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Abstract. The thesis deals with problems from two distint areas of scheduling

theory. In the first part we consider the preemptive Sum Multicoloring (pSMC)

problem. In an instance of pSMC, pairwise conflicting jobs are represented by a

conflict graph, and the time demands of jobs are given by integer weights on the

nodes. The goal is to schedule the jobs in such a way that the sum of their finish

times is minimized. We give the first polynomial algorithm for pSMC on paths and

cycles, running in time O(min(n2, n log p)), where n is the number of nodes and p is

the largest time demand. This answers a question raised by Halldórsson et al. [51]

about the hardness of this problem. Our result identifies a gap between binary-tree

conflict graphs – where the question is NP-hard – and paths.

In the second part of the thesis we consider the problem of scheduling n jobs on m

machines of different speeds s.t. the makespan is minimized (Q||Cmax). We provide

a fast and simple, deterministic monotone 2.8-approximation algorithm for Q||Cmax.

Monotonicity is relevant in the context of truthful mechanisms: when each machine

speed is only known to the machine itself, we need to motivate that machines ’de-

clare’ their true speeds to the scheduling mechanism. So far the best deterministic

truthful mechanism that is polynomial in n and m, was a 5-approximation by Andel-

man et al. [3]. A randomized 2-approximation method, satisfying a weaker definition

of truthfulness, was given by Archer and Tardos [4, 5]. As a core result, we prove

the conjecture of Auletta et al. [8], that the greedy list scheduling algorithm Lpt is

monotone if machine speeds are all integer powers of two (2-divisible machines).

Proving the worst case bound of 2.8 involves studying the approximation

ratio of Lpt on 2-divisible machines. As a side result, we obtain a tight bound

of (
√

3 + 1)/2 ≈ 1.3660 for the ’one fast machine’ case, i.e., when m − 1 machine

speeds are equal, and there is only one faster machine. In this special case the best

previous lower and upper bounds were 4/3 − ε < Lpt/Opt ≤ 3/2 − 1/(2m), shown

in a classic paper by Gonzalez et al. [42]. Moreover, the authors of [42] conjectured

the bound 4/3 to be tight.

Thus, the results of the thesis answer three open questions in scheduling theory.
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Kurzzusammenfassung. In dieser Arbeit befassen wir uns mit Problemen aus

zwei verschiedenen Teilgebieten der Scheduling-Theorie. Im ersten Teil betrachten

wir das sog. preemptive Sum Multicoloring (pSMC) Problem. In einer Eingabe

für pSMC werden paarweise Konflikte zwischen Jobs durch einen Konfliktgraphen

repräsentiert; der Zeitbedarf eines Jobs ist durch ein ganzzahliges, positives Gewicht

in seinem jeweiligen Knoten gegeben. Die Aufgabe besteht darin, die Jobs so den

Maschinen zuzuweisen, daß die Summe ihrer Maschinenlaufzeiten minimiert wird.

Wir liefern den ersten Algorithmus für pSMC auf Pfaden und Kreisen mit poly-

nomieller Laufzeit; er benötigt O(min(n2, n log p)) Zeit, wobei n die Anzahl der Jobs

und p die maximale Zeitanforderung darstellen.

Dies liefert eine Antwort auf die von Halldórsson et al. [51] aufgeworfene Frage

der Komplexitätsklasse von pSMC. Unser Resultat identifiziert eine Diskrepanz zwi-

schen der Komplexität auf binären Bäumen – für diese ist das Problem NP-schwer

– und Pfaden.

Im zweiten Teil dieser Arbeit betrachten wir das Problem, n Jobs auf m Maschi-

nen mit unterschiedlichen Geschwindigkeiten so zu verteilen, daß der Makespan min-

imiert wird (Q||Cmax). Wir präsentieren einen einfachen deterministischen monoto-

nen Algorithmus mit Approximationsgüte 2.8 fürQ||Cmax. Monotonie ist relevant im

Zusammenhang mit truthful Mechanismen: wenn die Geschwindigkeiten der Maschi-

nen nur diesen selbst bekannt sind, müssen sie motiviert werden, dem Scheduling

Mechanismus ihre tatsächlichen Geschwindigkeiten offenzulegen.

Der beste bisherige deterministische truthful Mechanismus mit polynomieller

Laufzeit in n und m von Andelman et al. [3] erreicht Approximationsgüte fünf.

Eine randomisierte Methode mit Approximationsgüte zwei, die jedoch nur eine

schwächere Definition von truthful Mechanismen unterstützt, wurde von Archer und

Tardos [4, 5] entwickelt. Als ein zentrales Ergebnis beweisen wir die Vermutung von

Auletta et al. [8], daß der greedy list-scheduling Algorithmus Lpt monoton ist, falls

alle Maschinengeschwindigkeiten ganze Potenzen von zwei sind (2-divisible Maschi-

nen).

Der Beweis der obigen Approximationsschranke von 2.8 benutzt die Approxi-

mationsgüte von Lpt auf 2-divisible Maschinen. Als Nebenresultat erhalten wir

eine scharfe Schranke von (
√

3 + 1)/2 ≈ 1.3660 für den Fall ’einer schnellen Ma-

schine’, d.h. m− 1 Maschinen haben identische Geschwindigkeiten und es gibt nur

eine schnellere Maschine. Die bisherigen besten unteren und oberen Schranken für

diesen Spezialfall waren 4
3 − ε < Lpt/Opt ≤ 3

2 − 1
2m . Letztere wurden 1977 von

Gonzalez, Ibara und Sahni [42] bewiesen, die mutmaßten, daß die tatächliche obere

Schranke bei 4/3 läge.

Alles in allem, liefert diese Arbeit Antworten auf drei offene Fragen im Bereich

der Scheduling-Theorie.
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Chapter 1

Introduction

Scheduling is a research area concerned with the optimal allocation of scarce re-

sources over time to a set of tasks or activities – most surveys about scheduling

start with some variant of this sentence [68, 85, 86].

This thesis deals with two completely different problems. Both of them adhere

to the above characterization of scheduling. Still, we start this introduction by

making it clear that our first problem – sum multicoloring – is not a classic one in

scheduling theory, and thus is not listed among the traditional types of problems in

most books or surveys in this field. Graph coloring models are typically applied for

those scheduling problems, in which resources are limited by dependencies among

subsets – or pairs – of tasks, and not by some global cardinality constraint (i.e., by

the number of machines).

Although sum multicoloring models a special problem in resource-constrained

scheduling [18, 68], in particular in multiprocessor task scheduling [17, 20, 21, 34],

the theory of these nonstandard scheduling problems usually considers more general

variants. Here we will concentrate on the specific multicoloring model – while keeping

much of the scheduling terminology. We admit to have often regarded our problem

simply as a nice mind-teaser in graph coloring.

The second topic concerns scheduling on related machines, which – in contrast

to the previous one – is among the oldest problems in the history of scheduling. It

is closely related to the classic optimization problem of bin-packing with variable

bin sizes. Following the three-field classification of Graham, Lawler, Lenstra and

Rinnooy Kan [43], this problem is denoted by Q||Cmax.

We consider the largest processing time (Lpt) heuristic, which (on identical

machines) was analyzed as one of the very first approximation algorithms [45]. The

study of Q||Cmax and Lpt started nearly 40 years ago, at the same time when

scheduling arose as an independent discipline due to the seminal survey of Conway,

Maxwell, and Miller [31].

In our main result, we examine the monotonicity property of Lpt, which gained

relevance recently in the context of algorithmic mechanism design [5]. This in turn,

moves also our second theme more into the scope of nonstandard scheduling prob-

lems, in the sense that originally we are motivated by strategical questions – like

the acquisition and paying of machines.
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2 CHAPTER 1. INTRODUCTION

There was no reason for trying to integrate these two topics into a common

framework in any aspect. In particular, it was natural to stay with the more or less

traditional terminology settled in the literature concerning the respective problems.

So it happens for instance, that we denote the size or demand of the ith job by

x(i) in Chapter 2, and by ti in Chapter 3. As another technical difference, x(i)

takes integer values, whereas it simplifies the discussion of the monotone scheduling

problem, if we regard the ti as real numbers.

Finally, let us also mention the similarities in the two cases. First, in both we deal

with deterministic problems and deterministic algorithms, where by deterministic

problems we mean in the strict sense that they are also offline, that is all information

defining a problem instance is known in advance. Second, what certainly makes the

two problems resemble, is the fact that both of them could be solved by way of some

most elementary mathematical reasoning. This circumstance can be best illustrated

with the words of Parker [85]: “... the appeal for me ... was almost exclusively

nurtured by the purely combinatorial issues embodied in most scheduling problems

– especially ones that seemed particularly ’simple’. ”

Sections 1.1 and 1.2 of the Introduction treat the topics of ’sum-multicoloring’

and ’monotone scheduling’, respectively. In both sections, we start with the defini-

tion of the problem; then we provide some motivation, and cite the most relevant

related work; finally we sketch the results presented in the thesis, with some intuition

about the main ideas.

The thesis consists of two chapters, Path multicoloring and Monotone schedul-

ing, according to the two main topics. We provide a more detailed outline at the

beginning of each chapter. The order how we discuss the two problems is merely

’historical’: it reflects the time order in which we investigated these questions.

1.1 Sum-multicoloring

The input of a graph multicoloring problem in its purest form consists of a simple

undirected graph G = (V, E), and positive integer weights x(v) on each node v ∈ V.
The output is a proper multicoloring, i.e., a function Φ : V → 2N which assigns a

set Φ(v) of positive integers (colors) to each v ∈ V s.t. |Φ(v)| = x(v) and the sets

assigned to adjacent vertices do not intersect.

Let f(v) = max Φ(v) be the largest number assigned to v. A traditional opti-

mization goal is to minimize maxv∈V f(v), that is, the total number of colors used to

color all the vertices. However, in the sum multicoloring (SMC) problems we aim at

minimizing the function
∑

v∈V f(v). This objective function is useful if, e.g., SMC

models the following scheduling problem:

The nodes of G represent jobs, each v ∈ V having size or time demand x(v).

The edges of G stand for pairwise conflicts between certain jobs, meaning that they

cannot be processed at the same time, e.g., due to some non-shareable resource they

use. With this interpretation G becomes a so-called conflict graph. The output

Φ determines a proper schedule of the jobs, where conflicting jobs never receive the

same time-unit.
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Figure 1.1: An instance of a sum multicoloring problem on a path conflict graph. The

time demand x(i) is written above each node i. The ellipses represent the assigned

time-slots in an optimal solution.

The finish time of job v is modelled by f(v). The traditional multicoloring prob-

lem corresponds to minimizing the makespan maxv∈V f(v). In the sum multicoloring

problem the average finish time of the jobs, or equivalently, the sum of finish times∑
v∈V f(v) has to be minimized.

Notice that a classic multicoloring problem can be transformed into an ordinary

coloring problem by replacing each node v with a clique of size x(v) (cf. [49]).

However, this reduction fails as soon as one regards the min-sum objective.

The view of SMC as a scheduling problem motivates the following distinction:

in non-preemptive SMC (npSMC) the assigned sets Φ(v) must be contiguous,

whereas in preemptive SMC (pSMC) the Φ(v) are arbitrary sets.

In the first part of this thesis we consider the preemptive sum multicoloring

problem on path and cycle conflict graphs (see Fig. 1.1).

1.1.1 Motivation and background

As noted above, sum multicoloring problems find their primary applications in

scheduling problems, where the jobs need the exclusive access to dedicated resources

or machines, and they have to compete with other jobs for the use of these resources.

An edge in the conflict graph G of jobs indicates that these two jobs use the same re-

source. Optimizing the makespan favours the system. However, from the jobs’ point

of view it is a reasonable goal to minimize the sum of completion times. Resource-

constrained scheduling is the field dealing with these kinds of questions, even in quite

general settings (the jobs might have to be assigned to machines and use dedicated

resources; the resources might be shareable to a certain extent, etc.).

If in SMC all jobs are of unit length, we obtain the sum coloring (SC) problem.

This special case has numerous applications. The first two we mention below belong

to those rare examples, where the colors do not represent assigned time slots, but

track assignment in the first case, resp. priorities in the second. These do not

generalize to sum multicoloring.
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Figure 1.2: The ’over-the-cell routing’ problem in VLSI design.

A basic motivation for the study of the SC problem appeared in the context of

VLSI design, when Supowit [88] introduced the optimum cost chromatic partition

(OCCP) problem (see also [57, 63, 87]). In OCCP we have to color a graph using a

given set of colors {c1, c2, . . . , ck}, and minimize the color-sum. A special application

of OCCP is a VLSI layout problem, called over-the-cell routing [10, 80]. Here we are

given a set of two-terminal nets, and a set of parallel, horizontal tracks of distance

1, 2, 3, . . . from the baseline where the terminals lie (see Fig. 1.2). The nets are routed

with a vertical connection from both terminals to the assigned track. Overlapping

nets have to use different tracks. The goal is to minimize the total wiring length,

which is twice the sum of distances of nets from assigned tracks, plus the constant

horizontal cost. This is the same as the sum coloring problem, restricted to interval

graphs.

Distributed resource allocation has been another motivation for sum coloring

[10]. Most of the early work done on scheduling jobs with pairwise conflicts was

based on the so called dining philosophers paradigm [9, 23, 32, 71], which relates to

distributed systems: processors competing for resources – e.g., for a communication

path – acquire these resources according to some local protocol. Many resource

allocation algorithms use a preprocessing, which results in a coloring of the nodes

[26]. The color of a processor is proportional to the maximum length of waiting

chain for this processor, which is one of the relevant measures describing a resource

allocation algorithm. Minimizing the sum of colors means minimizing the average

of this measure over all processors.

A third application is related to traffic intersection control [15, 22, 55]. Here a

’job’ consists of a platoon of cars which take the same route through the intersection.

Two jobs conflict, if the corresponding cars would collide in the intersection. It is

not unnatural to consider the min-sum objective, in view of the improvements in

vehicle detection technology, which is/will be able to detect the exact condition of

a crossing. The problem generalizes to multicoloring if the length of a job is defined

by the number of cars making up the job. On the other hand, note that this problem

is also of persistent resp. online nature.

For other motivations for sum coloring like train scheduling or storage allocation,

see [52]. Now we turn to sum multicoloring. Our first example is multiprocessor task

scheduling, both as a concrete application, and as the model within resource-con-

strained scheduling, best fitting our multicoloring problem.
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Dedicated multiprocessor task scheduling [1, 20, 34]. In an instance of this

scheduling problem each task requires the exclusive access to a set of dedicated

processors. Two tasks conflict, if they have a common processor to use.

If every task needs two preassigned processors, we obtain biprocessor task schedul-

ing. Such biprocessor tasks arise in mutual diagnostic testing of processors [64], or

in case of scheduling file transfers in a data migration problem [30, 58]. Note that

the conflict graph in this case is a line graph1, since the tasks – nodes of the conflict

graph – can be associated with pairs of processors – that is edges in, e.g., the so called

transfer graph. This gives rise to the research of minimum sum edge multicoloring

on various graph classes [74, 76].

If each task uses up to k resources, the conflict graph is an intersection graph of

a collection of sets of size at most k [52, 58].

Session scheduling in local area networks [24, 52]. In this application pairs

of nodes want to communicate in a network. Assume that the routes between any

two nodes are fixed. If some node has to send data to some other node, a session is

established between the source and the destination. Sessions (’jobs’), whose routes

share at least one link, are in conflict. On a path network this may lead to the

SMC problem on interval graphs, on a ring network to the SMC on circular arc

graphs. Note however, that – like with traffic intersections – models for most of

these problems eventually require a persistent [14] or online [55] setting.

Access to files [52]. In this case the jobs model processes running on different

processors in a distributed computing environment, and they share access to a set

of files stored on the network file system. We assume that the underlying network

is fully connected. The processes require read/write operations on certain subsets

of the files, i.e., an exclusive access to these files throughout their execution. Two

processes that need to work with the same file, have a conflict.

Related work.

The notion of sum coloring first appeared in the late 80’s from two different sources.

In graph theory, Kubicka [65] defined and studied the chromatic sum of graphs (see

also [66, 67]). On the other hand, Supowit introduced the more general OCCP

problem (see above), from its application in VLSI design [88].

The sum coloring problem was shown to be NP-hard on several graph classes,

like line graphs [10], planar graphs [49]; or even hard to approximate within a

constant factor like on bipartite graphs [13], and interval graphs [41]. Bar-Noy et

al. investigated the SC problem in detail on general graphs, bounded-degree graphs

and line graphs [10].

In 1999 Bar-Noy, Halldórsson, Kortsarz, Salman, and Shachnai introduced the

sum multicoloring problem, and studied SMC on many different types of graphs in

the preemptive, the non-preemptive and co-scheduling paradigms [12, 11]. Notice

1A line graph L(G) is the edge-adjacency graph of a graph G : two vertices of L(G) are joined, if

the corresponding edges share a vertex in G.
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SC SMC

lower bound upper bound non-preemptive preemptive

general graphs n1−ε ∗[10] n/ log2 n ⇐ n/ log n ∗[12] n/ log2 n ∗[12]

perfect graphs c > 1 [13] 3.591 [38] O(log n) [12] 5.436 [38]

interval graphs c > 1 [41] 1.796 [52] 11.273 [38] 5.436 ⇓

line graphs NPC [10] 2 [10] 7.682 [38] 2 [12]

partial k-trees 1 [56] FPTAS [49] PTAS [49]

trees 1 [65] 1 ∗[50] PTAS ∗[50]

paths 1 trivial 1 ∗ ⇓ 1 thesis

Table 1.1: Results for sum (multi)coloring problems on a few graph classes. An

entry ’1’ stands for an exact polynomial algorithm. An arrow in the field means

that the result follows by inference, either by containment of graph classes, or by

SC being the special case of SMC. Most of the table was taken over from [38].

that hardness results for SC imply the hardness of the corresponding SMC problems.

Recent research has mainly focused on the approximability and hardness of SC,

pSMC, and npSMC on various graph classes that might be relevant for applications,

like interval graphs, line graphs, bipartite graphs, and many others [38, 40, 49, 52, 58,

74, 80]. Besides, there are attempts to generalize the sum multicoloring problem in

various ways, for instance by considering release dates or weighted versions [38, 52].

Table 1.1 shows the known approximation results for a few graph classes. Results

marked with an ’∗’, are sketched in Section 2.1.

Regarding the hardness of these problems on most considered graph classes, it is

natural to search for types of graphs, for which exact polynomial algorithms exist.

Currently trees constitute the boundary of what is efficiently solvable [50]:

Sum coloring. In [56] Jansen gave a polynomial algorithm for the OCCP problem

on partial k-trees (graphs of treewidth at most k, cf. [19]). The result carries over

to the SC problem.

npSMC. Halldórsson et al. studied the sum multicoloring problem on trees [50],

and on partial k-trees [49]. For the non-preemptive SMC on trees they provided two

efficient algorithms, which run in O(n2) and O(np) time, respectively, where n is

the number of vertices, and p is the maximum demand. On paths the first one has

O(n log p/ log log p) running time.2 In addition, on partial k-trees they gave a fully

polynomial approximation scheme (FPTAS), i.e., they showed that the problem can

be approximated within a factor of (1 + ε) in time polynomial in n and 1/ε.

pSMC. For the preemptive SMC on trees, Halldórsson et al. gave a polynomial

time approximation scheme (PTAS). The hardness of pSMC on trees and paths was

posed as an open question [51, 50]. The first answer was given by Marx [73], who

proved that even on binary trees pSMC is strongly NP-hard (NP-hard even if p is

2Throughout the thesis, ’log’ stands for logarithm to the base 2.
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polynomial in n). With this result, the preemptive problem on trees turned out to

be essentially harder than the non-preemptive version. As the second answer, in

the thesis we provide the first polynomial algorithm on paths and cycles, running in

time O(min(n2, n log p)).

In view of the above results, one might get the impression that a preemptive

problem is in general more difficult than the non-preemptive counterpart. In or-

der to make this picture more differentiated we quote the words of Halldórsson and

Kortsarz [49]: “The preemptive and nonpreemptive cases turn out to require differ-

ent treatments. Nonpreemptiveness restricts the form of valid solutions, which helps

dramatically in designing efficient exact algorithms. On the other hand, approxima-

tion also becomes more difficult due to these restrictions.”

Finally, let us mention a notion having obvious practical importance in sum col-

oring problems. Intuitively it is clear, that in general an optimal sum (multi)coloring

of a graph G cannot be achieved using as many colors, as the chromatic number of

G. Indeed, for instance there exist trees for which an optimal sum coloring needs

Ω(log n) colors [67]. The chromatic strength of a graph is the minimum number

of colors needed to color the graph optimally with regard to the min-sum objective.

For results concerning chromatic strength the reader is referred to [47, 75, 77, 35, 87].

The same issue for multicoloring is considered in [49].

The WWW site [72] contains an up-to-date list of papers about sum multicolor-

ing. Moreover, comprehensive surveys of related results can be found in [38, 49, 75].

See also Section 2.1, where we will sketch a few methods used to solve SMC-related

problems.

1.1.2 Our contribution

Let G = (V, E) be a path or cycle of n nodes, and p = maxi∈V x(i), where x(i) is the

demand of node i. We provide the first exact, polynomial algorithm for the pSMC

problem on these two types of conflict graphs, with running time O(min(n2, n log p)).

Our result answers the question raised in [50], whether pSMC is efficiently solvable

on paths. Besides, we identify a major gap between the solvability of the problem

on binary trees – where it is NP-hard [73] – and graphs of maximum degree 2. For

large p, our O(n2) bound matches the O(n2) bound for non-preemptive SMC on

paths (or trees in general) given in [50].

Although the investigated graphs are of extremely simple structure, even on

these simple graph classes the problem has proved to be far from trivial, and had

previously been open since 1999 [51].

In [59] we gave a pseudo-polynomial algorithm for this problem, running in

time O(n3p). In [61] we managed to improve on this earlier version, and achieve

polynomial running time. We briefly sketch here the original idea, as well as the

follow-up result concerning the structure of some ’nice’ optimal schedules, which

facilitated this improvement.

Let G be a path, and V = {1, 2, . . . , n} denote its consecutive vertices. We add

nodes 0 and n + 1 to the path, with demands x(0) = x(n + 1) = 0. We denote
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i k r(i)

F(f(i))

Figure 1.3: Minimum-tree of a block. One can best imagine the tree by depicting

the vertices of the tree at the finish times of the respective loc-min nodes, the root

being the loc-min of smallest finish time inside the block. The edges of the tree are

drawn with broken lines.

by 〈i, j〉 the subpath i, ..., j. In a fixed schedule Φ, we distinguish so called local

minimum (loc-min), and local maximum (loc-max) nodes on the path: a loc-min

node has smaller finish time, resp. a loc-max has larger finish time than any of

its two neighbours. All other nodes are called stairs. We introduce a secondary

objective function
∑

v∈V f
2(v). Restricted to optimal schedules with maximum value

of
∑

v∈V f
2(v), the following hold:

The schedule of a loc-min node determines the schedule of the stairs up to the

nearest loc-max’s on both sides, in a greedy fashion; whereas a loc-max node receives

the first time units idle on both sides. The hardness of this problem lies in the fact

that loc-mins are not always compact, i.e., in general f(i) 6= x(i) for a loc-min i. Let

us denote by r(i) and `(i) the first nodes to the right and to the left of loc-min i with

finish time less than f(i) (see Fig. 1.3). The main idea is that any ’simultaneous

permutation’ of the time units in Φ(i) and Φ(r(i)) results in the same optimum sum

on the subpath strictly between i and r(i). As a further consequence, f(i) alone

determines the optimum F(f(i)) :=
∑r(i)−1

j=i+1 f(j) on this subpath. This observation

facilitated the following dynamic programming algorithm in [59]:

Two scheduled subpaths are glued at a loc-min, proceeding from short sub-

paths to longer ones, from large loc-mins to smaller ones. However, on the subpath

〈i + 1, r(i) − 1〉 the optimum F(f(i)) for every possible f(i) has to be determined

(since f(i) depends also on what will be glued to the left of i).

The result of [61] is that the possible changes in f(i) cannot modify the structure

on 〈i, r(i)〉: the order of finish times of all the nodes remains the same. Moreover, by

increasing f(i) to f(i) + ∆ – within a certain range –, we increase the finish times of

all the loc-mins and decrease the finish times of all the loc-max’s on 〈i+ 1, r(i)− 1〉
by ∆. In total, we decrease F(f(i)) by ∆. The optimum on 〈i+1, r(i)−1〉 is a simple

linear function of the form F(f(i)) = C − f(i). The only question for the dynamic

algorithm is the constant C in this function and the range of possible f(i) values.

What is the explanation for this determined structure on 〈i, r(i)〉? A subpath

between nearest compact loc-mins will be called a block – notice that blocks are easy
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to connect by a straightforward dynamic programming algorithm. Inside a block,

the loc-mins are non-compact, and there must be ’large’ differences between their

demands. The loc-mins form a binary tree called minimum-tree (see Fig. 1.3), and

the finish times of loc-mins on growing levels of this tree grow exponentially. In

other words, if there are many loc-mins of similar demands, not separated by nodes

of smaller demands, then some – typically, loc-mins of the same parity – will be

compact. The exponential growth within a block implies that for fixed i there are

just a constant number of candidates for r(i), and just one or two candidates to be

the loc-min finished next, i.e., the child of i in the minimum-tree.

The fast growth within a block is quite intuitive. However, the order of finish

times must remain the same already on the lowest levels above f(i), meaning roughly,

that even the smallest differences between finish times on 〈i, r(i)〉 should exceed

potential changes in f(i). The proof of these results is lengthy and technical; it

makes use of a handful of simple operations, and a tricky induction argument.

1.2 Monotone scheduling

Q||Cmax denotes the offline task scheduling problem on related or uniform machines.

In an instance of this problem we are given a speed vector 〈s1, s2, . . . , sm〉 repre-

senting the speeds of m machines, and a job vector 〈t1, t2, . . . , tn〉, where tj is the

size or demand of the jth job. Although job sizes usually have integral values,

due to technical reasons here we assume that both machine speeds and job sizes are

positive real numbers. Removing this assumption does not influence our results.

The goal is to assign the jobs to the machines, so that the overall finish time is

minimized: if the set of jobs assigned to machine i is {tjγ}Γ
γ=1 then the work assigned

to i is wi :=
∑Γ

γ=1 tjγ and the finish time of i is fi := wi/si; the makespan to be

minimized is maxm
i=1 fi.

This problem is NP-hard even on two identical machines [39], but it has poly-

nomial approximation schemes [53, 54]. A classic, simple approximation algorithm

for Q||Cmax is the so called ’largest processing time first’ heuristic, or Lpt for short

[42]. This algorithm picks the jobs one by one in decreasing order of size, and always

assigns the next job to the machine where it will have the smallest completion time.

In the above scheduling context, a monotone algorithm is defined as follows:

Definition 1.1 Let A be an approximation algorithm for the Q||Cmax problem. Sup-

pose that on input 〈s1, . . . , si−1, si, si+1, . . . , sm〉 and 〈t1, t2, . . . , tn〉, A assigns work

wi to machine i; and on input 〈s1, . . . , si−1, s
′
i, si+1, . . . , sm〉 and 〈t1, t2, . . . , tn〉, A as-

signs work w′
i to machine i. The algorithm A is monotone, if (si ≤ s′i) ⇒ (wi ≤ w′

i)

for 1 ≤ i ≤ m.

In the second part of the thesis we modify Lpt so as to obtain a simple monotone

algorithm, and investigate the worst case ratio of this new algorithm. This will lead

to focusing on the following two types of speed vectors:

(∗) (one fast machine): s1 = s2 = . . . = sm−1 = 1, sm = s > 1;

(∗∗) (2-divisible speeds): si = 2li , li ∈ Z.
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1.2.1 Motivation and background

The motivation for the research on monotone algorithms originates in mechanism de-

sign. Before we proceed to a short historical background, we present our framework

concerning truthful mechanisms:

We assume that the machines are owned by selfish agents, and the speed of

each machine is private information to its agent. A mechanism is a pair M =

(A,P ), where A is an approximation algorithm to the scheduling problem, and

P = (P1, P2, . . . , Pm) is a payment scheme (payment function). Let the job vector

be fixed and public. Every machine (agent) i reports a bid bi to be the inverse of her

speed. With the job vector and the bid vector 〈b1, . . . , bm〉 as input, M schedules the

jobs using algorithm A, and pays each machine using the payment scheme P, where

P depends on the schedule and on the bids. The profit of machine i is defined by

Pi−wi/si. The mechanism is truthful, if for every job vector, for every i and every si,

and every possible bid vector of the other machines b−i := 〈b1, . . . , bi−1, bi+1, . . . , bm〉,
bidding truthfully, i.e., bi = 1/si maximizes the profit of i.

The goal in general is to search for truthful mechanisms with an efficient algo-

rithm A having a good approximation bound and an efficient ly computable payment

scheme P. In particular, an α-approximation mechanism is one whose algorithm

A provides an α-approximation. We say that the algorithm A admits a truthful

payment scheme, if there exist payments P s.t. the mechanism (A,P ) is truthful.

Applications of the mechanism design framework to diverse optimization prob-

lems arising in economics, game theory, and recently in computer science and net-

working constitute a widely studied area (cf. [5, 81, 84]). The above formulation

concerning scheduling is one of the numerous examples.

Papadimitriou [84] writes that mechanism design could alternatively be called

’inverse game theory’: “If Game Theory strives to understand rational behaviour

in competitive situations, the scope of Mechanism Design is even grander: Given

desired goals (such as to maximize a society’s total welfare), design a game in such a

clever way that individual players, motivated solely by self-interest, end up achieving

the designer’s goals.”

Traditional mechanism design focuses on voting and auction type problems in

economics, and considers situations when players or agents might try to manipulate

the system and lie in order to maximize their own profit. Mechanisms that are able

to arrange things – by making payments to the players – so that a rational player

will never find it in her self-interest to lie, are called truthful. For each player, the

profit to maximize, now consists of the payment plus the player’s valuation of the

outcome of the mechanism.

The most famous result in this field is the Vickrey-Clarke-Groves (VCG) mech-

anism [28, 46, 89], which relates only to so called ’utilitarian’ objective functions

– maximizing the sum of the agents’ valuations –, typically modeling social welfare.

The emergence of the Internet as a primary platform for distributed computation

made it unavoidable to consider similar socio-economic issues in theoretical computer

science. Nisan and Ronen [82] did a pioneering work by first applying the standard

tools of mechanism design to classic optimization problems in computer science,
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including shortest paths, minimum spanning trees, and scheduling on unrelated

machines. They look at general objective functions, since the utilitarian objective

is not typical in these algorithmic models. Observe that the objective of Q||Cmax

is also non-utilitarian, since we aim at minimizing the maximum finish time, not

the sum of finish times. Moreover, the same authors also show that even in the

utilitarian model, the VCG payments do not induce truth telling, in case the output

algorithm is suboptimal [83].

For a more detailed history of algorithmically-oriented mechanism design see,

e.g., the paper of Archer and Tardos [5], which will be our starting point concerning

results related to our work.

Related work.

The paper [5] studies the case, when each agent’s secret data can be expressed by a

single positive real number (si or 1/si). The authors show that in models where the

profit function has the above form Pi − wi/si, a truthful mechanism M = (A,P )

exists if and only if A is a monotone algorithm. In this case they also provide

an explicit formula for the payment function (notice that the following notion of a

decreasing output function corresponds to a monotone algorithm):3

Theorem 1.1 [5] The output function admits a truthful payment scheme if and

only if it is decreasing (i.e. wi(b−i, bi) is a decreasing function of bi for all i and

b−i). In this case the mechanism is truthful if and only if the payments Pi(b−i, bi)

are of the form

hi(b−i) + biwi(b−i, bi) −
∫ bi

0
wi(b−i, u) du

where the hi are arbitrary functions.

Among other examples, Archer and Tardos consider the problem Q||Cmax. They

show that – by some fixed order of the machines – the lexicographically minimal

optimal solution is monotone. They also provide a fast randomized 3-approximation

algorithm, that allows a mechanism, that is truthful in expectation, meaning that

truth-telling maximizes the expected profit of each agent. This was later improved

to a randomized 2-approximation mechanism [4].

The same problem, i.e., finding an efficient monotone approximation algorithm

for Q||Cmax is studied by Auletta, De Prisco, Penna, and Persiano [8]. The authors

provide a deterministic, monotone (4 + ε)−approximation algorithm. They conjec-

ture that the greedy heuristic Lpt is monotone, if machine speeds are 2-divisible.

They apply a variant of Lpt, which is combined with the optimal schedule of the

largest jobs, in order to give a reasonable approximation bound. As a consequence,

the resulting algorithm is only polynomial in the number of jobs n, in particular,

3We remark that, in a different context, results analogous to Theorem 1.1 had been obtained

by Myerson [79] two decades earlier. He had considered incentive-compatible (i.e. truthful) single-

object auction mechanisms with one-dimensional types (i.e. one-parameter agents) and random

valuation functions. For more on this and on monotonicity requirements in mechanisms with multi-

dimensional types (like unrelated machine scheduling) see also [16].
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1 m
LPT schedule Optimal schedule

m1

Opt=1

2/3−1/3m

1/3

1/3

1/2

Lpt ~ 4/3 

Figure 1.4: Sketch of the worst case example of Graham for identical machines.

it runs in time Ω(exp(m2/ε)). This result was considerably improved by Andelman,

Azar, and Sorani [3], who presented a FPTAS for the case of constant m, and a

5-approximation algorithm for arbitrary m.

The papers cited in this paragraph will be sketched in more detail in Section 3.1.

Performance guarantee of Lpt. On identical machines, the ’largest processing

time’ algorithm was first studied by Graham [45]. For a particular instance of the

scheduling problem let Lpt denote the makespan produced by the Lpt schedule,

and Opt denote the optimum makespan. Graham’s result is that on m identical

machines Lpt/Opt = 4
3 − 1

3m in the worst case (see Fig. 1.4).

The approximation ratio of Lpt for arbitrary machine speeds was first considered

by Gonzalez, Ibarra, and Sahni in [42], where the authors prove that Lpt/Opt ≤
2m

m+1 < 2, whereas for any ε > 0 an instance exists so that Lpt/Opt > 3/2 − ε.

These bounds were later improved to (1.512, 19/12) by Dobson [33], respectively to

(1.52, 1.67) by Friesen [37].

The case of one fast machine (case (∗)) has been studied in a number of papers.

Liu and Liu [70] give approximation bounds in terms of m and s for a variation of

Lpt, and for list schedules – i.e., the case when jobs are given in any fixed order.

Gonzalez, Ibarra, and Sahni [42] obtain the lower and upper bounds 4
3 − ε <

Lpt/Opt ≤ 3
2 − 1

(2m) . Their lower bound instance differs from that of Graham for

identical machines: here for any m ≥ 3 and any ε an instance exists s.t. 4
3 − ε <

Lpt/Opt. For m = 2 they prove the tight bound of 1+
√

17
4 .

Cho and Sahni [25] analyze general list schedules for both arbitrary machine

speeds and for case (∗). For the latter they obtain the tight bound 1+
√

5
2 if m = 2,

and 3 − 4/(m+ 1) if m ≥ 3.

Li and Shi [69] consider the same special case, and suggest better heuristics than

list scheduling for the online problem. Finally, for m = 2, Mireault, Orlin, and

Vohra [78] provide a complete analysis of Lpt/Opt in terms of s2/s1.

Concerning the paper [42], see also Section 3.1.4.

1.2.2 Our contribution

As our primary result, we show a fast and simple, deterministic monotone algorithm

for Q||Cmax, with approximation ratio 2.8. With input jobs ordered by size, it runs
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in time O(m(n+ logm)). This is an improvement over the 5-approximation bound

of Andelman et al. [3]. As compared to the algorithms of Archer and Tardos [4, 5],

no randomization is needed, and a stronger definition of truthfulness is fulfilled. An

earlier version of this work was presented in [60]. Our approach can be sketched as

follows:

We prove the conjecture of Auletta et al. [8], that Lpt is monotone on 2-divisible

machines. For arbitrary input speeds, the monotone algorithm Lpt* is as simple

as to run Lpt with machine speeds rounded to powers of 2, and eventually reorder

machines of equal rounded speeds according to their received work.

We show the monotonicity of Lpt, by comparing two schedules denoted by I

and II, where both are results of Lpt on the same input, except that the machine

speed sk of I is increased to s′k = 2sk in II. Let k′ be the machine of doubled speed

in schedule II. The proof involves a rather technical case distinction based on the

number of jobs assigned to machine k′ in II, and on the ratio tn/ta, where ta is the

first job assigned to k′. If tn is not much smaller than ta, then a simple counting

of the jobs assigned to each machine yields the proof. If tn ¿ ta, then we need to

compare the total work received by each machine in I, respectively in II.

Worst case bounds. After the proof of monotonicity, our goal is to show a good

approximation bound for Lpt in case of 2-divisible speeds (case (∗∗)).

As an additional benefit, we obtain new results for ’one fast machine’ (case

(∗)). This special case was first studied 30 years ago [70], and to the best of our

knowledge, its worst case ratio was only known to be in the interval [ 4
3 ,

3
2 − 1

2m ] [42].

Moreover, Gonzalez et al. [42] conjectured the lower bound 4/3 to be tight. We

show that the conjecture does not hold: we provide an asymptotically tight bound

of
√

3+1
2 ≈ 1.3660 for the worst case of Lpt/Opt in case (∗), and lower and upper

bounds within [1.367, 1.4] in case (∗∗). These results appeared in [62].

We present an instance (Instance A) of the scheduling problem with speed vector

〈1, 1, . . . , 1, 2r〉 (r ∈ N), so that for this instance Lpt/Opt >
√

3+1
2 − ε for arbitrary

ε > 0, if r and m are large enough – we remark that using sm = 2r instead of an

arbitrary s > 1 is not essential. With this we improve on the previously known lower

bound 4/3− ε for the approximation ratio of Lpt in case (∗) as well as in case (∗∗).

After that, we show that the new asymptotic lower bound
√

3+1
2 is actually tight in

case (∗), i.e., for any instance with one fast machine Lpt/Opt <
√

3+1
2 holds.

On the other hand, for case (∗∗) we show that the lower bound
√

3+1
2 is not

tight: we construct an instance on 2-divisible machines having asymptotic worst

case ratio (
√

409+29)
36 , where (

√
409+29)

36 ≈ 1.3673 >
√

3+1
2 . However, this instance relies

on calculation with exact job sizes, completion times etc., and is valid only if Lpt

favours faster machines in case of ties. Assuming that Lpt breaks ties arbitrarily,

we give another instance with asymptotic ratio 955/699 ≈ 1.3662 >
√

3+1
2 . Both of

these instances are further developed variants of Instance A. Our contribution here

is twofold: first, the slight improvement over
√

3+1
2 is of theoretical interest; second,

the new instances give an impression about how troublesome it might be to obtain

tight approximation bounds for 2-divisible machines. Instead, with some additional
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effort, following the same lines as in case (∗) it was feasible to prove an upper bound

of 1.4 for 2-divisible machines.

In [60] we gave a short proof that on 2-divisible machines, Lpt is a 1.5-ap-

proximation algorithm. Chapter 3 begins with this proof, since it is relies on the

same basic idea as the following, much more involved monotonicity and upper-bound

proofs, and thus provides a good basis for understanding all the other arguments.

Truthful mechanism. In order to complete the description of a truthful mech-

anism, in the end of Chapter 3 we return to our monotone algorithm Lpt*. We

show that the upper bound 1.4 for Lpt immediately yields the upper bound of 2.8

for Lpt∗; on the other hand – though less obviously –, the instance that provides

the lower bound
√

3+1
2 can be turned into an instance for Lpt*, showing that the

approximation ratio Lpt∗/Opt can get arbitrarily close to
√

3 + 1 ≈ 2.732.

After that, we integrate Lpt* into the mechanism design framework: we consider

the payment function P, that complements Lpt* to a truthful mechanism M =

(Lpt*,P ). We show that – just like in case of the monotone algorithms in [3, 5, 8] –

the payments can be computed in polynomial time. Moreover, since we use rounded

machine speeds, the work curve is a step function, so that calculating the integral

term for the payment becomes very simple. Finally we turn to the issues of voluntary

participation (the profit must not be negative), and frugality (the total payment

exceeds the total cost by at most a logarithmic factor), and prove analogous results

to those in [5].



Chapter 2

Path multicoloring

In this chapter we show a fast algorithm for the preemptive sum-multicoloring

(pSMC) problem on path conflict graphs. With minor modifications, the algorithm

is applicable on cycles. We discuss the necessary changes for cycles at the very end

of the chapter.

Concerning these two graph classes, the special feature of the maximum degree

being 2, allowed us to invent and make use of a completely independent framework.

Thus, our method is self-contained, and is not based on previous work. However,

in order to put our problem in perspective, we start the chapter with an informal

description of a few related results (see also Table 1.1).

Recall that the input of SMC is given by a conflict graph of jobs G = (V, E), and

integer time demands x(v) (v ∈ V) for each job. The goal is to schedule the jobs

with respect to the conflicts, so that the sum of finish times of jobs
∑

v∈V f(v) is

minimized. For basic terminology, and a short intuition about our result, we refer

back to Section 1.1.

Outline.

Section 2.1 provides a short outlook on some related problems and solutions. We turn

to the pSMC problem on paths in Section 2.2, where we fix terminology and notation.

We note that further definitions appear in Sections 2.3 and 2.4, as was reasonable

for the flow of discussion. In Section 2.3 we narrow our focus to a particular type of

schedule, and prove a couple of cute structural properties of these schedules. There

we also give more insight into the basic ideas that facilitate a polynomial algorithm.

Sections 2.4 and 2.5 introduce elementary proving techniques, respectively de-

monstrate how to apply these techniques on some technical lemmas. The fast reader

may consider to omit all but the definitions in this part.

Section 2.6 contains our main result, the uniqueness theorem – preceded by

much preparation. We collected all the long and technical details and proofs from

this section into Section 2.7. The latter can be skipped as a whole without losing

the plot. Due to the uniqueness theorem, it is possible to give an exact solution to

the pSMC problem on paths efficiently. In Section 2.8 we discuss auxiliary results

that further reduce the running time.

15
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The final, O(min(n2, n log p)) algorithm is described in Section 2.9, with Sub-

section 2.9.3 treating the similar case of cycle conflict graphs. We close the chapter

with a discussion section.

At the beginning of each section, we provide some intuition about their contents.

In order to get a high level impression about our result, we suggest to read only

Sections 2.2, 2.3, 2.6, and 2.9.

2.1 Related work

2.1.1 Approximation of SC and SMC on general graphs [10, 11].

In [10], the following heuristic called MaxIS is suggested for the sum coloring prob-

lem (i.e., when all jobs have unit length): find a maximum independent set V ′ ⊆ V
in the conflict graph, assign the next smallest time-unit to the jobs in V ′, and fi-

nally delete the jobs of V ′ from the graph; iterate the process until all jobs are

scheduled. This is shown to yield an efficient 4-approximation algorithm for SC on

graph classes where a maximum cardinality independent set is polynomially com-

putable, respectively a 4ρ-approximation, whenever an efficient ρ-approximation of

maximum independent set is known.

Unfortunately, in general the independent set problem is not approximable within

a factor of Ω(n1−ε) for any ε > 0, by the breakthrough result of Arora et al. [7].

In fact, based on an analogous theorem about the inapproximability of the chro-

matic number [36], the authors of [10] prove the same approximation lower bound

of Ω(n1−ε) for SC on general graphs. In particular, they show by a simple argument

that any polynomial time ρ(n)-approximation algorithm for SC can be used to get

a polytime O(ρ(n) log n) approximation for the chromatic number.

The multicoloring (SMC) problems on general graphs (and also on special graph

classes) are considered in [11]. The paper demonstrates that applying some straight-

forward variant of MaxIS in either the preemptive or the non-preemptive case would

lead to bad approximation bounds. Instead, they suggest cute modifications in the

two cases:

Non-preemptive SMC:

1. Round up each demand x(v) to the nearest power of 2, with x′(v) being the

rounded demand.

2. Associate weight 1/x′(v) with node v.

3. Add edge (u, v) to the conflict graph if x′(u) 6= x′(v).

4. Run MaxIS on the modified graph, by always selecting weighted maximum

independent sets. In the selected set run all jobs to completion, then select

the next independent set from the remaining graph (with original weights).

Observe, that the weights are inversely proportional to the time lengths, since

favouring a long job against a short one would involve a large delay of the short job

relative to its length.
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The above algorithm is an O(ρ log min(n, p)) approximation for npSMC, where

ρ is the approximation ratio of the weighted independent set algorithm. The best

known ratio for arbitrary graphs is ρ = O(n/ log2 n) [48], which implies an approxi-

mation bound of O(n/ log n) for npSMC in the general case.

Preemptive SMC:

1. Associate weight 1/x(v) with node v.

2. Run MaxIS on the weighted graph, by always assigning the next time unit to

jobs in the selected independent set. Delete a job v only if it has received x(v)

time units. The weight of v does not change until deletion.

3. For every t that is among the first dx(v)/2e time units assigned to v in 2., then

eventually assign the time units 2t− 1 and 2t to v.

If the algorithm halts after step 2., then it yields a 4ρ-approximation for the

minimum sum of averages objective, where the averages are taken over the received

time units independently for each node. Duplicating the time units received up

to the median in step 3., provides a 16ρ-approximation for the minimum sum of

finish times objective. Applying the weighted independent set algorithm of [48]

with ρ = O(n/ log2 n), we obtain a O(n/ log2 n)-approximation algorithm for pSMC

on arbitrary graphs.

2.1.2 Non-preemptive SMC on trees and paths [50].

In the non-preemptive problem, the assigned sets Φ(v) are contiguous. Therefore,

in an optimum schedule, for any vertex v there is a simple path v0, v1, . . . , vm = v

called a grounding sequence of v, so that Φ(v0) = [1, x(v0)], Φ(v1) = [x(v0) +

1, x(v0) + x(v1)], . . . , Φ(vm) = [(
∑

i<m x(vi)) + 1, (
∑

i<m x(vi)) + x(vm)]. Since in

trees there is a unique path connecting any fixed pair of nodes, any node v has n

possible grounding sequences, and at most n possible schedules Φ(v).

Assume that the tree is rooted in some vertex r. A simple dynamic programming

algorithm, which proceeds from leaves to root, can compute a matrix A, where A[u, v]

is the optimum sum of finish times on the subtree Tu, given that u has a grounding

sequence ending in v. The straightforward dynamic programming algorithm runs in

O(n3) time. A more careful implementation yields O(n2) running time.

In the special case when the tree is a path, the authors of [50] show that the

demands in a grounding sequence grow exponentially (in fact, x(vm) = mΩ(m)),

since otherwise it would be worth ’restarting’ the sequence from time 0 at some

internal vertex. Therefore, for the maximum demand p = mΩ(m) holds, and any

grounding sequence has length O(log p/ log log p), which facilitates a running time

of O(n · log p/ log log p) for the above algorithm.

In case of trees, there is also a trivial bound of O(d(v) · p) on the number of

potential schedules of a node v, where d(v) is the degree of v. For small p, a modified

dynamic programming algorithm achieves O(
∑

v d(v) · p) = O(np) time complexity.
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2.1.3 The hardness of preemptive SMC on binary trees [73].

The NP-hardness of pSMC on binary tree conflict graphs is proven by a reduction

from the maximum independent set problem. First of all, the list multicoloring

problem is considered. In the input of list multicoloring, every node in the conflict

graph has an integer (color-)demand, and also a set of allowed colors. The goal is

to compute a valid multicoloring, so that each node receives the required number

of colors, and only from its allowed set. There is a simple reduction from the

independent set problem on an arbitrary graph G, to list multicoloring of a star

conflict graph: the allowed ’colors’ of the center node are all the nodes of G; the leaves

of the star correspond to the edges of G, each edge having only its two endpoints as

allowed colors. The edges have color demand 1. There is an independent set of size

K in G, if and only if there is a list multicoloring of the star with demand K on the

center node.

We note here, that as opposed to list multicoloring, for pSMC (and npSMC) a

rather straightforward algorithm exists for star conflict graphs.

It is easy to modify the above reduction for binary trees, by using a path of length

2m− 1 instead of the center node of the star, where m is the number of edges in G.
The major difficulty in reducing the independent set problem to pSMC on binary

trees is that in a sum multicoloring problem no allowed color-lists are given in the

input. The author of [73] manages to ’simulate’ the color-lists by attaching certain

binary tree graphs called penalty gadgets to the nodes of the original binary tree,

which force the original nodes to use only the allowed color set, or otherwise they

incur a big loss relative to the optimum cost. Furthermore, both the created binary

tree and the demands remain polynomial in the size of G, implying that pSMC is

strongly NP-complete on binary trees.

2.1.4 PTAS for preemptive SMC on trees [49, 50].

For any given ε > 0, there exists a restricted type of schedule of cost at most

(1 + ε)2 · opt, so that there are at most (1/ε)O(log p) possible (restricted) schedules of

each node v. We obtain the restricted solutions as follows:

A short argument shows that an optimum solution on bipartite graphs uses at

most O(p · logn) time units. This time spectrum is partitioned into O(log p) layers

[qi−1, qi), where qi = (1+ε)i. Each layer is divided evenly into 1/ε time sections, and

any such section is either completely assigned to a node, or not at all. Furthermore,

within a single layer, the number of assigned sections determines the schedule: let

V = A∪B be a bipartition of the tree, then the nodes in A get the first consecutive

sections, and the nodes in B get the last consecutive sections of the layer.

The error of the restricted schedule comes from two factors: In every layer,

and thus in the topmost nonempty layer of a node, the schedule is not the optimal

schedule, which may increase the finish time by a factor of (1+ε). On the other hand,

the number of assigned time units inside a layer must be a multiple of ε · (qi − qi−1),

which may blow up the optimum schedule size in every layer by another factor of

(1 + ε).
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Of course, we need to take care that for neighboring nodes, the total number of

received sections does not exceed (1 + ε)(qi − qi−1). Schedules of neighboring nodes

are consistent, if they fulfil this condition for every layer.

A dynamic programming algorithm which proceeds from leaves to root, can

compute the optimum on the subtree Tu for every node u, and for all the (1/ε)O(log p)

different restricted schedules of u : the algorithm selects an optimal schedule of each

child of u, from those consistent with the schedule of u. This algorithm actually

yields a (1 + ε)-approximation in time n · (p · log n)O(1/ε·log(1/ε)).

An additional trick can bound the number of segments – i.e., nonempty layers –

for each node by O(1/ε3 · log2(1/ε)), so as to obtain n · 2O(1/ε·log(1/ε))3 running time.

This method partitions the graph into subgraphs Gj , such that the highest demand

differs from the lowest demand by some constant factor in each Gj . After that, it

solves the problem using the previous algorithm independently on the subgraphs, and

concatenates the solution along the time axis. The trick lies in a careful subdivision

of the range of demands, which in turn determines the partition into subgraphs [49].

2.2 Preliminaries

Now we turn to our main topic. We consider preemptive SMC, and until the last

section we assume that G is a path, where V = {1, 2, . . . , n} denote the consecutive

nodes (jobs). The function Φ : V → 2N is a (proper) schedule, if |Φ(i)| = x(i)

and Φ(i) ∩ Φ(i + 1) = ∅ (1 ≤ i ≤ n− 1). For an illustration to the definitions see

Figure 2.1.

We will refer to time units as to levels. Given a schedule Φ, we say that i is

black on level ϕ, if ϕ ∈ Φ(i), and i is white on level ϕ if ϕ /∈ Φ(i). For i < j we

will also say, that the ordered pair (i, j) is black-white, black-black,... etc. on

level ϕ. Note that (i, i+ 1) cannot be black-black on any level.

Definition 2.1 An (i, j) pair has a conflict or is conflicting on level ϕ, if

– i and j are of the same parity and (i, j) is black-white, or white-black, or

– i and j are of opposite parity and (i, j) is black-black, or white-white.

Observe that here the term ’conflict’ means something else than a conflict (edge)

in the conflict graph.

Obviously, if (i, j) is conflicting on level ϕ, then ∃k ∈ 〈i, j − 1〉 s.t. (k, k + 1) is

white-white on level ϕ.

Definition 2.2 For any ordered pair of nodes (i, j) and any fixed schedule Φ, we

may consider the number of levels under some fixed level Γ, where (i, j) is black-

black, white-black, white-white and black-white, respectively. We call the 4-tuple of

these numbers the scheme of (i, j) below Γ.

Definition 2.3 Given a schedule, we say that node i is

– a loc-min, if f(i− 1) > f(i) and f(i) < f(i+ 1), or i = 0, or i = n+ 1;

– a loc-max, if f(i− 1) < f(i) and f(i) > f(i+ 1);
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2 5 4 5 2 110 50 99 99 50 12 50 10x(i)= 00 1

10 11 12 13 14 151 2 3 4 5 6 7 8 90 16i=
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Figure 2.1: A solution for the given pSMC problem on a path of length 15. 〈0, 16〉
is a block. Non-compact loc-mins are nodes 7 and 10. They are conflicting on level

2. Further examples: r(7) = 14, and `(10) = 7; pit(7, 14) = 10; top(7, 10) = 8;

pit(0, 16) = 7.

– a stair otherwise, in particular a stair-up, if f(i − 1) < f(i) < f(i + 1), and a

stair-down, if f(i− 1) > f(i) > f(i+ 1);

– compact, if f(i) = x(i). Note that 0 and n+ 1 are compact.

If both i and j are compact with no compact nodes between them, then we call

〈i, j〉 or (i, j) a block.

We provide with notation the following 4 nodes concerning a loc-min i :

Definition 2.4 If i is a loc-min in a schedule, then we denote by r(i) the first node

to the right of i s.t. f(r(i)) < f(i) and we denote by `(i) the first node to the left of

i s.t. f(`(i)) < f(i). Furthermore, R(i) := r(i) − 1 and L(i) := `(i) + 1.

Note that R(i) (L(i)) is either a stair-down (stair-up) – like R(10) = 12 on

Fig. 2.1 – or a loc-max – like L(10) = 8. The values f(i), r(i), `(i), etc. may carry a

subscript Φ when they are relative to a schedule Φ that is not clear from the context.

We end this section with the definition of our elementary operation:

Definition 2.5 Let ϕ, and ψ be some levels such that ∀k ∈ 〈i, j〉, f(k) ≥ max(ϕ,ψ)

in a schedule Φ. We say that we exchange the levels ϕ and ψ on 〈i, j〉, if

∀k ∈ 〈i, j〉 we make k white (black) on level ϕ if and only if according to Φ it was

white (black) on level ψ, and vice versa.

The exchanging operation results in a proper schedule on (i − 1, i) (resp. on

(j, j + 1)), if (i− 1, i) was white-white in Φ on either ϕ or ψ. If on the other hand,

(i − 1, i) becomes black-black on either ϕ or ψ, and i − 1 or i is a loc-max, then

we can correct the black-black level by increasing the finish time of this loc-max by

one. If this correction is needed, we say that the level-exchange costs 1 on the left

(resp. on the right), otherwise we say that it is for free or costs 0 on the left (on

the right).
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2.3 A simple type of schedule

We would like to restrict our attention to schedules of the simplest possible structure.

To this end we optimize the following two objectives in this order: we minimize∑n
i=1 f(i), and maximize

∑n
i=1 f

2(i). Intuitively, in such a schedule small f(i) values

are as small, and large f(i) are as large as possible.

Definition 2.6 A schedule Φ is called optimal schedule or a solution if the sum

of finish times
∑n

i=1 fΦ(i) is minimum over all schedules, and among those having

minimum sum of finish times
∑n

i=1 fΦ(i)2 is maximum.

In the rest of the section we prove a couple of nice properties of optimal schedules.

Having a clearer view about their characteristics, we provide further definitions, and

more intuition about the main result which facilitates a fast algorithm.

From here on we analyze an arbitrary fixed optimal schedule Φ. For simplicity

we will later refer to the properties below by (P1) to (P4). Notice that any schedule

starts with a compact loc-min 0, that is followed by alternating loc-max’s and loc-

mins, till the last compact loc-min n+ 1.

Lemma 2.7 (P1) In Φ, stairs and loc-max’s are scheduled in the following greedy

way: e.g., a stair-up s is black on the smallest x(s) levels where s − 1 is white; a

loc-max m is black on the smallest x(m) levels where both m−1 and m+1 are white.

Proof. For illustration see Figure 2.2. We need to show that (s− 1, s) is not white-

white on any level below f(s). Suppose (s − 1, s) is white-white on level ϕ < f(s).

Let m be the first local maximum to the right of s, and let’s exchange the levels

ϕ and f(s) on 〈s,m〉. Now we decreased f(s) by at least one, and got a proper

schedule on 〈s−1, s〉. If it is also a proper schedule on 〈m,m+1〉, then we decreased

the optimum sum, a contradiction; if it is not a proper schedule on 〈m,m+ 1〉, then

we correct it by increasing f(m) by one (the exchange costs 1 on the right). Now

we have the same sum of finish times, but increased the sum of squares of finish

times, a contradiction. Thus, we have shown that (s− 1, s) is either black-white or

white-black on any level below f(s).

It is now also straightforward that a loc-max is scheduled greedily. 2

Corollary 2.8 The schedule of a loc-min determines the schedules of stairs lead-

ing up to the next loc-max’s on both sides. If, e.g., s is a stair-up, then f(s) =

x(s− 1) + x(s).

Lemma 2.9 (P2) Let i be a non-compact loc-min, and let `(i) ≤ k ≤ r(i). Then

– the (i, k) pair is not conflicting on the level f(i);

– the (i, k) pair is not conflicting on any level where i is white.

Proof. Suppose for example, that i < k ≤ r(i), and (i, k) is conflicting on the

level f(i). There must be an i ≤ s < k such that (s, s + 1) is white-white on level

f(i). Let m be the first local maximum to the left of i. Now all the finish times on
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Figure 2.2: Proof of property (P1).

〈m, s〉 are not smaller than f(i). Since i is non-compact, there is a level ϕ < f(i)

where i is white. Let’s exchange the levels ϕ and f(i) on 〈m, s〉. Since (s, s+ 1) was

white-white, this remains a proper schedule on 〈s, s + 1〉 and it reduces f(i) by at

least 1. If it is not a proper schedule on 〈m− 1,m〉, we can correct it by increasing

f(m) by 1. This increases the sum of squares of finish times, a contradiction.

If (i, k) is conflicting on the level ϕ, the argument is essentially the same. 2

Corollary 2.10 Let i be a non-compact loc-min. Then (i, r(i)) is black-white on

level f(i), and they have no conflict, so i, and r(i) are of different parity, i and R(i)

are of the same parity. The same holds for nodes i, `(i) and L(i). Furthermore,

`(i) ≤ i− 3 and i+ 3 ≤ r(i).

Corollary 2.11 If i is a non-compact loc-min, then there are no compact nodes

inside 〈`(i), r(i)〉, since any node is white either on level f(i) or on the levels where

i is white.

Corollary 2.12 Let i be a non-compact loc-min and let α denote the number of

levels where (i, r(i)) is black-black. Then α = x(i) + x(r(i)) − f(i). Symmetric

statement holds for (`(i), i).

Lemma 2.13 (P3) If i < j are loc-mins, j < r(i) and f(i) = f(j), then i and j

are compact.

Proof. Assume that, for example, i is non-compact, and it is white on some level

ϕ < f(i). Now i and j must be of the same parity, since on level f(i) = f(j) they

are both black and they cannot be conflicting according to (P2). In turn, by (P2) j

is also white on ϕ.

Let mi and mj be the nearest loc-max’s to the left of i, and to the right of j,

respectively. Now we exchange the levels f(i) and ϕ on 〈mi,mj〉. This operation

costs at most 2 on the two sides, but we decreased both f(i) and f(j) by at least 1.

Moreover, the sum of squares of finish times increased, contradicting the optimality

of Φ. 2
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Figure 2.3: (i) Proof of property (P4); (ii) Corollary 2.16.

Definition 2.14 Let i be a non-compact loc-min. We denote by pit(i, r(i)) the

loc-min of smallest finish time between i and r(i). If there is no loc-min between

them, then pit(i, r(i)) = ∅ and in this case top(i, r(i)) denotes the unique loc-max in

〈i, r(i)〉. The definition of nodes pit(`(i), i) and top(`(i), i) is analogous.

If 〈g, h〉 is a block, we define pit(g, h) and top(g, h) analogously.

Property (P2) implies that k = pit(i, r(i)) is non-compact, and due to (P3),

the pit() is well-defined, since there can be only one such node. Note that if k =

pit(i, r(i)), then 〈i+ 1, `(k)〉 is a series of stair-ups and 〈r(k), r(i) − 1〉 is a series of

stair-downs.

Now if g < h are nearest compact nodes, s.t. x(g) > x(h), then r(g) ≤ h.

Instead of 〈g, r(g)〉, the block 〈g, h〉 is of relevance. Corollary 2.11 implies, that all

loc-mins inside 〈g, h〉 have finish time above x(g). Therefore, 〈r(g), h〉 is a series of

stair-downs. In this sense blocks can be regarded as ’maximal (i, r(i)) or (`(i), i)

pairs’, and it is reasonable to extend the definitions of pit() and top() to blocks.

If k = pit(g, h) in some block 〈g, h〉, then a level ϕ < f(k) may exist, where k is

black and is conflicting with both `(k) and r(k). The next lemma states, that this

cannot happen to any other loc-min inside the block.

Lemma 2.15 (P4) If i is a non-compact loc-min and k = pit(i, r(i)) (or k =

pit(`(i), i)) then there is no level below f(k) where k has conflict with both `(k)

and r(k).

Proof. (See Figure 2.3.) Suppose we have `(k) ≤ s < k ≤ s′ < r(k) such that

(s, s + 1) and (s′, s′ + 1) are both white-white on level ψ < f(k). Since i is non-

compact, there is a level ϕ < f(i), where i is white. Property (P2) implies that node

s is white either on level f(i) or on level ϕ. W.l.o.g. assume that s is white on level ϕ.

Now we exchange the levels ψ and ϕ on 〈s+1, s′〉, and denote the resulting schedule

by Φ′. Now Φ′ has the same finish times as Φ, moreover Φ′ is a proper schedule,

since (s, s + 1) and (s′, s′ + 1) were white-white on ψ. Note also, that (s, s + 1) is

white-white on level ϕ. Now we modify Φ′ as in the proof of (P2), and obtain a

schedule better than optimal, a contradiction. 2
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Corollary 2.16 Let i be a non-compact, even loc-min, and ψ ≤ f(i) an arbitrary

level. (P1), (P2) and (P4) imply the following on 〈i, r(i)〉:
If (i, r(i)) have no conflict on level ψ, then exactly the odd or exactly the even

nodes are black on level ψ.

If (i, r(i)) have a conflict on level ψ, then there is a loc-max m, s.t. on 〈i,m−1〉
the even nodes, on 〈m+ 1, r(i)〉 the odd nodes are black on level ψ.

Definition 2.17 Let i be a non-compact, even loc-min. We call the levels where

(i, r(i)) (resp. (`(i), i)) have no conflicts clear levels, in particular clear odd or

clear even levels if the odd, resp. the even nodes are black on these levels.

A level ψ where (i, r(i)) have a conflict, is an even-odd level if it is clear even

on 〈i,m − 1〉 and clear odd on 〈m + 1, r(i)〉 . We say that 〈i,m〉 is the even part

and 〈m, r(i)〉 is the odd part with respect to level ψ.

Consider the subpath 〈10, 13〉 in Fig. 2.1. Levels 6 and 7 are even-odd, all the

other levels are clear levels.

2.3.1 The optimum on 〈i, r(i)〉
Let us fix a subpath 〈i, j〉, and a (partial) instance I := (x(i), x(i + 1), ..., x(j)) of

the pSMC problem. We will consider all cases when I is part of an instance on

a longer path, and all solutions (if existent) where i is a non-compact loc-min and

j = r(i). In this subsection we discuss only the potential (i, r(i)) pairs. The pairs

(`(i), i) can be handled symmetrically.

In the next proposition we claim that in any of these cases the optimum sum of

finish times F :=
∑r(i)−1

k=i+1 f(k) depends only on f(i).

Proposition 2.18 Let I be as defined above. Suppose that Φ is a solution to some

extension of I, s.t. i is a non-compact loc-min, and j = rΦ(i). Similarly, let Ψ

be a solution to another extension of I, s.t. i is a non-compact loc-min in Ψ,

and j = rΨ(i) holds as well. Now if fΦ(i) = fΨ(i), then FΦ =
∑r(i)−1

k=i+1 fΦ(k) =
∑r(i)−1

k=i+1 fΨ(k) = FΨ.

Proof. Assume the contrary, that e.g., FΦ < FΨ. According to (P2) and Corol-

lary 2.12, in both Φ and Ψ, the scheme of (i, j) below f(i) is as follows: the number

of white-white levels is 0, the number of black-black levels is α = x(i) + x(j)− f(i),

the number of black-white levels is x(i) − α and the number of white-black levels is

x(j) − α. Now we permute the levels in Φ on 〈i, j〉, below f(i), so that the schedule

Φ(i) turns into Ψ(i) and Φ(j) turns into Ψ(j). This is possible, since the schemes of

(i, j) were the same in the two schedules. Let’s call this new partial schedule Φ′. No-

tice that the permutation may modify the schedule on levels not higher than f(i)−1.

Therefore, it does not affect the finish times on 〈i+1, j−1〉, and so FΦ′ = FΦ < FΨ.

Now on 〈i, j〉 we can exchange the schedule Ψ for Φ′ and obtain a better optimum,

a contradiction. 2

We will consider all the f(i) that ever occur in an optimal schedule where i is a

non-compact loc-min, and j = r(i), and fix one solution on 〈i, r(i)〉 for each of them.
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Figure 2.4: The dynamic programming strategy: Solutions on 〈`(s), s〉 and 〈s, r(s)〉
can be glued at s to form a solution on 〈k, r(k)〉, where s = pit(k, r(k)). The optimum

function on 〈k, r(k)〉 is obtained from the optimum functions on 〈`(s), s〉 resp. on

〈s, r(s)〉, etc.

Here we only talk about fixed solutions modulo permutation of the levels below f(i),

but with fixed finish times on 〈i, r(i) − 1〉.
Recall that α denotes the number of black-black conflicts of (i, r(i)). Instead of

treating the optimum as a function of f(i), we will look at it as a function of α.

Since α = x(i)+x(j)−f(i), this makes just a tiny technical difference. Let Φα stand

for the corresponding fixed solution on 〈i, r(i)〉, and let F(α) be the sum of finish

times on 〈i+ 1, r(i) − 1〉 in Φα. Those α values that correspond to an occurrence of

f(i) constitute the domain DF of F(α). (The notation Φα, F(α), and DF is always

used for fixed i, j and I.)
Observe that by Proposition 2.18, F(α) does not depend on which of the opti-

mal schedules we chose to be Φα. In our main result called uniqueness theorem

(Theorem 2.3) we prove a much stronger statement: we show that Φα is essentially

the same solution for all α, in the sense that for the range of possible α values, the

order of finish times on 〈i, r(i)〉 is fixed. As a consequence, F(α) is a simple linear

function, namely F(α−∆) = F(α)−∆. We will apply a fast dynamic programming

algorithm to compute the domain and one value of F(α) for each potential 〈i, r(i)〉
(resp. 〈`(i), i〉) subpath. This computation proceeds from the short subpaths to

longer ones, and constitutes Phase 1 of the scheduling algorithm (see Fig. 2.4).

Next, we fix a level Γ(i, r(i)) which, according to Proposition 2.20 below, sepa-

rates the ’low levels’ and the ’high levels’ concerning 〈i, r(i)〉 (see Figure 2.3 (ii)).

We will simply write Γ, whenever (i, r(i)) is clear from the context.

Definition 2.19 Γ(i, r(i)) := min(x(i) + x(i+ 1), x(r(i)) + x(r(i) − 1)).
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Proposition 2.20 In any of the fixed solutions Φα, f(i) ≤ Γ, and either

pit(i, r(i)) = ∅, or f(pit(i, r(i))) > Γ.

Proof. By (P2), there are no white-white levels of (i, i + 1) below f(i), so f(i) <

x(i) + x(i + 1). Similarly, there are no white-white levels of (r(i) − 1, r(i)), since

such a level would be a conflicting (white-white) level of (i, r(i)). Therefore, f(i) ≤
x(r(i)) + x(r(i) − 1) holds as well.

Let k = pit(i, r(i)). Since k is non-compact, it has the same parity as L(k) and

R(k) (see Corollaries 2.10 and 2.11). On the other hand, i + 1 and r(i) − 1 are of

different parity, so either f(k) > f(i+ 1) ≥ x(i) + x(i+ 1) or f(k) > f(r(i) − 1) ≥
x(r(i)) + x(r(i) − 1). 2

Decreasing f(i) by ∆ corresponds to the following change in the scheme of (i, r(i))

below Γ : α increases by ∆, and equivalently, the number of white-white conflicts

increases by ∆, the number of black-white levels and white-black levels both decrease

by ∆.

We end the section with the description of two procedures. The input of f-time

is (i, j), k ∈ 〈i, j〉, the partial instance x(i), x(i+ 1), . . . , x(j), and α. The procedure

computes the finish time fα(k), given that i is a non-compact loc-min, j = r(i),

k = pit(i, j), and (i, j) have α black-black conflicts below Γ. In this pseudo-code

we assume w.l.o.g., that k and i are even. All other cases are analogous. We use

the short notation f(u) for x(u − 1) + x(u) if u is supposed to be a stair-up, resp.

f(v) for x(v + 1) + x(v) if v must be a stair-down. Here we do not check whether

k = pit(i, j) is indeed feasible.

Procedure f-time

u := i+ 1; v := j − 1; (current stairs)

Γ := min(f(u), f(v));

β := Γ − (x(j) − α); (the number of black levels of k, below min(f(u), f(v)))

while β < x(k) do

if f(u) ≤ f(v) then

u := u+ 1;

if f(u) ≤ f(u− 1) then

output fα(k) = ∞. (u is not a stair-up)

end if

else

v := v − 1;

if f(v) ≤ f(v + 1) then

output fα(k) = ∞. (v is not a stair-down)

end if

end if

if either u or v is even then

β := β + (min(f(u), f(v)) − max(f(u− 1), f(v + 1)));

end if

end while (now β ≥ x(k))
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fα(k) := min(f(u), f(v)) − (β − x(k));

output fα(k).

Similarly, f̂-time computes the finish time f̂α(m), given that m is a unique

loc-max in 〈i, j〉. We assume w.l.o.g. that i and m are even.

Procedure f̂-time

u := i+ 1; v := j − 1;

Γ := min(f(u), f(v));

β := x(i) − α; (the number of black levels of m, below min(f(u), f(v)))

f(m) := ∞;

while β < x(m) and (u < m or m < v) do

if f(u) ≤ f(v) then

u := u+ 1;

if f(u) ≤ f(u− 1) then

output f̂α(m) = ∞. (u is not a stair-up)

end if

else

v := v − 1;

if f(v) ≤ f(v + 1) then

output f̂α(m) = ∞. (v is not a stair-down)

end if

end if

if u = m = v then

f̂α(m) := max(f(m− 1), f(m+ 1)) + (x(m) − β);

output f̂α(m).

else

if both u and v are even then

β := β + (min(f(u), f(v)) − max(f(u− 1), f(v + 1)));

end if

if β ≥ x(m) then

output f̂α(m) = ∞. (m = top(i, j) is impossible)

end if

end if

end while

The correctness of the procedures follows from (P1)–(P4). The running time is

proportional to the number of stairs having finish time below fα(k); for f̂-time it

is O(j − i).

2.3.2 Minimum-tree

In order to put all this in a more global perspective, we associate a binary tree with

each block in a solution (see Fig. 1.3):

Definition 2.21 If 〈g, h〉 is a block then the (non-compact) loc-mins inside form a

binary tree in the following way: i := pit(g, h) is the root of the tree, and its two
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children are pit(`(i), i) and pit(i, r(i)), etc. The loc-max’s can be regarded as the

leaves of this tree. We will call this tree the minimum-tree of (g, h). Since the

term ’level’ means time unit, we will say that the root i is on the 1st floor, the

children of i are on the 2nd floor, etc. of the minimum-tree.

Since blocks are easy to connect to each other, till the very end we will stay

within one block. Eventually, blocks can be connected by a straightforward dynamic

programming algorithm.

In Phase 1 the algorithm proceeds from leaves to root and composes the mini-

mum-tree of a (potential) block. In Phase 2, the minimum-tree is given, and we do

the scheduling by proceeding from root to leaves. Having the minimum-tree fixed,

the root i is the only loc-min that can have (black) levels conflicting with both `(i)

and r(i), and so f(i) is not automatically implied. See for example level 2 of loc-min

7 on Fig. 2.1. But if the optimal f(i) is fixed – i.e., it is also computed in Phase 1 –,

it essentially determines Φ(i), whereas the latter determines the schedule of all the

other loc-mins – by (P2) and (P4) –, and the schedule of the whole block – by (P1)

(see Fig. 2.3 (ii)).

Observe that inside a block 〈g, h〉, or inside any 〈i, r(i)〉, there are one more loc-

max’s than loc-mins. The uniqueness theorem will imply that increasing the finish

time of the root in a minimum-tree by ∆ increases the finish time of every other

loc-min and decreases the finish time of every loc-max by the same value, resulting

in an improvement of ∆ on the whole block. However, each increase must mean

exchanging a black level below the finish time for a white level above the finish time

of a loc-min, both having conflicts on both sides. This condition bounds from above

the potential values of ∆ in a recursive manner.

2.4 Basic operations

We can streamline the technical proof of Theorem 2.3 by introducing the basic

operations (O1) – (O5) in advance. First of all, we need further definitions:

Definition 2.22 Let s be a stair-up (stair-down) in a fixed solution Φ. The rung

of s is the set of levels S := [f(s − 1) + 1, f(s)], (resp. S := [f(s + 1) + 1, f(s)]).

For simplicity we use the respective capital letters to denote rungs. We will also use

the short notations: S := minS, and S := maxS = f(s).

Let m be a loc-max, and f(m−1) < f(m+1). The rung of m is the set of black

levels above f(m−1), i.e., M := Φ(m)∩ [f(m−1)+1, f(m)]. If f(m−1) > f(m+1),

the definition is symmetric.

The rung of a stair is the topmost set of contiguous black levels of the stair. In

a series of stairs the rungs of these stairs partition the levels above the loc-min. We

note that rungs of different nodes may refer to the same level-sets. Arbitrary level

sets (i.e., not rungs) will also be denoted by capital letters.

Definition 2.22 had to be extended to loc-max’s, since L(i) or R(i) might be a

loc-max. In order to simplify the discussion, we will regard a loc-max to be a ’last
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stair’ on the respective side (if, e.g., in the discussion m is playing the role of L(i),

then f(m− 1) < f(m+ 1), and we regard m as a stair-up). For an example of such

a ’last stair-up’, see node 8 = L(10) on Fig. 2.1. Due to (P2), if i is a non-compact

loc-min, and, e.g., L(i) = m is a loc-max, then (m− 1,m) is not white-white under

the level f(i) (so the rung M is contiguous under f(i)). When we talk about rungs

of stairs, we usually mean such ’last stairs’, i.e., loc-max’s as well. Since below f(i)

the schedule of L(i) behaves like a stair, in most cases this won’t cause difficulties,

and the statements remain true. We deal with the problematic cases explicitly. In

the next definition s is a stair in this broad sense.

Definition 2.23 We say that s is a second stair resp. S is a second rung if

s − 1 or s + 1 is a loc-min. We call a stair or rung high stair, resp. high rung

otherwise.

Let i be a non-compact loc-min, c = L(i) and d = R(i). Now C and D denote

the rungs of c and d, respectively, and f(i) ∈ C ∩D. We say that i (or f(i)) ends

in C on the left and in D on the right.

In the rest of the section we fix the node k, and some sets of levels C and D below

f(k), where k is black and white, respectively. Let |C| ≤ |D|. We will exchange the

levels of C for some levels in D on a subpath containing k. The five basic exchange

operations below restrict the subpath to the left of k (see Figure 2.5). We can use

symmetric versions of (O1)–(O5) for the right side.

In our proofs we will frequently use combinations of these exchange operations

(one type on the left and one type on the right side), in order to exclude the opti-

mality of some solution.

(O1) Let k be a stair-down or a loc-min, let i < k and every node in 〈i+ 1, k〉 have

finish time above C ∪D. Let either B ⊂ C or B ⊂ D, s.t. i and k have a conflict in

the levels of B. Due to Corollary 2.16, there is a node i ≤ m < k s.t. (m,m+ 1) is

white-white on these levels and m or m+ 1 is a loc-max. Now we can exchange the

levels of C for levels of D on 〈m + 1, k〉, so that it costs (|C| − |B|) on the left. In

general, exchanging any two level sets C ′ and D′ below f(k), costs at most |C ′| on

the left.

(O2) Let k = c be a stair-down, c = R(i), and C denote the rung of c. If f(i+ 1) ≥
f(c), then we can exchange the level set C for some levels of D for free on the left:

Let i be black on B ⊂ D and white on A ⊂ D. Since c and i have the same parity,

they have a conflict on the levels of B and also on [f(i) + 1, f(c)]. Exchanging any

of these levels (with any other level) is for free. The remaining levels to exchange

should be the topmost levels of i and some levels of A. These we exchange on 〈m, c〉,
where m is the first loc-max to the left of i. Now we increased f(m) but decreased

f(i) by the same amount. The same holds for any set of topmost black levels of k

instead of the whole rung C.

(O3) Let k = c be a high stair-up (or loc-max), and C the rung of c. Making the

levels C white and some levels in D black in c, costs |C| on the left since we have to

increase f(c− 1) by |C|. Similarly, exchanging any other level set C ′ ⊇ C of k costs

at most |C ′| on the left.
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Figure 2.5: Operations of type (O1) – (O4).

(O4) Let k = c be a second stair-up (or loc-max), C the rung of c. Now c − 1 is a

loc-min, and let us also assume that f(c−2) > f(c) This operation is a combination

of (O3) and (O1): We exchange C with levels of D. Let m be the first loc-max to

the left of c− 1. The exchange costs |C| at c− 1, because we increase f(c− 1) (see

(O3)), and it costs at most |C| on the left – at m –, because we exchanged levels of

the loc-min c − 1 (see (O1)). Exchanging any level set C ′ ⊇ C of k costs at most

|C ′| + |C| on the left.

(O5) Let k = c be a second stair-up and suppose f(c− 2) ≤ f(c). Now we only pay

|C| at c − 1, and the rest is for free, because we decrease f(c − 2) as much as we

modify it. So, if f(c− 2) ≤ f(c), then moving the levels of C implies the same costs

as in (O3).

Definition 2.24 We say that we place C into D if we exchange the levels of C

for some levels in D on a subpath that contains k. By this we mean exchanging on

the subpath specified in (O1) – (O5), if (on a side) the respective setting corresponds

to one of these operations.

Corollary 2.25 Suppose that we place some levels C ′ of node k (including the rung

of k) into some levels D. If k is not a second stair, the operation costs at most 2|C ′|.
If k is a second stair on one side, it costs at most 3|C ′|. If k is a second stair on

both sides, then we have the trivial setting that both k − 1 and k + 1 are compact.
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Figure 2.6: (i) Proposition 2.26, (ii) Proposition 2.27, and (iii) Proposition 2.28.

The contiguous level sets are drawn with solid line segments in the schedule of an

even node, resp. with broken line segments for odd nodes. The finish time of a

loc-min node is marked by a dot.

Proof. If k is a loc-min, then we apply (O1) on both sides; if it is a high stair,

we apply (O1) on one side and (O3) on the other side; if k is a (high) loc-max, we

apply (O3) on both sides. If k is a second stair (or loc-max), then we apply (O4)

on one side. Given that C ′ includes the rung of k (in case k is a stair or loc-max),

we obtain the costs stated in the corollary.

If both neighbors of k are loc-mins, then the neighbor of higher demand is com-

pact by Corollary 2.10, and the other neighbor is compact by Corollary 2.11. 2

We finish the section with three simple applications of (O1) – (O5) (see Fig. 2.6).

Proposition 2.26 Let C be a second rung of a stair-up c and the loc-min c−1 end

in some rung S on the left. Let D denote the set of white levels of c below S. If

placing C into D is for free on the right, and |C| ≤ |D|, then |S| ≤ |C|.

Proposition 2.27 Let k be an even loc-min, and f(k) end in L on the left, where

L is a high even rung and S is some odd rung below L. Let C be the set of black

levels of k above S, and D be the set of white levels of k below S. If |C| ≤ |D|, then

|S| ≤ |C|.

Proof of Propositions 2.26 and 2.27. Placing C into D costs at most |C| at c−1

in Proposition 2.26 by (O4)-(O5), resp. at most |C| on the right in Proposition 2.27

by (O1). Moreover, if C has µ levels above S, then placing C down costs µ on the

left by (O1).

The costs of placing down amount to at most |C|+µ in both cases, whereas the

finish time f(k) would decrease by at least |S| + µ. Thus |S| + µ ≤ |C| + µ. 2
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Figure 2.7: Lemma 2.29.

Proposition 2.28 Let s` be a high stair-up and sr be a high stair-down, s.t. s` < sr

and they are both even. Furthermore, the rungs of s` − 1 and sr + 1, resp. the rungs

of s` + 1 and sr − 1 intersect, and f(k) ≥ max(S`, Sr) for all s` < k < sr. Then

either |S`| ≥ x(s` − 1) or |Sr| ≥ x(sr + 1).

Proof. Suppose that |S`| < x(s` − 1) and |Sr| < x(sr + 1). Now both S` and Sr

fit into the white levels below them, and we place down both S` and Sr. This costs

|S`| and |Sr| on the two sides by (O3), but costs 0 between s` and sr : obviously,

it is for free on the conflicting levels S` \ Sr and Sr \ S` by (O1). It is also for free

on the common levels S` ∩ Sr, because either we exchange the complete level on

〈s` − 1, sr + 1〉, or we place the two sides into conflicting levels. 2

2.5 The size of the ’lowest rungs’

Suppose that k = pit(i, r(i)) for some pair (i, r(i)). This section includes two tech-

nical lemmas, which provide lower bounds on the sizes of rungs or demands of L(k)

and R(k). The loc-mins in a minimum-tree end in different pairs of rungs. Clearly,

the larger these rungs are, the larger the difference between the demands inside the

block must be.

Lemma 2.29 Let Φ be a solution on 〈1, n〉 and i a non-compact loc-min. Suppose

that k = pit(i, r(i)) and q is a high stair, s.t. q ≤ L(k). If A is the set of levels

below Q, where q is white and conflicting with R(k), then |Q| ≥ |A|. A symmetric

statement holds for a high stair s, when R(k) ≤ s.

Proof. If there are loc-mins ending in Q, then let k′ ≤ k be the closest loc-min to

q. Otherwise let k′ = k. Now by (P2) the pair (q, k′) has (white-black) conflicts on

the levels of A. Suppose that |Q| < |A| holds. We apply (O3) on the left and (O1)

on the right to place Q into A. This costs |Q| on the left and 0 on the right, but

f(q) decreases by more than |Q|, so we got a better optimum sum, a contradiction.

2

Unfortunately, the above lemma does not hold if q (or s) is a second stair. The

best we can say about second stairs is stated in Lemma 2.31. The lemma is not
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applicable on the first floor of a minimum-tree, but this won’t influence essentially

our running time bounds. Case (∗∗) will cause most of the difficulties in the proof

of Theorem 2.3.

Observe, that for k = pit(i, r(i)) only at most one of L(k) or R(k) is a second

stair, since L(k) and R(k) are of the same parity, and i and r(i) are of different

parity.

Recall that Γ = min(x(i) + x(i+ 1), x(r(i)) + x(r(i) − 1)).

Proposition 2.30 If i is a non-compact loc-min in a solution, and A is the set

of levels where (i, r(i)) has black-black conflicts below Γ, then x(i + 1) > |A|/2 and

x(r(i) − 1) > |A|/2.

Proof. Let d = i+ 1. Suppose that x(d) ≤ |A|/2. Now we place all the black levels

of d into the bottom levels of A. This is for free on the right, even if some loc-mins

end in d, because in this case the |A| conflicts are between d and the loc-mins. It

costs at most |D|+ x(d) on the left, but f(d) is decreased by at least |D|+ |A|/2. If

x(d) = |A|/2 and the sum of finish times did not decrease, then the sum of squares

of finish times increased: f(i) increased to f(d); f(d) decreased below f(i), and

f(m) increased for some loc-max m above f(d). Thus, we got a better solution, a

contradiction. The proof of x(r(i) − 1) ≥ |A|/2 is symmetric. 2

Lemma 2.31 Let Φ be a solution on 〈1, n〉 and i a non-compact loc-min. Let A be

the set of levels where (i, r(i)) have black-black conflicts below Γ. Furthermore, let

e = R(i) = r(i)−1, and E be the rung of e. Then at least one of the following holds:

(∗) x(i+ 1) > |A|;
(∗∗) E is a high rung and |E| > |A|;
(∗ ∗ ∗) r(i) is compact and i is the root of a minimum-tree.

Proof. Let i be odd. We start from f(i) to the right, and make a zigzag walk

downwards (see Figure 2.8). Let s1 = R(i), i.e. i ends in S1 on the right. If S1 is a

second rung, then let m1 = s1 + 1 and if m1 is non-compact, let s2 = L(m1). Note

that s2 < i. If S2 is a second rung, then let m2 = s2 − 1 and if m2 is non-compact,

then let s3 = R(m2) > s1. We terminate the zigzag walk if a loc-min mt−1 ends in

St and either

(1) St is a high rung, or

(2) St is a second rung above a compact loc-min mt.

Let m0 = i and S0 be the rung of i + 1. Now we have a series of second rungs

(except for the last): S0, S1, ..., St and the following hold:

{S2τ} are disjoint, and they are rungs of even nodes to the left of 〈i, r(i)〉, whereas

{S2τ+1} are also disjoint, and they are rungs of odd nodes to the right of 〈i, r(i)〉.
Moreover, [f(m2τ )+1, f(m2τ−1)] are clear even level-sets and [f(m2τ+1)+1, f(m2τ )]

are clear odd level-sets on a subpath enclosing 〈i, r(i)〉. This gives a partition of the

levels between St and f(i). The conflicting levels A are below f(i), consequently

they are all below St. Moreover, the levels of A are clear even to the right of r(i),

and clear odd to the left of i. These statements are easy to verify by (P1) – (P4).
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Figure 2.8: Illustration to Lemma 2.31.

We will call m an inserted loc-min if it is between mτ and sτ+2 for some τ, and

f(mτ ) > f(m) > f(mτ+1). Rungs of neighbors of inserted loc-mins will be called

inserted rungs.

We claim that the sizes of the rungs on each side are decreasing, or they have

size larger than |A|:

Claim 2.32 Suppose that |Sτ | ≤ |A|. In this case |Sτ | > |Sτ+2|, and if there is an

inserted rung S between mτ and sτ+2 then |Sτ | > |S| > |Sτ+2|.

Proof. Suppose w.l.o.g. that τ is odd, so we are to the right of 〈i, r(i)〉.
First we consider the case, when there is no inserted loc-min in 〈mτ , sτ+2〉. Now

mτ ends in some even rung Qτ+2 above Sτ+2. We assumed |Sτ | ≤ |A|. Now we can

place Sτ into A for free on the left by (O1), and so according to Proposition 2.26,

|Sτ | ≥ |Qτ+2|. This, in turn, implies Sτ > Qτ+2, that is, if |Qτ+2| ≤ |Sτ+2|, then

applying (O2) on the left and (O3) on the right, we could place Qτ+2 into Sτ+2 and

obtain a better optimum. (If |Qτ+2| = |Sτ+2|, we obtain larger sum of squares of

finish times since f(mτ ) decreases and a loc-max increases.) Thus, |Sτ | ≥ |Qτ+2| >
|Sτ+2|.

Second, let m be a single inserted loc-min between mτ and sτ+2. Let S be the

(odd) inserted rung of m − 1, and Q be the (even) rung above S, where mτ ends.

Now we can prove the same way that |S| > |Sτ+2|, respectively that |Sτ | > |S|. The

argument carries over to any number of consecutive inserted loc-mins. 2 Claim 2.32
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Claim 2.33 In case (1), |St| > |A|. In case (2), for all τ 6= t − 1 |Sτ | > |A|/2,
and if S is an inserted rung, then |S| > |A|/2.

Proof. Suppose w.l.o.g. that t is odd, so st is to the right of 〈i, r(i)〉.
In case (1), St is a high rung. Suppose that |St| ≤ |A|. We place St into A : it is

for free on the left by (O1), and costs |St| on the right by (O3). If f(st) decreased

by more than |St|, we obtained a smaller sum of finish times; if f(st) decreased by

exactly |St|, now we can also reduce f(mt−1) for free on the right, and so increase

the sum of squares of finish times, a contradiction.

In case (2), St is a rung above a compact loc-min mt. First we show |St| >
|A|/2. Note that x(mt) > |A|, since mt has |A| conflicting levels and at least one

non-conflicting level, because mt−1 is non-compact. Suppose that |St| ≤ |A|/2.
Now we place St to the bottom levels – make st compact –, applying (O2) on the

left. The operation costs at most 2|St| on the right by (O4), and we gain at least

|St| + |A|/2 + 1 > 2|St|, a contradiction.

Second, we prove |St−3| > |A|/2. We claim that x(st−1) > |A|/2, by Proposi-

tion 2.30.

If there are no inserted rungs between st−1 and mt−3, then mt−3 ends in some odd

rung U above St−1. If U ≥ St−3, then |St−3| ≥ x(mt−3) > |A|, otherwise we could

place St−3 down. If U < St−3, then |U | ≥ x(st−1) > |A|/2, otherwise we could place

down U by (O2) on the right and (O3) on the left. Furthermore, Proposition 2.26

implies |St−3| ≥ |U |.
Finally, if S is a (leftmost) inserted rung between st−1 and mt−3, the same proof

yields |S| > |A|/2.
Now Claim 2.32 implies the claim for all other Sτ or inserted rungs. 2 Claim 2.33

Let f(i) end in W on the left. Notice that unless t = 1, W is a high odd rung

above S2 or above an inserted rung S between s2 and i.

Claim 2.34 If W > St + |A|, then x(i+ 1) > |A|.

Proof. Suppose that x(i + 1) ≤ |A|. We claim that S0 > W : otherwise the

complete S0 would have conflicts on the left side, A has conflicts on the right, so

unless |A| < |S0| < x(i + 1), it would be worth placing S0 into A using (O1) and

(O4). Let S0 = W + µ.

Let’s place all the x(i+1) black levels of i+1 into A. This costs 0 on the right. It

costs |S0| due to increasing f(i) and costs at most x(i+1)−|S0|+µ ≤ |A|− |S0|+µ

on the left, by (O1). The total cost is at most |A|+µ, but we decreased f(i+ 1) by

more than µ+ |A|, since there are more than |A| levels between S t and W. So, the

solution was not optimal. 2 Claim 2.34

Claim 2.35 In case (1), either (∗) or (∗∗) holds.

Proof. In this case we have |St| ≥ |A|. If St < f(i) then (∗) holds by Claim 2.34.

The only case when St ≥ f(i) might occur, is when t = 1, meaning that s1 = e

is a high stair. Now |E| > |A| follows from Claim 2.33. 2 Claim 2.35
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Figure 2.9: Illustrations to Claim 2.35 (1), and Claim 2.36 (2).

Claim 2.36 In case (2), either (∗) or (∗ ∗ ∗) holds.

Proof. We claim that if W is a high rung, then |W | ≥ x(w − 1). We saw in

Claim 2.34 that the case S0 ≤ W can be excluded, so we assume S0 > W. If

|W | < x(w − 1), then we could place W into the black levels of w − 1 for free on

the right by (O2), for |W | on the left by (O3), and reducing f(w) by more than

|W |. Moreover, x(w − 1) > |A|/2, since otherwise it would be worth making w − 1

compact: it is for free on the right, it costs at most 2x(w − 1) on the left, and

f(w − 1) reduces by more than |A|. So, if W is a high rung then |W | > |A|/2.
If t ≥ 2, then W is an odd rung above S2 or above an inserted rung S. So we

have |W | > |A|/2. Since t 6= 1, W and St are disjoint, and St > |A|/2 by Claim 2.33.

So we have W ≥ St + |St| + |W | > St + |A|, and Claim 2.34 implies (∗).

Now let t = 1, implying that m1 = r(i) is a compact loc-min (see Figure 2.9 (2)).

If the loc-min below W ends below f(m1) then it is compact by Corollary 2.11, and

i is the root of a minimum-tree, so that (∗∗∗) holds. If the loc-min below W is non-

compact, and it ends in S1, then it has the same parity as w, so W is a high rung.

Thus, |W | > |A|/2, and since x(w−1) > |A|/2, we obtain W > |A|+ |A|/2+ |A|/2 =

2|A|. Suppose that (∗) does not hold, that is x(i + 1) ≤ |A|. Now we make i + 1

compact. This operation is for free on the right since m1 is compact. If S0 = W +µ,

then it costs at most x(i + 1) + µ on the left, but f(i + 1) decreases by more than

|A| + µ, and we obtained a better solution, a contradiction. 2 Claim 2.36

2 Lemma 2.31

2.6 The uniqueness theorem

In this section we rely on the notation and definitions introduced in Section 2.3.1.

Recall that there we fixed a pair of nodes (i, r(i)) and the partial instance I between

these nodes. We defined the level Γ and the number α of conflicting black-black levels

of (i, r(i)) as well as the solutions Φα.
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Our major goal is to show that for all α, the solution Φα has the same minimum-

tree (there might be different equivalent solutions if there is one loc-max in 〈i, r(i)〉).
In order to facilitate a global view on the main results, we collected the long and

technical proofs in the next section. The results themselves and the algorithm can

be understood even if one omits Section 2.7 completely.

Theorem 2.1 serves as an illustration of what we would like to show in general,

and also as the base step for an induction proof of the general uniqueness theorem.

In this basic case we will assume that for some a and some ∆, in both Φa and Φa−∆

there is just one loc-max between i and r(i). Recall that F(α) =
∑r(i)−1

k=i+1 fΦα(k)

denotes the optimum sum of finish times for given α on 〈i+ 1, r(i) − 1〉.
The proof of Theorem 2.1 uses the following proposition. Note that the propo-

sition assumes a more general setting than the theorem, e.g., in that the roles of

i and j are symmetric. Later, in the uniqueness theorem we will apply a similar

assumption.

Proposition 2.37 Let i < j be nodes of different parity, and Φ′
a and Φ′

a−∆ two

solutions, such that in both of them at least one of i or j is a non-compact loc-min.

Let a, resp. a − ∆ denote the number of black-black conflicts of (i, j) in the two

solutions. Suppose that a level Π exists s.t. in both solutions max(f(i), f(j)) <

Π ≤ min{f(k)|k ∈ 〈i + 1, j − 1〉}. If F(α) =
∑j−1

k=i+1 fΦ′

α
(k), then F(a) − ∆ ≤

F(a− ∆) ≤ F(a).

Proof. First we prove F(a − ∆) ≤ F(a). Consider the solution Φ′
a restricted to

〈i, j〉, and take arbitrary ∆ ≤ a levels where i and j have black-black conflicts.

Since each conflicting level has white-white neighbors inside 〈i, j〉, these ∆ levels

can be exchanged for ∆ levels where (i, j) have white-white conflicts, so that the

schedule remains valid. Now the new schedule has a− ∆ black-black conflicts, and

we can permute the levels below Π according to the schedule Φ′
a−∆, and still have

F(a) as sum of finish times. Since Φ′
a−∆ is (optimal) solution, F(a − ∆) ≤ F(a)

must hold.

Now we prove F(a) − ∆ ≤ F(a− ∆). Assume that i is a loc-min in the solution

Φ′
a−∆, and consider this solution restricted to 〈i, j〉. If m is the closest loc-max to the

right of i, we exchange arbitrary ∆ non-conflicting black-white levels for ∆ white-

black levels on 〈i,m〉. We make the schedule valid, by increasing f(m) by at most

∆, and so we obtain a schedule with a conflicts, and an optimum sum of at most

F(a− ∆) + ∆. We can permute the levels as they are in Φ′
a. Since Φ′

a was optimal,

we have F(a) ≤ F(a− ∆) + ∆. 2

Theorem 2.1 Let i, r(i), Φα, etc. be as defined above. If a, a − ∆ ∈ DF , and

pit(i, r(i)) = ∅ in both Φa, and in Φa−∆, then

(I) we may assume – modulo equivalent solutions – that top(i, r(i)) is the same node

in both Φa and Φa−∆, moreover

(II) F(a− ∆) = F(a) − ∆.

Proof. In Φa, let m be the only loc-max, and let q denote the size of the topmost

contiguous set of black levels of m. We claim that q > ∆ : By Corollary 2.10, either
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m−1 6= i or m+1 6= r(i). We assume w.l.o.g. that m+1 6= r(i). Consequently, m+1

is not a loc-min, and f(m+1) ≥ Γ. Note that (i, r(i)) has at least ∆ black-black and

at least ∆ white-white conflicts strictly below Γ, otherwise the number of conflicting

levels could not decrease to a− ∆ while f(i) < Γ.

Suppose that q ≤ ∆, then – depending on the parity of m – we could place the

q black levels of m below Γ, into the black-black or to the white-white conflicting

levels for free on one side, and increasing f(m+ 1) by q on the other side. Since m

was white on the level f(m+ 1) ≥ Γ, we decreased f(m) by at least q+ 1, so we got

a smaller sum of finish times, a contradiction.

Due to Proposition 2.37, F(a) − ∆ ≤ F(a − ∆). Using q > ∆, now we show

F(a − ∆) ≤ F(a) − ∆. If the number of conflicts in Φa decreases by ∆, we gain ∆

black-white and ∆ white-black levels of (i, r(i)), and can put the top ∆ black levels

of m to exactly one of these level-types (depending on parity), obtaining a sum of

finish times at most F(a)−∆ ≤ F(a−∆). Since F(a−∆) is the optimum, our new

sum of finish times must equal F(a) − ∆ = F(a − ∆), and the new finish time of

m must equal fΦa(m) − ∆. So, m = top(i, r(i)) still holds, furthermore we can take

this solution to be Φa−∆. 2

Figure 2.11 sketches two equivalent solutions with different top(i, j) nodes.

Next, we formulate a degenerate variant of Theorem 2.1, in which i and i+ 1

change roles, and the optimum sum is considered only on 〈i+ 2, j − 1〉 :

Theorem 2.2 Assume that Φ′
a and Φ′

a−∆ are two solutions on 〈1, n〉, such that in

both of them j is a loc-min or a stair-down; in one of them i is a loc-min and in the

other i + 1 is a loc-min and f(i) = x(i) + x(i + 1); furthermore, in both solutions

there is exactly one loc-max in 〈i, j〉, and it is different from i+1. Let a, resp. a−∆

denote the number of conflicting black levels of i, under x(i) + x(i + 1) in Φ′
a and

Φ′
a−∆. If F̃(α) =

∑j−1
k=i+2 fΦ′

α
(k), then F̃(a− ∆) = F̃(a) − ∆.

Proof. An analogous degenerate variant of Proposition 2.37 holds, and the proof of

the theorem is based on this. The proof is basically the same as that of Theorem 2.1,

the only difference is that if in Φ′
a the loc-max node is j−1 = i+2, then only q ≥ ∆

holds, instead of q > ∆. However, even in this case, j − 1 = i + 2 is the loc-max

node in both Φ′
a and Φ′

a−∆, and using this, F̃(a− ∆) = F̃(a) − ∆ is obvious. 2
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Figure 2.11: Equivalent solutions with different top(i, j) nodes.

In the uniqueness theorem we will generalize Theorem 2.1 for those Φα with

pit(i, r(i)) 6= ∅. We want to show that independently of α, the solutions on 〈i, r(i)〉
have the same minimum-tree. The reason for this is roughly as follows:

Within 〈i, r(i)〉 the loc-mins end in different (pairs of) rungs, and the sizes of

these rungs are large compared to possible differences in f(i). Consequently, the

demands of nodes in 〈i, r(i)〉 differ too much to be alternative candidates for, e.g.,

pit(i, r(i)).

In order to handle the general case, we slightly modify our notation and assump-

tions: We fix two nodes of different parity i < j, and the partial instance I on the

subpath 〈i, j〉. Suppose that two (partial) solutions, Ψ∗ and Ψ exist, s.t. either in

both of them j = r(i), or in both of them i = `(j); moreover, pitΨ∗(i, j) has smaller

finish time in Ψ∗, than pitΨ(i, j) in Ψ. Let k∗ := pitΨ∗(i, j), d := LΨ∗(k∗) and

c := RΨ∗(k∗) (see Figure 2.12). Clearly, we can assume that d < k∗ < c are all even.

Moreover, we claim the following:

Proposition 2.38 We may assume w.l.o.g., that in Ψ∗ it holds that C ≥ D, and

C is a high rung.

Proof. Note that since the roles of i and j are symmetric, we may swap left and

right if C < D.

Now suppose C > D, that is f(c+ 1) > f(d− 1). If c+ 1 were a loc-min, then it

would be identical to j, so it would be non-compact. Moreover, L(c+ 1) = d would

hold, but that is impossible, because c + 1 is odd and d is even. Therefore, C is a

high rung.

Finally, if C = D, that is f(c + 1) = f(d − 1), then due to (P3) c + 1 or d − 1

is not a loc-min. Again, we can assume that it is c+ 1, otherwise we swap left and

right. 2

Notice that we had to impose symmetric roles on i and j, since the previous

proposition introduced a new type of asymmetry. In the next paragraphs we intro-

duce Γ′, α′, and Ψα′ , which will be more appropriate for our purposes than Γ, α,

and Φα :
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Ψ∗ = Ψa.

Definition 2.39 Let Γ′ := C, and let α′ be the number of levels below Γ′, where c

is black and has conflicts with d, that is, the number of odd-even levels below Γ′.

For technical reasons we will calculate with Γ′ instead of Γ = min(x(i)+

x(i + 1), x(j) + x(j − 1)). Observe that Γ′ = Γ, whenever L(k∗) = i + 1 and

R(k∗) = j − 2, or if R(k∗) = j − 1 and L(k∗) = i + 2, which will happen to be the

difficult cases.

Depending on the parity of i, the α′ odd-even levels include the black-black or the

white-white conflicts of (i, j). Clearly, there is a one-to-one correspondence between

the old α values and α′, (i.e., occurrences of different α in different solutions can be

associated with occurrences of different α′), so that we have a solution Φα fixed for

every occurring α′. Let Ψα′ denote this fixed solution, that is, Ψα′ = Φα whenever

α′ and α are corresponding values (see Fig. 2.12).

We defined above two different solutions Ψ∗ and Ψ on 〈i, j〉. There exist numbers

a and b and 0 < ∆ ≤ min(a, b) so that the following hold: {Ψ∗,Ψ} = {Ψa,Ψa−∆}
(in Figure 2.12 we illustrate the case Ψ∗ = Ψa). In Ψa there are a odd-even levels

and b even-odd levels below Γ′; In Ψa−∆ there are a− ∆ odd-even levels and b− ∆

even-odd levels, and at least ∆ clear even and at least ∆ clear odd levels below

Γ′ = C.

In the uniqueness theorem we want to prove that Ψ∗ and Ψ are essentially the

same solutions. Unfortunately, we could not exclude a few potential exceptions to

this rule – although we did not find any example for such an exception. In the

lemmas of the previous section we investigated the sizes of lowest rungs in 〈i, r(i)〉.
The proof of Theorem 2.3 is based on the lower bounds on these rung sizes. However,

the lower bounds may not hold on the first two floors of a minimum-tree of a block.

We will distinguish the (good) case, when

a < max(x(d), min(3x(d)/2, x(c+ 1), x(c) − x(c+ 2))) (2.a)
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holds. It will be more convenient to refer to (2.a) as to the disjunction of properties

(R1) and (R2) below.

Proposition 2.40 Let 〈i, j〉, Ψ∗, Ψ, the nodes d < c, and the number of conflicts a

be defined as above, furthermore (R1) and (R2) be defined as

(R1) x(d) > a;

(R2) d = i+ 1 and j = r(i), moreover a ≥ x(d) > 2a/3, x(c+ 1) > a and |C| > a.

Now (2.a) ⇔ (R1) ∨ (R2).

Proof. Notice, that if i + 1 < d, then d is a high stair, and Lemma 2.29 implies

x(d) > |D| ≥ a, so both (R1) and (2.a) hold.

If i+1 = d, then (2.a) is a reformulation of ((R1) or (R2)), using the observation

that |C| = x(c) − x(c+ 2) holds for any stair-down due to (P1). 2

Proposition 2.41 If (2.a) does not hold, then Ψa may occur as part of a solution

on 〈1, n〉 only if in this solution j = r(i) (resp. i = `(j)), and i (resp. j) is on at

most the 2nd floor of a minimum-tree.

Recall Lemma 2.31, and note that (R1) corresponds to (∗), (R2) corresponds to

(∗∗), whereas Proposition 2.41 roughly corresponds to (∗ ∗ ∗).

We prove the proposition in the next section. In Theorem 2.3 we will show that if

(2.a) holds, then Ψa and Ψa−∆ have the same minimum-tree, i.e. they are essentially

the same. Although we have to deal with different alternative pairs of solutions in

the dynamic programming algorithm, fortunately they do not propagate: we can

forget all but one solution as soon as we stepped down two floors in the minimum-

tree in the dynamic process. Notice that for given (d, c) and a, it is easy to decide

whether (2.a) is valid or not, and (2.a) will be a precondition for a solution to occur

on higher floors of a minimum-tree.

Finally, similarly to Theorem 2.2, we also consider the case when i and i + 1

change roles, i.e. i + 1 becomes a loc-min (see Fig. 2.13). We do this by extending

the definitions to this degenerate case, whenever x(d) > a. This will facilitate a

handy presentation of the induction proof. After that we can state the uniqueness

theorem.

Definition 2.42 Let Ψ∗, and Ψ be two solutions, such that in one of them i is a

loc-min, i+ 1 is a stair-up (not loc-max), and j = r(i) holds, whereas in the other

solution the node i+1 is a loc-min, and f(i) = x(i)+x(i+1) > f(i+1). Furthermore,

assume that in both Ψ∗ and Ψ the smallest loc-min in 〈i+ 2, j − 1〉, has finish time

above x(i) +x(i+ 1). The definitions of k∗, d = L(k∗), c = R(k∗), and Γ′ = C is the

same (analogous) as before.

Let Γ̃ := max(Γ′, x(i) + x(i + 1)), and α be the number of odd-even conflicts

below Γ̃. Assume that {Ψ∗,Ψ} = {Ψa,Ψa−∆}, i.e., α = a in one of the solutions and

α = a− ∆ in the other.

Now, if x(d) > a, then let F̃(α) =
∑j−1

k=i+2 fΨα(k). The degenerate case when

j − 1 becomes a loc-min is symmetric.
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Theorem 2.3 (uniqueness theorem) Let {Ψ∗,Ψ} = {Ψa,Ψa−∆} and d < k∗ < c

be as defined above. If (2.a) holds, then

(I) k∗ = pitΨ(i, j), d = LΨ(k∗) and c = RΨ(k∗) also holds in Ψ, and

(II) F(a− ∆) = F(a) − ∆.

(III) In the degenerate case F̃(a− ∆) = F̃(a) − ∆.

For j−i > 3 the proof of (I) is long and technical, and it is deferred to Section 2.7.

Note that (I) implies recursively that all the solutions on 〈i, j〉 are essentially the

same. Here we just show how (II) and (III) follow from (I).

Proof. The proof is by induction on the length of 〈i, j〉. Theorem 2.1 proves (I) and

(II), and Theorem 2.2 proves (III) in the base case, when there is only one loc-max

between i and j in two different solutions. Notice, that for j = i+ 3, this is the only

possible case.

Now let j − i > 3. We prove (I) in the normal and in the degenerate case

in Section 2.7. In that proof we will assume that (II) and (III) hold on shorter

subpaths. Here we prove (II) and (III) on condition that (I) holds also on 〈i, j〉.
Proof of (II). We show that a decrease of a by ∆ induces an increase of f(k∗) by

the same ∆. This is actually a simple corollary of (P2), (P4) and (I): below Γ′ the

number of black-black conflicts a is decreased by ∆, and the number of white-white

conflicts is decreased by ∆. Originally, k∗ is black on both of these level sets. Now

– depending on the parity of k∗ – on one of these level sets k∗ becomes white, and

it becomes black on the former [f(k∗), f(k∗) + ∆] ⊂ D ∩ C, thereby decreasing the

number of black-black conflicts on 〈`(k∗), k∗〉 and on 〈k∗, r(k∗)〉. Consequently, by

the induction hypothesis the optimum sum on 〈d, k∗ − 1〉 resp. on 〈k∗ + 1, c〉 each

decrease by ∆. The finish times of the stairs 〈i + 1, d − 1〉 and 〈c + 1, j − 1〉 are

constant, so the changes total to F(a− ∆) = F(a) + ∆ − ∆ − ∆.

Proof of (III). In the degenerate case in one of the two solutions i + 1 is a stair-

up (and not a loc-max). The proof is the same as for (II), except that for (II)

we calculated with a finish time of f(i + 1) = x(i) + x(i + 1) in both Ψa and

Ψa−∆. Subtracting this constant from both sides of the equation (II), we obtain

F̃(a− ∆) = F̃(a) − ∆. 2
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2.7 The proof of the uniqueness theorem

This section contains a collection of technical proofs which we omitted before. These

proofs are not too difficult, since they only apply the tools presented in Section 2.4.

Typically, some obvious way to prove this or that statement is easy to read out from

an appropriate figure. However, to write up or read the proofs in detail is a lengthy

and tiresome task.

We start with the proof of Proposition 2.41, claiming that ’bad’ solutions, i.e.,

where inequality (2.a) does not hold, may occur only on the lowest floors of minimum-

trees. After that, in the second subsection we state and prove two technical lemmas,

that we later use in the uniqueness proof.

In Subsection 2.7.3 we turn to the proof of the uniqueness theorem. The state-

ment of Theorem 2.3 (I) was that two arbitrary different solutions Ψ∗ and Ψ always

have the same pit(i, j) node (given that (2.a) holds), moreover this node ends in the

same pair of rungs. In the proof we assume the contrary, that either the two pit(i, j)

nodes are not the same, or they are the same but they end in different pairs of rungs.

We subdivide the proof into five lemmas: Lemmas 2.50 and 2.52 exclude that the

pit(i, j) nodes are the same, resp. are of the same parity, but they end in different

pairs of rungs; Lemma 2.51 excludes that in (only) one of the solutions there is a

unique loc-max. These cases are relatively easy to handle. It requires much more

elaboration to show that pitΨ(i, j) and pitΨ∗(i, j) cannot be different nodes (of the

same parity), ending in the same rungs (Lemma 2.54); or nodes of different parity,

ending in consecutive pairs of rungs (Lemma 2.56). The last case is the ’tightest’

one, in particular this is the only lemma where we need to exploit the inequality

(2.a). In other words, the last setting (different parity pit(i, j) nodes) might occur

if one of the solutions appears on the first or second floor of a minimum tree.

Having a close and exact view on all these cases, in the last subsection we can

present procedure Select, which for given (i, j) pair of nodes, selects at most one

even and at most one odd node inside 〈i, j〉, that might play the role of pit(i, j) or

top(i, j), in solutions where j = r(i) or i = `(j).

The proofs in Subsections 2.7.1 and 2.7.3 are based on the notation introduced

in the previous section.

2.7.1 The proof of Proposition 2.41

The statement of the proposition is the following:

If the inequality (2.a) does not hold, then Ψa may occur as part of a solution on

〈1, n〉 only if in this solution j = r(i) (resp. i = `(j)), and i (resp. j) is on at most

2nd floor of a minimum-tree.

Proof. According to Proposition 2.40, either of (R1) or (R2) implies (2.a), where

(R1) x(d) > a;

(R2) d = i+ 1 and j = r(i), moreover a ≥ x(d) > 2a/3, x(c+ 1) > a and |C| > a.

Thus our goal is to show that either (R1) holds, or (R2) holds, or Ψa appears on

a low floor of a minimum-tree, as stated in the proposition. In the first part of our
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Figure 2.14: Proposition 2.41 (1): the solution Ψa if i = `(j).

proof we consider the solution Ψa. Let A be the set of odd-even and B be the set of

even-odd levels below Γ′. Now |A| = a and |B| = b.

If D is a high rung, then Lemma 2.29 implies that x(d) > |D| ≥ |A| = a, and

(R1) holds.

If D is a second rung, then d = i + 1, and according to Lemma 2.31, either (∗)

x(d) > a; or (∗∗) e := R(i) is a high stair and |E| > a; or (∗ ∗ ∗) r(i) is compact and

i is the root of a minimum-tree. Since (∗) is the same as (R1), we need to analyze

the cases (∗∗) and (∗ ∗ ∗).

(1) Assume that i = `(j).

Recall that i is a loc-min (D is a second rung), moreover i = `(j) implies that

j < r(i) (see Fig. 2.14). Suppose that i is non-compact. First we apply Lemma 2.31

to 〈i, r(i)〉. Observe that set A of the lemma stands for the same set where (i, j)

have odd-even conflicts below Γ′, so that |A| = a. In Lemma 2.31 we proved (∗) in

all cases except when t = 1, where t was the length of the zigzag walk in that proof.

In our case, (∗) may not hold only if e is a high stair, or it is a second stair above

a compact loc-min and i is the root of a minimum-tree, as implied by the proof of

Lemma 2.31.

We elaborate on these two cases, while now we apply Lemma 2.31 to 〈i, j〉, with

t = 2. Note that now LΨ∗(k∗) = d implies S0 ⊂ D. Assume first, that e is a high

stair. Now Claims 2.32 and 2.33 yield |S0| ≥ |E| > |A|, and so |D| > |A|, that is,

(R1) holds.

Second, let e be a second stair above a compact loc-min, and i be the root of a

minimum-tree (see Figure 2.14 (i)). If there are inserted loc-mins inside 〈j, e〉, and

at least one inserted rung S, then S and S0 are disjoint, |A|/2 < |E| < |S| < |S0|
holds by Claims 2.32 and 2.33, and S ∪ S0 ⊂ D proves |D| > |A|. If there are no

inserted loc-mins, then j is on the 2nd floor of the minimum-tree.

Finally, suppose that i is compact. If there are at least 2 non-compact loc-

mins m and m′ and inserted rungs S and S ′ as drawn in Figure 2.14 (ii), then
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|A|/2 < x(s′) < |S| < |S0|. If there is at most one such loc-min, then j is on at most

2nd floor of a minimum-tree.

(2) Assume that j = r(i).

Now if (∗∗∗) holds for Ψa, then j is compact and i is the root in a minimum-tree.

If (∗∗) holds, then e = j − 1 is a high stair in Ψa, and |E| > |A|. We show that in

this case (2.a) holds. In this part we analyze the solution Ψ∗ (which is either Ψa or

Ψa−∆). Observe, that since E is a high rung in Ψa, it follows that in any partial

solution where j = r(i), the rung of e includes E as a subset. Therefore we assume

w.l.o.g. that E is the rung of e in Ψ∗ as well. Moreover, since we are in Ψ∗, we have

L(k∗) = d and R(k∗) = c.

If c 6= e − 1 (see Fig. 2.15 (ii)), then there exists an odd rung Q ⊂ D and

a ≤ |Q| < |D|, otherwise we could apply (O3) to Q, so |D| > a holds again.

If c = e − 1, then x(c + 1) = |E| > a. In the rest of the proof we show that the

case c = e− 1 yields (R2). (see Fig. 2.15 (i)).

First we prove |C| ≥ |E|, which implies |C| > a :

Let V be the topmost contiguous set in Ψ∗(k∗), and W be the rung of k∗ + 1.

If C ≤ W, then |C| ≥ |E| must hold, otherwise we could place C into E applying

(O2) on the left, and gain at least 1.

If C > W, then |W | ≥ min(a, |V |), otherwise it would be worth placing W below

Γ′ : it is for free on the right, it costs at most 2|W | on the left and we gain |W |+ |V |.
Moreover, |V | ≥ |E|/2, otherwise we would place it into the bottom of E, and get a

better solution. Thus, |W | + |V | ≥ |E|/2 + |E|/2 = |E|.
Let G = [W + 1, C] ⊂ C. If |C| < |E|, then placing C into E would cost |C|

on the right by (O3). Moreover, |C| < |E| ≤ |X| + |V | implies that G fits into

[f(i) + 1, E]. Therefore, applying (O1) and (O2) we pay 0 on the left, but gain more

than |C|, a contradiction. So we proved |C| ≥ |E|.
It remains to show that x(d) > 2a/3. Note that x(d− 1) + x(d) > |E| + a > 2a.

Assume that x(d) ≤ 2a/3. If we place all black levels of d into the bottom black

levels of j, then f(d) decreases by at least 4a/3, but placing down is for free on the

right by (O2), and costs at most 2x(d) on the left, a contradiction. 2

2.7.2 Two lemmas

The next two technical lemmas are elementary building blocks of the proof of The-

orem 2.3. They exclude the existence of a certain kind of solution on a subpath:

Definition 2.43 If in some schedule, node k is a second stair above a (non-compact)

loc-min l, and k has r black levels above L(l) ∪ R(l), we will call these r levels

expensive levels. If k is not a second stair, then it has 0 expensive levels.

Lemma 2.44 Suppose that in a schedule Φ either k − 1 or k + 1 is not compact,

and there exist some levels Λ and Π, such that Π > Λ + 2θ, furthermore k has at

most θ black levels above Λ, and at least θ white levels below Λ. If k has r expensive

levels, and f(k) ≥ Π + r, then Φ is not a solution.



46 CHAPTER 2. PATH MULTICOLORING

Γ ’

Γ ’

*Ψ *Ψ

H

V

C

G

D

C

D

i j

(i) (ii)

i

Q

jee

W

>a >a

E
E

k* k*

Figure 2.15: Proposition 2.41 (2): the solution Ψ∗ if j = r(i).

Proof. The proof follows immediately from (O1) – (O5) and Corollary 2.25. If k

is not a second stair, then placing the θ black levels of k below Λ costs at most

2θ. If k is a second stair, then placing down costs at most 2θ + r, i.e., we pay 3

times only for the expensive levels. On the other hand, we reduce f(k) by at least

Π − Λ + r > 2θ + r, so Φ was not optimal. 2

Lemma 2.45 Let Φ be a schedule on 〈i, j〉. If the following conditions hold on some

subpath 〈u, v〉 ⊂ 〈i, j〉, then Φ is not a solution (see Figure 2.17):

– u and v have different parity (suppose w.l.o.g. that u is even and v is odd).

Furthermore, either

(i) v = R(u− 1) or

(ii) u = L(v + 1),

and U and V are the rungs of u resp. of v, and Λ := min(U, V ) − 1.

– Below Λ, there is a set of odd-even levels G, a set of clear odd levels H, and a set

of levels G′, which is even on the right and |G′| ≥ |H| (G′ and G might intersect).

Moreover, |U | > |G| + |H| and |V | > |H| hold.

– An even node u ≤ k < v exists, s.t. one of the following hold: k is in the odd part

〈u,m〉 w.r.t. G, and k has at most |G|+ |H| black levels above Λ; or k is in the even

part 〈m+ 1, v〉 w.r.t. G, and k has at most |H| black levels above Λ.

Recall that the loc-max node m above exists by Corollary 2.16 (for simplicity,

we added the node m to one of the two parts). In the next claim, the nodes u, v,

and m as well as the set G are the same as in Lemma 2.45.

Claim 2.46 There exist zero or more odd loc-mins l1 . . . lη, and zero or more even

loc-mins k1 . . . kζ with the following properties:

– u < l1 < l2 < ... < lη < kζ < ... < k2 < k1 < v;

– ∀ν, f(lν) < f(lν+1) and in 〈lν , lν+1〉 no loc-mins finish below f(lν+1);
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Figure 2.16: Illustration to Claim 2.46.

– ∀ν, f(kν+1) > f(kν) and in 〈kν+1, kν〉 no loc-mins finish below f(kν+1);

– there are no loc-mins in 〈lη, kζ〉.
Moreover, if the loc-max m separates the odd part and the even part w.r.t. G,

then lη < m < kζ .

Proof. The loc-mins can be found by induction (see Fig. 2.16): if pit(u−1, v+1) is

odd, then let it be l1, if it is even, then let it be k1. Suppose that so far we defined,

e.g., k1. Now if pit(`(k1), k1) is odd, then let it be l1; if it is even, then let it be

k2, and so on. The proof of lη < m < kζ is straightforward based on (P1) – (P4).

2 Claim 2.46

Proof of Lemma 2.45. Let ξ := |G| + |H|. We carry out a case-analysis based on

the possible positions of k.

(1) Assume that k is in the even part 〈m+ 1, v〉.
Suppose that k is a stair-down above v, and let s = v−1. We show that |S| > |H|.

Assume the contrary, that is |S| ≤ |H|. Now we place S into H. It costs at most

|S| on the left by (O1) and |S| on the right by (O3). But we got a better optimum

because we decreased f(s) by |S| + |V | > |S| + |H| ≥ |S| + |S|. So we showed

|S| > |H|, and therefore k 6= s or any stair-down above s, because k has at most |H|
black levels above Λ.

In any other case f(k1) ≤ f(k) holds. An even stair s′ exists, s.t. R(k1) =

s′ ≤ s = v − 1, where s′ is not a second stair-up, and for all (odd and even) rungs

S′, . . . , S, V it can be shown like above, that |S ′| ≥ . . . ≥ |S| ≥ |V | > |H|.
Observe, that according to Claim 2.46, except for the stair-downs above v, every

finish time in the even part is at least f(k1). If S′ 6= S, then every finish time is

at least f(k1) > S. So, let Π1 := S. Now Π1 ≥ Λ + |V | + |S| > Λ + 2|H|, and

Lemma 2.44 yields the proof.

If f(k1) ends in S on the right, then let z be one of the two neighbors of k1 that

has smaller finish time (see Figure 2.17 (ii)). Let T̃ and Z̃ denote the black levels

of k1, resp. of z above V . We show that |T̃ | > |H|. Assume the contrary |T̃ | ≤ |H|,
then by Proposition 2.27 |T̃ | ≥ |V | > |H| would hold. So we have |T̃ | > |H|, and

this implies k 6= k1.
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We set Π2 := min(Z, S). We claim that except for f(k1), by Claim 2.46 every

finish time in the even part is at least Π2 : the rungs Z and S are of different parity,

so no loc-min ends between these rungs; moreover, since z is odd, k2 ends above Z.

We show Π2 > Λ + 2|H|. This is obvious when Π2 = S, so let us assume that

Π2 = Z < S. We claim that |Z̃| ≥ |H|, otherwise it would be worth placing Z̃ into

G′ : it would cost at most 2|Z̃|, since z has 0 expensive levels. On the other hand,

f(z) would be reduced by at least |Z̃| + |T̃ | > |Z̃| + |H|.
So, |T̃ |+ |Z̃| > 2|H|, and Π2 > Λ+2|H|. Due to Lemma 2.44, Φ is not a solution.

(2) Assume that k is in the odd part 〈u,m〉.
Notice that k 6= u, or any stair-up above u, since k has only at most ξ < |U |

black nodes.

Suppose that k = m is the unique loc-max in 〈u, v〉, and m has less than |U |
black levels above Λ. Now m 6= u, and assume that m has µ black levels above U.

We could place these levels into U for free on the left and for µ on the right, and

decrease f(m) by more than µ, a contradiction.

In any other case f(l1) < f(k) holds. Suppose that w is one of the two neighbors

of l1, that has smaller finish time. Furthermore, let f(l1) end in Q on the left, i.e.

Q is some odd rung above U.

Let Π3 = min(W,Q). Observe, that according to Claim 2.46, except for stairs

above u, the finish time of any node in the odd part is at least Π3. Moreover, even

if k = w, the expensive levels of k are all above Π3. If we prove Π3 > Λ + 2ξ, then

Lemma 2.44 implies that Φ is not a solution.



2.7. THE PROOF OF THE UNIQUENESS THEOREM 49

Claim 2.47 In case (2), Π3 = min(W,Q) > Λ + 2ξ.

Proof. If W > Q, then |Q| ≥ |U |, otherwise placing Q into U provides a better

optimum by (O2) on the right and by (O3) on the left. Thus, Π3 ≥ Λ + |U |+ |Q| ≥
Λ + 2|U | > Λ + 2ξ.

The case W ≤ Q is illustrated in Figure 2.17 (i). Now W has |W | conflicts on

the left. We show |W | > ξ. Assume the contrary, that |W | ≤ ξ. We place W into

G ∪ H. Note that w is white on G ∪ H and has |G| conflicts on the right. This

implies that |G| levels we can place there for free on the right (this remains true if

some even loc-mins kν have finish time below W ).

Suppose that f(l1) ends in some odd rung Y on the right. If W ≤ Y + |G|, then

placing W into G ∪H is for free on the left and free on the right, and it costs |W |
due to increasing f(l1); since we decrease f(w) by more than |W |, this provides a

better solution.

So, let W = Y + |G| + µ. Now placing W into G ∪ H costs |W | by increasing

f(l1), and µ on the right; but we decrease f(w) by at least |Y | + |G| + µ. If we

show |Y | > |H|, then |Y | + |G| + µ > |H| + |G| + µ = ξ + µ ≥ |W | + µ yields a

contradiction, i.e., then we obtain |W | > ξ.

Note that either y ≤ v is an odd rung above v, or y is an odd rung above an

even loc-min kδ, that is f(l1) > f(kδ) ≥ f(k1). In the first case all (odd and even)

rungs from V to Y have size larger than |H| : since none of these rungs is a second

stair-up, we can show |Y | ≥ . . . ≥ |S| ≥ |V | > |H| like in case (1).

Let us assume the second case, that Y is a rung above kδ. If f(kδ) ends in U ′ 6= U

on the left, then U is a set of clear even levels on 〈u, kδ〉 and since k has only at

most ξ < |U | black nodes, k cannot be in the odd part.

Thus, we can assume that f(kδ) ends in U on the left. If T denotes the topmost

contiguous black levels of kδ, then in case (i) |T | > |H| by Proposition 2.27; in case

(ii) V ⊂ U, and |T | > |V | > |H|.
If Y is a high rung and |Y | ≤ |H|, then we could place Y into G′ for free on the

left by (O2) and for at most |Y | on the right by (O3), and decrease f(y) by at least

|Y | + 1. If, on the other hand Y is a second rung, and |Y | ≤ |H|, then y = kδ − 1

and we place Y into G′ : it is for free on the left by (O2), it costs at most |Y | by

increasing f(kδ) and at most |Y | on the right by (O1), while f(y) is decreased by

|Y | + |T | > |Y | + |H|. We could get a better solution in both cases, consequently

|Y | > |H| holds.

We showed |W | > ξ, and this implies Π3 ≥ Λ+ |U |+ |W | > Λ+2ξ. 2 Claim 2.47

2 Lemma 2.45

2.7.3 The proof of Theorem 2.3 (I)

Recall that k∗ = pitΨ∗(i, j), furthermore d = LΨ∗(k∗) and c = RΨ∗(k∗). We prove

Theorem 2.3 (I) by contradiction, that is we assume that either k∗ 6= pitΨ(i, r(i)) or

LΨ(k∗) 6= d or RΨ(k∗) 6= c. We will exclude the optimality of either Ψ∗ or Ψ.

Proposition 2.48 x(d) > a/2 and x(c+ 1) > a/2, furthermore |C| ≥ b.
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Proof. We consider the solution Ψa.

If d is a high stair, then x(d) > |D| ≥ a by Lemma 2.29, since D is a high rung

and L(pit(i, j)) ≥ d. If d is a second stair, then d = i+1 or d = j−1 and x(d) > a/2

follows from Proposition 2.30. The proof of x(c + 1) > a/2 is symmetric. Finally,

since C is a high rung, |C| ≥ b follows from Lemma 2.29. 2

From now on, we analyze the (hypothetical) solution Ψ. Lemmas 2.50 – 2.56

provide the proof of Theorem 2.3 (I) in the normal case, and given that x(d) > a, also

in the degenerate case. The latter simply follows from the fact, that if Γ̃ < fΨ∗(k∗)
and x(d) > a, then none of the proofs uses any preassumption about the order of

finish times below Γ̃.

Proposition 2.49 Suppose that Ψ = Ψa−∆ and f(pit(i, j)) > C or pit(i, j) = ∅ in

Ψ. If S is a rung in the series of rungs above D or C, then |S| > ∆.

Proof. Suppose that y := d+1 is a stair-up. First we show that |Y | > ∆.Assume the

contrary, that |Y | ≤ ∆. In Ψa−∆ there are at least ∆ clear even levels below Γ′, and

y is white on these levels. Suppose that Y has µ levels above C. If we place Y down

to the ∆ white levels, it costs at most |Y | on the left by (O3) and at most µ on the

right by (O1); whereas f(y) is decreased by at least |C|+µ ≥ b+µ ≥ ∆+µ ≥ |Y |+µ.
If we did not decrease the sum of finish times, then |C| = b = ∆ = |Y | must hold,

and it is easy to verify, that placing Y below Γ′ increases the sum of squares of finish

times, so we obtained a better solution.

Now suppose that y′ := c−1, is a stair-down, and |Y ′| ≤ ∆. If we place Y ′ down

to the ∆ clear even levels below Γ′, it costs at most 2|Y ′| by (O1) and (O3); whereas

f(y′) is decreased by at least |C| + |Y ′| ≥ b+ |Y ′| ≥ ∆ + |Y ′| ≥ 2|Y ′|. If we did not

decrease the sum of finish times, then we obtained the same sum of finish times, and

increased the sum of squares of finish times, a contradiction.

Finally, if s = y + 1 is a stair-up, then |S| > ∆, or |S| ≥ |Y | : otherwise it

would be worth placing S below Γ′, applying (O1) and (O3). The same holds for
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s′ = y′ − 1. For rungs above S or S ′, the claim follows by induction. 2

Lemma 2.50 Suppose that pitΨ(i, j) = k∗, but either d 6= LΨ(k∗) or c 6= RΨ(k∗).
Then Ψ is not an optimal schedule.

Proof. We assumed k∗ = pitΨ∗(i, j) = pitΨ(i, j) and fΨ∗(k∗) < fΨ(k∗). By (P1) –

(P4) this is possible only if Ψ∗ = Ψa and Ψ = Ψa−∆.

Consider the schedule Ψ. Since the number of conflicts below Γ′ decreased by ∆,

the number of black levels of k∗ above Γ′ increased by ∆, so k∗ has at most ∆ black

levels above min(D,C) (see Figure 2.18).

Suppose that L(k∗) = z 6= d, and R(k∗) = c. Let y := z − 1. Now y is odd and

Y ⊂ C, i.e., the complete Y has conflicts on the right, and therefore |Y | ≥ x(y−1) >

b ≥ ∆. Otherwise we could place Y below Y −1 for free on the right by (O1) and for

|Y | on the left by (O3), and reduce f(y) by at least |Y |+ 1. Since k∗ has at most ∆

black levels above Y , and at least ∆ white levels below Y , Proposition 2.27 implies

that it has at least |Y | > ∆ levels above Y , a contradiction.

Now suppose that R(k∗) = z′ 6= c, and y′ := z′ + 1. Proposition 2.49 implies

|Y ′| > ∆, and by Proposition 2.27, k∗ has at least |Y ′| black levels above Y ′, a

contradiction. 2

Lemma 2.51 Let pitΨ(i, j) = ∅, i.e. there is a unique loc-max in 〈i, j〉. Then Ψ is

not an optimal schedule.

Proof. From k∗ = pitΨ∗(i, j) it follows that x(k∗) ≤ x(d) + a and x(k∗) ≤ x(c) + b.

Now we consider the schedule Ψ. Let y = d+ 1 and y′ = c− 1. If k∗ is a stair-up

above y, and Q denotes the black levels of k∗ above Y , then |Q| ≤ a. If Ψ = Ψa, then

there are a odd-even levels below Γ′; if Ψ = Ψa−∆, there are a− ∆ odd-even levels

and ∆ clear odd levels below Γ′. We place Q into these levels: it costs at most |Q|
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on the left by (O3), and if Ψ = Ψa−∆, then it costs ∆ on the right. If Ψ = Ψa−∆,

then |Y | > |∆| holds by Proposition 2.49. Therefore, f(k∗) is reduced by at least

|Q| + 1, resp by |Q| + |Y | > |Q| + ∆, so we obtained a better solution. The proof is

symmetric in case k∗ is a stair-down above y′.
The case when k∗ is the unique loc-max in Ψ, is illustrated in Figure 2.19. If Q

denotes the set of black levels of k∗ above Y , then |Q| ≤ a+ b− ∆. Placing back Q

below Γ′ costs |Q| if Ψ = Ψa, resp. it costs |Q|+∆ if Ψ = Ψa−∆. On the other hand,

k∗ is white on the levels of Y, so placing down reduces f(k∗) by at least |Q|+ |Y |. By

Proposition 2.49, in Ψa−∆ this is more than |Q|+∆, so in either case we constructed

a better solution, so Ψ was not optimal. 2

Lemma 2.52 Let pitΨ(i, j) = k, where k 6= k∗ is even. If either LΨ(k) 6= d or

RΨ(k) 6= c, then Ψ is not optimal.

Proof. We analyze the solution Ψ, and prove that it is not optimal. We exclude

any possible position of k∗ in Ψ (see Figure 2.20). Let A denote the set of odd-even

levels below Γ′ in Ψ. Recall that either |A| = a, or |A| = a− ∆.

The argument that k∗ is not a stair above d or c with finish time below f(k), is

the same as in the proof of Lemma 2.51.

We will apply Lemma 2.45 with some Λ ≥ Λ′ := min(C,D). The subpath 〈i, k〉
has |A| odd-even levels below Γ′; moreover, if Ψ = Ψa−∆, then it has at least ∆ clear

odd levels. If k∗ is in the odd part of 〈i, k〉, then it has at most a black levels above

Λ′; if it is in the even part and Ψ = Ψa−∆, then it has at most ∆ black levels above

Λ′. A symmetric statement holds on 〈k, j〉, with a replaced by b.

Suppose first that z′ := R(k) 6= c. Let z := L(k). If z 6= d then we show |Z| > a :

Let Y be the odd rung right below Z. Assume that |Z| ≤ a. Placing Z below Γ′

costs |Z| on the left by (O3); it costs additional ∆ on the right if Ψ = Ψa−∆. On the

other hand, we decrease f(z) by |Z| + |Y |. In Ψa−∆, by Proposition 2.49 |Y | > ∆,

so we obtained a better solution, a contradiction.

If z = d, then Y ′ ⊂ D, Y ′ can be placed below Γ′ for free on the left, so |Y ′| > a.

This implies that D has more than A levels above Λ′. In both cases |Z ′| > b can be
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shown the same way as |Z| > a was proven.

Let w be one of the two neighbors of k, having smaller demand. We show that

if Ψ = Ψa−∆, then |W | > ∆. In this case we have at least ∆ clear odd and ∆ clear

even levels below Γ′. Assume that |W | ≤ ∆. If W < Z ′ then by Proposition 2.26,

|W | ≥ |Z| > a ≥ ∆. If W = Z ′ +µ, then by applying (O2) we get |Z ′| ≥ x(z′ + 1) ≥
b+ |Y ′| > 2∆. Placing down W costs at most 2|W |+µ ≤ 2∆+µ, but f(w) decreased

by at least |Z ′| + µ > 2∆ + µ, a contradiction.

We apply Lemma 2.45 on 〈z, k − 1〉 with U := Z, V := W, G := A and either

H := ∅ or H is a set of odd-odd levels s.t. |H| = ∆. If Z = D, then let U be the

levels of D above Λ′ (Lemma 2.45 remains valid with this minor modification). On

〈k + 1, z′〉, the lemma can be applied in he same way.

Finally, the case L(k) 6= d (and R(k) = c) can be exluded by a symmetric

argument. 2

Proposition 2.53 If in the solution Ψa some even node k̄ = pit(i, j), moreover

L(k̄) = d, and R(k̄) = c, then |C| > a/2.

Proof. If b > a/2, then Proposition 2.48 implies |C| ≥ b > a/2. Otherwise ∆ ≤ b ≤
a/2 holds.

For an illustration see Figure 2.21, where k̄ = k2. Let w be one of the two

neighbors of k̄ having smaller demand.

If W ≥ C, then |C| ≥ x(c+ 1) : otherwise placing C down costs 0 on the left by

(O2) and |C| on the right by (O3). So, by Proposition 2.48 |C| ≥ x(c+ 1) > a/2.

If W < C, then |C| > |W | ≥ a, otherwise W could be placed into A for free on

both sides, f(k̄) would increase by |W |, and f(w) would decrease by more than |W |,
yielding a better solution. 2

Lemma 2.54 Suppose that pitΨ(i, j) = k, where k 6= k∗ is even, L(k) = d, and

R(k) = c. Let {k1, k2} := {k∗, k} s.t. k1 < k2, and {Ψ1,Ψ2} := {Ψ∗,Ψ}, s.t.

kξ = pitΨξ
(i, j) (ξ = 1, 2).

– If x(k1) ≤ x(k2) − a/2, then Ψ2 is not optimal;

– If x(k1) > x(k2) − a/2, then Ψ1 is not optimal.

Proof. (1) x(k1) ≤ x(k2) − a/2.

In case (1), A denotes the set of odd-even levels below Γ′ in Ψ2. We will analyze

Ψ2, and show that it is not optimal. Note that either |A| = a, or |A| = a − ∆,

depending on whether Ψ2 is Ψa or Ψa−∆. On Figure 2.21 we illustrated the case

Ψ2 = Ψa. We show that x(k1) is too small to finish above f(k2).

The only levels under f(k2) where k2 is black and k1 may be white are the odd-

even levels, that is the set A. Since x(k1) ≤ x(k2) − a/2, there may be at most

|A| − a/2 black levels of k1 above f(k2).

Let W denote the rung of k2 − 1.

(1.1) Assume that k1 is a stair below pit(d− 1, k2), or unique loc-max.

Clearly, k1 is not a stair above k2, since x(k1) < x(k2); it is also not a stair or

loc-max above D, because it would be worth placing the rung of k1 into A.
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Figure 2.21: Illustration to Lemma 2.54 (1).

(1.2) Assume that k′ := pit(d− 1, k2) is even, and f(k1) ≥ f(k′).
For illustration see Figure 2.21 (1.2). Now k′ ≤ k1 < k2 is impossible, since there

are x(k2) clear even levels below f(k2), and x(k1) < x(k2). So, d < k1 ≤ k′ holds.

Suppose first, that L(k′) = d. Then D > W, and placing W below Γ′ is for free

on the left. According to Propositions 2.26 and 2.53, |W | ≥ min(a, |C|) > a/2. Since

W has more than a/2 levels, and the levels of W are clear even on 〈d, k′〉, it follows

that f(k1) < f(k′), a contradiction.

Second, suppose that L(k′) = z, where z ≥ d + 2. Now |Z| > |A|, otherwise we

would place Z into A, for free on the right, and using (O3) on the left.

Finally, we apply Lemma 2.45 with (u, v) := (z, k′ − 1); G := A; and H := ∅.
The conditions of the lemma hold, because |Z| > |A|, and k1 has less than |A| black

levels above Z in the odd part and 0 levels above Z in the even part.

(1.3) Assume that l := pit(d− 1, k2) is odd, and f(k1) ≥ f(l).

For illustration see Figure 2.21 (1.3). Assume that L(l) = y > d and R(l) =

w < k2. Let q be the neighbor of l having smaller demand. Since Q can be placed

into A for free on the right, by Proposition 2.26 |Q| ≥ min(|A|, |Y |). If Y > Q,

then |Y | > |Q| > |A.| If Y ≤ Q, then placing Y into the black levels of d would

cost 0 on the right by (O2) and |Y | on the left by (O3). Thus, |Y | ≥ x(d), and

Proposition 2.48 implies x(d) > a/2, so that |Q| ≥ |Y | > a/2.

If y < k1 < l, then we apply Lemma 2.45 on 〈y, q〉 so that G := ∅; H is |A|−a/2
levels of A; and G′ is the black levels of d. Since |G′| > a/2 ≥ |H|, and k1 has at

most |A| − a/2 levels above Y , the conditions of the lemma hold.

If l < k1 < k2, then we apply Lemma 2.45 on 〈q, w〉 with G := A; and H = ∅.

(2) x(k2) = x(k1) + θ < x(k1) + a/2.

The case x(k2) ≤ x(k1) can be easily excluded following the lines of the argument

below. Therefore, we will assume w.l.o.g. that θ > 0. In (2) we regard the solution

Ψ1, and show that it is not optimal. Let A denote the set of odd-even, resp. B

denote the set of even-odd levels below Γ′ in Ψ1. Figure 2.22 depicts the case when
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Figure 2.22: Illustration to Lemma 2.54 (2).

|A| = a− ∆, and |B| = b− ∆.

The only levels under f(k1), where k1 is black and k2 may be white are the levels

of B. Therefore, there are at most |B|+θ < |B|+a/2 black levels of k2 above f(k1).

Claim 2.55 In case (2), if W denotes the rung of k1 + 1 in Ψ1, then |W | ≥ a/2.

Proof. We assume the contrary, that |W | < a/2. Since obviously w has at least a

white levels below Γ′, it is possible to place W below Γ′.
If D ≥W, then placing down is free on the left, and Propositions 2.26 and 2.48

imply |W | ≥ |C| > a/2. Thus, we can assume that W = D + ρ; moreover ρ > |A|,
otherwise placing down W would still be free on the left (see Figure 2.22 (2.3)).

Consequently, |A| < ρ ≤ |W | ≤ a/2, implying |A| = a− ∆ and ∆ > a/2.

We claim that in this case |D| > a/2 : Note that we can place D into the black

levels of d−1 for free on the right by (O2). If D is a high rung then by (O3) it costs

|D| on the left, and therefore |D| ≥ x(d− 1) ≥ a. If D is a second rung, then there

are ∆ > a/2 contiguous black levels of d− 1 below f(d− 1), and placing D into the

bottom a/2 black levels costs at most 2|D| on the left, and reduces f(d) by more

than |D| + a/2, a contradiction. So, we showed |D| > a/2.

Now, if W ≤ C, then, by Proposition 2.26, |W | ≥ |D| > a/2. So, let W = C +σ.

Placing W below Γ′ costs ρ− (a− ∆) on the left, σ on the right and |W | at k1. On

the other hand, f(w) is reduced by at least |C|+ σ ≥ b+ σ ≥ ∆ + σ. If the solution

was optimal, then ∆ +σ ≤ ρ− (a−∆) +σ+ |W | implying that a ≤ ρ+ |W | ≤ 2|W |
and a/2 ≤ |W |. 2 Claim 2.55

(2.1) Assume that k2 is a stair above W or C, or the only loc-max in 〈k1, c〉.
If k2 were a stair-up above W , then placing down θ levels of k2 would cost at

most 2θ, but it would reduce f(k2) by at least |W | + θ, and θ < a/2 ≤ |W |, a

contradiction.

Suppose that k2 is a stair-down above C or unique loc-max. Let y′ := c−1. Now

|Y ′| ≥ |C| > a/2 > θ, otherwise it would be worth placing Y ′ below Γ′. If we place
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the |B| + θ levels of k2 below C, that costs |B| + θ on the right and at most θ on

the left. On the other hand, f(k2) is reduced by at least |B| + θ + |Y ′| > |B| + 2θ,

a contradiction.

(2.2) Assume that l := pit(k1, c+ 1) is odd, and f(k2) > f(l).

For illustration see Figure 2.22 (2.2). Let L(l) = w′ ≥ w and R(l) = y′ ≤ c. Let

q be one of the two neighbors of l having smaller demand.

We prove that |Q| > |B|+θ. Suppose that the contrary holds, i.e., |Q| ≤ |B|+θ,

and therefore Q fits below C, just like x(k2)

Assume first that Q = Y
′
+ κ for κ ≥ 0. Now placing down Y ′ into the black

levels of c would be free on the left by (O2), and it would cost |Y ′| on the right

by (O3), but f(y′) would reduce by more than |Y ′|. Consequently, |Y ′| ≥ x(c) ≥
a+ |C| ≥ a+ b. If we place Q below C, then it costs at most θ on the left, at most

κ on the right and |Q| ≤ |B| + θ at f(l). On the other hand, we reduce f(q) by at

least |Y ′| + κ ≥ a+ b+ κ > θ + θ + |B| + κ.

Second, assume that Q < Y
′
. In this case we can place Q below C for free on

the right. If it is also free on the left, then placing down costs only |Q| at f(l), but

f(q) is reduced by more than |Q|.
So, we assume Q = W

′
+ |B|+µ, and placing down Q costs altogether |Q|+µ <

|B| + a/2 + µ. We show that x(w′) > a. If w < w′, then obviously |W ′| > a, since

otherwise we could put W ′ below Γ′ for |W ′| on the left by (O3), and for free on the

right by (O2).

Suppose that w = w′. Note that |A| levels of W can be placed into A for free.

Thus, if |W | ≤ |A|, then we could place down W for only |W | at f(k1), and therefore

|W | > a follows again, a contradiction. Moreover, if |A| = a− ∆, then there are at

least ∆ clear odd levels below Γ′, so we obtain x(w) ≥ |W |(+∆) > a. Finally, since

|W | ≥ a/2, this implies that placing down Q, reduces f(q) by at least a/2 + |B|+ µ

(i.e., Q fits below the top a/2 levels of W ).

Now the proof of |Q| > |B| + θ is complete, and this implies that k2 6= q.

Furthermore, |Y ′| > |B| + θ also follows in both of the previous cases.

If k2 ∈ 〈l+1, y′〉, the we apply Lemma 2.45 with G = [f(k1)+1, C] and arbitrary

H, s.t. H is clear odd, and |H| + |G| = |B| + θ. Note also, that we can find an

appropriate G′, since x(c) ≥ a+ b.

If k2 ∈ 〈w′ + 1, l − 1〉, the we apply Lemma 2.45 where G := B, Λ := W
′ − a/2

and H is clear odd below Λ, s.t. |H| = θ.

(2.3) Assume that k′ := pit(k1, c+ 1) is even, and f(k2) ≥ f(k′).
See Figure 2.22 (2.3). Assume first, that R(k′) = z′ 6= c for some even stair

z′. Let y′ := c − 1, and T the set of black levels of k′ above Y ′. We show that

|T | > θ. By Proposition 2.27, if T fits below Y ′, then |T | ≥ |Y ′|. On the other hand,

|Y ′| ≥ min(a, |C|) ≥ a/2 > θ, otherwise it would be worth placing Y ′ below Γ′.
Thus, x(k′) > x(k1) + θ.

Second, if R(k′) = c, then x(k′) > x(k1) + |W | ≥ x(k1) + a/2. This proves that

k2 6= k′ in any of these cases.

Let s = L(k′). If k2 ∈ 〈k1, k
′〉, then k2 has at most θ black levels above S in the

odd part, and 0 black levels above f(k′) in the even part. Let H be the smaller rung
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above f(k′). If S ≤ H, then |S| ≥ |W | > a/2, and k2 has less than |H| black levels

above f(k′). Lemma 2.45 is easily applicable with Λ := f(k′). If S > H, then H can

be put below Γ′ for free on the left, and |H| > a/2 is straightforward if R(k′) = c; if

R(k′) = z′, then either |H| > a, or |H| ≥ |Z ′| > |Y ′| > a/2 can be shown. Finally,

Lemma 2.45 is applicable with Λ := S.

If k2 > k′, then due to x(k′) > x(k2), k2 cannot be in the even part of 〈k′, c〉; in

the odd part it has at most |B| + θ black levels above C, and these black levels fit

below C.

Suppose that R(k′) = z′ 6= c and k2 ∈ 〈k′, z′〉. If H > Z
′
, then |Z ′| ≥ b+ |Y ′| >

b+ a/2 > |B| + θ. Since H > Z
′
, k2 has at most |H| levels above f(k′), and we can

apply Lemma 2.45 with Λ := f(k′).
Finally, let R(k′) = c and k2 be in the odd part of 〈k′, c〉. Now x(k′) > x(k1)+a/2,

and so k2 has less than |B| black levels above f(k′). Obviously, k2 is not a stair or

a loc-max above c, since it would be worth placing it into B for free on the left.

Consequently, there exists an odd loc-min l∗, s.t. k′ < l∗ < c. Let R(l∗) = v′, and

U be the smaller even rung above f(l∗). Now f(k2) ≥ min(U, V ′). If U ≤ V ′, then

placing U into B is for free on both sides, and costs |U | at f(l∗), so |V ′| > |U | > |B|.
If U > V ′, then placing V ′ into C would cost |V ′|, so |V ′| > |C| ≥ b. Moreover, since

placing U into B is free on the left, Proposition 2.26 implies |U | ≥ |V ′| > b ≥ |B|.
We can apply Lemma 2.45 on 〈k′, l∗〉 with U, V := ∅, and G := B; respectively on

〈l∗, y′′〉 with U, V := V ′, H := B and G′ := C. 2 Lemma 2.54

The proof of the following lemma is a bit more tricky than the previous proofs.

Here we had to assume that the inequality (2.a) holds, in order to exclude the

optimality of Ψ or Ψ∗.

Recall that (2.a) implies either

(R1) x(d) > a; or

(R2) d = i+ 1 and j = r(i), moreover a ≥ x(d) > 2a/3, x(c+ 1) > a and |C| > a.

The above methods easily lead to applications of Lemma 2.45, if x(d) > a.

Otherwise, i.e., in case (R2) we need to make a careful comparison of Ψ∗ and Ψ. We

do this by applying the induction hypothesis that Theorem 2.3 (II) and (III) hold

on shorter subpaths than 〈i, j〉. Claims 2.60 and 2.63 discuss the two crucial cases

when this induction step is necessary. For other parts of the proof only a high level

argument will be presented.

Throughout the proof, we analyze the solution Ψ, and in all but one case we show

that Ψ is not optimal. In particular, (R1) always excludes the optimality of Ψ. The

only exception, i.e., when we exclude the optimality of Ψ∗, will occur in Claim 2.62.

We will exploit this fact in procedure Choose (see Section 2.7.4), which chooses

one of the odd and even candidates to (possibly) be pit(i, j).

Lemma 2.56 Suppose that (2.a) holds. Let pitΨ(i, j) = l, where l is odd. Then

either Ψ or Ψ∗ is not an optimal schedule.

Proof. We analyze Ψ (see Figure 2.23). Let A denote the set of odd-even levels,

resp. B denote the set of even-odd levels below Γ′ in Ψ. Like before, |A| = a if
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Figure 2.23: Illustration to Lemma 2.56 if l < k∗ (1), resp. if k∗ < l (2).

Ψ = Ψa, but |A| = a−∆ if Ψ = Ψa−∆. Let Λ := min(D,C). Suppose that f(l) ends

in Y on the left and in Y ′ on the right for some odd stairs y and y′.

(1) Suppose that l < k∗.
Let s := l + 1.

(1.1) Assume that |S| > a+ b− ∆.

On the subpath 〈l, j〉, the levels of A are odd-even, and there are at least b clear

odd levels. If k∗ is in the odd part wrt. A, then it has at most a+ b−∆ black levels

above Λ. If k∗ is in the even part, then it has at most b black levels above Λ. Notice

that |Y ′| > |C| ≥ b follows from (O2) if S > Y ′, and |Y ′| > b is obvious if S ≤ Y ′.
Consequently, Lemma 2.45 applied with U := S and V := Y ′ excludes this case,

since |S| > a+ b−∆ and |Y ′| > b, and there are |C| > b white levels of y′ below Y ′.

(1.2) Assume that |S| ≤ a+ b− ∆.

Let Q denote the topmost contiguous set of black levels of l.

Claim 2.57 In case (1), if |S| ≤ a+ b−∆, then Y + |B|+ |Q| ≤ S < Y ′. Moreover,

y = d+ 1, |Y | ≤ a and (R2) holds.

Proof. Let S = Y + |B| + θ. If S > Y ′, then |Y ′| > a+ |C| ≥ a+ b by (O2).

Suppose first that S = Y ′ + a − ∆ + µ, then placing S below Γ′ costs µ on the

right and at most a on the left. We obtain a+ b+ a− ∆ + µ < |Y ′| + a− ∆ + µ ≤
|S| + |Q| ≤ a+ b− ∆ + |Q| Therefore |Q| > a+ µ, and it is worth placing S below

Γ′, a contradiction.

Second, suppose that S = Y ′ + µ′ ≤ Y ′ + a − ∆. Now S can be placed below

Γ′ for free on the right, and for max(θ, µ′) on the left. Thus, placing down costs

|S| + max(θ, µ′).
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On the one hand, we reduce f(s) by |Y ′| + µ′ > a + b + µ′ ≥ |S| + µ′. This

excludes that µ′ = max(θ, µ′), so the above placing down cost |S| + θ > |S| + µ′.
On the other hand, we reduce f(s) by |Y |+|B|+θ. If |Y | > a, then |Y |+|B|+θ >

|S|+θ, a contradiction. Assume that |Y | ≤ a. Now it is easy to show that y = d+1,

moreover x(d) ≤ |Y | ≤ a contradicting (R1), so that (R2) holds. Now comparing

the levels on the two sides in Ψ we have a + a + |S| ≥ x(d) + |Y | + |B| + θ >

b+ |C| + |Y ′| ≥ b+ |C| + |C| + a ≥ b+ 3a, so |S| > a+ b, a contradiction.

Third, if S ≤ Y ′, then placing S below Γ′ costs |S| + θ, and we gain |S| + |Q|,
so θ ≥ |Q|. On the other hand, we would gain at least |Y | + |B| + θ ≤ |S| + θ,

consequently |Y | ≤ a, so y = d+ 1, and (R2) hold. 2 Claim 2.57

(1.2.1) Assume that l′ = pit(l, y′ + 1) is odd, and f(k∗) > f(l′).
Let L(l′) = z′′ and R(l′) = y′′, and let w be the neighboring node of l′ of

smaller demand. Finally, let H := [C,D]. Observe first, that x(s) > |S| + |H| ≥
|B| + |Q| + |H| ≥ |B| + |C| > a+ b− ∆.

Now it is easy to show that |W | > a+ b− ∆ :

If W < Y ′′+a−∆, then W is free to place down on the right, and |W | > a+b−∆,

or |W | ≥ |Z ′′| ≥ x(s) > a+ b− ∆. If W = Y ′′ + a− ∆ + ρ, then placing down costs

at most |W | + a + ρ, but we gain |Y ′′| + ρ + a − ∆ > a + b − ∆ + a + ρ. Finally,

|Z ′′| > a+ b− ∆ and |Y ′′| > a+ b− ∆ are easy to see, and Lemma 2.45 applies.

(1.2.2) Assume that k = pit(l, y′ + 1) is even, and f(k∗) ≥ f(k).

Let z′ := s+ 1. Now |Z ′| ≥ |S| ≥ |Y | > b. We will apply Lemma 2.44. We have

S − Λ ≥ |Y | + |B| + |Q| > |H| + |Q| + |B| > |C| + |B| > a + |B|. Furthermore,

|Z ′| ≥ |S| ≥ |Y | > b, and so Z ′ > 2b+ a− ∆ + Λ. If k∗ ≥ k, then k∗ has at most b

black levels above Λ, so Lemma 2.44 excludes this case.

Let w′ := k−1; s′ := L(k) and c′ := R(k). If s < k∗ < k, then k∗ has its expensive

levels above Π′ := min(S′,W ′). If S′ ≤ W ′, then |S′| > x(l) > a. If S ′ > W ′, then

|W ′| ≥ |C ′| ≥ x(c+ 1) > a. The latter holds, because all the rungs above C can be

shown by induction to have size at least a. Since Π′ > Λ + 2b+ 2a−∆, Lemma 2.44

can be applied.

(1.2.3) Assume that k∗ is finished below pit(l, y′ + 1).

We will show in Claim 2.60 that k∗ 6= l+ 1. Here we will exclude that k∗ > l+ 1

holds. Note that k∗ is not a stair-up above l + 2, because |S| > |Y | > b, and k∗

would have at most a− ∆ black levels above S, so it would be worth placing these

levels into A. Similarly, k∗ is not a stair-down above c− 1, since it would cost ∆ on

the left to place it down but |Y ′| > ∆. Also, k∗ is not a unique loc-max, since it

would cost at most a+ b to place it down, and we would gain much more.

(2) Suppose that k∗ < l.

If k∗ is in the odd part wrt. B, then it has at most a+b−∆ black levels above Λ.

If k∗ is in the even part, then it has at most a black levels above Λ. Let d′ := y + 1,

z := y + 2, s := l − 1, and z′ := l − 2. If |S| ≤ a + b − ∆, then the same proof as

that of Claim 2.57 in case (1), yields:

Claim 2.58 In case (2), if |S| ≤ a+ b−∆, then Y + |B|+ |Q| ≤ S < Y ′. Moreover,

y = d+ 1, |Y | ≤ a and (R2) holds. 2
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(2.1) Assume that |S| ≤ a+ b− ∆.

(2.1.1) Assume that l′ = pit(d, l) is odd, and f(k∗) > f(l′).
Suppose w.l.o.g. that z = L(l′), and z′ = R(l′), and let w be the neighbor

of l′ of smaller demand. We will apply Lemma 2.44 again. Like in case (1.2.2),

min(S,D′) − Λ > a + |B|. Furthermore, x(d′) ≥ |D| + |B| + |Q| > |B| + a, and

x(s) > |B| + |Q| + |H| > |B| + a. Therefore, min(|Z|, |W |) > a + b − ∆, as well as

min(|Z ′|, |W |) > a+ b− ∆, and Lemma 2.44 can be applied.

(2.1.2) Assume that k = pit(d, l) is even, and f(k∗) ≥ f(k).

Claim 2.59 In case (2), if |S| ≤ a+b−∆, and k = pit(d, l) is even, then R(k) 6= s.

Proof. Let w′ be the one of k − 1 and k + 1, having smaller demand. Suppose

that R(k) = s and L(k) = d′ (the case L(k) > d′ is easy to exclude). Now S >

W ′ + |B|, otherwise we could place S below Γ′ for free. If T denotes the topmost

set of contiguous black levels of k, we have |T | ≥ |Y | ≥ x(d) > 2a/3, consequently

|W ′| ≤ a/3, since |S| ≤ a+ |B|. However, in this case it would be worth placing W ′

below Λ, a contradiction. 2 Claim 2.59

Finally, either because D′ ⊃ Z ′, or due to Proposition 2.28, |Z| > |B| + a or

|Z ′| > |B| + a holds, and we can apply Lemma 2.44 to show that Ψ is not optimal.

(2.1.3) Assume that k∗ is finished below pit(d, l).

The very same argument as in the previous sentence excludes k∗ being a stair

or a unique loc-max above Z or Z ′. We also claim that if d′ 6= s, then |D′| > a, and

therefore d′ 6= k∗ :

Assume that |D′| ≤ a. Now we place both D′ and S below Γ′. This operation

costs |D′| on the left, and at most |S| + b on the right. On the other hand, f(d′) is

reduced by |D′| + |Y |, and f(s) is reduced by more than |S|. Since |Y | ≥ x(d) > b,

we obtained a better solution, a contradiction.

The next claim proves that k∗ 6= s. The claim completes the proof of cases (2.1)

and (1.2.3).

Claim 2.60 If k∗ = l − 1 or k∗ = l + 1, then Ψ is not an optimal solution.

Proof. We prove the claim by contradiction. The cases k∗ = l − 1 and k∗ = l + 1

will be discussed simultaneously. Figure 2.24 illustrates the case Ψ∗ = Ψa. Let

Γ̃ = x(k∗) + x(l).

Let S denote the rung of k∗ in Ψ. We start the proof with a couple of simple

observations. In particular, we argue that Figure 2.24 reflects the order of finish

times correctly, and at the same time we elaborate on degenerate cases, when k∗ or

l is a loc-max.

The property (R2) implies D ≤ C, and it is trivial to show that y′ = c − 1.

Moreover f(d′) > Γ̃, otherwise neither Ψ∗ nor Ψ would be optimal.

Since f(d′) > Γ̃, the node l = k∗ − 1 cannot be a loc-max in Ψ∗. Other-

wise placing all black levels of l below Γ̃ would yield a better solution. Similarly,
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Figure 2.24: Illustration to Claim 2.60.

note that l 6= R(l) = y′, and by the same argument, l = k∗ + 1 cannot be a loc-max

in Ψ∗.
Assume that l < k∗ < y′ are consecutive nodes, and k∗ is a loc-max in Ψ. Then

|Y ′| > a+ |C|, would hold, and it would be worth placing S below Γ′. We do not yet

exclude the ’mirrored’ case, i.e., when d′ = k∗. In all other cases l+ 2, resp. l− 2 is

a stair or a loc-max above k∗ in Ψ, and by trivial calculation it has larger demand

than l.

Let s′ := l+ 1 = k∗ + 2, resp. s′ := l−1 = k∗−2. We claim that |S ′| > a+ b−∆

in Ψ : otherwise placing both S and S ′ below Γ′ costs at most 2|S ′|, but we gain

|S|+ |S′|+ |Q|. Thus, |S′| ≥ |S|+ |Q| ≥ |Y |+ |B|+ |Q| ≥ x(d)+ |Q|+ |B| > |C|+ |B|.
In the following we will exclude that any loc-min except for k∗ or l has a finish

time below Γ̃ in either of the solutions.

By Claim 2.59, in Ψ no even loc-min ends between D′ and S.

In Ψ∗, let W denote the rung of l, and assume that an odd loc-min l′ ends

between Y and W. It is easy to see that x(l′) < x(l) + a − |B| − |Q|, and so l′ has

at most a − |Q| < |H| black levels above S in Ψ. Since in Ψ any stair, or loc-min

above S obviously has more than |H| black levels, if such an l′ exists, then Ψ is

not optimal.

Finally, assume that an odd loc-min l′ ends between W and Y ′ in Ψ∗. We can

exclude any possible schedule of l′ in Ψ, in case Ψ is optimal. Let ν = D− fΨ∗(k∗).
We observe that |S| = a+ b− ∆ − ν > |B| + |Q|, so a > ν + |Q| > ν ′.

Suppose that l′′ = pit(l, c) is odd in Ψ. If l′ < l′′, then l′ has at most b black

levels above Γ̃ in the even part and 0 black levels in the odd part. If l′′ ≤ l′, then it

has at most ν ′ < a ≤ x(c + 1) ≤ |C| black levels in the even part and 0 in the odd

part. Both cases are straightforward to exclude by Lemma 2.45.

Suppose that k = pit(l, c) is even in Ψ. If k < l′, then above Γ̃, l′ has ν ′ black

levels in the odd part and |S| + ν ′ black levels in the even part; if l′ < k, then

it has at most b black levels in the odd part and |S| + ν ′ black levels in the even
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part. Let w′ be the neighbor of k having smaller demand. We need to show that

|W ′| > |S|+ ν ′ = a+ b−∆ + ν ′− ν, and based on this it is straightforward to apply

Lemma 2.45. Let z′ = R(k).

The only nontrivial case is when L(k) = s′ (see Fig. 2.24). Suppose that |W ′| ≤
|S| + ν ′. If S′ > W ′, then |W ′| ≥ |Z ′| > |Y ′| + b ≥ c + a + b, a contradiction. If

S′ ≤ W ′, then |S′| > x(l), by (O5), moreover x(l) > 2a is a corollary of x(d) < a

and C > 3a. Thus, |S ′| > 2a > 2b. If W ′ ≤ Z ′, then it is worth placing down W ′

below S′−b. If W ′ = Z ′ +µ, then placing down costs at most |W ′|+b+µ, but f(w′)
is reduced by |Z ′| + µ ≥ |Y ′| + x(c+ 1) + µ > |S| + ν ′ + µ, so Ψ was not optimal.

We have shown, that on 〈d′, y′〉, every node has finish time at least Γ̃, except

for k∗ in Ψ∗, resp. for l in Ψ. We assume w.l.o.g that k∗ = l − 1, and we apply

Theorem 2.3 (III) on 〈d, l〉 and on 〈k∗, c+ 1〉. We claim that the conditions of (III),

as given in Definition 2.42, are fulfilled: the next smallest loc-mins pit(d, l), and

pit(k∗, c + 1) have finish time above Γ̃; furthermore, both k∗ and l have at most

a = max(a, b) conflicts on either side, whereas x(k∗) > a, and x(l) > a.

Let α denote the number of odd-even conflicts on 〈i, l〉, and α′ the number of

odd-even conflicts on 〈k∗, c+ 1〉 below Γ̃.

If Ψ∗ = Ψa and Ψ = Ψa−∆, then αΨ∗ − αΨ = a − (|Y | − |Q|); and α′
Ψ∗ − α′

Ψ =

ν − (a− ∆). By Theorem 2.3 (III) these numbers represent the total reducement in

the optimum on 〈y, k∗− 1〉 resp. on 〈l+ 1, c〉, in favour of Ψ. Since the sum of finish

times of k∗ and l grows by ν + |Q|, on 〈i+ 1, j − 1〉 we obtain

F(a) −F(a− ∆) = a− |Y | + |Q| + ν − a+ ∆ − ν − |Q| = ∆ − |Y | < ∆ − b ≤ 0.

The degenerate case when k∗ = d′ yields exactly the same result: in Ψ∗ the node

y is a loc-max with a extra black levels, whereas in Ψ the node k∗ is a loc-max with

extra |Y |−|Q| levels above Γ̃. This corresponds to the improvement of a−(|Y |−|Q|)
on 〈i, l〉.

The case Ψ∗ = Ψa−∆ and Ψ = Ψa is depicted in Figure 2.25. Here the improve-

ment from Ψa to Ψa−∆ in terms of odd-even conflicts sums to

F(a) −F(a− ∆) = [|Y | − |Q| − (a− ∆)] + [|Q| + ν] + [a− ν] = |Y | + ∆ > ∆.

Like in the previous case, if k∗ = d′, we end up with the same result.

In the two cases we obtained F(a) < F(a − ∆), resp. F(a) > F(a − ∆) + ∆,

both contradicting to Proposition 2.37. Finally, observe that Ψa−∆ is not optimal

in the first case, respectively Ψa is not optimal in the second case, that is in both

cases we obtained the non-optimality of Ψ. 2 Claim 2.60

(2.2) Suppose that |S| > a+ b− ∆.

We continue the analysis of schedule Ψ. See Figure 2.23 (2) for illustration. If

x(d) > a, then |Y | > a, and we can apply Lemma 2.45 like in case (1.1).

In the rest of the proof we assume that x(d) ≤ a, and (R2) is valid. Observe,

that x(y) > 2a and x(l) > 2a, since C > 3a and x(d) ≤ a.
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Figure 2.25: Illustration to Claim 2.60 if Ψ∗ = Ψa−∆.

(2.2.1) Assume that l′ = pit(d, l) is odd, and f(k∗) > f(l′).
Suppose w.l.o.g. that z = L(l′), and z′ = R(l′), and let w be the neighbor of

l′ of smaller demand. Observe, that x(d′) = |D′| + x(d) ≥ min(|Y |, a) + x(d) ≥
|Y | + |H| + b > a + b. Let µ be the number of levels where S has conflicts on the

left; note that k∗ has at most µ black levels above S. Now it is straightforward to

show that |W | > min(a+ b−∆, µ), and Lemma 2.45 can be applied to show that Ψ

is not a solution.

(2.2.2) Assume that k = pit(d, l) is even, and f(k∗) ≥ f(k).

If R(k) < s, then k∗ < k, and it has at most µ < a levels above S. Since either

D′ ⊃ Z ′, or min(|Z||D′|) > µ, Lemma 2.44 excludes this case.

Suppose that R(k) = s. The only nontrivial case is when L(k) = d′. In this case

it is easy to show that |D′| > a + b − ∆, so d′ 6= k∗. Let W ′ denote the smaller

rung next to k, and let Π := fΨ(l). According to Lemma 2.44, the following claim

excludes any other case but k = k∗.
Finally, Claim 2.63 will complete the proof of (2.2.2):

Claim 2.61 In case (2.2.2), min(D′, S,W ′) ≥ Π + 2a.

Proof. Let T denote the topmost set of black levels of k. Note that |T | > min(a, y),

and x(k) ≥ x(d) + |T | ≥ x(d) + min(a, y). If W ′ ≤ min(D′, S), then |W ′| > x(k),

and |W ′| + |T | ≥ x(d) + 2|Y | ≥ 3x(d) > 3 · 2a/3 = 2a.

If D′ < W ′, then |D′| ≥ x(y) > 2a.

If S < W ′, then placing S below C would be free on the left; therefore, either

|S| ≥ C − x(d) > 2a, or |S| ≥ |Y ′| > c+ a > 2a. 2 Claim 2.61

(2.2.3) Assume that k∗ is finished below pit(d, l).

Since |S| > a + b − ∆, the node k∗ is trivially not a stair above S or a unique

loc-max. Similarly, since |Z| > ∆, k∗ is not a stair above d′ with at most a black

nodes. We show in Claim 2.63 that k∗ = d′ is also impossible.
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In order to finish case (2.2), it remains to exclude that k∗ = pitΨ(d, l) or k∗ = d′.
These two cases are very similar. If k∗ = pitΨ(d, l), then |Y | ≤ |T | ≤ a; if k∗ = d′,
then |Y | ≤ |D′| ≤ a, and no loc-min ends between D′ and S. Let w := w′ in the first

case; resp. w := d′ + 1 in the second case. The definitions of κ, η, τ, etc. are easy

to read out from Figure 2.26. A simple calculation yields that Y ′ − Π > |A| + κ,

otherwise Ψ is not a solution; furthermore W ≥ Π + 2a follows from Claim 2.61,

resp. it follows from x(y) > 2a and x(l) > 2a, if d′ = k∗. In the next claim we show

that l = pitΨ∗(k∗, c+ 1) is the only possible position of l in Ψ∗. Finally, Claim 2.63

completes the proof of cases (2.2.2) and (2.2.3).

Claim 2.62 In case (2.2), if W − Π ≥ 2a, and Y ′ − Π > |A| + κ, then l =

pitΨ∗(k∗, c+ 1).

Proof. We consider the schedule Ψ∗, and exclude any other position of l, but

l = pit(k∗, c + 1). Assume first, that l′ = pitΨ∗(k∗, c + 1) is odd. We have W ≥
Π + 2a > Π + a+ b− ∆, and Y ′ − Π > |A| + κ. Also, it is straightforward to show

that |S′| > 2a, where S ′ is the smaller rung next to l′. If l < l′, then l has at most

a+ b−∆ black levels above Π, so at most η black levels above min(S ′,W ); if l′ < l,

then l has at most |A| + κ black levels above Π, so at most η′ black levels above

min(S′, Y ′). Now Lemma 2.45 yields that Ψ∗ is not optimal, unless l′ = l.

Since f(w) > f(l) and f(y′) > f(l), l cannot be a stair. Finally, assume that

k = pitΨ∗(k∗, c + 1) is even. Now l has at most b black levels above Y ′ if k < l;

respectively, l has less than b black levels above W if l < k. Now it is straightforward

to apply Lemma 2.44 above Y ′ or above W. 2 Claim 2.62

Claim 2.63 In case (2.2), if k∗ = d′ or k∗ = pitΨ(d, l), and l = pitΨ∗(k∗, c + 1),

then Ψ is not an optimal solution.

Proof. Assume first, that Ψ∗ = Ψa. We compare the sum of finish times in Ψ∗ and

in Ψ on three subsections:
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On 〈d, k∗〉 Ψ∗ has smaller sum by at least |Y |, since placing down T reduces

f(k∗) by τ + |Y | + ν, and costs at most τ + ν.

On 〈k∗ + 1, l − 1〉 Ψ∗ has larger sum by at most ∆. This follows from Proposi-

tion 2.37, since in Ψ∗ the nodes (k∗, l) have more conflicts by ∆.

Both numbers – |Y | and ∆ – are the same in case k∗ = d′.

On 〈l, c〉 the optimum is unchanged according to Theorem (II), since the number

of conflicts is less by a− ∆ − ν, but f(l) is increased by a− ∆ − ν.

Overall, we obtain F(a − ∆) − F(a) ≥ |Y | − ∆ > b − ∆ ≥ 0, contradicting to

Proposition 2.37, and yielding that Ψa−∆ = Ψ was not optimal.

Second, let Ψ∗ = Ψa−∆. On 〈d, k∗〉, Ψ∗ has smaller sum by at least |Y |. By

Proposition 2.37, on 〈k∗ + 1, l − 1〉 Ψ∗ has not larger sum than Ψ, since Ψ∗ has

less conflicts. Finally, on 〈l, c〉 the optimum is unchanged. The case k∗ = d′

yields the same numbers. The difference totals to at least F(a) − F(a − ∆) ≥
|Y | > ∆, contradicting to Proposition 2.37, yielding that Ψa = Ψ was not optimal.

2 Claim 2.63

2 Lemma 2.56

2.7.4 The procedure Select

Theorem 2.3 assures that modulo the two lowest levels of a minimum-tree, there is at

most one possible pit(i, r(i)) or top(i, r(i)) node for fixed (i, r(i)). However, it is not

trivial to find such a candidate node fast. We end the section with the description

of procedure Select, which chooses at most one even and one odd such candidate

node in linear time. More precisely, as we will see in Section 2.9, Select runs in

time O(min(log p, n)), this being an upper bound on the number of stairs finishing

below f(pit(i, j)). If inequality (2.a) holds (or is required to hold), then one of these

candidates can be dropped by procedure Choose, which runs in constant time. It is

important to note that in this form Select may find infeasible solutions, i.e., it will

keep 〈i, j〉 sections that actually never occur as 〈i, r(i)〉 or 〈`(j), j〉 in any schedule.

These, in principle, will be filtered out in the dynamic algorithm by finding the

optimal alternatives (as well). From a practical point of view, of course one would

strive to do this filtering as early as possible, by additional checking methods, as

may be suggested by the proof in the next section.

We assume that i is odd and j is even. We did not include trivial checks like, e.g.,

x(i) ≤ x(j) + x(j − 1) in this pseudo code. Recall that DF is the possible domain

of the number of conflicts α below Γ – and not below Γ′. The functions famax
(k)

and f̂amax
(m) are computed by procedures f-time and f̂-time of Section 2.3.1. The

subroutine Update is presented at the end of Select. This subroutine subtracts

a value ∆ from the maximum possible number of odd-even conflicts (below Γ) amax

and the same ∆ from the number of even-odd conflicts bmax.
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Procedure Select

On input 〈i, j〉, and x(i), ..., x(j), Select outputs the results according to one

of (S1) – (S3):

(S1): pit(i, j) = ∅ and m is the only possible top(i, j) node, and DF ⊆ [amin, amax].

(S2): k = pit(i, j), d = L(k), c = R(k), and DF ⊆ [amin, amax]; or

l = pit(i, j), d+ 1 = L(l), c− 1 = R(l), and DF ⊆ [amin, a
′
max].

(S3): j = r(i) is impossible in any solution.

Part 1. (D and C are the lowest rungs above Γ; we check their size and adjust amax)

Γ := min(x(i) + x(i+ 1), x(j) + x(j − 1));

amax := min(x(i) − 1, x(j)); (maximum number of odd-even levels below Γ)

bmax := Γ − max(x(i), x(j) + 1); (the same for even-odd levels)

amin := max(x(i) + x(j) − Γ, 0);

bmin := max(Γ − (x(i) + x(j)), 0);

if min(x(i+ 1), x(j − 1)) ≤ amax/2 then

∆ := amax − 2 · min(x(i+ 1), x(j − 1));

Update(∆ + 1); (check of Proposition 2.30)

end if

if Γ = x(i) + x(i+ 1) then

d := i+ 2; c := j − 1;

if c = d then

go to Part 5.

end if

if |D| < bmax then

∆ := bmax − |D|; Update(∆); (check of Lemma 2.29)

end if

end if

if Γ = x(j) + x(j − 1) then

d := i+ 1; c := j − 2;

if c = d then

go to Part 5.

end if

if |C| < bmax then

∆ := bmax − |C|; Update(∆); (check of Lemma 2.29)

end if

end if

a0 := 0; b0 := 0; (number of odd-even resp. even-odd levels above Γ)

Part 2.

(Now d and c have the same parity. W.l.o.g., here we assume D ≤ C, and C is high

(otherwise we mirror the instance), and d < c are both even (otherwise a is replaced by b,

and even k by odd l, etc.). We search for a k, s.t. f(k) ∈ C ∩D.)

if 6 ∃k ∈ 〈d+ 2, c− 2〉, s.t. k is even, and famax
(k) ≤ min(D,C) then
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go to Part 3.

end if (if no f(k) ends below D ∩ C, we step on)

k := ∅;

l := ∅;

if |C| ≤ amax+a0

2 then

∆ := amax − (2|C| − a0); (check of Proposition 2.53)

Update(∆ + 1);

end if

(new test with the decreased amax; if now the famax
(k) > min(D,C), for all even k, then

there is no even solution; we search for odd pit(i, j) in Part 4.)

if 6 ∃k ∈ 〈d+ 2, c− 2〉, s.t. k is even and famax
(k) ≤ min(D,C) then

go to Part 4.

end if

a := amax + a0 (we select at most one even k by Lemma 2.54)

if k1, k2, . . . , kξ all fulfil famax
(k) ≤ min(D,C) then

let k ∈ {k1, . . . kξ} s.t. x(k) is minimum.

if ∃kµ > k, s.t. x(kµ) < x(k) + a/2 then

k := max{kµ > k | x(kµ) < x(k) + a/2};

if ∃kν > k, s.t. x(kν) < x(k) + a/2 then

k := ∅
go to Part 4.

end if

end if

if x(d) > a then

output (S2). ((2.a) holds and k is the only possible pit(i, j))

else

go to Part 4.

end if

end if

Part 3. (we step to the next rung on the left or on the right)

if D ≤ C then

d := d+ 1;

if c = d then

go to Part 5.

end if

if d is even then

Update amax so that |D| ≥ amax + a0 holds;

else

Update bmax so that |D| ≥ bmax + b0; (check of Lemma 2.29)

end if

else

c := c− 1;

if c = d then
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go to Part 5.

end if

check Lemma 2.29 for |C|;
end if

δ := min(D,C) − max(D,C)

if (d, c) is odd-even then

a0 := a0 + δ; go to Part 3.

end if (number of odd-even conflicts above Γ increased, we step to the next rung)

if (d, c) is even-odd then

b0 := b0 + δ; go to Part 3.

end if (number of even-odd conflicts above Γ increased)

go to Part 2. (d and c are of the same parity)

Part 4. (assuming that k was even in Part 2. we search for an odd l to be pit(i, j))

d′ := d+ 1; c′ := c− 1;

if D′ ∩ C ′ = ∅; then

output (S2) if k was selected, or (S3) otherwise. (there is no odd candidate l)

end if

(We assume that (d′, c′) is odd-odd, and D′ ≤ C ′)

a′max := amax; (we record separate amax and bmax values for l = pit(i, j))

b′max := bmax;

a′0 := a0 + (C ′ −D′);
b′ := b′max + b0;

a′ := a′max + a′0;

check Lemma 2.29 for |D′| and |C ′| by Update-ing a′max and b′max if needed;

select at most one odd l ∈ 〈d′ + 2, c′ − 2〉, s.t. fa′

max
(l) ≤ min(D′, C ′) analogously

to Part 2.;

if the search fails, set l := ∅;

if k 6= ∅ and l 6= ∅ then

output (S2); (run Choose(k, l);)

else

if k 6= ∅ or l 6= ∅ then

output (S2).

else

output (S3).

end if

end if

Part 5. (now pit(i, j) = ∅; we select one possible m = top(i, j))

F := ∞;

for m̄ := d− 3 to d+ 3 do

Fm̄ :=
∑m̄−1

h:=i+1(x(h− 1) + x(h)) + f̂amax
(m̄) +

∑m̄+1
h:=j−1(x(h+ 1) + x(h));

if Fm̄ < F then

m := m̄; F := Fm̄;
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end if

end for

output (S1);

Procedure Update(∆) (subtracts ∆ from amax and bmax in parallel.)

if amax − ∆ ≥ amin and bmax − ∆ ≥ bmin then

let amax := amax − ∆;

let bmax := bmax − ∆;

else

if Update(∆) was called from Part 2. then

go to Part 4.

else

if Update(∆) was called from Part 4. and k 6= ∅ then

l := ∅;

output (S2).

else

output (S3).

end if

end if

end if

We complete Select by procedure Choose below, which sets the value amax

so that (R1) or (R2) holds, meaning that i or j can be on any high floor of the

minimum-tree. For this restricted domain Choose chooses one of k or l, if both

were output by Select. We can assume that the nodes pit(d − 1, k), pit(k, c + 1),

pit(d, l), pit(l, c), etc. were found by Select earlier by the dynamic programming

algorithm.

The subroutine Adjust trims the domain [amin, amax] according to the domains

of, e.g., f(pit(d− 1, k)) and f(pit(k, d+ 1)), and so that, e.g., f(k) is sure to fall in

C ∩D. The pseudocode of Adjust is given in Section 2.9.

The output of Choose(k, l) is the interval domain [amin, amax] for the possible

number of odd-even levels below Γ, and exactly one of {k, l, ∅} to be the node pit(i, j).

Procedure Choose(k, l)

Part 1. (check if k = pit(i, j) is possible)

aorig := amax; (we will set amax to obey (2.a); we save the original values)

borig := bmax;

R2 := min(3x(d)/2, x(c+ 1), x(c) − x(c+ 2)));

a := amax + a0;

(reduce amax so that (2.a) holds)

if d 6= i+ 1 and a ≥ x(d) then

∆ := a− x(d);

Update(∆ + 1);
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end if

if d = i+ 1 and a ≥ max(x(d), R2) then

∆ := a− max(x(d), R2);

Update(∆ + 1);

end if

a′min := amin; a′max := amax; (values for the case l = pit(i, j))

if famax
(k) > min(D,C) then

go to Part 2. (with reduced amax, k = pit(i, j) is impossible)

end if

if a < x(d) then

output k and [amin, amax]. ((R1) excludes l = pit(i, j))

end if

(we check the solutions on both sides of k; for simplicity, we write pit(d− 1, k) instead of

(pit(d− 1, k) or top(d− 1, k)), etc.)

Adjust(amin, amax) according to pit(d− 1, k) and pit(k, c+ 1);

if pit(d− 1, k) and pit(k, c+ 1) exist, and amin ≤ amax then

if k = l − 1 or k = l + 1 then

go to Part 3.

else

output k and [amin, amax].

(k and l are not neighbors and k is a possible solution, so l is excluded)

end if

else

go to Part 2.

end if

Part 2. (k = pit(i, j) is impossible; we check if l = pit(i, j) is possible)

Adjust(a′min, a
′
max) according to pit(d, l) and pit(l, c);

if pit(d, l) and pit(l, c) exist, and a′min ≤ a′max then

output l and [a′min, a
′
max].

else

output ∅.
end if

Part 3. (k = l − 1 or k = l + 1)

(if there are different solutions for k and l on either side of k, then the non-optimal solution

is rejected like in part 2 of Select )

Adjust(a′min, a
′
max) according to pit(d, l) and pit(l, c);

if pit(d, l) and pit(l, c) exist, and a′min ≤ a′max then

if pit(d, l) ends in lower rungs than pit(d− 1, k) then

output l and [a′min, a
′
max].

end if (the lower pit(d, l) is better since (R1) holds on 〈d, l〉)
if pit(d, l) 6= pit(d− 1, k) end in the same rungs then
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choose one of pit(d, l) or pit(d− 1, k) according to Lemma 2.54.

if pit(d, l) was chosen then

output l;

end if

if pit(d− 1, k) was chosen then

output k;

end if

end if

do the same with pit(l, c) and pit(k, c+ 1)

end if

output k and [amin, amax]. (if the solutions on the two sides are the same for k and l,

then k is the proper candidate by Claim 2.60)

Theorem 2.3 implies the following corollary. Here we provide a brief verification,

referring to the proof in Section 2.7.3.

Corollary 2.64 For given 〈i, j〉, and x(i), ..., x(j), procedure Select finds all po-

tential pit(i, j) or top(i, j) node that might occur in an optimal schedule where

j = r(i). Furthermore, Choose chooses one of these candidates correctly, given

that i (resp. j) is on at least the 3rd floor of the minimum-tree.

Proof. Suppose that in Part 2, Select found the nodes d < k < c, so that

famax
(k) ≤ min(D,C). We assume w.l.o.g. that d, k, and c are even. First we argue

that there is no other even node k′ for which k′ = pit(i, j) is possible.

We claim that at the end of Part 2, the inequalities of Proposition 2.48 hold for

the nodes c, d, and for the maximum possible number of conflicts a = amax +a0 resp.

b = bmax + b0. This follows from the fact, that as Select proceeds upwards along

the stairs on both sides, in Parts 1 – 3 Proposition 2.30 is checked for the lowest

rungs, and Lemma 2.29 is checked for each consecutive rung. Moreover, we do not

lose candidates due to this check, since the proposition and the lemma must hold for

〈i, j〉 as well. Now by Lemmas 2.50, 2.51, and 2.52 there is no even pit(i, j) with finish

time above min(D,C), or a unique loc-max. Observe that the lemmas excluded such

a solution purely based on famax
(k) ≤ min(D,C), and Proposition 2.48, whereas the

actual existence of Ψ∗ was not needed in these proofs.

After this, the procedure selects at most one even candidate k that could end in

D ∩C. If such a pit(i, j) node exists, then |C| > a/2 must hold by Proposition 2.53,

so the procedure reduces amax to obey this. If there remain even nodes that would

finish in D ∩ C, then Select chooses one of them, according to Lemma 2.54.

In the proof of Lemma 2.56, we could exclude an odd l = pit(i, j) only using

famax
(k) ≤ min(D,C), if either x(d) > a, or L(l) 6= d + 1 or R(l) 6= c − 1. So, in

these cases we output only k. Otherwise in Part 4, at most one odd l is selected,

as suggested by Lemma 2.54.

We have to record both of these candidate nodes k and l for the case when i or

j is on first or second floor of a minimum-tree. However, on higher floors (R1) or
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(R2) must hold, and by Lemma 2.56, we need to keep only one of k or l. Procedure

Choose further reduces amax to make sure that (R1) or (R2) is valid.

Except for the Claims 2.60 and 2.63, the proof of Lemma 2.56 exploits only

famax
(k) ≤ min(D,C), and excludes l = pit(i, j). When the setting corresponds to

one of the two claims, the choice between k or l becomes less obvious:

Let first k = l− 1 or k = l+ 1. In the proof of Claim 2.60 we use that on 〈d, k〉 a

solution exists and it is the same as the solution on 〈d, l〉. The same holds for 〈k, c〉
and 〈l, c〉. Notice that if in Part 3 of Choose, k or l is rejected, then either on one

side a solution does not exist, or is not optimal, because we found a better solution;

or the solutions are the same on both sides, and Claim 2.60 implies that l = pit(i, j)

cannot be optimal.

Second, assume that k = d′ or k = pit(d, l). Whenever famax
(k) ∈ D ∩ C, the

candidate nodes pit(d−1, k) (or top(d−1, k)) and pit(k, c+1) (or top(k, c+1)) exist,

and the adjusted [amin, amax] domain is nonempty, then node k = pit(i, j) is chosen.

Obviously, if any of these conditions fails, then k = pit(i, j) can be excluded.

We show that otherwise l can be rejected. If the premises of Claim 2.62 do not

hold, then l = pit(i, j) can be excluded by Lemma 2.56. If the premises hold, then

famax
(l) ∈W ∩Y ′, and therefore either l = pit(k, c+1) or some other l′ = pit(k, c+1)

is selected on 〈k, c+ 1〉, s. t. f(l′) ∈W ′ ∩ Y ′. If l = pit(k, c+ 1), then l is excluded

by Claim 2.63. If l′ = pit(k, c + 1), then similarly to Claim 2.62, it can be shown

that such an l′ has too small demand to be scheduled in an optimal Ψ, so Ψ is not

a solution, and l = pit(i, j) is impossible again.

Finally, we turn to Part 5 of Select. If i < i + 1 < . . . < m < . . . j − 1 < j,

and m is a unique loc-max, then x(m − 1) > x(m − 3) > x(m − 5) . . . ; resp.

x(m − 2) > x(m − 4) > . . . ; etc. If we end up with c = d, then depending on the

order of demands, at most 4 potential nodes m inside 〈d− 3, d+ 3〉 remain. For all

these nodes, it is trivial to calculate the finish times of stairs, and f̂a0
(m). We select

m yielding the smallest sum of finish times. 2

2.8 The increase of finish times

Theorem 2.3 allows us to design a dynamic programming algorithm that runs in

polynomial – O(n4) – time: We could apply the Select procedure for every (i, j)

pair. Within Select this would involve testing for every k ∈ 〈i, j〉, each test taking

O(n) time, that is, the number of stairs finishing below f(k). Using dynamic pro-

gramming, for the triple i < k < j we can calculate the optimum function F(α) on

〈i, j〉 from the optimum functions on 〈i, k〉 and on 〈k, j〉, in constant time.

Based on the results of this section, we can further reduce the time bound, and

obtain an algorithm with O(min(n2, n log p)) running time, where p = maxi x(i). The

lemmas below are quite intuitive: they reflect the fact that within the minimum-tree

of any block the finish times exhibit exponential growth.

As a consequence, for a given node i, there are only a constant number of j as

possible r(i) nodes. Our current bound for this number is not small (2721); however,

this fact is not intrinsic to the problem, but is due to our wish to possibly provide a
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short and simple proof rather than trying to optimize the constant. We conjecture

that the ’actual’ constant is a small number, but seemingly the better bound we aim

at, the more lengthy and tedious proof it requires.

For the same reason, for given i and j, there are only a constant number of

potential k (resp. l), found by Select.

Another consequence is that there are O(min(n, log p)) preemptions in the sched-

ule of any node, in other words, the schedule of any node can be described using

O(min(n, log p)) numbers.

The next proposition follows directly from Corollary 2.25. Recall from Corol-

lary 2.25, that if k has loc-min neighbors on both sides, then 〈k − 1, k + 1〉 is a

trivial block.

Proposition 2.65 Let Φ be a solution on 〈1, n〉, and 1 ≤ k ≤ n. Unless k has

loc-min neighbors on both sides, f(k) ≤ 4x(k). Moreover, if k is not a second stair,

then even f(k) ≤ 3x(k) holds.

Definition 2.66 If i is a non-compact loc-min in a solution, then let f̃(i) :=

min(f(L(i)), f(i− 1), f(i+ 1), f(R(i))).

Lemma 2.67 If the loc-min i0 is a ξth descendant of loc-min iξ in a minimum-tree,

then f̃(i0) ≥ (5
4)[ξ/2]f̃(iξ).

Proof. We prove the lemma by induction on ξ. The inequality trivially holds if ξ = 0.

For ξ = 1, we have to observe that due to parity constraints, f̃(i0) ≥ f(i0) > f̃(i1),

whenever i1 is the parent of i0.

Suppose that ξ ≥ 2, let i1 be the parent and i2 be the grandparent of i0 in

the minimum-tree, and f0 := f̃(i0), f1 := f̃(i1), resp. f2 := f̃(i2). We show that

f0 ≥ (5
4)f2, and this will prove the lemma. Let w := L(i0), and w′ := R(i0). We

assume w.l.o.g. that f(w) ≤ f(w′). Let y := i − 1 if x(i − 1) ≤ x(i + 1), and let

y := i+ 1 otherwise. We distinguish four cases as shown in Figure 2.27. The lower

bound on the demand x() is implied by Proposition 2.65.

(1) Assume that f0 = f(y).

Now by (O1) and (O4), |Y | ≥ x(i0), otherwise it would be worth placing Y below

f(i0). Since x(i0) ≥ f(i0)/4, we obtain f0 = f(i0) + |Y | ≥ (5/4)f(i0) > (5/4)f1 >

(5/4)f2.

(2) Assume that f0 = f(w), where w is a high stair; moreover, L(i1) 6= w.

Now using (O2) we get |W | ≥ x(w−1) ≥ f(w−1)/4. If i1 < i0, then i1 < w−1,

so f1 ≤ f(i1 + 1) ≤ f(w − 1); if i0 < i1, then by assumption L(i1) ≤ w − 1, so

f1 ≤ f(L(i1)) ≤ f(w − 1). We obtained f0 = f(w) ≥ (5/4)f(w − 1) ≥ (5/4)f1.

If f(w′+2) > f(w−1), then we can also argue with f(w′+1) ≥ (5/4)f(w′+2) >

(5/4)f(w − 1). We will use this observation in Lemma 2.72 and in Theorem 2.5.

(3) Assume that f0 = f(w), and w is a second stair; moreover, L(i1) 6= w.

Note that L(i1) 6= w implies that i1 = w − 1. Let v := L(i1) and v′ := R(i1). If

W ⊂ V or f(w) ≥ f(w−2), then |W | ≥ f(i1)/4 by (O1), (O2), and (O5). Otherwise
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Figure 2.27: Illustration to Lemma 2.67 and Theorem 2.5.

f(w − 2) > f(w) > f(v). Assume that V ≥ V ′. In this case V is a high rung, and

either i2 ≤ v−2 or L(i2) ≤ v−1. Like for W in case (2), we obtain |V | ≥ f(v−1)/4,

and f(v − 1) ≥ f2, consequently, f0 = f(w) > f(v) = f(v − 1) + |V | ≥ (5/4)f2. In

case V ≤ V ′, the proof is symmetric.

(4) Assume that f0 = f(w), and L(i1) = w.

Let y′ := i1−1 and v := R(i1). If Y ′ ⊂ V or f(y′) ≥ f(y′+2), then |Y ′| ≥ f(i1)/4

by (O1), (O2), and (O5). Otherwise f(y′ + 2) > f(y′) > f(v). Assume first that

V ≥ W. Now V is a high rung, and either i2 ≥ v + 2 or R(i2) ≥ v + 1. We obtain

|V | ≥ f(v + 1)/4, and f(v + 1) ≥ f2, and therefore f(v) ≥ (5/4)f2. Second, assume

that V < W. Now W is a high rung, and either i2 ≤ w − 2, or L(i2) ≤ w − 1. This

implies |W | ≥ f(w − 1)/4, and f(w − 1) ≥ f2, so f(w) ≥ (5/4)f2. 2

Lemma 2.68 If U, V, and W are consecutive high rungs of stair-ups, s.t. no loc-

min ends in any of these rungs, then f(w) ≥ (5/4)f(u− 1). A symmetric statement
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Figure 2.28: (i) Lemma 2.68; (ii) Lemma 2.70; and (iii) Lemma 2.71.

holds for stair-downs.

Proof. Let f = f(u− 1), and assume that v is odd (see Fig 2.28 (i)). Consider the

first loc-min to the right of w, that has finish time below f(w). Since no loc-mins

end in any of the rungs U, V, and W, the finish time of this loc-min is less than f =

f(u−1). Moreover, some stair-downs above this loc-min must have rungs intersecting

the level set [f, f(w)]. Concerning these rungs we distinguish the following cases:

If W is the subset of an odd rung, then, by (O1), |W | ≥ x(v) ≥ f/4.

Similarly, if U is the subset of an odd rung, then |U | ≥ x(u− 1) ≥ f/4; resp. if

V is the subset of an even rung, then |V | ≥ x(u) ≥ f/4.

If an even rung Q ⊂ V, then |V | ≥ |Q| ≥ x(q + 1) ≥ f/4.

In the remaining case, there is one and only one odd rung V ′ intersecting V .

Moreover, V ′ ⊂ U ∪ V ∪W, so that the conditions of Proposition 2.28 hold, and

we have max(|V |, |V ′|) ≥ min(x(u), x(v′ + 1)) ≥ f/4. In any of the cases above we

obtain f(w) ≥ f + f/4. 2

The next lemmas are useful when the algorithm searches for potential (i, j) =

(i, r(i)) or (i, j) = (`(j), j) pairs. Assume that the node i is fixed, and we search for

a possible j > i; the case j < i is symmetric. Lemmas 2.70 – 2.72 imply that for

every i, it suffices to test for a constant number of j. We summarize our results in

Theorem 2.4. Procedure Pairs selects the (i, j) pairs as described in the proof of

the theorem. For illustration see Figure 2.28.
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Proposition 2.69 If i is a non-compact loc-min, then x(r(i)) ≤ 2x(i) and

x(`(i)) ≤ 2x(i).

Proof. Recall that i and r(i) are of opposite parity. If x(r(i)) > 2x(i), then

obviously f(i) > f(r(i)) ≥ x(r(i)) > 2x(i). Suppose that f(i) = 2x(i) + q. Then

i has at most q − 1 black levels, where it is not conflicting with r(i), i.e., where

(i, r(i)) is black-white. Therefore, if we make i compact, that costs at most q− 1 on

the right and at most x(i) on the left, whereas f(i) is decreased by x(i) + q, so we

obtain a better solution, a contradiction. 2

Lemma 2.70 Assume that i is odd, j is even, and either j = r(i) or i = `(j) in

some solution Φ. If x(j) + x(j − 1) ≤ x(i) + x(i+ 1), then there exist at most 29 + 1

even nodes k ∈ 〈i, j〉 so that x(k) + x(k− 1) ≤ x(i) + x(i+ 1) and x(k) + x(k− 1) ≤
(4/3) · (x(j) + x(j − 1)).

Proof. Let χ := min(x(i) + x(i + 1), (4/3) · (x(j) + x(j − 1))) (see Fig 2.28 (ii)).

Consider an even k, such that x(k) + x(k− 1) ≤ χ. If pit(i, j) is odd, then f(k) > χ

is straightforward. Let k0 := pit(i, j) be even. Using (O1)–(O5), it is easy to show

that f̃(k0) > χ, and except for k0, all nodes inside 〈i, j−1〉 have finish time above χ.

Assume that k 6= k0. Then f(k) > χ implying that (k− 1, k) is white-white on some

levels below f(k). Therefore, either k or k − 1 is a loc-max node by Corollary 2.16.

Suppose that x(k) ≤ x(k − 1) (the proof is analogous if x(k − 1) ≤ x(k)).

Now x(k) ≤ χ/2, and f(k) ≤ 4x(k) ≤ 2χ by Proposition 2.65. Let T ′ denote the

connected subgraph of the minimum-tree – a tree –, rooted at k0, and including

only loc-mins of finish time at most 2χ. Since f̃(k0) > χ, and ((5
4)

1

2 )8 · f̃(k0) > 2χ,

Lemma 2.67 implies that T ′ has at most 28 leaves. Recall that k or k − 1 is a

loc-max, so k can be associated with exactly one such leaf (i.e., with a branch of

the minimum-tree leading to k − 1 or k). Moreover, f(k) ≤ 2χ (or f(k − 1) ≤ 2χ)

implies that we associated at most two such pairs (k − 1, k) with each leaf of the

subgraph. As a consequence, together with k0 there are at most 2 · 28 + 1 nodes k,

so that x(k) + x(k − 1) ≤ χ. 2

Lemma 2.71 Assume again that i is odd, j is even, in Φ either j = r(i) or i =

`(j), moreover x(j) ≤ 2x(i), and x(j) + x(j − 1) ≤ x(i) + x(i + 1). Let 〈i,m〉 be

the odd part and 〈m, j〉 be the even part of 〈i, j〉. If x(i + 1) > 3.2 · x(i), then in

the odd part there are at most 27 even nodes k ∈ 〈i, j〉 so that x(k) ≤ 2x(i) and

x(k) + x(k − 1) ≤ x(i) + x(i + 1); in the even part there are at most 2 even nodes

k ∈ 〈i, j〉 for which x(k) ≤ 10
9 x(j).

Proof. Assume first that k ∈ 〈m, j〉 is in the even part, k is even, and x(k) ≤ 10
9 ·x(j).

Notice that k has x(j) black levels below f(j), and at most x(j)/9 black levels above

f(j) (see also Figure 2.16). Let k0 := pit(i, j) (even or odd). It is easy to show –

using (O1)–(O5) – that f̃(k0) ≥ f(j) + x(j)/3. Furthermore, if R(k0) < j − 2, then

f(j − 3) ≥ f(j) + x(j)/3. Unless k = k0 or k = j − 2, it would be worth placing the

black levels of k below f(j − 1). This proves the second statement of the lemma.
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In order to prove the first statement, we need to observe that all nodes in the odd

part 〈i,m〉 have finish time above f(i+1) = x(i)+x(i+1) > x(i)+3.2·x(i) = 4.2·x(i).

Since x(k) ≤ 2x(i), we have f(k) ≤ 8 · x(i). The rest of the proof follows the same

lines as the previous proof:

Let l1 be the first loc-min in the odd part as shown in Figure 2.16. We consider

the subgraph T ′ of the minimum-tree rooted at l1, having loc-mins with finish time

at most 8x(i). Since (( 5
4)

1

2 )6 > 8
4.2 , there are at most 26 leaves in this subgraph.

Again, x(k − 1) + x(k) ≤ x(i) + x(i + 1) ≤ f(l1), so that one of k − 1 or k is a

loc-max. We obtain that there are not more than 2 · 26 such k. 2

Lemma 2.72 Assume that i is odd, j is even, and j = r(i) in some solution. There

are less than 155 even nodes k ∈ 〈i, j〉, so that x(k) ≤ x(i)/2.

Proof. Let k ∈ 〈i, j〉 be even, and x(k) ≤ x(i)/2. According to Proposition 2.65,

f(k) ≤ 4x(k) ≤ 2x(i). Thus we need to upper bound the number of all even nodes

having finish time in the interval [f̃(i), 2x(i)]. If k0 = pit(i, j) (even or odd), then

f̃(k0) ≥ 4
3x(i) can be easily proven using (O1)–(O5). Since ( 5

4)2 > 2/4
3 = 3/2, the

minimum-tree has at most 4 levels between 4
3x(i) and 2x(i) by Lemma 2.67.

Consider the subtree Ti rooted at i, of the minimum-tree. We will modify Ti,

and associate each potential node k with at least one vertex of the modified tree.

For simplicity, we do not treat loc-max nodes explicitly, since they can be regarded

as (leaf) loc-mins in the trees.

1. Omit all vertices of Ti that represent loc-mins to the left of i.

2. Omit all vertices of Ti that represent loc-mins with finish time more than 2x(i);

let T ′
i denote the resulting tree.

3. For every loc-min h ∈ T ′
i associate the following nodes with the vertex of h in

T ′
i : L(h)− 2, L(h)− 1, L(h), h− 1, h, h+ 1, R(h), R(h) + 1, R(h) + 2. There are at

most 5 even nodes among these nodes.

4. The remaining (not yet associated) nodes are high stairs. We insert new pairs

of vertices into T ′
i , that correspond to consecutive triples of high stairs as follows.

Let h0 be the child of h1 in T ′
i , and suppose that h0 < h1. If κ = max(|L(h0) −

L(h1)|, |R(h0)− (h1 − 1)|), then subdivide the edge (h0, h1) with 2 · b(κ− 1)/3c new

vertices. We obtain the tree T ′′
i . Now we can associate all the not-yet-associated

high stair-ups L(h1) + 1, . . . , L(h0) − 3, respectively the high stair-downs R(h0) +

3, . . . , h1−1 with one of the new vertices so that at most 2 even stairs are associated

with each vertex.

Observe that T ′′
i , is still a binary tree, and at least each pair of descendant vertices

accounts for a growth factor of at least 5/4 in the finish times, by Lemmas 2.67 and

2.68. Since finish times of loc-mins are in the interval [ 4
3x(i), 2x(i)], the paths leading

from k0 to a leaf of T ′′
i have length at most 4. Disregarding i, the modified tree has

at most 25 − 1 = 31 vertices, and not more than 5 even nodes in 〈i, j〉 were assigned

to each vertex. We obtain that at most 5 · 31 = 155 even nodes have finish time in

the given interval. 2
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Theorem 2.4 For any fixed odd node i ∈ 〈1, n〉, it suffices to test for at most 2721

even nodes j > i in order to find all potential (i, j) = (i, r(i)) and (i, j) = (`(j), j)

pairs for that either x(j) + x(j − 1) ≤ x(i) + x(i + 1) or x(j) ≤ x(i)/2 holds. A

symmetric statement is true for j < i nodes.

Proof. If we assume that x(j) < x(i)/2, then only the case (i, j) = (i, r(i)) is

possible by Proposition 2.69. Lemma 2.72 implies that we need to test for the first

155 + 1 = 156 even nodes j > i of demand x(j) < x(i)/2.

After this, we only consider nodes j > i, for which the following hold:

x(j) + x(j − 1) ≤ x(i) + x(i+ 1) and x(i)/2 ≤ x(j) ≤ 2x(i). (2.b)

If x(i + 1) > 3.2 · x(i), according to Lemma 2.71 we have to test for the first

2 · 26 even nodes j > i for which (2.b) holds, and after the 27th tested node,

independently for each ν = 1, 2, . . . , 14, the following 3 nodes j ′ of demand x(j′) ∈
[(10

9 )(ν−1) · x(i)
2 , (10

9 )ν · x(i)
2 ] again with the property (2.b). (For ν = 15 we would

already get x(j ′) > (10
9 )14 · x(i) > 2x(i).) This amounts to at most 27 + 3 · 14 = 170

tests.

Finally, if x(i + 1) ≤ 3.2 · x(i), then by Lemma 2.70 it is enough to test inde-

pendently for each µ = 1, 2, . . . , 5, for the first 29 + 1 even nodes j > i for which

x(j) + x(j − 1) ∈ [( 4
3)(µ−1) · x(i), (4

3)µ · x(i)] and also (2.b) holds. (For µ = 6 we

would get x(j) + x(j − 1) > ( 4
3)5 · x(i) > 4.21x(i) > x(i) + x(i+ 1).) The number of

these tests is at most 5 · (29 + 1) = 2565. The total number of tests for such an i is

at most 2565 + 156 = 2721.

It is clear that the tested groups can overlap. Notice also, that as soon as we

encounter a node j0 > i s.t. x(j0) ≤ x(i)/4, we don’t need to test for any node to

the right of j0 + 1, since in this case f(j0) ≤ x(i) by Proposition 2.65. 2

For a given (i, j) pair, the Procedure Pairs below finds j when i is fixed, in

Part 1 if x(j) < x(i)/2; resp. in Parts 2-3 if x(i)/2 ≤ x(j) ≤ 2x(i) and x(j)+x(j−
1) ≤ x(i)+x(i+1). Pairs finds i when j is fixed in Parts 2-3 if x(i)/2 ≤ x(j) ≤ 2x(i)

and x(j) + x(j − 1) ≥ x(i) + x(i+ 1); resp. in Part 1 when 2x(i) < x(j).

Procedure Pairs

for i := 1 to n do

Part 1. (we test for 156 nodes j of demand x(j) ≤ x(i)/2 to the right of i)

j := i+ 3;

λ := 1; (set counter)

repeat

if x(j − 1) ≤ x(i)/4 then

goto Part 2. (r(i) ≤ j by Proposition 2.65)

end if

if x(j) ≤ x(i)/4 then

output (i, j); goto Part 2. (r(i) ≤ j by Proposition 2.65)

end if

if x(j) ≤ x(i)/2 then
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output (i, j); λ := λ+ 1;

end if

j := j + 2;

until j > n or λ > 156

Part 2. (we treat the case x(i+ 1) > 3.2x(i))

j := i+ 3; λ := 1;

if x(i+ 1) ≤ 3.2x(i) then

goto Part 3.

end if

repeat

if x(j − 1) ≤ x(i)/4 or x(j) ≤ x(i)/4 then

HALT; (see Proposition 2.65)

end if

if x(j) ≤ 2x(i) and x(j) + x(j − 1) ≤ x(i) + x(i+ 1) then

λ := λ+ 1;

if x(i)/2 < x(j) then

output (i, j);

end if

end if

j := j + 2;

until j > n or λ > 128

if j ≤ n then

j0 := j;

for ν := 1 to 14 do

j := j0; λ := 1;

repeat

if x(j) ≤ (10
9 )ν · x(i)

2 and x(j) + x(j − 1) ≤ x(i) + x(i+ 1) then

λ := λ+ 1;

if (10
9 )(ν−1) · x(i)

2 < x(j) then

output (i, j);

end if

end if

j := j + 2;

until j > n or λ > 3

end for

end if

HALT;

Part 3. (we treat the case x(i+ 1) ≤ 3.2x(i))

for µ := 1 to 5 do

if (4
3)(µ−1) · x(i) < x(i) + x(i+ 1) then

j := i+ 3; λ := 1;

repeat

if x(j − 1) ≤ x(i)/4 or x(j) ≤ x(i)/4 then

HALT; (see Proposition 2.65)
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end if

if x(j) + x(j − 1) ≤ ( 4
3)µ · x(i) then

λ := λ+ 1;

if (4
3)(µ−1) · x(i) < x(j) + x(j − 1) and x(j) ≤ 2x(i) then

output (i, j);

end if

end if

j := j + 2;

until j > n or λ > 513

end if

end for

run symmetric variants of Part 1. 2. and 3. for j < i nodes;

end for

Definition 2.73 Let Φ be a solution, and k ∈ 〈1, n〉. The job k has a preemption

on the level a < f(k), if either a ∈ Φ(k), and a + 1 6∈ Φ(k); or a 6∈ Φ(k), and

a+ 1 ∈ Φ(k).

Theorem 2.5 Let k ∈ 〈1, n〉 be an arbitrary node, and Φ be a solution. If k is a high

stair or loc-max, then it has at most 5
log 5−2 log fΦ(k) < 16 log fΦ(k) preemptions. If

k is a loc-min, then k−1, k, and k+1 each has at most 5
log 5−2 log f̃Φ(k) preemptions.

Proof. The intuition behind the proof is the same as in case of Lemma 2.72. Here

we use that argument in a more precise form.

If k is a loc-min or a loc-max on the ξth floor of the minimum-tree, then let

ξ(k) := ξ. If k is a stair above a loc-min i, then let ξ(k) := ξ(i). We prove the

theorem by induction on ξ(k). For compact loc-mins the statement of the theorem

trivially holds.

First, let k = s = i + ν be a high stair-up above a loc-min i. Clearly, if i has

θ preemptions, then k has θ + ν preemptions. Let s < h0 < h1 < . . . < hµ be the

loc-mins following i that end in the stairs s, s−1, . . . , i+2 on the left (see Figure 2.29

(i)). Now in the minimum-tree h0 is the child of h1; h1 is the child of h2, etc.

We partition the rungs of the stairs i + 2, i + 3, . . . , s into groups of at most 4

consecutive rungs, so that with each group the finish time increases by a factor of

at least 5/4.

First we deal with those rungs, where the loc-mins h0 < h1 < . . . < hµ end.

Concerning h0 < h1 < . . . < hµ, we define the same cases (1) – (4) as in Lemma 2.67.

First of all, we fix a level f in all the four cases as shown in Fig. 2.27: in (1) let

f := f(i0); in (2) let f := max(f(w−1), f(w′+2)); in (3) f := max(f(v−1), f(v′+1));

and finally in (4) f := max(f(w − 1), f(v + 1)).

Next, we proceed from child to parent along h0, . . . , hτ , . . . , hµ, and always as-

sociate one or two rungs (of the stairs i+ 2, i+ 3, . . . , s) to one loc-min in cases (1)

and (2), resp. to a pair of loc-mins in cases (3) and (4).

If the loc-min hτ , is in case (1) (i.e., like the node i0 in case (1)), we associate to

hτ , the rung W (on one side), respectively W ′ (on the other side); if hτ , is in case
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Figure 2.29: Illustration to Theorem 2.5: (i) shows rungs of high stairs above a loc-

min i; here the rungs are grouped into 3 groups, he finish time within each group

increases by a factor of 5/4. (ii) depicts a loc-min i0 and its parent i1; observe that

i0 has θ + ν + 2κ+ 1 preemptions.

(2), we associate either W, or V ′ ∪W ′ to hτ ; in case (3) we associate the rungs V ′

and W ′ to hτ and hτ+1; in case (4) the rung W to hτ and hτ+1 (we account for W ′

with the preemptions of loc-min i1). Observe that in all cases [f, f0] is part of the

assigned one or two rungs – which now form a so called little group –, furthermore

in Lemma 2.67 we showed that f0 > (5/4)f.

After that, we divide the rest of the rungs into groups of three, so that the

remaining 1 or 2 rungs we always attach to a little group defined above. According

to Lemma 2.68, each such triple increases the finish time by a factor of 5/4. We

obtain

f(s) ≥ (5/4)[ν/4]f(i+ 1) ≥ (5/4)[ν/5]f̃(i)

log f(s) ≥ ν

5
(log 5 − 2) + log f̃(i)

5

log 5 − 2
log f(s) ≥ ν +

5

log 5 − 2
log f̃(i) ≥ ν + θ.

This proves the theorem for high stairs.
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Second, suppose that k = i0 is a loc-min, and the theorem is proved for loc-mins

on floors lower than ξ(k).

Let i1 be the parent of i0 in the minimum-tree (for simplicity of presentation, here

we allow that i1 is compact). We will use the notation f0 := f̃(i0) and f1 := f̃(i1);

for compact i1, let f1 := f(i1).

Consider again Figure 2.27: If i0 is in case (4), then it has not more preemptions

than i1, (resp. i0 −1 has not more preemptions than i1 −1, etc.). If i0 is in case (3),

then by the properties (P1)–(P4), below the level f(i1), it has the same preemption

levels as w′. Therefore, i0 has as many preemptions as w′, and i0 − 1 (resp. i0 + 1)

has one more preemption. However, W ′ is a high rung, and by forming groups of

1 to 4 rungs we have shown above that f0 ≥ (5/4)[ν/4]f̃(i), where i is the loc-min

below w′. We can add the rung Y of i0−1 to the topmost group, and the inequalities

remain valid with ν/5 in the exponent.

Suppose that i0 is in case (1) or (2). Let f be the level defined above for cases (1)

and (2). We assume w.l.o.g. that i1 < i0. If i1 ≡ i0 (mod 2), then the preemption

levels of i0 and i1 are the same below f(i1). In this case let ν denote the number

of stairs above R(i1) (i.e., preceding R(i1)) and having finish time at most f. If

i1 6≡ i0 (mod 2), then the preemption levels of i0 and R(i1) are the same below

f(i1). In this case let ν denote the number of stairs following i1 + 1, and finishing

below f.

We assume that i0 and i1 are both even; the proof is similar when they are of

opposite parity. Let i1 + 1 have θ preemptions. The induction hypothesis implies

θ ≤ 5
log 5−2 log f1. Above the level f1, let κ denote the number of those even rungs

on the left, that are subsets of odd rungs on the right (see Figure 2.29 (ii)). Now

i0 has at most θ + ν + 2κ + 1 preemptions, and i0 − 1 has at most θ + ν + 2κ + 2

preemptions.

Suppose first that κ = 0. According to the Lemmas 2.67 and 2.68, f0 ≥ (5/4)f,

whereas f ≥ (5/4)[ν/3]f1 ≥ (5/4)(ν−2)/3f1 ≥ (5/4)(ν−2)/5f1. Thus,

f0 ≥ (5/4)(ν−2)/5+1f1

log f0 ≥ (
ν − 2

5
+ 1)(log 5 − 2) + log f1

5

log 5 − 2
log f0 ≥ ν − 2 + 5 +

5

log 5 − 2
· log f1

5

log 5 − 2
log f0 ≥ ν + 3 + θ ≥ θ + ν + 2,

which proves the theorem if κ = 0.

Now let κ 6= 0, and Q be even rung on the left, being subset of an odd rung on the

right. Let Q′ be the rung above Q. Now by (O1) and (O3), |Q′| ≥ |Q| ≥ f(q+ 1)/4,

and observe that we did not calculate with the increase of either |Q| or |Q′| in

Lemma 2.68. Therefore, we get sufficient additional increase for the 2κ additional

preemptions.

Finally, assume that k = m is an even loc-max. If i1 is the parent of m in the

minimum-tree, then depending on parity, m has the same preemptions below f1, as
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one of i1, or R(i1) (resp. L(i1)). Let θ denote the number of these preemptions.

Above f(i1), m has ν + 2κ preemptions, where ν is the number of preemptions of

m+ 1, and κ is the number of odd rungs of m− 1 that are subsets of even rungs of

m + 1. This yields an increase factor of at least f(m) ≥ (5/4)[ν/3]+κf1. We obtain
5

log 5−2 log f(m) ≥ (ν + 2κ) + 5
log 5−2 log f1 ≥ ν + 2κ+ θ. 2

2.9 The algorithm

Let x(1), x(2), ..., x(n) be an instance of the pSMC problem on the path 1, 2, ..., n.

In this section we present the O(min(n2, n log p)) algorithm that computes an exact

optimal solution. We try to give a comprehensible and intuitive description, without

giving up accuracy. We will refer to the procedures f-time, Select and Pairs, the

pseudocodes of which can be found in Sections 2.3.1, 2.7.4 and 2.8, respectively.

We treat the case of cycle conflict graphs in Section 2.9.3. There we show that,

just like in the case of paths, a solution on cycles consists of one or more blocks,

moreover it is easy to find a constant number of candidate nodes to be a ’starting

node’, i.e., one that is certainly compact in some optimal schedule of the cycle. After

such a compact node is fixed, the algorithm essentially boils down to the same as

on path conflict graphs.

The algorithm has two phases. In Phase 1 the blocks, and the minimum-tree of

each block are determined. In Phase 2 the schedule is determined.

2.9.1 Phase 1

Finding the (i, j) pairs.

We group the nodes into dlog pe groups: for t = 1, . . . , dlog pe, nodes of demand in

[2t−1, 2t − 1] belong to group Gt. First we traverse the path from right to left, and

from a node k in Gt we set pointers to the nearest nodes of each of Gt+2,Gt+1,Gt, ...,G1

to the right of k. After that, we do the same (symmetrically) from left to right. This

preprocessing takes O(min(n2, n log p)) time.

Next, we search for potential (i, j) = (i, r(i)) and (i, j) = (`(j), j) pairs of nodes.

Procedure Pairs in Section 2.8 finds all such pairs. However, due to the prepro-

cessing, e.g., for fixed i we do not need to visit the nodes to the right of i, one by

one. Recall, that Pairs searches for nodes j > i, s.t. x(j) ≤ 2x(i); moreover, it

needs not test nodes beyond the first node of demand x(i)/4. Consequently, if Gt

is the group of i, we need to check (constant number of) nodes in the linked lists

of Gt+1,Gt,Gt−1,Gt−2, restricting checks to nodes not further than the next node in

Gt−3 ∪ ... ∪ G1. The procedure yields O(n) selected pairs.

Finally, we partition all the candidate (i, j) pairs into sets depending on their

distances. In the following testing process the algorithm determines the optimum

function F(α) for each (i, j) dynamically, by proceeding from pairs of short distances

to pairs of longer distances. During this, many (i, j) pairs get sorted out, that

certainly cannot occur as (i, r(i)) or (`(j), j).
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The optimum function on 〈i, r(i)〉, for non-compact i.

Suppose we have i and j fixed. We assume (test for the possibility that) i is a non-

compact loc-min and j = r(i), or the symmetric case. The next part is completely

based on the definitions and results of Section 2.6. For (i, j), procedure Select

finds at most one even and one odd candidate node to be pit(i, j), (or top(i, j)). We

will discuss the running time of this procedure, and sketch how to determine the

function F(α) = α+C and the domain DF of α values in case of m = top(i, j) or for

both the potential even k = pit(i, j), and odd l = pit(i, j). Remember, that α is the

number of black-black conflicts of (i, j) below Γ = min(x(i)+x(i+1), x(j)+x(j−1)).

We claim that the running time of Select is O(min(n, log p)). Recall, that

this procedure proceeds upwards along rungs of stairs above i and j, and for two

opposite rungs D and C of the same parity – say even –, it searches for even nodes

k ∈ 〈i, j〉 such that famax
(k) ∈ D ∩ C, where amax is a current upper bound on

α. First, we observe that we can run the procedures Select and f-time (and

f̂-time) ’at once’, and for given d and c determine a value xd,c, so that x(k) ≤
xd,c ⇔ famax

(k) ≤ min(D,C), for any even k. Suppose that t is minimum such that

∃k0 ∈ Gt∩〈d+2, c−2〉, and x(k0) ≤ xd,c. Now only a constant number of even nodes

from Gt and Gt+1 can be between d and c, and these are the only even candidates.

Since Select needs to visit only O(min(n, log p)) rungs by Theorem 2.5, we obtain

this as a bound on the running time.

Next, we turn to determining the function F(α). Besides the candidate nodes

k and l (or m), Select also determines the enclosing interval [amin, amax] of DF .
Procedure Adjust, which we sketch below, further cuts this interval as required by

the connecting step of the dynamic algorithm. When we define the domain DF of

the possible α values, we must take care that each α and F(α) can be realized on

〈i, j〉, and that all realizable α are considered. (On the other hand, we don’t need

to bother, whether each α really occurs in some solution on 〈1, n〉.)
First suppose that Select outputs a single m = top(i, r(i)) node. Such (i, r(i))

(resp. (`(j), j)) pairs correspond to the starting computations in the dynamic pro-

cess. In this case, F(amax) = F , where F is obtained in part 5 of Select, as the

sum of finish times for the best candidate m. Thus, F(amax) = amax + (F − amax),

consequently C = F − amax in the function F(α) = α+ C. Moreover, we claim that

DF = [amin, amax], that is, all α in this interval can occur. In particular, if m had

less than amax−amin black levels above max(f(m−1), f(m+1)), meaning that amin

would not yield m as potential top(i, j) node, then this is not an optimal solution

for amax either, (the algorithm would have found a better solution, or j = r(i) is

impossible). We saw the same argument in the proof of Theorem 2.1.

Second, suppose that Select output k = top(i, j), d = L(k), and c = R(k).

Furthermore, assume that the optimum function on 〈d − 1, k〉 – i.e., the sum of

finish times on 〈d, k− 1〉 – has the form F ′(β) = β+ C ′; resp. the optimum function

on 〈k, c+ 1〉 has the form F ′′(γ) = γ + C′′. Here β and γ are the numbers of black-

black conflicts of (d−1, k) resp. of (k, c+ 1) below f(k), and both domains DF ′ and

DF ′′ are intervals. These functions were computed earlier.
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Procedure Adjust(amin, amax)

(We want that α ∈ [amin, amax] ⇒ fα(k) ∈ D ∩ C. We assume that k is even.)

if famax
(k) < max(D,C) then

decrease amax (and bmax) so that famax
(k) = max(D,C);

end if

if famin
(k) > min(D,C) then

increase amin (and bmin) so that famin
(k) = min(D,C);

end if

(Recall that there are a0 odd-even conflicts between Γ and max(D,C). The possible number

of odd-even conflicts of (d−1, k) ranges from amin +a0 to amax +a0; the number of even-odd

conflicts ranges from bmin + b0 to bmax + b0. We restrict these intervals to their intersection

with DF ′ resp. with DF ′′ .)

if amin + a0 < minDF ′ then

amin := minDF ′ − a0; increase bmin accordingly;

end if

if amax + a0 > maxDF ′ then

amax := maxDF ′ − a0; decrease bmax accordingly;

end if

do the same so that [bmin + b0, bmax + b0] ⊆ DF ′′ holds;

if amin > amax or bmin > bmax then

output k 6= pit(i, j);

else

output [amin, amax] = DF ;

end if

Since in the above procedure we always reduce [amin, amax] to its intersection

with some other interval, we obtain the following:

(1) the domain DF is an interval [amin, amin + ∆].

(2) the corresponding finish times of k range from fmin(k) to fmin(k) − ∆.

(3) β ranges from βmin, to βmin + ∆ and γ ranges from γmin, to γmin + ∆.

The stairs 〈i+ 1, d−1〉 and 〈c+ 1, j−1〉 have constant finish times, that total to

some constant S. Recall that we have the functions F ′ and F ′′ for the sum of finish

times on 〈d, k − 1〉, resp. on 〈k + 1, c〉. Thus, we obtain

F(amin + δ) = F ′(βmin + δ) + fmin(k) − δ + F ′′(γmin + δ) + S =

= βmin + δ + C′ + fmin(k) − δ + γmin + δ + C′′ + S = δ + C̃,
where C̃ is a constant. That is, F(amin + δ) = amin + δ + (C̃ − amin), in other terms

F(α) = α + C, where C = C̃ − amin, and α ∈ [amin, amax]. Notice that above we

provided again a formal proof of Theorem 2.3 (II).

In the previous argument we assumed that Select outputs only one k = pit(i, j)

candidate, moreover, the optimum functions F ′ and F ′′ are linear. In general, we
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might have another l = pit(i, j) candidate, ending in the rungs of d+1 and c−1. On

the other hand, recall that if i is on higher than second floor of a minimum-tree, then

the inequality (2.a) of Section 2.6 must hold and one of k or l cannot be pit(i, j).

Assume that procedure Choose picks k and drops l, if (2.a) holds.

Suppose that the even k, and the odd l candidates for pit(i, j) yield the optimum

functions Fk(α) and Fl(α) (on different domains). We have to take the minimum

function F = min(Fk,Fl), which will not be of the form F(α) = α+C due to breaks,

or holes in the domain. Moreover, not even Fk and Fl, were of this form, for the

same reason, so actually we might have several breaks and holes in F . However, we

can forget the solutions provided by Fl, as soon as we are two steps further in the

dynamic process, i.e., we stepped down at least two floors in the minimum-tree:

Say we paint pink the part of the domain – i.e. the large α –, where (2.a) does

not hold for α, d, and c. After that, we paint red the part of the domain of F that

corresponds to a pink part of either F ′ or F ′′. Now on the remaining part of the

domain F(α) = α + C for some C, by Theorem 2.3. In the next dynamic step, the

red part can be excluded. This implies, that we will never have to deal with more

than 42 breaks in the optimum function. However, we have to consider red and pink

parts when i (or j) turns out to be on the first or second floor of the minimum-tree.

The optimum value on 〈g, r(g)〉, for compact g.

For an illustration see Figure 2.30. The last steps of the dynamic process are cal-

culating the optimum on 〈g, j〉 = 〈g, r(g)〉, (resp. on 〈`(g), g〉) assuming that g is

compact. We also include here the case when 〈g, j〉 is a block and x(g) = x(j).

If a node g is fixed, then node j = r(g) (in this broader sense) may be a node of

arbitrary parity, s.t. x(j) ≤ x(g).

When searching for nodes g and j of opposite parity, it suffices to consider all

(g, j) pairs output by the procedure Pairs. If x(j) ≤ x(g), then we assume j = r(g),

and vice versa. We can restrict the tests to these pairs, since Lemmas 2.70 - 2.72

hold even for compact loc-mins.

If we search for g and j of the same parity, for fixed g we need to test for at most

15 nodes j, as stated in the corollary below:

Lemma 2.74 Suppose that g and j are both even, g is compact, and either j = r(g),

or j is compact and x(g) = x(j). Then there are no even nodes k ∈ 〈g, j〉, s.t.

x(k) ≤ 10
9 · x(j).

Proof. Suppose that k ∈ 〈g, j〉, and x(k) ≤ 10
9 · x(j). Below f(j), the node k has

the same black levels as j, and above f(j), k has at most 1
9 · x(j) black levels. It is

easy to see that k can not be an even stair above g + 1 or j − 1. Let k0 = pit(g, j).

If k0 is even, then f(k) ≥ f(k0) > f(g + 1) > 4
3 · f(g) > 4

3 · f(j). If k0 is odd, then

f(k) ≥ f̃(k0) ≥ 4
3f(j). Therefore, by Lemma 2.44 it is worth placing the black levels

of k below f(j) + 1
9 · x(j), a contradiction. 2

Corollary 2.75 For fixed even g, it is enough to test for 15 even nodes j in order

to find all such (g, j) pairs.
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Proof. Assume that g is a fixed even node, and Gt is the group of g. We need to

test for the nearest node of Gt−3 ∪ Gt−4 ∪ . . . ∪ G1, and at most 14 other j > g not

further than this node: for each of ν = 1, 2, . . . , 14, the nearest node to g of demand

x(j) ∈ [(10
9 )ν−1 · x(g)

4 , (10
9 )ν · x(g)

4 ]. Since (10
9 )14 · x(g)

4 > x(g), we don’t have to consider

ν > 14 values. 2

For fixed g and j, the candidate nodes for pit(g, j) or top(g, j) are found anal-

ogously to procedure select. Note however, that for compact g we do not have

a domain [amin, amax] of the possible number of conflicts of (g, j) below Γ, but one

fixed value: afix = x(j) if g 6≡ j (mod2), and afix = x(g) − x(j) if g ≡ j (mod2).

On the other hand, if g is compact, then (P4) does not apply to k = pit(g, j).

Consequently, the number of conflicts afix does not determine f(k), nor does it

determine β or γ, which denote the number of conflicts of (`(k), k) and (k, r(k)),

respectively.

Next, we calculate the possible range of f(k) values, assuming hat k is odd. Let

fafix
(k) be the finish time of k as computed by f-time. The optimal finish time

fopt(k) has to be in rungs of some odd nodes L(k) and R(k) on both sides, so that

x(k) < fopt(k) ≤ fafix
(k). It is easy to show that there are not more than 3 different

pairs of nodes (to be L(k) and R(k)), whose rungs intersect [x(k), fafix
(k)].

Let us fix L(k) and R(k) as well; this restricts the range of possible f(k) values

to an interval I. We have the optimum functions F ′(β) on 〈L(k), k−1〉 and F ′′(γ) on

〈k+ 1, R(k)〉. The domains of these two functions directly correspond to two ranges

R′ and R′′ of possible f(k) values (see also Figure 2.30). We take the intersection

of R′, R′′ and I. The maximum possible f(k) value fopt(k) := maxR′ ∩R′′ ∩ I will

provide the optimum sum of finish times on 〈g + 1, j − 1〉 for this k, L(k) and R(k).

In case m = top(g, j), then f̂afix
is the finish time of m, and the sum of finish

times on 〈g + 1, j − 1〉 is trivial to calculate.

Since we have a small constant number of candidates for pit(g, j) or top(g, j), we

find the optimal solution for (g, j) in time proportional to selecting these candidates,

i.e., in O(min(n, log p)) time.

The optimum on a block 〈g, h〉.

We conclude Phase 1 with searching for (potential) blocks 〈g, h〉 and 〈h, g〉, assuming

that f(g) ≥ f(h) holds.

Suppose that g is fixed, and we search h to the right of g. Since we allowed

x(r(g)) = x(g) in the previous paragraph, now we may assume that r(g) ≤ h.

The next claim is straightforward to prove using the operations (O1) and (O3) (see

Figure 2.30).

Claim 2.76 Let (g, h) be a block in a solution Φ, s.t. x(g) > x(h). If r(g) =

sη < ... < s2 < s1 < h are the consecutive stairs leading from r(g) to h, then

x(sτ+2) ≥ 2x(sτ ), ∀τ ∈ [1, η − 2]. 2

The claim implies that for a fixed (g, r(g)) pair, any possible h is among the

first 2 log p nodes to the right of r(g). Therefore, altogether there are at most

O(min(n2, n log p)) potential (g, h) pairs.
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Figure 2.30: Sketch of an optimal schedule on a block 〈g, h〉. The nodes g and h are

compact; j = r(g) and k = pit(g, h). For fixed L(k) and R(k) nodes, the algorithm

has found the highest possible finish time of k, this is fopt(k). The number of conflicts

of (`(k), k) and of (k, r(k)) are denoted by β and γ, respectively. There is a trivial

correspondence between the possible values β (or γ) and f(k).

Let F(g, h) denote the optimum sum on 〈g + 1, h〉. For given g < h there is

obviously just one possible r(g) ≤ h node: either r(g) = h, or r(g) is the highest

stair above h (i.e., preceding h), such that f(r(g)) < x(g) holds. Now F(g, h) equals

the optimum on 〈g + 1, r(g) − 1〉 plus the finish times of stairs r(g), . . . , h.

For h < g, the optimum sum on 〈h+ 1, g〉, i.e., F(h, g) equals the sum of finish

times of the stairs h+ 1, . . . , `(g), plus the optimum on 〈`(g) + 1, g − 1〉, plus x(g).

The optimum on the path.

We define a new graph H = (V, E ′) on the nodes V = {0, 1, ..., n, n+1}, with weights

on the edges: an edge connects g and h if 〈g, h〉 is a potential block (notice that

〈0, 1〉 and 〈n, n + 1〉 may be blocks as well); the edge (g, h) is weighted by F(g, h).

The graph has O(min(n2, n log p)) edges. Finally, we determine the optimum and

the blocks on 〈0, n+ 1〉. Let F(g), denote the optimum on 〈0, g〉 for compact g. For

every node g, the algorithm determines F(g) dynamically:

F(g) = min{F(u) + F(u, g) | 0 ≤ u < g; (u, g) ∈ E ′}.

The running time is proportional to the number of edges in H.

2.9.2 Phase 2

In Phase 1, the algorithm computed the blocks, and the minimum-tree for each block

in an optimal solution. By the latter we mean that for each potential 〈i, j〉 subpath
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the algorithm stores the m = top(i, j) node, or the k = pit(i, j) and l = pit(i, j)

nodes that were output by Select, as well as the optimum function F(α) and DF .
Recall that F(α) consists of a few linear parts.

For 〈g, r(g)〉 with compact g, it stores one node k = pit(g, r(g)) (or m =

top(g, r(g))) that yields the optimum sum of finish times. Moreover, in this case

we need to store the finish time fopt(k) ∈ [x(k), afix(k)] that provides the optimum.

The same holds for 〈`(g), g〉.
Let (g, h) be a block of τ nodes and x(g) ≥ x(h). First, we schedule the stairs

〈r(g), h〉. Observe, that we can schedule the stairs and compute r(g) concurrently.

Second, we schedule k = pit(g, r(g)) and the stairs 〈g, `(k)〉 and 〈r(k), r(g)〉. Notice

that `(k) and r(k) follow directly from the stored optimal fopt(k) value. Since k

is the root of the minimum-tree, it has black levels conflicting with both sides of

the block (the number of these black levels follows again from fopt(k)). These black

levels are arbitrary, e.g., we can assume that these are the lowest possible such levels.

Next, suppose that k1 = pit(`(k), k) and k2 = pit(k, r(k)). We schedule the stairs

〈`(k)+1, `(k1)〉 and 〈r(k1), k−1〉, together with scheduling k1 itself. We do the same

on 〈k, r(k)〉, and so on. If on the first levels there are other candidate nodes, like e.g.

l1 6= k1 to be pit(`(k), k), one of them is chosen based on the number β of conflicts

of (`(k), k), which is a value in the domain of the optimum function for (`(k), k).

Obviously, every value in the domain is bound to (at least) one of the candidates

k1 or l1.

The scheduling procedure for a loc-min or loc-max node is basically the same

as f-time or f̂-time: the preemption levels in Φ(k) or Φ(m) are obtained by way

of merging the finish-times of stairs on the two sides. Theorem 2.5 implies that

a node has O(min(τ, log p)) preemption levels. Scheduling the whole block takes

O(min(τ2, τ log p)) time.

2.9.3 Cycles

The algorithm is basically the same for cycle conflict graphs. Let {1, 2, . . . , n} be

the consecutive nodes of a cycle so that (i, i + 1 (modn)) is an edge for every

i ∈ [1, n]. Like in the case of paths, we search for schedules having minimum value

of
∑n

i=1 f(i), and among all these schedules, having maximum value of
∑n

i=1 f
2(i).

We use the term (optimal) solution for such schedules.

We show in Proposition 2.77 that on cycles there is always at least one compact

node g, so that the overlapping path g, g + 1, . . . , g + n = g (modn) consists of one

or more blocks. In any solution Φ, every node belongs to one of the blocks, just like

for path conflict graphs. The only additional difficulty is that we have to select a

node g0, which we assume to be compact in the solution we are about to compute.

Having guessed a compact node g0, this g0 can become the starting node for the

original path algorithm.

In Theorem 2.6 we state that there are at most 25 candidates to be such a

compact g0. By running the original algorithm with each of these candidates as

compact nodes one by one, we achieve the same asymptotic running time bound

O(min(n2, n log p)) as for paths, as summarized by Corollary 2.78.



90 CHAPTER 2. PATH MULTICOLORING

Proposition 2.77 If Φ is a solution to an arbitrary instance of the pSMC problem

on a cycle conflict graph, then Φ has at least one compact node.

Proof. Let g be the node of minimum finish time in Φ. Suppose that g is non-

compact, that is, it is white on some level ψ < f(g). We exchange the levels ψ and

f(g) on the whole cycle. Since every node has finish time at least f(g), this operation

does not increase the finish time of any node. On the other hand, it decreases the

finish time of g by at least 1, so Φ was not optimal, a contradiction. Consequently,

g was compact in Φ. 2

Theorem 2.6 In every instance of the pSMC problem on a cycle conflict graph, a

set of at most 25 nodes exists, so that in any optimal solution at least one of these

nodes is compact.

Proof. Let Φ be a fixed optimal solution. Throughout the proof we measure the

node distances modulo n.

Let x(g) be minimum over all demands x(1), x(2), . . . , x(n). Our first candidate

for a compact node is g. Second, if x(g − 1) ≤ 4x(g), and x(g + 1) ≤ 4x(g), then it

is possible that g − 1 and g + 1 are compact nodes.

From now on we assume that g is even, non-compact, and that 〈g − 1, g + 1〉 is

not a trivial block. Suppose that g is inside some block 〈g1, g2〉, where we do not

exclude g1 = g2. Such a block exists by Proposition 2.77.

(1) Assume first, that g1 6≡ g2 (mod2).

Suppose that g1 is odd, and g2 is even. By the properties (P1)–(P4), in such

blocks a loc-max m exists, s. t. 〈g1,m − 1〉 is the odd part and 〈m + 1, g2〉 is the

even part below the level min(x(g1), x(g2)) (see also Definition 2.17, and Figure 2.3).

In the even part all even nodes are black below min(x(g1), x(g2)). Since x(g) ≤
min(x(g1), x(g2)), and g is non-compact, g cannot be in the even part, i.e., g ≤ m.

Our goal is now to find the potential odd candidates that might be g1. On the

one hand, Proposition 2.65 implies that f(g1 + 1) ≥ (4
3)x(g1). On the other hand,

every node in the odd part has finish time at least f(g1 + 1), which is obvious, e.g.,

by looking at Figure 2.16. Therefore, ( 4
3)x(g1) ≤ f(g1 + 1) ≤ f(g) ≤ 4 · x(g), by

Proposition 2.65. We obtain that x(g1) ≤ 3x(g).

Now let h be an odd node, s.t. g1 < h < g. We show that x(h) > ( 10
9 ) · x(g1).

Since h is in the odd part, it has x(g1) black levels below x(g1). As for any node

in the odd part, for h it holds as well that f(h) ≥ ( 4
3)x(g1). If h had only at most

(1
9) · x(g1) black levels above x(g1), then by Lemma 2.44 it would be worth placing

these levels below ( 10
9 ) · x(g1).

The candidates for g1 are the nodes h1, h2, . . . , hκ, where h1 is the nearest odd

node to the left of g, such that x(h1) ≤ 3x(g); and for i ≥ 1, hi+1 is the nearest

node to the left of hi, such that x(hi+1) < ( 9
10)x(hi). Since all demands are at least

x(g), we get that κ ≤ 11.

For the symmetric case that g1 is even and g2 is odd, we need to test at most 11

odd nodes to the right of g.
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Figure 2.31: Illustration to Theorem 2.6, case (2).

(2) Second, assume that g1 and g2 are both even.

We show that this is impossible. Without loss of generality, let x(g1) ≤ x(g2). If

pit(g1, g2) is even, then the levels [1, x(g1)] are clear even, contradicting to x(g) ≤
x(g1). Therefore, l = pit(g1, g2) is odd. For illustration see Figure 2.31. Now two

loc-max nodes m1 < l < m2 exist, so that the levels [1, x(g1)] are even on 〈g1,m1−1〉
and on 〈m2 + 1, g2〉, whereas some of these levels might be odd on 〈m1 + 1,m2 − 1〉.
Obviously, g is not in the even parts, since x(g) ≤ x(g1). On the other hand, if g is

in the odd part, then either g = l−1, or g = l+1, because every other even node has

larger demand than min(x(l − 1), x(l + 1)) (one can see this again on Figure 2.16).

This holds also for the loc-max nodes m1 and m2.

Suppose that g = l − 1, or g = l + 1. Now making g compact is for free on both

sides, since x(g) ≤ min(x(g1), x(g2)). It costs |G| due to increasing f(l), but we

decrease f(g) by more than |G|, a contradiction.

(3) Finally, assume that g1 and g2 are both odd.

If l = pit(g1, g2) is odd, then the levels [1,min(x(g1), x(g2))] are clear odd levels,

and g1 and g2 are among the same candidate nodes that the algorithm finds in case

(1) above.

Assume that k = pit(g1, g2) is even. Now two nodes m1 < k < m2 exist, such

that the levels [1,min(x(g1), x(g2))] are clear odd on 〈g1,m1−1〉 and on 〈m2 +1, g2〉,
whereas some of these levels might be even on 〈m1 + 1,m2 − 1〉. If g is in one of the

odd parts (including m1 and m2), then the tests of case (1) will output g1, resp. g2.

If g is in the even part 〈m1+1,m2−1〉, then g = k, since all other even nodes in the

even part have demand strictly larger than x(k). We search for candidates to be g1.

Obviously, x(g1) < f(k) ≤ 3x(g), where the latter follows from Proposition 2.65. We

claim also, that x(g1) ≤ x(k−1), otherwise it would be worth placing all the levels of

k−1 below x(g1), by the same argument as the one we saw in case (2). Consequently,

for every odd node h between m1 and k − 1, trivially x(g1) ≤ x(k − 1) < x(h).

If x(g − 1) > 3x(g), then the first node h1 < g of demand at most 3x(g) must

be in the odd part 〈g1,m1〉, and since for nodes in the odd part the same holds as

in case (1), g1 will be among the same h1, h2, . . . , hκ, as defined in (1).

If x(g − 1) ≤ 3x(g), then we modify the group of candidates of case (1), to

the left of g (i.e., we drop the first variant completely): let h′0 := g − 1, and let

h′1 be the nearest odd node to the left of g − 1, s.t. x(h′1) ≤ x(h′0). Then, unless
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h′0 or h′1 is compact, h′1 is in the odd part in case (1), and also in case (3). The

recursive definitions of h′2, h
′
3, . . . , h

′
κ are the same as in case (1). The modified set

{h′0, h′1, . . . , h′κ} includes the compact g1 node in both cases (1) and (3).

The possibilities we test comprise the 2 trivial cases, at most 12 test nodes to

the left of g, plus at most 11 test nodes to the right of g, a total of 25 tests. 2

Corollary 2.78 An exact optimal solution for pSMC problem on cycle conflict

graphs can be computed in O(min(n2, n log p)) time. 2

2.10 Discussion

In the previous section our main concern was to present the algorithm in a relatively

exact, but still understandable manner. As one may see in this description, or in

procedure Select of Section 2.6, our result in its current form is of rather theoretic

nature. Although it may read strange, we firmly believe that practice and reality –

let alone ’typical’ instances of the problem – are in a sense much simpler. Below we

mention a few aspects where most probably simplification is achieveable. The im-

provements would either require new ideas, or an (even) more detailed and tiresome

investigation using the given proof methods.

The algorithm runs in O(min(n2, n log p)) time, but this expression hides a con-

siderable constant, in the order of 103. This is mainly due to the fact that when

we search for all possible (i, j) = (i, r(i)) and (i, j) = (`(j), j) pairs, for fixed i we

admit by far too many nodes j. As we pointed out in Section 2.8, the number of

such tests could be reduced radically, by proving more sophisticated statements than

Lemmas 2.67–2.72 about the structure of the solution on 〈i, r(i)〉.
Similarly, in part 2 of Select, we admit a possibly large set {k1 . . . , kξ}, from

which to choose the node pit(i, j).

Notice that the above issues become crucial only with large instances. As

noted in the first paragraph of Section 2.8, by applying a straightforward check

of all node-triples to be (i, pit(i, r(i)), r(i)), or (`(j), pit(`(j), j), j) we obtain an

O(n3 · min(n, log p)) algorithm with a small constant. However, even in this case

we have to face the problem of selecting the optimal k = pit(i, j), respectively of

choosing from the even k and odd l. Thus, the code of Select would not become

much simpler, as we will argue in the next paragraphs.

Now let us turn to the cumbersome proof of Theorem 2.3 (Section 2.7.3). First

of all, we remark that the very nature of this proof involves the potential of having

a few typos or bugs left in the write-up. Nevertheless, after long investigation of

this problem, now it stands clear that the really crucial cases are those treated in

Claims 2.60 and 2.63. The obvious challenge concerning this proof, is the desire

to make it simpler and more elegant or, on the other hand, to improve the results

themselves.

The clumsiness of some results, like Lemmas 2.54 and 2.56, induce clumsiness

of the algorithm, when it comes to choosing the only possible k = pit(i, j) node for

instance in procedure Choose. The early selection of this node does not affect the

output schedule, but it ensures the polynomial running time in that we need not store
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complicated optimum functions F(α) with too many breakpoints. Alternatively,

in Select and Choose we could try to focus more on the valid domain DF ⊆
[amin, amax], (i.e., on the really occuring situations), or at least find one value of DF .
There, finding the best k = pit(i, j) should be trivial: by the uniqueness theorem,

on the whole DF there is a best Fk(α) function (over all k and l), so we would just

need to compare fuction values to find the best candidate for k.

All in all, we believe that choosing the right pit(i, j) could be a much more

trivial process: For higher levels of the minimum-tree we conjecture that the lowest

such stairs d and c for which a node k exists s.t. famax
(k) ≤ min(D,C) are the

only possible d = L(k) and c = R(k) nodes; moreover the k (of the same parity) of

minimum x(k) is the only possible pit(i, j). Finally, it would be nice to get rid of

the anomalies on the first two levels of the minimum-tree, where so far we could not

exclude the presence of two candidates for pit(i, j). Such a new result could make the

algorithm significantly clearer. However, even if the latter simplification is possible,

one would need new ideas to prove it.

The current algorithm does not try to optimize the total number of colors used

(see the chromatic strength in Section 1.1); even worse, the type of solutions we

are focusing on typically use many colors. However, once an optimal schedule is at

hand, it should be possible to reduce the maximum finish time by inverse operations

of the level exchange depicted in Figure 2.2.

It is natural to ask, whether the asymptotic running time O(min(n2, n log p)) is

tight. At first glance one would say ’yes’: having one block with a single loc-max

node, there can be O(log p) and also O(n) preemptions on average per node, so that

the output alone consists of O(min(n2, n log p)) data. However, we can observe that

in an optimal schedule any preemption level equals either the finish time of a node,

or the one extra preemption level in the root of a minimum-tree (e.g. level 2 of

node 7 on Fig 2.1). Hence the total number of different preemption levels is less

than 2n. If in the output we may assign a certain preemption level to a whole set of

nodes at once (e.g., in 〈i,m〉 the odd jobs should be started, and even jobs should be

stopped at time ϕ), then it is not excluded that by applying more sophisticated data-

structures on the input instance (or by a completely different approach altogether),

the time-bound could be reduced to linear. Note also, that the current running time

is valid if we define p := maxi x(i)/mini x(i), instead of p := maxi x(i).

Finally, what is the importance of having a fast algorithm for path and cycle

conflict graphs? Beside these two basic graph classes, our result could be well

exploited on types of graphs, where nodes of higher degree are sparse, in the sense

that the distance between any two nodes of degree at least 3 is large, so that the

solution on the connecting path contains (with high probability) a compact node.

A first step of research in this direction would be to find efficient algorithms for

generalized star (or spider) graphs, which have one central node of high degree, and

several paths meeting in the central node. We note here that the binary tree used

in the NP-hardness proof of [73] has mainly degree 3 nodes, except for short paths

’attached’ to the leaves (the paths are parts of the penalty gadgets; cf. Section 2.1.3),

having only the last, degree 1 node compact in the optimum schedule.



Chapter 3

Monotone scheduling

This chapter deals with the problem of scheduling a set of n jobs on m machines

of different speeds, or Q||Cmax using the standard short notation. For a formal

elementary introduction, we refer the reader to Section 1.2. Recall that we consider

a scenario where the speed of each machine is known only by the (owner of the)

machine, and it is supposed to declare its speed to a scheduling mechanism. In

particular, we aim at designing a truthful mechanism M = (A,P ), that consists

of a scheduling algorithm A, and a payment function P = (P1, . . . , Pm), where

the payments are defined so that they motivate truthful speed declarations of the

machines.

As our primary result, we obtain a deterministic, 2.8-approximation truthful

mechanism for the scheduling problem. Furthermore, we derive improved approx-

imation bounds of the Lpt heuristic in the ’one fast machine’ case, i.e., for speed

vectors of the form 〈1, 1, . . . , 1, s〉.
We start the chapter by sketching the line of related results that our work is

based on. In the course of this, in Section 3.1 we introduce two important features

of the payment scheme P, namely voluntary participation and frugality, which will

be revisited in relation to our work in Section 3.8.

Outline.

Section 3.1 cites the few most relevant papers about truthful mechanisms for

Q||Cmax, as well as a classic paper about the approximation bounds of Lpt schedul-

ing. In Section 3.2 we present the basic terms and notation, some general properties

of the greedy schedule Lpt, and the monotone algorithm Lpt*.

As a warm-up, in Section 3.3 we give a simple proof that Lpt* is a 3-approxima-

tion algorithm. The main result, that Lpt* is monotone, is proven in Section 3.4.

After that, in Sections 3.5 – 3.7 we return to approximation bounds:

We start with an outlook on the ’one fast machine’ case by providing a tight

approximation bound of
√

3+1
2 for Lpt. Using a refined argument, but following

the same lines, for arbitrary speed vectors we show an improved worst case ratio of

2.8 for Lpt*. As for approximation lower bounds, instances having bound strictly

larger than
√

3+1
2 are presented for Lpt when all machine speeds are powers of 2.

94
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We also show how to modify these instances to give a lower bound of more than√
3 + 1 for Lpt* on arbitrary speeds.

Finally, Section 3.8 treats properties of the payment function, and summarizes

the results concerning the truthful mechanism. We end the chapter with discussions.

3.1 Related work

3.1.1 A randomized truthful 2-approximation mechanism [4, 5].

Recall that a scheduling algorithm for Q||Cmax is called monotone, if by increasing

the speed of any particular machine in the input, this machine is assigned not less

work (total job size), than with its original speed. As a seminal contribution, Myer-

son [79] and independently Archer and Tardos [5] have proven that the monotonicity

of algorithm A is a necessary and sufficient condition for a mechanism (A,P ) to ad-

mit a truthful payment scheme (see Theorem 1.1 on page 11). These results relate

to truthful mechanisms on a more general level (and in two different contexts), but

the authors of [5] take the problem Q||Cmax as their main example.

First of all, they show that a monotone allocation of jobs does not prohibit

optimality. Consider any fixed order of the machines, 1, . . . , i, . . . ,m. A vector

〈w1, w2, . . . , wm〉 is lexicographically smaller than 〈w̄1, w̄2, . . . , w̄m〉, if for some i

wi < w̄i, and wk = w̄k for k < i. An optimal schedule of the jobs, having a lexi-

cographically minimal vector of assigned work, is a monotone allocation: Assume

that the speed si of some fixed machine i is reduced. The assigned works do not

change until i becomes a bottleneck machine, meaning that it is filled up to the

optimum makespan. If after that the speed is further reduced to some s′i, then the

new optimum makespan will be at most wi/s
′
i, so i does not get more work than wi

in an optimum schedule.

We remark that the existence of an optimal, monotone allocation cannot be taken

for granted. In the same paper, a simple input instance is shown for the Q||∑wjCj

problem (scheduling with minimizing the weighted sum of job completion times), for

which a monotone algorithm cannot achieve approximation ratio better than 2√
3
. In

a different setting, another negative result concerning unrelated machine scheduling

was proven by Nisan and Ronen [82], stating that no truthful mechanism for the

R||Cmax problem can have approximation ratio better than 2. This lower bound was

recently improved to 1 +
√

2, by Christodoulou, Koutsoupias and Vidali [27].

In view of this, the monotone optimal allocation for Q||Cmax seems promising.

However, since Q||Cmax is NP-hard, there is most probably no efficient algorithm to

compute an optimal allocation.

As a polynomial time solution, in [5] a randomized truthful 3-approximation

mechanism is presented, using the following simple algorithm:

The algorithm first computes an appropriate lower bound T on the optimum

makespan. After that, it fills the machines up to time T one by one, in decreasing

order of speed. This filling process is very simple. In order to make a so called frac-

tional assignment of the jobs, the jobs are allocated to the machines (in decreasing

order of size), so that when a machine’s filling reached time T, then the superfluous
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part of the topmost job is cut off, and put to the next machine. The lower bound T

is selected so, that if a (fractional) job tj is assigned to machine i, then tj < si · T,
i.e., the job alone would fit below T on the machine. Thus, every job is cut into at

most two parts in this allocation.

The randomized algorithm is now straightforward: If, in the fractional assign-

ment, a pj fraction of job tj is assigned to machine i, and a 1−pj fraction to machine

i + 1, then tj is scheduled on i with probability pj and on i + 1 with probability

1−pj . This is certainly a 3-approximation algorithm, since each machine receives at

most 2 extra jobs, the fractional jobs on the bottom and on the top of the machine.

In his thesis [4], Archer modified this randomized allocation as follows: Select a

single α in [0, 1], uniformly at random. For every j, schedule job tj , on machine i, if

α ≤ pj , and on machine i+ 1, if α > pj .

Let us assume that a fraction 1 − pk of job tk was put to the bottom, and a

fraction pj of job tj to the top of machine i. If 1−pk +pj < 1, then pj < pk excludes

that both jobs are eventually allocated to i. The machine receives at most one of

tk or tj as a full job. If 1 − pk + pj ≥ 1, then even if both jobs are rounded to the

machine i, this overloads the machine by at most (pk + 1− pj) · si · T ≤ si · T. Thus,

the allocation of Archer provides a 2-approximation.

According to the definition in [82], a randomized algorithm is considered truthful,

if truth-telling is the best strategy for the agents (machines) for any possible outcome

of the random coin flips of the algorithm. The paper [5] relaxes this requirement, and

demands only that truth-telling is the best strategy for agents who try to maximize

their expected profit.

Note that in our case the expected work w̄i on machine i is exactly the work

allocated to i in the fractional assignment. By Theorem 1.1, the mechanism admits

a truthful payment scheme, if w̄i is a monotone function of the (declared) speed. If

the speed of machine i is decreased to s′i, this increases the lower bound T to at

most si

s′i
T. Consequently, the work w̄i of i in the fractional assignment is at most

s′i · si

s′i
T = siT = w̄i if i was full originally. If it was not full, then increasing T

reduces the received work, since all the preceding machines get more work than

before. Therefore, the fractional assignment is monotone.

Computing the payments.

With payments as determined by Theorem 1.1 (see Section 1.2.1), the above al-

gorithm constitutes a truthful mechanism. Recall that Pi stands for the payment

handed to machine i, and 〈b1, . . . bm〉 is the vector of bids, i.e., of the declared inverse

speeds; b−i denotes the bid vector modulo the bid bi.

The theorem claims that the profit Pi−wi/si of agent i is maximized at bi = 1/si,

if and only if the payment has the form

Pi(b−i, bi) = hi(b−i) + biwi(b−i, bi) −
∫ bi

0
wi(b−i, u) du

for some arbitrary constant hi.
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Moreover, a reasonable mechanism must ensure, that the profit of a truth-telling

agent will not happen to be negative, that is, the mechanism satisfies voluntary

participation [5]. This can be achieved by setting hi properly:

Theorem 3.1 [5] A decreasing output function admits a truthful payment scheme

satisfying voluntary participation if and only if
∫ ∞
0 wi(b−i, u) du <∞ for all i, b−i.

In this case we can take the payments to be

Pi(b−i, bi) = biwi(b−i, bi) +

∫ ∞

bi

wi(b−i, u) du.

Observe, that we obtain the above formula for the payments, if we set the con-

stant hi(b−i) in Theorem 1.1 to be equal to
∫ ∞
0 wi(b−i, u) du.

The formula for the payments is shown to be computable in polynomial time

for the randomized truthful mechanism. To prove this, the authors analyze the

function wi in the integral expression, and argue that the domain of wi(b−i, u) can

be partitioned into (a polynomial number of) intervals, and inside each interval wi

has a nice analytic form (e.g., linear). The voluntary participation condition, i.e.,

that
∫ ∞
0 wi(b−i, u) du < 0 is finite, is implied by the trivial observation, that the total

assigned work to any machine is bounded by the sum of all job sizes (wi ≤
∑

j tj),

whereas a machine with very low speed receives no jobs (wi = 0), as soon as giving

all its jobs to the fastest machine would result in a better makespan.

Frugality. Archer and Tardos call the mechanism frugal, if the sum of the pay-

ments that guarantee truthfulness and voluntary participation, does not exceed the

total cost of the agents enormously. They show that their randomized monotone

algorithm is frugal, in the sense that the ratio of the total payment and total cost is

at most logarithmic, in case the fastest machine does not dominate the processing

power:

Theorem 3.2 [5] If the sizes of all n jobs differ by a factor of at most r1, and the

speeds of the two fastest machines differ by a factor of r2, then the payment given by

the mechanism exceeds the total expected cost incurred by all the agents by a factor

of at most O(r2 ln (r1n)).

In particular, the ratio of payment to expected cost turns out to be at most

r2(1 + 2 ln (r1n)) for the fastest machine, and at most 1 + ln(r1n/r2) for other full

machines in the fractional assignment.

The frugality of a truthful mechanism is far from being obvious. The same

authors show in [6] that there exist problems, for which every reasonable mechanism

has to pay Ω(n) times more than the actual cost.

3.1.2 A deterministic truthful mechanism [8].

The first deterministic monotone algorithm for Q||Cmax was found by Auletta,

DePrisco, Penna, and Persiano. As opposed to the randomized algorithm, which
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used rounding of a fractional assignment, their starting point was a classic PTAS

of Graham [44], for a fixed number of machines. In order to provide a (1 + ε)-

approximate solution, the algorithm of Graham starts with an optimal schedule of

the largest h(ε) jobs, and then allocates the remaining jobs according to the Lpt

rule. In order to ensure monotonicity, the authors carry out some modifications:

First, in place of Lpt, they use the following version of Lpt called Uniform.

Assume that the speeds are the integers s1 ≤ s2 ≤ . . . ≤ sm, then Uniform runs

Lpt on S =
∑

i si identical machines. After that, it reorders the assigned work

on the identical machines in increasing order. Finally, the set of machines (together

with the assigned sets of jobs), is partitioned proportionally to the speeds s1, . . . , sm.

The first s1 of the identical machines correspond to (the original) machine 1, the

next s2 identical machines to machine 2, etc.

Second, this algorithm Uniform is monotone, only if the speeds s1, . . . , sm are

divisible, i.e., they are taken from a set {c1, . . . , ci, . . .}, where ci|ci+1. The idea

of applying a common algorithm like Lpt on 2-divisible (or divisible) machines in

order to get a monotone allocation, appeared first in this paper. The authors did

not prove, however, they conjectured the monotonicity of Lpt on divisible speeds.

The third modification is that the (lexicographically minimal) optimum schedule

Opt on the large jobs, and Uniform on the small jobs, are run independently, unlike

in Graham’s PTAS. Since both Opt and Uniform are monotone algorithms, their

independent combination is also monotone.

Compared to the PTAS, we lose a factor 2 on the approximation ratio due

to rounding the arbitrary input speed vector to 2-divisible, and another factor 2 by

running Opt and Uniform independently. The final result is a (4+ε)-approximating

truthful mechanism, computable in polynomial time for fixed number of machines.

3.1.3 A monotone FPTAS for fixed number of machines [3].

Andelman, Azar, and Sorani [3] improve on the above results concerning the Q||Cmax

problem in two ways: On the one hand, they provide the first (efficient) deterministic

truthful mechanism for an arbitrary number of machines, which has worst case ratio

5. They combine former methods as follows. Like in the randomized algorithm of

[5], they calculate a lower bound T on the optimum makespan. Instead of using

a fractional assignment, they assign integral (complete) jobs to the machines, in

decreasing order of machine speeds and job sizes, until the machines are filled up at

least to time T. In order to obtain a monotone algorithm, they apply this technique

on machines with speeds rounded down to s1/2.5
li , where s1 denotes the largest

speed, and li is an integer. The integral assignment is a 2-approximation, and

machine speeds are changed by a factor of at most 2.5, thus this is a 5-approximation

mechanism. As an additional trick, the fastest speed is increased so that the first

two (rounded) speeds differ by a factor of at least 4. By this, it is ensured that

decreasing any other speed i > 1 results in an increase of T by a factor ≤ 5/4, and

therefore the machine i receives work ≤ 2 · ( 5
4 · T ) · si

2.5 = T · si which is at least the

original work of the machine.

On the other hand, for constant m, they show a simple monotone PTAS, and
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a monotone FPTAS. In the PTAS algorithm the job sizes are normalized so that∑
tj = 1; furthermore, jobs of size smaller than ε2/m2 are merged into chunks of size

between ε2/2m2 and ε2/m2. Observe that this modifies the job vector independently

of the machine speeds. Finally, a lexicographically minimal optimal assignment

of the new jobs is computed. This is a monotone allocation, it gives a (1 + 3ε)-

approximation, and the number of new jobs is O(2m2/ε2), so computing the optimal

schedule takes constant time.

In the monotone FPTAS mechanism machine speeds are first rounded to powers

of 1
(1+ε) , and then the fastest speed is normalized to 1. A power l is determined

s.t. a machine of speed 1
(1+ε)l certainly receives no work in an optimal solution.

After that, for all possible speed vectors 1
(1+ε)i1

, . . . , 1
(1+ε)im

(0 ≤ i1, . . . , im ≤ l)

a common (1 + ε)-approximation algorithm (of an FPTAS) is run. Every result

is tested on the input (rounded) speed vector, (with the assigned works reordered

according to machine speeds), and finally the schedule having minimum makespan

is returned.

In proving that this algorithm is monotone, the key observation is that indepen-

dently of the speeds, the solution is selected from the same set of schedules. Assume

that a machine had finish time α in an optimal allocation of makespan T. If the

speed of this machine is reduced by a factor of (1+ ε), then with the same allocation

the makespan will be at most max(α(1 + ε), T ).

We remark that all monotone algorithms cited above imply payment functions

computable in polynomial time, and satisfying the voluntary participation condition.

The papers [3, 8] do not treat frugality issues.

3.1.4 The approximation ratio of Lpt [42].

Gonzalez, Ibarra, and Sahni [42] were the first to consider the greedy Lpt heuristic

on machines of different speeds. On the performance ratio for arbitrary speeds, an

upper bound of 2m
m+1 , and an asymptotic lower bound of 3/2 is given (both of these

bounds were later improved [33, 37]). Here we illustrate the upper bound proof by

deriving an upper bound of 2 : Assume a counter-example using a minimum number

of machines, so that Lpt > 2 ·Opt where Lpt is the makespan of Lpt and Opt is the

optimum makespan of this instance. A simple argument shows (see Section 3.2.2),

that no machine is idle in an optimal allocation of this instance. Consequently,

tn/s1 < Opt, where s1 denotes the smallest speed. However, in the Lpt schedule

every machine i has finish time at least Lpt−tn/si > Lpt−tn/s1 > Lpt−Opt > Opt,

implying that the total work scheduled is more than Opt · ∑ si, so there cannot be

an assignment of makespan Opt, a contradiction.

In the second part of the paper, the authors turn to the ’one fast machine’ case.

They prove that then the worst case ratio of Lpt is between 4/3 and 3/2− 1/(2m).

Moreover, they formulate the conjecture that the bound 4/3 is tight. In their lower

bound instance the job sizes are 〈1.5, 1.5, 1, 1, 1〉, and the speeds of the machines

are 〈1, 1, 2 + ε〉. Lpt assigns jobs t1, t2 and t5 to machine 3, and has makespan
4

2+ε = 2 − ε. Opt assigns t1 and t2 to machines 1 and 2, respectively, and the three
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jobs of size 1 to machine 3, implying makespan 1.5.

3.2 Preliminaries

We use tj to denote both the jth job, and the size of the jth job in formulas. We

assume tj ≥ tj+1 (1 ≤ j < n), and si ≤ si+1 (1 ≤ i < m), i.e., the jobs sizes are in

decreasing, resp. machine speeds are in increasing order. Throughout the chapter, t

denotes the (size of) the last job tn. We will use the short expressions 1-job, y-job,

t-job for a job of size 1, y, t, etc. Similarly, a 1-machine or a 4-machine mean

a machine of speed 1 or 4, respectively. We say that machine h is to the right

(left) of i if i < h (h < i).

The work and the finish time of machine i in Lpt is denoted by wi, resp.

fi = wi/si. In the upper bound proofs these values will be redefined so that they

disregard the last job tn. In other cases when the work wi or finish time fi of machine

i is considered at an intermediate step of the algorithm, this is emphasized by a ˜
or some superscript over wi and fi.

The completion time C(tj) of a job tj assigned to machine i is the finish time

of i right after tj was scheduled.

The speed vector 〈s1, s2, . . . , sm〉, or the machines are called 2-divisible if si =

2li (li ∈ Z) for all i. In this definition we allow fractional speeds (e.g. 1/2), only

for sake of simpler presentation of our proofs. Clearly, they are not essential to the

result.

Next, we give a formal definition of the Lpt algorithm. After that, we continue

with a simple property of Lpt.

Lpt algorithm: Input: 〈s1, . . . , sm〉 and 〈t1, . . . , tn〉
At step j of Lpt let wj

i denote the work of machine i (1 ≤ i ≤ m). Lpt assigns

tj to machine h if

(wj
h + tj)

sh
= min

i

(wj
i + tj)

si
,

and h is the smallest machine index with this property.

3.2.1 Lpt on consecutive identical machines

Proposition 3.1 In Lpt scheduling the following hold:

(i) Let si = si+1. If tj is the first job assigned to i, then tj+1 is the first job assigned

to i+ 1.

(ii) Suppose that machine speeds are 2-divisible. If sh = si/2, then h receives its

first job after the first job of i and before the second job of i.

Proof. Suppose w.l.o.g., that si = si+1 = 1.

(i) After tj is assigned to i, machines of speed less than 1, and 1-machines to

the right of i + 1 are empty (they didn’t get a job before i), 1-machines to the

left of i + 1 are non-empty (otherwise they would have received tj). None of these

machines is given a job before machine i + 1. Now let us regard a fast machine i∗
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of speed s > 1, with current finish time f̃i∗ . Since tj was assigned to i and not to

i∗, f̃i∗ ≥ tj − tj/s ≥ tj+1 − tj+1/s. Therefore, tj+1 also prefers an empty 1-machine

i+ 1 to machine i∗.

(ii) Now assume that the speeds are 2-divisible and let sh = 1/2. It is obvious,

that h doesn’t receive a first job before i. Let tj be the first job on i and tj+v a

later job. If h is empty, then tj+v would have completion time C(tj+v) = 2tj+v on

h, whereas it would have completion time C(tj+v) = tj + tj+v ≥ 2tj+v on i. Since

h < i, h gets a first job before the second job of i. 2

Observe, that Proposition 3.1 (ii) holds only because Lpt favours slower ma-

chines in case of ties. This feature of Lpt is not essential, but it facilitates a shorter

proof of Lemma 3.9, and saves us an even more intricate elaboration for case (2) in

Section 3.4. However, both the monotonicity and the upper bound results do hold

if Lpt prefers higher index machines.

As we will point out there, one of the lower-bound examples in Section 3.7 is

valid only, if ties are broken in favour of faster machines. The other two lower-bound

instances are not sensitive to tie-breaking.

3.2.2 The principle of domination

In the upper bound proofs of Sections 3.3, 3.5.2 and 3.6 we will frequently apply

the following simple tool, called principle of domination [37, 29]. In these proofs we

consider a hypothetical minimal counter-example for an approximation upper bound

of Lpt. An instance is a minimal counter-example, if it has the smallest number

of machines, and for this number of machines the smallest number of jobs. Let us

consider the Lpt schedule and some fixed optimal schedule Opt of an instance of

the Q||Cmax problem. Intuitively, some machine i dominates another machine i∗ of

the same (or larger) speed, if the jobs on i∗ in Opt can be partitioned according to

the jobs on i in Lpt, so that each partition fits into its corresponding job. Formally:

Definition 3.2 [37] We say that machine i dominates machine i∗ if

– si ≤ si∗ and

– Lpt assigns the jobs τ1, . . . , τk to i (disregarding tn); Opt assigns the jobs

τ∗1 , . . . , τ
∗
l to i∗ (tn possibly included), and there is a function F : {τ ∗1 , . . . , τ∗l } →

{τ1, . . . , τk} such that for each τj ,
∑

F (τ∗

v )=τj
τ∗v ≤ τj .

Proposition 3.3 (principle of domination [37]) In a minimal counter-example

for an approximation upper bound of Lpt, no machine i dominates a machine i∗.

Proof. Assume the contrary, that some machine i dominates a machine i∗. Omit

from the instance the machine i and the jobs τ1, . . . , τk that Lpt assigned to i.

If we run Lpt on the reduced instance, then each machine will get the same

jobs as originally, and tn cannot have smaller completion time than before, so the

makespan did not decrease. However, the makespan of Opt does not increase, if we

put all the jobs from i (as assigned by Opt) to i∗, and for all j, we put the jobs
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from F−1(τj) to where τj was previously assigned by Opt. So, we obtain a counter-

example with less machines, contradicting the minimality of the original instance.

2

Notice that as a corollary of the principle of domination, there are no empty

machines in Opt.

3.2.3 The Lpt* algorithm

We conclude this section with the definition of our monotone algorithm Lpt*. In

most of the chapter we will consider 2-divisible speed vectors. However, sometimes

– e.g., when it comes to computing the payment function in Section 3.8 –, it is

expedient to make a clear distinction between arbitrary input speed vectors and

2-divisible (rounded) speeds. In these rare cases 〈σ1, . . . , σi, . . . , σm〉 (σi ≤ σi+1)

denotes the input speed vector of arbitrary positive speeds, and 〈s1, . . . , si, . . . , sm〉
denotes the rounded, 2-divisible speed vector.

Lpt* algorithm: Input: 〈σ1, . . . , σm〉 and 〈t1, . . . , tn〉

1. round the machine speeds down to si := 2blog σic 1 ≤ i ≤ m (the rounded speeds

remain ordered);

2. run Lpt on 〈s1, . . . , sm〉 and 〈t1, t2, . . . , tn〉;
3. among machines of the same rounded speed, reorder the assigned work (i.e., the

assigned sets of jobs), such that wi ≤ wi+1 holds.

Clearly, Lpt* runs in time O(m(n + logm)), since O(mn) time suffices to run

Lpt, and step 3. uses O(m logm) time.

3.3 Lpt* is a 3-approximation algorithm

The key result of this section is Theorem 3.3, claiming that Lpt yields a 3/2-

approximation on 2-divisible machines. We start the chapter with the proof of this

theorem for two reasons: First, because this proof is much simpler than that of the

1.4-bound in Section 3.6. Second, and more importantly, since this proof serves as a

perfect illustration of the primary method used in the more intricate monotonicity

proof of Section 3.4.

We start by introducing some notation and making elementary observations. To

get a contradiction, we will consider a minimal counter-example (see Sec. 3.2.2),

for which the Lpt schedule has more than 3/2-times the optimum makespan. In

this input let the 2-divisible speed vector be 〈s1, s2, . . . , sm〉 and the job vector be

〈t1, t2, . . . , tn〉. Recall that si ≤ si+1 and tj ≥ tj+1.

Let Opt be any fixed optimal schedule of this input. Opt denotes the optimum

makespan and Lpt denotes the makespan resulted by Lpt on the above input. We

will also use the short notation µ := Opt.

As noted above, we assume that Lpt > 3
2µ. Let the last job t := tn be assigned

to machine k in Lpt. By the minimality of the instance, t has completion time Lpt,
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i.e., t is a bottleneck job. (Note that jobs following a bottleneck job neither increase

Lpt, nor decrease Opt.)

We denote by w∗
i , and f∗i = w∗

i /si the work and the finish time of machine i in

Opt with respect to all the jobs. We denote by wi, and fi = wi/si the work and

the finish time of machine i in Lpt before scheduling t. Note that the last restriction

has an influence only on fk and wk.

Lpt > 3
2µ implies that for every machine i in Lpt

fi >
3

2
µ− t/si. (3.a)

We assume w.l.o.g. that the slowest machine in Opt has speed 1. Since machines

in Opt are nonempty by the principle of domination, it follows that

t ≤ µ · 1 = µ. (3.b)

The proof of Theorem 3.3 is based on the following simple technique: We strive

for a contradiction by showing that the total work in Lpt is strictly more than in

Opt. First we show that only 1-machines may get more work in Opt than in Lpt.

Then we introduce the set of P-jobs. These jobs are assigned to 1-machines in Opt,

but they are larger than the jobs on 1-machines in Lpt. Finally, in Lemma 3.9 we

argue that the total work difference
∑

si>1(wi−w∗
i ) on faster machines receiving the

P-jobs in Lpt, exceeds the potential work difference on 1-machines
∑

si=1(w∗
i −wi),

so that altogether more work is scheduled in Lpt than in Opt.

Proposition 3.4 (i) There exists at least one machine l s.t. fl < f∗l .

(ii) Any such l is a 1-machine, and in Lpt at most one job is assigned to l.

(iii)

µ/2 < t. (3.c)

Proof. (i) Since t+
∑

iwi =
∑

iw
∗
i , a machine l exists, s.t. wl < w∗

l , i.e., fl < f∗l .
(ii) – (iii) For such a machine fl < f∗l ≤ µ holds. According to (3.a), 3

2µ− t/sl <

fl < µ, i.e., µ/2 < t/sl. By (3.b), t/sl ≤ µ/sl, so we obtain sl < 2. If sl < 1 then

f∗l = 0. Consequently, sl = 1 and µ/2 < t/sl implies µ/2 < t. Finally, the latter

implies that at most one job fits to l below µ. 2

Definition 3.5 Let fo := max(t, 3
4µ).

Proposition 3.6 On an arbitrary 1-machine i, there is at most 1 job in Opt, and

it is larger than any job on a 1-machine in Lpt. Moreover, on 1-machines fi ≥ fo.

Proof. (3.c) implies that there is at most 1 job on i in Opt, and it is larger than

the jobs on 1-machines in Lpt by the principle of domination.

By (3.a) and (3.b), 1
2µ < fi, so there is at least 1 job on i in Lpt. This fact

together with (3.a) imply fi ≥ max(t, 3
2µ− t) ≥ 3

4µ. 2
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Figure 3.1: Lemma 3.8: Jobs on 1-machines in Lpt and in Opt.

Definition 3.7 Consider the 1-machines receiving only one job in Lpt. Let p ≥ 1

be the number of these machines, and P = {tj1 , . . . , tjp} be the set of jobs assigned

to these machines in Opt. The jobs in P will be called P-jobs.

In Lemma 3.8 we upper bound
∑

si=1(w∗
i −wi). For an illustration see Fig. 3.1.

Lemma 3.8 For the job set P = {tj1 , . . . , tjp} the following hold:

(i) all of the jobs in P are assigned to 1-machines in Opt, and to faster machines

in Lpt;

(ii) 3
4µ ≤ fo ≤ tjτ ≤ µ (1 ≤ τ ≤ p);

(iii)
∑

si=1(w∗
i − wi) ≤

∑p
τ=1(tjτ − fo) ≤ p · µ/4.

Proof. Most of the statements are direct corollaries of Proposition 3.6:

(i) holds by the definition of P-jobs and by the proposition.

(ii) Let t′ be a single job on a 1-machine in Lpt, and tjτ ∈ P be the job on this

machine in Opt, then fo ≤ fi = t′ < tjτ .

(iii) trivially follows from (ii), since by Proposition 3.4, fi < f∗i , resp. wi < w∗
i

is possible only on 1-machines with one job in Lpt. 2

Lemma 3.9 In Lpt, at most 2r − 1 of the P-jobs are assigned to a machine i of

speed si = 2r (r ≥ 1). If si ≥ 4 then wi − w∗
i ≥ (2r − 1) · µ/4. If si = 2 and t̂ is the

(only) P-job assigned to i, then wi − w∗
i ≥ t̂− fo.

Proof. While P-jobs are being scheduled, 1-machines are still empty in Lpt. There-

fore, any P-job tjτ has completion time C(tjτ ) < tjτ , otherwise it would be assigned

to a 1-machine. This implies that a machine of speed 2r has less than 2r P-jobs.

Suppose that si = 2r ≥ 4. Then by (3.a) and (3.b), fi − f∗i > 3
2µ − t/4 − µ ≥

3
2µ− µ/4 − µ = µ/4. Consequently, wi − w∗

i > 2r · µ/4.
If si = 2, then (3.a) implies wi−w∗

i > 2 ·(3
2µ−t/2−µ) = µ−t, and µ−t ≥ t̂−fo,

since µ ≥ t̂ by Lemma 3.8 (ii) and t ≤ fo by Definition 3.5. 2

Theorem 3.3 Let 〈s1, s2, . . . , sm〉 be a 2-divisible speed vector, and 〈t1, t2, . . . , tn〉
be a fixed job vector. Let Opt be the optimum makespan, and Lpt be the makespan

resulted by Lpt on this input. Then Lpt ≤ 3
2 ·Opt.

Proof. Assume that the input is a minimal counter-example to the statement.

If w∗
i ≥ wi then si = 1 by Proposition 3.4. The work difference on 1-machines
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∑
si=1(w∗

i −wi) is at most
∑p

τ=1(tjτ −fo) by Lemma 3.8, where the {tjτ }p
τ=1 denote

the P-jobs.

According to Lemma 3.9, this difference is balanced out on faster machines, that

receive the P-jobs in Lpt: On machines of speed 2 we obtained the lower bound on

the difference wi − w∗
i ≥ t̂− fo, where t̂ is the only P-job assigned to the machine;

on faster machines we obtained the lower bound wi − w∗
i ≥ (2r − 1) · µ/4, where

there are at most 2r − 1 P-jobs assigned to the machine, and µ/4 > (tjτ − fo) for

any tjτ . This implies

∑

si=1

(w∗
i − wi) ≤

p∑

τ=1

(tjτ − fo) ≤
∑

si 6=1

(wi − w∗
i ),

so that

m∑

i=1

w∗
i ≤

m∑

i=1

wi

a contradiction, since t+
∑

iwi =
∑

iw
∗
i . 2

Corollary 3.10 Lpt* is a 3-approximation algorithm.

Proof. Suppose that on input 〈t1, t2, . . . , tn〉
Opt is the optimum makespan at speed vector 〈σ1, . . . , σm〉;
Opt′ is the optimum makespan at speed vector 〈s1, . . . , sm〉;
Lpt is the makespan provided by Lpt at 〈s1, . . . , sm〉;
Lpt∗ is the makespan provided by Lpt* at 〈σ1, . . . , σm〉,

then Lpt∗ ≤ Lpt ≤ 3
2 ·Opt′ ≤ 3

2 · (2 ·Opt). The first and last inequalities follow from

the fact that machine speeds are increased, resp. decreased by a factor between 1

and 2. Finally, Lpt ≤ 3
2 ·Opt′ holds according to Theorem 3.3. 2

3.4 Lpt* is monotone

This section is devoted to the primary result of Chapter 3, stating that Lpt schedul-

ing is monotone on 2-divisible machines. After fixing notation and presenting the

theorem, we provide some intuition about the proof in Section 3.4.1.

Suppose that in Lpt schedule I the 2-divisible input speed vector contains one

more copies of speed 1/2 and one less copies of speed 1 than in Lpt schedule II, and

otherwise the inputs of I and II are the same. Let k be any machine of speed 1/2 in I,

and k′ be any machine of speed 1 in II. Theorem 3.4 claims that machine k receives

not more work in schedule I than machine k′ in schedule II. Let s1 ≤ s2 ≤ . . . ≤ sm

denote the machine speeds in I. We will view schedule II like this: in schedule II, the

speed sk = 1/2 of machine k is increased to s′k = 1 while the speeds (and relative

order) of other machines remain unchanged. We will refer to machine i in schedule

II by i′. Clearly, in general k′ is not the kth machine, and i′ is not necessarily the

ith machine in II (see, e.g., the machines k and k′ in Fig. 3.4).

We classify the unchanged machines into three categories:
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Definition 3.11 Let i 6= k. We say that i is a slow machine if si < 1/2, a

medium machine if 1/2 ≤ si ≤ 1, and a fast machine if 1 < si. We call a slow

machine tardy, if it has the speed of the slowest nonempty machines in II.

In I and in II the machines receive the same job sequence t1 ≥ . . . ≥ tn. If tj
is assigned to machine i, it has (time)length tj/si. The completion time of tj in I

resp. in II is C(tj), resp. C ′(tj). We denote by wi and fi the work and finish time

of machine i in schedule I. For ease of use, w′
i and f ′i denote the respective values in

schedule II (instead of, e.g., w′
i′ and f ′i′).

Theorem 3.4 Let the Lpt schedules I and II, machines k and k′, furthermore the

respective total works wk and w′
k be as defined above, then wk ≤ w′

k.

Theorem 3.5 Lpt* is monotone.

Proof. Suppose that in the input of Lpt*, the speed σi is increased to σ′i and

everything else remains unchanged. Then the index of speed σ′
i in the (re)ordered

input speed vector is at least i. If si = s′i, then step 3. of Lpt* implies that i

receives not less work with increased speed. If si < s′i, then a repeated application

of Theorem 3.4 implies Theorem 3.5. 2

3.4.1 The proof of Theorem 3.4.

In this subsection we prove Theorem 3.4. The proof is by contradiction: we assume

wk > w′
k. Let W 6=k :=

∑
i6=k wi and W ′

6=k :=
∑

i6=k w
′
i. In most subcases of the proof

we show W 6=k ≥ W ′
6=k, contradicting wk > w′

k. In the remaining subcases we get

a contradiction by proving that the number of assigned jobs is strictly larger in

schedule I than in schedule II.

Let ta be the first job assigned to k′ in II. We will call a machine dead, if it

receives no job after ta in II, and we call it living otherwise. Notice that right before

job ta is scheduled, the schedules I and II are exactly the same. Therefore, on dead

machines w ≥ w′, and there are at least as many jobs on the machine in I as in II.

Unless it is necessary to mention dead machines explicitly, we concentrate on living

machines.

Let t := tn denote the last job. We can assume that wk becomes larger than w′
k

only after job t; job t is assigned to k in I, but it is not assigned to k′ in II.

Let ta = ta1
≥ ta2

≥ ta3
≥ . . . be the jobs assigned to k′. It facilitates a more

handy proof if we normalize job sizes so that ta = 1. We can do this without loss of

generality. Consequently, the length of ta on k′ is ta/s
′
k = 1/1 = 1.

Because the finish time f ′k of k′ plays a central role in our comparisons, we

provide it with special notation: let λ := f ′k be the finish time of k′. That is,

λ = w′
k/1. Since wk > w′

k, for the finish time of k in I, fk = wk/
1
2 > w′

k/
1
2 = 2λ

holds. Moreover, in I a machine i 6= k of speed 2r (r ∈ Z) has finish time

fi > 2λ− t

2r
, (3.d)
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otherwise this machine (and not k) would receive the last job t.

Let WT and W ′
T denote the total work on tardy machines in schedule I and II,

respectively. We provide some intuition about the first part of our proof. This part

follows the same lines as the proof of Theorem 3.3. First, we show that if w < w′ on

a slow machine, then it must be a tardy machine. After that, we prove that if w ≥ w′

on every medium and fast machine, then W 6=k ≥W ′
6=k. Luckily, this is the case if at

least 2 jobs are assigned to k′ in II (case (1)). How do we show W 6=k ≥ W ′
6=k? In

Lemma 3.15 we introduce the set of P-jobs. These are very small jobs, that follow

the jobs of tardy machines in II, but are still put on tardy machines in I. In the

same lemma an upper bound on W ′
T −WT is stated in terms of the number p of

P-jobs. In Lemma 3.19 it is shown that the difference W ′
T −WT is balanced out on

non-tardy machines, that receive the P-jobs in II. In case (2), the same argument

about P-jobs is used parallel to other techniques, in order to show W 6=k ≥W ′
6=k.

First, we provide upper bounds on the finish time of living machines in II:

Proposition 3.12 In schedule II, f ′i ≤ max(2, 3λ/2) for any living machine i′.

Proof. Let f ′max be the maximum finish time among all living machines in II. Note

that this maximum is realized by a bottleneck job tβ not before ta = ta1
. Let first

a1 ≤ β < a2. Then f ′max ≤ 2ta = 2, otherwise k′ would have received tβ. Second,

suppose aη ≤ β < aη+1 (η > 1). Then f ′max ≤ ta1
+ ta2

+ . . .+ taη + taη ≤ λ+ taη ≤
λ+ λ/2 = 3λ/2. 2

Proposition 3.13 In Lpt schedule II,

(i) If tj is a job on a slow machine i′, then t ≤ tj ≤ λ/3, and f ′i ≤ 4λ/3.

(ii) If tj is the 2nd job on a 1/2-machine i′, then t ≤ tj ≤ λ/3, and f ′i ≤ 4λ/3.

(iii) If tj is the 3rd job on a 1-machine i′, then t ≤ tj ≤ λ/2, and f ′i ≤ 3λ/2.

In cases (ii) and (iii) f ′i ≤ fi.

Proof. (i) – (ii) 4tj ≤ f ′i , because in (i) si ≤ 1/4, in (ii) si = 1/2 and tj is the 2nd

job. Let tj+v (v ≥ 0) be the last job on i′. Since tj+v is not assigned to k′, it follows

that 4tj ≤ f ′i ≤ λ+ tj+v ≤ λ+ tj , and therefore tj ≤ λ/3 and f ′i ≤ 4λ/3.

(iii) If there are at least 3 jobs assigned to a 1-machine in II, then the second job

has completion time at most λ, otherwise the third job would be assigned to k′. So

the second and further jobs have size at most λ/2. Let tj+v (v ≥ 0) be the last job

on i′. Since tj+v is not assigned to k′, it follows that f ′i ≤ λ+ tj+v ≤ 3λ/2.

Finally, in (ii) and (iii) f ′i ≤ fi is implied by (3.d). 2

Proposition 3.14 Suppose that wi < w′
i holds for a slow machine i of speed si =

1/2l (l ≥ 2). Then i is a tardy machine, and each tardy machine receives at most 1

job in schedule II.

Proof. We show that in II there is at most one job assigned to any machine of speed

1/2l, and machines of speed 1/2l+1 are empty. Suppose that there is a job tj assigned

to a machine of speed 1/2l as a second job, or assigned to a strictly slower machine in
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Figure 3.2: Lemma 3.15: Jobs on tardy machines in schedules I and II.

II. According to Proposition 3.13 (i), in either case 2l+1tj ≤ 4λ/3 holds. Moreover,

it follows that 2lt ≤ 2ltj ≤ 2λ/3. Now, (3.d) implies that fi ≥ 2λ− 2lt ≥ 4λ/3 ≥ f ′i ,
contradicting w′

i > wi. 2

In Lemma 3.15 we upper bound W ′
T −WT . For an illustration to the lemma see

Figure 3.2.

Lemma 3.15 Suppose that wi < w′
i holds for a tardy machine i, and tardy machines

have speed 1/2d. Let tj be the first job assigned to tardy machines in II. There is a

set of jobs P = {tJ , tJ+1, . . . , tJ+p−1} for some p ≥ 0, so that

(i) in I all these p jobs are assigned to tardy machines, and in II all these p jobs are

assigned to faster than tardy machines;

(ii) λ/2d ≤ tJ+ζ < tj ≤ 4
3λ/2

d (0 ≤ ζ ≤ p− 1);

(iii) W ′
T −WT ≤ p · (4

3λ/2
d − t) ≤ p · (1

3λ− t).

Proof. According to Proposition 3.14, in II there is at most 1 job on each tardy

machine. We claim that in I, there is at least 1 job on each tardy machine. Note

that job tj is the first job assigned to the leftmost tardy machine in II. If f ′ denotes

the finish time of the leftmost tardy machine, then using Proposition 3.13 (i), 2dt ≤
2dtj ≤ f ′ ≤ 4

3λ. Now the claim follows from (3.d), since for a tardy machine f >

2λ− 2dt ≥ 2λ− 4
3λ > 0.

By Proposition 3.1, and since each tardy machine has at most 1 job in II, wi < w′
i

is possible only if II starts to fill tardy machines earlier than I. Having y tardy

machines, {tj , tj+1, . . . , tj+y−1} are the only jobs on tardy machines in schedule II;

whereas there is a series of y consecutive jobs {tj+v, tj+v+1, . . . , tj+v+y−1} on tardy

machines in schedule I.

W.l.o.g. we assume v < y. We omit the common jobs {tj+v, tj+v+1, . . . , tj+y−1}
from II and I. We also omit all possibly remaining (single) jobs of size tj from I, and

the same number of jobs from II (these jobs in II then all have size tj). Finally, we

omit tardy machines having at least 2 jobs in I, with all their jobs, and the same

number of machines together with their job from II. Modulo jobs of equal size, we

may assume that tardy machines with ≥ 2 jobs in I are the rightmost machines, so

that the remaining jobs on tardy machines in I are consecutive: {tj+y, . . . , tj+y+p−1}.
Let P be the set of these jobs, that is, J := j + y.

Now (i) obviously holds.
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(ii) We have seen that tj+y < tj ≤ 4
3λ/2

d. Moreover, a tardy machine in I has

finish time f ≥ max(2dt, 2λ−2dt) ≥ λ. Since each P-job is alone on a tardy machine

in I, each has size ≥ λ/2d.

(iii) For a tardy machine with at least 2 jobs in I, f ≥ max(2·2dt, 2λ−2dt) ≥ 4
3λ ≥

2dtj holds. Consequently, we omitted at least as much total job size from schedule I

as from schedule II. Thus, the total work difference on tardy machines is not more

than the remaining work difference: W ′
T −WT ≤ ∑p−1

ζ=0(tj − tJ+ζ) ≤ p · (4
3λ/2

d − t).

2

Definition 3.16 The jobs in the set P of Lemma 3.15 will be called P-jobs.

In Propositions 3.17 and 3.18 we examine, how many P-jobs can be assigned to

a non-tardy machine in II.

Proposition 3.17 Let f̃ ′i be the finish time of a machine i′ after the first P-job is

assigned to i′ in II. Then f̃ ′i > λ. In particular, there are no P-jobs on k′.

Proof. Let 1/2d be the speed of tardy machines, and let si = 2r (−d < r) be

the speed of i′. Let tj be the first job assigned to a tardy machine in II. Since

tj is not assigned to i′, it follows that just before tj is scheduled, i′ has finish time

≥ 2dtj−tj/2r. Let tJ+ζ be the P-job assigned to machine i′. Now we use Lemma 3.15

(ii). After scheduling tJ+ζ , machine i′ has finish time f̃ ′i ≥ 2dtj − tj/2
r + tJ+ζ/2

r >

2dtJ+ζ ≥ λ. For the last inequality observe that tj(2
d − 1/2r) > tJ+ζ(2d − 1/2r).

This follows from tj > tJ+ζ and from 1/2d < 2r. 2

Proposition 3.18 Suppose that a machine i′ of speed si = 2r (r ∈ Z) has finish

time f̃ ′i > λ in some step T of Lpt II. If r ≥ 1, then there are at most 2r − 1 jobs

assigned to i′ after T ; if r ≤ 0, then there are no further jobs assigned to i′.

Proof. The second statement is easy to see: the finish time of k′ at any time step is

at most λ, so k′ would receive a job before i′ of speed si ≤ 1. The proof of the first

statement is similar: after T, the 2rth job t̂ assigned to i′ would have completion

time C ′(t̂ ) > λ+ 2r t̂/2r = λ+ t̂, but assigned to k′, it would have completion time

C ′(t̂ ) ≤ λ+ t̂, a contradiction. 2

Lemma 3.19 Suppose that at least one P-job is assigned to some machine i′ 6= k′.
(i) If i′ is a fast machine of speed si = 2r (r ≥ 1), then it receives at most 2r

P-jobs and wi − w′
i > 2r(1

3λ− t). Furthermore, w′
i ≤ 2r 4

3λ .

(ii) If i′ is a medium or slow (non-tardy) machine, then it receives 1 P-job, and

wi − w′
i >

4
3λ/2

d − t, where the speed of tardy machines is 1/2d.

Proof. The possible number of P-jobs on i′ follows from Propositions 3.17 and 3.18.

We claim that in case (i), wi > 2r 5
3λ; w′

i ≤ 2r 4
3λ , so wi − w′

i > 2r 1
3λ >

2r(1
3λ − t). In (ii), if si = 1/2l (l ≥ 0), then wi > 2λ/2l − t; w′

i ≤ 4
3λ/2

l, so

wi − w′
i >

2
3λ/2

l − t ≥ 4
3λ/2

d − t.

We prove the upper bounds on w′
i and the lower bounds on wi :
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Figure 3.3: Lemma 3.19: A fast (i) and a medium (ii) machine receiving P-jobs in

schedule II.

A P-job has size tJ+ζ ≤ λ/3 by Proposition 3.13 (i). Since tJ+ζ is not assigned

to k′, it has completion time C ′(tJ+ζ) ≤ λ+ tJ+ζ ≤ 4
3λ. The same holds for any job

following P-jobs. So, the upper bounds on w′
i follow.

Finally, the lower bounds on wi follow from (3.d) and from t ≤ λ/3 : in case (i)

wi = 2r · fi, and fi > 2λ − t/2r > 2λ − t ≥ 2λ − λ/3 = 5λ/3; in (ii) wi = fi/2
l >

(2λ− t · 2l)/2l = 2λ/2l − t. 2

Corollary 3.20 If wi ≥ w′
i for every medium and fast machine, then W 6=k ≥W ′

6=k.

Proof. By Proposition 3.14, wi ≥ w′
i on every non-tardy machine. There are p ≥ 0

P-jobs on tardy machines in I. Let i′1, i
′
2, . . . , i

′
ξ be the machines with at least one

P-job in II. By Lemmas 3.15 and 3.19,

W ′
T −WT ≤ p · (

4

3
λ/2d − t) ≤

ξ∑

τ=1

(wiτ − w′
iτ ).

To sum up, the potential total difference W ′
T −WT on tardy machines is compensated

for on non-tardy machines receiving P-jobs in II, and W 6=k ≥W ′
6=k follows. 2

(1) Assume that in schedule II at least 2 jobs are assigned to machine k′.

Lemma 3.21 If there are at least 2 jobs assigned to k′, then W 6=k ≥W ′
6=k.

Proof. We show that if i is a fast or medium machine then fi ≥ f ′i , that is, wi ≥ w′
i.

Combining this with Corollary 3.20 yields the lemma.

(i) First, we claim that fi > 2 on every machine i of speed ≥ 1/2 in I. Since

t is the last job, w′
k ≥ ta1

+ ta2
≥ 1 + t. In schedule I, let w̃k and f̃k be the work

and finish time of k before the last step. From w̃k = wk − t > w′
k − t ≥ 1 we obtain

f̃k > 2. If there were a machine i of fi ≤ 2 and si ≥ 1/2, then machine i would

receive t and not machine k.

(ii) Second, we claim that fi > 3λ/2 on every machine of speed ≥ 1 in I. Note

that t ≤ λ/2 holds, because λ = w′
k ≥ 1+t. Moreover, (3.d) implies fi > 2λ−t/2r ≥

2λ− t ≥ 3λ/2 if r ≥ 0.

Now (i), (ii) and Proposition 3.12 imply the statement of the Lemma, unless i

has speed 1/2. Let si = 1/2. If there is only one job tj assigned to i′ in II, then
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Figure 3.4: Definition 3.22: The (first) jobs on 1/2-machines and 1-machines in I

and II.

tj ≤ ta = 1, since si < s′k, and ta is the first job on k′. Consequently, f ′i ≤ 2, which

together with (i) yields fi ≥ f ′i . If there are at least two jobs assigned to i′, then

according to Proposition 3.13, fi ≥ f ′i . 2

(2) Assume that in schedule II only job ta is assigned to machine k′.

In case (2) the proof is more involved, and consists of further subcases. As

mentioned before, our goal is to get a contradiction by showing either W 6=k ≥W ′
6=k,

or that I has strictly more jobs than II. In the general part we introduce further

notation and derive necessary conditions for w < w′ on a medium machine. As a

side effect, this will prove the theorem if there are no fast machines. Recall that

ta = 1, so λ = f ′k = w′
k/1 = ta/1 = 1.

Definition 3.22 Let ta, ta+1, . . . , tb (a ≤ b) be the first jobs assigned to 1-machines

to the right of k′ in II. Let Tb be the time step, before tb is scheduled.

Let tD be the first job on the leftmost 1/2-machine, and tE be the first job on

the rightmost 1/2-machine in I. Finally, td denotes the first job assigned to medium

machines after Tb + 1 in II, if such a job exists (see Figure 3.4).

According to Proposition 3.1, the jobs ta+1, . . . , tb are well-defined. At time Tb

schedules I and II are the same, except that jobs on 1-machines are shifted due to

machine k′; 1/2-machines and slow machines are empty. Observe that D ≤ E, and

if 1/2-machines exist in II, then td is the first job on the leftmost 1/2-machine. If

job td does not exist at all, then obviously w ≥ w′ holds for all medium machines.

Proposition 3.23 In schedule I, there are at least 3 jobs and strictly more work

than 1 + tE assigned to each living 1-machine.

Proof. Recall, that k is a 1/2-machine, and it receives at least two jobs: the last

job t and a job of size ≥ tE . Thus, wk ≥ tE + t.

Let i be a living 1-machine. Note that i has a first job of size ≤ 1 in both

schedules. By Proposition 3.1, a potential second job on i has size ≤ tE in schedule

I. Suppose that wi ≤ 1 + tE . Then wi ≤ 1 + wk − t < 2wk − t. The last inequality
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follows from wk > w′
k = 1. Therefore, if t were assigned to i instead of k, then

C(t) = (wi + t)/1 < 2wk = wk/
1
2 = fk would hold, a contradiction. Consequently,

wi > 1 + tE , and at least 3 jobs are assigned to i. 2

Proposition 3.24 If wi < w′
i for a medium machine i, then d < D and td > 1 − t.

Proof. To get a contradiction, assume that d ≥ D, that is, schedule II starts to

fill 1/2-machines not before schedule I. Let tg (d ≤ g) be the last job on i′. If i′ is

a 1-machine, then tg is the second job on i′ by Proposition 3.13. Moreover, d ≥ D

implies g ≥ E (see Fig. 3.4). By Proposition 3.23, wi > 1 + tE ≥ 1 + tg = w′
i, a

contradiction.

If i′ is a 1/2-machine, then by Proposition 3.13, tg is the only job on i′. If i < k,

then wi < w′
i is impossible, since II starts to fill machines not before I. If k < i,

then a v ≥ 0 exists, s.t. tg−v is the first job on k in I. Since t is not assigned to i,

wi ≥ wk − t ≥ tg−v ≥ tg = w′
i, a contradiction.

It remains to prove that td > 1 − t. Due to (3.d), w′
i > wi > 2 − t if i is a

1-machine, and w′
i > wi > 1− t if i is a 1/2-machine. Consequently, 1− t < tg holds

in both cases. Now the statement follows from tg ≤ td. 2

Corollary 3.25 If there are no fast machines, then W 6=k ≥W ′
6=k.

Proof. Recall that in II there is at least one 1-machine, and in I there is at least

one 1/2-machine. If there are no fast machines, then according to Proposition 3.1,

b = D must hold (see Fig. 3.4). Therefore, d > b = D, and Proposition 3.24 implies

wi ≥ w′
i on every medium machine i. Finally, Corollary 3.20 yields the proof. 2

We end the general part of case (2), with a technical proposition:

Proposition 3.26 Suppose that in case (2), in schedule II there is a job t̄ < 1 on

a machine ī of speed sī = 2u (u ≥ 1). Then in schedule II

(i) every job t∗ has completion time C ′(t∗) ≤ 1 + t̄(1 − 1/2u) + t∗/2u;

(ii) every living machine has finish time at most f ′ ≤ 3/2 + t̄/2.

Proof. (i) The job t̄ has completion time C ′(t̄ ) ≤ 1+ t̄, otherwise t̄ would have been

scheduled to k′. If job t∗ is scheduled before t̄, it has no larger completion time than

it would have on i, that is C ′(t∗) ≤ 1 + t̄− t̄/2u + t∗/2u = 1 + t̄(1 − 1/2u) + t∗/2u.

If t∗ is scheduled after t̄, then C ′(t∗) ≤ 1 + t∗ ≤ 1 + t̄(1 − 1/2u) + t∗/2u. The last

inequality follows from t∗(1 − 1/2u) ≤ t̄(1 − 1/2u).

(ii) If t∗ is the last job on a living machine, then t∗ ≤ ta = 1, so the finish time

of the machine is at most f ′ ≤ 1 + t̄(1 − 1/2u) + 1/2u = 1 + t̄ + (1 − t̄ )1/2u ≤
1 + t̄+ (1 − t̄ )1/2 = 3/2 + t̄/2. 2

(2.1) Assume that t > 1/3.

If t > 1/3, then Proposition 3.13 (i) implies that all the slow machines are empty

in II. Regarding only medium and fast machines, we will show that if i 6= k, then the

number of jobs assigned to i by I is not smaller than the number of jobs assigned to

i′ by II; whereas schedule I assigns strictly more jobs to machine k, than schedule

II to k′, so we get a contradiction.
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Figure 3.5: Definition 3.28: Zones of a machine of speed 4.

Definition 3.27 Let i be a fast machine. f b
i denotes the common finish time of i

and i′ at time Tb.

Note that if si = 2r (r ≥ 1), then f b
i ≥ 1 − 1/2r, otherwise ta would be assigned

to i′. For the (final) finish time in II, f ′i ≤ 2 holds by Proposition 3.12. Now we

partition the time interval (1, 2] into 2r equal zones of length 1/2r, and partition

(1 − 1/2r, 1] into two further zones (see Figure 3.5):

Definition 3.28 For a fast machine i of speed si = 2r we define the zone zi as

zi =





2r + 1 if 1 − 1/2r ≤ f b
i ≤ 1 − t/2r

2r if 1 − t/2r < f b
i ≤ 1

z if 2 − (z + 1)/2r < f b
i ≤ 2 − z/2r (0 ≤ z ≤ 2r − 1).

We also say that f b
i is in the zith zone.

Proposition 3.29 After Tb, in schedule II there are at most 2r + 1 further jobs

assigned to any fast machine i′ of speed 2r (r ≥ 1).

Proof. Let t̂ be the second job that is put to i′ after Tb. We show that C ′(t̂ ) > 1 = λ.

Then by Proposition 3.18, II assigns at most 2r − 1 further jobs to i′ after t̂, and

this proves our proposition, since 2 + 2r − 1 = 2r + 1.

Suppose first, that in schedule II every job on fast machines is larger than 1/2.

Then C ′(t̂ ) ≥ f b
i + 2 · t̂/2r > 1 − 1/2r + (2 · 1

2)/2r = 1.

Second, suppose that in II there is a job t̄ ≤ 1/2 on a machine ī of speed

sī = 2u (u ≥ 1). We show that for every fast machine w ≥ w′ holds. By Proposi-

tion 3.26 (ii), for any living machine f ′ ≤ 3/2 + 1/2 · 1/2 ≤ 7/4. On the other hand,

on fast machines in I, (3.d) implies that f > 2 − t/2 ≥ 2 − 1/2 · 1/2 = 7/4.

Since wk > w′
k holds, and slow machines are empty, there must be a medium

machine for which w < w′ holds. Therefore, by Proposition 3.24, td > 1 − t ≥ 1/2.

Recall that td is the first job on a 1/2-machine, or the second job on a 1-machine,

so C ′(td) ≥ 2td.

If a job is assigned to i′ after Tb and before td, then this job has size > 1 − t, so

C ′(t̂ ) > f b
i + (1 − t)/2r + t/2r ≥ 1.

On the other hand, suppose that before scheduling td, the finish time of i′ is

still f b
i . Since td is not assigned to i′, it follows that f b

i + td/2
r ≥ 2td, i.e., f b

i ≥
td(2 − 1/2r) > 1/2 · (2 − 1/2r) = 1 − 1/2 · 1/2r. So, C ′(t̂ ) > f b

i + 2/3 · 1/2r > 1. 2
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Proposition 3.30 Let i be a fast machine of speed 2r. If f b
i is in the zith zone, then

after Tb, i gets at least zi jobs in I, and i′ gets at most zi jobs in II.

Proof. Let us first consider schedule I. If zi ≤ 2r, then fi − f b
i > 2 − t/2r−

(2 − zi · 1/2r) ≥ (zi − 1) · 1/2r = (zi − 1) · 1/si. If zi = 2r + 1 then fi − f b
i >

2− t/2r − (1− t/2r) = 1 = 2r ·1/2r. Since after Tb, jobs have size at most 1, schedule

I must assign at least zi jobs to i after Tb.

Now consider schedule II. If zi ≤ 2r − 1, then f b
i > 2 − (zi + 1) · 1/2r =

1 + (2r − (zi + 1)) · 1/2r. Suppose that at least (zi + 1) more jobs are assigned to i′

in II, and the last of these is t̂ ≤ 1. Then i′ has finish time f ′i ≥ f b
i + (zi + 1) · t̂/2r >

1+(2r−(zi+1)+(zi+1))t̂·1/2r = 1+ t̂, where the last inequality exploits 2r ≥ zi+1

and 1 ≥ t̂. But this is impossible, because t̂ would have been assigned to k′.
If zi = 2r then f b

i > 1− t/2r. The completion time of the next job exceeds 1 = λ,

and according to Proposition 3.18, II assigns ≤ 2r−1 further jobs to i′. If zi = 2r +1,

then after Tb II assigns at most zi jobs to i′ by Proposition 3.29. 2

Lemma 3.31 If t > 1/3, then i receives at least as many jobs in schedule I as i′ in

schedule II; k receives at least 2 jobs in I, and k′ receives only 1 job in II.

Proof. (i) To machine k, schedule I assigns at least 2 jobs, otherwise wk > w′
k is

impossible; on the other hand, II assigns only job ta to k′.
(ii) To a 1/2-machine, II assigns at most 1 job by Proposition 3.13 (ii), since

t > 1
3 = λ

3 ; schedule I assigns at least 1 job, otherwise k would not receive a

second job.

(iii) To a 1-machine i, II assigns at most 3 jobs, because the completion time of

the 3rd job exceeds 3 · 1/3 = 1, and any further job would prefer k′ to i′. According

to Proposition 3.23, schedule I assigns at least 3 jobs to a living 1-machine.

(iv) Proposition 3.30 proves the lemma for fast machines. 2

(2.2) Assume that t ≤ 1/3.

Case (2.2) is divided into three subcases, depending on the size of the smallest

job assigned to any fast machine. Although this part is lengthy and intricate, it

applies combinations of the two basic types of arguments, i.e., a comparison of the

total work or of the number of jobs on fast and medium machines. In the rest of the

proof WF , WM , and WS denote the total work assigned to fast, medium and slow

machines in schedule I, disregarding machine k. Similarly, W ′
F , W

′
M , and W ′

S denote

the respective values in schedule II, disregarding k′. Notice that the first three values

total to W 6=k, whereas the second three total to W ′
6=k.

(2.2.1) In II the smallest job assigned to any fast machine has size at

most 1/3.

We claim that on fast machines and on 1-machines w ≥ w′. Since there is

a job t̄ ≤ 1/3 on a fast machine, Proposition 3.26 (ii) implies f ′
i ≤ 5/3 for

any living machine i′ in II. On the other hand, if si ≥ 1, then fi > 2 − t ≥
2 − 1/3 = 5/3 by (3.d). If w ≥ w′ on 1/2-machines as well, then we are done
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by Corollary 3.20. Therefore, we assume that there is a 1/2-machine i, s.t. wi <

w′
i. Now by Proposition 3.24, d < D holds. Furthermore, tb ≥ td > 1 − t ≥

2/3 (see Fig. 3.4). Finally, note that in schedule I, any 1/2-machine has work

w > 1/2(2 − t/ 1
2) = 1 − t ≥ 2/3.

In the following we upper bound W ′
M −WM . The argument is again analogous

to the proof of Theorem 3.3. However, we need to be careful when we combine the

results of the next lemmas with the bound on W ′
T −WT from Lemma 3.15.

Lemma 3.32 Suppose that wi < w′
i holds for a 1/2-machine i. Then there is a set

of q ≥ 0 jobs Q = {td, td+1, . . . , td+q−1} so that

(i) in II all the q jobs are assigned to 1/2-machines and in I all the q jobs are

assigned to fast machines;

(ii) 2
3 < td+q−1 ≤ td ≤ 5

6 and

(iii) W ′
M −WM ≤ q · 1

6 .

The jobs in Q will be called Q-jobs.

Proof. Let {td, . . . , td+y−1} denote the first jobs on 1/2-machines in II, and let

{tD, . . . , tD+y} be the first jobs on 1/2-machines including k, in I (see Fig. 3.4).

We want to compare W ′
M and WM , so we have to exclude machine k from the

comparison.

If D < d+ y, then we omit machines having the common jobs {tD, . . . , td+y−1},
and all the jobs on these machines from both I and II. We claim that thus we omit

more work from schedule I than from schedule II: Let 0 ≤ η ≤ y−1, and tD+η be the

first job assigned to some machine i′ in II, and to another machine i∗ 6= k in I. Then

in I, wi∗ ≥ max(tD+η, 1 − t) ≥ max(tD+η, 2/3), whereas in II, w′
i ≤ max(tD+η, 2/3)

by Proposition 3.13 (ii). For this omitted pair of machines wi∗ ≥ w′
i. If in I the

machine with tD+η is i∗ = k, then instead of k we omit one more machine î from I

(i.e., the one having job td+y). Since now for any 1/2-machine w ≥ wk − t ≥ tD+η

holds, we obtain again wî ≥ w′
i.

If for a remaining 1/2-machine w′
i ≤ 2/3 (e.g., if i′ has at least 2 jobs in II), we

omit i′ and its jobs from II and an arbitrary 1/2-machine i∗ from I. Then wi∗ > 1− t
and w′

i ≤ 2/3.

In total we omitted not less work from I than from II. Furthermore, whenever

there are at least 2 jobs on i′, for the omitted pair of machines even wi∗ − w′
i ≥

(1 − t) − 2/3 = 1/3 − t holds. For some q ≥ 0, Q := {td, td+1, . . . , td+q−1} are the

remaining jobs in II.

(i) Since b ≤ d and d+q−1 < D, by Proposition 3.1 (ii) the jobs {td, . . . , td+q−1}
are scheduled to fast machines (not to 1-machines) in schedule I.

(ii) td ≤ 5
6 because on living machines f ′ ≤ 5/3; also, 2

3 < td+q−1 because we

omitted machines with smaller jobs.

(iii) q machines remained in I and other q machines remained in II. For the total

remaining work W ′
M −WM ≤ ∑q−1

τ=0(td+τ − (1 − t)) ≤ q · ( 5
6 − 2

3) = q · 1
6 . 2

Lemma 3.33 Let i be a fast machine receiving v ≥ 0 of the Q-jobs in I. If si =

2r (r ≥ 1), then v ≤ 2r, and wi − w′
i > v 1

6 . Furthermore, wi > 2r 11
6 .
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Proof. Suppose that v ≥ 2r + 1, and let t̂ be the last Q-job on i. Then C(t̂ ) >

f b
i +(2r+1)t̂/2r ≥ 1−1/2r+(2r+1)t̂/2r = 2t̂+(1−t̂ )(1−1/2r) ≥ 2t̂+ 1

6(1−1/2r) > 2t̂.

But if t̂ were assigned to an empty 1/2-machine in I, then C(t̂ ) = 2t̂ would hold, a

contradiction.

If i is a dead machine, then wi − w′
i > v 2

3 trivially holds.

We claim that wi > 2r 11
6 , and on living machines w′

i ≤ 2r 5
3 , so wi − w′

i >

2r(11
6 − 5

3) ≥ 2r 1
6 . The upper bound on w′

i follows from f ′i ≤ 5/3. The lower bound

on wi holds, since (3.d) implies fi > 2 − 1
3/2 = 11

6 on fast machines. 2

The following corollary completes the proof in case (2.2.1).

Corollary 3.34 In case (2.2.1), W 6=k ≥W ′
6=k.

Proof. We assumed that there are 1/2-machines s.t. w < w′. Besides, there might

be tardy machines with w < w′ and for all other machines w ≥ w′ holds (see

Proposition 3.14).

Suppose first that w ≥ w′ also holds on tardy machines, so WS ≥ W ′
S . By

Lemmas 3.32 and 3.33, there are q Q-jobs on fast machines in I, and

W ′
M −WM ≤ q · 1

6
≤WF −W ′

F . (3.e)

So we obtain W 6=k = WS +WM +WF ≥W ′
S +W ′

M +W ′
F = W ′

6=k.

Second, suppose that there are also tardy machines with w < w′. In Corol-

lary 3.20 we assumed that there are tardy machines so that w < w′, whereas w′ ≤ w

holds on all other machines; in the previous paragraph we assumed that w < w′

on some 1/2-machines, and w′ ≤ w on all other machines. Fortunately, it is now

possible to combine the arguments that we used in these two cases. We proved Corol-

lary 3.20 using Lemmas 3.15 and 3.19. These two lemmas have no preconditions on

schedules I and II. In particular, they state that there are p P-jobs, s.t.

W ′
T −WT ≤ p · (

4

3
· 1/2d − t) ≤

ξ∑

τ=1

(wiτ − w′
iτ ),

where i′1, i
′
2, . . . , i

′
ξ are the machines receiving P-jobs in II, and 1/2d is the speed

of tardy machines. When ’merging’ this inequality with (3.e), special care must

be taken when a machine iτ (1 ≤ τ ≤ ξ) is a 1/2-machine or it is a fast machine

receiving Q-jobs in I. We elaborate on these two cases:

If machine iτ is a 1/2-machine, then i′τ receives ≤ 1 P-job by Lemma 3.19. More-

over, if it does receive a P-job, then ≥ 2 jobs are assigned to i′τ . So in Lemma 3.32

we matched this machine with some i∗ in I, and showed wi∗ − w′
iτ

≥ (1/3 − t) ≥
4
3 ·1/2d−t.We did not exploit this difference in Lemma 3.32. Thus, after matching the

1/2-machines of I and II as described in Lemma 3.32 (instead of the natural

i −− i′ matching), this accounts for the difference on a tardy machine associated

with the P-job, moreover there is no Q-job on i′τ .
Now let some iτ be a fast machine of speed 2r, s.t. iτ receives ≤ 2r Q-jobs

in I and i′τ receives ≤ 2r P-jobs in II. By Lemma 3.33, wiτ > 2r 11
6 ; whereas by
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Lemma 3.19, w′
iτ

≤ 2r 4
3 . So, wiτ − w′

iτ
≥ 2r(11

6 − 4
3) = 2r 1

6 + 2r 1
3 . So the total

difference on this machine wiτ −w′
iτ

covers the necessary amount to balance out the

difference associated with these Q-jobs and P-jobs. 2

(2.2.2) In II the smallest job assigned to any fast machine has size in the

interval (1/3, 2/3].

We show that on fast machines w ≥ w′. Proposition 3.26 (ii) implies f ′i ≤
3/2 + 2/3 · 1/2 = 11/6 for any living machine i′ in II; whereas according to (3.d),

fi > 2 − t/2 ≥ 2 − 1/3 · 1/2 = 11/6. By Corollary 3.20 we may assume that there is

a medium machine i, s.t. wi < w′
i. Therefore, like in the previous case, d < D and

tb ≥ td > 1 − t ≥ 2/3.

Recall that Tb + 1 is the time step, right after tb was scheduled. Note that since

d < D, tb is not assigned to a medium machine in I. For the total work received

by medium machines (disregarding k and k′) before Tb + 1, trivially W b
M

′ ≤ W b
M

holds (see Fig. 3.4). For sake of simplicity, we will provide a unified discussion for

1/2-machines and 1-machines; to this end, from now on we consider jobs and work

on medium machines received after Tb + 1 :

On 1-machines we start the numeration of jobs after Tb+1; also, we only consider

work received after Tb + 1.

In schedule I, any 1/2-machine has work w > 1 − t ≥ 2/3; similarly, each living

1-machine receives work w > 1− t (after Tb + 1). Both bounds follow from (3.d). In

schedule II, every 1-machine receives at most one job (after Tb + 1), since tb > 1− t,

and after the next job the finish time exceeds 1 = λ.

Definition 3.35 We will call a job little if it has size ≤ 1/3 and normal otherwise.

Let T1/3 be the time step, after the last normal job was scheduled. X, and X ′ denote

the number of living 1-machines (disregarding k′), that do not receive any job between

Tb + 1 and T1/3 in schedule I resp. in schedule II.

X and X ′ denote the number of ’empty spaces’ on living 1-machines at time

T1/3. At time T1/3, these X resp. X ′ machines have just one job, and it is of size at

most ta = 1. In case X < X ′ the argument resembles that in (2.2.1). Case X ≥ X ′

will show similarity to (2.2.3).

(2.2.2.1) Assume that X < X ′.

Lemma 3.36 If X < X ′, then a set of jobs Q = {tD1
, . . . tDζ

. . . , tDq} exist, s.t.

(i) each tDζ
is on a medium machine in I, and on a fast machine in II.

(ii) W ′
M −WM ≤ ∑q

ζ=1 min(1/3, 1 − tDζ
).

We will call the above q jobs Q-jobs.

Proof. In schedule I, all first jobs on 1/2-machines are normal jobs. Otherwise

(after Tb + 1) all first jobs on 1-machines would be little jobs and X ≥ X ′ would

hold. Since d < D, in II the first jobs on 1/2-machines are also all normal. We omit

machine k from the 1/2-machines in I.

Assume that tg > 1/3 is the first job on some medium machine i′ in II, and

at the same time, the first job on another medium machine i∗ 6= k in I. The work
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assigned to i′ and i∗ is w′
i ≤ max(2

3 , tg) by Proposition 3.13 (ii), respectively wi∗ ≥
max(1 − t, tg). If i′ or i∗ is a 1-machine the same bounds trivially hold. We omit

all such i∗ − −i′ machine pairs with all their jobs. We observe that wi∗ ≥ w′
i,

since max(1 − t, tg) ≥ max(2
3 , tg). Moreover, if there are at least 2 jobs on i′, then

wi∗ − w′
i ≥ (1 − t) − 2/3 = 1/3 − t holds.

Now consider the X ′ 1-machines in II that are ’empty’ at time T1/3. These

machines all receive at most one little job and work w′ ≤ 1/3 after Tb + 1. We pick

these machines and all other machines of work at most 2/3 from II, and match them

with the X machines having little first jobs, and with some arbitrary other machines

from I. We omit all these machines and jobs as well. Since we had at least X ′ > X

machines to match, we could omit all the X machines from I. For these machine

pairs w − w′ ≥ (1 − t) − 2
3 = 1

3 − t holds.

Finally, we have q ≥ 0 machines left in II, and q machines left in I. Each of

the q machines in I has a first job of size > 1/3. Let these q first jobs be Q =

{tD1
, . . . tDζ

. . . , tDq}. These q jobs are not assigned to medium machines in II, since

they would be first jobs by Proposition 3.13 (ii) and we would have omitted them.

So, they must be assigned to fast machines by Proposition 3.13 (i). If we match the

remaining machines in I and II arbitrarily, for the work difference of such a machine

pair w′ − w ≤ min(1 − 2/3, 1 − tDζ
) holds with the respective job size tDζ

, and this

proves the lemma. 2

Lemma 3.37 Let X < X ′ and the Q-jobs be defined as in Lemma 3.36. Let i be a

living fast machine, si = 2r (r ≥ 1), then in II i′ receives ≤ 2r − 1 Q-jobs. If t̂ is

the last Q-job assigned to i′, then wi − w′
i ≥ (2r − 1) min(1/3, 1 − t̂ ).

Proof. Recall that d < D, and Q-jobs are not scheduled before tD. Let f̃ ′i be the

finish time of i′ before td is scheduled. Since td is not assigned to i′, but to a medium

machine, f̃ ′i + td/2 ≥ 2td, so f̃ ′i ≥ 3
2 · td. Therefore, f̃ ′i ≥ 3

2 · td > 3
2 · (1− t) ≥ 3

2 · 2
3 = 1,

and by Proposition 3.18, i′ receives ≤ 2r − 1 further jobs.

Let t∗ be the very last job – not necessarily Q-job – on i′. Suppose first that t∗ >
2/3. Since a job t̄ ≤ 2/3 is assigned to a fast machine of speed 2u , Proposition 3.26

(i) implies f ′i ≤ 1+ 2
3(1−1/2u)+t∗/2u ≤ 5/3+(t∗−2/3)·1/2u ≤ 5/3+(t∗−2/3)·1/2 =

4/3 + t∗/2. Using (3.d) and 1/3 ≥ 1 − t∗ we obtain

fi − f ′i ≥ (2 − 1/3 · 1/2r) − (4/3 + t∗/2) = (1/2 − 1/2r) · 1/3 + (1 − t∗) · 1/2 ≥

≥ (1/2 − 1/2r) · (1 − t∗) + (1 − t∗) · 1/2 = (1 − 1/2r)(1 − t∗).

wi − w′
i ≥ (2r − 1)(1 − t∗) ≥ (2r − 1)(1 − t̂ ).

Now suppose that t∗ ≤ 2/3. Then C ′(t∗) ≤ 5/3, otherwise t∗ would have been

assigned to k′. Consequently, fi − f ′i ≥ 2 − 1/3 · 1/2r − 5/3 = (1 − 1/2r) · 1/3, and

wi − w′
i ≥ (2r − 1) · 1/3. 2

Corollary 3.38 In case (2.2.2.1), W 6=k ≥W ′
6=k.
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Proof. If w ≥ w′ on every slow machine, then WS ≥W ′
S . According to Lemmas 3.36

and 3.37, q Q-jobs exist, s.t.

W ′
M −WM ≤

q∑

ζ=1

min(1/3, 1 − tDζ
) ≤WF −W ′

F ,

and the statement follows.

If there is a tardy machine, for which w < w′ holds, then in addition to Q-jobs,

there are p P-jobs assigned to medium and slow machines in II s.t.

W ′
T −WT ≤ p · (

4

3
· 1/2d − t) ≤

ξ∑

τ=1

(wiτ − w′
iτ ),

where i′1, i
′
2, . . . , i

′
ξ are the machines receiving P-jobs in II, and 1/2d is the speed of

tardy machines. Since P-jobs are little jobs, in case (2.2.2) they are not assigned to

fast machines.

After the (re-)matching of medium machines as done in Lemma 3.36, we want

to apply the arguments of Corollary 3.20 and Lemmas 3.36 and 3.37. We need to

examine the case when a P-job is assigned to a medium machine i′τ : By Lemma 3.19,

i′τ receives 1 P-job, and if it is a 1/2-machine, then ≥ 2 jobs are assigned to i′τ , so

w′
iτ

≤ 2/3, by Proposition 3.13 (ii); if i′τ is a 1-machine then w′
iτ

≤ 2/3 since i′τ gets

one job after Tb + 1. In Lemma 3.36 we matched this machine with some i∗ in I, and

showed wi∗ − w′
iτ

≥ (1/3 − t) ≥ 4
3 · 1/2d − t. We did not exploit this difference in

Lemma 3.36. Thus, similarly to Corollary 3.34, merging the two above inequalities

yields the proof. 2

(2.2.2.2) Assume that X ≥ X ′.

Lemma 3.39 If X ≥ X ′, then W 6=k ≥W ′
6=k.

Proof. Suppose that X > 0. Then there is a 1-machine h in I, having a little job as

first job (after Tb+1), consequently there is no normal job assigned to a slow machine

in I: such a normal job would have been assigned to h instead of a slow machine.

So, by Proposition 3.13 (i), both in I and in II, all the normal jobs are assigned to

medium and fast machines. By the same argument, there is no normal job assigned

to a 1/2-machine as second job in I and II. Therefore, at the intermediate step T1/3,

for the total work W̃F + W̃M + w̃k = W̃ ′
F + W̃ ′

M + w̃′
k and w̃k ≤ w̃′

k, consequently

W̃F +W̃M ≥ W̃ ′
F +W̃ ′

M hold. Now we compare the total amount of little jobs – jobs

received after T1/3 – on medium and fast machines in I and II.

Fast machines don’t get little jobs in II in case (2.2.2); 1-machines receive at

most one job after Tb + 1 in II. On 1-machines, the total work of little jobs is at

most 1
3X

′ in schedule II; while it is at least (1− t)X ≥ (1− t)X ′ = (1
3 − t)X ′ + 2

3X
′

in schedule I.

At time T1/3, on each 1/2-machine there is at most 1 job in both schedules (see

above), and for each of them w̃′ ≥ w̃ holds since d < D. If 2/3 ≤ w̃′, then the

1/2-machine gets no more job in II, by Proposition 3.13 (ii). Let i be a 1/2-machine
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and w̃i ≤ w̃′
i < 2/3 at time T1/3. In schedule I i receives at least (1 − t − w̃i) ≥

(1
3 − t) + 2

3 − w̃i more work; while in schedule II i′ receives at most 2
3 − w̃′

i ≤ 2
3 − w̃i

more work.

Let y be the number of 1/2-machines s.t. w̃′ < 2/3 at time T1/3. We have shown

above that WF +WM ≥W ′
F +W ′

M + (y +X ′)(1
3 − t) holds after scheduling all the

jobs. If w ≥ w′ for every slow machine, then obviously W 6=k ≥ W ′
6=k. Otherwise, on

tardy machines W ′
T −WT ≤ p · (4

3 · 1/2d − t) ≤ p · (1
3 − t), where p is the number

of P-jobs. Note that fast machines don’t receive P-jobs, and medium machines

receive altogether at most y + X ′ P jobs in II. So the part (y + X ′)(1
3 − t) of

the above difference is enough to compensate for P-jobs on medium machines, and

Corollary 3.20 applies.

Finally, let X = X ′ = 0. If there is a 1/2-machine in I with a little job as first

job, then there is no normal job on slow machines in I (this normal job would rather

have been assigned to the 1/2-machine that was still empty), and the proof is the

same as above. If on all 1/2-machines the first job is normal in I, then the proof is

the same as in case (2.2.2.1). 2

(2.2.3) In II all jobs assigned to fast machines are larger than 2/3.

Similarly to case (2.1), the proof of this case is based on comparing the number

of jobs assigned to fast and medium machines in I and II. Let T2/3 be the time step

after the last job of size > 2/3 was scheduled. Note that after T2/3, no job is assigned

to any fast machine in II.

We may assume Tb < T2/3. Otherwise w ≥ w′ on fast machines, and tb ≤
2/3 ≤ 1 − t implies that w ≥ w′ on medium machines, by Proposition 3.24. So

Corollary 3.20 immediately yields W 6=k ≥W ′
6=k.

We distinguish two subcases:

(2.2.3.1) Assume that between Tb and T2/3 at most 2r jobs are assigned to

any fast machine of speed 2r (r ≥ 1) in schedule II.

We merge the last two zones of Definition 3.28:

Definition 3.40 Let i be a fast machine of speed 2r (r ≥ 1). Let f b
i and the zones

zi be defined as in Definitions 3.27 and 3.28. The new zones z̄i are

z̄i =

{
zi if zi ≤ 2r − 1

2r if 1 − 1/2r ≤ f b
i ≤ 1.

A hole on a medium or fast machine, roughly means an empty space, that might

or will be filled with one job:

Definition 3.41 Suppose that i is a fast machine of speed 2r, and f b
i is in the z̄ith

zone. At some time step after Tb, machine i has xi holes if it received z̄i − xi < z̄i

jobs after Tb, and 0 holes otherwise.

A 1/2-machine has 1 hole if it is empty, and 0 holes otherwise. A 1-machine

has 1 hole if it has 1 job of size at most ta = 1, and 0 holes otherwise; k′ has 0

holes.
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Note that at time Tb + 1, the total number of holes in I and II is the same:

machine k′ has 0 holes in II and k has 1 hole in I; but the machine receiving job tb
in I, has one hole less in I than in II.

Now X̄ and X̄ ′ denote the number of empty spaces (holes) on fast and medium

machines at time T2/3:

Proposition 3.42 Let xi be the number of holes on machine i in schedule I, resp.

x′i be the number of holes on machine i′ in schedule II at time T2/3. Let X̄ =
∑

i xi

and X̄ ′ =
∑

i x
′
i. Then X̄ − X̄ ′ ≥ v, where v is the number of jobs assigned to slow

machines in I before T2/3.

Proof. In schedule II, slow machines do not receive jobs before T2/3, by Proposi-

tion 3.13 (i). A 1/2-machine receives at most 1 job before T2/3, by Proposition 3.13

(ii); a 1-machine receives at most 1 job between Tb + 1 and T2/3, because after

two jobs of size > 2/3, the machine has finish time > 1. A fast machine i receives

≤ z̄i jobs by Proposition 3.30 and because we are in case (2.2.3.1). Thus every job

between Tb + 1 and T2/3, fills exactly one hole in II.

In schedule I, slow machines receive v jobs between Tb + 1 and T2/3, so at least v

jobs do not fill any hole on medium or fast machines in I. We obtain X̄ ≥ X̄ ′ + v. 2

Proposition 3.43 After T2/3, a medium or fast machine i′ receives ≤ 2
3x

′
i further

work in schedule II; machine i 6= k receives ≥ (1 − t)xi ≥ 2
3xi further work in

schedule I. Machine k receives ≥ (1 − t)xk + t further work in I.

Proof. First, consider schedule II. Large machines do not get further jobs after

T2/3. If a 1/2-machine i receives only one more job, this job has size at most 2/3;

if it receives ≥ 2 jobs, then by Proposition 3.13 (ii) it receives total work w′
i ≤ 2/3.

On a 1-machine, only the last job may have completion time larger than 1 (because

k′ has finish time 1). Since tb > 2/3, this implies that even if the 1-machine gets

more than 1 further jobs, the total work received after T2/3 is at most 2/3.

In schedule I, if there is a hole on a medium machine at T2/3, then it receives

further work ≥ 1 − t, by (3.d). If there are xi > 0 holes on a fast machine i at T2/3,

then the finish time f̃i of i at T2/3 is not higher than the xith zone (see Figure 3.5).

Let si = 2r, then fi − f̃i > 2 − t/2r − (2 − xi · 1/2r) ≥ (1 − t)xi · 1/2r. So i receives

more than (1 − t)xi total further work in I.

If xk = 0, then k is assigned job t after T2/3; if xk = 1, then k is empty at T2/3,

and later it receives more than w′
k = 1 further work. 2

Lemma 3.44 In case (2.2.3.1), for the final total work W 6=k +wk > W ′
6=k +w′

k holds.

Proof. Suppose first, that there were no P-jobs, i.e., w ≥ w′ for every slow machine.

Let {tj1 , . . . , tjτ , . . . , tjv} be the jobs assigned to slow machines in I before T2/3. Note

that if job tjτ > 2/3 is assigned to a slow machine in I, then on this slow machine

w−w′ ≥ tjτ − 1/3, by Proposition 3.13 (i). In total, WS −W ′
S ≥ ∑v

τ=1 tjτ − v · 1/3.
Now we provide a lower bound on ∆ := (WF +WM +wk)− (W ′

F +W ′
M +w′

k). At

time T2/3, the difference (W̃F + W̃M + w̃k) − (W̃ ′
F + W̃ ′

M + w̃′
k) = −(tj1 + . . .+ tjv).
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Due to Proposition 3.43, after T2/3 these machines receive at most 2
3 · X̄ ′ more work

in II, and at least (1− t) · X̄+ t more work in I. Consequently, using Proposition 3.42

∆ ≥ (1 − t) · X̄ + t− 2

3
· X̄ ′ −

v∑

τ=1

tjτ ≥

(1 − t) · (X̄ ′ + v) + t− 2

3
· X̄ ′ −

v∑

τ=1

tjτ ≥

X̄ ′(1/3 − t) + v · 2/3 + t−
v∑

τ=1

tjτ .

Summing up, (W 6=k +wk) − (W ′
6=k +w′

k) = (WS +WF +WM +wk) − (W ′
S +W ′

F +

W ′
M + w′

k) ≥ X̄ ′(1/3 − t) + v · 1/3 + t > 0.

Now we consider the case when there are p > 0 P-jobs, i.e., a tardy machine

i exists s.t. wi < w′
i. Note that since fast machines do not receive jobs of size

≤ 2/3, P-jobs are assigned to slow and medium machines in II. By Lemma 3.15,

W ′
T −WT ≤ p ·(4

3 ·1/2d−t) ≤ p ·(1/3−t), where 1/2d is the speed of tardy machines.

Medium machines with 1 hole, resp. the ≤ v slow machines involved in the above

calculation receive altogether at most v + X̄ ′ P-jobs by Lemma 3.19. The part

v · 1/3 + X̄ ′(1/3− t) in the above difference accounts for these ≤ v+ X̄ ′ P-jobs; for

P-jobs on other slow machines Lemma 3.19 and applies directly. 2

(2.2.3.2) There is a fast machine of speed 2u receiving at least 2u + 1 jobs

between Tb and T2/3 in schedule II.

After a technical proposition, the proof follows the same lines as in case (2.2.3.1),

with only slight modifications.

Proposition 3.45 In schedule II, after T2/3 there are no holes on 1/2-machines,

and for the finish time of any 1-machine f̃ ′ > 5/6 holds.

Proof. Consider schedule II at the time step T2/3. Let ī be a fast machine of speed

2u, receiving 2u + 1 jobs after Tb. Let t̄ be the last of these jobs. Then ī has finish

time f ′
ī
≥ 1 − 1/2u + (2u + 1)t̄/2u ≥ 2t̄. Thus, if there were an empty 1/2-machine,

then t̄ would have been assigned to this machine, and C ′(t̄ ) = 2t̄ would hold. So,

there is no empty 1/2-machine at time T2/3.

If there were a 1-machine with finish time at most 5/6, then by the same ar-

gument, this would imply 1 − 1/2u + (2u + 1)t̄/2u < 5/6 + t̄, that boils down to

(1 − t̄ )/2u > 1/6. The latter contradicts to t̄ > 2/3 and u ≥ 1. 2

Now we modify again the last two zones of Definition 3.28:

Definition 3.46 Let i be a fast machine of speed 2r, and zi be defined as in Defi-

nition 3.28. The new zones ẑi are

ẑi =





zi if zi ≤ 2r − 1

2r if 1 − 2
3 · 1/2r < f b

i ≤ 1

2r + 1 if 1 − 1/2r ≤ f b
i ≤ 1 − 2

3 · 1/2r.
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We define the number of holes at some time step after Tb on fast and medium

machines analogously to Definition 3.41, with the zones z̄i replaced by ẑi in the

definition. Like before, at time Tb + 1 the total number of holes is the same in I and

in II. Let T1/3 and T1/2 be the time steps after the last job of size > 1/3 resp. > 1/2

was scheduled.

Proposition 3.47 Let x̂i be the number of holes on i in I, and x̂′i be the number of

holes on i′ in II at time T1/3. Let X̂ :=
∑

i x̂i and X̂ ′ :=
∑

i x̂
′
i. Then X̂ − X̂ ′ ≥ v,

where v is the number of jobs assigned to slow machines in I before T1/3. The same

statement holds, having T1/3 replaced everywhere by T1/2.

Proof. Like in Proposition 3.42, it is enough to show that every job received between

Tb + 1 and T1/3 fills a hole in schedule II.

By Proposition 3.13 (i), slow machines do not receive jobs before T1/3. We

claim that a medium machine receives at most 1 job between Tb + 1 and T1/3. For

1/2-machines this follows from Proposition 3.13 (ii). Since we assumed that tb > 2/3,

such a job on a 1-machine has completion time more than 1, and any further job

would prefer machine k′.
It remains to show that a fast machine i′ receives at most ẑi jobs. For ẑi ≤ 2r −1

the proof is the same as in Proposition 3.30. The same way as in Proposition 3.45,

it follows that in II, a fast machine i′ has finish time > 1 at time T2/3. So, if ẑi = 2r,

then after one job, respectively if ẑi = 2r + 1, then after at most two jobs of size

> 2/3, i′ has finish time > 1. By Proposition 3.18, at most 2r − 1 further jobs are

put here. 2

Proposition 3.48 Let x̂i denote the number of holes on a machine i at time T1/3

(resp. T1/2). After T1/3 (resp. T1/2), a 1-machine with 1 hole receives at most 1/3

(resp. at most 1/2) further work in schedule II.

A medium or fast machine i 6= k receives at least (2/3− t)x̂i ≥ 1
3 x̂i further work

in schedule I. Machine k receives at least (1 − t)x̂k + t further work.

Proof. In schedule II, disregarding slow machines, only 1-machines with 1 hole

might receive jobs after T2/3, since the finish time of every other medium machine

exceeds 1. Moreover, since at T2/3 the finish time of a 1-machine is > 5/6, it is easy

to show that the total work received after T1/3 is ≤ 1/3; whereas the total work

received after T1/2 is ≤ 1/2.

For schedule I the proof is the same as in Proposition 3.43, except when for a fast

machine i of speed si = 2r, f b
i is in zone ẑi = 2r + 1 at time Tb. In this case, after

ẑi−x̂i more jobs, the finish time of i is f̃i ≤ 1−2/3·1/2r+(2r+1−x̂i)·1/2r = 2−2/3·
1/2r−(x̂i−1) ·1/2r. Therefore, due to (3.d), at least (x̂i−1)+2/3− t ≥ x̂i ·(2/3− t)
more work is assigned to i in I. 2

Lemma 3.49 In case (2.2.3.2), W 6=k + wk > W ′
6=k + w′

k.

Proof. Suppose first, that no P-jobs are assigned to slow machines in II. In this

case the proof follows the same lines as in Lemma 3.44:
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Let {tjτ }v
τ=1 be the jobs assigned to slow machines in I before T1/3. If job tjτ >

1/3 is assigned to a slow machine in I, then on this slow machine w−w′ ≥ tjτ −1/3.

(If at least 2 jobs are on one slow machine in I, then even stronger inequalities hold.)

In total, WS −W ′
S ≥ ∑v

τ=1 tjτ − v · 1/3.

After T1/3, medium and fast machines and k receive at most 1
3 · X̂ ′ more work in

II and at least (2/3 − t) · X̂ + t more work in I by Proposition 3.48. Consequently,

(WF +WM + wk) − (W ′
F +W ′

M + w′
k) ≥

(2/3 − t) · X̂ + t− 1/3 · X̂ ′ −
v∑

τ=1

tjτ ≥

(2/3 − t) · (X̂ ′ + v) + t− 1/3 · X̂ ′ −
v∑

τ=1

tjτ ≥

X̂ ′(1/3 − t) + v · 1/3 + t−
v∑

τ=1

tjτ .

To sum up, (WS +WM +WF +wk)− (W ′
S +W ′

M +W ′
F +w′

k) ≥ X̂ ′(1/3− t) + t > 0.

Like in the proof of Lemma 3.44, the part X̂ ′(1/3− t) of the difference compensates

for the ≤ X̂ ′ potential P-jobs assigned to 1-machines in II.

Second, let there be P-jobs assigned to slow machines in II. Recall that P-jobs

are assigned to faster than tardy machines in II, which implies 1/2d ≤ 1/23, for the

speed of tardy machines, and by Proposition 3.13 (i), t ≤ 1/6. We consider X̂ ′, X̂
and {tjτ }v

τ=1 at time T1/2. We obtain WS −W ′
S ≥ ∑v

τ=1 tjτ − v · 1/3. After T1/2,

medium and fast machines receive at most 1/2 · X̂ ′ more work in II and at least

(2/3 − t) · X̂ + t ≥ 1/2 · X̂ + t more work in I. So,

(WF +WM + wk) − (W ′
F +W ′

M + w′
k) ≥

(2/3 − t) · X̂ + t− 1/2 · X̂ ′ −
v∑

τ=1

tjτ ≥

X̂ ′(1/6 − t) + v · 1/2 + t−
v∑

τ=1

tjτ .

To sum up, (WS+WM +WF +wk)−(W ′
S +W ′

M +W ′
F +w′

k) ≥ v·1/6+X̂ ′(1/6−t)+t >

0. Now we have d ≥ 3, so W ′
T −WT ≤ p · (4

3 · 1/2d − t) ≤ p · (1/6− t). Therefore, the

part v · 1/6 + X̂ ′(1/6 − t) of the difference compensates for the ≤ v + X̂ ′ P-jobs by

the same argument as in Lemma 3.44. 2

2 Theorem 3.4

3.5 The ’one fast machine’ case

In this section we take a detour to the ’one fast machine’ case. While trying to prove

a better than 1.5 approximation bound for Lpt on 2-divisible machines, we found a

tight asymptotic worst case bound of
√

3+1
2 ≈ 1.3660 for speed vectors of the form
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〈1, 1, . . . , 1, s〉. As noted earlier, the previous best lower and upper bounds in this

case were 4/3 and 3/2, respectively [42]. Moreover, the bound 4/3 was conjectured

to be tight.

The worst case ratio of Lpt on 2-divisible machines will be (re)discussed in

Sections 3.6 and 3.7. The lower bound instances and upper bound proofs given

there, are refined versions of those in this chapter.

3.5.1 A lower bound:
√

3+1
2

− ε

In this section we present an instance of the Q||Cmax problem with m− 1 machines

of speed 1 and one machine of speed 2r (r ∈ N). Since our primary concern are

2-divisible machines, our example speed vector is 2-divisible. We remark however,

that an arbitrary (sufficiently large) s would do in place of the fast speed 2r. Note

also, that Lpt with arbitrary tie-breaking produces the same schedule of the in-

stance. We will call the machine of speed 2r the fast machine.

Theorem 3.6 For any ε > 0 there is a speed vector 〈s1 = 1, . . . , sm−1 = 1, sm = 2r〉
and a job vector 〈t1, . . . , tn〉, such that for this instance Lpt/Opt > (

√
3 + 1)/2 − ε.

Proof. The proof is given by Instance A below. The approximation ratio of Lpt

on this instance can be arbitrarily close to (
√

3 + 1)/2 ≈ 1.366. In particular, Lpt >√
3 + 1 − ε′ and Opt < 2 + ε′, where ε′ > 0 is arbitrarily small if m and r are large

enough.

Instance A. Let x = 3 −
√

3 ≈ 1.268 and y =
√

3 − 1 ≈ 0.732. We start by

describing the assignment of jobs to machines in Lpt (see Figure 3.6): The fast

machine first receives 2r − 1 jobs of size x; then it is filled with as many jobs of size

1 as fit below time 2; finally it gets 2r − 1 jobs of size y. At this point the number of

jobs on the fast machine is 2 · (2r − 1) + b2 · 2r − (2r − 1) · xc, and the total work on

the fast machine amounts to at least (2r−1) ·x+2 ·2r − (2r−1) ·x−1+(2r −1) ·y =

2r(2 + y) − 1 − y.

The set of 1-machines is divided into blocks. The number of 1-machines in one

block is (x− 1)/δ, where δ > 0 is arbitrarily small and it divides x− 1 evenly. The

Lpt schedule on a block is as follows: Each 1-machine has a large and a small job.

The large jobs range from x − δ down to 1 by steps of δ and the small jobs range

from y up to 1 − δ by steps of δ. Every 1-machine has total work y + x− δ = 2 − δ.

We claim that if 1/2r < δ, then the above assignment is an Lpt schedule: all

x-jobs on the fast machine are completed by time x − x/2r; after that, 1-machines

receive their first jobs, all of size less than x. These jobs would have higher completion

time on the fast machine m. Since an additional 1-job on a 1-machine would not

be completed before time 2, the 1-jobs are all assigned to m. Now the 1-machines

receive their second jobs with completion time 2 − δ < 2 − 1/2r where 2 − 1/2r is

a lower bound on the current completion time of m. Finally, after (at most) 2r − 1

jobs of size y, a last y-job is assigned to one of the 1-machines, yielding makespan

(y+2−δ) =
√

3+1−δ. On the fast machine this last job would have been completed

after (2r(2 + y) − 1)/2r =
√

3 + 1 − 1/2r >
√

3 + 1 − δ.
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3 +1

x−δ

δ1−
y
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a block of 1−machines fast machine

y

2

Figure 3.6: Instance A: the assignment of jobs before the last job in Lpt.

Now we rearrange the jobs on the machines in order to get the optimum schedule.

We claim that a block of 1-machines can be used to exchange an x-job for a 1-job or

to exchange a 1-job for a y-job. The first happens if we shift the large jobs within

a block, insert a job of size x instead of x − δ, and take out a job of size 1. The

second happens, if we shift the small jobs within a block, insert a 1-job and take out

a y-job. In either case the new finish time on 1-machines will be 2.

Let the number of blocks be 2 · (2r − 1) + b2 · 2r − (2r − 1) · xc, so that every

job of size x or size 1 on the fast machine can eventually be exchanged for a y-job.

Moreover, we put the very last job of size y on the fast machine. Now the total

work on the fast machine is at most y · (2(2r − 1) + 2 · 2r − (2r − 1) · x) + y =

y · 4 · 2r − y · 2r · x + y(x − 1) = 2r · y · (4 − x) + y · (x − 1) = 2r · 2 + y · (x − 1).

Thus, the optimum makespan is at most 2 + y(x− 1)/2r. Clearly, the desired bound

is obtained if ε′ > δ > 1/2r > y(x− 1)/2r for some appropriate ε′ (if for the ε given

in the theorem 1 − ε > 4√
3+3

holds, then we can take ε′ = ε).

We also note concerning the second schedule, that since all jobs on the fast

machine have the smallest job size, we could only get a better schedule, if the fast

machine received less jobs; but then there would be at least 3 jobs on one of the

1-machines, resulting in a larger makespan. Thus, this schedule is really optimal. 2

3.5.2 Tight upper bound

We consider the special case of Q||Cmax when s1 = s2 = . . . = sm−1 = 1 and

sm = s > 1. We show that in this case the bound given in Section 3.5.1 is tight:

Theorem 3.7 For any instance of the Q||Cmax problem for which s1 = s2 = . . . =

sm−1 = 1 and sm = s > 1 holds, Lpt/Opt < (
√

3 + 1)/2.

In the rest of the section we prove Theorem 3.7. The proof is by contradiction:

we consider a minimal counterexample, i.e., an instance with minimum number of

machines, for which Lpt/Opt ≥ (
√

3 + 1)/2. We fix any optimal schedule of this

instance and denote it by Opt.

This proof – and also the proof in Section 3.6 – is based on the following

elementary technique: Our starting point is the Lpt schedule. First we rearrange

the jobs of Lpt within 1-machines. Then we pick jobs {t∗j} of machine m and put

them to 1-machines according to how they are scheduled in Opt. We will have to
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put other jobs from 1-machines back to machine m. This exchanging process will

be carried out sometimes one by one, other times by moving sets of jobs. We will

calculate the minimum possible ratio: (work moved to m)/(work moved from m).

This ratio depends on which time period of machine m the jobs {t∗j} are taken from.

Proposition 3.52 is a basic technical tool for distinguishing these time periods.

For sake of convenience, we assume w.l.o.g. that Opt = 2, and so Lpt ≥
√

3 + 1.

Let t = tn be the size of the last job, and fi denote the finish time of machine i

before the last job is scheduled. Lpt ≥
√

3 + 1 implies fi ≥
√

3 + 1 − t for 1 ≤ i ≤
m − 1 and fm ≥

√
3 + 1 − t/s. We will carry out a case analysis, and obtain that

Lpt/Opt ≥ (
√

3 + 1)/2 is impossible in all of the cases. Lemmas 3.50, 3.54 and 3.55

yield the proof of Theorem 3.7.

Analogues to the following lemma can already be found in [42].

Lemma 3.50 If t ≤
√

3 − 1, or t > 1, then Lpt
Opt ≥

√
3+1
2 is impossible.

Proof. If t ≤
√

3 − 1, then for each machine fi ≥
√

3 + 1 − t ≥ 2. So for the

total amount of work
∑n

j=1 tj >
∑n−1

j=1 tj =
∑m

i=1 si · fi ≥ (m − 1 + s) · 2 holds,

contradicting Opt = 2.

Now let t > 1. Since t is the smallest job, now in Opt there is one job of size at

most 2 on every 1-machine. Let {t∗1, . . . , t∗m−1} be the set of these jobs. It follows

from the principle of domination that for all 1 ≤ i ≤ m−1, the job t∗i is strictly larger

than any job assigned to a 1-machine in Lpt. Therefore, in Lpt t∗i is on machine

m, and has completion time at most 2. Otherwise it would have been assigned to a

1-machine. For every 1-machine in Lpt fi ≥ max(t,
√

3 + 1− t) ≥ (
√

3 + 1)/2 > 4/3

holds. Let W ∗ =
∑m−1

i=1 t∗i , be the total work on 1-machines in Opt. Furthermore,

let W denote the total work on 1-machines in Lpt, disregarding tn. Then W/W ∗ ≥
(4/3)/2 = 2/3, since this ratio holds on every 1-machine.

Now we exchange the jobs of the Lpt schedule in order to get Opt: First we

put tn on machine m, so that m has total work at least (
√

3 + 1)s. Second, we put

the jobs t∗i from machine m – from below time 2 – to 1-machines, and all the jobs

from 1-machines to m. Now the reduced amount of work on machine m is at least

(W/W ∗) · 2s+ (
√

3 − 1)s, and this work can be done in time 2, so

W

W ∗ · 2s+ (
√

3 − 1)s ≤ 2s

2

3
· 2 + (

√
3 − 1) ≤ 2

a contradiction. 2

In the rest of the proof of Theorem 3.7, we assume
√

3− 1 < t ≤ 1. Now in Opt

there are at most 2 jobs on every 1-machine, since 3(
√

3 − 1) > 2. Furthermore, in

Lpt every 1-machine has finish time fi ≥
√

3 + 1 − 1 =
√

3. Thus, on a 1-machine

in Lpt there is either a job of size ≥
√

3, or at least two jobs.

Let ta ≥ ta+1 ≥ . . . ≥ ta+m−2 = tb be the first jobs assigned to the 1-machines in

Lpt as described by Proposition 3.1 (i) (see Fig. 3.7). Let t′a ≤ t′a+1 ≤ . . . ≤ t′b denote
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Figure 3.7: The first two jobs on 1-machines in Lpt.

the second jobs on the respective machines1 if they exist (these are not consecutive

jobs). If t′a, t
′
a+1, . . . , t

′
a+v do not exist, then let t′a = t′a+1 = . . . = t′a+v = 0.

Proposition 3.51 Let ta > 2 − t. In Opt let t′ be a job on a 1-machine and t′′ be

another job on the same machine if such a t′′ exists. Now t′ > t′a holds. Furthermore,

if t′ ∈ {t′a, t′a+1, . . . , t
′
b}, then t′′ ∈ {ta, ta+1, . . . , tb}.

Proof. If t′′ does not exist, then let t′′ = 0. Observe, that t′′ ≤ 2 − t < ta,

otherwise t′′ and t′ would not fit onto one machine in Opt. Therefore, by the

principle of domination t′ > t′a. Moreover, if t′′ is not one of ta, ta+1, . . . , tb, then

t′′ ≤ tb. Consequently, t′ > t′b = max(t′a, t
′
a+1, . . . , t

′
b), so t′ 6∈ {t′a, t′a+1, . . . , t

′
b}. 2

Proposition 3.52 Let t∗ be a job assigned to machine m in Lpt and to a

1-machine in Opt. Let T ∗ denote the completion time of t∗ in Lpt. If t∗ > ta, then

T ∗ ≤ t∗ ≤ 2. If t∗ > t′a, then T ∗ ≤ max(2, tb + t∗).

Proof. If t∗ > ta, then T ∗ ≤ t∗, otherwise t∗ would have been assigned to a

1-machine before ta.

If t∗ ≤ ta then, by the principle of domination, on the 1-machine of t∗ in Opt

there is another job. Let t∗∗ denote this job.

Suppose first, that t∗∗ ≤ tb, then t∗ > t′b, so T ∗ ≤ t∗ + tb, otherwise t∗ would

have been scheduled on top of tb.

Second, let t∗∗ = ta+v be one of the first jobs on 1-machines. Then t∗ > t′a+v,

and T ∗ ≤ ta+v + t∗ = t∗∗ + t∗ ≤ 2, otherwise t∗ would have been assigned as a second

job after ta+v. Finally, if t∗∗ > ta, then t∗ + ta < t∗ + t∗∗ ≤ 2, so either T ∗ ≤ 2, or

t∗ ≤ t′a, otherwise t∗ would have been assigned as a second job after ta. 2

Corollary 3.53 Let t∗ and T ∗ be defined as in Proposition 3.52. If ta > 2− t, then

T ∗ ≤ max(2, tb + t∗).

Proof. Since ta > 2− t, by Proposition 3.51, t∗ > t′a. Now Proposition 3.52 implies

T ∗ ≤ max(2, tb + t∗). 2

Lemma 3.54 If
√

3 − 1 < t ≤ 1 and tb ≤ 1, then Lpt
Opt ≥

√
3+1
2 is impossible.

1A different order, due to jobs of equal size would be easy to handle by reordering the 1-machines.
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Proof. As before, we put tn on machine m, so that it has total work at least

(
√

3 + 1)s. Let t∗ ≤ 2 be a job that is on a 1-machine in Opt, but on machine m in

Lpt. Then either t∗ ≥ ta or t∗ ≤ tb ≤ 1.

We consider two cases. Suppose first, that ta > 2 − t. By Corollary 3.53, the

completion time of any t∗ in Lpt is at most max(2, tb + t∗) = 2. We start by

rearranging the jobs within 1-machines in Lpt: From 1-machines with at least two

jobs, we match jobs that belong to the same 1-machine in Opt, and delete the

matched pairs of jobs together with a 1-machine for each pair. As a consequence of

Proposition 3.51, any job not in {ta, ta+1, . . . , tb} that is on a 1-machine in Opt, is

by now deleted. We can rearrange the remaining jobs so, that on every remaining

1-machine there is either one job of size at least
√

3, or (at least) two jobs, so that

at most one of these jobs remains on the 1-machine in Opt.

Now we put jobs from m to 1-machines. If there is no remaining job on the

1-machine, then we exchange total work of at most 2, for one job of size at least
√

3,

or for two jobs of total size at least 2t. Otherwise we exchange t∗ ≤ tb ≤ 1, for one job

of size at least t. The size reduction cannot be smaller than min(
√

3/2, 2t/2, t/1) =

min(
√

3/2, t).

The reduced work on the fast machine is at most 2s, so

min(

√
3

2
, t) · 2s+ (

√
3 − 1)s ≤ 2s

therefore either
√

3/2 · 2 +
√

3 − 1 ≤ 2, a contradiction; or 2t+
√

3 − 1 ≤ 2, that is

t ≤ (3 −
√

3)/2, contradicting to
√

3 − 1 < t.

Second, suppose that ta ≤ 2− t <
√

3 + 1− t. Now in Lpt there are at least two

jobs on each 1-machine. First we rearrange jobs within 1-machines, so that every

job that is on a 1-machine in Opt, gets on its final place, and there are still at least

two jobs of size ≥ t′a on every 1-machine.

Now we put jobs {t∗} from machine m to 1-machines. If 2 ≥ t∗ > 2− t, then we

exchange it for two jobs of total size ≥ 2t.

If 1 ≥ t∗ > t′a, then we exchange it for one job of size at least t. In both cases

the size reduction of the t∗ is not less than t/1, and according to Proposition 3.52,

completion time of t∗ in Lpt is at most max(2, tb + t∗) = 2.

If t∗ ≤ t′a, we exchange it for a larger job, so there is no size reduction.

Finally, if 2 − t ≥ t∗ > 1, then t∗ ≥ ta, since t∗ was on machine m. In this case

t∗ has completion time at most t∗ ≤ 2 − t. The size reduction can be t/(2 − t).

We get the inequality:

t

(2 − t)
· (2 − t) + t · t+ (

√
3 − 1) ≤ 2

Solving the inequality yields −
√

3 ≤ t ≤
√

3 − 1, contradicting to t >
√

3 − 1. 2

Observe, that the conditions in Instance A of Section 3.5.1 correspond to the

case ta ≤ 2 − t of Lemma 3.54, therefore the obtained bounds for t were tight.

Lemma 3.55 If
√

3 − 1 < t ≤ 1 and tb > 1, then Lpt
Opt ≥

√
3+1
2 is impossible.
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Proof. We will call the jobs {ta, ta+1, . . . , tb > 1} large jobs, and all other jobs on

1-machines in Lpt small jobs. We show that the ratio of changed work is at least

min( t
1 ,

√
3

2 ) below time 3− t; otherwise it is at least
√

3/2. Therefore, inequality (3.f)

below models the reduction of finish time of machine m correctly.

Assume that tb > 2− t, that is, all large jobs are very large. We claim that then

there is no job that is on a 1-machine in both Lpt and Opt. If a large job stayed on

a 1-machine, no other job would fit on the same machine, violating the principle of

domination. If, e.g., t′b stayed on a 1-machine, it could only be matched with a job

of size at most 2 − t < tb, again violating the principle of domination. Thus, when

we exchange jobs according to Opt, the total work of 1-machines is exchanged for

(part of the) work on m. Since machines have finish time ≥
√

3 in Lpt, respectively

≤ 2 in Opt, the reduction of work on machine m can not be less than
√

3/2.

Now let 1 < tb ≤ 2 − t. We can rearrange the jobs within 1-machines as follows:

we match jobs that are together on a 1-machine in Opt, and delete this machine

with the two jobs. Since we did not match two large jobs, now every machine with

at least two jobs in Lpt, can still have at least one large job and another job, so the

total work on any machine after rearrangement is at least 1 + t > 1 +
√

3− 1 =
√

3.

Machines with one job also have work at least
√

3.

Let first ta > 2 − t. Proposition 3.51 implies that small jobs that remain on

1-machines are already deleted. Thus, some of the large jobs will remain on the

1-machine, and all other jobs will be exchanged for jobs on m. If we change the

content of a 1-machine completely, that yields a reduction of
√

3/2 in the best case.

If the smaller job is exchanged for a job t′a < t∗ ≤ 2 − tb ≤ 1 then we get the ratio

t/1. Such a job t∗ has completion time ≤ max(2, tb + t∗) ≤ 2 − t+ 1 = 3 − t in Lpt

by Proposition 3.52.

Second, if ta ≤ 2 − t, then every 1-machine has at least two jobs in Lpt. Now,

after the rearrangement, there is one large job and at least one other job on each

1-machine, and at most one of these jobs stays on the machine. If only the small job

or both jobs are exchanged, then the proof is the same as in case ta > 2 − t. If only

the large job is exchanged for a job t∗ > tb, then the ratio is tb/t
∗ ≥ 1/(2− t) ≥ t/1.

Such a t∗ precedes ta, and has completion time at most t∗ ≤ 2 − t in Lpt.

In any of the above cases, the best work reduction on machine m, that we can

hope for, is

min(
t

1
,

√
3

2
) · (3 − t) +

√
3

2
(
√

3 + 1 − 3 + t) ≤ 2. (3.f)

Since
√

3
2 · (

√
3 + 1) > 2, we only need to deal with the inequality

t · (3 − t) +

√
3

2
(
√

3 − 2 + t) ≤ 2.

We obtain the solution: t > 3.15..., or t ≤ 6+
√

3−
√

31−4
√

3
4 ≈ 0.7064 <

√
3 − 1,

a contradiction. 2
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3.6 Lpt* provides a 2.8-approximation

In this section we return to the case of 2-divisible machines. In Section 3.3 we

obtained a worst case ratio of 3 for Lpt*. Here we improve on this ratio:

Theorem 3.8 Lpt* is a 2.8-approximation algorithm.

Theorem 3.8 directly follows from Theorem 3.9 below, basically the same way as

described in Corollary 3.10.

Theorem 3.9 Let 〈s1, . . . , sm〉 and 〈t1, . . . , tn〉 be an instance of Q||Cmax. If the

speed vector 〈s1, . . . , sm〉 is 2-divisible, then Lpt
Opt < 1.4

3.6.1 The proof of Theorem 3.9

Just like in Section 3.5.2, we assume that the contrary holds, and we fix a mini-

mal counter-example with 2-divisible machines. Let Opt be an arbitrary optimal

schedule of this instance.

The proof technique is similar to that of Theorem 3.7: We start from the Lpt

schedule, then we rearrange jobs, so that more and more jobs get to their final place

in Opt. We delete machines that received all their jobs according to Opt. We

strive to get into a state, when the set of remaining machines has more total work

than Opt · S, where S denotes the sum of speeds of the remaining machines. Recall

that t = tn.

Since job sizes can be normalized, we assume w.l.o.g. that Opt = 2. Moreover,

since machine sizes can be normalized too, we may assume that 1/2 < t ≤ 1. This

implies that 1/2 is the smallest possible size of a nonempty machine in Opt, and

the instance is minimal – without empty machines in Opt –, so s1 ≥ 1/2. We will

call machines of speed at least 2 fast machines.

Let fi denote the finish time of machine i in Lpt, before tn is scheduled. We

assume that Lpt ≥ 2.8, and the instance was minimal. Consequently, 2.8 > fi ≥
2.8 − t/si for 1 ≤ i ≤ m.

We start from the Lpt schedule, and we exchange the jobs in several rounds.

In the first round machines of speed 1/2 receive their final job (the jobs allocated

to 1/2-machines in Opt), and can be deleted. After this we show, that we got into

a similar situation as in Lemmas 3.54 and 3.55. Despite the similarity, we have to

deal with two additional difficulties: On the one hand, the first round of exchanges

has already resulted in some reduction of work by the time we want to apply the

arguments of the lemmas. This is a minor problem, and in most cases it does

not affect the original argument. It receives some attention, e.g., in Lemma 3.62.

On the other hand, we may have more than one fast machines, and therefore we

cannot assume that at the beginning they have finish time fi ≥ 2.8 (Recall, that

in Section 3.5.2 we could assume fm ≥
√

3 + 1, because at the beginning of the

exchanges tn was put on top of machine m.) The second difficulty is more crucial,

and this is the intrinsic reason why the (
√

3 + 1)/2 worst case ratio does not hold

in case II.
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Figure 3.8: Jobs on 1/2-machines and 1-machines in Lpt.

As a first step, we delete the job tn from Lpt. Let M denote the (possibly empty)

set of 1/2-machines that are assigned only 1 job in Lpt, and let tc, tc+1, . . . , td
be these jobs (see Figure 3.8). Then td is the smallest among them, moreover

td ≥ max(t, 2.8 · 1/2 − t) ≥ 1.4/2 = 0.7.

Now we do the first round of exchanges: In Opt there is one job of size at most

1 on every 1/2-machine. By the principle of domination all of these jobs precede tc;

they are assigned to machines of speed at least 1, and all of them have completion

time at most 2 in Lpt, otherwise they would have been assigned to a 1/2-machine.

(In particular, tn is not one of these jobs.)

In Lpt there is one job of size at least 0.7 on every machine in M. We exchange

these jobs for the same number of (single) jobs that are assigned to 1/2-machines in

Opt, and then delete all machines of M together with their new job. The resulting

schedule will be called Lpt0. Let f0
i be the finish time of machine i in Lpt0.

Lemma 3.56 If t < 0.8, then f 0
i ≥ 2 for all i.

Proof. Let τ1, τ2, . . . be the jobs assigned to i in Lpt; and τ ′1, τ
′
2, τ

′
3, . . . be the jobs

on i in Lpt0. On any machine i there are at most 2 · si exchanged jobs, since more

jobs cannot precede tc.

(1) If i is a 1/2-machine with at least two jobs, then f 0
i > (2 · 1/2)/(1/2) = 2.

(2) Assume that si = 1. Now fi ≥ 2.8 − t > 2, so we are done if there is no

exchanged job on i. We are also done, if there are at least 4 jobs on i, because

t > 1/2.

If τ1 or/and τ2 is exchanged then τ1 ≤ 1 must hold, and therefore there had to

be 3 jobs on i in Lpt. Suppose, that τ ′1 + τ ′2 + τ ′3 < 2. Since τ ′1 + τ ′3 ≥ td + t ≥ 1.4, it

follows that τ ′2 < 0.6 < td. Thus τ ′2 was not exchanged, moreover 1·fi = τ1+τ2+τ3 =

τ1 + τ ′2 + τ ′3 < 1 + 0.6 + 0.6 = 2.2 = 2.8 − 0.6 ≤ 2.8 − t, a contradiction.

(3) If si = 2, then fi ≥ 2.8 − t/2 > 2.8 − 0.8/2 = 2.4. If there are at most two

exchanged jobs on i, then the work of i could be reduced by at most 2 ·(1−0.7) = 0.6

Thus, 2f0
i ≥ 2fi − 0.6, that is, f0

i ≥ fi − 0.3 > 2.1.

If there are at least 3 exchanged jobs on i, then ≥ 3 jobs on i precede tc, which is

possible only if τ1 ≤ 1. Now ≤ 4 jobs do not suffice for fi > 2.4. If there are altogether

5 jobs on i, then 2 · 2.4 <
∑5

v=1 τv ≤ 4 · 1 + τ5, so 0.8 < τ5 ≤ td. The possible work

reduction is at most 4 · (1 − 0.8) = 0.8, and therefore f 0
i ≥ fi − 0.8/2 > 2. If there
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are at least 6 jobs on i, then 2 · f 0
i ≥ ∑6

v=1 τ
′
v ≥ 3td + 3t = 3(td + t) ≥ 3 · 1.4 = 4.2,

so f0
i ≥ 2.1.

(4) If si ≥ 4 then fi ≥ 2.8 − t/4 > 2.8 − 0.8/4 = 2.6. The reduced finish time is

at least f0
i ≥ (0.7/1) · 2 + fi − 2 > 1.4 + 0.6 = 2. 2

Corollary 3.57 If t < 0.8, then Lpt/Opt ≥ 1.4 is impossible.

Proof. Let S denote the sum of speeds of the machines in Lpt0. We obtained that

the total remaining work is at least 2 · S + tn ≤ Opt · S = 2S, a contradiction. 2

Lemma 3.58 Let 0.8 ≤ t. If f0
i < 2, then si = 1. Moreover, every 1/2-machine was

deleted in the first round.

Proof. First we claim that in this case Lpt assigns one job to every 1/2-machine,

so every 1/2-machine was in M , and was later deleted. If two jobs were on a 1/2-

machine, then this machine would have total work at least 1.6, and finish time at

least 3.2 > 2.8 > fi, contradiction.

Second, let si ≥ 2. Since td ≥ t, the possible decreased finish time of i is f 0
i ≥

(t/1) · 2 + fi − 2 ≥ t · 2 + 0.8 − t/2 = 1.5t+ 0.8 ≥ 1.5 · 0.8 + 0.8 = 2. 2

The rest of the proof of Theorem 3.9 follows the same lines as the proof in

Section 3.5.2. We assume 0.8 ≤ t ≤ 1. Instead of Lpt0, our starting schedule is

Lpt: We delete all the 1/2-machines and their jobs. On the remaining machines we

calculate with the original sizes of jobs, as it is in Lpt. Nevertheless, we keep in

mind, that every job of size ≤ 1, and of completion time ≤ 2 on a 1-machine or on

a fast machine, can ’shrink’ to size (at least) td before putting it to its machine in

Opt. Such a shrinkage is equivalent to an exchange for a job on a 1/2-machine in

the first round.

We ’put back’ the job tn on top of any fast machine. After that we put jobs

from fast machines to 1-machines and vice versa, to have the optimal schedule on

1-machines. However, we will show that the total amount of work on fast machines

remains too much to fit in the desired optimum time. Lemmas 3.60 to 3.63 provide

essentially the same case analysis as Lemma 3.54 and Lemma 3.55.

We adopt the notation of Section 3.5.2: ta, ta+1, . . . , tb and t′a, t
′
a+1, . . . , t

′
b are jobs

on 1-machines in Lpt (see Fig. 3.8). On every 1-machine there is either one job of

size at least 2.8−t ≥ 1.8; or there are at least two jobs. We will use Proposition 3.51,

Corollary 3.53 and the following analogue of Proposition 3.52:

Proposition 3.59 Let t∗ be a job assigned to a fast machine in Lpt and to a 1-

machine in Opt. Let T ∗ denote the completion time of t∗ in Lpt. If t∗ > ta, then

T ∗ ≤ t∗ ≤ 2. If t∗ > t′a, then T ∗ ≤ max(2, tb + t∗).

Proof. If t∗ is replaced by a job of size ≥ td in Lpt0, then T ∗ ≤ 2. Otherwise

essentially the same argument holds as for Proposition 3.52. 2

Lemma 3.60 Let 0.8 ≤ t ≤ 1. If tb ≤ 1 and ta > 2 − t, then Lpt/Opt ≥ 1.4 is

impossible.
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Proof. Let t∗ be a job on a 1-machine in Opt, and on a fast machine with completion

time T ∗ in Lpt. Then either t∗ ≥ ta > 2 − t or t∗ ≤ tb ≤ 1. Corollary 3.53 implies

T ∗ ≤ 2.

We start by rearranging the jobs within 1-machines, according to Opt. Machines

that received all their jobs as in Opt, are deleted. By Proposition 3.51, this is

possible to do in such a way, that machines with two jobs in Lpt still have two

jobs after rearrangement. Moreover, at most one of the two jobs remains on the

same 1-machine, and all other jobs will be put to fast machines (see the proof of

Lemma 3.54). Single large jobs will not remain on 1-machines by the principle of

domination. At this point, every 1-machine has work at least min(2t, 1.8).

If all the jobs on a 1-machine are put to fast machines, then it receives one job

of size at most 2, or two jobs of total size at most 2 · 1. So the work reduction factor

due to such an exchange is not less than 2t/2 = t/1 or 1.8/2 = 0.9.

If one job remains on the 1-machine, then its other job of size at least t is put to

fast machines, and in return it gets a job of size at most 1. The possible reduction

ratio is t/1.

Previous exchanges with 1/2-machines in the first round could not decrease this

final ratio.

Now we calculate the total work on all fast machines after exchanging jobs with

1-machines. The finish time of any fast machine was fi ≥ 2.8 − t/si ≥ 2.8 − t/2.

Let S be the sum of speed of all fast machines. Including tn, the total work on

fast machines was originally at least tn + S(2.8 − t/2). The reduced work is at least

tn+S ·(2·min(t, 0.9)+0.8−t/2). If t ≤ 0.9, we get S(2t+0.8−t/2) ≥ S(3t/2+0.8) ≥
S(3 ·0.8/2+0.8) = S ·2 If 0.9 < t, we get S(2 ·0.9+0.8−t/2) ≥ S(2.6−0.5) = S ·2.1.

In either case, after the exchanges with 1-machines, the total work of fast ma-

chines is strictly more than S ·Opt, a contradiction. 2

Lemma 3.61 Let 0.8 ≤ t ≤ 1. If tb ≤ 1 and ta ≤ 2 − t, then Lpt/Opt ≥ 1.4 is

impossible.

Proof. Since ta ≤ 2 − t < 2.8 − t, in Lpt there are at least 2 jobs on every

1-machine. First we rearrange the jobs within 1-machines, so that at least 2 jobs of

size ≥ t′a remain on every 1-machine. We match jobs that are on the same 1-machine

in Opt and delete these completed machines. Next, we exchange the jobs between

fast machines and 1-machines. Let t∗ be a job on a 1-machine in Opt, and on a fast

machine with completion time T ∗ in Lpt. We exchange t∗ according to one of the

following scenarios (see Proposition 3.59):

If 2− t < t∗ ≤ 2, then T ∗ ≤ 2, and we exchange t∗ for 2 jobs of total size at least

2t. The reduction factor is 2t/2 = t.

If 1 < ta ≤ t∗ ≤ 2 − t, then T ∗ ≤ t∗, and we exchange t∗ for one job of size at

least t. The reduction factor is t/(2 − t).

If t′a < t∗ ≤ 1, then T ∗ ≤ max(2, tb + t∗) = 2, and we exchange t∗ for one job of

size at least t. The reduction factor is again t.

Finally, if t∗ ≤ t′a, then we exchange it for a job of size ≥ t′a, and there is no size

reduction.
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Previous exchanges with jobs on 1/2-machines could not yield better ratios.

Let Lpt1 denote the new schedule on the set of fast machines (1-machines are

deleted). Let f1
i denote the finish time of fast machine i in Lpt1. We claim that

f1
i ≥ 2 for every fast machine, and for the machine with tn on top f1

i ≥ 2 + tn. This

will complete the proof of Lemma 3.61.

If si ≥ 4, then for the finish time in Lpt fi ≥ 2.8 − t
4 holds. For the reduced

finish time we get: f1
i ≥ (2 − t) · t

(2−t) + t · t + 0.8 − t/4 = t2 + 0.75t + 0.8 ≥
0.82 + 0.75 · 0.8 + 0.8 = 2.04.

Now let si = 2. If in Lpt1 there are at least five jobs assigned to i, then it has

finish time f1
i ≥ 5t/2 ≥ (5 · 0.8)/2 = 2.

Now we assume that f 1
i < 2 and there are at most 4 jobs assigned to i in Lpt1.

The original and the new total work assigned to i are wi ≥ 5.6 − t ≥ 4.6 resp.

w1
i < 2 · 2 = 4. Let τ1, τ2, . . . be the jobs assigned to i in Lpt (not in this order).

Since fi ≥ 2.8 − t/2 ≥ 2.3, the last job of i is not an exchanged job. On the

other hand, at least one of the jobs must be exchanged.

Suppose that on i there were at most 4 jobs in Lpt, and at most 3 of them are

exchanged for a job of size t each. If only τ1 is exchanged, then 4 > w1
i = t+wi−τ1 ≥

t + 5.6 − t − (2 − t) = 3.6 + t, yielding 0.4 ≥ t, a contradiction. If τ1 and τ2 are

exchanged, then 4 > w1
i = 2t + wi − (τ1 + τ2) ≥ 2t + 5.6 − t − 2(2 − t) = 1.6 + 3t,

that is, 0.8 > t, contradiction. If τ1, τ2 and τ3 are exchanged, then 5.6 − t ≤ wi =

τ1 + τ2 + τ3 + τ4 ≤ 2(2 − t) + 1 + 1 = 6 − 2t, implying t ≤ 0.4, contradiction.

The case when a large job of size ≤ 2 is exchanged for 2t can be elaborated on

using the last two formulas, and the inequality 2 ≤ 2(2 − t). 2

In the rest of the proof we will call the jobs {ta, ta+1, . . . , tb > 1} large jobs,

and all other jobs on 1-machines in Lpt small jobs.

Lemma 3.62 Let 0.8 ≤ t ≤ 1. If tb > 1 and t′a = 0 then Lpt/Opt ≥ 1.4 is

impossible.

Proof. Recall that t′a = 0 means that in Lpt ta is a single job, i.e., ta ≥ 2.8−t ≥ 1.8.

Due to Proposition 3.51, and because two large jobs do not belong to the same

1-machine in Opt, it is possible to rearrange the jobs within 1-machines as follows:

machines with two jobs in Lpt still have two jobs, and at least one large job remains

on every 1-machine; on some 1-machines with 2 jobs the large job remains on the

same machine in Opt, but all other jobs will be exchanged.

Now the total work on 1-machines is at least 1 + t ≥ 1.8. This lower bound holds

for machines with single jobs as well. On some 1-machines with 2 jobs the large job

remains on the same machine in Opt, but all other jobs will be exchanged.

As a next step, we exchange the jobs between 1-machines and fast machines.

Let t∗ be a job on a fast machine having completion time T ∗ in Lpt, and be on a

1-machine in Opt. We analyze the possible work reduction in different time zones

on the fast machine as follows:

If the jobs on the 1-machine are exchanged completely, in general we get a

reduction factor at least 1.8/2 = 0.9.
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If a large job remains on the 1-machine, and t∗ is exchanged with another job on

this machine, then t∗ ≤ 1, and the reduction factor is t/1 ≥ 0.8. By Corollary 3.53,

T ∗ ≤ min(2, tb + t∗) ≤ 2 − t + 1 = 3 − t ≤ 3 − 0.8 = 2.2. (Note that tb ≤ 2 − t,

otherwise t∗ does not fit on top of a large job.) Moreover, when ta is scheduled in

Lpt – that is, so far only jobs of size > 2− t appeared –, fast machines have a finish

time at least ta/2 ≥ 1.8/2 = 0.9. Thus, t∗ must be in the time zone between 0.9

and 2.2

Finally, an anomaly might occur affecting the above factors, due to potential

shrinkage of jobs, i.e., the exchanges with 1/2-machines at the very beginning. Sup-

pose that t∗ and t∗∗ (original size) are on the same 1-machine in Opt, and on fast

machines in Lpt. If both of them are of size ≤ 1, then the factor remains 1.8/2.

On the other hand, let t∗ ≤ 1, and T ∗ ≤ 2, and t∗ exchanged in the very first round

for a job ≥ t. Then (instead of t∗ + t∗∗ ≤ 2) we have the bound t∗∗ ≤ 2 − t, and so

t∗ + t∗∗ ≤ 3 − t. The reduction factor in this case is 1.8/(3 − t).

However, since t∗∗ > t∗, and T ∗ ≤ 2, it is easy to show that in Lpt t∗∗ has

completion time ≤ (2 · 2 − 1 + 2 − t)/2 ≤ (5 − 0.8)/2 = 2.1 ≤ 2.2.

In Lpt the total work on fast machines is at least S(2.8 − t/2) + tn, where S

denotes the total speed of fast machines. Suppose that due to job exchanges the

total work reduced to at most S · 2. This would imply:

min(t,
1.8

(3 − t)
) · (2.2 − 0.9) + 0.9 · (2.8 − t

2
− (2.2 − 0.9)) ≤ 2

If 1.8/(3−t) > t, we get 0.85t+1.35 ≤ 2, that is t ≤ 0.76... < 0.8, a contradiction.

If 1.8/(3 − t) ≤ t, the inequality is

1.3 · 1.8

3 − t
+ 0.9 · (1.5 − t

2
) ≤ 2,

and this is false for any real t, so we got a contradiction. 2

Lemma 3.63 Let 0.8 ≤ t ≤ 1. If tb > 1 and t′a 6= 0, then Lpt/Opt ≥ 1.4 is

impossible.

Proof. In this case there is a large job and a small job on every 1-machine in Lpt.

We rearrange them according to Opt, so that on each remaining machine there is

still a large job and another job of size ≥ t′a. Moreover, in Opt, either the large job,

or the other job, or none of them stay on the (same) 1-machine, all other jobs will

be put on fast machines.

Next, we exchange the jobs between fast machines and 1-machines one by one.

Let t∗ be a job on a fast machine having completion time T ∗ in Lpt, and be on a

1-machine in Opt. One of the following cases holds:

If t∗ ≤ t′a, then we exchange it for a larger job, and this means no work reduction

on the fast machines.

If t′a < t∗ ≤ 1, we exchange it for a job of size ≥ t, and T ∗ ≤ max(2, tb + t∗) ≤
tb + 1. The reduction factor is t/1. Previous shrinkage of t∗ to td could not improve

this factor, since t′a ≤ td. Moreover, such a t∗ must have been scheduled above the

time ta/2 > 0.5.
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If 1 < t∗ ≤ tb, then t∗ takes away the place of a large job, so we exchange it for

a large job of size at least tb, and there is no work reduction.

If tb ≤ t∗ ≤ 2 − t, then again we exchange it for a job of size at least tb. The

reduction factor is tb/(2 − t) > 1/(2 − t) ≥ t. Moreover, T ∗ ≤ t∗ < 2.

Finally, if 2 − t < t∗ ≤ 2, then T ∗ ≤ 2, and we t∗ is exchanged for two jobs of

total size at least tb + t. The reduction factor is not less than (tb + t)/2 ≥ tb/(2− t);

where the latter follows from tb + t ≤ 2.

We obtain the following inequality describing the necessary work reduction on

fast machines:

tb
2 − t

· 0.5 + (tb + 1 − 0.5) · t+ [2.8 − t

2
− (tb + 1)] ≤ 2.

The coefficient of tb is [0.5/(2−t)+t−1]. This coefficient is positive for 0.8 ≤ t ≤
1. Therefore, the inequality should hold if we substitute tb by 1 < tb. The resulting

inequality is
0.5

2 − t
+ (1.5) · t+ 0.8 − t

2
≤ 2,

solving to either t ≥ 1.6 +
√

0.66; or t ≤ 1.6 −
√

0.66 ≈ 0.7876..., a contradiction. 2

3.7 Approximation lower bounds of Lpt*

Instance A of Section 3.5.1, provides a lower bound on the worst case ratio of Lpt

not only in the ’one fast machine’ case, but also for 2-divisible machines. In view of

this, several questions arise about 2-divisible machines: Can the asymptotic lower

bound of (
√

3+1)/2 be increased on 2-divisible machines? Or, on the contrary, do we

conjecture that the same tight bound holds for 2-divisible machines as for ’one fast

machine’? The upper bound of 1.4 for Lpt automatically implies the upper bound

2.8 for Lpt*. This immediate implication fails concerning the lower bounds. Could

it happen, that Lpt* has actually a better approximation ratio than twice the ratio

of Lpt on 2-divisible machines? In this section we answer some of these questions.

We show that the bound (
√

3 + 1)/2 is not tight on 2-divisible machines. Moreover,

Lpt* is, in fact, ’twice as bad’ as Lpt, as we demonstrate it in Section 3.7.2. The

actual tight bound for Lpt* as well as for Lpt, remains open.

3.7.1 Improved lower bounds for 2-divisible machines

We describe two instances on 2-divisible machines for which Lpt/Opt > (
√

3 + 1)/2.

Both are refined versions of Instance A of Section 3.5.1. We are able to improve on

this lower bound by using two different approaches: in Instance B we manage to

exchange jobs larger than x = 3−
√

3 for jobs of size t = tn. In Instance C we make

use of the fact that the last job t is smaller than y so that later even y-jobs above

time 2 can be exchanged for smaller ones. Instance B has an approximation bound

arbitrarily close to (
√

409 + 29)/36 ≈ 1.3673 > (
√

3 + 1)/2. However, this instance is

not suitable if in Lpt ties are broken in favour of slow machines. Therefore we also

present Instance C, which is valid for any kind of tie-breaking and has approximation

bound arbitrarily close to 955/699 ≈ 1.3662 > (
√

3 + 1)/2.
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Figure 3.9: Lpt schedule modulo the last job in Instance B.

Besides providing a slightly better lower bound than (
√

3 + 1)/2, these two ex-

amples are of interest, because they also give an insight into the potential difficulties

in determining a more exact upper bound for Lpt on 2-divisible machines.

Theorem 3.10 If we restrict the problem Q||Cmax to 2-divisible speed vectors, then

the ratio Lpt/Opt can be arbitrarily close to 955/699 ≈ 1.3662. Moreover, if in Lpt

ties are broken in favour of faster machines, then the same asymptotic worst case

ratio is at least (
√

409 + 29)/36 ≈ 1.3673.

Proof. The proof is given by instances B and C:

Instance B. In this case we assume that in Lpt ties are always broken in favour

of faster machines. Just like in Instance A, we have plenty of blocks of 1-machines

and a fast machine of speed 2r. Moreover, we have several 4-machines. First we

describe the assignment of jobs in Lpt (see Fig 3.9): Let x = 1.25 and y = 0.75. A

block of 1-machines is scheduled like in Instance A: The large jobs in a block range

from x− δ down to 1; the small jobs range from y up to 1 − δ. Every block will be

later used for exchanging an x-job for a 1-job or exchanging a 1-job for a y-job.

On any 4-machine in Lpt there are 10 jobs: 4 jobs of size x; 3 jobs of size 1;

2 jobs of size y and 1 job of size t ≤ y, where t = tn. The total work on a 4-machine

is 9.5 + t.

Let z = 8 − 9t ≥ 8 − 9y = x. On the fast machine there are 2r/4 jobs of size

z. After that, it is filled up with x-jobs until time x; with 1-jobs until time 2; with

y-jobs until time 9.5/4 and with t-jobs until 2 + t − δ. The total work on the fast

machine is at least 2r(2 − δ + t) − t.

It is straightforward to check that this is an Lpt schedule, either by setting

1/2r < δ, like in Instance A, or by allowing one more job of size between 1 and y

on the fast machine. Finally, a last job of size t is assigned to a 1-machine yielding

makespan 2+t−δ. On the fast machine this job would be completed after 2+t−δ; on

a 4-machine, the finish time would be (9.5 + 2t)/4 ≥ 2 + t, where the last inequality

holds because t ≤ y = 0.75.

The goal is to determine a possibly large t value, so that the optimum makespan

can be arbitrarily close to 2. In order to get an optimum makespan we rearrange
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Figure 3.10: Instance C: The completion times of different job types in Lpt.

the jobs as follows. As a first step, we put the very last job on the fast machine.

Second, we exchange every job of size x or 1 (on 4-machines and the fast machine)

for a job of size y using the blocks of 1-machines. At this point, on every 4-machine

there are 9 jobs of size y and 1 job of size t. Since (10 · y)/4 < 2, the job of size t can

be exchanged for a y without violating the desired optimum makespan. Thus, we

can use 4-machines to exchange all y-jobs on the fast machine for t-jobs. Moreover,

on 2r/4 of the 4-machines we also exchange all the jobs for t-jobs. On these 2r/4

machines we will have 10 jobs of size t. Finally we use each of these 2r/4 machines

for exchanging a z-job for a t-job. This is possible, since (9 · t+ z)/4 = 2. Now every

job on the fast machine is exchanged for a t-job. If we may calculate with fractional

jobs on the fast machine, the following inequality models the desired shrinkage of

finish time (we calculate with no shrinkage above time 2):

z

4
· t
z

+ (x− z

4
) · t
x

+ (2 − x) · t
1

+ t ≤ 2

t

4
+ t− (8 − 9t)t

4 · 1.25
+ 0.75t+ t ≤ 2 (3.g)

By solving the inequality we get: −
√

409−7
18 ≤ t ≤

√
409−7
18 ≈ 0.734

Using t =
√

409−7
18 yields the approximation (2 + t)/2 = (

√
409 + 29)/36. The

surplus on the optimum makespan due to calculating with fractional jobs and due

to the very last job is not more than (x+ 1 + t)/2r < ε if r is large enough.

Instance C. In this example it is irrelevant how ties are broken in Lpt. We have

blocks of 1-machines like before, furthermore we have several 16-machines and one

1024-machine. Let x = 377/300 ≈ 1.2567 and y = 2 − x = 223/300 ≈ 0.7433.

In Lpt the blocks of 1-machines are scheduled like in the previous instances, and

each block can be used to exchange a job of size x for a job of size 1 or a job of size

1 for a job of size y; 1-machines have finish time 2 − δ, where δ > 0 is an arbitrarily

small number which divides x− 1 evenly.
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Every 16-machine receives 15 jobs of size x; 13 jobs of size 1; 14 jobs of size y and

1 job of size t, where t is the smallest job size. The total work on any 16-machine is

15x+ 13 + 14y + t = 77/300 + 42 + t.

The 1024-machine has 1023 jobs of size x; 762 jobs of size 1; 947 jobs of size y and

63 jobs of size t. The total work on the 1024-machine is 1023x+ 762 + 947y+ 63t =

38/75 + 2751 + 63t.

The assignment of different types of jobs in Lpt is depicted in Figure 3.7.1.

One can easily verify that one more x-job would finish at time x; one more 1-job

would finish above time 2; and one more y-job would finish after the y-jobs on other

machines. The first jobs of 1-machines are scheduled after the x-jobs and before the

1-jobs; the second jobs of 1-machines after the 1-jobs and before the y-jobs, because

even the first y-job on the fast machines is completed after time 2.

If the last job of size t is assigned to a 1-machine, then it has finish time t+2−δ,
where δ can be arbitrarily small. Being assigned to a 16-machine, it would have

finish time (77/300 + 42 + 2t)/16; on the 1024-machine it would have finish time

(38/75 + 2751 + 64t)/1024. The condition (77/300 + 42 + 2t)/16 ≥ 2 + t holds if

t < 0.7326; whereas (38/75 + 2751 + 64t)/1024 ≥ 2 + t holds if t < 0.7328.

In order to get the optimum schedule, we place the last job on the 1024-machine,

and we exchange all jobs of size x or 1 for jobs of size y, using the blocks of

1-machines. At this point the 16-machines have 42 jobs of size y and one job of

size t. Since 43y < 16 · 2, we can exchange y-jobs on the 1024-machine for the t-jobs

on 16-machines. Thus, every job on the 1024-machine could be exchanged for a t-job.

Now the total work on the 1024 machine is 2796t ≤ 1024·2 if t ≤ 512/699 ≈ 0.73247.

Consequently, if we take t = 512/699 then Lpt/Opt = (2+t−δ)/2 = 955/699−δ/2 >
(
√

3 + 1)/2 for small enough δ. 2

3.7.2 Lower bound for Lpt*

We consider the monotone algorithm Lpt* (see Section 3.2.3). Recall that this al-

gorithm receives arbitrary input speeds 〈σ1, . . . , σm〉 which, in the first step, are

rounded down to the next power of 2, so as to get a 2-divisible speed vector

〈s1, . . . , sm〉. After that Lpt is run with the rounded speeds. Finally, the works (sets

of jobs) assigned to each machine are ordered increasingly among machines having

the same rounded speed. Obviously, the actual finish times and the makespan Lpt∗

depend on the true speeds 〈σ1, . . . , σm〉.
Observe that, as opposed to the upper bounds, a worst case ratio Lpt/Opt > α

does not immediately imply Lpt∗/Opt > 2α. Here we show how to modify Instance

A to get Lpt∗/Opt >
√

3 + 1 − ε in the worst case. For sake of simplicity here we

do not consider the other Instances B and C; however, these can be modified in a

similar way in order to obtain even higher lower bounds.

Theorem 3.11 For arbitrary ε > 0 an instance of Q||Cmax exists, s.t. on this

instance Lpt∗/Opt >
√

3 + 1 − ε.

Proof. Consider Instance A of Section 3.5.1. Notice, that even without the very
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last job, the instance proves Lpt/Opt > (
√

3 + 1)/2 − ε for every ε > 0, since the

fast machine has finish time fm >
√

3 + 1 − δ − y/2r >
√

3 + 1 − 2δ.

Let Instance A’ = Instance A −{the last y-job}.

In the following we define Instance D. After rounding the machine speeds, the

instance will consist of k copies of Instance A’, where k ≈ 2·2r. Consequently, running

Lpt with the rounded speeds as input, results in k copies of the Lpt schedule of

Instance A’. We need that Lpt∗ >
√

3 + 1 − ε′, and Opt < 1 + ε′ holds for some

appropriate ε′. Therefore, one of the large machines m1 will have σm1
= sm1

= 2r.

For all the other fast and 1- machines let the true speed be σi = 2si−ε′′. The optimal

schedule with the rounded speeds has makespan less than 2. With the original speeds

the finish times can become less than 1, except for machine m1. So each of the other

k − 1 fast machines takes over a y-job from m1, so that Opt < 1 + ε′ holds. 2

3.8 The truthful mechanism

In this last section we complete our monotone algorithm Lpt* into a deterministic

truthful 2.8-approximation mechanism. To this end, we will discuss how to compute

the payments, and characterize the payment function. In particular, we will treat the

questions of voluntary participation and frugality (see Section 3.1.1). The argument

will be very similar to that of Archer and Tardos [5], even though we apply it

for a different algorithm. Our results concerning the payments compare well with

those of [5]. The overall results about the truthful mechanism are summarized by

Theorem 3.12 and Corollary 3.65.

Given the bid vector 〈b1, b2, . . . , bm〉 (bi ≥ bi+1) for the inverse speeds, algo-

rithm Lpt* computes a schedule, and Theorem 3.5 guarantees, that for all i and

b−i, the work curve wi(b−i, bi) is a decreasing function of bi. In order to obtain a

truthful mechanism with voluntary participation we have to determine the payment

scheme as given by Theorem 3.1:

Pi(b−i, bi) = biwi(b−i, bi) +

∫ ∞

bi

wi(b−i, u) du. (3.h)

In what follows, we fix machine i and the bids b−i, and bi. We will analyze the

function wi(b−i, u) on the interval (bi,∞), as determined by Lpt*. We are going

to show that
∫ ∞
0 wi(b−i, u) du <∞, moreover our work curve wi(b−i, u) is a simple

step function, and Pi(b−i, bi) is efficiently computable. Finally, in Section 3.8.1 we

prove that our mechanism is frugal (cf. Section 3.1.1). When dealing with these

issues, for the mechanism it is irrelevant whether bi or u denotes the real inverse

speed or some arbitrary bid. For ease of presentation, from now on we assume that

the b stand for the inverse speeds, i.e., bh = 1/σh and sh = 2blog σhc (1 ≤ h ≤ m).

Furthermore, u = 1/σ, where σ ∈ (0,∞) stands for the variable speed of i; and

s = 2blog σc is the respective rounded speed.

Let W =
∑n

1 tj denote the total work. Clearly, i receives work of at most

W. On the other hand, if tn/s > W/sm then i receives no work at all. For

i 6= m this yields the value yi := W
sm·tn , so that wi = 0 if u > yi. Consequently,
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∫ ∞
0 wi(b−i, u) du <∞. For i = m we can take ym := W

sm−1·tn .
Let us consider the function wi(b−i, u) on [bi, yi]. The schedule Lpt* is constant

on any interval u ∈ (2l, 2l+1]. Inside the interval, wi depends on the order of machine

speeds, so wi changes only in the points u = bh for some h 6= i. On any subinterval

(bh, bh−1) ⊂ (2l, 2l+1] the function wi(b−i, u) is constant. The number of breaks

in the function is at most m + log (yi/bi) ≤ m + log si·W
sm·tn ≤ m + log W

tn
so Pi

is polytime computable. Moreover, the computation is essentially the same for all

machines having the same rounded speed. For i = m we have at most m+log sm·W
sm−1·tn

breakpoints. We obtained the following:

Theorem 3.12 Let M be a mechanism using the monotone algorithm Lpt*, and

the payment scheme P = (P1, . . . , Pm) as given by (3.h). Then P is computable

in polynomial time, moreover
∫ ∞
0 wi(b−i, u) du < ∞ for all machines i, so the

mechanism admits voluntary participation.

3.8.1 Frugality

Recall from Section 3.1.1, that Archer and Tardos call a mechanism frugal, if the

sum of the payments does not exceed the total cost by more than a logarithmic factor.

In particular, we saw that (unless the fastest speed may dominate arbitrarily) their

randomized monotone algorithm is frugal, in that the ratio of the total payment and

total cost is at most O( σm

σm−1
ln( t1

tn
· n)).

Our results are similar to the frugality results of [5] (cf. Theorem 3.2 and Corol-

lary 3.65). Due to the different approach using Lpt, and some inconveniences with

rounded machine speeds, we need a slightly more careful elaboration.

Lemma 3.64 Let Lpt* be the monotone algorithm used by the mechanism, and Pi

denote the payment to machine i, as determined by (3.h).

(i) If i 6= m, then either Pi ≤ biwi[1 + 9 · log 2yi

bi
];

or Pi ≤ biwi + bi+1wi+1 · 9
2 · log 2yi

bi
.

(ii) If i 6= 1, then Pi ≤ biwi[1 + (6 + 3
2

σi

si−1
) log 2yi

bi
)].

Proof. The payment to machine i is given by formula (3.h). The term biwi equals

the (assumed) finish time, so it compensates the machine for her cost, whereas the

integral term stands for the profit. We need to upper bound
∫ ∞
bi
wi(b−i, u) du in

terms of the finish time biwi. Recall that if 1/σ ≥ yi then wi disappears. Moreover,

the schedule changes only if the rounded speed s changes. We will analyze the

change in the schedule as s changes through si, si/2, si/4, . . . , etc.

Let us consider the fixed schedule Lpt with rounded input speeds and s = si,

with work reordered according to step 3. of Lpt*. In this schedule, fi = wi

si
≤ 2wi

σi
=

2biwi. We fix this fi value, a machine set L, and a job set TL. Let a machine h be

in the set L, if fh ≤ 2fi. It is easy to see that, {1, . . . , i − 1, i} ⊆ L. Let TL be the

set of all jobs on these machines, and I be the instance restricted to L and TL. Now

LptI ≤ 2fi, where LptI is the makespan of I. In other words, fi = αLptI , where

1/2 ≤ α ≤ 1. Suppose that tj is the first job assigned to i. It is straightforward to

show that all jobs with index ≥ j belong to TL.
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Now we decrease s, and observe the change in the schedule of I. As s decreases,

the (large) jobs not in TL are still assigned to the same machines not in L. Therefore,

machines in L always receive a subset of TL. Let Opt(s) be the optimum makespan

of I as a function of s. By Theorem 3.3, the work assigned to machine i is at most

wi(s) ≤ s · 3/2 ·Opt(s).
If a machine h∗ ∈ L exists s.t. h∗ 6= i and sh∗ ≥ si, then decreasing s can result

in a new optimum of at most Opt(s) ≤ LptI(1 +α) = fi(1/α+ 1) ≤ 3fi, since in the

worst case h∗ receives all the jobs from i. So we obtain

wi(s) ≤ s · 3

2
Opt(s) ≤ 3

2
· 3fi · s ≤

9

2
· 2biwi · s = 9biwi · s,

and therefore
∫ ∞

bi

wi(b−i, u) du ≤ 9biwi

∫ yi

bi

2blog 1/uc du ≤ 9biwi log
2yi

bi
.

(i) Suppose that h∗ does not exist. We replace h∗ by i + 1. Since h∗ does not

exist, fi+1 > 2fi ≥ LptI . Our new restricted instance I ′ consists of L ∪ {i + 1}
and TL ∪ {jobs on i + 1}. If Opt′(s) denotes the optimum of I ′, we get Opt′(s) ≤
fi+1 + fi ≤ 3fi+1/2 and wi(s) ≤ 3

2 · 3
2fi+1 · s. Consequently,

∫ ∞

bi

wi(b−i, u) du ≤ 9

4
fi+1 · log

2yi

bi
≤ 9

2
bi+1wi+1 · log

2yi

bi
.

(ii) Recall that i−1 ∈ L. If we replace machine h∗ with i−1, we get the following:

Opt(s) ≤ fi(1/α + si/si−1) ≤ fi(2 + si/si−1). Using fi = biwiσi/si, and σi/si < 2,

we obtain wi(s) ≤ 3
2biwi(4 + σi/si−1) · s and

∫ ∞

bi

wi(b−i, u) du ≤ biwi[6 +
3

2

σi

si−1
] log

2yi

bi
. 2

Corollary 3.65 Let r1 := t1/tn, and r2 := σm/σm−1. The payment to machine m

might be more than the cost of the machine by a factor of at most O(r2 log(r2nr1)).

The total payment to all machines i 6= m is at most O(log( r1n
r2

)) times more than

the total cost of all the machines.

3.9 Discussion

Monotone algorithms. There are plenty of questions left open concerning mono-

tone algorithms, even if we restrict our attention to the Q||Cmax problem. We know

from [3], that if the number of machines, m, is constant, then there is a monotone

FPTAS for this problem. In case m is part of the input, it would be nice to improve

on our worst case ratio of 2.8 for deterministic, respectively on the ratio of 2 for

randomized monotone algorithms [4]. We conjecture that it is possible to obtain a

deterministic worst case ratio close to 2, e.g., by designing a monotone version of a

better approximating algorithm – like the PTAS in [53] –, for 2-divisible machines.

On the other hand, it seems to be more of a challenge either to find an efficient
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monotone algorithm with approximation ratio below 2, or to prove some approxi-

mation lower bound for polynomial time monotone algorithms. Such a lower bound

was proven for the problem Q||∑wjCj in [5] (cf. Section 3.1), by excluding the

monotonicity of any allocation with approximation ratio better than 2√
3
. We cannot

hope for this kind of solution for the problem Q||Cmax, since here even a certain

type of optimal allocation is monotone.

One could be tempted to prove monotonicity and good approximation bound of

Lpt for c-divisible machines, where c < 2. However, it seems unlikely (we may, of

course, be wrong) that radically simpler or shorter ways can be found to prove such a

result, than those used in the thesis. Moreover, one cannot hope for a better c value

than c = 3+
√

17
4 ≈ 1.78, since it is shown in [2], that even for 2 machines, Lpt is not

monotone if c < 3+
√

17
4 . On the other hand, it might be feasible to improve on the

latter bound, or in the best case, to show that Lpt is not monotone on c-divisible

machines, for c < 2.

Worst case ratio of Lpt. For the classic Lpt algorithm, we have shown a tight

asymptotic approximation bound of
√

3+1
2 ≈ 1.3660 in case of one fast machine;

and ’nearly’ tight lower and upper bounds, [1.3673, 1.4] for the same problem on

2-divisible machines. Notice that both Instances B and C in Section 3.7.1 apply

three different machine speeds. It would be interesting to know whether the tight

approximation ratio of
√

3+1
2 holds for machine speed vectors involving only two

different speeds, i.e., vectors of the form 〈1, . . . , 1, s, . . . , s〉.
In our instances providing approximation within ε distance to the lower bounds,

the speed of the fast machine (and the ratio sm/s1) is sm = O(2r) = O(1/ε). The

number of machines is m = O(2r/δ) = O(1/ε2), since there are about as many

blocks as jobs on the fast machine, and O(1/δ) machines per block. These orders

of magnitude are the same for Instances A, B, and C. However, Instance D of

Section 3.7.2 contains O(2r) copies of Instance A, thus altogether m = O(1/ε3)

machines.

For relatively large ε it is easy to create instances with less machines. For exam-

ple, if we just want to demonstrate Lpt/Opt > 4/3, then it is sufficient to modify

Instance A by taking one 4-machine, ten blocks of six 1-machines each, and job sizes

x = 1.28 and y = 0.72. We do not exclude, that – if Lpt prefers faster machines in

case of ties –, Instance B of Section 3.7.1 actually yields the basic construction for a

tight bound on 2-divisible machines. However, proving such a tight bound – if at all

possible –, seems to require a lengthy and technical elaboration. (The bound itself

can be a bit higher than (
√

409 + 29)/36. When we optimized the smallest job size

t in Instance B, we solved inequality (3.g). If we also calculate with the shrinkage

above time 2, we obtain another inequality of degree 3, and one root of this will be

the optimal job size t.)

Finally, let us summarize the results relative to the sort of tie-breaking used in

Lpt: The monotonicity and the upper bound proofs hold for both (from left or from

right) kinds of tie-breaking. Except for Instance B, the lower bound instances are

valid if ties are broken arbitrarily.
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[12] A. Bar-Noy, M.M. Halldórsson, G. Kortsarz, H. Shachnai, and R. Salman. Sum

multicoloring of graphs. Journal of Algorithms, 37:422–450, 2000.

[13] A. Bar-Noy and G. Kortsarz. The minimum color-sum of bipartite graphs.

Journal of Algorithms, 28:339–365, 1998.

[14] A. Bar-Noy, A. Mayer, B. Schieber, and M. Sudan. Guaranteeing fair service to

persistent dependent tasks. In Proc. 6th SIAM Symp. on Disc. Algs. (SODA),

pages 243–252, 1995.

[15] M. Bell. Future directions in traffic signal control. Transportation Research

Part A, 26:303–313, 1992.

[16] S. Bikhchandani, S. Chatterji, R. Lavi, A. Mu’alem, N. Nisan, and A. Sen.

Weak monotonicity characterizes deterministic dominant-strategy implementa-

tion. Econometrica, 74(4):1109–1133, 2006.
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Summary

In the thesis we consider open problems from two distinct subareas of scheduling

theory.

The first part provides an efficient algorithm for the preemptive sum multicolor-

ing problem on path and cycle conflict graphs.

The input of a sum multicoloring, or SMC problem consists of a simple undirected

graph G = (V, E), and integral weights x(v) on each node v ∈ V. The nodes represent

jobs, each having size or time demand x(v). The edges stand for pairwise conflicts

between certain jobs, meaning that they cannot be processed at the same time.

The output is a proper multicoloring, i.e., one assigning a set Φ(v) of positive

integers (colors) to each v ∈ V such that |Φ(v)| = x(v) and the sets assigned to

adjacent vertices do not intersect. Thus, Φ determines a proper schedule of the

jobs, where conflicting jobs never receive the same time-unit. Our objective is to

minimize the average finish time of the jobs, or equivalently, the sum of finish times∑
v∈V f(v), where f(v) = max Φ(v).

In non-preemptive SMC (npSMC) the assigned sets Φ(v) must be contiguous,

whereas in preemptive SMC (pSMC) the Φ(v) are arbitrary sets.

Although one of the classic motivations for studying sum (multi)coloring has

been a problem in VLSI design, nowadays SMC finds its primary applications in

scheduling settings, where the jobs need exclusive access to dedicated resources or

machines, and they have to compete with other jobs for the use of these resources.

Such scenarios occur, e.g., in dedicated multiprocessor scheduling, session manage-

ment in local area networks, or file access control.

The SMC problem was introduced and studied on many different conflict graphs

by Bar-Noy et al. [11], in 1999. Since even sum coloring (SC), the special case with

unit time demands, was shown to be NP-hard on several graph classes [10, 13, 41, 49],

recent research has mainly focused on the approximability and hardness of SC,

pSMC, and npSMC [38, 40, 49, 52, 58, 74, 80].

On the other hand, it is natural to search for types of graphs, for which exact

polynomial algorithms exist. Halldórsson et al. [50] studied the sum multicoloring

problem on trees. For non-preemptive SMC they provided two efficient algorithms,

which run in O(n2) and O(np) time, respectively, where n is the number of vertices

|V| and p = maxv x(v) is the maximum demand. For preemptive SMC, they gave

a PTAS. The hardness of pSMC on trees and paths was posed as an open question

already in an earlier version of the paper in 1999 [51]. One answer was given by

Marx [73], who proved that even on binary trees pSMC is strongly NP-hard.
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As another answer, in Chapter 2 of the thesis we provide the first exact poly-

nomial algorithm on paths and cycles, with running time O(min(n2, n log p)). Thus,

we identify a major gap between the solvability of the problem on binary trees and

on graphs of maximum degree 2.

Although the investigated graphs are of extremely simple structure, even on

these simple graph classes the problem has proved to be far from trivial. Our main

result concerns the structure of optimal solutions, and is of combinatorial flavour.

This result enables the algorithm to use a dynamic programming strategy for finding

a solution in polyomial time.

The second part of the thesis presents a simple monotone 2.8-approximation

algorithm for the classic scheduling problem Q||Cmax. Besides, it provides the exact

approximation bound of the Lpt algorithm for a special type of speed vector.

Q||Cmax denotes the offline task scheduling problem on related machines. An

instance of this problem is given by a machine speed vector 〈s1, . . . , sm〉, and a job

vector 〈t1, . . . , tn〉, where tj is the size of the jth job. The goal is to allocate the

jobs to the machines, so that the overall finish time is minimized. In particular, the

work wi of machine i stands for the total job size assigned to i, the finish time of i

is fi = wi/si, and the makespan to be minimized is maxm
i=1 fi.

This is an NP-hard problem, but it has a PTAS [53]. The first approximation

algorithm considered for Q||Cmax was the ’Largest Processing Time first (Lpt)’

heuristic, which picks the jobs one by one in decreasing order of size, and always

assigns the next job to a machine where it will have the smallest completion time [42].

In Chapter 3 of the thesis we are concerned with finding a so called monotone

algorithm for Q||Cmax. A scheduling algorithm is monotone, if increasing the speed

of any particular machine does not decrease the work assigned to that machine.

The motivation for the research on monotone algorithms originates in mech-

anism design. Traditional mechanism design focuses on voting and auction type

problems in economics, and considers situations when players or agents might try to

manipulate the system and lie in order to maximize their own profit. Mechanisms

that are able to make payments to the players, so that a rational player will never

find it in her self-interest to lie, are called truthful. The emergence of the Internet

as a primary platform for distributed computation, made it necessary to consider

similar socio-economic issues in theoretical computer science (cf. [5, 81, 84]). Nisan

and Ronen [82] were the first to apply the standard tools of mechanism design to

classic optimization problems like shortest paths, MST, and scheduling on unrelated

machines.

Archer and Tardos [5] studied scheduling on related machines (as example for a

more general setting), in a model where machines are owned by selfish agents, and the

speed of each machine is private information to its agent. Payments should motivate,

that the agents declare the true machine speeds to the scheduling mechanism. The

authors showed that such payments exist only if the mechanism uses a monotone

scheduling algorithm. They provided a randomized 3-approximation algorithm (later

improved to 2-approximation [4]), and a mechanism that is truthful in expectation.

Auletta et al. [8] gave the first deterministic monotone – (4 + ε)-approximation
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– algorithm, which is polynomial if the number of machines m is constant. They

used a modified version of Lpt, but conjectured that Lpt itself is monotone, if

machine speeds are all integral powers of two (2-divisible). As the best previous

results, Andelman et al. [3] presented a monotone FPTAS for the case of constant

m, and a 5-approximation algorithm for arbitrary m.

In the thesis we prove the conjecture of Auletta et al., that Lpt is monotone

on 2-divisible machines. By rounding arbitrary input speeds to powers of two, we

obtain a simple deterministic monotone 2.8-approximation algorithm for Q||Cmax,

polynomial in n and m. This is an improvement over the 5-approximation bound of

Andelman et al. [3]. As compared to the algorithms of Archer and Tardos [4, 5],

no randomization is needed, and a stronger definition of truthfulness is fulfilled.

Like the above papers [3, 5, 8], we also describe advantageous characteristics of the

payment function that complements our algorithm to a truthful mechanism.

Besides proving the monotonicity, it is nontrivial to prove the approximation

bound (of 1.4) of Lpt on 2-divisible speeds. As an additional result, we obtain

that on speed vectors of the form 〈1, 1, . . . , 1, s > 1〉, the worst case ratio of Lpt

is
√

3+1
2 ≈ 1.3660. The best previous lower and upper bounds on this ratio were

4
3 − ε < Lpt/Opt ≤ 3

2 − 1
2m . The latter bounds were found by Gonzalez, Ibarra, and

Sahni in 1977 [42], who conjectured the actual worst case ratio to be 4/3.

Thus, the results in the thesis provide answers to three open questions or con-

jectures in scheduling theory. Our results appeared previously in [59, 60, 61, 62].
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Zusammenfassung

In der vorliegenden Arbeit befassen wir uns mit Problemen aus zwei verschiedenen

Teilgebieten der Scheduling-Theorie.

Im ersten Teil entwickeln wir einen effizienten Algorithmus für das sog. preemp-

tive Sum Multicoloring Problem auf Pfaden und Kreisen als Konfliktgraphen.

Eine Eingabe für das Sum Multicoloring (oder kurz SMC) Problem besteht aus

einem ungerichteten Graphen G = (V, E), und ganzzahligen, positiven Gewichten

x(v) auf allen Knoten v ∈ V. Ein Knoten v repräsentiert einen Job mit Größe bzw.

Zeitbedarf x(v). Die Kanten stehen für paarweise Konflikte zwischen bestimmten

Jobs in dem Sinne, daß sie nicht gleichzeitig verarbeitet werden können.

In einer korrekten Ausgabe für das Multicoloring Problem ist jedem Knoten

v ∈ V eine Menge Φ(v) positiver ganzer Zahlen (Farben) so zugeordnet, daß |Φ(v)| =

x(v) und sich die Mengen für benachbarte Graphknoten nicht überschneiden. Damit

bestimmt Φ eine gültige Ausführungsreihenfolge der Jobs wobei in Konflikt stehen-

den Jobs nie die gleiche Zeiteinheit zugeteilt wird. Unsere Aufgabe besteht nun

darin, die durchschnittliche Fertigstellungszeit der Jobs, oder – äquivalent – die

Summe der Fertigstellungszeiten
∑

v∈V f(v) zu minimieren, wobei f(v) = max Φ(v).

Im non-preemptive SMC (npSMC) Problem besteht jede mehrelementige Menge

Φ(v) aus fortlaufenden ganzen Zahlen, wohingegen im preemptive SMC (pSMC) die

Mengen Φ(v) Lücken aufweisen dürfen.

Die Untersuchung von Sum (Multi)coloring wurde ursprünglich über ein Prob-

lem im VLSI Entwurf motiviert. Weiterhin kann SMC vor allem in Scheduling-

Szenarien angewandt werden, bei denen die Jobs exklusiven Zugriff auf bestimmte

Resourcen oder Maschinen benötigen, und mit anderen Jobs um den Gebrauch dieser

Resourcen konkurrieren. Solche Szenarien ergeben sich z.B. in den Bereichen De-

dicated Multiprocessor Scheduling, Session Management in lokalen Netzwerken oder

der Zugriffskontrolle auf Dateien.

Das SMC Problem wurde von Bar-Noy et al. in 1999 formuliert und auf ver-

schiedenen Konfliktgraphen studiert [11]. Da sich sogar Sum Coloring (SC) – der

Spezialfall mit einheitlichen Zeitanforderungen – auf mehreren Graphklassen als NP-

schwer herausstellte [10, 13, 41, 49], hat sich die aktuellere Forschung vor allem auf

die Approximierbarkeit und NP-Schwere von SC, pSMC und npSMC konzentriert

[38, 40, 49, 52, 58, 74, 80].

Andererseits ist es natürlich nach Graphklassen zu suchen, für die sich das Prob-

lem in polynomieller Zeit exakt lösen läßt. Halldórsson et al. [50] untersuchten

Sum Multicoloring auf Bäumen. Für non-preemptive SMC fanden sie zwei Algo-
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rithmen, die in O(n2) bzw. O(np) Zeit laufen, wobei n die Anzahl der Jobs |V|
und p = maxv x(v) die maximale Zeitanforderung darstellen. Für preemptive SMC

beschrieben sie ein PTAS. Die Frage nach der Komplexitätsklasse von pSMC auf

Bäumen und Pfaden wurde schon in einer früheren Version des Artikels als offenes

Problem gestellt [51].

Eine erste Antwort präsentierte Marx [73], indem er zeigte, daß pSMC sogar auf

binären Bäumen NP-schwer ist. Wir liefern in Kapitel 2 einen weiteren Beitrag,

in Form des ersten exakten Algorithmus für pSMC auf Pfaden und Kreisen mit

polynomieller Laufzeit; er benötigt O(min(n2, n log p)) Zeit. Damit identifizieren

wir einen bedeutenden Sprung zwischen der effizienten Lösbarkeit des Problems auf

binären Bäumen einerseits und Graphen mit maximalem Grad zwei andererseits.

Obwohl die untersuchten Graphen von sehr einfacher Struktur sind, hat sich

das pSMC Problem für sie schon als äußerst nichttrivial herausgestellt. Unser

Hauptergebnis betrifft die Struktur optimaler Lösungen und ist kombinatorischer

Natur. Dieses Resultat erlaubt den Einsatz dynamischer Programmierung um algo-

rithmisch eine Lösung in polynomieller Zeit zu gewinnen.

Im zweiten Teil dieser Arbeit präsentieren wir einen einfachen monotonen Algo-

rithmus mit Approximationsgüte 2.8 für das klassische Schedulingproblem Q||Cmax.

Als Nebenprodukt ergibt sich die genaue Approximationsgüte des Lpt Algorithmus

für einen bestimmten Typ von Geschwindigkeitsvektoren.

Q||Cmax bezeichnet das (off-line) Schedulingproblem mit abhängigen Maschinen

(uniform or related machines). Eine Probleminstanz besteht aus einem Geschwin-

digkeitsvektor 〈s1, . . . , sm〉 für die Maschinen und einem Jobvektor 〈t1, . . . , tn〉, wobei

tj die Größe des j-ten Jobs darstellt. Die Aufgabe besteht darin, die Jobs so den

Maschinen zuzuweisen, daß die maximale Maschinenlaufzeit minimiert wird. Das ist

ein NP-schweres Problem, aber ein PTAS existiert [53].

Der erste diesbezügliche Approximationsalgorithmus war die Largest Processing

Time first (Lpt) Heuristik, welche die nach umgekehrter Größe sortierten Jobs

so verteilt, daß der nächste zu platzierende Job auf derjenigen Maschine zu liegen

kommt, die mit ihm den frühesten Fertigstellungszeitpunkt erzielt [42].

In Kapitel 3 beschäftigen wir uns mit sog. monotonen Algorithmen für Q||Cmax.

Ein Scheduling-Algorithmus heißt monoton, wenn die Steigerung der Geschwindig-

keit einer beliebigen Maschine nicht dazu führt, daß dieser Maschine weniger Arbeit

zugewiesen wird.

Die Motivation zur Erforschung von monotonen Algorithmen entsprang dem

Mechanism Design. Traditionelles Mechanism Design konzentriert sich auf Abstim-

mungs- und Auktionsprobleme im ökonomischen Umfeld und behandelt Situationen,

in denen Spieler oder Agenten geneigt sind das System durch Lügen dahingehend

zu manipulieren, daß sie ihren eigenen Gewinn maximieren. Truthful Mechanismen

heißen jene, die durch ihre Auszahlungsfunktionen rationale Spieler dazu bringen, in

ihrem eigenen Interesse nicht zu lügen. Die Verbreitung des Internets als Hauptplatt-

form verteilter Berechnungen hat es nötig gemacht, ähnliche sozio-ökonomische As-

pekte auch im Rahmen theoretischer Informatik zu betrachten (siehe z.B. [5, 81, 84]).

Nisan und Ronen [82] waren die ersten, die die Standardwerkzeuge des Mecha-
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nism Designs auf klassische Optimierungsprobleme wie kürzeste Wege, minimale

Spannbäume und Schedulingprobleme auf unabhängigen Maschinen (unrelated ma-

chines) anwendeten.

Archer und Tardos [5] untersuchten Scheduling auf abhängigen Maschinen (als

Beispiel eines allgemeineren Ansatzes), und zwar in einem Modell bei dem Maschi-

nen eigennützigen Agenten gehören und die wahren Geschwindigkeiten der Maschi-

nen nur den jeweiligen Besitzern bekannt sind. Die Auszahlungsfunktion sollte so

beschaffen sein, daß die Agenten einen Anreiz haben, die tatsächlichen Maschi-

nengeschwindigkeiten offenzulegen. Die Autoren zeigten, daß solche Auszahlungs-

funktion nur dann existiert, wenn der Mechanismus einen monotonen Scheduling-

Algorithmus benutzt. Sie entwickelten einen randomisierten Algorithmus mit

Approximationsfaktor drei (später verbessert auf zwei [4]) sowie einen Mechanis-

mus, der nach Erwartung truthful ist.

Auletta et al. entwarfen den ersten deterministischen monotonen – (4 + ε)-app-

roximativen – Algorithmus, der in Polynomialzeit läuft falls die Anzahl der Maschi-

nen, m, konstant ist [8]. Sie benutzten eine Variante von Lpt, aber äußerten die

Vermutung, daß Lpt selbst monoton sei, vorausgesetzt daß alle Maschinengeschwin-

digkeiten ganzzahlige Potenzen von zwei sind (2-divisible machines).

Als bestes bisheriges Resultat veröffentlichten Andelman et al. [3] ein monotones

FPTAS für konstantes m sowie einen Algorithmus mit Approximationsgüte fünf für

beliebiges m.

In unserer Arbeit beweisen wir die Vermutung von Auletta et al., daß Lpt im

Falle von 2-divisible Maschinen monoton ist. Indem man für eine beliebige Eingabe

die Maschinengeschwindigkeiten auf das jeweilige nächste Vielfache von zwei rundet,

erhält man einen einfachen deterministischen monotonen 2.8-approximativen Algo-

rithmus für Q||Cmax, der polynomielle Laufzeit in n und m aufweist. Dies ist eine

deutliche Verbesserung gegenüber der Approximationsgüte von fünf im Algorithmus

von Andelman et al. [3]. Verglichen mit dem Algorithmus von Archer und Tardos

[4, 5] wird keine Randomisierung benötigt; weiterhin wird bei unserem Ansatz eine

stärkere Definition von truthful Mechanismen unterstützt. Wie in den obigen Ar-

tikeln [3, 5, 8] beschreiben wir auch günstige Eigenschaften der Zahlungsfunktion,

die gemeinsam mit unserem Algorithmus einen truthful Mechanismus darstellt.

Neben dem Beweis der Monotonie liefern wir einen nicht-trivialen Beweis für die

Approximationsgüte (1.4) von Lpt im Falle von 2-divisible Maschinen. Weiterhin

zeigen wir, daß die Approximationsgüte von Lpt auf Geschwindigkeitsvektoren der

Form 〈1, 1, . . . , 1, s > 1〉 im schlimmsten Fall
√

3+1
2 ≈ 1.3660 ist. Die bisherigen

besten unteren und oberen Schranken waren 4
3 − ε < Lpt/Opt ≤ 3

2 − 1
2m . Letztere

wurden 1977 von Gonzalez, Ibara und Sahni [42] bewiesen, die mutmaßten, daß die

tatsächliche obere Schranke bei 4/3 läge.

Alles in allem, liefert diese Arbeit Antworten auf drei offene Fragen bzw. Vermu-

tungen im Bereich der Scheduling-Theorie. Unsere Resultate erschienen in früheren

Versionen unter [59, 60, 61, 62].
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