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Abstra
tAutomati
 veri�
ation of in�nite state systems is an important area of resear
h. Unlike its �nitestate 
ounterpart, in spite of the existen
e of a large body of theoreti
al and pra
ti
al results onautomati
 veri�
ation of in�nite state systems, there does not exist a uniform framework that isappli
able to a large 
lass of systems and that fa
ilitates des
ription of pro
edures that solves theveri�
ation problem for in�nite state systems in pra
ti
e as well as providing tools for reasoningabout the termination 
onditions of su
h pro
edures. The purpose of this dissertation is toprovide a uniform framework that (1) allows des
ription of in�nite state systems at their ownlevel of granularity, (2) allows spe
ifying their properties at a high level, (3) allows des
riptionof pro
edures, that 
an solve in pra
ti
e the veri�
ation problems for in�nite state systems, ina de
larative fashion, (4) provides tools to reason about the termination 
onditions for su
hpro
edures, (5) fa
ilitates derivation of abstra
tions for veri�
ation as well as easy in
orporationof optimization te
hniques, (6) allows 
lear separation of the logi
al aspe
ts of veri�
ation fromthe 
ombinatorial ones, (7) allows 
ombination of dedu
tive (proof-theoreti
) methods withmodel-theoreti
 ones and (8) provides, for free, data stru
tures for impli
it representation ofpossibly in�nite sets of states.
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ZusammenfassungAutomatis
he Veri�kation von Systemen mit unendli
hem Zustandsraum ist ein wi
htigesFors
hungsgebiet. Do
h im Gegensatz zum Fall endli
her Zustandsr�aume und trotz einer grossenAnzahl an theoretis
hen und praktis
hen Resultaten �uber automatis
he Veri�kation von Syste-men mit unendli
hem Zustandsraum, existiert kein einheitli
hes Rahmenwerk, das si
h auf einegrosse Klasse von Systemen anwenden liesse und das die Bes
hreibung von Prozeduren, diedas Veri�kationsproblem von Systemen mit unendli
hem Zustandsraum in der Praxis l�osen, un-terst�utzen w�urde, sowie das Werkzeuge zum Beweis der Termination sol
her Prozeduren zurVerf�ugung stellen w�urde. Das Ziel dieser Dissertation ist es, ein einheitli
hes Rahmenwerk zuliefern, das (1) die Bes
hreibung von Systemen mit unendli
hem Zustandsraum erlaubt, (2)die Spezi�kation ihrer Eigens
haften auf einer hohen Ebene erlaubt, (3) die Bes
hreibung vonProzeduren, die das Veri�kationsproblem fuer Systeme mit unendli
hem Zustandsraum l�osen,in einer deklarativen Art und Weise erlaubt, (4) Werkzeuge zum Beweis von Terminationsbe-dingungen sol
her Prozeduren zur Verf�ugung stellt, (5) die Herleitung von Abstraktionen zurVeri�kation ebenso wie die einfa
he Einbindung von Optimierungste
hniken unterst�utzt, (6)eine klare Trennung der logis
hen Seiten der Veri�kation von den kombinatoris
hen erlaubt, (7)eine Kombination deduktiver (beweistheoretis
her) Methoden mit modelltheoretis
hen erlaubtund (8) umsonst Datenstrukturen f�ur die implizite Darstellung von Systemen mit unendli
hemZustandsraum bereitstellt.
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Extended Abstra
tAutomati
 veri�
ation of in�nite state systems is an important area of resear
h. Unlike its �nitestate 
ounterpart, in spite of the existen
e of a large body of theoreti
al and pra
ti
al results onautomati
 veri�
ation of in�nite state systems, there does not exist a uniform framework that isappli
able to a large 
lass of systems and that fa
ilitates des
ription of pro
edures that solves theveri�
ation problem for in�nite state systems in pra
ti
e as well as providing tools for reasoningabout the termination 
onditions of su
h pro
edures. The purpose of this dissertation is toprovide a uniform framework that (1) allows des
ription of in�nite state systems at their ownlevel of granularity, (2) allows spe
ifying their properties at a high level, (3) allows des
riptionof pro
edures, that 
an solve in pra
ti
e the veri�
ation problems for in�nite state systems, ina de
larative fashion, (4) provides tools to reason about the termination 
onditions for su
hpro
edures, (5) fa
ilitates derivation of abstra
tions for veri�
ation as well as easy in
orporationof optimization te
hniques, (6) allows 
lear separation of the logi
al aspe
ts of veri�
ation fromthe 
ombinatorial ones, (7) allows 
ombination of dedu
tive (proof-theoreti
) methods withmodel-theoreti
 ones and (8) provides, for free, data stru
tures for impli
it representation ofpossibly in�nite sets of states.The two main 
urrents that run through this dissertation are 
onstraints and logi
. Us-ing an intri
ate and exquisite interplay between 
onstraints and logi
, we provide a uniform
onstraint-based framework for the veri�
ation of in�nite state systems. The key idea is thatthe veri�
ation problems for in�nite state systems 
an be naturally viewed as 
onstraint satis-fa
tion problems. This idea leads to the observation that temporal properties of in�nite statesystems 
an be des
ribed as model-theoreti
 semanti
s of 
onstraint databases. This 
onne
tionallows des
ription of the system as well as spe
ifying properties about it at a high level in ade
larative fashion.The methods employed for 
omputing (or 
he
king membership in) model-theoreti
 seman-ti
s of 
onstraint databases are dedu
tive ones. Thus our methodology repla
es the 
onven-tional graph-theoreti
 te
hniques for automati
 veri�
ation of in�nite state systems by uniformdedu
tive ones. By employing spe
ialized dedu
tion strategies, optimized lo
al and symboli
pro
edures for automati
 veri�
ation are obtained in a natural manner. This way we unify,extend and explain in a uniform manner the seemingly di�erent pro
edures behind the su

essof several existing veri�
ation tools for in�nite state systems. Due to the 
losely knit interplaybetween logi
 and 
onstraints, it has been possible for us to design pra
ti
al pro
edures that
an verify properties of in�nite state systems spe
i�ed in ri
her logi
s. As 
onstraints are usedwithin a logi
al lands
ape, it is easier to reason about the 
orre
tness of these pro
edures withinour framework. Sin
e 
onstraints 
an represent possibly in�nite sets of states, we obtain, forfree, data stru
tures for impli
it representation of possibly in�nite sets of states. Also sin
ethe algorithmi
 aspe
t of solving 
onstraints is separated from the logi
al one, our frameworkxi



provides modular solutions to veri�
ation problems.Theoreti
al investigations of in�nite-state systems have so far 
on
entrated on de
idabilityresults; using our framework, we investigate the spe
i�
 pro
edures that are used in pra
ti
eto de
ide veri�
ation problems. Our framework presents basi
 
on
epts and properties that areuseful for reasoning about suÆ
ient termination 
riteria for pro
edures solving the veri�
ationproblem for in�nite state systems in pra
ti
e, and also for deriving those 
riteria. These 
riteria
an be obtained in the form of synta
ti
 suÆ
ient 
onditions on the individual 
omponents
omposed with asyn
hronous parallel 
omposition. The 
entral notions here are 
onstrainttransformers asso
iated with sequen
es of transitions of an in�nite state system and 
onstrainttrees labeled with su

essor 
onstraints. We show interesting examples of systems for whi
hthe suÆ
ient termination 
onditions derived using our framework guarantee the termination ofthe pro
edures solving the veri�
ation problem for su
h systems in pra
ti
e. We also providea uni�ed algebrai
 framework for deriving abstra
tions for the veri�
ation of a large 
lass ofin�nite state systems and for reasoning about their a

ura
y. The 
entral notions involved arethose of 
onstraint transformer monoids and 
overings between 
onstraint transformer monoids.Due to the 
hoi
e of 
onstraints as data stru
tures representing possibly in�nite sets of states,the abstra
tions, most of whi
h are presented as widening rules, are easily implementable using
onstraint-based operations. We show interesting examples in whi
h the abstra
tions derivedusing our framework for
e the termination of otherwise nonterminating veri�
ation pro
edureswithout losing any a

ura
y in the pro
ess.Finally, to demonstrate the appli
ability of our framework, we show that many veri�
ationproblems 
an be solved by a natural translation to our framework. This fa
t is 
orroboratedby the en
ouraging results obtained by applying an implementation based on our framework topra
ti
al veri�
ation problems. We have also identi�ed suÆ
iently expressive fragments of thepropositional � 
al
ulus su
h that our framework, that uses disjun
tive 
onstraints as the datastru
ture for representing and manipulating sets of states, is espe
ially suitable for veri�
ationproblems in whi
h the properties spe
i�ed are in these fragments.

xii



Ausf�uhrli
he ZusammenfassungAutomatis
he Veri�kation von Systemen mit unendli
hem Zustandsraum ist ein wi
htigesFors
hungsgebiet. Do
h im Gegensatz zum Fall endli
her Zustandsr�aume und trotz einer grossenAnzahl an theoretis
hen und praktis
hen Resultaten �uber automatis
he Veri�kation von Syste-men mit unendli
hem Zustandsraum, existiert kein einheitli
hes Rahmenwerk, das si
h auf einegrosse Klasse von Systemen anwenden liesse und das die Bes
hreibung von Prozeduren, diedas Veri�kationsproblem von Systemen mit unendli
hem Zustandsraum in der Praxis l�osen, un-terst�utzen w�urde, sowie das Werkzeuge zum Beweis der Termination sol
her Prozeduren zurVerf�ugung stellen w�urde. Das Ziel dieser Dissertation ist es, ein einheitli
hes Rahmenwerk zuliefern, das (1) die Bes
hreibung von Systemen mit unendli
hem Zustandsraum erlaubt, (2)die Spezi�kation ihrer Eigens
haften auf einer hohen Ebene erlaubt, (3) die Bes
hreibung vonProzeduren, die das Veri�kationsproblem fuer Systeme mit unendli
hem Zustandsraum l�osen,in einer deklarativen Art und Weise erlaubt, (4) Werkzeuge zum Beweis von Terminationsbe-dingungen sol
her Prozeduren zur Verf�ugung stellt, (5) die Herleitung von Abstraktionen zurVeri�kation ebenso wie die einfa
he Einbindung von Optimierungste
hniken unterst�utzt, (6)eine klare Trennung der logis
hen Seiten der Veri�kation von den kombinatoris
hen erlaubt, (7)eine Kombination deduktiver (beweistheoretis
her) Methoden mit modelltheoretis
hen erlaubtund (8) umsonst Datenstrukturen f�ur die implizite Darstellung von Systemen mit unendli
hemZustandsraum bereitstellt.Die beiden Leitmotive, die si
h dur
h diese Dissertation ziehen, sind Constraints und Logik.Dur
h eine komplizierte und auserlesene We
hselwirkung zwis
hen Constraints und Logik liefernwir ein einheitli
hes 
onstraint-basiertes Rahmenwerk zur Veri�kation von Systemen mit un-endli
hem Zustandsraum. Dass die Veri�kationsprobleme von Systemen mit unendli
hem Zu-standsraum auf nat�urli
he Weise als Erf�ullbarkeitsprobleme von Constraints gesehen werdenk�onnen, ist der S
hl�usselgedanke. Dieser Gedanke f�uhrt zu der Beoba
htung, dass temporaleEigens
haften von Systemen mit unendli
hem Zustandsraum als modelltheoretis
he Semantikenvon Constraint-Datenbanken bes
hrieben werden k�onnen. Dieser Zusammenhang erlaubt dieBes
hreibung des Systems ebenso wie die Spezi�kation seiner Eigens
haften auf einer hohenEbene und in einer deklarativen Art und Weise.Die Methoden zur Bere
hung (oder zum Test der Zugeh�origkeit zu) modelltheoretis
herSemantiken von Constraint-Datenbanken sind deduktive. Somit ersetzt unsere Methodik dieherk�ommli
hen graphtheoretis
hen Verfahren zur automatis
hen Veri�kation von Systemen mitunendli
hem Zustandsraum dur
h einheitli
he deduktive Methoden. Indem wir spezialisierteDeduktionsstrategien einsetzen, erhalten wir auf nat�urli
he Weise optimierte lokale und symbol-is
he Prozeduren zur automatis
hen Veri�kation. Auf diese Weise vereinheitli
hen, erweitern underkl�aren wir in einer einheitli
hen Weise die s
heinbar vers
hiedenen Prozeduren, die hinter demErfolg von mehreren existierenden Werkzeugen zur Veri�kation von Systemen mit unendli
hemxiii



Zustandsraum stehen. Aufgrund der feinmas
higen We
hselwirkung zwis
hen Constraints undLogik konnten wir brau
hbare Prozeduren entwerfen, die in rei
heren Logiken spezi�zierte Eigen-s
haften von Systemen mit unendli
hem Zustandsraum veri�zieren k�onnen. Da Constraints ineiner logis
hen Lands
haft benutzt werden, ist es lei
hter, die Korrektheit dieser Prozedurenin unserem Rahmenwerk zu beweisen. Weil Constraints potentiell unendli
he Zustandsmengenrepr�asentieren k�onnen, erhalten wir umsonst Datenstrukturen zur impliziten Repr�asentation po-tentiell unendli
her Zustandsmengen. Desweiteren bietet unser Rahmenwerk modulare L�osungenf�ur Veri�kationsprobleme, da der algorithmis
he Aspekt des L�osens von Constraints abgetrenntist vom logis
hen. Theoretis
he Fors
hung �uber Systeme mit unendli
hem Zustandsraum warbislang auf Ents
heidbarkeitsresultate geri
htet; mit unserem Rahmenwerk untersu
hen wir nundie spezi�s
hen Prozeduren, die in der Praxis angewandt werden, um Veri�kationsproblemezu ents
heiden. Unser Rahmenwerk stellt grundlegende Konzepte und Eigens
haften vor, dien�utzli
h sind zur Herleitung und zum Beweis von hinrei
henden Terminationskriterien f�ur Proze-duren, die das Veri�kationsproblem in der Praxis l�osen. Diese Kriterien erh�alt man in Formsyntaktis
her hinrei
hender Bedingungen an die einzelnen Komponenten. Die zentralen Ideenhier sind Constraint-Umformer, die Folgen von �Uberg�angen eines Systems mit unendli
hem Zu-standsraum zugeordnet sind, und Constraint-B�aume, deren Knoten mit Na
hfolger-Constraintsmarkiert sind. Wir zeigen interessante Beispiele, wo die mit unserem Rahmenwerk hergeleitetenhinrei
henden Terminationsbedingungen die Termination von Prozeduren, die das Veri�kation-sproblem f�ur sol
he System in der Praxis l�osen, garantieren. Wir bieten au
h ein einheitli
hesalgebrais
hes Rahmenwerk, um Abstraktionen f�ur eine grosse Klasse von Systemen mit un-endli
hem Zustandsraum herzuleiten und um Beweise �uber die Exaktheit dieser Abstraktionenzu f�uhren. Hier sind die beteiligten zentralen Ideen Monoide von Constraint-Umformern und�Uberde
kungen zwis
hen Constraint-Umformern. Aufgrund der Wahl von Constraints als Daten-struktur zur Darstellung potentiell unendli
her Zustandsmengen, k�onnen die Abstraktionen,die meist als Widening-Regeln dargestellt werden, lei
ht dur
h 
onstraint-basierte Operatio-nen implementiert werden. Wir zeigen interessante Beispiele, wo die mit unserem Rahmenwerkhergeleiteten Abstraktionen die Termination andernfalls ni
ht-terminierender Veri�kationsproze-duren erzwingen, ohne an Pr�azision zu verlieren.S
hliessli
h zeigen wir, dass viele Veri�kationsprobleme dur
h eine nat�urli
he �Ubersetzung inunser Rahmenwerk gel�ost werden k�onnen. Diese Tatsa
he wird untermauert dur
h die ermuti-genden Ergebnisse, die eine auf unserem Rahmenwerk basierende Implementierung an praktis-
hen Veri�kationsproblemen lieferte. Au
h haben wir hinrei
hend ausdru
ksstarke Fragmentedes aussagenlogis
hen �-Kalk�uls bestimmt, so dass Prozeduren zur Veri�kation von Eigen-s
haften, die in diesen Fragmenten spezi�ziert sind, besonders geeignet sind f�ur unser Rahmen-werk, das disjunktive Constraints als Datenstrukturen zur Repr�asentation und Manipulationvon Zustandsmengen benutzt.
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Chapter 1Introdu
tionMathemati
al logi
 
an provide a uniform framework for modeling and formally verifying rea
tivesystems. In this dissertation, we make an attempt to justify the above thesis by trying to use thepower of mathemati
al logi
 in providing a uniform 
onstraint-based framework for modeling,understanding and reasoning about rea
tive systems.1.1 Perspe
tiveRapid progress in 
omputer te
hnology in the last few de
ades has e�e
ted a signi�
ant 
hange inthe perspe
tives under whi
h 
omputing is viewed. Computers have now be
ome truly \global"in the sense that they make their presen
e felt in devi
es ranging from su
h miniature ones asmini-
ameras to su
h monstrous ones as airplanes. This \globalization" of 
omputer te
hnologyhas been a

ompanied by the development of large software systems and highly integrated hard-ware systems with their inherent logi
al 
omplexity and many layers of abstra
tion. This logi
al
omplexity manifests itself, in parti
ular, in embedded systems | systems that are embeddedinto a natural environment that is governed by physi
al laws, with agents (or appli
ations) fromdi�erent problem domains intera
ting with ea
h other in often unpredi
table ways. This logi
al
omplexity and unpredi
tability renders the use of su
h systems in safety-
riti
al devi
es likeairplanes or nu
lear power-plant 
ontrollers into a high-risk a�air. This risk fa
tor is justi�edby the number of 
hilling experien
es that we have had in the last few de
ades 
aused by thefailure of 
omputer systems operating in life 
riti
al appli
ations. In order to minimize this riskfa
tor and to avert su
h 
hilling experien
es, we need to stru
ture, reason about and developsu
h systems more systemati
ally. It is exa
tly here that methods from mathemati
al logi
 
ometo our aid.A distin
t feature of these \new generation" 
omputer systems mentioned above is theirpower of maintaining an ongoing intera
tion with the environment. While for a 
lassi
al se-quential program, non-termination entails the presen
e of a possible bug in the program, foran embedded system, termination usually indi
ates presen
e of a possible \deadlo
k". Su
hembedded systems are usually 
alled rea
tive systems as their evolution involves \rea
tion" inresponse to \stimulus" or requests from the environment.A long promoted way of using mathemati
al logi
 for designing provably 
orre
t hardwareand software is the dedu
tive or the theorem proving approa
h. Here one develops a formal proofof 
orre
tness of the system along with the system itself. The proof is usually based on invariant1



assertions | logi
al formulae whose truth value never 
hanges during the possible runs of thesystem. The 
orre
tness of the system is expressed as a logi
al 
onsequen
e of an invariant thatis true initially. Su
h an approa
h has the drawba
ks that it is not fully automati
 | it requiressigni�
ant assistan
e from a human expert. Furthermore, it does not support reusability |even if a system has been proved 
orre
t for 
ertain properties, for proving the system 
orre
tfor other properties one may need to start from s
rat
h.An alternative approa
h is automati
 veri�
ation. In this approa
h, 
ommonly known asmodel 
he
king [CE80℄, one veri�es whether a \model" of the system (usually a Kripke stru
ture)satis�es a spe
i�
ation (given by, say, a temporal logi
 formula [Pnu77℄) by an exhaustive sear
hthrough the \state-spa
e" of the model. More pre
isely, a �nite state (or an in�nite state)rea
tive system is modeled as a Kripke stru
ture (or as a parallel 
omposition of several Kripkestru
tures) and the property against whi
h it is veri�ed is spe
i�ed as a temporal logi
 formula;given a Kripke stru
ture K and a temporal logi
 formula ', the model 
he
king problem is todetermine whether K j= ' i.e., whether K is a model of ' (or to 
ompute the set of states ofK that satisfy '). This problem is solved by an exhaustive sear
h through the state spa
e of K(or by a rea
hability analysis).While the framework of automati
 veri�
ation provides a solution to the veri�
ation problem,there is an inherent non-uniformity within it. First, there is no uniform way to model systems attheir own level of granularity (e.g., pushdown systems [Wal96℄, hierar
hi
al systems [AY98℄ aremodeled di�erently in this framework). Se
ond, the treatment of �nite state and in�nite stateinstan
es of the problem within this framework are di�erent. Third, systems over di�erent datadomains (e.g., systems operating over numeri
 domains like reals or integers and systems overnon-numeri
 domains su
h as queues or sta
ks) are treated di�erently. Fourth, the veri�
ationproblem for di�erent spe
i�
ations use seemingly di�erent te
hniques (viz, rea
hability analysisor 
omputing strongly 
onne
ted 
omponents of a dire
ted graph).Not only this non-uniformity is 
on
eptually disturbing and makes integration diÆ
ult, butthe la
k of uniformity prevents immediate extensions to more expressive logi
s (see Chapter 3for more details) or to more su

in
t (or di�erent) system models (e.g., to hierar
hi
al systems)without 
hanging the whole set up. Moreover, dealing with \many-sorted" systems (e.g., systemsin whi
h some variables range over numeri
 domains while some others range over non-numeri
domains) within this framework is diÆ
ult. Further, in
orporation of optimization te
hniquesfor model 
he
king be
omes diÆ
ult within this framework. Also, within the above framework, itis diÆ
ult to identify sub
lasses of systems that 
an be model 
he
ked e�e
tively and eÆ
iently(this also holds true for spe
i�
ations). The inherent non-uniformity also presents problemsin separating the logi
al part of the framework from its 
ombinatorial part thereby losing themodularity of the solution provided (e.g., in model 
he
king for systems over numeri
 data types,the 
onstraint solving part is not separated from the 
ore model 
he
king pro
edure).Mathemati
al logi
 provides a uniform framework in whi
h to simulate (and model) su
hrea
tive systems in an essentially 
oding-free way as well as write down and verify propertiesabout the behaviors of su
h systems. The simulation is not supposed to be performed at a lowerabstra
tion level; it should be done on the natural abstra
tion level of the system. The simulation
an itself be viewed as a \database" at an appropriate abstra
tion level and the logi
al formulaen
oding properties about the behaviors as a query so that the veri�
ation problem boils downto that of evaluating that query on the \simulation" as a database. To give the reader a tasteof the uniform framework that mathemati
al logi
 provides for spe
ifying and verifying rea
tivesystems, we provide a few examples below. 2



Rea
hability Analysis as a Mapping between Di�erent Abstra
tion Levels A (pos-sibly in�nite state) transition system (or program) P with n data variables x1; : : : ; xn rangingover a domain D and lo
ations `1; : : : `k indu
es a relational stru
ture T over the vo
abulary� = h`1; : : : ; `ki (n-ary relation symbols) in the following wayT = hD; `1; : : : `kiwhere the relation symbols `1; : : : ; `k are interpreted as follows: v 2 `i if and only if the lo
ation`i is rea
hable in P, from the initial state, with the data variables taking the value v. We 
all thisrelational stru
ture T indu
ed by a transition system T as the expli
it stru
ture indu
ed by T .Rea
hability analysis for a transition system then amounts to 
omputing the expli
it stru
turefrom the \impli
it representation" of the transition system. The impli
it representation of atransition system as well as the expli
it stru
ture indu
ed by it 
an be viewed as the samedatabase represented at di�erent levels of abstra
tion. Thus rea
hability analysis 
an be viewedas a mapping between two di�erent levels of abstra
tion of the same database.Model Che
king as Constraint Satisfa
tion A 
onstraint satisfa
tion problem [FV98℄ isgiven by a pair I (
alled instan
e) and T (
alled template) of relational stru
tures over thesame vo
abulary (we 
onsider here the version with �xed template). The problem is satis�ed ifthere is a homomorphism from I to T . A model 
he
king problem for temporal logi
 is givenby a transition system P and a temporal logi
 (say an LTL [Pnu77℄) formula '. This problemhas a 'yes' answer if P j= '. One 
an redu
e this problem to a language in
lusion problemL(AP) � L(A') [VW86a℄ i.e., 
he
king whether all 
omputations a

epted by the automatonAP 
orresponding to P are also a

epted by the automaton A' 
orresponding to '. The answerto this latter problem is 'yes' if there is a homomorphism from AP to A' (both viewed asrelational stru
tures). Thus a 'yes' answer to the '
onstraint satisfa
tion' problem with AP asinstan
e and A' as template yields a 'yes' answer to the model 
he
king problem.1.2 A Brief History of Computer-Aided Veri�
ationThis se
tion makes a brief review of the resear
h on 
omputer-aided-veri�
ation over the last 30years as well as the 
urrent state-of-the-art, thus pla
ing the resear
h des
ribed in this thesisin 
ontext. Computer-Aided-Veri�
ation started with the seminal papers of Floyd [Flo67℄ andHoare [Hoa69℄ (though the �rst resear
her to advo
ate the use of 
omputers for verifying softwarewas Turing himself). Floyd and Hoare provided a framework for stru
tured, 
ompositionaldedu
tive veri�
ation of sequential programs. Their method was extended to parallel programsby Owi
ki and Gries [OG76℄. But as we have mentioned earlier, su
h methods need 
onsiderableamount of intervention from a human expert. Hen
e, although mathemati
ally appealing, thesemethods were not so su

essful in pra
ti
e.In 1977, in a seminal paper, Pnueli [Pnu77℄ proposed temporal logi
 for the spe
i�
ationof 
on
urrent systems. In a temporal logi
, we augment a 
onventional logi
 with temporalmodalities making it possible to des
ribe the ordering of events in time. As opposed to theFloyd-Hoare framework, where the spe
i�
ation 
an only relate the initial state and �nal stateof a system, temporal logi
 is well suited to des
ribe the on-going behavior of non-terminatingrea
tive systems. 3



Model 
he
king te
hniques for bran
hing time temporal logi
 spe
i�
ations were introdu
edin the early 80's by Clarke and Emerson [CE80℄ and independently by Quielle and Sifakis [QS81℄.The late '80's and the early '90's have seen a blooming period for theoreti
al and pra
ti
alresear
h in model 
he
king for �nite state systems. Symboli
 [BCM+92℄ and lo
al [SW91℄ model
he
king methods were proposed to deal with the state explosion problem, more expressive logi
slike the propositional mu-
al
ulus [Koz83℄ were being model 
he
ked, and systems with 10100states were being handled [BCM+92℄. On another side, automata-theoreti
 methods [VW86a℄were proposed to unify the various approa
hes to model 
he
king that had 
ome up so far.With te
hniques like symboli
 model 
he
king providing ways of representing and manipu-lating (possibly in�nite) sets of states, resear
hers started 
onsidering model 
he
king for in�nitestate systems (this area also got a lot of impetus from resear
h on Petri nets). Brad�eld andStirling [BS90℄ 
onsidered lo
al model 
he
king for systems with in�nite state spa
es againstmu-
al
ulus spe
i�
ations. While they gave a semi-algorithm for a general 
lass of in�nite statesystems, several other resear
hers started looking for sub
lasses of in�nite state systems that
an be model 
he
ked e�e
tively (if not eÆ
iently). A breakthrough in this dire
tion was a
-
omplished when Alur and Dill in a seminal paper [AD94℄ isolated the 
lass of timed automata(�nite state systems augmented with 
lo
ks that range over the non-negative reals) that admit�nite bisimulation. This result led to extensive resear
h by several other resear
hers who ex-tended te
hniques from �nite state model 
he
king like symboli
 model 
he
king [HNSY94℄, lo
almodel 
he
king [SS95℄ to model 
he
king for timed systems. Buoyed by the su

ess of model
he
king for timed systems, resear
hers started looking at more expressive models like hybridsystems [ACHH93℄ where semi-algorithms for symboli
 model 
he
king were obtained. In ad-dition, sub
lasses of hybrid systems like initialized re
tangular automata [HKPV95℄, o-minimalhybrid systems [LPY99℄, that admit �nite bisimulation were identi�ed. In another dire
tion, sev-eral sub
lasses of in�nite state systems in whi
h the variables range over non-numeri
 domainslike the pushdown pro
esses [Wal96, BEM97℄ et
., were identi�ed, for whi
h the rea
habilityproblem turned out to be de
idable.The middle and the end of the 1990's saw the emergen
e of model 
he
kers 
apable of model
he
king for industrial size systems like the Philips audio 
ontrol proto
ol [BLL+96℄. Manyhardware design 
ompanies adopted model 
he
king as part of their basi
 design method. To dealwith the in
reasing 
omplexity in the fun
tionality of the industrial systems being 
onsidered,on one hand more su

in
t models like hierar
hi
al �nite state ma
hines [AY98℄ 
ame up, whileon the other hand te
hniques like model measuring [ATEP99℄ were introdu
ed to deal with more'pre
ise' spe
i�
ations.This period also saw several e�orts to unify the various te
hniques available for model
he
king under a uniform framework. Automata-theory was proposed as a vehi
le of uni�-
ation [DW99, BVW94℄. However, the solution provided by automata theory, though 
lose tologi
, was not entirely satisfa
tory | many of the non-uniformities already 
rept into this frame-work (e.g., the automata-theoreti
 method does not work very well for model 
he
king timedsystems; in fa
t entirely new models like timed alternating tree automata [DW99℄ needed to beintrodu
ed to deal with timed systems). 4



1.3 Synopsis of this DissertationThis dissertation makes an attempt to develop a uni�ed framework based on mathemati
al logi
for modeling and verifying (possibly in�nite state) rea
tive systems. The 
entral idea is to iden-tify a 
onstraint-based logi
al formalism that 
an provide a uniform representation for a large
lass of rea
tive systems using logi
al formulae and to redu
e the veri�
ation problem to 
om-puting model-theoreti
 semanti
s of logi
al formulae. Computing model-theoreti
 semanti
s oflogi
al formulae is 
losely related to query evaluation. Hen
e, developing optimized algorithmsfor query evaluation (or query optimization te
hniques) yields, as a by-produ
t, optimized algo-rithms for veri�
ation.The logi
al formalism, developed in this work, is able to model systems at their naturalabstra
tion level (e.g., the formalism does not need any signi�
ant extension to model a su
-
in
tly represented system). Moreover, systems represented in 
onventional formalisms (e.g.,pushdown systems et
.) are easily translatable to this formalism (bringing more 
exibility toour framework).The logi
al formulae representing a system may be viewed as a database (allowing possi-ble re
ursion in the database) at an appropriate abstra
tion level. The interpretation of the\extensional database" predi
ates is provided by the spe
i�
ation. Then model 
he
king (orrea
hability analysis) amounts to 
omputing the interpretations of \intensional database" pred-i
ates from those of the extensional database predi
ates, i.e., evaluating a query on the databasewhere the interpretations of the intensional predi
ates are the output relations. Thus the graph-theoreti
 framework (i.e., rea
hability analysis or 
omputing strongly 
onne
ted 
omponents ofa graph) in 
onventional veri�
ation algorithms is repla
ed by a model-theoreti
 framework inour approa
h.We use the framework mentioned in the previous paragraph to treat uniformly the problemsof modeling and veri�
ation of (in�nite state) systems with numeri
 data types (like real timesystems, systems with integer-valued variables). Our framework allows the logi
al part of theproblem to be 
learly separated from the 
ombinatorial (
onstraint solving) part. In this way,we explain uniformly and unify the seemingly di�erent algorithms behind the su

ess of severalexisting model 
he
king tools. Further the uniform framework provides a platform in whi
hto identify sub
lasses of veri�
ation problems for whi
h termination guarantees exist for semi-algorithms that are used to solve the model 
he
king problem in pra
ti
e as well as to developte
hniques for for
ing 
onvergen
e of semi-algorithms (possibly losing a

ura
y in the pro
ess)for unde
idable veri�
ation problems. We use this platform to develop a 'toolbox' 
onsisting ofbasi
 
on
epts and properties that are useful for reasoning about suÆ
ient termination 
onditionsfor symboli
 model 
he
king semi-algorithms as well as deriving abstra
tions to either to for
etermination or to a

elerate the 
onvergen
e of su
h (semi) algorithms and reason about thea

ura
y of su
h abstra
tions.In stark 
ontrast with the automata-theoreti
 framework whi
h is not easily extendible fordealing with in�nite state systems like timed or hybrid systems our framework 
an, withoutany extension, uniformly deal with both �nite and in�nite state versions of the model 
he
kingproblem. 5



1.4 Contributions of this DissertationIn this se
tion, we break up the 
ontributions of this dissertation a

ording to 
hapters1. Thedissertation is so arranged that most of the 
hapters 
an be read independently of the rest of thedissertation. Ea
h 
hapter starts with an Introdu
tion and 
ontains 
omparisons with relatedwork that pla
es the resear
h des
ribed in that 
hapter in 
ontext.In Chapter 2, we argue that the framework of 
onstraint query languages 
an provide a uni-form platform for modeling and verifying rea
tive systems. To this end, we show how �nite statesystems and pushdown systems 
an be uniformly 
aptured by 
onstraint query language pro-grams (propositional horn formulae for �nite state systems and Herbrand domain for pushdownsystems) and their veri�
ation problem redu
es to 
omputing model theoreti
 semanti
s of 
on-straint query language programs (horn formulae). These results are inspired by [CP98a, SIR96℄and 
an be viewed as extending and unifying their work. We use Dowling-Gallier graphs [DG84℄as advo
ated by [SIR96℄ for 
omputing the model theoreti
 semanti
s of (propositional) hornformulae. We show how the pebbling algorithm of Dowling and Gallier [DG84℄ 
an be modi-�ed to deal with the problem of 
omputing the greatest model semanti
s of propositional hornformulae.The uniform framework of 
onstraint query languages mentioned in the previous paragraphen
ompasses the automata-theoreti
 framework of Bernholtz, Vardi and Wolper [BVW94℄. Weshow how both word and tree automata (non-deterministi
, deterministi
 or alternating) 
an be
aptured uniformly by our framework and 
onne
t the emptiness problem for these automata to
omputing model-theoreti
 semanti
s of 
onstraint query language programs. This 
onne
tionallows us to 
apture the automata-theoreti
 model 
he
king methodology of [BVW94℄ uniformlywithin our framework. Sin
e the automata-theoreti
 framework already uni�es the variousapproa
h to �nite-state model 
he
king [BVW94℄ (where the system is spe
i�ed as a �niteKripke stru
ture), 
apturing the automata-theoreti
 framework already provides some eviden
eof the uniformity of our framework. This part of the work is inspired by [CMN+98℄. Finally,we prove some topologi
al properties of the 
onstraint domain of in�nite trees. All these resultsalong with some preliminaries 
onstitute Chapter 2. This 
hapter 
ontains results some of whi
hbelong to the author while others belong to the existing literature. The results that do not belongto the author are 
learly distinguished by their 
itations.In Chapter 3, we show how the uniform framework that we have identi�ed 
an deal with theproblem of spe
ifying and verifying timed systems2. As a part of our uniform framework, weintrodu
e a fragment of 
onstraint query languages over reals and show that programs in thisfragment 
an model timed systems. We 
all the programs expressed in this fragment as timedlogi
 pro
esses (TLPs). We establish a formal 
onne
tion of TLPs with the standard model oftimed automata. We use this 
onne
tion to show that the Uppaal model 
he
king pro
edure forsafety and bounded-liveness properties of timed systems is the top-down query evaluation withtabling (in the XSB style) for TLPs. This allows us to obtain an alternative way of implementingUppaal's pro
edure and for extending it. This extension a

ommodates properties with `full'disjun
tion and unbounded liveness properties. All the results in Chapter 3 were obtained bythe author.1Chapter 2 besides providing some preliminary 
on
epts needed for reading this dissertation, leads the reader
loser to the uniform framework to be used in the later 
hapters2Note that the automata-theoreti
 framework does not have an easy extension for dealing with real timesystems 6



In Chapter 4, we introdu
e the strati�ed �-
al
ulus. Some symboli
 model 
he
king pro
e-dures use disjun
tive 
onstraints (e.g. disjun
tions of 
onjun
tions of arithmeti
 inequalities) torepresent sets of states. This motivates us to introdu
e a new 
lass of temporal properties witha ba
kward analysis and a forward analysis that are both well-suited for disjun
tive 
onstraintsas the `symboli
' data stru
ture. The strati�ed �-
al
ulus S� is a natural generalization of STL(Safe Temporal Logi
) and 
an be used to express e.g. 
onvergen
e for timed automata. Ourte
hni
al 
ontribution is the novel `symboli
 forward analysis' method for 
he
king S� formulas.This method is based on our 
hara
terization of S� properties as perfe
t models of 
onstraintlogi
 programs and on our tabled-resolution pro
edure for 
onstraint logi
 programs with theperfe
t-model semanti
s.In Chapter 5, we are 
on
erned with the termination of the pro
edures that solve the model
he
king problem for timed systems in pra
ti
e. Theoreti
al investigations of in�nite-state sys-tems have so far 
on
entrated on de
idability results; in the 
ase of timed automata these resultsare based on region graphs. We investigate the spe
i�
 pro
edure that is used pra
ti
ally in orderto de
ide veri�
ation problems, namely symboli
 forward analysis. This pro
edure is possiblynon-terminating. We present basi
 
on
epts and properties that are useful for reasoning aboutsuÆ
ient termination 
onditions, and then derive some 
onditions. The 
entral notions here are
onstraint transformers asso
iated with sequen
es of automaton edges and zone trees labeledwith su

essor 
onstraints.In Chapter 6, we propose a symboli
 model 
he
king pro
edure for timed systems thatis based on operations on 
onstraints. To a

elerate the termination of the model 
he
kingpro
edure, we de�ne history-dependent widening operators, again in terms of 
onstraint-basedoperations. We show that these widenings are a

urate, i.e., they don't lose pre
ision even withrespe
t to the test of boundedness properties.In Chapter 7, we 
onsider 
ompositional termination analysis of symboli
 forward analysisfor in�nite state systems. Existing model 
he
king tools for in�nite state systems, su
h asUPPAAL, HYTECH and KRONOS, use symboli
 forward analysis, a possibly nonterminatingpro
edure. We show termination for the spe
ial 
ase of o-minimal hybrid systems. We givetermination 
riteria for general integer-valued systems and nonlinear hybrid systems. These
riteria are in the form of synta
ti
 suÆ
ient 
onditions on the individual 
omponents 
omposedwith asyn
hronous parallel 
omposition.In Chapter 8, we present a 
onstraint-based framework for deriving abstra
t symboli
 model
he
king pro
edures and also for reasoning about their a

ura
y. Symboli
 forward analysis is asemi-algorithm that in many 
ases solves the model 
he
king problem for in�nite state systemsin pra
ti
e. This semi-algorithm is implemented in many pra
ti
al model 
he
king tools likeUPPAAL [BLL+96℄, KRONOS [DT98℄ and HYTECH [HHWT97℄. In most pra
ti
al experi-ments, termination of symboli
 forward analysis is a
hieved by employing abstra
tions resultingin an abstra
t symboli
 forward analysis. This paper presents a uni�ed algebrai
 framework forderiving abstra
t symboli
 forward analysis pro
edures for a large 
lass of in�nite state systemswith variables ranging over a numeri
 domain. Our framework provides suÆ
ient 
onditionsunder whi
h the derived abstra
t symboli
 forward analysis pro
edure is always terminating ora

urate or both. The 
lass of in�nite state systems that we 
onsider here are (possibly non-linear) hybrid systems and (possibly non-linear) integer-valued systems. The 
entral notionsinvolved are those of 
onstraint transformer monoids and 
overings between 
onstraint trans-former monoids. We show 
on
rete appli
ations of our framework in deriving abstra
t symboli
forward analysis algorithms for timed automata and the two pro
ess bakery algorithm that are7



both terminating and a

urate.Chapter 9 
on
ludes the dissertation. In this 
hapter, we brie
y summarize the subje
tmatter of the thesis and also present problems left open in the dissertation and dire
tions forfuture resear
h.

8



Chapter 2PreliminariesWe �rst present some preliminary notions. We then argue that 
onstraint query languages 
anprovide a uniform 
onstraint-based framework for modeling and verifying (possibly in�nite state)rea
tive systems. This is demonstrated by showing that a large number of seemingly unrelatedformalisms have a natural translation to the framework of 
onstraint query languages and theirveri�
ation problems redu
e to 
omputing the model-theoreti
 semanti
s of 
onstraint querylanguage programs.2.1 Transition SystemsWe are interested in the formal veri�
ation of rea
tive systems. Labeled transition systems area formalism for des
ribing su
h systems.De�nition 2.1 (Labeled Transition System) A labeled transition system is a six tupleL = hS;�; S0;�!; AP; P i;where S is a set of states, � is a �nite alphabet (or a set of letters), S0 � S is a set of initialstates, �!� S � � � S is a transition relation, AP is a �nite set of atomi
 propositions andP : S �! 2AP assigns to ea
h state a set of atomi
 propositions.We 
all a labeled transition system in whi
h j�j = 1 a one-letter transition system [BVW94℄or simply an unlabeled transition system (or a Kripke stru
ture). In 
ase of an unlabeledtransition system, we 
an assume the transition relation �! to be a binary relation; �!� S�S.A transition system (labeled or unlabeled) is in�nite if S is in�nite. In this dissertation, weare 
on
erned with possibly in�nite state transition systems that 
an be �nitely represented(explained below). Most of the transition systems that we 
onsider in this dissertation areunlabeled. For s 2 S, a path � = s0; s1; : : : starting from s is an in�nite sequen
e of statessu
h that s0 = s and for all i � 0, there exists a 2 � su
h that hsi; a; sji 2�!. For a path� = s0; s1; : : : , we will write �[i℄ for si.For a set of atomi
 propositions AP , let V = h�!; fp j p 2 APg;�; S0i be a two-sortedvo
abulary with f1; 2g as the set of sorts, where the �! is a ternary relation symbol with sorth1; 2; 1i and all other relation symbols are monadi
 with sort h1i with the ex
eption of � whi
h isa monadi
 relation symbol of sort h2i. Let L be a two-sorted �rst order language (with equality)su
h that L \ V = ;. A labeled transition system L over L 
an be viewed as an expansion of9



an L stru
ture A with universe A to V su
h that the interpretation of � is a �nite relation.The language L is 
alled the underlying language of L. A labeled transition system L is �nitelyrepresentable over L if for ea
h relation R 2 V nf�g there exists a quanti�er-free L formula '(x)su
h that L j= 8x(R(x) ! '(x))For example, the transition system LP = hN ; fag;�!; AP; P i with the set of natural num-bers N being the set of states and the relation �! de�ned as �! (i; a; j) i� j is even is not�nitely representable over the language of Presburger arithmeti
. The reason is that Presburgerarithmeti
 does not admit quanti�er elimination [End72℄ (e.g., there is no quanti�er free Pres-burger arithmeti
 formula equivalent to the formula 9xy = x+x de�ning the set of even naturalnumbers). In the sequel, we write s a�! s0 to denote hs; a; s0i 2�!.2.1.1 Equivalen
es between Transition SystemsIn this se
tion, we brie
y review some notions for 
omparing two transitions. The notions ofsimulation and bisimulation [Mil89℄ are the basi
 ways of 
omparing the stru
ture of transitionsystems.De�nition 2.2 (Bisimulation [Mil89℄) Given labeled transition systems L = hS;�; S0;�!; AP; P i and L0 = hS0;�; S00;�!0; AP 0; P 0i, a binary relation �� S�S0 is a bisimulation relationif for ea
h s0 2 S0, there exists s00 2 S00 su
h that s0 � s00 and vi
e versa and for all letters �,s � t implies:{ Whenever s ��! s0 then, for some t0, t ��!0 t0 and s0 � t0.{ Whenever t ��!0 t0 then, for some s0, s ��! s0 and s0 � t0.A bisimilarity relation � is a bisimulation between L and L0, su
h that for all states s 2 S, thereis a state t 2 S0 su
h that s � t and for all states t 2 S0 there exists s 2 S su
h that s � t. Wesay that L and L0 are bisimilar i� a bisimilarity relation � exists between L and L00.De�nition 2.3 (Quotient Transition System) Let L = hS;�; S0;�!; AP; P i be a (labeled)transition system. Let � be an equivalen
e relation on S that does not distinguish elements ofS0. The quotient transition system L= � is de�ned as follows: For all letters � 2 �L= �= hS= �;�; [S0℄;�!�; AP; P iwhere S= � is the set of equivalen
e 
lasses of S indu
ed by the equivalen
e relation �, [S0℄ isthe equivalen
e 
lass 
ontaining S0. The transition relation is de�ned as follows: E1 ��!� E2,for two equivalen
e 
lasses E1 and E2, if there exists s1 2 E1 and s2 2 E2 su
h that s1 ��! s2.Note that if the equivalen
e relation � is a bisimulation then L= � and L are bisimilar. Thenotion of quotient transition systems and bisimilarity will be used in Chapter 3In the remaining part of this se
tion, we review two types of state spa
e partitions of atransition system. 10



De�nition 2.4 (Pre-stable and Post-stable Partitions [ACD+92℄) Let L =hS;�; S0;�!; AP; P i be a labeled transition system. Let � be an equivalen
e relation onS. The partitioning of S indu
ed by � is pre-stable if for all a 2 � and for all states s, s0 andt, if s � t and s a�! a0 then there is a state t0 su
h that s0 � t0 and t a�! t0. The partitioningof S indu
ed by � is a post-stable partitioning if for all a 2 � and for all states s, s0 and t, ifs0 a�! s and s � t then there exists a state t0 su
h that t0 a�! t and s0 � t0.2.2 Spe
i�
ation Logi
sTill now we have des
ribed formalisms for des
ribing rea
tive systems. In order to reason aboutthe behaviors of rea
tive systems, we need a formalism to spe
ify their properties. In thisse
tion, we review some of the logi
s for spe
ifying properties of transition systems. The �
al
ulus [Koz83℄ is a modal logi
 augmented with least and greatest �xpoint operator. Thesyntax of � 
al
ulus formulas are given as follows.� ::= q j �1 ^�2 j :� j3(�) jX j � X:�where q is an atomi
 proposition and for a formula of the form � X:�, every o

urren
e of X in� o

urs under an even number of negations. We will also use the following abbreviations.2(�) � :3(:�)� X:�(X) � :� X::�(:X)A variable X in the formula is guarded i� every o

urren
e of X in � o

urs in the s
opeof a modality operator 3 (2). A formula � is guarded i� every bound variable in the formulais guarded [Wal93℄. We now des
ribe the semanti
s of � 
al
ulus with respe
t to an unlabeledtransition system L = hS; fag;�!; AP; P i. The meaning or denotation of a formula � in an(unlabeled) transition system L under an assignment Val : Var �! 2S , where Var is the setof variables of �, is the set of states of L in whi
h � is true. It is denoted by L� and is de�nedindu
tively as follows.{ Lq = fs 2 S : q 2 P (s)g{ L(�1 ^ �2) = L�1 \ L�2{ L:� = S n L�{ L(3(�)) = fs 2 S j 9s0 2 Ss �! s0 ^ s0 2 L�g{ LX = Val(X){ L� X:� = SfS0 � S j S0 � L�g.The �-
al
ulus is a very expressive spe
i�
ation logi
. In the literature, di�erent fragmentsof �-
al
ulus have been 
onsidered for whi
h eÆ
ient model 
he
king pro
edures exist. In Chap-ter 4, we 
onsider a fragment of �-
al
ulus for whi
h two symboli
 model 
he
king pro
eduresexist | one based on ba
kward analysis and the other based on forward analysis, that are bothsuitable for disjun
tive 
onstraints as the data stru
ture for representing and manipulating setsof states. 11



2.3 Logi
 Programs and DatalogAs 
onstraint query languages and 
onstraints are going to play a 
entral role in our uniform
onstraint-based framework, we review some related 
on
epts about logi
 programming [Llo87℄and datalog [Ull89℄ in this se
tion. The usual viewpoint of logi
 programming is to look atthe synthesis of operational behavior from programs viewed as exe
utable spe
i�
ations. Inthis dissertation, we take a di�erent viewpoint; namely, the analysis of operational behaviors of
onstraint query language programs obtained by dire
t translation of a system (program). Forthe de�nition and semanti
s of logi
 programs and datalog we refer the reader to [Llo87, Ull89℄.For an introdu
tion to tabling and OLDT resolution, we refer the reader to [TS86a, CW96℄.We review here only some of the terminology that will be used in the sequel. One of the mostimportant notions in logi
 programming is that of OLD resolution.De�nition 2.5 (OLD resolution [TS86a℄) Let C be a negative 
lause  � A1^ : : :^An andD be a de�nite 
lause. Let D0 be of the form A  � B1 ^ : : : ^ Bm (m � 0), be D with allvariables renamed so that there is no 
on
i
t with those in C. The 
lauses C and D are said tobe OLD resolvable if A1 and A are uni�able, and the negative 
lause (or null 
lause when n = 1and m = 0)  � (B1 ^ : : : ^Bm ^A2 ^ : : : ^An)� is the OLD resolvent of C and D where � isthe mgu of A1 and A. The restri
tion of the substitution � to the variables of A1 is 
alled thesubstitution of the OLD resolution.De�nition 2.6 (OLD Tree [TS86a℄) Let P be a program and C0 be a negative 
lause. Thenthe OLD tree for the pair hP;C0i is a possibly in�nite tree with its nodes labeled with negativeor null 
lauses so that the following 
ondition is satis�ed.{ The root is labeled with C0.{ Assume a node v is labeled with C.{ If C is a null 
lause, then v is a terminal node.{ Otherwise, let D1; : : : ;Dn (n � 0) be all the 
lauses in P that are resolvable with C,and C1; : : : ; Cn be the respe
tive resolvents. Then v has n 
hild nodes, labeled withC1; : : : ; Cn. The edge from v to the node labeled with Ci is labeled with �i, where �iis the substitution of the OLD resolution of C and Di.Having de�ned OLD trees, we now 
ome to the de�nition of OLD refutation.De�nition 2.7 (OLD refutation [TS86a℄) Given a program P and a negative 
lause C, anOLD refutation of C by P is a path in the OLD tree of hP;Ci, from the root to a node labeledwith the null 
lause. Let �1 : : : �k be the labels of the edges on the path. The substitution of therefutation is the 
omposition � = �0 Æ : : : Æ �k, and the solution of the refutation is C�.De�nition 2.8 (Unit Sub-refutation [TS86a℄) For a node v in an OLD tree, we denote thenumber of predi
ates in the goal labeling v by leng(v). Consider a path from a node v1 in anOLD tree to one of its des
endants v2 su
h that for every node v on the path leng(v) > leng(v2)holds. Let the goal labeling v1 be hP;'i where P is a 
onjun
tion of predi
ates p1 to pn. Letk = n� leng(v2). Sin
e this path 
an be viewed as the refutation of the �rst k predi
ates, we 
allit a sub-refutation of the �rst k predi
ates (from the left). If k = 1 we 
all it a unit subrefutation.12



Generally, when we speak of a program, we essentially deal with the Clark's 
ompletion of aprogram. The least model of a program is the same as that of its Clark's 
ompletion. We nowre
all the de�nition of Clark's 
ompletion of a program.De�nition 2.9 (Clark's Completion [Llo87℄) The 
onjun
tion of all 
lauses p(t) � body i,de�ning a predi
ate p in a program P is, in fa
t, a synta
ti
 sugaring for the formula thatexpresses the logi
al meaning 
orre
tly, namely the equivalen
e (here the existential quanti�er isover all variables but those in t) p(t) !_i 9 : : : body i:The program P 0 that de�nes ea
h predi
ate (that is de�ned in P ) by su
h a (unique) equivalen
eis known as the Clark's 
ompletion. The two forms are equivalent with respe
t to the least model.The greatest model, however, refers to the Clark's 
ompletion.In the sequel, we make it a rule that whenever we refer to a program, we will (unlessotherwise stated) refer to the Clark's 
ompletion of the program. Whenever we talk about thegreatest model of a program we will a
tually be talking about the greatest model of the Clark's
ompletion of the program.Let P be a logi
 program, letH be the Herbrand universe of P, letM be a Herbrand model ofP and let p be a predi
ate in P. The denotation of p inM is the set of terms ft 2 Hjp(t) 2Mg.We will use this notion in the sequel in this 
hapter as well as in Chapter 4.2.4 OLDT ResolutionIn this se
tion, we brie
y review OLDT resolution for logi
 programs [TS86a℄. The presentationbelow is adapted from [TS86a℄. In Chapter 3, we will extend OLDT resolution to 
onstraintquery language programs. We �rst need a few de�nitions.De�nition 2.10 (Partial OLD Tree [TS86a℄) A partial OLD tree is a �nite top segment ofan OLD tree. That is, any �nite tree obtained by deleting arbitrary number of trees from anOLD tree.We assume that some predi
ates in a program are designated as table predi
ates.De�nition 2.11 (OLDT Stru
ture [TS86a℄) An OLDT stru
ture is a forest of partial OLDtrees with two tables, the solution table and the lookup table.A node is 
alled a table node if the leftmost atom of its label is a table predi
ate. A tablenode is either a lookup node or a solution node. The solution table asso
iates the leftmost atomof the label of ea
h solution node with a list of instan
es of the atom, 
alled the solution table.The lookup table asso
iates with ea
h lookup node with a pointer pointing to some solution listin the solution table.We now des
ribe the table node registration pro
edure.De�nition 2.12 (Table Node Registration [TS86a℄) Given an OLDT stru
ture and a ta-ble node v in it, the table node registration pro
edure 
lassi�es it as a solution node or a lookupnode, and does ne
essary table manipulation, resulting in the OLDT stru
ture.A

ording to the leftmost atom A of v's label, we distinguish between the following 
ases. (Byde�nition, the predi
ate of A is a table predi
ate).13



1. Lookup Node The atom A is an instan
e of some key entry A0 in the solution table. Put vin the lookup table with a pointer to the entire solution list of A0.2. Solution Node Otherwise, put A in the solution table with an empty solution list.De�nition 2.13 (Initial OLDT Stru
ture [TS86a℄) Given a program P and a goal C0, theinitial OLDT stru
ture for the pair hP; C0i is the result of the following operation.1. Let T0 be the OLDT stru
ture 
onsisting of a forest with a single node v0 labeled with C0,an empty solution table and an empty lookup table.2. Apply the table node registration pro
edure to the node v0 in T0.2.4.1 Extension of an OLDT stru
tureWe now des
ribe how to extend an OLDT stru
ture. The presentation 
losely follows [TS86a℄.Given a program P and an OLD stru
ture T , the immediate extension of T by P is the resultof either of the following operations.1. OLD extension Sele
t a terminal node v, that is not a lookup node, su
h that its label Cis not a null 
lause (goal) and at least one 
lause in P is OLD resolvable with C.(a) Let D1; : : : ;Dn (n � 1) be all the 
lauses in P that are OLD resolvable with C, andlet C1; : : : ; Cn be the respe
tive OLD resolvents. Add n 
hild nodes vi, labeled withC1; : : : ; Cn to v. The edge ei from v to vi is labeled with �i where �i is the mostgeneral uni�er of C and Di.(b) For ea
h new node, register it if it is a table node.(
) For ea
h unit subrefutation (if any) starting from a solution node and ending withsome of the new nodes, assume that the subrefutation is of  � A and let  � A0 bea solution. Add A0 to the last of the solution list of A, if A0 is not an instan
e of anyentry in the solution list.2. Lookup Node Extension Sele
t a lookup node v, su
h that the pointer asso
iated with itpoints to a nonempty sublist of a solution list. Advan
e the pointer by one to skip thehead element of the sublist. If C and A  � true are OLD resolvable, where C labelsthe node v and A is the entry of the table pointed to by the pointer, then 
reate a 
hildnode of v labeled with the resolvent and label the new edge with the 
orresponding mostgeneral uni�er. Do the same thing as in 1
.An OLDT stru
ture T 0 is an extension of another OLDT stru
ture T if T 0 is obtained fromT through su

essive appli
ation of immediate extensions. We now de�ne OLDT refutation.De�nition 2.14 (OLDT refutation [TS86a℄) Given a program P and a goal C, an OLDTrefutation of C by P is a path in some extension of the initial OLDT stru
ture for hP; Ci, fromthe initial root to a node labeled with the null goal. Here, by initial root, we mean the rootinherited from the initial OLDT stru
ture.The soundness of OLDT refutation 
omes as an immediate 
onsequen
e of that of OLDrefutation [Llo87℄. The 
ompleteness 
omes from the 
ompleteness of OLD refutation alongwith the fa
t that an OLD refutation 
an be \simulated" by an OLDT refutation [TS86a℄.14



2.5 Constraint Query LanguagesIn this se
tion, we review some preliminaries of 
onstraint query languages. For further details,the reader is referred to [KKR95, JM94℄. Constraint query languages [JM94, JMMS, KKR95℄ area natural merger of two de
larative paradigms: 
onstraint solving and dedu
tive databases. Theparadigm of 
onstraint query languages has progressed in several and quite di�erent dire
tions.Before going into the details of 
onstraint query languages, we make a brief review of the notionsof 
onstraint domains and solution 
ompa
tness.De�nition 2.15 (Constraint Domain) For any signature �, let D be a � stru
ture and Lbe a 
lass of �-formulas. The pair hD;Li is 
alled a 
onstraint domain.Examples of 
onstraint domains are R, the domain of reals, T1� , the domain of in�nite trees overan alphabet �. In most of this dissertation, we will either deal with the 
onstraint domain ofreals or that of natural numbers. In the rest of this dissertation, whenever there is no 
onfusion,we will use the symbol D to denote the 
onstraint domain hD;Li as well as the stru
ture D.De�nition 2.16 (Solution Compa
tness [JM94℄) Let hD;Li be a 
onstraint domain. Let', 'i range over formulas of L and let I be a possibly in�nite index set. A 
onstraint domainhD;Li is solution 
ompa
t if it satis�es the following 
onditions.{ 8'9f'igi2I s:t:D j= 8x:'(x)() Vi2I 'i(x).We assume that the 
onstraint domains that we will deal with below are solution 
ompa
t [JM94℄.We next 
ome to the de�nition of o-minimal stru
tures.O-minimal stru
tures and their theories play a major role in Chapter 7 in de�ning o-minimalhybrid systems, a de
idable sub
lass of hybrid systems, where the underlying theory is o-minimal.De�nition 2.17 (O-minimal Stru
tures [vdD98℄) A (�rst order) stru
ture D = hU ;�iover a signature � (where U is the universe of the stru
ture and the vo
abulary � 
ontainsthe relation symbol <) is o-minimal if every de�nable subset of U 
an be expressed as a �niteunion of points and open intervals (a; b) = fx j a < x < bg, (�1; a) = fx j x < ag, and(a;1) = fx j x > ag.For example, the stru
ture hR; <;+; :; 0; 1i is an o-minimal stru
ture.We now take a brief look at 
onstraint query languages. A 
onstraint query language programover a 
onstraint domain C is a �nite set of rules. A rule is of the form H  � B where H, thehead is an atom and B the body is a �nite set of non-empty set of literals. A literal is eitheran atom or a 
onstraint. We let . denote the empty sequen
e of literals. An atom has the formp(t1; t2; : : : ; tn) where p is an user-de�ned predi
ate symbol and ti are terms from the 
onstraintdomain. Note that below, we write a program of the form p(t) � B, where t is a tuple of terms,in the form p(x)  � B ^ x = t. The operational semanti
s are given in terms of \derivations"from goals. Below, we review some basi
 
on
epts about 
onstraint query languages.De�nition 2.18 (Non-ground Fa
t or Generalized Tuple) A non-ground fa
t or a gen-eralized tuple is a 
lause of the form p(x) � ' where p 2 Pred (the set of predi
ate symbols ofthe program) and ' is a 
onstraint. 15



De�nition 2.19 (Non-ground Goal) A non-ground goal is a tuple of the form hP;'i whereP is a 
onjun
tion of predi
ates from Pred and ' is a 
onstraint. We will 
all ' the 
onstraintstore of the goal hP;'i.De�nition 2.20 (Non-ground State) A non-ground state is a tuple of the form hp(x); 'iwhere p 2 Pred and ' is a 
onstraint (store).Note that a nonground state is also a nonground goal.De�nition 2.21 (Non-ground Transition System) Given a 
onstraint query language pro-gram P, we de�ne the non-ground transition system indu
ed by P as follows. Let hP;'i be anon-ground goal. Let p(x) be a predi
ate in the 
onjun
t P . Let P 0 = P n fpg be the 
onjun
tionof all predi
ates in P other than p(x). Let C be a 
lause in P whose head uni�es with p(x).Let B be the 
onjun
tion of predi
ates in the body of C. Then the non-ground transition systemindu
ed by P is the transition system whose set of states is the set of non-ground goals and thetransition relation �!ng is de�ned by:hP;'i �!ng hQ;'0iwhere Q = B ^ P 0 and '0 = 9�(Variables(P 0);Variables(B))(' ^ ((9�x') ^ � ^  )) where  is the
onstraint in C, Variables(P 0) (Variables(B)) are the free variables in P 0 (B) and � is the mguof p(x) and the head of C where the existential quanti�er is over all variables but x.De�nition 2.22 (Non-ground Derivation.) A non-ground derivation is a (�nite or in�nite)sequen
e of non-ground goals of the formG1 �!ng G2 �!ng : : :A �nite derivation from G is �nished if the last goal 
annot be redu
ed. The last state in a�nished derivation is of the form h.; 'i. If ' is f alse the derivation is said to have �nitely failed.Otherwise the �nite derivation is said to be su

essful. A nonground goal is said to have �nitelyfailed if all nonground derivations starting from it �nitely fail.De�nition 2.23 (Ground Instan
e.) Given a non-ground state s = hp(�x); 'i, a ground in-stan
e of s is a ground atom of the form p(�(x1); : : : ; �(xn)), where � : Var' �! D su
h thatD; � j= ' where D is the 
onstraint domain under 
onsideration (here Vr' denotes the set offree variables of '). This de�nition 
an be easily extended to ground instan
es of non-groundgoals.We sometimes use the term ground state for the term ground atom. A ground goal is a 
on-jun
tion of ground atoms. A ground transition system and a ground derivation 
an be viewedas a \grounding" of a non-ground transition system and a non-ground derivation respe
tively.In this 
ase, the \states" are ground goals and the transition relation is de�ned in the obviousway.A 
onstraint query language program is 
alled monolithi
 i� for ea
h 
lause, the body 
on-tains only one predi
ate symbol. For a predi
ate p and a set of generalized tuples Q, we denoteby Qp the set of generalized tuples de�ning p in Q; i.e., Qp = p(x)  � Wki=1  i where fori = 1::k, p(x) �  i are all the 
lauses de�ning p in Q.16



Given a generalized tuple G � p(x) � ' over a 
onstraint domain D we de�ne the denota-tion of G, denoted by [G℄D, as follows[G℄D = fp(d) j D;d j= 'gGiven a set Tup of generalized tuples over a 
onstraint domain D, we de�ne the denotation ofTup, denoted by [Tup℄D, as follows. [Tup℄D = [G2Tup[G℄DWe are now going to demonstrate that the various formalisms used for spe
ifying transitionsystems and their properties have a natural translation to the framework of 
onstraint querylanguages. The veri�
ation problem then redu
es to the problem of 
omputing model-theoreti
semanti
s of 
onstraint query language programs. The framework of 
onstraint query languages
an be viewed as unifying these seemingly di�erent formalisms.2.5.1 Finite Automata and Constraint Query LanguagesThis se
tion is inspired by [Pod00℄. A �nite automaton A over a �nite non-empty alphabet �is an edge labeled dire
ted graph with a �nite set of verti
es Q = fq1; : : : ; qng. A subset F ofQ of verti
es is designated as the set of a

epting verti
es and a vertex q1 is designated as theinitial vertex. We 
all the pair hq; wi, where q is a vertex of A and w 2 �� is a �nite wordover the alphabet �, as a state of A. Note that a

ording to this de�nition of state, a �niteautomaton is an in�nite state system. An edge of the automaton A is a triple hqi; a; qji whereqi; qj are verti
es of A and a 2 �. We denote the set of edges of the automaton by E . Thetransitions of the automaton are des
ribed as follows. The state hqi; wi 
an make a transitionto the state hqj ; w0i if there exists an edge hqi; a; qji of the automaton and w = a � w0 where �denotes 
on
atenation. A �nite automaton A 
an be des
ribed by a regular system of equations.qi = [hqi;a;qji2E a:qj [ Siwhere Si = f"g if qi 2 F and empty otherwise. The denotation of q1 in the least solution ofthe above set of equations gives the language a

epted by A in the 
lassi
al sense [HU79℄. Sin
ewe are interested in the least solution of the system of equations, we 
an rewrite the equationsrepla
ing equality by supersethood; i.e., we 
an rewrite the above system of equations as follows.qi � a � qjfor ea
h edge hqi; a; qji of A and qi � f"gif qi is an a

epting vertex. Using some synta
ti
 sugar, we 
an rewrite the above in
lusions asfollows. qi � fx 2 �� j 9y 2 ��(y 2 qj ^ x = a � y)g17



We 
an rewrite the above in
lusion logi
ally as a 
onstraint query language 
lause over theHerbrand 
onstraint domain as follows.qi(x) � qj(y) ^ x = a � y:Let us denote the program generated by the above translation of A as P. The 
orre
tness ofthe above translation is given by the following theorem.Theorem 2.1 (Corre
tness of Translation) The language a

epted by A is exa
tly the de-notation of the predi
ate q1 in the least model of P.Proof. By straightforward indu
tion on length of derivations. [℄Sin
e model 
he
king for linear safety properties (for �nite state systems) in theautomata-theoreti
 framework redu
es to (non)-emptiness problem for �nite automata on �-nite words [VW86a, HKQ98℄, our framework 
an provide a uniform platform for dealing withsu
h problems. Che
king emptiness amounts to 
he
king membership in the model-theoreti
semanti
s of 
onstraint query language programs. In Se
tion 2.7, we will look at some methodsof 
omputing model-theoreti
 semanti
s of 
onstraint query language programs.2.5.2 Pushdown Pro
essesA pushdown pro
ess AP over a �nite non-empty alphabet � 
onsists of a �nite set of lo
ationsQ = fq1; : : : ; qng; a state of the system being a pair hq; wi where w 2 �� is viewed as therepresentation of the 
ontents of a sta
k. A subset F of Q is designated as the set of a

eptinglo
ations; the lo
ation q1 2 Q is designated as the initial lo
ation. In addition to the transitionsdes
ribed for �nite automata (whi
h are now 
alled 'pop' transitions), we also have here a set ofpush edges of the form hqi; !a; qji where a 2 �. A state hqi; wi takes a transition through a pushedge hqi; !a; qji to the state hqj ; w0i if w0 = a:w. The language a

epted by a pushdown pro
ess
an be de�ned in the same way as that of a �nite automaton. Using transformations similar tothose in the previous se
tion, a push transition through the edge hqi; !a; qji 
an be des
ribed bythe 
lause qi(x) � qj(y) ^ y = a � xThus, similar to a �nite automaton, a pushdown pro
ess AP 
an be translated to a 
onstraintquery language program P su
h that the following is preserved.Theorem 2.2 The language a

epted by a pushdown pro
ess AP is exa
tly the denotation ofthe predi
ate q1 in the least model of P.2.5.3 Tree AutomataThe following de�nitions are taken from [Tho90℄. Given an alphabet �, a k-ary �-labeled treet is a mapping t : dom(t) �! � where the domain of t denoted by dom(t) is a subset off0; : : : ; k � 1g�, 
losed under pre�xes, whi
h satis�eswj 2 dom(t); i < j =) wi 2 dom(t):The tree t is �nite i� dom(t) is �nite. The outer frontier of a tree t is given by the set fr+(t) =fwi 62 dom(t) j w 2 dom(t) ^ i < kg. Let dom+(t) = dom(t) [ fr+(t).18



De�nition 2.24 (Tree Automaton) A (non-deterministi
 top-down) tree automaton over �is a quadruple of the form AT = hQ; q0;�; F i, where Q is a �nite set of states, q0 2 Q isdesignated as the initial state, F � Q is the set of a

epting states and � � Q� ��Qk is thetransition relation. A run of AT on a �nite k-ary �-labeled tree t is a mapping r : dom+(t) �! Qwhere r(") = q0 and hr(w); t(w); r(w0); : : : ; r(w(k�1))i 2 � for ea
h w 2 dom(t). It is a

eptingif r(w) 2 F for ea
h w 2 fr+(t). The tree language T (AT ) re
ognized by a tree automaton ATis the set of all (�nite) trees t for whi
h there is an a

epting run of AT on t.A tree automaton AT 
an be translated to a 
onstraint query language program P as follows.For ea
h tuple hq; a; q1; : : : ; qki 2 � we have the following 
lause.q(y) � q1(x0); : : : ; qk(xk�1) ^ y = a(x0; : : : ; xk�1)In addition , for ea
h a

epting state q 2 F , we add a fa
t q("). The intuition behind thetranslation is that the tree automaton reads the letter a of the term a(x0; : : : ; xk�1) in state qand splits into k 
opies and moves to node xi with state qi+1. The following theorem that westate without proof shows the 
orre
tness of the above translation.Theorem 2.3 The language a

epted by the tree automaton AT is exa
tly the denotation of thepredi
ate q0 in the least model of P.2.5.4 Alternating AutomataDe�nition 2.25 (Alternating Automaton [MS87℄) An alternating automaton is a tupleA = h�; Q; q0; Æ; F i, where � is a �nite non-empty alphabet, Q is a �nite non-empty set ofstates, q0 2 Q is the initial state, F � Q is a set of a

epting states, and Æ : Q�� �! B+(Q)(where B+(Q) is the set of positive boolean formulas over Q) is a transition fun
tion.A run of A on a �nite word a0; : : : ; an�1 is a �nite Q-labeled tree r su
h that r(") = q0 andthe following holds:{ if jxj = i < n, r(x) = q, and Æ(q; ai) = �, then x has k 
hildren x1; : : : ; xk, for somek � jQj, and the interpretation fr(x1); : : : ; r(xk)g satis�es �.The run tree r is a

epting if all nodes in depth n are labeled by states in F .Similar to the previous three 
ases, it 
an be shown that the emptiness problem for alternatingautomata 
an be redu
ed to 
he
king membership in the model-theoreti
 semanti
s of 
onstraintquery language programs. We leave out the formal details whi
h are easy.2.5.5 Automata on In�nite Words: B�u
hi AutomataDe�nition 2.26 (B�u
hi Automaton [Tho90℄) A B�u
hi automaton over a �nite non-emptyalphabet � is of the form A = h�; Q; q0;�; F i where Q is a �nite set of states, q0 2 Q is the initialstate, � � Q���Q is the transition relation and F � Q is the set of a

epting states. A run� of A on an in�nite word a0; a1; : : : is an (in�nite) sequen
e of states q0; q1; : : : where for ea
hi � 0 hqi; ai; qi+1i 2 �; the run is a

epting i� inf (�) \ F 6= ; where inf (�) is the set of stateso

urring in�nitely along �. An in�nite word w 2 �! is a

epted by A i� it has an a

eptingrun on w. The language of A, denoted by L(A), is given as follows; L(A) = fw 2 �! jA a

eptswg. 19



Without going into the details, we note as above that the emptiness problem for B�u
hi automata
an be redu
ed to that of testing membership in the model-theoreti
 semanti
s of 
onstraintquery language programs. Sin
e the de
ision problem for linear temporal logi
 (LTL) formulas
an be redu
ed to the emptiness problem for B�u
hi automata [VW86a℄, our framework providesa methodology for de
iding LTL.We note without going into the details that the emptiness problem for various formalismsof alternating tree automata (e.g., weak alternating automata, hesitant alternating automataet
. [BVW94℄) 
an be uniformly 
aptured in the framework of 
onstraint query languages.2.6 The Logi
 CTLSo far we have talked about how the seemingly di�erent formalisms for spe
ifying rea
tivesystems have a natural translation to the framework of 
onstraint query languages. In thisse
tion, we show how model 
he
king 
an be performed in the framework of 
onstraint querylanguages. In parti
ular, we show how the model 
he
king problem for the bran
hing timetemporal logi
 CTL 
an be redu
ed to 
omputing the model-theoreti
 semanti
s of 
onstraintquery languages over reals. The syntax of the logi
 CTL [CE80℄, whi
h is a fragment of the�-
al
ulus, is given as follows.� ::= true j q j :� j �1 _ �2 jEX(�) jE(�1U�2) jE(�1 eU�2)where q is an atomi
 proposition. We will use the following abbreviations. f alse � :true,EF (�) � E(true U�), AG(�) � :EF (:�), EG(�) � E(f alse eU�). The semanti
s of CTLwith respe
t to an (unlabeled) transition system L = hS;�; S0;�!; AP; P i (where � = fag) isdes
ribed as follows. The satisfa
tion relation is indu
tively de�ned as follows.{ For all s 2 S, L; s j= true.{ L; s j= q for q 2 AP i� q 2 P (s).{ L; s j= :� i� L; s 6j= �.{ L; s j= �1 _ �2 i� L; s j= �1 or L; s j= �2.{ L; s j= EX(�) i� there exists s0 2 S su
h that hs; a; s0i 2�! and L; s0 j= �.{ L; s j= E(�1U�2) i� there exists a path � starting from s and a natural number i su
hthat L; �[i℄ j= �2 and for all 0 � j < i, L; �[j℄ j= �1.{ L; s j= E(�1 eU�2) i� there exists a path � starting from s su
h that for all i � 0 su
h thatL; �[i℄ 6j= �2, there exists 0 � j < i su
h that L; �[j℄ j= �1.The denotation of a CTL formula � with respe
t to an unlabeled transition system L, denotedby [�℄L, is given by [�℄L = fs 2 S j L; s j= �g.2.6.1 Model Che
king for CTL: Programs with Ora
lesThis se
tion is inspired by [CP98a℄. Based on the te
hniques of [CP98a℄, we show that model
he
king for CTL 
an be redu
ed to 
omputing model-theoreti
 semanti
s of 
onstraint query20



language programs with ora
les. We show this for a fragment of CTL. The extension to fullCTL is straightforward.We 
onsider the following fragment of CTL (we 
all this fragment as FCTL).� ::= p j �1 _ �2 j �1 ^ �2 j EX(�) j EF (�) jEG(�)We �rst note that a �nitely representable unlabeled transition system 
an be des
ribed bya (monolithi
) 
onstraint query language program P. Assume that the denotation of an FCTLformula � with respe
t to P, denoted by [�℄P 
an be des
ribed by a �nite set of generalizedtuples. Then the denotation of :� with respe
t to P 
an be des
ribed by a �nite set of gener-alized tuples. If the denotations of �1 and �2 with respe
t to P 
an be des
ribed by �nite setsof generalized tuples then so is the denotation of �1 _ �2 with respe
t to P.Now, given that the denotation of � 
an be des
ribed by a �nite set of generalized tuples Q(i.e., [�℄P = Q), we 
onstru
t the programs P _Q and P ^Q as follows.P _Q � fC j C 2 P _ C 2 QgP ^Q � fp(x) � p0(x0) ^ ' ^  j p(x) � p0(x0) ^ ' 2 P ^Qp = fp(x) �  ggwhere Qp denotes the denotation of p in Q. We 
all the above programs as programs withora
les. We have the following theorem.Theorem 2.4 For a �nitely representable unlabeled transition system des
ribed by a 
onstraintquery language program P and an FCTL property � whose denotation with respe
t to P 
anbe des
ribed by a �nite set of generalized tuples Q, the denotations of EF (�) and EG(�) withrespe
t to P are given as follows. [EF (�)℄P = lm(P _Q)[EG(�)℄P = gm(P ^Q)where for a program eP, lm( eP) and gm( eP) denote respe
tively the least and greatest models ofeP.The proof of the above theorem 
an be developed dire
tly along the lines of [CP98a℄.We have thus seen that many veri�
ation problems (for both �nite and in�nite state systems)
an be uniformly redu
ed to the problem of 
omputing model-theoreti
 semanti
s of 
onstraintquery language programs. Developing optimized pro
edures for 
omputing model-theoreti
 se-manti
s of 
onstraint query language programs thus provides, for free, pro
edures for solving alarge 
lass of veri�
ation problems.2.7 Computing Model-Theoreti
 Semanti
sIn this se
tion, we des
ribe some te
hniques for 
omputing model-theoreti
 semanti
s of 
on-straint query language programs. We �rst start with propositional horn programs. Some ofte
hniques below are inspired by (and extends) the te
hniques developed in [SIR96, Llo87,JM94, Ull89, DG84℄. 21



2.7.1 Dowling-Gallier GraphsGiven a propositional horn program P with n zero-ary predi
ates, the Dowling-Gallier graph forP is 
onstru
ted as follows. The graph G has n+ 2 nodes, n nodes 
orresponding to n zero-arypredi
ates and two spe
ial nodes designated true and f alse. If the 
lause Ci is a fa
t of theform p, then there is a dire
ted edge labeled i from the node labeled true to the node labeledp. If the 
lause Ci is of the form p � q1 ^ : : :^ qk, then there are dire
ted edges labeled i fromea
h of the nodes 
orresponding to q1; : : : ; qk to the node 
orresponding to p.De�nition 2.27 (Pebbling for Least Model [DG84℄) Let G = hV;E;Li be an edge labeleddire
ted graph. There is a pebbling from a node p 2 V from a set X � V if either p 2 X or forsome label i, there are pebblings from q1; : : : ; qk from X, where q1; : : : ; qk are the sour
e of allin
oming edges labeled i to p.Theorem 2.5 [DG84℄ Given a propositional horn program P and the Dowling-Gallier graphG 
orresponding to it, the following holds.{ If P is satis�able, the set of all zero-ary predi
ates p in P, su
h that there is a pebbling ofthe node 
orresponding to p in G from true, is the least model of P.Moreover, the least model of P 
an be 
omputed in time linear in the size of P.Before des
ribing the pebbling for greatest models, we modify the Dowling-Gallier graphas follows. For ea
h zero-ary predi
ate p su
h that p is not de�ned in P, add a dire
ted edgelabeled n+ 1 (where n is the number of 
lauses in P) from the node 
orresponding to f alse tothat 
orresponding to p. We 
all this graph the modi�ed Dowling-Gallier graph.De�nition 2.28 (Greatest Model Pebbling) Let G = hV;E;Li be an edge-labeled dire
tedgraph. There is a pebbling of a node p 2 V from a set X � V if either p 2 X or for ea
h labeli su
h that there exists an in
oming edge to p labeled i, there exists a node qj su
h there is apebbling of qj and there is an edge labeled i from qj to p.Theorem 2.6 Given a propositional horn program P and the modi�ed Dowling-Gallier graphG 
orresponding to it, the following holds.{ If P is satis�able, the set of all zero-ary predi
ates p in P, su
h that there is no pebblingof the node 
orresponding to p from in G from f alse, is the greatest model of P.Moreover, the greatest model of P 
an be 
omputed in time linear in the size of P.Proof. Suppose a zero-ary predi
ate p is in the greatest model of P. Then, in the (SLD)derivation tree of P starting from p, there is a su

ess leaf or an in�nite bran
h (derivation).We de�ne the maximum length of pebbling from f alse in G as follows. Suppose that a node p ispebbled from f alse. Then a pebbling route from f alse to p is de�ned as follows. If the predi
atep is not de�ned in the program P, then the pebbling route from f alse is [n+ 1℄. Otherwise, ifthere is an edge labeled i from q to p and q has a pebbling from f alse, then L is a pebbling routefrom f alse to p where L = 
on
at([i℄; L0) where 
on
at returns the 
on
atenation of two listsand L0 is a pebbling route from f alse to q and i does not o

ur in L0. The length of a pebblingroute L is the length of the list L. Clearly, the length of ea
h pebbling route is �nite (sin
e there22



are only a �nite number of 
lauses in P). Also, sin
e the length of ea
h pebbling route is �nite,there are only a �nite number of pebbling routes from f alse to any node p. The maximumlength of pebbling from f alse to p is the maximum of the length of all pebbling routes fromf alse to p. Suppose p is in the greatest model of P. Also, seeking a 
ontradi
tion, suppose thatthere is a pebbling from f alse to p. Let the maximum length of pebbling route from f alse to pbe k. We show by indu
tion that if p is in the greatest model of P, then the maximum lengthof pebbling route from f alse to p 
annot be any positive integer. Indeed, if p is in the greatestmodel of P, then the maximum length of pebbling route 
annot be 1. Assume that if p is in thegreatest model of P then the maximum length of pebbling route from f alse to p 
annot be lessthan or equal to k � 1. Suppose that p is pebbled and the maximum length of pebbling routefrom f alse to p is k. Sin
e p is in the greatest model of P, there must exist either a su

essfulderivation or an in�nite derivation starting from p. Let the �rst 
lause in the derivation be theith 
lause p � q1 ^ : : :^ qm of the program P. Now ea
h of q1; : : : ; qm is in the greatest modelof P. Sin
e p is pebbled, at least one of qj must be pebbled; without loss of generality, let it beql. Sin
e, the maximum length of pebbling route from f alse to p is k, the maximum length ofpebbling from f alse to ql 
an be at most k � 1. By indu
tion hypothesis, the maximum lengthof pebbling route from f alse to ql 
annot be less than or equal to k� 1. This is a 
ontradi
tion.Hen
e, there does not exist a pebbling from f alse to p.To prove the other way, it is easy to show that if there is no pebbling from f alse to p, thenthere exists a derivation that either su

eeds or is in�nite. Hen
e, p is in the greatest model ofP. It is also easy to see that the greatest model of P 
an be 
omputed in time linear in the sizeof P. [℄2.7.2 Immediate Consequen
e OperatorWe brie
y dis
uss about the immediate 
onsequen
e operator. For details, the reader is refereedto [Llo87, JM94℄.De�nition 2.29 (Immediate Consequen
e Operator) Given a 
onstraint querylanguage program P over a 
onstraint domain D, the immediate 
onsequen
e op-erator SDP is de�ned on sets of fa
ts, that form a 
omplete latti
e under thesubset ordering. The immediate 
onsequen
e operator is de�ned as follows.SDP (I) = fp(x) � ' j p(x) � '0 ^ b1 ^ : : : ^ bn is a rule of Pai  � 'i 2 I; i = 1; : : : ; n; the rules and fa
ts are renamed apartD j= '() 9�x'0 ^Vni=1 'i ^ ai = bigwhere the existential quanti�er is over all variables but x.Let PRED(P) be the set of predi
ate symbols in P. Let BD denote the D-base for a programP; i.e., BD = fp(d) j p 2 PRED(P) ^ d 2 Dkg:Theorem 2.7 The following holds for the immediate 
onsequen
e operator.1. SS(P) = [lfp(SDP )℄D = [lm(P)℄D where SS(P) represents the su

ess set of P.2. [gm(P)℄D = [gfp(SDP )℄D = BD n [FF (P)℄D, where FF (P) is the set of non-ground statesthat are �nitely failed. 23



Proof. We refer the reader to [JM94℄ for the proof of the �rst statement. For the se
ondstatement, for the proof of the equality [gm(P)℄D = [gfp(SDP )℄D, we again refer the readerto [JM94℄. We prove the equality [gm(P)℄D = BD n [FF (P)℄D . We �rst refer the reader to thenotions of �nitely failed SLD trees in [Llo87, JM94℄. Now suppose that p(x)  � ' 2 gm(P)and let ' be satis�able. Also, seeking a 
ontradi
tion, suppose that p(x)  � ' 2 FF (P). Weuse the following equality [JM94℄ [gm(P)℄D = BD nGFF (P)where GFF (P) is the set of all ground atoms that �nitely fail (in P). Suppose that hp(x); 'i�nitely fails. Consider d su
h that D;d j= '. Now p(d) �nitely fails (i.e., has a �nitely failingSLD tree). But p(d) 2 [gm(P)℄D . This is a 
ontradi
tion.The proof for the other dire
tion is similar. [℄2.7.3 Magi
 Sets TransformationGiven a program P and a query Q, if we are interested only in the answers to the query Q, then
omputing the least model of P using iterations of the immediate 
onsequen
e operator 
an bewasteful. In this subse
tion, we des
ribe the magi
 sets transformation, that is used to makequery evaluation goal dire
ted. For details, we refer the reader to [BMSU86℄.De�nition 2.30 (Magi
 Sets Transformation) Let P be a program and hQ(x);  i be aquery. The magi
 sets transformation of P is a new program P 0 obtained as follows. Initially,P 0 is empty.{ Create a new predi
ate pin for ea
h predi
ate p 2 P. The arity of pin is the same as thatof p.{ For ea
h rule in P add the modi�ed version of the rule to P 0. If a rule has head p(x), themodi�ed version of the rule is obtained by adding the literal pin(x) in the body of the rule.{ For ea
h rule r in P with head p(x) and for ea
h body literal q(y) of r, add a magi
 rule toP 0. The head is qin(y). The body 
ontains the 
onstraint ' of r. In addition, it 
ontainsthe literal pin(x) as well as all literals to the left of q(y) in the body of r.{ Create a seed fa
t Qin(x) �  from the query Q.Further optimizations to the magi
 sets transformation 
an be obtained by 
apturing 
lassesof binding patterns. We refer the interested reader to [Ram91℄ for further details.2.8 Constraint DomainsHaving dis
ussed about the di�erent ways of 
omputing model-theoreti
 semanti
s of 
onstraintquery language programs, we now 
ome to des
ribe some relevant properties of 
onstraint do-mains. In this se
tion, we dis
uss brie
y about the properties of some 
onstraint domains. Westart with the domain of (possibly) in�nite trees. We assume some familiarity with the basi
notions of general topology on the part of the reader.24



2.8.1 The Constraint Domain of In�nite TreesBelow, we prove some fa
ts about the 
onstraint domain of in�nite trees. Let � be a �niteranked alphabet. As before, we 
an de�ne (possibly in�nite) trees labeled by �, where if a nodew is labeled by f and the rank of f is k then w has exa
tly k 
hildren. We also assume thatj�j > 1. We denote the set of possibly in�nite �-labeled trees by T1� . Before we des
ribe sometopologi
al properties of this domain, we need a few de�nitions.A metri
 spa
e hX; di is a set X together with a mapping d : X � X �! R+ [ f0g thatsatis�es the following 
onditions.{ 8x; y 2 X; d(x; y) = d(y; x).{ 8x; y 2 X; d(x; y) = 0() x = y.{ 8x; y; z 2 X; d(x; y) � d(x; z) + d(z; y) (triangle inequality).For a metri
 spa
e hX; di, a subset A � X is open i� it is an union of "-balls. A metri
 spa
e is
omplete if every Cau
hy-sequen
e is 
onverges in it [Kur66℄. A metri
 spa
e is totally boundedif for every " > 0 there exists a �nite 
overing of X by "-balls. A metri
 spa
e is 
ompa
t i� it is
omplete and totally bounded. A metri
 spa
e hX; di is dis
onne
ted if there exists (nonempty)open sets A 6= X and B 6= X su
h that X = A [B and A \B = ;. Otherwise it is 
onne
ted.We de�ne a metri
 d on the set of in�nite trees as follows.d(x; y) = 0 i� x = y= 2��(x;y) otherwisewhere �(x; y) is the least depth at whi
h x and y di�er. Now hT1� ; di is a metri
 spa
e. It
an also be shown that hT1� ; di is a 
omplete metri
 spa
e.Theorem 2.8 The metri
 spa
e hT1� ; di is 
ompa
t.Proof. Let us take the dis
rete topology on �. Now � is obviously 
ompa
t in the dis
retetopology. By Ty
hono�'s theorem, �! is 
ompa
t in the produ
t topology. The produ
t topologyis generated by the metri
 dp(x; y) =Xi2! dt(x(i); y(i))=2iwhere dt is the trivial metri
 on �.Now we 
onsider the following spa
e. We augment our alphabet with an additional symbol2 having arbitrary rank. Now we 
onsider the spa
e of possibly in�nite trees over the alphabet� [ f2g su
h that the following holds.{ The root of ea
h tree is labeled by 2. The symbol 2 
an label only the root of a tree.{ Only the rightmost 
hild of 2 
an be possibly in�nite trees (the rest of the 
hildren mustbe �nite trees).{ The root 
an have arbitrary number of 
hildren. The number of 
hildren of the othernodes is equal to the rank of the symbol labeling that node.25



We denote the above set of possibly in�nite trees by �1� . Now we de�ne a metri
 d� on �1�as follows. d� (x; y) = Xea
h 
hild of 2 d(x(i); y(i))=2�iwhere x(i) and y(i) are respe
tively the ith 
hildren of 2 in x and y, �i = i +max(Pi�1j=0 depth(x(j));Pi�1j=0 depth(y(j))) where depth(x(j)) (depth(y(j))) is the depth of thejth 
hild of 2 in x (y), and d is the metri
 de�ned above. It 
an be easily 
he
ked that d� is ametri
 and hen
e h�1� ; d� i is a metri
 spa
e.Now we de�ne a mapping f from the metri
 spa
e h�!; dpi to h�1� ; d� i as follows. Themapping f builds a tree in �1� from a string w = f0 : : : as follows. First the root is labeled 2with one 
hild f0. Then the tree with root f0 is built in a breadth-�rst manner. Whenever we
annot atta
h any more symbol to the tree 
orresponding to f0 (sin
e all leaves may be labeledwith symbols of rank 0), we bring out a right 
hild of 2 and insert the next symbol. Thenwe 
ontinue the same pro
edure for this 
hild (thus only the rightmost 
hild of 2 
an be anin�nite tree). Thus for the strings aa : : : and faa : : : where f is of rank 1 and a is of rank 0,the 
onstru
ted trees are given in the left-half and right half of Figure 2.1 respe
tively.
a a... ... f

a

 a
...

a ...

Figure 2.1: Illustrating the mapping fIt 
an be easily veri�ed that f is a homeomorphism. Hen
e, h�1� ; d� i is a 
ompa
t spa
e.Now 
onsider the subset A of �1� in whi
h the root has only one 
hild. It 
an be easily veri�edthat A is a 
losed set. Hen
e hA; d� i is 
ompa
t.Now we de�ne a mapping g from the the subspa
e hA; d� i of h�1� ; d� i to the metri
 spa
ehT1� ; di as shown in Figure 2.2. It 
an again be easily veri�ed that g is a homeomorphism fromhA; d� i to hT1� ; di. Hen
e hT1� ; di is 
ompa
t. [℄Let Var = fx1; x2; : : : g be a 
ountably in�nite set of variables. Let X be the set f� j � :Var �! T1� g. Let us de�ne the metri
 dX on X as follows.dX(�; �) =Xi2! d(�(xi); �(xi))=2iwhere the metri
 d is as de�ned above. It 
an be easily veri�ed that hX; dX i is a metri
 spa
e.26



t

tFigure 2.2: Illustrating the mapping gProposition 2.1 The setsSi = f� 2 X j T1� ; � j= x = fi(xi1 ; : : : ; xini )gare 
losed sets in the metri
 spa
e hX; dX i.Proof. Without loss of generality, letA = f� 2 X j T1� ; � j= x = f(x1; : : : ; xn)gLet l be a limit point of A. Let x = xk for some k 2 f1; 2; : : : g. Let m > max(n; k) = p.Therefore, we 
an get an �m 2 A su
h that dX(�m; l) � 2�m. Therefore,8i � p; d(�m(xi); l(xi)) � 2�(m�p):Obviously, the root of l(x) is labeled by f . Let l(x) = f(t1; : : : ; tn). We will prove thatl(xj) = tj , 1 � j � n. Sin
e d(�m(x); l(x)) � 2�(m�p)therefore d(�m(xi); ti) � 2�(m�p�1):Now, d(l(xi); ti) � 2�(m�p) + 2�(m�p�1) < 2�(m�p�2)(by triangle inequality). Now we 
an 
hoose m to be arbitrarily large so that d(l(xi); ti) is lessthan any positive number. Therefore l(xi) = ti and hen
e l is an element of A. Therefore A is
losed. [℄Proposition 2.2 The metri
 spa
e hX; dX i is 
ompa
t.Proof. The metri
 dX generates the produ
t topology on X. Now the spa
e of in�nite treesT1� is 
ompa
t in the topology generated by d. Therefore, by Ty
hono�'s theorem, the metri
spa
e hX; dX i is 
ompa
t. [℄Proposition 2.3 The metri
 spa
e hX; dX i is dis
onne
ted.27



Proof. We 
onsider a partition of the signature � into nonempty subsets �1 and �2 (this ispossible as j�j > 1). Clearly for any fi the set f� 2 X jT1� ; � j= x = fi(xi1 ; : : : ; ximi )g is 
losed.Consider the two 
losed sets C1 and C2 (these two sets are 
losed sin
e they are �nite union of
losed sets) given by C1 = f� 2 X j T1� ; � j= _fi2�1 x = fi(xi1 ; : : : ; ximi )gC2 = f� 2 X j T1� ; � j= _fj2�2 x = fj(xj1 ; : : : ; xjmj )g:Obviously, there 
annot exist � 2 X that satis�es both the equations. So C1 \C2 = ;. AlsoC1 [ C2 = X. So hX; dXi is dis
onne
ted. [℄Proposition 2.4 The metri
 spa
e hT1� ; di is dis
onne
ted.Proof. Suppose it is 
onne
ted. Then hX; dX i is 
onne
ted whi
h is a 
ontradi
tion. [℄The Constraint Domain of Reals In this paragraph, we state a few fa
ts about R, the
onstraint domain of reals [JMSY92℄. Essentially, R is a two-sorted stru
ture where one sortis the real numbers and the other sort is the set of trees over uninterpreted fun
tors and realnumbers. The 
onstraint domain R is solution 
ompa
t [JMSY92℄. The metri
 spa
e hR; deiwhere R is the set of reals and de is the Eu
lidean metri
 is non-
ompa
t but is 
onne
ted(we denote both the set of reals and the 
onstraint domain of reals by R; the meaning will be
lear from the 
ontext). Below, whenever we speak of the 
onstraint domain R, we assumethe absen
e of fun
tion symbols (other than 
onstant symbols). With this assumption, thestru
tures RLin = hR; <;+;�; 0; 1i, RF = hR; <;+; �; 0; 1i are o-minimal stru
tures.2.8.2 Constraint Simpli�
ationIn this se
tion, we des
ribe the Fourier's algorithm [MS98, LM92℄, needed to simplify linear
onstraints over reals. Given a 
onstraint ' involving a set of variables V , and a subset U ofV , the Fourier's algorithm produ
es a 
onstraint '0 obtained from ' by eliminating all variablesin U . The des
ription below assumes non-stri
t linear inequalities. Extension to stri
t linearinequalities is straightforward. Given a 
onstraint ' as a set (
onjun
tion) of linear inequalities,elimination of a variable y pro
eeds as follows: First partition ' into three subsets, the subset'0, 
onsisting of inequalities whi
h do not involve y, the subset '1, 
onsisting of inequalities ofthe form y � t, where t does not involve y, and the subset '2 
onsisting of inequalities of theform t � y, where again t does not involve y (this is possible sin
e we are dealing with linear
onstraints). Now for ea
h pair of the form t1 � y in '2, and y � t2 in '1, form an inequalityof the form t1 � t2. This new set of inequalities along with those in '0 form the proje
tion ofthe original 
onstraint ' on to the original variables but y. This pro
ess is then repeated toeliminate all the variables in U .
28



Chapter 3Model Che
king for Timed Logi
Pro
esses3.1 Introdu
tionSome software and hardware 
omponents meet the tasks for whi
h they have been designedonly if they relate properly to the passage of time. Behaviors of su
h 
omputing systemsoperating in real time are diÆ
ult to predi
t by \inspe
tion". Therefore real-time sys-tems have be
ome prime targets of formal methods for spe
i�
ation and veri�
ation meth-ods [AD94, DT98, LPY95a, SS95℄. In this 
hapter, we apply te
hniques from logi
 program-ming [TS86a, CW96℄ and 
onstraint databases [KKR95, Rev90, JM94℄ to spe
ify and verify realtime systems.We single out a fragment of 
onstraint query languages [JM94, KKR95℄ over reals that allowsus to model real-time systems operating over dense time. We 
all the programs expressed in thisfragment as timed logi
 pro
esses (abbreviated TLPs). We show a formal 
onne
tion of TLPswith the standard model of timed automata [AD94℄. We use this 
onne
tion to design model
he
king pro
edures for the logi
 Ls [LPY95a℄ (\logi
 of safety and bounded liveness") and someextensions of it. Using a produ
t 
onstru
tion for TLPs, we redu
e the model 
he
king problemfor time logi
 pro
esses against Ls formulas to the membership problem for the model-theoreti
semanti
s of produ
t timed logi
 pro
esses (see Se
tion 3.6).To obtain a lo
al model 
he
ker for real time systems, we extend with 
onstraints the OLDT -resolution for logi
 programs [TS86a, CW96℄. This way, we explain the model 
he
king pro
edureof UPPAAL [LPY95a, BLL+96℄ based on a rewrite tree as a spe
ial 
ase of OLDT resolutionwith 
onstraints. We have implemented a prototype model 
he
ker for timed systems based onOLDT resolution with 
onstraints using the CLP(R) [JMSY92℄ system of Si
stus 3.7. We haveapplied our prototype model 
he
ker to some standard ben
hmark examples and we have gotreasonably good timings for these examples.Thanks to the logi
al setup, we have been able to use Ls [LPY95a℄ extended with fulldisjun
tion (in 
ontrast with Ls with restri
ted disjun
tion used in [LPY95a℄) as the underlyinglogi
 for our model 
he
ker.Generally, forward analysis (top-down evaluation) for timed systems, in
luding the rewrite-tree-based model 
he
king pro
edure of [LPY95a℄, is possibly non-terminating. To guaranteethe termination of the pro
edure for 
he
king membership for the least model semanti
s of timed29



logi
 pro
esses, we introdu
e a (new) operation on 
onstraints (see Se
tion 3.7). This operation,
alled trimming, allows us to 
ompletely avoid the 
omputationally expensive operation of split-ting 
onstraints (in 
ontrast with [SS95℄ where the authors 
onstru
t a region produ
t graph onthe 
y using methods similar to [ACD+92, BFH91, YL93℄; su
h a 
onstru
tion, while guarantee-ing termination of the model 
he
king algorithm of [SS95℄, inherently involves the operation ofsplitting 
onstraints; the operation of splitting 
onstraints is known to be expensive) while stillguaranteeing the termination of the pro
edure. Unlike many other 
onstraint-based operationsin literature (see e.g., [DT98℄), the 
onstraint-based operation that we have introdu
ed also hasa logi
al 
hara
terization.We next turn our attention to model 
he
king for unbounded liveness properties (whi
h arenot expressible in Ls). Using the same produ
t 
onstru
tion as mentioned above, we redu
e theproblem of model 
he
king for timed logi
 pro
esses against unbounded liveness properties (seeSe
tion 3.10) to the membership problem for the greatest model of a produ
t TLP. To obtaina lo
al model 
he
ker for unbounded liveness properties, we introdu
e a new kind of tabledresolution (for TLPs having at most one predi
ate in the body of any 
lause) to lo
ally 
he
k ifa ground atom is in the greatest model of a TLP. We 
all this resolution greatest model resolution.Greatest model resolution allows us to avoid the 
ostly splitting operation on 
onstraints thatarises due to negation. To the best of the knowledge of the authors, tabled resolution (withoutusing negation) has not been previously used to solve the membership problem for the greatestmodel of a 
onstraint query language program. We have also been able to 
ombine greatestmodel resolution with the tabled resolution mentioned above to verify re
eptiveness propertiesof timed logi
 pro
esses. The model 
he
ker UPPAAL [BLL+96℄ is not able to model 
he
k forre
eptiveness properties.Our last 
ontribution in this 
hapter is to de�ne (and present an algorithm for dete
ting) forthe �rst time a notion of transien
e (see Se
tion 3.13) whi
h 
hara
terizes the transient behavior(response) of a real time system. The notion of transien
e is important in 
ontrol theoreti
appli
ations. In 
ontrol theory, underdamped (linear time-invariant) systems are known to havea transient and a steady state behavior. We 
apture this notion of transient (or underdamped)behavior in the 
ontext of real time systems; intuitively, a behavior is transient if it is observed\initially", but \disappears" with the passage of time. A timed logi
 pro
ess is transient if ithas a transient behavior. We redu
e the problem of de
iding whether a timed logi
 pro
essis transient to the non-emptiness problem for a nonground B�u
hi automaton indu
ed by a(transformed) TLP (see Se
tion 3.13.1). This redu
tion enables us to obtain a EXPSPACEalgorithm for de
iding transien
e.3.2 Timed AutomataIn this se
tion, we brie
y review the standard notion of timed automata. We do not viewtimed automata from the formal language point of view. Instead, we view them from the timedtransition system point of view. A timed automaton is a �nite state (lo
ation) automaton withtiming elements added that take values from R the set of nonnegative reals. More pre
isely, aset of resetable 
lo
ks are added that measure progress of real time. A 
lo
k x is a variable,taking real values, su
h that it in
reases with slope 1, and the only operations that 
an bedone on x are: a) test whether the value of x satis�es a 
onstraint and b) reset x to zero. LetXn = fx1; x2; : : : ; xng be a set of variables standing for the values of the 
lo
ks. Let guardn30



be the set of formulae (
alled 
lo
k 
onstraints) where V ar(guardn) � Xn (for a formula ', wedenote its set of free variables by Var (')). The n in the suÆx of guardn denotes the number offree variables of guardn. A formula in guardn is given by:� ::= true j xi > 
 j xi < 
 j xi � 
 j xi � 
 j �1 ^ �2where 
 2 N , the set of natural numbers. We will sometimes 
all these formulas 
lo
k 
onstraints.Timed automata has been introdu
ed by Alur and Dill [AD94℄. The de�nition below stemsfrom [HK97℄:De�nition 3.1 A Timed Automaton [HK97℄ is a seven-tupleU = hAP;Xn; L;E; P; `0; inviwhere{ AP is a set of atomi
 propositions.{ Xn is a �nite set of variables where ea
h variable stands for a Program Clo
k.{ L is a �nite set of lo
ations.{ E � L � guardn � 2f1;::: ;ng � L is a transition relation.{ P : L �! 2AP assigns to ea
h lo
ation a set of atomi
 propositions{ `0 2 L is the initial lo
ation.{ inv : L �! guardn assigns to ea
h lo
ation an invariant.Invariants, whi
h are formulae of guardn, 
an be introdu
ed in the lo
ations of the timedautomaton to ensure that the 
ontrol moves from one lo
ation to another. An edge e 2 E isa triple 
onsisting of a sour
e lo
ation (from L), a guard formula (from guardn), a subset off1; : : : ; ng denoting the set of 
lo
ks that are reset in e and a target lo
ation (from L). In Figure3.1 an example of a timed automaton is given. There are two lo
ations l0 and l1 and two 
lo
ksx and y. The invariants of the lo
ations are given at the top of ea
h lo
ation. The 
lo
ks thatare reset in ea
h transition are shown expli
itly in the transitions in the form x := 0 where x isa 
lo
k.We now des
ribe the semanti
s of timed automata. Informally, either the 
ontrol staysat a lo
ation and let time pass (i.e., in
rement the 
lo
k variables) provided the invariant ofthat lo
ation is satis�ed. Or the 
ontrol jumps (instantaneously) from one lo
ation to anotherthrough an edge provided the values of the 
lo
ks satisfy the guard of that edge. Some of the
lo
ks are reset to zero in this jump while others are kept un
hanged.A position of U is of the form h`; v1; v2; : : : ; vni where hv1; v2; : : : ; vni 2 Rn and ` 2 L.In the sequel, we will use the notations h`;vi and h`; v1; v2; : : : ; vni inter
hangeably to denotea position. Given a position h`; v1; v2; : : : ; vni, we say that the position h`; v01; v02; : : : ; v0niis a time su

essor of h`; v1; v2; : : : ; vni if for ea
h i, v0i = vi + Æ, where Æ is a non-negativereal number, and for all 0 � Æ0 � Æ, R; hv1 + Æ0; v2 + Æ0; : : : ; vn + Æ0i j= inv(`). We say that aposition h`0; v01; v02; : : : ; v0ni is an edge su

essor of the position h`; v1; v2; : : : ; vni if there exists afour-tuple h`; �;Reset; `0i 2 E su
h that the following three 
onditions hold.31



{ R; hv1; v2; : : : ; vni j= �.{ v0i = 0; if i 2 Resetvi; otherwise:{ R; hv01; v02; : : : ; v0ni j= inv(`0).We 
all an element of E an edge. The mapping P maps ea
h lo
ation to the set of atomi
propositions that are true for that lo
ation. As the automaton is non-deterministi
, it is not arestri
tion to suppose that the guards are only 
onjun
tions.An h`;vi-path � is de�ned as a partial mapping from N �R to the set of positions of thetimed automaton su
h that �(0; 0) = h`;vi and for any (i; ") 2 N �R, �(i; ") (where i denotesthe segment number; see below for a de�nition of segment) 
an be \rea
hed" from h`;vi througha sequen
e of time and edge transitions.A segment of a path is a part of the path between two su

essive edge transitions. Initially,at the beginning of the path, the 
ontrol is in the zeroth segment. If the 
ontrol is in the ithsegment, and it takes an instantaneous edge transition, it \enters" the (i+1)st segment. A pointin a segment is a \snapshot" in that segment. The delay at a point p in a segment i, denotedby delay(p), is the time di�eren
e between the 
urrent time (the time at that point) and thetime the 
ontrol entered that segment, both the times being measured from the beginning of thepath. The delay of a segment is the di�eren
e between the time the 
ontrol leaves that segmentand the time the 
ontrol enters the segment. The time at a point in a segment of a path isthe sum of the delays of all the previous segments and the delay at that point in the segment.We write time�(j; ") to denote the time at a point in the jth segment of �, having the delay ".Note that time�(0; 0) = 0. A path maps a pair 
onsisting of a segment number and a delay toa position.De�nition 3.2 A tra
e of a timed automaton is an in�nite sequen
e of snapshots of an h`;vi-path � of the automaton of the form given below:h`;vi �! h`1;v1i �! : : :where �(0; 0) = h`;vi and for ea
h i = 1; 2; : : : , if �(k; Æ) = h`i; v01; v02; : : : ; v0ni and �(j; ") =h`i�1; v001 ; v002 ; : : : ; v00ni, then (j; ") � (k; Æ) (in the lexi
ographi
 order) and either j = k and �(k; Æ)is a time su

essor of �(j; ") or j + 1 = k and Æ = 0 and �(k; Æ) is an edge su

essor of �(j; ").In the above de�nition, we identify `0 with `. We 
all h`;vi the starting element of the tra
e.Given a path �, and a tra
e T of �, we 
an write T as a sequen
e of the form �(i0; 0); �(i1; "1); : : : ,where i0 = 0 and for all j either ij = ij�1 or ij = ij�1 + 1 and 0 � "j � delay(ij).De�nition 3.3 Given an h`;vi-path �, and a tra
e T = �(i0; 0); �(i1; "1); : : : of �, we say thatT is divergent, if the sequen
e (time�(i0; 0); time�(i1; "1); : : : ) diverges.The timed automaton shown in Figure 3.1 has a non-divergent (or 
onvergent) tra
e (
on-sider the tra
e h`0; 0; 0i 0:5�! h`0; 0:5; 0:5i 0�! h`1; 0; 0:5i 0�! h`0; 0; 0i 0:25�! h`0; 0:25; 0:25i 0�!h`1; 0; 0:25i : : : sin
e the sum 0:5 + 0:25 : : : 
onverges). But for the timed automaton shownin Figure 3.2 , every tra
e is divergent. 32



l0 l1

x<3 y<5x<3  x:=0

y<5  y:=0Figure 3.1: An Example Timed Automaton.3.3 Timed Logi
 Pro
essesWe identify a fragment of 
onstraint query languages over reals (in the sense of [KKR95, Rev90,BS91℄) that will allows us to model real-time systems. Furthermore, as we will see below, itallows us to express the produ
t 
onstru
tions that 
ome up in the 
ourse of model 
he
king forformulas in the temporal logi
 Ls [LPY95a℄. We 
all the programs expressed in this fragment astimed logi
 pro
esses (abbreviated TLPs). Before we de�ne TLPs formally, we need the followingnotations and de�nitions. Let the 
onstraint 
 be de�ned by the grammar
 ::= true j xi > 
 j xi < 
 j xi � 
 j xi � 
 j 
 ^ 
 (3.1)where 
 2 N , the set of natural numbers.De�nition 3.4 (t-
lause) A t-
lause is a 
lause of one of the following four forms.(1) p(x) � '; p0(x0)(2) p(x) � p1(x); p2(x)(3) p(x) � 
(4) init � p(x);x = 0where the 
onstraints ' are of the forms (here n is the length of the tuple x � hx1; : : : ; xni ofvariables)(1:1) ' � 
1(x) ^Vni=1 x0i = xi + z ^ z � 0 ^ 
2(x0) (\time transitions")(1:2) ' � 
1(x) ^Vi2S x0i = 0 ^Vi62S x0i = xi ^ 
2(x0) (\edge transitions")where S � f1; : : : ; ng and the 
onstraints 
 are of the form de�ned in the grammar (3.1).We 
all the 
onstraints 
 the guards of the 
lauses. In the sequel, we 
all a 
lause of the form (1)as an evolution 
lause if the 
onstraint ' is of the form (1.1) and as system 
lause if the
onstraint ' is of the form (1.2). We will also 
all 
lauses of the form (2) as alternating 
lauses,
lause of the form (3) (whi
h are fa
ts or generalized tuples) as assertions and 
lauses of theform (4) as initial 
lauses.De�nition 3.5 (TLP) An (unlabeled) TLP is a (�nite) set of t-
lauses in whi
h at least one
lause is an initial 
lause.We asso
iate a logi
al formula 
orresponding to a TLP in the same way as in [JM94℄. Notethat the 
lauses, in whi
h the 
onstraint ' in the body is of the form (1:1), 
ontain the variable33



z in the body. The existentially quanti�ed (in the logi
al formula asso
iated to a TLP) variablesz are 
alled in
rement variables. In Se
tion 3.13, we will expand TLPs with alphabets (
alledlabeled TLPs). We now de�ne the notion of 
onvergent and divergent ground derivations ofTLPs.De�nition 3.6 (Convergent and Divergent Ground Derivations) Let G be an (in�nite)ground derivation of P through 
lauses of the form (1) and (4). Let C1; C2; : : : be the 
lausesinvolved in G. Let z1; z2; : : : be the sequen
e of values of the in
rement variables when 
lausesC1; C2; : : : are applied respe
tively (for a system 
lause or an initial 
lause, we assume this valueto be zero). We say that an (in�nite) ground derivation G of P is divergent i� the sum Pi zi ofthe in
rement variables in the derivation diverges. Otherwise, we say that it is 
onvergent.A �rst motivation for TLPs is that this model subsumes the timed automata [AD94℄ model;i.e., we 
an translate timed automata to timed logi
 pro
esses. These translations use onlyevolution 
lauses (
lauses obtained by translating time transitions), system 
lauses (
lausesobtained by translating edge transitions) and an initial 
lause (a 
lause spe
ifying an initialposition). Of the other types of 
lauses, 
lauses of the form (2) (i.e., alternating 
lauses) areused for expressing alternation (
ompare [DW99℄). These 
lauses are also used to express theprodu
t 
onstru
tions that 
ome up in the 
ourse of model 
he
king. Clauses of the form (3)(i.e., assertions) are used to rewrite an agent to a nil agent (in this respe
t there is a similaritywith pro
ess algebras; thus p(x)  � 
 states that the agent p 
an rewrite to the nil agent ifthe values of the variables x satisfy the formula 
). These 
lauses 
an also be used to expressassertions about pro
esses (e.g., by rewriting an agent to the nil agent if the values of thevariables x violate a safety property). We will see later that 
lauses of the form (3) 
an also beused for expressing Ls properties. Thus the TLP framework not only allows modeling a system,but also allows writing assertions about the behaviors of the system.3.4 Translation of Timed Automata into TLPsSin
e the timed automaton model is predominantly used in the literature, we show the 
onne
tionof the timed logi
 pro
ess model with the timed automaton model. In other words, we show thattimed automata 
an be translated to TLPs. The 
onstru
tion of a TLP from a timed automatonis given below.Constru
tion 3.1 Let U = hAP;Xn; L;E; P; `0; invibe a timed automaton [AD94℄ with n 
lo
ks, where AP is a set of atomi
 propositions, Xn isa set of 
lo
ks (n 
lo
ks x1; : : : ; xn), L is a set of lo
ations, E is a set of edges, P is a labelingfun
tion that labels ea
h lo
ation with a set of atomi
 propositions, `0 2 L is the initial lo
ationand inv is a fun
tion that assigns to ea
h lo
ation an invariant 
onstraint. We translate U toa TLP P as follows. For ea
h lo
ation ` 2 L, we introdu
e an n-ary predi
ate `(x). For ea
hlo
ation ` 2 L, we have an evolution 
lause where 
1 and 
2 are both the invariant of the lo
ation` (i.e., 
2(x0) is obtained from 
1(x) by renaming all variables in the tuple x by their primedversions in the tuple x0). Thus the evolution 
lause takes the form`(x) � `(x0) ^ '34



where ' � inv `(x) ^ n̂i=1x0i = xi + z ^ z � 0 ^ inv `(x0)(invell is the invariant of the lo
ation `). For ea
h edge h`; �;Reset; `0i 2 E from ` to `0, where �is the guard of the edge and Reset is the set of 
lo
ks reset in that edge, we have a 
lause of theform (1.2) with head predi
ate `(x) and body predi
ate `0(x), where 
1 � �^ inv `(x), 
2 � inv `0and S = Reset (here inv` and inv`0 are respe
tively the invariants of lo
ations ` and `0). Thusthe system 
lause takes the form `(x) � `0(x0) ^ 'where ' � inv `(x) ^ ^i2Resetx0i = 0 ^ ^i62Resetx0i = xi ^ inv `0(x0):We also add an initial 
lause init � `0(x)^x = 0. The labeling fun
tion P is extended to thepredi
ates in the 
anoni
al way. [℄The semanti
s of a timed automaton are given in terms of tra
es. The semanti
s of a TLPare given in terms of ground derivations. Identifying positions and ground atoms, we get thefollowing.Theorem 3.1 (Meaning of translation) For every timed automaton U there exists a TLPP su
h that the set of ground derivations of P 
orrespond exa
tly to the set of tra
es of U . Inother words, for every timed automaton U there exists a TLP P su
h that U and P have thesame semanti
s.Proof. The 
onstru
tion of the TLP P from a timed automaton U is given above. Considerany tra
e T of U . T = h`1;v1i �! h`2;v2i �! : : : :We show by indu
tion that `1(v1) �! `2(v2) �! : : : is a ground derivation of P, i.e., we showby indu
tion on i that for ea
h i, `i+1(vi+1) is a ground resolvent of `i(vi) through a 
lausein P. The base 
ase for i = 0 is trivial. Suppose that the result holds for all i � k. By thede�nition of tra
es, either h`k+2;vk+2i is an edge su

essor of h`k+1;vk+1i or h`k+2;vk+2i is atime su

essor of h`k+1;vk+1i. In either 
ase, by the 
onstru
tion of P, there exists a 
lause inP su
h that `k+2(vk+2) is a ground resolvent of `k+1(vk+1) through that 
lause. By a similarindu
tion, it 
an be proved that every ground derivation of P 
orresponds to a tra
e of U . [℄In our de�nition, the semanti
s of a timed automaton also 
ontain 
onvergent tra
es. Un-bounded liveness properties, however, refer only to divergent tra
es.35



3.5 Logi
 of Safety and Bounded Liveness (Ls)The syntax of formulas � in the logi
 Ls (Logi
 of safety and bounded liveness) [LPY95a℄ isgiven as follows: � ::= � j q j q _ � j � _ � j �1 ^ �2 j 2� j 8� j x:� j Zwhere � is an atomi
 
onstraint of the form xi � 
, where �2 f=; <;>;�;�g, 
 is a naturalnumber, q is an atomi
 proposition and Z 2 Id is an identi�er (identi�ers are \mu-
al
ulus"variables). We 
all a variable that does not o

ur on the right hand side of any de
laration in anLs formula the root variable for that formula. An Ls formula is a set of de
larations having aroot variable. The meaning of the identi�ers (or variables) Z is spe
i�ed by a unique de
larationD(Z) : Z = � for ea
h identi�er assigning a formula � of Ls to that identi�er Z. It 
an be easilyshown using the te
hniques in [Wal93℄ that an Ls formula 
an be rewritten in linear time in asimple form in whi
h ea
h de
laration is of the form X = q _X 0 or X = �_X 0 or X = X 0 ^X 00or X = 2X 0 or X = 8X 0 or X = x:X 0 where X 0;X 00 are either identi�ers or atomi
 propositionsor atomi
 
onstraints. In the following, we will always assume that Ls formula is given in asimple form.The satisfa
tion relation j= for Ls is the largest relation satisfying the following (where P isa TLP, p(v) is a ground atom in the R-base of P; here R denotes the reals):{ P ; p(v) j= � implies R;v j= �.{ P ; p(v) j= q implies q 2 P (p) (where P is a fun
tion that assigns to ea
h predi
ate in P a set ofatomi
 propositions).{ P ; p(v) j= q _ � implies P ; p(v) j= q or P ; p(v) j= �.{ P ; p(v) j= � _� implies P ; p(v) j= � or P ; p(v) j= �.{ P ; p(v) j= �1 ^�2 implies P ; p(v) j= �1 and P ; p(v) j= �2.{ P ; p(v) j= 2� implies for all ground resolvents p0(v0) of p(v) through system 
lauses or initial
lauses, P ; p0(v0) j= �.{ P ; p(v) j= 8� implies for all ground resolvents p0(v0) of p(v) through evolution 
lauses, P ; p0(v0) j=�.{ P ; p(v) j= x:� implies P ; p(v)[0=x℄ j= � (where the ground atom p(v)[0=x℄ is obtained from p(v)by reseting the variable x to zero).{ P ; p(v) j= Z implies P ; p(v) j= D(Z).{ P ; p1(v1)^ : : :^ pm(vm) j= � implies P ; p1(v1) j= �, : : : , P ; pm(vm) j= � (satis�ability for goals).It is to be noted that the logi
 Ls [LPY95b℄ was originally introdu
ed for timed automataand hen
e does not take into a

ount the alternating 
lauses and assertions of TLPs. Note thatwe take the greatest �xpoint of the set of de
larations (viewed as a set of equations). For a TLPP and an Ls formula �, we say that P j= � i� P; init j= �.An example of a bounded liveness spe
i�
ation in Ls is as follows: let C be an atomi

onstraint. Then the formula X = 2(z:Z) where Z = C _ (z < i ^ 8Z ^ 2Z) asserts that Cshould be satis�ed within i time units of resolving through a system 
lause (for timed automata,36



this amounts to the statement that C should be satis�ed within i time units of taking an edgetransition). We 
all the variables x the real variables.In order to spe
ify properties about TLPs and in order to fa
ilitate the produ
t 
onstru
tiondes
ribed below, it is useful to 
onsider the dual of the logi
 Ls. So before introdu
ing the model
he
king method, we �rst introdu
e the syntax of fLs whi
h expresses the dual of Ls formulas.The syntax of fLs is given as follows:e� ::= � j q j q ^ e� j � ^ e� jf�1 _f�2 j hie� j 9e� j x:e� j eZwhere � is an atomi
 
onstraint and q is an atomi
 proposition. An fLs formula is a set ofde
larations with a root variable. Note that we take the least �xpoint of the set of de
larations(viewed as a set of equations). For every formula � of Ls, we 
an de�ne a formula e� in fLs su
hthat for a TLP P, P j= e� i� P 6j= �. We do not provide the semanti
s of fLs formulas whi
h areeasily understood from those of Ls formulas (dual of those of Ls formulas).3.6 Produ
t ProgramIn this se
tion, we formulate the basis of our model 
he
king methodology| a produ
t 
on-stru
tion of TLPs with logi
al formulas. Given a TLP P, and an fLs formula e�, we 
onstru
tthe produ
t TLP P e�, in whi
h the arity of ea
h predi
ate is n (assuming that the arity of ea
hpredi
ate in P is k and the 
orresponding Ls formula � has n � k real variables), su
h thatP j= e� i� the (new) predi
ate hinit; eZi (see below) is in the least model of P e�. Here eZ is theroot variable of e� . The 
onstru
tion is as follows.Constru
tion 3.2 For the root variable eZ we 
reate the (0-ary predi
ate) hinit; eZi. For ea
hpredi
ate hp;Xi 
reated, expand (i.e., 
reate a rule(s) de�ning that predi
ate; these rules dependon the de
larationX = 	 de�ningX in e�) using the following rules if the predi
ate is not alreadyexpanded:{ X = q: hp;Xi(x)  � true if q 2 P (p) (where P is a fun
tion assigning to ea
h predi
atesymbol a set of atomi
 propositions and p is a predi
ate symbol in P).{ X = �: hp;Xi(x) � �.{ X = q ^X 0: hp;Xi(x)  � hp;X 0i(x) if q 2 P (p).{ X = � ^X 0: hp;Xi(x) � hp;X 0i(x) ^ �.{ X = X1 _X2: hp;Xi(x)  � hp;X1i(x) and hp;Xi(x) � hp;X2i(x).{ X = hiX 0: For ea
h system 
lause C in P su
h that the predi
ate p stands on the headof the 
lause 
reate a 
lause of the form hp;Xi(x)  � hp0;X 0i(x0) ^ ' ^ '0 where ' is the
onstraint in the body of the 
lause C and '0 � Vni=k+1 x0i = xi.{ X = 9X 0: For ea
h evolution 
lause C su
h that the predi
ate p stands on its head, 
reatea 
lause of the form hp;Xi(x)  � hp0;X 0i(x0)^'^'0, where ' is the 
onstraint in C and'0 is given by Vni=k+1 x0i = xi + z.{ X = xi:X 0: hp;Xi(x) � hp;X 0i(x0) ^ xi = 0 ^Vj 6=i x0j = xj.37



Example 3.1 Consider the TLP 
orresponding to the timed automaton in Figure 3.2 and theLs formula Z = 2X where X = �at l2 ^2X ^ 8X where �at l2 is an atomi
 proposition satis�edat all lo
ations but l2. The produ
t program 
orresponding to (the dual of) this formula (i.e.,the formula eX = at l2 _ hiX _ 8X where at l2 is an atomi
 proposition satis�ed only at thelo
ation l2) is given in Figure 3.3.
l0  l1

l2

0 < x1<1; x2:=0

0< x2 <1

0<x2<1
x2:=0

0 <=x2<1 0<=x2<1

0<=x2<1Figure 3.2: Example illustrating that the model 
he
king pro
edure is possibly non-terminating.Theorem 3.2 Given a TLP P and an Ls formula �, P j= � if and only if the atom hinit; eZi isnot in the least model of P e� where e� is the dual of the Ls formula � and eZ is the root variableof e�.Proof. By stru
tural indu
tion on Ls formulas. We show that for any predi
ate symbol p anda tuple v 2 Rn, P; p(v) j= � i� hp; eZi(v) is not in the least model of P e�.Base Cases: For atomi
 propositions and atomi
 
onstraints, the proof is trivial.Indu
tion Step:Most of the 
ases are easy. We show only a few typi
al ones.Case: Z = q _ X. Suppose that P; p(v) j= q _ X. If P; p(v) j= q, no 
lause that de�nesthe predi
ate hp; eZi is 
reated and hen
e hp; eZi is not in the least model of P e�. If P; p(v) j= X,then the result follows from the indu
tion hypothesis.hinit; eZi  � hl0;Xi(x) ^ x = 0hl0;Xi(x)  � hl0;Xi(x0) ^ x0 = x+ z ^ 0 � x2 < 1 ^ z � 0:hl0;Xi(x)  � hl1;Xi(x0) ^ 0 < x1 < 1 ^ x20 = 0 ^ x10 = x1:hl1;Xi(x)  � hl1;Xi(x0) ^ x0 = x+ z ^ z � 0 ^ 0 � x2 < 1:hl1;Xi(x)  � hl2;Xi(x0) ^ x0 = x ^ 0 < x2 < 1:hl2;Xi(x)  � true:hl2;Xi(x)  � hl2;Xi(x0) ^ x0 = x+ z ^ z � 0 ^ 0 � x2 < 1:hl2;Xi(x)  � hl1;Xi(x0) ^ x20 = 0 ^ x10 = x1 ^ 0 < x2 < 1:Figure 3.3: Produ
t Program 
orresponding to Figure 3.2.38



Case: Z = X1 ^X2. The produ
t program in this 
ase 
onsists of the 
lauses hp; eZi(x) �hp; fX1i(x) and hp; eZi(x) � hp; fX2i(x) along with the produ
t programs for the formulas de�nedby the de
larations de�ning fX1 and fX2. The result then follows from the indu
tion hypothesis.Case: Z = 2X. If P; p(v) j= Z then for all su

essors p0(v0) of p(v) through system 
lauses,P; p0(v0) j= X. The result now follows from the indu
tion hypothesis.The rest of the 
ases follow dire
tly from the indu
tion hypothesis.The proof for the other dire
tion follows by similar indu
tion on Ls formulas. [℄Methodology To prove P j= �, we try to prove P 6j= e� where e� is the fLs formula 
orre-sponding to � (i.e., the dual of �). This is proved by proving that hinit; eZi is not in the leastmodel of P e� (where Z is the root variable of �). We 
an either 
ompute the least model ofP e� using the least �x point of the immediate 
onsequen
e operator resulting in a global model
he
ker. We will prefer top-down evaluation (ba
kward 
haining) of TLPs in 
ontrast with thebottom-up evaluation (forward 
haining) advo
ated in [KKR95℄; top-down evaluation has theadvantage that it 
an be goal dire
ted, i.e., lo
al; partial order redu
tion te
hniques 
an be easilyin
orporated into it; see [HKQ98℄ for a dis
ussion of top-down vs. bottom-up evaluation. Hen
ewe extend XSB-style tabling [CW96, TS86a, Vie87℄ with 
onstraints to prove that hinit; eZidoes not su

eed in the tabled resolution using the non-ground transition system. To be pre
ise,our method extends with 
onstraints the OLDT resolution of [TS86a℄. Extending standard re-sults from logi
 programming [TS86a℄ we get, the state hinit; eZi su

eeds i� it su

eeds in thederivation tree obtained by using tabled resolution. Note that the tabling strategy produ
es alo
al model 
he
ker for fLs (Ls). To guarantee termination of the model 
he
king pro
edure,we 
an use the trim operation on 
onstraints, des
ribed below, along with the tabling strategymentioned above.Providing a Counter Example To provide a 
ounter example, we follow the followingmethod. With ea
h non-ground goal we keep the following information: the 
onstraints en-
ountered so far (in
luding the mgus, i.e., most general uni�ers, whi
h are also regarded as
onstraints), a list of the numbers of 
lauses en
ountered so far (we assume that the 
lauses arenumbered) and a list of in
rement variables en
ountered so far (assuming that they are suitablyrenamed). Thus a non-ground goal will take the form of a �ve-tuple hQ;'1; '2; L1; L2i where Qis a 
onjun
tion of predi
ates, '1 is the 
onstraint store, '2 is the 
on
atenation of all the 
on-straints of all the 
lauses (and the mgus) en
ountered thus far, L1 is a list of the numbers of the
lauses en
ountered so far, L2 is the list of the in
rement variables of the 
lauses en
ountered sofar. Now the \earliest" (with respe
t to time) ground 
ounter example (i.e., a ground derivationa
ting as a witness to the su

ess) 
an be provided in the following way. First proje
t '2 on theset of variables in the list L2. Let the 
onstraint obtained be '. Now minimize �zi2L2zi withrespe
t to '. The solutions of zi obtained in this method 
an be used in providing a ground
ounter example. The 
ounter example 
an now be generated from the sequen
e of 
lauses andthe values of the 
orresponding in
rement variables.3.7 The Trim Operation on ConstraintsWe �rst start with the observation the model 
he
king pro
edure des
ribed above is possiblynon-terminating. The 
ounter example is provided by the translation to TLP of the timed39



automaton in Figure 3.2. Before understanding, why the above pro
edure does not terminatefor the example in Figure 3.2, we need a few de�nitions.De�nition 3.7 (Rea
hable Nonground and Ground States) A non-ground statehp(x); 'i is said to be rea
hable in the non-ground transition system indu
ed by P i�there exists a (�nite or in�nite) non-ground derivation using the 
lauses in P:init �! : : : �! h eQ;'0i �! : : :su
h that p(x0) is one of the predi
ates in eQ and hp(x); 'i and hp(x0); '00i are identi
al where'00 � 9�x0'0 (the existential quanti�er is over all variables but x0). A ground state p(v) is saidto be rea
hable in the ground transition system indu
ed by P i� there exists a (�nite or in�nite)ground derivation of the form: init �! : : : �! Q �! : : :where p(v) is one of the 
onjun
ts in Q and init is the initial predi
ate.Note that a non-ground state is rea
hable in the non-ground transition system indu
ed by P i�all its ground instan
es are rea
hable in the ground transition system indu
ed by P.Proposition 3.1 There exists a timed automaton su
h that the non-ground transition systemof the TLP 
orresponding to that automaton has in�nitely many rea
hable non-ground states.Proof. Consider the example timed automaton given in Figure 3.2. The timed automaton hasthree lo
ations l0, l1 and l2. There are two 
lo
ks x1 and x2. The initial position is hl0; 0; 0i.There is a transition from l0 to l1 in whi
h the 
lo
k x2 is reset and the guard is 0 < x1 < 1.There is a transition from l1 to l2 in whi
h no 
lo
k is reset and the guard of the transitionis 0 < x2 < 1. Also there is a transition from l2 to l1 in whi
h the guard is 0 < x2 < 1and the 
lo
k x2 is reset. The invariant for all these three lo
ations is 0 � x2 < 1. We 
aneasily model this timed automaton by an TLP P2 having 
lauses as des
ribed in the previousse
tion. It 
an be easily seen that an in�nitely many rea
hable nonground states of the formhl2(x); x1 � x2 � 0 ^ x2� x1 � �(i+ 1) ^ x2 > 0 ^ x2 < 1i (where i 2 N ) is generated. [℄We next start with a few de�nitions.De�nition 3.8 (Zones) A zone is a 
onjun
tion of 
onstraints, ea
h of whi
h puts a lower orupper bound on a variable or on the di�eren
e of two variables. A C-zone is a non-ground stateof the form hp; 'i where, p is a predi
ate symbol and ' is a formula generated by the followinggrammar: ' ::= xi < a j xi > a j xi � a j xi � a j xi � xj > aj xi � xj � a j xi � xj � a j xi � xj < a j '1 ^ '2 (3.2)We 
all the above 
onstraints as zone 
onstraints. The free variables of a zone 
onstraint areamong fx1; x2; : : : ; xng.De�nition 3.9 A non-ground state s = hp(x); 'i 
orresponds to a C-zone � = hp; '0i if ' isequivalent to '0 with respe
t to fx1; : : : ; xng, i.e., the set of ground instan
es of s is the the setfp(v) j R;v j= '0g. 40



The following lemma holds:Lemma 3.1 Ea
h rea
hable non-ground state 
orresponds to a C-zone, i.e., for ea
h rea
hablenon-ground state hp(x); 'i, there exists a C-zone � = hp; '0i su
h that '0 is equivalent to ' withrespe
t to fx1; x2; : : : ; xng.Proof. By using Fourier's Algorithm [MS98, LM92℄ and indu
tion on the length of non-groundderivation. [℄Our aim is to de�ne an equivalen
e relation �M on the set of non-ground states of P (i.e.,states of the form hp(x); 'i where p is a predi
ate symbol and ' is the 
onstraint store in whi
hthe free variables are x) su
h that the following 
onditions hold:{ The quotient (in the standard sense) of the non-ground transition system of P , indu
ed by �M ,denoted by P= �M , has a �nite index, i.e., a �nite number of \states" or equivalen
e 
lasses.{ The transition system indu
ed by P= �M (in the standard sense) bisimulates [Mil89℄ the non-ground transition system indu
ed by P .The suÆx M denotes the maximal 
onstant o

urring in the guards of the TLP P (this suÆxis kept sin
e the equivalen
e relation �M involves M). Before we go into the details of thisequivalen
e relation, we start with a few de�nitions. Below, we identify two nonground stateshp(x); 'i and hp(x); '0i i� they have the same ground instan
es. The justi�
ation for this is thatthe su

essor relation in nonground transition systems of 
onstraint query language programsdepends only on the logi
al 
ontents of the non-ground states.De�nition 3.10 (Rea
hable Modulo M States) The set of ground states RM rea
hablemodulo M , in P is de�ned as the smallest set 
ontaining the rea
hable ground states whi
his 
losed under the following:{ if there exists a ground state p(v0) 2 RM and for all i 2 f1; : : : ; ng either vi = v0i or(vi > M ^ v0i > M) then p(v) 2 RM .A non-ground state hp(x); 'i is said to be rea
hable modulo M i� all its ground instan
es arerea
hable modulo M and it is identi
al to a state hp(x); '0i, where '0 is given by zone 
onstraints.Let P be a TLP withM as the maximal 
onstant o

urring in the guards of the 
lauses. Lets be any non-ground state. Let sol(s) denote the set of ground instan
es of s. Now we de�nean equivalen
e relation �M on the set of non-ground states of P as follows: �M is the smallestequivalen
e relation satisfying the following:{ hp(x); 'i �M hp(x); '0i if for all p(v) 2 sol(hp(x); 'i) there exists p(w) 2 sol(hp(x); '0i) su
h that8i 2 f1; : : : ; ng either (vi = wi) or (vi > M ^ wi > M) and vi
e versa.From now on, we view the non-ground transition system indu
ed by P as a labeled transitionsystem in whi
h the 
lauses a
t as labels. We say that two nonground goals hQ;'i and hQ;'0i(where Q is a 
onjun
tion of predi
ates) are �M -equivalent, denoted by hQ;'i �M hQ;'0i, iffor ea
h predi
ate p(x) in Q, hp(x);9�x'i �M hp(x);9�x'0i. The equivalen
e relation �M 
anbe viewed as a symboli
 bisimulation relation.Proposition 3.2 The non-ground transition system of P and the quotient of the non-groundtransition system of P indu
ed by �M are bisimilar.41



Proof. All we need to prove is that if hp(x); 'i �M hp(x); '0i and if one of them resolvesthrough a 
lause C in P, then the other also resolves through the same 
lause and the tworesolvents lie in the same equivalen
e 
lass indu
ed by �M . For this, �rst, given the maximal
onstant M o

urring in the guards of the 
lauses of P we de�ne an equivalen
e relation �M onRn as follows: v �M v0 i� for all i either vi = v0i or both vi > M and v0i > M . Now we observethat if v �M v0 then for any atomi
 
onstraint �, either they both satisfy � or they both do notsatisfy �.Now suppose hp(x); 'i �M hp(x); '0i. Let hp(x); 'i resolve through a 
lause C of P. If Cis an alternating 
lause then hp(x); '0i also resolves through it and the resolvents in both 
asesare equivalent through �M . Similarly, for initial 
lauses. Now we 
onsider 
lauses of the form(1), i.e., system 
lauses and evolution 
lauses. Let C be an evolution 
lause. Let the 
onstraintin C be  . Suppose that hp(x); 'i resolves through C. Let the resolvent be hp0(x); '00i. Now'00 � 9�x0' ^  . Sin
e '00 is satis�able, there exists v that satis�es '00. So R;v j= 9�x0' ^  .Hen
e there exists w and a real number Æ (the value of the in
rement variable z) su
h thatR;w j= ', R;w j= 
(x) and for all i, vi = wi + Æ. Sin
e, hp(x); 'i �M hp(x); '0i, there existsu su
h that R;u j= '0 and u �M w. Therefore, R;u j= 
(x). Let v0 = u + Æ. Observe thatv0 �M v. Also observe that R;u;v j= '0 ^  . Hen
e, hp(x); '0i 
an resolve through C. Let theresolvent be hp0(x); '000i where '000 � 9�x0'0 ^  . Then R;v0 j= '000. Thus for any R;v j= '00,we 
an �nd a v0 su
h that R;v0 j= '000 and v �M v0. Similarly, it 
an be proved that forany v0 su
h that R;v0 j= '000, we 
an �nd a v su
h that R;v j= '00 and v �M v0. Therefore,hp0(x); '00i �M hp0(x); '000i. The proof for system 
lauses is similar. Thus we have proved thatif hp(x); 'i resolves through a 
lause C, then hp(x); '0i also resolves through the same 
lause Csu
h that the two resolvents are �M -equivalent. Similarly, the other dire
tion 
an be proved.The proof for non-ground goals 
an be developed on similar lines. Hen
e, the result follows. [℄While the 
lassi
al region equivalen
e [AD94℄ is de�ned on the set of positions, the equiva-len
e relation �M is de�ned on the set of rea
hable nonground states. As we show below, giventwo rea
hable nonground states it is de
idable whether they are �M equivalent. In 
ontrast withthe 
lassi
al region equivalen
e, the 
onne
tion of the equivalen
e relation �M with the trimoperation established below allows us to design an on-the-
y symboli
 model 
he
king algorithm.Now we show how to de
ide whether two nonground states are equivalent using the trimoperation des
ribed below.Normalization of Constraints Given a rea
hable nonground state hp(x); 'i, we 
onvert itto a state hp(x); '0i su
h that hp(x); 'i = hp(x); '0i, where '0 is in a normalized form, by themethod given in Figure 3.4. We 
all the resulting 
onstraint '0 the normalized representationof '. In the normalized form, we allow 
onstraints of the form xi � 
 or xi � xj relop a where�2 f>;�; <;�g, relop 2 f>;�g, 
 is a natural number and a is an integer.Proposition 3.3 For any rea
hable nonground state hp(x); 'i, the normalized form of the 
on-straint ' 
an be generated by the following grammar:' ::= xi < 
 j xi > 
 j xi � 
 j xi � 
 j xi � xj > a j xi � xj � a j '1 ^ '2 (3.3)where 
 is a natural number and a is an integer.Note that in the normalized representation, we do not allow 
onstraints of the form xi�xj � 
.Note that a rea
hable nonground state has a unique normalized form. Sin
e linear program-ming is polynomial time solvable, given a rea
hable nonground state, it 
an be 
onverted to the42



{ For ea
h variable xi, add the 
onjun
t 9�xi' '0. For ea
h pair of variables xi; xj , let e' be the
onstraint (9�z' ^ z = xi � xj)[xi � xj=z℄. Add the 
onjun
t e' to '0. Rewrite '0 in strong formi.e., in a form in whi
h the bounds on a variable or the di�eren
e of two variables are as strongas possible. Strengthening of any 
onjun
t will lead to a 
onstraint whi
h is not equivalent to theoriginal 
onstraint. Let the resulting 
onstraint '0 be of the form 
1 ^ 
2 ^ : : : ^ 
n.{ Rewrite ea
h 
onjun
t 
i of the form xi+ b � xj +a, where �2 f�; <g, as xj �xi relop b�a whererelop is � or > a

ording as � is � or <.{ Rewrite ea
h 
onjun
t of the form xi � xj in the form xi � xj � 0 if �2 f�; >;=g or in the formxj�xi relop 0 where relop is > or � a

ording as � is < or �. Similarly for the 
ase of 
onstraintsof the form xi � xj + a.{ Any 
onjun
t of the form xi � xj � a, where �2 f<;�g will be rewritten as xj � xi relop (�a)where relop is > or � a

ording as � is < or �.{ Any 
onjun
t of the form xi � xj = a is rewritten in the form xi � xj � a ^ xj � xi � �a.{ Rewrite any 
onstant of the form xi = a in the form xi � a ^ xi � a.Figure 3.4: Normalization of Constraints.normalized form in polynomial time. In what follows we deal with 
onstraints in normalizedform.Now we are ready to introdu
e the trim operation. At a high level, the trim operation 
anbe viewed as an a

urate (with respe
t to the properties that we are 
on
erned here) wideningoperation, i.e., it does not lose pre
ision with respe
t to model 
he
king for the properties thatwe are 
on
erned with here. The removal and repla
ement of 
onstraints in the de�nition oftrim 
an be seen as 
onstraint widening operations. The basi
 intuition is as follows: on
e thevalue of a real variable goes above the maximal 
onstant, it does not matter what the valueis. Hen
e, if a 
onstraint has a solution in whi
h the value of a variable is above the maximal
onstant, then the 
onstraint 
an be widened to in
orporate all \similar tuples". The relation�M , as we show below, provides a logi
al 
hara
terization of the trim operation on 
onstraints.Note that the de�nition of trim itself provides with an algorithm for trimming.De�nition 3.11 (Trim) We de�ne an operator trim, whi
h given a satis�able 
onstraint ',produ
es a 
onstraint '0 = trim('), by the method given below. The 
onstraint trim(') isobtained from the normalized form of ' by the following operations:{ Remove all 
onstraints of the form xj � xi > a or xj � xi � a, for ea
h pair of variables xi; xj ,i 6= j, su
h that ' ^ xi > M is satis�able and 9�xj (') is equivalent to 9�xj (' ^ xi > M) and(' ^ xj > M) is not equivalent to ', where a is an integer and the existential quanti�er is over allvariables but xj .{ Remove all 
onstraints of the form xi < 
 or xi � 
 where 
 is an integer and 
 > M .{ For ea
h i, su
h that (' ^ xi > M) is equivalent to ', repla
e all the 
onstraints of the formxi � xj � a or xi � 
 by the 
onstraint xi > M , where a and 
 are integers and 
 > M and�2 f>;�g. 43



Thus 
onsider for example that the maximal 
onstant M = 4. Let ' � x1 � x2 � 1 ^ x2 >1 ^ x2 < 3 ^ x2 � x1 � �3. Observe that for this 
onstraint, ' ^ x1 > M is satis�able and9�x2(') is equivalent to 9�x2(' ^ x1 > 4) and (' ^ x2 > M) is not equivalent to '. Hen
etrim(') � x1 � x2 � 1 ^ x2 > 1 ^ x2 < 3. We illustrate the trim operation geometri
ally. InFigures 3.5, the solution set of a 
onstraint ' in whi
h the free variables are fx; yg is shown byABCD in the left-half. The maximal 
onstant M is indi
ated in the �gure. None of the rules inthe de�nition of trim apply to this 
onstraint. Hen
e trimmed version of this 
onstraint is the
onstraint itself. This is indi
ated in the right-half of the Figure 3.5. In Figure 3.6, the solutionset of a 
onstraint ' in whi
h the free variables are fx; yg is shown by ABCD in the left-half.The maximal 
onstant M is indi
ated in the �gure. None of the rules in the de�nition of trimapply to this 
onstraint. Hen
e trimmed version of this 
onstraint is the 
onstraint itself. Thisis indi
ated in the right-half of the Figure 3.6. In Figure 3.7, the solution set of a 
onstraint 'in whi
h the free variables are fx; yg is shown by ABCD in the left-half. The maximal 
onstantM is indi
ated in the �gure. The �rst rule in the de�nition of trim applies to this 
ase. Hen
ethe 
onstraint rewrites to a 
onstraint whose solution set is shown in the right half of Figure 3.7.In Figure 3.8, the solution set of a 
onstraint ' in whi
h the free variables are fx; yg is shownby ABCD in the left-half. The se
ond and third rules in the de�nition of trim apply to this
ase. Hen
e the 
onstraint is rewritten to one whose solution set is shown in the right half ofFigure 3.8. Note that the trim of a 
onstraint may not be a union of regions a' la' Alur andDill [AD94℄. Also note that the set of solutions of a 
onstraint obtained by trimming another
onstraint is always 
onvex. It is easy to see that algorithm for the trim operation 
ompletelyavoids splitting of 
onstraints.
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h agrees with v on all values of the variables ex
eptxi1 ; : : : ; xik whi
h are set to vi1 ; : : : ; vik respe
tively.Lemma 3.2 The following properties hold for the trim operator:{ The trim operator is idempotent, i.e., for a non-ground state hp(x); 'i rea
hable moduloM , hp(x); trim(')i = hp(x); trim(trim('))i.{ For a non-ground state hp(x); 'i rea
hable modulo M , we have hp(x); 'i �Mhp(x); trim(')i. 44
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{ For a non-ground state hp(x); 'i rea
hable modulo M and an atomi
 
onstraint �, ' entails� i� trim(') entails �.{ For a non-ground state hp(x); 'i rea
hable modulo M and an atomi
 
onstraint �,hp(x); trim(trim(') ^ �)i = hp(x); trim(' ^ �)i.{ For a non-ground state hp(x); 'i rea
hable modulo M ,hp(x); trim(fxg')i = hp(x); trim(fxgtrim('))i;where for a 
onstraint ', we de�ne fxg' to be the 
onstraint su
h that R;v[0=x℄ j= fxg'if R;v j= '.Proof. The �rst statement is obvious sin
e all the 
onstraints that are to be removed orrepla
ed by the trim operation get removed or repla
ed in the �rst operation of trim itself.We next prove the third statement. One way is obvious. The other way is proved by usingthe se
ond statement (whi
h we prove below). Suppose ' j= �. Seeking a 
ontradi
tion supposethat trim(') 6j= �. Then there exists a tuple v su
h that R;v j= trim(') and R;v 6j= �. Then,by the se
ond statement, there exists a R;v0 j= ' su
h that for all i 2 1::n either vi = v0i orboth vi > M and v0i > M . Now suppose � is of the form xi > 
 where 
 < M . Then, of 
ourse,R;v0 6j= �. This is a 
ontradi
tion. If � is of the form xi > 
 with 
 =M , then we 
an obtain a
ontradi
tion in the same way. Similarly, for the other 
ases of �, we 
an obtain a 
ontradi
tion.For the proof of the fourth statement, we use Lemma 3.3. We show that hp(x); ' ^ �i �Mhp(x); trim(') ^ �i. Then by the use of Lemma 3.3, the result follows. Suppose R;v j= ' ^ �.Then R;v j= ' and R;v j= �. Then R;v j= trim(') and R;v j= �. On the other hand, supposethat R;v j= trim(') ^ �. Then R;v j= trim(') and R;v j= �. Then, by se
ond statement ofthis Lemma, there exists R;v0 su
h that R;v0 j= trim(') and for all i 2 1::n, either vi = v0i orboth vi > M and v0i > M . In both the possibilities, R;v0 j= �. Hen
e R;v0 j= trim(') ^ �. Theother dire
tion is obvious. Therefore, hp(x); trim(') ^ �i �M hp(x); ' ^ �i. Hen
e the resultfollows.For the proof of the �fth statement, we reason as follows. We show that hp(x); fxg'i �Mhp(x); fxgtrim(')i. Then the results from Lemma 3.3. Suppose that R;u j= fxg' whereR;u = v[0=x℄ where R;v j= '. Then R;v[0=x℄ j= fxg'. Now, by the se
ond statement ofthis Lemma, we have that there exists v0 su
h that R;v0 j= trim(') and for all i 2 1::n, eithervi = v0i or both vi > M and v0i > M . Now R;v0[0=x℄ j= fxgtrim('). Now, v[0=x℄ �M v0[0=x℄where �M is the equivalen
e relation de�ned in the proof of Proposition 3.2. Similarly, the otherdire
tion 
an be proved. Hen
e, hp(x); fxg'i �M hp(x); fxgtrim(')i. Hen
e the result follows.Finally, we prove the se
ond statement. One dire
tion is obvious. For the other dire
tion,we reason as follows. Suppose that R;v j= trim('). If R;v j= ' then we are done. Otherwise,there exists some 
onstraint �0 in ' su
h that �0 has been removed (or repla
ed by another
onstraint) by the trimming operation and R;v 6j= �0. Now, we reason on the nature of �0 andthe nature of its removal. Let �0 be of the form xi � 
 where 
 > M . Sin
e R;v 6j= xi � 
,vi > 
. Consider the tuple v[xi := 
℄. Obviously, this tuple satis�es �0. If this tuple satis�es ',we are done. Otherwise there exists a 
onstraint �1 in ' that is not satis�ed by this tuple. Wenow reason on the nature of �1. First observe that �1 
annot be a 
onstraint of the form xi � 
1.Se
ond, if �1 is of the form xi � d, then the following two 
ases arise. The �rst 
ase is that ofd < M and �1 is not removed by the trimming operation. In this 
ase the tuple satis�es �1. The46



se
ond 
ase is that d > M and �1 is removed during the trimming operation. But, then we 
anobtain the 
onstraints 
 � d and 
 < d whi
h is a 
ontradi
tion. Now suppose, without loss ofgenerality, that �1 is of the form xi�xi+1 � 
1. We 
onsider the 
ase when �1 is removed by thetrimming operation. The other 
ase in whi
h �1 is not removed by the trimming operation iseasier. Suppose that '^xi > M is equivalent to ' and that �1 is removed. Then, two 
ases 
anarise. First see that xi+1 � 
� 
1 (or a stronger 
onstraint) is a 
onjun
t of '. If this 
onstraintis not removed by the trimming operation, then, vj � 
� 
1 and hen
e the tuple satis�es �1. If
�
1 > M then this 
onstraint is removed by the trimming operation. In this 
ase, if vj � 
�
1,then �1 is satis�ed and we are done. Otherwise, 
onsider the tuple v[xi := 
; xi+1 := 
� 
1℄ (ifthere is another 
onstraint xi+1 � d stronger than xi+1 � 
 � 
1 in ', then, either vj � 
 � 
1or 
onsider the tuple v[xi := 
; xi+1 := d℄ and follow the reasoning below). Of 
ourse this tuplesatis�es both �0 and �1. If this tuple satis�es ' we are done. Otherwise, there exists a 
onstraint�2 that is not satis�ed by this tuple. We now reason on the nature of �2. Observe that �2 
annotbe of the form xi+1 � d. Also observe that �2 
annot be of the form xi+1 � 
2, otherwise ' isunsatis�able. So �2 
an only be of the form xi+1 � xi+2 � 
2. In this 
ase, the reasoning startsagain as previously. Sin
e the number of variables is �nite, we are going to show that this 
hainof reasoning terminates with a tuple v0 su
h that R;v0 j= ' and v �M v0. This is be
ause, ifthis reasoning 
ontinues, at some point we must have that the tuple formed at that point doesnot satisfy �k where �k is the 
onstraint xi+k � xi+k+1 � 
k+1 su
h that the variable xi+k+1 hasalready been en
ountered in our reasoing; i.e., for some l < k, xi+k+1 = xi+l where xi+l hasbeen assigned to 
 � 
1 � : : : � 
l and xi+k has already been assigned 
 � 
1 � : : : � 
k in ourassignment pro
ess. Let the tuple formed by our reasoning method up to this point (we havebeen developing a tuple all through from v by reassigning values to xi; : : : ) be v00. We showthat �
l+1 � : : : � 
k � 
k+1 from whi
h it follows that R;v00 j= xi+k � xi+k+1 � 
k+1. Indeed,if ' is satis�able then there exists a solution w of '. This solution must satisfy the 
onstraintsxi+l � xi+l+1 � 
l+1, : : : xi+k�1 � xi+k � 
k, when
e it follows that wi+l �wi+k � 
l+1 + : : : 
k.Also, sin
e R;w j= xi+k � xi+k+1 � 
k+1 and xi+k+1 = xi+l, we have wi+k � wi+l � 
k+1.From this we have �
l+1 � : : : � 
k � 
k+1. Now all we need to show is that v �M v00. Thus,we need to show that for all j su
h that the value of xj has been updated from v to v00, bothvj > M and v00j > M . Of 
ourse, this is true for xi. For the other variables we reason as follows.Suppose for some l, in the reasoning 
hain above, 
 � 
1 � : : : � 
l � M and for all m < l
� 
1 � : : :� 
m > M . Now see that ' 
ontains a 
onjun
t xi+1 � 
� 
1. Sin
e ' 
ontains the
onjun
t xi+1� xi+2 � 
2, it must also have the 
onjun
t xi+2 � 
� 
1 � 
2. Going in this way,it must also 
ontain the 
onjun
t xl � 
 � 
1 � : : : � 
l. Now sin
e 
 � 
1 � : : : � 
l � M , this
onstraint is not removed by the trimming operation. Hen
e vi+l � 
� 
1 � : : :� 
l. Hen
e thereasoning terminates here without updating xi+l. Thus we show that v00 �M v. The proofs forthe remaining 
ases follow similar lines. [℄Lemma 3.3 For rea
hable non-ground states hp(x); 'i and hp(x); '0i, hp(x); 'i �M hp(x); '0ii� hp(x); trim(')i = hp(x); trim('0)i.Proof. (=: Suppose hp(x); trim(')i = hp(x); trim('0)i. Sin
e by the se
ond statement ofLemma 3.2, hp(x); 'i �M hp(x); trim(')i and hp(x); '0i �M hp(x); trim('0)i the result follows.=): Seeking a 
ontradi
tion suppose that hp(x); trim(')i 6= hp(x); trim('0)i. Let R;v j=trim(') but R;v 6j= trim('0). Wlog, suppose that R;v 6j= xi � xj > a whi
h is a 
onstraint intrim('0) (wlog suppose that a > 0). Then vi � vj � a.47



We reason as follows. If both vi and vj are less than or equal to M , we 
an obtain a
ontradi
tion as follows. By the se
ond statement of Lemma 3.2 and the assumption of thisLemma, we have hp(x); trim(')i �M hp(x); trim('0)i. Now there does not exist a v0 su
h thatR;v0 j= trim('0) and v �M v0 (if v0 �M v, then by our assumption, R;v0 6j= trim(')).Hen
e, without loss of generality, assume that vi > M and vj �M . Now 
onsider the tuplev[xi := M ℄. If this tuple satis�es trim(') then we 
an again reason as previously and obtain a
ontradi
tion. If this tuple does not satisfy trim(') then there must exist a 
onstraint of theform xi � xl � 
, where �2 f>;�g, whi
h is not satis�ed. Without loss of generality let this
onstraint be xi � xi+1 � 
i. Consider the tuple v[xi :=M;xi+1 := vi+1 � (vi �M)℄. Note thatthis tuple satis�es both the above 
onstraints. If this does not satisfy trim('), without loss ofgenerality there must exist a 
onstraint of the form xi+1 � xi+2 � 
i+1 whi
h is not satis�ed bythis valuation. So 
onsider the tuple v[xi :=M;xi+1 := vi+1�(vi�M); xi+2 := vi+2�(vi�M)℄.Sin
e the number of variables is �nite, this reasoning must terminate with a tuple v0 satisfyingtrim(') for whi
h v0i = M and v0j = vj or v0j = vj � (vi �M). Note that we 
annot get atuple R;v00 j= trim('0) su
h that v00i = v0i and v00j = v0j for then R;v00 j= xi � xj � a. This is a
ontradi
tion. The proof for the remaining 
ases pro
eeds by similar arguments. [℄De�nition 3.12 A non-ground state hp(x); 'i subsumes another non-ground state hp(x); '0i,denoted by hp(x); '0i � hp(x); 'i, if every ground instan
e of hp(x); '0i is also a ground instan
efor hp(x); 'i.We 
all the equivalen
e 
lass of a rea
hable non-ground state in the equivalen
e relation �M ,a rea
hable equivalen
e 
lass.Lemma 3.4 In ea
h rea
hable equivalen
e 
lass E of �M , there exists a non-ground state rea
h-able modulo M , 
alled the largest non-ground state in E rea
hable modulo M , whi
h subsumesall other non-ground states in E that are rea
hable modulo M .Proof. From lemma 3.2, it follows that for a non-ground state hp(x); 'i rea
hable moduloM ,hp(x); 'i �M hp(x); trim(')i. Note that for all rea
hable nonground states hp(x); 'i, trim(') j=' (and also by Lemma 3.2, the trim operation is idempotent). By Lemma 3.3, there exists a '0su
h that for all hp(x); 'i 2 E , '0 = trim('). Then hp(x); '0i is the largest rea
hable (moduloM) state in E . [℄Lemma 3.5 The equivalen
e relation �M produ
es a �nite number of rea
hable equivalen
e
lasses (i.e., equivalen
e 
lasses 
ontaining rea
hable nonground states).Proof. Ea
h rea
hable equivalen
e 
lass E 
an be represented by hp(x); trim(')i, wherehp(x); 'i 2 E . The 
onstraint store (for a non-ground state s = hp(x); 'i, we 
all ' the 
onstraintstore of s) for this state is given by grammar 3.3. Now we show that the 
onstraint store forthe representative 
annot 
ontain 
onstraints of the form xi � xj � a or xi relop a for alli; j = 1; : : : ; n, where �2 f>;�g, relop 2 f>;<;�;�g, and jaj > M . Seeking a 
ontradi
tion,suppose there exists a 
onjun
t of the form xi � xj > a where jaj > M . First suppose thata > 0. Then this 
onjun
t is also present in '. Suppose R;v j= '. Then vi � vj > a. Thereforevi > a. Therefore there exists no solution v of ' su
h that vi � M . So ' ^ xi > M � '. Sothe 
onstraint is removed by the trim operation. Similarly for the 
ase when a < 0. Now wewrite ea
h 
onstraint xi � xj = 
 in the form xi � xj � 
 ^ xi � xj � 
. Similar for the 
ase48



xi = 
. So given this representation, synta
ti
ally the number of distin
t 
onstraints is boundedby (4M +4)n(n�1) � (2M +2)2n whi
h is 2O(n2) � (2M +2)O(n2). This is be
ause there are n(n�1)pairs xi; xj. For ea
h 
onstraint of the form xi�xj � 
, � 
an be > or �, and 
 
an take integralvalues from �M to M . Also for ea
h 
onstraint xi relop
, where relop 2 f>;�g (i.e., 
onstraintdetermining the lower bound of a variable) 
 
an be a non-negative integer in the interval [0;M ℄.Similarly the 
ase for the 
onstraints determining the upper bound of a variable. [℄Proposition 3.4 Given two rea
hable non-ground states hp(x); 'i and hp(x); '0i, where both 'and '0 are in normalized form, it is e�e
tively de
idable whether hp(x); 'i �M hp(x); '0i.Proof. From lemma 3.3, it follows that to 
he
k hp(x); 'i �M hp(x); '0i, we need to 
he
kwhether hp(x); trim(')i = hp(x); trim('0)i. Now for a 
onstraint ', proje
tion on a variable
an be done in polynomial time. Also 
he
king for equivalen
e of two 
onstraints 
an be donein polynomial time. Now string sear
hing 
an also be done in polynomial time. So from thede�nition of trim, it 
an be seen that it is de
idable in polynomial time whether hp(x); 'i �Mhp(x); '0i. [℄The trim operation des
ribed above 
an be 
ombined with the tabling strategy mentionedabove to provide a termination guarantee for the model 
he
king pro
edure. If hp0(x); '0i is theresolvent ofhp(x); 'i through a 
lause C, then we add the goal hp0(x); trim('0)i as the tableentry. The detailed algorithm is des
ribed below. By lemma 3.5, termination of the algorithmis guaranteed. Before presenting the algorithm, we observe the following Lemma.Lemma 3.6 For every Ls formula �, the non-ground state hpred(x); 'i su

eeds in P e� i� thenon-ground state hpred(x); trim(')i su

eeds in P e�.Proof. By indu
tion on stru
ture of fLs formulas.Base Case The 
ase in whi
h pred is of the form hp;Xi where the de
laration of X isgiven by X = p, where p is an atomi
 proposition is obvious for this 
ase. The se
ond 
ase iswhere pred is of the form hp;Xi where the de
laration is given by X = � where � is an atomi

lo
k 
onstraint. Suppose hpred(x); 'i su

eeds. Then there exists an instan
e pred(v) su
hthat R;v j= �. Sin
e ' j= trim('), R;v j= trim('). On the other hand if hpred(x); trim(')isu

eeds then there exists a ground instan
e pred(v) of hpred(x); trim(')i su
h that R;v j= �.Sin
e from the se
ond statement of Lemma 3.2, hpred(x); 'i �M hpred(x); trim(')i, there existsv0 su
h that for all i, either vi = v0i or vi > M ^ v0i > M and R;v0 j= '. Now, from the proof ofProposition 3.2 R;v0 j= � sin
e R;v j= �.Indu
tion Step For the boolean 
onne
tives, the reset and the modalities, the result followsfrom the indu
tion hypothesis. [℄3.8 Extension of OLDT Resolution to ConstraintsWe extend the subsumption ordering de�ned in De�nition 3.12 to a partial order <� on the set ofrea
hable equivalen
e 
lasses indu
ed by the equivalen
e relation �M as follows: For a rea
hableequivalen
e 
lass E , denote its representative as rep(E). Then for two rea
hable equivalen
e
lasses E and E 0, E <� E 0 i� rep(E) � rep(E 0). 49



We extend the OLDT resolution of [TS86a℄ in the following way. First note that we do nothave any fun
tion symbols in our program. We assume that a goal is of the form G = hQ;'iwhere Q is a 
onjun
tion of predi
ates and ' is the 
onstraint store. We also assume thatthe solution list asso
iate with ea
h entry in the solution table is a list in whi
h ea
h entryis a 
onstraint. The table node registration pro
edure is extended as follows. First, we markea
h predi
ate as a tabled predi
ate. Thus every node in an OLDT stru
ture (whi
h is not asu

ess leaf) is a table node. Let G be a goal labeling a table node v in the OLDT stru
ture. LetG = hQ;'i and let pred(x) be the leftmost predi
ate in Q. The following 
ases are distinguished:{ Lookup Node: Compute '0 = 9�x'. If there exists a entry hpred(x); '00i su
h thatrep(E 0) � rep(E 00), where E 0 and E 00 are respe
tively the equivalen
e 
lasses of hpred(x); '0iand hpred(x); '00i indu
ed by �M (for a rea
hable non-ground state hpred(x); 'i, the rep-resentative of its equivalen
e 
lass is hpred(x); trim(')i), then put v in the look up tablewith a pointer to the entire solution list of hpred(x); '00i.{ Solution Node: If the above 
ase does not hold then put hpred(x); trim('0)i in the solutiontable with an empty solution list.The initial OLDT stru
ture is the same as in [TS86a℄, with a forest with a single node labeledwith hinit; eZi. The immediate extension part 
losely follows that of [TS86a℄. Given P e� and anOLDT stru
ture T , an immediate extension of T by P e� is the result of either of the followingoperations.1. Sele
t a terminal node v whi
h is not a look-up node (the question of this node being asu

ess node will not arise as we will see later). Let the node be labeled by the non-groundgoal hQ;'i. Let pred(x) be the leftmost predi
ate of Q and let Q = pred(x)^Q0. Also letVariables(Q0) be the set of variables o

urring in Q0. Compute hpred(x); trim(9�x')i. Ifthere exists at least one 
lause in P e� through whi
h hpred(x); trim(9�x')i resolves then(a) Let C1; : : : ; Ck (k � 1) be all the 
lauses in P e� through whi
h hpred(x); trim(9�x')iresolves. Create k 
hildren hQi; 'ii where Qi = Bi ^ P and 'i =9�(Variables(P 0);Variables(Bi))(' ^ (trim(9�x') ^  i ^ �i)) where Bi is 
onjun
tion ofpredi
ates the body of Ci and �i is the mgu of the head Ci and pred(x) and  i isthe 
onstraint in 
lause Ci.(b) For ea
h new node, register it.(
) For ea
h unit subrefutation [TS86a℄, if there are any, starting from a solution nodeand ending with some of the new nodes, let the subrefutation be for the tabled non-ground state hpred(x); 'i. Add the answer 
onstraint to the last of the solution listof the table entry hpred(x); trim(')i provided the answer is not already present inthat solution list (i.e., does not entail the answers present in the solution list).2. Look-up extension: Sele
t a look-up node v, su
h that the pointer asso
iated with it pointsto a non-empty sublist of a solution list. Let pred(x) be the leftmost predi
ate in the goalG labeling v. Advan
e the pointer by one to skip the head element of the sublist. Ifpred(x)  �  and G are resolvable in the sense given above, where  is the 
onstraintpointed to by the pointer, 
reate a 
hild node of v labeled with the resolvent. Do the samething as in step 1
. 50



Example time (se
onds)Example in �gure 3.2 1.5Fis
her's Proto
ol (Two Pro
esses) [LPY95a℄ 4.2Rail-road Crossing 1.8Audio Proto
ol [HWT95℄ 7.2Figure 3.9: Experimental Results.The rest of the details are natural extensions of those in [TS86a℄ whi
h we do not repeathere. Sin
e, our aim is to model 
he
k lo
ally, we will terminate as soon as a su

ess leaf isen
ountered. Note that trim(hpred(x); 'i) = hpred(x); trim(')i. Also note that we need the
onstraints to be in normalized form as our algorithm (for trim) works on the syntax of the
onstraints.Theorem 3.3 (Soundness and Completeness) The algorithm for model 
he
king for Lsgiven above is sound and 
omplete.Proof. The proof of soundness of the algorithm is by a simple extension of the proof of Lemma3.17 in [TS86a℄ 
ombined with Lemma 3.6. The proof of 
ompleteness is by a simple extensionof the proof of Theorem 3.18 in [TS86a℄ along with Lemma 3.5. [℄We have implemented a prototype lo
al model 
he
ker based on the method given above.Even without any �ne tuning, the performan
e of the model 
he
ker seems to be en
ouraging.In fa
t, even without any �ne tuning, the timings obtained in many 
ases are 
omparable tothat of UPPAAL [BLL+96℄ whi
h is a highly �ne tuned tool with a lot of inbuilt optimizations.We have used our model 
he
ker to verify the safety properties of several well known ben
hmarkexamples taken from literature. The experimental results are summarized in table in Figure6.14. All the results are obtained on PC (200 MHz Pentium Pro). All the timings denote thetotal time needed.3.9 Full Disjun
tionIn this se
tion, we show how to model 
he
k for the logi
 Ls extended with full disjun
tion.Note that the logi
 Ls [LPY95a℄ des
ribed above allows only restri
ted disjun
tion. In thissubse
tion, we show that in our framework we 
an allow for full disjun
tion. Note that it isstated in [LPY95a℄ that their model 
he
king te
hnique based on the rewrite tree 
annot beextended to a logi
 with general disjun
tion. We 
all the extension of the logi
 Ls with fulldisjun
tion XLs. Dually, we 
all the the extension of the logi
 fLs with full 
onjun
tion as gXLs(i.e., the dual of XLs). The satisfa
tion relation for XLs is the satisfa
tion relation for Lsaugmented with the 
lause:{ P; p(v) j= �1 _ �2 implies P; p(v) j= �1 or P; p(v) j= �2.For an XLs formula � we 
an obtain an gXLs formula e� in the similar way as above (gXLs isthe 
orresponding extension of fLs). Given a TLP P and a gXLs formula e�, we 
an 
onstru
t aprodu
t program P e� using an extension of the produ
t 
onstru
tion given above by the following\alternating" 
lause. 51



{ X = X1 ^X2: hp;Xi(x)  � hp;X1i(x) ^ hp;X2i(x).Theorem 3.4 Given a TLP P and an XLs formula �, P j= � if and only if hinit; eZi is not inthe least model of P e� where e� is the gXLs formula 
orresponding to � and Z is the root variableof �.Proof. Similar to that of Theorem 8.1. [℄Note that we do not have to 
hange the methodology for the implementation for this extension{ we 
an reuse the implementation des
ribed above.Note that the rewrite tree based model 
he
king pro
edure [LPY95a℄ implemented in themodel 
he
ker Uppaal [BLL+96℄ 
an be viewed as a spe
ial 
ase of our derivation tree usingtabled resolution with 
onstraints as des
ribed above. Use of tabled resolution with 
onstraintsallows us to in
rease the expressiveness of the underlying logi
 ([LPY95a℄ allows only restri
teddisjun
tion). Also note that the model 
he
king pro
edure in [LPY95a℄ may not terminate(
onsider the timed automaton given in Figure 3.2 and the formula X = x2 < 2 ^ 2X ^ 8Xwhere x2 refers to the 
lo
k x2 of the timed automaton; this asserts that always the value ofthe 
lo
k x2 will be less than 2). In 
ontrast our model 
he
king pro
edure 
ombined with thetrim operation is guaranteed to terminate. Like the model 
he
king pro
edure in [LPY95a℄, ourmodel 
he
king pro
edure is also lo
al (only the rea
hable portion of the state spa
e is exploredand the state spa
e is explored in a demand-driven fashion).3.10 Unbounded Liveness PropertiesIn this se
tion, we extend our methodology to deal with unbounded liveness properties of timedlogi
 pro
esses. Throughout this se
tion, we 
onsider only divergent ground derivations of TLPs.An unbounded liveness property is a de
laration of the form Z = 2X where X = �q_82X (thisis a
tually the dual of the property Z = hiX where X = q ^ 9hiX, where we take the greatest�xpoint of the de
laration) where �q is an atomi
 proposition (q is an atomi
 proposition thatis \satis�ed" by all predi
ate symbol that do not satisfy �q) and we take the least �xpoint ofthe de
laration (viewed as an equation). This asserts that \for all (in�nite) ground derivations(starting from init using a resolution through an initial or a system 
lause), using resolutionsthrough evolution 
lauses and system 
lauses in su
h a way that every resolution step through aninitial or a system 
lause is immediately followed by one through an evolution 
lause and everyresolution step through an evolution 
lause is immediately followed by one through a system
lause, there exists a ground atom in that satis�es q". For timed automata this is the same asthe assertion that for all (in�nite) tra
es starting from the initial position using time transitionsfollowed by edge transitions, i.e., every time transition step is immediately followed by an edgetransition step and vi
e versa, there exists a position that satis�es q. Note that this is the dualof the spe
i�
ation whi
h asserts that \there exists an (in�nite) ground derivation (starting frominit using a resolution through an initial 
lause or a system 
lause), using resolutions throughevolution 
lauses and system 
lauses in su
h a way that every resolution step through an initial ora system 
lause is immediately followed by one through an evolution 
lause and every resolutionstep through an evolution 
lause is immediately followed by one through a system 
lause, su
hthat every ground atom in the derivation satis�es the atomi
 proposition q".Given an unbounded liveness spe
i�
ation 	 ( let � � e	; i.e., e	 is the dual of 	; i.e., P j= 	i� P 6j= �), and a TLP P, we 
onstru
t a TLP P� su
h that P j= � i� the atom hinit;Xi is52



in the greatest model of P�. The 
onstru
tion of a produ
t program is same as that shown in
ase of fLs.Theorem 3.5 Given a TLP P and an unbounded liveness spe
i�
ation 	, we have P j= 	 ifand only if the atom hinit;Xi is not in the greatest model of P�, where � = e	 (the dual of 	)and X is the root variable of �.Proof. We �rst prove that if P does not satisfy 	, then hinit;Xi is in the greatest model ofP�. Suppose P; init 6j= 	. Seeking a 
ontradi
tion, suppose that hinit;Xi is not in the greatestmodel of P�. If hinit;Xi fails then for all derivations starting from it, there exists a groundatom whi
h whi
h does not resolve through any 
lause in P�. Let G be a ground derivationstarting from hinit;Xi and let hp;Xi(v) be a ground atom in it that does not resolve throughany 
lause in P�. Then, by the 
onstru
tion of P�, either q 62 P (p) or there does not exist anyground su

essor of p(v). In either 
ase, P; p(v) 6j= p ^ 9hiX. Sin
e this holds for ea
h groundderivation P; init 6j=nls �. Hen
e P; init j= 	 whi
h is a 
ontradi
tion. Therefore hinit;Xi is inthe greatest model of P�.Now we show that if P j= 	, then hinit;Xi is not in the greatest model of P�. Suppose thatP; init j= 	. Then P; init 6j= �. Seeking a 
ontradi
tion suppose that hinit;Xi is in the greatestmodel of P�. Then there is an in�nite derivation starting from hinit;Xi through the 
lauses inP�. This is be
ause, by the 
onstru
tion, P� does not 
ontain any assertion 
lause. Let thisderivation be G. For every ground atom hp;Xi(v) in G, there exists a 
lause in P� throughwhi
h hp;Xi resolves. Hen
e for every ground atom hp;Xi(v) in G, q 2 P (p). Now it 
an beshown by indu
tion on the length of derivation that there exists an in�nite ground derivationfrom init in P in whi
h the �rst derivation step is through an initial 
lause or a system 
lause,ea
h derivation step through an initial 
lause or a system 
lause is followed by one through anevolution 
lause, ea
h derivation step through an evolution 
lause is followed by one through asystem 
lause and for ea
h ground atom p(v) in the derivation q 2 P (p). Hen
e P; init j= �.This is a 
ontradi
tion. [℄3.11 ImplementationSin
e model 
he
king P for an (unbounded) liveness property 	 redu
es to 
he
king whetherhinit;Xi is 
ontained in the greatest model of P� (as 
onstru
ted above), it 
an be done by
omputing the greatest �xpoint of the immediate 
onsequen
e operator for P�. This results ina global model 
he
ker. Alternately, sin
e the 
lauses in P� have at most one predi
ate in thebody (from the 
onstru
tion of the program), we introdu
e a new greatest model resolution withtabling1 prove that hinit;Xi is in the greatest model of P�. To the best of the knowledge of theauthor, this is the �rst time any kind of tabling (without negation) is used for the greatest modelof a 
onstraint query language program. The greatest model resolution algorithm also allows usto avoid splitting of 
onstraints. This is be
ause, otherwise, in order to get a lo
al algorithm,we had to introdu
e negation in the 
lause bodies. This would have resulted in splitting of
onstraints. The greatest model resolution algorithm with tabling is given in Figure 3.11. Instep 3(b) of the algorithm we 
he
k whether there exists a goal hpred0(x); '00i in the table su
hthat '00 entails the 
onstraint store '0 of the newly generated goal hpred0(x); '0i. In this 
ase, we1Note that the tabling used here is di�erent from that used in Se
tion 3.6 as well as those in [CW96, TS86a℄.53



do not need to register the solutions into the table. We will terminate at the �rst instan
e of asu

ess leaf or the �rst instan
e when a newly generated goal 
ontains a goal already in the table(whi
hever o

urs earlier). Note that in the above implementation, use of negation along withtabled resolution for least model would have resulted in 
omputing the negation of a 
onstraintwhi
h is prohibitively expensive in pra
ti
e. Note the pro
edure in Figure 3.11 holds only for
onstraint query language programs that have only one predi
ate in the body. The pro
edure
an be easily extended to a

ount for general programs (without negation). We illustrate thegreatest model resolution with an example. The basi
 idea behind the pro
edure is to 
he
k ifthere exists a su

essful derivation or an in�nite derivation starting from hinit;Xi.Example 3.2 Consider the programhinit;Xi  � p1(x) ^ x1 = x2 ^ x2 � 0p1(x)  � p2(x0) ^ ^x01 = 0 ^ x02 = x2p2(x)  � p3(x0) ^ x01 = x1 + z ^ x02 = x2 + z ^ z � 0p3(x)  � p4(x0) ^ x2 � 2 ^ x02 = 2 ^ x01 = x1p4(x)  � p5(x0) ^ x01 = x1 + z ^ x02 = x2 + z ^ z � 0p5(x)  � p4(x0) ^ x02 = 0 ^ x01 = x1 ^ x2 � 2hinit;Xihp1(x); x1 = x2; x2 � 0ihp2(x); x1 = 0; x2 � 0ihp3(x); x2 � x1; x1 � 0ihp4(x); 0 � x1 � 2; x2 = 0ihp5(x); x1 � x2 � 0; x2 � x1 � �2; x2 � 0ihp4(x); 0 � x1 � 4; x2 = 0i (yes)Figure 3.10: Illustrating the Greatest Model Resolution.The derivation tree using the greatest model resolution for this example is given in Figure 3.10.The goal hp(x); x1 = x2; x2 � 0i labeling the se
ond node from the top is the resolvent of thegoal hinit;Xi and the �rst 
lause. Similarly, the goal labeling the se
ond node is the resolvent54



of hp(x); x1 = x2; x2 � 0i and the se
ond 
lause. Note that the 
onstraint store of the statelabeling the 5th node entails that of the state labeling the 7th node. Hen
e the 7th node is a'yes' leaf (in line 4(b)(i) in Figure 3.11 the F lag is made true). This implies that hinit;Xi isin the greatest model of the program. Figure 3.10 shows the 
ontents of Table for this example(the tree viewed from the bottom). Note that the algorithm in Figure 3.11 is depth-�rst.Theorem 3.6 (Soundness) If pro
edure in Figure 3.11 terminates then hinit;Xi is 
ontainedin the greatest model of P� if and only if it returns 'yes'.Proof. Consider algorithm in Figure 3.11. It returns `yes' in the following 
ases:Case 1: A non-ground des
endent of hinit;Xi is a su

ess leaf. In this 
ase hinit;Xi is inthe greatest model of P�Case 2: A non-ground des
endent ng0 of hinit;Xi is su
h that there exists an an
estorng00 of ng0 su
h that the 
onstraint store of ng00 entails the 
onstraint store of ng0. Now letC1; : : : ; Ck be the 
lause in the derivation from ng00 to ng0. Then ng0 
annot fail as it goesthrough C1; : : : ; Ck and produ
es a non-ground state ng000 su
h that the 
onstraint store of ng0entails that of ng000. Hen
e hinit;Xi is in the greatest model of P�.To prove the other way, assume that hinit;Xi is in the greatest model of P�. Assume thatthe pro
edure in Figure 3.11 terminates. Seeking a 
ontradi
tion, suppose that the pro
edurereturns 'no'. Then the pro
edure terminates on �nding the sta
k Table empty at the end of therepeat�until loop. This means that in the depth-�rst tree generated by the pro
edure, everyleaf is a failure leaf. But this 
ontradi
ts the fa
t that hinit;Xi is in the greatest model of P�.[℄Note that pro
edure in Figure 3.11 may not terminate. The 
ounter example is provided bythe TLP 
orresponding to the timed automaton in Figure 3.12. It has two real variables x andy and one lo
ation m0. Let the predi
ate �atm0 be an atomi
 proposition that does not hold atthe lo
ation m0. Consider the unbounded liveness property Z = 2X where X = �atm0 _ 82X(a
tually 
onsider its dual Z = hiX where X = atm0 ^9hiX). An in�nite sequen
e of nongroundstates of the form hhm0;Xi(x); y = x + i ^ x � 0i are generated where i 2 N . To ensure thetermination of the model 
he
king pro
edure, as in the previous se
tion, we 
an 
ombine thetrim operation des
ribed above along with the pro
edure. The details are straightforward. Thegreatest model resolution pro
edure 
ombined with the trim operator 
an also be implemented asa non-deterministi
 pro
edure requiring polynomial spa
e (due to Lemma 3.5). A deterministi
algorithm requiring polynomial spa
e 
an then be obtained by using Savit
h's theorem.Using our method, we have been able to verify the unbounded liveness property Z = 2Xwhere X = at 2 _ 82X for the example of timed automaton shown in Figure 3.2 (TLP 
orre-sponding to that timed automaton), where the atomi
 proposition at 2 is satis�ed only by thelo
ation 2.The lo
al model 
he
king algorithm given in Se
tion 3.6 and the model 
he
king algorithmfor unbounded liveness properties given above 
an be 
ombined e�e
tively to model 
he
k forre
eptiveness properties. A re
eptiveness property is a formula of the form �1; �2, where �1 is ade
laration of the form X = X1_9hiX _9X and �2 is a de
laration of the form X1 = q^9hiX1,where we take the least �xpoint for the �rst de
laration and the greatest �xpoint for the se
ondde
laration. This asserts that there exists a rea
hable ground atom p su
h that there existsan in�nite derivation (using resolutions through evolution 
lauses and system 
lauses in su
ha way that the �rst resolution step is through an evolution 
lause and every resolution step55



Pro
edure Greatest Model ResolutionInput Program P� and the atom (0-ary predi
ate) hinit;XiOutput A yes/no answer whether the atom is in the greatest model of P�Data Stru
turesSta
k TablebeginPush hinit;Xi in Table.repeat1. Let hpred(x); 'i be the non-ground state at the top of the sta
k Table.2. If hpred(x); 'i su

eeds through a 
lause, return yes.3. else(a) If there exists a 
lause C in P� su
h that hpred(x); 'i has still not resolved throughC then let the resolvent of C and hpred(x); 'i be hpred0(x); '0i.(b) If there exists hpred0(x); '00i in Table su
h that '00 j= '0, return yes.(
) else push hpred0(x); '0i to Table . (end If)(d) else pop hpred(x); 'i from the sta
k Table. (end if)4. (end If)until Table is empty (end of repeat until)return no.endFigure 3.11: Greatest Model Resolution (GMR) Pro
edure for programs with one body predi-
ate.
PSfrag repla
ementsm0 y = 1x := 0

Figure 3.12: Non-terminating Example for Greatest Model Resolution.
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through a system 
lause is immediately followed by one through an evolution 
lause and vi
eversa) starting from p in whi
h every ground atom satis�es q (for timed automata, this amountsto the spe
i�
ation that there exists a rea
hable position ep su
h that there exists an (in�nite)tra
e starting from ep using time transitions followed by edge transitions, i.e., �rst taking a timetransition and then following it up by an edge transition and so on, su
h that every positionin that tra
e satis�es q). Using the 
ombination mentioned above, we have been able to falsifythe re
eptiveness property for the example in Figure 3.2 with q = :at 2. The model 
he
kerUppaal [BLL+96℄ is not able to verify re
eptiveness properties.3.12 Model Che
king for TCTL formulasIn this se
tion, we extend our methodology to deal with the model 
he
king problem for TCTLformulas. The formulas � of Timed Computation Tree Logi
 (TCTL) are indu
tively de�ned asfollows. � ::= q j x+ 
 � y + d j :' j �1 _ �2 jE(�1U�2) j A(�1U�2) j z:�where q is an atomi
 proposition, 
; d 2 N , x; y are real variables. Given a TLP P and a TCTLformula �, the satisfa
tion relation j= is de�ned indu
tively as follows (here p(v) is a groundatom).{ P; p(v) j= q i� q 2 P (p) (where P is a fun
tion that labels ea
h predi
ate in P with a setof atomi
 propositions).{ P; p(v) j= x+ 
 � y + z i� R;v j= x+ 
 � y + d.{ P; p(v) j= :� i� P; p(v) 6j= �.{ P; p(v) j= �1 _ �2 i� p(v) j= �1 or p(v) j= �2.{ P; p(v) j= E(�1U�2) i� there exists a ground derivation through evolution or system
lauses from p(v) to a ground atom p0(v0) su
h that P; p0(v0) j= �2, every other groundatom p00(v00) in the ground derivation satis�es �1_�2 and if p00(v00) and p00(v00+ Æ) (whereÆ 2 R) be two ground atoms in the derivation su
h that p00(v00+ Æ) is a resolvent of p00(v00)and a 
lause, then for all 0 � Æ0 < Æ, P; p00(v00 + Æ0) j= �1 _ �2.{ P; p(v) j= A(�1U�2) i� for ea
h ground derivation G starting from p(v) through evolutionor system 
lauses su
h that there exists a ground atom p0(v0) in G su
h that P; p0(v0) j= �2,every other ground atom p00(v00) in the ground derivation G satis�es �1 _�2 and if p00(v00)and p00(v00+Æ) (where Æ 2 R) be two ground atoms in the derivation G su
h that su
h thatp00(v00 + Æ) is a resolvent of p00(v00) and a 
lause then for all 0 � Æ0 < Æ, P; p00(v00 + Æ0) j=�1 _ �2.{ P; p(v) j= z:� i� P; p(v[0=z℄) j= �.Let �1 and �2 be TCTL formulas. As usual, let [�℄ denote the denotation of �, i.e., [�℄ =fp(v) j P; p(v) j= �g. We show that for ea
h TCTL formula � and a TLP P, the denotation of�, [�℄ over P 
an be represented by a �nite set of generalized tuples.57



Theorem 3.7 For ea
h TCTL formula �, and a TLP P, its denotation 
an be des
ribed by a�nite set of generalized tuples.Proof. We pro
eed by stru
tural indu
tion on TCTL formulas. For atomi
 propositions q theset of generalized tuples is given by fp(x)  � true j q 2 P (p)g. The 
ases for the disjun
tionand 
onjun
tion are easy. We prove the theorem for the 
ase of exists until. The remaining
ases are similar.Suppose that the formula � is given by E(�1U�2). We 
onstru
t a TLP P� su
h that theleast model of P� is the same as [�℄. Given [�1℄ and [�2℄ as a �nite set of generalized tuples,we �rst 
ompute for ea
h predi
ate p, the set Sp of all ground atoms p(v) su
h that there existsa Æ � 0 su
h that for all 0 � " � Æ, P; p(v + ") j= �1 _ �2. Let p(x)  � 'i be the generalizedtuple de�ning the predi
ate p in [�i℄ (i 2 f1; 2g). Then Sp is given by p(u) su
h thatu 2 [9Æ � 08"(0 � " � Æ =) ('1[x+ "=x℄ _ '2[x+ "=x℄))℄:I.e., u 2 [9Æ � 0:9"(0 � " � Æ ^ :'1[x+ "=x℄ ^ :'2[x+ "=x℄))℄:I.e., u 2 [9Æ � 0:9"�℄:where � � (0 � " � Æ ^ :'1[x + "=x℄ ^ :'2[x + "=x℄. We 
an now 
onvert � to a disjun
tivenormal form. Now, for ea
h disjun
t of the form �, we 
an eliminate the existential quanti�er9" using variable elimination algorithms like Fourier's algorithm [MS98℄. Let the quanti�er freeformula obtained be �0. We now negate �0 and 
onvert it to a disjun
tive normal form. Inthis way, we get a 
onstraint 9Æ � 0Wmi=1 �i su
h that Sp = fp(u) j R;u j= 9Æ � 0Wmi=1 �ig.Now, we 
onstru
t the program P� as follows. For ea
h evolution or system 
lause in P , we
reate m 
lauses p(x)  � p0(x0) ^ ' ^ �i ^ z = Æ (even though system 
lauses do not have thein
rement variable z we 
an add the 
onstraint �i^z = Æ). Also, for ea
h predi
ate p, we add thegeneralized tuple p(x) � '2 (i.e., the generalized tuple de�ning p in [�2℄). Now, we show thatthe denotation of E(�1U�2) is the same as the least model of P�. Let p(v) 2 lm(P�), wherelm(P�) is the least model of P�. Then there exists a ground derivation G through the 
lausesC1; : : : ; Cl starting from p(v) that su

eeds (i.e., Cl is a generalized tuple). Let p00(v00) be theground atom in that ground derivation that resolves through Cl. Then P; p00(v00) j= �2. Nowea
h ground atom in the ground derivation satis�es �1 _ �2 (otherwise, it would have failed,sin
e it would not have satis�ed any �i for 1 � i � m that are in the body of the 
lauses). Now
onsider two ground atoms p1(u) and p2(u+ �) su
h that the latter is a resolvent of the formerthrough a 
lause in P� that is derived from an evolution 
lause in P. Sin
e R;u j= �i for somei (where Sp1 = fp1(u) j R;u j= 9Æ � 0Wmi=1 �ig), therefore, for all � 0 su
h that 0 � � 0 � � ,P; p1(u+ � 0) j= �1 _�2. Hen
e, p(v) 2 [E(�1U�2)℄. Thus lm(P�) � [E(�1U�2)℄. Similarly, it
an be shown that [E(�1U�2)℄ � lm(P�).It 
an be shown that the least model of P� 
an be 
omputed by a �nite number of iterationsof the immediate 
onsequen
e operator. Hen
e the denotation of E(�1U�2) 
an be des
ribedby a �nite set of generalized tuples. [℄58



Sin
e ea
h iteration of the immediate 
onsequen
e operator requires only a �nite amount oftime, the 
omputation of the least model (or the greatest model) of P� terminates. Hen
e theproof of Theorem 3.7 provides us with an algorithm for model 
he
king for TCTL formulas. The
omputation of the least model 
an be made goal dire
ted by using either using tabled resolution
ombined with the trim operator as done previously, or using magi
 sets transformation on theprogram P�. Thus for example, if the denotations of �1 and �2 are given, we 
an 
he
k ifP; init j= E(�1U�2) using a \lo
al" algorithm.3.13 Transient Behavior of Real Time SystemsIn this se
tion, we formulate a methodology for dete
ting transient behavior of timed logi
pro
esses. It is well known in 
ontrol theory that underdamped linear time-invariant systemshave both a transient and a steady-state response (see any standard textbook on 
ontrol theorye.g., [Oga96℄). Examples of su
h systems in
lude from the me
hani
al mass-spring-dashpotsystems to analog sensors and measuring equipments. Our aim in this se
tion is to 
apturethis notion of (under) damping in the 
ontext of real-time systems (modeled by timed logi
pro
esses). Dete
ting underdamping (or transient behavior) is useful for system identi�
ationwhi
h is an important problem in 
ontrol theory. System identi�
ation involves automati
allydete
ting the order of a given system as well as the nature of its damping. Thus if we 
anautomati
ally determine that a linear time invariant system has a transient and a steady-stateresponse, we 
an dedu
e that the system is underdamped.We assume that real time systems are modeled as TLPs. We assume TLPs in whi
h every
lause is either an evolution 
lause or a system 
lause or an initial 
lause. Further we expandTLPs with alphabets to de�ne labeled TLPs.De�nition 3.13 (Labeled TLP) A labeled TLP is a TLP equipped with a (�nite) alphabet �su
h that ea
h system 
lause or initial 
lause is labeled by a letter (a
tion)2 from this alphabet(a letter may label several 
lauses).Let a; b; 
 range over �. In this se
tion, whenever we speak of a TLP we will a
tually meana labeled TLP.Let P be a TLP. We say that a ground derivation G = init �! g1 �! : : : �! gm �! : : :of P, where gi is a ground atom, is an advan
ing derivation if g1 is a ground resolvent of initthrough an initial 
lause of P and for ea
h i = 1; 2; : : : g2i is a ground resolvent of g2i�1 throughan evolution 
lause and for ea
h i = 1; 2; : : : , g2i+1 is a resolvent of g2i through a system 
lause.Let G = init �! g1 �! : : : �! gi �! : : : be a (in�nite) advan
ing ground derivation of Pstarting from init. We say that G is labeled by an omega-word u 2 �!, where u = u0; u1; : : :(ui 2 �), i� g1 is the ground resolvent of init through a 
lause in P labeled u0 and for ea
hi = 1; 2; : : : , g2i+1 is the ground resolvent of g2i through a 
lause P labeled ui.We say that an omega-word u 2 �! is a

epted by a TLP P if there exists an in�niteadvan
ing (ground) derivation G of P, starting from init, that is labeled by u.De�nition 3.14 (Transien
e) We say that a timed logi
 pro
ess P is transient if there existsa word u 2 �! a

epted by P su
h that all (ground) in�nite advan
ing derivations of P labeledby u 
onverge.2We do not 
onsider any \silent" a
tion here. 59
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    bFigure 3.13: Illustrating transien
e.Intuitively, a TLP is transient if it has at least one transient behavior where by transientbehavior we mean a omega-word a

epted by the TLP that does not label a divergent (ground)advan
ing derivation. So su
h a behavior is observed \initially" but \disappears" with thepassage of time (sin
e all advan
ing ground derivations labeled by it 
onverge). Note that theTLP 
orresponding to the timed automaton shown in Figure 3.13 is not 
onvergent (
onvergen
efor timed automata is de�ned in Chapter 4), but is transient (
onsider the word (ab)!).3.13.1 Dete
ting Transien
eBefore we delve into details of the algorithm for dete
ting transien
e, let us introdu
e the 
on
eptof a nonground B�u
hi automaton indu
ed by a TLP. The notion of nonground B�u
hi automatais similar to that of 
on
urrent 
onstraint automata [FP93℄. We assume as in the previousse
tion that the TLPs that we 
onsider 
onsist only of evolution, system and initial 
lauses.We also assume that ea
h TLP is equipped with a �nite alphabet � labeling the system andinitial 
lauses. Let P be a TLP. A nonground B�u
hi automaton indu
ed by P is a �ve-tuplePA = hS; S0;�;�!; F i where{ S = fhp(x); trim(')i j hp(x); 'i is a rea
hable nonground state of Pg is the set of states.{ S0 = init is the initial state.{ � is the �nite alphabet asso
iated with P.{ �!= t�! [f a�! j a 2 �g is the transition relation where a�!� S � S. For s; s0 2 S anda 2 �, we write s a�! s0 if s0 is a resolvent of s through a 
lause of P labeled a. Fors; s0 2 S, we write s t�! s0 if s0 is a resolvent of s through a evolution 
lause.{ F � S is a set of a

epting statesIn addition, we asso
iate with PA B�u
hi a

eptan
e 
onditions (see [Saf88℄). Note that dueto Lemma 3.5, S is �nite.3.13.2 Constru
tion of Nonground B�u
hi AutomataGiven a TLP P, we 
onstru
t a TLP Q su
h that the following holds:60



{ There exist two nonground B�u
hi automata QA1 and QA2 su
h that P is transient if andonly if the produ
t automata QA1�QA
2 is nonempty, where QA
2 denotes the 
omplementof QA2 .Intuitively, (as we will see below) the automaton QA1 a

epts all behaviors (in�nite words)that are a

epted by P, while the automaton QA2 a

epts only those behaviors of P that labela divergent advan
ing (ground) derivation. So the problem of dete
ting transien
e now redu
esto the problem of language 
ontainment between the two automata (more pre
isely, whetherthe language of QA1 is not 
ontained in the language of QA2 ; in fa
t this 
an be treated as anon-universality problem).Given a TLP P, we 
onstru
t the TLP Q (as stated above) as follows. The set of predi
atesof Q are the same as that of P ex
ept for the fa
t that ea
h predi
ate is now n+ 1-ary (if the
orresponding predi
ate in P was n-ary). The initial predi
ate is init is the same as that of P.The set of atomi
 propositions AP is the same as that of P. The fun
tion � assigning subsetsof AP to predi
ates is the same as that of P. The 
lauses of Q are 
onstru
ted in the followingway.{ The 
lauses in Q are the same as that in P ex
ept that the predi
ate in the body is nown+ 1-ary.{ For ea
h system 
lause of P 
reate two 
lauses of the form p(x)  � p0(x0) ^ ' ^ xn+1 �1 ^ x0n+1 = 0 and p(x) � p0(x0) ^ ' ^ xn+1 < 1 ^ x0n+1 = xn+1 where ' is the 
onstraintof the 
lause P (note that the predi
ates in both the 
lauses are n+ 1-ary.)Now given Q the two nonground automata QA1 and QA2 indu
ed by Q 
an be spe
i�edsimply by spe
ifying the set of a

epting states (note that all the other 
omponents are same inboth the automata). Let F1 and F2 be the set of a

epting states for QA1 and QA2 respe
tively.Then F1 = S and F2 = fhp(x); 'i 2 S j R j= ' ^ xn+1 � 1g where S is the (
ommon) set ofstates of QA1 and QA2 .Theorem 3.8 A timed logi
 pro
ess P is transient (i.e., has a transient behavior) if and onlyif the produ
t automaton QA1 �QA
2 indu
ed by the TLP Q as 
onstru
ted above is non-empty.Here QA
2 is the 
omplement of QA2 .Proof. =)-part: Suppose that P is transient. Let u 2 �! represent a transient behavior of P.Let us 
onsider a non-ground advan
ing derivation NG of Q starting from init labeled by u (Anon-ground advan
ing derivation is de�ned in the same way as a ground advan
ing derivation;the labeling for nonground derivations is in the same way as that for the ground 
ounterpart).Now it 
an be seen that after some point, all states in this nonground derivation will be of theform hp(x); 'i for some p 2 Pred where ' is a 
onstraint su
h that R 6j= ' ^ xn+1 � 1. Hen
esu
h a non-ground derivation (a traje
tory of QA2) is not a

epted by QA2 . But this behavioris a

epted by QA1 . Hen
e the non-emptiness result follows.(=-part: Suppose that P is not transient. Then for ea
h word u that it a

epted by P,there exists an in�nite advan
ing divergent (ground) derivation of P labeled by u. Now anyword that is a

epted by P is also a

epted by the nonground automaton QA1 . Sin
e thereexists an in�nite advan
ing divergent ground derivation of P labeled by u, there exists a run ofQA2 in whi
h a states of the form hp(x); 'i where R j= ' ^ xn+1 � 1 are en
ountered in�nitelyoften. This is be
ause the value of xn+1 in
reases to be
ome 1 or more after it is reset in�nitely61



many times. Thus u is a

epted by the automaton QA2 . Hen
e the language of the automatonQA1 is in
luded in that of QA2 . So the emptiness of QA1 �QA
2 follows. [℄Note that both the automata QA1 andQA2 have exponentially (in n, where n is the number ofreal variables of P) many states in the worst 
ase. Hen
e QA1�QA
2 
an have doubly exponential(in n) states in the worst 
ase (due to the 
omplementation for B�u
hi Automaton [Saf88℄). Hen
e,using standard te
hniques from automata theoreti
 veri�
ation [VW86b℄, the (non) emptinesstest 
an be done in EXPSPACE.3.14 Related WorkLogi
-based methods for spe
i�
ation and veri�
ation are slowly gaining popularity. In the pastfew years there has been a lot of work on model 
he
king using dedu
tive methods [RRR+97a,GGV99℄. While most of these works have been fo
ussed on �nite state systems, there has alsobeen substantial work on veri�
ation of integer-valued and parameterized systems using methodsbased on logi
 [FR96, FP93, RKR+00℄. Bjorner et.al. [BBC+96℄ use the theorem prover STEPto verify real time systems.The works from the logi
 programming, theorem proving and database 
ommunity that 
ome
losest to our work are [CDD+98, GP97, Fri98, Urb96℄. In [CDD+98℄, real time systems weretranslated into 
onstraint logi
 programs. But no detailed model 
he
king results based on su
ha translation has been provided. Gupta and Pontelli in [GP97℄ have been able to verify severalinteresting properties of real time systems. In 
ontrast with automated model 
he
king methods,they rely on the programmer to write a \driver" routine to identify the �nite number of �niterepeating patterns in the in�nite strings a

epted by a timed automaton. In a re
ent paper,Gupta and Pontelli [GP99℄ des
ribe de�nite 
lause grammar for the model 
he
ker UPPAAL. Inan interesting approa
h, they use Horn logi
 denotational semanti
s framework for spe
ifying,implementing and automati
ally verifying real time systems. But in their approa
h, they haveto make sure that the veri�
ation of properties leads to �nite 
omputations. Gupta [Gup99℄extends the methods of [GP97℄ to more general settings.Fribourg in [Fri98℄ veri�es real time systems spe
i�ed by logi
 programs with gap 
onstraints.This work only 
onsiders rea
hability problems for real time systems. Termination is alwaysguaranteed here be
ause a ba
kward analysis is used (industrial-s
ale tools like UPPAAL useforward analysis in spite of a missing termination guarantee [LPY95a℄).Du, Ramakrishnan and Smolka [DRS99℄ extend XSB with the POLINE 
onstraint libraryto verify real time systems. But they follow the same te
hniques as [SS95℄ and hen
e they alsoensure termination using expensive splitting of 
onstraints.Urbina in [Urb96℄ identi�es a 
lass of CLP programs as hybrid automata without, however,establishing a formal 
onne
tion with the standard model for timed systems. In fa
t, the se-manti
s results in [Urb96℄ 
annot be 
onne
ted with liveness properties of timed automata, in
ontrast to our work on TLPs.The works from the veri�
ation 
ommunity that 
ome 
losest to our work are [LPY95a,DT98, SS95℄. The model 
he
king method in [LPY95a℄ based on the rewrite tree 
an be viewedas a spe
ial 
ase of our model 
he
king pro
edure based on OLDT resolution extended to 
on-straints. We have been able to model 
he
k for a logi
 whi
h is stri
tly more expressive thanthat in [LPY95a℄. Also, the model 
he
ker UPPAAL [BLL+96℄ does not seem to be able tomodel 
he
k for re
eptiveness properties that we have been able to model 
he
k for. The model62




he
king pro
edure in [LPY95b℄ is possibly non-terminating (dis
ussed above) while our model
he
king pro
edure, thanks to the trim operation, is guaranteed to terminate. In [DT98℄ Dawsand Tripakis present a global model 
he
king pro
edure for real time systems. In 
ontrast, oursis a lo
al one. Also, their method 
an be used only for model 
he
king \rea
hability" propertieslike safety while we have given methods to deal with unbounded liveness properties. Sokolskyand Smolka [SS95℄ present a lo
al model 
he
ker for real time systems. But, as mentionedin the Introdu
tion of this 
hapter, their method for ensuring termination is based on an ex-pensive \splitting" of 
onstraints. We dis
uss the 
omputational 
ost of splitting 
onstraints inChapter 4 where we 
onsider negation. The model 
he
king pro
edure of [SS95℄ is essentiallytableau-based where sideways information passing [Ram91℄ 
annot be used. On the other hand,utilizing the sideways information passing in the TLP 
lauses, we 
an deal with disjun
tion(
onjun
tion) without splitting 
onstraints. It is also evident from the algorithm in the de�ni-tion of trim that it 
ompletely avoids splitting of 
onstraints. We have not re
eived any reporton the performan
e of the model 
he
king pro
edure in [SS95℄ on any pra
ti
al example. The
hara
terization of TCTL properties in terms of model-theoreti
 semanti
s of 
onstraint querylanguage programs has not been done before.In [HHWT95℄, the authors des
ribe HyTe
h, a model 
he
ker for hybrid systems. HyTe
h isbased on two model 
he
king pro
edures| one top-down and another bottom-up. Both pro
e-dures are global. While the bottom-up pro
edure is guaranteed to terminate for timed systems,the top-down pro
edure is possibly non-terminating even for timed systems. In 
ontrast, in this
hapter, we have provided a lo
al top-down model 
he
king pro
edure that is guaranteed toterminate for timed systems spe
i�ed by TLPs.The notion of transient (underdamped) behavior of real time systems and algorithms fordete
ting the same has, to the best of the knowledge of the authors, not been studied before.In summary, we have demonstrated in this 
hapter how uniform framework 
an deal with thedi�erent types of problems arising in the pro
ess of modeling and veri�
ation of timed systems.
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Chapter 4The Strati�ed �-
al
ulus4.1 Introdu
tionSymboli
 model 
he
king for systems with variables over an in�nite numeri
 domain, e.g. fortimed or hybrid systems, has be
ome an important topi
 of resear
h (see e.g. [ACD93, ACHH93,AD94, AH97, CDD+98, CJ98, CMN+98, CP98a, DP99b, DT98, Esp97, HNSY94, KMP96,GP97, MP99, MP00b, Tri99℄). In this 
ontext, `symboli
' usually refers to a representationof a set of states (i.e. of tuples of numbers) by a disjun
tive 
onstraint, e.g. a set of 
onjun
tionsof inequalities between arithmeti
 expressions over variables (a set standing for the disjun
tionof its elements). In this 
hapter, we single out a new 
lass (\S�") of temporal properties withtwo symboli
 model 
he
king pro
edures, one based on ba
kward analysis and the other basedon forward analysis, that are both suitable for disjun
tive 
onstraints as the data stru
ture forrepresenting and manipulating sets of states.We de�ne the strati�ed �-
al
ulus S� as the subset of all �-
al
ulus formulas (built upwith the Boolean operators, the existential prede
essor operator EX and and the least �xpoint
ombinator �) whose subformulas 
an be `strati�ed'; i.e., the is-subformula relation 
an made apartial order that is stri
t for negation. This restri
tion ex
ludes the expression of alternation, ofthe universal prede
essor operator AX and of the greatest �xpoint 
ombinator �. The fragmentof the alternation-free �-
al
ulus we thus obtain subsumes the so-
alled safety logi
 STL (seee.g. [AH99℄) that again subsumes the EF-logi
 
onsidered in [Esp97℄.The S� properties are 
omputable in symboli
 ba
kward analysis (essentially a least �xpointiteration based on the existential prede
essor operator EX) that uses only `good' operations ondisjun
tive 
onstraints. I.e., the appli
ation of the �xpoint operator requires the disjun
tionof two disjun
tive 
onstraints (representing ea
h a set of states), a 
onstant-time operation. In
ontrast, if it required the 
onjun
tion (as during a greatest �xpoint iteration) or the 
omplement(e.g. for expressing the universal prede
essor operator AX in terms of the existential one, EX),the 
orresponding implementation 
ost would grow as a fun
tion (quadrati
 resp. exponential)in the number of disjun
ts in the 
onstraints representing the state sets.The above observation has been our original in
entive to de�ne S� (i.e. as a 
andidate fora temporal logi
 with symboli
 model 
he
king pro
edures that are well-suited for disjun
tive
onstraints). The other motivation of S� is the natural generalization of STL; S� is de�nedby the same general synta
ti
 restri
tion to the �-
al
ulus that, if applied to the fragment
orresponding to CTL, yields exa
tly STL. 65



Our te
hni
al 
ontribution is a novel `symboli
 forward analysis' method for 
he
king S�formulas. This method is based on our 
hara
terization of S� properties as perfe
t models of
onstraint query language programs and on our tabled-resolution pro
edure for 
onstraint querylanguage programs with the perfe
t-model semanti
s.Forward analysis is sometimes preferable to ba
kward analysis; a thorough dis
ussion 
anbe found in [HKQ98℄. Our pro
edure is a symboli
 forward analysis in a sense di�erent fromthe one formalized in [HKQ98℄ (this is already 
lear by the result in [HKQ98℄ that the S�property EF(p^EF(q)^EF(r)) is not 
omputable by `symboli
 forward analysis'). Both formsof forward analysis are essentially a least-�xpoint iteration of the dire
t-su

essor operator postapplied to a 
onstraint representation of a set of states. In [HKQ98℄, a 
onstraint is viewedmonolithi
ally (this 
orresponds to a setting where a set of states is represented by a 
onstraintin normal form, implemented e.g. by a BDD). Our pro
edure operates on the 
onstraints insideof a disjun
tive 
onstraint, i.e. its disjun
ts. Note that the disjun
ts generally represent in�nitesets of states, whi
h makes our pro
edure di�erent from an enumerative pro
edure (and requiresthe management of formulas with free variables).Tabled resolution is originally an exe
ution strategy for logi
 programs with negation;see [CW96, SI88, TS86b℄. We have not, however, found a tabled-resolution pro
edure fornon-ground 
onstraint queries wrt. the perfe
t-model semanti
s in the (yet quite extensive)literature. In the 
ontext of veri�
ation, tabled resolution has been used in [RRR+97b℄ forground programs (and �nite-state systems).The 
onne
tion between S� properties and perfe
t models of 
onstraint query languageprograms is perhaps of intrinsi
 interest; its role in this 
hapter is a quite pragmati
 one. Namely,the 
onne
tion helps us to 
on
isely formulate and to formally prove 
orre
t our forward analysispro
edure.Convergen
e (a.k.a. zenoness or timelo
k) [AH97, HNSY94, Tri99℄ for timed automata isan S� property. Therefore, one 
an apply either of our two general symboli
 model 
he
kingmethods, the ba
kward or the forward one. The two existing spe
ialized algorithms for 
he
king
onvergen
e [HNSY94, Tri99℄ are instan
es thereof. Thus, our work helps to situate the twoalgorithms within a general model-theoreti
 and proof-theoreti
 
ontext.4.2 Strati�
ationWe �rst re
all the syntax of modal mu 
al
ulus. The syntax of (
losed) formulas ' of the modal�-
al
ulus is given below.' ::= p j x j :' j ' ^ '0 j ' _ '0 j <>' j �x: 'Here p is an atomi
 proposition, x is a variable, <> is the next operator (written EX in CTLsyntax), and in �x:', ' is monotone in x (i.e., all o

urren
es of the free variable x in ' lie ina s
ope of an even number of negation).Sometimes we use the formulas �x:'(x) and 2' informally as abbreviations for :�x::'(:x)and :<>:', respe
tively.The Fisher-Ladner 
losure 
l(') of a formula ' is the smallest set of formulas 
ontaining 'su
h that{ if  2 
l(') and  0 is a subformula of  then  0 2 
l('), and66



Alternation-free �-
al
ulus
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S�
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rrrrrrrrrrSTLEF� logi
Figure 4.1: Situating the expressiveness of S�{ if �x: (x) 2 
l(') then  (�x: (x)) 2 
l(').Here, for a formula �x: (x), the formula  (�x: (x)) is obtained from  (x) by repla
ing ea
hfree o

urren
e of x with �x: (x).De�nition 4.1 (Strati�ed �-
al
ulus S�) An S� formula is a 
losed formula ' of the modal�-
al
ulus su
h that the is-subformula relation over 
l(') 
an be made a partial order � that isstri
t wrt. to negation, i.e. '0 � :'0.The above de�nition is equivalent to saying that there exists a strati�
ation fun
tion S assigninga natural number to ea
h formula in the 
losure 
l(') su
h that{ if '00 2 
l('0) then S('00) � S('0), and{ S('0) < S(:'0) for all '0 2 
l(').Thus, the strati�ed �-
al
ulus S� 
onsists of all strati�able formulas of the modal �-
al
ulus(in the syntax given above, i.e. with least �xpoints and Boolean set operators in
luding the
omplement, but without greatest �xpoints).Figure 4.1 situates the expressiveness of S� relative to the alternation-free �-
al
ulus, CTLand STL. We re
all the de�nition of the syntax of STL and of its sublogi
, the EF-logi
.' ::= p j :' j ' ^ '0 j ' _ '0 j EX(') j EF(') (EF-logi
)' ::= p j :' j ' ^ '0 j ' _ '0 j EX(') j 'EU'0 (STL)To see that S� is subsumed by the alternation-free �-
al
ulus, observe that nesting of �xpoints �and � (where � is expressed in terms of � and negation) requires stri
t de
reasing of the value ofthe strati�
ation fun
tion; the value of the strati�
ation for a �xpoint formula must, however,be the same for its one-step unfolding.The example of the formula �x:p _ :<>:x (abbreviated �x:p _ 2x, and written AF(p) inCTL syntax) of the alternation-free �-
al
ulus shows that S� is stri
tly less expressive. To seethat ' is not an S�-formula, suppose that there exists a strati�
ation fun
tion S showing that' is an S�-formula. Let  (x) be the formula p _ :<>:x. Then S(�x: (x)) � S( (�x: (x))) �S(:<>:�x: (x)) > S(<>:�x: (x)) � S(:�x: (x)) > S(�x: (x)), whi
h is a 
ontradi
tion.To see that S� is in
omparable with CTL in terms of expressiveness, observe that (1) everysatis�able formula of S� has a model whose paths are all �nite; the CTL formula EG(p), for67



example, does not have su
h a model; (2) the S� formula �x:p _ <><>x expresses the property\p is rea
hable in an even number of steps", whi
h 
annot be expressed in CTL.Our motivation for S� stems from in�nite-state systems with generally unde
idable model
he
king problems. In fa
t, the following proposition shows that the restri
tion of thealternation-free �-
al
ulus to S� does not trade with a de
rease of the theoreti
al 
omplex-ity of model 
he
king for �nite-state systems. As in the alternation-free �-
al
ulus; the problemis hard for P even if the formula is �xed. The existing P -hardness proofs for the alternation-free�-
al
ulus, however, redu
e the alternating graph-rea
hability problem, using the 2 modality inan essential way, and 
annot be 
arried over dire
tly.Proposition 4.1 (Finite-state systems) The program 
omplexity of S� model 
he
king isP -
omplete.Proof. We redu
e the monotone 
ir
uit value problem (MCVP), well-known P -
omplete problem.An instan
e of MCVP is a sequen
e variables X1; : : : ;Xn of boolean equations of the formXi = true, Xi = false, Xi = Xj ^ Xk or Xi = Xj _Xk where for all equation of the last twoforms we have i > max(j; k), su
h that the value of a varaible does not depend on itself. Thequestion we ask is whether the value of Xn is true.Given su
h an instan
e I of MCVP, we 
onstru
t a Kripke stru
ture K = hS;!; Li asfollows. We de�ne the set of atomi
 propositions as fp; p1; p2g. The set S of states 
onsistsof the variables X1; : : : ;Xn and their 
opies (two for ea
h variable) X11 ;X21 ; : : : ;X1n;X2n. Thelabeling fun
tion L : S ! 2fp;p1;p2g is de�ned as follows. L(Xi) = fpg i� Xi = true is in I.For all i = 1; : : : ; n we de�ne L(X1i ) = fp1g and L(X2i ) = fp2g. The transition relation ! isde�ned as follows. For all equations Xi = Xj _Xk we have Xi ! Xj and Xi ! Xk, and for allequations Xi = Xj ^Xk we have Xi ! X1i , Xi ! X2i X1i ! Xj and X2i ! Xk. Now it is easyto see that the state Xn in the stru
ture K satis�es the formula�x:p _ <>x _ (<>(p1 ^ <>x) ^ (<>(p2 ^ <>x)))if and only if the value of the variable Xn in the 
ir
uit is true. [℄4.3 Ba
kward AnalysisIn this se
tion, we de�ne a hierar
hy of three kinds of pro
edures based on ba
kward analysisthat 
orrespond to the three `safety logi
s' EF-logi
, STL and S�, respe
tively. These pro
eduresare essentially least-�xpoint iterations for a �xpoint operator that is derived from the dire
t-prede
essor operator pre in three di�erent ways. We formalize the setting by de�ning dire
tlythe three families of sets of states that 
an be 
omputed.We �x a transition system T = h�;�!i with the set of states � and the transition rela-tion �! (and the 
orresponding prede
essor operator pre over sets of states).Given a set of atomi
 propositions p, we �x a 
orresponding set of base sets; i.e., for everyatomi
 proposition p there exists a base set b � � that is the interpretation of p.The least-�xpoint 
losure F ?(S) of the set S under a given operator F on sets is the least�xpoint of the fun
tion �x:(S [ F (x)).We write S \F for the operator �x:(S \ F (x)), F ÆF 0 for the fun
tional 
omposition of thetwo operators F and F 0, and F [ F 0 their pointwise union.68



De�nition 4.2 (\
omputable by ba
kward analysis") A set of states S is lfp-
omputableif it is{ one of the given base sets,{ the union, interse
tion or 
omplement of lfp-
omputable sets, or{ of the form Pre(S) or of the form Pre?(S)where S is an lfp-
omputable set and the operator Pre is formed in the following way(possibly using some other lfp-
omputable set S0).Case 1 Pre ::= preCase 2 Pre ::= pre j S0 \ preCase 3 Pre ::= pre j S0 \ Pre j Pre Æ Pre0 j Pre [ Pre0 j Pre \ Pre0Proposition 4.2 The sets of states expressed by the temporal properties in EF-logi
, STL andS� are exa
tly the lfp-
omputable sets in Case 1, 2 and 3, respe
tively.Proof (by stru
tural indu
tion). Base sets 
orrespond to atomi
 propositions; union, interse
tionand 
omplement of lfp-
omputable-sets 
orrespond to disjun
tion, 
onjun
tion and negation inthe 
orresponding logi
. If a set S 
orresponds to a formula ' then pre(S) 
orresponds toEX(') and pre?(S) to EF(') in EF-logi
, trueEU' in STL (where true 
an be de�ned asp _ :p), and �x:' _ <>x in S�. The set (S0 \ pre)?(S) 
orresponds to '0EU' in STL and to�x:' _ '0 ^ <>x in S�, where '0 is the formula 
orresponding to S0. In 
ase of Pre?(S) wherePre is de�ned using 
omposition, union or interse
tion, the set is translated in an obvious wayto a least-�xed-point formula of S� using respe
tively 
omposition, disjun
tion or 
onjun
tionof respe
tive subformulas. The only 
ase requiring more argumentation is the translation fromleast-�xed-point formulas of S� to lfp-
omputable sets.Given a formula �x:' in S� we �rst translate it to a guarded formula (where all variablesappear in a s
ope of the <> modality) by rewriting all unguarded variables to false, and thentranslate the result to the disjun
tive normal form. Let us 
all the obtained formula �x: . Ifthis formula denotes a nonempty set of states,  must 
ontain a disjun
t that does not 
ontainx (otherwise it 
an be translated to S\ � S for any base set S). Let S be the set 
orrespondingto the disjun
tion of all su
h disjun
ts. Sin
e  is a strati�ed formula, the subformula x mustbelong to the same stratum as  and thus x does not o

ur in a s
ope of negation. Now it iseasy to 
onstru
t an operator Pre su
h that �x: de�nes exa
tly the set Pre?(S). [℄4.4 Perfe
t ModelsIn this se
tion, we present a translation of S� properties to the perfe
t models of strati�ed
onstraint query language programs. The translation is reminis
ent of the ones in [CP98b,DP99b, GGV98, RRR+97b, GP97℄. Here, however, the translation is done su
h that it yieldsstrati�ed programs. Roughly, a program is strati�ed if the dependen
y relation between itspredi
ates (where p � q means: \the predi
ate p 
alls the predi
ate q", or: \p is de�nedusing q") 
an be made a partial order that is stri
t wrt. negation; i.e., p � q if there is a 
lauseof the form p(x)  : : : not(q(x)) : : : . A level mapping of a program is a mapping from its setof predi
ates to the natural numbers. The level of a predi
ate p, denoted by level(p), is the69



value of the predi
ate under the mapping. A 
onstraint query language program is strati�ed ifit has a level mapping su
h that in every 
lause of the form p(x)  � B ^ ', the level of thepredi
ate of any atom o

urring positively in B is less than or equal to that of p and the levelof the predi
ate of any atom o

urring negatively in B is less than the level of p.The original de�nition of a perfe
t model of a strati�ed 
onstraint query language program Pis model-theoreti
 [Prz88℄. An equivalent de�nition yields a dire
t 
onstru
tion of this model;the 
onstru
tion uses the 
omplementation of the least-�xpoint 
losure of the dire
t-
onsequen
eoperator TP [ABW88℄. Roughly, the proof of the theorem below as well as that of Theorem 4.2is built around this 
onstru
tion. In the sequel, we assume that the 
onstraint domain D thatwe 
onsider admits quanti�er elimination. For a program P, let BD denote the D-base of aprogram P. The formal de�nition of perfe
t model based on dire
t 
onstru
tion, given below,is taken from [ABW88℄. An equivalent de�nition 
an also be found in [Prz88℄. Before we de�nethe perfe
t model of a 
onstraint query language program P, we need the de�nition of the TPoperator. The operator TP is a mapping from 2BD to itself. It is de�ned as follows. The atomp(v) 2 TP(I) (for I � BD) i� for there exists a ground instan
e p(v)  � body of a 
lause in Psu
h that I j= body .De�nition 4.3 (Perfe
t Model) Let P be a strati�ed 
onstraint query language program withmaximum predi
ate level k. Let M�1 = ;. For 0 � j � k do the following. Let Cj be the
ompleted latti
e fMj�1 [ S j S � fp(v) 2 BD j level(p) = jgg under set in
lusion. Let T jP bethe restri
tion of the immediate 
onsequen
e operator TP to Cj. Let Mj = T jP " !. Then Mk is
alled the perfe
t model of P.We assume that we 
an represent the transition systems of interest as 
onstraint querylanguage programs. That is, we are able to de�ne a predi
ate trans(s; s0), init(s) and pap(s)saying, respe
tively, that there is a transition from the state s to s0, that s is an initial state,and that the atomi
 proposition ap holds in the state s. Su
h representations (together withdire
t synta
ti
 translations) are known for �nite systems [CP98b, GGV98, RRR+97b, SIR96℄,push-down systems [CP98b℄, 
on
urrent programs (in
luding integer-valued proto
ols) [DP99b℄,and timed and hybrid systems [MP00b℄.Given a 
onstraint query language program P de�ning the predi
ate trans, we translate anS� formula  to a 
onstraint query language program P as follows. For ea
h formula ' in 
l( )we introdu
e a new predi
ate p' de�ned as follows.(1) p'1^'2(s)  p'1(s); p'2(s)(2) p'1_'2(s)  p'1(s)p'1_'2(s)  p'2(s)(3) p:'(s)  not(p'(s))(4) p<>'(s)  trans(s; s0); p'(s0)(5) p�x:'(x)(s)  p'(�x:'(x))(s)To simplify the presentation, we abbreviate the translation of S� formulas that are expressed inthe syntax of EF-logi
 or STL.(6) pEF'(s)  p'(s)pEF'(s)  trans(s; s0); pEF'(s0)(7) p'1EU'2(s)  p'2(s)p'1EU'2(s)  p'1(s); trans(s; s0); p'1EU'2(s0)70



Theorem 4.1 An atom p'(s) belongs to the perfe
t model of the program P' if and only if theS� formula ' is true of the state s; or: the denotation of the predi
ate p' in the perfe
t-modelsemanti
s of the program P' is exa
tly the denotation of the S� formula ' wrt. the transitionsystem P, [[p'℄℄pm(P') = [['℄℄P :Proof. By stru
tural indu
tion on strati�ed mu-
al
ulus formulas. [℄4.5 Tabled ResolutionIn this se
tion, we present the symboli
 forward analysis for S� formulas. Based on Theorem 4.1,we 
an formally de�ne it as a pro
edure for strati�ed 
onstraint query language programs P.The input is a query 
onsisting of an atom p(x) and a 
onstraint '. The output, if it terminates,is a 
omplete list of answer 
onstraints ['1; : : : ; 'n℄. This means: for every tuple v of valuesfor the argument tuple x, the atom p(v) lies in the perfe
t model of P and v is a solution ofthe 
onstraint ' if and only if v is a solution of one of the answer 
onstraints 'i. In short: thedenotation of the predi
ate p in the perfe
t-model semanti
s of the program P interse
ted withthe set of solutions of ' is the set of solutions of all answer 
onstraints, i.e. of the disjun
tion '1_: : : _ 'n, [[p℄℄pm(P) \ [['℄℄ = [['1 _ : : : _ 'n℄℄:If the program P arises from the translation given in the previous se
tion (i.e., it is of theform P for an S� formula  ) and the 
onstraint ' des
ribes the set of initial states, thentabled resolution starting with the query hp(x); 'i 
orresponds to forward analysis (depth-�rstor breadth-�rst, depending on the sele
tion strategy of the resolution pro
edure; here, we haveformulated a depth-�rst pro
edure). The answer 
onstraints then spe
ify whi
h of the initialstates satisfy the S� formula  (possibly all of them, namely if the disjun
tion is equivalentto ').The pro
edure is based on tabled resolution (see e.g. [TS86b, SI88, CW96℄), whi
h we have ex-tended to handle 
onstraints and nonground 
onstru
tive negation (i.e. with nonground queries).The 
entral data stru
ture is a table T of answer 
onstraints. An index in the extendibletable is a query of the form hp0(x); '0i (
onsisting of an atom p0(x) and a 
onstraint '0); the
orresponding �eld 
ontains a list of answers to that query that have 
omputed to far. Initially,the table has only one index, namely the original query hp(x); truei, whose �eld 
ontains theempty list.The basi
 idea of the pro
edure is simple. We start with the initial query hp(x); truei.Iteratively, we apply resolution steps, hereby 
reating (disjun
tions of) new queries, ea
h of theform hp1(x1) ^ : : : ^ pk(xk);  i. This goes on until no more steps are appli
able (either be
ausea query is failed or be
ause an answer 
onstraint has been derived). We store all answersto any query en
ountered so far in the table T (pro
edure tabulate). We reuse the tabledinformation whenever possible (
ase (b) in the pro
edure extend); this is 
ru
ial for avoidingin�nite loops. The 
ases (a) and (b) in the pro
edure extend give an extension of the originaltabling pro
edure [TS86b℄ to handle 
onstraints. The 
ases (
) and (d) are an extension tohandle 
onstru
tive negation. Again the idea is simple: to get an answer to a negative query71



:p(x); ' we �rst run the pro
edure for the positive query (it is important here that we 
olle
tall the answers for the positive query) and then negate the answer.If the pro
edure terminates (whi
h in general 
annot be guaranteed, already for de
idabilityreasons), then the table 
ontains all answers to all sub-queries and to the original query p(x).The examples below give an intuition about the pro
edure. Example 4.1 shows how tablinghelps avoiding in�nite loops. Example 4.2 shows how answers to all subgoals are stored in thetable (for all su

essful subderivations). Finally, Example 4.3 shows how the negation is handled.Example 4.1 Consider the query p(x) for the following program.p(x)  x = 0:p(x)  x = 1:p(x)  p(x):We start with the stru
ture 
onsisting of one a
tive node p(x), and the table T 
ontaining oneentry T [p(x)℄ = [ ℄. After the �rst extension we obtain two answers x = 0 and x = 1 andone new node, again with the query p(x), hen
e it is 
lassi�ed as a lookup node. Call thisnode v. The table is updated with T [p(x)℄ = [x = 0; x = 1℄ and the lookup mapping givesL(v) = [x = 0; x = 1℄. The se
ond resolution step takes the �rst answer from this list, 
reates anew node x = 0 and moves the lookup pointer to the tail of the list, so now L(v) = [x = 1℄. Sin
ethe solution x = 0 o

urs already in the table, it is not added there. After the third resolutionstep the new node x = 1 is 
reated and the value L(v) is set to the empty list. At this point nomore resolution steps are possible and the pro
edure terminates.p(x)q1(x) ^ q2(x)r(y) ^ q2(x) ^ x = y � 1q2(x) ^ x = y � 1 ^ y > 1
rrrrrrrrrrr

LLLLLLLLLLLx = y � 1 ^ y > 1 ^ x < 1 x = y � 1 ^ y > 1 ^ x > 2Figure 4.2: Computation tree for Example 4.2
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Example 4.2 Consider the query p(x) for the following program.p(x)  q1(x); q2(x):q1(x)  x = y � 1; r(y):r(x)  x > 1:q2(x)  x < 1:q2(x)  x > 2:The derivation tree for this query is shown on Figure 4.2. All nodes (ex
ept answers) in thistree are a
tive. In the fourth node of this tree we obtain an answer x = y � 1 ^ y > 1 to thesubquery r(y) and this answer is passed to the pro
edure tabulate. Before storing it, however,the formula 9x: x = y � 1 ^ y > 1 is normalized; in parti
ular the existentially quanti�ed x iseliminated and the new entry in the table is T [r(y) ^ x = y � 1℄ = [y > 1℄.Note that the 
onstraint x = y � 1 ^ y > 1 is not only an answer to the subquery r(y), butalso to the subquery q1(x). In order to �nd it out, the pro
edure tabulate is 
alled re
ursivelyto propagate the answer up in the tree. Then it is again normalized (this time the variable y,and not x, is existentially quanti�ed) and stored: T [q1(x)℄ = [x > 0℄.The same happens when we rea
h leaves of the tree. The two answers that we obtain haveto be stored both in the entry for q2(x) and p(x), thus we obtain [x > 0 ^ x < 1; x > 2℄ as thevalue for T [p(x)℄ and T [q2(x) ^ x = y � 1 ^ y > 1℄.Example 4.3 Consider the program from Example 4.2 together with a 
lause p0(x)  :p(x)and a query p0(x). Sin
e the tree from Figure 4.2 
annot be extended anymore (it is totallysu

essful in the terminology of Stu
key [Stu91℄), we 
an negate the answers 
olle
ted for thequery p(x) and obtain 
orre
t answers for the query :p(x) that (after transforming to thedisjun
tive normal form) we store in the table: T [:p(x)℄ = [x � 0; x � 1^x � 2℄. (Note: sin
ewe always eliminate existential quanti�ers, negating 
onstraints does not introdu
e universalquanti�
ation; i.e., we do not have to treat queries with universally quanti�ed variables.)We will next des
ribe the pro
edure in detail (see Figure 4.3). The 
urrent 
omputation stateof the pro
edure a triple hF; T; Li. Here, F is a set of trees (intuitively, an SLDNF forest; ea
h
all to a negative goal starts a new tree). Ea
h node of F is a goal of the form Vni=1 li(xi) ^ 'where n � 0. For n = 0 we say that Vni=1 li(xi) is empty and the goal is an answer '. Forn � 1 we write su
h goal as l1(x1) ^ R ^ ' to indi
ate that l1(x1) is the sele
ted literal andR = Vni=2 li(xi) is the rest of the goal. (A literal l(x) is either an atom p(x) or a negated atom:p(x).) An a
tual implementation will not keep the whole forest F but only the relevant partsof it; instead of having the pro
edure tabulate go up a path in F , one would use forward pointersin the table T ; in this presentation, we will not go into su
h details.The se
ond 
omponent T of the 
urrent 
omputation state is the table that we have dis
ussedabove. The third 
omponent L is a lookup mapping; it maps nodes of F to lists of 
onstraintsand is used to go through all answer 
onstraints stored in the table T that are relevant for thegiven node.Every node in the forest F is 
lassi�ed as an a
tive or lookup node by pro
edure 
lassify .Intuitively, a
tive nodes are the nodes for whi
h we have to 
ompute answers; lookup nodesare the nodes for whi
h the answers 
an be found in the table (roughly, the sele
ted literals inlookup nodes are instan
es of the sele
ted literals in a
tive nodes). Furthermore, every node73



is positive or negative depending on whether the sele
ted literal is positive or negative; a nodemay be also marked as failure. The lookup mapping L is de�ned only for lookup nodes.De�nition 4.4 In a given 
urrent 
omputation state hF; T; Li, a node v in F is 
alled a ex-tendible node of type (a),(b), (
) or (d), respe
tively, if(a) v is a positive a
tive node, a leaf in F and not a failure node, or(b) v is a lookup node and L(v) is a nonempty list, or(
) v is a negative a
tive node without a 
ompanion node in F , or(d) v is a negative a
tive node that is not pro
essed yet (see below) su
h that the 
omputationfor the 
ompanion node is done (see below).A negative a
tive node :p(x) ^ R ^ ' is pro
essed if it is either marked as failure node or thelist T [:p(x); '℄ is nonempty. A 
omputation for a positive node is not done if the tree rooted atthis node 
ontains an extendible node or it 
ontains a lookup node v0 su
h that the 
omputationfor the a
tive node 
orresponding to v0 is not done.De�nition 4.5 (Su

essful tabled derivation) A sequen
e p(x) ^ ';G1 ^ '1; : : : ; Gn ^ 'nis a su

essful derivation for the query p(x) ^ ' wrt. the table T if: Gn is the empty goal, 'n isa satis�able 
onstraint, and for all i = 0; : : : ; n� 1 (where G0 = p(x)){ Gi = q(x) ^R and there exists a 
lause q(x) body ^  su
h that Gi+1 = body ^R and'i+1 = 'i ^  , or{ Gi = q(x) ^R and Gi+1 = R and there exists a 
onstraint '0 su
h that 'ij='0, hq(x); '0iis an index of T and there exists a member  of T [hq(x); '0i℄ su
h that 'i+1 = 'i ^  .A sequen
e p(x)^R^';G1 ^R^'1; : : : ; Gn ^R^'n is a su

essful subderivation for p(x)^'wrt. T if p(x) ^ ';G1 ^ '1; : : : ; Gn ^ 'n is a su

essful derivation for p(x) ^ ' wrt. T .Sin
e the original query appears as an index of the table T and the return statement refers to itsentry, the theorem below implies that the pro
edure, if it terminates, returns the 
orre
t outputa

ording to its spe
i�
ation.Theorem 4.2 (Corre
tness) If the tabling pro
edure terminates then, for every queryhp(x); 'i or h:p(x); 'i that o

urs as an index in the table T , the entry of T at that indexis a list of 
onstraints ['1; : : : ; 'n℄ su
h that[[p℄℄pm(P) \ [['℄℄ = [['1 _ : : : _ 'n℄℄;i.e., the denotation of the predi
ate p in the perfe
t-model semanti
s of the program P interse
tedwith the set of solutions of ' is the set of solutions of all 
onstraints '1; : : : ; 'n.That is, the atom p(v) lies in the perfe
t model of P and v is a solution of the 
onstraint ' ifand only if v is a solution of one of the 
onstraints 'i.Proof. The proof of the theorem is (simultaneously) by indu
tion on the level of the query.For this, we �rst de�ne the level of a query hQ;'i, where Q is a 
onjun
tion of literals, as74



follows. For a query hQ;'i, its level is the larger of (a) the maximum level of the predi
ates inthe positive literals of Q, and, (b) one more than the maximum level of the predi
ates of thenegative literals of Q.Base Case: The base 
ase is when the level of query is 0. I.e., Q is a 
onjun
tion of atomssu
h that ea
h predi
ate in Q has level 0. This 
ase is proved by a simple extension of Lemma3.17 and Theorem 3.18 in [TS86a℄.Indu
tion Step: Suppose that the theorem holds for queries of level � k. Suppose alsothat the query is hQ;'i where Q is a query of level k + 1.(Soundness): We use indu
tion on the length n of the refutation. Suppose, �rst, thatn = 1. Then Q is a literal. Suppose also that Q is a positive literal Q(x). Suppose that  isthe 
omputed answer in the table entry 
orresponding to hQ(x); 'i. Now there must exist anonground fa
t (or a set of nonground fa
ts) Q(x)  � '0 through whi
h the query su

eeded.Hen
e, fQ(v)jD;v j=  g is 
ontained in the perfe
t model of P. Now suppose that Q(x) = :p(x)is a negative literal. Then the following happens. Sin
e, the derivation is of length 1, either,the 
orresponding derivation starting from the positive literal fails or all 
lauses with p(x) atthe head are nonground fa
ts. In the �rst 
ase the answer to the query is ' itself. By indu
tionhypothesis (for the indu
tion on levels), for any tuple v su
h that D;v j= ', the atom p(v) isnot 
ontained in the perfe
t model of P. Therefore, for ea
h tuple v su
h that D;v j= ', thenegated atom :p(v) is 
ontained in the perfe
t model of P. The reasoning for the su

ess 
aseis similar.Suppose now that n > 1 and the result holds for refutations of length less than or equal ton� 1. Suppose �rst that the leftmost literal of Q is a positive literal p(x). Let Q = p(x) ^ P 0.Assume that there exists no entry in the table for hp(x); �i su
h that 9�x' j= �. The other
ase in whi
h there is su
h a table entry 
an be proved similarly. Suppose that the �rst 
lausethrough whi
h the query resolves is p(x)  � B ^ '0. Let the free variables in the body B bey. Let the free variables of P 0 be z. Then the resolvent is given by hB ^ P 0;9�(y;z)' ^ '0i. Letthe answers for the table entries 
orresponding to the literals in B and P 0 be  1; : : : ;  k (fora query hl(y0) ^ B0; '00i, whenever a literal l(y0) is 
alled, then if there exists a table entry ofthe form hl(y0); '000i su
h that 9�y0'00 j= '000, then this goal is made to point to the solution list
orresponding to that entry in the table; otherwise a table entry for hl(y0);9�y0'00i with an emptylist is 
reated). By indu
tion hypothesis (for the indu
tion over the length of the refutation),for ea
h literal li in B ^P 0, for any tuple v, if D;v j=  i then li(v) is in the perfe
t model of P.Now the answer re
eived by the entry hp(x);9�x'i is given by  � 9�x' ^ '0 ^  1 ^ : : : ^  k.We show that for any tuple D;v j=  , D;v j= ' and p(v) is in the perfe
t model of P. Supposethat D;v j=  . Then, D;v j= '. Also there exists a tuple u su
h that D;v;u j=  1 ^ : : : ^  k.For any literal li(yi) in B, let ui be the values of yi in the tuple u. Then D;ui j=  i. Therefore,for ea
h i, li(ui) is in the perfe
t model of P. Also, we have that, p(v) � l1(u1)^ : : :^ lm(um)is the ground instan
e of a 
lause in P. Hen
e p(v) is in the perfe
t model of P.Now suppose that the leftmost literal of Q is a negated literal. Assume that it is :p(x).Assume, without loss of generality, that there does not exist an entry in the table of the formh:p(x); '0i su
h that 9�x' j= '0. Then a fresh entry for h:p(x);9�x'i has been put in thetable with an empty list at the beginning of evaluation of this query. Assume that the answerobtained for this entry is  . Then we have the following. Either, the query Q0 = hp(x); '00i,where 9�x' j= '00, has failed. Or all answers to the query Q0 have been obtained. In the �rst
ase, the answer  � 9�x'. By the indu
tion hypothesis (for the indu
tion on the level of thequery), for any tuple v su
h that D;v j= 9�x', the atom p(v) is not in the perfe
t model of P.75



Hen
e, for any tuple v su
h that D;v j= 9�x', :p(v) is 
ontained in the perfe
t model of P.Similarly for the se
ond 
ase.(Completeness): Now suppose that for a literal l and a tuple v, l(v) is in the perfe
t model ofP. Let ' be a 
onstraint su
h that D;v j= '. We show that, if the pro
edure terminates, thereexists a table entry of the form hl(x); '0i su
h that ' j= '0 and the solution list 
orresponding tothis entry 
ontains a 
onstraint  su
h that D;v j=  (from now, we suppose that the pro
edureterminates). First, suppose that l(x) = p(x) is a positive literal. Then the level of the queryhp(x); 'i is k + 1. Then, p(v) 2 T k+1P " n, for some n � 0. We prove by indu
tion on n that,for for any ground atom v, su
h that D;v j= ', if p(v) 2 T k+1P " n, then the solution list of thetable entry 
orresponding to hp(x); 'i (or of hp(x); '0i where ' j= '0) 
ontains a 
onstraint  su
h that D;v j=  .Suppose �rst that n = 1. Then there exists a ground instan
e p(v) � D of a 
lause C su
hthat the perfe
t model of P logi
ally impliesD. Let the 
lause C be of the form p(x) � B^'000.Let the free variables o

urring in B be y. Then the resolvent of hp(x); 'i through C is given byhB;9�y' ^ '000i. Let � � 9�y' ^ '000. For a literal li in B, the level of the query hli(yi);9�yi�iis at most k (sin
e n = 1). Let the answers re
eived for ea
h su
h query hli(yi);9�yi�i be  i.Also, let li(ui) be a 
onjun
t in D. Then, by the main indu
tion hypothesis, D;ui j=  i. Now,the answer to the query hp(x); 'i is given by  0 � 9�x' ^ '000 ^  1 ^ : : : ^  k. It is now easilyshown that D;v j=  0.Next, suppose that n > 1. Then there exists a ground instan
e p(v)  � D of a 
lause Csu
h that every ground atom in D is in the perfe
t model of P. Let the 
lause C be of the formp(x) � B ^ '000. Let the free variables in B be y. Then the resolvent of hp(x); 'i through the
lause C is given by hB; i where  � 9�y'^'000. We 
an write B as B0 ^B00 su
h that for anyliteral li in B0, the level of the query hli(yi);9�yi i is less than or equal to k and for any literallj in B00, the level of the query hlj(yj);9�yj i is k + 1. For ea
h i, let the answers obtained forthe query hli(yi);9�yi i be  i. Then, by the main indu
tion hypothesis on k, for ea
h 
onjun
tli(ui) in D su
h that the literal li is in B0, D;ui j=  i. Again, by the indu
tion hypothesis onn, for ea
h 
onjun
t li(ui) in D su
h that the literal li is in B00, D;ui j=  i. Now the answer tothe query hp(x); 'i is given by  0 � 9�x'^'000 ^ 1 ^ : : :^ k. It 
an now be easily shown thatD;v j=  0.We next 
ome to the 
ase when l is a negative literal :p(x). Then the level of the queryhp(x); 'i is k. Let the answer to the query hp(x); 'i be  0. Then, by the indu
tion hypothesison k, D;v 6j=  0. Now the answer to the query hl(x); 'i is  00 � : . Hen
e D;v j=  00. [℄4.6 Convergen
e in Timed AutomataThe pro
edure given in Se
tion 4.5 is not guaranteed to terminate even when it is applied only tologi
 programs P that arise from the translation of timed automata. However, te
hniques areknown (e.g. extrapolation [DT98℄ or trimming operation des
ribed in Chapter 3) to enfor
e ter-mination of forward analysis of timed automata. These te
hniques operate on the representationof the 
onstraints; i.e., they are orthogonal to the 
ontrol aspe
ts and 
an be integrated dire
tlyinto our forward analysis pro
edure, turning it thus into an always terminating algorithm, i.e. ade
ision pro
edure for the model 
he
king problem of S� formulas for timed automata.The strati�ed �-
al
ulus is expressive enough to 
apture 
onvergen
e of timed au-76



tomata [AH97, HNSY94, Tri99℄. It is well-known that, for every timed automaton A, one
an 
onstru
t a timed automaton A0 (in linear time) su
h that A is 
onvergent if and only if theS� formula EF:EF(y > 1) is true for the automaton A0.Two spe
ialized algorithms for dete
ting 
onvergen
e in timed automata have been devel-oped, one based on ba
kward [HNSY94℄ and one on forward analysis [Tri99℄. We 
an now seethat both algorithms are instan
es of two general pro
edures (bottom-up 
omputation of theperfe
t model using the TP operator, and tabled resolution) to 
he
k whether a query is true inthe perfe
t model of a given strati�ed logi
 program P .4.7 Che
king Convergen
eTo give some intuition for the general approa
h, we 
onsider an example. The timed automatonon the left part of Figure 4.4 is supposed to model a swit
h with two states 'on' and 'o�', stayingfor at least one and at most two se
onds in a state and then swit
hing to the other one. Thevariable x stands for a 
lo
k; the 
onstraints x < 2 in both states say that the swit
h 
an stayin the state only if the value of the 
lo
k does not rea
h 2, the 
onstraints x > 1 on both edgesmean that the move to the other state 
an be made only if the value of the 
lo
k ex
eeds 1. Theautomaton starts in the state on with the value of the 
lo
k set to 0.This automaton does not model the intended swit
h; while 
hanging from one state to theother we do not reset the 
lo
k x. However, the automaton still does not deadlo
k: there stillexist in�nite tra
es of the automaton, but it has to 
hange its state in�nitely many times beforethe 
lo
k rea
hes the value 2. Su
h a property of an automaton is 
alled 
onvergen
e. Morepre
isely, we say that an automaton A is 
onvergent if there exists a rea
hable state s of A su
hthat in every in�nite 
omputation of A starting in s the time of the 
omputation is bounded bya 
onstant. This is 
learly a kind of error that one would like to be able to �nd automati
ally.The automaton on the right part of Figure 4.4 
onsists of two 
opies of the initial automaton,where all states are 
onne
ted by edges labeled y := 0 with their 
opies. The variable y is a new
lo
k that we add here. Intuitively, we simulate the initial automaton with an additional 
lo
kwhi
h we reset only on
e at some nondeterministi
ally 
hosen point of time. It is easy to seethat the new automaton satis�es the formula EF:EF(y > 1) if and only if the initial automatonis 
onvergent.The translation of this S� formula to a 
onstraint query language program involvesde�ning the predi
ate trans. For example, the time transition at on gives the 
lausetrans(on; x; on; x0)  � x0 = x + z ^ z � 0 ^ x0 < 2. The edge transitions 
an be translatedfollowing the same te
hnique as in Chapter 3.

77



program tabled resolutioninput: program P and a query hp(x); 'ioutput:['1; : : : ; 'n℄ su
h that [[p℄℄pm(P) \ [['℄℄ = [['1 _ : : : _ 'n℄℄set F as the tree 
onsisting of one node p(x) ^ 'set T as the empty tableset L as the empty mapping
lassify(p(x) ^ '; T; L)repeat
hoose a node v that is extendable wrt. hF; T; Liextend(hF; T; Li; v)until there is no extendable node in Freturn(T [hp(x); 'i℄)pro
edure 
lassify(v; T; L)if v is of the form p(x) ^R ^ ' % v is not an answer nodethenif T 
ontains an entry indexed hp(x); '0i su
h that 'j='0thenmark v as a lookup nodeassign L(v) = T [hp(x); '0i℄elsemark v as an a
tive nodeassign T [hp(x); 'i℄ = [ ℄endifendifendpro
 % 
lassifypro
edure tabulate(v; v0;  )if (v is a positive a
tive node of the form l(x) ^R ^ 'and the path from v to v0 in F is a su

essful subderivation for l(x) ^ ' wrt. Tand T [hl(x); 'i℄ does not 
ontain  0 su
h that  j= 0)or (v is a negative a
tive node of the form l(x) ^R ^ 'and v0 is a 
hild of v)thenassign T [hp(x); 'i℄ = append(T [hp(x); 'i℄; [NF ( )℄) % NF: elimination of 9'sendifif v is not a root in F then tabulate(parent(v); v0; T ) endifendpro
 % tabulate Figure 4.3: Tabled Resolution78



pro
edure extend(hF; T; Li; v)
ase type of v of % see De�nition 4.4(a): % positive a
tive nodelet v = p(x) ^R ^ 'let C1; : : : ; Cn be all 
lauses su
h thatCi = p(x) bodyi ^ 'i and ' ^ 'i satis�ableif n = 0 then mark v as failure nodeelsefor all i = 1; : : : ; n do
reate new node vi = bodyi ^R ^ ' ^ 'i as a 
hild of v in F
lassify(vi; T; L)if bodyi is empty then tabulate(v; vi; ' ^ 'i) endifendforendif(b): % lookup nodelet v = l(x) ^R ^ 'let '0 = head(L(v)) % (the �rst element of the list)assign L(v) = tail(L(v)) % (the remainder of the list)if ' ^ '0 satis�able then
reate new node v0 = R ^ ' ^ '0
lassify(v0; T; L)tabulate(v; v0; ' ^ '0)endif(
): % negative a
tive node, no 
ompanionlet v = :p(x) ^R ^ '
reate a new node v0 = p(x) ^ ' as the root of a new tree in F
lassify(v0; T; L)mark v and v0 as 
ompanion nodes(d): % negative a
tive node, 
ompanion donelet v = :p(x) ^R ^ 'let v0 = p(x) ^ ' be the 
ompanion of vlet ['1; : : : ; 'n℄ be the list T [hp(x); '0i℄where ' = '0 or 'j='0 depending on whether v0 is an a
tive or lookup nodeif n = 0 then set n = 1 and ['1; : : : ; 'n℄ = [false℄ endifif ' ^Vni=1 :'i is unsatis�able then mark v as a failure nodeelselet  1 _ : : : _  k = DNF (' ^Vni=1 :'i) % Disjun
tive Normal Formassign T [h:p(x); 'i℄ = [ 1; : : : ;  k℄for all i = 1; : : : ; k do
reate new node vi = R ^ ' ^  i as a 
hild of v in F
lassify(vi; T; L)tabulate(v; vi; ' ^ 'i)endforendifend
aseendpro
 % extend 79
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Chapter 5Beyond Region Graphs:Symboli
 Forward Analysis of TimedAutomata5.1 Introdu
tionA timed automaton [AD94℄ models a system whose transitions between �nitely many 
ontrollo
ations depend on the values of 
lo
ks. The 
lo
ks advan
e 
ontinuously over time; they 
anindividually be reset to the value 0. Sin
e the 
lo
ks take values over reals, the state spa
e of atimed automaton is in�nite.The theoreti
al and the pra
ti
al investigations on timed automata are re
ent but alreadyquite extensive (see e.g. [AD94, HKPV95, LPY95b, Bal96, DT98℄). Many de
idability resultsare obtained by designing algorithms on the region graph, whi
h is a �nite quotient of thein�nite state transition graph [AD94℄. Pra
ti
al experiments showing the feasibility of model
he
king for timed automata, however, employ symboli
 forward analysis. We do not knowof any pra
ti
al tool that 
onstru
ts the region graph. Instead, symboli
 model 
he
king isextended dire
tly from the �nite to the in�nite 
ase; logi
al formulas over reals are used to`symboli
ally' represent in�nite sets of tuples of 
lo
k values and are manipulated by applyingthe same logi
al operations that are applied to Boolean formulas in the �nite state 
ase.If model 
he
king is based on ba
kward analysis (where one iteratively 
omputes sets of pre-de
essor states), termination is guaranteed [HNSY94℄. In 
omparison, symboli
 forward analysisfor timed automata has the theoreti
al disadvantage of possible non-termination. Pra
ti
ally,however, it has the advantage that it is amenable to on-the-
y lo
al model 
he
king and topartial-order redu
tion te
hniques (see [HKQ98℄ for a dis
ussion of forward vs. ba
kward anal-ysis).In symboli
 forward analysis applied to the timed automata arising in pra
ti-
al appli
ations (see e.g. [LPY95b℄), the theoreti
al possibility of non-terminatingdoes not seem to play a role. Existing versions that ex
lude this possibil-ity (through built-in runtime 
he
ks [DT98℄ or through a stati
 prepro
essingstep [HKPV95℄) are not used in pra
ti
e.This situation leads us to raising the question whether there exist `interesting' suÆ
ient
onditions for the termination of symboli
 model 
he
king pro
edures for timed automata based81



on forward analysis. Here, `interesting' means appli
able to a large 
lass of 
ases in pra
ti
alappli
ations. The existen
e of a pra
ti
ally relevant 
lass of in�nite-state systems for whi
hthe pra
ti
ally employed pro
edure is a
tually an algorithm would be a theoreti
ally satisfyingexplanation of the su

ess of the ongoing pra
ti
e of using this pro
edure, and it may guide us indesigning pra
ti
ally su

essful veri�
ation pro
edures for other 
lasses of in�nite-state systems.As a �rst step towards answering the question that we are raising, we build a kind of `tool-box' 
onsisting of basi
 
on
epts and properties that are useful for reasoning about suÆ
ienttermination 
onditions. The 
entral notions here are 
onstraint transformers asso
iated withsequen
es of automaton edges and zone trees labeled with su

essor 
onstraints. The 
onstrainttransformer asso
iated with the sequen
es of edges e1; : : : ; en of the timed automaton assignsa 
onstraint ' another 
onstraint that `symboli
ally' represents the set of the su

essor statesalong the edges e1; : : : ; en of the states in the set represented by '. We prove properties for
onstraint transformers asso
iated with edge sequen
es of a 
ertain form; these properties areuseful in termination proofs as we then show. The zone tree is a vehi
le that 
an be used toinvestigate suÆ
ient 
onditions for termination without having to go into the algorithmi
 detailsof symboli
 forward analysis pro
edures. It 
aptures the fa
t that the 
onstraints enumeratedin a symboli
 forward analysis must respe
t a 
ertain tree order.We show how the zone tree 
an 
hara
terize termination of (various versions of) symboli
forward analysis. A 
ombinatorial reasoning is then used to derive suÆ
ient termination 
on-ditions for symboli
 forward analysis. The reasoning essentially involves showing that 
ertainproperties of the 
ontrol graph of a timed automaton are suÆ
ient for ensuring termination ofsymboli
 forward analysis. We prove that symboli
 forward analysis terminates for three 
lassesof timed automata. We show that the railroad-
rossing example analyzed in [LS85, AD94℄ aswell as 
ertain fragments of the 
lass of RQ timed automata 
hara
terized in [LB93℄ as a naturalmodel for timed systems fall into these 
lasses. Our analyses of these three 
lasses demonstratehow the presented 
on
epts and properties of the su

essor 
onstraint fun
tion and of the zonetree 
an be employed to prove termination. Termination proofs 
an be quite tedious, as the third
ase shows; the proof here distinguishes and analyzes many 
ases (see the proof of Theorem 5.2).5.2 The Constraint Transformer ' 7! [[w℄℄(')A timed automaton U 
an, for the purpose of rea
hability analysis, be de�ned as a set E ofguarded 
ommmands e (
alled edges) of the form below. Here L is a variable ranging over the�nite set of lo
ations, and x = hx1; : : : ; xni are the variables standing for the 
lo
ks and rangingover nonnegative real numbers. As usual, the primed version of a variable stands for its valueafter the transition. The `time delay' variable z ranges over nonnegative real numbers.e � L = ` ^ 
e(x) [℄ L0 = `0 ^ �e(x;x0; z):The guard formula 
e(x) over the variables x is built up from 
onjun
ts of the form xi � kwhere xi is a 
lo
k variable, � is a 
omparison operator (i.e., �2 f=; <;�; >;�g) and k is anatural number.The a
tion formula �e(x;x0; z) of e is de�ned by a subset Resete of f1; : : : ; ng (denoting the
lo
ks that are reset); it is of the form�e(x;x0; z) � ^i2Resete x0i = z ^ ^i62Resete x0i = xi + z:82



We write  e for the logi
al formula 
orresponding to e (with the free variables x and x0; werepla
e the guard symbol [℄ with 
onjun
tion). e(x;x0) � L = ` ^ 
e(x) ^ L0 = `0 ^ 9z �e(x;x0; z)The states of U (
alled positions) are tuples of the form h`;vi 
onsisting of values for the lo
ationand for ea
h 
lo
k. The position h`;vi 
an make a time transition to any position h`;v + Æiwhere Æ � 0 is a real number.The position h`;vi 
an make an edge transition (followed by a time transition) to the positionh`0;v0i using the edge e if the values ` for L, v for x, `0 for L0 and v0 for x0 de�ne a solutionfor  e. (An edge transition by itself is de�ned if we repla
e the variable z in the formula for �by the 
onstant 0.)We use 
onstraints ' in order to represent 
ertain sets of positions (
alled zones). A 
on-straint is a 
onjun
tion of the equality L = ` with a 
onjun
tion of formulas of the form xi�xj � 
or xi � 
 where 
 is an integer (i.e. with a zone 
onstraint as used in [DT98℄). We identify so-lutions of 
onstraints with positions h`;vi of the timed automaton.We single out the initial 
onstraint '0 that denotes the time su

essors of the initial posi-tion h`0;0i. '0 � L = `0; x1 � 0; x2 = x1; : : : ; xn = x1De�nition 5.1 (Time-
losed Constraints) A 
onstraint ' is 
alled time-
losed if its set ofsolutions is 
losed under time transitions. Formally, '(x) is equivalent to (9x9z(' ^ x01 =x1 + z ^ : : : ^ x0n = xn + z))[x0=x℄.For example, the initial 
onstraint is time-
losed. In the following, we will be interested only intime-
losed 
onstraints.In the de�nition below, '0[x0=x℄ denotes the 
onstraint obtained from '0 by �-renaming(repla
e ea
h x0i by xi).We write e1: : : : :em for the word w obtained by 
on
atenating the `letters' e1; : : : ; em; thus,w is a word over the set of edges E , i.e. w 2 E?.De�nition 5.2 (Constraint Transformer [[w℄℄) The 
onstraint transformer wrt. to an edge eis the `su

essor 
onstraint fun
tion' [[w℄℄ that assigns a 
onstraint ' the 
onstraint[[e℄℄(') � (9x(' ^  e))[x0=x℄where  e is the logi
al formula 
orresponding to e. The su

essor 
onstraint fun
tion [[w℄℄ wrt. astring w = e1: : : : :em of length m � 0 is the fun
tional 
omposition of the fun
tions wrt. theedges e1, : : : , em, i.e. [[w℄℄ = [[e1℄℄ Æ : : : Æ [[em℄℄.Thus, [["℄℄(') = ' and [[w:e℄℄(') = [[e℄℄([[w℄℄(')). The solutions of [[w℄℄(') are exa
tly the (\edgeplus time") su

essors of a solution of ' by taking the sequen
e of transitions via the edges e1,: : : , em (in that order).We will next 
onsider 
onstraint transformers [[w℄℄ for strings w of a 
ertain form. In thenext de�nition, the terminology `a 
lo
k xi is queried in the edge e' means that xi is a variableo

urring in the guard formula 
 of e; `xi is reset in e' means that i 2 Resete.De�nition 5.3 (Strati�ed Strings) A string w = e1: : : : :em of edges is 
alled strati�ed if83



{ ea
h 
lo
k x1; : : : ; xn is reset at least on
e in w, and{ if xi is reset in ei then xj is not queried in e1, : : : , ej.Proposition 5.1 The su

essor 
onstraint fun
tion wrt. a strati�ed string w is a 
onstant fun
-tion over satis�able 
onstraints (i.e. there exists a unique 
onstraint 'w su
h that [[w℄℄(') = 'wfor all satis�able 
onstraints ').Proof. We express the su

essor 
onstraint of the 
onstraint ' wrt. the strati�ed string w =e1 : : : em equivalently by[[w℄℄(') � (9x9x1 : : : 9xm�19z1 : : : 9zm(' ^  1 ^ : : : ^  m))[x=xm℄where  k is the formula that we obtain by applying �-renaming to the (quanti�er-free) 
onjun
-tion of the guard formula 
ek(x) and the a
tion formula �ek(x;x0; z) for the edge ek; i.e. k � 
ek(xk�1) ^ �ek(xk�1;xk; zk):Thus, in the formula for ek, we rename the 
lo
k variable xi to xk�1i , its primed version x0i to xki ,and the `time delay' variable z to zk.We identify the variables xi (applying in ') with their \0-th renaming" x0i (appearing in  1);a

ordingly we 
an write x0 for the tuple of variables x.We will transform 9x1 : : : 9xm�1( 1 ^ : : : ^  m) equivalently to a 
onstraint  
ontainingonly 
onjun
ts of the form xmi = zl + : : : + zm and of the form zl + : : : + zm � 
 where l > 0;i.e.  does not 
ontain any of the variables xi of '. Thus, we 
an move the quanti�ers 9xinside; formally, 9x('^ ) is equivalent to (9x')^ . Sin
e ' is satis�able, the 
onjun
t 9x' isequivalent to true. Summarizing, [[w℄℄(') is equivalent to a formula that does not depend on ',whi
h is the statement to be shown.The variable xki (the \k-th renaming of the i-th 
lo
k variable") o

urs in the a
tion formulaof  k, either in the form xki = zk or in the form xki = xk�1i + zk, and it o

urs in the guardformula of  k+1, in the form xki � 
.If the i-th 
lo
k is not reset in the edges e1, : : : , ek�1, then we repla
e the 
onjun
t xki =xk�1i + zk by xki = xi + z1 + : : : zk.Otherwise, let l be the largest index of an edge el with a reset of the i-th 
lo
k. Then werepla
e xki = xk�1i + zk by xki = zl + : : :+ zk.If k = m, the �rst 
ase 
annot arise due to the �rst 
ondition on strati�ed strings (the i-th
lo
k must be reset at least on
e in the edges e1, : : : , em). That is, we repla
e xmi = xm�1i + zkalways by a 
onjun
t of the form xki = zl + : : : + zk.If the 
onjun
t xki � 
 appears in  k+1, then, by assumption on w (the se
ond 
ondition forstrati�ed strings), the i-th 
lo
k is reset in an edge el where l � k. Therefore, we 
an repla
ethe 
onjun
t xki � 
 by zl + : : :+ zk � 
.Now, ea
h variable xki (for 0 < k < m) has exa
tly one o

urren
e, namely in a 
onjun
t Cof the form xki = xi + z1 + : : : zk or xki = zl + : : : zk. Hen
e, the quanti�er 9xki 
an be movedinside, before the 
onjun
t C; the formula 9xki C 
an be repla
ed by true.After the above repla
ements, all 
onjun
ts are of the form xmi = zl+ : : :+ zm or of the formzl + : : :+ zm � 
; as explained above, this is suÆ
ient to show the statement. [℄We say that an edge e is reset-free if Resete = ;, i.e., its a
tion is of the form�e � Vi=1;::: ;n x0i = xi. A string w of edges is reset-free if all its edges are.84



Proposition 5.2 If the string w is reset-free, and the su

essor 
onstraint of a time-
losed
onstraint of the form L = ` ^ ' is of the form L = `0 ^ '0, then '0 entails ', formally '0 j= '.Proof. It is suÆ
ient to show the statement for w 
onsisting of only one reset-free edge e.Sin
e ' is time-
losed, it is equivalent to (9x9z(' ^ x0 = x+ z))[x=x0℄.Then [[w℄℄(L = `^') is equivalent to (9 : : : (L = `0^'^x0 = x+z0^
e(x0)^x00 = x0+z0)[x=x00℄.This 
onstraint is equivalent to L = `0 ^ '(x) ^ 
(x). This shows the statement. [℄5.3 Zone Trees and Symboli
 Forward AnalysisDe�nition 5.4 (Zone Tree) The zone tree of a timed automaton U is an in�nite tree whosedomain is a subset of E? (i.e., the nodes are the strings over E) that labels the node w by the
onstraint [[w℄℄('0).That is, the root " is labeled by the initial 
onstraint '0. For ea
h node w labeled ', and for ea
hedge e 2 E of the timed automaton, the su

essor node w:e is labeled by the 
onstraint [[e℄℄(').Clearly, the (in�nite) disjun
tion of all 
onstraints labeling a node of the zone tree representsall rea
hable positions of U .We are interested in the termination of various versions of symboli
 forward analysis of atimed automaton U . All versions have in 
ommon that they traverse (a �nite pre�x of) its zonetree, in a parti
ular order. The following de�nition of a non-deterministi
 pro
edure abstra
tsaway from that spe
i�
 order.De�nition 5.5 (Symboli
 Forward Analysis) A symboli
 forward analysis of a timed au-tomaton U is a pro
edure that enumerates 
onstraints 'i labeling the nodes wi of the zone treeof U in a tree order su
h that the enumerated 
onstraints together represent all rea
hable posi-tions. Formally,{ 'i = [[wi℄℄('0) for 0 � i < B where the bound B is a natural number or !,{ if wi is a pre�x of wj then i � j,{ the disjun
tion W0�i<B 'i is equivalent to the disjun
tion W0�i<! 'i.We assume that the 
onstraint 'i is 
omputed by applying any of the known quanti�er elimi-nation algorithms (see e.g. [MS98℄) to a 
onjun
tion of 
onstraints.The number i is a leaf of a symboli
 forward analysis if the node wi is a leaf of the treeformed by all the nodes wi where 0 � i � B.We say that a symboli
 forward analysis terminates if the bound B is �nite (i.e. not !). Wede�ne that symboli
 forward analysis terminates with lo
al subsumption if for all its leafs i thereexists j < i su
h that the 
onstraint 'i entails the 
onstraint 'j . In 
ontrast, it terminateswith global subsumption if for all its leafs i there the 
onstraint 'i entails the disjun
tion of all
onstraints 'j where j < i. Model 
he
king is more eÆ
ient with lo
al subsumption than withglobal subsumption, both pra
ti
ally and theoreti
ally [DP99a℄.A depth-�rst symboli
 forward analysis depends on a 
hosen order of edges. Symboli
 forwardanalysis terminates if and only if the depth-�rst symboli
 forward analysis of U terminates forevery order 
hosen. 85



If the symboli
 depth-�rst forward analysis of U terminates for at least one order of edges,then the breadth-�rst version also terminates. The 
onverse need not be true, as the 
ounterex-ample of Figure 6.6 shows.
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 4Figure 5.1: Example of a timed automaton for whi
h the breadth-�rst version of symboli
forward analysis terminates but the depth-�rst version does not, if the edge numbered 4 isfollowed before the edge numbered 7.A path p in a zone tree is an in�nite string over E , i.e., p 2 E!; p 
ontains a node w if thestring w is a pre�x of p, written w < p. A node v pre
edes a node w if v is a pre�x of w, writtenv < p.De�nition 5.6 (Lo
al �niteness) A path p of a zone tree is lo
ally �nite if and only if it
ontains a node w labeled by a 
onstraint that entails the 
onstraint labeling some node v pre-
eding w (formally, there exist v and w su
h that v < w < p and [[w℄℄('0) j= [[v℄℄('0)). A zonetree is lo
ally �nite if every path is.The relation between the termination of symboli
 forward analysis and the lo
al �nitenessof the zone tree for a timed automaton is formalized as follows.Proposition 5.3 Every symboli
 forward analysis of a timed automaton U terminates with lo
alsubsumption if and only if the zone tree of U is lo
ally �nite.We will next investigate the spe
ial 
lass of strings (that we 
all 
y
les) that 
orrespond to
y
les in the 
ontrol graph of the given timed automaton. Ea
h 
y
le in the graph-theoreti
sense 
orresponds to �nitely many 
y
les in the sense de�ned here (as strings), depending onthe entry lo
ation.We say that an edge e of the form L = ` : : : [℄ L0 = `0 : : : leads from the lo
ation ` to thelo
ation `0. This terminology re
e
ts the fa
t that there exists a dire
ted edge from ` to `0 labeledby the 
orresponding guarded 
ommand in the 
ontrol graph of the given timed automaton (wewill not formally introdu
e the 
ontrol graph). Semanti
ally, all transitions using su
h an edgego from a position with the lo
ation ` to a position with the lo
ation `0. We 
anoni
ally extendthe terminology `leads to' from edges e to strings w of edges.86



De�nition 5.7 (Cy
le) The string w = e1: : : : :em of length m � 1 is a 
y
le if the sequen
e ofedges e1, : : : , em lead from a lo
ation ` to the same lo
ation ` su
h that there exists a sequen
eof edges that leads from the initial lo
ation `0 to ` whose last edge is di�erent from em.The last 
ondition above expresses that ` is an entry point to the 
orresponding 
y
le in the
ontrol graph of the given timed automaton U . The next notion is used in e�e
tive suÆ
ienttermination 
onditions.De�nition 5.8 (Simple Cy
le) A 
y
le w = e1: : : : :em is 
alled simple if it does not 
ontaina proper sub
y
le; formally, no string ei: : : : :ej where 1 � i < j � m is also a 
y
le.Proposition 5.4 A lo
ally in�nite path p 2 E! in the zone tree of the timed automaton U
ontains in�nitely many o

urren
es of a simple 
y
le w; formally, p is an element of the omega-language (E?:w)!.Proof. Let p be a lo
ally in�nite path. Then there exists a lo
ation ` su
h that in�nitelymany nodes on this path are labeled by ` (i.e. a 
onstraint of the form L = ` ^ : : : . The stringsformed by the edges 
onne
ting two nodes labeled by ` must all 
ontain a simple 
y
le. Sin
ethe number of simple 
y
les is �nite, some simple 
y
les must be repeated in�nitely often. [℄A string is strati�able if 
ontains a strati�ed substring (a substring of a string e1: : : : :em is anystring of the form ei: : : : :ej where 1 � i � j � m).Proposition 5.5 If every simple 
y
le of the timed automaton U is either reset-free or strati-�able, the zone tree of U is lo
ally �nite.Proof. Follows from Propositions 5.1, 5.2 and 5.4. [℄We apply the above results to obtain our �rst suÆ
ient termination 
ondition.Theorem 5.1 Symboli
 depth-�rst forward analysis of a timed automaton U terminates if allsimple 
y
les of U are either reset-free or strati�able.Proof. Follows from Propositions 5.3 and 5.5. [℄To show the appli
ability of our result, 
onsider the train-gate-
ontroller example adaptedfrom [AD94, LS85℄. This example 
onsists of the parallel 
omposition of three 
omponents|the gate, the 
ontroller and the train. The transition systems (timed automata) for the gate,
ontroller and train are given in Figures 5.2, 5.3 and 5.4 respe
tively. The transition system
orresponding to the parallel 
omposition of the three systems is given in Figure 5.5. It 
anbe seen that ea
h simple 
y
le in the 
omposed system is strati�able. Hen
e symboli
 forwardanalysis train-gate-
ontroller example terminates.5.4 RQ AutomataA timed automaton U is 
alled RQ [LB93℄ if for ea
h 
lo
k x, U 
ontains exa
tly one edge witha reset of x and exa
tly one edge with a query of x, and moreover, for every transition sequen
eof eU starting from the initial position, the sequen
e of resets and queries of x is alternating,87
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  2 3Figure 5.6: Example of a timed automaton showing that the property: \Every rea
hable lo
ationis rea
hable through a simple path" does not entail termination of depth-�rst symboli
 forwardanalysis.with a reset before the �rst query; here, eU refers to the timed automatonfrom U obtained byrepla
ing all 
onjun
ts x � 
 in the guard formulas by the 
onjun
t x � 0. We may requirewlog. that no edge e of a timed automaton U 
ontains both a reset of a 
lo
k and a query of a
lo
k.RQ automata have the following interesting property: if a lo
ation is rea
hable then it isrea
hable through a simple path, i.e. a sequen
e of edges that form a string not 
ontaining a
y
le [LB93℄. So it is possible to derive spe
ialized terminating graph algorithms for rea
habilityfor RQ automata. Moreover, a 
y
le is traversable in�nitely often if it is traversable on
e [LB93℄.We will now investigate how a generi
 model 
he
ker based on symboli
 forward analysis be-haves on RQ automata. We do not know whether we obtain termination for this spe
ial 
ase.We know that the distinguished property of RQ automata (that rea
hability is equivalent torea
hability through a simple path) by itself is not suÆ
ient for termination; Figure 5.6 gives a
ounterexample.We will 
onsider two spe
ial 
lasses of RQ automata. The �rst one is 
hara
terized by the
ut 
ondition.De�nition 5.9 (Cut 
ondition) A timed automaton U satis�es the 
ut 
ondition if any twosimple 
y
les w and w0 are either identi
al or their sets of edges are disjoint.Graph-theoreti
ally, every simple 
y
le in the 
ontrol graph has exa
tly one entry point (whi
his then 
alled the `
ut vertex').Theorem 5.2 Symboli
 depth-�rst forward analysis of an RQ timed automaton U terminatesif it satis�es the 
ut 
ondition and in every simple 
y
le, either all or no 
lo
k is reset.Proof. A simple 
y
le 
ontaining a reset for ea
h 
lo
k in an RQ automaton satisfying the 
ut
ondition is strati�ed. Hen
e, Theorem 5.1 yields the statement. [℄The se
ond 
lass of RQ automata is obtained by restri
ting the number of 
lo
ks to two. Manyinteresting timed 
lient server proto
ols belong to this 
lass. See [LB93℄ for examples.Theorem 5.3 Symboli
 depth-�rst forward analysis of an RQ timed automaton with two 
lo
ksterminates. 90



Proof. We name the two 
lo
k variables of the automaton x and y. We note Rx the uniqueedge of the time automaton where x is reset, and Qy the one where x is queried; similarly wede�ne Ry and Qy. By our non-proper restri
tion, Rx 6= Qx et
..A segment S of a path p in a zone tree is a sequen
e of nodes n1; : : : ; nm of the zone tree.The string w = e1 : : : em�1 labels the segment S if nm is rea
hed from n1 by following the edgese1; : : : ; em in the zone tree.For a proof by 
ontradi
tion, assume that p is an in�nite bran
h of the zone tree. ByProposition 5.4, there exists a simple 
y
le w (leading, say, from the lo
ation ` to `) that repeatsin�nitely often on p. We write S1, S2, : : : for the segments that are labeled by w (in 
onse
utiveorder). We write Li for the segment between Si and Si+1. We note vi the string labeling thesegment Li; ea
h string vi is a 
y
le (leading also from the lo
ation ` to `). Below we will usethe terminology `w labels Si' and `vi labels Li'.We �rst distinguish between the 
ases whether the edge Rx is part of the string w (\Rx 2 w")or not.Case 1 Rx 2 w.The edge Qx must then also be an element of w (if the 
y
le w 
an be exe
uted on
e then evenin�nitely often [LB93℄; if it 
ontained Rx but not Qx then the RQ 
ondition would be violated).Case 1.1 Ry 2 w.Again, we must have that Qy 2 w.We distinguish between the 
ases that the edge Ry appears stri
tly before the edge Qy in thestrings w (\Ry < Qy") or after (\Qy < Ry").Case 1.1.1 Ry < Qy.Repeating the above reasoning for x instead of y, we distinguish between the 
ases \Ry < Qy"and \Qy < Ry".Case 1.1.1.1 Rx < Qx.The two assumptions Rx < Qx and Ry < Qy mean that the string w is strati�ed . Hen
e, byProposition 5.1, the su

essor 
onstraint fun
tion wrt. w is 
onstant. Hen
e, the 
onstraintlabeling the last node of S2 entails the 
onstraint labeling the last node of S1. Thus, the path pis lo
ally �nite, whi
h a
hieves the 
ontradi
tion.Case 1.1.1.2 Qx < Rx.We distinguish the 
ases whether the edge Qx appears before the edge Ry or stri
tly after.Case 1.1.1.2.1 Qx < Ry.Combining the assumptions leading to this 
ase, namely Rx 2 w (and hen
e also Qx 2 w)and Ry 2 w (and hen
e also Qy 2 w) and Ry < Qy and Qx < Rx and Qx < Ry, we knowthat the string w is of the form w = w1:Qx:w2 su
h that w2 
ontains Rx and Ry. Hen
e, thesubstring w2 of w strati�ed . By Proposition 5.1, the su

essor 
onstraint fun
tion wrt. w2 is
onstant, and hen
e also the one wrt. w. As in the 
ase above, we a
hieve a 
ontradi
tion.Case 1.1.1.2.2 Ry < Qx.Again we 
ombine the assumptions leading to this 
ase: namely Rx; Qx; Ry; Qy 2 w andRy < Qy and Qx < Rx and Ry < Qx.Only using that Ry < Rx, we know that the string w is of the form w = w1:Ry:w2:Rx:w3.One of the two 
ases, namely Rx 62 Li or Rx 2 Li, will hold for in�nitely many segments Li's.Case 1.1.1.2.2.1 Rx 62 Li.Then also Qx 62 Li (be
ause of the RQ-
ondition and sin
e Li is a 
y
le).We then distinguish between the analogue 
ases for y instead of x.Case 1.1.1.2.2.1.1 Ry 62 Li. 91



Again, then Qy 62 Li.We are assuming that Rx; Qx; Ry; Qy 62 Li for in�nitely many Li. We take two su
h segments,
alling them L and L0. Let v and v0 be the string labeling (the edge linking the nodes in) Land L0. Then, the su

essor 
onstraint fun
tions wrt. v and v0 are the identity.We form the strati�ed strings V = Rx:w3:v:w1:Ry and V 0 = Rx:w3:v0:w1:Ry. Sin
e the su

essor
onstraint fun
tions wrt. v and v0 are the identity, the su

essor 
onstraint fun
tions wrt. Vand V 0 are the same 
onstant fun
tion. The same reasoning as above leads to a 
ontradi
tion.Case 1.1.1.2.2.1.2 Ry 2 Li.Then also Qy 2 Li. Be
ause of the RQ-
ondition and sin
e the edge Ry pre
edes Qy in Si,the �rst o

urren
e of Ry pre
edes the �rst o

urren
e of Qy in Li. Hen
e, the strings vand v0 (de�ned as above, labeling of some Li's) is of the form v = v1:Ry:v2 or v = v01:Ry:v02where v1, v2, v01 and v02 do not 
ontain any reset or any query of a 
lo
k variable (and hen
e,yield the identity as the su

essor 
onstraint fun
tion). We form the strati�ed substringsV = Rx:w3:v1:Ry and V 0 = Rx:w3:v01:Ry, whi
h yield the same 
onstant su

essor 
onstraintfun
tion for the same reason as above. Again, this leads to a 
ontradi
tion.Case 1.1.1.2.2.2 Rx 2 Li.Again, then Qx 2 Li. Now we are assuming that Rx; Qx; Ry; Qy 2 Li for in�nitely many Li.As in Case 1.1.1.2.2.1.2, the �rst o

urren
e of Ry must pre
ede the �rst o

urren
e of Qy in Li.Assume that there is a reset of x in Li before the �rst reset of y. We form the string Rx:w2:v1; Rxwhere w = w1:Rx:w2 is su
h that w2 does not 
ontain any reset (by the assumptions for the
ases 1.1.1.2 and 1.1.1.2.2) and vi = v1:Rx:v2 (the string labeling Li) is su
h that v1 does not
ontain any reset. Following the lines of the proof for Proposition 5.2 one 
an show that forany 
onstraint ', [[Rx:w2:v1:Rx℄℄(') entails [[Rx℄℄('). This is a 
ontradi
tion (to the fa
t thatthe path p is lo
ally in�nite).Assume that there is no reset of x in Li before the �rst reset of y. Then the string formed bythe edges leading from the reset of x in Si to the �rst reset of y in Li is strati�ed. We 
an thenapply the same reasoning as in Case 1.1.1.2.1 to derive a 
ontradi
tion.Case 1.1.2 Qy < Ry.Thus now Rx 2 w (and hen
e Qx 2 w), Ry 2 w (and hen
e Qy 2 w) and Qy < Ry. Now we
onsider the following sub
ases of this 
ase.Case 1.1.2.1 Rx < QxThis 
ase is symmetri
 to Case 1.1.1.2.1 where Rx; Ry 2 w, Qx < Ry and Ry < Qy.Case 1.1.2.2 Qx < Rx.The assumption of the 
ase is that the reset o

urs after the query for both 
lo
ks. Due tothe RQ 
ondition, there 
annot be any query between the two resets. Therefore, Rx:w1:Ry(or, symmetri
ally, Ry:w1:Rx) forms a strati�ed substring of w. As before, we obtain a
ontradi
tion.Case 1.2 Ry 62 w.We distinguish between the following sub
ases of this 
ase.Case 1.2.1 Rx < Qx.One of the following sub
ases holds for in�nitely many Li.Case 1.2.1.1Ry 62 Li.As in the proof for Case 1.1.1.2.2.2, we form a substring of the form Rx:w2:v1:Rx where w2and v1 don't 
ontain any reset, and again obtain a 
ontradi
tion.92



Case 1.2.1.2 Ry 2 Li.We show that for the 
ase when x is reset more than on
e in Li after the last reset of y inLi, we 
an obtain a 
ontradi
tion.We form the string Rx:w1:Rx is su
h that w1 does not 
ontain any reset (by the assumptionsfor the 
ases 1.1.1.2 and 1.1.1.2.2) and vi = v1:Rx:w1:Rx:v2 (the string labelingLi). Following thelines of the proof for Proposition 5.2 one 
an show that for any 
onstraint ', [[Rx:w2:v1:Rx℄℄(')entails [[Rx℄℄('). This is a 
ontradi
tion (to the fa
t that the path p is lo
ally in�nite).The remain 
ases are as follows, one of whi
h repeats in�nitely often.Case 1.2.1.2.1. The last reset of y in Li is followed by a query of y in Li whi
h is againfollowed by a reset and a query of x in Li in that order.Note that there 
annot be any reset or query of x between Ry and Qy above as that wouldviolate the RQ 
ondition. Now 
onsider the substring Ry:w1:Qy:w2:Rx of vi. This substring isstrati�ed and w1 and w2 do not 
ontain any reset or query. Hen
e using the same methods asin the previous 
ases. we obtain a 
ontradi
tion.Case 1.2.1.2.2 The last reset of y in Li is followed by a reset and a query of x in Li in thatorder.Note that the substring Ry:w1:Rx of vi is a strati�ed substring and w1 does not 
ontain any resetor query. Hen
e using te
hniques similar to that of the above sub
ases, we obtain a 
ontradi
tion.Case 1.2.1.2.3 The last reset of y in Li is followed by a query of y in Li whi
h is againfollowed by a query, a reset and a query of x in Li in that order (assuming that the last reset ofx before the last reset of y in Li was not followed by a query of x).Note that the substring Rx:w1:Ry of vi is a strati�ed substring and w1 does not 
ontain any resetor query. Hen
e using te
hniques similar to that of the above sub
ases, we obtain a 
ontradi
tion.Case 1.2.1.2.4 The last reset of y in Li is followed by a query, a reset and a query of x in Liin that order (assuming that the last reset of x before the last reset of y in Li was not followedby a query of x).Note that the substring Rx:w1:Ry of vi is a strati�ed substring and w1 does not 
ontain any resetor query. Hen
e using te
hniques similar to that of the above sub
ases, we obtain a 
ontradi
tion.Case 1.2.1.2.5 The last reset of y in Li is followed only by a query of y in Li.Note that the substring Ry:w1:Qy:w2:Rx, of vi:w is a strati�ed substring and w1 and w2 do not
ontain any reset or query. Hen
e using te
hniques similar to that of the above sub
ases, weobtain a 
ontradi
tion.Case 1.2.2 Qx < Rx.We 
onsider the 
ase when Rx 2 w, Ry 62 w and Qx < Rx. The following sub
ases of this 
aseare to be 
onsidered:Case 1.2.2.1 Ry 62 Li.Then also Qy 62 Li (be
ause of the RQ-
ondition and sin
e Li is a 
y
le).We then distinguish between the analogue 
ases for x instead of y.Case 1.2.2.1.1 Rx 62 Li.Again, then Qx 62 Li.We are assuming that Ry; Qy; Rx; Qx 62 Li for in�nitely many Li. We form the substringRx:w1:vi:w2:Rx where w = w2:Rx:w1. Note that there is no reset of any 
lo
k in w1:vi:w2.Hen
e, reasoning as in Case 1.1.1.2.2.2, we obtain a 
ontradi
tion.Case 1.2.2.1.2 Rx 2 Li.The proof for this 
ase is the similar to that of the above 
ase.Case 1.2.2.2 Ry 2 Li. 93



This 
ase assumes Rx 2 w, Qx < Rx and for in�nitely many i, Ry 2 Li. One of the followingsub
ases of this 
ase o

urs in�nitely often.Case 1.2.2.2.1 Rx 62 Li.First note that there 
an be at most one reset of y in Li (otherwise, reasoning as in 
ase 1.2.1.2,we already obtain a 
ontradi
tion) . Se
ondly, note that the query of y 
annot pre
ede its reset inLi (otherwise the RQ 
ondition is violated). Lastly note that the string Rx:w1:Ry is a strati�edsubstring of w:vi. Also w1 does not involve any reset or query. Hen
e, reasoning as in the abovesub
ases, we obtain a 
ontradi
tion.Case 1.2.2.2.2 Rx 2 Li.In this 
ase both x and y are reset in Li. Note the following fa
ts. First between the reset of xin Si and the �rst reset of y in Li, there 
annot be any reset of x (otherwise, reasoning as in 
ase1.2.1.2, we already obtain a 
ontradi
tion). Now �rst 
onsider the 
ase when the �rst reset of yin Li pre
edes its �rst query in Li. Noti
e that the substring Rx:w1:Qx:w2:Ry or the substringRx:v:Ry (if the �rst query of x pre
edes the �rst reset of y in Li) of w:vi is a strati�ed string.Hen
e reasoning as in the above 
ases we 
an obtain a 
ontradi
tion. The other 
ase when the�rst query of y pre
edes the �rst reset of y in Li is dealt as follows. First note that the lastquery of x in Li must pre
ede the last reset of x in Li. Se
ond note that the last reset of y in Limust o

ur after the last query of y in Li. Third note that after the last reset of x in Li there
an be only one reset of y in Li and no query of y in Li(otherwise, reasoning as in 
ase 1.2.1.2,we alrteady obtain a 
ontradi
tion). Hen
e we 
an form the strati�ed substring Rx:w1:Ry of viwhere w1 does not 
ontain any reset or query. Hen
e, reasoning as in the above 
ases, we obtaina 
ontradi
tion.Case 2 Rx 62 w. This implies that Qx 62 w.We distinguish between the following sub
ases of this 
ase.Case 2.1 Ry 62 w. This implies that Qy 62 w.Thus w is a reset free 
y
le. Hen
e by Proposition 5.2 we obtain a 
ontradi
tion.Case 2.2 Ry 2 w.This 
ase is symmetri
 to 
ase 1.2 above. [℄5.5 Future WorkThe presented work targets theoreti
al investigations of timed automata not at the veri�
ationproblem itself but, instead, at the termination behavior of the pro
edure solving it in pra
ti
e,namely symboli
 forward analysis. This work is a potential starting point for deriving interestingsuÆ
ient termination 
onditions. There are, however, other open questions along these lines.Our setup may also be used to derive ne
essary termination 
onditions. These are usefulobviously in the 
ases when their test is negative. Another question is whether there existde
idable ne
essary and suÆ
ient 
onditions.We may also 
onsider logi
al equivalen
e instead of lo
al subsumption for a pra
ti
ally moreeÆ
ient, but theoreti
ally weaker �xpoint test (used in tools su
h as Uppaal [LPY95b℄). Weobserve that Proposition 5.1 is still dire
tly appli
able in the new 
ontext, but Proposition 5.2 isnot. The 
omparison of the di�erent �xpoint tests (equivalen
e, lo
al and global subsumption)is an interesting subje
t of resear
h.We may be able to derive natural and less restri
tive suÆ
ient termination 
onditions when94



we 
onsider the enhan
ement of symboli
 forward analysis with te
hniques from [Boi98℄ to
ompute the e�e
t of loops, i.e. essentially the 
onstraint transformer [[w!℄℄ for simple 
y
les w.The 
onstraint transformers [[w℄℄ form a `symboli
 version' of the synta
ti
 monoid [Eil76℄for timed automata. This notion may be of intrinsi
 interest and deserve further study.
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Chapter 6A

urate Widenings andBoundedness Properties6.1 Introdu
tionFor the last ten years, the veri�
ation problem for timed systems has re
eived a lot of attention(see e.g., [AD94, Bal96, DT98, LPY95b, WT95℄). The problem has been shown to be de
idablein [AD94℄. Most of the veri�
ation approa
hes to this problem have been based either on aregion graph, whi
h is a �nite quotient of the in�nite state graph, or on some variants of it (thatuse 
onvex/non-
onvex polyhedra and avoid expli
it 
onstru
tion of the full graph). But, as weshow below, region-graph based approa
hes (or its variants) 
annot be used for dealing withboundedness (unboundedness) properties. This is due to the fa
t that the partitioning of thestate spa
e indu
ed by the region equivalen
e (or any other te
hnique that takes into a

ountthe maximal 
onstant in the guards) is guaranteed to be pre-stable but may not be post-stable(de�nitions of pre-stability and post stability are provided in Chapter 2).A boundedness property is of the form 9k � 0 AG(x � k) where x is a 
lo
k (read thisspe
i�
ation as: there exists a nonnegative k su
h that for all paths starting from the initialposition, the value of the 
lo
k x does not ex
eed k throughout the path). An unboundednessproperty is the dual of a boundedness property: 8k � 0 EF (x > k). These properties are usefulin veri�
ation be
ause if the designer knows that the value of a 
lo
k should never ex
eed a
onstant, then satisfa
tion of an unboundedness property by the design immediately informsthe designer of a possible bug in the design. Also, the implementor 
an use this information tosave some hardware while implementing the design (in hardware).Consider the timed automaton (see [AD94℄ for a de�nition of timed automata) given inFigure 6.1 (it has two 
lo
ks x and y and four lo
ations 0, 1, 2 and 3; the guards and resetsfor the edges are indi
ated at the top of or beside the edges; the invariants of the lo
ationsare indi
ated above or below the lo
ations). Let us try to see whether the system satis�es theproperty 9k � 0 AG(x � k), where the 
lo
k x in the formula refers to the 
lo
k x in theautomaton. If we use the region graph te
hnique, we will see that the regions (the maximal
onstant is 2 here) (1 < y < 2; x > 2), (y = 1; x > 2) and (0 < y < 1; x > 2) (we do notenumerate all the rea
hable regions) are rea
hable. One may now 
on
lude, on the basis of thisrea
hability analysis, that the automaton does not satisfy the above boundedness property (notethat all the three regions given above are unbounded). Unfortunately, this is not true; the value97



of the 
lo
k x never ex
eeds 6 (just six)! Region graphs (or its variants) 
annot be dire
tly usedfor model 
he
king for boundedness properties!
y=<2 y=<2 y=<2

y=<2

y:=0 y:=0

y=<2
x:=0

y=<2
y:=0

 0   1 2

  3Figure 6.1: Illustrating Unboundedness (Boundedness) PropertyNow 
onsider a rea
hability analysis for this timed automaton using the algorithm in Fig-ure 6.3 (this algorithm is a simple symboli
 forward rea
hability analysis algorithm). Thealgorithm terminates generating the following set of rea
hable states: hl 0(x; y); x = 0; y = 0i,hl 0(x; y); x = y; y � 0; y � 2i, hl 1(x; y); 0 � x � 2; y = 0i, hl 1(x; y); x � y � 0; y � x ��2; y � 0; y � 2i, hl 2(x; y); 0 � x � 4; y = 0i, hl 2(x; y); x � y � 0; y � x � �4; y � 0; y � 2i,hl 3(x; y); 0 � y � 2; x = 0i and hl 3(x; y); x � y � 0; y � 2; x � 0i (the states are tuples oflo
ations and 
onstraint stores; we write l i for the lo
ation i). It 
an be easily found out fromthe set of rea
hable states (by proje
ting the 
onstraints on the x-axis) that the value of the
lo
k x never goes beyond 6 and hen
e the above boundedness property is satis�ed.It 
an be shown that if the (symboli
) model 
he
king algorithm in Figure 6.3 terminates,we 
an su

essfully model 
he
k for boundedness (unboundedness) properties. It is now naturalto ask the question whether the pro
edure in Figure 6.3 is guaranteed to terminate. The answeris 'no'; 
onsider the timed automaton in Figure 6.10 | the algorithm in Figure 6.3 will notterminate for this example (an in�nite sequen
e of \states" whi
h are not \in
luded" in the\previously" generated states are produ
ed). Of 
ourse, the pro
edure 
an be for
ed to terminateby in
luding some maximal 
onstant manipulation te
hniques (as the trim operation introdu
edin Chapter 3 or the extrapolation operation [DT98℄ or the prepro
essing step [HKPV95℄). Butthen, like the region graph te
hnique, it 
an be shown that these te
hniques 
annot be dire
tlyused for model 
he
king for boundedness properties. So the natural thing now would be todevelop te
hniques that for
e the termination of the pro
edure in Figure 6.3 (in 
ases where itis possible) but do not lose any information with respe
t to boundedness properties. It is in this
ontext that history-dependent 
onstraint widenings 
ome into play.Before introdu
ing our framework of history-dependent 
onstraint widenings (a

uratewidenings), let us try to see whether the already-existing abstra
t interpretation frame-work [CC77℄ 
an provide solutions to the problems des
ribed above. Abstra
tion interpreta-tion te
hniques [CC77℄ are useful tools to for
e termination of the symboli
 model 
he
kingpro
edures. Here one obtains a semi-test by introdu
ing abstra
tions that yield a 
onservativeapproximation of the original property. Su
h methods have been su

essfully applied to manynontrivial examples [DT98, Bal96, WT95, HPR97℄. While these abstra
tions for
e the termi-nation of the model 
he
king pro
edure, they sa
ri�
e their a

ura
y in the pro
ess (note that98



by a

ura
y, we mean not only a

ura
y with respe
t to rea
hability properties, but also withrespe
t to boundedness properties). One of the most 
ommonly used abstra
tions is the 
onvexhull abstra
tion [WT95, DT98, Bal96℄.The appli
ation of automated, appli
ation independent abstra
tions that enfor
e termina-tion, as is done in program analysis, to model 
he
king seems diÆ
ult for the reason that theabstra
tions are often too rough1. To know the a

ura
y of an abstra
tion is important both
on
eptually and pragmati
ally. As Wong-Toi observes in [WT95℄,...The approximation algorithm proposed is 
learly a heuristi
. It would be of tremen-dous value to have analyti
al arguments for when it would perform well, for when itwould not....As we saw above, any symboli
 model 
he
king pro
edure that \loses" a

ura
y will not be ableto model 
he
k for boundedness (unboundedness) properties. Hen
e, in this 
hapter, we proposea framework, to provide a partial answer to the question asked by Wong-Toi, viz., to determineautomati
ally (using analyti
al methods) whether an abstra
tion performs well (does not losea

ura
y) in a situation and then apply the abstra
tion.We present methods that 
arry over the advantages of abstra
t interpretation te
hniqueswithout losing pre
ision. To be more spe
i�
, we apply history-dependent 
onstraint wideningte
hniques, as already foreseen in [CC77, CH78℄, to provide an appli
ation-independent ab-stra
t interpretation framework for model 
he
king for timed systems. Basing our intuitions onte
hniques from Constraint Databases [JM94℄, we show that abstra
tions of the model 
he
king�xpoint operator, through a set of widening rules, 
an yield an a

urate model 
he
king pro
e-dure. These abstra
tions are based on syntax of the 
onstraints rather than their meaning (thesolution spa
e) in 
ontrast with previous approa
hes (e.g., [Bal96, HPR97, WT95, BBR97℄). Aswe demonstrate on examples, they 
an drasti
ally redu
e the number of iterations or even, insome 
ases, for
e termination of an otherwise non-terminating test. In 
ontrast with the ab-stra
t interpretation te
hniques used for program analysis, they do not always for
e termination;instead their abstra
tion is a

urate. That is, they do not lose information with respe
t to theoriginal property; when they terminate, they provide information whi
h is suÆ
ient even formodel 
he
king for boundedness (unboundedness) properties; i.e., in 
ases where termination isa
hieved, the abstra
tions are sound and 
omplete. Also, being based on the syntax of the 
on-straints they 
an be implemented eÆ
iently (they do not require 
omputation of the 
onvex hulllike [WT95, Bal96, HPR97℄;). We �rst show toy examples in whi
h our abstra
tions (hen
eforth
alled widening rules) either a
hieve termination in an otherwise non-terminating analysis ordrasti
ally a

elerate the termination of symboli
 forward rea
hability analysis.2 We then showthe performan
e of a prototype model 
he
ker, implemented using the te
hniques presented inthis 
hapter, on some standard ben
hmark examples taken from literature. In the Con
lusion,we dis
uss the generality of our approa
h.1Note the statement of Halbwa
hs in [Hal93℄, that \Any widening operator is 
hosen under the assumptionthat the program behaves regularly : : : . Now the assumption of regularity is obviously abusive in one 
ase: whena path in the loop be
omes possible at step n, the e�e
t of this path is obviously out of the s
ope of extrapolationbefore step n (sin
e the a
tions performed on this path have never been taken into a

ount) : : : "2Note that we 
onsider forward analysis, instead of ba
kward analysis, for the obvious advantages mentionedin [HKQ98℄ (Forward analysis is amenable to on-the-
y lo
al model 
he
king and also to partial order redu
tions.These methods ensure that only the rea
hable portion of the state spa
e is explored). Moreover, ba
kward analysis
annot be used for model 
he
king for boundedness properties.99



: : :p: while(x<=100) dox:=x+1; odq: : : :Figure 6.2: Fragment of the pseudo-
ode of a program
6.2 Intuition Behind the A

urate Widening FrameworkEven before we delve into the details of timed systems, we try to give the reader a \feeling" ofour a

urate widening framework. Consider the fragment of a pseudo-
ode of an (integer-valued)program given in Figure 6.2 in whi
h the only de
lared variable is x. Let us try to analyze thisprogram fragment using 
onstraints. More pre
isely, let us try to derive the 
onstraints satis�edby the variable x at the program point q. Assume that initially the 
onstraint on x at programpoint p is given by x � 10. Now let us step through the while loop on
e. The 
onstraint on x atprogram point p is now x � 11. Stepping through the while loop again, the 
onstraint on x atprogram point p be
omes x � 12. From this, the abstra
t interpretation te
hniques des
ribedabove [WT95, Bal96℄ (if we apply the same \widening" rules to this integer-valued programfragment) would derive true (i.e., 
onstraint 
orresponding to the whole set of integers) as the
onstraint on x at the program point q. But unfortunately, this is not 
orre
t. The 
onstraint onx at program point q is given by x � 101. The problem with the above te
hniques is that theydon't seem to be able to dete
t that the while-loop in Figure 6.2 does not generate an \in�nitesequen
e of 
onstraints".The a

urate widening framework tries to \�nd out" from the syntax of a program loop (in
ases in whi
h it 
an) whether it really generates an in�nite behavior (e.g., if the guard for thewhile loop was x � 10 instead of x � 100 it would indeed have generated an in�nite behavior;thus a while loop with a guard x � 
 for an integer 
 and an input 
onstraint of the form x � dwhere d is an integer and d � 
 will indeed generate an in�nite behavior). If it �nds an in�nitebehavior, it applies widening rules to infer the \limit" (e.g., if the in�nite sequen
e is x � 1,x � 2 , : : : , then the limit of the in�nite sequen
e is true) of the in�nite sequen
e. If it does not�nd an in�nite behavior, it either \tries" to infer the \limit" of the �nite sequen
e (based onthe syntax) and speed up the 
omputation pro
edure (in the program in Figure 6.2 it will inferx � 101) or (if it fails to do so) simply does not apply any widening at all. Note that su
h ana

urate widening framework will be too restri
ted for integer-valued programs that are Turing
omplete (it may fail to �nd out an in�nite behavior and hen
e may not use any widening toa

elerate the 
onvergen
e; it is for this reason that we 
annot guarantee termination). But, aswe show below, for a large 
lass of timed systems it 
an be applied to great e�e
t. Note also thatif a widening is applied a

ording to the norms spe
i�ed by the a

urate widening framework,it does not lose any information; it is a

urate. It is this a

ura
y that we prove in theorem6.1. We also provide suÆ
ient 
onditions under whi
h the a

urate widenings are guaranteed tofor
e the termination of the model 
he
king pro
edure.100



Pro
edure Symboli
-Boundedness(�)Input A set of 
onstraints �Output A set of 
onstraints representing sets of states rea
hable from [�℄�0 := �.repeatbegin�i+1 = �i [ post(�i)enduntil �i+1 j= �i.return �i. Figure 6.3: Template for Model Che
king for Boundedness Properties
Pro
edure Symboli
-Boundedness-W(�)Input A set of 
onstraints �Output A set of 
onstraints representing sets of states rea
hable from [�℄�0 := �.repeatbegin�i+1 = �i [WIDEN(�i; post(�i))enduntil �i+1 j= �i.return �i.Figure 6.4: Template for Model Che
king for Boundedness Properties with Widening
Fun
tion WIDEN(�;�) = fWIDEN(
; ') j 
 2 �; ' 2 �gFun
tion WIDEN(
; ')'1 :=WIDEN1(
; ')If '1 6� ' return '1else f'1 :=WIDEN2(
; ')If '1 6� ' return '1else '1 :=WIDEN3(
; ')greturn '1 Figure 6.5: Widen Fun
tion101



6.3 Timed Automata, Constraints and Model Che
kingFor the purposes of this 
hapter, we model timed systems using timed automata. Re
all thenotion of timed automata from Chapter 3.We now �x the formal set up of this 
hapter. We use lower 
ase Greek letters for a 
onstraintand upper 
ase Greek letters for a set of 
onstraints (whi
h stands for their disjun
tion). Theinterpretation domain for our 
onstraints is R the set of reals. We write x for the tuple ofvariables x1; : : : ; xn and v for the tuple of values v1; : : : ; vn. As usual, R;v j= ' is the validityof the formula ' under the valuation v of the variables x1; : : : ; xn. We formally de�ne therelation denoted by a 
onstraint ' as:['℄ = fv j R;v j= 'gNote that x1; : : : ; xn a
t as the free variables of ' and impli
itly all other variables are exis-tentially quanti�ed. We write '[x0℄ for the 
onstraint obtained by alpha-renaming from '. Wede�ne [�℄, the relation denoted by a set of 
onstraints � with respe
t to variables x1; : : : ; xn inthe 
anoni
al way. For a 
onstraint ' and a set of 
onstraints f 1; : : : ;  kg, we write ' j= Wki=1  ii� ['℄ � Ski=1[ i℄. For sets of 
onstraints �1 and �2 (where by a set of 
onstraints � = f'ig,we mean Wi 'i), we write �1 j= �2 if for all ' 2 �1 there exists '0 2 �2 su
h that ['℄ � ['0℄(equivalently, in su
h a 
ase, we say that there exists a lo
al in
lusion abstra
tion from �1 to �2or �1 is lo
ally in
luded in �2; see below for a formal de�nition of lo
al in
lusion abstra
tion;it is this lo
al in
lusion that we will use in our symboli
 model 
he
king pro
edures; see below).We write an event (an edge transition or a time transition or a 
omposition of several edge andtime transitions) as 
ond  a
tion ', where the guard  is a 
onstraint over x1; : : : ; xn andthe a
tion ' is a 
onstraint over the variables x1; : : : ; xn and x01; : : : ; x0n. The primed variable x0denotes the value of the variable x in the su

essor state. Note that we use interleaving seman-ti
s for our model. We will use a set of 
onstraints � to represent a set of states S ifS = [�℄. The su

essor of a set of states of su
h a set with respe
t to an event e are representedby the 
onstraints obtained by 
onjoining the guard  and the a
tion ' of ea
h event with ea
h
onstraint ' of �: postje(�) = f9�x0' ^  ^ ' j ' 2 �;R j= ' ^  ^ 'gwhere the existential quanti�er is over all variables but x0. Note that the postje operation 
anbe easily implemented using well known algorithms for variable elimination from 
onstraintprogramming (eg. Fourier's algorithm [LM92, MS98℄ or Weispfenning's algorithm [Wei94℄) andpolynomial time algorithms for testing satis�ability of linear 
onstraints over reals [MS98℄.We next formulate possibly non-terminating symboli
 model 
he
king pro
edures for bound-edness properties, in our 
onstraint-based framework, based on lo
al in
lusion abstra
tion(see the de�nition below). The template for the algorithm is given in Figure 6.3. Herepost(�) = [e2Epostje(�) where E is the set of all events of the timed system (simple and
ompound ; see below for de�nitions of 
ompound (
omposed) events). The lo
al in
lusionabstra
tion (lo
al subsumption or 
onstraint entailment, see below for a formal de�nition ofin
lusion abstra
tion) in the algorithm 
an be implemented using standard polynomial timealgorithms for (lo
al) 
onstraint entailment [Sri92, MS98℄. The algorithm is basi
ally a (in
a-tionary) �xpoint 
omputation algorithm. Note that the template Symboli
-Boundedness 
anbe used for model 
he
king for the logi
 Ls [LPY95b℄. Also note that the algorithm is breadth102



�rst. In the sequel, we 
all the algorithm Symboli
-Boundedness as the breadth �rst (symboli
forward) rea
hability analysis algorithm with (lo
al) in
lusion abstra
tion. Re
all the notion ofzones from Chapter 3. It 
an be easily shown (by using Fourier's Algorithm [MS98, LM92℄ forexample) that for timed automata, the sets of rea
hable states in a symboli
 forward rea
habilityanalysis 
an be represented by zones.6.3.1 In
lusion Abstra
tionsWe �rst note that the lo
ations of a timed automaton 
an be en
oded as �nite domain 
onstraints(in our algorithms we assume that the lo
ations are en
oded as �nite domain 
onstraints).We denote a position (simply a state) [AD94, HK97℄ of the timed automaton having lo
ation
omponent ` as `(v) where v denotes the values of the 
lo
ks. In general, for a set S of stateshaving the lo
ation 
omponent `, we write h`; Si, or h`(x); 'i, where ' is a zone 
onstraint andS = ['℄ = fv j `(v) 2 Sg. Here the free variables of ' are fx1; : : : ; xng. In the sequel, we willrefer to a set of states with lo
ation 
omponent ` and represented by h`(x); 'i as a symboli
state or simply a state when it is 
lear from 
ontext. For a timed automaton U , we denote theset of all rea
hable symboli
 states by SUsymb.De�nition 6.1 (Lo
al In
lusion Abstra
tion.) Given a timed automaton U , we say that�in
 : SUsymb �! SUsymb is a lo
al in
lusion abstra
tion i�, for any h`(x); 'i 2 SUsymb, h`(x); 'i ��in
(h`(x); 'i) where for any two states h`(x); 'i and h`0(x); '0i, h`(�x); 'i � h`0(x); '0i i� ` and`0 are identi
al and ['℄ � ['0℄ (equivalently ' j= '0). Given S;S 0 � SUsymb, we say that �in
 is alo
al in
lusion abstra
tion from S to S 0 i� for all h`(x); 'i 2 S there exists h`(x); '0i 2 S 0 su
hthat �in
(h`(x); 'i) = h`(x); '0i.De�nition 6.2 (Global In
lusion Abstra
tion [DT98℄.) We say that �gin
 : SUsymb �!2SUsymb is a global in
lusion abstra
tion i�, for any h`(x); 'i 2 SUsymb, �gin
(h`(x); 'i) w h`(x); 'i,where for S � SUsymb, h`(x); 'i v S i� ['℄ � Sh`(x);'0i2S ['0℄ (or equivalently ' j= Wh`(x);'0i2S '0).There is a lo
al in
lusion abstra
tion from the 
onstraint x � 5 to the 
onstraint x � 4 sin
e(x � 5) j= (x � 4) (we do not show the lo
ations whi
h are assumed to be the same). There is alo
al in
lusion abstra
tion from the set of 
onstraints f4 � x � 5; 1 � x � 2; 16 � x � 20g (whereby a set of 
onstraints , we denote their disjun
tion) to the set of 
onstraints f0 � x � 5; x � 16gsin
e (4 � x � 5) j= (0 � x � 5), (1 � x � 2) j= (0 � x � 5) and (16 � x � 20) j= (x � 16).We write f4 � x � 5; 1 � x � 2; 16 � x � 20g j= f0 � x � 5; x � 16g. On the otherhand, there is a global in
lusion abstra
tion from '2 to the set of 
onstraints f'1; '3g where'1 � x1�x2 � 0^x2�x1 � �2^x2 � 0^x2 � 2, '2 � x1�x2 � 1^x2�x1 � �3^x2 � 0^x2 � 2and '3 � x1 � x2 � 2 ^ x2 � x1 � �4 ^ x2 � 0 ^ x2 � 2 sin
e '2 j= '1 _ '3. Note that theexisten
e of a lo
al in
lusion abstra
tion from a set of 
onstraints �1 to another set of 
onstraints�2 entails the existen
e of a global in
lusion abstra
tion from �1 to �2. But the 
onverse is nottrue unless the underlying 
onstraint domain satis�es the independen
e property (see below).Note that we have 
onsidered only lo
al in
lusion abstra
tion for our algorithm (�i+1 j=�i denotes that there is a lo
al in
lusion abstra
tion from �i+1 to �i). It may happen thatthe breadth �rst forward rea
hability analysis terminates with the weaker 
ondition of globalin
lusion but not with lo
al in
lusion. Consider the example shown in Figure 6.7. The breadth�rst forward rea
hability analysis pro
edure terminates for this example with global in
lusion103
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ementsm0y = 1x := 0Figure 6.7: Lo
al and Global In
lusion Abstra
tionabstra
tion but not with lo
al in
lusion abstra
tion. However, for 
onstraint domains that donot satisfy the independen
e property3, de
iding global in
lusion is usually very expensive (
o-NPhard [Sri92℄ for this parti
ular 
ase) where as lo
al in
lusion is de
idable in polynomial time (forthis parti
ular 
ase [Sri92℄). To see that our 
onstraint domain does not satisfy the independen
eproperty, 
onsider the 
onstraints '1 � x1 � x2 � 0 ^ x2 � x1 � �2 ^ x2 � 0 ^ x2 � 2, '2 �x1�x2 � 1^x2�x1 � �3^x2 � 0^x2 � 2 and '3 � x1�x2 � 2^x2�x1 � �4^x2 � 0^x2 � 2.It is 
lear that '2 j= '1 _ '3 but '2 6j= '1 and '2 6j= '3.6.4 Widening RulesIn this se
tion, we 
onsider how one 
an a
hieve (or just speed up) termination of the breadth�rst forward rea
hability analysis algorithms for boundedness (as well as safety) properties. Wede�ne widening rules that are a

urate i.e., do not lose information with respe
t to the originalproperty. We show that these widening rules 
an be used to a
hieve termination in 
ases wheretermination is not guaranteed in forward analysis with lo
al in
lusion abstra
tion. We also3A 
onstraint domain is said to satisfy the independen
e property [MS98℄ if for any 
onstraint ' and a set of
onstraints f'1; : : : ; 'ng, ' j= '1 _ : : : _ 'n implies ' j= 'i for some i.104



Fun
tion WIDEN1(
; '0)if8>>>><>>>>: 
 � � ^ xi � xj � 
ij' ^  � � ^ x0j = xj + x0i ^ xi � 
i
ij � 0
i > 0�[x0℄ j= (9�x0(� ^ ' ^  )) ^ (9�x0� ^ xi � xj � 
ij ^ xi � 
i)or if8>>>><>>>>: 
 � � ^ xi � xj � 
ij ^ xi � 
i' ^  � � ^ x0j = xj + x0i
ij � 0
i > 0�[x0℄ j= (9�x0(� ^ ' ^  )) ^ (9�x0� ^ xi � xj � 
ij ^ xi � 
i)return �else return '0 Figure 6.8: Widening Rule Ishow that for some examples for whi
h termination of forward analysis with (lo
al) in
lusionabstra
tion is guaranteed, but widening 
an drasti
ally a

elerate the termination.In general, the events 
onsidered here may not be an original event but is 
onstru
ted asa 
omposition of events. We write e = event(
; ') when appli
ation of the event e to the
onstraint 
 results in the 
onstraint '.De�nition 6.3 (Compound Events.) Let e1 � 
ond  1 a
tion '1; : : : ; ek �
ond  k a
tion 'k be k original events of the timed system. Assume that the sour
elo
ation for the �rst event and the target lo
ation for the last event are the same. Assume thatthe target lo
ation for the jth event and the sour
e lo
ation for the (j + 1)st event are same(1 � j � k � 1). Also assume that for ea
h event ej, ea
h variable xi and x0i in the guardand a
tion have been alpha-renamed to xji and xj+1i respe
tively. Then the 
ompound event (or
omposed event) 
orresponding to e1; : : : ; ek is given by4 
ond true a
tion ' ^  where ' ^  is given by ' ^  � (9�fx1;xk+1g'1 ^  1 ^ : : : ^ 'k ^  k)[x;x0℄:See below for examples of 
ompound events. Given that the theory of reals with additionand order admits quanti�er elimination, ' ^  
an be expressed in a 
onjun
tive normal form.For the timed automaton given in Figure 6.1, the event 
ond true a
tion x0 = x+z; z � 0; y0 =y + z; y0 � 2 is a simple (time) event 
orresponding to the time transition in lo
ation 0 while
ond lo
 = 0 a
tion y0 = 0; x0 = x; lo
0 = 1 is a simple or original (edge) event 
orrespondingto the edge from lo
ation 0 to 1.We 
onsider only non-stri
t inequalities here. The stri
t inequalities 
an be dealt withsimilarly. The template for symboli
 boundedness pro
edure with widening is de�ned in Figure4Note that we 
an 
onstru
t an event with empty guard as the events 
ond  a
tion ' and
ond true a
tion ' ^  are equivalent with respe
t to symboli
 model 
he
king105



Fun
tion WIDEN2(
; '0)if8>>>>>>>><>>>>>>>>:

 � � ^ xi � xj � 
ij ^ xj � xi � 
ji' ^  � � ^ x0j � x0i � xj � xi + aji
ij � 0aji > 0(9�x0' ^  ^ �) ^ (9�x0� ^ xi � xj � 
ij ^ xj � xi � 
ji) = � ^ x0j � x0i � 
0ji�[x0℄ j= �0 � 
0ji � �
ijreturn � ^ xj � xi � 
jielse if 8>>>><>>>>: 
 � � ^Vi;j;2I xi � xj � 
ij' ^  � � ^Vi;j;2I xj � xi � xj � xi + aji
ij � 0aji > 0�[x0℄ j= (9�x0' ^  ^ �) ^ (9�x0� ^Vi;j;2I xi � xj � 
ij)return �:else return '0 Figure 6.9: Widening Rule II6.4. Note that the pro
edure is based on a breadth-�rst sear
h. The fun
tion WIDEN isde�ned in Figure 6.5 in the Appendix. In a 
all to WIDEN(�i; post(�i)) one of the threewidening rules provided the 
onditions of that rule are satis�ed. If the 
ondition in theWIDENfun
tion applies to several de
ompositions of 
, the 
orresponding widenings are e�e
tuated inseveral su

essive iterations. In the sequel, we refer to the pro
edure Symboli
-Boundedness-Was the breadth �rst forward rea
hability analysis pro
edure with widening and (lo
al) in
lusionabstra
tion. Note that the termination 
ondition �i+1 j= �i means that there is a lo
al in
lustionabstra
tion from �i+1 to �i.We now illustrate the widening rules with examples. The intuition behind the widening rulesis as follows: if we 
an dete
t from the syntax of a sequen
e of events �e and a 
onstraint ', thatthe sequen
e '; postj�e('); : : : \grows" in�nitely in a parti
ular dire
tion (i.e., a
tually leads toan in�nite sequen
e with respe
t to rea
hability analysis), we will try to add the union of thesequen
e to our set of rea
hable states. Thus for widening rule I (for the if part), the syntax ofthe input 
onstraint (�^xi�xj � 
ij) and that of the event (�^x0j = xj+x0i^xi � 
i whi
h maybe a 
omposition of several simple events as des
ribed above) tells us that this 
onstraint-event
ombination will generate an in�nite behavior (� ^ xi � xj � 
ij , � ^ xi � xj � 
ij � 
i, : : : ; seeexample below) provided the other 
onditions are satis�ed (
ompare the while-loop example inSe
tion 6.2). Hen
e we infer the limit of this sequen
e whi
h is � (sin
e 
ij � 0 and 
i > 0) andadd it to the set of states. Similar are the intuitions behind the other widening rules.Consider the example timed automaton in Figure 6.10. Note that forward breadth-�rstrea
hability analysis with lo
al in
lusion abstra
tion does not terminate. Consider the events 4and 3. Event 4 is given by e � 
ond x2 � 2 a
tion x02 = 0; x01 = x1 (we do not show the lo
ationexpli
itly). Event 3 is the time event at lo
ation 1 and is given by e0 � 
ond true a
tion x01 =106



10  

 1 3
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2Figure 6.10: Illustrating widening rule Ix1 + z; x02 = x2 + z; z � 0 (time in
reases by amount z). We 
ompose transition (sometimes wewill use the term 'transition' for 'event') 4 and transition 3 using the method given above. Theresulting 
ompound event is e1 � 
ond true a
tion ' ^  where' ^  � x01 = x1 + x02; x2 � 2; x02 � 0:Now 
onsider the in�nite sequen
e of states produ
ed by a breadth-�rst rea
hability analysisfor this automatonhl 0(x); x1 = 0; x2 = 0i 1�! hl 0(x); x1 = x2; x1 � 0i2�! hl 1(x); x1 = 0; x2 � 0i 3�! hl 1(x); x2 � x1 � 0; x1 � 0i4�! hl 1(x); 0 � x1 � 2; x2 = 0i 3�! z }| {hl 1(x); x1 � x2 � 0; x2 � 0; x2 � x1 � �2i4�! hl 1(x); 0 � x1 � 4; x2 = 0i 3�! hl 1(x); x1 � x2 � 0; x2 � 0; x2 � x1 � �4i 4�! : : : :(in the above we denote lo
ation i by l i.) Now see that the state under the overbra
e alongwith event e1 satis�es the 
onditions of the widening rule I (the if part) de�ned in Figure 6.8(i = 2; j = 1, 
 � � ^ x2 � x1 � �2 where � � x1 � x2 � 0; x2 � 0, 
21 = �2 and � � x02 � 0 ).Hen
e, applying the widening, we obtain the state hl1(x); x1 � x2 � 0; x2 � 0i (the reader 
aneasily make out that if the sequen
e of transition 4 and transition 3 is repeated in�nitely manytimes to the state under the overbra
e, the 
onstraint x1 � x2 � 0; x2 � 0 will be obtained).After this any state generated is subsumed (in
luded) by this state. Hen
e the breadth �rstforward rea
hability analysis with widening and lo
al in
lusion abstra
tion terminates.To see the a

elerating e�e
t of widening rule I on the 
onvergen
e of rea
hability analysisin 
ase of examples for whi
h breadth-�rst analysis terminates with lo
al in
lusion abstra
tion,
onsider the example in Figure 6.6. If we repla
e the 
onstant 5 in transition 7 by 10000 say ,breadth �rst forward analysis with lo
al in
lusion abstra
tion will terminate in approximatelyin 10000 iterations. But, it 
an be easily seen that 
omposing transitions 4, 5 and 6 gives riseto a 
ompound event and by using widening rule I on this 
ompound event (it is easy to verifythat the 
onditions in the widening rule will be satis�ed) breadth �rst forward analysis withwidening and lo
al in
lusion abstra
tion terminates in 11 iterations.Before de�ning widening rule II, let us introdu
e some notation. Let Nn denote f1; : : : ; ng.Let I denote a subset of Nn. The widening rule II is de�ned in �gure 6.9.To show an example in whi
h appli
ation of widening rule II for
es termination, we lookat the example in �gure 6.11. Note that breadth-�rst forward rea
hability analysis with lo
alin
lusion abstra
tion does not terminate for this example. The following in�nite sequen
e of107
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Figure 6.11: Illustrating widening rule IIstates is generated in a breadth-�rst forward rea
hability analysis for this example.hl 0(x); x1 = 0; x2 = 0i 1�! hl 0(x); x1 = x2; x2 � 0i2�! hl 1(x); x1 � 0; x1 � 2; x2 = 0i 3�! hl 1(x); x1 � x2 � 0; x2 � x1 � �2; x2 � 0i4�! hl 2(x); x1 � 3; x1 � 6; x2 = 0i 5�! hl 2(x); x1 � x2 � 3; x2 � x1 � �6; x2 � 0i6�! z }| {hl 1(x); x1 � x2 � 3; x2 � x1 � �6; x2 � 0i 3�! hl 1(x); x1 � x2 � 3; x2 � x1 � �6; x2 � 0i4�! hl 2(x); x1 � 6; x1 � 10; x2 = 0i 5�! hl 2(x); x1 � x2 � 6; x2 � x1 � �10; x2 � 0i6�! hl 1(x); x1 � x2 � 6; x2 � x1 � �10; x2 � 0i : : :Now 
onsider the 
ompound event e2 � 
ond true a
tion ' ^  obtained by 
omposing tran-sitions 3, 4, 5 and 6. Here' ^  � x01 � x1 � x2 + x02 + 2 ^ x01 � x02 � x1 � x2 + 3 ^ x01 � x1 + x02 ^ x02 � 0:See that the 
onditions of widening rule II (the if part) are satis�ed for e2 and the state underthe overbra
e in the sequen
e (i = 2; j = 1, � � x2 � 0, 
21 = �6 < 0, 
12 = 3 and � � x01 �x1�x2+x02+2; x01 � x1+x02; x02 � 0). The reader 
an easily 
onvin
e herself that the give stateand event e2 do not satisfy the 
onditions of widening rule I). Applying the widening, we obtainthe state hl 1(x); x1 � x2 � 3; x2 � 0i (viewing the 
onstraint solving involved geometri
allymay provide better intuitions). The states whi
h are further generated are subsumed by thisstate. So breadth-�rst forward rea
hability analysis with widening and in
lusion abstra
tionterminates after this. Note that in this 
ase, appli
ation of abstra
t interpretation with the
onvex hull operator as is done in [WT95, Bal96, HPR97℄ would produ
e the state hl 1(x); x1 �x2 � 0; x2 � 0i. This 
an lead to 'don't know' answers to 
ertain rea
hability questions (e.g.,
onsider the rea
hability question whether the lo
ation l 1 
an be rea
hed with the values ofthe 
lo
ks satisfying the 
onstraint x1 � x2 > 2; x2 � x1 > �3; x2 � 0). As for the extrapolationabstra
tion [DT98℄, we have already stated in the Introdu
tion that it is unsuitable for model
he
king for boundedness properties.In widening rule III we use periodi
 sets following Boigelot and Wolper [BW94℄.De�nition 6.4 (Periodi
 Sets [BW94℄.) A periodi
 ve
tor set or simply a periodi
 set is aset of ve
tors x 2 Rn su
h that9k 2 Nm : x = Ck+ d ^ Pk � qwhere C and P integer matri
es.The widening rule III is de�ned in Figure 6.12, where the predi
ate int(x) is true if and onlyif x is a nonnegative integer. Consider the example in Figure 6.13. Note that breadth-�rst108



Fun
tion WIDEN3(
; '0)if8>>>>>><>>>>>>:

 � � ^ xi � xj � 
ij ^ xj � xi � 
ji' ^  � � ^ x0i = xi + x0j ^ xj = 
j
ij � 0
i > 0
ji � 
ij�[x0℄ j= (9�x0(� ^ ' ^  )) ^ (9�x0� ^ xi � xj � 
ij ^ xj � xi � 
ji ^ xj = 
j)return � ^ 9k � 0 ^ int(k) ^ xi � xj � 
ji + k � 
j ^ xj � xi � 
ji � k � 
jelse return '0 Figure 6.12: Widening Rule III

x2=<1

2

l_0 l_1

1 3
4

5

6

x2:=0
l_2

x2=4,x2:=0Figure 6.13: Illustrating the widening rule IIIforward rea
hability analysis with in
lusion abstra
tion does not terminate for this example.The following in�nite sequen
e of states is generated in 
ourse of a forward (breadth-�rst)rea
hability analysis for this example:hl 0(x); x1 = 0; x2 = 0i 1�! hl 0(x); x1 = x2; x2 � 0i2�! hl 1(x); x2 = 0; x1 � 0; x1 � 1i 3�! z }| {hl 1(x); x1 � x2 � 0; x2 � x1 � �1; x2 � 0i4�! hl 2(x); x1 � 4; x1 � 5; x2 = 0i 5�! hl 2(x); x1 � x2 � 4; x2 � x1 � �5; x2 � 0i6�! hl 1(x); x1 � x2 � 4; x2 � x1 � �5; x2 � 0i : : :Now we 
ompose transitions 4, 5 and 6. The 
ompound event is e3 � 
ond true a
tion '^ where ' ^  � x01 = x1 + x02 ^ x02 � 0 ^ x2 = 4:It is easy to see that the state under the overbra
e in the in�nite sequen
e along with evente3 satis�es the 
onditions of widening rule III (i = 2; j = 1, � � x2 � 0, 
12 = 0, 
21 =�1 < 0). Hen
e, applying widening rule III we get the state hl 1(x);9k � 0; int(k); x1 � x2 �k � 4; x2 � x1 � �1 � k � 4i. The states further generated are subsumed by this state. So(breadth-�rst) forward rea
hability analysis with lo
al in
lusion abstra
tion terminates afterapplying the widening rule. Note that appli
ation of abstra
t interpretation with the 
onvexhull operator [HPR97, Bal96, WT95℄ will produ
e the state hl 1(x); x1 � x2 � 0; x2 � 0i. Hen
efor 
ertain rea
hability questions we 
an get a 'don't know' answer.Now we show that the widening rules are a

urate with respe
t to boundedness properties.109



Theorem 6.1 (Soundness and Completeness) The pro
edure Symboli
-Boundedness-Wobtained by abstra
ting the forward breadth �rst rea
hability analysis pro
edure with wideningde�ned by the widening rules I,II and III yields (if terminating) a full test of boundedness (un-boundedness) properties for timed systems ( modeled by timed automata).Proof. The proof works by showing that [WIDENj(
; ')℄ � [Si�0�i℄ for j = 1; 2; 3 and
 2 �i and ' 2 post(�i) where �0 = � and for i > 0, �i+1 = �i _ post(�i). Before provingthe theorem, we 
onsider the following properties. Let e be an event with guard  and a
tion 'from lo
ation ` to itself. Thenposte(S) = f`(v0) j R;v;v0 j= ' ^  [x;x0℄; `(v) 2 Sgwhere S is a set of states `(v) of the timed automaton 
onsisting of a lo
ation and valuationsto all the 
lo
ks. Nowpostje(�) = f9�x0' ^  [x;x0℄ ^ ' j ' 2 �;R j= ' ^  [x;x0℄ ^ 'gwhere � is a set of 
onstraints and S = [�℄. Noti
e that poste and postje are monotoni
 withrespe
t to in
lusion and 
ontinuous with respe
t to set union.[i�0 postie([�℄) = [i�0[postije(�)℄ = [[i�0 postije(�)℄poste([['2�'℄) = ['2� poste(['℄) = [['2� postje(')℄Also poste([[i�0�i℄) = [[i�0�i℄Now we prove the following 
ases.Case I. Widening rule I is used. If e � event(
; ') and ' and 
 are as de�ned in the
onditions of the widening rule, we show that[_q�0 � ^ xi � xj � 
ij � q � 
i℄ � [[i�0�i℄The proof is by indu
tion on q. The base 
ase follows from the assumption. To prove theindu
tion step observe that:[postje(_q�0 � ^ xi � xj � 
ij � q � 
i)℄ � poste([_q�0 � ^ xi � xj � 
ij � q � 
i℄) � poste([[i�0�i℄) � [[i�0�i℄Indu
tion Step:postje(� ^ xi � xj � 
ij � q � 
i)� 9�x0� ^ xi � xj � 
ij � q � 
i ^ � ^ x0j = xj + x0i ^ xi � 
i� 9�x0(� ^ ' ^  ) ^ (xi � xj � 
ij � q � 
j ^ �) ^ xi � xj � 
ij � q � 
i ^ x0j = xj + x0i ^ xi � 
i� (9�x0' ^  ^ �) ^ (9�x0xi � xj � 
ij � q � 
i ^ �) ^ x0i � x0j � 
ij � (q + 1) � 
i110



Sin
e �[x0℄ j= (9x0' ^  ^ 
) ^ (9�x0xi � xj � 
ij � q � 
i ^ �) therefore [� ^ x0i � x0j �
ij � (q + 1) � 
i℄ � [Si�0 �i℄. Therefore [Wq�0 � ^ xi � xj � 
ij � q � 
i℄ � [Si�0�i℄. But_q�0 � ^ xi � xj � 
ij � q � 
i = � ^ _q�0xi � xj � 
ij � q � 
i = � ^ true = �:So [�℄ � [Si�0�i℄. The 
ase where the or if 
ondition holds 
an be proven similarly.Case II. Widening rule II is used. We now show by indu
tion on q that[_q�0 � ^ xi � xj � 
ij � q � aji ^ xj � xi � 
ji℄ � [[i�0�i℄The base 
ase follows by assumption.Indu
tion Step:Observe thatpostje(� ^ xi � xj � 
ij � q � aji ^ xj � xi � 
ji)� 9�x0� ^ xi � xj � 
ij � q � aji ^ xj � xi � 
ji ^ x0j � x0i � xj � xi + aji ^ �� (9�x0' ^  ^ �)^ (9�x0� ^ xi � xj � 
ij � q � aji ^ xj � xi � 
ji)^ (9�x0xi � xj � 
ij ^ x0j � x0i � xj � xi + aji ^ xi � xj � 
ij � q � aji)� (9�x0� ^ ' ^  ) ^ (9�x0� ^ xi � xj � 
ij � q � aji ^ xj � xi � 
ji) ^ x0i � x0j � 
ji � (q + 1) � ajiNow we show thatR j= (9�x0� ^ xi � xj � 
ij ^ xj � xi � 
ji)() (9x0� ^ xi � xj � 
ij � q � aji ^ xj � xi � 
ji) ^ (9�x0� ^ xi � xj � 
ij)IndeedR j= (9�x0� ^ xi � xj � 
ij ^ xj � xi � 
ji)() (9�x0� ^ xi � xj � 
ij � q � aji ^ xi � xj � 
ij ^ xj � xi � 
ji) (Sin
e aji > 0)() (9x0� ^ xi � xj � 
ij � q � aji ^ xj � xi � 
ji) ^ (9�x0� ^ xi � xj � 
ij)Now it is easy to see that we 
an write (9�x0'^ ^�)^(9�x0�^xi�xj � 
ji�q�aji^xj�xi � 
ji)as � 0 ^ x0j � x0i � 
00ji where �[x0℄ j= � 0 and 
00ji � 
ji. Now we prove that�[x0℄ ^ x0i � x0j � 
ij � (q + 1) � aji ^ x0j � x0i � 
jij= (�[x0℄ ^ x0j � x0i � 
ji ^ x0i � x0j � 
ij � q � aji)_ ((9�x0� ^ ' ^  ) ^ (9�x0xi � xj � 
ij � q � aji ^ x0j � x0i � 
ji ^ �)) (6.1)Indeed, suppose R;v j= left-hand-side. Then R;v j= �[x0℄. Also R;v j= x0j � x0i � 
ji.Suppose v does not satisfy the �rst disjun
t on the right hand side. Then v 6j= x0i�x0j � 
ij�q�aji.Therefore R;v j= x0j � x0i > q � aji � 
ij . Therefore R;v j= x0j � x0i � q � aji � 
ij . Now(9�x0' ^  ^ �) ^ (9�x0� ^ xi � xj � 
ij � q � aji ^ xj � xi � 
ji) � � 0 ^ x0j � x0i � 
00ji:111



Then R;v j= x0j � x0i � 
00ji sin
e 
00ji � 
ji. Sin
e R;v j= �[x0℄, therefore v j= � 0. AlsoR;v j= x0i � x0j � 
ij � q � aji. Sin
e the (solution of ) right hand side of (6.1) is in
luded in[Si�0 �i℄ hen
e [�^xj�xi � 
ji^xi�xj � 
ij� (q+1)�aji℄ � [Si�0 �i℄. Hen
e by a reasoningsimilar to that in the previous 
ase, we get, [� ^ xj � xi � 
ji℄ � [Si�0 �i℄. The proof for theelse if part is easy.Case III. Widening rule III is used. We show by indu
tion on q that[_q�0 � ^ xi � xj � q � 
j + 
ij ^ xj � xi � �q � 
j + 
ji℄ � [[i�0�i℄:The base 
ase follows from the assumption.Indu
tion Step:postje(� ^ xi � xj � q � 
j + 
ij ^ xj � xi � �q � 
j + 
ji)� 9�x0� ^ xi � xj � q � 
j + 
ij ^ xj � xi � �q � 
j + 
ji ^ ' ^  � (9�x0� ^ ' ^  ) ^ (9�x0xi � xj � q � 
j + 
ij ^ xj � xi � 
ji � q � 
j ^ �)^ (9�x0xi � xj � 
ij + q � 
j ^ xj � xi � �q � 
j + a
ji ^ x0i = xi + x0j ^ xj = 
j)� (9�x� ^ ' ^  ) ^ (9�x0xi � xj � 
j � q + 
ij ^ xj � xi � �
j � q + 
ji ^ �)^ x0i � x0j � 
ij + (q + 1) � 
j ^ x0j � x0i � �(q + 1) � 
j + 
jiHen
e, by reasons similar to the above 
ases, [� ^ xi � xj � 
ij + (q + 1) � 
j ^ xj � xi �
ji � (q + 1) � 
j ℄ � [Si�0 �i℄. The rest of the proof is similar to that of the previous 
ases. [℄Note that the above theorem also implies that if the pro
edure Symboli
-Boundedness-Wterminates, then one 
an get a full test of safety properties as well. Below we provide e�e
tivesuÆ
ient 
onditions for termination of Symboli
-Boundedness-W. By a simple path in a timedautomaton U , we mean a sequen
e of events e1 : : : em where ea
h ei is an original event of U and{ the sour
e lo
ation of ei+1 is the same as the target lo
ation of ei for 1 � i �m� 1,{ any event ei with same sour
e and target lo
ations is a time event,{ for any two edge events ei and ej , 1 � i < j < m, the target lo
ations of ei and ej aredi�erent,{ and if ei is an (original) time event, then ei�1 and ei+1 are edge events.With this de�nition, there are only a �nite number of su
h simple paths in a timed automaton.The simple path p = e1 : : : em leads from lo
ation `1 to the lo
ation `2 if there is a the sour
elo
ation of e1 is `1 and the target lo
ation of em is `2. The simple path e1 : : : em is a simple
y
le if the sour
e lo
ation of e1 is the same as the target lo
ation of em. Note that there areonly a �nite number of su
h simple 
y
les in a timed automaton.Theorem 6.2 (SuÆ
ient Conditions for Termination) Let U be a timed automaton andlet ` be a lo
ation in U su
h that there is a simple 
y
le C from ` to itself and the following three
onditions are satis�ed.{ There is a simple path in U of the form e � 
ond ' a
tion  leading from the initiallo
ation `0 to ` su
h with the 
y
le C along with the the 
onstraint (9�x0'0^'^ )[x℄ thatsatis�es the 
onditions of the widening rules I, II or III where '0 is the initial 
onstraint.112



{ For ea
h original event e0 � 
ond '0 a
tion  0 with target lo
ation ` that lies on a 
y
lein the 
ontrol graph of U , (9�x0'0 ^  0)[x℄ j= postjt(�) if widening rule I or II is satis�edin the previous 
ondition and (9�x0'0 ^  0)[x℄ j= postjt(� ^ 9k � 0 ^ int(k) ^ xi � xj �
ji+k �
j ^xj�xi � 
ji�k �
j) if widening rule III is satis�ed in the previous 
ondition,where �, 
ji are as in the de�nition of the widening rules and t is the time event at lo
ation`.{ The 
ontrol graph of U satis�es the temporal formula AG(true =) AF (at `)) where at `is an atomi
 proposition satis�ed only by lo
ation `.Then the pro
edure Symboli
-Boundedness-W terminates for U .Proof. The proof follows from the observation that along the breadth-�rst tree generated bythe pro
edure Symboli
-Boundedness-W there is a bran
h that starts from the initial lo
ation`0 follows the simple path e and then follows the 
y
le C. Sin
e, the 
onstraint 
 at the end ofthis simple path along with the guard and a
tion of C satis�es one of the three widening rules(by the �rst 
ondition), we get the 
onstraint � (if the widening rules I or II are satis�ed) or�^9k � 0^int(k)^xi�xj � 
ji+k�
j^xj�xi � 
ji�k�
j (if widening rule III is satis�ed). (Here� and the other 
onstraints are as in the de�nition of the widening rules.) Hen
e, there exists a�nite i su
h that �i 
ontains � (or �^9k � 0^int(k)^xi�xj � 
ji+k�
j^xj�xi � 
ji�k�
j).Now sin
e the 
ontrol graph of U satis�es AG(true =) AF (at `)), therefore along any bran
h onthe breadth-�rst tree, the lo
ation ` will be rea
hed in some iteration greater than i through anoriginal event e0 that lies in a 
y
le. Suppose the 
onstraint generated at this point be h`(x); �i.We show that � j= � (or � j= � ^9k � 0^ int(k)^ xi� xj � 
ji+ k � 
j ^xj � xi � 
ji� k � 
j ifwidening rule III was satis�ed in the �rst 
ondition of the theorem. We prove this in the 
aseof widening rule I; the remaining 
ases are similar. Suppose that v j= �. Suppose h`(x); �i wasgenerated by the original event e0 � 
ond '0 a
tion  0. Then R;v j= (9�x0'0 ^  0)[x℄. ThenR;v j= �. Hen
e, ea
h bran
h along the breadth-�rst tree is �nite. Therefore the pro
edureSymboli
-Boundedness-W terminates. [℄It 
an be seen that the example in Figure 6.10 satis�es the suÆ
ient 
onditions stated above.We have implemented a prototype based on the approa
h (in the CLP(R) system of Si
stusProlog 3.7). The performan
e shown, so far, by our approa
h has been quite en
ouraging. Wehave used our implementation to verify the safety and boundedness properties of several well-known ben
hmark examples taken from literature. The experimental results are summarizedin the table in Figure 6.14. All results are obtained on a PC (200 MHz Pentium Pro). Theexperiments show a marked improvement over the timings obtained without using the a

uratewidening rules in Chapter 3. The timings obtained for Fis
her's proto
ol (two pro
esses), Rail-Road Crossing, and Audio Proto
ol without using the widening rules are 4:2s, 1:8s and 7:2srespe
tively. All the timings in Figure 6.14 denote the total time taken for rea
hability analysis.6.5 Related WorkIn this 
hapter, we have presented a 
onstraint based framework for symboli
 model 
he
kingof timed systems against boundedness properties. We have shown that it is possible to a
hieve(or just a

elerate) termination of our symboli
 model 
he
king pro
edure with abstra
tionsby widening that are, as we prove, a

urate. Our approa
h allows us to do a full test of thesafety and boundedness (unboundedness) properties without going into the 
ompli
ations of113



Example time (se
onds)Fis
her's Proto
ol (Two Pro
esses) [LPY95b℄ 2.1Rail-road Crossing 0.8Audio Proto
ol [HWT95℄ 2.3Figure 6.14: Experimental Resultsregion 
onstru
tion. Regarding the generality of our approa
h, we do not 
laim that the threewidening rules des
ribed in this 
hapter en
ompass (i.e., a
hieves termination and/or speed-upof model 
he
king pro
edure) the full 
lass of timed automata. We have provided suÆ
ient
onditions under whi
h the pro
edure Symboli
-Unboundedness-W is guaranteed to terminate.However, for several examples the pro
edure terminates even though the suÆ
ient 
onditionsdo not apply..Note that there has been a few attempts at veri�
ation of timed and hybrid systems basedon 
onstraint logi
 programming [GP97, Fri98, CDD+98, DRS99, GP99℄. Our work di�ersfrom these approa
hes in that we exploit the 
onstraint-based setting for de�ning a

elera-tion te
hniques based on abstra
t interpretation. Note that the model 
he
king pro
edure forUppaal [BLL+96℄ is also based on semanti
s of 
onstraints but their algorithms are based ongraph-theoreti
 te
hniques rather than te
hniques from 
onstraint programming. We believethat in
orporation of a

urate widening framework in UPPAAL and the other approa
hes men-tioned above 
an signi�
antly speed-up model 
he
king pro
edures based on those approa
hes.Our widening operator is 
losely related to Boigelot and Wolper's loop-�rst te
hnique[BW94℄ for deriving periodi
 sets as representations of in�nite sets of integer valued statesfor rea
hability analysis. As a di�eren
e, Boigelot and Wolper analyze 
y
les and nested 
y
lesin the 
ontrol graph to dete
t meta-transitions before and independently of their forward model
he
king pro
edure, whereas we 
onstru
t new events during our model 
he
king pro
edure and
onsider them only if we dete
t that they possibly lead to an in�nite loop. Berard' and Fri-bourg [BF99℄ use a 
onstraint-based framework for rea
hability analysis for timed Petri nets.They have been able to verify several interesting examples using their approa
h based on metatransitions. Our approa
h, rooted in the abstra
t interpretation framework, is di�erent fromtheirs in that we a

elerate the model 
he
king pro
edure using widening rules based on syntax.The appli
ation of widening te
hniques to the veri�
ation of systems with huge or in�nitestate spa
es has proven useful in several examples. Halbwa
hs et.al. [HPR97℄, using linear re-lational analysis to prove properties for linear hybrid systems, de�nes a widening operator over
onvex polyhedra: unions of 
onvex polyhedra are approximated by their 
onvex hull before thewidening step. Approximation te
hniques for more general 
lasses of hybrid systems are studiedin [HHWT97, HH95℄. Spe
i�
ally, Henzinger and Ho [HH95℄ apply an extrapolation operatorwhi
h gives better approximations than Halbwa
hs et. als' 
onvex widening operator in their ex-amples. For integer valued systems, abstra
t interpretation has been used e�e
tively in [BGP97℄.In [BGP98℄, it was expli
itly mentioned that one main diÆ
ulty with the approximate approa
his that the abstra
tion is often too rough. We have shown in Se
tion 6.4 that our wideningte
hniques will give full test of rea
hability properties for timed systems where the approximatemethods [Bal96, WT95, HPR97℄ would produ
e a 'don't know' answer. Also, in 
ontrast withour a

urate widenings, the widening te
hniques proposed in [Bal96, WT95, HPR97℄ 
annot beused for model 
he
king for boundedness properties. Note that it is not possible to �nd out114



in most 
ases, using semanti
s-based te
hniques, whether a program loop really generates anin�nite behavior with respe
t to rea
hability analysis. Hen
e, appli
ation of widening 
ombinedwith semanti
s-based te
hniques may result in loss of a

ura
y that will render these te
hniquesunsuitable for model 
he
king for boundedness properties. It would be interesting to look athow the te
hniques des
ribed in this 
hapter extend to more general 
lasses of hybrid systems.The general goal will be a whole library of a

urate widening rules for a variety of veri�
ationproblems.
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Chapter 7Compositional Termination Analysisof Symboli
 Forward Analysis forIn�nite-State Systems
7.1 Introdu
tionOver the last few years, there has been an in
reasing resear
h e�ort dire
ted towards automati
veri�
ation of in�nite state systems. Resear
h on de
idability issues (e.g., [ACJT96, ACHH93,Boi98, LPY99, HKPV95, CJ98℄) has resulted in highly nontrivial algorithms for the veri�
ationof di�erent sub
lasses of in�nite state systems. These results do not, of 
ourse, imply the termi-nation of the semi-algorithms on whi
h pra
ti
al tools are based (for example, the de
idabilityof the model 
he
king problem for timed automata does not entail termination for the symboli
forward analysis of timed automata whi
h is possibly non-terminating). This 
hapter addressesthe termination for su
h a pro
edure, namely symboli
 forward analysis; we show terminationfor the sub
lass of o-minimal hybrid systems (for whi
h ba
kward analysis is known to be ter-minating [LPY99℄), and we give 
ompositional synta
ti
 suÆ
ient 
onditions for integer-valuedsystems and for nonlinear hybrid systems; i.e., the synta
ti
 suÆ
ient 
onditions are on theindividual 
omponents rather than on the 
omposed system. The 
onditions roughly expressthat, in ea
h loop, the variables are initialized before they are used.SuÆ
ient termination 
onditions for symboli
 forward analysis seem interesting for severalreasons. First, sin
e they apply to 
on
rete examples su
h as pra
ti
al mutual ex
lusion pro-to
ols, they may shed a new light on the pra
ti
al su

ess of symboli
 model 
he
king forin�nite-state systems (see e.g. [BGP97, DP99a, DT98, LPY95b℄). Se
ond, for a 
on
rete veri�-
ation problem in a pra
ti
al setting, the model to be 
he
ked 
an possibly be adapted to meetthe suÆ
ient termination 
onditions (e.g. by adding semanti
ally redundant initializations ofvariables).Moreover, our results suggest a potential optimization of the symboli
 forward analysis pro-
edure. Namely, the termination guarantee 
ontinues to hold even when the �xpoint test is mademore eÆ
ient by weakening it to lo
al entailment (explained below; e.g. for linear arithmeti

onstraints over reals, the 
omplexity of �xpoint test redu
es from 
o-NP hard to polynomial).117



7.2 In�nite State SystemsWe use guarded-
ommand programs to spe
ify (possibly in�nite-state) transition systems. Aguarded-
ommand program 
onsists of a set E of guarded 
ommands e (
alled edges) of the forme � L = ` ^ 
e(x) [℄ L0 = `0 ^ �e(x;x0)where L is a variable ranging over a �nite set of program lo
ations, x = hx1; : : : ; xni is the tupleof program variables (ranging over a possibly in�nite data domain); 
e(x) is a formula (theguard) whose free variables are among x; �e(x;x0) is a formula (the a
tion) whose free variablesare among x;x0 of e. Intuitively, the primed version of a variable stands for its value in thesu

essor state after taking a transition through a guarded 
ommand. We translate a guarded
ommand e to the logi
al formula  e simply by by repla
ing the guard [℄ with 
onjun
tion. e � L = ` ^ 
e(x) ^ L0 = `0 ^ �e(x;x0)A state of the system is a pair h`;vi 
onsisting of the values for the lo
ation variable and forea
h program variable. The state h`;vi 
an make a transition to the state h`0;v0i through theedge e provided that the values of ` for L, `0 for L0, v for x and v0 for x0 de�ne a solution for  e.A run of the system is a sequen
e h`1;v1i �! h`2;v2i �! : : : su
h that for ea
h i = 1; 2; : : :there exists an edge e su
h that the state h`i;vii 
an make a transition to the state h`i+1;vi+1ithrough the edge e.In this 
hapter, we 
onsider two basi
 
lasses of in�nite state systems. In the �rst, theprogram variables range over the set of natural numbers N , and the guard and the a
tion for-mulas are arithmeti
 
onstraints. Examples of su
h systems above in
lude the bakery algorithm,the bounded bu�er produ
er-
onsumer problem et
.. In the se
ond, we deal with the so-
alledhybrid systems in whi
h the program variables range over the set of reals R.Systems with Integer-valued Variables. We write Arith(N ) for the theory of natural num-bers with addition multipli
ation and order; it is interpreted over the stru
ture hN ; <;+; �; 0; 1i.A possibly nonlinear system with integer-valued variables 
an be de�ned as a set of guarded
ommands as above where the variables x;x0 are interpreted over the set of natural numbersN . The guard formula 
e(x) is an Arith(N ) formula with free variables among x. The a
tionformula �e(x;x0) of e, with free variables among fx;x0g, is also an Arith(N ) formula.Hybrid Systems We write OF (R) for the theory of the ordered �eld of reals; it is interpretedover the stru
ture hR; <;+; �; 0; 1i.A (possibly non-linear) hybrid system 
an be de�ned as a set of guarded 
ommands as abovewhere the guard 
e(x) is an OF (R) formula, and the a
tion �e(x;x0) is an OF (R) formula givenby �e(x;x0) � 9z � 0 9x00 Æe(x;x00) ^ �e(x00;x0; z):Here, Æe is an OF (R) formula de�ning the \update" in e, and �e is the OF (R) formula de�ningthe 
ontinuous evolution at the target lo
ation `0.A transition a

ording to a guarded 
ommand e represents an instantaneous `jump' followedby a 
ontinuous evolution over time at the target lo
ation `0. Namely, a state h`;vi 
an make118



a transition through e to the state h`0;v0i if the values ` for the lo
ation variable L and v forthe tuple of data variables x satisfy the guard L = ` ^ 
e(x) of e and there exists a v00 su
hthat v;v00 satis�es the update Æe of e and there exists a real value d of the delay variable z su
hthat v0 is obtained from v00 through 
ontinuous evolution over the delay d at the lo
ation `0.Similarly the time transition (
ontinuous evolution over time at a lo
ation) from the state h`;vito the state h`;v0i 
an be de�ned. For a lo
ation `, let �` be the (OF (R)) formula denoting the
ontinuous evolution of time at ` where z is the time delay variable. Thus in the above formulade�ning the guard �(x;x0), �e = �`0 .O-minimal hybrid systems In this paragraph, we de�ne o-minimal hybrid systems. Thede�nition below is adapted from [LPY99℄. In o-minimal hybrid systems, the a
tion formula�e(x;x0) of e with free variables among fx;x0g is de�ned as follows.�e(x;x0) � 9z � 09x00(Æe(x00) ^ x0 = expzA`0x00)where the free variables in the \update" formula Æe are among x00, exp is the base of the naturallogarithms, A`0 is an n � n rational matrix that is either nilpotent or is diagonalizable withrational eigenvalues (x0 = expzA`0x00 represents the 
ontinuous evolution at the target lo
ation`0). It 
an be shown [LPY99℄ that in these 
ases, �e(x;x0) is de�nable in OF (R).7.3 Parallel CompositionWe 
onsider asyn
hronous parallel 
omposition of in�nite state systems. We assume that the
omponent programs do not share variables (ex
ept for the syn
hronizing labels). For thepurpose of parallel 
omposition, we assign to ea
h guarded 
ommand a syn
hronizing label.Thus with ea
h guarded 
ommand program S we asso
iate a (�nite) set � of syn
hronizinglabels and a mapping lab : E �! � that assigns to ea
h guarded 
ommand (or edge) asyn
hronizing label from �.Given two guarded 
ommand programs S1 and S2 with label sets �1 and �2 and labelingfun
tions lab1 and lab2 respe
tively, their parallel 
omposition S = S1jjS2 with set of syn
hro-nizing labels �1 [ �2 and labeling fun
tion lab is de�ned as follows. Intuitively, in an edge inthe 
omposed program S1jjS2, either only S1 \moves" (i.e., takes a transition through an edge)while S2 undergoes 
ontinuous evolution at the same lo
ation (if the syn
hronizing label � isin �1 but not in �2) or S2 \moves" while S1 undergoes 
ontinuous evolution (in 
ase of hy-brid systems; stays un
hanged in 
ase of integer-valued systems) at the same lo
ation (providedthe syn
hronizing label � is in �2 but not in �1) or both \move" (if the syn
hronizing label� 2 �1 \ �2) with the same label lab(e1) = lab(e2) = �. The 
omposed program S 
onsists ofall guarded 
ommands of the forme � L1 = `1 ^ L2 = `2 ^ 
e(x;y)[℄L01 = `10 ^ L02 = `20 ^ �e(x;y;x0;y0)with lab(e) = � su
h that either{ (First 
omponent \moves"){ there is an edge e1 � L = `1 ^ 
e1(x)[℄L0 = `10 ^ �e1(x;x0) in S1 with lab1(e1) = �,where � 2 �1 and � 62 �2, `2 is a lo
ation in S2 and `20 = `2119



{ 
e(x;y) � 
e1(x){ �e(x;y;x0;y0) � �e1(x;x0) ^ y0 = y for systems with integer-valued variables and�e(x;y;x0;y0) � 9z � 0 9t � 0 'e1(x;x0; z) ^ �`2(y;y0; t) ^ z = t for hybrid systemswhere �e1(x;x0) � 9z � 0 'e1(x;x0; z).{ Or (Se
ond 
omponent \moves") Same as the previous point but with the roles of S1 andS2 reversed.{ Or (Both 
omponents \move")there is an edge e1 � L = `1 ^ 
e1(x)[℄L0 = `10 ^�e1(x;x0)in S1 and an edge e2 � L = `2^
e2(y)[℄L0 = `20^�e2(y;y0) in S2 su
h that � 2 �1\�2,lab1(e1) = � and lab2(e2) = � 
e(x;y) � 
e1(x)^
e2(y) �e(x;y;x0;y0) � �e1(x;x0)^�e2(y;y0) for systems with integer-valued variables and �e(x;y;x0;y0) � 9z � 0 9t �0 'e1(x;x0; z) ^ 'e2(y;y0; t) ^ z = t for hybrid systems where �e1(x;x0) � 9z �0 'e1(x;x0; z) and �e2(y;y0) � 9t � 0 'e2(y;y0; t).A state of the 
omposed program is a tuple h`; `0;v;wi 
onsisting of values of the lo
ationsand ea
h variable. The semanti
s of the 
omposed program is de�ned in the usual way. Theparallel 
omposition operation de�ned above is 
ommutative and asso
iative. For guarded 
om-mand programs S1; : : : ;Sk, we write S1jj : : : jjSk to denote (: : : (S1jjS2)jjS3)jj : : : )jjSk). Toolslike UPPAAL [BLL+96℄, HYTECH [HHWT95℄ use the kind of parallel 
omposition des
ribedabove (they also use urgent transitions; the framework des
ribed below 
an be easily made totake into a

ount su
h urgent transitions).7.4 Constraints Representing Sets of StatesIn this 
hapter, by 
onstraints we will mean Arith(N ) or OF (R) formulas. We use 
onstraints' to represent 
ertain sets of positions. We will 
onsider only 
onjun
tive 
onstraints. A
onstraint ' is a 
onjun
tion of atomi
 
onstraints of the form t relop 
 where t is a term, 
 2 Nand relop 2 f>;<;�;�g. We identify solutions of the 
onstraints with states of the system. Wewrite D; h`;vi j= ' to denote that the state h`;vi is a solution of the 
onstraint ' where D is thestru
ture under 
onsideration, i.e., either hN ; <;+; �; 0; 1i or hR; <;+; �; 0; 1i. For a 
onstraint', we de�ne the denotation of ', denoted by ['℄ as['℄ = fh`;vi j D; h`;vi j= 'g:By a set of 
onstraints we mean their disjun
tion; i.e., if � is a set of 
onstraints then[�℄ = S'2�['℄. For two 
onstraints ' and '0, we say that ' entails '0, denoted by ' j= '0, i�['℄ � ['0℄. We assume that given two 
onstraints ' and '0, it is de
idable whether ' j= '0 (thoughthis is not true for arbitrary Arith(N ) 
onstraints, still we assume that for the 
onstraints thatwe will deal with, the problem of 
he
king whether a 
onstraint entails another is de
idable). Fora 
onstraint ' with free variables x, we denote by '(x0), the 
onstraint obtained by repla
ingthe free variables x by x0 (renaming).A 
onstraint ' is time 
losed if its set of solutions (i.e., its denotation) is 
losed under timetransitions, i.e., if the 
onstraint ' is of the form L = ` ^  and if �`(x00;x0; z) is the OF (R)formula representng 
ontinuous evolution at the lo
ation ` (for hybrid systems), then ' is time-
losed i� R j= ' () (9z � 0 9x (' ^ �`(x;x0; z)))(x). We denote by '0 the formula de�ning120



the time 
losure of the set of initial states and 
all it the initial 
onstraint. In the following,whenever we talk of 
onstraints in the 
ontext of hybrid systems, we will refer to time-
losed
onstraints. In 
ase of o-minimal hybrid systems we also assume that the initial 
onstraint '0is de�nable in OF (R).We identify two 
onstraints ' and '0 i� they have the same denotations; i.e., ['℄ = ['0℄.We re
all the de�nition of 
onstraint transformer from Chapter5. This notion is inspired by thenotion of synta
ti
 transformation monoids in 
lassi
al automata theory [Eil76℄.7.5 Bound Variables and Initialized StringsWe 
onsider bindings of variables in in�nite state systems. Roughly, a (data) variable is boundat a lo
ation of an in�nite state system if its value at that lo
ation does not \depend" onits previous values. Let w = e1 : : : em be a string of edges of an in�nite state system withinteger-valued variables.{{{ De�nition 7.1 (Bound Variables) We say that a subset X � fx1; : : : ; xng of variables isbound at the edge ei (1 � i � m) in the string w if there exists S � fx1; : : : ; xng su
h that (1)the a
tion �ei(x;x0) 
an be written as a quanti�er free formula �1 ^ �2 where the variables in �1are among X 0 [S (where X 0 = fx0 j x 2 Xg) and the variables in X 0 [S do not o

ur in �2, (2)if i = 1 then S = ; and (3) if i > 1 then{ the variables in S are bound in ei�1 (in w) and{ the guard 
onstraint 
ei(x) 
an be written as a quanti�er free formula 
1ei ^ 
2ei where thevariables in 
1ei are bound in ei�1 (in w) and the variables in 
2ei are not bound in ei�1 (inw).Thus, 
onsider the guarded 
ommands e1, e2 and e3 given bye1 � L = ` ^ x > y [℄ L0 = `0 ^ x0 = x ^ y0 = y ^ z0 � 2;e2 � L = `0 ^ z � 4 ^ x < y [℄ L0 = `00 ^ z0 = z ^ x0 � z + 2 ^ y0 � y + 4and e3 � L = `00 ^ x � 6 [℄ L0 = `000 ^ z0 = z ^ x0 = x ^ y0 = x+ 2:A

ording to the above de�nition, in the string w = e1:e2:e3, only z is bound in e1, and fx; zgare bound in e2 and fx; y; zg are bound in e3 in w. This is be
ause, at e1 the a
tion �e1 
anbe written as �1e1 ^ �2e1 where �2e1 � x0 = x ^ y0 = y (where z0 does not o

ur) and �1e1 � z0 � 2(where the free variables are among z0). Hen
e z is bound at e1 in w. At the edge e2, the guard
e2 
an be written as 
1e2 ^ 
2e2 where 
1e2 � z � 4 (where the free variable z is bound at e1 inw) and 
2e2 � x < y (where the free variables are not bound at e1 in w). Now the a
tion �e2 ofe2 
an be written in the form �1e2 ^ �2e2 where �1e2 � z0 = z ^ x0 � z + 2 (where z is bound at e1in w) and �2e2 � y0 � y+4 (where fx0; z0; zg do not o

ur free). Hen
e fx; zg are bound at e2 inw. At the edge e3, the guard 
e3 
an be written in the form 
1e3 ^ 
2e3 where 
1e3 � x � 6 (wherethe free variable x is bound at e2 in w) and 
2e3 � true. Also the a
tion �e3 
an be written inthe form �1e3 ^ �2e3 where �1e3 � z0 = z ^ x0 = x ^ y0 = x+ 2 (where fx; zg are bound at e2 in w).Hen
e fx; y; zg are bound at e3 in w.We next 
ome to the de�nition of initialized strings.121



De�nition 7.2 (Initialized Strings) A string w = e1 : : : em of edges of an in�nite state sys-tem is initialized if for ea
h variable xi, there exists a k (1 � k � m) su
h that xi is bound (inw) in every edge in ek : : : em.For the 
ases of non-linear hybrid systems (with the underlying theory being the theoryof real 
losed �elds) as well as integer valued systems in whi
h the underlying theory is thePresburger arithmeti
 extended with all relations x = y(mod k), k > 1, it 
an be e�e
tivelyde
ided using the methods presented in [Lib00℄ whether a string is initialized.7.6 Constraint Trees and Symboli
 Forward AnalysisGiven an in�nite state system S with set of edges E , we de�ne the 
onstraint tree for S asfollows.De�nition 7.3 (Constraint Tree) The 
onstraint tree for S is an in�nite tree with domainE� (i.e., the nodes are strings over E) that labels the node w by the 
onstraint [[w℄℄('0) where '0is the initial 
onstraint.Clearly, the (in�nite) disjun
tion of all 
onstraints labeling a node of the 
onstraint tree repre-sents all rea
hable states of S. We now de�ne symboli
 forward analysis formally. A symboli
forward analysis is a traversal of (a �nite pre�x of) a 
onstraint tree in a parti
ular order. Thefollowing de�nition of a non-deterministi
 pro
edure abstra
ts away from that spe
i�
 order.De�nition 7.4 (Symboli
 Forward Analysis) A symboli
 forward analysis of an in�nitestate system S is a pro
edure that enumerates 
onstraints 'i labeling the nodes wi of the 
on-straint tree of S in a tree order su
h that the disjun
tion of the enumerated 
onstraints representsall rea
hable states of S. Formally,{ 'i = [[wi℄℄('0) for 0 � i < B where the bound B is either a natural number or !,{ if wi is a pre�x of wj then i � j,{ the disjun
tion W0�i<B 'i is equivalent to the disjun
tion W0�i<! 'i.The number i is a leaf of a symboli
 forward analysis if the node wi is a leaf of the tree formedby all the nodes wi where 0 � i � B. We say that a symboli
 forward analysis terminates if itsbound B is �nite. We de�ne that a symboli
 forward analysis terminates with lo
al entailmentif for all its leaves i there exists a j < i su
h that the 
onstraint 'i entails the 
onstraint 'j(as a passing remark, we note that by 
hanging the notion of lo
al entailment, we 
an get amodel 
he
king pro
edure for liveness properties; we 
an 
hange the notion of lo
al entailmentby requiring that for all leaves i, there exists a j < i su
h that su
h that the 
onstraint 'j entailsthe 
onstraint 'i). In 
ontrast, a symboli
 forward analysis terminates with global entailment iffor all its leaves i, the 
onstraint 'i entails the disjun
tion of the 
onstraints 'j where j < i. Asdis
ussed in the Introdu
tion, model 
he
king is more eÆ
ient with lo
al entailment than withglobal entailment, both theoreti
ally and pra
ti
ally. Many model 
he
king tools for in�nitestate systems use lo
al entailment (e.g., UPPAAL [BLL+96℄, whi
h uses identity; the model
he
ker for in�nite state systems with integer-valued variables des
ribed in [DP99a℄ also useslo
al entailment). 122



We say that a lo
ation ` is a part of a 
y
le w = e1 : : : em if it is the sour
e of an edge ei ofthe 
y
le; i.e., an edge ei of the 
y
le is of the form : : : L = `[℄ : : : .A string is initializable if it 
ontains an initialized substring.Proposition 7.1 If every simple 
y
le of an in�nite state system S is initializable, symboli
forward analysis for the system terminates with lo
al entailment.Proof. We �rst show that the 
onstraint transformer fun
tion asso
iated with ea
h initializedstring w is either a 
onstant fun
tion or unsatis�able. Let w = e1 : : : em be an initialized string.Now, by de�nition, for ea
h variable x there exists a j (1 � j � m) su
h that x is bound (in w) inevery edge in ej : : : em. Let jx be the least su
h j for x. Let l = minfjx j x 2 fx1; : : : ; xngg. Wenow introdu
e some terminology that will be needed in the rest of the proof. Let bound(ei) �fx1; : : : ; xng be the set of variables that are bound (in the word under 
onsideration)) at anedge ei. Then, by de�nition, there is a partition of the set fx1; : : : ; xng into two subsets Sei andS0ei su
h that for 1 < i � m, the guard 
ei are 
an be written as a quanti�er free formula of theform 
1ei ^ 
2ei where the free variables in 
1ei are bound (in w) in ei�1 and the free variables in
2ei are not bound (in w) in ei�1, the variables in Sei are bound in ei�1 (in w) and the a
tion�ei(x;x0) 
an be written as a quanti�er free formula of the form �1 ^ �2 su
h that the variableso

urring free in �1 are among bound (ei)0 [ Sei (where bound (ei)0 = fx0 j x 2 bound (ei)g) andthe variables in bound (ei)0 [ Sei do not o

ur free in �2. We 
all Sei as the past of ei and writepast(ei) = Sei . Now 
onsider the edge el. If past(el) = Sel then the variables in Sel are bound(in w) in el�1. If past(el�1) = Sel�1 then the variables in Sel�1 are bound (in w) in el�2. We
an 
ontinue this reasoning only a �nitely many times after whi
h we will get an edge ep in wsu
h that past(ep) = ;. We will show that the 
onstraint transformer asso
iated with the stringw0 = ep : : : em is either a 
onstant fun
tion or unsatis�able. The 
onstraint transformer fun
tionasso
iated with w0 is given by[[w0℄℄(') � (9x9xp : : : 9xm�1(' ^  p ^ : : : ^  m))(x)where  k is the formula obtained by applying �-renaming to the 
onjun
tion of the guard formula
ek(x) and the formula 9z � 09x00Æek(x;x00) ^ ^�ek(x00;x0; z). That is k � 
ek(xk�1) ^ 9zk � 0 9xk00Æek(xk�1;xk00) ^ �ek(xk00;xk; zk)We identify the variable xi with its 0th renaming; a

ordingly we 
an write x0 for x.Now by de�nition, we 
an write  p as 
ep(x) ^ �1p(bound(ep)p) ^�2p((fxp1; : : : ; xpngnbound (ep)p);x) where for any subset X � fx1; : : : ; xng we de-note by Xj the set fxj j x 2 Xg. For ea
h i (p < i � m), we 
an write  ias 
1ei(bound (ei�1)i�1) ^ 
2ei(fx1; : : : ; xngnbound (ei�1)i�1) ^ �1i (bound (ei)i; past (ei)i�1) ^�2i ((fx1; : : : ; xngnbound (ei))i; (fx1; : : : ; xngnpast (ei))i�1). Observe that under this rewriting, m rewrites to 
1em(bound (em�1m�1)^
2em(fx1; : : : ; xngnbound (em�1)m�1^�1m(xm; past (em�1)m�1)^�2m((fx1; : : : ; xngnpast (em))m�1). Now we 
an transform the 
onstraint(9x9xp : : : 9xm�1(' ^  p ^ : : : ^  m))to a 
onstraint of the form (9x9xp : : : 9xm�1(' ^  ^  0))123



su
h that x is not free in  0 and the variables that o

ur free in  do not o

ur free in  0;in parti
ular, the variables xm o

ur free only in  0 (this will hold sin
e for ea
h p < i � m,past(ei) � bound (ei�1)). In this 
ase, we 
an move the 
orresponding existential quanti�ersinside; i.e., we 
an write the above 
onstraint as(9y(' ^  )) ^ 9y0 0where y o

ur free in '^ , and y0nxm o

ur free in  0. If '^ is unsatis�able, then [[w℄℄(') isunsatis�able. Otherwise, if '^ is satis�able (whi
h we have assumed), therefore the 
onjun
t9y'^ is equivalent to true. Thus, [[w0℄℄(') is equivalent to a formula that does not depend on', and hen
e a 
onstant fun
tion.Let eq be the least q su
h that bound (eq) = fx1; : : : ; xng (su
h a q exists sin
e bound(em) =fx1; : : : ; xng). We rewrite the above 
onstraint as follows.9x9xp : : : 9xm�1(' ^  ) ^  0where' ^  � (' ^ 
ep(x)^ �2p((fxp1; : : : ; xpngnbound (ep)p);x)^ 
2p+1(fxp1; : : : ; xpngnbound (ei�1)p)^ �2p+1((fxp+11 ; : : : ; xp+1n gnbound (ep+1)p+1); ((fx1; : : : ; xngnpast (ep+1))p))^ : : :^ �2q((fx1; : : : ; xngnpast (eq))q�1)^ : : :^ �2m((fx1; : : : ; xngnpast (em))m�1))and 0 � �1p(bound (ep)p) ^ 
1ep+1((bound (ep))p)^ �1p+1(bound (ep+1)p+1; past(ep+1)p)^ : : :^ 
1em(bound (em�1)m�1)^ �1m(xm; past (em�1)m�1)Now let w00 = e1 : : : ep�1. Then w = w00:w0. Hen
e the 
onstraint transformer [[w℄℄ asso
iatedwith w is given by [[w℄℄ = [[w00℄℄ Æ [[w0℄℄. Sin
e [[w0℄℄ is either unsatis�able or 
onstant fun
tion, [[w℄℄is also either unsatis�able or a 
onstant fun
tion.Now seeking a 
ontradi
tion, assume that symboli
 forward analysis for S does not termi-nate with lo
al entailment. Hen
e, there must be an in�nite path p along the 
onstraint tree.Following an argument in the proof of Theorem 5.1, p 
ontains in�nitely many o

urren
es ofa simple 
y
le w; i.e., p is an element of the language (E�:w)! . Now 
onsider any two nodess1 = w1:w and s2 = w2:w of p su
h that s1 < s2. Sin
e the 
onstraint transformer fun
tionlabeling w is a 
onstant fun
tion, the 
onstraints labeling s1 and s2 are the same. Sin
e thishappens for every path p in the 
onstraint tree, following the argument in Theorem 5.1, we 
anobtain a 
ontradi
tion. Hen
e symboli
 forward analysis for S terminates with lo
al entailment.[℄Corollary 7.1 Symboli
 forward analysis of an o-minimal hybrid system terminates with lo
alentailment.Proof. It is easy to see that ea
h simple 
y
le of an o-minimal hybrid system is initializable.Hen
e the result follows from an appli
ation of Proposition 7.1. [℄124



7.7 Compositional Reasoning about TerminationIn this se
tion, we show how to reason 
ompositionally about suÆ
ient termination 
onditions inour framework. In order to motivate that just proving termination for individual 
omponents isnot enough, 
onsider Figure 7.1. The �gure shows two hybrid systems S1 and S2. Ea
h system iso-minimal and hen
e symboli
 forward analysis for ea
h terminates. The �rst system S1 
onsistsof two lo
ations `0 and `1 and one (program) variable x whi
h in
reases with derivative 1 in ea
hlo
ation. There is an edge from `0 to `1 labeled a. The se
ond system S2 
onsists of a singlelo
ation m0 and an edge from m0 to itself labeled b. The variable y is the only program variable.It in
reases with derivative 1 at the lo
ation m0. The initial states (
onstraints) for S1 and S2are respe
tively L = `0 ^ x = 0 and L = m0 ^ y = 0. The asyn
hronous parallel 
omposition ofS1 and S2 is not o-minimal. In fa
t, symboli
 forward analysis for their asyn
hronous parallel
omposition does not terminate.
x:=0

 y:=0

PSfrag repla
ementsm0y = 1x := 0y � 2`0
`1

m0
S1 S2a b

Figure 7.1: Example showing 
omposition of o-minimal hybrid systems.The above example illustrates the need to develop sophisti
ated 
ompositional te
hniques toinfer the termination of symboli
 forward analysis of the 
omposed system based on 
ertatainsuÆ
ient 
riteria in the 
omponent systems. In the rest of this se
tion, we provide suÆ
ient
onditions under whi
h symboli
 forward analysis of the parallel 
omposition of n in�nite statesystems S1, : : : , Sn is terminating. To this end, we �rst de�ne the notion of an initialized edge.De�nition 7.5 (Initialized Edge) An edge e of an in�nite state system is said to be initializedif the free variables in the a
tion �e are among x0.Let S1; : : : ;Sk be k in�nite state systems with syn
hronizing alphabet sets �1; : : : ;�k. Below,for a �nite set I, we write Qi2I Si for the parallel 
omposition of in�nite state systems Si wherei 2 I.Theorem 7.1 If ea
h simple 
y
le w = e1 : : : em (m � 1) of ea
h Si{ 
ontains an ej (1 � j � m) su
h that lab(ej) 2 �1 \ : : : \ �k{ and for ea
h e 2 w su
h that lab(e) 2 �1 \ : : : \ �k, e is an initialized edge125



then symboli
 forward analysis for S = S1jj : : : jjSk terminates with lo
al entailment.Proof. We show that the 
onstraint transformer fun
tion asso
iated with ea
h simple 
y
lein the 
omposed is either a 
onstant fun
tionor unsatis�able . The proof requires 
ompli
ated
ombinatorial arguments. Before formally proving this, we state the basi
 intuition behind ourproof method: sin
e ea
h simple 
y
le of ea
h 
omponent Sj 
ontains at least one edge ei su
hthat lab(ei) 2 Tkl=1�l, therefore in ea
h simple 
y
le w of the 
omposed system, ea
h 
omponent\moves"; i.e., for ea
h 
omponent there exists at least one edge in w su
h that the proje
tion ofthat edge on that 
omponent is an edge in that 
omponent. We now formally state our proof.Formally, we �rst show that for any nonempty subset I � f1; : : : ; kg, in ea
h simple 
y
le w ofthe 
omposed systemQi2I Si there exists an edge e su
h that ea
h 
omponent Si (i 2 I) \moves"on that edge and lab(e) 2 Tki=1 �i. We prove this by indu
tion on the 
ardinality of I. The base
ase when I is a singleton is trivial. Let the statement hold for all subsets of f1; : : : ; kg of size lessthan or equal to l. Let I � f1; : : : ; kg be su
h that jIj = l+1 and there exists a simple 
y
le win the 
omposed systemQi2I Si su
h that for ea
h edge in w there exists a 
omponent Si (i 2 I)su
h that Si does not \move" on that edge. Now 
onsider the simple 
y
le w. There exists a
omponent Sj (j 2 I) su
h that the proje
tion of w on Sj is a 
y
le in Sj. Now pi
k up any � 2 I.Consider the 
omposed system Qi2Inf�g Si. The proje
tion of w on this system 
ontains a 
y
lew0 in it. Let w00 be a simple 
y
le within w0. By indu
tion hypothesis, there exists an edge e00 inw00 su
h that every 
omponent Si (i 2 Inf�g) \moves" on e00 and lab(e00) 2 Tki=1�i. Considerthe edge e in w su
h that its proje
tion on w0 is e00. By our assumption, S� does not \move"on that e. But sin
e lab(e) 2 Tki=1 �i, therefore, by the de�nition of parallel 
omposition, theexisten
e of this edge e in the 
omposed system Qi2I Si is impossible. Hen
e, we have shownthat for any nonempty subset I � f1; : : : ; kg, in ea
h simple 
y
le w of the 
omposed systemQi2I Si there exists an edge e su
h that ea
h 
omponent Si (i 2 I) \moves" on that 
omponentand lab(e) 2 Tki=1�i. Thus, in every simple 
y
le w = e1: : : : :em the 
omposed system Qki=1 Si,there exists an edge e su
h that every 
omponent Si \moves" on that edge and lab(e) 2 Tki=1 �i.We now show that the 
onstraint transformer fun
tion [[w℄℄ asso
iated with ea
h simple 
y
le wof S is either a 
onstant fun
tion or unsatis�able. Indeed, let w = e1: : : : :em be any simple 
y
leof S. Then, there exists an edge e su
h that every 
omponent Si \moves" on that edge andlab(e) 2 Tki=1 �i. Let e = ej . Consider the proje
tion of ej on any 
omponent Si. The proje
tionwill be an edge e0 in this 
omponent and also lab(e0) 2 Tki=1 �i. Hen
e, by the assumption of thetheorem, only the primed variables are free in �e0 . Hen
e, in S, only the primed variables arefree in �e. Hen
e �e is an initialized edge. It 
an be easily seen that the 
onstraint transformerfun
tion asso
iated with an initialized edge is either a a 
onstant fun
tion or unsatis�able. Letw0 = e1 : : : ej�1 and w00 = ej+1 : : : ej. Then the 
onstraint transformer fun
tion asso
iated withw is given by [[w℄℄ = [[w0℄℄ Æ [[ej ℄℄ Æ [[w00℄℄. Hen
e [[w℄℄ is either a 
onstant fun
tion or unsatis�able.Now we 
an argue as in Proposition 7.1 and prove termination of symboli
 forward analysis withlo
al entailment. [℄To see the appli
ability of our results, 
onsider the two-pro
ess real time mutual ex
lusionproto
ol given in Figure 7.2. The 
riti
al se
tion is denoted by 
s. Here, the pro
esses donot share real variables | the 
ommuni
ation is through the syn
hronization labels. The setof syn
hronization labels �1 of pro
ess P1 is the set fa; b; g; p; t1g and that for pro
ess P2�2 = fa; b; g; q; t2g. Ea
h pro
ess Pi has only one 
lo
k xi. It 
an be seen that this proto
olsatis�es the 
onditions of theorem 7.1. Hen
e, symboli
 forward analysis for the proto
ol (i.e.,symboli
 forward analysis of the 
omposed system) terminates.126
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Our next two theorems are 
on
erned with in�nite state systems with integer-valued vari-ables. Let S1; : : : ;Sk be k in�nite state systems with integer-valued variables with syn
hronizingalphabet sets �1; : : : ;�k.Theorem 7.2 If ea
h simple 
y
le w = e1 : : : em (m � 1) of ea
h Si is{ an initialized string and{ 
ontains an ei (1 � i � m) su
h that lab(ei) 2 �1 \ : : : \ �kthen symboli
 forward analysis for S1jj : : : jjSk terminates with lo
al entailment.Proof. By following the same line of reasoning as in the proof of Theorem 7.1, we 
an showthat in every simple 
y
le w = e1: : : : :em the 
omposed system Qki=1 Si, there exists an edgesu
h that every 
omponent Si \moves" on that edge. This means that the proje
tion of w onany 
omponent Si 
ontains a 
y
le w0 in Si.We now show that w is an initialized string. We show that for any variable x there exists a jsu
h that x is bound (in w) in every edge in ej: : : : :em. Pre
isely, we show that if w0 = ee1: : : : : eep,then there exists a t (1 � t � p) su
h that x is bound (in w0) in every edge in eet: : : : : eep wherethe variable x belongs to Si. We prove this by indu
tion on the nesting depth of the 
y
le w0
ontained in the proje
tion of w on the 
omponent Si that x belongs to. The base 
ase is whenthe nesting depth is 0, i.e., when (the 
ontrol graph of) w0 is a simple 
y
le; i.e., w0 is of the formas below where w0 = ee1: : : : : eep. Without loss of generality, we are assuming that the portion ofthe proje
tion ew of w on Si from the end of w0 to the end of ew does not 
ontain any 
y
le of Si.` : : : w0z }| {` ee1�! : : : eep�! ` : : : `In this 
ase, due to the fa
t that the 
omponents do not share variables and the assumption ofthe theorem, we 
an show that there exists a t su
h that x is bound (in w0) in every edge ineet: : : : : eep. From this it follows that there exists a j su
h that x is bound (in w) in every edge inej : : : : :em. Now assume that the result holds for all w0 su
h that the nesting depth of w0 is lessthan or equal to q. Let w0 be of nesting depth q+ 1. Then w0 must 
ontain a 
y
le w00 whi
h isof nesting depth less than or equal to q. We 
an 
hose w00 su
h that the portion of w0 from theend of w00 to the end of w0 does not 
ontain any nested 
y
le. This situation is depi
ted below.
` : : : w0z }| {` ee1�! : : : eer�! w00z }| {`0 ê1�! : : : êp�! `0 eet�! : : : feu�! ` : : : `Now there 
an be two 
ases. The �rst 
ase is that there exists an edge e between eet and eeu su
hthat x is bound (in w0) in every edge in e: : : : : eeu. In this 
ase, sin
e the 
omponents do not sharevariables, we 
an easily show that there exists a j su
h that x is bound (in w) in every edge inej : : : : :em. For the other 
ase in whi
h su
h an edge does not exist we appeal to the indu
tionhypothesis. By the indu
tion hypothesis, there exists a t0 su
h that x is bound in every edgein êt0 : : : : :êp in w00. Also, by the indu
tion hypothesis, every variable in Si is bound in êp (inw00). The binding of x in êp 
an be extended to eet: : : : : eeu (in w0). This is done as follows. First128



observe that the string eet: : : : : eeu is a part of a simple 
y
le v = �e1: : : : : �ep:eet: : : : : eeu of Si. Nowwe show that the following is an invariant. If a variable y is bound in any edge eea between eet andeeu in v, then it is also bound in eea in the string v0 = êt00 : : : : :eet: : : : :eu where t00 is the greatestt su
h that êt : : : êp is an initialized string (from the indu
tion hypothesis su
h a string exists).Indeed, �rst 
onsider any variable y that is bound in eet in v. Then there exists a partition offx1; : : : ; xng into two sets S and S0 su
h that the guard 
onstraint 
eet(x) 
an be written as aquanti�er free formula of the form 
1eet ^ 
2eet where the free variables in 
1eet are bound (in v) in �epand the free variables in 
2eet are not bound in �ep (in v) and the a
tion �eet(x;x0) 
an be writtenas a quanti�er free formula of the form �1 ^ �2 where{ the variables o

urring free in �1 are among bound(eet)0[S (where we use the same notationas in the proof of Proposition 7.1.{ The variables in bound (eet)0 [ S do not o

ur free either in �2 or in �2.{ Ea
h variable in S is bound in �ep (in v).But ea
h variable in S is bound in êp (in v0). Hen
e y is bound in eet in v0. Now suppose thatthis holds for all edges in eet: : : : : eea. Then it 
an be easily shown that this holds for eet: : : : :gea+1.Now a

ording to the assumption of the theorem x is bound in every edge eea between eet andeeu in v. Hen
e it is bound in every edge bound in every edge eea between eet and eeu in êt : : : eeu.Thus x is bound in every edge in the string êt : : : eeu. From this it easily follows that there existsa j su
h that x is bound in every edge in ej : : : : :em. Thus we have proved that every simple
y
le in the 
omposed system S1jj : : : jjSk is an initialized string. The result of the theorem thenfollows from Proposition 7.1. [℄Our next theorem also 
onsiders in�nite state systems with integer-valued variables. ThesuÆ
ient 
onditions provided are more graph-theoreti
. We �rst de�ne an exit point for a simple
y
le w = e1 : : : em.De�nition 7.6 (Exit Point) An edge ei of a simple 
y
le w = e1 : : : em is an exit point of wif the sour
e lo
ation of ei is a part of a 
y
le w0 6= w; i.e., it is also the sour
e lo
ation of someedge in w0.For a simple 
y
le w = e1 : : : em, we 
all the edge ei the last exit point of w if ei is an exit pointof w and for all j with i < j � m, ej is not an exit point of w; i.e., the sour
e lo
ation of ei isthe last lo
ation in w from whi
h one 
an leave w. If ei is the last exit point of a simple 
y
lew = e1 : : : em, we 
all the substring w0 = ei : : : em the remainder se
tion of w.Theorem 7.3 Assume that ea
h Si is an in�nite state system with integer-valued variables.Suppose that{ ea
h simple 
y
le in ea
h Si is an initialized string and{ the remainder se
tion of ea
h simple 
y
le in ea
h Si 
ontains an initialized string.Then symboli
 forward analysis for S1jj : : : jjSk terminates with lo
al entailment.Proof. Seeking a 
ontradi
tion, suppose that the 
onstraint tree for the 
omposed system
ontains an in�nite bran
h �. Then some simple 
y
le w must repeat in�nitely often along thatbran
h. We now reason on the type of this simple 
y
le w.129



Case 1. The �rst 
ase is that ea
h 
omponent Si \moves" on w; i.e., for ea
h 
omponent Sithere exists an edge e in w su
h that the proje
tion of e on Si is an edge in Si. In this 
ase we
an reason as in Theorem 7.2 and show that w is an initialized string. Then we 
an follow thereasoning of Proposition 7.1 and obtain a 
ontradi
tion.Case 2. This 
ase is the negation of the �rst one. I.e., there exists at least one 
omponentthat does not \move" on w = e1 : : : em. Hen
e w may not be initialized. However for ea
h
omponent Si that \moves" on w, for ea
h variable x that belongs to Si, there exists a j su
hthat x is reset in any edge in ej : : : em. This 
an be proved by using reasoning similar to thatin Theorem 7.2. Now sin
e the bran
h � belongs to the language (E�w)! , it is of the formT0:w:T1:w: : : : . Consider the 
omponents that do not \move" on w. Without loss of generality,the variables that belong to these 
omponents be fxq; : : : ; xng. Among these, let fxq; : : : ; xsgbe the variables that belong to 
omponents that do not \move" after some point in the bran
h�. So the variables fxs+1; : : : ; xng belong to 
omponents su
h that for every node � on �, forea
h of these 
omponents there exists a des
endant � 0 = w0:e of � su
h that the 
omponent\moves" on e. We go down the bran
h � beyond the point after whi
h the 
omponents towhi
h the variables fxq; : : : ; xsg belong do not \move" any more. Sin
e the 
y
le w repeatsin�nitely often, we 
an �nd below this point two nodes labeled w1 and w1:w. From the latternode, we 
an still go down until we 
an �nd a stret
h in whi
h ea
h of the 
omponents to whi
hfxs+1; : : : ; xng belong \move" at least on
e along this stret
h. We 
an �nd two nodes beyondthis \point" labeled w2 and w2:w. Let the word between w1:w and w2 be denoted by L1; i.e.,w2 = w1:w:L1. Sin
e w repeats in�nitely often along �, we 
an �nd nodes w3, w3:w, w4 andw4:w su
h that w2:w < w3 and w4 = w3:w:L2 where ea
h 
omponent that 
ontains variablesamong fxs+1; : : : ; xng \moves" at least on
e in L2. In this way we 
an get an in�nite sequen
e ofnodes wi, wi:w, wi+1, wi+1:w where wi+1 = wi:w:Li and ea
h 
omponent that 
ontains variablesin fxs+1; : : : ; xng \moves" at least on
e in Li. Now noti
e that the edges in Li on whi
h the
omponents, that 
ontain variables fxs+1; : : : ; xng, \move" must lie within a 
y
le of S. Thesituation for a 
omponent Sj that \moves" in Li is shown below.Liz }| {: : : �! Cz }| {` �! : : : �! C0z }| {`0 �! : : : �! `0 �! : : : �! ` �! : : :Note that by \unpumping" (where if w = e1 : : : em is a word and C = ek : : : el (1 � k � l � m)is a 
y
le 
ontained in w, then the word obtained from w by \unpumping" C is given bye1 : : : ek�1:el+1 : : : em) is all the 
y
les that are inside C we 
an get a simple 
y
le. We say that a
omponent \moves" within a simple 
y
le eC if the 
omponent \moves" in C and eC is obtainedby unpumping all the 
y
les 
ontained in C and the 
omponent \moves" in eC. Now 
onsider thesimple 
y
les in whi
h ea
h 
omponent that 
ontains the variables in fxs+1; : : : ; xng \moves" forthe last time in Li. That is, there is no "movement" of a 
omponent in Li after its 
orrespondingsimple 
y
le (i.e., the simple 
y
le in whi
h it \moves" for the last time in Li). Sin
e there arein�nitely many Lis but �nitely many simple 
y
les, there must exist in�nitely many indi
es jisu
h that in ea
h Lji , for ea
h 
omponent that 
ontains variables in fxs+1; : : : ; xng, its last\movement" in Lji is 
ontained in the same simple 
y
le. Consider Lj1 and Lj2 . Consider thefollowing situation. 130



�z }| {: : : `|{z}wj1 : : : `|{z}wj1 :w : : : `|{z}wj1 :w:Lj1 : : : `|{z}wj1 :w:Lj1 :w : : : `|{z}wj2 : : : `|{z}wj2 :w : : : `|{z}wj2 :w:Lj2 : : : `|{z}wj2 :w:Lj2 :w : : :Let the 
onstraints labeling the nodes wj1 , wj1 :w, wj1 :w:Lj1 , wj1 :w:Lj1 :w, wj2 , wj2 :w,wj2 :w:Lj2 and wj2 :w:Lj2 :w be '1, '2, '3, '4, '5, '6, '7 and '8 respe
tively. We will showthat '8 j= '4. Then reasoning as in Proposition 7.1, we 
an obtain a 
ontradi
tion.Suppose that N ;v j= '8. Then there must be a run from a solution v0 of '1to v. Let usdenote this run by R. Thushv01; : : : ; v0q�1; vq; : : : ; vs; v0s+1; : : : ; v0ni R�!� hv1; : : : vniWe will show that N ;v j= '4. Sin
e '3 is satis�able, there must exist a solutionhv001 ; : : : ; v00q�1; vq; : : : ; vs; v00s+1; : : : ; v00ni of '3. Hen
e there must exist a runhv00001 ; : : : ; v0000q�1; vq; : : : ; vs; v0000s+1; : : : ; v0000n i �!� hv001 ; : : : ; v00q�1; vq; : : : ; vs; v00s+1; : : : ; v00nifrom the node wj1 to the node wj1 :w:Lj1 and N ; hv00001 ; : : : ; v0000q�1; vq; : : : ; vs; v0000s+1; : : : ; v0000n i j='1. Let us 
all this run R0. Now we will 
onstru
t a run fromhv00001 ; : : : ; v0000q�1; vq; : : : ; vs; v0000s+1; : : : ; v0000n i �!� v from the node wj1 to the node wj1 :w:Lj1 :w.This will prove that N ;v j= '4.This run is 
onstru
ted as follows. From the node wj1 to the node wj1 :w we follow therun R0. Without loss of generality let S1; : : : ;Sl be the 
omponents that 
ontain the variablesfxs+1; : : : ; xng. From the node wj1 :w to the node wj1 :w:Lj1 , we follow the following strategy. Forea
h of the edges in this stret
h other than those in the simple 
y
les in whi
h some 
omponentsin fS1; : : : ;Slg \moves" for the last time in Lj1 , we update the variables a

ording to the runR0. For the simple 
y
les in whi
h at least one of the 
omponents in fS1; : : : ;Slg \moves" forthe last time in Lj1 , we reason as follows. We �rst noti
e the following. Consider a 
y
le Cnested in Lj1 in whi
h the 
omponent Si \moves" for the last time in Lj1 . It is of the form: : : Cz }| {` : : : C0z }| {`0 : : : `0 : : : ` : : :| {z }Lj1where C 0 is a 
y
le nested inside C. Now there are two 
ases.Case 2.1 The 
omponent Si does not move in the stret
h from the end of C 0 to the end ofC. Then it must have "moved" in the stret
h from the beginning of C to the beginning of C 0.In that 
ase, it 
annot have "moved" in the 
y
le C 0. Now the proje
tion w0 of the stret
h fromthe beginning of C to that of C 0 on Si must 
ontain a 
y
le w00 of Si. We 
hoose this w00 in su
ha way that the stret
h from the end of w00 to the end of w0 does not 
ontain any 
y
le of Si.Suppose that w00 = ee1: : : : : eep. Now we prove that for ea
h variable x that belongs to Si, thereexists a j su
h that x is bound (in w00) in every edge in eej : : : eep. We prove this by indu
tionon the nesting depth of w00. The base 
ase when the nesting depth of w00 is zero, i.e., w00 is asimple 
y
le, is trivial. Now assume that the result holds for all w00 su
h that the nesting depthof w00 is less than or equal to q. Let w00 be of nesting depth q+1. Then w00 must 
ontain a 
y
le131



w000 whi
h is of nesting depth less than or equal to q. We 
an 
hose w000 su
h that the portionof w00 from the end of w000 to the end of w00 does not 
ontain any nested 
y
le. This situation isdepi
ted below.
` : : : w00z }| {` ee1�! : : : eer�! w000z }| {`0 ê1�! : : : êp�! `0 eet�! : : : feu�! ` : : : `Now there 
an be two 
ases. The �rst 
ase is that there exists an edge e between eet and eeu su
hthat x is bound (in w00) in every edge in e: : : : : eeu. In this 
ase we have nothing to prove. These
ond 
ase is when there does not exist su
h an edge. In this 
ase we appeal to the indu
tionhypothesis. By the indu
tion hypothesis, there exists a t0 su
h that x is bound in every edgein êt0 : : : : :êp in w00. Also, by the indu
tion hypothesis, every variable in Si is bound in êp. Thebinding of x in ep 
an be extended to eet: : : : : eeu. This is done as follows.First observe that the string eet: : : : : eeu is a part of a simple 
y
le v = �e1: : : : : �ep:eet: : : : : eeuof Si. Now we show that the following is an invariant. If a variable y is bound in any edge eeabetween eet and eeu in v, then it is also bound in eea in the string v0 = êt00 : : : : :eet: : : : :eu wheret00 is the greatest t su
h that for the word eu = êt : : : êp every variable y in Si, there exists a j(t � j � p) su
h that y is bound (in eu) in every edge in êj : : : êp (from the indu
tion hypothesis).Indeed, �rst 
onsider any variable y that is bound in eet in v. Then there exists a partition offx1; : : : ; xng into two sets S and S0 su
h that the guard 
onstraint 
eet(x) 
an be written as aquanti�er free formula of the form 
1eet ^ 
2eet where the free variables in 
1eet are bound in �ep (in v)and the free variables in 
2eet are not bound in �ep (in v) and the a
tion �eet(x;x0) 
an be writtenas a quanti�er free formula of the form �1 ^ �2 where{ the variables o

urring free in �1 are among bound(eet)0[S (where we use the same notationas in the proof of Proposition 7.1).{ The variables in bound (eet)0 [ S do not o

ur free either in �2 or in �2.{ Ea
h variable in S is bound in �ep (in v).But ea
h variable in S is bound in êp (in v0). Hen
e y is bound in eet in v0. Now suppose thatthis holds for all edges in eet: : : : : eea. Then it 
an be easily shown that this holds for eet: : : : :gea+1.Now a

ording to the assumption of the theorem x is bound in every edge eea between eet and eeuin v. Hen
e it is bound in every edge bound in every edge eea between eet and eeu in êt : : : eeu. Thusx is bound in every edge in the string êt : : : eeu. Hen
e, we have shown that for every variable xthat belongs to Si, there exists a j su
h that x is bound (in w00) in every edge in eej : : : eep.In this 
ase, for the variables that belong to Si, we update them in the edges that 
orre-sponding to eej : : : eep in the same way as is done in the run R in Lj2 . Note that sin
e the simple
y
les in whi
h Si \moves" for the last time are same in Lj1 and Lj2 , we 
an do this kind ofupdate (a
tion).Case 2.2. The 
omponent Si "moves" in the stret
h from the end of C 0 to the of C. Wenow show that proje
tion u of the stret
h from the end of C 0 to the end of C on the 
omponentSi 
ontains an initialized string. Indeed, let eC be the simple 
y
le obtained by unpumping allthe 
y
les that are 
ontained in C. Consider the proje
tion of eC on the 
omponent Si. Sin
e Si"moves" in the stret
h from the end of C 0 to the end of C, either the proje
tion of this stret
h132



on the 
omponent Si itself 
ontains a simple 
y
le of Si, or there is a (proje
tion of a) simple
y
le of Si whose starting point 
orresponds to an edge in the stret
h from the beginning of Cto the beginning of C 0 and it ends in the stret
h from the end of C 0 to the end of C, after whi
hthe proje
tion does not 
ontain any 
y
le. In the former 
ase, 
onsider the last simple 
y
le
ontained in the proje
tion of the stret
h from the end of C 0 to the end of C. By the assumptionof the theorem, it 
ontains an initialized string. For the edges in Lj1 that 
orresponding to thisinitialized string, update the the variables belonging to Si in the same way as in Lj2 .In the latter 
ase, there 
an be two sub
ases.Case 2.2.1 The �rst sub
ase is that the 
omponent Si does not \move" in C 0. In this 
ase,we reason as follows. If the 
omponent Si does not \move" in the stret
h from the end of C 0to the end of C, then the proje
tion of the stret
h from the beginning of C to the beginning ofC 0 on Si must 
ontain a simple 
y
le of Si. Hen
e on the proje
tion u of the stret
h from thebeginning of C to that of C 0, we 
hoose a simple 
y
le w0 su
h that the stret
h from the end ofw0 to the end of u does not 
ontain any 
y
le. In this 
ase, for the variables that belong to Si,we update them in the edges that 
orrespond to w0 in the same way as is done in the run R inLj2 . If the 
omponent Si does \move" in the stret
h from the end of C 0 to the end of C, thenif the proje
tion of this stret
h on Si 
ontains a simple 
y
le of Si, we 
an reason as in Case2.1. Otherwise, the proje
tion of C on Si will 
ontain a simple 
y
le u1:u2 of Si su
h that u1belongs to the proje
tion of the stret
h from the beginning of C to the beginning of C 0 while u2belongs to the proje
tion of the stret
h from the end of C 0 to the end of C. In this 
ase, for thevariables that belong to Si, we update them in the edges that 
orrespond to u1:u2 in the sameway as is done in the run R in Lj2 .Case 2.2.2 The se
ond sub
ase is that the 
omponent Si \moves" in the 
y
le C 0. Inthis 
ase, if the 
omponent Si must \move" in the stret
h from the end of C 0 to the end ofC (otherwise eC is not the simple 
y
le in whi
h Si �̀moves" for the last time in Lj1). If theproje
tion of the stret
h from the end of C 0 to the end of C on Si 
ontains a simple 
y
le of Si,then we 
an reason as in Case 2.2.1. In the other 
ase, the proje
tion of C on Si will 
ontain asimple 
y
le u1:u2 of Si su
h that u1 belongs to the proje
tion of the stret
h from the beginningof C to the beginning of C 0 while u2 belongs to the proje
tion of the stret
h from the end of C 0 tothe end of C. Now the end of u1 is an exit point of the simple 
y
le u1:u2. Hen
e from the se
ond
ondition of this Theorem, u2 must 
ontain a initialized string. Let w0 be the last initializedstring 
ontained in u2 (i.e., if we let u2 = u:w0:u0, then, for any u00 su
h that u2 = u00:w00:u000 andu is a pre�x of u00, w00 is not a initialized string). We now show that w0:u0 is an initialized string.Indeed, 
onsider any variable x tat belongs to Si. Of 
ourse x is bound in the edge e in w0:u0where w0 = w00:e. Either this binding extends all the way through u0. Or we must get an edgee0 in u0 su
h that u0 = u000:e0:w000 and x is bound in w0:u0 in every edge in w000. In this 
ase, forthe variables that belong to Si, we update them in the same way as is done in the run R in Lj2 .Finally, we note that in all these 
ases, in the run 
reated, we get a tuplehv001 ; : : : ; v00q�1; vq; : : : ; vs; vs+1; : : : ; vni. Now we 
an easily 
onstru
t a run from this tuple tothe tuple v at the node wj1 :w:Lj1 :w. This is done by the following method. In every edgein the stret
h from tthe node wj1 :w:Lj1 to the node wj1 :w:Lj1 :w, we update the variables infx1; : : : ; xq�1g in the same way as is done in R in the stret
h from the node wj2 :w:Lj2 to thenode wj2 :w:Lj2 :w. Hen
e N ;v j= '4. [℄133



7.8 Related WorkRea
hability analysis for in�nite state systems with integer valued variables has been 
onsid-ered by Berard and Fribourg [BF99℄ as well as by Fribourg and Olsen [FO97℄. Berard andFribourg [BF99℄ did not identify any (interesting) sub
lass of su
h systems for whi
h theirrea
hability analysis pro
edure terminates. They relaxed the rea
hability analysis pro
edureover integers to reals with the observation that over the 
lass of 
onstraints that they have 
on-sidered, elimination of variables over R (the domain of reals) using Fourier-Motzkin pro
edureis exa
t, i.e., produ
es the same result as the elimination of variables over N (the domain ofnatural numbers). However, it 
an be easily shown that over the 
lass of 
onstraints that theyhave 
onsidered, the real and integer solving algorithms perform exa
tly in the same way. Hen
e,the relaxation to reals does not provide any advantage with respe
t to 
omputational 
omplex-ity 
ontrary to the 
laim in [BF99℄. Like the work of Berard and Fribourg [BF99℄, Fribourgand Olsen [FO97℄ also do not provide any suÆ
ient 
onditions for termination of their model
he
king pro
edure.Abdulla, Cerans, Jonsson and Tsay [ACJT96℄ as well as Finkel and S
hnoebelen [FS98℄gave a unifying framework for deriving de
idability results for model 
he
king for in�nite statesystems. However, their framework requires �nding a well quasi-ordering on the states. In manypra
ti
al situations, �nding su
h a well quasi-ordering on the states is not feasible. Besides, theirmethod of deriving suÆ
ient termination 
onditions for rea
hability analysis is monolithi
; onehas to 
onsider the state-spa
e of the 
omposed system to show the termination of rea
habilityanalysis.Comon and Jurski [CJ98℄ obtained de
idability results for rea
hability analysis for a fragmentof the 
lass of multiple 
ounter automata. They showed that the �xpoint of iterating transitionsfor this sub
lass of multiple 
ounter automata is expressible in Presburger arithmeti
. Again,their framework does not provide any means of reasoning about suÆ
ient termination 
onditions
ompositionally.Boigelot [Boi98℄ obtained suÆ
ient 
onditions for termination of rea
hability analysis forin�nite state systems with integer-valued variables based on graph-theoreti
 properties of theunderlying 
ontrol graphs. However, like the works mentioned above, his work does not providea 
ompositional way of reasoning about suÆ
ient termination 
onditions.Bultan, Gerber and Pugh [BGP97℄ presented a model 
he
ker for in�nite state systemswith integer-valued variables based on the Presburger solver from the Omega library [Pug92℄.While [BGP97℄ provided model 
he
king pro
edures for both safety and liveness properties, nosuÆ
ient 
onditions for termination of the pro
edures were provided.Wong-Toi [WT95℄ has identi�ed a sub
lass of linear hybrid systems 
alled skewed 
lo
k au-tomata that 
an be translated to timed safety automata. The sub
lass of skewed 
lo
k automatais 
losed under parallel 
omposition. While symboli
 ba
kward analysis is guaranteed to termi-nate for skewed 
lo
k automata, symboli
 forward analysis is possibly non-terminating for thissub
lass. However, as dis
ussed in the previous 
hapters, symboli
 forward analysis is widelyused in pra
ti
al experiments. It is also not 
lear how the methods of [WT95℄ 
an be extendedto nonlinear hybrid systems.Non-linear hybrid systems have been 
onsidered by La�erriere, Pappas and Yovine [LPY99℄.For the 
lass of o-minimal hybrid systems, they proved the termination of symboli
 ba
kwardanalysis by showing that this 
lass admits �nite bisimulations. Using our toolbox, we have givena simple proof of the termination of symboli
 forward analysis for o-minimal hybrid systems. In134



fa
t this result has been obtained as a 
orollary of a more general theorem. While the reasoningabout termination of symboli
 ba
kward analysis in [LPY99℄ is not 
ompositional, our toolboxalso allows 
ompositional reasoning about termination of symboli
 forward analysis for the 
lassof hybrid systems 
onsidered in [LPY99℄.Henzinger, Kopke, Puri and Varaiya [HKPV95℄ 
onsidered initialized re
tangular automata,a sub
lass of linear hybrid systems, for whi
h symboli
 ba
kward analysis is guaranteed toterminate. Henzinger [Hen95℄ 
onsidered hybrid automata with �nite bisimulations for whi
hsymboli
 ba
kward analysis is guaranteed to terminate. But none of these works addressed theissue of 
ompositional reasoning about suÆ
ient termination 
onditions.Lam and Brayton [LB93℄ 
onsidered alternating RQ timed automata whi
h were 
losed underI/O 
omposition. The 
lass of alternating RQ automata is restri
tive in the sense that it allowsexa
tly one reset and exa
tly one query for ea
h 
lo
k in an entire automaton. Moreover thenotion of I/O 
omposition that they used is mu
h more restri
tive than the notion of parallel
omposition used in this 
hapter. It is also not known whether symboli
 forward analysis foralternating RQ timed automata is guaranteed to terminate.Namjoshi [Nam98℄ 
onsidered model 
he
king for parameterized systems in whi
h ea
h pro-
ess is �nite state. In 
ontrast, in this 
hapter, we 
onsidered �nite families of possibly in�nitestate systems.In Chapter 5, we provided a framework for reasoning about suÆ
ient termination 
onditionsfor symboli
 forward analysis of timed automata. The present 
hapter is an extension of thatframework to the more general 
ontext of in�nite state systems with integer-valued variables and(nonlinear) hybrid systems as well as augmenting the framework with 
ompositional reasoning.
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Chapter 8Constraint Transformer Monoids:A Uni�ed Algebrai
 Frameworkfor Abstra
t Symboli
 ForwardAnalysis of In�nite State Systems8.1 Introdu
tionOver the last few years, there has been an in
reasing resear
h e�ort dire
ted towards automati
veri�
ation of in�nite state systems. Resear
h on de
idability issues (e.g., [ACJT96, ACHH93,Boi98, LPY99, HKPV95, CJ98℄) has resulted in highly non-trivial algorithms for the veri�
ationof di�erent sub
lasses of in�nite state systems. These results do not, of 
ourse, imply terminationguarantees for semi-algorithms on whi
h pra
ti
al tools are based (e.g., the de
idability of themodel 
he
king problem for timed automata does not entail a termination guarantee for symboli
forward analysis of timed automata; symboli
 forward analysis for timed automata is possiblynon-terminating).Pra
ti
al tools generally use abstra
tions to guarantee (or speed-up) the termination ofthese semi-algorithms. The abstra
t semi-algorithms resulting from su
h abstra
tions may bealways terminating but approximate (i.e., they always terminate but 
an produ
e don't knowanswers; for example the semi-algorithm with widening used in [HPR97℄), or both terminat-ing and a

urate (e.g., the algorithm with the extrapolation operator in [DT98℄ and used inKRONOS) or possibly non-terminating and a

urate (su
h abstra
t semi-algorithms are possi-bly non-terminating; but when they terminate they produ
e a yes/no answer; examples are thesemi-algorithm with the 
y
le-step abstra
tion in [BBR97℄ and the semi-algorithm with a

uratewidening in [MP00a℄). Many of these abstra
tions are inspired by the abstra
t interpretationframework of Cousot and Cousot [CC77℄.Symboli
 forward analysis is a semi-algorithm that in many 
ases solves the model 
he
kingproblem for in�nite state systems in pra
ti
e. This semi-algorithm is implemented in many pra
-ti
al model 
he
king tools like UPPAAL [BLL+96℄, KRONOS [DT98℄ and HYTECH [HHWT97℄.This 
hapter presents a uniform algebrai
 framework for deriving abstra
t symboli
 forward anal-ysis pro
edures for a large 
lass of in�nite state systems with variables ranging over a numeri
domain. We obtain the framework by lifting notions from 
lassi
al algebrai
 theory of automata137



to 
onstraints representing sets of states. Our framework provides suÆ
ient 
onditions underwhi
h the derived abstra
t symboli
 forward analysis pro
edure is always terminating or a

urateor both. The 
lass of in�nite state systems that we 
onsider here are (possibly non-linear) hy-brid systems and (possibly non-linear) integer-valued systems. The 
entral notions involved arethose of 
onstraint transformer monoids and 
overings between 
onstraint transformer monoids.We show 
on
rete appli
ations of our framework in deriving abstra
t symboli
 forward analysisalgorithms for timed automata and the two pro
ess bakery algorithm that are both terminatingand a

urate.Our results suggest a potential optimization of the (abstra
t) symboli
 forward analysispro
edures. Namely, the termination guarantees 
ontinue to hold even when the �xpoint testis made more eÆ
ient by weakening it to lo
al entailment (explained below; e.g., for lineararithmeti
 
onstraints over reals, the 
omplexity of �xpoint test redu
es from 
o-NP hard topolynomial).8.2 In�nite State SystemsWe re
all the notion of in�nite states systems from Chapter 7. We assume that the programvariables range over the set of natural numbers N or the set of reals R, and the guard andthe a
tion formulas are Arith(N ) (the theory of natural numbers with addition, multipli
ationand order; it is interpreted over the stru
ture hN ; <;+; �; 0; 1i) or OF (R) (the theory of theordered �eld of reals; it is interpreted over the stru
ture hR; <;+; �; 0; 1i) formulas. Below, wewill refer to OF (R) or Arith(N ) formulas as 
onstraints. For a formula ' with free variables x,we denote by '(x0), the formula obtained by repla
ing the free variables x of ' by x0. Similarto Chapter 7, we will use 
onstraints ' to represent 
ertain sets of states of the system.In thesequel, we assume only 
onjun
tive 
onstraints; i.e., 
onstraints that are 
onjun
tions of atomi

onstraints of the form t relop 
 where t is a term, 
 2 N and relop 2 f>;<;�;�g. Examples ofsystems as des
ribed above in
lude the bakery algorithm, the bounded bu�er produ
er-
onsumerproblem et
. as well as the so-
alled hybrid systems.8.3 Constraint Transformer MonoidsOur de�nition of 
onstraint transformer monoids is inspired by the de�nition of (synta
ti
)transformation monoids in [Eil76℄. Let � be a (possibly in�nite) set of satis�able 
onstraints(i.e., ea
h 
onstraint in � is satis�able). We denote the set of all partial fun
tions � �! � bySF(�). Let 1� denote the identity fun
tion. The set SF(�) forms a monoid with fun
tional
omposition as the multipli
ation and 1� as the identity element. A 
onstraint transformersemigroup is a pair h�; Si where S is a subsemigroup of SF(�). The 
onstraint transformersemigroup h�; Si is a 
onstraint transformer monoid if the identity fun
tion 1� is in S. Theelements of � are 
alled symboli
 states. The elements of S are 
alled 
onstraint transformers. A
onstraint transformer monoid X = h�; Si is a 
onstraint transformer submonoid of a 
onstrainttransformer Y = h�0; S0i if � � �0 and S is a submonoid of S0.By the denotation of set of 
onstraints �, we represent the denotation of their disjun
tion;i.e., [�℄ = S'2�['℄.We next de�ne a synta
ti
 order v' on a 
onstraint transformer monoid X = h�; Si withrespe
t to a 
onstraint ' 2 � as follows. 138



Synta
ti
 Order. For w;w0 2 S, w v' w0 i� w(') j= w0('). Given a set of 
onstraints	 � �, we say that an in�nite sequen
e w0; w1; : : : , where wi 2 S, is synta
ti
ally in
reasingwith respe
t to 	 if for all i � 1, there exists ' 2 	 su
h that wi 6v' wj for all j < i.Finitary Constraint Transformer Monoids. We say that a 
onstraint transformer monoidX is �nitary with respe
t to a set 	 � � of 
onstraints if there does not exist any synta
ti
allyin
reasing in�nite sequen
e with respe
t to 	. Note that X is �nitary does not mean that � is�nite.Rea
hability. For a 
onstraint transformer monoid X = h�; Si, a rea
hability question is ofthe form: given '1; '2 2 �, does there exist a w 2 S su
h that '2 = w('1)?Constraint transformer monoids generated by in�nite state systems: We now showhow an in�nite state system generates a 
onstraint transformer monoid. We identify two 
on-straints ' and '0 i� they have the same denotations; i.e., ['℄ = ['0℄. We re
all the notion of
onstraint transformers from Chapter 5. The 
onstraint transformer monoid generated by anin�nite state system S is given by CT (S) = h�; Si where � = f' j 9w 2 E�[[w℄℄('0) = 'g andS = f[[w℄℄ j w 2 E�g with fun
tional 
omposition as the multipli
ation in S and [["℄℄ as the unitelement.8.4 Coverings of Constraint Transformer MonoidsOur de�nition of 
overing between 
onstraint transformer monoids is inspired by that of 
overingbetween (synta
ti
) transformer monoids in [Eil76℄. Let X = h�; Si and Y = h�0; S0i be two
onstraint transformer monoids. Let f be a total (binary) relation from � to �0. For w 2 S andv 2 S0, we 
onsider the following diagram.�f
��

w // �f
���0 v // �0If the above diagram 
ommutes, i.e., for all ' 2 �, v(f j f('; )g) = f j f(w(');  )g, thenwe say that v 
overs w with respe
t to f where for a set e�, v(e�) = fv(') j ' 2 e�g. If for ea
hw 2 S there exists a v 2 S0 su
h that v 
overs w we say that the relation f is a 
overing betweenX and Y . We say that the 
onstraint transformer monoid Y 
overs the 
onstraint transformermonoid X if a 
overing f exists between X and Y and we write X � Y . We are now going tode�ne a quotient of X with respe
t to f ; we 
all su
h a quotient an f -quotient of X.f quotient. In order to de�ne an f -quotient of X, we �rst de�ne an equivalen
e relation �fon � as follows. For ';'0 2 �,' �f '0 () f j f('; )g = f 0 j f('0;  0)g:Next we de�ne a representant fun
tion rep : �= �f�! � as rep(['℄) = ', where ['℄ is theequivalen
e 
lass of ' with respe
t to the equivalen
e relation�f . Given a 
overing relation f and139



a representant fun
tion rep as above, we 
all the 
onstraint transformer monoidX 0 = hrep(�= �f); Ŝi an f -quotient of X where Ŝ = f ew j w 2 Sg and for any 
onstraint  2 rep(�= �f ),ew( ) = rep([ 0℄) i� w( ) =  0.Canoni
ity and Saturation. We say that a 
onstraint ' 2 � is 
anoni
al with respe
t tof if for all '0 2 � with ' 6= '0, f j f('; )g 6= f 0 j f('0;  0)g. We say that the relation fsaturates a 
onstraint ' 2 � if there exists a 
onstraint  2 �0 su
h that f('; ) and for all'0 2 �0 with f('0;  ), we have ' = '0. The notions of 
anoni
ity and saturation indi
ate the\lo
al" distinguishing power of f .De�nition 8.1 (Homeo
overing) We say that f is a homeo
overing from X to Y with re-spe
t to 
onstraints '1 and '2 if f is a 
overing from X to Y and one of the following 
onditionshold.{ either f�1 is a 
overing from Y to a 
onstraint transformer submonoid X 0 = h�00; S00i ofX (i.e., Y � X 0 and f�1 witnesses the 
overing) and '1; '2 2 �00,{ or f�1 is a 
overing from Y to an f -quotient X 0 of X (i.e., Y � X 0 and f�1 is a witnessto this 
overing) and '1 and '2 are both 
anoni
al with respe
t to fDe�nition 8.2 (Finitary Covering) We say that a 
overing f is a �nitary 
overing from Xto Y with respe
t to a set of 
onstraints 	 � �, if f is a 
overing from X to Y and Y is �nitarywith respe
t to f j f('; ); ' 2 	g.Note that even if f is a �nitary 
overing from X to Y = h�0; S0i, it does not mean that �0 is�nite. We will use the notion of �nitary 
overings to provide suÆ
ient 
onditions for terminationof abstra
t symboli
 forward analysis in Theorem 8.1.Proposition 8.1 Let S be an in�nite state system. Let X = h�; Si be the 
onstraint trans-former monoid generated by S. Let Y = h�0; S0i be a 
onstraint transformer su
h that X � Ywith f being a 
overing between X and Y . Suppose that a 
onstraint '2 is rea
hable from theinitial 
onstraint '1 in S. Then there exists v 2 S0 su
h thatf jf('2;  )g = v(f 1 j f('1;  1)g):If, in addition, f saturates '1 and f is homeo
overing from X to Y with respe
t to '1 and '2,then the 
onverse also holds.Proof. The equality follows dire
tly from the de�nition of 
overing between 
onstraint trans-former monoids. Indeed, if '2 is rea
hable from '1, then there exists a w 2 E� su
h that[[w℄℄('1) = '2. Sin
e f is a 
overing between X and Y , there exists v 2 S0 that 
overs [[w℄℄.Hen
e, the equality follows from the de�nition.Now assume the equality. If f saturates '1 and one of the two 
onditions for homeo
overingholds, then we show that there exists w 2 E� su
h that [[w℄℄('1) = '2. Suppose that the �rst
ondition holds. Sin
e f saturates '1, there must exist a 
onstraint  1 in �0 su
h that f('1;  1)and for all '0 su
h that f('0;  1), '1 = '0, i.e., '1 = f'0 j f('0;  1)g. Also, by the assumedequality, f('2; v( 1). Sin
e f�1 is a 
overing between Y and X 0, there exists a w 2 E� su
h140



that [[w℄℄ 
overs v. Therefore f[[w℄℄('1)g = f'0 j f('0; v( 1)g. Therefore '2 = [[w℄℄('1). Hen
e,'2 is rea
hable from '1.Suppose now that the se
ond 
ondition holds. Let X 0 = h�00; S00i be an f -quotient of X withrep as the 
hosen representant fun
tion. Sin
e f saturates '1, there exists  1 su
h that f('1;  1)and for all '0 su
h that f('0;  1), we have '0 = '1. Sin
e '1 and '2 are 
anoni
al with respe
tto f , we have rep(['1℄) = '1 and rep(['2℄) = '2. Hen
e, we have, f(rep(['1℄;  1). By theassumed equality, there exists v 2 S0 su
h that f('2; v( 1)). Sin
e, f�1 is a 
overing betweenX and X 0, there exists g[[w℄℄ 2 S00, su
h that fg[[w℄℄(rep(['1℄))g = frep(['℄) j f(rep(['℄); v(psi1))g.Sin
e, rep(['2℄) is in the right hand side of this equality, therefore, g[[w℄℄(rep(['1℄)) = rep(['2℄).By 
anoni
ity of '1 and '2 with respe
t to f , '2 = [[w℄℄('1). [℄8.5 Constraint Trees and Symboli
 Forward AnalysisGiven a 
onstraint transformer monoid X = h�; Si with a �nite set of generators eS (i.e., eSgenerates S), we de�ne the 
onstraint tree for X as follows. Let Sfree be the free monoidgenerated by eS. For ew 2 Sfree, we say that w 2 S is the 
ompanion of ew i� w is obtained byrepla
ing 
on
atenation in ew with multipli
ation in S. Thus, for example, w 2 S is a 
ompanionof g1:g2 i� w = g1 Æ g2 where Æ is the multipli
ation in S.De�nition 8.3 (Constraint Tree) The 
onstraint tree for X = h�; Si with respe
t to a 
on-straint '0 2 � and a �nite set of generators eS of S is an in�nite tree with domain Sfree thatlabels the node ew by the 
onstraint w('0) where w is the 
ompanion of ew.That is, the root " is labeled with '0. For a node ew labeled ', for ea
h g 2 eS, the su

essor nodeew:g is labeled by g('). We are now in a position to de�ne symboli
 forward analysis of a �nitelygenerated 
onstraint transformer monoid with respe
t to a 
onstraint formally. A symboli
forward analysis is a traversal of (a �nite pre�x of) a 
onstraint tree in a parti
ular order. Thefollowing de�nition of a non-deterministi
 pro
edure abstra
ts away from that spe
i�
 order.De�nition 8.4 (Symboli
 Forward Analysis) A symboli
 forward analysis of a �nitely gen-erated 
onstraint transformer monoid X with respe
t to a 
onstraint '0 and a �nite set of gen-erators eS is a pro
edure that enumerates 
onstraints 'i labeling the nodes ewi of the 
onstrainttree of X with respe
t to '0 and eS in a tree order su
h that the following holds.{ 'i = wi('0) for 0 � i < B where the bound B is either a natural number or ! and wi isthe 
ompanion of the word ewi 2 Sfree,{ if ewi is a pre�x of ewj then i � j,{ the disjun
tion W0�i<B 'i is equivalent to the disjun
tion W0�i<! 'i.The number i is a leaf of a symboli
 forward analysis if the node ewi is a leaf of the tree formedby all the nodes ewi where 0 � i � B. We say that a symboli
 forward analysis terminates if itsbound B is �nite. We de�ne that a symboli
 forward analysis terminates with lo
al entailmentif for all its leaves i there exists a j < i su
h that the 
onstraint 'i entails the 
onstraint 'j(remember that ea
h 'i is a 
onjun
tive 
onstraint). In 
ontrast, a symboli
 forward analysisterminates with global entailment if for all its leaves i, the 
onstraint 'i entails the disjun
tion141



of the 
onstraints 'j where j < i. For 
onstraint domains that do not satisfy the indepen-den
e property1, 
he
king for global entailment is usually more expensive than 
he
king forlo
al entailment. Many model 
he
kers use lo
al entailment for their �xpoint test (e.g., UP-PAAL [LPY95b℄ uses identity; the model 
he
ker for in�nite state systems des
ribed in [DP99a℄uses lo
al entailment).Remark 8.1 A symboli
 forward analysis for an in�nite state system S with respe
t to the initial
onstraint '0 is a symboli
 forward analysis of the 
onstraint transformer monoid generated byS with respe
t to '0. If terminating, the 
onstraint W0�i<B 'i represents the set of all rea
hablestates in S. For an in�nite state system S, a 
onstraint '2 is rea
hable from the 
onstraint '1if there exists a node ew labeled by '2 in the 
onstraint tree with respe
t to '1 of the 
onstrainttransformer monoid generated by S.8.6 Abstra
t Constraint Trees and Abstra
t Symboli
 ForwardAnalysisLet X = h�; Si be a 
onstraint transformer monoid with a �nite set of generators eS. Let Sfree bethe free monoid generated by eS. Let Y = h�0; S0i be a 
onstraint transformer monoid 
overingX and let f be a 
overing relation witnessing the 
overing. We de�ne an abstra
t 
onstrainttree of S with respe
t to Y , f , eS and a 
onstraint '0 as follows.De�nition 8.5 (Abstra
t Constraint Tree) An abstra
t 
onstraint tree for X with respe
tto the 
onstraint transformer monoid Y , a 
onstraint '0, a �nite set of generators eS and a
overing relation f is an in�nite tree with domain Sfree that labels the node ew 2 Sfree by theset of 
onstraints 	 = fv( 0) j f('0;  0)g where v 2 S0 
overs w (the 
ompanion of ew).In the above de�nition we assume that there is a �nite representation for ea
h 	 labelingew 2 Sfree in the abstra
t 
onstraint tree. Note that the 
onstraint tree for X with respe
t to '0is an abstra
t 
onstraint tree for X with respe
t to the 
onstraint transformer monoid X andthe identity fun
tion as the 
overing. Also note that the 
onstraint transformer monoid Y maybe arbitrary; i.e., it need not be �nitely generated. If for ea
h w 2 S, we �x a v 2 S0 
overingw, we 
all the resulting abstra
t 
onstraint tree a �xed-
over abstra
t 
onstraint tree. Below,whenever we talk about abstra
t 
onstraint tree, we assume a �xed 
over C � S0, i.e., for ea
hw 2 S there exists a unique v 2 C su
h that v 
overs w. We denote by TC be the abstra
t
onstraint tree of X with respe
t to Y , f and C, i.e., a node ew is labeled by fv( 0) j f('0;  0)where v is the unique element of C 
overing w (the 
ompanion of ew) and f 0 j f('0;  0)g labelsthe root. We are now in a position to de�ne formally abstra
t symboli
 forward analysis. Anabstra
t symboli
 forward analysis of X with respe
t to a 
onstraint transformer monoid Y is atraversal of (a �nite pre�x of) the (�xed 
over) abstra
t 
onstraint tree of X with respe
t to Yin a parti
ular order. The following de�nition of a non-deterministi
 pro
edure abstra
ts awayfrom that spe
i�
 order.De�nition 8.6 (Abstra
t Symboli
 Forward Analysis) An abstra
t symboli
 forwardanalysis of a 
onstraint transformer monoid X with respe
t to a 
onstraint '0 and a �xed 
over1A 
onstraint domain is said to satisfy the independen
e property if for any 
onstraint  and a set of 
onstraints�,  j= W'2� ' i� there exists ' 2 � su
h that  j= '142



C is a pro
edure that enumerates the sets of 
onstraints 	i labeling the nodes fwi of the abstra
t
onstraint tree TC with respe
t to '0 (and C) in a tree order su
h that the following holds.{ 	i = fvi( 0) j f('0;  0)g where vi 2 C 
overs wi 2 S (the 
ompanion of fwi) and the boundB is either a natural number or !,{ if fwi is a pre�x of fwj then i � j,{ the disjun
tion W0�i<B W	i is equivalent to the disjun
tion W0�i<!W	i where W	i �W'2	i '.Similar to symboli
 forward analysis, we say that an abstra
t symboli
 forward analysisterminates if the bound B is �nite; the 
on
ept of a leaf is de�ned similarly. We say that anabstra
t symboli
 forward analysis terminates with lo
al entailment if for all its leaves i, forea
h 
onstraint ' 2 	i, there exists a j < i, and a 
onstraint '0 2 	j su
h that ' j= '0. Thenotion of termination with global entailment is de�ned in the obvious way.We now present suÆ
ient 
onditions under whi
h an abstra
t symboli
 forward analysis ispossibly non-terminating and a

urate, terminating and possibly ina

urate or both terminatingand a

urate with respe
t to a rea
hability question.Theorem 8.1 Let X = h�; Si be a 
onstraint transformer monoid having a �nite set of gener-ators eS. Let '1; '2 2 �. Let Y = h�0; S0i be a 
onstraint transformer monoid 
overing X withf witnessing the 
overing and let C � S0 be a �xed 
over. Then the following hold.1. Suppose that for all i, 	i 6= f j f('2;  )g where 	i is the set of 
onstraints labeling thenode fwi of the abstra
t 
onstraint tree of X with respe
t to '1, Y , f , and C. Then the
onstraint '2 is not rea
hable from '1 in X.(a) If, in addition, f is a �nitary 
overing with respe
t to f'1g, then ea
h abstra
t sym-boli
 forward analysis of X with respe
t to '1, Y , f and C terminates with lo
alentailment. In this 
ase, abstra
t symboli
 forward analysis always terminates withlo
al entailment but may produ
e a `don't know' answer the rea
hability question.2. If f saturates '1 and f is a homeo
overing from X to Y with respe
t to 
onstraints '1 and'2 then '2 is rea
hable from '1 in X i� there exists an i su
h that 	i = f j f('2;  )gwhere 	i labels the node fwi in the abstra
t 
onstraint tree of X with respe
t to Y , f , '1and C. In this 
ase, abstra
t symboli
 forward analysis is possibly non-terminating; butwhen it terminates, it produ
es a yes/no answer for the rea
hability question.(a) In parti
ular, if f is a fun
tion then '2 is rea
hable from '1 in X i�  is not rea
hablefrom  0 in the abstra
t symboli
 forward analysis of X with respe
t to Y , f , '1 andC where f('1;  0) and f('2;  ).(b) If, in addition, f is a �nitary 
overing with respe
t to f'1g then ea
h abstra
t sym-boli
 forward analysis of X with respe
t to '1, Y , f and C terminates with lo
alentailment. In this 
ase, abstra
t symboli
 forward analysis always terminates withlo
al entailment and is a

urate.Proof. The �rst statement follows from Proposition 8.1. Suppose that the inequality inthe �rst statement of the theorem holds for all i. Seeking a 
ontradi
tion, suppose that '2 is143



rea
hable from '1. Then, there exists wi 2 S su
h that '2 = wi('1). Now 
onsider fwi 2 Sfreesu
h that wi is the 
ompanion of fwi. The node fwi in the abstra
t 
onstraint tree TC is labeledby 	i = fvi( 0) j f('1;  0)g where vi 2 C 
overs wi. By Proposition 8.1, 	i = f j f('2;  )g.Hen
e a 
ontradi
tion.Suppose, f is a �nitary 
overing with respe
t to '1. Consider, �rst, the 
ase when Y is�nite. Then, along every bran
h of the abstra
t 
on the abstra
t 
onstraint tree, there existstwo nodesfwi and fwj , where j < i, labeled by the same set of 
onstraints 	. Hen
e, any abstra
tsymboli
 forward analysis terminates with lo
al entailment. Suppose now that Y is �nitary withrespe
t to f 0 j f('1;  0)g. Then, along any bran
h of the 
onstraint tree there exists a nodefwi labeled by 	i su
h that for ea
h 
onstraint  2 	i, there exists a j < i and a 
onstraint 0 2 	j su
h that  j=  0. The statement 2 in the theorem follows from a dire
t appli
ation ofProposition 8.1. [℄8.7 Appli
ationsIn this se
tion, we show 
on
rete appli
ations of the framework developed above to timed au-tomata and the two-pro
ess bakery algorithm.8.7.1 Timed AutomataWe re
all the notion of timed automata from Chapter 5. Symboli
 forward analysis of timedautomata is possibly non-terminating [MP99℄. In order to de�ne an abstra
t symboli
 forwardanalysis for timed automata, we re
all the trim operation on 
onstraints from Chapter 3.Let T be a timed automaton and let X = h�; Si be the 
onstraint transformer monoidgenerated by T . We de�ne the 
onstraint transformer monoid Y obtained by trimming asfollows.De�nition 8.7 (Constraint transformer monoid obtained by trimming) Given atimed automaton T , the 
onstraint transformer monoid Y obtained by trimming is de�ned asY = h�0; S0i, where �0 = ftrim(') j ' 2 �g and S0 = f ew j w 2 Sg and ew(trim(')) = trim('0)if w(') = '0.It 
an be easily veri�ed that ea
h ew is a fun
tion from �0 to �0 and that S0 is a monoid withthe identity fun
tion as the unit element.Proposition 8.2 For a timed automaton T with the generated 
onstraint transformer monoidX = h�; Si, the 
onstraint transformer monoid Y obtained by trimming 
overs X with thefun
tion f : ' 7! trim(') (note that the trim operation is a fun
tion) witnessing the 
overing.Proof. Follows from Proposition 3.2. [℄Intuitively, ea
h w is 
overed with respe
t to f by ew.Proposition 8.3 The 
onstraint transformer monoid Y obtained by trimming is �nite.Proof. Follows from Lemma 3.5. [℄Proposition 8.4 Any f -quotient of X 0 of X 
overs the 
onstraint transformer monoid Y ob-tained by trimming with f�1 witnessing the 
overing.144



Proof. The proof is similar to that of Proposition 3.2. [℄We 
all a 
onstraint ' bounded if ' ^Vni=1 xi � M = '. It 
an be easily veri�ed that anybounded 
onstraint ' 2 � is 
anoni
al with respe
t to f . Also for ea
h bounded 
onstraint' 2 �, f saturates '.Theorem 8.2 For any 
onstraint ', abstra
t symboli
 forward analysis of a timed automaton Twith respe
t to the 
onstraint transformer monoid Y obtained by trimming, f and ' terminates.Moreover, if ';'0 is are bounded 
onstraints, then '0 is rea
hable from ' in T i� f('0) isrea
hable in the abstra
t symboli
 forward analysis of T with respe
t Y , f and '.Proof. Follows from Propositions 8.1, 8.2, 8.3, 8.4 and Theorem 8.1. [℄Note that the 
onstraint transformer monoid Y above is never 
onstru
ted expli
itly. Rather,it is 
onstru
ted on-the-
y.8.7.2 The Two-pro
ess Bakery AlgorithmThe bakery algorithm implements a mutual ex
lusion proto
ol. The guarded 
ommands forthe two-pro
ess bakery algorithm are given in Figure 8.1. We say that the two pro
ess bakeryalgorithm is safe if no state of the form L = huse; usei ^  is rea
hable from the initial state.Let X = h�; Si be the 
onstraint transformer monoid generated by the two-pro
ess bakeryalgorithm. We de�ne the 
overing monoid, 
alled the abstra
t target monoid, as follows.De�nition 8.8 (Abstra
t target monoid) Given the two-pro
ess bakery algorithm, the ab-stra
t target monoid Y is de�ned as Y = h�0; S0i where �0 = f'1; : : : ; '10g2 and S0 = f ew j [[w℄℄ 2Sg where the 
onstraints '1; : : : ; '10 are de�ned in Figure 8.2.Here ew('i) = 'j if there exists  ; 0 2 � su
h that [[w℄℄( ) =  0 and  j= 'i and  0 j= 'j . It
an be easily veri�ed that ea
h ew 2 S0 is a fun
tion from �0 to �0. De�ne the relation f from �to �0 as f(';'0) i� ' j= '0. Note that f is a fun
tion in this 
ase.Proposition 8.5 The abstra
t target monoid Y 
overs the 
onstraint transformer monoid X(generated by the two-pro
ess bakery algorithm) with the mapping f witnessing the 
overing.Proof. Follows from the de�nitions of S0 and f . [℄Ea
h w is 
overed with respe
t to f by ew.Proposition 8.6 Any f -quotient of X 
overs the abstra
t target monoid Y with f�1 witnessingthe 
overing.Proof. Consider any 'i 2 �0. Let  = rep(f' 2 �j' j= 'ig) where rep is a 
hosen representantfun
tion for a quotient. Consider ew 2 S0. We 
laim that [[w℄℄ 2 S 
overs ew with respe
t to f�1.Suppose that ew('i) = 'j . It 
an be veri�ed that [[w℄℄( ) j= 'j . Therefore, in the f -quotient withthe representant fun
tion rep, g[[w℄℄( ) = rep([[[w℄℄( )℄) =  0. Therefore, by de�nition,  0 j= 'j .Therefore f( 0; 'j). [℄2These 
onstraints are obtained by a simple inspe
tion of the guards and the a
tions of the 
omposed transitionsystem. 145



Control variables: p1, p2 varying on fthink; wait; usegData variables: a1, a2 � 0.Initial 
ondition: p1 = think ^ p2 = think ^ a1 = a2 = 0Transitions for i; j : 1; 2, i 6= j:�ti : : pi = think [℄ p0i = wait ^ a0i = aj + 1�wi : : pi = wait ^ ai < aj [℄ p0i = use�w0i : : pi = wait ^ aj = 0 [℄ p0i = use�ui : : pi = use [℄ p0i = wait ^ a0i = 0Figure 8.1: The bakery algorithmTheorem 8.3 For any 
onstraint ', any abstra
t symboli
 forward analysis of the two-pro
essbakery algorithm with respe
t to ',the abstra
t monoid Y and f terminates. Moreover, for anytwo 
onstraints ' and '0 su
h that f saturates both ' and '0, '0 is rea
hable from ', i� 'j, su
hthat f('0; 'j), is rea
hable from 'i, su
h that f(';'i), in an abstra
t symboli
 forward analysiswrt ', the abstra
t target monoid Y and f . In parti
ular, the two-pro
ess bakery algorithm issafe i� the 
onstraint L = huse; usei ^ a1 � 0 ^ a2 � 0 is rea
hable in the abstra
t symboli
forward analysis with respe
t to L = hthink; thinki ^ a1 = 0 ^ a2 = 0, f and Y .Proof. Follows from Propositions 8.1, 8.5, 8.6 and Theorem 8.1. [℄Symboli
 forward analysis for the bakery algorithm with respe
t to the initial 
onstraintL = hthink; thinki ^ a1 = 0; a2 = 0 is (possibly) nonterminating. To the best of the knowledgeof the authors, this is the �rst time that rea
hability properties for the two-pro
ess bakery algo-rithm have been shown to be veri�able using a terminating abstra
t symboli
 forward analysis.Previous approa
hes were based either on symboli
 ba
kward analysis [BGP97, DP99a℄ or ondedu
tive methods [BBM97, KPV99℄. While model 
he
king using symboli
 ba
kward analysisis inherently global model 
he
king [HKQ98℄, model 
he
king by symboli
 forward analysis 
anbe made lo
al. '1 � L = hthink; thinki ^ a1 = 0 ^ a2 = 0'2 � L = hwait; thinki ^ a1 � 0 ^ a2 = 0'3 � L = hthink; usei ^ a1 = 0 ^ a2 � 0'4 � L = huse; thinki ^ a1 � 0 ^ a2 = 0'5 � L = hwait; waiti ^ a1 = a2 + 1 ^ a2 � 1'6 � L = hwait; waiti ^ a2 = a1 + 1 ^ a1 � 1'7 � L = huse; waiti ^ a2 = a1 + 1 ^ a2 � 1'8 � L = hthink;waiti ^ a1 = 0 ^ a2 � 0'9 � L = hwait; usei ^ a1 � 1 ^ a1 = a2 + 1'10 � L = huse; usei ^ a1 � 0 ^ a2 � 0Figure 8.2: Constraints in �0146



8.8 Summary and Related WorkWe have presented a new algebrai
 theory for abstra
t symboli
 forward analysis. Our frame-work is well suited to 
onstraint based symboli
 model 
he
king of in�nite state systems. Ourframework provides suÆ
ient 
onditions under whi
h the abstra
t symboli
 forward analysisis always terminating or a

urate or both. As in the 
lassi
al abstra
t interpretation frame-work [CC77℄ one has to establish a Galois 
onne
tion from the 
on
rete latti
e to the abstra
tlatti
e more or less manually, in our framework one has to establish a 
overing manually. Notethat the 
overing 
onstraint transformer monoid 
an be arbitrary (i.e., may not be �nitely gen-erated). Also note that the suÆ
ient termination 
onditions in our framework do not requirethe 
overing 
onstraint transformer to be �nite. Also the termination guarantees 
ontinue tohold even when the �xpoint test is weakened to lo
al entailment.Colon and Uribe [CU98℄ present an algorithm that uses de
ision pro
edures to generate�nite state abstra
tions of possibly in�nite state systems. Our work is di�erent from theirs;the denotation of the 
overing transformer monoid Y = h�0; S0i (i.e., [�0℄) may be in�nite;moreover �0 may itself be in�nite. In [CC98℄, Cousot and Cousot des
ribe improvements toabstra
t model 
he
king by 
ombining forwards and ba
kwards abstra
t �xpoint 
omputations.It would be interesting to see how their te
hniques 
an be adapted to a 
onstraint-based settingas ours. Cleaveland, Iyer and Yankelevi
h [CIY95℄ develop a framework in whi
h they 
anestablish optimality results by showing that a parti
ular system abstra
tion is the most pre
iseone possible among a 
lass of safe abstra
tions. It is not 
lear how to apply their te
hniquesin a 
onstraint-based setting. An automata-theoreti
 framework for veri�
ation by �nitaryabstra
tion has been developed in [KPV99℄. There, the authors redu
e the veri�
ation problemto the infeasibility problem for B�u
hi dis
rete systems. They then provide a general proof method
alled WELL to establish the infeasibility of a B�u
hi dis
rete system. In 
ontrast, our te
hniqueuses abstra
t symboli
 forward analysis for veri�
ation after a 
overing has been established.
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Chapter 9Con
lusions9.1 SummaryIn this dissertation, we have des
ribed a uniform 
onstraint-based framework for the veri�
a-tion of possibly in�nite state rea
tive systems. Constraint query languages provide a frameworkfor representing rea
tive systems as well as for spe
ifying their properties. Many of the seem-ingly di�erent formalisms for representing rea
tive systems have a natural translation into thisframework. The model 
he
king problem redu
es to 
omputing (or 
he
king membership in) themodel-theoreti
 semanti
s of 
onstraint query languages. We have provided several optimizedmethods for 
omputing model theoreti
 semanti
s of 
onstraint query languages. The produ
t
onstru
tion for timed logi
 pro
esses introdu
ed in this dissertation allowed us to extend themethodology to deal with more expressive logi
s. Several existing model 
he
king pro
edures
an be obtained as spe
ial 
ases of the model 
he
king pro
edures that we obtained in our
onstraint-based framework. A prototype implementation based on the methodology developedin this dissertation has shown en
ouraging results. We have also been able to identify a logi
that 
an be model 
he
ked eÆ
iently in pra
ti
e within our framework. Our framework hasalso been used to solve 
ontrol-theoreti
 problems e.g., dete
tion of transient behavior in lineartime-invariant systems.The two main 
urrents that have run through this dissertation are logi
 and 
onstraints. The
onstraint-based setting has enabled us to reason about the termination of the symboli
 model
he
king pro
edures that solve the veri�
ation problem for in�nite state systems in pra
ti
e.We have obtained suÆ
ient termination 
onditions for these pro
edures even with a weakerbut more eÆ
ient �xpoint test. We have shown several examples for whi
h the termination ofsymboli
 forward analysis 
an be explained by using our suÆ
ient termination 
onditions. Mu
hof this reasoning has also been 
ompositional. Sin
e the 
ombinatorial (
onstraint solving) partis 
learly separated from the logi
al part, we 
ould easily extend our methodology to deal withnonlinear systems. Moreover, we have been able to reason about the a

ura
y of 
onstraint-basedabstra
tions introdu
ed to solve the veri�
ation problem in pra
ti
e.9.2 Future WorkWe end our dis
ussion by addressing some of the future resear
h issues. One obvious resear
hissue is to try to use our framework to verify larger examples. More experimentation is needed149



in this dire
tion. In this dissertation, the fo
us was mainly on in�nite state systems in whi
hthe variables range over a (possibly in�nite) numeri
 data domain. But our methodology 
an beeasily adapted to model and verify out-of-order exe
ution in the design of mi
ropro
essors. Inthis 
ase, the relevant 
onstraint domain is the Herbrand one. A similar line of work would beto 
onsider many-sorted systems in whi
h in whi
h some variables range a numeri
 data-domainwhile others range over the domain of possibly in�nite trees. Another line of resear
h is to useour framework for analysis of programs written in programming languages like C or Java. Itwould also be interesting to see how our framework 
an be extended to deal with mobility ofpro
esses.We state below some of the other problems left open in this dissertation.{ Extend the produ
t 
onstru
tion de�ned in Chapter 3 to de
ide whether two timed logi
pro
eseses are timed bisimilar.{ Is the following problem de
idable| given a timed automaton, does symboli
 forwardanalysis for it terminate?{ Can one design an algorithm for de
iding whether a timed logi
 pro
ess has a transientbehavior that is more eÆ
ient than the one presented in Chapter 3?{ Can one 
ome up with a tableau based model 
he
king pro
edure for timed systems in thestyle of Brad�eld and Stirling [BS90℄?
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