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Abstract

In order to be believable, virtual human characters must be able to communicate in a human-like
fashion realistically. This dissertation contributes to improving and automating several aspects
of virtual conversations. We have proposed techniques to add non-verbal speech-related facial
expressions to audiovisual speech, such as head nods for of emphasis. During conversation,
humans experience shades of emotions much more frequently than the strong Ekmanian basic
emotions. This prompted us to develop a method that interpolates between facial expressions of
emotions to create new ones based on an emotion model. In the area of facial modeling, we have
presented a system to generate plausible 3D face models from vague mental images. It makes
use of a morphable model of faces and exploits correlations among facial features. The hands
also play a major role in human communication. Since the basis for every realistic animation of
gestures must be a convincing model of the hand, we devised a physics-based anatomical hand
model, where a hybrid muscle model drives the animations. The model was used to visualize
complex hand movement captured using multi-exposure photography.

The spoken word is only one modality that humans use in their interactions. It is complemented
by voice quality, facial expressions, hand gestures, posture, touch, and several others. Most of
the time, we use these channels without even noticing, and become aware of them only in case
of inconsistencies. In fact, non-verbal cues play an astonishingly important role in human con-
versation. If verbal and non-verbal channels transmit conflicting information, adults, in contrast
to children, rely more on the non-verbal than on the verbal part of the message. About 60% to
65% of the meaning in a social context (e.g. attitude, dominance / submissiveness) is conveyed
non-verbally [BBWS89]. In settings where imparting facts is the main purpose, more reliance is
placed on words. Since people’s decoding abilities disagree for the different modalities of com-
munication, some people place more weight on the verbal statement, some on certain non-verbal
channels, and some shift reliance between channels according to context.

The above considerations suggest that arbitrarily garnishing animations of speech with head and
eye movement etc. is likely to cause bewilderment in users. To come across as convincing and
believable, virtual characters must imitate human conversational signals as exactly as possible.
Although the problem has been tackled from all sides by computer science, there is still a long
way to go. Due to the size of the area, we restricted ourselves to faces and hands.

We were fortunate to have access to an existing facial animation system based both on physics
and anatomy, which is capable of realistic real-time animations. On this platform, we imple-
mented different aspects of speech-related non-verbal communication in the face.

The first type of movement is mostly concerned with utterance and dialog organization. It un-
derlines the structure of the utterance, highlights important segments, and helps to coordinate
turn taking during conversation. A lot of this information is also present in the speech signal,
from where it can be extracted and translated into appropriate facial expressions. Unlike in this
top-down approach, text-to-speech systems generate similar information during their bottom-up
linguistic analysis. We implemented modules for both scenarios.

Most facial animation systems are capable of displaying Ekman’s six universal emotions joy,
fear, anger, sadness, surprise and disgust. In ordinary human interaction, however, the majority
of feelings are more differentiated and less intense. Based on an emotion model that combines
dimensional representation and categorization, our algorithm predicts expressions of intermedi-
ate emotions of arbitrary intensity. The large number of possible shades of emotion suggests to
derive new facial expressions of emotions from known ones. This work extends relevant research



by Tsapatsoulis et al. [TRK'T02]. By integrating the facial animation system and an emo-
tional text-to-speech system based on the same emotion model, we obtained a text-to-audiovisual
speech system capable of transmitting feeling in the verbal, vocal, and facial channels.
Statistical approaches to face modeling achieve photorealism by learning geometrical and texture
properties from examples. We built a facial modeling tool based on a morphable model of
3D faces. The model captures dependencies between facial features, enabling the system to
automatically compute the most plausible completion for an underspecified face model. This
makes it a useful tool to mold coherent 3D face models from vague mental images, as present,
for example, in a designer’s mind, or as described by an eyewitness to the police.

Models that reflect human anatomy and that are animated following physical laws facilitate
the creation of plausible animations by restricting movements to their natural range and by
exhibiting realistic deformations such as muscle bulges. Hands, through gestures, also play
a major role in communication, making people sensitive to their movements. However, an
animatable human hand model fit to hold a candle to the facial animation system did not
exist. Deciding to fill the gap, we developed a physics-based hand model which reproduces
human anatomy. Because the hand is even more complex than the face and we still aimed at
interactivity, we introduced a hybrid muscle model. Pseudo muscles animate the movement
of the bones by simulating the involved mechanics, and geometric muscles model muscle
deformations. This hand model was used successfully in another project, where we used it to
visualize a baseball pitcher’s hand movement during ball release. Pose data for key frames
was obtained using stroboscope photography. In the same way, we also captured decisive ball
parameters. Visualizations of hand pose and ball flight together show cause and effect with
respect to the ball trajectory and provide a valuable tool for analyzing an athlete’s performance.

To sum up, the key contributions of this thesis are:

— techniques for animating non-verbal speech-related facial expressions. Depending on the
input type, different methods are employed: for text input, intermediate processing re-
sults of an integrated text-to-speech system allow to deduce position and type of speech
accompanying facial movement, while in the case of an input speech signal, the relevant
information is extracted from the audio directly.

— an algorithm to generate facial expressions for a continuum of mixed emotions of arbitrary
intensity. The method creates facial movement for mixed emotions using intensity scaling
and interpolation between known facial expressions of the most similar emotions. Since
both this algorithm and the coupled emotional text-to-speech system are based on the same
emotion model, the system allows to generate consistent emotional audiovisual speech.

— asystem to create coherent three-dimensional models of faces from vague recollections or
incomplete descriptions as those given by an eyewitness to the police. The method builds
on a morphable model of three-dimensional faces. Taking into account correlations among
facial features, unspecified parts of the face are completed automatically to yield the most
plausible face model given the user input.

— a physically based hand model designed after human anatomy. The hybrid muscle model
consists of pseudo muscles and geometric muscles. Pseudo muscles animate the model
by moving the bones according to mechanical laws, while geometric muscles deform the
skin surface via a mass-spring system.

— a high-speed tracking system based on multi-exposure photography with which we cap-
tured the hand of a baseball pitcher during ball release as well as the trajectory and initial
conditions of the flying ball.



Zusammenfassung

Um iiberzeugend zu wirken, miissen virtuelle Figuren auf dieselbe Art wie lebende Menschen
kommunizieren konnen. Diese Dissertation hat das Ziel, verschiedene Aspekte virtueller Unter-
haltungen zu verbessern und zu automatisieren. Wir fiihrten eine Technik ein, die es erlaubt,
audiovisuelle Sprache durch nichtverbale sprachbezogene Gesichtsausdriicke zu bereichern,
wie z.B. Kopfnicken zur Betonung. Wdihrend einer Unterhaltung empfinden Menschen weitaus
ofter Emotionsnuancen als die ausgeprigten Ekman’schen Basisemotionen. Dies bewog
uns, eine Methode zu entwickeln, die Gesichtsausdriicke fiir neue Emotionen erzeugt, indem
sie, ausgehend von einem Emotionsmodell, zwischen bereits bekannten Gesichtsausdriicken
interpoliert. Auf dem Gebiet der Gesichtsmodellierung stellten wir ein System vor, um plausible
3D-Gesichtsmodelle aus vagen geistigen Bildern zu erzeugen. Dieses System basiert auf einem
Morphable Model von Gesichtern und nutzt Korrelationen zwischen Gesichtsziigen aus. Auch
die Hiinde spielen ein grofie Rolle in der menschlichen Kommunikation. Da der Ausgangspunkt
fiir jede realistische Animation von Gestik ein iiberzeugendes Handmodell sein mufs, entwik-
kelten wir ein physikbasiertes anatomisches Handmodell, bei dem ein hybrides Muskelmodell
die Animationen antreibt. Das Modell wurde verwendet, um komplexe Handbewegungen zu
visualisieren, die aus mehrfach belichteten Photographien extrahiert worden waren.

Das gesprochene Wort ist nur eine der Modalititen, die Menschen wihrend einer Unterhaltung
nutzen. Es wird durch Stimmqualitit, Gesichtsausdruck, Gestik, Korperhaltung, Beriihrung
u.v.m. ergdnzt. Meistens benutzen wir diese Kanile, ohne es zu bemerken, und werden
uns ihrer nur im Falle von Unstimmigkeiten bewufit. Tatsdchlich spielt Korpersprache eine
erstaunlich groBe Rolle in der zwischenmenschlichen Kommunikation. Wenn verbale und
nichtverbale Kanile widerspriichliche Informationen {ibermitteln, verlassen sich Erwachsene
— anders als Kinder — eher auf den nichtverbalen als auf den verbalen Teil der Nachricht.
Etwa 60% bis 65% der Bedeutung in einem sozialen Kontext (z.B. innere Einstellung, Domi-
nanz/ Unterordnung) werden durch die Korpersprache ausgedriickt [BBW8&9]. In Situationen,
in denen es hauptsichlich um die Ubermittlung von Fakten geht, wird den Worten groBere Be-
deutung beigemessen. Da sich die Dekodierungsfihigkeiten einzelner Personen fiir die ver-
schiedenen Kommunikationskanéle unterscheiden, gewichten manche Leute die verbale Aus-
sage stirker, andere die nichtverbale, und wieder andere verteilen ihr Vertrauen je nach Kontext
auf die verschiedenen Kanile.

Die obigen Uberlegungen legen nahe, daB die Benutzer vermutlich mit Befremden reagieren
wiirden, wenn man Sprachanimationen mit beliebigen Kopf- oder Augenbewegungen etc. unter-
legte. Um iiberzeugend und glaubwiirdig zu erscheinen, miissen virtuelle Figuren menschliche
Kommunikationssignale so genau wie moglich imitieren.

Obwohl das Problem in vielen Bereichen der Informatik untersucht wird, liegt eine umfassende
Losung noch in weiter Ferne. Da dieses Gebiet sehr umfangreich ist, beschrinkten wir uns auf
Gesichter und Hinde.

Vorteilhafterweise konnten wir auf ein existierendes Gesichtsanimationssystem zuriickgreifen,
das sowohl physik- als auch auf anatomiebasiert ist und realistische Animationen in Echtzeit
erzeugt. Auf diesem Fundament implementierten wir verschieden Aspekte von sprachbezogener
nichtverbaler Kommunikation im Gesicht.

Die erste Art von Bewegung dient hauptsiichlich der Organisation von AuBerungen und Dialo-
gen. Sie unterstreicht die Struktur einer AuBerung, hebt wichtige Teile hervor und hilft bei der



wechselseitigen Dialogkoordination. Einen GrofBteil dieser Informationen kann man auch aus
dem Sprachsignal ableiten und in entsprechende Gesichtsausdriicke iibersetzen. Anders als in
diesem Ansatz, wo man von real Gegebenem ausgeht, generieren spracherzeugende Systeme
dhnliche Informationen wihrend der linguistischen Analyse des Eingabetextes. Wir implemen-
tierten Module fiir beide Szenarien.

Die meisten Gesichtsanimationssysteme konnen Ekmans sechs allgemeingiiltige Emotionen
Freude, Angst, Wut, Traurigkeit, Uberraschung und Ekel darstellen. In menschlichen Un-
terhaltungen ist die Mehrheit der Gefiihle gewohnlich aber differenzierter und weniger stark
ausgeprigt. Ausgehend von einem Emotionsmodell, das dimensionale Darstellung und Kate-
gorisierung verbindet, sagt unser Algorithmus Gesichtsausdriicke von emotionalen Zwischen-
zustdnden beliebiger Intensitét voraus. Die grole Anzahl der moglichen Emotionsschattierun-
gen legt es nahe, neue emotionale Gesichtsausdriicke aus bereits bekannten abzuleiten. Diese
Arbeit entwickelte einen entsprechenden Ansatz von Tsapatsoulis et al. [TRKT02] weiter. Die
Integration des Gesichtsanimationssystems und eines Systems, das emotionale Sprache ausge-
hend von demselben Emotionsmodell erzeugt, versetzte uns in die Lage, ein Gefiihl mit Worten,
Stimme und Gesicht auszudriicken.

Statistische Gesichtsmodellierungsansétze erreichen Photorealismus, indem sie Geometrie- und
Textureigenschaften aus Beispielen lernen. Wir bauten ein Programm zur Gesichtsmodel-
lierung auf, das auf einem Morphable Model von 3D-Gesichtern basiert. Das Modell er-
falt Abhédngigkeiten zwischen Gesichtsziigen, sodall das System automatisch die plausibelste
Ergiinzung eines unterbestimmten Gesichts berechnen kann. Dies macht es zu einem niitzlichen
Werkzeug, um stimmige 3D-Gesichtsmodelle aus vagen geistigen Bildern herauszuarbeiten, wie
sie z.B. einem Designer vorschweben oder der Polizei von Augenzeugen beschrieben werden.
Modelle, die die menschliche Anatomie widerspiegeln und physikalischen Gesetzen folgend
animiert werden, erleichtern es, plausible Animationen zu erzeugen, indem sie Bewe-
gungen auf ihren natiirlichen Bereich einschrianken und realistische Verformungen, wie
z.B. Muskelschwellungen, aufweisen. Da in der gestischen Kommunikation auch die Hénde
eine grofe Rolle spielen, beobachten Menschen Handbewegungen sehr genau. Ein animierbares
menschliches Handmodell, das dem Gesichtsanimationssystem das Wasser reichen konnte, gab
es nicht. Um diese Liicke zu schlieen, entwickelten wir ein physikbasiertes Handmodell, das
die menschliche Anatomie wiedergibt. Da die Hand sogar noch komplexer als das Gesicht ist,
wir aber Interaktivitét anstrebten, fiihrten wir ein hybrides Muskelmodell ein. Pseudomuskeln
animieren die Bewegung der Knochen, indem sie die relevante Mechanik simulieren, und
geometrische Muskeln modellieren Muskelverformungen. Dieses Handmodell wurde erfolg-
reich in einem weiteren Projekt dazu eingesetzt, die Handbewegungen eines Baseballwerfers
im Moment des Abwurfs zu visualisieren. Die Handhaltung an den Keyframes wurde durch
Stroboskopphotographie ermittelt. Auf diese Art maBen wir auch wichtige Ballparameter.
Visualisierungen von Handbewegung und Ballflug zusammen zeigen Ursache und Wirkung in
Bezug auf die Flugbahn des Balls und bieten ein wertvolles Werkzeug, um sportliche Leistung
Zu messen.

Zusammenfassend sind die wichtigsten Beitrige dieser Arbeit:

— Ein Verfahren zur Animation von nichtverbalen sprachbezogenen Gesichtsausdriicken.
Abhingig von der Art der Eingabe werden verschiedene Methoden eingesetzt: Fiir Text-
eingaben erlauben Zwischenergebnisse eines eingebundenen spracherzeugenden Systems,
Position und Art der sprachbegleitenden Gesichtsbewegungen abzuleiten, wihrend im Fall
eines Eingabesprachsignals die relevanten Informationen aus dem Ton gewonnen werden.



Ein Algorithmus, um Gesichtsausdriicke fiir ein Kontinuum von gemischten Emotionen
von beliebiger Intensitdt abzuleiten. Die Methode erzeugt Gesichtsbewegungen fiir ge-
mischte Emotionen durch Skalierung der Intensitit und Interpolation zwischen bekannten
Gesichtsausdriicken der dhnlichsten Emotionen. Da sowohl dieser Algorithmus als auch
das angeschlossene spracherzeugende System auf demselben Emotionsmodell beruhen,
erlaubt das System, konsistente emotionale audiovisuelle Sprache zu erzeugen.

Ein System, um stimmige 3D-Modelle von Gesichtern aus vagen Erinnerungen und un-
vollstindigen Beschreibungen zu erzeugen, wie sie die Polizei von Augenzeugen erhilt.
Dieses Verfahren baut auf einem Morphable Model von dreidimensionalen Gesichtern
auf. Indem Korrelationen zwischen Gesichtsziigen beriicksichtigt werden, werden un-
spezifizierte Teile des Gesichts automatisch ausgefiillt, um das plausibelste Gesicht fiir
die Benutzereingabe zu erhalten.

Ein auf Physik basierendes Handmodell, das der menschlichen Anatomie nachempfunden
ist. Das hybride Muskelmodell besteht aus Pseudomuskeln und geometrischen Muskeln.
Pseudomuskeln animieren das Modell, indem sie die Knochen nach mechanischen Gesetz-
en bewegen, wihrend geometrische Muskeln die Hautoberfliche mit Hilfe eines Masse-
Feder-Netzwerkes verformen.

Ein Hochgeschwindigkeitssystem zur Bewegungserfassung, das auf Mehrfachbelichtung
von Photographien aufbaut. Mit diesem Werkzeug fingen wir sowohl die Handbewegung-
en eines Baseballwerfers zum Zeitpunkt des Abwurfs ein, als auch die Wurfbahn und die
Anfangsbedingungen des fliegenden Balls.
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Introduction

0]’16 cannot not Communicate.
— Paul Watzlawick

The famous first axiom of Paul Watzlawick’s communication theory may sound a bit scary, but
it is undoubtedly true: even utter immobility, even complete nonsense makes a statement. The
most natural means of communication for any creature is its body. Within the human body, the
channel capable of the most complex communication is the voice, followed by the face and the
hands.

Complicated ideas are best expressed by words. But words are not the only carriers of informa-
tion in the voice channel: the manner of speaking conveys a lot of information as well. From
variables such as pitch, loudness, and pauses one can identify new or otherwise important parts
of the utterance as well as deduce the speaker’s currently felt emotion.

Direct visible manifestations of speech such as lip and tongue movement enhance speech un-
derstanding, even for people that are not hearing impaired. The opposite, i.e. how annoying
asynchronous speech and lip movement can be, is obvious, for instance, from badly dubbed
movies. In its most unfortunate form, inconsistency between lip movement and sound can even
inhibit correct understanding [MM76].

Other facial expressions linked to speech include eyebrow and head movement, blinking, nose
wrinkling, and the like. Mostly, they serve to distinguish prominent parts of speech, to structure
the utterance, and to regulate turn taking. Unless consciously suppressed or masked, emotions
are strongly visible in the face as well.

After voice and face, the hands are doubtless the part of the body most often and consciously
employed by humans during communication. “Speaking with one’s hands” is also a source of
many jokes, both because of the cultural differences in frequency of hand movement and because
of the differences in meaning of individual signals. All channels of communication depend on
culture, not only language. This extends to every aspect of communication, including non-verbal
speech-related signals of every kind, and to some extent even to expressions of emotion.

Other means of communication include posture, which tells a lot about a person’s current
frame of mind and about his relationship to his communication partner, distance, i.e. how close
together or how far apart the participants in the conversation are, touching behavior, timing,
clothing, and artifacts such as jewelry.

Its ubiquity, its interdisciplinary character, and the plethora of possible applications make human
communication a challenging and rewarding field of research that is of interest not only to com-
munication theorists, linguists, psychologists, doctors, politicians, teachers and any other person
from public life, but increasingly so to computer scientists as well. Since computers form part



of an ever increasing number of aspects of our daily lives, realistic simulation of human commu-
nication is important for human computer interfaces, virtual sales persons, electronic kiosks, for
avatars in chatrooms, and for characters in computer games. In addition, movie actors are be-
coming more and more computerized. Another interesting aspect is the feedback that is provided
with regard to communication models.

Several directions have developed in computer science that investigate different aspects of
communication. Artificial intelligence is interested in dialog management for virtual agents,
including personality traits and emotions. Text to speech systems are constantly improving
and are now even able to produce emotional speech. Computer graphics strives to implement
the visible aspects of communication through human modeling and animation, while computer
vision handles tracking of eyes, hands and the entire body. Virtual believable agents, finally,
bring it all together.

Our contributions lie in the area of computer graphics, more precisely in the rule-based modeling
of non-verbal, speech-related facial expressions, in the generation of non-basic facial expres-
sions of emotion, in the development of a three-dimensional facial composite system capable
of automatically completing underspecified face models in a plausible way, in the design of an
animatable human hand model, and, veering towards computer vision, in devising a high-speed
tracking system based on multi-exposure photography.

This thesis is organized as follows: first, we will put the work presented here in perspective by
giving an overview of related work (Chapter 2). In Chapter 3, the two face models on which
much of our work builds are described, The subsequent chapter details our contributions in the
area of non-verbal facial animation, both directly speech-related (Sections 4.2, 4.3) and with
regard to emotions (Section 4.4). Chapter 5 explains the facial composite system, and Chapter 6
finally deals with our approach to hand modeling, hand animation, and high-speed tracking of
hand and ball during baseball pitches. A general discussion concludes the thesis.



2

Related Work

This chapter summarizes work that is related to ours. Starting from a brief introduction to re-
search on facial animation in general (Section 2.1) and lip sync in particular (Section 2.1.1), the
first section will proceed to non-verbal speech-related facial animation (Section 2.1.2) and to
facial expressions of emotion (Section 2.1.3). Section 2.2 deals with facial composite systems.
It presents research work, systems used in law enforcement, and programs for custom tailoring
virtual characters for computer games. Section 2.3 gives an introduction to research on the hu-
man hand, both in the area of biomechanics and related disciplines, and in computer graphics.
The remainder of the chapter (Section 2.4) reports on literature relevant to tracking and modeling
baseball pitches.

2.1 Facial Animation

Facial animation has been a field of active research since the 1970’s. Good overviews of the
area can be found in [PW96, NN99, BBEOO3]. Apart from keyframe interpolation, the main
techniques used in facial animation are performance driven approaches and direct parameteri-
zations as well as pseudo muscle- and muscle-based techniques. Often a combination of these
approaches is used.

The performance-based approach [Wil90] uses data of real human motion to drive the anima-
tion. Motion is captured by tracking feature points, like the corners of the mouth, the tip of
the nose etc., or markers attached to the face [Wil90, GGW 198, CLKO01]. In [GGW 98], 3D
animations are generated from video. Simultaneously with the marker tracking, video images
are captured as texture maps for a three-dimensional face model obtained with a laser scanner.
Choe et al. [CLKO1] propose a combination between a performance driven approach and a
pseudo muscle-based approach. Since performance-based systems use actual human movement
data to drive the animations, they yield the most natural animations. Transferring the data to
new individuals can be a problem, though, especially in the case of motion capture data or of
video models.

Example-based techniques learn facial movement from video [BCS97, CG98, Bra99, EGP02,
CEO05, CTFP05]. Wang et al. [WHL"04] use a high-speed 3D scanner to capture moving
faces. They learn generic expressions and personal expression styles from the data. Blanz
et al. [BBPVO03] fit a morphable model of three-dimensional faces (see Section 3.2) to a
face in an image or video. They change the expression of the obtained 3D model by adding
learned expression vectors. The modified face is rendered back into the original image with
the appropriate pose and illumination parameters. Recently, Vlasic et al. [VBPP05] developed
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a system based on a multilinear model that captures head pose, facial expression and viseme
from 3D scans. When the model is fit to the frames of a video, it allows captured motion to be
transferred to a 3D face model of a different person.

In direct parameterized models [Par74], vertices of a polygon or spline face model are grouped
together and assigned a joint parameter. The nodes belonging to one parameter are displaced
directly according to the parameter value. Examples for this approach include the MPEG-4 fa-
cial animation parameters (FAPs) [PF02] and [Par82, PWWHS86, MTPT88, KMMTT92, KP05].
This is the most flexible method, since it allows unconstrained displacement of vertex groups.
If realistic animations are desired, the responsibility to restrict animations to natural movements
lies with the animator.

Pseudo muscle-based models [PB81, Wat87, CLKOI] simulate muscle movement using
geometric deformation operators. Muscles are modeled as forces which deform the facial
geometry, but do not have a volume. Both mass spring networks [PB81, Wat87] and finite
elements [CLKO1] lend themselves to building a physics-based skin model on which the muscle
forces can act.

In contrast to pseudo muscle-based models, muscle-based approaches [TW90, WF95,
LTW95, KHSO01, K&h03, Gla03, SNFO05] assign a geometric shape to every mus-
cle. Since skin and connective tissue are modeled either by mass spring sys-
tems [TW90, WF95, LTW95, KHSO01, K&h03] or by finite element models [Gla03, SNFO05],
muscle deformations are propagated to the skin. As a consequence, these are the physically and
anatomically most exact models, but they are also computationally expensive. In a combination
of the muscle-based and performance-based approach, Sifakis et al. [SNF05] determine muscle
activation values from motion capture marker data. The facial animation system by Kihler et al.
[KHSO01, K&h03] is treated in more detail in Section 3.1.

Facial animation is a wide area of research. It is not only concerned with the different anima-
tion techniques, but also with how to generate convincing facial animation as automatically as
possible. It comprises animation of lip movement during speech (see Section 2.1.1), non-verbal
speech-related movements such as lifting the eyebrows on accented syllables (Section 2.1.2),
and facial expressions of emotion (Section 2.1.3). Mostly, every category has been treated in
isolation. This raises the question of how to combine the different kinds of movement. Usually,
this is done in an additive fashion (e.g. [CPB 94, PBS96, KP05]) without giving a lot of thought
to it. Bui et al. [BHNO4] explicitly address the problem of integrating different channels of facial
expression, i.e. lip sync, conversational displays, emotional expressions, etc., for muscle-based
models. Muscle contractions from different channels are combined according to priority, taking
into account conflicts at the muscle level. Pelachaud and Poggi [PP02] use Bayesian networks
to resolve conflicts between facial expressions resulting from co-occurrence of communicative
functions. In [CDB02], Chuang et al. propose to split motion capture data into content and style,
i.e. into visemes and concurrent emotional expressions. Animations can then be modified to dis-
play the same content with a different emotion display. Both analysis and synthesis are achieved
using a factorization model. Another learning based approach is the one by Cao et al. [CTFP05].
It decomposes the captured motion into speech and emotion using independent component anal-
ysis [CFPO3]. The method derives a mapping between discrete emotion spaces from the training
data, which permits the modification of emotions in speech synchronized animations. Emotions
for new lip-synched animations are either specified by the animator or deduced from the speech



2.1 Facial Animation 5

signal by a support vector machine. Based on a multilinear model of 3D face scans, Vlasic et
al. [VBPPOS] factorize video into visemes, expressions, and identity. The motion data can be
edited, combined, and transferred to other identities within the model.

2.1.1 Lip Sync

Since this thesis centers on communication, touching the work on facial animation of mouth
movement for speech at least briefly is mandatory. For the sake of brevity, only approaches
which allow for coarticulation are mentioned. The term coarticulation refers to the influence of
surrounding phonemes on the vocal tract shape of a segment, and hence on the lip shape of the
segment. Lip sync that does not take this effect into account yields animations of perceivably
lower quality.

The rule-based approach to by Pelachaud et al. [PBS91, PBS96] explicitly states the suscep-
tibility of individual phonemes to coarticulation. It considers also the physical properties of
the vocal tract, which impose certain timing constraints on facial movements. Other sys-
tems [CM93, LG97, CG98, DRSV02, KP05] assign dominance functions to every phoneme
in order to model the influence of a segment on the surrounding visemes' (cf. Section 3.1.3).
Another technique is to concatenate prerecorded polysemes? from a database [BCS97, CG98].
Cao et al. [CFKPO04] identify the sequence of video chunks that best matches an input phoneme
string using a greedy graph search algorithm and then stitch the pieces together to obtain the
final animation. Learning-based approaches [BS98b, GUAT98, EGP02, KMvG04] learn facial
movement and hence coarticulation from video footage. To a certain extent, it is also possible
to extract information on coarticulation effects from the attributes of the acoustic speech sig-
nal [KMTOO]. Waters and Levergood [WL93] construct a mass spring network from the mesh
nodes around the mouth. Solving the equations of motion for the animations will approximate
target mouth shapes instead of interpolating them, thereby leading to some kind of coarticulation.

2.1.2 Non-verbal Speech-related Facial Animation

In recent years, facial animation systems have reached a degree of realism that allows creation
of photo-realistic full-feature movies. However, the animation process is still enormously time-
consuming, especially for speech-synchronized facial animations, which to this day are mostly
hand crafted. A fully automatic method to generate facial animation from audio or simple text is
thus a much desired goal. Apart from lip sync (see Section 2.1.1), a major problem is that huge
background knowledge is necessary to correctly interpret the meaning of written sentences, and
to transfer this meaning to appropriate facial expressions. A question might be a rhetorical one,
a remark can have an ironic touch. These subtleties should be reflected in the face of the speaker.
Similarly, in the case of audio input, this information would ideally be extracted from the speech
signal. A lot of interesting research has been carried out in this area. The following paragraph
introduces relevant psychological and paralinguistic foundations. It is succeeded by a passage
on results from computer graphics.

'A viseme is the visual counterpart of a phoneme, i.e. the minimal visual building block of speech.
2A polyseme comprises several visemes.
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Psychologic and Paralinguistic Research

The information that is not contained in the words themselves, but in the “acoustic packaging”
of the utterance [BarQ1, p. 597], e.g. in prosody or frequency and duration of pauses, is referred
to as paralinguistic information. The conjunction of paralinguistics and psychology is able to
describe the correlation between prosody and facial expressions. A lot of valuable information
for speech-synchronized non-verbal facial animation can be drawn from this interdisciplinary
field of research.

The relation of speech and eyebrow movement was systematically investigated by Ek-
man [Ekm79]. His pioneering research indicates that certain words and also greater parts of
a sentence are often accompanied by raising or lowering of both the inner and the outer part
of the brows. He called these facial gestures batons, when only one word is emphasized, or
underliners for multiple words. The type of movement depends largely on context: the brows
will most probably be lowered in situations of perplexity, doubt or other difficulties. Eyebrow
movements also serve as punctuators, i.e. they are used similarly to punctuation marks in writ-
ten text. Again, lowered brows indicate difficulty, doubt, or perplexity, but also seriousness and
importance. To show that a question is being asked, eyebrows are often raised. During pauses
caused by the speaker’s searching for words, raised brows occur accompanied by an upward gaze
direction. Looking at a still object to reduce visual input is another typical behavior for word
searches. Especially in conjunction with an ‘errr’ sound, eyebrows may also be lowered in this
situation.

Chovil [Cho91] reports that syntactic displays (batons, underliners, punctuators, etc.) are the
most frequent speech accompanying facial gestures. Among these, raising or lowering of brows
are most prevalent. Other important movements of the speaker are related to the content of the
speech, e.g. facial shrugs or expressions while trying to remember something.

Cavé et al. [CGB196] investigated the link between eyebrow movement and pitch contour. In
71 % of the examined cases a correspondence was found, where rise and fall of the pitch of the
speech signal coincided with raising and lowering of the speaker’s eyebrows, respectively. Typ-
ically, 38 % of overall eyebrow movements occur during pauses or while listening. They serve
to indicate turn taking in dialogs, assure the speaker of the listener’s attention, and mirror the
listener’s degree of understanding, serving as back-channel. House et al. [HBGO1] examined the
importance of eyebrow and head movement for the perception of significance. They observed
that both movements are weighty here. Perceptual sensitivity to timing is around 100 ms to
200 ms, which is about the average length of a syllable. Investigating the relationship between
questions and gestures, Cosnier [Cos91] found that for informative questions (i.e. not related
to the interaction itself) head and eyebrow movements do not differ from normal informative
conversation, with the exception of raising the head and possibly the eyebrows at the end of a
question. However, the visual focus is more often on the listener than during statements. Re-
lations between emotions (joy, fear, anger, disgust, sadness, boredom) and prosodic parameters
(F O floor/range/slope, jitter, spectral energy distribution, number of accentuated syllables) have
been investigated, for example, by Paeschke et al. [PKS99] and by Johnstone and Scherer [JS99].
They report that most of the measured prosodic parameters are suitable to classify emotions.

Computer Science

The integration of synchronized speech animation with facial expressions has been carried out
by Pearce et al. [PWWHS86] and by Ip and Chan [IC96], both using a script-based approach:
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the expression to be displayed during speech is specified by the user in a domain-specific script
language. Kalra et al. [KMMTT91] describe a layered, script-based approach to specify facial
animations. Similar to theses approaches, the RUTH system by DeCarlo et al. [DRSV02] takes
as input text annotated with facial expressions. Audible speech is generated by a text-to-speech
system, which also returns timing information for the non-verbal facial expressions and a timed
phoneme string. Based on this phoneme representation, speech-synchronized mouth movements
are computed similarly to Cohen and Massaro [CM93].

In contrast to explicit scripting techniques, the image-based system proposed by Brand [Bra99]
learns the dynamics of real human faces during speech using original video footage. This infor-
mation is then applied to create speech animations from novel audio input. The system generates
mouth movements including coarticulation as well as additional speech-related facial animation,
for instance eyebrow movement. Lee et al. [LBB02] developed a model for human ocular be-
havior during communication, based on empirical models of saccades and statistical models of
eye tracking data.

Text-to-speech techniques have been used by Pelachaud et al. [PBS96] and by Cassell et al.
[CPB*94] for synthesis of speech-synchronized animations of agents interacting with each other
or with the user. The component that generates the text for the agent’s speech has additional
knowledge about content and structure of a piece of dialog, which is employed to generate ap-
propriate gestures. In their more recent work, Poggi and Pelachaud [PP0O0O, PPO2] include the
dialogue situation into their animations, i.e. they distinguish between semantics and performa-
tive act. For example, you will probably make suggestions to your boss with a different attitude
than when you order your children to do something, although the actual content of your utterance
may be more or less the same. Lundeberg and Beskow [LB99] have developed a spoken dia-
log system featuring a virtual representation of the famous Swedish writer Strindberg. Similar
to [PBS91, CPB194], the agent is capable of communicating using bimodal speech augmented
by simple punctuation gestures like nods or blinks. More complicated gestures have been explic-
itly designed for certain characteristic sentences. Scott et al. [KKMO03] combined a bi-lingual
dialogue manager and a talking head. In addition to the text of the utterance, the dialogue man-
ager provides instructions for different non-verbal behavior for English and Maori, respectively.

2.1.3 Facial Expressions of Emotion

The face is also a very important channel for communicating emotions. Ekman [EK97]
identified a set of six basic emotional facial expressions that are valid throughout all cultures:
joy, anger, fear, disgust, sadness, and surprise. Many facial animation systems can display
these universal expressions of emotion. However, the human face is capable of many more
emotional expressions, but little research has been conducted in this direction so far, mainly due
to the limited availability of data. Since our contribution consists in generating the more subtle
expressions of non-basic emotions (see Section 4.4), the following paragraphs will summarize
previous work in facial animation concerned with expressing mixed feelings.

The FacEMOTE system [BB02] relies on the Laban Movement Analysis of body motion which
has been transferred to the face. The method modifies an input facial animation stream to change
its expressiveness. The four parameter pairs used to steer the process are direct-indirect, light-
strong, sustained-quick, and free-bound. A direct mapping from these parameters to emotions is
not provided. Bui et al. [BHPNO1] propose a fuzzy rule based system to map emotions to muscle
contraction values. The system comprises a set of rules both for the display of single emotions,
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and for two simultaneous emotions. In the latter case, the facial expressions of the two emotions
are restricted to non-overlapping regions of the face to avoid conflicts. Ruttkay et al. [RNtHO3]
arrange the six basic emotions equidistantly on the border of a disc according to similarity. To
every point on the disc a facial expression is associated which is computed by linear interpolation
between the closest basic emotions. Distance from the circle center describes intensity. In the
same paper, the authors present a second method to obtain new expressions based on principal
component analysis (PCA). However, they did not find the significant principal components
to be an intuitive means for searching the space of emotional facial expressions. Tsapatsoulis
et al. [TRK'02] (Section 4.4.3) have also developed a method to interpolate between affect
displays to create new ones. They use a mixture of two emotion models, Whissell’s activation-
evaluation approach [Whi89] (cf. Section 4.4.1) and Plutchik’s emotion wheel [Plu80]. Latta
et al. [LAABO2] make use of the activation-evaluation coordinate system as well, but only for
navigation through a predefined space of facial expressions and not for expression generation.

2.2 Facial Composite Systems

Facial composites are an important tool in law enforcement. Although many different commer-
cial systems are in use, there is still room for improvement. This has lead to a number of research
projects in computer science. Followed by an overview of commercial systems, they are consid-
ered below. A similar problem is posed by increased demands on character customizability in
computer games.

2.2.1 Computer Science

Approaches to composite creation in research that do not follow in the footsteps of the classical
Identi-Kit toolkit [Smi05] often rely on modifications of the coefficients obtained from PCA, or
a combination of the two techniques. It has been demonstrated that PCA is very well suited to
describe face space (e.g. [BV99]), but the problem with this approach lies in the unintuitiveness
of the individual principal components. They simply do not describe cognitively useful cate-
gories. Therefore a main issue when incorporating this technique into a facial composite system
must be the design of a wrapper to ensure comfortable operation. The focus of the paper by
Chen and Fels [CF04] lies on the appropriateness of different user interfaces for navigating face
space with the main principal components of the example faces as coordinate axes.

In computer science, the motivation for developing a facial composite system was often research
in the field of database retrieval, or more specifically, of finding suspects in a mug-shot data
base [WALT94, BM96, BS98a]. The PCA coefficients of the composites are used as access
keys in the search. Brunelli and Mich [BM96] apply PCA to the individual features of the
faces in a mug-shot database. The composite face used to search the database is constructed
starting from the average of all faces in the data base. Image modification is achieved through
changing the PCA coefficients of individual features directly, by selecting feature coefficients by
keyword, or by importing face parts from the database of mug shots. During composite creation,
the system displays and automatically updates the faces from the database that are most similar
to the current composite. Baker and Seltzer [BS98a] use PCA on the entire face to determine
similarity for mug-shot database search. Composite images are obtained by cutting and pasting
features from images in the database, or by random combination of features of user-selected
faces. The facial composite module of the database retrieval system by Wu et al. [WAL94]
works similar to the classical Identi-Kit tool, i.e. faces are composed from individual features
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in a database. The similarity measure of faces is based on landmarks and on PCA of individual
features. The system addresses the problem of aging.

Several approaches make use of the fact that the human brain is better equipped to recognize
faces than to describe them. They employ genetic algorithms to approximate the target face.
The user is shown a selection of faces, from which he chooses the most similar ones. These are
then interbred and mutated. The process is repeated until the desired face crystallizes. The first
system of this kind was the one by Caldwell and Johnston [CJ91]. They consider five different
facial features, and assemble composites from an example database. Genes are defined as a
concatenation of code for example type and position of the individual features. A descriptive
language for faces is proposed in [DiP02]. It is parameter-based and can also be used to specify
animations. A genetic algorithm is employed for navigation through face space. The system was
designed to create 3D heads for the computer game “The Sims”. The 2D facial composite system
in [GPBSO03] works by running an evolutionary algorithm on a facial appearance model. To
obtain an appearance model, one has to perform an independent PCA both for texture and shape,
and another PCA to combine the two into the final model. In order to allow for modifications
at the local level, analogous appearance models for individual features were built. Frowd et
al. [FHCO04] compute individual PCAs on the shape and on the texture of the training images.
New faces are evolved with a genetic algorithm where the PCA coefficients serve as genes.
Shape and texture are treated separately. Shifting features is also possible.

To our knowledge, the only other composite system to take into account statistical correlations
between facial features is the one by Gillenson and Chandrasekaran from 1975 [GC75]. It pro-
duces line drawings of a face. A statistical average face is used as starting point, and then
modified by applying affine transformations and intensity changes to individual features or by
importing features from a database. The user is prompted to deal with features in the order of im-
portance for recognition. Statistical feature correlation is only considered in the beginning, when
the overall shape of the face is established through stretching. Aging is simulated by introducing
wrinkle lines.

2.2.2 Commercial Systems

Facial composite systems in use by law enforcement agencies all over the world work more or
less in the same manner: the witness assembles the target face from parts of faces in a database.
Most of the systems are grayscale and only support front views. They are basically software
implementations of the classical Identi-Kit system [SmiO5]. Laughery and Fowler [LF80] found
that artist sketches are superior to Identi-Kit images due to the limited amount of facial features
and lack of shading in the Identi-Kit toolkit. Both points of criticism have improved with today’s
computer-assisted composite creation, since database size has increased substantially. With most
systems, shading is now integrated in the example features, especially in those instances where
face parts from photographs are used.

PROSit™ [ABMO5] is a traditional facial composite system where a face is composed from indi-
vidual features. The feature database can be extended using drawing software. A database with
features in 3/4 view is also available to either directly construct composites from this perspective
or to automatically generate 3/4 views from frontal composites. Composite faces can be aged
or caricatured. Deffenbacher et al. [DJVOO00] demonstrated that caricaturing a face facilitates
recognition. With PROfit, morphing between composites from different witnesses is possible to
improve identification. It has been shown [BNH'02] that a combination of the mental images
of several witnesses is at least as good as the best individual likeness. E-FIT™ [Asp05] allows
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the user to transform features or to select them from a database. In order to avoid confusing the
witness by showing him too many faces dissimilar to his mental image, or even disembodied
features, the features in the database are rendered into the current composite. Where the witness
cannot give a description, default features are available. An extension is offered where a 3D mesh
is fitted to and textured with the composite image. Aging of faces is possible, as well as import-
ing a background image to recreate a crime scene. With the color photofit system PHANTOM
PROFESSIONALxp® [UNIO5], the source selects one starting image that comes closest to the
target face in overall face shape, skin color, age etc. This base image is modified by affine trans-
formations and by importing features from other faces in the database. Aging by approximately
ten years is supported as well. If the faces in the data base are also available as side-views, a
profile can be generated together with the front view. Transformations and retouching, however,
must be done separately for each view. Starting from the witness’s description, the FACETTE®
composite system [IDEO5] generates a number of suggestions, from which the source selects the
most appropriate one. This face is then improved by importing features from a data base of face
parts. The components can be adjusted with regard to brightness and contrast. Smith&Wesson®
also developed facial composite software, Identi-Kit NET™ [Smi05]. As the name suggests,
the basic principle is very much the same as with the original Identi-Kit tool. In order to allow
better coordination between law enforcement agencies, composites can be published in an on-
line database. Aging software is offered as an add-on. FACES [IQ 05] is another simple black
and white facial composite system, where composites are assembled from facial features in a
database. Aging is simulated by overlaying wrinkle lines over the completed composite. An
identification code is generated for every composite from the code for the individual features to
allow low bandwidth transmission and reassembly at the other end.

2.2.3 Computer Games

Generating faces from mental images is also of interest for the entertainment industry. Several
games include tools that allow the player to custom-tailor his character. Examples are FIFA
Soccer 2005, The Sims 2, or EVE Online, to name but a few. These systems modify faces by
morphing. Depending on the number of parameters, this can give the user many degrees of free-
dom, but importing features from a database is not possible. Non-natural faces can be generated
by choosing certain parameter combinations. This is desirable with some game types, but cer-
tainly not with all. Naturally, since the faces are meant for hardware rendering, the underlying
meshes cannot be very fine. Detail is added through textures.

2.3 Hand Models

The role of hands in communication is only surpassed by that of the face. In computer graphics,
human hands are only now starting to receive the attention they deserve. Disciplines related to
medical science have a decided head start here — and fortunately so, since results from anatomy,
biomechanics and anthropometry must form the basis of all attempts at realistically modeling
this sophisticated body part.

2.3.1 Anatomy, Biomechanics, and Anthropometry

Research in anatomy and biomechanics has shown that the human hand is a very intricate and
elegant mechanical device, where many dedicated parts cooperate in an highly optimized inter-
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play to form a powerful whole. Information on the anatomical building blocks of the hand can
be found in illustrated anatomy books [PPO1] or in more detail in [Cha90]. The book by Brand
and Hollister [BH99] is inclined more towards biomechanics: meant as a textbook for hand sur-
geons, for instance when planning a tendon transfer operation, it provides a thorough description
of the functioning of the hand.

Landsmeer [Lan61] developed a physics-based model for determining tendon excursion from
joint angle, depending on the way the tendon crosses the joint. Starting from this model, he
derived criteria of how muscles must be arranged in a joint system to be able to move the joints in
any given way. In [AUC™83], tendon excursions of the index finger muscles have been measured
and the corresponding moment arms have been computed using Landsmeer’s tendon models.

A kinematic model for flexion and extension of the fingers has been developed by Lee and
Kroemer [LK93]. Their model is based on the assumption that the moment arms of the tendons
at the joints are constant. Considering external forces affecting the joints, they compute the
finger strength for the given joint configuration.

In [BY94], the authors discuss a biomechanical model of the entire hand encompassing all prin-
cipal muscles and degrees of freedom. Muscles are modeled by weightless expandable threads.
Weightless non-expandable loops surrounding the joints determine the “line-of-action” of mus-
cles. The authors found only the muscles at the thumb and wrist to possess some redundancy, i.e.
the same pose can be obtained by several muscle combinations. To overcome this redundancy,
muscle effort is minimized.

For evaluation of the prehensile capabilities of the human hand, Buchholz and Arm-
strong [BA92] proposed a kinematic model based on collision detection between ellipsoids rep-
resenting the skin surface of the hand segments. Joint flexion angles and skin deformation for
power grasp of ellipsoidal objects are predicted and rendered as vector graphics.

The anatomical computer-generated hand model described in [STSL02] consists of bones, ten-
dons, and soft tissue. The latter is modeled by an ellipsoid-shaped mass-spring network at every
phalanx, and as an appropriately shaped mass-spring system at the palm. The outer surface of
these networks constitutes the skin. Tissue deformation during finger movement is determined
using a predictor-corrector method, which also takes into account incompressibility and collision
constraints. Tendons are present via their mechanical effects, not geometrically. Their feedback
action is modeled through springs opposing joint motion. The fingers are positioned automat-
ically by energy minimization. Although this modeling approach is similar to ours, there are
several distinctions: the muscle force model we present is more comprehensive, we model mus-
cles additionally as geometric objects with impact on the shape of the skin, and the triangle mesh
we use as skin has been obtained from a range scan of a human hand.

Brand et al. [BBT81] performed measurements of hand and forearm muscles to obtain potential
excursion and relative tension of the muscles. Potential excursion is the difference between
maximal stretch and maximal contraction of a muscle, i.e. the distance through which a muscle
is able to contract actively. They found the potential excursion to be equal to the resting length
of the fibers of the muscle. Relative tension denotes the proportional tension of a muscle with
respect to the overall amount of possible tension of all studied muscles. These numbers differ
far less among individuals and within each individual over time than the absolute strength of a
muscle.

Anthropometrical measurements have been carried out by Wagner [Wag88], who extensively
measured size and joint mobility of the hands of pianists. He compared his results to studies
about other musicians and non-musicians and found that in general piano players have greater
mobility in their hands than the average.
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2.3.2 Computer Graphics

In computer graphics, hand models have been developed for several typical applications. The
most prominent application areas are model-based tracking (see for instance [WHO1] for an
overview), interactive grasping, and simulation systems, e.g. for surgery planning.

In [OH98], a simple volume-based animatable hand model constructed from geometric primi-
tives is employed for tracking. The model includes anthropometrical and biomechanical con-
straints: the size of the palm is correlated to the length of the fingers and phalanges. Biome-
chanical laws determine the valid range and interdependencies of joint motion, thereby reducing
the number of degrees of freedom of the model. Heap and Hogg [HH86] have built a statisti-
cal hand shape model from simplex meshes fitted to MRI data for their tracking system. For
model-based finger motion capturing, Lin et al. [LWHO0O] employ a learning approach for the
hand configuration space to generate natural movement.

A parametric hand model for semi-automatic grasping is described in [MTLDS88]. In this model,
skinning is based on joint-dependent local deformations, taking into account rounding at joints
and bulging. Another approach to grasping is proposed in [GMTT89]. The system uses finite
element simulation of the skin and the grasped object in order to simulate both skin and ob-
ject deformations due to contact. In [RG91], a simple hand model is described that likewise
incorporates constraints on the movement range of joints. It was developed for the animation of
semi-automatic knowledge-based grasping, where objects are approximated by primitives with
individual grasping approach parameters. Another heuristic grasping system was introduced
in [ST94]. Objects are stored together with primitives associated with the graspable parts of the
object. Grasps are classified depending on the type and size of the primitive, and on the mass
of the object. The final position of the hand is determined by inverse kinematics and collision
detection. Huang et al. [HBMTT95] extended the previous model. A multi-sensor approach for
collision detection has been added, where the sensors are constituted by spheres attached to the
joint. Collision detection between hand and object is performed with these sensors to naturally
place the hand around the object. Recently, Pollard and Zordan [PZ05] proposed to combine
physically based animation with a controller derived from tracking data to obtain animations
that capture both active and passive components of grasping. Theoretically, all joints in their
model have three degrees of freedom. Joint limits and neutral pose are derived from the motion
capture data.

In [KCMTO00], artificial intelligence is used to position hand and wrist of a virtual violinist.
Finger positions are determined by best-first search, while wrist position and orientation are
decided by a neural network. Mulero et al. [MFBLCOI1] present an anthropomorphic finger
model with a tendon transmission system based on pulleys and a position controller. The
controller is modeled by a neural network and transforms tendon pull into joint motion. The
system can work in an agonist-antagonist fashion. A model of the hand and arms based on
manifold mappings was proposed by Kunii et al. [KTM793]. They also consider inter-joint
dependencies. Moccozet et al. [MMT97] use Dirichlet free-form deformations (DFFDs) to
simulate the tissue and muscle layer between skin and bones. Muscles are not considered
directly, but the use of DFFDs allows the authors to model wrinkles at joints and bulging of
segments depending on the angle of rotation of the respective proximal joint. Ip et al. [ICLOO]
built an anatomy-based hand model with muscles in compliance to [BY94]. The hand is
modeled as a collection of hand segments connected by joints, where muscles are weightless
expandable threads. Soft tissue, tendons, and ligaments are not modeled explicitly. Given the
initial and final hand posture, the system is able to generate in-between states. For describing
hand postures, the authors use the Hand Action Coding System [ICL97], a collection of



2.4 Tracking Hand and Ball for Baseball Pitches 13

muscle-based Hand Action Units that encode hand positions. A mathematical model for the
complex carpo-metacarpal joint of the thumb based on equations that describe the relationship
between tendon excursion and joint angles is described in [Tho81]. The model is matched to
experimental data using optimization. Thompson et al. [TBM*88] presented a hand model
capable of calculating relative muscle length, distance between pulley point/point of origin
and transformed insertion point, moment arm, and moment potential for hand muscles during
motion. A wireframe skeleton model obtained from CT scans is rendered together with the
tendons, while the single parameters are displayed by bar graphs. Since the system was designed
to aid medical doctors in planning tendon transfers, replacement of one musculotendon unit by
another can be simulated. In [MTAT01], the joint movements of a hand model composed of
rigid bodies are constrained by biomechanical laws. The model was designed for animating
American Sign Language. An approach to skinning a hand skeleton using eigendisplacements
was proposed in [KJP0O2]. The resulting hand model can be animated in real-time using
graphics hardware. Kurihara and Miyata [KMO04] constructed an animatable hand model from
CT scans. Animations are obtained through pose space deformation from scans of example
poses. Consequently, skin deformations are captured and reproduced realistically. A possible
application for the system proposed in [ESO3] is guitar playing. From the goal positions for
a subset of the finger tips, a hand configuration is computed using inverse kinematics (IK).
The poses of the fingers with unspecified tip positions are determined from sample data by
interpolating between the k nearest neighbors of the IK solution. Thus, resulting animations
exhibit natural joint interdependence. Recently, Tsang et al. [TSFO5] developed an accurate
biomechanical hand model similar to ours that considers joint interdependencies. The authors
solved the control problem by creating animations from keyframes using inverse dynamics.

In addition to the literature on human hand models, several approaches for anatomical modeling
and physics-based animation of human faces (cf. Section 2.1) and bodies need to be considered
here. In particular, the mass spring system approaches in [TW90, LTW93, LTW95] and
the muscle models proposed in [SPCM97, WV97, KHSO1] were of interest for our work.
Section 3.1.2 deals with the mass spring system and the muscle model by Kihler et al. [KHSO1].
Scheepers et al. [SPCM97] model muscles using ellipsoids and bicubic patches, while the
muscle model by Wilhelms and Van Gelder [WV97] is based on generalized cylinders. Both
muscle models deform in reaction to joint movement.

Concerning the use of feature points for model deformation, the work presented in [KHYS02]
should be mentioned: anatomical human head models equipped with feature points can be mor-
phed to obtain head models of new individuals. Based on a 3D scan of the new head, skin mesh
and muscles are deformed using radial basis warping functions. From the morphed skin mesh,
the deformation function for the skull can be obtained. [SWVGO02] proposes a similar approach
for articulated creatures. In contrast to [KHYS02], where deformation starts with the skin, this
method proceeds from the inside out.

2.4 Tracking Hand and Ball for Baseball Pitches

The pursuit of athletic perfection in baseball has lead to the publication of many textbooks on
specific technical aspects [Ste02, HouOO]. In recent years, the athletes’ demand for tools to accu-
rately measure and analyze their technical performance has been backed by similar interests from
the media. Today, many sports enthusiasts expect concise analysis and visualization of a sports
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event during or after the broadcast on TV. In consequence, many researchers have approached
baseball from the scientific and technological point of view. The physics of pitching and batting
has been thoroughly analyzed in [Ada02]. Alaways examined in his Ph.D. thesis [Ala98] the
aerodynamics of a curve-ball. He used a system with ten high-speed video cameras operating at
240 Hz to capture the ball trajectory. Initial flight parameters of the ball were not measured but
deduced from the trajectory and a physical model of ball flight. During the Summer Olympics
1996 in Atlanta, Alaways used two 120 Hz high-speed video cameras to track ball positions
along the flight trajectory [AMHO1]. The K-Zone system [Gue02, Gue03] is technically similar
and designed to track the trajectory of a baseball from multiple video streams in real-time using
color information and a Kalman filter.

In other popular sports similar systems have been investigated. The LucentVision system
[PYOCO00] enables tracking of the player positions and the ball trajectory in tennis matches
from video images. The ball position is tracked using an algorithm based on ball color and
frame-differencing [PJC98]. Rotation axis and spin are not measured. In [DACNO2], a modified
Circular Hough Transform is used to follow the ball in video broadcasts of a soccer game. Cre-
ating images of high-speed motion for analysis of the underlying action has been drawing the
attention of researchers for many decades. In the 1870’s and 1880’s, Eadweard Muybridge con-
ducted his famous experiments to create serial images of fast motion [Muy87]. A setup of twelve
cameras was used to capture different stages of a galloping horse. One of the photographs indeed
showed the horse with all of its hooves off the ground, corroborating the hypothesis that had led
to these experiments. In the 1930’s, Harold Edgerton at MIT perfected the use of stroboscope
photography to create multi-exposure images of high-speed motion, see for instance [CB94].
However, the acquisition process is usually constrained to actions taking place in a very limited
spatial domain for which decent illumination conditions can be set up easily.

In Section 6.3 we will demonstrate that stroboscope photography is not only an appropriate
method to accurately track the ball trajectory but also to track the complex articulated motion
of the human hand. Many different approaches to tracking articulated human body motion have
been investigated in the past, spanning from mechanical over magnetic to optical methods that
either rely on optical markers on the human body or set aside any form of intrusion into the
scene [AC99, GFG01]. Commercial optical motion capture systems typically rely on expensive
high-framerate video cameras and markers on the body.

Optical approaches for tracking hand articulation usually derive the hand motion from video
sequences with the support of an explicit hand model. In [HH86], a point distribution model is
used to track hand motion. Stenger et al. [SMCO01] employ a kinematic model based on quadric
segments and a Kalman filter to determine hand configurations from video. In [WLHO1], a
2D cardboard hand representation is used for pose computation. Other approaches that rely
on an explicit hand model and image features are the Digiteyes system [RK94] and the work
in [Dor93], where colored markers on the hand show the finger joint locations in the video
images. A more appearance-based approach is presented in [ASO3], where single hand poses are
identified via comparison to a database of rendered hand models.
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Face Models and Animation

The present chapter discusses two face models that serve as foundations for a large part of the
work presented in this thesis.

The first section is devoted to MEDUSA, a physics-based human head model capable of real
time animation. All animations resulting from the research on non-verbal facial animation as
described in Chapter 4 were executed on this platform. MEDUSA heads are modeled after the
human anatomy, thus yielding animations of great naturalness. Their anatomical components
include skull and jaw, muscles, skin, and connective tissue. The elaborate muscle model and the
propagation of muscle deformation to the skin both make the system well suited for animations
of subtle facial expressions. Eyes with eyelids, teeth and tongue are represented more simply as
geometric objects.

Section 3.2 deals with a learning based approach to facial modeling. From a large database of
textured scans of faces, a morphable model is generated which allows faces to be represented as
linear combinations of the example scans. The strong point of this technique is the great natu-
ralness and plausibility of all generated faces. Concerning the editing of face models, attributes
such as eye shape, skin color, or width of the mouth are learned from the database and then used
to modify a face. In addition, it is possible to exchange facial features. Faces on photographs can
be reconstructed by the model, thus yielding a three-dimensional face from the two-dimensional
image. Conversely, faces from the model can be rendered into images of people, replacing the
original faces. All these features make the model the optimal choice for the construction of a
facial composite system such as the one from Chapter 5.

3.1 Physics-based Anatomical Models

This section starts with a very brief introduction to the relevant anatomy of the human face.
In-depth information can be found in anatomy books as, for example, [PPO1, SSZ99]. The
following part (Section 3.1.2) describes the individual components of the head models of the
MEDUSA animation system by Kéhler et al. [KHS01, KHYS02, K&h03]. The implementation of
a lip sync algorithm on this platform is explained in Section 3.1.3, and Section 3.1.4 deals with
synchronized rendering.

3.1.1 Anatomy of the Face

In terms of bone structure, the human head consists of the moveable mandible and the fixed
skull, formed by various closely connected bones. The jaw has four degrees of freedom in
speech and mastication [OVBG97]: pitch and yaw as well as horizontal and vertical position,
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Figure 3.1: Facial Musculature. Red numbers correspond to muscles present in MEDUSA
models. Numbers refer to Table 3.1. Source: [PPO1].
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1 epicranial aponeurosis 18 masseter, superficial part
2 nasal bone 19 platysma
3 procerus 20 mental foramen
4  corrugator supercilii 21 depressor anguli oris (triangularis)
5 medial palpebral ligament 22 depressor labii superioris
6 levator labii superioris alaeque nasi 23  sternocleidomastoid
7 nasalis 24 platysma
8 orbicularis oculi, pars orbitalis 25 cervical fascia, investing layer (superficial layer)
9 levator labii superioris 26 orbicularis oris, labial part
10 zygomaticus minor 27 mentalis
11  zygomaticus major 28 depressor labii inferioris (quadratus labii)
12 depressor septi nasi 29  risorius
13 levator anguli oris 30 orbicularis oris, marginal part
14 parotid gland 31 orbicularis oculi, pars palpebralis
15 buccal fat pad 32 temporoparietalis
16 parotid duct 33 depressor supercilii
17 buccinator 34 epicranius, occipitofrontalis, frontal belly

Table 3.1: Facial Musculature. Numbers refer to Figure 3.1.

i.e. jaw motion involves a combination of rotation and translation. For speech, motion of the
mandible is mostly confined to pitch, i.e. opening and closing of the mouth.

The musculature of the face and especially around the mouth is among the most intricate and
complex of the entire human body. The facial muscles interact and work together in mastication,
to form expressions and the visual components of speech, to close the eyes in order to keep
them wet and to protect them. A total of 82 muscles perform different tasks in the human head
and neck [SSZ99]. In Figure 3.1, the muscles of the human face are depicted. Most of them
are present by default in the faces of the MEDUSA facial animation system (see Section 3.1.2,
especially Figure 3.3).

In the following, the major mimic muscles of the human face are briefly addressed, starting with
the muscles covering the brain pan and proceeding downwards towards the neck.

The occipitofrontalis and the temporoparietalis move the skin of the head. In the case of the
occipitofrontalis, this involves raising the eyebrows. The auricularis muscles allow us to waggle
our ears.

Other muscles involved in eyebrow movement are the depressor supercilii, which lowers the
eyebrows, the corrugator supercilii, responsible for pulling the brows together, and the procerus,
which pulls down the skin over the root of the nose. The orbicularis oculi also influences the
eyebrows, closes the eyelids and compresses the lacrimal sac.

The nasalis muscle dilates the nostrils, while the depressor septi nasi pulls the tip of the nose
downwards.

The most complex facial muscle is the orbicularis oris. It cannot only close the lips, but also
make them protrude and retract. Furthermore, it is not a single muscle but is partially composed
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of fibers from other muscles. Its deep layer is formed by the buccinator, responsible for creating
pressure in the mouth for e.g. blowing. The depressor anguli oris muscle runs around the lower
lip and pulls the angles of the mouth down, while the levator anguli oris encircles the upper lip
and raises them. The other orofacial muscles like the zygomatici, the levator labii superioris and
the depressor labii inferioris merge into this composite structure. The zygomaticus major and
zygomaticus minor raise the upper lip and the angle of the mouth. They create the bump below
the eyes that builds during smiling. The levator labii superioris and the depressor labii inferioris
raise the upper lip and pull down the lower lip, respectively. The lips are stretched horizontally
by the risorius muscle. The levator labii superioris alaeque nasi raises the alar wings of the
nose together with the upper lip. The mentalis and the transversus menti move the skin of the
chin downward.

The platysma finally stretches the skin of the neck.

An account of the inner structure of muscles can be found in Section 6.1.3, and Section 6.1.4
looks at the anatomy and biomechanical properties of human skin.

3.1.2 The MEDUSA System

The physics-based MEDUSA system [KHSO1, KHYS02, Kidh03] for facial modeling and
animation features an underlying anatomical structure consisting of skin, muscles and bones. In
addition, its head models comprise eyes with eyelids, a rigid tongue, and teeth.

In order to avoid having to go through the laborious process of assembling the model for every
new face from scratch, a generic template is set up once. Given their skin geometry, complete
new models can be derived from the generic one. Since the entire anatomical structure is
inherited from the template, new faces are instantly animatable, and animation scripts can even
be re-used for any given head model.

This section starts with a description of the individual components of the model (see Figure 3.2),
followed by a brief account of how the reference head is assembled. Finally, the process of
deriving new heads from the template is outlined.

Skin

The skin surface is represented as a triangle mesh. Its biomechanical properties are modeled
through a mass spring network, see below.

Skull

The skull is two-part: a rotatable mandible is attached to the cranium. Both components are
represented as triangle meshes. The geometry is not used during animation, but only for ini-
tialization: the distance between skin and bone is measured, and the lower part of the face is
attached to the mandible, so that skin vertices and muscles will follow the jaw rotations.
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Figure 3.2: Head structure. Left: Reference head structure consisting of skull, muscles, skin
mesh, eyes, teeth and tongue. Right: Derived head model. The reference head and its compo-
nents were adapted to the 3D scan of a child to yield a new, animatable head model.

Muscles

Animations are driven by muscle contraction values, specified over time. Muscle contractions
occur instantaneously, i.e. internal muscle dynamics or interaction with connective tissue are not
taken into account.

The virtual muscles consist of individual, parallel fibers that can either contract linearly for linear
muscles, or in a circular fashion for sphincters. The width of a muscle is determined by the
number of parallel fibers. Each muscle fiber has a piecewise linear polygon as control structure,
with which either ellipsoidal or box like geometric primitives are associated for visualization
and attachment to the spring mesh.

Contraction for linear muscles is achieved by moving the control points of the polygon towards
the fixed origin of the muscle, while for sphincter muscles, they move towards a specified center
of contraction. For the orbicularis oris an axis is declared along which the center of contraction
can be moved in order to achieve protrusion and retraction.

Building Muscles. Since the human face is covered by many muscles of complex shape, the
process of constructing a set of muscles for a head model is time consuming and requires some
amount of flair. Therefore muscles need to be laid out only once for the reference head. When
new head models are derived from the template, the muscles are automatically adapted to the
new model, i.e. it is instantly animatable (see p. 24).

Muscles are set up interactively by painting a coarse grid onto the skin surface of the generic
head model. From this lattice, the muscles are generated automatically and fit between skull and
skin by an optimization procedure. The initial grid is made regular by adding control points.
Then it is projected onto the face mesh and placed slightly underneath the surface, taking into
account skin and average muscle thickness. This is followed by an iterative refinement step, so
that the grid does not cut through the skin and that it fulfills the distance constraints to the skin
surface. Muscle fibers are generated along the columns of the muscle grid, consisting of one
appropriately sized muscle segment per grid cell. The control points are assigned row by row to
either skull or jaw depending on the bone the majority of the closest skin vertices are associated
with. A muscle is integrated into the spring mesh by attaching the skin nodes in the muscle’s
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1 occipitofrontalis (outer part) 8 risorius

2 occipitofrontalis (inner part) 9 orbicularis oris (upper part)
3 corrugator supercilii 10 orbicularis oris (lower part)
4  orbicularis oculi, pars orbitalis 11 depressor anguli oris

5 orbicularis oculi, pars palpebralis 12 depressor labii inferioris

6 levator labii superioris 13 mylohyoideus

7 zygomaticus major 14 mentalis

Figure 3.3: Muscles of the reference head. This set of muscles is used for lip sync (see Sec-
tion 3.1.3) and for non-verbal facial animation as described in Chapter 4. Source: [K&h03].

zone of influence to the closest points on the muscle. These attachment points are then mirrored
for volume preservation (see p. 22).

A set of muscles is designed only once for the reference head. The muscle grids are transformed
along when new faces are derived from the template. From the transformed grids, the muscles
for the new head are then set up automatically. The 24 major muscles of facial expression are
the default for MEDUSA head models (see Figure 3.3). Additional muscles can easily be added
to the system as necessary.

Properties. With the exception of sphincters, which merge into skin on both ends, facial mus-
cles are connected to bone at one end. Their other end either inserts into the skin or is connected
to another muscle. Many muscles starting from the mouth region, for example the zygomatici,
merge into the orbicularis oris. Through their interconnectivity, the involved muscles influence
each other. In the model, this is achieved by linking the affected control points of the connected
muscles by a mass spring network.
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This interconnectivity demands that the muscles be able to stretch in addition to their contraction
property. To this end, the control points that attach to the bone as well as those that are pulled
at by other muscles are kept fixed for each muscle, while intermediate segments are elongated.
Unlike muscle contraction, this stretching straightens the muscle out, i.e. it does not follow the
original path anymore. Stretching and muscle contraction counteract each other.

When muscles contract, they become thicker, and when they are stretched, they get thinner. For
linear muscles, the center exhibits the highest amount of bulging, while sphincter muscles be-
come thicker evenly. Bulging and thinning is propagated to the skin through the mass spring
network explained below. Together with the segments, the corresponding spring mesh attach-
ment points, mirrored nodes and nodes on the skin surface are updated. Then the spring mesh
simulation is run for one timestep. For visualization purposes, the segment shape is adjusted as
well.

In contrast to the general behavior, where all fibers of a muscle contract in the same way, fibers
belonging to the orbicularis oris are controlled independently. This allows for lip protrusion and
retraction.

Muscle Deformation. Muscle contraction values are provided directly by the user. They
lead to active shortening and bulging, or to passive stretch by other muscles and thinning. These
deformations are propagated via the mass spring network towards the skin.

For active contraction, the muscle control points are moved according to the contraction value. In
the case of a linear muscle, the control points are constrained to follow the original course of the
muscle. Sphincter muscles contract towards their center. The orbicularis oris has an additional
parameter for protrusion and retraction along a user specified axis. Hereby, the individual muscle
fibers protrude / retract with differing intensity: the outer part of the orbicularis oris does so to a
lesser extent than the inner part. This is achieved by gradually shifting the center of contraction
for the muscle fibers along the axis. For the outer fibers, it remains in the plane of the muscle,
while for the innermost part, it is moved to the point on the axis specified by the parameter value.
The only other method of moving a muscle is by jaw rotation. The jaw is animated through a
direct parameter. When it rotates, muscles attached to the jaw are moved along by rotating their
control points.

After deforming the muscle fibers according to their contraction value or to jaw rotation, the
muscle connection constraints must be satisfied. Muscle connections are preserved by restoring
the original distance of the involved control points to their center. The center is defined as
the weighted average of the control points, where points belonging to a muscle with higher
contraction value have an increased weight, so that the center is pulled towards these control
points. Thereby the system grants greater influence to more strongly contracted muscles. In
order to propagate the resulting local deformations, these geometric modifications are followed
by a simulation of the muscle spring mesh.

Then the muscle shapes are adjusted to exhibit bulging and stretching. Finally, the spring mesh
is updated.

Mass Spring Network

Skin, muscles and skull are connected by a mass spring network. This approach was chosen
because it approximates the biomechanical properties of skin and connective tissue well, while
at the same time permitting real time animation.

The spring mesh consists of nodes N' = {n; |0 < i < N} with point masses M = {m; |0 <
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i < N}, that are connected by Hookean springs S = {s; |0 < j < M}. When mass nodes are
displaced, the connecting springs are stretched. The so-caused strain forces other nodes to move,
until finally a new equilibrium is reached, where the forces acting on each node cancel out. The
forces affecting a node can be computed as explained in the following.

Consider a spring s; € S which connects two nodes ng, n. € N at positions x,, x, € R3.
The spring’s current length is [; = ||x. — X;||. Its rest length l? denotes the spring’s length in a
relaxed state of the system, and its stiffness constant ¢; € R describes its elasticity. The force
F; ., which s; exerts on its end node n., is then:

1 — 19
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J
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The total force F; at node n; is the sum of forces exerted by springs ending in n; minus the sum
of forces exerted by springs originating from n;:
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Now let x; be the position of node n;. Velocity and acceleration of n; are x; and X;. The system
of equations of motion for n; can be formulated as

miX; +vX; — Fi — Fexy = 0,

with Fey denoting the sum of all external forces acting on n;. « is a damping factor, and the
damping term yx; models energy loss due to friction.

The equations of motion are second-order ordinary differential equations. Initial positions and
velocities are known for all nodes. To obtain an animation and hence solve this initial value
problem for the animation time steps, Euler integration is used for the first time step, and from
then on the leapfrog Verlet method [AT89] is employed.

The spring mesh is set up automatically from the geometry. Nodes and edges of the skin mesh
are converted into mass points and springs to model epidermis and dermis. The stiffness constant
of the skin springs is biphasic to account for the stress-strain behavior of real skin. On bones and
muscles, static mass points are inserted and connected to the skin nodes. The stiffness value of
the connective springs is rather low to model subcutaneous fatty tissue which allows the skin to
slide freely over muscles and skull.

Volume preservation to prevent the skin from penetrating muscles and skull is achieved by at-
taching a spring to each skin mesh node that pulls the mass point outwards. This additional
spring mirrors the spring which connects the node to the underlying muscle or bone (see Fig-
ure 3.4). The force exerted by these outward facing springs can be interpreted as modeling the
internal pressure of the skin cells. This method reliably prevents penetration, except for very
violent movements.

Eyes, Teeth, Tongue

The eyes together with the animatable eyelids, teeth and tongue are modeled as rigid geometric
objects. These components are not animated through muscles, but via direct parameters.
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Figure 3.4: Mass spring network. Left: Springs connect the skin surface to skull and muscles;
attachments are mirrored outwards. Right: spring mesh of the reference head. Black springs:
surface edges; red springs: true and mirrored attachments. Source: [K4h03].

Figure 3.5: Animation with wrinkles. Two different facial expressions with automatically
generated expressive wrinkles, rendered at 100 fps using hardware bump mapping.

Expressive Wrinkles

The degree of realism of facial animations can be increased significantly by including expres-
sive wrinkles with variable intensity. MEDUSA makes use of the vertex program and register
combiners extensions of the NVidia GeForce6 graphics board to render bump mapped wrin-
kles at real-time frame rates. The bump map for the wrinkles is created from a “wrinkle height
field” [WynO1], which is in turn generated from the layout of the expressive wrinkles in the skin
texture. The intensity of the wrinkles is controlled by the contraction values of the correspond-
ing muscles. Contracting, for instance, the frontalis muscle, which is responsible for frowning,
automatically results in wrinkles appearing on the forehead. Figure 3.5 shows two examples of
different facial expressions with automatically generated expressive wrinkles.

Building the Reference Head

After having obtained triangle meshes for the skin and the skull, both meshes are interactively
equipped with anthropometric landmarks. The bones are then transformed to fit the skin ge-
ometry using these landmarks and a radial basis warping function. Measurement of the skin to
skull distance is performed automatically, as is the attachment of the appropriate skin vertices
to either the jaw or the skull. Muscles are laid out interactively, and eyes, teeth and tongue are
generated procedurally and added to the model. Finally, the connective mass spring network is
set up automatically to yield the animatable model.
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The advantage of this approach is that it starts from the known outside and then proceeds to
construct a matching anatomical structure. After the template has been assembled, new head
models can be derived from it easily.

Creating New Animatable Head Models from the Template

A fully animatable model can be derived for any face where the skin geometry is available. This
is done by deforming all parts of the template head model to adapt it to the target head. To this
end, the reference head and skull are equipped with landmarks at anthropometrically meaningful
positions. For the deformation, feature points must be placed at corresponding locations on the
target skin mesh. From the correspondence between the skin landmarks on the source and target
geometry, a radial basis warping function is set up to transform the template skin mesh to match
the new head geometry.

The skull landmarks are related to their counterparts on the skin by an offset. From this offset and
the new positions of the skin feature points, the target skull landmark positions can be obtained,
allowing to set up the warping function for the skull.

To transform the muscles, the same deformation function as for the skin is applied to the muscle
grids. After that, the muscles for the target head are computed from the grid.

The remaining parts of the face, i.e. the geometric objects for eyes, teeth and tongue, can only
be positioned and scaled automatically, the fine tuning needs to be done by hand.

3.1.3 MEeDUSA Rises to Speak

Lip sync is the ultimate test for every facial animation system due to the high complexity of
mouth movements and the required exactness, both in terms of timing and in terms of config-
uration. Although the majority of people is not proficient in lipreading, they are mercilessly
observant and detect even slight misalignments between audible and visible speech. Actual lip
position seems to be less important.

In order to be convincing, the animation of lip movement for speech must consider coarticula-
tion, i.e. the coloring of speech segments by neighboring phonemes. This phenomenon does not
only play a role at the audible level, but greatly affects lip shape during speech.

Within MEDUSA, the coarticulation model by Cohen and Massaro [CM93] was implemented
for speech synchronization. As input it requires the phonemes of the desired utterance and their
durations. From these, the trajectories for the animation parameters over time are computed.
After an overview of the approach follows an account of how we adapted the method to work
with the muscle-based MEDUSA facial animation system. Synchronized real-time rendering of
audio and animations is described in Section 3.1.4.

The Coarticulation Model by Cohen and Massaro

Cohen and Massaro [CM93] adopted the articulatory gesture model by Lofqvist [L6f90]. The
special feature of gesture-based models [Koh92] is that they do not use phonemes as basic phono-
logical unit but gestures. This extricates them from the problem to map discrete, context-free
segments onto a context-laden continuous signal stream. The structure of an utterance is given
by the coordination of gestures instead of by a string of phonemes. Gestures and phonemes can
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be regarded as the high- and low-level representation of the same system: each segment is as-
sociated with the gestures that are executed during the realization of the segment. This makes a
conversion between the two levels of representation comparatively easy.

Coarticulation means that segments influence one another. This happens via gestures that belong
to one phoneme and that reach into other segments, i.e. coarticulation is the result of overlapping
gestures. Therefore during speech at any point in time the vocal tract is shaped by several
gestures that belong to different segments. Overlapping gestures of successive segments show
blends and aggregations into a single gesture.

While the gestures of a segment are active, they shape the vocal tract together with the gestures of
the neighboring segments; i.e. a segment influences the vocal tract during a certain time interval,
possibly in conjunction with other segments. This time-varying influence of the segment over
the vocal tract is called dominance. The dominance of a segment may differ between articulators.

From this model, Cohen and Massaro derived a method to compute articulator behavior during
speech that includes coarticulation. A dominance function for every facial parameter - phoneme
pair describes the influence of the segment on the behavior of the animation parameter at any
point in time. The function is used as a weight in determining how close a parameter gets
to reaching its goal position and which position it takes at a given time. The dominance of a
segment does not automatically cease at the segment boundary but can well reach into other
segments. Thus, dominance functions of neighboring segments may overlap.

The behavior of a facial control parameter p over time can be determined as follows: if Dy,
is the function describing the dominance of segment s over p, and 7%, is the goal position of
parameter p for the phoneme s, the function describing the behavior F}, of parameter p over time
is given as the weighted average of the targets of p during the whole utterance:

N
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where NV is the number of segments in the utterance.
As dominance functions, Cohen and Massaro propose the negative exponential functions

Fp(t)

Y

as’pe_eHs,PlT(t)lc lf T(t) Z 0
Ds,p(t) = -0 (t)|¢ .
s pe t=erlTOI i (1) <0 .

The parameter o, determines the magnitude of the dominance function. It describes how sus-
ceptible a parameter is to coarticulation, i.e. how close the facial parameter comes to reaching its
target position. The rate at which the function rises and falls is given by #. This parameter can
have different values for increase and decrease, allowing for differences in forward and back-
ward coarticulation. 7(t) describes the time distance from the function peak. For time ¢, 7(t) is
defined as "
7(t) = (tan + %) + tz%Zf) —t.

towar indicates the starting time of segment s and ¢j . is its duration, i.e. tg, + t‘;‘“ is the center
of s. As the peak of the dominance function of s over facial control parameter p need not
necessarily lie at the segment’s center, a parameter ¢, describing the time offset from the center
to the peak of domination can be specified. Variations in parameter ¢ change the characteristics
of the transition between adjacent segments. When c increases, the values for the articulators
are more likely to hit their goal positions while at the same time there is an overall decrease in
coarticulatory effects. Moreover, transitions between segments become more abrupt. Cohen and
Massaro recommend to choose ¢ = 1.
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Adaptation and Extensions

The following paragraphs hold a brief description of the integration of the coarticulation tech-
nique into the MEDUSA system [AHS02b].

Muscles. For visual speech, we found it sufficient to use the following muscles (see Fig-
ure 3.3):

— orbicularis oris upper lip and lower lip (encircle the mouth)

mentalis (raises the chin towards the lips)
— risorius left and right (move the corners of the mouth towards the ears)

— depressor labii inferioris left and right (pull down the lower lip).

The orbicularis oris and the jaw play the most important role in the animations of speech, which
makes the flexibility of MEDUSA’s orbicularis oris model a definite advantage.

Adapting the original coarticulation algorithm to our muscle-based approach is straightforward:
the facial control parameters of the parameterized face model employed by Cohen and Massaro
can be replaced by muscle contraction, jaw and tongue parameters directly.

Speed-up. The greatest known expansion for coarticulation effects is eleven segments. Yet
the original algorithm by Cohen and Massaro considers the effects on all segments in the whole
utterance. Especially for longer pronouncements stretching over several sentences this produces
unnecessary computational overhead. Therefore in our implementation, the algorithm only con-
siders the eleven following and preceding segments of a phoneme. In the twelfth segment, the
function is led to 0 using cubic Hermite interpolation in order to ensure continuity.

Closure and Release Phases. For the production of the bilabial stops /p/, /b/ and the nasal
/m/, it is vital that the lips are fully closed. For the fricatives /f/ and /v/, the lower lip must touch
the teeth. That these target positions are reached exactly is not only important for the production
of the sound but also for its visual perception. For the stops /b/, /p/, the lips are held closed for
a certain (usually very short) time interval, the closure phase. During the following release, the
lips burst open to let the retained air rush out. Although the closure can be as short as 5 msec, it is
used as a cue during speech. With the two above mentioned fricatives it is similar. However, here
the “’closure” is not complete, the air is pressed through the space between the teeth. Therefore,
a release phase does not exist. For the production of /m/, the lips are fully closed but the velum
is lowered, thus opening the connection between the oral and nasal cavity. Through this passage,
the air can escape, again obviating the need for a release phase.

Our system models the closure and release phase of the stops /b/, /p/ separately. The fricatives
/f/ and /v/, and the nasal /m/ are handled in the same way as the bilabial closure. This is possible
because we do not take into account air pressure.

Animation frames are generated at uniform intervals. At the beginning of the closure of a
phoneme, however, a key frame is generated, even if this disturbs the sampling rhythm. By
assigning a high magnitude to the dominance function, the lips come sufficiently close to their
targets. The next key frame is computed at the beginning of the release phase, if existent, or of
the next phoneme. Here, the normal procedure with equidistant time steps is resumed.

The peak of the dominance function of the release visemes is always set to the beginning of the
corresponding interval.
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3.1.4 Synchronized Rendering

In a real-time setting, it is important to achieve not only high rendering frame rates, but also ac-
curate synchronization to audio [AHK02]. In the MEDUSA system, the animation is generated
by a physics-based simulation, running in its own thread on a dual processor PC. This simulation
thread performs numerical integration of the equations of motion for the mass-spring network
representing the facial skin layer. The displacements of skin mesh vertices for one simulation
time step are stored as a simulation key frame in a buffer along with the current simulation time,
measured in wall-clock time. We typically obtain simulation frame rates of about 40 key frames
per second. The second thread on the other CPU is responsible for rendering. Here, successive
simulation key frames are interpolated according to the current rendering time, which is also
measured in wall-clock time.

Simulation and audio are running at the same speed, because animation parameters and audio
are generated from the same phonetic description. Synchronization is thus achieved by initiat-
ing the audio output when the first frame is rendered. Due to stable rendering frame rates of
about 100 fps, we obtain a high consonance between audible speech and rendered images with a
maximum inaccuracy of about 10 milliseconds.

3.2 A Photorealistc Modeling Tool for Faces

For the facial composite system (Chapter 5), we relied heavily on the work by Blanz et al. [BV99,
BSVSO04]. The strength of their approach lies in the fact that it is learning-based. A database of
200 textured 3D scans of mostly Caucasian faces (100 male, 100 female) is used to construct a
morphable model of faces [BV99]. On the one hand, any Caucasian face can be described by
the model, and on the other, faces generated from the model are realistic and natural.

3.2.1 Spanning Face Space with a Morphable Model

The example faces in the database consist of textured 3D meshes obtained from laser scans.
Faces were normalized with respect to position and orientation and brought into full correspon-
dence.

A face can now be represented by a shape vector s and a texture vector t defined as follows:

s = (l‘layhzh "°7‘/Ijnay’rhzn)
- (r17917b17 ‘--7rn79nabn)7
where x;, y;, z; denote the position of vertex v; and r;, g;, b; are the corresponding texture values.
The number of vertices is n. This makes s simply the concatenation of the 3D coordinates of all
mesh vertices, and t the concatenation of the corresponding entries in the texture map.
Doing this for N faces yields a set of shape vectors S = {si, ..., sy} and a set of texture

vectors T = {t1, ..., txy}. Because all faces are in correspondence, new face shapes and
textures can now be obtained through linear combinations of elements from S and 7"

N
Spew = Zaksk with (ai)i]\ileRN
k=1

N
tew = Y bptr  with (b)), e RV,
k=1
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The set of all textured faces within this vector space constitutes the morphable model. Faces will
be realistic as long as they are not too many standard deviations away from the average. Average
shape § and average texture t can be obtained by setting a;, = by, = % fork=1,..., N.

Now let

As, = s,—S8
At, = tp—t

for kK = 1, ..., N denote the difference between a face and the average. These characteris-
tic vectors describe what makes each face unique. Performing Principal Component Analysis
(PCA) on the characteristic vectors will yield an orthonormal base for the face space. Carrying
out PCA is equivalent to diagonalizing the covariance matrices Cg for shape and Cy for texture.
Let AS be the matrix with column vectors As; and AT the corresponding texture data matrix.
Then Cg and C; are defined as follows:

1

Cs = NASAST
1
C, = NATATT. (3.1

The desired diagonalizations

Cs = Ugdiag(c?)U,T
Ci: = Ugdiag(7}) Ul , (3.2)

can be computed from the singular value decompositions of AS and AT:

AS = UMWV
AT = UW V. (3.3)

The columns of Ug and Uy are the principal components, i.e. the eigenvectors s; of Cg and
t; of Cy, arranged in decreasing order of their corresponding eigenvalues. They constitute the
new base. Hereby, 0 < i < IV, because we operate on the linearly dependent As; and At,;.
W, = V/Ndiag(o;) and Wy = VN diag(7;) yield the standard deviations o; and 7; along the
principal components. Vg and V¢ are orthogonal matrices.

Now we can describe every face in terms of the new bases:
N-1
Spew = S+ E a;s;  with (ai)ij\;l e RNV-!
i=1

N-1
thw = t+ Y Git] with (3)N ' e RN
=1

The nice thing is that the eigenvalues are an indicator of the contribution of the corresponding
base vectors in terms of variance. Using only the first 149 principal components (or base vectors)
for texture and shape is sufficient [BSVS04]. The other components describe noise and other
variations that are not face specific. This makes PCA well suited for compression.
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Figure 3.6: Facial attributes. Center: original face. Right: after adding the shape and the
texture vectors for attribute A = heart shape 1x and 3x, respectively. Left: after subtracting the
shape and the texture vectors for attribute A 3x and 1x, respectively. This pushes the face in the
direction opposite to heart shape, i.e. the face becomes more pear shaped.

The ugly thing is that modifications using principal components are very unintuitive, since they
operate on the entire face. While there is a principal component responsible for e.g. mouth width,
it is impossible to describe the effects of other components. For a lot of facial characteristics such
as obesity there simply is no principal component. Therefore some alternative is required if the
system is to be used for modeling faces. The solution proposed by Blanz et al. [BV99, BAHS]
were facial attributes.

3.2.2 Facial Attributes as an Intuitive Means to Modify Faces

Arbitrary facial attributes can be described by shape and texture vectors in face space. By adding
multiples of these vectors to (subtracting them from) a face, the face will be altered to show
the attribute (its opposite) to the desired degree. All other properties of the face will remain

unchanged.
For an attribute A, the vectors As4 and At 4 are obtained as follows: first weights wy, are
assigned manually to all example faces Fy, k =1, ..., N, according to how salient A is in FJ,.

The vectors themselves are then computed as:

ASA = kaSk

2=

M= 11

Aty = wpAty, . (3.4)

2=
i

1

The result of applying both the shape and texture vector of attribute A = heart shape with
varying intensities to a face is shown in Figure 3.6. Remarkably, the individual features of the
face are only marginally affected, when the overall face shape is modified. See below for the
theoretical background.

A face F' with shape s = S + Z,ivz_ll ags;, and texture t = t + Zév:_ll Bt} can be caricatured
by increasing its distance from the average face. For a given caricature level c, the new shape
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and texture vectors are

N-1

S = S+c- QS
k=1
N-1

te. = t+ec- Bity .
k=1

Note that caricatures, as opposed to attributes, are computed in principal component representa-
tion.

In order to increase the expressiveness of the model, the face can be divided into subregions.
This is equivalent to operating on a subspace where vector entries are O for those vertices that do
not belong to the specific segment. Operations are then executed independently on subregions
that are afterwards blended at their boundaries. This is useful when one wants, for example, to
modify the mouth, but does not want the remainder of the face to change.

Mathematical Background

This paragraph delves into the mathematical background of navigating face space by attribute
manipulation. Without loss of generality, we assume that the means of the As;, the At;, and the
w; are zero. For the sake of simplicity, only the case of the As; is considered, but all observations
apply analogously to the At;.

We need to estimate the function f that assigns attribute values to faces. Following the gradient
V f of this function achieves the desired change in attribute with a minimal change in facial
appearance. Given the limited set of data, we choose a linear regression' for f.

The coefficients of the linear regression depend on the scalar product. As a consequence, the
choice of the scalar product also affects the gradient of f, which specifies the rate and direction
of greatest change of the function. As demonstrated at the end of this paragraph, an appropriate
choice in our setting is the scalar product (-}, derived from the Mahalanobis distance. In this
distance measure, which is adapted to the probability density estimated by PCA, distances are
measured relative to the standard deviation observed in the dataset of examples. The resulting
functional f is

f(As) = (As,Asa)um
= (As,Cs tAsy)

for an attribute A.
The regularization problem is then a least-squares minimization

N
E = ) ((As;,Asa)y — w;)?
=1
= ||ASTCs tAsy — w|?
= min

! Linear regression approximates the relationship between an output variable 4 € R and a set of input variables
x1,...,Zn € R,n € N, by fitting a straight line through the data, i.e. y = ao + a1x1 + ... + anTn + e, where the
error e is minimal in the least squares sense and has mean 0. Using this mapping, it is possible to predict the value of
y for new values of the input variables 1, ..., Zy.
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Figure 3.7: Comparison of Mahalanobis distance and L2-norm. Top row: by adding mul-
tiples of the attribute vector As 4 to a face, attributes such as gender can be changed. Charac-
teristics such as the shape of the mouth are retained. Bottom row: simply adding the gradient
V f = Asy, which defines the steepest slope of the attribute in Lo-norm, would alter the indi-
vidual features.

with the data matrix AS and w = (wj, ..., wy). Using the singular value decomposition from
Equation (3.3), as well as Equation (3.2), we obtain

1 —1
E = | (UWVT)T (NUWQUT) Asy — wl?
= |N- VW 'UTAs, — w|?.

The optimal solution can be found using the pseudo-inverse, which is easy to compute here since

the problem is already decomposed into orthogonal and diagonal matrices?:
—1yT\ 1 T
(N VWU ) = NUWV
1
= —AS
N 9y

which leads to the expected result from Equation (3.4):

Vf=Asy = %ASW

| N
= —ZwiAsi,
Ni:l

2For a matrix M € R™ with A = LDRT (L, R orthogonal, D diagonal), the pseudo-inverse A can be com-
puted as AT = RD 'L’
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i.e. the weighted sum of the input vectors. The direction As 4 defines the steepest ascent or

descent in terms of Mahalanobis distance. Adding a vector ﬁAs A to As changes f(As) by
a value of 1:
N N
f(As+ ——=Asy) = f(As) + ——(Asy, Cs ' Asy)
[wi? [[w]?
(3.4,3.1) N 1 1 AR
= A —(—=A —ASA —A
: 1
G ras) + W(UWVTW, UW-'vTw)
= f(As)+1.

The result of adding multiples of Asy4 to faces is shown in Figure 3.6 and in the top row of
Figure 3.7.

In order to motivate the use of the scalar product (-) s, consider the same problem with the
standard scalar product, which will lead to a vector ASVA different from the previous solution:

f(As;) = (As;,Asy)
E = |ASTAsy — w|?

= min .
This can be solved using the pseudo-inverse AS™+ of AST:
&vsA = ASTTw .

For manipulating attributes of faces, we would then add multiples of the gradient V f = AASZ; .
This vector achieves the desired change in f(As) with minimal effect on shape and texture
in terms of Lo-norm. However, individual characteristics are no longer retained (see Fig-
ure 3.7 (bottom row)).

3.2.3 Constraining Attributes

Since domains of attributes are not exclusive, there exist correlations between attributes. Previ-
ous systems for face modeling have relied either on morphing between existing example faces,
or on additive changes that add multiples » € R of vectors a: x — x + ra. Since attributes are
correlated, however, these methods are suboptimal, as demonstrated by the following example:
gender is correlated with the distance between eyes and eyebrows (Figure 3.8 (top right)), and if
the user first selects a value for masculine appearance and then lifts the eyebrows, the result will
look less masculine than desired, see Figure 3.8 (bottom left). In order to avoid iterative refine-
ments, we introduced attribute constraints. If the user chooses to constrain gender, the masculine
appearance will be retained by restricting subsequent modifications to the residual subspace of
shapes and textures. Higher eyebrows are compensated automatically by a more male overall
shape as shown in Figure 3.8 (bottom right).

In order to constrain attributes A;, ¢ = 1,...,m, the current attribute values cs 4, (shape) and
ct, 4, (texture) are stored in vectors cg o and c¢ A, respectively. For face shape vector s and
texture vector t, they are computed as

cs.4;, = (As,Asg,)m
Ct A, — <At,AtAi>M. 3.5)
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e

masculine average high eyebrows

additive constrained

Figure 3.8: Effect of constrained combination. Top row: the shape attributes “masculine”
and “high eyebrows” have partly conflicting effects on the average face. The masculine face
has low eyebrows, while the face with high eyebrows appears feminine. Unlike the additive
solution, where the attributes partly cancel out (bottom left), the constrained combination retains
the selected masculine appearance and eyebrow distance (bottom right).

After modifications to the face, the face’s shape and texture vectors must be updated to fulfill
the constraints. A constrained attribute A; is re-adjusted to the values cs 4, and c¢ 4, by adding
multiples y; and v; to the current shape and texture vectors:

m
ASpew = As+ Z piAsa;
j=1

m
Atpey = At+> 1Aty . (3.6)
j=1
Thus, the set of constraints becomes

m
cs4, = (As+ Z ,u]‘ASAj, As g, )M
j=1

= (As,Asg)m + Z i{As A, Asa; )M
=1

m
Ce A, = (At+ZVjAtAj,AtAi>M
j=1

= (At,Ats,)M+ Z vi(Ata,, Ata, )y -
j=1
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photograph reconstruction scan

Figure 3.9: Illumination-corrected texture extraction. Left: photograph. Center: 3D recon-
struction from the photograph on the left using illumination-corrected texture extraction. Right:
scan of the same person for comparison.

The values for ()72, and (v;)7", are obtained by solving this system of equations. Now we
can compute the output face using Equations 3.6. Operations are thus restricted to the subspace
where all faces fulfill the constraints.

Note that for computing scalar products such as (As, As4,)m an explicit computation of the
high-dimensional matrices Cs ! and C; ™! is not required, due to the decomposition of Cg and
C; into lower dimensional matrices obtained from PCA:

(As,Asa)y = (As,Cs 'Asy,)

(As,UW 2UTAs4.)
(WUTAs, W UTAs ) (3.7)

and analogously for Cy .

3.2.4 Generating New 3D Face Models from Images

Using an analysis-by-synthesis approach, the morphable model can be fitted to a facial im-
age [BV99], see Figure 3.9 (left, center). The model parameters «; and 3;,¢ =1, ..., N — 1,
are refined along with rendering parameters such as camera position, image plane position and
rotation, and intensity of light, until the difference between the face in the original image and a
rendering of the textured 3D face model is sufficiently small. The process starts with the average
face and an estimate of the rendering parameters by the user.

Since the morphable model cannot reconstruct texture details that were not present in the exam-
ple faces, such as moles or scars, texture adaptation is performed subsequent to the model fitting
process. After removing shading effects and shadows using the estimated rendering parameters,
the error between the input image and the prediction by the model is minimized by adjusting the
1,g,b values of the derived model’s texture. Figure 3.9 gives a side-by-side comparison of the 3D
scan of a head and of the reconstructed model using illumination-corrected texture extraction.
Since both model and rendering parameters are known, the extracted face model can be modified
and rendered back into the original image.

In a similar manner, new 3D scans from faces can be expressed by the model.
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source image target image composite

Figure 3.10: Replacing a face in an image. The face in the center image was replaced by the
face from the left photograph to yield the new image on the right.

3.2.5 Replacing Faces in Images

In [BSVSO04], Blanz et al. use their model in a semi-automatic technique to exchange a face
in an image for a different face from another image with completely different pose, lighting
conditions, and viewpoint. For this, the user must manually segment any foreground hair,
such as fringes or sideburns, and click about seven feature points both on the images and on
the average face. Then morphable model and rendering parameters are fitted to both images
automatically. From the source image, the 3D model is taken, and from the target image, the
pose and rendering parameters. The target person’s hair style is also kept.

As starting values, the reconstruction algorithm takes the average face in front view and in the
image center, with the light also coming from the front. The feature points are used to initialize
the optimization process by considering the squared error between the feature points on the
image and the positions of the feature points predicted from the model. The error function is
chosen in such a way as to maximize the probability of rendering parameters and of the output
face with respect to the variations in face space. The model is then fitted to the images as in the
previous section and texture adaptation is performed. Where no texture can be extracted from
the image, the estimated texture from the model is used, and boundaries are smoothed. Facial
symmetry is exploited by mirroring the extracted texture from one side of the face, if the other
side is occluded in the image.

Now the face extracted from the source image can be rendered into the target image with this
image’s rendering parameters. Due to the fact that both sets of parameters have been extracted
based on the same morphable model, this works without any problems.

The final image is composited from target background, rendered 3D source model, and target
foreground hair. In the example in Figure 3.10, the right image was obtained by replacing the
face in the center image with the face from the photograph on the left.
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Non-verbal Facial Animation

The naturalness of a talking head depends on a considerable number of factors related to the
proper integration of visual and audio channel, i.e. of (visible) facial animation and (audible)
speech. One important point is the generation of adequate lip movement synchronized to
speech. Speech-related non-verbal facial expressions, such as raised eyebrows or blinks related
to the structure of the spoken utterance, constitute another component. If such non-verbal facial
expressions are not present in a talking head, it is perceived as soulless, highly artificial, and
plainly boring. In addition, it has been shown that these speech-accompanying movements
enhance understanding [HBGO1], for instance by underlining important words or sentences and
reinforcing utterance structure. A third important factor for naturalness in a talking head is the
expression of emotions [ADMHO04]. In human conversation, expressions of subtle and mixed
emotions can be observed frequently, but the repertoires of most facial animation systems only
include the six universal expressions joy, fear, anger, disgust, surprise and sadness. This is in
part due to the limited visual data on intermediate emotions, and to the fact that they are not
discrete, but rather continuous. Tsapatsoulis et al. [TRK*02] therefore proposed to derive facial
expressions for mixed emotions from a small number of fundamental emotions with known
expressions.

The first part (Sections 4.1 through 4.3) of this chapter deals with our implementation of non-
verbal speech-related facial expressions, both for the case of audio input (Section 4.2) and for the
case of text input (Section 4.3). Section 4.1 gives a general introduction to the topic. In the sec-
ond part (Section 4.4), an algorithm to create facial expressions for a continuum of intermediate
emotions of varying intensity is introduced.

4.1 Non-verbal Speech-related Facial Animation

While listening to another closely visible person, for instance in a dialogue or movie close-up,
the main visual focus of the listener is on the mouth and the eyes of the speaker. Facial expres-
sions during speech, however, are not restricted to lip movement for sound production, but may
include eyebrow raising, nose wrinkling, head movement, eye blinks, and more. These non-
verbal facial expressions play an important role during speech. They enhance understanding by
emphasizing words and syllables of special importance. Speech synchronization for animated
characters should thus not be restricted to mouth movements, but should rather include other
speech-related facial expressions as well in order to render the animations more vivid and be-
lievable.

Speech-related facial expressions are tightly coupled to the prosody of the utterance. Prosody, in
turn, can be determined from the pitch of the signal. At the end of a question, for example, the
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eyebrows raise in synchrony with the pitch. Accented words and syllables are also characterized
by raised pitch.

Paralinguistic and psychologic research provide valuable insights for the automatic generation of
non-verbal facial expressions related to speech: the close relationship between prosodic param-
eters of the speech signal and sentence structure on one hand and facial expressions on the other
hand is described in the following. For an overview of the relevant literature see Section 2.1.2.

4.1.1 Psychological and Paralinguistic Background

Speech-related non-verbal facial expressions perform a variety of tasks. The different types can
be categorized according to their function as follows:

emblems

illustrators

punctuators

regulators

manipulators

affect displays.

In the following, each group is addressed individually.

Emblems. Facial expressions that can replace speech are called emblems. English emblems
are, for example, nodding for “yes”, shaking one’s head for “no”, clicking one’s tongue to ex-
press disapproval. Since they require some kind of semantic knowledge, we do not consider
them in our implementation.

lllustrators. Facial expressions belonging to this category serve to underline important parts
of speech, i.e. the speaker signals to the listener to pay special attention to the so-marked seg-
ments. Facial movements employed as illustrators are manifold. Most common are raising or
lowering the eyebrows, moving the head, or nose wrinkling [Ekm79]. Other possibilities are
tightening or widening of the eyes [Cho91] or eyeblinks. Which type is preferred varies between
individuals. Several experiments (e.g. [CGB1T96, HBGO1]) prove that illustrators are closely
linked to prosody.

Pitch related movement is the same for statements and questions. The only difference between
questions and normal speech is that during questions the gaze of the speaker is directed towards
the listener most of the time and always at the end [Cos91], while for statements the speaker
does not constantly look at the listener.

Punctuators. Punctuators occur at the same positions as punctuation marks in written text,
and they also perform the same task: to structure the utterance. An example are eye blinks during
grammatical pauses or eyebrow movement [Ekm79].

Regulators. These turn-taking related facial expressions regulate interaction during conver-
sations [Dun74, DF77]. At the beginning of his turn, the speaker emits a speaker-state signal: he
turns his head away from the listener and starts gesticulation. Regulators further control the flow
of speech by prompting the listener to take the turn (speaker turn signal) or by indicating that
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the speaker wishes to keep his turn (speaker within-turn, speaker-continuation). If the speaker
turns over the floor to the listener, he indicates this by several clues such as intonation, verbal ex-
pressions (e.g. “you know”), or termination of gesticulation. Speaker within-turn signals occur
during grammatical pauses and involve the speaker looking at the listener to check whether the
latter is still with him. They are often followed by speaker continuation signals (head shift away
from listener), especially if an auditor back-channel occurs before the end of a unit of analy-
sis. Back-channel signals by the listener include brief verbalization such as “m-hm” or “a-ha”,
sentence completions, requests for clarifications, brief restatements, and head nods and shakes.
They indicate to the speaker that the addressee is still following.

Manipulators. Manipulators are movements that accommodate some physical need, such
as licking one’s lips or eye blinking to moisten lips or eyes, respectively. They are performed
unconsciously.

Affect Displays. Facial displays of emotions can either be genuine or merely a reference
to an emotion felt during an event that now constitutes the topic of conversation, or they can
serve as some kind of emblem. Instead of expressing disapproval verbally, facially expressing
disgust without actually feeling this emotion will get the message across equally well. Affect
displays share the problem of emblems that semantical and context knowledge is indispensable
for inserting them into animations in a meaningful way. Since semantical analysis is out of the
scope of our work, we solve this problem for the case of text input by allowing the user to insert
emoticons into the input text. The corresponding expressions are displayed at the indicated
positions by the talking head. This approach is described in Section 4.3.

We implemented illustrators, punctuators, regulators and manipulators for two different input
situations. Section 4.2 explains how position and duration of non-verbal speech-related facial
expressions can be deduced from the information present in the audio signal, whereas Section 4.3
deals with the case of text input. The text is processed by a coupled text-to-speech system, which
performs linguistic analysis of the input. From these intermediate results, both audio signal and
facial animation are generated.

4.2 Non-verbal Speech-related Facial Animation from Audio

As mentioned above, prosodic parameters of the speech signal such as slope and range of
the fundamental frequency FO are coupled to facial expressions [CGB196]. By extracting
these prosodic parameters from the speech signal, we are able to automatically generate facial
expressions that match the prosody of the utterance [AHSO02a].

This section describes a method to compute the following non-verbal facial expression from
speech automatically:

head and eyebrow raising and lowering in accordance to the pitch

gaze direction, movement of eyelids and eyebrows, and frowning during thinking and
word search pauses

eye blinks and lip moistening as punctuators and manipulators

random eye movement during normal speech.
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The intensity of facial expressions is additionally controlled by the power spectrum of the speech
signal, which corresponds to loudness and intensity of the utterance.

4.2.1 Generating Non-verbal Facial Expressions

We have implemented our method for automatic generation of non-verbal facial expressions
from speech as a module in the MEDUSA facial animation system, cf. Section 3.1. The genera-
tion of both speech synchronized mouth movements and non-verbal facial expressions is carried
out in a preprocessing step, which takes about seven seconds (5s for analysis of the speech
signal and 2 s for animation generation) for a speech signal of 30 seconds duration on a Pen-
tium 4 1.7 GHz dual processor PC. Once the speech synchronized animation parameters have
been generated, the animation runs in real-time (40 fps for animation, ~100 fps for rendering).

Facial Expressions from Pitch

To automatically generate head and eyebrow movement from the speech signal, we first extract
the pitch values of the utterance at a sampling distance of 10 ms. We use the Snack Sound
Toolkit [Sjo01], which provides a variety of routines for speech analysis.

Since the production of unvoiced phonemes such as /p/ or /f/ does not involve vocal chord vi-
bration, the notion of pitch does not exist for these sounds. Hence the pitch value is zero, which
leads to a very rugged appearance of the pitch curve. Therefore we eliminate these zero values
and approximate the remaining pitch values using a B-spline curve. Next, the local minima and
maxima of this curve are determined. Their positions and values, however, do not correspond
exactly to the minima and maxima of the original pitch curve. Thus, for every local maximum
of the B-spline curve, position and value of the maximum of the original pitch data from the
interval between the preceding and succeeding turning point of the B-spline curve are retrieved.
An analogue process is performed for the local minima. The “reconstructed” original extrema
are then used for the generation of head and eyebrow movement.

For each of the so determined maxima it is decided whether the differences between its value
and the values of the preceding and succeeding minima exceed a given threshold. This threshold
is to a certain degree speaker dependent: some people use greater amplitude of voice melody
than others. For those maxima where the threshold is exceeded, the head is raised. The amount
of head movement depends on the magnitude of the maximum. We typically generate head
movements of at most three degrees rotation about the horizontal axis.

For each minimum, the difference values to the preceding and succeeding maxima are computed.
Again, if the differences are larger than a given threshold, head movement is generated. In this
case, the head is rotated back into its neutral position. This combination of upward and down-
ward movement of the head supports accentuation of the speech. Figure 4.1 depicts different
stages of the processing of the speech signal and the resulting animation parameters.

Both raising and lowering of the head are synchronized at the phoneme level, i.e. they are realized
at the phoneme boundary closest to the computed point of occurrence.

It is necessary to use only the most prominent maxima and minima, because otherwise too much
head movement would be generated. In order to avoid monotonous movement, the head is also
randomly turned or tilted slightly to one side from time to time.

Head movement is often accompanied by analogue eyebrow movement: eyebrows are raised
for high pitch and lowered again following intonation. In our approach, eyebrow movement is
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generated using the same method as for the head rotations. Figure 4.1 (bottom) gives an example
of pitch dependent eyebrow raising.

According to Cavé et al. [CGB'96], only the magnitude of the left eyebrow’s movement
is related to the FO pattern. This is taken into account by varying the degree of eyebrow
raising for the left side according to the value of the current maximum, while the right part
of the occipitofrontalis is always contracted by the same amount. The duration of eyebrow
raising is not correlated to the magnitude of the movement. This is inherently included in
our implementation, since the duration depends only on the time step between the previous
minimum and the maximum.

Thinking and Word Search

During prolonged or filled pauses (e.g. “...errr ...”) in a monologue, the speaker is typically
either thinking about what to say next or searching for words. In both cases, similar facial
expressions are exhibited: the gaze is directed at an immobile, fixed location to reduce visual
input [Ekm79]. This location is usually either somewhere on the floor or up in the air. When
people look up, they also raise their eyebrows. One possible explanation for this is an increase
in the field of view when the eyebrows don’t occlude part of the vision [Ekm79]. On the other
hand, when people look at the floor while searching for answers, they often show a slight frown.
We have implemented this word search and thinking behavior during pauses (see Figure 4.2).
The duration of pauses that justify thinking and word search behavior seems to be speaker de-
pendent and can hence be adjusted by a parameter. We use a probability of 25 % for the talking
head’s showing a frown during a thinking pause. In all other cases, both gaze and eyebrows are
raised.

Punctuators and Manipulators

As already mentioned, punctuators are facial expressions that are used during speech at the same
positions as punctuation marks in written text, thereby helping to structure the flow of speech.
A good example for such punctuators are eye blinks. In our implementation, we generate eye
blinks at the beginning of pauses.

Since eye blinks also serve the physical need to keep the cornea moist, they fall into the category
of manipulators as well. Such blinks occur on average every 4.8 seconds [PBS96]. Hence, if
the time elapsed between the previous and the next blink exceeds the threshold of 4.8 seconds,
an additional blink is inserted. These involuntary eye blinks have considerable impact on the
lifelikeness of the character.

As described by Pelachaud et al. [PBS96], eye blinks consist of a closing interval (average
duration: 1/8s), the apex (average duration: 1/24s), during which the eyes remain closed, and
an opening interval (average duration: 1/12s), where the eyes open again. Eye blinks are also
synchronized to the speech: beginning of the closing, the apex, and the opening coincides with
the nearest phoneme boundaries. This behavior is simulated in our implementation.

Besides involuntary eye blinks, another example for a manipulator is the moistening of the lips
during extended speech periods. This can be implemented by letting the synthetic character lick
its lips during pauses that match the average lip moistening frequency best. During pauses where
a thinking or word search expression is exhibited, the tongue motion should be slower, because
the speaker is concentrating entirely on what to say next.
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Figure 4.1: Processing the speech signal. In all diagrams, the x-axis shows time [sec]. Top
to bottom: waveform of input speech signal (about 33s); original pitch values [Hz] (red) and
corresponding B-spline curve (blue) with maxima (green squares); resulting head movement;
muscle contractions of the frontalis muscles, which are responsible for eyebrow movement (red:
left brow, blue: right brow). Note that the movement of the left brow is scaled according to the
magnitude of the pitch value.
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Figure 4.2: Snapshot of a reflective moment during speech synchronized facial animation.
Left: only mouth movement is generated from the speech signal. Right: additional movement
of head, eyes, and eyebrows is generated automatically from prosodic parameters. The character
looks up, raises both head and eyebrows, and slightly tilts its head.

Random Eye Movement

During normal conversation, the speaker does not always look at the listener [Cos91]. Moreover,
eyes are almost constantly in motion. For an animated character lacking this behavior, the gaze
is staring and dead. We have included additional random eye movement into our facial anima-
tions. Here it is important that the eye positions do not differ too much between consecutive
movements. Otherwise the movement seems erratic and the character might appear agitated. As
with all upward and downward eye movements, it is crucial that the lids accompany the eyeballs:
if a person’s gaze is directed downwards, the eyelids also close to a certain degree. Contrariwise,
if one looks up, the eyelids open more to prevent an occlusion of the field of view.

Volume-controlled Intensity

Loudness primarily influences the magnitude of speech-related mouth movement for vowels.
Additionally, it is also a good indicator for the distance of the person we are talking to. If
somebody wants to pass on information to a person standing several meters away, he must speak
louder in order to be understood. For the same reason he may also choose to intensify his speech-
accompanying facial expressions. A very slight head movement, for example, is not perceivable
at greater distances, so the speaker may want to nod more vigorously. Therefore we do not only
scale lip movement by the power of the signal, but allow this for pitch related facial expressions
as well. The extent to which they are scaled can be regulated by a parameter. This allows us to
model differences in the behavior of the animated characters.

Using the Snack sound toolkit [Sjo01], we extract a windowed power spectrum of the speech
signal and fit an approximating B-spline curve to it. An interpolating polynomial is fitted to the
local maxima of this B-spline curve and normalized to a [0, 1] range. It indicates the relative
loudness of the speech signal. These relative loudness values are individually weighted for
each animation parameter and used to scale the intensity of facial expressions. The weight
for jaw rotation, for instance, is greater than the weight for eyebrow movement. The weights
can be modified to model characters with different attitudes. Figure 4.3 shows the windowed
power spectrum for an example sentence together with the approximating B-spline curve and its
maxima.
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Figure 4.3: The windowed power spectrum. Top: waveform of input speech signal. Bottom:
windowed power spectrum [dB] (red), approximating B-spline curve (blue), and maxima of the
B-spline (green squares). Again, the x-axis indicates time. This information is used for scaling
facial expressions with respect to loudness.

4.2.2 Results

Incorporating non-verbal speech-related facial expressions into our facial animations definitely
improved their naturalness and made them more appealing. Although the movements are gen-
erated by rules, random variations are taken into account to prevent the facial expressions from
being entirely predictable. Some predictability, however, should remain indeed, since the accen-
tuating facial expressions of humans tend to be predictable as well.

By specifying weights and frequencies for the movements of head, eyes, and eyebrows, different
synthetic characters can be designed that exhibit different ways of visually accentuating their
speech. This is also the case for real humans: some people habitually underline important parts
of their utterances by eyebrow movement, and some by nodding. The frequency and amplitude
of such movements depend highly on the temperament and culture of the individual as well. We
would expect an Italian, for instance, to show much more facial and body gestures than a person
from Northern Europe.

Figure 4.4 shows several snapshots from a facial animation sequence synchronized to a speech
signal both with and without additional non-verbal facial expressions. The animation that in-
cludes non-verbal facial expressions clearly looks more convincing and lifelike.
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I'd like to tell you ...errr ... something!
| |

| |
I I I I

Figure 4.4: Snapshots of facial animation from audio. This facial animation sequence was
synchronized to a speech signal with the textual representation: “I’d like to tell you ...errr
...something!”. Top row: movements of lips and jaw are generated from the speech signal. Bot-
tom row: additional non-verbal facial expressions are created automatically from a paralinguistic
analysis of the speech signal.

4.2.3 Conclusions

We have presented a method to automatically generate non-verbal facial expressions from a
speech signal. In particular, our approach addresses the movement of head, eyes, eyelids, and
eyebrows depending on prosodic parameters such as pitch, length and frequency of pauses, and
the power spectrum of the input signal. These parameters are extracted automatically from
the speech signal and control our facial animation parameters in accordance to results from
paralinguistic research. Resulting animations are definitely more natural and vivid compared to
speech synchronized animations that control mouth movements only.

Integrating a statistical model for gaze during speech as described in [LBB02] would make gaze
behavior much more lifelike by integrating saccades, i.e. the somewhat jerky way eyes move.
Incorporating facial expressions that match the emotion conveyed by the speech signal would
enhance the realism of our system considerably. A learning based approach as used by Chuang
et al. [CDBO2] to extract the emotions neutral, happy and angry, and by Cao et al. [CTFP05] for
the emotions neutral, sad, angry, happy and frustrated allows classification of a limited number
of emotions from the speech signal.
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Hallo!

Ich habe
eine gute
Nachricht
fiir Dich :-)

Figure 4.5: Possible application scenario. A text message is embellished with additional emoti-
cons, sent over the network as an e-mail, and read on the receiver’s computer by a virtual char-
acter showing corresponding emotions.

The following section approaches the problem of emotional displays during speech for the case
of text input by allowing the user to insert emoticons into the text.

4.3 Non-verbal Speech-related Facial Animation from Text

Synthetic audible speech from text input has improved a lot in recent years by taking into
account intonation and syntactic importance of individual words and phrases. The linguistic
analysis of text input, which is necessary to perform speech synthesis, can be used to addi-
tionally drive a facial animation system that generates speech synchronized mouth movements
as well as non-verbal speech-related facial expressions [AHKT02]. Additionally including
emoticons in the text input allows to display emotions, which can be useful in applications such
as the one depicted in Figure 4.5.

As a step into the direction of fully automated facial animation from text, we coupled the
MEDUSA facial animation system (Section 3.1) and the MARY text-to-speech system (Sec-
tion 4.3.2). MARY has the advantage of creating additional output suitable for generating facial
expressions. This enabled us to implement rules to automatically add synchronized non-verbal
speech-related facial expressions to our lip sync animations.

This section is organized as follows: a brief introduction to text-to-audible-speech synthesis is
given in Section 4.3.1, followed by an overview of the MARY text-to-speech system in Sec-
tion 4.3.2. Section 4.3.3 motivates our approach by explaining why MARY and MEDUSA make
such a good team for bimodal synthetic speech production. A sketch of the combined system
can be found in Section 4.3.4. Section 4.3.5 describes how speech-related facial animations
are generated from the output of the text-to-speech system, with a detailed example given in
Section 4.3.6.

4.3.1 Text-to-Speech Synthesis

Text-to-speech (TTS) synthesis [Dut97] is a method for converting written text into audible
speech. It consists of a text analysis part, generating a symbolic representation of a spoken
utterance including a phonetic transcription of the words, followed by the actual speech synthesis
part, in which the symbolic representation is converted into audible speech.

Early systems, such as the MITalk system [AHKS87], employed formant synthesis algorithms
leading to relatively unnatural, “robot-like” voices. A major improvement in naturalness was
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brought about by concatenative synthesis techniques [DPPT96, BC95], which produce synthetic
speech by re-sequencing human recorded speech samples. These new synthesis techniques have
increased the intelligibility of synthetic speech considerably. Naturalness, however, is still a
prime issue. The expressive capabilities of synthetic voices were augmented by modeling vocal
emotions [Sch01, Sch04a, Sch04b]. These systems are used, for instance, in audio-visual speech
synthesis [Sta00].

Speech synthesis systems that are to be used in conjunction with facial animation need to pro-
vide intermediate processing results such as timing information in addition to the resulting
speech. The most wide-spread research system for speech synthesis, the open-source FES-
TIVAL system [BTC99], uses its own, relations-based data representation for this purpose.
New systems using XML-based internal data representations, such as BOSS [KSV*101] and
MARY [ST03, Sch04b], make the output of partial processing results a straightforward task. The
XML data can be further analyzed by subsequent processing components using standard XML
parsers.

4.3.2 The MARY Text-to-Speech System

Our system uses text-to-speech synthesis techniques for the creation of the speech signal as well
as for the description of the speech signal structure needed for the audiovisual synchronization.
The MARY TTS system for German (and lately also English) [ST03, Sch04b, Sch05] was inte-
grated into our system for performing these functions.

MARY creates speech from text in five major processing steps. In a first step, a shallow
linguistic analysis of the plain text input is performed, using statistical algorithms trained on
large text corpora [Bra0O]. This analysis component consists of a tokenizer identifying word and
sentence boundaries including, in particular, the role of dots (abbreviation, ordinal number, or
sentence-final), a part of speech (“noun”, “adjective”) tagger, and a local syntactic parser using
statistically trained trigram models [SB98]. In the case of special text types such as poems, the
tokenizer performs an additional segmentation at line breaks, needed for the line-based speech
rhythm typical for poem reading. In a second step, a phonetic transcription is assigned to each
word. This component performs a lexicon lookup for each of the words, and assigns the phonetic
transcription to the known words. Unknown words, such as proper names, are transcribed
by means of a set of transcription rules. Thirdly, an intonation contour including accents and
boundaries is assigned to each sentence on the basis of the linguistic analysis. Accents are placed
on content words, leading to a pitch excursion and thus to a perceptual prominence needed by
listeners for understanding the meaning of the text. Intonation rises and falls at boundaries to re-
flect the sentence type (question vs. statement). In a fourth step, the symbolic information about
phonetic transcription and intonation is used for determining the precise acoustic parameters of
the utterance, each phoneme’s duration (in milliseconds) and the shape of the intonation contour
(using a sequence of target points with fundamental frequency expressed in Hertz). In a fi-
nal step, these values are interpreted by a waveform synthesis algorithm to create a speech signal.

The MARY system is particularly well suited for integration into our facial animation system. It
was designed to provide, in addition to the synthesized speech, as much explicit information as
possible about the individual processing steps it runs through. This information is valuable for a
number of reasons. Most obviously, exact timing information of the individual sound segments
produced (determined at the second and the fourth processing step described above) is needed
for a proper synchronization of lip movement with the sound. In addition to that, higher level



4.3 Non-verbal Speech-related Facial Animation from Text 47

emoticon emotion | emoticon emotion

1-) happy i) kidding
T sad >:-< angry
:-0 surprised - disgusted

Table 4.1: Emoticons. These emoticons are available in our system to manually add facial
expressions of emotions to animations of speech.

information is available, such as the type (step three) and timing (step four) of accents, which
correspond to the important bits of the sentence. Proper analysis of these accents allows the
rendering of appropriate time-aligned facial gestures, thus conveying a truly multi-modal pattern
of accentuation expression, contributing to both naturalness and intelligibility of the synthesized
audio-visual speech [CPB™94]. A further type of high-level information that can be extracted
from the MARY output is the type and location of boundaries (pauses), including a differentia-
tion between sentence-internal and sentence-final pauses, as well as sentence type (determined
in step one, and specified in steps three and four). The ability to make such distinctions is a
prerequisite for assigning proper non-verbal facial expression, e.g. gaze behavior which differs
between questions and statements, and between sentence-internal and sentence-final pauses.

A significant advantage of the MARY TTS system is that its data representation is based on
XML. Among other things, this allows XML-based markup to be provided in the text input and
to be passed on to subsequent processing components such as, in this case, the facial animation
component, see also the example in Section 4.3.6. This property has been put to use for the
automatic expression of emotions in the speech-synchronized facial animation.

As a simple means for the textual representation of emotions, so-called emoticons (‘“smileys”,
“frownies”, etc.) are widely used, particularly in e-mails. We propose a simple but effective
method for interpreting these emoticons for generating appropriate facial expressions. As a first
list, the emoticons from Table 4.1 are recognized by our system.

These emoticons are automatically translated into XML-based emotion markup before the text
is fed into the TTS system. When the research reported in this chapter was conducted, the
MARY system merely passed this information on to the visual generation component. The im-
plementation of appropriate vocal changes, reflecting the emotion in the synthetic voice, was
only completed after the end of this project (see Section 4.4.2).

4.3.3 Speech Animation and Synchronization

The data required for the synchronization of lip movement to audio is provided by the TTS
system, which generates the corresponding phonemes along with their durations from plain text
input in a SAMPA representation. SAMPA (Speech Assessment Methods Phonetic Alphabet) is
a machine-readable phonetic alphabet. The algorithm proposed by Cohen and Massaro [CM93]
that was implemented for lip sync in MEDUSA is well suited to handle time-based phonetic
descriptions of speech such as the SAMPA representation.

It turned out that the muscle-based facial animation approach of MEDUSA is very well suited
for automatically generating speech synchronized animation sequences. Since the virtual fa-
cial muscles are defined on a reference head and can be easily transferred to a new head
model [KHYSO02], no tedious parameter tuning is required for an individual head model: for
each phoneme, the muscle contractions that have been found to result in the correct correspond-
ing viseme on the reference head can simply be re-used. Finally, since audio signal and muscle
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Figure 4.6: System Components. Text input is converted into a speech signal by the MARY TTS
using linguistic analysis, which additionally drives the muscle-based facial animation system
MEDUSA by providing information required for lip sync and non-verbal speech-related facial
expressions. The emoticons in the text input are handed down by the TTS to MEDUSA, which
inserts corresponding facial expressions into the animation. Rendering and audio output are
synchronized in the final animation sequence.

contractions are generated from the same time-based data, the resulting animations exhibit per-
fect synchronization of audio and video (see Section 3.1.4).

4.3.4 System Overview

Our facial-animation-from-text system consists of three major components:

1. MARY as text analysis module
2. MEDUSA as facial animation module

3. amodule to synchronize rendering and audio output.

Figure 4.6 illustrates the connections between these modules.

The text analysis module performs linguistic analysis of the input text and creates a synthesized
speech signal using a male or female voice. This process is described in more detail in Sec-
tion 4.3.2. The results of the linguistic analysis are passed on to the facial animation module,
which performs two different tasks: from the phoneme-based representation of the input text,
speech-synchronized muscle contraction values for the facial muscles used for speech are gen-
erated. This process takes into account coarticulation (cf. Section 3.1.3). Additional high-level
linguistic information such as different types of accents, pauses, and sentences is converted into
non-verbal speech-related facial expressions, which are also represented as muscle contraction
parameters, see Section 4.3.5. Finally, the animation sequence resulting from the muscle con-
traction values is rendered in real-time (as described in Section 3.1.4), in synchrony with the
audio output of the speech signal.

4.3.5 Generating Facial Expressions

The decoration of speech with non-verbal facial expressions in daily face to face communica-
tion is so habitual to us that we are not even consciously aware of it. If, however, these facial
expressions are missing from a facial animation, we perceive the presentation as boring. It even
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becomes more difficult to understand the meaning of the message due to the lack of visual struc-
turing. As outlined in Section 4.1.1, apart from providing structure, non-verbal facial movement
also serves to accentuate words to indicate high importance, to facilitate turn-taking between
speaker and listener, to underline that a question is being asked, to express emotions or opinions,
and also to fulfill physical needs such as cornea moistening.

Extraction of Speech-Related Facial Motion

Our animations include automatically generated speech-related eye movements, blinks, eyebrow
gestures, and head movement. All movement is synchronized at the phoneme level.

In a conversation between two or more real human beings, a large amount of turn-taking occurs
where the flow of the dialog is controlled using facial gestures. Since we have only one vir-
tual character talking to the user, we model just a small subset of these turn-taking gestures to
emphasize certain parts of the text spoken by the virtual head, for instance, facial expressions
during questions.

Eye blinks. Eye blinks are created as punctuators during pauses to structure the utterance.
Additional eye blinks are inserted to keep up with the natural rate of cornea moistening, which
occurs on average once every 4.8 seconds [PBS96].

Questions. When posing a question, the eyes of the virtual character are directed at the user,
who is assumed to sit directly in front of the screen. This kind of “making eye contact” increases
the impression of the virtual face being aware of its vis-a-vis. Missing eye contact is unsettling,
because the user feels unsure if it is really him who is being addressed by the question. Ad-
ditionally, questions are marked by raising the eyebrows and the head on the last word, lasting
over a potentially following pause. The TTS system provides information about word and sen-
tence boundaries as well as on the type of the sentence, which ensures a correct placement of the
corresponding facial behavior.

Expressions linked to intonation. We generate eyebrow and head movement from the
intonation information provided by the TTS system. The intonation data is given in the form of
(time, value) pairs, where the value indicates the fundamental frequency or pitch value at
the given time. From this data, the local pitch extrema are extracted. In the animation, the head
is raised at every local pitch maximum proportionally to the pitch value. For every local pitch
minimum, the head returns to its rest position, independent from the actual pitch value at the
minimum. To avoid repetitive movements, the head is randomly tilted sideways slightly in about
75 % of all head raises.

Eyebrow raising is implemented similarly, but occurs less often: head movement is more fre-
quently used, because it is easier to detect over distances [HBGO1]. According to Cavé et
al. [CGB™96], we specify the probability of occurrence of an eyebrow gesture at a pitch max-
imum as 0.71. The randomized distribution of actual eyebrow gestures also makes the anima-
tion less predictable. Following the observations made by Cavé, only the amplitude of the left
eyebrow movement depends on the pitch value. Thus the right eyebrow is always raised by a
constant amount.

It is also important that the speaker does not direct his gaze away from the listener at intonation
maxima. Otherwise conflicting information would be conveyed: looking away from the listener
could indicate low importance, while intonational stress, head and eyebrow movement signal
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Hl' ;—) Can you show the way to the conference hall" 1)

Figure 4.7: Snapshots of facial animation from text. This facial animation sequence was
generated from the text input “Hi! ;-) Can you show me the way to the conference hall? :-)”.
Top row: movements of lips and jaw are synchronized to the audio signal created from the text
input. Bottom row: additional non-verbal facial expressions are generated from the results of a
linguistic analysis of the text input.

that important information is communicated. In fact, the speaker may look explicitly towards
the listener in order to emphasize what he is saying [AC76]. In our implementation, the talking
head glances at the listener during 70 % of all accented syllables, and does not shift its gaze
further away from the listener in all other cases.

The bottom row of Figure 4.7 shows an example for intonation-related facial expressions. The
word conference is emphasized. Therefore, the fourth snapshot in the bottom row, which was
taken during articulation of this word, shows the talking head with eyebrows and head raised,
glancing at the listener.

Word search. Explicit eye movement is also performed during prolonged pauses within a
sentence, especially when accompanied by an ‘errr’ sound. In this case it can be assumed that
the virtual character is searching for words. We simulate this behavior by letting the character
either look down and frown (with a probability of 25 %), or raise its eyebrows and stare at an
imaginary ceiling. The talking head also shifts its gaze slightly to the right: Andersen [And99]
reports that rightward lateral eye movements are associated with verbal and linguistic activity.

Regulators. Argyle and Cook [AC76, p.121] found that the speaker looks at the listener
during grammatical breaks both as a signal and to obtain visual feedback. From the viewpoint
of turn-taking, Duncan and Fiske [DF77] call this phenomenon a speaker within-turn signal. We
have implemented this behavior through glances during 70 % of all pauses that coincide with
intonational phrase boundaries (cf. the definition below).

At the beginning of its monologue, the talking head averts its gaze and turns away from the
listener as a turn requesting signal (speaker state). At the end of the utterance, the character
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looks at the listener to indicate that it has finished (speaker turn signal).

Gaze. If, apart from the explicit eye movements described above, the eyes of the talking head
are kept completely still over the course of the animation, the awkward impression of a “dead
stare” is evoked. Hence, we vary the view direction randomly within a small range, making
the character appear more lively. Together with the eyeball rotation, the eyelids open or close
slightly when looking up or down, respectively. The amount of eyelid opening depends also on
the tilt angle of the head: if the head is tilted downward, the eyelids are opened more widely to
allow for a straight viewing direction, and vice versa.

Facial Expressions from Emotion Tags

Emotions are embedded in the text input via emoticons and translated to XML markup included
in the final rich XML representation generated by the text analysis component (cf. Section 4.3.2).
We use this information in the animation module to generate appropriate emotional facial ex-
pressions. The first snapshot in the bottom row of Figure 4.7 shows the wink and the smile that
accompany the friendly greeting indicated by the ; —) symbol.

The apex of the emotion is determined by the position of the emoticon in the text input. We as-
sume an intensity of 100 % of the corresponding emotion at its climax. The area of influence of
an emotion is the intonational phrase during which it occurs. An intonational phrase is a natural
unit in speech production, which often comprises only part of a sentence and is typically sur-
rounded by pauses. Towards the borders of these phrases, the intensity of the emotion decreases
linearly to zero. If an emotion is specified between two phrases, the emotion stretches over both
phrases. For instance, in the poem in Table 4.2, the : — ( emoticon placed after the colon in the
second line of the second verse represents such a case. In our approach, emotional expressions
and speech animation are combined by summing up the respective muscle contraction values.

4.3.6 An Example

At the time we conducted the research described in this section, the text-to-speech component
supported the German language only. An extension to the English language is now available.
Among other examples, we automatically generated a facial animation sequence from the poem
“Die zwei Parallelen” by the German poet Christian Morgenstern (see Table 4.2). The emoticons
;—), :—(, :—o,and :-) in the poem have been inserted manually.

In the XML representation of this poem (see Table 4.3), the original text tokens are highlighted
in grey, e.g. gingen. The animation module uses the original text representation only to find
question marks. Sentences are bracketed by <div> and </div>. Text analysis and speech syn-
thesis information pertaining to a single word is stored in a <t ...>...</t> pair. The attribute
sampa contains the MARY SAMPA phoneme representation of the word. This information is
used to determine the temporal position of the word in the phoneme representation of the in-
put text. In this way, non-verbal facial expressions derived from XML tags are synchronized
to the speech-related mouth movements generated from the phoneme representation. The XML
tags for the beginning and end of an intonational phrase are color coded as Kphzases and
</phrases|, respectively. During the second phrase, the emotion ; —) (“kidding”) is specified
as <emotion type="kidding"/>. The corresponding emotion is blended in at the beginning
of “ins”, reaches its maximum at the specified position, and is faded out at the end of “hinaus”.
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Es gingen zwei Parallelen
ins ; —) Endlose hinaus,
zwei kerzengerade Seelen
und aus solidem Haus.

Sie wollten sich nicht :— ( schneiden
bis an ihr seliges Grab: : — (

Das war nun einmal der beiden
geheimer Stolz und Stab.

Doch als sie zehn Lichtjahre
gewandert neben sich hin,

da wards dem einsamen Paare
nicht :—o irdisch mehr zu Sinn.

Warn sie noch Parallelen?

Sie wubBtens selber nicht, —

sie flossen nur wie zwei Seelen
zusammen durch ewiges Licht.

Das ewige Licht durchdrang sie,
da wurden sie :—o eins in ihm;
die Ewigkeit verschlang sie
als wie zwei Seraphim. : -)

Table 4.2: Example text. “Die zwei Parallelen” by Ch. Morgenstern (1905).

4.3.7 Conclusions

Our system provides an easy-to-use method to generate facial animation from text input with
optionally included emoticons. Due to this simple interface and the full automation of the process
after specifying the text, applications such as depicted in Figure 4.5 can be supported easily. The
facial expression cues improve the quality of speech animation significantly. Figure 4.7 shows a
comparison of some snapshots from such a facial animation sequence. Processing is fast enough
to offer interactive response times in a dialog setting. More work needs to be done, though, to
improve the naturalness of conversation in a human-machine dialog: the system would need to
have knowledge about the emotional state of the user to be able to show appropriate reactions.
For emotion expression to become more convincing, vocal emotion cues must be delivered in
addition to the facial emotion expression. Emotional speech synthesis is possible now [SchO1,
SCDC*01, Sch04b], see Section 4.4.2. It is to be expected that the combined expression of
emotion via both the visual and the auditory channel will improve the perceived naturalness.
The following chapter addresses some of the questions arising in this context.

4.4 Speech and Emotion

Apart from lipsync and non-verbal speech-related facial expressions, a third important factor
for naturalness in a talking head is the expression of emotions [ADMHO04]. Unfortunately, the
general “toolbox” for modeling emotions and hence also their facial or vocal expression is not
yet very well developed. While attempts are under way to organize the vocabulary and models
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<?xml version="1.0" encoding="IS0-8859-1"7?>

<!DOCTYPE maryxml SYSTEM "http://mary.dfki.de/MaryXML.dtd">

<maryxml>

<speaker gender="male">

<phonology nasal_assimilation="on" precision="precise"
schwa_elision="on">

<div>

<phrase>

<t g2p_method="lexicon" pos="PPER" sampa="’7?{s"
syn_attach="1" syn_phrase="_">

Es

</t>

<t g2p_method="1lexicon" pos="VVFIN" sampa="'gI-N@n"
syn_attach="1" syn_phrase="_">

gingen

</t>

<t accent="1+h*" g2p_method="lexicon" pos="CARD"
sampa=""'"tsval" syn_attach="1" syn_phrase="NP">

zweil

</t>

<t accent="1+h*" g2p_method="lexicon" pos="NN"
sampa="pa-ra-'le:-1@n" syn_attach="0" syn_phrase="NP">

Parallelen

</t>

<boundary breakindex="4" tone="h-1%"/>
</phrase>

<phrase>

<t g2p_method="1lexicon" pos="APPRART" sampa="’'?Ins"
syn_attach="1" syn_phrase="PP">

ins

</t>

<emotion type="kidding"/>

<t accent="1+h*" g2p_method="userdict" pos="ADJA"
sampa:"’?{nt—lo:z@" syn_attach="0" syn_phrase="PP">

Endlose

</t>

<t g2p_method="1lexicon" pos="PTKVZ" sampa="hI-’naUs"
syn_attach="1" syn_phrase="_">

hinaus

</t>

<t pos="$," syn_attach="2" syn_phrase="_">

4

</t>

<boundary breakindex="4" tone="h-1%"/>
</phrase>

</div>

</phonology>
</speaker>
</maryxml>

Table 4.3: Example XML code. XML representation of the first two lines of the poem “Die
zwei Parallelen” (cf. Table 4.2 and Section 4.3.6).
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accepting

pleased receptive
enthtgsallggtrlc affectionate
afraid
shy
advenSILgrc])leJﬁ: apprehensive
curious
expectant sad
depressed
hostile disappointed

confused
angry

annoyed disgusted
distrustfulresentful

Figure 4.8: Emotion wheel. Plutchik [Plu80] arranged emotions according to relative similarity.
He found the arrangement to form a circle. Angles between pairs of emotions are a measure for
similarity. Arbitrarily, acceptance was chosen to be at 0° of the circle.

used for the description of affective states [CC03, Sch00, HUMOS5], much work on the expression
of emotion has been limited to simple representations such as basic emotions (see e.g. [Sch01]).
Only recently, more flexible emotion representations have started to be explored in the domain
of speech synthesis [Sch04a] and MPEG-4-based facial animation [TRK 02].

The work presented in this section [ASHSO05] follows this line of development in proposing a
model for the integrated generation of speech and facial expression using the expressive text-
to-speech system MARY in combination with a physics-based facial animation model within
MEDUSA. A representation of emotional states combining categorical and dimensional aspects
is used for the prediction of vocal and facial expression of non-basic emotions, i.e. of low-
intensity and intermediate emotional states.

4.4.1 Emotion Representations

Modeling of emotional expression needs to start from a suitable representation of the emotional
states to be expressed.

Emotion categories

The most straightforward description of emotions is the use of emotion-denoting words, or cat-
egory labels. Human languages have proven to be extremely powerful in producing labels for
emotional states: lists of emotion-denoting adjectives were compiled that include at least 107
items [Whi89]. Several approaches exist for reducing these to an essential core set, the most
used in the literature being basic emotions, a Darwinian concept [CCO03]. Based on the work by
Ekman [EK97], basic emotions are usually used for modeling facial expressions of emotions.
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very active
excited
angry interested
afraid
happy
pleased
very very
negative positive
sad relaxed
content
bored

very passive

Figure 4.9: Emotion disk. Cowie et al. [CDCS™00] proposed a two-dimensional, disk-shaped
emotion space with activation and evaluation constituting the axes.

Emotion dimensions

Many different approaches reported in the psychological literature have led to the proposal of di-
mensions underlying emotional concepts (see [Sch04b] for an overview). Different researchers
came to propose two essential dimensions: activation (from active/ aroused to passive/relaxed)
and evaluation (from negative /bad to positive/ good), sometimes complemented by a third di-
mension, power (from powerful/dominant to weak/submissive). These emotion dimensions
are gradual in nature and represent the essential aspects of emotion concepts rather than the fine
specifications of individual emotion categories. The names used for these dimensions were se-
lected by the individual researchers interpreting their data, and did not arise from the data itself.
This explains the large variation found in the literature regarding the names of the dimensions.
One concrete proposal for an emotion dimension model is the activation-evaluation space, pro-
posed by Cowie et al. [CDCS™00]. In accordance to Plutchik’s emotion wheel [Plu80] (Fig-
ure 4.8), they conceived of the space as circular; but they complemented the circle by a disk
whose outer bounds represent maximally intense emotions, while its center (the origin of the
two-dimensional space) represents a “neutral”’, unemotional state. The further a state is from
the center, the more intense it is, i.e. the radial distance from the center is a measure of emotion
intensity (see Figure 4.9). In accordance to Whissell [Whi89] (Figure 4.10), emotion categories
can be located in that space.

Requirements for a natural emotionally expressive system

Databases of naturally occurring emotions [DCCCRO03] show that humans usually express low-
intensity rather than fullblown emotions, and complex, mixed emotions rather than mere basic
emotions downscaled to a low intensity. A system intended to simulate this kind of expressivity
needs to use an emotion representation capable of representing such states. Emotion dimensions
are a suitable representation: they are naturally gradual, and are capable of representing low-
intensity as well as high-intensity states. While they do not define the exact properties of an
emotional state in as much detail as a category label, they do capture its essential aspects.
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positive \ gvaluation
+ delighted

+ wondering +happy 4 surprised

+ obedient + astonished

+ apathetic + curious

. + bitter
+patient + furious

+ %f_raid
+ gloomy + +disgusted
depressed
+disinterested +angry

+remorseful +anxious

+ unfriendly

+ guilty

activation
passive active

negative

Figure 4.10: Emotion space. According to Whissell [Whi89], emotions can be parameter-
ized by their activation and evaluation scores. Blue emotions are Ekman’s six basic emotions
(e.g. [EK97)).

Mappings between emotion representations

Emotion categories can be located in emotion dimension space via rating tests [CDCA199]. The
mapping from categories to dimensions is therefore a simple task, as long as the coordinates of
the emotion category have been determined. The inverse, however, is not possible: as emotion
dimensions only capture the most essential aspects of an emotion concept, they provide an under-
specified description of an emotional state. For example, the coordinates for anger and disgust
are very close, because the two categories share the same activation / evaluation / power proper-
ties. The features distinguishing between the two categories cannot be represented using emotion
dimensions, so that the corresponding region in space can only be mapped to “anger-or-disgust”
rather than a specific category. One concrete proposal for a mapping from a list of emotion cate-
gories to emotion dimensions was brought forward as a working model by the Net Environment
for Embodied Emotional Conversational Agents (NECA) project [KPG 102, NEC05] (see Table
4.4). The NECA project investigates the concept of multi-modal communication with and be-
tween virtual characters. Special emphasis is put on personality traits and affective behavior. To
this end, research from a variety of different fields, such as natural language generation, speech
synthesis, semiotics of non-verbal expression, and emotion as well as personality modeling, is
integrated.

It should be kept in mind that, given methodological issues [CCO03] as well as the limited empir-
ical basis in existing studies [Whi89, CDCA 199, DCCCR03], mappings between the currently
existing emotion representations are necessarily imperfect.
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category activation evaluation power
joy 17.3 42.2 12.5
distress -17.2 -40.1 -52.4
happy-for 17.3 42.2 12.5
gloating 40.0 30.0 30.0
resentment 0.0 -40.0  -20.0
sorry-for -17.2 -40.1 -52.4
hope 20.0 20.0 -10.0
fear 14.8 444  -794
satisfaction -14.9 33.1 12.2
relief 3.0 33.0 -3.0
fears-confirmed -30.0 -50.0 -70.0
disappointment 24 -249 372
pride 30.0 40.0 30.0
admiration 27.0 53.0 17.0
shame 4.6 -26.3  -62.3
reproach -3.0 -30.0 43.0
liking -14.9 33.1 12.2
disliking 15.0 -35.0 -10.0
gratitude 20.0 40.0 -30.0
anger 34.0 -35.6 20.0
gratification -14.9 33.1 12.2
remorse 4.6 -26.3  -623
love 1.2 33.3 14.9
hate 60.0 -60.0 30.0

Table 4.4: Categories in emotion space. Coordinates for a list of emotion categories on the
three emotion dimensions activation, evaluation and power, as proposed as a first working model
by the NECA project. All scales range from -100 (passive / negative / submissive) via O (neutral)
to +100 (active/ positive / dominant).
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4.4.2 The Emotional Component of the MARY Text-to-Speech System

The MARY TTS system [ST03] has already been introduced in Section 4.3.1. In its more recent
form, it is also capable of producing emotional audible speech [Sch04b].

All emotional prosody rules are integrated in a collective module. It adds appropriate annotations
to the MaryXML text, which are then executed by the other MARY components as described in
Section 4.3.1. As a consequence, all of the parameters are global in the sense that they will be
applied to all enclosed text. The approach is highly transparent, as the link between emotions
and their acoustic realizations is not hidden in various processing components, and it is easy to
maintain and adapt, as all rules are contained in one document.

Since the module is based on linking emotion dimensions to their acoustic correlates, it integrates
well with our approach to visual expression modeling presented in Section 4.4.3.

The key properties of MARY’s emotional component are reported below.

Emotional prosody rules

Schroder [Sch04b] formulated emotional prosody rules on the basis of a literature review and a
database analysis. His literature review brought about the following results. An unambiguous
agreement exists concerning the link between the activation dimension and the most frequently
measured acoustic parameters: activation is positively correlated with mean F 0O, mean intensity,
and, in most cases, with speech rate. Additional parameters positively correlated with activation
are pitch range, “blaring” timbre, high-frequency energy, late intensity peaks, intensity increase
during a “sense unit”, and the slope of FO rises between syllable maxima. Higher activation also
corresponds to shorter pauses and shorter inter-pause and inter-breath stretches.

The evidence for evaluation and power is less stable. There seems to be a tendency that studies
which take only a small number of acoustic parameters into account do not find any acoustic
correlates of evaluation and/ or power.

The limited evidence regarding the vocal correlates of power indicates that power is basically
recognized from the same parameter settings as activation (high tempo, high FO, more high-
frequency energy, short or few pauses, large intensity range, steep F 0 slope), except that some-
times, high power is correlated with lower F'0 instead of higher FO, and power is correlated with
vowel duration.

There is even less evidence regarding the acoustic correlates of evaluation. Positive evaluation
seems to correspond to a faster speaking rate, less high-frequency energy, low pitch and large
pitch range, a “warm” voice quality, longer vowel durations, and the absence of intensity increase
within a “sense unit”.

In a statistical analysis of the Belfast Naturalistic Emotion Database [DCCCRO3], perceptual rat-
ings of the emotion dimensions activation, evaluation and power were correlated with acoustic
measures (see [Sch04b, Sch01] for details). The study replicated the basic patterns of correla-
tions between emotion dimensions and acoustic variables. It was shown that the acoustic cor-
relates of the activation dimension were highly stable, while correlates of evaluation and power
were smaller in number and magnitude and showed a high variability between male and female
speakers. In addition, the analysis provided numerical linear regression coefficients which were
used as a starting point for the formulation of quantified emotion prosody rules.

The effects found in the literature and in the database analysis were formulated in a quantified
way (Table 4.5) and implemented in the MARY TTS system.

In Table 4.5, the columns represent the emotion dimensions, while the rows list all the acoustic
parameters for which emotion effects are modeled. The numeric data fields represent the linear
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. Coefficients
Prosodic parameter
Activation Evaluation Power
pitch 0.3 0.1 -0.1
pitch-dynamics 0.3% -0.3%
B
o range 0.4
% range-dynamics 1.2% 0.4%
-
f accent-prominence 0.5% -0.5%
£ E<-20: falling
qé preferred-accent-shape -20<E<40: rising
-§ E>40: alternating
E accent-slope 1% -0.5%
P<0: high
preferred-boundary-type
P>0: low
rate 0.5% 0.2%
number-of-pauses 0.7%
° pause-duration -0.2%
=3
£ vowel-duration 0.3% 0.3%
nasal-duration 0.3% 0.3%
liquid-duration 0.3% 0.3%
plosive-duration 0.5% -0.3%
fricative-duration 0.5% -0.3%
volume 0.33%

Table 4.5: Emotion dimension prosody rules. Values on emotion dimensions range from -100
to 100, with 0 being the “neutral” value. The percentage values are factors — see Section 4.4.2
for details. Source: [Sch04b].
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Figure 4.11: Scaled expressions. If emotion E and F,., differ only in their activation values,
then the new expression epey can be computed from e by scaling and shifting its parameter ranges
by the ratio of the activation values a’j% (see Equation (4.1)).

coefficients quantifying the effect of the given emotion dimension on the acoustic parameter,
i.e. the change from the neutral default value. As an example, the value 0.5% linking activation
to rate means that for an activation level of +50, rate increases by +25%, while for an activation
level of -30, rate decreases by -15%.

The system was evaluated using a perception test. Its results indicate that the speech synthesis
system succeeded in expressing the activation dimension (the speaker “arousal”), but not the
evaluation dimension. See [Sch04b] for a full account of the experiment.

4.4.3 Intermediate Facial Expressions of Emotion

The human face is capable of displaying many more emotional expressions than just those of
the six universal emotions joy, anger, fear, disgust, sadness, and surprise. However, little visual
data is available on expressions of other emotions, and modeling them is hard, since differences
between them are often subtle. Hence, Tsapatsoulis et al. [TRK™02] have developed a method
to interpolate between affect displays to create new ones. We present their original work before
we describe our own model derived from theirs.

Tsapatsoulis et al. [TRK™02] modeled emotions using a combination of two emotion models:
those by Plutchik [Plu80] and by Whissell [Whi89]. Plutchik ordered 142 emotion words ac-
cording to their similarity. He found that they can be arranged around a circle, the so-called
emotion wheel (cf. Figure 4.8). Hence the relative position of each emotion can be described
by an angle [PIu80, p.170]. This model does not consider activation or intensity, its goal was to
establish similarity. In [Whi89], Whissell describes the second model, a rating of emotion words
according to their coordinates on the activation and evaluation dimensions (see Figure 4.10).
Tsapatsoulis et al. use the angles in the emotion wheel as a measure of similarity, while they use
Whissell’s activation values to describe emotion intensity.

Their head model conforms to the MPEG-4 facial animation standard, i.e. it is animated by
facial animation parameters (FAPs). Tsapatsoulis et al. identified eight fundamental emotions:
acceptance, fear, surprise, sadness, disgust, anger, anticipation, and joy. These are the starting
points for the interpolation. The facial expression e corresponding to an emotion E is described
by the following parameters:

the activation value a g of the emotion F/

its angle on the emotion wheel wg

the set of FAPs I, involved in forming the expression

for each contributing FAP f € F, the range of variations of its value R.(f) associated
with the expression.
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There are two different ways to generate new expressions: if the new emotion FEly is very
similar to the fundamental emotion FE, i.e. if their facial expressions differ mainly in strength of
muscle contraction, then the new expression epey can be computed from the expression e in the
following way (see also Figure 4.11):

Fenew Fe
a
Renew(f) = hRe(f) VfEFe
aE

If the new emotion FEi,, does not clearly belong to a fundamental category, its facial expression
is computed by interpolation between the shifted expressions of the two emotions E; and FEo
that are neighbors to Ejey on the emotion wheel. For an interval [ = [i1, i2], let

1, 11 <1

U(I)Z{ S
—1, 41> 19

define the sign o of I. Let ¢(I) be the center of interval I and s(I) be its length. Then epey is
determined by

. = FelUFe2 “.1)
aEnCW
Rél(f) = op 'R61(f)
1
a/EﬂeW
R,ez(f) = o5 'Rez(f)
2
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;Z—“X “Re,(f) VfeEF,\Fe (4.4)
gt Rey(f) ¥ f € Fey \ Foe, - 4.5)
\ 2

Now, for all f € F,,, with R, (f) =0set F,., := Fe,., \ {f}

In case FAP f is involved in the facial expressions of both generating emotions and its variation
intervals have for both emotions the same sign (Equation (4.2)), i.e. it describes movement into
the same direction, the variation intervals of the generating expressions e; and es are first scaled
and shifted, so that the resulting expressions have the same activation as E\y, (Figure 4.12 top).
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Figure 4.12: Intermediate expressions without parameter conflicts. Top: the range of each
FAP in the generating expressions e; and e is first scaled and shifted according to the ratios of
the activation values afT“eW and af% Then, the shifted ranges are linearly interpolated, param-

1 2
eterized by the emotion angles wg, ., wg, and wg,. Center: the center ¢, := ¢(Re,,, ) of the
new parameter range is determined from c,, := ¢(R,,) and ¢,, := ¢(R.,). Bottom: in the same

way, the length s, = s(R.,., ) of interval R, is computed to yield the new expression epey,.

€new

See also Equation (4.2).
Re] - Renew
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Figure 4.13: Intermediate expressions with parameter conflicts. In case a parameter is present
in both generating facial expressions e; and es, but acts in opposite directions, Equation (4.3)
applies. The ranges R, and R, of each FAP are scaled and shifted according to the ratios of
the activation values % and % The shifted ranges are then intersected to yield the range
R, for this FAP for thel: new exprQession Cnew -

€new

Then from the centers and lengths of the shifted intervals the interval R, (f) can be computed
through linear interpolation between the emotion wheel angles as depicted in Figure 4.12 (center
and bottom).

If the variation intervals of e; and ey have different signs (Equation (4.3)), the interval of the
new expression is the intersection of the original ones, see Figure 4.13.

If f is present only in one generating expression (Equations (4.4) and (4.5)), say, e, then its
variation interval is averaged with the interval of the neutral face eg, for which ag, = 0 and
R, (f) = [0] for all FAPs f.
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zygomaticus major left «—— depressor anguli oris left
zygomaticus major right «—  depressor anguli oris right
orbicularis oris ——  {risorius left,

risorius right}
mentalis «—— {depressor labii inferioris left,

depressor labii inferioris right}

Table 4.6: Antagonists. Facial muscles operating in a roughly antagonistic fashion.

We have modified the approach to work with our physics-based model. Instead of combining the
data from the Whissell and Plutchik studies, as Tsapatsoulis et al. did, we use the set of emotion
words with associated coordinates on the three dimensions activation, evaluation and power, as
proposed by the NECA project [KPGT02] (see Table 4.4). In this first version of the system, we
only use the first two dimensions from this table (see Section 4.4.4).

We use Cowie et al.’s disk-shaped activation-evaluation space (see Figure 4.9) as our model
of emotion dimensions. It appears natural to describe the states in the activation-evaluation
space by means of polar coordinates, using angular orientation w and radial distance from the
center . Here again, the angle w describes similarity. In contrast to Tsapatsoulis et al., we
consider radial distance from the center of the activation-evaluation space to be a better indicator
of emotional intensity than activation (consider the case of despair, which would have high
intensity but low activation), and therefore use this radial distance r rather than the activation
level a for normalising the archetypal states’ intensities to the intermediate state’s intensity in
our equations.

As our “basic” emotions, we use the closest correlates to the six Ekmanian emotions (joy, anger,
fear, disgust, sadness, and surprise) that we can find in Table 4.4: joy, anger, fear, hate, sorry-for,
and surprise (as a state with 100% activation, and 0% on evaluation and power). We are aware
that these are crude approximations, which should be taken as illustrating the idea rather than as
a final truth.

Since our animations are based mostly on muscle contractions instead of MPEG-4 FAPs, we
had to adapt the approach to also work with muscles. We defined our expressions through single
muscle contraction values v € [0, 1]. They can be uniformly scaled by a number between 0 and 1
to achieve different intensities of the expressed emotion, but we leave it to the animator to decide
how small the scaling value can be so that the resulting expression is still perceived as the same
emotion. As a consequence, we have no means of deciding for a given muscle whether to use
Equation (4.2) or Equation (4.3). Hence, we identified facial muscles that operate in a roughly
antagonistic fashion (see Table 4.6).

Let M, be the set of muscles involved in expression e of emotion £ and v.(m) the contraction
value of m € M,.. For simplicity, the animation parameters of eyes, tongue, jaw, and head
are included in M,. This leads to the following modified algorithm for the case where the new
emotion FE.y, is similar to a fundamental emotion E (see Figure 4.14):

Menew = Me (46)
Venew (m) = TE'ﬂ : Ue(m) Vm e Me . (47)
TE
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Figure 4.14: Scaled expressions. If the new expression epey is a weaker or stronger version of
an already existing expression e, the contraction value v of each muscle is scaled by the ratio of
the activations % see Equation (4.7).
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Figure 4.15: Muscle contraction for intermediate expressions for a muscle without antag-
onist. In accordance with Equation (4.9), the muscle contraction values for muscle m in the
generatign epxressions e; and eg, i.e. ve, (m) and v, (M), are scaled by the ratio of the emotion
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disc radii -7 and -~ Linear interpolation between the new values ¥, (m) and @, (m), pa-
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rameterized by the angles on the emotion disc, yields the contraction value v, (m) for muscle
m in the new expression epey.

Since several muscles can be antagonistic to others, e.g. the orbicularis oris to both the risorius
left and the risorius right, we define for every muscle m the set of its antagonists as A_(m)
and the set of muscles that share these antagonists as A4 (m). For m = risorus left for in-
stance, A4 (m) = {risorius left, risorius right} and A_(m) = {orbicularis oris}. If the facial
expression for Fyey, is computed from two fundamental expressions £ and Es, we get:

Menew = Mel U MeQ (48)
TE“CW
hm) = =
1
TE“EW
Ué2 (m) = ? " Vey (m)
2
o wEHCW - wE‘l . / wEQ B wEHCW /
Uencw (m) - wEQ _ wEl e (m) + wEQ _ wEl el (m)
Vme M, : A_(m)=10 (4.9)
TEnew TEnew
5S¢ = Z (T— " Vey (m/) + T Uez(m/)>
mieAs(m) N P Bz
g = Z <T‘Enew Ve, (m/) + T Enew Ve, (m/)>
TE; TE,

m/€A_(m)
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Figure 4.16: Muscle contraction for intermediate expressions for a muscle with antagonist.
Top: in this case, not only the contraction values of muscle m for both generating expressions
e1 and ey are scaled by the ratio of the radii of on the emotion disc, but also the contraction
values vg, 1= Ve, (m?) and v¢, := ve, (M) of m’s antagonistic muscle m® (Equation (4.10)).
Bottom: if the sum of the shifted contractions of the muscle is greater than that of its antagonist,
i.e. Ve, (M) + Vey(m) > Ue, (m®) + Ve, (m®), then the new contraction value v, for m is
computed as the difference between the shifted contraction values of the muscle and the shifted
contraction values of the antagonist: ve,,, (M) = (Te, (M) + Vey (M)) — (Vey (M) + Ve, (M?)).

) 0, if 5, <S5
Uencw m = T T
(S+ — S_) . i . ( Enew Ve, (m> + TEnew 'Ue2(m)> , else

T‘El T‘E2

Vme M, : A_(m)#0 (4.10)

€new

Equation (4.8) is analogue to Equation (4.1). The differences in Equation (4.9) result from
the use of a single value instead of an interval. This obviates the need to compute the center
and length of the interval. Instead we can scale and interpolate the contraction values directly
(Figure 4.15). Since they do not describe a direction but a value, no conflict arises. The main
difference lies in Equation (4.10). S (m) and S_(m) are the summed, scaled contraction values
of all muscles in the same and “opposite” antagonistic class, respectively. The overall scaled
contraction for all muscles in the same and the antagonistic class of m is S (m) — S_(m). This
is distributed to the individual muscles of the set with the stronger scaled overall contraction
according to their contribution to that value (see Figure 4.16). If we assign contraction values
Ve, (m) =0 Vm € M, \ M, and ve,(m) =0 Vm € M., \ Me.,, this obviates the need for
Equations (4.4) and (4.5).

In Figure 4.17, the new expressions anxiety and panic fear have been generated as a scaled ver-
sion of fear, following the method in Equations (4.6) and (4.7). In the examples in Figures 4.18
and 4.19, new expressions (center of each row), have been generated from the fundamental ex-
pressions to the left and right as described in Equations (4.8) to (4.10).
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anxiety fear panic fear
a=38 a = 14.8 a =20

e =-24.1 e=-444 e = -60.1
r =253 r =46.8 r =634
w = 288.4 w = 288.4 w = 288.4

Figure 4.17: Scaling emotions. Anxiety and panic belong to the same fundamental class as fear,
but differ in intensity. Therefore their facial expressions can be generated from fear by scaling
by the ratio of the radii. The angle on the emotion disc is kept fixed for both new expressions,
while the radii are varied, thereby yielding new values for activation and evaluation.

4.4.4 Conclusions

We have presented a flexible approach to generating non-basic, mixed emotional states in the
facial expressions of an anatomically based talking head. This has been achieved by modify-
ing the work of Tsapatsoulis et al. [TRK"02], aimed at an MPEG-4-based face model, to a
physics-based facial animation system. In extension to their work, we have used data in a single
emotion model, the activation-evaluation space [CDCS ™ 00], for indicating both emotion quality
and intensity. As a result, our system is able to generate emotional facial expressions of various
intensities, and to show mixed emotions by a gradual blending of facial configurations of basic
emotions.

We have combined the MEDUSA facial animation system with an emotional text-to-speech
synthesis system which is also based on emotion dimensions. In combining these two compo-
nents, we are able to create photo-realistic animations of a talking head capable of expressing a
continuum of shades of emotion.

There are several possible directions for future work. The most exciting is the extension to
3D emotion space, i.e. to not only consider activation and evaluation, but also power to allow
for a more fine-grained model. Since emotions are arranged inside a sphere in this space, we
propose to project the individual emotions onto the sphere’s surface and to interpolate between
expressions on the surface of the sphere. This would permit interpolation between more than
two expressions. The resulting expression is then projected back to the desired distance from the
origin.

A next step should be the evaluation of the system. This could be done in a similar manner as
described in [SchO4b].

Since emotion categories are more intuitive for most people than positions in activation-



4.4 Speech and Emotion 67

sadness remorse fear
a=-172 a =46 a =148
e = -40.1 e =-263 e =-44.4
r =43.6 r =26.7 r = 46.8
w = 246.8 w =2799 w = 2884

joy gratification sadness
a=173 a=-149 a=-172
e =422 e = 33.1 e = -40.1
r =456 r =363 r =43.6
w =677 w=114.2 w = 246.8

Figure 4.18: Blending emotions. The emotional expression in the middle has been obtained
from those at the left and right using the blending algorithm. The radius r and the angle on the
emotion disc w determine the influence of each generating expression and hence the degree of

similarity to the new one. The coordinates in emotion space have been obtained from the NECA
data.

evaluation-power space, we require coordinates for more emotion words to enhance the user-
friendliness of the system. Another pressing issue is the extension of the system to include
different emotions in a single utterance, allowing for transitions between emotions over time.
Adapting the frequency and strength of the non-verbal speech-related facial expressions to the
current emotion could enhance the realism of the animations, e.g. look downwards more often
and in general show movement with less amplitude when sad. As an additional visible effect of
emotion the artificial face should be capable of blushing. Frequency and intensity of breathing
are also indicators of the emotion currently felt.
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anger
a =34
e =-35.6
r =492
w = 3137

surprise positive surprise joy

a = 100 a = 80 a=173
e=0 e=15 e=42.2
r = 100 r =814 r =456
w=0 w = 10.6 w =677

disgust negative surprise surprise
a = 60 a = 80 a = 100

e = -60 e =-15 e=0

r =849 r =814 r = 100

w = -45 w = -10.6 w=0

Figure 4.19: Blending emotions (continued). See also Figure 4.18. The first example is a not

too active, but rather negative emotion, while the second one could be pleasant surprise, and the
last one unpleasant surprise.
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A Facial Composite System

Every once a while, facial composites appear in newspapers or the news. Law enforcement
agencies use them to track down eyewitnesses, to gather information about suspects, to ask for
help with the identification of unknown bodies, in short, whenever a photograph of the person is
not available.

Formerly, a forensic artist sketched the target face according to the witness’ description. Some-
times this method is still used, since it is the most flexible one.

In the late 1950’s Smith&Wesson® published the Identi-Kit system (Figure 5.1). For every
facial feature it contains a set of transparencies with drawings of the respective face part. The
witness selects the appropriate slides, from which the face is pieced together in a frame. Every
transparency has a unique tag, and frame positions are rasterized. This information could be
cabled to other police stations, where an identical composite was assembled. Practice, however,
showed that this method had its flaws. Due to the lack of shading and the limited number of
slides, resemblance was difficult to obtain. As a result, the forensic artist would quite often draw
onto the slides to enhance the portrayal, thereby proving the original idea worthless.

PhotoFit, a similar system where faces were assembled from photographed features, was de-
veloped in the 1970’s. Later, this methodology was ported to computers and implemented in a
variety of facial composite programs (cf. Section 2.2).

Although facial composites have been around for so long, they do not have the significance one

Figure 5.1: Identi-Kit slide system. The witness selects slides with individual features which
are assembled in a rasterized frame.
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might expect. The reason are low recognition rates, at least partially due to the fact that actively
recalling faces is extremely difficult. The human brain is better equipped for recognition of
faces than for describing them. This deficiency is further aggravated by the stress witnesses
experience and the fact that they may only have caught a brief glimpse of the (possibly masked)
target person. The result will be that the eyewitness’ mental image of the person is vague and
cloudy. The goal of every facial composite system must therefore be to help the witness as much
as possible with this difficult task.

We let this maxim guide us when we developed our mind2model facial composite sys-
tem [BAHS]. It leaves the user in full control, but supports him by automatically incorporating
statistics of faces. The system considers anatomical and ethnical correlations between features
and exploits them to present the user with the most plausible face after every editing step. Fea-
tures that the witness does not remember at all are filled in automatically to harmonize with
the rest of the face. Editing is mostly done by manipulating intuitive attributes, but importing
features from a database is also possible. The user always works with a complete, anatomically
correct three-dimensional face that can be viewed from all directions and under any lighting
conditions.

Since faces from mind2model are three-dimensional and usability is easy, the system also
lends itself to creating characters for movies, advertisement, or computer games, where the
player can model virtual characters according to his imagination or have them impersonate his
personal friends or enemies.

To sum up, both facial composite creation in law enforcement and design of virtual characters
share important properties: the artist/ witness (denoted as source in the following) possesses a
more or less clear mental image of the target face to be created, where it obviously is important
that this mental image must not be modified or diminished during the process of reconstructing
the face. Moreover, the source is usually not able to give a complete description of the target
face. Typically, some striking details, for instance bushy eyebrows or a hooked nose, are present
in the mental images, while other, more subtle characteristics, such as the distance between eyes
and eyebrows, are not.

The mind2model facial composite system is presented in Section 5.1. We conducted a user
study to evaluate the system. Proceedings and results can be found in Section 5.2. The chapter
concludes with a discussion in Section 5.3.

5.1 The mind2model Facial Composite System

The mind2model system was designed for generating models of human faces from vague
mental images or incomplete descriptions. In a way, the system is similar to commercial systems
for creating composite or photofit pictures as regularly used in police work. Compared to these
programs, however, our approach has several significant advantages:

— our GUI offers intuitive ways to modify features of the target face in arbitrary order (see
Figures 5.2 (left) and 5.4)

— unspecified parts of the reconstructed face are automatically completed according to sta-
tistical properties

— anatomical / ethnical correlations within a face are taken into account automatically during
reconstruction
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Figure 5.2: System snapshots. Left: GUI main window. The composite face is displayed in
the large widget on the left. To the right are the buttons leading to the dialogs for attribute
editing (cf. Figure 5.4) and the widget group for selecting (see right), transforming, or importing
facial features from a database (cf. Figure 5.5). The buttons at the lower right are shortcuts for
choosing a frontal or profile view of the composite. Right: in selection mode, a colored mask is
laid over the face with individual segments color coded. The user selects segments by clicking
on the mask. The current selection is highlighted in the small widget on the right.

— a 3D face model is created that can be viewed from an arbitrary viewpoint under arbitrary
lighting conditions

— the resulting face model can be rendered automatically into background images in appro-
priate pose and illumination.

The technology behind this system is based on a three-dimensional morphable model of faces
and extends earlier work by Blanz et al. [BV99, BSVS04] (see also Section 3.2.1). Our
algorithm for navigating face space uses a set of attribute constraints that restrict the face
to a residual subspace. The prediction of unspecified facial features is based on correlation
between different face regions and features learned from the database. Our system makes the
most plausible prediction, given the information provided by the user. Photographs of new
individuals are used to augment the databases available for the 3D modeling process. Using
attribute constraints and face exchange, the database of example faces is automatically adjusted
to the user’s specifications.

This section gives an overview of the functionality and the features of our system. The editing
process starts from the average face computed from 100 male and 100 female faces (cf. Sec-
tion 3.2.1). This initial face is then modified through various editing operations which lead to an
immediate update of the displayed face. To facilitate user interaction, we have implemented an
operation history with multiple levels of “undo”.
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narrow mouth female average wide mouth

Figure 5.3: Correlation between features. Center: average female face. Left: decreasing the
width of the mouth results in a more oval face, a smaller nose, and rounder eyes. Right: making
the mouth wider leads to a more angular face, increases the width of nose and eyes, and the eyes
appear more lively.

5.1.1 General Settings

As a first step, the user (i.e. either the source or an operator) may specify age, gender, and
ethnicity of the target face. This is an optional step, which does not directly affect the face
model. Instead, setting these parameters restricts the selection of example faces shown in the
dialog box for importing features to match the criteria specified for age, gender, and ethnicity
(but see Section 5.1.5).

5.1.2 Segments

Editing operations on one part of the face may also affect other parts due to correlations between
individual features and overall face shape. A narrow mouth, for example, correlates with a
narrow nose, a more oval face, and rounder eyes, while increasing mouth width will lead to a
more angular face, a broader nose, and bigger eyes (Figure 5.3). It is one of the main advantages
of our approach that these correlations are taken into account automatically. In cases where
only little is known or remembered of the target face, exploiting these correlations will lead to
a coherent composite of the most probable face for the given user input, and hence may add
significantly to the faithfulness of the reconstruction. Sometimes, however, the source may want
to change a single feature only without any effects on the rest of the face. Therefore the effects
of editing operations may be constrained to a local area.

For this purpose we divided the face into a shallow hierarchy of segments (see Section 3.2.2).
All segments are listed in Table 5.1. The root of the hierarchy is the entire face, which is divided
into segments corresponding to individual features. Some features are again subdivided into
several child segments. Figure 5.2 (right) shows the GUI of our program in selection mode,
where different segments are color coded. Child segments are shown in different shades of their
parent’s color. The nose, for instance, consists of individual segments for the root, the nose
bridge, the alar wings, the tip, and the base area of the nose, all marked in different shades of
red. In selection mode, the user clicks on one or more segments to add them to the selection mask
shown in the small pixmap on the right. The user may add segments from any hierarchy level
of any facial feature to the selection. Similarly, segments can be excluded from the mask. This
enables the user to restrict edit operations to any combination of segments. To ensure smooth
transitions at the segment borders, we apply a frequency-dependent blending technique [BA83].
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face
forehead | eyes cheeks | ears | nose mouth chin | rest
eyebrows root upper lip tip
orbits, brow ridge bridge | lower lip jaw
eyes wings | peripheral oral region
base
tip

Table 5.1: List of segments. Segments are organized in a three-level hierarchy. The entire face
is divided into features, which in turn have several sub-segments. It is possible to select any
combination of segments and sub-segments.
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Figure 5.4: Editing attributes. By manipulating the sliders, the user modifies particular at-
tributes of the face or selected facial features.

5.1.3 Affine Transformations

Any time during the reconstruction of the target face, affine transformations (rotation, translation,
non-uniform scaling) may be applied to the entire face or a currently selected segment. In the
case of segments, these transformations are useful, for instance, to modify the proportions and
relative positions of features or to account for an asymmetric layout of facial features. Applied
to the entire face, they allow the user to adjust the position and orientation of the face to fit into
a background image (cf. Section 5.1.8).

5.1.4 Facial Attributes

The majority of editing operations is done by manipulating facial attributes such as face shape,
prominence of cheek bones, mouth width, etc. The saliency of each attribute can be set to any
value between -1 and 1 on a continuous scale, where 0 is the default value of the average face.
We have assigned opposite terms to each side of the scale to describe the effect that moving the
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category attributes

overall masculine—feminine, slender—obese, dark—light skin, younger—older, intensity
of freckles, intensity of beard shadow, attractiveness, caricature level

face shape | round—-angular, narrow—broad, pear—heart shape, hollow—puffy cheeks, promi-
nence of cheek bones, pointed—broad chin, receding—protruding chin, distance
between lips and chin, intensity of double chin, intensity of nasolabial fold

eyes slitted—round, upwards—downwards inclination, horizontal distance of eye-
balls, dark-light iris, color of iris, dark-light eyebrows, thin—bushy eyebrows,
straight—curved eyebrows (separate for left and right side), horizontal distance
of eyebrows, distance between eyebrows and eyes

nose short-long nose bridge, narrow—wide nose bridge, narrow—wide alar wings,
flat—round alar wings, snub—hooked nose, distance between nose and mouth

mouth narrow—wide, thin—full lips, dark-light lip color, convex—concave lip line

ears small-large, flat—jug ears

ethnicity Caucasian, Asian, African

expressions | smiling, angry, surprised, scared, deranged, disgusted

Table 5.2: List of Attributes. Attributes are divided into categories to facilitate inspection.

attribute value in this direction will have on the face, for example “retracting” and “protruding”
chin shapes. The attributes available in the system are listed in Table 5.2. Additional facial
attributes can be easily integrated through parameter files. Section 3.2.2 explains how attributes
are learned from a database of example faces.

Attributes are pooled in groups according to the facial feature they affect. For example, all facial
attributes that affect the shape or color of the nose are grouped together. Figure 5.4 shows GUI
dialogs with sliders for attributes of the entire face, attributes describing face shape, and nose
attributes. During editing operations, the effect of each facial attribute on the target face (or on
the currently selected segment) can be restricted to the shape and/or texture of the target face
(selected segment). In addition, different values can be set for the shape and texture parameter
of each attribute. Handling shape and texture separately is desirable, for instance, if the user
wants to change the skin color only, or to keep the texture homogeneous over the entire face
when operations are restricted to a segment.

Of special interest in the context of law enforcement is the caricature attribute. It increases the
distinctiveness of the face by morphing it away from the average (see Section 3.2.2). Deffen-
bacher et al. [DCL81] demonstrated that a slightly caricatured version of a face is in general
easier to recognize than the original.

As explained in Section 5.1.2, some facial features are correlated to other facial features, i.e. ap-
plying an attribute vector to the face may affect previously set values of other attributes.

This is a desired feature of our system, since it makes the sources’ life easier, especially when
their mental image is incomplete. Sometimes, however, the user wants a specific value for a fa-
cial attribute A to remain untouched by further editing operations on other facial attributes. For
instance, the distance between eyes and eyebrows is correlated to gender: moving the eyebrows
up makes the face appear more feminine. Hence the user might want to protect the masculine ap-
pearance of the edit face while increasing the correlated eye—eyebrow distance (see Figure 3.8).
This can be achieved by adding the current setting of attribute A to a list of constraints. Sec-
tion 5.1.7 explains how these constraints are enforced throughout further editing operations.
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Figure 5.5: Selecting features. Either texture, shape, or both is transferred from the selected
face in the database to the currently active segments in the edit head.
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Figure 5.6: Exchanging features. The nose of the face in the center was replaced by the nose
of the face on the left in order to obtain the composite on the right. The entries corresponding to
the nose in the data vector of the left face were substituted for the nose entries of the data vector
of the center face. This gives us the combined data vector of the composite.

5.1.5 Importing Features from a Database

Similar to classical composite systems, mind2model also offers the possibility to import fea-
tures from a database of example faces into the edit face (Figure 5.5). If a face from the database
is selected, the parts of the edit face that belong to the current segment mask (Section 5.1.2) are
replaced by the corresponding features of the example face. In order to exchange, for instance,



5.1 The mind2model Facial Composite System 76

nose all other segments composite

Figure 5.7: Adaptation to local populations. Although there was no African face in the model
database, fitting the morphable model to faces of African Americans and assembling features
from these new faces yields realistic results. For the composite on the right, the eyes were
selected from the face in the first photograph, the nose comes from the second photograph, and
the remaining segments were taken from the face in the third picture.

the nose of the edit face, the user updates the selection mask to contain only the nose segment
and then selects the face with the desired nose from the example database. The nose of that
face will be imported seamlessly into the composite (Figure 5.6) and can be further edited if
desired. Since all face models are in correspondence, the substitution is achieved by replacing
those entries in the shape and texture vectors of the edit face that correspond to the currently
active segments by the respective entries of the data vectors of the example face. Hence the
data vectors of the new face are combinations of the vectors of the input faces. At the segment
boundaries, we perform blending as mentioned in Section 5.1.2. As with attribute editing, the
importing of features from a database can be restricted to shape and/ or texture.

5.1.6 Adapting the Database to Local Populations

The example database consists of 199 Caucasian and one Asian face. Therefore, depending
on where the system is used, the database for importing features must be adapted to the local
population. It is not necessary to collect more 3D scans, but photographs of individuals are
sufficient. By fitting the morphable model to the faces in the photographs (cf. Section 3.2.4), we
obtain 3D faces that can be used to augment the database for feature selection. Even though the
reconstructed shapes are in the linear span of the original database, the method produces faithful
reconstructions that capture the details of the new faces. In terms of texture, mapping the color
values from the images to the model using illumination-corrected texture extraction [BV99] adds
new dimensions to the vector space.

Using this technique, we derived three-dimensional head models for the FERET database of
photographs [PWHRO98] and made them available for feature selection. Figure 5.7 demonstrates
that typical features of faces can be transferred to the composite image given only single images
of new individuals, even for ethnicities not present in the training database.

5.1.7 Constraints

Sources keep complaining about the database approach to feature selection: either they cannot
image what the features would look like in their composite, or their mental image is affected
by the many dissimilar faces. Therefore, at any time during the editing process, the user can
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Figure 5.8: Applying constraints to example faces. Top row: original faces. Bottom row:
transformed faces with common settings for skin color, obesity, mouth width, and eyebrow
bushiness.

restrict the database to only display faces of a certain gender, age range, or set of ethnicities (see
Section 5.1.1). This has the advantage of showing only those images that fit the characteristics
of the target face. The drawback, however, is the reduction in size of the database the user may
choose from. It is more efficient here to approach the problem from a different direction and
adapt the examples in the database to show the most salient traits of the target face.

To this end, we introduced the possibility to constrain an attribute with respect to shape and
texture. Applying a constraint to a database of faces will adapt all faces to show the attribute
with the desired intensity. Thus, when the user has set an attribute that is crucial for the
appearance of the face, he can store this attribute’s value as a constraint and adjust all faces in
the database to it. By bringing the examples in the database as close as possible to the source’s
mental image, the source will be better able to imagine how individual example features will
change the appearance of the edit face. Figure 5.8 shows an example where constraints for skin
color, obesity, mouth width, and eyebrow bushiness were applied to a set of faces from the
example database.

As adumbrated in Section 5.1.4, attribute constraints are also useful to make attribute values
about which the user feels confident immune to future modifications by other, correlated at-
tributes. The example from Section 3.2.3 illustrates such a situation: if the user is content with
the value for masculine appearance, but then increases the attribute value for the distance be-
tween eyes and eyebrows, the result will look less masculine than before due to the fact that
gender and eye—eyebrow distance are correlated. Consequently, the user would have to itera-
tively re-adapt attribute values.

If, however, attribute values of the current edit face are saved as constraints, modifications of
these values by subsequent operations are automatically counterbalanced: the system maps the
face back to the residual subspace defined by the constraints.

Nature and mode of operation of these constraints are detailed in Section 3.2.3. Figure 5.9 shows
the dialog for managing the user-defined constraints.
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Figure 5.9: Dialog for managing attribute constraints. Attribute constraints can be restricted
to texture or shape and to sets of segments. They may be applied to the edit head or to the
database.

5.1.8 Hair Styles and Crime Scenes

The hair style is one of the first things we notice in a person. As it has a large influence on the
way a face is perceived, it is unthinkable that a facial composite system does not offer a selection
of hair styles. The face models from the database that were used to learn facial attributes were
captured without hair. Thus, we cannot handle hair in the same way as other facial attributes.
Despite impressive progress in recent years, 3D hair modeling and rendering is still an open field
of research. Even with photorealistic rendering techniques, collecting a database of hair styles
would require to re-model existing styles. Therefore, we follow the approach of [BSVS04]
described in Section 3.2.5 and render the 3D face model into photographs of hair styles.

This approach means sacrificing arbitrary viewing directions to photorealistic appearance. This
can be partially remedied by providing views of the same hair style from different angles. Since
the FERET database offers photographs from multiple viewpoints for every face, we decided to
use images of people with different hair styles from this collection. After manually selecting
5-15 feature points in each hair style image once, pose, illumination, and contrast for inserting
arbitrary target faces are estimated automatically. This estimation works for both color and
monochrome photographs. We use the monochrome images from the FERET database, since
it was easy to color the hair using image editing software. Thus the user can select a color
(light, dark, and red blonde; light, dark, and red brown; black; grey) together with the hair style.
Figure 5.10 depicts the hair style dialog of our system.

With the same technique, the composite face can also be rendered into images of crime scenes
similar to the relevant incident (as depicted in Figure 5.13). This may help the witness to better
recall the situation and remember more detail.
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Figure 5.10: Selecting hair styles. The user selects hair style and color for the composite face.

Figure 5.11: Adding high frequency detail. Left: eye region of the original composite. Right:
eye region of the composite with high frequency detail added. Iris and sclera are better separated,
the crease above the eyelid is more prominent, and the transition between eye and surrounding
skin is more pronounced.

5.1.9 Adding High Frequency Detail

Due to the limited capabilities of the lens used for capturing the texture during the scanning pro-
cess, and due to repeated resampling of the data, the reconstructed faces are somewhat blurred,
giving the impression that soft-focus was used. In order to make the composite appear sharper,
high frequency detail can be added to the face.

Fitting the morphable model to a face in a photograph using illumination-corrected texture ex-
traction (see Section 3.2.4) yields a texture vector with high frequency information. This detail
is missing in the texture obtained by scanning the same person. Subtracting this scanned texture
from the reconstructed texture gives the desired high frequency detail vector. Since all scans and
generated models are aligned, a detail vector from any person can be used. Adding a multiple of
such a vector to a face will have an effect especially on eyes and skin structure. Also, the face
looks less artificial, as can be seen in the example in Figure 5.11. We found a factor of 0.7 to
yield good results. The decision of whether or not to use this feature is up to the user.
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source | target | after 1/2 day after 1 day
St T mind2model | PHANTOM
Sima T PHANTOM mind2model
Smi Ty mind2model | PHANTOM
Sto Ty PHANTOM mind2model

Table 5.3: Schedule of the experiment. Each target (1), male, T’y female) was described by
both a female (Sf; or Sy2) and a male source (5,1 or Sp,2). Every source described the same
target twice: once for composite creation with PHANTOM and once with our system. Thereby,
succession alternated between sources and was balanced with respect to target person and to
source gender. Delays were half a day and one day, respectively.

5.1.10 Implementation Issues

The target face can be saved as a 3D model for further operations. In particular, it is possible
to change individual facial attributes later on or to display the face with different rendering
parameters. Upon starting the program, the user can either accept the average face as starting
point, or load a face from either a previous session or the database of examples.

In order to allow an easy extension of the system, all data are managed through parameter files.
If the user wants, for instance, to add an attribute, he needs to rate each example face from the
original 3D database, i.e. assign values depending on the saliency of the attribute to the faces.
Labeling the entire database of 200 faces takes about 15 min per attribute. From these ratings,
the attribute vectors are computed automatically as described in Section 3.2.2. We have found
the method to pick up trends in ratings reliably, so labelings may be spontaneous and do not
require too much care. If the user now adds the attribute name together with the location where
the attribute vector is saved to the appropriate attribute category in the parameter file, the GUI
will automatically give access to the new attribute in the respective dialog in the next session.
Similarly, to add a database, the user must create a file containing the locations of all new head
files, the subjects’ ages, their gender and ethnicity. The extended name of this new file is then
added to the parameter file for database management. In the dialog for importing features from
example faces, a tab for the new database is created automatically. Augmenting the collection of
hair styles works analogously.

5.2 User Study and Results

To evaluate our system, we conducted a user study involving four source persons (S, and Sy,
female, S,,, and S, male, age range 25-60 years) and two target persons (1}, male, Ty female,
age range 25-30 years). Sources and targets did not know each other. Each target person was
assigned to two source persons. Sources saw “their” target for 60 seconds. After adequate
delays (half a day up to one day), all source persons participated in reconstructing the target faces
using both mind2model and the commercial PHANTOM PROFESSIONALxp® system. Each
target was described by both a male and a female source. One source per target started with the
PHANTOM program and did their second reconstruction with mind2model, while the other
source person proceeded vice versa. Again, this was balanced for male and female sources. The
overall schedule is shown in Table 5.3.
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The police procedure for the creation of composites still involves a forensic artist who operates
the composite software at the witness’ instructions. We were able to secure the help of a pro-
fessional forensic artist with considerable experience, Herrn Hans from the Landeskriminalamt
(LKA) Saarland'. During his career at the LKA, he had already created more than 2000 facial
composites. Following his normal routine, he generated each composite image in collaboration
with one source using the PHANTOM system and Adobe Photoshop®. First, he asked the source
to describe the target person and the circumstances of the encounter in as much detail as possi-
ble in order to refresh the witnesses’ memory. In addition, the interviewer gets an impression
of the location and its particularities as well as of the target person. The actual reconstruction
is done with the PHANTOM software. The source isolates from a huge database of color im-
ages (roughly 1300 male and 250 female faces) all faces that are in any way similar (nose, eyes,
shape, hair style etc.) to the target. The face that best fits the target with respect to face shape,
age, skin color etc. is chosen as outline, into which (possibly scaled) features from the rest of the
selection are arranged according to the witness’ instructions. Apart from affine transformations,
the system also offers image editing operations. After the forensic artist had assembled a crude
composite, he imported it into Adobe Photoshop® for final retouching. Each composite image
was created in about 2-3 hours.

In contrast, our system was operated by computer scientists who naturally lack the forensic
professional’s psychological background and finesse in conjuring up a detailed image of the
target face before the source’s mental eye. Following Herrn Hans’ example, we also let the
witness describe the encounter and the target person prior to the reconstruction. We adapted
the average face to this description in order to obtain a rough first approximation. This initial
composite was then further manipulated in the presence of the source by translating his/her
comments and directions into editing operations. Among these, manipulations of attribute sliders
constituted the majority. Since the variety of hair styles in our system was not sufficient for the
sources to find a satisfying hair style, we interactively created hair style images according to the
sources’ descriptions using an image editing program. It took on average 1.5-2 hours to create
each target face model.

A comparison of the results created by both our system and the commercial PHANTOM soft-
ware is shown in Figure 5.12. The overall quality of the results shows that creating recognizable
composites is a hard problem for witnesses. In their experiments Laughery and Fowler [LF80]
compared the quality of sketches to Identi-Kit composites and concluded that the Identi-Kit
technique itself was the main limiting factor. The extensive use of Adobe Photoshop® by the
forensic artist excludes this reason. Both for the commercial product operated by the expert
and for our system operated by laymen, the main constraint was the sources’ limited ability for
accurate face recall rather than the flexibility of the system.

Rendering the composite face into an image of a simulated crime scene matching the experience
of the witness (as in Figures 5.13) will set the face into proportion to its surroundings and may
thus help the source to remember valuable detail.

The LKA is in charge of solving the most serious crimes on state level.
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Figure 5.13: Rendering the composite into a real scene. Displaying the composite face in a
scenario similar to the actual encounter may improve the source’s mental image. The inset in the
right image shows a photograph of the “perpetrator”.

5.2.1 Feedback
Forensic Artist

For both targets, the forensic artist favored one of the composites from our system (for 7, the
reconstruction by Sy, and for 7', the reconstruction by S¢o) and stated that he imagined them
to be helpful in a real investigation. Overall, he considered the likeness of 1y by Sr2 using the
mind2model program best, except for the missing ear rings. He underlined the importance of
such jewelry for identification. In particular, he judged our results as superior in terms of overall
face shape, and shape and position of facial features (eyes, nose, mouth). He also appreciated
the intuitiveness and continuous variability of the attribute sliders.

In addition, Herr Hans performed an experiment among the colleagues in his department. Af-
ter first viewing the photographs of the target persons and then the composites, they rated the
composites for each target. Table 5.4 shows the results, with the overall ranking in the last row.
It confirms the forensic artist’s ranking: the general favorites are the composite by Syo with
mind2model for the female target and the reconstruction by St with mind2model for the
male target.

Sources

One source person favored the PHANTOM software, while the remaining three subjects were
more comfortable with the mind2model system. One reason for their preference was the fact
that the professional composite showed a static front view only, while with our system they were
able to view the face from all directions. They used this possibility to model the nose and chin.
One rather short subject found it helpful to tilt the model so as to simulate her view of the tall
target. Although in the PHANTOM system it is theoretically possible to create an additional 90°
view of the face, this requires the database to be present in a second side-face version. Even if
this had been the case in our forensic artist’s version, it would have been very time-consuming,
since all post-processing steps for the front view must be executed analogously for the side view.
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. male target 7T}, female target 1’
judge

best — worst best — worst
J1 Sflm Sf1 P | S,om| Sy2P Sme S P ngP Sip1 M
Jo Sppm | Spom | Sy P | Sy P || Spam | SpeP | Syt P | S
J3 Sfl P Sfl m | Spaom| Sy P ng P ng m | SnuiP | Spuim
J4 Sfl m | Spem Sf1 P | S,2P ng m | SpiP | Spim ng P
Js Smom | Sprm | SprP | Sp2 P || Syt P | Spam | Spa P | Spuim
Je Sfl m Sf1 P | Sy,om | Sy2P ng P |S,1P ng m | Spim
J7 Sf1 m Sﬂ P | Syom | SyoP ng m ng P |S,im| S,1P
Jg Sfl m | Syem Sfl P | S,2P ng m SfQ P | S,iP| Snuim
Jo Sfl P Sfl m | Sp2P | Spem || Spim | Sy P ng m ng P
J1o Sino m Sfl m | Sye P Sfl P ng m | S m ng P | S,1P
J11 Sfl P | S,om Sfl m | Sy P ng m | SpuiP | Spim ng P
J12 Sfl P Sfl m sz m Smg P ng m Sml m ng P Sm1 P
J13 Sfl m | S;ypom Sfl P | S,2P ng P ng m|Syim| Sy P

1l
overa Sfl m Sf1 P Smg m Smg P ng m ng P Sml P Sml m

ranking

Table 5.4: Expert ratings. All subjects (J; to Ji3) were professionals at the LKA Saarland.
After being shown the photographs of the targets, they ordered the composites (see Figure 5.12)
according to perceived quality. The last row shows the overall ranking. P and m are abbreviations
for PHANTOM and mind2model, respectively, and Syi, Sy2, Syu1, and Sy,2 stand for the
source persons, i.e. Sy1 m in column 2, for example, is a composite of target 17, by Sy; using
mind2model. Source: Herr Hans, LKA Saarland.

With the PHANTOM system, the sources also missed the possibility to replace facial features
during the post-processing without loosing all intermediate editing steps. Some subjects had
problems with the database approach in general. One source complained that “having seen so
many other faces [in the database], I can’t recall what’s right or wrong anymore.” This is in
accordance with the findings of Deffenbacher et al. [DCL81], who report that memory for faces
suffers greatly from retroactive interference, i.e. forgetting due to exposure to many different
faces. This seems to be especially noticeable in the short term. Davies and Christie [DC82], on
the other hand, found that interference is not a major problem.

Concerning the reconstruction process with PHANTOM, another subject said: “Despite the huge
amount of faces in the database, I wasn’t able to find the right eyes: I couldn’t imagine what all
those eyes would look like in the face I was going to describe.” We found indeed that most of
the statements of sources were of the type “make the nose wider”, so the slider-interface turned
out to be more appropriate for the reconstruction process than the standard database selection of
the professional systems that our software also offers.

Another step we took to avoid contaminating the source’s mental image was to modify the aver-
age face to roughly fit the source’s descriptions before the subject saw it for the first time. The
source avoided looking at the screen while we started the program and modified the average face
to comply with the initial description. Only then did the source join in the composite creation in
the usual way by giving instructions to the operators. Hence, sources did not start from the aver-
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age face, but from a first approximation of their mental images. Hereby we found that importing
features from the database for this first estimate seemed to confuse and hence frustrate subjects,
probably because the features were too specific. When we used attributes alone, sources were
rather content with the first guess. One even commented that it looked already more like the face
she had in mind than the end result of the composite created using the commercial product. This
was certainly a gross exaggeration, especially when considering the skills of the forensic artist,
but shows the amount of frustration the unnaturalness of a photofit face can induce.

5.3 Conclusions

Creating recognizable facial composites is a difficult problem due to the inadequacy of the
human brain with respect to face recall. The main advantage of the mind2model system is
that due to the underlying statistical model it supports the user in the difficult task of bringing
his mental image to the screen without restraining him. For overall editing operations, the
program presents the most probable solution while leaving the user the freedom to override this
result. The system is intuitive to control and fine-grained. The user always works with an entire
face and hence need not consider isolated facial features. Viewing the composite face model
from several directions is helpful when defining the overall face shape, when editing silhouette
features, or to simulate a different perspective. By definition of the morphable model, face
models of a single target created from several sources can be morphed easily to obtain weighted
combinations.

Psychological studies indicate that human memory for faces is hurt through retroactive in-
terference if subjects are exposed to images of different faces between the study and test
phase [DCLS81]. Therefore, we reduce the variety of faces our sources are exposed to by adjust-
ing the example faces to meet user-specified constraints. Moreover, wrong clues about features
of the target face interfere with the sources’ recollection significantly [JD85]. Our technique
accounts for this by showing at any time the most plausible face according to the correlations
estimated from the database.

Our control experiment with an experienced professional who was operating commercial soft-
ware shows that, apparently, the problem of reconstructing faces is intrinsically difficult. The
sources had seen the unknown targets for only 60 seconds and described them half a day or one
day later. The comparison of the results indicates that the limiting factor is the deficiency of
human consciousness with respect to exact recollection of faces, not the accuracy of our system.
This is also supported by the fact that composites created from photographs using our system
(Figure 5.14) are a lot more accurate than those created from memory.

Considering the forensic artist’s and the sources’ positive reactions, we may conclude that we
took a step into the right direction towards our goal of achieving better facial composites than
existing systems in a less tedious process.

For adding details such as birth marks, scars, or jewelry, we currently propose to follow the
forensic artist’s approach and finish an image of the completed head in the desired view using
an image editing program. Of course it would be desirable to have databases of such accessories
and facial particulars as well as beards and hair styles in 3D, in order to be able to add such
detail at any stage of the creation process, and to allow views of the final composite head from
any direction.
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Figure 5.14: Composite creation from photographs. Left: composite (by a non-artist). Right:
original photograph. The result from this ideal situation demonstrates the flexibility and accu-
rateness of mind2model.

Aging is an important feature in a composite system. It allows to update composites years after
the crime. By collecting facial scans from various age groups, age-related shape and texture
properties could be learned and applied to the composite face.

Using a similar approach to the one presented here, one could generate photospreads for identifi-
cation of suspects by witnesses. Typically, a photospread consists of a picture of the suspect and
five to nine more or less similar “fillers”. These fillers could be generated by defining constraints
for the most prominent features of the suspect, such as nose curvature for a very hooked nose,
and varying the rest of the face by constrained random permutation. Hereby one must carefully
avoid that the original image stands out. An interesting question would be how to determine the
right amount of perceptual similarity.

The underlying morphable model lends itself also to face recognition [BV03]. This means that
mug-shot database search can be done using composite faces created with mind2model. Usu-
ally, if the police suspects that the perpetrator already is in their mug-shot database, the witness
is asked to go through the (usually huge) database to try to identify the criminal. This can be
facilitated by first creating a composite with mind2model according to the description by the
witness, and then running an automatic search on the database with the composite as query. Now
the witness only has to look at the set of best hits returned by the search instead of at the entire
database. Not only should that speed up the process, but it also reduces the stress on the witness
and avoids exposure to too many ‘“wrong” faces.



Hands

Our hands play a vital role in every aspect of our daily lives. Humans use their hands for com-
municating, for eating, playing, writing, working, in a nutshell: for everything. Most people take
the effectiveness and dexterity of their hands for granted without being aware of their compli-
cated structure and the high level of optimization. However, there is more than the mechanical
perfection to our hands: stretching from spiritual significance (e.g. blessing, palm reading), over
idiomatic expressions (e.g. “to put one’s life in someone’s hands”), to the act of shaking hands,
not only for greeting but also for expressing feelings like gratefulness or sympathy, the central
importance of hands is mirrored in a broad spectrum of symbolism.

Cultural differences exist in all areas, including gestures. They do not only lie in the amount of
gesturing, but also in the type of gestures. An often-cited example is a former mayor of New
York with an Italo-Jewish background. Notably, he could switch gesture language along with
spoken language seamlessly.

In spite of the ubiquity of hands in daily life, but probably due to their immense complexity,
hands have only very recently begun to receive due attention in computer graphics. Although
the number of possible applications is large, only a handful of sophisticated hand models
have been developed to date, and even less such models existed at the time we conducted the
research described here. Virtual hand models can be used for teaching and practicing sign
language, and for visualizing translations from speech or text into sign language. They come in
handy for teaching other manual skills as well, for instance operating machines, and for giving
online usage or assembly instructions. In immersive environments, hand models are required
in the simulation of the haptic dimension: for manipulating a virtual object, visual feedback
is helpful. Close-ups in CG movies and games ask for natural models with a lot of detail and
convincing movements. Such situations include communicative hand gestures, involuntary
twitches of the hand that betray the character’s true feelings or intentions, romantic scenes, and
tool manipulation. High demands arise also from the medical field. In systems for hand surgery
planning, a maximum of functionality of the hand must be provided to aid the surgeon in his
decisions.

Incited by this abundance of exciting areas of application that can absolutely compete with
those of the (at least in computer science) much more thoroughly investigated face, we created
a system for hand modeling and animation as described below.

This chapter is organized as follows: after an introduction to the anatomy of the human hand
in Section 6.1, the above mentioned model is described in more detail (Section 6.2). Results
are presented in Section 6.2.4, succeeded by a final discussion in Section 6.2.5. In Section 6.3,
we present an application of the hand model: a baseball pitcher’s hand is visualized during ball
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release for different pitches. The hand pose data was obtained from tracking the hand motion of
a real pitcher.

6.1 Anatomy of the Human Hand

To be able to execute powerful movements and fine motor manipulations alike, the anatomy of
the human hand has evolved to a high level of complexity. A multitude of small parts work
together to perform the diverse tasks of a hand through their concerted efforts. In order to
realistically model and animate this intricate body part, a thorough insight into the structure and
functioning of the individual building blocks is required. With respect to literature, this part
relies mainly on [BH99, PPO1, Fun93, Bau87].

Structure and joint hierarchy of the hand are determined by the underlying skeleton, which is
described in Section 6.1.1. Section 6.1.2 gives an account of the degrees of freedom at individual
joints as well as of joint structure in general. A description of the motor of the hand, i.e. its
muscle apparatus, follows in Section 6.1.3, considering the layout of the musculature both at
the microscopic and at the macroscopic level. The topic is closed with a brief discussion of the
texture and properties of human skin in Section 6.1.4.

6.1.1 Skeleton

The hand’s rather small volume contains 27 bones (see Figure 6.1), not counting radius and ulna,
which lie in the forearm. Together, scaphoid, lunate, triquetrum, pisiform, hamate, capitate,
trapezoid, and trapezium constitute the carpal bones. They connect to radius and ulna through
the wrist joint on their proximal side, and via the carpometacarpal joint to the metacarpals
distally. Although the metacarpals lie completely within the palm, they belong to the fingers.
The actual fingers are supported by the phalanges. The thumb has only two phalangeal bones,
the first proximal phalanx and the first distal phalanx, while the remaining fingers also have
middle phalanges. Tiny sesamoid bones are located both on the radial and on the ulnar sides of
the first metacarpal next to the metacarpophalangeal joint. They are embedded in the tendons
of the adductor pollicis and the flexor pollicis brevis muscles. In the fingers, more sesamoid
bones may be present, varying between individuals. Sesamoids serve to increase the muscles’
mechanical advantage at the joint and to reduce pressure on the underlying tissue. The largest
human sesamoid bone is the patella in the knee.

6.1.2 Joints

The resulting number of degrees of freedom (DOFs) is enough to make any animator sweat.
The proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints of the fingers and
the interphalangeal (IP) joint of the thumb have one DOF each for flexion/extension. The
MCP joints of the fingers have a second DOF for adduction (towards the middle finger) and
abduction (away from the middle finger). This second axis is not at a right angle to the fully
extended finger, but rather rotated by approximately -30° around the flexion/extension axis.
Consequently, the rotation volume of the proximal phalanx during adduction/abduction is a
disc segment only if the finger is extended backwards by 30°, because then the phalanx is
perpendicular to both axes. Otherwise, the rotational solid is a cone. The cone’s diameter
diminishes with increasing flexion until the finger is parallel to the abduction/adduction
axis, i.e. merely revolves around itself [BH99]. Figure 6.2 compares the cone to an umbrella



6.1 Anatomy of the Human Hand 89

. Radius
P

Ulna ——— ~ Lunate
e
Head of ulna — —
_— Scaphoid

Triquet —_———

Jfquetum _ — Trapezium
Pisiform — — .
L UL —— Trapezoid

Hamate —————

T~ Carpometacarpal joint
of thumb (CMC)

~
™ Capitate

\\
> First Metacarpal

~

~
> Metacarpophalangeal
MCP — — —— : - loint of thumb (MCP)

~ .
~_ First
Proximal phalanx

PIP -——— | / 1 B~ First
! N o Distal phalanx

N
DIP -— — > Proximal phalanx

——— Middle phalanx

——— Distal phalanx

———— Tuberosity of distal phalanx

Figure 6.1: Bones of the human hand and forearm. Bone names are underlined in red. The
metacarpal, proximal phalanx, and distal phalanx bones exist in each finger of the human hand,
while the middle phalanx bones exist in all fingers but the thumb. Abbreviations: interpha-
langeal joint: 1P, proximal interphalangeal joint: PIP, distal interphalangeal joint: DIP. Source:
[PPO1].

with its tip at the intersection of flexion/extension and adduction/abduction axis, its handle
along the adduction/abduction axis, and its opening angle determined by the flexion angle
of the finger. During adduction and abduction, the proximal phalanx follows the fabric of
the umbrella. As the opening of the umbrella decreases when flexion increases, the diameter
of the traced cone is also reduced. When the umbrella is fully closed, the fabric and hence
the outstretched finger is parallel to the handle, i.e. to the adduction/abduction axis. As a
result, the finger can only rotate around itself. Therefore, if axes perpendicular to the proximal
phalanx are used to model the joint DOFs, three axes are required to capture the entire range
of movement at the MCP joints. Likewise, the carpometacarpal (CMC) joint of the thumb
is sometimes said to have three degrees of motion. Here, the impression of rotation around
a third axis is evoked by the fact that the two real axes are not completely perpendicular. In
addition, they do not intersect. The same holds for the thumb metacarpophalangeal (MCP)
joint (see [BH99]), but its range of motion for adduction/abduction is small. Of the fingers,
only the fifth and the ring finger have a movable CMC joint. Rotation angles are very small.
The midcarpal joint runs between the scaphoid, lunate and triquetrum on the proximal
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Figure 6.2: Adduction/abduction movement at the finger MCP joints. The adduc-
tion/abduction axis of the finger is not perpendicular to the outstretched finger, but rotated by
about -30° around the flexion/extension axis. Unless bent backwards by 30°, the proximal
phalanx traces a cone, whose diameter depends on the flexion angle. This varying cone can be
compared to an umbrella that is being closed by flexing the finger: its opening diameter will con-
tinually decrease until the finger is parallel to the umbrella handle, i.e. the adduction/abduction
axis. In that case, the finger is only able to rotate around its long symmetry axis. See also
Section 6.1.2. Source: [BH99].

joint cavity filled
with synovial fluid cartilage bone

tendon joint capsule

Figure 6.3: Human finger joint. Micro-photograph. Source: [Bau87].
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side, and the distal carpal row (trapezium, trapezoid, capitate, hamate). It permits flexion
and extension (together with the wrist joint), and extremely limited rotation. The amount of
movement in the joints between the carpal bones (intercarpal joints) of the same row is minimal.

Structurally, every joint is enveloped by a joint capsule. Underneath the capsule, ligament con-
nects the two bones. The bone closer to the center of the body is called proximal bone, the
other one is called distal bone. Each joint face is padded with cartilage. The faces do not touch
directly, but between them build the joint cavity. It is filled with synovial fluid, an extremely ef-
fective lubricant, which allows the two cartilage surfaces to glide past each other almost without
friction. Figure 6.3 shows a micro-photograph of a cross-section of a human finger joint.

6.1.3 Muscles

The number of muscles is even more abundant than the number of joints or DOFs. Figures 6.4
and 6.5 show the muscles of the palm. For the sake of visibility, several superficial muscles are
peeled back. The muscles of the back of the hand are depicted in Figure 6.6. Noticeably, most
muscle bellies are located in the forearm. This is apparent for the extensor digitorum muscles
in Figure 6.6, for instance, where the tendons crossing the wrist are visible, while the muscle
bellies are cut off. Consequently, the majority of muscles affecting the fingers also have an
effect on the wrist joint. Where a tendon crosses a joint, ligaments keep the tendon close to the
joint to prevent bowstringing or exertion of too much leverage.

Muscles are classified according to the location of their muscle bellies. Hence a lot of muscles
that mainly affect the hand are counted as muscles of the forearm. In the following, a brief
account of all muscles involved in hand movement is given.

The superficial ventral muscles of the forearm (i.e. the superficial muscles located on the inside
of the forearm) include the flexor carpi radialis, which causes palmar and radial flexion of the
wrist and carpal joints, and the palmaris longus, which involves palmar flexion of wrist and
carpal joints and tension of the tendon-like aponeurosis. Contraction of the flexor digitorum
superficialis leads to palmar and ulnar flexion of wrist and carpal joints as well as to flexion and
adduction of the MCP joints II-V and to flexion of the corresponding PIP joints. The flexor carpi
ulnaris causes palmar and ulnar flexion of the wrist and carpal joints.

The deeper ventral layer contains only the flexor digitorum profundus and the flexor pollicis
longus, which both cause palmar flexion of the wrist and carpal joints. In addition, the flexor
digitorum profundus flexes and adducts the fingers at their MCP joints, and also flexes them at
the PIP joints, whereas the flexor pollicis longus causes adduction and opposition at the thumb
CMC as well as flexion at the remaining two thumb joints.

There is only a single hand muscle among the radial muscles of the forearm, i.e. the muscles
located on the same side of the arm as the thumb. This is the extensor carpi radialis brevis, a
wrist extensor which also causes abduction.

All superficial dorsal muscles of the forearm are concerned with extension: the extensor carpi
ulnaris restricts itself to the wrist and carpal joints, where it also causes adduction, while the
extensor digitorum extends all joints from the wrist to the DIP joints of the fingers. At the wrist
and carpal joints, it also effects adduction. The extensor digiti minimi does the same, but among
the fingers only affects the pinky.

The deep dorsal layer contains more extensors: the extensor pollicis longus (extension of wrist
and carpal joints, adduction and reposition at the CMCI joint, and extension of the MCPI
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Figure 6.4: Palmar aspect of hand muscles. Right hand. For visualization purposes, several
superficial muscles have been removed. Numbers refer to Table 6.1. Source: [PPO1].
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radius

interosseus membrane of forearm
pronatur quadratus

ulna

ulnar styloid process

flexor carpi ulnaris, tendon

flexor digitorum profundus, tendons
pisiform

abductor digiti minimi

flexor digiti minimi brevis

opponens digiti minimi

lumbricals

abductor digiti minimi

5th metacarpophalangeal joint: joint capsule
dorsal interosseus muscles

flexor digitorum superficialis, tendons
palmar interosseus muscles

dorsal interosseus muscles

tendinous sheath of flexor pollicis longus
adductor pollicis, transverse head
flexor pollicis brevis, superficial head
flexor pollicis brevis, deep head
abductor pollicis brevis

opponens pollicis

flexor pollicis brevis, superficial head
abductor pollicis brevis

flexor retinaculum

tendinous sheaths of abductor longus and extensor pollicis brevis
tendinous sheath of flexor carpi radialis
palmar radiocarpal ligament

flexor pollicis longus, tendon

brachioradialis, tendon

Table 6.1: Palmar hand muscles. Numbers refer to Figure 6.4.
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Figure 6.5: Palmar aspect of hand muscles, deep layer. Left hand. For visualization purposes,
several superficial and the deep flexor digitorum muscles have been removed. Numbers refer to
Table 6.2. Source: [PPO1].
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1 ulna
2 carpal tunnel
3 palmar radiocarpal ligament
4 flexor carpi radialis, tendon
5 flexor retinaculum
6 flexor pollicis brevis, deep head
7 adductor pollicis, oblique head
8 adductor pollicis, transverse head
9 opponens pollicis
10  abductor pollicis brevis
11 flexor pollicis brevis
12 adductor pollicis
13 1st dorsal interosseus
14 Ist palmar interosseus
15 2nd dorsal interosseus
16 vincula longa
17  vinculum breve
18 flexor digitorum profundus, tendons
19 flexor digitorum superficialis, tendons
20 fibrous and synovial sheath of digits of hand
21  4th dorsal interosseus
22 abductor digiti minimi
23 3rd dorsal interosseus
24 flexor digiti minimi brevis
25 3rd palmar interosseus
26  2nd palmar interosseus
27 opponens digiti minimi
28 pisiform

29 flexor carpi ulnaris, tendon

Table 6.2: Palmar hand muscles, deep layer. Numbers refer to Figure 6.5. A retinaculum is a
band of connective tissue that holds an anatomical building block in place.
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Figure 6.6: Dorsal aspect of hand muscles. Left hand. Numbers refer to Table 6.3. Source:
[PPO1].
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1 radius
2 extensor digitorum, tendons
3 head of ulna
4  extensor carpi ulnaris, tendons
5 extensor digiti minimi
6 intertendinous connections
7 interphalangeal joints
8 st dorsal interosseus
9 2nd dorsal interosseus
10 2nd metacarpal
11 extensor pollicis longus, tendon
12 extensor pollicis brevis, tendon
13 trapezium
14 extensor carpi radialis longus, tendon
15 extensor carpi radialis brevis, tendon

16 extensor retinaculum

Table 6.3: Dorsal hand muscles. Numbers refer to Figure 6.6.

and IP joints) and the extensor pollicis brevis (flexion and abduction of wrist and carpals,
abduction and reposition at the thumb CMC, and extension at the MCP joint) for the thumb,
and the extensor indicis for the index finger (flexion and abduction at the wrist and carpal joints,
extension at the MCP, PIP, and DIP joints, and adduction at the MCP). In addition, the abductor
pollicis longus causes flexion and abduction at the wrist and carpal joints as well as flexion of
the thumb metacarpal.

The thenar muscles are concerned with movement of the thumb. Their muscle bellies form part
of the thenar eminence, i.e. the fleshy prominence at the base of the thumb. The abductor pol-
licis brevis flexes the thumb metacarpal and effects abduction and opposition at the CMC joint.
Opposition describes the movement that brings the thumb and the fifth finger in a position where
their tips touch. Other muscles concerned with thumb opposition are the opponens pollicis, the
adductor pollicis, and the flexor pollicis brevis. In addition, these muscles adduct the thumb at
the CMC joint. The flexor pollicis brevis and the adductor pollicis also cause flexion at the MCP
joint.

Opposite to the thenar eminence, in the hypothenar eminence, lie the muscles that affect the
pinky only. They all cause opposition at the CMC V joint. For the opponens digiti minimi, this
is the only task, while the abductor digiti minimi also causes abduction at the MCP joint and
extension at the interphalangeal joints, and the flexor digiti minimi brevis abducts and flexes
the fifth finger at its MCP. In addition to the muscles effectuating finger motion, there is also
the palmaris brevis, a superficial muscle beneath the skin that tenses the skin of the hypothenar
eminence.

The remaining intrinsic muscles are the four lumbricals and the seven interossei. The lum-
bricals originate from the tendons of the flexor digitorum profundus and insert into the distal
phalanges II-V. They cause flexion and radial abduction at the MCP joints II-V and extension at
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Tension

Figure 6.7: Blix curve. The length-tension curve after Magnus Blix combines tension from
active contraction and from passive stretch. Source: [BH99].

the interphalangeal joints. The three palmar interossei affect the index, ring, and little finger,
effecting flexion and adduction towards the middle finger at the MCP joints and extension at the
interphalangeal joints. The four dorsal interossei flex the second to fourth finger at the MCP
joints and abduct the index and ring fingers from the middle finger. The latter is rotated radially
by the second and towards the ulna by the third muscle.

Considering the mechanical properties of muscles, their output is tension, from both active con-
traction and passive recoil. The passive component is due to the elasticity of collagen and other
tissue that is stretched together with the muscle. The curve for passive lengthening of the muscle
in the length-tension diagram in Figure 6.7 shows tension rising continuously as the muscle is
being stretched. When the muscle contracts actively, there is an optimal length where the muscle
can exert its maximum active contractile force. This state of maximal force coincides with
the muscle being at its resting length, i.e. the length the muscle assumes when the limb is relaxed.

The muscles in the hand are striated muscles. Striated muscles (see Figure 6.8) of mammals
have the sarcomere as minimal active unit. All sarcomeres are of the same size and condition,
so variations in length or thickness between muscles are due to the number and arrangement of
the sarcomeres. A sarcomere comprises two parallel zwischenscheiben or Z plates. On the inner
faces of the Z plates, actin filaments are attached that interdigitate with myosin filaments. This is
depicted in Figure 6.8 (right (a)). When the sarcomere is activated, the attraction between actin
and myosin increases, resulting in an increase in the fibers’ overlap, see Figure 6.8 (right (b)).
Muscle fibers (see Figure 6.9) are composed of several long chains of sarcomeres that are ar-
ranged Z plate to Z plate. These chains are called myofibrils. Hence, when the sarcomeres
contract, so does the muscle fibril. Sarcomeres of adjacent myofibrils are aligned. Muscle fibers
are pooled into muscle fiber bundles by sheaths of connective tissue, which also fills in the gaps
between the individual fibers. These bundles finally make up the muscle. So muscle tension is
the result of the individual sarcomeres of a muscle contracting in unison.

Differences between individual muscles result from differences in fiber length and from differ-
ences in the cross-sectional area of the muscle. Fiber length is proportional to potential excur-
sion, while the cross sectional area determines the muscle’s maximum possible tension.

Quite often the tendons run along part of the muscle, with fibers originating and inserting along
the way as depicted in Figure 6.10. This means that muscle length does not necessarily equal the
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Figure 6.8: Striated musculature. Left: each of the eight vertical myofibrils contains three
sarcomeres. Source: [Bau87]. Right: (a) schematic view; (b) for contraction, the actin filaments
are pulled between the myosin filaments.

muscle Lo
connective tissue

Z plate actin  myosin

myofibril

Figure 6.9: Building blocks of a muscle. Striated muscles consist of bundles of muscle fibers,
with individual fibers composed of long chains of sarcomeres called myofibrils. Source: [Spe98].

length of the muscle fibers. The flexor carpi ulnaris, for example, is a very strong muscle with
little potential for excursion: the muscle belly may be 25 cm long, but be accompanied during
21 cm by the tendon of insertion, and have fibers of only 4 cm length [BH99].

6.1.4 Skin

Skin consists of three main layers, the epidermis, the dermis, and the hypodermis. Figure 6.11
shows a cross section of human skin.

The epidermis unites the surface layers, which protect the body against harmful external
influences, such as dehydration and ultraviolet rays. Finger and toe nails originate from this
layer. It contains nerve endings, but no blood vessels. At its lowest level, new cells form
continuously. They are pushed towards the surface, hornificate, die, and finally scale of. The
living, lowest layer is nourished by the dermis, a dense ply built of fibro-elastic connective
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tendons

7 4

muscle fibers

Figure 6.10: Attachment of muscle fibers to tendons. Muscle fibers rarely extend over the
entire length of the muscle, but insert at an angle into the part of the tendon that runs parallel to
the muscle belly.
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Figure 6.11: Cross section of human skin. Source: [Bau87].

tissue. It contains the sweat glands, hair follicles and blood vessel endings, and provides strong
resistance to tearing forces. By constricting or dilating the dermal blood vessels, the body
temperature is regulated. The collagen fibers of the dermis are arranged parallel to the skin
surface. The wavy bundles uncurl when the skin is stretched. Variance in coiling results in
local differences in the resistance to forces. The innermost layer is the hypodermis, which is
composed of loose connective, mainly adipose (i.e. fatty) tissue. It serves as insulator, storage
unit for nutrients, and shock absorber. The skin is connected to the muscle layer by the fascia.
To some extent, the skin is able to glide over this connective tissue.

Due to the multilayering and the mix of different materials involved, the skin exhibits compli-
cated biomechanical properties [Fun93]. As a basic element of skin, collagen greatly influences
its stress-strain relationship. This property describes the deformation resistance of a material
with respect to the stress applied. The stress-strain relationship of skin has been shown to be
non-linear and essentially bi-phasic. Up to a certain point, skin offers low resistance to defor-
mation, because the collagen fibers uncurl and stretch. This behavior changes abruptly once the
fibers are stretched fully and aligned to the direction of the applied stress: resistance to deforma-
tion increases drastically.

If a constant load is applied to skin tissue, the effects of creep can be observed. The skin will
continue to elongate, although the applied force does not change. If, on the other hand, the
length of the specimen is kept constant, stress relaxation causes the internal stress and hence the
resistance to stretching of the tissue to decrease over time, i.e. less force is required to keep the
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specimen at the desired length. Hysteresis is a result of stress relaxation. If stress is first increased
and then decreased again, the stress-strain curve of the unloading process will differ noticeably
from that of the loading process. If cyclic loading and unloading of skin tissue is performed,
the stress-strain curve will change with every repetition. Differences between successive curves
decrease and finally disappear. This process is called preconditioning.

The above mentioned characteristics illustrate the fact that skin is not truly an elastic solid, but
also shares properties with viscous fluids. Such materials are called visco-elastic.

6.2 A Physics-based Anatomical Hand Model

This section describes our human hand model with anatomical structure [AHS03], suitable for
real time animation using physics-based simulation of muscles and elastic skin properties (Sec-
tion 6.2.1). The model contains a hybrid muscle model (Section 6.2.2) that comprises pseudo
muscles and geometric muscles. Pseudo muscles directly control the rotation of bones based on
anatomical data and mechanical laws, while geometric muscles deform the skin tissue using a
mass-spring system. Section 6.2.3 proposes a deformation technique based on feature points to
warp the complete structure of the reference hand model to an individual hand model derived
from a photograph.

Our motivation to choose a physics-based approach controlled through muscle contraction values
was the obvious advantage of such an approach: animations are anatomically and physically
correct by default. This way, the user need not take care of anatomical or physical limitations
but can proceed to design his animations without worrying about the “gory details”.

6.2.1 The Reference Hand Model

The central component of our system is a prototype hand model with anatomical structure, which
is denoted as the reference hand model in the following. The building blocks of our reference
hand model are:

— the skin surface, which is represented by a triangle mesh consisting of 3000 triangles

— the skeleton of the hand, composed of 29 triangle meshes corresponding to the individual
bones of the human hand and forearm (cf. Figure 6.12 (right))

— ajoint hierarchy, which matches the structure of the skeleton, with an individually oriented
coordinate system at each joint center defining valid axes of joint rotation

— a set of virtual muscles, which are embedded in between the skin surface and the skeleton

— a mass-spring system, interlinking the skin, skeleton, and muscles.

Scanning the hand of a living individual is impracticable with current technology, since it is
impossible to capture the hand’s geometry from all sides while keeping the hand completely
immobile. Therefore we used a plaster cast to obtain the skin mesh of our reference hand model,
see Figure 6.12 (left). To obtain the mold for the cast, the “model” held her hand into a jar filled
with a special mass similar to caoutchouk silicone (Quickform® by Hobby Time®), that within
20 min sets to a rubber-like consistency. Due to the softness of the material, pulling out the
hand after this time span was no problem. The mold could immediately be filled with plaster.
After the plaster had hardened, the final cast was extracted by peeling away the cast material.
Small bumps due to air bubbles in the cast were chipped off with a knife. The cast captures
an astonishing amount of detail, even pores are present in the model. This plaster model could
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Figure 6.12: Skin mesh. Left: the skin mesh of our reference hand model was obtained by
scanning a plaster cast of a human hand. Right: the skin of the hand model was rendered semi-
transparently to make the underlying bones visible.

be scanned easily. The resulting triangle mesh was reduced to a size of 3000 triangles to allow
for real-time simulation of skin deformations. The triangle meshes of the individual bones were
taken from a publicly available skeleton model [3D 03] (see Figure 6.12 (right)) and scaled to
match the proportions of the skin mesh.

Using the hierarchy of coordinate systems of the individual links, we can model the degrees of
freedom for each joint easily. The only joints we ignore are the joints between the individual
wristbones. This is justified, since their contribution to the overall movement is negligible.
Movement at the intercarpal joint is transferred to the wrist. To overcome the restriction of two
orthogonal DOFs, we model the MCP joints of the fingers and the thumb CMC joint as having
three DOFs. The muscles must be designed to accommodate the dependencies between the
flexion/extension and rotation axes: if a muscle flexes or extends the joint, it must also rotate it
to some small degree. The CMC joints of the index and middle finger are fixed, while the ring
and little finger CMC joints have two DOFs each with a very small range of motion.

Since muscles usually have greater strength and possible excursion than is required to move the
limbs, it is also important to constrain the range of each DOF of the joints to avoid movement
which is in reality prohibited by the shape of the joints, by the joint capsules, and by ligaments.
For each DOF, we set an upper and a lower limit as listed in Table 6.4.

Animation

Our reference hand model is animated through muscle contraction values given over time. These
contraction values are specified as key frames with an arbitrary temporal distribution. During
simulation, the contraction values are interpolated using a smooth spline function (Hermite),
which is evaluated at discrete points in time according to the desired rendering frame rate. At
each point in time, the deformation of all muscles and the position of each bone is computed
from the current contraction values. In turn, muscle and skeleton movement is used to update the
positions of those nodes of the mass-spring system that attach to muscles and bones, respectively.
In the final step of each simulation cycle, the Lagrangian equations of motion are integrated
through time for all nodes of the mass-spring system employing a leapfrog Verlet integration
method [AT89]. The resulting displacements of the mass nodes attached to the skin mesh effect
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joint DOF range [ °]
wrist flexion / extension -50-50
adduction/abduction | -85 -90
CMCI1 flexion / extension -35-55
adduction/abduction | -40—35
rotation -10-0
MCPI1 flexion/ extension -30-85
adduction /abduction -5-5
IP flexion / extension -60 — 90

CMC IV | adduction/abduction -5-5
CMC V | adduction/abduction -5-5

MCP 11 flexion / extension -25-90
adduction/abduction | -20 - 30
rotation -10-15
MCPIII | flexion/extension -25-100
adduction/abduction | -15-15
rotation -10-7
MCP 1V | flexion/extension -25-115
adduction/abduction | -15-15
rotation 25-5
MCP V flexion / extension -25-115
adduction/abduction | -25-15
rotation -18-5
PIP II-V | flexion/extension -5-110
DIP II-V | flexion/extension -15-90

Table 6.4: Joint limits. The listed joint ranges are used in the model. They were measured on the
hand that served as model for the template hand. Values are in accordance with [Cha90, LWHOO],
but may require adjustments for subjects with very different mobility.

the deformation of the skin surface. Details about the geometric muscle model, the mass-spring
system, and the integration method can be found in [KHSO1], and in Section 3.1.2.

Rendering

Rendering is currently performed using plain OpenGL functionality. Conceptually, it would
make no difference to output key frames for a more sophisticated rendering engine. However, we
found the possibility to instantly view animations running at real time rates worthwhile enough
to accept the somewhat degraded rendering quality. Our focus was on the geometry of the hand
model and its deformation during animation, but textures would clearly increase the model’s
realism.

6.2.2 A Hybrid Muscle Model

Muscle mechanics of the human hand have evolved to a degree of complexity that is unique
among mammals. This evolutionary process took place in order to allow us to perform fine
motor manipulations and powerful manual work alike. Modeling and simulating all the subtle
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anatomical details of the muscles of the human hand is an impractical approach. In this section,
we present a hybrid muscle model, which is flexible enough to cover the rich variety of muscle
mechanics in the human hand and yet runs in real-time.

Our hybrid muscle model comprises pseudo muscles and geometric muscles. Both of these
muscle types are animated exclusively through muscle contraction values within the range [0, 1],
where 0 means no contraction at all, and 1 means full contraction. Pseudo muscles directly
control the rotation of the bones of the hand, while geometric muscles account for skin tissue
deformation through physics-based simulation employing a mass-spring system that connects
muscles, skin, and bones. Though each of these two muscle types can be used individually, we
typically use a combination of a pseudo muscle and a geometric muscle to represent the effects
of an anatomical muscle in the human hand. For instance, the opponens pollicis is implemented
by a pseudo muscle that rotates the proximal phalanx of the thumb and by a geometric muscle
(Muscle (2) in Figure 6.15) that bulges the skin. Table A.1 in Appendix A lists the pseudo
muscles of our system together with their specific parameters.

For each animation key frame, all pseudo muscles are evaluated to update the position of the
bones. The segments of geometric muscles that are attached to bones are transformed corre-
spondingly. Next, the geometric muscles’ deformation due to contraction is computed. Finally,
the mass-spring system is updated to evaluate the resulting skin deformation.

Pseudo Muscles

Pseudo muscles are virtual muscles that convert a given contraction value ¢ € [0, 1] into rotation
angles ¢y, for each DOF of each joint Jj, they affect. Our model for this conversion is based
on anatomical data and mechanical laws. However, our implementation is only valid under two
assumptions:

1. the bones that are rotated are long bones, which are represented as solid cylinders in our
mathematical model. This is true for all bones of the human hand with the exception of
the wristbones.

2. when rotating a hierarchy of bones, the number of levels in that hierarchy has to be less or
equal to three. In our hand model, this is true for the fingers starting at the knuckles and
for the thumb starting at the trapezium.

The second restriction is solely due to computational efficiency. Below we describe a technique
to efficiently compute the rotation of chains of bones up to length three, which imposes the
restriction above. To avoid this limitation, one could apply similarity transforms and the parallel
axis (Steiner) theorem [Bar98] for transforming inertia tensors from one coordinate frame
to another. This approach removes the limitation of the hierarchy depth at the cost of more
expensive computations. In addition, the moment of inertia needs to be stored as a tensor to
allow for the application of the parallel-axis theorem for non-parallel rotation axes. In the
approach described below, we simplify our model by taking into account only the magnitude of
torque and moment of inertia. Treating these variables as vector-valued tensors would render
the computational costs of evaluating our model too high for real-time simulation.

Each pseudo muscle represents an anatomical muscle with a given maximum contraction force
ﬁmax. Relative values of ﬁmax for all relevant hand muscles are listed in [BBT81]. The direction
of ﬁmax has to be estimated from the layout and the attachment point of the muscle / tendon (see,
e. g., [PPO1]). The contraction force of a muscle is not constant, but depends on the current fiber
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Figure 6.13: Rotating a single bone. Tendon 7 crosses joint 7 at a distance ||7]|. The force F
that 7 exerts at 7 is tangential to 7 and hence perpendicular to 7, but not necessarily perpendic-
ular to @. F causes the distal bone of joint J to rotate by an angle  around axis @, which points
out of the image plane. The moment of inertia J of the distal bone depends on this segment’s
length and mass.

length ¢ of the muscle: a muscle that is either (passively) stretched or (actively) contracted has
a lower contraction force than a muscle at its fiber resting length £y. The non-linear relationship
between the contraction force ﬁcomr and / is depicted in Figure 6.7 (see also Section 6.1.3). We
fitted a quadratic curve to the diagram shown in Figure 6.7 and obtained the relationship:

Foone() = [1 4 (0]t — 1.1)2] P 6.1)
In addition to the contraction force, each anatomical muscle exhibits a stretch force: a muscle
that is (passively) stretched counteracts the stretch with a force Fgiyetch, Which depends on the
muscle’s current fiber length ¢. Obviously, the stretch force is equal to zero if ¢ < £(. Again, we
fitted a curve to the diagrams shown in [BH99] and obtained:

B 2.77- (U/lg —1)? - Fax, >0
{ (t/f0 = 1) Fina = 6.2)

Fstretch(g) = 0 (<t
) 0 -

According to [BH99], the inequation 0.6 £y < ¢ < 1.6 £o must hold, i.e. a muscle cannot become
arbitrarily short or elongated. These upper and lower limits for ¢ are — both in reality and in our
model — usually not reached, since the corresponding joints are constrained in their rotations (cf.
Section 6.2.1). The current fiber length £ of a pseudo muscle is initialized to the resting length
£y and updated by the arc length of the rotation at the joints it passes.

Rotation of a Single Bone. To see how our conversion model works, let us assume for now
that there is exactly one (cylindrical) bone that is rotated about the joint’s axis of rotation @ due
to the contraction of one pseudo muscle (Figure 6.13). Given a contraction value ¢ € [0, 1], the
resulting force the muscle exerts on the bone is:

ﬁ = C- ﬁcontr(e) + ﬁstretch(e) . (63)

Let 7 denote the moment arm of the force working point. The amount of torque is computed as
follows:

T = sen((@,7 x F))- |7 x F|, (6.4)
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where (@, 7" x ﬁ> denotes the dot product of the rotation axis and the vector-valued torque. In
addition, the following relationship between torque 7', angular velocity w, and moment of inertia
J holds [GVI3]:

dw
T=J —. 6.5
1 (6.5)
Since the angular velocity w equals the first temporal derivative of the rotation angle ¢,
de
= — 6.6
ar (6.6)
we can discretize time and get:
Aw & ArgtoT, 6.7)
Whnew = Wold + Aw,
Ap (6:6) At - Wnew »

C — = Ap-|7].

Using this approach, we can compute the increment A of the rotation angle from a contraction
value c. The only unknown variable is the moment of inertia J. Although J is quite expensive to
compute for an arbitrarily shaped body, it can be easily computed for a solid cylinder of length [
and mass m that is rotated about an axis orthogonal to its length axis and passing through one of
its ends [Gol02]:

1
ng.m.ﬂ. (6.8)

In our case, the length [ is the length of the bone rotated about the joint’s axis. The mass m is
the mass of the bone plus the mass of the tissue surrounding the bone. Values for this bone-plus-
tissue mass can be found in [BY94].

The above formulas do not consider friction yet. This means that a rotation, once it has started
due to muscle contraction, will not stop again. To take into account friction, we have to modify
Equation (6.4) by subtracting the torque of friction:

T = sen((@ 7 x FY) - [[7x Fll = g+ Jwoal| - (6.4)

where o is the coefficient of friction. In accordance to medical literature, we use p = 0.015.
Finally, we extend our mathematical model to allow for an arbitrary number n of pseudo muscles
that affect the rotation of the bone. Each pseudo muscle ¢ (i = 1,...,n) exerts the force:

—

E = Ci- ﬁcontr,i(gi) + ﬁstretch,i(‘&l) . (63/)

Since each muscle has its own moment arm 775, the total amount of torque is given by:

T = sen(@, ) [IT] — 5 wol | - (6.4")

with .
T =S iixF. (6.9)

=1

Values for fiber resting length, affected DOFs, and moment arm of the individual muscles are
assembled in Table A.1 in Appendix A.
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Figure 6.14: Moments of inertia for a chain of bones. 7, 5, J;_1, and J; are consecutive
joints with moments of inertia J;_o, J;—1, and J;, respectively. « denotes the rotation angle of
joint 7;, and f3 is the rotation angle of joint ;1.

Rotation of Chains of Bones. For the derivation of the conversion formulas in the previous
paragraph we assumed that the rotated bone is an end segment, i.e. one of the distal phalanges.
If, however, we want to rotate a chain of bones, for instance the three phalanges of a finger, the
moment of inertia .J depends on the position of all bones in that chain.

Figure 6.14 depicts this situation: when rotating about joint J; , the moment of inertia .J; of the
rotated bone is constant and can be computed according to Equation (6.8). The total moment
of inertia for a rotation about joint ;1 is composed of J;_; and the moment of inertia of the
end segment. The latter, however, is not simply .J; in this case: the axis of rotation does not pass
through the end of the rotated end segment as required for Equation (6.8). Thus the position
of the end segment has to be transformed into the coordinate system of [J;_; and the moment
of inertia J;" is computed by summing up the squared distances of the transformed bone mesh
vertices to the rotation axis multiplied by the mass of the bone. This computation becomes more
and more costly when longer chains of bones are rotated.

Fortunately, the moment of inertia J;" of the transformed bone depends only on the rotation angle
a. Thus we precompute J*(«) for a discrete set of angles (typically in steps of five degrees) and
store the array J[a] in the joint J; for further look-up. The total moment of inertia J for a
rotation about J;_1 can thus be simply computed as J = J;—1 + J[a]. Similarly, the total
moment of inertia for a rotation about J;_ is given by the sum J;_o + J* ;[3] + J*[a][5].
Precomputing the moments of inertia for chains of bones with more than three segments would
require storing arrays of dimension three and more in the joints. To avoid this exhaustive memory
consumption, we restrict the computation of the moments of inertia to hierarchies with at most
three levels. For the rotation of the complete hand about the wrist we assume a constant moment
of inertia of the hand.

Geometric Muscles

In our system, geometric muscles are embedded in between the skin surface and the underlying
bone structure. Geometric muscles have an actual geometric shape assigned to them, which
deforms and bulges during contraction. Springs are used to connect the surface of the muscle to
skin and bones. We have adopted the approach presented in [KHSO01] (see Section 3.1.2) for the
embedding of muscles into a mass-spring system. However, some modifications of that approach
were necessary to allow for a more complex muscle layout. In particular, we have introduced
the following changes:

— each individual muscle has its own minimum and maximum thickness. Rather thick mus-
cles, e.g. the opponens pollicis (2), can thus be created as well as thin sheet muscles, e.g.
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Figure 6.15: Geometric muscles of our hand model. adductor pollicis (1), opponens polli-
cis (2), Ist dorsal interosseus (3), 1st palmar interosseus (4), 2nd palmar interosseus (5), 3rd
palmar interosseus (6), opponens digiti minimi (7), flexor digiti minimi brevis (8), and abductor
digiti minimi (9).

Figure 6.16: Muscle Layout. Left: the complex shape of muscles can be observed in this
close-up view of adductor pollicis and opponens pollicis with all other muscles removed. Right:
different muscle layers are set up automatically. The vertical muscles opponens digiti minimi
and flexor digiti minimi brevis slide freely below the horizontal abductor digiti minimi.

the adductor pollicis (1), see Figure 6.15.

— the distance between the skin surface and the surface of the muscle can be set individually
for each muscle to allow for several layers of muscles (e.g. superficial and deep layer) to
be created automatically, see Figure 6.16 (right).

— muscles are allowed to attach to bones on both muscle ends. Such types of muscles do not
exist among the facial muscles (with the exception of the masseter, which was not present
in [KHSO1]), but are prevalent in the human hand.

— muscles may be assigned to several individual bones. Thus, individual segments of large
or long muscles move with the bones they are assigned to. The abductor digiti minimi, for
instance, is assigned to the carpal bones (wristbones), and the metacarpal and proximal
phalanx of the little finger (cf. Figure 6.16 (right)).
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Figure 6.17: Muscle grid. Geometric muscles are created automatically from a muscle grid
(shown in blue) painted onto the skin surface. The green dots mark the vertices of the skin mesh
(shown as a wireframe), which are influenced by the muscle.

Figure 6.18: Bulging of geometric muscles. Left: pseudo muscles are used to move the bones.
Right: combining pseudo and geometric muscles results in additional skin deformation due to
bulging.

Geometric muscles are created by interactively painting muscle grids onto the skin surface (see
Figure 6.17). From the shape of a muscle grid, the corresponding muscle is created automatically
to fit in between skin and bone surfaces. This fitting process is analog to the one described
in [KHSO1], see p.19 in Section 3.1.2, but uses for every muscle individual parameters for
muscle thickness and skin distance. The attachment process of the muscle control points to the
skeleton works in the same way as for the MEDUSA models, except that there are more than two
candidate bones.

Modeling geometric muscles that are truly attached to bone on both ends would mean that con-
tracting a muscle moved the bone into which it inserts. This would make the mass spring network
considerably more complicated, which was the reason why we chose to give every geometric
muscle a “loose” end like the facial muscles in MEDUSA that insert into skin. Instead we intro-
duced the pseudo muscles. The reference hand model has a pseudo muscle for every geometric
muscle. Conversely, providing a geometric muscle for every pseudo muscle is not necessary,
since most muscle bellies are located in the forearm. Passive deformation of the geometric
muscles due to bone rotation is ensured by the attachment of the muscle control points to the
underlying bones. The same transformation is applied to the muscle grid points as to the bone,
thereby deforming the respective muscle segments.
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Figure 6.19: Deformation of the reference hand model. Left: photograph of an individual’s
hand, including a ruler. Middle: position of the 26 source feature points on the reference hand
model. Right: resulting hand model after applying the warping function.

During contraction of a geometric muscle, the assigned geometric shape deforms and bulges, see
Figure 6.18. On the muscle surface, the attachment points of the springs connecting the muscle
to the skin move accordingly. The displacement of these nodes exerts force on the mass-spring
mesh, which is updated to compute the corresponding skin deformation (cf. Section 6.2.1).

6.2.3 New Hand Models from Photographs

We employ a deformation technique based on feature points to warp the complete reference hand
model to an individual hand model. This saves the user the trouble of rigging new models by
hand. Our approach is similar in spirit to the technique proposed by Kahler et al. [KHYS02] (see
also Section 3.1.2, p. 24) for deformation of human head models. However, we do not require a
3D target hand model to be obtained in a time-consuming scanning process. Instead, we use a
photograph of the individual hand to be modeled. The photograph merely needs to show a simple
ruler as depicted in Figure 6.19 (left). Since there are no other prerequisites for the photograph,
low-cost consumer cameras can be used for the acquisition.

First, we identify a small set of feature points in the input photograph. Our reference hand
model is already tagged with the same feature points by default. Next, the complete structure
of the reference hand model is deformed to match the shape of the individual hand from the
photograph. The warp function is set up using correspondence of feature points. Below, each
step is described in more detail.

Feature Points

We use a small set of feature points on both the 3D reference hand model and in the 2D pho-
tograph. These feature points can be easily identified without anatomical knowledge. In the
following, the feature points on the reference hand model are denoted as the source feature
points, whereas those in the input photograph are called target feature points.

The reference hand model is equipped with 26 source feature points by default (cf. Fig-
ure 6.19 center), as listed in Table 6.5.

Upon loading the input photograph into our system, the user is asked to identify as many target
feature points from the above set as possible in the photograph. Feature points whose posi-
tions are not clearly visible in the photograph can be omitted. In our experiments, we obtained
reasonable results using a subset of only 16 feature points.
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interdigital skin (between each pair of adjacent fingers)
radial and ulnar wrist (inner and outer side of the wrist)
head of ulna

# | location

5 | finger tip I-V
4 | DIPII-V

1 IPI

4 | PIPII-V

5 | MCPI-V

4

2

1

Table 6.5: Feature points. The reference hand model comes equipped with these 26 feature
points.

In addition to selecting the target feature points, a calibration process is carried out to measure
the size of the hand in the input photograph. To this end, the user performs two mouse clicks
at a known distance on the division scale of the ruler shown in the photograph, for instance
at the points “Ocm” and “20cm”. From their pixel distance d on the photograph, the system
automatically computes the scale of the photograph s = dQSii{cIis and uses this information to
transform the positions of the target feature points into the coordinate system of the reference
hand model.

Warping the Reference Hand Model

Given two sets of IV corresponding source and target feature points, we are looking for a function
f : R? — R3 that maps the source feature points s; to the target feature points t;, i.e.

f(Si):ti, i=1,...,N.

A natural solution to this interpolation problem is to employ a radial basis function (RBF), see for
instance [CBC*01] for mathematical details. A RBF consists of N basis functions ;, defined
by the source feature points s;. Hence

N
fx) = cipi(x)
=1

with (unknown) weights ¢; € R3. We use biharmonic basis functions p;(x) := [|x — s;||2,
which minimize bending energy [Duc77]. This choice is in consonance with Bookstein’s
suggestion to use thin-plate splines for the deformation of biological tissues [Boo97a, Boo97b].

Before setting up the function f, we need to transform the target feature points t; into the co-
ordinate system of the s;. This is necessary to make the transformed hand model appear in
approximately the same place as the initial reference hand model. We transform the 2D points t;
into the fitting plane of the 3D points s; using a rigid body transformation. The (uniform) scaling
factor of this transformation is taken from the calibration step described above.

To compute the fitting plane, let
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be the center of gravity of the source feature points. Then we shift the s; so that their center of
gravity coincides with the coordinate system’s origin. Now define X to be the matrix with the

shifted s; as columns:
X = (s; — )X, e R®N |

The eigenvectors of the two largest eigenvalues of the covariance matrix %XXT span the fitting

plane, while the third eigenvector is the normal n of the plane. Since xxT is symmetric and
hence diagonalizable, the three eigenvectors differ pairwise.

The normal n and the center of gravity c of the s; describe the fitting plane. Now the target
coordinate system with the t; in the xy-plane is translated to ¢ and its z-axis is rotated so that it
becomes parallel to n. Lastly, the target feature points are rotated to align the largest diameter
of their set (between the feature point on the tip of the index finger and the feature point on the
head of the ulna) to the largest diameter of the set {s; [i =1...,N}.

Next, the target feature points are lifted to the third dimension by assigning to each t; the z
coordinate of its corresponding source feature point. Remember that the z coordinates define
the distance of the feature points from the fitting plane. These heights are additionally scaled
by a (uniform) scaling factor obtained from the ratio of the largest diameters of the source and
target feature points, respectively. Converting the 2D target feature points into 3D points is
essential to ensure that the transformed hand model will not be flattened but possesses a thickness
proportional to its overall size. Finally, we can set up our radial basis warping function as
described in standard literature [PHL 198, CBC*01]. To obtain the c;, let

pi(s1) .. pn(s1)
d = : : c RVxN
pi(sn) ... on(sn)
C = (Cl,...,CN)T € RNx3
T = (ti,...,tn) € R3*N
Now we can set up a system of linear equations ®C = T and solve for the c; using, for

example, standard LU decomposition with pivoting, and set up the warping function f.

RBFs are defined on the volume spanned by the feature points and can hence be used to deform
the complete structure of our reference hand model. Hereby we proceed as follows:

1. skin and bone meshes are transformed by applying the function f to each vertex of the
meshes. The connectivity of the meshes is not changed.

2. joint positions and positions of feature points are transformed in the same way by direct
application of the warping function.

3. the coordinate axes of the joint frames must be handled differently: the new z-axis of joint
J; is the unit vector pointing from the new position (origin) of 7; towards the transformed
origin of its child J;41. The corresponding transformation that rotates the old z-axis onto
the new z-axis is applied to all three axes. Finally, the frame is rotated around the z-axis
so that the x- and y-axis are as closely aligned to their old counterparts as possible. A final
manual adjustment may be necessary if the shape of the new hand differs very much from
the reference hand.
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Figure 6.20: A typical computer graphics scientist’s hand pose. Side-by-side comparison of
our hand model (left) with a photograph of the hand that was scanned to build the model (right).

Figure 6.21: Optimists only. These hand poses are animation snapshots from our system.

4. geometric muscles are defined by muscle grids (cf. Section 6.2.2). To warp the muscles,
only the control points of the muscle grids have to be transformed. The shape of the
warped muscles is computed automatically to fit in between the transformed skin and
bone meshes.

5. pseudo muscles do not have any spatial parameters that need to be transformed.

6.2.4 Resulis

We created several animation sequences to verify the efficiency and correctness of our hybrid
muscle model. In spite of some simplifications, we found our pseudo muscle model to work well
and yield plausible results. Figure 6.20 shows a side-by-side comparison of our hand model with
a photograph of the hand that had been scanned to build the reference hand model. Clearly, our
hybrid muscle model is able to correctly reproduce the pose of the hand. Additional animation
snapshots are depicted in Figure 6.21.

When creating a new animation, however, estimating the right muscle contraction values (i.e.
those that result in the desired movement of the fingers) is not always a straightforward pro-
cess. Employing an optimization process that computes minimal energy muscle contractions for
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a given target position of the fingers would eliminate the process of specifying individual mus-
cle contraction values. Creating the geometric muscles is simple and fast: the complete set of
geometric muscles shown in Figure 6.15 has been created in less than an hour.

Using our hybrid muscle model, animations were running at real time frame rates of over 60 fps
on a 2.4 GHz AMD Opteron 250 dual processor machine with a NVidia Quadro NVS graphics
board. The main bottleneck is the integration of the equations of motion for the mass-spring
network, which comprises approximately 1500 nodes and 4500 springs. Yet our integration
technique runs stable for a reasonable choice of stiffness parameters for the skin model. In
all our tests, the skin mesh never lost integrity after mass-spring simulation. In particular, our
method does not break the skin while moving from pose to pose, since the connectivity of the
skin mesh is never changed.

Our deformation technique works reliably and is easy to use. We warped our reference hand
model, built from scan data of a female, to match the size and proportions of a man’s and a
child’s hand. The interactive specification of the target feature points in the photograph takes
about 1 min. Since all components of the hand model are transformed, the resulting hand model
is instantly animatable. However, the animation parameters (i.e. the muscle contraction values)
have to be adapted to the warped hand model: different proportions of reference and target hand
model result in different torques, moments of inertia, and consequently different rotation angles.

6.2.5 Conclusions

This section dealt with an approach for the construction and animation of human hand models
with underlying anatomical structure. Our system is built around a reference hand model,
which is animated using muscle contraction values. We introduced a hybrid muscle model that
comprises pseudo muscles and geometric muscles. While pseudo muscles control the rotation
of bones based on anatomical data and mechanical laws, the deformation of geometric muscles
causes realistic bulging of the skin tissue. As a result, the created animations automatically
exhibit anatomically and physically correct behavior. In addition, we proposed a deformation
technique based on feature points to create individual hand models from photographs. Warping
the complete structure of the reference hand model results in deformed hand models that are
instantly animatable.

Although our system is working reliably and rather efficiently, there are further ways of improve-
ment. Ideally, geometric muscles should move the bones. This, however, involves modeling
tendons as well as setting up a mass-spring system where rigid objects (such as the bones) can
be moved due to spring forces. In addition, gravity should be included into our hybrid muscle
model. While the effect of gravity is probably negligible for the deformation of skin tissue in the
human hand, it plays an important role for the computation of bone positions from given muscle
contraction values.

To facilitate the creation of animation sequences, optimization could be used to compute minimal
energy muscle contractions for a given target position of the fingers. Moreover, it would be
helpful to include collision detection among the parts of the hand. Given these two add-ons
(optimization process and collision detection), grasping of external objects would be rather easy
to implement.

Finally, it would be desirable to automatically generate textures from the same photographs that
are used to create individual hand models. However, it is not trivial to compute the parameteri-
zation of the skin mesh fully automatically, if the texture is to be used for OpenGL rendering.
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6.3 An Application: the Pitcher’s Hand

The hand model from Section 6.2 was used to visualize the hand poses measured by a high-
speed tracking system based on multi-exposure photography [TAHT05]. We developed this
system in order to address the problem of capturing and tracking high-speed motion sequences
that cover large areas of space. To avoid the expenses of professional high-speed video cameras
and high-resolution motion capture equipment, our approach is based on low-cost commodity
still cameras and strobe lights.

As an example application, we configured the system to track baseball pitches. Due to its variety
of different elements, baseball is technically very challenging. In particular, pitching is the single
most important part of baseball. The goal for the pitcher is to throw the ball in such a way that
its trajectory is as unpredictable as possible for the other team’s batter. In the history of baseball
a great variety of pitches has been developed. The art of pitching is to be able to perform all
kinds of pitches such that the ball consistently enters the strike zone near the batter in order to
be valid. This sport offers itself as a test case for our motion capture system because it is ideal
to demonstrate the strengths of the system. First of all, the underlying motion is very fast and
extends over a large area of space: the speed of a pitched baseball can reach 120 km/h and above,
and the distance from the pitcher mound to the home base is 60.5 feet (18.44 meters). In addition,
there are many different motion parameters that can be measured simultaneously for a variety of
pitches:

— pose parameters of the pitcher’s hand before, at, and after releasing the ball
— 3D trajectory of the flying ball

— initial flight parameters of the ball: norm and direction of initial velocity, rotation axis,
spin.

With a physically based model of ball flight, we were able to demonstrate the accuracy of the
system. Since even a small difference in the pose of the pitching hand can have a big impact on
the ball trajectory, exactness of acquisition and visualization is of utmost importance.

In our experiments we focused on the following pitches: the fast-ball, the curveball, the slider,
and the change-up, all performed as three-quarter deliveries, i.e. with a release point above and
to the right of the head. Each of these pitches was recorded multiple times. Pitches differ in
the way how the hand moves during launch, giving the ball a different initial velocity, rotation
axis, and spin. Since these initial flight parameters completely determine the ball’s trajectory,
different pitches lead to different flight paths.

— the fast-ball is the fastest pitch. It has large back spin and, depending on whether the ball
rotates over four or only two of its seams, it is called a 4-seamer or a 2-seamer.
— the change-up also exhibits back spin but has a lower velocity and spin.

— the curveball is released with forward spin which makes the ball descend faster during the
last phase of its flight.

— the slider is thrown with a side spin, making the ball turn to one side towards the end of
the flight.

All pitches were carried out by a professional baseball pitcher who is able to perform different
pitches with great faithfulness.
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Figure 6.22: Setup. Top: setup for tracking the ball and the hand at ball release. Bottom: setup
for capturing initial flight parameters (cameras 1&2, strobe 1) and ball trajectory (cameras 3&4,
strobe 2). See Figures 6.23 and 6.24 for photographs of the setup.

In this section, we will first give an overview of the tracking system (Section 6.3.1). This is suc-
ceeded by a description of the methods used for capturing and visualizing hand (Section 6.3.2)
and ball motion (Section 6.3.3). Our results are presented in Section 6.3.4, and conclusions are
drawn in Section 6.3.5.

6.3.1 System Overview

A flexible setup permits us to robustly acquire different types of motion data under real-world
conditions. We want to capture the motion of the pitcher’s hand and fingers before, during, and
after releasing the ball. This is achieved by tracking markers on the highly mobile pitching hand.
A setup that minimizes occlusion of the hand is important here. To analyze flight trajectories
of different pitches we need to acquire image data that allows us to reconstruct the ball’s initial
flight parameters (i.e. norm and direction of its velocity, direction of its rotation axis, and spin)
as well as the 3D positions of the ball along its trajectory. Acquiring this type of information
is very challenging since the involved speeds are considerable and the entire trajectory extends
over a relatively wide area. To complicate things even further, high spatial accuracy is essential
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Figure 6.23: Setup for hand pose acquisition. Two stereo camera pairs (magenta) and a strobe
light (cyan) are placed in a semi-circular arrangement around the pitcher to capture the hand
motion of different pitches. In the center, the calibration object used to estimate the extrinsic
camera parameters can be seen. See Figure 6.22 (top) for a schematic illustration of the setup.

in both hand motion capture and ball flight analysis.

To capture an entire baseball pitch, we set up our acquisition gear in a basement room which has
a central free space of approximately 25 m length, 4 m height, and 5 m width. This is sufficient
to house the complete pitching corridor (18.44m in length) as well as to put up the camera
and lighting equipment. As imaging devices we employ consumer-market Olympus ™ Camedia
C5050 still image cameras that provide a frame resolution of 2560x1920 pixels. This camera
model features a large-aperture zoom lens that can be set to a comparatively wide angle. We use
four cameras of this type in our setup. The settings of all four cameras are controlled from a
single PC, which triggers all camera shutters simultaneously.

Since we intend to record a fairly wide-area scene, we need a sufficiently luminous stroboscope
light source that can illuminate a large volume at high frequencies. In our setup we use two
high-output strobe flashes which have an intensity of 5000 Lux each at a distance of 0.5 m from
the lamp. At full intensity, the 20 us-long flashes can be triggered at up to 80 Hz, which is
sufficiently fast for our purposes.

During recording the floor and walls are covered with black carpet and cloth to facilitate
foreground object segmentation and automatic marker tracking. Primarily, however, the
dark material absorbs most light that has not hit foreground objects, preserving contrast and
preventing quick saturation of the multi-exposure images. A heavy dark carpet hanging down
from the ceiling at the end of the flight corridor absorbs the impact of the ball.

In our recordings, four simultaneously triggered cameras look at the scene from different po-
sitions. Two different arrangements of imaging sensors and light sources are needed to record
either the hand motion of the pitcher or the initial flight parameters and ball positions.

For recording the hand, the four cameras and one light source are placed in a semi-circular
arrangement looking at the pitcher from behind and above, see Figures 6.22 (top) and 6.23.
Section 6.3.2 gives further details about this step.

To record the baseball in flight, two stereo pairs of cameras and two stroboscopes are used to
capture the initial and final phase of the ball flight, respectively (Figures 6.22 (bottom) and
6.24). Details about the setup for acquisition of ball motion are given in Section 6.3.3.



6.3 An Application: the Pitcher’'s Hand 118

gy
e T /
o« 4

pIe &%
|

<

|
\

Figure 6.24: Ball acquisition setup. Left: a stereo camera pair (encircled in magenta) facing the
black curtain on the right is capturing the ball’s initial flight parameters. The ball is illuminated
by a stroboscope (cyan). Right: a stereo camera pair (magenta) and a strobe light (cyan) facing
towards the black carpet in the back are responsible for capturing the ball trajectory close to the
“home base”. See Figure 6.22 (bottom) for a schematic illustration of the setup.

Accurate calibration of the cameras is crucial. We apply a camera model for short focal length
cameras [HS96]. Intrinsic camera parameters are estimated from images of a planar checker-
board pattern. Radial and tangential lens distortion are modeled up to second order [JKS95].
Each multi-exposure image is distortion-corrected prior to any further processing. Extrinsic
camera parameters are estimated using images of our 3D calibration object, see Figure 6.23.
Camera position and orientation are metrically calibrated.

Finally, we rely on our professional baseball pitcher who, as we have verified, performs different
pitches with great faithfulness. This allows us to correlate our measurements of hand motion
with the measurements of initial flight parameters and flight trajectory.

6.3.2 Tracking the Hand

This section details how to reconstruct the pitcher’s hand poses by means of the multi-exposure
technique. For visualization purposes, animations from the acquired poses were generated with
the physics-based hand model described in Section 6.2.

Preparation of the Pitcher’s Hand

In order to determine the locations of the finger joints in the recorded images, we have to mark
them on the pitcher’s hand. Therefore the pitcher wears a thin, transparent rubber glove onto
which colored markers made of reflective tape are glued, see Figure 6.25 (left). The markers
are placed on the joint positions, on the finger nails, and on three distinct positions on the back
of the hand. Four different marker colors are distributed such that the distance between any
two markers of the same color is maximized. In total, 18 positions on the hand are tagged and
assigned a unique position label. To facilitate identification of the markers in the multi-exposure
images, the skin underneath the glove is painted with black make-up. During recordings, the
pitcher wears black clothes and a black face mask to prevent misclassifications.
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Figure 6.25: Hand markers. Left: markers for tracking are attached to the pitcher’s hand.
Right: corresponding marker positions on the personalized hand model.

Our pitcher assured us that the glove did not impair his grip on the ball or his freedom of move-
ment. Thus, pitches where he was wearing the rubber glove did not differ from those without.

Acquisition of Hand Motion

For acquisition of hand motion, all four cameras and one stroboscope are positioned in a semi-
circular arrangement behind the pitcher, see Figure 6.22 (top). In front of the pitcher, the walls
and the floor of the flight corridor are covered with black cloth. All cameras are focused on the
region where the pitcher releases the ball. The camera positions are chosen in such a way that
two cameras observe the hand motion from the pitcher’s left and two from the pitcher’s right
side. This way occlusions of the hand markers during the complex pitching movement are min-
imized and sufficiently separated exposures of the hand in the images are obtained. The strobe
light is located directly behind and slightly above the pitcher such that the focus of illumination
coincides with the release position of the ball. During recordings the stroboscope operates at
75 Hz, a frequency that leads to a high number of visible hand positions sufficiently separated in
the images for all pitch types. For recording, all four cameras are triggered synchronously with
an exposure time of 1s. As a trade-off between image noise and brightness, we run each camera
with ISO 200 sensitivity. We have recorded the four types of pitches described above.

Tracking Hand Positions

First we separate the marker positions from the background in each of the four multi-exposure
images using background subtraction. Since all unimportant parts of the scene are colored black,
the reflective markers emerge very brightly in the images, see Figure 6.26. In order to identify
the locations of the markers in each photograph, a color interval for each marker type is de-
fined. Connected image regions above a minimum size whose pixels fall into one of the intervals
are considered as projected marker locations'. The projected centers of the markers are approxi-
mated as the centers of gravity of the marker regions. Correspondences between different camera
views are established via epipolar lines [Fau93]: for stereo camera pairs, each image point in one
camera view has a corresponding point in the other camera view which lies somewhere along the
epipolar line of the second image. This concept is illustrated and explained in Figure 6.27. Tech-

"The marker locations in the photograph are projections of the real world marker positions onto the camera’s
image plane.
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Figure 6.26: Multi-exposure image of the hand. This multi-exposure image from one of our
cameras records the hand motion during pitching. Inset: reconstructed hand marker positions
for two hand poses.

Figure 6.27: Epipolar geometry. o; is the projection of an unknown real world point O onto
the image plane of camera 1. All possible real world points that can have produced o; lie on the
ray c; from the focal center C; of camera 1 through the image point 0;. The points in the image
of the second camera that can possibly correspond to o; must be located on the image ey of ¢;
in camera 2. ey is called epipolar line of point o7 in the image plane of camera 2. The epipolar
line is the intersection of the epipolar plane (defined through the focal centers C; and Co, and
O) and the image plane of camera 2. The intersection point E, of the epipolar plane and the line
between the focal centers C; and Cs is the epipol of camera 1 with respect to camera 2. The
same principles apply analogously to image point oy of the second camera.

nically, the left and the right camera pair are treated as separate stereo pairs. In a first step, the
positions of visible markers are triangulated in each stereo pair separately. If a marker position
is reconstructed from both stereo pairs, its position in 3D space is averaged.
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Currently, each of the 18 markers belonging to a hand position is associated with the correct
position label in an interactive procedure. An automatic approach that clusters 3D marker
positions into separate hand clusters and assigns the marker labels in each cluster according to
the colors of their neighboring markers is also feasible.

For motion reconstruction we limit ourselves to those hand positions in which the three markers
on the back of the hand are visible for at least two cameras. Only then are the position and
orientation of the hand root fully determined. Our setup is arranged such that this condition is
fulfilled for an average of three hand positions around the release point. These hand positions are
also the most interesting ones in terms of their motion characteristics since they represent that
part of the motion cycle in which the hand and finger movements determine the specific rotation
axes and spin rates of different pitch types. Sometimes it is not possible to detect the position of
all markers in each reconstructed hand position. This can happen for those pitch types where a
finger is required to be ahead of the ball in the release moment such that it is occluded from all
cameras.

Visualization of the Hand

For visualization purposes, we use the hand model described in Section 6.2. In order to correctly
reconstruct the hand poses from the marker positions, we have to make sure that the model
matches the pitcher’s hand in size and proportions. To this end we apply the warping algorithm
from Section 6.2.3 to create a “personalized” hand model that most closely approximates the
pitcher’s hand. The warped model is then equipped with markers at the same positions as on the
glove, cf. Figure 6.25 (right).

Finally, the personalized hand model is animated using joint rotation parameters that have been
computed automatically from the marker positions obtained from the tracking process. This
conversion from marker positions to joint rotations proceeds as follows. First, we compute the
position and orientation of the back of the hand by aligning the three markers on the back of
the (personalized) hand model to the corresponding tracked marker positions using a point set
registration scheme [Hor87]. Next, we traverse the (anatomical) hierarchy of the hand model
along each finger. For each joint, we compute the rotation angle that minimizes the distance
between the position of the next marker along the hand model’s hierarchy and its corresponding
tracked marker. After traversing each finger up to its tip, all joint rotations are specified. We use
key frame interpolation for the joint rotation parameters to compute smooth animations.

6.3.3 Tracking the Ball

Marker-based tracking methods are also employed to determine position and orientation of the
ball from the multi-exposure images. We have recorded the same four pitch types as for the hand
pose measurements. Again, all pitches were performed as three-quarter deliveries.

Preparation of the Ball

We paint optical markers on the ball to be able to estimate its spatial orientation from multi-
exposure images. Four different types of markers are used which differ in color and shape (red
square, blue ring, green triangle, black circle), see Figure 6.28 (left). Over the entire surface of
the ball, each marker type is used three times. Eight markers are arranged in the ball’s equatorial
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Figure 6.28: Ball with markers. Left: baseball equipped with optical markers in pitcher’s glove.
Right: illustration of the ball’s coordinate system. Markers are depicted as small colored spheres
on the ball.

plane, in 30°-pairs and with 60° inter-pair separation. The remaining four markers are located in
a second, orthogonal plane at 30° distance from the poles. Marker types are assigned such that
at least three different markers are visible from any viewpoint. In addition, the (fixed) coordinate
system of the ball can be determined from the marker positions for an arbitrary viewing direction
(Figure 6.28 (right)).

Acquisition of Ball Motion

To acquire information about the flight of a baseball, two pairs of cameras are used that focus
on different aspects of the ball trajectory (Figure 6.22 bottom). The two front cameras take
multi-exposure pictures of the first 5 m of the baseball’s trajectory right after the ball has left the
pitcher’s hand. The cameras are placed 3.5 m away from the flight path and are vertically aligned
with a baseline of approximately 0.8 m, see Figure 6.24 (left). One strobe light is placed close
to the cameras and illuminates the scene such that the ball silhouette appears as a circular shape
in the images. In both cameras’ multi-exposure images the ball is seen at several subsequent po-
sitions and orientations, flying from left to right in Figure 6.29 (left). The number of visible ball
positions is determined by the pulse frequency of the stroboscope. At a strobe light frequency of
80 Hz, 6-10 ball positions are captured, depending on the speed of the pitch.

The stereo camera pair in the back part of the setup records the last third of the flight trajectory
close to the “home base” where the most interesting variations between different pitches occur.
The cameras are placed approximately 2.8 m high and 4 m apart on either side of the flight
corridor, see Figure 6.24 (right). A second stroboscope is located below the right camera and
illuminates the ball at 50 Hz. This lower frequency is chosen to better separate the ball in the
multi-exposure images. In contrast to the camera setup in the front, the illumination direction
in the back setup causes partially illuminated ball silhouettes shown in Figure 6.29 (right). We
compensate for this before reconstructing ball positions, see below.

During recording, the shutters of the front cameras are open for 1s, while the shutters of the
back cameras expose for 1.3 s. All cameras are triggered simultaneously.

The 3D positions of the ball in flight are recovered via triangulation, see Figure 6.30, and the
orientation of the ball’s coordinate frame is computed. Then the ball’s rotation axis and spin are
determined, see Figure 6.30 (left). At 80Hz, a ball at a spin rate of 1600 rpm rotates by 120°
between subsequent strobe flashes. Our sampling frequency is more than twice the spin rate and
therefore sufficiently high to fulfill the Nyquist criterion.
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Figure 6.29: Multi-exposure images of the ball. Left: multi-exposure image taken by a front
camera. Automatically detected markers are shown as colored dots. Right: multi-exposure
image taken by one of the back cameras. The half-moon shape of the balls is due to the lateral
position of the stroboscope illuminating the flight path. Insets: left to right: magnified image
region, result after background subtraction, detected ball silhouette and predicted center point,
fitted circle and final center point (see p. 123 ff.).

Figure 6.30: Reconstruction results. Left: reconstructed initial flight parameters. Right: ex-
tracted flight positions of the back cameras. Distance of the balls from the ground is shown in
green, rotation axes in magenta, and initial velocity direction in yellow.

Reconstructing Flight Positions

In each multi-exposure image, the silhouettes of the ball in the foreground are separated from
the background by means of a color-based background subtraction, thereby creating binary fore-
ground masks. In both the front and back stereo pair of images, the ball silhouettes’ boundary
polygons are identified via a contour finding algorithm (OpenCV [Int02]). To correct small con-
cavities at the silhouette boundaries of the balls we compute the convex set of the vertices of each
boundary polygon [Sla70]. Smaller noise regions are eliminated by imposing a threshold on the
region size. First estimates of the projected ball center locations in each image are found via
fitting ellipses to the silhouette boundary points. Correspondences between the estimated ball
centers in the two images of each stereo pair are established via epipolar lines (cf. Figure 6.27).
Approximate 3D ball center locations are obtained by means of triangulation from correspond-
ing ellipse centers for each image pair. From the estimated 3D ball positions and the real-world
radius of the baseball, the radius of the reprojected ball is predicted for each camera.

The center estimates in the image planes are further improved by fitting implicit circle models
to the silhouette boundaries by means of a Circular Hough Transform (CHT) [Bal81] in a local
neighborhood of each ellipse center. The CHT algorithm checks for every sample point (in
this case, the vertices of the boundary polygon), and for all possible combinations of circle
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Figure 6.31: Stages of the fitting process. Left to right: position of markers, result from predic-
tion, and result from final fitting.

centers and radii within given search intervals, whether the sample point fulfills the implicit
circle equation up to a threshold. The circle with the majority of positive votes is the optimal fit.
Knowing the radii of the reprojected balls, only the circle centers need to be found, i.e. the CHT
search space reduces to two dimensions.

The final 3D positions are found from stereo reconstruction of the circle centers.

The whole fitting pipeline is illustrated in the insets of Figure 6.29. The described procedure
robustly recovers three-dimensional ball positions even if the ball silhouettes are only partially
visible (Figure 6.29 (right)).

Reconstructing Initial Flight Parameters

After the 3D ball positions in the front and back part of a flight trajectory have been recon-
structed, the initial flight parameters for that data set, i.e. velocity, rotation axis, and spin, need
to be determined, cf. Figure 6.30 (left). Figure 6.31 gives an overview of the employed tech-
nique: from the reconstructed 3D marker positions, an initial guess for the flight parameters is
extrapolated, which is then refined using the ball model from Figure 6.28 (right).

The locations of the ball markers are computed in the same way as those of the markers on the
pitcher’s glove: we identify the projected ball markers in the images of the front stereo pair
through color-based region detection and establish correspondences across stereo images via the
epipolarity constraint. The markers’ 3D positions are found by triangulation, and each marker is
assigned to the closest ball position in 3D.

From the sequence of orientations of the ball’s coordinate system immediately after release of
the ball, its initial spin and rotation axis are derived. In theory, it is sufficient to know the 3D
positions of the ball’s center and of two uniquely identified markers to determine its orientation.
Unfortunately, it is impossible to decide from the color of a marker alone with which of the three
instances of this marker type on the ball we are dealing. In addition, misclassifications due to
noise in the data need to be considered.

For an ideal flying ball, orientation of the rotation axis and spin are constant over time?. Consid-
ering the above we determine the initial flight parameters by means of the following numerical
optimization scheme.

The algorithm processes the n subsequent ball positions at the beginning of the trajectory sep-
arately and in their temporal order. The orientation of the ball at position k£ with respect
to the world coordinate system can be represented as a rotation matrix R(ay, Ok, Vk), where
(v, Br, k) are Euler angles. Our goal is to find for each subsequent pair of 3D ball positions

’This does not take into account air friction.
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kE — 1 and k the rotation axis wy_1 k and rotation angle d3_1 j that correspond to the relative
transformation Ry j, between R(oy—1, Bk—1, Vk—1) and R(ou, Bk, Vi)

At position k, the algorithm exploits temporal coherence by predicting the orientation of the ball
R(0vpred; PBpreds Ypred) by rotating orientation R(ag—1, Br—1,7k—1) further by 6;_2 1 around
axis wy_g k1. Starting from that parameter set (Qtpred, Gpreds Vpred), the algorithm uses Powell’s
method [PTVF92] to find parameters (cv, Ok, 7x) that minimize the energy function:

Ey(ag, Be, ) = wiBr + waks
= w Z (Amarker,k(i))2 + wo Z (Aaxis,k(a))Q , (6.10)

ieMk CLG{%%Z}

with w; and wo being weighting factors. M} is the set of detected markers at ball position k,
Amarker k(1) 1s the angular distance between reconstructed marker ¢ and the closest marker of the
same type in the ball model in the current orientation. A ,yis 1 (a) is the angular distance between
the local coordinate axis a € {z,y, z} of the ball in orientation (c, [k, %) and the same axis
in orientation R(ctpred, Bpred, Ypred)-

The rotation axis wy_1 5, and rotation angle 651 j are computed from the relative transformation
Ry_1, between R(ag—1, Bp—1,7%—1) and R(ag, By, vx) [MLS94].

Having the sequence of rotation angles and the stroboscope frequency f, the spin f is computed
as

n
f= Y b (6.11)
fsn i=1
In our method we do not strictly enforce the constancy of rotation axis and spin, but instead
introduce this criterion as a weighted regularization term F» to compensate for possible mea-
surement errors and ball precession. For the initial rotation axis, we average the rotation axes
over the sequence. The direction of the initial velocity vector coincides with the direction of the
connecting line between the first two ball positions, its magnitude is computed from the strobe
frequency and the Euclidean distance of the first two ball positions. For the first two ball posi-
tions the optimization is run with ws = 0 in Equation (6.10). If this initialization fails due to too
few or badly located markers, a manual initialization is feasible.
In our experiments we were still able to recover valid initial flight parameters even if for some
balls none or just one marker was found. We obtained almost 100 % probability of correct
detection for the black markers and 90 % for the red markers. The blue and green markers were
more difficult to find due to their similarity in color. In a comparative experiment it turned
out that a different color scheme with more luminous marker colors significantly increases the
robustness of marker detection.

Validation

For the ball flight data (3D positions and initial parameters), no ground truth information is avail-
able. To validate our acquisition setup and tracking algorithms, we show that the data obtained
through our measurements and processing are consistent with the prediction of a physically
based model that takes into account the dominating forces acting on a spinning ball traveling
through air. In accordance to [Ada02] and [AMHO1], we compute the velocity v(t) of a baseball
with mass m using the first-order ordinary differential equation

mv(t) = Fg + Fp(v(t)) + Fa(v(t)) (6.12)
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with the gravitational force F g, the drag force (or air resistance) F p, and the Magnus force F j;
defined as:

FG = m-g,
B 1 v(t)
Fo(v(t) = —3-Co(v(t)-p-A- VO Za
1 w x v(t)
Fu(v(t)) = 5 Co(v(t)w)-p-A-|v(t)*- Jwx v(t)]’

where g denotes gravity and p air density. The cross-sectional area A of a baseball can be found
in [Ada02] and [AMHO1]. The vector w represents the spin axis of the ball, which is assumed
to be constant during the flight of the ball®. To compute the drag coefficient Cp(v(t)), we have
fitted a polynomial curve to the data presented in [Ada02] and [AMHO1]. After computing the
Reynold’s number Re(v(t)) [Ada02] the drag coefficient is evaluated as

Cp(v(t) = 223 —
0.28342 - 107" - Re(v(t)) + 0.13179-107Y - Re(v(t))?* —
0.25083 - 10715 - Re(v(t))® + 0.17083 - 1072 - Re(v(t))* .

According to [AMHOL1], the lift coefficient C, can be computed as Cr(v(t),w) = 1.5-71-
|w|/|v(t)| . For the special case of a fastball across two or four seams, better approximations of
C', can be obtained from the diagrams in [AMHO1]. Given the initial ball position py = p(0),
the initial velocity vo = v(0), as well as the initial spin axis w and frequency f = |w|, the flying
ball’s position p(t) at time ¢ is computed via integrating v (¢) over time. Using the Runge-Kutta-
Fehlberg integration scheme DOPRI5 from [HNW93], we solve ODE (6.12) for v(¢).

Finally, we can compute the reference trajectory of a baseball for a given set of initial flight pa-
rameters pg, Vo, and w and compare it to our measurements. Since the trajectory computed from
the ODE (6.12) is quite sensitive with respect to variations in the initial flight parameters, we
search for an exact solution of (6.12) that minimizes the error both for the measured ball positions
and for the measured initial flight parameters using Powell’s optimization method [PTVF92].
The resulting optimal reference trajectory is then used to compute the measurement error (Ta-
ble 6.6).

The comparatively low average speed of the pitches is due to the high number of pitches per
recording session which exceeded the usual training pensum of a baseball professional by far.

6.3.4 Results

For validation of our acquisition setup and tracking algorithms, we have performed a consistency
check against a physics-based model of ball flight. As a result, we conclude that our measure-
ments are very accurate. Average errors between the measured 3D ball position and the predicted
flight trajectory are as low as 13—19 mm, which corresponds to about 18-25 % of the diameter
of the baseball.

The calibration error for the camera setup was on average below one pixel in the image plane.
This assures that a high-accuracy 3D reconstruction for the hand markers and the ball is feasible.
Due to the lack of ground truth data for the hand motion we cannot assess the reconstructed hand
motion data directly. The reprojection errors of the reconstructed marker positions of the hand,
however, are similarly small as those obtained for the ball measurements.

3For a perfectly homogeneous ball, the spin axis does not change. In practice, a small precession might occur due
to the inhomogeneous density of natural materials (cork, leather) used for baseballs.



pitch type fwve  emax  <AVELVe)  IVET A(VE vel) <(w®w) W] AW, |wl)
fastball (2 seams) 18mm 39 mm 1.3° 63.2 mph 1.9 mph 0.4° 1596 rpm 22 rpm
fastball (4 seams) 18mm 41 mm 2.5° 64.2 mph 0.8 mph 0.1° 1612 rpm 17 rpm
curveball 19mm 39mm 0.7° 61.9 mph 1.4 mph 0.3° 1623 rpm 7 rpm
slider I5mm 25mm 3.8° 65.7 mph 0.7 mph 0.4° 1491 rpm 13 rpm
change-up 1I3mm 35mm 1.4° 60.6 mph 1.1 mph 0.3° 1258 rpm 32 rpm

Table 6.6: Comparison of our measurements with reference trajectories obtained from a physically based model. For a variety of pitches,
the average error €.y, and the maximum error €yax between the reference trajectory and our measured ball positions are given (Euclidean distance

between trajectory and center of ball). The precision of our measured initial flight parameters is specified by: <I(vgef, vp) (angle between reference

and measured velocity direction), A(|vit|, |vol) (difference between reference and measured initial speed), <(w™f,w) (angle between reference and

measured spin axis direction), and A(|w™|, |w|) (difference between reference and measured spin frequency). Absolute values of reference initial

speed |vEf| and spin frequency |w'™| are given for the sake of completeness.
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Figure 6.32: Using the hand for visualization. Visualization of hand and fingers during and
after release of the ball. In this change-up pitch, the ball is spinning backwards about a rotation
axis orthogonal to the flight direction. This can be seen by comparing the direction of the axes
of the ball’s local coordinate frame.

Figure 6.33: Visualizing the ball trajectory. Visualization of a change-up trajectory in a sta-
dium. The yellow path shows the reference trajectory obtained from the physical model of ball
flight. Balls at the ends of the trajectory are tracked, while the one in the center simulates the
flight.

For the ball, the average distance between a measured feature in the image plane and its repro-
jected 3D location is below two pixels. The reprojection error for the center of the ball is about
one pixel. Part of the deviation between measured and predicted ball positions might result from
small inaccuracies in feature localization in the image plane.

The high-quality data we acquired from different baseball pitches permit new ways of visu-
alization that provide interesting feedback to the athlete, the coach, and the sports enthusiast.
Visualizing the hand motion during release of the ball in slow motion provides a new type of
visual feedback for the performing pitcher. Figure 6.32 depicts two snapshots of such an anima-
tion. Autodesk® 3D Studio MAX® was used to texture and render the three-dimensional hand
model. The flight of the baseball can be visualized from any camera perspective, see Figure 6.33.
In particular, the ball’s initial flight parameters and their relation to the flight trajectory can be
rendered into instructive movies.

The multi-exposure images acquired for tracking the hand motion show both the hand poses and
the ball markers. We have thus reconstructed hand motion and flight parameters from the same
set of stroboscope photographs. In this way it is possible to visualize the influence of finger
motion on the flight parameters of the ball.

In Figure 6.34, the characteristic finger motion applied to add the necessary spin to a slider is
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Figure 6.34: Reconstructed hand poses. The hand motion during release of the baseball is
captured and shown together with the resulting flight characteristics of the ball.

clearly visible. In particular, the middle finger exerts high pressure on the ball to build up high
spin. Due to the acceleration of the middle finger during the pitch, this finger moves further than
the other fingers after release of the ball. The rotation of the ball in Figure 6.34 is consistent with
the movement of the fingers.

6.3.5 Conclusions

We have introduced a setup to capture high-speed, large scale motion via stroboscope photogra-
phy using off-the-shelf digital still cameras. This passive optical acquisition system permits the
reconstruction of complex and fast articulated hand motion. We have shown that the captured
motion can be visualized accurately and in detail with the hand model from Section 6.2. In ad-
dition, a method for automatic reconstruction of the 3D positions and initial flight parameters of
a baseball from multi-exposure images was described and validated.

Our system provides comprehensive and precise measurements of both pitching motion and
flight parameters for a variety of baseball pitches. In combination with our visualization tech-
niques, these measurements lead to a better understanding of the characteristics of baseball
pitches and resulting flight trajectories. Thus, the system provides an instructive tool for pitchers
and coaches, enabling them to improve their pitching technique through precise visual feedback.
The demand of such visual feedback was confirmed during our recordings, when we experienced
that the athlete’s personal estimate of his performance sometimes deviates from the measured
data. In particular, assessing the rotation axis correctly seems to be difficult.

We aimed at a high accuracy system that can be used to analyze high-speed motion on a limited
spatial and temporal scale. We do not see our approach as a replacement for traditional motion
capture techniques, but as a cost effective supplement which can be used in cases where tradi-
tional techniques fail. The baseball pitch is just an example for the application scenarios we have
in mind. In conjunction with the hand model, hand motion for sign languages such as ASL or
legerdemains could be tracked and visualized. Other possible scenarios are tennis serves or the
athlete’s motion in several track and field events such as javelin or discus. Tennis players, for
instance, would benefit from a precise analysis of the correlation between the movement of their
racket, speed and spin of the ball, and the resulting ball trajectory during a serve.

Having demonstrated how well the system performs for the difficult problem of hand tracking,
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we believe that our framework can be easily extended to capture human full-body motion by
means of stroboscope photography.

6.4 Making the Connection: Hand Gestures

This section deals with the generation of conversational hand gestures. By implementing a rule-
based approach for gesture generation from input text, the system for non-verbal speech-related
facial animation from Section 4.3 and the hand model from this chapter could be combined to
yield a character capable of multimodal communication. We sketch how such a component for
gesture production might be designed.

Restricting our interest to conversational hand gestures is justified, since they are clearly
distinguished from similar movement types, for example from gestures with the intent of object
manipulation [QMB™T02].

Some researchers believe that gestures are mainly intended to communicate [Bav94, McN92,
Ken94], while others [RS91, KCGO0O0] claim their primary function to be to facilitate speaking.
The two roles, however, are not contradictory: a gesture can be meant to communicate, and at
the same time help to retrieve a mental image [dR98] or help with lexical access.

Gestures share the fate of exact wording: they are formed, possibly decoded, and quickly for-
gotten, since most often they do not make it into longterm memory [Bav94]. The bond between
speech and gestures is a tight one. Gestures emphasize, clarify, and complement speech. Some-
times they are able to express content better than language, for example by pointing, and some-
times they give away aspects that the speaker would prefer to keep hidden [McN92]. A certain
degree of redundancy serves to make communication more reliable. Since during the production
process, speech and gesture emerge from the same idea unit [Ken80, McN92, QMB *02], they
are closely related both temporally and semantically. They are equal expressions of the same
content, without one modality being subservient to the other. In general, there is one gesture per
idea unit [Ken80], but deviations are possible [McN92].

Gestures fulfil a large number of functions. They can express both static (e.g. shape or location)
and dynamic (e.g. movement) aspects of an idea. This idea may be concrete or abstract. People
gesture when they introduce new elements into the discourse, or to indicate a return to old ones.
In addition, gestures serve to reveal relationships within the discourse structure.

Regardless of conversation type, speakers reveal in their gestures what they regard as relevant
and salient in the current context [McN92]. Gestures allow the listener to see the images that
the content conveyed in speech conjures up in the speaker’s mind: “... in performing gestures,
the speaker’s hands are no longer just hands, but symbols.” [McN92, p. 105, emphasis in orig-
inal]. However, the meaning of gestures is largely context dependent, which makes them hard
to decode. In a different situation, the same gesture may illustrate a completely different idea.
Moreover, gestures are culture specific and idiosyncratic. Strong interpersonal variations were
observed in handedness, function, relative placement, and frequency [KCC96, Kip03]. Gesturing
varies also with the addressee [Bav94]. Conversation partners will create between themselves a
number of gestures with a shared meaning that all participants will take up.

Typically, a speaker adorns about 3/4 of his clauses in narrative discourse with gestures [McN92],
while during conversation, he gestures only during roughly 3/7 of all clauses [Kip03]. Listeners
are hardly found to gesture.
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As with facial expressions, gesture research is a wide and multidisciplinary field. First, some
findings and models from this area are related (Sections 6.4.1 to 6.4.9), succeeded by an overview
of gesture generating systems in computer science (Section 6.4.10). The chapter closes with
some thoughts on how a gesture generation module compatible with our approach to facial an-
imation might be organized (Section 6.4.11) and some general conclusions on the topic (Sec-
tion 6.4.12).

6.4.1 Classification of Hand Gestures

The main part of this section describes the widely used classification scheme by Mc-
Neill [McN92]. An extensive overview of other systems can be found in [RS91]. Percentages of
occurrence for storytelling come from McNeill’s experiments [McN92], while those for conver-
sation are taken from [Kip03, p. 165].

Iconics. These gestures depict some aspect of the narration, for example an object or an
action. To describe a sphere, for instance, the slightly cupped hands are placed next to each
other with the palms facing downwards. Then both hands move in a semi-circle, until they
meet again, this time in a supine position. This is the least standardized gesture class. Although
some stereotypes exist (e.g. distance between hands indicating size), most iconics are invented as
needed. Between 40 and 45% of gestures in narrations and about 5% of gestures in conversation
belong to this category. Most of them are enacted in front of the speaker’s trunk.

Metaphorics. Metaphorics are pictographic like iconic gestures, but the object or shape they
describe represents an abstract idea. The conduit metaphor, for example, presents a concept such
as knowledge, language, meaning, etc. as a filled container or a substance, which is moved along
a path. Often, it is offered to the listener. For example, when talking about a movie, one might
say “it was a horror movie” and at the same time perform a gesture where the hands seem to pass
a box-like object to the listener. This object does not stand for the concrete, individual movie,
but for the abstract genre of horror movies. Metaphorics are rare in narrations. They account for
only 7% of cases during storytelling, while with 30 to 40% they constitute a much larger part
during conversations. This gesture type tends to occur at belly button height, with rather even
horizontal distribution.

Beats/Batons. The hands move with the rhythm of speech, but synchrony is not per-
fect [McC94]. Regardless of the context, beats always have the same shape. In contrast to other
types of gestures, which go through preparation, stroke, and retraction, batons are bi-phasic: an
upwards movement succeeded by a downwards movement, or an inwards movement followed
by an outwards movement. Beats underline the importance of a word for the discourse structure,
e.g. introduction of a new theme or character, or offer the turn to the listener, but they do not
illustrate content. They can be superimposed on metaphorics or iconics to signal that the coex-
pressive words should be considered in the context of the gesture image. In that case, the pose
of the illustrative gesture is sustained, and a beat is overlaid. Beats amount to roughly 45% of
all gestures in narratives, and to 5 to 15% in conversations. Every person has a favorite spatial
location where he executes his beats.

Deictics. Deictics are pointing gestures to concrete or abstract objects or locations. The
target of the pointing lies rarely in the real world, but rather in the section of gesture space that
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is associated with the object, concept, time or event in question (see Section 6.4.4). Added
lateral sweeps indicate plural [Bir71]. An instance of an abstract deictic is the gesturing that
accompanies statements of the form “on one hand — on the other hand”. In conversations, deictic
gestures are frequently used during search for a topic [McN92], but also to assign turns [Kip03].
Pointing gestures are not limited to the hands. The head, for example, is also used to point into
a general direction. Deictic hand gestures rarely occur in front of the center of the body, but
otherwise are rather unrestricted. They account for 5% of gestures in storytelling, and for 10%
of conversational gestures.

Kendon subsumes the above gesture classes under the term gesticulation [Ken86], and McNeill’s
notion of gesture is restricted to them. For these categories, the presence of speech is obligatory.
The remaining ones are not subject to this restriction. In fact, the first two of the following
classes usually substitute speech and are therefore considered as fundamentally different.

Emblems. As in the case of facial emblems, gesture emblems have fixed form and meaning.
They often replace words, as for instance the thumbs-up gesture for “ok”. With 30 to 45%,
Kipp found them to be the most frequent category during conversation. Since McNeill does not
consider emblems to be gestures in the stricter sense, he did not measure emblem frequency
during storytelling.

Speech Failures. Often, attempts to recall a word or to find an appropriate sentence structure
are accompanied by characteristic gestures like air grasps.

Adaptors. Adaptors [EW69] describe movement that involves touching of self (e.g. scratch-
ing one’s head) or of objects (playing with a pencil) and that is not immediately discourse
related. Therefore, this behavior is in general not considered as gesticulation, although it may
communicate aspects of the performer’s inner state, like nervousness or boredom. Kipp found
adaptors to account for 2% of hand movement during conversation.

The following paragraph introduces another categorization scheme based on different criteria.

Topical and Interactive Gestures. For spontaneous conversation, Bavelas [Bav94]
stresses the importance of distinguishing between fopical and interactive gestures. The latter
account for 10% to 20% of gestures. They do not refer to the actual content of the conversation
but are related to turn taking and serve to incorporate the listener into the interaction without
yielding the floor. As such, they usually elicit some listener response. A table listing the differ-
ent types of interactive gestures can be found in [Bav94, p. 213]. The two classification schemes
described in this section do not exclude, but complement, each other.

6.4.2 The Relationship between Speech and Gesture

Gestures are organized into a hierarchy parallel to discourse structure [Bir71, Ken80, McN92]
(cf. Table 6.7). At the lowest level, the accented syllable corresponds to the gesture stroke,
i.e. the phase of the gesture that expresses its meaning.

The next unit is the fone group or intonation phrase, delimited by pauses and consisting of
consecutive syllables that make up a complete intonation tune, e.g. raise-fall. The gestural coun-
terpart is the gesture phrase, consisting of preparation (optional), pre-stroke hold (optional),
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kinesic hierarchy phonological hierarchy

consistent arm use and body posture | locution cluster

consistent head movement locution group

gesture unit locution

gesture phrase tone group

stroke most prominent syllable

Table 6.7: Parallelism of gesture and speech. From highest (top) to lowest (bottom) level.
After [McNO92].

stroke, post-stroke hold (optional), and the equally optional retraction phase. During prepara-
tion, the speaker brings his hands in a position from which he can execute the gesture easily.
This happens usually prior to the onset of the parallel speech part. During the pre-stroke hold,
the hands are kept in the preparatory pose, while the speaker waits for the speech to catch up with
the gesturing. Similarly, during the post-stroke hold, the hand remains in the end posture of the
stroke. Retraction, finally, brings the hand back to a rest position. This last part is often omitted,
if successive gestures directly pass into each other. This phenomenon is called coarticulation.
Modulation means adjusting the timing of gestures to achieve synchronization [Kip03].

Several tone groups make a locution, usually corresponding to a sentence. At their boundaries,
locution groups are separated by pauses. In addition, their begin is marked by increased loudness.
The corresponding gesture unit comprises all gesture phrases within one flow, i.e. between a limb
starting from and returning to a rest pose.

Locution groups combine a series of locutions that share a common phonological feature, such
as, for example, the same intonation tune. On the gesture side, they are accompanied by a
repetition of the same head movement.

At the top, there is the locution cluster, delimited by pauses, repeated or repaired phrases, altered
pitch and/or voice quality, and a shift in topic. In the gesture channel, transitions between
locution clusters are marked by a shift in body posture and by differences in arm movement
(e.g. whether the left or right arm is used for gesturing). In written text, this level would roughly
correspond to a paragraph.

Not surprisingly, gesture rate is related to speech rate [KCC96].

In spite of this parallelism, speech and gesture are opposites in other respects [McN92, McNO02]:

— the parts of a gesture (e.g. hand shape, location) derive their meaning from the meaning
of the gesture as a whole — in contrast to language, where the meaning of the individual
words determines the meaning of the sentence.

— gestures are less standardized than speech, they are more idiosyncratic and context depen-
dent.

— gestures (except beats) are created from images, but speech from arbitrary mappings be-
tween words and meanings.

McNeill repeatedly stresses the “tightness of the bond between speech and gesture; they are
‘unsplittable” [McNO2, p. 3].
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Synchronization between Speech and Gesture

When considering synchronization between speech and gesture, one must bear in mind that the
speech affiliate of a gesture is not necessarily a single word, but may well be a complex phrase,
i.e. we deal with synchrony between two time intervals (duration of speech and duration of
gesture).

Synchronization between speech and hand gestures is less tight than for speech-related facial
expressions, and it depends on gesture type.

Iconics, Metaphorics, Abstract Deictics. Generally, at least part of the gesture precedes
the relevant speech part. The preparatory phase of a gesture always slightly anticipates the coex-
pressive part of the utterance [McN92]. 83% of preparation phases occur during the same clause
as the stroke, but apart from that, their point of occurrence does not seem to be prescribed. How-
ever, most preparation phases start together with grammatical segments, e.g. start of clause, start
of verb/noun/preposition phrase, etc. Morrel-Samuels and Krauss [MSK92] report concrete
times for the disparity between gesture onset and begin of the articulation of the lexical affiliate:
in their data, the range was 0 to 3.75 s, with a mean of 0.99 s. Gestures were never initiated after
the onset of their lexical affiliates. Durations of gestures were larger than anticipation intervals
in most cases.

If for some reason the stroke is delayed, a pre-stroke hold is inserted after the preparation. The
stroke starts either before the tone unit nucleus®, or just at its onset [Ken80], but never after
it. This is known as the phonological synchrony rule. The same applies to the peak syllable
of intonation and intensity in an intonation group [Nob98]. If primary peak of F0 and intensity
peak do not coincide, the rule applies to the last of the two. Stroke and stressed syllable converge
in 3/4 of cases, and in 2/3 of them, the stressed syllable equals the nucleus of the intonational
phrase [McC98]°, but a complete synchronization between nucleus or peak syllable and stroke
does not exist. Mostly, the stroke occurs during the speech affiliate [McN92], but occasionally
the stroke is finished completely before the onset of the significant speech.

It may be followed by a hold to allow the associated part of the utterance to catch up with the
gesture.

Usually, there is one gesture per clause [McN92] (50% of cases). If a gesture pertains to several
clauses, either the gesture is held in a post-stroke hold until the end of the last clause, or the
hands return to a rest position after the first clause. After 70% of all gestures, a rest position is
assumed briefly and the next gesture follows immediately. In two thirds of the remaining cases,
the gesture is followed by one clause without gesture, and by longer pauses else.

During pauses due to interruption, for example due to word search, the gesture can be continued
over the pause, but usually there is no gesticulation during pauses. [McN92] reports that 90%
of all strokes occur during the actual articulation of speech, and only 1% to 2% during filled
or unfilled pauses. The rest is distributed on false starts and breath pauses. According to
Nobe [Nob00], 20% to 30% of preparation onset occurs during pauses.

Kendon [Ken80] found pitch and gestures at the end of an utterance to be related as follows:
both the gesticulating limb and the final tune are either lowered, or they are both held or raised.
McClave [McC98], however, found that the coordination of pitch and movement direction is an

*The nucleus is the last stressed syllable with a significant change in pitch in an intonation group [Gus86]. This
is not necessarily the syllable carrying the peak accent.

5The synchrony of gesture stroke and speech accent is used as a cue for gesture recognition by Kettebekov et al.
[KYSO03].
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optional stylistic device, presumably in order to emphasize the corresponding part of the utter-
ance. Its probability depends on the hand with which the gesture is performed. If coordinated,
it is the direction of the stroke which mirrors the pitch. For beats, no correlation at all between
pitch and hand movement direction existed in her corpus.

Concrete Deictics. De Ruiter [dR98] suggests that synchronization between pointing ges-
tures and their speech affiliates is more tight than for iconics if the gesture is crucial for the
understanding of the utterance. “Put that there”, for instance, is only understandable if accom-
panied by pointing gestures. The phonological synchrony rule also applies to deictics.

De Ruiter [dR98] reports that the greatest excursion of the pointing hand (the apex of the deictic)
occurs on average shortly after the onset of the noun in two-word deictic sentences of the form
“definite article + noun”. In this case, speech waits for gesture. For noun phrases of the form
“definite article + adjective + noun” (e.g. “’the green crocodile” as opposed to “the green lizard”
or “the red crocodile”), the start of the pointing gesture is correlated with the position of the word
carrying the contrastive stress. For example, the speaker would initiate his deictic gesture earlier
when pointing out the red crocodile as opposed to the green crocodile than when contrasting the
green crocodile with the green lizard. The time between gesture onset and apex depends on the
position of the stressed syllable, not only on the contrastive word. As a consequence of these two
phenomena, the apex begins later for later contrastive stress, but, in accordance to [Ken80], never
occurs after the stressed syllable. Apex duration (i.e. post-stroke hold duration) also increases
with stress location.

Beats. According to McClave [McC94], beats do not necessarily occur with stressed sylla-
bles. She postulates the rhythm hypothesis, which states that beats have a rhythmical pattern of
their own, i.e. do not depend on speech rhythm. However, the beat pattern and the vocal rhythm
touch at certain points.

The downpoint of a beat, i.e. its maximum downward excursion, occurs frequently during un-
stressed syllables or even during pauses. Intervals between beats are roughly the same within
an utterance, but otherwise exhibit great variability: McClave gives examples of utterances with
1/5s and 1 s periodicity.

People do not always gesture, but if a beat coincides with the nucleus of a tone group, then in the
majority of cases the downbeat co-occurs with the nuclear stress. If the tone unit nucleus belongs
to a multisyllabic word, the downbeat will start during the stressed syllable, but the downpoint
is often not reached before the end of the unstressed syllable following the nucleus. Since more
than one beat is possible per word, beats may also occur on unstressed syllables of multisyllabic
words.

This alignment of downbeat and stressed syllable applies to nucleic stress only. With mono-
syllabic words unequal to the nucleus that coincide with a beat, either upward or downward
movement can co-occur. In multisyllabic words, however, the downbeat is usually executed
during the syllable carrying the primary lexical stress, even if the nucleus is not contained in
the word. To summarize, if a beat coincides with the nucleus or primary stress in multisyllabic
words, the downpoint can be predicted, but derivation of a beat pattern from stress, word classes,
or vocalization is not possible.

It would be interesting and useful to employ gestures of virtual characters for experiments on hu-
man sensitivity to speech-gesture (mis-)synchronization. This might even lead to the discovery
of a method for beat placement.
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Figure 6.35: Gesture space. The space in front of the speaker where gestures occur is divided
into several sectors for description purposes. Along the sagittal axis (forward-backward), the
spaces is divided in three partitions, which makes a total of 54 sectors. Source: [McN92].

Speech Errors. 1In general, speech adapts to gesture [dR98]. However, the opposite is true
for speech errors. In that case, a hold or, in the case of repetitive gestures, more repetitions are
inserted into the gesture stream, or the onset of the gesture is delayed and the preparation phase
prolonged, until the normal timing is (almost) restored.

6.4.3 Handedness

The predominant hand in gesturing depends on handedness [Ken80, Kip03]: right-handed per-
sons mostly gesture with their right hand, while hand use of left-handers is more balanced due
to a more bilateral organization of speech. For self adaptors, no such difference exists: both
hands are employed equally often. In addition, choice of hand is used to mark context coher-
ence [QMB™02], see Section 6.4.5. Kipp [Kip03] observed that handedness also depends on the
relative position of speaker and listener (e.g. whether the speaker sits to the right or left of the
listener). Bi-handed gestures can either only be performed with two hands, or bi-handedness is
used to accentuate the gesture.

6.4.4 Gesture Space

The gesture space [McNO92] unites the locations in space where gestures are performed. For
description purposes, it is divided into several parts. Figure 6.35 shows a two-dimensional illus-
tration of a sitting person’s gesture space. The third, forward—backward, dimension is tripartite.
Use of the gesture space is culture dependent: members of different cultures prefer different
sectors for different gestures.
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Locations in gesture space can be associated with certain events, ideas, or real world places, for
example with a particular character. When a reference to this character is made, the speaker
points to the corresponding area.

6.4.5 Gestures and Discourse Structure

In storytelling, gestures reflect discourse structure [McN92]: they attribute speech segments to
the narrative (i.e. directly related to the story line), the meta-narrative (about the story, for exam-
ple, “I’'m going to tell you a fairy tale”), and the para-narrative (involving the listener, e.g. "I'm
sure you know this type of movie”) level. They can indicate succession, voice (character vs. nar-
rator), perspective (where the observer stands), and distance. If a gesture is held for a longer
time than required to convey information, it becomes a question [Bav94]. Hand gestures held at
the end of an utterance, however, were also hypothesized to prevent interruption [AC76].
Discourse structure is marked by handedness and (a-)symmetry of two-handed ges-
tures [QMB™02], i.e. speech segments that pertain to the same topic but that are temporally
separated are marked by gestures performed with the same hand or the same two-handed sym-
metry. Form or position are also often shared [McN92]. If, for example, a person briefly deviates
from the main theme of her narration in order to explain some detail, a gesture from the main
part is taken up again when she returns to the central topic. Recurrent gesture features for the
same or closely related topics are due to the similarity of the underlying mental image. The
uniting semantic concept behind that image is called catchment [McN02, QMB T02].

Lists as a special form of discourse relation can be regarded as catchments. Kipp [Kip03] gives
probabilistic relations for gesture occurrence and equality for list items from one of the speakers
he observed. If the respective previous list item was accompanied by a gesture, probability for
gesturing on the second item was 84%, on the third item it was 67%, and on the fourth item (if
existent), even 100%. Chances that a gesture is the same as that of the preceding list item are
68% for the second, 38% for the third, and 67% for the fourth item.

6.4.6 Repetition of Gestures

In general, when a gesture is repeated, the second gesture differs slightly from the first
one [McN92]. Either it is more pronounced, for example to highlight a contrast, or less strong.
Another possibility is that one hand holds a gesture in order to emphasize a continuing aspect of
the recount or some scene characteristic, while the other continues to gesticulate. This contem-
poraneity strongly connects the gestures and accompanying statements.

6.4.7 Gesture and Emotion

According to Ekman [Ekm65], body movement conveys mainly the intensity of affect and gives
little information on the type. He uses a scale to measure the level of arousal that ranges from
sleep to tension. When people are relaxed, they do not show their hands or rest them against leg
or trunk. With arousal increasing, the hands move in front of the person, but not in space, and
with maximal tension they are brought out in space. In [Wal98], Wallbott puts differences in
body movement between emotions down to differences at the activation level. However, he also
found that certain distinctive features allow the identification of specific emotions from posture
and movement characteristics.
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Figure 6.36: Sketch Model for gesture and speech production. See Section 6.4.8 for details.
Source: [dR98].

6.4.8 De Ruiter’s Sketch Model

In his dissertation [dR98]%, de Ruiter proposes an integrated information processing model for
the production of gesture and speech. It builds on Levelt’s model for speech production [Lev89]
and considers all of McNeill’s gesture types except beats. Metaphorics are treated as a subclass
of iconics. Gesturing is assumed to have communicative intent.

Upon such an intention, the model’s conceptualizer retrieves the necessary information from a
knowledge base. It decides which part of the information is best conveyed by speech, and which
by gesture. Accordingly, a sketch is sent to the gesture planner, and a preverbal message to the
speech formulator, but only after the gesture planner has signaled the completed construction of
a motor program (see below). This scheduling leads to a rough synchronization between gesture
and speech. In order to create a sketch for certain gestures, the conceptualizer accesses the
gestuary, a collection of conventionalized gestures. Depending on the type of gesture, the sketch
contains information as listed in Table 6.8. For an iconic gesture, one or more spatio-temporal
trajectories and the relative position of speaker and gesture are given. Deictic gestures require a
vector that indicates the pointing direction and a reference to the manner of pointing (which is
culture-specific) in the gestuary. Emblems are stored in the gestuary as a whole, therefore only a
reference to the appropriate entry is needed. Pantomimic gestures are determined by a reference

®The relevant chapter from the dissertation was also published as [dRO00].
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gesture type | sketch content
iconic one or more spatio-temporal trajectories
location of speaker relative to trajectory

deictic vector
reference to gestuary

emblem reference to gestuary

pantomime reference to motor action schema

Table 6.8: Sketch composition. A sketch is the earliest specification of a gesture. Its content
varies with gesture type. The gestuary is a knowledge base of conventionalized gesture shapes.
See also Section 6.4.8. Source: [dR9S].

to a motor program. The sketch does not specify the exact timing of the gesture.

Let us first look at the language generation process and then turn to gestures. The formulator
generates a grammatical surface structure for the message, which is then encoded phonologically
to yield a phonetic plan. This is converted into overt speech through articulators.

On the gesture side, the sketch is transformed into a motor program in the gesture planner.
If appropriate, the pointers to the gestuary or to motor action schemata are dereferenced, and
collision avoidance is performed by taking into account the speaker’s environment. Gestures
are stored in the gestuary as femplates instead of as fully specified motor plans, because both
deictics and emblems have unbound DOFs, for example direction for pointing gestures and place
of execution for emblems. The free parameters are filled in during motor program generation.
The gesture planner must also handle fusions of different gestures. De Ruiter cites the example
of a person enacting a throwing gesture while talking about a film he had seen. However, he
did not aim at the same direction as the character who threw the ball in the movie, but at the
direction from his, the onlooker’s, point of view. De Ruiter interprets this as a pointing gesture
added to a pantomime. In the case of a fusion, the unbound parameters of the gestuary entry or
motor action schema of one gesture are filled in by the second gesture. The gesture planner is
also responsible for body part allocation, i.e. decides which body part will execute the gesture.
The motor control units, finally, convert the motor program into overt movement.

Synchronization via Holds

The sketch is sent to the gesture planner before the initialization of the preverbal message, thus
allowing the gesture planner to prepare the gesture and to instruct the motor control unit to
initiate a pre-stroke hold. When the preverbal message is sent to the formulator, the gesture
planner receives a resume signal and sends the remainder of the motor program to the motor
control unit to perform the stroke.

The conceptualizer does not send a retract signal to the gesture planner before completion of the
preverbal message, resulting in a post-stroke hold. In case of repetitive gestures, the post-stroke
hold is replaced by repeats of the gesture stroke, i.e. the motor program is specified as a loop.

6.4.9 Lexical Retrieval Model of Gesture Production

Krauss et al. [KCC96, KCGO0O0] also developed a gesture production model based on Levelt’s
model for speech production [Lev89]. However, unlike de Ruiter who believes gestures to com-



6.4 Making the Connection: Hand Gestures 140

municate and to facilitate concept formation during speech production, they started from the
assumption that the primary task of gesturing is to facilitate lexical retrieval for speech produc-
tion. This difference in supposition leads to fundamental differences in the models.

The underlying idea of the model by Krauss et al. is that concepts are stored in memory in several
different representations, e.g. propositional (expressed in words) and spatiodynamic (expressed
through gestures), and that access of one modality facilitates access of all others. Gesture plan-
ning is not actively initiated by the conceptualizer, but by accessing the working memory due
to communicative intent. The formulator gets feedback about the enacted gestures in order to
benefit from them during lexical retrieval. When the speech has been produced, the gesture is
stopped through auditory feedback.

6.4.10 Hand Gestures in Computer Science
Approaches to Gesture Generation

Cassell et al. [CSB194, CPB"94] developed an inter-agent dialogue system that generates audio-
visual speech, intonation, facial expression, and gesture. Starting from the information structure
(new / old information), intonation, facial expressions, and gestures are created based on rules.
Depending on type and meaning, gestures are instantiated from a library of predefined hand
shapes. An additional parameter controls laxness of hand pose. Gesture stroke is synchronized
to the accented syllable of the coexpressive word. If a preparatory phase is required, it starts at
the latest at the beginning of the associated phrase. The end of the retraction phase coincides
with the phrase end. Several gestures within the same utterance are executed without intermedi-
ate returns to rest poses, thereby achieving coarticulation between gestures. A final relaxation is
always present. Control is implemented via finite state automata.

[LG99b, LGY9a] present a high-level specification language for sign language gestures. A sign is
described by hand pose, hand orientation, and arm movement. The language relies on a discrete
description of space and on movement decomposition into primitives. In addition, an animation
system capable of interpreting the gesture specification language was implemented based on a
sensori-motor control model for the hands and arms. Coarticulation is achieved by a weighting
function that considers directly neighboring configuration targets.

The Virtual Presenter [NZB00] was designed to provide information by explaining presentation
boards. The input consists of text annotated with gestures and presentation material. Gestures
are synchronized to the following word in the input text. Automatic gesture generation based
on words in the input text is also possible. The focus lies on gestural skills for public speaking.
The system also takes into account posture and eye contact with the audience. Gaze is used to
call the audience’s attention to a specific object. Asin [CSB194, CPB194], finite state automata
control the presenter’s actions.

Kopp and Wachsmuth [KW00a, KW00b, KW02, KSW04] propose a generation module for
coverbal gestures from annotated text. The input is decomposed into coexpressive intonation
and gesture phrases for conjoined generation. They orient themselves closely on the gesture
generation model by de Ruiter [dR98] (see Section 6.4.8). Their gestuary contains gesture tem-
plates which describe function and spatiotemporal features of the gesture. Possible fields are
hand shape, orientation, location, and movement. Hand shape specifications are based on Ham-
NoSys [PLZ"89], an annotation methodology for sign language. Relations between gesture
features like simultaneity can be specified. If a gesture is dynamic, it is composed of several
segments. Depending on the function specified in the input and on current configuration, the
gesture planner selects the appropriate template. Synchronization between speech and gesture
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is achieved as follows. The duration of the pause between consecutive phrases is adjusted if the
gesture of the following phrase occurs early and requires a long preparation phase. Stroke and
lexical affiliate are executed simultaneously. The gesture planner tells the TTS to set the primary
stress of the intonation phrase to be within the lexical affiliate. The gesture stroke precedes the
onset of the coexpressive speech segment by the approximate duration of one syllable. A rough
spatiotemporal plan for the strokes of consecutive gestures is made, which is subsequently re-
fined by the motor planner. After each gesture, a stereotyped retraction movement is appended
with slight overshooting before coming to rest. Transitions between consecutive gestures take
coarticulation into account. The final animation is obtained by a kinematic approach that con-
siders natural dynamics.

The rule-based Behavior Expression Animation Toolkit (BEAT) [CVBO01] derives intonation, lip
sync, facial expressions, and gestures from input text based on a linguistic and contextual anal-
ysis and on knowledge bases. Gestures are proposed only for new or contrastive information
in a clause. The system takes into account that people tend to gesture about unusual aspects
of objects, even if these are not mentioned verbally. First, all possible gestures are identified
for each utterance. This set is then reduced through user-defined filters to only display those
movements appropriate for a certain character. Conflict resolution is priority-based. Coarticula-
tion is here understood and implemented as the superposition of one gesture over another which
uses the same DOFs. Duration of gestures are not modified. [CNBT01] extends the system to
incorporate posture shifts.

In [HMPO02], a language for gesture description is proposed as well as an animation system for
gesture synthesis. Each gesture is described by a series of keyframe templates containing fields
for hand shape, wrist orientation, arm movement, and place of articulation. Unspecified prop-
erties are determined by interpolation. HamNoSys [PLZ "89] is used to describe hand pose and
orientation, and position is specified within McNeill’s gesture space [McN92] (Section 6.4.4).
The exact timing of a frame depends on the neighboring gestures. In the synthesis system, a ges-
ture planner instantiates each gesture present in the input XML structure, inserts rest positions
as necessary, or automatically overlays beats over other gestures in case of multiple intonation
peaks in a clause providing new information. Follow-through’ for the arm is also implemented.
The succession of gestures is then translated into joint angles depending on the human model.
Krenn and Pirker [KP04] designed a system independent gesture knowledge base, the gesti-
con. Each gesticon entry contains information about gesture type, shape, meaning, coexpressive
speech segment, type of alignment to the segment and relative timing, i.e. position and dynamics
(separately for preparation, stroke, hold, retraction). Additional constraints can be added, for
example, to restrict a certain gesture to particular emotions. The gesticon is used in the fol-
lowing system: the scene generation and affective reasoning components pass dialog acts to the
multimodal natural language generator which creates a text representation and assigns posture
shifts, hand gestures, and facial expressions to speech segments based on semantic and prag-
matic content. The text is transformed into emotional speech by the MARY TTS [Sch04b, ST03]
(see Sections 4.3.2 and 4.4.2). The prosodic and timing information from the TTS is used to
align speech and non-verbal movement. Time permitting, a return movement to a rest position
is inserted between gestures.

Stone et al. [SDO™04] use pre-recorded chunks of audio and chunks of movement to synthesize
new full-body utterances. Possible sentences the character can say are described by a gram-
mar. From this, the sentences that need to be recorded to obtain the speech and gesture chunks

"Movement is propagated from the body core outwards. Consequently, there is a small delay between movement
of consecutive joints in the hierarchy.
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required to form all possible utterances are determined. For synthesis, a sentence is generated
according to context. The corresponding utterance is assembled from those speech phrases and
gestures that match the communicative function and minimize the required amount of time warp-
ing and blending.

Automatic Derivation of Iconics from Object Descriptions

Both [KSWO04] and [KTC04] deal with automatic generation of iconic gestures from object de-
scriptions and site plans. [KSWO04] approaches the problem from two directions. On the one
hand, the strokes of motion captured gestures are automatically expressed in a gesture descrip-
tion language and subsequently imitated by an embodied agent. On the other hand, a description
language for objects is introduced that captures the most salient features such as the direction of
maximal diameter or rounded shape. From such a description, iconic gestures can be generated
automatically, because it is these dimensional characteristics that humans encode. Conversely,
the language can also be used for the description of object features from gestures. Putting these
two approaches together would allow the representation of tracked gestures in the gesture de-
scription language to be mapped to the object description language, which would permit the gen-
eration of new, possibly different gestures from this representation, i.e. the agent could rephrase
the user’s gesture.

The system described in [KTC04] derives natural language and gesture from the same commu-
nicative concept. For gesture formation, the imagistic content to be conveyed by the gesture is
broken up into image description features, which are linked to discrete form features like hand
shape or trajectory. During utterance composition, the gesture planner generates all possible
gestures from the image descriptions. These are collected in an add hoc lexicon of gestures from
which the natural language generator selects the one that, together with the generated language,
expresses the content best. Gesture and speech affiliate are paired for synchronization. The
scheduling and motor planning components are from [CVBO1] and from [KWO04], respectively.

Individual Gesturing Styles

In his dissertation, Kipp [Kip03] describes an empirical approach to gesture generation that mod-
els gesturing styles of individuals. From an annotated corpus, gesture profiles are derived for
every target person. A profile comprises a probabilistic concept-to-gesture mapping (e.g. rejec-
tion maps to a wiping hand gesture with a certain probability) and statistical models for timing,
handedness, transitions, variation, and frequencies of gestures. In the process, a lexicon of the
encountered gesture equivalence classes was assembled. The profiles are subsequently used to
generate gestural behavior from annotated input text. In a first step, all possible gestures are
generated from the profiles. They are then filtered based on the annotations in the input text
(segment boundaries, morphological information, new/old information, focus, and discourse
relations (lists, opposition, repetition)) and on the gesture profiles. Collisions between gestures
are resolved by selecting the next likely gesture instead of the one causing the clash. The system
outputs an abstract script containing for each gesture a pointer to the gesture lexicon, handed-
ness, relative timing, and speech affiliate. Gestures related to discourse structure that do not have
a direct speech affiliate are not considered.

[NRO4] is also concerned with individual gesturing style. A style consists of one or more style
dictionaries containing probabilistic mappings of meaning to specific gestures, a manner defini-
tion for motion characteristics, and a modality usage parameter to indicate preference of body
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parts (e.g. face or hands). Combining style dictionaries yields mappings for new cultural groups
or individuals, for example a style dictionary for teachers together with one for Dutch will result
in a style dictionary for Dutch teachers. Gestures are characterized by attributes for intensity,
noise, manner, and duration, which may be changed via style modifiers. A gesture repertoire
serves as knowledge base. Input text is annotated with gestures or high-level meaning tags that
are automatically translated to style modifiers and gestures based on the current style.

Expressivity of Gestures

Chi et al. [CCZBO00] do not synthesize gestures from scratch, but modify existing key frame
animations by setting effort and shape parameters of Laban Movement Analysis to obtain ex-
pressive animations. Shape influences the expansion of the arm movement by modifying key
poses, while effort has an impact on the execution of the movement, i.e. on roundness, interpo-
lation space (end effector position, joint angles, etc.), velocity, and acceleration. For the torso,
shape changes essentially result in “squash and stretch”-like movement, for example, by leaning
forward or being very erect.

A similar approach was proposed by Hartmann et al. [HMPO5] as an extension of [HMP02].
Changes in expressivity are marked in the input text and incorporated at the gesture synthesis
stage. Parameters for expressivity are overall activation (modeled as gesturing frequency), spatial
extent (movement amplitude), temporal extent (movement duration), fluidity (smoothness and
continuity of movement), power (dynamic properties), and repetition (tendency of superimposed
beats). The features of a gesture that carry the meaning are not affected by the expressivity
parameters.

To a limited extent, Ruttkay et al. [RNtHO3] also implemented expressivity for hand gestures by
modifying the parameters for precision (noise), dynamism (acceleration/deceleration pattern),
and intensity. For each level of intensity, a variation of the gesture (e.g. a different hand shape)
must be present in the knowledge base.

6.4.11 Gesture Generation for Speech

In this section, we detail some thoughts about an annotated-text-to-gesture module that would
fit well with our approach to facial animation from text as described in Section 4.3. Since it is
derived from the model by de Ruiter [dR98] (see Section 6.4.8), it is necessarily similar to other
approaches that originated from the same theoretical model (e.g. [KW00a, KWO00b]).

We believe that de Ruiter’s Sketch Model is a better starting point for our situation than the
model by Krauss et al. [KCC96, KCGO0O] (see Section 6.4.9), since we do not attempt to
simulate memory retrieval processes. Furthermore, we start from an integrated representation of
text and gesture tags, which is more in line with the Sketch Model.

Figure 6.37 illustrates our method and allows comparison with the de Ruiter model in Fig-
ure 6.36. Instead of receiving a communicative intention from the working memory as in the
Sketch Model, the conceptualizer gets text input with gesture (and possibly emotion) tags from
the user. Tags are necessary in order to identify speech affiliates. As preverbal message, the
conceptualizer forwards the text (with all tags) to the formulator, i.e. the MARY TTS (see Sec-
tions 4.3.2 and 4.4.2). The sketch sent to the gesture planner has more or less the same form
as proposed by de Ruiter: a sequence of gesture templates that depend on gesture type (see
Table 6.8), filled in with information from the input annotation.
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Figure 6.37: Proposed architecture for gesture generation. Text input annotated with hand
gestures is transformed into speech and animations of facial expressions and gestures. The
MARY TTS was introduced in Section 4.3.2. How we generate facial expressions from plain
input text is described in Section 4.3. Gesture production follows de Ruiter’s model [dR98]
(Section 6.4.8) as closely as possible. For a description of the gesture generation module, see
Section 6.4.11.

At the next stage, the formulator/ TTS performs the phonological encoding of the input text. The
resulting MARY XML structure is passed on as phonetic plan to the first part of the articulator,
i.e. the actual synthesis module of the TTS which generates a speech audio file. The second part
of the articulator are the PC speakers. The gesture tags are passed through all stages in the TTS
and are present in the final XML document, allowing to synchronize gesture and speech.
Unlike in the original Sketch Model, the gesture planner has access to the phonetic plan, which
it must parse in order to generate the facial animation (see Section 4.3) and to appropriately
synchronize the hand gestures to their lexical affiliates. On the other hand, a path from the
gesture planner to the formulator is also necessary, since for elaborate gestures of long duration,
speech onset depends on gesture duration (otherwise, correct synchronization can no longer
be guaranteed), i.e. the phrase initial pause must possibly be adjusted in the phonetic plan as
indicated by the gesture planner.

The gesture planner handles each gesture category differently, see below. It computes the timings
of the gestures in the sketch from the XML structure of the TTS, dereferences the pointers to
the gestuary, and is responsible for body part allocation. During the generation of the actual
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animation script, it must take into account coarticulation, i.e. blend gestures that directly follow
each other without a rest interval. Possible empty fields in the template are either filled by fusing
two gestures, if specified in the input, or by interpolation between surrounding gestures.

Both at the gesture and the facial animation level, emotion should be taken into account. For the
face, we have described an approach that is compatible with the emotion module within MARY
(Section 4.4). In case of gestures, if one of the existing approaches [CCZB00, HMPO05] is chosen
for integrating emotion and gestures, a mapping from either emotion words or, preferably, the
emotion dimensions activation, evaluation, and power into their expressivity space is required.
Together with the specification of the facial animation, the final motor plan is passed to the
motor control units for execution. Currently, we only have animation systems for the face and
the hands. Integrating these two high-detail components with a simpler model for the rest of the
body would yield animations with high detail in the most important areas and at the same time
avoid an explosion of computation time.

Synchronization between audio and animation is inherent due to the shared underlying timing,
but the same process must trigger both animation and audio output. Since gesture precedes
speech and generally, speech seems to adapt to gesture [dR98], the motor control component
would be one candidate to initiate both animation and audio playback, but a better solution
from a software design point of view might be the conceptualizer. When the gesture planner
has generated the motor program and the TTS the audio file, both components signal to
the conceptualizer which activates both animation and audio output and ensures synchrony.
Similarly, it might be neater to force gesture planner and formulator to communicate through
the conceptualizer during the planning stage instead of directly with one another as indicated in
the diagram.

In order to slim down the design, one could also imagine the TTS to directly receive the input,
to process it, and to pass its output to the gesture planner, thereby initiating the gesture and
facial animation planning stage, during which the hand gesture module generates and fills in the
sketch, and finally creates the animation from it. After gestures (with a possible adjustment of
the speech timing) and facial animation have been generated, the gesture planner activates the
animation system and the audio output. In this way, we would arrive at a linear design.

Gestuary

When populating the gestuary, the gesture collection by Kipp [Kip03] might be a good starting
point. He assembled a lexicon of 68 gesture equivalence classes from his corpus, mostly em-
blems and metaphorics, but also some deictics, iconics, self-adaptors, and beats. It contains for
each gesture handedness, hand shape and movement, orientation, location, frequency of occur-
rence, and a sample of a lexical affiliate. In order to include function, semantic tags must be
assigned to the gestures. The difficulty here is that different people use the same gesture with a
different meaning. However, this may be exploited to model individual behavior [Kip03].

Kipp argues persuasively that using a lexicon of gesture makes sense. In his conversational
corpus, he found iconics to be rare, and metaphorics are to a certain degree standardized. The
data from his experiments supports the claim that — apart from iconics that are invented on the
fly — people use a shared, finite collection of gestures. From the gesture equivalence classes in
his corpus, Kipp distilled a shared lexicon of frequent gestures that covers 85% to 90% of the
data. 15 out of the 39 gestures from the lexicon were used by both speakers. They constituted
around 55% of the individual repertoire of each speaker.
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Gestuary Entries. Entries need to consider handedness, hand pose, orientation, and location,
as well as the development of these aspects over time. Handedness is constant during one gesture
and can either be right hand, left hand, or both hands. For hand shape, it makes sense to build on
the field-tested HamNoSys [PLZ " 89]. Orientation cannot be specified as an absolute orientation,
like “palm up”, because it depends on the character’s pose. If it enacts an iconic for newspaper
reading while lying on its back, the gesture must be rotated by 90° compared to the same gesture
executed while sitting in a chair. One possible frame of reference for hand orientation is the
gesture space. Location is best expressed as a sector of the character’s gesture space. Within
this sector, the exact position can be chosen randomly to introduce variability. Only for concrete
deictics, an exact location is required. Temporal development can be achieved by giving key
frames, relative timings, and a reference to an interpolation scheme. For example, half-circular
sweeping movements need to be interpolated differently than tracing a zig-zag course of straight
lines.

It is not necessary to always specify all parameters in a gestuary entry. Values are required
only for those fields that carry the meaning of the gesture. These values can be part of either
the gestuary entry or of the sketch. Location of the hand for deictics, for example, is derived
from the pointing vector. Unspecified parameter values are automatically filled in by the gesture
planner by interpolation or by gesture fusion, if specified. Handedness is a special case. Here,
the gesture planner should choose the same hand as for the previous gesture, but also consider
restrictions from the environment and the character’s original handedness. It should be possible
to specify this parameter in the input annotation, because handedness plays an important role in
marking discourse relations.

Gesture Representation

The representations for the individual gesture categories in the sketch emerge from Table 6.8.

Pantomimes. In the Sketch Model, pantomimes are specified as references to motor action
schemes. The analogon in our case are references to the respective animation files, possibly from
motion capture for the most natural dynamics. A question in this context is whether pantomimes
are always enacted at the same speed, or whether the animations would have to be time scaled.
After blending to the preceding and succeeding gesture has been performed, or a transition to
a resting pose has been inserted, the animation snippet can be directly integrated into the final
animation stream.

Iconic and Metaphoric Gestures, Emblems. For these gesture classes, the sketch con-
tains a reference to the gestuary.

Deictics. Pointing gestures require a pointer to a gestuary entry that consists of a single
frame, where the only field specified is hand shape. From the vector in the sketch, orientation
and location can be computed.

Beats are not coded explicitly, they are realized as up and down movements with a relaxed hand
shape, or the current hand shape, if they are superimposed over other gestures.

So far, most systems have their own gesture specification language. In order to make an exchange
possible and thus assemble a larger gestuary, a standard ought to be developed [KP04].
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Synchronization

From the literature survey in Section 6.4.2, it became obvious that synchronization to speech
depends on gesture type.

Iconics, Metaphorics, Abstract Deictics. For these gesture types, we assume that the
user has specified only speech affiliates that do not occur after the nucleus of the intonation
phrase (which probably would not make sense, anyway). Otherwise, the gesture planner would
have to modify the point of occurrence of the tone unit nucleus in order to prevent a violation of
the phonological synchrony rule. We do not model cases where the stroke is finished before the
onset of the speech affiliate.

In compliance with [MSK92], we let the preparation phase start as a default at the word boundary
that is approximately 0.99 s before the coexpressive speech segment. If the preparation finishes
perceptibly before stroke onset when performed at a comfortable speed, the preparation phase
is shifted forward in time, but not more than to the beginning of the affiliate, and the stroke is
moved backwards, until the two phases meet. Another possibility is to insert a pre-stroke hold.
According to McClave [McC98], 50% of all strokes coincide with the nucleus of the intonational
phrase, and another 25% with a stressed syllable that is not the nucleus. Therefore, we decided
to use the latter of the peak FO syllable and the intensity peak of the speech affiliate as point
of reference (see [Nob98] and also [KW02]), provided it precedes or equals the nucleus, and
the nucleus otherwise: the gesture stroke is scheduled to end with the reference syllable. If the
stroke is so short that it would start after the reference peak, its onset is shifted to this peak. This
guarantees that the stroke does not start after the last of intonational and intensity peak syllable,
nor after the nucleus, i.e. phonological synchrony is preserved.

Depending on the length of the gesture and of the anticipatory movement, the begin of the
preparation phase may have to be shifted backward in time. In case this leads to a collision with
the previous gesture, the pause between the two phrases must be extended.

In de Ruiter’s model, a post-stroke hold is inserted until the preverbal message has been com-
pleted. Since we do not model this process, we can either force a hold (or repetitions, in case
of repetitive gestures) until the end of the coexpressive speech, or until its penultimate syllable,
since the preverbal message must be completed before the speech. Then, retraction commences.
At any time, the preparation phase of the next gesture can interrupt it, which leads to a blend into
the anticipatory phase of the succeeding gesture.

Concrete Deictics. For this category, the findings by de Ruiter [dR98, p. 53, p. 64] can be
implemented. As the TTS does not know which the contrastive word is, this must be given in
the input annotation in order to obtain the desired intonation from the TTS. Since the user must
also specify the lexical affiliate, we know the number of coexpressive words. If this is two and if
the first word does not contain the nucleus, we propose to set the apex of the pointing gesture to
the end of the first phoneme of the second word. In case the first word does contain the nucleus,
or if the affiliate only consists of one word, the same timing is applied to the first word.

If the coexpressive speech consists of three words, apex position depends on contrastive stress.
If the peak syllable occurs during the first word, we apply the same rule as for two words. In the
case of the second word carrying the main accent, the apex is reached after the first syllable of
the second word and held until the end of that word. Otherwise, it is set to the beginning of the
last syllable of the second word. A post-stroke hold is inserted until the end of the first syllable
of the last word.
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The worst case is more than three coexpressive words, because here we do not have explicit rules.
These pointing gestures must be handled like abstract deictics in order to enforce phonological
synchrony.

Launch time seems to be approximately 600-800 ms, depending on stress location. If this inter-
feres with previous gestures, the pause between the two phrases must be elongated.

Beats. Beats are the only gestures that do not stand in any relation to the content of the utter-
ance. According to McClave [McC94], their points of occurrence cannot be predicted. We have
two possibilities here: either all beats must be specified in the input, or we attempt to automati-
cally determine a beat pattern in spite of McClave’s findings. This would allow us to investigate
human perception of possibly wrong beat patterns. The second alternative should definitely be
attempted. Maybe it will even lead to a heuristic rule for perceptibly acceptable beat positioning.
In case the beats are given in the input text, we can proceed as follows. The output of the
TTS allows us to identify the tone unit nuclei. If a beat was prescribed for the respective word,
the downbeat starts and ends with it in case of monosyllabic words. For multisyllabic words,
it begins some time during the nucleic syllable and ends during the following syllable. If a
beat is specified for a multisyllabic word that does not contain the nucleus, the downwards
movement is synchronized in the same way to the lexically stressed syllable. Exact timing
within a syllable does not seem to matter, so we can choose random times that guarantee a
minimum duration. If a beat is requested for a non-nucleic monosyllabic word or a second beat
for a multisyllabic word, its downpoint is scheduled to form a regular pattern with the previous
and following gesture, since to some extent also other gesture types than beats form part of the
personal rthythm [McC94].

Automatic placement of beats could assign beats to the tone unit nuclei and insert other beats in
between in order to obtain a beat rhythm with periodicity roughly between 1/5s and 1 s, where
periodicity may vary up to 1/15 s in either direction and may be halfed or doubled.

A study would have to reveal whether the possibility to specify different gesture-speech align-
ment schemes in the input annotation (e.g. gesture starts with speech affiliate or gesture finishes
before speech affiliate) [Kip03, KP04] is a tool that animators find useful, or whether it compli-
cates matters unnecessarily.

6.4.12 Conclusions

The goal of this section was to show how generation of hand gestures from annotated text and
text-based facial animation can be coupled, thus bringing together our approach to coverbal
facial animation and our hand animation system.

The most challenging part of gesture planning is synchronization of gesture and speech. The
temporal relationship between the two modalities is rather loose. More research in this area is
required, since there are still a number of open questions, for instance, concerning beat rhythm.
Learning-based animation systems might be of use here, but the training phase would require a
lot of annotation work (tone unit nuclei, accented syllables, pitch, lexical affiliate, etc.), since
gesture-speech synchronization appears to involve many factors, and success is not guaranteed.
Variations in gesture patterns due to emotions or different personal style are an important tool
to create entertaining and believable animations of gestures. Small random variations (e.g. of
their exact location) help to avoid robot-like repetitiveness. Especially when having several
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agents at the same time that communicate with each other and/ or with the user, it is important
to implement between-agent variations to endow the virtual characters with individuality, since
when and how people gesture varies between and within speakers.

Animations of arm movement must allow for a high level of control and flexibility, while at
the same time appear lifelike. Naturalness in existing systems is sought by taking into account,
for example, tension, continuity, and bias [HMPO02] and Fitts’ law® [KW02, HMPOS5]. Kopp and
Wachsmuth [KW04] break the movement into segments with bell-shaped velocity profiles. They
consider the relationship between velocity and movement shape as well as between shape and
duration. Lebourque et al. [LG99b] also assemble arm movement from movement primitives that
have natural velocity profiles. Furthermore, movement overshooting is implemented in [KW00a,
HMPOS5].

Animating hands, arms, and face is not enough. One should at least include the torso [CCZB00],
preferably employ the entire body and take into account that face and hands/arms are not the
only body parts that can perform gestures in the wider sense.

Coordinating hand gestures with other behavior will enhance naturalness and perhaps even
communication effectivity. For example, the speaker orients his gaze at his hands to call the
listeners attention to the gesture (iconic, metaphoric, or deictic) [Str94].

Gesture generation systems permit to conduct interesting perception experiments that are diffi-
cult to conduct with human stimulus material, since people are not able to modify their gesturing
behavior completely at will. It would, for example, be a lot easier to construct stimulus ma-
terial for testing the effect of speech-gesture mismatches with an animation program than by
choreographing humans as described in [MCM94]. In addition, one could easily measure how
sensitive people are with respect to timing. These and other questions seem to be worth investi-
gating.

$Model of human psychomotor behavior for rapid, aimed movement [Fit54].
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Conclusions

This thesis presents various contributions aimed towards automating and improving the commu-
nication skills of virtual humans. In the realm of facial animation, two different methods were
proposed to automatically augment animations of lip sync with non-verbal speech-related facial
expressions, such as raised eyebrows and head nods on accented syllables, or eye blinks at the
end of grammatical clauses to signal speaker continuation. The first technique deduces speech
accompanying facial movement directly from an analysis of the (natural) speech signal, while in
the second case, the linguistic analysis of a coupled text-to-speech system provides the necessary
fundamental information. The text-based method also allows the user to insert emoticons into
the text that are then integrated as facial expressions at corresponding positions in the animation.
With both approaches, synchrony of animation and audio signal is inherent.

Furthermore, we have presented an algorithm for generating facial expressions for a continuum
of pure and mixed emotions of varying intensity. Based on the observation that in natural
interaction among humans, shades of emotion are much more frequently encountered than
expressions of basic emotions, a method to generate more than Ekman’s six basic emotions
(joy, anger, fear, sadness, disgust and surprise) is required. To this end, we have adapted the
algorithm proposed by Tsapatsoulis et al. [TRKT02] to be applicable to a physics-based facial
animation system and a single, integrated emotion model. The facial animation system was
combined with an equally flexible and expressive text-to-speech synthesis system, based upon
the same emotion model, to form a talking head capable of expressing non-basic emotions of
varying intensities.

We have also presented a novel approach to create plausible 3D face models from vague re-
collections or incomplete descriptions. This task plays an important role in police work, where
composite facial images of suspects need to be created from vague descriptions given by eyewit-
nesses of an incident.

Our approach is based on a morphable model of 3D faces [BV99] and takes into account corre-
lations among facial features based on human anatomy and ethnicity. Using these correlations,
unspecified parts of the target face are automatically completed to yield a coherent face model.
Through an intuitive GUI, the system provides high-level control of facial attributes as well as
the possibility to import facial features from a database. In addition, the user can specify a set
of attribute constraints that are used to restrict the target face to a residual subspace. These con-
straints can also be enforced on the example faces in the database, bringing their appearance
closer to the mental image of the user, and thus avoiding confusing exposure to entirely different
faces. Adapting the system to local populations is achieved through additional image databases
that are converted into 3D representations by automated shape reconstruction.

We have demonstrated the applicability of our system in a simulated forensic scenario and have
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compared our results with those obtained by a professional forensic artist using state-of-the-art
software for creating composite images in police work.

The hands constitute another important modality of human communication. Here, we have con-
tributed a physics-based human hand model with underlying anatomical structure. Animation of
the hand model is controlled by muscle contraction values. We employ a physically based hy-
brid muscle model to convert these contraction values into movement of skin and bones. Pseudo
muscles directly control the rotation of bones based on anatomical data and mechanical laws,
while geometric muscles deform the skin tissue using a mass-spring system. Thus, resulting an-
imations automatically exhibit anatomically and physically correct finger movements and skin
deformations. In addition, we present a deformation technique to create individual hand models
from photographs. A radial basis warping function is set up from the correspondence of feature
points and applied to the complete structure of the reference hand model, making the deformed
(new) hand model instantly animatable.

The model was used to visualize the hand movement of a baseball pitcher immediately before,
during, and after ball release. Hand poses at key positions were obtained from a tracking system
based on multi-exposure photography. This approach permits to capture high-speed motion with
low-cost commodity still cameras and a stroboscope. The recorded motion remains completely
undisturbed by the motion capture process. We acquired the motion of both hand and ball for
a variety of baseball pitches and automatically tracked the position, velocity, rotation axis, and
spin of the ball along its trajectory. To demonstrate the validity of our system, we analyzed
the consistency of our measurements with a physics-based model that predicts the trajectory of
a spinning baseball. We found our measurements to coincide with the predicted positions to
within an average error of less than a quarter of the baseball’s diameter over the entire flight
path. Accuracy is of high importance, since small differences in hand motion at launch time
directly influence the ball’s path. Due to its visualization component that shows an animation
of the hand during ball release and of the resulting flight of the ball, the system is of value
to athletes and coaches, allowing them to analyze and, subsequently, improve the athlete’s
performance.

Since most of our work is related to animation, videos naturally provide a better impression
of the results than still images. Some movies documenting the described projects can be
found at the following locations: http://www.mpi-inf.mpg.de/resources/FAM/
features the MEDUSA facial animation system together with all research that originated from it.
http://www.mpi-inf.mpg.de/resources/VirtualHumans/ is dedicated to work
concerned with tracking, modeling and animating virtual humans, including our hand model.

7.1 Future Challenges

As is usually the case in research, we set out to search for solutions, and did not only find
answers, but also many interesting questions. A lot of exciting problems still wait to be explored.
Below, we will sum up the main tasks for the issues addressed in this thesis.

7.1.1 Facial Animation

Most critique we got for our facial animations from lay persons concerned the eyes, or were
complaints that movements were repetitive or robot-like. More realistic animations of the eyes
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(for example, [LBB02]) and maybe a better eye model should alleviate the first problem, while
more diverse animations would help with the second one. Here, it might also be beneficial to
investigate differences between non-verbal speech-related facial expressions during spontaneous
speech and during loud reading or recitation. As for the last point of critique, this seems to imply
that the dynamics of the movements are too simplistic. Studying video recordings of speech
accompanying facial expressions could lead to valuable insights and, for example, reveal several
phases of movement with dynamical differences.

With respect to facial expressions of emotion, lifting the algorithm for the generation of inter-
mediate facial expressions of emotion from Section 4.4.3 to the third dimension would be an
interesting extension.

Emotion detection from the speech signal would allow to display emotions also in animations
driven by a natural speech signal. Learning based approaches for a limited set of emotions were,
for instance, proposed in [CDB02, CTFP05]. Extracting levels of activation, evaluation, and
power instead of discrete emotions would allow more subtle facial expressions. Integrating our
algorithm for intermediate facial expressions would guarantee integrity of animation and audio
signal due to the underlying emotion model.

When facial expressions of emotion and speech are combined, tempo and frequency of non-
verbal speech-related facial expressions should be adapted to the current emotion. Other param-
eters of emotion are, for example, blushing and frequency of breathing.

7.1.2 Hand Modeling and Animation

This area offers several important challenges, the most obvious being the necessity for texturing
the hand models. Preferably, the method should permit to generate a texture for a personalized
hand model from the same photograph and possibly the same feature points as the hand model
itself, plus a second similarly tagged photograph of the palm.

Another issue is that of control. With so many degrees of freedom, guessing the correct muscle
contraction values to obtain the desired animation can only be tedious. Starting from our model,
Tsang et al. [TSFO5] developed a biomechanical hand model where they solve for the differential
equation of motion using the implicit Euler technique. They overcome the control problem by
creating animations from keyframes using inverse dynamics. Compared to linear interpolation,
using a physics-based anatomical model fills the gaps between the individual keyframes with
animations that exhibit more realistic dynamics.

In this context, the problem of comparison to real data arises. One possible approach involves
personalizing the hand model as described in Section 6.2.3. Movement of the same live hand
is then tracked. Tsang et al. [TSFOS5] demonstrated that it is possible to find contraction values
that yield an animation exhibiting dynamics very similar to the original movement. Results are
good, but differences are clearly visible, probably due to measurement errors and (unavoidable)
simplifications in the model.

This leads already to the next question: would a more complex model help? Would adding
tendons, ligaments, connective tissue, skin layers or a more sophisticated muscle model improve
the realism of the hand model or merely slow down animations? Depending on the intended
application, trading interactivity for realism is certainly desirable, but whether a more complex
model will also be more lifelike can only be decided by trying it out. In computer graphics, visual
appearance is decisive, while for medical applications an exact rendition of the inner workings
is of major importance.

The logical extension of this dissertation is the implementation of speech-related gestures,
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thereby connecting our facial animations and our hand model, see Section 6.4.

7.2 Where Do We Go from Here?

The ultimate goal is a complete virtual human capable of human-like, trust evoking communica-
tion that puts the user at his ease by offering him the interface he knows best and is hence most
comfortable with. A whole body model does not only permit facial expressions and hand ges-
tures, but would allow the virtual human to transmit communicative signals also via the remain-
ing channels of communication: through posture, personal space!, timing?, touching behavior,
style of clothing, and artifacts such as jewelry. Both the scenario where a virtual character inter-
acts with a human and where he deals with other agents have their own challenges. The former
setting needs to integrate a good deal of computer vision, while the latter requires the virtual
beings to be modeled as individuals, i.e. with different communication idiosyncrasies. In both
cases, behavior must be adjusted to match the conversational partner. Non-verbal communication
depends on the gender of the interlocutors, on their relative position in the hierarchy, on mood,
personality, and other factors. As long as not all aspects are taken into account simultaneously,
the mission is not completed.

'Distance kept between people during conversation; depends for instance on level of acquaintance and comfort.
>The meaning of time varies widely between different cultures; as a result, being on time, for example, is not of
the same importance in all cultures, which may lead to misunderstanding.
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A

Pseudo Muscles of the Hand Model

anatomical name lo [mm] | joint(s) / DOF ||| [mm]
flexor carpi radialis 52 wrist flexion 17.5
wrist abduction 10.5
palmaris longus 50 wrist flexion 21
wrist abduction 1.5
flexor digitorum superficialis index 72 wrist flexion 15
wrist adduction 3
MCP index flexion 11.9
MCP index adduction 3
PIP index flexion 6.2
flexor digitorum superficialis middle 70 wrist flexion 15
(analogous: wrist adduction 3.0
flexor digitorum superficialis ring MCP middle flexion 11.9
flexor digitorum superficialis pinky) MCP middle adduction 1.7
PIP middle flexion 6.2
flexor carpi ulnaris 42 wrist flexion 18.5
wrist adduction 15
flexor digitorum profundus index 66 wrist flexion 6
(analogous: wrist adduction 13
flexor digitorum profundus middle MCP index flexion 11.1
flexor digitorum profundus ring MCP index adduction 6
flexor digitorum profundus pinky) PIP index flexion 7.9
DIP index flexion 4.1
flexor pollicis longus 59 wrist flexion 5
wrist abduction 13
CMC thumb adduction 10
CMC thumb opposition 10
MCP thumb flexion 7.5
IP thumb flexion 55
extensor carpi radialis longus 93 wrist extension 10
wrist abduction 21
extensor carpi radialis brevis 61 wrist extension 13
wrist abduction 24
extensor digitorum index 55 wrist extension 13
(analogous: wrist adduction 7.5

Table A.1: Pseudo muscle parameters. List of the pseudo muscles of our system with fiber
resting lengths £y [mmy], affected joints, and moment arms ||7]| [mm]. Source: [BH99, AUC*83].
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anatomical name Lo [mm] | joint(s) / DOF ||7]| [mm]
extensor digitorum middle MCP index extension 8.6
extensor digitorum ring MCP index abduction 0.2
extensor digitorum pinky) PIP index extension 2.8

DIP index extension 2.2

extensor digiti minimi 59 wrist extension 13

wrist adduction 7.5
MCP pinky extension 8.6
PIP pinky extension 2.6
DIP pinky extension 1.9
extensor carpi ulnaris 45 wrist extension 6
wrist adduction 25
extensor pollicis longus 57 wrist extension 9
wrist abduction 10.5
CMC thumb extension 5
CMC thumb adduction 10
MCP thumb extension 2.5
IP thumb extension 2
extensor indicis 55 wrist flexion 1.4
wrist abduction 0.4
MCP index extension 9
MCP index adduction 1.3
PIP index extension 2.6
DIP index extension 1.9
abductor pollicis longus 46 wrist flexion 7.4
wrist abduction 24
CMC thumb extension 0.5
extensor pollicis brevis 43 wrist flexion 3.2
wrist abduction 23
CMC thumb extension 4.5
CMC thumb abduction 3
MCP thumb extension 3
abductor digiti minimi 40 CMC pinky opposition 6
MCP pinky abduction 4
PIP pinky extension 2.5
DIP pinky extension 2
flexor digiti minimi brevis 34 CMC pinky opposition 6
MCP index flexion 4
MCP index abduction 4
opponens digiti minimi 34 CMC pinky opposition 6
abductor pollicis brevis 37 CMC thumb opposition 3.5
CMC thumb abduction 7.5
MCP thumb flexion 1
flexor pollicis brevis 36 CMC thumb opposition 9
CMC thumb adduction 1
MCP thumb flexion 7
opponens pollicis 24 CMC thumb opposition 4
CMC thumb adduction 8.5

Table A.1: Pseudo muscle parameters, continued.
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anatomical name lo [mm] | joint(s) / DOF ||7]| [mm]
adductor pollicis 36 CMC thumb opposition 4.5
CMC thumb adduction 9
MCP thumb flexion 7
lumbrical I 55 MCP index flexion 9.3
MCP index radial abduction 4.8
PIP index extension 1.8
DIP index extension 0.7
lumbrical 11 66 MCP middle flexion 5
MCP middle radial abduction 4.8
PIP middle extension 1.8
DIP middle extension 0.7
lumbrical III 60 MCP ring flexion 5
MCP ring radial abduction 4.8
PIP ring extension 1.8
DIP ring extension 0.7
lumbrical IV 49 MCP pinky flexion 5
MCP pinky radial abduction 4.8
PIP pinky extension 1.8
DIP pinky extension 0.7
palmar interosseus I 15 MCP index flexion 6.6
MCP index adduction 5.8
DIP index extension 2.6
PIP index extension 1.6
palmar interosseus II 15 MCP ring flexion 6.6
MCP ring adduction 5.8
DIP ring extension 2.6
PIP ring extension 1.6
palmar interosseus III 15 MCP pinky flexion 6.6
MCP pinky adduction 5.8
DIP pinky extension 2.6
PIP pinky extension 1.6
dorsal interosseus I 25 MCP index flexion 3.7
MCP index abduction 6.1
PIP index extension 2.6
DIP index extension 1.6
dorsal interosseus II 25 MCP middle flexion 3.7
MCP middle radial adduction 6.1
PIP middle extension 2.6
DIP middle extension 1.6
dorsal interosseus 111 25 MCP middle flexion 3.7
MCP middle ulnar adduction 6.1
PIP middle extension 2.6
DIP middle extension 1.6
dorsal interosseus VI 25 MCP pinky flexion 3.7
MCP pinky abduction 6.1
PIP pinky extension 2.6
DIP pinky extension 1.6

Table A.1: Pseudo muscle parameters, continued.
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