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Abstract

In this thesis we consider a three-dimensional packing problem arising in
industry. The task is to pack a maximum number of rigid boxes with side
length ratios of 4 : 2 : 1 into an irregularly shaped container. Motivated by
the structure of manually constructed packings so far, we pursue a discrete
approach. We discretize the shape of the container as well as the set of
possible box placements. This discrete packing problem can be reduced to a
maximum stable set problem.

First we formulate the problem as an integer linear program, which ad-
mittedly can only be solved to optimality within reasonable runtime for very
small instances. Therefore, we present several heuristics based, for example,
on the linear programming relaxation or on local search. Other heuristics
generate tight packings for the core of the container, thereby reducing the
problem to a set of smaller subproblems.

We compare all presented algorithms on real data sets. We achieve very
good results for the majority of instances and for some instances we even
surpass the manually constructed solutions.

Zusammenfassung

In dieser Arbeit behandeln wir ein dreidimensionales Packungsproblem aus
der Industrie. Die Aufgabe besteht darin, möglichst viele starre Quader mit
einem Seitenverhältnis von 4 : 2 : 1 in einen unregelmäßig geformten Con-
tainer zu packen. Motiviert durch die Struktur der bisher manuell erstellten
Packungen verfolgen wir einen diskreten Lösungsansatz. Dazu diskretisieren
wir sowohl die Form des Containers als auch die Platzierungsmöglichkeiten
der Quader. Dieses diskrete Packungsproblem lässt sich auf die Berechnung
einer größtmöglichen unabhängigen Knotenmenge reduzieren.

Wir formulieren das Problem zunächst als ganzzahliges lineares Pro-
gramm, das allerdings nur für sehr kleine Instanzen mit angemessenem Re-
chenaufwand beweisbar optimal gelöst werden kann. Daher stellen wir ver-
schiedene Heuristiken vor, die zum Beispiel auf einer Relaxierung des ganz-
zahligen linearen Programms oder lokaler Suche basieren. Andere Heuristi-
ken generieren zunächst dichte Packungen für den Kern des Containers und
reduzieren so das Problem auf eine Reihe kleinerer Teilprobleme.

Wir vergleichen alle vorgestellten Algorithmen an Hand realer Datensät-
ze. In der Mehrzahl der Fälle erreichen wir sehr gute Resultate, bei einigen
Instanzen übertreffen wir sogar die manuell erstellten Packungen.



Ausführliche Zusammenfassung

In der vorliegenden Arbeit behandeln wir ein dreidimensionales Packungs-
problem aus der Automobilindustrie. Auf dem europäischen Markt sind Au-
tomobilhersteller dazu verpflichtet, das Gepäckraumvolumen eines PKWs
entsprechend den Regelungen in der Norm DIN 70020 zu bestimmen und zu
veröffentlichen. Diese Norm schreibt vor, den Kofferraum mit starren Qua-
dern der Größe 200mm × 100mm × 50mm zu packen. Das Gepäckraum-
volumen des Kofferraums wird dann als das durch die Quader überdeckte
Volumen definiert. Das so ermittelte Gepäckraumvolumen ist ein wichtiges
Verkaufsargument; dementsprechend wird von den Automobilherstellern viel
Aufwand betrieben, um einen möglichst hohen Wert zu erreichen.

Das Ziel des dieser Arbeit zu Grunde liegenden Projektes mit einem inter-
nationalen Automobilhersteller ist es, ein Softwarepaket zu entwickeln, um
das Gepäckraumvolumen eines PKWs in Übereinstimmung mit der Norm
DIN 70020 zu bestimmen. Die Anwendung soll abgesehen von einer Vorbe-
reitungphase keine Benutzerinteraktion erfordern und muss ohne Experten-
wissen zu bedienen sein. Die Güte der berechneten Lösungen soll von manuell
durch Experten konstruierten Packungen um nicht mehr als ein Prozent bzw.
zehn Litern nach unten abweichen.

Die unregelmäßige Form des Kofferraums ist ein wesentlicher Unterschied
zu der Mehrzahl der in der Literatur betrachteten Packungsprobleme. Mo-
tiviert durch die bisher manuell erstellten Packungen verfolgen wir in dieser
Arbeit einen diskreten Lösungsansatz. Wir zeigen, dass bereits eine diskre-
te Variante des eigentlichen Packungsproblems NP -vollständig ist. Für diese
diskrete Variante existiert ein Approximationsschema mit polynomieller Zeit-
komplexität, das für die in der Praxis auftretenden Problemgrößen allerdings
nicht geeignet ist.

Die Diskretisierung erfolgt in zwei Schritten: Zunächst approximieren wir
das Innere des Kofferraums durch ein dreidimensionales, kubisches Gitter.
Diese Approximation erfordert besondere Sorgfalt, da die geometrische Be-
schreibung des Kofferraums verschiedene Arten von Mängeln aufweist. Wei-
terhin schränken wir in der diskreten Problemstellung die möglichen Positio-
nen und Orientierungen der Quader ein, so dass alle Quader an den Zellen
des Gitters ausgerichtet sind. Wir verwenden effiziente Implementierungen
der notwendigen geometrischen Prädikate und beschreiben Algorithmen, um
die Informationen einer vorhandenen Approximation bei einer Veränderung
ihrer Parameter zu aktualisieren. Diese beiden Komponenten verwenden wir,
um eine möglichst gut geeignete Approximation des Kofferraums zu berech-
nen.

Das diskrete Packungsproblem lässt sich zurückführen auf die Berech-
nung einer möglichst großen unabhängigen Knotenmenge (stable set) in
dem zugehörigen Konfliktgraphen. Wir formulieren das Problem zunächst
als ganzzahliges lineares Programm und erhalten damit einen Algorithmus,



der das Packungsproblem optimal lösen kann. In der Praxis stellt sich jedoch
heraus, dass selbst mit marktführenden Softwarebibliotheken für ganzzahlige
lineare Programme nur kleine Probleminstanzen mit angemessenem Rechen-
aufwand beweisbar optimal gelöst werden können. Dennoch ist ein solcher
exakter Algorithmus nützlich für kleinere Teilprobleme.

Aus diesem Grund präsentieren wir verschiedene Heuristiken. Diese las-
sen sich in zwei Kategorien unterteilen: direkte Ansätze, die das Packungs-
problem in seiner Vollständigkeit lösen können, und indirekte Ansätze, die
das Packungsproblem auf eine Menge kleinerer Teilprobleme reduzieren.

Wir stellen zunächst eine einfache Greedy-Heuristik vor, deren Ergebnisse
allerdings hinter den Erwartungen zurückbleiben. Weiterhin präsentieren wir
einen Algorithmus, der iterativ die Informationen des wesentlich einfacher zu
lösenden kontinuierlichen linearen Programms nutzt um die Problemgröße zu
reduzieren. Sobald die Problemgröße hinreichend reduziert wurde, wird das
verbleibende Teilproblem durch ein ganzzahliges lineares Programm optimal
gelöst. Schließlich stellen wir einen auf lokaler Suche basierenden Algorith-
mus vor. Dieser Algorithmus beinhaltet einen Rückkopplungsmechanismus
zur Vermeidung von Zyklen. Regelmäßige Neustarts helfen dabei eine breite
Abdeckung des Suchraums zu erreichen. Die Liste der direkten Ansätze wird
durch eine einfache Heuristik ergänzt, die sich an der geometrischen Form
des Kofferraums orientiert.

Als indirekte Ansätze stellen wir zwei einfache Heuristiken vor, die zu-
nächst das Innere des Kofferraums mit dichten, regelmäßigen Packungen
füllen. Dadurch entstehen Teilprobleme unterschiedlicher Zahl und Größe,
die wir durch einen der zuvor vorgestellten direkten Ansätze lösen. Ein drit-
ter indirekter Ansatz unterteilt den Kofferraum in mehrere Regionen, die
sequentiell gepackt werden. Um den durch die Unterteilung entstehenden
Verschnitt zu reduzieren, ist es dabei notwendig, die Regionen nicht unab-
hängig voneinander zu behandeln und die Platzierung der Quader innerhalb
der Regionen gezielt zu beeinflussen.

Wir untersuchen an Hand realer Datensätze aus der Praxis zunächst ver-
schiedene Varianten und Implementierungsdetails der vorgestellten Algorith-
men. Die so gewonnenen Erkenntnisse verwenden wir, um die Algorithmen
auf die typischen Instanzen abzustimmen. Wir zeigen an einem praktischen
Beispiel, dass es oft vorteilhaft ist, bestimmte kleinere Bereiche des Koffer-
raums zunächst getrennt zu behandeln (inklusive eigener Approximation).
Schließlich vergleichen wir verschiedene Kombinationen der vorgestellten Al-
gorithmen hinsichtlich der Qualität und Struktur der Lösungen als auch der
dazu benötigten Rechenzeit. In der Mehrzahl der Fälle erreichen wir die ge-
forderte Lösungsgüte, in manchen Fällen übertreffen wir sogar die manuell
von Experten zur Verfügung gestellten Packungen.

Alle in dieser Arbeit beschriebenen Algorithmen wurden in einem ein-
fach zu bedienenden Softwarepaket integriert. Dieses Softwarepaket ist in
der Entwicklungsphase neuer Fahrzeuge bei unserem Kooperationspartner
im Einsatz.
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Chapter 1

Introduction

In this thesis we present a combinatorial approach to a real-world packing
problem which arises in car industry. The task is to pack a maximum num-
ber of uniform rigid boxes into the interior of a car trunk. This problem is
of practical importance due to a German standard which requires car man-
ufactures to state the trunk volume according to this measure.

The details are set forth in the German standard DIN 70020 [Deu93],
which is also used in several other European countries. This standard defines
the size of such a box as 200mm×100mm×50mm, i.e., each box has a volume
of exactly one liter. A set of such boxes and a partial packing of a car trunk
can be seen in Figure 1.1.

(a) boxes (b) partial packing

Figure 1.1: Measurement of the trunk volume according to DIN 70020

The standard defines the volume of the trunk (to be more precise, its
luggage capacity) as the volume that is covered by the boxes packed into the
trunk. The volume obtained by this discrete measurement is significantly
smaller than the continuous volume of the trunk. The motivation for this
standard is the fact that the luggage usually to be stored is also discrete

13



14 CHAPTER 1. INTRODUCTION

and the continuous volume of the trunk does not reflect its effective storage
capacity. The American standard SAE J1100 actually uses a standardized
luggage set to define the luggage capacity of the trunk (see Section 1.2).

European car manufactures are required to publish the trunk volume ac-
cording to DIN 70020. This discrete volume is an important sales argument,
and therefore much time is spent on achieving a high volume.

Up to now, this problem has been manually solved with a lot of effort,
either with a real-world model (physical mockup) or virtually within a CAD
system (digital mockup). In both cases, experienced engineers spend one or
two days to find a satisfying solution for this packing problem. Large models,
e.g., minivans, require even up to a week of manpower.

A measurement of the trunk volume is not performed only once, but
multiple times during the design phase of a new car. Any changes of the
geometry need to be evaluated with respect to their impact on the trunk
volume. Therefore, an automated solution is highly desirable.

The goal of our project in cooperation with a large international car man-
ufacturer is to develop an industrial-strength system that allows to compute
the trunk volume according to DIN 70020. The key requirements of the
system are:

• Validity The boxes must not intersect each other. Additionally, the
boxes must not pierce the boundary of the trunk by more than a pre-
defined threshold, which models the deformability of the trunk.

• Quality The number of boxes should be as high as possible. It should
never fall short of the solution of an expert by more than 1% or 10 liters.

• Usability Ease-of-use is important; expert knowledge should not be
necessary for operation. With the exception of an initial preprocessing
phase, the system must work non-interactively.

• Runtime The solution for a problem instance should be computed
within a time-frame of about one day.

• Data Import The system has to cope with the data exported from the
CAD system. The geometry of the trunk is given as a set of triangles,
which exhibits different types of deficiencies and in general does not
form a manifold. There is no notion of inside and outside the trunk in
the data.

Apart from the main objective of maximizing the number of packed
boxes, there are two additional objectives of minor importance. First, among
all packings of the same cardinality, solutions with an easily recognizable
structure are preferred. If possible, the boxes (or a majority thereof) should
be aligned with the axes of a common coordinate system. This requirement
helps to reproduce a computed solution in reality with a physical mockup.
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Second, if possible, packings should be tight, i.e., there should be no
uncovered space (gaps) in between of two boxes. Gaps should be avoided
because they do not contribute to the discrete volume and cannot be used
otherwise. If the packing is tight, and hence the uncovered space is close
to the boundary of the trunk, one can easily identify regions of the trunk
geometry suited for modifications. For example, one can identify regions
where a small enlargement of the trunk allows to pack additional boxes.

1.1 Previous Work

Packing problems arise in many different fields of application. Consequently,
a large number of terms related to packing are known in the literature, e.g.,
knapsack, bin packing, scheduling, pallet loading, stock cutting, strip pack-
ing, circuit board layout, nesting, VLSI design, map labeling, packaging,
container stuffing, FPGA configuration, vehicle loading, and spatial arrange-
ment. In general, a packing problem deals with the placement of components
in an available space while optimizing a set of objectives and satisfying op-
tional constraints.

Dyckhoff presents in [Dyc90] a typology for a large variety of cutting
and packing problems. In such a general setting, the term small item denotes
the bodies that are to be packed (in our case: the boxes). The term large
objects (also called container) is used to denote the set of bodies in which the
small items are packed. In our case, there is a single large object, the trunk.
In this typology, our problem can be classified as 3/B/O/C, i.e., it is a three-
dimensional problem (3), a subset of the small items is to be packed into a
given large object (B), there is a single large object (O), and the items have
congruent shape (C). Dyckhoff also discusses other criteria not covered by
this classification string, e.g., quantity measurement (discrete, continuous),
shapes of the items and objects (form, size, orientation), pattern restrictions
and objectives. In our case, the container has an irregular shape and varies
in size. The items are identical and have a regular, cuboid shape of fixed
side lengths. There are no restrictions on the orientation of the items.

Extensive bibliographies of cutting and packing problems can be found
in [SP92] and [DST97]. A review of solutions for practical packing problems
was given by Dowsland and Dowsland [DD92]. The survey of Cagan
et. al [CSY02] focuses on three-dimensional packing problems with com-
plex, non-cuboid shapes. They discuss different types of algorithms, e.g.,
heuristics, branch-and-bound approaches, genetic algorithms, simulated an-
nealing, and extended pattern search methods. The survey also covers the
representation of geometric objects and predicate evaluation.

Fowler et al. [FPT81] have shown that already the two-dimensional
problem of packing unit squares into a polygon with holes is NP -complete.
A polynomial-time approximation scheme for this problem was given by
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Hochbaum and Maas [HM85]. It was conjectured by Baur and Fekete
in [BF01] that the simplified problem for simple polygons without holes is
in P , but until now, this question is still open. A list of open problems
in computational geometry is maintained by the Open Problems Project
[DMO]. In particular, see items 55 (pallet loading) and 56 (packing unit
squares in a simple polygon).

It is unknown, whether the unrestricted pallet loading problem, i.e., pack-
ing small (a × b)-rectangles orthogonally into a large (A × B)-rectangle, is
contained in NP at all [Nel93]. This is due to the fact that the representation
of an optimal solution might be very complex compared to the terse repre-
sentation of the input. The restricted pallet loading problem allows only
orthogonal guillotine patterns, which are obtained by a series of guillotine
cuts, i.e., cuts from one edge of a previously cut rectangle to the opposite
edge. A polynomial-time algorithm for the restricted pallet loading problem
has been given by Tarnowski et al. [TTS94].

Closely related to packing problems are maximum stable set and max-
imum clique problems. A broad survey on these problems was written by
Bomze et al. [BBPP99]. They state integer programming as well as contin-
uous problem formulations. The survey contains an extensive discussion of
exact algorithms as well as heuristics. The maximum stable set problem is
NP -complete [GJ79]. An exact algorithm with time complexity O(20.276n)
was given by Robson [Rob86], improving an earlier result by Tarjan and
Trojanowski [TT77].

Schepers [Sch97] and Fekete et al. [FKT01] consider a three-dimen-
sional bin packing problem with non-congruent cuboid items. They present
a graph theoretic characterization (packing classes) of feasible packings and
develop efficient lower bounds. These techniques allow a drastic reduction
of the search space.

1.2 Related Work

In this section we present two closely related fields of work: a continuous
approach for our packing problem, and a different trunk packing problem
resulting from a standard of the Society of Automotive Engineers (SAE).

A Continuous Approach A completely different approach to our pack-
ing problem was pursued by Eisenbrand et al. [EFK+05]. This approach
termed Specialized Grand Canonical Simulated Annealing (SGCSA) allows
arbitrary position and orientation of the boxes. Later, the approach was
further improved and automated by Rieskamp [Rie05].

Approaches based on simulated annealing [KGV83] use a potential func-
tion to evaluate configurations, i.e., the position and orientation of the boxes.
Valid configurations should result in a low potential, whereas invalid config-
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urations should be assigned high potential values. In this application, the
potential function consists of three factors, the interpenetration depth and
the interpenetration volume of box pairs, as well as the wall potential, i.e.,
the penetration of the exterior. The goal is to find a global minimum of the
potential function.

The SGCSA approach uses the Monte Carlo importance sampling algo-
rithm [MRR+53] to explore the configuration space. Given a configuration,
the algorithm performs a trial move to a nearby configuration. If the po-
tential decreases, the new configuration is accepted. Otherwise, the new
configuration is accepted with probability p = e−β ·∆U , where ∆U denotes
the increase in the potential. The acceptance of worse configurations is cru-
cial to escape from local minima. The parameter β > 0 is called inverse
temperature and controls the probability of moves increasing the potential.
The value of β starts at a low value and is increased during the simulation ac-
cording to a given schedule, thereby reducing the probability of uphill moves
towards the end of the simulation.

The basic simulated annealing approach has been extended to handle the
creation of boxes at promising positions as well as the destruction of boxes
with a high penetration. Different classes of moves specifically tailored to
the problem have been proposed to improve the performance.

While the continuous approach on its own yields unsatisfying results, it
demonstrates its strength in conjunction with the discrete approach. Using a
good combinatorial packing as initial solution drastically reduces the runtime
of the continuous approach. Since the current implementation of SGCSA
handles only small to mid-size instances in the given time limit, it is best
applied to unsatisfying parts of a combinatorial solution. The benefit of
arbitrary box placements can be most prominently perceived in regions with
a complicated local geometry. Examples include small side-compartments
holding tightly a few boxes (see Figure 1.2) or models with a curved lid.

Both the discrete as well as the continuous approach are implemented in
the software system used by our industrial partner. Using both approaches
we meet all prescribed quality requirements.

The SAE packing problem Ding and Cagan [DC03] consider a closely
related packing problem: The American standard SAE J1100 [Soc01] defines
the interior volume index, which is used to classify cars as subcompact,
compact, mid-size or full-size cars. The volume of the trunk is one of many
factors influencing this index. The standard defines a standard luggage set
containing different types of luggage and a golf bag. With the exception
of the golf bag, all luggage types are modeled as boxes of fixed size (see
Table 1.1 for details). Wood replicas of the boxes and a partial packing are
shown in Figure 1.3. The luggage capacity of the trunk is defined as the
volume covered by items from the standard luggage set that can be packed
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(a) discrete solution (b) continuous solution

Figure 1.2: Improvement due to arbitrary placements. In regions with a
complicated geometry a discrete packing can often be improved by allowing
boxes with arbitrary positions and orientations.

into the trunk. To make the distinction, we refer to this packing problem as
SAE packing problem and to the boxes as SAE boxes.

Ding and Cagan [DC03] use an extended pattern search algorithm to
attack the SAE packing problem. The basic pattern search algorithm is a
deterministic direct search algorithm, which was first introduced by Hooke
and Jeeves [HJ61] (see also [TT97]). It allows the local minimization of a
real-valued function in n variables using only function evaluations. Given an
initial point, a step length, and a set of pattern directions, the algorithm per-
forms a series of exploratory moves corresponding to the pattern directions.
If a new minimum is found, it is adopted as new base point from which the
next iteration of exploratory moves starts. If no better solution is found, the
step length is reduced.

luggage size [mm] volume [m3] letter no.
Men’s 2-suiter 229 × 483 × 610 0.067 A 4
Women’s overnight 165 × 330 × 457 0.025 B 4
Women’s pullman 229 × 406 × 660 0.061 C 2
Women’s wardrobe 216 × 457 × 533 0.053 D 2
Women’s train case 203 × 229 × 381 0.018 E 2
Men’s overnight 178 × 356 × 533 0.034 F 2
Golf bag ≈ 1143 × 204 × 204 0.043 G 2
H-boxes 152 × 114 × 325 0.006 H 20

Table 1.1: Standard luggage set according to SAE J1100. The golf bag has
non-cuboid shape; hence the given values are the sizes of the bounding box.



1.3. OUR CONTRIBUTION 19

(a) standard luggage set (selected subset) (b) partial packing

Figure 1.3: Measurement of the trunk volume according to SAE J1100

Yin and Cagan [YC00] use the pattern search algorithm for three-
dimensional packing problems and propose several extensions for perfor-
mance improvement. The obtained results are superior to those of a sim-
ulated annealing approach. Ding and Cagan [DC03] apply the extended
pattern search algorithm to the SAE packing problem. They incorporate
problem-specific enhancements to address the difficulties. Unfortunately,
the results are not compared with solutions obtained by human experts.

1.3 Our Contribution

In this thesis we present a combinatorial approach to a three-dimensional
real-world packing problem. The task is to pack a maximum number of rigid
boxes with side length ratios 4 : 2 : 1 into the trunk of a car. Apart from the
work described in Section 1.2, no fully automated solutions for this problem
are known.

In contrast to many other packing problems studied in the literature,
our container has an irregular, non-cuboid shape. Moreover, the number of
items to be packed is very high.

As a theoretical result we show that our packing problem is NP -complete
and present a polynomial-time approximation scheme. Unfortunately, this
approximation scheme is not suited for instances of typical size, but it inspires
a similar heuristic.

Motivated by packings produced by human experts so far, we discretize
the problem in a two-fold way: We approximate the shape of the trunk by
a three-dimensional cubic grid. Furthermore, we restrict the positions and
orientations of the boxes to those aligned with the grid. This discrete packing
problem can be reduced to a maximum stable set problem.
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The approximation of the trunk requires special care, since the descrip-
tion of the trunk geometry contains several kinds of deficiencies, e.g., holes,
dangling faces, and self-intersections. There is also no notion of inside or out-
side the trunk in the input data. We present an approach to approximate
the shape of the trunk despite these difficulties.

We present different algorithms for the discrete packing problem, exact
ones as well as heuristics. First we formulate the problem as an integer
linear program (ILP). Typical problem instances are too complex for state-
of-the-art ILP solvers, but an exact algorithm is still important for smaller
subproblems. We also present a greedy algorithm as well as heuristics based
on linear programming and local search. Other heuristics generate tight
packings for the core of the trunk, thereby reducing the problem to a set of
smaller subproblems.

Real-world data sets are used to study the performance of our algo-
rithms with respect to algorithmic variants and implementation details. We
compare our results with packings manually constructed by human experts.
In most cases, our results meet the prescribed quality bounds. For some
instances, we significantly outperform the expert solutions. All presented
algorithms are implemented in an industrial-strength software system which
is used by our project partner in the design process of new cars.

The remainder of this work is structured as follows: In Chapter 2 we
define the packing problem from a formal point of view. We proof that
the problem is NP -complete and present a polynomial-time approximation
scheme.

Chapter 3 deals with several preprocessing steps. We explain the data
import and point out several types of deficiencies in the input data. We
present a simple heuristic to reconstruct the face normals and introduce a
space partition for performance improvements.

We discuss the discretization process in Chapter 4. First, we present
efficient algorithms for the fundamental geometric predicates. We explain
how to compute an inner approximation of the trunk in the presence of
deficiencies in the input data. Given such an approximation by a cubic grid,
we discuss how to efficiently update the computed information after a change
of the geometric parameters of the grid. Based on this, we discuss how to
obtain a good discretization.

In Chapter 5 we present different combinatorial algorithms for our dis-
crete packing problem. The set of algorithms is divided into two classes, the
direct approaches, which can solve an instance on its own, and the divide-
and-conquer approaches, which need a direct approach to solve smaller sub-
problems.

We evaluate the presented algorithms on real-world instances in Chap-
ter 6. We use a small set of models to discuss the impact of several algorithm
variants and implementation details. We also present a simple technique to
reduce the effect of the restrictions due to the discretization. A larger set
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of instances is used to compare the results of our algorithms to packings
manually constructed by human experts.

Finally, we give a conclusion and present some directions for further work.

1.4 Notation

In this section we briefly introduce the notation that is used in this work.

• Scalars are written as lower-case letters, such as m, n, x, y, z and λ.
The letters i, j, k, l, m and n are used for integral values.

• Vectors are denoted by lower-case bold-face letters, such as a, b and c.
A vector a ∈ Rn is usually viewed as a column vector

a =











a1

a2
...

an











.

Row vectors are written as transposed column vectors, such as aT.
The scalar product of two vectors a and b is written as aTb.

• Matrices are written as bold-face upper-case letters, such as A, B

and C. The transposed matrix of A is denoted as A
T. The identity

matrix is written as I.

• Sets are denoted by upper-case letters, such as A, B and C. The script
letter C denotes sets of cliques, i.e., sets of node sets. The script letter
G is used to denote grids (which can also be seen as sets of cells), in
contrast to the letter G, which denotes graphs.
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Chapter 2

Theoretical Results

2.1 Problem Definition

A first definition of the central problem from an industrial point of view has
already been presented in Chapter 1. In this section, we define the problem
formally. We also introduce a few other important terms.

The central problem considered in this work is the Continuous-Box-
Packing problem:

Definition 2.1 (Continuous-Box-Packing–optimization variant).
Given a polyhedral domain P ⊆ R3 homeomorphic to a ball, compute a max-
imum packing of boxes of size 4 × 2 × 1.

Definition 2.2 (Continuous-Box-Packing–decision variant). Giv-
en a polyhedral domain P ⊆ R3 homeomorphic to a ball, and k ∈ N, decide
whether there is a packing of at least k boxes of size 4 × 2 × 1.

The volume to be packed is given by a polyhedral domain, i.e., a con-
nected region in three-dimensional space bounded by linear elements. Note
that this domain is not necessarily convex nor star-shaped. For typical in-
stances, the domain is homeomorphic to a ball, but we also consider sub-
problems for which this is not the case.

For the purpose of tight packing patterns, we allow lower-dimensional
intersections among the boxes. Alternatively, one could consider the boxes
as open sets.

By scaling the input we can replace the fixed side lengths of 200mm,
100mm and 50mm by small integers. The scaling maintains the integral
side length ratios which are very important for our discretization process
later. Most of the presented algorithms work for arbitrary integral side
length ratios, while one algorithm is specifically designed for the given ratios
4 : 2 : 1.

Note that Definition 2.1 contains a single objective, namely maximization
of the number of boxes. Additional objectives like orientation and relative

23
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position of the boxes have been omitted. In this work, we concentrate on
maximizing the size of the packing. We keep the additional objectives in
mind and evaluate the presented algorithms also with respect to those ob-
jectives.

In this thesis we focus on discrete approaches for the trunk packing prob-
lem. Hence we next introduce the Discrete-Box-Packing problem, which
is a discrete variant of the Continuous-Box-Packing problem.

Definition 2.3 (Discrete-Box-Packing–optimization variant).
Given an orthogonal, cubic grid G with unit spacing, a subset I of the grid
cells and n ∈ N, compute a maximum packing of cell-aligned boxes with side
lengths 4n, 2n and n such that only cells in I are covered and each cell in I
is covered by at most one box.

Definition 2.4 (Discrete-Box-Packing–decision variant). Given
an orthogonal, cubic grid G with unit spacing, a subset I of the grid cells and
k, n ∈ N, decide whether there is a packing of at least k cell-aligned boxes
with side lengths 4n, 2n and n such that only cells in I are covered and each
cell in I is covered by at most one box.

The Discrete-Box-Packing problem restricts the original problem in
a two-fold way. The polyhedral domain P is restricted to the union of cells
in I, i.e., to a union of unit cubes. Furthermore, the allowed orientations
and positions of the boxes have been drastically reduced. In the discrete
setting, there are only six possible orientations per box. The set of possible
positions has been restricted to those for which the boundary of the box is
aligned with cell boundaries.

Note that all grids considered in this work have orthogonal axes. In the
following, we omit the adjective orthogonal for simplicity.

We show in Section 2.2 that the Continuous-Box-Packing problem is
NP -hard and that the Discrete-Box-Packing problem is NP -complete.
We refer to Section 4.1 for further discussion of the Discrete-Box-Packing
problem.

In the remainder of this section we want to introduce the maximum
stable set problem which is closely related to the Discrete-Box-Packing
problem.

Definition 2.5 (Stable Set). A subset S of the nodes V of a graph
G = (V, E) is called stable set (or independent set) if S does not contain a
pair of adjacent nodes.

Definition 2.6 (Maximum Stable Set–optimization variant). Giv-
en a graph G = (V, E), compute a stable set of G of maximum size.

Definition 2.7 (Maximum Stable Set–decision variant). Given a
graph G = (V, E) and k ∈ N, decide whether G has a stable set of size k.
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Maximum stable set problems are well-studied (see [BBPP99] for a broad
survey). The maximum stable set problem is NP -complete [GJ79].

Stable set problems are closely related to discrete packing problems. This
relation becomes apparent in the concept of the conflict graph (also called
intersection graph).

Definition 2.8 (Conflict Graph). Let X be a finite set of geometric
objects with fixed positions. The conflict graph G = (V, E) of X is defined
as follows: For each object xi ∈ X, there is a corresponding node vi ∈ V .
Two nodes vi, vj ∈ V are adjacent if the interiors of the objects xi and xj

intersect.

Conflict graphs are useful as an alternative representation of discrete
packing problems. Actually, we can reduce the Discrete-Box-Packing
problem to a maximum stable set problem.

Proposition 2.9. The Discrete-Box-Packing problem can be reduced to
a maximum stable set problem in the corresponding conflict graph.

Proof. Let (G, n, I) denote an instance of the Discrete-Box-Packing prob-
lem. Let X denote the set of feasible box placements, i.e., the set of cell-
aligned boxes of size 4n × 2n × n covering only cells in I. Define G as the
conflict graph of X.

There is a trivial one-to-one relation between solutions of the Discrete-
Box-Packing problem (G, n, I) and the stable sets in the conflict graph G,
in particular every packing of (G, n, I) corresponds to a stable set in G of
the same size and vice versa.

2.2 NP-completeness

In this section, we prove that the Continuous-Box-Packing problem is
NP -hard and that the Discrete-Box-Packing is NP -complete. In a first
step, we show that a two-dimensional, discrete version of these problems is
NP -complete.

Definition 2.10 (m × n-Rectangle-Packing). Given integers k, m,
n ∈ N, m ≥ n and finite sets H ⊆ Z2 and V ⊆ Z2, decide whether it
is possible to pack at least k axis-aligned rectangles of size m × n in a way
such that the lower left corner of a horizontal or vertical rectangle coincides
with a point in H or V , respectively.

This problem is trivial for m = n = 1. For m = 2, n = 1, the problem is
equivalent to a matching problem for the corresponding conflict graph, and
hence can be solved in polynomial time [GJ79]. We now turn to the cases
m = n = 3 and m = 6, n = 3.
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clause region 1

clause region c

clause region 2

x3 xlx1 x2

Figure 2.1: High-level view of the conflict graph constructed from a boolean
formula with l variables and c clauses. For each variable there is a node
cycle of even length. These node cycles cross each other at crossover regions
(marked with dots). The clauses of the formula are represented by clause
regions.

Proposition 2.11. 3 × 3-Rectangle-Packing and 6 × 3-Rectangle-
Packing are NP-complete.

Proof. The case m = n = 3 has been shown by Fowler et al. in [FPT81]
using a reduction of 3-SAT to this problem. We use the same technique here
for m = 6, n = 3.

Suppose we are given a boolean formula in conjunctive normal form
(CNF ) with three literals per clause. First we construct a graph and com-
pute a number k, such that the graph has a maximum stable set of size k
iff the formula is satisfiable. Then we show how to compute the sets H and
V such that the conflict graph of the corresponding packing problem equals
the previously constructed graph. Thus the packing problem has a solution
of size k iff the boolean formula is satisfiable.

Given a boolean formula F in CNF, let l denote the number of variables
and c the number of clauses of F . We construct a graph as follows: For each
variable xi, 1 ≤ i ≤ l there is a cycle of nodes of even length. Such a cycle
has exactly two stable sets of maximum cardinality which correspond to the
two possible assignments of xi. A high-level view of the graph is depicted
in Figure 2.1.

A cycle of nodes consists of intersection-free segments of even length
and crossover regions where the paths of two cycles cross each other. These
regions have the property that the size of a stable set can be increased by one
iff the variable assignments encoded by the stable set are consistent for all
branches of the crossover region. In each maximum stable set the assignment
of a variable is propagated to the opposite branch of the crossover region,
independently of the assignment of the other variable. See Figure 2.2(a) for
the shape of the graph at crossover regions.
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(a) Conflict graph (b) m = n = 3 (c) m = 6, n = 3

Figure 2.2: Crossover region for variables xi and xj . Note that the segments
between two adjacent crossover regions have even length. Each maximum
stable set contains exactly one of the four center nodes, and hence the as-
signment of a variable is consistent in both branches, independently of the
assignment of the other variable. In figures (b) and (c), the lower left corners
of feasible placements are marked with a dot. The set of feasible placements
is constructed such that its conflict graph equals the graph in figure (a).

For each clause of the formula there is a clause region where the cycles
of the three involved variables are brought into proximity. These regions
have the property that the size of a stable set can be increased by one iff
the corresponding clause is satisfied. See Figure 2.3(a) for the shape of the
graph at clause regions.

Let k′ be the number of all nodes, excluding the four inner nodes of
crossover regions and the three inner nodes of clause regions. Let

k :=
k′

2
+ c + #crossover regions. (2.1)

Now it holds that there exists a stable set of size k iff the formula is
satisfiable. Each variable assignment that satisfies the formula induces a
stable set of size k. On the other hand, each stable set of size k corresponds
to a variable assignment that satisfies the formula.

It is straightforward (but tedious) to compute the sets H and V such
that the conflict graph of the corresponding packing problem is the graph
we just constructed. Details for crossover and clause regions can be seen
in Figure 2.2 and 2.3. This construction can be carried out in O(cl) time
using O(cl) space.

It holds that the given boolean formula F is satisfiable iff the con-
structed instance (H, V, k) of 3×3-Rectangle-Packing respectively 6×3-
Rectangle-Packing has a solution. The m × n-Rectangle-Packing is
in NP , since a given solution can be verified in quadratic time. Hence 3× 3-
Rectangle-Packing and 6 × 3-Rectangle-Packing are NP -complete.
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(a) Conflict graph (b) m = n = 3 (c) m = 6, n = 3

Figure 2.3: Clause region for xi ∨ xj ∨ xk. If the clause is satisfied, i.e., the
assignment of at least one variable is changed, it is possible to add one of
the three center nodes to the stable set. In figures (b) and (c), the lower
left corners of feasible placements are marked with a dot. The set of feasible
placements is constructed such that its conflict graph equals the graph in
figure (a).

Note that in the previous proof the values of m and n are crucial for
the shape of the intersection and clause regions. Similar constructions are
possible for all m ≥ n and n ≥ 3. But such a construction does not work for
the case m = n = 2.

An alternative proof can be obtained from a result of Berman et al.
[BJL+90] on generalized planar matchings. Their technique can also be
applied to the remaining cases m ≥ 3, n = 1 and m ≥ 2, n = 2.

Now we are ready to state our main result about the NP -hardness of
the Continuous-Box-Packing problem.

Theorem 2.12. Continuous-Box-Packing is NP-hard.

Proof. We reduce the 6×3-Rectangle-Packing problem to Continuous-
Box-Packing.

Let (k, H, V ) denote an instance of 6 × 3-Rectangle-Packing. Intu-
itively, our approach works as follows: We scale the shape induced by the sets
H and V by 2

3 and extrude it into the third dimension with z-coordinates
ranging from 0 to 1. On the bottom of this object we glue a sufficiently
large box of height 1

2 . The size of the box is chosen such that the result
of the construction is homeomorphic to a ball. More formally, P ⊆ R3 is
constructed as follows:

PH :=
⋃

(x,y)∈H

[

2

3
x,

2

3
x + 4

]

×
[

2

3
y,

2

3
y + 2

]

× [0, 1] , (2.2)

PV :=
⋃

(x,y)∈V

[

2

3
x,

2

3
x + 2

]

×
[

2

3
y,

2

3
y + 4

]

× [0, 1] , (2.3)
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P := PH ∪ PV ∪ X × Y ×
[

−1

2
, 0

]

, (2.4)

where X and Y denote the projection of PH ∪ PV onto the first and second
coordinate, respectively.

This construction can be carried out in polynomial time. It is clear that
a projection of a solution for the Continuous-Box-Packing problem onto
the first two coordinates corresponds to a solution for the 6×3-Rectangle-
Packing of the same size and vice versa.

It is unclear whether the Continuous-Box-Packing problem is con-
tained in NP , because there are instances that can be encoded very efficiently,
e.g., simple geometric shapes like cuboids. This is similar to the unrestricted
pallet loading problem, i.e., packing a maximum number of small (a × b)-
rectangles into a large (A × B)-rectangle. The representation of an optimal
solution might be very complex compared to the terse representation of the
input [Nel93].

The NP -completeness of the Discrete-Box-Packing problem follows
directly from Proposition 2.11.

Theorem 2.13. Discrete-Box-Packing is NP-complete.

Proof. The proof is very similar to the proof of Theorem 2.12. Given an
instance (k, H, V ) of 6× 3-Rectangle-Packing, we define the polyhedral
domain P as described in that proof. Now we construct an instance of
Discrete-Box-Packing as follows: First we scale the domain P by a factor
of two. We choose n = 2, i.e., the boxes have a size of 8× 4× 2. The grid G
is centered at the origin and aligned with the axes of the coordinate system.
Now the domain P can be decomposed into a set of grid cells. Define I to
be this set.

Given the sets H and V of the 6 × 3-Rectangle-Packing problem,
the set I can be constructed directly in polynomial time without the ex-
plicit computation of P . A projection of a solution for the Discrete-Box-
Packing problem onto the first two coordinates corresponds to a solution
for the 6 × 3-Rectangle-Packing of the same size and vice versa.

The Discrete-Box-Packing problem is NP , since a given solution can
be verified in quadratic time. Hence the Discrete-Box-Packing problem
is NP -complete.

2.3 An Approximation Scheme

In this section we present a polynomial-time approximation scheme for the
Discrete-Box-Packing problem. We present the approximation scheme
for a special case, namely for cubes. It can be easily generalized for boxes.
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Figure 2.4: The approximation scheme uses grids with spacing sl to parti-
tion the set I into subregions. Each subregion is optimally packed, e.g., by
complete enumeration.

Definition 2.14 (Cube-Packing). Given integers k, l ∈ N and a finite
set I ⊆ Z3, decide whether it is possible to pack at least k axis-aligned cubes
of side length l in a way such that the lexicographic smallest vertex of each
cube coincides with a point in I.

It follows from Proposition 2.11 and the subsequent remarks that the
Cube-Packing problem is NP-complete for l ≥2. However, there is a poly-
nomial-time approximation scheme.

Theorem 2.15. There exists a polynomial-time approximation scheme for
Cube-Packing.

The approximation scheme is based on the shifting strategy, which was
first presented by Hochbaum and Mass [HM85]. Our proof is an extension
of a proof for the two-dimensional analogon of Theorem 2.15 by Baur and
Fekete [BF01].

Proof of Theorem 2.15. We show that for any fixed ε > 0 there is a polyno-
mial-time algorithm that computes an (1 − ε)-approximation.

Consider a cubic grid with spacing sl centered at the origin. The param-
eter s ∈ N is a constant (depending on ε) and will be determined later. The
grid subdivides the space into subregions, whose number is linear in the size
of I (see Figure 2.4). For each such subregion, the heuristic computes an
optimal packing, which can be computed in constant time, e.g., by complete
enumeration of all possible packings for this subregion. The packings of all
subregions are joined and form a solution corresponding to the given grid.

For 0 ≤ i, j, k < s, let Gi,j,k denote the grid that is obtained by a trans-
lation of the initial grid by the vector (il, jl, kl). For each of the s3 grids,
we compute a corresponding solution. Finally, we report the best solution
found.
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For the analysis, we consider an optimal solution of the problem and
compare it to a heuristic solution for some grid Gi,j,k. Within each subregion
of the grid, the solution of our heuristic is not worse than the corresponding
subset of the optimal solution. Cubes of an optimal solution that do not
entirely fall into a single subregion can never be part of the heuristic solution.
It can be easily seen that for any axis-aligned cube this can happen for at
most s3 − (s− 1)3 grids: If a cube of size l intersects two or more subregions
of Gi,j,k, then it never does so for grids Gi′,j′,k′ with i 6= i′ ∧ j 6= j′ ∧ k 6= k′.
There are exactly (s− 1)3 such tuples (i′, j′, k′), hence a cube intersects two
or more subregions in at most s3 − (s − 1)3 cases.

Let OPT denote the cardinality of an optimal solution. By the previous
observation, the sum of all s3 heuristic solutions is at least

s3OPT − (s3 − (s − 1)3)OPT = (s − 1)3 OPT .

This implies that the best of all heuristic solutions has cardinality at least
(

s−1
s

)3
OPT . Hence the desired approximation ratio of 1 − ε is reached for

s ≥
(

1 − 3
√

1 − ε
)−1

.

The theorem does not only hold for cubes of side length l, but can also
be generalized for boxes of side length at most l. No further changes in the
proof are required.

Unfortunately, the presented approximation scheme is not useful for our
problem. The reason lies in the size of the subregions that are to be optimally
solved. The volume of these subregions can be up to V = (sl)3. For example,
for l = 200mm and ε = 0.1, we have s = 29 and V = 195112 l, which is two
to three orders of magnitude larger than our instances.

Nevertheless, we pursue the idea of subdividing the space by axes-parallel
planes in the Partition algorithm (see Section 5.2.3). In contrast to the
presented approximation scheme, this algorithm handles resulting subregions
not independently of each other.
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Chapter 3

Preprocessing

This chapter deals with the preprocessing of the input data. The given CAD
data sets describe the volume to be packed. Unfortunately, this description
often is defective or incomplete. The preprocessing includes conversion of
the CAD data, modification according to our needs, and precomputation of
accelerating data structures like space partitions.

3.1 Data Import

Our input data originate from commercial CAD systems. In such a system
the geometry of a car is modeled by free form surfaces. However, we do not
work on this high-level description, but require a triangulation of the faces.

The data is exported as VRML 1.0 (see [BPP96, ANM96] for a definition
of the VRML 1.0 file format). The following VRML nodes are of major
importance:

• Coordinate3 - defines vertices in three-dimensional space

• Normal - defines vectors in three-dimensional space

• IndexedFaceSet - defines faces in three-dimensional space by referenc-
ing the vertices and normal vectors defined before

• Material - defines material attributes, e.g., colors

• MatrixTransform - defines coordinate system transformations

The data also contains some other node types that are not relevant in our
case, e.g. IndexedLineSet or ShapeHints.

For efficiency reasons, we do not use existing libraries that are offering
VRML import, but implemented our own VRML reader. A compilation
of supported and unsupported nodes is shown in Table 3.1. The VRML
formatted data are converted into a custom file format specially designed for
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Supported nodes Unsupported nodes

Cone AsciiText

Coordinate3 DirectionalLight

Cube FontStyle

Cylinder IndexedLineSet

DEF Info

Group OrthographicCamera

IndexedFaceSet∗ PerspectiveCamera

LOD∗ PointLight

Material∗ PointSet

MaterialBinding ShapeHints

MatrixTransform SpotLight

Normal Texture2

NormalBinding TextureCoordinate2

Rotation Texture2Transform

Scale WWWAnchor

Separator∗ WWWInline

Sphere

Switch

Transform

TransformSeparator

Translation

USE

Table 3.1: Supported and unsupported VRML nodes. Subtrees rooted at
unsupported nodes are ignored by the parser. Nodes marked with an aster-
isk (∗) are only partially supported.

our needs. This file format basically encodes an indexed face set enriched
by some additional information. Each file consists of some header data and
three major parts: a list of colors, a list of vertices and a list of triangles.
Each triangle consists of three vertex indices, a color index and some flags.
The normal of a triangle is implicitly given by the order of its vertices. Colors
are used to encode additional information for each triangle (see Section 3.3).

Note that no adjacency information is stored, i.e., no information about
the local neighborhood of a face or vertex is available. Such information is
not stored for three reasons:

• The information is of limited use (none of the major algorithms would
benefit from it).

• The information is only partly available (namely, only for small groups
of triangles belonging to one IndexedFaceSet).

• Reconstruction of the information is difficult due to deficiencies in the
input data (see Section 3.2).

In order to reduce the size of the data sets and to get rid of redundancies,
we perform some simple modifications of the data during the conversion
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process. The following four modifications are performed:

• Clipping The provided data sets often contain features that lie far
away from the region of interest. Therefore, the user may define a box
that denotes the region of interest. All triangles are clipped against
this box.

• Removal of tiny triangles The triangulation process produces an
immoderate fine triangulation for regions with a high curvature. We
prune all triangles with an area below a threshold. The resulting holes
are usually quite small. The formation of such small holes is not an
additional burden since we have to deal with them anyway (see Sec-
tion 3.2). A better, but more costly approach is to perform some kind
of mesh simplification.

• Removal of unused vertices The input data might contain vertices
that are not referenced by any face. Further vertices can become un-
referenced after the steps above. All such vertices are pruned.

• Unification of vertices The input data contains multiple vertices at
the same location. All instances of a vertex are identified and collapsed
into one instance.

3.2 Deficiencies in the Input Data

The shape of a car trunk can be modeled as a polyhedral domain, i.e., a
connected region in three-dimensional space bounded by linear elements. A
natural way to describe such a polyhedral domain is to specify the structure
of its boundary, which is a two-dimensional manifold consisting of polygonal
faces, edges and vertices. Often, polygons are decomposed into a set of
planar triangles. Such a boundary description is called triangular mesh.

Unfortunately, the given input data does not describe a two-dimensional
manifold. There are several kinds of deficiencies in the structure of the
triangles (see Figure 3.1):

• Holes The input data contains holes, i.e., the description of the bound-
ary of the volume to be packed is incomplete. This is most likely caused
by data sets that are not available, e.g., parts that are not yet designed.
Smaller holes may also arise from triangulation errors. Another source
of holes are surface patches that do not fit together exactly and cause
holes that are often long and skinny. We discuss the difficulties arising
from holes in more detail in the remainder of this section.

• Self Intersections The set of triangles that forms the boundary of
the volume to be packed intersects itself. This often happens in re-
gions where different surface patches come into proximity. In the early
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(a) Holes (b) Self intersections

(c) Dangling faces (d) Double faces

Figure 3.1: Various kinds of deficiencies in the triangular mesh (cross sec-
tions)

design process, the geometry of the trunk boundary is only vague and
is gradually refined. It is not uncommon, that different parts that
constitute the boundary do not fit together very well and cause such
intersections.

• Dangling Faces There are three (or more) faces that share a common
edge, or alternatively, an edge of a face is contained in (the interior
of) another face. Such situations are also caused by different surface
patches that come into close proximity. However, this is often by design
and not an error.

• Double Faces The term double face denotes the description of the very
same boundary element by two parallel faces that differ by a small offset
in normal direction. These faces originate from sheets that —starting
with a certain thickness— are modelled by their surface, resulting in
two parallel faces. Both faces may be triangulated in different ways.
Note that such a double face itself does not necessarily cause the non-
manifoldness of the structure.

In summary, one can say that the set of triangles has several kinds of
errors such that it does not constitute a two-dimensional manifold. If the
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hole in the

triangulation

volume to

be packed

Figure 3.2: The location of the hole depends on the volume to be packed.
Both cases cannot be distinguished solely based on the geometry of the trunk.

term triangular mesh is used in the following, it is always to be understood
as a triangular mesh that contains these kinds of errors.

Looking again at the classification of the errors above, there is an impor-
tant difference between holes and the other three kinds of errors. If there
are no holes, the set of triangles still separates the volume to be packed
from the remaining space. (It might happen, that the remaining space is
divided into several unconnected components.) The containment test can
still be performed by computing a path to a known reference point. But
if the boundary has holes, this is no longer possible, since the path might
unwittingly pass through such a hole.

On the other hand, the absence of other kinds of errors except holes
allows the elimination of the holes. It is possible to identify and close them
with additional triangular patches. This procedure might misrepresent the
(unknown) local geometry, however, the structure of the triangles is altered
towards a two-dimensional manifold. But such an approach is not possible
in the presence of other errors. Figure 3.2 shows an example in which the
location of a hole depends on the volume to be packed. Both cases cannot
be distinguished solely based on the given geometry data. It is not possible
to locate holes and fix them without user interaction.

Since holes cannot be eliminated, we have to deal with them. Looking
closer at our application, we actually do not need to decide the containment
problem for points, but for boxes of a given size. In particular, we want to
avoid that a box located in the interior in the trunk can be moved along a
path leading to a point far outside without intersecting the boundary of the
trunk.

We distinguish two kinds of holes: large holes and small holes. Holes are
called large if a box of fixed size can pass through the hole, otherwise they
are called small. In Chapter 4 we explain how to classify regions of the space
as interior or exterior. This approach allows the handling of small holes.

We demand that there are no large holes present. Otherwise, they have
to be eliminated interactively by the user. This is rather easy because we
already handle small holes and other kinds of errors. There is no need to
construct a perfect fitting surface patch; an approximate placement of few
sufficiently large triangles often suffices.
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3.3 Face Normals

A further deficiency of the input data not mentioned in the previous section
is the missing or incorrect information about face normals. We call a face
normal correct if it points towards the outside of the trunk, i.e., away from
the region to be packed. If one considers the interior of the trunk as a rigid
body, our definition of correct face normals coincides with the convention
for rigid bodies. We do not care about faces that do not bound the region
to be packed. Their face normals and orientations do not matter in our
application.

Why are face normals needed at all? Why is the orientation of the faces
that bound the trunk important?

The main reason is the deformability of the trunk. The boundary of the
trunk is not rigid, but rather deformable, at least in parts. For example,
boundary parts made of plastic give way if there is no rigid support be-
hind them. Or the fabric that covers the interior trim can often be slightly
compressed. Thus one gains additional space ranging from fractions of a
millimeter to a few centimeters. This additional space is heavily exploited in
practice and has also to be taken into account by our software. In order to
increase the region to be packed, a triangle may be shifted up to a specified
distance in its normal direction. Since VRML 1.0 does not allow additional
user-defined attributes, material attributes like color are used to encode this
information.

Moreover, correct face normal are valuable for visualization. The term
front-face culling refers to a rendering mode where all faces whose normal
points towards the viewer (rather than away from the viewer) are ignored.
Similarly, back-face culling ignores all faces whose normal points away from
the viewer.

Back-face culling is often used to speed up visualization. In the case of
two-dimensional manifolds, it is safe to skip all faces whose normal points
away from the viewer since such faces are always concealed by other faces
(provided that the viewer is located outside of the manifold). In our case,
front-face culling is a much more useful feature, since it allows to look into
the trunk. Face normals are also needed for computing lighting effects, e.g.,
face shading.

We have seen that correct face normals are mandatory for the packing
process and useful for visualization. Thus we have to find a way to recon-
struct them. Known algorithms do not work in our setting. If the boundary
is a two-dimensional manifold, all face normals can be reconstructed given a
single correct face normal. If the region to be packed is convex, it suffices to
specify a point contained in it. But these preconditions are not fulfilled in our
case. In the following we describe a simple heuristic that works sufficiently
well.
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level 2

level 3

level 4

level 5

level 1

level 0

(a) Cell levels (b) Flow directions

Figure 3.3: First two phases of the heuristic to fix the face normals. First
the cell levels are computed based on the distance to the next cell completely
contained in the interior of the trunk. Then the flow is computed based on
these cell levels.

First we give an informal description of the heuristic and the intuition
behind it. Imagine a flow that originates from the interior of the trunk, or
to be more precise, in the region of the trunk that is to be packed. The
flow passes through the faces that bound the interior and runs towards a
sufficiently large sphere. Given a triangle of the boundary, one observes that
the direction of the flow at this triangle is often similar to the face normal.
More precisely, the angle between flow direction and face normal is often
much smaller than 90 degrees. Thus the direction of the flow can be used to
determine the orientation of the faces.

A more formal description of the algorithm is presented in Algorithm 3.1.
The algorithm takes two parameters: the set T of triangles and a grid G.
The purpose of the grid is twofold: first it specifies an approximation of the
region to be packed, and second it provides a discretization of the space on
which the flow computation is based. The details of obtaining such a grid are
depicted in Chapter 4. Here we simply state the essentials that are needed
for the algorithm.

The grid G consists of uniform, cubic cells with side length l. The vari-
able G is also used to denote the set of all cells of the grid G. The cells are
identified by a three-dimensional integral vector called index. More precisely,
a cell c ∈ G with index (x, y, z) ∈ Z3 comprises

o + [xl, xl + l) × [yl, yl + l) × [zl, zl + l) ⊆ R3 ,

where o ∈ R3 denotes the origin of the grid. Two cells are called neighbors iff
their indices differ in exactly one component by 1. The set I ⊆ Z3 contains
exactly the cells that are completely contained in the interior of the trunk.

The algorithm consists of three phases (see Algorithm 3.1). In the first
phase we use breadth first search (BFS) to compute for each grid cell c ∈ G
its minimum distance to the set I. This distance is stored in level [c]. An
example can be seen in Figure 3.3(a).
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(a) Small features (b) Cusps

Figure 3.4: Examples in which the heuristic fails to reconstruct the correct
face normals. Red faces indicate incorrectly computed face normals.

The second phase computes the direction of the flow for each cell c ∈ C.
The direction is based on the levels of the corresponding cell and its six
neighbors. Note that the difference of the levels of two neighboring cells
is at most 1. Neighbors of c with the same level do not contribute to the
flow direction at all, and to the same extent otherwise. More precisely they
contribute a directional vector that connects its center and the center of
the cell c. The orientation of this vector is chosen such that it points from
the cell with lower level to the cell with higher level. Finally, the sum of
all contributing vectors is normalized. The flow directions for the previous
example are shown in Figure 3.3(b).

The last phase looks at each triangle t ∈ T in turn and computes the
average flow direction of all cells intersected by that triangle. The orientation
of t is reversed if the angle between the normal of the triangle and the average
flow direction is larger than π

2 .
The heuristic presented above works pretty well in our case. Neverthe-

less there are situations in which it fails. Two such examples are shown in
Figure 3.4. The left figure shows a small face (compared to the spacing of
the grid) whose normal deviates much from the normals of the surrounding
mesh. Such small local features are not recognized due to the discretization
imposed by the grid. As a result, computed face normals for small features
may be wrong.

Figure 3.4(b) shows a cusp that bounds the region to be packed. Consider
the lower arc at the tip of the cusp. The computed flow and the (correct)
face normal enclose an angle larger than π

2 . Hence the heuristic computes a
wrong face normal.

Such errors are a minor annoyance for visualization, but they are not
critical for the following computations. The deformability of the trunk in
such regions is quite small and often zero. Thus the effects of a wrong face
normal are very limited. Additionally, tiny regions as the interior of the cusp
are far too small to be packed with boxes. The extent of such errors can be
further reduced by using grids with finer spacing.
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Algorithm 3.1 Reconstruction of face normals

FaceNormals (T,G)
1: Q ← empty FIFO queue . compute level[c]
2: for all cells c ∈ C do
3: if c ∈ I then
4: level[c] ← 0
5: Enqueue (Q, c)
6: else
7: level[c] ← ∞
8: end if
9: end for

10: while Q 6= ∅ do
11: c ← Dequeue (Q)
12: for all neighboring cells c′ of c do
13: if level[c′] = ∞ then
14: level[c′] ← level[c] + 1
15: Enqueue (Q, c′)
16: end if
17: end for
18: end while
19:

20: for all cells c ∈ C do . compute direction[c]
21: direction[c] ← (0, 0, 0)T

22: for all neighboring cells c′ of c do
23: direction[c] ← direction[c]
24: + (level[c′] − level[c]) · (index(c′) − index(c))
25: end for
26: normalize direction[c]
27: end for
28:

29: for all triangles t ∈ T do . compute normal of t
30: d ← (0, 0, 0)T

31: for all cells c ∈ C with t ∩ c 6= ∅ do
32: d ← d + direction[c]
33: end for
34: if d ·Normal (t) < 0 then
35: reverse orientation of t
36: end if
37: end for
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3.4 Space Partition

In our application we are often faced with the following problem: Given
a box in three-dimensional space, decide whether this box can be placed
without intersecting the boundary of the trunk or other already placed boxes.
This is a very important and fundamental test and its runtime strongly
influences the overall runtime of the discretization process. We cannot afford
to consider all triangles of the boundary or all already placed boxes. Hence
we use a space partition to reduce the computational effort.

Sophisticated approaches for space partitions are known in the literature,
e.g., hierarchical space partitions like kd-trees [BKOS00]. As we shall see in
Chapter 4, the vast majority of queries involves objects closely located to the
boundary of the trunk. Correspondingly, it is often necessary to consider the
leaves in the kd-tree. Hence we do not expect faster query processing times
by using a kd-tree. On the other side, a kd-tree should be more space-efficient
than our simple approach.

Our space partition uses a uniform, axis-aligned, cubic grid G that par-
titions the space into cells. The spacing of the grid is based on experiments.
This data structure provides two major functions: insertion of new objects
and query of the stored information. In case of moving objects it is also
possible to support efficient updates, but this functionality is not needed
in our application. In our setting, the objects that are stored in the space
partition are the triangles of the trunk. We also use a second space partition
for already placed boxes.

For each of its cells c ∈ G the space partition maintains a list lc of objects
that intersect this cell. We maintain the invariant

∀o ∈ O ∀c ∈ G : o ∩ c 6= ∅ ⇔ o ∈ lc , (3.1)

where O denotes the set of all objects. In other words, if the list lc for grid
cell c does not contain an object o ∈ O, then o ∩ c = ∅ holds.

The insertion of new objects into the space partition is described in Al-
gorithm 3.2. The algorithm takes an object o ∈ O as input and updates the
data structures lc of the space partition accordingly such that the invariant
(3.1) is maintained.

The query process for an object o′ is described in Algorithm 3.3. Note
that o′ ∈ O is not mandatory. The algorithm takes the query object o′ as
input and returns a list l of objects that potentially intersect o′. Moreover,
it follows from (3.1) that

∀o ∈ O : o 6∈ l ⇒ o′ ∩ o = ∅. (3.2)

In other words, objects that are not present in the computed list l have
empty intersection with the query object o′ and do not need to be taken into
account.
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Algorithm 3.2 Insertion of objects into the space partition

Insert (o)
1: B ← axis-aligned bounding box of object o
2: C ← set of grid cells intersecting B
3: for all cells c ∈ C do
4: if o ∩ c 6= ∅ then
5: lc := lc ∪ {o}
6: end if
7: end for

Algorithm 3.3 Querying the space partition

Query (o′)
1: B ← axis-aligned bounding box of object o′

2: C̃ ← set of grid cells intersecting B
3: return ∪c∈C̃ lc

A variant of Algorithm 3.3 works as follows: Instead of first computing
the bounding box B for a query object o′ and then the set C of grid cells
that intersect this bounding box B, one can also directly compute the set C̃
of grid cells that intersect the object o′. Thus in general the list of candidate
objects for an intersection gets smaller. On the other side, the computation
of C̃ is usually more expensive. The benefit of this modification depends on
the setting.

The following basic operations are needed for both algorithms:
• computation of bounding boxes for stored objects and query objects
• deciding non-empty intersection for axis-aligned boxes
• deciding non-empty intersection for stored objects and axis-aligned

boxes
• deciding non-empty intersection for query objects and axis-aligned

boxes
The last operation is only needed in the above presented variation of

Algorithm 3.3. The realization of these basic operations is discussed in Sec-
tion 4.2.
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Chapter 4

Discretization

Prior to the begin of this work, our customer constructed all packings man-
ually. All solutions that they have provided have a certain structure in
common. Examples for such packings can be seen in Figure 4.1.

One observation is that the axes of almost all boxes are aligned to the
axes of some coordinate system. Usually, less than 1% of the boxes have
an independent orientation. These boxes are found at the boundary of the
packing and their orientations are caused by the local geometry of the trunk.

Moreover, many boxes are aligned with each other and are not displaced
arbitrarily. The extensions of the boxes imply side length ratios of 4 : 2 : 1.
Therefore it is possible to align the boxes without ruling out a tight packing,
even if some of the boxes have been rotated by 90 degrees around one of their
axes. Again, a small number of boxes at the boundary of the packing are
displaced with respect to the core. Often their position is directly influenced
by the nearby boundary of the trunk.

These observations motivate a discretization approach that restricts the
solution space to boxes that are placed in a grid-like fashion. Such a restric-
tion rules out arbitrary positions and orientations. Because such situations
are rare, there is reason to believe that the restriction of the solution space
imposed by the discretization is not too severe.

Our discretization approach creates an approximation of the space, and
in particular of the region to be packed. The quality of the approximation
depends on the geometric parameters of the grid, namely its origin, orienta-
tion and spacing. The proper choice of the spacing is crucial to be able to
allow tight packings. A smaller spacing leads to a finer approximation of the
region to be packed. On the other hand, a smaller spacing also increases the
complexity of the resulting discrete packing problem.

The discretization allows us to classify regions of the space. Naturally, we
are interested in distinguishing the region to be packed from its surrounding.
We want to classify each cell of the grid with respect to the geometry of the
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(a) model A (b) model B

(c) model C (d) model D

Figure 4.1: Manually constructed packings. These packings have a very reg-
ular structure. The majority of the boxes are aligned with the axes of a
common coordinate system. Only few boxes have an independent orienta-
tion.1

trunk. It is our goal to identify the cells that are entirely, respectively in
parts, covered by the region to be packed.

In Chapter 3 we explained that the input data does not precisely define
the region to be packed. The introduction of a new data structure for the
discrete problem allows us to restrict the effect of those problems to the
construction phase of the grid. The packing algorithms can work on a well-
defined problem instance and do not need to cope with the problems caused
by the deficiencies in the boundary description of the trunk.

This chapter is organized as follows: In the first section we concentrate
on the theoretical foundation of the discretization step. We describe the
fundamental routines that are used for intersection tests in Section 4.2. These

1For legal reasons we may not publish the geometry of model D.
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routines are needed to detect grid cells that intersect the boundary of the
trunk or given boxes. In Section 4.3 we explain the classification process
in detail. Section 4.4 deals with transformations of grids reusing existing
information. We discuss the problem of optimal grids in Section 4.5.

4.1 Theoretical Aspects

In this section we consider the theoretical foundation of our discretization
step. Actually, the discretization consists of two parts. First, we discretize
the space and obtain an inner approximation of the region to be packed. We
formally define the cubic grid that is used for this approximation. Second,
we restrict the set of potential box placements. Finally, we revisit the notion
of the conflict graph and the maximum stable set problem.

4.1.1 Discretization of the Space

We discretize the space with a uniform cubic grid. The geometry of the
grid is described by three parameters: the origin o ∈ R3, the orientation
(denoted by a rotation matrix R ∈ R3×3) and the spacing l > 0. We use
integer triples to identify the grid cells. Consider the function

f: R3 → R3, (i, j, k) 7→ o + l ·R · (i, j, k)T . (4.1)

The function f maps the elements of Z3 (called cell indices) to the vertices
of the grid with origin o, orientation R and spacing l. This mapping leads
to the definition of the grid cells as follows:

cell: Z3 3 (i, j, k) 7→
⋃

x∈[0,1)3

f ( (i, j, k) + x ) ⊆ R3 . (4.2)

The function cell maps integer triples to oriented cubes with side length l.
Note that a cell is a continuous image of a cartesian product of three half open
intervals, and thus it is a half-open cube. Conversely, with each point p ∈ R3

we can associate its cell index:

index: R3 → Z3, p 7→ bf−1(p)c, (4.3)

where the operator b · c is to be applied componentwise.
Notice that the representation of a grid by the parameters o, R and l

is unique in the sense that there are no two distinct parameter triples that
denote the same function f (and consequently, cell and index). But in the
end, we are interested in the subdivision of the space into cells, and not in
the index that is actually assigned to a given cell; the cell indices are merely
a means of addressing the cells. In this context, the subdivisions of the
space resulting from such grids are no longer uniquely represented by the
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parameters o, R and l. For example, a translation of the origin o by any
element of l ·R ·Z3 results in the same subdivision of the space. We defer
the discussion how to choose those parameters to Section 4.5.

We classify each cell with respect to the geometry of the trunk and boxes
of a given packing. For now, we restrict ourselves to two states: usable and
unusable2. A grid cell is called usable if it lies completely in the region to be
packed and does not intersect boxes of a given (partial) packing. Otherwise,
the cell is called unusable. The latter state includes cells that lie in the
exterior of the trunk, cells that lie outside the region to be packed or cells
that intersect given boxes or the boundary of the trunk. The set of usable
cells corresponds to the subset I in the definition of the Discrete-Box-
Packing problem (see Definition 2.3).

Thus the set of usable cells is an inner approximation of the region to
be packed. In other words, the space occupied by usable cells is entirely
available for packing with boxes. A packing that covers only usable cells
does never interfere with the boundary or given boxes and is always feasible.
Figure 4.2 shows the set of usable grid cells for four grids with different
spacing.

4.1.2 Discretization of Box Placements

We described the discretization of the space in the previous subsection. Now
we restrict the solution space of our problem even more by discretizing the
possible box placements.

The boxes to be packed have a length, width, and height of 200mm,
100mm, and 50mm. We restrict ourselves to grids with spacing l such
that n · l = 50mm for some integer n. Thus a box has the same shape
as the union of 4n × 2n × n grid cells. The above condition for the choice
of l is necessary in order to obtain tight packings.

Furthermore, we restrict the position and orientation of boxes as follows:
We demand that the axes of a box coincide with the axes of the grid. This
implies that there are six different orientations for each box. Furthermore,
we enforce that a box is aligned with the grid cells. That means that a
box does not only have the same shape as, but also coincides with a set
of 4n × 2n × n grid cells.

Thus the position and orientation of a box is defined by six parame-
ters (x, y, z, w, h, d). The triple (x, y, z) ∈ Z3 denotes the so-called anchor
cell. This cell has the (componentwise) smallest index among all cells cov-
ered by that box. The triple (w, h, d) denotes the orientation of the box
and specifies its extension in width, height, and depth (with respect to the
axes of the grid, i.e., the columns of R, and measured in grid cells). Any
permutation of the set {4n, 2n, n} is valid for (w, h, d). The box defined by

2We shall introduce a finer grained classification in Section 4.3.
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(a) spacing: 100mm (b) spacing: 50mm

(c) spacing: 25mm (d) spacing: 12.5mm

Figure 4.2: Discretization of the space with grids of different spacing. Only
usable grid cells are shown.

the parameters (x, y, z, w, h, d) consists exactly of the grid cells with index
in the set

[x, x + w) × [y, y + h) × [z, z + d) ∩ Z3 .

4.1.3 Formulation as a Stable Set Problem

It is straightforward to formulate the Discrete-Box-Packing problem as
a stable set problem. We repeat the definition of the conflict graph (see
Definition 2.8), now adapted to the terminology of this chapter.

Definition 4.1 (Conflict Graph). Let I denote the set of usable cells
of a grid G with parameters (o,R, l). The conflict graph G = (V, E) of
(G, n, I) is defined as follows: There is a node vx,y,z,w,h,d ∈ V iff the box with
anchor cell (x, y, z) and orientation (w, h, d) covers only usable cells, i.e.,
cells in I. Two nodes vi, vj ∈ V are adjacent iff the corresponding boxes i
and j intersect.
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n
spacing #cells / max. size of

maximal degree of G
[mm] box cliques in G

1 50.00 8 48 201
2 25.00 64 384 2609
4 12.50 512 3072 25737
8 6.25 4096 24576 227225

n 50/n 8n3 48n3 488n3 − 364n2 + 84n − 7

Table 4.1: Characteristic numbers for conflict graphs

We have seen in Proposition 2.9 that any Discrete-Box-Packing prob-
lem can be reduced to a stable set problem for the corresponding conflict
graph. Note that the conflict graph G has some regular structure that orig-
inates from the grid G. However, it is difficult to exploit this structure if
only the graph itself is given. On the other hand, this structure is easily
accessible in the original grid G.

Table 4.1 gives an impression about the size and complexity of the conflict
graphs, depending on the parameter n. The number of cells per box equals
8n3. For example, a grid with a spacing of 25mm for a trunk of a typical
size of 400 liters consists of approximately 25600 usable cells (depending
on the orientation and translation of the grid). Since there are six different
orientations, the maximum size of cliques in the conflict graph is six times the
number of cells per box, i.e., 48n3. The maximum degree of the conflict graph
is almost a magnitude larger. It can be determined by a simple enumeration
of possible configurations of box pairs. The given function 488n3 − 364n2 +
84n − 7 has been experimentally verified for powers of two up to n = 1024.
For typical instances more characteristic values of the conflict graph are given
in Table 6.2.

4.2 Fundamental Intersection Routines

In this section we describe the fundamental routines used in all intersection
computations. These routines are used to decide whether two geometric
primitives have a non-empty intersection or not.

We use these routines in the construction of the cubic grid. We need
to identify all cells that intersect either the boundary of the trunk or boxes
of given (partial) packings. The boundary of the trunk is given as a set
of triangles. The given packings consist of a set of boxes. Therefore, we
need to decide the intersection problem for the object pairs triangle–cube
and box–cube.

We are also interested in the more general cases triangle–box and box–box,
which are useful for verification of solutions obtained by other means. This
includes solutions of other (non-grid-based) algorithms as well as solutions
that are imported from a CAD system.
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In this section we describe the implementation of the general cases tri-
angle–box and box–box. The simplification for the cases triangle–cube and
box–cube is straightforward.

Our intersection tests are based on a concept called Separating Axis The-
orem. This concepts works as follows: Both objects in question are projected
onto a fixed axis. Assume there is an axis such that the projections of both
objects are disjoint. This implies the existence of a orthogonal plane that
separates both objects. Such an axis is called a separating axis and it is a
witness that both objects are disjoint.

This observation leads to some questions: Is there an axis such that the
projection intervals are disjoint? If it exists, how does one find it? And if
there is no such axis, how can one proof that? The Separating Axis Theorem
stated in [GLM96a, GLM96b] answers these questions for the case of two
oriented boxes.

Theorem 4.2 (Separating Axis Theorem). If two oriented boxes are
disjoint, then there exists a separating axis l = a × b, where a and b are
taken from the six box axes.

This theorem says that it is sufficient to look at a set of fifteen axes in
total (three axes from one box, three axes from the other box, and nine
axes resulting from pairwise cross products). Both boxes are disjoint iff one
of those fifteen axes is a separating axis. A similar statement is valid for
the case of a triangle and a box. Both cases are discussed in [Ebe01]. Our
implementation is based on the routines described in this book.

4.2.1 Intersection Test for a Triangle and a Box

Let the triangle have vertices u0, u1 and u2 ∈ R3. Define the edges of the
triangle as e0 = u1 − u0, e1 = u2 − u0 and e2 = u2 − u1. The triangle is
described by the set

{

u0 + λe0 + µe1

∣

∣

∣
0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1, λ + µ ≤ 1

}

.

Let the box have center c ∈ R3, normalized axes a0, a1, a2 ∈ R3, and
side lengths 2a0, 2a1, 2a2 > 0. Thus the box is given by the set

{

c +
∑

i=0,1,2

λiai

∣

∣

∣
− ai ≤ λi ≤ ai

}

.

Furthermore, define d = u0 − c and let n ∈ R3 be an oriented normal of
the triangle, for example n = e0 × e1. The normal n does not need to have
unit length.

The intersection test for a triangle and a box is described in Algo-
rithm 4.1. The algorithm computes the quantities p0, p1, p2 and r for each
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Algorithm 4.1 Intersection test for a triangle and a box

IntersectionTriangleBox (t, b)
1: for all potential separating axes l do
2: compute quantities p0, p1, p2 and r
3: if min{p0, p1, p2} > r or max{p0, p1, p2} < −r then
4: return false . l is a separating axis, no intersection
5: end if
6: end for
7: return true . no separating axis found, intersection

potential separating axis l (we identify an axis c + λl, λ ∈ R with its direc-
tional vector l). The values pi, 0 ≤ i ≤ 2 correspond to the projection of the
triangle vertices ui, 0 ≤ i ≤ 2 onto the axis l (see Figure 4.3). The value r
describes the width of the projection interval of the box. The computation
of those four quantities is summarized in Table 4.2. If min{p0, p1, p2} > r
or max{p0, p1, p2} < −r holds, the projections of the box and the triangle
are separated, l is a separating axis for both objects and the algorithm im-
mediately returns false. Otherwise, l is not a separating axis. If there is no
separating axis, both objects intersect and the algorithm returns true.

Under certain conditions, the separating axis test for a triangle and box
can be accelerated. The tests described in lines 2 to 4 in Table 4.2 check
whether the box intersects the bounding box of the triangle (the orientation
of the bounding box coincides with that of the given box). Such a test might
have already been performed in advance in order to reduce the number of

l p0 p1 p2 r

1 n nTd p0 p0
∑

i=0,1,2 ai |nTai|
2 a0 a0

Td p0 + a0
Te0 p0 + a0

Te1 a0

3 a1 a1
Td p0 + a1

Te0 p0 + a1
Te1 a1

4 a2 a2
Td p0 + a2

Te0 p0 + a2
Te1 a1

5 a0 × e0 (a0 × e0)Td p0 p0 + a0
Tn a1 |a2

Te0| + a2 |a1
Te0|

6 a0 × e1 (a0 × e1)Td p0 − a0
Tn p0 a1 |a2

Te1| + a2 |a1
Te1|

7 a0 × e2 (a0 × e2)Td p0 − a0
Tn p1 a1 |a2

Te2| + a2 |a1
Te2|

8 a1 × e0 (a1 × e0)Td p0 p0 + a1
Tn a0 |a2

Te0| + a2 |a0
Te0|

9 a1 × e1 (a1 × e1)Td p0 − a1
Tn p0 a0 |a2

Te1| + a2 |a0
Te1|

10 a1 × e2 (a1 × e2)Td p0 − a1
Tn p1 a0 |a2

Te2| + a2 |a0
Te2|

11 a2 × e0 (a2 × e0)Td p0 p0 + a2
Tn a0 |a1

Te0| + a1 |a0
Te0|

12 a2 × e1 (a2 × e1)Td p0 − a2
Tn p0 a0 |a1

Te1| + a1 |a0
Te1|

13 a2 × e2 (a2 × e2)Td p0 − a2
Tn p1 a0 |a1

Te2| + a1 |a0
Te2|

Table 4.2: Values for the separating axis test for a triangle and a box
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f0

f2f1

l

u0

u1

u2

a1

0 r

a1 a0

a0

c

p0 p2 p1 −r

Figure 4.3: Separating axis test for a triangle and a box. The axis l is a
separating axis if the interval spanned by p0, p1, p2 and the interval [−r, r]
are disjoint.

candidate pairs for the intersection test. In this case, the corresponding tests
can be skipped here. Thus the maximum number of axes that need to be
tested can be reduced from 13 to 10.

4.2.2 Intersection Test for Two Boxes

Let the first box have center c0 ∈ R3, normalized axes a0, a1, a2 ∈ R3,
and side lengths 2a0, 2a1, 2a2 > 0. Similarly, let the second box have center
c1 ∈ R3, normalized axes b0, b1, b2 ∈ R3, and side lengths 2b0, 2b1, 2b2 > 0.
Thus the boxes are given by the sets

{

c0 +
∑

i=0,1,2

λiai

∣

∣

∣
− ai ≤ λi ≤ ai

}

and
{

c1 +
∑

i=0,1,2

µibi

∣

∣

∣
− bi ≤ µi ≤ bi

}

.

Let d = c1 − c0 and C = A
T
B, where A = (a0, a1, a2) and B =

(b0, b1, b2). The matrix C denotes the orientation of the second box relative
to the orientation of the first box.

The intersection test for two boxes is described in Algorithm 4.2. The
algorithm computes the quantities r0, r1 and r for each potential separating
axis l. The values r0 and r1 correspond to the projection intervals of both
boxes (see Figure 4.4), r describes the projection of the center of the second
box. The computation of those three quantities is summarized in Table 4.3.
If r > r0 + r1 holds, the projections of both boxes are separated, l is a
separating axis for both objects and the algorithm immediately returns false.
If there is no separating axis, both objects intersect and the algorithm returns
true.
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Algorithm 4.2 Intersection test for two boxes

IntersectionBoxBox (b1, b2)
1: for all potential separating axes l do
2: compute quantities r0, r1 and r
3: if r > r0 + r1 then
4: return false . l is a separating axis, no intersection
5: end if
6: end for
7: return true . no separating axis found, intersection

Similar to the case of a triangle and a box, the separating axis test for two
boxes can be accelerated under certain conditions. The tests described in
lines 1 to 6 in Table 4.3 check whether the first box intersects the bounding
box of the second box and vice versa (the orientation of a bounding box
coincides with the orientation of the other given box). Such a test might have
already been performed before in advance in order to reduce the number of
candidate pairs for the intersection test. In this case, the corresponding tests
can be skipped here. Thus the maximum number of axes that need to be
tested can be reduced from 15 to 12 or 9.

4.3 Generation of Grids

Suppose we are given the geometry of the trunk and the geometric parame-
ters of the desired grid, that is, its origin o, its orientation R and the spac-

l r0 r1 r

1 a0 a0 b0 |c00| + b1 |c01| + b2 |c02| |a0
Td |

2 a1 a1 b0 |c10| + b1 |c11| + b2 |c12| |a1
Td |

3 a2 a2 b0 |c20| + b1 |c21| + b2 |c22| |a2
Td |

4 b0 a0 |c00| + a1 |c10| + a2 |c20| b0 | b0
Td |

5 b1 a0 |c01| + a1 |c11| + a2 |c21| b1 | b1
Td |

6 b2 a0 |c02| + a1 |c12| + a2 |c22| b2 | b2
Td |

7 a0 × b0 a1 |c20| + a2 |c10| b1 |c02| + b2 |c01| | c10 a2
Td − c20 a1

Td |
8 a0 × b1 a1 |c21| + a2 |c11| b0 |c02| + b2 |c00| | c11 a2

Td − c21 a1
Td |

9 a0 × b2 a1 |c22| + a2 |c12| b0 |c01| + b1 |c00| | c12 a2
Td − c22 a1

Td |
10 a1 × b0 a0 |c20| + a2 |c00| b1 |c12| + b2 |c11| | c20 a0

Td − c00 a2
Td |

11 a1 × b1 a0 |c21| + a2 |c01| b0 |c12| + b2 |c10| | c21 a0
Td − c01 a2

Td |
12 a1 × b2 a0 |c22| + a2 |c02| b0 |c11| + b1 |c10| | c22 a0

Td − c02 a2
Td |

13 a2 × b0 a0 |c10| + a1 |c00| b1 |c22| + b2 |c21| | c00 a1
Td − c10 a0

Td |
14 a2 × b1 a0 |c11| + a1 |c01| b0 |c22| + b2 |c20| | c01 a1

Td − c11 a0
Td |

15 a2 × b2 a0 |c12| + a1 |c02| b0 |c21| + b1 |c20| | c02 a1
Td − c12 a0

Td |

Table 4.3: Values for the separating axis test for two boxes
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Figure 4.4: Separating axis test for two boxes. The axis l is a separating
axis if the intervals [−r0, r0] and [r − r1, r + r1] are disjoint.

ing l. Optionally, a set of boxes that represents a partial packing might also
be given. The goal is to identify all the cells that are completely contained
in the region to be packed.

In order to accomplish this goal, we introduce the following classification
for grid cells:

• Outside: The cell lies in the exterior of the trunk.

• Boundary: The cell intersects the boundary of the trunk or intersects
a given box.

• Inside: The cell lies in the interior of the trunk.

• Unknown: The state of the cell is not yet determined.

We shall see in Section 4.3.2 that some Inside and Unknown cells can
never be covered by a box. These cells are important in the classification
process. Therefore we extend the above set of states as follows:

• Inside∗: The cell lies in the interior of the trunk and can never be
covered by a box.

• Unknown∗: The state of the cell is not yet determined, but it can
never be covered by a box.

In figures we use different colors to distinguish the various cell states
(see Figure 4.5). Cells labeled as Inside∗ and Unknown∗ are additionally
marked by an X-shaped cross.

Initially, all cells of the grid are labeled as Unknown. Our goal is to
label all cells according to the classification above. In particular, we want to



56 CHAPTER 4. DISCRETIZATION

Unknown

Inside

Boundary

Inside∗

Unknown∗

Outside

Figure 4.5: Visual representation of cell states

reduce the number of Unknown cells as much as possible. All Inside cells
constitute an inner approximation of the region to be packed. All other cells,
except those labeled as Unknown, can definitely not be used for packing.

The algorithms used for the classification are also used in a different
context (see Section 4.4 and 4.5). In this context, the setting is as follows:
Only a subset of the cells is labeled as Unknown, the remaining cells are
already properly classified. The goal of classification of all cells remains the
same. Because only a subset of all cells is left to be classified, we added in
the following algorithms some statements for the purpose of optimization.
For simplicity, we replace all information about Inside∗ and Unknown∗

cells by Inside and Unknown, respectively.
The classification process consists of several steps that are presented in

the following subsections.

4.3.1 Boundary Cells

In the first step of the classification process we identify all cells that should
be labeled as Boundary. We compute the set of cells that intersect at least
one triangle of the trunk boundary. Similarly, we calculate the set of cells
that intersect at least one box.

Zomorodian and Edelsbrunner [ZE00] give an efficient algorithm to
compute all intersection pairs of two sets of objects. First, the objects are
enclosed in axis-aligned bounding boxes which reduces the problem to finding
intersecting intervals. A hybrid algorithm involving range trees and scanning
is used to generate the set of intersection candidates. Primitive intersection
tests are needed to compute the list of actual intersection pairs.

In our setting, a much simpler approach suffices. We do not need to com-
pute all intersection pairs, it suffices to decide for a given cell whether it is
intersected by any triangle (or any box). Moreover, given the special struc-
ture of the set of cells, it is straightforward to compute the set of intersection
candidates for a given triangle or box.

First, we explain how to compute the set of cells intersected by the bound-
ary of the trunk. The pseudo code for our implementation is presented in
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Algorithm 4.3 Identification of Boundary cells (part 1)

BoundaryCellsTriangles (G, T )
1: for all triangles t ∈ T do
2: B ← grid-aligned bounding box of t
3: for all cells c ∈ G that intersect B do
4: if c is labeled as Unknown then . speed-up
5: if IntersectionTriangleBox (t, c) then
6: label c as Boundary
7: end if
8: end if
9: end for

10: end for

Algorithm 4.3. The algorithm takes a grid G and a set of triangles T as in-
put. The outer loop iterates over all triangles t ∈ T . The inner loop does not
iterate over all grid cells c ∈ G. It is restricted to those cells that intersect
the bounding box of t. Note that the set of cells satisfying this condition (see
line 3) can be efficiently determined. This set has a cuboid shape and the
indices of both extremal cells can be obtained by applying the index function
of the grid (see function (4.3)) to both extremal vertices of the bounding
box B. The intersection test in line 5 is skipped if a cell is not labeled as
Unknown.

A second implementation that reverses the order of both loops is given
in Algorithm 4.4. The outer loop iterates over all Unknown cells c ∈ G. We
compute an axis-aligned bounding box B of a cell c and use the precomputed
space partition of the set of triangles T to obtain a set S ⊆ T of intersection
candidates. The inner loop iterates over this set S and is terminated as soon
as an intersection is found.

The relative runtime of both variants depends on many parameters, e.g.,
on the number of the triangles and the cells, on the size and distribution
of the triangles, on the spacing of the grid, and on the number of Un-
known cells. We performed various tests with different models and grids
with different spacing. If no further information about the cell labels is given,
i.e., all cells are initially labeled as Unknown, the first implementation
is up to factor two faster than the second one. However, often only the
labels for cells close to the boundary need to be recomputed, e.g., during a
translation of the grid (see Section 4.4). In such a situation, the runtime of
both implementations is roughly the same.

The boxes of a given (partial) packing are handled in a similar way.
The pseudo code for this case is shown in Algorithm 4.5, which is analog
to Algorithm 4.3. Naturally, an implementation analog to Algorithm 4.4
is also possible. Because the runtime spent on the boxes B is significantly
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Algorithm 4.4 Identification of Boundary cells (part 1, alternative im-
plementation)

BoundaryCellsTriangles (G, T )
1: let SP denote the space partition of T
2: for all cells c ∈ G do
3: if c is labeled as Unknown then . speed-up
4: B ← axis-aligned bounding box of c
5: S ← SP.Query(B)
6: for all triangles t ∈ S do
7: if IntersectionTriangleBox (t, c) then
8: label c as Boundary
9: break . speed-up

10: end if
11: end for
12: end if
13: end for

smaller than the time spent on the triangles T , a gain of an alternative
implementation would not improve the overall runtime very much. Therefore
we did not study this variant.

Algorithm 4.5 Identification of Boundary cells (part 2)

BoundaryCellsBoxes (G, B)
1: for all boxes b ∈ B do
2: B ← grid-aligned bounding box of b
3: for all cells c ∈ G that intersect B do
4: if c is labeled as Unknown then . speed-up
5: if IntersectionBoxBox (b, c) then
6: label c as Boundary
7: end if
8: end if
9: end for

10: end for

4.3.2 Unusable Cells

In the second step we identify the set of Unknown∗ and Inside∗ cells. The
purpose of Unknown∗ cells is to ease the classification of Inside and Out-
side cells in the presence of small holes in the boundary description of the
trunk (see Section 3.2). Consider the example depicted in Figure 4.6(a).
Assume that we want to pack rectangles of size 4 × 2 cells. All cells that
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(a) Unknown
∗ cells (b) Inside

∗ cells

Figure 4.6: Examples of unusable cells. The cells that are marked by an
X-shaped cross can never be covered by a rectangle of 4 × 2 cells.

intersect the boundary of the trunk are already labeled as Boundary. But
they do not separate the region to be packed from the exterior because there
is a hole in the trunk boundary.

On closer examination, we recognize that the marked cell can never be
covered by a rectangle. The nearby Boundary cells rule out any position
of a box covering this cell. Therefore we can classify it as Unknown∗. The
combined set of Boundary and Unknown∗ cells separates the region to be
packed and the exterior.

Cells labeled as Unknown∗ are always in close proximity to Boundary
cells. In fact, both kinds of cells play a similar role: They belong to a set
of cells that (hopefully) separates the region to be packed from the exterior.
The difference is that Boundary cells are intersected by the boundary of
the trunk (or given boxes), while Unknown∗ cells are not intersected by
those objects.

The purpose of Inside∗ cells is quite different. Assume that some cells
are already labeled as Inside. We shall later compare different grids with
respect to their potential for a packing of high cardinality (see Section 4.5).
A fast and easy way is to compare the number of Inside cells. However, this
measure neglects that some Inside cells can never be covered by any box.
An example with such cells is shown in Figure 4.6(b).

Therefore, we label such cells as Inside∗. The number of remaining
Inside cells gives a more precise measure of the cells that can be covered
in a packing. The algorithm that identifies Unknown∗ cells can be easily
extended to detect also Inside∗ cells.

The algorithm used to determine Unknown∗ and Inside∗ cells is de-
picted in Algorithm 4.6. For each cell c ∈ G we have a flag covered[c] that
is initialized with false. We iterate over all possible box positions and orien-
tations and mark all cells that can be covered by a box. Finally we label all



60 CHAPTER 4. DISCRETIZATION

Algorithm 4.6 Identification of unusable cells

UnusableCells (G)
1: for all cells c ∈ G do
2: covered[c] ← false
3: end for
4:

5: for all cells c ∈ G do
6: for all six orientations o do
7: let b denote a box with orientation o anchored at cell c
8: if b covers only cells labeled as Inside or Unknown then
9: for all cells c′ covered by b do

10: covered[c′] ← true
11: end for
12: end if
13: end for
14: end for
15:

16: for all cells c ∈ G do
17: if covered[c] = false then
18: if c is labeled as Inside then
19: label c as Inside∗

20: end if
21: if c is labeled as Unknown then
22: label c as Unknown∗

23: end if
24: end if
25: end for

Inside and Unknown cells that cannot be covered by any box as Inside∗

and Unknown∗, respectively.

4.3.3 Inside and Outside Cells

In the last step we identify Inside and Outside cells. We have already
labeled the sets of Boundary and unusable cells. Some of the cells might
already be labeled as Inside or Outside. The goal is to classify the remain-
ing Unknown (Unknown∗) cells as either Inside (Inside∗) or Outside.

First we label the outmost layer of cells as Outside (we assume that
the grid is large enough, such that the cells of the outmost layer either are
labeled as Unknown or are already labeled as Outside). Next we look at
maximal connected components of Unknown and Unknown∗ cells. We
examine the labels of all cells adjacent to such a component. Based on the
set of these labels we classify the cells in the component. In the end, if no
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Algorithm 4.7 Identification of Inside, Inside∗ and Outside cells

InsideAndOutsideCells (G)
1: I ← {Inside, Inside∗}
2: O ← {Outside}
3: I ′ ← I ∪ {Unknown}
4: O′ ← O ∪ {Unknown}
5:

6: for all maximal connected components C of Unknown cells do
7: L ← set of labels of cells adjacent to C
8: if L ∩ I 6= ∅ and L ∩ O = ∅ then
9: label all cells of C as Inside

10: end if
11: if L ∩ O 6= ∅ and L ∩ I = ∅ then
12: label all cells of C as Outside
13: end if
14: end for
15:

16: for all maximal connected components C of Unknown∗ cells do
17: L ← set of labels of cells adjacent to C
18: if L ∩ I 6= ∅ and L ∩ O′ = ∅ then
19: label all cells of C as Inside∗

20: end if
21: if L ∩ O 6= ∅ and L ∩ I ′ = ∅ then
22: label all cells of C as Outside
23: end if
24: end for

cells are labeled as Inside and there is exactly one component of Unknown
cells left, we label those cells as Inside.

The central part of the algorithm is outlined in Algorithm 4.7. For each
maximal connected component C of Unknown cells we compute the set
L of labels of adjacent cells. If the component is adjacent to an Inside
or Inside∗ cell, and is not adjacent to Outside cells, we know that the
component belongs to the interior and label all cells in the component as In-
side. Similarly, if the component is adjacent to a Outside cell, and is not
adjacent to Inside or Inside∗ cells, we assume that the whole component
lies in the exterior and all cells in the component are labeled as Outside.
We also look at maximal connected components of Unknown∗ cells and
classify them according to similar rules.

These conditions ensure that we do not end up with Outside cells adja-
cent to Inside (or Inside∗) cells. Note that we do not distinguish between
Boundary and Unknown∗ cells in the first loop of the algorithm. In the
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second loop, we act conservatively and treat Unknown cells as Outside if
the component is adjacent to an Inside cell and vice versa.

For efficiency reasons, we do not explicitly compute the maximal con-
nected components C. We rather directly compute the sets L of labels of
adjacent cells.

There are three cases in which Unknown cells remain or the classifica-
tion of Inside, Inside∗ and Outside cells is incorrect:

• There are two or more components of Unknown cells that are neither
adjacent to Outside nor Inside (or Inside∗) cells (see Figure 4.7(a)).
We cannot decide whether these components belong to the interior or
exterior. The same holds if there is only one such component and some
cells elsewhere are already labeled as Inside.

• There is a large hole in the boundary of the trunk such that a compo-
nent of Unknown cells is adjacent to Outside as well as Inside (or
Inside∗) cells (see Figure 4.7(b)). We cannot decide which of these
cells belong to the interior and exterior, respectively.

• There is a large hole in the boundary of the trunk such that a com-
ponent of Unknown cells is adjacent to Outside cells, but not to
Inside (or Inside∗) cells (see Figure 4.7(c)). The whole component is
wrongly classified as Outside.

In the first case, we ask the user to classify the components as Inside or
Outside. The problems in the second and third case originate from holes
in the boundary description of the trunk. There are holes large enough such
that a box can pass them. As we mentioned in Section 3.2, we only allow
small holes in the input data. The user must close such large holes manually.

4.4 Transformation of Grids

In this section we discuss efficient ways to update the cell labels after a
transformation of the grid. Translations for instance are heavily used to
find a good placement of the grid (see Section 4.5). To obtain a reasonable
runtime, an efficient implementation of the translation process is necessary.
A natural way to do this is not to recompute the cell lables from scratch, but
rather to reuse the information that was valid just before the transformation.

We are given a grid G with origin o, orientation R and spacing l. All
cells of G are already classified. Suppose we want to classify the cells of a
grid G′ with origin o′, orientation R

′ and spacing l′.
A change in exactly one of the three grid parameters can be associated

with three classic kinds of transformation: scaling (l), translation (o) and
rotation (R). In the remainder of this section we discuss the general problem
of arbitrary transformations. Special cases of scaling and translation are
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(a) Two or more connected compo-
nents of Unknown cells are neither
adjacent to Outside or Inside (or
Inside

∗) cells.

(b) Due to a large hole in the boundary
a connected component of Unknown

cells is adjacent to Outside as well as
Inside (or Inside

∗) cells.

(c) Due to a large hole in the boundary
a connected component of Unknown

cells is adjacent to Outside cells, but
not to Inside (or Inside

∗) cells.

Figure 4.7: Situations in which Unknown cells cannot be labeled correctly.

discussed in more detail in Section 4.4.1 and 4.4.2, respectively. Rotations
are hardly needed in our application. Typically, the orientation of the grid
is fixed in the beginning, whereas origin and spacing are changed from time
to time.

The algorithm for the general case is outlined in Algorithm 4.8. For each
cell c′ of the transformed grid G′, we compute the set S of cells of the original
grid G that intersect c′. The set L denotes the labels of all cells in S. There
are two cases in which we can directly determine the correct label of the
cell c′. In all other cases, c′ is labeled as Unknown.

Note that there is no rule that labels c′ as Boundary if S ={Boundary}.
(One might expect such a rule, given similar rules for Inside and Out-
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Algorithm 4.8 Computation of cell labels after transformation of G into G′

TransformGrid(G,G′)
1: for all cells c′ ∈ G′ do
2: S ← {c ∈ G | c ∩ c′ 6= ∅}
3: L ← set of all labels of cells in S
4: if L ⊆ {Inside, Inside∗} then
5: label c′ as Inside
6: else if L = {Outside} then
7: label c′ as Outside
8: else
9: label c′ as Unknown

10: end if
11: end for

side cells.) Consider a Boundary cell c ∈ G and a scaling operation that
halves the spacing l of the original grid. The cell c is decomposed into eight
smaller cells, but not necessarily all of them intersect the boundary of the
trunk (or given boxes). We cannot classify the smaller cells without further
computational effort. Therefore, for the time being such cells are labeled as
Unknown.

A similar effect can be observed for translation operations (see Fig-
ure 4.8). The left figure shows four adjacent cells that are intersected by the
trunk boundary, and consequently, are labeled as Boundary. The trans-
formed grid G′ in the right figure is obtained by a translation in horizontal
direction by l

2 . The upper cell in the center is completely covered by Bound-
ary cells of G, but does not intersect the boundary.

Algorithm 4.8 returns a grid with cells labeled as Inside, Outside and
Unknown. The sets of Inside and Outside cells of G′ approximate the
corresponding sets of G. In order to get rid of Unknown cells, we rerun the
algorithms presented in Section 4.3. Their runtime improves significantly
compared to the case where all cells are labeled as Unknown.

In particular, we are interested in transformations that keep the number
of Unknown cells as low as possible. The number of Unknown cells is in
direct relation to the size of the sets S: The larger the set S, the higher is
the number of Unknown cells.

4.4.1 Scaling

A scaling of a grid relates to a change of the spacing parameter l; the orien-
tation R and the origin o remain unchanged. We denote the ratio of the old
value l and the new value l′ by k := l/l′ > 0. We restrict ourselves in the
following to k ∈ N, i.e., all cells of the given grid are subdivided uniformly
into k3 cells. In practice, we only use the value k = 2.
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(a) Original grid G (b) Translated grid G
′

Figure 4.8: State of cells covered by Boundary cells. Cells that are entirely
covered by Boundary cells of a different grid do not necessarily intersect
the boundary of the trunk.

Consider the algorithm presented in Algorithm 4.8. Each cell c′ of the
transformed grid G′ is covered by exactly one cell c of the original grid G. In
other words, the sets S and L in Algorithm 4.8 contain exactly one element.
Thus the entire space previously covered by Inside and Outside cells is
still covered by appropriate labeled cells (Inside∗ cells are replaced as In-
side cells).

We want to attract your attention to a phenomenon that occurs in con-
junction with scaling. Consider the example in Figure 4.9. A fragment of a
grid G with l = 50mm is shown in Figure 4.9(a). Assume we want to pack
rectangles of size 100mm×50mm. The hole in the boundary is large enough
such that a rectangle can pass it. In general we consider such input data
as ill-formed and require the user to fix the errors. However, in this special
case, there is no problem, because the Boundary cells still separate Inside
and Outside cells.

Now we scale the grid G with k = 2 and obtain a new grid G′. The result
of Algorithm 4.8 is displayed in Figure 4.9(b). The information abound In-
side and Outside cells has been carried over to the new grid. All cells that
constitute the former Boundary cells are now labeled as Unknown. Next
we rerun the algorithms of Section 4.3 and classify Boundary and unusable
cells (see Figure 4.9(c)). Because Inside and Outside cells are no longer
separated by Boundary (or Unknown∗) cells, we fail to further reduce the
number of Unknown and Unknown∗ cells.

Consider both branches of Unknown∗ cells. On one hand, these cells
are adjacent to Outside cells. On the other hand, they are far away from
Inside cells (distance is measured as the length of a shortest path of Un-
known or Unknown∗ cells). Intuitively, one would classify these cells as
Outside. In a similar way, one would classify the lower and upper branch
of Unknown cells as Inside.

We present an algorithm based on this idea (see Algorithm 4.9). First,
we use breadth-first search to compute the values distO and distI for each
Unknown and Unknown∗ cell. The values distO[c] and distI [c] denote
the distance of cell c to the next Outside and Inside (or Inside∗) cell,
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(a) Initial situation (b) After scaling (c) Unsatisfying result
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Figure 4.9: A problem caused by large holes in the boundary. The boundary
of the trunk contains a hole larger than 100mm×50mm (a). After scaling (b),
the sets of Inside and Outside cells are no longer separated by Boundary
cells, which leads to unsatisfying results (c). The results can be improved (f)
by taking into account the shortest distance to the sets of Outside (d) and
Inside (e) cells.
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respectively. The values of distO and distI in our example are shown in
Figure 4.9(d) and 4.9(e). We compare the ratio of both values with two
thresholds tI and tO with tI < tO. If a threshold is exceeded, the cell is
labeled accordingly. If the distance ratio is contained in the interval [tI , tO],
the cell label remains unchanged.

The result for tI = 1
4 and tO = 4 is depicted in Figure 4.9(f). Apart from

a few cells close to the hole, all cells are labeled as desired.

Algorithm 4.9 Labeling of cells based on distances to other cells

CompareDistances(G)
1: compute distI and distO for all Unknown and Unknown∗ cells of G
2:

3: for all Unknown and Unknown∗ cells c ∈ G do
4: if distI [c]/distO[c] > tO then
5: label c as Outside
6: else if distI [c]/distO[c] < tI then
7: label c as Inside (or Inside∗)
8: end if
9: end for

4.4.2 Translation

A translation of a grid is related to a change of the origin o; the parameters
for orientation R and spacing l remain the same. We denote the distance
between the old and the new origin, expressed in the local coordinate system
of the grid, by d := R

−1(o′ − o).
A translation by any element of l ·R ·Z3 does not change the subdivision

of the space into cells — it just changes the indices associated with each cell.
Therefore we can restrict ourselves to d ∈ [0, l)3.

Consider the algorithm presented in Algorithm 4.8. It holds |S| ≤ 8,
since each cell c′ of the transformed grid G′ is covered by the union of at
most eight cells of the original grid. More exactly, it holds |S| = 2i, where i
denotes the number of components of d that are not equal to zero.

The case i = 1 corresponds to translations along one axis of the grid.
Each cell of the transformed grid is covered by the union of two adjacent
cells of the original grid. Such translations will be extensively used in the
following section.

4.5 Optimization

The previous sections explained how to classify the cells of a grid, provided
the parameters that describe its geometry are given. We did not yet explain
how to choose these parameters.
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(a) 32 Inside cells, 4 rectangles (b) 35 Inside cells, 3 rectangles

Figure 4.10: Drawbacks of a simple optimization criterion (I). Both sets of
Inside cells have similar shape, but differ in cardinality. Although the set
in the right figure is larger, the size of an optimal packing is smaller.

Our ultimate goal is to compute a packing of as much boxes as possible.
Since the computation of packings is computationally very expensive, we
cannot run our algorithms on several grid instances. We have to compute a
single grid on which all following computations are based.

Clearly, the number of boxes that can be packed is bounded by the
available volume. In the discrete setting, the available volume corresponds
to the number of Inside cells. Therefore, a natural choice for a quality
criterion is the number of Inside cells.

However, a higher number of Inside cells does not necessarily imply a
packing of higher cardinality. Such a simple criterion does not take into
account the relative positions of the Inside cells (which relate to the struc-
ture of the corresponding conflict graph). We present two examples that
demonstrate the drawbacks of this criterion.

Figure 4.10 shows two grids that have a similar shape, but a different
number of Inside cells. The left grid consists of 32 Inside cells and can
be packed with four rectangles of size 4 × 2 cells. The right grid consists of
even 35 Inside cells, but cannot be packed with more than three rectangles.
Figure 4.11 shows two grids that have the same number of Inside cells, but
a different shape. The rectangular shape of the left grid allows a packing
with four rectangles, whereas a maximum packing for the irregular-shaped
grid on the right consists of three boxes.

We have seen that the number of Inside cells has its drawbacks as a
quality criterion. We use it nevertheless because it can be evaluated very
fast. An improved criterion is proposed as an item for further work at the
end of this thesis (see Section 7.2).

We briefly discuss the influence of spacing, orientation and position of
the grid on the number of Inside cells. The choice of the spacing and
the orientation is left to the user because it is quite easy to come up with
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(a) Rectangular shape, 4 rectangles (b) Irregular shape, 3 rectangles

Figure 4.11: Drawbacks of a simple optimization criterion (II). Both sets of
Inside cells have the same cardinality, but differ in shape. The irregular
shape in the right figure leads to a smaller packing.

a meaningful choice, and thus to strongly reduce the number of potential
grids. On the other hand, it is quite difficult for the user to select a good
origin for the grid. Therefore, we apply an optimization scheme to improve
the position of the grid.

We leave the choice of the spacing of the grid to the user. The spacing
has a strong influence on the number of Inside cells and on the overall
complexity of the discrete problem. The requirement that n · l = 50mm holds
for some integer n limits the number of choices for l to 50mm, 25mm and
12.5mm. A spacing of 50mm is quite coarse and often leads to unsatisfying
results. On the other hand, the problem complexity is quite small and results
can be obtained very fast. Most of the time, a spacing of 25mm provides a
good compromise between problem complexity and quality of the obtained
solution. We also use fine grids with a spacing of 12.5mm for smaller volumes.
Grids with a spacing of 6.25mm (or even less) lead to packing problems that
are too large for the presented algorithms.

Similarly, we leave the choice of the orientation to the user. Usually, the
shape of the trunk gives a strong suggestion for a promising orientation. In
most instances, there is a large, planar face, e.g., the floor of the trunk. In
order not to waste too much space, it is reasonable to align the grid with this
large face. The faces bounding the large face, e.g., the walls of the trunk,
indicate good choices for the last degree of rotational freedom.

The orientation of the grid defaults to the orientation of the global coor-
dinate system and can be overridden by the user in the following way. The
user may specify up to three planes (the planes orthogonal the axes of the
global coordinate system are the default). A plane can be specified either by
selecting three vertices or by picking a face. We apply an orthogonalization
scheme to the specified plane normals. The resulting vectors determine the
axes of the grid (column vectors of R). Two planes are sufficient to define
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the orientation. The third plane is used to specify the position of the grid:
The intersection point of all three planes is used as an initial value for the
origin.

We use a simple brute-force approach to find a good candidate for the
origin. Suppose the grid is aligned with a face with normal (0, 0, 1)T. We are
left with two degrees of translational freedom, e.g., the origin of the grid can
be translated in the plane spanned by (1, 0, 0)T and (0, 1, 0)T. We choose a
parameter k ∈ N and translate the initial origin by ( i

k
l, j

k
l, 0) for all integral

pairs (i, j) ∈ [0, k)2. We return the instance that has the highest number of
Inside cells. Our brute-force approach can be easily replaced by local search
methods (see Section 7.2).



Chapter 5

Algorithms

In this chapter we present different algorithms to solve the optimization
variant of the Discrete-Box-Packing problem (see Definition 2.3). The
input of the problem is given as follows: We are given a cubic grid G, a
parameter n ∈ N and a subset I ⊆ Z3 of the set of grid cells. The parameter n
is a small constant that relates the spacing l of the grid to the extensions of
the boxes. More precisely, the boxes consist of 4n× 2n× n grid cells, and it
holds n · l = 50mm. The set I defines the cells that are available for packing.
The union of the cells in I is an inner approximation of the trunk interior.

Given the set I and the parameter n, the geometric parameters of the
grid G are irrelevant for the Discrete-Box-Packing problem. The spac-
ing l of the grid is encoded by the parameter n; the origin o and the ori-
entation R do not matter. The latter two parameters are solely needed to
transform a solution back into three-dimensional space. For simplicity, we
can assume that the grid is axis-aligned; hence the boxes are the cartesian
product of right-open intervals.

The task, as formulated in the definition of the Discrete-Box-Packing
problem, is to compute a maximum packing of cell-aligned boxes with exten-
sions 4n, 2n and n, i.e., a maximum set of boxes such that only cells in I are
covered and each cell in I is covered by at most one box. Given the prob-
lem difficulty, we relax the problem as follows: We are not only interested
in maximum packings, but also in packings with a cardinality close to the
optimum. First we present a problem formulation based on integer linear
programming (ILP), which can be used to compute a maximum packing.
Further presented algorithms are heuristics.

The Discrete-Box-Packing problem can also be formulated in a dif-
ferent way. Given the input (G, n, I), it is straightforward to compute the
corresponding conflict graph G := G(G) as defined in Section 4.1.3. Then
the Discrete-Box-Packing problem (G, n, I) corresponds to a maximum
stable set problem for the conflict graph G.

71
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Both representations have their advantages and disadvantages. The grid
representation is compact and encodes the geometric structure of the prob-
lem. The representation as conflict graph explicitly represents all possible
boxes (nodes) and conflict pairs (edges). It also offers other useful informa-
tion, e.g., node degrees. On the other hand, the conflict graph requires more
space and hides the geometric structure of the grid. For example, given the
grid representation, the maximal cliques of the conflict graph can be easily
computed. Depending on the nature of the algorithms, we will use either
one or the other representation.

We remark that there are two upper bounds for our packing problem.
The trivial bound

⌊ |I|
8n3

⌋

relates the volume of a box to the total volume
of the cells in I. This bound does not take into account the shape of the
trunk. A second, better bound can be obtained from a linear programming
formulation of the problem (see Section 5.1.2 for details).

For practical reasons, all algorithms have to adhere to a given time bound.
After this time has elapsed, the algorithm has to return a non-trivial, prob-
ably suboptimal packing. This requirement rules out algorithms that have a
fixed runtime (depending on the instance, of course) and do not produce any
intermediate solution until the very end. For example, an algorithm that
works on subsets of boxes that do not denote a valid packing is impractical,
unless its runtime can be controlled.

We distinguish two classes of algorithms. One class called direct ap-
proaches contains all algorithms that can solve the given problem on its own.
The algorithms in the second class called divide-and-conquer approaches gen-
erate a set of smaller subproblems, which require an algorithm from the first
class as a subroutine. We want to remark that the divide-and-conquer ap-
proaches are not recursive as it is the case for typical divide-and-conquer
algorithms. The subdivision step occurs only once rather than several times.

5.1 Direct Approaches

In this section we discuss five direct approaches for the Discrete-Box-
Packing problem, i.e., algorithms that do not require another algorithm
to solve subproblems. We begin with a fast and simple greedy heuristic.
Afterwards, we turn to integer linear programming (ILP) techniques and
present an algorithm that is capable of computing an optimal solution. We
continue with a heuristic based on the linear programming (LP) relaxation.
It follows an algorithm called Reactive Local Search which is based on tabu
search. Finally, we present a simple, but promising heuristic called Simplefill.

For reasons of simplicity, code related to the compliance of the time
bound is omitted from the pseudocode descriptions. Suitable statements
can be easily added to the main loop of the algorithms.

5.1.1 Greedy

The most obvious idea for a heuristic for the maximum stable set problem
in a graph is to use a greedy approach. The Greedy algorithm selects a node
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with minimum degree from the conflict graph G and adds it to the stable
set determined so far, then removes this node and all its neighbors from
the graph and repeats. Priority queues can be used to efficiently select a
node with minimum degree. The pseudocode for an implementation using
such a priority queue is shown in Algorithm 5.1. The set Ni(v) denotes all
nodes u ∈ V for which the length of a shortest from u to v equals i (all edges
have unit length).

Algorithm 5.1 Greedy algorithm

Greedy (G(V, E))
1: S ← ∅
2: Q ← priority queue containing nodes V , sorted by non-decreasing degree
3: while Q 6= ∅ do
4: v ← GetMin(Q)
5: S ← S ∪ {v}
6: remove v and N1(v) from G and Q
7: update degrees of N2(v) in Q
8: end while
9: return S

The Greedy algorithm tends to place boxes first close to the boundary
of the trunk. It keeps adding boxes close to the boundary of the remain-
ing space, and hence fills the trunk from the boundary to the center. This
behavior is due to the fact that placements close to the boundary of the
available space are in conflict with fewer other placements. Correspondingly,
nodes representing the former placements have lower degree than nodes rep-
resenting the latter.

Usually there are several nodes with minimum degree; thus the imple-
mentation of the priority queue determines which node is actually chosen.
Instead of selecting a fixed node, we can choose a node with minimum degree
uniformly at random. This modification can be accomplished by replacing
the priority queue with an array holding the node degrees. The time to se-
lect a node increases, but is still dominated by the update costs and does
therefore not drastically influence the runtime. By repeating the randomized
version several times, we can improve the size of the computed stable set at
the cost of runtime. We compare the deterministic and randomized version
in Section 6.1.1.

5.1.2 Integer Linear Programming

Integer linear programming (ILP) techniques for packing problems have been
extensively studied (see for example [Bea85] and [HC95]). Theoretically, an
algorithm based on ILP techniques guarantees —in contrast to all other pre-
sented algorithms— an optimal solution of the maximum stable set problem.
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However, the required runtime increases exponentially with the problem size.
Our instances are often too large to obtain an optimal solution in reason-
able time. Nevertheless, an algorithm based on ILP is an important tool for
smaller subproblems.

In our ILP formulation of the stable set problem, we use a decision vari-
able xv for each node v ∈ V . The variable xv indicates whether v is contained
in the stable set (xv = 1) or not (xv = 0). Recalling the definition of stable
sets (see Definition 2.5), we directly obtain the so-called edge formulation

max
∑

u∈V

xv

xu + xv ≤ 1 for all {u, v} ∈ E

xv ∈ {0, 1} for all v ∈ V .

(5.1)

It is easy to see that the vectors x that satisfy the constraints of (5.1)
are exactly the characteristic vectors of stable sets of G.

Let P denote the polytope that is defined by the convex hull of all vec-
tors x that satisfy the constraints of (5.1). Let PE denote the polytope of the
LP relaxation of (5.1), i.e., the set of all vectors x that satisfy the constraints
xu + xv ≤ 1 for all {u, v} ∈ E and xv ≥ 0 for all v ∈ V . It holds P ⊆ PE ,
and hence max{∑v∈V xv | x ∈ P} ≤ max{∑v∈V xv | x ∈ PE}. The optimal
value of the LP relaxation is an upper bound for the optimal value of (5.1).

The goal is to use a strong problem formulation, i.e., a set of constraints
such that the polytope of the corresponding LP relaxation is as small as
possible. In particular, we are interested in constraints that define facets of
the polytope P . A trivial class of such facet-defining constraints is xv ≥ 0
for all v ∈ V . We present two other classes, maximal clique inequalities and
lifted odd hole inequalities.

Maximal Clique Inequalities

Definition 5.1 (Clique). A subset C of the nodes V of a graph G = (V, E)
is called clique if each pair of nodes from C is connected by an edge in E.

The following observation follows directly from the definitions of cliques
and stable sets (see Definition 2.5).

Proposition 5.2. Let S be a stable set and C a clique, then |S ∩ C| ≤ 1.

It follows that for each clique C the inequality
∑

v∈C xv ≤ 1 is a valid
inequality for P . Thus we obtain the so-called clique formulation

max
∑

u∈V

xv

∑

v∈C

xv ≤ 1 for all C ∈ C
xv ∈ {0, 1} for all v ∈ V ,

(5.2)

where C denotes the set of all cliques of G.



5.1. DIRECT APPROACHES 75

Let PC denote the polytope of the LP relaxation of (5.2). Note that the
clique inequalities imply the edge inequalities of (5.1). Hence P ⊆ PC ⊆ PE

holds. With the exception of some pathological cases PC ( PE holds, i.e.,
the clique formulation is stronger than the edge formulation. In particular,
the optimal value of the LP relaxation based on the clique formulation is not
larger than the corresponding value based on the edge formulation. Hence
the former value is a better (or equal) upper bound for the packing problem.

It is not necessary to consider all cliques C ∈ C. We can restrict ourselves
to the subset Cmax ⊆ C of maximal cliques, i.e., cliques that are maximal
with respect to set inclusion. Let C ∈ Cmax be a maximal clique and M ⊆ C.
Then the inequality

∑

v∈C xv ≤ 1 implies the inequality
∑

v∈M xv ≤ 1. Thus
we can replace C by Cmax in (5.2) and obtain the so-called complete clique
formulation (see [SVA00]):

max
∑

u∈V

xv

∑

v∈C

xv ≤ 1 for all C ∈ Cmax

xv ∈ {0, 1} for all v ∈ V ,

(5.3)

This modification significantly reduces the number of inequalities. The poly-
tope defined by the LP relaxation of (5.3) is equal to PC .

The importance of maximal cliques is established in the following result
by Padberg (see [Pad73]):

Proposition 5.3. If C ∈ Cmax is a maximal clique of G, then the corre-
sponding clique inequality

∑

v∈C xv ≤ 1 defines a facet of P .

Erdös [Erd62], and later Moon and Moser [MM65] proved that the
number of maximal cliques in a general graph is exponential in the number of
nodes. But in our case, the class of conflict graphs G has a special structure,
such that the number of maximal cliques is polynomial in |V |. Moreover,
the set of all maximal cliques of G can be computed in polynomial time.

In order to proof this result, we start with an observation that establishes
a relation between cliques and sets of boxes:

Proposition 5.4. A clique of G corresponds to a set of boxes with non-empty
intersection.

We need the following argument to proof the statement. A generalization
thereof for closed convex sets in any dimension was proved by Helly in
[Hel23].

Proposition 5.5. Let I = {I1, . . . , Im} be a set of right-open intervals such
that Ii ∩ Ij 6= ∅ for all 1 ≤ i < j ≤ m. Then

⋂m
i=1 Ii 6= ∅.
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Proof. Define Ii := min Ii and Ii := sup Ii. Since Ii ∩ Ij 6= ∅, it holds Ii < Ij

for all 1 ≤ i, j ≤ m. It follows that I := max1≤i≤m Ii < min1≤i≤m Ii =: I
and

⋂m
i=1 Ii =

[

I, I
)

6= ∅.

We are now able to present the proof of Proposition 5.4.

Proof of Proposition 5.4. We are given a clique C = {vi ∈ V |1 ≤ i ≤ m}
in G. Let Bi denote the box corresponding to node vi. Let Ik

i denote the
projection of box Bi onto the k-th axis of the coordinate system. Any pair
{Ik

i , Ik
j } of such intervals has non-empty intersection since the corresponding

nodes vi and vj are contained in the clique C and hence are adjacent. By
Proposition 5.5, we have Ik :=

⋂m
i=1 Ik

i 6= ∅. Note that each box Bi is the
cartesian product of its projection intervals I1

i ×I2
i ×I3

i . Hence the cartesian
product I1 × I2 × I3 6= ∅ is contained in any box Bi. It follows that the
intersection of all boxes is not empty.

Now suppose we are given a set B = (B1, . . . , Bm) of boxes with non-
empty intersection. Thus any pair of boxes has non-empty intersection and
the corresponding nodes are adjacent. Hence the set of nodes that corre-
sponds to the set of boxes B is a clique of G.

The next result follows directly from Proposition 5.4:

Corollary 5.6. A maximal clique of G corresponds to a maximal set of boxes
with non-empty intersection.

Recall that the boxes consist of a set of 4n × 2n × n cells. Hence “non-
empty intersection” is equivalent to “the intersection covers at least one cell”.

Consider a cell c ∈ G. The maximal set of boxes that cover the cell c
is called the (set of) boxes generated by the cell c. Similarly, the clique that
corresponds to this set of boxes is called the clique generated by the cell c.

Note that there are cells such that the generated clique is not maximal.
This is due to the fact that there are cells c ∈ I such that the set of boxes that
cover the cell c is restricted by the geometry of the trunk. As a consequence,
there might be cells in close proximity to c such that the generated set of
boxes is strictly larger than the set of boxes generated by c.

Note also that there are maximal cliques such that the intersection of
the corresponding boxes covers more than one cell. In other words, distinct
grid cells do not necessarily generate distinct cliques. For example, con-
sider a tunnel of cells with a cross section of size 2n × n cells and sufficient
length. The shape of the tunnel enforces the same orientation for all boxes.
There are maximal cliques of 4n − 1 nodes such that the intersection of the
corresponding boxes covers 2n × n cells. All these cells generate the same
clique.

We take both observations into account when generating the set of max-
imal cliques.
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Proposition 5.7. The number |Cmax| of maximal cliques is bounded by |I |.
The size of any maximal clique is bounded by 48n3. The set Cmax of maximal
cliques can be enumerated in polynomial time.

Proof. Corollary 5.6 and the subsequent observation yield that the num-
ber |Cmax| of maximal cliques is bounded by the number of the cells |I |.

Boxes consist of 4n× 2n× n cells and there are six orientations per box.
Hence the set of boxes generated by a cell contains at most 48n3 items. This
number bounds the size of any clique of G.

We compute the set Cmax of maximal cliques as follows: Fix a cell c ∈ I
and compute the set of boxes and the clique that is generated by this cell.
We assume that we can check in constant time whether a particular box
covers only cells marked as Inside (this information was already computed
during construction of the conflict graph). Hence the clique generated by
the cell c can be computed in O(n3) time. We check whether the clique is
maximal which can be done in O(|V |n3) time. We also check whether the
clique has already been generated by a previously considered cell. This check
requires O(|I|n3) time provided that the node sets of all cliques computed
so far are sorted by a common criterion (which can be easily achieved by
construction). If both checks succeed, add the clique to the set of maximal
cliques. Repeat for all cells c ∈ I. The total running time of this algorithm
is O(|I|n3(|I| + |V |)).

We remark that the algorithm described in the above proof is not very
efficient. Actually, it is not necessary to implement a filter that removes
generated cliques that are not maximal. State-of-the-art ILP solver contain
a so-called presolve phase that efficiently eliminates such redundant con-
straints.

Lifted Odd Hole Inequalities

Chvátal proved in [Chv75] that the polytope P consists of facets that
cannot be described by non-negativity or maximal clique constraints, unless
the underlying graph is perfect. Padberg described in [Pad73] a third class
of facet-defining inequalities, the so-called lifted odd hole inequalities.

Definition 5.8 (Odd Hole). A subset H of the nodes V of a graph G =
(V, E) is called odd hole (or chordless cycle of odd length) if H is a cycle
of odd length such that there is no pair of non-consecutive adjacent nodes.

The following observation follows directly from the definition of odd holes
and stable sets (see Definition 2.5).

Proposition 5.9. Let S be a stable set and H an odd hole, then |S ∩ H| ≤
b|H|/2c.
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It follows that for each odd hole H the constraint

∑

v∈H

xv ≤ |H| − 1

2
(5.4)

is a valid inequality for the polytope P . In contrast to the maximal clique
inequalities, the odd hole inequalities do not define facets of P . However,
there exists a sequential lifting process that strengthens an odd hole inequal-
ity. The result is called lifted odd hole inequality and it defines a facet of P .

This lifting process works as follows: Suppose we have a valid inequality

∑

v∈U

αvxv ≤ β , (5.5)

where U is a subset of the nodes V . The goal is to strengthen this inequality
by adding the decision variable xu of a new node u ∈ N1(U)\U with non-zero
coefficient αu to the left side. Since we want to strengthen the inequality as
much as possible, we are looking for the maximal αu such that the inequality

αuxu +
∑

v∈U

αvxv ≤ β (5.6)

is valid for P . If the decision variable xu is zero, then there is no restriction on
αu. If xu = 1, then the maximal αu is equal to β−γ, where γ is the maximum
weight

∑

v∈U\N1(u) αvxv of a stable set of the subgraph induced by U without
the nodes adjacent to u. We set αu to β−γ and add the term αuxu to the left
side of (5.5). The process is repeated with the remaining nodes in N1(U)\U .

Padberg has shown in [Pad73] that the lifted odd hole inequalities
obtained by the previously described procedure define facets of P . Note
that this property holds independently of the order in which the nodes of
N1(U) \ U are considered.

In contrast to the maximal clique inequalities, we do not add odd holes
inequalities a priori to the set of constraints. Instead, we dynamically com-
pute violated odd hole inequalities during the branch-and-cut phase and add
the corresponding constraint to the system of inequalities. Next we describe
how to identify violated odd holes.

Let x ∈ [0, 1]V denote a fractional solution of the LP relaxation of (5.3).
We describe how to identify odd holes H such that inequality (5.4) is violated.
We are also interested in nearly violated inequalities, i.e., odd holes H such
that

∑

v∈H

xv >
|H| − 1

2
− ε (5.7)

holds for some fixed ε > 0. The motivation for this relaxation is that the
following sequential lifting process strengthens the inequality and might pro-
duce a violated inequality. Define for each edge e = {u, v} ∈ E the edge
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weight we := 1−xu−xv ≥ 0. Let H be an odd hole and EH the edges of H.
Then

∑

e∈EH

we = |H| − 2
∑

v∈H

xv (5.8)

holds and inequality (5.7) is equivalent to

∑

e∈EH

we < 1 + 2ε. (5.9)

Gerards and Schrijver described in [GS86] a construction that re-
duces the problem of finding odd holes H satisfying (5.9) to a shortest path
problem in an auxiliary graph G′. The graph G′ = (V ′, E′) is constructed
as follows: For each node v ∈ V we add two nodes v+ and v− to V ′. Two
nodes u+ ∈ V ′ and v− ∈ V ′ are adjacent in G′ iff the nodes u ∈ V and v ∈ V
are adjacent in G. The edge weights in G′ are defined according to the edge
weights in G. Observe that a path from u+ to u− in G′ corresponds to an
odd cycle in G that contains the node u.

Since all edge weights are non-negative we can use Dijkstra’s algorithm
to compute shortest paths. Find a node u ∈ V such that there is a shortest
path from u+ to u− in G′ with total length at most 1+2ε. The corresponding
walk in G may contain some node multiple times and may have chords, i.e.,
a pair of non-consecutive adjacent nodes. Strijk et al. proved in [SVA00]
that this walk contains a subsequence of nodes that forms an odd hole H
satisfying (5.7). Note that an odd hole consisting of three nodes forms a
clique and an inequality corresponding to a maximal clique that contains
this clique is already part of the problem formulation. Hence the odd hole
that was computed by the previously described procedure consists of at least
five nodes.

Once we have identified a violated odd hole, we strengthen the corre-
sponding inequality using the previously described lifting procedure. We
have not yet discussed the lifting sequence, i.e., the order in which the nodes
of N1(H) \ H are considered. Nemhauser and Sigismondi [NS92] present
an algorithm that computes all facet-defining inequalities that can be ob-
tained by lifting a given odd hole inequality. We propose a simpler approach
using several heuristics.

Note that the coefficient αu, u ∈ H, is larger if the variable is considered
earlier in the lifting sequence. Thus the lifted inequality is in some sense
stronger with respect to the earlier lifted variables and weaker with respect
to the later lifted ones. The proposed heuristics are:

• Consider the variables xu, u ∈ H ordered by non-decreasing fractional
value, i.e., the value

∣

∣

1
2 − xu

∣

∣.
• Lift each variable xu, u ∈ H independently and let α′

u denote the ob-
tained lifting coefficient. Consider the variables xu, u ∈ H ordered by
non-increasing value α′

u.
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• Let Hu denote the subgraph of G induced by H \ N1(u). Note that
smaller subgraphs Hu tend to produce smaller values γu and larger
values αu. Hence consider the variables xu, u ∈ H ordered by non-
decreasing size of the subgraph Hu.

• Consider the variables in a fixed order and its reverse order.
All unique inequalities obtained by these heuristics are added to the

problem formulation of the considered subtree in the branch-and-cut tree.

5.1.3 LP Rounding

The computation of an optimal solution of the ILP formulation presented
in the previous chapter is pretty difficult. This is not surprising, since the
Discrete-Box-Packing problem is NP -complete. On the other hand, it
is much simpler to compute an optimal solution of its LP relaxation. For
our instances, the LP relaxation can still be solved in reasonable time.

A well-known family of heuristics to exploit the information contained
in the LP relaxation is called LP rounding. These approaches round the
fractional values of the LP relaxation to integral values. Special care is
needed to avoid violated constraints. Such heuristics are part of many ILP
solvers and can be used to obtain a lower bound for the cardinality of the
maximum stable set. Unfortunately, the quality of the solutions obtained by
these heuristics is quite bad.

Therefore we designed our own heuristic based on the values of the LP
solution. In contrast to general LP rounding heuristics, our heuristic is
specifically tailored to the maximum stable set problem. The main motiva-
tion of our algorithm is the assumption that high fractional values are good
indicators for variables that should be fixed to 1.

The LP Rounding algorithm is described in Algorithm 5.2. It takes the
graph G and an additional parameter 0 ≤ p ≤ 1 as input. The parameter p
controls the fraction of variables that are fixed in each iteration.

The algorithm starts with the LP relaxation of the complete clique for-
mulation for G (see (5.3)). Let x denote the optimal solution of this linear
program. The variable m denotes the number of variables in the linear pro-
gram that have already been fixed (initially 0).

In each iteration, the algorithm considers the highest fractional variables
of the linear program in non-increasing order. The number k of variables that
are considered is proportional to the remaining problem complexity (line 6).
If such an LP variable xij can be set to 1 without violating any constraints,
an inequality that fixes xij to 1 is added to the problem formulation. Note
that the set of k largest fractional variables might contain variables corre-
sponding to adjacent nodes. Thus the test in line 8 is indeed necessary. After
all k variables have been considered, the modified LP problem is resolved to
optimality. This process is repeated as long as there are fractional variables
in the LP solution.
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Algorithm 5.2 LP Rounding (LPR) algorithm

LPR (G(V, E), p)
1: let LP denote the LP relaxation of the complete clique formulation

for G
2: x ← optimal solution of LP
3: m ← 0
4: while a fractional variable xi exists do
5: let the sequence (xi1 , xi2 , . . .) denote the fractional variables of x,

sorted in non-increasing order

6: k ← max
{

1,
⌊

p ·
(

∑|V |
i=1 xi − m

)⌋}

7: for j := 1 to k do
8: if xij = 1 does not violate any constraints then
9: add constraint xij ≥ 1 to LP

10: m ← m + 1
11: end if
12: end for
13: x ← optimal solution of LP
14: end while
15: return {v ∈ V |xv = 1}

The parameter p controls the fraction of variables that are fixed in each
iteration (line 6). Note that

∑|V |
i=1 xi is the objective function of the linear

program and m denotes the number of fixed variables. Thus the difference
∑|V |

i=1 xi − m is an upper bound on the number of variables that still can
be fixed to 1. In the case of the extremal value p = 1, a single iteration is
performed and exactly one linear program is solved. The variables are set
to 1 based on the order imposed by the values of the initial LP solution,
additionally taking into account the constraints. This leads to a low runtime
and also low solution quality. In the other extremal case p = 0, exactly
one single fractional variable is fixed in each iteration (note the maximum
operation in line 6). The number of LP problems equals the size of the
computed stable set. This choice leads to a good solution, but also results
in a high runtime. The choice of the parameter p ∈ (0, 1) allows to weight
the controversial goals of low runtime and high quality of the solution. We
present experimental results on the choice of p in Section 6.1.3.

The following modification of Algorithm 5.2 helps to improve the quality
of the solution. We leave the loop in line 4 as soon as the number of fractional
variables in the LP solution drops below a fixed threshold. Afterwards, we
use the ILP algorithm to compute an optimal solution of the remaining
subproblem. Higher thresholds lead to better overall solutions, but impose
a higher runtime at the same time.
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5.1.4 Reactive Local Search

The Reactive Local Search (RLS) algorithm is based on an algorithm with
the same name presented by Battiti and Protasi in [BP01]. While the
original algorithm is stated in terms of the maximum clique problem, we
present it here directly applied to the maximum stable set problem. We give
a high-level description of the algorithm and refer the interested reader to
the given reference for the details, including a discussion of data structures
for an efficient implementation.

Software systems for optimization problems often contain frameworks for
local search algorithms, see for example the tabu search framework OpenTS
in the software package COIN-OR [COI].

The RLS algorithm is based on a local search strategy complemented by a
history-sensitive feedback scheme to control the amount of diversification. In
each iteration a local search algorithm replaces the current configuration by a
neighboring, better configuration. In our setting, a configuration corresponds
to a stable set, and a configuration is called better than another one if the
corresponding stable set has a higher cardinality. Two configurations are
neighbors if they can be transformed into each other by adding or dropping
a single node.

In order to escape from local optima, the algorithm also accepts configu-
rations that decrease the objective value. To avoid cycles, the inverse move
is prohibited for a certain number of iterations. This time span called pro-
hibition period T is adapted during the run of the algorithm. The algorithm
keeps track of the last time step in which a given configuration was reached.
The parameter T is increased if frequent configuration cycles occur. It is
decreased if the cycles occur seldom.

Moreover, the algorithm is restarted from a random node if the objective
value of the best configuration found so far has not improved after a certain
number of iterations.

The main function of the RLS algorithm is described in Algorithm 5.3.
It starts with an initialization of the needed variables, i.e., the iteration
counter t, the time of the last restart tR, the currently considered stable
set S, the best stable set S∗ found so far, the time step T ∗ at which S∗ was
found, the prohibition period T , and the last time step tT at which T was
changed.

In the main loop, the function MemoryReaction(S, T ) adapts the pro-
hibition period T based on the current stable set S and the history. Then the
algorithm performs a local search step by replacing S by its best neighbor.
If a new best solution is found, it is stored in S∗ and the corresponding time
step t∗ is updated. The local search is restarted if a sufficiently large number
of iterations have passed since the last restart or improvement.

The main loop can be left at any time, e.g., if the best found stable set
S∗ is acceptable or a given runtime has been exceeded.
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Algorithm 5.3 Reactive Local Search (RLS) algorithm

RLS (G(V, E))
1: t ← 0 . iteration counter
2: tR ← 0 . time of last restart
3: S ← ∅ . current stable set
4: S∗ ← ∅; t∗ ← t . best stable set so far
5: T ← 1; tT ← t . prohibition period
6: // initialize additional data structures
7:

8: repeat
9: T ← MemoryReaction(S, T )

10: S ← BestNeighbor(S)
11: t ← t + 1
12: if |S| > |S∗| then
13: S∗ ← S; t∗ ← t
14: end if
15: if t − max{t∗, tR} > ∆1 then
16: tR ← t; Restart()
17: end if
18: until |S∗| is acceptable or runtime exceeded
19: return S∗

Before we turn to the implementation of BestNeighbor(S), we need to
introduce some notation. Given a stable set S ⊆ V , we define

C := {v ∈ V \ S | ∀u ∈ S : (u, v) 6∈ E}, (5.10)

i.e., the set C is the set of nodes (candidates) from V \ S that can be added
to S such that S still is a stable set. Furthermore, for each node v ∈ C we
define

∆C[v] := |{u ∈ V \ C | (u, v) ∈ E, ∀w ∈ S \ {v} : (u, w) 6∈ E}| , (5.11)

i.e., the quantity ∆C[v] denotes the number of nodes that can be added to C
if the node v is dropped from S. In other terms, it holds

S(t+1) = S(t) \ {v} ⇒ ∆C(t)[v] = |C(t+1)| − |C(t)|, (5.12)

where the superscript indices denote the corresponding iteration.
Note the parallelism between lines 1–5 (adding a node to S) and lines 7–

11 (dropping a node from S) in the implementation of BestNeighbor(S)
(see Algorithm 5.4). First we compute the subset A of candidates that have
not been moved (i.e., added or dropped) in the last T iterations. If A 6= ∅,
we select a node v that will be later added to S. The node v is chosen
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Algorithm 5.4 Function BestNeighbor of the RLS algorithm

BestNeighbor (S)
1: A ← {v ∈ C | t > last_moved[v] + T}
2: if A 6= ∅ then . if possible add node
3: type ← AddVertex
4: m ← min{degC [v] | v ∈ A}
5: v ← random element of {v ∈ A | degC [v] = m}
6: else . else drop node
7: type ← DropVertex
8: D ← {v ∈ S | t > last_moved[v] + T}
9: if D 6= ∅ then

10: M ← max{∆C[v] | v ∈ D}
11: v ← random element of {v ∈ D | ∆C[v] = M}
12: else
13: v ← random element of S . S 6= ∅
14: end if
15: end if
16: S ← IncrementalUpdate(v, type)
17: return S

uniformly at random among those nodes of A that have minimum degree in
the subgraph induced by C. If A = ∅, we compute the subset D of nodes
from S that have not been moved in the last T iterations. If D 6= ∅, we select
a node v that will later be removed from S. The node v is chosen uniformly
at random among those nodes of D for which ∆C[v] is maximal. If D = ∅,
the node v is chosen uniformly at random from S.

Finally, the function IncrementalUpdate(v, type) is called. This func-
tion updates the sets S and C, as well as the quantities last_moved[v],
degC [v], and ∆C[v] (note that the latter two quantities need also to be up-
dated for nodes different from the selected node v).

We remark that S 6= ∅ in line 13 holds. The assumption S = ∅ implies
C = V . The implementation of the function MemoryReaction(S, T ) en-
forces T ≤ 2(|V |−1), hence A 6= ∅. Thus a node for addition is selected and
line 13 not reached.

The function MemoryReaction(S, T ) controls the prohibition period T
based on the frequency of configuration cycles during the iteration. For each
stable set we store the iteration counter of its last occurrence in a hash table.
Actually, for efficiency reasons, we do not use the stable sets S as keys in the
hash table but the values h := Hash(S) of a suitable hash function Hash().
Experiments have shown that collisions due to this simplification are very
rare and do not cause significant changes of the parameter T .

The implementation of the function MemoryReaction(S, T ) is shown
in Algorithm 5.5. The hash key h for the current stable set S is looked up
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Algorithm 5.5 Function MemoryReaction of the RLS algorithm

MemoryReaction (S, T )
1: h ← Hash(S)
2: if hash table HT contains h then
3: ∆t ← t − HT [h]
4: if ∆t < 2(|V | − 1) then . frequent repetitions
5: Increase(T ); tT ← t . increase T
6: end if
7: end if
8: HT [h] ← t . update hash table
9: if t − tT > ∆2 then . few repetitions

10: Decrease(T ); tT ← t . decrease T
11: end if
12: return T

in the hash table. If it is found and the repetition interval ∆t is sufficiently
short, the prohibition period T is increased (lines 2–6). In all cases, the
current iteration counter t is stored with key h in the hash table (line 8). If
no cycle occurred in the last ∆2 iterations, the prohibition period is decreased
(lines 9–11). The functions Increase(T ) and Decrease(T ) are realized as

Increase(T ) = min{max{b1.1 ·T c, T + 1}, |V | − 2} and

Decrease(T ) = min{max{b0.9 ·T c, T − 1}, 1}.

These functions enlarge respectively reduce T by 10 percent (with a minimum
change of one unit), provided the lower and upper bounds of 1 and |V | − 2
are not exceeded.

The values of the parameters ∆1 and ∆2 depend on the given instance.
Battiti and Protasi propose to choose ∆1 = 100 |S∗| and ∆2 = 10 |S∗|.
Experiments show that the results of the algorithm are not affected by small
changes in the involved constants.

We remark that the RLS algorithm has a worst-case complexity of O(|V |+
|E|) per iteration (provided the graph G is stored as adjacency matrix).
Actually, this bound is very pessimistic and the average-case complexity
is much better. The algorithm requires O(|V |2 + tmax) space. All data
structures excluding the hash table need at most O(|V |2) space. The size of
the hash table is linear in the number of iterations. The space requirement
of the hash table can be reduced by periodically removing all entries that
are no longer needed, i.e., entries older than 2(|V | − 1) iterations.

Given the special structure of the graph in our case, the space complexity
can be further reduced to O(|E| + tmax) by representing the graph G by
adjacency lists. If the geometric parameters of a box are attached to the
corresponding node, an adjacency query for two nodes can still be answered
in constant time.
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Finally, we want to present a variant of the RLS algorithm. In the
BestNeighbor(S) function the node degrees degC [v] in the subgraph in-
duced by C are used to break ties among the nodes in A. The question
arises whether these subgraph degrees degC [v] can be replaced by the de-
grees degG(v) in the original graph G. This simplification alleviates the
necessity to maintain a data structure for degC [v] (or to recompute the in-
formation when needed). Thereby, the worst-case complexity of an iteration
reduces to O(|V |). The experiments in [BP01] suggest that the benefit of this
variant depends on the problem instance. We investigate the performance
of this variant in our context in Section 6.1.4.

5.1.5 Simplefill

All previously presented algorithms use the graph based representation of
the packing problem and solve a stable set problem on the conflict graph.
These algorithms are based on well-known techniques, e.g., linear program-
ming or local search. The computed solutions are irregular, i.e., boxes of all
orientations are mixed. These solutions have no recognizable structure and
are quite different from solutions produced by humans.

The Simplefill algorithm is based on the grid representation of the packing
problem and tries to mimic human packing strategies. Often humans fix a
particular box orientation and pack the trunk in layers, starting from the
trunk floor. Within a layer, they start at the boundary and add boxes one
after another while trying to locally minimize wasted space. Boxes in a
different orientation are used for regions that cannot be packed reasonably
with the previously fixed orientation.

The pseudocode for the Simplefill algorithm is depicted in Algorithm 5.6.
Actually, the presented pseudocode is a simplification of the Simplefill algo-
rithm. First we discuss the simplified version. Afterwards we explain the
full construction of the Simplefill algorithm.

The outermost loop considers all six box orientations in turn. Let (w, h, d)
denote the box extensions that correspond to the orientation of the current
iteration. Let further xmin, xmax, and so on denote the coordinate ranges of
the cells in the set I. We use three nested loops to consider each cell in I as
a box anchor. If the box with anchor (x, y, z) and orientation (w, h, d) can
be packed, it is added to the set S. To evaluate the predicate "box can be
packed", it is necessary to check whether all cells covered by this box are in I
and whether is does not intersect any boxes in S. If the box (x, y, z, w, h, d)
is packed, the next d − 1 iterations of the innermost loop variable z can be
skipped, since the corresponding boxes would intersect the just packed box.
At the end, the set S of all packed boxes is returned.

Experiments show that in our instances a very high fraction of about 90%
of the boxes of a solution are packed in the first iteration of the outermost
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Algorithm 5.6 Simplefill algorithm (simplified)

Simplefill (G, n, I)
1: S ← ∅
2: for all six orientations o do
3: let (w, h, d) denote the box extensions corresponding to o
4: for x := xmin to xmax do
5: for y := ymin to ymax do
6: for z := zmin to zmax do
7: if box (x, y, z, w, h, d) can be packed then
8: add box (x, y, z, w, h, d) to S
9: z ← z + (d − 1) . speed-up

10: end if
11: end for
12: end for
13: end for
14: end for
15: return S

loop. In other words, the orientation considered first dominates the solution.
Subsequent iterations contribute, if at all, only very few boxes. A packing
computed by the Simplefill algorithm is shown in Figure 5.1.

Now we want to discuss the construction of the Simplefill algorithm,
based on the simplified version shown in Algorithm 5.6. This pseudocode
does not specify the order in which the box orientations are considered. As
stated above, the orientation of the first iteration has a strong influence on
the structure of the solution. Furthermore, the order of the three inner loops
has been chosen arbitrarily. In the end, the direction of the loop variables
x, y and z can be —independently of each other— reversed. Thus there
are 6! · 3! · 23 = 34560 equal variations of the shown algorithm. Experiments
show that there is a large deviation in the solution cardinality among all
these variations. Since the depicted algorithm has a very low runtime, the
Simplefill algorithm actually repeats the given pseudocode 34560 times, tak-
ing into account all permutations of the orientation order, all permutations
of inner loop variables and all combinations of inner loop directions. The
optimization in line 9 needs to be adjusted accordingly. Thereby, the cardi-
nality of the solution is significantly increased, while the overall runtime is
still low compared to other algorithms presented.

5.2 Divide-and-Conquer Approaches

We investigate some divide-and-conquer approaches as a response to draw-
backs of the direct approaches. Due to their runtime and space requirements,
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(a) after the first orientation (b) after the sixth orientation

Figure 5.1: Packing computed by the Simplefill algorithm. The majority of
the boxes has the orientation that is considered in the first iteration.

the ILP, LPR and RLS algorithms are impracticable for larger instances. On
the other hand, the ILP algorithm is well suited for smaller instances, which
can be optimally solved.

With exception of the Simplefill algorithm, all direct approaches produce
solutions that do not exhibit any structure. Boxes in all six orientations are
mixed, apparently without any plan. Moreover, the set of uncovered cells is
scattered over the whole trunk. If uncovered cells are near to the boundary,
a slight modification of the trunk geometry and a local rearrangement of
boxes might make use of these regions. In contrast, the space of uncovered
cells in the center of the packing is definitively lost.

These observations are the motivation for two divide-and-conquer ap-
proaches called Matching and Easyfill. Both algorithms use a simple geom-
etry-guided heuristic to produce a tight partial packing with a clear structure.
A direct approach is used to solve the remaining, smaller subproblems.

A third heuristic called Partition splits the set of available grid cells into
disjoint subsets. We take care of the waste that arises from breaking the
original problem into subproblems. Although the technique is general and
can be used together with other direct approaches, we designed it particularly
with the ILP algorithm in mind.

Due to the nature of the divide-and-conquer approaches, it is —in con-
trast to the direct approaches— not obvious how to enforce a bounded run-
time. Therefore, we explicitly discuss this issue for each heuristic. However,
for clarity, the respective statements are omitted from the pseudocode de-
scriptions.
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Figure 5.2: Construction of boxes used by the Matching algorithm. Two
boxes consisting of 4n × 2n × n cells are glued together to a single box of
4n× 2n× 2n cells. This new object can be interpreted as a box of 2× 1× 1
cells on a grid with l = 100mm spacing.

5.2.1 Matching

This algorithm computes maximum matchings to solve subproblems, hence
the name Matching algorithm. The main idea originates from the 2 × 1-
Rectangle-Packing problem, which can be solved in polynomial time
using matching techniques (see Section 2.2). It is straightforward to extend
this approach to three-dimensional space and to apply it to the Discrete-
Box-Packing problem for boxes of size 2 × 1 × 1.

The original packing problem for boxes of size 4n× 2n×n can be trans-
formed into a packing problem for boxes of size 2× 1× 1 as follows (see also
Figure 5.2). A pair of boxes consisting of 4n× 2n× n cells is glued together
such that it forms a box consisting of 4n×2n×2n cells. This larger box can
be interpreted as a box consisting of 2× 1× 1 cells on a grid G′ with spacing
l′ = 100mm.

Note that each cell of the new grid G′ consists of 8n3 cells of G. Conse-
quently, there are 8n3 different ways to align the grid G′ with the cells of G.
This freedom results in not only one, but in 8n3 matching problems.

The pseudocode of the Matching algorithm is described in Algorithm 5.7.
It consists of two phases. The first phase (lines 1–13) computes partial pack-
ings of boxes based on the previously outlined idea of maximum matchings.
In the second phase (line 14), the resulting subproblems are solved using a
direct algorithm, the results are combined and the best packing is returned.
A packing computed by the Matching algorithm is shown in Figure 5.3.

The first phase starts with the initialization of the list L. This list is
used to store the partial packings computed in the first phase.

Three nested loops are used to iterate over all different ways to align
the coarse grid G′ with the original grid G (line 5). In each iteration we
compute the set I ′, which denotes the inner approximation of the trunk with
respect to the coarse grid G′ (line 6). The set I ′ contains all cells of G′

that are completely covered by the cells in I. Next we compute the graph
G′ = (V ′, E′) as follows (line 7). For each cell c′ ∈ I ′ there is a node vc′ ∈ V ′.
Two nodes are adjacent iff the corresponding cells are adjacent. Thus an edge
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Algorithm 5.7 Matching algorithm

Matching (G, n, I)
1: L ← empty list . phase 1
2: for x := 0 to 2n − 1 do
3: for y := 0 to 2n − 1 do
4: for z := 0 to 2n − 1 do
5: G′ ← grid with spacing 100mm aligned with cell (x, y, z) of G
6: I ′ ← {c′ ∈ G′ | cell c′ is covered by cells in I}
7: G′ ← graph induced by I ′

8: M ′ ← maximum matching of G′

9: S′ ← {(b1, b2) | boxes b1 and b2 correspond to an edge in M ′}
10: L.append (S′)
11: end for
12: end for
13: end for
14: S ← SolveAndCombine(G, n, I, L) . phase 2
15: return S

(a) after the first phase (b) after the second phase

Figure 5.3: Packing computed by the Matching algorithm. Note that the
boxes packed in the first phase always come in pairs. The Greedy algorithm
was used for the second phase.
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of G′ corresponds to a box of size 2 × 1 × 1. Observe that the graph G′ is
different from the conflict graph (see Section 4.1.3) used in other algorithms.
Actually, in the special case of boxes of size 2 × 1 × 1, the conflict graph is
the line graph of G′.

Afterwards, we compute a maximum matching of G′ and transform it
back to the original problem (lines 8–9). Each edge in the matching corre-
sponds to a single box of size 2×1×1 on the coarse grid G′, and hence to a pair
of boxes on the original grid G. Note that there is an ambiguity with respect
to the latter. There are always two such pairs of boxes that correspond to an
edge in G′. For example, the pairs ((x, y, z, 4n, 2n, n), (x, y, z +n, 4n, 2n, n))
and ((x, y, z, 4n, n, 2n), (x, y + n, z, 4n, n, 2n)) correspond to the same edge
in G′. This ambiguity can be resolved by restricting the set of feasible box
orientations, e.g., to the subset of cyclic shifts of (4n, 2n, n). Finally, the
partial packing S′ is stored in L (line 10).

The second phase of the algorithm is implemented in the function Solve-
AndCombine(G, n, I, L) (see Algorithm 5.8). This function realizes a ge-
neric framework for handling a set of partial packings. It iterates over a
list L of stable sets S′ which represent a partial packing of (G, n, I). For
each stable set S′, we first compute the set I ′′ of still uncovered cells of I
(line 3). Then the framework calls the function DirectApproach to solve
the remaining subproblem (G, n, I ′′) (line 4). The name DirectApproach
is used as a placeholder for one of the algorithms described in Section 5.1.
Finally, the solution S′′ of the subproblem is combined with the previously
computed partial packing S′ (line 5). The union of S′ and S′′ represents a
solution of the original packing problem. The framework returns a solution
with highest cardinality.

Algorithm 5.8 Generic framework for a set of partial packings

SolveAndCombine (G, n, I, L)
1: S∗ ← ∅
2: for all partial packings S′ in L do
3: I ′′ ← I \ {cells covered by boxes in S′} . compute subproblem
4: S′′ ← DirectApproach(G, n, I ′′) . solve subproblem
5: S ← S′ ∪ S′′ . combine partial packings
6: if |S| > |S∗| then
7: S∗ ← S
8: end if
9: end for

10: return S∗

We remark that the graph G′ is a bipartite graph. Therefore, one can
use an algorithm specialized for bipartite matchings to solve the matching
problem more efficiently.
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A Modification

We want to describe a modification which significantly increases the cardi-
nality of the computed packings. The final packings S that are computed
in the function SolveAndCombine(G, n, I, L) often are inferior. Even if a
subproblem of the second phase is optimally solved, the combined packing S
can be easily improved. Often it is possible to locally rearrange a few boxes
(including some of S′) and to add an additional box. The reason for this
phenomenon lies in the small size, but rather difficult shape of the subprob-
lems of the second phase. There is simply not enough flexibility to compute
a good packing.

To overcome this problem we propose the following modification: At the
beginning of the first phase, we remove some of the outmost layers of the cells
in the set I. At the end of the first phase, the original value of I is restored.
Thus the first phase of the algorithm is restricted to the core of the set I and
the boundary is reserved for the second phase. This modification increases
the flexibility in the second phase and leads to better overall packings. The
benefit of this modification is experimentally studied in Section 6.1.5.

Alternatively, one could also remove the outmost layers of the boxes that
are packed in the first phase. However, the previously presented method has
the advantage that it allows a finer control.

Bounded Runtime

Finally, we want to discuss how to modify the algorithm in case of a bounded
overall runtime. The Matching algorithm consists —in contrast to previously
discussed algorithms— of two phases and several subproblems. The ques-
tion arises how to distribute the available runtime among the phases and
subproblems.

An immediate observation is that only a very small amount of time is
spent in the first phase. Instances of typical size can be handled in about
one minute. The vast majority of the overall runtime is used for the second
phase of the algorithm. Thus it is not reasonable to further limit the time
spent in the first phase, either by restricting the set of subproblems that are
considered or by limiting the time for each subproblem.

This leaves us with the question how to allocate the remaining time to the
subproblems of the second phase. Experiments show that in general there is
no correlation between the size |S′| of the partial packing of the first phase
and the size |S| of the final packing. In particular, the maximum matching
among all iterations does in general not lead to the best packing after the
second phase. Thus it is difficult to restrict the second phase to a subset of
promising partial packings.

On the other hand, the size |S′| of a partial packing of the first phase
correlates with the problem complexity of the subproblem remaining for the
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second phase. The smaller |S′|, the larger the number |I ′′| of uncovered
cells, and hence the larger the problem complexity and required runtime.
Moreover, experiments show that there is a large variance in the cardinality
of S′, and hence also in the runtime of the subproblems of the second phase.

Therefore we propose the following heuristic: The function SolveAnd-
Combine(G, n, I, L) is modified such that it first sorts the partial packings
in the list L by their cardinality in non-increasing order. When using algo-
rithms with a high runtime, e.g., the ILP or RLS algorithm, we also need to
impose time limits on the individual subproblems. Whenever a subproblem
is started, we set its time limit as the total remaining runtime divided by
the number of remaining subproblems.

This strategy ensures that cheap subproblems, i.e., those with a runtime
below the fair share of the total runtime, are not omitted due to time con-
straints. The difference between the time that was allocated to and the time
that was actually spent by cheap subproblems can be used for more expen-
sive subproblems later. Moreover, single subproblems with an unexpected
high runtime do not disrupt the processing of the following subproblems.

5.2.2 Easyfill

The Easyfill algorithm is motivated by the following simple strategy. Sup-
pose there is an initial box with anchor (x, y, z) and orientation (w, h, d).
If possible, pack boxes with the same orientation and anchors (x + w, y, z),
(x, y + h, z) and (x, y, z + d). The repetition of this pattern leads to a tight
packing with a regular structure. All boxes in such a packing have the same
orientation.

The pseudocode of the Easyfill algorithm is shown in Algorithm 5.9.
Its structure is similar to the structure of the Matching algorithm. Both
algorithms consist of two phases. The first phase of the Easyfill algorithm
generates a set of partial packings which are passed to the second phase. The
second phase completes the partial packings and returns the best packing.
This phase is identical to the Matching algorithm.

The first phase starts with an initialization of the list L, which stores
the partial packings. We consider each of the six possible box orientations
in turn (line 2). Let (w, h, d) denote the box extensions that correspond to
the current orientation. Next we consider all anchor cells (x, y, z) that result
in a unique packing (lines 4–6). This set of anchor cells equals the set of
integer triples in [0, w) × [0, h) × [0, d). The partial packing S′ consist of all
boxes anchored at (i, j, k) with orientation (w, h, d) such that only cells in I
are covered and i ∈ x+wZ, j ∈ y +hZ and k ∈ z + dZ. Finally, the packing
S′ is stored in L (line 8).

The second phase is identical to the Matching algorithm and is imple-
mented by the function SolveAndCombine(G, n, I, L) (see Algorithm 5.8).
Similarly, the remarks about a modification and the bounded runtime of the
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Algorithm 5.9 Easyfill algorithm

Easyfill (G, n, I)
1: L ← empty list . phase 1
2: for all six orientations o do
3: let (w, h, d) denote the box extensions corresponding to o
4: for x := 0 to w − 1 do
5: for y := 0 to h − 1 do
6: for z := 0 to d − 1 do
7: S′ ← {(i, j, k, w, h, d) ∈ Z6 | the box (i, j, k, w, h, d) covers

only cells in I and i ∈ x+wZ, j ∈ y+hZ, k ∈ z+dZ}
8: L.append (S′)
9: end for

10: end for
11: end for
12: end for
13: S ← SolveAndCombine(G, n, I, L) . phase 2
14: return S

Matching algorithm also apply to the Easyfill algorithm. Figure 5.4 shows a
packing computed by the Easyfill algorithm.

Although the structure of the Matching and Easyfill algorithm is similar,
there are some differences worth mentioning. The first phase of the Easyfill
algorithm generates 6 · 4n · 2n ·n = 48n3 subproblems, whereas the Matching
algorithm generates only 8n3 subproblems. This difference results from the
fact that the Easyfill algorithm handles each of the six possible box orien-
tations in a separate subproblem. In contrast, the Matching algorithm han-
dles different box orientations simultaneously in a single subproblem. The
larger number of subproblems increases the runtime of the Easyfill algorithm
compared to the Matching algorithm. Conversely, if the overall runtime is
bounded, the runtime that is available for each subproblem is reduced.

5.2.3 Partition

The idea of this algorithm is to partition the interior of the trunk into smaller
regions. For each region the resulting packing problem can be solved inde-
pendently. Finally, the packings of all regions are combined into a solution
for the original problem.

This idea is motivated by the ILP algorithm, which computes —in con-
trast to all other presented algorithms— optimal solutions for the Discrete-
Box-Packing problem. Because its runtime increases sharply with the
problem size, the algorithm is practicable only for small problem instances.

We use planes that are perpendicular to the axes of the given grid to
partition the set I into subsets. The position of these cutting planes is
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(a) after the first phase (b) after the second phase

Figure 5.4: Packing computed by the Easyfill algorithm. Note that all boxes
packed in the first phase have the same orientation. The Greedy algorithm
was used for the second phase.

chosen such that the emerging subproblems have roughly the same size. The
number of cutting planes depends on the problem instance and the algorithm
that is used to solve the subproblems. For example, the ILP algorithm works
quite well for subproblems of 50 to 100 liters (with a grid of 25mm spacing).

The pseudocode of the Partition algorithm is depicted in Algorithm 5.10.
In a preliminary step we calculate the extension of I, i.e., the coordinate
ranges in all three dimensions (lines 1–6). Afterwards, we compute the po-
sition of the cutting planes (lines 8–16). The parameters kx, ky and kz

denote the number of cutting planes perpendicular to the x-, y- and z-axis,
respectively. The cutting planes are approximately equally spaced within
the corresponding coordinate range.

The algorithm initializes the sets S and Ir as empty sets. The set S stores
the partial packings computed so far. The set Ir holds cells that have been
considered in previous iterations, but are not covered by any boxes in S.

Three nested loops are used to iterate over all subproblems, which are
identified by the triple (i, j, k) of the corresponding loop variables. In each
iteration, we compute the set Ii,j,k of cells to be considered. The set Ii,j,k is
the union of the previously considered, but uncovered cells Ir and the subset
of I that falls in the currently considered region [xi, xi+1) × [yj , yj+1) ×
[zk, zk+1). We use one of the direct approaches described in Section 5.1 to
solve the packing problem (G, n, Ii,j,k). Finally, the solution Si,j,k of this
subproblem is added to the set S and the set Ir of previously considered,
but uncovered cells is updated.
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Algorithm 5.10 Partition algorithm

Partition (G, n, I)
1: xmin ← min {x | ∃ y, z ∈ Z : (x, y, z) ∈ I} . compute extension of I
2: xmax ← max{x | ∃ y, z ∈ Z : (x, y, z) ∈ I}
3: ymin ← min {y | ∃x, z ∈ Z : (x, y, z) ∈ I}
4: ymax ← max{y | ∃x, z ∈ Z : (x, y, z) ∈ I}
5: zmin ← min {z | ∃x, y ∈ Z : (x, y, z) ∈ I}
6: zmax ← max{z | ∃x, y ∈ Z : (x, y, z) ∈ I}
7:

8: for i := 0 to kx + 1 do . compute position of cutting planes

9: xi ← xmin +
⌊

i
kx+1(xmax − xmin + 1)

⌋

10: end for
11: for j := 0 to ky + 1 do

12: yj ← ymin +
⌊

j
ky+1(ymax − ymin + 1)

⌋

13: end for
14: for k := 0 to kx + 1 do

15: zk ← zmin +
⌊

k
kz+1(zmax − zmin + 1)

⌋

16: end for
17:

18: S ← ∅
19: Ir ← ∅
20: for i := 0 to kx do
21: for j := 0 to ky do
22: for k := 0 to kz do
23: Ii,j,k ← Ir ∪

(

I ∩ [xi, xi+1) × [yj , yj+1) × [zk, zk+1)
)

24: Si,j,k ← DirectApproach(G, n, Ii,j,k)
25: S ← S ∪ Si,j,k

26: Ir ← Ii,j,k \ {cells covered by boxes in Si,j,k}
27: end for
28: end for
29: end for
30: return S
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No restriction on the time bound for subproblems seems unfavorable, be-
cause this might lead to a situation in which some subproblems are never
considered, and thus the solution is far from optimal. If the subproblems are
solved independently, an approach similar to the case of the Matching and
Easyfill algorithm is possible (see Section 5.2.1), i.e., reordering the subprob-
lems by non-decreasing problem complexity and distributing the remaining
runtime equally among the remaining subproblems. But solving subproblems
independently has a serious drawback (which is discussed in the next para-
graph). The proposed solution does not work well with an arbitrary order
of subproblems. Therefore, we abandon the idea of reordering subproblems.
In each iteration, we simply distribute the remaining runtime among the
remaining subproblems.

Note that the subdivision of the original problem into subproblems has a
serious drawback with respect to the quality of the final solution. Even if all
subproblems are solved to optimality, the combination of these solutions is
in general not optimal. Often it is possible to improve the cardinality of the
obtained solution by local optimization across region boundaries. Consider
the grid depicted in Figure 5.5(a). A vertical cutting plane cuts this grid into
two regions. Any optimal solution of the given grid consists of nine boxes.
Assume that the subproblems on the left and on the right are solved inde-
pendently, i.e., Ir is fixed to the empty set. Any such solution is suboptimal
since it consists of at most eight boxes.

The introduction of the set Ir helps to avoid suboptimal situations. The
subproblems are no longer solved independently. Instead, later handled sub-
problems are aware of uncovered cells of previous iterations. Figure 5.5(b)
depicts the same situation as before. Suppose that the left subproblem is
solved first and the cells marked with an asterisk remain uncovered. The
set Ir adds these cells to the right subproblem, which has a packing of five
boxes. Hence the overall solution consists of nine boxes.

To make this work, it is crucial that uncovered cells are located next to
unprocessed regions. For example, the uncovered cells of the left subproblem
in Figure 5.5(c) cannot be used by the right subproblem. Next we discuss a
method to influence the position of uncovered cells.

Weighted Stable Set Problems

Up to now, we were facing a stable set problem. The goal was to compute
a stable set with a cardinality as high as possible. All boxes were treated
equally, and hence we did not have any preferences among stable sets of the
same cardinality.

Now the objective changes. We still want to compute stable sets with
high cardinality, but stable sets of the same cardinality are no longer treated
equally. Certain box positions are preferred over other positions. This mod-
ified problem can be represented as a weighted stable set problem.
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(a) Suboptimal solution

*

*

*

*

(b) Improved solution

*

*

*

*

(c) No improvement possible

Figure 5.5: Impact of the position of uncovered cells. Any optimal solution
for the depicted grid consists of nine boxes. Independent processing of the
two regions leads to suboptimal packings of at most eight boxes (a). The
cardinality of a packing can be increased if uncovered cells (marked with (*))
of previously processed regions are are taken into account (b). However, this
is not always possible due to the position of the uncovered cells (c).
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Definition 5.10 (Maximum Weighted Stable Set–optimization
variant). Given a graph G = (V, E) and a weight function c : V → R,
compute a stable set S ⊆ V that maximizes

∑

v∈S c(v).

We describe how to adapt the ILP algorithm to the maximum weighted
stable set problem. The LPR algorithm can be adapted in a similar way.
Other algorithms, e.g., the Greedy, RLS, or Simplefill algorithm can be modi-
fied for the weighted case by incorporating the node weights as a tie-breaking
rule.

We replace the objective function
∑

v∈V xv in the complete clique for-
mulation (5.3) by

∑

v∈V cvxv. The weights cv ∈ R are computes as follows:
Let (xv, yv, zv) denote the anchor of the box that corresponds to the node
v ∈ V . Let further xmin, xmax, and so on denote the coordinate ranges of
the cells in the current subproblem Ii,j,k. Then, the weight cv is computed
as

cv = 1 +
1

ui,j,k

· (xmax − xv) + (ymax − yv) + (zmax − zv)

(xmax − xmin) + (ymax − ymin) + (zmax − zmin)
, (5.13)

where ui,j,k denotes an upper bound for the maximum number of boxes

for this subproblem. For example, the trivial bound
⌊ |Ii,j,k|

8n3

⌋

can be used.
Note that the right factor is bounded by 0 and 1 from below and above,
respectively. The scaling factor 1

ui,j,k
ensures that solutions with a higher

cardinality always have a higher objective value. Among solutions with the
same cardinality, the objective function prefers those where the boxes are
anchored as near as possible to the cell (xmin, ymin, zmin). In other words,
it prefers solutions where the uncovered cells are located next to the planes
x = xmax, y = ymax and z = zmax. These planes are the boundaries to
adjacent subproblems that are handled in later iterations of the Partition
algorithm. Thus the algorithm can make use of the uncovered cells that are
lost otherwise. This is also the reason why we do not reorder the subprob-
lems. The order in which the subproblems are considered has to correspond
to the weights cv.

Observe that the introduction of the weights cv strongly increases the
running time of the ILP algorithm. In the unweighted case, the coefficients
cv are implicitly fixed to 1 and the objective vector c := (cv)v∈V ∈ R|V | is
the all-ones vector. In the weighted stable set problem the objective vector
c is slightly perturbed as depicted in (5.13). This modification increases the
bit-complexity of the problem description. Moreover, objective values are
no longer integral, but fractional. This imposes an additional burden during
the branch-and-cut phase. Previously, in the unweighted case, subtrees with
an LP value less than the cardinality of the best solution found so far plus
1.0 can be pruned in the branch-and-cut phase. Such an optimization is no
longer possible in the weighted case.
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Chapter 6

Experimental Results

In this chapter we give an experimental evaluation of the presented algo-
rithms. All instances are based on real-world data sets provided by our
industrial partner.

Our software package is implemented in C++. It is platform-independent
and has been tested under Linux, Solaris and Windows. We use several third-
party libraries, namely LEDA 4.5 [MN99, Alg], CPLEX 9.0 [ILO03b, ILO03a,
ILO], Qt 3.3.5 [BS04, Tro] and OpenGL [WNDS01, Ope]. We use several
data structures offered by LEDA throughout our algorithms, in particular,
we use graphs, hash tables, priority queues, lists, and tuples. We also use its
shortest path and matching algorithms. CPLEX is used as an (I)LP solver
by our ILP and LPR algorithm. The graphical user interface is realized with
the Qt toolkit and uses OpenGL for visualization.

All experiments were run on a SunFire 15k machine with 40 Ultra-
Sparc III processors at 900 MHz clock speed. Our implementation is single-
threaded and does not make use of multiple CPUs. Note that the given
runtimes can be reduced by a factor of two to three on modern x86-based
hardware. We used the GNU g++ 3.3.5 compiler with the options -O2 and
-NDEBUG.

In the first section, we discuss algorithm-specific details, e.g., proposed
variants. We continue with a general technique that is helpful to overcome
some weaknesses of the discretization process and to improve the results.
Finally, we compare all algorithms on a large set of instances.

6.1 Algorithm-Specific Experiments

We report on the results of algorithm-specific experiments. We investigate
the influence of parameters and compare proposed variants. The goal is
to fine-tune the presented algorithms. We do not yet compare different
algorithms. Such a comparison can be found in Section 6.3.

101
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(a) model A (b) model B

(c) model C (d) model D

Figure 6.1: Small set of models. The figures show the shape of the trunk
and an inner approximation by a grid with 25mm spacing.3

For this purpose, we compiled a small set of typical problem instances.
The set consists of four models, which from now on we shall identify as
models A, B, C and D. The four models represent instances of typical size.
Model A is a convertible with a trunk volume of about 270 liters, mod-
els B and C are (middle and upper class) sedans with roughly 400 liters and
500 liters, respectively. Model D is a sports car with a relatively small trunk
(about 60 liters). For larger instances of up to 2000 liters we refer the reader
to Section 6.3. Screenshots of these four models including a grid with a spac-
ing of 25mm can be seen in Figure 6.1. For comparison, the corresponding
expert solutions are shown in Figure 4.1.

Some characteristic values of these models are depicted in Table 6.1.
For each model the table lists the value of the expert solution, bounds on
the continuous volume, and two upper bounds for the discrete volume with

3For legal reasons we may not publish the geometry of model D.
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model
expert continuous volume spacing discrete volume

solution lower bd. upper bd. [mm] trivial bd. LP bd.

A 272 319.2 353.0
50 276 268
25 307 281

B 404 450.3 499.2
50 394 389
25 427 398

C 513 564.3 622.3
50 492 486
25 536 506

D 62 92.0 101.6
50 62 61
25 75 64

Table 6.1: Characteristics of selected models

model
spacing

#nodes #edges density
avg. #maximal avg. size

[mm] degree cliques max. cliq.

A
50 8787 649 k 0.0084 147 2195 32.0
25 68548 62.7M 0.0134 1830 15733 265.1

B
50 12857 974 k 0.0059 151 3105 33.1
25 95380 88.7M 0.0097 1859 21530 269.3

C
50 16358 1257 k 0.0047 153 3925 33.3
25 126014 120.2 M 0.0076 1907 27832 276.2

D
50 1383 73 k 0.0382 105 495 22.3
25 10019 6.2M 0.0612 1225 3227 182.4

Table 6.2: Characteristics of the conflict graphs for selected models

grids of different spacing. The expert solution was constructed by an experi-
enced engineer with a CAD system. The bounds on the continuous volume
were obtained using a discretization with a spacing of 12.5mm (models A, B
and C) and 6.25mm (model D). The lower bound is given by all cells entirely
contained in the trunk, i.e., the set of Inside and Inside∗ cells. The upper
bound is given by all cells that have non-empty intersection with the trunk,
i.e., the set of Inside and Inside∗ cells augmented by one additional layer
of cells. We also list two upper bounds for the discrete volume, the triv-
ial bound based on the number of Inside cells and the LP bound obtained
from the LP relaxation. Note that both upper bounds relate to the chosen
discretization, in particular they depend on the position and orientation of
the chosen grid. We use the chosen grids throughout this section. Therefore,
we refer to those grids using the definite article, e.g., "the grid with 25mm
spacing of model A".

More information about the corresponding conflict graphs can be found
in Table 6.2. This table lists the number of nodes and edges of the conflict
graph, the graph density, the average node degree, and the number and the
average size of the maximal cliques. Note that the graph density decreases
with increasing problem size. This is due to the fact the the maximum
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model
spacing determ. randomized Greedy [l]
[mm] Greedy [l] min. avg. max. std. dev.

A
50 260 250 256.0 261 3.61
25 261 253 257.5 261 2.74

B
50 373 366 372.6 378 3.89
25 373 365 373.5 382 5.34

C
50 464 457 465.6 473 5.05
25 475 464 473.5 481 4.34

Table 6.3: Comparison of the deterministic and the randomized Greedy al-
gorithm

degree of a node is bounded from above independently of the problem size
(see Section 4.1.3).

6.1.1 Greedy

In this section we want to investigate the behavior of the randomized variant
of the Greedy algorithm (see Section 5.1.1). In this variant, all ties are
broken at random. We compare this variant with the deterministic Greedy
algorithm, in which ties are broken by fixed rules in the implementation of
the priority queue datatype p_queue in LEDA.

We use the three models A, B, and C, and grids of spacing 50mm and
25mm as examples. Table 6.3 summarizes the results for the deterministic
and randomized variant. The third column of the table contains the cardinal-
ity of the packing that was obtained by the deterministic Greedy algorithm.
The subsequent columns show the minimum, average and maximum cardi-
nality of 1000 runs of the randomized variant. The standard deviation is
shown in the last column. The cardinality distribution of the randomized
variant is displayed in Figure 6.2.

Surprisingly, the cardinality of the deterministic variant for model A is
very close to the maximum cardinality of the randomized variant. In general,
the maximum of the randomized variant is significantly higher than the result
of the deterministic algorithm. Therefore, we prefer the randomized variant
and use several runs to boost the result.

For the remainder of this chapter, the term Greedy algorithm denotes 10
runs of the randomized variant. We report the maximum cardinality found
in those runs, as well as the total runtime of all runs. This convention does
not only apply to the Greedy algorithm when used stand-alone, but also in
conjunction with the Matching or Easyfill algorithm.

6.1.2 Integer Linear Programming

In this section we discuss the influence of several options offered by CPLEX
for mixed integer problems. For example, there are different algorithms
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Figure 6.2: Distribution of results of the randomized Greedy algorithm

to solve linear programs. CPLEX is also capable of generating additional
constraints for a given problem. The details for all the options mentioned
in this section can be found in the CPLEX manuals [ILO03a, ILO03b]. We
also discuss the influence of nearly violated odd hole constraints.

We refer to Table 6.4 to get an impression of the size of the integer linear
programs. The number of binary variables equals the number of nodes in
the conflict graph. The number of constraints equals the number of maximal
cliques. The average number of non-zeros in a constraint equals the average
size of the maximal cliques.

The LP Algorithm

CPLEX offers several algorithms to solve linear programs. Of particular
interest for our instances are the primal simplex, dual simplex and barrier
algorithm. It is possible to select the LP algorithm independently for the
root relaxation phase and the branch-and-cut phase. We will use the terms
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model
spacing

#variables #constraints
avg. number

[mm] of non-zeros

A
50 8787 2195 32.0
25 68548 15733 265.1

B
50 12857 3105 33.1
25 95380 21530 269.3

C
50 16358 3925 33.3
25 126014 27832 276.2

D
50 1383 495 22.3
25 10019 3227 182.4

Table 6.4: Characteristics of the ILP formulation for selected models

root relaxation algorithm and branch-and-cut algorithm to denote the LP
algorithm used in the corresponding phase.

We compare the performance of different root relaxation algorithms in
Figure 6.3. The diagram shows the time needed to solve the LP relaxation
for different models and root relaxation algorithms. The experiments demon-
strate that the barrier algorithm is significantly faster than the primal and
dual simplex algorithm, in some cases even more than one order of magni-
tude.

primal simplex dual simplex barrier
LP algorithm
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10000

tim
e 

[s
]

model A, 50 mm
model B, 50 mm
model C, 50 mm
model D, 25 mm

Figure 6.3: Comparison of different root relaxation algorithms. The barrier
algorithm is significantly faster than the primal and dual simplex algorithm.

In order to measure the performance of the branch-and-cut algorithm,
we consider the size of the largest stable set after a fixed amount of runtime.
Table 6.5 shows the results for this experiment after 24 hours of runtime.
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model
spacing primal dual

barrier
[mm] simplex simplex

A 50 266 266 268
B 50 381 379 382
C 50 467 465 476
D 25 61 62 62

Table 6.5: Comparison of different branch-and-cut algorithms. The results
of the barrier algorithm are better than or equal to those of the primal and
dual simplex algorithm.

In summary, the solutions of the barrier algorithm are better than or equal
to those of the primal and dual simplex algorithm. In this experiment,
the barrier algorithm has also been used as root relaxation algorithm. If
the primal or dual simplex algorithm is used instead, the given numbers
decrease slightly or remain equal. The predominance of the barrier algorithm
as branch-and-cut algorithms remains unaffected.

Given the above results, from now on we use the barrier algorithm as
root relaxation as well as branch-and-cut algorithm.

We would like to remark that the packing problem for model A can be
optimally solved with the ILP algorithm in 61 minutes when using the barrier
algorithm in both phases. Using a different algorithm (or any combination
of two algorithms), CPLEX is not able to find an optimal solution for this
model within 24 hours. Likewise, CPLEX does not succeed in finding optimal
solutions for models B, C, and D in the same amount of time, no matter
which of the three algorithms is used.

Other CPLEX Options

CPLEX is able to generate different kinds of additional constraints that cut
away non-integral solutions from the linear relaxation of the given problem.
For example, CPLEX knows the following type of constraints (so-called cuts):
clique cuts, cover cuts, disjunctive cuts, flow cover cuts, flow path cuts,
gomory fractional cuts, generalized upper bound (GUB) cover cuts, implied
bound cuts and mixed integer rounding (MIR) cuts.

CPLEX contains a heuristic that generates such cuts if they are helpful.
Since the generation of cuts might be computational expensive, it is possible
to provide hints to this heuristic. The CPLEX interface allows to forbid
or to encourage the generation of the various kinds of cuts. All maximal
clique constraints are already part of the problem formulation. Thus clique
cuts can be safely turned off. It has turned out that the gomory fractional
cuts are helpful and should be encouraged. For all other kinds of cuts, we
obtained best results with the default settings.

It is possible to control the way in which CPLEX explores the branch-
and-cut tree. For example, there are different orders in which the nodes of the
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spacing #maximal
#violated #violated lifted

model
[mm] cliques

odd hole ineq. odd hole inequal.
(w/o lifting) ε = 0.1 ε = 0.2

A 50 2195 127 302 355
B 50 3105 224 600 1008
C 50 3925 57 91 100
D 25 3227 349 1033 1239

Table 6.6: Numbers of generated odd hole inequalities

tree are considered. Once a node has been selected, different strategies exist
to choose the variable for branching at that node. We performed various tests
with different settings for these parameters, but could not observe significant
improvements over the default settings.

Furthermore, it is possible to provide an integral solution of the problem
as starting solution for the branch-and-cut phase. For example, a solution
obtained from a heuristic like the Greedy or Simplefill algorithm can be used.
This step reduces the time that the heuristic of CPLEX spends searching for
an initial integral solution. Note that in general the vast majority of the
runtime is spent in the branch-and-cut phase, whereas the root relaxation
phase and search for an initial integral solution need only a small fraction of
time. Thus there is no large benefit in providing an integral solution. But if
the available runtime is sharply limited, e.g., for a subproblem, providing a
starting solution can save precious runtime.

Odd Hole Inequalities

We proposed odd hole inequalities to strengthen the ILP formulation. We
compare four different versions of the ILP algorithm: (1) default (no addi-
tional inequalities), (2) including odd holes inequalities (without lifting), and
(3/4) including lifted odd hole inequalities, generated from nearly violated
odd holes for two values of the parameter ε, namely ε = 0.1 and ε = 0.2.

The runtime for all experiments was fixed to 24 hours. Experiments have
shown that we hardly find any violated (lifted) odd hole in the later phase
of the branch-and-cut process. In order to save the runtime for the explo-
ration of the branch-and-cut tree, we restrict the generation of additional
inequalities to the first 100 nodes of the branch-and-cut phase.

Table 6.6 relates the number of generated odd hole inequalities to the
number of given clique inequalities in the original problem formulation. As
expected, the number of violated lifted odd hole inequalities increases with
ε and is higher than the number of violated odd hole inequalities. The ratio
of the number of additionally generated inequalities to the number of clique
inequalities strongly depends on the instance.
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spacing
incl. odd hole incl. lifted odd

model
[mm]

default inequalities hole inequalities
(w/o lifting) ε = 0.1 ε = 0.2

A 50 268 266 265 267
B 50 382 383 383 382
C 50 476 475 475 466
D 25 62 62 61 61

Table 6.7: Results for odd hole inequalities

The cardinalities of the obtained solutions are shown in Table 6.7. The
heuristic contained in CPLEX, which has a large influence on the good (and
fast) solution for model A, seems to be negatively influenced by the additional
generated inequalities. While adding odd hole inequalities slightly improves
the result for model B, the results for models C and D get worse.

Originally, we expected a clear benefit from the odd hole inequalities. At
least, we did not expect a worsening of the results. Given the rather dissap-
pointing results, we opted to disable the generation of odd hole inequalities
in the default configuration.

6.1.3 LP Rounding

In the following we discuss two important factors of the LPR algorithm,
namely the choice of the algorithm used to solve the linear programs and the
choice of the parameter p.

Note that the LPR algorithm switches to the ILP algorithm when the
remaining problem complexity becomes small enough. In order to study the
influence of the LP algorithm and the parameter p, we disable the switch-over
for the experiments in this section.

The LP Algorithm

In the preceding section we have shown that —in the context of the ILP
algorithm— the barrier algorithm of CPLEX is significantly faster than the
primal and dual simplex algorithm.

However, the setting of the LPR algorithm is slightly different. We do
not only have to solve a single linear program, but a series of similar linear
programs that emerge by repeatedly fixing variables, i.e., adding new con-
straints. Therefore, it seems sensible to use the dual simplex algorithm in
subsequent iterations, since it can be restarted from a feasible basic solution.

We study the behavior of the following four versions of the LPR algo-
rithm.

• barrier/primal The barrier algorithm is used to solve the initial lin-
ear program. The primal simplex algorithm is used for the modified
problems in subsequent iterations.
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Figure 6.4: Runtime of the LPR algorithm. The runtime of the LPR algo-
rithm strongly depends on the chosen LP algorithm. The barrier algorithm
without subsequent crossover phase is about two orders of magnitude faster
than the barrier/primal version.

• barrier/dual This version is identical to the previous one, except that
the dual simplex algorithm is used for the modified problems.

• barrier The barrier algorithm is used to solve the initial as well as
all modified linear programs. In each iteration the barrier algorithm
is restarted from scratch. Note that the barrier algorithm does not
produce a basic solution as it is the case for the primal and dual simplex
algorithm. Therefore, by default, a so-called crossover phase at the end
of each barrier invocation transforms the obtained solution into a basic
solution.

• barrier w/o crossover This version is identical to the previous one,
except that at the end of the barrier algorithm no crossover to a basic
solution is performed.

We compare the runtime of these four LP algorithms in Figure 6.4 for
several models. We use a grid with 50mm spacing for the models A, B and
C and a grid with 25mm spacing for the smaller model D. We note that the
cardinalities of the solutions for different LP algorithms do not significantly
differ. As a general observation, the runtime of the LPR algorithm decreases
with respect to the above given order of different LP algorithms.

The barrier/dual version is much faster than barrier/primal. This result
goes along with the general observation that the dual simplex algorithm of
CPLEX is often faster than the primal simplex algorithm. Moreover, the



6.1. ALGORITHM-SPECIFIC EXPERIMENTS 111

dual simplex algorithm benefits from the fact that the optimal solution of
the previous iteration is a feasible basic solution for the modified problem.

Surprisingly, the barrier version is faster than barrier/dual. In particular,
restarting the barrier algorithm from scratch in each iteration is faster than
starting the dual simplex algorithm from a feasible basic solution.

The variant barrier w/o crossover was motivated by the good performance
of the barrier variant. Since the barrier algorithm cannot use a basic solu-
tion as a starting point for a modified problem, one might wonder whether
the crossover to a basic solution is necessary at all. Clearly, omitting the
crossover process results in a significant smaller runtime. On the other hand,
the structure of the solution changes. Barrier solutions tend to be midface
solutions, whereas simplex algorithms tend to set variable values to their
lower or upper bound. The question is, whether this change in the solution
structure has a negative effect on the quality of the overall packing. It turns
out that this is not the case. There is no significant difference between the
solution cardinalities of the barrier and barrier w/o crossover version.

Thus we use the barrier w/o crossover version as default for the LPR
algorithm.

The Parameter p

We want to discuss the influence of the parameter p, which controls the
fraction of the variables that are fixed in each iteration. In particular, we
are interested in the runtime of the algorithm and the cardinality of the
computed solutions. The higher the parameter p, the lower the number of
iterations and LP problems. On the other hand, the more variables are
fixed in an iteration, the less accurately the LP solution reflects the optimal
solution of the packing problem. Therefore, we expect that the cardinality
of a solution as well as the runtime decreases with increasing values of p.

Figure 6.5 shows the runtime of the LPR algorithm and the cardinality
of the solution as a function of the parameter p. The experiments show that
the cardinality of the solutions slightly decreases with increasing value of p.
The runtime is roughly proportional to p−1.

We set the parameter p to 0.05 for all further tests. In general, smaller
values do not produce better solutions, but impose a strongly higher runtime.
Larger values of p lead to a slightly lower runtime, but often produce inferior
solutions.

6.1.4 Reactive Local Search

We implemented the RLS algorithm and associated data structures from
scratch based on the description in [BP01]. We chose the LEDA datatype
leda_h_array as implementation for the hash table. Our implementation
differs in one detail from the algorithm in [BP01]: Since our instances are
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Figure 6.5: Results and runtime of the LPR algorithm. The graphs display
the cardinality of the solution and the needed runtime as a function of the
parameter p. The runtimes are relative to the runtime for p = 0.05 of the
respective model.

much larger than the instances presented in this paper, we cannot afford
to maintain the data structure MissingList. This data structure is used
in the function IncrementalUpdate(v, type) to speed up the update of
all other data structures. The data structure requires 3|V |2 int’s, which
equals 846 MB of RAM for the 50mm grid of the small model A with 8787
nodes. Due to the high memory requirements, we drop the data structure
and recompute the information on the fly when needed.

We compared our implementation with the implementation of the au-
thors of [BP01]. We enabled also in their implementation the option not to
maintain the MissingList data structure, but to recompute the informa-
tion. The speed (in iterations per second) and the quality (cardinality of the
computed solutions) of both implementations are comparable.



6.1. ALGORITHM-SPECIFIC EXPERIMENTS 113

0 5 10 15 20
runtime [h]

0.95

0.96

0.97

0.98

0.99

1
ca

rd
in

al
ity

model A, 50 mm
model B, 50 mm
model C, 50 mm
model D, 25 mm

Figure 6.6: Results of the RLS algorithms. The graph displays the cardinal-
ity of the solution as a function of the runtime. The solution cardinality is
scaled with respect to the LP bound of the respective model.

The size of the best stable set as a function of the runtime is depicted
in Figure 6.6. The graphs represent the average of five runs for each model.
The values are scaled such that the LP bound of the respective model equals
1.0. In an initial phase, the RLS algorithm is often able to improve the best
solution found so far. Later, further improvements are very rare.

We would like to remark that, unlike the Greedy algorithm, the variance
in the cardinality of the obtained solutions is very small. In all tests so far,
the cardinalities of several runs for a particular model differ by at most one,
provided the runtime is sufficiently long.

Substitution of degC [v] by degG(v)

The authors of [BP01] propose a variant of the RLS algorithm, in which
the degrees in the graph G are used to break ties, instead of the degrees in
the subgraph induced by the set C. This modification is worth considering,
since it reduces the worst-case complexity of an iteration from O(|V | + |E|)
to O(|V |).

We compare the performance of this variant with the initial version. In
Table 6.8 we summarize the averages of five runs for 24 hours each. The
number of iterations per second increases by a factor of about 2.5 if we use
grids with a spacing of 50mm. The increase is even higher for grids with
a spacing of 25mm. On the other hand, the solution cardinality slightly
decreases. Therefore, we reject this variant.
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model
spacing degC [v] degG(v)
[mm] card. iter./s card. iter./s

A 50 265.5 11319 265.4 28462
B 50 383.6 7110 382.8 19135
C 50 479.6 5347 478.2 13597
D 25 62.0 2586 60.0 16998

Table 6.8: Performance of a variant of the RLS algorithm

6.1.5 Matching and Easyfill

In this section we discuss the performance gain of a modification for the
Matching and Easyfill algorithm. This modification restricts the set I in the
first phase of both algorithms by removing some of the outmost layers of
cells of I, and hence increases the flexibility for the second phase.

We consider the three models A, B, and C — the model D is too small
to give meaningful results. In contrast to other tests in this section we use
grids with a spacing of 25mm. The results for the Easyfill algorithm in com-
bination with the Greedy algorithm are shown in Table 6.9. The number k
of layers removed from the set I ranges from zero to five. As expected,
the number of boxes packed in the second phase of the algorithm increases
with k, while the number of boxes packed in the first phase decreases (the
number ranges are due to the fact that the Easyfill algorithm generates a
series of subproblems). Since the majority of the runtime is spent in the
second phase, the runtime also increases with the parameter k.

Most interesting is the maximum number of boxes packed in both phases,
i.e., the size of the computed packing. If the subproblems of the second phase
were packed optimally, then the size of the overall packing would increase
with k. Unfortunately, the size of these subproblems is too large for the
ILP algorithm. Hence we have to use a different algorithm, and there is no
guarantee that an optimal solution is computed.

In our experiments the cardinalities of the packings for k = 1 are sig-
nificantly higher than those for k = 0. Higher values for k do not seem to
produce better solutions, but need a significantly higher runtime. Similar
results can be observed for the Matching algorithm, as well as for other al-
gorithms in the second phase. Based on these results we decided to set the
parameter k to 1 for all further tests.

6.2 Subdivision into Several Regions

During application of the presented algorithms to a large number of instances
we found several models for which our algorithms yield quite bad results. For
example, consider the grid with 50mm spacing for model C. The relaxation
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model
#layers #boxes #boxes max. #boxes relative

(k) 1st phase 2nd phase (both phases) runtime
0 93 – 229 32 – 167 266 1.00
1 84 – 184 75 – 178 271 1.58

A
2 64 – 142 117 – 202 269 2.41
3 42 – 101 153 – 221 269 3.42
4 20 – 75 176 – 243 268 4.53
5 0 – 59 194 – 266 268 5.63

0 124 – 311 57 – 225 375 1.00
1 106 – 256 91 – 263 377 1.66

B
2 82 – 208 161 – 279 377 2.57
3 72 – 150 204 – 296 375 3.66
4 0 – 119 240 – 366 375 4.87
5 0 – 90 263 – 366 376 5.96

0 191 – 407 56 – 268 472 1.00
1 161 – 347 98 – 311 481 1.60

C
2 142 – 271 191 – 329 480 2.48
3 93 – 219 232 – 377 480 3.55
4 15 – 171 293 – 455 481 4.70
5 0 – 136 315 – 479 481 5.79

Table 6.9: Removal of outmost layers in the first phase of the Matching or
Easyfill algorithm. The removal of some layers significantly increases the
cardinality of the solution. Good results in terms of solution cardinality and
required runtime are achieved for k = 1.

of the linear program yields an upper bound of 486 liters, and our best
packing consists of 480 boxes. For the grid of 25mm spacing, we obtain an
upper bound of 506 liters, whereas our best packing contains only 488 boxes.
In contrast to these numbers, there is a manual packing of an experienced
engineer that comprises 513 boxes.

These numbers demonstrate the drawback of the discretization process.
Not only the cardinality of the solutions, but even the upper bounds are
clearly below the size of the manual packing. The reason for this behavior
is the fact that there are regions in the trunk where the set of Inside cells
poorly reflects the local geometry. In these regions, it is often possible to
choose a different orientation for the grid, such that it adapts much better
to the local geometry. We identify three typical examples for such regions in
the following subsections.

To overcome this drawback, we propose the following solution: Instead
of using a single grid, we subdivide the interior of the trunk into different
regions. In each region, a grid that is suited for the local geometry is used.
This idea is similar to the approach of the Partition algorithm. However, the
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motivation here is not to reduce the problem complexity, but to improve the
discretization.

The shape of the regions can often be defined by the intersection of the
trunk interior and a halfspace. Therefore we use oriented planes (called
separators) to cut off a region. In general, a single separator per region
suffices. In rare cases two or three separators are needed.

We need to take care that the subdivision process does not impair the
situation. For example, if the regions are processed independently, boxes that
cross region boundaries are ruled out. We propose the following approach.
Typically, there is a quite large main problem and a very low number of small
regions that have been cut off from the main problem. First we process the
small cut-off regions. Then the solutions of these subproblems are imported
into the original problem as a fixed (partial) packing. Before importing such
a solution, we consider the relative position of the subproblem and the main
problem and use a simple heuristic to move the boxes of the subproblem as
far away from the main problem as possible. This procedure increases the
space that is available to the main problem.

6.2.1 Storage Spaces next to Wheel Houses

Often, the width of a trunk increases behind the rear wheels. Furthermore,
the shape of the trunk also extends beneath the floor. This feature is typical
and can be found in many models. An example for this feature can be seen
in Figure 6.7, which shows model C from the left. The grid in Figure 6.7(a)
is aligned with the floor of the trunk. The orientation of the grid does not fit
the local geometry of the trunk. Consequently, the corresponding packing
in Figure 6.7(b) wastes much space. In contrast, a grid that aligns with the
local geometry is shown in Figure 6.7(c). An optimal packing for this grid
is shown in Figure 6.7(d).

Such regions can be defined with two parallel planes that are orthogonal
to the wheel axes. The distance of the planes is chosen such that it is a
multiple of 50mm. This reduces the set of reasonable distances to a few
values. In most cases, the distances 950mm, 1000mm or 1050mm are used.

A similar improvement can be achieved on the right side of the trunk.
Both measures together allow to add eight more boxes to our solution, which
consists now of 496 boxes.

6.2.2 Breaks in the Floor of the Trunk

In many car models, the floor of the trunk is a large planar face. However, in
a few cases there is a break in the floor, often located near the rear seatback.
A small part of the trunk does not have a horizontal, but slightly sloping
floor (see Figure 6.8(a)). There is a large wedge-shaped region that is not
taken into account at all. Additionally, at the top of the trunk, the grid
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(a) (b)

(c) (d)

Figure 6.7: Storage spaces next to wheel houses. The global grid (a) and
the corresponding packing (b) are aligned with the floor of the trunk and do
not adapt to the local geometry. A local grid (c) and its packing (d) exploit
the available space much better.
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(a) (b)

(c) (d)

Figure 6.8: Breaks in the floor of the trunk. The global grid (a) and the
corresponding packing (b) are aligned with the floor of the trunk and do not
adapt to the local geometry. A local grid (c) and its packing (d) exploit the
available space much better.
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(a) (b)

(c) (d)

Figure 6.9: Additional storage spaces. The global grid (a) and the corre-
sponding packing (b) are aligned with the floor of the trunk and do not
adapt to the local geometry. A local grid (c) and its packing (d) exploit the
available space much better.
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has an irregular structure, which is highly disadvantageous for packing (see
Figure 6.8(b)). We cut off the region with sloping floor and shift the grid
in this region downwards until it touches the floor (see Figure 6.8(c)). The
uncovered space has been significantly reduced, both at the bottom and at
the top of the trunk. Thus eight more boxes can be packed into the cut-off
region (see Figure 6.8(d)). In summary, we can pack 504 boxes into the
trunk.

6.2.3 Additional Storage Spaces

A very rare example is shown in Figure 6.9. The extension near the rear
seatback is planned to hold control devices for additional equipment, e.g., air-
conditioning. In model variants without this equipment, the space is added
to the trunk. The shape of this extension is explicitly designed such that
exactly six boxes can be packed. An optimal placed grid and a corresponding
packing can be seen in Figure 6.9(c) and Figure 6.9(d), respectively.

The local grid for the additional storage space makes it possible to add
three more boxes. In total, the subdivision of the trunk into regions has
increased the packing from 488 to 507 boxes. This value lies within an ac-
ceptable range of the expert solution of 513 boxes. We remark that our com-
binatorial solution can be further improved to 513 boxes using the SGCSA
approach [Rie05].

6.3 Comparison of Algorithms

For our tests we use a set of 21 models including the already presented mod-
els A, B, C, and D. Table 6.10 gives an overview of these models, which are
roughly ordered by increasing volume. The models H and I denote convert-
ibles and come in two variants representing an open and a closed roof. In
this set we also included our largest model S, despite the fact that no expert
solution is available.

For each model the table lists the size of the expert solution as well as
the best combinatorial solution. The expert solutions were constructed by
an experienced engineer with the help of a CAD system. Note that these
expert solutions are not bound to our discretization. To measure the quality
of our solutions, we consider the relative deviation from the expert’s one. We
also list the number of regions that were used to compute the combinatorial
solution (see Section 6.2).

The quality of the best combinatorial solution varies. In half of the cases
we meet the quality requirements of at most 1% deviation. In a few cases
we are significantly better than the expert solution. Only in 4 of 20 cases
(models B, H1, H2 and M) we fall short of the expert solution by more
than 2%. Although a deviation within 1-2% does not meet the initially
prescribed quality bound, such solutions are still acceptable in practice. The



6.3. COMPARISON OF ALGORITHMS 121

model
type of
vehicle

expert combinat. relative
#regions

solution solution deviation
A sedan 272 272 0.00% 1
B sedan 404 390 −3.47% 3
C sedan 513 507 −1.17% 4
D sports car 62 62 0.00% 1
E —a 6 7 +16.67% 1
F —a 46 50 +8.70% 1
G —b 80 80 0.00% 1
H1 convertiblec 185 171 −7.57% 2
H2 convertibled 277 256 −7.58% 1
I1 convertiblec 212 209 −1.14% 1
I2 convertibled 330 324 −1.82% 1
J sedan 315 326 +3.49% 1
K sedan 384 391 +1.82% 1
L station wagon 396 394 −0.51% 2
M sedan 434 425 −2.07% 4
N sedan 480 475 −1.04% 4
O sedan 499 492 −1.40% 3
P minivan 722 720 −0.28% 1
Q minivan 1203 1191 −1.00% 2
R minivan 1775 1751 −1.35% 3
S minivan n/a 2068 n/a 3
a additional storage compartment
b spare wheel compartment
c open roof
d closed roof

Table 6.10: Overview of test results. For each model the table lists its
vehicle type, the size of the expert solution, the size of the best combina-
torial solution, the relative deviation of the latter from the former, and
the number of regions that were used.

second quality requirement demands an absolute deviation of not more than
10 liters. We meet this requirement for all models with exception of the
models B, H1, H2 and R.

The results for both variants of model H are extremely bad. Model H is
a convertible, therefore, its trunk is rather small and has a very complicated
shape due to the roof-folding mechanism. For both instances the discretiza-
tion of the solution space is a too severe restriction. For example, the LP
bound for model H1 is 178, which is already significantly smaller than the
expert solution of 185 boxes.

The best combinatorial solutions for models A to D are depicted in Fig-
ure 6.10.
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(a) model A (b) model B

(c) model C (d) model D

Figure 6.10: Best combinatorial solutions. The corresponding expert solu-
tions are depicted in Figure 4.1. The grids for the models A and D are shown
in Figure 6.1; the models B and C were subdivided in several regions, hence
the grids depicted in Figure 6.1 do not match the solutions shown here.4

We remark that the combinatorial solution often can be improved with
the help of the continuous SGCSA approach (see Section 1.2). In particular,
this holds for trunks with a complicated shape. If an instance is too large
to be efficiently handled in its entirety by the SGCSA approach, if is often
useful to apply the SGCSA approach only to regions with a complicated
geometry, e.g., storage spaces next to wheel houses (see Section 6.2). For
example, the results for the models H1 and H2 can be improved to 181 and
285 boxes, respectively [Rie05].

Detailed results for each combination of a particular model and algorithm
can be found in the next two tables. The cardinality of a solution and the
actually needed runtime are shown in Tables 6.11 and 6.12, respectively.

4For legal reasons we may not publish the geometry of model D.
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The list of algorithms comprises the Greedy, ILP, LPR and ILP algorithm,
stand-alone and in combination with the Matching and Easyfill algorithm.
Furthermore, the results for the Simplefill and Partition algorithm (the latter
in combination with the ILP algorithm) are given.

The second column gives the time limit for each instance. Usually, we
set a time limit of 24 hours as described in the requirements for the software
system (see Chapter 1). For smaller models we reduce the limit to 2 or 12
hours, whereas we set the limit to 48 hours for the very large instances Q,
R, and S.

The following remarks apply to models for which the trunk was subdi-
vided into several regions (see Table 6.10). With exception of the models Q,
R, and S, the size of the regions apart from the main region is very small.
Therefore, the ILP algorithm was used to compute a solution within a few
minutes. The columns in Tables 6.11 and 6.12 indicate the algorithm that
was used to solve the main problem, i.e., the largest region. The size of
a solution in Table 6.11 is the sum of all regions, whereas the runtimes in
Table 6.12 hold for the main problem. For the models Q, R, and S, half of
the total runtime of 48 hours was spent on the main region, the other half
was equally distributed among the remaining regions.

A grid with 25mm spacing was used for all models except the very small
model E, for which we constructed a grid with 12.5mm spacing. Grids
with 12.5mm spacing were also used for very small regions (typically storage
spaces next to wheel houses).

Let us first consider non-(I)LP-based algorithms, i.e., the Greedy, RLS,
and Simplefill algorithm. Comparing the results of these algorithms it turns
out that in all cases the Easyfill+RLS algorithm is better than or equal to the
Matching+RLS algorithm. Moreover, Easyfill+RLS is better than or equal
to the RLS algorithm (2 exceptions), the maximum of all Greedy algorithms
(1 exception), and the Simplefill algorithm (4 exceptions). Therefore, the
Easyfill+RLS algorithm is clearly the best choice among the non-ILP-based
algorithms. If a first estimate is needed and the available time is very short,
we propose to use the Simplefill algorithm instead.

Now let us consider (I)LP-based algorithms, i.e., the ILP, LPR, and
Partition+ILP algorithm. The results of the Partition+ILP algorithm are
clearly worse than those of the other (I)LP-based algorithms. The results
get even worse when the number of cutting planes, and hence the number of
subproblems is increased. As expected, the ILP and LPR algorithm produce
very good results on small models (see models D to H1). Larger instances
(above ca. 200 liters) are too complex to be handled by these algorithms
within the time limit of 24 hours. The results of the Matching or Easyfill
algorithm combined with the ILP or LPR algorithm are very close; the results
for the combinations involving the LPR algorithm are slightly better than
those using the ILP algorithm. Apart from the set of small models D to
H1, the results of Easyfill+RLS are often better than or equal to those of an
(I)LP-based algorithm.
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model
time

Greedy
Match. Easyf.

ILP
Match. Easyf.

LPR
Match. Easyf.

RLS
Match. Easyf. Simple- Part.

limit [h] +Gr. +Gr. +ILP +ILP +LPR +LPR +RLS +RLS fill +ILP
A 24 265 268 271 —a 270 269 —a 269 269 269 270 272 270 260
B 24 382 386 387 —a 390 387 —a 390 390 385 387 389 384 379
C 24 502 506 507 —a 507 506 —a 506 506 507 507 507 507 497
D 12 56 59 59 62 60 61 61 59 61 62 60 61 60 60

E 2 5 7 6 7 7 7 7 7 7 7 7 7 6 7
F 2 47 48 48 50 49 49 50 50 50 49 49 49 47 48
G 12 74 76 77 80 78 79 80 78 80 78 78 79 77 79
H1 24 167 169 168 170 170 170 171 171 171 170 170 170 165 170
H2 24 250 250 255 —a 255 252 —a 256 255 255 253 254 248 246
I1 24 204 203 203 —a 207 206 —a 209 206 204 205 206 203 206
I2 24 307 316 319 —a 321 313 —a 321 321 315 319 321 312 307
J 24 318 321 324 —a 326 324 —a 325 324 320 323 325 322 322
K 24 376 384 389 —a 388 388 —a 390 391 385 387 390 385 381
L 24 394 394 394 —a 394 394 —a 394 394 394 394 394 394 391
M 24 420 424 424 —a 425 425 —a 425 425 424 425 425 425 422
N 24 467 473 474 —a 475 474 —a 474 474 474 475 475 473 475
O 24 483 485 488 —a 489 491 —a 489 487 487 486 491 492 440
P 24 694 712 717 —a 717 712 —a 716 695 —a 715 720 708 702
Q 48 1188 1189 1189 —a 1191 1191 —a 1191 1191 1190 1191 1190 1189 1190
R 48 1716 1747 1747 —a 1743 1740 —a 1743 1746 —a 1747 1750 1751 1750
S 48 2031 2051 2058 —a 2021 2031 —a 2060 2066 —a 2054 2059 2068 2003

a The instance is too large to be handled by this algorithm.

Table 6.11: Comparison of packing sizes. For each algorithm the table lists the size of the packing that was achieved within
the given runtime limit. The ILP algorithm is the preferred choice for smaller instances, whereas the Matching+RLS is a good
candidate for larger problems. The Simplefill algorithm is a recommended alternative if a fast solution is needed.
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model

time
Greedy

Match. Easyf.
ILP

Match. Easyf.
LPR

Match. Easyf.
RLS

Match. Easyf. Simple- Part.
limit [h] +Gr. +Gr. +ILP +ILP +LPR +LPR +RLS +RLS fill +ILP

A 24 6 42 413 —a 376 1440 b —a 150 1440 b 1440 b 1440 b 1440 b 61 1440 b

B 24 6 40 382 —a 485 1440 b —a 286 1440 b 1440 b 1440 b 1440 b 54 1440 b

C 24 6 40 250 —a 1440 b 1440 b —a 1440 b 1440 b 1440 b 1440 b 1440 b 56 1440 b

D 12 1 8 80 720 b 58 720 b 18 85 689 720 b 720 b 720 b 9 720 b

E 2 1 120 b 120 b 2 120 b 120 b 2 120 b 120 b 120 b 120 b 120 b 10 1
F 2 1 7 61 30 55 120 b 30 34 120 b 120 b 120 b 120 b 10 120 b

G 12 1 10 114 720 b 59 720 b 720 b 41 720 b 720 b 720 b 720 b 14 720 b

H1 24 1 22 166 1440 b 1065 1440 b 1440 b 263 1440 b 1440 b 1440 b 1440 b 20 1440 b

H2 24 4 31 269 —a 888 1440 b —a 167 1440 b 1440 b 1440 b 1440 b 40 1440 b

I1 24 4 43 438 —a 615 1440 b —a 218 1440 b 1440 b 1440 b 1440 b 39 1440 b

I2 24 5 45 421 —a 1419 1440 b —a 255 1440 b 1440 b 1440 b 1440 b 48 1440 b

J 24 5 31 294 —a 762 1440 b —a 467 1440 b 1440 b 1440 b 1440 b 47 1440 b

K 24 6 36 361 —a 644 1440 b —a 257 1440 b 1440 b 1440 b 1440 b 50 1440 b

L 24 1 26 157 —a 1440 b 1440 b —a 1440 b 1440 b 1440 b 1440 b 1440 b 16 585
M 24 4 26 234 —a 583 1440 b —a 550 1440 b 1440 b 1440 b 1440 b 39 1440 b

N 24 5 21 177 —a 192 1440 b —a 249 1440 b 1440 b 1440 b 1440 b 31 311
O 24 7 43 419 —a 391 1440 b —a 1440 b 1440 b 1440 b 1440 b 1440 b 54 1440 b

P 24 13 57 547 —a 1244 1440 b —a 859 1440 b —a 1440 b 1440 b 89 1440 b

Q 48 3 19 250 —a 190 1440 b —a 199 1440 b 1440 b 1440 b 1440 b 32 39
R 48 29 132 1030 —a 1440 b 1440 b —a 1440 b 1440 b —a 1440 b 1440 b 89 1440 b

S 48 34 173 1440 b —a 1440 b 1440 b —a 1440 b 1440 b —a 1440 b 1440 b 212 651

a The instance is too large to be handled by this algorithm.
b The algorithm was stopped after the time limit was reached.

Table 6.12: Comparison of runtimes. For each algorithm the table lists the actually needed runtime (in minutes). The Greedy
and Simplefill algorithms are the fastest algorithms, whereas the RLS algorithm always utilizes the available runtime by design.
Combinations involving the Matching algorithm are faster than those using the Easyfill algorithm due to the smaller number
of subproblems.
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The corresponding runtimes are shown in Table 6.12. As a general obser-
vation, the runtime increases with the problem complexity, which is in close
relation to the discrete trunk volume. This relation can be directly observed
for algorithms that finish within the given time limit, e.g., the Greedy and
Simplefill algorithm. A second factor that influence the problem complexity
and runtime is the shape of the trunk.

The Greedy and Simplefill algorithms are also the fastest algorithms.
In contrast, RLS based algorithms always utilize the available runtime by
design. Combinations involving the Matching algorithm are faster than those
using the Easyfill algorithm. This is due to the fact that the number of
subproblems generated by the Easyfill algorithm is six times as high as in
the case of the Matching algorithm. Therefore, the Easyfill algorithm often
reaches the time limit, whereas the Matching algorithm usually finishes much
earlier. As pointed out at the beginning of this chapter, all runtimes can be
reduced by a factor of two or three on modern x86-based hardware.

We can summarize these findings in the following guidelines:
• For small models (up to 100 liters), use the ILP algorithm.
• For larger models, use the Easyfill+RLS algorithm.
• If a fast estimate is desired, use the Simplefill algorithm.
We mentioned in Chapter 1 that, apart from the major objective of max-

imizing the number of boxes, there are also minor objectives regarding the
structure of the packings. Tight packings and packings where the majority
of the boxes have the same orientation are preferred.

Due to the discrete model, all boxes are aligned with the axes of the
coordinate system of the underlying grid. If the trunk was subdivided in
several regions, there is a small, limited number of such alignments.

Moreover, the Easyfill algorithm ensures that the boxes in the core, i.e.,
the boxes packed in the first phase, have the same orientation (see Fig-
ure 5.4). This property is not guaranteed for the Matching algorithm, but in
general holds for the majority of the boxes (see Figure 5.3). The Simplefill
algorithm packs the majority of the boxes in the first iteration, resulting in
the same orientation (see Figure 5.1). In contrast, solutions produced by the
Greedy, ILP, LPR, RLS, and Partition+ILP algorithm do not exhibit any
visible structure. Therefore, in reality, the reproduction of a packing with
a physical mockup is much easier if the packing results from the Matching,
Easyfill or Simplefill algorithm.

These algorithms are also favorable with respect to the second minor
objective. The Easyfill algorithm always produces a tight core packing. Un-
covered space can still occur in the outer parts of the trunk, which are packed
in the second phase of the algorithm. The same holds in most cases for the
Matching and Simplefill algorithm. If the Greedy, ILP, LPR, or RLS al-
gorithm is used directly, uncovered grid cells are scattered throughout the
whole trunk.

All in all, the presented algorithms do no only pursue the goal of packing
a high number of boxes into the trunk, but also address the minor objectives.



Chapter 7

Summary

7.1 Conclusion

In this thesis we presented a combinatorial approach for the trunk packing
problem according to DIN 70020. This problem differs from many packing
problems studied in the literature insofar as the container has an irregular
shape and the number of items to be packed is very high. Apart from
the continuous SGCSA approach, our approach is the first fully automated
solution for this problem.

We showed that this packing problem is NP -complete and gave a polyno-
mial-time approximation scheme. Unfortunately, this approximation scheme
is only useful for huge instances, but it inspired the Partition algorithm.

We discretized the problem in a two-fold way: discretization of the space
and restriction of the feasible box placements. Our classification algorithm
for the cells of the discretized space is able to handle the deficiencies in the
input data, in particular, the holes in the boundary description of the trunk.
We also presented a heuristic for the reconstruction of the face normals,
which are crucial to exploit specified tolerances for the trunk geometry.

We formulated the discrete packing problem as an integer linear program
based on the complete clique formulation. To strengthen this formulation, we
dynamically added violated lifted odd hole inequalities during the branch-
and-bound phase. It turned out that, even with the help of state-of-the-
art ILP solvers, this approach is practicable only for instances up to about
100 liters.

Therefore we presented different heuristics capable of handling larger in-
stances, e.g., the LP Rounding, the Reactive Local Search, and the Simplefill
algorithm. A second class of heuristics reduces the packing problem to a set
of smaller subproblems. For example, the Matching and the Easyfill algo-
rithm produce solutions that exhibit a regular structure, similar to manually
constructed packings. Combinations involving one of both algorithms gen-
erate very promising solutions.

127
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We tested our algorithms on a large set of real-world instances and com-
pared the results to solutions produced by human experts. It turned out
that the best results are obtained by a combination of the Easyfill and the
Reactive Local Search algorithm, whereas the ILP formulation is the method
of choice for smaller instances. We propose to use the Simplefill algorithm if
a fast estimate of the luggage capacity is needed. We have seen that the size
of a packing often can be significantly improved by subdividing the trunk
into several regions, which are discretized independently based on the local
geometry of the trunk. In most cases, we meet the prescribed quality bounds.
For some instances, we even significantly outperform the expert solutions.

The algorithms presented in this work as well as the continuous SGCSA
approach are implemented in an industrial-strength software system, which
is used by our project partner in the design process of new cars.

7.2 Further Work

In this section we present some directions for further research.

The SAE Packing Problem

A natural extension of this work is to adapt and extend the presented algo-
rithms to the SAE packing problem (see Section 1.2). Similar to our packing
problem, the SAE packing problem is a three-dimensional packing problem
involving a single container with irregular shape. The main differences are:

• Item size The SAE boxes are much larger than the boxes in our prob-
lem, e.g., an SAE box of type A has a volume of about 67 liters. Thus
the number of items that can be packed into a trunk is much smaller
than in our case, e.g., the trunk of a mid-size car usually contains about
15 SAE boxes.

• Item shape SAE boxes of different types are not congruent. The side
lengths of the boxes (with exception of the golf-bags and H-boxes) are
multiples of 0.5 inch, but almost all side length ratios are not integral.

• Weights The items contribute in different quantities to the objective
value. These quantities (weights) correspond to the volume of the
respective item.

• Subset selection The standard defines which subsets of a single (or
multiple) standard luggage set(s) are feasible. For example, it is infea-
sible to pack the trunk using exclusively H-boxes of multiple standard
luggage sets.

• Golf bag The standard luggage set contains an item that does not
have cuboid shape.

The adaption of our algorithms and datastructures to the SAE packing
problem requires modifications at several levels.
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The side lengths of the SAE boxes (with exception of the golf-bags and
the H-boxes) are multiples of 0.5 inch (more precisely, only two side lengths
are odd multiples of 0.5 inch). A grid spacing of 0.5 inch is most probably
too complex for mid-size instances, but a spacing of 1.0 inch seems to be
reasonable. The algorithms used in the discretization process can easily be
adopted to the new setting. Since the SAE boxes are significantly larger
than the DIN boxes, the ratio of the numbers of Inside∗ cells to the number
of Inside cells increases. Additionally, we can handle holes in the boundary
description up to size of 152mm×114mm, which is the smallest cross section
of an SAE box.

Since the items are not congruent, the Matching and Easyfill algorithms
can no longer be used. Other algorithms, like the Greedy, ILP or RLS
algorithm, can be adapted to the new setting. Note that the structure of
the conflict graph drastically changes. Due to larger item sizes, the number
of anchor cells in the grid decreases while the density of the conflict graph
increases. Since we are dealing with non-congruent items, we do not only
need a single node for each feasible pair of anchor cell and orientation, but
also one node per item type.

The SAE packing problem can be reduced to a weighted stable set prob-
lem. Additionally, it is necessary to model various other constraints, e.g.,
the limited number of items per type in a standard luggage set, or the order
in which the different item types are to be considered.

Stronger ILP Formulation

In Section 5.1.2 we presented an ILP formulation based on maximal clique
constraints. We also proposed lifted odd hole inequalities to strengthen
the problem formulation. Unfortunately, the experimental results in Sec-
tion 6.1.2 do not show a clear benefit of these inequalities. More detailed
studies are necessary to understand why the lifted odd hole inequalities do
not help in practice.

Several other classes of facet-defining inequalities are known in the lit-
erature. Strijk et al. successfully use mod-k cuts for a stable set problem
arising from map labeling [SVA00] (see also [CFL00]). Trotter gives a gen-
eralization of odd holes known as webs [Tro75]. Cheng and Cunningham
introduced wheel inequalities [CC97].

It would be interesting to study the influence of these inequality classes
on our problem instances. An efficient algorithm for the separation problem
(specifically for our case) is an important element for an overall performance
improvement.

Optimal Grid Placement

In Section 4.5 we discussed how to obtain a good placement for the grid.
The presented approach can improved with respect to the objective function
as well as the optimization method.
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We used the number of Inside cells as objective function to find a good
grid position. We also mentioned that a criterion like this has its drawbacks
(see also Figure 4.10 and 4.11). We propose to consider not only the num-
ber, but also the arrangement of Inside cells. One idea is to consider the
number of grid cells in each row of the grid. Let k denote the number of
adjacent Inside cells in such a row. At least k mod n out of the k cells
are never covered by any boxes. Depending on the orientation of the boxes,
this number increases to k mod 2n or k mod 4n. We propose to incorporate
these quantities into the objective function. Another idea is to look at the
boundary faces of the union of all Inside cells. Large planar faces indicate
a regular structure that is profitable for packing purposes.

We used a brute-force approach to compute an optimal placement of
the grid. This approach can easily be replaced by local search methods,
which are likely to produce equal (or better) grid placements in shorter
time. Note that the objective function is discrete; thus there is no notion of
gradients. We propose to use local optimization methods confined to function
evaluations only. Suitable algorithms are for example the downhill simplex
algorithm by Nelder and Mead [NM65], Powell’s method [Pow65] or
pattern search [HJ61]. Implementations of the first two algorithms can be
found in [PTVF99]. Note that these algorithms compute local optima, and
not necessarily the global optimum. Several restarts with a randomly chosen
starting point should produce a grid placement close to the global optimum.
Such an approximation of the global optimum is sufficient in our case.

Different Box Geometries

Although the size of the boxes is defined in DIN 70020 [Deu93] as exactly
200mm × 100mm × 50mm, other interpretations of this standard exploit
tolerances specified in ISO 3832 [Int02] to reduce the effective size of the
boxes. The latter standard permits tolerances of up to 1mm for the side
lengths of the boxes. Hence the boxes can be as small as 199mm× 99mm×
49mm. Moreover, the edges of the boxes can be rounded to some extent. To
be more precise, edges and vertices may be replaced by surface patches from
cylinders and spheres with a radius of up to 10mm. These modifications
allow to pack more boxes into the trunk. Since the volume of such a box is
still counted as one liter, the luggage capacity of the trunk increases.

Unfortunately, the new boxes (without rounded edges) no longer have
side length ratios of 4 : 2 : 1 and therefore do not fit on a cubic grid.
The best we can do is packing boxes of size 199mm×99.5mm×49.75mm by
using grids with spacing 49.75mm (24.875mm, 12.4375mm) instead of 50mm
(25mm, 12.5mm).

Boxes with rounded edges are advantageous near the boundary of the
trunk. The use of such modified boxes is most likely to increase the number
of boxes that can be packed. The discretization process can be extended to
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handle the new item shape as follows: Conceptually, all cells of the grid are
replaced by rounded cubes with the same extension. This modification leaves
tiny regions of the space uncovered. Hence it is possible that a box aligned
with 4n × 2n × n Inside cells still intersects the trunk boundary or given
boxes. It is necessary to maintain a blacklist of such box placements. The
integration of rounded boxes requires an extension of the existing intersection
predicates. Besides the cases triangle–box and box–box, we also need to
handle the cases triangle–rounded box and rounded box–rounded box.
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