On the Design of IEEE Compliant Floating-Point Units
and Their Quantitative Analysis

Dissertation

zur Erlangung des Grades
Doktor der Ingenieurwissenschaften
(Dr.-Ing.) der Technischen Fakultét

im Fachbereich Informatik

der Universitat des Saarlandes
vorgelegt
von

PETER-MICHAEL SEIDEL

Saarbriicken 1999

Dekan: Prof. Dr. Wolfgang Paul
Erster Berichterstatter: Prof. Dr. Wolfgang Paul
Zweiter Berichterstatter: Priv.-Doz. Dr. Silvia Miiller

Tag des Kolloquiums: 14. Januar 2000

Abstract

This thesis addresses the question of which are the important issues in the design of a
high-speed floating-point unit (FPU) that is fully compliant with the TEEE floating-point
standard 754-1985 [19]. There are a few choices that need to be made when designing
an IEEE compliant FPU, among them: the internal representation of floating-point num-
bers, the rounding algorithms, handling of denormal results, usage of the same rounding
hardware for different units (e.g. adder, multiplier, divider), and the implementations of
the adder, the multiplier and the divider. These choices influence both the cost and the
performance of the FPU. Nevertheless, these issues have not been discussed in the open lit-
erature todate. This work begins to fill this gap by designing, analyzing and comparing 18
different IEEE compliant FPU implementations, that consider design options regarding:
(a) the internal representation of floating-point numbers; (b) the rounding algorithms; (c)
sharing of a rounding unit, the implementation of gradual step rounding or the implemen-
tation of dedicated rounding units for each functional unit; (d) the implementation of the
floating-point multiplier; and (e) the implementation of the floating-point divider. The
presented FPU designs make also use of the following innovations, that were developed
in the context of this work: (a) a fast implementation of variable position rounding inte-
grated into a FP multiplier [37]; (b) to the best of our knowledge the fastest integrated FP
addition and rounding algorithm published todate [40], (c) the fastest FP multiplication
rounding algorithm published todate [11, 12] and (d) the fastest linear reciprocal approx-
imation implementation published todate. [36, 39]; (e) an efficient integration of single
and double precision rounding [9]; (f) a Booth encoded adder-tree with an improved cost
formula [30].

All the FPUs designed in this work are fully compliant with the IEEE standard for all
implemented operations, support both single and double precision, and deal with denor-
mal values and special cases in hardware. Because to design an IEEE compliant FPU is a
complex and error-prone task, all the FPU designs are specified in full detail at gate level
and the correctness of the FPU designs (in particular the compliance with the IEEE stan-
dard) is proven. The proposed FPU implementations are analyed and compared regarding
the hardware cost, the cycle time and the performance that they achieve on traces of the
SPECfp92 benchmark suite [17] integrated into a pipelined RISC processor from [23]. In
this quantitative analysis [38] it is demonstrated that the choice of the rounding archi-
tecture in the FPU has a larger impact on the performance of the microprocessor than
the choice of the FP multiplication or the FP division implementation. In comparison to
this the impact of the rounding architecture choice on the cost is relatively small. The
rounding architecture that uses dedicated rounding units provides the best performance
with only small additional cost, so that this rounding architecture seems to be the best
choice in floating-point implementations. The fast implementation of this rounding archi-
tecture is only made possible by the fast variable position rounding implementation for
multipliers from [37]. This underlines the importance of this technique.

ii

Kurzzusammenfassung

In dieser Arbeit wird der Frage nachgegangen, welches die wichtigsten Designentscheidun-
gen bei der Implementierung einer schnellen Gleitkommaeinheit (FPU), die dem IEEE
Standard 754-1985 [19] geniigt, sind. Es gibt verschiedene Entscheidungen, die beim En-
twurf einer IEEE konformen FPU getroffen werden miissen, darunter: die internen Darstel-
lungen der Gleitkomma- (FP) Zahlen, die Rundungsalgorithmen, die Art der Behandlung
von denormalisierten Ergebnissen, die Mehrfachverwendung von Teilen der Hardware,
wie z.B. die Benutzung derselben Rundungshardware fiir verschiedene Einheiten, und
die Implementierungen des FP Addierers, des FP Multiplizierers und des FP Dividier-
ers. Diese Entscheidungen beeinflussen sowohl die Kosten alsauch die Leistung der FPU.
Nichtsdestotrotz wurden diese Entscheidungen bislang nicht in der Literatur diskutiert.
Die vorliegende Arbeit setzt in dieser Liicke an. Es werden 18 unterschiedliche FPUs
vorgestellt, analysiert und verglichen, die Optionen zu den folgenden Entscheidungen be-
trachten: (a) interne Darstellung der FP Zahlen; (b) Rundungsalgorithmen; (¢) Gemein-
same Nutzung einer allgemeinen Rundungseinheit, Aufteilen des Rundens in mehrere
Schritte und gemeinsame Realisierung einer Teilmenge dieser Schritte oder vollstandige
eigene Implementierung des Rundens fiir jede Funktionseinheit; (d) Implementierung des
FP Multiplizierers; (e) Implementierung des FP Dividierers. Die vorgestellten FPU De-
signs benutzen dariiberhinaus folgende Neuerungen, die im Rahmen dieser Arbeit ent-
standen sind: (a) eine schnelle Rundungsimplementierung fir den FP Multiplizierer mit
variabler Rundungsposition [37]; (b) nach unserem besten Wissen den bisher schnellsten
publizierten Algorithmus zum Addieren und Runden von FP Zahlen [40], (c¢) den bisher
schnellsten publizierten Algorithmus zum Runden bei der FP Multiplikation [11, 12] und
(d) die bisher schnellste publizierte Implementierung einer linearen Approximation von
Reziproken [36, 39]; (e) eine effiziente Integration des Rundens in single precision und
double precision [9]; (f) einen Booth-Multiplizierer mit verringerten Kosten [30].

Alle entworfenen FPUs sind fiir alle implementierten Operationen vollstandig konform
zum IEEE FP Standard 754, unterstiitzen sowohl single alsauch double precision Zahlen,
und behandeln selbst denormalisierte Ergebnisse und Spezialfalle in Hardware. Weil der
Entwurf von IEEE konformen FPUs eine komplexe und fehleranfallige Aufgabe ist, werden
samtliche entworfenen FPUs detailiert auf Gatterebene spezifiziert und ihre Korrektheit
(insbesondere die Konformitat zum IEEE FP Standard 754) bewiesen. Die vorgestellten
FPU Implementierungen werden beziiglich der Hardwarekosten, der Zykluszeit und der
Leistung, die sie integriert in einen gepipelinten RISC Processor aus [23] auf Traces der
SPECfp92 Benchmark Suite erbringen, analysiert und verglichen. In dieser quantitativen
Analyse (siehe auch [38]) wird demonstriert, daff die Auswahl der Rundungs-Architektur
einer FPU einen grofleren Einflufl auf die Prozessorleistung hat als die Auswahl der Im-
plementierung der FP Multiplikation oder der FP Division. Im Gegensatz dazu ist der
Einfluf der Auswahl einer Rundungs-Architektur der FPU auf die Hardwarekosten vergle-
ichsweise gering. Die Rundungs-Architektur, die vollstandige eigene Rundungsimplemen-
tierungen fiir jede Funktionseinheit benutzt, liefert bei weitem die beste Leistung und ist
lediglich geringfligig teurer als Varianten mit anderen Rundungs-Architekturen. Demzu-
folge scheint diese Rundungs-Architektur die beste Wahl in FP Implementierungen zu
sein. Die schnelle Implementierung dieser Rundungs-Architektur wurde erst durch die
schnelle Rundungsimplementierung fir FP Multiplizierer mit variabler Rundungsposition
nach [37] ermdglicht. Das unterstreicht die Bedeutung dieser Technik.

Extended Abstract

The importance of floating-point operations is increasing in recent graphic and multimedia
applications. Therefore, each modern microprocessor has to contain at least one floating-
point unit, that supports and accelerates the floating-point computations. To achieve
a well defined behavior during the computations, the floating-point support should be
conform with the IEEE floating-point standard 754-1985 [19].

Despite the high demand for floating-point hardware implementations, an answer to
the question, how to design a fast IEEE compliant FP unit, rarely can be found in the
open literature. Moreover, there are several choices that need to be made when designing
an IEEE compliant FPU, among them: the internal representation of floating-point num-
bers, the rounding algorithms, handling of denormal results, usage of the same rounding
hardware for different units (e.g. adder, multiplier, divider), and the implementations of
the adder, the multiplier and the divider. These choices influence both the cost and the
performance of the FPU. Nevertheless, these issues have not been discussed in the open
literature todate. In contrast to this lack of publications about the implementation of fully
IEEE compliant FP operations or fully IEEE compliant FPUs, there are many published
implementations of specific floating-point operations for the case of normalized operands
in a specific precision, e.g. [9, 26, 27, 32, 40, 43, 44|, and these implementations are highly
optimized for speed. Therefore, it is an important question, how to integrate the imple-
mentations of the different FP operations for normalized operands into a floating-point
unit that supports more than one precision, denormalized numbers and special value re-
sults. This mainly includes the questions of which internal FP representations should be
used in a FP unit and how the microarchitecture of a FP unit could be organized.

This work starts to fill these gaps in the open literature and to find answers to these
open questions. For this purpose, 18 different implementations of a floating-point unit
are designed, quantitatively analyzed and compared in this thesis. All proposed FP de-
signs provide full compliance with the IEEE FP standard 754-1985 for all implemented
operations, support both single precision and double precision operands and also consider
denormalized numbers, special values, exponent wrapping and floating-point exceptions
in hardware. The core of this work is the design and the comparison of three different
FPU microarchitectures that consider the following three options:

(I) the use of a shared general rounder for all functional units; A basic specification of
such a rounder was first described in [10]. Thereafter, this rounder was implemented
by our group, resulting in a version that will be included in [23], where also a
rigorous proof of the compliance with the IEEE rounding definition will be found.
This rounder was further optimized to be included in this thesis.

(IT) a gradual rounding implementation in two steps, a first rounding step within the
functional units assuming the case of a normalized double precision result and a
second rounding step within a shared gradual rounder that fixes the result for all

iii

iv

other cases; For the integrated rounding in the functional units assuming normalized,
double precision operands and results, several algorithms from literature could be
used. The implementation of the gradual rounder is based on the theory from [21]
about gradual rounding. This rounding technique is integrated in this thesis for full
IEEE compliant rounding including the handling of denormalized results, special
values, exceptions and exponent wrapping.

(ITI) the use of separate fully IEEE compliant rounding implementations for each func-
tional unit, each including the handling of denormalized numbers, special cases,
exceptions and exponent wrapping. The implementation of this microarchitecture
for a full TEEE compliant FPU with dedicated rounding implementations is com-
pletely new in this thesis. Especially the integration of a variable position rounding
implementation into the multiplier, that is required to deal with denormalized mul-
tiplication results, was one of the main problems for the implementation of this
microarchitecture and is one of the main innovations of this work [37].

Directly linked to the choice of the FP microarchitecture is the question of the internal
floating-point representations. In this work, five different internal FP representations
are defined. These are used to specify the interfaces between the functional units in
detail. In addition to the consideration of the three different microarchitectures for the
FP implementation, the implementations of the FP-multiplication and the FP-division are
chosen among 6(2x3) variants:

e For the FP multiplication implementation a Booth encoded adder tree is used either
in a full-sized version that is able to compute double precision and single precision
multiplications in one iteration or in a half-sized version that computes double pre-
cision multiplications in two iterations and single precision multiplications in one
iteration.

e For the FP division implementation, we consider three different implementations
of the Newton-Raphson iteration with an initial reciprocal approximation with an
absolute approximation error bounded by 278, 2716 and 2728, respectively. For this
initial reciprocal approximation a fast implementation of a linear approximation
formula using partial compressions was developed [36, 39].

In addition to the different design choices for the internal FP representations, the rounding
microarchitecture and the choice of the FP multiplication and the FP division implemen-
tation, the presented FPU designs make also use of the following innovations, that were
developed in the context of this work:

(a) a fast implementation of variable position rounding for FP multiplication [37];

(b) to the best of our knowledge the fastest integrated FP addition and rounding algo-
rithm published todate [40],

(c) the fastest FP multiplication rounding algorithm published todate [11, 12] and

(d) the fastest linear reciprocal approximation implementation published todate. [36,
39];

(e) an efficient integration of single and double precision rounding for FP multiplication
[9];

(f) a Booth encoded adder-tree with an improved cost formula [30].

The proposed FPUs are quantitatively analyzed regarding the hardware cost, the cycle
time and the performance. The hardware cost and the cycle time are measured using the
formal Hardware model from [22]. The performance of the FP units is analyzed on traces
of the SPECfp92 Benchmark Suite integrated into a pipelined RISC-processor from [23].

In this quantitative analysis (see also [38]) it is demonstrated that the choice of the
rounding microarchitecture in the FPU has a larger impact on the performance of the mi-
croprocessor than the choice of the FP multiplication or the FP division implementation.
In comparison to this the impact of the microarchitecture choice on the cost is relatively
small. The microarchitecture that uses dedicated rounding units provides the best perfor-
mance with only small additional cost, so that this rounding architecture seems to be the
best choice in floating-point implementations.

Zusammenfassung

Floating-Point Operationen gewinnen in heutigen Grafik- und Multimedia-Anwendungen
immer mehr an Bedeutung. Deshalb besitzen aktuelle Mikroprozessoren mindestens eine
Floating-Point Einheit, die die Floating-point Berechnungen unterstiitzt und beschleunigt.
Um ein wohldefiniertes Verhalten der Floating-point Berechnungen zu erhalten, sollte die
Floating-point Unterstiitzung konform zum IEEE floating-point Standard 754-1985 [19]
sein.

Trotz des groflen Bedeutung von Floating-Point Implementierungen in Hardware, gibt
es in der offenen Literatur nur sparliche Antworten auf die Frage, wie man eine schnelle
IEEE konforme FP Einheit entwirft. Dartiberhinaus gibt es verschiedene Entscheidungen,
die beim Entwurf einer IEEE konformen FPU getroffen werden miissen, darunter: die
Wahl der internen Darstellungen der Gleitkomma- (FP) Zahlen, die Rundungsalgorith-
men, die Art der Behandlung von denormalisierten Ergebnissen, die Mehrfachverwendung
von Teilen der Hardware, wie z.B. die Benutzung derselben Rundungshardware fiir ver-
schiedene Einheiten, und die Implementierungen des FP Addierers, des FP Multiplizierers
und des FP Dividierers. Diese Entscheidungen beeinflussen sowohl die Kosten alsauch
die Leistung der FPU. Nichtsdestotrotz wurden diese Entscheidungen bislang nicht in der
Literatur diskutiert.

Im Gegensatz zu diesem Mangel an Publikationen tiber die Implementierung von IEEE
konformen FPUs, gibt es allerdings eine Reihe von publizierten Implementierungen von
einzelnen Floating-point Operationen fiir den Fall von normalisierten Operanden in einer
festgelegten Genauigkeit, z.B. [9, 26, 27, 32, 40, 43, 44], und diese Implementierungen sind
in Hinblick auf ihre Geschwindigkeit optimiert. Deshalb ist es eine wichtige und inter-
essante Frage, wie diese Implementierungen einzelner FP Operationen fur normalisierte
Operanden in eine FPU, die mehr als einen FP Typ unterstiitzt und auch die Behandlung
von denormalisierten Zahlen und special values beriicksichtigt, integriert werden konnen.
Das beinhaltet hauptsachlich die Fragen, welche internen FP Zahlendarstellungen in einer
FP Einheit verwendet werden sollten und wie die Architetur einer FP Einheit zu organ-
isieren ist.

Die vorliegende Arbeit setzt in dieser Liicke an. Zu diesem Zweck werden in dieser
Arbeit 18 verschiedene FP Implementierungen entworfen, quantitativ analysiert und ver-
glichen. Alle vorgestellten FPU Entwiirfe sind fiir die FP Operationen, die sie implemen-
tieren vollstandig konform zu dem IEEE Standard 754-1985, unterstiitzen sowohl single
precision alsauch double precision Operanden und beriicksichtigen auch denormalisierte
Ergebnisse, special values, Exponenten wrapping und FP exceptions in Hardware. Der
Kern dieser Arbeit ist der Entwurf und der Vergleich von drei unterschiedlichen FPU
Architekturen, die die folgenden Optionen betrachten:

(I) die Verwendung eines gemeinsamen allgemeinen Runders fiir alle Funktionseinheiten.
Eine grundlegende Spezifikation eines solchen Runders wurde zuerst in [10] beschrieben.

vii

viii

Danach wurde dieser Runder in unserer Gruppe in einer Version implementiert, die
in [23] vorgestellt werden wird. Dieser Runder wurde fiir die vorliegende Arbeit
weiter optimiert.

(IT) eine Rundungsimplementierung in zwei Schritten (gradual rounding), ein erster Run-
dungsschritt in den Funktionseinheiten unter der Annahme von normalisierten Ergeb-
nissen in double precision und ein zweiter Rundungsschritt in einem gemeinsamen
Gradual Rounder, der das Ergebis fiir alle anderen Félle (nicht double precision
oder kein normalisiertes Ergebnis) anpafit. Fiir das Runden in den Funktionsein-
heiten unter der Annahme von normalisierten double precision Ergebnissen konnen
unterschiedliche Algorithmen aus der offenen Literatur verwendet werden. Die Im-
plementierung des gradual rounders basiert auf der Theorie aus [21]. Dieses Run-
dungsprinzip wird in der vorliegenden Arbeit fir vollstindig IEEE konformes Run-
den unter Beriicksichtigung von denormalisierten Ergebnissen, special values, excep-
tions und Exponent wrapping integriert.

(ITT) die Verwendung von eigenen voll IEEE konformen Rundungsimplementierungen fiir
jede Funktionseinheit, die jeweils eigenstandig denormalisierte Ergebnisse, special
values, exceptions und Exponent Wrapping gemafl dem IEEE Standard beriicksichtigen.
Die Implementierung dieser Architektur einer IEEE konformen FPU mit eigenstandigen
Rundungsimplementierungen ist vollstandig neu in dieser Arbeit. Besonders die In-
tegration des Variable Position Rundens in den Multiplizierer, das erforderlich wird,
um denormalisierte Multiplikationsergebnisse behandeln zu konnen, ist eines der
Hauptprobleme dieser FPU Architektur und damit ist die beschriebene Implemen-
tierung eine der wichtigsten Innovationen der vorliegenden Arbeit [37] .

Direkt verbunden mit der Wahl der Architektur der FPU ist die Frage nach den zu ver-
wendenden internen FP Darstellungen. In dieser Arbeit werden fiinf verschiedene interne
FP Darstellungen definiert. Diese werden dann dazu verwendet um die Schnittstellen
zwischen den Funktionseinheiten einfach, aber detailiert zu spezifizieren.

Zusatzlich zur Betrachtung der drei unterschiedlichen FPU Architekturen wéahlen wir
die Implementierungen der FP Multiplikation und der FP Division unter 6(2x3) verschiede-
nen Varianten aus:

e Fir die Implementierung der FP Multiplikation wird entweder ein Booth2 Multi-
plizierer vollstandiger Grofle verwendet, der sowohl single alsauch double precision
Multiplikationen in einer Iteration berechnen kann oder es wird ein Booth2 Mul-
tiplizierer halber Grofle verwendet, der single precision Multiplikationen in einer
Iteration und double precision Multiplikationen in zwei Iterationen berechnet.

e Fir die Implementierung der FP Division betrachten wir drei unterschiedliche Im-
plementierungen der Newton-Raphson Iteration mit einer Startapproximation des
Reziproken 1FB mit absolutem Approximationsfehler kleiner als 278, 2716 hzw. 2728,
Fir diese Approximation des Reziproken wurde eine schnelle Implementierung einer
linearen Approximationsformel unter Verwendung einer partiellen Kompression en-

twickelt [36, 39].

Die vorgestellten FPU Designs benutzen dariiberhinaus folgende Neuerungen, die im Rah-
men dieser Arbeit entstanden sind:

(a) eine schnelle Rundungsimplementierung fiir den FP Multiplizierer mit variabler Run-
dungsposition [37];

ix

(b) nach unserem besten Wissen den bisher schnellsten publizierten Algorithmus zum
Addieren und Runden von FP Zahlen [40],

(c) den bisher schnellsten publizierten Algorithmus zum Runden bei der FP Multiplika-
tion [11, 12] und

(d) die bisher schnellste publizierte Implementierung einer linearen Approximation von
Reziproken [36, 39],

(e) eine effiziente Integration des Rundens in single precision und double precision [9];
(f) einen Booth-Multiplizierer mit verringerten Kosten [30].

Die vorgestellten FPU Implementierungen werden beziiglich der Hardwarekosten, der Zyk-
luszeit und der Leistung, die sie integriert in einen gepipelinten RISC Processor aus [23]
auf Traces der SPEC{p92 Benchmark Suite erbringen, analysiert und verglichen. In dieser
quantitativen Analyse (siehe auch [38]) wird gezeigt, dafl die Auswahl der Rundungs-
Architektur einer FPU einen grofleren Einflufl auf die Prozessorleistung hat als die Auswahl
der Implementierung der FP Multiplikation oder der FP Division. Im Gegensatz dazu ist
der Einflufl der Auswahl einer Rundungs-Architektur der FPU auf die Hardwarekosten
vergleichsweise gering. Die Rundungs-Architektur, die vollstindige eigene Rundungsim-
plementierungen fiir jede Funktionseinheit benutzt, liefert bei weitem die beste Leistung
und ist lediglich geringfiigig teurer als Varianten mit anderen Rundungs-Architekturen.
Demzufolge scheint diese Rundungs-Architektur die beste Wahl in FP Implementierungen
7u sein.

Contents

1 Introduction

2 IEEE Floating-Point Standard

2.1 Notation e e e
2.2 Numbers and Operations o
2.2.1 Factorings
2.2.2 TEEE Numbers e
2.2.3 Packed IEEE Floating-Point Format
2.2.4 Operations e

23 Rounding
2.3.1 IEEE Rounding Definition
2.3.2 Rounding Functions oL,
2.3.3 IEEE Rounding Functions

24 Special Caseso
24.1 IEEE Flags o e
2.4.2 Exceptions
2.4.3 Operations on Special Values
2.4.4 Summary of IEEE Computations

2.5 Rounding Computation Utilities
2.5.1 Representatives
2.5.2 Injection Based Rounding L.
2.5.3 Gradual Rounding L

2.6 Internal Representations Lo
2.6.1 Packed Formato
2.6.2 Unpacked Format
2.6.2.1 Packed Format — Unpacked Format

2.6.2.2 Unpacked Format — Packed Format

2.6.3 Normalized Format oo
2.6.3.1 Unpacked Format — Normalized Format

2.6.3.2 Normalized Format — Unpacked Format

2.6.4 Representative Formato
2.6.5 Gradual Result Format

3 FP Microarchitectures
4 Basic FP Operations

4.1 Internal Format Conversions
4.1.1 Unpacking I-IIT (packed — normalized format)

xi

xii

4.2

4.3

4.4

CONTENTS

4.1.2 General Rounding I (representative — packed format) 59
4.1.3 Gradual Rounding IT (gradual result — packed format) 74
4.1.4 Packing III (normalized — packed format) 7
Addition/Subtraction Lo 79
4.2.1 Addition/Subtraction I (normalized — representative format) . . . 79
4.2.2 Addition/Subtraction IT (normalized — gradual result format) . . 86
4.2.3 Addition/Subtraction III (normalized — normalized format) 105
Multiplication e 119
4.3.1 Multiplication I (normalized — representative format) 119
4.3.2 Multiplication IT (normalized — gradual result format) 123
4.3.3 Multiplication III (normalized — normalized format) 136
Division e 157
4.4.1 Initial Reciprocal Approximation 157

4.4.1.1 Approximation formula 0oL 158

4.4.1.2 Redundant Booth-Digit Representations. 161

4.4.1.3 Implementation 164
4.4.2 Division I (normalized — representative format) 166

4.4.2.1 Approximation of the quotient (step 1.) 169

4.4.2.2 Computation of the p-representative for f,. (step 2.) 171
4.4.3 Division II (normalized — gradual result format) 174
4.4.4 Division III (normalized — normalized format) 176

5 Evaluation 181

Chapter 1

Introduction

The importance of floating-point operations is increasing in recent graphic and multimedia
applications. Therefore, each modern microprocessor has to contain at least one floating-
point unit, that supports and accelerates the floating-point computations. To achieve
a well defined behavior during the computations, the floating-point support should be
conform with the IEEE floating-point standard 754-1985 [19]. This IEEE specification
could also be achieved by supporting parts of it in software, but for high-performance
systems a hardware solution is preferable.

Despite the high demand for floating-point hardware implementations, a full answer
to the question, how to design a fast IEEE compliant FP unit, rarely can be found in the
open literature. Moreover, there are several choices that need to be made when designing
an IEEE compliant FPU, among them: the internal representation of floating-point num-
bers, the rounding algorithms, handling of denormal results, usage of the same rounding
hardware for different units (e.g. adder, multiplier, divider), and the implementations
of the adder, the multiplier and the divider. These choices influence both the cost and
the performance of the FPU. Nevertheless, these issues have not been discussed in the
open literature todate.In contrast to this lack of publications about the implementation
of fully TEEE compliant FP operations or fully IEEE compliant FPUs, there are many
publications about the implementation of specific floating-point operations for the case of
normalized operands in a specific precision, e.g. [9, 26, 27, 32, 40, 43, 44], and these im-
plementations are highly optimized for speed. Therefore, it is an important question, how
to integrate the implementations of the different FP operations for normalized operands
into a floating-point unit that supports more than one precision, denormalized numbers
and special value results. This mainly includes the questions of which internal FP repre-
sentations should be used in a FP unit and how the microarchitecture of a FP unit could
be organized.

We present an answer to this question by developing and comparing three different
rounding microarchitectures for a FP unit:

(T) In the first microarchitecture all the rounding computations are concentrated in
a shared general rounding unit. This rounding unit considers the rounding for all
TEEE results including the exponent wrapping and the FP exceptions for both single
and double precision operations. A basic specification of such a rounder was first
described in [10]. Thereafter, this rounder was implemented by our group, resulting
in a version that will be included in [23], where also a rigorous correctness proof of
the compliance with the IEEE rounding definition will be found. This rounder is
further optimized in this thesis.

2 CHAPTER 1. INTRODUCTION

(IT) In the second microarchitecture, the rounding for the case of normalized double
precision results is computed within each functional unit and this rounded result is
fixed for all the remaining cases in a second rounding step implemented by a shared
gradual rounding unit. For the integrated rounding in the functional units assuming
normalized, double precision operands and results, several algorithms from literature
could be used. The implementation of the gradual rounder is based on the theory
from [21] about gradual rounding. This rounding technique is applied in this thesis
for full IEEE compliant rounding including the handling of denormalized results,
special values, exceptions and exponent wrapping.

(ITI) By the third rounding architecture a completely new architecture for an IEEE com-
pliant FPU is suggested. In this architecture no rounding hardware is shared, but
each functional unit contains a dedicated rounding implementation that computes
full TEEE rounding considering denormal and special values, exceptions and expo-
nent wrapping. The special problem with the implementation of this microarchitec-
ture is the implementation if the floating-point multiplication. The floating-point
multiplier conventionally requires normalized significands in its operands and de-
livers an almost normalized result. For the fast integration of IEEE rounding into
the FP multiplier, the significand has to be rounded in parallel to the mulplication
computations. For the case of denormalized results this rounding has to be com-
puted at a variable rounding position, that could be at each position within the
significand. The idea, how to integrate such a variable position rounding into the
multiplication implementation is the key concept for this microarchitecture. Such
an implementation is developed in this work. Because such a multiplication imple-
mentation allows to work on normalized FP representations (even for denormalized
values) as inputs and outputs, the internal FP representations can eb changed to
normalized FP representations for this microarchitecture.

To find out the impact of the microarchitecture choice on the quality of the floating-
point implementation, we model the performance and the cost of designs that differ by the
use of the different microarchitectures. This would already be possible by a comparison
of three FP designs, but to improve the expressiveness of the comparison, and to be able
to compare the rounding architectures under several conditions, we additionally vary the
FP multiplication and FP division implementation for each FP microarchitecture. For
this purpose, we choose between two different FP multiplication and three different FP
division implementations.

e For the FP multiplication implementation a Booth encoded adder tree is used either
in a full-sized version that is able to compute double precision and single precision
multiplications in one iteration or in a half-sized version that computes double pre-
cision multiplications in two iterations and single precision multiplications in one
iteration. For the Booth encoded adder trees the constructions from [30], where we
improved cost formula, are used.

e For the FP division implementation, we consider three different implementations
of the Newton-Raphson iteration with an initial reciprocal approximation with an
absolute approximation error bounded by 278, 2716, and 2728, respectively. For this
initial reciprocal approximation a fast implementation of a linear approximation
formula using partial compressions is used, that we developed in [36, 39].

In combination with the three microarchitectures these options combine to a comparison
of 18 different FP implementations.

All the FPUs designed in this work are fully compliant with the IEEE standard for all
implemented operations, support both single and double precision, and deal with denor-
malized values and special cases in hardware. Because to design an IEEE compliant FPU
is a complex and error-prone task, all the FPU designs are specified in full detail at gate
level and the correctness of the FPU designs (in particular the compliance with the IEEE
standard) is proven.

The performance of the designs is measured by a trace-driven run-time simulation of
a R3000 like pipelined RISC processor [22, 23] that integrates the proposed floating-point
implementations. The simulations are computed on traces of the SPEC{p92 Benchmarks
suite [17]. The costs of the designs are modeled by counting the gates that are required
by the different implementations. Thus, based on the performance and the cost of each
FP design, the quality of the FP designs and, in particular, the quality of the rounding
microarchitectures can be compared.

This thesis is partitioned into the following chapters. Chapter 2 prepares the defini-
tions of the IEEE FP standard in preparation for the description of the FP implementa-
tions. The basic description of the FP standard is similar to the description in [10, 23].
Moreover, in this chapter a general framework for the integrated description of different
rounding functions is developed. Rigorous correctness proofs for the partitioning of full
TEEE compliant rounding into these rounding functions are given. This chapter also pro-
vides computation utilities for the implementation of these rounding function. As one
important basic concept, injection-based rounding [9, 40, 11, 12] is introduced. Finally,
this chapter prepares the internal FP representations, by that the interfaces between the
functional units and the shared rounding hardware are specified. Chapter 3 overviews the
requirements on the implementation of a FPU und describes the microarchitectures and
the design choices for the proposed FP designs. Chapter 4 describes the implementations
of all basic FP operations for all three microarchitectures . In combination with a detailed
description of the implementations at gate level, the correctness of the designs and the
compliance with the IEEE standard is proven. Finally, in Chapter 5 the proposed FPU
implementations are quantitatively analyzed and compared.

Chapter 2

IEEE Floating-Point Standard

The IEEE floating-point Standard 754-1985 [19] specifies floating-point number formats,
operations and exception handling in detail. This chapter presents its information in a
slightly different form following [10, 23].

2.1 Notation

We denote real values by small-letter names zyz and bit-strings by small capitalized names
XYZ. The single bits of a bit-string XYz € {0,1}" can be indexed by XYZ[ng:n;] =
(xYz[nal, -+, Xvz[n]) with integers ng = n; +n — 1. The operation < XYZ[ny : ny] >
defines the binary value of XYZ[ns : n1], < XYZ[ns : n1] >9 defines the value of XYZ[ng : nq]
interpreted as a 2’s-complement number, and < XYZ[ng : n1] >piqs, defines the value of
XYZ[ny : ny] interpreted as a biased binary number, that includes the bias bias, = 2"~! —1:

. _ 2 1 oi
< XYZlng :my] > = E . XYZ[i] - 2
) _ ona no—1 q o
<XYZ[ng ing] >9 = —XYZ[ng| 2" + E i, Xvz[i] - 2
n2 . ; .
< XYZ[Ng : ny] Spigs, = E i, XYZ[i] - 2" — biasy,.

To avoid negative indizes, we allow the right index of a bit-string to be larger than the
left index, like in XYZ[n; : ny]. Then, we define a second version of the operations <> and
<>9, that interpret the indizes to be multiplied by (—1). These operations are defined by
. _ 2 9 o—i
< XYZ[Ng gl Speg = Zi:nl XYZ[i] - 2
_ ny . —i

< XYz i ng] Soneg = —XVZ[a] - 27 4 Zi:nﬁ-l xvafi] - 27
The operation binﬁ*"il(x) : R — {0,1}" computes the bit-string of the binary repre-
sentation of = of length n from bit-position with weight 2* to bit-position with weight
2A+tn=1_Tf 2 has two different binary representations, we choose the binary representation
with finite length, so that in z =), X[i] - 2° the X[i] are unique and bin§+”_1(3c) can be
written by:

biny ™" (z) = X[\ +n—1: A

For x € {0,1}" and s € {0,1} we define

X=(x[n—1],...,x[0]) and x®&s=(xX[n—-1]&s,...,X[0]®s).

2.1. NOTATION)

Some crucial properties of two’s complement numbers are (see [MP95])

<0,X[n—1:0]> = <X[n—-1:0]>
—<X[n—1:0]> = <X[n—1:0]>+1
<X[n—-1),X[n—-1:01> = <X[n—-1:0]>9
<zn—-1:0> = <zn-—2:0>mod2" "

From these properties one immediately derives the basic subtraction algorithm for binary
numbers. Let X,Y € {0,1}" and let <X> > <y >. Because 2" > <X> > <Y > it suffices
to compute the result modulo 2”. Thus

<X>=—<Y> = <0,X>3—<0,Y>9
= <0,Xx>2+<1,Y>+1
= <X>+4+<Y>+1mod2".

Lemma 2.1 Biased number strings X[n — 1 : 0] # 1™ can be converted to two’s com-
plement number strings by (i) an increment and the invertation of the sign bit. Using
<Yn—1:0>=<X[n—-1:0]>+1, we have:

< (0,X[n —1:0]) >pigs,= < (Y[n — 1], Y[n — 1], Y[n — 2 : 0]) >,.

(ii) In the conversion, the sequence of the sign bit inversion and the increment can also
be reversed, so that:

< (0,X[n —=1:0]) >0 =< (X[n—1],X[n —1],X[n —2:0]) >, + 1.
Proof: (i):

< (0,x[n = 1:0]) >, 0,x[n —1:0]) >, — biasy,
0,X[n—1:0]) >, + < (1,10"7%1) >,
0,¥[n —1:0]) >, + < (1,10" 20) >,

yY[n —1],Y[n —1],Y[n —2:0]) >,.

<
<
<
< (

< (0,X[n—1:0)) >pias, = < (0,X[n—1:0]) >, + < (1,10"7%1) >,
= <(X[n—-1,X[n—1],x[n—-2:0]) >, + 1.

Lemma 2.2 In the other direction, two’s complement number strings X[n — 1 : 0] #
(1,0"1) can be converted to biased number strings by an inversion and a decrement.
Using < Y[n —1:0] > =< (X[n —1],X[n —2:0]) >2 — 1, we have:

<X[n—=1:0]>,=<Y[n—1:0] >,

6 CHAPTER 2. IEEE FLOATING-POINT STANDARD

Proof:

<Xnp-1:01>, =) >, + bias, — biasy,
) >, + < (0,01"71) >, — bias,
) >, + < (0,10"71) >, — 1 — biasy,

<

<

<

<(X[n—1,X[n—1] X[n —2:0]) >2—1—bzasn
P

<

<

2.2 Numbers and Operations

2.2.1 Factorings

Every real number z can be factored into a sign factor (determined by a sign-bit s), a
scale factor (determined by an exponent e) and a significand f:

x=(-1)°f 25
The tripel (s, e, f) is called a factoring and the operation
T = Ua’l(saeaf) = (_1)5 : f - 2¢

computes the value of this factoring.

Although every factoring (s, e, f) is mapped to exactly one real number z by the
operation val(s, e, f), every real number z could be represented by infinitely many different
factorings, that correspond to the same value

z = val(sign(x),0, |z|) = val(sign(z), —1,2 - |z|) =

Definition 2.1 For a set of numbers X, we define the set of factorings, FACT(X), that
represent numbers of X by

FACT(X) ={(s,e,f) | s€{0,1},e € Z, f € R and val(s,e, f) € X'}

To define a unique factoring representation of a real number, normalized factorings are
introduced:

Definition 2.2 A normalized factoring (s', €, f') is a factoring with s' € {0,1}, ¢’ € Z,
' €[1,2[. The condition f' € [1,2] defines a normalized significand f'.

Thus, every non-zero real value can be represented by a unique normalized factoring.

Definition 2.3 For all non-zero factorings (s,e, f) with f # 0, we define the operation
n(s,e, f) = (s' €, f') to compute the normalized factoring (s',¢', f'), so that val(s', e, ') =
val(s,e, f). For factorings of zero with f = 0, we define n to compute the identity func-
tion: n(s,e,0) = (s,e,0). As in the normalization operation n the exponent range is not
limited, 1 is called an unbounded normalization shift. The result of an unbounded normal-
ization shift, (s',€', f'), is called an unbounded normalized factoring. Note, that from the
definition of the unbounded normalization shift for zeros it follows, that also all factorings
of zero with f = 0 are unbounded normalized.

2.2. NUMBERS AND OPERATIONS 7

Lemma 2.3 (i) For f #0 and k = —|log(f)], the unbounded normalization shift n(s,e, f)
can be computed by: n(s,e, f) = (s,e — k, f - 2F).

(i1) If 277 < f < 2, k can be interpreted as the number of leading zeros Iz of the binary
representation bin®. (f), so that n(s,e, f) = (s,e —lz, f - 212,

Proof: (i) The result of the unbounded normalization shift 7(s, e, f) has to be the
normalized factoring of (s, e, f). Therefore, (s,e —k, f - 2¥) has to fulfill the properties (1)
val(s,e — k, f - 2¥) = wal(s, e, f) and (2) f-2F € [1,2]:

(1) val(s,e —k, f-2F) = (=1)5 - f-2F . 267k = (—1) . f.2° = wal(s,e, f).

(2) From —log(f) < —|log(f)] < —log(f) + 1, it follows, that

f -2 tos(])

< f.2 oDl < ¢ . g log()H1
flf < foo sl <of)f,

and, therefore, f - 2% € [1,2[, as required.

(ii) We know from (i), that f-2* € [1,2[, and therefore, f € [27%,27%+![. From the
condition f < 27%F1 it follows, that in the binary representation of f, f[0 : 7] = bin®. (f),
the bits f[0: k — 1] have to be zero. From f > 27% and f[0: k — 1] = 0*, it follows, that
f[k] = 1. Thus, f[0: 7] contains exactly [z = k leading zeros and the lemma follows. O

Definition 2.4 In contrast to the definition of an unbounded normalization shift, we de-
fine a bounded normalization shift of (s, e, f) by the operation |ng|(s,e, f) = (s",€", f"):

_ (s e f1) =n(s,e, f) ife'>p
lngl(s,e. f) = { (5.8, f 209 otherwise, (2.1)

i.e., the factoring (s",e", f") is normalized only if the normalization operation does not
produce an exponent smaller than 3. The result of a bounded normalization shift (s”,¢e", f")
is called a bounded normalized factoring. From wval(s,e, f) = val(s, 3, f¢~%) and defini-
tion 2.3, it follows that also the bounded normalization shift does not change the value of
the factoring and we have val(|ng](s,e, f)) =val(s,e, f).

2.2.2 IEEE Numbers

Floating-point number types form subsets of the Reals. They can be represented by
factorings with limited and discretized value ranges for exponents and significands. The
IEEE floating-point types are defined by describing the possible choices for the sign, the
exponent and the significand of a factoring and by the definition of some special values,
so that each IEEE floating-point type (precision) consists of:

e Normalized numbers are represented by normalized factorings (s', ¢, f'), where the
exponent €' is an integer in the range e, < €' < enqz and the significand f’ belongs
to the discrete set < F'[0:p — 1] >y € {1,1+27PFL /2 — 277+ The condition
" €[1,2[defines a normalized significand f'.

e Denormalized numbers are represented by factorings (s, e, f), where the exponent
is € = epmin and the significand f belongs to the discrete set < f[0:p — 1] >peq €
{0,27PF1 1 —27Pt1) As f € [0,1], and thus f ¢ [1,2[, the significand is called
denormalized.

8 CHAPTER 2. IEEE FLOATING-POINT STANDARD

Snii®D i)
I — T MY Ll
e e +1
0 2(p-1) 2 min 2 min
2
| | | I |
22 2z+1
CRECE) «
max
| | E— |
e e +1
2 max 2 ax

Figure 2.1: Geometry of IEEE floating-point numbers.

e Special values are defined by the set consisting of +o0c, —oo and two types of Not
a Number (NaN): signaling NaN (sNaN) and quiet NaN (qNaN). These values can
not be represented by factorings with finite exponents. Therefore, special bit strings
for the representation of special numbers are used. Nevertheless, we use the symbols
(0, exos foo) for the factoring of +00 and the symbols (1, e, foo) for the factoring —oo
corresponding to the special bit strings for the IEEE infinity representations. The
NaN representations are not unique. Therefore, if it does not matter which represen-
tation is chosen, we use the symbols (s, esnan, fsnan) for sNaN factorings and the
symbols (s,e,nan, fgnan) for gNaN factorings corresponding to an arbitrary IEEE
NaN representation. If we want to refer to a specific NaN representation, we index
them with a positive number, like in (s1, esnanN1, fsNaN1) OF (S2, €NaN2, fgnan2). We
define these factorings of special values to be normalized, so that the normalization
shifts compute the identity function on them. Moreover, we extend the definition of
the function val by val(s, exc, foo) = (—1)° - 00, val(s,esnan, fsnan) = sNaN and

val(s,eqnan, fqnan) = g¢NaN.

The union of normalized numbers and denormalized numbers form the representable num-
bers of an IEEE floating-point type. The geometry of the representable numbers is depicted
in figure 2.1 on page 8 and shows the following properties:

e For every exponent value e between e,,;, and €4, there are two intervals of rep-
resentable (normalized) numbers: [2¢,2¢T![and |—2¢t!, —2¢]. The gaps between
consecutive representable numbers in these intervals are 26~ @1,

e As the exponent value increases by one, the length of the interval [2¢,2°7![doubles,
and the gaps between the representable (normalized) numbers double as well. Thus,
the number of representable numbers per interval is fixed and it equals 2P~!,

e The denormalized numbers are the representable numbers in the interval | —2¢min, 2€¢min[,
The gaps between consecutive representable numbers in this interval are 2emin=(p=1),
Thus, the gaps in the interval [0, 2¢min [equal the gaps in the interval [2¢min, 2¢min+1],
This property is called in the literature gradual underflow since the large gap between
zero and 2°min ig filled with denormalized numbers.

The TEEE definition of normalized and denormalized floating-point numbers includes a
definition of their factorings, so that we distinguish between the following sets of factorings
of an TEEE floating-point type:

2.2. NUMBERS AND OPERATIONS 9

Definition 2.5 The set of normalized IEEE factorings, NOR fact, p, the set of denor-
malized IEEE factorings, DEN facty p, and the set of special IEEE factorings, SPE fact :

NORfact,, = {(s,e,f)|s€{0,1},e € Z with (emin < e < €max),
and b e IN with (0<b<2¥~1): f=1 +b-2—<p—1>}
DEN fact,, = {(s,emm,f) se{0,1},be N with(0<b<2=Y):f=b. 2—<p—1>}
SPEfact = {(0,€x; foc); (L, €00, foo), (8, €qnans fanan), (8, €snan s fsnan)} -
We define the set of IEEE factorings by
IEEEfact,, = DEN fact, , UNORfact,, JSPEfact.
Accordingly, the following sets of numbers are defined:

Definition 2.6 For each IEEE floating-point type, the set of normalized numbers, NOR,, ,,
the set of denormalized numbers, DEN, ,, and the set of IEEE special values, SPE, are
defined by

NOR,, = {z|3(s,e,f) € NORfact,,: x =val(s,e,f)}
DEN vy {z | I(s,e, f) € DEN fact,p : © = val(s, e, f)}
SPE = {+4o00,—00,qNaN,sNaN}.

We define the set of representable numbers of an IEEE floating-point type, REPy, ,, by
Rgpn’p - D(c/‘Nn’p U NORn’p.

The set of values of an IEEE floating-point type, FPp p, additionaly includes the special
values, so that

FPnp = DEN,, UNOR,,USPE
REP,,, USPE.

Lemma 2.4 The sets of denormalized and normalized IEEE numbers/factorings are dis-
junct: NORy, N DEN,, = 0 and NORfact, , N DEN fact,, = 0. Thus, each IEEE
floating-point value x € FPyp has a unique IEEE factoring (s,e, f) € IEEE fact, , with
x =wal(s,e, f).

Proof: For normalized IEEE factorings (snor; €nor, fnor) € NORfact, ,, we have epor >
emin and fpor > 1, so that |Zper| = |val(Snor, €nor, fror)| > 2. For denormalized IEEE
factorings (Sden,€dens fden) € DEN facty, p, we have egen = €min and fpor < 1, so that
|Zden| = [val(Sdens €dens fden)| < 2°min Thus, all normalized IEEE factorings have a larger
absolute value than each of the denormalized IEEE factorings, |Zpor| > |Zgen|, SO that
NORyp, NDEN,,, = 0 and NORfact,, N DEN facty, = 0. For the second part of the
lemma we additionaly have to use, that also each special value has a unique factoring
representation. This can easily be seen from the definitions of SPE and SPFE fact. O

Lemma 2.5 From an arbitrary factoring (s,e, f) € FACT(FPy,) of an IEEE FP num-
ber © = val(s, e, f) € FPpp, the bounded normalization shift [ne, . 1(s,e, f) = (s",€", f")
computes the corresponding IEEE factoring (s".e", f") € IEEE fact,, , withval(s",€e", f") =
x =wval(s,e, f).

10 CHAPTER 2. IEEE FLOATING-POINT STANDARD

‘ precision H D ‘ n ‘ biasy ‘ Emin ‘ €maz ‘ T | min ‘ %] max ‘
single 24 8 127 —126 127 ~1.4-107% | ~3.4-10%
singleext. || >32 | >11| — | <-1022 | >1023 — —
double 53 11 | 1023 | —1022 1023 | ~4.9-1073%2 | ~1.8-10%10
double ext. || >64 | >15 | — [<—16382 | >16383 — —

Table 2.1: TEEE floating-point formats.

Proof: The proof consists of two parts for the cases: (a) val(s,e, f) € DEN,, and (b)
(s,e,f) E NOR, .

(a) For val(s,e, f) € DENpy,, there is a denormalized IEEE factoring (a,b,c) €
DEN facty, with val(s,e, f) = val(a,b,c). We know already from the definition of the
bounded normalization shift 2.4, that also val(s",€”, f") = val(s, e, f). From the definition
of denormalized IEEE factorings (see definition 2.5), it follows that b = e;;,. Therefore,
for the proof of (s”,€", f") = (a,b,c) and (s",¢", f") € DEN facty,p, it suffices to show
that ¢” = ein. From val(s, e, f) € DEN,,, it follows, that |val(s,e, f)| < 2¢min. We con-
sider the normalized factoring (s, €', f') = n(s, e, f). Because f' > 1, and 2¢ - f/ < 2¢min
the exponent €’ < e,,;, is smaller than the exponent bound of the bounded normalization
shift. Therefore, it follows from the definition of [n,, ,] that e’ = epn and part (a) of
the proof is completed.

(b) For val(s,e, f) € NOR,,p, we have to show that (s”,¢e”, f") is normalized. From
val(s,e, f) € NOR,,p, it follows, that |val(s,e, f)| > 2¢min. We consider the normalized
factoring (s, ¢/, f') = n(s,e, f). Because f' < 2, and 2¢ - f' > 2¢min the exponent ¢’ > €pmin
is larger than or equal to the exponent bound of the bounded normalization shift. There-
fore, it follows from the definition of [,] that (s”,e”, f") is the normalized factoring
(s",€", ") =n(s,e, f) and also part (b) of the proof is completed. O

Definition 2.7 If an unbounded normalization shift is computed on the factorings from
FACT(FPy,p), we get a set, that includes the (unbounded) normalized factoring for each
IEEE number in FP, ;. In this way we define the set of NF factorings NF fact,,, by:

NFfactny = {(s,e, f) | (s;e, f) € FACT(FPnp) and (s,e, f) = n(s,e, f)} -

In the early days of floating-point design, many different formats with different values
for emin, €maz, n and p were used. The success of the IEEE floating-point Standard 754-
1985 [19] reduced the supported FP types to a few: single, double, single extended and
double extended. The parameters for these precisions are given in table 2.1. In an IEEE
compliant FPU-Design only some of these FP-types have to be implemented. We will focus
on the implementation of the single and double precision types, because these types are
most commonly used and the integration of additional types would be straight-forward.

2.2.3 Packed IEEE Floating-Point Format

At the bit level, numbers in the single and double formats are composed of three fields
corresponding to sign, biased exponent and fraction (significand without first bit) like
depicted in figure 2.2. In the biased exponent representation, a bias of bias, = 2"~ —1 is
used. Because bias, = —€min+1 = €mae (see table 2.1 for single and double precision), the

2.2. NUMBERS AND OPERATIONS 11

Single Format (32 bits)

‘ s ‘ E[7:0] ‘ F[-1:-23]

Double Format (64 hits)

‘ s ‘ E[10:0] ‘ F[-1:-52]

Figure 2.2: Packed TEEE floating-point format.

value of e+bias,, is in the range 1 < e+bias, < 2"—2. Thus, the bit strings for 0 and 2" —1
do not occur in the n-bit biased binary representation E[n —1: 0] = binl (e + bias,).
Therefore, the exponent strings E = 0” and E = 1™ are used for the representation of
denormalized numbers and special values.

The significand f of a representable number can be represented with p bits F[0:p—1] =
bin‘lpﬂ(f). But only the fraction F[l ;p—1] is included in the number string, and the
hidden bit ¥[0] does not occur explicitely in the number representation. The hidden bit
F[0] equals 1, iff f is normalized, and F[0] equals 0, iff f is denormalized. Because the
exponent representation of e,,;, for denormalized numbers differs from all exponent rep-
resentations from normalized numbers, the hidden bit F[0] can be extracted from the
exponent representation.

The value of a number z represented by the packed representation (s, E[n—1:0], F[l ;p—1])
is defined by

1. IfgEn—1:0]=0" (denormalized numbers),
then z = (—1)S - < (0.F[1:p—1]) >ppeq - 26min,

2. IfE[n—1:0]#0" and E[n —1: 0] # 1" (normalized numbers),
then z = (—1)S < (LF[1:p—1]) >peq- 9<E[n—1:0]>pas), |

3. fEn—1:01=1" (special values),
then z is a special value depending on F[1 : p — 1]:

e IfF[1:p— 1] =0P"!, then x is oo and has the sign of (—1)5.
e If F[1:p—1] #0P~!, then z is NaN regardless of s.

The standard does not specify how to distinguish between signaling and quiet
NaNs. We follow the specification used in [29] and distinguish between signaling
and quiet NaNs by the value of f[1]: If f[1] = 1, then z is a signaling NaN
(sNaN), otherwise z is a quiet NaN (qNaN).

2.2.4 Operations

Beside floating-point types, the IEEE FP Standard defines arithmetic operations that
have to be implemented in hardware or in software. In this section, we only define exact
results of these operations for finite input operands = = val(sg, €z, fz) € REPy, and
y = val(sy, ey, fy) € REPy p. The computations involving special values will be described
later in combination with the exception handling.

12 CHAPTER 2. IEEE FLOATING-POINT STANDARD

¢ Addition/substraction. We use the bit SOP to distinguish between addition (SOP = 0)
and substraction (SOP = 1). The exact value of the addition/substraction result is

defined by:
SOP
ezacts\pp/syp =T + (=1) Y
The computation of the factoring of this value involves several steps. Therefore, we

postpone its specification to the description of the addition implementations.
e Multiplication. The exact product of z and y is denoted by:
exactyurr = -y = (—1)57% - (fy - f,) - 2621,
Thus, (s; ® sy, fo - fy, ez + €y) is a factoring of exactyrr.

e Division. The exact quotient of 2 and y is denoted by:
exactpry = x/y = (=1)* 7% (fo/fy) - 29 .
Thus, (s; ® sy, fo/ [y, €z — €y) is a factoring of ezactpry.
e Square-root. For non-negative x > 0 the exact square-root of z is denoted by:

eractsQrr = VI =1/fs 9(e2MOD?2) , 9exDIV2

Thus, (0, \/ fy - 2(e2MOD2) ¢ DIV2) is a factoring of ezactsgrr-
e Remainder. For non-zero y the exact remainder xt REMy is defined by:
exactrRgpy =T — Y - n,

where n is the integer nearest the exact value z/y; whenever |n — z/y| = 0.5, then
n is even.

e Conversion. In conversions, the input operand has already the exact value of the
conversion. This value has than to be converted to the destination’s format.

exactcony = .

In this operation we have to consider, that the input operand could also be an integer
< X >9 in two’s complement representation. Then,

exactcony = < X >9.
A factoring of exactcony is given by (sz, ex, f2) or (sign(< X >3),0,|< X >9l).

Moreover, the computations of the absolute value (s, := 0) and the negative of a floating-
point number (s, := not(s,)) are suggested to be implemented.

The floating-point types are not closed on all of these arithmetic operations. Therefore,
the exact result of an operation might not belong to the same floating-point type. To be
able to operate on results of operations, nevertheless, it is a basic principle of the IEEE
standard to consider the exact result of an operation first and map it to a floating-point
number by a selected rounding scheme to get a rounded result in the same floating-point
type, finally.

Apart from that, the test operation (comparison) delivers a boolean value from two
floating-point inputs. There are 26 different comparisons defined by the IEEE standard,
which we decode by 5 condition code bits COND[4 : 0]. The bits COND[3 : 0] switch the
conditions {>, <,=,UNORDERD(?)}, and COND[4] negates the boolean result bit. Only
26 of the 32 possible combinations are required by the standard. These are listed in
table 2.2.

2.2. NUMBERS AND OPERATIONS

| condition [[conb[d:0] [>]<[=]7?]INVif?]
= 00010 [[F]F[T[F] No
7 <> 01101 T|T|F[T] No
> 01000 [[T|F|[F|F]| Yes
>= 01010 T|\F|\T)|F Yes
< 00000 [[F|T|[F|F]| Yes
<= 00110 [[FIT[T[F| Yes
? 00001 FIF|F[T] No
<> 01100 [T [T [F[F| Yes
<=> 01110 [T [T [T [F | Yes
7> 01001 T|F|F[T] No
?>= 01011 TI|F|T[T] No
7< 00101 FIT|F[T] No
7<= 00111 FIT|T[T] No
?= 00011 FIF|T[T] No
NOT(>) 11000 [F[T[T[T] Yes
NOT(>=) 11010 [F|T|F[T] Yes
NOT(<) 10100 [T |F|T[T] Yes
NOT(<=) 10110 [T |F|F[T] Yes
NOT(?) 10001 T|T|T[F] No
NOT(<>) 11100 [F[F|[T[T] Yes
NOT(<=>) 11110 [F[F|[F[T] Yes
NOT(? >) 11001 FIT|T[F] No
NOT(? >=) 11011 FIT|F[F] No
NOT(? <) 10101 TIF|T[F] No
NOT(? <=) 10111 T|F|F[F] No
NOT(? =) 10011 T|T|F[F] No

Table 2.2: IEEE test operation (comparison).

13

14 CHAPTER 2. IEEE FLOATING-POINT STANDARD

2.3 Rounding

2.3.1 IEEE Rounding Definition

IEEE rounding is a mapping from the reals into an IEEE floating-point type. The IEEE
standard defines rounding in four rounding modes: round toward 0 (RZ), round to near-
est(even) (RNE), round toward 4+o0o (RI) and round toward —oo (RMI). Let REP™® =
REP U {400, —oc}. For the rounding mode mode € {RZ, RNE, RI, RM 1}, we present
the rounding definition of the IEEE standard by the description of the rounding function
Tmode : IR — REP™. For the three directed rounding modes mode € {RZ. RI, RM I}
the obvious meaning of IEEE rounding is given by:

rri(z) = min{y € REP™ | z <y}
remi(z) = max{y € REP™ | z >y}
rermr(z) ifz >0
rrz(r) = { rri(z) if x <0.

The definition of the rounding function rgyg is a bit more complicated. Let z =

max
2¢maz (2 —27P) and let y € REP be the representable number nearest to x if this is unique,
otherwise let y € REP be the even representable number, that is nearest to 2. Then,

+oo ifz >),

reve(z) =q —oo ifx < —x ..

Y otherwise.

2.3.2 Rounding Functions

In this section we define rounding for a particular precision A, so that a real number z
is mapped to an integral multiple of 27*. For a precision)\, we define four rounding
functions, that we index by the names of the four IEEE rounding modes RZ, RNE, RI,
and RMI. We will show in the next section how these rounding functions can be used
to implement TEEE rounding. For the definition of the rounding functions, we chose the
integer ¢, so that #-27* < z < (t+1)-27* and #* is the even number of the set {t,%+ 1}.

£.9-A ifz=t-272
rndrr(z) = { (t+1)-27* otherwise 22
rndpara(z) = t-27) (2.3)
t.9=A ifr>00R z=1¢-2""
rndrz(z) = { (t+1)-27* otherwise 4
£.92-X if z < (t+0.5)-2*
rndpnpa(T) = .27 if = (t+0.5) - 2* (2.5)
(t+1)- 2-2 otherwise

For the rounding of sign-magnitude representations with z = (—1)° - |z|, the four IEEE
rounding modes for the rounding of z can be reduced to the three IEEE rounding modes
{RZ,RNE, RI} for the rounding of |z| [33]. This is done by reducing the directed rounding
modes RZ, RI and RMI to the rounding modes RZ and RI for the rounding on positive
arguments based on the sign s of the number. Thus, leaving only the three rounding modes
RZ, RNE, and RI that have only to operate on the positive argument |z|. In conjunction

2.3. ROUNDING 15

| mode | RND_MODE[1:0] || mode «0: SR-MODE[1:0] | modex1: SR-MODE[1:0] |

RZ 00 RZ 00 RZ 00
RNE 01 RNE 01 RNE 01
RI 10 RI 10 RZ 00
RMI 11 RZ 00 RI 10

Table 2.3: rounding mode reduction for sign-magnitude arguments

with table 2.3 for the rounding mode reduction, we define the x-operation:

x {RZ,RNE,RI,RMI} x {0,1} — {RZ, RNE, RI}

(mode, s) — mode * s

that maps the rounding mode mode and the sign s to the corresponding reduced rounding
mode mode x s. Based on this definition, the rounding mode reduction can be written as:

'rndmode,/\(x) = "Andmode,)\((_l)S : ‘$|) = (_1)8 : rndmode*s,/\(|$‘)-

If we encode the four IEEE rounding modes by RND_MODE[1:0] and the three reduced
rounding modes by SR_MODE][1: 0] according to table 2.3, the x-operation can be expressed
by the equations:

SR_MODE[l] = RND_MODE[1] A (RND_MODE[0]®s) (2.6)
SR_-MODE[0] = RND_MODE[1] A RND_MODE[0]. (2.7)

Furthermore, Quach et al. [33] suggested to implement RNE by round to nearest up
(RNU). With an integer ¢, such that t-27* < |z| < (¢+1)-27?, the rounding mode RNU
is defined by:

t-272 if |z| < (t+0.5) - 272

(t+1)-27* otherwise. (2:8)

rndryu(|z]) = {
The reason that RNE can be implemented by RNU is that rndgryy(z) # rndryea()
iff z = (¢4 0.5) - 27 and the LSB of the binary encoding of (¢4 1) - 27> is 1. Therefore,
obtaining rndryga(z) from rndrny(z) can be accomplished by “pulling down” the
LSB, when z = (¢ 4+ 0.5) - 27

2.3.3 IEEE Rounding Functions

In this section a description of IEEE rounding is given, which is more practical than the
definition by the IEEE standard. The following lemma shows how the rounding functions
for a particular precision A from the previous section are related to IEEE rounding. After
that we will consider the IEEE rounding on factorings.

Lemma 2.6 For2° < |z| <2t and modec {RZ, RNE, RI, RMI}, let ¢’ =maz{e, emin}
and xr = rndmede,—en+p—1(x). Then,

o0 if zr > 2¢mactl gnd mode € {RNE, RI}
Tmaz if xr > 26me L and mode € {RZ, RM I}
Tmode(fE) = —Tmax 'Lf zr < —2¢maztl gnd mode € {RZ, RI}

—00 if zr < —2fmeetl gnd mode € {RNE, RM1}
Tr otherwise

16 CHAPTER 2. IEEE FLOATING-POINT STANDARD

Proof: In the definitions of IEEE rounding, in all cases the rounded result r,04¢(2) is
either the nearest number of the destination FP type that is larger than the operand x or
the nearest number of the destination FP type that is smaller than or equal to the operand
z. In the following, we distinguish between the cases: (a) |z| < Zmar and (b) |z] > Zpmas-

(a) For |z| < Tpmaz, we get |zr] < Zgmae < 2°m92T! so that we have to show that
the IEEE rounding definition from rp,,4.(2) is equivalent to rndmede,—e+p—1(z) for all
rounding modes. We will first show that the two possible rounding choices of the IEEE
rounding definitions are identical to the two possible results from the definition of the
function rndmede, e +p—1(2).

(i) For |z| < 2°min_ we are in the range of denormalized numbers, so that the gap
between two consecutive FP numbers is 2¢min P+l (see geometry of representable
numbers in section 2.2.2) and there is an integer &, such that

fl=Fk 20min PH < g < (k4 1) - 20min PHL = £

and f1, f2 € FPy,, are the nearest floating-point numbers in 7P, ;, larger than and
smaller than or equal to x.

The definition of rndyede,—e+p—1(z) uses the possible rounding results: f3 =1 -
2¢"=P+1 and f4 = (14 1) -2¢" P! with f3 < z < f4. Since |z| < 2°min, we get
€' < emin and €’ = emnin. Thus, the possible rounding choices are the same like in the
IEEE rounding definition: f1 = k-26min =P+l = f3and f2 = (k+1)-20min =P+l = f4,

(ii) For |z| > 2¢min we are in the range of normalized numbers, so that the gap between
two consecutive FP numbers is 2¢ ~P+1 (see geometry of representable numbers in
section 2.2.2). In this case, there is an integer k, so that

Fl=k 2P < g < (k+1)-29PF = f2

and f1, f2 € FPy,, are the nearest floating-point numbers in 7P, ;, larger than and
smaller than or equal to z. Because for |z| > 2°min | we get ¢ > e, and €’ = €,
the numbers f1 and f2 agree with the two possible rounding results of the function
"l mode,—e"+p—1(T) = "Ml mode,—e'+p—1() also in this case.

Based on the agreement of the two possible rounding choices, one can now easily check,
that also the rounding decisions are the same for both the TEEE definition 7,,,q4.(x) and
the rounding functions rnd,ege,—e4p—1(2) for all four rounding modes. This completes
the proof for case (a).

(b) For |z| > %mae, the possible rounding choices for the IEEE rounding definition
Tmode(Z) are +/ — Xmae and +/ — co. One can easily check that the specification of the
rounding cases in the lemma corresponds to the IEEE definition for |rndode,e”—p+1(2)] >
2¢martl g0 that we only have to proof part (b) for |rndmoedeer—pi1(z)| < 2°me=F1. For
|Z| > Zmaz, the condition [rndmede,er—pi1(2)| < 26ma=F1 can only be fulfilled, if also at
least one of the following five conditions is fulfilled:

(1) [z = Zmaz;

(ii) mode = RZ;

(iii) =z > 0 and mode = RMI,

(iv) z < 0 and mode = RI;
)

(v) |z| < (2 —=2"P)-2%m and mode = RNE.

2.3. ROUNDING 17

For the rounding mode RNE, the value |z| = (2—277)-2%"= (rounding interval midpoint)
is not included in case (v), because this value is rounded to 42¢me=*1 which is the ’even’
value among the two rounding choices. Since (2 — 27P) . 26maz = g* in all of these

max?
five cases, the IEEE rounding definition leads to |7mode(%)| = Tmaz. From |z| > Zmaq,
we get € = €' > epqq, so that all results of rndy,ege,—ev1p—1(z) are integral multiples

of 26maz=P+1 ~ Because the only multiples of 2¢maz =P+l that have a magnitude larger
than or equal to Ze, and smaller than 26mezt1 are +/ — Tmaa, it follows that also
|Tdmode,e”—p+1(2)| = Tmae and the proof of the lemma is completed. O

In an FP implementation, the exact result of an operation will be represented by a factor-
ing. In the following, we therefore define IEEE rounding on factorings. We do not have
any conditions on the input factoring, but by the requirements for the destination factor-
ing we distinguish between two versions: We would like to get either the IEEE factoring
or the NF factoring of the rounded result.

Definition 2.8 For mode € {RZ, RNE,RI,RMI}, the rounding function iroundqe
FACT(IR) — IEEEfact is defined to compute the IEEFE factoring of the rounded result:

iroundmode (s, €, f) = (sr,er, fr) € IEEE fact, with val(sr,er, fr) = rmode(val(s, e, f))

and the rounding function nroundpyeqe : FACT(IR) — NF fact is defined to compute
the NF factoring of the rounded result:

nroundmoede (s, €, f) = (sryer, fr) € NF fact, with val(sr,er, fr) = rimode(val(s, e, f)).

Moreover, we define some functions that will be used for the rounding computations

Definition 2.9 For mode x s € {RZ,RNE, RI}, aligned significand rounding is the
rounding at the least significant bit position p — 1 of the significand f:

a—Sig—Tndmode*s(sa €, f) = (37 €, rndmode*s,pfl(f))- (29)

With mode x s € {RZ,RNE,RI}, and vp = (p — 1) — maz{0, emnin — e}, normalized
significand rounding is the rounding of the significand f at the (variable) position vp:

n_sig_rndmodess(S; €, f) = (s, €, 7nndmode*s,vp(f))- (2.10)

We define the post-normalization shift function, that normalizes a factoring, iff the sig-
nificand f of the factoring equals f = 2:

(s.e+1,1) if f=2
(s,e, f) otherwise.

post_norm(s,e, f) = { (2.11)

The exponent rounding maps factorings that represent magnitudes larger than or equal to
2¢mastl to the factoring of +/ — oo for the reduced rounding modes RNE or RI and to

the factoring of +/ — Tmayz in the reduced rounding mode RZ while restoring the sign of
the factoring:

(8, €00s foo) if lval(s, e,)| > 26maett AND val(s,e, f) ¢ SPE
AND (mode x s) € {RNE, RI}
exp_rndmodexs (s, €, f) = (8, emazs fmaz) if \val(s, €, f)| > 2¢mastl AND (2.12)
val(s,e, f) ¢ SPE AND (mode * s) = RZ
(s,e, f) otherwise.

18 CHAPTER 2. IEEE FLOATING-POINT STANDARD

In this definition, we distinguish between two different rounding functions for the signif-
icand: the aligned significand rounding and the normalized significand rounding. These
two rounding functions differ by the choice of the rounding position for the significand.
The aligned significand rounding assumes, that the significand is aligned, in such a way,
that the significand rounding position is always at significand position p — 1. This is the
case for IEEE factorings. The situation is different for NF factorings. Because they are
normalized even for denormalized values, the least significant bit position of the signif-
icand, which is the significand rounding position, could vary within a wide range. The
variable rounding position vp of the normalized significand rounding takes care of this
rounding position shift. In this way, normalized significand rounding is suitable for the
significand rounding of NF factorings. The following two lemmas will show, how the com-
putation of IEEE rounding on factorings can be based on the functions from definition
2.9 and proove the above argumentation in detail. Lemma 2.7 will consider the IEEE
factoring and lemma 2.8 will consider the NF factoring of the rounded result.

Lemma 2.7 For mode € {RZ, RNE,RI, RM1I}, the IEEE factoring iroundede (S, e, f) :
FACT(IR) — IEEE fact, with val(iroundpyege (s, €, f) = Tmode(val(s, e, f)), can be com-
puted by the sequence of a bounded normalization shift, aligned significand rounding, a
post-normalization shift and exponent rounding:

iroundmode (s, €, f) = exp_rndmedess (post_norm(a_sig-rndmoedess ([Me,,., | (s, €,)))).

Proof: Let (s1,e1,f1) = |Ne,,..](s,€,f), and (s2,e2, fo) = a_sig-rndmodexs(S1; €1, f1),
and (s3, e3, f3) =post_norm(ss, es, f2) and (8, €ir, fir) = €TP_rndmodess (3, €3, f3)-

We devide the proof into two steps. We will first show in part (a) of the proof,
that the factoring (s, €, fir) has the value of the rounded result: val(s;, e, fir) =
Tmode(vVal(s, e, f)). In part (b), it will then be shown, that the factoring (s, €, fir) is an
IEEE factoring, namely that (si,, e, fir) € IEEE facty, p.

(a) From the definitions of the bounded normalization shift and the post-normalization
shift it follows directly, that these two shift operations do not change the value of the
factoring, namely that val(si,e1, f1) = wval(s,e, f) and val(ss,es, f3) = val(sa, e, f2).
Thus, we have to show, that the combination of the aligned significand rounding and the
exponent rounding implements IEEE rounding.

From the definition of the bounded normalization shift it also follows, that e; =
max{emin, €'} = €", where €’ is the exponent of the corresponding unbounded normal-
ized factoring. Thus, we can write

val(ss,es, f3) = wal(sg,ea, f2)

val(a_sig rndmodexs (81, €1, f1))

val(s1, elarndmode*s,p 1(f1))

val(s1,0,2° - rndmodexs p—1(f1))

001(31,0 Tndmode*s,—e1+p 127+ f1))
val (0,0, rndmode,—e; +p-1((—1)"" - 27 - f1))
T mode, —e1+p—1(val(s1,e1, f1))

= rndmode,—e+p—1(val(s,e, f)).

Let xr = rndyode,—e+p—1(val(s,e, f)). Because val(s3,es, f3) € SPE and s = 51 = s9 =
s3 = Sir, we get for the value of the rounded result:

2.3. ROUNDING 19

val(sir, eir, fir) = val(exp-rndmodess(s3, €3, f3))

(—1)% -0 if |xr| > 2¢maz+1 AND (mode x s) € {RNE, RI}
(=1)% - Zppag if |xr| > 26mae L AND (mode x s) = RZ
xr otherwise.

= Tmode(val(sa €, f))

The last of these equations follows from lemma 2.6 and from table 2.3 for the combination
of signs and reduced rounding modes. In this way step (a) of the proof is completed.

(b) We have to show, that (s, €y, fir) € IEEE facty, . For the factorings of +/ —Zaa
and +/—oc in the exponent rounding definition this is obvious, so that we focus on the case
of representable rounding results with (s;y, €, fir) = (83,€3, f3) in the following. From
part (a) we already know that val(siy, €ir, fir) € FPpp. Because of this and because IEEE
factoring representations are unique, it suffices to show that the following two conditions
are fulfilled: (COND1) (Jval(siy, €ir, fir)| > 26min) = (fir € [1,2]); and
(COND2) (|val(sir, €ir, fir)| < 2°min) => (€ir = €min)-

For the remaining part of the proof we distinguish between: (i) |val(s,e, f)| > 2¢min;
and (ii) |val(s,e, f)| < 2°min. For both of these cases we have to show (CONDI1) and
(COND2):

(i) Because 2°min is a representable number, it follows from |val(s,e, f)| > 2°min that
also the absolute value of the rounded result is larger than or equal to 2¢mi». Hence,
the condition (COND2) is always fullfilled for case (i).

From |val(s,e, f)| > 2°min_ it follows, that the result of the bounded normalization
shift is normalized, so that f; € [1,2[. After significand rounding we get a signifi-
cand in the range fo € [1,2], so that the post-normalization shift always outputs a
normalized rounded significand f3 = f;» € [1,2[, and thus, also condition (CONDI1)
is fulfilled.

(ii) From |val(s,e, f)| < 2°min it follows, that the result of the bounded normalization
shift is denormalized with fi € [0, 1] and e; = e For fi € [0, 1] we get a rounded
significand in the range fo € [0, 1], so the exponent rounding does no change and
we get the exponent of the rounded result e;, = e3 = €. In this way condition
(COND2) is fullfilled. From wval(siy, €y, fir) > 2¢min, fi € [0,1] and e;; = emin, it

follows that f; = 1 is normalized, so that also (CONDI1) is fulfilled.
a

Lemma 2.8 For mode € {RZ,RNE,RI,RMI} the NF factoring nroundege(s,e, f) :
FACT(IR) — NF fact, which has the value val(nroundmyege(s, €, f)) = Tmode(val(s, e, f)),
can be computed by the sequence of an unbounded normalization shift, normalized signifi-
cand rounding, another unbounded normalization shift and exponent rounding:

n'roundmode(sa €, f) = exp_rndmodexs (n(n—Sig—Tndmode*s (77(37 €, f)))) .

Proof: Let (Slna €1in, fln) = 77(37 €, f)a and let (3271’ €2n, f2n) = n—SZ.g—'rndmode*s(slna €1in, fln)
In addition to this we use the notation from the previous lemma.

We devide the proof into the following two steps: We will first show in part (a) that
the factoring (Spr, €nr, for) = €xprndmodess(M(n-8ig_rndmodess(n(s, €, f)))) has the value
of the rounded result: val(spr, €nrs fur) = Tmode(val(s,e, f)). In part (b) of the proof,

20 CHAPTER 2. IEEE FLOATING-POINT STANDARD

it will then be shown that the factoring (sp,,€nr, fnr) is a NF factoring, namely that
(Snra €nr, fnr) € NFfaCtn,p-

(a) The normalization shifts do not change the value of a factoring and the value of
the exponent rounding only depends on the value of its input factoring. Hence, for the
proof of val(snr, enry frr) = val(Siy, €ir, fir) = Tmode(val(s, e, f)), it suffices to show that

val(san, €2n; fon) = n-sig-round(n(s, e, f)) = a_sig-round([1ne,,;, 1(s, e, f) = val(sz, e2, f2).

For the proof of this equation, we distinguish between: (i) |val(s,e, f)| > 2°min; and (ii)
lval(s, e, f)| < 2¢min,

(i) For |val(s,e, f)| > 2°min the output of the bounded normalization shift is normalized,
so that (sin,€1n, fin) = (81,€1, f1) and ey, = € > epin. Hence, in the definition
of normalized significand rounding, the variable rounding position becomes vp =
(p — 1) — max{0,emin — e} = p—1 and agrees with the rounding position p — 1 of
the aligned significand rounding.Thus, also the output factorings of both significand
rounding functions are the same: val(son, €an, fon) = val(sa, ea, f2).

(ii) Because for |val(s,e, f)| = 0, none of the 2 steps in both computations change the
factoring, we only deal with non-zero numbers in the following. Since |val(s, e, f)| <
2¢min we get for the exponent of the unbounded normalized factoring ey, = €' <
emin. For the same reason, the output of the bounded normalization shift is denor-
malized with e; = e, so that the overall rounding position of aligned significand
rounding becomes —en;, + p — 1. In the case of normalized significand rounding,
the variable significand rounding position is vp = (p — 1) — maz{0, epmin — €1n} =
(p — 1) — emin — €1n. In the combination with the exponent factor 21, we get the
overall rounding position —e;,;, + p — 1 also in this case.

(b) We have to show, that (sp,,enr, fnr) is a NF factoring. Hence, (snr,€nr, fnr) has to
be normalized for all non-zero numbers. After the second unbounded normalization shift,
we get a normalized significand f,, in the range f,, € [1,2[for all non-zero representable
numbers. Because there is no condition on the NF factoring of a zero and the factoring
representations of +/— oo and +/— %4, are defined in the exponent rounding output to
be normalized, (Spy, €nr, fnr) is a NF factoring in any case. O

We distinguish between rounding in single precision and double precision by the choice
of the corresponding values of: p, n, emin, €maz; fmazs €cc aNd foo.

For the definition of exceptions, and some correctness proofs, it is helpful to have a
rounding function 7 with an unbounded exponent range. For a factoring (s,e, f) with
f # 0, the new rounding 7 is defined by:

Tmode (8, €, [) = post_norm(a_sig-rndmedess(N(s, e, f))). (2.13)

2.4. SPECIAL CASES 21

2.4 Special Cases

The IEEE standard defines six exceptions, that can occur, when a floating-point operation
is executed: overflow, underflow, inexact, invalid, division by zero and unimplemented FP
operation. The occurrences of these exceptions are signaled by the six IEEE flags OVF,
UNF, INX, INV, DVZ, and UFO. Exept for the combinations of INX with OVF or UNF, at
most one FP exception can occur during an operation.

The trap handler enable-bits: OVF_EN, UNF_EN, INX_EN, INV_EN, and DVZ_EN are set
by the user. For an unimplemented FP operation, the corresponding trap handler is
always enabled. If a trap handler is enabled, i.e., the trap handler enable bit is active,
the occurrence of the corresponding exception starts the execution of an exception trap
routine. With a disabled trap handler, a result is returned immedately even for the
occurance of the corresponding exception. If INX_EN and OVF_EN or UNF_EN are enabled
and both exceptions occur during the same operation, the OVF or UNF-trap has precedence
over the execution of the INX-trap.

After describing the TEEE flags and exception handling in detail, we will overview
the results of operations on special values, that have a strong relationship to exceptions.
Finally, we will give a general summary on the computations for each IEEE operation.

2.4.1 IEEE Flags

We consider an arithmetic floating-point operation op € { ADD/SUB, MULT, DIV, SQRT,
CONV} operating on finite operands. This operation op delivers the exact result ezact,,
that can be represented by the factoring (Seq, €ex, fer). We denote the value of the rounded
result of the operation by bro = val(round,ege ((Sexs €exs fez)), and the value of the result
that is rounded with an unbounded exponent range by: uro = val(Tmode (Sexs €exs fex))-

Overflow The overflow flag signals, that the magnitude of the unbounded rounded result
is bigger than the magnitude of the largest representable number:

luro| > |Tmaz| = (2 — 27PT1) . 26mes,
Underflow The conditions for an underflow differ depending on the value of UNF_EN.
They are based on the definitions of tininess and loss-of-accuracy:

e There are two possible definitions for tininess given by the standard: A result is tiny-
before-rounding, if 0# |exact,,| <2°min, and tiny-after-rounding, if 0# |uro| < 2¢min.

e Similarly, the standard provides two loss-of-accuracy definitions: Loss-of-accuracy-a
occurs, if exact,, 0 AND uro#bro, and loss-of-accuracy-b occurs, if bro#ezact,y.

For both tininess and loss-of-accuracy, the implementor may choose one of the two defini-
tions provided by the standard, but these choices have to be the same for all operations
and precisions. Based on these conditions, the underflow exception is defined by:

e If UNF_EN = 0, then an underflow occurs if tininess and loss-of-accuracy occurs.

e If UNF_EN = 1, then an underflow occurs if tininess occurs.

Definition 2.10 We define the boolean function TINY (s,e, f), that delivers the boolean
value corresponding to the tininess condition (0 # |val(s,e, f)| < 26min),

22 CHAPTER 2. IEEE FLOATING-POINT STANDARD

Lemma 2.9 For 0 # f and the normalized factoring (s,€', f') = n(s,e, f), the number
x =wval(s,e, f) is tiny, signaled by (TINY (s,e, f) = 1), iff (' < emin)-

Proof: Because (s,¢, f') is normalized, 1 < f’ < 2 and 2¢ < |val(s, e, f)| < 2¢ 1. Thus,
the tininess condition can be written as e’ +1 < ep,;,. This is equivalent to €' < epin. O

Inexact An inexact exception occurs if bro # exact,,. This is exactly the loss-of-
accuracy-b condition and includes the case of an overflow.

Division by Zero The DVZ flag signals, that the second operand of a division equals
+0 or —0 and the first operand is a finite non-zero number.

Invalid The NV flag is signaled:

[a—y

. for any operation, where at least one operand is a signaling NaN,

2. for effective subtractions of two infinities,

3. for the multiplication of 0 and infinity regardless of the signs,

4. for divisions of 0/0 or co/oo regardless of the signs,

5. for remainders, where the first operand is infinite or the second is a zero,
6. for the square root of an operand less than zero,

7. for comparisons with a condition code that demands ’invalid if unordered’(see ta-
ble 2.2) and the operands are unordered.

Unimplemented FP operation The UFO flag is signaled for any FP operation that is
not implemented in hardware.

2.4.2 Exceptions

If an exception is recognized during the computation of an operation, the corresponding
IEEE flag(s) are set to 1. The IEEE flags are sticky, i.e., if they have been set once, they
stay active till they are cleared by the user. The further computation depends on the
value of the corresponding trap handler enable bit:

Disabled Trap Handler In most cases the delivered result has to be the correctly
rounded result bro, but for a division by zero, a correctly signed infinity, and for an invalid
exception, a qNaN has to be delivered. Moreover, for operations on special values and
zeros, the results are summarized in the next paragraph. With the computation of the
result, the execution of the operation is finished.

2.4. SPECIAL CASES 23

Enabled Trap Handler The operation starts the corresponding trap routine, that is
responsible for the further computations. The operands for the trap routine are specified
by the standard and differ from the above results depending on the exception:

Each trap should get the operation type of the operation that caused the exception,
the information, which exception occured and the destination’s format. In the case of a
trapped invalid or a trapped division by zero, the operand values have to be accessible to
the trap routine. In a trapped inexact exception the correctly rounded result is given to
the trap routine. In trapped overflows and trapped underflows exponent wrapping has to
be computed, before the result is fed to the trap routine:

e Trapped Overflow. If a trapped overflow occurs, then the wrapped exponent e — «
is used and a factoring of g (exact,, - 27%) is delivered to the trap routine, where
a = 3-2"2. We will consider the corresponding IEEE factoring iroundmode (s, e — a, f)
or the corresponding NF factoring nround.qe(s,e — a, f))
The magnitude of all exact overflow results is larger than lbound,,; = 2°me= =
22"7'=1 An upper bound on the magnitude of exact results is found looking at the
case, that the largest representable number, that is smaller than 2 - 2¢mer = 22%1,

is divided by the representable number with the smallest magnitude 26mi» =P+l —
2—2”’1+2—p+1:

22“*1/2—2“*1+2—p+1 — 92" 2" =24p—1 _ 92" 4p—3

Thus, the magnitude of all exact results of the standard’s operations on representable
numbers is smaller than ubound,,; = 22"4P=3 The exponent wrapping by —a
reduces the lower bound on the magnitude of exact overflow results to

lboundovf . 27& — 22"7'—171*3-2”7«—2 _ 27277,—271 > 272n—1+2 _ 2emin
and the upper bound on the magnitude of exact overflow results to

_ n _q_2.9n—2 n—2 _ n—1_
uboundey, - 27 = 22" FPTITILTT = 92" TAP=E L 92" =] gemar

Therefore, after exponent wrapping all overflow results have values of normalized
numbers.

e Trapped Underflow. If a trapped underflow occurs, then the wrapped expo-
nent e + « is used and a factoring of ry,e4e(ezact,, - 2%) is delivered to the trap
routine, where o = 3-2"2. We will consider the corresponding IEEE factoring
iroundmoede (s, e + a, f) or the corresponding NF factoring nround,,eqe(s,e + a, f))
The magnitude of all exact underflow results is smaller than ubound,,,; = 2°mi» =
2-2"7'+2 A lower bound on the magnitude of exact results is found looking at

the case, that the representable number with the smallest magnitude 2¢min=P+1 —

272" =P+3 is multiplied by itself:

92" 1p+3 92"l pt3 _ 92" -2p+6
Thus, the magnitude of all exact results of the standard’s operations on representable
numbers is larger than or equal to lbound,,; = 22" —2p+6,

The exponent wrapping by « increases the lower bound on the magnitude of exact
underflow results to

_on__ on—2 _on—2__ _on—1 .
1boundyy - 20 = 272 TPHOFIZTT — 92T TAE0 o 972 A2 — fmin

24 CHAPTER 2. IEEE FLOATING-POINT STANDARD

(ADD|[| +0 | -0 | 4y | —y | +oo | —oo | gqNaN2 [sNaN |
+0 +0 +0(0RMI)| +vy -y +00 | —oo | gNaN2 |gNaN
—0 ||[+0(-0 RMI) -0 +y -y +o00 | —oo | gNaN2 |gNaN
+x +x +x n.S. n.S. 400 —oo | gqNaN2 |gNaN
-z —r —r n.S. n.S. 400 —oo | gqNaN2 |gNaN
+00 400 400 400 | 400 +00 | gNaN | gNaN2 |gNaN
—0 —0o0 -0 -0 —oc | gNaN | —oo | gNaN2 |gNaN

gNaN1 gNaN1 gNaN1 |gNaN1|gqNaN1|gqNaN1|gNaN1|{qNaN1/2|gNaN
sNalN gNaN gNaN gNaN | gNaN | gNaN | gNaN | gNaN |gNaN

Table 2.4: Results of additions on special values.

ADD || +/-0 +y -y +00 | —oc |qNaN2|sNaN
+/—0 no no no no | no no | INV
+z no |OVF/UNF/INX/no| UNF/INX/no no | no no | INV
-z no UNF/INX/no |OVF/UNF/INX/no| no | no no | INV
+o00 no no no no | INV | no | INV
—00 no no no INV | no no | INV
gNaN1 no no no no no no | INV
sNaN || INV INV INV INV | INV | INV | INV

Table 2.5: Exceptions of additions.

and the upper bound on the magnitude of exact underflow results to

UbOUndunf . 2a — 2—2n—1+2+3.2n—2 _ 22n—2+2 < 2277,—171 _ 28maz.
Therefore, after exponent wrapping also all underflow results have values of normal-
ized numbers.

Corollary 2.10 After exponent wrapping all results of operations on representable num-
bers have values of normalized numbers.

2.4.3 Operations on Special Values

In this section, we summarize the results of additions (see table 2.4, for subtractions the
second operand has to be multiplied by —1), multiplications (see table 2.6), divisions (see
table 2.8), and square roots (see table 2.10) on special values and zeros and list the possible
exceptions (see table 2.5,2.7,2.9, and 2.10).

In the tables, different possibilities of one entry are separated by ’/’, 'n.s.” means that
the corresponding entry can not be specified in general, 'no’ means, that no exception
occurs, and ’(—0 RMI)’ means, that the result is —0 if the rounding mode is RMI. Because
the representation of gNaNs is not unique, we enumerate such operands by qNaN1 and
gNaN2.

2.4. SPECIAL CASES

25

IMULT | +0 | -0 | +4y | -y | 400 | —oo | gNaN2 | sNaN |
+0 +0 -0 +0 -0 gNaN | gNaN | gNaN2 | gNaN
-0 -0 +0 -0 +0 gNaN | gNaN | gNaN2 | gNaN
+x +0 -0 n.s. 7.8. ~+o00 —0o0 gNaN2 | gNaN
—r —0 +0 n.s. n.S. —00 400 gNaN2 | gNaN
400 gNaN | gNaN 400 —00 400 -0 gNaN2 | gNaN
-0 gNaN | gNaN -0 400 -0 400 gNaN2 | gNaN

gNaN1 | gNaN1 | gNaN1 | gNaN1 | gNaN1 | gNaN1 | gNaN1 | gNaN1/2| gNaN
sNaN gNaN | gNaN | gNaN | gNaN | gNaN | gqNaN gNaN | gNaN
Table 2.6: Results of multiplications on special values.
[MULT [/-0] -y | +/— oo [qNaN2[sNaN|
+/—0 no no INV no | INV
+/—x no |OVF/UNF/INX/no| no no | INV
+/—o00 | INV no no no | INV
gNaN1 no no no no INV
sNaN INV INV INV INV | INV
Table 2.7: Multiplication exceptions.
| DIV] 40 | 0 | 4y | -y | +oo | —oo [gNaN2 [sNaN |
+0 gNaN | gNaN +0 -0 +0 -0 gNaN2 | gNaN
—0 gNaN | gNaN -0 +0 —0 +0 gNaN2 | gNaN
+x 400 —00 n.S. n.s. +0 -0 gNaN2 | gNaN
—r —00 400 n.S. n.s. —0 +0 gNaN2 | gNaN
~+00 +00 —00 400 —oo | qNaN | gNaN | gNaN2 |gNaN
—00 —00 +o0 —00 +o0o | gNaN | gNaN | gNaN2 |gNaN
gNaN1| gNaN1 | gNaN1 | gNaN1 | gNaN1 | gNaN1 | gNaN1 | gqNaN1/2 | gNaN
sNaN | gNaN | gNaN | gqNaN | gNaN | gNaN | gNaN gNaN | gNaN

Table 2.8: results of division on special values.

| DIV [[+/-0] +/ -y | +/— oo [gNaN|sNaN]|
+/—0 || INV no no no | INV
+/—z || DVZ |OVF/UNF/INX/no| no no | INV
+/— o0 no no INV no | INV
gNaN no no no no | INV
sNaN INV INV INV INV | INV

Table 2.9: Division exceptions.

| SQRT | 40 | =0 | 4y | -y [400 | —oo |qgNaN1]| sNaN |

result +0 —0 n.8. gNaN 400 gNaN | gNaN1
exception no no | INX/no | INV no INV no

gNaN
INV

Table 2.10: Results and exceptions of squareroots on special values.

26 CHAPTER 2. IEEE FLOATING-POINT STANDARD

2.4.4 Summary of IEEE Computations

In the previous sections, various aspects of the computations for IEEE operations were
described separately. In this section all aspects of the computations will be summarized
for each TEEE operation.

In the previous section about the computation on special value and zero operands z
and y, we saw, that for these cases the result can have only one of a few possible values,
namely, +/—0, +/—o00, gNaN, z, y. If none of these special cases occurs, the IEEE
rounded result with or without exponent wrapping should be output.

Assume, that we have a factoring (s,c, €y, frc), that represents the exact result ezact,,
forop € {ADD/SUB,MULT,DIV,SQRT,CONYV} and for non-zero representable operands.
We define five special condition flags SCQNAN, SCINF, SCX, SCY, and SCZERO that corre-
spond to the occurance of the special cases results: ¢gNaN, +/—o0, x = val(sa, ea, fa),
y = val(sb, eb, fb), and +/—0. Moreover, the exponent wrapping constant is defined by:

—a if ovF AND OVF_EN (wrapped overflow)
wee = +a if UNF AND UNF_EN (wrapped underflow) (2.14)
0 otherwise,

Based on these definitions, the IEEE factoring of the final result of an IEEE operation
can be selected by:

((0, eqnans fgnan) if SCQNAN
(Sinfs€ocos foo) if SCINF
.) , _ (sa,ea, fa) if sox
(Szfnlaezfnla fzfnl) = (Sb eb fb) i soy (215)
(s0,€0,0) if SCZERO
L iround(Sye, €rc + wee, fre) otherwise

The corresponding NF factoring of the rounded TEEE operation result is given by (see
lemma 2.8):

((0, eqNaN ;s fgNaN) if SCQNAN
(Sinfaeoo,foo) if SCINF
_ (sa,ea, fa) if scx
(Snfnls €nfnls fnfnl) = (sb, eb, fb) i sy (2.16)
(s0,€0,0) if SCZERO
 nround(sye, erc + wec, fre) otherwise

Definition 2.11 We extend the definition of the function iround on factorings of special
values (Ssp, €sp, fop) € SPE fact by the identity iround(ssp, €sp, fsp) = (Ssps €sps fsp)-

Also this extension is included in the computation sequence for iround from lemma
2.7. The reason for this is, that we define the factorings of special values to be exact
and normalized and with an exponent of emar + 1. Thus, the first three steps of the
bounded normalization shift, the significand rounding and the post-normalization shift do
not change the factorings of special values. Also in the last step the factoring is not
changed, because the definition of the exponent rounding in equation 2.12 already includes
this case.

Note, that the exponent wrapping constant is 0 for operations on special values, because
no overflow or underflow can occur for them. Thus, with the extension of the definition

2.4. SPECIAL CASES 27

of the function iround and the definition of the exact result factoring:

((0,eqnan, fgnan) if SCQNAN

(
(S'mfa €0 foo) if SCINF
_ (sa,ea, fa) if scx
(Semaeeacafeac) = 9 (Sb eb, fb) if soY (2.17)
(s0,€0,0) if SCZERO
L (8res €res fre) otherwise,

for all cases the IEEE factoring of the final result (s;n1,€ifni, fifni) can be described by:

(Sifnls €ifnl, fignl) = iround(Seg, eep + wec, fer) (2.18)

With the same extension of the function nround and a similar argumentation for the
computation sequence for nround from lemma 2.8, for all cases the corresponding NF
factoring of the final result (sy fni, €nfnis frfnl) is computed by

(Snfnla €nfnl; fnfnl) = nround(sem, €eg + WEC, feac) (2-19)

The equations for the special condition flags and the sign sz can be easily extracted for
each IEEE operation from the tables on the special value results in the previous section.
With the factorings of the input operands (sa, ea, fa) and (sb, eb, fb), and the following
conditions on these factorings

ZEROA <= (|val(sa,ea, fa)| =0) ZEROB <= (|val(sb,eb, fb)| =0)
INFA < (|val(sa,ea, fa)| = o) INFB <= (|val(sb,eb, fb)| = c0)
QNANA <= (val(sa,ea, fa) = qgNaN) QNANB <= (val(sb,eb, fb) = gNaN)
SNANA <= (val(sa,ea, fa) = sNaN) SNANB <= (val(sb,eb, fb) = sNaN)
ZERO;. <= (fre=0),
we get the following equations:
¢ addition/subtraction:
SCQNAN = SNANA V SNANB V (INFA A INFB A (SA ® SB)) (2.20)
SOX = (QNANA A SNANB) V (ZEROB A ZEROA A SNANA) (2.21)
SCY = (QNANB A QNANA A SNANA) V (ZEROA A ZEROB A SNANB) (2.22)
SCINF = SCQNAN A SCX A SCY A (INFA V INFB) (2.23)
SCZERO = (ZEROA A ZEROB) V ZERO;. (2.24)
Sinf = (SAAINFA)V (SBAINFB) (2.25)
So = (is-RMI A (SA@® SB@® SOP)) V (SA A (SB @ SOP)) (2.26)
e multiplication:
SCQNAN = SNANA V SNANB V (INFA A ZEROB) V (INFB A ZEROA) (2.27)
SCX = QNANA A SNANB (2.28)
SCY = QNANB A SCX A SNANA (2.29)
SCINF = SCQNAN A SCX A SCY A (INFA V INFB) (2.30)
SCZERO = (ZEROA A ZEROB) V (SCQNAN V SCX V SCY) (2.31)
Sinf = SA®SB (2.32)
S0 = Sins (2.33)

28

e division:

SCQNAN
SCX
SCY

SCINF
SCZERO
Sinf

So

e square-root:

This completes the specification of the IEEE operations.
provide some methodologies, by that the rounding computations can be simplified.

CHAPTER 2. IEEE FLOATING-POINT STANDARD

= SNANA V SNANB V (ZEROA A ZEROB) V (INFA A INFB)

= QNANA A SNANB

= QNANB A SCX A SNANA

= SCQNAN A SCX A SCY A (INFA V ZEROB)

= SCQNAN A SCX A SCY A (INFB V ZEROA)

= SA®SB

= Sinf

SCQNAN
SCX =
SCY =

SCINF =

SCZERO =

Sinf =
Sog =

(ZEROA A SA A QNANA) V SNANA
QNANA

0

INFA A SA

ZEROA

0

SA

In the next section we will

2.5. ROUNDING COMPUTATION UTILITIES 29

2.5 Rounding Computation Utilities

2.5.1 Representatives

Definition 2.12 For an integer -y, two real numbers x1 and xo are y-equivalent, denoted
by 1 = zo if there exists an integer q such that z1,35 €]q-277,(q+1)-277[or 21 = 29 =
q-277.

Thus, the binary representation of y-equivalent reals must agree in the first v positions to
the right of the binary point. We choose the y-representatives of the equivalence classes
as follows:

Definition 2.13 Let x denote a real number and vy an integer. Let q denote the integer
satisfying: 277 < x < (¢ + 1)277. The y-representative of x, denoted by rep,(x), is
defined by:

| e27 if e =q277
rep(z) = { (@+0.5)2™ if z €]g2™, (q + 1)277[.

The y-representatives form integral multiples of 277~!'. Thus, they can be represented
by v + 1 bits to the right of the binary point. Note, that the least significant bit in this
representation indicates whether the corresponding equivalence class is a single point or
an open interval. The following lemma describes, how the ~-representative of a binary
number can be computed.

Lemma 2.11 With f € [0,2], integers 0 < v < k, so that f is a multiple of 27%, and
F0 : k] = bin® (f), we define:

sticky_bit,(f)
sticky~ (f)

OR(F[y +1:k])
< B0 1 4] >peg + sticky it (f) 27771

The ~y-representative of f is then given by

repy(f) = sticky,(f).

Proof: The binary representation rep,(f) is identical to F[0 : k] up to the position with
weight 277, If f is an integral multiple of 277, then f = rep,(f) =< F[0 : 7] >,y and
F[y+1: k] is all zeros, and so is sticky_bit,(f). If f is not an integral multiple of 277, then
F[y + 1 : k] is not all zeros, and therefore, sticky_bit,(f) = 1, and rep,(f) = sticky,(f),
as required. O

Lemma 2.12 For integers vi,7v2, with 0 <y2 <1, and f = < F[0: k] >peq (1) one can
derive repy, (f) from repy, (f) = < REPL0:y1+1] >0 by

repy, (f) = < (REP1[0 : y2], OR(REP1[yo+1 : y1+1])) >peq.
(i) Bl — fa 2y
Proof: (i) The bits sticky_bit,, (f) and sticky_bit,(f) are defined by

sticky_-bity, (f) = OR(F[y1 +1:k])
sticky-bity,(f) = OR(F[y2+1:k]).

30 CHAPTER 2. IEEE FLOATING-POINT STANDARD

Substitution of the sticky_bit., (f)-definition in the sticky_bit,, (f)-definition, yields
sticky-bity, (f) = OR(F[y2 + 1 : 1], sticky_bit, (f)).

Because REP1[0 : 71| = F[0 : v] and REP1[y; + 1] = sticky_bit,, (f) by the definition of
repy, (f), we have
sticky_ bity,(f) = OR(REP1[y2 + 1 : 7y + 1])

and part (i) of the lemma follows.

(ii) We have rep,, (fz) = repy, (fy). In the first part was shown, that ~,-representatives
can be computed from 7 -representatives. Therefore, rep,,(f;) = rep,,(fy). and part (ii)
of the lemma follows. O

For mode € {RZ, RNE, RI} and f' = rep,(f) one can additionaly show the following
equations:

fo L f, iff 25 £, =" f, 2% for an integer k (2.48)
Mdmode,—1(f) = T1dmode—1(f') (2.49)
rdmodey—1(f) = f iff rndmoden—1(f') = f' (2.50)
rdmoder—1 (f1) = f iff f'=q-2707Y for an integer ¢ (2.51)
fl=1f iff Tndmode,,y_l(fl) = f. (2.52)

For the computation of rounded factorings we will use the following properties.

Lemma 2.13 Let(sy,eq,fz) and(sy,ey, fy) be two factorings and let (s,el, fy) and(sy.eq,f,)
be the corresponding bounded normalized factorings: (sl ek, f2)=Ne,:n | (Sz, €z, fz) and
(Sgpe;pfg;) = |Mepin) (Sys €y fy). If the values of (sz,eq, f2) and (sy, ey, fy) are (p — €;)-
equivalent:

x = val(sy, ez, fz) = val(sy, e, 1) = val(s;, e;, fg'/) = val(sy, ey, fy) =Y.

then (i) sl = sg, el = e;, and f} 2 fé,(zz) iroundmode (Szs €xs f2) = iroundmode (Sy, €y, fy);
and (1i1) nroundmede(Sz, €z, fo) = nroundmede(Sy, ey, fy)-

Proof: The assumption that z b y means that either x =y or z,y € I, where I =|q -
2¢:~P (q41)-2%~P[, for some integer q. If 2 = y then the claim follows from the uniqueness
of the (bounded) normalized factoring representations (s, €}, f;) and (sy, ey, f,). For the
second case, since the interval I cannot contain both negative and positive numbers, let
us assume that z > 0, and hence y > 0 as well.

Note also, that the interval I either consists only of denormalized values or normalized
values. The reason is that 2°ni» can not belong to the interval I. Since both factorings
(8% €s) and (sy, ey, f,) are bounded normalized, it follows that either f;, f, € [0,1]

or fu, fy € [1,2[. If f3, f, € [0,1], then it follows that e, = e} = emin. Therefore,
fos £y €lg-27P, (¢ +1)-27P[, and f; L fy» as required in part (i).

If f5, fy € [1,2[, let us assume by contradiction that e, > ej. This would imply that
fg: . 262/ < 21+8; < 26; < f;’p . 28;.

But the interval I cannot contain 2¢ . so that we have a contradiction to our assumption.
Therefore, e, = e, and as before, this implies f; L fy»> as required. Part (ii) follows from

2.5. ROUNDING COMPUTATION UTILITIES 31

the computation of the rounding function iround(s,e, f) according to lemma 2.7, the
definition of aligned significand rounding in equation 2.9 and equation 2.49 with v = p.
We use from definition 2.8, that the rounded values are the same for both rounding
functions iround,,eqe (S, e, f) and nround,,oqe (s, e, f), so that from part (ii) it follows, that
val(nroundmede (5, €z, f2)) = val(nroundyege (sy, €y, fy)). Part (iii) then follows from the
uniqueness of NF factoring representations. O

Similarly, for the computation of 7,,4¢($, €, f), we have:

Lemma 2.14 Let (sg,es, fz) and (sy, ey, fy) be two factorings and let (sl,el, fr) and
(83> €y fy) be the corresponding unbounded normalized factorings: (s, €y, fr) = n(sz, €x, fx)

and (s;,e;,fé) = n(syaeyafy)' If the values Of (ngegmfcg) and (S;,e;,fé) are (p - 6;:)—
equivalent:

p—e;
val(sx, e:ca f:c) = val(sya eya fy)a
. p Ly U v
then (i) sh, = sg, el = e;, and fl = fZ’J" and (ii) Tmode(Sz, €xs fz) = Pmode(Sy, €y, fy)-
Proof: The proof is a simplified version of the proof of the previous Lemma, because all
factorings are normalized in this case and no distinction between normalized and denor-
malized factorings is necessary. O

Based on Lemma 2.13 and Lemma 2.14 a rounding circuitry only has to know the p-
representative of the significand of the unbounded or bounded normalized factoring and
not its precise value to be able to round the factoring correctly.

Usually, no bounded or unbounded normalized factoring, but only an arbitrary fac-
toring is considered as input of the rounding computations. Then, the knowledge of the
p-representative of the significand does not directly ensure the possibility of correct IEEE
rounding like in the cases of Lemma 2.13 and Lemma 2.14. But if a simple additional
condition on this p-representative of the significand is fulfilled, it is possible to find the
correctly rounded result nevertheless:

Lemma 2.15 Let (s,e, f) be a an arbitrary factoring and €' the exponent of the corre-
sponding normalized factoring. If a positive integer p' > p exists, so that fr = repy(f)
and the following condition is fulfilled:

fr > 1 OR fr={[,

then (s,e, f) P= (s, e, fr), iroundmede (s, e, f) = iround,oqe(s, e, fr) and
nroundmede (8, €, f) = nroundpge(s, e, fr).

Proof: We separate the conditions (i) fr = f and (ii) fr > 1:

(i) If fr = f, it is obvious that roundmege(s, e, f) = roundpege(s, e, fr). (ii) By equa-
tion 2.48 from fr z f, it follows that val(s,e, fr) p=e val(s,e, f). Let (s',€', f') and
(s",€", fr') be the bounded normalized factoring corresponding to (s, e, f) and (s, e, fr):
(s, €e f) = Nepin I(s,e, f) and (s",€", fr') = |ne,..,1(s,e, fr). From fr >1 it follows
that f > 1, so that with f' < 2, and val(s,e, f) = val(s', €, f'), we have ¢’ > e. Using
p—¢ <p' — e and lemma 2.12 we get

val(s",€", fr') = val(s,e, fr) = val(s,e, f) = val(s', €, f').

The use of lemma 2.13(ii)-(iii) on this equation completes the proof. a

32 CHAPTER 2. IEEE FLOATING-POINT STANDARD

| L |Rr|sTicky | RZ | RNE [RI |

de. | 0 0 ftr ftr ftr
de. | 0 1 ftr ftr | ftri
1 0 ftr ftr | ftri

1 1 0 ftr | ftri | ftri
dc. | 1 1 ftr | ftri | ftri

Table 2.11: Significand rounding on representatives.

Lemma 2.16 We consider an integer p, positive values xz, x, and the value x; with © =
xh +xp, T = k- 27P for an integer k and |x;| < 27P, and a non-zero positive value q with
q |z <27P. The value x' =z, + q - ; then is p-equivalent to x, so that

repy(z) = rep,(z').

Proof: We separate the proof in three cases: (a) (z; = 0); (b) (z; > 0); and (c)
(z; > 0). The proof of case (a) follows directly from z = z, = 2’. In case (b), from
0 < 2 < 277 it follows, that z), < = < =z, + 277, and repy(z) = =, + 2771 In
the same way from 0 < ¢ -x; < 27P, it follows, that z;, < 2’ < z;, + 27P and, thus,
repy(z') = zp + 27771 = repy(z). In case (c), from —277 < z; < 0 it follows, that
zp —27P < z < xp,, and repy(z) = z;, — 27P~L. In the same way from —27P < q-z;, < 0,
it follows, that z, — 27P < 2’ < . Thus, rep,(2') = z,, — 277~ = rep,(z) and the proof
of the lemma is completed. O

Finally, we describe some details of significand rounding on representatives.

Definition 2.14 For the rounding at position A—1 of a positive significand f < 2 with the
A-representative frep =<FREP[0:A+1]>,.0= repy(f), we define the truncated significand
ftr =<FREP[0:A—1]>p., and the incremented significand ftri = ftr + 2 2+1,

Because ftr < f < ftr+2 21 = ftri, the values ftr and ftri are the two possible results
of 1d(modexs),\—1(frep). Which of them is chosen, depends only on the rounding mode
(modex s) € {RZ, RNE, RI} that is encoded by SR_-MODE[1:0] according to table2.3 and
the three least significant bits of the representative, the L-bit L = FREP[A—1], the round-bit
R = FREP[)], and the sticky bit STICKY = FREP[M1]. Table 2.11 lists all different rounding
cases according to the rounding definitions for positive arguments from equation 2.4-2.2.
In this table an entry ’d.c.’” (don’t care) means, that the value of this bit does not effect
the result. From this table one can easily derive the equation for the condition that the
incremented significand ftri has to be chosen as the rounded significand. This condition
is called the condition for the rounding increment:

RINC = is_RI(mode) A (RV STICKY) V is_RNE(mode) AR A (L V STICKY) (2.53)
= SR_MODE[1] A (R V STICKY) V SR_.MODE[0] AR A (L V STICKY) (2.54)

so that with A = p significand rounding can be written by:

(s,e, ftri) if RINC

(s,e, ftr) otherwise. (2.55)

Sig—rndmode*s(sa €, f) = {

2.5. ROUNDING COMPUTATION UTILITIES 33

representable numbers representable numbers
real line t t red line
RZ rounding intervals)) RZ rounding intervals))
M~ N NI
rounding — — rounding — —
RNU rounding intervals I)I)I)I RI rounding intervals K ((
N N
RNU rounding values RI rounding values T T T
RNU rounding intervals *%5 \ \ \ RI rounding intervals ~ *%9%- \ \ \l
I I 1 1 I]
after injection R U after injection !
rounding — — — rounding — — —

Figure 2.3: Injection mapping

Lemma 2.17 For a factoring (s,e, f) with a significand f < 2, the p-representative
frep = < FREP[0 : p+1] >,0q = repp(f), the rounding mode (modexs) € {RZ, RNE,RI}
and the rounded factoring (s, e, frnd) = sig-rndyedess (S, €, frep), the case that signifcand
rounding changes the value of the significand can be recognized by:

(FREP[p] OR FREP[p + 1]) <= (frnd # f)
We call this condition the significand rounding inexactness.
Proof: Thelemma follows from equation 2.51-2.52 with v = p and the use of the property

that frep is an integral multiple of 27 P! iff (FREP[p] OR FREP[p + 1]) = 0. O

2.5.2 Injection Based Rounding

Rounding by injection reduces the rounding modes RI and RNU to RZ [9, 40, 11, 12].
This reduction is possible for the rounding of operands z, that are integral multiples of
27k with an integer k, that is larger than the rounding position A. The rounding mode
reduction is based on adding an injection:

0 if RZ
inj =< 2721 if RNU
272 —27F if RI,
that depends only on the rounding mode.
Lemma 2.18 With mode € {RZ, RNU, RI}, the effect of adding inj can be described by

'rndmode,)\(x) = ’rndRZ,/\(x + Zn])

Proof: Figure 2.3 depicts this reduction of RNU and RI to RZ. O

34 CHAPTER 2. IEEE FLOATING-POINT STANDARD

2.5.3 Gradual Rounding

In this section we deal with the situation, that rounding of a positive value z is not
computed at the proper position A9 in a single step like in

sires = Tndmode,)\z (33)’

but that the rounding result has to be computed in multiple steps, where a result of one
rounding step is the input of the next rounding step with a smaller rounding precision
0 < Ay < A like in

mures = rdmode s (TMmode, 1, (T)).

In [21], the principles and problems of such gradual rounding are described. If only the
rounded result rores; = rndpede z, (¢) of a rounding step is used in the succeeding round-
ing decision, information gets lost and the multi-step rounding result mures could differ
from the correct single-step rounding result sires (like in figure 2.4). In [21] this situation
is called a step error and it is proven that such a step error can only occur in rounding
mode RNE. To prevent step errors, two tag bits are required for the rounding decision in
addition to the rounded result of the previous step:

e TINX is active if the rounded result of the previous step was inexact:

(Tndmode,)\l (iU) 75 ZL')

Corresponding to the inexactness recognition in significand rounding, TINX can be
computed from the round-bit Ry and the sticky-bit STICKY of the previous rounding
step:

TINX = Rj; OR STICKY;. (2.56)

e TINC is active if the previous rounding decision was a rounding increment (RINC=1):
(binZ2}! (rndmode s, () # binZ}! (z)). (2.57)

Like in the conventional rounding, the rounded result of the previous rounding step rores;
lies between two rounding possibilities ftr =t-27*2 < rores; < (t+1) 27 = ftri,
so that the gradual rounding of rores; at position Ay corresponds to the selection

ftri if GRINC

ftr otherwise. (2.58)

roresy = sires = {
Using the two tag bits TINX and TINC in the gradual rounding decision GRINC enables
to simulate single-step rounding by multi-step rounding in all rounding modes (mode x
s) € {RZ,RNE, RI} (encoded by sSR_MODE[1:0]). As a solution [21] suggests to use the
following equations to compute GRINC and the two tag bits TINXy and TINCy of the actual
rounding step, where (Lg, R, STICKY2) = REPy, +1(rores;)[A2: A2 +2] and TINX; and TINC;
are the corresponding tag bits of the previous rounding step:

(SR-MODE[1] A (R V STICKY3))V

GRING = ((SR-MODE[0] A R2) A (STICKY2 V TINCy A (Lg V TINX1))) (2.59)

_ (SR-MODE[1] A (R V STICKY3)) A (2.60)
~ ((SR_MODE[0] A Rg) A (STICKYz A (TINC; A (Lg V TINX1)))) ’
TINX3 = Rg V STICKY3 V TINX; (2.61)

TINCg = GRINCV (STICKY2 A Ry A TINCq). (2.62)

2.5. ROUNDING COMPUTATION UTILITIES 35

sres (1b%) X mures
rores;
(&) (1a) (1b)
I A I ‘ I _}\ I I N
(2k-1) 2" "2 K2 M 2k 2 2

Figure 2.4: Gradual rounding: In rounding mode RNE the value z should be rounded
at position Ay to the value sires = (2k — 1) - 2722 like depicted by arrow (2). If we
round the value z in a first step at position A;, we get the intermediate rounded result
rores; = k'-27*1 like depicted by arrow (1a). The result of a second conventional rounding
step of rores; at position Ay (arrow (1b)) is mures = 2k -27*? and differs from the single
step rounding result sires. A gradual rounding step on rores; at position Ao that uses
additional information from the previous rounding step yields the rounded result sires
like depicted by arrow (1b*).

Based on the equations for the gradual rounding, we define gradual rounding functions
corresponding to the definition of the rounding functions rnd,,gde,:

Definition 2.15 For mode € {RZ,RNE,RI} encoded by SR-MODE[l : 0], the gradual
rounding function grndmede » : IR % {0.1}2 — R x {0.1}? is defined by

tri, TINC, TINXy) if GRINC
2 2

d TINCy, TINX;) = .
gr1dmode\(f; b) {(ft’f',TINCQ,TINXQ) otherwise.

with the truncated significand ftr and the incremented significand ftri from definition

2.14, and the computation of GRINC, TINCy and TINXy according to equations 2.60-2.62.

Lemma 2.19 For any integers Ao < Ay the rounding function rndpyge, can be decom-
posed into two gradual rounding steps, so that for

(f’rnd, X[l : 0]) = grndmode,/\g (gfrndmode,/\l (fa 00))
we get frnd = rndmoder, (f)-
Proof: Thislemma just summarizes the previous descriptions of the properties of gradual

rounding using our definition 2.15 of the gradual rounding function grnd,,,dexs,- O

Definition 2.16 For the significand rounding we define two gradual rounding steps by the
significand rounding functions sgrndl : FACT(IR) — FACT(IR) x {0,1}? and sgrnd?2 :
FACT(IR) x {0,1}> — FACT(IR). With (frnd,, TINC1, TINX;) = grndmoedexs52(f,00),

sgrndlpodess (S, €, f) = ((s, e, frndy), TINCy, TINX)
and with (frnds, TINC3, TINX3) = grNdmoedexs 52(frnda, TINCg, TINX2),
Sgrndeode*s ((37 €, f’l”ndg), TINCg, TINXZ) = (87 €, f’l"ndg)

Additionally, we extend the definitions of the bounded normalization shift, the post-normaliza-
tion shift and the function val on outputs of the first gradual rounding step:

|—nﬂ-‘ ((s,e,f),X[l :0]) = ([nﬁW(Sveaf)aX[l :0])
post_norm ((s,e,), x[1:0]) = (post-norm(s,e, f),x[1:0])
val ((s,e, f),X[1:0]) = wal(s,e,f)

36 CHAPTER 2. IEEE FLOATING-POINT STANDARD

Lemma 2.20 The rounding function iround can be docomposed into a normalization
shift, a first significand gradual rounding step by sig_grndl, a bounded normalization shift,
a second significand gradual rounding step by sig_grndl, a post-normalization shift and
exponent rounding. Thus, with the definition of the normalized gradual result factoring

((SGFa EGF, fGF)a TINC, TINX) = pOSt—norm(sgrndlmode*s (n(sa €, f)))7 (263)

the IEEE factoring of the rounded result can be computed by

(ST‘657 €res; fres) =

exP_rndmodexs (POSt-norm(sgrnd2modess ([Me,,:, 1 ((saF, ear. far), TINC, TINX)))),
50 that iround,,ede (S, €, f) = (Sres, €ress [res)-

Proof: We first introduce some notation: We denote the input factoring of the first grad-
ual rounding step by (s1,e1, f1) = n(s,e, f) and the output by ((s2, €2, f2) TINC, TINX) =
$grndl odexs (S1, €1, f1). The input factoring of the second gradual rounding step is de-
noted by ((ss, es, f3) TINC, TINX) = [, .. |((SeF, ecF, faF), TINC, TINX) and the output is
denoted by (84, €4, f1) = $9rnd2modexs ((83, €3, f3) TINC, TINX).

The lemma will be proven in two steps. In the first step (a) we will show that
the value of val(Syes, €res, fres) corresponds to the value of the TEEE rounded result
val(iround(s,e, f)). In the second step (b) we will show, that also (Syes,€res, fres) 1S
an IEEE factoring like iround(s, e, f).

In part (a) of the proof, we have only to consider the values during the computation.
The value of the input factoring might only be changed by the two gradual rounding
steps and by the exponent rounding, so that z1 = val(s,e, f) = val(s1,e1, f1) and x9 =
val(sg, €9, fa) = val(ss, es, f3). Because the exponent rounding function is the same like
in the computation of iround(s,e, f) according to lemma 2.7, we only have to compare
the significand rounding, namely we only have to show that for €’ = maz{emin, €1}

val(sy,eq, f1) = TNdmode,—e! +p—1 (z).

Like for the rounding function rnd, we can also use for the gradual rounding function
grnd, that for integers z: 2% -val(grndmode A (f, X[1:0])) = val(grndmode r—z (2% f, X[1:0])).
In this way the rounded values of the gradual rounding steps xo and x4 = val(s4, eq, f1)
can be written by:

£, = 1)% .26 . f, 2.64
= 1)%s . 2% . 'Ual(grndmode*s,p—l(f& TINC, TINX)) 2.65
= 1)%. ’Ual(grndmode*s,—ea-l-p—l(263 + f3, TINC, TINX)) 2.66
r3 = 1 53 263 . f3 2.67

1)t 2. val(grndmode*s,i')?(fla 00))
L. val(grndmode*s,—el-l—SQ(261 : fla 00))
1)% - val(grndmodess,—e, +52 (abs(x), 00))

(=1)
(=1)
(=1)
(=1)
(=1)%-2% - fy
(=1)
(=1)
(=1)

In the computation steps between the two gradual rounding steps, the exponent could be
changed by the post-normalization shift, so that eqr € {e1,e; + 1} and by the bounded
normalization shift, so that e3 = max{emin,ecr} (Note, that fgr is normalized, so that

2.5. ROUNDING COMPUTATION UTILITIES 37

eqr is already the normalized exponent.) Because both operations only could increase the
exponent and because we consider p € {24, 53}, we get —e3 +p — 1 < —e; + 52. For this
reason we can use lemma 2.19 on the two gradual rounding steps with \; = —e; + 52 and
Ao = —e3 + p — 1. In this way equation 2.67, 2.68 and 2.71 combine to

Ty = (_1)5 : gfrndmode*s,—eg-l—p—l(grndmode*s,—el-l—SQ(abs(x)a 00)) (2'72)
= (=1)* - rndmodexs,—es+p—1(abs(x)) (2.73)
= Ndmode,—es+p—1(T). (2.74)

There are only two cases possible, namely: (i) eqr = €1, and (ii) eqr = €1 + 1:

(i) From egrp = ey, it follows, that es = maz{emin,e1} = €”, so that we get x4 =
Nl mode,—e"+p—1(2), as required.

(ii) For egr = e1 + 1, it follows from the definition of the post-normalization shift, that
the significand is changed to fgr = 1. The rounding does not change the operand
((—1)%-2¢1*1) regardless of whether rounding position —(e; 4+ 1) +p — 1 or rounding
position —e; + p — 1 is considered. Thus, we get 4 = rndmode,—e+p—1(z) also in
this case and part (a) of the proof is completed.

Part (b) can be proven like part (b) of lemma 2.7 starting with the input factoring
of the bounded normalization shift (sgr, eqr, for), because the computations in the four
steps that are computed on (sgr, egr, far) in this lemma correspond to the four steps in
the computation of iround(s, e, f) according to lemma 2.7. O

Definition 2.17 For mode € {RZ, RNE, RI, RM I}, we define the two gradual rounding
functions groundl,,oge and ground2.,,04e by

groundl,,oge(s, e, f) = post_norm(sgrndlyodess(n(s, e, f)))
ground2mode((SGF7 €GF, fGF)a TINC, TINX) =
exP_rndmodexs (POSt_norm(sgrnd2modess([Me,,:n 1 ((SaF, €aF, faF), TINC, TINX)))).

Corollary 2.21 With the definition 2.17, lemma 2.20 can be written by:
iroundmode (8, €, f) = ground2,,o4e (groundl ,oqe (s, €, f)).

Lemma 2.22 The equation ((sgr,ecr, far), TINC, TINX) = groundlg.(s,e, f) is in-
variant on the addition of k € IR to the exponent, namely

((SGFa eGF T ka fGF)a TINC, TINX) = groundlmode(sa e+ k: f)a
so that it does not matter if k is added to the exponent of the input or the output factoring.

Proof: The computations in each of the three steps according to definition 2.17 of
function groundl, namely, the unbounded normalization shift, the gradual rounding and
the post-normalization shift only depend on the values of the significands and the signs
of the factorings and not on the exponent values and so does the sequence of these three
steps in function groundl. O

Corollary 2.23 With ((sqr, ear, far), TINC, TINX)=¢roundlode (Sexs €exs fex) and corol-
lary 2.21, the IEEE factoring of the final result according to equation 2.18 s given by

iround(Sez, €ex + wee, fer) = ground2p,o4e((sGr, eqr + wee, far), TINC, TINX).

38 CHAPTER 2. IEEE FLOATING-POINT STANDARD

2.6 Internal Representations

In this section, based on factoring representations, we define floating-point number rep-
resentations at the bit level. In each presented format the number representations are
integrated for the cases of single precision and double precision. The first three formats,
namely the packed format, the unpacked format and the normalized format contain the
representation of single precision and double precision IEEE values. The last two formats,
the representative format and the gradual result format, represent results of IEEE opera-
tions that have not been fully rounded yet, In these cases some further computation steps
are required to achieve the corresponding single precision or double precision IEEE FP
value and there could be two or more representations in these formats that lead to the
same IEEE FP value after rounding.

2.6.1 Packed Format

The number representations in the packed format (PF) are based on the packed repre-
sentations for single precision and double precision defined by the IEEE standard. These
packed representations encode the IEEE factoring of a number in a binary form. In the
packed format, the IEEE packed representations for single and double precision (see fig-
ure 2.2) are integrated into a 64 bit wide representation, where the smaller single precision
representations are left aligned and padded with 32 zeros (figure 2.5). We index a bus
with this format by BUSpr[63 : 0]. For single precision usage we have:

Sprp = BUSPF[G?)] (2.75)
EPF[7 : 0] = BUSPF[62 : 55] (2.76)

and for double precision usage we have:

Spr = BUSPF[63} (2.78)

Definition 2.18 For single and double precision with (n,p) € {(8,24),(11,53)} we define
the function PF : IEEE fact, , — {0, 1}%4, that computes the representation of an IEEE
factoring (s, e, f) € IEEE facty,)y in the packed format. With e = <Epp[n:0]>piqs, and
[= <Fppl0:p—1]>pe, for representable numbers and quiet NaNs, the function PF is
defined by

AR 1= I

I 7170 " fo = fSNaN

PRI = (5170, ppr(2:p1],09070) if f = Favan
(s, (Epp[n—1:0] AFpp[0]),Fpp[l:p—1],054"""P) otherwise.

In the opposite direction the function factpr : {0,1}64 — IEEEfacty,), computes the
IEEE factoring that is represented by BUSpp[63 : 0] in the packed format. With

(S,EPF[’I'L —1: 0],Fpp[1:p—1]) = BUSPF[63 : 63—n—p—1],

the denormalized factoring (s, egens fden) = (3, €min, < (0,Fpp[l:p—1]) >peq) and the nor-
malized factoring (s, enor, fror) = (8, < Epp[n—1:0] >pigs,. < (1, Fpp[l:ip—1]) >pey) . the

2.6. INTERNAL REPRESENTATIONS 39

Packed double format (64 bits)
‘ s ‘ E[10:0] ‘ F[1:52]

BUSpp 63 62 52 51 0
Packed single format (64 bits)

S E[7:0] F[1:23] 032

BUSpp 63 62 55 54 3231 0

Figure 2.5: Packed format for single and double precision.

function factpr is defined according to the definitions of the IEEFE packed representations
from section 2.2.3 by

(Saedenafden) 'Lf EPF[n_l:O] =0

(Saenorafnor) Zf EPF[n_l:O] 7& 1" A FPF[lip—l] 7& Op_l
facth(BUSpF[63:0]) = (Saeocafoc) iprF[n—l:O] =1" A Fpp[l:p—l] = Opf1

(s,esnaN, fsvan) if Epp[n—1:0] = 1" A Fpp[l] =1

(s, eqNaN; fqnaN) otherwise

2.6.2 Unpacked Format

The unpacked format is also a binary encoding for IEEE factorings. But in this case
the number representations are unpacked, i.e., information about an IEEE factoring is
not provided with the minimum amount of bits, but additional bits are included in the
representation to have better access to certain informations about the number:

The hidden bit Fyyp[0] is included in the unpacked number representation. For repre-
sentable numbers this bit is well defined by the exponent representation from the packed
format. For special values like +/—oc and NaNs, we define the hidden bit to have the
value Fyr[0] = 1, so that oo and NaN representations always include a normalized signif-
icand. Moreover, special values and zeros are indicated by 4 additional bits: ZERO, INF,
QNAN and SNAN. At most one of these bits can be active in a number representation.

In the unpacked format the exponent is represented in the two’s-complement repre-
sentation for representable numbers. We define the exponent of special values to have
the two’s complement representation of egrp = emqer + 1 in analogy to the packed format.
To be able to include the two’s complement representation of e, + 1 = 27! in the
exponent, the exponent representation is extended by one bit to a width of n 4 1-bits. For
representable numbers this bit extension is computed by a sign extension. Representations
of zero include an arbitrary exponent. In this case the value of the number is indicated
by the sign and the additional bit ZERO in a unique way.

For an integrated representation of single and double precision values three bit fields
are separated according to sign, exponent and significand (see figure 2.6). For single
precision usage the significand is padded with 29 zeros on the right and a single precision
exponent needs 3 additional bits on the left, that are computed by sign extension. We
index a bus with this format by BUSyr[69 : 0] and have:

Syr = BUSUF[GQ}
EUF[ll : 0] = BUSUF[68 : 57]
FUF[O : 52} = BUSUF[56 : 4]

40 CHAPTER 2. IEEE FLOATING-POINT STANDARD

Unpacked double format (70 bits)

s E[11:0 F[0:52 elelz|2

BUSUF 69 68 57 56 4 3 2 1 0
Unpacked single format (70 bits)

s|egf E80 F[0:23] 029 AIEIE

: : 82133

BUSF 69 68 57 56 B3R 43 2 1 0

Figure 2.6: Unpacked format for single and double precision.

ZEROyr = BUSUF[?)] INFyp = BUSUF[2]
QNANpp = BUSprp[l] SNANgp = BUSyp0)].

Definition 2.19 We define the function UF : IEEE fact,, — {0,1}7°, that computes
the representation of an IEEE factoring (s,e, f) € IEEE fact in the unpacked format.
With e = <Eyp[11:0]>2 and f = <Fyp[0:52] >, for representable numbers and quiet
NaNs, the function UF is defined by

(s, 02 0,02, 1,0,0,0) iff=0

(s, 0,1,0', 102, 0,1.0,0) if f=fu
UF(s,e, f) =< (s, 0,1,01° 1,0,Fpp[2:52], 0,0,1,0) if f = fonan

(Sa 03170107 17170517 0307031) iffzfsNaN

(s, Eyp[l1:0], Fpp[0:52], 0,0,0,0) otherwise.

In the opposite direction the function factyp : {0,1}70 — IEEEfacty,, computes the
IEEE factoring that is represented by BUSyr[69 : 0] in the unpacked format. With

(s,Eyr[l1 : 0], Fyr[0:52], ZERO, INF, QNAN, SNAN) = BU Sy (69 : 0],

the function factyp is defined by

(s,€0,0) if ZERO
(8, €005 foo) if INF
factyr(BUSyr[69:0]) = ¢ (s,e9naN; fgNaN) if QNAN
(5,esnan; fsNan) if SNAN
(s, <Epp[11:0]>2, <Fpp[0:52] >peq) otherwise.

2.6.2.1 Packed Format — Unpacked Format

For the conversion of a number from a packed representation to the corresponding un-
packed representation we summarize the conditions on the additional bits that have to be
computed:

FUF[O] =0 s iff Epr = 0"

ZERO = 1 ,iff Epp = 0" AND Fpp[lp—1] =07}

INF =1 ,iff Epp = 1" AND Fpp[lp—1] = 0P~! (2.81)
QNAN = 1 iff Epr = 1" AND Fpp[l] =0 AND Fpp[2:p—1] # 0P~2

SNAN =1 s iff Epp = 1" AND FPF[H =1.

Among the other bits, only the exponent representation changes by the subtraction of the
corresponding bias and the non-redundant representation of e,,;,. The following equation

2.6. INTERNAL REPRESENTATIONS 41

uses a sign extension for single precision and double precision exponents and lemma 2.1(ii)
to convert the exponent from biased to two’s complement representation for Epp # 1.
Because for Epp = 17,

binl (< (Eprin—1] ,Epp[n—2:0)] > +1) = < (02,17 2) > 41 =2""1 = ¢, + 1,
also the case Epr = 1™ is included in the first and the third line.

bindt(< (EPF[10]2,EPF[9 :0)] > +1) if double AND Epp # 0!

8 : _nl1
Byl 1 0] = (11,08, 10) i if double AND Epp =0 (2.82)
binj' (< (Epr[7] ,Epp[6:0]) > +1) if single AND Epp # 07
(11111,0°, 10) if single AND Epp = 0”.

2.6.2.2 TUnpacked Format — Packed Format

Also in the conversion direction from unpacked number representations to packed number
representations, the sign bit Spr and the fraction Fpp[l:;p—1] are copied identically. For
the exponent conversion we have to distinguish between two cases of: (a) normalized
numbers or special values; and (b) denormalized numbers or zero.

(a) In the case of normalized numbers or special values like +/ —oc or NaNs, we have
to convert the exponent from the two’s complement representation to the biased
representation. For normalized numbers, the bit Eyp[n] is only a sign extension:
Eyr[n] = Eyp|n —1], so that the conversion is computed with the help of lemma 2.2:

Epp[n—1:0] = bind ™' (< (Byp[n—1], Byr[n—2: 0]) > —1).
For +/—o00 or NaNs, we have Eyp = (01,07 !) and the above formula yields
Epp[n—1:0] = 1", as required for packed oo- or NaN-representations. Thus, this
formula can be used for normalized numbers, +/ —o0o or NaNs. Because
bing(< (Bur[7], Bur[6:0]) > —1) = bind(< (Evr[10], By r[9:8], Eyp[7], By p[6:0]) > 1),

the formula can be integrated for single and double precision by

E’PF[’rl—lt[)] = bingil(< (EUF[lo],EUF[g : 8],EUF[7]®DBL,EUF[6 : 0]) > —1).

(b) In the case of a zero or a denormalized number, the exponent representation 0™ is
required in the packed format.

Because Fryp[0] = 0, iff the number is a zero or a denormalized number, we can distinguish
between the two cases by the value of Fyp[0]. Thus, the exponent conversion can be
summarized by:

(2.83)

= binl = (< (Eyr[10], Eyr[9 : 8], Byr[7]@DBL, By g[6 : 0]) > —1) A Fyg[0] (2.84)

Epp = {bin8‘1(<(EUF[10],EUF[9 : 8], By p[7]®DBL, Eyp[6 : 0])) > —1) if Fyrp[0]

o" otherwise.

42 CHAPTER 2. IEEE FLOATING-POINT STANDARD

2.6.3 Normalized Format

The only difference between the unpacked and the normalized format (NF) is, that in
the case of the normalized format, the NF factoring of an TEEE value is encoded, and
not the IEEE factoring like in the unpacked format. Therefore, the representation in the
normalized format only differs from the unpacked format representation for denormalized
numbers, which are also represented with a normalized significand in the normalized for-
mat. The only numbers which still contain a leading zero significand bit Fyr[0] in the
normalized format are +/— 0.

Figure 2.7 indexes a bus with the normalized format by BUSyr[69 : 0] and separates
bit fields similar to the unpacked representation:

SNF = BUSNF[GQ]

Exp[l1:0] = BUSNp[68:57]
FNF[0:52] = BUSNF[56:4]
ZERONFp = BUSNF[3] INFNF = BUSyr|[2]
QNANyp = BUSyr[l] SNANyp = BUSNr[0].

Definition 2.20 We define the function N¥ : NF fact,, — {0,1}7°, that computes the
representation of an NF' factoring (s, e, f) € NF fact, , in the normalized format. With
e = <Enp[11:0]>9 and f = <Fyp[0:52] >neg for representable numbers and quiet NaNs,
the function NF is defined by

(s, 0'2, 0,07, 1,0,0,0) iff=0

(s, 0,1,0', 1,0°, 0,1,0,0) if f= foo
NF(S,@,f) = (S’ 0’1’010’ 1a07FNF[2:52]7 0,0,1,0) iff:quaN

(Sa 07 170107 17 170517 070707 1) sz = fsNaN

(s, Eyp[11:0], Fnp[0:52], 0,0,0,0) otherwise.

In the opposite direction the function factyp : {0,1}70 — NFfact,, computes the NF
factoring that is represented by BUSNF[69 : 0] in the normalized format. With

(S,Enr[11 : 0], Fyr[0:52], ZERO, INF, QNAN, SNAN) = BUSyF[69 : 0],

the function factyp is defined by

(s,€0,0) if ZERO
(8, 005 foo) if INF
factNp(BUSNF[69:0]) = ¢ (5,eqnan; fqnan) if QNAN
(3 esNaNafsNaN) if SNAN
(8, <ENp[11:0]>2, <Fnp[0:52] >peq) otherwise.

2.6.3.1 Unpacked Format — Normalized Format

To convert numbers from the unpacked representation to the normalized representation,
an unbounded normalization shift 7 for non-zero denormalized numbers according to defi-
nition 2.3 has to be computed. Because we can recognize non-zero denormalized numbers

by the condition (F[0] AND ZERO), the conversion could be described by

N(SUF, <BUF >2, <FUF >neg) if (F[0] AND ZERO)

2.85
(Sur, <Epp >2, <FyF >neq) Otherwise. (2.85)

(SNF, <EnNF>92,<FNF >neg) = {

2.6. INTERNAL REPRESENTATIONS 43

Normalized double format (70 bits)

s E[11:0 F[0:52 glelg| 2
BUSNF 69 68 57 56 4 3 2 1 0

Normalized single format (70 bits)

s|egf E80 F[0:23] 029 1E g E
BUS\F 69 68 57 56 B3R 43 2 1 0

Figure 2.7: Normalized format for single and double precision.

To determine the shift amount for the unbounded normalization shift, the amount of
leading zeros Iz in the significand Fyr[0 : 52] has to be detected, following lemma 2.3(ii).
For the normalization, the significand is left-shifted and the exponent is decremented by the
amount [z. In this way, the normalization shift might decrease the exponent by a maximum
of 53, because the widest significand contains 53 bits, that could all be zero. Therefore,
by the exponent adjustment the range of the exponent is enlarged to [1024 : —1075] for
double precision and a 12-bit two’s-complement exponent representation is sufficient in
the normalized representation.

If (F[)]JANDZERO) = 0, the number is either a zero and the significand is Fyy [0 : 52] =
, or the number is a normalized number, +/—o0c or a NaN, so that Fyp[0] = 1, and
therefore, the shift amount is zero: [z = 0. In both cases the significand representation is
not changed by an normalization shift by lz positions. Thus, the normalization shift can

also be computed for (F[0] AND ZERO) = 0, so that for all cases

053

Fnr[0:52] = (Fyp[lz : 52],00%). (2.86)

For the exponent adjustment the shift amount [z is substracted. Because the exponent
representation is not valid for zeros, this subtraction can also be computed for all cases.

< ENF[ll : 0] >o=< (EUF[lo],EUF[lo : 0]) >9 —l2. (2.87)

Because [z = 0 for infinities and NaNs, in the normalized representation we get the
exponent eygp = emaz + 1 = eyp for them like in the unpacked representation. Also the
sign bit and additional bits stay the same in both representations.

As denormalized significands are shifted, these significands do not end with weight
27P+1 but the least significant bit of the significand is changed to the the significand
position with weight 27P+*+1 Because significand rounding is done at this least significant
bit position of the significand, the significand rounding position changes to the position
with weight 27242+ for denormalized numbers. in the normalized format. In combination
with the changed exponent e—Iz this results in the rounding position A = e—lz—p+lz+1 =
e—p—+1, which agrees with the previous IEEE rounding description and with the rounding
procedure according to lemma 2.8.

2.6.3.2 Normalized Format — Unpacked Format

In this conversion direction from normalized to unpacked number representations, the
representations of denormalized TEEE values have to be changed. For these numbers, the
factoring representations have to be denormalized, so that the exponent is adjusted to
emin. Because the exponent of denormals in the normalized representation is smaller than

44 CHAPTER 2. IEEE FLOATING-POINT STANDARD

emin, the shift distance [z can be computed by

Iy — Cmin— < ENF[ll : 0] >9 if (emi.n —< ENF[ll : 0] >2) >0 (2.88)
0 otherwise.
The conversion then changes the exponent and the significand representations by
Fupl0:52) = (0%, Fnp[0: 52 —12]), (2.89)
. < ENF[ll : 0] >q9 if FUF[O]
< Bur(11: 0] > { €min otherwise. (2.90)

The sign bit and additional bits stay the same in both representations.

2.6.4 Representative Format

The representative format (RF) is a representation for results of IEEE operations on IEEE
values in preparation for IEEE rounding. For a detailed description of the representative
format, we first define the set of values ZRES,, , and the set of factorings RF fact, , on
that the representative format is based and show some properties of these sets.

Definition 2.21 The set of result values TRES,, ; is defined by
IRES,, :={0}U{z c R | 272" 276 < abs(z) < 22" P73} U SPE.
and the set of RF factorings RF fact,, , is defined by

RFfactnp = {(s,e, f) | 3z € TRESyp 1 val(s,e,) = repp—e(z) AND
(f <4 AND (f > 1 OR (f is multiple of 2 P*1))}

If z P=ZRF val(Srr, err, frr) for a value © € TRES, , and a factoring (sgr,err, frF) €
RF facty, p, then (Srr,err, frr) is called a RF factoring representation of .

Note, that because special values have an exact and normalized significand representation
and we defined the exponent of special factorings to have properties like esp, = €mqz+1,
we get SPEfact C RF fact,,, and special value factorings are RF factorings of the
corresponding special values.

Lemma 2.24 This lemma consists of four parts:

(a) Each ezact result of an IEEE operation on IEEE values has a value from TRES,, p.

(b) Each value z € TRES,, p, has at least one RF factoring representation (sgr.err, frr) €

RF facty , with val(srr,err, fRF) = repp—epp ().

(c) Each ezxact result x of an IEEE operation on IEEE wvalues in single precision or
double precision has at least one RF factoring representation (Srp,err,frr) €
RFfact11,53.

(d) If (spr.err, frr) € RF facti153 is a RF factoring of the exact result x € TRES 11 53
then for mode € {RZ, RNE,RI, RM1}, IEEE rounding of = in single and double
precision can also be computed on the factoring (Sgr,err, frRr) by

Tmode (33) = val (iroundmode(sRFa €ERF, fRF))

2.6. INTERNAL REPRESENTATIONS 45

Representative format (74 bits)
‘s‘ E[12:0] ‘ F[-1:54] ‘% L g z
BUSRe 73 72 60 59 43 2 1 0

Figure 2.8: Representative format for single and double precision.

Proof: We proof the four parts of the lemma separately:

(a) Obviously all possible zero or special value results of IEEE operations are included
in ZTRES, . All non-zero representable results have a magnitude that is larger than
272" =2r%6 and smaller than 22" tP~3 (see section 2.4.2). All real numbers with these
properties are inluded in ZRES,, p, so that there can not be an IEEE result, that is not
included in ZRES,, p.

(b) If (s,e, f) is an arbitrary factoring of z € ZRES, p, and (s', ¢, f') is the corre-
sponding normalized factoring (s', €', f') = n(s,e, f), then obviously, (s',¢',repss(f')) €
RF facty, , and (s', €', reps3(f')) is a RF factoring of . Thus, indeed each z has at least
one RF factoring in RF facty, ;.

(c) Part (c) follows from part (a) and part (b) using that ZRESg 24 C TRES 11 53.

(d) If (srr, err, frr) € RF facti1 53 is a RF factoring of the exact result x € ZRES 11 53,
then val(srr, err, frRF) = T€ps3—epp (). There is a unique factoring (sgr,err, f) with
x = val(srp,err, f). For the significand f of this factoring we get frr = repss(f).
Because for both, single and double precision, p < 53, it follows from lemma 2.15 with
p' = 53, that iroundmode(SRF, €RF, fRF) = troundmode(SrF, €rr, f) and by definition 2.8
of iround,,eqe Wwe get val(iroundpmoge (SRF, €ERFs fRF)) = rdmode (), as required. O

Corollary 2.25 The previous lemma has shown that each exact result x of an IEEE op-
eration on IEEFE values in both single and double precision has at least one RF factoring
representation (Srr,err, frr) € RF factyy 53 and that IEEE rounding of x can be com-

puted by rounding of (Srr,err, frF)-

The representative format is an encoding of RF factorings (sgpr,err, frr) € RF factii s3.
From the conditions on RF factorings in definition 2.21 it follows, that the exponent epp
can be represented by a 13-bit 2’s complement representation egp =< Egp[12 : 0] >9 and
the representation of the significand frp requires 56-bits: frr =< Frp[—1: 54] >pe,.

Like in the unpacked and normalized format, the special values and zeros are indicated
by the 4 additional bits: ZERO, INF, QNAN, and SNAN. For these cases, the sign Spr and
the significand representation Frp[l : 52] correspond to the IEEE representation and the
bits Frr[—1], Frr[53 : 54] are defined to be zero. Additionaly, for zeros, Frp[0:52] = 0°3
and the exponent representation is not valid. For +/—oo0 and NaNs, we define Frp[0] = 1
and epr = €mar + 1 like in the unpacked and the normalized format.

Figure 2.8 depicts a representation in the representative format BUSgrp[73 : 0] with
bit fields:

SRF = BUSRF[73]

ERF[12 : 0] = BUSRF[72 : 60]
FRF[—1:54] = BUSRF[59:4]
ZEROrr = BUSgp[3] INFRp = DBUSgr|2]

QNANppr = BUSRF[l] SNANppr = BUSRF[U].

46 CHAPTER 2. IEEE FLOATING-POINT STANDARD

Definition 2.22 We define the function RF : RF fact,, — {0,1}™, that computes the
representation of an RF factoring (sgpr,errr, frr) € RF fact,, in the representative
format. With egp = <Egrrp[12:0]>9 and frrp = <Frp[—1:54]>,., for representable
numbers and quiet NaNs, the function RF is defined by

(s, 013, 00, 0°4, 1,0,0,0) iff=0

(s, 00,1,0', 01,0%4, 0,1,0,0) if f = foo
RF(s,e, f) =< (s, 00,1,0° 01,0,Fgp[2:52],00, 0,0,1,0) if f = fynan

(s, 00,1,0', 01,1,0%, 0,0,0,1) if f = fsnan

(s, Egr[12:0], Frr|—1:54], 0,0,0,0) otherwise.

In the opposite direction the function factpp : {0,1}™ — RF fact, , computes the RF
factoring that is represented by BUSRp|[73 : 0] in the representative format. With

(S,Egr[12 : 0], Frr[—1:54], ZERO, INF, QNAN, SNAN) = BUSRr[73 : 0],

the function factgrr is defined by

(s,€0,0) if ZERO
(5, €005 foo) if INF
factrrp(BUSRr([73:0]) = ¢ (s,eqnan; fonan) if QNAN
(S esNaNafsNaN) if SNAN
(8, <ERp[12:0]>2, <Frp[—1:54] >peq) otherwise.

Note, that not all possible bit combinations from {0, 1}74 are valid representations in the
representative format. A representation BUSgrr[73 : 0] could be invalid for two reasons:

1. BUSRp[73 : 0] would be the RF representation of a number that is not in ZRES 11 53.
2. the significand conditions from definition 2.21 for RF factorings are not fullfilled.

We are only interested in the second case, because we will only deal with numbers from
IRES11,53.- Therefore, we formulate the conditions that have to be fullfilled for the sig-
nificand of RF representations at bit level in the following:

Corollary 2.26 The conditions on the significand frr =< Frp[—1 : 54] >peq of a RF
factoring, namely (frr < 4 AND (frr > 1 OR (frr is multiple of 2752)) are fullfilled,
iff (Frr[—1]V Frr|0] V Frr[54]). This means, that either one of the most significant two
bits Frr[—1 : 0] = BUSRp[59 : 58] has to be one or the least significant bit Frp[54] =
BUSrr[4] has to be zero.

2.6.5 Gradual Result Format

Also in the gradual result format, the results of IEEE operations on IEEE values should
be represented. But in contrast to the representative format, in the gradual result format
already part of the rounding has been computed on the exact IEEE results. For a detailed
description of the gradual result format, first we introduce the set of factorings, on that
the gradual result format is based.

Definition 2.23 The set of GF factorings GF fact is defined by:

GFfact = {((SGF,ec;F,fGF),TINX,TINC) ‘ H(S,e,f)EFACT(IRESU’g,g)2

((sar,ear, far), TINX, TINC) = post_norm(sgrndl(n(s,e, f)))}

2.6. INTERNAL REPRESENTATIONS 47

By this definition, GF factorings are the result of a gradual rounding step according to
the intermediate result from lemma 2.20. Thus, IEEE rounding can also be computed on
these factorings:

Corollary 2.27 If ((sgr,ecr, far), TINX, TINC) € GF fact is the GF factoring of the
value x € ITRES11 53, then for mode € {RZ,RNE,RI,RM1} IEEE rounding of x in
single and double precision can be computed on ((sgr,eqr, far), TINC, TINX) according to
lemma 2.20 by

iroundmode (8, e, f) =

exp—’rndmode*scp (pOSt—nOTm(Sgrnd2mode*5(,'p (Memiﬁ ((SGFa EGF, fGF)a TING, TINX))))

The gradual result format is an encoding of GF factorings ((sqr, ecr, far), TINC, TINX) €
GF fact. Because the range of the represented numbers is not changed significantly by
the previous gradual rounding step, also in this case the exponent egp is represented by
13 bits: eqr = <Egr[12:0]>2. The significand, which was rounded at position 52 and
which was post-normalized, is represented by for = <Fgr[0:52] >e4.

Like in the unpacked, normalized and representative format the special values and
zeros are indicated by 4 additional bits. For these cases, the sign Sgr and the signifi-
cand representation Fgr|[1:52] correspond to the packed IEEE representation. For zeros,
Fer[0] = 0 and the exponent representation is not valid. For +/—o0 and NaNs, we define
For[0] = 1 and egp = emaq + 1 like in the unpacked, the normalized and the representative
format. Thus, in the gradual result format the significand is normalized for all non-zero
numbers, i.e., if the additional bit ZEROgr = 0, then Fgr[0] must be 1.

Moreover, the two rounding tags TINCgr and TINXgF from the previous gradual round-
ing step are included in the number representations of the gradual result format. For
special values, which have an exact representation, TINCgr and TINXgr have to be zero,
so that no rounding will be computed for them.

Figure 2.9 depicts a bus in the gradual result format indexed by BUSgr[72 : 0] with
bit fields:

Sqgr = BUSGF[72]

EGF[12 : 0] = BUSGF[71 : 59]

FGF[O : 52] = BUSGF[58 : 6]
TINCGF = BUSGF[5] TINXgr = BUSRF[4]
ZEROgpr = BUSGF[?)] INFgFr = BUSRF[Q]
QNANgp = BUSgr[l] SNANgr = BUSgr[0].

Definition 2.24 We define the function GF : GF fact — {0,1}73, that computes the
representation of an GF factoring ((sqr, eqr, far)TINC, TINX) € GF fact,, ;, in the gradual
result format. With eqr = <Eqr[12:0]>9 and for = <Fgp[0:52] >peq for representable
numbers and quiet NaNs, the function GF is defined by

(s, 0%, 0,02, 00, 1,0,0,0) if f=0

(s, 00,1,0', 1,0, 00, 0,1,0,0) if f = fx
GF(s,e, f) =< (s, 00,1,09 1,0,Frgr[2:52], 00, 0,0,1,0) if f = fynan

(Sa 00,170107 1a170517 007 anaoa]-) fo :fsNaN

(s, Egp[12:0], Fgp[0:52], TINC, TINX, 0,0,0,0) otherwise.

48 CHAPTER 2. IEEE FLOATING-POINT STANDARD

Gradual result format (73 bits)
‘ s ‘ E[12:0] ‘ F[0:52]
BUSGe 72 71 59 58 6

Figure 2.9: Gradual result format for single and double precision.

In the opposite direction the function factgr : {0,1}7 — GF fact,, computes the GF
factoring that is represented by BUSqgp[72 : 0] in the representative format. With

(s,Egr[12 : 0], Fgr[0:52], TINC, TINX, ZERO, INF, QNAN, SNAN) = BUSqr[72 : 0],

the function factgr is defined by

((s,€0,0),00) if ZERO
((8; €00 foc), 00) if INF
factgr(BUSGr[72:0]) = ¢ ((s, eqnan fgnan), 00) if QNAN
((s; esnvans fsnan), 00) if SNAN
((s, <Egr[12:0] >9, <FGFp[0:52] >peq), TINC, TINX) otherwise.

Chapter 3

FP Microarchitectures

In the previous section the definitions and the requirements of the IEEE FP standard 754
were presented. From this section we know that an IEEE compliant FP implementation
has to implement FP additions/subtractions, FP multiplications, FP divisions, FP square-
roots, FP comparisons and FP conversions in hardware or in software.

The FP operations have different importance. One measure of the importance of these
FP operations could be the frequency of their usage in an average workload of current mi-
croprocessors. As such a measure the frequency of the operations in traces of the SPEC92fp
benchmark suite [17] is depicted in figure 3.1. Obviously, the FP addition/subtraction and
the FP multiplication are the most frequent arithmetic FP operations in these Benchmark
traces. This result agrees with the analysis from [26]. To accelerate the FP performance
of a microprocessor, it would make sense to spend the most effort on accelerating the
implementation of the most frequent FP operations. It can be seen in table 3.1 from the
latencies of the FP operations in commercial microprocessors that indeed the FP addition
and the FP multiplication, which are used frequently, are implemented much faster than
the FP division, which is only rarely used. Because the IEEE FP standard even allows
to implement parts of the FP computations in software, some very infrequent operations
like the FP square-root or the FP division-rest even have no hardware realization in most
commercial microprocessors. Although the cheap and slow implementation of operations,
that are infrequently used, might be cost-effective, one should also think about the effect,
that perhaps some operations are infrequently used and tried to be avoided only because
current microprocessors provide such a poor performance for these operations. This ques-
tion could only be answered by the use of benchmarks and compilers, that use as less as
possible about the hardware implementation details.

We base our choice of which arithmetic FP operations are implemented in hardware
on the processor model, into which our FP designs will be integrated later. We will use a
pipelined RISC-processor from [23], that implements the R3000 instruction set. For this
reason the performance of the FP designs will also be determined on R3000 traces of the
SPEC92fp Benchmarks. The R3000 instruction set includes the FP addition/subtraction,
FP multiplication, FP division, FP test, FP conversion, FP absolute value and FP negative
value. Therefore, we propose IEEE compliant FP designs that support exactly these
arithmetic operations in hardware.

We present three basic microarchitectures of our floating-point designs in the follow-
ing. The main differences of these microarchitectures is the amout of rounding hardware
that is shared between the functional units. If the functional units share some rounding
hardware at all, the FP microarchitecture is mainly determined by the specification of

49

50

CHAPTER 3. FP MICROARCHITECTURES

=

$ 3868855 35558 ¢85%8¢8 BgEEE ¢p
T o 8 o8 o3 2 TBLgEaggir S%EES ES
EEE2c2325 B it T =
= 8 23 : £ % 5 &k 8 i 3 . 8
z 8 8§ 5 ° E £ ¢ i #
g 8 p° i

'8 =

—_

Figure 3.1: Operation frequencies in the traces of the SPECfp 92 benchmarks.

the intermediate FP representation at the interfaces between the functional units and the
shared rounding hardware. Our three rounding microarchitectures are based on the inter-
mediate FP representations, that were defined in the previous section. The lemmas 2.7,
2.20 and 2.8 and corollary 2.21 about the different possible partitionings of IEEE rounding
computations already suggest the possible partitionings of the rounding implementations.

(I) In the first microarchitecture all the rounding computations are concentrated in

a shared general rounding unit. This rounding unit considers the rounding for all
IEEE results including the exponent wrapping and the FP exceptions for both single
and double precision operations. A basic specification of such a rounder was first
described in [10]. Thereafter, this rounder was implemented by our group, resulting
in a version that will be included in [23], where also a rigorous correctness proof of the
compliance with the IEEE rounding definition will be found. This rounder is further
optimized in this thesis. The interface between the functional units and the shared
general rounder is the RF factoring representation from definition 2.21. We require,
that the functional units compute a RF factoring representation (sgp,erp, frr) of
the exact result ezxacty,y. The shared general rounder then has to compute IEEE
rounding on the RF factoring representation iround(sgr,err, frr). Lemma 2.7
guarantuees, that the IEEE rounding of the RF factoring (sgp,err, frr) agrees
with IEEE rounding of ezact,, including the cases of denormalized and special values
results, exceptions and exponent wrapping. In this microarchitecture the integrated
packed FP representation is used in the memory and in the registerfile.

(IT) In the second microarchitecture, the rounding for the case of normalized double

precision results is computed within each functional unit and this rounded result
is fixed for all the remaining cases in a second rounding step implemented by a
shared gradual rounding unit. For the integrated rounding in the functional units

o1

latency

processor ALU | FP add | FP mult P;ilg(lllezv iiu?)iz FP sqrt
ULTRA-Sparc 1 1 3 3 12 22 12-22
ULTRA-Sparc 3 1 4 4 12 17 12-24
Pentium Pro 1 3 5 17 36 -
PowerPC 1 5 5 17 21 -
Alpha 21064 1 4 4 34 63 -
Alpha 21164 1 4 4 19 31 -
Alpha 21264 1 4 4 12 15 -
R10000 1 2 2 19 33 -
PA-8000 1 3 3 31 31 -

Table 3.1: Latencies of floating-point operations in commercial microprocessors.

assuming normalized, double precision operands and results, several algorithms from
literature could be used. The implementation of the gradual rounder is based on
the theory from [21] about gradual rounding. This rounding technique is applied in
this thesis for full IEEE compliant rounding including the handling of denormalized
results, special values, exceptions and exponent wrapping. The interface between
the functional units and the gradual rounder is specified by the gradual result for-
mat. We require, that if an exact or an RF factoring of the exact result ezxact,, is
given by (Sex, €exs fex), the functional units have to compute the GF factoring (see
definition 2.23) ((sgr,eqr, far), TINCGgr, TINXGr) = groundl(Sez, ez, fex). This
computation already includes a first gradual rounding step by the gradual rounding
function groundl, which assumes a normalized double precision result. The second
gradual rounding step is then computed in the shared gradual rounding unit by
the function ground2((sqr,ear, far), TINCGF, TINXGr). Corollary 2.21 and lemma
2.20 guarantuees, that the sequence of the rounding by the gradual rounding func-
tions groundl and ground2 on the factoring (Sez, €es, fer) simulates IEEE rounding
of the factoring (Seyz, €ex, fer) including the cases of denormalized and special val-
ues results, exceptions and exponent wrapping. Also in this microarchitecture the
integrated packed FP representation is used in the memory and in the registerfile.

(ITT) By the third rounding architecture a completely new architecture for an IEEE com-
pliant FPU is suggested. In this architecture no rounding hardware is shared, but
each functional unit contains a dedicated rounding implementation that computes
full IEEE rounding considering denormal and special values, exceptions and expo-
nent wrapping. The special problem with the implementation of this microarchitec-
ture is the implementation if the floating-point multiplication. The floating-point
multiplier conventionally requires normalized significands in its operands and deliv-
ers an almost normalized result. For the fast integration of IEEE rounding into the
FP multiplier, the significand has to be rounded in parallel to the mulplication com-
putations. For the case of denormalized results this rounding has to be computed at
a variable rounding position, that could be at each position within the significand.
The idea, how to integrate such a variable position rounding into the multiplication
implementation is the key concept for this microarchitecture. Such a multiplication
implementation including variable position rounding will be presented later (see also

52

CHAPTER 3. FP MICROARCHITECTURES

memory system

l packed format T

Registerfile (packed format)

l packed format l
UnpackA —| Test UnpackB
normalized format FXU
ADD | MULTI| DIV I CONV |
representative format FXU{
Genera rounding +

packed format PACK

Figure 3.2: FP unit microarchitecture using a shared general rounding unit

[37]). Because such a multiplication implementation allows to work on normalized
FP representations (even for denormalized values) as inputs and outputs, the inter-
nal FP representations can be changed to normalized NF factoring representations
for this microarchitecture. Thus, the registerfile contains the operands in the NF fac-
toring representation and the functional units have to compute the NF factoring of
the TEEE rounded result. This is specified by the rounding function nround, so that
if an exact or an RF factoring of the exact result ezact,, is given by (ses, €cx, fex),
the functional units have to compute the NF factoring nround(sesz, €exs fez). Def-
inition 2.8 and lemma 2.8 guarantuee that this function computes IEEE rounding
of the exact result exact,, including the cases of denormalized and special values
results, exceptions and exponent wrapping. The computation of this rounding func-
tion according to lemma 2.8 contains the computation of the normalized significand
rounding function n_sig_rnd,eders, Where the significand has to be rounded at the
variable rounding position vp = vp = (p — 1) — max{0, émin — ez} (see definition
2.9) that depends on the exponent e.;, so that the rounding position could vary in
a wide range as mentioned above.

In the following the main structures and implementation details for the three microarchi-
tectures are described:

Rounding architecture I using general rounding Figure 3.2 depicts the basic
structure of this FP rounding architecture. The operands are stored in the registerfile in
the packed representation. The unpacking units convert them to a representation in the
normalized format. The unpacking is computed in two steps, a conversion from the packed
to the unpacked format, followed by a conversion from the unpacked to the normalized
format. The normalized operands are necessary for multiplications and divisions. But as
in our designs the whole normalization easily fits into one clock cycle, there is no overhead

93

memory system

l packed format T

Registerfile (packed format)

l packed format l
UNPACK —| TEST UNPACK
normalized format FXU
ADD Il MULT Il DIV I CONV I
gradual result format FXU{
Gradual rounding +

packed format PACK

Figure 3.3: FP microarchitecture using a shared gradual rounding unit

in also providing the normalized representation instead of the unpacked representation for
additions.

After unpacking, a representative representation (RF factoring) of the exact result of
the operation has to be computed. This can be achieved with simple standard algorithms
for the addition, multiplication and subtraction, including the computation of a sticky
bit like described in the representative computation according to lemma 2.11. The rep-
resentative representation of the result is fed into the shared general rounding unit, that
delivers and feeds back the packed representation of the rounded result into the registerfile.
This general rounder is also able to deal with denormalized results, special value results,
exponent wrapping and exceptions. The computations, that have to be computed in the
general rounder are quite complex. This circuit has to deal with leading zero detections
to find out the range of the number, with a normalization shift for results with values of
normalized umbers, with a denormalization shift for results with values of denormalized
numbers, with significand rounding, a post-normalization shift, exponent rounding and
exponent wrapping.

Rounding architecture II using gradual rounding In contrast to the general round-
ing, in the gradual rounding architecture II (see figure 3.3), a part of the rounding is shifted
to the functional units, so that the functional units output normalized results (GF fac-
torings) in the gradual result format. This result is then rounded following the IEEE
specifications in a second step in the gradual rounding unit [21], that delivers a packed
representation of the rounded result to the registerfile. Because the input to the gradual
rounding unit is already normalized, gradual rounding is simpler than general rounding.
In particular the leading zero prediction and the normalization shift can be saved from
the general rounding implementation

In the functional units the gradual rounding (computation of the rounding function
groundl) for normalized double precision numbers has to be computed. There are several

54 CHAPTER 3. FP MICROARCHITECTURES

memory system

l packed format T

UNPACK PACK

l normalized format T

Registerfile (normalized format)

normalized format Fxﬂ
| l l |
ADD lII MULT LI DIV III| | TESTIlI| |CONV IlI
l l L
normalized format FXU ‘

Figure 3.4: FP microarchitecture using a variable position rounding

algorithms from literature [9, 27, 31, 32, 33, 34, 36, 40, 44, 45] for each arithmetic operation
that could be used for this situation. In the context of this thesis we introduced injection-
based rounding and developed based on this technique new algorithms for FP addition
rounding (see also [40]) and FP multiplication rounding (see also [9, 11]), that are to the
best of our knowledge the fastest FP addition rounding and FP multiplication rounding
algorithms published todate. For the division impledmentation the Newton-Raphson it-
eration (see also [26, 28, 23])is used. For the initial reciprocal approximation we designed
a new fast implementation of a linear approximation formula (see also [36, 39]).

Rounding architecture III using variable position rounding In contrast to both
previous architectures, in this variable position rounding implementation (see figure 3.4),
we do not operate on the packed format in the registerfile, but on the normalized format
in the registerfile [37]. In this way, the normalization conversions inside the unpack and
pack units are moved towards the communication between the registerfile and the memory
system. Fortunately, in our designs these conversions can be integrated in the load and
store operations without increasing their latency.

Among the arithmetic operations, the multiplication becomes most difficult, because
for denormalized results, variable position rounding becomes necessary. An algorithm for
fast variable position rounding in multipliers was developed in the context of this work
and is presented in [37]. In this way, the multiplication implementation including full
TEEE compliant rounding also for denormalized results is the core for the use of rounding
architecture III with the normalized internal FP representation (NF factoring).

In the FP addition, the variable position rounding does not cause problems, because
using our FP adder implementation from [40] all denormal results are exact and do not
need to be rounded. Some selections for the computations on special values and the
exception handling has to be included in the implementation, so that the implementation
from [40] has to be modified for this rounding architecture III to implement full IEEE

95

compliant rounding.

Further options Apart from the three different rounding architectures described above,
we vary the FP multiplication implementation to contain either a full-sized or a half-sized
adder tree that both use Booth2 recoding [30, 3, 1]. We have developed an improved cost
formula for these adder trees was in [30]. Moreover we consider three different imple-
mentations of the division based on the Newton-Raphson iteration [26, 23] with different
starting accuracies of the initial reciprocal approximation. These multiplicative division
implementations are integrated into the implementations of the multiplier. For the initial
reciprocal approximation we use the fast implementation of a linear approximation for-
mula that we already presented in [36, 39] with an absolute approximation error bounded
by 278, 2716 and 2728, respectively.

Chapter 4

Basic FP Operations

4.1 Internal Format Conversions

4.1.1 Unpacking I-ITT (packed — normalized format)

This section describes the unpacking, i.e., the conversion from a packed single or double
precision FP representation to the corresponding FP representation in the normalized
format. The choice whether we have a single or double precision input is signaled by
the bit DBL. In addition to this bit the packed FP input is given by BUSpr[63 : 0]
(section2.6.1). The FP output in the normalized format is denoted by BUSNr[69 : 0]
(section2.6.3).

First, we deal with the problem to extract the bits belonging to sign, exponent and
significand from the packed representation integrating the cases for single and double
precision. Regarding the sign this is an easy task, namely Spr = BUSpr[63]. The
exponent and significand extractions are implemented in the exponent-extract circuit and
in the significand-extract circuit in figure 4.1, that can be realized by a row of muxes each,
described by (see equation2.75-equation2.80):

Epp[l0:0] = BUSpr[62 : 52 if DBL
PEEDEL =9 (000, BUSpr[62 : 55]) otherwise,

{ BUSpp[51:0] if DBL

Fpr(l:52] = BUSpp[54: 3] otherwise.

The conversion from the packed to the normalized format can be constructed in two steps:
(i) a conversion from the packed to the unpacked format (see section 2.6.2, p.40) followed
by (ii) a conversion from the unpacked to the normalized format (see section 2.6.3, p.42):

(i) The unpacked format differs from the packed format by 5 additional bits and a
different exponent representation:

e The conditions for the 5 additional bits: F[0], SNAN, QNAN, INF, and ZERO, can be
easily read off from equation2.81. To implement these conditions three zero testers
are necessary according to:

FZERO = is_zero(Fpp[l : 52])
EZERO = is_zero(Epp[10 : 0])

is_zero(Epr[10 : 8],Epp[7: 0]) if DBL
is_zero(Epr[10 : 8],Epp[7 : 0]) otherwise

EONE =

= is_zero(Epp[10 : 8] ® DBL,Epp[7 : 0])

o6

4.1. INTERNAL FORMAT CONVERSIONS o7

Based on FZERO, EZERO, and EONE, the additional bits can be computed by:

Fyr[0] = EZERO ZERO = FZERO A EZERO
INF = FZERO A EONE SNAN = F[0] A EONE
QNAN = FZERO A F[0] A EONE.

This completes the description of the additional bits circuit in figure 4.1.

e The exponent representation epr[10 : 0] has to be converted from packed to two’s
complement representation, where the single and double precision case have to be
integrated. One can easily check, that the following equation describes the conversion
for non-zero packed exponent representations (EZERO = () given by equation2.82
except a missing increment:

E1[11:0] = (MQ’EPF[Q :0]) if DBL (4.1)
(m5, Epr[6:0]) otherwise.

This missing increment is postponed to the exponent adjustment circuit. Note, that
only the most significant 5 bits are differing, so that the selection can be implemented
by 5 muxes. In the next step, we integrate the case EZERO = 1:

(12,DBL%,05,1) if EZERO
Eo[11 : = 4.2
2[11: 0] { E1[11: 0] otherwise. (42)
Note, that the value of < Eg[11 : 0] >9=< Eyp[11: 0] >4 —1 is also defined to be too
small by one in the case of EZERO = 1, so that the postponed exponent increment
will correct the exponent value for all cases. In this way equation 4.1 and equation
4.2 specify the implementation of the exponent conversion circuit in figure 4.1.

(ii) To convert from the unpacked format to the normalized format, we have to imple-
ment the exponent and significand conversion (unbounded normalization shift for denor-
malized numbers) according to equations 2.86 and 2.87.

To simplify the exponent adjustment, we compute lzi = Iz — 1 = lzero(F[0 : 52]) — 1
in the shift amount circuit. This is done in two paths and a final selection depending on
the value of F[0]:

< (0%, LZERO(F[1 : 52],0'2)[5: 0]) >2 if F[0] =0

<Lzl 0] >o=1z =1 = { <12 >y=—1 if 0] =1

(4.3)

To compute LZERO(F[1 : 52],0'2)[5 : 0], we use circuit lzero from [23] with t=64 and get
the amount of leading zeros Iz — 1 = < LzI[5 : 0] > for the case F[0] = 0 represented by
1Z1[5 : 0]. The most significant 0° in equation 4.3 are the sign extension to the 12-bit two’s
complement representation, because for F[0] = 0, lzi = [z — 1 > 0 is non-negative. The
normalization shift is then computed by:

e A left-shift of Fryr[0 : 52] by Iz positions: Fyr[0 : 52] = (Fyr[lz : 52],0%%). Because
we do not know [z, but only [z: = [z — 1, we use a cyclic left-shifte, that computes
the following function CLS on an 64-bit input INPUT[0 : 63] and a shift amount sfta
given in a 6-bit binary representation:

CLS(INPUTI0 : 63], sfta) = (INPUT[sfta : 63], INPUT[O : sfta — 1])

58 CHAPTER 4. BASIC FP OPERATIONS

BUSpe [63:0] packed representation
DBL
S exponent significand
extraction extraction
— —1
Epe[10:0] additional bits Fpe[1:52]
o) F[0]
DBL E\ ,,,,,,,,,,,,, unpacked representation
exponent | shift amount Fpel0:52]
conversion !
I B L0l —— | 0Lz |
3 { LZI[5:0]
ZERO
INF exponent L+ significand shift
QNAN adjustment
SNAN
lENF [1L:0] lFNF [0:52]
BUSyr [69:0] normalized representation

Figure 4.1: Unpack unit

With this circuit we compute in the significand shift circuit in figure 4.1

F_cLs[0: 63] = cus((Fyx[0:52],0M), < 1zi[5 : 0] >)

(FUF[< lzi[5 : 0] > 63],FUF[U < lzi[5 : 0] > —1])
(0, Fpp[lz : 52,0 F10) if 1245 : 0] # 16
(0,Fyr[0: 52],019) if 12i[5: 0] =16 7

so that we get, as required,

Fyr[0:52] = (Fpp[lz : 52],01%) = F_cLs[l : 53).

e An exponent adjustment ey — lz. The exponent adjustment circuit in figure 4.1
implements this subtraction including the postponed exponent increment eg —lz+ 1
from the exponent conversion circuit:

<ENF[11:0]>2 = < Eg[11:0] >0 —lz+1

A 12-bit wide conditional sum adder is used to compute this sum. The additional 1
is fed into the carry-in input of the adder.

This completes the description of the unpack unit (figure 4.1) that outputs the normalized
FP representation

BUSNF[69 : 0] = (Spr,EnF[11 : 0], Fxr[0 : 52], ZERO, INF, QNAN, SNAN).

4.1. INTERNAL FORMAT CONVERSIONS 99

4.1.2 General Rounding I (representative — packed format)

This section describes a general dual mode rounding unit that is able to round and to
compress a FP number from the representative format BUSgr[73:0] (section 2.6.4) to
the single precision or the double precision packed FP representation BUSpp[63:0] (sec-
tion 2.6.1). The mode, whether the destination is single or double precision, is selected
by the bit DBL. The additional inputs of the rounding mode by RMODE[1:0] and the trap
handlers UNF_EN and OVF_EN select different IEEE rounding options. The IEEE rounding
with these options has to be computed on the input factoring

(SRF, €RF, fRF) = faCtRF(BUSRF[73ZO]).

Because the packed representation of the rounded result is based on the IEEE factoring
of the rounded result, the packed representation of the rounded result can be specified
according to definition 2.8 by

BUSpFp[63:0] = PE(iround(srr, erp + wec, frr)).

In addition to the rounding computations, the occurance of an overflow, underflow and
inexact exception should be signaled by OVF, UNF, and INX, respectively.

We first consider to compute the IEEE factoring of the rounded result (spr,epr, fpr) =
iround(sgr, egrr +wee, frr). A conversion from the IEEE factoring (spr, epp, fpr) to the
packed representation BUSpr[63:0] (packing) by the function PF then yields the required
result representation.

According to lemma 2.7, namely,

iroundmode(sa €, f) = exp_rndmodexs (pOSt—nOTm(Sig—rndmode*s(LnemmJ (Sa €, f))))a
the rounding function iround,.de (SrF, erF +wee, frr) is computed in four steps:

1. a factoring (s1,e;+wec, repss(f1)) corresponding to the bounded normalization shift
(s1, ertwec, f1) = [Ne,,;,] (SrRF, €RF + wee, frRF),

2. significand rounding (s, extwece, fa) = a_sig-rndmodess, (51, e1twec, repss(f1)) (Note,
that for the significand rounding definition 2.9, equation 2.49 and lemma 2.12, we
have also (s2, ea+wec, fo) = a_sig-rndmedess, (1, €1 +wec, f1) for single and double
precision),

3. a post-normalization shift (s3, e3+wec, f3) = post_norm(ss, es +wece, f2), and
4. exponent rounding (spr,epr, fPr) = exP_rndmodess; (33, €3 +wec, f3).
We treat the implementation of these 4 steps separately in the next paragraphs (the

structure of the whole implementation is depicted in figure 4.5):

Normalization shift & representative computation (1.) The bounded normaliza-
tion shift is defined by equation 2.1. Using the definition of the function TINY it can be
described by:

(s1,e1twee, f1) = [Nepin) (SRF, €RF + wee, frRE)

n(sRF,eRF-I-wec, fRF) ifTINY(SRF,eRF-I-’wec, fRF)
(SRF, €min, [RE - 26RF TWeC—emin) otherwise.

60 CHAPTER 4. BASIC FP OPERATIONS

Because from TINY (sgp,err—a, frr) it follows that TINY (sgp, err, frr), all over-
flow cases are already contained in the condition TINY (sgp, err, frr). Because after
exponent wrapping all representable results have values of normalized numbers accord-
ing to corollary 2.10, these results can not be tiny and wec = 0 for the second line.
Moreover, TINY (sgr,err+a, frr) follows from UNF_EN for underflows, so that with
TINY = TINY (sgr, err, frRr) <= (€' < emin) the above equation for the bounded nor-
malization shift can be reduced to:

(s1,e1+wee, f1) = { (srr, € +wec, f') = n(sgrr.err+wec, frrp) if TINY OR UNF_EN

(SRF, €min, fRE - 2°RF ~¢min) otherwise.

To simplify the implementation we postpone the wrapping exponent correction after the
normalization shift computations and consider:

(s1,e1, f1) = (srr. €. f') = n(srr,err, frr) if TINY OR UNF_EN
R (SRF; €min, fRE - 2°RF ~Cmin) otherwise.

Lemma 4.1 With the bit-strings

0] = 1. NTE S e
SETA[S : 0] = I;;g[?e. 0] = LZERO(2(0, Frr[—1:54],0") if TINY OR UNF_EN
o(erF — €min +2) otherwise.
F"[0:63] = oLs((0,Fpp[—1:54],07),sfta)
164 if €RF — €min +2 >0 OR UNF_EN
SFTMASK[0 : 63] = 054 if eRF — emin +2 < —64

HDEC(sfta)[63 : 0] otherwise,

the factoring (s1,e1,reps3(f1)) can be computed from (srr,err, frr) by:

51 = SgRF
o e =egp +2— 1211 if TINY OR UNF_EN
L= Ermin otherwise.
REP53(f1)[0:53] = ¥"[0:53] AND sFTMASK|0 : 53]
REP53(f1)[54] = OR(F"[0:53] AND srTMASK]|0 : 53], F"'[54 : 63]).

Proof: We separate case (a) (TINY OR UNF_EN) and (b) (TINY NOR UNF_EN):

(a) First, for (TINY OR UNF_EN), we deal with the unbounded normalization shift

(s1,€1, 1) = (srp. €, ') = n(srr,err, frF) = n(srp, err + 2., frRF/4).

If we only consider non-zero significands fo = frr/4, that have the binary represen-
tation Fo[0 : 56] = (0,Frp[—1 : 54]), then these significands have values in the range
[2755 2], so that lemma 2.3(ii) can be used: Thus, with [zii = lzero(Fg[0 : 56]) =
lzero((0,Frp[—1:54])) > 1, the unbounded normalization shift n(srr,err, frF)
can be computed by a left-shift of (0, Frp[—1: 54]) by lzii = sfta positions (Note,
that this computation is also valid for the case of zero significands, because they are
not changed by the normalization shift regardless of the shift amount.)

F1[0:63] = (Fo[lzii: 56],0°""*7) = (Frp(lzii — 2 : 54],0%7F7)

= oLs((0,Fgp[—1:54],07), sfta)
= F"[0:63]

4.1.

INTERNAL FORMAT CONVERSIONS 61

and the exponent adjustment (Note, that also this exponent adjustment is valid for
zeros, because their factoring representation may contain an arbitrary exponent.)

e1 =€ =egpp +2— lzii.
With lemma 2.11, the 53-representative of fi, repss(f1), is computed by
REP53(f1)[0 : 54] = (F1[0 : 53], OR(F1[54 : 63])).

Because from TINY it follows, that (egpp + 2 — emin > 0), we get for case (a)
SFTMASK]0 : 53] = 1%4, so that

REP53(f1)[0: 53] = F"[0:53] AND SFTMASK[0 : 53]
REP53(f1)[54] = OR(F"[0:53] AND srTMAsK]|0 : 53], F"'[54 : 63]),

as required.

For (TINY NOR UNF_EN), the resulting exponent after the unbounded normaliza-
tion shift is e;;,, and all we have to compute is the 53-representative repss(f”)
of the significand f"” =< ¥’ >,,= frp - 2°RF ®min = f; . 2¢RF—€min T2 The mul-
tiplication of fo = < Fo[0: 56] >peq by 2¢rF—emint2 g g left-shift of Fy[0 : 56] by
sft.den = < SFT_DEN[12: 0] >9 = egp — €min + 2 positions, where a positive shift
amount sft_den > 0 corresponds to an effective left-shift and a negative shift amount
sft_.den < 0 corresponds to an effective right-shift by |sft_den| positions. In the com-
putation of reps3(f”), we differ between 3 cases depending on the range of sft_den:

i. sft.den > 0: Because we deal with denormalized numbers, we have 0 <
sft_den < lzii < 56, so that sft_den can be represented with 6 bits sft_den =
< SFT_DEN[5 : 0] > = sfta and

F”[O : 63] = (Fo[Sfta : 56],Usfta+7) = (FRF[Sfta — 9. 54]’Osfta+7)
cLs((0, Frp[—1:54],07), sfta)
— ¥"[0:63].

Thus, the 53-representative of f” = " = f; is computed by (see lemma 2.11):
REPs53(f1)[0 : 54] = (8"[0 : 53], OR(¥"'[54 : 63])).
Also in this case SFTMASK|0 : 53] = 1%, so that we have

REP53(f1)[0: 53] = F"[0:53] AND SFTMASK|0 : 53]
REP53(f1)[54] = OR(F"[0:53] AND srTMaAsk]|0 : 53], F"'[54 : 63]),

as required for case (i).

ii. 0 > sft.den > —53: Because sft_den is negative, the computation of f” =
< F"[0 : 56+ |sft_den|] >,eq requires a right-shift of (0, Frr[—1 : 54]) by |sft_den|
positions:

F"[0 : 56+]|sft_den|] = (01Ft-2enl+1 prpr[—1: 54]).

Because sft_den is in the range [—1 : —64], the two’s complement representation
SFT_DENJ[12 : 0] can be split into:

sft.den = < (1111111000000) >9 + < SFT_DEN[5 : 0] >
= —64+ < SFT_DEN[5: 0] >,

62

iii.

CHAPTER 4. BASIC FP OPERATIONS

so that sfta =< SFT_DEN[5 : 0] >= 64 — |sft.den| > 0. Using a 64-bit cyclic
left-shifter with the shift amount sfta =< SFT_DENI[5 : 0] > on Fo[0 : 63] =
(0,Fpr[—1:54],07), we get

F"[0:63] = oLs((0,Fpp[—1:54],07),sfta)
= ((Fo[64 — |sft_den]|: 63],Fo[0: 64 — |sft_den| — 1]))
= (Fo[64 — |sft_den]|:63],0,Frr[—1:62 — |sft_den]])

Thus, F”'[0 : 53] could differ from ¥”[0 : 53] only in the |s ft_den| most significant
bits, that have to be cleared. The mask

SFTMASK[0 : 63] = HDEC(s fta)[63 : 0] = (0/*/t-denl 15ftay
has exactly zeros in these positions of the significand, so that
REP53(f1)[0 : 53] = F”[0 : 53] = ¥"'[0 : 53] AND SFTMASK]0 : 53].

The sticky bit is computed from all the remaining bit positions, that are selected
by the inverted mask SFTMASK]0 : 53] and significand positions [54 : 63], so that

REP53(f")[54] = OR(F"[0 : 53] AND srTMASK[0 : 53], F"'[54 : 63]),

as required for case (ii).

—53 > sft_den: In this case for the computation of F”, the significand Fy[0 : 56] =
(0,Fgrp[—1 : 54]) is right-shifted by more than 53 positions, so that F”[0 : 53] =

05* and no significand bit of Frr[—1 : 54] contributes to REPs3(f1)[0 : 53]. Only

the sticky bit in the representative REPs3(f1)[54] = OR(Frp[—1: 54]) is in-

fluenced. If —53 > sft.den > —64, we have sfta = < SFT_DEN[5:0] > =

64 — |sft_den| like in case (ii), so that sfta < 10 and SFTMASK|0: 53] =

HDEC(sfta)[63 : 10] = 0°*. But also if sft.den = erp — emin + 2 < —64,

we have SFTMASK[0 : 53] = 0°* by definition. Thus,

REP53(f1)[0:53] = ¥'[0:53] = 0> = F"[0: 53] AND SFTMASK|0 : 53]
REP53(f")[54] = OR(Fgr[—1:54])
OR(¥"[0 : 63])
= OR((F"]0: 53] AND srTMASK[0 : 53]) OR F"”'[54 : 63]),

as required for case (iii). This completes the proof of the lemma. -

4.1. INTERNAL FORMAT CONVERSIONS 63

Frel-1:54] Ege[12:0] DBL UNF_EN
109 4
(1.) leading zero
computation
\L[RO]- sfta, sftmask,

exponent
o | 4o

cyclic
|eft-shifter SFTA[5:0]
[0:53 F[54:63]

SFTMASK[0:53]]

l l
AND

[0:53] [25:53]

‘ ORtree ‘ ‘ ORtree ‘
REP 53(f 1)[0:53] REP 53(f 1)[54] g\\// ,lea

REP,4(f 1)[25] El,[13:0] E4[13:0] TINY

Figure 4.2: Normalization shift implementation in the General rounding unit

The implementation of the normalization shift and the 53-representative computation
corresponding to lemma 4.1 is depicted in figure 4.2. Additionaly, this figure includes the
computation of the sticky bit of the 24-representative REPg4(f1)[25] from REP53(f1)[25:54]
according to lemma 2.12. The implementation of the the ’sfta, sftmask and exponent’
circuit has to be further specified. This circuit is responsible for the computation of the
shift amount SFTA[5 : 0], the mask SFTMASK][0 : 53], the exponent e; and the incremented
exponent ei; = e; + 1. We consider the biased exponents ey, =< E1[13 : 0] >9= €1 + bias,
and ei1y =< E11[13 : 0] >9= eiy + biasy, so that

e1 = < E1[13:0] >9 — bias, and ei; =< EL[13: 0] >9 —bias,.
Moreover, the bits OVF1, 0VF2a and TINY are computed, that indicate the conditions:

OVFl <= (e1 > €maz)
OVF2a <= (€1 = €emaz)
TINY <— TINY(SRF, eRF,fRF) <~ (e' < emm).

The following lemma specifies how all the outputs of the ’sfta, sftmask and exponent’
circuit can be computed from the inputs Egp[12 : 0], Lz11[5 : 0], DBL and UNF_EN.

64 CHAPTER 4. BASIC FP OPERATIONS

Lemma 4.2 After the computation of the intermediate values

he = <HE[13:6] >y = <(Brr[12], Err[12:6],0% >5+ < (0%, DBL?,1,0%) > (4.4)
hei = < HEI[13:6] >y = he + 2° (4.5)
hf = <HF[6:0] > = <Epp[5:0] >+ <Lz1[5:0] > +1 (4.6)
MASK1 <= (HEI[13] OR UNF_EN) (4.7
MASK(O <= (HEI[13] NOR(ANDtree(HEI[12:6]))) (4.8)

_) _ | < HEI[13:6],HF[5: 0] 9 if HF[6]
hb = <HB[13:0] >2_{ < HE[13:6],HF[5:0] >9 otherwise, (4.9)

the outputs of the ’sfta, sftmask and exponent’ circuit can be computed by
HEI[13] if HF[6]
TINY = { HE[13] otherwise (4.10)
_ _ Lz1[5:0] if TINY OR UNF_EN

SFTA5:0] = { Erp[5:0] otherwise. (4.11)
SFTMASK[0:53] = ((HDEC(sfta)[63:10] NOR MAsK1) NOR MASKO) (4.12)
ey, = <E[13:0] >3 = < HC[13:0] >3 +1 (4.13)
eip = <EL[13:0] >2 = < HC[13:0] >9 +2 (4.14)
OVFl <= EL[13] AND (ORtree(E11[12:11], (E1;[10:8] AND DBL))) (4.15)
OVF2a <= ANDtree(Er[13:11], (E1;[10:8]®DBL), EL;[7:0]) (4.16)

using the definition of
HC[13:0] = HB[13:0] AND (TINY NAND UNF_EN).

Proof: First, we show some properties of the intermediate values, so that we can
then prove the correctness of the output computations using these properties. Because
—emin + 1 =bias = < 04,0BL3,17 > for single and double precision, we have

sft.den = < SFTDEN[13:0] >3 = erp — €min + 2
< (Brr[12],Erp[12: 0]) >5 + < (04 pBL3,17) > +1
< (Bpp[12], Err[12 : 0]) >3 4+ < (0*,DBL ,1,06) > 426
= < HEI[13:6],Err[5: 0] >2

Based on this one can show, that the bits MASK(0 and MASK1 implement the conditions

MASK1 HEI[13] OR UNF_EN) <= ((sft-den > 0) OR UNF_EN)
HEI[13] NOR (ANDtree(HEI[12 : 6])))
HEI[13] AND (NOT(ANDtree(HEI[12 : 6]))))

sft.den < —64).

= (
MASK0 <= (
= (
=

Exactly these conditions are required to select the proper case in the computation of
SFTMASK]0 : 53]. The intermediate value hb is defined by

Wb — < HEI[13 : 6],HF[5 : 0] >9 if HF[6]
N < HE[13: 6],HF[5: 0] >2 otherwise.

4.1. INTERNAL FORMAT CONVERSIONS 65

= <HE[13:6],0° >y + < HF[6: 0] >
= <HEI[13:6],0° >y + < 1%,0% >,
+ < Brp[5:0] >+ < Lz1[5: 0] > +1
= <HEI13:6],Epp[5: 0] >3 + < 1%, Lz211[5 : 0] > +1
= < SFTDEN[13:0] >o + < 1%, 12115 : 0] > +1
= sft_den —lzii

= eRF — €min + 2 — lzi1.
Thus, starting from the definition of TINY, we get

TINY <= (¢/(=err +2—12i1) < emin)
< (erF — €min +2 —lzii < 0)
=

HEI[13] if HF[6]
HE[13] otherwise.

Because bind(err — emin + 2) = bind(sft.den) = Egp[5 : 0], the computation formula of
SFTA[5 : 0] follows directly from the definition of SFTA[5 : 0]. Using the conditions MASK1
and MASKO, the definition of SFTMASKI0 : 53] becomes

154 if MASK1
SFTMASK[0 : 53] = 054 if MASKO (4.17)
HDEC(sfta)[63 : 10] otherwise.

One can easily check that this is equivalent to
SFTMASK|[0 : 53] = ((HDEC(sfta)[63 :10] NOR MAsk1l) NOR MASKO).

The bit string HC[13 : 0] can be written as:

HC[13:0] = #B[13:0] AND (TINY NAND UNF_EN)
_ HB[13 : 0] if TINY OR UNF_EN
B o otherwise.

Using < 0" >o= e, — 1 + bias, and hb = egpp — epmin +2 — l2ii = egpp + bias, + 1 — lzii,
we get

err + 1 —1zii + bias, if TINY OR UNF_EN

ey 1 . = y i
he < HC[13: 0] > { emin — 1 + bias, otherwise

= e1 — 1+ biasy,
so that corresponding to the definition of ey;, we get the computation formula
elp =hc+1=<HC[13:0] >2 +1

The computation formula of eiyp follows directly from the definition of the incremented
biased exponent eiy, = e + 1. Because ey, = e1 + bias, and ep,qp + bias, = 2" — 2 =
< 0%,pBL3,17,0 >, for single and double precision, the condition (e; > epqz) can be
written as

(erp > 2" —2)
(eiy, > < 0% DBL3 1% >)).

(61 > emax) —
<

66 CHAPTER 4. BASIC FP OPERATIONS

(Ege [12]., Ege [12:6])i 1(04, DBL3 , 1)
LZII[5:0] Ege [5:0] Ere [5:0 LZI[5:0]
COMPOUND | 1
HE[13] HEI[13]
OR I OR ADDER(8) O
UNFEN |0 1 0 1 |JUNEEN HEl HE CSA(6)
MUX MUX
\ \ [13:6] [13:6] HE
) 6] [50]
O vux t e L vux @
SFTA[5:0] HF6]
HB[13:6] HB[5:0]
HEI[13:6]
‘ 6 UNF_EN‘ TINY| HB[13]
HDE
VASKo1 - (Ao | s

ﬁ ﬁ HC[13:0]
MASK1 EWI ,[13.0]

DBL
NOR | | COMPOUND
MASKO § { INC(14)
NOR OVFl1.2a HB[13] +2 +1
SFTMASK[0:53] OVF1 OVF2a TINY El 1[13:0] El[1320]

Figure 4.3: ’sfta, sftmask and exponent’ circuit in the general rounding unit.

The condition OVF1 is the 'greater than’ case of the above condition and the condition
OVF2a is the equality case, so that

OVFl <= (<ER[13:0] >3 > < 0%, DBL3 1% >y)
<= EI[13] AND (ORtree(E1[12:11], (E1;[10:8] AND DBL)))
OVF2a <= (Bn[13:0] = (0%,pBL3,1%))
<= ANDtree(Ey[13 : 11], (E1;[10 : 8]&DBL), EL;[7 : 0])

as required by the lemma. O

In this way the ’sfta, sftmask and exponent’ circuit can be implemented like depicted in
figure 4.3. In this figure the mask0,1 and the ovfl,2a signal are implemented according
to equations 4.8, 4.7 and 4.15, 4.16 respectively. This completes the description of the
implementation of the normalization and representative computations.

Significand rounding (2.) In this paragraph, we consider the significand rounding;:

(82, €2 + wec, fa) = sig_rndmodess, (51, €1 + wee, repsz(f1)).

Because only the significand is affected by this operation, we have ss = 51 and ey + wec =
e1 + wec = ey — biasy, + wec. Therefore, we only focus on the significand in the following.
Depending on the bit DBL, we compute the significand rounding at significand position
(p — 1) on the p-representative rep,(fi) in single (p = 24) or double (p = 53) precision.
From the representative computation we get the 53-representative REP53(f1)[—1 : 54] and
the bit REP24(f1)[25], so that we also have the 24-representative by

REP24(f1)[—1 : 25] = (REP53(f1)[—1 : 24],REP24(f1)[25]).

4.1. INTERNAL FORMAT CONVERSIONS 67

The significand rounding on p-representatives is already described in section 2.5.1. Fol-
lowing this description the rounding of the p-representative rep,(fi) results either in the
truncated significand ftr = <FTR[—1:52]>p.y =< REPs3(f1)[—1 : (p —1)] >pey or the
incremented significand finc = <FTRI[—1:52]>pe, = ftr + 27P*1 (see definition 2.14).
Obviously, for both single and double precision these significands can be computed by

FTR[—1:52] = (REPs3(f1)[—1:23],REP53(f1)[24 : 52] AND DBL)
< FTRI[—1:52] >,y = < (REPs3(f1)[—1: 23], REP53(f1)[24 : 52] OR DBL) >y +27°%

Moreover, the three least significant bits of the p-representative have to be selected:

(L,R,STICKY) = REP,(f1)[(p—1):(p+1)]
_ { REP53(f1)[52:54] if DBL
N (REP53(f1)[23:24], REP24(f1)[25]) otherwise

and the IEEE rounding mode mode € {RZ, RNE, RI, RM I} encoded by RND_MODE]1 : 0]
has to be reduced for the use on the positive significand to: (modexs,) € {RZ, RNE,RI}
encoded by SR-MODEJ1:0] (according to equations 2.6-2.7 and table 2.3):

SR-MODE[l] = RND_MODE[1] A (RND_MODE[0]®s) (4.18)
SR-MODE[0] = RND_MODE[1] A RND_MODEJ(], (4.19)

to implement the rounding increment decision (equation 2.54):
RINC = SR_MODE[l] A (RV STICKY)V SR-MODE[0] ARA (L V STICKY). (4.20)
Based on RINC, the significand can be rounded according to equation 2.55:

o1 J FTRI[—1:52] if RINC
Fo[—1:52] = { FTR[—1:52] otherwise.

This results in an implementation of significand rounding like depicted in region (2.) of
figure 4.4. In this region, the rounding decision circuit contains the implementation of
equations 4.18, 4.19 and 4.20. Moreover, a conditional sum incrementer implementation
is used for the implementation.

Because significand rounding could change the value of the factoring, in the round-
ing decision circuit we also compute the condition INX1, that recognizes the significand
rounding inexactness condition according to lemma 2.17:

INX] <= (fa# fi) < (f2 #repp(fi)) <= (R OR STICKY). (4.21)

Post-normalization (3.) The post-normalization shift is the implementation of

(s3,e3 +wec, f3) = post_norm(sa, es + wec, fo)

= post_norm(ss, ey — bias, + wec, f3)

_ { (89, €i1p — bias, +wec, 1) if fo =2
B (s2,e1p — bias, + wec, f3) otherwise.

Because fo can not become larger than 2, the condition (fs = 2) is recognized by bit
Fo[—1], so that the post-normalization shift of the significand can be implemented by a
simple OR-gate

F3[0 : 52] = (FQ[—l] OR FQ[O],FQ[l : 52])

68 CHAPTER 4. BASIC FP OPERATIONS

We do not compute e3, but the biased exponent ez, =< E3[13 : 0] >9= e3 + bias,, that
can be selected from the previous computed ey, and eiqp:

- eip if fo[—1]
o {615 otherwise. (4.22)

The case (fo = 2) <= fo[—1] is called significand overflow and signaled by the bit SIGOVF.
This results in an implementation of the post-normalization shift like depicted in figure
4.4, where region (3.a) includes the post-normalization of the significand and region (3.b)
includes the exponent selection according to equation 4.22.

Exponent rounding (4.) and packing In this paragraph we describe first, how the
exception conditions OVF, INX and UNF can be recognized and how the wrapping exponent
correction is added to the exponent. We then describe the exponent rounding followed by
the packing conversion of the rounded result to the packed representation, that is required
as output of the general rounding unit.

Lemma 4.3 With the bit
FINOP = (ZERO AND INF AND QNAN AND SNAN), (4.23)

(a) the overflow exception condition OVF, (b) the inexact exception condition INX and (c)
the underflow exception condition UNF can be computed by

OVF <= (0VFl OR (0vF2a AND SIGOVF)) AND FINOP. (4.24)
INX <= (INX1 OR OVF) (4.25)
UNF <= (TINY AND (INX OR UNF_EN)). (4.26)

Proof: (a) An overflow occurs, iff (i) the magnitude of the unbounded rounded result
is larger than z,,,, and (ii) the rounding input is the representation of a non-zero finite
number. A representative number representation is non-zero and finite, iff it does not
represent a special value and ZERO = INF = QNAN = SNAN = (), so that the condition
FINOP = (ZERO AND INF AND QNAN AND SNAN) is equivalent to part(ii) of the overflow
condition. Part (i) of the overflow condition can be written as

lval(ss,es, f3)| > Tmew = (2 — 2_p+1) . Qfmaz

We first assume that no tininess occurs. Thus, the significand f3 =< F3[0: p—1] >4 is
normalized and we have 1 < f3 < (2 — 27P*!), so that

ovi = (jval(ss, s, f5)| > Tmar) AND FINOP (4.27)
= (es > emaz) AND FINOP. (4.28)

For ey, = e1 + bias, and eiy, = ei; + bias, we can extract the following formula for ej
from equation 4.22 :

eir if (fo[-1] =1)

e3 = e3p — bias, =)
3 3b n { e1 otherwise.

Because ei; = e1 + 1, from (e1 > 4z) it follows that also (eiq > Zpye,). Therefore,

(e3 > Tmaz) — (e1 > Tmaz) OR ((€i1 > Tmaz) AND (fo[—1] = 1)). (4.29)

4.1. INTERNAL FORMAT CONVERSIONS 69

The substitution of the definitions OVF1 <= (€1 > Zmaz), OVF2a <= (€11 > Tpqy) and
SIGOVF <= (f3[—1] = 1) in equation 4.29 in combination with equation 4.28 then yields
part (a) of the lemma for non-tiny values. If tininess occurs, then |val(ss, e3, f3)| < 2¢min
and e3 = enin, so that OVF = 0, ovFl = 0 and OVF2a = 0 by the overflow definitions.
Therefore, the overflow formula follows also for tiny numbers and the proof of part (a) of
the lemma is completed.

(b) An inexact exception occurs, iff the rounded result differs from the exact result. This
can be caused by two parts of the rounding procedure: the significand and the exponent
rounding. (The normalization shifts do not change the value of the factorings.) The
inexactness caused by significand rounding is already recognized by the condition INXI.
The exponent rounding (including exponent wrapping) changes the value of the operand,
iff the unbounded rounded result would be larger than z,,q,. This is exactly the ovFr
condition, so that INx <= (INx1 OR OVF), as required for part (b) of the lemma.

(c) For our choice of the loss-of-accuracy definition, the underflow exception is defined by

TINY if (UNF_EN = 1)

NF <
v { TINY AND INX otherwise.
Obviously, this is equivalent to part (c) of the lemma. O

Now, we consider the exponent wrapping. Because for UNF_EN = 1, we have UNF <=
TINY, the trapped underflow condition:

TUNF <= (TINY AND UNF_EN) (4.30)

signals the case that a trapped underflow occurs. Moreover, we define the trapped overflow
condition TOVF, that indicates the occurance of a trapped overflow:

TOVF <= (OVF AND OVF_EN). (4.31)
Based on these definitions, the exponent wrapping on eg, can be described by:
< E3[13:0] >3 —a if TOVF
ews = ez + wec = ¢ < E3[13:0] >9 +a if TUNF (4.32)
< E3[13: 0] > otherwise.
Because the signal TUNF is valid ealier than TOVF, we define a predicted wrapping exponent
correction pwec based on TUNF and we compute it by a selection using that for single and

double precision +a =< +ALPHA[13 : 6] >9= 32" 2 =< (0%,DBL?, 0,DBL%, 05) >3 and
—a =< —ALPHA[13 : 6] >o= —3-2" 2 =< (13, BBL, 1, DBL, 0, DBL, 0°) >»:

+a =< +ALPHA[13 : 6] > if TUNF

pwee =< PWEC[13: 6] > = { —a =< —ALPHA[13 : 6] > otherwise.

Lemma 4.4 After the computation of a predicted wrapped exponent pews by the addition
of the predicted wrapped exponent correction,
pews =< PEW3[13 : 0] >9= ez, + pwec (4.33)
and the definition of the wrapping exponent condition EWRAP:
EWRAP = (TUNF OR TOVF) (4.34)
the exponent wrapping on esy can be computed by the selection:

pews if EWRAP

esp otherwise. (4.35)

ews = e3p + weec = {

70 CHAPTER 4. BASIC FP OPERATIONS

Proof: For TOVF = 1, the predicted wrapped exponent correction is pwec = —a, so that
ews = e3p — a in equation 4.32 and in equation 4.35. In the same way, the identity of these
two equations can be shown for the remaining two cases: TUNF = 1 and EWRAP = (0. O

The exponent rounding is influenced by the reduced rounding mode (mode * s) that is
encoded by SR-MODE][1 : 0] according to table 2.3. We already get SR-MODE[1 : 0] from
the significand rounding circuit, so that we can compute the condition

RNDUP <= SR_MODE[l] OR SR_MODE[0] (4.36)
<= (mode*s € {RNE,RI}) (4.37)
RNDUP <= (modexs = RZ) (4.38)

Moreover, we define the untrapped overflow condition UOVF, that indicates the occurance
of an untrapped overflow:

UOVF <= (OVF AND OVF_EN). (4.39)

Because (|val(ss,es +wec, f3)| > Tmaz), iff an untrapped overflow occurs (UOVF = 1), the
exponent rounding can be described by:

(spF,epr, f[PF) = exprndmodesss(83; e3+wee, f3) (4.40)
(834 €00y foo) if ytovF AND RNDUP
= (83, €mazs fmaz) if ytovF AND RNDUP (4.41)

(s3, ews — biasy, f3) otherwise.

This selection of the exponent and the significand for the exponent rounding is computed in
combination with the conversion step from the IEEE factoring (spp,epr, fpr) to the cor-
responding packed representation, that consists of (Spr, Epp[n—1:0], Fpp[l:p—1],00+77P),

Lemma 4.5 With the definition of the conditions

RINF = (UOVF AND RNDUP) (4.42)
RMAX = (UOVF AND RNDUP) (4.43)

we can compute the bits of the packed representation of the rounded result by

Spr = S3 (4.44)
Epp[10:1] = ((Ews3[10:1] NOR vovF) NOR F3[0]) (4.45)
Epr[0] = ((Ews[0] NOR RINF) NOR (RMAX OR F3[0])) (4.46)
Fpp[l:52] = ((F3][0:52] NOR RMAX) NOR RINF) (4.47)

Proof: The conversion from the unpacked representation to the packed representation
can be computed according to section 2.6.2.2. Thus, the sign and the significand are
unchanged, only the hidden bit F3[0] is removed from the representation of the significand.
With the use of Faz[1:p—1] = 177! and Foo[1:p—1] = 0P L, we get

Spr = SyUr (4.48)
Fpr[l:p—1] = Fyp[l:ip—1] (4.49)
Foo[l:p—1] = 0P~1 if RINF
= Frae[l:p—1] = 1771 if RMAX (4.50)

F3[l:p—1] otherwise.

= ((r3[l:p—1] NOR rMAX) NOR RINF) (4.51)

4.1. INTERNAL FORMAT CONVERSIONS 71

Because in the packing for single precision only the significand bits Fpp[1:23] are regarded
and the bits Fpp[24:52] are ignored, we can compute the packed significand representation
for both precisions by equation 4.51 with p = 53 as stated by the lemma.

For the conversion of the exponent, we have to consider the n-bit biased represen-
tation of eyp and to integrate the redundant exponent representation for e,;,, where
Emin[n—1:0] = 0" for denormalized numbers and zeros according to equation 2.84. Be-
cause after the conditional exponent wrapping and the exponent rounding, the exponent
is representable in this n-bit packed format for all cases, it is sufficient for both single and
double precision to regard only the exponent bits at positions [10 : 0]. For single precision
the exponent bits at positions [10 : 8] are ignored later.

The biased representations of e,,,; and ey are given by (1”1, 0) and 1" respectively.
For (RINF = 1) = (F3[0] = 1) and (RMAX = 1) = (F3[0] = 1), we can compute the
packed exponent representation by

bint(epp + bias,) if F3]0
Bpp[10:0] = { OHU err) othivs]/ise. (4.52)
1" if RINF
_ (1"=1,0) if RMAX

EW3[10 : 0] otherwise.

If we separate equation 4.53 into an equation regarding the exponent positions [10 : 1] and
an equation regarding exponent position [0], we can simplify these equations to

Epr[10:1] = ((Ew3[10:1] NOR vovr) NOR F3[0])
Epr[0] = ((Ew3[0] NOR RINF) NOR (RMAX OR F3[0]))

This completes the proof of the lemma. O

72 CHAPTER 4. BASIC FP OPERATIONS

REP_{f ,)[0:54 REP, (f)[25] | DBL| |S ZERO | TINY EI 13.0] E.[13:0
- wsg 2l]J o [25] . 'S’;‘\"ZN 8&% ALPHA[136] | 4(13:0] E4[13:0]
a !
S, g | [24:52] 1 [52:54]][23:24] ori | QNAN +ALPHA[13:6] :
. S O Q: TINY UNF_EN
AND [orR] [omux af=+]||2: Vo4 (3.0)
AND
L,R,STICKY : : SIGOVF
RE \—'OMUX1§ OMUX =
Incrementer Rounding o S
CSi(54) decision § | |une en PWEC[13:6] i
RNC INX1 B { |OVEEN m m
FTR[-1:52] FTRI[-1:52] CSA(5) % “
_ : E g
2 0 MUX 1 RINC : PEW,{13:0]
() [-1] [0] [1:52]
EXCEPTIONS EWRAP | 1 MUX o
OVF INX UNF RINF RMAX| swwwwm EW,106] EW,[50]| (4.8)

00 EW,[10:1]

‘—3—— OVF
AND
NOR OR NOR | OVFEN

NOR NOR
Feel1:52] OVF INX UNF EpelO] Epel10:1]

Figure 4.4: Significand rounding (2.), post-normalization (3.a, 3.b), exponent wrapping
(4.a) and exponent rounding (4.b) implementation.

Figure 4.4 depicts the implementation of the exponent wrapping (region 4.a), the expo-
nent rounding and the computation of the exceptions (region 4.b) corresponding to the
descriptions of this paragraph. In region (4.a) of figure 4.4 a 5-bit conditional sum adder
is used for the implementation.

Because only the bit positions [10 : 0] of the unpacked exponent representation are
required, it suffices to compute all additions for the exponent computation modulo 20,
This is already considered in figures 4.4 and 4.5, where we only consider E13[10:0], £1[10:0],
E3[10:0], PEW3[10:0], PWEC[10:0], +[10:6] and —«[10:6] instead of E11[13:0], E1[13:0],
E3[13:0], PEW3[13:0], PWEC[13:0], +[13:6] and —a[13:6].

The ezceptions circuit in region (4.b) of figure 4.4 implements the exception conditions
OVF, INX and UNF according to equations 4.23-4.26. Additionaly, in this circuit the bits
RINF, RMAX and EWRAP are computed. In the previous descriptions we used many inter-
mediate conditions from that these bits could be derived. Based on the input bits of the
exceptions circuit the computations can be summarized by the following three equations:

EWRAP = (OvF AND ovF_EN) OR (TINY AND UNF_EN) (4.54)
RMAX = (OVF AND OVF_EN AND (sr_MODE[1] NOR sr_MODE[0])) (4.55)
RINF = (OVF AND OVF_EN AND (sr_MODE[1] OR SrR_-MODEI0])) (4.56)

Finally, we pack the result representation into the packed format BUSpr[63:0] for single
and double precision results and get according to equations 2.75-2.80 the following selection

4.1. INTERNAL FORMAT CONVERSIONS 73

BUS [73:.0] representative format
73 | [3.0] [59:4] [72:60]
S Frel-1:54] Erd12:0] DBL
Normalization (1.) UNF_EN
OVF_EN
REP{f)[054] RER,(f)[25] EI,[10.0] E,[10:0] TINY
Sgnlflcand(z) RND_MODE
rounding [1:0]
i F,[-1:52]
Post-norm | SIGOVF_| Post-norm
(39 (3.0)
i FJ0:52 | SIGOVF i E410:0]
ZERO TINY INX1 i
INF OVFl SRMODE EWRAP I~ Expone?‘tl \;\)/rappmg
SNAN OvF2a % ‘
QNAN Exponent rounding _
+ Exceptions (4.b) EW,[10:0] OVF
UNF
‘ ‘ INX
Frl1:52] Packing Errl100] ‘k
[63] [62:0]
BUS [63:0] packed format
Figure 4.5: Structure of the general rounding unit.
that can be computed by a row of muxes:
Spr Epp[lo : 0] fpp[l : 52]) if DBL
BUSpr[63:0] = (’ ’ . 4.57
PF[} { (SPFaEPFW : 0],pr[1 : 23},032) otherwise. ()

This completes the description of the general rounding unit that has a structure like
depicted in figure 4.5.

74 CHAPTER 4. BASIC FP OPERATIONS

4.1.3 Gradual Rounding IT (gradual result — packed format)

This section describes a dual mode gradual rounding unit, that is able to round and
to compress a FP number from the gradual result format BUSgr[72:0] (section 2.6.5)
to the single precision or the double precision packed FP representation BUSpr[63:0]
(section 2.6.1). Like for the general rounding the TEEE rounding options are given by
the precision of the destination DBL, the rounding mode RMODE[1:0] and the trap han-
dlers UNF_EN and OVF_EN. The gradual rounding unit outputs the packed representation
BUSpr[63:0] corresponding to the value of the IEEE rounded result and the exception
flags OVF, INX and UNF corresponding to the occurance of an overflow, inexact or underflow
exception. In this case the IEEE rounding is computed on the GF factoring:

((SGF, €GF, fGF), TINC, TINX) = faCtGF(BUSGF[73 : 0]),
so that according to corollary 2.21 the rounded result can be specified by
BUSpr[63:0] = PF(ground2((sqr, ecr + wec, fgr), TINC, TINX)).

The only difference between this specification with the rounding function ground2,
and the specification of the general rounding unit from the previous section with the
rounding function iround, is the significand rounding according to lemma 2.7 and 2.20.
For the significand rounding in the gradual rounding unit, the computation of the rounding
decision RINC from the previous section, has to be substituted by the gradual rounding
decision GRINC according to equation 2.60. Moreover, the rounding inexactness could also
be caused in the previous gradual rounding step, so that the rounding inexact signal INX1
has to be substituted by TINXy according to equation 2.61.

All remaining computations are independent of the tag bits. From this point of view,
the GF factorings (without tag bits) are a subset of the RF factorings and with the def-
inition of Fgr[—1] = Fer[53] = Far[54] = 0 we can interpret a GF factoring input as a
normalized RF factoring. Thus, the remaining part of the general rounding implementa-
tion from the previous section could be used identically also for the implementation of the
gradual rounding unit.

Nevertheless, we will consider some additional changes to optimize the gradual round-
ing implementation. These optimizations are based on the property that the significands
of all non-zero numbers are already normalized in the gradual result format. Not the whole
implementation will be involved in the optimizations. The implementation of the post-
normalization(see figure 4.5(3.a)), the exponent rounding + exceptions (see figure 4.5(4.b))
and the packing are used from the previous section like depicted in figure 4.6. Therefore,
only the denormalization, gradual rounding and exponent wrapping circuit in this figure
will be further specified. The computations in this circuit combine the computations of
the normalization shift (see figure 4.5 circuit (1.)), the significand rounding (see figure 4.5
circuit (2.)), the exponent part of the post-normalization shift (see figure 4.5 circuit (3.b))
and the exponent wrapping circuit (see figure 4.5 circuit (4.a)) from the previous section.

For the considerations about the normalization shift distance we can assume non-zero
operands like in the previous section. Thus, for the gradual result format we can use
lzii = 2, so that in lemma 4.1 and 4.2, the computations of F/, SFTMASK and HF can be
optimized in the following way:

4.1. INTERNAL FORMAT CONVERSIONS 75

BUSG[73:0] gradual result representation
[73 | [3:0] [59:4] 4] (5] [72:60]
s Fapl-1:54] TINX TINC Epd12:0] -
Denormalization, gradual round UNF_EN
and exponent wrapping OVF_EN
i F,[-1:52] RNDfMC[’l'?(ﬁ
Post-norm SIGOVF
(3.9
i F40:52]
ZERO TINY INX1 SIGOVF
INF OVFL SRMODE | EWRAP
SNAN OvFza [0]
QNAN Exponent rounding
+ Exceptions (45) EWd104 OvF
UNF
‘ ‘ INX
Forl1:52] Packing Epl100] ‘k
[63] [62:0]
BUSp [63:0] packed representation

Figure 4.6: Structure of the gradual round unit.

"

Lemma 4.6 In the gradual rouning unit ", SFTMASK, and HF and can be computed by

{ (Fgr[0 : 52],01) if TINY OR UNF_EN

cLs((02, Fgr[0:52],0%), < Eqr[5:0] >) otherwise

SFTMASK[0:53] = (HDEC(<Egp[5:0]>)[63:10] NOR MASK1) NOR MASK(
<hf[6:0]> = <eqgr[5:0]> 4+ <(111110)> .

F[0:63] =

Proof: Because [zii = 2 and Eqp[5:0] = bing(ec;p — €min + 2), we get

{ 2 if TINY OR UNF_EN
sfta =

< Egr[5:0] > otherwise, (4.58)

so that with cLs((02, Fgr[0:52],0%),2) = (Fgr[0 : 52],0'!), we have as required

F"[0:63] = {

The formula for SFTMASK in this lemma can be written as

(Fgr[0: 52],0') if TINY OR UNF_EN
cns((02, Fgr[0:52],0%), < BEgr[5:0] >) otherwise.

1°4 if MASK1
SFTMASK[0:53] = 054 if MASKO
HDEC(< Eqr[b : 0] >)[63:10] otherwise.

and differs from equation 4.17 by the substitution of sfta with < Eqp[5: 0] >. According
to equation 4.58 the value sfta could only differ from < Egp[5 : 0] >, if (TINY OR
UNF_EN). But in the case (TINY OR UNF_EN) <= ((egF — €min > 0) OR UNF_EN), we also
have MASK1 <= ((eGF — €min + 2 > 0) OR UNF_EN) and SFTMASK[0:53] = 1°4. Thus,
< Eqrl[b: 0] > is equal to sfta, whenever these values are involved in the computations.
This completes the proof of the equation for SFTMASK. The formula for <HF[6:0] > follows
directly from lemma 4.2 and rz1[5:0] = (000010). O

76 CHAPTER 4. BASIC FP OPERATIONS

‘02 $FGF{O:52] 409 Egrl501 Egd120] DBL UNF_EN -ALPHA[13:6]
FH0:52] +ALPHA[13:6]
¢ cydlic TINY UNF_EN
ot |eft-shifter * ‘_
TINY OR ‘ ‘ SftmaSk, hc ’W
UNF_EN TINY
1 MUX o | he —[oMUX 1
053] pr | 15463 \ HC[100] PWEC[10:6]| (000001)
l : SFTMASK[0:53] l
AND NOR DBL El {130] ipwec
[0:53] [25:53] ‘ ‘ Compound Compound
‘ ORtree ‘ ‘ ORltree ‘ OVF1,2a incrementer adder
ﬁ e (14) (11)
TINC m ke
TINX B g Hg
REP{f)[0:54] REP,(f)[25] | DBL| |S o 2 = | B
sl 8 l T (2452 1 [52:54]|[23:24] o 2
s 8 J SIGOVF
| AND [OR | [oMUX 1}++ | |2 [1MUX 0 =~ [1MUX 0]
L,RSTICKY 5 E[10:0] PEW ,[10:0]
Incrementer rc?l:r?ﬁfr?g]] %
CSl . o]
(54 decision = EWRAP
GRINC TINX2 ‘ 1 MUX 0 ‘
FTR[-1:52] FTRI[-1:52] = EW,[10:0]
o, MUX], emne T
-1] [0 1:52] (o)
[-1 [0 [1:52) E OVF1
F, INxy By OVF2ag TINY EW,[10.0]

Figure 4.7: Implementation of the "denormalization, gradual round and exponent wrapping’
circuit in the gradual rounding unit.

Lemma 4.7 With the incremented predicted wrapping exponent correction
ipwec = pwec+1 = <(PWEC[13:6],000001)>,
the predicted exponents pew, = ey + pwec and pewiy = eiqy + pwec can be computed by
pew; = hc+ ipwec
pewi; = hc+ipwect + 1
using a compound adder. Based on them, the predicted wrapped exponent pews can be

computed by the selection

ewi; if SIGOVF
pews — {p v if

pewy otherwise.

Proof: The equations for pew; and pewi; follow directly from hc + 1 = ey in lemma
4.2. Starting from equation 4.33 we get

ei1p + pwec if SIGOVF { pewi; if SIGOVF

pews = e3p+pwec = {61b+pwec otherwise pew; otherwise.

as required by the lemma. O

4.1. INTERNAL FORMAT CONVERSIONS 7

(Ege [12]., Ege [12:6])l 1(04, DBL3 , 1)
Ege[5:0] (111110)
COMPOUND
Ege [5:0] ADDER(®) O
HEl HE CSA(6)
HEI[13:6] [13:6]] [13:6] HE
HDEC(64) 6 [50

MASKO,1 [63:10] Ywmux © = HF 6]
MA@ ﬁ HB[13:6] HB[5.0]

NOR UNF_EN 4 TINY| HB[13]
MASKO
NAND
NOR HB[13] | AND |
SFTMASK[0:53] TINY HC[13:0]

Figure 4.8: ’sftmask, hc and TINY’ circuit in the gradual rounding unit.

Figure 4.7 depicts the implementation of the ’demormalization, gradual rounding and ez-
ponent wrapping’ circuit including the necessary changes for the gradual rounding and the
optimizations corresponding to lemma 4.6 and 4.7. The computations of pew; and pewiy
corresponding to lemma 4.7 use a 11-bit compound adder, the gradual rounding decision
circuit contains the implementation of equations 2.60, 2.61, 4.18 and 4.19 and the 'OVF1
and OVF2a’ circuit contains the implementation of the equations 4.15 and 4.16. The op-
timized implementation of the ’sftmask, hc and TINY’ circuit corresponding to lemma 4.6
is depicted in figure 4.8.

4.1.4 Packing IIT (normalized — packed format)

This section describes a packing unit, that is able to convert a FP number from the nor-
malized format BUSNF[69:0] (section 2.6.3) to the single precision or the double precision
packed FP representation BUSpr[63:0] (section 2.6.1). Like in the previous sections the
precision of the packed FP format is signaled by the bit DBL.

The packing conversion is the combination of the two steps: (i) a bounded normaliza-
tion shift from the normalized to the unpacked format following section 2.6.3, p.43 and
(ii) a conversion from the unpacked to the packed format following the descriptions of
section 2.6.2, p.41.

The bounded normalization shift can be implemented like in the gradual rounding
unit, because also in the case of the normalized input format, the input factoring has a
normalized significand for all non-zero values. Because in this case the input factoring
already has the correct value of the result and no rounding has to be computed on the
significand, all bits of the significand are used for the result and no masking of the shifted
significand is necessary. Moreover, trapped underflows do not have to be considered in
this case. Thus,

Fprl0:52] = F"[0:52] = ¥"[0:53]
cLs((0%, Fyr[0:52],0%), < Exnp[5:0] >)[0: 52] if TINY
Fyr[0: 52 otherwise.

78 CHAPTER 4. BASIC FP OPERATIONS

BUS, 169:0] normalized representation
[69) 1564\ F [052] (8857 E [11:0)
! DBL
‘oz 309 (02DBL3180) J :
[11:0] - _l _
(5:0] B & |8
S CLS(64) XOR
CSA(12) O
[0:52] [0:52] [11] DEC(11)
0 MUX l1 Ty ' O
Ly—é | NORrRQ)
FeelO] | Feel1:52] l Ee[100]
‘ Packing ‘%
[63] [62:0]l
BUS,[63:0] packed representation

Figure 4.9: Structure of the packing unit.

With —e,m =< (02,0BL2,15,0) >3 for single and double precision, the condition
TINY <= (enF — emin < 0)

is detected as sign bit of the sum < Exp[l1 : 0] >3 + < (0%,DBL2,15,0) >,. Because
for normalized numbers with (Fyr[0] = 1), the exponent is not changed in equation 2.90,
namely Eyp[11:0] = Enxp[11:0], the packed exponent representation can be computed
according to equation 2.84 that is equivalent to

Epp[lo : 0] = b’L’I’L(l)U(< (ENF[lo],ENF[g : 8],ENF[7]®DBL,ENF[6 : 0])>—1) NOR FUF[O].

A final packing selection according to equation 4.57 then yields the packed result rep-
resentation BUSppr[63:0]. This completes the description of the packing unit, that is
implemented like depicted in figure 4.9.

4.2. ADDITION/SUBTRACTION 79

4.2 Addition/Subtraction

4.2.1 Addition/Subtraction I (normalized — representative format)

This section describes a FP addition/subtraction unit, that is able to add or to subtract
two FP numbers given in the normalized representations (section 2.6.3):

BUSanr[69:0] = (sA,EA[11:0],FA[0:52], ZEROA, INFA, QNANA, SNANA) (4.59)
BUSbyp[69:0] = (sB,EB[11:0],FB[0:52], ZEROB, INFB, QNANB, SNANB), (4.60)

which represent the factorings (sa,ea, fa) = factnp(BUSanr[69:0]) and (sb, eb, fb) =
factnyp(BUSbyE[69:0]). The mode, whether the addition or the subtraction should be
computed, is selected by the input bit soP. For the special computation of the sign of
zero results, also the input of the rounding mode by RMODE[1:0] is required.

In the case, that both operands have representable values, the exact sum/difference
exact,qq/syp 1 defined by (section 2.2.4):

eTaC a4dfsub = (—1)SA . 900 fq 1 (—1)SOP@SB geb g

If (Sres €res fre) is a RF factoring of exactygq/gupy for non-zero representable inputs, then
for the general case of arbitrary input values, a RF factoring of the addition/subtractionl
output is given by:

((0, eqnans fgnan) if SCQNAN
(Sinf, €cos foo) if SCINF
(sa,ea, fa) if sox
(srp.erF, frRF) = (sb, b, [b) o soy (4.61)
(s0,€0,0) if SCZERO
L (Sres €res fre) otherwise,

so that the sum output of the addition/subtraction I unit is specified by the corresponding
representation in the representative format BUSgp[73:0] = RF(sgr, err, frr). Moreover,
the invalid flag INV should be signaled according to the occurance of an invalid exception.

The computations of the special conditions in equation 4.61 are already summarized
in section 2.4.4 by equations 2.20-2.26. We postpone the discussion of the special sign,
significand and exponent selections and consider the computation of (syc, €pe, fre) for the
regular case in the following. For this we assume non-zero representable input operands.

Definition 4.1 Let SEFF = SOP@SA@SB. The case that SEFF = 0 is called effective addi-
tion and the case that SEFF = 1 is called effective subtraction. For effective subtractions,
we multiply the significands of both operands by 2. This operation is called the pre-shift
and can be computed by a left-shift of the binary significand representations by one bit
position. The significands fa' and fb' that include the conditional pre-shift are defined by:

fa' = 2-fa if SEFF =1 o= 2-fb if SEFF =1
@ = fa otherwise N fb otherwise
We define the exponent difference 0 = ea — eb and the sign of the exponent difference

SDELTA <= (0 < 0). The “large” operand, (sl el, fl), the significand of the “small”
operand, fs, and the exponent ey are defined as follows:

_ (SA,ea, fa') if SDELTA = 0 [fb' if sDELTA =0
(shel, fI) = { (SOP @ SB, eb, fV') otherwise fs = fa' otherwise.

el —1 ifSEFF =1
e = { el otherwise. (4.62)

80 CHAPTER 4. BASIC FP OPERATIONS

Lemma 4.8 Based on the previous definitions, the exact sum can be written as
exactoqasy = (=1)" -2 (F1+ (=D)%FFF(fs-271)). (4.63)

Proof:

SAgea . o 4 (—1)SOP®SB . g¢b . g,

)SA 9ea (fa + (_1)SOP€BSB®SA(fb X 2eb—ea)) if6>0
)SOPEBSB 9¢eb (fb_I_(_1)SOP€BSB®SA(fa‘2ea—eb)) otherwise
1)5h.2¢1 L (f1 4 (=1)SEFF(f5.2719))) if sEFF = 1

1)51 2l (f1 + (—=1)SEFF(fs.27101)) otherwise

L2 (fl 4 (—1)SFFF (fs - 271)).

exactgysy = (1)
L G
{C
(~1)°

O

The most complex part in the addition/subtraction computation corresponding to equa-
tion 4.63 is the computation of the significand sum fsum:

fsum = fl+ (—=1)SEFF. fg. 9700l

With the definition of the absolute significand sum abs_fsum = |fsum|, and the sign of
fsum: SFSUM <= (fsum < 0), we can write fsum = (—1)SFSUM . ghs_fsum, so that

eTactadd/sub (—1)SEESFSUM _9e1 . yhs_fsum. (4.64)

In the following lemma it is shown, that the 53-representative of the absolute significand
sum, repss(abs_fsum), meets the requirements for significands in the representative for-
mat:

Lemma 4.9 The 53-representative of the absolute significand sum repss(abs_fsum) is
smaller than 4 and is either an integral multiple of 2752 or is larger than or equal to 1, as
required for significands in the representative format (see section 2.6.4).

Proof: The absolute significand sum is defined by:
abs_fsum = | fl + (=1)SEFF . r4. 9-10]|, (4.65)

We separate the proof for: (a) effective additions; and (b) effective subtractions. (a) For
effective additions, abs_fsum = |fl+ fs- 2_“5‘|. Because 1 < fl <2, 1< fs<2and 0<
27101 < 1, the absolute significand sum is in the range 1 < abs_fsum < 4. Thus, also the
53-representative of the absolute significand sum is in the range 1 < repss(abs_fsum) < 4
and the proof of case (a) is completed.

(b) For effective subtractions, abs_fsum = |fl — fs-2719|. Because of the preshifts fI
and fs are now both in the range [2,4[and fI and fs are both multiples of 275, From
this, it follows directly, that 0 < abs_fsum < 4. For the remaining part of the proof, we
differ between the two cases: (i) |d| < 1; and (ii) 6] > 1.

(i) Because |8 < 1, fs-271% is a multiple of 2752 and abs_f sum is a multiple of 2752,
Thus, also the 53-representative repss(abs_fsum) is a multiple of 27°2 and the lemma
follows for case (i). (ii) Because |§] > 1, (fs-271%) < 1. Thus, abs_fsum >2—1=1 and
also repss(abs_fsum) > 1. This completes case (b) and the proof of the whole lemma. O

Because of equation 4.64 and lemma 4.9, the value val(SL @ SFSUM, €1, repss(abs_fsum)) is
e1—>53-equivalent to exact,qa/sup- Thus, (Sre, €re, fre) = (SL @ SFSUM, eq, reps3(abs_f sum))
is a RF factoring of the exact sum exact,4q/5p. In the following the computation of this
RF factoring is described.

4.2. ADDITION/SUBTRACTION 81

Definition 4.2 We define the limited absolute exponent difference deltalim by
0] if [6] < 63

63 otherwise.

deltalim = { (4.66)
Because 0 < deltalim < 63, we can use the 6 bit binary representation: deltalim =
< DELTALIM[5:0]>. Moreover, we define the negated significand fsn = (—1)SEFF . fs and
the aligned significand fsa = fsn-271%,

Lemma 4.10 The 53-representative of the absolute significand sum repss(abs_fsum) can
be computed by using the limited absolute exponent difference deltalim instead of |4|:

repss(abs_fsum) = repss(|f1 + (—1)SEFF . fg. gdeltalim)y (4.67)

Proof: We separate the proof for: (a) the case of |§| < 63; and (b) the case of || > 63.

(a) For |§] < 63, we have deltalim = |i|, so that the lemma follows directly from
equation 4.65.

(b) For |d| > 63, we have fsum > 0 for both effective subtractions and additions,
so that abs_fsum = fsum and repss(abs_fsum) = repss(fsum). Remember, that the
significand f1 is a multiple of 279 and fs < 4. Let z;, = fl, z; = (—1)SFFF . f5. 2710
and ¢ = 2/0l—deltalim o then get abs_fsum = xp + x;, x, = k- 27°3 for an integer k,
lz)] < 42703 <2753 and

gz = (_1)SEFF . fS . 27\5\ . 2\5\7deltalim

(_1)SEFF . fS . 2—deltalim

— (_1)SEFF . fS . 2—63’

so that also ¢ - |z;| < 2753, Therefore, lemma 2.16 with p = 53 can be used and we get
repss(zn + ;) = repss(zn, + ¢ - ;). This equation can be written as repss(abs_fsum) =
reps3(|f1 + (—=1)SEFF . 5. gdeltalim}) "gq that the proof of the lemma is completed. O

The computation of repss(abs_fsum) according to lemma 4.10 is partitioned into the
following steps:

1. computation of the limited absolute exponent difference deltalim = <deltalim[5:0] >,
and the sign of the exponent difference SDELTA.

2. operand swapping (computation of SL,el =<EL[11:0]>9, fl =<FL[—2:52] >4 and
[s =<FS[—2:52] >9p,, including the preshifts for effective subtractions)

oA, nq. _ (FA[0:52],0,FB[0:52],0) if SEFF =1
(Fa'[=1:52], F[-1:52]) = {(O,FA[O:52],U,FB[O:52]) otherwise (4.68)
' e B (sB @ sop,EB[11:0],0,FB'[—1:52]) if SDELTA
(sz, BL[11:0], FL[=2:52]) = {(SA,EA[ll:O],O,FA'[—1:52]) otherwise 0%
. _ (0,FA’[—1:52]) if SDELTA
Ps[—-2:52) = { (0,FB'[—1:52]) otherwise (4.70)

3. significand negation of fs for effective subtractions. Because fs =< FS[—2:52] >,
and FS[—2] = 0, fsn = (—1)SFFF f5 can be computed by

fsn = < FSN[—2:52] >opeq (4.71)
B < (PS[—2:52]) >oneg +27°2 if SEFF (4.72)
N < FS[—2:52] >0 otherwise. '

This equation is implemented by a 55-bit incrementer and a 55-bit mux selection.

82 CHAPTER 4. BASIC FP OPERATIONS

4. alignment shift of FSN[—2:52] by deltalim positions (fsa = fsn-279¢alim) Because
0 < deltalim < 63, fsa can be represented by fsa =< fsa[—2:115] >ope, and
because fsn is also represented in the two’s complement representation, the fill bit
FSA[—2] has to be shifted in for sign extension:

FSA[—2:115] = (FsN[—2]%!talim pgN[—2:52], (53 deltalim) (4.73)
= RSFT(FSN[—2:52], <DELTALIM[5:0] >, FSN[—-2],0) (4.74)

This right shift is implemented with a 55-bit shifter.
5. significand addition fsum = fl + fsa:
<FSUM[—2:115] >9peg =< FL[—2:52] >opeq + <FSA[—2:115] >opeg
This addition is partitioned into a lower part and into an upper part:

FSUM[53:115] = FSA[53:115] (4.75)
<FSUM[—2:52]>9p6g = <FL[—2:52]>0p¢9 + <FSA[—2:52] >0, (4.76)

The addition of the upper part is implemented by a 55-bit carry-look-ahead adder
implementation.

6. conversion for negative fsum (computation of abs_fsum =< ABS_FSUM[—1:115]>pc=
|fsum]). Because fsum is negative, iff fsa > fl, in this case deltalim = 0 and
ABS_FSUM[53:115] = FSUM[53:115] = FSA[53:115] = 053. Thus, only the upper part
[—2:52] is involved in the conversion

ABS_FSUM([53:115] = FSUM[53:115] (4.77)
e _ < (FSUM[—1:52]) >opeq +27°2 if FSUM[-2]
<ABSFSUM[=1:52] >0 = { <FSUM[—1:52] >9p¢4 otherwise. (4.78)

This equation is implemented by a 55 bit incrementer and a 55-bit mux selection.
The sign of fsum is given by SFSUM = FSUM|—2].

7. representative computation according to lemma 2.11:

fre = < Fre[—1:54] >pe
= < REPs3(abs_fsum)[—1:54] >y,
= < (ABS_FSUM[—1 : 53], Ortree(ABS_FSUM[54 : 115]) >4

Among these steps only the implementation of the first step has to be further specified.
This is done by the following lemma:

Lemma 4.11 With the computation of

d = < DELTA[13:0] >3 = ea —eb (4.79)
= < (0,BA[12:0]) >3 + < (1,EA[12:0]) >5 +1 (4.80)
|0] = < ABS_DELTA[13:0]> (4.81)
_ { < DELTA[13:0] > +1 if DBLTA[13] (4.82)
< DELTA[13:0]> otherwise.
DELTAOVF = ORtree(ABS_DELTA[13:6]) (4.83)

4.2. ADDITION/SUBTRACTION 83

we get
SDELTA = DELTA[13] (4.84)
deltalim = <DELTALIM[5:0]> (4.85)
= < (ABS_DELTA[5 : 0] OR DELTAOVF) > (4.86)

Proof: The equations for § = <DELTA[13:0]>9 and |§| = <ABS_DELTA[13:0]> are
a straight-forward implementation of the definitions using the properties of two’s com-
plement numbers. Obviously, in the two’s complement representation DELTA[13:0], the
sign of ¢ is given by SDELTA = DELTA[13]. The bit DELTAOVF implements the condition
(|6] > 63). In equation 4.86, deltalim is set to <111111> = 63 for DELTAOVF = 1 and
deltalim = < ABS_DELTA[5:0]> = |J| for DELTAOVF = 0, as required by the definition of
deltalim in equation 4.66. O

The exponent e,. = <E;;[12:0] >9 = e; (equation 4.62) is computed by:

Cre = <61[11:0]>2 (4.87)
<EL[11:0]>9 —1 if SEFF = 1 (4.88)
<EL[11:0] > otherwise.

This equation is implemented by a 12-bit decrementer and a 12-bit selection mux. The sign
computation implements the equation s,. = (SL @ SFSUM). This completes the description
of the computation of (Syc, €re, fre). In the following we will integate this result for the
regular case with the special cases results according to equation 4.61 and we will consider
the recognition of the invalid exception.

We separate the final result selection according to equation 4.61 for the significand, the
exponent and the sign of the result. The definitions of the special case conditions SCQNAN,
SCINF, SCX, SCY, and SCZERO are given in equations 2.20-2.24. For the computation of
the zero condition SCZERO, we first have to detect the condition ZERO,. of zero results
for regular operands. Because the computation of ZERO,. based on the result of the
regular path would be quite slow, we compute this signal directly from the input operands.
Obviously,

ZERO,. <= SEFF A ZEROTEST ((EA[11:0],FA[0:52]) @ (EB[11:0],FB[0:52])) .(4.89)

This equation will be implemented in the special cases circuit.
Based on the special case conditions we get for the significand:

(fonan =< (0,1010°?) >,., if SCQNAN
foo =<(0,10%4) >0 if SCINF

fa =<(0,FA[0:52],0%) >, if SCX

fb=<(0,FB[0:52],0?) >, if SCY

fo =<(00)>,eq if SCZERO
\ fre =<Fpe[—1:54] >peq otherwise.

By the definition of the special case significand representation Fg.[—1:54]

(0,1010°2) if SCQNAN
(0, 10%%) if SCINF
Feo[—1:54] = (0,FA[0:52],0%) if scx (4.90)

(0,FB[0:52],0%) if scy
0°6 otherwise

84 CHAPTER 4. BASIC FP OPERATIONS

and the special case condition

SPCA = SCQNANV SCX V SCY V SCINF V SCZERO, (4.91)

the representation of the significand frr can be selected by
{ Fsc[—1:54] if spca

Fre[—1:54] otherwise. (4.92)

FrF [—1 : 54]
The computations for Fs.[—1:54] and SPCA are implemented in the special cases circuit.
Based on the special case conditions, already all four aditional bits of the result rep-
resentation are given by ZEROrpr = SCZERO, INFrp = SCINF, SNANgr = 0 and

QNANRprp <= QNANA V QNANB YV SCQNAN. (4.93)

For the exponent egp the selection is even simpler, because for all special value results, we
defined egp = €4, + 1. Because in addition/subtraction for a special value result, at least
one of the input operands has also a special value, and to avoid the distinction between
the single and the double precision case, the special exponent representation can be copied
from one special input operand for all special value results. We define the condition

NREGA <= INFA V QNANA V SNANA. (4.94)

If there is at least one special input operand, then a special exponent representation is
copied from the inputs by

_ EA[11:0] if NREGA
Ee[11:0) { EB[11:0] otherwise, (4.95)
so that the exponent erp of the representative result can be selected by:
eRF = <ERF[1210] >9 (496)
_ ese =< (Esc[11],Egc[11:0])>o if SPCA (4.97)
ere =< (Epe[11],Epe[11:0]) >9 otherwise. '

Note, that for zero results the exponent e, is selected, but in this case it does not matter
which value this exponent has, because zero representations in the representative format
may contain an arbitrary exponent value.

We define the special case sign Sy, and the preliminary sign s by

0 if SCQNAN
SA if scx
Sse = SB if scy (4.98)

(SA A INFA) V (SB A INFB) otherwise

, { Sec if sPcA (4.99)

S = .
RE Sre Otherwise.

Because the rounding mode RMI is encoded by RMODE[1:0] = (11) according to table 2.3,
and (SA A (SB @ SOP)) = (SL A SEFF) we then get the sign of the result spr according to
equation 2.15 by

_ So if SCZERO

Srr = { S’RF otherwise. (4100
B (SEFF A RMODE[1] A RMODE[0]) V (SL A SEFF) if SCZERO (4.101)
= . otherwise. '

4.2. ADDITION/SUBTRACTION

85

BUSa [69:0]

[3:0]

[68:57]

[56:4]

[69]

[68:57]

[69]

BUSD - [69:0]

ZEROa
INFa
ONANa
SNANa

[3:0]

ZEROb
INFb
QNAND
SNAND

[68:57]

[69]

[56:4]

[68:57]

[69]

SOP

| FB[0:52]
o |0
' l '

EA[11:0] EB[11:0]

1
ELA(M)

SA
SB

FB[0:52]

'

special
cases

[3:0]

INV

Fgcl-1:54]

EA[11:0]
{ EB[11:0]

1 Mux 0 ~—£> 1 Mux 0
SDELTA
FA[0:52]

Egell20] SEFF

ZEROge
INFRp

QNAN e
SNAN e

Fgol-1:54]

FSN[-2]

[esz-Is4

I

O
INC

o[-]

Mux 0
+ FSN[-2:52]

FB'[-2:52]

DELTA$—— [130]

SB

[x¢

SA

o

R

[13]

o)
+ [INC | | 1Mux 0]

vL113as

!

SDELTA (130

ABS DELTA

[13:6]
!
DELTAOVF

OR(6)

‘ Right-Shift

‘ DELTALIM[5:0]

FSA|[-2:52]

CLA(55)

[z-Inns4
[es:1-lnNs4

Frel-1:52]

~ 1 Mux 0

Frc[53:54)

SPCA‘l

Mux

E rel12:0]

[72:60]

[59:4]

Frel-1:54]

FSA

[53]

§ FSA[54:115]

ORtree

[oslvi1aa sav

RMODE[1:0]

Figure 4.10: Structure of the addition/subtraction unit I.

In this way, the sum output in the representative format is given by:

BUS g [73:0]

BUSRFWQO} = (SRFa ERF[12:0], FRF[—1:54L ZERORF,INFRr, QNANgRF, SNANRMJOQ)

The cases for the occurance of an invalid exception are listed in table 2.5. Obviously,
the invalid exception occurs, iff the addition/subtraction results in a quiet NaN, where
SCQNAN = 1, so that

INV <—— SCQNAN.

(4.103)

86 CHAPTER 4. BASIC FP OPERATIONS

This completes the description of the addition/subtraction I implementation which is
depicted in figure4.10. The only part which is included in this figure without details is
the special cases circuit. This special cases circuit includes the computations of equations
2.20-2.24, 4.89, 4.90-4.91,4.93-4.95, and 4.98.

4.2.2 Addition/Subtraction II (normalized — gradual result format)

Like in the previous section also in this section the FP addition/subtraction is computed
from the inputs of the normalized representations BUSayr[69:0] and BUSbyr[69:0]
(section 2.6.3), the rounding mode represented by RMODE[l : 0] and the bit sop that
signals the case of addition or subtraction. But in contrast to the previous implementation
where a representative of the exact operation result had to be delivered, in this case the
gradual rounding function groundl has to be computed on the exact operation result.
After this gradual rounding step the sum/difference should be output in the gradual
result format BUSgFr[73:0] (section 2.6.5). Formally, with the notation from the previous
section and with ((sgrc; €gre, fore), TING, TINX) = groundlyode(Sre, €rcs fre), the required
addition/subtraction result is based on the following GF factoring (Note, that the rounding
can be computed on the RF factoring (Sy¢, €re, fre) instead of a factoring of the exact
operation result according to lemma 2.7):

0,e9NaN, fgnan),0,0) if SCQNAN
Sinfs€oos foo)s 0, 0) if SCINF
sa,ea, fa),0,0) if scx

sb, eb, fb),0,0) if scy
s0,€0,0),0,0) if SCZERO
L((Sgre; €gre, fgre), TINC, TINX) otherwise,

(4.104)

((
((
((sem eqF, far), TINCGF, TINXGR) = 4 EE
((
((

so that the sum output of the addition/subtraction unit in this section is specified by the
corresponding gradual result representation BU S r[73:0] = GF((sgF, ecF, faF), TINC, TINX).
The occurance of an invalid exception should be signaled by the bit INV also in this case.

The special cases conditions and values in equation 4.104 are identical to that in the
specification of the previous section. In the implementation of this special cases selection,
the only difference to the previous section is that a representation in the gradual result
format has 3 bits less in the significand, which have been filled with zeros in the repre-
sentative format. Moreover, the gradual result format requires two additional rounding
tags, which have to be zero for special value results. For the special cases selections, these
small adjustments are integrated in the implementation depicted in figure 4.11. Also in
the equations, that are implemented in the special cases circuit, the selections for bit posi-
tions [—1] and [53:54] have to be neglected. This already completes the description of the
special cases computation and we only have to describe the computation of the gradual
result representation of ((Sgrc, €gres fgre): TINC, TINX) in the following.

The computation of the GF factoring ((Sgre, €gres fore); TINC, TINX) can be based on
the computation of the RF factoring (¢, €y, fre) from the previous section:

(Srca €re, frc) = (SL @ SFSUM, e, T€p53(|fl + (—1)SEFF - fs- Q*delt‘llimD’
so that

((Sgrm €gres fgrc)a TINC, TINX) = groundlmode(sra €rcs frc) (4-105)

= post_norm(sgrndl ,odexs(M(Sres €res fre)))-(4.106)

4.2. ADDITION/SUBTRACTION 87

The three additional steps of the normalization shift, the rounding computation and the
post-normalization shift could have a large additional delay in a straight-forward imple-
mentation. To speed up the computations, we divide the implementation into two parallel
paths that work under different assumptions. The computations in each path can then be
simplified and some of the computation steps only have to be considered exclusively in one
of the two paths. Such a ’two path’ approach for floating-point addition was first described
in [14]. In this description the two paths differ by the assumptions on the magnitude of
the exponent difference: the far path is defined for large exponent differences |6| > 1, and
the near path is defined for small exponent differences |0] < 1.

Our partitioning is slightly different. Based on the following definition of the path
selection condition IS_R, we define the 'R’-path (R for Rounding) for 1S.R = 1 and the
'N’-path (N like Near, Negation and Normalization) for 1S_R = 0. As will be shown later,
the advantage of our approach is that a conventional implementation of a far path can
be used to implement also the ’R’-path, but the implementation of the ’N’-path could be
simplified in comparison to a near path implementation.

Definition 4.3 We define the path selection condition 1S_R based on the computation of
(Sres €res fre) from the previous section with fsum = fl+ (—1)SEFF . fg. g deltalim .

ISSR <= (SEFFV (fsum € [1,4])), (4.107)

i.e., the results of the 'R’-path have to be valid, if (1S_.R = 1) and the results of the "N’-path
have to be valid, if (IS.R = 0), so that a valid result could be selected by

((r_s,r_e,r_f),R_TINC,R_TINX) ifIS_R

((sgre: €gre: fore), TING, TINX) = { ((n-s,n-e,n_f),N_TINC,N_TINX) otherwise.

Lemma 4.12 For the two paths we get the following properties
(a) 'R’-path: 1IS.R => fsum € [1,4]
(b) 'N’-path: TSR = SEFF = 1
(¢) 'N’-path: ISR = 0 € {—1,0,1}

(d) °N’-path: SR = fsum € |— 2,1 AND fsum is an integral multiple of 2752

Proof: (a) Because one part of the definition of 1S_R already includes the condition
fsum € [1,4], we have to show part (a) only for the case of SEFF = (. For this case
of effective additions it was already shown in part (a) of the proof of lemma 4.9, that
fsum € [1,4].

Part (b) follows directly from the definition of the path selection condition 1S_R.

(c) For 1s_R = 1, we have an effective subtraction with fsum < 1. In effective sub-
tractions both significands have been preshifted, so that both fl and fs are in the range
[2,4[. Thus,

fl— fs. o deltalim 1)
fs -2 deltalim - 1)

g~ deltalim +, (95)
deltalim < 2)

(fsum < 1)

=
=
=
=

88 CHAPTER 4. BASIC FP OPERATIONS

This last condition is only fulfilled for exponent differences ¢ € {—1,0, 1}, as required by
the lemma.

(d) From part (c) we know that for 1IS.R = 1, we get effective subtractions with
deltalim < 1. Because of the preshifts, the significands fl and fs are both integral
multiples of 275!, so that the aligned significand fs - 27%™m jg an integral multiple of
2752 Thus, also the significand sum fsum is an integral multiple of 2752, Because in
general for effective subtractions, fsum € | — 2,4[, and for 1IS_.R = 1, we have fsum < 1,
we also get fsum € |— 2, 1], as required. O

These properties of the two paths make the following optimizations possible:

(a) Because of (a), there can be no negative fsum in the 'R’-path, so that the conversion
step can be avoided in this path. Moreover, we know from (a), that in the 'R’-path
the range of the significand sum fsum consists only of two binades, so that only a
very small a normalization shift by at most one position is required in the 'R’-path.

(b) Because of (b), we can use SEFF = 1 in the whole computations of the 'N’-path and
optimize the implementation accordingly.

(c) Because of (c), deltalim in the 'N’-path can be determined already from the two least
significant bits in the two’s complement representation of the exponent difference.

(d) Because of (d), also after the conversion step and the normalization shift, the sig-
nificand is a multiple of 2752, so that the rounding computation by the function
groundl does no change on the significand and the rounding can be neglegted in the
'N’-path.

The additional advantanges of the 'N’-path in our approach in comparison to the 'near’-
path from [], are the properties in (b) and in (d). The main structure of our implementation
of the addition/subtraction IT unit is depicted in figure 4.11, that uses the results of the
'R’-path computations ((r_s,r_e,r_f), R_TINC, R_TINX), the result of the 'N’-path compu-
tations ((n_s,n_e,n_f), N_TINC, N.TINX) and the condition IS_R, that decides, which result
has to be selected according to definition 4.3. Moreover, the special case computations
from the previous section according to equation 4.104 are adopted for the output in the
gradual result format in this figure.

In the following, we describe the implementation of the 'R’-path and the 'N’-path
separately, after giving a definition of some values that will be used in both paths:

Definition 4.4 We define the significand fso (o for one’s complement), where the con-
ditional two’s complement negation from the significand fsn is replaced by a conditional
one’s complement negation:

fso = <FSO[—2:52]>o9peg (4.108)
= < FS[—2:52] @ SEFF > (4.109)
= <FSN[-2:52] >9,0, —SEFF - 272 (4.110)
= fsn — SEFF - 272 (4.111)
and we define the corresponding values that are based on fso instead of fsn:
fsoa = < FSOA[-2:115]>9p, (4.112)

= < (sepp¥talim pgo[-1:52], spppti-deltalimy 5, (4.113)

4.2. ADDITION/SUBTRACTION 89
BUSay [69:0]
[3.0] 16%:4] BUSh \ [69:0]
[3:0] [69:4]
ZEROa| |ZEROb sB A
INFa| | INFb EB[11:0] EA[11:0]
QNANa| | QNANb FB[0:52] FA[0:52]
SNANa| | SNAND
(SA,EA[11:0],FA[0:52]) (SA,EA[11:0],FA[0:52])
(SB,EB[11:0],FB[0:52]) (SB,EB[11:0],FB[0:52])
SOP
RMODE[1:0]
A
1 N-path R-path
specid computation | = computation
cases '3
\—. INV W
zZ z D
| | z zZ ﬁ | | X
SPCA ggljljz > ggljljm % m
k=) ,L_Nn, § (Zj o =) .(_’S. § (Z) "o l:U M
4 A 4 4 J
1 Mux 0 ‘
ISR SEFF
Egrd 110 Sgre
Py
<
Se Fgrd0:52] TINX | | TINC r$'|
Feol0:52] Fgrd052] g Ssey Sorg ©
Eg[11:0] Egrd110] >$ SPCA" 1Mux 0] A’I‘D
' 1Y O
A Mux 0 | | _AND | Serl LOMux1j—
IZ,\'IEFROGF 0 TINXge| [TINCge
GF
QNAN g Egd120]| Fgg052] ZEROGF
[3:0] ¢ SNAN ¢ [71:59] [58:6] [4y 4[5] 721y SGF
BUS e [72:0]
Figure 4.11: Structure of the addition/subtraction unit II.
— fSO i Qfdeltalim + SEFF - (27527deltalim _ 27115) (4.114)
fsn .2 deltalim _ qppp . 9-115 (4.115)
fsa — SEFF . 2711° (4.116)
fosum = <FOSUM[—2:116]>9p,, (4.117)
fl+ fsoa (4.118)
= fsum — SEFF - 2715 (4.119)

90 CHAPTER 4. BASIC FP OPERATIONS

'R’-path The computations in the 'R’-path are described on the basis of the adder
implementation from the previous section. As discussed above (see lemma 4.12(a)), we
can use for the 'R’-path: abs_fsum = fsum € [1,4] and sFsuM = 0. Based on this, the
required factoring in the 'R’-path ((r_s,r_e,r_f), R_TINC, R_TINX) can be written as

((r-s,r_e,r_f),R_TINC,R.TINX) = post_norm(sgrndlodesst(n(SL, e1, fsum))4.120)

Definition 4.5 For f € [1,4[, we define the generalized post-normalization shift by

gpost_norm(s,e, f) = { EZ:E’—;)pr) Z; E E:;l% (4.121)

Lemma 4.13 In the 'R’-path, the computation of (r_s,r_e,r_f) can be simplified to

gpost-norm(SL, e, Mdmaderst.so(fsum)) if fsum € [1,2]

ngSt_TZOT‘m(SL’ elarndmode*SL,E)l (fsum)) Zf fS’U/n’L € [2’ 4[(4122)

(r_s,r_e,r_f) = {

Proof: It follows directly from the definition of the gradual rounding function grnd, that
for zero rounding tags at the input like in (7 f sum, TINX, TINC) = grndyodecs,»(f sum, 00)),
conventional rounding delivers the same rounded result, so that we also have rfsum =
T modess A (f sum). Moreover, we use for the reduction that fa, fb < (2 — 2752), so that
fsum € [1,(4 —2751)]. Because 1 and (4 — 27°) are integral multiples of 27!, for
fsum € [1,(4 —275")] and X > 51, also the rounded result rfsum = rndmodess \(f sum)
is in the same range, namely rfsum € [1,(4 — 27°1)]. In the following we differ between
the two cases: (a) fsum € [1,2[and (b) fsum € [2,4].

(a) For fsum € [1,2[, the normalization shift can be neglected, so that with definition
of the function sgrndl we get

post_norm(sgrndlmedess.(n(SL, e1, fsum))) = post_norm(sL, er, grndlyodessr(fsum))

and thus (r_s,r_e,r_f) = gpost_norm(SL,e1, rndpmodesst, 52 (fsum)).
(b) For fsum € [2,4], we get n(SL,e1, fsum) = (SL,e; + 1, fsum/2), so that because
of fsum < (4 —275)]:

(res,ree,r_f) = gpostnorm(SL,er; + 1, rndpmodesst, 52 (fsum/2))
= gpost_norm(SL, e1, TndpmedexSL, 51 (fsum))

4.2. ADDITION/SUBTRACTION 91

Definition 4.6 Based on the previous lemma and with the definition of the significand
overflow condition

CONDjgy <= fsum € [2,4], (4.123)
we define the rounded significand rnd_f sum by

rnd_fsum = <RND_FSUM[—1:52] >,

_] rndmodessrs1(fsum) if CONDpg 4
TNl modexSL 52 (fsum) otherwise,

so that (r_s,r_e,r_f) = gpost_norm(SL, e, rnd_f sum).

In the following, the computation of the rounded significand rnd_f sum and the rounding
functions rnd,,edesst 52 (f sum) and rndyodesst, 51(f sum) are described using the injection-
based rounding reduction from section 2.5.2. We denote the additive rounding injection
by ingp of for fsum € [1,2[and by ingpp 4 for fsum € [2,4]. With srmode = mode x st,
these injections are defined by

0 if srmode = RZ
injio = 2753 if srmode = RN

2752 _ 27115 otherwise

0 if srmode = RZ
injlo4 = 2752 if srmode = RN

2751 _ 27115 gtherwise.

Based on the injections, we can reduce the previous rounding functions to

TMdsrmode,51(fsum) = rndrzsi(fsum +ing 4) (4.124)
= rndrgsi(fosum + SEFF - 27115 4 ing2.4) (4.125)
T srmode,s2(fsum) = rndrzs2(fsum + ingy o) (4.126)
= rndpzse(fosum + sEFF- 27115 4 ingp2[)- (4.127)

According to definition 4.4, the significand sum fosum consists of the significands fI
and fsoa. Thus, FL[—1 : 52] and FSOA[—1 : 115] can be interpreted as a carry-save re-
presentation of fosum. We compress this carry-save representation by a half-adder-
line with the sum outputs sFosuM[—1 : 115] and carry outputs CFOSUM[—1 : 51], so that
<SFOSUM[—1:115] >peg+< CFOSUM[—1:51] >0y = <FL[—1:52] >0+ <FSOA[—1:115] >,eq,
and fosum = sfosum + cfosum. After that, we partition the addition of

finj =<FINJ[-1:115] >y = fsum+inzx (4.128)
2715 L injx (4.129)
= sfosum + cfosum + SEFF - 2715 4injx (4.130)

= fosum + SEFF -

into three parts: an upper part with positions [—1 : 51], a mid part including positions
[52:53], and a lower part with positions [54:115]. The additions are computed separately
for these three parts considering the carries from the lower to the mid part and from the
mid part to the upper part.

The binary representation of the injection constants injj o and injp 4 could have
non-zero digits only in positions [52 : 115], which are in the mid part and in the lower

92 CHAPTER 4. BASIC FP OPERATIONS

part, so that the injections can be represented by injp o = <INJ[1,2[[52:115] >neg and
inj[2’4[= <INJ[2’4[[52:115] >neg with:

00 if srmode = RZ
INJ[y 9[52:53] = { 01 otherwise (4.131)

11 if srmode = RI
INJjp,4[52:53] = 10 if srmode = RN (4.132)

00 otherwise

INJ[54:115] = INJy o[54:115] = INJg4[54:115] (4.133)

159 if srmode = RI
{ 0% otherwise. (4.134)

Because in the lower part we have
Ipart = <SFOSUM[54:115]>pe, + <INJ[54:115] >0, + SEFF - 27115

—52
< 2792

there can be at most one carry bit from the lower part into position [53] of the mid part.
This carry bit into position [53] is called ¢53 with 53 <= (Ipart > 253).
With the consideration of the carry ¢53 we have in the mid part:

mpart = < SFOSUM[52:53] >peq + < INJ[52:53] >p +C53 277 (4.135)
= < (C51,L,R) >peq (4.136)
< 2790 (4.137)

Thus, there can also be at most one carry bit from the mid part into position [51] of the
upper part. This carry bit into position [51] is called c51 with ¢51 <= (mpart > 2751).
The value in the mid part depends on whether fsum € [1,2[or fsum € [2,4[. There-
fore, we compute two different versions of (c51,L,R), namely (C51(; o[, Lj1,2[, R[1,2/) under
the assumption that fsum € [1,2[(CONDp 4 = 0) and (C51ljg4[, Lj2 4, Rj2,4;) under the
assumption that fsum € [2,4] (COND[y 4 = 1):
<(CB1y1 91, L1,9[s R[1,2]) Sneg = < SFOSUM[52: 53] >peq + < INJ[1 o[52: 53] >peg +C53-2714.138)
< (CBLppars Liga[s R2,4]) >neg = < SFOSUM[52:53] >peq + < INJ[g 4([52:53] >peg +C53-2774.139)

Moreover, the upper part of finj in positions [—1:51] can only have either the value

usum = < USUM[—1:51] >4 (4.140)
= < SFOSUM[—1:51]>peq + <CFOSUM[—1:51] > g (4.141)

or the value usumi = <USUMI[—1:51]>p., = usum + 27°1, because of equation 4.137.
Based on this and with the definition of the rounding increment condition

RINC <= ((0Blp4[A CONDp 1) OR (G5l o) A TONDp 47)) (4.142)

the required bits of the injected significand FINJ[—1:52] can be selected by

_ _J usumi[-1:51] if RINC
FINJ[-1:51] = { UsuM[—1:51] otherwise (4.143)
FINJ[52] = 4 2l if CONDpy g (4.144)
L(i otherwise

4.2. ADDITION/SUBTRACTION 93

to prepare the injection-based rounding mode reduction for the rounding modes mode €
{RZ,RNU,RI,RMT}.

To implement the IEEE rounding mode RNE instead of RNU, we have to consider the
"L-bit fix’ for the case of a tie according to section 2.3.2, namely, the least significant bit
of the rounded significand has to be pulled down for the case, that the rounding operand
lies exactly between two consequtive rounding choices in rounding mode RNE. We denote
the condition, that an 'L-bit fix’ is required by LFIX3 4 for CONDp 4 = 1 and by LFIX of
for cONDfy 4 = 0 with

LFIXp 4 <= (FSUM[52:115] = (1,0°%)) AND srmode = RNE (4.145)
LFIX[j o) <= (FSUM[53: 115] = (1,0°%)) AND srmode = RNE (4.146)

Thus, we get (substitution of eq. 4.143-4.146 and eq. 4.128 in eq. 4.124-4.127)
™ srmode,51 (fsum) = <(FINJ[-1:50], FINJ[51] A TFIX[3 4], 0) >peg (4.147)
Tdsrmode,s2(fsum) = <(FINJ[—1:51], Ly o ATFIX[j 3[) >neg- (4.148)

According to definition 4.6 the rounded significand rnd_f sum = < RND_FSUM[—1:52] >,
can be written by

(FINJ[—1:50], FINJ[51] A TFIX[3 4,0) if CONDpy 4

(FINJ[—1:51], Ly of A TFIX[y) otherwise. (4.149)

RND_FSUM[—1:52] = {

The following lemma provides the missing details for the implementation of the round-
ing decision.
Lemma 4.14 Based on the definition of the sticky bit:
STICKY = ORtree(FOSUM[54:115] @ SEFF)

the signals €53, FSUM[51:53], LFIX[o[, LFIX[9 4/, R-TINX and R-TINC can be computed by:

b3 = (SEFF A STICKY) V ((STICKY V SEFF) A (srmode = RI))
<FSUM[51:53] >,y = <SFOSUM[51:53]>p09 + < CFOSUM[51]| >peq +
+(SEFF A STICKY) - 279 mod 27
FSUM/[53] A STICKY A (srmode = RNE)

LFIX[1 9|
LFIX[y 4 = FSUM[52] A FSUM([53] A STICKY A (srmode = RNE)
R_TINX = STICKY V ((CONDjg 4 A OR(FSUM[52:53])) V (COND[3 4] A FSUM[53]))
R_TINC = (((FINJ[51] A TFIX|g 4[) BFSUM[51]) A CONDg 4) V

V (((T1,2p A TFIX[o) DFSUM[52]) A CONDy3 4()

Proof: We first show, that the sticky-bit has the property:

STICKY <= (FsuM[54:115] = 0%?) (4.150)
< (fsum is integral multiple of 275%). (4.151)

To prove this, we distinguish the two cases: (a) SEFF = 0; and (b) SEFF = 1. (a) For
SEFF = 0, we get fosum = fsum, so that

(FsUM[54 : 115] = 0%%) <= (FosuM[54 : 115] = 0?) = STICKY.

94 CHAPTER 4. BASIC FP OPERATIONS

(b) For SEFF = 1, we have fosum = fsum — 2 1% so that in this case (FSUM[54 : 115] =
092) <= (FosuM[54 : 115] = 1%?) <= STICKY, as required. Moreover, we can immediately
conclude from equation 4.150 that STICKY <= (< FSUM[54:115] >, > 2711%).

The carry bit ¢53 signals the condition (Ipart > 27°3). By definition

Ipart = <FOSUM[54:115]>pe + <INJ[54:115] >0, +SEFF - 27115,

The injection bits 1NJ[54 : 115] can only be either (i) 152 for srmode = RI or (ii) 02
otherwise. (i) If INJ[54:115] = 1%2, then

(Ipart > 27°3) <= ((FSUM[54:115] # 0%2) V SEFF) <= (STICKY V SEFF).
i) If INJ[54:115] = 052, then
(ii) ,

(Ipart > 27°3) < ((FosuM[54:115] = 15%) A SEFF) <= STICKY A SEFF,

as required.

In the equation for <FSUM[51:53] >4, the carry from the low part into position [53]
without considering an injection (INJ[54:115] = 0°2) has to be used, namely, in this case
c53' = (STICKY A SEFF). Thus, we get as required

<FSUM[51:53] >peg = <SFOSUM[51:53]>peq + <CFOSUM[B1] >0 +
+(STICKY A SEFF) - 27°3 mod 27,

The equations for the ’L-bit’-fix conditons are the straight-forward implementation of their
definition from equations 4.145-4.146 using STICKY <= (FSUM[54:115] = 002).
The inexactness rounding tag R_TINX (equation 2.56) can be written as

OR(Fsum[52:115]) if CONDpy 4

R_TINX = { OR(Fsum[53:115]) otherwise.

By the substitution of STICKY <= (FSUM[54:115] # 0%2) <= OR(FsuM[54:115]) we get
as required

R_TINX = STICKY V ((COND[41 A OR(FSUM[52:53])) V (COND3 4] A FSUM([53])).
According to equation 2.57 the increment rounding tag R_TINC can be written as

(RND_FSUM[51] # FSUM[51]) if CONDj 4

R_-TINX = {(RND_FSUM[52]7AFSUM[52]) otherwise.

We get the required form of this equation by the substitution of RND_FSUM[51] and
RND_FSUM[52] according to equation 4.149. O

Lemma 4.15 In the rounding computations, the condition on the range of the significand
sum CONDpp 4 <= (fsum € [2,4) can be substituted by USUM[—1], so that the rounding
increment decision RINC is given by

RINC <= ((051[2’4[A UsUM[—1]) OR (c51p 91 A USUM[—I])) , (4.152)
the rounded significand RND_FSUM[—1:52] can be selected by

(FINJ[—1:50], FINJ[51] A TFIX[5 47,0) if usum[—1]

(FINJ[—1:51], Ly o A TFIX[q o) otherwise. (4.153)

RND_FSUM[—1:52] = {

4.2. ADDITION/SUBTRACTION 95

and the rounding tags TINC and TINX can be computed according to

R-TINX = STICKY V ((USUM[—1] A OR(Fsum[52:53])) V (usuM[—1] A FSUM[53{#)154)
R_TINC = (((FINJ[51] A TFIX[y 4{)@FSUM[51]) A USUM[—-1]) V (4.155)
V (((Ly1,2] A TFIX[o)) @FSUM[52]) A USUM[—1]). (4.156)

Proof: Because usum+ < SFOSUM[52 : 115] >p., +SEFF - 27115 = fsum and because
< SFOSUM([52 : 115] >,y +SEFF - 27115 < 2751 the values of usum and fsum differ at
most by 27°! with fsum > usum. Thus, the values UsuM[—1] and CONDjy 4 differ, iff
SEFF = 1, FSUM[-1: 51] = (1,05%), usum[—1:51] = (0,1%2), usumi[-1: 51] = (1,05%), and
sFosuM[52:115] = 154, In this situation, we have UsUM[—1] = 0 and CONDj 4 = 1. More-
over, it follows, that mpart > 27°!, so that C5ljg 4 = €511 5 = 1, and the incremented
upper sum < USUMI[—1:51] >p.,= (1,0?) is selected for both range conditions: usum[—1]
and COND[y 4. Thus, it also does not matter which of them is chosen for the selection of
RND_FSUM[—1:50] for the case that USUM[—1] # CONDyy 4.

We still consider the case USUM[—1] # COND[y 4 in the following. Because RINC = 1
we have FINJ[51] = usumi[51] = 0 and because of sSFOSUM[52 : 53] = 12, ¢c53 = 1 and
INJ[; 9[52] = 0, we get from equation 4.138, that Ly oy = 0. Thus, it follows from equation
4.149 that also the selection of RND_FSUM[51 : 52] = 0? is independent of the value of
CONDjy 4 and USUM[—1].

We still have to show, that we also get the same rounding tags for both range detections.
From the above we know, that in the case which we have to consider, FSum[51:53] = 03.
Thus, according to the equation fro R_TINX from lemma 4.14 we get in this case R_TINX =
STICKY independent of the value of COND[, 4 and USUM[-1].

Because injga < 27°!, injjy of < 27°% and finj = fsum + injx, we have FINJ[51] =
0 = Ly o), so that according to the equation from lemma 4.14 also the rounding tag
R_TINC = 0 does not depend on the value of COND[; 4y and USUM[—1] in this case.

Thus, as required, the substitutions of COND[y 4 by USUM[—1] in the equations of this
lemma do not change the results of these equations. O

The following lemma integrates the rounding computations according to equations 4.143-
4.144,4.153 with the generalized post-normalization shift according to equation 4.122 to
compute the final results of the 'R’-path:

Lemma 4.16 In the ’R’-path, the significand and exponent bits are given by

RND_FSUM[—1:50] if RND_FSUM|[—]]
RND_FSUM[0:51] otherwise.

R_F[0:51] = {

L'(inc) = USUMI[51] ATFIX[54 if RND_FSUM[—1] A RINC

R_F[52] = L'(ninc) = USUM[51] ATFIX[5 4 if RND_FSUM[—1] A RINC
L = Ly of A LFIX[o[if RND_FSUM[—]
. _ <E1[11:0]>92 +1 if RND_FSUM[—1]
<RE[L0]> = { <E1[11:0] > otherwise.

Proof: Because rnd_fsum € [2,4[, iff RND_FSUM|—1], the equation for R_F[0: 51] and
R-E[11:0] are straight-forward implementations of definition 4.6 and definition 4.5 using
the previous rounding description from equations 4.143-4.144 and equation 4.153. Because
rnd_fsum > usum, it follows from RND_FSUM[—1] = 0 that also usuM[—1] = 0 and, thus,

96 CHAPTER 4. BASIC FP OPERATIONS

for the case of RND_FSUM[—1] = 0 we have RND_FSUM[52] = (L; o[A LFIX[| 5[). Therefore,
according to equation 4.15

FINJ[51] ATFIX[3 4 if RND_FSUM[-]]
Li1,20 A LFIX[y 9 if RND_FsUM[—1],

R.F[52] = {

so that by the substitution of FINJ[51] with respect to the value of RINC according to
equation 4.143, we get the equation for R_F[52] from the lemma. O

In the following we summarize the computation steps in the 'R’-path:

1.-2. computation of the limited absolute exponent difference deltalim, the sign of the
exponent difference SDELTA and the operand swapping like in the previous section.

3. significand one’s complement negation of fs for effective subtractions (equation 4.109):

FSO[—1:52] = FS[—1:52] @ SEFF.

4. alignment shift of FsSo[—1:52] by deltalim positions (equation 4.113):

deltalim

FSOA[-1:115] = (SEFF , FSO[—1:52], sprpé3—delialimy (4 157)
= RSFT(FSO[—1:52], deltalim, SEFF, SEFF) (4.158)

5. significand addition: (a) compression of positions [—1:52] by a halfadder line

<SFOSUM[—1:115] >peq+< CFOSUM[—1:51] > = <FL[—1:52] >0+ <FSOA[—1:115] >,

and (b) computation of the upper sum USUM[—I : 51] and incremented upper sum
USUMI[—1:51] by a compound adder (equation 4.141):

<USUM[—1:51] >,y = <SFOSUM[—1:51]>pcq + <CFOSUM[—1:51] >4
<USUMI[—1:51] >y = <USUM[—1:51] >0 + 275!

8. rounding decisions: computation of RINC, R-TINX, R_TINC, L'(ninc) = UusuM[51] A
LFIX[y 4, L'(inc) = USUMI[51] A TFIX[3 4 and L = Ly 9y A LFIX[; o in the rounding
decision circuit according to lemma 4.15, lemma, 4.14 and equations 4.138-4.139 from
the inputs SFOSUMI[51 : 53], CFOSUM[51], SEFF, SL, STICKY, RMODE]|1 : 0], usum[—1],
usuM[51] and usuMi[51]. This 'rounding decisions’ circuit is depicted in detail in
figure 4.14, only for 3 small parts in it, some additional explanations have to be
given:

— the 'INJ generation’ circuit implements the rounding mode reduction (according
to equation 2.6-2.6) and the generation of the injection bits: NJjp 4[52] =
INJ[; 2([53] = OR(SR-MODE[1:0]), INJ[4/[53] = SR_-MODE[1] and INJ[; 5[52] = 0.

— the ’Carry lower part’ circuit computes the carries from the lower part, c53
according to lemma 4.14 with (srmode = RI) <= SR_MODEJ[1], and ¢53' =
(STICKY A SEFF).

— the 'LFIX’ circuit implements the equations for LFIX[g 4 and LFIX[; o[according
to lemma 4.14 with (srmode = RNE) <= SR_MODE[(].

4.2. ADDITION/SUBTRACTION 97

uy o FA[0:52] SAl SBl SOP FB[0:52] EA[11:0] EB[11:0] SA| |SB |SOP
s 8 |
2 2 0 1
0‘1 OHO XOR 0‘1 OHO ' ‘O !
1 Mux 0 = F | 1 Mux 0 CLA(14) XOR
FA'[-2:52] ‘ FB'[-2:52] DELTA'ﬁ [13:0] |SA]ﬁ
' 5
>

' ' O 1
(13
1 Mux 0 <SD—E%: 1 Mux 0 1 Mux 0 ‘-SDELTA . | Il\lC || 1Mu>S<L0\
!

L 1 Mux 0
DEC ABS DELTA ABS DELTA

12 : :
() i i [13:6] ORtree [5:0]
‘ SEFF XOR DELTAOVF | ‘

SEFF

[oTT]13
[esz-114
[es:z-Is4

L' e
1 Mux 0 |=—¢ J
SEFF, FSO[-252], SEFF| OR() | | ORtree |
Right-Shift
DELTALIM[5:0]
Ej[1L0], SEFF, | FL[-252] FSOA l[-lzllS] ISRl S

Figure 4.12: Structure of the 'R’-path (first part) of the addition/subtraction unit II.

10.

rounding selections (equation 4.143 and lemma 4.16):

_ _ usuMI[—1:51] RINC
FINJ[-1:51] = { UsUM[—-1:51] otherwise.
, L'(inc) RINC

L = / . 3
L/(ninc) otherwise.

post-normalization shift of the rounded significand (lemma 4.16 and equation 4.153):

o1 | (FINJ[-1:50],L") if RND_FSUM[-1]
R-F[0: 52] = { (FINJ[0:51],L) otherwise.
According to lemma 4.13, the sign of the 'R’-path is given by RS = SL, which
we compute like in the previous section. The exponent of the ’R’-path is based
on e; = <Eq[11:0] >9, which is computed like in the previous section, and on the
selection according to lemma 4.16:

<R_E[11:0] > { <E([11:0] >3 +1 if RND_FSUM[—1]

<E1[11:0] > otherwise.

Moreover, during the computation of the exponent difference, we compute the con-
dition 1S_R1 <= (Jea — eb| > 1) <= ORtree((DELTAOVF, ABS_DELTA[5:1])). which
will be used later for the selection of the valid path.

The implementation is depicted in two parts in figure 4.12 and 4.13. Additionaly, a more
detailed block diagram of the 'Rounding decisions’ circuit is shown in figure 4.14. This
completes the description of the 'R’-path of the addition/subtractionlI unit.

98

CHAPTER 4. BASIC FP OPERATIONS

FL FSOA FSOA SEFF | FSOA E, [11:0]
[-1:52] [-1:52] (53] l [54:115]
HA(54) XOR
CFOSUM SFOSUM
[-1:51] [-1:52]
CFOSUM(S51] OrTree(63)
[-1:51] SFOSUM STICKY E, [11:0]
[51:52]
s RMODE
Compound l ‘ (0
Adder(53)
Rounding INC
USUMI__USUM Decisions (12
(150 [15Y] g COND, .
SEFF
- 2 % s |t ISRL|ISR2
L1 0 S
RND_FSUM | FINJ anel - MUX @ ORtree
[-1:50] l [0:51] [-1] L L = s
..] o L =
RND_FSUM[-1] MUX
l SEFF R_F[52] l R_TINX ISR
R_TINC

Figure 4.13: Structure of the 'R’-path (second part) of the addition/subtraction unit II.

'N’-path The computations in the 'N’-path are described on the basis of the adder
implementation from the previous section, which is optimized regarding the specific prop-
erties of the 'N’-path. As discussed above (see lemma 4.12(b), (c)), we can use for the
'N’-path: SEFF = 1 and § € {—1,0,1}. Additionaly, because of lemma 4.12(d) the gradual
rounding has no effect, so that the required factoring in the 'N’-path according to equation
4.106 and definition 4.3 can be written as

((n_s,n_e,n_f), N_TINC, N_TINX) (n(SL @ SFSUM, ey, abs_f sum),00). (4.159)

Because 6 € {—1,0,1}, the exponent difference can be represented by the two bits
DELTA[1:0] with <DELTA[1:0]>2 = § = ea — eb = <EA[1:0] >3 + <EB[1:0] >3 + 1, where
the two bits DELTA[1:0] can already be interpreted as the sign-magnitude representation
of §, so that abs_delta = DELTA[0] and SDELTA = DELTA([1].

Because for 0 € {—1,0,1}, the bit combination DELTA[1: 0] = 10 can not occur, the
alignment shift can be integrated with the swapping and the unconditional pre-shift into
the following selections:

(1,FB[0:52],1) if DELTA[1] AND DELTA[(]
FSOA[-2:52] = (11,FB[0:52]) if DELTA[1] AND DELTA[0]
(11, FA[0:52]) if DELTA[1].
_ . _ (sB, EB[11:0], 0,FB[0:52],0) if DELTA[1]
(st BL[11:0], FL[-2:52]) = {(SA, EA[11:0], 0,FA[0:52],0) otherwise.

Thus, <FSOA[-2:52]>9,eg = <FSA[-2:52]>0pey — 2772, and <FOSUM[—2:52] >9500 =
< FSUM[—2:52] >0 — 2772

4.2. ADDITION/SUBTRACTION 99

Q@ Q Q@ l SL l RMODE[1:0] STICKY SEFF |9 @
o ol o 0 o)
2 2 2 2 g
= £ = INJ SRMODE[1] £ £
d @ g generation =g a
8 240 [1.2 | srRMODE[0] 8
02
[52:53] l [52:53]
‘ XNOR‘ ‘ XOR ‘ Carry
A2(2 A2(2 A2(3
USUMI [[51] USUM |[51]) &) lower part (3)
SUM+1 SUM c53 SUM+1 SUM C53 C53 SUM+1 SUM
[51] J [51:52] [51:53]
‘1MUX0‘ ‘1l\/|ux°} 3 8 }1MUXO‘
STICKY
C51, 4 C51;; o lL[l,Z[l } FSUM[51:53] g g g
o 1 LFIX E g E 9
MUX 240 [12 e}
\ 2
m m L
g l & USUM[51] Lo OR
= AND | = l CS1p, 4 C5ly o 1] | usumi ’
' ' [51] I

‘ANDHANDHOR‘

1 Mux © 1 mux ©
RINC L’ (ninc) L’ (inc) L R_TINX

Figure 4.14: Implementations of the ’rounding decision circuit’ in the 'R’-path of the
addition/subtraction unit II.

[T-lnnsn

Because of <FOSUM[-2:52] >9p¢g = —<FOSUM[—2:52] >9,,04 + 2752 = — fsum, we can get
the binary representation of the absolute significand sum abs_f sum = < ABS_FSUM[—1:52] >,,¢4
with a compound adder, that computes the sum fosum = <FOSUM[-2:52] >9p¢4 and the
incremented sum fosumi = <FOSUMI[—2:52] >9pc9 = fosum + 2752 by the selection

FOSUM[—1:52] if FOSuMI[-2]

ABS._ —1:52] =
BS_FSUM[—1:52] { FOSUMI[—1:52] otherwise.

In this way, we get the factoring (SL&FOSUMI[2], <EL[11:0] >2 —1, < ABS_FSUM[—1:52] >,,.4),
which already has the value of the 'N’-path-result, but according to equation 4.120, we
still have to compute an unbounded normalization shift on this factoring.

Definition 4.7 We define the term of an imprecise normalized factoring for factorings
(Sipns €ipn, fipn), whose significand fullfills the condition f;,, € [L,4. An operation ipnorm,
that computes an imprecise normalized factoring (Sipn, €ipn, fipn) = ipnorm(s,e, f) with
val(Sipn, €ipn, fipn) = val(s, e, f) for an arbitrary non-zero factoring (s, e, f), is called im-
precise normalization shift. Note, that if [z is the shift distance of an unbounded normaliza-
tion shift, then an imprecise normalization shift uses one of the shift distances {lz,1z+1}.

Obviously, an unbounded normalization shift n can be partitioned into an imprecise
normalization shift followed by a generalized post-normalization shift:

n(s, e,) = gpost(ipnorm(s,e, [)).

100

CHAPTER 4. BASIC FP OPERATIONS

EA[LO] EB[L0] FB[0:52] FA[0:52]
l o -1
2-bit ADD INV INV
DELTA[1] ‘DELTA[O] FBO[0:52] FAQ[0:52]
1l l FBO[0:52] Hl
SA,EA[11:0],FA[0:52] 1 MUX O
SB,EB[11:0],FB[0:52] 1
l FAQ[0:52]
0 MUX 1 Eﬁ»\ 0 MUX 1]
SL FL[-1:51] (
FL[-1:51] FSOA[-1:52]
FSOA[152 ¢ . o L
ay i ¢

EL[11:0]

PN-recode
B[-252]¢ -~ ‘tyA[-252]

XOR(55)

[-1:52)

Parallel Prefix Adder(55)

P[-2:52] Gen_C[-2:52]

l [-2:52] ‘ ‘

‘PENC(54)‘ \ PENC(55)‘ | XNOR P[-izszl @

Prop_C[-1:52]

LZP1[5:0] LZP2[5:0] FOSUM | [-2:52] ~OR
SFSUM [-2] FOSUMI | [-2:52]
[-1:52] [-1:52] [-2] ‘[-1:0]
[1 MUX 0 |t [1 MUX 0 | [OR |
6 | ABS_FSUM | [-1:52]
ll l -2]
O . CLS
LZP[5:0] &
Compound (64) A@
Adder(12) SFSUM
sum sum1 IN_FSUM J [-1:52]
S L [-1:51] l [0:52]
xorR| 11 MUX 0 |
N_S N_F[0:52] IS R2

Figure 4.15: Structure of the 'N’-path in the addition/subtraction unit II.

Like suggested in the previous definition, we will partition the computation of the
normalization shift into a first step of an imprecise normalization shift followed by a
second step of a generalized post-normalization shift. The advantage of this approach
is, that the shift-amout for the imprecise normalization shift can be already determined
from the carry-save representation of the significand sum in parallel to the significand
addition, so that we can save the delay of the slow serial leading-zero computation after
the significand addition which was used in the previous section.

The generalized post-normalization shift is computed like in the 'R’-path. The only
difference between the implementation of the imprecise normalization shift and the conven-
tional normalization shift from the previous section is the computation of the shift-amout.
Therefore, we will focus on the description of the shift-amount computation in the follow-
ing. For this purpose we require some notations and techniques from [8]. We summarize
them in the next definitions and lemmas in preparation for our leading-zero estimation.

4.2. ADDITION/SUBTRACTION 101

Definition 4.8 In a Borrow-Save representation, a number is represented by two binary
strings: we call the tupel (A[ny:ng), B[ni:ng]) with a positively weigted bit string A[ny :ns]
and a negatively weigted bit string B[nq:ng] a Borrow-Save representation of the number c,
iff ¢ = < A[n1:ng] >peg — < B[Ny ing] >peq. To annote that A is the positively weighted
bit-string and B is the negatively weighted bit string, we also write AT and B~. The digits
v[i] = A[i] — B[i] € {—1,0,1} are called Borrow-Save digits and we denote the value of a
string of Borrow-Save digits y[ny:ng] € {—1,0,1}™7™ by < v[ny:ng] >ps= c. We also
write:

o =<z = () = (bt 10 8),

For X\ € [n1 : na], the fraction of a Borrow-Save representation y[ny:ng] € {—1,0,1}"2"™
at position X\ is defined by:

n2
fracty(y[ni:ng]) = oM. Z vl]-277
J=A+1
= '7[/\“‘” 971 + ’7[/\+2} .92 4ot ,7[”2] .92t

The fraction range of a Borrow-Save representation y[ny:no] € {—1,0,1}"27™ js defined
by the interval FRANGE(y[ni : ng]) = [a,b], with a = min{fracty(y[ni : n2))|A € [n; :
nal} and b = maz{fracty(y[ni:n2])|X € [n1 : na]}. Obviously, for arbitrary Borrow-Save
representations y[ni:ng] € {—1,0,1}"2"™ we have FRANGE(y[ni:ns]) C] —1,1[.

In the following definition we introduce the 'P’-carry and the ’N’-carry-recoding that will
be used for the compression of the fraction range in our leading-zero estimation.

Definition 4.9 The ’P’-carry-recoding computes from a Borrow-Save representation B =
(A[n1:n9], B[ny:ng]), the Borrow-Save representation B'=P(B)=(A'[n1—1:ns9], B'[n1—1:n3)),
where for all X € [ny:ng]:

Carry: A'[A+1] = A[A] A B[}] Residual: B'[\] = A[\] @ B[]

The ’N’-carry-recoding computes from a Borrow-Save representation B = (A[nq:ns], B[ny:
ns)), the Borrow-Save representation B' = N(B) = (A'[n1—1:ns9],B'[n1 —1:n3]) where for
all X € [ny:ngl:

Carry: B'[A+1] = A[A] A B[A] Residual: A'[A] = A[\] & B[)].

The following lemma shows some properties of 'P’-carry- and ’N’-carry-recodings:

102 CHAPTER 4. BASIC FP OPERATIONS

Lemma 4.17 This lemma consists of 4 parts:

(a) Both ’P’-carry- and ’N’-carry-recoding do not change the value of a Borrow-Save
representation, namely: < B>y = < P(B) >ps = < N(B) >ps.

(b) The ’P’-carry-recoding compresses the fraction range FRANGE(B) C la,b] of a
Borrow-Save representation B to FRANGE(P(B)) C |—1/2+a/2,b/2].

(¢) The ’N’-carry-recoding compresses the fraction range FRANGE(B) C Ja,b[of a
Borrow-Save representation B to FRANGE(N(B)) C la/2,1/2 +b/2].

(d) ’PN’-recoding reduces the fraction range of an arbitrary Borrow-Save representation

B to FRANGE(N(P(B))) C]—3/4,1/2[.

Proof: (a) There are only 4 possible bit combinations for the Borrow-Save digit at
position A by the two bits A[A] and B[A]. These bit combinations encode the 3 possible
values of a Borrow-Save digit like summarized in table 4.1. After 'P’-carry-recoding, this
Borrow-Save digit is represented by the carry A’[A — 1] and the residual B'[\], and we
can read off from table 4.1, that the 'P’-recoding equations exactly fullfill the equation
A[A] = B[A] = 2A[X — 1] — B'[)], so that < B >y, = < P(B) >ps. Accordingly, the 'N’-
carry-recoding represents the two bits A[A] and B[A] by the carry B'[A — 1] and the residual
A’[A] and implements the equation A[A] — B[] = A’[A\] — 2B'[XA — 1] (see table 4.1), so that
also < B >ps = < N(B) >ps.
(b) With the BS representations B and P(B):

. A[nl],A[nl—i—lL---,A[nQ] an _ A’[’I‘Ll—l}, A’[nl], S A’[ng]
b= (B[nl]aB[nl"i'l]a"'aB[n?} > 4 P(B) (0, Bl[nl]a) BI[nQ])’

we obtain by extracting a term from the radix polynomial of P(B) for A € [n : nsl:

fracty(P(B)) = fracty (AAF1], A'A+2], oo, Allng])

B'[A+1], B'[A+2], -+, B'[ng]

=]2 praeny (AP ARl)
= —B/\+1] 271 + fracty (8 SE\\I% ’ Q{Zj)

B / B 1 AA+2], A[A+3], -+, A[ng]
— _3p [A+” .91 + §fract,\-i—l < B[>\+2], B[)\+3], cee B[nz] >

1
= —B'\+1]-271 4 5/ ractri1(B)

Since —B/[A+1] 27! € {-1,0} and fractyy1(B) Cla,b], we obtain fracty(P(B)) €
|—1/2 +a/2,b/2[for all A € [n; : ny, so that FRANGE(P(B)) C |—1/2+a/2,b/2[, as
required. Part (c) can be proven in analogy to part (b).

(d) Starting from the fraction range FRANGE(B) C | — 1, 1] of an arbitrary Borrow-
Save-representation B, the use of part (b) and part (c) of this lemma directly yields
FRANGE(P(N(B))) C]—3/4,1/2], as required. O

The following lemma describes the application of 'PN’-recoding for the imprecize normal-
ization shift of the 'N’-path.

4.2.

ADDITION/SUBTRACTION

103

Borrow-Save representation

"P’-carry-recoding || 'N’-carry-recoding

AL B D [ATN -8 =9\

A =11 B [[BA=1]] AN

-1

1

0
0
1
1

O| = O =

0
0
1

—lo|lo|lo
ol oo
_ OO

0
0
1

Table 4.1: Summary of the cases in the 'P’-carry and the 'N’-carry-recoding.

Lemma 4.18 With the computation of

we get the imprecisely normalized factoring

AT g [—4:52]
B g [—4152]

Vfsum|—4:52] = <
LzP1[5 : 0]

LzP2[5 : 0]

LzP[5 : 0]

IN_FSUM[—1:52]
<IN_E[11:0] >

FL[—2:52]
P <N (NOT(ps0A[-2:52))))
PENG (A, [1:52] @ B, [-1:5])
PENC (A}fsum[—2:52} ® By 2 52])
LzP1[5: 0] if SFSUM
LzZP2[5 : 0] otherwise.

CLS(ABS_FSUM[—1:52], < LZP[5:0] >29)
<EL[11:0] >9+ < (111111, LZP[5:0] >»

(n-s,in_e,in_fsum) = (N_s, <IN_E[11:0] >9, < IN_FSUM[—1:52] >p.,).

so that val(n_s,in_e,in_fsum) = val(n_s, < EL[11 : 0] >9 —1, < ABS_FSUM[—1:52] >;4)
and in_fsum € [1,4].

Proof: Because fsum = < FL[—2:52] >p.y — < FSOA[—2:52] >,., and because of lemma
4.17 (a), we get <7Yfsum>ps = fsum. For all non-zero fsum # 0, the borrow-save
representation 7y fsym[—4:52] includes at least one non-zero digit, so that for a k € [4:52],
it has the form ~yfg,m[—4:52] = (0k+4,fyfsum[k:52]) with vfem[k] € {—1,1}.
By lemma 4.17(d) we obtain the fraction range FRANGE(yfsum[—4:52]) C]-3/4,1/2.
For the determination of the range of ABS_FSUM from 7 fsm[k:52] and the fraction range,
we differ between the two cases: (a) vfsum[k] = 1; and (b) Yfsum[k] = —1.

(a) From 7yrgumlk] = 1 and fracty(yrsum(k+1 : 52]) €] — 3/4,1/2[, it follows, that
fracty (Yrsum[k:52]) €]1/2 —3/8,1/2 + 1/4[=]1/8,3/4[. Moreover, the fraction
range is also valid for the fraction at position k—1, so that fract_i (7 sum([k:52]) €
11/8,3/4[N] —3/4,1/2] =]1/8,1/2[. Thus, 2¥*2 . abs_fsum €]1,4[. According to
lemma 4.12, we assume in the 'N’-path, that fsum < 1. Thus, we define [zp2 =
(k 4+ 2) and get for case (a), lzp2 = (k + 2) > 0.

(b) Correspondingly, for yseum[k] = —1, we get fracty_i (yfsum[k:52]) €

4,40 = -1

47 2

13 _1

J=3— 52
. Thus, 28! . abs_fsum €]1,3[. For this case we define lzpl =

+1N

(k + 1), so that we can derive from abs_fsum < 2, that also this leading zero pre-
diction has to be non-negative lzpl = (k + 1) > 0.

104 CHAPTER 4. BASIC FP OPERATIONS

Because the representation of a Borrow-Save digit by AT[A] and B~ [A] is non-zero, iff
AT[A] @ B[] and l2zpl,l2p2 > 0, the number lzp2 = k + 2 can be interpreted as the
number of leading zeros in the string 7 ssym[—2:52], so that

lzp2 =< 1zP2[5 : 0] >= <PENC(AT[-2:52] ® B [-2:52]) >.

Accordingly, the number lzpl = lzp2 — 1 = k + 1 can be recognized as the number of
leading zeros in the string vfg,m[—1:52], so that

lzpl =< 1zP1[5:0] >=k + 1 = <PENC(AT[-1:52] @ B~ [-1:52]) >.

Obviously, the above case (a) occurs, iff fsum > 0 and the above case (b) occurs,
iff fsum < 0. Because in case (a), 2!%P? . abs_fsum € |1,4, lzp2 > 0 and abs_fsum =
< ABS_FSUM[—1:52] >4, the significand in_fsum = 212P2 . abs_fsum is imprecisely nor-
malized and can be represented by IN_FSUM[—1 : 52] and the multiplication of abs_fsum
by 2/*P? can be implemented by a left-shift of ABS_FSUM[—1:52] by l2p2 positions. Ac-
cordingly, in case (b) the significand in_fsum = 2*P1 . abs_f sum is imprecisely normalized
and can be represented by IN_FSUM[—1:52] and the multiplication of abs_fsum by 2!%P!
can be implemented by a left-shift of ABS_Fsum[—1:52] by [zp]l positions.

The definition of the leading zero prediction [zp selects either the [zp2 for case (a)
and [zpl for case (b), so that the left-shift of ABS_FSUM[—1:52] by lzp positions exactly
computes the binary representation of the imprecisely normalized significand in_fsum =
<IN_FSUM[—1:52] >¢0. In this way in_fsum = abs_fsum - 2!?P.

The term Izp is adjusted in the exponent by in_e = <IN_E[11:0]>9 = el — 1 — l2zp, so
that in_fsum - 2"-¢ = abs_fsum - 2°~1, as required by the lemma. O

Based on the results of this lemma, the 'N’-path result is computed from SL, SFSUM,
IN_E[11:0], and IN_FSUM[—1:52] by the final generalized post-normalization shift:

(n-s,n_e,n_f)= post_norm(SL @ SFSUM, <IN_E[11:0] >9, <IN_FSUM[—1:52] >,4))

_ [(sL@sFsuM, <IN_E[11:0] >o+1, <IN_FSUM[—1:51] >peq2) if IN_FSUM[-1]
| (sL@sFsuM, <IN_E[11:0] >, <IN_FSUM[0:52] >.,) otherwise.

The incremented exponent is already precomputed with a compound adder during the
exponent adjustment from lemma 4.18, so that the post-normalization shift can be realized
by a simple selection depending on the value of IN_FSUM[—1]. Additionaly, we compute
the condition 1S_R2 = FOSUMI[—2] A (FOSUMI[—1] V FOSUMI[0]), that will be used for the
path selection. This completes the description of the 'N’-path, a block diagram of which
is depicted in figure 4.15.

Path selection In the following we explain how the general path selection condition
IS_R is computed from the signals 1S_R1, 1S_R2 and SEFF. We start from the definition of
the path selection condition according to lemma 4.3:

ISR <= SEFFV (fsum € [1,4))
<= SEFFV (fsum € [1,4) under the assumption SEFF = 1)

Because for 1s_R = 0, we have abs_delta < 1 according to lemma 4.12, which is signaled
by 1S_R1, the above equation can be further extended to:

ISR <= SEFF VIS_R1V (fsum € [1,4) under the assumption SEFF and IS_RI)

4.2. ADDITION/SUBTRACTION 105

Because the assumptions SEFF = 1 and 1S_R1 are exactly the assumptions, that we use
during the computation of fsum in the N’-path, the condition 1S_R2 exactly implements
the expression (fsum € [1,4) under the assumption SEFF = 1 and IS_Rl), so that

IS.R = SEFF VIS_Rl VIS_R2 (4.160)

The condition 1S_R1 and the signal SEFF are computed in the 'R’-path and the condition
1S_R2 is computed in the 'N’-path. These three parts of the path selection condition are
combined in the 'R’-path like depicted in figure 4.13, so that the result of the valid path
can be selected by the combined path selection condition 1S_R like depicted in figure 4.11.
This completes the description of the addition/subtractionII unit.

4.2.3 Addition/Subtraction III (normalized — normalized format)

Like in the two previous sections also in this section the FP addition/subtraction is com-
puted from the inputs of the normalized representations BU Say [69:0] and BU Sby r[69:0]
(section 2.6.3), the rounding mode represented by RMODE[1:0] and the bit sOP that sig-
nals the case of addition or subtraction. But in contrast to the previous implementations,
where a representative of the exact operation result or a gradual rounded result had to
be delivered, in this case the addition unit III already has to compute the IEEE factoring
representation of the rounded result in the normalized format.
Formally, with the notation from equation 2.16 and lemma 2.8 and with

(Snrm €Enrcs fnrc): nroundmode(srm erc + wec, frc) (4-161)

=exp-rdmodexs,. (n(n—Sig—"A"’Ldmode*srC (n(sra ércTwec, frc)))) (4- 162)

the required addition result is based on the following NF factoring

0 y€gNaN quaN) if SCQNAN

((
(Sinfs€oos foo) if SCINF
()= (sa,ea, fa) if scx (4.163)
SNF,eNF, [NF (sb. ¢b. 1) oo .
(s0,€0,0) if SCZERO
L(

L (Snres €nres fure) Otherwise.

so that the sum output of the addition/subtraction unit III is specified by the corre-
sponding representation in the normalized format BUSnr[70:0] = NF(syr,enr, fNF).
To compute the exponent wrapping, the inputs of the trap handler enable bits UNF_EN
and OVF_EN are required. Moreover, the occurance of an invalid, inexact, overflow and
underflow exception should be signaled by the bit INV, INX, OVF and UNF, respectively.

The computation of the special value results according to equation 4.163 is imple-
mented like in the previous section. The only difference is that in this section an infinity
result might also be generated in the regular case because of the exponent rounding. Thus,
the special case condition for an infinity result from the special cases circuit SCINF is only
valid for sPcA = 1. We denote this condition by INFs. = SCINF in this section. Accord-
ingly, we define the condition INF,,. that signals the case of an infinity result for the
regular case INFy,. <= (val(Spres €nres frre) = £00), so that we get the final infinity flag
by

INF,. if SPCA

INFp,. otherwise. (4.164)

INFNFp = {

106 CHAPTER 4. BASIC FP OPERATIONS

For the regular case the computations of (Surc, €nres frre) have to be modified in com-
parison to the computations of (sgpc, €gre, fore) from the previous section. The difference in
these computations is that in this section we already have to consider single step rounding
at the final rounding position vp while integrating the cases for single precision and double
precision. Moreover, we also have to consider the exponent wrapping and the exponent
rounding.

We base the computation of (Sprc, €nres fnre) on the two-path addition algorithm from
the previous section with the path selection condition 1S_R. In this section we denote the
factoring output of the R-path (IS_.R = 1) by (r_sn,r_en,r_fn) and the factoring output
of the N-path (1S_R = 0) by (n_sn,n_en,n_fn), so that the factoring for the regular case
is selected by
(r_sn,r_en,r_fn) if IS_R
(n_sn,n_en,n_fn) otherwise.

(Snra €nrcs fnrc) = {

Moreover, the exceptions are detected seperately for the two paths by (N_INX, N_.UNF, N_OVF)
for 1S_.R = 0 and by (R_INX, R_UNF,R_OVF) for IS_R = 1, so that in general the occurance
of the inexact, the underflow and the overflow exception are signaled by

(R_INX,R_UNF,R_OVF) if IS_R

(INX, UNF, OVF) = { (N_INX, N_UNF,N_OVF) otherwise.

In this way the main structure of the implementation in this section (see figure 4.16) is
very similar to that from the previous section (see figure 4.11). In the following we describe
the details of the implementation of the R-path and the implementation of the N-path
separately.

N-path In the N-path we have to compute the representation of the factoring

(n_sn,n_en,n_fn) = exp_rndmodexS,. (N(N-sig-rndmodexs,, (1(Sre, erc+wec, fre)))),

where we can use the condition that 1IS_R = 0. We partition the discussion of these
computations into two steps: the first step with the computation of

(n_snl,n_enl,n_fnl) = n(n-sig-rndmodess,.(N(Sres €res fre))), (4.165)

so that we get the final result of the N-path by the second computation step of
(nsn,n_en,n_fn) = exp_rndmodess,, (n-snl,n_enl +wee,n_fnl). (4.166)

In the first computation step, the rounding function n_sig_-rndn,edess,. differs from the
rounding function sgrndl,,egess,. and the second unbounded normalization shift differs
from the post-normalization shift in the previous section. The two rounding functions
only differ by the rounding position, which is vp = (p—1)—maz{0, €ymin—el.} in this case.
In the previous section, the rounding position was 52 and it was shown, that this rounding
function does not have any effect in the N-path. We will show in the following lemma, that
also the significand rounding at the variable rounding position vp can be neglected in the
N-path. In this way the rounding output is still normalized from the first normalization
shift, so that also the second normalization shift is not required. Thus, all computations
for the first step (equation 4.165) are already considered by the N-path implementation
from the previous section:

4.2. ADDITION/SUBTRACTION 107

BUSa - [69:0]
[3:00 [69:4] BUSH NF [690]
[3:0] [69:4]
ZEROa| |ZEROb sB SA
INFa| | INFb EB[1L:0] EA[1L:0]
ONANa| | QNAND FB[0:52] FA[0:52]
SNANa| | SNANb
(SA,EA[11:0],FA[0:52]) (SA,EA[11:0],FA[0:52])
(SB,EB[11:0],FB[0:52]) (SB,EB[1L:0] FB[0:52])
SOP
RMODE[L:0]
1
4 DBL
4 N-path R-path UNF_EN
. _) OVF_EN
special computation o computation =
cases Pl
N
I;U
° c INV
INV z z < B ® = Y
13 2187 2, .
SPCA 25z ¢z >E3|”'d;6%%
a8 2 e 8 ¢ 5% 53 T
1) 1 J
INFg, | 1 Mux 0 | INX
ISR F UNF
Enrcl11:0] INX, UNF, OVF nre OVF
Frd0:52] Sire 2
S ()]
sC g
m
S..| S =
Fe[0:52] Frrd0:52] Ly M ke’
w
. 1Mux 0 AND
Eg[11:0] Eprd11:0] INFg INF o & | | | |
sPea] (K ' ' !
— 1 Mux 0 1Mux 0 S OMux 1|=—
| | oF e
P ZERo= L Mux o0 |
(3| VAN e ENpl1L0]| Fyel052] INFyH ZEROyp L1 Mux 0
[1:0] SNAN NE [68:57] [56:4] 2 [69] y SNF
BUS ¢ [69:0]

Figure 4.16: Structure of the addition/subtraction unit III.

Lemma 4.19 (a) For a fized precision with fized p and ep;n, all exact addition/subtraction
results are integral multiples of 26min—P+1,

(b) If the significand rounding position is variable, namely vp # p — 1, then no rounding
computation is required in the addition/subtraction implementation.

(c) In the N-path of the adder III, no implementation of rounding or the second nor-
malization shift is required, so that for 1IS_.R = 0 we have

(n_snl,n_enl,n_fnl) = (n_s,n_e,n_f) = 1(Src, €rc, frc) = N(SLBSFSUM, e, abs_f sum).

108 CHAPTER 4. BASIC FP OPERATIONS

Proof: (a) Because for a fixed p and e;p, all operands are integral multiples of 2¢min —P+1,
also the exact sum and the exact difference of these operands are integral multiples of
2emin—p+1

(b) The rounding position vp satisfies vp # p — 1, iff the exponent €., of the rounding
operand is smaller than ep,;,. In this case, the weight of the rounding position vp is
2¢re=PFl < 9emin—P+l Because from (a) it follows, that all exact addition/subtraction
results are integral multiples of this rounding position weight, the rounding computation
has no effect for the case that vp # p — 1.

(c) We first show, that there is no rounding computation required in the N-path. For
this proof we distinguish between the cases of single precision and double precision and the
cases that the rounding position fulfills either vp = p—1 or vp # p—1: For vp # p— 1 the
proof already follows from part (b). For double precision and vp = p—1, we have vp = 52,
so that the setting is like in the previous section and it follows from lemma 4.12(d) that
no rounding computation is required in the N-path in this case. For single precision with
p =24 and vp = p — 1 = 23, the proof of lemma 4.12(d) could be adopted accordingly, so
that also for this case, no rounding computations in the N-path are required. Thus, the
rounding computations can be neglected in the N-path for all cases. In this way the input
of the second normalization shift in equation 4.165 is still normalized, so that even the
second normalization shift can be neglected in equation 4.165. In this way we have exactly
the same situation like in the N-path of the previous section, so that we get as required
(n_snl,n_enl,n_fnl)=n(src, €rc, fre)=n(SL @ SFSUM, ey, abs_f sum)=(n_s,n_e,n_f). O

Thus, for the computation of (n_snl,n_enl,n_fnl) = (n_s,n_e,n_f) (equation 4.165),
the N-path implementation from the previous section is used. The computation of the
second part according to equation 4.166, requires the detection of the overflow and the
underflow exception. In the following lemma we consider both, the exception detections
and the implementation of the second step (equation 4.166) to compute the factoring
(n_sn,n_en,n_fn).

Lemma 4.20 In the N-path:
(a) no overflow can occur: N_OVF = 0.
(b) exponent rounding has no effect., so that (n_sn,n_en,n_fn) = (n_s,n_e + wec,n_f).
(c) all results are exact and an inezact exception can not occur: N_INX = 0.

(d) with the computation of <N_TT[11:0]>5 = <N_E[11:0] >+ < (0,DBL3,1%,0) >, the
underflow exception can be detected by: N_UNF <= (N_TT[11] A UNF_EN A SPCA).

Lo otherwise.

Proof: (a) Because we consider non-zero representable input operands in the N-path,
the exponent of the “larger” operand el is smaller than or equal to e,,4,. Because in the
N-path we have fsum < 1, all results in the N-path have values smaller than 2¢me | so
that no overflow can occur in the N-path and N_OVF = 0.

(b) Because all results in the N-path have values smaller than 2¢mez the exponent
rounding in equation 4.166 becomes the identity function, so that we get the result of the
N-path by (n_sn,n_en,n_fn) = (n_s,n_e + wec, n_f), as required.

(c) Because both the significand rounding and the exponent rounding do not change
the value of the result, all results in the N-path are exact, so that N_INX = 0.

4.2. ADDITION/SUBTRACTION 109

N_E[110] -E ;i 1L0]
| N_E[1L0]
+ALPHA[11:7]
N_E[11:7]
CSA(12)
N_TT[1]]
CSA(5)
UNF_EN
[11:7] ‘SPCA
N_E[6:0] 1 O
y 9 1 N_UNF
Imux 0 |«
lN_EN[ll:O] 4 N_UNF

Figure 4.17: Additional circuits for the N-path of the addition/subtraction unit III.

(d) Because the factoring (n_s, n_e,n_f) is normalized with n_f € [1,2[, the value of the
result val(n_s,n_e,n_f) is tiny, iff n_e < e,;,. From (c) and the definition of the underflow
exception in section 2.4.1 it then follows, that N_UNF <= ((n_-e < €pin) A UNF_EN ASPCA).
Because —enin, = <(0,DBL3,1%,0)>5, we have (n_e < enn) <= N_TT[11], so that the
above equation for N_UNF can be written as N.UNF <= (N_TT[11] A UNF_EN A SPCA).

(e) From (c) it follows, that N_UNF <= N_UNF A UNF_EN. Because no overflow can
occur in the N-path according to (a), the definition of the exponent wrapping constant
from equation 2.14 becomes

+a = < ALPHA[11:7] >3 = < (0,DBL2,0,DBL?) > if N_UNF
wec = .
0 otherwise.

|

Thus, in the second computation step of the N-path only the underflow exception has
to be detected according to part (b) and the exponent wrapping n_en = n_e + wec has to
be computed according to part (b) and (e). The implementation of these extensions for
the N-path are depicted in figure 4.17. This completes the description of the N-path for
the adder IIT unit.

110 CHAPTER 4. BASIC FP OPERATIONS

R-path In the R-path we have to compute the representation of the NF-factoring

(T_Sn, Ir—enﬂ ’r—fn) = exp—rndmode*sm (n(n—s'ig—rndmode*sm (n(ST07 eTC+wecﬂ fTC))))7

where we can use the condition that 1S_.R = 1. Like in the description of the N-path, we
also partition the discussion of the R-path computations into two steps: the first step with
the computation of

(r-snl,renl,r_fnl) = n(n—Sig—rndmode*src (n(Sres €res fre))), (4.167)

so that we get the final R-path result by the second computation step with
(rsn,r_en,r_fn) = exp-rndmodess,.(r-snl,r_enl + wec,r_fnl). (4.168)

First, we deal with the computations for equation 4.167. This formula for the com-
putation of (r_snl,r_enl,r_fnl) and the formula for (r_s,r_e,r_f) in the R-path of the
previous section (equation 4.120) differ for the significand rounding functions and the sec-
ond normalization shift. Let (s.., el., f].) = 1(Sres €re, fre). With the rounding position
vp = (p—1)—max{0, emin —e€).}, the above factorings can be written as (see rounding
function definitions 2.16 and 2.9):

(rsnl,r_enl,r_fnl) = n(She €nes TNmodesSL.up(fre)) (4.169)
(r_s,r_e,r_f) = postnorm(sy,, €ye, "modexsL.52(fre)) (4.170)

Thus, the only difference of the significand rounding functions are the rounding positions:
in this section significand rounding at the variable significand position vp is considered,
while in the previous section significand rounding at the fixed rounding position 52 was
computed.

The following lemma shows, that for the addition/subtraction implementation, the
variable rounding position vp can be substituted by vp', a fixed rounding position for
single precision and a fixed rounding position for double precision, so that the rounding
implementation from the previous section could be adopted either for the single precision
or for the double precision case. As we know from the previous section, that the post-
normalization shift in equation 4.170 already normalizes the rounded factoring and we
have a similar rounding computation in equation 4.169, also in equation 4.169 a post-
normalization shift will be sufficient to normalize the result instead of an unbounded
normalization shift:

Lemma 4.21 In the addition/subtraction implementation, the variable rounding position

. 52 if DBL .
_ 1y o r_
vp = (p—1) —max{0, emin — €.} can be substituted by vp { 93 otherwise without
changing the rounded result, so that
(rsnl,r_enl,r_fnl) = n(she, €res TNmodesSLouop (fre)) (4.171)

_ {post_norm(s;ﬁc,e;c,rndmode*SL’g,Q(f;C)) if DBL é4 172)
Post_norm(s,.., €rq, "NmedessL 23 (f1,)) otherwise.

Proof: According to lemma 4.19(b), no rounding computation is required in the adder
implementation for vp # p — 1. Therefore, and because vp < p — 1 , we always could
set the rounding position to p — 1 without changing the rounding result. The integration
of the case for single precision (p — 1 = 23) and double precision (p — 1 = 52) exactly

4.2. ADDITION/SUBTRACTION 111

yields the rounding position vp’. With the rounding computation at the fixed position
vp', which is the least significant bit position for single and double precision, also the
rounding result 71d,,pde4SLop' (frc) 18 in the range [1, 2], so that a post-normalization shift
and an unbounded normalization shift have the same effect on the rounded factoring, and
we can replace 1 by post_norm in the lemma. O

Based on this lemma we could apply the implementation of the R-path from the previous
section for the computation of (r_snl,r_enl,r_fnl) = (r_s,r_e,r_f) in the double precision
case. Thus, we get for double precision according to lemma 4.13:

(r_snl,rend,r_fnl) = gpost_norm(SL, 1, rNdmedexst, 52 (fsum)) if fsum € [1,2[A DBL
T gpost_norm(SL, e1, Tndpedesst, 51 (fsum)) if fsum € [2,4] A DBL
Accordingly, lemma 4.13 could also be adopted for p — 1 = 23, so that the single
g g
precision case could be integrated and we get

gpost_norm(SL, e1, Tndmedexst, 52 (fsum)) if fsum € [1,2[A DBL

) gpostnorm(SL, e1, "ndpmoedexst 51 (fsum)) if fsum € [2,4] A DBL
(rsnl,renl,r_fnl) = gpost_norm(SL, e1, Tndpmedesst, 23(fsum)) if fsum € [1,2]
(() [

gpost_norm(SL, e1, "ndpmodexst 22(fsum)) if fsum € [2,4] A DBL

The sign and the exponent are constant in the four choices, so that for the following
discussion we isolate the significand computation by

TN modesSL 52(fsum) if fsum € [1,2[A DBL
r_frnd = rNlmodesSL,51 (fsum) if fsum € [2,4] A DBL
TN modesSL 23 (fsum) if fsum € [1,2] ADBL
Tndmode*SL,QQ(fS’um) if fsum € [2, 4[A DBL

and have then to compute (r_snl,r_enl,r_fnl) = gpost_norm(SL, ey, r_frnd).

Because the injection based rounding reduction only depends on the rounding position
and not on the value of the rounding operand, we align the rounding positions for single
precision and double precision by

T modexsL,52 (f sum) if fsum € [1,2] A DBL
_ TN modexSL,51 (fsum) if fsum € [2,4] A DBL
r-frnd = 2% rndpmodessr,52 (272 - fsum) if fsum € [1,2[A DBL (4.173)
2% rndmedessr 51 (2727« fsum) if fsum € [2,4] ADBL
In the implementation, the multiplication of the rounding operand by 272 in the case of

single precision is achieved by a conditional left-shift of the representations of both input
significands by 29 positions for DBL = (0. We denote these aligned operands by

_) _ fa =<FA[0:52] > if DBL

faq =<FAQ[0:52] >ney = { 2729 fa =< (0%,FA[0:23]) >pe, otherwise. (4.174)
. _ Jb=<FB[0:52] >4 if DBL

fbq =<FBQ[0:52] >neq { 2729 fb=<(0%,FB[0:23]) >, otherwise. (4.175)

Accordingly, we indicate all corresponding values that are computed from faq and fbg
instead of fa and fb by appending a ¢’ to their name. With this notation and with the

A DBL

112 CHAPTER 4. BASIC FP OPERATIONS

inputs of FAQ[0:52] and FBQ[0:52], the R-path implementation from the previous section
computes

fsumq = <FSUMQ[—1:115]>,,.4 (4.176)
_ fsum = <FSUM[—1:115] >, if DBL
N { 2729 fsum = < (0%°, FSUM[—1:86]) >, otherwise. (4.177)
usumq = <USUMQ[—1:51]>,, (4.178)
B usum = <USUM[—1 : 51] >, if DBL
N { 2729 usum = < (0%, usuM[—1 : 22]) >, otherwise. (4.179)

In equation 4.179 the signal usum[—1], which substitutes the condition fsum € [2,4]
according to lemma 4.15, is shifted to position UsuMQ[28] for single precision. Thus, the
signal usuM[—1] can be selected by

usuMmQ[—1] if DBL

USUMQ[28] otherwise. (4.180)

USUM[—1] = CONDQjp 4] = {

With the substitution of CONDQyy 4/ for the condition fsum € [2,4], equation 4.173 can be
written as

'rndmode*SL,E)Q(fsqu) if CONDQ[QA[A DBL
TNl modesSL 51 (f sumg) if CONDQp 4 A DBL
- = ’ . ’ 4.181
r-frnd 2% rndmedesst, 52 (fsumg) if CONDQj 4] A DBL (4.181)
2% rndmedesst, 51 (fsumg) if CONDQjy 4; A DBL

)

If the condition CONDpy 4 <= fsum € [2,4] is also substituted by the bit CONDQp 4 in
the modified rounding computations from the previous section, then this R-path imple-
mentation computes

rnd_fsumq = < RND_FSUMQ[—1:52] >4 (4.182)

_ { Tndmode*SL,SQ(fsumq) ifWQ[QA[

! 4.183
TN modexSL,51(fsumg) if CONDQyy 4. ()

Obviously, the rounded significand r_frnd can then be computed by a conditional left
shift of RND_FSUMQ|—1:52] by 29 positions for the case of single precision (see eq. 4.181)

r_frnd = < R_FRND[—1:52] >, (4.184)
_ rnd_f sumg = < RND_FSUMQ[—1:52] >, if DBL (4.185)
229 . rnd_fsumgq = < (RND_FSUMQ[28:52],0%%) >, ., otherwise.

Although, this is already an equation for the required significand r_frnd, we would like to
postpone the re-alignment-shift by 29 positions in this equation after the computation of
the generalized post-normalization shift. One can easily read off from equation 4.185, that
the rounded significand r_frnd is in the range [2, 4[for the post-normalization condition

PSCOND <= (r_frnd € [2,4]) (4.186)
<= (RND_FSUMQ[—1] ADBL) V (RND_FSUMQ[28] ADBL). (4.187)

Thus, we get for the generalized post-normalization shift,

(r_snl,r_enl,r_fnl) = gpost_-norm(SL,ei,r_frnd) (4.188)
{ (st,e; + 1,7_frnd/2) if PSCOND

(SsL,eq,r_frnd) otherwise. (4.189)

4.2. ADDITION/SUBTRACTION 113

With the preliminary significand r_fgq

r-fqg = <RFQ[0:52] > (4.190)
B rnd_f sumq = < RND_FSUMQ[0:52] >, if PSCOND (4.191)
N rnd_f sumgq/2 = < RND_FSUMQ[—1:51] >,., otherwise, '

the significand for the factoring (r_snl,r_enl,r_fnl) can be computed by the following
re-alignment selection

r_fnl = <R_FN1[0:52]>peq (4.192)
_ r_fq = < R-FQ[0:52] >4 if DBL (4.193)
| 2% - r_fg= <(RFQ[29:52],0%%) >, otherwise, '

Note, that equation 4.191 describes the generalized post-normalization shift of the mod-
ified R-path implementation from the previous section, where only the control signal
RND_FSUM|—1] is substituted by the post-normalization condition PSCOND. In this way the
computation of the factoring (r_snl,r_enl,r_fnl) on the basis of the modified R-path im-
plementation from the previous section requires only the five additional circuits according
to the equations 4.174, 4.175, 4.180, 4.187 and 4.193. The integration of these additional
circuits around the R-path implementation from the previous section is depicted in figure
4.18, where the additional circuits are represented by shaded boxes. This completes the
description of first step in the R-path computations according to equation 4.167.

In the following we consider the second step of the R-path computations according to
equation 4.168. This includes the detection of the exceptions, the exponent rounding and
the exponent wrapping.

Lemma 4.22 With the computation of

<R.TT[11:0]>3 = <E([11:0]>5 + <(0,DBL>,1%,0) >,
<R_TTI[11:0] > = <R_TT[11:0]>2+1

the exceptions in the R-path can be detected by:

R.OVF <= (ZEROTEST(E;[11:0] @ (0,DBL?,17)) A SPGA A PSCOND)
R_INX <= (R_TINXQ V R_OVF)

R_TTI[11] A (UNF_EN V R_INX) A SPCA if PSCOND

R.UNF <= — .
{ R_TT[11] A (UNF_EN V R_INX) A SPCA otherwise

Proof: The condition for an overflow in the R-path is given by
R_OVF <= (|val(r_snl,r_enl,r_fnl)| > 26ma=+1),

Because of the normalized significand r_fnl € [1,2[, this overflow condition can be written
as R_OVF <= (r_enl > epq, + 1). Because in the R-path we only have to consider non-
zero representable operands, the exponent of the "larger’ operand el and also ey are smaller
than or equal to ;4. Thus, according to equation 4.189, the exponent of the normalized
factoring r_enl can only become larger than ey,q,, if r_.enl = ei; = eney + 1. Thus,
R_OVF <= (ei] = €may + 1) APSCOND A SPCA. Because (€11 = epar + 1) <= (€1 = €maz)
and €4, =< (0,DBL3,17) >, the equation for R_LOVF can be written as R_OVF <=
(ZEROTEST(E[11:0] @ (0,DBL3,17)) A PSCOND A SPCA, as required.

114 CHAPTER 4. BASIC FP OPERATIONS

29 | FA[0:23] | FA[0:52] 20| FB[0:23] | FB[0:52] SA EA[11:0]
04 peL 9y SB EB[1L:0]
| 0 MUX 1 | | 0 MUX Sop
 FAQ(0:52] | FBQI0:52

Compuitations like in R-path for addition/subtraction |1

CFOSUMQ SFOSUMQ FSOAQ[53] SEFF | STICKYQ Eq [1L:0]
[-1:51] [-1:52] CFOSUMQ[51]
s
v ¢[-151] SFOSUMQ IS R
[51:52]
Compound s RMODE ~ UNF_EN SPCA
[1:0] OVF_EN DBL
Adder(53) l
Y 1 Y
USUMIQ USUMQ
! Roundin .
Al @ DeCiSioni SRMODE[L0] | Exponent &
[-1:51] [-1:51] % Exception
computation
! CONDQ[2,4[§ S5 L RLTINXQ
| 1 MUX 0 | o 3 L3 —
RINCQ SIS)
RND_FSUMQJFINJQ [1MUXo0 |
() sl
[-1:50] [0:51] | DBL L L
| 1 MUX o | | OMUX 1 | ———
PSCOND
‘ R_FQ[0:51] R_FQ[52] ‘
[0:52] [29:52] L029 Fmax[O:SZ]L me[o:52]i
1 .
o OBL[Ty MUX o | FEHHEL[ETMUX o |
R_INX
[1 MUX o | R_UNF
R_SN lIS_R lSEFF lR_FN[O:SZ] R EN[11:0]y R OVFy

Figure 4.18: R-path implementation for the addition/subtraction unit III. Shaded boxes
had to be added to the R-path implementation of the addition/subtraction unit II.

The inexactness of an result can have two reasons, either the significand rounding
or the case of an overflow. The significand rounding inexactness was computed in the
previous section by R_TINX, The rounding position and rounding computation has not
changed in this section and only the range detection condition CONDjy 4 was substituted
by CONDQ[p4[. Thus, the significand rounding inexactness from lemma 4.14 becomes

R_TINXQ = STICKYQ V ((CONDQqz 4f A OR(FSUMQ[52:53])) V (CONDQ[z 4] A FSUMQ[53]))

and we get the R-path inexactness condition by R.INX = R_TINXQ V R_OVF.
With R_TINY <= |val(r_snl,r_enl,r_fnl)| < 2°min the underflow exception for the

4.2. ADDITION/SUBTRACTION 115

R-path is given by
R_UNF <= R_TINY A (UNF_EN V R_INX) A SPCA.

The normalized factoring (r_snl,r_enl,r_fnl) is tiny, namely R_TINY = 1, iff r_enl <
emin- DBecause of the exponent selection of r_enl from e; and ei; according to equa-
tion 4.189 and —emin = <(0,DBL3,1%,0)>9, so that <R_TT[11:0]>9 = €1 — emin and
<R-TTI[11:0] >9 = eij —emin, we get

R-TTI[11] if PSCOND

R_TINY = { R_TT[11] otherwise.

Thus, the underflow condition for the R-path can be written as

R_TTI[11] A (UNF_EN V R_INX) A SPCA if PSCOND

_UNF < i .
R-v { R-TT[11] A (UNF_EN V R_INX) A SPCA otherwise.

a

Because the signal PSCOND is valid rather late, we compute each exception in two
parallel paths: one path under the assumption that PSCOND = 1 with the signals R_OVF[1],
R-INX[1] and R-UNF[1] and the other path under the assumption that PSCOND = (with
the signals R_.OVF[0], R_INX[0] and R_UNF[0]. Obviously, the exception flags can then be
selected by:

(R-OVF[1], R_INX[1], R_UNF[1]) if PSCOND

(R-OVF[0], R-INX[0], R_-UNF[0]) otherwise. (4.194)

(R_OVF, R_INX, R_UNF) = {

From lemma 4.22 one can easily read off the following equations for the two paths:

R.OVF[1] = (zZEROTEST(E;[11:0] ® (0,DBL?,17)) A SPCA (4.195)
R-OVF[0] = 0 (4.196)
R_INX[l] = R_TINXQV R_OVF][]] (4.197)
RINX[0)] = R_TINXQ (4.198)
R_UNF[l] = R_TTI[11] A (UNF_EN V R_INX[1]) A SPCA (4.199)
R_.UNF[0] = R_TT[11] A (UNF_EN V R_INX[0]) A SPCA (4.200)

In the following we describe the computations of the exponent wrapping and the exponent
rounding, which are required in the second step according to equation 4.168.

We split the computations for the sign, the exponent and the significand. The sign is
given by R_.SN1 = SL. With the preselection of the significand result for an untrapped over-
flow based on the rounding mode by (Note, that srmode # RZ for OR(SR-MODE[1:0]) =1):

_ ‘ S foo =< (1,0%2) >y if OR(SR-MODE][1:0])
r-fovf = <RFOVF[0:52] >pey = { fmaz = < (124, DBL??) >neg Otherwise.
the final significand can be selected according to 2.12 by

rfn = r_fouf if RLOVF A OVF_EN
7 rofnl otherwise.

116 CHAPTER 4. BASIC FP OPERATIONS

For the exponent computations we predict the wrapping exponent constant based on the
sign of the exponent e;.

e = | T =< FALPHA[LL:T] >5 = < (0,pBL?,0,DBL2, 0°) >, if By[11]
p | —a =< —ALPHA[11:7] >3 = < (1,DBL, 1, DBL, 0, DBL, 0°) >, otherwise.

This prediction can be done due to the fact, that for a positive exponent e; > 0, also
r_enl > 0, so that no underflow can occur and for a negative exponent e; < 0, we have
r_enl < 0, so that no overflow can occur. The exponent wrapping constant can then be
selected by:

pwec if ((R-OVF A OVF_EN) V (R_UNF A UNF_EN))
wec = .
0 otherwise.

The final exponent selection including the exponent wrapping and rounding is given by

emaz + 1 if R_LOVF A OVF_EN A OR(SR_MODE[1:0])

en — emaz if R.OVF A OVF_EN A NOR(SR_MODE][1:0]) (4.201)
h N r_e + pwec if RLOVF A OVF_EN V R_UNF A UNF_EN '
r_e otherwise.

By the definition of

rerp = { emaz + 1 if OR(S_R_MODE[LO]) (4.202)
€maz otherwise
reop = r_erp if OVF-EN A Eq[11] (4.203)
r_enl + pwec otherwise
the exponent selection according to equation 4.201 can be written as
- en r_eop if R-OVF V (R_UNF A UNF_EN) (4.204)
r_enl otherwise

Because the computation of r_enl is selected from e; and ei; depending on the post-
normalization shift condition PSCOND, we also compute the selections of the exponents in
two parallel paths for PSCOND = 0 and for PSCOND = 1 like in the computation of the
exception conditions. With the convention that the appendix of the letter ‘i to a variable
name indicates the incremented version of this variable, we get the final exponent by the
following selections

ew = e+ pwec ewt = ei1 + pwec
r_erp if OVF_EN A E;[11] . r_erp if OVF_EN A E;[11]
eop =) eopr = . .
ew otherwise ew? otherwise
eop if R.OVF[0]V eopi if R_.OVF[1]V
en = (R_UNF[0] A UNF_EN) eni = (R_UNF[1] A UNF_EN)
e; otherwise ety otherwise
eni if PSCOND
ren = .
en otherwise

This completes the description of the second computation step according to equation 4.168.
Additionaly, we have to compute the signal INF,.,, that indicates the case of an infinity
result in the regular case:

INF;¢q <= R_OVF A OVF_EN A OR(SR-MODE]1:0]).

4.2.

ADDITION/SUBTRACTION

+ALPHA[11:0]l -ALPHA[ll:O]l E 4[11:0]
E 4[12:0]
E,[11] 1 MUX 0 1
PWEC[1L:0] l E max[11:0] E min[11:0] l
o XOR
% e g compound INC compound
max "
s adder(12) (12) Zerotest(12) adder(12)
E EWI[1L0] EW[1L0] SPCAL » [RITILY RTTY
o
= Imux0 AND 3
\—J . El 4[12:0] 3 SPCA %
E 4[11] AND R_ERP[11:0] . — @
Jx
VEEN |1 mux O | or ||| AND | | AND || |
R_OVF[1] OR , , z
(R_UNF[1] AND EOPI[110] EOM(1LO] R_UNF[0] 'R) 4 =
UNF_ENZ‘ g © ‘ ‘ 1 Mux O |LANDUNFEN ‘ o ‘ ‘ o ‘
T I
ENI[11:0] EN[11:0] R_OVF[1] Z Z ‘ AND ‘ ‘ AND ‘
(S =
i) = 8 |RUNFI | RUNFO]
g g
1 mux 0 |8 [anD]| [ImMUx0]&+ 1 mux O |
l R_EN[1L0] R_OVF R_INX R_UNF

Figure 4.19: Exponent and exceptions circuit for the R-path of the addition/subtraction
unit III. Shaded boxes had to be added to the R-path implementation of the addi-
tion/subtraction unit II.

The extensions and changes for the R-path of the addition/subtraction unit III based on
the R-path implementation of the previous section are depicted in figure 4.18. A more
detailed block diagram of the exponent and exceptions circuit is given in figure 4.19. Also
in this figure the shaded circuits are required in addition to the R-path implementation
from the previous section. The path selection condition is not changed in this section,
so that we can use the same implementation for 1S_R like in the previous section. This
completes the description of the addition/subtraction III unit.

118 CHAPTER 4. BASIC FP OPERATIONS

4.3. MULTIPLICATION

4.3 Multiplication

4.3.1

Specification.

119

Multiplication I (normalized — representative format)

This section describes a FP multiplication unit, that is able to multiply

two FP numbers given in the normalized representations (section 2.6.3):

BUSanF[69:0]
BUSby#[69:0]

(SA,EA[11:0],FA
(sB,EB[11:0], FB

[0:52], ZEROA, INFA, QNANA, SNANA) (4.205)
[0:52], ZEROB, INFB, QNANB, SNANB), (4.206)

which represent the factorings (sa,ea, fa) = factnp(BUSanp[69:0]) and (sb,eb, fb) =

faCtNF(BUSbNF[GQZO]).

In the case, that both operands have representable values, the exact product exact, i

is defined by (section 2.2.4):

€$aCtmult — (_1)SAEBSB . 2ea+eb . fa . fb

(4.207)

If (Spes €res fre) 18 a RF factoring of this exact product exzact,,,; for non-zero representable
inputs, then for the general case of arbitrary input values, a RF factoring of the required

product is given by (see equation 2.17):

((0, eqnans fgnan) if SCQNAN
(Sinf» €oos foo) if SCINF
() (sa,ea, fa) if scx (4.208)
SRF,€RF, [RF) = (sb. b, b) o .
(50, €0,0) if SCZERO
L (ST076T07fT‘C) otherwise.

The product output of the multiplication I unit is then specified by the corresponding rep-
resentation in the representative format BUSgr[73:0] = RF(Srr, err, frr). Moreover, in
the multiplication I unit the invalid flag INV should be signaled according to the occurance
of an invalid exception.

Implementation. The computations of the special conditions in equation 4.208 are
already summarized in section 2.4.4 by equations 2.27-2.33. Like in the addition imple-
mentations, we select the result from equation 4.61 in two steps by the definition of the
sign sg., the exponent ey, and the significand f,. for the special case:

(0, eqNanN, fgnan) if SCQNAN
(Sinfs€oor foo) if SCINF
(Sscy €sey fse) = (sa,ea, fa) if scx (4.209)
(sb, eb, fb) if scy
(s0,€0,0) otherwise.

These computations are implemented in the special cases circuit in figure 4.20. Obviously,
according to tables2.6-2.7, an invalid exception occurs for a multiplication, iff the result
is a quiet NaN, in which case we have SCQNAN = 1. Thus, we already get the invalid flag
by INV <= SCQNAN. With the definition of the special case condition SPCA by
SPCA <= SCQNAN V SCINF V SCX V SCY V SCZERO (4.210)
like in the addition implementations, the final multiplication result can be selected by

if sPcA
otherwise.

(Ssca €sc, fsc)
(37‘07 €re; frc)

(srF,erp. fRF) = { (4.211)

120 CHAPTER 4. BASIC FP OPERATIONS

This completes the description of the computations for the special cases and the exception
recognition.

In the following the computation of the RF factoring (s,¢, €y¢, fre) for the regular case
is described. For this computation we can assume non-zero representable operands.

For non-zero operands the significands are normalized with fa, fb € [1,2], so that
the product of the significands is in the range fpr = fa - fb € [1,4[. Thus, according to
definition 2.21, the factoring (Syc, €rc, fre) = (SADSB, ea+eb, repss(fpr)) is a RF factoring
of exact,,,; for representable operands. In this way the sign s,. and the exponent e,. for
the regular case can be computed by:

Sre = SA®SB (4.212)
ere = <Ep[12:0]>9 = <(0,EA[11:0]>2 + <(0,EB[11:0]>5. (4.213)

We deal with the computation of the significand f,. = reps3(fpr) in the following. Because
the significands fa and fb are both integral multiples of 27°2, the product fpr = fa- fb €
[1,4[is an integral multiple of 27'% and can be represented by fpr = <FPR[—1:104] >.,.
From this representation of the significand product, the 53-representative f,. = repss(fpr)
can then easily be generated following lemma 2.11:

Fpe[—1:54] = (FPR[—1:53], ORtree (FPR[54:104])) . (4.214)
The computation of FPR[—1:104] is partitioned into two steps:

(A) the computation of a carry-save representation of the product fpr by

<FPRS[—1:104]>p¢g + <FPRC[—1:104] >, = <FA[0:52] >y, - <FB[0:52]>,(4,215)

(B) the compression from the carry-save representation of the product to the binary
product representation FPR[—1:104] with

<FPR[—1:104] >peg = <FPRS[—1:104] >,¢g + <FPRC[—1:104] >¢,.
This equation is implemented by a 106-bit carry-lookahead adder.

The computation for step (A) consists of the partial product generation and reduction of
the significand multiplication and has to be further specified. We consider two different
implementations using a Booth encoded adder tree:

In the first, full-sized implementation we directly use a 53-bit by 53-bit Booth2 encoded
partial product generation and reduction implementation, which we denote by the function
biree, to implement equation 4.215 by

(FPRS[—1:104], FPRC[—1:104]) = BTREEs3 53(FA[0:52], FB[0:52]).

This implementation is depicted in figure 4.21.

In the second implementation of the partial product generation and reduction for step
(A), we use a half-sized 53-bit by 27-bit Booth2 encoded adder tree, that is able to consider
two additional constants which we denote by the function boothtreepp. In this “half-sized”
implementation, the computations of step (A) are implemented in two iterations for double
precisio and in one iteration for single precision. For the double precision computation
in two iterations, we require the signal ITER2, that indicates the case that we are in the
second iteration. The following lemma describes the underlying partitioning of the partial
partial product formula for the significand product fpr:

4.3. MULTIPLICATION 121

Lemma 4.23 With the selection of the significand half fbsel = <FBSEL[0:26]>p., and
the definition of the sums ppl, for that we use ITER2 = 0, and pp2, for that we use
ITER2 = 1, according to

) (FB[27:52],0) if DBL AND ITER2
FBSEL{): 26] { FB[0:26] otherwise. (4.216)

26 .

ppl = > fa AFBSEL[i] 27 (4.217)
=0
26)

pp2 = Y faAFBsELi]-270 + 27°7.ppl (4.218)
i=0

the significand product fpr can be selected by

| pp2 if DBL
fpr = { ppl otherwise

Proof: The partial product formula for the significand product fpr can be written as

for = fa-fb= fa-<FB[0:52] >, (4.219)

= Z fa A FB[Z] . 272’ (4.220)

26 52
= > fanwsli]- 27+)" faAFs[i]-27 (4.221)
i=0 i=27
26 26
= > fanwsli]-27" + 272> " faAFB[i+27]-27". (4.222)
i=0 1=0
For double precision we have in the first iteration FBSEL[0:26] = (FB[27:52],0), so that
ppl = Z?io faAFB[i+27]-27%. Thus, because in the second iteration for double precision
we have FBSEL[0:26] = FB[0:26], it follows directly from equation 4.222, that fprod = pp2,
as required for double precision.
Because for single precision FB[27 : 52] = 027 and FBSEL[0 : 26] = FB[0 : 26], we get
fprod = Zfio fa AFB[i] - 27" = ppl, as required for single precision. O

With the definition of the feedback operand

fab = { 2727 . ppl if DBL AND ITER2

0 otherwise (4.223)

the equations from lemma 4.23 for ppl with ITER2 = 0 and for pp2 with ITER2 = 1 can be
written as
ppl = fa- fbsel + fdb (4.224)
pp2 = fa- fbsel + fdb (4.225)
Because fa - fbsel = <FA[0:52] >peq - <FBSEL[0:26] >, is an integral multiple of 2778,

the lower part of the binary representation of pp2 = <PP2[—1:105] >, could be directly
copied from the lower part of fdb = <FDB[—1:105]>,., by

PP2[79:105] = FDB[79:105].

122 CHAPTER 4. BASIC FP OPERATIONS
BUSay [69:0]
[3:0] [56:4] [68:57] [69] BUSb NF [69:0]
[3:0] [56:4] [68:57] [69]
ZEROa| |ZEROb
INFa INFb FA[0:52] FB[0:52] EA[11:0] EB[11:0] |SA |SB
QNANa| | QNANb
SNANa SNANb
(SA,EA[11:0],FA[0:52])
(SB,EB[11:0],FB[0:52])
EA[1L0] | ggpqq) | EB[11:0]
FA[0:52] FB[0:52] EA[11] r SA |SB
OBL partia product XOR DBL
generation & CLA(13)
] reduction
specia
cases FPRS[-1:104] l l FPRC[-1:104] E c[120]
INV
INV CLA(106) -
FPR[-1:53] FPR[54:104]
Fcl-1:53] ORtree(51)
Frel4
Frcl-154 | |Ec[120]
Ssc Src
Eg.[12:0] E c[12:0]
Feol-1:54] Fcl-1:54] Se| Sre
SPCA ‘ 1 Mux 0 ‘ &* 1Mux 0
ZERORe
INFe
QNAN g ERgl120] | FRel-1:54]
[3:0] y SNAN e {72:60] {59:4] (73] ¢ SRF
BUS g [73:0]

Figure 4.20: Block digram of the multiplication unit I.

During the computations of step (A), we use carry-save representations to represent
ppl, fdb and pp2. These carry-save representations are denoted according to the equations

ppl = <PPS1[—1:T78]>,.y + <PPCL[—1: 78] >y, (4.226)
fdb = <FDBS[—1:105]>pcy + <FDBC[—1 : 105] >peq (4.227)
pp2 = <PPS2[—1:105]>pey + <PPC2[—1 : 105]>pe, (4.228)

Following equations 4.224-4.225, the carry-save representations of ppl and of pp2 can then

be computed with the “half-sized” adder tree by the function BTREEPP53 o7:

(Pps1[—1:78], PPCl[—1:78]) =BTREEPP53 27 (FA[0:52], FBSEL[0:26], FDBS[—1: 78], FDBC[—1:78])
(FDBS[—1:78], FDBC[—1:78]) = (0?7, PPs1[—1:51], 0", pPc1[-1:51]) AND (DBL A ITER2)

(PPS2[—1:78], PPC2[—1:78]) =BTREEPPs3 27 (FA[0:52], FBSEL[0: 26], FDBS[—1 : 78], FDBC[—1:78])
(PPs2[79:105],pPC2[79:105]) = (PPs1[52: 78], pPC1[52:78]) AND (DBL A ITER2),

4.3. MULTIPLICATION 123

FA[0:52] FB[0:52]

| |

Partial Product Generation (Booth2)
& Reduction (53x53)

Voo

FPRS[-1:104] FPRC[-1:104]

Figure 4.21: Full-sized implementation of the partial product generation and reduction
for multiplication unit I.

so that we get the carry-save representation of the significand product fpr with the carry-
string FPRS[—1:104] and the sum-string FPRC[—1:104] by

8],PPs1[52:77]) if DBL

_1. — (—1:7]7

FPRS[-1:104] = { (PPs1[—1:78],0%) otherwise. (4.229)
. B (ppPc2[—1:78],pPC1[52:77]) if DBL

FPRO[—1:104] = {(ppcl[—1:78],026) otherwise. (4.230)

after one iteration for single precision and after two iterations for double precision. Based
on this formula, equation 4.215 for the computation of step (A) is implemented based on
the ’half-sized’ adder-tree like depicted in figure 4.22. In this implementation, the results
of the adder-tree are saved in the carry-save registers PPREGS[—1:78] and PPREGC[—1:78]
after each iteration. The feedback to the adder tree is split into an upper part considering
positions [—1:78] and a lower part considering positions [79:104]. The upper part of the
feedback operand FDB[—1:78] is directly input into the adder tree including the right-shift
by 27 positions for double precision. Because the lower part of the feedback in FDBS[79:104]
and FDBC[79:104] is not changed by the adder tree, it can be directly saved into registers
PPREGS[79 : 104] and PPREGC[79 : 104]. In this way, the registers PPREGS[—1:104] and
PPREGC[—1:104] contain the carry-save representation of the significand product fpr by
FPRS[—1:104] and FPRS[—1:104] after two iterations for double precision and after one
iteration for single precision.

This completes the description of the half-sized implementation for step (A), so that
the descriptions of both implementations of the multiplication I unit are completed.

4.3.2 Multiplication II (normalized — gradual result format)

Specification. Like in the previous section also in this section the FP multiplication is
computed from the inputs of the normalized representations (section 2.6.3) BU Sayr[69:0]
and BUSbyr[69:0]. Because some rounding computations have to be considered in this
section, also the input of the rounding mode, represented by RMODE[1:0], is required.

In this section, the exact multiplication result according to equation 4.207 has to be
rounded by the general rounding function groundl. After this gradual rounding step the

124 CHAPTER 4. BASIC FP OPERATIONS

FA[0:52] FB[0:26] FB[27:52],0
DBL AND ITER2
; 0 mux 1 DBL AND ITER2
AND
FBSEL[0:26]
027
Ty
FoBS[26:78] L o] Partial Product Generation (Booth2)
FDBC[26:78] & Reduction (53x27)
+ 2 additive constants (5277
DBL AND ITER2
AND
PPS[-1:78]l lPPC[—l:?S] FDBS[79:104] FDBC[79:105]
PPREGS[-1:104] ; \ ‘
PPREGC][-1:104] ; | D |
[-1:51] [52:78)]
[-151] [52:78]
[79:104] [79:104]

FPRS[-1:104] FPRC[-1:104]

Figure 4.22: Half-sized implementation of the partial product generation and reduction
for multiplication unit I.

product should be output in the gradual result format BUSgr[73:0] (section 2.6.5). Ac-
cording to equation 4.207, a factoring of the exact product is given by (Sez, €es, fpr) =
(SA @ sB, ea + eb, fa - fb) for non-zero representable operands. With the gradual rounded
product ((Sgre; €gres fore); TINC, TINX) = groundl(Sesz, €y, fpr) and the following GF fac-
toring of the result for the case of arbitrary IEEE operands

(((0 eqNaNaquoaN) 0 0) if SCQNAN

Sinfs €ccs foo), 0,0) if SCINF
sa,ea, fa),0,0) if scx

sb, eb, fb),0,0) if scy

50, €0,0),0,0) if SCZERO
L((Sgrcs €gres fre), TINC, TINX) otherwise,

(4.231)

((
((
((sgm eqr, far), TINCGR, TINXGF) = EE
((
((

the product output of the multiplication unit IT is specified by the gradual result rep-
resentation BUSGFr([73:0] = GF((sgr,eqrF, far), TINCGF, TINXGr). The occurance of an
invalid exception should be signaled by the bit INV also in this section.

Implementation. The special cases conditions and values in equation 4.231 are identical
to that in the specification of the previous section. In the implementation of this special
cases selection, the only difference to the previous section is that a representation in
the gradual result format has 3 bits less in the significand, which have been filled with
zeros in the representative format. Moreover, the gradual result format requires two
additional rounding tags, which have to be zero for special value results. For the special
cases selections, these small adjustments are integrated in the implementation depicted in
figure 4.23. Also in the equations, that are implemented in the special cases circuit, the
selections for bit positions [—1] and [53:54] have to be neglected.

4.3. MULTIPLICATION 125
BUSay e [69:0]
[3:0] [56:4] [68:57] [69] BUSb NF [69:0]
[3:0] [56:4] [68:57] [69]
ZEROa| |ZEROb
INFa INFb FA[0:52] FB[0:52] EA[11:0] EB[11:0] |SA |SB
QNANa| | QNAND
SNANa| | SNANb
(SA,EA[11:0],FA[0:52])
(SB,EB[11:0],FB[0:52])
RMODE[1:0] EA1L:0] EB[11:0] RMODE[1:0]
FA[0:52],SA l FB[0:52],SB 0 | 0 | A |sB
injected partia product Compound XOR
generation & adder (13) DBL
DBL) -—
reduction
speci al SRMODE[1:0]
cases FINPRS[-1:104] l l lFINPRC[-l:lO4]
NV Compression & INV
gradual rounding
FPRND[O52] PSCOND Lo/ 1 Mux o
TINX
Frc[0:52] TING Egrd120] Sre
S&:
Eg[12:0] Eyrc[12:0]
Fec[0:52] Farc[052] 4 SPCA Se| Sre
O
SPCA ‘ 1 Mux 0 ‘ ‘AND‘ A 1Mux 0
ZEROge
INFge
QNAN e Eggl1L0] F gel0:52] TINX o SgrF
[3:0] ¢ SNAN ¢ {71:5] {58:6] (5:4] 4 "NCqr [72]
BUSg[72:0]

Figure 4.23: Block digram of the multiplication unit II.

This already completes the description of the special cases computation and we only
have to describe the computation of ((Sgrc, €gre, fore), TINC, TINX) for non-zero representable
operands in the following.

According to definition 2.17, the gradual rounding of the product can be composed of
the three steps of an unbounded normalization shift, gradual significand roundingl and a
post-normalization shift:

((Sgres €gres fgre); TINC, TINX)

groundl

(Sema €ex fez)

(4.232)

post_norm(sgrndlmoedess (M(Sex; Cex, fex)))(4.233)

Because for both, single and double precision, fa, fb € [1,2—27°2], the exact significand
product is in the range fpr = fa- fb € [1,4—275]. Thus, we can get in the same way like
for the R-path of the addition II unit in lemma 4.13:

(Sgrcaegrcafgrc) = {

gpost_norm(sex, €ex, Tndmode*segc ,51 (fpr))
gpost_norm(sm, €ex, Tndmode*sez ,52 (pr))

if fpre[2,4

if fpr e[l1,2 .4'234)

126 CHAPTER 4. BASIC FP OPERATIONS

With srmode = mode x S., and the definition of the rounded significand product

N grmode st (fpr) if fpr € [2,4]
d= srmode, . 4.235
fprn { Tndsrmode,&')?(fpr) if fpr € [1a 2[()

the regular case factoring can be written as (Sgrc, €gre, fore) = gPOSt_NOrm(sey, €ey, frrnd).

From fpr € [1,4—2751] it follows, that also the rounded significand product is in the
range fprnd € [1,4—27"1] and can be represented by fprnd = <FPRND[—1:104] >,.,.
With the definition of the post-normalization condition PSCOND

PSCOND <= (fprnd € [2,4]) <= FPRND[—1], (4.236)

the generalized post-normalization shift (definition 4.121) can be written as

(4.237)

1 2) if
(Sgrcaegrmfgrc) { (Sex’eex—i_ ,fprnd/) SCOND

(Sexs €ex, frrnd) otherwise.

The exponents e.; = < Eez[12:0] >9 = < (0,EA[11:0]) >9 + < (0,EB[11:0]) >2 and
€er + 1 = < Elg,[12:0] >9 are computed by a 13-bit compound adder, so that according
to equation 4.237, we get the exponent for the regular case ey, = < Egc[12:0] >9 by a
selection depending on PSCOND. This exponent computation and the computations of the
sign Sy, = SA @ SB are included in the block diagram in figure 4.23.

In the following we deal with the computation of the rounded significand product
fprnd. The rounding computations are based on the injection-based rounding reduction
(see section []) like it is used in the R-path of the addition units IT and ITI. With the use of
the rounding injections from equations 4.124-4.124, we get for srmode € {RZ, RNU, RI}

d (fpr) =rndrzsi(fpr +injpa) if fpr € [2,4]
d = T'MGsrmode,51 , : [JA[= 14 4.938
fprn { T srmode,52(fPr) = rndrzs2(fpr +inj o)) otherwise. ()

Finally, to compute fprnd from fprnd by implementing RNE instead of RNU, we will
have to consider the L-bit fix.

Definition 4.10 We define the injected significand product finpr = fpr + ingjp o, that
already contains the rounding injection for the case that fpr € [1,2[. The injection cor-
rection injcor is defined by

injeor = injo 4 — iNg o[(4.239)
2752 if srmode = RI
= 2793 if srmode = RN (4.240)
0 otherwise.

We define the corrected significand product by fcorpr = finpr +injcor = fpr +inj 4.

With these definitions, equation 4.238 can be written as

d (fpr) = rndgrzs1(finpr +injcor) if fpr € [2,4]
rnd = { T!0srmodest a1 - 5% 4041
Ip { Tl srmode,52(fPT) = rndrz s2(finpr) otherwise. ()

Like in the previous section, the computations for the significand product are parti-
tioned into two steps:

4.3. MULTIPLICATION 127

SA, SB RMODE[1:0] FA[0:52] FB[0:52]

L l l

MJ generation

Partial Product Generation (Booth2)
INJL2[-1:104] & Reduction (53x53)
+ 1 additive operand

SRMODE[1:0] FINPRS[-1:104] FINPRC[-1:104]

Figure 4.24: Full-sized implementation of the partial product generation and reduction
with rounding injection for multiplication unit II.

(A) computation of a carry-save representation of the injected significand product finpr =
fa- fb+ingp o with sum-string FINPRS[—1:104] and carry-string FINPRC[—1:104].
This computation corresponds to the 'injected partial product generation & reduc-
tion’ circuit in figure 4.23.

(B) compression and gradual rounding from the carry-save representation of the injected
significand product with the bit-strings FINPRS[—1:104] and FINPRC[—1:104] to the
rounded significand product fprnd = <FPRND[—1:52]>,., and the rounding tags
TINX and TINC. In combination with the generalized post-normalization shift for
the significand according to equation 4.237, these computations correspond to the
‘compression & gradual rounding circuit’ in figure 4.23.

(A) The only difference in the implementations of step (A) in this section from the
partial product generation and reduction implementations in the previous section is the
addition of the rounding injection constant injy of.

For the full-sized adder tree implementation, we use the binary 106-bit representation
of the injection injy; o;. (Note, that srmode = RNE for SR_.MODE[0] = 1 and srmode = RI
for SR_.MODE[1] = 1.

ingro = <INJI2[=1:104] >, (4.242)
= < (0%, srR_MODE[0] V SR_MODE[1], SR_MODE[1]}) >,., (4.243)

We replace the function BTREEs3 53 from the previous section by BTREEPs3 53 to add the
injection to the significand product according to finpr = fpr +injy o by

(FINPRS[—1:104], FINPRC[—1:104]) = BTREEPs3 53(FA[0:52], FB[0:52], INJ12[—1:104]).

This full-sized implementation of step (A) is depicted in figure 4.24. In this figure, the
'INJ generation’ circuit contains the implementation of equation 4.243 and the rounding
mode reduction according to equation 2.6-2.7.

For the half-sized adder tree implementation of step (A), we modify the feedback
operand fdb from the previous section to add the rounding injection injp; o in the first
iteration for both, single and double precision. This can easily be done, because in the
first iteration we have fdb = 0. Note, that because the result of the first iteration is added

128 CHAPTER 4. BASIC FP OPERATIONS

in the second iteration weighted by 2727, the injection 227 ~injy1,2[has to be added in the
first iteration for double precision. In this way, we define the injection feedback by

fdbinj = <FDBINI[—1:78]>,, 4944
9
2°7 -ingpy o if DBL

a {i”j[1,2[otherwise. (4.245)

B < (0%7,sR_MODE[0] V SR_MODE[1], SR_-MODE[1]°2) >,,., if DBL 1.246)
N < (054, sR_MODE[0] V SR_MODE[1], SR-MODE[1]?%) > ..., otherwis(e.'

Integrated with the previous feedback operand fdb, we define the modified feedback
operand fdb' and the modified partial sums ppl’ and pp2’ by

fdbing if ITER2

fdv = 2727 .pp1’ if DBL AND ITER2
0 otherwise

ppl' = fa- fbsel + fdb/

pp2' = fa- fbsel + fdb'

Lemma 4.24 Based on the previous definitions, we get the injected significand product
by

pp2' if DBL

ppl’ otherwise. (4.247)

finpr = fprviny = {
after one iteration for single precision and after two iterations for double precision.

Proof: For single precision, fdbinj = injj o[, so that ppl’ = ppl+ingp o = fpr+injp o,
as required. For double precision, we have fdbinj = 227 - ingjii[, so that

2 = fa- fbsel +27%7 . ppl’
fa- fbsel + 27 ppl + 2727 22T ingyy o
= fpr+injug
and the proof of the lemma is completed. O

Thus, starting from the half-sized adder tree implementation from the previous section,
only the feedback operand fdb has to be changed to fdb’' and the carry-save representations
of fdb' and finpr have to be considered for the implementation of step (A). This half -sized
implementation of step (A) is depicted in figure 4.25. The injection feedback according
to equation 4.246 is generated in the ’INJ generation’ circuit, which also includes the
rounding mode reduction according to equations 2.6-2.7. This completes the description
of the two implementations (full-sized and half-sized) for step (A).

(B) For the computation of step (B) of the significand multiplication rounding, we first
consider the computation of fprnd', so that with the additional computation of the L-bit
fix, we will then get the rounded significand product fprnd.

According to equation 4.241, the computation of fprnd = <FPRND'[—1:52] >, de-
pends on finpr = <FINPR[—1:104]>,., and fcorpr = <FCORPR[—1:104] >,.,4. Since

, { rndrzs1(fcorpr) = <FCORPR[—1:51]>,., if fpr € [2,4]
fprnd . .
rndrzs(finpr) = <FINPR[—1:52] >, otherwise.

4.3. MULTIPLICATION 129

RMODE[1:0] SA,SB FA[0:52] FB[0:26] FB[27:52],0

—_— | _
—l & | INg generation~——= @w

l INJ53:105] | SRMODE[10]

1 Mmux O

 DBL AND ITER? FBSEL[0:26]

27
0

FDBS[26:78] Partial Product Generation (Booth2)
FDBC'[26:78] & Reduction (53x27)
+ 2 additive operands [52:77]
DBL AND ITER2
AND
PPS[-1:78] l lppc [-178] FDBS[79:104] FDBC'[79:105]
PPREGS[-1:104] ;
PPREGCI-1:104] ; ‘ D ‘
[-1:51] [52:78]
[-1:51] [52:78]
[79:104] [79:104]

|

SRMODE[1:0] FINPRS[-1:104] FINPRC[-1:104]

Figure 4.25: Half-sized implementation of the partial product generation and reduction
with rounding injection for multiplication unit II.

only the bit strings FINPR[—1:52] and FCORPR[—1:51] have to be considered.

As input for the computations, we get a carry-save representation of the injected
significand product finpr from step (A) with the sum string FINPRS[—1:104] and the
carry-string FINPRC[—1:104]. We compress the the bit positions [—1 : 52] of this carry-
save representation by a half-adder line to the carry-save representation with sum-string
XSUM[—1:52] and carry-string XCARRY[—1:51], so that

<XSUM[—1:52] >0 +< XCARRY[—1:51] >ppg = <FINPRS|[—1:52] >0 +< FINPRC[—1 : 52] > .

Moreover, the bit positions [53 : 104] of the carry-save representation of finpr are com-
pressed by a carry-look-ahead adder to the binary representation (C52, FINPRS[53 : 104])
according to

< (€52, FINPR[53:104]) >,0g= <FINPRS[53:104] >, + <FINPRC[53:104] >4

In this sum, the bit ¢52 is generated as a carry bit into position [52].

Based on these compressed representations, we partition the computations for finpr
and fcorpr into an upper part considering bit positions [—1:51] and a lower part consid-
ering bit positions [52:104].

For the computation of finpr, the lower part consists of

Ipartl2 = < XSUM[52]>peq +< (052, FINPR[53:104]) > (4.248)
= < (RC12,FINPR[52:104]) >peq - (4.249)

130 CHAPTER 4. BASIC FP OPERATIONS

Thus, the bit FINPR[52] and the carry bit RC12 (rounding carry for fpr € [1,2[) into
position [51] can be computed by a half-adder according to

<(RCI2,FINPR[52]) > = <XSUM[52]> 4 <C52> . (4.250)

For the computation of fcorpr = finpr 4 injcor, we additionaly have to consider the
injection correction injcor. According to equation 4.240, we have for the injection cor-
rection injcor < 2752, and injcor can be represented by injcor = <INJCOR[52:53] >neg-
Thus, the lower part of fcorpr consists of

lpart24 = <zsum([52]>ye0 + <(C52, finpr[53:104]) >peq + <INJCOR[52:53] >peq
= < (RC24, fcorpr[52:104]) >peq

Because injcor < 2752 we can add the tail < (FINPR[53 : 104]) >, with the injection
correction by

< (cC52, FCORPR[53:104]) >,cg= <FINPR[53:104] >,cq + <INJCOR[52:53] >peq

In this addition, the carry bit cc52 (correction carry into position [52]) is generated. Using
the definition of the injection correction and the encoding for the reduced rounding modes
according to table 2.3, the condition for the correction carry cc52 can be written as

Ccch2 = SR_MODE]1]V SR_MODE[0] A FINPR[53]. (4.251)

Thus, the bits FCORPR[52] and RC24, which is the carry from the lower part of fcorpr into
bit position [51], can be computed by a full-adder according to

< (RC24,FCORPR[52])> = < XSUM[52] >+ < CH2 >+ < Cah2 >. (4.252)
The upper part of finpr and fcorpr consists of

<FINPR[—1:51]>pep = < XSUM[—1:51] >pep + < XCARRY[—1:51] >0, + RC12 - 277
<FCORPR[—1:51]>p0p = < XSUM[—1:51] >peg + < XCARRY[—1:51] >peq + RC24 - 277

With the definition of the upper product upr and the incremented upper product upri by

upr = < UPR[—1:51] >p, (4.253)
= < XSUM[—1:51] >y + < XCARRY[—1:51] > (4.254)
upri = < UPRI[—1:51] >, (4.255)
= upr 4275, (4.256)

the upper parts of finpr and fcorpr both can only have either the value upr or the value
upri. Obviously, only the carry, which is generated from the lower part into position [51],
is differing in the upper parts for finpr and fcorpr. Thus, if we select the proper carry
bit into position [51] depending on whether fpr € [1,2[or fpr € [2,4[by

rC24 if fpr € [2,4]

ROARRYSL = { RC12 otherwise, (4.257)
the upper part of the significand product fprnd’ can by selected by
g, _ upri = <UPRI[—1:51]>p¢, if RCARRY51
SFPRND[—1:51] >neg = { upr = <UPR[—1:51]>,., otherwise (4.258)

4.3. MULTIPLICATION 131

Additionaly, the bit FPRND'[52] is required for fpr € [1,2[. In this case, we have FPRND'[52] =
FINPR[52], which we already computed before, so that

0 if fpre[2,4]

FINPR[52] otherwise. (4.259)

FPRND'[52] = {

This completes the computation of fprnd'. To get the rounded significand product fprnd,
we additionaly have to implement the L-bit fix. In contrast to the L-bit fix implementation
for the addition IT unit, we have to consider that the injected significand product fprnd =
Jpr +injj o contains the rounding injection injy o = 2753 for srmode = RN. In this
way, the conditions for the L-bit fix are given by

LFIX[1 9] = SR-MODE[0] A FINPR[53] A OR(FINPR[54:104])

LFIX[p 4 = SR-MODE[0] A FINPR[52] A FINPR[53] A OR(FINPR[54:104]),

so that the rounded significand product fprnd = <FPRND[—1:52] >, can be computed
by

:50], FPRND'[51] A TFIX[3 4, 0) if fpr € [2,4]

(FPRND'[—1:5
(FPRND'[—1:51], FPRND'[52] ATFIX[; 5;) otherwise.

FPRND[—1:52] = {
In this selection, only the bits in positions [51 : 52] are differing and have to be selected.
We denote the least significant bit of the significand by 1.24 for the case that fpr € [2,4]
and by L12 for the case that fpr € [1, 2] according to (Note, that for fpr € [1,2[, we have
FPRND'[52] = FINPR[52])

L24 = FPRND'[51] ALFIX[y (4.260)
L12 = FINPR[52] A LFIX|| o, (4.261)

so that equation 4.260 can be written as

(FPRND'[—1:50],124,0) if fpr € [2,4]

1:5
(FPRND'[—1:51],L12) otherwise. (4.262)

FPRND[—1:52] = {

In the description of the rounding computations, the condition fpr € [2,4][is used to choose
the proper rounding injection and to choose either rndry s1(fcorpr) or rndrzsa(finpr)
as the rounded result fprnd’. Because we only deal with the injected significand products,
we do not have a signal, that exactly implements the condition fpr € [2,4[. The following
lemma shows, that the bit UPR[—1] can be used to substitute the condition fpr € [2,4].
The bit UPR[—1] does not always agree with the condition fpr € [2,4[, but it will be shown,
that in every case, where UPR[—1] fails to predict the condition fpr € [2,4[correctly, it does
not matter which rounding injection is chosen, because in these cases rndrzs1(fcorpr) =

rndrzs2(finpr).

Lemma 4.25 For the rounding computation according to equation 4.238, the condition
for € [2,4] can be substituted by the signal UPR[—1], so that

fprnd { rndrzs1(feorpr) if UPR[—1]

rndrzso(finpr) otherwise.

132 CHAPTER 4. BASIC FP OPERATIONS

Proof: We only have to consider the cases where UPR[—1] # (fpr € [2,4[). In the
following, we distinguish between: (a) UPR[—1] = 0; and (b) UPR[—1] = 1.

(a) For uPR[—1] = 0, we have to consider the case, that (fpr € [2,4[). Because fpr > 2
and finpr = fpr +injy o = upr + Ipart12, we have

finpr € 2, upr + lpart12], (4.263)

where Ipart12 < 3 -27°2 according to equation 4.248. Since UPR[—1] = 0, it follows
that upr = <UPR[—1:51]>,,, < 2 — 27%1 Since upr + lpart12 > exact > 2, we have
upr > 2 — 3-27°2, Thus, upr = <UPR[—1:51]>,., = 2 — 27°! and equation 4.263 yields

finpr € [2,2 4+ 2752,
The injection correction satisfies 0 < injcor < 2752, therefore
feorpr = finpr + injcor € [2,2 + 27°.
For these ranges of finpr and fcorpr, it follows, that
rndrzs1(feorpr) = rndpz s2(finpr) = 2.

Thus, it does not matter which rounding injection is chosen in this case and fprnd' = 2
independent of the selection value.

(b) For uPR[—1] = 1, we only have to consider the case, that fpr < 2. Since injy of €
[0,27°2], it follows that finpr = fpr + injio < 2+ 2752, Since UPR[—1] = 1 and
finpr = upr + lpartl12, we have finpr > 2, so that

finpr € [2,2 4+ 2757,

The proof now follows the proof of case (a). O

By the use of this lemma, equations 4.257 and 4.259 are implemented by

RCARRYS] = RC24 if UPR[—1]
- RC12 otherwise,
’ 0 if UPR[—1]
FPRND'[52] { FINPR[52] otherwise.

This completes the description of the rounded significand product fprnd. Additionaly, for
step (B) we have to compute the rounding tags for the rounding inexactness TINX and for
the rounding increment TINC.

The conditions for the rounding tags TINX and TINC are given by:

ORtree(FPR[53:104]) otherwise.

FPRND[51]|@FPR[51] if UPR[—1]
FPRND[52]|@FPR[52] otherwise.

{ FPR[52] V ORtree(FPR[53:104]) if UPR[—1]
TINX =

TINC

The following lemma provides the equations for the implementation of the rounding tags
based on the injected significand product finpr. Moreover, this lemma proposes how the
computation of the LFIX-bits can be based on signals from the rounding tag computation
to share hardware.

4.3. MULTIPLICATION 133

Lemma 4.26 With the definition of

FPReN[51:53] = < (XSUM[51] @ XCARRY[51] @ RC12, FINPR[52:53]) >peq — 27°% mod 27
FPRpN[51] @ (FPRND'[51] ATFIX[3 4 if UPR[—1]
TINCRN = ’ N .
FPRRN[52] @ FPRND'[52] ATFIX|| 5 otherwise.

STICKY2 = ORtree(FINPR[53:104] @ SR_MODE[1])
the rounding tags can be computed by

TINX = ((SR-MODE[0] & FPR[52]) A UPR|—1]) V STICKY2
TINC = (SR-MODE[0]ATINCrN)A(SR-MODE[1]ATINX).

Moreover, based on the signal STICKY2, the LFIX-bits can be written as:

LFIX[; 5] = SR-MODE[0] A FINPR[53] A STICKY2
LFIX[94 = SR_MODE[(0] A FINPR[52] A FINPR[53] A STICKY2,

Proof: In order to proof the equations for the rounding tags and the LFIX-bits, we
first show some properties of the signals FPRpy[51 : 53] and STICKY2, namely, that (a)
STICKY2 = ORtree(FPR[53:104]) and that (b) in the rounding mode srmode = RN E, we
have FPRrN[51:53] = FPR[51:53]:

(a) Keeping in mind, that finpr = fpr + injj o, we distinguish for the proof between
the two cases: (i) the rounding mode srmode € {RZ, RN E}; and (ii) the rounding
mode srmode = RI.

(i) For srmode € {RZ, RNE}, we have SR.MODE[1] = 0 and INJj; 5[53:104] = 0°?,
so that FPR[53:104] = FINPR[53:104] @ SR_-MODE[1] and (a) follows immediately.

(ii) For srmode = RI, we have SR_MODE[1] = 1 and INJ}; 5/[53:104] = 1°2. Thus,

(FPR[53:104] = 0°?) <= (FINPR[53:104] = 1°%)
(FPR[53:104] = 0°?) <= ((FINPR[53:104] @ SR_MODE][1]) = 0°?)
ORtree(FPR[53:104]) <= ORtree(FINPR[53:104] & SR_MODE[1]),

as required.

(b) In the rounding mode srmode = RNE, we have for the rounding injection con-
stant INJ;j of = 279%. Thus, <FPR[—1:53]>peg = <FINPR[—1:53]>pc9 — 2773, and
therefore

<FPR[51:53] >p¢g = <FINPR[51:53] >, — 27 mod 2777,
Property (b) follows then from FINPR[51] = XSUM[52] & XCARRY[52] & RC12.

The equations for TINX and the LFIX-bits follow immediately from property (a). In the
proof of the equation for TINC, we distinguish between the three cases: (i) srmode = RZ;
(ii) srmode = RN E; and (iii) srmode = RI.

(i) In the rounding mode srmode = RZ, a rounding increment never occurs.

(iii) It follows from the IEEE rounding definition, that in the rounding mode srmode =
RI, a rounding increment occurs, iff the result is inexact, where (TINX = 1).

134 CHAPTER 4. BASIC FP OPERATIONS

(ii) In the rounding mode srmode = RN E, we implement equation 4.264 for TINC. Us-
ing property (b) and the equations for FPRND[51] = FPRND'[51] ALFIX 4] and FPRND[52] =
FPRND'[52] ATFIX[y 5[, we get in the rounding mode srmode = RN E, that TINC = TINCRy.

We join the three cases (i)-(iii) for the three rounding modes to the following general
equation for TINC:

TING — { TINX if srmode = RI
TINCry if srmode = RNE

Because the rounding mode srmode = RI is signaled by SR_MODE[1] = 1 and the rounding
mode srmode = RNE by sSR_.MODE[0] = 1, it is obvious, that this is equivalent to the
equation, that we have to prove for TINC. O

In this way, the description of the implementation of part (B) with the rounded sig-
nificand product fprnd and the rounding tags TINX and TINC is completed. Based on
this, the significand fgc = <Fgpc[0:52] >y, for the regular case can be selected from
fprnd = <FPRND[—1:52] >, by the generalized post-normalization shift for the signifi-
cand according to equation 4.237. In the following, we summarize the computation steps
for the computation of part (B) of the significand multiplication and rounding and the
generalized post-normalization shift:

1. compression of positions [—1 : 52| of the carry-save representation of fprnd by a
half-adder line according to

<XSUM[—1:52] >0 +< XCARRY[—1:51] > 19 = <FINPRS|[—1:52] >, +< FINPRC[—1 :52] >,cg.

addition of bit positions [53 : 104] of the carry-save representation of fprnd by a
52-bit carry-lookahead adder according to:

< (€52, FINPR[53:104]) >pe9= <FINPRS[53:104] >, + <FINPRC[53:104] > .

2. computation of the upper product upr = < UPR[—1:51] >, (equation 4.254) and
the incremented upper product upri = < UPRI[—1:51] >,., (equation 4.256) by a
53-bit compound adder that computes

< UPR[—1:51] >pep = < XSUM[—1:51] >peq + < XCARRY[—1:51] >4

< UPRI[—1:51] > < UPR[—1:51] >peqp +27°1,

3. After the computation of the correction carry ccb2 into position [52] (equation
4.251), the rounding carries into position 51 are computed: RC12 for the case fpr €
[1,2[by a half-adder according to equation 4.250 and RC24 for the case fpr € [2,4]
by a full-adder according to equation 4.252. The proper rounding carry RCARRY51
into position [51] is then selected according to equation 4.264:

Ccch2 = SR_MODE|l]V SR_MODE[0] A FINPR[53]
<(RCI2,FINPR[52]) > = <XSUM[52]> + <C52>
< (RC24,FCORPR[52]) > = < XSUM[52] >+ < €52 >+ < CCH2 >.

RC24 if UPR[—1]

RCARRYS1 = {R012 otherwise,

4.3. MULTIPLICATION 135

FINPRC FINPRS FINPRC FINPRS
[-1:52] [-1:52] [53:115] [53:115]
HA(54)
XCARRY XSUM CLA(52)
[-1:51] [-1:52] XCARRY/[51]
[-1:51] XSUM
[51:52]
C52| FINPR SRMODE
Compound [53:104] [1:0]
Adder(53)
Rounding
UPRI UPR -
Decisions
[-1:51]‘ (s g ueRi
— [
I I =
1 0fa | e
MUX RCARRY51 s Mg
FPRND'
[-1:50] [0:51] B! O
AND
L24 L12
FPRND[-1] MUX
' TINX
F gre[051] Farc [52] NG

Figure 4.26: Block diagram of part (B) of the significand multiplication including the grad-
ual rounding computations and the generalized post-normalization shift for multiplication
unit IT.

4. Depending on the value of the rounding carry RCARRY51, the upper part (positions
[—1:51]) of the rounded significand product fprnd' is selected by (equation 4.258):

UPRI[—1:51] if RCARRY51

! . —
FPRND'[—1:51] = {UPR[_1;51] otherwise.

5. The rounding tags and the LFIX-bits are computed according to the equations from
lemma 4.26.

6. The L-bits of the rounded significand product L24 and L12 are computed according
to equations 4.260-4.261 considering the L-bit fix:

124 = FPRND'[51] A TFIX[y 4
L12 = FINPR[52] A TFIX[f o,

7. Finally, the generalized post-normalization shift of the significand is computed ac-
cording to equation 4.262 and 4.237. This selection is computed separately for
positions [0:51] by

FPRND'[—

1:50] if FPRND'[—1]
FPRND'[0:5

Fgrc[o : 51] = { 1] otherwise

136 CHAPTER 4. BASIC FP OPERATIONS

and for position [52] b

124 if FPRND'[—1]
L12 otherwise

Fyrd051] = {

The implementation of these steps is depicted in the block diagram in figure 4.26. In this
figure, the 'rounding decisions’ circuit contains the implementation of steps 3 and 5.
In this way, the description of the multiplication unit IT is completed.

4.3.3 Multiplication IIT (normalized — normalized format)

Specification. Like in the previous section also in this section, the FP multiplica-
tion is computed from the inputs of the normalized representations BU Sayr[69:0] and
BUSbyr[69:0] (section 2.6.3). Because IEEE rounding has to be considered in this sec-
tion, also the bit DBL, that signals the case of single precision (DBL = 0) or double precision
(DBL = 1), the input of the rounding mode, represented by RMODE[1:0], and the underflow
and overflow enable bits UNF_EN and OVF_EN are required.

In this section, the exact multiplication result according to equation 4.207 has to
be rounded by the rounding function nround, that computes the NF factoring of the
TEEE rounded result. After this rounding computation the product should be output
in the normalized format BUSNF[69:0] (section 2.6.3). According to equation 4.207, a
factoring of the exact product is given by (s,, epr, fpr) = (SA @ SB,ea + eb, fa - fb) for
non-zero representable operands. With the NF factoring of the IEEE result for non-
zero representable operands (Spre, €nre, fare) = nround(Sey, e + wee, fpr) including the
exponent wrapping constant wec according to equation 2.14 and the following NF factoring
of the result for the general case of arbitrary operands according to equation 2.16:

((0,eqnanN, fonan) if SCQNAN

(
(Sinfs€ocs foo) if SCINF
_) (sa,ea, fa) if sox
(snmenm fNF)= (sb, eb, [b) S0y (4.264)
(s0,€0,0) if SCZERO
\ (Snrca €nrc, fnrc) otherwise,

the product output of the multiplication unit III is specified by the corresponding repre-
sentation in the normalized format BUSNp[69:0] = NF(syF,enrF, fnr). In this section,
the occurance of an invalid, inexact, overflow and underflow exception should be signaled
by the bits INV, INX, OVF and UNF, respectively.

Implementation. The special cases conditions and values in equation 4.264 are identical
to that in the specification of the two previous sections. In the implementation of this
special cases selection, the only difference is that in this case a representation in the
normalized format is required. Because all special cases results are exact, just the two
rounding tags have to be neglected from the special cases implementation of the previous
section. For the special cases selections, these small adjustments are integrated in the
implementation depicted in figure 4.27. This already completes the description of the
special cases computation and we only have to describe the computation of ($p,c, €nre, frre)
for non-zero representable operands in the following.

4.3. MULTIPLICATION 137

BUSa - [69:0]
[320] [56:4] [68257] [69] BUSbh NE [690]
[3.0] [56:4] [68:57] [69]
ZEROa| |ZEROD
INFa| | INFb FA[0:52] FB[0:52] EA[11:0] EB[11:0] |SA |SB
QNANa| | QNAND
SNANa| | SNAND
(SA,EA[11:0] FA[0:52])
(SB,EB[11:0] FB[0:52])
RMODE[1:0]
FA[0:52],SA FB[0:52],SB EA[11:0] | EB[11:0]
O‘ O* SA |SB
. Ex ion XOR
partial product ceptions &
_ _ exponent DBL DBL
DBL | generation & reduction computations | *
i SI“II’C
spa:l al SRMODE[1:0]
WINZIG
cases FPRC[-1:104] i FPRS[-1:104] i OVE
INJ12[-2:54]
e o | INJ24[-1:54] INV
INV Compression & MASK, 1553 —
normalized significand MASKY, »{-2:53]
rounding INX12,INX24,SPCA
SPCA CFOVFL oyE OVF
INX CFOVF2 yNF UNF
L. L. _INX
< Forcl0:52] Eqcl12:0] Srrc
SC
Eg[12:0] Eprd12:0]
Fg[0:52] Forcl0:52] S| Snrc
A A
SPC ‘ 1 Mux 0 ‘ SPCH 1Mux 0
ZERO\r
INFye
QNAN \r EpdLLo] FNel0:52] SNE
[3:0] ¢ SNAN np {68:57] {56:4] [69]
BUS e [69:0]

Figure 4.27: Block digram of the multiplication unit III.

According to lemma 2.8, the rounding function nround can be composed of the four
steps of an unbounded normalization shift, normalized significand rounding, another un-
bounded normalization shift and exponent rounding:

(Snrca Enres fnrc) = n’round(spr, epr + WEC, pr) (4'265)
= exprndmodess,, (N(N-51g-rNdmodexs,, (N(Spr, epr + wee, fpr)))[4.266)

Like in the addition computations II and III, we partition the discussion of the rounding
computations into two steps. After the computation of a first step according to

(Snr1, enr1 +wee, fur1) = N(n_8igrndmodess,, (1(Spr, €pr + wec, fpr))), (4.267)
the final result can obviously be computed by the exponent rounding

(Sm"a Enres fm"c) = ewp—'rndmode*spr (Snrla enr1 + wec, fnrl)- (4-268)

138 CHAPTER 4. BASIC FP OPERATIONS

Because for both, single and double precision, fa, fb € [1,2—2°2], the exact significand
product is in the range fpr = fa- fb € [1,4—2751]. Thus, with the definition of nor-
malized significand rounding by n_sig_rndgmoede (s, €, f) = (s, €, mndgrmode,vp(f)) and the
variable rounding position vp = p — 1 — maz{0, ey, — e} according to definition 2.9, the
normalization shift can be simplified and combined with the rounding separately for the
two cases: fpr € [1,2[and fpr € [2,4] by

(Snrts€nris farl) = N(n_8ig-rndmodess,, (N(Sprs €prs £7))) (4.269)
P p p

— { n(n—Sig—Tndmode*sm (n(spra ep?“a fp,r))) lf fp,r 6 [17 2[(4270)
n—Sig—Tndmode*spr (n(spra €pr; for))) if fpr € [2,4]

i
— { n(spra Epr, 'rndmode*spr,vpl (fp?")) if fp?" € [17 2[(4271)
77(3pra epr + 1, 'rndmode*sm,va(pr/2)) if pr € [2a 4[a

where according to definition 2.9, the variable rounding positions vpl,vp2 are given by

vpl = p—1-maz{0,enin—(epr +wec)} (4.272)
vp2 = p—1-maz{0,emin—(ep +wec+1)}. (4.273)

In the above formulae, the rounding positions vpl and vp2 could be in a very large
range, namely because floating-point results z € FP,,;, could even have the magnitude
22emin—2P+2 (gee section 2.4.2), the variable significand rounding positions could be in
the range vpl,vp2 € [emin—p—1:p—1]. Based on the fact, that the significand product
fpr is smaller than 4, the significand rounding can be simplified for rounding positions
vpl,vp2 < —2. In these cases we know for sure, that the rounding operand has a mag-
nitude smaller than half of the smallest representable number, so that in these cases the
rounded result has to be selected between £0 or +z,,;,. By a separate selection for these
small results, the ranges for the variable rounding positions in the remaining cases is re-
duced to [-2:p—1] and the range of the rounded significands is limited to [0,4]. For these
reasons, the rounding computations and the computation of the unbounded normalization
shift can be simplified. This will be further discussed after the next lemma.

Lemma 4.27 With the definition of the condition WINZIG, that detects results with very
small exponents by

WINZIG <= (ep +wec < epin —3 —p+1)
< (epr < emin—3—p+1) AND UNF_EN

the rounded result can be selected by

(Sprs€min —p + 1,0) if WINZIG A SR_MODE]]]
(Sprsemin —p+1,1) if WINZIG A SR_MODE]]]
1N(Sprs €pr +Wee,rMdmodexs,, wp1 (fPr if WINZIG A fpr € [1,2]
N(Sprs epr +14wee, "dmodexs,, wp2(15-)) if WINZIG A fpr € [2,4].

(Snrlaenrl +weqfnr1) =

e ~—
N[

Proof: For the proof we distinguish between the cases: (a) wiNZIG = 1; and (b)
WINZIG = 0.

(a) For wiNziG = 1, we have (e,, + wec < epin —3—p+1), so that because of fpr < 4,
the magnitude of the exact product val(0, ey, +wec, fpr) is smaller than zp, /2 = 2¢min 7P,
Because we deal with non-zero operands, also the exact product is non-zero, so that the
magnitude of the exact product is in the range 0 < val(0, e, + wee, fpr) < Zmin/2.

4.3. MULTIPLICATION 139

Thus, the nearest representable numbers to the exact product are 0 = val(s,, eg.0) and
(=1)*7" Zpmin = val(Spyr, €min —p +1,1), so that according to the IEEE rounding definition
in section 2.3.1 the exact product is rounded to (sp,, €min —p + 1,0) in rounding mode
srmode € {RZ,RNE} and to (Spy,eémin — p + 1,1) in rounding mode srmode = RI.
Because the rounding mode RI is signaled by the bit SR_.MODE[1], this agrees with the
first two lines of the rounding formula in this lemma.

(b) For wiNziG = 0, the rounding equations are copied identically from equation 4.271.
For WINzIG = 0, we have ep, +wec > epin —2—p+1. From this condition on the exponent
epr + wec, it follows, that the variable rounding positions vpl and vp2 are limited to the
ranges vpl’ € [-2:p—1] and vp2’ € [-1:p—1]. These conditions can be used for the
rounding implementation. O

Because the above selection of the rounded result is simple for WINzIG = 1, we focus
on the computation of the cases for wiNziG@ = 0 in the following. For this purpose, we
introduce the notation:

fprndl2 = rndpoedess,, wpt' (fpr) (4.274)
fprnd24 = rndpoedess,, wp2 (fpr/2)) (4.275)
_ n(spraepraprnd12) if fpr e [172[
(8prnd; eprnd; fprnd) = { N(spr, epr + 1, fprnd24) if fpr € [2,4]. (4.276)

With this notation the result of first step (equation 4.267) can be written as:

(Sprs€min —p + 1, <SR_-MODE[1] >) if WINZIG (

4.277
(SpT: Eprnd T+ WEG fprnd) otherwise.)

(Snrlaenrl +w6anr1) = {

Because in the rounding computations for fprnd we can use that wiNziG = 0, the ranges
of the variable rounding positions vpl and vp2 for the computation of fprnd are limited
to vpl € [2:p—1] and vp2 € [-1:p—1] according to the proof of case (b) in the previous
lemma. To indicate that we only have to consider these limited rounding position ranges,
we write vpl’ and vp2' for the rounding positions with limited ranges and have vpl’ = vpl
for vpl € [-2:p—1] and vp2' = vp2 for vp2 € [-1:p—1]. From fpr € [1,4] and from
the ranges of the variable rounding positions vpl’ and vp2', it follows that the rounded
significands fprndl2 and fprnd24 are bounded by fprndl12 € [0,4] and fprnd24 € [0, 2],
and thus, they can be represented according to fprndl2 = <FPRND12[—2:52]>,., and
fprnd24 = <FPRND24[—1:52]>¢q.

The selection and computations in the two cases of equation 4.276 can be simplified
by selecting the upper choice only for fprndl2 € [0,2[and the other choice for all other
cases. In this way, the selection condition is based on the rounded significand value
fprndl12 instead of the value of the unrounded significand product fpr. The following
lemma shows, that we do not make a mistake by this substitution, but that the new
ranges, for that we consider fprndl2 and fprnd24, allow to simplify the normalization
shifts, that are required after the rounding.

Lemma 4.28 Fquation 4.276 can be simplified to

(Spr, €pr, fprndl2) if fprndl2 < 2

d) = .
(Sprnd: €prna; Fprnd) { post_norm(spr, epr + 1, fprnd24) otherwise.

Proof: We divide the proof of the lemma into two steps: In step (a) we show, that the
values on both sides in the equation of the lemma are the same. Then, we show in step

140 CHAPTER 4. BASIC FP OPERATIONS

(b), that the unbounded normalization shifts from equation 4.276 can be replaced by a
post-normalization shift respectively by no shift for the two cases.

(a) The normalization shifts do not change the values of the factorings. Thus, we only
have to show the equality of the selected values

val
{ val
_ val
N { val
Because the equality is obvious, if the conditions (fprndl2 < 2) and (fpr € [1,2[) have
the same value, we only have to consider the cases, where: (a.i) (fprndl2 > 2) and
(fpr € [1,2]); and (a.ii) (fprndl2 < 2) and (fpr € [2,4]). Thus, to show the above
equality, it suffices to show that fprnd24 = fprnd12/2 in the cases (a.i) and (a.ii).
(a.d) In the computation of fprndl2, we have to consider the rounding positions vpl’ €
[-2:p—1] and in the computation of fprnd24, we have to consider the rounding positions
vp2' € [-1:p—1]. For rounding positions vpl’ € [-1:p—1], it follows from (fpr € [1,2[),
that (fprndl12 < 2). Thus, in case (a.i) we either have fprndl2 = 2, or vpl’ = —2 and
thus fprndl12 =4 (in this case vp2' = —1).
From the definitions of the variable rounding positions vpl’ and vp2' (see equations
4.272-4.273), it follows that vp2' € {vpl’, vpl’ + 1}, so that we always have vp2’ < vpl’ +1.

The rounded significand fprndl2 can be written as a rounding function of fpr/2 with
rounding position vpl’ + 1:

Sprs €pr, fprndl2) if fpr €[1,2]
Spryepr + 1, fprnd24) otherwise.

Spry €prs fPrndl2) if fprndl2 < 2
Sprsepr + 1, fprnd24) otherwise.

val (Spr, €prnd, fprnd)

—~ N~~~

fprndl2 = 'rndsrmode,vpl’ (pr) =2 Tndsrmode,vp1’+1(fpr/2)-

Thus, because of vp2' < vpl’ + 1, the computation of the rounded significand fprnd24 =
Ndsrmodewp2 (fPr/2) can be interpreted as a second gradual rounding step on the sig-
nificand fprndl12/2 at the rounding position vp2’. We now consider fprndl2 = 2 and
fprnd12 = 4, which are the two possible values of fprndl2 for case (a.i). Because
fprndl2/2 = 1 is already a multiple of 22 for vp2' € [0:p—1], we get in this case also for
the second gradual rounding step fprnd24 =1 = fprndl2/2, and because fprndl2/2 = 2
is already a multiple of 2772’ for vp2' = —1, we get in this case also for the second gradual
rounding step fprnd24 = 2 = fprnd12/2. This completes the proof of case (a.i)

(a.ii) In the computation of fprndl2, the rounding position could be in the range vpl’ €
[2:p—1]. Because we assume fpr € [2,4[, the rounded significand fprndl2 can not
become smaller than 2 for the rounding positions vpl’ € [-1:p—1]. Only for the rounding

position vpl’ = —2, the significand fprndl2 could become smaller than 2, and the only
possible case for this is fprndl2 = 0. For vpl’ = —2, we have vp2' = —1 and it follows
from

0= fprndl2 = Tndsrmode,—?(fpr) =2 Tndsrmode,—l(fpr/Q) =2 fprnd24 =0,

that also in case (a.ii) we have fprndl12/2 = fprnd24, as required.

(b) For the proof of part (b) we distinguish between the two cases: (b.i) fprndl2 < 2;
and (b.ii) fprndl2 > 2.
(b.i) For fprndl2 < 2, the upper choice is selected. For this choice, we have to consider
the rounding positions vpl’ € [2:p—1] in the computation of fprndl2. For rounding
positions vpl’ > 0, it follows from fpr € [1,4[, that fprndl2 > 1, so that the resulting
factoring is already normalized in these cases and the additional normalization shift can

4.3. MULTIPLICATION 141

be neglected. For the remaining rounding positions vpl’ € {—1,-2}, it follows from
for € [1,4], that fprnd12 € {0,2,4}. Among these cases, only for the result 0, the
condition for case (b.i) is given and the upper choice is selected. Because the unbounded
normalization shift is defined to compute the identity function for factorings of zero, the
normalization shift can be neglected for all rounding positions, that have to be considered.
(b.ii) For fprnd12 > 2, the factoring (spy,epr + 1, fprnd24) is selected. For this choice, we
have to consider the rounding positions vp2' € [-1:p—1] in the computation of fprnd24.
From this range of rounding positions with fpr/2 € [0.5, 2[, it follows that fprnd24 < 2 and
because fprndl12/2 > 1, it follows that fprnd24 € [1,2]. Because a post-normalization
shift (see definition 2.11) normalizes factorings with significands in the range [1,2], a
post-normalization shift suffices to normalize the factoring (s,,, e, + 1, fprnd24), so that
the unbounded normalization shift can be replaced by a post-normalization shift in the
case (b.ii). Thus, the conclusion of step (a), case (b.i) and case (b.ii) is, that

(Spr, €pr, fprndl2) if fprndl12 <2

(Sprna; eprna, fprnd) = { post_norm(syr, epr + 1, fprnd24) otherwise,

as required by the lemma. O

Definition 4.11 We define two significand overflow conditions CFOVF1 and CFOVF2:

CFOVFl <= (fprndl2 > 2)

<= FPRNDI12[-2] V FPRND12[-1]
CFOVF2 <= (fprnd24 =2)

<= FPRND24[—]

With this definition of the significand overflow conditions CFOVF1 and CFOVF2 and with
the definition of the post-normalization shift (see equation 2.11), the equation from lemma
4.28 can obviously be written as

(Spr, €pr, fprndl2) if cFOVF1
(Sprnd» €prnd, fprnd) = (Sprsepr + 1, fprnd24) if cFOVF1 AND CFOVF2 (4.278)
(Sprs epr +2,1) if cFOvF1 AND CFOVF2

Lemma 4.29 For exponents ey, +wec > epin, the condition CFOVF2 can not be fulfilled:

(epr + wee > €min) == CFOVF2.

Proof: From (ep + wec > epp) it follows, that the variable rounding positions vpl
and vp2 are fixed to vpl = vp2 = p — 1. Because fa, fb < 2 — 2P+l and thus fpr/2 <
2 —27P*1 it follows from the rounding position vp2 = p — 1, that the rounded significand
fprnd24 < 2. Therefore, we get as required CFOVF2 = 0. O

We postpone a detailed description of the rounding implementations for fprndl2 and
fprnd24, and consider the description of the exponent rounding and the exponent wrap-
ping according to the second computation step from equation 4.268 in the following. Be-
cause the conditions WINZIG and OVF can not both be fulfilled at the same time and no
exponent wrapping is required for UNF_EN = 0, the exponent rounding selection from

142 CHAPTER 4. BASIC FP OPERATIONS

equation 4.268 can be written in combination with the definition of exponent rounding
(see equation 2.12) and with equation 4.277 as

Sprs €mazs fmaz) if OVF A OVF_EN A OR(SR_MODE[1:0])
Sprs €00y foo) if OVF A OVF_EN A OR(SR_MODE][1:0])
Sprs €min—pP+1, <SR-MODE[1] >) if WINZIG
Sprs €prnd +weq fprnd) otherwise.

(
(Snraenrafnrc) = E (4.279)
(

We integrate the selection of the +x,,4, and oo results with the selection of the +0 and
+Zpin results in the factoring (spy, €sei, fser) by the selection:

(Sprs €mazs fmaz) if WINZIG A OR(SR-MODEJ1:0])
(Sprs €sels fset) =9 (Sprs €ocs foo) if WINZIG A OR(SR_MODE[1:0])
(Spr; €min —p + 1, <SR_MODE[1]>) if WINZIG

so that the factoring (spre€nresfnre) can be selected by:

(Smres Enrer fare) = { (Spr, €sel; fsel) if wiNzic OR (OVF A OVF_EN)
nrcs ~*nrcs Jnrc -

(8prs eprna+weg fprnd) otherwise. (4.280)

This already describes, how the significand f,. is selected. For the computation of the
exponent we additionaly have to consider the implementation of the exponent wrapping.

For the computation of the exponent wrapping, we predict the wrapping exponent
constant wec by the sign of the exponent e,, = <EPR[12:0]>2 (which is EPR[12]) similar
to the computation in the addition unit III according to

wee — § T if EPR[12]
p "1 —a otherwise.

so that with the definition of the condition EWRAP, that signals the requirement for ex-
ponent wrapping by

EWRAP <= (UNF A UNF_EN) OR (OVF A OVF_EN), (4.281)

the exponent wrapping can be included into equation 4.278 by

epr if EWRAP AND CFOVFI

epr + 1 if EWRAP AND crovFl AND CFOVF2
eprnd+wec = epr + 2 if EWRAP AND crovrl AND crovr2 (4.282)

epr + pwec if EWRAP AND CFOVF1

epr + 1+ pwec if EWRAP AND CFOVF1

Note, that the exponent ey, + 2 + pwec does not have to be considered in this equation,
because e, + wec > epip for EWRAP = 1 (see corollary 2.10) and because of lemma
4.29. Based on the equations 4.280 and 4.282 the computation of the exponent ey, is
implemented by the following six selections:

. e if (WINZIG V OVF_EN
copi = { sel ()

ewi = ey + 1 + pwec otherwise
cci — eprit = epr + 2 if CFOVF2
- epri = ep, +1 otherwise

4.3. MULTIPLICATION 143

eni — eopi if (WINZIG V OVF[1] V (UNF[1] A UNF_EN))
eci otherwise

€sel if (WINZIG V OVF_EN)
eop = .
ew = epr + pwec otherwise

en — eop if (WINZIG V OVF[0] V (UNF[0] A UNF_EN))
epr otherwise

eni if CFOVF1
e = .
nre en otherwise,

where OVF[1] and UNF[1] indicate the case of an overflow resp. underflow under the
assumption that CFOVF1 = 1 and OVF[0] and UNF[0] indicate the case of an overflow resp.
underflow under the assumption that cFOVF1 = 0.

Because the exponent eni is selected only for CFOVF1 = 1, we assume in the selection
for eni that cFOVF1 = 1. Therefore, we use the signals UNF[1] and OVF[1] instead of UNF
and OVF in this selection. Accordingly, we use UNF[0] and OVF|0] instead of UNF and OVF
in the selection for en. The condition in the seletions for eop and eopi is based on

OVF A OVF_EN V EWRAP <= OVF V (UNF A UNF_EN).

This completes the description of the selections for the exponent e;,¢.

In the following, we consider the rounding implementation for the rounded signif-
cands fprndl2 and fprnd24. The computation of fprndl2 and fprnd24 is based on the
injection-based rounding mode reduction (see section 2.5.2). To be able to use injection-
based rounding, we have to consider the rounding modes RZ, RNU, RI first and to correct
the rounded result in the case of the rounding mode RN E by the additional L-bit fix at
the least significant bit position of the significand (see section 2.3.2).

For the rounding of a significand, which is an integral multiple of 27'%%, at a bit position
vp < 105 in the rounding mode srmode € {RZ, RNU, RI}, the rounding injection injy,
is defined by

inJup = < INJyp[—2:105] >0
0 if srmode = RZ
= 2-vp—1 if srmode = RNU

2-vp _ 2105 if sprmode = RI

so that according to lemma 2.18 for srmode € {RZ, RNU, RI}, the injection-based round-
ing of a significand f at the position vp can be written as

Tndsrmode,vp(f) = rndRZ,vp(f + injvp)-
For our rounding computations we have to generate the injections inj,,;r and inj,po
according to rounding positions vpl’ and vp2’. We denote the injected significands by
fing12 = fpr+ iNJup1’
fing24 = fpr +ingypo.
By the truncation of finj12 and finj24 after bit position vpl’ resp. vp2', we get the
rounded significands, that consider the rounding modes srmode € {RZ, RNU, RI}:
fornd12" = rndgy 1 (fingl12)
fprnd24" = rndrzpe (fing24).

144 CHAPTER 4. BASIC FP OPERATIONS

We then get the required rounded significands fprndl12 and fprnd24 from fprndl2’ and
fprnd24' by an additional L-bit-fix for the rounding mode RN E at significand position
vpl’ resp. vp2'. Because we only have to consider fprndl2 < 8 and fpr is an integral
multiple of 271% for both single and double precision, it suffices to consider the bit posi-
tions [—2:104] in the binary representations of the values inj,,1» and finj12, and because
we only have to consider fprnd24 < 4 and fpr/2 is an integral multiple of 2% for both
single and double precision, it suffices to consider the bit positions [-1:105] in the binary
representations of the values inj,p» and finj24.

Based on the above notations we overview the computation steps, that are required
for the computation of fprndl2 and fprnd24 in the significand path:

(A) By the partial product generation and reduction, a carry-save representation of the
exact significand product fpr is computed. Because in this case no rounding injection
is added during the reduction, we can use the implementations of step (A) from the
multiplication unit T (both, the half-sized version, which is depicted in figure 4.22,
and the full-sized version, which is depicted in figure 4.21).

(B) Step (B) contains the compression, the IEEE rounding and post-normalization shift
of the significand product fpr from one of its carry-save representations that we get
from step (A). The rounding for the computation of fprndl2 and fprnd24 in the
rounding modes srmode € {RZ, RN E, RI} is computed in two steps:

(I) Computation of fprnd12' and fprnd24’ considering the rounding modes srmode
{RZ,RNU, RI} by injection-based rounding with the steps:

(1) Generation of the injections inj,,1» and inj,,s and addition with the carry-
save representation of fpr by a full-adder line and a carry-look-ahead adder
that implement:

fing12 = < FINII2[-2:105] >peq = fpr + injypr (4.283)
finj24 = < FINI24[—1:105] >peq = fpr + injupy. (4.284)

(2) Truncation of finj12 after bit position vpl’ and of finj24 after bit position
vp2’. Because the truncation position is not fixed in this case, the trunca-
tion is more complicated to be computed than in the previous section and
has to be considered separately.

fprnd12" = rndpzpr(fingl2) (4.285)
= < FINJI12[2:0pl'] >, (4.286)
fprnd24" = rndpzpe (fing24) (4.287)
= < FINI24[1:0pl'] >y (4.288)

(IT) Computation of the rounded significands fprnd12 and fprnd24, that consider
the rounding modes srmode € {RZ, RNE, RI} from fprndl2' and fprnd24’,
that considered the rounding modes srmode € {RZ, RNU, RI} by implement-
ing the L-bit-fix for the rounding mode RN E.

The significand position of the L-bit is vpl’ resp. vp2'. This bit has to be pulled
down if the L-bit-fix condition is fulfilled, namely iff the number lies exactly
between two representable rounding results. Because in this case the injected

€

4.3. MULTIPLICATION 145

rounding position (L-bit)

2 -1 0 1 VP ypr1 52
‘ ‘ 1 ‘ rounding operand
rounding mode RN injection |52vp
decodé
55 52-vp! 1
MASKO yp[-2:53] ‘ 0 ‘ 0|0 ‘ 0 0 0(1]0 0 0
rounding mode Rl injection |52-vp
half-decader
55 52-vp: 1
17% ‘ \—‘\
MASK1p[-2:53] ‘ 0 ‘ 0|0 ‘ 0 0 011 1 1
truncation mask
MASKL, ,[-253] ‘ 1 ‘ 1 1‘ 1 1 1 1}0]o0 0 0
L-bit-fix +
truncation ‘1‘1 1‘1 1 1 tAX| 0|0 0 0
mask

Figure 4.28: Generation of the injections for the variable rounding position vp € [-2:51].

significands already contain the injections 2Pl =1 pegp. 272~ the L-bit-fix
conditions are given by:

LFIX12 = SR_MODE[0] AND (FINJ12[upl’+1:104] = 0'04-vP!")
LFIX24 = SR_MODE[0] AND (FINJ24[vp2'+1:105] = 0'0°—?),

Because step (A) is implemented like in the multiplication unit I, no implementation details
have to be added for this step. The missing implementation details for the computation
step (B) are described in the following:

(B) For the implementation of step (B.I.1), the generation of the rounding injections
injyp1r and inj,,o has to be described. The binary representations of these injections are
composed from two parts, a fixed mask that accounts for results with values of normalized
numbers from NOR,, ,, in which case the significand has to be rounded at the position
p—1, and a variable mask, that is adjusted corresponding to the variable rounding position
for results with values of denormalized numbers from DEN, ,. Moreover, we distinguish
between a fixed injection mask for the rounding mode RNU, which we call FIXMASKO,
and a fixed injection for the rounding mode RI, which we call FIXMASK1. For the cases,
where the significand rounding position is different from p — 1, the binary representations
of the rounding injections is generated with the help of a decoder for the rounding mode
RI and a half-decoder for the rounding mode RNU. These decoders account for the
correcting terms maz{0, emin — (epr + wec)} and maz{0, ein — (epr + wec + 1)} in the
equations of the rounding positions vpl’ and vp2'. For the rounding modes RNU and RI
the generation of these variable rounding injections is illustrated in figure 4.28 considering
a variable rounding position vp € [—2 : 51]. Moreover, this figure depicts how the masks
that are used to generate the binary representations of the injections could also be used for
the truncation and L-bit-fix computations, that are required in steps (B.1.2) and (B.II).

A formal description of the injection generations for INJ,,;r and INJ,,o is given by
the following lemma. In this lemma, several different masks are defined. In general, we
append a 0’ to the names of masks, that are used to generate injections for the rounding

146

CHAPTER 4. BASIC FP OPERATIONS

mode RNU. To the names of the corresponding masks for the rounding mode RI, we

append a '1’:

Lemma 4.30 With the condition
VRTINY <—

and the computation of

FIXMASKO[—2:53] =
FIXMASK1[—2:53]

varterm =

VARMASKO[—2:52] =
VARMASK1[2:52] =

MASKOyp1/[—2:53]
MASKOQpor [—1:53] =
MASK1,,1/[-2:53] =

MASK1,po [-1:53] =

(epr +1 — emin < 0) AUNF_EN

(0%°, DBL, 0%, DBL)
(0%, 5812, 1)
< VARTERM[12:0] >
{ €min — €pr — 1

€min — €pr — 1 +29
DECO(VARTERM[5:0])[55: 1]

if DBL
otherwise.

HDEC(VARTERM[5:0])[55:1]

(VARMASKO[—2:52],0) if VRTINY
FIXMASKO0[—2:53] otherwise.
VARMASKO0[—2:52] if VRTINY
FIXMASKO[—1:53] otherwise.
(VARMASK1[—2:52],1) if VRTINY
FIXMASK1[—2:53] otherwise.
VARMASK1[—2:52] if VRTINY
FIXMASK1[—1:53] otherwise.

the rounding injections can be generated by

(MASK1yp1[—2:53],15%) if SR.MODE[1]

INJyp1/ [—2:105] = A
0

(0, MASK 1 por [—1:53], 152)
(0, MASKO o [—1:53], 0°2)

INJpo [2:105] =), 1
0

Proof:
rounding positions vpl’ and vp2' can be split into

(MASKO,,1/[—2:53],05%) if SR.MODE[0]

otherwise.
if SR_.MODE[1]
if SR.MODE][0]
otherwise.

Based on the value of the condition VRTINY, the definitions of the variable

wpl! = 4P~ 1 — emin + €py if VRTINY
p—1 otherwise

wp2 = p—1—emin+epy +1 if VRTINY
p—1 otherwise,

so that the injections can be generated separately in a fixed part considering rounding
position p — 1 for the case VRTINY = 0 and in a variable part for the case VRTINY = 1. In
this way we use in particular, that for the case VRTINY = 0, we have vpl’ = vp2' = p — 1.
In the following we proove the lemma separately for the three rounding modes RZ, RNU

and RI:

4.3. MULTIPLICATION 147

In the rounding mode RZ, the injections are defined to be inj,,11 = injypy = 0 for
both the fixed and the variable case. Because the rounding mode RZ is encoded with
SR_MODE[0] = SR_MODE[1] = 0, we get by the selection from the lemma

INJyp1/[—2:105] = INJ 0 [-2:105] = 01%%,

as required by the definition for the rounding mode RZ.
In the rounding mode RNU, the injections are defined by

iNJyp1’ g vl
= < (OUP1’+3’ 1’ 0104*1)];1/) >neg (4289)
injvm’ 2_vp2l_1

= < (O H3 0l s (4.290)

We distinguish between the cases: (a) VRTINY = 0 and (b) VRTINY = 1:

(a) For VRTINY = 0, we have vpl’ =vp2'=p—1, so that by definition INJ,p1/[2:105] =
INJ,po [-2:105] = (0PF2,1,01957P). Because the rounding mode RNU is encoded by
SR_MODE[0] = 1, by the selection from the lemma

INJyp1/[2:105] = INJpo [-2:105] = (FIXMASKO[-2:53], 0°%)
B (055,1,0°?) if DBL
N (026,1,08") otherwise

— (0p+2’ 1’ 01057;1))

This agrees with the definition.

(b) For VRTINY = 1, we have vpl’ = p—1—emin+ep € [-2:p—2] and vp2' =
p—l—emintep+1 € [2:p—2], so that vp2 = vpl+1. The difference of the fixed rounding
position p — 1 and the rounding position vpl’ is given by

p—1— ’Upl’ = Emin — Epr
_ varterm +1 if DBL
o varterm — 28 otherwise.

From the above range of the rounding position vpl’, it follows, that the value varterm is in
the range varterm € [0:53], so that it can be represented by varterm = < VARTERM[5:0] >.
Because vp2’ < 51, we can write starting from the definition

INJyp1[—2:105] = (011;171/-1-3’1’0104—1)1)1/)
_ (Ovp1’+3 1 051—11;01’ 053)

(ovp'+3 1, gp—2-vpl’ (53) if DBL
B { (0vP'+3 1, 0p—2-vp1'+29 (053) otherwise
0547varterm 1 Ovarterm 053)
DECO(VARTERM][5:0])[54 : 0],0%?)
VARMASKO[-2:52],0%%)
MASKO,,1/[2:53], 0°%)

(
(
(
(

148 CHAPTER 4. BASIC FP OPERATIONS

as required by the lemma for the injection representation INJ,,1 [—2:105].
Because in case (b) we have vp2' = vpl’+1, we can write for the injection representation
INJ,por [—2:105] starting from the definition

INJypo [—2:105] = 0vp2’+3’1’0104,vp2,)

’ _ ’
0’ 0vp2 +2’ 1’ 01[]4 vp2)

0, VARMASKO0[—2:52], 052)
0, MASKO o [—1:53], 0°2).

(
(
_ (0’ 0vp1’+3’ 1, 010371);1)1’)
(
(

This agrees with the selection according to the lemma for this case. In this way, the proof
for the rounding mode RNU is completed.
In the rounding mode RI, the injections are defined by

injupy = 9—wpl' _ 9105

= <INJyp1/[—2:105] > peq

- < (Ovp1'+3’ 1, 110471;;;1’) >neo (4.291)
injopy = 9—vp2 _ 9—105

= <INJypo[—2:105] >peq

= < (OUPF R 102y (4.292)

We compare the injections in the rounding mode RNU (see equations 4.289 and 4.290)
and in the rounding mode RI (see equations 4.291 and 4.292). In the rounding mode
RNU, the binary representation of the injection 1NJ,,[—2 :105] only contains a single bit
that is one, namely INJ,,[vp+1] = 1. In the representation of an injection for the rounding
mode RI, exactly the bits INJ,, [vp+1 : 105] are all ones. Thus, to get the equations for the
injections in the rounding mode RI from the equations for the injections in the rounding
mode RNU, only the bits INJ,,[vp+2 : 105] which are zero in the rounding mode RNU,
have to be inverted for the rounding mode RI. This can easily be checked in the equations
for MASKO,y1/, MASKO,,» and MASK1,,;/, MASK1,,s, so that the proof of the lemma is
completed. O

In the following we describe the implementation of the truncations according to step
(B.I.2) and the implementation of the L-bit-fix according to step (B.II). The computation

of the truncations according to equations 4.285-4.288 is based on the masks MASK1,,;/[—2:52]
and MASK1,,o[—1:52], that have exactly ones in the positions that are relevant in the
truncated significands. For the L-bit-fix we compute the masks LPDMASK12[—2:52] and
LPDMASK24[—1 : 52], that have in their L-bits LPDMASK12[vpl'] resp. LPDMASK24[vp2']
the value of the L-bit-fix condition LFIX12 resp. LFIX24, and that have zeros in all other
positions.

For the computations of the masks LPDMASK12[—2: 52] and LPDMASK24[—1 : 52], the
masks MASK1,, and MASKO,po, that were involved in the rounding injection generation
for the rounding mode RI, are used to select the proper L-bit position and to truncate the
injected significands after bit positions vpl’ resp. vp2' according to equations 4.285-4.288.

To detect the L-bit fix condition for the rounding position vpl’ according to equation
4.289, the condition STICKY12/[upl’] <= (FINJ12[vpl’+1:104] = 0104-P1") ig required.
Accordingly, for the L-bit fix at the rounding position vp2' (see equation 4.289), the
condition STICKY24/[vp2] <= (FINJ24[vp2'+1:105] = 010°~"2") is required. Because these

4.3. MULTIPLICATION 149

bits are only required for the L-bit-fix in the rounding mode RNU, where SR_MODE[0] = 1
and SR-MODE[1] = 0, we can also use the sticky bits

STICKY12[upl’] <= (FINJ12[upl’+1:104] = sR_MODE[1]'04~ "1y (4.293)
STICKY24[up2/] <= (FINJ24[up2'+1:105] = SR_MODE[1]'?5 "2} (4.294)

for the computation of the L-bit-fix condition. The use of the bits STICKY12[vpl’] and
STICKY24[vp2'] has the advantage, that these bits are also required for the detection of
the inexact exception in all three reduced rounding modes.

Because the variable rounding positions vpl’ and vp2' have to be considered in the
ranges vpl’ € [-2:52] and vp2' € [—1:52], the sticky-bit strings STICKY12[—2:52] and
STICKY24[—1:52] are required for the computation of the L-bit fix conditions. For the com-
putation of the inexact conditions we additionaly require STICKY12[53] and STICKY24[53].

We compute the sticky-bits STICKY12[vpl’] and STICKY24[vp2'] using the technique
from [4] for detecting the condition ‘A + B = K'. In contrast to a straight-forward
implementation of equations 4.293-4.294, that include the computation the binary rep-
resentation of FINJ12[vpl’ +1 : 104] resp. FINJ24[vp2’ + 1 : 105], with the technique
from [4], the sticky-bits can be directly computed from the carry-save representation
of finj12 resp. finj24 without requiring a carry-propagate addition. This allows to
compute the sticky-bits STICKY12[vpl’'] and STICKY24[vp2'] in parallel to the compres-
sions of finj12 and finj24 from the carry-save representations to the binary repre-
sentations. The details of these sticky-bit computations are described by the following
lemma. In this lemma, we denote a carry-save representation of finj12 by the bit-strings
FINJ12¢[—2:104] and FINJ125[—2:104], and a carry-save representation of finj24 by the
bit-strings FINJ24C[—1:105] and FINJ24s[—1:105].

150 CHAPTER 4. BASIC FP OPERATIONS

Lemma 4.31 With the computation of

P12[-2:104] = (FINJ12¢[—2:104] @ FINJ12S[—2:104])
G12[—2:104] = (FINJ12C[—2:104] A FINJ125[—2:104])
v12[-2:105] = ((P12[-2:104] A SR_MODE[1]) V G12[-2:104],0)
wi12[—2:104] = (P12[—2:104] ® SR_MODE]1])
CSSTICKY12[—2:104] = wI12[-2:104]@v12][—1:105]
pP24[—1:105] = (FINJ24C[—1:105] @ FINJ24S[—1:105])
G24[-1:105] = (FINJ24C][—1:105] A FINJ24s[—1:105])
v24[—1:106] = ((P24[-1:105] A SR_MODE[1]) V G24[—1:105],0)
w24[-1:105] = (p24][-1:105] & SR-MODE]1])
CSSTICKY24[—1:105] = w24[—1:105]®v24[0:106]

we get for each vpl' € [-2:104] and vp2' € [—1:105]

ANDTREE(CSSTICKY12[vpl' +1:104]) <= (FINJ12[vpl'+1:104] = sR_MODE[1]'04~ 7P
ANDTREE(CSSTICKY24[vp2' +1:105]) <= (FINJ24[vp2'+1:105] = sR_MODE[1]'?5~"P?")

so that the sticky-bits STICKY12[vpl'] and STICKY24[vp2'] can be computed by

STICKY12[vpl’] = ANDTREE(CSSTICKY12[vpl’+1:104])
STICKY24[vp2'] = ANDTREE(CSSTICKY24[vp2'+1:105])

Proof: The proof can be found in [4] by setting k; = SR-MODE[1] for ¢ € [-2:105],
A[—2:104] = FINJ12C][—2: 104] resp. A[-1:105] = FINJ12¢C][—1: 105], and B[-2:104] =
FINJ128[—2:104] resp. B[—1:105] = FINJ245[—1:105]. O

In this lemma only the computations for each single sticky-bit STICKY12[vpl’] and
STICKY24[vp2'] are described. The computation of the whole sticky-bit string STICKY12[—2:53]
is implemented by the use of the parallel-prefix ANDSYMB-function PPAND, that com-
putes from an input string INPUT[n; : no| in its nth output PPAND(INPUT[n; : ngl)[n] =
ANDTREE(INPUT[n:n9]), so that according to the previous lemma we get PPAND(CSSTICKY12[—2:
104]))[vpl’ + 1] = sTICKY12[vpl’] and, thus, PPAND(CSSTICKY12[—2 : 104])[—1 : 54] =
STICKY12[-2:53]. Accordingly, the sticky-bit string STICKY24[—1:52] is computed by
STICKY24[—1:53] = PPAND(CSSTICKY24[—1:105])[0:54]. This completes the description of
the implementation for the sticky-bit strings STICKY12[—2:53] and STICKY24[—1:52].

Based on the sticky-bit strings STICKY12[—2:53] and STICKY24[—1:53] and the masks
MASK1,,1/[—2:53] and MASK1,por [—1:53] from the generation of the injections in the pre-
vious lemma, the following lemma describes the computation of the truncation and the
computation of the L-bit-fix.

Lemma 4.32 (a) The truncations according to equations 4.285-4.288 can be computed by

FPRND12'[-2:52] = FINJ12[-2:52] AND MASK1,,[—2:52]
FPRND24'[—1:52] = FINJ24[-1:52] AND MASK1,,[—1:52].

(b) With the detection of the L-bit fix conditions by the masks

LPDMASK12[—2:52] = SR_MODE[0] AND MASK1,,1/[—1:53] AND STICKY12[—2:52]
LPDMASK24[—1:52] = SR_MODE[0] AND MASK1,,2[0:53] AND sTICKY24[—1:52],

4.3. MULTIPLICATION 151

the combination of the truncation and the L-bit-fix can be computed by

FPRND12[-2:52] = FPRNDI12'[-2:52] AND LPDMASKI12[-2:52]

= FINJ12[—2:52] AND MASK1,,1/[—2:52] AND LPDMASK12[—2:52]
FPRND24[—1:52] = FPRND24'[-1:52] AND LPDMASK24[—1:52]

= FINJ24[—1:52] AND MASK1,,2[—1:52] AND LPDMASK24[—1:52].

Proof: (a) It follows from equation 4.291 in the previous lemma, that:
MASK].,Upll [—2 : 52] = (0”1’1’+3’ 152*1}1)1’).

According to this equation the bit string MASK1,,1/[—2:52] has exactly zeros in the posi-
tions [—2:vpl’]. Thus, starting from equations 4.285-4.286, we get
fprndl12" = <FPRNDI12'[-2:52]>p.,
= rndpzupr(fing12)
= <FINJ12[2:0pl']| >peq
= <(FINJ12[2:52] AND MASK1,p1/[—2:52]) >peqs

so that as required

FPRND12'[-2:52] = FINJ12'[-2:52] AND MASK1,,/[-2:52].

The equation for FPRND24'[—1:52] can be shown analogously.
(b) According to equation 4.289, the L-bit fix condition for the rounding position vp1’
is given by:

LFIX12 = SR_-MODE[0] AND ORTREE(FINJ12[vpl’+1:105])

= SR-MODE[0] AND sTICKY12[vpl'])

Considering only the valid positions [-2:vp1’] of the truncated significand FPRND12'[—2:52],
the bit string LSEL12[—2 : 52] = MASK1,p1/[—1 : 53] masks the L-bit position vpl’ by
LSEL12[—2:upl’ — 1] = 0*?"'+2 and LSEL12[vpl’] = 1. Because

LPDMASK12[—2:52] = SR_.MODE[0] AND LSEL12[-2:52] AND STICKY12[-2:52],

it follows from the above, that LPDMASK12[-2 : vpl’] = (0*?''*+2 LFIX12). Because the
rounded significand FPRND12'[up1™+1:52] is already truncated with FPRND12'[upl'4+1:52] =
0°2-P1 | we get

FPRNDI12[—2:52] = FINJ12[—2:52] AND MASK1,,1/[—2:52] AND LPDMASK12[—2:52]
= FPRND12'[-2:52] AND AND LPDMASK12[-2:52]
= (FPRNDI2[-2:vpl’—1], FPRND12[upl’] A LFIX12, 072~ P

This equation agrees with the definition of the L-bit-fix for the computation of the rounded
significand fprnd12 from the significand fprnd12’. The equations for the computation of
FPRND24[—2:52] can be shown analogously. O

This completes the descriptions of the equations for the implementation of step (B), thus,
leaving the description of the exception detections. The detection of the invalid exception
INV was already included in the special cases computations. The detections of the inexact,
the underflow and the overflow exceptions INX, UNF and OVF are described in the following
lemma.

152 CHAPTER 4. BASIC FP OPERATIONS

Lemma 4.33 With the definition of (note, that TINY1 was already used in the computa-
tion of VRTINY in lemma 4.30) :

LARGE) <= (emaz — €pr < 0)
emaz — (€pr +1) <0)
MASK1,p1/[—2], MASK 1,1/ [—1:52] AND MASK1,p1/[—2:53])
RMASK24[0:53] <= (MASK1,po [—1], MASK1,,1/[0:52] AND MASK1,,/[—1:53])
INX12 <= ORTREE(RMASKI12[-1:53] AND stTickY12[-1:53]) OR
(SR-MODEJ[1] V SR_MODE[0]) & ORTREE(RMASK12[—1:53] A FINJ12[—1:53])

INX24 <= ORTREE(RMASK24[0:53] AND sTICKY24[0:53]) OR

LARGE]l <—

RMASK12[—1:53] <

(
(
(
(

(SR-MODEJ[1] V SR_MODE[(]) & ORTREE(RMASK24[—1:53] A FINJ24[—1:53])
TINY) <= (epr — emin < 0)
TINYl <= (epr +1— emin <0)
TINY2 <= (epr + 2 — emin < 0),

the overflow, the inexact and the underflow exception can be detected by

ovF — 4 SPCA A WINZIG A LARGEL CFOVF1
| SPCA A WINZIG A LARGEQ otherwise

nx = J SPCAA (WINZIG V INX24) V OVF) if CFOVF1
~ | SPCA A (WINZIG V INX12) V OVF) otherwise

((TINY2 A CFOVF2) V (TINY1 A CFOVF2)) if CFOVF1

(
SPCA A (INX24 V UNF_EN
(A TINYO otherwise.

) A
INX12 V UNF_EN)
Proof: In this multiplication unit the overflow condition can be written as

OVF <= SPCA A WINZIG A ([val(Spr, €prnd, fprnd)| > 2¢me=+l)

An overflow could only occur for results with very large exponents where ey, +2 > eprpqg >>
emin. Because of corollary 2.10 we then also have ey, + wec > ey,in. Thus, it follows from
lemma 4.29, that OVF = cFOVF2 and we do not have to consider the case CFOVF2 = 1
in the overflow detection. In this way we get according to equation 4.278, where we only
have to consider fprndl2 < 2 and fprnd24 < 2:

((epr+1 > emas) CFOVFI

> 2emaz+1 .
(‘Ual(spraepmdafprnd” 2) = (epr > emaz) otherwise

LARGEl CFOVF1
LARGEO otherwise.

In this way we get the equation for OVF from the lemma.
Because all special cases results with (SPCA = 1) are exact, the condition for an inexact
exception (see section 2.4) can be written as

INX <= (SPCA A RNDINX) V OVF) (4.295)

where the bit RNDINX signals the significand rounding inexactness, namely the case, that
significand rounding changes the value of the significand product.

According to the use of RNDINX in equation 4.295, we can assume for the computation
of RNDINX that sPCA = 0 and that no overflow occurs. Thus, according to equation

4.3. MULTIPLICATION 153

4.279 and equation 4.278 we have to consider the following three cases for the detection of
RNDINX: (a) (WINZIG = 1); (b) (WINZIG A CFOVF1 = 1); and (c) (WINZIG A CFOVF1 = 1).

Because only non-zero significand products have to be considered for (WINzIG = 1), it
is obvious that we have RNDINX = 1 in case (a). For the rounding inexactness conditions
in the cases (b) and (c) we use equation 2.51 regarding the (vpl’+1)-representative of fpr,
that relates to the computation of fprndl12 (case (b)), and the (vp2' + 1)-representative
of fpr/2, that relates to the computation of fprnd24 (case(c)). In this way we get

RNDINX =

/. 1
{ WINZIG V ORTREE(FPR[vp2':104]) if CFOVF1 (4.296)

WINZIG V ORTREE(FPR[vpl’+1:104]) otherwise.

Because we do not compute a representation of the exact significand product fpr, the
above equation has to be computed from the injected significand products finj12 and
finj24. By considering the injections that are included in the injected significands in the
rounding modes RNU and RI, the above ORTREE-conditions can be computed based on
the representations of the injected significands by

ORTREE(FINJ12[vpl’+1], FINJ12[vpl'+2:104]) if SR-.MODE([1]
ORTREE(FINJ12[vpl’ +1], FINJ12[vpl'+2:104]) if SR_-MODE[0]
ORTREE(FINJ12[vpl’+1:104]) otherwise.

ORTREE(FPR[upl'+1:104])

(SR-MODE[1] V sR_-MODE[0]) & (FINJ12[vpl'+1])
V ORTREE(SR_MODE[1] & FINJ12[vpl’ +2:104])
(SR_MODE[1] V SR_-MODE|(]) & (FINJ12[vpl’ +1])

TV sTICKY12[upl +1]) (4.297)

ORTREE(FINJ24[vp2' 4 1], FINJ24[vp2’' 4+2:105]) if SR_MODE[1]
ORTREE(FPR[vp2':104]) = < ORTREE(FINJ24[up2’ + 1], FINJ24[up2’' +2:105]) if SR_.MODE[0]
ORTREE(FINJ24[vp2’ 4 1:05]) otherwise.

(SR-MODE[1] V sSR_-MODE[0]) & (FINJ24[vp2’'+1])
V ORTREE(SR_MODE[1] & FINJ24[vp2’ +2:105])

_ (srR_MODE[1] V SR_MODE[0]) & (FINJ24[vp2’ +1]) (4.298)
~ V STICKY24[vp2' +1] .

For the computations in equation 4.297, we have to select the bit FINJ12[vpl’ 4 1] from
the bit string FINJ12[—2:52] and to select the bit STICKY12[vpl’ +1] from the bit string
STICKY12[—2:52]. For this purpose we require a mask, that exactly has a one in position
vpl’ + 1 and zeros in all other positions. This is exactly the case for

RMASK12[—1:53] = (MASK1,p1/[—2], MASK],,1/[—1:52] AND MASK1,p,1/[—2:51])

_ (Ovp1'+2’ 15371;])1’) AND (11}p1l+3’ 05271);1)1')
(va1’+2, 1, 05271)111’).

Thus, we get

FINJ12[vpl'+1] = ORTREE(RMASKI2[—1:53] AND FINJ12[-2:52])
STICKY12[upl'+1] = ORTREE(RMASKI12[—1:53] AND STICKY12[-2:52])

154 CHAPTER 4. BASIC FP OPERATIONS

and equation 4.297 can be written as:

ORTREE(FPR[upl'+1:104]) = ORTREE(RMASK12[-1:53] AND sTicKY12[-2:52]) OR
(SR-MODE[1] V SR_MODE[(]) @& ORTREE(RMASKI12[—1:53] A FINJ12[-2:52])
= INX12

It can be shown analogously, that equation 4.298 can be computed by

ORTREE(FPR[up2’':104]) = ORTREE(RMASK24[0:53] AND SsTICKY24][-1:52]) OR
(SR-MODE[1] V SR_MODE[0]) & ORTREE(RMASK24[0:53] A FINJ24[—1:52])
= INX24

The substitution of RNDINX in equation 4.295 according to equation 4.296 and the substi-
tution of ORTREE(FPR[vpl’+1:104]) and ORTREE(FPR[vp2’:104]) by INX12 resp. INX24
according to the previous two equations then yield the equation for INX from the lemma.

For the multiplication unit the condition for an underflow exception is defined by (the
function TINY is defined in definition 2.10):

SPCAANTINY (Spr, €prnd, fprnd) if UNF_EN
UNF = - .
SPCA A RNDINX A TINY (Spr, €prnd, fprnd) otherwise.

= SPCA A (RNDINX V UNF_EN) A TINY (Spr, €prnd, fprnd)

_ SPCA A (INX24 V UNF_EN) A TINY (spy, epr + 1, fprnd24) if CFOVF1
SPCA A (INX12 V UNF_EN) A TINY (spy, ey, fprndl2) otherwise

Because for CFOVF1 = 0 the rounded significand fprnd12 is smaller than 2, we get

TINY (Spr, €pr, fprndl2) <= (epr < €min)
<= TINY(

Because fprnd24 < 2 for cFOVF2 = 0 and fprnd24 = 2 for cFOVF2 = 0, we get for the
function

(epr +2 < €min) if CFOVF2

TINY (spr,epr + 1, fprnd24) <= { (epr + 1 < emin) otherwise

<= ((TINY2 A CFOVF2) V (TINY1 A CFOVF2))

With the substitution of TINY (sp, €pr, fprndl2) and TINY (Spr, epr + 1, fprnd24) in
equation 4.299 according to the previous equations, we get the equation for UNF from the
lemma. O

This lemma completes the description of the computations for the exception flags, so
that the description of the whole multiplication unit TIT is completed.

Figure 4.27 depicts the main structure of the multiplication unit III, figure 4.29 depicts
a detailed block diagram of the implementation of step (B) and a detailed block diagram
of the exceptions and exponent computations is given in figure 4.30.

4.3. MULTIPLICATION 155
Ny [-2:104) FPRS[-1:104] FPRC[-1:104] INJ ypp[-1:105]
0 0 0 0
| x y |
‘ full adder(107) ‘ ‘ full adder(107) ‘
MASK Lypy: SRMODE[l]l 4ﬁl—l hl,:’i lSRMODE[l] MASK1yp2
[-2104] [-2:104] [-1:105] [-1:108]
252 1y g2 'A+B=K’ circuit 'A+B=K’ circuit 152 28]
AND AND
CSSTICKY12 CLA(107) CLA(107) CSSTICKY24
RMASK12 MASK 1y’ [-2:104] [-1:105] MASK Iyp2 RMASK 24
[-1:53] [0:53] [0:53]
Parallel Prefix Parallel Prefix | SRMODE[0]
AND(107) AND(107)
[54] [-1:53] [0:53] [54)
STICKY12
[-2:52]
MASK1yn1' MASK 1yp2
s Ly (53] [-252] [-1:52) 53] [-1:52] Lop2
LPDMASK12 | [-2:52] LPDMASK24 | [-1:52]
FINJ12[-2:52] FINJ24[-1:52]
RMASK12 RMASK24
STICKY12 [-153] [0:53] STICKY24
[-1:53]l 1 lFINJlZ[-1:53] ‘ AND [-2 [-1 ‘ ‘ [-1 [0] AND ‘ FINJ24[0:53]l ! 1[0:53]
[A | [AnD | [anp | [AnD |
l l FPRND12[0:52] m m FPRND24[1:52] l l
‘ ORtree ‘ ‘ ORtree ‘ SRMODE[1] OR CFOVFL CFOVE2 SRMODE[1] OR‘ ORtree ‘ ‘ ORtree ‘
SRMODE[0]
CFOVF1
0 MUX 1 ‘Fm [0:52]
INX12 [INX24 Finf‘[o:szl
OR ‘ ‘ OMUX 1‘.% FPRND[0:52] (SRMODET], 0?) ‘ 1mux 0 OR
SPCA
WINZIG
SPCA AND WINZIG AND
OROVF ‘ F [0:52] WINZIG OR
INX12 ‘ OR ‘ ‘ 0 MUX 1 ’-w INX24
lmx l F d0:52]

Figure 4.29: Implmentation of the significand compression and variable position rounding

in the multiplication unit ITI.

156

lRMODE[l:O] lsmc

CHAPTER 4. BASIC FP OPERATIONS

lEA[ll:O] % lEB[ll:O]

!

rounding mode
reduction
l CLA(13)
R
SRMODE[1:0] (0DBL.1DBL) EPR[12:0] E mil12:0] -E mitP+2[12:0]
EPR[5:0] EPR[12:0]
& ' !
CLA(6) EPR[12:0]
compound
ciier(13) CLA(13)
VARTERM[5.0] l -
[12] T2 [12]
HDEC(6) DEC(6)
[55:] [55:1]
VARMASK1[-2:52] % VARMASKO[-2:52] > UNF_EN
S s
1 [-2:53] [-1:53] % 0 [-2:53] [-2:53] g
[1mux0] [ImuxO9] 8 [1mux0] |imuxO] AND | [AND
r%:. MASKQ,,y [-253]
S
i} - ¥ MASKQ,y [153] m . . < <
sz AND = z z ! z
N =z =
2 |2 1. 0|0 E 5 R z N
25 (Nl L) (A1) <
2 R SRMODE[0]
8 “ INJL2[-2:54] | | INJ24[-1:54] l
MASKL | ,[-1:53] INJ24[-1:54]
MASK1,y. [-253] INJ12[-2:54] EPR[12:0] TINYO TINY1 VRTINY SRMODE[L:0] WINZIG
+ALPHA[11:0] l -ALPHA[11:0] l
EPR[12] EPR[11:0] EPR[12:0] EPR[12:0]
PWEC[11:0] EPR[11:0] Emax120] l E mir*2 [12:o]l
2
3 .. +1[11:0] .
St o compound INC2 FrRa compound CLA(13)
B max[11:0] adder(12) (12 adder(13)
[s o}
= IMuxO| | ewiizg EW[11:0] z TOI[12] To[2)| | TTH[1Z] z
N 3 3 =
[Emir;pﬂ m \ \ < B 5 £ 2 *SPCA z
11:0] B m = o % % N [
2) N 2 M |WINZIGAND |@
WINZIG [0 1 1 1 g % EW[1L:0] 0 I SCh AND AND
2| 2| eseLpLo 2 2 ' croves
ESEL[110] 9 ‘é‘ = [anD | [AND | [T mux O]
= |1 mux 9] [Imux0]-" [1mux O] 5 R 58
lEOPI[ll:O] ECI[11:0] lEOP[ll:O] F ‘ OR ‘ ‘ OR ‘ S
WINZIG OR OVF[1] OR i l l ﬁl
(UNF[1] AND UNF_EN) 1 MUX 0 .9 OVF[1] OVF[0] >
' anD | | AND |
ENI[11:0] EN[11:0] OVF(1] OVF[O] croveL lUNF[l] UNF[O]l
m‘ 1 MUX 0 ‘ 1 mux ©O J—, 1 Mux O
lsm[nzm OVF UNF

Figure 4.30: Implementation of the exponent&exceptions circuit of the multiplication

unit ITI.

4.4. DIVISION 157

4.4 Division

In this section the implementations of the floating-point division are described. Like in
the previous sections for the addition and the multiplication implementations, also for the
division, the descriptions are separated into three subsections for the microarchitectures
I, II and III. For the division implementations the main details have to be described
about the computation of the significand quotient. Because a very similar significand
quotient implementation is used for all three microarchitectures, we will only describe it
once for the implementation for microarchitecture I. For the other two microarchitectures
we will only describe the small adjustments, that are required. The implementation of
the significand quotient uses an initial approximation for the reciprocal of the divisor.
Because the description of our implementation of this initial reciprocal approximation
(see also [36, 39]) is quite complex, we describe it separately in the next subsection in
preparation for the division implementations.

4.4.1 Initial Reciprocal Approximation

The circuit for the reciprocal approximation should approximate the reciprocal of a normal-
ized input significand y = <v[0:52] >, € [1,2[. We denote the approximated reciprocal
by arecip(y) ~ 1/y and define the approximation error by err(y) = 1/y — arezip(y). For
the approximated reciprocal result arezip(y) the computation has to guarantuee an upper
bound on the absolute approximation error |err(y)|. In particular, for the implementations
of the FP division, we will require initial reciprocal approximations with absolute approx-
imation errors that are bounded by |err(y)| < 278, err(y)| < 27!° and |err(y)| < 2728
respectively.

In literature the initial reciprocal approximations fall into two groups: The constant
approximation [13, 18, 35, 6, 5, 15, 42] is easy to implement in 1 clock cycle by a simple
lookup table, but due to the huge cost it is limited to small accuracies (> 2716). The
linear [18, 35] and modified linear [18] approximation approaches can achieve even twice
the accuracy of constant approximations at nearly the same cost, but the implementations
corresponding to [7, 18, 35] require about 3 clock cycles for an approximation: one lookup
and decode cycle, one cycle for the adder tree of the full-size multiplication and one clock
cycle for the carry-propagate addition of this multiplication.

We present a faster linear approximation implementation for the reciprocal. A descrip-
tion of this implementation can also be found in [36, 39]. In comparison to the previous
linear reciprocal approximation implementations from literature, our implementation is
accelerated by the use of the following new ideas:

1. a linear approximation formula, that reduces the widths of table lookup inputs and
multiplication operands for a given approximation accuracy.

2. the use of a specific small Booth multiplier (with less than 8 partial products in the
implementation for |err(y)| < 2728) for the computation of the linear approximation
formula.

3. a fast redundant compression from carry-save representations to redundant Booth-
Digit representations, a redundant format, that can directly be fed into the large
Booth multiplier of the FP multiplication unit. This fast partial compression avoids
the slow carry propagate addition step in the multiplication of the linear approxi-
mation formula.

158 CHAPTER 4. BASIC FP OPERATIONS

For the description of the implementations, we first develop the linear approximation
formula for the approximation of the reciprocal. We then introduce the new intermediate
format, the redundant Booth-Digit (redBD) representation, in that the reciprocal approx-
imation should be output. Based on the approximation formula, we finally describe the
implementation of the computations from the binary representation of the input v[0:52]
to the redundant Booth-Digit representation of the approximated reciprocal arecip(y) for
a given appoximation accuracy. In particular we consider the implementations for the
three target accuracies that will be required for the implementations of the floating-point
divisions.

4.4.1.1 Approximation formula

We consider a linear approximation formula for the reciprocal. The linear and the constant
parameter of this linear approximation are not fixed for the whole range of y, but the
range of y is partitioned into 2™ subintervalls and for each of these subintervalls a specific
a linear approximation arezip,(y) with an appropriate linear and an appropriate constant
parameter is used to approximate the reciprocal function.

We consider the 2™ equidistant subintervalls [p, p+2~™[with pe {2™,. .. 2m+1 1} /om,
Because y€[1,2—2752], one of these intervals contains y € [p,p + 2 ™[. We get the
left endpoint of this interval by p = <v[0:m]>y., and we get the right endpoint by
<Y[0:m] >peq +27™. The linear approximation formula for the interval [p,p + 27| can
be written as

arezipy(y) = C0, + C1y - (y — p)

with the constant parameter C0, and the linear parameter C0,. For the approximation
formulae in the 2™ different intervals, we require 2" different constants C0, and 2™
different constants C'l,. In the implementation we will get these constants by a table
lookup from a ROM for C0, and from a ROM for C1,. Because y € [1,2[is normalized
and we always have Y[0] = 1, the ROMs with the 2™ entries for C0, and C1, can be
addressed by Y[1:m], where m is the input width of the table lookup ROMs.

In this way the delay for the implementation of the linear approximation formula can
be mainly influenced by the following parameters:

e the input width m of the lookup tables, because it determines the delay of the ROM
tables.

e the widths of the multiplication operands within the linear approximation formula,
that influence the delay and the cost of the additional small multiplier.

We consider the linear approximation formula with the focus to minimize these parameters
for a given accuracy in the follwing lemma.

Lemma 4.34 Fory € [p,p+2~™] withp € {2™,---, 2™+t —1}/2™ the reciprocal approz-
imation of f(y) = 1/y by the linear function

arecipp(y) = rndrz,ur(C0p — Cly, - rndrz wy(y — p))
with
1
Clp = TndRNE,wcl <m>
1

COP = TndRNE’wCO <W

+272m 3 gl Clp>

4.4. DIVISION 159

results in the approrimation error
_ _ . —2m—3 —wel—m—2 —wc0—1 —wy —wr
err(y) = |1/y — arecip,(y)| < 2 +2 +2 +2 +27.
p

Proof: Taylor approximation of degree 1 of the function f(y) = 1/y developed at the
midpoint p + 27™~! of the interval [p, p + 27 yields the linear approximation formula

Ttaylor(y) = f(p + 2im71) + f’(p + 27m71) ’ (y - (p + 2im71))
1 1

T opr2ml (promoyZ’ (y—(+27"").

Using the Lagrange error formula, the approximation error erroriayior = 1/y — Tayior (y)
in the interval [p, p + 27™[is bounded by

o2

5 - €2) with ¢ € [-27m~ 1 27m),

‘ e"A"A()"Ataylor ‘ S

As f'(y) = y% and y € [1,2) we have
‘errortaylor‘ < 2—2m—2.

The 2nd derivative of 1/y is positive for y € [1,2) and ryyr(y) describes a tangent of
the graph of 1/y. Therefore, errorygy,r can not become negative. By adding half of the
maximum error in the approximation formula

™ (y) = Ttaylor (y) + 2—2m—3

we halve the absolute error
lerrori| = [1/y — ri(y)] <2727,

In |errori| only the approximation error, produced by the linear approximation using
infinite precision numbers, is considered. We have to consider the additional influence of
the discretization errors by using finite precision numbers.

First, we discretize the derivative C1, = rndrn g wel (W) at position wel and

bring then the linear term in r{(y) to the form of the linear term in arezipy(y):

1

= P+ 92-m—1 + 2_2m_3 + 2—771—1 ’ Clp - Clp ' (y - p)'

r2(y)

Because |y — (p +2 ™ 1) < 27™71 and because the rounding function TNARN E,wel
produces a discretization error smaller than or equal to 27%¢'~! we get the error bound

errors| = [1/y — rafy)) <2723 4 gmwetom2,
Discretizing the constant part at position wc0:

1

C0p = rndrNE,wco <W

_ 2—2m—3 + 2—m—1 . C].p>

and the linear factor (y — p) at position wy by rndrz ., (y — p) yields

r3(y) = COp + C1, - rndRZ, wy(y — p).

160 CHAPTER 4. BASIC FP OPERATIONS

Because the rounding function rndgz ., produces a discretization error smaller than 27,
the error bound increases to

‘67“7“07“3| — |1/y o Tg(y)| < 2—2m—3 + 2—wc1—m—2 + 2—wc0—1 49wy,

The linear approximation formula arecip,(y) = rndrzw,(r3(y)) contains then the final
approximation error, that is bounded by

|e7“7“(y)\ — |1/y _ arecz'pp(y)\ < 272m73 + 27wclfm72 + 2711)0071 + way + 27wr‘
O
Corollary 4.35 For the implementation of the reciprocal approzimation we will use the

linear approximation formula from lemma 4.34 with wel = m + 2,wy = 2m + 6, wcd =
2m + 5 and wr = 2m + 5, so that we get:

arecipp(y) = rndrzomis(C0p — Clp - rndrzom+6(y — p))
1
Cl, = rndpNEm+2 <m)
Cc0, = rnd L gmes et
p = TNARNE2m+5 P21 o

This approzimation formula results in an absolute error |err(y)| < 272m~2,

Because rndpz..y(y—p) < 27 and |C1,| < 1, the binary representation of rndpz .y (y—p)
contains wy—m = m+-6 non-zero positions and the binary representation of —C'1, contains
wel = m + 2 non-zero positions. For 0.5 < C0, < 1, the most significant bit of C0, in
the position with weight 2! is always a 1. Therefore, only wc0 — 1 = 2m + 4 bits have to
be saved in a lookup table entry for C'0,. In this way a straightforward implementation
of the linear approximation formula according to corollary 4.35 requires a m-bit-in lookup
table for C0, with a bit width of 2m + 4 and a m-bit-in lookup table for —C1, with a bit
width of m 4+ 2. A (m + 2)-bit by (m + 6)-bit multiplication is required to compute the
multiplication of this linear approximation formula.

For the three target accuracies of the reciprocal approximation, that we will require
for the implementations of the floating-point division, we consider the linear reciprocal
approximation formula from corollary 4.35 with m = 13 to get |err(y)| < 272, with
m =T to get |err(y)| <27 '6 and with m = 3 to get |err(y)| < 27%.

For these three cases we define the linear approximation equations (note, that in these
equations p = < Y[0:m] >pe, and that y —p = < Y[m+1:52] >p)

arecip28(y) = rndpz31(C0.28, — C128, - rndrz32(y — p)) (4.299)
arecipl6(y) = rndpz19(C0.16, — C1_16, - rndrz20(y — p)) (4.300)
arecip08(y) = rndpz11(C0-08, — C1.08, - rndrz12(y — p)). (4.301)

where the constants are defined by:

00—28p = 'rndRNE,31 pﬁ+2_29+2_14'01_28p> 01_28p = TndRNE’lg) ((p+2114)2>

C016, = rndpyp (s +277+275C116,)) C116, = radpxey (Gotep

C0.08, = rndni (a=r+2+274-C1.08,) C1.08, = rndrye.s (o

4.4. DIVISION 161

non-zero bit positions in the representations of
function | m | lerr(y)| < CcO, ‘ -C1, ‘ rNdRZ.wy (Y — D) ‘ arecip
arecip28 | 13 2~ c0,[1:31] | c1,[1:15] Y[14:32] ARECIP28[0: 32]
arecipl6 | 7 2-16 c0,[1:19] | c1,[1:9] Y[8:20] ARECIP16[0:20]
arecip08 || 3 278 c0p[1:11] | clp[1:5] Y[4:12] ARECIP08[0:12]

Table 4.2: Bit positions of the operands in the linear reciprocal approximation formulae
for the functions arecip28, arecipl6 and arecip08.

The computation of arecip28(y) requires a 15-bit by 19-bit multiplication and an addition
with a 31-bit value, the computation of arecipl6(y) requires a 9-bit by 15-bit multipli-
cation and an addition with a 19-bit value, and the computation of arecip08(y) requires
a b5-bit by 9-bit multiplication and an addition with a 11-bit value. The required bit
positions for these computations are listed in table 4.2. We postpone a detailed descrip-
tion of the implementation and introduce the intermediate format, in that the reciprocal
approximation should be represented in the following section.

4.4.1.2 Redundant Booth-Digit Representations

For the definition of redundant Booth-digit representations we shortly review Booth re-
coding. Following the descriptions of [3, 30] a number b = <B[m—1:0]> is recoded
in Booth-2 recoding as suggested in Fig. 4.31. With B[m + 1] = B[m] = B[—1] = 0 and
m' = [(m + 1)/2] one writes

b = <B[m—1:0]> (4.302)
= 2b—b = 2<B[m—1:0]> —<Bm—1:0]> (4.303)
= ZZ:B% 47 (4.304)
where
Byj = 2B[2j] + B[2j — 1] — 2B[2j + 1] — B[2j] (4.305)
= —2B[2j + 1] + B[2j] 4+ B[2j — 1]. (4.306)

For 0 <j <m' —1 this equation computes the Booth-digits Bs; € {—2,—1,0,1,2} for
the number b = <B[m—1:0]>. The Booth-digits By; of a number are not unique and
not only the set of values according to equation 4.306, but each set of values By; €
{=2,-1,0,1,2} that fulfills equation 4.304, is defining a set of Booth-digits for the number
b. A string of Booth digits (B2j)o<j<m/—1, that fulfills equation 4.304, is called a Booth
digit representation of the number b.

According to equation 4.306 each Booth digit By; can be computed from three con-
secutive bits (B[2j + 1], B[2j], B[2j — 1]) of the binary representation of the number b =
<B[m—1:0]>. For an arbitrary string of tripels (RB3;, RB2;,RB1;)o<j<m/—1, We define
the corresponding Booth digits by

BQj = —2RB3]‘ + RB2]' + RBlj. (4307)

The Booth digits By; that are computed according to this equation represent the number
b= Z;-":O_l Byj -4 = Z;-nzo_l (—2RB3; + RB2; + RB1;) - 4. In this way the number b is

162 CHAPTER 4. BASIC FP OPERATIONS

2<BIMLOP | () (my) el 6o B0
R o P R e o
_<B[mi0> | | 'B BB 'B B
<Bm1o> , 0) BB 1 RO @[
 Bn Bae o B B, 1 B

Figure 4.31: Booth digits By;

also represented by the string of tripels (RB3;, RB2j, RB1;)o<j<m'—1. We define, that the
string of tripels (RB3j, RB2;, RB1)o<j<m/—1 is called a redundant Booth-digit representation
of b, iff b= 3""7! (~2RB3; + RB2; + RB1;) - 4,

Note, that because also the string of tripels (B[2j + 1], B[2j],B[2] — 1])o<j<m/—1 i8
a redundant Booth-digit representation of b according to equations 4.304 and 4.306, a
binary representation of a number can be easily converted into a redundant Booth-digit
representation of the number. We denote this conversion from the binary representation of
the number b to a redundant Booth-digit representation of the number b by the operation
redBD with

(B[2j + 1],B[2]], B[2j - 1])O§j§m’—1 = ’redBD(B[m—lO])

Multiplier with Input of Redundant Booth-Digit Representation. In an or-
dinary implementation of a multiplier that uses Booth recoding, the binary input of
one of the operands is encoded by Booth encoders (we call this the second operand
and denote it by b = <B[m—1:0]>). Each of these Booth encoders computes a sign-
magnitude representation of one Booth digit and gets as input the three consecutive
bits (B[2j + 1], B[2j4],B[2j — 1]) from that a Booth digit is originally computed accord-
ing to equation 4.306. We change the specification of the multiplier, so that as the
second operand not the binary representation of the number b, but the set of tripels
(B[27 + 1],B[2j],B[2j — 1]) has to be input. (This change can easily be realized, be-
cause these are exactly the inputs of the Booth encoders). Thus, to multiply a number
a by b, not the binary representation of b, but the redundant Booth digit representation
(B[2j + 1], B[2].B[2j — 1])o<j<m/—1 is required as input of the new multiplier. Because
in equations 4.306 and 4.307 the weights of the bits in (B[2j + 1], B[2j],B[2j — 1]) and
(RB3;,RB2;,RB1;) correspond to each other, it does not change the value of the second
operand if the redundant Booth-digit representation (B[2j + 1], B[24],B[2] — 1])o<j<m’—1
is replaced by an arbitrary Booth-digit representation (RB3;, RB2;, RB1;)o<j<m/—1 of the
number b. In this way we get a multiplier, that multiplies a number a = <A[k—1:0] >,
that is given in the binary representation A[k—1:0], with a number b that is given by a
an arbitrary redundant Booth-digit representation.

Compression from Carry-Save to Redundant Booth-Digit representations. The
following lemma describes how a number can be converted from carry-save to redundant
Booth-digit representation. This technique will help us to avoid the carry-propagate ad-
dition in the implementation of the multiplication for the linear reciprocal approximation.

Lemma 4.36 Let the compression injection compinj be defined by compingj = Z;’ial 2.
49, Then, from a carry-save representation of b+ comping, a redundant Booth-digit rep-

4.4. DIVISION 163

2-bit windows

e o o carry-

e o @ save
IHIRNIRN [N,

2-bit 2-bit 2-bit 2-bit 2-bit 2-hit
* e adder adder adder adder adder adder

T[T

number representation

2-bit adder row

S

S SIS sS:S s s i i i
(2 T2 el 25|22 3222 [2] (200 [2-2) 123 [241 (2528 | "eaundant Booth digit representation
C C Y c C C C of
[2i+6] [2i+4] [2i+2] [2i] [2-2] [2j-4] [2j-6]

Figure 4.32: Compression from carry-save to redundant Booth-digit representation.

resentation of b can be computed by a line of two-bit adders with inverted most significand
sum-bit outputs like depicted in figure 4.32.

Proof: We get a carry-save representation of b + compinj. Looking at bit windows
of width 2 in this carry-save representation of the number b + compinj, each window j
contains 4 bits (see Fig. 4.32); two with the weight of one and two with the weight of two.
Therefore, the binary value w; of the part of the number within a window j is in the range
w; € {0,---,6}. The number b + compinj can then be written as:

m' -1

b+ comping = Z wj4j.
J

=0

If we input the 4 bits of a window j into a 2-bit adder, we get three output bits c[2j + 2],
s[27 + 1] and s[2j], that represent the value of the window by:

wj =4-0[25 +2]+2-5[25 + 1] + s[2j].

With s[2m/ 4+ 1] = s[2m/] = [— 2] = 0, we have

"1)
b+ compinj = Z;"_O (4-C[2) + 2] + 2 8[25 + 1] + s[24])47

_ oy

1=

!

o (27827 + 1] + s[27] + c[25])4.

Now we subtract the additive constant compinj on both sides, and get the value of b:

r_q . ! .
b+ compinj —Z;"_O 2.4 = ZT_U(2-S[2j+ 1] + s[24] + c[25] — 2)47

!

b= D (2 (512 1] = 1) + 5[] + C[2])4

As x — 1= —X for x € {0, 1}, we can substitute s[2j + 1] — 1 by —s[2j + 1] and have:

!

b= Z:;O(—%Pj + 1]+ s[24] + o[24])47,

164 CHAPTER 4. BASIC FP OPERATIONS

1] 13bit | 19bit ||
Y[1:13] Y[14:32)
X 3 p p
‘ 1‘ m-bit ‘ (m+6)-bit ‘ ‘
vizml Y[m+1:2me6] ROM ROM
p p 28
CCO,-2 Cl, -p)
ROM ROM [1:15]
[0:32] a2,
CCOP C]D P (3x 8)lbits
[1:m+2]
[0:2m+6] el?]%ot e%i selection |OgiC
@xmois PPTREE(S,24)
selection logic LINTERMC LINTERMS
PPTREE(m’,m+11)) M
LINTERMC LINTERMS ‘ O ‘ O
[M+1:2m+6] [m+1:2m+6] ‘ full adder line ‘
1M l 1M [0:28]l [0:28]l 2932 [[29:32)
PO 10 :
| full adder line | | hafadderline |
[0:2m+6]l l[0:2m+6] [o:ze]l [0:27]1 joet
‘ CSto redBD compression ‘ CSto redBD compression ‘
. l [0:2m+6]] l[o:32]
arecip’ (y) arecip28’’ (y)
in redundant Booth digit representation in redundant Booth digit representation
(€Y (b)

Figure 4.33: Structure of the reciprocal approximation implementation for the computa-
tion of: (a) arecipl6’(y) with m = 7 and arecip08'(y) with m = 3; (b) for arecip28”(y).

so that the string of tripels (S[2j + 1],8[2j], C[2]])o<j<m’—1 is a redundant Booth-digit
representation of b. Thus, a partial compression from a carry-save representation of b +
compinj to a redundant Booth-digit representation of b can be implemented by a line of
2-bit adders with inverted most significand sum bit outputs like depicted in figure 4.32.

a

4.4.1.3 Implementation

In this section the implementations of the three initial reciprocal approximations that im-
plement the equations for arecip28, arecipl6 and arecip08 (see equations 4.299-4.301)
are described. These implementations have to compute a multiplication of C'l, and
rndrz,wy(y—p). For this multiplication we use Booth encoding. Because we read one
of the operands from a ROM and this operand is not required for anything else than
this multiplication, we already save this multiplicand in its Booth encoded form in the
ROM. Because in this way the Booth encoders for the multiplication are not required,
this technique saves cost and delay for this multiplication. In [36, 39], we encode this
operand even by Booth3 recoding, which further accelerates the computations, but to
simplify the description in this work, here only Booth2 recoding is used. The multiplica-
tion of Cl,=<cClp[l:m+2]>peq and rndrzwy(y—p) = <Y[m+1:2m+6] >4 results in a
positive product, that can be written as

linterm = Cl,-rndrzuwy(y —p)
<Clp[l: m+2]>peq - <Y[MA+1 :2m~+6] >,
= <LINTERM[m+1:3m+8]>,,,.

4.4. DIVISION 165

To compute arecip(y), we have to consider the difference C0, —linterm, and we only have
the carry-save representation of

linterm = lintermc + linterms

= <LINTERMC[m+1:3m+8] >pey + <LINTERMS[m+1:3m+8] >,4.

Because the computation of the bit positions [0 : m+5] of the binary representation of
arecip(y) includes a truncation after the bit position [m+ 5] with an truncation error
bounded by 2~ (™*5) and the truncation error of the truncation of a carry-save represen-
tation after bit position [m+6] is also at most 2~ (m+5) " we can also consider the positions
[0:m+6] of the carry-save representation of arecip(y) to achieve the same absolute er-
ror bounds according to corollary 4.35 (we denote the corresponding approximation by
arecip'(y)). By the use of two’s complement number representations we get:

arecip'(y) = < (01,¢0,[2:2m~+6]) >opeq —
— < LINTERMC[m~+1:2m+6] >op¢9 — < LINTERMS[m+1:2m+6]) >op¢4
= < (01,00,[2:2m+6])) >opeg +< (1™ LINTERMC[m+1:2m+6]) >o50 +
+ < (1™ LINTERMS[m+1:2m+6]) >opey +2 -2 20

We store the binary representation of CC0, = C0,+2-272m=6 4 compinj in the ROM for
the constant parameter. If we compress the inverted carry-save representation of linterm
with the bit strings (1!, LINTERMC[m +1:2m+6]) and (1™F! LINTERMS[m+1:2m+6])
and the binary representation of CC0, = <cc0,[0:2m+6]>,., by a full-adder-line, we
get a carry-save representation of arecip’(y) + compinj. A redundant Booth-Digit repre-
sentation of arecip’(y) can then easily be computed by the partial compression technique
from the previous section according to lemma 4.36.

In this way, the reciprocal approximation is implemented in the following steps:

e Table lookup of the binary representation of CC0, = <cc0,[0:2m+6]>,., and the
Booth2 encoded representation of C'l, from two ROMs with the input of Y[1:m].

e Multiplication of the Booth2 encoded representation of C1, and Y[m+1:2n+6] by
selection logics and the partial product reduction with an adder tree.

e Addition of the carry-save representation from the output of the adder tree with the
binary representation of CC0, by a full-adder line.

e Partial compression of the carry-save representation from the output of the full-
adder line to a redundant Booth-digit representation of the reciprocal approximation
according to lemma 4.36.

Figure 4.33(a) depicts the structure of the implementations for the redundant Booth-Digit
representations of arecipl6’(y) and arecip08'(y). In the case of single precision, not the
approximation arecip28’, but arecip28’ (y) = arecip28'(y) — DBL - 2728 will be required to
guarantuee a positive error 0 < (arecip”28(y) — 1/y) = (err(y) — 2728) < 2727 in single
precision. For this reason, the implementation of arecip”28 is slightly changed (see figure
4.33(b)). Note, that for double precision, we have arecip28” (y) = arecip28'(y).

166 CHAPTER 4. BASIC FP OPERATIONS

4.4.2 Division I (normalized — representative format)

Specification. This section describes a FP division implementation, that is able to
divide two FP numbers given in the normalized representations (section 2.6.3):

BUSanr[69:0] = (SA,EA[11:0],FA[0:52], ZEROA, INFA, QNANA, SNANA) (4.308)
BUSbyr[69:0] = (sB,EB[11:0],FB[0:52], ZEROB, INFB, QNANB, SNANB), (4.309)

which represent the factorings (sa,ea, fa) = factnp(BUSanrp[69:0]) and (sb,eb, fb) =
factnp(BUSbyr[69:0]). Additionaly, we get as input the bit DBL, which signals the case
of double precision by DBL = 1, and an active bit 1SDIV = 1, that signals the case, that
the operation which is actually perfomed is a division.

In the case, that both operands have representable values and the second operand is
non-zero with ZEROB = 0, the exact quotient exacty;, is defined by (section 2.2.4):

exacty, = (—1)SA®SB.geazeb £, .1/1p, (4.310)

If (8pc, €re, fre) is a RF factoring of this exact quotient exacty;, for non-zero representable
inputs, then for the general case of arbitrary input values, a RF factoring of the required
quotient is given by (see equation 2.17):

((0,eqNaN, fqNan) if SCQNAN
(Sinf,€cos foo) if SCINF
_ (sa,ea, fa) if scx 4311
(srRF,erF, frRF) = (sb, eb, b) £ soy (4.311)
(s0,€0,0) if SCZERO
L (ST076T07fT‘C) otherwise.

The quotient output of the division I implementation is then specified by the corresponding
representation in the representative format BUSgr[73:0] = RF(sgr, err, frr). Moreover,
in the the division I implementation the exception flags INV and DVZ should be signaled
according to the occurance of an invalid exception and the occurance of a division by zero,
respectively.

Implementation. Because we will consider a multiplicative implementation of the sig-
nificand quotient that shares the fixed-point multiplier with the FP multiplication imple-
mentation, the whole division I implementation will be integrated into the multiplication
unit I.

The equations for the special conditions in equation 4.311 are already summarized in
section 2.4.4 by equations 2.34-2.40. Among these equations, only the equations for the
conditions SCINF and SCZERO differ from the equations 2.27-2.33 for the special conditions
for FP multiplication. Thus, we change the computations of these two signals in the
special cases circuit according to:

SCQNAN A SCX A SCY A (INFA V ZEROB) if ISDIV
SCINF . (4.312)
SCQNAN A SCX A SCY A (INFA V INFB) otherwise
SCQNAN A SCX A SCY A (INFB V ZEROA if 1SDIV
SCZERO = N () . (4.313)
(ZEROA A ZEROB) V (SCQNAN V SCX V SCY) otherwise.

4.4. DIVISION 167

Based on the selection of the special cases results in the special cases circuit of the multi-
plication unit according to

(0, eqNanN, fgnan) if SCQNAN
(Sinfs€ocr foo) if SCINF
(Sscy €sey fse) = (sa,ea, fa) if scx (4.314)
(sb, eb, fb) if scy
(s0,€0,0) otherwise,

we get the final division result also by the selection

(5507 €scs fsc) if spcA
(Srey €res fre) Otherwise.

(srr,err, frRr) = { (4.315)

Like for multiplications, also for divisions the invalid flag is given by DVZ <= SCQNAN
(compare tables 2.8 and 2.9), so that the implementation for INV from the multiplication
unit does not have to be changed. The case of a division by zero can only occur for
divisions with ZEROA = 0 and ZEROB = 1. Thus, the flag DVZ is computed in the special
cases circuit of the multiplication unit by

DVZ = 1ISDIV A ZEROA A ZEROB.

This already completes of the description of the computations for the special cases and
the detection of the exceptions.

In the following the computation of the RF factoring (s,¢, €y¢, frc) for divisions of non-
zero representable operands (regular case) is described. According to equation 4.310, for
the regular case the exact quotient can be written as

ezactgy, = (—1)SA®SB.gea=eb £, 1/1p
— (_1)SA€BSB .gea—eb=1 o fa- 1/fb

Because the significands fa and fb were extracted from normalized representations and
because the operands are non-zero in the regular case, we have fa € [1,2[and fb € [1,2].
From this it follows that the quotient 2 - fa - 1/fb is in the range |1,4[. In this way, the
factoring (sa @ sb,ea — eb— 1,reps3(2- fa-1/fb) fulfills the requirements of RF factorings
according to definition 2.21 and a RF factoring of the exact quotient exacty;, is given by:

(Srcy€rey fre) = (sa @ sb,ea —eb—1,repy(2- fa-1/fb)).

The computation of this factoring is described in the following separately for the sign, the
exponent and the significand.

The computation of s,. according to equation 4.316 is identical to the sign computation
from the multiplication unit I, so that the sign computation of the multiplication I unit
can be used unchanged also for the division I implementation.

With the 13-bit wide representations of the exponents ea = < (EA[11],EA[11 : 0]) >,
and eb = < (EB[11],EB[11 : 0]) >2. we exactly get the exponent e,. for divisions (where
ISDIV = 1) as required according to equation 4.316 by

ere = ea—eb—1
= <(EA[11],EA[11:0])>2 + < (EB[11] ® 1SDIV, EB[11 : 0] @ ISDIV) >9

168 CHAPTER 4. BASIC FP OPERATIONS

BUSay [69:0]
[3:0] [2:0] [56:4] [68:57] [69] BUSh NE [69:0]
ZEROa| | ZEROb, INFb FAJ052] FB[0:52] [56:4] (68:57] [69]
INFa QNANb, SNANb ' T EALLO] EB[11:0] SA |SB
QNANa (SA,EA[1L:0] FA[0:52])
SNANa (SB,EB[11:0],FB[0:52])
FA[0:52] | | FBIOSZ | |
redBD 108
([0:58))
| obdoe
fadoe |
. B ISDIV
5 n |8
8 . Z B
DBL 3 = partial product QJE S Loy 4SS DBL
'S | QUOSTEPL34 ; ; > -
v S| betjspiv - generdtion & reduction| B2 yop) [xoR |
] 3 + representative injection Eré I
special =
cases Initial FPRS [-2:116] l l FPRC'[-2:116]
'S | reciprocal CLA(13)
[9;}
[& | approx CLA(119) INV
redBD —
DVZ (10:58]) FPR[-2:116] E 20 DVZ
[-2:116] rc[12
o [1:59]
X
[0:59]
Pl redBD
z ([0:58)
m FPR
INRA'\l_M‘M [0:58]
- ‘S| DBL B
XACE R g
5 LR
YCEQ\’(_‘ \ﬂ;@ [-153] |[54:104]
- E ORtree(51
% e
Frc[54
Se F rol-1:54] 510
Eg[12:0] E c[120]
SC[154]l F ol-1:54] S| Src
SPCA SPCA
1 Mux ‘ —=| 1Mux 0
ZERGr
INFRe
QNAN ge ERpl120] | Frel-L54
[3:0] ¢ SNAN ge {72:60] {59:4] (73] ¢ SRF

BUS k¢ [73.0]

Figure 4.34: Structure of the integrated multiplication/division unit I.

and the exponent e,. for multiplications (where 1SDIV = 0) as required according to equa-
tion 4.213 by

ere = <(EA[11],EA[11:0])>2 + <(EB[11] @ 1SDIV,EB[11 : 0] @ ISDIV) >
= ea + eb.

Thus, the exponent implementation from the multiplication I unit can be adopted to be
usable for both the division I and the multiplication I implementation, if we replace the

4.4. DIVISION 169

second input (EB[11],EB[11:0]) of the exponent addition from the multiplication unit I
by (EB[11] @ 1SDIV, EB[11:0] @ 1SD1V). This implementation for the exponent is depicted
in figure 4.34 completing the description of the exponent computations and leaving the
description for the computations of the significand f..

The significand f,. = reps3(2 - fa - 1/fb) is computed in two steps:

1. We first compute an approximation aquot =~ (2 - fa - 1/fb) with an approximation
error errquot = (2fa/fb—aquot) in the range 0 < errquot < 27P. Note, that in this
case the signed value of the error and not only the absolute value has to be bounded.

2. in the second step, the 53-representative f,. = reps3(2- fa-1/fb) is computed from
the approximation aquot.

The implementation of these two steps is described in the following two subsection:

4.4.2.1 Approximation of the quotient (step 1.)

In this subsubsection we describe how to compute the approximation of the quotient
aquot =~ (2- fa/fb). We extract the problem of finding an approximation for the reciprocal
of a significand fb first. By the multication of the approximated reciprocal with 2 - fa we
will then get the approximation aquot = (2 - fa/fb) of the quotient.

For the approximation of the reciprocal 1/fb we use the Newton-Raphson iteration
with an initial approximation of 1/fb that is computed with the implementations from
section 4.4.1. Because we can assume the significand fb to be normalized fb € [1,2],
the reciprocal 1/fb is known to be in the range]0.5,1]. From an approximation z; of
the reciprocal x = 1/fb, the Newton-Raphson algorithm iteratively determines a better
approximation z;;1 by the equation:

Tiv1 = xi(2 — fb- x;). (4.316)
We define the approximation error after the iteration 7 by 6; = 1/fb — z;. After the
iteration 7 + 1, we then get the approximation error
div1 = 1/fb—xi
= 1/fb—(2i(2 = fb- z))

1 2x;

= fb(W—f—iquﬁ)
1 2

= fb(ﬁ_xz)

- fb'6227

so that because of fb € [1,2[, we get
52 < i1 < 267

Thus, starting with an accurate initial reciprocal approximation, the approximation error
converges quadratically with the number ¢ of iterations.

According to equation 4.316 the following two dependent multiplications are required
for the computation of each Newton-Raphson iteration:

yi = fb-xz
Tip1 = - (2—y)

170 CHAPTER 4. BASIC FP OPERATIONS

In an exact computation the number of significant bit positions increases after each of
these multiplications, so that already after a few iterations, we would have to handle very
long operands and require a very large multiplier. To avoid this problem, we limit the
number of significant bit positions and truncate each product after a fixed bit position
wdiv with wdiv > p. Thus, we consider

yi = rndrzwdio(fb- ;) (4.317)
Ti1 = Tdrzwdio(T; (2 = y;)) (4.318)

where the values x;_l_l, z;, yi and fb can be represented in a binary representation with
bit positions [0:wdiv]. For y} < 2, the difference in equation 4.318 can be written as

(2—yi) = 2—<Y;[0:wdiv]>pneq
= <Y0:wdiv] >peq + 200

We simplify the computation of this difference by neglecting the addition of the 2¥%? and
only compute the approximation

zi = rndrzwd(@] - <Y50:wdiv] >pe).

In the analysis of the approximation error for =7, ;, which we denote by 6, = 1/fb—=} ;,
we now additionaly have to consider the errors due to the product truncations and due
to the lazy computation of the difference (2 — y!). Each product truncation produces a
discretization error in the range [0, 27 %%"[, so that because of z} < 1 we get

yi+ 27 > i >y
2-—yi—2"") < (2-u) < 2-y)
<YHO:wdiv] >peg < (2—w) < <YH0:wdiv] >peq + 270
! (<YHO:wdiv] >neg) < mi-(2—y) < 2l (<KY0:wdiv] >peq + 2704
Ty < Tit1 <y A2

Note, that in the above error analysis of one iteration step, we consider z; = z; = z!/ and

0; = 0; = delta]. Thus, we get for the approximation error §;, ; = 1/fb — zj, | after one

iteration step:

Tit1 > Z‘;I_H > Xigl — 2~ wdiv ‘
1fb—wip1 < 1/fb—af, < 1/fb— iy +2700
5i+1 < (5;’_1_1 < 5i+1 + 9~ wdiv ‘
fo-82 < L, < fbeo7 2

62 < S < 2-6% 42 wdiv

For the approximation of the significand quotient, we have to multiply a reciprocal approx-
imation ! by (2fa): aquot; = 2fa-z!. Because 2fa € [2,4[, in this way the approximation
error for the quotient approximation errquot; = 2fa/fb — aquot; is in the range

2-0; < errquot; < 4-6; (4.319)
2. 512_1 < errquot; < 8- 622_1 4 4 . qudiv (4.320)
2-01, < errquot; < 166}, 4122w (4.321)
2- (5?,3 < errquot; < 32- (5?,3 + 28 . Qwdiv (4.322)

4.4. DIVISION 171

requirements for fulfilled for
precision | 4 || errquot; < ‘ 1dg] < ‘ wdiv > Ty = ‘ wdiv =
double | 3 253 9~ 61/8 58 arecip08’ 58
single | 2 224 2-29/4 29 arecip08’ 58
double | 2 253 2-—h9/4 57 arecipl6’ 58
single | 1 22 214 28 arecipl6’ 58
double |1 2793 228 56 arecip28” 58
single |0 224 226 32 arecip28” 58

Table 4.3: Requirements on the initial reciprocal approximations using the Newton-
Raphson iteration with ¢ € {1,2,3} iterations in double precision and i € {0,1,2} it-
erations in single precision.

For the computation of the p-representative in step 2, we require an approximation of
the quotient aquot; in the range 0 < errquot; < 27P. We are interested in approximations
that are computed after i € {0, 1,2, 3} and have to know the initial approximation error dy,
that is required for the initial reciprocal approximation. Because for ¢ > 0, we know that
errquot; > 0, we only have to consider the upper bound on the absolute initial approxima-
tion error 0y for ¢ > 0. To get into the target range for errquot;, the truncation position
wdiv has to fulfill wdiv > p + 5 for i = 3 (see equation 4.322). To fulfill this condition
for single and double precision, we set wdiv = 58 in the following. The requirements for
the initial reciprocal approximations are listed in table 4.3. Thus, the initial reciprocal
approximation arecip08'(fb) can be used for the computation of an appropriate quotient
approximation aquot; after ¢+ = 2 iterations for single precision and after ¢ = 3 iterations
for double precision. The initial reciprocal approximation arecipl6’(fb) can be used for
the computation of an appropriate quotient approximation aquot; after i = 1 iteration
for single precision and after ¢ = 2 iterations for double precision. The initial reciprocal
approximation arecip28”(fb) can be used for the computation of an appropriate quotient
approximation aquot; after i+ = 0 iterations for single precision and after ¢+ = 1 iteration
for double precision. Note, that the use of arecip28” instead of arecip28’ guarantuees a
positive error err28” > 0, so that also for this case the lower bound on the approximation
error aquotg fulfills the requirements for the computation of the representative in step 2.

4.4.2.2 Computation of the p-representative for f,. (step 2.)

From the quotient approximations in the previous section we get

0 < errquot; =2fa/fb— aquot; < 2P
aquot; < 2fa/fb < aquot; +27P

Thus,
rndrzp(aquot;) < aquot; < 2fa/fb < aquot; +277 < rndRz,p(aquoti)—i—Z*p“.

In other words,

E = rndryz p(aquot;)

172 CHAPTER 4. BASIC FP OPERATIONS

is an approximation of ¢ = 2fa/fb, and the exact quotient lies in the open interval
(E, E + 2 P*1). Moreover, we have

E + 2~ +1) if 2fa/fb<E+27P
repp(2fa/fb) = { E+2° if 2fa/fb=FE+277
E+3-27t) §f 2fa/fb>FE +2°P

For any relation o € {<,=,>} we have
2fa/fbo E4+2P <= 0o fb-(E+27")— fa.
Thus, with the computation of g = fb- (E 4+ 2" P) — fa and the conditions

REPZERO <= (g =0)
REPNEG <= (g >0)

the representative f,. = rep,(2fa/fb) can be selected by

E + 2~ (+1) if REPZERO A REPNEG
repy(2fa/fb) = { E+2° if REPZERO A REPNEG
E +3.2-(+1) if REPZERO A REPNEG

For this computation of rep,(2fa/fb), we define the representative increment repinc:

repinc = < REPINC[—2:54] >4
E +2-(+) if REPZERO A REPNEG
= E+2-® if REPZERO A REPNEG

E+3.2=(t1) if REPZERO A REPNEG

= < (000,0%, (REPZERO V REPNEG) A (DBL), (REPZERO V REPNEG) A (DBL),
,02", (REPZERO V REPNEG) A DBL, (REPZERO V REPNEG) A DBL) >peq,

so that rep,(2fa/fb) = E +repinc. The value g = fb-(E+27P) — fa is computed in two
steps. We first compute
Ey=E+2"®

Then we compute g = Ep - fb — fa. Again, we define an additive constant, that selects
the additive operands also including the case of the representative by

repinj = < REPINC[—2:117] >,
2°P if QUOSTEP1
_ —fa if QUOSTEP3
- repinc if QUOSTEP4
0 otherwise.

Thus, we get for QUOSTEP1 = 1:
E, = FE +repinj (4.323)
we get for QUOSTEP3 = 1:

g = Ey,- fb+repinj (4.324)

4.4. DIVISION 173

significand quotient sequence
implementation version
step ‘ computation ‘ control signals) ‘ 11 ‘ 111 ‘ 1w ‘ v ‘ V1
init ~ 1/fb | z{ = arecip(fb) INRA,XACE,XBCE 1 1 1111
Newton 1a yr = - fb zadoe, fbdoe, DBL 2,8 12,62 |2]|—]-—
Newton 1b ” zadoe, fbdoe, DBL, 3.9 _ s | ||
2ND
Newton lc 7 YCE 4,10 13,71 4 | 3 | — | —
Newton 2a T =a)- Y zadoe, ybdoe, DBL 5,11 | 4,8 | 5 | 4 | — | —
Newton 2b ” radoe, ybdoe, DBL, 6 15| — |6 | — | - | -
2ND
Newton 2c ” XACE 7,13 15,9 7|5 | —|—
— 0. 94"
Quot 1a Ey = fa .233.2_1_1 fadoe, xbdoe, DBL, 14 0lslelala
+reping QUOSTEP1
Quot 2a g=FEp- fb fadoe, wbdoe,DBL, |yl g | g | g] 3
+reping ECE
Quot 3a 9="Ep- b Eadoe, fbdoe, DBL, |y | 19 | 45| g | 4| 4
+reping ECE, QUOSTEP3
Rep Sel a Jre=FE-1 fadoe, obdoe, DBL, |l 1o 1 a1y g | 5 | 5
+reping QUOSTEP4
Rep Sel ¢ 7 - 18 14 (12 106 | 6

Table 4.4: Computation steps in the six different implementations for the computation of
the significand quotient representative in single precision.

and we get for QUOSTEP4 = 1:

fre = repp(2fa/fb) = E -1+ repinj. (4.325)

After this last step the path for the computation of f,. for the multiplication contains also
the significand f,. for the quotient result. To control the steps of the division we define the
control signals XACE, XBCE, ECE, YCE, INRA, Fadoe, fadoe, xadoe, xbdoe, ybdoe, obdoe
and fbdoe that influence the computation paths by controlling drivers and register clocks
like depicted in figure 4.34. The changed implementations of the partial product generation
and reduction are depicted in figure 4.35(full-sized adder tree) and in figure 4.36(half-sized
adder tree). The computation steps including the required values for the control signals are
summarized in table 4.4 (single precision) and table 4.5 (double precision) for the six cases:
(i) use of arecip08'(fb) and half-sized adder tree; (ii) use of arecip08'(fb) and full-sized
adder tree; (iii) use of arecipl6’(fb) and half-sized adder tree; (iv) use of arecipl6’(fb)
and full-sized adder tree; (v) use of arecip28” fb) and half-sized adder tree; (vi) use of
arecip28" (fb) and full-sized adder tree. Note, that for multiplications, where 1SDIV = 0,
the implementations of the RF factoring (S, €,¢, fre) are not changed. This completes
the description of the integrated multiplication/division I implementations.

174 CHAPTER 4. BASIC FP OPERATIONS

significand quotient sequence
implementation version
step ‘ computation ‘ control signals) ‘ 11 ‘ 111 ‘ w ‘ v ‘)
init ~ 1/fb| z{ = arecip(fb) INRA,XACE 1 1 1 1111
Newtonla | yi ==/ fb zadoe, fbdoe,DBL 2,8,14 [2,6,10| 2,8 |2,6| 2 | 2
Newtonlb » vadoc, fbdoe, DBL, || 5 g 4o 1 gq | _ | 3|
2ND
Newtonlc K YCE 4,10,16 | 3,7,11 | 4,10 3,7| 4 | 3
Newton2a | z7 , =z} -7 zadoe,ybdoe,DBL || 5,11,17 | 4,8,12 5,11 (4,8 5 | 4
Newton2b ” wadoe, ybdoe, DBL, ||« 1o 4ol _ g2 — | 6 | —
2ND
Newton2c ” XACE 7,13,19(5,9,13 7,13 (5,9 7 | 5
T
Quot 1a | 0= J@ 2254y | fadoe, wbdoe, DBL, | 14 | 14 10|86
+reping QUOSTEP1
o oon fadoe, xbdoe, DBL, _ _ B
Quot 1b | E = fa -2z, IND, QUOSTEP] 21 15 9
Quot 2a | Y j—rEe;)zr{jb f“doe’zi‘f;e’ PBL, | 99 15 |16 |11|10] 7
g=FEy- fb fadoe, xbdoe, B B _
Quot 2b +reping DBL, 2ND 23 17 1
g=FEy-fb FEadoe, fbdoe, DBL,
Quot 3a +reping ECE, QUOSTEP3 24 16 18 | 12 |12 | 8
g=FEy- fb FEadoe, obdoe, DBL, _ _ _
Quot 3b +reping 2ND, QUOSTEP3 25 19 13
Rep Sela | Jre=F-1 | [fadoe,obdoe,DBL, 2% 17 |20 |13]14] 9
+reping QUOSTEP4
Rep Sel b ” fadoe, obdoe, DBL, 27 — ot | = |15 -
2ND, QUOSTEP4
Rep Sel ¢ ” - 28 18 22 | 14 116 | 10

Table 4.5: Computation steps in the six different implementations for the computation of
the significand quotient representative in double precision.

4.4.3 Division II (normalized — gradual result format)

Specification. This section describes a FP division implementation, that is able to
divide two FP numbers given in the normalized representations (section 2.6.3):

BUSanr[69:0] = (sA,EA[11:0], FA[0:52], ZEROA, INFA, QNANA, SNANA)
BUSbyp[69:0] = (sB,EB[11:0],FB[0:52], ZEROB, INFB, QNANB, SNANB),

which represent the factorings (sa,ea, fa) = factnp(BUSanp[69:0]) and (sb,eb, fb) =
factnrp(BUSbyr[69:0]). Additionaly, we get as input the bit DBL, which signals the case
of double precision by DBL = 1, and an active bit 1SDIV = 1, that signals the case, that
the operation which is actually perfomed is a division.

In this section, the exact division result according to equation 4.310 has to be rounded
by the general rounding function groundl. After this gradual rounding step the quotient

4.4. DIVISION 175

FPR[-1:116] FPR[-2] FA[0:58] FB[0:58]
IS ZERO

(118) Partial Product Generation (Booth2)

3 FA[0:52] 2 & Reduction (59x59)

©| DBL,SDIV |2

B quosTePL34|T

K '

repres. injection

generation
lREPINJ»Z:llG] 0 | lFPRS[—l:llG] 0 | lFPRC[-l:llG]
Full adder line (119)

l FPRS [-2:116] l FPRC'[-2:116]

Figure 4.35: Implementation of the full-sized partial product generation and reduction
including representative test and injection generation for integrated multiplication/division

I/IIT implementation.

DBL| FPR-1:116] FPR[-2] FB[0:56] redBD(FA[0:29]) redBD((FA[30:59],0))
AND
ITER2 l
—l DBL AND ITER2
IS ZERO -~
FAND (118)
redBD(FASEL[0:29])
5 |5 &l raosz 2
g |g §osLsov |3
g |3 g woyE 8 Partial Product Generation (Booth2)
g |2 & Reduction (59x30)

2 repres. injection

0 generations
} L REPINJ[-2:87]
full adder line (90)
0 0 [58:87]
l l } l['1:87] { i['1387] DBL AND ITER2
412 adder line (90) '
AND
PPS[-2:87] PPC[-287] FDBS[88:117] FDBC[88:117]
PPREGS[-2:117] : \ D \
PPREGC]-2:117] ;
[-1:57] [58:87]
[-1:57] [58:87]
[88:117] [88:117]

FPRS[-2:116] FPRC[-2:116]

Figure 4.36: Implementation of the half-sized partial product generation and reduction
including representative test and injection generation integrated multiplication/division
I/IIT implementation.

176 CHAPTER 4. BASIC FP OPERATIONS

should be output in the gradual result format BUSgr[73:0] (section 2.6.5). According
to equation 4.316, a RF factoring of the exact product is given by (Sy¢, €r¢, fre) = (SA B
SB,ea — eb — 1,rep,(2fa - fb)) for non-zero representable operands. With the gradual
rounded product ((Sgre, €gres fgre)s TINC, TINX) = groundl(Syc, erc, fre) and the following
GF factoring of the result for the case of arbitrary IEEE operands

(((0, eqnan, fgNan), 0,0) if SCQNAN
((Sinfaeoo,foo);oao) if SCINF
_ ((Sa,ea,fa),0,0) if scx
((SGF; EGF, fGF)a TINCGF; TINXGF)_ < ((Sb, Eb,fb),0,0) lf soy (4326)
((s0,€0,0),0,0) if SCZERO
((

L((Sgre; €gre, fgre), TINC, TINX) otherwise,

the quotient output of the division II implementation is specified by the gradual result
representation BUSqr[73:0] = GF((sgr, eGr, far), TINCgr, TINXGr). The occurance of
an invalid exception or a division by zero should be signaled by the bit INV and the bit
DVZ also in this section.

Implementation. Like the division I implementation is integrated into the multiplica-
tion I unit, we will integrate the implementation of the division IT into the multiplication
IT unit. The changes for the special cases are the same like in the previous section for the
integrated multiplication/division I implementation.

Thus, we only have to consider the computations for the regular case. The imple-
mentation of the GF factoring of the quotient in this section is just a combination of
the computation of the RF factoring of the quotient from the previous section and the
implementaton of the gradual rounding function groundl from the multiplication IT. The
computation of the significand quotient is implemented like in the previous section. By
setting the rounding injections to zero during the significand quotient computations by
a signal INJSEL = 0 we get in the multiplication II implementation fpr = finj12. Thus
the binary pruduct output finj[0 : 116] of the Compression & gradual rounding circuit
can be used for the computation of the significand quotient like in the previous section.
For the gradual rounding implementation in the last cycle the rounding injection has to
be activated again by INJSEL = 0, so that we get as output of the last cycle fg,. instead
of fre. The integrated implementation of the multiplication/division implementation is
depicted in figure 4.37, where the implementation of the partial product generation & and
reduction has to be adopted according to figure 4.38 for the use of a full-sized adder tree
and according to figure 4.39 for the use of a half-sized adder tree. This already completes
the description of the integrated multiplication/division IT implementations.

4.4.4 Division III (normalized — normalized format)

Specification. Like in the previous section also in this section, the FP division is com-
puted from the inputs of the normalized representations BU Say [69:0] and BU Sby r[69:0]
(section 2.6.3). Because IEEE rounding has to be considered in this section, also the bit
DBL, that signals the case of single precision (DBL = 0) or double precision (DBL = 1), the
input of the rounding mode, represented by RMODE[1:0], and the underflow and overflow
enable bits UNF_EN and OVF_EN are required.

In this section, the exact division result according to equation 4.310 has to be rounded
by the rounding function nround, that computes the NF factoring of the IEEE rounded
result. After this rounding computation the quotient should be output in the normalized

4.4. DIVISION 177

BUSay [69:0]
[3:0] [2:0] [56:4] [68:57] [69] BUSh NE [69:0]
ZEROa| | ZEROb, INFb FA[052] FB[052] [56:4] (68:57] [69]
INFa| | QNAND, SNAND EA[1L:0] EB[1L0] SA | sB
QNANa (SA,EA[11:0] FA[0:52))
SNANa (SB,EB[11:0],FB[0:52])
FA[0:52] | | FBIOSZ | |
redBD (1,08)
([0:58])
ISDIV ISDIV
| fadee m A [sB
S m |2
I3 T e -—
i RMODE EE S | o RM?IDO?
: -) g |1z '
DBL ol 8 injected partial product| & JE | XOR | [XOR | DBL
2| quostepLa4 | generation & reduction =01e i -
r D | DBLISDIV + repres. injections
specid S SRMODE[L:0] (gggnpound
cases Initial FINPRS FINPRC er(13)
= | reciproca [-2:116] [-2:116]
_E\JV B| aprox Compression & INV
B0 gradual rounding -
DVZ (058 FPRI-2116] PSCOND ol 1 Mux o DVZ
[-2:116] _
N [1:59] Egrc[lz'O]
x [0:59]
Pl redBD
z (o:s8))
m FPR
INRA'\l_M‘M [0:58]
- ‘S| DBL B
XACE R g
YCEQT_‘ \i’;@ ‘05
— . E
5
Ford0:52 TINC
Se. Ford 052 Sgre
Eg[12:0] Egrd12:0]
Fee[0:52] Fyrd052) | SPCA Ss| Sgrc
SPCA } 1 Mux 0 ‘ &ND FA 1Mux 0
ZEROgr
INFge
QNAN Ege120] | Fgp052) TINX g
[3:0] g SNAN Gp {71:59] {58:6] [5:4] y "NCGE [72] ¢ SGF
BUS g [72:0]

Figure 4.37: Structure of the integrated multiplication/division unit II.

format BUSNF[69:0] (section 2.6.3). According to equation 4.316, a RF factoring of
the exact product is given by (s, €rc, fre) = (SA @ SB,ea — eb — 1,repy(2fa - fb)) for
non-zero representable operands. With the NF factoring of the IEEE result for non-
zero representable operands (Sprc, €nrey fure) = nround(s,c, e;c + wec, fr) including the
exponent wrapping constant wec according to equation 2.14 and the following NF factoring

178 CHAPTER 4. BASIC FP OPERATIONS

SASB RMODE[L0] FPR[-1:116] FPR[-2] FB[0:58] redBD(FA[0:58])
INJ. IS ZERO
generation | | (118) Partial Product Generation (Booth?)

FA[0:52] & Reduction (59x59)

py)
m
DBL,ISDIV |2
QUOSTEP1.34 |

INJSEL

[oTT:T-JeTeNI
[OXEy<EN]

-

\ﬂ\l D repres. injection
generation
0 | l REPINJ-2:116] 0 i l FPRY-L1:116] O | l FPRC[-1:116]
4/2 adder line (119)
SRMODE[L:0] l FINPRS[-2:116] l FINPRC'[-2:116]

Figure 4.38: Implementation of the half-sized partial product generation and reduction
including representative test and injection generation for integrated multiplication/division
II implementation.

of the result for the general case of arbitrary operands according to equation 2.16:

((0,eqnan, fgnan) if SCQNAN
(Sznfaeooafoo) if SCINF
(sa,ea, fa) if sox
(snmenm [NF)= (sb. cb, 1b) £ ooy (4.327)
(s0,€0,0) if SCZERO
\ (Sm"Ca €nre, fnrc) otherwise,

the quotient output of the division IIT implementation is specified by the corresponding
representation in the normalized format BUSynp[69:0] = NF(syp,enr, fnvr). In this
section, the occurance of an invalid, inexact, overflow, underflow exception should be
signaled by the bits INV, INX, OVF, UNF and DVZ, respectively.

Implementation. In an analogous way like in the two previous sections, in this section
the implementation of the division III is integrated into the multiplication IIT unit. Like in
the previous section for the special cases computations only the implementation of SCINF,
SCZERO and DVZ the have to be changed according to equations 4.312,4.313 and 4.316.
The computations for the regular case are implemented in two steps. First, the RF
factoring (Syc, €re, fre) is computed like in the integrated division/multiplication I im-
plementation, then the rounding hardware from the multiplication unit III computes the
normalized IEEE rounding function nround from this RF factoring. To get the binary rep-
resentation of the product, we have to set SR_.MODE[1:0] = 00 during the computation of
the significand quotient, so that the rounding injection is zero and we get fpr = finj12.
Based on this product output, the significand quotient implementation from the divi-
sion I implementation is integrated into the multiplication unit IIT like depicted in figure
4.40. Because the partial product generation and reduction implementation of the mul-
tiplication unit III and I are the same, they are changed identically for the integrated
division/multiplication implementations IIT and I. The implementation using a full-sized
adder tree is depicted in figure 4.35 and the implementation using a half-sized adder tree
is depicted in figure 4.36. During the last two cycles the cleared value of the rounding

4.4. DIVISION 179

SASB RMODE[L0] FPR[-1:116] FPR[-2] FA[0:58] redBD(FA[0:29]) redBD((FA[30:59],0))
INJ generation~— 2= IS ZERO . DBL AND ITER2
. 118
INJ[53:105] }INaSEL (118) redBD(FASEL [0:29])
SRMODE[L:0]
AND 2 FA[0:52] B
g DBLISDIV |2
& g QuOSTEPL34 Partial Product Generation (Booth2)
03} 2[/0% gL _t & Reduction (59x30)
0 repres. injection
b | TAET?Z generations
‘ L mux 0-== [-2:87]
5 |5
§ |8
o |
8 |8 [-1:87] [-1:87]
(TR w
full adder line (90)
[58:87]
l l DBL AND ITER2
4/2 adder line (90)
AND
ppspz:an{ {PPC[—Z:S?] FDBS[88:117] FDBC[88:117]
PPREGS[-2:117] ; ‘ ‘
PPREGC[-2:117] ; D
[-157] [58:87]
[157 [58:87]
[88:117] [88:117]

FPRS[-2:116] FPRC[-2:116]

Figure 4.39: Implementation of the half-sized partial product generation and reduction
including representative test and injection generation for integrated multiplication/division

IT implementation.

mode in the bits SR_.MODE]L : 0] have to be computed from RMODE[L : 0] again to guar-
antuee the correct rounding injection for the computation of the rouning function nround
to get the output of (Spre, €nres fnre). This completes the description of the integrated
multiplication/division IIT implementation.

180 CHAPTER 4. BASIC FP OPERATIONS
BUSay [69:0]
[3:0] [2:0] [56:4] [68:57] [69] BUShH NF [69:0]
ZEROa| | ZEROb, INFb FA[0:52] FB[052] [56:4] [68:57] [69]
INFa QNANb, SNANb ' | EA[11:0) EB[11:0] SA |SB
ONANa (SA EA[11:0] FA[0:52])
SNANa (SB,EB[11:0],FB[0:52])
FA[0:52] | | FB[0:52] $
redBD (1,0%8)
([0:58])
1SDIV
T | fadoe m SA |sB
S m |8
@ 2=
o Ers
[z L =44 gisov
DBL 3 8 - E E‘XOR‘ [XoR |
r S | QUOSTEPL34 partial product Iy }
§ PBLISDIV generation & reduction Exceptions & RMODE[1:0]
special + representative injectior exponent DBL DBL
cases nitial computations
L reciprocal Snhre
INV approx FPRS FPRC SRMODE[1:0] INV
[-2:116] [-2:116] WINZIG -
DVZ OVF DVZ
redBD INJ12[-2:54]
([0:58]) Compression & o | INJ24[-1:54]
normalized significand mit ;};23}
SPCA rounding INX12,INX24,SPCA
9 “lcFovFL ouE OVE
3 lg FPR[-2:116] CFOVF2 ynF UNF
2 gm [-2:116] [. [. _INX
N NEE:S) INX
< redBD [0:59]
([0:58)) .
[11:0]
TNRA_IMUX 0| (0:5g] Fore
] i
YCE b’_” _‘_‘AN S
e Ly—‘
' Frrd0:52]
F.J0:52]
Ssc nrc{ Snrc
Eg [11:0] Eprc11:0]
Fo0:52] Frrd0:52] S| Snrc
SPCA } 1 Mux 0 \ A 1Mux 0
ZEROyr
INFe
QNAN EndILO] | Fppel052)
[3:0] ¢ SNAN p {68:57] {56:4] [69] ¢ SNF
BUS ¢ [69:0]

Figure 4.40: Structure of the integrated multiplication/division unit III.

Chapter 5

Evaluation

In this section we quantitatively analyze the FP designs that have been described in the
previous sections. For the analysis we use the formal hardware model from [22]. Based on
a specification of the FPU designs at gate level, we compute the costs of the designs by
counting the gates, that are used in the designs, and by weighting them for a particular,
but typical technology [24] (see table 5.1). For any other technology the relative costs of
the basic circuits could be changed by the corresponding parameters in the cost formulae.
The cost for the FP designs are listed table 5.4. These costs also contain the cost of the
pipelined RISC architecture from [23] in that the FP designs are integrated.

The performance of the FP implementations mainly depend on two factors. On the
one hand the maximum delay within one cycle of a FP implementations determines the
minimum cycle time that would be possible with this FP implementation. We will consider
the performance of the FP implementations integrated into a pipelined RISC architecture
from [23]. In this setting, a difference between the FP implementations regarding the cycle
time only becomes visible, if the FP implementations lie on the critical path and the cycle
time of the FP implementation exeeds the cycle time of the microprocessor. This is not
the case for any of our FPU designs for the chosen pipelined RISC processor from [23].

Thus, integrated into the microprocessor the performance is measured by the aver-
age number of cycles per instructions, that the microprocessor achieves with this FP
implementation on an average FP workload. To analyze the performance in this way,
we consider a pipelined RISC processor design from [23] as a basis. This design already
includes the implementation of pipelining, forwarding, interrupt handling, and a result-
shift register [23]. Corresponding to this architecture a trace driven run-time simulator
was implemented, so that with the input of the latency and restart-time set of the FPU,
the average number of clock cycles that are needed per instruction (CPI) could be simu-
lated. The latencies and restart-times of our proposed FP implementations are listed in
table 5.2. For the runtime-simulations, we consider the benchmarks from the SPEC{p92
floating-point benchmark suite, because traces using the MIPS R3000 instruction set were
already available for them [17].

The results of the analysis are depicted in figure 5.1, where the costs in terms of kG
(kilo gates) are displayed against the performances in terms of CPI (cycles per instruction).
We separate the results for the three different rounding architectures in three figures. In
the topmost figure, the results for the FP units using rounding architecture I with a shared
general rounder are depicted, the figure in the middle depicts the results for the FP units
using rounding architecture II with a gradual rounder and in the figure on the bottom the
results for the FP units using rounding architecture IIT with variable position rounding

181

182

CHAPTER 5. EVALUATION

Nand And Flip— Xor 3 — state
Motorola || Not Nor Or flop Xnor Muz driver
delay 1 2 2 4 2 2
cost 2 2 4 8 3 5

Table 5.1: relative delay and cost of basic gates for the Motorola technology from [24].

FPU division multiplication | add/sub | conv | compare
double ‘ single | double ‘ single
Gen rnd I, full, NR28 13/8 9/4 5 5 5 3 1
Gen rnd I, full, NR16 17/12 | 13/8 5 5 5 3 1
Gen rnd I, full, NR8 21/16 | 17/12 5 5 5 3 1
Gen rnd I, half, NR28 19/14 9/4 6/2 5 5 3 1
Gen rnd I, half, NR16 25/20 | 15/10 6/2 5 5 3 1
Gen rnd I, half, NR8 31/26 | 21/16 | 6/2 5 5 3 1
Grad rnd II, full, NR28 | 12/8 8/4 4 4 4 3 1
Grad rnd 11, full, NR16 | 16/12 | 12/8 4 4 4 3 1
Grad rnd II, full, NR8 20/16 | 16/12 4 4 4 3 1
Grad rnd II, half, NR28 || 18/14 8/4 5/2 4 4 3 1
Grad rnd II, half, NR16 || 24/20 | 14/10 5/2 4 4 3 1
Grad rnd II, half, NR8 || 30/26 | 20/16 5/2 4 4 3 1
Var rnd III, full, NR28 10/8 6/4 2 2 2 3 1
Var rnd III, full, NR16 14/12 | 10/8 2 2 2 3 1
Var rnd ITI, full, NR8 18/16 | 14/12 2 2 2 3 1
Var rnd III, half, NR28 | 16/14 | 6/4 3/2 2 2 3 1
Var rnd III, half, NR16 || 22/20 | 12/10 3/2 2 2 3 1
Var rnd ITI, half, NR8 28/26 | 18/16 3/2 2 2 3 1

Table 5.2: Latencies/restart-times of the FP units for single precision and double precision
operations. If there is only one entry, this corresponds to the latency and the operation is
fully pipelined.

300kG

200kG

100kG—

Shared general rounding |

0.23 CPI

0kG

300kG——

200G

100kG-

0kG

300KG-

200KG-

100kG—

full addertree \NRZB
half addertree
~154 kG
\NRS
~20kG § NRIS
0.13CPI
T 14 s 16 17 s o oAl 3
full addertree NR2S Gradual rounding |1
half addertree
\ NR8
NR16
o } ~+8kG
~-0.1CPl
(compared to
general rounding)
1.}3 1‘4 1‘5 1‘6 1‘7 1?8 1.}9 cPl é
[full addertree

NR28 half addertree

\ NR8
NR16

Variable position rounding I11

T~+26kG

~-03CPl

(compared to general rounding)

OkG

183

Figure 5.1: Cost (kilo gates) and performance (cycles per instruction) of the different FP

designs.

184

CHAPTER 5. EVALUATION

Version H Gen rnd I ‘ Grad rnd II ‘ Var pos rnd III ‘
Newton-Raphson 8, full tree | 1.769 CPI | 1.667 CPI 1.466 CPI
Newton-Raphson 16, full tree || 1.723 CPI | 1.620 CPI 1.419 CPI
Newton-Raphson 28, full tree || 1.676 CPI | 1.574 CPI 1.3722 C'PI
Newton-Raphson 8, half tree | 1.901 CPI | 1.817 CPI 1.613 CPI
Newton-Raphson 16, half tree || 1.830 CPI | 1.746 CPI 1.542 CPI
Newton-Raphson 28, half tree || 1.760 CPI | 1.676 CPI 1.472 CPI

Table 5.3: Performance (cycles per instruction in runtime simulations on traces of the
SPEC92fp benchmarks) of the different FP units integrated into a pipelined RISC proces-
sor.

‘ Version H Gen rnd I ‘ Grad rnd II ‘ Var pos rnd III ‘
Newton-Raphson 8, full tree 134641 142988 161274
Newton-Raphson 16, full tree 136796 145143 163429
Newton-Raphson 28, full tree 266769 275116 293402
Newton-Raphson 8, half tree 114479 121334 141112
Newton-Raphson 16, half tree 116634 123489 143267
Newton-Raphson 28, half tree 246607 253462 273240

Table 5.4: Cost (gate count) of the different FP units integrated into a pipelined RISC
Processor.

are depicted. In each figure, the result of a FPU version, that uses a full-sized addertree,
is connected with the corresponding FPU version, that uses a half-sized adder-tree, by a
line, where the full-sized version is always faster and more expensive than the half-sized
version. The maximum difference between two connected FPU results is 0.1 CPI and
about 20 kG. In this way, the choice of the multiplier options has only a small effect
on the performance and small effect on the cost. Comparing all different FPU versions
within a particular rounding architecture, the situation is similar in the different figures.
The maximum difference of the CPI is 0.24, so that a moderate speed-up can be achieved
by using a fast divider and multiplication implementation. But the use of a fast divider
increases the cost to a large extent by up to 132 kG, so that a fast divider version might
be too expensive. Comparing the different rounding architectures, the best performance
with relatively small additional cost is provided by the variable position rounding FPUs
using rounding architecture III. In this way, the choice of the rounding architecture has
the largest impact on the design quality, differing by about 0.3 CPI among the different
architectures, but only by about 26 kG in cost.

In general the use of rounding architecture III, that uses dedicated rounding imple-
mentations for each functional unit seems to be the best choice in IEEE compliant FP
implementations.

Bibliography

1]

8]

Al-Twaijry, H. Area and Performance Optimized CMOS Multipliers. PhD thesis,
Stanford University, August 1997.

Anderson, S.W. and Earle, J.G. and Goldschmidt, R.E. and Powers, D.M. The IBM
system 360 model 91: Floating-point unit. IBM J. Res. Dev., 11:34-53, January 1967.

Bewick, G.W. Fast Multiplication: Algorithms and Implementation. PhD thesis,
Stanford University, March 1994.

Cortadella, J. and Llaberia, J.M FEwvaluation of A+ B = K Conditions without Carry
Propagation TEEE Trans. on Computers, vol. 41, pp. 1484-1488, November, 1992.

Das Sarma, D. and Matula, D. W. Measuring the Accuracy of ROM Reciprocal Tables.
IEEE Trans. on Computers, vol. 43, pp. 932-940, August, 1994.

Das Sarma, D. and Matula, D. Faithful Bipartite ROM Reciprocal Tables, In Pro-
ceedings of the 12th Symposium on Computer Arithmetic, vol. 12, pp.17-28, IEEE,
1995.

Das Sarma, D. and Matula, D. Faithful Interpolation in Reciprocal Tables, In Pro-
ceedings of the 13th Symposium on Computer Arithmetic, vol. 13, pp. 82-91, IEEE,
1997.

Daumas, M. and Matula, D.W. Recoders for partial compression and rounding.
Technical Report 97-01, Laboratoire de I'Informatique du Paralllisme, Lyon, France,
1997.

Even, G. and Mueller, S.M. and Seidel, S.M. A Dual Mode IEEE multiplier. In Pro-
ceedings of the 2nd IEEFE International Conference on Innovative Systems in Silicon,
pages 282-289. IEEE, 1997.

Even, G. and Paul, W.J. On the design of IEEE compliant floating point units. In
Proceedings of the 15th Symposium on Computer Arithmetic, volume 13, pages 54—63.
IEEE, 1997.

Even, G. and Seidel, P.M. A comparison of three rounding algorithms for IEEE
floating-point multiplication. In Proceedings of the 14th IEEE Symposium on Com-
puter Arithmetic, pages 225-232, April 1999.

Even, G. and Seidel, P.M. A comparison of three rounding algorithms for TEEE
floating-point multiplication. to be published in Special Issue on Computer Arith-
metic, IEEE Trans. on Computers, July 2000.

185

186

[13]

[26]

[27]

28]

[29]

BIBLIOGRAPHY

Fowler, D.W. and Smith, J.E. An accurate, high speed implementation of division
by reciprocal approximation. In Proceedings of the 9th Symposium on Computer
Arithmetic, volume 9, pages 60—-67. IEEE, September 1989.

Farmwald, M. P. On the design of high performance digital arithmetic units, PhD
thesis, Stanford Univ., August, 1981.

Ferrari, D. A division method using a parallel multiplier, IEEE Trans. Electr. Com-
put., vol. EC-16, pp. 224-226, 1967.

Hennessy, J.L. and Patterson, D.A. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, INC., San Mateo, CA, 2nd edition, 1996.

Hill, M. SPEC92 Traces for MIPS R2000/3000. University of Winconsin,
ftp://ftp.cs.newcastle.edu.au/pub/r3000-traces/din’, 1995.

Ito, M. and Takagi, N. and Yajima, S. FEfficient Initial Approximation and Fast
Converging Methods for Division and Square Root”, In Proceedings of the 12th Sym-
posium, on Computer Arithmetic, vol. 12, pp. 2-9, IEEE, 1995.

IEEE standard for binary floating-point arithmetic. ANSI/IEEE754-1985, New York,
1985.

Kane, G. and Heinrich, J. MIPS RISC Architecture. Prentice Hall, 1992.

Lee, C. Multistep gradual rounding. IEEE Transactions on Computers, 32(4):595-
600, April 1989.

Muiller, S.M. and Paul, W.J. The Complexity of Simple Computer Architectures. Lec-
ture Notes in Computer Science 995. Springer, 1995.

Muiller,S.M. and Paul,W.J. The Complezity of Correctness of Computer Architectures.
Springer, 2000, Draft.

Nakata, C. and Brock,J. H/C Series: Design Reference Guide. CAD, 0.7 Micron
Less. Motorola Ltd., 1993. Preliminary.

Nielsen, A.M. and Matula, D.W. and Lyu, C.N. and Even, G. Pipelined packet-
forwarding floating point: II. an adder. In Proceedings 13th Symposium on Computer
Arithmetic, pages 148155, Asilomar, California, July 6-9 1997.

Oberman, S.F. Design Issues in High Performance Floating Point Arithmetic Units.
PhD thesis, Stanford University, January 1997.

Oberman, S.F. and Al-Twaijry, H. and Flynn, M.J. The SNAP project: Design of
floating point arithmetic units. In Proceedings of the 13th Symposium on Computer
Arithmetic, volume 13, pages 156-165. IEEE, 1997.

Oberman, S.F. and Flynn,M.J. Fast IEEE rounding for division by functional itera-
tion. Technical Report CSL-TR-96-700, Stanford University, July 1996.

Intel Corporation Pentium Processor Family Developer’s Manual Volume 1: Pentium
Processors, 1995.

BIBLIOGRAPHY 187

[30]

[43]

[44]

[45]

Paul,W.J. and Seidel,P.M. The complexity of Booth recoding. In Proceedings of the
3rd conference on Real Numbers and Computers RNCS3, pages 199-218, Paris, France,
April 1998.

Quach, N. and Flynn, M. Design and implementation of the SNAP floating-point
adder. Technical Report CSL-TR-91-501, Stanford University, December 1991.

Quach, N. and Flynn, M.J. An improved algorithm for high-speed floating-point
addition. Technical Report CSL-TR-90-442, Stanford University, August 1990.

Quach, N. and Takagi, N. and Flynn, M. On fast IEEE rounding. Technical Report
CSL-TR-91-459, Stanford University, January 1991.

Santoro, M.R. and Bewick, G. and Horowitz, M.A. Rounding algorithms for IEEE
multipliers. In Proceedings 9th Symposium on Computer Arithmetic, pages 176-183,
1989.

Schulte, M.J. and Omar, J. and Swartzlander, E.E., Optimal Initial Approximations
for the Newton-Raphson Division Algorithm”, Computing, vol. 53, pp. 233-242,
August, 1994.

Seidel, P.-M. High-speed redundant reciprocal approximation. In Proceedings of the
3rd conference on Real Numbers and Computers RNCS3, pages 219-229, Paris, France,
April 1998.

Seidel, P.-M. How to half the latency of IEEE compliant floating-point multiplication.
In Proceedings of the 24th Euromicro Conference, volume 24, pages 329-332. TEEE,
1998.

Seidel, P.-M. On the architecture of IEEE compliant floating-point units. to appear
in, Proceedings of the IASTED Conference of Applied Informatics 2000, February
2000.

Seidel, P.-M. High-speed redundant reciprocal approzimation. INTEGRATION, the
VLSI journal 28 (1999), pp. 1-12.

Seidel, P.-M. and Even, G. How many logic levels does floating-point addition require?
In Proceedings of the IEEE International Conference on Circuit Design (ICCD98),
pages 142-149, October 1998.

Siemens Miunchen. VENUS-S Semi-Custom Design System: Zellkatalog, 1988.

Wong, D. and Flynn, M. Fast Division Using Accurate Quotient Approximations to
Reduce the Number of Iterations, IEEE Trans. on Computers, vol. 41, pp. 981-995,
August, 1992.

Soderquist, P. and Leeser, M.. Floating-point division and square root: Choosing
the right implementation. Technical Report EE-CEG-95-3, Cornell University, April
1995.

Yu, R.K. and Zyner, G.B. 167 MHz Radix-4 floating point multiplier. Proceedings
12th Symposium on Computer Arithmetic, 12:149-154, 1995.

Zyner, G. Circuitry for rounding in a floating point multiplier. U.S. patent 5150319,
1992.

188 BIBLIOGRAPHY

