sn ))

i
−→ (θ(q), p(π))

All transitions except the last one must be contributed by the left rule.
The P-edges can only apply at the end. In this case however, we can
freely exchange the last transition by another using the left rule as well.
Given this, we can apply our initial claim which yields:

P ` q0
π
−→ qn

Thus, we have shown that π ∈ L(P) for this case too.
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d) Finally, we have to consider transitions that recognize π through P-edges
of Pl(J (P)). Here we have transitions where π is a prefix of π1π

k
2 for some

k ≥ 0: Pl(J (P)) `

(l(q0), r(q0))
π1−→ (l(qi), r(qi))

π2−→ (r(qn), sn) (l(qi), r(qi))

The P-edges rule in the construction of Pl requires qn = qi. The automa-
ton P thus has the following transitions for some state q:

P ` q0
π1−→ qi

π2−→ q qi

This transition and the strictly cap property allows P to recognize all pre-
fixes of π1π

k
2 for all k ≥ 0, i.e. π ∈ L(P).
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9 Back Translation for Restricted Cap Automata
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10 Equivalence of Variants

10.1 Arity equivalence

We prove Corollary 5.1 which states that all variants of NSSE over the signature
{⊥, f,>} are equivalent if the arity of f is at least 2. Given the characterization of
NSSE in Theorem 5.1 it remains to prove a corresponding result for restricted cap
automata:

Proposition 10.1
The universality problems of restricted cap automata over the alphabet {1, . . . , n} are
equivalent for all n ≥ 2 modulo polynomial time transformations.

proof. We first show how to extend to alphabet. Consider a restricted cap au-
tomaton P and an alphabet A = {1, . . . , n−1}. We construct another restricted cap
automaton P ′ with an alphabet A′ = {1, . . . , n} in linear time. The cap automaton
P ′ is identical to P up to the additions

P ′ ` q0
n
−→ q2

1,...,n
−−−→ q2 P ′ ` q0

1,...,n
−−−→ q1

1,...,n
−−−→ q1

n
−→ q2

1,...,n
−−−→ q2

where q0 is the initial state of P and P ′ and q1, q2 are two fresh states. This construc-
tion composes:

L(P ′) = { πσ | π ∈ L(P), and σ ∈ n(1, . . . , n)∗ }.

We now consider alphabet restriction. Let P be a restricted cap automaton with
alphabet A = {1, . . . , n2} where n2 ≥ 3. We can assume w.l.o.g that A is of that
form. Otherwise we can increase A by the previous construction until this form is
reached.

We next construct a restricted cap automaton P ′ with alphabet A′ = {1, . . . , n} in
polynomial time such that L(P) is universal if and only if L(P ′) is universal. We
encode a letter of A in two letters of A′ to the base n via the standard encoding
d : A→ A′ ×A′:

d(i) = ( d1(i) , d2(i) ) =

(⌊

i

n

⌋

, imodn

)

.
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10 Equivalence of Variants

The cap automaton P ′ has two states q and q′ for every state q of P. The states q
and q′ are final in P ′ if q is final in P, i.e.

P ′ ` q1 and P ′ ` q′1 if P ` q1.

The cap automaton P and P ′ share the same initial state and the same P-edges. We
define the transitions of P ′ by

P ′ ` q1
d1(i)
−−−→ q′1

d2(i)
−−−→ q2 if P ` q1

i
−→ q2.

We can show by induction that the word i1 . . . im is in L(P) if and only if the
words d1(1) d2(1) . . . d1(m − 1) d2(m − 1) d1(m) and d1(1) d2(1) . . . d1(m) d2(m) are
in L(P ′).
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11 A Decidable Fragment of NSSE

We prove a subclass of non-structural subtype entailment (NSSE) to be decidable
by reducing it to satisfiability of word equations with regular constraints. The
latter has been shown to be decidable [Sch91] and even PSPACE-complete [Pla99].
The embedding is based on our entailment characterization by cap set expressions.
This new technique is unrelated to the methods used in [NP99] where we have
proved another fragment of entailment to be decidable.

We have proved NSSE to be equivalent to the universality of restricted cap set expres-
sions (Theorem 5.1). In this chapter we solve universality for cap set expressions

⋃

i

RiS
◦
i

build over regular expressions Ri, Si which are restricted to a new property that we
shall now call straight. This new fragment is rather unrelated to restricted cap set
expressions given in Section 8.

A regular expression R is called straight if

straight: there are no words π, µ with µ6=ε and πµ∗ ⊆ L(R).

Straight regular expressions are exactly those which hold a representation of a deter-
ministic finite automaton where all finite nodes are cycle free, what means there is no
transition sequence from one final node to itself. For example 1∗2 is straight and 1∗

is not.

THEOREM 11.1
Universality of cap set expressions over straight regular expressions is decidable.

For its proof we reduce the stated problem to satisfiability of word equations with
regular constraints.

We define word equations as an expression of the form π1=π2, where πi are non-empty
words in a mixed alphabet of constants in a finite signature Σ and an enumerable
set of variables. We denote constants by natural numbers 1, 2, . . . and variables by
x, y, z, u, v, w. A solution h of a word equation π1=π2 is an assignment of values in
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11 A Decidable Fragment of NSSE

conjunction x=y ∧ u=v ↔ x1ux2u=y1vy2v for 1, 2 ∈ Σ

disjunction x=y ∨ u=v ↔ (x≤y ∨ u ≤ v) ∧ (x≤y ∨ v≤u)∧
(y≤x ∨ u ≤ v) ∧ (y≤x ∨ v≤u)

prefix of x≤y ↔ ∃z. xz=y

prefix disjunction x≤y ∨ u≤v ↔ ∃z, x′, y′x=zx′ ∧ y=zy′∧
∃w, u′, v′u=wu′ ∧ v=wv′ ∧ (x′=ε ∨ u′=ε)

epsilon disjunction x=ε ∨ y=ε ↔ xy=yx ∧ ∃u, u′, v, v′. uu′=1 ∧ vv′=2
∧xuyu′=yu′xu ∧ xvyv′=yv′xv for 1, 2 ∈ Σ

negation x6=y ↔ x<y ∨ y<x ∨ x6<>y

proper prefix of x<y ↔
∨

i∈Σ ∃xi≤y

incomparable x6<>y ↔
∨

i,j∈Σ:i6=j ∃z. zi≤x ∧ zj≤y

Table 11.1: Word equations are closed under Boolean compositions.

Σ∗ to variables such that π1 and π2 become syntactically identical if all its variables
are replaced by the corresponding values. Variable assignments can be restricted to
hold only values given in supplementary regular constraints.

We say that a relation R ⊆ (Σ∗)n is expressible by a word equation π1=π2 over
variables x1, . . . xn+m if

R = { (h(x1), . . . , h(xn) ) | h is a solution of ∃xn+1, . . . , xn+m : π1=π2 }.

For instance the prefix relation x ∈ pr(y) could be expressed by a word equation xz=y
where z is existential quantified. Alternatively we denote this word equation by x≤y
where we have not to explicitly name a fresh variable z. For an overview which other
relations are expressible by word equations and which are not we refer to [KMP00].

It is well known that word equations are closed under Boolean compositions [BS86].
Table 11.1 recapitulates all encodings: disjunction of word equation is reduced to
elementary disjunctions over tests x6=ε which could be further reduced to conjunctions
of word equations [Ang79]; negation is reduced to the incomparable relation x6<>y
which says that x6≤y and y 6≤x.

Universality does not hold if and only if there exists a path π which does not belong
to the cap set language:

∃π.
∧

i

π 6∈ RiS
◦
i .

Since word equations are closed under conjunctions (Table 11.1) it remains to express
subformulas π 6∈ RS◦ by word equations with regular constraints. Note that π 6∈ RS◦
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empty set pr(∅) =df ∅

epsilon pr(ε) =df ε

letter pr(a) =df a ∪ ε where a ∈ A

union pr(R1 ∪R2) =df pr(R1) ∪ pr (R2)

concatenation pr(R1R2) =df (R1pr(R2)) ∪ pr(R1)

Kleene star pr(R∗) =df R∗pr(R)

Table 11.2: Regular expressions are closed under prefix closure.

holds if and only if for all µ ∈ R, ν ∈ S it holds that π 6∈ µν◦. These two all-quantifiers
inhibit a translation for full cap set expressions. We work around by the following
property:

Lemma 11.1 (Uniqueness of decomposing straight regular sets)
Let π1, µ1 be words of a straight regular set R1 and let π2, µ2 be words of an arbitrary
regular set R2. Then, π1π2 = µ1µ2 implies π1 = µ1 and π2 = µ2.

proof. We consider two deterministic finite automata representations ARi
for Ri,

respectively. Since R1 is straight we assume that all final nodes in AR1 are cycle free.
We can build a finite automaton AR1AR2 accepting the language R1R2 which is still
deterministic. Hereunto we merge all final nodes of AR1 and the one start node of
AR2 to one new node inheriting all their edges. Since AR1AR2 is deterministic there
is only one unique way to accept a word π1π2 where πi ∈ ARi

.

This essential property of straight regular expressions allows us to express π 6∈ RS ◦

by existential quantified word equations with regular constraints.

Lemma 11.2
Let R,S be straight regular expressions , then π 6∈ RS◦ if and only if

π 6∈ R pr(S) and ( pr (π)∩RS = ∅ or ∃π1∈R, π2∈S, π3 6∈π
◦
2 : π = π1π2π3 ).

proof. Since R pr (S) ⊆ RS◦ we are able to split our test π 6∈ RS◦ into three parts:
(1) π 6∈ R pr (S) and ((2) pr (π)∩RS 6= ∅ implies (3) π 6∈RS◦). We have already seen
that (3) is equivalent to the assertion that for all π1∈R, π2∈S: π 6∈ π1π

◦
2. Under the

assumption of (2), we rewrite (3) as

for all and at least one π1∈R, π2∈S, π3 : π = π1π2π3 ∧ π3 6∈π
◦
2 .
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11 A Decidable Fragment of NSSE

to be in cap x∈y◦ for y 6=ε ↔ x≤yx

not to be in cap x6∈y◦ for y 6=ε ↔ ∃x′. x′∈y◦ ∧ x6<>x′

Table 11.3: Word equations express positive and negative cap set membership.

Since R and S are both straight we can apply Lemma 11.1 which says that the
segmentations of π in π = π1π2π3 is unique and ”for all and at least one” quantifiers
can be safely reduced to existential quantifiers.

It remains to show that the characterization of π 6∈ RS◦ given in the previous Lemma
11.2 can be translated to word equations. For this we assume ε 6∈ S, otherwise we
decompose the problem into two parts

π 6∈ R ∧ π 6∈ R(S − {ε})◦

and express π 6∈ R by a regular constraint π ∈ R̄ where R̄ is the complement regular
expression of R. The computation of R̄ requires exponential space which yields an EX-
PSPACE algorithm assuming satisfiability of word equations with regular constraints
is in PSPACE [Pla99].

A test of the form π 6∈ R pr (S) can be translated just as well since the prefix closure
pr(S) of a regular expression can be expressed by a further regular expression (Table
11.2). We express the condition pr (π)∩RS = ∅ by a regular constraint π 6∈ RSS ′

where S′ is the regular expression containing all words over Σ. Finally we express
π3 6∈(π2)

◦ by a positive test π3∈(π2)
◦ (see Table 11.3) which is equivalent to π3≤π2π3

(Lemma 5.1 in Characterization Chapter 5).
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12 Conclusion and Future Work

We have given a complete characterization of the complexity of subtype satisfiability
over posets through a new connection of subtype satisfiability with modal logics, which
contain well understood satisfiability problems. Our technique yields a uniform and
systematic treatment of different choices of subtype orderings: finite versus recursive
types, structural versus non-structural subtyping, and considerations of symbols with
co- and contra-variant arguments.

The complexity of modal logic satisfiability is a well known issue [Spa93]. According
to this connection it applies to our origin subtype problem.

Our technique however, does not extend beyond satisfiability to other first-order frag-
ments that require negations, such as subtype entailment, whose decidability is a
longstanding open problem over non-structural signatures. Negations can certainly
be modeled by our modal logic, but only over uniform signatures. In fact, there must
not exist any reductions from standard signatures to uniform ones that preserve sub-
type entailment, for example. Otherwise, such a reduction would have implied that
the first-order theory of non-structural subtyping, which is undecidable [SAN+02],
was a fragment of S2S, which is decidable [Rab69].

We have characterized non-structural subtype entailment (NSSE) equivalently by us-
ing regular expressions and word equations. This explains why NSSE is so difficult
to solve and links NSSE to the area of string unification where powerful proof meth-
ods are available. Given that NSSE is equivalent to universality of restricted cap set
expressions, one cannot expect to solve NSSE without treating word equations.

We have also shown that of all the variants of NSSE with a single function symbol of
arity, at least two are equivalent modulo polynomial time transformations. One might
also wish to extend the presented characterization to richer signatures. For instance,
it should be possible to treat NSSE with a contra-variant function symbol. Yet the
problem of how to deal with more than one non-constant function symbol is much
less obvious.

Another open question is whether there exists a direct relation between cap automata
and tuple tree automata with equality tests, which are used in the alternative approach
to subtype entailment in [SAN+02].
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12 Conclusion and Future Work

Finally, we have applied our NSSE characterization and proved a fragment to be
decidable by reducing it to satisfiability of word equations with regular constraints. It
is left open to future work whether this embedding can be extended to full NSSE.
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[RV98] Didier Rémy and Jérôme Vouillon. Objective ML: an effective object-
oriented extension to ML. Theory and Practice of Object Systems, 4(1):27–
50, 1998.

[SAN+] Zhendong Su, Alexander Aiken, Joachim Niehren, Tim Priesnitz, and Ralf
Treinen. First-order theory of subtyping constraints. ACM Transactions
on Programming Languages and Systems. To appear.

[SAN+02] Zhendong Su, Alexander Aiken, Joachim Niehren, Tim Priesnitz, and Ralf
Treinen. First-order theory of subtyping constraints. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
203–216. ACM Press, 2002.

[Sch91] Klaus U. Schulz. Makanin’s algorithm for word equations – two improve-
ments and a generalization. In International Workshop on Word Equa-
tions and Related Topics, Lecture Notes in Computer Science 572, pages
85–150. Springer-Verlag, 1991.

[sE] Open source Erlang. The Erlang programming language. Freely available
at www.erlang.org.

[Sei94] Helmut Seidl. Haskell overloading is DEXPTIME-complete. Information
Processing Letters, 52(2):57–60, 1994.

[sf] Python software foundation. The Python programming language. Freely
available at www.python.org.

123

www.erlang.org
www.python.org


13 Bibliography

[SHC95] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. Mercury: an
efficient purely declarative logic programming language. In Australian
Computer Science Conference, pages 499–512. Australian Computer Sci-
ence Communications: Glenelg, South Australia, 1995.

[Spa93] Edith Spaan. Complexity of modal logics. PhD thesis, ILLC, University
of Amsterdam, 1993.

[Su02] Zhendong Su. Algorithms for and the complexity of constraint entailment.
PhD thesis, University of California at Berkeley, 2002.

[Tha94] Satish Thatte. Type inference with partial types. Theoretical Computer
Science, 124:127–148, 1994.

[Tiu92] Jerzy Tiuryn. Subtype inequalities. In IEEE Symposium on Logic in
Computer Science, pages 308–315. IEEE Computer Society Press, 1992.

[Tiu97] Jerzy Tiuryn. Subtyping over a lattice. In Computational Logic and
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