Bastian Goldlucke

Multi-Camera
Reconstruction and Rendering
for Free-Viewpoint Video

— Ph.D. Thesis —

November 29, 2006

Max-Planck-Institut fur Informatik

Stuhlsatzenhausweg 85
66123 Saarbriicken
Germany




Bibliografische Informationen der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet iiber
http://dnb.ddb.de abrufbar.

1. Aufl. - Gottingen : Cuvillier, 2005
Zugl.: Saarbriicken, Univ., Diss., 2005
I[SBN X-XXXXX-XXX-X

(¢c) CUVILLIER VERLAG, Géttingen 2005
Nonnenstieg 8, 37075 Gottingen

Telefon: 0551-54724-0

Telefax: 0551-54724-21

www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdriickliche Genehmigung
des Verlages ist es nicht gestattet, das Buch oder Teile
daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie)
zu vervielfaltigen.



Dissertation zur Erlangung des Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)
der Naturwissenschaftlich-Technischen Fakultat 1
der Universitat des Saarlandes

Eingereicht am 30. September 2005 in Saarbriicken durch

Bastian Goldliicke
MPI Informatik

Stuhlsatzenhausweg 85
66123 Saarbriicken

mail@bastian-goldluecke.de
www.bastian-goldluecke.de

Betreuender Hochschullehrer — Supervisor
Dr. Marcus A. Magnor, MPI fiir Informatik, Saarbriicken

Gutachter — Reviewers
Dr. Marcus A. Magnor, MPI fiir Informatik, Saarbriicken
Prof. Dr. Joachin Weickert, Universitiat des Saarlandes, Saarbriicken

Dekan — Dean
Prof. Dr. Jorg Eschmeier






Abstract

While virtual environments in interactive entertainment become more and
more lifelike and sophisticated, traditional media like television and video
have not yet embraced the new possibilities provided by the rapidly advancing
processing power. In particular, they remain as non-interactive as ever, and do
not allow the viewer to change the camera perspective to his liking. The goal of
this work is to advance in this direction, and provide essential ingredients for a
free-viewpoint video system, where the viewpoint can be chosen interactively
during playback.

Knowledge of scene geometry is required to synthesize novel views. There-
fore, we describe 3D reconstruction methods for two distinct kinds of camera
setups. The first one is depth reconstruction for camera arrays with parallel
optical axes, the second one surface reconstruction, in the case that the cam-
eras are distributed around the scene. Another vital part of a 3D video system
is the interactive rendering from different viewpoints, which has to perform
in real-time. We cover this topic in the last part of this thesis.

Kurzfassung

Wahrend die virtuellen Welten in interaktiven Unterhaltungsmedien im-
mer realitatsnaher werden, machen traditionellere Medien wie Fernsehen und
Video von den neuen Moglichkeiten der rasant wachsenden Rechenkapazitat
bisher kaum Gebrauch. Insbesondere mangelt es ihnen immer noch an Interak-
tivitat, und sie erlauben dem Konsumenten nicht, elementare Parameter wie
zum Beispiel die Kameraperspektive seinen Wiinschen anzupassen. Ziel dieser
Arbeit ist es, die Entwicklung in diese Richtung voranzubringen und essen-
tielle Bausteine fiir ein Videosystem bereitzustellen, bei dem der Blickpunkt
wahrend der Wiedergabe jederzeit vollig frei gewahlt werden kann.

Um neue Ansichten synthetisieren zu kénnen, ist zundchst Kenntnis von
der 3D Geometrie der Szene notwendig. Wir entwickeln daher Rekonstruk-
tionsalgorithmen fiir zwei verschiedene Anordnungen von Kameras. Falls
die Kameras eng beieinanderliegen und parallele optische Achsen haben,
konnen lediglich Tiefenkarten geschatzt werden. Sind die Kameras jedoch im
einer Halbkugel um die Szene herum montiert, so rekonstruieren wir sogar
echte Oberflichengeometrie. Ein weiterer wichtiger Aspekt ist die interaktive
Darstellung der Szene aus neuen Blickwinkeln, die wir im letzten Teil der
Arbeit in Angriff nehmen.
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Summary

Interactive entertainment is starting to play a major role nowadays. Mod-
ern grapics hardware becomes more and more sophisticated, and lifelike dy-
namic scenes can be rendered, becoming virtually indistinguishable from their
real-world counterparts recorded with cameras. In contrast, television and
video do not make use of the new possibilities provided by modern technology
yet. Both lack interactivity and do not allow the user to adjust important
parameters to his liking, in particular the viewpoint from which a scene is
being watched.

Our work aims at 3D video and 3D television, which enables the user
to arbritarily change the perspective during playback. A key requirement is
to provide additional geometric information, which makes it possible to syn-
thesize novel views. The primary goal, therefore, is to obtain a high-quality
representation of the geometry visible in a scene. We describe 3D reconstruc-
tion methods for two distinct kinds of camera setups. If the cameras are closely
packed in an array with parallel optical axes, we reconstruct dense depth maps
for each camera image. If, on the other hand, the cameras are surrounding the
scene, we recover dynamic surface models. We also discuss ways to generate
novel views interactively from the geometry model and the source images on
modern graphics hardware.

Depth Reconstruction

Our goal in the first part of the thesis is to reconstruct by photometric
means a dense depth map for each frame of multiple video sequences captured
with a number of calibrated video cameras. A depth map assigns a depth value
to each image pixel, determining its location in 3D space. Simultaneously, we
want to decide for every pixel whether or not it belongs to the background of
the scene, known from background images captured with the same cameras.

While previous work was restricted to static scenes, an important visual
clue available in video sequences is temporal coherence. For example, it is
highly unlikely that large background regions suddenly turn into foreground,
or that the depth of a region changes dramatically without accompanying
changes in color. We present a framework to consistently estimate depth ex-
ploiting spatial as well as temporal coherence constraints, which is based on
a global minimization of a discrete energy functional via graph cuts. The
minimum of the functional yields the final reconstruction result. Particularly
important advantages we inherit from the underlying approach include that
all cameras are treated symmetrically, and that visibility is handled properly.
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Surface Reconstruction

In the second part of the thesis, we take the reconstruction problem one
step further and are not content with simple depth maps anymore. Instead,
our aim is to recover the full 3D geometry of arbitrary objects, using multi-
video data from a handfull of cameras surrounding the scene as input.

The geometry estimate is defined as a weighted minimal surface, which
minimizes an energy functional given as a surface integral of a scalar-valued
weight or error function. The variational formulation of these kinds of mini-
mization problems leads to a partial differential equation (PDE) for a surface
evolution, which can be explicitly solved using a level set technique. We de-
rive this equation for arbitrary dimensional surfaces and a large class of error
functions.

Our first method based upon the equation is a spatio-temporal 3D re-
construction scheme. The full space-time geometry of the scene is recovered
for all frames simultaneously by reconstructing a single hypersurface photo-
consistent with all input images, whose slices with planes of constant time
yield the 2D surface geometry at each time instant. Because the reconstructed
surface is continuous in the temporal direction as well, temporal coherence is
intrinsic to our method. As a second method based upon our surface evolution
theory, we describe an algorithm how the bodies of homogenous, refractive
media like water can be reconstructed using a sophisticated error functional.

Video-based Rendering

In the final stage of a free-viewpoint video system, the geometric data has
to be exploited to create high-quality novel views of a scene. The two scenarios
we analyzed require two distinct different kinds of rendering algorithms, which
we present in the last part of the thesis. Both schemes have in common that
the source video images are mapped onto the target geometry using modern
graphics hardware.

Novel views from video streams with accompanying depth information
are created by warping and blending the source images using an underlying
triangle mesh. If one has a surface representation of the scene instead, the
textures obtained from the input videos are projected onto the geometry using
projective texturing with careful selection of input camera views and weights.
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Zusammenfassung

Interaktive Unterhaltungsmedien spielen eine immer grosser werdende
Rolle. Mit Hilfe leistungsfahiger moderner Grafikhardware werden beinahe
lebensechte Szenen dargestellt, die sich von ihren mit einer Kamera
aufgenommenen Gegenstiicken aus der realen Welt bald kaum noch unterschei-
den werden. Im Vergleich dazu werden die durch neue Technologien gebote-
nen Moglichkeiten sowohl vom Fernsehen als auch Video bisher straflich ver-
nachlassigt. Beiden Medien mangelt es an Interaktivitat, und sie erlauben dem
Konsumenten nicht, wesentliche Parameter wie den Blickpunkt der Wieder-
gabe seinen Vorstellungen anzupassen.

Unsere Arbeit hat 3D-Video und 3D-Fernsehen zum Ziel, die es dem Be-
nutzer ermoglichen sollen, wahrend der Wiedergabe die Perspektive frei zu
wahlen. Eine wesentliche Voraussetzung ist dabei zusatzliche Geometrieinfor-
mation, welche die Synthese neuer Ansichten ermoglicht. Das Hauptziel dieses
Textes ist daher die Entwicklung von Verfahren zur qualitativ hochwertigen
Rekonstruktion einer Szene als dreidimensionales Modell. Wir beschreiben
Rekonstruktionsverfahren fiir zwei wesentlich verschiedene Kamerakonfigura-
tionen. Sind die Kameras in einem Gitter mit parallelen optischen Achsen
montiert, so konnen Tiefenkarten fiir jedes Einzelbild in den Videodaten-
stromen erstellt werden. Fiir den Fall, daf3 die Kameras um die Szene herum
verteilt sind, ist es sogar moglich, ein dynamisches Oberfachenmodell zu
gewinnen. Schliellich stellen wir noch Verfahren zur Verfiigung, aus der erhal-
tenen Geometrie und den Eingabevideos neue Ansichten interaktiv zu gener-
ieren.

Tiefenkarten

Das Ziel im ersten Teil der Arbeit ist es, mit photometrischen Methoden
Tiefenkarten fiir Videobilder zu gewinnen, die von mehreren synchronisierten
Kameras aufgenommen wurden. Jedem Bildpunkt wird dabei eine Tiefe zu-
geordnet, welche seine Position im Raum festlegt. Gleichzeitig soll fiir jeden
Bildpunkt entschieden werden, ob er zum bewegten Vordergrund der Szene
gehort oder zum statischen Hintergrund, welcher durch ein Hintergrundbild
fiir jede Kamera definiert wird.

Obwohl sich bisherige Arbeiten auf statische Szenen beschrinken, gibt
doch zeitliche Koharenz in aufeinanderfolgenden Bildern in einer Videose-
quenz wichtige Hinweise fiir eine erfolgreiche Rekonstruktion. So ist es
zum Beispiel sehr unwahrscheinlich, dafl grofle Regionen des Hintergrundes
plotzlich in Vordergrund mutieren, oder daf sich die Tiefe in einem Bildbereich
drastisch andert, ohne daf3 dabei auch die Farbe der Bildpunkte anders wird.
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Wir beschreiben daher ein allgemeines Verfahren, um konsequent die Restrik-
tionen auszunutzen, die sich durch Photokonsistenz und zeitlich-raumliche
Kontinuitatsforderungen ergeben. Es basiert auf einem erfolgreichen Algorith-
mus, der Tiefenkarten durch Minimierung eines diskreten Energiefunktionals
bestimmt. Das Minimum kann durch Minimalschnitte in Graphen berechnet
werden. Wichtige Vorteile, die wir von der urspriinglichen Methode erben, ist
Symmetrie in den Kameras und die korrekte Behandlung der Sichtbarkeit von

Objekten.

Oberflachenrekonstruktion

Im zweiten Teil der Arbeit betrachten wir das Rekonstruktionsproblem von
einer hoheren Warte aus und versuchen, die komplette Oberflachengeometrie
der Szene zu erhalten, wobei die Videodaten einer handvoll Kameras verwen-
det werden, die um die Szene herum verteilt sind.

Die Zielgeometrie ist definiert als eine gewichtete Minimalflache, die
ein Energiefunktional minimiert, welches als Oberflachenintegral einer
Gewichts- oder Fehlerfunktion gegeben ist. Die Variationsformulierung dieses
Minimierungsproblems liefert eine partielle Differentialgleichung fiir eine
Oberflachenevolution. Eine Losung kann iiber eine Implementation der Evolu-
tion durch implizite Flachen gelost werden. Wir leiten die Differentialgleichung
fiir Flachen beliebiger Dimension und eine grofle Klasse von Fehlerfunktionen
mathematisch her.

Unser erstes praktisches Verfahren, das auf dieser Gleichung basiert,
ist die raumlich-zeitliche Rekonstruktion von Geometrie aus Multivideo-
Sequenzen. Die komplette Raumzeitgeometrie der Szene wird als eine einzige
Hyperflache gewonnen, welche photokonsistent mit allen Eingabebildern zu-
gleich ist. Schnitte der Hyperflaiche mit Ebenen konstanter Zeit ergeben
die 2D Oberflaichengeometrie zum entsprechenden Zeitpunkt. Da die rekon-
struierte Oberflache stetig auch in der zeitlichen Richtung ist, ist zeitliche
Koharenz implizit in das Rekonstruktionsverfahren eingebaut. Als zweites
Verfahren, welches auf der allgemeinen Evolutionsgleichung basiert, stellen
wir einen Algorithmus vor, welcher Volumen aus homogenen Medien mit
Brechung, wie zum Beispiel Wasser, rekonstruieren kann. Dies erfordert
die Definition einer ausgekliigelten Fehlerfunktion, die fiir diesen Fall
maflgeschneidert ist.

Videobasiertes Rendering

Im der letzten Arbeitsphase eines Videosystems mit freier Wahl des Blick-
punktes mufl die Geometrieinformation ausgenutzt werden, um qualitativ
ansprechende neue Ansichten der Szene zu generieren. Die beiden von uns
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untersuchten Szenarien erfordern dabei zwei grundverschiedene Verfahren, die
im letzten Teil der Arbeit prasentiert werden. Beide Verfahren haben gemein-
sam, dass die Eingabevideos auf die Zielgeometrie unter Verwendung mod-
erner Grafikhardware abgebildet werden.

Fir Videodatenstrome mit Tiefeninformation werden neue Ansichten
generiert, indem die Eingabebilder auf ein Dreiecksnetz “geklebt” und mit
diesem entsprechend der Tiefe der Eckpunkte in die neue Ansicht projiziert
werden. Die Beitrdge verschiedener Kameras werden dabei gemafl ihrem Ab-
stand zur neuen Ansicht gewichtet. Falls stattdessen ein Oberflichenmodell
der Geometrie zur Verfiigung steht, werden die Eingabebilder wahrend des
Renderns als Texturen auf das Modell projiziert. Die verwendeten Bilder und
ihre Gewichtung bei der Uberblendung miissen dabei sorgfiltig ausgewihlt
werden.






Preface

He stood in the center of Heaven and looked about it,
having decided to have four eyes today. He noticed
that with less than two looking in any one direction,
he couldn’t see as well as he ought. He resolved to set
someone to discover the reason for this.

Steven Brust, “To Reign in Hell”.

Nowadays, Computer Vision has progressed far beyond the relatively sim-
ple question posed in the quote. Not only do we know that two views are
necessary for stereo vision in order to obtain correspondences for triangula-
tion, we can even design algorithms which mimic this process. And although
the human visual system still performs far superior to machines when it comes
to scene reconstruction, the latter progress fast and well. Vision algorithms
become more and more robust and sophisticated, and modern techniques can
integrate the information from a lot more than just two cameras and views
to create a geometric model of a scene. Recently, researchers also began to
exploit temporal coherence in video sequences.

The intention of this thesis is to progress one step further towards accu-
rate and reliable scene reconstruction. The focus is on being able to render
the model from novel viewpoints. Each chapter after the introduction is a
revised and extended version of a refereed conference paper I published dur-
ing my three years as a researcher at the MPI Informatik in Saarbriicken.
Chronologically, the first one was the Light Field Rendering System in Chap-
ter 12, which was presented at the Vision, Modeling and Visualisation 2002
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in Erlangen [37]. In its first incarnation, it was based on an existing depth
map reconstruction algorithm. Shortly after, we developed our own technique,
which performs an additional background subtraction and adds temporal co-
herence for better playback quality. Presented at the Computer Vision and
Pattern Recognition 2003 in Madison [42] and in a sketch at Siggraph 2003 in
San Diego, this technique now forms the basis for Chapters 5 and Chapter 6.

My second line of research also started with rendering, this time free-
viewpoint rendering of the existing visual hull geometry provided by Christian
Theobalt using projective texturing. The result was the billboard rendering
technique presented first at the Visual Communications and Image Process-
ing 2003 in Lugano [43], and in an extended version at the International
Conference on Image Processing 2003 in Barcelona [38]. It can be found in
Chapter 13 of this thesis. Subsequently, I developed the necessary 3D sur-
face reconstruction algorithms, which I now consider my major contribution
and the core of this thesis. Analytical techniques based on weighted minimal
surfaces seemed most appealing to me because of the concise mathematical
approach. After I had the idea to represent spatio-temporal geometry as a hy-
persurface, I started to develop the necessary mathematical tools, which were
presented at the Furopean Conference on Computer Vision 2004 in Prague,
now forming Chapter 8 of this thesis. The reconstruction technique based on
the mathematical method, Chapter 9, was later accepted for publication for
the Computer Vision and Pattern Recognition 2004 in Washington [39]. Re-
construction of refractive materials, the latest method based on the surface
evolution and joint work with Ivo Ihrke, will be presented at the International
Conference on Computer Vision 2005 in Beijing [50].

I am very thankful for the excellent working conditions I was provided with
here at the MPI. In particular, my gratitude goes to my supervisor Marcus
Magnor, who expertly guided and supported my research. Thanks also to my
friends and fellow researchers for helpful scientific discussions and lots of fun
in pursuit of less serious matters. Finally, a special thanks to my family for
their unconditional love and support over the years. I dedicate this thesis to
Susanne, who makes my life so much better in countless ways.

Saarbriicken, Germany, Bastian Goldliicke
November 29, 2006
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Notation

Common Mathematical Symbols

R™
S’I’L
Il

Il
(v, w)

XA

n-dimensional vector space over the real numbers.
n-dimensional sphere, unit sphere in R"*+!.
Euclidean norm of a vector.

Maximum norm of a vector.

Scalar product of v and w.

Characteristic function of the set A.

Cameras and Images

{C1,...,Cn}
Tt

(3

Uy

Scene Geometry

2
Oy
9

Vi
gt

Set of n cameras. C; is also identified with the center of
projection of the ith camera.

Image recorded by camera i at time ¢, a mapping from R?
into color space.

The projection mapping from R? into image space R? of
camera 1.

The scene geometry surface at time t.

Scene geometry volume at time ¢, with 00, = .

The three-dimensional hypersurface traced by the X as
they evolve in space-time.

Image-based visual hull of O, at time t.

Silhouette of O; in camera image 1.

Surface Point Properties

v (p)
ci(p)

Level Sets

ut

r
uocyzt
xyzt

Denotes whether point p is visible in camera ¢ at time ¢.
The color of point p in camera i at time ¢, equals Z} o m;(p)
if p is visible.

Function R? — R whose zero level set is Y.

Regular grid discretizing the region to be reconstructed.
Value of w in the grid cell (z,y, z) at time ¢.

The same value at step ¢ of the evolution.






Part 1

Introduction






1

Free-Viewpoint Video

1.1 Motivation

Nowadays, interactive entertainment plays a major role and is starting to
outperform traditional media. The computer gaming industry had higher sales
than Hollywood’s movie industry for three successive years now, and online
games attract millions of players worldwide. With the sophistication of modern
grapics hardware, lifelike dynamic scenes can be rendered, which will soon be
virtually indistinguishable from their real-world counterparts recorded with
cameras. Many modern computer games more and more resemble interactive
movies, with a professional storyline and character development.

In contrast, the television and video experience remains unchanging. In-
teractivity when watching TV or a video is restricted to adjusting the volume
or switching to another channel. While this is probably desireable for certain
movies, where perspective and lighting were carefully chosen by a director for
dramatic effect, a sports documentation would be much more exciting if one
could change the viewpoint interactively, for instance to get the desired view
of the last goal during a soccer broadcast. Educational documentaries would
benefit as well from more interactivity, since it is much easier to visualize
complex structures, e.g. molecules or engines, if the viewer can rotate them
by himself.

A growing crowd of researchers is therefore pursuing 3D video and 3D tele-
vision, where modern computer graphics and vision techniques are to be com-
bined to obtain a streamable medium which gives the user more control over
the aspects of playback, in particular free choice of viewpoint. This thesis aims
at providing some of the necessary tools required for a 3D video system. We
start with an overview of such a system in the next section, and focus on spe-
cific aspects later in the thesis. Our primary goal is to obtain a high-quality
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representation of the geometry visible in a scene. This is a key requirement for
being able to render novel views from arbitrary perspectives. We also discuss
ways to generate these views interactively from the geometry model and the
source images on modern graphics hardware.

1.2 Components of a Free-Viewpoint Video System

The full pipeline for a system capable of recording, encoding and high-quality
playback of 3D video is very sophisticated and consists of a lot of different
steps, each of which is a small challenge in itself. In this work, we can only
adress a small subset of them in more detail. We chose two topics which are
in our opinion the most interesting ones, 3D reconstruction and rendering,
and we discuss them in the remaining parts of this thesis. For the sake of
completeness, we briefly outline the other necessary steps here. Fig. 1.1 shows
the whole 3D video pipeline at a glance.

Camera Setup and Calibration. Naturally, the first and foremost task
is to acquire data. For our reconstruction algorithms, we require the internal
and external camera parameters of each of the imaging devices to be available.
In particular, we need to know the exact mapping of 3D points to 2D image
coordinates. To achieve this, before recording any actual data, a calibration
procedure is applied. A suitable one has to be chosen depending on the setup
of the cameras. We review some choices when we present different recording
setups in the following two parts.

Data Aquisition. To record multi-video sequences of a temporally vary-
ing scene, the necessary hardware effort is considerable. Multiple synchronized
video cameras are needed to capture the scene from different viewpoints. Aside
from the physical construction of the calibrated studio, the cameras have to
be triggered simultaneously, and the huge amounts of data they produce must
be stored on hard drives in real time.

With recording hardware becoming cheaper and cheaper, nowadays, sev-
eral research labs around the world feature studios capable of recording multi-
video sequences [137, 16, 46, 79, 84, 100, 136]. In this work, sequences from
two different systems were used. The first is the Stanford Multi-Camera Ar-
ray [137]. Its cameras are densely packed in one or more arrays, and the data
is ideally suited for the depth reconstruction algorithms and light field ren-
dering techniques investigated in Part II of this thesis. The second one is
our own custom-made studio available at the MPI Informatik [130]. It cap-
tures wide-baseline multi-video sequences in a hemispherical setup around the
scene. Thus, it is ideal to aquire data for the surface reconstruction techniques
presented in Part III. Both capturing systems are described in the respective
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Camera setup/calibration

Recording !

Data Aquisition
!

Recorded Dataset
!

Image Pre-processing

!

Part II: Depth Maps
Depth reconstruction if the cam-
eras form an array with parallel

, optical axes.
Processing ¢ | Geometry Reconstruction

Part III: Surfaces

Surface reconstruction for hemi-
spherical camera setups.

!
Data Compression
\
!
3D Video
!
)
Transmission /Storage
Loading/Decompression
!
Part IV: Rendering
Chapter 12: Depth Maps
Playback < Dynamic light field rendering
from video plus depth informa-
Rendering tion.
Chapter 13: Surfaces
Free-viewpoint video rendering
from videos with per-frame 3D
geometry.
\

Fig. 1.1. The components forming the pipeline of a free-viewpoint video system,
and where they are discussed in detail in this thesis.
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part of the thesis where they are used, the Stanford Array in Sect. 4.2, and
our in-house system in Sect. 7.4.

Image Processing. Before the reconstruction algorithms can be applied
to the data, some image processing usually has to be performed. Colors have
to be corrected in order to account for differences in the cameras’ sensors,
and for some vision techniques background subtraction is necessary. We do
not discuss image processing techniques in more detail in this work. Instead,
we assume that the input to our algorithms consists of sequences already
pre-processed in a suitable manner.

Geometry Reconstruction. 3D video requires approximate scene ge-
ometry to be known for every frame of the sequence. Geometry reconstruction
is one of the two major topics of this work. For setups with parallel optical
axes, estimation of depth maps is the best one can hope for. We refer to these
approaches as 2%D. They are explored in Part II. In general camera setups,
the recovery of true 3D surface geometry is desireable, as described in Part II1.

Data Compression. Multi-camera video recordings produce huge
amounts of data. Any useful 3D video format must include a very efficient
way to reduce the redundancies in this data. It must be possible to load and
decompress the video data in real-time for the rendering stage.

3D Video Rendering. Once the video data is uncompressed in main
memory, it can be played back with the original frame rate. Ideally, the user
is able to choose an arbitrary viewpoint without impacting the visual quality
of the result. Real objects can be placed in virtual 3D environments, the
environment can interact with them and vice versa. Rendering is the second
main topic covered in this thesis, and discussed in detail in Part IV.

1.3 Outline of the Thesis

The focus of this work are methods for the reconstruction of Q%D and 3D ge-
ometry in different camera setups, and photo-realistic rendering of the geom-
etry from novel viewpoints, using the input images as texture. Thus, we only
pursue the steps Geometry Reconstruction and 3D Video Rendering of the
free-viewpoint video pipeline.

In the next chapter, we introduce basic concepts and mathematical nota-
tion, which we use throughout the rest of the thesis. Afterwards, we present
related work in Chapter 3.

This is followed by the analysis of the first kind of camera setups in Part II,
where all cameras have parallel or near-parallel optical axes, as for instance
in case of the Stanford aquisition system. For these setups, it is usually only
possible to recover a Q%D model of scene geometry in form of a depth map for
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each camera image. We present an algorithm which simultaneously estimates
both a full set of dense depth maps for all cameras, as well as a segmentation
into moving foreground and static background, Chapter 5. Temporal coher-
ence can also be exploited in order to improve the accuracy of the estimate,
Chapter 6.

Another kind of camera setup, which requires a substantially different rep-
resentation of scene geometry as well as reconstruction and rendering tech-
niques is the (hemi-)spherical setup, where the cameras are more or less evenly
distributed around a moving object. This setup is analyzed in Part III. We
present a space-time isosurface reconstruction technique in Chapter 9, which
is based on the mathematical analysis of weighted minimal surfaces in Chap-
ter 8. With a sophisticated choice of energy functional, the weighted minimal
surface approach can also be employed to reconstruct solid transparent objects
of homogenous index of refraction, Chapter 10.

The final Part IV is devoted to rendering techniques suitable for both
kinds of setups. Rendering of dynamic light fields with depth information,
which relies on the kind of data estimated in Part II, is presented in Chap-
ter 12. Surfaces recovered from the 3D reconstruction techniques in Part III

can be rendered in real-time and textured with the video data, as shown in
Chapter 13.






2

Basic Concepts and Notation

2.1 Scene Geometry

The goal of every reconstruction algorithm is to obtain an approximation to
the exact scene geometry. At a single time-step t € R, we require the geometry
to be a closed, piecewise differentiable two-dimensional manifold X, € R3. In
particular, in this work we only deal with well-behaved, entirely solid objects
with an open interior. Phenomena like smoke and foam, which consist of many
small particles or are more of a fractal-like nature, are not being considered.
However, we can work with large bodies of transparent, refractive materials,
see Chapter 10.

The surface manifold is allowed to vary smoothly over time. If such a
time-varying scene with moving objects is considered, the scene geometry X
evolves over time and traces a three-dimensional manifold $ in space-time,
Fig. 2.1. The intersections of $ with planes of constant time ¢ yield the surface
geometry X at this moment.

The motion of surface points is described by the scene flow, which yields
correspondences between points in surface manifolds at different time steps.
It is a time-dependent vector field v, : Xy — R3 which assignes to each point
on the surface its current speed. Thus, the integral curves of the scene flow
are the trajectories of surface points.

2.2 Multi-View (Geometry

An essential idea of most 3D reconstruction schemes is that the location of
3D scene points can be computed from their projections. Indeed, in theory,
if only two projections of the same 3D point p in two different views are
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Fig. 2.1. A surface evolving over time defines a hypersurface §), the space-time
geometry of the scene.

known, there is only one possibility for the location of p if the cameras are in
general positions. Fig. 2.2. Thus, one possible way to tackle the problem of
3D reconstruction lies in establishing those correspondences. In this section,
we will explore a few basic mathematical concepts of multi-view geometry. In
particular, we need the notion of the Fundamental matrixz, which is a basic
invariant of two-view geometry, relating a projected point in one view to its
epipolar lines in another.

In the following, we always deal with multi-camera setups, and denote
by {Cy,...,C,} our set of n cameras. At each time instant ¢, let Z! be the
image of camera C;. One of the main initial difficulties is to calibrate the
camera system, i.e. estimate the mapping m; : R® — R? of 3D points to
image coordinates for each of the cameras C;. In practice, m; is usually not
even projective linear, because of e.g. radial distortion one has to take into
account. This work is situated one step further in the reconstruction pipeline,
however, and we assume that all calibration has already been performed, and
all source images have been rectified. Thus, we assume that we know all of
the projection mappings, but keep in mind when designing our reconstruction
algorithms that they are not perfect, as they were estimated with a computer
vision technique themselves. The algorithms have to be robust enough to
handle unavoidable small errors in camera calibration.

Let us now consider two of the cameras, and assume they are in general
position. Their centers of projection are C; and C, through which 3D points
are projected onto the image planes II; and 11, respectively. If we fix p; € II;,
then every 3D point which projects onto p; lies on L(p;) = m; !(p;), which
is the line through p; and C;, also called the optical ray of p;. Fig. 2.2. Its
projection into the jth view

Fyi(pi) == mjom; ' (pi),
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L(pj)

Fji(pj)
Fij(ps)

Fig. 2.2. Epipolar Geometry. Given p, the point p; which corresponds to p; has
to lie on its epipolar line Fj;(p;), and vice versa. Given a valid correspondence, the
optical rays intersect in p, and the optical rays are coplanar with the baseline C;C;.
The intersections e; and e; of the baseline with the image planes are called the
epipoles.

is called the epipolar line of p in camera C}, and the mapping F;; the Fun-
damental mapping from C; to C;. We assume that all images are rectified,
so that the projections m; are projective linear and Fj;(p;) is indeed a line.
Under these conditions, F;; can be written as a 3 x 3 matrix F;;, where the
3-vector F;p; is exactly the projective representation of the epipolar line of
Di-

Definition. The 3 x 3 matrix F;;, which maps points in image ¢ onto
the projective representation of their epipolar line in image j, is called the
Fundamental matrix relating camera C; to camera C}.

In particular, let the point p; € II; correspond to p; € II;, which means
that both are projections of the same 3D point p. Then the optical rays L(p;)
and L(p;) intersect in p, and p; satisfies the epipolar constraint

This constraint holds for each and every pair of corresponding image points
p; € 1I; and p; € II;, so the Fundamental matrix is an invariant of the camera
setup. Obviously, piTF;f’;pj = 0 as well, and thus Fj; = Fz;

Knowledge of the Fundamental matrix is useful when searching for corre-
spondences of pixels. Given a point p; in one image, it is only necessary to
search for the corresponding pixel p; on the epipolar line F;;p;. Thus, the
two-dimensional search problem in the image plane II; is reduced to a one-
dimensional search. How far away one has to look is a function of the depth
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(a) Extruding the foreground object sil- (b) The voxel volume as defined by the
houettes in the source images defines gen- visual hull and its bounding box for two
eralized cones in space. Their intersection different time frames.

is the visual hull.

Fig. 2.3. Construction of the visual hull and the corresponding voxel volume.

of p;, i.e. its distance to the image plane. Many depth estimation algorithms
are based on this observation.

For certain camera configurations, the Fundamental matrix attains a very
special form, which will become important when we deal with rendering from
depth maps. This will be detailed in Chapter 12.

2.3 The Visual Hull

The visual hull is the best conservative approximation one can get from the
silhouettes of an object alone to the geometry of the object itself. Let O be an
object whose boundary is the closed surface Y. The projections S; := m;(X)
into the images are called the silhouettes of the object Y. Their reprojections
T, 1(Si) are generalized cones in space originating at the centers of projection
of the cameras, Fig. 2.3(a). If only the silhouette S; in an image is known,
then it is clear that the object itself has to lie within the reprojection 7; *(.S;).

This is true for every one of the cameras, so the image-based visual hull

is a conservative estimate of the object O in the sense that it is assured that
O C V. In the literature where the concept of the visual hull was introduced,
it was defined as the limit of ¥V when n converges towards the infinite number
of possible views. Our image-based visual hull thus has a larger volume than
the true visual hull, which in practice, however, only exists as a mathematical
concept. Experiments performed by Matusik et al. [78] suggest that the volume
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Fig. 2.4. Vozels vs. Level Sets. A voxel representation of the visual hull on a 32 x
32 x 32 regular grid (left) is compared to the level set reconstruction of the same
volume on the same grid (right).

converges quickly when the number of views is increased. When n > 15, the
volume of the image-based visual hull is typically only 5% larger than that of
the true visual hull.

The prerequisite for a succesful computation of the image-based visual
hull is a background subtraction. We explain in more detail how we perform
this image-processing step in our in-house system later in Chapter 7. In that
chapter, we also explain how the image-based visual hull can be computed
very efficienly, ideally even in real-time. For that reason, it is an excellent
initial estimate to scene geometry, and we make frequent use of it. Together
with the real-time rendering back-end from Chapter 13, we can even perform
aquisition, 3D reconstruction and free-viewpoint rendering of the visual hull
in an online system.

2.4 Geometry Models

An important design decision before implementing a reconstruction algorithm
is to choose a suitable internal representation for the geometry. A common
way to discretize a surface is to employ a triangle mesh. If the mesh encloses
a volume, i.e. the surface equals the boundary of a solid object, a volumetric
description either as a set of voxels or as a level set might be more appropriate.

Triangle meshes are the most widely used way to describe surfaces in
computer graphics. Since graphics hardware is usually optimized for rendering
triangles, they can be rapidly displayed without the need for fancy algorithms.
Also, the exact location of surface points is immediately accessible, unlike for
instance in the case of level sets. On the other hand, triangle meshes require
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non-trivial data structures for the edges and faces, which define the surface
topology. In particular, it is not easy to implement a surface evolution based
on meshes due to possible topology changes, which usually require complex
local operations involving the creation or deletion of edges, faces and vertices.
It is also difficult to avoid cases of mesh degeneration like unwanted self-
intersections of the surface.

Since we aim at implementing surface evolutions, we vote for a volumetric
representation instead. We express a surface 3 as the zero level set of a regular
function

u:R" - R, {0} = ¥,

ie. u(s)=0 & se . (22)

We require u to be positive inside the volume enclosed by 3/, and negative
on the outside. The space surrounding the surface is discretized into cells, for
which we usually choose a regular grid in order to ease numerical computa-
tions. Values of u in locations not on the grid are interpolated linearly.

A small drawback of the level set representation is that it requires a little
bit more effort to render the surface. One can either resort to volumetric
rendering, or apply an algorithm to extract the zero level-set as a triangle
mesh, i.e. Marching Cubes. This disadvantage, however, pales in comparison
to the gain, which is that one does not have to take care about topology
changes anymore. Instead, the topology of the surface adjusts implicitly as
the function values of u evolve according to an evolution equation. Thus, a
level set evolution is very easy to implement, although it requires some more
computational effort, because new values of u have to be computed in the
space surrounding X', which is one dimension higher than X itself.

Another widely used volumetric representation is to store the volume as
a set of voxels, small cubes which make up the whole volume. However, this
representation can just be viewed as a special case of a level set, if one defines
u on a grid made up of cubic cells, and allows only two values: u = 1 if that
particular cell is occupied by a voxel, u = —1 if the cell is empty. An advantage
is that some storage space can be saved, the drawback is that the volume is
much coarser, Fig. 2.4.

Both voxels and level sets have in common that the computation of the
visual hull is very easy and can be performed efficiently. Suitable algorithms
will be presented in Sect. 7.4. The visual hull is important for our work since
it forms a starting point for our reconstruction algorithms based on surface
evolution.
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2.5 Color Consistency and Constancy

In order to find matching pixels in different images or over time, almost all
3D reconstruction algorithms to date rely on some form of color consistency
and constancy assumptions. We refer to color consistency when we mean that
a point on an object which is observed in two different views has the same
color in both views. Mathematically speaking,

vi(p)vi(p) >0 = |lei(p) — ¢;()] = 0, (2.3)

where ¢;(p) := Z; o m;(p) is the observed color of a 3D point p in camera
image i, and v;(p) € {0,1} denotes whether it is visible or not. Obviously,
(2.3) is only valid for materials with special reflection properties. Usually, one
has to assume Lambertian reflection only, which is rarely the case in real-
world scenes. However, if the matching is robust in all areas without specular
reflection, continuity assumptions can enforce correct matching of occasional
highlights as well. But all in all, larger areas of non-Lambertian materials
remain a challenging problem for 3D reconstruction.

Color constancy refers to the assumption that the same point on a sur-
face which is observed over time leads to the same color in the image. This is
obviously an idealization as well, which assumes that the lighting stays con-
stant, and no other objects cast shadows on the observed point. For short
video sequences or scenes with artificial lighting, the former requirement is
in general at least approximately satisfied. The latter, however, can never be
guaranteed, so that we can only safely assume that the color remains constant
over certain connected parts of the trajectory, with occasional discontinuities.

More precisely, the trajectories of surface points are the integral curves (p;)
of the ordinary differential equation given by the scene flow v;:

op v
ot "
Thus, color constancy is equivalent to the requirement that
0 oLt
0= —c¢ = —(Dm;-v
ot i(pt) ot (D7 - vi)

almost everywhere on $).

In the discussion above, we neglect other problems with color. Sampling
errors are not discussed, and we discarded the fact that different cameras
might respond differently to the same input. Careful color calibration before
or after a recording is mandatory. This, however, is also beyond the scope of
this work, and we will from now on regard our image data as being perfect.
Still, we keep in mind that our matching has to be robust not only with respect
to camera calibration, but with respect to certain errors in color as well.
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Related Work

3.1 Overview

This work focusses on the 3D reconstruction part of the free-viewpoint video
pipeline, so naturally we devote most of the discussion of related work to this
topic. In the following three sections, we give an overview and classification
of existing 3D reconstruction algorithms, focussing on the two main topics of
depth reconstruction and surface reconstruction. Afterwards, we present pre-
vious systems for video-based rendering in Sect. 3.5, where authors address
at least several parts, if not the complete pipeline. There, we also cover pre-
vious work on free-viewpoint and dynamic light field rendering techniques,
since those algorithms are usually tied to a specific acquisition system and
geometry representation.

3.2 Classification of 3D Reconstruction Techniques

At the heart of all computer vision research lies the analysis and interpreta-
tion of visual information. We can only envy the ease with which the human
visual system performs these tasks, and indeed researchers base many algo-
rithms on cues which give the ability to perceive depth to us as well. Some
examples of these depth cues include binocular parallax, movement parallax,
accomodation, convergence, shades and shadows, linear perspective, an many
more [73].

While each of these cues is exploited by existing computer vision algo-
rithms, we want to focus on the ones which are based on color consistency, as
introduced in Sect. 2.5. A special incarnation is binocular parallax. From cor-
responding points in the image of the left and right eye, i.e. two retinal points
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Fig. 3.1. Our classification scheme for 3D reconstruction techniques. It is based
upon [70], but voxel models are merged into the branch of object-based methods,
while this branch exhibits a further distinction into the different geometry represen-
tations.

Pre-calibrated

mage-based

Voxel-based

which are the projection of the same 3D point, it is possible to infer the depth
of the point by triangulation, see Sect. 2.2. This triangulation procedure is
vital to the image-based algorithms for depth reconstruction we are going to
discuss. They differ mostly in the way how correspondences are found, and
how depth estimates for different pixels in different views are integrated into a
single geometric representation. On the other hand, object-based methods are
centered around the objects to be reconstructed. They try to find an optimal
geometry which optimally fits all images simultaneously, usually optimizing a
photo-consistency as well as a continuity constraint. Earlier approaches rely
on silhouette information alone.

In the classification scheme of Zhang et al. [70], image-based and object-
based methods belong to the category of pre-calibrated methods, which as-
sume a prior calibration of the camera. The other major category is made up
of online-calibrated methods. We decided to partly adopt their classification,
but make a further distinction in the branch of object-based reconstruction,
which we subdivide according to the representation of the geometry, Fig. 3.1.
We discuss pre-calibrated methods in the next section, and review online-
calibrated methods in Sect. 3.4.

3.3 Pre-calibrated Methods

All of our methods we present in this thesis are pre-calibrated. Prior calibra-
tion of the cameras is vital if one wishes to reconstruct a scene as accurately
as possible. Since we record videos in a studio environment, pre-calibration
is possible and beneficial. As stated before, we distinguish image-based and
object-based methods.
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3.3.1 Image-based methods

In image-based methods, one computes reconstructions from either sparsely
matched image-features, or dense stereo correspondences. They work best
if the cameras are densely packed and have near-parallel optical axes. We
presend an image-based depth reconstruction method in Part II.

During our review of previous methods of image-based depth reconstruc-
tion, we follow the classification of Scharstein and Szeliski [108]. Their tax-
onomy is well known and widely used in computer vision, and in their work
they also present an evaluation and comparison of the different algorithms.
We classify new methods developed after publication of their report according
to their scheme as well.

They observe that stereo algorithms generally perform a subset of four
different tasks:

1. Matching cost computation

2. Cost support aggregation

3. Disparity computation and optimization
4. Disparity refinement

The sequence of steps as well as the exact method employed in each step is
what defines each individual algorithm. We give an overview of strategies for
the four steps in the next sections, and review methods which use them. A
classification of existing algorithms according to their building blocks is given
in [108].

1. Matching Cost Computation. Traditional pixel-based matching cost
measures are squared intensity differences (SD), e.g. [47, 118], and absolute
intensity differences (AD), e.g. [56]. In video processing, those are well-known
as mean-squared error MSE and mean absolute difference MAD. The normal-
ized cross-correlation measure is also ancient [47, 105], and performs similarly
to SD.

More recent measures limit the influence of mismatches during aggrega-
tion, for instance truncated quadrics or contaminated Gaussians [10, 107].
Another class of interesting matching costs has the advantage of being insen-
sitive to camera gain and bias, among them gradient-based measures [112]
and rank or census transforms [144]. It can also be feasible to get rid of color
calibration problems using a pre-processing step for bias-gain or histogram
equalization [29].

More complex techniques compare phase or the response of filter banks [75,
54], or are insensitive to image-sampling [9]. The latter is achieved by not
only comparing shifts of pixels by integer amounts, but also comparing the
intensity of reference pixels against linearly interpolated intensity at non-
integer positions in another image.



22 3 Related Work

2. Cost Support Aggregation. The matching cost can be integrated by
summing or averaging over a local support region. In a first class of algorithms,
the support region is rectangular, and thus favoring fronto-parallel surfaces.
There, evidence aggregation is implemented using square windows or Gaussian
convolution, shiftable windows [12], and windows with adaptive sizes [87, 58].
In this case, the aggregation can be implemented efficiently using box filters.

The second class of methods uses a more general region instead of a rectan-
gular window, and supports slanted surfaces. Proposed aggregation functions
include limited disparity difference [45] and Pradzny’s coherence principle [98].

A different aggregation method is iterative diffusion, where the averag-
ing operation is implemented by repeatedly adding to each pixel’s cost the
weigthed costs of its neighbours [107].

3. Disparity Computation and Optimization. We distinguish local
methods and methods which rely on global optimization. Computing final dis-
parities in local methods is trivial, because all the work has already been done
in the cost computation and aggregation steps. The final disparity chosen is
just the one with the lowest cost, a scheme called “winner-take-all” optimiza-
tion (WTA). Unfortunately, this scheme is difficult to extend to the case of
multiple cameras, because a uniqueness of matches can only be enforced for
one image.

Global methods perform almost all of their work in the optimization phase,
often skipping the aggregation step. A popular formulation is an energy-
minimization framework, where the objective is to find a disparity function
A minimizing a global functional E(\). Our method, which we present in
the next part, is a global optimization method, aggregating normalized cross-
correlations over rectangular windows, and using graph cuts as an energy
optimization technique. The use of graph cuts for this task has been proposed
recently, and relies on the special form of the energy functional for disparity
assignments [62, 61, 104, 13, 52].

The energy functional usually contains a smoothness term in order to
enforce a regularization propery, which is a monotonically increasing func-
tion of disparity difference. [36] give a Bayesian interpretation of the rele-
vant energy functionals, while [126] propose a discontinuity-preserving energy
function based on Markov-Random-Fields and additional so-called line pro-
cesses. Line processes in turn can be subsumed by a robust regularization
framework [10]. The smoothness-enforcing term in the energy functional can
be made to depend on intensity gradients, lowering the penalties for non-
smoothness at likely edges [12, 13]. We also employ this idea in our method,
and judge from experiments that it has a vital impact on the quality of the
results.
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Other than with graph cuts, one can also employ various other methods in
order to find a minimum to the energy. Traditional methods include regular-
ization and Markov Random Fields [11], simulated annealing [36, 4], highest
confidence first [24], and mean-field annealing [35]. A different class of opti-
mization techniques uses dynamic programming. Those techniques are based
on the observation that a minimum for an independent scanline can be found
in polynomial time, while the minimization problem for the total dense dis-
parity map is NP-hard. The common idea is to compute the minimum-cost
path through the matrix of all pairwise matching costs between two corre-
sponding scanlines [6, 7]. Finally, cooperative algorithms, while performing
local computations, use non-linear operations yielding an overall behaviour
similar to a global optimization algorithm [107]. They are inspired by compu-
tational models of human vision, and among the earliest methods for disparity
computation [74, 128].

A special class of global optimization methods rely on partial differential
equations in order to compute the minimum of a non-discrete, continuous
matching functional [3, 33, 101]. In various ways, they are more closely related
to our surface reconstruction techniques presented Part III of the thesis. In
particular, what they do can be thought of as fitting a deformable surface to
the input images.

4. Disparity Refinement. With the exception of the PDE-based meth-
ods, all algorithms above compute the disparity assignments in a discrete
disparity space. For image-based rendering, this is not a desireable feature,
since the scene appears to be made up of several layers. To remedy this sit-
uation, a sub-pixel refinement stage can be applied after the initial discrete
correspondence stage. To achieve this, several methods have been proposed.
One possibility is iterative gradient descent, where a curve is fitted to the
matching costs at discrete disparity levels [105, 55|, requiring only minimal
additional computation cost.

Other ways of post-processing the disparities include cross-checking of
maps computed for several cameras [27, 34]. Outliers can be removed using
median-filters, and holes in the disparity map due to occlusions can be filled
by surface fitting or distributing neighbouring disparity estimates [7, 106].

Background Separation. Besides depth reconstruction, we address a
second problem in Part II: separation of the foreground of a scene from a
known background, which is another important prerequisite for several in-
teresting vision algorithms. In particular, the computation of the visual hull
relies entirely on object silhouette information [65, 78]. The kind of separation
we have in mind is most closely related to video matting techniques, several
of which are widely used. The blue screen method and multi-background mat-
ting rely on backgrounds with special mathematical properties and require
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a tightly controlled studio environment to be succesful [80, 120]. A common
method in production is rotoscoping, where the user is required to draw curves
around the foreground elements himself, assisted by several tools like auto-
matic adherence of the curves to image contours, or the tracking of curves
over time [25].

Our approach falls into a third category which uses clean plates, images
of the static background of the scene. Methods to date obtain the foreground
by subtracting or separating the known background from the current frame.
Opacities are assigned to color differences at each pixel via some user-defined
mapping [60]. It depends on statistically derived threshold values, and fails
in regions where the foreground is similar in color to the background, mostly
because it does not take into account spatial coherence. Making use of the
spatio-temporal context to improve the segmentation was also investigated
in [80, 94]. However, it has not yet been intertwined with simultaneous depth
estimation.

3.3.2 Object-based algorithms

Object-based algorithms focus on reconstructing objects directly, without
explicitly computing correspondences. Instead, they are based on photo-
consistency and continuity assumptions, and try to find geometry which opti-
mally satisfies the constraints. Older methods are based on silhouette informa-
tion alone. We further classify object-based algorithms according to the inter-
nal representation they adopt for the geometry. Voxel-based methods recover
a discrete, volumetric model, marking each cell in a reconstruction volume
as either occupied or empty. In some cases, a color is associated to each cell
as well. In contrast, surface-based methods recover a surface model directly,
for instance in the form of a triangle mesh or as a level set. The transition
between the different kinds of representations is smooth. As already pointed
out in Sect. 2.4, voxel models are essentially equivalent to special level set
representations. In turn, level sets and triangle meshes can be converted into
each other at will, using marching cubes or signed distance transforms, re-
spectively. The reconstruction algorithms, however, are usually tuned for a
specific kind of representation.

Voxel-based methods

Due to the relative ease with which they can be handled, voxel models of the
scene have been quite popular for some time. In particular, the visual hull can
be easily and quickly be computed as an approximate conservative model of
scene geometry [65, 76], and has been widely used as a geometry proxy for
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image-based rendering. Improved approaches use an octree representation for
the visual hull instead of voxels [97]. In voxel occupancy [122], the question of
whether a voxel is occupied or empty is reformulated as a labeling problem,
which is then solved via graph cuts. An additional smoothing term is provided
as well.

While the visual hull relies on silhouette information alone, much refined
voxel models can be obtained when color consistency is taken into account.
In space carving or voxel coloring approaches [114, 64], one starts with a
completely solid voxel model, and iteratively carves away voxels of bad photo-
consistency.

Surface-based methods

Surfaces can be represented in a variety of ways. Some researchers compute
the polygonal visual hull instead of a voxel model [68, 77]. A triangle mesh
optimizing photo-consistency for a number of views simultaneously using a
hierarchic, multi-resolution approach is computed in Heidrich et al. [63].

If one employs a deformable surface model of the geometry, variational
approaches are quite succesful. Here, the optimal surface is defined as the
one minimizing a certain error functional, which is given as an integral over a
surface. This functional is designed to enforce certain desireable properties like
photo-consistency. We review these methods in more detail in Sect. 7.3, when
we introduce our own surface-based reconstruction algorithm. The surface
evolution PDE arising from variational approaches can be implemented using
different geometry representations, among them level sets, triangle meshes
and, as shown recently by one in our group [69], point based models.

3.4 Online-calibrated Methods

We finally give a brief overview of online-calibrated 3D reconstruction tech-
niques, which we do not pursue further in this work. Those techniques are
required for certain recording scenarios where we do not have access to the
camera anymore, much less to its position in order to obtain an accurate cal-
ibration. This is always the case if one wants to reconstruct geometry from
some previously recorded video sequence.

Online-calibrated algorithms are further distinguished according to how
the calibration of the camera is computed. At present, two classes are most
important. Algorithms which fall into the class scene constraint take advan-
tage of special scene structures such as parallel lines within the scene. They
compute vanishing points in the principle directions in order to determine
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the intrinsic and extrinsic calibration parameters. Beforehand, a fundamental
matrix is estimated and a projective reconstruction is obtained by solving a
triangulation problem. This can be performed for all feature correspondences
and all views at once [132, 125]. Afterwards, closed form solutions for the
intrinsic parameters of the cameras can be obtained as a function of the van-
ishing points [14]. Vanishing points can be estimated via an accumulation of
detected parallel lines, followed by a search step [71, 102].

In contrast, algorithms belonging to the geometric constraint class do not
assume prior knowledge about scene structure. Camera parameters are esti-
mated using the projected image of the absolute conic, an abstract object
known from projective geometry [133]. An earlier approach [81, 48] relies on
Kruppa’s equations, which has the advantage of not requiring an additional
projective reconstruction, but has limitations in form of ambiguities in the
case of specific camera motions [124]. Finally, stratified self-calibration up-
grades from a projective to a metric reconstruction by estimating the infinite
homography in a first step, yielding an affine reconstruction, i.e. via the mod-
ulus constraint [96]. In a second step, the calibration matrix is estimated using
a linear algorithm. Compared to estimating the absolute conic directly, this
method has the advantage of not having to compute all parameters at the
same time, increasing numerical stability.

Unfortunately, self calibration and metric reconstruction is not possible for
all video sequences. Degenerate camera configurations and motion sequences
exist for which the process is ambigous. A complete catalog of critical motion
sequences is given in [123].

3.5 3D Video Systems

The development of 3D Video and 3D-TV follows advances recently made in
image-based rendering (IBR). In IBR, conventional photographs are used to
capture the visual appearance, the light field of a scene. Given sufficiently
many images from different viewpoints, any view of the scene from outside of
the convex hull of the recording positions can be reconstructed [66]. Unfortu-
nately, light field rendering quality depends on the number of photographs.
Very large numbers of images are necessary to attain convincing rendering
results [20]. Camera configuration constraints, however, can be relaxed by
adding more and more geometry to image-based systems, as demonstrated by
Lumigraphs [44]. Thus, a way to reduce the required number of images is to
employ computer vision algorithms to reconstruct 3D scene structure. Hybrid
model /image-based rendering methods based on the visual hull [78], per-image
depth maps [110] or even a complete 3D scene geometry model [139] achieve
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realistic rendering results from only a relatively small number of images. Fur-
thermore, programmable graphics hardware can be used to accelerate image-
based rendering by warping and resampling the recorded images [119, 109].
Appropriate representations for coding 3D audio/visual data are currently in-
vestigated by the MPEG-4 committee [121]. The MPEG-4 multiple auxiliary
components can encode depth maps and disparity information. But these are
not complete 3D representations and possible shortcomings and artifacts due
to DCT encoding and unrelated texture motion fields and depth or disparity
motion fields still need to be investigated.

We roughly classify the multitude of existing systems according to the kind
of geometry they are based upon. For almost every reconstruction method and
geometric representation covered in Sect. 3.3, there exists a corresponding
3D video system. Note that a strict distinction is not always possible, since
some systems work with several layers of different representations [28]. Purely
image-based methods, which do not require any geometry at all, as well as
depth image-based representations are covered first in the next subsection.
These are followed by methods which recover a voxel model in subsection 3.5.2,
mesh-based algorithms in subsection 3.5.3, and finally point-based and surfel
models in subsection 3.5.4.

3.5.1 Image- and Depth Image-based systems

Purely image-based representations [66] need many densely spaced cameras
for applications like 3D-TV [79]. Dynamic light field cameras [137, 143] which
have camera baselines of a couple of centimetres do not need any geometry at
all. Instead, novel views of sufficient quality can be generated by plain image
warping and blending only.

Depth image-based representations [5, 116], on the other hand, em-
ploy depth maps in order to extrapolate novel views from the source
images. Predominantly, those depth maps are computed by stereo algo-
rithms [147, 37, 143]. All stereo systems still require the camera baselines
to be reasonably small. Hence, scalability and flexibility in terms of camera
configurations can not be achieved.

Pollard and Hayes [95] utilize depth map representations for novel view
synthesis by morphing live video streams. This representation can suffer from
inconsistencies between different views. Mulligan and Daniilidis [84] target
telepresence. They compute geometric models from trinocular stereo depth
maps in a multi-camera framework from overlapping triplets of cameras, and
transmit texture and depth over a network.

A layered depth image representation for high-quality video view interpo-
lation has been proposed Zitnick et al. [147]. In their approach, reconstruction
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errors at depth discontinuities are smoothed out by Bayesian matting. Again,
this approach requires a quite dense camera setup to generate high-quality ren-
derings in a limited view range. Scalability to larger setups is not addressed
by the authors.

Good performance can be achieved by assisting the stereo reconstruction
with specialized hardware. Cockshott et al. [28] propose a 3D video studio
based on modular acquisition units and pattern-assisted stereo. For concurrent
texture acquisition, the patterns are projected using strobe lights requiring
custom-built hardware. Foreground objects are then modeled using implicit
surfaces.

Recently, special-purpose hardware solutions for real-time depth estima-
tion from video images have become available. 3DV Systems’ ZCamTM?!, and
Tyzx’s DeapSea chips? solve the problem of real-time depth reconstruction
and can be incorporated into most existing 3D video frameworks, including
ours. ZCams are already being employed by Redert et al. [100] for 3D video
broadcast applications.

3.5.2 Voxel-based systems

The methods described up until now did not estimate a full 3D model of scene
geometry. In contrast, the following representations start to describe objects
or the scene using time-varying 3D geometry, possibly with additional video
textures. All can work with almost arbitrary camera configurations. However,
since most existing systems reconstruct objects from their silhouettes, they
are restricted to foreground objects only.

Frequently, voxel representations are derived by volume- or space carving
methods [127]. Vedula et al. [135] achieve temporal coherence by introducing
a 6D model which includes motion information about each voxel, and addi-
tionally carving away voxels inconsistent with the estimated scene flow. The
3D video recorder presented by Wiirmlin et al. [141] stores a spatio-temporal
representation in which users can freely navigate.

Matusik et al. [77, 78] focus on real-time applications like 3D video con-
ferencing or instant 3D replays. In [78], they present an image-based 3D ac-
quisition system which computes the visual hull of an object in real time. It is
build on epipolar geometry and outputs a view-dependent layered depth im-
age representation. Their system neither exploits spatio-temporal coherence,
nor is it scalable in the number of cameras.

! http://wuw.3dvsystems.com
2 http://www.tyzx.com
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3.5.3 Mesh-based systems

Similarly to their voxel-based representation, Matusik et al. also base poly-
hedral visual hulls [77] on epipolar geometry, and provide view-independent
rendering through a mesh and texture representation. This approach shares
the same limitations and furthermore introduces interpolation artifacts due to
improper alignment of geometry and texture, a common drawback of mesh-
based methods.

The photo hull, defined as the largest shape photo-consistent with the
given images, is employed as a geometry proxy for their real-time system by
Li et al. [67]. Their hardware-accelerated rendering algorithm reconstructs the
photo hull implicitly during rendering.

Carranza et al. [16] present an offline 3D video system which employs an
a-priori shape model which is adapted to the observed outline of a human.
While this system is only able to capture pre-defined shapes, Theobalt et al.
extend it to estimate the underlying skeleton in a previous step [129].

Kanade et al. [57] and Narayanan et al. [86] fuse a collection of
range/intensity image pairs into a triangular texture-mapped mesh represen-
tation.

3.5.4 Point- or Surfel-based systems

A dynamic surfel sampling representation and algorithm for estimation of
dynamic appearance and 3D motion is presented by Carceroni and Kutu-
lakos [15]. In their work, a volumetric reconstruction is provided for a small
working volume.

The 3D video recorder [141] handles point-sampled 3D video data captured
by silhouette-based reconstruction algorithms and discusses data storage is-
sues. Gross et al. [46] developed a 3D video system based on a point sample
representation [140] for their telecollaboration system blue-c. No full scene
acquisition is possible with the last two systems, but almost arbitrary camera
configurations are possible. In a recent paper [136], however, they extend their
work to a scalable 3D video framework for capturing and rendering dynamic
scenes, which is not restricted to foreground objects anymore. Assisted by
the projection of structured patterns, they obtain depth maps via space-time
stereo, from which they construct a point-based model of the geometry.
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Depth Reconstruction






4

Overview

4.1 Depth Reconstruction

This part of the thesis deals with the reconstruction of dense disparity maps
from multiple video streams. A key requirement is a suitable camera setup.
Because local error measures are not robust against scene appearance vari-
ations recorded in wide-baseline camera setups, the proposed methods work
best if the cameras are densely packed for instance in one or multiple arrays.
Furthermore, all cameras should have parallel or at least near-parallel optical
axes.

Our goal, as always, is to perform scene reconstruction in order to be able
to render high-quality novel views of the scene. With this kind of camera
setups, the novel viewpoints are allowed to lie within the convex hull of the
recording camera’s positions. Suitable rendering techniques are explored later
in Chapter 12. In the following chapter, we discuss our basic algorithm of
choice, which is a depth reconstruction technique based on the succesful graph
cut method. We first extended it to perform a simultaneous segmentation into
static background and moving foreground, an important requirement for crisp
edges and thus realistic looking novel views. The final Chapter 6 of Part II
further extends the basic technique in that it employs a pre-processing stage
to improve local matching via a statistical analysis of the error distribution.
Furthermore, temporal coherence of the depth maps is enforced, increasing
the quality during playback by eliminating flickering artifacts due to temporal
depth discontinuities.

All algorithms presented in the following are tested with data obtained
with the Stanford Multi-Camera Array, which is described in Sect. 4.2, con-
cluding this introductory chapter.
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Fig. 4.1. The Stanford Multi-Camera Array consists of numerous CMOS camera
heads, arranged in a planar matrix and with aligned optical axes.

4.2 Acquisition Hardware

To record the light field of a static scene, it is customary practice to use one
single still-image camera and consecutively record multiple views by moving
the camera around the scene. For acquiring the temporally varying light field
of a dynamic scene, however, numerous video cameras are needed to record the
scene from multiple viewpoints simultaneously. In addition, all video cameras
must be synchronized to maintain temporal coherence among the recorded
images.

Because of the high hardware requirements, only a few laboratories are
currently able to record dense dynamic light fields [78, 89, 138]. The dy-
namic light field data used in this work has been captured with the Stanford
Multi-camera Array (SMCA) [138] which is currently being built at Stanford
University as part of the Immersive Television Project, Fig. 4.1. The SMCA
consists of multiple low-cost CMOS imagers, each providing 640 x 480-pixel
RGB resolution at 30 frames per second. The camera heads are aligned in par-
allel, capturing the scene’s light field in the two-plane parameterization [66].
Custom-built driver boards enable on-line pre-processing as well as MPEG-2
compression of each video stream. At 5 MBytes/sec per camera, up to 60
MPEG-encoded video streams can be streamed to one PC via the IEEE1394
High Performance Serial Interface Bus where the data is stored on a SCSI
hard drive.
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The use of more than one camera inevitably leads to mismatches in hue,
brightness and radial distortion among different camera images. These differ-
ences need to be minimized by careful calibration prior to further processing.
In addition, due to the design of the Light Field Video Camera, only MPEG-
compressed image data is available, causing quantization noise and blocking
artifacts in the images. The depth estimation algorithm described in the fol-
lowing chapter must be robust against these artifacts.
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Joint Depth and Background Estimation

5.1 Introduction

In the remainder of this part, we consider a scenario where we have multiple
views available from cameras which are packed in an array with parallel optical
axes. If one wants to interpolate a novel view in between cameras, it is certainly
not sufficient to just blend the two images together. Instead, one has to warp
each pixel into the novel view along the projected epipolar line. Exactly by
how much depends on the pixel’s disparity, which is related to its depth in
the scene, Fig. 12.1.

Thus, a pre-requisite for free-viewpoint video is to compute dense disparity
maps for each view. Another desireable feature is a subtraction of the static
background from the moving foreground of the scene. During rendering, this
enables warping the foreground independently of the background, and pre-
serves crisp contour curves along the foreground by avoiding blending with
background pixels. The visual quality is greatly enhanced.

Clearly, 3D-reconstruction as well as background separation benefit greatly
from a known solution to the respective other problem: If the static back-
ground pixels in an image are known, then these pixels must have the same
depth as the background, while all other pixels must be less deep. On the
other hand, if we know the depth of each pixel, then only pixels with a lesser
depth than the background can belong to the foreground.

In the following sections we describe an algorithm which exploits this in-
terdependency by addressing both problems simultaneously, assuming that we
have a set of fully calibrated cameras and an image of the static background
for each camera with at least approximate per-pixel depth information. Our
method is a generalization of the successful multi-view reconstruction algo-
rithm by Kolmogorov and Zabih [61]. Pixels are not only labeled by their
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depth, but also by an additional flag which indicates whether a pixel belongs
to the background or not. As in [61], the result of our depth reconstruction
and background separation algorithm is obtained as the minimum of an en-
ergy functional. Besides taking into account classic contraints from multi-view
stereo, it regards also the new considerations related to background as well.

Sect. 5.2 outlines the problem we want to solve precisely and introduces
the notation which is used throughout the rest of the chapter. The energy
functional we minimize is defined in Sect. 5.3, while Sect. 5.4 is devoted to the
method of graph cuts, which is used to perform this minimization. There, we
also give proof that this method is applicable to our energy functional. Results
we achieve by applying our algorithm to real-world as well as synthetic data
are demonstrated in Sect. 5.5. Finally we conclude with a summary and some
ideas for future work in Sect. 5.6.

5.2 Reconstruction Algorithm

We aim at reconstructing the 3D-geometry of a static scene captured by a
number of calibrated cameras directly from the images. The goal is to retrieve
depth maps, assigning a depth value to each pixel which defines its location in
3D-space. Simultaneously, we want to decide for every pixel whether it belongs
to the background of the scene, known from background images captured with
the same cameras. We assume that the depth of each pixel in the background
images can be estimated at least approximately. Pixels belonging to objects
present in the current image but not in the background image shall be tagged
as foreground.

Our algorithm is a true generalization of the multi-camera scene recon-
struction via graph cuts described in [61]. It shares all of its advantages:

e All input images are treated symmetrically,
e Visibility is handled properly,
e Spatial smoothness is imposed while discontinuity is preserved.

While our energy functional is different, we utilize a similar problem formu-
lation and notation, which we introduce now.

Input: The input to the algorithm is the set of pixels P, from each source
camera k together with the following mappings for every pixel p € P := |J, Pi:

Z(p)  The color value of the input image.

AZ (p) The value of the (discretely evaluated) Laplacian of
the input image.

B (p)  The color value of the background image.
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Output: The goal is to find the “best” mapping A\ : P — £ into a set of
labels £. The precise definition of “best” is given later. To each pixel is assigned
a label [ = (lg4, 1), which is a pair of values. This is our first generalization:
Labels not only encode depth, but also the new property of “backgroundness”.
The boolean value [, is true if and only if p is a background pixel, while [4
denotes the depth of p.

As is done in the original algorithm [61], the notion of “depth” we use is
a somewhat abstract one: Depth labels correspond to level sets of a function
D : R?® — R satisfying

e For all scene points P,Q € R3 and all cameras k:
P occludes @ in k = D(P) < D(Q).

This is obviously a very natural requirement for a function indicating depth.
The existence of such a function D implies that there is a way to define
depth globally, i.e. independent of a specific camera. The same constraint is
postulated in the original algorithm [61] as well as in voxel coloring [113].
An important special case in which the constraint is automatically satisfied
occurs when all cameras are located on one side of a plane Il looking at the
other side. The level sets of D can then be chosen as planes which lie parallel
to I1I.

Topology: The definition of the algorithm includes the topological prop-
erties of the input images. A set-theoretic description is given by assigning to
every p € P the following sets of pixels:

N A set of neighbors of p in Py excluding p where the
energy functional will encourage continuity.

Cp A neighborhood of p including p. These regions will
later be relevant for the computation of normalized
cross correlations which are used as a criterion for
photo-consistency.

Geometry: Finally, the geometric relations between pixels in different
images with regard to their current labels and the camera positions must be
specified. We encode these in the set J of interactions. First note that a pixel
p together with a label [ corresponds to a point in 3D-space via the projection
parameters of the camera. This point is denoted by (p,[). The interactions

now represent a notion of “nearness” of two 3D-points in the following sense,
Fig. 5.1:
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Level set {D = [4}
~ all points with depth [4

Camera j q q/  q is the pixel
H nearest to g/

Camera k

Fig. 5.1. Interactions and Occlusions. The 3D-points (p, [} and (g, [) interact, thus
{{p,1), (g, 1)} € J. On the other hand, (g, ") is occluded by (p, [} in its camera image,

so {(p, 1), (g, [/>} €9.

e A pair {(p,1), (g, )} belongs to J if and only if
1. ¢ € Py and p ¢ Py, i.e. p and ¢ must come from two different cameras.
2. q is the pixel nearest to the projection of (p,[) onto the image of cam-
era k.
Note that interacting pixels always have the same label. In particular,
foreground can only interact with foreground, background only with back-
ground, and both pixels must belong to the same level set of D.

The set O of occlusions will be used to enforce visibility constraints. It also
contains pairs of 3D-points and is defined as follows:

e A pair {(p,1),{g,I')} belongs to O if and only if {(p,1),(¢,()} € T and
[4 < ;. Geometrically this means that if (p,[) is projected onto ¢, then it
will occlude ¢ if and only if the depth assigned to p is smaller than the
depth assigned to q.

Energy minimization: As stated before, the algorithm tries to find the
“best” labelling A\ of pixels. Mathematically speaking, the best configuration
corresponds to the one that minimizes an energy functional E()\). This func-
tional encodes the high level knowledge about scene reconstruction: Unlikely
or impossible assignments of labels must be penalized, while very likely con-
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figurations must be enforced. A precise definition of the energy functional we
use is given in the next section.

5.3 The Energy Functional

The energy functional which is minimized by the algorithm can be written as
a sum of contributions by every single pixel and every possible pair of pixels:

EQ) = > [ENL, () + BELL (0 + EIN)
p,q€P

+ Z E’tl))ackground ()\) :
peP

The terms on the right hand side will be different from zero only if p and
q interact or occlude each other in certain configurations, or if p and ¢ are
neighbours. Thus, the sum runs in effect only over relatively few pairs of
points, which is of course very important for fast performance of the algorithm.
The positive weights a and 3 are the only free parameters of our method. Good
choices will be specified in Sect. 5.5. The goal of the graph cut algorithm in
Sect. 5.4 is to find an assignment A\ of labels to all pixels that is a local
minimum of F in a strong sense. We now give a detailed description of the
four contributing terms.

5.3.1 Photo-consistency term

For interacting pixels sharing similar characteristics, we issue a photo-
consistency bonus. This reflects the fact that if a 3D-point is projected onto a
pixel p in one image and a pixel g in another and is visible in both images, then
pixels in the neighbourhoods C, and C, should be similar. Mathematically, we
set

hot :
phioto otherwise.

BRI () m {gcm a) it {(p. A®)), (. M)} €7,

The correlation term C(p,q) € [0,1] must be small if C, differs from C, and
large if the local pixel neighbourhoods are very similar. We found experi-
mentally that a very good criterion is the statistical measure obtained by
computing

e The normalized cross-correlation! between the sets of color values Z (C,)
and 7 (C,), taking the minimal correlation among the three color channels,
and

! Cross-correlations in our sense are always positive numbers. If the result from the
computation is negative, it is set to zero.
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e The normalized cross-correlation between the sets of Laplacians AZ (C,)
and AZ (C,), again computing the three color channels separately and
taking the minimum.

A weighted average of these two values is then assigned to C(p,q). In both
cases the neighborhoods we use are square 3 x 3 pixel windows surrounding
the points.

Indeed, this scheme has theoretical advantages as well. Especially in real-
world data, correlations are much more robust than some kind of distance
measure between the color values: Stereo images taken simultaneously by dif-
ferent cameras often have significantly different color values even for corre-
sponding pixels, because the response of the cameras to the same signal is not
identical. This effect can be somewhat reduced by careful calibration, but it
remains a principal problem. Since correlation measures statistical similarity,
not absolute similarity in values, it yields more reliable results even with un-
calibrated images. This is especially true for neighbourhoods containing edges,
which are generally more easily matched.

To further encourage that image features like edges and corners are
matched with their counterparts in other images, we include the correlation
of the Laplacian of the image into C(p,q). Small additional improvements
in quality can also be achieved by matching other characteristics like partial
derivatives or even the coefficients of local Fourier expansions, see related work
on local matching in Sect. 3.3.1. Possible benefits, however, are found to be
very small when compared to the increase in computational cost.

5.3.2 Smoothness term

Drastic changes in depth or transitions from background to foreground are
usually accompanied by image features. We transfer this simple observation
into the smoothness energy

EP () = VPO(A(p), AQ),

smooth
where VA4(LT) — 0 ifggN,orl=1, |
2Lmax — ||1AZ (p)]|oe — [|[AZ (¢)]|cc  otherwise.

If the pixels are neighbors, it penalizes changes in depth or “backgroundness”
if image colors vary only slightly in the neighborhood of p or q. We enforce
smoothness only in the four nearest neighbors, of which the set N, consists
in our case. The Laplacian of the image is used as a simple edge detector.
Exchanging the Laplacian for a more sophisticated edge detector is, of course,
conceivable. The maximum norm in the above definition denotes the max-
imum of all color channels, so a change in any channel is sufficient for the
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presence of a feature, which is a natural assumption. L,y is the largest pos-
sible absolute value for the Laplacian, which depends on color encoding and
level of discretisation. It is thus assured that EP? . (X) > 0, an intuitive
requirement since discontinuity should never result in an energy bonus, but

which is also important for technical reasons described in the proof later on.

5.3.3 Visibility constraints

Certain configurations of labels are impossible because of occlusions. If camera
j sees pixel p at depth [4, and the projection of (p,[) into another image is
pixel g, then it is of course not possible that ¢ has a larger depth than p. These
illegal configurations are precisely the ones captured by the set of occlusions,
so we forbid them by assigning an infinite energy

EPA(y) {oo if {(p, A(p)) , (0, M@))} € O,

vis 0 otherwise.

5.3.4 Background term

For the classification of pixels as background pixels we again use normalized
cross-correlations Cy(p), this time computed between the ordered sets of image
colors Z (N,) and background colors B (N,). We penalize good correlations of
the image values with the background values if A does not classify p as a
background pixel. A second constraint is the background depth: If A\y(p) =
true, i.e. p belongs to the background, then p must have the same depth by(p)
as the background. This results in the following formula:

(Cy(p)  if A(p)y = false,
00 if A(p)p = true
Egackground<)\) =
and A(p)a 7 ba(p),
L0 otherwise.

In image areas with few texture information, it is often the case that the
correlation Cy(p) is low even if p is really a background pixel. For this reason
we do not penalize low correlations when the current labelling A classifies p
as background.

In the following section we reference an algorithm which efficiently com-
putes a local minimum of the energy functional defined above.
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5.4 Energy Minimisation

In this section we give a formal proof that graph cuts can be used to find
a strong? local minimum of our energy functional. The algorithm works by
iterating over all labels, deciding in each step which pixels have to be changed
to the current label in order to reduce the energy. One can start with any
valid configuration \g with E()\g) < co. An obvious choice is to set each pixel
to the maximum possible depth and tag it as foreground. Since the energy is
always reduced and impossible configurations have infitine energy, only valid
configurations can be generated. We will now investigate a single step of the
iteration in more detail.

Let A be the current label configuration of all pixels and a the current
label considered. Any set of pixels A C P determines a new labelling A 4 ¢ via
an a-expansion: Set for every p € P

Malp) = a if pe A,
A= A(p) otherwise.

The goal of each step is to determine A, i.e. the set of pixels to be assigned
label a, such that the energy becomes smaller if at all possible, otherwise it
should stay the same — formally we want EF(A4.q) < E(A). A very efficient
algorithm achieving this uses graph cuts and is described in detail in [62]. We
do not repeat this construction here and only prove that it can be applied to
our case.

First the energy funcional must be rewritten in a way which captures
energy changes during the possible a-expansions. Therefore we number the
pixels in P,

P = {pla"'apN}a

and define for each i = 1,..., N a function of a binary variable
if r =1
o, : {0,1} = £, oi(x) = ° n .

A(p;)  otherwise.

We can now define an energy E) g depending on N binary variables which
encode whether the label of the corresponding pixel is changed during the
a-expansion or not:
Exa:{0,1}V =R,
E)\,a(CC) = E(O’l(xl), ce ,O'N(CEN)).

? “strong” in the same sense as in [13]
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The task of finding the set A is then equivalent to the task of finding a vector
z e {0,1}7V.

In consideration of Theorem 3 in [62], it is sufficient to prove the following
lemma for the energy functional E defined in the last section.

Lemma. Determine functions E* and E* of one or two binary variables,
respectively, such that for all x € {0,1}V

Eya(x) = Z E'(z;) + Z B (x;,24).

1<i<N 1<i<j<N
Then each term E%J satisfies the condition
E%(0,0) + E%(1,1) < E“(0,1) 4+ E*(1,0).

Proof. Since only terms depending on a single point or a pair of different
points contribute to ) q, rewriting the functional in the above way is possible.
Indeed, it is easy to verify that the choice of

2Ei’j($z’,$j) — Epz',pj ()\a:> + Epi,pj ()\x) + E’Pz’,pj ()\x)

photo smooth vis
A if zp, =0,

with A, (pr) : = (Pr) b
a otherwise,

together with the obvious choice for E* accomplishes the desired result and
that all expressions are uniquely determined. The factor “2” stems from sym-
metry in ¢ and j, which is exploited to reduce the number of contributions to
the ones where 7 < j.

Because of linearity it is sufficient to prove the inequality for the three
different terms of the sum independently. The visibility term is the same as
in [61], so there remains nothing to prove. The same applies to the photo-
consistency term: Although ours is different, it is also non-positive, which was
the only condition necessary. Thus we only have to investigate the smoothness
term. Again in view of [61], two conditions are sufficient:

o VPuPi([ 1) =0 for any label [ € £, this is obvious by definition.
e The triangle inequality: for all labels [,I' € £,

VPP (1) < VPP ([ a) + VPP (a,l').

Suppose it was wrong, then a necessary consequence is VPiPi([,1") # 0,
VPiPi([;a) = 0 and VPiPi(a,l') = 0. But this implies [ # [' as well as
[ = a =1, which is a contradiction.

The argumentation now proceeds as in the original proof [61, Sect. 4.2].
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Fig. 5.2. Dependence of the depth estimation and background segmentation error
on the amount of Gaussian noise added to the image in Fig. 5.4.

5.5 Results

We test the quality of the depth maps computed by our method in conjunc-
tion with our real-time dynamic light field rendering application presented in
Chapter 12. The system is capable of rendering scenes from novel viewpoints
inside the window spawned by the cameras. The quality of the rendering
mainly depends on good per-pixel depth information. We use data from the
Stanford light field camera, a 3 x 2 array of CMOS imagers, which we in-
troduced in Sect. 4.2. The cameras are relatively far apart in our examples,
which makes 3D-reconstruction more difficult due to the large disparity range
from 3 to 34 pixels at an image resolution of 320 x 240 pixels. There are also
dissimilarities in the color reproduction of the cameras, as well as artifacts
due to MPEG compressiong during acquisition, imposing a further challenge
onto color matching.

Fig. 5.3 depicts a frame of the sequence and the static background from
one camera as well as the results from depth estimation and background sep-
aration. We extended our original rendering algorithm to make use of the ad-
ditional background separation. It now renders first the constant background
from the novel viewpoint, and then splats the foreground onto it. This method
results in sharper edges and little bluriness in the final result. The overall
sharpness in our rendering results indicates that the depth maps are in most
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Fig. 5.3. Top: Real-world scene image and background image captured by a CMOS
camera. Bottom: The reconstructed depth labels (brightness-coded) and the detected
foreground.

areas very accurate, since each pixel is the result of a blending scheme where
the two source images are weighted equally.

For a more formal verification of our method, we render a complex syn-
thetic scene from four different viewpoints and use the Z-Buffer to obtain true
per-pixel depth information. We run our algorithm to reconstruct depth and
background information and compare the outcome with the known ground
truth. Fig. 5.4 shows an image of the scene and some of the results. The
reconstruction error is defined as the percentage of pixels for which a depth
value is computed that is off by more than one pixel in disparity. Results from
the new algorithm with background separation are compared to results with
background separation turned off in order to demonstrate the benefits of our
method in comparison to [61], Fig. 5.2. In the case with background separa-
tion, the percentage of pixels which are wrongly classified as background or
foreground is also determined.

To verify the robustness of our algorithm, we perturb the color values
of the input images with a preset amount of noise. To each color channel
in each pixel we add a random number from a Gaussian distribution with
mean zero and standard deviation o. Here the true strength of our algorithm
becomes evident. The residual error is already almost halved when compared
to the original algorithm in the noiseless case, but the results of our new
method remain well below 5% error even when a significant amount of noise
is introduced. For the final case of ¢ = 15, the results from the algorithm
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Fig. 5.4. Top-left: Synthetic scene of the position right before the famous com-
bination in the Immergrine Partie, Anderssen-Dufresne 1852. White to move and
checkmate. Top-right: Result of the background subtraction. Bottom: Reconstructed
depth labels and the distribution of the residual depth error compared to the known
ground truth. The amount of Gaussian noise added was set o = 5.

without background separation are almost useless, while our algorithm quite
robustly gives only 4.9% faulty assigned pixels.

Both methods are running using optimal parameters, which are found
to be the same in both cases - we experimentally determined a = 0.6 and
6 = 0.4. Fig. 5.4 displays the result of our reconstruction with a noise standard
deviation of o = 5. Disparity values range from 2 to 20 pixels.

After 30 seconds of one-time initialization to precompute all correlations,
one full cycle of iterations over all labels takes 65 seconds on a 1.8GHz Pen-
tium III Xeon. We found that usually about four cycles are needed for conver-
gence to the final result, so it takes a total amount of 290 seconds to compute
all data for four 320 x 240 pixel images. Note that the number of labels and
thus the iteration time is halved when background separation is turned off.

5.6 Conclusions

We have presented a homogenous approach to simultaneous 3D-reconstruction
and background separation from multiple views of the same scene. Our re-
sults clearly demonstrate that a joint solution benefits both problems: The
continous background feedback from the current estimate improves the re-
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construction and vice versa. Moreover, it is a natural generalisation of an
already very successful reconstruction method based on minimising a discrete
energy functional via graph cuts. Existing code can be easily adapted to in-
clude background separation.

Since the algorithm is extremely flexible, it is possible to incorporate even
more visual clues into its unifying framework. The next chapter will investi-
gating how to exploit temporal coherence in video streams to further improve
the reconstruction quality.






6

Temporally Coherent Depth

6.1 Introduction

While the depth reconstruction technique presented in the last chapter was
restricted to static scenes, an important visual clue available in video se-
quences is temporal coherence. For example, it is highly unlikely that large
background regions suddenly turn into foreground, or that the depth of a
region changes dramatically without accompanying changes in color. In this
chapter, we present a way to consistently estimate depth by exploiting spa-
tial as well as temporal coherence constraints. Our general framework for the
reconstruction is still the global minimization of a discrete energy functional.
The minimum of the functional yields the final reconstruction result. In partic-
ular, the important advantages we inherit include that all cameras are treated
symmetrically, and that visibility is handled properly.

Our method automatically integrates several visual clues into one common
mathematical framework. We take into account local criteria like correlations
between pixel neighborhoods, as well as groupings of pixels with regard to
color values and background similarity. Temporal coherence of the resulting
depth maps is enforced and is found to greatly increase estimation accuracy
and robustness.

The algorithm relies on a number of different visual clues. In order to
handle them in a structured way, our system is separated into two components.
The first and central component pre-processes the input data. All images are
statistically analyzed in order to estimate the significance of each clue. Based
on a few obvious assumptions, the clues are automatically weighted against
each other. No user-defined parameter is required during the whole process,
in contrast to the ealier method. The pre-processing stage works in part on
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a purely local basis comparing pixel neighborhoods, but it also exploits non-
local attributes relying on an initial grouping of pixels.

As the second key component of our algorithm, we utilize the global re-
construction method based on an energy minimization via graph cuts. Both
components are connected by letting the initial pre-processing determine the
parameters of the energy functional to be minimized. That way, both com-
ponents work hand in hand, and a unifying mathematical formulation can be
found for the description of the algorithm. A nice side effect is that the original
static version of the algorithm from the last chapter is also improved by elim-
inating the need for user-defined coupling constants in the energy functional.
The new energy functional consists of five contributions:

E = Ephoto + Evis + Esmooth + Ebg + Ealloca (61)

describing photo consistency, visibility constraints, smoothness constraints,
background similarity and the initial allocation, respectively. The photo-
consistency term issues a bonus if two pixels which are the projections of
the same 3D point have similar neighborhoods. Visibility constraints rule out
illegal configurations and guarantee that all depth maps in a single time-step
are consistent with each other. Spatial smoothness in low-gradient regions is
enforced by the smoothness term, while the background term encourages pixels
with high similarity to the background to be tagged as background. A novel
term is the last one, which introduces an nitial allocation for each pixel’s
depth.

We proceed by introducing the pre-processing stage in the next section. All
results of this pre-processing stage are encoded into the global energy func-
tional defined in Sect. 6.3. We show that it can be minimized with Kolmogorov
and Zabih’s powerful graph cut technique [61] as well. Results presented in
Sect. 6.4 demonstrate significant improvements in accuracy and robustness
when compared to our previous method. We conclude with some ideas for
future work in Sect. 6.5.

6.2 Pre-processing

The image properties taken into account in our approach can be divided into
two categories. Local data denotes pixel characteristics that depend only on
single pixels plus a 3 x 3 neighborhood on which normalized cross correlations
are computed. Local constraints are derived from photo-consistency require-
ments between pixels which are projections of the same 3D point. Pixels in
different images corresponding to the same 3D point are called interacting
pixels.
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(a) Example tuples of correlations with high statistical significance.
The top three rows show the k = 3 input tuples, the bottom row
the final tuple after weighting. The left result is obtained by simple
averaging with equal weights. On the right side, the result is ob-
tained using the more sophisticated scheme described in the text.
Darker bars mark the ratio of mass used to compute the weight. The
maximum is clearly enhanced, while insignificant noise is supressed.
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(b) The same graphs for example tuples with low statistical signifi-
cance. The three potential matches are enhanced, but the final con-
fidence is low, because only a third of the mass is centered around
the maximum.

Fig. 6.1. Depth estimate and confidence from local characteristics: The graphs on
the left show initial tuples of correlations with depth marked on the x-axis. Depicted
on the right are graphs of the same tuples with enhanced local maxima, illustrating
the weighting process described in the text.

On the other hand, group data is non-local in nature and denotes properties
that are averaged over a larger region of pixels. An initial grouping of pixels
into regions is performed with respect to similar color and background differ-
ence characteristics of pixels. It tends to stabilize the result and to eliminate
outliers, as explained later.

The following subsections focus on these two different kinds of pixel charac-
teristics, explaining in detail how we obtain them and how they are embedded
in the larger context. It is very important to note that the local properties
of pixels as well as regional properties of groups computed in this section are
only an initial estimate. This is also true for the grouping itself: Pixels within
the same group can and often will have different depths in the end. The final
step in scene reconstruction is truly global in nature. The global integration
based on minimizing the energy functional constructed from the local data
accomplishes this task, Sect. 6.3.
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6.2.1 Local Data

Fix a pixel p in one of the source images and regard its correspondence in
a different source image J. Let [m, M| be the disparity search range. Fach
depth value d € [m, M| defines a 3D point (p, d), which has in turn a projec-
tion ¢ in J. We aim at finding a measure x,, for the similarity between the
neighborhoods of p and ¢ as well as a measure a,, for the confidence of this
estimate. If both are high, it is likely that the correct depth for p is d.

To this end, we first compute k different similarity criteria as are widely
used in stereo matching. Typically, we use k = 3 criteria: The first one is the
correlation between the color values, the second one the inverse maximum dif-
ference between the color values. As a third one, we compute the correlation
between the Laplacians of the images in order to encourage high-frequency
image features to be mapped onto their counterparts in 7. Experiments with
correlations between partial derivatives indicate that they do not further im-

prove the result. We end up with tuples (x}(d))iL,, of values between 0 and 1
for each depth label and for each criterion : =1,..., k.

For the final similarity measure Y4, these tuples have to be weighted de-
pending on their relative relevance. Instead of demanding user-supplied global
weights, we estimate the statistical significance of each tuple individually. To
this end, we first linearly scale the tuple, mapping the range as follows:

'] = [0,7]

where p' := a]\\?g(xé(d)) and v’ := g%x(xé(d)).
d=m =m

Results are clamped to [0,1]. This step emphasizes maxima in a tuple while
discarding correlations with high uncertainty, Fig. 6.1. Afterwards, we com-
pute a weight o for each tuple. We assume that a tuple is statistically more
significant if most of the mass is centered around its maximum:

i X(d =) 4G (d) £ G (d, + 1)
> e Xb(d)

assuming that the maximum v* is attained in di. Using these weights, the
final similarity for each interacting pixel ¢ is computed. With ¢ being the
projection of (p,d) into image J, we define x,, to be the weighted average

k i
o = i1 @' Xp(d)
" Zf:1 o

Y

The confidence o, of the final estimate is set to the maximum weight
max;(a"). Note that it depends only on p, and a,; = agp.
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So far, we have compared only small neighborhoods of individual pairs
of pixels at a single time step. We now turn our attention to data which is
non-local in nature and depends on larger regions in the image. In addition,
we take into account the estimates from the previous time step to enforce
temporal consistency.

6.2.2 Group Data

In previous algorithms, outliers are eliminated by the smoothness term in the
energy functional whose influence has to be high to supress outliers with high
statistical evidence. As a consequence, the result is often oversmoothed, since
the parameter determining smoothness is defined globally. Instead, we elimi-
nate outliers locally at an early stage during reconstruction. This is achieved
by an initial grouping of the pixels with respect to their similarity in color
and background difference. Averaged values are then assigned to the resulting
groups.

Grouping pixels. The grouping is performed separately for each input
image Z by a variant of the Recursive Shortest Spanning Tree (RSST) al-
gorithm [83]. Initially, each group contains only one pixel. Hence we have
G, = {p}, where we denote with G, the group a pixel p belongs to. The fol-
lowing characteristics of each group G are used during the clustering process:

te(G) Average color value of all pixels in the group

0.(G) Standard deviation of color values

op(G) Standard deviation of the error between the
current frame and the background frame, av-
eraged over all pixels in the group

Only adjacent groups are merged based on a cost function k. The adjacent
group with the lowest cost is selected for merging. This cost function keeps
the statistical significance of the grouping as high as possible and minimizes
the standard deviation of the resulting merged group:

k(G,H) == 0.(GUH) + op(GUH).

A merge is rejected when the cost function exceeds a threshold value. Merg-
ing of groups stops when the cost for merging any adjacent pair of groups
exceeds this threshold. We have to choose the threshold such that a good
compromise between over- and undersegmentation is obtained. A threshold
value of 0.30.(Z) + 0.10,(Z) works well in practice, and it is used for all our
test sequences presented.

Most likely depth of the group. After the grouping is complete, we
compute some more characteristics for each group G. The first one is the initial



(b) Left: Initial depth allocation based on local correlations alone. Right:
Estimated confidence of the initial depth allocation: Bright areas indicate
high confidence. Note that most areas in which depth is grossly wrong
have only a very low estimated confidence. Accordingly, a depth map
computed only from this local evidence alone exhibits inaccuracies.

(c) Left: Difference between current frame and background frame. Note
the white regions within the people’s silhouettes. Right: Total accumu-
lated foreground evidence. Although the result is far more decisive than
the difference image alone, it is still not possible to correctly retrieve the
foreground region by simple thresholding.

Fig. 6.2. Results after pre-processing the real-world sequence.

depth allocation d. (G) of the group based on the local correlation data xpq
and ay,. Choose a pixel p € G. For each depth d, let Qg ={q1,...,qn} be the
set of pixels which interact with p at depth d, i.e., which are projections of
(p,d) into any other of the source images. We assign to depth d the likelihood
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od
Xp = E Qpg * Xpg-
qeQd

The depth ch with maximum likelihood is selected as the depth estimate for
p with confidence
Oy i= max (g ).
p o g( pq)
We finally compute the initial depth allocation of the group G as the weighted
average of the group’s pixel depths:

zpeg Qpdyp
d. (G) = —/—/—.

Zpeg Qp
The confidence v, (G) of the group’s estimate is set to the average of &, over
all p € G. If the estimate is smaller than the depth of the background, it is
discarded by setting its confidence to zero.

Temporal Coherence. In order to enforce temporal coherence, we at-
tempt to find for each group G pixels in the previous time-step which belong
to the history of G. We use a very conservative estimate and check for each
pixel p € G whether or not ¢~ (p) fits into G. If it does, it is likely that it either
belongs to the past version of G or to an object which G is part of. In both
cases, the labelling A~ (p) from the previous time-step is a good estimate for
the correct label of pixels in G in the current time-step.

We use the following function to determine whether a color value c fits
into a group G:

fits(c,G) := max (0, 7c(9) — [|e(9) = clloo) -

It is positive whenever the error between ¢ and the average color p.(G) is
smaller than the standard deviation o.(G) of the colors. The set of pixels
which is assumed to lie in the history of G is then

G~ = {peg :fits(c” (p),G) >0}

We can now write down an equation for another initial estimate d;(G) for the
depth of G which relies on temporal coherence:

di(G) = avg{)\_(p)d i pE Q_}.

It has an associated confidence of 14(G) := ||G™|| / ||G]], i-e., it is equal to the
ratio of pixels contributing to the estimate.
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We now compare the disparity estimate d. (G) obtained from local neigh-
borhood correlations with the estimate d;(G) from temporal coherence. First,
the final estimate d (G) for the group’s depth is set to

_Jde(G) ifve(G) > w(9),
419) = {dt(g) if v4(G) > . (G).

If d. (G) and d;(G) differ by at most one pixel, we award it with a synergy
bonus and set the final confidence to

v(G) = v (9) +1:(9).

Otherwise, the confidences cancel each other out:

v(G) = max(ve (G),1:(9)) — min(ve (9), v4(G))-

Temporal coherence also plays a role in background subtraction, as de-
scribed later.

Background and Foreground Evidence. Using the background images
and the data computed in the previous steps, the total evidence for each group
G to belong to the background or to the foreground is now accumulated in the
values 3(G) and ¢(G), respectively. Let Ay be the error between current image
and background image, averaged over all pixels belonging to G. Initially, the
evidence values are then set to

B(G) == (2—24)°
and ¢(G) := (4Ab)2,

indicating strong foreground evidence if the pixel is very different from the
background and somewhat smaller evidence for background otherwise. After-
wards, we increase the evidence for foreground if the group estimate for the
depth differs significantly from the depth of the background. Let d, be the
averaged depth of the group’s background, then

v(G) if|dy, —d(G)]>1,

0 otherwise.

P(G) — ¢o(9) + {

Additional strong evidence for foreground can be derived from the history
of G. Let

G, = {peg: A (p)=true}

be the set of pixels belonging to G which were background in the previous
frame. It is clear that if G is also background, then all pixels in G, must
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fit into G since they are static, thus G,- C G~. We increase the foreground
evidence by the ratio of pixels not satisfying this relation:

Note that all of the accumulated foreground evidence is compulsive in the
sense that if it is accurate, the pixel must actually belong to the foreground. On
the other hand, the pixel does not necessarily have to belong to the background
even if it has similar color and depth. Because of this, we let very strong
foreground evidence always overrule background evidence:

B(G) «— max(0, B(G) — ¢(G)).

Now all local and regional statistical data is computed. Of course, all the
different visual clues described in this section have numerous other interre-
lationships not covered by our equations. However, our experiments indicate
that those we present here have the strongest impact. All of them were tested
individually for their ability to improve the final result.

We have now derived all terms we need for Eq. (6.1) and are in the position
to construct the energy functional whose minimum yields the final global
depth and background separation estimate.

Variable| Meaning

Xpgq Similarity of the neighborhoods of pixels p and ¢
Qlpg Estimate for the confidence of xpq

1e(G)  |Average color of the pixels in G.

o0.(G) |Standard deviation of the color values.

»(G) Evidence for G to belong to the foreground

B(G) Evidence for G to belong to the background
d(G) Initial estimate for the groups depth

v(G) |Estimate for the confidence of d (G)

Table 6.1. Overview of the data used in the energy functional.

6.3 The Energy Functional

In the global estimation step, the locally and regionally obtained estimates are
integrated into one global reconstruction framework. This process is guided
by a functional assigning a scalar energy value to any configuration of labels.
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Fig. 6.3. Background subtraction and final depth map after global energy mini-
mization. The result is improved compared to the one from the original algorithm,
Fig. 5.3, in particular the depth estimates in the foreground region (head, legs,
arms).

It can be written as a sum of contributions by every single pixel and every
possible pair of pixels:

EQ) = > [ELL() + BRI + Bhn (V)|

p,q€P

i Z {Egackground(/\) + Eﬁlloc()\)}'
pEP

The terms on the right hand side will be different from zero only if p and q
interact or occlude each other in configuration A, or if p and ¢ are neighbors.
In effect, the sum runs only over relatively few pairs of points. Note that
there are no weights in the functional and thus we do not need any free
parameters. The relative importance of the different terms is based on the
statistical evidence derived in the pre-processing step. The minimization of the
functional is performed by a graph cut method, which is thouroughly described
and investigated in [61]. We will now explain the different contributions in
more detail and continue with a discussion of the applicability of graph cuts
at the end of the section. While a few terms are similar to the ones in the last
chapter, there are subtle changes because of the pre-processing, so we discuss
them here.

Photo-consistency term. If a 3D point is projected onto a pixel p in one
image and onto a pixel ¢ in another image, and if it is visible in both images,
we issue a photo-consistency bonus. In all other cases this term is zero. The
bonus is based on the similarity x,, and its confidence «,, computed in the
pre-processing step:

Elte(A) = _(2042%1)2 “Xpa — Lpg-

photo
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In order to render the estimate less local and thus more stable, we also award a
bonus with regard to the characteristics of the pixels’ groups, which is encoded
in I,,. We define

Ipq = fits(c(p),Gq) + fits(c(q),Gp) = 0,

where the previously defined function fits measures how good the color in
the first argument fits into the group in the second argument. If the error
between the pixel’s color and the group’s average color is larger than the
standard deviation of the colors in the group, there is no bonus anymore.

Smoothness term. As this term imposes spatial smoothness within the
depth maps of the images, it is non-zero only if p and ¢ are neighbors in the
same image with respect to the standard four-connectivity. Drastic changes
in depth or transitions from background to foreground are more likely at
places where the characteristics of the pixels change significantly. We use the
grouping of pixels based on their characteristics as a measure of their similar-
ity. Changes within groups are very expensive, while the price for changes at
group boundaries depends on the similarity of the colors of the pixel’s groups.
Mathematically, the smoothness energy is defined as

Bt o) = VPU(A(p), Mq)),
0if (=T,

here VP4([,1') :=
where ( ) {1 i H,Lbc(gp) _ Mc(gq)Hgo otherwise.

Visibility constraints. Certain configurations of labels are impossible
because of occlusions. If camera j sees pixel p at depth [, and the projection
of (p, ) into another image is pixel ¢, then it is, of course, not possible that
q has a larger depth than p. If this is the case, an infinite energy is assigned
to E:9(\) to rule out illegal configurations. Otherwise, the term is zero.

Background term. The evidence for p to be background or foreground
is encoded into the values (5(G,) and ¢(G,), respectively. They result in a

background penalty

g

if A\(p)p = true
and A(p)a < bap,
00 if A(p)a > bap,
B(Gp) if A(p)y = false

| ¢(Gp)  otherwise.

Egackground()\) =9

Here bgp is the depth of the background at p. We forbid the impossible case
that a pixel is assigned a depth larger than the background depth. Further-
more, a pixel classified as background can never have a different depth than
the static background.
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Fig. 6.4. Results of applying our algorithm to the synthetic test sequence and com-
paring the result to ground truth depth. The bottom graph depicts the percentage
of erroneous pixels in each frame.

Initial Depth. An additional clue taken into account is the initial allo-
cation d (G,) for the depth of the pixel p’s group and its confidence measure
v (Gp). Both are computed in the pre-processing step. We assign a penalty
if the current label differs greatly from this initial allocation and this initial
allocation is likely to be correct. More precisely,

[A(p) —d(Gp) |

Blic(N) = (2v(Gy))* - M—m

where [m, M] is the disparity search range.

Kolmogorov and Zabih [62] discuss which energy functions can be mini-
mized via graph cuts. It is easy to verify that our functional is one of these.
Indeed, taking into account the arguments in [42], all that remains to be
proven is that VP9 is a metric with respect to arbitrary labels, which is a
straightforward exercise.
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6.4 Results

Our first example is a real-world sequence captured with six cameras of the
Stanford Multi-Camera Array consisting of 250 frames. At the downscaled
resolution of 160 x 120 pixels we use in our algorithm, maximum disparity is
30 pixels. The pre-processing results for single image are depicted in Fig. 6.2.
It is evident from Fig. 6.2b and Fig. 6.2c that depth map estimation as well as
background separation using local evidence alone leads to numerous outliers.
The sequence exhibits foreground that consists mostly of color values which
are also abundantly present in the background, and photometric as well as
camera geometry calibration is not exact. When employing our temporally
consistent method, however, the results after global energy minimization ex-
hibit virtually no outliers anymore, Fig. 6.3.

Since ground truth data for the real-world sequence cannot be available,

we also use a synthetic scene for quantitative evaluation of the algorithm.
The sequence is rendered from four camera positions using the Maya render-
ing software including anti-aliasing in order to optimize quality. In addition,
we add Gaussian noise of 5% to the images prior to running the reconstruction
algorithm. A single frame from one of the four cameras is shown in Fig. 6.5. In
total, the animation consists of 200 frames, which we also process at a resolu-
tion of 160 x 120 pixels. At that resolution, the maximum disparity measures
35 pixels.
Fig. 6.4 depicts the error in 3D reconstruction. We measure the ratio of pixels
for which the depth estimate yields a depth different by more than one pixel
in disparity than the ground truth depth. The total amount of foreground
in each frame is also included in the graph. Background depth is obtained
by first running the algorithm on the background images, with background
subtraction turned off and at full resolution in order to increase accuracy. For
the background, only 1.95% of all pixels are assigned erroneous depth.

The Fig. 6.4 compares the algorithm with and without temporal coherence
activated. Results obtained with the full version of the algorithm including
temporal coherence show a reduction of the average total error from 3.2% to
2.3%, equivalent to a reduction of 28%. Additionally, the error stays almost
constant over long periods of time, indicating that the depth maps are tem-
porally consistent. This is mandatory, for instance, in image-based rendering,
when depth is used to display the sequence from a novel viewpoint. We also
observe that the background subtraction greatly helps with the disparity esti-
mate of the foreground: The percentage of erroneous foreground pixels in both
methods is, on average, only 2.3% and 1.6%, respectively, about two third of
the total error. The number of pixels erroneously detected to be background
or foreground is in both cases already below 0.6% on average, with only a
slight improvement when temporal coherence is turned on.
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Fig. 6.5. A frame of the synthetic test sequence and its background. Moving objects
are the robot, the cat and the jack-in-a-box.

Compared to the final energy minimization, pre-processing requires only
a negligible amount of CPU time. For each frame of the sequence, we let the
graph cut technique iterate five times over each depth and background label.
At a downsampled image resolution of 160 x 120 pixels and a search range of
25 pixels, it takes about 4.5 minutes to perform all iterations on a 1.8 GHz
Pentium IV PC. Afterwards, depth and background estimates for all four
cameras are computed. The initial pre-processing takes only 21 sec. per time
frame, most of which includes the pre-computation of all correlations which
has to be performed anyway.

6.5 Conclusions

We have presented a novel technique to integrate several visual clues for 3D
scene reconstruction into one common framework. The local significance of
each clue is determined automatically through statistical analysis of the cam-
era images. This pre-processing stage paves the way towards global recon-
struction based on energy minimization via graph cuts. By explicitly enforcing
temporal coherence, we obtain excellent depth maps as well as a separation
into foreground and background in multiple video streams.

Some possible future work includes lifting constraints on camera geome-
try. Currently, our use of fixed rectangular windows to compute correlations
assumes pure translatory difference between cameras, although the functional
can handle more general geometries. It would also be nice to estimate an alpha
matte instead of a binary separation into background and foreground, and to
find a way to optimally handle non-Lambertian surfaces.
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Surface Reconstruction






7

Overview

7.1 Introduction

In this part of the thesis, we take the reconstruction problem one step further
and are not content with simple depth maps anymore. Instead, our aim is to
recover the full 3D surface geometry of arbitrary objects from multi-video data
from a handfull of cameras surrounding them. The geometry models obtained
that way enable us to render the dynamic scene from arbitrary viewpoints in
high quality, using image-based rendering techniques we investigate in Chap-
ter 13.

Our estimated geometry is defined as a weighted minimal surface, which
minimizes an energy functional given as a surface integral of a scalar-valued
weight or error function. The variational formulation of these kinds of min-
imization problems leads to a surface evolution PDE which can be explic-
itly solved using level set techniques. Other implementations use triangle
meshes [30], which are more complicated to implement due to topology
changes, but can be a lot faster [41]. Recently, we also started to investigate
the use of surfel models as a base representation to implement the surface
evolution [69]. Initial results seem to indicate that we get a performance com-
pared to the triangle mesh implementation, while we do not have to worry
about topology.

In the remainder of this chapter, we present the mathematical framework
for the surface reconstruction problem in general, and discuss computer vi-
sion techniques which already rely on it. Chapter 8 presents the necessary
mathematical analysis of the minimal surface problem, yielding the final sur-
face evolution equation implemented for the reconstruction process. Chap-
ter 9 then focusses on the aspect of spatio-temporal surface reconstruction
from multi-video data, a computer vision problem that is a primary focus of
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research interest. Finally, in Chapter 10, we present a scheme to tackle the re-
construction of flowing, volumetric media like water. With a properly defined
error density, the desired reconstruction result is also recovered as a weighted
minimal surface.

7.2 Weighted Minimal Surfaces

A popular and successful way to treat many computer vision problems is to
formulate their solution as a hypersurface which minimizes an energy func-
tional given by a weighted area integral. In this part of the thesis, we want to
expose, generalize and solve the mathematical problem which lies at the very
heart of all of these methods.

Our aim is to find a k-dimensional regular hypersurface ) C R™ which
minimizes the energy functional

A(D) = /2 B dA. (7.1)

We will only investigate the case of codimension one, so throughout this text,
k = n — 1. Such a surface is called a weighted minimal hypersurface with
respect to the weight function @. This function shall be as general as required
in practice, so we allow it to depend on the surface point s and the surface
normal n.

In Chapter 8, we derive an elegant and short proof of the necessary mini-
mality condition:

Theorem 7.1. A k-dimensional surface X C RFtY which minimizes the func-
tional A(X) := [ @ (s,n(s)) dA(s) satisfies the Euler-Lagrange equation

(Pg,m) — Tr(S)P + divs(Pn) = 0, (7.2)

where S s the shape operator of the surface, also known as the Weingarten
map or second fundamental tensor.

Using standard techniques, a local minimum can be obtained as a station-
ary solution to a corresponding surface evolution equation. Since this surface
evolution can be implemented and solved in practice, the Theorem yields a
generic solution to all problems of the form (1) for practical applications. In
this work, we set aside the problems of convergence and local minima, see
e.g. [21] for a detailed analysis of those.

Our work has thus two main contributions:

Unification: We unite a very general class of problems into a common math-

ematical framework. This kind of minimization problem arises in numerous
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contexts in computer vision, with dimension n < 3 and various choices of .
A few select examples are summarized in Sect. 7.3, among them the method
of geodesic snakes for segmentation as well as a very general multi-view 3D
reconstruction technique. Our theorem yields the correct surface evolution
equations for all of them.

Generalization: Our result is valid in arbitrary dimension. We are not
aware of a previously existing treatment in computer vision literature of this
generality. Until now, the theorem has been proved separately in dimensions
k = 1 and k = 2, using local coordinates on the surface!. The now freely
selectable number of surface dimensions opens up new possibilities for future
applications. As one example, we generalize the static 3D reconstruction of a
surface towards a space-time reconstruction of an evolving surface in Chap-
ter 9, which can be viewed as a 3D volume in 4D space. The proposed method
treats all frames of multiple video sequences simultaneously in order to provide
a temporally coherent result.

In the special case that @ = 1 is constant, the problem of minimizing (7.1)
is reduced to finding a standard minimal surface, which is defined to locally
minimize area. As we deal with a generalization, it seems reasonable to adopt
the same mathematical tools used in that context [26]. A brief review of this
framework, known as the method of the moving frame, is given in Sect. 8.2.
However, we are forced to assume that the reader has at least some famil-
iarity with differential geometry, preferably of frame bundles. The transition
from the Euler-Lagrange equation to a surface and further to a level set evo-
lution equation is reviewed in Sect. 8.4, where we also discuss some necessary
implementation details.

7.3 Variational Methods in Computer Vision

Among the first variational methods which were successfully utilized for com-
puter vision problems was the one now widely known as Geodesic Active Con-
tours [17]. While originally designed for segmentation in 2D, it quickly became
clear that it could be generalized to 3D [18], and also applied to other tasks.
It is particularly attractive for modeling surfaces from point clouds [19, 145].
Geodesic contours were also employed for 2D detection and tracking of moving
objects [91]. Also well analyzed in theory is how to employ minimal surfaces
for 3D reconstruction of static objects from multiple views [31]. This technique

1 At this point, a remark for the expert is necessary. Our result differs in the case
k = 2 from previously reported ones in the way that it is considerably simpler,
because terms depending on (®y,n) are missing. The reason for this is that we
discovered this product to be analytically zero, which we also prove in Sect. 8.3
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was recently extended to simultaneously estimate the radiance of surfaces, and
demonstrated to give good results in practice [53].

We will briefly review the above methods to demonstrate that all of them
fit into our framework. In particular, our theorem applies to all of them and
yields the correct surface evolution equations.

7.3.1 Segmentation via Geodesic Active Contours

Gazelles, Kimmel and Sapiro realized that the energy which is minimized in
the classical snakes approach [59] can be rewritten in terms of a geodesic
computation in a Riemannian space by means of Maupertuis’ Principle. The
goal is to compute a contour curve C in an image Z which is attracted by edges
in the image while remaining reasonably smooth. Their final energy functional
took the form

AC) = /go|VI\ds,
c

where g : RT — R is strictly decreasing with lin% g(r) =0.
T —

It is of the desired form (7.1) in dimension k = 2, so (7.2) gives the correct
Fuler-Lagrange equation. VZ acts as an edge detector, while g controls how
image gradients are interpreted as energies. The main purpose of g is to act
as a stopping function: The flow of the curve should cease when it arrives at
object boundaries. Because the integral is minimized, the contour will move
towards regions of high gradient. The smoothness requirement is enforced by
the curvature term in equation (7.2). Note that g o |VZ| depends only on the
surface point and not on the normal, so the rightmost term in the Euler-
Lagrange equation vanishes.

Essentially the same functional can be applied to 3D segmentation [18],
where the source image I is replaced by a volumetric set of data, and the
unknown curve C by an unknown 2D surface.

7.3.2 Tracking

Paragios and Deriche combine geodesic active contours and a motion detection
term in a single energy functional to track moving objects in a sequence of
images [91]:

A(C) = /C'y Gop oZp + (1 —7) Gyp 0 |VI|ds,

Motion Contours
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where G, is a Gaussian with variance o. The user-defined parameter v weights
the influence of the motion detection term against the boundary localization.
The Gaussians play the same role as g in geodesic contours, their variances
or and op are derived from the image statistics. The image Zp is designed to
detect boundaries of moving regions in the current image Z of the sequence,
and constructed using a Bayesian model which takes into account the pixel
differences to the previous frame.

7.3.3 Surface Modeling from Unstructured Data Sets

Let S C R3 be a general set of points in space which is to be approximated
by a surface Y. The following functional was proposed in [145] and [146]:

A(Y) = /Z &7, dA,
where dg : R® — RT computes the distance of points to the data set.

That way, points in the data set attract the surface. In regions with high
sampling density, the curvature term is more easily outweighed by the distance
function, so the surface becomes more flexible in these regions and more rigid
where sampling density is low. This is a desired property of the regularization
term. The parameter 1 < p < oo also influences the flexibility to some extent.

7.3.4 3D Reconstruction

As a first step, Faugeras and Keriven [31] give a simple functional in dimension
n = 3 for static 3D scene reconstruction which does not depend on the surface
normal. It can be viewed as a space-carving approach [64] generalized from
discrete voxels to a continuous surface model.

Let Ci,...,C; be a number of cameras which project a scene in R? onto
images 7 via projections m, : R3® — R2. For each point s € R3, let vy(s)
denote whether or not s is visible in camera k in the presence of a surface Y.
vk (s) is defined to be one if s is visible, and zero otherwise. For simplicity we
must assume that v does not change with respect to local variations of X,
which is physically not entirely true. A measure of how good a surface X
as a model of the scene geometry really is in accordance with a given set of
images can be obtained as follows: Each surface point is projected into the
set of images where it is visible, and the differences between the pixel colors
for each pair of images are computed and summed up to get an error measure
for the surface point. This error is integrated over the surface to get the total
error. In mathematical notation,
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A(X) = /@SdA, where
b

l
D5 (s) = Z vi(s)vj(s) - | Zi o mi(s) — Zj o mj(s)]l,, -

1,7=1

The number V, of cameras able to see a point s is used to normalize the
function.

Clearly, the above model is too simple to be of much use in multi-view
reconstruction, since only single pixels with no regard to their neighborhoods
are compared. A better functional was therefore suggested by Faugeras and
Keriven, and can be applied using the results on how the evolution depends
on the current normals. We present a slight modification of their original
approach here. Our functional only depends on invariant surface properties
and does not make use of geometric objects in the source camera views.

To each surface point s, we associate a small rectangle [, ,, in the tangent
plane T,2'. In order to invariantly determine its orientation within the plane,
we align the sides with the principal curvature directions. This rectangle is
then projected into the images, and the normalized cross-correlation over the
projected areas is computed. We choose the length of the rectangle sides to
be inversely proportional to the curvature in the corresponding direction, up
to a certain maximum, because the first order approximation of the surface
by its tangent plane is valid over a larger region if the curvature is low. The
corresponding functional can be written as

A(X) = /@CdA, where
b

!
&% (s,n) = —m Z vi(s)vi(s) - xi,;(s,n) and

1 =Ss,n =s,n
Xi,j(s,n) = W/D (Iioﬂ-i_l—i7 )-(Ijowj—fj’ ) dA.

The correlation integral has to be normalized using the area A (Cg ) of the
square. The mean values are computed using

s,n 1

Z = —/ Z;om;dA.
A(Ds,n) Usn

When this functional is minimized, not only the position, but also the sur-
face normal is adjusted to best match the images. This approach can also
be employed to improve the normals for a known geometry approximation,
i.e., the visual hull. When a segmentation of the images into background and
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foreground objects can be obtained, the visual hull also constitutes a good
initial surface Xy for the evolution equation (8.14), since it is by construction
a conservative estimate of the object regions.

7.3.5 Reflectance Estimation

Jin, Soatto and Yezzi combine the reconstruction framework with a simulta-
neous reflectance estimation [53]. They use the functional

A(D) = /ZHR_RHTD qA,

where the Frobenius norm ||-|| - is employed to compute the difference of the

measured radiance tensor field R to an idealized R obtained from a reflection
model, which depends on the surface .

As claimed previously, all of the problems reviewed in this section are of
the form required by the main theorem, and can thus be subsumed under the
unifying framework presented in this thesis. Before we proceed with explaining
our framework, we briefly introduce our recording setup in the remainder of
this chapter and sketch how we obtain segmented images and approximate
starting volumes.

7.4 Acquisition Hardware

All multi-video sequences we use for surface reconstruction and free-viewpoint
video were acquired on our in-house system. This system was originally de-
signed and built for online human motion capture by Christian Theobalt [131].
It is capable of performing image processing and even basic 3D reconstruc-
tion tasks online. Using a client-server architecture with one client PC per two
cameras, we can compute the voxel-based visual hull at a rate of 15 frames
per second. Thus, if we combine this system with a real-time rendering back-
end, we can set up a basic free-viewpoint live capturing and playback system.
However, the geometry is hardly perfect, since the visual hull usually exhibits
severe artifacts if the number of cameras is as small as in our case. Offline
post-processing is therefore recommended.

Our system acquires synchronized video streams via pairs of cameras con-
nected to client PCs, Fig. 7.1. Each client consists of a 1GHz single processor
Athlon PC connected to two Sony DEW-V500 IEEE1394 video cameras that
run at a resolution of 320 x 240 pixels in RGB color mode. For synchronization
of the cameras, a control box was built that distributes an external trigger
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Fig. 7.1. A photo of our vision studio. Red circles denote recording camera positions.

pulse from the parallel port of a host computer to all 6 cameras. The clients
are connected to a 1 GHz server PC by a 100 MBit/s Ethernet network.

Before recording any data, a calibration procedure based on Tsai’s algo-
rithm is applied [134]. The external camera parameters are estimated using a
2x2 m checkerboard calibration pattern, which also defines the bounding box
of the voxel volume. The corners of the pattern are detected automatically
by employing a sub-pixel corner detection algorithm on the camera images
showing the pattern. The internal camera parameters can in theory also be
calculated from the large pattern using Tsai’s calibration method, but we
achieve a more accurate calibration of the internal parameters by using a
small checkerboard pattern that is positioned to cover a large part of each
camera view.

During actual recording, each of the clients separates the foreground from
the known static background of the scene for both of the cameras connected
to it. The partial visual hulls are computed from the two silhouettes ob-
tained from the background subtraction. The partial voxel model is then
RLE-encoded and transmitted to the server PC, which intersects the par-
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Fig. 7.2. Architecture of the system used for video acquisition and online visual hull
reconstruction. The image-based visual hull is reconstructed online using several
clients to compute partial volumes, which are combined on a server into the final
voxel model of the scene.

tial models to obtain the final voxel model of the visual hull, Fig. 7.2. The
server also sends the trigger signals to the cameras for synchronization. The
whole architecture scales easily to more cameras and more clients.

We now describe segmentation and computation of the image-based visual
hull in more detail. The background of the scene is static, so we can employ
the segmentation method based on image statistics proposed by Cheung et
al. [22]. This algorithm computes color mean and standard deviation of each
background pixel from a sequence of images with no foreground object present.
In the source frames, foreground objects are then identified by a large devia-
tion from their background statistics. A pixel is classified as foreground if its
color p differs in at least one color channel by more than an upper threshold
factor 7 from its background distribution with mean i and standard deviation
0-7

Ip(z,y) — w@,y)lle = 7-0(z,y).

One principal problem remains: If no additional criterion is applied, shadow
pixels are wrongly classified as foreground. We solve this problem by character-
izing shadows as the set of pixels with a large intensity difference compared to
the background, but only a small difference in hue. Pixels classified as shadow
are removed from the foreground silhouette.

After the background subtraction, the system approximates the visual hull
in the form of a cubic binary voxel volume, where a voxel value of 1 indicates



76 7 Overview

that the corresponding scene point might be occupied. We assume that the
foreground objects are contained in a cubic bounding box uniformly subdi-
vided into voxels. The computation of the partial visual hull is then performed
as follows: Let C;,72 = 0,..., N be a number of cameras. Consider an object
which is projected onto the silhouettes S; by the respective cameras. For each
voxel v in the volume and each camera C;, we can therefore compute the pro-
jection v; in the camera’s image. Note that because v is a cube, in general v;
is a polygon. If v; C S; for all 7, the voxel v is marked as occupied, otherwise
it is marked as empty. Two example results are shown in Fig. 2.3(b) in the
introduction.

With only slightly more effort, one can achieve a far superior result yielding
a more general level set instead of a binary voxel volume. For this, we not
only project the center of each voxel into the images when performing the
silhouette test, but a number of sample points distributed in the voxel. For
the ith camera, let s; equal the percentage of sample points of a voxel V
whose projection lies inside the silhouette S;. The value assigned to the level
set function u in the grid cell corresponding to V' is then set to

11§nz1%1n(51)
A comparison of this technique with a conventional voxel representation is
shown in Fig. 2.4.

The visual hull serves as an approximate starting volume to initialize the
following surface reconstruction algorithms. Another alternative is to place a
real-time rendering backend directly behind the online visual hull reconstruc-
tion stage, for instance the one described in Chapter 13. Thus, we have a
fully interactive free-viewpoint video acquisition and rendering system avail-
able, however, with low-quality geometry. Means to get far superior geometry
offline are introduced in the next chapters.
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Mathematical Foundations

8.1 Introduction

In order to compute a weighted minimal surface in practice given an arbi-
trary error density, some theoretical work is necessary. Previous work did not
cover the general case for arbitrary dimension and weight function we aim at.
The treatment of this case requires mathematical insights into the differen-
tial geometry of hypersurfaces. The aim is to derive a necessary minimality
condition, which in this context is usually called the error functional’s Euler-
Lagrange equation. Our work is organized in a way that the impatient reader
not interested in mathematical detail can skip this chapter entirely. Important
equations are referenced later when needed.

The correct framework for dealing with minimal surface problems are
frame bundles of a variation of the surface. We introduce those and a few
of their differential geometric properties in the next section. After all tools
have been assembled, we proceed with the derivation of the Euler-Lagrange
equation in Sect. 8.3. The equation leads to a surface evolution, which can
implemented using a level set technique, as shown in Sect. 8.4. We conclude
with a summary in Sect. 8.5.

8.2 Some Background in Differential Geometry

Our goal is to give a general proof that surfaces minimizing (7.1) can be
obtained as a solution of the Fuler-Lagrange equation (7.2) for the energy
functional. The mathematical tool of choice is called the method of the mouving
frame. This section is intended to give a brief overview of this framework.
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Any minimal surface X' of the functional A is a critical point of the func-
tional, i.e., in first order the value of the functional does not change un-
der a small variation of the surface. This restriction is known as the func-
tional’s Fuler-Lagrange equation. We are now going to give a, necessarily
brief, overview of the mathematical framework in which this equation can
be derived. For an excellent and thorough introduction, the reader is referred
to [26].

We have to investigate how the functional behaves with respect to first
order variations of the surface. To this end, let

X : XY x(—€€) — R

be a variation of X with compact support, then for each 7 € (—¢, €) a regular
surface X, € R™ is given by X (X, 7). For each (s,7) € X X (—¢,¢€), let

{e1(s,7),...,ey(s,7) =:n(s,7)}

be an orthonormal frame for the surface Y. at s with e,, = n normal to the
tangent plane T .. The restrictions w® of the Maurer-Cartan forms of R™ to
this frame are defined by

dX = e;w". (8.1)

Throughout this text we use the Einstein convention for sums, which means
that we implicitly compute the sum from 1 to n over all indices appearing
twice on the same side of an equation. Because the frame is adapted to X in
the above sense, the forms w! to w” are its usual dual forms on the surface.
The connection 1-forms w] are defined by

de; = e;w! (8.2)

2

and satisfy the structure equations
dw' = —wi AW’ dw;, = wp Aw;, (8.3)

which can be deduced by differentiating the definitions.

From the connection forms stems the true power of this method. They
allow us to express derivatives of the frame, in particular of the normal, in
terms of objects which are part of the frame bundle themselves. This is the
one reason why we will never need local coordinates, because all necessary
information about the embedding of the surface in space is encoded in the
connection forms.

From the Euclidean structure on R™ it follows that the connection 1-forms
are skew-symmetric, w; = —w;-. The connection forms w]* can be expressed in
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Fig. 8.1. The frame bundle of a variation.

the base {w!,...,w", dr}, courtesy of Cartan’s Lemma, [117]. To see this, first
note that because of definition (8.1)

w" = (dX,n) = aa—i_(dT =: fdr. (8.4)

Differentiating this equation yields together with (8.3)

k
df Ndr + Zw?/\wi = 0,

1=1

therefore, by Cartan’s Lemma, there exist functions h;; such that

_w{l_ _hll hlk fl_ _wl_

3 N I (8.5)
w,? hkl hkk; fk wk
df| LA fr fa) LdT)
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The top-left part S := (h;;) of this matrix is called the shape operator, and
is closely related to the curvature of X .. In the lower dimensional cases, its
entries are commonly known as follows:

o Ifk=1 ie X, isa curve in R2, the sole coefficient hi; equals the scalar
valued curvature usually denoted by k.

e Ifon the other hand k = 2, i.e. X is a regular surface in R3, the entries of S
are the coefficients of the second fundamental form of .. More precisely,

I = [wl wQ] S [52] = hll(w1)2 + 2h1ow'w? 4 hoa(w?)?.

Thus H = +Tr (S) = + Zle h;; is the mean curvature of the surface.

The f; are just the directional derivatives of f in the directions of the e;. Using
the structure equations (8.3), we immediately deduce an important relation
for the area form dA on X ;:

dA =:ws=w' A .. AW = dwy = —Tr (S) wa Aw". (8.6)

We introduce the notation w4 to remind the reader of the fact that the area
element dA indeed is a differential form of degree k. Note that area in our
sense does not imply “two-dimensional”.

Finally, we need a notion of an ’integration by parts’ for a surface integral.
First, we generalize the usual operators from vector analysis to vector fields
v and functions f on X

divy(v) = Z o With the expansion v = v'e;, and
(2

VZ]]C = Zae Zfzez

Using the definitions and the product rule, one obtains a generalization of an
identity well-known from classical vector analysis,

divy(vf) = (v,Vxf) + dive(v) f, (8.7)

which will be useful later as one possibility of shifting partial derivatives from
one object to another. A second possibility is given by a general form of Gauss’
Theorem for surfaces [2], which in our context reads

/2 dive(v)dA = — /2 T (S) (v, n) dA. (8.9)
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Note that v does not have to be tangential to Y. Since we assume that all our
surfaces are closed, the boundary term usually contributing to the formula
has vanished.

We have now collected all the necessary tools to derive the Euler-Lagrange
equation of A, and do so in the next section. In Sect. 8.4, this will yield an
evolution equation for the level sets of a function on R™.

8.3 Euler-Lagrange Equation

In this section we employ the mathematical framework to derive the Euler-
Lagrange equation of the functional A. The arguments can be followed just
by abstract manipulation of symbols, without the need to understand all of
the reasons which lead to the governing rules presented in Sect. 8.2.

The desired equation characterizes critical points of A, and is given by
the derivation of the functional with respect to 7 at 7 = 0. We assume that
& = P(s,n) is a function of the surface point s and the normal n(s) at this
point. Since @ maps from R” x S", &, (s,n) is tangent to the unit sphere of
R™ at n, so we have the important relation (®,(s,n),n) = 0. This fact was
overlooked in previous publications, which is the reason why our final equation
is considerably simpler. It seems reasonable to give a more formal proof. Note
that @ depends only on the direction of the normal, which has always unit
length, so @(s,n) = &(s,dn) for all § # 0. Since for fixed s, (Py(s,n),n) is the
directional derivative of @(s,-) at n, evaluated in the direction n, it indeed
follows directly from the definition that

(Pn(s,n),n) = lgr(l) %(@(s, (14 ¢)n) —P(s,n)) =0. (8.9)

Let us now turn to the computation of the Euler-Lagrange equation. Using
the Lie-derivative

Loyw =V —=dw+ d(v—w) (8.10)

of a differential form w in the direction of v, we obtain

d
dr
(©)

A(z) W /E (Puwq) Y / I i (@wn)
7=0

agé(dsﬁ/\wAjL@de)
W'ty (8.11)
= / — — ((@s,e))w' Awa + PpdnAwy — Tr(S)D wa Aw™)

> 0T

0
©) /2[ (Ps,m) — Tr(S)P) fwa —|—%4(@ndn/\w,4)].
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The five equalities above are justified by the following arguments:

a. A generalization of the 'Differentiation under the integral’-rule in classic
calculus [26].

b. Cartan’s rule (8.10) for expressing the Lie derivative and using the fact
that w'(n) = --- = w*(n) = 0. Note that a% is parallel to n, so this
equation also holds for %.

c. Product rule for differential forms, note that @ is a 0-form.

d. Expansion of d® = &,dX + &, dn = (P,, e;) w' + P, dn. Here we inserted
the definition (8.1) of the restrictions w’. The last term under the integral
is due to (8.6).

e. Linearity of the left hook and again w!(n) = - -+ = w¥(n) = 0. From (8.4),
it follows that w”(é%) = de(a%) = f.

We now turn our attention to the second term of the last integral. Inserting
the definition (8.2) of the connection 1-forms and afterwards the expansion of
the connection forms (8.5) due to Cartan’s Lemma, we get

0 0 |
5 — (Ppdn ANwy) = 5 N (@n,ej> w%/\wA)
0
= o — (= (Pn, Ve f)dr Nwa) = — (P, Ve f) wa (8.12)

=divy(Ppn) fwa — divyg (Pn f) wa.

In the last equality, we have shifted derivatives using the product rule (8.7).
We can finally compute the integral over the left term using Gauss’ Theorem
(8.8):

/ —divs (O f) dA = /Tr (S) (Bn,n) fdA = 0.

X

It vanishes due to (8.9). When we thus put equations (8.11) and (8.12) to-
gether, we see that we have derived

d

dr

_OA(ET) :/Z((@s,m— Tr (S) @ + divs:(Fn)) fdA.

Since for a critical point this expression must be zero for any variation and
hence for any f, we have arrived at the Euler-Lagrange equation of the func-
tional

(Ps,m) — Tr(S)? + divy(Py,) = 0, (8.13)

and thus proved our Theorem (7.2).
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8.4 Corresponding Level Set Equation

Level sets represent an efficient way to implement a surface evolution [90, 23],
and are by now a well-established technique with a wide area of applica-
tions [115]. We will briefly review the transition from (8.13) to a surface evo-
lution equation followed by one for a level set in this section. For the remainder
of the text, let

V.= (Ps,n) — Tr(S)P + divy(Pn).

A surface ¥ which is a solution to the Euler-Lagrange equation ¥ = 0 is like-
wise a stationary solution to a surface evolution equation, where ¥ describes
a force in the normal direction:

(%ZT = ¥n. (8.14)
If we start with an initial surface Xy and let the surface evolve using this
equation, it will eventually converge to a local minimum of A. Instead of
implementing a surface evolution directly, we can make use of the level set
idea. We express the surfaces Y, for each parameter value 7 > 0 as the zero
level sets of a regular function

u:R" x RZY S R, u(-,7)"H0} = X,

8.15
ie. u(s,7) =0 & se X.. (8.15)

We require u(+, 7) to be positive inside the volume enclosed by Y., and nega-
tive on the outside. An immediate consequence is this

Lemma. Let V be the gradient operator for the spatial coordinates of w.
Then we can compute the outer normal and the trace of the shape operator

for Y. using
Vu Vu
= —— d Tr(S) = div| = |.
n =gyt W) = av{T)
Proof. The relationship for the normal is obvious. By definition, the shape
operator is given by S := —Dn and maps the tangential space T}, into

itself. It indeed follows that

\Y%
Tr(S) = Tr(—Dn) = div(—n) = div<ﬁ>.
Note that we consider the normal to be defined on all level sets of wu. o
Taking the derivative of (8.15) with respect to 7 and inserting (8.14), we
deduce the evolution equation for u to be

0 9,
5.U = —<Vu,§27> = —(Vu,m)¥ = ¥ |Vul. (8.16)
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Using the identities

Vu Vu Vu
div (@ — | = (&, Hdiv [ —— | and Tr(S) = div| ——
( |Vu|> \Psm) ”(w) and Tr (S) ”(\w)

for the curvature of the level sets of u and the definition of ¥, we arrive at
the final reformulation of (8.14) in terms of a level set evolution:

0 , Vu :

Note that the derivatives of @ can be computed numerically. Thus, it is not
necessary to compute an explicit expression for them manually, which would
be very cumbersome for more difficult functionals. Instead, in an existing
implementation of the evolution for a general function @, essentially any func-
tional can be plugged in.

8.5 Conclusions

Using the mathematical tool of the method of the moving frame, we have
derived the Euler-Lagrange equations for weighted minimal surfaces in arbi-
trary dimensions. We allowed for weight functions general enough to cover the
variational problems encountered in computer vision research. Previously, ex-
isting proofs used local coordinates and were restricted to dimensions two or
three, so our approach is more general. As demonstrated by several examples,
weighted minimal surfaces lie at the heart of several well-established com-
puter vision techniques. Our result for arbitrarily high dimensions paves the
way for new, future research. In particular, we will employ it in a technique
designed to achieve temporal coherence in 3D reconstruction from multiple
video streams in the next chapter. With a sophisticated error functional, we
can also reconstruct refractive, transparent bodies, to be analyzed in Chap-
ter 10.
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Space-Time Isosurface Evolution

9.1 Introduction

In the previous chapter, we gave a mathematical analysis of weighted min-
imal hypersurfaces in arbitrary dimension and for a general class of weight
functions. We derived the Euler-Lagrange equation yielding a necessary min-
imality condition. Our analysis covers all of the reviewed variational methods
employed in computer vision. In this chapter, we present a variational method
of a new kind, applying the freedom in dimensionality allowed by Theorem 7.1.
A fourth dimension is introduced which represents the flow of time in the video
sequence. Our goal is to reconstruct a smooth three-dimensional hypersurface
embedded in space-time. The intersections of this hypersurface with planes of
constant time are two-dimensional surfaces, which represent the geometry of
the scene in a single time instant. Our approach defines an energy functional
for the hypersurface. The minimum of the functional is the geometry which
optimizes photo-consistency as well as temporal smoothness.

In Sect. 9.2, we will introduce the mathematical foundations of the algo-
rithm and give a rigorous definition of our method in terms of an energy min-
imization problem. Implementation details are discussed in Sect. 9.3, where
we describe our parallel scheme which computes the evolution equation us-
ing a narrow band level set method. We also propose algorithms necessary
to evaluate the more involved terms of the equation. Results obtained with
real-world video data are presented in Sect. 9.4.

9.2 Space-time 3D Reconstruction

In this section, we present the mathematical foundations of our 3D recon-
struction algorithm. We assume that we have a set of fully calibrated, fixed
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cameras. The input to our algorithm are the projection matrices for the set
of cameras, as well as a video stream for each camera. We want to obtain a
smooth surface 3} for each time instant ¢, representing the geometry of the
scene at that point in time. The surfaces shall be as consistent as possible
with the given video data. Furthermore, as in reality, all resulting surfaces
should change smoothly over time.

9.2.1 Mathematical Foundations

To achieve these desirable properties, we do not consider each frame of the
sequences individually. Instead, we regard all two-dimensional surfaces ; to
be subsets of one smooth three-dimensional hypersurface $ embedded in four-
dimensional space-time. From this viewpoint, the reconstructed surfaces

2 = 9n(R%t) CR’

are the intersections of $) with planes of constant time. Because we reconstruct
only one single surface for all frames, the temporal smoothness is intrinsic to
our method.

However, we have to take care of photo-consistency of the reconstructed
geometry with the given image sequences. We set up an energy functional

A($) = /ﬁ(ﬁdA. (9.1)

defined as an integral of the scalar valued weight function @ over the whole
hypersurface. ® = &(s,n) measures the photo-consistency error density, and
may depend on the surface point s and the normal n at this point. The larger
the values of @, the higher the photo-consistency error, so the surface which
matches the given input data best is a minimum of this energy functional.
The Euler-Lagrange equation for the functional is given by Theorem 7.1, and
we demonstrated in Sect. 8.4 how the Euler-Lagrange equation can be solved
in practice using a surface evolution equation implemented via the level set
method. In the remainder of this section, we present suitable choices for the
error measure 9.

9.2.2 Continuous Space-time Carving

We need some additional notation for color and visibility of points in space-
time first. Let ¢ denote a time instant, then a time-dependent image Z} is
associated to each camera k. The camera projects the scene onto the image
plane via a fixed projection mj : R> — R?. We can then compute the color ¢}
of every point (s,t) on the hypersurface:
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(s) = Th o mu(s).

Here, the image Z} is regarded as a mapping assigning color values to points
in the image plane.

In the presence of the surface Xy, let v} (s) denote whether or not s is
visible in camera k at time ¢. v (s) is defined to be one if s is visible, and zero
otherwise.

The most basic error measure can now be defined as

$(s,t) = Vl Z vi(s)vi(s) - ||ci(s) — cﬁ(s)” .

s,t
1

The number V; ; of pairs of cameras able to see the point s at time ¢ is used
to normalize the function.

If the error function ®° is used as the functional, the resulting algorithm
is similar to a space carving scheme in each single time step. In that method,
as introduced by Kutulakos and Seitz [64], voxels in a discrete voxel grid are
carved away if @° lies above a certain threshold value when averaged over the
voxel. In our scheme, the discrete voxels are replaced by a continous surface.
In the surface evolution introduced later, this surface will move inwards until
photo-consistency is achieved. This process is analogous to the carving pro-
cess [64]. The same functional for regular surfaces in R? was introduced by
Faugeras and Keriven [31] for static scene reconstruction. As an additional
constraint, we enforce temporal coherence in the form of temporal smooth-
ness of the resulting hypersurface, which makes our method ideal for video
sequences.

9.2.3 Normal Optimization

Because the theorem also allows for error functions which may depend on the
normal, we can take the scheme one step further to include an optimization
for the surface normals as well. A similar idea was also presented in [31],
however, we give a slightly modified version and still work in space-time to
enforce temporal smoothness.

In order to set up an error function, we have to analyze how well a small
surface patch at position s with a given normal n fits the images at time ¢. To
this end, we assign to each of these values a small patch U, ,, within the plane
orthogonal to n, Fig. 9.1. How exactly this patch is chosen does not matter,
however, the choice should be consistent over time and space and satisfy a few
conditions which will become evident soon. In our implementation, we always
choose rectangular patches rotated into the target plane by a well-defined
rotation.
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A small grid in the tangent plane is projected in both
camera images. This leads to two columns of data
containing the pixel colors of the grid corners in the
respective video image. Between these two columns of

data, the normalized cross correlation is computed.

Fig. 9.1. Practical computation of the cross-correlation error term PC.

We will now define a measure how well the patch [, ,, is in accordance with
the images at time t. For that, we employ the normalized cross-correlation of
corresponding pixels in the images, a well-established matching criterion in
computer vision. Mathematically, the resulting functional for a point x =
(s,t) € R* with normal direction n is defined as follows:

with the zero-mean cross-correlation
Xij(s,m") = /D <C§ —ff’n> <C§ _f?n) dA,
s,nt

and the mean color value of the projected patch in the images computed

according to
—z.n 1
I., = — t dA
S N (A / K

Some things have to be clarified. First, the correlation measure Xf, ; for a pair
of cameras is normalized using the area A (s ) of the patch. Second, it is
now clear that we have to choose [, ,, sufficiently large so that it is projected
onto several pixels. On the other hand, it should not be so large that only
parts of it are visible in the images. As a compromise, we choose its diameter
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to be equal to the cell diameter of the underlying computation grid, as defined
in Sect. 9.3. Third, the integration of ¢ in the energy functional involves the
normals of §) in 4D space, while n is supposed to lie in R3. For that reason,
we project normals of § into the tangent space of Y, in order to get n.

When this functional is minimized, two constraints are optimized simulta-
neously. Each surface Y, together with its normals is selected to best match the
images at that time instant. Furthermore, a smooth change of the surfaces 3,
with time is encouraged because of the curvature term in the Euler-Lagrange
equation. The error functional can be minimized using a surface evolution
implemented via a level set scheme, as derived in the Sect. 8.4. In the next
section, we discuss the implementation details involved when the evolution
equation is to be solved numerically.

9.3 Parallel Implementation

In order to implement the level set evolution equation (8.17), the volume
surrounding the hypersurface $ has to be discretized. We use a regular four-
dimensional grid of evenly distributed cells with variable spatial resolution of
usually 643 or 1283 cells. The temporal resolution is naturally equal to the
number of frames in the input video sequences. One easily calculates that
there is a massive amount of data and computation time involved if the se-
quence is of any reasonable length. In fact, it is currently not yet possible
to store the full data for each grid cell together with all images of all video
sequences within the main memory of a standard PC. A parallel implemen-
tation where the workload and data is distributed over several computers is
therefore mandatory.

For that reason, we choose the narrow band level set method [115] to
implement the evolution equation because it is straightforward to parallelize.
We start with an initial surface )9 and the values ugth of the corresponding
level set function ug in the centers of the grid cells. A suitable initial surface
for our case will be defined at the end of this section. Using the abbreviation

W (u) = [— div(@-‘g—z’) + divE(QBn)] ,

Eq. (8.17) simply reads

0
—u = ¥Y(u) |Vul.
57 (u) [Vul
In the discretization, the values of the level set function are updated iteratively

using the upwind scheme. At iteration step 7 + 1, the new values uﬁfft are
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1_’t

X

Step 1 Step 2

e In the first step, the values of u; in the green cells are used to
compute the level set normal n € R* in the blue cells using
central differences. Having computed n, we can also compute
@ for the blue cells. Note that for the purpose of the above 2D
illustration, the three spatial dimensions are represented as one.

e For the second step, we compute the values for the central
red cell, also using finite differences. The discrete formula for
div(®n) at position p = (z,y, z,t) is

pt+e;, pte; _ pp—e;, D€
PP Tin, PP~ %in;

4
2 >

We can also compute the curvature Tr (S) directly by omitting
@ in the above formula.

e The difficult part is to compute divs(®n) for the red cell. It
is equal to the trace of @5, restricted to the tangent plane I7
orthogonal to the normal at p. So we first compute &, for the
blue cells using finite differences, taking the known normal n
of the cell as the center point. With these values, we can set
up the 4 X 4 matrix U := &, for the red cell. We then choose
an arbitrary orthonormal base {to,t1,t2} of the plane II. The
entries for the 3 x 3 matrix V of the mapping ®@ns|r can then
be computed as

vi; = t; Utj,1<14,j<3.

Fig. 9.2. Fvaluation of the differential operator.

obtained from the values u}¥*" of the previous iteration step by a discrete

version of equation (8.17) using an explicit time step:

uity = w4+ (W) |V - At (9.2)
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Fig. 9.3. Data transmission of process P; for one iteration step. FEach process stores
five slices, corresponding to the geometry at five different time steps. It is responsible
for the computation of the center slice. The slice computed by P; in the last iteration
18 transmitted to the four adjaced processes. In return, P; receives the other slices
from its neighbours for the next iteration. In the figure, slices of the same color
correspond to the same time instant and contain the same information.

Here, ¥ (ufth) is the value of the discretized version of the differential oper-
ator ¥ acting on u;, evaluated in the cell (z,y, z,t). Central differences on the
four-dimensional grid are used to compute the derivatives involved in Eq. 9.2.
The norm of the discretized gradient |Vu;| is calculated according to the up-
wind scheme [115]. To ensure stability, the step size AT must be chosen such

that the level sets of u; cannot cross more than one cell at a time, i.e. satisfy
the CFL-condition

i 11 t
At < max diam Cf Z(tx,y,z, ) . (9.3)
(ZL‘,y,Z,t)GF |!p (uy ) * vu‘

2

The differential operator must be evaluated for each grid cell near the
zero level set, and the computations that are necessary for each cell depend
only on a local neighbourhood. Therefore, the computation of individual cells
can easily be distributed over several processes. In our implementation, each
process is responsible for the computation of one single slice of the grid of
constant time ¢;. This slice corresponds to the geometry of the ¢th frame of
the video sequence. Fig. 9.2 shows in more detail how the value ¥ (u¥*") is
numerically evaluated from the values of u; in the grid cells. According to this
figure, we need the values of grid cells up to two cells apart from (z,y, z,t)
in order to evaluate the operator. As a consequence, each process P; also has
to know the slices of the four other processes P;11, Pi+2. These have to be
communicated over the network. In addition, each process needs to store the
image data of its own video frame and the two adjacent frames according to
Fig. 9.2.

To summarize, one full iteration consists of the following four steps:
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e FEach process transmits its own slice S; to the adjacent processes and re-
ceives the other necessary slices from its four neighbours according to
Fig. 9.3.

e Afterwards, each process computes ¥ (ufyzt) for all cells in its slice near
the zero level set of u;, using the scheme presented in Fig. 9.2.

e The maximum value of the operator for each process is transmitted to
a special server process. From these maxima, the server calculates the
optimal step size At allowed by the inequality (9.3).

e The server broadcasts the maximum to all processes, which afterwards
compute the evolution on their slice using equation (9.2).

After each iteration, the server process may poll the current geometry from
any of the other processes in order to give the user feedback about the current
state of the iteration. The iteration stops when the flow field is zero, or may be
stopped by the user if the current geometry looks well enough for the purpose.
In our final implementation, it is also possible to assign several processes to
a single slice. In that case, they share the computation of the cells near the
zero level set equally between each other, assuming that all processes run on
similar machines.

We finally have to define an initial surface suitable ) to start the iteration
process. For this purpose, we employ the visual hull, which by definition is
always a superset of the correct scene geometry. In order to compute a level
set representation, we have to choose suitable values of ug for each grid cell.
For this purpose, we fix a grid cell ¢ and select a number of evenly distributed
sample points xo, ..., xx inside it. These points are projected into each source
image, and we compute the percentage p € [0, 1] of the projections which fall
into the silhouettes of the object to be reconstructed. To the initial level set
function ug is then assigned the value 2p — 1 at cell ¢. Since we only have to
compute an approximate starting surface, this straightforward method gives
sufficiently good results in practice. In particular, the projection of the zero
level set of ug into the source images very closely resembles the silhoettes of
the object if k is sufficiently high.

9.4 Results

In order to test our algorithm, we run it on real-world 320 x 240 RGB video
sequences of a ballet dancer. All input images are segmented into foreground
and background using a thresholding technique. Consequently, we can com-
pute the refined visual hull to get a starting volume for the PDE evolution,
Fig. 9.4. For our test runs, we choose a 20 frame long part of the sequence
with the depicted frame in the middle. As becomes apparent in Fig. 9.5, this
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Grid res. # procs. Time per iteration [s] Memory
without n.o. with n.o. per proc.

32° 60 0.9 25 80 MB
40 1.4 38
20 2.5 60

64° 60 7 140 180 MB
40 11 210
20 17 360

1283 60 30 510 535 MB
40 55 840
20 102 1200

Table 9.1. Time required for a single iteration step, depending on the resolution of
the computation grid and the number of processors. Both the time with and without
the normal optimization based on normalized cross-correlations is given.

frame is particularly difficult to reconstruct, because we do not have a camera
capturing the scene from above. For that reason, most of the area in between
the arms of the dancer is not carved away in the initial surface.

When we run a standard space-carving algorithm for this single frame
alone, the situation improves. The shirt of the dancer contains not much
texture information, however, so only part of the critical region is carved
away as it should be. Only when we employ the full algorithm which takes
into account temporal coherence between the geometry of the frames do we
get the satisfactory result in Fig. 9.5 on the right. In Fig. 9.6, we show some
more geometry results for several time slices of the sequence a few frames
apart, and from several novel viewpoints. When textured with an image-based
rendering algorithm using the source images, Fig. 9.7, it can be observed that
the photo-consistency is indeed excellent.

Table 9.1 informs about the time and memory required by each of the
slave processes for a single iteration. Our program ran on a Sun Fire 15K
with 75 UltraSPARC III+ processors at 900 MHz, featuring 176 GBytes of
main memory. It can be observed that the normal optimization requires a lot
of computation time when compared to the standard version of our algorithm.
For that reason, we first let the geometry evolve towards a surface which is
very close to an optimal result, as assessed by the operator of the program.
Afterwards, we switch on the normal optimization in order to improve the re-
construction of small surface details. In average, we need around one hundred
iterations of the initial evolution and twenty more of the normal optimization
until the surface has converged to the final result.
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(b) Visual hull (c¢) Final result

Fig. 9.4. Top: All eight source silhouettes from the cameras distributed around a
ballet dancer. This is one single frame of a dynamic video sequence. Below: Seen
on the left is the refined visual hull, representing the initial surface used to start the
PDE evolution, on the right the final result after running the complete algorithm
mcluding normal optimization.

In order to speed up the surface evolution, a further term is included in
equation (9.2), as suggested in [31]. We subtract a multiple €Tr (S) of the
curvature, where € is a small user-defined constant factor. This forces the
resulting hypersurface to be smoother, so larger steps A7 can be taken to
evolve the PDE.
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(a) Visual hull (b) Space carving result  (c) Weighted minimal sur-
face

Fig. 9.5. Comparison of different reconstruction schemes at a grid resolution of
1283, (a) The visual hull, as seen from above. Since we do not have a camera cap-
turing the scene from above, most voxels in the area between the arms are occluded
and remain occupied. (b) The result obtained from static space carving. (¢) When
our algorithm using temporal information is employed, the reconstruction becomes
almost optimal.

9.5 Conclusions

We have presented a novel 3D reconstruction algorithm which takes into ac-
count all frames of a multi-video sequence simultaneously. The idea is to op-
timize photo-consistency with all given data as well as temporal smoothness.
Our method is formulated as a weighted minimal surface problem posed for
a 3D hypersurface in space-time. Intersecting this hypersurface with planes
of constant time gives the 2D surface geometry in each single time instant.
The energy functional defining the minimization problem enforces photo-
consistency, while temporal smoothness is intrinsic to our method. The func-
tional can be minimized by implementing a surface evolution PDE using the
narrow band level set method. Significant improments compared to space
carving approaches which do not take temporal coherence into account can
be observed in the results. In the future, we plan to include a global optimiza-
tion of surface reflectance properties into the same unifying framework.
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Fig. 9.6. Reconstructed geometry for four more frames in the sequence. All view-
points shown are far away from the original viewpoints of the source cameras.

Fig. 9.7. The same geometry rendered with our billboard rendering algorithm pre-
sented in Chapter 13 using the source images as textures.
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Reconstructing the Geometry of Flowing
Water

10.1 Introduction

Recently, new multi-view reconstruction problems, different from the tradi-
tional diffuse surface reconstruction, have emerged in the field of computer
vision. These include multi-view reconstruction of time-varying, transparent,
natural phenomena like fire and smoke [51, 49, 1].

The work so far concentrates on non-refracting media. In this chapter, we
present a level set method for the reconstruction of a time-varying free flowing
water surface. This problem arises in the context of free-viewpoint video,
where we are concerned with the automatic acquistion of dynamic models
for computer graphics purposes. The main problem here is that the surface
structure can not be determined with traditional methods due to refraction
effects, implying a complex image formation process. We alleviate this problem
by dyeing the water with a fluorescent chemical. This allows us to directly
measure the thickness of the water volume as a ray passes through it and hits
the CCD-chip of the camera. In addition, a sophisticated energy minimization
method is utilized for the reconstruction process, which is able to correctly
incorporate error functions depending on surface normals. Obviously, this is
a vital requirement if one wants to take into account refraction.

Image-based modeling of natural phenomena suitable for free-viewpoint
video is performed using sparse view tomographic methods [51, 1] or surface
based methods [49]. Reche et al. reconstruct trees from still images [99]. In [92],
the geometry of hair is retrieved using a single camera and varying light source
positions, exploiting the anisotropic reflectance properties of hair.

Only limited work has been done which directly addresses image-based
reconstruction of water. In [85], a time-varying water surface is obtained by
analyzing the distortion of a known texture beneath the water surface using
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Fig. 10.1. Source images from two of the cameras for one frame of our test
video sequence in which we pour dyed water from a bottle into a glass under UV-
[llumination.

optical flow and shape from shading techniques. Schultz [111] studies the
reconstruction of specular surfaces using multiple cameras. He reports good
results on synthetic test data, a simulated water surface under known synthetic
illumination. However, both of these methods can only determine a height field
for a rectangular surface area, while we reconstruct fully three-dimensional
bodies of water.

Another line of research is refractive index tomography e.g. [93, 148]. These
methods usually need expensive apparatuses and do not lend themselves to
image-based modelling. The goal of these methods is also quite different from
ours. Whereas refractive index tomography attempts to reconstruct a field of
varying refractive indices, we know that we have a constant refractive index
and need to compute the surface of a volumetric body of water.

PDE based energy minimization methods are very popular in computer vi-
sion. Many of them naturally stem from weighted minimal surface approaches,
where an error density is integrated over a surface in order to measure how
well the surface fits the data [18, 91, 145, 53]. A general method how weighted
minimal hypersurfaces can be computed via level set evolution equations in
the case that the error function depends on the surface normal was presented
in [40]. Earlier, Faugeras and Keriven analyze a special 3D case, where they
define an error functional enforcing photo-consistency of recovered 3D geom-
etry with multiple static views of a scene [31].

This chapter is organized as follows. Sect. 10.2 defines the reconstruction
problem we want to deal with and presents a mathematical justification for
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the level set surface flow yielding an optimal solution. Details for the imple-
mentation using PDEs are discussed in Sect. 10.3. We present results obtained
with both synthetic 2D data as well as recorded 3D data of flowing water in
Sect. 10.4, and conclude with ideas for future work in Sect. 10.5.

10.2 General Reconstruction Problem

Our goal is to reconstruct the surface area of a possibly moving body of water,
using recordings from only a handful of fully calibrated cameras distributed
around the scene. In order to be able to work with a well-defined image for-
mation model, special care has to be taken when acquiring the water video
data. We employ a fluorescent dye which causes the water to emit visible light
when exposed to UV radiation. An example input image from a single frame
is shown in Fig. 10.1.

This section embeds the reconstruction problem we want to deal with
in a rigorous mathematical framework. Subsection 10.2.1 discusses the im-
age formation model underlying the optimization. It shows how to generate
synthetic views given a certain reconstructed surface Y/, which can be com-
pared to recorded real-world data in order to define a photo-consistency error
measure. The ’'best’ surface is determined by minimizing an error functional
optimizing photo-consistency. The functional is defined in subsection 10.2.2,
while the mathematical foundations for its minimization using a level set sur-
face flow were already adressed in Sect. 8.4. After the theoretical discussion in
this section, we proceed with the details of the implementation in Sect. 10.3.

10.2.1 Image Formation Model

We dissolve the chemical Fluorescein in the water. Fluorescein exhibits a
photo-luminescent behavior i.e. it has the ability to absorb light of higher en-
ergy and subsequently re-radiate light with a lower frequency than the light
used for excitation. Fig. 10.2 explains this principle. The emission spectrum is
independent of the excitation wavelength, only the amplitude of the emitted
light changes. A schematic of our studio setup is shown on the right hand side.
We place filters in front of the light source and the cameras, respectively. The
two filters allow us to measure the emitted light only, which in turn lets us
treat the body of water as a self-emissive medium.

We evenly dissolve the dye in the water and use a strong UV source to illu-
minate it. This allows us to assume a constant fluorescent emissivity through-
out the volume. Thus, the accumulated light intensity along a ray traced
through the water can be computed by multiplying its total length within the
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Fig. 10.2. Left: Excitation and emission in fluorophores: the excitation wavelength
changes the amplitude of the emission spectrum only, the emission’s maximum wave-
length stays the same. Right: The use of filters generates a proper excitation light
source, and allows the observer to measure the emitted spectrum without interfer-
ence from the excitation light source.

volume with a constant emittance p. Furthermore, a color calibration on the
cameras is performed, such that they exhibit a linear response to the incoming
light intensity, scaling light intensity to image intensity by a factor of ~.

Now, let p be a point in the image plane of camera C, and C' be the cam-
era’s center of projection. We want to compute the theoretical pixel intensity
Is;(p) in the presence of a surface X', enclosing a volume Oy of water prepared
as above. Let R(C,p) be the ray traced from C' in the direction of p through
the surface X', taking into account correct refraction, Fig. 10.4. We ignore
scattering and extinction effects in the water volume. Then,

Is(p) = 7/ pds = m/ ds.
R(C.p)NOx R(C,p)nOs

The last integral just measures the length the ray traverses through Oy. In
order to avoid having to determine the constant factor pvy experimentally by
acquiring and measuring a calibration scene, we implement an auto-calibration
scheme. All image intensities are divided by the average intensity of the pixels
in the image within the silhouette, and all ray-traced intensities by the average
intensity of the rays corresponding to these pixels. The resulting quotients are
independent of the quantity py.

Now that we are able to compute synthetic views given a surface X', we
have to determine how well a reconstruced surface fits a given set of input
views. If we are able to quantify the error, it can be used to define an en-
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ergy functional mapping surfaces to real numbers, whose minimum yields an
optimal reconstruction result. This aim is pursued in the next subsection.

10.2.2 Energy Minimization Formulation

We have to take care of photo-consistency of a reconstructed surface X' with
the given source images. We set up an energy functional

A(Y) = L@(s,n(s)) dA(s), (10.1)

defined as an integral of the scalar valued weight function @ over the whole
surface. @(s, n) measures the photo-consistency error density, and may depend
on the surface point s and the normal n at this point. The larger the values
of @, the higher the photo-consistency error, so the surface which matches the
given input data best is a minimum of this energy functional. Because refrac-
tion occurs frequently, the dependency of the error measure on the normal is
a vital part of our method, in contrast to many other previous applications
of weighted minimal surfaces in computer vision.

The question remains how to correctly choose the error measure. Ideally,
we would want it to be the difference of the measured intensity in every camera
with the theoretical intensity, which would look something like this:

n

Draive(s,m) = > (Isi(s) — Iy omi(s))?,

=1

where Iy ;(s) is the ray-traced image intensity assuming surface X, I; is the
1th image, and 7; the ¢th camera’s projection mapping.

While the general idea is good and exactly what we implement, in this
initial form it faces several problems, the worst of which is that we have
to be able to evaluate the error function away from the surface in order to
perform the surface evolution later. The exact technical definition is presented
in Sect. 10.3.

As in the previous chapter, Theorem 7.1 yields the Euler-Lagrange equa-
tion of the functional, which leads again to the same surface evolution equation
and level set implementation.

10.3 Implementation

In this section, we go into the details on how to implement our reconstruction
scheme. Subsection 10.3.1 specifies the construction of the error function. For
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Camera 1

Ci
Fig. 10.3. FEwaluation of the partial error function ¢; for a single camera.. The
length difference between rays traced through the distorted surface X’ and the
undistorted surface X is just ||s — v||. Note that n is not necessarily the exact surface
normal, as it may slightly deviate from it in order to evaluate the derivative of &
with respect to the normal.

a stable evolution, we have to make sure that the surface does not shrink below
the image silhouettes. The boundary term in the evolution equation designed
to accomplish this is introduced in subsection 10.3.2. We finally describe some
nuts and bolts of the implementation of the PDE as a narrow band level set
method in subsection 10.3.3.

10.3.1 Construction of the Error Function

Of particular difficulty is the evaluation of the error function @(s,n) for a
given point s and corresponding normal n. The problem is that this term has
to be evaluated away from the current surface 3 in order to compute the
derivatives in (8.17), i.e. for points that do not lie directly on the surface, and
with a normal which may be different from the current surface normal. The
particular question one asks in that case is what local error would arise if the
surface was distorted such that it lies in s with normal n. For this reason,
ray tracing in order to evaluate the error function has to be performed for a
distorted surface X’. The computation of @(s,n) is thus performed in three
steps.

In the first step, we construct the distorted surface X’ through which rays
are traced. We have to change 3’ locally in a reasonably smooth manner such
that the new surface passes through s. At this moment, we do not yet care
about the normal. Assume for now that s lies outside the volume Oy enclosed
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Fig. 10.4. Rays necessary to generate a view from the upper left direction, visual-
izing the complexity of the image formation process. Rays leaving the area without
further intersections are not shown. On top is the resulting 1D view, where the
intensity of each pixel is proportional to the length of the yellow segments for the
corresponding ray.

by Y. The desired result can then be achieved by uniting Oy with a ball B
centered in the point v closest to s on X, with radius ||s — v||. Vice versa, if



104 10 Reconstructing the Geometry of Flowing Water

s lies inside Oy, then we can achieve the result by subtracting B from Oy,
Fig. 10.3.

The second step is to define the set of cameras C = {C1,...,Ck} which
contribute to the error measure. Ideally, since the medium is transparent, we
would like to consider all cameras we have available. Unfortunately, this would
require to find for each camera the ray passing from the camera center to s,
possibly refracted multiple times on the way. This computation definitely is
too time-consuming. Instead, we only consider those cameras which have a
good enough unobscured view of v with regard to the original surface. More
precisely, each camera C; belonging to C must meet the following two criteria:

e The straight line from v to the center of projection C; must not intersect
Y, and

e The ray starting from v in the refracted direction p(v — C;, n) must travel
inside Oy in the beginning. p is computed using Snell’s law, using the index
of refraction of water for inside the volume, and of vacuum for outside.

In the third step, we finally compute the photo-consistency error ¢; for
each contributing camera C; and average those to get the total error . Each
individual error is computed as follows: Let Z; o 7; (s) be the intensity of the
projection of s in image Z;, and r;(s,n) be the accumulated intensity along a
ray traced from s into the refracted direction p(s — C;,n). Then

¢i(s,m) = (Z;om; (s) — ri(s,m))’

This corresponds to comparing the image intensity to the ray-traced intensity
of a ray cast from the camera to s, refracted as if by a surface located in s with
normal n. Thus, the desired normal n is also correctly taken into account.

10.3.2 Silhouette Constraints

An additional constraint on the photo-consistency of the reconstruction result
is that the projection of the reconstruction in each camera image must match
the silhouette of the object to be reconstructed [64]. This constraint yields
both a stopping term in our evolution equation, as well as an initial surface
for the evolution in form of the visual hull [65].

To this end, let o; be the signed distance to the silhouette, defined in the
image plane, negative inside the object silhouette. Then we obtain a good
initial level set approximation to the image-based visual hull by defining

ug(z) := I?E)g( (0; 0mi(x))

for every x € R3. We use this level set function as the starting point for the
surface evolution after re-initializing it to a signed distance function.
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Test Volume #1 Test Volume #2
0.4 T T 0.3 T T
8 Cameras 8 Cameras
12 Cameras — 12 Cameras —
16 Cameras 16 Cameras
24 Cameras 24 Cameras
32 Cameras 32 Cameras
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Fig. 10.5. Convergence for different numbers of input views.

Furthermore, we prohibit the projections to ever shrink beyond any of the
silhouettes. A stopping term is added to the surface evolution, which grows
very large if a point on the projected boundary of the surface lies inside a
silhouette. When computing the visibility of a point v, we can extract from
the set of unobscured views C the set of cameras B C C in which v lies on or
very close to the boundary of the projection. The two criteria for camera C;
in C to lie in B as well is that

e The angle between viewing direction d; from v to the center of projection
C; and the surface normal n(v) must be close to ninety degrees, and

e The straight line from v in the direction d; away from the camera must
not intersect the surface.

Then the boundary stopping term is defined as

B(s):= )  [exp(~B(oiom)(v)) — 1],

c,eB

where v is again the point closest to s on Y, and 8 > 0 a user-defined weight,
which should be set reasonably high. We use = 10 throughout all of our
tests, where the 2D images are defined to lie in the unit interval, and the
signed distance is normalized accordingly.

10.3.3 PDE Discretization

In order to implement the level set evolution equation, the volume surround-
ing the surface X' has to be discretized. We use a regular three-dimensional
grid of evenly distributed cells with variable spatial resolution of usually 643
or 1283 cells. The surface is evolved according to the narrow band level set
method [115], starting the evolution with the visual hull surface Xy and the
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(a) The first synthetic “volume” together (b) The second synthetic “volume”,
with 16 input views stacked on top of again together with 16 input views and
each other to the right. Below each view signed distance transform of the silhou-
is shown the signed distance transform o ette.

of the silhouette.

Fig. 10.6. Synthetic test volumes and ray-traced views. Red color denotes positive
values of signed distance, blue color negative values.

values ugyzt of the corresponding level set function ug in the centers of the
grid cells. Details on how the evolution equation is implemented were already
presented in Sect. 9.3 of the previous chapter, to which the reader is referred.
However, there are two optimization terms which are added to the values in
the cells after each update step (9.2).

The first one is the boundary term B(z,y, z) defined in subsection 10.3.2.
The second term is designed to speed up the convergence and avoid local
minima. It accelerates the shrinking process in regions where the error is

TYZz

excessively high. We add to u; +1t the value
e1B(x7 Y, Z) - EQLU(@) (@(LB, Y, Z) - m‘P)a

where L, g) is the stable Leclerc M-estimator for the standard deviation of
the error values of all cells, and m¢g the mean value of the error. €1,e5 > 0
are two user-defined weights, the only free parameters of our method. Good
choices and their influence on convergence behaviour is discussed in the next
section, where we present results obtained with synthetic 2D as well as 3D
real world data.

10.4 Results

10.4.1 Synthetic 2D Experiments

In order to verify that our surface evolution is capable of producing correct
results despite the complex problem we want to solve, we first test it on
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(a) Convergence towards the first test volume, after 0, 100, 200, and 300 iterations.

,, O @ @,
Q

(b) Convergence towards the second test volume, after 0, 15, 30, and 45 iterations.
Fig. 10.7. The best results we achieved with 24 input views, together with several

in-between stages of the iteration.

synthetic 2D data. We ray-trace several views of two different test volumes
using the image formation model presented in Sect. 10.2.1. The first volume
is designed to test how well the algorithm can recover concavities, while the
second volume is not connected and has a mixture of straight and round
edges. Both test volumes and resulting 1D views are shown in Fig. 10.6. An
exemplary trace through the volume can be found in Fig. 10.4. This trace gives
a glimpse of the complexity of the reconstruction problem, and demonstrates
how heavily the ray-tracing result depends on the normals.

We run our algorithm with different numbers of input views in order to
test the dependence of convergence on this critical parameter. The results are
shown in Fig. 10.5. Convergence becomes stable with eight or more cameras
used, with twelve views required in the more complex second test case. We
can also note that there is a quick saturation of reconstruction quality with
respect to the number of cameras. The visual hull does not improve much
more if more than 16 cameras are used, in accordance with earlier results [78].
In addition, the quality of the reconstruction peaks at around 24 cameras
for both test volumes. Interestingly, more cameras do not necessarily imply
a better result, which indicates that a good placement of the cameras is at
least as important as their sheer number. The best reconstruction results were
achieved with the moderate number of 24 cameras, shown in Fig. 10.7.

The computation of the normal term is relatively time-consuming, and
our analysis of the convergence behaviour suggests that it becomes relevant
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only during the later iterations, when the finer details of the surfaces need
to be carved out. For that reason, we adopt a hybrid model, where for the
initial evolution the normal term is set to zero, and switched on as soon as
the convergence starts to slow down.

In all cases, the algorithm runs with the same parameter values of ¢; = 0.1
and es = 100. It exhibits a very stable behaviour against parameter changes,
as Table 10.4.1 suggests. Here, 24 Cameras are used for the estimation of
the first test volume, and the error after exactly 200 iterations depending on
different parameter values is noted down. As a rule of thumb, there is a certain

€1
0.01 0.1 05 1 5
1 100 U U U U
10 10.05 0.04 0.06 U U
e2 50 |0.16 0.07 0.03 0.04 U
U
.0

100 |0.04 0.05 0.04 0.06

10000 S S S S 0.03

Table 10.1. Final error depending on different settings of the parameters.

threshold value for the speedup term above which it accelerates the evolution
above a stable limit, causing the surface to shrink uncontrolled below the
silhouettes. This is indicated by a “U” in the table. Too low a choice of ¢; has
no ill effects on stability, but slows down the convergence a bit. €5 can safely
be chosen somewhere between 10 and 100 without much effect, but may cause

the surface to be stuck at an undesireable spot if set too high, as indicated by
the “S” in the table.

10.4.2 Real-world Water Videos

For the real-world tests, we use a multi-video studio consisting of 8 CCD-
cameras with a resolution of 1004 x 1004 pixels. The cameras can record at a
frame-rate of 45 frames per second. A 300W UV light source is employed to
illuminate the Fluorescein-dyed water. Our setup is shown in Fig. 10.8. We
acquire test sequences using a dark studio, the excitation light source and the
fluorescent water being the only source of light. This measure allows for simple
background subtraction. The reconstruction is performed on an equidistant,
uniform grid of 1283 voxels. An example of a reconstructed water surface
rendered in a virtual environment and with changed material properties is
shown in Fig. 10.9.
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Fig. 10.8. Our studio setup consists of eight cameras, a fish bowl filled with dyed
water and a UV light source (not visible).

10.5 Conclusions

We have presented a method for the reconstruction of flowing water surfaces
suitable for free-viewpoint video. A novel recording methodology and a corre-
sponding image formation model allow us to define a photo-consistency con-
straint on the reconstructed surface. We utilize weighted minimal surfaces to
refine the visual hull of the water using constraints based on thickness mea-
surements of the real surface. The resulting energy functional is minimized
using the Euler-Lagrange formulation of the problem, leading to a partial dif-
ferential equation. This PDE is solved by applying the well known level set
method. Synthetic tests indicate that the solution of the equation is stable.
Real-world tests demonstrate the suitability of our method for the reconstruc-
tion of water.

Our Future work includes research into the applicability of our method to
the reconstruction of other refractive media. Additionally, we would like to
develop a hierarchical representation of the underlying computational grid to
achieve a higher resolution reconstruction which allows to resolve finer details.
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b ey

Fig. 10.9. Reconstructed stream of water placed in a virtual environment. Top:
Turning water into wine - we changed the material properties of the water such
that it resembles red wine. Below: Close-up of the water surface, showing the intri-
cate details of the reconstructed geometry. All ray-tracing was performed with the
Persistence of Vision Ray Tracer, available at www.povray.org.
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Overview

11.1 Introduction

In the last two parts, we described how to extract geometric information from
multi-video sequences. In the final stage of a free-viewpoint video system, this
geometric data has to be exploited to create high-quality novel views of a
scene. The two scenarios we analyzed require two distinct different kinds of
rendering algorithms, which we present in this part. Both have in common
that the source video images are mapped onto the target geometry using
modern graphics hardware.

In Chapter 12, we present a rendering system for dynamic light fields. It
is suitable for a number of input streams with accompanying depth maps,
which have to be estimated offline using for instance the techniques presented
in Part II. The system achieves 20 frames per second on modern hardware
when rendering a 3D movie from an arbitrary eye point within the convex
hull of the recording camera’s positions. Novel views are created by warping
and blending the source images using an underlying mesh representation.

Rendering algorithms for the second case of a dynamically varying sur-
face are presented in Chapter 13. We consider both the case of a triangle
mesh representation and of a surface represented by a level set!. In a trian-
gle mesh representation, the textures obtained from the input videos are just
projected onto the geometry using projective texturing with careful selection
of input camera views and weights. More sophisticated algorithms have to be
considered for volumetric representations. Our method of choice is microfacet
billboarding, which is both very fast and produces novel views of very good
quality.

! or voxel volume, which is essentially a special case in the sense that a voxel volume
is nothing more than a two-valued level set function
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Dynamic Light Field Rendering

12.1 Introduction

In this chapter, a rendering system for dynamic light fields is presented. A
dynamic scene can be displayed interactively from novel viewpoints by warp-
ing and blending images recorded from multiple synchronized video cameras.
The system enables interactive viewing of 3D movies from arbitrary viewpoint
positions within the window spawned by the camera positions.

It is tuned for streamed data and achieves 20 frames per second on modern
consumer-class hardware when rendering a 3D movie from an arbitrary eye
point within the convex hull of the recording cameras’ positions. The quality
of the prediction largely depends on the accuracy of the disparity maps which
are reconstructed off-line and provided together with the images.

In Sect. 12.2, we give some mathematical background on the relationship
between disparity and depth, and show how vertices are projected into novel
views using depth information. Sect. 12.3 presents our novel rendering algo-
rithm, which maps input images onto an underlying triangle mesh and warps
the textured mesh forward into novel views using modern graphics hardware.
Sect. 12.4 shows our results, and we conclude in Sect. 12.5.

12.2 Disparity Compensation

In this section, we derive how disparity information is related to depth, and
how it can be used to warp points in one image forward into novel views.
Let Z be an image from a source camera C'. For £ = 0,...,n, let Z; be an
image from a reference camera C}, related to the source image by the funda-
mental matrix Fy,, see Sect. 2.2. If P € R? is a fixed point in world coordinates
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and p its projection in the source image in homogenous coordinates, the cor-
responding point pj. in the reference image Zj, lies on the epipolar line of p
satisfying the epipolar constraint (2.1),

Pl Frp = 0. (12.1)

We use the prime to denote points whose coordinates are given in the image
coordinate frame of C}, all others are given in the image coordinate frame of
camera C.

If C) is obtained from C' by a pure translation d; parallel to the image
plane, the fundamental matrix is given by [32, Sect. 1.13]:

0 0 dyy
Frp = [di]x = | 0 0 —dps
—dyy dps O

and the epipolar constraint (12.1) yields an equation for a line which can be
rewritten as

Pl = p — Ady. (12.2)

Note that dj is not normalized. Here A = A(P) > 0 is called the disparity of
P and can be interpreted as the parallax of p for a unit camera movement on
the eye point plane. We also note that it is a bijective function of the depth
d(P), the distance of P to the image plane: From Fig. 12.1, we deduce that
in the image coordinate frame of camera C, pr has coordinates

o(P)

5P T dy, (12.3)

Pr = p+

where f denotes the camera’s focal length. Since the coordinate frames in the
image plane are related by p;, = pr — di we conclude by comparing (12.2)
with (12.3) that

AN =1-— ﬂ — L

(P)+f P+ f

does not depend on the reference image, so it is well-defined. Equation (12.2)
thus ensures that knowledge of X is sufficient to derive the location of p in an
image taken by a camera related to C' by a pure translation parallel to the
image plane.

For the interactive rendering, we usually employ pre-computed disparity
maps obtained with one of the reconstruction techniques presented in Part II.
The depth maps visible on the next pages, however, were obtained with the
PDE-based reconstruction technique by Alvarez et al. [3].
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Fig. 12.1. Top: Plane spawned in R® by a point P and the cameras’ centers of
projection (COP). Below: Image coordinate frames of camera C' on the left and
camera (' on the right side.

12.3 Interactive Rendering

In the rendering step, a number of images {Zy}r—1. ., with precalculated
dense disparity maps {\;} are warped and blended in order to predict a view
of the scene from a new viewpoint C'. For interactive frame rates, one cannot
transform each pixel seperately as this would consume too much time. The
method described in this section exploits the polygon processing capabilities
of OpenGL as well as hardware texturing and blending provided by modern
graphics hardware.

We create a regular triangle mesh covering the area of the source image
and assign to each vertex v of the mesh a disparity value A(v) computed as
the average of its surrounding pixels in Aj. This process essentially downscales
the disparity maps and reduces the number of transformations required during
rendering. The downscaled maps can also be precomputed and stored on hard
drive for different resolutions of the triangle mesh. An additional benefit of
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Fig. 12.2. Disparity map with triangle mesh, warped triangle mesh and resulting
warped image.

downscaled disparity maps is their smaller size which speeds up loading while
displaying sequences of movie frames.

The blending process requires m passes of the scene. In the kth pass, the
source image 7y is loaded to the texture target TEXTURE_RECTANGLE_NV. This
OpenGL extension is required since the width and height of the source images
is usually not a power of two. The mesh is rendered as a sequence of triangle
strips, which gives far superior performance compared to single quads. Final
vertex positions and texture coordinates are computed in hardware by a vertex
program which performs the following tasks:

e Use the position of the vertex directly as the texture coordinates in the
source image. Note that texture coordinates for rectangular textures are
not homogenous.

e Compute the position of the vertex v in the warped image according to
Vopos = V + A(v)dg,

where dj is the translation from C} to the new viewpoint C.

The initial weight for each image is given by
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Block size|Mesh res. Triangles Frame rate

[pixel] | [blocks] [#] [Hz]
8 40x 30 9600 72.99
4 80x60 38400 32.15

2 160x120 145200 10.87

Table 12.1. Frame rates for different mesh resolutions (excluding loading times).

wi = exp(—cdg - dg). (12.4)

wy decreases with greater distance to the source image. The use of the Gaus-
sian is not mandatory, it is but one of the functions having the desired property
of smoothness and a function value of one when d; equals zero. To further
speed up rendering, images with a weight below a small treshold value ¢ > 0
are not used since their contribution is too small to be visible. The constant ¢
is chosen so that wy falls just below € when dj equals the minimum distance
between two cameras. Thus, if the position of the camera for the predicted
view coincides with one of the source cameras, the original image of the camera
is reproduced exactly without distortions from other source images.

After all initial weights are known, the final blending weight w; used in
the OpenGL blend equation is then computed according to a cumulative nor-

malization by
Wk

Zf:l Wi

The stencil buffer is used to ensure that a weight of 1 is used in areas where

no image data has yet been written. That way it is guaranteed that all pixels

are blended with the correct weight relative to the images already warped and

that for each pixel the sum of all weights after every pass is equal to one.
Backfacing triangles are culled during rendering since their pixels are ob-

scured by a nearer object. An example of the original triangle mesh, the depth
map and the resulting warped mesh is shown in Fig. 12.2.

WE =

12.4 Results

The measurements in the following tables were performed on a 1.7GHz Pen-
tium Xeon with an nVidia GeForce 4 graphics card. Four source images with
a resolution of 320 x 240 pixels taken from cameras in the corners of a square
are warped together to render a predicted view with a resolution of 640 x 480
pixels, see Fig. 12.4 and Fig. 12.4. Frame rates achieved for a static image with
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Time per 100 frames used for
Block|Rendering Loading Loading
size images depth maps

8 1.37 s 3.68 s 0.15 s
26.4 % 70.8 % 2.8 %

4 3.11 s 3.68 s 0.61 s
420 % 49.7 % 8.3 %

2 9.98 s 3.68 s 245 s
619 % 228 % 15.3 %

Table 12.2. Profile for different tasks while displaying a movie, assuming the the-
oretical average transfer rate of 25 MByte/s.

!|

—
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I

Fig. 12.3. Residual error of disparity compensation: The error is concentrated along
edges in the image where small inaccuracies in disparity result potentially in large
differences in color.

Block size|Root mean squared error

8 16.50
4 16.35
2 16.30

Table 12.3. Per-pixel error in a view warped from three other images. Pixel values
range from 0 to 255.

different triangle mesh resolutions are denoted in Table 12.1, where block size
corresponds to triangle leg length in pixel.

In the case of dynamic scenes, the task of loading the images and depth
maps becomes the bottleneck, as can be concluded from Table 12.2. Indeed,
at this resolution about 1 MByte of image data and 0.25 MByte of disparity
data have to be transferred per frame from hard drive to the graphics card.
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Modern standard IDE drives achieve average loading rates of 25 MByte per
second, which limits the theoretically possible frame rate to 20Hz. In practice,
the transfer rate on our system seldom exceeds 15 MByte/s, probably because
the different data files to be read are not stored linearly on the drive.

Thanks to the use of graphics hardware for rendering, the predicted image
can be scaled to an arbitrary size with no impact on performance. Smaller
block sizes result in a more complex triangle mesh and require more bandwidth
and rendering time, but improve the quality of the image only marginally.
This is shown quantitatively in Table 12.3, where we predict the view from
the top-left camera by warping the images of the other three cameras. The
mean squared error per pixel between the original image and the predicted
image serves as a measure for the warped image quality. Fig. 12.3 shows a
visualization of the error distribution.

The predicted image in the worst possible case where the camera lies in
the center of the square is displayed on the color plate. Some strong blurring
artifacts are visible in the areas circled in red. The errors in the upper right
corner result from the fact that some part of it is visible in only one image,
so no correct depth information can be derived for it. In general, the depth
information near the boundary is not as accurate as in central regions, which is
a common problem in disparity map estimation [3]. The blurriness in the legs
of the person is due to the motion blur already present in the source images,
which leads to bad disparity estimates. However, the algorithm reconstructs
well features such as the corners in the wall and the computer monitors, circled
green. A movie showing our system in action is available for download on our
web page’.

12.5 Conclusions

The system we have presented is capable of rendering 3D movies from an
arbitrary viewpoint within the recording window at interactive frame rates
on today’s consumer-class hardware. Image quality largely depends on the
accuracy of the disparity maps provided with the recorded video streams.

In our current implementation the predicted view can only be rendered
for translated cameras. The correlation algorithm used for preconditioning
the disparity map estimation also assumes that the cameras in the array are
related to each other by pure translations. However, it is possible to general-
ize our software towards arbitrary recording geometry and arbitrary positions
used for prediction. The additional hardware-accelerated per-vertex compu-
tations will not decrease the overall frame rate significantly. Since the real

Y http: / /www.mpi-sb.mpg.de/~bg/3dtv. html
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Fig. 12.4. Source images taken by four cameras positioned at the vertices of a
square. Note the artifacts encircled red are caused by motion blur which lead to
blurred reproduction in the predicted view below.

Fig. 12.5. The predicted view from a viewpoint in the center between four cameras.
Note the sharp reproduction of edge features circled green. The visible blurriness in
areas marked red is caused partly by motion blur in the source images, Fig. 12.4,
and partly by inaccuracies in the depth maps as explained in the main text.
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bottleneck is the time needed for data loading, compression techniques to
speed up the transfer have to be investigated.

One could improve the quality of the prediction by using a triangle mesh
adapted to image features instead of a regular mesh. By matching triangle
edges with edges in the depth maps, pixels belonging to the same physical
object will be bound to an independent subset of the mesh, which further
improves rendering quality.
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Free-Viewpoint Video Rendering

13.1 Introduction

In this chapter, we present a hardware-accelerated image-based rendering sys-
tem which uses multi-video sequences to texture a pre-computed approxima-
tion to scene geometry. The input images are placed into the texturing units,
and projective texture coordinates are computed by a vertex/fragment pro-
gram combination. Textures are blended with weights based on the visibility
of each geometric primitive by a source camera. Rendering is performed at
real-time frame rates, so our method is suitable for a free-viewpoint video
system, if we can stream the geometry and the input images to the graphics
hardware fast enough. Since AGP and in particular PCI Express data transfer
rates are sufficient by a large margin, the bottleneck lies in hard drive trans-
fer rate. It is therefore necessary to combine this rendering stage with a good
compression algorithm with real-time decompression capability. We can also
combine it with our studio setup, Sect .7.4, which can compute the visual hull
interactively, in order to obtain a live recording and playback system.

Our algorithm can handle both direct triangle mesh representations as well
as volumetric geometry defined as the zero level set of a function. In the latter
case, we render microfacet billboards, small rectangles facing the viewer, which
cover the whole zero level set. The former case is much simpler, since we can
render the geometry directly. Because of this, in the following we only describe
the case of volumetric geometry being rendered using billboards. Rendering
of triangle meshes works exactly the same, except that the billboards are
replaced by the triangle surface geometry. Sect. 13.2 is devoted to our novel
rendering algorithm, whose results are presented in Sect. 13.3. We conclude
with some plans for future work in Sect. 13.4.
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cell and its billboard

camera j

1mage plane

current

» viewpoint

Fig. 13.1. The billboard associated with a cell is oriented always parallel to the
image plane. Its corner p has the texture coordinate 7;(p) in the image of camera
j. The projection m; can be pre-computed.

13.2 Hardware Accelerated Rendering

For each cell near the zero level set we render a single geometric primitive
called a billboard, which is a rectangle parallel to the image plane having
the same center as the cell. Since the coordinates of the billboard’s corners
in 3D-space are known, we can compute their locations in the camera views
and use this information to texture the billboards, Fig. 13.1. The cameras
are immobile, so this projection 7 can be pre-computed and evaluated very
efficiently using hardware-accelerated dependent texturing and customizable
vertex transformations. In the remainder of the section we describe the texture
setup in more detail.

For the sake of simplicity of notation we assume that the support I of
the level set function u lies in the unit cube [0, 1]3. The formulas can easily
be adapted to arbitraty positions by inserting additional transformations at
the appropriate locations. In a preprocessing step, the unit cube is divided
into s> smaller cubes. The 3D textures 77" which discretize the mappings m;
will be of size s x s X s and are defined for the centers of the cubes. For
each camera i and each cube, we compute m;(p) for its center p, encode the
resulting homogenous 2D texture coordinate into the alpha and red channel
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State Value
General
BlendEquation FUNC_ADD
BlendFunc SRC_ALPHA, ONE_MINUS_SRC_ALPHA

Texture unit 1
SHADER_OPERATION | TEXTURE_3D
TEXTURE_ENV_MODE NONE

Texture unit 2
SHADER_OPERATION | DEPENDENT_AR_TEXTURE_2D_NV
TEXTURE_ENV_MODE COMBINE

COMBINE_RGB REPLACE
SOURCEO_RGB TEXTURE
OPERANDO_RGB SRC_COLOR
COMBINE_ALPHA REPLACE
SOURCEO_ALPHA PREVIOUS
OPERANDO_ALPHA SRC_ALPHA
SOURCE1_ALPHA TEXTURE

OPERAND1_ALPHA SRC_ALPHA

Fig. 13.2. OpenGL and texture stage state during billboard rendering.

of a texture and store them at the location p of the current 3D texture 77".
This initial setup needs to be performed only once.

For each frame in the sequence, the images Z; currently viewed by the
cameras are retrieved from hard disk and loaded as texture images T onto
the graphics card. Since we want to use for texturing only those pixels within
the silhouettes, we assign to all other pixels an alpha value of zero denoting full
transparency, while an alpha value of one is assigned to all silhouette pixels.
In order to smooth the blending in areas where the texture is in transition
from one camera image to the next, an alpha value of 0.5 is assigned to pixels
belonging to the boundary of the silhouettes.

During the last step the level set is rendered. This is the only part of the
algorithm which depends on the current viewing direction. The following is
performed for each cell: Let d be the cell’s diameter and v its center. We select
two cameras j and k according to the following criteria:

e The cell is fully visible in Z; and 7, and
e The angles a; and aj, between the viewing direction and the optical axes
of cameras j and k, respectively, are minimal.

Note that in general, the selection of the two different cameras depends on v, so
different cells are textured by different cameras. The billboard will be textured
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it

Fig. 13.3. Segmented source images. These are four of the six images used to con-
struct the visual hull and texture the billboards. The cameras are spaced roughly
60 degrees apart.

with the images of these two cameras, which are blended depending on the
similarity of the camera’s optical axes to the current viewing direction. The
blending weights w; and wy, for the cameras are set to

@5k

Wi = 1 — ————.
75
a; + Qg

This way, a camera’s image is reproduced exactly if the viewing direction
coincides with its optical axis, and transitions are reasonably smooth when
the selection of the two cameras changes due to a change in viewing direction
— although not perfectly so, since to obtain smooth transitions everywhere
requires knowledge about all the boundary lines between different camera
selections, which is too much computational effort to determine.

Rendering the billboard requires two passes and at least two hardware
texture units. In the first pass, the texture T is set up in texture unit 1 with
dependent texturing enabled. Unit 1 computes texture coordinates for texture
unit 2, to which we assign the camera image TjI . Blending is enabled to ensure
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that background pixels are transparent, and billboards have to be drawn in
back-to-front order to correctly blend them one upon the other. The geometry
transferred for each cell of I is a single billboard centered on V parallel to the
current image plane and of size v/3d x v/3d in order to cover the projection of
the cell with the projection of the billboard in the worst case. With texture
coordinates set equal to the vertex positions, the graphics hardware now takes
care of the rest.

Similarly, in the second pass, T} in unit 1 outputs texture coordinates for
T kI in unit 2. We now have to blend correctly between the contribution of the
first camera and this one, so the blending weight w; of the second image rela-
tive to the first one is stored in the alpha channel of the current color, which
is modulated by the output of texture unit 2. The billboard is then rendered
again. The correct setup for the texture shaders and environments in an ex-
ample implementation using nVidia’s OpenGL extension NV_texture_shader
is summarized in Fig. 13.2. This setup can also be used for the first pass with
the primary color’s alpha value set to one, so no time-consuming state changes
are required.

One also has to take great care to minimize the number of changes in
texture images to optimize caching. In order to achieve this, a slight modifica-
tion of the above scheme can be applied: The multiple textures for the source
images are pasted on top of each other into one large single texture, where
the v coordinate is translated depending on the current camera. The same is
done with the textures for the mappings. That way, texture images have to
be selected just once before rendering all of the geometry.

13.3 Results

In our method, besides the negligible amount of geometry, data transfer from
memory to the graphics card is limited to six very efficient texture loads per
frame, one for each camera image. This amounts to 1.8MB of raw data in the
case of 320 x 240 RGBA source images. It might be further reduced by first
selecting the cameras which are able to contribute to the scene depending on
the current viewpoint. However, it does not appear too much in view of the
AGP 4x peak bandwidth, which lies in regions of 1GB per second. Instead,
retrieving the data from hard drive fast enough is the bottleneck and requires
a sophisticated compression scheme.

After all data has been transferred, our implementation is able to render
a 64 x 64 x 64 voxel volume from an arbitrary viewpoint at 30 fps. For each
voxel, the contributions from the two nearest cameras are blended. The time
to render each frame scales linearly with the number of visible voxels and
almost linearly with the number of source cameras - note that the projected
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Fig. 13.4. Rendered view. The novel viewpoint lies in-between two of the source
cameras of Fig. 13.3.

coordinates of each voxel have to be computed only once, regardless of the
number of cameras. The program runs on a 1.8GHz Pentium IV Xeon with a
GeForce 4 Ti 4600 graphics card. If no dependent texturing is available on a
system, the mapping from 3D-space to the camera images can also be com-
puted for each vertex by the CPU or a vertex program, decreasing performance
slightly. The only real drawback of the algorithm is the limited resolution of
the texture color channels: Since image coordinates are currently converted
into 8-bit values, the discretized range of 7 consists of only 256 x 256 distinct
points. Higher image resolution gives more detail, nevertheless, because co-
ordinates in-between arise from bilinear interpolation on the graphics card.
Furthermore, already announced graphics hardware will support textures with
higher dynamic range, probably up to floating-point accuracy, thus nullifying
the problem. On even more modern hardware, it is likely that the texture
coordinates can be computed entirely in the vertex program without notably
impacting performance, making pre-computation unnecessary.



13.3 Results 131

Fig. 13.5. Rendered view from the ballet dancer sequence. The novel viewpoint again
lies in-between two of the source cameras. Geometry was reconstructed using our
spatio-temporal reconstruction from Chapter 9.

Fig. 13.4 displays a rendered image of the person from a novel viewpoint
directly in between two of the source cameras having an angular distance of
about 60 degrees. Note that despite the low resolution of 64 x 64 x 64 voxels,
much finer details are visible. There are also few noticable transitions between
voxels textured by different cameras, and the overall sharpness compared in
view of sharpness and resolution of the source images in Fig. 13.3 is good.
More rendering results were already presented in the previous part, Fig. 9.7.

It is important to note that although we use a voxel model of the visual hull
to approximate the geometry, the actual rendering algorithm is not limited to
this representation. Instead, it can use a polygonal model of the visual hull
using exactly the same texture setup, or in fact almost any other geometry

proxy.
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13.4 Conclusions

The algorithm we presented employs a voxel-based representation of the visual
hull as a geometry proxy for fast image-based rendering. By splatting small
texture patches onto rectangular billboards, intricate details in the source
images are preserved even in the case of coarse geometry data. The rendering
algorithm can also handle other approximations to the scene geometry besides
the visual hull. Real-time frame-rates of 30 Hz are achieved on current off-
the-shelf hardware for 64 x 64 x 64 voxel volumes.

Abundant applications exist in free-viewpoint television. The next step
to make this rendering technique feasible in practice are novel compression
methods which are especially tuned to the data required for the real-time
rendering.



14

Discussion and Conclusions

The driving motivation of this thesis is to be able to render novel views for
video streams captured with a handfull of calibrated cameras. Many prob-
lems have to be solved in order to achieve this goal. We focused on the area of
3D reconstruction, since an approximation to the scene geometry is essential
in order to be able to synthesise high-quality images from different vantage
points. Interactive rendering methods which can be employed once suitable
pre-computed geometry information is available were presented as well. Dif-
ferent problems have been identified which have to be solved depending on
the kind of available camera setup. A common denominator is the question
of how to adress temporal coherence, which is a major visual clue in video
sequences. Any algorithm solving the reconstruction problem for videos can
greatly enhance the quality of its results by incorporating ways to exploit this
clue.

14.1 Summary

We will quickly summarize our algorithms, discuss their advantages and draw-
backs, and show the advance over existing techniques.

14.1.1 Depth Reconstruction

For video sequences captured by cameras with parallel optical axes, we have
presented an algorithm which simultaneously estimates the depth of each pixel
in a scene, and whether or not it belongs to the moving foreground or static
background. Unlike previous approaches, the system enforces temporal con-
sistency among all video frames and requires no user-defined parameter val-
ues. All images are treated symetrically. Several visual clues, including pixel
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grouping and motion, are statistically analyzed by a pre-processing stage, and
integrated into a global energy functional, whose minimum yields the recon-
struction result. The minimization can be performed using the well-known,
powerful graph cut technique.

For achieving optimal results, however, we currently require availability
of background clean plates. We also cannot handle non-Lambertian surfaces
properly, a common drawback of any approach based on local matching.

14.1.2 Surface Reconstruction

Our surface reconstruction algorithm is designed for setups where the cameras
surround a dynamic object whose geometry is to be reconstructed for every
frame of a video sequence. We introduce the idea, previously unexplored in
computer vision, to represent the time-varying surface as a single hypersurface,
whose slices with planes of constant time yield the geometry for each time
instant. Our approach recovers the hypersurface as a weighted minimal surface
of an error functional, which optimizes photo-consistency with all input images
simultaneously. Temporal coherence follows implicitly from spatio-temporal
continuity of the model. The Euler-Lagrange equation we derive for the general
case of error function we require was to our knowledge previously unknown.
It leads to a PDE evolution algorithm to derive a local minimum, which can
be implemented for instance using a level set representation.

Since our photo-consistency criterion relies on pixel color values again, we
have the same drawback of being only able to handle Lambertian surfaces. In
addition, as the initial surface for the PDE evolution we employ the visual hull,
which is prone to errors in the segmentation of the input images. Although
we can start with a volume guaranteed to surround the whole scene instead,
the algorithm will then require a lot more processing time until convergence.
Because the computational complexity of our reconstruction scheme is high
in any case, a parallel implementation and appropriate hardware is currently
mandatory.

14.1.3 Video-based Rendering

For both kinds of geometry we reconstructed, depth maps and surfaces, re-
spectively, we designed video-based rendering techniques specifically for the
purpose of real-time rendering. Our dynamic light field rendering application
can render from video streams with accompanying depth maps at a rate of 20
frames per second if the novel view is computed from four source images. When
combined with the temporally coherent depth maps and background segmen-
tation presented earlier, we can render foreground and background separately
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to achieve crisp contours and smooth viewing experience without virtually no
flickering artifacts. The viewpoint, however, is limited to the window spawned
by the recording cameras.

If the cameras surround the scene and we have per-frame geometry avail-
able, as for instance acquired with our surface reconstruction techniques, we
can lift all constraints on the placement of the novel viewpoint. For triangle
mesh representations, one can render the surface directly, using projective
texturing to place details from the input images onto the surface. We also
presented a billboard rendering technique to create novel views from level set
representations.

Using optimizations we presented, one can reduce the effect of artifacts
caused by texture boundaries. However, they cannot be completely eliminated,
in particular if the resolution of the source videos is not high enough or there
are errors in the segmentation. In general, all other errors in 3D reconstruction
can naturally lead to severe artifacts as well, which cannot be alleviated in
the rendering stage.

14.2 Future Work

We believe that this thesis has brought 3D reconstruction from multi-video
footage a step forward, but still a lot of research remains to be done. Two issues
in particular demand further attention. The first one is the current constraint
of Lambertian reflection only, which clearly has to be lifted in order to be
able to work with natural scenes instead of the studio recordings in controlled
environments. Already, our algorithms could handle the matching problem if
the BRDF or the material as well as the lighting is exactly known. However,
lighting and/or BRDF estimation during reconstruction is something to be
desired.

The second problem which is very important to solve is the recovery of
the scene flow. So far, our spatio-temporal reconstruction technique only re-
constructs the space-time geometry hypersurface, but not the actual corre-
spondences between surface points at different time instants. We believe that
this problem can be addressed by solving the partial differential equation for
the scene flow on the surface in a similar way as the optic flow equation in a
flat image, by adapting the best current PDE solvers for the flat geometry to
arbitrary manifolds. In the end, we would like to formulate a coupled set of
PDEs for combined recovery and optimization of surface geometry and scene
flow. To be sure, this program will likely keep us and many others working in
this exciting field busy for a long time to come.
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