
Parameterized Type Expansion in the Feature Structure

Formalism TDL

Diplomarbeit

an der Universit�at des Saarlandes

Fachbereich 14 Informatik

vorgelegt von

Ulrich Sch�afer

Deutschherrnstra�e 27

66117 Saarbr�ucken

November 1995

Abstract

Over the last few years, uni�cation-based grammar formalisms have become the predominant

paradigm in natural language processing systems because of their monotonicity, declarative-

ness, and reversibility. From the viewpoint of computer science, typed feature structures

can be seen as data structures that allow representation of linguistic knowledge in a uniform

fashion.

Type expansion is an operation that makes the constraints on a typed feature structure ex-

plicit and determines their satis�ability. We describe an eÆcient expansion algorithm that

takes care of recursive type de�nitions and allows exploration of di�erent expansion strategies

through the use of control knowledge. This knowledge is speci�ed in a separate layer, indepen-

dently of grammatical information. Memoization of the type expansion function drastically

reduces the number of uni�cations.

In the second part, nonmonotonic extensions to TDL and the implementation of well-typedness

checks are presented. Both are closely related to the type expansion algorithm. The algo-

rithms have been implemented in Common Lisp and are integrated parts of TDL and a large

natural language dialog system.

Contents

1 Introduction and Motivation 5

2 Feature Structure Formalisms 9

2.1 Feature Structures : 9

2.2 Uni�cation : 10

2.3 Types and Inheritance : 11

2.4 Formalizations : 13

2.5 Formalisms : 13

3 TDL 15

3.1 Basic De�nitions : 15

3.2 Set-Theoretical Semantics : 19

3.3 Type De�nitions : 21

3.3.1 Examples : 22

3.4 Typed Uni�cation : 24

3.5 Type Simpli�cation : 25

3.5.1 Purely Syntactic Schemata : 26

3.5.2 `Semantic' Schemata for Homogeneous Type Expressions : : : : : : : 27

3.5.3 `Semantic' Schemata for Heterogeneous Type Expressions : : : : : : : 28

3.6 Architecture of the TDL System : 28

4 Type Expansion 30

4.1 Introduction and Motivation : 30

4.2 Augmented Typed Feature Structures : 33

4.2.1 Example : 35

4.2.2 Augmented AVM Notation : 36

4.3 Typed Uni�cation : 37

4.3.1 Integration into Feature Uni�cation : : : : : : : : : : : : : : : : : : : 37

4.3.2 Lazy Attribute Inheritance : 39

4.4 The Basic Algorithm : 39

1

2 CONTENTS

4.4.1 Implementation : 39

4.4.2 Interface Functions : 40

4.4.3 Search Strategies : 40

4.4.4 Basic Functions and Procedures : 43

5 Indexed Prototype Memoization 47

5.1 Motivation : 47

5.2 Memoization : 48

5.3 Indexed Prototypes : 49

5.4 Reducing the Number of Uni�cations { An Example : : : : : : : : : : : : : : 50

5.5 Accessing Prototypes : 52

6 Recursive Types 54

6.1 Introduction : 54

6.2 Motivation : 54

6.3 Decidability : 56

6.4 Recursion in Knowledge Representation Languages : : : : : : : : : : : : : : : 57

6.4.1 Component Cycles : 57

6.4.2 Restriction Cycles : 57

6.5 Algorithm : 58

6.5.1 Sources of In�nite Expansion : 58

6.5.2 Computing Recursive Types : 59

6.5.3 Postponing Recursive Types: Lazy Expansion : : : : : : : : : : : : : : 61

6.6 Examples : 64

6.6.1 Append : 64

6.6.2 A Finite State Automaton : 73

7 Controlling Type Expansion 77

7.1 Motivation : 77

7.2 Declarative Speci�cation of Expansion Control : : : : : : : : : : : : : : : : : 77

7.3 Syntax of Expansion Control : 78

7.4 The Control Structure : 80

7.5 Expanding and Postponing Prototypes : 82

7.6 Merging Global and Local Control : 87

7.7 Maximal Path Depth for Expansion : 87

7.8 Search Strategy : 88

7.9 Resolvedness Predicates : 88

7.10 Numerical Preferences : 89

7.11 Attribute Order : 90

7.12 Interactive Disjunct Selection : 91

CONTENTS 3

7.13 Printing Control Information : 91

7.14 How to Stop Recursion : 92

7.15 Global Variables : 92

7.16 Statistics : 94

8 Nonmonotonicity and Single Link Overwriting 97

8.1 Introduction and Motivation : 97

8.2 Syntax of Nonmonotonic De�nitions : 98

8.3 Value Restrictions : 99

8.4 Implementation : 100

9 Appropriateness and Well-Typedness 102

9.1 Introduction and Motivation : 102

9.2 De�nitions : 103

9.3 Implementation of the Appropriateness Function : : : : : : : : : : : : : : : : 105

9.4 Checking Well-Typedness : 106

9.4.1 Well-Typedness Checks at De�nition Time : : : : : : : : : : : : : : : 106

9.4.2 Well-Typedness Checks at Uni�cation Time : : : : : : : : : : : : : : : 107

9.4.3 Explicit Well-Typedness Checks for Feature Structures : : : : : : : : : 107

9.5 Total Well-Typedness Checks : 108

10 Comparison to Related Systems 109

11 Conclusion and Future Work 112

A Syntax of TDL 115

B Sample File 119

Bibliography 124

4 CONTENTS

Chapter 1

Introduction and Motivation

Typed feature structure formalisms have become the basis for modern natural language pro-

cessing systems because of their monotonicity, declarativeness, and reversibility. They also

facilitate reusability of existing NL grammars [Rupp & Johnson 94]. Several large national

(e.g., Verbmobil) and Europe-wide research projects are built around typed HPSG-like gram-

mars and constraint-based formalisms. The European Commission has recognized the need

for developing a formalism for machine translation and natural language processing. Several

CEC initiatives are working on related themes (e.g., EAGLES; see [Backofen et al. 93]).

Feature structures can be seen as data structures which allow the declarative speci�cation

of linguistic knowledge. They consist of (possibly nested) feature-value pairs which describe

entities such as words, phrases, and sentences.

The values of features can be atoms, disjunctions, negated values or, again, feature structures.

Uni�cation is the operation that combines the information encoded in two feature structures

or establishes their incompatibility.

Types allow hierarchical ordering of feature structures in an inheritance network, and serve

as abbreviations for complex feature structures via type de�nitions. Typically, a grammar for

natural language consists of a large set of type de�nitions.

Feature structures augmented by types are called typed feature structures. Type expansion

then is the operation that replaces type names in typed feature structures by their de�nitions

using uni�cation. The motivation for type expansion in manifold:

� Economy: It is not necessary always to work with fully expanded feature structures.

Lexicon entries in highly lexicalized grammar theories such as HPSG [Pollard & Sag 87;

Pollard & Sag 94], e.g., are very complex feature structures. A large lexicon can not

be loaded fully expanded in memory because it would consume too much space. Type

expansion expands lexicon entries and other typed feature structures at run time if they

are required by the parser or generator and thus helps to save memory in linguistic

processing. On the other hand, it makes sense to expand pre-lexical types statically

(partial evaluation).

5

6 CHAPTER 1. INTRODUCTION AND MOTIVATION

� EÆciency: Working with partially expanded feature structures reduces the costs of

copying and unifying during parsing or generation. Type expansion is necessary to

support this strategy.

� Checking consistency: Type de�nitions or partially expanded feature structures can be

inconsistent. Type expansion is the operation that determines whether a typed feature

structure (or a part of it) is consistent or inconsistent.

� Making knowledge explicit: Although working with partially expanded feature structures

is useful at run time, there must be some point of time where all knowledge structured

by types is made explicit by type expansion { otherwise, their speci�cation would have

been redundant. In this sense, type expansion is a structure building operation like

uni�cation.

� Expressivity: Admitting recursive type de�nitions increases the expressivity of typed

feature structures. Type expansion is necessary to exploit this property and o�ers ad-

ditional methods for grammar writers to formulate linguistic knowledge, e.g., relational

append �a la Prolog, �nite state automata, functional uncertainty, and much more. Fur-

thermore, recursive types are indispensable when working in the parsing as deduction

paradigm without specialized parsers (or generators) for annotated context-free rules.

In this thesis, we describe a new approach to type expansion for the typed feature struc-

ture formalism TDL (Type De�nition Language) developed at the Computational Linguistics

Department of the German Research Center for Arti�cial Intelligence (DFKI). TDL is a com-

prehensive system designed for (but not restricted to) the development and run time support

of HPSG-based natural language grammars [Krieger & Sch�afer 93a; Krieger & Sch�afer 94b;

Krieger & Sch�afer 94c; Krieger & Sch�afer 94a; Krieger 95b; Uszkoreit et al. 94]. The main

advantages of TDL in constrast to related systems are

� rich type system with atoms, atomic sorts, and complex feature types in either closed

or open type world

� full boolean type logic

� type partitions and incompatible types can be declared

� specialized modules for feature uni�cation (UDiNe) and type system (hierarchy and

simpli�cation)

� coreferences, distributed disjunctions, classical negation, cyclic feature structures and

feature uni�cation are supported by the constraint solver UDiNe

� templates (macros with parameters) support maintenance of large grammars

7

� `instance' facility for lexicon entries and other feature structures that need not be de�ned

as types

No other system o�ers the full range of these features that are demanded by grammar engi-

neers.

The aim of the implementation part of this thesis is to devise a parameterizable expansion

algorithm for TDL that meets the following requirements:

� type expansion as a proper module, in contrast to expansion mechanisms that are

integrated into typed uni�cation [A��t-Kaci et al. 94] or type de�nitions [Carpenter &

Penn 94]

� support the sophisticated type system of TDL, including disjunctive types, closed-world

sorts and open or closed-world feature structure types

� support correct expansion of recursive types and partially expanded structures

� be parameterized for expansion strategy (depth-�rst, breadth-�rst), attribute selection,

maximal path depth, preference information, etc.

Additionally, two further extensions related to type expansion are added to the TDL formal-

ism:

Nonmonotonicity: Nonmonotonic type or instance de�nitions are useful for modelling defaults

and exceptions which are linguistically motivated. Since monotonic uni�cation is used during

expansion, the type expansion algorithm is sensitive to the order in which feature structures

are overwritten nonmonotonically.

Well-Typedness Check: In TDL, the appropriateness speci�cation of features can be derived

from the type de�nitions. An optional check on feature structures uses this information

to guarantee well-typedness as de�ned in [Carpenter 92]. The checking algorithm also uses

results from type expansion to achieve this. Moreover, a feature structure is totally well-typed

if it is well-typed and fully expanded.

The thesis is organized as follows. In the next chapter, we brie
y describe the history of

(typed) feature structures and the outcome of interdisciplinary research on that �eld in logic

and computer science. In Chapter 3, we give an overview of the TDL formalism and architec-

ture as far as is important for type expansion and introduce the main concepts and de�nitions

used in the thesis. In Chapter 4, we describe extensions of the TDL representation of typed

feature structures that are necessary for the implementation of the expansion algorithm. In

the second part of this chapter, we describe the basic structure of the expansion algorithm.

The algorithm will be re�ned during the subsequent chapters.

Chapter 5 introduces a technique we call indexed prototype memoization. It is used to reduce

the number of uni�cations and to detect recursive types during expansion. In Chapter 6, the

8 CHAPTER 1. INTRODUCTION AND MOTIVATION

treatment of recursive types and lazy expansion is described. We also discuss decidability

results for feature logic with recursive type de�nitions. Chapter 7 explains how control in-

formation for the expansion algorithm is speci�ed declaratively and how it is implemented in

the algorithm.

Nonmonotonic extensions to the TDL language and their interaction with type expansion

is the issue of Chapter 8. In Chapter 9, appropriateness and well-typedness is de�ned and

the various implemented checks are presented. In Chapter 10, we discuss related systems

such as ALE, TFS, and CUF and compare them to the implemented TDL system. Finally, a

conclusion and a look at possible future work is given in Chapter 11.

Appendix A contains a BNF of TDL's type de�nition language and Appendix B a sample

session.

Acknowledgements: First of all, I would like to thank my advisor, Hans-Ulrich Krieger, for

his help, encouragement, and many discussions. Rolf Backofen and Christoph Weyers helped

me to understand their feature constraint solver UDiNe. Some TDL users and involuntary

beta-testers at DFKI and CSLI discovered bugs and made helpful comments: Stephan Buse-

mann, Elizabeth Hinkelman, Walter Kasper, Robert Malouf, Klaus Netter, Stephan Oepen,

and Hannes Pirker (now at �OFAI).

Finally, I am grateful to Elizabeth Hinkelman for reading a draft of this thesis, and to Hans-

Ulrich Krieger and Hans Uszkoreit for helpful comments.

Chapter 2

Feature Structure Formalisms

2.1 Feature Structures

The concept of feature-value pairs is a natural one. It has arisen independently in linguistics

and computer science. [Jakobson et al. 51] introduce so-called distinctive features in order

to characterize phonemes in spoken language. A bundle of distinctive features with binary

values describes each phoneme uniquely, e.g., the phoneme /p/ is2
666664
plosive +

voiced -

bilabial +

nasal -

3
777775 ;

while /b/ has the same values except voiced +. Later, binary values have been replaced by

arbitrary values.1

The need for nested descriptions has evolved from research in syntax in the 60's and semantics

in the 70's (cf. [Uszkoreit 88] for an overview). Martin Kay was the �rst one to propose

encoding syntactic features and phrase structure uniformly in feature structures [Kay 84].

The following complex structure states syntactic agreement properties of a nominal phrase.

1 expresses token identity between the values of the two features subject and agreement.2
666664
cat np

agreement 1

"
number singular

person third

#

subject 1

3
777775

One can characterize such descriptions as rooted, directed, labelled graphs, where features

are the labels, and values are the nodes of the graph.

1In the original work, the position of attributes (features) and values was value-attribute, but the attribute-

value order gained acceptance because of its conveniance for nested descriptions. The feature notation in

brackets is called avm notation (for attribute value matrix).

9

10 CHAPTER 2. FEATURE STRUCTURE FORMALISMS

This idea has been extended to very complex descriptions for all kinds of linguistic entitites

such as phonemes, morphemes, words, phrases, and sentences, which are uniformly encoded

in feature structures while in earlier formalisms, feature structures have been used to annotate

context free rules (LFG, [Bresnan 82], PATR II [Shieber et al. 83], GPSG [Gazdar et al. 85]).

2.2 Uni�cation

The basic operation on feature structures is feature uni�cation (u). Introduced by Martin

Kay in Functional Grammar [Kay 79], feature uni�cation is a monotonic, structure building

operation which takes two descriptions, and results in the most general feature structure that

satis�es both descriptions. If the two descriptions are not consistent, feature uni�cation fails.

For example:2
666664
cat np

agreement 1

"
number singular

person third

#

subject 1

3
777775 u

h
subject

h
gender female

i i

=

2
66666664
subject 1

2
664
gender female

number singular

person third

3
775

agreement 1

cat np

3
77777775

but2
666664
cat np

agreement 1

"
number singular

person third

#

subject 1

3
777775 u

h
subject

h
number plural

i i

is inconsistent.

Since the introduction of feature uni�cation, feature structure formalisms have been enriched

by negation, disjunction and set values [Karttunen 84]. For example,h
cat : vp

i
states that the value of feature cat is not vp.

An example of a disjunction is"
subject

"
person

(
first

third

)##

i.e., the value at path subject.person can be either first or third.

An introduction to uni�cation-based grammar formalisms can be found in [Shieber 86].

2.3. TYPES AND INHERITANCE 11

2.3 Types and Inheritance

At �rst glance, one could compare feature structures with record data types in imperative

programming languages, object-oriented programming languages, or data base systems.

However, these structured data types are more general than feature structures in that they

can consist of arbitrary data types such as arrays, hashtables, etc. On the other hand, they

often lack negation and disjunction.

Moreover, the monotonic uni�cation operation is not supported by these languages. Hence,

they have not in
uenced computational linguistics very much, although they have often been

used at low level to implement feature structures (e.g., Common Lisp's structure data type is

employed in the TDL/UDiNe system).

However, there are three �elds in computer science that gave new impetus to the develop-

ment of feature structure formalisms. First, the notion of uni�cation originated from the

logic programming and Prolog community, and functional and relational constraints have

been adopted as extensions to uni�cation-based formalisms (e.g., de�nite clauses in ALE,

[Carpenter & Penn 94]).

Second, from knowledge representation has come the idea of inheritance that allows hierar-

chical ordering of feature structures and elimination of redundant de�nitions. Inheritance is

especially useful in building and maintaining large lexica. Early formalisms provided tem-

plates for the purpose of abbreviating complex feature structures.

Shown below is a sample de�nition of the template Intransitive from PATR II [Shieber 86]:

Let Intransitive be MainVerb

<subcat first cat> = NP

<subcat rest> = end

<head trans arg1> = <subcat first head trans>.

Here, Intransitive inherits from template MainVerb, <: : : > denote feature paths, NP is a

phrase symbol, and end is an atom.

Last but not least, feature structures have been augmented by hierarchically ordered types

known from object-oriented programming languages [Cardelli & Wegner 85].

In typed feature structures, the nodes of the feature graph are enriched by type symbols. This

holds for complex feature-value nodes as well as for atomic nodes. Throughout the thesis,

type names are printed in italics , and features in uppercase letters, h i denotes the empty

list. Lists are usually encoded by �rst/rest feature structures (cf. the CAR/CDR representation

in Lisp). The end of a list is encoded by a special type or atom such as null or end , depicted

12 CHAPTER 2. FEATURE STRUCTURE FORMALISMS

by h i as below.

2
66666666664

sign

synsem

2
66666664

synsem

local

2
666664
local

category

2
664
cat

head noun

subcat h i

3
775

3
777775

3
77777775

3
77777777775

Uni�cation is extended to typed uni�cation which consists of feature uni�cation plus the great-

est lower bound (glb) operation on the corresponding types. Typed uni�cation is successful

if both operations are successful.

Interestingly, Hassan A��t-Kaci developed a very similar formalism for knowledge represen-

tation in his 1984 dissertation independently of linguistic motivation. His so-called -terms

[A��t-Kaci 86] are essentially the same as feature structures with types, coreferences, and

uni�cation.2

The main advantages of types in feature structures are:

� eÆciency: Types can be used to (partially) replace complex feature structures and

to impose additional constraints on typed feature structures, e.g., by partitioning the

type hierarchy. Types have their own inference mechanism which coexists with untyped

feature uni�cation. Fast encoding techniques for type hierarchies like the bit vector

encoding of [A��t-Kaci et al. 89] reduce the costs for the least upper bound, greatest

lower bound and subsumption operations to nearly constant time (for a �xed type

system).

� modularity: Like templates, types can be employed to abbreviate complex feature struc-

tures (via type de�nitions that establish isa-links). Hierarchical ordering of types allows

modular speci�cation of complex grammars and lexica. Multiple inheritance is achieved

by simply unifying the de�nitions of several supertypes.

� safety: As is the case in modern programming languages, type checking can contribute

to reduction of the number of typographical or conceptual errors in large grammars.

Appropriateness speci�cations describe what types are suitable attribute values in typed

feature structures and are considered in type checking.

� expressivity: Types can be used to enrich the expressive power of feature structure

formalisms. The feature that makes them Turing-equivalent is admission of recursive

type de�nitions.

2There are other approaches in knowledge representation that bear a resemblance to typed feature struc-

tures, namely KL-ONE-like terminological languages [Brachman & Schmolze 85]. The main di�erence is that

they generalize features (partial functions) to roles (relations), and often lack complements and coreferences.

2.4. FORMALIZATIONS 13

It is worth emphasizing that these goals (except the second) cannot be achieved by templates

which are comparable to purely syntactic macros in programming languages.

Typed (or sorted) feature structures became popular in connection with Head Driven Phrase

Structure Grammar (HPSG, [Pollard & Sag 87; Pollard & Sag 94]). Equally, one might claim

that HPSG became popular because it is the �rst grammar theory that uses typed feature

structures e�ectively: they are applied uniformly to all kinds of linguistic knowledge.

Today, HPSG is the most important grammar theory in computational linguistics. It combines

aspects of GB [Chomsky 81], GPSG, LFG, and Situation Semantics.

Because HPSG is a highly lexicalized grammar theory, that is, it tries to encode as much infor-

mation as possible in the lexicon and the rest in very general rules and principles, (multiple)

inheritance and types play an important rôle.

The success of HPSG stems from the fact that it uni�es linguistic theories with ideas from

knowledge representation and computer science, and addresses the structure of the lexicon

very detailed.

2.4 Formalizations

Formalizations from di�erent theoretical points of view have clari�ed the relationship between

feature structures and (deterministic) �nite automata, �rst-order logic and set-theoretical

semantics of knowledge representation languages.

[Kasper & Rounds 86] lead o� this work by characterizing feature structures via �nite au-

tomata (where features are the transition labels and values correspond to states), developing

the �rst attribute-value logic, and analyzing complexity.

[Johnson 88] shows that feature logic with classical negation is a decidable subset of �rst-order

logic. [Smolka 88] presents a set-theoretical semantics for sorted feature structures similar to

that for terminological languages like KL-ONE.

[Carpenter 92] gives a comprehensive introduction to the theory of typed feature structures,

basic de�nitions, and various pointers to the literature.

2.5 Formalisms

Over the last years, many feature structure formalisms have been developed for applications

in computational linguistics. Because there is no standard point of view about what criteria

feature formalisms must ful�ll, they di�er not only in syntax, but also in expressivity and

eÆciency of implementation.

In addition, some of the formalisms are integrated parts of complex natural language systems

with specialized modules such as a parser, generator, etc., whereas some others are stand-alone

systems with interface facilities to provide connections with foreign modules.

14 CHAPTER 2. FEATURE STRUCTURE FORMALISMS

One of the earliest and most famous formalisms is PATR-II [Shieber et al. 83]. Along with its

derivatives and with De�nite Clause Grammars (DCGs, [Pereira & Warren 80]) that are close

to Prologs term representation and have �xed feature arity, they form the �rst generation of

untyped feature structure formalisms. Because of their simplicity, many PATR- and DCG-

based systems are still in use today in real applications.

The second generation of feature formalisms makes use of type hierarchies. The oldest repre-

sentative, although not speci�cally designed for linguistic applications, is A��t-Kaci's LOGIN

(LOGic and INheritance, [A��t-Kaci & Nasr 86]), a language based on Prolog with -terms,

types and inheritance.

Its successor LIFE provides functions in addition [A��t-Kaci & Lincoln 88; A��t-Kaci 93; A��t-

Kaci et al. 94]. Both languages are mainly intended as programming and knowledge repre-

sentation languages, but strongly in
uenced the implementation of NL formalisms.

TFS [Emele & Zajac 90] has been developed especially for the declarative speci�cation of

HPSG grammars. It provides relations and recursive types and has been strongly inspired by

A��t-Kaci's work.

ALE [Carpenter & Penn 94] and CUF [D�orre & Dorna 93] share many properties with logic

programming languages. Both have a restricted type system. ALE postulates �xed feature

arity and does not provide features with disjunctive values.

TDL ExtraLight [Krieger & Sch�afer 93b], the predecessor of TDL, allows for multiple inheri-

tance, and is, like TDL, based on the constraint solver UDiNe, a feature uni�cation system with

distributed disjunctions and full classical negation. While TDL ExtraLight's type system re-

lied on the type system of the CLOS and hence was very restricted in some respect, TDL's type

hierarchy is rich and employs an extension of the bit-vector encoding from [A��t-Kaci et al. 89;

Krieger 95a]. We will have a closer look at TDL in the following chapter.

Chapter 3

TDL

In this chapter, we de�ne basic concepts, and give an introduction to TDL, its type de�nition

language and architecture. We do not intend to describe TDL in full detail. Instead, we

restrict the description to the parts of the formalism that are relevant to type expansion (e.g.,

templates or other syntactic sugar like TDL's rule syntax will be ignored). Furthermore, we

abstract from the complex type system of TDL as much as possible in order to keep the

expansion algorithm clear and to make it transferable to other formalisms. For a detailed

description of TDL, refer to [Krieger & Sch�afer 94b], [Krieger & Sch�afer 94c], and [Krieger

95b].

3.1 Basic De�nitions

De�nition 1 Type system

A TDL Type System (or Signature) � is a tuple (F ;A;T ;>;?;�;�;V;�), where

� F is a set of feature symbols (attribute names)

� A is a set of atoms (e.g., symbols, numbers, strings) without ordering

� T is a set of types, itself partitioned in four disjoint sets:

{ Ta, the set of complex avm types, which can bear features

{ Ts, the set of sorts, which cannot have features (hierarchically ordered atoms)

{ Tb, the set of built-in sorts, which correspond to admissible data types for atoms,

e.g., Integer , String , Symbol , and Number

{ f>g, the set that consists of the top type > of the hierarchy, i.e., the most general

type that subsumes all other types of the hierarchy

We assume that A\ T = ;

� ? =2 T is the bottom symbol, which indicates inconsistency between types

15

16 CHAPTER 3. TDL

� �� (T [f?g) � (T [f?g) is the type subsumption order, a re
exive partial order on

types. � orders types according to their speci�city and is induced through the type

de�nition function � (see below). � � � i� � 2 T is a supertype of � 2 T . We stipulate

that 8� 2 T : � � >

� � is a set of typed feature structures (de�nition follows)

� V is the set of variables. Variables indicate structure sharing (reentrancies) in feature

structures

� � : T 7! � is the type de�nition function. It assigns to each type � 2 T a typed feature

structure � 2 �. � is called the skeleton of the type de�nition.

T

RULE

LIST

AVM

SORT

TERNARY-RULE

BINARY-RULE

UNARY-RULE

CONS

DL-APPEND

DIFF-LIST

UNDEF

BUILT-IN

NULL

ATOM

STRING

SYMBOL

INTEGER

BIGNUM

FIXNUM

Figure 3.1: An initial type hierarchy of TDL.

It is important to realize that this de�nition of a type system does not impose any semantic

constraints on the type hierarchy except that it be a partial order and that � � > for all

� 2 T . In contrast to [Carpenter 92], we do not require hT ;�i to be a bounded complete

partial order (BCPO).

3.1. BASIC DEFINITIONS 17

The type subsumption order is determined by the type de�nition function � that establishes

isa-links between types in the hierarchy (cf. the following section). Further constraints on

the hierarchy are imposed by type simpli�cation rules.

De�nition 2 Syntax of type expressions

Type Expressions are de�ned inductively:

� 8� 2 T : � is a type expression

� 8a 2 A : a is a type expression

� if � is a type expression, then :� is a type expression (type negation)

� if � and � are type expressions, then � ^ � is a type expression (type conjunction)

� if � and � are type expressions, then � _ � is a type expression (type disjunction)

(T [A)� is the set of all type expressions.

In the implementation, type simpli�cation at de�nition and run time guarantees that type

expressions are always in normal form. Either conjunctive or disjunctive normal form can be

choosen through a global switch.

Expressions of the form �1^� � �^�n can occur because TDL does not require that the greatest

lower bound type of �1; : : : ; �n always exists (the same holds for least upper bounds). This

behavior (`open world lub/glb reasoning') can also be controlled by a global switch. In a

closed glb world, the expression �1^� � �^�n would be inconsistent if the greatest lower bound

type did not exist. Most other typed feature structure formalisms only admit this `closed

world' view.

De�nition 3 Syntax of typed feature structures (preliminary)

A Typed Feature Structure � 2 � is either

� hx; �; [f1
:
= �1; : : : ; fn

:
= �n]i, a conjunctive typed feature structure, where

x 2 V is the Variable associated with the structure,

� 2 (T [A)� is the (possibly complex) type (also type entry or head) of the feature

structure,

f1; : : : ; fn 2 F are the features or attributes, and

�1; : : : ; �n 2 � the values of the features with n 2 f0; 1; 2; : : :g. If n = 0, then the

structure bears no features. This is always the case for sorts and atoms.

� hx; f�1; : : : ; �mgi is a disjunctive typed feature structure or disjunction, where

x 2 V is the variable associated with the disjunction,

�1; : : : ; �m 2 � are the disjunction elements with m 2 f1; 2; : : :g.

18 CHAPTER 3. TDL

This representation of typed feature structures is a generalization of A��t-Kaci's �-terms which

themselves are -terms with a compact notation for disjunctions [A��t-Kaci 86]. TDL gener-

alizes �-terms in that the head of the term is not only a type symbol, but a complex type

expression involving connectives ^, _, and : in addition to simple type symbols.

The correlation of this representation with the avm notation for typed feature structures

is obvious. Conjunctive feature structures correspond to the feature-value lists in brackets,

disjunctive feature structures to alternative lists in braces. Variables which occur only once

are omitted in the avm notation. Otherwise, they correspond to the boxed coreference tags

which indicate structure sharing. For example, the avm2
66666666666664

npsg23

agreement x

2
666664
sg23

number singular

person

(
second

third

)
3
777775

cat np

subject x

3
77777777777775

can be translated into

hnpsg23 ; [agreement
:
= hx; sg23 ; [number

:
= singular;

person
:
= hfsecond; thirdgi]i;

cat
:
= np;

subject
:
= x]i

Variables that occur only once are omitted, a tagged empty node such as hx;>; []i is abbre-

viated as x. Atomic and sort values are abbreviated to atom instead of hatom; []i.

Because the latter representation is hard to read if structures are large, we mainly use it to

represent the general format of feature structures in algorithms. For sample structures, we

prefer the avm notation.

Although the UDiNe feature constraint solver supports distributed (named) disjunctions, they

add no expressive power and will therefore be ignored here.

TDL's feature structure representation provides two ways to express disjunction, one at the

type level and one at the feature structure level. Actually, the two feature structures hx; �1 _

� � � _ �n; []i and hx; fhx1; �1; []i; : : : ; hxn; �n; []igi are equivalent modulo variable renaming (cf.

their set-theoretical semantics in the next section). However, the second representation is the

canonical one, since it conforms to UDiNe's distributed disjunction representation, that has a

�xed disjunct order and admits coreferences between disjuncts only at the same position.1 All

1For the sake of simplicity, we do not consider distributed disjunctions except in sample structures in

this thesis. Disjunction names are treated `invisible' to the expansion algorithms. This re
ects exactly the

implementation that ignores them as well. However, distributed disjunctions are handled by the implemented

algorithms the same way as the trivial case of normal disjunctions.

3.2. SET-THEORETICAL SEMANTICS 19

disjunctions in TDL's feature structures are translated into this representation at de�nition

time. The only occasion where the �rst representation can appear in TDL, is the application

of DeMorgan's law when negation takes place. As will be shown later, the type expansion

process handles canonicalization of this case.

Disjunctive feature structures in TDL/UDiNe are always untyped. The type of a disjunction

node can be determined immediately by combining the types of its elements with the _

operator.

3.2 Set-Theoretical Semantics

TDL can be given a set-theoretical semantics along the lines of [Smolka 88]. Smolka's approach

is closely related to the set-theoretical semantics of KL-ONE-like terminological logics.

We will only brie
y sketch the semantics for TDL here; a more complete approach with �xed

point construction is addressed in [Krieger 95b].

De�nition 4 Interpretation of the type system �

The interpretation I assigns denotations to features, types, sorts, and atoms:

� >I is a set called the universe of I

� ?I is the empty set

� if a 2 A, then aI is a set consisting of exactly one element (singleton)

� 8a; b 2 A: if a 6= b, then aI 6= bI , i.e., di�erent atoms have di�erent denotations

� if � 2 T , then �I � >I , i.e., types denote subsets of the universe

� if �; � 2 T and � 2 T is the greatest lower bound (glb) of � and � , then �I = �I \ �I ,

i.e., glb corresponds to set intersection

� if �; � 2 T and � 2 T is the least upper bound (lub) of � and � , then �I = �I [�I , i.e.,

lub corresponds to set union

� if �; � 2 T and � � � , then �I � �I

� if f 2 F , then fI : DI
f 7! >I is a function where DI

f � >I is the domain of f in I, i.e.,

features are interpreted as functions

� if f 2 F and a 2 A, then DI
f \ aI = ;, i.e., atoms cannot bear features

� if f 2 F and � 2 Ts [Tb, then D
I
f \ �

I = ;, i.e., sorts cannot bear features

De�nition 5 Denotation of variables

Let � : V 7! >I be the function that assigns variables to the universe. Then [[x]]I� := f�(x)g,

i.e., the denotation of a variable x is a singleton set consisting of �(x).

20 CHAPTER 3. TDL

De�nition 6 Denotation of type expressions

The denotation of atoms and types is given by their interpretation I and Variable assign-

ment �. Conjunction of type expressions denotes set intersection, disjunction (generalization)

denotes set union, negation denotes set complement.

� 8a 2 A : [[a]]I� := aI

� 8� 2 T : [[�]]I� := �I

� 8�; � 2 (T [A)� : [[� ^ �]]I� := [[�]]I� \ [[�]]I�

� 8�; � 2 (T [A)� : [[� _ �]]I� := [[�]]I� [[[�]]I�

� 8� 2 (T [A)� : [[:�]]I� := >I � [[�]]I�

De�nition 7 Denotation of feature-value constraints

The denotation of a feature-value constraint f
:
= � (f 2 F , � 2 �) under interpretation I

and variable assignment � is de�ned as follows

[[f
:
= �]]I� := f�(x)jfI(�(x)) 2 [[�]]I�g:

The denotation of a set of feature-value constraints is interpreted as the intersection of their

denotations.

De�nition 8 Denotation of typed feature structures

The denotation of a typed feature structure � 2 � under interpretation I and variable as-

signment � is de�ned as follows (x 2 V, � 2 (T [A)�, fi 2 F , �i 2 �).

� If � is a conjunctive typed feature structure, i.e., � = hx; �; [f1
:
= �1; : : : ; fn

:
= �n]i, then

[[�]]I� = [[hx; �; [f1
:
= �1; : : : ; fn

:
= �n]i]]

I
�

:= [[x]]I� \ [[�]]I� \
n\
i=1

[[fi
:
= �i]]

I
�

= f�(x)g \ [[�]]I� \
n\
i=1

f�(y)jfIi (�(y)) 2 [[�i]]
I
�g

� If � is a disjunctive typed feature structure, i.e., � = hx; f�1; : : : ; �ngi, then

[[�]]I� = [[hx; f�1; : : : ; �ngi]]
I
�

:= [[x]]I� \
n[
i=1

[[�i]]
I
�

= f�(x)g \
n[
i=1

[[�i]]
I
�

3.3. TYPE DEFINITIONS 21

Finally, we are ready to de�ne the denotation of uni�cation.

De�nition 9 Denotation of feature structure uni�cation

The denotation of the uni�cation (u) of two typed feature structures �1; �2 2 � under inter-

pretation I and variable assignment � is

[[�1 u �2]]
I
� := [[�1]]

I
� \ [[�2]]

I
�

That is, the denotation of the result of feature structure uni�cation is de�ned as the intersec-

tion of the denotation of the input feature structures.

3.3 Type De�nitions

In TDL, type de�nitions are the basic means of building up a type hierarchy. A set of type

de�nitions is often referred to as grammar. When a grammar is being processed, TDL starts

with an empty hierarchy which contains only the most general type > (plus possibly some

types prede�ned by the system such as *list* , *cons* , *null* for list representation, *sort* ,

avm , etc.).

A type de�nition adds a new type to the hierarchy, establishes isa-links between the new type

and its supertypes, and may introduce new features and re�ne values of inherited attributes.

The right hand side of a type de�nition �(�) consists of a type expression that speci�es

the supertype(s) plus a possibly empty set of feature constraints (conjunctive de�nition).

Alternatively, a type de�nition can be disjunctive, i.e., specify its subtypes. Thus, the rhs of

the de�nition can be expressed through a typed feature structure. The de�ned type can be

seen as an abbreviation for the rhs feature structure skeleton (cf. templates).

If �(�) = � is a conjunctive feature structure, then � becomes the direct subtype of the head

(the type) of �, i.e., it inherits from the head type and may re�ne the feature constraints and

introduce new features. If � bears no features and � is a conjunction of type symbols, say

�1^� � �^�n; n > 1, then � is marked as the least upper bound of �1; : : : ; �n. If � is disjunctive,

then � is introduced as the least upper bound of the elements of the disjunction. All variables

occurring in � must be local, i.e., they must not be shared with variables in feature structures

outside �.

Although typed feature structures are used by TDL to represent type de�nitions, TDL's

input syntax is more liberal. It admits any complex expression consisting of type names,

atoms, feature-value lists and disjunctions, combined by the operators & (conjunction), |

(disjunction), ^ (exclusive-or) and ~ (negation); cf. the BNF in Appendix A.

When such a type de�nition is processed, the following steps are performed (steps that are

not always executed are marked by �):

1. parse input expression (TDL syntax)

22 CHAPTER 3. TDL

2. build conjunctive or disjunctive normal form

3. translate into feature structure representation

4. store the feature structure skeleton

5. de�ne intermediate types�

6. establish isa-links in the hierarchy

7. mark new type as glb/lub

8. de�ne features to be appropriate for a type� (cf. Chapter 9)

3.3.1 Examples

We now describe informally how type de�nitions are processed in TDL. Some simple examples

should make clear what occurs when a type is being de�ned. The general syntax for a type

de�nition is

newtype := complex description (skeleton).2

Consider the following type de�nitions:

a := *avm* & [a].

b := *avm* & [b].

where *avm* (the most general avm type, prede�ned by TDL) is the common supertype of a

and b. Both de�nitions are already in normal form, and their feature structure representation

is

�(a) = h*avm* ; [a
:
= >]i , and

�(b) = h*avm* ; [b
:
= >]i

Types a and b introduce the features a and b as appropriate because *avm* has no features.

Type de�nition

c := a & b.

2The assignment syntax (:=) has been chosen to indicate that the left hand side is an abbreviation for the

right hand side. This is contradictory from the semantic point of view (in general, if appropriateness is not

stipulated) where a type de�nition has to be read as a consequence from left to right,

newtype) complex description (skeleton):

i.e., if a feature structure is of type newtype , then it has to ful�ll at least the constraints given by the right

hand side of newtype 's de�nition.

3.3. TYPE DEFINITIONS 23

introduces a new type c as subtype of a and c. c is marked as least upper bound and its

feature structure representation is

�(c) = ha ^ b; []i

c does not introduce new features.

d := c & [a 1, b 2].

speci�es a subtype of c which re�nes the values of the inherited attributes a and b. The

feature structure representation is

�(d) = hc; [a
:
= h1; []i;b

:
= h2; []i]i; or abbreviated;�(d) = hc; [a

:
= 1;b

:
= 2]i

These four de�nitions build up the hierarchy

c

b

d

a

avm

T

Alternatively, the grammar writer could have omitted the de�nition for c and instead have

written

d := a & b & [a 1, b 2].

In this case, there are two possibilities. The �rst one is that a type with de�nition a & b, say c,

already exists. Then, the de�nition of d will automatically be rewritten to c & [a 1, b 2].

If no such glb type exists, TDL introduces a so-called intermediate type with the same de�nition

as c and with name ja&bj. Then, d 's de�nition is rewritten to |a&b| & [a 1, b 2].

By default, intermediate types are only introduced for the supertype of a type de�nition. This

is necessary to determine the correct location of the new type in the hierarchy (classi�cation;

cf. [Krieger 95a]). Inside a complex feature structure de�nition, i.e., at feature paths of length

greater than zero, intermediate types are only explicitly represented if a global switch (that

can be changed by the grammar writer) enforces this.

An example of a disjunctive type de�nition is TDL's *list* type, which is de�ned as

list := *null* | *cons*.

24 CHAPTER 3. TDL

list is marked to be a least upper bound and �(*list*) = hfh*null* ; []i; h*cons* ; []igi.

The resulting hierarchy is

T

sort

list

cons *null*

avm

Declarations: There are other syntactic constructs where no features are involved, e.g.,

NULL :< *SORT*.

declares *null* to be a subsort of the most general sort *sort* (the same can also be done

for avm types).

NIL = word & phrase.

declares word and phrase to be incompatible types (including their respective subtypes) by

de�ning a special subtype of both which denotes inconsistency (`bottom type').

word

⊥

phrase

{word,phrase}

3.4 Typed Uni�cation

The most important operation on typed feature structures is uni�cation. Uni�cation mono-

tonically combines the information encoded in two feature structures. Either the most general

structure that satis�es both arguments is returned or inconsistency is detected.

As de�ned in Section 3.2, the set-theoretical denotation of uni�cation corresponds to set

intersection of the denotation of the arguments:

[[�1 u �2]]
I
� := [[�1]]

I
� \ [[�2]]

I
�

If we assume that arguments �1 and �2 are conjunctive feature structures (the extension to

disjunctive arguments is straightforward), we can insert the de�nition of their semantics and

exploit commutativity of conjunction and set intersection to rewrite this de�nition as follows:

3.5. TYPE SIMPLIFICATION 25

[[�1 u �2]]
I
� = [[�1]]

I
� \ [[�2]]

I
�

= [[h�; [f11
:
= �11 ; : : : ; f1m

:
= �1m]i]]

I
� \ [[h�; [f21

:
= �21 ; : : : ; f2n

:
= �2n]i]]

I
�

= [[�]]I� \
m\
i=1

[[f1i
:
= �1i]]

I
� \ [[�]]I� \

n\
i=1

[[f2i
:
= �2i]]

I
�

= [[�]]I� \ [[�]]I� \
m\
i=1

[[f1i
:
= �1i]]

I
� \

n\
i=1

[[f2i
:
= �2i]]

I
�

= [[� ^ �]]I� \ [[[f11
:
= �11 ; : : : ; f1m

:
= �1m] uf [f21

:
= �21 ; : : : ; f2m

:
= �2m]]]

I
�

where uf is (untyped) feature uni�cation. From the last line of these equations, we derive

that operationally, typed uni�cation has to

� determine the greatest lower bound of the types of the arguments

� unify the feature constraints (untyped feature structure uni�cation)

if neither fails, the whole uni�cation is consistent, and a single feature structure that contains

the merged result is returned. Otherwise, ? is returned to indicate failure.

In the TDL system, the �rst part is accomplished by type simpli�cation of the complex type

expression � ^ � (�; � 2 (T [A)). The second part (untyped feature structure uni�cation) is

handled by the the constraint solver UDiNe, which we treat as black box in this thesis.

The architecture of typed uni�cation is depicted in Figure 3.2. Two feature structures with

types � and � , are to be uni�ed. Before feature uni�cation takes place, type simpli�ca-

tion computes the new type entry of the result, or fails. Finally, UDiNe uni�es the feature

structures and returns the result with the new type entry (or fails).

3.5 Type Simpli�cation

Type simpli�cation translates a TDL type expression into a normal form and determines

whether it is consistent or not. Type simpli�cation is invoked

� at type de�nition time, to normalize the type de�nitions and exploit information that

can be inferred from previously de�ned types

� at uni�cation time, to determine the type entry of the uni�ed feature structure, or derive

type inconsistencies

� as a separate function, invoked by external modules such as an NL parser or generator,

e.g., to check type subsumption.

26 CHAPTER 3. TDL

solver (UDiNe)

feature constraint

1

1 2

22

1
Query Result

Type hierarchy
〈 , 〉

τ
σ

ρ

〈σ,[...]〉

〈τ,[...]〉

σ ∧ τ

{ρ,σ∧τ,⊥}

⊥

T
{ρ,σ∧τ,⊥}

TDL type simplification

Figure 3.2: Architecture of Typed Uni�cation.

TDL's function

simplify-type : (T [A [f?g)� 7! (T [A [f?g)�

simpli�es type expressions, where (T [A[f?g)� is the set of complex type expressions over

the connectives ^, _, and :. The function performs term rewriting on type expressions.

A set of about 30 rewrite rules is applied iteratively to a type expression until a normal

form (conjunctive or disjunctive, depending on a global switch) is reached or inconsistency

is detected. Convergence is guaranteed by a total lexicographic order that is imposed on

complex type expressions.

EÆcient term rewriting is achieved by memoization of the type simpli�cation function and a

variant of bit-vector encoding of the type hierarchy [A��t-Kaci et al. 89] (e.g., for fast lub, glb,

and subsumption computation).

The full set of the simpli�cation rules and the basic algorithm can be found in [Krieger &

Sch�afer 94c]. We only show examples here to illustrate the di�erent kinds of rules.

3.5.1 Purely Syntactic Schemata

This group comprises standard rules from Boolean algebra such as

3.5. TYPE SIMPLIFICATION 27

: (� ^ �)

: � _ : �
and

: (� _ �)

: � ^ : �
(DeMorgan's law)

� ^ (� _ �)

(� ^ �) _ (� ^ �)
and

� _ (� ^ �)

(� _ �) ^ (� _ �)
(Distributive law)

� ^ �

�
and

� _ �

�
(Idempotence)

� ^ : �

?
and

� _ : �

>
(Inverse Element)

� ^>

�
and

� _ ?

�
(Neutral Element)

:>

?
and

: ?

>
(Negation)

with �; �; � 2 (T [A [f?g)�, and others like absorption, double negation, commutativity,

etc.

3.5.2 `Semantic' Schemata for Homogeneous Type Expressions

`Semantic' schemata are schemata that depend on the type hierarchy, i.e., exploit knowledge

about subtype relations, least and upper bound types, etc. Homogeneous type expressions

contain types from the same partition within the type hierarchy (e.g., sorts, built-in sorts,

avm types, atoms) plus f>g. Examples (again, the list of rules is not exhaustive):

� ^ �

�
and

� _ �

�
if � � � and �; � 2 T

� ^ : �

?
and

: � _ �

>
if � � � and �; � 2 T

: � ^ : �

: �
and

: � _ : �

: �
if � � � and �; � 2 T

� ^ : �

�
if glb(s; t) = ?

The following rule explicitly states the `closed world' for sorts. The closed world for complex

avm types (which can be selected optionally in TDL) depends on a global variable that enables

or disables a similar rule.
� ^ �

?
if �; � 2 Ts and glb(�; �) =2 T

28 CHAPTER 3. TDL

3.5.3 `Semantic' Schemata for Heterogeneous Type Expressions

Heterogeneous type expressions contain types of di�erent partitions in the type hierarchy

(e.g., sorts, built-in sorts, avm types, and atoms are mixed).

The set of rules in this group comprises (among others):

� ^ �

?
if � 2 Ts [Tb and � 2 Ta (Incompatibility of sorts and avm types)

� ^ �

?
if � 2 Ts and � 2 Tb (Incompatibility of sorts and built-ins)

a ^ b

?
and

a ^ : b

a
if a; b 2 A and a 6= b (Uniqueness of atoms)

a ^ �

a
and

a _ �

�
if a 2 A, � 2 Tb and the data type of a � �

a ^ �

?
if a 2 A, � 2 T and the data type of a is not � and not a subtype of �.

3.6 Architecture of the TDL System

As we have shown in the preceeding sections, TDL is both a type description language and the

runtime support for this language, including a complex software system that administrates

type de�nitions as input, generates feature structures suitable for the constraint solver UDiNe,

and contains the type hierarchy as well as type simpli�er, and, last but not least, the type

expansion module. Figure 3.3 shows the overall architecture of the TDL system.

3.6. ARCHITECTURE OF THE TDL SYSTEM 29

TDL

External Parser Udine (Feature

(optional) (optional)

TDL2LaTeX

Type Grapher Type Hierarchy
TDL Syntax

Reader & Parser

Type Definition

Management

Type ExpansionStatistics Module

Type Simplifier
Feature Editor

Interface

Constraint Solver)

External Generator

Figure 3.3: Architecture of the TDL system.

Chapter 4

Type Expansion

We now turn to the main topic of this thesis: type expansion. First, we give a de�nition of

the notion and motivate it. Then, we modify the de�nition of typed feature structures in

such a way that partially expanded feature structures can be represented. At the end of this

chapter, we introduce the basic expansion algorithm which we will re�ne in the subsequent

chapters.

4.1 Introduction and Motivation

A feature structure type is de�ned through local feature structures plus constraints that are

inherited from its supertype. Type expansion is an operation on typed feature structures

that combines the local information of a feature structure with the information given by type

de�nitions through uni�cation. Because the de�nitions of types themselves consist of typed

feature structures, expansion is a recursive process that walks up the type hierarchy until the

top type is reached.

Type expansion has two main functions:

� structure building: make constraints imposed by type de�nitions explicit locally

� consistency checking: test compatibility of local and inherited constraints

The major goal of this thesis is to devise an eÆcient algorithm for type expansion.

Further issues are economy and expressivity: partial evaluation can be employed in connection

with type expansion to reduce the size of feature structures and hence save memory and copy-

ing time. Admission of recursive type de�nitions makes typed feature structures as powerful

as Turing machines. This expressivity can only be exploited through type expansion.

There are other names for type expansion in the literature, e.g., type checking [Emele & Zajac

90], sort unfolding [A��t-Kaci 93] and total well-typedness check [Carpenter 92] (for well-typed

feature structures). Some refer to it as type inference, but this is incorrect (although closely

30

4.1. INTRODUCTION AND MOTIVATION 31

LIEFER := trans-verb-lex &

[CAT @TRANS-VERB ($PRED = 'LIEFER,

$SORT = accomplishment,

$STEM = < 'LIEFER >)].

Figure 4.1: A TDL de�nition for the lexicon entry of the German transitive verb liefern from

DISCO's HPSG-based grammar for German.

related). Type inference starts with with an untyped (or partially typed) feature structure

and tries to infer the correct type of the structure (or an approximation) according to the

type de�nitions. Type expansion works the other way around: it starts with a typed skeleton,

and inserts any features inherited through type de�nitions.

All feature structure formalism implementations with types include a variation of type ex-

pansion. In most cases, an implicit expansion mechanism is used. Actually, one can classify

feature formalisms according to how expansion is executed.

Thesis: Expand as soon as possible

Systems like LOGIN, ALE, or TDL ExtraLight expand typed feature structures at de�nition

time. The advantages are that

� no type expansion (i.e., additional uni�cations) has to be done at run time

� no facilities for partially expanded structure are needed

But there are several crucial disadvantages of that strategy:

� wasted memory: all lexicon entries must be held in memory. This is unacceptable for

large lexica in real NL applications, cf. Figure 4.1 and Figure 4.2

� ineÆcient uni�cation: the larger typed feature structures are, the more expensive is

uni�cation (in fact, nearly proportional to the number of uni�ed nodes). It is known

that often uni�cation of partial descriptions suÆces to rule out inappropriate readings

� restricted expressivity: if type de�nitions are expanded at de�nition time, recursive

types cannot be admitted. Otherwise, expansion would either loop or be incomplete.

Antithesis: Expand as late as possible

The most radical version of this strategy is lazy attribute inheritance [A��t-Kaci 93]. The basic

idea is that (1) expansion is an integrated part of uni�cation and (2) not the whole skeleton

of a type to be expanded is inherited, but only those attributes and its values of the de�nition

that appear locally in the feature structure that has been returned as the result of feature

uni�cation. The advantage of this algorithm is that

32 CHAPTER 4. TYPE EXPANSION

2
6664

trans-verb-lex

CAT

2
6664

arche-lex-cat-type^trans-verb-type

MORPH

2
6666666664

diff-list

LIST

*
2
666664

morph-type
HEAD morph-head-type

STEM

2
4morph-stem-type

FIRST liefer
REST h i

3
5

3
777775 : 1

+

LAST 1 []

3
7777777775

SYN

2
664

syntax-type

HEAD

2
6664

vhead-type

MAJ

�
v-pos-type
POS have-verb

�

SUBJ 14

2
664

dp-nom-type
MORPH []

SYN

2
6666666666666666666666666666666664

syntax-type

HEAD

2
666666666666666666664

dhead-type

MAJ

�
n-pos-type
POS noun

�

MIN

�
fcompl-type
FCOMPL +

�

INFL

2
6666666664

st-decl
DECL st
PERS 4 []

AGR

2
664

nom
NUM 3 []

GENDER 2 []

CASE nom-val

3
775

3
7777777775

3
777777777777777777775

LOCAL

2
666664

non-lpe-type
SUBCAT h i

SUBJ-SC *nil
V-SUBCAT *nil
LPE -

3
777775

3
7777777777777777777777777777777775

SEM

2
6666666666666666666666664

cont2quant
LAST h i

QUANT

2
6666666666666666664

diff-list

LIST

*
6

2
66666666666664

rp-type
QFORCE []

COND wff-type

VAR 11

2
66666664

var-type

AGR

2
664

agr-feat
GENDER 2

NUM 3

PERS 4

3
775

FUN subj

3
77777775

3
77777777777775

: 5

+

LAST 5 []

3
7777777777777777775

CONTENT 6

3
7777777777777777777777775

3
775

3
7775

LOCAL

2
664

non-empty-arche-type
LEXICAL arche-lex
LPE -

REL

2
4*diff-list*

LIST 7 []

LAST 7

3
5

SUBCAT

*

2
6664

dp-acc-type
MORPH []

SYN

2
6666666666666666666666666666666664

syntax-type

HEAD

2
666666666666666666664

dhead-type

MAJ

�
n-pos-type
POS noun

�

MIN

�
fcompl-type
FCOMPL +

�

INFL

2
6666666664

st-decl
PERS 10 []

DECL st

AGR

2
664

acc
GENDER 8 []

NUM 9 []

CASE acc-val

3
775

3
7777777775

3
777777777777777777775

LOCAL

2
666664

non-lpe-type
SUBCAT h i

SUBJ-SC *nil
V-SUBCAT *nil
LPE -

3
777775

3
7777777777777777777777777777777775

SEM

2
6666666666666666666666666664

cont2quant
LAST h i

QUANT

2
666666666666666666664

diff-list

LIST

*
13

2
66666666666666664

rp-type
QFORCE []

COND wff-type

VAR 16

2
6666666664

var-type

AGR

2
664

agr-feat
GENDER 8

NUM 9

PERS 10

3
775

FUN obj
OBL 11

3
7777777775

3
77777777777777775

: 12

+

LAST 12 []

3
777777777777777777775

CONTENT 13

3
7777777777777777777777777775

3
7775

+

SUBJ-SC 14

3
775

3
775

SEM

2
666666666666666666666666666666666664

semantics-type
LAST 19 []

QUANT

2
4*diff-list*

LIST 15 []

LAST 15

3
5

CONTENT

2
6666666666666666666666664

rp-type^subwff-inst-share-var
QFORCE []

VAR 18

2
666664

var-type
CLASS 17 liefer
AGR -
OBL 16

SORTE accomplishment

3
777775

COND

2
6666666664

conj-wff-type
CONN semantics-and

SUB-WFFS

*
2
666664

atomic-wff-type
PRED 17

INST 18

AGENT 11

THEME 16

3
777775 : 19

+

3
7777777775

3
7777777777777777777777775

3
777777777777777777777777777777777775

3
7775

3
7775

Figure 4.2: The (almost) fully expanded lexicon entry of the German transitive verb liefern.

The nonlocal features are omitted.

4.2. AUGMENTED TYPED FEATURE STRUCTURES 33

� it is optimal with respect to the memory requirements if one is only interested in satis-

�ability

� lazy expansion of recursive types is treated simply and elegantly.

The disadvantages are that

� in general, full expansion is not performed although it may be necessary (e.g., to access

the complete semantic information), i.e., only one half of the duties of type expansion

are ful�lled, namely consistency checking

� the method slows down expansion at run time because all expansions are done at run

time and because it contradicts memoization (cf. Chapter 5)

� in an implementation that represents coreferences by structure sharing (as TDL does),

it is diÆcult (i.e., time-consuming) to preserve coreferences that occur in super types.

Cf. Section 4.3.2 for a detailed discussion.

As it turns out, this is a classical con
ict of time vs. space optimization. Neither of the two

extremes presented above seems to be satisfactory for practical NL applications.

Synthesis: Expand if needed

The solution we present in this thesis is to treat type expansion as an explicit mechanism

that can be employed at any time in linguistic processing: at type de�nition time as well as

integrated in typed uni�cation, but also in between, e.g., controlled explicitly by a NL parser

or generator.

The expansion algorithm operates either destructively or non-destructively. It takes a typed

feature structure and uni�es each feature structure node that references to a type name with

its de�nition. Because type de�nitions themselves are represented by typed feature structures,

type expansion is a recursive process that walks through feature structures and up the type

hierarchy until all types in the structure are expanded or a global inconsistency is detected.

The expansion algorithm can be parameterized globally and locally for delay and preference

information as well as search strategy. Memoization is used to minimize the number of

uni�cations, and recursive types are treated properly.

4.2 Augmented Typed Feature Structures

Before we introduce the algorithm, the data structures that represent typed feature structures

must be considered. Basically, we use the notation from De�nition 3 on page 17. But some

modi�cations of the type entries of conjunctive feature structures are necessary to be able to

represent partially expanded (postponed) feature structures, e.g., for recursive and postponed

types.

34 CHAPTER 4. TYPE EXPANSION

De�nition 10 Type entries of conjunctive typed feature structures (�nal version)

The type expression � in De�nition 3 is replaced by a triple h�;�-set ; expanded i, the type

entry or type info where

� � is the complex type expression as before

� �-set 2 2T [A is a set that indicates which de�nitions of the components of � (including

their supertypes) have already been uni�ed with the current node, i.e., �-set indicates

whether a node is expanded locally. If all types (including their supertypes) of the node

are expanded locally, then the node is said to be �-expanded (�-expanded 2 ftrue,falseg,

see below)

� expanded 2 ftrue,falseg is a
ag that indicates whether all sub-feature structures in-

cluding the current node are �-expanded (true) or not (false), i.e., expanded indicates

whether a node is expanded globally

The expanded
ag helps to drastically reduce the search space for type expansion. The

expansion algorithm never visits those substructures of a feature structure node with expanded

value true. If a whole feature structure is fully expanded, a single look at the root node's

expanded
ag suÆces to decide whether further expansion is necessary or not.

The motivation of the �-set is to make it possible to postpone type expansion locally and to

avoid unnecessary uni�cation (expansion) of types that have already been expanded locally.

Before a type de�nition is uni�ed with a node in the expansion algorithm, the node's �-set

is compared with the type to be expanded, say � . If � or one of its subtypes is already in the

�-set , then no uni�cation takes place.

The only reason why �-set is a set (and not a
ag) is that TDL admits complex conjunctive

type expressions of the form �1 ^ � � � ^ �n in the type slot. Each �i can be selected separately

through the �-set . In a closed type world (which can be chosen in TDL), �-set reduces to a

single
ag because there is always only one type per node.

�-set and expanded are only relevant to avm types that are de�ned as abbreviations for

complex feature structures. Sorts, atoms and > are always �-expanded and expanded .

�-expanded can be computed easily from the �-set and the type expression � of a type entry.

Therefore, it is not stored explicitly in the type info.

The following functions access the values of the three components of the augmented type

entries and the �-expanded
ag.

De�nition 11 type-of

type-of : � 7! (T [A)� is a function. type-of (�); � 2 �, returns

� the value of the �rst component of �'s type entry if � is a conjunctive typed feature

structure,

4.2. AUGMENTED TYPED FEATURE STRUCTURES 35

�
Wn
i=1 type-of (�i) if � is a disjunctive typed feature structure � = hx; f�1; : : : ; �ngi, whereW
is the type disjunction operator.

De�nition 12 �-set

�-set : � 7! 2T is a function. �-set(�); � 2 � returns a set of type symbols,

� the value of the second component of �'s type entry if � is a conjunctive typed feature

structure,

� the empty set if � is a disjunction.

De�nition 13 expanded

expanded : � 7! ftrue,falseg is a function. expanded (�); � 2 � returns

� the value of the third component of �'s type entry if � is a conjunctive typed feature

structure,

�
Vn
i=1 expanded (�i) if � is a disjunctive typed feature structure � = hx; f�1; : : : ; �ngi,

where
V
is the Boolean and operator.

De�nition 14 �-expanded

�-expanded : � 7! ftrue,falseg is a function. �-expanded (�); � 2 � returns

� if � is a conjunctive typed feature structure:

8><
>:
true; if type-of (�) 2 A[Ts [f>g or type-of (�) 2 �-set(�) or

type-of (�) = �1 ^ � � � ^ �m, and 8�i: if �i 2 T then �i 2 �-set(�)

false; otherwise,

�
Vn
i=1�-expanded (�i) if � is a disjunctive typed feature structure � = hx; f�1; : : : ; �ngi,

where
V
is the Boolean and operator.

In the latter de�nition, we have assumed that type entries are in normal form. This is always

guaranteed by the TDL type simpli�cation mechanism.

4.2.1 Example

To illustrate the modi�ed feature structure representation, we have a look at the npsg23 type

from the example above.

Suppose the type de�nition of npsg23 is

npsg23 := np-type & [AGREEMENT #x & sg23,

SUBJECT #x].

36 CHAPTER 4. TYPE EXPANSION

Then, the skeleton feature structure of npsg23 is

hhnp-type ; fg; falsei; [agreement
:
= hx; hsg23 ; fg; falsei; []i;

subject
:
= x]i

Again, we omit variables that occur only once and abbreviate atomic values to atom instead

of hatom; []i.

Suppose now that np-type and sg23 are de�ned by

np-type := *avm* & [CAT 'np].

sg23 := *avm* & [NUMBER 'singular,

PERSON 'second | 'third].

Then the fully expanded de�nition of npsg23 is

hhnpsg23 ; fnpsg23 g; truei; [agreement
:
= hx;hsg23 ; fsg23 g; truei;

[number
:
= singular;

person
:
= hfsecond; thirdgi]i;

cat
:
= np;

subject
:
= x]i

The type entry of the root node of a type de�nition skeleton contains the direct supertypes

of the type if their de�nition is not �-expanded in the root node (np-type in the preceeding

example). Otherwise, i.e., if all direct supertypes at the root node are �-expanded , the root

type of the skeleton is the type the skeleton is associated with (npsg23 in the example).

Since the feature structure representation is hard to read, we augment the AVM notation

analogously.

4.2.2 Augmented AVM Notation

The �-set and expanded
ags are adjoined to the AVM notation (Section 2.1) as `virtual

features', i.e., they are printed below the type of a conjunctive feature structure in the same

way feature-value pairs are formatted (e.g., :expanded false).1 If a node is expanded , then its

expanded
ag usually is omitted. If a node is �-expanded , then its �-set entry usually is

omitted. Examples:

1Of course, they are not implemented as features (which are subject to uni�cation), but are associated with

the type entry of a node.

4.3. TYPED UNIFICATION 37

npsg23 's skeleton:

2
6666666666666664

np-type

:expanded false

:delta fg

agreement 1

2
664
sg23

:expanded false

:delta fg

3
775

cat np

subject 1

3
7777777777777775

The expanded skeleton (prototype) of npsg23 :

2
6666666666666666666666664

npsg23

:expanded true

:delta f npsg23 g

agreement 1

2
66666666664

sg23

:expanded true

:delta f sg23 g

number singular

person

(
second

third

)

3
77777777775

cat np

subject 1

3
7777777777777777777777775

4.3 Typed Uni�cation

4.3.1 Integration into Feature Uni�cation

In Section 3.4, typed uni�cation has informally been described as type simpli�cation plus

untyped feature uni�cation. Now that type entries are fully speci�ed, we can go into the

details of the type part of typed uni�cation.

Function unify-types takes two typed feature structures and computes a new type entry for

the resulting uni�ed feature structure:

unify-types : ��� 7! (T [A)� � 2T � ftrue,falseg

unify-types is called before feature uni�cation. The main reason is that type conjunction

can result in ? (failure), which will make feature uni�cation super
uous. Because type

conjunction (simpli�cation) is cheaper than complex feature uni�cation in general, this order

of computation is reasonable.

38 CHAPTER 4. TYPE EXPANSION

In addition to type consistency checking, unify-types computes the �-set and expanded
ag

for the new type entry.

Both arguments of unify-types are conjunctive typed feature structures (including the trivial

case of atoms and sorts). Disjunctive feature structures are simply uni�ed component-wise

at a higher level in the uni�cation algorithm.

The return value h?; fg; truei triggers a uni�cation failure.

function unify-types (�1; �2):

� := simplify-type(type-of (�1) ^ type-of (�2));

if � = ? or � 2 A[Ts [Tb

then return h�; fg; truei

else �-set := combine-delta(�-set(�1);�-set(�2));

�-expanded := �-set � set-of (�);

expanded := �-expanded and 8i : expanded (�1i) and 8j : expanded (�2j);

return h�;�-set ; expanded i.

simplify-type returns a type expression in simpli�ed normal form (cf. Section 3.5). Because

disjunctions are translated to the feature structure level and negation is pushed to atoms at

type de�nition time, � is either ?, a single type symbol or a complex expression of the form

�1 ^ � � � ^ �n where �i 2 T [A (or negated). Therefore, and because of commutativity of

type conjunction, we can treat type expressions as sets. Function set-of (�) `translates' a type

expression in simpli�ed normal form into a set.

set-of (�) :=

8><
>:
f�g; if � 2 Ta

f�1; : : : ; �ng; if � = � ^ � � � ^ �n; �i 2 Ta; 1 � i � n

fg; otherwise (i.e., � 2 Ts [Tb [A [f>g)

An expression like �1 ^ �2 with �1 2 Ta and �2 2 Ts cannot occur because type simpli�cation

rules it out (?). combine-delta(�-set(�1);�-set(�2)) can be characterized informally as set

union over �-set(�i); i = 1; 2 modulo type simpli�cation. The function is implemented as

follows. Suppose �-set(�1) = f�1; : : : ; �mg and �-set(�2) = f�1; : : : ; �ng. Instead of set

union (which does not take into account subtype relations and glb), we treat the input as

a type conjunction �1 ^ � � � ^ �m ^ �1 ^ � � � ^ �n, apply the function simplify-type to it, and

retranslate the result into set notation through set-of .2

The result is the new �-set . The new expanded
ag is obtained by a boolean and operation

on the new �-expanded
ag (if all types in the new type expression also occur in the new

2In the implementation, no translation is necessary because both sets and complex type expressions are

represented by Common Lisp lists. Moreover, structure sharing between the type expression and the �-set (if

the node is �-expanded) allows for a succinct representation:

#S(TYPE-INFO :TYPE (:AND . #1=(NP-TYPE CAT-TYPE GEN-TYPE)) :DELTA #1# :EXPANDED NIL)

E.g., the previous type info encodes a htype;�-set ; expandedi triple where all types are �-expanded .

4.4. THE BASIC ALGORITHM 39

�-set , then the node is �-expanded) and the expanded
ags of the values of attribute lists of

both argument feature structures (�ij).

Finally, the new triple h�;�-set ; expanded i is returned and will become the type entry of the

uni�ed feature structure unless feature uni�cation fails.

Because the uni�cation algorithm of UDiNe is depth-�rst, the expanded and �-set values in

a feature structure are established correctly after uni�cation.

4.3.2 Lazy Attribute Inheritance

Although we did not implement it because of the disadvantages discussed on page 31, we

brie
y discuss the integration of lazy attribute inheritance into typed uni�cation. Lazy at-

tribute inheritance has been suggested by [A��t-Kaci 93]. In contrast to the strategy of a

separate function for type expansion that we pursue in this thesis, lazy attribute inheritance

integrates type expansion into uni�cation.

Only those values whose attributes appear in the result of uni�cation are copied from the cor-

responding type and are uni�ed with the result. Therefore, the feature uni�cation algorithm

must call a second function di�erent from unify-types after successful feature uni�cation.

Although the implementation seems to be straightforward, a problem arises because of the

structure-sharing implementation of coreferences in TDL/UDiNe.

Consider the following example. Let ha; [arg1
:
= >]i be a partially expanded structure, the

result of a uni�cation. If a is de�ned by �(a) = h>; [arg1
:
= hx;>; []i;arg2

:
= x]i, where x

is a coreference, then the result of lazy expansion after uni�cation would be ha; [arg1
:
= >]i

because feature arg1 is explicit but arg2 is not.

If arg2 is made explicit later, the resulting structure is ha; [arg1
:
= h>; []i;arg2

:
= h>; []i]i

which is di�erent from the de�nition of a and hence incorrect.

Therefore, the algorithm must know about the coreferences in the super types which can only

be achieved by an additional traversal of their de�nitions and this may be expensive.

Another variation of lazy attribute inheritance would be to expand only those features that

are explicit in both uni�cation arguments. The coreference problem yet remains.

4.4 The Basic Algorithm

Finally, we turn to the description of the basic expansion algorithm. It will be enriched by

various control extensions in the subsequent chapters.

4.4.1 Implementation

The algorithms will be depicted in pseudo-code similiar to Pascal. The implementation is

done in Common Lisp [Steele 90], as is the rest of the TDL and UDiNe system. The code is

40 CHAPTER 4. TYPE EXPANSION

portable; this has been tested successfully as a part of the DISCO NL system with Allegro

Common Lisp 4.2, CLISP (on Linux), Lucid Common Lisp, and Macintosh Common Lisp.

It is worth noting that the pseudo-code fragments we present are drastically simpli�ed; we

omit many TDL-speci�c details such as domains, feature structure copying, prototype access

as well as UDiNe's functional constraints and control objects.

4.4.2 Interface Functions

Type expansion operates on typed feature structures. There are di�erent functions (proce-

dures) that access feature structures and type de�nitions, destructively and non-destructively.

They can be called either by the user (within grammar �les) or from other NL modules such

as parser, generator, etc.

� function expand-fs non-destructively expands a typed feature structure and returns the

new structure

� function expand-node destructively expands a typed feature structure and returns the

modi�ed structure

� function expand-type expands the de�nition of an avm type (if necessary) and returns

the expanded feature structure. This function can be called automatically at type

de�nition time (the global switch *EXPAND-TYPE-P* controls this)

� procedure expand-instance expands the feature structure de�nition of an instance. In-

stances are feature structures that are not associated with a type in the hierarchy (but

can inherit from types), e.g., lexicon entries or rules that are managed by a NL parser

or generator. expand-instance can be called automatically at instance de�nition time

(the global switch *EXPAND-TYPE-P* controls this).

All functions call expand-tfs , the main procedure, which expands typed feature structures

destructively (see below). Roughly speaking, type expansion traverses the feature structure

graph and destructively uni�es type de�nitions with the given feature structure.

4.4.3 Search Strategies

We now discuss several search strategies for type expansion algorithms. It is clear that which

strategy is best (fastest) depends on the purpose for which type expansion is used, e.g.,

consistency checking or structure building. Moreover, it can depend on the `style' grammars

are written in, as we will argue later.

4.4. THE BASIC ALGORITHM 41

Fan-out

The �rst formally speci�ed expansion algorithm for typed feature structures is the one of

[A��t-Kaci 86] (for -terms in KBL and LOGIN [A��t-Kaci & Nasr 86]). It does not rely on

uni�cation, but rather uses DAG rewriting to merge type de�nitions into a feature structure.

Hence, the order of rewriting is crucial for coreferring and overlapping structures. Fan-out

rewriting rewrites type symbols closer to the root node �rst.

If one uses structure sharing to represent coreferences, then a preprocessing traversal is nec-

essary for identifying coreferring structures.

Fan-out order is in
exible and, moreover, obsolete for feature structure formalisms like TDL

that have a uni�cation operation to combine the local feature structure with the de�nition of

types. Therefore, we did not implement this strategy.

Breadth-First

Breadth-�rst expansion starts from the root node of the feature structure and then expands all

types at feature path depth 0, then at depth 1, 2, 3,: : : (by uni�cation). This strategy obviously

leads to a complete algorithm for recursive types also, but has the general disadvantage of

run time overhead for going back and forth in the feature structure to reach the nodes at

the desired path depth. This is one reason why we did not implement this strategy within

TDL/UDiNe. Another reason (which made it almost impossible to implement true breadth-

�rst expansion eÆciently) was UDiNe's technique for representing coreferences by marks at

the feature structures nodes. If a node had been visited more than once (e.g., to jump to a

longer path at a substructure), it would have been incorrectly treated as a coreference.

Depth-First

Depth-�rst expansion simply walks down the feature graph �rst, and expands the types on the

way back (by uni�cation). This is a simple strategy that also corresponds to the depth-�rst

uni�cation algorithm of UDiNe. Therefore, expanded
ags are guaranteed to be set correctly

by function unify-types (during uni�cation) without an extra traversal of the feature structure.

The disadvantage is that parts of the feature structure must be visited several times if they

contain recursive types in order to ensure fair and complete expansion. But the expanded

ags help to restrict the search space to just those branches that contain the unexpanded

(recursive) types.

Because of the simplicity and correspondence to the depth-�rst uni�cation algorithm, depth-

�rst has been chosen as the default strategy for TDL's type expansion.

42 CHAPTER 4. TYPE EXPANSION

Types-First

The types-�rst algorithm is similar to depth-�rst, but expands types before visiting the sub-

structures (hence the name `types-�rst'). This strategy helps to reduce the number of redun-

dant type expansions (especially for well-typed grammars), although redundancy does not

signi�cantly slow down the depth-�rst algorithm in practice (cf. Section 5.4). Disadvantages

are that each recursive type in a feature structure can only be expanded once in the same sub-

structure (for each walk through the whole structure) even if it occurs more than once. This

has to be done to prevent (incorrect) in�nite expansion. Actually, this makes the algorithm

inelegant and slower for recursive types than depth-�rst.

Since typed uni�cation (and hence application of the unify-types function) is strictly depth-

�rst, an additional walk through the feature structure may be necessary to set the expanded

ags correctly. Therefore, slight advantages for uni�cation run time are eaten up by the

additional (partial) visit of the structure.

Having considered the above argumentation, we decided to provide types-�rst as an optional

strategy for TDL's type expansion.

Other Strategies

As we noted above, only depth-�rst and types-�rst have been chosen for TDL type expansion.

Depth-�rst is the generic strategy that is also advantageous for recursive types. Types-�rst

may be slightly faster if only a few recursive types occur and if many types in the de�ni-

tions that are uni�ed with the structure have been postponed, or if the grammar is strictly

well-typed. In the latter case, a depth-�rst strategy with memoization leads to redundant

expansions/uni�cations, but although we did not have the opportunity to compare a well-

typed and a non-well-typed grammar, we do not expect signi�cant di�erences in run time.

Expansion of a non-strictly well-typed sample grammar does not show great advantages for

either strategy (see Section 5.4).

TDL's type expansion algorithm can easily be extended to support other search strategies

than the preceeding ones. One simply has to de�ne an appropriate procedure that takes

the same arguments as depth-�rst-expand and types-�rst-expand and specify its name as a

parameter in the expansion control (Chapter 7). Independently from the search strategy,

heuristic information about the order in which attribute values are visited can speed up

expansion (Section 7.10).

Example

To illustrate the di�erent strategies, we give a short, in no way linguistically motivated,

example. We de�ne the following avm types:

p := [f, g, h].

4.4. THE BASIC ALGORITHM 43

q := [l].

r := [m].

s := p & [f q,

g [k r],

h q & [l r]].

and expand the de�nition of s with the command

expand-type 's.

Now, we can compare the di�erent expansion orders induced by the di�erent strategies (we

omit fan-out order because it is obsolete for TDL as we argued above). The resulting expanded

feature structures for s are shown below (which are of type s, of course, but type p at the

root node here indicates the name of the supertype de�nition that has been uni�ed with).

The number in parentheses at each type name indicates the position in the sequence of calls

to expand-type that are necessary to expand s . Because no recursive type occurs within s ,

full expansion is done within one walk through the feature structure.

breadth-�rst: depth-�rst: types-�rst:2
6666666666666664

p(1)

f

"
q(2)

l []

#

g

"
k

"
r (4)

m []

##

h

2
664
q(3)

l

"
r(5)

m []

#
3
775

3
7777777777777775

2
6666666666666664

p(5)

f

"
q(1)

l []

#

g

"
k

"
r(2)

m []

##

h

2
664
q(4)

l

"
r(3)

m []

#
3
775

3
7777777777777775

2
6666666666666664

p(1)

f

"
q(2)

l []

#

g

"
k

"
r(3)

m []

##

h

2
664
q(4)

l

"
r(5)

m []

#
3
775

3
7777777777777775

Empirical results that compare depth-�rst vs. types-�rst expansion are discussed in Section

5.4 in context with memoization.

4.4.4 Basic Functions and Procedures

Let us now turn to the skeleton of the expansion algorithm. expand-tfs is the main procedure

that is called from the interface procedures like expand-node , expand-type , expand-instance ,

etc.

It takes the root node of the feature structure to be expanded as argument and applies the

search strategy (depth-�rst-expand , types-�rst-expand , or user-de�ned; which one is applied

can be chosen by control parameters) on it until the structure is either fully expanded or

resolved (a predicate that can be de�ned by the user to decide whether structures containing

recursive types are \complete"), or until no uni�cation occurred in the last pass which ensures

termination of expansion on feature structures that contain postponed types.

44 CHAPTER 4. TYPE EXPANSION

procedure expand-tfs(�):

while not (expanded (�) or resolved (�) or no uni�cation occurred in last pass)

depth-�rst-expand (�). /* or types-�rst-expand (�) */

Procedures depth-�rst-expand and types-�rst-expand have been explained informally in the

previous section. They only di�er in the order in which the feature values and the local type

info is visited. depth-�rst-expand �rst visits the substructures (if they exist) and then expand

the type at the current node. types-�rst-expand �rst expands the type and then visits the

substructures.

The visited check in the second line is necessary to ensure termination of expansion of core-

ferring and cyclic feature structures. The check can be done by comparing variables that we

have omitted in the feature structure representation here. In the implementation with UDiNe

where structure sharing is used to express coreferences, marks in the structures are checked

instead.

If local uni�cation fails, a global fail is triggered. We have omitted this in the code below for

better readability. At the end of both procedures, the expanded
ag must be updated. Here,

m is the number of �'s features after uni�cation, i.e., m � n.

procedure depth-�rst-expand (�):

if � not already visited in this pass

then if � = hf�1; : : : ; �ngi /* � is disjunctive */

then for i from 1 to n : depth-�rst-expand (�i);

else /* � = h�; [f1
:
= �1; : : : ; fn

:
= �n]i (� is conjunctive) */

for i from 1 to n : depth-�rst-expand (�i);

if not �-expanded (�) then unify-type-and-node(type-of (�); �);

expanded (�) := �-expanded (�) and
Vm
i=1 expanded (�i).

procedure types-�rst-expand (�):

if � not already visited in this pass

then if � = hf�1; : : : ; �ngi /* � is disjunctive */

then for i from 1 to n : types-�rst-expand (�i);

else /* � = h�; [f1
:
= �1; : : : ; fn

:
= �n]i (� is conjunctive) */

if not �-expanded (�) then unify-type-and-node(type-of (�); �);

for i from 1 to n : types-�rst-expand (�i);

expanded (�) := �-expanded (�) and
Vm
i=1 expanded (�i).

Procedure unify-type-and-node takes a feature structure � and a type expression � . It destruc-

tively uni�es � with all de�nitions of the types in the expression � that are not yet member

4.4. THE BASIC ALGORITHM 45

of the �-set of �. Since the type expression � can be arbitrarily complex (but is guaranteed

to be in normal form { CNF or DNF), unify-type-and-node recursively follows the structure

of the type expression and uni�es its types (viz., their de�nitions) with �.

In a closed type world, complex conjunctive type expressions cannot occur. Type expressions

of the form �1_ � � � _ �n (�i possibly negated) can only occur if a conjunctive feature structure

with type �1 ^ � � � ^ �n has been negated and �i are unexpanded (postponed). In all other

cases, type disjunctions are translated to UDiNe's disjunction representation at de�nition time

(cf. Chapter 3).

unify is the generic uni�cation function for feature structures. We treat it as black box in

this thesis. Function expand-type will be de�ned in the next section. It returns the (fully or

partially) expanded feature structure de�nition of an avm type (i.e., of �(�)).

procedure unify-type-and-node(�; �) : (preliminary)

case � � 2 Ta and � =2 �-set(�) then unify(expand-type(�); �);

/* this is the trivial case of a single avm type symbol */

� � = :� and � 2 Ta then unify(negate-fs(expand-type(�)); �);

/* � is the name of an unexpanded avm type because �

is in normal form */

� � = �1 ^ � � � ^ �n then for i from 1 to n : unify-type-and-node(�i; �);

/* if � is a complex type conjunction, then all �i (negated or positive)

must be uni�ed if not in �-set(�) */

� � = �1 _ � � � _ �n then unify(�; h
Sn
i=1 unify-type-and-node(�i; h>; []i)i);

/* if � is a complex type disjunction, then a disjunctive node

consisting of all �i is uni�ed with � */

� otherwise return.

/* i.e., � is already in �-set(�) or � 2 A[Ts [Tb [f>g */

Function negate-fs negates a typed feature structure. The only case where negate-fs is called

during type expansion is if a complex avm type is negated within an unexpanded type ex-

pression. In this case (see unify-type-and-node), the de�nition of the type to be negated will

be passed to negate-fs.

The negation schemata for feature structures are applied recursively. If the argument fea-

ture structure � is disjunctive, then DeMorgan's law is applied, where conjunction (^) of

feature structures correponds to uni�cation and negation (:) corresponds to application of

the function negate-fs:

:hf�1; : : : ; �ngi = :(�1 _ � � � _ �n) = :�1 ^ � � � ^ :�n

The negation schema for conjunctive feature structures looks somewhat complicated, but

strictly follows the semantics of typed feature structures (cf. [Smolka 89]), which is de�ned

46 CHAPTER 4. TYPE EXPANSION

as conjunction of the semantics of the type and the semantics of the attribute-values pairs.

If the feature structure has n features, then it can be seen as a conjunction of n+1 items: n

feature-value pairs plus one conjunct for the type. Again, the negated complex conjunction

is subject to DeMorgan's law, which propagates negation to the feature-value pairs.

A negated feature-value pair can either denote that the feature's value must be unde�ned,

i.e., be di�erent from all other possible values (we write "; the implementation of UDiNe uses

a special atom *undef*), or that the feature's value is negated:

:(� ^ f1
:
= �1 ^ � � � ^ fn

:
= �n) = :� _ :(f1

:
= �1) _ � � � _ :(fn

:
= �n)

= :� _ (f1 ") _ (f1
:
= :�1) _ � � � _ (fn ") _ (fn

:
= :�n)

The resulting disjunction contains 2n+1 elements. The schema is applied recursively because

negation is propagated to the feature-value pairs. Therefore, negation can blow up a feature

structure exponentially. This is why grammar writers should be careful with negation of large

avm types.

function negate-fs(�) :

if � = hf�1; : : : ; �ngi /* � is disjunctive */

then return unifyn(negate-fs(�1); : : : ;negate-fs(�n))

else return /* � is conjunctive and has type � and feature values �1; : : : ; �n*/

hfh:�; []ig [
Sn
i=1h>; [fi "]i [

Sn
i=1h>; [fi

:
= negate-fs(�i)]ii.

Function unifyn is the n-ary extension of the two-place function unify.

Now, we have presented the complete expansion algorithm for non-recursive types. Of course,

the algorithm is still preliminary. It simply expands all types in a feature structure by

unifying their de�nitions (or whatever expand-type returns) and is neither controllable by the

grammarian nor can it handle recursive types. It would run into (mostly incorrect) in�nite

expansion of feature structures that contain recursive types. In the following two chapters,

we will
esh out the skeleton.

Chapter 5

Indexed Prototype Memoization

5.1 Motivation

In this chapter, we describe the memoized expand-type function that returns the (partially

or fully) expanded feature structure de�nition of a type, its so-called prototype. expand-type

takes a type name � and an index i (a symbol, integer, or string) that serves to identify a

given member of a set of (possibly di�erently expanded) prototypes of � . expand-type returns

the prototype by expanding the skeleton �(�) according to the control information associated

with index i.1 The index can either be given as parameter to an explicit expand-type call or

within control information speci�ed for the feature structure containing � .

Memoization is applied to expand-type in order to achieve the following goals.

� Reducing the number of uni�cations

Once a prototype has been generated by expanding the skeleton of a type de�nition, it

is stored in a table, and if the prototype is requested later again, a copy will be returned

instead of repeating the uni�cations. Since copying feature structures is much faster

than unifying, memoization will speed up the prototype access and hence the whole

(recursive) expansion process.

� Indexing prototypes

Instead of storing a single prototype for each avm type, the argument of the memoized

expansion function is extended to a two-dimensional one: the type name plus a user-

de�nable index that makes it possible to store di�erently expanded prototypes of a type

(e.g., for partial evaluation at compile time).

� Detecting recursive types

A recursive type is an avm type whose de�nition refers to itself directly in the skeleton or

indirectly through inheritance. As a spin-o�, memoization can be used to compute which

1If i = : skeleton, then the unexpanded skeleton is returned.

47

48 CHAPTER 5. INDEXED PROTOTYPE MEMOIZATION

avm types are recursive. This knowledge is crucial to be able to postpone expansion

that otherwise would result in in�nite computation.

In this chapter, we will concentrate on the �rst and the second goal. Recursive types and

how memoization is employed to detect them will be addressed in Chapter 6.

5.2 Memoization

The memoization or tabulation technique is as old as computer science. It can be seen as

the simplest case of `machine learning'. [Samuel 59] �rst proposes memoization for eÆcient

implementation of the checkers game under the term `rote learning'. [Michie 68] coins the

term `memoing', and develops a technique for translating arbitrary functions into memoized

functions in functional programming languages. [Norvig 91] presents applications in natural

language processing, e.g., for parsing.

The basic idea of memoization is to tabulate results of function application in order to elim-

inate redundant calculations. The more expensive the computation of a value is, the bigger

the eÆciency gain will be. A function to be memoized must meet the following requirements.

First, it must be a true function with no side e�ects, because memoization of functions

with side e�ects might cause erroneous results. Second, the function should be called more

than once with the same argument, the more often, the better.2 Recursive functions like

expand-type (expand-type calls expand-tfs which in turn may call expand-type and so on) meet

these two requirements and hence serve as good examples of the e�ectiveness of memoization.

The memoized expansion function is de�ned as follows.

function expand-type(�; i) :

if protomemo(�; i) = unde�ned

then � := expand-tfs(copy-tfs(�(�))) ;

if � is conjunctive and �-expanded (�) then type-of (�) := � ;

protomemo(�; i) := �;

return copy-tfs(�)

else return copy-tfs(protomemo(�; i)).

expand-type checks whether a prototype of � with index i already exists or not. If the proto-

type with index i already exists, a copy of the stored feature structure is returned.3

2A simple but impressive example is the memoized fib function [Abelson & Sussman 85; Norvig 91; Norvig

92] (�b n returns the n-th Fibonacci number) which reduces exponential run-time to a simple table look-up

for n once the value for a number � n has been computed.
3A remark on copying is needed here. Since UDiNe is a destructive uni�er, copies of feature structures are

returned by expand-type . In a future version, UDiNe may use a more sophisticated copying mechanism that

minimizes copying as proposed in [Emele 91]. In this case, the calls to copy-tfs simply can be omitted, and

uni�cation is responsible for it.

5.3. INDEXED PROTOTYPES 49

If the prototype with index i does not exist, the skeleton of � is expanded according to control

information that can be speci�ed separately for each index. Finally, the prototype is stored

in the prototype table (which can be accessed by function protomemo) and a copy is returned

as the value of expand-type .

This is a drastic simpli�cation of the real code. The implemented code also collects `inher-

ited' functional constraints that can be attached to type de�nitions, optionally translates

the feature structure into disjunctive normal form, removes failed disjunction alternatives

(through UDiNe's make-dnf and simplify-fs! functions), and performs nonmonotonic over-

writing (cf. Chapter 8).

5.3 Indexed Prototypes

It is sometimes desirable to store several prototypes for one type, under distinct indices. The

most important reason to have more than one prototype per type is to be able to expand the

de�nitions di�erently. E.g., it makes sense to postpone the expansion of semantic information

in HPSG lexicon entries for parsing because semantics does not �lter very much (cf. [Diagne

et al. 95]). In other situations, a fully expanded lexicon entry may be needed as fast as

possible.

Another application for indexed prototypes is partial evaluation. Often needed types (or all

types, if lexicon entries are stored with TDL's instance facility) can be expanded at compile

time. This helps to minimize the number of uni�cations at run time. The prototypes can

serve as basic blocks for building a partially expanded grammar.

An even more radical approach can also be pursued by indexed prototypes: copy pools, bundles

of copies of prototypes, can be generated at compile time or in idle run time when the NL

system waits for user input, each with another index. The destructive uni�er then `consumes'

the fresh copies at run time without having to copy the feature structures. Heuristics can

be applied to estimate the number of copies that are required. This strategy may speed up

processing because time for copying is transferred from run time to compile time.4 Heuristics

about how many prototypes are needed can be obtained through training sessions.

Figure 5.1 shows how skeletons and prototypes are stored in memory. For each avm type, there

is a skeleton, the de�nition of the type, and at least one default prototype (with index nil).

Initially, the prototype feature structure is identical with the skeleton. A call to expand-type

generates an expanded copy of the skeleton. Control information can be associated with

each prototype index (e.g., for postponing types, etc.; see Chapter 7) that is consulted in

expand-tfs .

4or, as Hassan A��t-Kaci formulated more concisely in a talk on a di�erent topic he gave at DFKI, \Space

is cheaper than time".

50 CHAPTER 5. INDEXED PROTOTYPE MEMOIZATION

xyz

uvw

definition
of xyz

default prototype

skeleton

default prototype

skeleton

of uvw
definition

type index feature structure

prototype of uvw

user-defined prototype

 partially expanded
prototype of uvw

fully expanded

Figure 5.1: Skeletons, Prototypes, and Indices: Type xyz 's prototype is either unexpanded or

contains no avm types. Thus, its prototypical feature structure is identical with its de�nition

(skeleton). Type uvw has a (fully) expanded prototype and a user-de�ned prototype which are

both (possibly partially) expanded copies of uvw's skeleton feature structure.

5.4 Reducing the Number of Uni�cations { An Example

To show the performance gain caused by prototype memoization, we compare run time for full

expansion of an HPSG lexicon with and without memoization. Moreover, we also compare

depth-�rst vs. types-�rst expansion algorithms (described in Section 4.4.3).

Figure 5.2 contains statistical information about the expansion of a grammar with approx.

900 avm type de�nitions. It is an HPSG grammar for German, roughly as described in

[Netter 93]. About 250 lexicon entries and rules have been expanded from scratch. They

have not been de�ned as avm types, but as instances, feature structures that are not part of

the type hierarchy, but inherit from lexical or rule types (they can be seen as the leaves of the

hierarchy). Like avm types, instances have an associated name and de�nition, and di�erent

prototypes with control information. Their main purpose is to keep the type hierarchy small

even if large lexica are de�ned.

All instances and types are unexpanded at the beginning (two further columns in the table

5.4. REDUCING THE NUMBER OF UNIFICATIONS { AN EXAMPLE 51

algorithm depth-�rst-expand types-�rst-expand depth-�rst-expand types-�rst-expand

memoization yes yes no no

run time 45 23� 46 23� 216 218

uni�cations 27221 14495� 27207 14481� 155888 155876

number of 853 *cons* 260 *cons* 8330 *avm* 8454 *avm*

calls to 316 cat-type 147 *di�-list* 2392 sem-expr 2503 sem-expr

expand-type 269 *di�-list* 143 morph-type 1379 term-type 1420 term-type

243 morph-type 94 nmorph-head 1161 *cons* 1196 *cons*
�: with pre- 208 atomic-w� 83 sort-expr 1003 w�-type 1073 w�-type

expanded 202 rp-type 71 atomic-w� 933 agr-feat 951 agr-feat

lexical 146 conj-w�-type 62 rp-type 880 semantics 747 semantics

types 120 var-type 53 subw�-inst 823 indexed-w� 730 indexed-w�

63 indexed-w� 53 cat-type 669 var-type 697 rp-type

59 nmorph-head 46 sign-type 662 rp-type 690 var-type

53 subw�-inst 42 mas-noun 589 *di�-list* 589 *di�-list*

53 term-type 35 count-noun-lex 459 major-feat 447 head-feat

51 semantics-type 35 semantics-type 447 head-feat 430 local-type

50 sign-type 27 indexed-w� 444 local-type 427 case-type

48 sort-expr 26 empty-quant 438 cat-type 426 head-val

42 mas-noun 23 *avm* 426 head-val 423 subcat-type

35 count-noun-lex 19 conj-w�-type 423 subcat-type 423 local-feat

26 empty-quant 18 var-type 423 local-feat 423 head-type

23 *avm* 18 trans-verb-lex 423 head-type 422 subj-type

20 identity-w� 15 noun-type 422 subj-type 422 mod-type

18 trans-verb-lex 14 agr-st-type 422 mod-type 422 minor-type

17 proper-name 14 proper-noun 422 minor-type 422 major-type

15 noun-type 13 adj-lex 422 major-type 421 gender-type

15 phead-type 13 amorph-head 420 v-feat 418 cat-type

14 agr-st-type 13 omorph-head 417 n-feat 416 local

14 proper-noun 12 fem-noun 416 local 416 syntax

13 adj-lex 12 sg-count-noun 416 syntax 416 morphology

13 amorph-head 12 lex-sign-type 416 morphology 414 non-local

13 omorph-head 12 major-val 414 non-local 414 syntax-type

13 in
-val 12 verb-type 414 syntax-type 411 major-feat

12 fem-noun 11 nbar-type 407 number-type 402 v-feat

Figure 5.2: Comparison of di�erent expansion algorithms with and without prototype memo-

ization. Run time is stated in seconds for a SPARC Station 10 with Allegro Common Lisp

4.2. the table shows (1) that there is no signi�cant di�erence between depth and types �rst ex-

pansion (the grammar contains no recursive types) and (2) that prototype memoization speeds

up full expansion of lexicon entries by a factor of 10 which is roughly proportional to the

number of uni�cations.

52 CHAPTER 5. INDEXED PROTOTYPE MEMOIZATION

marked with an asterisk show run time with all types pre-expanded, but unexpanded in-

stances). The type and instance skeletons together consist of about 9000 nodes. No control

information for preference or postponement is given. The algorithm without memoization in-

serts only the unexpanded skeletons of a type de�nition, while the memoized version expands

each complex type once and afterwards only returns copies of it.

The resulting structures consist of about 50000 nodes (27000 in type prototypes, 23000 in

instance prototypes). Each instance is expanded once (and so are all avm types in the

memoized version) using TDL's expand-all-instances command. A sample instance of a lexicon

entry is depicted on page 32 and its TDL de�nition on page 31.

The measurements show that memoization speeds up expansion by a factor of 5 for this gram-

mar (10 if all types are pre-expanded, which we consider a good strategy for real applications).

The time di�erence between memoized and non-memoized algorithm may be even bigger if

disjunctions are involved. The sample grammar contains only a few disjunctions (about 300

disjunction nodes in the de�nitions).

5.5 Accessing Prototypes

The following prototype access procedures are part of the TDL language. If a prototype with

the speci�ed index does not exist, it is created using a copy of the skeleton. expand-control is

a complex structure which speci�es parameters that control expansion (cf. Chapter 7). While

index for avm types can be a string, number, or symbol for type prototypes, only numbers

are allowed for instance indices. The reason is that instances are stored di�erently from type

prototypes (namely, in a list).

� expand-type type [:index index] [:expand-control expand-control]

[:domain domain].

generates a new prototype by expanding the de�nition skeleton of type or further ex-

pands an existing one.

� expand-instance instance [:index number] [:expand-control expand-control]

[:domain domain].

generates a new instance with index number by expanding the de�nition skeleton of

instance or further expands an existing one.

� expand-all-types [:index index] [:expand-control expand-control]

[:except exception-list] [:domain domain].

expands the de�nition skeletons of all types with index index except those in the

exception-list .

� expand-all-instances [:index number] [:expand-control expand-control]

[:except exception-list] [:domain domain].

5.5. ACCESSING PROTOTYPES 53

expands the de�nition skeletons of all instances with index number except those in the

exception-list .

� reset-proto [type [:index index] [:domain domain]].

resets the prototype with index index of an avm type to its skeleton.

� reset-instance [instance [:index number] [:domain domain]].

resets the prototype with index number of an instance to its skeleton.

� reset-all-protos [:domain domain].

resets all prototypes of all avm types.

� reset-all-instances [:domain domain].

resets the prototypes of all instances.

� defcontrol f type j instance j :global g expand-control [:index index]

[:domain domain].

speci�es control information for a type or instance with the given index.

The global variable *DEFAULT-INDEX* contains the name of the default index name that is

assumed if no index argument is speci�ed. Its default value is nil.

Chapter 6

Recursive Types

6.1 Introduction

Recursive types are avm type whose de�ning feature structure refers to the type itself directly

(within the skeleton) or indirectly (through other types).

Although recursion is inherent in natural language representation, e.g., in context-free rules

for syntax, not all feature structure formalisms support recursive types. Systems like ALE or

TDL ExtraLight provide recursion only through de�nite clauses or through a (chart) parser,

but not through types.

However, recursive types increase the expressivity of feature structure formalisms and enable

the grammar writer to encode even more linguistic knowledge uniformly and elegantly within

feature structures. This is why TDL has been designed as a successor of TDL ExtraLight to

cope with recursive types. LIFE does so as well, but as we argued in Chapter 4, its implicit

expansion mechanism as part of the uni�cation process leads to some disadvantages that

TDL's architecture is designed to avoid.

In this chapter, we will �rst give an overview on decidability results, then discuss di�erent

kinds of recursion, their signi�cance, and some (linguistic) applications. Then, we describe

the expansion algorithm extensions necessary to treat recursive types correctly and to avoid

in�nite expansion. At the end of the chapter, we give some examples that illustrate the

algorithm.

6.2 Motivation

Many NL systems avoid recursive types and instead provide various extensions beyond typed

feature structures that support recursion such as de�nite clauses or context-free rules.

Nevertheless, recursive types can be used to elegantly formulate the following applications

(among others):

� Context-free backbone: It is obvious that constituent structure can be expressed through

54

6.2. MOTIVATION 55

recursive types (as is the case for HPSG).

� List types: Lists can be de�ned recursively or non-recursively using feature structures.

In both cases, an atom or sort *null* denotes end of list, and *list* is de�ned as a

disjunctive type:

list := *null* | *cons*.

In the non-recursive version, *cons* is de�ned as

cons := [FIRST, REST].

whereas the recursive de�nition is

cons := [FIRST, REST *list*].

The recursive de�nition is stronger in that it stipulates that a �nite list ends with

null , while the non-recursive de�nition admits `dotted pair' lists. Both de�nitions

can be appropriate, depending on the application.

� Finite state automata: Morphology and phonology can be encoded by these devices.

[Krieger et al. 93] show how to de�ne �nite state automata through recursive typed

feature structures and present applications from allomorphy. We will see an expansion

trace of a sample automaton at the end of the chapter.

� Append: List concatenation is frequently employed in NL processing. Recursive types

even allow encoding of the relational version of append that works bidirectionally �a la

Prolog. A comprehensive example is given below.

� Functional Uncertainty: Recursive types can be used to model functional uncertainty

constraints, which is an alternative device for describing long-distance dependencies and

constituent coordination [Kaplan & Zaenen 88].

Of course, this list of possible applications is incomplete. Since recursive types make feature

structure formalisms with coreferences Turing-equivalent, other applications are possible. Let

us mention two paradigms in natural language processing that have been suggested for such

powerful formalisms.

Parsing as deduction [Pereira 83] (and generation) can be supported by type expansion. One

only needs a suÆciently speci�ed grammar (using recursive types as described above). For

parsing the sentence \Fido likes cookies", one speci�es phonology only and starts expansion

of the following structure.2
666664
phrase

:expanded false

:delta fg

phon h"Fido"; "likes"; "cookies"i

3
777775

Type expansion then deduces the missing information. The result will be an expanded feature

structure representing the whole analyzed sentence, including syntax and semantics.

56 CHAPTER 6. RECURSIVE TYPES

For generation, one only speci�es the semantic representation. Expansion will lead to a feature

structure containing the missing syntax and phonology, i.e., a well-formed sentence.

This leads to purely declarative and very elegant parsing and generation without any addi-

tional parser or generator. Of course, ambiguity, termination, and eÆciency problems emerge.

But parameterized expansion (cf. Chapter 7) can help to moderate these diÆculties.

The second paradigm has been proposed by [Mellish & Reiter 93]: using the formalism as a

programming language that can also encode extralinguistic or meta knowledge in NL systems.

While they used a KL-ONE derivative, namely I1, and classi�cation instead of expansion to

demonstrate the feasibility of their approach, we expect that feature structure expansion is

also able to manage because of its comparable expressivity.

Mellish and Reiter present a schema for translation of Prolog programs into 'classi�cation

programs'. An example from their paper is the ubiquitous append function (see example at

the end of this chapter). Actually, as Mellish and Reiter do for I1, one can see TDL as a

declarative programming language that makes no distinction between data and procedures.

6.3 Decidability

Checking satis�ability of typed feature structures with variables (coreferences) is undecidable

if we admit recursive type de�nitions. There are at least three di�erent proofs in the literature

we will shortly mention here.1

The �rst proof is by [Rounds & Manaster-Ramer 87]. They show that Kasper-Rounds logic

enriched with recursive types can be used to construct a two-stack push-down automaton

that is equivalent to a Turing machine. Thus, deciding satis�ability would imply that the

Halting problem for Turing machines is decidable.

[Smolka 89] shows that coreference constraints are the source of undecidability in combination

with recursive types. His proof is by encoding the word problem of Thue systems within

feature structures.

The most recent (and most detailed) proof is by [A��t-Kaci et al. 93] and uses the compactness

theorem of �rst-order logic. Moreover, they present an order-sorted feature theory uni�cation

algorithm which is encoded within 10 rewriting rules. If the algorithm is restricted to 9

rules, it is always terminating (but not complete). If one adds the tenth rewriting rule, one

gains completeness but loses general termination. Finally, they clari�ed what is important

for practical applications: non-satis�ability is semi-decidable, i.e., if the feature structure is

inconsistent, it can be determined in �nitely many steps.

Regrettably, their algorithm does not support disjunctions and cannot be translated to an

eÆcient version for the TDL/UDiNe system where feature structures are represented as dags,

1As Bob Carpenter (p.c.) pointed out, Hassan A��t-Kaci was the �rst to show that type expansion is Turing

equivalent in his 1984 thesis. He did this implicitly by showing how to code up arbitrary Prolog programs.

6.4. RECURSION IN KNOWLEDGE REPRESENTATION LANGUAGES 57

since it is based on OSF clauses (decomposed -terms).

What are the consequences of undecidability for TDL's expansion algorithm? First, it is clear

that recursive types are the crucial point. We cannot forbid coreferences because they are

indispensable for natural language representation. Second, the expansion algorithm should

be complete in general if it is called by the user (or a parser etc.), and not restricted by

user-speci�ed control information (see next chapter). However, when called within memoiza-

tion, type expansion must be guaranteed to be terminating (we will elaborate on this later).

Third, expansion of recursive types should be postponed if in�nite expansion can be foreseen

(laziness). To be able to satisfy these requirements, we will have a closer look at how and

where recursion occurs.

6.4 Recursion in Knowledge Representation Languages

[Smolka 88] mentions the relation between feature logic and knowledge representation lan-

guages like KL-ONE [Brachman & Schmolze 85] (we did so in Chapter 2). Leaving aside the

di�erence between features (functions) and roles (relations), the main similarity is obviously

that types in feature structure formalisms correspond to concepts in KL-ONE.

Thus, we can adopt some re
ections on terminological cycles from [Nebel 90] and [Nebel

91]. While early papers on KL-ONE simply suggested forbidding terminological cycles, Nebel

distinguishes two kinds of terminological cycles: component cycles and restriction cycles.

6.4.1 Component Cycles

A component cycle occurs if a concept to be de�ned inherits from itself. This obviously

violates the condition for concepts as well as for feature types that they must be ordered

hierarchically. Consequently, Nebel suggests forbidding such cycles. An example from [Nebel

90], translated into TDL syntax is:

man := human & male-human.

male-human := human & man.

We will follow his argumentation since, besides the philosophical consideration, TDL's encod-

ing technique [A��t-Kaci et al. 89] does not admit such cycles.

6.4.2 Restriction Cycles

Although TDL and other feature structure languages do not provide restrictions in the sense

KL-ONE does (namely, number and value restrictions), there is something corresponding:

feature values. Actually, features in feature languages are just a special case of restriction in

concept languages. A TDL type de�nition like

58 CHAPTER 6. RECURSIVE TYPES

person := human & [father person,

mother person].

can be expressed as follows in KL-ONE:

T (person) = human u 9�1father u 9�1father u 8father : person

u 9�1mother u 9�1mother u 8mother : person

Again, we follow Nebel's approach: he suggested admitting restriction cycles, i.e., cycles

where the concept (type) to be de�ned occurs as a restriction (feature value) in the de�nition

(directly or indirectly through inheritance). The simple justi�cation is that this kind of cycle

makes sense and is useful for knowledge representation and natural language processing as

we will show in the next section.

6.5 Algorithm

We now present the extensions to the expansion algorithm that are necessary to handle

recursive types properly. The algorithm as described so far would expand recursive types

repeatedly without returning at all. Therefore, we �rst examine sources of in�nite expansion.

6.5.1 Sources of In�nite Expansion

Of course, Nebel's distinction of component vs. restriction cycles does not help to solve

termination problems. It is only a distinction between meaningful and meaningless cycles in

inheritance hierarchies. Therefore, closer inspection of restriction cycles and feature structures

is necessary.

Generally, there are two sources of non-termination in feature structure expansion.

� Strongly recursive feature structures are the de�ning feature structures of recursive types.

If the skeleton of a recursive type is expanded, no �nite `input' is given that stops

the de�nition of the type from being uni�ed repeatedly (at increasing path depth).

Examples are the following *list* and *cons* type de�nitions.

declare sort : *null*.

list := *null* | *cons.

cons := *avm* & [first [],

rest *list*].

6.5. ALGORITHM 59

expand-type '*list* with naive expansion (using the algorithm as presented so far)

would result in in�nite computation:8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

*null*2
6666666666666666664

cons

first []

rest

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

*null*2
66666666664

cons

first []

rest

8>>>>><
>>>>>:

*null*2
664
cons

first []

rest : : :

3
775

9>>>>>=
>>>>>;

3
77777777775

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

3
7777777777777777775

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

We will develop a method of detecting and stopping such in�nite expansion.

� Weakly recursive feature structures are feature structures that are not skeletons of a

recursive type but in which at least one type entry in the structure itself or in inherited

constraints refers to a recursive type. An example is the following feature structure.

"
>

list *list*

#

Naive expansion may or may not stop on weakly recursive feature structures. It stops

if �nite `input' (i.e., non-empty feature list) that brakes recursion at �nite path depth

is speci�ed together with the recursive type. It de�nitely does not stop if the recursive

type stands alone. Examples of such structures are �rst-rest lists with �nite length

(*null* terminates the recursion) or context-free rules that are saturated by terminal

symbols.

The idea for the expansion algorithm is to exploit strongly recursive feature structures in

order to detect recursive types and to postpone expansion on strongly and weakly recursive

feature structures as appropriate.

Another source of in�nite expansion stems from memoization. The memoization algorithm

as presented would try to expand recursive types endlessly. Here, recursive types must be

postponed within memoization. But before we modify the algorithm to postpone expansion

of recursive types, we show how to compute which types are recursive.

6.5.2 Computing Recursive Types

From the above consideration, it follows that it is crucial for the expansion algorithm to know

which types are recursive in order to be able to postpone their expansion. There are two ways

of detecting recursive types.

60 CHAPTER 6. RECURSIVE TYPES

The �rst one is static and can be done at type de�nition time. When an avm type is being

de�ned, all type names that occur in the skeleton are stored in a set associated with the type,

the so-called occurrence type set (ots). A type is (strongly) recursive if it is contained in its

own ots or in the transitive closure of the types in its ots.

The advantage of this method is that it can be done at type de�nition time. The disadvantage

is that it is expensive and furthermore may compute a superset of the types that can actually

cause in�nite expansion. This is because the occurence type sets cannot be computed correctly

without full expansion of the de�nitions (which in turn would need the knowledge about

which types are recursive to prevent in�nite computation); the ots contain a superset of the

actual occurrence types in the expanded de�nitions since disjunction branches containing

avm types may be cut by uni�cation failure. Although the method of computing ots has been

implemented within TDL, we decided not to use it because it slows down type de�nitions and

hence thwarts incremental grammar development.

The second method is dynamic, preserves eÆcient incrementality and, furthermore, computes

the correct (minimal) set of recursive types. It is a by-product of prototype memoization and

hence relies on memoization (which is not bad since memoization is advantageous as we have

shown above). The idea is to record the type of the feature structure being expanded in a

stack that is passed from one memoized expand-type call to another (via expand-tfs). Each call

of expand-type(�; index) pushes � onto the stack and passes the the new stack to expand-tfs .

If a type � on top of the call stack also occurs below in the stack

(�; �n; : : : ; �1; �; �m; : : : ; �1);

we immediately know that the types �; �n; : : : ; �1 are recursive. Furthermore, these types form

a strongly connected component (scc) of the type dependency (or occurrence) graph, i.e., each

type in the scc is reachable from each other type in the scc by a sequence of expand-type and

expand-tfs calls. An example of such scc is (*cons* *list*) for the recursive list type de�ned

above. Each time a new scc is detected, it is stored in a global variable *RECURSIVE-SCCS*.

We modify functions expand-type , expand-tfs , unify-type-and-node , depth-�rst-expand , and

types-�rst-expand such that they take another parameter stack which is simply passed from

one function to another.

At the beginning of function expand-type (page 48) the following line is inserted:

check-recursive-avm(�; stack) ; /* check if � is recursive */

push(�; stack) ; /* push � onto type stack */

and the new stack is passed to expand-tfs . In procedure check-recursive-avm, a new scc is

added to *RECURSIVE-SCCS* if � is in stack but not already marked as a recursive type.

Testing whether a type is recursive or not then reduces to a simple �nd operation in the

global *RECURSIVE-SCCS* list (which is typically rather small compared to the total number

of types). �nd-recursive � returns the scc that contains � i� � is recursive, and nil otherwise

6.5. ALGORITHM 61

and hence serves as a predicate, too. We present Common Lisp code here because it is more

concise in this case.

(DEFUN find-recursive (type)

(FIND-IF #'(LAMBDA (scc)

(MEMBER type scc))

RECURSIVE-SCCS))

6.5.3 Postponing Recursive Types: Lazy Expansion

There are two situations where recursive types must be postponed (leaving aside postpone-

ment enforced by control information which is addressed in the next chapter). As the post-

ponement is done automatically to make life easier for grammarians, it resembles laziness in

modern functional (or object-oriented) programming languages, so we adopt this term.

Situation 1: Within Implicit Expansion

Implicit expansion is feature structure expansion that has been induced by memoization (i.e.,

not by a user-call to expand-type or expand-instance). The strategy is simply to postpone

all recursive types that occur in implicitly expanded structures. This kind of postponement

has been hard-wired in the code for two reasons: (1) It prevents in�nite loops in memoized

expansion, i.e., expansion is guaranteed to terminate when called implicitly. (2) It avoids

copying overhead. As borne out in practice (proven by run time measurements), it is not

a good idea to pre-expand and memoize recursive types, since they are copied in vain if

inconsistency occurs (which is always the case for �nite structures).

The disadvantage is that inconsistent type de�nitions containing recursive types may not be

detected immediately unless one calls explicit expansion. Nevertheless, the resulting struc-

tures are correct and, more importantly, it is not a good idea to de�ne inconsistent types

(consistency can optionally be checked at type de�nition time in TDL).

Situation 2: Within Explicit Expansion

Explicit expansion is feature structure expansion explicitly called by the user or functions dif-

ferent from memoization. Here, we generally chose a complete expansion algorithm, because

we assume that the caller knows what he is doing (cf. the problem termination vs. complete-

ness; of course, complete expansion can be restricted by control parameters).

However, there are structures where recursive types can be anticipated to expand in�nitely,

but never contribute to inconsistency. Lazy expansion recognizes these cases and then post-

pones the recursive type (after having it expanded once).

The default recognition criterion is that the type to be postponed automatically must be

recursive, and the node containing it must not bear features. Moreover, the type (or a

62 CHAPTER 6. RECURSIVE TYPES

subtype) already must have been �-expanded at a proper subpath. A proper subpath is a

proper pre�x of a given path that contains identical disjunction alternatives.

Consider the feature structure from the weakly recursive feature structure paragraph above.

Expansion stops after *list* has been expanded once because afterwards, *list* (viz.,*cons*)

has been expanded once at path list and *list* does not bear features at path list.rest.

So the resulting structure is2
6666666666666666666666664

>

:expanded false

:delta fg

list

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

*null*2
66666666666664

cons

:expanded false

:delta f *cons* g

first []

rest

2
664
list

:expanded false

:delta fg

3
775

3
77777777777775

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

3
7777777777777777777777775

It is worth emphasizing that TDL's lazy expansion is completely di�erent from lazy attribute

inheritance as proposed by [A��t-Kaci 93]. In lazy attribute inheritance, only attribute values

that appear locally are inherited from the type de�nition, regardless of the question of whether

it is recursive or not (cf. Section4.3.2). The disadvantage of this strategy is that it is inherently

slow and only yields partially expanded structures. The advantage over our strategy is that

structures are minimal which suÆces if one is only interested in satis�ability.

Resolvedness

Resolvedness is a property of typed feature structures that is checked at the beginning of

each loop in expand-tfs . Its main purpose is to serve as an additional means of stopping

in�nite expansion of recursive types. While the laziness criterion is always safe, i.e., it

cannot lead to incompleteness unless the feature structures is in�nite, di�erent criteria are

possible for resolvedness (because of undecidability), depending on the recursive types in-

volved. Therefore, TDL permits di�erent de�nitions of resolvedness. User-de�ned criteria,

so-called resolved-predicates, can be speci�ed as control parameters (see next chapter). The

resolved-predicate is checked in the top-level loop in procedure expand-tfs . It takes a com-

plex control structure comprising various information, such as recursive-paths, a list of paths

containing recursive types that is computed on the
y.

The default resolvedness predicate is always-false . It always returns false, and hence does

not stop expansion in any case. An example of a recursion that stops using the default

resolvedness criterion is the recursive version of the *list* type as de�ned above.

6.5. ALGORITHM 63

Depth-First vs. Types-First Search

A special case additionally occurs if the search strategy types-�rst-expand has been chosen.

In contrast to depth-�rst-expand , a recursive type must be expanded only once at a path in

each top-level loop in procedure expand-tfs to guarantee fair expansion. Otherwise, explicit

expansion would loop at the �rst recursive type encountered. Again, a feature structure

containing the *list* type is an example of a weakly recursive feature structure whose types-

�rst expansion would expand forever without this hard-wired brake. If an unexpanded list

of length 5 has to be expanded, �ve top-level loops in expand-tfs are necessary. In con-

trast, depth-�rst-expand only needs one loop through the structure. This is why we do not

recommend the types-�rst strategy if many recursive types are involved.

Distinguishing Explicit vs. Implicit Expansion

As we argued above, expansion of feature structures is di�erent depending on if we are at the

top-level feature structure that is to be expanded (explicit expansion) or if memoization of a

depending feature structure (implicit expansion) takes place. The method the algorithm uses

to distinguish between these two expansion modes is somewhat tricky. It is done by looking

at the memoization type stack stack .

expansion is

(
explicit; if jstack j = 1,

implicit; otherwise, i.e., if jstack j > 1.

Therefore, in a user call to expand-type , stack is initialized with the empty stack (expand-type

pushes the type name onto the stack immediately before calling expand-tfs). User calls to

expand-node , expand-instance , and expand-tfs initialize stack with (>), where >, the top type

of the hierarchy which can never be recursive because it bears no features, is employed as a

dummy item that guarantees stack height 1 for expansion of the top level structure.

The delay Predicate

Whether type expansion is postponed or not, i.e., whether the type de�nition is uni�ed with

the node that refers to it or not, is checked in the �rst case in procedure unify-type-and-node

(page 45) by calling the delay predicate:

procedure unify-type-and-node(�; �; stack) : (revised)

case � � 2 Ta and � =2 �-set(�) and not delay(�; �; stack ; path)

then unify(expand-type(�); �);

/* this is the trivial case of a single avm type symbol */

� � = :� and � 2 Ta and not delay(�; �; stack ; path) then : : :
...

64 CHAPTER 6. RECURSIVE TYPES

The implemented code is more complicated. We have omitted here the case of expanding a

recursive type for the �rst time. In this situation, delay always returns false because it not

known that the type is recursive before expand-type is called. Additional code ensures that

uni�cation of the recursive type de�nition with the local node will not take place by calling

delay a second time (only in this case). If delay returns true, the feature structure returned by

expand-type is thrown away. Because this occurs only once for each recursive type, memory

is not wasted signi�cantly. Alternative methods would have been to set the recursive sccs

manually/statically (which contradicts incrementality as we argued above), or to expand the

recursive type for the �rst time anyhow (which would add some kind of indeterminacy).

The delay predicate is a straightforward formalization of the postponement rules we gave

informally.

function delay(�; �; stack ; path) :

return �nd-recursive(�) and

((jstack j > 1) or (� has no features and

9 proper subpath of path where � is �-expanded)).

To eÆciently access the subpaths containing recursive types, they are collected on the
y.

Only two memory cells are necessary per path: one for the pointer to the actual path, and

one for the type name.

6.6 Examples

The algorithm now treats recursive types correctly. Loops in memoization are prevented

and expansion of feature structures containing recursive types is lazy. Finally, we can demon-

strate the algorithm using two of the applications for recursive types motivated in Section 6.2:

append and �nite state automata. Since we already gave examples of laziness (the list types),

we will concentrate on complex structures with �nite `input' to recursive types whose expan-

sion will lead to a fully expanded, �nite feature structure (or inconsistency).

6.6.1 Append

The �rst example is the append relation (cf. [A��t-Kaci 86], [Mellish & Reiter 93]). It concate-

nates two lists speci�ed at the front and back values and returns the result at the whole

value. Since append works bidirectionally as in Prolog, it can also be used to synthesize possi-

ble input from given output (and, optionally, partial input). If there are several possibilities,

they are represented as disjunctive alternatives.

Using the following de�nitions,

6.6. EXAMPLES 65

defdomain :append :load-built-ins-p NIL.

begin :domain :append.

begin :declare.

sort: *null*.

end :declare.

begin :type.

cons := [FIRST, REST *list*].

list := *null* | *cons*.

append0 := [FRONT *null*,

BACK #1 & *list*,

WHOLE #1].

append1 := [FRONT < #first . #rest1 >,

BACK #back & *list*,

WHOLE < #first . #rest2 >,

PATCH append & [FRONT #rest1,

BACK #back,

WHOLE #rest2]].

append := append0 | append1.

we can expand the following de�nition

test := append & [front < "Fido", "likes" >,

back < "cookies" >].

expand-type 'test.

to obtain the concatenation of the input lists at the whole feature.

The following trace of expand-type 'test has been generated automatically by the type

expansion algorithm. The search strategy is depth-�rst-expand (as we recommend for recursive

types); no additional control information has been speci�ed. We assume that it was not

known before that *list* , *cons* , append , and append1 are recursive types to illustrate how

the recursive sccs are computed on the
y. Subsequent expansions using the append type will

need less expansion steps.

Each call to expand-type is recorded in the trace as well as the following action (expand

de�nition if it is unexpanded, or return memoized feature structure if already expanded).

The expanded feature structures are printed at the end of each pass in expand-tfs . unif-

occ=: : : prints the value of the
ag that indicates whether a uni�cation has taken place

during the last pass in expand-tfs . resolved=: : : prints the value of the resolvedness predicate

(always false in our example). List structures are printed in their �rst-rest encoding instead

of using <: : : > to show where the types come from.

66 CHAPTER 6. RECURSIVE TYPES

In order to save space, we abbreviate the :delta and :expanded slots by two boxes that are

printed on the right of a type name within a feature structure. The left box is , if the value

of :expanded is false, and E , if the value is true. Because no complex type expressions occur

in the sample feature structures, we can treat :delta as a
ag (i.e., �-expanded). If the type is

not locally expanded (�-expanded=false), the right box is . If the type is locally expanded

(�-expanded=true), then is � is printed.

expand-type(*cons* , nil) in prototype of test under path front.rest, stack=(test):

Expanding de�nition of *cons* , index nil.

expand-type(*list* , nil) in prototype of *cons* under path rest, stack=(*cons* test):

Expanding de�nition of *list* , index nil.

New recursive type *cons* detected. recursive-sccs=((*cons* *list*)).

End of pass 0 in *list* , index nil, unif-occ=false, resolved=false:

8<
:
h
cons

i
null

9=
;

End of pass 0 in *cons* , index nil, unif-occ=false, resolved=false:

2
664
cons �

first []

rest

h
list

i
3
775

expand-type(*cons* , nil) in prototype of test under path front, stack=(test):

Returning protomemo(*cons* ; nil).

expand-type(*cons* , nil) in prototype of test under path back, stack=(test):

Returning protomemo(*cons* ; nil).

expand-type(append , nil) in prototype of test under path �, stack=(test):

Expanding de�nition of append , index nil.

expand-type(append0 , nil) in prototype of append under path �, stack=(append test):

Expanding de�nition of append0 , index nil.

Delaying recursive type *list* in prototype of append0 under path back.

End of pass 0 in append0 , index nil, unif-occ=false, resolved=false:

2
666664

append0 �

front *null*

back 1

h
list

i
whole 1

3
777775

expand-type(append1 , nil) in prototype of append under path �, stack=(append test):

6.6. EXAMPLES 67

Expanding de�nition of append1 , index nil.

Delaying recursive type *cons* in prototype of append1 under path front.

Delaying recursive type *list* in prototype of append1 under path back.

Delaying recursive type *cons* in prototype of append1 under path whole.

New recursive type append detected. recursive-sccs=((append append1) (*cons* *list*)).

End of pass 0 in append1 , index nil, unif-occ=false, resolved=false:2
6666666666666666666666666664

append1 �

front

2
664
cons

first 1 []

rest 2 []

3
775

back 3

h
list

i

whole

2
664
cons

first 1

rest 4 []

3
775

patch

2
666664
append

front 2

back 3

whole 4

3
777775

3
7777777777777777777777777775

End of pass 0 in append , index nil, unif-occ=true, resolved=false:8>>>>>>>><
>>>>>>>>:

2
666664

append0 �

front *null*

back 1

h
list

i
whole 1

3
777775

h
append1

i

9>>>>>>>>=
>>>>>>>>;

Delaying recursive type *list* in prototype of append under path whole.

Delaying recursive type append1 in prototype of append under path �.

End of pass 1 in append , index nil, unif-occ=false, resolved=false:8>>>>>>>><
>>>>>>>>:

2
666664

append0 �

front *null*

back 1

h
list

i
whole 1

3
777775

h
append1

i

9>>>>>>>>=
>>>>>>>>;

expand-type(append1 , nil) in prototype of test under path �, stack=(test):

Returning protomemo(append1 ; nil).

68 CHAPTER 6. RECURSIVE TYPES

End of pass 0 in test , index nil, unif-occ=true, resolved=false:

2
66666666666666666666666666666666666664

append1 �

front

2
66666664

cons E �

first 1 "Fido"

rest 2

2
664
cons E �

first "likes"

rest *null*

3
775

3
77777775

back 3

2
664
cons E �

first "cookies"

rest *null*

3
775

whole

2
664
cons

first 1

rest 4 []

3
775

patch

2
666664
append

front 2

back 3

whole 4

3
777775

3
77777777777777777777777777777777777775

expand-type(*cons* , nil) in prototype of test under path whole, stack=(test):

Returning protomemo(*cons* ; nil).

expand-type(*list* , nil) in prototype of test under path patch.whole, stack=(test):

Returning protomemo(*list* ; nil).

expand-type(*cons* , nil) in prototype of test under path patch.whole, stack=(test):

Returning protomemo(*cons* ; nil).

expand-type(append , nil) in prototype of test under path patch, stack=(test):

Returning protomemo(append ; nil).

Delaying recursive type append1 in prototype of test under path patch.

6.6. EXAMPLES 69

End of pass 1 in test , index nil, unif-occ=true, resolved=false:

2
664

append1 �

front

2
66666664

cons E �

first 1 "Fido"

rest 2

2
664
cons E �

first "likes"

rest *null*

3
775

3
77777775

back 3

2
664
cons E �

first "cookies"

rest *null*

3
775

whole

2
66666666664

cons �

first 1

rest 4

8>>>>><
>>>>>:

2
664
cons �

first []

rest

h
list

i
3
775

null

9>>>>>=
>>>>>;

3
77777777775

patch

2
666664
append1

front 2

back 3

whole 4

3
777775

3
775

Delaying recursive type *list* in prototype of test under path whole.rest.rest.

expand-type(append1 , nil) in prototype of test under path patch, stack=(test):

Returning protomemo(append1 ; nil).

70 CHAPTER 6. RECURSIVE TYPES

End of pass 2 in test , index nil, unif-occ=true, resolved=false:

2
664

append1 �

front

2
66666664

cons E �

first 1 "Fido"

rest 3

2
664
cons E �

first 2 "likes"

rest 6 *null*

3
775

3
77777775

back 4

2
664
cons E �

first "cookies"

rest *null*

3
775

whole

2
666666664

cons �

first 1

rest 5

2
664
cons �

first 2

rest 7

h
list

i
3
775

3
777777775

patch

2
66666666666666664

append1 �

front 3

back 4

whole 5

patch

2
666664
append

front 6

back 4

whole 7

3
777775

3
77777777777777775

3
775

Delaying recursive type *list* in prototype of test under path whole.rest.rest.

expand-type(append , nil) in prototype of test under path patch.patch, stack=(test):

Returning protomemo(append ; nil).

Delaying recursive type append1 in prototype of test under path patch.patch.

Delaying recursive type *list* in prototype of test under path patch.whole.rest.

6.6. EXAMPLES 71

End of pass 3 in test , index nil, unif-occ=true, resolved=false:

2
6664

append1 �

front

2
66666666664

cons E �

first 1 "Fido"

rest 4

2
666664
cons E �

first 2 "likes"

rest %1

(
7 *null*

8 *null*

)
3
777775

3
77777777775

back 5 %1

8>>>>>>>>>><
>>>>>>>>>>:

3

2
664
cons E �

first "cookies"

rest *null*

3
775

9

2
664
cons E �

first "cookies"

rest *null*

3
775

9>>>>>>>>>>=
>>>>>>>>>>;

whole

2
666666666664

cons �

first 1

rest 6

2
666664

cons �

first 2

rest %1

8<
: 3

10
h
list

i
9=
;

3
777775

3
777777777775

patch

2
6666666666666666666666666664

append1 �

front 4

back 5

whole 6

patch %1

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

2
666664
append0 E �

front 7

back 3

whole 3

3
777775

2
666664
append1

front 8

back 9

whole 10

3
777775

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

3
7777777777777777777777777775

3
7775

Delaying recursive type *list* in prototype of test under path whole.rest.rest.

expand-type(append1 , nil) in prototype of test under path patch.patch, stack=(test):

Returning protomemo(append1 ; nil).

72 CHAPTER 6. RECURSIVE TYPES

End of pass 4 in test , index nil, unif-occ=false, resolved=false:2
664

test E �

front

2
66666664

cons E �

first 1 "Fido"

rest 4

2
664
cons E �

first 2 "likes"

rest 6 *null*

3
775

3
77777775

back 3

2
664
cons E �

first "cookies"

rest *null*

3
775

whole

2
66666664

cons E �

first 1

rest 5

2
664
cons E �

first 2

rest 3

3
775

3
77777775

patch

2
66666666666666664

append1 E �

front 4

back 3

whole 5

patch

2
666664
append0 E �

front 6

back 3

whole 3

3
777775

3
77777777777777775

3
775

The resulting structure in the abbreviated, more readable list format is2
6666666666666666666666666664

test

whole h 5 "Fido" : 4 h 2 "likes" : 1 h "cookies" i i i

patch

2
66666666666666664

append1

patch

2
666664
append0

front 3 h i

back 1

whole 1

3
777775

front 6 h 2 : 3 h i i

back 1

whole 4

3
77777777777777775

front h 5 : 6 i

back 1

3
7777777777777777777777777775

6.6. EXAMPLES 73

6.6.2 A Finite State Automaton

The second sample trace is for a simple �nite state automaton de�ned by using distributed

(named) disjunctions as proposed in [Krieger et al. 93].

We de�ne a �nite automaton for the language L = a�(a+ b).

Type final-config models the �nal state, non-final-config is the supertype of all non-

�nal states. The automaton accepts an input given as list value at the input path, if and only

if complete expansion is consistent. If a word is rejected, the corresponding feature structure

is *fail* (inconsistent).

begin :declare.

sort : *undef*.

end :declare.

begin :type.

non-final-config := [INPUT < #1 . #2 >,

EDGE #1,

NEXT [INPUT #2]].

final-config := [INPUT *null*,

EDGE *undef*,

NEXT *undef*].

state1 := non-final-config & [EDGE %1('a, 'a | 'b),

NEXT %1(state1, final-config)].

test-ab := state1 & [INPUT < 'a, 'b >].

expand-type 'test-ab.

In contrast to the �rst example, we assume that all types have already been expanded (except

test-ab) and hence the recursive sccs (*cons* *list*) and (state1) have already been

computed before the call to expand-type 'test-ab.

expand-type(*cons* , nil) in prototype of test-ab under path input.rest, stack=(test-ab):

Returning protomemo(*cons* ; nil).

expand-type(*cons* , nil) in prototype of test-ab under path input, stack=(test-ab):

Returning protomemo(*cons* ; nil).

expand-type(state1 , nil) in prototype of test-ab under path �, stack=(test-ab):

Returning protomemo(state1 ; nil).

74 CHAPTER 6. RECURSIVE TYPES

End of pass 0 in test-ab, index nil, unif-occ=true, resolved=false:

2
6666666666666666664

state1 �

next

2
666664
state1

input 2

2
664
cons E �

first b

rest *null*

3
775

3
777775

edge 1 a

input

2
664
cons E �

first 1

rest 2

3
775

3
7777777777777777775

expand-type(state1 , nil) in prototype of test-ab under path next, stack=(test-ab):

Returning protomemo(state1 ; nil).

End of pass 1 in test-ab, index nil, unif-occ=true, resolved=false:

2
666666666666666666666666666666664

state1 E �

next

2
6666666666666666664

state1 E �

next

2
666664
�nal-con�g E �

next *undef*

edge *undef*

input 2 *null*

3
777775

edge 1 b

input 4

2
664
cons E �

first 1

rest 2

3
775

3
7777777777777777775

edge 3 a

input

2
664
cons E �

first 3

rest 4

3
775

3
777777777777777777777777777777775

6.6. EXAMPLES 75

End of pass 2 in test-ab, index nil, unif-occ=false, resolved=false:

2
666666666666666666666666666666664

test-ab E �

next

2
6666666666666666664

state1 E �

next

2
666664
�nal-con�g E �

next *undef*

edge *undef*

input 2 *null*

3
777775

edge 1 b

input 4

2
664
cons E �

first 1

rest 2

3
775

3
7777777777777777775

edge 3 a

input

2
664
cons E �

first 3

rest 4

3
775

3
777777777777777777777777777777775

The resulting structure in the abbreviated, more readable list format is

2
6666666666666666666664

test-ab

next

2
66666666666664

state1

next

2
666664
�nal-con�g

next *undef*

edge *undef*

input 2 h i

3
777775

edge 1 b

input 4 h 1 : 2 h i i

3
77777777777775

edge 3 a

input h 3 : 4 i

3
7777777777777777777775

If unacceptable input is given to the automaton, type expansion results in global uni�cation

failure, e.g.,

test-ai := state1 & [INPUT < 'a, 'i >].

expand-type 'test-ai.

Again, we assume that it was known that *list* , *cons* , and state1 are recursive.

expand-type(*cons* , nil) in prototype of test-ai under path input.rest, stack=(test-ai):

Returning protomemo(*cons* ; nil).

76 CHAPTER 6. RECURSIVE TYPES

expand-type(*cons* , nil) in prototype of test-ai under path input, stack=(test-ai):

Returning protomemo(*cons* ; nil).

expand-type(state1 , nil) in prototype of test-ai under path �, stack=(test-ai):

Returning protomemo(state1 ; nil).

End of pass 0 in test-ai , index nil, unif-occ=true, resolved=false:

2
6666666666666666664

state1 �

next

2
666664
state1

input 2

2
664
cons E �

first i

rest *null*

3
775

3
777775

edge 1 a

input

2
664
cons E �

first 1

rest 2

3
775

3
7777777777777777775

expand-type(state1 , nil) in prototype of test-ai under path next, stack=(test-ai):

Returning protomemo(state1 ; nil).

Warning: Type test-ai is inconsistent.

Chapter 7

Controlling Type Expansion

7.1 Motivation

In the last three chapters, we have presented the basic expansion algorithm, the memoization

technique that helps to reduce the number of uni�cations, and proper treatment of recursive

types. In this chapter, we will enrich the basic algorithm by control that may speed up

linguistic processing by (1) keeping feature structures small (partially expanded) and (2)

reducing search space for expansion. Moreover, control information can serve as an additional

means (besides lazy expansion) to stop expansion of recursive types. The instruments for

controlled expansion are

� postpone expansion of types

� choose speci�c prototypes to be inserted by expansion

� set a maximal path depth for expansion

� select the expansion search strategy

� exploit heuristics for backtracking and expansion order

� specify preference information for the order in which attribute values are expanded

� de�ne resolvedness criteria

In the following sections, we will describe syntax and semantics of control information and

brie
y sketch their introduction into the expansion algorithm implementation.

7.2 Declarative Speci�cation of Expansion Control

The overall design goal for expansion control is to keep its speci�cation completely declarative,

as the grammars themselves are. Control can be speci�ed globally or locally for a prototype

77

78 CHAPTER 7. CONTROLLING TYPE EXPANSION

(or both), either in a separate �le or mixed with the type and instance de�nitions of the

grammar.

The begin :control : : : end :control environment can be used to indicate control informa-

tion. It has been introduced for symmetry with other TDL environments to structure grammar

�les, but it is completely optional and can be omitted. Within a control environment, only

the defcontrol statement is admitted.

The TDL statement for de�ning control information is defcontrol. Its syntax is:

defcontrol f type j instance j :global g expand-control

[:index index] [:environment f:type j :instanceg] .

The �rst parameter in the defcontrol statement is a symbol, either the name of a type

or the name of an instance. Which of both it designates depends on the surrounding en-

vironment (:type or :instance). If we are in the :control environment, its surrounding

environment (either :type or :instance) determines the kind of argument. Alternatively,

the :environment keyword can be used to enforce interpretation of the �rst parameter as ei-

ther type or instance name. If the �rst argument is :global, then global control information

is speci�ed, independently of the environment. This allows the user to choose a depth �rst

search strategy generally, e.g., but to replace it locally by another strategy.

A defcontrol statement can be placed anywhere in a grammar �le, before or after the

corresponding type or instance de�nitions (but always within a control, type or instance envi-

ronment). A newer defcontrol declaration with the same type/instance and index replaces

an older one; the same holds for global control, i.e., defcontrol is not cumulative.

Global control can only be de�ned by the defcontrol statement, whereas there are two more

possible locations for local expansion control.

� Control information for the default prototypes of avm types or instances can be attached

directly to the type or instance de�nition using the following syntax:

name := body , expand-control: expand-control .

� expand-control can also be passed as an optional keyword argument to all expansion

interface procedures such as expand-node, expand-type, etc. (cf. TDL syntax in Ap-

pendix A), e.g.,

expand-type name [:index index]

[:expand-control expand-control] .

In the latter case, other local control information (for type and instance prototypes) is ignored.

The values of missing slots are always inferred from global control.

7.3 Syntax of Expansion Control

The syntax of expand-control is de�ned by the following BNF:

7.3. SYNTAX OF EXPANSION CONTROL 79

expand-control ! ([(:expand f (ftype j (type [index [pred]])g fpathg+) g�) j

(:expand-only f (ftype j (type [index [pred]])g fpathg+) g�)] j

[(:delay f (ftype j (type [pred])g fpathg+) g�)] j

[(:ignore-global-control ft j nilg)] j

[(:maxdepth f integer j nil g)] j

[(:expand-function ffdepth j typesg-first-expand j : : : g)] j

[(:resolved-predicate fresolved-p j always-false j : : : g)] j

[(:use-conj-heuristics ft j nilg)] j

[(:use-disj-heuristics ft j nilg)] j

[(:attribute-preference fidenti�erg�)] j

[(:ask-disj-preference ft j nilg)])

where

path ! fidenti�er j patterng f.fidenti�er j patterngg�

pattern ! ? j * j + j ?[identi�er][?j*j+]

pred ! eq j subsumes j extends j : : :

type ! identi�er

index ! integer j identi�er j string

The syntax will be described in detail in the rest of the chapter. We only give an overview

in this section. The :expand and :expand-only slots are mutually exclusive. Default is

:expand for all types with default prototypes. Both slots determine the basic mode for

expansion and can be used to specify which prototype of a type is uni�ed at which path(s) in

the feature structure. The :delay slot can additionally be used to postpone types at certain

paths independently from the basic expansion mode. Path patterns and type comparison

predicates such as the subsumption test facilitate the use of these three path and type-related

slots. If the value of :ignore-global-control is nil, then global and local path patterns

are merged, otherwise, local patterns override global ones.

:maxdepth de�nes the maximal path depth where expansion takes place. Types at longer

paths will be postponed. :maxdepth nil sets the maximal depth to 1. The basic search

strategy is speci�ed by :expand-function, i.e., types-first-expand, depth-first-expand,

or a user-de�ned strategy. The :resolved-predicate can be used to replace complete ex-

pansion (`always-false') of recursive types by other strategies. :use-conj-heuristics

and :use-disj-heuristics enable or disable the use of heuristic information for expansion

order of attributes (conjuncts) and backtracking (disjuncts). Finally, one can enable interac-

tive choice of disjunct order (:ask-disj-preference), and de�ne a canonical order in which

attribute values are expanded (:attribute-preference).

An example of the use of the syntax is

defcontrol intrans-verb-lex

((:delay ((semantics Subsumes) ?.?.SYNSEM.*))

80 CHAPTER 7. CONTROLLING TYPE EXPANSION

(:attribute-preference HEAD FIRST)

(:use-disj-heuristics T)

(:ignore-global-control T)

(:expand ((morphology initial) CAT.MORPH.LIST)))

:index 1.

7.4 The Control Structure

The control information speci�ed in expand-control is stored in a control structure that can

be accessed by all functions and procedures of the expansion algorithm. Each prototype of a

type or an instance has its own control structure that is re-used if the prototype is expanded

again. For functions expand-node and expand-fs , fresh control structures are created for each

call. The original de�nition of the control structure is

(DEFSTRUCT control

;;; slots definable through expand-control

(expand () :type LIST)

(expand-only () :type LIST)

(delay () :type LIST)

(maxdepth NIL :type (OR NULL INTEGER))

(attribute-preference () :type LIST)

(ask-disj-preference NIL :type (MEMBER NIL T))

(use-disj-heuristics () :type (MEMBER NIL T))

(use-conj-heuristics () :type (MEMBER NIL T))

(resolved-predicate 'Resolved-P :type (OR SYMBOL FUNCTION))

(expand-function 'Depth-First-Expand :type (OR SYMBOL FUNCTION))

;;; internal slots:

(timestamp '(-1 . -1) :type LIST)

(pass 0 :type INTEGER)

(index NIL :type ATOM)

(unification-occurred-p NIL :type (MEMBER NIL T))

(functional-constraints NIL :type LIST)

(recursive-paths () :type LIST)

)

In addition to the slots that correspond to the expand-control input syntax, the control

structure contains slots that are used internally by the expansion algorithm:

� timestamp is a pair consisting of a timestamp for local (prototype) expansion control,

and a timestamp for global expansion control. The timestamps are set up in such

7.4. THE CONTROL STRUCTURE 81

a way that the control structure need not be re-initialized if neither local nor global

control speci�cation has changed, i.e., they help to avoid unnecessary computations

and copying.

� pass is the counter for passes in procedure expand-tfs (0 at the beginning).

� index contains the index name of the current prototype being expanded.

� unification-occurred-p is a
ag that indicates whether expansion (uni�cation) has

occurred in the last expansion pass. It is set to nil at the beginning of each pass, and

set to t if uni�cation takes place locally in the structure being expanded. The
ag helps

to stop expansion of postponed (and recursive) types as it is checked at the top-level of

procedure expand-tfs (page 44).

� functional-constraints is a list (set) containing functional constraints that is asso-

ciated with the feature structure being expanded. For the sake of simplicity, we omit

description of UDiNe's functional contraints in this thesis, but they have indeed been in-

tegrated into the expansion algorithm. `Inheritance' of functional constraints (through

type expansion) is done by non-destructive union of the functional constraint sets. The

functional-constraints slot is used to collect the constraint set temporarily.

� recursive-paths is a list consisting of all recursive types that have been visited within

the last toplevel loop in procedure expand-tfs . Only recursive types are recorded in the

list. Each entry in the list has the following form

(type �-expanded node path)

type is the name of the recursive type, �-expanded indicates whether the de�nition of

type is already expanded or not. node is a pointer to the node where type occurred,

path is the path from the root node to node. The list is mainly used for lazy expansion

and can also be accessed by user-de�ned resolvedness predicates (see below). It is reset

to the empty list at the beginning of each pass in expand-tfs .

When code is presented below, we use the C notation for structure accessing functions, e.g.,

control.recursive-paths is the access function for the control slot recursive-paths.

Other parameters required by the expansion algorithm, such as path (the current path within

the structure being expanded), stack (the type stack of calls to expand-type), domain (the cur-

rent type domain), and UDiNe's private control object, are passed directly from one expansion

procedure to another, and hence are not part of the control structure.

82 CHAPTER 7. CONTROLLING TYPE EXPANSION

7.5 Expanding and Postponing Prototypes

Syntax and Description

Three slots control which types are expanded or postponed, and which prototypes are inserted

under which paths. :expand and :expand-only are mutually exclusive:

(f:expand j :expand-onlyg f (ftype j (type [index [pred]])g fpathg+) g�)

In the :expand mode (default), all types are expanded (as in the algorithm presented so

far). If not otherwise speci�ed, the default prototypes with index nil are inserted. For

each type, paths and indices can be de�ned to indicate where to insert which prototype. In

the :expand-only mode, only those types are expanded that are explicitly mentioned (with

speci�c prototypes and paths), all others are postponed.

Independently from the expansion mode, types are postponed anyway if listed in the :delay

slot (again, with speci�c paths).

(:delay f (ftype j (type [pred])g fpathg+) g�)

This delay information as well as postponement of recursive types (cf. Chapter 6) overrides

both expansion modes.

The reasons why there are three somewhat redundant slots for expansion and postponement

are the following. First, creating prototypes with partially expanded types should be as easy

as possible. Here, the :expand-only mode is suitable to generate such feature structures

before run time. The :expand mode is more intended to be used at run time, where as much

information from types as possible should be gathered as fast as possible. Nevertheless, some

type constraints can be postponed with the :delay syntax.

The second reason for the threefold syntax for postponement and expansion is to be able

to express exceptions from generalizations that can be made by the path patterns and type

comparison predicates (pred).

Path Patterns

Instead of exact feature paths, one can specify path patterns that are matched against the

actual paths during expansion by pattern matching with wildcards, variables, and segment

variables. This allows powerful generalizations over paths. The syntax for path patterns is

path ! fidenti�er j patterng f.fidenti�er j patterngg�

pattern ! ? j * j + j ?[identi�er][?j*j+]

Figure 7.1 explains the meaning of path patterns.1

1Note that * is rather a wildcard than a Kleene star in the sense of functional uncertainty where regular

expressions over features are used. However, functional uncertainty can be modeled through recursive types

in TDL. One can restrict expansion of possibly in�nite paths by path patterns in the :delay slot.

7.5. EXPANDING AND POSTPONING PROTOTYPES 83

pattern meaning

feature match feature exactly

?identi�er segment variable that matches one feature

?identi�er? segment variable that matches zero or one feature

?identi�er+ segment variable that matches one or more features

?identi�er* segment variable that matches zero, one, or more features

? unique pattern variable that matches one feature

?? unique pattern variable that matches zero or one feature

+, ?+ unique pattern variable that matches one or more features

, ? unique pattern variable that matches zero, one, or more features

Figure 7.1: The meaning of path patterns.

Segment variables are local to each path pattern.

Examples:

� ?x.rest.?x matches first.rest.first, last.rest.last

� ?x*.rest.?x* additionally matches rest, a.b.rest.a.b

� +.last matches rest.last, first.rest.last

� *.last additionally matches last

� ?.?.? matches all paths of length 3

� ?.?+ matches all paths of length > 2

Usually, disjunctions are not recorded in a path, i.e., the rest value at path first.rest may

be a direct value of first or can be a disjunction alternative if the first value is a disjunction.

Occasionally, one may wish to choose only one disjunction alternative (especially for postpon-

ing expansion). In this case, one can include the position of the disjunct within the disjunction

node (starting from 1) like a attribute names. This is possible because UDiNe's distributed

disjunction representation guarantees �xed positions of disjuncts, provided *SIMPLIFY-FS-P*

is set to nil to ensure that failed alternatives do not change the positions.

Example:

� first.2 matches the second disjunction alternative under path first

� first.2.*.3 matches all third alternatives at arbitrary depth under the second alter-

native of the first disjunction.

If no path pattern contains numbers, disjunctions are ignored (i.e., treated as the empty

path).

84 CHAPTER 7. CONTROLLING TYPE EXPANSION

Type Comparison predicates

The second way to generalize over types to be expanded or postponed is by type comparison

predicates. The predicates are used to check whether the types in the control slot (:expand,

:expand-only, or :delay) match the type to be expanded.

pred ! eq j subsumes j extends j : : :

The following predicates are prede�ned

� eq: type identity (this is the default if no predicate is speci�ed)

� subsumes: the type in the control slot subsumes the type in the feature structure to be

expanded

� extends: the type in the feature structure to be expanded subsumes the type in the

control structure

Other, user-de�ned predicates can be speci�ed as well. The predicate must take two argu-

ments, the �rst argument will be type in the :expand, :expand-only, or :delay list, the

second is the type to be compared in the structure that is subject to expansion. An example

is the following user-de�ned predicate

disjunctive-subtype-p(x; y) = t(true) i� y is below x in the type hierarchy and y is de�ned

disjunctively (e.g., *list*)

begin :lisp.

(defun disjunctive-subtype-p (x y)

(and (subsumes x y)

(udine::disjunction-node-p (feature-structure-term

(get-prototype y)))))

end :lisp.

Examples

The following global control de�nition states that for all types that are subtypes of the

semantics type, a prototype with index semindex has to be inserted, but only at paths that

have synsem as �rst or second attribute. At all other paths, and for all other types, the

prototypes with index nil are inserted, except for the types below syntax , where prototypes

with index synindex are expanded under all paths. Moreover, expansion of the lex-type is

postponed for all paths.

defcontrol :global ((:expand ((semantics semindex subsumes)

synsem.* ?.synsem.*)

((syntax synindex subsumes) *))

(:delay (lex-type *))).

7.5. EXPANDING AND POSTPONING PROTOTYPES 85

The special index name :skeleton refers to the skeleton of a type de�nition. An alternative

to setting the global variable *USE-SKELETON-P* (Section 7.15) would be to de�ne

defcontrol :global ((:expand ((*top* :skeleton subsumes) *))).

Then, instead of using memoization, each occurrence of any type (subsumes *top*) under

any path will have its skeleton inserted.

To de�ne control information for a single type or instance, its name (instead of :global)

and an index has to be speci�ed, where nil designates the default index. In the following

example, :environment :instance forces kommen to be interpreted as an instance name,

even if defcontrol is enclosed by a :type environment.

defcontrol kommen ((:delay ((semantics subsumes) *)))

:index initial-lex

:environment :instance.

Then,

expand-instance 'kommen :index initial-lex.

generates an instance prototype with all semantics types (including subtypes) postponed.

The same result could be achieved by specifying control information as an argument to the

expand-instance function:

expand-instance 'kommen

:index initial-lex

:expand-control '((:delay ((semantics subsumes) *))).

Implementation

It is clear from the expansion algorithm code presented in the preceeding chapters that func-

tion unify-type-and-node (page 45 and page 63) is responsible for checking the :expand,

:expand-only, and :delay lists before unifying type de�nitions with the local feature struc-

ture node, and for choosing the requested prototypes. Because the implementation is straight-

forward (but the code is lengthy), we only sketch it brie
y.

The order of checking the di�erent alternatives is as follows (we assume that the argument of

unify-type-and-node is a single type symbol, otherwise, recursion over complex type expression

is done as in the code already presented). First, check for recursive types. If they must be

postponed, this has to be done independently from control information in order to avoid

in�nite loops. Second, check for types in the :delay list, because this information overrides

:expand and :expand-only. Third, check for :expand or :expand-only (only one of both is

allowed, the other must be empty).

86 CHAPTER 7. CONTROLLING TYPE EXPANSION

If the contents of the :expand, :expand-only and :delay lists are checked, the type is

compared �rst, because type subsumption (and, of course, equality) can be computed in O(1)

with respect to the size of the type hierarchy using [A��t-Kaci et al. 89]'s encoding technique.

If the type is OK, then pattern matching is done to compare the current path with the path

patterns in control information. The pattern matcher we use is from [Norvig 92, Section 6.2]

with some minor modi�cations.

If type and path match one of the entries in the expand/delay list, the corresponding action

(postpone or unify prototype with speci�ed index) is performed. If there is more than one

expression that matches the current path and type, the leftmost is taken (the rest is not

considered). Local and global control are merged at compile time (in case the value of

:ignore-global-control is nil) in such a way that local control is checked before global

control.

Let us have a closer look at one of the path and type checking functions, say the one for

:expand-only. At compile time, defcontrol translates the :expand-only input syntax

using the ZEBU LALR(1) parser [Laubsch 93] into the following list representation.

(((type1 index 1 predicate1) path11 : : : path1n)
...

((typem indexm predicatem) pathm1
: : : pathmp

))

Path patterns are translated into the internal format of Norvig's pattern matcher during pars-

ing of the control syntax at de�nition time (e.g., ?x? is translated to (?? ?x)). The gener-

ated list is stored in the control structure and can be accessed through the control.expand-only

function.

The test function for :expand-only then is de�ned as follows (again, we present the original,

slightly simpli�ed Common Lisp code because is much more concise).

(DEFUN Type-is-in-Expand-Only-List (type control path)

"type is current type, path is current path, control is control struct"

(MEMBER type (control.expand-only control)

:test #'(LAMBDA (name name-path) ;;; check type first

(AND (FUNCALL (CADDAR name-path) ;;; EQ, SUBSUMES,...

(CAAR name-path) ;;; type in list

name) ;;; current type

(SOME #'(LAMBDA (x) ;;; then check path

(PAT-MATCH x ;;; patterns in list

path)) ;;; current path

(CDR name-path))))))

The function returns nil if no type and path in :expand-only matches the current type

and path. Otherwise, the rest of the :expand-only list starting with the matching entry is

returned (non-nil).

7.6. MERGING GLOBAL AND LOCAL CONTROL 87

7.6 Merging Global and Local Control

Syntax and Description

(:ignore-global-control ft j nilg)

If this
ag has value t, the values of the three globally speci�ed lists :expand-only, :expand,

:delay will be ignored in local control. If the
ag is nil, the locally and globally speci�ed

type and path lists are merged where the local values preceed the global ones. The value of

:ignore-global-control does not a�ect the values of the other control slots described in

the subsequent sections. For these, local values always override global ones. The values of

global control information are only considered if no local information is given.

Implementation

Time stamps associated with the control structures are checked each time a new control

de�nition is processed to avoid unnecessary copying.

7.7 Maximal Path Depth for Expansion

Syntax and Description

(:maxdepth f integer j nil g)

This slot sets the maximal path depth where types are expanded. If not nil, all types at paths

longer than integer will be postponed. This control may be used as a brute force method

of stopping in�nite expansion and ensuring termination. Moreover, it can be useful to easily

generate partially expanded prototypes, e.g., lists of any length.

Implementation

The current path depth is passed from one expansion procedure to the next, and its length

is increased by one in each call to depth-�rst-expand and types-�rst-expand . This avoids

computation of the current path length from scratch in each call to these procedures. The

current path depth is checked in depth-�rst-expand and types-�rst-expand . If it exceeds the

value of :maxdepth, these functions will not be invoked again on the feature values.

Because of the structure-sharing representation of coreferences in UDiNe, results are unpre-

dictable for feature structures that contain coreferences between nodes where one node has

path depth > :maxdepth, and the other has path depth < :maxdepth. If the node at the

smaller path is visited �rst, then expansion is cut later than if the longer path is visited �rst.

This is because coreferring nodes are only visited (expanded) once. Which path is visited

�rst depends on the search strategy and on the order of attributes. We believe that this

indeterminacy will do no harm in practice.

88 CHAPTER 7. CONTROLLING TYPE EXPANSION

7.8 Search Strategy

Syntax and Description

(:expand-function ffdepth j typesg-first-expand j : : : g)

The :expand-function slot speci�es the basic expansion search strategy. Prede�ned strate-

gies are depth-first-expand (the default) and types-first-expand which we recommend

only for some special cases (e.g., if feature structures with many postponed types are to be fully

expanded). The details, advantages and disadvantages have been discussed in Section 4.4.3.

Other user-de�ned strategies can be speci�ed as well by de�ning a Common Lisp function

that takes the same parameters (namely 12). The parameters are, among others, the current

node, path, path depth, type stack, type domain, UDiNe's control object and the expansion

control structure.

Implementation

The implementation can be discussed brie
y. The preliminary code of expand-tfs from page

44 has to be changed in such a way that the �xed call of depth-first-expand is replaced by

a FUNCALL to the value of control.expand-function with the parameters mentioned above.

7.9 Resolvedness Predicates

Syntax and Description

(:resolved-predicate falways-false j : : : g)

This slot speci�es a user de�nable predicate that may be used to prematurely stop the toplevel

loop in expand-tfs (page 44). The predicate has mainly been introduced to enable the grammar

writer to stop expansion of recursive types as appropriate.

The default predicate is always-false which will make the expansion algorithm complete (if

no delay or maxdepth restriction is given, of course).

Implementation

The resolvedness predicate is checked at the toplevel loop in expand-tfs (page 44). Instead of a

�xed predicate, the value of control.resolved-predicate has to be FUNCALLed with the following

arguments

(FUNCALL control.resolved-predicate control domain node ctrl-obj)

where control is the whole current control structure, domain is the current type domain,

node is the root node of the feature structure to be expanded, ctrl-obj is UDiNe's internal

control object that contains information about fail contexts etc.

7.10. NUMERICAL PREFERENCES 89

These parameters make all important information accessible to a user-de�ned resolvedness

predicate.

To write one's own resolvedness predicate, extensive knowledge about UDiNe's feature struc-

ture representation and TDL's internal structure is necessary. It is beyond the scope of

this thesis to go into that much detail, and therefore, we informally describe an example,

say, for the append type. The predicate uses the :recursive-paths slot of the control

structure to check the values under the frontf.restg�.first, backf.restg�.first, and

wholef.restg�.first subpaths of each node that is associated with the append1 type. If

all these values are typed with >, and bear no features, and all other nodes with recursive

types are either expanded or postponed by laziness, then the resolvedness predicate assumes

that there is no input and output for append and returns true; false otherwise. Because this

check may be expensive if structures are large, we recommend it mainly for development and

debugging. For real-world applications, the grammar writer should either ensure termination

by suÆciently speci�ed input to recursive types (which one can assume in NL processing), or

by less expensive methods such as :maxdepth; also cf. Section 7.14.

7.10 Numerical Preferences

[Kogure 90] and [Uszkoreit 91] suggested that exploitation of preference information for fea-

tures and disjunctions would speed up uni�cation. For conjunctions of feature-value pairs,

this can be achieved by unifying features with highest failure probability �rst; for disjunctions,

the alternatives with highest success probability �rst. Another possibility is a backtracking

strategy that picks only one disjunct, proceeds with uni�cation as if this were the only value,

and backtracks if this fails.

It is convenient to store the failure potential, numerically represented, directly at the feature

structure nodes. The values can either be computed statically by training sessions, or dy-

namically at run time. In the latter case, several algorithms for rearranging the conjunct and

disjunct order are possible.

Because expansion is essentially uni�cation, numerical preference information can also be

used to speed up the expansion process. Features with high failure probability are expanded

�rst, disjuncts with high failure potential last.

Implementation

The implementation is simple from the point of view of type expansion. UDiNe is responsi-

ble for storing and gathering preference information because the uni�cation algorithm itself

has to be modi�ed to cope with preferences. The interface to expansion only consists of a

predicate. We assume that there is an ordering predicate that can be used to sort features

and disjunctions according to the local preference values (the same predicate is used within

90 CHAPTER 7. CONTROLLING TYPE EXPANSION

uni�cation). Procedures depth-�rst-expand and types-�rst-expand are modi�ed in such a way

that they rearrange disjunct and conjunct order2 before the elements are visited.

Syntax and Description

The control slots

(:use-conj-heuristics ft j nilg)

and

(:use-disj-heuristics ft j nilg)

trigger the use of preference information during expansion. control.use-conj-heuristics and

control.use-disj-heuristics are checked in procedures depth-�rst-expand and types-�rst-expand .

If the value of the
ags is true, the feature or disjunct order is determined by a predicate that

uses the preference information for UDiNe.

Because the preference extension to UDiNe is not yet �nished, we cannot present empirical

results to prove the usefulness of this approach.

7.11 Attribute Order

Syntax and Description

(:attribute-preference fidenti�erg�)

This slot de�nes a partial order on attributes by non-numerical preference information. The

sub-feature structures at the leftmost attributes will be expanded �rst. This `hand-coded'

preference information can be used if no heuristic information from the uni�er is available

(cf. the previous section).

The following global expansion control

defcontrol :global ((:attribute-preference first rest head-dtr

comp-dtrs front back)).

forces the algorithm to expand first before rest, head-dtr before comp-dtrs, front

before back.

Implementation

Procedures depth-�rst-expand and types-�rst-expand are responsible for the expansion order

of feature values. Before the feature list is visited, it is sorted according to the preference list

if control.attribute-preference is nonempty.

2Because of the distributed disjunction representation in UDiNe, disjunct order cannot be altered destruc-

tively. Instead, the ordering predicate is consulted for each disjunct.

7.12. INTERACTIVE DISJUNCT SELECTION 91

7.12 Interactive Disjunct Selection

Syntax and Description

(:ask-disj-preference ft j nilg)

Because failed disjuncts can disappear during expansion, it is diÆcult to uniquely identify

disjuncts in feature structures. Therefore, the only feasible way to select disjuncts for ex-

pansion is to do it interactively. Of course, this is only useful for debugging or speeding up

grammars, and only if the number of disjunctions is not too large. Therefore, it is preferable

to specify interactive disjunct choice in local control, but not in global control.

If the :ask-disj-preference
ag is set to t, the expansion algorithm interactively asks for

the order in which disjunction alternatives are to be expanded.

As one can see from the sample output, there are several possibilities to continue if a disjunc-

tion node is reached.

Ask-Disj-Preference in G under path X

The following disjunctions are unexpanded:

Alternative 1:

(:Type A :Expanded NIL) []

Alternative 2:

(:Type B :Expanded NIL) []

Which alternative in G under path X should be expanded next (1, 2, or 0 to

leave them unexpanded, or :all to expand all alternatives in this order,

or :quiet for continuation without asking again in G) ? _

Implementation

As is the case for :attribute-preference, the order in which disjuncts are visited is deter-

mined in procedures depth-�rst-expand and types-�rst-expand . A function is called to manage

the dialog if control.ask-disj-preference is true.

7.13 Printing Control Information

The TDL statement

print-control f type j instance j :global g

[:index index] [:environment f:type j :instanceg] .

takes the same optional arguments as defcontrol. It prints the control information de�ned

by defcontrol in an internal format with path patterns replaced by a special syntax. It can

92 CHAPTER 7. CONTROLLING TYPE EXPANSION

be used anywhere in a grammar �le or interactively to show the current status of control

speci�cation.

7.14 How to Stop Recursion

Type expansion with recursive type de�nitions is undecidable in general, i.e., there is no

complete algorithm that halts on arbitrary input (type de�nitions) and decides whether a

description is satis�able or not.

However, there are several ways to stop in�nite expansion which we will discuss now brie
y.

All of them except the �rst require de�ning appropriate control information so that it is clear

how to formulate them in TDL.

The �rst method is part of the expansion algorithm. If a recursive type occurs in a typed

feature structure that is to be expanded, and this type has already been expanded at a

subpath, and no features or other types are speci�ed locally at this node, then this type will

be postponed, since it would expand forever (this is called lazy expansion, cf. Section 6.5.3).

An example of a recursion that stops for this reason is the recursive version of the *list*

type. A counterexample, i.e., a type that will not stop without a �nite input (using the

default resolvedness predicate always-false and no delay pattern), is A��t-Kaci's append

type. Expanding append with �nite input will stop, of course (cf. the examples at the end of

Chapter 6.

The second way is brute force: One can set the :maxdepth slot to cut o� expansion at a suit-

able path depth. The third method is to de�ne :delay patterns or to select the :expand-only

mode with appropriate types and paths.

The fourth method is known from Prolog and works for some kinds of recursive types. One

uses the :attribute-preference list to direct expansion into a feature branch that ensures

termination. Finally, one can de�ne an appropriate :resolved-predicate that is suitable

for the application.

7.15 Global Variables

The following global variables contain the default values for global control that are used if

not speci�ed otherwise in defcontrol.

� *EXPAND-FUNCTION* (default value: 'Depth-First-Expand)

� *RESOLVED-PREDICATE* (default value: 'Always-False)

� *MAXDEPTH* (default value: NIL)

� *IGNORE-GLOBAL-CONTROL* (default value: NIL)

7.15. GLOBAL VARIABLES 93

� *ASK-DISJ-PREFERENCE* (default value: NIL)

� *ATTRIBUTE-PREFERENCE* (default value: ())

� *USE-DISJ-HEURISTICS* (default value: NIL)

� *USE-CONJ-HEURISTICS* (default value: NIL)

Other global variables that in
uence the expansion algorithm (but cannot be changed by

defcontrol) are:

� *SIMPLIFY-FS-P* (default value: t)

If set to t, UDiNe's simplify-fs! function removes *fail* items (failed disjunction al-

ternatives) from a feature structure. This has to be done explicitly after uni�cation

because distributed disjunctions have a �xed number of disjuncts that can not be al-

tered until uni�cation has terminated. simplify-fs! is called after expansion in expand-fs ,

expand-instance , and expand-type .

� *MAKE-DNF-P* (default value: nil)

If set to t, UDiNe's make-dnf function translates all distributed disjunctions in a typed

feature structure into disjunctive normal form (DNF). make-dnf is called after expansion

in expand-fs , expand-instance , and expand-type . The
ag is UDiNe-speci�c and only

makes sense in cases where simplify-fs! could not simplify a structure completely (an

example of such a structure is the less type from [Krieger & Sch�afer 94b, page 42]).

Because DNF may blow up a feature structure exponentially in the worst case, we do

not recommend setting it to t unless simplify-fs! did not succeed.

� *VERBOSE-EXPANSION-P* (default value: nil)

If t, type expansion is verbose, i.e., each call to expand-type is documented, as well

as the current path and detection of recursive types. Moreover, the feature structures

obtained at the end of each expansion pass in expand-tfs are printed using UDiNe's

ASCII representation (via function print-fs).

� *LATEX-STREAM* (default value: nil)

If *VERBOSE-EXPANSION-P* is t and *LATEX-STREAM* has a non-nil value which is

assumed to be a Common Lisp stream, then LaTEX code that protocols the expansion

computation is written to that stream. Examples are the expansion traces at the end of

Chapter 6. There exists a function latex-expand-type that takes the same parameters as

expand-type , automatically creates a LaTEX �le and writes the protocol stream of type

expansion (to which *LATEX-STREAM* is temporarily bound to) to it.

� *USE-SKELETON-P* (default-value: nil)

If t, the function expand-type returns the unexpanded skeleton of a type instead of

94 CHAPTER 7. CONTROLLING TYPE EXPANSION

a memoized expanded prototype. The same result can also achieved by setting the

prototype name of :expand slots in global control to :skeleton for all paths and all

types (see below). *USE-SKELETON-P* has only been introduced to be able to correctly

compare memoized vs. unmemoized expansion (cf. Figure 5.2 on page 51). As it turned

out, the run time di�erence is minimal.

7.16 Statistics

Statistics Module

The TDL system can be compiled with an optional statistics module (by (PUSHNEW :STATIS-

TICS *FEATURES*)) to investigate and compare grammars or di�erent control strategies

(cf. the table of Figure 5.2).

The expansion module has been augmented with the following functions:

print-expand-statistics [:domain domain] [:stream stream] .

prints expansion statistics after types or instances have been expanded. If domain is not

speci�ed, the current type domain is assumed. stream is the output stream (default: t for

standard output).

Example:

Expand Statistics in domain DISCO:

852 yes *CONS*

316 yes CAT-TYPE

269 yes *DIFF-LIST*

243 yes MORPH-TYPE

208 yes ATOMIC-WFF-TYPE

202 yes RP-TYPE

146 yes CONJ-WFF-TYPE

120 yes VAR-TYPE

63 yes INDEXED-WFF

59 yes NMORPH-HEAD

53 yes SUBWFF-INST-SHARE-VAR

53 yes TERM-TYPE

51 yes SEMANTICS-TYPE

...

The �rst column contains the number of calls to expand-type , i.e., the number of prototypes

and skeletons that have been returned. The second column indicates whether the default

prototype is fully expanded (yes) or not (no). The last column contains the name of the type.

7.16. STATISTICS 95

reset-expand-statistics [:domain domain].

resets expansion statistics. All expansion-speci�c statistics are set to zero. If domain is not

speci�ed, the current type domain is assumed.

Size of Feature Structures

To determine the size of feature structures, or of all avm types or instances, the universal

function count-nodes has been de�ned.

count-nodes ftype j instance j :allg

[:table f:avms j :instancesg]

[:expand-p ft j nilg]

[:verbose ft j nilg]

[:domain domain]

[:index index]

[:stream stream]

[:filename fnil j �lenameg].

counts the number of nodes in an avm type or instance with the speci�ed index (default is

nil for types and 0 for instances). Instead of a name, the :all keyword can be speci�ed to

count all nodes in all instances or types with index . In this case, :verbose t will output the

number of nodes for each type or instance. Otherwise, only the total will be printed.

The :filename or :stream argument can be used to redirect the output to a �le or a stream

(default: standard output). :expand-p t will expand structures before counting if necessary

(default is nil). When called from Lisp, the function returns 9 values (integers) in the order

as below. Here is an example output:

Total number of nodes in all instances:

of conj avm nodes: 13868

of atomic nodes: 5564

of sortal nodes: 3697

of attributes: 24717

of disj nodes: 644

of disj elements: 1606

of fail nodes: 0

of undef nodes: 0

of shared nodes: 2763

total # of nodes: 23773

96 CHAPTER 7. CONTROLLING TYPE EXPANSION

Counting the Number of Uni�cations

TDL's global variable *COUNT-UNIFICATIONS* can be used to count the number of uni�cations,

e.g.,

set-switch *COUNT-UNIFICATIONS* 0.

expand-all-instances.

print-switch *COUNT-UNIFICATIONS*.

Chapter 8

Nonmonotonicity and Single Link

Overwriting

8.1 Introduction and Motivation

Uni�cation as de�ned in Chapter 3 is a monotonic operation on feature structures. Infor-

mation can be added (re�ned), but never be withdrawn or revised. However, there are good

reasons to admit nonmonotonicity. The �rst is a philosophical or aesthetic one. When de-

scribing natural language, we often have to deal with exceptions, especially in the lexicon,

e.g., morphology of irregular verbs. If we want to encode exceptions in a monotonic fashion,

we must introduce a feature (or a type) that not only contains the exceptions in, say, one

percent of all items, but also repeats the default value in the remaining 99 percent as well.

Because many such features can cross non-orthogonally, feature structures become complex

and ugly, and errors are likely to occur within encoding and maintenance of the lexicon.

The second reason is a more pragmatic one. Because of the increased complexity if we are

restricted to a purely monotonic formalism, feature structures are large, their representation

is space-consuming, the type hierarchy blows up, and uni�cation slows down.

Hence, nonmonotonic extensions to feature structure uni�cation have been proposed (for

an overview cf. [Bouma 92]). Nonmonotonic inheritance allows encoding of defaults and

exceptions in type or template de�nitions in a more succinct fashion and thus help to reduce

the number of types.

Because this thesis is about type expansion, we concentrate on the second part, nonmonotonic

inheritance, or, more speci�cally, single link overwriting (SLO). A future version of TDL will

also implement nonmonotonic uni�cation [Krieger 95b] based on SLO, but this is beyond the

scope of this thesis.

Single link overwriting allows types having a single supertype to be de�ned inconsistently

with that supertype. This restriction avoids inheritance con
icts that can be caused by

multiple inheritance, and makes nonmonotonic uni�cation easier (cf. [Krieger 95b]). But

97

98 CHAPTER 8. NONMONOTONICITY AND SINGLE LINK OVERWRITING

nonmonotonicity can also be used without a special kind of uni�cation. One only has to

guarantee that feature structures with default values will not unify with feature structures

that have been overwritten nonmonotonically. Good candidates are lexical types (defaults)

and lexicon entries (with possibly overwritten values).

8.2 Syntax of Nonmonotonic De�nitions

To de�ne nonmonotonic inheritance for lexicon entries, a new syntax is introduced. != instead

of := for monotonic instance de�nitions indicates nonmonotonic overwriting. The di�erent

syntax ensures that the grammarian is aware of the special semantics. Although mainly

designed for lexicon entries which are usually represented by instances in TDL, SLO non-

monotonicity can also be applied to avm types. The syntax for both kinds of de�nitions is

the same.

identi�er != nonmonotonic [where (constraint f, constraintg�)] f, optiong� .

where

nonmonotonic ! type & [overwrite-path f, overwrite-pathg�]

and

overwrite-path ! identi�er f . identi�er g� disjunction

As for monotonic de�nitions, the left hand side of the de�nition (identi�er) designates the

type or instance name to be de�ned. constraints are optional functional constraints and can

also be used to separate coreference constraints syntactically from the rest of the feature

structure de�nition (as in monotonic de�nitions).

type is the super type to be overwritten. In contrast to monotonic type or instance de�nitions,

multiple inheritance is not allowed. The [: : :] syntax bears some similarity with the feature

structure syntax for monotonic type or instance de�nitions. However, overwrite-path must be

a true path, and everything following the path (disjunction is the start symbol for a complex

TDL expression, cf. Appendix A), is interpreted as the overwrite value. In other words, the

comma-separated elements between the brackets denote sets of overwrite paths and overwrite

values, in contrast to nested feature-value pairs in monotonic de�nitions.

An example is the following de�nition.

strikepp != strikelex & [CAT.MORPH.STEM "struck", PHON "struck"].

strikepp (either a type or an instance) inherits from type strikelex and nonmonotonically

overwrites the values at the speci�ed paths with the atom "struck".

Because of the structure sharing representation of coreferences, it is also possible to destroy

coreferences by overwrite values.

8.3. VALUE RESTRICTIONS 99

8.3 Value Restrictions

To restrict the possible values that can be overwritten at a path, we augment typed feature

structures by another type slot (in addition to :delta and :expanded), namely :restriction .

Restrictions in TDL are comparable to type restrictions in programming languages (typing

variables). The main motivation for restrictions is to have an additional means for checking

correctness of inheritance de�nitions because nonmonotonicity is powerful and dangerous.

Value restrictions prevent feature structures from being overwritten by arbitrary values.

The additional restriction slots are subject to monotonic uni�cation (type conjunction) like

normal type slots.1 A :restriction slot contains a possibly complex expression consisting only

of type symbols joined with the operators &, |, and ^, and negation (~).

Restriction types can be speci�ed within avm type de�nitions as an optional suÆx for attribute

names, i.e., instead of a single attribute attribute, one can write

attribute:restriction

where

restriction ! conj-restriction f f| j ^g conj-restriction g�

conj-restriction ! basic-restriction f & basic-restriction g�

basic-restriction ! type j ~basic-restriction j (restriction)

The restriction is checked if nonmonotonic overwriting takes place. A (continuable) error is

signalled if the overwrite value violates the restriction type.

The default restriction type (if no restriction is speci�ed) is >, the top type of the hierarchy,

i.e., the value can be overwritten by any value.

Example:

begin :declare.

built-in: Integer.

end :declare.

begin :type.

a := [person_x : Integer, person_y : Integer].

b := a & [person_x 1 | 2, person_y 1 | 2].

end :type.

begin :instance.

c != b & [person_x 3].

1Note that the restriction facility is only available if the TDL system has been compiled with the

#+TDL-Restriction compiler switch.

100 CHAPTER 8. NONMONOTONICITY AND SINGLE LINK OVERWRITING

d != b & [person_x "three"].

end :instance.

Expanding the prototype of instance c results in the following structure

2
666664
c

person x 3

person y

(
1

2

)
3
777775

If we expand instance d, an error is signalled:

Error: Restriction INTEGER is inconsistent with overwrite value

(:ATOM "three") under path PERSON_X in D

Restart actions (select using :continue):

0: Continue; overwrite restriction anyway.

8.4 Implementation

The implementation of the restriction slot is straightforward. TDL's type infos are augmented

by the :restriction slot as mentioned above. Additional syntax rules for TDL's ZEBU grammar

(cf. Appendix A) are introduced to pass the restriction types to TDL's type infos. When typed

uni�cation takes place, not only are the values `uni�ed' (type conjunction, cf. Chapter 3), but

also the restriction types.

Overwriting is more tricky. In the current implementation, it is done after feature structure

expansion in functions expand-type and procedure expand-instance . It is necessary that the

prototype has been fully expanded before overwriting to avoid later interaction with uni�ca-

tion of feature structures that intersect with the overwrite paths.

Then, the values at the overwrite paths are destructively eliminated, and the new values are

uni�ed with the `amputated' structure. Because of the structure sharing representation of

coreferences in UDiNe, this solution has the nice advantage that although the coreferences

in the paths that have been overwritten are destroyed, their counterparts outside are left

untouched.

Problems can occur if nonmonotonically overwritten feature structures are not fully expanded,

caused by postponement of types at subpaths of the overwrite paths. In this case, a warning

is signalled. The only proper alternative solution would be to store the overwrite value

within the feature structures themselves (which is not allowed in the current implementation

of UDiNe), and only overwrite if the (sub)structure is fully expanded by adding a kind of

after method to feature structure expansion. Currently, overwrite paths and values are stored

together with the prototype feature structure of a type or instance.

8.4. IMPLEMENTATION 101

Furthermore, warnings are given if the overwrite path does not exist in the feature structure

to be overwritten. In this case, the missing path is generated anyway and the overwrite value

is uni�ed monotonically. As mentioned above, a continuable error is signalled if the overwrite

value is incompatible with the restriction type.

Chapter 9

Appropriateness and

Well-Typedness

9.1 Introduction and Motivation

The last task of this thesis is to add appropriatess, well-typedness and total well-typedness to

the TDL formalism. These three properties impose restrictions on the typed feature structures

and type systems we have de�ned in Chapter 3. Appropriateness is a relation between types

and features. It states that only those features can occur in a feature structure of a certain

type that are de�ned for it, namely its appropriate features. Correspondingly, only some types

are appropriate for a feature. Moreover, appropriateness also restricts the kind of values a

feature may have. Well-typedness and total well-typedness are properties of typed feature

structures that are based on appropriateness (formal de�nitions follow).

The notion of appropriateness was �rst introduced informally by [Pollard & Sag 87]. Their

main motivation was to forbid typed feature structures to bear features that do not belong

to their types, e.g., a structure of type sign may have a phonology attribute, but a feature

structure of type category must not.

Because from the viewpoint of satis�ability of feature structure uni�cation, there is no dif-

ference whether sign has a feature phonology with value > or no such feature at all, 1 it

is necessary to impose additional appropriateness conditions on feature structures and type

systems to preclude these cases.

There are good reasons to require grammars and feature structure formalisms to meet the

appropriateness conditions.

� Debugging and maintainability

Grammars that are to meet the appropriateness conditions can be checked by the com-

piler. More conceptual or typographical errors are likely to be detected because of the

1although their set-theoretical semantics di�er, cf. Section 3.2

102

9.2. DEFINITIONS 103

additional restriction.

� Upper bounds for feature arity

If a feature structure formalism is restricted by appropriateness, the number of features

that can occur is limited for every type. This property can be exploited to eÆciently rep-

resent feature structures (e.g., by �xed-size arrays for compilation or by Prolog terms).

However, this also requires that the type system is closed, in contrast to the (optionally)

open type world of TDL.

� Type inference

Appropriateness is indispensable for a feature structure formalism with a type inference

mechanism. Otherwise, another source of termination and eÆciency problems arises

because of the indeterminacy to which type a feature belongs.

� Portability and intertranslatability of NL grammars

Many implemented feature structure formalisms based on Prolog require feature struc-

tures to meet the appropriateness conditions, or, even more restrictively, to be totally

well-typed. In this case, a grammar written for a more open formalism (like TDL with-

out appropriateness check) may not work on the appropriateness formalism without

major changes. [Rupp & Johnson 94] discuss portability and related problems for NL

grammars.

� Object orientation

[Cardelli & Wegner 85] de�ne three criteria that must be ful�lled by a programming

language to be considered called `object-oriented'. Strong typing requires every object

to be typed. Data abstraction allows reference to complex objects by their name without

knowing about their internal structure. Finally, inheritance-based polymorphism ensures

that methods de�ned for a type are also applicable for its subtype. Appropriateness is

the basis for these three criteria. If they are ful�lled, methods and techniques devel-

oped for the implementation of object-oriented programming languages can be used for

feature structure formalisms as well.

9.2 De�nitions

It is due to Bob Carpenter that precise de�nitions for appropriateness and well-typedness in

feature structure formalisms exist [Carpenter 92, Chapter 6].

We translate and extend his de�nitions to �t into our formalization of TDL (Chapter 3).

De�nition 15 Appropriateness

A TDL type system meets the appropriateness condition i� 8f 2 F : 9� 2 Ta : � is the most

general type such that �(�) = h�; [f1
:
= �1; : : : ; fn

:
= �n]i and f = fi for some i 2 f1; : : : ; ng.

104 CHAPTER 9. APPROPRIATENESS AND WELL-TYPEDNESS

Then the appropriateness speci�cation is a partial function Approp : F � Ta 7! (T [A) and

Approp(f; �) := type-of (�i).

If Approp(f; �) is de�ned and � � � , then Approp(f; �) is de�ned and Approp(f; �) �

Approp(f; �) (closure).

The Approp function is de�ned on every feature for every avm type that has a feature (by

de�nition or by inheritance) at the toplevel path.

Carpenter stipulates that there is exactly one most general type that introduces a feature.

The reason is that this eliminates a non-determinism in type inference algorithms.2 TDL is not

so restrictive, and allows more than one type to introduce a feature (feature polymorphism).

However, optional warnings can be printed if there is no unique type that introduces a feature.

De�nition 16 Well-typedness

A conjunctive feature structure � = h�; [f1
:
= �1; : : : ; fn

:
= �n]i is well-typed, i� �i are well-

typed 8i 2 f1; : : : ; ng and8>>>><
>>>>:

if � 2 Ta : Approp(fi; �) is de�ned and type-of (�i) � Approp(fi; �)

8i 2 f1; : : : ; ng

if � = �1 ^ � � � ^ �m : Approp(fi; �j) is de�ned for some �j , 1 � j � m, and

type-of (�i) � Approp(fi; �j) 8i 2 f1; : : : ; ng

A disjunctive feature structure � = f�1; : : : ; �ng is well-typed, i� �i are well-typed 8i 2

f1; : : : ; ng.

Informally, a feature structure is well-typed, if every feature occurring in it is licensed by the

Approp function and if its value is equal to or more speci�c than its Approp value.

De�nition 17 Total well-typedness

A conjunctive feature structure � = h�; [f1
:
= �1; : : : ; fn

:
= �n]i is totally well-typed, i� �i are

totally well-typed 8i 2 f1; : : : ; ng and8><
>:
if � 2 Ta : if Approp(fi; �) is de�ned then f = fi for some i 2 f1; : : : ; ng

if � = �1 ^ � � � ^ �m : 8�j, 1 � j � m: if Approp(fi; �j) is de�ned then f = fi

for some i 2 f1; : : : ; ng

A disjunctive feature structure � = f�1; : : : ; �ng is totally well-typed, i� �i are totally well-

typed 8i 2 f1; : : : ; ng.

In other words, a feature structure is totally well-typed if it is well-typed and if every feature

that is appropriate for each type occurring in the feature structure is explicit in the structure.

Operationally, total well-typedness corresponds to full type expansion of well-typed feature

structures. Note that Carpenter's total well-typedness is not well-de�ned for recursive typed

feature structures, because the de�nition would `loop' in recursive types.

2E.g., if both type a and type b introduce feature f, then the inference algorithm cannot immediately

determine to which type of both a feature structure belongs.

9.3. IMPLEMENTATION OF THE APPROPRIATENESS FUNCTION 105

9.3 Implementation of the Appropriateness Function

As we mentioned in Chapter 3, the Approp function is computed incrementally at type def-

inition time. For every new feature that occurs at the toplevel of a avm type de�nition, an

entry is added to the Approp table.

Instead of storing the complete two-place Approp function F � Ta 7! (T [A) for each type

and feature as de�ned by Carpenter, we only store a total one-place function F 7! (Ta �

(T [A))+ that contains only one entry per feature, namely the most general avm type(s)

plus its or their admissible feature values. The admissible values for all subtypes can be

inferred quickly by a lookup in the prototypical feature structure of the requested type (its

default prototype with index nil). To infer the actual value types for a feature, the default

prototypes of all types must be expanded at least at path depth 0 (i.e., its supertypes).

Expansion is done automatically (i.e., if necessary) by the procedure that computes or updates

the appropriateness table.

The main advantage of storing only the most general intro-type for every feature is that this

representation needs less space.

Procedure compute-approp computes the appropriateness table according to the avm type

de�nitions. Normally, compute-approp need not to be called by the user. This is done by

the well-typedness checking procedures if necessary (e.g., if new types have been added).

However, if one needs to know whether there is more than one type that introduces a feature,

it is possible top call compute-approp by hand. The optional keyword :warn-if-not-unique

controls whether a warning is printed (t) or not (nil), if a feature is not de�ned uniquely;

default is nil. Syntax:

compute-approp [:domain domain] [:warn-if-not-unique ft j nilg].

compute-approp expands the prototypes of all avm types at path depth 0 (if necessary), and

inserts for each feature the most general type(s) that introduce(s) the feature into the Approp

table.

Procedure

print-approp [:domain domain].

prints the current appropriateness table of a TDL type domain. The �rst column contains the

feature name, the second column contains a list of dotted pairs. Each dotted pair consists of

the most general type that introduces the feature and the admissible value type.

Feature ((Intro-Type . Value-Type)*)

--

HOUR ((TIME-VALUE . *TOP*))

NON-LOC ((NON-LOCAL . NON-LOCAL-TYPE))

106 CHAPTER 9. APPROPRIATENESS AND WELL-TYPEDNESS

SUBJ-SC ((SUBJ-SUBCAT-TYPE . *TOP*))

SEM-MOOD ((QUESTION-SEMANTICS . SYMBOL))

SUBCAT ((SUBCAT-TYPE . *TOP*))

FILLER-DTR ((FILLER-DTR-TYPE . MAX-SIGN-TYPE))

SEMINF ((SPAC-4-TYPE . (:AND CLOSED-SEM-LISTS EMPTY-QUANT-TYPE))

LAST ((*DIFF-LIST* . *TOP*)

(CONT2QUANT . *NULL*)

(CLOSED-DIFF-LIST . *NULL*))

LIST ((*DIFF-LIST* . *TOP*))

LISZT ((MRS-TYPE . *LIST*))

HAENDEL ((MRS-TYPE . MRS-HANDLE))

...

9.4 Checking Well-Typedness

Di�erent kinds of well-typedness checks are provided, at type or instance de�nition time (for

debugging purposes), at uni�cation time (to rule out non-well-typed feature structures during

uni�cation), and explicitly on typed feature structures and prototypes.

In every case, the global variable *VERBOSE-WELLTYPEDNESS-CHECK-P* controls whether the

source of non-well-typedness is printed (t) or not (nil). The warnings that are printed if the

check is verbose are:

� \Feature : : : is not welltyped under path : : : in hinstance or type namei" if the

feature value is more general than or incompatible with the appropriateness type.

� \Feature : : : under path : : : in hinstance or type namei has no appropriateness

specification in domain : : : " if the feature is not licensed by an appropriateness

de�nition, i.e., there is no type that introduces the feature at the toplevel.

Independently from the value of the global switch, a warning is printed if an unde�ned type

occurs in a feature structure being checked.

9.4.1 Well-Typedness Checks at De�nition Time

The global variable *CHECK-WELLTYPEDNESS-P* controls whether the check is done at type and

instance de�nition time (t) or not (nil). If t, full expansion of the default prototype of the

structure being de�ned takes place before the check. Therefore, the grammar writer has to be

careful if recursive types are involved. The check is done by calling check-welltypedness-node

(see below) on the expanded prototype feature structure.

9.4. CHECKING WELL-TYPEDNESS 107

9.4.2 Well-Typedness Checks at Uni�cation Time

Well-typedness checks at uni�cation time can be useful if feature structures are generated by

mechanisms di�erent from TDL's avm type or instance de�nition facility, e.g., by an external

NL generator. In an open type world, if only well-typed instances and types are used in a

grammar, well-typedness checks at uni�cation time are super
uous.

The global variable *CHECK-UNIFICATION-WELLTYPEDNESS-P* controls whether the argument

nodes of typed uni�cation are checked to be well-typed (t) or not (nil) in function unify-types

(cf. page 38).

If *CHECK-UNIFICATION-WELLTYPEDNESS-P* has value t, the global variable *RETURN-FAIL-

IF-NOT-WELLTYPED-P* determines whether a uni�cation failure is triggered if one of the uni-

�ed nodes is not well-typed (t). If the value is nil, a warning is printed instead.

9.4.3 Explicit Well-Typedness Checks for Feature Structures

Finally, function check-well-typedness-node checks well-typedness of a feature structure node.

check-welltypedness-node node [:domain domain]

[:ctrl-obj ctrl-obj]

[:verbose ft j nilg] .

where node is a feature structure node, domain is the name of a TDL type domain, ctrl-

obj is a UDiNe control object, and the :verbose
ag sets verbosity (default value: value of

VERBOSE-WELLTYPEDNESS-CHECK-P).

The function recursively traverses the feature structure in depth-�rst order and compares the

types and feature at every node with the values in the Approp table.

check-welltypedness-node returns t if the feature structure is well-typed and nil otherwise.

As a side e�ect, warnings are printed to indicate non-well-typed features and their paths

according to the value of the :verbose keyword.

The function

check-welltypedness [type j instance j :all [:instances j :avms

[:domain domain] [:index index] [:verbose ft j nilg]]].

provides a well-typedness check for a single avm type or instance as well as for all types or

instances with the speci�ed index (default is :all :instances) The function calls function

check-welltypedness-node with the speci�ed type or instance prototype and returns t if it is

well-typed and nil otherwise. If :all is speci�ed as the �rst argument, the return value is

unde�ned.

108 CHAPTER 9. APPROPRIATENESS AND WELL-TYPEDNESS

9.5 Total Well-Typedness Checks

There is no special function for checking total well-typedness because total well-typedness

directly follows from full expansion of well-typed feature structures:

total well-typedness = well-typedness + type expansion

A simple check of the expanded
ag at the root node of a well-typed feature structure suÆces

to decide whether it is totally well-typed or not.

Chapter 10

Comparison to Related Systems

In this chapter, we compare the TDL system to other implemented grammar formalisms.

Because there is a steadily growing number of feature structure formalisms, we limit the

comparison to widespread formalisms with type hierarchies that implement at least two of

the topics described in this thesis.1

Moreover, we concentrate on formalisms that have been designed speci�cally for the develop-

ment of uni�cation-based grammars such as HPSG (and have proven that HPSG grammars

work). Although LOGIN [A��t-Kaci & Nasr 86] and LIFE [A��t-Kaci et al. 94] have in
uenced

the design and implementation of grammar formalisms for HPSG, they are not used for HPSG

grammars, mainly because disjunction and negation and other important features are missing.

Like Oz [Henz et al. 93], LIFE is rather a general purpose programming language. However,

the next version of Oz will implement open features and hence might be better suited for

natural language representation.

A new system developed at the University of T�ubingen, named TROLL, is not considered

in our comparison because it makes very strong assumptions on the type and feature system

that di�er from the common interpretation of HPSG (cf. [Gerdemann & King 94]).

We compare the following systems: TDL (literature: cf. introduction), TDL ExtraLight

[Krieger & Sch�afer 93b], ALE [Carpenter & Penn 94], CUF [D�orre & Dorna 93], and TFS

[Zajac 92]. The focus of the comparison lies, of course, in type expansion and related topics,

as well as expressivity of the formalisms, well-typedness and nonmonotonicity.

All systems based on types have some kind of type expansion. ALE and TDL ExtraLight

expand types fully at de�nition time. Therefore, they cannot handle recursive types. How-

ever, ALE provides recursion through a built-in bottom-up chart parser and through de�nite

clauses, as most other systems without recursive types do, including CUF. Although the ex-

pressivity is the same, the disadvantage of this solution is that it di�ers from the framework

proposed for HPSG. E.g., the Head Feature Principle cannot be formulated as a type de�ni-

1A more detailed overview of 16 systems can be found in [Backofen et al. 93]. [Manandhar 93] gives a

thorough comparison of ALE, CUF, and TFS.

109

110 CHAPTER 10. COMPARISON TO RELATED SYSTEMS

tion if recursive types are not supported. Allowing type expansion only at de�nition time is

in general space consuming, thus uni�cation and copying is expensive at run time.

TFS also expands types at de�nition time (type checking), but delays recursive types that

can be expanded at run time.

Another strategy one might follow is to integrate type expansion into the typed uni�cation

process so that type expansion can take place at run time. This approach has been suggested

for LIFE; it is also possible in TDL. Moreover, in TDL one can freely choose when type

expansion takes place: at type de�nition time or at run time.

Feature structure memoization in TDL helps to reduce the number of uni�cations which is

important for run time expansion, cf. Figure 5.2 on page 51. Partial expansion keeps the

feature structures small and makes expansion of lexicon entries about 10 times faster. A

system that employs postponement on demand at run time is CUF [D�orre & Dorna 93].

Laziness can be achieved here by specifying delay patterns as is familiar from Prolog. This

means postponing the evaluation of a relation until the speci�ed parameters are instantiated.

TDL TDL ExtraLight ALE TFS CUF

Type expansion

� at def./compile time ✓1 ✓ ✓ ✓ ✓

� at run time ✓1 - - 2 -

� within uni�cation ✓31 - - - -

� recursive types ✓ - - ✓ -

� partial expansion ✓ - - - ✓

� control, preferences ✓ - - - 4

� fs memoization ✓ - - - -

Well-typedness ✓1 - ✓ - -

Nonmonotonicity ✓ - - - -

Open type world ✓1 ✓ - - ✓

Complex negated types ✓ - - - ✓

Disjunctive Type de�nitions ✓ - - ✓ ✓

Open feature arity ✓ ✓ - ✓ ✓

Feature polymorphism ✓ ✓ - ✓ ✓

Complex disj. values ✓ ✓ - - -

Complex fs negation ✓ - - - ✓

Coreference variables ✓ ✓ - ✓ -

Figure 10.1: Comparison of typed feature structure formalisms.

111

Currently, TDL/UDiNe is the only system that supports preferences to direct uni�cation and

speed up processing. [Brew 93] presents an approach for integrating preferences in CUF.

Welltypedness checks are only performed in ALE and (optionally) in TDL. Nonmonotonic

de�nitions, that are especially useful for lexicon speci�cation, are unique in TDL. TDL, TDL

ExtraLight, and CUF are the only systems that allow for an open type world (i.e., conjunction

of types that have no common subtype is consistent). In TDL, one can also select a closed

type world to ensure compatibility with grammars written for other formalisms.

Criteria like complex disjunctive feature values, complex feature negation, and coreferences

can be used to estimate the expressivity of the feature constraint solver.

To sum up, TDL is more general than the other systems in that many features are optional or

parameterized such as closed type world, well-typedness check, expansion time, and control.

Therefore, it may also be used to develop or check grammars written for other systems, and

can support intertranslatability and portability of natural language grammars (cf. [Rupp &

Johnson 94]).

1optional
2recursive types only [Emele & Zajac 90]
3currently not implemented, but can be done by modifying the TDL-UDiNe uni�cation interface
4not implemented; has been proposed by [Brew 93]

Chapter 11

Conclusion and Future Work

In this thesis, we have presented a new approach to type expansion. By considering type

expansion a proper system module, instead of an implicit mechanism, the time for type

expansion can be chosen freely during linguistic processing. It can also be integrated into

uni�cation.

Partial expansion at de�nition time helps to reduce space requirements, e.g., for lexicon

entries. Incrementality is achieved through expanded
ags in the feature structures that

allow partially expanded structures and avoid redundant uni�cations. Moreover, the
ags

drastically reduce the search space for subsequent expansions. Memoization of expanded

structures minimizes the number of uni�cations.

Lazy expansion of recursive types allows exploitation of the increased expressivity that recur-

sive types admit. This allows grammars to be speci�ed close to the de�nitions given in the

HPSG books.

The expansion algorithm is parameterized to be either complete or always terminating.

Declarative speci�cation of control information can increase processing speed, e.g., by prefer-

ence information (controlled linguistic deduction, cf. [Uszkoreit 91]).

Furthermore, nonmonotonicity has been included in the type expansion algorithm for type

and instance de�nitions, e.g., for a more succinct lexicon speci�cation with defaults and

exceptions. Appropriateness conditions can be checked optionally to guarantee well-typedness

of the feature structures (at de�nition or at run time). Full expansion of well-typed feature

structures leads to total well-typedness (modulo recursive types).

Because many of the added features can be parameterized or are optional, TDL is more general

than other formalisms, and can also be used to process grammars that have been developed

for other formalisms, leaving aside di�erent syntax that can be translated automatically in

most cases (full Boolean logic for types and feature constraints).

In this thesis, we have laid the foundations for more sophisticated linguistic processing with

typed feature structures. Various strategies can be tested. While the usefulness of memoiza-

tion has already been proven for expansion of a grammar with (currently) 1800 types and 450

112

113

lexicon entries (speed up factor is up to 10 compared to a naive algorithm that uni�es only

the skeletons), other issues are challenging:

� Expansion of lexicon entries at run time

The most promising application of controlled and delayed expansion is related to lexicon

entries. The current NL applications of TDL still use fully expanded lexicon entries. For

larger HPSG lexica, it is indispensable to postpone expansion of lexicon entries until

they are required by the parser in order to save memory. A lexicon entry of the DISCO

grammar has an average size of 100 complex nodes.

� Postponement of non-�ltering semantic parts of lexicon entries during parsing

Controlled expansion of lexical semantics can drastically improve parsing speed because

the structures become smaller (i.e., copying and uni�cation is faster). Expansion of

semantics is only necessary if the syntactic part did not lead to failure. The sophisticated

delay speci�cation developed in this thesis can be used to only make explicit the �ltering

parts of semantic information; cf. [Diagne et al. 95] for �rst results.

� Exploitation of increased expressivity by recursive de�nitions

The append relation (list concatenation), �nite state automata (morphology), and

phrase structure are examples for applications of recursive types that lead to more

elegant grammar speci�cations.

� Copy pools

The prototype and memoization techniques presented in this thesis can be pushed to

the extreme, where (almost) all copying is done at compile time and within idle run

time. This helps to speed up uni�cation, e.g., for parsing. Heuristics can be obtained

from training sessions to estimate the required number of copies per prototype.

� Psycholinguistically motivated preferences

can be supported by training sessions and can be used to �rst process the most probable

readings or rule out some others depending on parameters.

While these applications can be performed within the TDL formalism as implemented and

presented in the thesis, some future extensions of the formalism are interesting:

� Type expansion as an anytime module

Complex architectures for NL processing require modules that can be interrupted at any

time, returning an incomplete but nevertheless useful result [Wahlster 93]. Such modules

are able to continue processing with only a negligible overhead, instead of having been

restarted from scratch. Type expansion can serve as an anytime module for linguistic

processing. Since the representation of partially expanded feature structures trough

expanded
ags already supports incrementality, the integration of anytime behaviour

into the expansion algorithm is straightforward.

114 CHAPTER 11. CONCLUSION AND FUTURE WORK

� Type inference

tries to infer the correct type of an untyped or partially typed feature structure. It

can be seen as the inverse of type expansion that makes feature explicit from type

de�nitions. Type inference is especially useful for natural language generation. Because

the TDL language is very powerful, its expressivity must be limited if type inference is to

be decidable, or approximations are computed to ensure termination. The memoization

technique can also be used for an eÆcient inference algorithm.

� Lazy attribute inheritance and integration of expansion into uni�cation

Although we do not believe that this expansion technique is generally useful for natural

language processing (because much more uni�cations take place compared to prototype

memoization), it is elegant for lazy expansion of recursive types, and it would be nice

to have it as an alternative expansion strategy.

� Abstract interpretation, data
ow analysis, call patterns, mode declarations

These techniques have been developed for more eÆcient processing of Turing-equivalent

computations in logic programming languages (among others, cf. [Warren 92]). Al-

though TDL becomes Turing-equivalent through the admission of recursive types, their

processing is not always (space-) eÆcient. `Junk slots' like the patch feature in the

append type are necessary to pass and store arguments during computation and there-

fore blow up the size of the feature structures being processed. The techniques men-

tioned above help to reduce this overhead by compiling declarative grammars into more

eÆcient ones.

The TDL system including the expansion mechanism presented in this thesis has been in-

stalled and successfully employed at several sites, e.g., DISCO and PARADICE projects

at DFKI Saarbr�ucken, CSLI Stanford (Dan Flickinger, Ivan Sag), IBM Germany, Heidel-

berg (Tibor Kiss), �OFAI Vienna (Harald Trost), PRACMA project at the Computer Science

Department of Saarbr�ucken, IMS Stuttgart (Martin Emele), Simon Fraser University (Fred

Popowich), GMD-IPSI, Darmstadt (Renate Henschel), grammar engineering course at the

Computational Linguistics Department of Saarbr�ucken (Hans Uszkoreit, Stephan Oepen),

and Brandeis University (James Pustejovsky).

Appendix A

Syntax of TDL

Introduction

The TDL syntax is given in extended BNF (Backus-Naur Form). Terminal symbols (characters

to be typed in) are printed in typewriter style. Nonterminal symbols are printed in italic

style. The grammar starts with the start production. The following table explains the

meanings of the metasymbols used in extended BNF.

metasymbols meaning

: : : j : : : alternative expressions

[: : :] one optional expression

[: : : j : : : j : : :] one or none of the expressions

f : : : j : : : j : : : g exactly one of the expressions

f : : : g� n successive expressions, where n 2 f0; 1; : : :g

f : : : g+ n successive expressions, where n 2 f1; 2; : : :g

TDL Main Constructors

start ! fblock j statementg�

block ! begin :control. f type-def j instance-def j start g� end :control.j

begin :declare. f declare j start g� end :declare. j

begin :domain domain. fstartg� end :domain domain. j

begin :instance. f instance-def j start g� end :instance. j

begin :lisp. fCommon-Lisp-Expressiong� end :lisp. j

begin :template. f template-def j start g� end :template. j

begin :type. f type-def j start g� end :type.

Type De�nitions

type-def ! type f avm-def j subtype-def g .

115

116 APPENDIX A. SYNTAX OF TDL

type ! identi�er

avm-def ! := body f, optiong� j

!= nonmonotonic [where (constraint f, constraintg�)] f, optiong�

body ! disjunction [-->list] [where (constraint f, constraintg�)]

disjunction ! conjunction f f| j ^g conjunction g�

conjunction ! term f & term g�

term ! type j atom j feature-term j di�-list j list j coreference j

distributed-disj j templ-par j templ-call j ~term j (disjunction)

atom ! string j integer j 'identi�er

feature-term ! [[attr-val f, attr-valg�]]

attr-val ! attribute [:restriction] f. attribute [:restriction] [disjunction]g�

attribute ! identi�er j templ-par

restriction ! conj-restriction f f| j ^g conj-restriction g�

conj-restriction ! basic-restriction f & basic-restriction g�

basic-restriction ! type j ~basic-restriction j templ-par j (restriction)

di�-list ! <! [disjunction f, disjunctiong�] !> [: type]

list ! <> j < nonempty-list > [list-restriction]

nonempty-list ! [disjunction f, disjunctiong� ,] ... j

disjunction f, disjunctiong� [. disjunction]

list-restriction ! : (restriction) j : type [: (integer, integer) j : integer]

coreference ! #coref-name j ~#(coref-name f, coref-nameg�)

coref-name ! identi�er j integer

distributed-disj ! %disj-name (disjunction f, disjunctiong+)

disj-name ! identi�er j integer

templ-call ! @templ-name ([templ-par f, templ-parg�])

templ-name ! identi�er

templ-par ! $templ-var [= disjunction]

templ-var ! identi�er j integer

constraint ! #coref-name = f function-call j disjunction g

function-call ! function-name (disjunction f, disjunctiong�)

function-name ! identi�er

nonmonotonic ! type & [overwrite-path f, overwrite-pathg�]

overwrite-path ! identi�er f . identi�er g� disjunction

subtype-def ! f :< type g+ f, optiong�

option ! status: identi�er j author: string j date: string j doc: string j

expand-control: expand-control

117

expand-control ! ([(:expand f (ftype j (type [index [pred]])g fpathg+) g�) j

(:expand-only f (ftype j (type [index [pred]])g fpathg+) g�)] j

[(:delay f (ftype j (type [pred])g fpathg+) g�)] j

[(:maxdepth f integer j nil g)] j

[(:ask-disj-preference ft j nilg)] j

[(:attribute-preference fidenti�erg�)] j

[(:use-conj-heuristics ft j nilg)] j

[(:use-disj-heuristics ft j nilg)] j

[(:expand-function ffdepth j typesg -first-expand j : : : g)] j

[(:resolved-predicate fresolved-p j always-false j : : : g)] j

[(:ignore-global-control ft j nilg)])

path ! fidenti�er j patterng f.fidenti�er j patterngg�

pattern ! ? j * j + j ?[identi�er][?j*j+]

pred ! eq j subsumes j extends j : : :

Instance De�nitions

instance-def ! instance avm-def .

instance ! identi�er

Template De�nitions

template-def ! templ-name ([templ-par f, templ-parg�]) := body f, optiong� .

Declarations

declaration ! partition j incompatible j sort-def j built-in-def

partition ! type = type f f| j ^g type g� .

incompatible ! nil = type f& typeg+ .

sort-def ! sort[s] : type f, typeg� .

built-in-def ! built-in[s] : type f, typeg� .

Statements

(as far as of importance for type expansion and welltypedness)

118 APPENDIX A. SYNTAX OF TDL

statement ! check-welltypedness [ftype j instance j :allg [f:instances j :avmsg

[:domain domain] [:index index] [:verbose ft j nilg]]]. j

compute-approp [:domain domain] [:warn-if-not-unique ft j nilg]. j

defcontrol f:global j type j instanceg expand-control [:index index]. j

expand-all-instances fexpand-optiong� . j

expand-all-types fexpand-optiong� . j

expand-instance [instance [:index integer] fexpand-optiong�] . j

expand-type [type [:index index] fexpand-optiong�] . j

print-approp [:domain domain]. j

print-control f type j instance j :global g . j

print-expand-statistics [:domain domain] [:stream stream] . j

print-recursive-sccs [:domain domain] . j

reset-all-instances [domain] . j

reset-all-protos [domain] . j

reset-expand-statistics [:domain domain] . j

reset-proto [type [:domain domain] [:index index]] .

expand-option ! :domain domain j

:expand-control expand-control

domain ! 'identi�er j :identi�er j "identi�er"

index ! integer for instances

integer j identi�er j string for avm types

integer ! f0j1j2j3j4j5j6j7j8j9g+

identi�er ! fa{zjA{Zj0{9j j+j-j*j?g+

string ! "fany characterg�"

Appendix B

Sample File

;;; -*- Mode: TDL -*-

;;; ---

;;; Parameterized Type Expansion in TDL. Some Examples.

;;; ---

defdomain "DEMO". ;;; built-in types will be loaded automatically

begin :domain "DEMO".

set-switch *WARN-IF-REDEFINE-TYPE* NIL. ;;; switch off warnings

set-switch *WARN-IF-TYPE-DOES-NOT-EXIST* NIL. ;;; dto

set-switch *PRINT-SORTS-AS-ATOMS* T. ;;; for fegramed/pgp

set-switch *VERBOSE-EXPANSION-P* T. ;;; verbose expansion

set-switch *PRINT-SLOT-LIST* (CONS :DELTA *PRINT-SLOT-LIST*). ;;; show :delta

set-switch *LABEL-SORT-LIST* '(FIRST REST LAST INPUT EDGE NEXT ;;; for output

WHOLE FRONT BACK A B C D X Y Z). ;;; only

fegramed. ;;; start Feature Editor

set-switch FEGRAMED:*DEF-FILENAME* "/tmp/".

grapher. ;;; start Type Grapher

begin :type.

;;; ---

;;; Parameterized Expansion: expand-only mode for type d

;;; ---

a1 := [a 1].

b2 := [b 2].

c := [c].

zz := [z].

d := zz & [x a1,

y b2,

z c & [c 3]].

119

120 APPENDIX B. SAMPLE FILE

defcontrol d ((:expand-only ((c 1 EQ) z.*) ((a1) x))

(:attribute-preference z x y)).

expand-type 'd.

;;; ---

;;; Parameterized Expansion with delay and prototype index 1

;;; ---

defcontrol d ((:delay (c *))

(:attribute-preference z x y)

(:expand-function types-first-expand))

:index 1.

expand-type 'd :index 1.

;;; ---

;;; Interactively ask for disjunct order

;;; ---

inter := [disj a1 | b2 | c,

disj2 b2 | d | 42].

defcontrol inter ((:ask-disj-preference t)).

expand-type 'inter.

;;; ---

;;; Negation `a la [Smolka 89]

;;; ---

xn := [a 1, b 2, c 3].

nx := [n ~xn].

expand-type 'nx.

;;; ---

;;; Nonmonotonicity (single link overwriting)

;;; ---

a := [person_x:INTEGER,

person_y:INTEGER].

b := a & [person_x 1 | 2].

px3 != b & [person_x 3].

121

expand-type 'px3.

pxs != b & [person_y "string"].

expand-type 'pxs.

;;; ---

;;; Welltypedness Check for an instance at definition time:

;;; ---

set-switch *VERBOSE-EXPANSION-P* NIL.

set-switch *CHECK-WELLTYPEDNESS-P* T.

;;; now expand-instance will be done automatically!

begin :instance.

zi := zz & [z c & [c 3],

x a1].

end :instance.

set-switch *CHECK-WELLTYPEDNESS-P* NIL.

;;; ---

;;; Automata - Basic Configurations

;;; ---

begin :declare.

sort: *undef*.

end :declare.

proto-config := *avm* &

[EDGE, NEXT, INPUT].

non-final-config := proto-config &

[EDGE #first,

NEXT.INPUT #rest,

INPUT <#first . #rest>].

final-config := proto-config &

[INPUT *null*,

EDGE *undef*,

NEXT *undef*].

config := non-final-config | final-config.

;;; ---

;;; consider the two regular expressions U=(a+b)^*c and X=a(b^+)(c^*):

122 APPENDIX B. SAMPLE FILE

;;; ---

U := non-final-config &

[EDGE %covary('a | 'b, 'c),

NEXT %covary(U , V)].

V :< final-config.

X := non-final-config &

[EDGE 'a,

NEXT Y].

Y := non-final-config &

[EDGE 'b,

NEXT Y | Z].

Z := config &

[EDGE %covary('c, *undef*),

NEXT %covary(Z, *undef*)].

;;; ---

;;; now we intersect the two automata U and X --> a(b^+)c

;;; ---

UX := U & X.

test1 := UX & [INPUT <'a,'b,'c>]. ;;; accepted

test2 := UX & [INPUT <'a,'b,'b,'c>]. ;;; accepted

test3 := UX & [INPUT <'b,'c>]. ;;; is inconsistent

test4 := UX & [INPUT <'a,'b,'c,'d>]. ;;; is inconsistent

set-switch *VERBOSE-EXPANSION-P* NIL. ;;; silent expansion

set-switch *PRINT-SLOT-LIST* (REMOVE :DELTA *print-slot-list*).

;;; don't print delta list

expand-type 'test1.

expand-type 'test2.

expand-type 'test3.

expand-type 'test4.

;;; ---

;;; Ait-Kaci's version of APPEND

;;; ---

set-switch *VERBOSE-EXPANSION-P* T.

123

cons := *avm* & [FIRST,REST *list*]. ;;; redefine *LIST* recursively

append0 := *avm* & [FRONT *null*,

BACK #1 & *list*,

WHOLE #1].

append1 := *avm* & [FRONT <#first . #rest1>,

BACK #back & *list*,

WHOLE <#first . #rest2>,

PATCH append & [FRONT #rest1,

BACK #back,

WHOLE #rest2]].

append := append0 | append1.

r:=append & [FRONT <'a,'b>,

BACK <'c,'d>]. ;;; result will be in WHOLE

expand-type 'r.

set-switch *VERBOSE-EXPANSION-P* NIL.

q:=append & [WHOLE <'a,'b,'c>]. ;;; compute possible inputs (4)

expand-type 'q.

;;; ---

;;; Print Recursive Types (SCCs)

;;; ---

message "~%~%List of recursive sccs:".

print-recursive-sccs.

;;; ---

;;; Print Appropriateness table

;;; ---

message "~%Computing appropriateness table~%".

compute-approp :warn-if-not-unique T.

print-approp.

Bibliography

[Abelson & Sussman 85] Harold Abelson and Gerald Jay Sussman. Structure and Interpre-

tation of Computer Programs. MIT Press, 1985.

[A��t-Kaci & Lincoln 88] Hassan A��t-Kaci and Patrick Lincoln. LIFE|A Natural Language

for Natural Language. Technical Report ACA-ST-074-88, MCC, Austin, TX, 1988.

[A��t-Kaci & Nasr 86] Hassan A��t-Kaci and Roger Nasr. LOGIN: A Logic Programming Lan-

guage with Built-In Inheritance. Journal of Logic Programming, 3:185{215, 1986.

[A��t-Kaci et al. 89] Hassan A��t-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Ef-

�cient Implementation of Lattice Operations. ACM Transactions on Programming

Languages and Systems, 11(1):115{146, January 1989.

[A��t-Kaci et al. 93] Hassan A��t-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-

Sorted Feature Theory Uni�cation. Research Report 32, Digital Equipment Corpora-

tion, DEC Paris Research Laboratory, France, May 1993. Also in Proceedings of the

International Symposium on Logic Programming, Vancouver, BC, Canada, October

1993, edited by Dale Miller, published by MIT Press, Cambridge, MA.

[A��t-Kaci et al. 94] Hassan A��t-Kaci, Bruno Dumant, Richard Meyer, Andreas Podelski, and

Peter Van Roy. The Wild LIFE Handbook (prepublication edition). DEC Paris Re-

search Laboratory, France, March 1994.

[A��t-Kaci 86] Hassan A��t-Kaci. An Algebraic Semantics Approach to the E�ective Resolution

of Type Equations. Theoretical Computer Science, 45:293{351, 1986.

[A��t-Kaci 93] Hassan A��t-Kaci. An Introduction to LIFE { Programming with Logic, Inheri-

tance, Functions, and Equations. In: Proceedings of the 1993 International Symposium

on Logic Programming, 1993.

[Backofen et al. 93] Rolf Backofen, Hans-Ulrich Krieger, Stephen P. Spackman, and Hans

Uszkoreit (eds.). Report of the EAGLES Workshop on Implemented Formalisms

at DFKI, Saarbr�ucken, Germany, March 1993. Deutsches Forschungszentrum f�ur

K�unstliche Intelligenz. DFKI Research Report D-93-27.

124

BIBLIOGRAPHY 125

[Bouma 92] Gosse Bouma. Feature Structures and Nonmonotonicity. Computational Lin-

guistics, 18(2):183{203, 1992.

[Brachman & Schmolze 85] Ronald J. Brachman and James G. Schmolze. An Overview of

the KL-ONE Knowledge Representation System. Cognitive Science, 9:171{216, 1985.

[Bresnan 82] Joan Bresnan (ed.). The Mental Representation of Grammatical Relations.

Cambridge, Mass.: MIT Press, 1982.

[Brew 93] Chris Brew. Adding Preferences to CUF. In: [D�orre 93], pp. 54{69. DYANA-2

Deliverable R1.2.A.

[Cardelli & Wegner 85] Luca Cardelli and Peter Wegner. On Understanding Types, Data

Abstraction, and Polymorphism. ACM Computing Surveys, 17(4):471{522, 1985.

[Carpenter & Penn 94] Bob Carpenter and Gerald Penn. The Attribute Logic Engine, User's

Guide, Version 2.0. Computational Linguistics Program, Philosophy Department,

Carnegie Mellon University, Pittsburgh, PA, August 1994.

[Carpenter 92] Bob Carpenter. The Logic of Typed Feature Structures, volume 32: Cambridge

Tracts in Theoretical Computer Science. Cambridge, UK: Cambridge University Press,

1992.

[Chomsky 81] Noam A. Chomsky. Lectures on Government and Binding. Dordrecht: Foris,

1981.

[COLING 94] Proceedings of the 15th International Conference on Computational Linguistics,

COLING-94, Kyoto, Japan, 1994.

[Diagne et al. 95] Abdel Kader Diagne, Walter Kasper, and Hans-Ulrich Krieger. Distributed

Parsing With HPSG Grammars. Technical report, German Research Center for Arti-

�cial Intelligence (DFKI), Saarbr�ucken, Germany, 1995.

[D�orre & Dorna 93] Jochen D�orre and Michael Dorna. CUF|A Formalism for Linguistic

Knowledge Representation. In: [D�orre 93], pp. 1{22. DYANA-2 Deliverable R1.2.A.

[D�orre 93] Jochen D�orre (ed.). Computational Aspects of Constraint-Based Linguistic

Description I. ILLC/Department of Philosophy, University of Amsterdam, 1993.

DYANA-2 Deliverable R1.2.A.

[Emele & Zajac 90] Martin Emele and R�emi Zajac. Typed Uni�cation Grammars. In: Pro-

ceedings of the 13th International Conference on Computational Linguistics, COLING-

90, pp. 293{298, Helsinki, Finland, 1990.

126 BIBLIOGRAPHY

[Emele 91] Martin Emele. Uni�cation with Lazy Non-Redundant Copying. In: Proceedings

of the 29th Annual Meeting of the Association for Computational Linguistics (ACL),

pp. 323{330, Berkeley, CA, 1991.

[Gazdar et al. 85] Gerald Gazdar, Ewan Klein, Geo�rey Pullum, and Ivan Sag. Generalized

Phrase Structure Grammar. Cambridge: Harvard University Press, 1985.

[Gerdemann & King 94] Dale Gerdemann and Paul John King. The Correct and EÆcient

Implementation of Appropriateness Speci�cations for Typed Feature Structures. In:

[COLING 94].

[Henz et al. 93] Martin Henz, Gert Smolka, and J�org W�urtz. Oz|A Programming Language

for Multi-Agent Systems. In: Proceedings of the 13th International Joint Conference

on Arti�cial Intelligence IJCAI-93, Vol. 1, pp. 404{409, 1993.

[Jakobson et al. 51] R. Jakobson, G. Fant, and M. Halle. Preliminaries to speech analysis:

The distinctive features and their correlates. Cambridge, MA, 1951.

[Johnson 88] Mark Johnson. Attribute Value Logic and the Theory of Grammar. CSLI Lecture

Notes, Number 16. Stanford: Center for the Study of Language and Information, 1988.

[Kaplan & Zaenen 88] Ronald M. Kaplan and Annie Zaenen. Long-distance Dependencies,

Constituent Structure, and Functional Uncertainty. In: M. Baltin and A. Kroch (eds.),

Alternative Conceptions of Phrase Structure. Chicago: University of Chicago Press,

1988.

[Karttunen 84] Lauri Karttunen. Features and Values. In: Proceedings of the 10th Interna-

tional Conference on Computational Linguistics, COLING-84, pp. 28{33, 1984.

[Kasper & Rounds 86] Robert T. Kasper and William C. Rounds. A Logical Semantics for

Feature Structures. In: Proceedings of the 24th Annual Meeting of the Association

for Computational Linguistics (ACL), pp. 257{266, New York, NY, 1986. Columbia

University.

[Kay 79] Martin Kay. Functional Grammar. In: C. Chiarello et al. (ed.), Proceedings of the

5th Annual Meeting of the Berkeley Linguistics Society, pp. 142{158, Berkeley, Cal,

1979.

[Kay 84] M. Kay. Functional Uni�cation Grammar: a formalism for machine translation. In:

Proceedings of the 10th International Conference on Computational Linguistics and

the 22nd Annual Meeting of the Association for Computational Linguistics, pp. 75{78,

Stanford, Ca., July 2{6 1984.

BIBLIOGRAPHY 127

[Kogure 90] Kiyoshi Kogure. Strategic Lazy Incremental Copy Graph Uni�cation. In: Pro-

ceedings of the 13th International Conference on Computational Linguistics, COLING-

90, pp. 223{228, Helsinki, Finland, 1990.

[Krieger & Sch�afer 93a] Hans-Ulrich Krieger and Ulrich Sch�afer. TDL { A Type Description

Language for Uni�cation-Based Grammars. In: Proceedings Neuere Entwicklungen

der deklarativen KI-Programmierung, KI-93 Workshop, pp. 67{82, Berlin, September

1993. Humboldt-Universit�at. DFKI Research Report RR-93-35.

[Krieger & Sch�afer 93b] Hans-Ulrich Krieger and Ulrich Sch�afer. TDLExtraLight User's

Guide. DFKI Document D-93-09, Deutsches Forschungszentrum f�ur K�unstliche In-

telligenz, Saarbr�ucken, Germany, 1993.

[Krieger & Sch�afer 94a] Hans-Ulrich Krieger and Ulrich Sch�afer. TDL|A Type Description

Language for Constraint-Based Grammars. In: [COLING 94], pp. 893{899.

[Krieger & Sch�afer 94b] Hans-Ulrich Krieger and Ulrich Sch�afer. TDL|A Type Description

Language for HPSG. Part 1: Overview. DFKI Research Report RR-94-37, Deutsches

Forschungszentrum f�ur K�unstliche Intelligenz, Saarbr�ucken, Germany, 1994.

[Krieger & Sch�afer 94c] Hans-Ulrich Krieger and Ulrich Sch�afer. TDL|A Type Description

Language for HPSG. Part 2: User Manual. DFKI Document D-94-14, Deutsches

Forschungszentrum f�ur K�unstliche Intelligenz, Saarbr�ucken, Germany, 1994.

[Krieger & Sch�afer 95] Hans-Ulrich Krieger and Ulrich Sch�afer. EÆcient Parameterizable

Type Expansion for Typed Feature Formalisms. In: Proceedings of the 14th Interna-

tional Joint Conference on Arti�cial Intelligence (IJCAI), pp. 1428{1434, Montr�eal,

Canada, 1995.

[Krieger et al. 93] Hans-Ulrich Krieger, John Nerbonne, and Hannes Pirker. Feature-Based

Allomorphy. In: Proceedings of the 31st Annual Meeting of the Association for Compu-

tational Linguistics (ACL), Columbus, Ohio, 6 1993. Ohio State University. Also avail-

able as DFKI Research Report RR-93-28, Deutsches Forschungszentrum f�ur K�unstliche

Intelligenz, Saarbr�ucken, Germany.

[Krieger 95a] Hans-Ulrich Krieger. Classi�cation and Representation of Types in TDL. In:

Proceedings of the International KRUSE Symposium, Knowledge Retrieval, Use, and

Storage for EÆciency, University of California, Santa Cruz, 1995.

[Krieger 95b] Hans-Ulrich Krieger. TDL|A Type Description Language for Constraint-Based

Grammars. Foundations, Implementation, and Applications. PhD thesis, Universit�at

des Saarlandes, Department of Computer Science, Saarbr�ucken, Germany, 1995.

128 BIBLIOGRAPHY

[Laubsch 93] Joachim Laubsch. Zebu: A Tool for Specifying Reversible LALR(1) Parsers.

Technical report, Hewlett-Packard, 1993.

[Manandhar 93] Suresh Manandhar. CUF in context. In: [D�orre 93], pp. 43{53. DYANA-2

Deliverable R1.2.A.

[Mellish & Reiter 93] Chris Mellish and Ehud Reiter. Using Classi�cation as a Programming

Language. In: Proceedings of the 13th International Joint Conference on Arti�cial

Intelligence (IJCAI), pp. 696{701, Chamb�ery, France, 1993.

[Michie 68] Donald Michie. \Memo" Functions and Machine Learning. Nature, 218(1):19{22,

1968.

[Nebel 90] Bernhard Nebel. Reasoning and Revision in Hybrid Representation Systems, vol-

ume 422: Lecture Notes in Arti�cial Intelligence. Berlin: Springer, 1990.

[Nebel 91] Bernhard Nebel. Terminological Cycles: Semantics and Computational Proper-

ties. In: John F. Sowa (ed.), Principles of Semantic Networks: Explorations in the

Representation of Knowledge. San Mateo, CA: Morgan Kaufmann, 1991.

[Netter 93] Klaus Netter. Architecture and Coverage of the DISCO Grammar. In: Stephan

Busemann and Karin Harbusch (eds.), Proceedings of the DFKI Workshop on Natural

Language Systems: Reusability and Modularity, pp. 1{10, Saarbr�ucken, Germany,

October 1993. DFKI Document D-93-03.

[Norvig 91] Peter Norvig. Techniques for Automatic Memoization with Applications to

Context-Free Parsing. Computational Linguistics, 17(1):91{98, 1991.

[Norvig 92] Peter Norvig. Paradigms of Arti�cial Intelligence Programming: Case Studies in

Common Lisp. San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1992.

[Pereira & Warren 80] Fernando C.N. Pereira and David H.D. Warren. De�nite Clause Gram-

mars for Language Analysis|A Survey of the Formalism and a Comparison with Aug-

mented Transition Networks. Arti�cial Intelligence, 13:231{278, 1980.

[Pereira 83] Fernando C.N. Pereira. Parsing as Deduction. In: Proceedings of the 21st An-

nual Meeting of the Association for Computational Linguistics (ACL), pp. 137{144,

Cambridge, MA, 1983. Massachusetts Institute of Technology.

[Pollard & Sag 87] Carl Pollard and Ivan Sag. Information-Based Syntax and Semantics.

Vol. I: Fundamentals. CSLI Lecture Notes, Number 13. Stanford: Center for the

Study of Language and Information, 1987.

[Pollard & Sag 94] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar.

Studies in Contemporary Linguistics. Chicago: University of Chicago Press, 1994.

BIBLIOGRAPHY 129

[Rounds & Manaster-Ramer 87] William C. Rounds and Alexis Manaster-Ramer. A logical

version of functional grammar. In: Proceedings of the 25th Annual Meeting of the

Association for Computational Linguistics (ACL), pp. 89{96, Bu�alo, NY, 1987. State

University of New York at Bu�alo.

[Rupp & Johnson 94] C. J. Rupp and Rod Johnson. On the Portability of Complex

Constraint-based Grammars. In: [COLING 94], pp. 900{905.

[Samuel 59] A. L. Samuel. Some Studies in Machine Learning, Using the Game of Checkers.

IBM Journal of research and development, 3(3):210{229, April 1959.

[Shieber et al. 83] Stuart Shieber, Hans Uszkoreit, Fernando Pereira, Jane Robinson, and

Mabry Tyson. The Formalism and Implementation of PATR-II. In: Barbara J. Grosz

and Mark E. Stickel (eds.), Research on Interactive Acquisition and Use of Knowledge,

pp. 39{79. Menlo Park, Cal.: AI Center, SRI International, 1983.

[Shieber 86] Stuart M. Shieber. An Introduction to Uni�cation-Based Approaches to Gram-

mar. CSLI Lecture Notes, Number 4. Stanford: Center for the Study of Language and

Information, 1986.

[Smolka 88] Gert Smolka. A Feature Logic with Subsorts. LILOG Report 33, WT LILOG{

IBM Germany, Stuttgart, Mai 1988.

[Smolka 89] Gert Smolka. Feature Constraint Logics for Uni�cation Grammars. IWBS Re-

port 93, IWBS{IBM Germany, Stuttgart, November 1989.

[Steele 90] Guy L. Steele. Common Lisp: The Language. Bedford, MA: Digital Press, 2nd

edition, 1990.

[Uszkoreit et al. 94] Hans Uszkoreit, Rolf Backofen, Stephan Busemann, Abdel Kader Di-

agne, Elizabeth A. Hinkelman, Walter Kasper, Bernd Kiefer, Hans-Ulrich Krieger,

Klaus Netter, G�unter Neumann, Stephan Oepen, and Stephen P. Spackman. DISCO{

An HPSG-based NLP System and its Application for Appointment Scheduling. In:

[COLING 94].

[Uszkoreit 88] Hans Uszkoreit. From Feature Bundles to Abstract Data Types: New Directions

in Representation and Programming of Linguistic Knowledge. In: Albrecht Blaser

(ed.), Natural Language at the Computer|Contributions to Syntax and Semantics

for Text Processing and Man-Machine Translation, volume 320: LNCS, pp. 31{64.

Berlin: Springer, 1988.

[Uszkoreit 91] Hans Uszkoreit. Adding Control Information to Declarative Grammars. In:

Proceedings of the 29th Annual Meeting of the Association for Computational Lin-

guistics (ACL), pp. 237{245, Berkeley, CA, 1991.

130 BIBLIOGRAPHY

[Wahlster 93] Wolfgang Wahlster. Verbmobil Translation of face-to-face Dialogs. DFKI Re-

search Report RR-93-34, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz,

Saarbr�ucken, Germany, 1993.

[Warren 92] David S. Warren. Memoing for Logic Programs. Communications of the ACM,

35(3):93{111, 1992.

[Zajac 92] R�emi Zajac. Inheritance and Constraint-Based Grammar Formalisms. Computa-

tional Linguistics, 18(2):159{182, 1992.

