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Abstract 

Proteins are key players in all cells of living organisms. In particular, knowledge of the 
spatial protein structure may give fundamental insights into protein function and disease 
processes. For many years, the successful prediction of the structural and functional 
properties of proteins has been a major research field in bioinformatics. This field is 
also addressed in this work, which comprises an applied biomedical and a 
methodological part. 

Comprehensive application studies of bioinformatics approaches were performed, 
which primarily targeted autoinflammatory and neurodegenerative diseases. A variety 
of computational tools was used to analyze medically relevant proteins and to evaluate 
experimental data. Many bioinformatics methods were applied to predict the molecular 
structure and function of proteins. The results provided a rationale for the design, 
prioritization, and interpretation of experiments performed by cooperation partners. 
Some of the generated biological hypotheses were tested and confirmed by experiments.  

In addition, the application studies revealed limitations of current bioinformatics 
techniques, which led to suggestions for novel approaches. Three new computational 
methods were developed to support the prediction of the secondary and tertiary structure 
of proteins and the investigation of their interaction networks. First, consensus 
formation between three different methods for secondary structure prediction was 
shown to considerably improve the prediction quality and reliability. Second, in order to 
utilize experimental measurements in tertiary structure prediction, scoring functions 
were implemented that incorporate distance constraints into the alignment evaluation, 
thus increasing the fold recognition rate. Third, an automatic procedure for 
decomposing protein networks into interacting domains was designed to obtain a more 
detailed molecular view of protein-protein interactions, facilitating further functional 
and structural analyses. 
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Kurzfassung 

Proteinen kommt in allen Zellen lebender Organismen eine Schlüsselrolle zu. 
Insbesondere die Kenntnis der Raumstruktur von Proteinen kann fundamentale 
Einsichten in ihre Funktion und in Krankheitsprozesse liefern. Seit vielen Jahren ist die 
erfolgreiche Vorhersage struktureller und funktioneller Eigenschaften von Proteinen ein 
wichtiges Forschungsgebiet in der Bioinformatik. Dieses Gebiet ist auch Gegenstand 
der vorliegenden Arbeit, welche einen angewandten biomedizinischen und einen 
methodischen Teil umfasst. 

Es wurden umfangreiche Applikationsstudien von bioinformatischen Verfahren 
durchgeführt, die sich vornehmlich mit autoinflammatorischen und neurodegenerativen 
Erkrankungen befassten. Verschiedene Computerwerkzeuge wurden verwendet, um 
medizinisch relevante Proteine zu analysieren und experimentelle Daten auszuwerten. 
Es kamen viele Bioinformatikmethoden zur Anwendung, um die molekulare Struktur 
und Funktion von Proteinen vorherzusagen. Die Ergebnisse dienten als Grundlage für 
die Planung, Priorisierung und Interpretation von Experimenten, die von 
Kooperationspartnern durchgeführt wurden. Einige der generierten biologischen 
Hypothesen wurden durch Experimente überprüft und bestätigt. 

Zusätzlich deckten die Applikationsstudien Grenzen von Bioinformatikmethoden 
auf, was zu Vorschlägen für neuartige Verfahren führte. So wurden drei neue 
rechnerbasierte Methoden entwickelt, um die Vorhersage der Sekundär- und 
Tertiärstruktur von Proteinen sowie die Untersuchung ihrer Interaktionsnetzwerke zu 
unterstützen. Erstens wurde gezeigt, dass die Bildung eines Konsensus zwischen drei 
verschiedenen Methoden der Sekundärstrukturvorhersage die Vorhersagequalität und 
-verlässlichkeit erheblich verbessert. Zweitens wurden zur Nutzung experimenteller 
Messungen in der Tertiärstrukturvorhersage Bewertungsfunktionen implementiert, die 
Distanzbeschränkungen in die Alignmentevaluation einbinden, um die Faltungs-
erkennungsrate zu erhöhen. Drittens wurde eine automatische Prozedur zur 
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Dekomposition von Proteinnetzwerken in interagierende Domänen entworfen, um eine 
detailliertere molekulare Sicht von Interaktionen zwischen Proteinen zu erhalten. 
Hierdurch werden weitere Analysen zu Funktion und Struktur erleichtert. 
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111    
Introduction 

This chapter introduces the topic of the dissertation. It first addresses some issues that 
motivate the research into combining protein structure prediction with experiments and 
functional information. After the description of the research objectives, a brief overview 
of the performed work is provided and the structure of the thesis is outlined. 

1.1 Motivation 
Computer science is generally known as the science of information processing. 
Accordingly, bioinformatics may be defined as the computational science of processing 
biological information. Since it is the biologist who primarily deals with biological 
knowledge, bioinformatics particularly aims at supporting his or her work. To this end, 
numerous algorithms have been implemented in the last 20-25 years in order to analyze, 
annotate, curate, integrate, search, store, transform or validate biological data.  

However, experimentally working biologists will often lack the time to keep abreast 
with the quickly progressing field of bioinformatics with hundreds of new methods and 
databases published every year. An unfortunate consequence of this rapid development 
is that many bioinformatics computer programs are never used by biologists in practice. 
This may also be due to the fact that judging the performance of bioinformatics methods 
and the quality of their results requires interdisciplinary expertise in informatics and 
statistics as well as in biology and medicine.  

Therefore, it is useful that bioinformaticians do not only develop novel and 
advanced approaches to solve problems motivated by biomedicine, but also closely 
cooperate with bench biologists in applying computational methods. This collaboration 
is crucial for the accurate interpretation of bioinformatics findings and their effective 
incorporation into biomedical research, yielding integrative models containing 
experimental and computational knowledge for biology and medicine. In return, 
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bioinformaticians gain insights into the biological and medical aspects involved and 
obtain feedback for improvements and future extensions of their applications.  

Joint studies of bioinformaticians and experimentalists are especially worthwhile 
when analyzing large volumes of experimental data in order to address the right 
biological questions and to find reliable and meaningful answers. The first considerable 
amounts of experimental high-throughput data have consisted of genomic sequences 
and gene expression profiles. They are still being accumulated at an increasing rate to 
be processed and integrated with further biological information. Additionally, large 
molecular data sets produced by novel metabolomics and proteomics techniques during 
cell-wide measurements of metabolites and proteins, respectively, have recently 
attracted much attention from bioinformatics research.  

Metabolomics focuses on quantifying and modeling biochemical pathways of small 
molecule metabolites such as nucleotides, lipids, and saccharides. These substrates are 
catalyzed in chemical reactions, whose enzyme kinetics are determined for pathway 
simulations. In contrast, proteomics deals with ensembles of proteins, the proteomes, 
contained as gene products in cellular compartments of a given organism and tissue type 
at certain time points. Therefore, proteomics researches the structure and function of 
proteins and their interactions. These efforts are complemented by structural genomics 
efforts to provide spatial structure models of proteins and their binding complexes. 

Generally, proteins are key players in dynamic processes inside and between cells 
and form complex interaction networks. They may fulfill essential functions as 
antibodies, enzymes, transmembrane channels, molecular motors, signal transducers, 
structural building blocks, substrate transporters, and transcription factors. In particular, 
since proteins are fundamental to life, defects of their structure and function often cause 
severe human diseases. Fortunately, many computational methods have already been 
devised to support molecular protein analyses performed by biologists and medical 
researchers.  

Examples are sophisticated database search algorithms that are often able to detect 
distantly homologous protein sequences and thus discover interesting evolutionary and 
functional relationships between proteins. Other state-of-the-art bioinformatics methods 
are capable of delineating the functional protein domain architecture and of recognizing 
the correct structural fold of protein domains. In addition, structure predictions create 
models of the secondary and tertiary protein structure with sufficient accuracy for 
further molecular investigations. For instance, it may be possible to map the location of 
genetic variations found with patients onto reliable three-dimensional structural models 
to elucidate functional defects causative of an illness. 

Considering the great importance of a beneficial cooperation and information 
exchange between bioinformaticians and experimentalists for successful joint biological 
and medical investigations, the objective of this work is two-fold. First, vital problems 
in biology and medicine are selected to explore the value of bioinformatics support for 
experiment evaluation and hypothesis formation. Importantly, the application of 
computational tools does not only advance the understanding of molecular disease 
processes, but it also reveals limitations of current bioinformatics methods. Therefore, 
the second, and no less important, aim of this dissertation is to address some of the 
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encountered problems with methodological improvements concerning analyses of 
protein structures and interactions. 

1.2 Overview 
Part of the research in the course of this dissertation has involved comprehensive 
application studies of bioinformatics approaches targeted primarily at autoinflammatory 
and neurodegenerative disorders. A great variety of computational tools were applied to 
analyze medically relevant proteins and to evaluate experimental results. Bioinformatics 
techniques were also used to predict structural and functional properties of proteins, 
some of which have been tested and confirmed by experiments. In other words, 
prediction methods for protein structures were used in combination with experimental 
results and further functional information. Importantly, this work has also led to the 
particular development of three novel computational approaches supporting the 
biological and medical investigation of proteins.  

These three methodological contributions generally improve the prediction of 
protein structures and facilitate the exploration of proteins and their interaction 
networks. First, building the consensus between predicted secondary structures is 
demonstrated to increase the prediction quality and reliability. Second, a novel method 
utilizing experimental distance constraints is introduced to improve the recognition of 
structural protein domain folds and to validate tertiary structure predictions. Third, an 
automatic decomposition of protein networks into interacting domains is developed, 
which provides a more detailed molecular view of protein-protein interactions for 
further functional and structural examinations. 

Overall, this thesis is based on about 200 pages (and 90 supplementary pages 
available online) of 25 coauthored publications in important scientific journals and 
conference proceedings (a short summary in numbers and paper abstracts are given in 
the Appendix). It is noteworthy that most studies focusing on specific diseases have 
been conducted in cooperation with experimental partners at biological and medical 
institutes in Germany, Italy, the Netherlands, Spain, and the USA. Several joint 
publications also include contributions from former and current colleagues at the 
Fraunhofer Institute for Scientific Computing and Algorithmics (SCAI, formerly 
German National Research Center for Information Technology, GMD) in St. Augustin 
and at the Max Planck Institute for Informatics (MPI-INF) in Saarbrücken, Germany. 

The work has been performed in the context of several bioinformatics research 
projects with financial support from the German Research Foundation (DFG) for the 
projects PROSEQO and PROSTFUN on the structure and function prediction of 
proteins, from the Federal Ministry of Education and Research for projects within the 
German National Genome Research Network (NGFN) including the genome networks 
on diseases of the nervous system and due to environmental factors, and from the 
European Commission funding the BioSapiens Network of Excellence for genome 
annotation.  
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1.3 Outline 
The remainder of this thesis is organized into six chapters followed by a Summary and 
an Appendix. Chapter 2 describes the application of bioinformatics methods to 
biological and medical questions, which gives rise to further methodological ideas. 
Chapters 3, 4 and 5 particularly explicate novel and improved computational approaches 
to solve biomedical problems concerning protein structure and function. Chapter 6 and 
the succeeding Summary conclude the accomplished work. The Appendix contains the 
abstracts of 25 published journal articles providing additional experimental details and 
biological implications. The contents of each chapter are briefly summarized in the 
following: 

Chapter 2 gives a comprehensive account of numerous computational analyses of 
medically relevant proteins. It focuses on the bioinformatics methods applied and the 
results obtained regarding protein structures and functions, and it introduces biological 
and clinical aspects of the studied autoinflammatory diseases and neurodegenerative 
disorders. This presentation is complemented by a comparison of formerly predicted 
and now experimentally solved structures and by the description of methodological 
limitations identified during the bioinformatics application studies. The chapter closes 
with perspectives of computational systems biology for modeling disease processes.  

Chapter 3 demonstrates a new method for predicting consensus secondary structure. 
Although this method is simple to implement, it is quite successful in improving the 
performance of secondary structure prediction. It forms a consensus prediction using the 
results of three different prediction methods. The benchmarking analysis performed also 
provides valuable insights into the similarity of the prediction results and the higher 
confidence in consistently predicted secondary structure. 

Chapter 4 deals with improving tertiary structure prediction using additional 
distance constraints. The latter may be obtained by experimental techniques such as 
mass spectrometry or NMR spectroscopy. Significant improvements of the recognition 
rate of structural domain folds were observed by combining prediction results with a 
novel post-filtering procedure utilizing distance constraints. Novel scoring functions are 
applied to the computed alignments and incorporate measures of constraint satisfaction. 

Chapter 5 approaches the task of how to automate the decomposition of protein 
networks into domain-domain interactions. It explains the design of a new plugin for 
Cytoscape, a software platform for the visualization and analysis of protein networks, to 
facilitate the exploration of protein-protein interactions at a more detailed molecular 
level. The plugin subdivides interacting proteins into their respective domains to 
compute a putative network of the corresponding domain-domain interactions.  

Chapter 6 draws conclusions from the conducted research studies and summarizes 
the main achievements. It also evaluates the work accomplished and discusses future 
methodological perspectives. 
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222    
Analyzing Medically 

Relevant Proteins 

Integrative approaches combining the results of bioinformatics methods with additional 
biological information from experiments support the elucidation of molecular protein 
structures and functions. This chapter covers more than twenty coauthored publications 
on the application of computational techniques to the analysis of medically relevant 
proteins. Most studies have been performed in close cooperation with experimental 
research groups from biological and medical institutes investigating autoinflammatory 
or neurodegenerative disorders. The following sections summarize the joint work with 
focus on the involved bioinformatics work.  

The first section describes various bioinformatics methods applied for the different 
molecular analyses. The next two sections provide biomedical background knowledge 
on the studied diseases and report bioinformatics findings for relevant proteins using 
several illustrative figures. Two distinct types of diseases have been in the center of 
research: autoinflammatory diseases and neurodegenerative disorders. Examples for 
diseases underlying autoinflammation are Crohn’s, an inflammatory bowel disease, and 
sarcoidosis, primarily affecting the lung. Neurodegeneration may be caused by 
spinocerebellar ataxias, Huntington’s and Parkinson’s disorders. Recently, some of the 
diseases have attracted much attention in scientific magazines such as Scientific 
American (Cattaneo et al., 2002; Lozano and Kalia, 2005; O'Neill, 2005) and The 
Scientist (Lewis, 2003; Roberts, 2003; Anderson, 2004; Constans, 2005).  

Additionally, a comparison of structural models with recent, experimentally solved, 
structures verifies some of the former bioinformatics predictions. Finally, remarks on 
identified limitations of the applied bioinformatics methods and on the perspectives of 
computational systems biology for modeling disease processes conclude the chapter.  
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2.1 Bioinformatics Methods 

2.1.1 Protein Structure and Function 

Each protein sequence can consist of several functionally distinct regions of varying 
length and structure. Protein regions may encompass signal peptides, transmembrane 
α-helices or β-barrels composed of β-strands, low-complexity and intrinsically 
unstructured regions including short interaction motifs, and evolutionarily conserved 
globular domains containing binding sites for other proteins and ligands. Thus, 
biologists often construct fragments of proteins or mutate sequences to delineate the 
boundaries and the function of selected regions and amino acids by experiments.  

Numerous computational methods that predict the structure and the function of 
specific protein regions are already available to support such investigations. We applied 
different, and often complementary, bioinformatics tools in order to characterize 
medically relevant proteins structurally and functionally. Our findings then provided a 
rationale for the design and the interpretation of experimental studies conducted by our 
biomedical cooperation partners. Frequently, we also discovered novel sequence motifs 
and new protein family members including orthologs in the same or paralogs in another 
species. These discoveries provided additional insight into protein functions. 

The succeeding sections describe bioinformatics methods that have been applied 
successfully to advance the understanding of disease-associated aspects of protein 
structure and function. The methods have usually not been exercised in a pipeline 
fashion, but rather in an integrative manner guided by the current biological questions. 
The various applications concern the identification and alignment of homologous 
sequences, the characterization of the primary protein architecture consisting of 
domains and binding motifs, the prediction of secondary and tertiary structures of 
proteins, the analysis of binding sites for proteins and other ligands, the structural 
localization of disease-associated sequence variants and the functional interpretation of 
their effects, and the exploration of protein interaction networks.  

2.1.2 Functional Protein Architecture 

Diverse databases and predictive methods were used to explore the functional 
architecture of proteins. The following sections describe the computational tools applied 
for sequence database searches, the delineation of protein domain boundaries, the 
identification of sequence motifs, the detection of putative transmembrane regions, and 
the computation of multiple sequence alignments.  

Sequence database searches 
Protein sequences were retrieved from NCBI (Wheeler et al., 2004), Ensembl (Birney et 
al., 2004), and UniProt (formerly SPTrEMBL) (Apweiler et al., 2004) databases. To 
search for homologous sequences, we commonly used the standard BLAST and PSI-
BLAST (E-value cut-off 0.005) programs (Altschul et al., 1997). Alternatively, we 
sometimes used the FASTA search for full-length pairwise sequence alignments 
(Pearson, 2000) or the HMMER suite of programs for searches with our own HMMs 
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constructed from manually curated multiple sequence alignments (Eddy, 1996). To 
determine as yet unidentified mammalian orthologs of some human genes and their 
corresponding protein sequences, we used the genomic synteny views and other tools 
such as gene prediction programs, which are offered by the Ensembl browser (Birney et 
al., 2004), the VISTA browser (Frazer et al., 2004), or the UCSC genome browser 
(Karolchik et al., 2003). Expressed sequence tags and other sequence fragments gave 
evidence for the expression of the identified genes displayed in the browsers.  

Protein domain delineation 
Protein domain architectures known so far, but often incomplete, were mainly obtained 
from the Pfam (Bateman et al., 2004) and SMART (Letunic et al., 2004) databases. 
Both databases are also contained in the NCBI conserved domain database CDD 
(Marchler-Bauer and Bryant, 2004). Pfam and SMART define protein domain families 
based on hidden Markov models (HMMs) derived from multiple sequence alignments. 
In contrast, domain searches in CDD use position-specific scoring matrices (PSSMs) 
(Gribskov et al., 1987) derived from Pfam and SMART. Those CDD searches are 
significantly faster than the HMM-based searches in Pfam and SMART. Additional 
sources for domain delineations were ProDom (Servant et al., 2002), which is also 
contained in Pfam, and InterPro (Mulder et al., 2003), an integrated resource of major 
domain/motif databases such as Pfam, SMART, ProDom, and PROSITE. In contrast to 
the domain databases, PROSITE is a collection of biologically meaningful sequence 
motifs (Hulo et al., 2004).  

Sequence motif identification 
Searches for sequence patterns of functional relevance for protein and ligand 
interactions or posttranslational modifications like glycosylation and phosphorylation 
(Yang, 2005) were performed mainly in the PROSITE database, sometimes in the 
eMOTIF database (Huang and Brutlag, 2001), and on four other prediction servers: 
PSORT II (Nakai and Horton, 1999) for potential signals of ER retention or nuclear 
localization, and ELM (Puntervoll et al., 2003), iSPOT (Brannetti and Helmer-Citterich, 
2003) and ScanSite (Obenauer et al., 2003) for polyproline and other peptides that may 
constitute binding sites, for instance, of SH3 or WW domains (Zarrinpar et al., 2003). A 
sequence profile for nuclear export signals was taken from NESbase (la Cour et al., 
2003). The SignalP server (Bendtsen et al., 2004) and PSORT II were used to predict 
the existence of possible cleavage sites for N-terminal signal peptides. Such signal 
peptides were often supported by the actually incorrect prediction of a single 
transmembrane helix at the N-terminus due to hydrophobic amino acids. Sequence 
patterns contained in different proteins were also analyzed using the TEIRESIAS web 
service (Rigoutsos and Floratos, 1998). Repeats within the same protein sequence were 
discovered by means of the online tool RADAR (Heger and Holm, 2000). 

Transmembrane region detection 
To find transmembrane protein domains, we plotted the Kyte-Doolittle hydropathy 
index using the ExPASy ProtScale online service (Gasteiger et al., 2005), whose 
positive hydrophobicity values over the common threshold 1.6 indicate transmembrane 
regions (Kyte and Doolittle, 1982). We also detected transmembrane regions using 
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more advanced prediction methods implemented in web servers such as DAS, 
HMMTOP2, MEMSAT, PHDhtm, PRED-TMR2, PSORT II, SOSUI, SPLIT, TMAP, 
TMHMM2, TMpred and TopPred2. The web links to all servers are listed in the 
supplementary online material of our publication (Albrecht et al., 2003b). Also, the 
performance of seven of the used methods (DAS, HMMTOP2, PHDhtm, PRED-TMR2, 
SOSUI, TMHMM2, Top-Pred2) has been benchmarked comprehensively (Chen et al., 
2002). It reaches an accuracy between 80 and 99%, and at least one out of the seven 
methods is normally able to detect all transmembrane helices of some protein.  

Sequence alignment computation 
Multiple sequence alignments were assembled using CLUSTAL W (Chenna et al., 
2003) for closely related homologs and the programs T-COFFEE (Poirot et al., 2003) or 
MUSCLE (Edgar, 2004) for sets of more diverse sequences. T-COFFEE appears to 
achieve a slightly better alignment quality than MUSCLE under difficult conditions of 
distant evolutionary relationships, but its runtime is quite long in comparison to 
MUSCLE. In many cases, the computed alignments could be improved manually by 
minor modifications, in particular, based on structure prediction results. The sequence 
alignments depicted in figures were prepared in the GeneDoc (Nicholas et al., 1997) or 
SEAVIEW (Galtier et al., 1996) editors and illustrated by the online web service 
ESPript (Gouet et al., 2003).  

2.1.3 Protein Structure Analysis 

The analysis of the protein architecture based on the primary sequence alone already 
provides valuable functional information to interpret experimental results as well as to 
devise further experiments. In addition, globular protein domains adopt a folded three-
dimensional (3D) structure, which provides a complementary structural view of 
biological processes. For instance, known protein structures and predicted structural 
models can help to verify suggested binding mechanisms of interacting proteins and 
ligands. Protein structures can also aid in the explanation of functional changes that may 
be caused by disease-associated mutations.  

In the following sections, only computational tools are considered that were used in 
our own bioinformatics work. This concerns available protein structure databases, 
programs for 3D structure superpositions, methods for secondary and tertiary structure 
prediction and visualization, and online services for binding site analysis. Notably, if the 
structure of a protein has not been solved yet experimentally, 3D structure prediction 
methods are valuable in two respects. On the one hand, they can be applied as powerful 
fold recognition methods to detect distant evolutionary relationships between protein 
domain structures and functions if normal sequences database searches such as PSI-
BLAST fail. On the other hand, the predicted 2D and 3D structure may give novel clues 
to the purpose of conserved sequence regions and may unveil potential binding sites.  

Protein structure databases 
Experimentally determined 3D protein structures were retrieved from the PDB database 
(Bourne et al., 2004). The DSSP database (Kabsch and Sander, 1983) contains the 
secondary structure assignments for PDB structures. The SCOP database (Andreeva et 
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al., 2004) provides a hierarchical classification of PDB structures based on structural 
and evolutionary relationships of their 3D domain folds. Therefore, the SCOP database 
also assists in finding structural neighbors of the investigated proteins with possibly 
related functions. 

3D structure superposition 
The DALI server (Holm and Sander, 1993) was used to search the PDB for similar 
structures. Pairwise superpositions for structural comparisons and modeling purposes 
were computed by means of the program CE (Combinatorial Extension) (Shindyalov 
and Bourne, 1998) or DaliLite (Holm and Park, 2000). Alternative superpositions were 
occasionally computed using the ProSup server (Lackner et al., 2000) or the online 
FATCAT method for flexible structural alignments (Ye and Godzik, 2003). The root 
mean square deviations (RMSDs) between protein structure backbones were always 
taken from the superposition results. Superpositions of short peptides were calculated in 
the DeepView/Swiss-PdbViewer (Guex and Peitsch, 1997).  

Secondary structure analysis 
To predict the secondary structure of proteins, we applied one or more of the following 
advanced methods through web servers: PROFsec (Rost and Eyrich, 2001), PSIPRED 
(McGuffin et al., 2000), SAM-T99 (Karplus et al., 1998), and SSpro2 (Pollastri et al., 
2002). All of them are based on neural networks or HMM techniques and reach an 
average three-state Q3 prediction accuracy close to 80% (Koh et al., 2003). We also 
formed consensus predictions by majority voting (see Chapter 3) using three selected 
secondary structure predictions (Albrecht et al., 2003e). In addition, the NCOILS 
(Lupas et al., 1991) and MultiCoil (Wolf et al., 1997) online servers were applied to 
predict coiled coils in proteins. To identify intrinsically unstructured and disordered 
regions in proteins, we explored the prediction results returned by the online services 
DisEMBL (Linding et al., 2003a), DISOPRED (Ward et al., 2004), GlobPlot (Linding 
et al., 2003b), NORSp (Liu and Rost, 2003) and PONDR (Romero et al., 2001). The 
lack of pronounced secondary structure prediction of α-helices or β-strands in certain 
sequence regions was also indicative of putative intrinsic disorder. 

Tertiary structure prediction 
To obtain suggestions for globular 3D protein domain folds of amino acid sequences 
without a known structure, we usually investigated the results of all state-of-the-art fold 
recognition methods that are available via the online meta-server BioInfo.PL (Bujnicki 
et al., 2001). This BioInfo.PL web server contacts a dozen other state-of-the-art 
prediction servers, the names of which are listed on the web site. This server is also 
coupled to the online 3D-Jury system that allows for the comparison and evaluation of 
the predicted 3D models in a consensus view (Ginalski and Rychlewski, 2003). We 
often compared these 3D predictions with the results of the in-house fold recognition 
server Arby (von Öhsen et al., 2004). While the 3D-Jury system assesses the quality of 
the structure predictions based on a sophisticated scoring scheme (Ginalski et al., 2003), 
Arby provides statistically derived confidence scores for protein fold predictions 
(Sommer et al., 2002). 
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To model protein structures, we mostly submitted a sequence-structure alignment, 
which was commonly extracted from a manually improved structure-based multiple 
sequence alignment, to the 3D modeling server WHAT IF (Rodriguez et al., 1998). 
Sometimes we applied the side chain placement program SCWRL (Canutescu et al., 
2003) to the resulting 3D model to increase the atomic model accuracy; the side chain 
conformation of amino acids that were identical in both aligned sequences was 
preserved. Alternatively, we used the completely automatic 3D-JIGSAW modeling 
server (Bates et al., 2001) to obtain full-atom 3D models of protein sequences that are 
closely related to PDB domain structures. The protein structure images were drawn in 
the Accelrys Discovery Studio ViewerLite. 

To create structural models of protein complexes, we superimposed modeled 
protein structures with crystallographically determined complexes (Albrecht et al., 
2003a). In one case, we also used the protein docking program HADDOCK 
(Dominguez et al., 2003) to re-compute a published protein complex derived from 
NMR studies (Nicastro et al., 2005). 

Binding site analysis 
To identify possible interatomic contacts of amino acids and ligands in 3D structures, 
we used the LPC and CSU online tools (Sobolev et al., 1999) Strongly conserved 
columns of multiple sequence alignments were determined with the ConSurf online 
service (Glaser et al., 2003) and mapped onto the corresponding known or predicted 3D 
structure. The electrostatic potential shown in protein surface pictures was generated 
using GRASP2 (Petrey and Honig, 2003). Both ConSurf and GRASP2 supported the 
visual localization of potential binding sites characterized by conserved or charged 
surface patches.  

2.1.4 Protein Interaction Data 

Novel high-throughput proteomics-based approaches have generated enormous amounts 
of protein-protein interaction data (Cusick et al., 2005). They can now be mined for 
additional information on the functions and interrelationships of proteins (Bork et al., 
2004). The interaction network of disease-associated proteins and their homologs 
(orthologs or paralogs) can be explored to gain insight into their cellular roles and to 
direct further experiments. Most interaction data is currently available for yeast, but two 
large human networks have also been published recently (Rual et al., 2005; Stelzl et al., 
2005).  

Several interaction databases and visualization tools are available to facilitate 
bioinformatics work with the large data sets. The BIND (Bader et al., 2003), DIP 
(Salwinski and Eisenberg, 2003), GRID (Breitkreutz et al., 2003a), MINT (Zanzoni et 
al., 2002), IntAct (Hermjakob et al., 2004), and SGD (Christie et al., 2004) resources as 
well as the GeneDB database (Hertz-Fowler et al., 2004) provided information on yeast 
proteins and their interactions for Saccharomyces cerevisiae and Schizosaccharomyces 
pombe. To visualize and edit protein interaction networks, we used the Cytoscape 
platform (Shannon et al., 2003) and the Osprey software (Breitkreutz et al., 2003b), the 
latter of which is linked to the GRID database.  
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2.2 Autoinflammatory Diseases 

2.2.1 Biological and Clinical Background 

Autoinflammation of human tissue appears to originate from a malfunctioning immune 
system. Human defense mechanisms against invasive pathogens can be broadly 
categorized as innate and adaptive immune systems, but this dichotomy has started to 
blur because of the recent discovery of links between them (Flajnik and Du Pasquier, 
2004; Hoebe et al., 2004). Extensive knowledge has already been accumulated on the 
sophisticated adaptive immune system, which is mainly mediated by B and T 
lymphocytes. In contrast, research on innate immunity is quite a recent development 
and focuses mainly on rapid responses induced by surveillance receptors of pathogens. 
These guard proteins recognize a large variety of distinct pathogen-associated molecular 
patterns (PAMPs) such as bacterial cell-wall components and viral carbohydrates or 
nucleotides.  

Three important groups of PAMP receptors are as follows: membrane-bound or 
secreted C-type lectin-like receptors (CLRs) (McGreal et al., 2004; van Kooyk et al., 
2004; Cambi et al., 2005; McGreal et al., 2005), cytoplasmic NACHT-LRR domain 
receptors (NLRs) (Inohara et al., 2005; Kufer et al., 2005; Martinon and Tschopp, 2005; 
Ting and Davis, 2005), and transmembrane Toll-like receptors (TLRs) (Dunne and 
O'Neill, 2005; Hopkins and Sriskandan, 2005; Liew et al., 2005; Takeda and Akira, 
2005). NLRs are the members of the so-called CATERPILLER protein family, which 
can be further subdivided into evolutionarily related neuronal apoptosis-inhibiting 
proteins (NAIPs), NACHT, LRR, and PYD domain-containing proteins (NALPs, also 
known as PYPAFs), and nucleotide-binding oligomerization domain-containing 
proteins (NODs).  

Well-known CLRs are the dendritic cell-specific DC-SIGN family receptors for 
envelope glycoproteins of HIV-1 (human immunodeficiency virus 1) and HCV 
(hepatitis C virus) (Cambi and Figdor, 2003; van Kooyk and Geijtenbeek, 2003). In 
contrast, the ligand specificity of many NLRs are not known yet, but NALP3 and 
NOD1/2 have been shown to work as intracellular sensors of bacterial peptidoglycan 
(PGN) (Boneca, 2005; McDonald et al., 2005). However, most of the 11 TLRs have 
already been studied intensively, each of which detect specific microbial molecules such 
as lipoprotein, lipopolysaccharide, flagellin, zymosan, and DNA/RNA that are derived 
from pathogens including bacteria, fungi, protozoa, and viruses (Akira and Takeda, 
2004; O'Neill, 2004). Intriguingly, the surveillance function of mammalian PAMP 
receptors is also exercised by similar proteins found in the innate immune systems of 
flies and plants (Dangl and Jones, 2001; Girardin et al., 2002; Ausubel, 2005). 

CLRs, NLRs, and TLRs form part of complex signaling pathways with intricate 
cross-talk (Athman and Philpott, 2004; Geijtenbeek et al., 2004; Hopkins and 
Sriskandan, 2005). After the recognition of certain PAMPs, the receptors trigger 
specific gene expression patterns by the activation of important transcription factors 
such as NF-κB and interferon-regulatory factors (Bonizzi and Karin, 2004; Moynagh, 
2005). Responsive genes range from proinflammatory cytokines and interferons to co-
stimulatory molecules. They mount an immune response resulting in the removal and 
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destruction of the invading pathogen. Therefore, the impairment of essential signaling 
cascades by mutant proteins can lead to the dysregulation of human immunity, causing 
acute or chronic diseases of autoimmunity or immunodeficiency (Beutler, 2004; Ting 
and Davis, 2005). However, the modification of innate immune responses by 
therapeutic targeting of the implicated cellular mechanisms may provide new 
opportunities for clinical treatment of patients (Karin et al., 2004; Ulevitch, 2004).  

The NLR family members NALP3 and NOD2, also known as CIAS1/PYPAF1 and 
CARD15, respectively, are the research focus of our medical cooperation partners 
because they have been associated with several autoimmune disorders. Sequence 
variants in both proteins are causative of inherited autoinflammatory diseases with 
clinically distinct phenotypes, but similar inflammatory pathophysiology (Albrecht et 
al., 2003a; Van Duist et al., 2005). In addition, some NOD2 variants also confer 
susceptibility to Crohn’s disease (CD), a chronic inflammatory bowel disease with a 
high lifetime prevalence of up to 0.15% in Western Europe and North America 
(Macdonald and Monteleone, 2005; Schreiber et al., 2005). CD belongs to a group of 
complex, polygenic, barrier disorders such as asthma, atopic eczema, and sarcoidosis, 
which affect either mucosal surfaces or the skin and exhibit a multifactorial etiology 
involving environmental factors. The frequent concordance in monozygotic twins, 
which is not seen in dizygotic twins, points to the strong contribution of genetic 
susceptibility to the overall risk for CD.  

In the gut mucosa, NOD2 like NALP3 senses muropeptides, which are cell wall 
components of pathogenic bacteria, and appears to be responsible for the maintenance 
of epithelial barrier integrity and the immune defense in interplay with TLRs (Yuan and 
Walker, 2004; Mueller and Podolsky, 2005). On the molecular level, it has been 
discovered that NALP3 and NOD2 assemble into large signaling complexes named 
inflammasome and noddosome, respectively, after the recognition of microbial 
products. Such complexes activate inflammatory caspases and are assumed to function 
similarly to the apoptosome of APAF-1, the apoptotic protease-activating factor 1 
(Martinon and Tschopp, 2004; Riedl et al., 2005; Yu et al., 2005). However, many 
details on the exact biological roles of NALP3, NOD2 and other NLRs and their 
participation in signal transduction processes within the immune system are still unclear 
(Martinon and Tschopp, 2004; Eckmann and Karin, 2005; Murray, 2005; Strober, 
2006). 

Besides PAMP receptors, we also investigated other players without as yet well-
characterized function in the innate and adaptive immune systems: the interferon-
inducible p200 (also known as IFI-200/HIN-200) family of proteins and butyrophilin-
like members of the immunoglobulin superfamily. The former regulate cell growth and 
differentiation, and confer resistance to the development of tumors and virus infections 
(Asefa et al., 2004). The latter are closely related to B7 immune-regulatory ligands of 
antigen-presenting cells (Greenwald et al., 2005) and include the co-stimulatory 
receptor BTNL2 on the cell surface, which has been associated with the multisystemic 
immune disorder sarcoidosis (Valentonyte et al., 2005). The clinical presentation of 
sarcoidosis varies in patients, but its inflammatory manifestation is predominantly the 
lung. Sarcoidosis probably results from disproportionate immune responses to some 
airborne antigen (Rybicki et al., 2005).  
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2.2.2 Bioinformatics Findings 

To analyze the locations of sequence variations associated with autoinflammatory 
diseases, we extensively surveyed the protein domain architecture of CATERPILLER 
family members such as the NLRs NALP3/PYPAF1 and NOD2/CARD15 (Figure 1). 
We used large sequence alignments of NLRs to identify homologous sequence positions 
and variants (Figure 2) and their functional relevance (Albrecht et al., 2003a, 2003d; 
Schreiber et al., 2005; Albrecht and Takken, 2006). Our bioinformatics work also 
supported the classification of newly discovered sequence variants of patients as 
putative disease-causing mutations. This was based on the close localization of the 
mutations near functionally relevant amino acids linked to other inherited 
autoinflammatory disorders (Figure 2 and Figure 3) (Van Duist et al., 2005).  

 

 
Figure 1. Protein domain architectures of selected CATERPILLER-related gene 
products from different eukaryotes (Albrecht et al., 2003a; Schreiber et al., 2005). 
The N-terminal effector-binding CARD (caspase recruitment) and PYD (pyrin) 
domains of NLRs are evolutionarily related and adopt the same structural fold. The 
CARD and PYD counterparts in plants are coiled coils (CC) and Toll/interleukin-1 
receptor domains (TIR) of numerous disease resistance proteins (R proteins) such 
as I-2 (confers resistance to race 2 isolates of Fusarium oxysporum) and RPS4 
(confers resistance to Pseudomonas syringae). The central nucleotide-binding 
domains are designated NACHT and NB domains and belong to a recently defined 
family of P-loop NTPases, which is distantly related to AAA+ ATPases and named 
STAND domain family (Hanson and Whiteheart, 2005). The NTPase domains are 
proposed to work as switches regulating signal transduction by conformational 
changes (Albrecht et al., 2003a; Leipe et al., 2004). The structural extensions of 
the NACHT and NB domains are homologous, named NAD and ARC, respectively, 
and consist of three subdomains NAD1-3 and ARC1-3 (Albrecht and Takken, 2006). 
The number of leucine-rich repeats (LRRs) of the C-terminal sensor domain varies 
within the CATERPILLER family, with NALP10 containing the least number of LRRs. 
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Furthermore, we recognized the identity of a protein named AVR reported first in 
1995 with the cytoplasmic NLR protein NALP6/PYPAF5 described in 2002 (Albrecht 
et al., 2003b). However, our study also showed how the incorrect application of 
bioinformatics methods, in this case, the ignorance of the recommended threshold for 
the Kyte-Doolittle transmembrane prediction method (Figure 4), led to wrong results on 
AVR in the original report published in Nature Medicine (Ruiz-Opazo et al., 1995). 
This publication falsely assumed the discovery of a novel membrane-anchored 
angiotensin II and vasopressin receptor, although NALP6 is clearly cytosolic. 

 

 
Figure 2. Sequence variations in the homologous NLR family members NALP3 and 
NOD2 contribute to protein plasticity and give rise to various autoinflammatory 
diseases (Albrecht et al., 2003a; Schreiber et al., 2005). Crohn’s disease-
associated sequence variants are mainly found within the LRR domain, whereas 
mutations linked to other inflammatory diseases are predominantly situated in the 
nucleotide-binding domain consisting of the NACHT and NAD subdomains. This 
distinct domain localization might partially explain phenotypic differences between 
the disorders. Interestingly, several mutations in NALP3 and NOD2 are located at 
equivalent sequence positions (black vertical lines), some of which form mutational 
hot spots (brown ovals) near the binding site of the magnesium-nucleotide complex 
in the NACHT domain. The annotated autoinflammatory diseases besides Crohn’s 
disease (CD) are as follows: BS, Blau syndrome (also known as ACUG, 
arthrocutaneouveal granulomatosis); CINCA, chronic infantile neurological 
cutaneous and articular syndrome (also known as NOMID, neonatal-onset 
multisystem inflammatory disease); EOS, early-onset sarcoidosis; FCU, familial cold 
urticaria (also known as FCAS, familial cold autoinflammatory syndrome); MWS, 
Muckle-Wells syndrome.  
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Figure 3. Structure-based mul-
tiple sequence alignment of the 
nucleotide-binding site termed 
Walker B motif (Van Duist et al., 
2005). It contains the Mg2+-
anchoring aspartate in the 
NACHT domains of human 
NOD2/CARD15, NOD1/CARD4, 
NALPs/PYPAFs, in the ATPase 
domain of tomato disease 
resistance protein I-2, and in 
the β-subunit of bovine F1-
ATPase. The known secondary 
structure of the F1-ATPase and 
the corresponding consensus 
predictions for I-2, CARD15, 
and PYPAF1 are depicted in the 
upper pink part (α-helices as 
curled lines and β-strands as 
horizontal arrows). Alignment 
columns in which more than 60% of all residues are physicochemically equivalent 
are shown in yellow boxes. A strictly conserved leucine is highlighted in blue. Text 
labels point to functionally relevant residues and disease-associated missense 
variants. Importantly, the new mutation E383K found with an Italian patient of Blau 
syndrome (BS) is next to other already known variants. 

 

 
Figure 4. Plot of the Kyte-Doolittle hydropathy index (using an averaging-window 
size of 20 residues) for AVR, constituting the LRR domain of a truncated NALP6/ 
PYPAF5 protein. It does not indicate any transmembrane regions because the 
hydropathy values remain below the recommended threshold 1.6 (Albrecht et al., 
2003b).  
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To visualize and study conserved and functionally relevant sequence regions and 
residues in 3D, we constructed various structural models of domains contained in 
disease-relevant proteins. Using a structure-based multiple sequence alignment of 
homologous proteins, we mapped NALP3 and NOD2 sequence variants associated with 
different autoinflammatory diseases into 3D domain models (Figure 5). In particular, 
our analyses led to the intriguing hypothesis that nucleotide binding of NALP3 and 
NOD2 may be impaired by sequence mutations, causing a constitutively active protein 
inducing inflammatory immune responses (Albrecht et al., 2003a, 2003d; Van Duist et 
al., 2005; Albrecht and Takken, 2006).  

 
Figure 5. 3D structure model of the nucleotide-binding NACHT domain of 
NALP3/CIAS1/PYPAF1 based on the AAA+ ATPase Cdc6 from Pyrobaculum 
aerophilum (PDB identifier 1fnn, chain A) (Albrecht et al., 2003a). While α-helices 
are colored in red and β-strands in blue, locations of selected sequence variants 
associated with autoinflammatory diseases are marked in yellow. Many of them are 
found near the C-termini of the β-strands. Other functional residues interacting with 
the bound magnesium-nucleotide complex are indicated in pink: the phosphate-
binding lysine K230 and the Mg2+-anchoring aspartate D300.  
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In another study, we performed a thorough bioinformatics analysis of IFI-200 
proteins (Albrecht et al., 2005a). IFI-200 family members are thought to exert their 
biological effects by modulation of the transcriptional activities of numerous factors and 
interaction with other proteins through the C-terminal HIN domains. The HIN domain 
structure and function had remained obscure, but our multiple sequence alignment and 
the application of fold recognition methods revealed that the HIN domain consists of 
two consecutive OB domains (Figure 6). Therefore, this structural model of a DNA-
binding HIN domain afforded long-sought interpretations for many previous 
experimental observations of IFI-200 proteins working as transcriptional regulators.  

 
Figure 6. 3D structure model of the HIN-N and HIN-C domains (shown on the left 
and right, respectively) of the IFI-200 family member AIM2 based on the DNA-
binding OB domain structures DBD-A and DBD-B (PDB identifier 1jmc, chain A) of 
the human replication protein A (Albrecht et al., 2005a). All β-strands are colored in 
cyan, and the α-helix after the β3-strand is red. Positions of conserved sequence 
motifs associated with previous experimental observations are indicated: 
MFHATVAT in the β2-strand (blue), IxCxE in the loop preceding the β4-strand (light 
green), and LxCxR corresponding to LxCxE of IFI202 and IFI204 in the β4-strand 
(dark green). Text labels annotate functionally and structurally relevant residues. 
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In projects conducted within large research networks, we could also contribute to 
functional analysis of gene expression profiles (Costello et al., 2005) and of another 
potential susceptibility gene termed DLG5 for inflammatory bowel disease (IBD) (Stoll 
et al., 2004; Newman and Siminovitch, 2005), an as yet uncharacterized membrane-
associate guanylate (Funke et al., 2005). We delineated the protein domain architecture 
of DLG5 and mapped genetic variations into conserved sequence regions. However, we 
could find only weak bioinformatics support for the IBD association of DLG5 sequence 
variants (Stoll et al., 2004). This low support was in contrast to the strong evidence 
based on structural predictions that we could obtain for the BTNL2 protein truncation 
(Figure 7) causing sarcoidosis (Valentonyte et al., 2005). Therefore, our bioinformatics 
observations agreed well with the fact that an IBD association of DLG5 could not be 
replicated by other medical research groups (Schreiber et al., 2005), whereas the 
BTNL2 link to sarcoidosis could recently be reproduced by another group (Rybicki et 
al., 2005). Our cooperation partners could also confirm the predicted truncation of 
BTNL2 experimentally. It causes the loss of the C-terminal transmembrane region of 
BTNL2, which is essential for anchoring the N-terminal, extracellular immunoglobulin-
like, domains of BTNL2 into the cell membrane (Valentonyte et al., 2005). 

2.3 Neurodegenerative Disorders 

2.3.1 Biological and Clinical Background 

Neurodegeneration is often caused by death of specific neuron populations in the brain 
after formation of intracellular protein aggregates. Some biological and clinical 
characteristics of the investigated diseases are given in the following. Two autosomal-
dominant hereditary neurodegenerative disorders are spinocerebellar ataxia types 2 
(SCA2) and type 3 (SCA3, also known as Machado-Joseph disease) (Kawaguchi et al., 
1994; Pulst et al., 1996). Both belong to a heterogeneous group of trinucleotide repeat 
disorders, which includes Huntington’s disease (HD), dentatorubral-pallidoluysian 
atrophy (DRPLA), and other spinocerebellar ataxia types such as SCA1, SCA6, SCA7 
and SCA17 (Zoghbi and Orr, 2000; Gatchel and Zoghbi, 2005; Manto, 2005). They 
result from progressive neurodegenerative processes, which affect the cerebellum, 
brainstem and spinal cord (Schols et al., 2004). Clinical main features are ataxia and 
dementia, which can also resemble parkinsonism (Taroni and DiDonato, 2004). The age 
of patients at the onset of SCA2 and SCA3 lies in the third to fourth decade (Margolis, 
2002). The neurodegenerative disorders share common phenotypic features, in 
particular, toxic accumulation of mutant misfolded proteins in affected neurons and 
cellular degeneration causing apoptosis (Soto, 2003; Ross and Poirier, 2004). In 
contrast, the expression of the disease-associated genes occurs in a great variety of 
tissues and is not restricted to neuronal cells.  
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Figure 7. 3D structure model of the second IgV domain (top) and the following IgC 
domain (bottom) of the BTNL2 homodimer based on the B7-1 template structure 
(PDB identifier 1i8l) (Valentonyte et al., 2005). A transmembrane helix near the 
C-terminus anchors the extracellular domains into the cell membrane. The locations 
of the sarcoidosis-associated C-terminal truncation (red box) and several other 
sequence variants found in BTNL2 are indicated. An adjacent disulfide bond 
between C287 and C341 is depicted in brown.  
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The SCA2 and SCA3/MJD genes have been mapped to chromosomes 12q24.1 and 
14q32.1, respectively (Kawaguchi et al., 1994; Pulst et al., 1996). The common 
underlying genetic basis of the diseases SCA2 and SCA3 is the expansion of a CAG 
repeat region beyond a certain threshold (Pearson et al., 2005). These CAG repeats 
encode a polyglutamine (polyQ) tract in the respective proteins ataxin-2 and ataxin-3 
(Everett and Wood, 2004). The polyQ stretch in ataxin-2 lies near the N-terminus at the 
end of exon 1, but the polyQ region of ataxin-3 is contained in exon 10 close to the C-
terminus (Albrecht et al., 2004). While ataxin-2 is located predominantly in the 
cytoplasm, ataxin-3 is found in both the nucleus and the cytoplasm of cells. 

Each polyglutamine expansion protein is causative of a specific neurodegenerative 
disorder, whereas different mutant proteins, which are evolutionarily unrelated and 
differ in their cellular function, predispose to Parkinson’s disease (PD) (Bonifati et al., 
2004). The majority of PD cases are sporadic with a complex etiology due to 
interactions between environmental factors and the individual genetic constitution 
(Huang et al., 2004). However, the identification of point mutations in single genes 
responsible for rare familial forms of PD provides important insights into the underlying 
disease mechanisms (Moore et al., 2005). One recently discovered PD-associated gene 
product is the receptor-interacting protein RIP7, also known as leucine-rich repeat 
kinase LRRK2 or dardarin (Gasser, 2005). RIP7 encodes a large protein with multiple 
domains containing several mutations found in familial PD cases (Albrecht, 2005; 
Meylan and Tschopp, 2005). Phenotypically, PD is characterized by the loss of 
dopaminergic neurons primarily in the substantia nigra and the presence of cytoplasmic 
protein inclusions known as Lewy bodies (von Bohlen und Halbach et al., 2004). 
Clinical manifestations include motor abnormalities, autonomic disturbances, 
psychiatric depressions, and cognitive impairments (Greenamyre and Hastings, 2004). 
However, the neuropathology and the age of onset is very variable even within the same 
family (Brice, 2005).  

2.3.2 Bioinformatics Findings 

Concerning the neurodegenerative disorders, we primarily investigated conserved 
domains and sequence motifs of proteins related to the disorders ataxia type 2 and type 
3. We characterized the protein architectures of ataxin-2 (Figure 8), which contains two 
proline-rich sequence motifs (Figure 9) and one Lsm domain (Albrecht et al., 2004; 
Ralser et al., 2005a, 2005b). Both proline-rich motifs were predicted with high 
confidence scores as characteristic of SH3 domain binding (Zarrinpar et al., 2003). 
Later on, they could be experimentally verified as SH3 binding sites of endophilins 
(Landgraf et al., 2004; Ralser et al., 2005b). During our work on ataxin-2, we also 
discovered novel Lsm domain proteins Lsm12-16 (Figure 10) related to ataxin-2 and as 
yet uncharacterized methyltransferases (Albrecht and Lengauer, 2004a). Furthermore, 
we studied the domain structure of ataxin-3 (Figure 11) extensively (Albrecht et al., 
2003c; Albrecht et al., 2004).  

Lsm domains occur in a number of vital RNA-processing proteins conserved in 
many organisms (Khusial et al., 2005; Wilusz and Wilusz, 2005). Since several Lsm 
domain structures have been determined experimentally, we assembled a structure-
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based multiple sequence alignment for the Lsm domain using ataxin-2 homologs 
inclusive the yeast homolog Pbp1 (Figure 12). Based on that, we could explore the 
functional implications of conserved residues in RNA binding and complex formation. 
Moreover, our detailed analysis of Lsm14-16 homologs revealed a conspicuous, highly 
conserved, sequence motif consisting of aspartates and phenylalanines near the 
C-terminus (Figure 13). Thus, it may be worthwhile mutating those amino acids 
experimentally to find clues on a molecular function.  

In addition, we built a 3D structure model for the RNA-binding Lsm domain of 
ataxin-2 (Figure 14) to gain insight into the putative RNA-binding mode. Similarly, we 
used a structure-based multiple sequence alignment of the Josephin domain of ataxin-3 
homologs to derive an illustrative 3D model of this domain (Figure 15). This was also 
shown on the front cover of the European Journal of Biochemistry (now FEBS Journal) 
issue containing the corresponding publication (Albrecht et al., 2004). The ataxin-3 
model enabled the identification of specific amino acids in the Josephin domain that are 
assumed to be involved in protease activity necessary for de-ubiquitinylation. 
Generally, protein ubiquitinylation (also known as ubiquitination) is the reversible 
process of conjugating ubiquitin molecules to proteins (Ciechanover and Brundin, 
2003). The removal of ubiquitin can be mediated by various de-ubiquitinating enzymes 
(DUBs), which are cysteine proteases like ataxin-3 or metalloproteases (Guterman and 
Glickman, 2004; Soboleva and Baker, 2004; Nijman et al., 2005). 

Concerning Parkinson’s disease (PD), a homology model of the protein kinase 
RIP7/LRRK2 (Figure 16) revealed that the two adjacent PD-associated mutations 
G2019S and I2020T presumably impair kinase activity because they are contained in 
the well-studied kinase activation segment (Nolen et al., 2004; Albrecht, 2005). 
Recently, this hypothesis was confirmed experimentally using the corresponding 
mutants of RIP7/LRRK2 or its human homolog RIP6/LRRK1 (West et al., 2005; 
Gloeckner et al., 2006; Korr et al., 2006). 

Regarding interaction networks, it has already been shown for the Huntington’s and 
Parkinson’s diseases that the outcome of yeast experiments can also help in elucidating 
human disease processes (Krobitsch and Lindquist, 2000; Outeiro and Lindquist, 2003). 
Therefore, we studied direct and indirect interaction partners of the yeast homolog Pbp1 
of ataxin-2 in addition to the 3D structure model of its Lsm domain (Ralser et al., 
2005a). The interaction network around Pbp1 (Figure 17), which includes further Lsm 
domain proteins such as Lsm12 and Lsm13 and the RNA-helicase Dhh1, lends further 
support to the hypothesis that ataxin-2 is involved in RNA metabolism and may bind 
RNA within its Lsm domain. This assumption was additionally corroborated by 
experimental evidence that ataxin-2 and its yeast homolog Pbp1 interact with the 
poly(A)-binding protein. The relevant binding motif predicted in ataxin-2 and named 
PAM2 (Albrecht and Lengauer, 2004b) could be confirmed experimentally by our 
collaboration partners (Ralser et al., 2005a). 

In general, our bioinformatics findings provided a useful basis for the evaluation 
and prioritization of experiments. More details on biological insights obtained during 
these comprehensive studies and on complementary lab experiments performed by our 
cooperation partners can be found in the original publications (Albrecht et al., 2003c; 
Albrecht et al., 2004; Albrecht and Lengauer, 2004a, 2004b; Albrecht, 2005; Ralser et 
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al., 2005a, 2005b). Interestingly, shortly after our publication on the characterization of 
novel Lsm12-16 proteins (Albrecht and Lengauer, 2004a), identical results supporting 
our work were reported independently by another research group (Anantharaman and 
Aravind, 2004). Recently, both Lsm14 in Caenorhabditis elegans (known as CAR-1) 
and Lsm16 in yeast (known as EDC3) were shown to be involved in RNA processing, 
confirming our function predictions (Badis et al., 2004; Kshirsagar and Parker, 2004; 
Audhya et al., 2005; Boag et al., 2005; Squirrell et al., 2005). 

 

 

Figure 8. Protein architectures of human ataxin-2, its yeast homolog Pbp1, and the 
Plasmodium falciparum homolog PF13_0048 of the mRNA-decapping enzyme DCP2 
(Albrecht et al., 2004; Ralser et al., 2005a). The appearance of the as yet 
uncharacterized LsmAD domain in DCP2 suggests a functional relationship of 
LsmAD to the RNA-binding Lsm domain.  

 

 

Figure 9. Two conserved proline-rich sequence motifs (SBM1 and SBM2) are shown 
on the left in human and mouse ataxin-2 (ATX2) as well as in human and mouse 
ATX2 and ATX2L paralogs (Ralser et al., 2005b). Such motifs are characteristic of 
SH3 domain binding sites (Zarrinpar et al., 2003). Three identical SRPPS motifs in 
sequence repeats containing SBM2 of human ATX2 are underlined in red. 
Frequently occurring prolines, serines, and arginines are highlighted in the motifs.  
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Figure 10. Protein architectures of novel Lsm domain proteins and methyl-
transferases (MTases) (Albrecht and Lengauer, 2004a). The latter contain not only 
the catalytic domain (MTD), but also zinc fingers (ZF) and helix-turn-helix (HTH) 
motifs, both of which may contribute to RNA binding via the Lsm domain.  

 
 

 
Figure 11. Protein architectures of human ataxin-3, its Plasmodium falciparum 
homolog PFL1295w (ataxin-3_Pf), and human josephin 1 (Albrecht et al., 2004). 
The Josephin domain has de-ubiquitinating activity, UBX is a ubiquitin-like domain 
of unknown function, UIMs are ubiquitin-interaction motifs, CK-II motifs are 
putative phosphorylation sites of casein kinase II, NLS are potential nuclear 
localization motifs, and NES is proposed to be a nuclear export signal. 
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Figure 12 (legend continued). The known DSSP secondary structure assignment of 
the Sm1 protein from Pyrococcus abyssi is shown at the top of the alignment 
(cylinder for α-helix, arrow for β-strand), and the amino acid sequences of 
crystallographically determined PDB structures of Lsm domains are underlined 
accordingly (curled line for α-helix, straight line for β-strand). The secondary 
structure predictions for the Lsm domains of ataxin-2 and Pbp1 are also given. 
Physicochemically similar amino acids are colored identically. Highly conserved 
glycines are indicated that are characteristic of Lsm domains and form β-sheet 
stabilizing hydrogen bonds. In the upper part, blue text boxes point to functionally 
relevant amino acids forming an internal binding site for uridine heptamers bound 
to Sm1 from Pyrococcus abyssi, while green text boxes mark amino acids of the 
external RNA binding site. In the lower part, brown text labels annotate how the 
dimerization of the snRNPs D3 and B is stabilized by intermolecular interactions. 

 

 
Figure 13. Multiple sequence alignment of a striking sequence region containing a 
strongly conserved DFDF box of unknown function near the C-terminus of 
Lsm13-16 proteins (Albrecht and Lengauer, 2004a). The Lsm14 group is 
exemplarily subdivided into four putative subgroups a-d by dotted horizontal lines. 
Physicochemically similar amino acids are colored identically. 
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Figure 14 (see opposite page). Predicted 3D structure model of three oligomerized 
Lsm domains of ataxin-2 using three protomers of the Sm1 protein complex from 
Pyrococcus abyssi as template (PDB identifier 1m8v, chains A, B and G) (Albrecht 
et al., 2004). The model illustrates predicted internal (blue) and external (green) 
binding sites of ataxin-2 to RNA (gray). While α-helices are shown in red, β-strands 
are in cyan. Only functionally relevant residues of the central ataxin-2 protomer are 
annotated as follows: the dark blue box points to residues forming the internal site, 
and light blue boxes mark amino acids stabilizing the RNA binding area; the dark 
green box highlights residues involved in the external site, and the light green box 
indicates stabilizing hydrogen bonds.  

 
 

 
Figure 15. Predicted 3D structure model of the de-ubiquitinating Josephin domain 
of ataxin-3 using the template structure of the yeast ubiquitin-hydrolase YUH1 
(Albrecht et al., 2004). Ataxin-3 (left) is bound to the ubiquitin-like inhibitor Ubal, 
ubiquitin-aldehyde (right), taken from the binding complex of YUH1 with Ubal (PDB 
identifier 1cmx, chains A and B, respectively). Gray-shaded text labels indicate the 
four catalytic residues (violet) forming the active site of ataxin-3, a cysteine 
protease. The remaining text boxes point to other residues that are highly 
conserved in the Josephin domain. The N-terminal YUH1 extension missing in 
ataxin-3 homologs is depicted in the background as thin protein backbone (brown). 
The less conserved central part of ataxin-3 is colored green; this part could not be 
modeled reliably using YUH1 as template because of low sequence similarity.  
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Figure 16. Predicted 3D 
structure model of the 
protein kinase RIP7/ 
LRRK2 based on the  
B-RAF kinase domain 
template (PDB identifier 
1uwh) (Albrecht, 2005). 
Two mutations G2019S 
and I2020T associated 
with Parkinson’s disease 
are located in the kinase 
activation loop (yellow). 
Protein kinase activity is 
regulated by phosphory-
lation of specific amino 
acids within this loop, 
which may be impaired 
by the mutations. RIP7 
G2019 corresponds to 
G595 of B-RAF, whose 
mutation is associated 
with cancer (Wan et al., 
2004). 
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Figure 17. Yeast protein interaction network with focus on the yeast homolog Pbp1 
of ataxin-2 and its interaction partner Lsm12 (Ralser et al., 2005a). Each node 
represents a different Saccharomyces cerevisiae protein, whose association with 
another protein is indicated by an edge. All interaction partners of each protein 
directly linked to Pbp1 or Lsm12 are shown together with some selected additional 
proteins. However, not all interaction edges between depicted nodes could be 
drawn without cluttering the figure, and thus many peripheral edges had to be 
omitted. The nodes for the Lsm domain proteins Pbp1 and Lsm12 are marked by 
circles and colored in red together with the connecting edges. The dense interaction 
network of the Lsm1-8 proteins is encircled and depicted in blue. Edges emanating 
from the RNA-helicase Dhh1 and the poly(A)-binding protein Pab1 are colored in 
green and orange, respectively. 
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2.4 Predictions and Solved Protein Structures 
Recently, other research groups determined experimental solution structures of 
predicted protein models using X-ray crystallography or NMR spectroscopy. This 
provides the unique opportunity to verify some of the structure and function predictions 
obtained by bioinformatics methods. In the following, we compare predicted and solved 
3D structures concerning NLRs and ataxin-3. In addition, we briefly describe our 
accurate fold recognition of pyranose oxidase, an enzyme of biomedical and 
biotechnological relevance. 

2.4.1 NLRs and the APAF-1 Crystal Structure 

Our bioinformatics analyses of NLR homologs such as NALP3 and NOD2 revealed 
(Albrecht et al., 2003a) that those proteins share a common nucleotide-binding region 
consisting of at least three structurally distinct subdomains named NACHT-NAD1-
NAD2. We also showed that these subdomains are closely related to the NB-ARC1-
ARC2 subdomains of human APAF-1 (apoptotic protease-activating factor 1) and plant 
disease resistance (R) proteins (Albrecht et al., 2003a; Albrecht and Takken, 2006). Our 
observations were corroborated further in independent work by Leipe, Koonin, and 
Aravind. They assembled the so-called STAND family of NTPases including NACHT-
NAD and NB-ARC proteins and designated the NAD1/ARC1 and NAD2/ARC2 
subdomains GxP module and HETHS domain, respectively (Leipe et al., 2004). 

Initially, the 3D structure of APAF-1 and its Caenorhabditis elegans ortholog 
CED-4 was modeled (Cardozo and Abagyan, 1998) based on the GTP-binding domain 
of G proteins such as Ras (Paduch et al., 2001). Thereafter, other researchers modeled 
APAF-1 and CED-4 structures similar to those of AAA+ ATPases (Jaroszewski et al., 
2000). Indeed, AAA+ ATPases are the closest evolutionary neighbors of STAND 
NTPases in contrast to G proteins with a quite different structural topology (Albrecht et 
al., 2003a; Leipe et al., 2004). Therefore, we used the AAA+ ATPase Cdc6 as template 
to construct 3D models of NALP3 and NOD2 (Albrecht et al., 2003a). A few weeks 
later, another research group independently published a NALP3 model based on the 
same template structure (Neven et al., 2004). Like in our work (Figure 5), this NALP3 
model was annotated with the locations of disease-associated sequence variants, leading 
to functional interpretations that have been identical to our conclusions about a potential 
impairment of ATP hydrolysis caused by the variants. 

Eventually, the X-ray crystal structures of ADP-binding APAF-1 (Riedl et al., 
2005) and ATP-binding CED-4 (Yan et al., 2005) were determined experimentally. 
They unveiled that G protein structures were not the best choice of modeling templates 
for APAF-1 and CED-4. In contrast, the very similar crystal structures of APAF-1 and 
CED-4 confirmed that the AAA+ ATPase structure of Cdc6 was the best available 
template structure for modeling the nucleotide-binding region of APAF-1/CED-4 and 
thus of NALP3 and NOD2 as well. The superposition of the APAF-1 and Cdc6 
structures using the FATCAT method (Ye and Godzik, 2003) yields a small RMSD of 
3.0Å over all subdomains NB-ARC1-ARC2 (Figure 18). Based on this superposition, 
we also found that the previous sequence-structure alignments used for 3D modeling 
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were highly accurate and that the APAF-1 and CED-4 crystal structures validated our 
original sequence-based division of the NACHT-NAD region into three structural 
subdomains NACHT-NAD1-NAD2.  

 
Figure 18. 3D FATCAT superposition of the nucleotide-binding region of the NALP3 
and NOD2 template structure Cdc6 (PDB identifier 1fnn, chain A) with the 
experimentally determined APAF-1 structure in complex with ADP (PDB identifier 
1z6t, chain A). The three structural subdomains of Cdc6/APAF-1 are colored 
light/dark blue, green, and red from the N-terminus to the C-terminus. The ADP 
molecule bound to APAF-1 is depicted with violet spheres. 

2.4.2 Solution Structure of the Josephin Domain 

Recently, the NMR solution structure of the de-ubiquitinating Josephin domain of 
ataxin-3 was determined by two independent research groups (Mao et al., 2005; 
Nicastro et al., 2005) and confirmed our structural and functional predictions (Figure 
19). The solution structure adopts the fold of our modeling template YUH1 with a very 
low RMSD of 2.8Å over 89 amino acids and a sequence identity of only 11% as 
measured by structural superposition using the DALI method. In particular, the active 
site of the de-ubiquitinating protease is conserved well.  
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Figure 19. 3D model of the protein complex between one NMR structure (PDB 
identifier 1yzb) of the Josephin domain of ataxin-3 (cyan) and the ubiquitin-like 
domain UBL (PDB identifier 1p1a) of the ataxin-3 binding partner hHR23 (brown). 
This Josephin-UBL complex was re-computed according to (Nicastro et al., 2005) 
using HADDOCK. We also superimposed this NMR structure both with the other 
NMR structure (PDB identifier 2aga) of the Josephin domain and with our previous 
model complex (Figure 15) of ataxin-3 (blue and purple, respectively) bound to the 
ubiquitin-substitute Ubal (gray). In the picture center, the four catalytic residues of 
the ubiquitin-hydrolase ataxin-3 are shown as sticks for the experimental and 
predicted structures. The catalytic triad of cysteine (top right), histidine (top left), 
and asparagine (bottom left) is conserved well, while the position of the glutamine 
(bottom right) seems to be variable. The less conserved central part of ataxin-3 
contains a helical insertion, which we could not model reliably due to low sequence 
similarity. Indeed, the structural arrangement of the respective helices is quite 
flexible and differs significantly between both NMR structures (orange and red) and 
our structural model (pink) of the Josephin domain. Interestingly, the helix of one 
NMR structure (red) would collide with Ubal (gray) binding the Josephin domain, 
which suggests drastic conformational changes during ubiquitin binding. 
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The NMR structures of ataxin-3 also unveiled a novel helical insertion that is 
completely different from all other known protease structures. Its conformation varies 
significantly between the calculated NMR structures (Figure 19). This flexibility 
contributes much to the overall RMSD of 2.7Å over 158 amino acids between the 
independently determined NMR structures (computed by DALI using the first PDB 
model of each NMR research group). In comparison, we originally predicted the 
sequence region of this helical insertion to consist of helices, but already noted that their 
structural arrangement may differ. The reason for our caution was that comparative 
modeling of this structure part was difficult due to insufficient sequence similarity 
(Albrecht et al., 2004).  

Finally, our suggested model of a complex between the Josephin domain and 
ubiquitin based on the template complex of YUH1 and Ubal (Figure 15) can readily be 
transferred to the NMR solution structure by superimposing the structures of the 
Josephin domain and YUH1 (Figure 19). Based on NMR data, it appears quite likely 
that this modeled complex is approximately correct (Mao et al., 2005) and may be 
stabilized by the described helical insertion (Nicastro et al., 2005). 

2.4.3 Crystal Structure of Pyranose Oxidase 

Pyranose oxidase (POX), also known as glucose 2-oxidase (EC 1.1.3.10), catalyzes the 
oxidation of monosaccharides such as D-glucose and other aldopyranoses at carbon-2 
(or sometimes at carbon-3) in order to yield keto-aldoses while reducing O2 to H2O2 
(Giffhorn et al., 2000). This flavoenzyme is produced by several lignin-degrading 
basidiomycete fungi and is assumed to play an important functional role by supplying 
H2O2 as co-substrate to lignin-decomposing peroxidases. The preferred substrate of 
POX is both α- and β-D-glucose, whereas the functionally related enzyme glucose 
oxidase (GOX) acts solely on β-D-glucose at carbon-1 (EC 1.1.3.4). POX like GOX has 
received remarkable attention both in biotechnological applications for high yields of D-
fructose and in food technology as a tool for glucose measurement (Giffhorn, 2000). 
This tool is also important for analytical purposes, for instance, in clinical chemistry as 
a diagnostic marker of diabetes. 

In contrast to GOX, no X-ray crystal structure had been determined for POX. 
However, after a thorough bioinformatics study of conserved sequence features in 
homologous proteins, we could classify POX into the GMC (glucose-methanol-choline) 
oxidoreductase family containing GOX (Albrecht and Lengauer, 2003). Based on our 
structure-based multiple sequence alignment, we could predict the structural fold of 
POX to be similar to GOX, which enabled the reliable identification of potentially 
catalytic residues. Meanwhile, our predictions have been confirmed by mass 
spectrometry concerning the correct localization of the FAD-binding site (Halada et al., 
2003) and especially by the determination of two X-ray crystal structures of POX 
(Bannwarth et al., 2004; Hallberg et al., 2004). These experimental structures revealed 
that our original sequence alignment was of high quality and that we had identified most 
functionally relevant amino acids in the active site. Thus, our biotechnological partners 
could have used this information for site-directed mutagenesis experiments to improve 
enzymatic properties.  
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2.5 Methodological Limitations 
The bioinformatics application studies detailed in the preceding sections have not only 
revealed structural and functional properties of medically relevant proteins, but also 
some limitations of bioinformatics methods. Therefore, the following list describes 
encountered problems and provides suggestions for the development of novel and 
improved computational techniques to support further biological and medical 
investigations:  
 

(1) Since numerous prediction methods for protein secondary structure are 
readily available online and provide swift results, it is difficult to know 
the best method to apply. However, instead of relying on a single 
prediction result only, one should consider the use of several methods at 
the same time. Still, it has been unclear so far whether a consensus 
prediction formed from the different results of state-of-the-art prediction 
methods is likely to improve the prediction quality and reliability. 

(2) Various bioinformatics methods are offered by web services for the 
prediction of transmembrane helices. Accordingly, this variety raises 
similar questions concerning consensus formation like secondary 
structure prediction as explained in (1). It would also be interesting to 
learn whether the maximum or the minimum or the average of the 
number of helices predicted by each method may be the best estimate 
for the transmembrane topology. In addition, it is not obvious how to 
compute the start and end positions of the predicted helices for a 
consensus.  

(3) When comparing previously predicted secondary structures with protein 
structures solved later in experiment, we could frequently observe that 
the entire secondary structure had been predicted with very high 
accuracy. Sometimes, no appropriate 3D modeling template had been 
detected by any fold recognition method although several templates 
have possessed very similar secondary structure and the correct tertiary 
fold. This observation suggests possible improvements in the utilization 
of predicted secondary structure for recognizing appropriate template 
structures, particularly in cases of distant evolutionary relationships. 
Additionally, if fold recognition methods based on sequence similarities 
do not return useful and reliable results, secondary structure strings of 
target and template proteins could be compared directly with each other 
without considering the primary amino acid sequences.  

(4) When comparing previously modeled 3D structures with recently 
determined solution structures, we have recognized that regions of 
secondary structure prediction differing considerably from the structure 
of the modeling templates may indicate unreliable parts of the resulting 
3D model. Consequently, this observation might lead to new model 
quality measures using secondary structure prediction for assessing the 
reliability of specific model parts. 
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(5) Frequently, additional experimental or predicted data are known for 
target proteins, for instance, posttranslational modifications of protein 
residues (glycosylation, phosphorylation, ubiquitinylation, sumoylation, 
etc.), the primary domain architecture, the location of binding sites, 
secondary structure motifs, residue burial or exposition to solvent, 
positions of disulfide bonds, and spatial distances between amino acids. 
This information could be utilized in structure prediction methods to 
select structural templates, to improve target-template alignment 
quality, and to validate 3D structure models of the target protein. It 
could also be valuable in improving and accelerating computational fold 
recognition approaches by discriminating between alternative templates 
and by filtering ranking lists of possible templates. 

(6) Careful template selection for 3D structure modeling currently involves 
mainly manual work to identify and compare structurally and 
functionally relevant amino acids of target and template homologs using 
multiple sequence alignments and structure superpositions. Although 
this work is essential for assessing the quality and reliability of the 
modeling alignments and the resulting tertiary structure models, the 
necessary data can often be extracted solely by time-consuming reading 
of dozens of biological journal articles. Unfortunately, no 
bioinformatics databases are really established for experimental 
information on single amino acids of proteins. UniProt contains such 
annotations, but much more effort on maintaining regular updates and 
comprehensive descriptions would be needed. Moreover, biologists are 
not required yet to deposit related biochemical and mutational data in 
databases like UniProt after the acceptance of their publication. For this 
functional annotation could additionally be used in structure prediction 
methods as detailed in (5) and displayed in aligned sequences to support 
the verification of target-template alignments.  

(7) Many web services and command line programs support different semi-
automatic stages of protein structure modeling, a process coupled with 
3D structure viewing and involving the following basic modules: 
sequence profile searches, multiple sequence alignment computations 
and editing, secondary structure predictions, template selection and 
analysis, structural superpositions, protein backbone generation, side 
chain and loop modeling, model quality evaluation and energy 
calculations. However, those process modules are usually not provided 
within a uniform and flexible framework offering a user-friendly 
graphical interface as it is nowadays standard for software programming 
projects based on integrated development environments (IDE). The 
usability of bioinformatics methods and databases could be enhanced 
considerably if research groups provide their computational tools simply 
by implementing appropriate IDE plugins. For the analysis of gene or 
protein interaction networks, this is already possible with the extensible 
and open-source IDE-like software platform Cytoscape. 
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(8) When investigating protein-protein interactions, it is first necessary to 
determine the protein domains responsible for the interactions before 
being able to model a protein domain complex and to analyze the 
corresponding binding sites in 3D. To this end, the development of 
bioinformatics methods for the prediction of domain interactions and for 
the automatic decomposition of protein-protein interactions into 
domain-domain interactions is important. In this context, new databases 
containing information on experimentally observed interactions of 
protein fragments/domains and splice variants might facilitate 
bioinformatics research.  

(9) After modeling a protein domain complex based on the 3D structure 
prediction of each domain, it is reasonable to assess the overall quality 
of the modeled complex. For this purpose, confidence measures to 
assess domain-domain interaction interfaces could be developed. They 
could indicate the likelihood of the predicted domain interaction to 
occur in vivo. Moreover, advanced bioinformatics methods to predict 
flexible protein regions moving during domain-domain binding are 
desirable. 

(10) Homologous proteins often share not only 3D structure, but also similar 
functions and interaction partners. Knowing the domains of proteins 
interacting with the target protein may aid in the selection of the best 
modeling template for predicting the structure of the target. More details 
on this idea to improve fold recognition approaches can be found in the 
last section of Chapter 5. 

Solutions to the three methodological limitations (1), (5) and (8) form part of this 
dissertation and will be addressed in the succeeding Chapters 3, 4 and 5, respectively. 
While two more issues (3) and (7) have recently been tackled by other research groups 
and are reported below, the remaining problems (2), (4), (6), (9) and (10) with 
bioinformatics methods still appear to be unsolved to date. 

The difficulties explained in (3) have been acknowledged by our cooperation 
partner Silvio Tosatto and his coworkers at the University of Padova. They 
implemented a publicly available web service named SSEA for the computation of 
protein secondary structure alignments (Fontana et al., 2005). It supports both 
performing pairwise alignments and searching a given secondary structure against a 
library of domain folds derived from the PDB.  

Furthermore, the lack of a generic modeling IDE as discussed in (7) has been 
approached by Roland Dunbrack and his colleagues. They designed a free and open-
source molecular integrated development environment (MollIDE) that combines the 
most frequent modeling steps and guides the user from the target protein sequence to 
the final 3D structure model (Canutescu and Dunbrack, 2005). Another new and 
versatile graphical IDE like MollIDE is BALLView, which focuses on visualization and 
energy computation of 3D structures including molecular dynamics simulations (Moll et 
al., 2006). Both IDEs can be regarded as first innovative steps towards a more 
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comprehensive and adaptable modeling environment providing richer functionality as 
outlined in (7).  

2.6 Systems Biology Perspectives 
In various application studies described in this chapter, we have investigated the 
structure and function of seemingly disparate proteins associated with autoinflammatory 
and neurodegenerative diseases of different etiologies and phenotypes. However, on the 
molecular level, surprising functional similarities between medically relevant proteins 
and their binding partners have been observed recently. In future work, it will be 
beneficial to take such relationships into account when inferring cellular disease models.  

For instance, recent research findings on neurodegenerative disorders point to the 
involvement of causative, evolutionarily unrelated, proteins in identical or at least very 
similar signaling pathways. Examples are the polyglutamine proteins ataxin-2 and 
ataxin-3 causing ataxia types 2 and 3, both of which were reported to be associated with 
Parkinson’s disease as well (Morris, 2005). Regarding Huntington’s disease, we 
particularly found that both ataxin-2 and huntingtin interact with endophilins (Harjes 
and Wanker, 2003; Ralser et al., 2005b). In the near future, such molecular similarities 
may facilitate the identification of common cellular dysfunctions for therapeutic 
targeting.  

Remarkably, further functional interrelationships even between autoinflammatory 
and neurodegenerative diseases have become apparent on the molecular level despite of 
prominent phenotypic differences. Concrete examples are the evolutionarily related 
protein kinases RIP2 (RICK/CARDIAK) and RIP7 (LRRK2/dardarin) (Meylan and 
Tschopp, 2005), which have been found to act in Crohn’s, Huntington’s and 
Parkinson’s diseases. NOD2 requires RIP2 to induce ubiquitinylation of NEMO, a key 
component of the NF-κB signaling complex affected in Crohn’s disease (Abbott et al., 
2004). Also, dysregulation of RIP2 is associated with Huntington’s disease progression 
(Wang et al., 2005), whereas mutations of RIP7 are causative of Parkinson’s disease 
(Singleton, 2005). Therefore, detailed molecular knowledge of the same signaling 
proteins and their pathways may facilitate research on distinct diseases. 

Generally, the small protein ubiquitin plays an important role not only in the 
regulation of NOD2 and the modulation of immune responses (Liu et al., 2005b), but 
also in neurodegeneration-associated pathways involving diverse proteins linked to 
Parkinson’s and Huntington’s disease as well as ataxias (Ciechanover and Brundin, 
2003; Johnston and Madura, 2004; Ross and Pickart, 2004). In addition, the 
transcription factor NF-κB is crucial for immune responses and apoptotic processes in 
many diseases (Li and Verma, 2002; Vila and Przedborski, 2003; Bonizzi and Karin, 
2004). Apoptosis is regulated by complicated biological mechanisms with intertwining 
signaling cascades, caspase-regulated processes, and ubiquitin-mediated degradation 
(Riedl and Shi, 2004; Vaux and Silke, 2005; Yan and Shi, 2005).  

In conclusion, the consideration of intricate molecular relationships will become 
increasingly important in order to advance the understanding of disease processes and 
the consequences of defects in multifunctional proteins. It will no longer suffice to 
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analyze single proteins, but their functional context will need to be explored intensively 
as well. This will necessitate a systems biology approach, which integrates rapidly 
growing experimental knowledge on molecular interactions and their spatiotemporal 
changes into cellular models (Cusick et al., 2005).  

This endeavor will include the comparative analysis of large interaction networks 
and the quantitative simulation of complex pathways for disease-associated proteins 
(Bork et al., 2004). For this purpose, protein interaction maps of substantial size have 
recently been generated for NF-κB (Bouwmeester et al., 2004), huntingtin (Goehler et 
al., 2004), and many other human proteins (Rual et al., 2005; Stelzl et al., 2005). 
Eventually, comprehensive biological models of varying granularity including spatial 
information on protein structures and complexes (Aloy et al., 2005) as well as on 
cellular communication will be needed to explain physiological phenomena (Xia et al., 
2004). Fortunately, it appears that the same model may aid the study of several diseases. 
For example, the discovery of similar molecular reactions underlying clinically distinct 
autoinflammatory diseases may facilitate the search for anti-inflammatory drugs 
(Schreiber et al., 2005). In case of neurodegeneration, the bioinformatics-supported 
distinction of neuroprotective and toxic modulations of aberrant protein interactions 
triggering pathogenic cascades may point to common drug targets (Ryan and Matthews, 
2005).  
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333    
Predicting Consensus 
Secondary Structure 

This chapter shows that, in contrast to previously published, more sophisticated, 
methods, simple consensus procedures are effective and sufficient in improving 
secondary structure prediction. This research arose from the use of multiple prediction 
methods in application studies on medically relevant proteins (Chapter 2). It was 
conducted in cooperation with Silvio Tosatto and his colleagues at the University of 
Padova in Italy. They participated in the fifth round of the Critical Assessment of 
Structure Prediction (CASP5 in 2002) and submitted the results of the consensus 
procedure closely following my suggestions. Since this procedure was surprisingly 
successful in CASP5 (Aloy et al., 2003b), we then analyzed the performance of our 
approach more comprehensively (Albrecht et al., 2003e).  

After some more background information on secondary structure prediction, the 
following sections detail our consensus method and benchmarking results. Basically, 
our consensus prediction is obtained by majority voting on minimal combination sets of 
three state-of-the-art prediction methods. Using large data sets for benchmarking, we 
demonstrate that our method achieves a significant improvement in the average Q3 
prediction accuracy of up to 1.5 percentage points by consensus formation. 
Interestingly, the application of an additional trivial filtering procedure for predicted 
secondary structure elements that are too short, does not significantly affect the 
prediction accuracy. Our analysis also provides valuable insight into the similarity of 
the results obtained by prediction methods that we combine. Additionally, we observe a 
higher confidence in consistently predicted secondary structure.  
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3.1 Introduction 
The prediction of secondary structure is a frequent task in sequence analysis of globular 
proteins. It provides information on the putative number and positions of α-helices and 
β-strands, which is particularly useful for 3D structure prediction (Przybylski and Rost, 
2002). Recent improvements in prediction accuracy have been accomplished not only 
by incorporating evolutionary information from homologous sequences into the 
prediction algorithms, but also by combining the results of single, independent, 
secondary structure prediction methods into a consensus prediction (Rost, 2001).  

The first implementation of the prediction server Jpred computed a consensus of 
prediction results simply by majority voting (Cuff et al., 1998). Minor method 
variations such as different weights added to the results did not lead to significantly 
higher prediction accuracies (Cuff and Barton, 1999; King et al., 2000). However, the 
Jpred server has been improved recently (Cuff and Barton, 2000) and now employs a 
complex combination of neural networks, a method that has also been applied 
successfully for consensus formation by other groups (Chandonia and Karplus, 1999; 
King et al., 2000; Petersen et al., 2000). Similar sophisticated approaches use 
multivariate linear regression (Guermeur et al., 1999) or decision trees (Selbig et al., 
1999) trained for optimal method selection. Other method variants apply either cascaded 
multiple classifiers of secondary structure (Ouali and King, 2000) or a composite 
secondary structure assembled from the results of several methods (An and Friesner, 
2002). The common feature of all these consensus approaches is the use of results from 
usually more than three secondary structure prediction methods.  

We found that a set of only three state-of-the-art methods combined by 
straightforward majority voting is sufficient to achieve similar improvements in 
prediction accuracy (Figure 20). This simple approach runs at low computational cost 
and uses the currently best prediction servers.  

 
Figure 20. Consensus prediction 
formed by majority voting using 
the results of three secondary 
structure prediction methods 
(SSPred1-3). 

 
In order to test our approach, we participated in the critical assessment of structure 

prediction, the CASP5 experiment of the year 2002 (Tramontano, 2003). We combined 
the prediction results of the three web servers PSIPRED, SAM-T02, and SSpro2, which 
are based on different prediction approaches using neural networks and hidden Markov 
models. The three servers have shown top performance in former CASP experiments 
and the continuous automatic evaluation (EVA) of protein structure prediction servers 
(Eyrich et al., 2001; Rost and Eyrich, 2001). The prediction methods implemented by 
the three web servers have higher overall accuracy than older combination procedures 
such as Jpred.  
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Astonishingly, our method named CaspIta (group number 108) significantly 
outperformed almost all other methods participating in CASP5 and reached the second 
rank below a manual expert submission according to the SOV score, normalized with 
respect to the total number of all 78 target protein domain sequences (Aloy et al., 
2003b). In particular, our method ranked first regarding the SOV accuracy measure for 
a subset of 21 target domains unrelated by sequence and with low sequence similarity to 
known protein structures. Regarding the alternative Q3 score for prediction accuracy, 
our combination method ranks first for the set of all targets and the subset of sequence 
unrelated targets (for details see http://www.russell.embl.de/casp5/).  

Encouraged by the CASP5 results, we decided to investigate our approach on larger 
benchmark sets obtained from EVA. In particular, we show that our approach always 
improves the prediction accuracy over the best single method of the three methods 
combined to form the consensus. Comparing the frequencies for the occurrence of 
certain majority situations, we are able to draw interesting conclusions on the degree of 
similarity between results of single prediction methods and on the increased confidence 
in consistently predicted secondary structure.  

3.2 Materials and Methods 

3.2.1 Benchmark Sets 

In our evaluation, we used the three benchmark sets ‘common2’, ‘common5’, and 
‘common6’ from 22 September 2002 with sequences of low identity, as provided by the 
EVA web site (http://cubic.bioc.columbia.edu/~eva/). The set ‘common2’ contains 121 
sequences with 16,858 amino acids, ‘common5’ contains 214 sequences with 44,871 
amino acids, and ‘common6’ contains 539 sequences with 98,308 residues. Because not 
all methods have returned predictions for every sequence requested by EVA, not every 
benchmark set could be combined with the same three methods used for consensus 
computation (see legend of Table I). 

3.2.2 Consensus Formation 

For each benchmark set, three single methods of top performance in EVA are selected 
in order to compute the consensus secondary structure sequence by majority voting 
(using Perl scripts). Specifically, we processed the results of the following seven 
prediction methods: PSIPRED (Jones, 1999; McGuffin et al., 2000), SAM-T99 
(Karplus et al., 1998), SSpro1 (Baldi et al., 1999), SSpro2 (Pollastri et al., 2002), 
PHDpsi (Przybylski and Rost, 2002), PROFsec (Rost and Eyrich, 2001), Jpred (Cuff 
and Barton, 2000).  

Three cases need to be distinguished when forming the consensus sequence per 
amino acid according to the three possible secondary states α-helix (H), β-strand (E), 
and other/loop (L): 3:0 votes means consistent prediction among all three methods. 2:1 
votes result in the majority decision. The rare case of a tie 1:1:1 is resolved by assuming 
the L state. Each consensus sequence is annotated with a confidence array, which 

 

http://www.russell.embl.de/casp5/
http://cubic.bioc.columbia.edu/~eva/
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contains values ranging from 1 to 3 according to the maximum number of identical 
votes per residue. 

3.2.3 Prediction Accuracy 

To determine the prediction accuracy, we compared the predicted consensus sequence 
to the true three-state sequence derived from the DSSP secondary structure assignment 
of known 3D structures (Kabsch and Sander, 1983). Each of the three possible states H, 
E, and L per residue results from the eight possible DSSP states according to the 
following standard transformation schema (Rost and Eyrich, 2001): {G,H,I} → α-helix 
(H), {B,E} → β-strand (E), {S,T,’.’} → other (L). 

For each benchmark set, we computed average Q3 and SOV percentage values 
(Rost et al., 1994; Zemla et al., 1999; Rost and Eyrich, 2001) as well as the separate 
percentages QH, QE, and QL of residues predicted correctly in the observed H, E, and L 
states, respectively. For each accuracy measure, we calculated the standard error by 
dividing the standard deviation of the measure by the square root of the benchmark set 
size. Assuming a normal distribution of the accuracy measures, the accuracy difference 
between two distinct prediction methods may be assumed to be statistically significant 
if it is larger than the maximum of the standard errors (Rost and Eyrich, 2001). 

3.3 Results and Discussion 

3.3.1 Accuracy Improvement 

The results of the consensus formation by majority voting using three different 
benchmark sets are summarized in Table I. The comparison of our consensus approach 
to the respective best single method demonstrates that the total average Q3 accuracy is 
increased considerably by 1.45, 1.50, and 0.41 percentage points for each set 
‘common2’, ‘common5’, and ‘common6’, respectively. In particular, the accuracy 
increase is statistically significant (in the sense described above) in case of the sets 
‘common2’ and ‘common5’. In addition, the SOV measure is improved by 0.68 
percentage points for the ‘common5’ set, while it does not change substantially for the 
other two sets. Table I also contains the results of the consensus prediction method 
Jpred as available for the sets ‘common2’ and ‘common5’, but its accuracy is generally 
clearly below those of other methods. For comparison, we included the results of 
PROFsec, another top-performing single prediction method, into Table I for the 
‘common2’ set. Its Q3 prediction accuracy shows a significantly lower performance 
reduced by 1.27-1.57 percentage points in contrast to the very similar consensus results 
of any three single methods combined out of the four available methods PSIPRED, 
SAM-T99, SSpro, and PROFsec. 

If one compares the accuracy measures of each of the methods that have been 
combined to form the consensus, based on a separation according to the true H, E, and L 
states observed, it appears that the consensus formation always improves the Q3 value 
of the L state class by 0.51-1.55 percentage points. This finding could mean that single 
methods tend to underpredict the L state. 
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Table I. 

Results of the consensus secondary structure prediction for the benchmark sets (a)
‘common2’, (b) ‘common5’, and (c) ‘common6’. The first three prediction methods shown
in (a)-(c) are combined by consensus formation with majority voting. For each method, the
means (µ)  and standard errors (errσ)  of the accuracy measures Q3, QH, QE, QL, and SOV are
given in percent. For comparison, we included the results of the prediction methods
PROFsec and Jpred. The consensus results for every possible combination of PROFsec with
two of the first three methods are also included in (a). 
 
(a) 

(b) 

(c) 

 

3.3.2 Filtering of Prediction Results 

Furthermore, we found that the application of a trivial filtering procedure that eliminates 
α-helices and β-strands that are too short generally neither deteriorates nor ameliorates 
the prediction accuracy significantly, be it before and/or after the consensus formation. 
In detail, this procedure converts the secondary structure states of residues in secondary 
structure elements of impossible length (α-helices shorter than three residues and β-
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strands shorter than two residues) to the L state. As can be seen from Table II and Table 
III, the application of the filtering procedure generally does not affect the prediction 
accuracy significantly, be it before and/or after the consensus formation. An interesting 
exception is the SOV value of the SSpro1 and SSpro2 methods, which is improved by 
0.98 and 1.76 percentage points, respectively, after the application of the filter.  

In summary, this kind of structural filtering can be employed without disadvantages 
in order to clean up the secondary structure predictions before further processing. For 
example, this procedure may be particularly useful in 3D structure prediction, where 
impossible secondary structure elements could complicate the selection of an 
appropriate template structure. 

 

Table II. 

Results of applying the filtering procedure before and/or after consensus formation (pre-/
post-filter) for the benchmark sets (a) ‘common2’, (b) ‘common5’, and (c) ‘common6’. The
first three prediction methods shown in (a)-(c) of Table I are combined by consensus
formation with majority voting. The means (µ) and standard errors (errσ) of the accuracy
measures Q3, QH, QE, QL, and SOV are given in percent. 
 
(a) 

(b) 

(c) 
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Table III. 

Results of applying the filtering procedure to single methods for the benchmark sets (a)
‘common2’, (b) ‘common5’, and (c) ‘common6’. For each method, the means (µ) and
standard errors (errσ) of the accuracy measures Q3 and SOV before and after filtering the
prediction results are given in percent.  
 
(a) 

 
(b) 

 
(c) 

 

 

3.3.3 Frequency of Majority Situations 

The additional analysis of the overall frequency of the three possible types of majority 
situations 3:0, 2:1, and tie 1:1:1 uncovers that the problematic case of a tie with each of 
the three single methods predicting a different secondary structure occurs in at most 1% 
of all cases (Table IV(a)). Thus, the tie case can be neglected when applying our 
consensus approach. 

In contrast, 3:0 consistency appears about three times as often as 2:1 majority. Here, 
some methods resemble each other more than others. For instance, based on the 
benchmark set ‘common6’, PROFsec is much more similar to PHDpsi than to 
PSIPRED: the pair (PROFsec, PHDpsi) has a higher 2:1 frequency of 12.6% than the 
pair (PSIPRED, PROFsec) and the pair (PSIPRED, PHDpsi) with 6.2% and 3.2%, 
respectively. In contrast, the 2:1 frequencies of the three methods employed for the sets 
‘common2’ and ‘common5’ are not far from each other. Thus, the respective three 
methods that are combined seem to be equally dissimilar to each other. Together with 
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the higher improvement in prediction accuracy observed for the same two benchmark 
sets compared to the ‘common6’ set, the rule of thumb may be deduced that the best 
performance of our approach can be obtained by combining three single methods of top 
prediction accuracy with approximately equal dissimilarity of their results.  

Table IV. 

(a) Overall frequencies of the three types of majority situations for the three benchmark sets
‘common2’, ‘common5’, and ‘common6’. The 2:1 majority situation is additionally
subdivided into the three possible combinations of a pair of two methods voting
unanimously versus a third method. Each combination consists of the first three methods (1)-
(3) as listed in (a), (b) or (c) of Table I: PSIPRED (1), SAM-T99 (2) and SSpro2 (3) for (a);
PSIPRED (1), SSpro1 (2) and PROFsec (3) for (b); and PSIPRED (1), PROFsec (2) and
PHDpsi (3) for (c). 
 

 
(b) Improvement of the Q3, QH, QE, QL, and SOV accuracy measures in percent if their
computation is restricted to secondary structure states that are consistently predicted by all
three methods for the benchmark sets (a) “common2”, (b) “common5”, and (c) “common6”.
 

 

 

3.3.4 Prediction Confidence 

We also verified the intuitive expectation that the confidence in the correctness of the 
prediction is increased by consensus formation. We found that the Q3 and SOV values 
computed solely for secondary structure states that are consistently predicted by all 
three methods are much higher than overall values with an increase of 6.32-6.62 and 
5.06-5.46 percentage points for Q3 and SOV, respectively (Table IV(b)). Similar results 
are obtained after separating the Q3 value into the three secondary structure classes: QH 
and QE are increased by 4.12-6.03 and 2.88-4.31 percentage points, respectively, while 
QL is increased on average by 5.83-6.20 percentage points. 
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3.4 Conclusions 
In summary, we recognized that a simple consensus approach based on the majority 
voting of solely three prediction methods can be superior to each of the three methods 
as well as to complex combinations of more than three single prediction methods as 
employed in Jpred. Our method proved to work with distinct combinations of different 
prediction methods on large benchmark sets. Presumably, the success of the method is 
mainly due to the use of three of the currently best single methods and the noise-
removing properties of a consensus approach, which helps to ignore the errors of single 
methods. We believe that any three state-of-the-art prediction methods can be used for 
the consensus. The method is computationally less expensive than other consensus 
approaches and has the advantage of not requiring the calibration of parameters. 
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444    
Improving 

Structure Prediction by 
Distance Constraints 

This chapter describes a comprehensive analysis of methods for improving the success 
rate of protein fold recognition, also known as threading in protein structure prediction. 
The methods utilize a small number of additional distance constraints between protein 
residues, which can be obtained by experimental techniques such as mass spectrometry 
or NMR spectroscopy. As detailed below, a post-filtering step with novel scoring 
functions incorporating measures of constraint satisfaction is applied to improve 
ranking lists of threading alignments. This new approach combining structure prediction 
and experiments can be especially valuable for rapid structure determination and the 
validation of protein models. It partially originated from the collaboration with 
experimental partners studying the structures of specific proteins such as ataxin-3 
causative of neurodegeneration (Chapter 2). 

In the following, the computed results show that, based on a small representative 
benchmark set, the fold recognition rate can be improved significantly by up to 30% 
from about 54%-65% to 77%-84%, approaching the maximally attainable performance 
of 90% estimated by structural superposition alignments. This gain in performance adds 
about 10% to the recognition rate already achieved with cross-link constraints only. 
Notably, this work was first presented at the German Conference on Bioinformatics 
(GCB) in 2001, and an extended version was subsequently published as journal article 
(Albrecht et al., 2002).  
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4.1 Introduction 
The threading approach predicts the three-dimensional protein structure by comparing 
and aligning representative template protein structures to the amino acid sequence of the 
target protein (Eisenberg, 1997; Finkelstein, 1997; Jones, 1997; Rost et al., 1997; Zhang 
et al., 1997; Koehl and Levitt, 1999; Sternberg et al., 1999). This is in contrast to ab 
initio/de novo structure prediction endeavors that aim at the construction of structural 
protein models primarily based on physicochemical interactions between amino acids 
(Schonbrun et al., 2002). The computation and subsequent evaluation of threading 
alignments usually gives a sequence-structure similarity score, which is the result of 
applying a scoring function for each alignment. According to the fold recognition 
protocol, the alignments obtained are then ranked by their respective scores. Hereby this 
procedure yields a ranking list of target-template alignments. The best-scoring 
alignment should identify the correct template structure and its corresponding fold class. 
It is assumed to be most compatible with the target sequence and to constitute a 
meaningful model for the yet unknown structure of the target sequence. 

However, the problem of developing an accurate scoring function is still unsolved 
for distantly related target and template proteins sharing the same fold. Especially, 
making the scoring scheme reflect diverse biological constraints seems to be a difficult 
task. Thus, threading methods based solely on sequence information of the target 
protein often fail. To remedy the inherent shortcomings of the scoring function and, at 
the same time, to enhance the credibility of the proposed models, it becomes necessary 
to exploit more biological knowledge on the target protein in the prediction process. 
The additional information to include into the threading procedure could consist of 
specific constraints for the computed alignments. Such constraints can be obtained from 
experimental data, for instance, as distances between atoms of protein residues. They 
may be measured by protein cross-linking reagents functioning as molecular rulers 
(Figure 21) in mass spectrometry (MS) or by NOE (nuclear Overhauser effect) restraints 
in NMR spectroscopy. The utilization of additional constraints is expected to lead to 
more accurate fold recognition results and an improvement in prediction and alignment 
quality. 

This combined approach can be particularly beneficial for structural genomics 
projects that intend to determine many protein structures in short time. Experimental 
results that would give insufficient data for the complete structure determination if taken 
alone may already yield enough constraints to support protein structure prediction 
considerably using the threading method. The constraints applied to the set of predicted 
structures can help in selecting and validating the more plausible models of the target 
protein. This procedure may accelerate the overall structure determination because the 
amount of data that is usually required can be reduced. Additionally, the threading 
models may render feasible the structure determination of proteins of larger size, for 
instance, by NMR spectroscopy, which is still limited to protein sizes up to about 30kD.  

There have been few publications on threading with experimental constraints. 
Recently, Xu and colleagues described how to incorporate NOE restraints as distance 
constraints in their threading program PROSPECT (Xu et al., 2000). They use a larger 
number of constraints than in our study described below in order to compute better 
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protein models and to support NMR structure determination. They also give some 
examples how the threading performance can be improved by the incorporation of 
partial structural information about the position of disulfide bonds and active sites in the 
target protein (Xu and Xu, 2000). In contrast, Young and coworkers demonstrated the 
feasibility of rapid structure determination by the combination of intramolecular cross-
links measured by mass spectrometry with threading results, using solely a single target 
as model protein (Young et al., 2000). Distance constraints derived from the measured 
cross-links are used to rank the set of computed threading models by the constraint 
error. This error is the sum of the distance deviations between the target structure and 
the models. 

In the following, we present a comprehensive analysis of methods for improving the 
fold recognition rates in the threading approach by utilizing a small number of 
additional distance constraints from experiments. Here, in contrast to our previous paper 
focusing solely on simulated cross-link constraints (Hoffmann et al., 2002), we included 
sets of NOE constraints and used different scoring functions. 

 

Figure 21. Schematic view of the determination of experimental distance 
constraints by mass spectrometry. 

4.2 Materials and Methods 

4.2.1 Benchmark Set 

To evaluate the performance of our methods, we used a standard template library of 
representative protein structures. This comprehensive benchmark set taken from the 
Hobohm96-25 database (Hobohm and Sander, 1994) consists of 251 single-domain 
proteins, whose pairwise sequence identity is below 25%. This makes it hard to 
compute biologically reasonable alignments based solely on sequence information. The 
SCOP annotation (Murzin et al., 1995) of the proteins is used to divide the library into 
structural fold classes, which results in 11 classes containing 5 to 11 members. The 
minimum of 5 members was chosen to allow a reasonable analysis of ranking results for 
members of the same fold class. These 11 folds contain altogether 81 target proteins 
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(Table V), which are threaded against the complete template library. As described in 
(Thiele et al., 1999), this benchmark set represents a demanding task for threading 
methods because fewer than 50% of the residues in proteins with identical folds can be 
superposed within 3.0Å in most cases. 

Table V. 

Each fold class is described by the count of members, the α/β-type class, the SCOP name,
and the minimum and maximum sequence length of all proteins contained in the class. 
 

 

 

4.2.2 Constraint Filter 

The constraint filter that checks the violation of target distance constraints requires both 
target residues related by the constraint to be aligned to template residues within the 
given distance (Figure 22). 

 

Figure 22. Alignments of a target sequence s with selected distance constraints to 
two templates t* and t° annotated with the corresponding distances in their 
structures. Assuming a distance tolerance δ = 2.5Å and a position tolerance σ = 0, 
all distance constraints in the left alignment are satisfied, whereas two distance 
constraints are violated in the right alignment. 
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Formally, let the target sequence s be represented by the amino acids s1, s2, ..., sn and 
the sequence of the template structure t by the amino acids t1, t2, ..., tm. We are given a set 
of distance constraints C = {(si, sj, dsisj) | si,sj ∈ s, dsisj ∈ ℜ+}, where dsisj is the atomic 
distance between the residues si and sj. We then regard some alignment A(s, t) of length z 
that maps the target segment s' = s'1, s'2, ..., s'z onto the template segment t' = t'1, t'2, ..., t'z. 
Every residue of s contained in s' is either mapped to some residue of t in t' or to a gap. A 
distance constraint c = (si, sj, dsisj) is said to be aligned to two template positions t'k and t'l 
if the two target residues si and sj are aligned to t'k and t'l, respectively. If t'k or t'l 
represents an alignment gap, the distance dt’kt’l is defined to be +∞. 

The stringency of the distance constraint filter in terms of specificity and sensitivity 
can be adjusted by two tolerance parameters: 

Distance tolerance: the maximum deviation δ from the given distance value. • 

• Position tolerance: the number σ of sequence positions searched left and 
right of the aligned template position for matching distances. 

The distance tolerance accounts mainly for the inaccuracy of the experimental 
measurements, but also for small local structural deviations between the target and the 
template. Because the alignments computed by the threading method do usually not 
reflect structural similarity perfectly and may be shifted with respect to the standard-of-
truth alignments, we set the position tolerance to σ = 4. This particular parameter 
setting yields a search interval of size 9 around the aligned residue positions. It allows 
α-helices to be misaligned by one turn, and β-strands by one or two shifts of two 
consecutive residues. Generally, the position tolerance can be set to small values for 
high-quality alignments, while larger values should be chosen for alignments of lower 
quality. 

Now we define that some distance constraint c ∈ C aligned to t’k and t’l is satisfied 
if the distance between the mapped residues in the template structure closely matches 
the measured distance constraint in the target structure: 

∃p∈{k-σ, ..., k, ..., k+σ}, q∈{l-σ, ..., l, ..., l+σ}: 

(1 ≤ p, q ≤ z) ∧ (|dsisj – dt’pt’q| ≤ δ) 

Otherwise the constraint c is said to be violated. 

4.2.3 Distance Constraints 

We constructed three different sets of distance constraints for each target protein. Since 
experimental data is not yet available for a large number of proteins, we simulate the 
distances by simply reading them off resolved target structures contained in the Protein 
Data Bank PDB (Berman et al., 2000). To store the data for each protein, we used the 
XML-based ProML specification language (Hanisch et al., 2002). 

We always selected distances between Cβ atoms in order to be able to compare the 
results of the three sets (for glycine residues, we computed pseudo Cβ atoms). 
However, it would be readily possible to extract similar distance constraints from real 

 



4.2  Materials and Methods 66 

experimental data measured between sulfur or hydrogen atoms, as it is often the case in 
MS or NMR, respectively. 

For the first set Cm of distance constraints, we mimic the measurement process of 
intramolecular homobifunctional cross-linkers by MALDI-TOF mass spectra. To this 
end, we select distances in the range of 8Å to 14Å between aspartate, glutamate, and 
lysine residues (Green et al., 2001; Hoffmann et al., 2002). The distance tolerance was 
chosen as δ = 2.5Å, which corresponds to the maximum standard deviation observed in 
reagent manufacturer and simulated data (Green et al., 2001). Additionally, we included 
distance constraints derived from disulfide bridges as “natural” cross-linking reagents 
into our set. The number of distance constraints in Cm was set to 0.1 constraints per 
residue. 

For the second and third constraint set Cn1 (Cn2), we randomly picked 0.1 (0.2) 
artificial long-range NOE restraints per residue of distances 4Å to 6Å with a minimum 
sequential separation of three adjacent residues. This corresponds to sparse data that is 
acquired early in the NMR structure determination process (Skolnick et al., 1997; 
Standley et al., 1999; Bowers et al., 2000). The distance tolerance of NOE 
enhancements was chosen to be more stringent with δ = 1.0Å. 

4.2.4 Scoring Functions 

We apply the distance constraint filter to the ranking list of target-template alignments 
computed by the threading program. We investigated four different scoring functions 
that validate the structure models given by the target-template alignments by checking 
the experimental distance constraints for violation. Two functions simply count the 
number of satisfied and violated distance constraints. In contrast, the other two 
functions use the idea that distance constraints conserved among the members of a fold 
class should receive more weight in the summation. 

For this purpose, we extracted structurally conserved cores of each fold class 
contained in the template library by means of structural superpositions and multiple 
alignments. We assigned a higher weight to a distance constraint if its both ends lie 
within a core region of the template. In practice, we assume a weight of 5, which 
amounts to scoring the distance constraint inside a core region five times as high as a 
non-core constraint. 

In the following, let na be the size of a set containing all experimental distance 
constraints of a target s, and let nf be the number of fulfilled distance constraints in some 
target-template alignment A(s, t). The threading score of A(s, t) is denoted by r. For 
structural cores, the weighted sum computed from nf and na is given by wf and wa, 
respectively. Then the four scoring terms are defined as follows: 

(1) sfa = nf / (na + 1) 
(2) srfa = r + ρfa ⋅ sfa 
(3) swfa = wf / (wa + 1) 
(4) srwfa = r + ρwfa ⋅ swfa 
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The parameters ρfa and ρwfa in the linearly combined terms srfa (2) and srwfa (4), 
respectively, were chosen such that the threading score r and the constraint scores sfa (1) 
and swfa (3) contribute roughly equally to the combined value if about 50% of all 
potential constraints are fulfilled in the top-ranked threading alignments. As further 
investigations into the optimal choice of these parameters revealed, this assumption 
usually maximizes the fold recognition rate in case of our sets Cm and Cn1 with 0.1 
constraints/residue. However, the exact choice is not that relevant as maximum 
performance is achieved over a relatively wide interval of parameter values around the 
chosen values ρfa = 1600 and ρwfa = 1600. Interestingly, maximum performance for the 
set Cn2 with 0.2 constraints/residue was reached with the double parameter values ρfa = 
3200 and ρwfa = 3200. This may be due to the fact that, in contrast to the 0.1-sets, the 
same absolute amount of fulfilled constraints is already obtained if only about 25% of 
all possible constraints of the 0.2-set are satisfied. 

4.2.5 Threading Alignments 

We used the threading program 123D (Alexandrov et al., 1996) and its extension 
123D* (Sommer et al., 2002) incorporating profile methods to predict the structure of 
all 81 target proteins in our benchmark set by threading them against the template 
library. The result of a 123D run for each target is a list of all 250 template proteins 
(excluding the target protein itself), which is ranked by the target-template alignment 
scores. We employed three different parameter sets to compute global alignments of 
increasing quality: 

P1 : Standard parameter set with gap insertion and extension cost 20 and 0.8. 
P2 : Optimized parameter set as published in (Zien et al., 2000). 
P3 : Improved threading with frequency profiles. 

In addition, we generated standard-of-truth alignments using structural 
superpositions computed by the program SARF2 (Alexandrov, 1996). 

4.3 Results and Discussion 

4.3.1 Post-Filter for Alignments 

According to the fold recognition protocol, all target proteins are classified and their 
predicted folds compared with the true folds in order to calculate a recognition rate. The 
fold of a target structure is correctly recognized if the best-scoring template in the 
ranking list (not containing the target protein) belongs to the target fold class. In the 
special case that more than one template reaches the identical best score, the target 
protein is counted as correctly recognized only if all best-scoring templates share the 
same target fold. 

In order to improve the fold recognition rate, we apply the distance constraint filter 
to the 123D results in a post-filtering step. This procedure amounts to a re-evaluation 
and validation of the computed threading alignments with one of the four scoring 
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functions sfa, srfa, swfa, and srwfa. In this way, the aligned templates are checked for the 
violation of distance constraints contained in one of the three sets Cm, Cn1, and Cn2. 

Table VI shows the fold recognition rate for each pair of scoring function and 
constraint set, and compares it with the performance of the 123D scoring function r for 
every threading parameter set P1, P2, and P3. 

 

Table VI. 

Recognition rates for 123D alignments, dependent on the scoring functions r, sfa, srfa, swfa,
srwfa, the distance constraint sets Cm, Cn1, Cn2, and the threading parameter sets P1, P2, P3. 
 

 
Apparently, the combined scoring functions srfa and srwfa outperform both the 123D 

scoring function r and the simpler functions sfa and swfa. The reason may be that the 
distance constraint score exploits an orthogonal measure (the fraction of satisfied 
constraints) to complement the threading score r. While the 123D score gives an 
empirical estimate of the alignment quality, number of gaps, sequence and structural 
similarity between the target and template, the distance constraint score serves as a 
high-quality indicator of structural accuracy and thus of indispensable properties of a 
correct template structure.  

Furthermore, the scoring functions swfa and srwfa, which are based on structural 
cores, also lead to a substantial increase of the recognition rate when compared to the 
functions sfa and srfa. Moreover, the data shows that alignment quality is crucial for the 
improvement potential of the scoring function. 

Apart from that, the comparison of the performance of the distance constraint sets 
Cn1 and Cn2 reveals the expected relationship that the recognition rate increases with the 
number of distance constraints. More specifically, it appears that the distance 
constraints Cn1 obtained by NMR perform slightly better than the MS constraint set Cm. 



4  Improving Structure Prediction 69

This observation may be explained by the fact that the maximum of the atomic distance 
distribution for some protein is often attained towards values larger than 8Å. Thus, the 
satisfaction of a typical NOE distance constraint of 4Å to 6Å is more significant for the 
correctness of the chosen template structure. Another, but only minor, effect (as 
revealed in further tests not detailed here) is the different accuracy of the MS and NMR 
measurements expressed by the distance tolerance parameter. A third reason might be 
that the distance constraints from cross-linkers are biased towards certain amino acids, 
which is not the case with NOEs. 

Figure 23 depicts how the increase of the recognition rate also depends on the fold 
class. It is particularly interesting that the targets with ferredoxin-like fold (column 
number 4 in Figure 23) are much better recognized by the combined function with 
79%. In contrast, the 123D scoring function usually fails completely. 

 

 
Figure 23. Recognition rates per fold class, using the 123D parameter set P2 and 
the NOE distance constraint set Cn1. Each triple of bars shows the performance of 
the 123D scoring function r (red) and of the constraint scoring functions swfa 
(yellow) and srwfa (green), both of which are based on structural cores. The 12th 
triple of bars depicts the overall recognition rates averaged over all 11 fold classes. 
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4.3.2 Comparison with Superpositions 

In order to determine an upper bound on the recognition rate that can be maximally 
achieved, we evaluated the standard-of-truth SARF superposition alignments for our 
benchmark set with the scoring functions sfa and swfa. In addition, we used the number 
of aligned residues as an artificial scoring function a to obtain an estimate of the best 
achievable recognition rate. This is possible because SARF aligns only those residues 
that are structurally superposable within a predefined threshold of 3.0Å. In general, the 
more residues are aligned, the closer a structural relationship between the target and 
template protein can be assumed. 

The results are given in Table VII, and some of them are illustrated in Figure 24. As 
shown, we cannot hope to reach a recognition rate much higher than 90% on our 
particular protein benchmark set because some structural similarities are stronger 
between different SCOP fold classes than within the same class. In agreement with the 
observations described in the previous section, we notice again an increased fold 
recognition rate among the distance constraint sets Cm, Cn1, Cn2, and that the scoring 
function swfa based on structural cores performs better than the simpler function sfa. It is 
also striking that the improved alignment quality produced by the SARF program yields 
higher recognition rates. 

 

Table VII. 

Recognition rates for SARF alignments, dependent on the scoring functions a, sfa, swfa and
the distance constraint sets Cm, Cn1, Cn2. 
 

 

 
In summary, it is remarkable that the fold recognition rates of our combination 

methods already approach the maximal fold recognition rate of about 90%. The best 
fold recognition rates shown in Table VI lie between 68% and 73% for MS (in 
agreement with (Hoffmann et al., 2002)) and between 77% and 84% for NMR 
constraints. This is a significant improvement of up to 30% as compared to the best 
123D* threading method with 65% recognition rate. 
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Figure 24. Recognition rates per fold class, using SARF alignments and the NOE 
distance constraint set Cn1. Each triple of bars shows the performance of the scoring 
function a (blue) and of the constraint scoring functions sfa (green) and swfa (red), 
the latter of which is based on structural cores. The 12th triple of bars depicts the 
overall recognition rates averaged over all 11 fold classes. 

4.3.3 Larger Benchmark Sets 

Our findings in the analysis detailed above are supported by additional results on a 
larger benchmark set. The template library, which is also used as the set PDB40D in 
(Sommer et al., 2002), consists of 2808 SCOP domains (Murzin et al., 1995) in 540 
fold classes. The maximal sequence identity as determined by the ASTRAL server 
(Brenner et al., 2000) is 40%. We selected all 1613 single-domain target protein chains 
covering 283 fold classes from the set PDB40C, in which each target chain has at least 
another template partner of the same fold class in the library.  

We computed global alignments between the target and template sequences with the 
threading parameter set P2, which performed well on the smaller benchmark set as 
described above. We applied the distance constraint post-filter for the three sets Cm, Cn1, 
and Cn2 to the threading results, using the scoring functions sfa and srfa. We did not use 
scoring functions based on structural cores because the cores were not available for each 
fold class. Generally, the construction of structural cores for fold classes of template 
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domains is difficult because of large structural variations between certain superfamilies 
of the same fold class.  

Furthermore, we included the use of a confidence function that computes the “raw 
score gap” as described in (Sommer et al., 2002) for each threading prediction by the 
program 123D. This confidence function gives a quantitative estimate on the reliability 
of the target fold prediction. The raw score gap is the difference between the best 
threading score of the top-ranking template fold to the score of the next template fold in 
the ranking list. The introduction of a confidence threshold T discriminating between 
reliable and non-reliable predictions yields a modified fold recognition protocol. In this 
protocol, the fold of a target chain is regarded as reliably predicted if the computed raw 
score gap is at least as large as a given threshold. In that case, the ranking list of 
threading alignments for the target chain is not subject to post-filtering procedures. If 
the confidence value is below the threshold, the computed ranking list is re-evaluated by 
a constraint scoring function. This approach reduces the number of re-evaluations and 
thus avoids unnecessary experiments to obtain distance constraints.  

The fold recognition rates on the larger benchmark set are shown in Table VIII. As 
already observed for the smaller benchmark set, the NOE distance constraint sets Cn1 
and Cn2 perform better than the MS constraint set Cm and improve the recognition rate 
by about 5%. The application of the confidence function is important for increasing the 
recognition rates substantially for the set Cm. However, further improvements of the 
recognition rate could be expected by constraint scoring based on structural cores. In the 
following, the confidence thresholds Tm, Tn1, and Tn2 assumed for the constraint sets Cm, 
Cn1, and Cn2, respectively, are chosen such that their application results in a maximum 
recognition rate after post-filtering. If several confidence thresholds lead to the same 
maximum recognition rate, the smallest threshold is used. 

 

Table VIII. 

Recognition rates for 123D alignments on a larger benchmark set with threading parameter
set P2, using the scoring functions r, sfa, srfa and the confidence thresholds Tm = 139, Tn1 =
340, Tn2 = 340 for the distance constraint sets Cm, Cn1, Cn2, respectively. 
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As depicted in Figure 25 and Figure 26, a lower confidence threshold decreases the 
number nl of target chains that are ‘lost’, i.e., that were correctly recognized by 
threading but not any more by post-filtering. In contrast, the number ng of targets that 
are ‘gained’, i.e., that can be solely recognized by post-filtering, is sustained on a very 
high level over a large interval of threshold values. As can be seen by the comparison of 
the plots of the overall number nd = ng - nl of additional recognized target chains, it is 
advisable to choose a threshold Tm below the thresholds Tn1 and Tn2 because post-
filtering with MS distance constraints does not seem to work as well as post-filtering 
with NOE restraints. Thus, only predictions for targets with rather low confidence 
values should be included in the MS re-evaluation. 

 

 
Figure 25. Numbers nl (red dotted line) and ng (blue dashed line) of ‘lost’ and 
‘gained’ target chains together with the overall number nd (black solid line) in 
dependence of the chosen confidence threshold Tm after post-filtering with the 
distance constraint set Cm. 

In general, the confidence measure appears to be a very good indicator of the 
threading prediction quality despite its apparent simplicity. Thus, this indicator helps to 
avoid post-filtering procedures for target protein chains whose fold is already predicted 
reliably. At the same time, the number of additional time-consuming and expensive 
experiments to collect distance constraints is decreased in practice. In particular, only 
29.20% (40.55%) of all target chains are included into the re-evaluation in case of an 
optimally chosen confidence threshold Tm = 139 (Tn1 = Tn2 = 340). This threshold gives 
the highest overall numbers of additionally recognized targets after post-filtering. 
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Figure 26. Numbers nl (red dotted line) and ng (blue dashed line) of ‘lost’ and 
‘gained’ target chains together with the overall number nd (black solid line) in 
dependence of the chosen confidence thresholds Tn1 and Tn2 after post-filtering with 
distance constraint sets Cn1 and Cn2, respectively. 

4.4 Conclusions 
We demonstrated that a small number of experimental distance constraints is already 
sufficient to improve the fold recognition rate considerably. The distance constraints 
can be collected rapidly by experimental techniques such as mass spectrometry and 
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NMR spectroscopy. The introduction of a confidence measure on the reliability of 
threading predictions helps to reduce the number of necessary experiments. Our 
observations should be particularly beneficial for current efforts in high-throughput 
structure determination on a genomic scale. 

Even in the hard case of low sequence similarity or missing homologs, suitable 
template structures can be selected reliably by post-filtering and re-ranking the list of 
threading alignments. Better performance was achieved with combined scoring 
functions that consider a small number of additional constraints and their location in 
structural cores. Our comprehensive analysis also indicated that the application of 
NOE constraints improves upon the recognition rate achieved by exploitation of MS 
cross-link constraints. In addition, we showed that the success of the post-filtering 
approach depends considerably on the alignment quality. Thus, the use of advanced 
threading programs is recommended to generate high-quality alignments.  

In future work, real experimental data should be applied and other scoring functions 
may be explored together with some significance value for the satisfaction of distance 
constraints. Alternatively, a new threading algorithm that allows the direct incorporation 
of distance constraints into the alignment computation could be developed to improve 
the alignment quality and, at the same time, to reduce the overall computation time. 
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555    
Decomposing 

Protein Networks into 
Domain Interactions 

The application of novel experimental techniques has produced enormous amounts of 
protein interaction data. Important information on the structure and cellular function of 
protein-protein interactions in regulatory and metabolic pathways forming complex 
networks are often obtained from the evolutionarily conserved domains contained in 
interacting proteins. Therefore, this chapter presents the design of an elaborate plugin 
for Cytoscape, a free software platform for gene and protein network visualization. This 
plugin decomposes interacting proteins into their respective domains in order to 
compute a putative network of the corresponding domain-domain interactions. To this 
end, the Cytoscape network graph of proteins has been extended by additional node and 
edge types for domain interactions, including different node and edge shapes as well as 
coloring schemes for changing the visualization according to user preferences.  

The development of this automatic decomposition procedure stems from the 
comprehensive, necessarily manual, analysis of the protein interaction network around 
the yeast homologs of ataxin-2 and ataxin-7, both of which are causative of 
neurodegeneration (Chapter 2). The design of the plugin has been published in the 
recent proceedings of the European Conference of Computational Biology (ECCB) 
(Albrecht et al., 2005b). It is also available for download from our web site. Part of the 
implementation work has been performed by Carola Huthmacher for her diploma thesis. 
Further software extensions and future applications of domain-domain interactions in 
combination with protein structure prediction are outlined at the end of the chapter.  
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5.1 Introduction 
Frequently, protein binding is characterized by specific interactions of evolutionarily 
conserved domains (Bornberg-Bauer et al., 2005), which are incorporated into different 
proteins by genetic duplications and rearrangements (Vogel et al., 2004). Globular 
domains are defined as structural units of fifty and more amino acids that usually fold 
independently of the remaining polypeptide chain to form stable, compact structures 
(Orengo and Thornton, 2005). Even if the structure of a domain is unknown, it is still 
possible to define domain boundaries in many cases based on homology criteria using 
sequence data (Bateman et al., 2004). In general, domains can be found alone or in 
conjunction with other domains and intrinsically disordered, mainly unstructured, 
protein regions connecting globular domains (Dunker et al., 2005).  

Novel high-throughput techniques have generated large networks of protein-protein 
interactions (Cusick et al., 2005), which need to be analyzed further using additional 
functional and structural data (Bork et al., 2004). Important information on the cellular 
function of specific protein interactions and complexes can often be gained from the 
known functions of the interacting protein domains (Pawson and Nash, 2003). Domains 
may contain binding sites for proteins and ligands such as metabolites, DNA/RNA, and 
drug-like molecules (Xia et al., 2004). Therefore, it is useful and often even necessary 
to decompose protein-protein interactions into their constituent domains to answer the 
following questions: Why and how do two proteins interact (Figure 27)? Which 
domains are responsible for this interaction or the binding of ligands? To address these 
issues, our approach allows to functionally characterize protein interactions further on 
the domain level. In Figure 27, it also becomes apparent that this view supports 
modeling and investigating the spatial structure of protein domain complexes (Park et 
al., 2001; Aloy et al., 2005).  

Notably, it may be confusing that the term ‘domain’ is commonly used in two 
slightly different meanings. In the context of domain databases such as Pfam (Bateman 
et al., 2004) and InterDom (Ng et al., 2003), a domain basically consists of a set of 
homologous sequence regions. In contrast, a single protein may contain one or more 
domains, which are concrete sequence regions within its amino acid sequence. To draw 
a parallel to the object-oriented programming paradigm, domain databases provide 
domain classes, whose instances, the objects, occur in specific proteins. In the past, the 
topological properties of domain interaction graphs have been studied intensively 
(Wuchty, 2002; Ye and Godzik, 2004). In such graphs, nodes represent domain classes. 
Two domain classes are linked by edges if there is at least one protein-protein 
interaction known in which some protein contains one domain instance of the two 
domain classes and the interacting protein contains the other domain instance. However, 
this approach is different from ours as detailed in the following. Our application links 
two domain instances (and not two domain classes) based on the assumption that both 
domain instances are responsible for a specific protein-protein interaction. 

In order to facilitate research on the molecular basis of an observed or predicted 
protein-protein interaction, we have designed a tool named DomainNetworkBuilder. It 
works as Java plugin for Cytoscape, a free open-source software platform for the 
visualization and analysis of biomolecular networks (Shannon et al., 2003). This plugin 
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DomainNetworkBuilder decomposes protein networks into domain-domain interactions 
and generates a new network of interacting domains.  

 

 
Figure 27. Exemplary interaction between the two human proteins HHR23B and 
ataxin-3 (cf. Chapter 2). Each protein domain commonly adopts a particular 3D 
structure and may fulfill a specific molecular function. Generally, the domains 
responsible for an observed protein-protein interaction need to be determined 
before further functional characterizations are possible. Here, it is known from 
experiments that the ubiquitin-like domain UBL of HHR23B (yellow) forms a 
complex with de-ubiquitinating Josephin domain of ataxin-3 (blue) (Nicastro et al., 
2005).  
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We have also implemented another Cytoscape plugin named DomainWebLinks that 
provides additional context-dependent web links to Internet resources on domain 
function and structure. It links protein/domain nodes to InterPro and Pfam, databases of 
domain families (Mulder et al., 2003; Bateman et al., 2004), to InterDom, a database of 
putative interacting domains (Ng et al., 2003), and to iPfam and 3did, databases of 3D 
interacting domains for known, experimentally solved, structures (Finn et al., 2005; 
Stein et al., 2005). Further web links lead to the Dasty and SPICE viewer of external 
annotations for protein sequences and structures (Jones et al., 2005; Prlic et al., 2005). 

5.2 Materials and Methods 
We have established a client-server architecture with the Cytoscape plugin 
DomainNetworkBuilder working as client. It queries an in-house MySQL database 
through our Apache web server using a simple XML-RPC protocol and processes the 
received data through PHP/SQL scripts to create a network of interacting domains 
(Figure 28).  

 

 
Figure 28. Client-server architecture for the plugin DomainNetworkBuilder in 
Cytoscape. A protein-protein interaction network loaded into Cytoscape serves as 
input. After sending these input data to our web server via XML-RPC and retrieving 
domain information from the MySQL database using PHP/SQL, the plugin creates a 
new network of interacting domains to output the returned database query results. 
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The database stores synonyms for each gene/protein name, all protein domains from 
Pfam (Bateman et al., 2004), a special list of short repetitive Pfam domain motifs, and 
domain-domain interactions with reliability scores from InterDom, a database of 
putatively interacting Pfam domains (Ng et al., 2003). Our database already covers all 
human, fly, worm, and yeast proteins taken from UniProt (Apweiler et al., 2004) and 
can easily be extended to other species.  

After a protein network has been loaded as a graph consisting of nodes and edges, 
the DomainNetworkBuilder plugin can be executed in Cytoscape. It uses the given 
protein labels in the network to retrieve the respective Pfam domain architectures and 
InterDom domain-domain interactions from our MySQL database. It then generates and 
outputs a domain-domain network as described in the next section. Each protein label 
needs to be identified in our database and thus should consist of either the standard 
gene/protein name or the corresponding UniProt accession number of the protein 
sequence. If two or more proteins share the same label, one of the proteins is arbitrarily 
selected by our system and a warning message is shown. Another warning message 
appears if the protein label is not found in our database. In this case, the protein will be 
handled like a protein that does not contain any Pfam domains. 

It is possible to use other known or predicted domain-domain interactions 
alternatively or additionally to InterDom if a reliability score accompanies each 
interaction. Thus, we will also provide more recent sets of predicted domain-domain 
interactions (Liu et al., 2005a; Riley et al., 2005). A manually curated list of repetitive 
domain motifs was compiled based on the Pfam database field TP containing the 
keyword ‘repeat’. This word indicates tandem sequence motifs such as HEAT or 
leucine-rich repeats forming one structural domain.  

5.3 Results and Discussion 
If a protein contains one or more domains, each domain is represented by a separate 
node labeled by the Pfam domain name and optionally by the protein name and the start 
and end position of the domain in the respective protein sequence. Like the interaction 
type ‘pp’ used by Cytoscape for a protein-protein interaction edge, we have introduced 
three new edge types for domain nodes (Figure 29 and Figure 30): ‘dl’ for a domain 
linker between domain nodes of the same protein, ‘pl’ for a protein linker between a 
protein and domain node of the same protein, and ‘dd’ for a domain-domain interaction 
between different proteins. All domain nodes of the same protein are linearly connected 
in a chain of nodes by directed edges (arrows pointing from the N-terminus to the C-
terminus). The user can choose whether this chain of domains is linked by a single 
directed edge to the protein node, which serves as N-terminal anchor, or each domain 
node belonging to a protein is connected directly to the protein node. The latter 
alternative may result in a closer local placement of the protein node to its domain 
nodes if appropriate graph drawing algorithms are applied.  

Domain-domain interaction edges between different proteins are created only if the 
respective interaction score exceeds the overall threshold set by the user. If no domain-
domain interaction edge can be established between two interacting proteins, the protein 
nodes remain connected. Otherwise, the protein-protein interaction edge is removed and 
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replaced by domain-domain interaction edges. Alternatively, the user can choose to 
keep the protein-protein interaction edge besides the additional domain-domain 
interaction edges. If more than one domain-domain interaction edge is possible between 
two proteins, the user can choose either always to select the edge between two domains 
with the largest, most reliable, interaction score or to use all possible domain-domain 
edges (because two proteins could indeed interact through more than two domains). 
Apart from that, the user can disable the display of protein and/or domains nodes that do 
not possess any edges of protein-protein and/or domain-domain interactions, 
respectively. 

 

 
Figure 29. Three new edge types are introduced in a domain-domain interaction 
network: protein linkers from the protein node to the first (or, alternatively, all) 
domain nodes, domain linkers between domain nodes of the same protein, and 
domain-domain interaction edges between different proteins. Here, the latter edges 
are annotated with the respective InterDom domain-domain interaction score. 
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Adjacent repetitive domain motifs constituting one structural domain (Andrade et 
al., 2001) need special treatment to avoid confusion of the network image (Figure 31). 
To select a subset from our manually curated list of ~100 repetitive domain motifs of 
length up to ~60, the user can set a threshold for the maximum motif length. 
Consecutive nodes of the same domain motif shorter than this threshold are merged into 
a single domain node if the distances between the motifs (measured by the number of 
amino acids) are not larger than a user-defined maximum distance.  

 

 
Figure 31. Exemplary repetitive domain motifs named CTNNB_Arm are encircled in 
blue. Each motif constitutes one bundle of three helices known as armadillo repeat 
(Coates, 2003). Since these repeats form one structural protein domain (see blue 
helical structure), the user can choose merging them automatically into a single 
domain node. 
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Further options offered to the user are that uncharacterized Pfam-B domains are 
ignored and not depicted and that edge labels can be changed. Edge labels can consist of 
the interaction type or, in case of domain-domain interactions, of the InterDom 
interaction score. Moreover, the coloring schema as well as the different shapes of 
protein and domain nodes and interaction edges can easily be changed using the 
visualization tools of Cytoscape. The generated domain network can also be saved in 
file formats supported by Cytoscape.  

5.4 Conclusions and Outlook 
Our Cytoscape plugin DomainNetworkBuilder together with the supplementary plugin 
DomainWebLinks provides tools for investigating and visualizing protein interactions 
on the more detailed molecular level of domains. It decomposes a given protein-protein 
interaction network into a network of interacting protein domains. This approach assists 
in the validation and functional analysis of observed and predicted protein interactions 
based on domain-domain interactions. It particularly supports the evaluation, planning, 
and prioritization of further experiments, which are often conducted with fragments of 
proteins to determine the exact location of binding sites.  

Importantly, many human diseases can be traced to aberrant protein-protein 
interactions, leading to loss or gain of unfavorable protein functions. The molecular 
cause of a disease may be due to a severe defect of an essential interaction or the 
formation of a protein complex fulfilling its function at an inappropriate cellular 
location or time (Ryan and Matthews, 2005). Therefore, the specific inhibition of 
protein-protein interactions necessitate the accurate determination of their binding 
domains (Santonico et al., 2005). For instance, disease-associated mutations in human 
NOD2 cause a constitutively active protein whose N-terminal caspase recruitment 
domain CARD homodimerizes with another CARD domain contained in the binding 
partner, the protein kinase RIP2 (see Chapter 2 for more biological details). Thus, it 
could be interesting to find a drug molecule that blocks this specific CARD-CARD 
domain interaction to deactivate the disease-causing pathway. Apart from that, knowing 
the domains responsible for a protein-protein interaction is also a crucial prerequisite for 
3D modeling of domain interactions and protein complexes.  

Besides minor additions to the plugins that are already in preparation and mentioned 
in the preceding sections, several major extensions of this work are planned that aim at a 
more complete description of cellular processes consisting of protein interactions. 
Proteins do not only interact through structural domains, but may also bind to specific 
segments in disordered protein regions (Dunker et al., 2005), many of which are known 
as linear motifs (Neduva and Russell, 2005). Examples are short proline-rich peptides 
such as those contained in human ataxin-2 outside globular domains (see Chapter 2 for 
more biological details) that serve as binding sites for domains like SH3 or WW 
(Zarrinpar et al., 2003). Other proteins working as enzymes may modify certain amino 
acids (by glycosylation, phosphorylation, ubiquitinylation, sumoylation, etc.) of their 
interaction partners (Yang, 2005). 

Therefore, it is reasonable to generalize the representation of proteins as chains of 
domains to chains of interacting regions and binding sites. To this end, the 
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computational deduction of concrete interaction sites needs to be improved. This 
necessitates novel methods to detect and link the respective sites accurately involving 
statistical interaction scores computed from available protein interaction data. Increased 
confidence into the existence of a protein-protein interaction may be justified if putative 
interactions of corresponding sequence regions contained in the two proteins can be 
derived reliably. In this context, new databases containing information on 
experimentally observed interactions of protein fragments and splice variants as well as 
on posttranslational protein modifications would be useful. This knowledge could 
basically be extracted from the literature, but automatic text mining approaches for this 
purpose are still to be devised.  

Another problem to solve by updated and refined predictions is that the currently 
used InterDom database of predicted domain-domain interactions is outdated and not 
based on all experimental interaction data contained in rapidly growing databases such 
as BIND (Bader et al., 2003), DIP (Salwinski and Eisenberg, 2003), GRID (Breitkreutz 
et al., 2003a), MINT (Zanzoni et al., 2002), and IntAct (Hermjakob et al., 2004). 
Furthermore, InterDom does not take into account the respective interactions of adjacent 
domains within the same protein and biological differences of interaction patterns 
between species. Moreover, it would be desirable that a network of interaction sites 
integrates a more detailed functional annotation of the interaction purpose (activation, 
inhibition, etc.) as well as spatial and temporal information (cellular localizations, 3D 
structures, gene expression time points, etc.). 

5.5 Further Applications 
Several bioinformatics approaches exist that utilize protein interaction data for the 
prediction of protein function (Huynen et al., 2003). In the past, interaction patterns of 
proteins were also used either for ranking SCOP folds (Qian et al., 2001) or for 
assigning them to proteins while ignoring sequence similarity (Lappe et al., 2001). In 
addition to these applications, a novel approach outlined in the following could exploit 
protein interaction data to improve fold recognition methods for 3D structure prediction 
(von Öhsen et al., 2004; Ginalski et al., 2005). Its biological assumption is that 
homologous proteins share similar structures as well as functions, that is, interaction 
partners (Espadaler et al., 2005). 

This idea requires that a target protein, whose structure is to predict, or its full-
length homolog, which can be found by FASTA search (Pearson, 2000), is contained in 
a protein interaction network. We then regard the SCOP domain folds (Andreeva et al., 
2004) of the first-level interaction partners, which are directly linked to the target 
protein, and of the second-level interaction partners, which are connected to the first-
level proteins (Figure 32).  
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Figure 32. Target protein interactions 
with direct and indirect binding partners 
(level 1 and level 2, respectively). The 
interaction network suggests a set of 
interacting proteins and/or domains for 
each target protein. 

 
 
 

Protein homologs often interact in a similar fashion and interaction domains may 
adopt identical folds (Aloy et al., 2003a; Yu et al., 2004). Therefore, the fold of the 
target protein may be among the SCOP domain folds contained in the first-level 
interaction partners if the target protein forms homomers or, in particular, in the second-
level interaction partners because they interact, like the target protein, with the first-
level proteins. Using a joint scoring function, the resulting list of possible domain folds 
as derived from interaction data for the target protein could be combined with the 
ranking list of all domain folds computed by a fold recognition method. Alternatively, 
the resulting fold list could be used to increase the confidence into a fold prediction. 
Both approaches are closely related to the notion of improving protein structure 
prediction using experimental data as presented in Chapter 4. 

In detail, one of at least four different strategies (1)-(4) described in the following 
could be applied to obtain a list of SCOP folds for the domains involved in second-level 
interactions: 

(1) Retrieve the Pfam domain architecture of the second-level interaction 
partners and obtain the SCOP folds of the Pfam domains using a Pfam-
to-SCOP domain mapping (protein-protein-protein strategy). 

(2) Retrieve the Pfam domain architecture of the first-level interaction 
partners, then use the InterDom database to collect Pfam domains 
interacting with the Pfam domains contained in the first-level 
interaction partners, and obtain the SCOP folds of the collected Pfam 
domains (protein-protein/domain-domain strategy). 

(3) Retrieve the Pfam domain architecture of the target protein, then use 
InterDom to collect interacting Pfam domains, and obtain the SCOP 
folds of the Pfam domains that interact with these collected Pfam 
domains according to InterDom (domain-domain-domain strategy). 

(4) Retrieve the Pfam domain architecture of the target protein, then use 
InterDom to collect interacting Pfam domains, and obtain the SCOP 
folds of the Pfam domains that are contained in all proteins interacting 
with these collected Pfam domains (domain-domain/protein-protein 
strategy).  
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Of course, the Pfam and InterDom databases could be replaced with other similar 
databases. The Pfam-to-SCOP mapping could be retrieved from iPfam or computed by 
an appropriate BLAST search. The performance of the new fold recognition approach 
on the different SCOP levels could be analyzed using a comprehensive benchmark set 
of target proteins with mutual sequence identity below 40% (von Öhsen et al., 2004). 
Different scoring functions and parameter settings including the FASTA E-values and 
the InterDom confidence score for domain interactions could be tested. In addition, the 
effects of decreasing or increasing the number of available interactions could be 
evaluated while excluding hub proteins forming many interactions or including 
additional predicted protein-protein interactions. 
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666    
Conclusions 

This chapter closes the thesis, recapitulating the accomplished work on bioinformatics 
approaches and outlining future directions. It begins with summarizing remarks on the 
performed application studies and the development of novel computational methods to 
support the investigations of biologists and medical researchers. Considering the 
increasing amounts of heterogeneous biological data produced by novel experimental 
techniques, bioinformatics perspectives for methodological improvements are briefly 
discussed at the end of the chapter. 

6.1 Summarizing Remarks 
Proteins, some of the most important molecules in nature and crucial for the functioning 
of all living organisms, have been the main focus of this thesis. The molecular study of 
their structural and functional features using bioinformatics and experimental methods 
has been the objective of collaborative research on biological and medical questions. 
Since knowledge of the spatial protein structure provides fundamental insights into 
protein function and disease processes, successful prediction of protein structure has 
been a main research field in bioinformatics for many years. Therefore, the work in the 
course of this dissertation has basically proceeded along two lines: 

On the one hand, in joint projects with experimental cooperation partners, 
comprehensive analyses of medically relevant proteins have been performed to interpret 
experimental results and to provide a rationale for the design of further experiments. 
Two distinct types of frequently occurring diseases have been studied extensively, 
namely, autoinflammatory diseases and neurodegenerative disorders. Using 
bioinformatics methods, we explored alignments of homologous sequences, 
characterized domain architectures of proteins, predicted secondary and tertiary 
structures, located sequence variants and binding sites of proteins or ligands in the 3D 
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structure, and analyzed protein interaction networks around disease-associated proteins. 
Hereby, we could often suggest molecular causes of protein defects underlying diseases. 
We have also discovered novel sequence motifs of functional relevance and additional 
protein family members. By comparing formerly predicted and now experimentally 
solved protein structures, we have been able to verify our predictions. This underlined 
the great value of bioinformatics support in guiding experimentation. 

On the other hand, the intensive utilization of bioinformatics tools has revealed 
current methodological deficits, giving rise to useful ideas for innovative computational 
approaches. Three of them concerning protein structure have been tackled during this 
dissertation. First, we showed that a simple consensus formation based on only three 
secondary structure prediction methods is capable of increasing the prediction accuracy 
and reliability significantly. Second, we introduced a new approach combining tertiary 
structure prediction with a small number of additional distance constraints produced by 
fast experimental techniques like mass spectrometry or NMR spectroscopy. The 
employed post-filtering procedure for scoring the constraints in computed alignments 
led to considerable increases of the fold recognition rates. Third, we developed a 
method for automating the decomposition of protein networks into domain-domain 
interactions. This method implemented as Cytoscape plugin particularly facilitates the 
exploration of protein-protein interactions at a more detailed molecular level. However, 
it is also a useful tool for 3D structure modeling of protein domain complexes. 

In conclusion, the cooperation of bioinformatics and experimental groups regarding 
vital biological and medical problems has created a valuable cross-fertilization. This has 
proven to be quite effective in successfully answering biomedical questions and in 
deepening the molecular understanding of disease processes. The joint work has also 
motivated the development of novel bioinformatics approaches, especially in combining 
protein structure prediction with further experimental and functional information. 

6.2 Methodological Perspectives 
When reviewing research developments related to the methodological work, it becomes 
apparent that the three bioinformatics methods presented in this thesis currently have 
distinct perspectives: 

Since 2001 it has been stated repeatedly in the literature that existing secondary 
structure prediction algorithms are almost optimal due to the naturally occurring 
variability of secondary structure and the observed flexibility of protein backbones 
(Rost, 2001; Huang and Wang, 2002; Crooks and Brenner, 2004). Therefore, dramatic 
improvements in prediction accuracy may not be expected any more. Notably, the better 
performance of our approach that combines three secondary structure predictions into a 
more accurate consensus has also been observed by others later on (Simossis and 
Heringa, 2004). For instance, the group headed by David Jones has used a combination 
of a new classifier based on support vector machines (SVMs) with two established 
methods (Ward et al., 2003). Other studies of the same group with more prediction 
methods gave very similar results (McGuffin and Jones, 2003).  
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Regarding the combination of tertiary structure prediction with additional 
experimental distance constraints, the lack of high-throughput data from mass 
spectrometry has curbed scientific progress. Insufficient data from our own 
experimental collaboration partners using this technique has also been the main reason 
why we have discontinued our project in 2001. In recent years, other research groups 
have published related bioinformatics approaches, but none of them appears to be 
applied on large scale (Back et al., 2003). For instance, since their initial work in 2000 
(Young et al., 2000), Friedman and coworkers have applied their methods to only two 
target proteins and developed a sophisticated probabilistic framework for planning mass 
spectrometry experiments and discriminating 3D structure models on the basis of cross-
linking data (Ye et al., 2004). 

In contrast, other approaches not only combining structural models with distance 
constraints such as NOE restraints, but also with additional proteomics data from NMR 
spectroscopy, have been quite successful meanwhile. They utilize residual dipolar 
couplings (RDCs) and unassigned chemical shifts, which provide information on atomic 
bond angles and protein secondary structure, respectively. For instance, Baker’s group 
has concentrated on NMR-based data for rapid protein fold determination in 
combination with de novo structure predictions (Meiler and Baker, 2003; Kim et al., 
2004). Similarly, members of Skolnick’s lab and Xu’s lab have also used NOE 
restraints and RDCs in the ab initio method TOUCHSTONE (Haliloglu et al., 2003; Li 
et al., 2004) and the protein threading algorithm PROSPECT (Xu et al., 2000; Qu et al., 
2004). 

Our very recent bioinformatics work, the decomposition of protein networks into 
interacting domains, has led into the emerging field of interactome analysis with rapidly 
increasing amounts of data. As described in Chapter 5, several avenues can be followed 
in future research. For instance, the representation of protein interactions based on 
globular domains may be generalized to all kinds of binding regions for proteins and 
other ligands. Another application may be the combination of domain-domain 
interactions with structural domain fold recognition. Furthermore, additional advances 
in the reliable derivation of domain-domain interactions and confidence values are 
required. To this end, more spatial and temporal information could be included into the 
deduction procedure.  

In summary, recent results of computational approaches are quite promising for 
combining 3D structure prediction with NMR spectroscopy data and for analyzing 
protein-protein interactions on domain level. However, it may not be rewarding to 
develop more complicated bioinformatics methods for secondary structure prediction 
without evidence that the prediction accuracy can be increased significantly in practice. 
The same may hold true for tertiary structure prediction using distance constraints from 
mass spectrometry as long as the prevalent experimental obstacles are not being 
resolved. 

Finally, the investigation of static interactomes is topical because it serves as 
intriguing gateway into computational systems biology (Cusick et al., 2005). This new 
branch of molecular physiology aims at the quantitative description of dynamic 
biological processes and their disease-causing malfunctioning at varying levels of 
cellular detail (Bork and Serrano, 2005). The ultimate goal is a computational zoom lens 
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for organisms reaching from the physiological interplay of organs to an atomic 
resolution of molecular interactions (Aloy and Russell, 2005). In biomedical studies, the 
integration of heterogeneous data using computational means will form the basis for 
moving from genotype to phenotype (Uetz and Finley Jr., 2005). In this context, recent 
projects of other research groups have coupled genetic and physical interactions with 
gene expression and phenotypic profiles (de Lichtenberg et al., 2005; Gunsalus et al., 
2005).  

Certainly, such complex endeavors will necessitate the close collaboration of 
bioinformaticians and experimentally working biologists and medical researchers. It 
will be beneficial to establish interdisciplinary research teams similar to our clinical 
research group on hepatitis C, involving experts in biology, medicine, computer science 
and mathematics (Sarrazin et al., 2005). For successful experimentation, computational 
approaches will be crucial that assist in hypothesis formation and the prioritization and 
evaluation of experiments. Interesting examples in this context are our integrative 
studies of ataxin-2 (Ralser et al., 2005a, 2005b), BTNL2 (Valentonyte et al., 2005), and, 
most recently, selenoproteins (Castellano et al., 2005; Stillwell and Berry, 2005). They 
encompassed the bioinformatics-supported analysis of as yet uncharacterized proteins 
and their experimental investigation. However, additional methodological refinements 
will be required to handle various types of experimental data. Taking quality issues into 
account, these data need to be incorporated into reliable cellular models together with 
computational results. Eventually, the design and simulation of those integrated models 
will enable substantial contributions of bioinformatics to biomedical research.  
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Summary 

Proteins fulfill essential functions in living organisms and are key players in complex 
dynamic processes inside and between cells. In particular, since proteins are 
fundamental to life, defects of their structure and function often cause severe diseases. 
Many computational methods already exist to support molecular protein analyses of 
interest to experimentally working biologists and medical researchers. However, 
judging the performance of bioinformatics methods and the quality of their results 
requires interdisciplinary expertise in informatics and statistics as well as in biology and 
medicine.  

Therefore, it is useful that bioinformaticians do not only develop novel and 
advanced approaches to solve problems motivated by biomedicine, but also cooperate 
with bench biologists in applying computational methods. This collaboration is crucial 
for the accurate interpretation of bioinformatics findings and their effective 
incorporation into biomedical research, which may yield integrative models containing 
experimental and computational knowledge for biology and medicine. In return, 
bioinformaticians gain beneficial insights into the biological and medical aspects and 
obtain feedback for future improvements and extensions of their applications. 

Considering the great importance of a close cooperation between bioinformaticians 
and experimentalists for successful biological and medical investigations, the objective 
of the dissertation was two-fold. On the one hand, vital problems in biology and 
medicine were selected to explore the value of bioinformatics support for experiment 
evaluation and hypothesis formation. On the other hand, some of the encountered 
limitations of bioinformatics approaches were addressed with methodological 
improvements concerning analyses of protein structures and interactions. Accordingly, 
the application of computational tools did not only advance the understanding of 
molecular disease processes, but it also indicated suitable starting points for improving 
bioinformatics methods.  
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Part of the research published in over twenty journal articles has involved 
comprehensive application studies of bioinformatics approaches targeted primarily at 
autoinflammatory and neurodegenerative disorders like Crohn’s, Huntington’s and 
Parkinson’s disease. A variety of computational techniques was used to analyze 
medically relevant proteins and to evaluate experimental data. Examples of investigated 
proteins are the pathogen receptors NALP3 and NOD2 regulating inflammatory 
immune responses and the polyglutamine proteins ataxin-2 and ataxin-3 causing 
inherited neurodegeneration.  

Numerous bioinformatics methods were applied to predict structural and functional 
properties of the proteins and to explore their interaction networks. The methods 
supported the identification and alignment of homologous sequences and the 
characterization of the primary protein architecture consisting of domains and binding 
motifs. This included the discovery of novel sequence motifs with functional relevance 
and new protein family members. In addition, the secondary and tertiary structures of 
proteins were predicted and the binding sites for proteins and other ligands were 
analyzed. Disease-associated sequence variants were localized in three-dimensional 
structure models to suggest potential functional effects and molecular mechanisms 
defective in diseases. 

The computational results have often provided a rationale for the design, 
prioritization, and interpretation of experimental studies conducted by biomedical 
cooperation partners. Some of the generated hypotheses on protein function were also 
tested and confirmed by experiments. The comparison of predicted structural models 
with recent, experimentally solved, structures validated the bioinformatics predictions. 
This underlines the great value of structural and functional predictions in guiding 
experimentation.  

Importantly, the conducted bioinformatics application studies have also led to the 
identification of methodological limitations. In particular, the recognized problems gave 
rise to the development of three novel computational approaches supporting the 
biological and medical investigation of proteins. These new methods generally advance 
the prediction of the secondary and tertiary structures of proteins and facilitate the 
exploration of their functions and interaction networks.  

A new method for predicting secondary structure was introduced to increase the 
accuracy of prediction results. Although this method is simple to implement, it is quite 
successful in improving the performance of secondary structure prediction. It forms a 
consensus prediction using the results of three different prediction methods and raises 
the prediction quality and reliability significantly. Further analyses also provided 
valuable insights into the similarity of the prediction results and the higher confidence 
in consistently predicted secondary structure. 

To utilize experimental measurements of molecular distances in tertiary structure 
prediction, a new approach was developed that combines protein structure predictions 
with a small number of additional distance constraints. The latter may be obtained by 
fast experimental techniques like mass spectrometry or NMR spectroscopy. For the 
evaluation of the computed alignments, novel scoring functions were applied that 
incorporated measures of constraint satisfaction to validate structural models. The 

 



Summary 95

employed post-filtering procedure for scoring the distance constraints in sequence-
structure alignments results in considerable increases of the recognition rates for domain 
folds.  

Another new method to automate the decomposition of protein networks into 
domain-domain interactions was designed and implemented as a plugin for Cytoscape. 
Cytoscape is a software platform for the visualization and analysis of protein interaction 
networks. The plugin subdivides interacting proteins into their respective domains to 
compute a putative network of the corresponding domain interactions. Hereby, it 
facilitates the exploration of protein-protein interactions at a more detailed molecular 
level. Also, it is a useful tool for 3D structure modeling of protein domain complexes.  

In conclusion, the cooperation of bioinformaticians and experimentally working 
groups that study frequently occurring human diseases has created a valuable cross-
fertilization. The collaboration has proven to be quite effective in successfully 
answering biological and medical questions and in deepening the molecular 
understanding of disease processes. The joint work has also motivated the development 
of novel bioinformatics approaches, especially in combining protein structure prediction 
with experimental and functional information. Future methodological work will focus 
on the integration of the growing amounts of heterogeneous biological data produced by 
high-throughput proteomics technologies into cellular disease models. 
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Zusammenfassung 

Proteine erfüllen essentielle Funktionen in lebenden Organismen und spielen eine 
Schlüsselrolle in komplexen dynamischen Prozessen innerhalb und außerhalb von 
Zellen. Gerade weil Proteine so wichtig fürs Leben sind, verursachen Defekte ihrer 
Struktur und Funktion oft ernsthafte Erkrankungen. Es gibt bereits eine Vielzahl von 
Computermethoden zur Unterstützung molekularer Proteinanalysen, die für 
experimentell arbeitende Biologen und forschende Mediziner von Interesse sind. Jedoch 
benötigt die Einschätzung der Performanz von Bioinformatikmethoden und der Qualität 
ihrer Ergebnisse interdisziplinäre Expertise in Informatik und Statistik ebenso wie in 
Biologie und Medizin. 

Daher ist es nützlich, dass Bioinformatiker nicht nur neuartige und verbesserte 
Ansätze zur Lösung von biomedizinischen Problemen entwickeln, sondern auch mit 
Laborbiologen bei der Anwendung rechnerbasierter Methoden kooperieren. Diese 
Zusammenarbeit ist entscheidend für die akkurate Interpretation von bioinformatischen 
Ergebnissen und für ihre effektive Einbindung in die biomedizinische Forschung, denn 
daraus können sich integrative Modelle ergeben, die experimentelle und rechner-
gestützte Erkenntnisse für die Biologie und Medizin beinhalten. Im Gegenzug gewinnen 
Bioinformatiker nützliche Einblicke in die biologischen und medizinischen Aspekte und 
erhalten Feedback für künftige Verbesserungen und Erweiterungen ihrer Anwendungen. 

Da somit enge Kooperationen zwischen Bioinformatikern und experimentell 
arbeitenden Partnern für erfolgreiche biologische und medizinische Studien von großer 
Bedeutung sind, verfolgte diese Dissertation zwei Ziele: Zum einen wurden wichtige 
Probleme aus der Biologie und Medizin ausgewählt, um den Wert bioinformatischer 
Unterstützung bei der Auswertung von Experimenten und der Bildung von Hypothesen 
zu erkunden. Zum anderen wurden methodische Verbesserungen für einige der 
aufgedeckten Beschränkungen bioinformatischer Verfahren entwickelt, die Analysen 
von Proteinstrukturen und -interaktionen betreffen. Demgemäß führte die Anwendung 

 



Zusammenfassung 98 

von Computerwerkzeugen nicht nur zu Fortschritten im Verständnis molekularer 
Krankheitsprozesse, sondern zeigte auch geeignete Ausgangspunkte für Verbesserungen 
von Bioinformatikmethoden auf. 

Teile der in über zwanzig Zeitschriftenartikeln veröffentlichten Forschung betrafen 
umfangreiche Applikationsstudien von Bioinformatikmethoden, die sich vornehmlich 
mit schweren autoinflammatorischen und neurodegenerativen Erkrankungen wie 
Morbus Crohn, Huntington und Parkinson befassten. Es wurden verschiedene 
Computermethoden verwendet, um medizinisch relevante Proteine zu analysieren und 
experimentelle Daten auszuwerten. Beispiele für untersuchte Proteine sind die 
Pathogenrezeptoren NALP3 und NOD2, welche inflammatorische Immunantworten 
regulieren, und die Polyglutaminproteine Ataxin-2 und Ataxin-3, die erbliche Formen 
von Neurodegeneration verursachen. 

Zahlreiche Bioinformatikmethoden kamen zur Anwendung, um strukturelle und 
funktionelle Eigenschaften von Proteinen vorherzusagen und ihre Interaktionsnetzwerke 
zu erkunden. Die Methoden unterstützten die Identifizierung und das Alignment von 
homologen Sequenzen und die Charakterisierung der primären Proteinarchitektur, die 
aus Domänen und Bindungsmotiven besteht. Dies schloss die Entdeckung von 
neuartigen Sequenzmotiven mit funktioneller Relevanz und neuen Proteinfamilien-
mitgliedern ein. Zusätzlich wurden die Sekundär- und Tertiärstrukturen von Proteinen 
vorhergesagt und die Bindungsstellen für Proteine und andere Liganden analysiert. In 
dreidimensionalen Strukturmodellen wurden krankheitsassoziierte Sequenzvarianten 
lokalisiert, um potentielle funktionelle Effekte vorherzusagen und molekulare 
Mechanismen aufzuzeigen, die bei Erkrankungen defekt sind. 

Die Ergebnisse aus dem Rechner dienten oft als Grundlage für die Planung, 
Priorisierung und Interpretation von experimentellen Studien, die von Kooperations-
partnern aus der Biomedizin durchgeführt wurden. Auch wurden einige der generierten 
Hypothesen zur Proteinfunktion durch Experimente überprüft und bestätigt. Der 
Vergleich vorhergesagter Strukturmodelle mit vor kurzem experimentell bestimmten 
Strukturen validierte die Bioinformatikvorhersagen. Dies untermauert den hohen 
Stellenwert der Struktur- und Funktionsvorhersagen für die Durchführung von 
Experimenten. 

Wichtig ist es festzuhalten, dass die durchgeführten bioinformatischen Applika-
tionsstudien auch zur Identifizierung methodischer Grenzen führten. Insbesondere 
gaben die erkannten Probleme den Anstoß für die Entwicklung von drei neuartigen 
rechnerbasierten Verfahren zur Unterstützung der biologischen und medizinischen 
Untersuchung von Proteinen. Diese neuen Methoden verbessern die Vorhersage der 
Sekundär- und Tertiärstrukturen von Proteinen und erleichtern die Untersuchung ihrer 
Funktionen und Interaktionsnetzwerke. 

Eine neue Methode zur Vorhersage von Sekundärstrukturen wurde eingeführt, um 
die Genauigkeit der vorhergesagten Ergebnisse zu erhöhen. Obwohl diese Methode 
einfach zu implementieren ist, ist sie recht erfolgreich und verbessert die Performanz 
der Sekundärstrukturvorhersage. Sie bildet eine Konsensusvorhersage aus den 
Ergebnissen dreier verschiedener Vorhersagemethoden und verbessert die Vorhersage-
qualität und Verlässlichkeit signifikant. Weitere Analysen ergaben zudem wertvolle 
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Einsichten in die Ähnlichkeit der Vorhersageergebnisse und die höhere Konfidenz in 
konsistent vorhergesagter Sekundärstruktur.  

Um experimentelle Messungen molekularer Distanzen in der Tertiärstruktur-
vorhersage zu nutzen, wurde ein neues Verfahren entwickelt, das Proteinstruktur-
vorhersagen mit einer kleinen Anzahl zusätzlicher Distanzbeschränkungen kombiniert. 
Letztere können durch schnelle experimentelle Techniken wie Massenspektrometrie 
oder NMR-Spektroskopie gewonnen werden. Für die Auswertung von berechneten 
Alignments wurden neuartige Bewertungsfunktionen angewendet, welche Maßzahlen 
über die Einhaltung von Beschränkungen einbinden, um strukturelle Modelle zu 
validieren. Die angewandte Prozedur enthält einen nachgeschalteten Filter, der die 
Distanzbeschränkungen in Alignments von Sequenz und Struktur bewertet, woraus eine 
erhebliche Erhöhung der Erkennungsrate von Domänfaltungen resultiert. 

Eine weitere neue Methode wurde als Plugin für Cytoscape entworfen und 
implementiert, um die Dekomposition von Proteinnetzwerken in Interaktionen von 
Domänen zu automatisieren. Cytoscape ist eine Softwareplattform für die Visuali-
sierung und Analyse von Proteininteraktionsnetzwerken. Das Plugin unterteilt inter-
agierende Proteine in ihre jeweiligen Domänen, um ein mutmaßliches Netzwerk von 
entsprechenden Domäneninteraktionen zu berechnen. Hierdurch erleichtert es die 
Erkundung von Interaktionen zwischen Proteinen auf einer detaillierteren molekularen 
Ebene. Zudem ist es ein nützliches Werkzeug für die 3D-Modellierung von Protein-
domänenkomplexen.  

Zusammenfassend kann man festhalten, dass die Kooperation von Bioinformatikern 
und experimentell arbeitenden Gruppen, die häufig auftretende Erkrankungen 
untersuchen, für beide Seiten eine wertvolle Bereicherung war. Die Zusammenarbeit 
erwies sich als sehr effektiv zur erfolgreichen Beantwortung biologischer und medizini-
scher Fragestellungen und zum Vertiefen des Verständnisses von Krankheitsprozessen 
auf molekularer Ebene. Die gemeinsame Arbeit motivierte auch die Entwicklung 
neuartiger Bioinformatikverfahren, besonders bei der Einbindung von experimentellen 
und funktionellen Informationen zur Vorhersage von Proteinstrukturen. Künftige 
methodische Arbeiten werden sich auf die Integration der anwachsenden Mengen 
heterogener biologischer Daten, die von Proteomiktechnologien mit hohem Durchsatz 
erzeugt werden, in zelluläre Modelle von Erkrankungen konzentrieren. 
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Appendix 

The subsequent pages present the abstracts of 25 articles published in the course of this 
dissertation (Albrecht et al., 2002; Hoffmann et al., 2002; Albrecht and Lengauer, 2003; 
Albrecht et al., 2003a, 2003b, 2003c, 2003d, 2003e; Albrecht et al., 2004; Albrecht and 
Lengauer, 2004a, 2004b; Stoll et al., 2004; Albrecht, 2005; Albrecht et al., 2005a, 
2005b; Bojunga et al., 2005; Castellano et al., 2005; Costello et al., 2005; Ralser et al., 
2005a, 2005b; Sarrazin et al., 2005; Schreiber et al., 2005; Valentonyte et al., 2005; 
Van Duist et al., 2005; Albrecht and Takken, 2006). The contents of the publications 
may be summarized briefly in numbers as follows:  

The coauthored papers consist of about 200 pages plus 90 online supplemental 
pages. They contain 25 printed tables (plus ~30 supplementary online tables) and ~90 
figures (plus ~30 online figures) consisting of ~130 subfigures (plus ~40 online 
subfigures). The own contributions comprise 12 tables plus 14 online tables and 57 
figures (73 subfigures) plus 24 online figures (29 online subfigures). Overall, the 
published articles cite more than 1300 references, however, some of which may be 
counted several times because their citations occur in more than one article.  
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1. Publication (Albrecht et al., 2002) 
 
Albrecht, M., Hanisch, D., Zimmer, R. and Lengauer, T. (2002) Improving fold 
recognition of protein threading by experimental distance constraints. In Silico Biol, 2, 
325-337. 
 
Abstract 
 
We present a comprehensive analysis of methods for improving the fold recognition 
rate of the threading approach to protein structure prediction by the utilization of few 
additional distance constraints. The distance constraints between protein residues may 
be obtained by experiments such as mass spectrometry or NMR spectroscopy. We 
applied a post-filtering step with new scoring functions incorporating measures of 
constraint satisfaction to ranking lists of 123D threading alignments. The detailed 
analysis of the results on a small representative benchmark set show that the fold 
recognition rate can be improved significantly by up to 30% from about 54%-65% to 
77%-84%, approaching the maximal attainable performance of 90% estimated by 
structural superposition alignments. This gain in performance adds about 10% to the 
recognition rate already achieved in our previous study with cross-link constraints only. 
Additional recent results on a larger benchmark set involving a confidence function for 
threading predictions also indicate notable improvements by our combined approach, 
which should be particularly valuable for rapid structure determination and validation of 
protein models. 
 
 
2. Publication (Hoffmann et al., 2002) 
 
Hoffmann, D., Schnaible, V., Wefing, S., Albrecht, M., Hanisch, D. and Zimmer, R. 
(2002) A new method for the fast solution of protein-3D-structures, combining 
experiments and bioinformatics. In: Coupling of biological and electronic systems: 
Proceedings of the 2nd Caesarium, Bonn, November 1-3, 2000, pp. 59-78 (Hoffmann, 
K.-H., Ed.) Springer-Verlag. 
 
Abstract 
 
Proteins can be considered molecular machines, and protein 3D-structures are key to the 
understanding of these machines and to many applications in biotechnology and 
medicine. We are developing a method to speed up the time consuming process of 
structure determination significantly. The method closely couples bioinformatics for 
protein structure prediction with fast experiments (chemical cross-linking, specific 
proteolysis, mass spectrometry) for structure validation. For a given protein, the method 
iterates over cycles of bioinformatics and experiments to collect more and more 
information on the protein structure, finally resulting in an Experimentally Validated 
Model (EVAM) of the structure. 

 

http://www.bioinfo.de/isb/2002/02/0030/
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http://www.springer.com/sgw/cda/frontpage/0%2C%2C5-10031-22-2256266-detailsPage%253Dppmmedia%257CaboutThisBook%257CaboutThisBook%2C00.html
http://www.springer.com/sgw/cda/frontpage/0%2C%2C5-10031-22-2256266-detailsPage%253Dppmmedia%257CaboutThisBook%257CaboutThisBook%2C00.html
http://www.springer.com/sgw/cda/frontpage/0%2C%2C5-10031-22-2256266-detailsPage%253Dppmmedia%257CaboutThisBook%257CaboutThisBook%2C00.html
http://www.springer.com/sgw/cda/frontpage/0%2C%2C5-10031-22-2256266-detailsPage%253Dppmmedia%257CaboutThisBook%257CaboutThisBook%2C00.html
http://www.springer.com/sgw/cda/frontpage/0%2C%2C5-10031-22-2256266-detailsPage%253Dppmmedia%257CaboutThisBook%257CaboutThisBook%2C00.html
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3. Publication (Albrecht and Lengauer, 2003) 
 
Albrecht, M. and Lengauer, T. (2003) Pyranose oxidase identified as a member of the 
GMC oxidoreductase family. Bioinformatics, 19, 1216-1220. 
 
Abstract 
 
Fungal pyranose oxidase is a flavoenzyme whose preferred substrate among several 
monosaccharides is D-glucose. After a comprehensive analysis of conserved features in 
a structure-based multiple sequence alignment of homologous proteins, we could 
classify this enzyme into the GMC oxidoreductase family. The identified homology also 
suggests a three-dimensional protein structure similar to the functionally related glucose 
oxidase. 
 
 
4. Publication (Albrecht et al., 2003a) 
 
Albrecht, M., Domingues, F.S., Schreiber, S. and Lengauer, T. (2003) Structural 
localization of disease-associated sequence variations in the NACHT and LRR domains 
of PYPAF1 and NOD2. FEBS Lett, 554, 520-528. 
 
Abstract 
 
Several autoinflammatory diseases with distinct clinical manifestations have been 
associated with sequence variations in the gene products PYPAF1/CIAS1 and 
NOD2/CARD15. Both proteins belong to the PYD/CARD-containing family of 
apoptosis regulators and activators of pro-inflammatory caspases. To gain insight into 
the dysfunctional role of sequence alterations, we assembled a structure-based multiple 
sequence alignment of family members and related proteins. This allowed us to analyze 
the putative effect of the alterations on the function of nucleotide-binding (NACHT) and 
leucine-rich repeat (LRR) domains shared by the family members. In support of this 
analysis, we carefully selected template structures for the NACHT and LRR domains 
and mapped the genetic variations onto 3D domain models. Additionally, we propose a 
model of the NACHT and LRR domain complex. Our study revealed that many of the 
disease-associated sequence variants are located close to highly conserved sequence 
regions of functional relevance and are spatially adjacent in the predicted 3D structure. 
The implications on the domain functions such as NTP-hydrolysis or oligomerization 
are discussed. 
 
 

http://bioinformatics.oupjournals.org/cgi/content/abstract/19/10/1216?ijkey=007znb8g7UtjQ&keytype=ref
http://bioinformatics.oupjournals.org/cgi/content/abstract/19/10/1216?ijkey=007znb8g7UtjQ&keytype=ref
http://dx.doi.org/10.1016/S0014-5793(03)01222-5
http://dx.doi.org/10.1016/S0014-5793(03)01222-5
http://dx.doi.org/10.1016/S0014-5793(03)01222-5
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5. Publication (Albrecht et al., 2003b) 
 
Albrecht, M., Domingues, F.S., Schreiber, S. and Lengauer, T. (2003) Identification of 
mammalian orthologs associates PYPAF5 with distinct functional roles. FEBS Lett, 
538, 173-177. 
 
Abstract 
 
PYRIN- and CARD-containing proteins belong to a recently identified protein family 
involved in the regulation of apoptosis and inflammatory processes. Variations in the 
gene products of the family members PYPAF1 and NOD2/CARD15 have been 
associated with several autoinflammatory diseases. We could identify the mouse 
orthologs of PYPAF1, PYPAF5, NOD1, NOD2 and the rat ortholog of PYPAF5. 
Intriguingly, we found that PYPAF5 has been reported previously not only as regulator 
of NF-κB and caspase-1, but also as angiotensin II and vasopressin receptor. In 
particular, based on a comprehensive sequence analysis, we propose a structural model 
for this hormone receptor that is different from the model suggested previously. 
 
 
6. Publication (Albrecht et al., 2003c) 
 
Albrecht, M., Hoffmann, D., Evert, B.O., Schmitt, I., Wüllner, U. and Lengauer, T. 
(2003) Structural modeling of ataxin-3 reveals distant homology to adaptins. Proteins, 
50, 355-370. 
 
Abstract 
 
Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine disorder caused by a CAG 
repeat expansion in the coding region of a gene encoding ataxin-3, a protein of yet 
unknown function. Based on a comprehensive computational analysis, we propose a 
structural model and structure-based functions for ataxin-3. Our predictive strategy 
comprises the compilation of multiple sequence and structure alignments of carefully 
selected proteins related to ataxin-3. These alignments are consistent with additional 
information on sequence motifs, secondary structure, and domain architectures. The 
application of complementary methods revealed the homology of ataxin-3 to ENTH and 
VHS domain proteins involved in membrane trafficking and regulatory adaptor 
functions. We modeled the structure of ataxin-3 using the adaptin AP180 as a template 
and assessed the reliability of the model by comparison with known sequence and 
structural features. We could further infer potential functions of ataxin-3 in agreement 
with known experimental data. Our database searches also identified an as yet 
uncharacterized family of proteins, which we named josephins because of their 
pronounced homology to the Josephin domain of ataxin-3. 
 
 

 

http://dx.doi.org/10.1016/S0014-5793(03)00161-3
http://dx.doi.org/10.1016/S0014-5793(03)00161-3
http://dx.doi.org/10.1016/S0014-5793(03)00161-3
http://dx.doi.org/10.1016/S0014-5793(03)00161-3
http://dx.doi.org/10.1016/S0014-5793(03)00161-3
http://dx.doi.org/10.1016/S0014-5793(03)00161-3
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http://www3.interscience.wiley.com/cgi-bin/abstract/101525690/START
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7. Publication (Albrecht et al., 2003d) 
 
Albrecht, M., Lengauer, T. and Schreiber, S. (2003) Disease-associated variants in 
PYPAF1 and NOD2 result in similar alterations of conserved sequence. Bioinformatics, 
19, 2171-2175. 
 
Abstract 
 
Sequence variations in the gene products PYPAF1/CIAS1 and NOD2/CARD15 have 
been associated with several autoinflammatory diseases that, although clinically 
different, share a similar inflammatory pathophysiology. A multiple sequence alignment 
of homologous proteins demonstrates that some of the missense variants are located in 
highly conserved regions of the NTPase domain and possibly impair NTP-hydrolysis. 
Intriguingly, one of the variations, which is found identically in PYPAF1 and NOD2, is 
located at the same alignment position. Our findings suggest that evolutionary gene 
duplication can give rise to disease families because variants affect conserved sequence 
in a similar fashion. 
 
 
8. Publication (Albrecht et al., 2003e) 
 
Albrecht, M., Tosatto, S.C., Lengauer, T. and Valle, G. (2003) Simple consensus 
procedures are effective and sufficient in secondary structure prediction. Protein Eng, 
16, 459-462. 
 
Abstract 
 
We have analyzed the performance of majority voting on minimal combination sets of 
three state-of-the-art secondary structure prediction methods in order to obtain a 
consensus prediction. Using three large benchmark sets from the EVA server, our 
results show a significant improvement in the average Q3 prediction accuracy of up to 
1.5 percentage points by consensus formation. The application of an additional trivial 
filtering procedure for predicted secondary structure elements that are too short, does 
not significantly affect the prediction accuracy. Our analysis also provides valuable 
insight into the similarity of the results of the prediction methods that we combine as 
well as the higher confidence in consistently predicted secondary structure. 
 
 

http://bioinformatics.oupjournals.org/cgi/content/abstract/19/17/2171
http://bioinformatics.oupjournals.org/cgi/content/abstract/19/17/2171
http://bioinformatics.oupjournals.org/cgi/content/abstract/19/17/2171
http://protein.oupjournals.org/cgi/content/full/16/7/459?ijkey=47wrLbVJIB32c&keytype=ref
http://protein.oupjournals.org/cgi/content/full/16/7/459?ijkey=47wrLbVJIB32c&keytype=ref
http://protein.oupjournals.org/cgi/content/full/16/7/459?ijkey=47wrLbVJIB32c&keytype=ref
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9. Publication (Albrecht et al., 2004) 
 
Albrecht, M., Golatta, M., Wüllner, U. and Lengauer, T. (2004) Structural and 
functional analysis of ataxin-2 and ataxin-3. Eur J Biochem, 271, 3155-3170. 
 
Abstract 
 
Spinocerebellar ataxia types 2 (SCA2) and 3 (SCA3) are autosomal-dominantly 
inherited, neurodegenerative diseases caused by CAG repeat expansions in the coding 
regions of the genes encoding ataxin-2 and ataxin-3, respectively. To provide a rationale 
for further functional experiments, we explored the protein architectures of ataxin-2 and 
ataxin-3. Using structure-based multiple sequence alignments of homologous proteins, 
we investigated domains, sequence motifs, and interaction partners. Our analyses 
focused on presumably functional amino acids and the construction of tertiary structure 
models of the RNA-binding Lsm domain of ataxin-2 and the deubiquitinating Josephin 
domain of ataxin-3. We also speculate about distant evolutionary relationships of 
ubiquitin-binding UIM, GAT, UBA and CUE domains and helical ANTH and UBX 
domain extensions. 
 
 
10. Publication (Albrecht and Lengauer, 2004a) 
 
Albrecht, M. and Lengauer, T. (2004) Novel Sm-like proteins with long C-terminal tails 
and associated methyltransferases. FEBS Lett, 569, 18-26. 
 
Abstract 
 
Sm and Sm-like proteins of the Lsm (like Sm) domain family are generally involved in 
essential RNA-processing tasks. While recent research has focused on the function and 
structure of small family members, little is known about Lsm domain proteins carrying 
additional domains. Using an integrative bioinformatics approach, we discovered five 
novel groups of Lsm domain proteins (Lsm12-16) with long C-terminal tails and 
investigated their functions. All of them are evolutionarily conserved in eukaryotes with 
an N-terminal Lsm domain to bind nucleic acids followed by as yet uncharacterized C-
terminal domains and sequence motifs. Based on known yeast interaction partners, 
Lsm12-16 may play important roles in RNA metabolism. Particularly, Lsm12 is 
possibly involved in mRNA degradation or tRNA splicing, and Lsm13-16 in the 
regulation of the mitotic G2/M phase. Lsm16 proteins have an additional C-terminal 
YjeF_N domain of as yet unknown function. The identification of an additional 
methyltransferase domain at the C-terminus of one of the Lsm12 proteins also led to the 
recognition of three new groups of methyltransferases, presumably dependent on S-
adenosyl-L-methionine. Further computational analyses revealed that some 
methyltransferases contain putative RNA-binding helix-turn-helix domains and zinc 
fingers. 
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11. Publication (Albrecht and Lengauer, 2004b) 
 
Albrecht, M. and Lengauer, T. (2004) Survey on the PABC recognition motif PAM2. 
Biochem Biophys Res Commun, 316, 129-138. 
 
Abstract 
 
The PABP-interacting motif PAM2 has been identified in various eukaryotic proteins as 
an important binding site for the PABC domain. This domain is contained in homologs 
of the poly(A)-binding protein PABP and the ubiquitin-protein ligase HYD. Despite the 
importance of the PAM2 motif, a comprehensive analysis of its occurrence in different 
proteins has been missing. Using iterated sequence profile searches, we obtained an 
extensive list of proteins carrying the PAM2 motif. We discuss their functional context 
and domain architecture, which often consists of RNA-binding domains. Our list of 
PAM2 motif proteins includes eukaryotic homologs of eRF3/GSPT1/2, PAIP1/2, 
Tob1/2, ataxin-2, RBP37, RBP1, Blackjack, HELZ, TPRD, USP10, ERD15, C1D4.14, 
and the viral protease P29. The identification of the PAM2 motif in as yet 
uncharacterized proteins can give valuable hints with respect to their cellular function 
and potential interaction partners and suggests further experimentation. It is also 
striking that the PAM2 motif appears to occur solely outside globular protein domains. 
 
 
12. Publication (Stoll et al., 2004) 
 
Stoll, M., Corneliussen, B., Costello, C.M., Waetzig, G.H., Mellgard, B., Koch, W.A., 
Rosenstiel, P., Albrecht, M., Croucher, P.J., Seegert, D., Nikolaus, S., Hampe, J., 
Lengauer, T., Pierrou, S., Foelsch, U.R., Mathew, C.G., Lagerstrom-Fermer, M. and 
Schreiber, S. (2004) Genetic variation in DLG5 is associated with inflammatory bowel 
disease. Nat Genet, 36, 476-480. 
 
Abstract 
 
Crohn disease and ulcerative colitis are two subphenotypes of inflammatory bowel 
disease (IBD), a complex disorder resulting from gene-environment interaction. We 
refined our previously defined linkage region for IBD on chromosome 10q23 and used 
positional cloning to identify genetic variants in DLG5 associated with IBD. DLG5 
encodes a scaffolding protein involved in the maintenance of epithelial integrity. We 
identified two distinct haplotypes with a replicable distortion in transmission (P = 
0.000023 and P = 0.004 for association with IBD, P = 0.00012 and P = 0.04 for 
association with Crohn disease). One of the risk-associated DLG5 haplotypes is 
distinguished from the common haplotype by a nonsynonymous single-nucleotide 
polymorphism 113G→A, resulting in the amino acid substitution R30Q in the DUF622 
domain of DLG5. This mutation probably impedes scaffolding of DLG5. We stratified 
the study sample according to the presence of risk-associated CARD15 variants to study 
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potential gene-gene interaction. We found a significant difference in association of the 
113A DLG5 variant with Crohn disease in affected individuals carrying the risk-
associated CARD15 alleles versus those carrying non-risk-associated CARD15 alleles. 
This is suggestive of a complex pattern of gene-gene interaction between DLG5 and 
CARD15, reflecting the complex nature of polygenic diseases. Further functional 
studies will evaluate the biological significance of DLG5 variants. 
 
 
13. Publication (Albrecht, 2005) 
 
Albrecht, M. (2005) LRRK2 mutations and Parkinsonism. Lancet, 365, 1230. 
 
Abstract 
 
None. 
 
 
14. Publication (Albrecht et al., 2005a) 
 
Albrecht, M., Choubey, D. and Lengauer, T. (2005) The HIN domain of IFI-200 
proteins consists of two OB folds. Biochem Biophys Res Commun, 327, 679-687. 
 
Abstract 
 
The interferon-inducible p200 (IFI-200/HIN-200) family of proteins regulates cell 
growth and differentiation, and confers resistance to the development of tumors and 
virus infections. IFI-200 family members are thought to exert their biological effects by 
modulation of the transcriptional activities of numerous factors and interaction with 
other proteins through the C-terminal HIN domains. However, the HIN domain 
structure and function have remained obscure. Therefore, we performed a 
comprehensive bioinformatics analysis and assembled a structure-based multiple 
sequence alignment of IFI-200 proteins. The application of fold recognition methods 
revealed that the HIN domain consists of two consecutive OB domains. Our structural 
models of DNA-binding HIN domains afford the long-sought interpretations for many 
previous experimental observations. Our results also raise the possibility of as yet 
unexplored functional roles of IFI-200 proteins as transcriptional regulators and as 
interaction partners of proteins involved in immunomodulatory and apoptotic processes. 
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15. Publication (Albrecht et al., 2005b) 
 
Albrecht, M., Huthmacher, C., Tosatto, S.C. and Lengauer, T. (2005) Decomposing 
protein networks into domain-domain interactions. Bioinformatics, 21 Suppl 2, ii220-
ii221. 
 
Abstract 
 
The application of novel experimental techniques has generated large networks of 
protein-protein interactions. Frequently, important information on the structure and 
cellular function of protein-protein interactions can be gained from the domains of 
interacting proteins. We have designed a Cytoscape plugin that decomposes interacting 
proteins into their respective domains and computes a putative network of 
corresponding domain-domain interactions. To this end, the network graph of proteins 
has been extended by additional node and edge types for domain interactions, including 
different node and edge shapes and coloring schemes used for visualization. An 
additional plugin provides supplementary web links to Internet resources on domain 
function and structure. 
 
 
16. Publication (Bojunga et al., 2005) 
 
Bojunga, J., Welsch, C., Antes, I., Albrecht, M., Lengauer, T. and Zeuzem, S. (2005) 
Structural and functional analysis of a novel mutation of CYP21B in a heterozygote 
carrier of 21-hydroxylase deficiency. Hum Genet, 117, 558-564. 
 
Abstract 
 
Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is one of the 
most common autosomal recessive disorders and occurs in its non-classical form in up 
to 6% of hirsute women. We report on a young woman with the clinical diagnosis of 
non-classical CAH and a novel, heterozygous missense mutation CTG→GTG in exon 
8, codon 317, of the steroid 21-hydroxylase CYP21B and complete loss of pseudogenes. 
Protein sequences of closely related P450 cytochromes and a homology-based 3D 
model of CYP21B were used for further functional analyses. We found that the mutated 
residue is part of a large cluster of hydrophobic residues. This cluster has three 
important features: (1) it is located directly next to the binding pocket, in close vicinity 
of the heme-cofactor, (2) all amino acids of the cluster are directly connected to two 
important binding regions, and (3) the packing within the cluster is very dense. Due to 
the tight packing in the cluster and its direct connection to the binding pocket region, 
any changes induced by the mutation of residue 317 can be expected to lead to 
structural shifts within the binding pocket and can explain the clinically observed 
impairment of 21-hydroxylase activity. In conclusion, the novel mutation L317V of the 
steroid 21-hydroxylase gene is associated with reduced steroid 21-hydroxylase activity 
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probably due to structural shifts within the binding pocket and a mild phenotype of 
steroid 21-hydroxylase deficiency. In addition, the results support previous findings in 
which heterozygous CYP21 mutations are associated with symptoms of 
hyperandrogenism in susceptible individuals. 
 
 
17. Publication (Castellano et al., 2005) 
 
Castellano, S., Lobanov, A.V., Chapple, C., Novoselov, S.V., Albrecht, M., Hua, D., 
Lescure, A., Lengauer, T., Krol, A., Gladyshev, V.N. and Guigo, R. (2005) Diversity 
and functional plasticity of eukaryotic selenoproteins: Identification and 
characterization of the SelJ family. Proc Natl Acad Sci U S A, 102, 16188-16193. 
 
Abstract 
 
Selenoproteins are a diverse group of proteins that contain selenocysteine (Sec), the 21st 
amino acid. In the genetic code, UGA serves as a termination signal and a Sec codon. 
This dual role has precluded the automatic annotation of selenoproteins. Recent 
advances in the computational identification of selenoprotein genes have provided a 
first glimpse of the size, functions, and phylogenetic diversity of eukaryotic 
selenoproteomes. Here, we describe the identification of a selenoprotein family named 
SelJ. In contrast to known selenoproteins, SelJ appears to be restricted to 
actinopterygian fishes and sea urchin, with Cys homologues only found in cnidarians. 
SelJ shows significant similarity to the jellyfish J1-crystallins and with them constitutes 
a distinct subfamily within the large family of ADP-ribosylation enzymes. Consistent 
with its potential role as a structural crystallin, SelJ has preferential and homogeneous 
expression in the eye lens in early stages of zebrafish development. A structural role for 
SelJ would be in contrast to the majority of known selenoenzymes. The unusually 
highly restricted phylogenetic distribution of SelJ, its specialization, and the 
comparative analysis of eukaryotic selenoproteomes reveal the diversity and functional 
plasticity of selenoproteins and point to a mosaic evolution of the use of Sec in proteins. 
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18. Publication (Costello et al., 2005) 
 
Costello, C.M., Mah, N., Häsler, R., Rosenstiel, P., Waetzig, G.H., Hahn, A., Lu, T., 
Gurbuz, Y., Nikolaus, S., Albrecht, M., Hampe, J., Lucius, R., Klöppel, G., Eickhoff, 
H., Lehrach, H., Lengauer, T. and Schreiber, S. (2005) Dissection of the inflammatory 
bowel disease transcriptome using genome-wide cDNA microarrays. PLoS Med, 2, 
e199.1-17. 
 
Abstract 
 
The differential pathophysiologic mechanisms that trigger and maintain the two forms 
of inflammatory bowel disease (IBD), Crohn disease (CD), and ulcerative colitis (UC) 
are only partially understood. cDNA microarrays can be used to decipher gene 
regulation events at a genome-wide level and to identify novel unknown genes that 
might be involved in perpetuating inflammatory disease progression. High-density 
cDNA microarrays representing 33,792 UniGene clusters were prepared. Biopsies were 
taken from the sigmoid colon of normal controls (n = 11), CD patients (n = 10) and UC 
patients (n = 10). 33P-radiolabeled cDNA from purified poly(A)+ RNA extracted from 
biopsies (unpooled) was hybridized to the arrays. We identified 500 and 272 transcripts 
differentially regulated in CD and UC, respectively. Interesting hits were independently 
verified by real-time PCR in a second sample of 100 individuals, and 
immunohistochemistry was used for exemplary localization. The main findings point to 
novel molecules important in abnormal immune regulation and the highly disturbed cell 
biology of colonic epithelial cells in IBD pathogenesis, e.g., CYLD (cylindromatosis, 
turban tumor syndrome) and CDH11 (cadherin 11, type 2). By the nature of the array 
setup, many of the genes identified were to our knowledge previously uncharacterized, 
and prediction of the putative function of a subsection of these genes indicate that some 
could be involved in early events in disease pathophysiology. A comprehensive set of 
candidate genes not previously associated with IBD was revealed, which underlines the 
polygenic and complex nature of the disease. It points out substantial differences in 
pathophysiology between CD and UC. The multiple unknown genes identified may 
stimulate new research in the fields of barrier mechanisms and cell signalling in the 
context of IBD, and ultimately new therapeutic approaches. 
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19. Publication (Ralser et al., 2005a) 
 
Ralser, M., Albrecht, M., Nonhoff, U., Lengauer, T., Lehrach, H. and Krobitsch, S. 
(2005) An integrative approach to gain insights into the cellular function of human 
ataxin-2. J Mol Biol, 346, 203-214. 
 
Abstract 
 
Spinocerebellar ataxia type 2 (SCA2) is a hereditary neurodegenerative disorder caused 
by a trinucleotide expansion in the SCA2 gene, encoding a polyglutamine stretch in the 
gene product ataxin-2 (ATX2), whose cellular function is unknown. However, ATX2 
interacts with A2BP1, a protein containing an RNA-recognition motif, and the existence 
of an interaction motif for the C-terminal domain of the poly(A)-binding protein 
(PABC) as well as an Lsm (Like Sm) domain in ATX2 suggest that ATX2 like its yeast 
homolog Pbp1 might be involved in RNA metabolism. Here, we show that, similar to 
Pbp1, ATX2 suppresses the petite (pet-) phenotype of ∆mrs2 yeast strains lacking 
mitochondrial group II introns. This finding points to a close functional relationship 
between the two homologs. To gain insight into potential functions of ATX2, we also 
generated a comprehensive protein interaction network for Pbp1 from publicly available 
databases, which implicates Pbp1 in diverse RNA-processing pathways. The functional 
relationship of ATX2 and Pbp1 is further corroborated by the experimental 
confirmation of the predicted interaction of ATX2 with the cytoplasmic poly(A)-
binding protein 1 (PABP) using yeast-2-hybrid analysis as well as co-
immunoprecipitation experiments. Immunofluorescence studies revealed that ATX2 and 
PABP co-localize in mammalian cells, remarkably, even under conditions in which 
PABP accumulates in distinct cytoplasmic foci representing sites of mRNA triage. 
 
 
20. Publication (Ralser et al., 2005b) 
 
Ralser, M., Nonhoff, U., Albrecht, M., Lengauer, T., Wanker, E.E., Lehrach, H. and 
Krobitsch, S. (2005) Ataxin-2 and huntingtin interact with endophilin-A complexes to 
function in plastin-associated pathways. Hum Mol Genet, 14, 2893-2909. 
 
Abstract 
 
Spinocerebellar ataxia type 2 is an inherited neurodegenerative disorder that is caused 
by an expanded trinucleotide repeat in the SCA2 gene, encoding a polyglutamine stretch 
in the gene product ataxin-2. Although evidence has been provided that ataxin-2 is 
involved in RNA metabolism, the physiological function of ataxin-2 remains unclear. 
Here, we demonstrate that ataxin-2 interacts with two members of the endophilin 
family, endophilin-A1 and endophilin-A3. To elucidate the physiological implications 
of these interactions, we exploited yeast as a model system and discovered that 
expression of ataxin-2 as well as both endophilin proteins is toxic for yeast lacking the 
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SAC6 gene product fimbrin, a protein involved in actin filament organization and 
endocytotic processes. Intriguingly, expression of huntingtin, another polyglutamine 
protein interacting with endophilin-A3, was also toxic in ∆sac6 yeast. These effects can 
be suppressed by simultaneous expression of one of the two human fimbrin orthologs, 
L- or T-plastin. Moreover, we have discovered that ataxin-2 associates with L- and T-
plastin and that overexpression of ataxin-2 leads to accumulation of T-plastin in 
mammalian cells. Thus, our findings suggest an interplay between ataxin-2, endophilin 
proteins and huntingtin in plastin-associated cellular pathways. 
 
 
21. Publication (Sarrazin et al., 2005) 
 
Sarrazin, C., Mihm, U., Herrmann, E., Welsch, C., Albrecht, M., Sarrazin, U., Traver, 
S., Lengauer, T. and Zeuzem, S. (2005) Clinical significance of in vitro replication-
enhancing mutations of the hepatitis C virus (HCV) replicon in patients with chronic 
HCV infection. J Infect Dis, 192, 1710-1719. 
 
Abstract 
 
Mutations in nonstructural (NS) hepatitis C virus (HCV) proteins enhance replication in 
HCV-1a/b replicons. The prevalence of such mutations and their clinical significance in 
vivo are unknown. Parts of HCV NS3 and NS4B-NS5B genes that included 31 in vitro 
replication-enhancing sites were sequenced for 26 patients with chronic HCV genotype 
1 infection. Five patients showed specific mutations within NS3 at sites enhancing 
replication in the replicon. Those mutations were associated with a slower decrease in 
HCV RNA concentration during interferon(IFN)-α-based therapy (P = .007). Neither 
specific nor other mutations within NS3 and NS4B-NS5B were associated with baseline 
HCV RNA concentrations. Within NS5A, fewer mutations in the major HCV strain (P = 
.001) and increased quasi-species complexity (P = .02) and diversity (P = .02) correlated 
with increasing baseline HCV RNA concentrations. In silico analyses of NS3 protein 
structures suggested that the majority of observed mutations did not lead to major 
conformational changes. Specific mutations leading to enhanced replication in the 
replicon system were detected in 5 of 26 patients in vivo and were not associated with 
baseline HCV RNA concentrations but were associated with a slower decrease in HCV 
RNA concentration during IFN-α-based therapy. Quasi-species heterogeneity of NS5A 
correlated with baseline HCV RNA concentrations. 
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22. Publication (Schreiber et al., 2005) 
 
Schreiber, S., Rosenstiel, P., Albrecht, M., Hampe, J. and Krawczak, M. (2005) 
Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet, 
6, 376-388. 
 
Abstract 
 
Chronic inflammatory disorders such as Crohn disease, atopic eczema, asthma and 
psoriasis are triggered by hitherto unknown environmental factors that function on the 
background of some polygenic susceptibility. Recent technological advances have 
allowed us to unravel the genetic aetiology of these and other complex diseases. Using 
Crohn disease as an example, we show how the discovery of susceptibility genes 
furthers our understanding of the underlying disease mechanisms and how it will, 
ultimately, give rise to new therapeutic developments. The long-term goal of such 
endeavours is to develop targeted prophylactic strategies. These will probably target the 
molecular interaction on the mucosal surface between the products of the genome and 
the microbial metagenome of a patient. 
 
 
23. Publication (Valentonyte et al., 2005) 
 
Valentonyte, R., Hampe, J., Huse, K., Rosenstiel, P., Albrecht, M., Stenzel, A., Nagy, 
M., Gaede, K.I., Franke, A., Haesler, R., Koch, A., Lengauer, T., Seegert, D., Reiling, 
N., Ehlers, S., Schwinger, E., Platzer, M., Krawczak, M., Müller-Quernheim, J., 
Schürmann, M. and Schreiber, S. (2005) Sarcoidosis is associated with a truncating 
splice site mutation in BTNL2. Nat Genet, 37, 357-364. 
 
Abstract 
 
Sarcoidosis is a polygenic immune disorder with predominant manifestation in the lung. 
Genome-wide linkage analysis previously indicated that the extended major 
histocompatibility locus on chromosome 6p was linked to susceptibility to sarcoidosis. 
Here, we carried out a systematic three-stage SNP scan of 16.4 Mb on chromosome 
6p21 in as many as 947 independent cases of familial and sporadic sarcoidosis and 
found that a 15-kb segment of the gene butyrophilin-like 2 (BTNL2) was associated 
with the disease. The primary disease-associated variant (rs2076530; P(TDT) = 3 x 10-6, 
P(case-control) = 1.1 x 10-8; replication P(TDT) = 0.0018, P(case-control) = 1.8 x 10-6) 
represents a risk factor that is independent of variation in HLA-DRB1. BTNL2 is a 
member of the immunoglobulin superfamily and has been implicated as a costimulatory 
molecule involved in T-cell activation on the basis of its homology to B7-1. The G→A 
transition constituting rs2076530 leads to the use of a cryptic splice site located 4 bp 
upstream of the affected wild-type donor site. Transcripts of the risk-associated allele 
have a premature stop in the spliced mRNA. The resulting protein lacks the C-terminal 
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IgC domain and transmembrane helix, thereby disrupting the membrane localization of 
the protein, as shown in experiments using green fluorescent protein and V5 fusion 
proteins. 
 
 
24. Publication (Van Duist et al., 2005) 
 
Van Duist, M.M., Albrecht, M., Podswiadek, M., Giachino, D., Lengauer, T., Punzi, L. 
and De Marchi, M. (2005) A new CARD15 mutation in Blau syndrome. Eur J Hum 
Genet, 13, 742-747. 
 
Abstract 
 
The caspase recruitment domain gene CARD15/NOD2, encoding a cellular receptor 
involved in an NF-κB-mediated pathway of innate immunity, was first identified as a 
major susceptibility gene for Crohn's disease (CD), and more recently, as responsible 
for Blau syndrome (BS), a rare autosomal-dominant trait characterized by arthritis, 
uveitis, skin rash and granulomatous inflammation. While CARD15 variants associated 
with CD are located within or near the C-terminal leucine-rich repeat domain and cause 
decreased NF-κB activation, BS mutations affect the central nucleotide-binding 
NACHT domain and result in increased NF-κB activation. In an Italian family with BS, 
we detected a novel mutation E383K, whose pathogenicity is strongly supported by 
cosegregation with the disease in the family and absence in controls, and by the 
evolutionary conservation and structural role of the affected glutamate close to the 
Walker B motif of the nucleotide-binding site in the NACHT domain. Interestingly, 
substitutions at corresponding positions in another NACHT family member cause 
similar autoinflammatory phenotypes. 
 
 
25. Publication (Albrecht and Takken, 2006) 
 
Albrecht, M. and Takken, F.L.W. (2006) Update on the domain architectures of NLRs 
and R proteins. Biochem Biophys Res Commun, 339, 459-462. 
 
Abstract 
 
None. 
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