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Abstract

Automatic verification of infinite state systems is an important area of research. Unlike its finite
state counterpart, in spite of the existence of a large body of theoretical and practical results on
automatic verification of infinite state systems, there does not exist a uniform framework that is
applicable to a large class of systems and that facilitates description of procedures that solves the
verification problem for infinite state systems in practice as well as providing tools for reasoning
about the termination conditions of such procedures. The purpose of this dissertation is to
provide a uniform framework that (1) allows description of infinite state systems at their own
level of granularity, (2) allows specifying their properties at a high level, (3) allows description
of procedures, that can solve in practice the verification problems for infinite state systems, in
a declarative fashion, (4) provides tools to reason about the termination conditions for such
procedures, (5) facilitates derivation of abstractions for verification as well as easy incorporation
of optimization techniques, (6) allows clear separation of the logical aspects of verification from
the combinatorial ones, (7) allows combination of deductive (proof-theoretic) methods with
model-theoretic ones and (8) provides, for free, data structures for implicit representation of
possibly infinite sets of states.
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Zusammenfassung

Automatische Verifikation von Systemen mit unendlichem Zustandsraum ist ein wichtiges
Forschungsgebiet. Doch im Gegensatz zum Fall endlicher Zustandsrdume und trotz einer grossen
Anzahl an theoretischen und praktischen Resultaten iiber automatische Verifikation von Syste-
men mit unendlichem Zustandsraum, existiert kein einheitliches Rahmenwerk, das sich auf eine
grosse Klasse von Systemen anwenden liesse und das die Beschreibung von Prozeduren, die
das Verifikationsproblem von Systemen mit unendlichem Zustandsraum in der Praxis 16sen, un-
terstiitzen wiirde, sowie das Werkzeuge zum Beweis der Termination solcher Prozeduren zur
Verfiigung stellen wiirde. Das Ziel dieser Dissertation ist es, ein einheitliches Rahmenwerk zu
liefern, das (1) die Beschreibung von Systemen mit unendlichem Zustandsraum erlaubt, (2)
die Spezifikation ihrer Eigenschaften auf einer hohen Ebene erlaubt, (3) die Beschreibung von
Prozeduren, die das Verifikationsproblem fuer Systeme mit unendlichem Zustandsraum lésen,
in einer deklarativen Art und Weise erlaubt, (4) Werkzeuge zum Beweis von Terminationsbe-
dingungen solcher Prozeduren zur Verfliigung stellt, (5) die Herleitung von Abstraktionen zur
Verifikation ebenso wie die einfache Einbindung von Optimierungstechniken unterstiitzt, (6)
eine klare Trennung der logischen Seiten der Verifikation von den kombinatorischen erlaubt, (7)
eine Kombination deduktiver (beweistheoretischer) Methoden mit modelltheoretischen erlaubt
und (8) umsonst Datenstrukturen fiir die implizite Darstellung von Systemen mit unendlichem
Zustandsraum bereitstellt.
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Extended Abstract

Automatic verification of infinite state systems is an important area of research. Unlike its finite
state counterpart, in spite of the existence of a large body of theoretical and practical results on
automatic verification of infinite state systems, there does not exist a uniform framework that is
applicable to a large class of systems and that facilitates description of procedures that solves the
verification problem for infinite state systems in practice as well as providing tools for reasoning
about the termination conditions of such procedures. The purpose of this dissertation is to
provide a uniform framework that (1) allows description of infinite state systems at their own
level of granularity, (2) allows specifying their properties at a high level, (3) allows description
of procedures, that can solve in practice the verification problems for infinite state systems, in
a declarative fashion, (4) provides tools to reason about the termination conditions for such
procedures, (5) facilitates derivation of abstractions for verification as well as easy incorporation
of optimization techniques, (6) allows clear separation of the logical aspects of verification from
the combinatorial ones, (7) allows combination of deductive (proof-theoretic) methods with
model-theoretic ones and (8) provides, for free, data structures for implicit representation of
possibly infinite sets of states.

The two main currents that run through this dissertation are constraints and logic. Us-
ing an intricate and exquisite interplay between constraints and logic, we provide a uniform
constraint-based framework for the verification of infinite state systems. The key idea is that
the verification problems for infinite state systems can be naturally viewed as constraint satis-
faction problems. This idea leads to the observation that temporal properties of infinite state
systems can be described as model-theoretic semantics of constraint databases. This connection
allows description of the system as well as specifying properties about it at a high level in a
declarative fashion.

The methods employed for computing (or checking membership in) model-theoretic seman-
tics of constraint databases are deductive ones. Thus our methodology replaces the conven-
tional graph-theoretic techniques for automatic verification of infinite state systems by uniform
deductive ones. By employing specialized deduction strategies, optimized local and symbolic
procedures for automatic verification are obtained in a natural manner. This way we unify,
extend and explain in a uniform manner the seemingly different procedures behind the success
of several existing verification tools for infinite state systems. Due to the closely knit interplay
between logic and constraints, it has been possible for us to design practical procedures that
can verify properties of infinite state systems specified in richer logics. As constraints are used
within a logical landscape, it is easier to reason about the correctness of these procedures within
our framework. Since constraints can represent possibly infinite sets of states, we obtain, for
free, data structures for implicit representation of possibly infinite sets of states. Also since
the algorithmic aspect of solving constraints is separated from the logical one, our framework
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provides modular solutions to verification problems.

Theoretical investigations of infinite-state systems have so far concentrated on decidability
results; using our framework, we investigate the specific procedures that are used in practice
to decide verification problems. Our framework presents basic concepts and properties that are
useful for reasoning about sufficient termination criteria for procedures solving the verification
problem for infinite state systems in practice, and also for deriving those criteria. These criteria
can be obtained in the form of syntactic sufficient conditions on the individual components
composed with asynchronous parallel composition. The central notions here are constraint
transformers associated with sequences of transitions of an infinite state system and constraint
trees labeled with successor constraints. We show interesting examples of systems for which
the sufficient termination conditions derived using our framework guarantee the termination of
the procedures solving the verification problem for such systems in practice. We also provide
a unified algebraic framework for deriving abstractions for the verification of a large class of
infinite state systems and for reasoning about their accuracy. The central notions involved are
those of constraint transformer monoids and coverings between constraint transformer monoids.
Due to the choice of constraints as data structures representing possibly infinite sets of states,
the abstractions, most of which are presented as widening rules, are easily implementable using
constraint-based operations. We show interesting examples in which the abstractions derived
using our framework force the termination of otherwise nonterminating verification procedures
without losing any accuracy in the process.

Finally, to demonstrate the applicability of our framework, we show that many verification
problems can be solved by a natural translation to our framework. This fact is corroborated
by the encouraging results obtained by applying an implementation based on our framework to
practical verification problems. We have also identified sufficiently expressive fragments of the
propositional g calculus such that our framework, that uses disjunctive constraints as the data
structure for representing and manipulating sets of states, is especially suitable for verification
problems in which the properties specified are in these fragments.
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Ausfiihrliche Zusammenfassung

Automatische Verifikation von Systemen mit unendlichem Zustandsraum ist ein wichtiges
Forschungsgebiet. Doch im Gegensatz zum Fall endlicher Zustandsrdume und trotz einer grossen
Anzahl an theoretischen und praktischen Resultaten iiber automatische Verifikation von Syste-
men mit unendlichem Zustandsraum, existiert kein einheitliches Rahmenwerk, das sich auf eine
grosse Klasse von Systemen anwenden liesse und das die Beschreibung von Prozeduren, die
das Verifikationsproblem von Systemen mit unendlichem Zustandsraum in der Praxis 16sen, un-
terstitzen wirde, sowie das Werkzeuge zum Beweis der Termination solcher Prozeduren zur
Verfiigung stellen wiirde. Das Ziel dieser Dissertation ist es, ein einheitliches Rahmenwerk zu
liefern, das (1) die Beschreibung von Systemen mit unendlichem Zustandsraum erlaubt, (2)
die Spezifikation ihrer Eigenschaften auf einer hohen Ebene erlaubt, (3) die Beschreibung von
Prozeduren, die das Verifikationsproblem fuer Systeme mit unendlichem Zustandsraum lésen,
in einer deklarativen Art und Weise erlaubt, (4) Werkzeuge zum Beweis von Terminationsbe-
dingungen solcher Prozeduren zur Verfliigung stellt, (5) die Herleitung von Abstraktionen zur
Verifikation ebenso wie die einfache Einbindung von Optimierungstechniken unterstiitzt, (6)
eine klare Trennung der logischen Seiten der Verifikation von den kombinatorischen erlaubt, (7)
eine Kombination deduktiver (beweistheoretischer) Methoden mit modelltheoretischen erlaubt
und (8) umsonst Datenstrukturen fiir die implizite Darstellung von Systemen mit unendlichem
Zustandsraum bereitstellt.

Die beiden Leitmotive, die sich durch diese Dissertation ziehen, sind Constraints und Logik.
Durch eine komplizierte und auserlesene Wechselwirkung zwischen Constraints und Logik liefern
wir ein einheitliches constraint-basiertes Rahmenwerk zur Verifikation von Systemen mit un-
endlichem Zustandsraum. Dass die Verifikationsprobleme von Systemen mit unendlichem Zu-
standsraum auf natiirliche Weise als Erfiillbarkeitsprobleme von Constraints gesehen werden
konnen, ist der Schlusselgedanke. Dieser Gedanke fithrt zu der Beobachtung, dass temporale
Eigenschaften von Systemen mit unendlichem Zustandsraum als modelltheoretische Semantiken
von Constraint-Datenbanken beschrieben werden konnen. Dieser Zusammenhang erlaubt die
Beschreibung des Systems ebenso wie die Spezifikation seiner Eigenschaften auf einer hohen
Ebene und in einer deklarativen Art und Weise.

Die Methoden zur Berechung (oder zum Test der Zugehorigkeit zu) modelltheoretischer
Semantiken von Constraint-Datenbanken sind deduktive. Somit ersetzt unsere Methodik die
herkommlichen graphtheoretischen Verfahren zur automatischen Verifikation von Systemen mit
unendlichem Zustandsraum durch einheitliche deduktive Methoden. Indem wir spezialisierte
Deduktionsstrategien einsetzen, erhalten wir auf natiirliche Weise optimierte lokale und symbol-
ische Prozeduren zur automatischen Verifikation. Auf diese Weise vereinheitlichen, erweitern und
erklaren wir in einer einheitlichen Weise die scheinbar verschiedenen Prozeduren, die hinter dem
Erfolg von mehreren existierenden Werkzeugen zur Verifikation von Systemen mit unendlichem
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Zustandsraum stehen. Aufgrund der feinmaschigen Wechselwirkung zwischen Constraints und
Logik konnten wir brauchbare Prozeduren entwerfen, die in reicheren Logiken spezifizierte Eigen-
schaften von Systemen mit unendlichem Zustandsraum verifizieren konnen. Da Constraints in
einer logischen Landschaft benutzt werden, ist es leichter, die Korrektheit dieser Prozeduren
in unserem Rahmenwerk zu beweisen. Weil Constraints potentiell unendliche Zustandsmengen
reprasentieren konnen, erhalten wir umsonst Datenstrukturen zur impliziten Reprasentation po-
tentiell unendlicher Zustandsmengen. Desweiteren bietet unser Rahmenwerk modulare Losungen
fiir Verifikationsprobleme, da der algorithmische Aspekt des Losens von Constraints abgetrennt
ist vom logischen. Theoretische Forschung tiber Systeme mit unendlichem Zustandsraum war
bislang auf Entscheidbarkeitsresultate gerichtet; mit unserem Rahmenwerk untersuchen wir nun
die spezifischen Prozeduren, die in der Praxis angewandt werden, um Verifikationsprobleme
zu entscheiden. Unser Rahmenwerk stellt grundlegende Konzepte und Eigenschaften vor, die
niitzlich sind zur Herleitung und zum Beweis von hinreichenden Terminationskriterien fiir Proze-
duren, die das Verifikationsproblem in der Praxis l6sen. Diese Kriterien erhalt man in Form
syntaktischer hinreichender Bedingungen an die einzelnen Komponenten. Die zentralen Ideen
hier sind Constraint-Umformer, die Folgen von Ubergéngen eines Systems mit unendlichem Zu-
standsraum zugeordnet sind, und Constraint- Baume, deren Knoten mit Nachfolger-Constraints
markiert sind. Wir zeigen interessante Beispiele, wo die mit unserem Rahmenwerk hergeleiteten
hinreichenden Terminationsbedingungen die Termination von Prozeduren, die das Verifikation-
sproblem fiur solche System in der Praxis losen, garantieren. Wir bieten auch ein einheitliches
algebraisches Rahmenwerk, um Abstraktionen fiir eine grosse Klasse von Systemen mit un-
endlichem Zustandsraum herzuleiten und um Beweise iiber die Exaktheit dieser Abstraktionen
zu fuhren. Hier sind die beteiligten zentralen Ideen Monoide von Constraint-Umformern und
Uberdeckungen zwischen Constraint-Umformern. Aufgrund der Wahl von Constraints als Daten-
struktur zur Darstellung potentiell unendlicher Zustandsmengen, kénnen die Abstraktionen,
die meist als Widening-Regeln dargestellt werden, leicht durch constraint-basierte Operatio-
nen implementiert werden. Wir zeigen interessante Beispiele, wo die mit unserem Rahmenwerk
hergeleiteten Abstraktionen die Termination andernfalls nicht-terminierender Verifikationsproze-
duren erzwingen, ohne an Prazision zu verlieren.

Schliesslich zeigen wir, dass viele Verifikationsprobleme durch eine natiirliche Ubersetzung in
unser Rahmenwerk gelost werden konnen. Diese Tatsache wird untermauert durch die ermuti-
genden Ergebnisse, die eine auf unserem Rahmenwerk basierende Implementierung an praktis-
chen Verifikationsproblemen lieferte. Auch haben wir hinreichend ausdrucksstarke Fragmente
des aussagenlogischen p-Kalkiils bestimmt, so dass Prozeduren zur Verifikation von Eigen-
schaften, die in diesen Fragmenten spezifiziert sind, besonders geeignet sind fiir unser Rahmen-
werk, das disjunktive Constraints als Datenstrukturen zur Reprasentation und Manipulation
von Zustandsmengen benutzt.
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Chapter 1

Introduction

Mathematical logic can provide a uniform framework for modeling and formally verifying reactive
systems. In this dissertation, we make an attempt to justify the above thesis by trying to use the
power of mathematical logic in providing a uniform constraint-based framework for modeling,
understanding and reasoning about reactive systems.

1.1 Perspective

Rapid progress in computer technology in the last few decades has effected a significant change in
the perspectives under which computing is viewed. Computers have now become truly “global”
in the sense that they make their presence felt in devices ranging from such miniature ones as
mini-cameras to such monstrous ones as airplanes. This “globalization” of computer technology
has been accompanied by the development of large software systems and highly integrated hard-
ware systems with their inherent logical complexity and many layers of abstraction. This logical
complexity manifests itself, in particular, in embedded systems — systems that are embedded
into a natural environment that is governed by physical laws, with agents (or applications) from
different problem domains interacting with each other in often unpredictable ways. This logical
complexity and unpredictability renders the use of such systems in safety-critical devices like
airplanes or nuclear power-plant controllers into a high-risk affair. This risk factor is justified
by the number of chilling experiences that we have had in the last few decades caused by the
failure of computer systems operating in life critical applications. In order to minimize this risk
factor and to avert such chilling experiences, we need to structure, reason about and develop
such systems more systematically. It is exactly here that methods from mathematical logic come
to our aid.

A distinct feature of these “new generation” computer systems mentioned above is their
power of maintaining an ongoing interaction with the environment. While for a classical se-
quential program, non-termination entails the presence of a possible bug in the program, for
an embedded system, termination usually indicates presence of a possible “deadlock”. Such
embedded systems are usually called reactive systems as their evolution involves “reaction” in
response to “stimulus” or requests from the environment.

A long promoted way of using mathematical logic for designing provably correct hardware
and software is the deductive or the theorem proving approach. Here one develops a formal proof
of correctness of the system along with the system itself. The proof is usually based on invariant



assertions — logical formulae whose truth value never changes during the possible runs of the
system. The correctness of the system is expressed as a logical consequence of an invariant that
is true initially. Such an approach has the drawbacks that it is not fully automatic — it requires
significant assistance from a human expert. Furthermore, it does not support reusability —
even if a system has been proved correct for certain properties, for proving the system correct
for other properties one may need to start from scratch.

An alternative approach is automatic verification. In this approach, commonly known as
model checking [CE80], one verifies whether a “model” of the system (usually a Kripke structure)
satisfies a specification (given by, say, a temporal logic formula [Pnu77]) by an exhaustive search
through the “state-space” of the model. More precisely, a finite state (or an infinite state)
reactive system is modeled as a Kripke structure (or as a parallel composition of several Kripke
structures) and the property against which it is verified is specified as a temporal logic formula;
given a Kripke structure K and a temporal logic formula ¢, the model checking problem is to
determine whether K |= ¢ i.e., whether K is a model of ¢ (or to compute the set of states of
K that satisfy ¢). This problem is solved by an exhaustive search through the state space of K
(or by a reachability analysis).

While the framework of automatic verification provides a solution to the verification problem,
there is an inherent non-uniformity within it. First, there is no uniform way to model systems at
their own level of granularity (e.g., pushdown systems [Wal96], hierarchical systems [AY98] are
modeled differently in this framework). Second, the treatment of finite state and infinite state
instances of the problem within this framework are different. Third, systems over different data
domains (e.g., systems operating over numeric domains like reals or integers and systems over
non-numeric domains such as queues or stacks) are treated differently. Fourth, the verification
problem for different specifications use seemingly different techniques (viz, reachability analysis
or computing strongly connected components of a directed graph).

Not only this non-uniformity is conceptually disturbing and makes integration difficult, but
the lack of uniformity prevents immediate extensions to more expressive logics (see Chapter 3
for more details) or to more succinct (or different) system models (e.g., to hierarchical systems)
without changing the whole set up. Moreover, dealing with “many-sorted” systems (e.g., systems
in which some variables range over numeric domains while some others range over non-numeric
domains) within this framework is difficult. Further, incorporation of optimization techniques
for model checking becomes difficult within this framework. Also, within the above framework, it
is difficult to identify subclasses of systems that can be model checked effectively and efficiently
(this also holds true for specifications). The inherent non-uniformity also presents problems
in separating the logical part of the framework from its combinatorial part thereby losing the
modularity of the solution provided (e.g., in model checking for systems over numeric data types,
the constraint solving part is not separated from the core model checking procedure).

Mathematical logic provides a uniform framework in which to simulate (and model) such
reactive systems in an essentially coding-free way as well as write down and verify properties
about the behaviors of such systems. The simulation is not supposed to be performed at a lower
abstraction level; it should be done on the natural abstraction level of the system. The simulation
can itself be viewed as a “database” at an appropriate abstraction level and the logical formula
encoding properties about the behaviors as a query so that the verification problem boils down
to that of evaluating that query on the “simulation” as a database. To give the reader a taste
of the uniform framework that mathematical logic provides for specifying and verifying reactive
systems, we provide a few examples below.



Reachability Analysis as a Mapping between Different Abstraction Levels A (pos-

sibly infinite state) transition system (or program) P with n data variables z1,... , z, ranging
over a domain D and locations /i, .../ induces a relational structure 7 over the vocabulary
T = (l1,...,0) (n-ary relation symbols) in the following way

T = <D,£1,£k>

where the relation symbols /1, ... , {; are interpreted as follows: v € ¢; if and only if the location
¢; is reachable in P, from the initial state, with the data variables taking the value v. We call this
relational structure 7 induced by a transition system T as the explicit structure induced by T
Reachability analysis for a transition system then amounts to computing the explicit structure
from the “implicit representation” of the transition system. The implicit representation of a
transition system as well as the explicit structure induced by it can be viewed as the same
database represented at different levels of abstraction. Thus reachability analysis can be viewed
as a mapping between two different levels of abstraction of the same database.

Model Checking as Constraint Satisfaction A constraint satisfaction problem [FV98] is
given by a pair I (called instance) and T (called template) of relational structures over the
same vocabulary (we consider here the version with fixed template). The problem is satisfied if
there is a homomorphism from I to T. A model checking problem for temporal logic is given
by a transition system P and a temporal logic (say an LTL [Pnu77]) formula ¢. This problem
has a ’yes’ answer if P = ¢. One can reduce this problem to a language inclusion problem
L(Ap) C L(A,) [VWS86a)] i.e., checking whether all computations accepted by the automaton
Ap corresponding to P are also accepted by the automaton A, corresponding to ¢. The answer
to this latter problem is ’yes’ if there is a homomorphism from Ap to A, (both viewed as
relational structures). Thus a ’yes’ answer to the ’constraint satisfaction’ problem with Ap as
instance and A, as template yields a 'yes’ answer to the model checking problem.

1.2 A Brief History of Computer-Aided Verification

This section makes a brief review of the research on computer-aided-verification over the last 30
years as well as the current state-of-the-art, thus placing the research described in this thesis
in context. Computer-Aided-Verification started with the seminal papers of Floyd [Flo67] and
Hoare [Hoa69] (though the first researcher to advocate the use of computers for verifying software
was Turing himself). Floyd and Hoare provided a framework for structured, compositional
deductive verification of sequential programs. Their method was extended to parallel programs
by Owicki and Gries [OG76]. But as we have mentioned earlier, such methods need considerable
amount of intervention from a human expert. Hence, although mathematically appealing, these
methods were not so successful in practice.

In 1977, in a seminal paper, Pnueli [Pnu77] proposed temporal logic for the specification
of concurrent systems. In a temporal logic, we augment a conventional logic with temporal
modalities making it possible to describe the ordering of events in time. As opposed to the
Floyd-Hoare framework, where the specification can only relate the initial state and final state
of a system, temporal logic is well suited to describe the on-going behavior of non-terminating
reactive systems.



Model checking techniques for branching time temporal logic specifications were introduced
in the early 80’s by Clarke and Emerson [CE80] and independently by Quielle and Sifakis [QS81].
The late '80’s and the early '90’s have seen a blooming period for theoretical and practical
research in model checking for finite state systems. Symbolic [BCM™92] and local [SW91] model
checking methods were proposed to deal with the state explosion problem, more expressive logics
like the propositional mu-calculus [Koz83] were being model checked, and systems with 10190
states were being handled [BCM192]. On another side, automata-theoretic methods [VW86a]
were proposed to unify the various approaches to model checking that had come up so far.

With techniques like symbolic model checking providing ways of representing and manipu-
lating (possibly infinite) sets of states, researchers started considering model checking for infinite
state systems (this area also got a lot of impetus from research on Petri nets). Bradfield and
Stirling [BS90] considered local model checking for systems with infinite state spaces against
mu-calculus specifications. While they gave a semi-algorithm for a general class of infinite state
systems, several other researchers started looking for subclasses of infinite state systems that
can be model checked effectively (if not efficiently). A breakthrough in this direction was ac-
complished when Alur and Dill in a seminal paper [AD94] isolated the class of timed automata
(finite state systems augmented with clocks that range over the non-negative reals) that admit
finite bisimulation. This result led to extensive research by several other researchers who ex-
tended techniques from finite state model checking like symbolic model checking [HNSY94], local
model checking [SS95] to model checking for timed systems. Buoyed by the success of model
checking for timed systems, researchers started looking at more expressive models like hybrid
systems [ACHH93] where semi-algorithms for symbolic model checking were obtained. In ad-
dition, subclasses of hybrid systems like initialized rectangular automata [HKPV95], o-minimal
hybrid systems [LPY99], that admit finite bisimulation were identified. In another direction, sev-
eral subclasses of infinite state systems in which the variables range over non-numeric domains
like the pushdown processes [Wal96, BEM97] etc., were identified, for which the reachability
problem turned out to be decidable.

The middle and the end of the 1990’s saw the emergence of model checkers capable of model
checking for industrial size systems like the Philips audio control protocol [BLL196]. Many
hardware design companies adopted model checking as part of their basic design method. To deal
with the increasing complexity in the functionality of the industrial systems being considered,
on one hand more succinct models like hierarchical finite state machines [AY98] came up, while
on the other hand techniques like model measuring [ATEP99] were introduced to deal with more
‘precise’ specifications.

This period also saw several efforts to unify the various techniques available for model
checking under a uniform framework. Automata-theory was proposed as a vehicle of unifi-
cation [DW99, BVW94|. However, the solution provided by automata theory, though close to
logic, was not entirely satisfactory — many of the non-uniformities already crept into this frame-
work (e.g., the automata-theoretic method does not work very well for model checking timed
systems; in fact entirely new models like timed alternating tree automata [DW99] needed to be
introduced to deal with timed systems).



1.3 Synopsis of this Dissertation

This dissertation makes an attempt to develop a unified framework based on mathematical logic
for modeling and verifying (possibly infinite state) reactive systems. The central idea is to iden-
tify a constraint-based logical formalism that can provide a uniform representation for a large
class of reactive systems using logical formulae and to reduce the verification problem to com-
puting model-theoretic semantics of logical formulae. Computing model-theoretic semantics of
logical formulae is closely related to query evaluation. Hence, developing optimized algorithms
for query evaluation (or query optimization techniques) yields, as a by-product, optimized algo-
rithms for verification.

The logical formalism, developed in this work, is able to model systems at their natural
abstraction level (e.g., the formalism does not need any significant extension to model a suc-
cinctly represented system). Moreover, systems represented in conventional formalisms (e.g.,
pushdown systems etc.) are easily translatable to this formalism (bringing more flexibility to
our framework).

The logical formulae representing a system may be viewed as a database (allowing possi-
ble recursion in the database) at an appropriate abstraction level. The interpretation of the
“extensional database” predicates is provided by the specification. Then model checking (or
reachability analysis) amounts to computing the interpretations of “intensional database” pred-
icates from those of the extensional database predicates, i.e., evaluating a query on the database
where the interpretations of the intensional predicates are the output relations. Thus the graph-
theoretic framework (i.e., reachability analysis or computing strongly connected components of
a graph) in conventional verification algorithms is replaced by a model-theoretic framework in
our approach.

We use the framework mentioned in the previous paragraph to treat uniformly the problems
of modeling and verification of (infinite state) systems with numeric data types (like real time
systems, systems with integer-valued variables). Our framework allows the logical part of the
problem to be clearly separated from the combinatorial (constraint solving) part. In this way,
we explain uniformly and unify the seemingly different algorithms behind the success of several
existing model checking tools. Further the uniform framework provides a platform in which
to identify subclasses of verification problems for which termination guarantees exist for semi-
algorithms that are used to solve the model checking problem in practice as well as to develop
techniques for forcing convergence of semi-algorithms (possibly losing accuracy in the process)
for undecidable verification problems. We use this platform to develop a ’toolbox’ consisting of
basic concepts and properties that are useful for reasoning about sufficient termination conditions
for symbolic model checking semi-algorithms as well as deriving abstractions to either to force
termination or to accelerate the convergence of such (semi) algorithms and reason about the
accuracy of such abstractions.

In stark contrast with the automata-theoretic framework which is not easily extendible for
dealing with infinite state systems like timed or hybrid systems our framework can, without
any extension, uniformly deal with both finite and infinite state versions of the model checking
problem.



1.4 Contributions of this Dissertation

In this section, we break up the contributions of this dissertation according to chapters!. The
dissertation is so arranged that most of the chapters can be read independently of the rest of the
dissertation. Each chapter starts with an Introduction and contains comparisons with related
work that places the research described in that chapter in context.

In Chapter 2, we argue that the framework of constraint query languages can provide a uni-
form platform for modeling and verifying reactive systems. To this end, we show how finite state
systems and pushdown systems can be uniformly captured by constraint query language pro-
grams (propositional horn formulae for finite state systems and Herbrand domain for pushdown
systems) and their verification problem reduces to computing model theoretic semantics of con-
straint query language programs (horn formulae). These results are inspired by [CP98a, STR96]
and can be viewed as extending and unifying their work. We use Dowling-Gallier graphs [DG84]
as advocated by [SIR96] for computing the model theoretic semantics of (propositional) horn
formulae. We show how the pebbling algorithm of Dowling and Gallier [DG84] can be modi-
fied to deal with the problem of computing the greatest model semantics of propositional horn
formulae.

The uniform framework of constraint query languages mentioned in the previous paragraph
encompasses the automata-theoretic framework of Bernholtz, Vardi and Wolper [BVW94]. We
show how both word and tree automata (non-deterministic, deterministic or alternating) can be
captured uniformly by our framework and connect the emptiness problem for these automata to
computing model-theoretic semantics of constraint query language programs. This connection
allows us to capture the automata-theoretic model checking methodology of [BVW94] uniformly
within our framework. Since the automata-theoretic framework already unifies the various
approach to finite-state model checking [BVW94] (where the system is specified as a finite
Kripke structure), capturing the automata-theoretic framework already provides some evidence
of the uniformity of our framework. This part of the work is inspired by [CMNT'98]. Finally,
we prove some topological properties of the constraint domain of infinite trees. All these results
along with some preliminaries constitute Chapter 2. This chapter contains results some of which
belong to the author while others belong to the existing literature. The results that do not belong
to the author are clearly distinguished by their citations.

In Chapter 3, we show how the uniform framework that we have identified can deal with the
problem of specifying and verifying timed systems?
introduce a fragment of constraint query languages over reals and show that programs in this
fragment can model timed systems. We call the programs expressed in this fragment as timed
logic processes (TLPs). We establish a formal connection of TLPs with the standard model of
timed automata. We use this connection to show that the Uppaal model checking procedure for
safety and bounded-liveness properties of timed systems is the top-down query evaluation with
tabling (in the XSB style) for TLPs. This allows us to obtain an alternative way of implementing
Uppaal’s procedure and for extending it. This extension accommodates properties with ‘full’
disjunction and unbounded liveness properties. All the results in Chapter 3 were obtained by
the author.

. As a part of our uniform framework, we

!Chapter 2 besides providing some preliminary concepts needed for reading this dissertation, leads the reader
closer to the uniform framework to be used in the later chapters

*Note that the automata-theoretic framework does not have an easy extension for dealing with real time
systems



In Chapter 4, we introduce the stratified p-calculus. Some symbolic model checking proce-
dures use disjunctive constraints (e.g. disjunctions of conjunctions of arithmetic inequalities) to
represent sets of states. This motivates us to introduce a new class of temporal properties with
a backward analysis and a forward analysis that are both well-suited for disjunctive constraints
as the ‘symbolic’ data structure. The stratified p-calculus Sy is a natural generalization of STL
(Safe Temporal Logic) and can be used to express e.g. convergence for timed automata. Our
technical contribution is the novel ‘symbolic forward analysis’ method for checking Sy formulas.
This method is based on our characterization of Sy properties as perfect models of constraint
logic programs and on our tabled-resolution procedure for constraint logic programs with the
perfect-model semantics.

In Chapter 5, we are concerned with the termination of the procedures that solve the model
checking problem for timed systems in practice. Theoretical investigations of infinite-state sys-
tems have so far concentrated on decidability results; in the case of timed automata these results
are based on region graphs. We investigate the specific procedure that is used practically in order
to decide verification problems, namely symbolic forward analysis. This procedure is possibly
non-terminating. We present basic concepts and properties that are useful for reasoning about
sufficient termination conditions, and then derive some conditions. The central notions here are
constraint transformers associated with sequences of automaton edges and zone trees labeled
with successor constraints.

In Chapter 6, we propose a symbolic model checking procedure for timed systems that
is based on operations on constraints. To accelerate the termination of the model checking
procedure, we define history-dependent widening operators, again in terms of constraint-based
operations. We show that these widenings are accurate, i.e., they don’t lose precision even with
respect to the test of boundedness properties.

In Chapter 7, we consider compositional termination analysis of symbolic forward analysis
for infinite state systems. Existing model checking tools for infinite state systems, such as
UPPAAL, HYTECH and KRONOS, use symbolic forward analysis, a possibly nonterminating
procedure. We show termination for the special case of o-minimal hybrid systems. We give
termination criteria for general integer-valued systems and nonlinear hybrid systems. These
criteria are in the form of syntactic sufficient conditions on the individual components composed
with asynchronous parallel composition.

In Chapter 8, we present a constraint-based framework for deriving abstract symbolic model
checking procedures and also for reasoning about their accuracy. Symbolic forward analysis is a
semi-algorithm that in many cases solves the model checking problem for infinite state systems
in practice. This semi-algorithm is implemented in many practical model checking tools like
UPPAAL [BLL*96], KRONOS [DT98] and HYTECH [HHWT97]. In most practical experi-
ments, termination of symbolic forward analysis is achieved by employing abstractions resulting
in an abstract symbolic forward analysis. This paper presents a unified algebraic framework for
deriving abstract symbolic forward analysis procedures for a large class of infinite state systems
with variables ranging over a numeric domain. Our framework provides sufficient conditions
under which the derived abstract symbolic forward analysis procedure is always terminating or
accurate or both. The class of infinite state systems that we consider here are (possibly non-
linear) hybrid systems and (possibly non-linear) integer-valued systems. The central notions
involved are those of constraint transformer monoids and coverings between constraint trans-
former monoids. We show concrete applications of our framework in deriving abstract symbolic
forward analysis algorithms for timed automata and the two process bakery algorithm that are



both terminating and accurate.

Chapter 9 concludes the dissertation. In this chapter, we briefly summarize the subject
matter of the thesis and also present problems left open in the dissertation and directions for
future research.



Chapter 2

Preliminaries

We first present some preliminary notions. We then argue that constraint query languages can
provide a uniform constraint-based framework for modeling and verifying (possibly infinite state)
reactive systems. This is demonstrated by showing that a large number of seemingly unrelated
formalisms have a natural translation to the framework of constraint query languages and their
verification problems reduce to computing the model-theoretic semantics of constraint query
language programs.

2.1 Transition Systems

We are interested in the formal verification of reactive systems. Labeled transition systems are
a formalism for describing such systems.

Definition 2.1 (Labeled Transition System) A labeled transition system is a siz tuple
L=(S%X,8,—, AP, P),

where S is a set of states, ¥ is a finite alphabet (or a set of letters), So C S is a set of initial
states, —C S x X X S is a transition relation, AP is a finite set of atomic propositions and
P : S — 24P ussigns to each state a set of atomic propositions.

We call a labeled transition system in which |X| = 1 a one-letter transition system [BVW94]
or simply an unlabeled transition system (or a Kripke structure). In case of an unlabeled
transition system, we can assume the transition relation — to be a binary relation; —C S x S.
A transition system (labeled or unlabeled) is infinite if S is infinite. In this dissertation, we
are concerned with possibly infinite state transition systems that can be finitely represented
(explained below). Most of the transition systems that we consider in this dissertation are
unlabeled. For s € S, a path # = s¢,s1,... starting from s is an infinite sequence of states
such that sp = s and for all i > 0, there exists a € ¥ such that (s;,a,s;) €—. For a path
T = 80, 81, - . . , we will write 7[i] for s;.

For a set of atomic propositions AP, let V = (—,{p|p € AP}, %,Sy) be a two-sorted
vocabulary with {1,2} as the set of sorts, where the — is a ternary relation symbol with sort
(1,2,1) and all other relation symbols are monadic with sort (1) with the exception of ¥ which is
a monadic relation symbol of sort (2). Let L be a two-sorted first order language (with equality)
such that L NV = (. A labeled transition system L over L can be viewed as an expansion of



an L structure A with universe A to V such that the interpretation of ¥ is a finite relation.
The language L is called the underlying language of £. A labeled transition system L is finitely
representable over L if for each relation R € V\ {X} there exists a quantifier-free L formula ¢(x)
such that

L = vx(R(x) <= »(x))

For example, the transition system Lp = (N, {a}, —, AP, P) with the set of natural num-
bers N being the set of states and the relation — defined as — (i, a,j) iff j is even is not
finitely representable over the language of Presburger arithmetic. The reason is that Presburger
arithmetic does not admit quantifier elimination [End72] (e.g., there is no quantifier free Pres-
burger arithmetic formula equivalent to the formula dzy = x + = defining the set of even natural
numbers). In the sequel, we write s — s’ to denote (s, a, s') € —s.

2.1.1 Equivalences between Transition Systems

In this section, we briefly review some notions for comparing two transitions. The notions of
simulation and bisimulation [Mil89] are the basic ways of comparing the structure of transition
systems.

Definition 2.2 (Bisimulation [Mil89]) Given labeled transition systems L = (S, %, Sy, —
,AP,P) and L' = (S', %, S}, —', AP', P'), a binary relation ~C Sx S’ is a bisimulation relation
if for each sy € Sy, there exists sy € Sf such that sg = sy and vice versa and for all letters a,
s = t implies:

!
~ Whenever s == s' then, for some t', t — t and s' =~ t'.
!
- Whenever t —s t' then, for some s', s — s' and s' ~ t'.

A bisimilarity relation ~ is a bisimulation between L and L', such that for all states s € S, there
is a state t € S’ such that s =~ t and for all states t € S’ there exists s € S such that s =~ t. We
say that £ and L' are bisimilar iff a bisimilarity relation ~ exists between L and L.

Definition 2.3 (Quotient Transition System) Let £ = (S, %, Sy, —, AP, P) be a (labeled)
transition system. Let ~ be an equivalence relation on S that does not distinguish elements of
So. The quotient transition system L/ ~ is defined as follows: For all letters a € X

L] ~= (S ~,%,[Se], —",AP, P)

where S/ ~ is the set of equivalence classes of S induced by the equivalence relation ~, [Sy| is
the equivalence class containing So. The transition relation is defined as follows: & — &,
for two equivalence classes £ and Es, if there exists s1 € &1 and sy € E such that sq 2 5.

Note that if the equivalence relation ~ is a bisimulation then £/ ~ and £ are bisimilar. The
notion of quotient transition systems and bisimilarity will be used in Chapter 3

In the remaining part of this section, we review two types of state space partitions of a
transition system.
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Definition 2.4 (Pre-stable and Post-stable Partitions [ACD"92]) Let L =
(S,%,Sy,—, AP, P) be a labeled transition system. Let ~ be an equivalence relation on
S. The partitioning of S induced by ~ is pre-stable if for all a € 3 and for all states s, s' and
t, if s ~t and s — a then there is a state t' such that s' ~ t' and t — t'. The partitioning
of S induced by ~ is a post-stable partitioning if for all a € ¥ and for all states s, s' and t, if
s' %5 s and s ~ t then there exists a state t' such that t' =t and s' ~ t'.

2.2 Specification Logics

Till now we have described formalisms for describing reactive systems. In order to reason about
the behaviors of reactive systems, we need a formalism to specify their properties. In this
section, we review some of the logics for specifying properties of transition systems. The p
calculus [Koz83] is a modal logic augmented with least and greatest fixpoint operator. The
syntax of y calculus formulas are given as follows.

& n= q| B Ay | -D|O(B)| X |v XD

where ¢ is an atomic proposition and for a formula of the form v X.®, every occurrence of X in
® occurs under an even number of negations. We will also use the following abbreviations.

D(CI)) = ﬂ<>(—|<I))
MX.@(X) = —IUX.—I@(—IX)

A variable X in the formula is guarded iff every occurrence of X in ® occurs in the scope
of a modality operator & (O). A formula ® is guarded iff every bound variable in the formula
is guarded [Wal93]. We now describe the semantics of y calculus with respect to an unlabeled
transition system £ = (S,{a}, —, AP, P). The meaning or denotation of a formula ® in an
(unlabeled) transition system £ under an assignment Val : Var — 2, where Var is the set
of variables of ®, is the set of states of £ in which & is true. It is denoted by £& and is defined
inductively as follows.

- Lg={s€ S :qeP(s)}

— L(®1 A By) = LB, N LD,

~- L-®=S5\L®

- L(O(®))={se S|Ts' € Ss— s ANs'" € LB}
- LX = Val(X)

- LvX.®=J{S'CS|S C L)

The p-calculus is a very expressive specification logic. In the literature, different fragments
of p-calculus have been considered for which efficient model checking procedures exist. In Chap-
ter 4, we consider a fragment of u-calculus for which two symbolic model checking procedures
exist — one based on backward analysis and the other based on forward analysis, that are both
suitable for disjunctive constraints as the data structure for representing and manipulating sets
of states.
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2.3 Logic Programs and Datalog

As constraint query languages and constraints are going to play a central role in our uniform
constraint-based framework, we review some related concepts about logic programming [L1087]
and datalog [UlI89] in this section. The usual viewpoint of logic programming is to look at
the synthesis of operational behavior from programs viewed as executable specifications. In
this dissertation, we take a different viewpoint; namely, the analysis of operational behaviors of
constraint query language programs obtained by direct translation of a system (program). For
the definition and semantics of logic programs and datalog we refer the reader to [L1o87, UlI89].
For an introduction to tabling and OLDT resolution, we refer the reader to [TS86a, CW96].
We review here only some of the terminology that will be used in the sequel. One of the most
important notions in logic programming is that of OLD resolution.

Definition 2.5 (OLD resolution [TS86a]) Let C be a negative clause <— A; A... N Ay, and
D be a definite clause. Let D' be of the form A <— By A... A By, (m > 0), be D with all
variables renamed so that there is no conflict with those in C. The clauses C and D are said to
be OLD resolvable if Ay and A are unifiable, and the negative clause (or null clause when n =1
andm=0)+— (BiA...ANByp NAs A ... N A,)6 is the OLD resolvent of C and D where 6 is
the mgu of Ay and A. The restriction of the substitution 6 to the variables of Ay is called the
substitution of the OLD resolution.

Definition 2.6 (OLD Tree [TS86a]) Let P be a program and Cy be a negative clause. Then
the OLD tree for the pair (P,Cy) is a possibly infinite tree with its nodes labeled with negative
or null clauses so that the following condition is satisfied.

— The root is labeled with Cy.
— Assume a node v is labeled with C.

— If C is a null clause, then v is a terminal node.

— Otherwise, let Dy,... ,D, (n>0) be all the clauses in P that are resolvable with C,
and Cq,...,C, be the respective resolvents. Then v has n child nodes, labeled with
Ci,...,Cph. The edge from v to the node labeled with C; is labeled with 6;, where 6;
is the substitution of the OLD resolution of C and D;.

Having defined OLD trees, we now come to the definition of OLD refutation.

Definition 2.7 (OLD refutation [TS86a]) Given a program P and a negative clause C, an
OLD refutation of C by P is a path in the OLD tree of (P,C), from the root to a node labeled
with the null clause. Let 61 ...0; be the labels of the edges on the path. The substitution of the
refutation is the composition § = 6g o ... o 0, and the solution of the refutation is C6.

Definition 2.8 (Unit Sub-refutation [TS86a]) For a node v in an OLD tree, we denote the
number of predicates in the goal labeling v by leng(v). Consider a path from a node vy in an
OLD tree to one of its descendants vy such that for every node v on the path leng(v) > leng(vs)
holds. Let the goal labeling vi be (P, ) where P is a conjunction of predicates py to p,. Let
k =n—leng(vy). Since this path can be viewed as the refutation of the first k predicates, we call
it a sub-refutation of the first k predicates (from the left). If k = 1 we call it a unit subrefutation.
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Generally, when we speak of a program, we essentially deal with the Clark’s completion of a
program. The least model of a program is the same as that of its Clark’s completion. We now
recall the definition of Clark’s completion of a program.

Definition 2.9 (Clark’s Completion [L1087]) The conjunction of all clauses p(t) «— body;,
defining a predicate p in a program P is, in fact, a syntactic sugaring for the formula that
expresses the logical meaning correctly, namely the equivalence (here the existential quantifier is
over all variables but those in t)

p(t) «— \/ 3... body,.

The program P’ that defines each predicate (that is defined in P) by such a (unique) equivalence
18 known as the Clark’s completion. The two forms are equivalent with respect to the least model.
The greatest model, however, refers to the Clark’s completion.

In the sequel, we make it a rule that whenever we refer to a program, we will (unless
otherwise stated) refer to the Clark’s completion of the program. Whenever we talk about the
greatest model of a program we will actually be talking about the greatest model of the Clark’s
completion of the program.

Let P be a logic program, let ‘H be the Herbrand universe of P, let M be a Herbrand model of
P and let p be a predicate in P. The denotation of p in M is the set of terms {t € H|p(t) € M}.
We will use this notion in the sequel in this chapter as well as in Chapter 4.

2.4 OLDT Resolution

In this section, we briefly review OLDT resolution for logic programs [TS86a]. The presentation
below is adapted from [TS86a]. In Chapter 3, we will extend OLDT resolution to constraint
query language programs. We first need a few definitions.

Definition 2.10 (Partial OLD Tree [TS86a]) A partial OLD tree is a finite top segment of
an OLD tree. That is, any finite tree obtained by deleting arbitrary number of trees from an
OLD tree.

We assume that some predicates in a program are designated as table predicates.

Definition 2.11 (OLDT Structure [TS86a]) An OLDT structure is a forest of partial OLD
trees with two tables, the solution table and the lookup table.

A node is called a table node if the leftmost atom of its label is a table predicate. A table
node is either a lookup node or a solution node. The solution table associates the leftmost atom
of the label of each solution node with a list of instances of the atom, called the solution table.
The lookup table associates with each lookup node with a pointer pointing to some solution list
in the solution table.

We now describe the table node registration procedure.

Definition 2.12 (Table Node Registration [TS86a]) Given an OLDT structure and a ta-
ble node v in it, the table node registration procedure classifies it as a solution node or a lookup
node, and does necessary table manipulation, resulting in the OLDT structure.

According to the leftmost atom A of v’s label, we distinguish between the following cases. (By
definition, the predicate of A is a table predicate).
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1. Lookup Node The atom A is an instance of some key entry A’ in the solution table. Put v
in the lookup table with a pointer to the entire solution list of A’.

2. Solution Node Otherwise, put A in the solution table with an empty solution list.

Definition 2.13 (Initial OLDT Structure [TS86a]) Given a program P and a goal Cy, the
initial OLDT structure for the pair (P,Cy) is the result of the following operation.

1. Let Ty be the OLDT structure consisting of a forest with a single node vy labeled with Cy,
an empty solution table and an empty lookup table.

2. Apply the table node registration procedure to the node vy in Tj.

2.4.1 Extension of an OLDT structure

We now describe how to extend an OLDT structure. The presentation closely follows [T'S86a].
Given a program P and an OLD structure T', the immediate extension of T' by P is the result
of either of the following operations.

1. OLD extension Select a terminal node v, that is not a lookup node, such that its label C'
is not a null clause (goal) and at least one clause in P is OLD resolvable with C.

(a) Let Dq,...,Dp (n > 1) be all the clauses in P that are OLD resolvable with C, and
let C1,...,Cy, be the respective OLD resolvents. Add n child nodes v;, labeled with
Ci,...,Cp to v. The edge e; from v to v; is labeled with 8; where 6; is the most
general unifier of C' and D;.

(b) For each new node, register it if it is a table node.

(c) For each unit subrefutation (if any) starting from a solution node and ending with
some of the new nodes, assume that the subrefutation is of +— A and let +— A’ be
a solution. Add A’ to the last of the solution list of A, if A’ is not an instance of any
entry in the solution list.

2. Lookup Node Extension Select a lookup node v, such that the pointer associated with it
points to a nonempty sublist of a solution list. Advance the pointer by one to skip the
head element of the sublist. If C' and A +— true are OLD resolvable, where C labels
the node v and A is the entry of the table pointed to by the pointer, then create a child
node of v labeled with the resolvent and label the new edge with the corresponding most
general unifier. Do the same thing as in 1lc.

An OLDT structure T” is an extension of another OLDT structure T if 7" is obtained from
T through successive application of immediate extensions. We now define OLDT refutation.

Definition 2.14 (OLDT refutation [TS86a]) Given a program P and a goal C, an OLDT
refutation of C by P is a path in some extension of the initial OLDT structure for (P,C), from
the initial root to a node labeled with the null goal. Here, by initial root, we mean the root
inherited from the initial OLDT structure.

The soundness of OLDT refutation comes as an immediate consequence of that of OLD
refutation [L1o87]. The completeness comes from the completeness of OLD refutation along
with the fact that an OLD refutation can be “simulated” by an OLDT refutation [T'S86a).

14



2.5 Constraint Query Languages

In this section, we review some preliminaries of constraint query languages. For further details,
the reader is referred to [KKR95, JM94]. Constraint query languages [JM94, JMMS, KKR95] are
a natural merger of two declarative paradigms: constraint solving and deductive databases. The
paradigm of constraint query languages has progressed in several and quite different directions.
Before going into the details of constraint query languages, we make a brief review of the notions
of constraint domains and solution compactness.

Definition 2.15 (Constraint Domain) For any signature 3, let D be a ¥ structure and L
be a class of X-formulas. The pair (D, L) is called a constraint domain.

Examples of constraint domains are R, the domain of reals, 7%°, the domain of infinite trees over
an alphabet ¥. In most of this dissertation, we will either deal with the constraint domain of
reals or that of natural numbers. In the rest of this dissertation, whenever there is no confusion,
we will use the symbol D to denote the constraint domain (D, L) as well as the structure D.

Definition 2.16 (Solution Compactness [JM94]) Let (D, L) be a constraint domain. Let
©, p; range over formulas of L and let I be a possibly infinite index set. A constraint domain
(D, L) is solution compact if it satisfies the following conditions.

- V‘Pa{%‘}iel s.t.D ‘: Vx-p(x) <= /\ig[ ©i(x).

We assume that the constraint domains that we will deal with below are solution compact [JM94].
We next come to the definition of o-minimal structures.

O-minimal structures and their theories play a major role in Chapter 7 in defining o-minimal
hybrid systems, a decidable subclass of hybrid systems, where the underlying theory is o-minimal.

Definition 2.17 (O-minimal Structures [vdD98]) A (first order) structure D = (U,X)
over a signature X (where U is the universe of the structure and the vocabulary ¥ contains
the relation symbol <) is o-minimal if every definable subset of U can be expressed as a finite
union of points and open intervals (a,b) = {z|a < =z < b}, (—o0,a) = {z |z < a}, and
(a,00) ={z |z > a}.

For example, the structure (R, <,+,.,0,1) is an o-minimal structure.

We now take a brief look at constraint query languages. A constraint query language program
over a constraint domain C is a finite set of rules. A rule is of the form H <— B where H, the
head is an atom and B the body is a finite set of non-empty set of literals. A literal is either
an atom or a constraint. We let > denote the empty sequence of literals. An atom has the form
p(t1,t2,... ,t,) where p is an user-defined predicate symbol and ¢; are terms from the constraint
domain. Note that below, we write a program of the form p(t) «— B, where ¢ is a tuple of terms,
in the form p(x) +— B A x = t. The operational semantics are given in terms of “derivations”
from goals. Below, we review some basic concepts about constraint query languages.

Definition 2.18 (Non-ground Fact or Generalized Tuple) A non-ground fact or a gen-
eralized tuple is a clause of the form p(x) +— ¢ where p € Pred (the set of predicate symbols of
the program) and ¢ is a constraint.
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Definition 2.19 (Non-ground Goal) A non-ground goal is a tuple of the form (P, ) where
P is a conjunction of predicates from Pred and ¢ is a constraint. We will call ¢ the constraint
store of the goal (P, ).

Definition 2.20 (Non-ground State) A non-ground state is a tuple of the form (p(x),p)
where p € Pred and ¢ is a constraint (store).

Note that a nonground state is also a nonground goal.

Definition 2.21 (Non-ground Transition System) Given a constraint query language pro-
gram P, we define the non-ground transition system induced by P as follows. Let (P, p) be a
non-ground goal. Let p(x) be a predicate in the conjunct P. Let P' = P\ {p} be the conjunction
of all predicates in P other than p(x). Let C be a clause in P whose head unifies with p(x).
Let B be the conjunction of predicates in the body of C. Then the non-ground transition system
induced by P is the transition system whose set of states is the set of non-ground goals and the
transition relation —yg is defined by:

(P, p) —rng (Q,¢)

where Q = B A P’ and (pl = EL(Variables(P’),Variables(B))(90 A ((H—xSO) A O A 1/))) where ¢ 1s the
constraint in C, Variables(P') (Variables(B)) are the free variables in P' (B) and © is the mgu
of p(x) and the head of C where the existential quantifier is over all variables but x.

Definition 2.22 (Non-ground Derivation.) A non-ground derivation is a (finite or infinite)
sequence of non-ground goals of the form

Gq —ng Gso ——ng -

A finite derivation from G is finished if the last goal cannot be reduced. The last state in a
finished derivation is of the form (>, p). If ¢ is false the derivation is said to have finitely failed.
Otherwise the finite derivation is said to be successful. A nonground goal is said to have finitely
failed if all nonground derivations starting from it finitely fail.

Definition 2.23 (Ground Instance.) Given a non-ground state s = (p(Z), ), a ground in-
stance of s is a ground atom of the form p(a(z1),...,a(z,)), where a : Var, — D such that
D, o |= ¢ where D is the constraint domain under consideration (here Vr, denotes the set of
free variables of ¢). This definition can be easily extended to ground instances of non-ground
goals.

We sometimes use the term ground state for the term ground atom. A ground goal is a con-
junction of ground atoms. A ground transition system and a ground derivation can be viewed
as a “grounding” of a non-ground transition system and a non-ground derivation respectively.
In this case, the “states” are ground goals and the transition relation is defined in the obvious
way.

A constraint query language program is called monolithic iff for each clause, the body con-
tains only one predicate symbol. For a predicate p and a set of generalized tuples Q, we denote
by Qp the set of generalized tuples defining p in Q; ie., Qp = p(x) — \/f:1 1; where for
i = 1.k, p(x) <— ; are all the clauses defining p in Q.
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Given a generalized tuple G = p(x) +— ¢ over a constraint domain D we define the denota-
tion of G, denoted by [G]p, as follows

[Glp = {p(d) | D,d |~ ¢}

Given a set Tup of generalized tuples over a constraint domain D, we define the denotation of
Tup, denoted by [Tup]p, as follows.

[Tup]p = | [Glo
Ge Tup

We are now going to demonstrate that the various formalisms used for specifying transition
systems and their properties have a natural translation to the framework of constraint query
languages. The verification problem then reduces to the problem of computing model-theoretic
semantics of constraint query language programs. The framework of constraint query languages
can be viewed as unifying these seemingly different formalisms.

2.5.1 Finite Automata and Constraint Query Languages

This section is inspired by [Pod00]. A finite automaton A over a finite non-empty alphabet ¥
is an edge labeled directed graph with a finite set of vertices @ = {q1,... ,qn}. A subset F' of
Q of vertices is designated as the set of accepting vertices and a vertex ¢; is designated as the
initial vertex. We call the pair (g, w), where ¢ is a vertex of 4 and w € ¥* is a finite word
over the alphabet 3, as a state of A. Note that according to this definition of state, a finite
automaton is an infinite state system. An edge of the automaton A is a triple (g;, a, ¢;) where
gi,q; are vertices of A and a € X. We denote the set of edges of the automaton by £. The
transitions of the automaton are described as follows. The state (g;, w) can make a transition
to the state (g;,w') if there exists an edge (g;, a,g;) of the automaton and w = a - w’ where -
denotes concatenation. A finite automaton A can be described by a regular system of equations.

= |J aqus
(gi,a,q5)€E

where S; = {¢} if ¢; € F and empty otherwise. The denotation of ¢; in the least solution of
the above set of equations gives the language accepted by A in the classical sense [HU79]. Since
we are interested in the least solution of the system of equations, we can rewrite the equations
replacing equality by supersethood; i.e., we can rewrite the above system of equations as follows.

% 2 a-q;
for each edge (g;,a,q;) of A and
g 2 {e}

if ¢; is an accepting vertex. Using some syntactic sugar, we can rewrite the above inclusions as
follows.

g 2{z e [IyeX(yegAz=a y)}
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We can rewrite the above inclusion logically as a constraint query language clause over the
Herbrand constraint domain as follows.

gi(z) «— gj(y) Nz =a-y.

Let us denote the program generated by the above translation of A as P. The correctness of
the above translation is given by the following theorem.

Theorem 2.1 (Correctness of Translation) The language accepted by A is exactly the de-
notation of the predicate q in the least model of P.

Proof. By straightforward induction on length of derivations. [

Since model checking for linear safety properties (for finite state systems) in the
automata-theoretic framework reduces to (non)-emptiness problem for finite automata on fi-
nite words [VW86a, HKQ98], our framework can provide a uniform platform for dealing with
such problems. Checking emptiness amounts to checking membership in the model-theoretic
semantics of constraint query language programs. In Section 2.7, we will look at some methods
of computing model-theoretic semantics of constraint query language programs.

2.5.2 Pushdown Processes

A pushdown process Ap over a finite non-empty alphabet ¥ consists of a finite set of locations
Q = {q1,... ,qn}; a state of the system being a pair (g, w) where w € X* is viewed as the
representation of the contents of a stack. A subset F' of @) is designated as the set of accepting
locations; the location ¢; € @ is designated as the initial location. In addition to the transitions
described for finite automata (which are now called pop’ transitions), we also have here a set of
push edges of the form (g;,!a, ¢;) where a € . A state (g;, w) takes a transition through a push
edge (gi,a, g;) to the state (gj, w') if w' = a.w. The language accepted by a pushdown process
can be defined in the same way as that of a finite automaton. Using transformations similar to
those in the previous section, a push transition through the edge (g;,'a, ¢;) can be described by
the clause

¢(z) «— gy Ny=a-x

Thus, similar to a finite automaton, a pushdown process Ap can be translated to a constraint
query language program P such that the following is preserved.

Theorem 2.2 The language accepted by a pushdown process Ap is exactly the denotation of
the predicate q1 in the least model of P.

2.5.3 Tree Automata

The following definitions are taken from [Tho90]. Given an alphabet ¥, a k-ary ¥-labeled tree
t is a mapping t : dom(t) — X where the domain of ¢ denoted by dom(t) is a subset of
{0,... ,k — 1}*, closed under prefixes, which satisfies

wj € dom(t),i < j = wi € dom(t).
The tree t is finite iff dom(¢) is finite. The outer frontier of a tree ¢ is given by the set fr*(¢) =
{wi & dom(t) | w € dom(t) Ni < k}. Let dom™(t) = dom(t) U frt(¢).

18



Definition 2.24 (Tree Automaton) A (non-deterministic top-down) tree automaton over X
is a quadruple of the form Ar = (Q,qo, A, F), where Q is a finite set of states, qo € Q 1is
designated as the initial state, F C Q is the set of accepting states and A C Q x & x Q¥ is the
transition relation. A run of Ar on a finite k-ary S-labeled tree t is a mapping r : dom™ (t) — Q
where r(¢) = qo and (r(w), t(w), r(w0),... ,r(w(k—1))) € A for each w € dom(t). It is accepting
if r(w) € F for each w € fr*(t). The tree language T (A1) recognized by a tree automaton Ar
is the set of all (finite) trees t for which there is an accepting run of Ar on t.

A tree automaton A7 can be translated to a constraint query language program P as follows.
For each tuple (q,a,qi,...,qx) € A we have the following clause.

q(y) «— qi(zo), ... yqu(xp—1) Ny = alxo, ... ,25_1)

In addition , for each accepting state ¢ € F, we add a fact g(¢). The intuition behind the
translation is that the tree automaton reads the letter a of the term a(zg,... ,z;_1) in state g
and splits into k copies and moves to node z; with state ¢;11. The following theorem that we
state without proof shows the correctness of the above translation.

Theorem 2.3 The language accepted by the tree automaton At is exactly the denotation of the
predicate qg in the least model of P.

2.5.4 Alternating Automata

Definition 2.25 (Alternating Automaton [MS87]) An alternating automaton is a tuple
A = (3,Q,q,6,F), where ¥ is a finite non-empty alphabet, Q is a finite non-empty set of
states, qo € Q is the initial state, F C Q is a set of accepting states, and § : Q x ¥ — B(Q)
(where BT(Q) is the set of positive boolean formulas over Q) is a transition function.

A run of A on a finite word ay,... ,a,_1 is a finite @-labeled tree r such that r(¢) = go and
the following holds:

—if || =i < n, r(z) = ¢, and 6(q,a;) = 6, then x has k children z1,... ,x, for some
k < |Q|, and the interpretation {r(z1),... ,r(zx)} satisfies 6.

The run tree r is accepting if all nodes in depth n are labeled by states in F.

Similar to the previous three cases, it can be shown that the emptiness problem for alternating
automata can be reduced to checking membership in the model-theoretic semantics of constraint
query language programs. We leave out the formal details which are easy.

2.5.5 Automata on Infinite Words: Biichi Automata

Definition 2.26 (Biichi Automaton [Tho90]) A Bichi automaton over a finite non-empty
alphabet X is of the form A = (X, Q, qo, A, F) where Q is a finite set of states, qo € Q is the initial
state, A C Q X X X Q is the transition relation and F C Q) is the set of accepting states. A run
o of A on an infinite word ag, a1, ... 18 an (infinite) sequence of states qo, q1,... where for each
i >0 (qi,ai,qiv1) € A; the run is accepting iff inf (o) N F # () where inf (o) is the set of states
occurring infinitely along o. An infinite word w € X% is accepted by A iff it has an accepting
run on w. The language of A, denoted by L(A), is given as follows; L(A) = {w € | A accepts
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Without going into the details, we note as above that the emptiness problem for Biichi automata
can be reduced to that of testing membership in the model-theoretic semantics of constraint
query language programs. Since the decision problem for linear temporal logic (LTL) formulas
can be reduced to the emptiness problem for Biichi automata [VW86a], our framework provides
a methodology for deciding LTL.

We note without going into the details that the emptiness problem for various formalisms
of alternating tree automata (e.g., weak alternating automata, hesitant alternating automata
etc. [BVW94]) can be uniformly captured in the framework of constraint query languages.

2.6 The Logic CTL

So far we have talked about how the seemingly different formalisms for specifying reactive
systems have a natural translation to the framework of constraint query languages. In this
section, we show how model checking can be performed in the framework of constraint query
languages. In particular, we show how the model checking problem for the branching time
temporal logic CTL can be reduced to computing the model-theoretic semantics of constraint
query languages over reals. The syntax of the logic CTL [CE80], which is a fragment of the
p-calculus, is given as follows.

® = true|q| —® | By V By | EX(®) | B(®1UD,) | E(1UD,)

where ¢ is an atomic proposition. We will use the following abbreviations. false = —true,
EF(®) = E(trueUd®), AG(®) = ~EF(—-®), EG(®) = E(false U®). The semantics of CTL
with respect to an (unlabeled) transition system £ = (S, X, Sy, —, AP, P) (where ¥ = {a}) is
described as follows. The satisfaction relation is inductively defined as follows.

— For all s € S, L, s = true.

- L,s=qfor g€ AP iff g € P(s).

S L5 = iff £, [ @,

- LsE® VT LisEPor L,sE P

- L,s = EX(®) iff there exists s’ € S such that (s,a,s’) €E— and L,s' = ®.

- L,s = E(®1U®,) iff there exists a path m starting from s and a natural number ¢ such
that £, 7[i] = ®2 and for all 0 < j < i, £, 7[j] = ®1.

- L,skE= E(@lljl{)g) iff there exists a path 7 starting from s such that for all i > 0 such that
L, w[i] = ®g, there exists 0 < j < i such that £, 7[j] = ®;.

The denotation of a CTL formula ® with respect to an unlabeled transition system L, denoted
by [®]c, is given by [®] ={s € S| L,s = ?}.

2.6.1 Model Checking for CTL: Programs with Oracles

This section is inspired by [CP98a]. Based on the techniques of [CP98a], we show that model
checking for CTL can be reduced to computing model-theoretic semantics of constraint query
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language programs with oracles. We show this for a fragment of CTL. The extension to full
CTL is straightforward.
We consider the following fragment of CTL (we call this fragment as FCTL).

Bu=p|d VI, &y ADy | EX(®) | EF(®) | EG(D)

We first note that a finitely representable unlabeled transition system can be described by
a (monolithic) constraint query language program P. Assume that the denotation of an FCTL
formula ® with respect to P, denoted by [®]p can be described by a finite set of generalized
tuples. Then the denotation of =® with respect to P can be described by a finite set of gener-
alized tuples. If the denotations of ®; and ®, with respect to P can be described by finite sets
of generalized tuples then so is the denotation of ®; V ®5 with respect to P.

Now, given that the denotation of ® can be described by a finite set of generalized tuples Q
(i.e., [®]p = Q), we construct the programs PV Q and P A Q as follows.

PVQ={C|CePVCeQ}

PAQ={p(x) «—p'(x) A A |p(x) «— p'(x) A p € PAQy = {p(x) «— ¢¥}}

where O, denotes the denotation of p in Q. We call the above programs as programs with
oracles. We have the following theorem.

Theorem 2.4 For a finitely representable unlabeled transition system described by a constraint
query language program P and an FCTL property ® whose denotation with respect to P can
be described by a finite set of generalized tuples Q, the denotations of EF(®) and EG(®) with
respect to P are given as follows.

[EF(®)]p = Im(P v Q)

[EG(®)]p = gm(P A Q)

where for a program P, Im(P) and gm(P) denote respectively the least and greatest models of

P.

The proof of the above theorem can be developed directly along the lines of [CP98a].

We have thus seen that many verification problems (for both finite and infinite state systems)
can be uniformly reduced to the problem of computing model-theoretic semantics of constraint
query language programs. Developing optimized procedures for computing model-theoretic se-
mantics of constraint query language programs thus provides, for free, procedures for solving a
large class of verification problems.

2.7 Computing Model-Theoretic Semantics

In this section, we describe some techniques for computing model-theoretic semantics of con-
straint query language programs. We first start with propositional horn programs. Some of
techniques below are inspired by (and extends) the techniques developed in [SIR96, Llo87,
JM94, U189, DG84].
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2.7.1 Dowling-Gallier Graphs

Given a propositional horn program P with n zero-ary predicates, the Dowling-Gallier graph for
P is constructed as follows. The graph G has n + 2 nodes, n nodes corresponding to n zero-ary
predicates and two special nodes designated true and false. If the clause Cj is a fact of the
form p, then there is a directed edge labeled ¢ from the node labeled true to the node labeled
p. If the clause C; is of the form p «— q1 A ... A qg, then there are directed edges labeled i from
each of the nodes corresponding to qi,... ,qr to the node corresponding to p.

Definition 2.27 (Pebbling for Least Model [DG84]) Let G = (V,E, L) be an edge labeled
directed graph. There is a pebbling from a node p € V from a set X CV if either p € X or for
some label i, there are pebblings from qq,... ,qr from X, where q1,... ,q; are the source of all
mcoming edges labeled i to p.

Theorem 2.5 [DG84] Given a propositional horn program P and the Dowling-Gallier graph
G corresponding to it, the following holds.

— If P is satisfiable, the set of all zero-ary predicates p in P, such that there is a pebbling of
the node corresponding to p in G from true, is the least model of P.

Moreover, the least model of P can be computed in time linear in the size of P.

Before describing the pebbling for greatest models, we modify the Dowling-Gallier graph
as follows. For each zero-ary predicate p such that p is not defined in P, add a directed edge
labeled n + 1 (where n is the number of clauses in P) from the node corresponding to false to
that corresponding to p. We call this graph the modified Dowling-Gallier graph.

Definition 2.28 (Greatest Model Pebbling) Let G = (V, E, L) be an edge-labeled directed
graph. There is a pebbling of a node p € V from a set X C V if either p € X or for each label
i such that there exists an incoming edge to p labeled i, there exists a node q; such there is a
pebbling of q; and there is an edge labeled i from gq; to p.

Theorem 2.6 Given a propositional horn program P and the modified Dowling-Gallier graph
G corresponding to it, the following holds.

— If P is satisfiable, the set of all zero-ary predicates p in P, such that there is no pebbling
of the node corresponding to p from in G from false, is the greatest model of P.

Moreover, the greatest model of P can be computed in time linear in the size of P.

Proof. Suppose a zero-ary predicate p is in the greatest model of P. Then, in the (SLD)
derivation tree of P starting from p, there is a success leaf or an infinite branch (derivation).
We define the maximum length of pebbling from false in G as follows. Suppose that a node p is
pebbled from false. Then a pebbling route from false to p is defined as follows. If the predicate
p is not defined in the program P, then the pebbling route from false is [n + 1]. Otherwise, if
there is an edge labeled ¢ from ¢ to p and ¢ has a pebbling from false, then L is a pebbling route
from false to p where L = concat([i], L') where concat returns the concatenation of two lists
and L' is a pebbling route from false to g and ¢ does not occur in L'. The length of a pebbling
route L is the length of the list L. Clearly, the length of each pebbling route is finite (since there
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are only a finite number of clauses in P). Also, since the length of each pebbling route is finite,
there are only a finite number of pebbling routes from false to any node p. The maximum
length of pebbling from false to p is the maximum of the length of all pebbling routes from
false to p. Suppose p is in the greatest model of P. Also, seeking a contradiction, suppose that
there is a pebbling from false to p. Let the maximum length of pebbling route from false to p
be k. We show by induction that if p is in the greatest model of P, then the maximum length
of pebbling route from false to p cannot be any positive integer. Indeed, if p is in the greatest
model of P, then the maximum length of pebbling route cannot be 1. Assume that if p is in the
greatest model of P then the maximum length of pebbling route from false to p cannot be less
than or equal to k& — 1. Suppose that p is pebbled and the maximum length of pebbling route
from false to p is k. Since p is in the greatest model of P, there must exist either a successful
derivation or an infinite derivation starting from p. Let the first clause in the derivation be the
ith clause p ¢<— q1 A ... A gm of the program P. Now each of ¢, ... , gm is in the greatest model
of P. Since p is pebbled, at least one of g; must be pebbled; without loss of generality, let it be
q;- Since, the maximum length of pebbling route from false to p is k, the maximum length of
pebbling from false to ¢; can be at most £ — 1. By induction hypothesis, the maximum length
of pebbling route from false to q; cannot be less than or equal to & — 1. This is a contradiction.
Hence, there does not exist a pebbling from false to p.

To prove the other way, it is easy to show that if there is no pebbling from false to p, then
there exists a derivation that either succeeds or is infinite. Hence, p is in the greatest model of
P. It is also easy to see that the greatest model of P can be computed in time linear in the size

of P. [

2.7.2 Immediate Consequence Operator

We briefly discuss about the immediate consequence operator. For details, the reader is refereed
to [Llo87, JM94].

Definition 2.29 (Immediate Consequence Operator) Given a constraint query
language program P over a constraint domain D, the immediate consequence op-
erator Sg is defined on sets of facts, that form a complete lattice under the

subset ordering. The immediate consequence operator is defined as follows.
SB(I) = {p(x) +— ¢ |p(x) +— ¢' Abi A...Abyis arule of P
a; «— p; € I,i=1,...  n, the rules and facts are renamed apart

D= Ix¢' NNy 9i Aai = b}
where the existential quantifier is over all variables but x.

Let PRED(P) be the set of predicate symbols in P. Let Bp denote the D-base for a program
P; ie.,

Bp = {p(d) | p € PRED(P) Ad € D*}.
Theorem 2.7 The following holds for the immediate consequence operator.
1. SS(P) = [Ifp(SB)]p = [Im(P)]p where SS(P) represents the success set of P.

2. [gm(P)lp = [9fp(SB)|p = Bp \ [FF(P)|p, where FF(P) is the set of non-ground states
that are finitely failed.
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Proof. We refer the reader to [JM94] for the proof of the first statement. For the second
statement, for the proof of the equality [gm(P)]p = [gfp(S5)]p, we again refer the reader
to [JM94]. We prove the equality [gm(P)|p = Bp \ [FF(P)]p. We first refer the reader to the
notions of finitely failed SLD trees in [L1087, JM94]. Now suppose that p(x) «— ¢ € gm(P)
and let ¢ be satisfiable. Also, seeking a contradiction, suppose that p(x) «— ¢ € FF(P). We
use the following equality [JM94]

lgm(P)lp = Bp \ GFF(P)

where GFF(P) is the set of all ground atoms that finitely fail (in P). Suppose that (p(x), )
finitely fails. Consider d such that D,d = ¢. Now p(d) finitely fails (i.e., has a finitely failing
SLD tree). But p(d) € [gm(P)]p. This is a contradiction.

The proof for the other direction is similar. [

2.7.3 Magic Sets Transformation

Given a program P and a query @, if we are interested only in the answers to the query @, then
computing the least model of P using iterations of the immediate consequence operator can be
wasteful. In this subsection, we describe the magic sets transformation, that is used to make
query evaluation goal directed. For details, we refer the reader to [BMSU86].

Definition 2.30 (Magic Sets Transformation) Let P be a program and (Q(x),¢) be a
query. The magic sets transformation of P is a new program P' obtained as follows. Initially,
P’ is empty.

— Create a new predicate p;, for each predicate p € P. The arity of p;n s the same as that
of p.

— For each rule in P add the modified version of the rule to P'. If a rule has head p(x), the
modified version of the rule is obtained by adding the literal p;,(x) in the body of the rule.

— For each rule r in P with head p(x) and for each body literal q(y) of v, add a magic rule to
P'. The head is qin(y). The body contains the constraint ¢ of r. In addition, it contains
the literal pin(x) as well as all literals to the left of q(y) in the body of r.

— Create a seed fact Qin(x) <— 1 from the query Q.

Further optimizations to the magic sets transformation can be obtained by capturing classes
of binding patterns. We refer the interested reader to [Ram91] for further details.

2.8 Constraint Domains

Having discussed about the different ways of computing model-theoretic semantics of constraint
query language programs, we now come to describe some relevant properties of constraint do-
mains. In this section, we discuss briefly about the properties of some constraint domains. We
start with the domain of (possibly) infinite trees. We assume some familiarity with the basic
notions of general topology on the part of the reader.
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2.8.1 The Constraint Domain of Infinite Trees

Below, we prove some facts about the constraint domain of infinite trees. Let X be a finite
ranked alphabet. As before, we can define (possibly infinite) trees labeled by 3, where if a node
w is labeled by f and the rank of f is k then w has exactly k children. We also assume that
'X| > 1. We denote the set of possibly infinite ¥-labeled trees by T2°. Before we describe some
topological properties of this domain, we need a few definitions.

A metric space (X,d) is a set X together with a mapping d : X x X — R* U {0} that
satisfies the following conditions.

- Ve,y € X,d(z,y) = d(y, x).
- Ve,y € X,d(z,y) =0z =y.
- Vz,y,z € X,d(x,y) <d(z,z)+ d(z,y) (triangle inequality).

For a metric space (X, d), a subset A C X is open iff it is an union of e-balls. A metric space is
complete if every Cauchy-sequence is converges in it [Kur66]. A metric space is totally bounded
if for every ¢ > 0 there exists a finite covering of X by e-balls. A metric space is compact iff it is
complete and totally bounded. A metric space (X, d) is disconnected if there exists (nonempty)
open sets A # X and B # X such that X = AU B and AN B = (). Otherwise it is connected.

We define a metric d on the set of infinite trees as follows.

dlz,y) = 0ifz=y
= 27®Y) otherwise

where a(z,y) is the least depth at which z and y differ. Now (T2°,d) is a metric space. It

can also be shown that (T%°,d) is a complete metric space.

Theorem 2.8 The metric space (T, d) is compact.

Proof. Let us take the discrete topology on 3. Now X is obviously compact in the discrete
topology. By Tychonoff’s theorem, ¥ is compact in the product topology. The product topology
is generated by the metric

dp(a,y) =Y d'(2(d), y(i)) /2’

iCw

where d? is the trivial metric on X.

Now we consider the following space. We augment our alphabet with an additional symbol
O having arbitrary rank. Now we consider the space of possibly infinite trees over the alphabet
¥ U {0} such that the following holds.

— The root of each tree is labeled by O. The symbol O can label only the root of a tree.

— Only the rightmost child of O can be possibly infinite trees (the rest of the children must
be finite trees).

— The root can have arbitrary number of children. The number of children of the other
nodes is equal to the rank of the symbol labeling that node.
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We denote the above set of possibly infinite trees by 72°. Now we define a metric d” on 75°
as follows.

d'(zy)= Y dz(i),y()/2%

each childof O

where x(i) and y(i) are respectively the ith children of O in = and y, oy = i +
max(Z;;h depth(z(j)), E;;}] depth(y(j))) where depth(z(j)) (depth(y(j))) is the depth of the
jth child of O in z (y), and d is the metric defined above. It can be easily checked that d” is a
metric and hence (72°,d") is a metric space.

Now we define a mapping f from the metric space (¥£¢,d,) to (72°,d") as follows. The
mapping f builds a tree in 7° from a string w = f0... as follows. First the root is labeled O
with one child f°. Then the tree with root f° is built in a breadth-first manner. Whenever we
cannot attach any more symbol to the tree corresponding to f° (since all leaves may be labeled
with symbols of rank 0), we bring out a right child of O and insert the next symbol. Then
we continue the same procedure for this child (thus only the rightmost child of O can be an
infinite tree). Thus for the strings aa... and faa... where f is of rank 1 and a is of rank 0,
the constructed trees are given in the left-half and right half of Figure 2.1 respectively.

a

Figure 2.1: Illustrating the mapping f

It can be easily verified that f is a homeomorphism. Hence, (79°,d") is a compact space.
Now consider the subset A of 73° in which the root has only one child. It can be easily verified
that A is a closed set. Hence (A, d") is compact.

Now we define a mapping g from the the subspace (4,d") of (r2°,d") to the metric space
(T, d) as shown in Figure 2.2. It can again be easily verified that g is a homeomorphism from
(A,d") to (Tg°,d). Hence (T°,d) is compact. [

Let Var = {x1,z2,...} be a countably infinite set of variables. Let X be the set {a| o :
Var — T5°}. Let us define the metric dx on X as follows.

dx (o, 8) =) d(a(x;), B(xs)) /2

iCw

where the metric d is as defined above. It can be easily verified that (X, dx) is a metric space.
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t

Figure 2.2: Illustrating the mapping g

Proposition 2.1 The sets
Si={a e X T, a =2 = fi(xif, .-, Tiy,)}
are closed sets in the metric space (X,dx).
Proof.  Without loss of generality, let
A={aec X |T,a =z = f(z1,... ,2n)}

Let [ be a limit point of A. Let z = =z for some k € {1,2,...}. Let m > max(n,k) = p.
Therefore, we can get an oy, € A such that dx(am,l) < 2~ ™. Therefore,
Vi < p, d(om (1), I(z;)) < 2777,

Obviously, the root of I(z) is labeled by f. Let l(z) = f(t1,... ,t,). We will prove that
l(z;) =t5, 1 <j <n. Since

d(am (@), I(z)) < 27("P)
therefore
d(am (@), ti) < 27m7P7Y,
Now,
d(l(zi),t;) < 27 (MP) 4 9= (m—p=1) o 9= (m—p-2)

(by triangle inequality). Now we can choose m to be arbitrarily large so that d(I(z;),t;) is less
than any positive number. Therefore [(x;) = t; and hence [ is an element of A. Therefore A is
closed. I

Proposition 2.2 The metric space (X,dx) is compact.

Proof.  The metric dx generates the product topology on X. Now the space of infinite trees
T¢° is compact in the topology generated by d. Therefore, by Tychonoff’s theorem, the metric
space (X, dx) is compact. [

Proposition 2.3 The metric space (X,dx) is disconnected.
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Proof.  We consider a partition of the signature ¥ into nonempty subsets 3 and Xy (this is
possible as |X| > 1). Clearly for any f; the set {c € X |T%°,0 =z = fi(zi,,... ,%i, )} is closed.
Consider the two closed sets C; and Cy (these two sets are closed since they are finite union of
closed sets) given by

Ci={oceX|T, 0 \/ T = fi(Tiy, o s Tip,)}
fi€%

Co={oceX|Tx, 0 \/ = fi(z;,... ,:Ejmj)}.
fi €32

Obviously, there cannot exist o € X that satisfies both the equations. So C; N Cy = (. Also
C1UCy = X. So (X,dx) is disconnected. [

Proposition 2.4 The metric space (T, d) is disconnected.

Proof.  Suppose it is connected. Then (X,dx) is connected which is a contradiction. [

The Constraint Domain of Reals In this paragraph, we state a few facts about R, the
constraint domain of reals [JMSY92]. Essentially, R is a two-sorted structure where one sort
is the real numbers and the other sort is the set of trees over uninterpreted functors and real
numbers. The constraint domain R is solution compact [JMSY92]. The metric space (R,d.)
where R is the set of reals and d. is the Euclidean metric is non-compact but is connected
(we denote both the set of reals and the constraint domain of reals by R; the meaning will be
clear from the context). Below, whenever we speak of the constraint domain R, we assume
the absence of function symbols (other than constant symbols). With this assumption, the
structures R, = (R, <,+,—,0,1), Rp = (R, <,+,-,0,1) are o-minimal structures.

2.8.2 Constraint Simplification

In this section, we describe the Fourier’s algorithm [MS98, LM92], needed to simplify linear
constraints over reals. Given a constraint ¢ involving a set of variables V| and a subset U of
V, the Fourier’s algorithm produces a constraint ¢’ obtained from ¢ by eliminating all variables
in U. The description below assumes non-strict linear inequalities. Extension to strict linear
inequalities is straightforward. Given a constraint ¢ as a set (conjunction) of linear inequalities,
elimination of a variable y proceeds as follows: First partition ¢ into three subsets, the subset
¢, consisting of inequalities which do not involve y, the subset ¢!, consisting of inequalities of
the form y < t, where ¢ does not involve y, and the subset ¢? consisting of inequalities of the
form ¢t < y, where again t does not involve y (this is possible since we are dealing with linear
constraints). Now for each pair of the form ¢; < y in 2, and y < t, in ¢!, form an inequality
of the form t; < t5. This new set of inequalities along with those in ¢° form the projection of
the original constraint ¢ on to the original variables but y. This process is then repeated to
eliminate all the variables in U.
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Chapter 3

Model Checking for Timed Logic
Processes

3.1 Introduction

Some software and hardware components meet the tasks for which they have been designed
only if they relate properly to the passage of time. Behaviors of such computing systems
operating in real time are difficult to predict by “inspection”. Therefore real-time sys-
tems have become prime targets of formal methods for specification and verification meth-
ods [AD94, DT98, LPY95a, SS95]. In this chapter, we apply techniques from logic program-
ming [TS86a, CW96] and constraint databases [KKR95, Rev90, JM94] to specify and verify real
time systems.

We single out a fragment of constraint query languages [JM94, KKR95] over reals that allows
us to model real-time systems operating over dense time. We call the programs expressed in this
fragment as timed logic processes (abbreviated TLPs). We show a formal connection of TLPs
with the standard model of timed automata [AD94]. We use this connection to design model
checking procedures for the logic £, [LPY95a] (“logic of safety and bounded liveness”) and some
extensions of it. Using a product construction for TLPs, we reduce the model checking problem
for time logic processes against L, formulas to the membership problem for the model-theoretic
semantics of product timed logic processes (see Section 3.6).

To obtain a local model checker for real time systems, we extend with constraints the OLDT -
resolution for logic programs [TS86a, CW96]. This way, we explain the model checking procedure
of UPPAAL [LPY95a, BLL196] based on a rewrite tree as a special case of OLDT resolution
with constraints. We have implemented a prototype model checker for timed systems based on
OLDT resolution with constraints using the CLP(R) [JMSY92] system of Sicstus 3.7. We have
applied our prototype model checker to some standard benchmark examples and we have got
reasonably good timings for these examples.

Thanks to the logical setup, we have been able to use £; [LPY95a] extended with full
disjunction (in contrast with £, with restricted disjunction used in [LPY95a]) as the underlying
logic for our model checker.

Generally, forward analysis (top-down evaluation) for timed systems, including the rewrite-
tree-based model checking procedure of [LPY95a], is possibly non-terminating. To guarantee
the termination of the procedure for checking membership for the least model semantics of timed
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logic processes, we introduce a (new) operation on constraints (see Section 3.7). This operation,
called trimming, allows us to completely avoid the computationally expensive operation of split-
ting constraints (in contrast with [SS95] where the authors construct a region product graph on
the fly using methods similar to [ACD 92, BFH91, YL93]; such a construction, while guarantee-
ing termination of the model checking algorithm of [SS95], inherently involves the operation of
splitting constraints; the operation of splitting constraints is known to be expensive) while still
guaranteeing the termination of the procedure. Unlike many other constraint-based operations
in literature (see e.g., [DT98]), the constraint-based operation that we have introduced also has
a logical characterization.

We next turn our attention to model checking for unbounded liveness properties (which are
not expressible in £;). Using the same product construction as mentioned above, we reduce the
problem of model checking for timed logic processes against unbounded liveness properties (see
Section 3.10) to the membership problem for the greatest model of a product TLP. To obtain
a local model checker for unbounded liveness properties, we introduce a new kind of tabled
resolution (for TLPs having at most one predicate in the body of any clause) to locally check if
a ground atom is in the greatest model of a TLP. We call this resolution greatest model resolution.
Greatest model resolution allows us to avoid the costly splitting operation on constraints that
arises due to negation. To the best of the knowledge of the authors, tabled resolution (without
using negation) has not been previously used to solve the membership problem for the greatest
model of a constraint query language program. We have also been able to combine greatest
model resolution with the tabled resolution mentioned above to verify receptiveness properties
of timed logic processes. The model checker UPPAAL [BLL'96] is not able to model check for
receptiveness properties.

Our last contribution in this chapter is to define (and present an algorithm for detecting) for
the first time a notion of transience (see Section 3.13) which characterizes the transient behavior
(response) of a real time system. The notion of transience is important in control theoretic
applications. In control theory, underdamped (linear time-invariant) systems are known to have
a transient and a steady state behavior. We capture this notion of transient (or underdamped)
behavior in the context of real time systems; intuitively, a behavior is transient if it is observed
“initially”, but “disappears” with the passage of time. A timed logic process is transient if it
has a transient behavior. We reduce the problem of deciding whether a timed logic process
is transient to the non-emptiness problem for a nonground Biichi automaton induced by a
(transformed) TLP (see Section 3.13.1). This reduction enables us to obtain a EXPSPACE
algorithm for deciding transience.

3.2 Timed Automata

In this section, we briefly review the standard notion of timed automata. We do not view
timed automata from the formal language point of view. Instead, we view them from the timed
transition system point of view. A timed automaton is a finite state (location) automaton with
timing elements added that take values from R the set of nonnegative reals. More precisely, a
set of resetable clocks are added that measure progress of real time. A clock z is a variable,
taking real values, such that it increases with slope 1, and the only operations that can be
done on z are: a) test whether the value of z satisfies a constraint and b) reset x to zero. Let
X, = {z1, 2, ..., zy} be a set of variables standing for the values of the clocks. Let guard,
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be the set of formulae (called clock constraints) where Var(guard,) C X, (for a formula ¢, we
denote its set of free variables by Var(y)). The n in the suffix of guard,, denotes the number of
free variables of guard,,. A formula in guard, is given by:

0 = true|z; > clz; < clx; > c|lx; < c|by A O

where ¢ € N, the set of natural numbers. We will sometimes call these formulas clock constraints.
Timed automata has been introduced by Alur and Dill [AD94]. The definition below stems
from [HK97]:

Definition 3.1 A Timed Automaton [HK97] is a seven-tuple
U= (AP, X,,L,E,P,{°, inv)

where

AP 1is a set of atomic propositions.

- X, is a finite set of variables where each variable stands for a Program Clock.
— L 1is a finite set of locations.

- F C L x guard, X 2{Ln} I 4s a transition relation.

~ P : L — 24P qassigns to each location a set of atomic propositions

~ (% € L is the initial location.

—inv : L — guard, assigns to each location an invariant.

Invariants, which are formulae of guard,, can be introduced in the locations of the timed
automaton to ensure that the control moves from one location to another. An edge e € E is
a triple consisting of a source location (from L), a guard formula (from guard,), a subset of
{1,... ,n} denoting the set of clocks that are reset in e and a target location (from L). In Figure
3.1 an example of a timed automaton is given. There are two locations [0 and /1 and two clocks
x and y. The invariants of the locations are given at the top of each location. The clocks that
are reset in each transition are shown explicitly in the transitions in the form x := 0 where z is
a clock.

We now describe the semantics of timed automata. Informally, either the control stays
at a location and let time pass (i.e., increment the clock variables) provided the invariant of
that location is satisfied. Or the control jumps (instantaneously) from one location to another
through an edge provided the values of the clocks satisfy the guard of that edge. Some of the
clocks are reset to zero in this jump while others are kept unchanged.

A position of U is of the form (£, vy, va,..., v,) where (v1, va,..., v,) € R™ and £ € L.
In the sequel, we will use the notations (¢,v) and (¢, v1,vs,... ,v,) interchangeably to denote
a position. Given a position (¢, vy, va,..., v,), we say that the position (£, v{, vh,..., v})
is a time successor of ({,vy, va,..., v,) if for each i, v, = v; + &, where ¢ is a non-negative
real number, and for all 0 < §' < §, R, (v1 + 8 v +4',... ,v, +8') = inv(f). We say that a
position (¢, v{,v},... ,v}) is an edge successor of the position (¢,v1,va,... ,v,) if there exists a

r n

four-tuple (¢, 6, Reset, ') € E such that the following three conditions hold.
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- R, <’l)1,’l)2,... ,Un> |= 9

vi= 0, ifi € Reset
v;, otherwise.

- Ra <Ullavl2a'-- ,U,I,L> ‘: va(gl)

We call an element of E an edge. The mapping P maps each location to the set of atomic
propositions that are true for that location. As the automaton is non-deterministic, it is not a
restriction to suppose that the guards are only conjunctions.

An (¢,v)-path p is defined as a partial mapping from A X R to the set of positions of the
timed automaton such that p(0,0) = (¢,v) and for any (i,¢) € N x R, p(i,¢) (where i denotes
the segment number; see below for a definition of segment) can be “reached” from (£, v) through
a sequence of time and edge transitions.

A segment of a path is a part of the path between two successive edge transitions. Initially,
at the beginning of the path, the control is in the zeroth segment. If the control is in the ith
segment, and it takes an instantaneous edge transition, it “enters” the (i+ 1)st segment. A point
in a segment is a “snapshot” in that segment. The delay at a point p in a segment ¢, denoted
by delay(p), is the time difference between the current time (the time at that point) and the
time the control entered that segment, both the times being measured from the beginning of the
path. The delay of a segment is the difference between the time the control leaves that segment
and the time the control enters the segment. The time at a point in a segment of a path is
the sum of the delays of all the previous segments and the delay at that point in the segment.
We write time,(j,¢) to denote the time at a point in the jth segment of p, having the delay «.
Note that time,(0,0) = 0. A path maps a pair consisting of a segment number and a delay to
a position.

Definition 3.2 A trace of a timed automaton is an infinite sequence of snapshots of an (£, v)-
path p of the automaton of the form given below:

vy — (tvl — .

where p(0,0) = (€,v) and for each i = 1,2,..., if p(k,8) = (£}, v}, vh,... ,vh) and p(j,e) =
(= ol ooy, then (f, ) < (k,6) (in the lezicographic order) and either j = k and p(k, )

is a time successor of p(j,e) or j+1==Fk and 6 =0 and p(k,d) is an edge successor of p(j,¢).

In the above definition, we identify £° with £. We call (¢,v) the starting element of the trace.
Given a path p, and a trace T of p, we can write T as a sequence of the form p(ig,0), p(i1,€1),- ..,
where ig = 0 and for all j either i; = i;_q1 or i; = ij_1 + 1 and 0 < ¢; < delay(i;).

Definition 3.3 Given an (¢,v)-path p, and a trace T = p(io,0), p(i1,€1),... of p, we say that
T is divergent, if the sequence (time,(ig,0), time,(i1,€1),...) diverges.

The timed automaton shown in Figure 3.1 has a non-divergent (or convergent) trace (con-

sider the trace (£9,0,0) 2% (£°,0.5,0.5) - (¢1,0,0.5) —% (¢°,0,0) 228 (¢9,0.25,0.25) —%

(€*,0,0.25) ... since the sum 0.5 + 0.25... converges). But for the timed automaton shown
in Figure 3.2 , every trace is divergent.
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X<3 X<3 x:=0 y<s

oG

y<5 y:=0

Figure 3.1: An Example Timed Automaton.

3.3 Timed Logic Processes

We identify a fragment of constraint query languages over reals (in the sense of [KKR95, Rev90,
BS91]) that will allows us to model real-time systems. Furthermore, as we will see below, it
allows us to express the product constructions that come up in the course of model checking for
formulas in the temporal logic £, [LPY95a]. We call the programs expressed in this fragment as
timed logic processes (abbreviated TLPs). Before we define TLPs formally, we need the following
notations and definitions. Let the constraint v be defined by the grammar

v on= true|lz; > clw < el > c|lw < e|lyAy (3.1)
where ¢ € N, the set of natural numbers.

Definition 3.4 (t-clause) A t-clause is a clause of one of the following four forms.

(1) p(x) «— ¢, p'(x')
(2) p(x) ¢— p1(x), p2(x)
(3) p(x) «—
(4) init +— p(x),x =10
where the constraints ¢ are of the forms (here n is the length of the tuple x = (x1,... ,z,) of
variables)
(11) p=m(x) AL Zi=zi+2A2> 0Ay(x) (“time transitions”)

)
/

(1.2) o =71(x) A Njesgz; =0 A Ai&S z; = x; A ya(x') (“edge transitions”)

where S C {1,... ,n} and the constraints v are of the form defined in the grammar (3.1).

We call the constraints v the guards of the clauses. In the sequel, we call a clause of the form (1)
as an evolution clause if the constraint ¢ is of the form (1.1) and as system clause if the
constraint ¢ is of the form (1.2). We will also call clauses of the form (2) as alternating clauses,
clause of the form (3) (which are facts or generalized tuples) as assertions and clauses of the
form (4) as initial clauses.

Definition 3.5 (TLP) An (unlabeled) TLP is a (finite) set of t-clauses in which at least one
clause s an initial clause.

We associate a logical formula corresponding to a TLP in the same way as in [JM94]. Note
that the clauses, in which the constraint ¢ in the body is of the form (1.1), contain the variable
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z in the body. The existentially quantified (in the logical formula associated to a TLP) variables
z are called increment variables. In Section 3.13, we will expand TLPs with alphabets (called
labeled TLPs). We now define the notion of convergent and divergent ground derivations of
TLPs.

Definition 3.6 (Convergent and Divergent Ground Derivations) Let G be an (infinite)
ground derivation of P through clauses of the form (1) and (4). Let C1,Cs,... be the clauses
mvolved in G. Let z1,z29,... be the sequence of values of the increment variables when clauses
Cy,Cs, ... are applied respectively (for a system clause or an initial clause, we assume this value
to be zero). We say that an (infinite) ground derivation G of P is divergent iff the sum ), z; of
the increment variables in the derivation diverges. Otherwise, we say that it is convergent.

A first motivation for TLPs is that this model subsumes the timed automata [AD94] model;
i.e., we can translate timed automata to timed logic processes. These translations use only
evolution clauses (clauses obtained by translating time transitions), system clauses (clauses
obtained by translating edge transitions) and an initial clause (a clause specifying an initial
position). Of the other types of clauses, clauses of the form (2) (i.e., alternating clauses) are
used for expressing alternation (compare [DW99]). These clauses are also used to express the
product constructions that come up in the course of model checking. Clauses of the form (3)
(i.e., assertions) are used to rewrite an agent to a nil agent (in this respect there is a similarity
with process algebras; thus p(x) <— 7 states that the agent p can rewrite to the nil agent if
the values of the variables x satisfy the formula 7). These clauses can also be used to express
assertions about processes (e.g., by rewriting an agent to the nil agent if the values of the
variables x violate a safety property). We will see later that clauses of the form (3) can also be
used for expressing L properties. Thus the TLP framework not only allows modeling a system,
but also allows writing assertions about the behaviors of the system.

3.4 Translation of Timed Automata into TLPs

Since the timed automaton model is predominantly used in the literature, we show the connection
of the timed logic process model with the timed automaton model. In other words, we show that
timed automata can be translated to TLPs. The construction of a TLP from a timed automaton
is given below.

Construction 3.1 Let
U= (AP, X,,L,E,P,{°, inv)

be a timed automaton [AD94] with n clocks, where AP is a set of atomic propositions, X, is
a set of clocks (n clocks z1,...,zy,), L is a set of locations, E is a set of edges, P is a labeling
function that labels each location with a set of atomic propositions, £° € L is the initial location
and inv is a function that assigns to each location an invariant constraint. We translate U to
a TLP P as follows. For each location ¢ € L, we introduce an n-ary predicate ¢(x). For each
location £ € L, we have an evolution clause where v; and 7» are both the invariant of the location
¢ (i.e., y2(x') is obtained from <y;(x) by renaming all variables in the tuple x by their primed
versions in the tuple x’). Thus the evolution clause takes the form

U(x)«— LX) N g
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where

n
© = invy(x) A /\ =z +2Az>0Ainvg(x)
i=1

(tnvey is the invariant of the location ¢). For each edge (/, 6, Reset,!') € F from £ to ¢, where 0
is the guard of the edge and Reset is the set of clocks reset in that edge, we have a clause of the
form (1.2) with head predicate £(x) and body predicate ¢'(x), where v1 = 0 Ainv(x), y2 = invp
and S = Reset (here invg and invy are respectively the invariants of locations £ and ¢'). Thus
the system clause takes the form

(x) +— E'(x') A
where

@ = inve(x) A /\ z; =0A /\ z; = z; A\ inve (x').
i€ Reset i Reset

We also add an initial clause init <— £°(x) Ax = 0. The labeling function P is extended to the
predicates in the canonical way.

H

The semantics of a timed automaton are given in terms of traces. The semantics of a TLP
are given in terms of ground derivations. Identifying positions and ground atoms, we get the
following.

Theorem 3.1 (Meaning of translation) For every timed automaton U there exists a TLP
P such that the set of ground derivations of P correspond ezxactly to the set of traces of U. In
other words, for every timed automaton U there exists a TLP P such that U and P have the
same semantics.

Proof.  The construction of the TLP P from a timed automaton U is given above. Consider
any trace T of U.

T = (v — (v — ...

We show by induction that ¢£!(v!) — £2(v2) — ... is a ground derivation of P, i.e., we show
by induction on i that for each i, £T1(vi*1) is a ground resolvent of £(v?) through a clause
in P. The base case for i = 0 is trivial. Suppose that the result holds for all ¢ < k. By the
definition of traces, either (/572 v¥*2) is an edge successor of (¢¢+1 vFE+1) or (¢5+2 vE+2) ig g
time successor of (£¥*1 vF+1) In either case, by the construction of P, there exists a clause in
P such that £F+2(vF+2) is a ground resolvent of £¥+1(v*+1) through that clause. By a similar
induction, it can be proved that every ground derivation of P corresponds to a trace of U. |

In our definition, the semantics of a timed automaton also contain convergent traces. Un-
bounded liveness properties, however, refer only to divergent traces.
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3.5 Logic of Safety and Bounded Liveness (L;)

The syntax of formulas ® in the logic Ls (Logic of safety and bounded liveness) [LPY95a] is
given as follows:

= O)qlqVe®[OVE|B APy 0B VD |2.B|Z

where 6 is an atomic constraint of the form x; ~ ¢, where ~€ {= <, > > <}, ¢ is a natural
number, ¢ is an atomic proposition and Z € Id is an identifier (identifiers are “mu-calculus”
variables). We call a variable that does not occur on the right hand side of any declaration in an
L, formula the root variable for that formula. An £, formula is a set of declarations having a
root variable. The meaning of the identifiers (or variables) Z is specified by a unique declaration
D(Z) : Z = ® for each identifier assigning a formula ® of L, to that identifier Z. It can be easily
shown using the techniques in [Wal93] that an £; formula can be rewritten in linear time in a
simple form in which each declaration is of the foom X =gV X' or X =0V X' or X = X' A X"
or X =0X"or X =VX'or X = 2.X' where X', X" are either identifiers or atomic propositions
or atomic constraints. In the following, we will always assume that £, formula is given in a
simple form.

The satisfaction relation = for L is the largest relation satisfying the following (where P is
a TLP, p(v) is a ground atom in the R-base of P; here R denotes the reals):

- P,p(v) = 0 implies R, v |= 6.

- P,p(v) |= q implies ¢ € P(p) (where P is a function that assigns to each predicate in P a set of
atomic propositions).

v) |E ¢V ® implies P,p(v) = q or P,p(v) E ®.

P,p(v)
- P,p(v) E 0V ® implies P,p(v) |= 6 or P,p(v) |= 9.

P,p(v) |E @1 A @5 implies P, p(v) E @1 and P, p(v) |= Ps.

P,p(v) = O® implies for all ground resolvents p'(v') of p(v) through system clauses or initial
clauses, P,p'(v') = ®.

— P,p(v) E V® implies for all ground resolvents p'(v') of p(v) through evolution clauses, P,p'(v') =
.

- P,p(v) E 2. implies P,p(v)[0/z] = & (where the ground atom p(v)[0/z] is obtained from p(v)
by reseting the variable z to zero).

- P,p(v) E Z implies P,p(v) |= D(Z).
- P,p1(vi) A AP (Vim) = @ implies P,p1(v1) E @, ..., P,pm(vm) = ® (satisfiability for goals).

It is to be noted that the logic £, [LPY95b] was originally introduced for timed automata
and hence does not take into account the alternating clauses and assertions of TLPs. Note that
we take the greatest fixpoint of the set of declarations (viewed as a set of equations). For a TLP
P and an L formula @, we say that P = @ iff P,init = 9.

An example of a bounded liveness specification in L; is as follows: let C be an atomic
constraint. Then the formula X = 0(2.Z) where Z = CV (2 < i A\VZ AN OZ) asserts that C
should be satisfied within ¢ time units of resolving through a system clause (for timed automata,
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this amounts to the statement that C should be satisfied within ¢ time units of taking an edge
transition). We call the variables x the real variables.

In order to specify properties about TLPs and in order to facilitate the product construction
described below, it is useful to consider the dual of the logic L;. So before introducing the model
checking method, we first introduce the syntax of £; which expresses the dual of £L; formulas.
The syntax of L, is given as follows:

® = O|q|qhR[OAND B VE, (D3| 2D |2

where 6 is an atomic constraint and ¢ is an atomic proposition. An Z; formula is a set of
declarations with a root variable. Note that we take the least fixpoint of the set of declarations
(viewed as a set of equations). For every formula ® of L;, we can define a formula $ in L, such
that for a TLP P, P |= & iff P % &. We do not provide the semantics of £, formulas which are
easily understood from those of £, formulas (dual of those of £, formulas).

3.6 Product Program

In this section, we formulate the basis of our model checking methodology— a product con-
struction of TLPs with logical formulas. Given a TLP P, and an L; formula 5, we construct
the product TLP P?®, in which the arity of each predicate is n (assuming that the arity of each
predicate in P is k and the corresponding L formula ® has n — k real variables), such that
P = & iff the (new) predicate (init, Z) (see below) is in the least model of P®. Here Z is the
root variable of ® . The construction is as follows.

Construction 3.2 For the root variable Z we create the (0-ary predicate) (init, Z). For each
predicate (p, X) created, expand (i.e., create a rule(s) defining that predicate; these rules depend
on the declaration X = ¥ defining X in @) using the following rules if the predicate is not already
expanded:

X =q: (p,X)(x) «— true if ¢ € P(p) (where P is a function assigning to each predicate
symbol a set of atomic propositions and p is a predicate symbol in P).

- X =6 (p,X)(x) 6.

- X =gn X" (p, X)(x) «— (p, X')(x) if ¢ € P(p).

- X=0ANX" (p,X)(x) +— (p, X")(x) N 6.

- X = X1V Xa: (p, X)(x) «— (p, X1)(x) and (p, X)(x) +— (p, X2)(x).

- X = (X': For each system clause C' in P such that the predicate p stands on the head

of the clause create a clause of the form (p, X)(x) +— (p', X')(x') A @ A ¢’ where ¢ is the

constraint in the body of the clause C and ¢’ = AiL, ., zj = z;.

X = 3X'": For each evolution clause C such that the predicate p stands on its head, create
a clause of the form (p, X)(x) «+— (p', X')(x') Ao A ¢', where ¢ is the constraint in C and
@' is given by A\jLj % = x; + 2.

- X =2 X" (p, X)(x) «— (p, X')(X) Nzi =0 A N\ 25 = 25
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Example 3.1 Consider the TLP corresponding to the timed automaton in Figure 3.2 and the
L, formula Z = 0X where X = at_I2 A OX AVX where at_I2 is an atomic proposition satisfied
at all locations but /2. The product program corresponding to (the dual of) this formula (i.e.,
the formula X = at 12 vV (X V VX where at_[2 is an atomic proposition satisfied only at the
location [2) is given in Figure 3.3.

0<=x2<l gexicyxz=0 0@l

0<x2<1

0<=x2<1

Figure 3.2: Example illustrating that the model checking procedure is possibly non-terminating.

Theorem 3.2 Given a TLP P and an Ls formula ®, P = ® if and only if the atom (init, Z) is

not in the least model of P® where & is the dual of the Ls formula ® and Z is the root variable
of ®.

Proof. By structural induction on £, formulas. We show that for any predicate symbol p and
a tuple v € R™, P,p(v) £ ® iff (p, Z)(v) is not in the least model of P2.
Base Cases: For atomic propositions and atomic constraints, the proof is trivial.
Induction Step:
Most of the cases are easy. We show only a few typical ones.
Case: Z = qV X. Suppose that P,p(v) = qV X. If P,p(v) = ¢, no clause that defines

the predicate (p, Z) is created and hence (p, Z) is not in the least model of P®. If P,p(v) = X,
then the result follows from the induction hypothesis.

(init, Z) +— (0, X)(x) Ax=0

10, X)(x) +— (0, X)(x")Ax'=x+2A0<22<1A2>0.
(10, X)(x) +— (I, Xh)(x')ANO0<zl<1lAz2 =0Azl =2l
(I, X)(x) +— (I, X)(x')Ax'=x4+2zAz2>0A0<22<1
(L, X)(x) +— (2, X)(x)A"Ax'=xA0<z2<1

(12, X)(x) +— true

(12, X)(x) +— (2, X)(x')Ax'=x+2zAz2>0AN0<22<1.
(12, X)(x) +— (I, Xh)(x')ANz2'=0Azl'=21A0<22<1.

Figure 3.3: Product Program corresponding to Figure 3.2.
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Case: Z = X; A Xo. The product program in this case consists of the clauses (p, Z)(x) +—
(p, X’;)(x) and (p, Z)(x) «— (p, )?;)(x) along with the product programs for the formulas defined
by the declarations defining )A(.:l and )?; The result then follows from the induction hypothesis.

Case: Z = OX. If P,p(v) = Z then for all successors p'(v') of p(v) through system clauses,
P,p'(v') = X. The result now follows from the induction hypothesis.

The rest of the cases follow directly from the induction hypothesis.

The proof for the other direction follows by similar induction on £, formulas. [

Methodology To prove P |= ®, we try to prove P [~ $ where  is the Z',: formula corre-
sponding to @ (i.e., the dual of ®). This is proved by proving that (init, Z) is not in the least
model of P® (where Z is the root variable of ®). We can either compute the least model of
P?® using the least fix point of the immediate consequence operator resulting in a global model
checker. We will prefer top-down evaluation (backward chaining) of TLPs in contrast with the
bottom-up evaluation (forward chaining) advocated in [KKR95]; top-down evaluation has the
advantage that it can be goal directed, i.e., local; partial order reduction techniques can be easily
incorporated into it; see [HKQ98] for a discussion of top-down vs. bottom-up evaluation. Hence
we extend XSB-style tabling [CW96, TS86a, Vie87] with constraints to prove that (init, Z)
does not succeed in the tabled resolution using the non-ground transition system. To be precise,
our method extends with constraints the OLDT resolution of [TS86a]. Extending standard re-
sults from logic programming [TS86a] we get, the state (init, Z) succeeds iff it succeeds in the
derivation tree obtained by using tabled resolution. Note that the tabling strategy produces a
local model checker for £; (£5). To guarantee termination of the model checking procedure,
we can use the trim operation on constraints, described below, along with the tabling strategy
mentioned above.

Providing a Counter Example To provide a counter example, we follow the following
method. With each non-ground goal we keep the following information: the constraints en-
countered so far (including the mgus, i.e., most general unifiers, which are also regarded as
constraints), a list of the numbers of clauses encountered so far (we assume that the clauses are
numbered) and a list of increment variables encountered so far (assuming that they are suitably
renamed). Thus a non-ground goal will take the form of a five-tuple (Q, 1, 2, L1, Lo) where Q
is a conjunction of predicates, 1 is the constraint store, ¢s is the concatenation of all the con-
straints of all the clauses (and the mgus) encountered thus far, L is a list of the numbers of the
clauses encountered so far, Lo is the list of the increment variables of the clauses encountered so
far. Now the “earliest” (with respect to time) ground counter example (i.e., a ground derivation
acting as a witness to the success) can be provided in the following way. First project ¢2 on the
set of variables in the list Ly. Let the constraint obtained be ¢. Now minimize ¥, cr,2; with
respect to ¢. The solutions of z; obtained in this method can be used in providing a ground
counter example. The counter example can now be generated from the sequence of clauses and
the values of the corresponding increment variables.

3.7 The Trim Operation on Constraints

We first start with the observation the model checking procedure described above is possibly
non-terminating. The counter example is provided by the translation to TLP of the timed
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automaton in Figure 3.2. Before understanding, why the above procedure does not terminate
for the example in Figure 3.2, we need a few definitions.

Definition 3.7 (Reachable Nonground and Ground States) A non-ground state
(p(x),p) is said to be reachable in the non-ground transition system induced by P iff
there exists a (finite or infinite) non-ground derivation using the clauses in P:

init — ... — (Q,¢') — ...

such that p(x') is one of the predicates in Q and (p(x),¢) and (p(x'),¢") are identical where
©" =3 ¢ (the existential quantifier is over all variables but x'). A ground state p(v) is said
to be reachable in the ground transition system induced by P iff there exists a (finite or infinite)

ground derivation of the form:
init— ... —Q — ...

where p(v) is one of the conjuncts in Q and init is the initial predicate.

Note that a non-ground state is reachable in the non-ground transition system induced by P iff
all its ground instances are reachable in the ground transition system induced by P.

Proposition 3.1 There exists a timed automaton such that the non-ground transition system
of the TLP corresponding to that automaton has infinitely many reachable non-ground states.

Proof.  Consider the example timed automaton given in Figure 3.2. The timed automaton has
three locations [0, {1 and /2. There are two clocks 1 and x2. The initial position is (10,0, 0).
There is a transition from 10 to /1 in which the clock 22 is reset and the guard is 0 < z; < 1.
There is a transition from [1 to [2 in which no clock is reset and the guard of the transition
is 0 < xg < 1. Also there is a transition from 2 to 1 in which the guard is 0 < 29 < 1
and the clock x2 is reset. The invariant for all these three locations is 0 < x93 < 1. We can
easily model this timed automaton by an TLP P, having clauses as described in the previous
section. It can be easily seen that an infinitely many reachable nonground states of the form
(12(x),21 =22 >0A22—21 > —(i+ 1) A22 > 0A 22 < 1) (where i € N) is generated. [
We next start with a few definitions.

Definition 3.8 (Zones) A zone is a conjunction of constraints, each of which puts a lower or
upper bound on a variable or on the difference of two variables. A C-zone is a non-ground state
of the form (p, ) where, p is a predicate symbol and ¢ is a formula generated by the following
grammar:

p = rp<alz;>alz;<alx; > alx;—z;>a

\xi—xjZa|xi—xj§a|xi—xj<a\gol/\302 (32)

We call the above constraints as zone constraints. The free variables of a zone constraint are
among {x1,22,... ,Tn}.

Definition 3.9 A non-ground state s = (p(x), ) corresponds to a C-zone £ = (p, ') if ¢ is
equivalent to @' with respect to {z1,... ,x,}, i.e., the set of ground instances of s is the the set

{p(v) IR, v =¥}
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The following lemma holds:

Lemma 3.1 FEach reachable non-ground state corresponds to a C-zone, i.e., for each reachable
non-ground state (p(x), @), there exists a C-zone £ = (p, ') such that ¢’ is equivalent to p with
respect to {x1,2,... ,Tn}.

Proof. By using Fourier’s Algorithm [MS98, LM92] and induction on the length of non-ground
derivation. I

Our aim is to define an equivalence relation ~j; on the set of non-ground states of P (i.e.,
states of the form (p(x), p) where p is a predicate symbol and ¢ is the constraint store in which
the free variables are x) such that the following conditions hold:

— The quotient (in the standard sense) of the non-ground transition system of P, induced by ~/,
denoted by P/ ~ s, has a finite index, i.e., a finite number of “states” or equivalence classes.

— The transition system induced by P/ aps (in the standard sense) bisimulates [Mil89] the non-
ground transition system induced by P.

The suffix M denotes the maximal constant occurring in the guards of the TLP P (this suffix
is kept since the equivalence relation ~,; involves M). Before we go into the details of this
equivalence relation, we start with a few definitions. Below, we identify two nonground states
(p(x), ¢) and (p(x), ¢') iff they have the same ground instances. The justification for this is that
the successor relation in nonground transition systems of constraint query language programs
depends only on the logical contents of the non-ground states.

Definition 3.10 (Reachable Modulo M States) The set of ground states Rp; reachable
modulo M, in P is defined as the smallest set containing the reachable ground states which
18 closed under the following:

— if there exists a ground state p(v') € Ry and for all i € {1,... ,n} either v; = v or
(v; > M ANv, > M) then p(v) € Ry.

A non-ground state (p(x), ) is said to be reachable modulo M iff all its ground instances are
reachable modulo M and it is identical to a state (p(x),¢'), where ¢ is given by zone constraints.

Let P be a TLP with M as the maximal constant occurring in the guards of the clauses. Let
s be any non-ground state. Let sol(s) denote the set of ground instances of s. Now we define
an equivalence relation &, on the set of non-ground states of P as follows: =, is the smallest
equivalence relation satisfying the following:

- (p(x), @) ~u (p(x), ") if for all p(v) € sol({p(x), p)) there exists p(w) € sol({p(x), ")) such that
Vi e {1,...,n} either (v; = w;) or (v; > M A w; > M) and vice versa.

From now on, we view the non-ground transition system induced by P as a labeled transition
system in which the clauses act as labels. We say that two nonground goals (Q, ¢) and (Q, ¢')
(where @ is a conjunction of predicates) are ~ps-equivalent, denoted by (Q, @) ~u (Q,¢'), if
for each predicate p(x) in Q, (p(x),3 x¢) ~p (p(x),3 _x¢'). The equivalence relation ~j; can
be viewed as a symbolic bisimulation relation.

Proposition 3.2 The non-ground transition system of P and the quotient of the non-ground
transition system of P induced by =~ are bisimilar.
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Proof. All we need to prove is that if (p(x),¢) =~ (p(x),¢') and if one of them resolves
through a clause C' in P, then the other also resolves through the same clause and the two
resolvents lie in the same equivalence class induced by ~js. For this, first, given the maximal
constant M occurring in the guards of the clauses of P we define an equivalence relation ~ps on
R™ as follows: v ~ s v’ iff for all i either v; = v} or both v; > M and v; > M. Now we observe
that if v ~y; v’ then for any atomic constraint , either they both satisfy 6 or they both do not
satisfy 6.

Now suppose (p(x),¢) ~u (p(x),¢'). Let (p(x), ) resolve through a clause C of P. If C
is an alternating clause then (p(x), ') also resolves through it and the resolvents in both cases
are equivalent through ;. Similarly, for initial clauses. Now we consider clauses of the form
(1), i.e., system clauses and evolution clauses. Let C' be an evolution clause. Let the constraint
in C be 3. Suppose that (p(x), ) resolves through C. Let the resolvent be (p'(x),¢"). Now
©" =3 _xwe A1 Since ¢" is satisfiable, there exists v that satisfies ¢". So R,v E I_xp A 9.
Hence there exists w and a real number § (the value of the increment variable z) such that
R,w = ¢, R,w |= v(x) and for all i, v; = w; + §. Since, (p(x), ) ~u (p(x),¢'), there exists
u such that R,u |= ¢’ and u ~p; w. Therefore, R,u = y(x). Let v/ = u+ 4. Observe that
v' ~p v. Also observe that R,u,v |= ¢’ A 1. Hence, (p(x),¢') can resolve through C. Let the
resolvent be (p'(x), ¢""') where ¢ =3 ¢’ Ap. Then R,v' |= ¢"". Thus for any R,v E ¢,
we can find a v/ such that R,v' | ¢" and v ~j; v'. Similarly, it can be proved that for
any v’ such that R,v' = ¢, we can find a v such that R,v = ¢"” and v ~jp; v/. Therefore,
P'(x),¢") ~m (p'(x),¢""). The proof for system clauses is similar. Thus we have proved that
if (p(x), ) resolves through a clause C, then (p(x), ¢') also resolves through the same clause C
such that the two resolvents are & jps-equivalent. Similarly, the other direction can be proved.
The proof for non-ground goals can be developed on similar lines. Hence, the result follows. |

While the classical region equivalence [AD94] is defined on the set of positions, the equiva-
lence relation &/ is defined on the set of reachable nonground states. As we show below, given
two reachable nonground states it is decidable whether they are = s equivalent. In contrast with
the classical region equivalence, the connection of the equivalence relation ~j; with the trim
operation established below allows us to design an on-the-fly symbolic model checking algorithm.

Now we show how to decide whether two nonground states are equivalent using the trim
operation described below.

Normalization of Constraints Given a reachable nonground state (p(x), ), we convert it
to a state (p(x),¢’) such that (p(x),¢) = (p(x),¢’), where ¢’ is in a normalized form, by the
method given in Figure 3.4. We call the resulting constraint ¢’ the normalized representation
of ¢. In the normalized form, we allow constraints of the form z; ~ ¢ or x; — ; relop a where
~e{>,>,<,<}, relop € {>,>}, ¢ is a natural number and a is an integer.

Proposition 3.3 For any reachable nonground state (p(x), @), the normalized form of the con-
straint @ can be generated by the following grammar:

o = g <clz;>cle;<cla; > cle;—xj>alr—x;>aler A @2 (3.3)
where ¢ is a natural number and a is an integer.

Note that in the normalized representation, we do not allow constraints of the form z; —z; <ec.
Note that a reachable nonground state has a unique normalized form. Since linear program-
ming is polynomial time solvable, given a reachable nonground state, it can be converted to the
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— For each variable z;, add the conjunct 3_,,¢ ¢'. For each pair of variables ;,z;, let @ be the
constraint (3_,p A z = &; — z;)[z; — z;/2]. Add the conjunct @ to ¢'. Rewrite ¢’ in strong form
i.e., in a form in which the bounds on a variable or the difference of two variables are as strong
as possible. Strengthening of any conjunct will lead to a constraint which is not equivalent to the
original constraint. Let the resulting constraint ¢’ be of the form c; Aca A ... A cy.

— Rewrite each conjunct ¢; of the form z; + b ~ z; + a, where ~€ {<, <}, as z; — x; relopb — a where
relop is > or > according as ~ is < or <.

- Rewrite each conjunct of the form z; ~ z; in the form z; — z; ~ 0 if ~€ {>,>,=} or in the form
z; —x; relop 0 where relop is > or > according as ~ is < or <. Similarly for the case of constraints
of the form z; ~ z; + a.

— Any conjunct of the form z; — z; ~ a, where ~€ {<, <} will be rewritten as z; — x; relop (—a)
where relop is > or > according as ~ is < or <.

— Any conjunct of the form z; — z; = a is rewritten in the form z; —z; > aAz; —2; > —a.

— Rewrite any constant of the form x; = a in the form z; > a A z; < a.

Figure 3.4: Normalization of Constraints.

normalized form in polynomial time. In what follows we deal with constraints in normalized
form.

Now we are ready to introduce the trim operation. At a high level, the trim operation can
be viewed as an accurate (with respect to the properties that we are concerned here) widening
operation, i.e., it does not lose precision with respect to model checking for the properties that
we are concerned with here. The removal and replacement of constraints in the definition of
trim can be seen as constraint widening operations. The basic intuition is as follows: once the
value of a real variable goes above the maximal constant, it does not matter what the value
is. Hence, if a constraint has a solution in which the value of a variable is above the maximal
constant, then the constraint can be widened to incorporate all “similar tuples”. The relation
~ 1, as we show below, provides a logical characterization of the trim operation on constraints.
Note that the definition of trim itself provides with an algorithm for trimming.

Definition 3.11 (Trim) We define an operator trim, which given a satisfiable constraint ¢,
produces a constraint ¢' = trim(yp), by the method given below. The constraint trim(yp) is
obtained from the normalized form of ¢ by the following operations:

— Remove all constraints of the form x; — x; > a or x; — x; > a, for each pair of variables z;, x;,
i # j, such that ¢ A x; > M is satisfiable and 3_,,(p) is equivalent to _, (¢ A x; > M) and
(p Az > M) is not equivalent to ¢, where a is an integer and the existential quantifier is over all
variables but x;.

— Remove all constraints of the form x; < c or x; < ¢ where c is an integer and ¢ > M.

- For each i, such that (p A z; > M) is equivalent to @, replace all the constraints of the form
z; —xj ~ a or x; ~ c by the constraint r; > M, where a and c are integers and ¢ > M and
~e{>,>}
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Thus consider for example that the maximal constant M = 4. Let p =21 — 29 > 1 Axg >
1AN22 < 3Ax9 — 21 > —3. Observe that for this constraint, ¢ A z; > M is satisfiable and
3_2,(p) is equivalent to 3_,, (¢ A z1 > 4) and (¢ A z9 > M) is not equivalent to ¢. Hence
trim(p) = 21 —xa > 1 Awg > 1 A xzg < 3. We illustrate the trim operation geometrically. In
Figures 3.5, the solution set of a constraint ¢ in which the free variables are {z,y} is shown by
ABCD in the left-half. The maximal constant M is indicated in the figure. None of the rules in
the definition of trim apply to this constraint. Hence trimmed version of this constraint is the
constraint itself. This is indicated in the right-half of the Figure 3.5. In Figure 3.6, the solution
set of a constraint ¢ in which the free variables are {z,y} is shown by ABCD in the left-half.
The maximal constant M is indicated in the figure. None of the rules in the definition of trim
apply to this constraint. Hence trimmed version of this constraint is the constraint itself. This
is indicated in the right-half of the Figure 3.6. In Figure 3.7, the solution set of a constraint ¢
in which the free variables are {z,y} is shown by ABCD in the left-half. The maximal constant
M is indicated in the figure. The first rule in the definition of trim applies to this case. Hence
the constraint rewrites to a constraint whose solution set is shown in the right half of Figure 3.7.
In Figure 3.8, the solution set of a constraint ¢ in which the free variables are {z,y} is shown
by ABCD in the left-half. The second and third rules in the definition of trim apply to this
case. Hence the constraint is rewritten to one whose solution set is shown in the right half of
Figure 3.8. Note that the trim of a constraint may not be a union of regions a’ la’ Alur and
Dill [AD94]. Also note that the set of solutions of a constraint obtained by trimming another
constraint is always convex. It is easy to see that algorithm for the trim operation completely
avoids splitting of constraints.

I I/

M X M

Figure 3.5: Illustrating the trim operation — A.

For the proof of the next results, the following notation is used. For a tuple v, we define
v(zi, = v;,,... T = v;] as the tuple which agrees with v on all values of the variables except
Ziyy ... &, which are set to v;,,... ,v;, respectively.

k k

Lemma 3.2 The following properties hold for the trim operator:
— The trim operator is idempotent, i.e., for a non-ground state (p(x), ) reachable modulo
M, (p(x), trim(p)) = (p(x), trim(trim(y))).
- For a mnon-ground state (p(x),y) reachable modulo M, we have (p(x),p) =~y
{p(x), trim(¢)).
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M X M

Figure 3.6: Illustrating the trim operation — B.

Figure 3.7: Illustrating the trim operation — C.

M X

Figure 3.8: Illustrating the trim operation — D.
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— For a non-ground state (p(x), p) reachable modulo M and an atomic constraint 6, ¢ entails
0 iff trim(p) entails 6.

— For a mon-ground state (p(x),y) reachable modulo M and an atomic constraint 6,
(p(), trim(trim(p) A 6)) = (p(x), trim(p A 8)).

— For a non-ground state (p(x), ) reachable modulo M,

(p(x), trim({z}¢)) = (p(x), trim({z}trim(p))),

where for a constraint p, we define {x}yp to be the constraint such that R,v[0/z] = {z}¢
if R, v E p.

Proof. The first statement is obvious since all the constraints that are to be removed or
replaced by the trim operation get removed or replaced in the first operation of trim itself.

We next prove the third statement. One way is obvious. The other way is proved by using
the second statement (which we prove below). Suppose ¢ |= 6. Seeking a contradiction suppose
that trim(¢) = 6. Then there exists a tuple v such that R,v |= trim(yp) and R,v # 6. Then,
by the second statement, there exists a R,v' = ¢ such that for all ¢ € 1..n either v; = v} or
both v; > M and v} > M. Now suppose 0 is of the form z; > ¢ where ¢ < M. Then, of course,
R,v' = 6. This is a contradiction. If 6 is of the form z; > ¢ with ¢ = M, then we can obtain a
contradiction in the same way. Similarly, for the other cases of 8, we can obtain a contradiction.

For the proof of the fourth statement, we use Lemma 3.3. We show that (p(x),p A 6) ~y
(p(x),trim(p) A 6). Then by the use of Lemma 3.3, the result follows. Suppose R,v |= ¢ A 6.
Then R,v = p and R,v |= 0. Then R,v = trim(yp) and R, v |= 6. On the other hand, suppose
that R,v |= trim(p) A 6. Then R,v |= trim(p) and R,v = 6. Then, by second statement of
this Lemma, there exists R, v’ such that R, v’ |= trim(y) and for all i € 1..n, either v; = v} or
both v; > M and v; > M. In both the possibilities, R, v' = 6. Hence R, V' |= trim(¢) A 6. The
other direction is obvious. Therefore, (p(x),trim(p) A 0) ~p (p(x), ¢ A 6). Hence the result
follows.

For the proof of the fifth statement, we reason as follows. We show that (p(x),{z}¢) ~um
(p(x),{z}trim(p)). Then the results from Lemma 3.3. Suppose that R,u = {z}y where
R,u = v[0/z] where R,v |= ¢. Then R,v[0/z] = {z}p. Now, by the second statement of
this Lemma, we have that there exists v’ such that R,v' = trim(y) and for all i € 1..n, either
v; = v} or both v; > M and v} > M. Now R,v'[0/z] = {z}trim(p). Now, v[0/z] ~p v'[0/z]
where ~jy is the equivalence relation defined in the proof of Proposition 3.2. Similarly, the other
direction can be proved. Hence, (p(x), {z}p) ~um (p(x),{z}trim(¢)). Hence the result follows.

Finally, we prove the second statement. One direction is obvious. For the other direction,
we reason as follows. Suppose that R,v |= trim(¢). If R,v = ¢ then we are done. Otherwise,
there exists some constraint 6y in ¢ such that 6y has been removed (or replaced by another
constraint) by the trimming operation and R, v [~ 6y. Now, we reason on the nature of 6y and
the nature of its removal. Let 6y be of the form z; < ¢ where ¢ > M. Since R,v %~ z; < ¢,
v; > ¢. Consider the tuple v[z; := ¢]. Obviously, this tuple satisfies 6. If this tuple satisfies ¢,
we are done. Otherwise there exists a constraint 8; in ¢ that is not satisfied by this tuple. We
now reason on the nature of ;. First observe that 81 cannot be a constraint of the form z; < ¢;1.
Second, if 61 is of the form z; > d, then the following two cases arise. The first case is that of
d < M and 6, is not removed by the trimming operation. In this case the tuple satisfies #;. The
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second case is that d > M and 6; is removed during the trimming operation. But, then we can
obtain the constraints ¢ > d and ¢ < d which is a contradiction. Now suppose, without loss of
generality, that 07 is of the form z; — z;11 > ¢1. We consider the case when 6 is removed by the
trimming operation. The other case in which 8y is not removed by the trimming operation is
easier. Suppose that ¢ Ax; > M is equivalent to ¢ and that 6; is removed. Then, two cases can
arise. First see that x;11 < ¢—¢; (or a stronger constraint) is a conjunct of . If this constraint
is not removed by the trimming operation, then, v; < ¢ — ¢; and hence the tuple satisfies 6. If
c¢—ci > M then this constraint is removed by the trimming operation. In this case, if v; < c—cy,
then 6, is satisfied and we are done. Otherwise, consider the tuple v[z; := ¢, ;1 := ¢ — ¢1] (if
there is another constraint x; 1 < d stronger than x;,1 < ¢ — ¢ in ¢, then, either v; < c— ¢
or consider the tuple v([z; := ¢, z;41 = d] and follow the reasoning below). Of course this tuple
satisfies both 8y and #;. If this tuple satisfies ¢ we are done. Otherwise, there exists a constraint
05 that is not satisfied by this tuple. We now reason on the nature of #. Observe that 5 cannot
be of the form z;11 < d. Also observe that 63 cannot be of the form z;1; > co, otherwise ¢ is
unsatisfiable. So 6, can only be of the form z;,1 — x;19 > co. In this case, the reasoning starts
again as previously. Since the number of variables is finite, we are going to show that this chain
of reasoning terminates with a tuple v’/ such that R,v' = ¢ and v ~j; v'. This is because, if
this reasoning continues, at some point we must have that the tuple formed at that point does
not satisfy 6y, where 0}, is the constraint z;,; — ;1511 > cgr1 such that the variable x;, 411 has
already been encountered in our reasoing; i.e., for some I < k, ;1141 = x;4; where z;y; has
been assigned to ¢ — ¢y — ... — ¢; and x;4 has already been assigned ¢ —c¢; — ... — ¢; in our
assignment process. Let the tuple formed by our reasoning method up to this point (we have
been developing a tuple all through from v by reassigning values to z;,...) be v". We show
that —c¢j11 — ... — ¢ > cgy1 from which it follows that R, v =
if p is satisfiable then there exists a solution w of . This solution must satisfy the constraints
Titl — Titltl > Cl41, - - Titk—1 — Titk > Ck, Whence it follows that w;y; — wirg > cp1 + ... k.
Also, since R,wW = X1 — Titgr1 > Ckr1 and xiipy1 = e, we have wiip — Wity > Cpaq-
From this we have —c¢;;1 — ... — ¢ > cgp1- Now all we need to show is that v ~p; v". Thus,
we need to show that for all j such that the value of z; has been updated from v to v", both
vj > M and v;-' > M. Of course, this is true for x;. For the other variables we reason as follows.

Tipk — Tiykt1 = Cry1. Indeed,

Suppose for some [, in the reasoning chain above, ¢ —c¢; — ... — ¢ < M and for all m < I
c—c¢1—...—cm > M. Now see that ¢ contains a conjunct x;11 < ¢ — ¢1. Since ¢ contains the
conjunct z;11 — T;19 > co, it must also have the conjunct z;,9 < ¢ — ¢; — c2. Going in this way,
it must also contain the conjunct x; < c—c¢; —... —¢. Now since ¢c —¢c; — ... — ¢ < M, this
constraint is not removed by the trimming operation. Hence v;4; < ¢ —c¢; — ... — ¢;. Hence the
reasoning terminates here without updating z; ;. Thus we show that v" ~; v. The proofs for
the remaining cases follow similar lines. [

Lemma 3.3 For reachable non-ground states (p(x),¢) and (p(x),¢"), (p(x),¢) ~p (p(x),¢")
iff (p(x), trim(¢)) = (p(x), trim(¢")).

Proof. <=: Suppose (p(x),trim(¢)) = (p(x),trim(¢’)). Since by the second statement of
Lemma 3.2, (p(x), @) ~up (p(x),trim(y)) and (p(x), ¢') ~unr (p(x),trim(y')) the result follows.

—: Seeking a contradiction suppose that (p(x),trim(¢)) # (p(x),trim(¢’)). Let R,v |=
trim(p) but R,v [~ trim(y'). Wlog, suppose that R,v % x; — x; > a which is a constraint in
trim(¢') (wlog suppose that a > 0). Then v; — v; < a.
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We reason as follows. If both v; and v; are less than or equal to M, we can obtain a
contradiction as follows. By the second statement of Lemma 3.2 and the assumption of this
Lemma, we have (p(x),trim(p)) ~p (p(x), trim(¢')). Now there does not exist a v’ such that
R,v' |=trim(¢’) and v ~pr v' (if v/ ~p v, then by our assumption, R, v’ [~ trim(yp)).

Hence, without loss of generality, assume that v; > M and v; < M. Now consider the tuple
v([z; :== M]. If this tuple satisfies trim(y) then we can again reason as previously and obtain a
contradiction. If this tuple does not satisfy trim(y) then there must exist a constraint of the
form z; — x; ~ ¢, where ~€ {>,>}, which is not satisfied. Without loss of generality let this
constraint be x; — z;41 > ¢;. Consider the tuple v]z; := M, x;11 := v;11 — (v; — M)]. Note that
this tuple satisfies both the above constraints. If this does not satisfy trim(y), without loss of
generality there must exist a constraint of the form x;,1 — z;19 > ¢;11 which is not satisfied by
this valuation. So consider the tuple v[z; := M, x;11 := vi41 — (v;— M), 249 1= vi40— (v; — M)).
Since the number of variables is finite, this reasoning must terminate with a tuple v’ satisfying
trim(yp) for which v; = M and v; = v; or v; = v; — (v; — M). Note that we cannot get a
tuple R, v" [= trim(¢') such that v = v; and vj = v; for then R,v" |= z; — z; < a. Thisisa

J
contradiction. The proof for the remaining cases proceeds by similar arguments. [

Definition 3.12 A non-ground state (p(x), ) subsumes another non-ground state (p(x),¢’),
denoted by (p(x), ') < (p(x),p), if every ground instance of (p(x),¢') is also a ground instance

for (p(x), ).

We call the equivalence class of a reachable non-ground state in the equivalence relation ~jy,
a reachable equivalence class.

Lemma 3.4 In each reachable equivalence class € of =y, there exists a non-ground state reach-
able modulo M, called the largest non-ground state in £ reachable modulo M, which subsumes
all other non-ground states in € that are reachable modulo M.

Proof.  From lemma 3.2, it follows that for a non-ground state (p(x), ¢) reachable modulo M,
(p(x), p) =p (p(x),trim(p)). Note that for all reachable nonground states (p(x), ¢), trim(y)
¢ (and also by Lemma 3.2, the trim operation is idempotent). By Lemma 3.3, there exists a ¢’
such that for all (p(x),¢) € &, ¢' = trim(p). Then (p(x), ¢’) is the largest reachable (modulo
M) state in £. [

Lemma 3.5 The equivalence relation ~j; produces a finite number of reachable equivalence
classes (i.e., equivalence classes containing reachable nonground states).

Proof. Each reachable equivalence class £ can be represented by (p(x),trim(y)), where
(p(x), p) € €. The constraint store (for a non-ground state s = (p(x), ¢), we call ¢ the constraint
store of s) for this state is given by grammar 3.3. Now we show that the constraint store for
the representative cannot contain constraints of the form z; — x; ~ a or x; relop a for all
i,j=1,...,n, where ~€ {>, >}, relop € {>,<,>,<}, and |a] > M. Seeking a contradiction,
suppose there exists a conjunct of the form z; — 2; > a where |a] > M. First suppose that
a > 0. Then this conjunct is also present in . Suppose R,V |= ¢. Then v; — v; > a. Therefore
v; > a. Therefore there exists no solution v of ¢ such that v; < M. So p Ax; > M = ¢. So
the constraint is removed by the trim operation. Similarly for the case when a < 0. Now we
write each constraint x; — xz; = ¢ in the form z; — z; > ¢ A z; — z; < c. Similar for the case
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x; = ¢. So given this representation, syntactically the number of distinct constraints is bounded
by (4M +4)Mn=1) . (2M 4 2)2" which is 2°("*) . (2M +2)°(") . This is because there are n(n —1)
pairs x;, z;. For each constraint of the form x; —2; ~ ¢, ~ can be > or >, and ¢ can take integral
values from —M to M. Also for each constraint z; relop ¢, where relop € {>,>} (i.e., constraint
determining the lower bound of a variable) ¢ can be a non-negative integer in the interval [0, M].
Similarly the case for the constraints determining the upper bound of a variable. [

Proposition 3.4 Given two reachable non-ground states (p(x), p) and (p(x), '), where both ¢
and ¢' are in normalized form, it is effectively decidable whether (p(x), ) ~np (p(x),¢').

Proof. From lemma 3.3, it follows that to check (p(x),¢) ~um (p(x),¢'), we need to check
whether (p(x),trim(yp)) = (p(x),trim(y’)). Now for a constraint ¢, projection on a variable
can be done in polynomial time. Also checking for equivalence of two constraints can be done
in polynomial time. Now string searching can also be done in polynomial time. So from the
definition of ¢rim, it can be seen that it is decidable in polynomial time whether (p(x), ) ~n

(p(x),¢'). [

The trim operation described above can be combined with the tabling strategy mentioned
above to provide a termination guarantee for the model checking procedure. If (p'(x), ¢') is the
resolvent of(p(x), ) through a clause C, then we add the goal (p'(x),trim(¢')) as the table
entry. The detailed algorithm is described below. By lemma 3.5, termination of the algorithm
is guaranteed. Before presenting the algorithm, we observe the following Lemma.

Lemma 3.6 For every Ls formula ®, the non-ground state (pred(x), p) succeeds in pe iff the
non-ground state (pred(x),trim(p)) succeeds in P2.

Proof. By induction on structure of Z; formulas.

Base Case The case in which pred is of the form (p, X) where the declaration of X is
given by X = p, where p is an atomic proposition is obvious for this case. The second case is
where pred is of the form (p, X) where the declaration is given by X = 6 where 6 is an atomic
clock constraint. Suppose (pred(x),¢) succeeds. Then there exists an instance pred(v) such
that R,v = 6. Since ¢ |= trim(y), R,v = trim(p). On the other hand if (pred(x),trim(y))
succeeds then there exists a ground instance pred(v) of (pred(x),trim(y)) such that R,v |= 6.
Since from the second statement of Lemma 3.2, (pred(x), ¢) =~y (pred(x), trim(yp)), there exists
v’ such that for all 7, either v; = v} or v; > M Av, > M and R,v' = ¢. Now, from the proof of
Proposition 3.2 R, v’ |= 0 since R,v = 6.

Induction Step For the boolean connectives, the reset and the modalities, the result follows
from the induction hypothesis. [

3.8 Extension of OLDT Resolution to Constraints

We extend the subsumption ordering defined in Definition 3.12 to a partial order <* on the set of
reachable equivalence classes induced by the equivalence relation ~j; as follows: For a reachable
equivalence class &£, denote its representative as rep(€). Then for two reachable equivalence
classes £ and &', € <* &' iff rep(€) < rep(E').
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We extend the OLDT resolution of [TS86a] in the following way. First note that we do not
have any function symbols in our program. We assume that a goal is of the form G = (Q, ¢)
where ) is a conjunction of predicates and ¢ is the constraint store. We also assume that
the solution list associate with each entry in the solution table is a list in which each entry
is a constraint. The table node registration procedure is extended as follows. First, we mark
each predicate as a tabled predicate. Thus every node in an OLDT structure (which is not a
success leaf) is a table node. Let G be a goal labeling a table node v in the OLDT structure. Let
G = (Q, ) and let pred(x) be the leftmost predicate in Q. The following cases are distinguished:

— Lookup Node: Compute ¢ = 3 _xp. If there exists a entry (pred(x),¢”) such that
rep(E') < rep(E"), where £’ and £" are respectively the equivalence classes of (pred(x), ¢')
and (pred(x), ¢") induced by ~j; (for a reachable non-ground state (pred(x), ), the rep-
resentative of its equivalence class is (pred(x),trim(y))), then put v in the look up table
with a pointer to the entire solution list of (pred(x), ¢").

— Solution Node: If the above case does not hold then put (pred(x), trim(¢')) in the solution
table with an empty solution list.

The initial OLDT structure is the same as in [TS86a], with a forest with a single node labeled
with (init, Z). The immediate extension part closely follows that of [TS86a]. Given P® and an

OLDT structure T, an immediate extension of T by P® is the result of either of the following
operations.

1. Select a terminal node v which is not a look-up node (the question of this node being a
success node will not arise as we will see later). Let the node be labeled by the non-ground
goal (@, ¢). Let pred(x) be the leftmost predicate of @ and let Q = pred(x) A Q'. Also let
Variables(Q') be the set of variables occurring in Q'. Compute (pred(x),trim(3_x¢)). If

there exists at least one clause in P® through which (pred(x),trim(3_xp)) resolves then

(a) Let Cy,...,Cy (k> 1) be all the clauses in P® through which (pred(x), trim(3_xp))
resolves. Create k children (Q;,¢;) where @Q; = B; AN P and ¢; =
EL(Variables(P’),Variables(B,-))((p N (trim(a—xtp) N i A 62)) where B; is conjunction of
predicates the body of C; and ©; is the mgu of the head C; and pred(x) and ; is
the constraint in clause Cj.

(b) For each new node, register it.

(c) For each unit subrefutation [TS86a], if there are any, starting from a solution node
and ending with some of the new nodes, let the subrefutation be for the tabled non-
ground state (pred(x),¢). Add the answer constraint to the last of the solution list
of the table entry (pred(x),trim(¢)) provided the answer is not already present in
that solution list (i.e., does not entail the answers present in the solution list).

2. Look-up extension: Select a look-up node v, such that the pointer associated with it points
to a non-empty sublist of a solution list. Let pred(x) be the leftmost predicate in the goal
G labeling v. Advance the pointer by one to skip the head element of the sublist. If
pred(x) «— v and G are resolvable in the sense given above, where 9 is the constraint
pointed to by the pointer, create a child node of v labeled with the resolvent. Do the same
thing as in step lc.
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Ezample time (seconds)
Example in figure 3.2 1.5
Fischer’s Protocol (Two Processes) [LPY95a] | 4.2
Rail-road Crossing 1.8
Audio Protocol [HWT95] 7.2

Figure 3.9: Experimental Results.

The rest of the details are natural extensions of those in [T'S86a] which we do not repeat
here. Since, our aim is to model check locally, we will terminate as soon as a success leaf is
encountered. Note that trim({pred(x),¢)) = (pred(x),trim(yp)). Also note that we need the
constraints to be in normalized form as our algorithm (for ¢rim) works on the syntax of the
constraints.

Theorem 3.3 (Soundness and Completeness) The algorithm for model checking for L
given above is sound and complete.

Proof.  The proof of soundness of the algorithm is by a simple extension of the proof of Lemma
3.17 in [TS86a] combined with Lemma 3.6. The proof of completeness is by a simple extension
of the proof of Theorem 3.18 in [TS86a] along with Lemma 3.5. [

We have implemented a prototype local model checker based on the method given above.
Even without any fine tuning, the performance of the model checker seems to be encouraging.
In fact, even without any fine tuning, the timings obtained in many cases are comparable to
that of UPPAAL [BLL"96] which is a highly fine tuned tool with a lot of inbuilt optimizations.
We have used our model checker to verify the safety properties of several well known benchmark
examples taken from literature. The experimental results are summarized in table in Figure
6.14. All the results are obtained on PC (200 MHz Pentium Pro). All the timings denote the
total time needed.

3.9 Full Disjunction

In this section, we show how to model check for the logic L; extended with full disjunction.
Note that the logic £ [LPY95a] described above allows only restricted disjunction. In this
subsection, we show that in our framework we can allow for full disjunction. Note that it is
stated in [LPY95a] that their model checking technique based on the rewrite tree cannot be
extended to a logic with general disjunction. We call the extension of the logic £; with full
disjunction X L,. Dually, we call the the extension of the logic l: with full conjunction as XE
(i.e., the dual of XL,). The satisfaction relation for XL, is the satisfaction relation for L
augmented with the clause:

- P,p(v) E @1 V &, implies P,p(v) &= @1 or P,p(v) = Ps.

For an XL, formula ® we can obtain an XL, formula ® in the similar way as above (X L is
the corresponding extension of C, s). Given a TLP P and a X YL, formula &, we can construct a

product program pe using an extension of the product construction given above by the following
“alternating” clause.
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- X =X1 A Xa: (p, X)(x) «— (p, X1)(x) A (p, X2)(x).

Theorem 3.4 Given a TLP P and an XL, formula ®, P = ® if and only if (init, Z} is not in

the least model of P‘I’ where ® is the XE formula corresponding to ® and Z is the root variable
of ®.

Proof.  Similar to that of Theorem 8.1. [

Note that we do not have to change the methodology for the implementation for this extension
— we can reuse the implementation described above.

Note that the rewrite tree based model checking procedure [LPY95a] implemented in the
model checker Uppaal [BLLT96] can be viewed as a special case of our derivation tree using
tabled resolution with constraints as described above. Use of tabled resolution with constraints
allows us to increase the expressiveness of the underlying logic ([LPY95a] allows only restricted
disjunction). Also note that the model checking procedure in [LPY95a] may not terminate
(consider the timed automaton given in Figure 3.2 and the formula X = 22 < 2 A 0OX AVX
where x2 refers to the clock x2 of the timed automaton; this asserts that always the value of
the clock 2 will be less than 2). In contrast our model checking procedure combined with the
trim operation is guaranteed to terminate. Like the model checking procedure in [LPY95a], our
model checking procedure is also local (only the reachable portion of the state space is explored
and the state space is explored in a demand-driven fashion).

3.10 Unbounded Liveness Properties

In this section, we extend our methodology to deal with unbounded liveness properties of timed
logic processes. Throughout this section, we consider only divergent ground derivations of TLPs.
An unbounded liveness property is a declaration of the form Z = OX where X = ¢V VOX (this
is actually the dual of the property Z = ( X where X = g A 3) X, where we take the greatest
fixpoint of the declaration) where ¢ is an atomic proposition (¢ is an atomic proposition that
is “satisfied” by all predicate symbol that do not satisfy §) and we take the least fixpoint of
the declaration (viewed as an equation). This asserts that “for all (infinite) ground derivations
(starting from init using a resolution through an initial or a system clause), using resolutions
through evolution clauses and system clauses in such a way that every resolution step through an
initial or a system clause is immediately followed by one through an evolution clause and every
resolution step through an evolution clause is immediately followed by one through a system
clause, there exists a ground atom in that satisfies ¢”. For timed automata this is the same as
the assertion that for all (infinite) traces starting from the initial position using time transitions
followed by edge transitions, i.e., every time transition step is immediately followed by an edge
transition step and vice versa, there exists a position that satisfies . Note that this is the dual
of the specification which asserts that “there exists an (infinite) ground derivation (starting from
init using a resolution through an initial clause or a system clause), using resolutions through
evolution clauses and system clauses in such a way that every resolution step through an initial or
a system clause is immediately followed by one through an evolution clause and every resolution
step through an evolution clause is immediately followed by one through a system clause, such
that every ground atom in the derivation satisfies the atomic proposition ¢”.

Given an unbounded liveness specification ¥ ( let ® = ¥; i.e., ¥ is the dual of ¥;ie., P = ¥
iff P = @), and a TLP P, we construct a TLP P® such that P |= @ iff the atom (init, X) is
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in the greatest model of P®. The construction of a product program is same as that shown in
case of L.

Theorem 3.5 Given a TLP P and an unbounded liveness specification ¥, we have P |= ¥ if
and only if the atom (init, X) is not in the greatest model of P®, where ® = ¥ (the dual of ¥)
and X 1is the root variable of ®.

Proof.  We first prove that if P does not satisfy ¥, then (init, X) is in the greatest model of
P?. Suppose P,init = ¥. Seeking a contradiction, suppose that (init, X) is not in the greatest
model of P®. If (init, X) fails then for all derivations starting from it, there exists a ground
atom which which does not resolve through any clause in P®. Let G be a ground derivation
starting from (init, X) and let (p, X)(v) be a ground atom in it that does not resolve through
any clause in P®. Then, by the construction of P?, either ¢ ¢ P(p) or there does not exist any
ground successor of p(v). In either case, P,p(v) = p A 3)X. Since this holds for each ground
derivation P, init [~,;s ®. Hence P,init = ¥ which is a contradiction. Therefore (init, X) is in
the greatest model of P2.

Now we show that if P |= ¥, then (init, X) is not in the greatest model of P®. Suppose that
P,init |= . Then P,init ~= ®. Seeking a contradiction suppose that (init, X) is in the greatest
model of P®. Then there is an infinite derivation starting from (init, X) through the clauses in
P®. This is because, by the construction, P® does not contain any assertion clause. Let this
derivation be G. For every ground atom (p, X)(v) in G, there exists a clause in P® through
which (p, X) resolves. Hence for every ground atom (p, X)(v) in G, ¢ € P(p). Now it can be
shown by induction on the length of derivation that there exists an infinite ground derivation
from init in P in which the first derivation step is through an initial clause or a system clause,
each derivation step through an initial clause or a system clause is followed by one through an
evolution clause, each derivation step through an evolution clause is followed by one through a
system clause and for each ground atom p(v) in the derivation ¢ € P(p). Hence P,init = ®.
This is a contradiction. [

3.11 Implementation

Since model checking P for an (unbounded) liveness property ¥ reduces to checking whether
(init, X) is contained in the greatest model of P® (as constructed above), it can be done by
computing the greatest fixpoint of the immediate consequence operator for P®. This results in
a global model checker. Alternately, since the clauses in P® have at most one predicate in the
body (from the construction of the program), we introduce a new greatest model resolution with
tabling! prove that (init, X) is in the greatest model of P®. To the best of the knowledge of the
author, this is the first time any kind of tabling (without negation) is used for the greatest model
of a constraint query language program. The greatest model resolution algorithm also allows us
to avoid splitting of constraints. This is because, otherwise, in order to get a local algorithm,
we had to introduce negation in the clause bodies. This would have resulted in splitting of
constraints. The greatest model resolution algorithm with tabling is given in Figure 3.11. In
step 3(b) of the algorithm we check whether there exists a goal (pred'(x), ¢") in the table such
that " entails the constraint store ¢’ of the newly generated goal (pred'(x), ¢’). In this case, we

'Note that the tabling used here is different from that used in Section 3.6 as well as those in [CW96, TS86a].
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do not need to register the solutions into the table. We will terminate at the first instance of a
success leaf or the first instance when a newly generated goal contains a goal already in the table
(whichever occurs earlier). Note that in the above implementation, use of negation along with
tabled resolution for least model would have resulted in computing the negation of a constraint
which is prohibitively expensive in practice. Note the procedure in Figure 3.11 holds only for
constraint query language programs that have only one predicate in the body. The procedure
can be easily extended to account for general programs (without negation). We illustrate the
greatest model resolution with an example. The basic idea behind the procedure is to check if
there exists a successful derivation or an infinite derivation starting from (init, X).

Example 3.2 Consider the program

(init, X) +— pi(x)ANz1 =22 N33 >0
p1(x) — p(X')AAZ, =0AZh =129
pa(x) — ps(X)AZi=z14+zAzhb=20+2N22>0
p3(x) — pa(xX)ANza <2ANzZhL=2AN2| =2
pa(x) — ps(X)ANZi=z14+z2A2hb=20+2N2>0
ps(x) +— pa(X)ANZh=0AZ) =21 ANg <2

(init, X)

(p1(x), 21 = z2, 22 > 0)

(p2(x),z1 = 0,22 > 0)

(p3(x),z2 > x1,21 > 0)

(pa(x),0 <21 < 2,29 =0)

(p5(x),21 — 22 > 0,20 — 21 > —2,29 > 0)

(Pa(x),0 < 1 < 4,29 = 0) (yes)

Figure 3.10: Illustrating the Greatest Model Resolution.

The derivation tree using the greatest model resolution for this example is given in Figure 3.10.
The goal (p(x),z1 = za,22 > 0) labeling the second node from the top is the resolvent of the
goal (init, X) and the first clause. Similarly, the goal labeling the second node is the resolvent
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of (p(x),z1 = x2,22 > 0) and the second clause. Note that the constraint store of the state
labeling the 5th node entails that of the state labeling the 7th node. Hence the 7th node is a
'yes’ leaf (in line 4(b)(7) in Figure 3.11 the Flag is made true). This implies that (init, X) is
in the greatest model of the program. Figure 3.10 shows the contents of T'able for this example
(the tree viewed from the bottom). Note that the algorithm in Figure 3.11 is depth-first.

Theorem 3.6 (Soundness) If procedure in Figure 3.11 terminates then (init, X) is contained
in the greatest model of P® if and only if it returns ’yes’.

Proof.  Consider algorithm in Figure 3.11. It returns ‘yes’ in the following cases:

Case 1: A non-ground descendent of (init, X) is a success leaf. In this case (init, X) is in
the greatest model of P®

Case 2: A non-ground descendent ng' of (init, X) is such that there exists an ancestor
ng" of ng’ such that the constraint store of ng” entails the constraint store of ng’. Now let
Cy,...,Cy be the clause in the derivation from ng” to ng’. Then ng’ cannot fail as it goes
through Cy,... ,C) and produces a non-ground state ng'”’ such that the constraint store of ng’
entails that of ng"'. Hence (init, X) is in the greatest model of P?.

To prove the other way, assume that (init, X) is in the greatest model of P®. Assume that
the procedure in Figure 3.11 terminates. Seeking a contradiction, suppose that the procedure
returns 'no’. Then the procedure terminates on finding the stack Table empty at the end of the
repeat — until loop. This means that in the depth-first tree generated by the procedure, every
leaf is a failure leaf. But this contradicts the fact that (init, X) is in the greatest model of P?.

[

Note that procedure in Figure 3.11 may not terminate. The counter example is provided by
the TLP corresponding to the timed automaton in Figure 3.12. It has two real variables x and
y and one location m®. Let the predicate at,,0 be an atomic proposition that does not hold at
the location m®. Consider the unbounded liveness property Z = OX where X = at,,0 V VOX
(actually consider its dual Z = ( X where X = at,,0 A3() X). An infinite sequence of nonground
states of the form ((m% X)(x),y =z +i A = > 0) are generated where i € . To ensure the
termination of the model checking procedure, as in the previous section, we can combine the
trim operation described above along with the procedure. The details are straightforward. The
greatest model resolution procedure combined with the trim operator can also be implemented as
a non-deterministic procedure requiring polynomial space (due to Lemma 3.5). A deterministic
algorithm requiring polynomial space can then be obtained by using Savitch’s theorem.

Using our method, we have been able to verify the unbounded liveness property Z = OX
where X = at_2 VVOX for the example of timed automaton shown in Figure 3.2 (TLP corre-
sponding to that timed automaton), where the atomic proposition at_2 is satisfied only by the
location 2.

The local model checking algorithm given in Section 3.6 and the model checking algorithm
for unbounded liveness properties given above can be combined effectively to model check for
receptiveness properties. A receptiveness property is a formula of the form ®;; ®5, where ®; is a
declaration of the form X = X; V3 X V3IX and P, is a declaration of the form X; = ¢ A 3) X1,
where we take the least fixpoint for the first declaration and the greatest fixpoint for the second
declaration. This asserts that there exists a reachable ground atom p such that there exists
an infinite derivation (using resolutions through evolution clauses and system clauses in such
a way that the first resolution step is through an evolution clause and every resolution step
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Procedure Greatest Model Resolution

Input Program P? and the atom (0-ary predicate) (init, X)

Output A yes/no answer whether the atom is in the greatest model of P?®
Data Structures

Stack Table

begin

Push (init, X) in Table.

repeat

1. Let (pred(x), @) be the non-ground state at the top of the stack Table.

2. If (pred(x), p) succeeds through a clause, return yes.

3. else
(a) If there exists a clause C in P?® such that (pred(x), ¢) has still not resolved through
C then let the resolvent of C and (pred(x), ¢) be (pred'(x),¢').
(b) If there exists (pred'(x),¢") in Table such that ¢" |= ¢', return yes.
(c) else push (pred'(x),¢') to Table. (end If)
(d) else pop (pred(x), ¢) from the stack Table. (end if)

4. (end If)

until Table is empty (end of repeat until)
return no.
end

Figure 3.11: Greatest Model Resolution (GMR) Procedure for programs with one body predi-
cate.

Figure 3.12: Non-terminating Example for Greatest Model Resolution.

56



through a system clause is immediately followed by one through an evolution clause and vice
versa) starting from p in which every ground atom satisfies ¢ (for timed automata, this amounts
to the specification that there exists a reachable position p such that there exists an (infinite)
trace starting from p using time transitions followed by edge transitions, i.e., first taking a time
transition and then following it up by an edge transition and so on, such that every position
in that trace satisfies ¢). Using the combination mentioned above, we have been able to falsify
the receptiveness property for the example in Figure 3.2 with ¢ = —at_2. The model checker
Uppaal [BLL196] is not able to verify receptiveness properties.

3.12 Model Checking for TCTL formulas

In this section, we extend our methodology to deal with the model checking problem for TCTL
formulas. The formulas ® of Timed Computation Tree Logic (TCTL) are inductively defined as
follows.

P = q‘CE-l'CSy-l—d‘_'gO‘q)l\/q)z|E(@1U@2)|A(@1u@2)‘Z@

where ¢ is an atomic proposition, ¢,d € N/, z,y are real variables. Given a TLP P and a TCTL
formula @, the satisfaction relation = is defined inductively as follows (here p(v) is a ground
atom).

- P,p(v) = q iff ¢ € P(p) (where P is a function that labels each predicate in P with a set
of atomic propositions).

-Ppv)Frz+e<y+ziff RviEz+c<y+d.
- Pap(v) |: - iff Pap(v) I;A o.
- P,p(v) |E @1V Py iff p(v) = @1 or p(v) = Po.

- P,p(v) E E(®1U3P,) iff there exists a ground derivation through evolution or system
clauses from p(v) to a ground atom p'(v') such that P,p'(v') = @4, every other ground
atom p”(v") in the ground derivation satisfies ®; V ®3 and if p"(v") and p"(v" +§) (where
d € R) be two ground atoms in the derivation such that p"(v" + §) is a resolvent of p”(v")
and a clause, then for all 0 < §' < 4§, P,p"(v" +4d') E &,V ®,.

- P,p(v) = A(®1UD,) iff for each ground derivation G starting from p(v) through evolution
or system clauses such that there exists a ground atom p’(v') in G such that P, p'(v') = ®,,
every other ground atom p”(v") in the ground derivation G satisfies ®; V @5 and if p"(v")
and p”(v" +0) (where § € R) be two ground atoms in the derivation G such that such that
p"(v" 4+ §) is a resolvent of p”(v") and a clause then for all 0 < &' < §, P,p"(v"' + ') =
d; V Py,

- P,p(v) | 2.® iff P,p(v][0/z]) = .

Let ®; and ®; be TCTL formulas. As usual, let [®] denote the denotation of ®, i.e., [®] =
{p(v) | P,p(v) E ®}. We show that for each TCTL formula ® and a TLP P, the denotation of
®, [®] over P can be represented by a finite set of generalized tuples.
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Theorem 3.7 For each TCTL formula ®, and a TLP P, its denotation can be described by a
finite set of generalized tuples.

Proof. ~ We proceed by structural induction on TCTL formulas. For atomic propositions g the
set of generalized tuples is given by {p(x) <— true|q € P(p)}. The cases for the disjunction
and conjunction are easy. We prove the theorem for the case of exists until. The remaining
cases are similar.

Suppose that the formula & is given by F(®U®,). We construct a TLP P? such that the
least model of P?® is the same as [®]. Given [®;] and [®;] as a finite set of generalized tuples,
we first compute for each predicate p, the set S, of all ground atoms p(v) such that there exists
a § > 0 such that for all 0 < e < §, P,p(v +¢) = ®1 V ®3. Let p(x) +— ¢; be the generalized
tuple defining the predicate p in [®;] (i € {1,2}). Then S, is given by p(u) such that

u€e[3d>0Ve(0 <e<d = (p1[x+e/x]V pa[x + g/x]))].

ILe.,

u€[36>0-3e(0<e<IA-p1[x+e/x] A palx +e/x]))].
ILe.,
u € [36 > 0—-3eg].

where £ = (0 < & < § A —p1[x + /%] A mpa[x + £/x]. We can now convert £ to a disjunctive
normal form. Now, for each disjunct of the form {, we can eliminate the existential quantifier
Jde using variable elimination algorithms like Fourier’s algorithm [MS98]. Let the quantifier free
formula obtained be ¢. We now negate ¢’ and convert it to a disjunctive normal form. In
this way, we get a constraint 3§ > 0\/;~; n; such that S, = {p(u) | R,u = 36 > 0", n;}.
Now, we construct the program P? as follows. For each evolution or system clause in P , we
create m clauses p(x) «— p'(x') A An; Az = § (even though system clauses do not have the
increment variable z we can add the constraint n; Az = §). Also, for each predicate p, we add the
generalized tuple p(x) <— ¢ (i.e., the generalized tuple defining p in [®3]). Now, we show that
the denotation of E(®1U®;) is the same as the least model of P®. Let p(v) € Im(P?), where
Im(P?®) is the least model of P®. Then there exists a ground derivation G through the clauses
Ci,...,C) starting from p(v) that succeeds (i.e., C; is a generalized tuple). Let p”(v") be the
ground atom in that ground derivation that resolves through C;. Then P,p"(v") = ®;. Now
each ground atom in the ground derivation satisfies ®; V ®5 (otherwise, it would have failed,
since it would not have satisfied any 7; for 1 <i < m that are in the body of the clauses). Now
consider two ground atoms p1(u) and ps(u + 7) such that the latter is a resolvent of the former
through a clause in P? that is derived from an evolution clause in P. Since R, u = 7; for some
i (where Sp, = {pi(u) | R,u = 36 > 0V, n;}), therefore, for all 7' such that 0 < 7' < 7,
P,pi(u+7") = &V &y. Hence, p(v) € [E(®1UD3)]. Thus Im(P?®) C [E(®;UD,)]. Similarly, it
can be shown that [E(®1U®;)] C Im(P?).

It can be shown that the least model of P® can be computed by a finite number of iterations
of the immediate consequence operator. Hence the denotation of E(®;U®,) can be described
by a finite set of generalized tuples. [
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Since each iteration of the immediate consequence operator requires only a finite amount of
time, the computation of the least model (or the greatest model) of P® terminates. Hence the
proof of Theorem 3.7 provides us with an algorithm for model checking for TCTL formulas. The
computation of the least model can be made goal directed by using either using tabled resolution
combined with the trim operator as done previously, or using magic sets transformation on the
program P®. Thus for example, if the denotations of ®; and ®, are given, we can check if
P, init |= E(®1UP3) using a “local” algorithm.

3.13 Transient Behavior of Real Time Systems

In this section, we formulate a methodology for detecting transient behavior of timed logic
processes. It is well known in control theory that underdamped linear time-invariant systems
have both a transient and a steady-state response (see any standard textbook on control theory
e.g., [Oga96]). Examples of such systems include from the mechanical mass-spring-dashpot
systems to analog sensors and measuring equipments. Our aim in this section is to capture
this notion of (under) damping in the context of real-time systems (modeled by timed logic
processes). Detecting underdamping (or transient behavior) is useful for system identification
which is an important problem in control theory. System identification involves automatically
detecting the order of a given system as well as the nature of its damping. Thus if we can
automatically determine that a linear time invariant system has a transient and a steady-state
response, we can deduce that the system is underdamped.

We assume that real time systems are modeled as TLPs. We assume TLPs in which every
clause is either an evolution clause or a system clause or an initial clause. Further we expand
TLPs with alphabets to define labeled TLPs.

Definition 3.13 (Labeled TLP) A labeled TLP is a TLP equipped with a (finite) alphabet X
such that each system clause or initial clause is labeled by a letter (action)? from this alphabet
(a letter may label several clauses).

Let a, b, c range over X. In this section, whenever we speak of a TLP we will actually mean
a labeled TLP.

Let P be a TLP. We say that a ground derivation G = init — g1 — ... — gm — ...
of P, where g; is a ground atom, is an advancing derivation if g; is a ground resolvent of init
through an initial clause of P and for each ¢ = 1,2, ... go; is a ground resolvent of go; 1 through
an evolution clause and for each i = 1,2,..., g9;11 is a resolvent of g9; through a system clause.

Let G = init — g1 — ... —> g; —> ... be a (infinite) advancing ground derivation of P
starting from init. We say that G is labeled by an omega-word u € 3“, where u = ug, uq, ...
(u; € X), iff g1 is the ground resolvent of init through a clause in P labeled uy and for each
i =1,2,..., goit1 is the ground resolvent of go; through a clause P labeled w;.

We say that an omega-word u € X“ is accepted by a TLP P if there exists an infinite
advancing (ground) derivation G of P, starting from init, that is labeled by wu.

Definition 3.14 (Transience) We say that a timed logic process P is transient if there exists
a word u € X¥ accepted by P such that all (ground) infinite advancing derivations of P labeled
by u converge.

*We do not consider any “silent” action here.
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X=<2
X=<2
b

Figure 3.13: Illustrating transience.

Intuitively, a TLP is transient if it has at least one transient behavior where by transient
behavior we mean a omega-word accepted by the TLP that does not label a divergent (ground)
advancing derivation. So such a behavior is observed “initially” but “disappears” with the
passage of time (since all advancing ground derivations labeled by it converge). Note that the
TLP corresponding to the timed automaton shown in Figure 3.13 is not convergent (convergence
for timed automata is defined in Chapter 4), but is transient (consider the word (ab)“).

3.13.1 Detecting Transience

Before we delve into details of the algorithm for detecting transience, let us introduce the concept
of a nonground Biichi automaton induced by a TLP. The notion of nonground Biichi automata
is similar to that of concurrent constraint automata [FP93]. We assume as in the previous
section that the TLPs that we consider consist only of evolution, system and initial clauses.
We also assume that each TLP is equipped with a finite alphabet 3 labeling the system and
initial clauses. Let P be a TLP. A nonground Biichi automaton induced by P is a five-tuple
PA=(S,S5),%, —, F) where

- S = {({p(x),trim(yp)) | (p(x), ) is a reachable nonground state of P} is the set of states.
— Sp = init is the initial state.
— X is the finite alphabet associated with P.

- =1 U{-% |a € X} is the transition relation where —+C S x S. For s,s' € S and
a € %, we write s —— s’ if s’ is a resolvent of s through a clause of P labeled a. For
s,s' € S, we write s —— s if &' is a resolvent of s through a evolution clause.

— F C S is a set of accepting states

In addition, we associate with P Biichi acceptance conditions (see [Saf88]). Note that due
to Lemma 3.5, S is finite.

3.13.2 Construction of Nonground Biichi Automata

Given a TLP P, we construct a TLP Q such that the following holds:
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— There exist two nonground Biichi automata 041 and Q*2 such that P is transient if and

only if the product automata Q4! x Q4% is nonempty, where Q4% denotes the complement
of Q4.

Intuitively, (as we will see below) the automaton Q41 accepts all behaviors (infinite words)
that are accepted by P, while the automaton Q%2 accepts only those behaviors of P that label
a divergent advancing (ground) derivation. So the problem of detecting transience now reduces
to the problem of language containment between the two automata (more precisely, whether
the language of Q41 is not contained in the language of Q“2; in fact this can be treated as a
non-universality problem).

Given a TLP P, we construct the TLP Q (as stated above) as follows. The set of predicates
of Q are the same as that of P except for the fact that each predicate is now n + 1-ary (if the
corresponding predicate in P was n-ary). The initial predicate is init is the same as that of P.
The set of atomic propositions AP is the same as that of P. The function A\ assigning subsets
of AP to predicates is the same as that of P. The clauses of Q are constructed in the following
way.

— The clauses in @ are the same as that in P except that the predicate in the body is now
n + l-ary.

— For each system clause of P create two clauses of the form p(x) +— p'(x') A p A zpy1 >
1Az, =0and p(x) +— p'(x') Ao Axpy1 < 1A, | = 2ny1 where @ is the constraint
of the clause P (note that the predicates in both the clauses are n + 1-ary.)

Now given Q the two nonground automata 041 and Q42 induced by Q can be specified
simply by specifying the set of accepting states (note that all the other components are same in
both the automata). Let F} and F» be the set of accepting states for 041 and Q42 respectively.
Then F; = S and Fy = {(p(x),¢) € S|R = ¢ Azpt1 > 1} where S is the (common) set of
states of QA1 and Q42.

Theorem 3.8 A timed logic process P is transient (i.e., has a transient behavior) if and only
if the product automaton Q' x Q4% induced by the TLP Q as constructed above is non-empty.
Here Q4% is the complement of oA,

Proof. =-part: Suppose that P is transient. Let u € X represent a transient behavior of P.
Let us consider a non-ground advancing derivation N'G of Q starting from init labeled by u (A
non-ground advancing derivation is defined in the same way as a ground advancing derivation;
the labeling for nonground derivations is in the same way as that for the ground counterpart).
Now it can be seen that after some point, all states in this nonground derivation will be of the
form (p(x), @) for some p € Pred where ¢ is a constraint such that R = ¢ A 2,41 > 1. Hence
such a non-ground derivation (a trajectory of QAQ) is not accepted by Q2. But this behavior
is accepted by Q1. Hence the non-emptiness result follows.

<=-part: Suppose that P is not transient. Then for each word u that it accepted by P,
there exists an infinite advancing divergent (ground) derivation of P labeled by u. Now any
word that is accepted by P is also accepted by the nonground automaton Q1. Since there
exists an infinite advancing divergent ground derivation of P labeled by u, there exists a run of
Q3! in which a states of the form (p(x),p) where R = ¢ A xpy1 > 1 are encountered infinitely
often. This is because the value of x, 1 increases to become 1 or more after it is reset infinitely
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many times. Thus u is accepted by the automaton Q2. Hence the language of the automaton
041 is included in that of Q42. So the emptiness of 041 x QA follows. [

Note that both the automata Q4! and Q2 have exponentially (in n, where n is the number of
real variables of P) many states in the worst case. Hence 041 x 043 can have doubly exponential
(in n) states in the worst case (due to the complementation for Biichi Automaton [Saf88]). Hence,
using standard techniques from automata theoretic verification [VW86b], the (non) emptiness
test can be done in EXPSPACE.

3.14 Related Work

Logic-based methods for specification and verification are slowly gaining popularity. In the past
few years there has been a lot of work on model checking using deductive methods [RRR"97a,
GGV99]. While most of these works have been focussed on finite state systems, there has also
been substantial work on verification of integer-valued and parameterized systems using methods
based on logic [FR96, FP93, RKR"00]. Bjorner et.al. [BBC*96] use the theorem prover STEP
to verify real time systems.

The works from the logic programming, theorem proving and database community that come
closest to our work are [CDD198, GP97, Fri98, Urb96]. In [CDD"98], real time systems were
translated into constraint logic programs. But no detailed model checking results based on such
a translation has been provided. Gupta and Pontelli in [GP97] have been able to verify several
interesting properties of real time systems. In contrast with automated model checking methods,
they rely on the programmer to write a “driver” routine to identify the finite number of finite
repeating patterns in the infinite strings accepted by a timed automaton. In a recent paper,
Gupta and Pontelli [GP99] describe definite clause grammar for the model checker UPPAAL. In
an interesting approach, they use Horn logic denotational semantics framework for specifying,
implementing and automatically verifying real time systems. But in their approach, they have
to make sure that the verification of properties leads to finite computations. Gupta [Gup99]
extends the methods of [GP97] to more general settings.

Fribourg in [Fri98] verifies real time systems specified by logic programs with gap constraints.
This work only considers reachability problems for real time systems. Termination is always
guaranteed here because a backward analysis is used (industrial-scale tools like UPPAAL use
forward analysis in spite of a missing termination guarantee [LPY95a]).

Du, Ramakrishnan and Smolka [DRS99] extend XSB with the POLINE constraint library
to verify real time systems. But they follow the same techniques as [SS95] and hence they also
ensure termination using expensive splitting of constraints.

Urbina in [Urb96] identifies a class of CLP programs as hybrid automata without, however,
establishing a formal connection with the standard model for timed systems. In fact, the se-
mantics results in [Urb96] cannot be connected with liveness properties of timed automata, in
contrast to our work on TLPs.

The works from the verification community that come closest to our work are [LPY95a,
DT98, SS95]. The model checking method in [LPY95a] based on the rewrite tree can be viewed
as a special case of our model checking procedure based on OLDT resolution extended to con-
straints. We have been able to model check for a logic which is strictly more expressive than
that in [LPY95a]. Also, the model checker UPPAAL [BLL"96] does not seem to be able to
model check for receptiveness properties that we have been able to model check for. The model
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checking procedure in [LPY95b] is possibly non-terminating (discussed above) while our model
checking procedure, thanks to the trim operation, is guaranteed to terminate. In [DT98] Daws
and Tripakis present a global model checking procedure for real time systems. In contrast, ours
is a local one. Also, their method can be used only for model checking “reachability” properties
like safety while we have given methods to deal with unbounded liveness properties. Sokolsky
and Smolka [SS95] present a local model checker for real time systems. But, as mentioned
in the Introduction of this chapter, their method for ensuring termination is based on an ex-
pensive “splitting” of constraints. We discuss the computational cost of splitting constraints in
Chapter 4 where we consider negation. The model checking procedure of [SS95] is essentially
tableau-based where sideways information passing [Ram91] cannot be used. On the other hand,
utilizing the sideways information passing in the TLP clauses, we can deal with disjunction
(conjunction) without splitting constraints. It is also evident from the algorithm in the defini-
tion of trim that it completely avoids splitting of constraints. We have not received any report
on the performance of the model checking procedure in [SS95] on any practical example. The
characterization of TCTL properties in terms of model-theoretic semantics of constraint query
language programs has not been done before.

In [HHWT95], the authors describe HyTech, a model checker for hybrid systems. HyTech is
based on two model checking procedures— one top-down and another bottom-up. Both proce-
dures are global. While the bottom-up procedure is guaranteed to terminate for timed systems,
the top-down procedure is possibly non-terminating even for timed systems. In contrast, in this
chapter, we have provided a local top-down model checking procedure that is guaranteed to
terminate for timed systems specified by TLPs.

The notion of transient (underdamped) behavior of real time systems and algorithms for
detecting the same has, to the best of the knowledge of the authors, not been studied before.

In summary, we have demonstrated in this chapter how uniform framework can deal with the
different types of problems arising in the process of modeling and verification of timed systems.
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Chapter 4

The Stratified p-calculus

4.1 Introduction

Symbolic model checking for systems with variables over an infinite numeric domain, e.g. for
timed or hybrid systems, has become an important topic of research (see e.g. [ACD93, ACHH93,
AD94, AH97, CDD'98, CJ98, CMN*98, CP98a, DP99b, DT98, Esp97, HNSY94, KMPY6,
GP97, MP99, MP00b, Tri99]). In this context, ‘symbolic’ usually refers to a representation
of a set of states (i.e. of tuples of numbers) by a disjunctive constraint, e.g. a set of conjunctions
of inequalities between arithmetic expressions over variables (a set standing for the disjunction
of its elements). In this chapter, we single out a new class (“Su”) of temporal properties with
two symbolic model checking procedures, one based on backward analysis and the other based
on forward analysis, that are both suitable for disjunctive constraints as the data structure for
representing and manipulating sets of states.

We define the stratified p-calculus Sy as the subset of all p-calculus formulas (built up
with the Boolean operators, the existential predecessor operator EX and and the least fixpoint
combinator p) whose subformulas can be ‘stratified’; i.e., the is-subformula relation can made a
partial order that is strict for negation. This restriction excludes the expression of alternation, of
the universal predecessor operator AX and of the greatest fixpoint combinator v. The fragment
of the alternation-free p-calculus we thus obtain subsumes the so-called safety logic STL (see
e.g. [AH99]) that again subsumes the EF-logic considered in [Esp97].

The Sy properties are computable in symbolic backward analysis (essentially a least fixpoint
iteration based on the existential predecessor operator EX) that uses only ‘good’ operations on
disjunctive constraints. I.e., the application of the fixpoint operator requires the disjunction
of two disjunctive constraints (representing each a set of states), a constant-time operation. In
contrast, if it required the conjunction (as during a greatest fixpoint iteration) or the complement
(e.g. for expressing the universal predecessor operator AX in terms of the existential one, EX),
the corresponding implementation cost would grow as a function (quadratic resp. exponential)
in the number of disjuncts in the constraints representing the state sets.

The above observation has been our original incentive to define Sy (i.e. as a candidate for
a temporal logic with symbolic model checking procedures that are well-suited for disjunctive
constraints). The other motivation of Sy is the natural generalization of STL; Sy is defined
by the same general syntactic restriction to the p-calculus that, if applied to the fragment
corresponding to CTL, yields exactly STL.
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Our technical contribution is a novel ‘symbolic forward analysis’ method for checking Su
formulas. This method is based on our characterization of Sy properties as perfect models of
constraint query language programs and on our tabled-resolution procedure for constraint query
language programs with the perfect-model semantics.

Forward analysis is sometimes preferable to backward analysis; a thorough discussion can
be found in [HKQ98]. Our procedure is a symbolic forward analysis in a sense different from
the one formalized in [HKQ98] (this is already clear by the result in [HKQ98] that the Su
property EF(p A EF(q) AEF(r)) is not computable by ‘symbolic forward analysis’). Both forms
of forward analysis are essentially a least-fixpoint iteration of the direct-successor operator post
applied to a constraint representation of a set of states. In [HKQ98], a constraint is viewed
monolithically (this corresponds to a setting where a set of states is represented by a constraint
in normal form, implemented e.g. by a BDD). Our procedure operates on the constraints inside
of a disjunctive constraint, i.e. its disjuncts. Note that the disjuncts generally represent infinite
sets of states, which makes our procedure different from an enumerative procedure (and requires
the management of formulas with free variables).

Tabled resolution is originally an execution strategy for logic programs with negation;
see [CW96, SI88, TS86b]. We have not, however, found a tabled-resolution procedure for
non-ground constraint queries wrt. the perfect-model semantics in the (yet quite extensive)
literature. In the context of verification, tabled resolution has been used in [RRR*97b] for
ground programs (and finite-state systems).

The connection between Su properties and perfect models of constraint query language
programs is perhaps of intrinsic interest; its role in this chapter is a quite pragmatic one. Namely,
the connection helps us to concisely formulate and to formally prove correct our forward analysis
procedure.

Convergence (a.k.a. zenoness or timelock) [AH97, HNSY94, Tri99] for timed automata is
an Sy property. Therefore, one can apply either of our two general symbolic model checking
methods, the backward or the forward one. The two existing specialized algorithms for checking
convergence [HNSY94, Tri99] are instances thereof. Thus, our work helps to situate the two
algorithms within a general model-theoretic and proof-theoretic context.

4.2 Stratification

We first recall the syntax of modal mu calculus. The syntax of (closed) formulas ¢ of the modal
p-calculus is given below.

o a=pla|-plend eV | cp|pa.e

Here p is an atomic proposition, = is a variable, < is the next operator (written EX in CTL
syntax), and in pz.@, ¢ is monotone in z (i.e., all occurrences of the free variable z in ¢ lie in
a scope of an even number of negation).

Sometimes we use the formulas vx.¢(x) and Og informally as abbreviations for ~pz.—¢p(—x)
and —<—, respectively.

The Fisher-Ladner closure cl(y) of a formula ¢ is the smallest set of formulas containing ¢
such that

— if ¢ € cl(p) and ¢’ is a subformula of ¢ then 9’ € cl(p), and
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Alternation-free p-calculus
CTL Su

STL

EF — logic

Figure 4.1: Situating the expressiveness of Sy

— if px.ah(x) € cl(p) then Y(pz.9p(z)) € cl(yp).

Here, for a formula pz.¢(x), the formula v (uz.1)(z)) is obtained from v (z) by replacing each
free occurrence of z with pz.9(z).

Definition 4.1 (Stratified u-calculus Su) An Su formula is a closed formula ¢ of the modal
p-calculus such that the is-subformula relation over cl(p) can be made a partial order < that is
strict wrt. to negation, i.e. o' < =y,

The above definition is equivalent to saying that there exists a stratification function S assigning
a natural number to each formula in the closure cl(p) such that

— if " € cl(y') then S(¢") < S(¢'), and
- 8(¢") < 8(~¢') for all ¢’ € cl(yp).

Thus, the stratified p-calculus Sp consists of all stratifiable formulas of the modal p-calculus
(in the syntax given above, i.e. with least fixpoints and Boolean set operators including the
complement, but without greatest fixpoints).

Figure 4.1 situates the expressiveness of Sy relative to the alternation-free p-calculus, CTL
and STL. We recall the definition of the syntax of STL and of its sublogic, the EF-logic.

o u=plopleANg oV | EX(p)|EF(p) (EF-logic)

o n=ploploNg |V | EX(p) | pEUY (STL)

To see that Sy is subsumed by the alternation-free p-calculus, observe that nesting of fixpoints
and v (where v is expressed in terms of ¢ and negation) requires strict decreasing of the value of
the stratification function; the value of the stratification for a fixpoint formula must, however,
be the same for its one-step unfolding.

The example of the formula pz.p V —<—x (abbreviated pxz.p V Oz, and written AF(p) in
CTL syntax) of the alternation-free u-calculus shows that Sy is strictly less expressive. To see
that ¢ is not an Su-formula, suppose that there exists a stratification function S showing that
¢ is an Sp-formula. Let ¢ (z) be the formula p V —<—z. Then S(uz.y(z)) > S (pz.9(x))) >
S(—o—pz.a(x)) > S(o—px.yp(z)) > S(—pz.(x)) > S(px.ap(x)), which is a contradiction.

To see that Sy is incomparable with CTL in terms of expressiveness, observe that (1) every
satisfiable formula of Sy has a model whose paths are all finite; the CTL formula EG(p), for
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example, does not have such a model; (2) the Sy formula px.p V <<z expresses the property
“p is reachable in an even number of steps”, which cannot be expressed in CTL.

Our motivation for Sy stems from infinite-state systems with generally undecidable model
checking problems. In fact, the following proposition shows that the restriction of the
alternation-free p-calculus to Su does not trade with a decrease of the theoretical complex-
ity of model checking for finite-state systems. As in the alternation-free p-calculus; the problem
is hard for P even if the formula is fixed. The existing P-hardness proofs for the alternation-free
p-calculus, however, reduce the alternating graph-reachability problem, using the O modality in
an essential way, and cannot be carried over directly.

Proposition 4.1 (Finite-state systems) The program complexity of Su model checking is
P-complete.

Proof. We reduce the monotone circuit value problem (MCVP), well-known P-complete problem.
An instance of MCVP is a sequence variables X1,...,X, of boolean equations of the form
X; = true, X; = false, X; = X; N X}, or X; = X; V X}, where for all equation of the last two
forms we have ¢ > max(j, k), such that the value of a varaible does not depend on itself. The
question we ask is whether the value of X, is true.

Given such an instance I of MCVP, we construct a Kripke structure K = (S,—,L) as
follows. We define the set of atomic propositions as {p,p1,p2}. The set S of states consists
of the variables X1,..., X, and their copies (two for each variable) X1, X2 ... X! X2 The
labeling function L : § — 2{PP1P2} is defined as follows. L(X;) = {p} iff X; = true is in I.
For all i = 1,... ,n we define L(X}) = {p1} and L(X?) = {p2}. The transition relation — is
defined as follows. For all equations X; = X; V X} we have X; — X; and X; — X}, and for all
equations X; = X; A Xj we have X; — X}, X; - X? X} — X, and X} — Xj;. Now it is easy
to see that the state X,, in the structure K satisfies the formula

pr.pV oz V(s(p1 A <) A (<(p2 A <))

if and only if the value of the variable X,, in the circuit is true. [

4.3 Backward Analysis

In this section, we define a hierarchy of three kinds of procedures based on backward analysis
that correspond to the three ‘safety logics’ EF-logic, STL and Sy, respectively. These procedures
are essentially least-fixpoint iterations for a fixpoint operator that is derived from the direct-
predecessor operator pre in three different ways. We formalize the setting by defining directly
the three families of sets of states that can be computed.

We fix a transition system 7 = (¥, —) with the set of states ¥ and the transition rela-
tion — (and the corresponding predecessor operator pre over sets of states).

Given a set of atomic propositions p, we fix a corresponding set of base sets; i.e., for every
atomic proposition p there exists a base set b C ¥ that is the interpretation of p.

The least-fizpoint closure F*(S) of the set S under a given operator F' on sets is the least
fixpoint of the function Az.(S U F(z)).

We write SN F for the operator A\z.(S N F(z)), F o F' for the functional composition of the
two operators F' and F', and F' U F' their pointwise union.
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Definition 4.2 (“computable by backward analysis”) A set of states S is lfp-computable
if it is

— one of the given base sets,

— the union, intersection or complement of lfp-computable sets, or

— of the form Pre(S) or of the form Pre*(S)
where S is an lfp-computable set and the operator Pre is formed in the following way
(possibly using some other lfp-computable set S').

Case 1 Pre := pre
Case 2 Pre ::= pre| S' Npre
Case 8 Pre ::= pre| S'N Pre| Preo Pre' | PreU Pre' | Pren Pré

Proposition 4.2 The sets of states expressed by the temporal properties in EF-logic, STL and
S are exactly the lfp-computable sets in Case 1, 2 and 3, respectively.

Proof (by structural induction). Base sets correspond to atomic propositions; union, intersection
and complement of lfp-computable-sets correspond to disjunction, conjunction and negation in
the corresponding logic. If a set S corresponds to a formula ¢ then pre(S) corresponds to
EX(y) and pre*(S) to EF(yp) in EF-logic, trueEUg in STL (where true can be defined as
pV —p), and px.¢ V <z in Su. The set (S’ N pre)*(S) corresponds to ¢'EUyp in STL and to
pr.o V@' A <z in Su, where ¢’ is the formula corresponding to S’. In case of Pre*(S) where
Pre is defined using composition, union or intersection, the set is translated in an obvious way
to a least-fixed-point formula of Sy using respectively composition, disjunction or conjunction
of respective subformulas. The only case requiring more argumentation is the translation from
least-fixed-point formulas of Sy to lfp-computable sets.

Given a formula pz.p in Su we first translate it to a guarded formula (where all variables
appear in a scope of the <~ modality) by rewriting all unguarded variables to false, and then
translate the result to the disjunctive normal form. Let us call the obtained formula px.¢. If
this formula denotes a nonempty set of states, ¥ must contain a disjunct that does not contain
z (otherwise it can be translated to SN ~ S for any base set S). Let S be the set corresponding
to the disjunction of all such disjuncts. Since 1 is a stratified formula, the subformula x must
belong to the same stratum as ¥ and thus = does not occur in a scope of negation. Now it is
easy to construct an operator Pre such that pux.y) defines exactly the set Pre*(S). [

4.4 Perfect Models

In this section, we present a translation of Sy properties to the perfect models of stratified
constraint query language programs. The translation is reminiscent of the ones in [CP98b,
DP99b, GGV98, RRR97b, GP97]. Here, however, the translation is done such that it yields
stratified programs. Roughly, a program is stratified if the dependency relation between its
predicates (where p < ¢ means: “the predicate p calls the predicate ¢”, or: “p is defined
using ¢”) can be made a partial order that is strict wrt. negation; i.e., p < ¢ if there is a clause
of the form p(z) < ...not(g(z)).... A level mapping of a program is a mapping from its set
of predicates to the natural numbers. The level of a predicate p, denoted by level(p), is the
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value of the predicate under the mapping. A constraint query language program is stratified if
it has a level mapping such that in every clause of the form p(x) +— B A ¢, the level of the
predicate of any atom occurring positively in B is less than or equal to that of p and the level
of the predicate of any atom occurring negatively in B is less than the level of p.

The original definition of a perfect model of a stratified constraint query language program P
is model-theoretic [Prz88]. An equivalent definition yields a direct construction of this model;
the construction uses the complementation of the least-fixpoint closure of the direct-consequence
operator Tp [ABW88|. Roughly, the proof of the theorem below as well as that of Theorem 4.2
is built around this construction. In the sequel, we assume that the constraint domain D that
we consider admits quantifier elimination. For a program P, let Bp denote the D-base of a
program P. The formal definition of perfect model based on direct construction, given below,
is taken from [ABW88]. An equivalent definition can also be found in [Prz88]. Before we define
the perfect model of a constraint query language program P, we need the definition of the Tp
operator. The operator Tp is a mapping from 2B? to itself. It is defined as follows. The atom
p(v) € Tp(I) (for I C Bp) iff for there exists a ground instance p(v) <— body of a clause in P
such that I |= body.

Definition 4.3 (Perfect Model) Let P be a stratified constraint query language program with
mazimum predicate level k. Let M_y = 0. For 0 < j < k do the following. Let C; be the
completed lattice {M;_1 US| S C {p(v) € Bp |level(p) = j}} under set inclusion. Let T% be
the restriction of the immediate consequence operator Tp to C;. Let M; = T% T w. Then My s
called the perfect model of P.

We assume that we can represent the transition systems of interest as constraint query
language programs. That is, we are able to define a predicate trans(s,s’), init(s) and pgp(s)
saying, respectively, that there is a transition from the state s to s’, that s is an initial state,
and that the atomic proposition ap holds in the state s. Such representations (together with
direct syntactic translations) are known for finite systems [CP98b, GGV98, RRR*97b, STR96],
push-down systems [CP98b], concurrent programs (including integer-valued protocols) [DP99b],
and timed and hybrid systems [MPOOb].

Given a constraint query language program P defining the predicate trans, we translate an
Sp formula 9 to a constraint query language program P, as follows. For each formula ¢ in cl(v))
we introduce a new predicate p, defined as follows.

(1) Poings (s) « Py, (S)aplﬂz (s)
(2 Ppives(8) < Py, (8)
pcp1\/tp2 (S) — plﬂz (S)
(3) P-p(s) < not(py(s))
(4) Poy(s) <+ trans(s,s’), p,(s)
(5) pum.np(w)(s) — ptp(u:c.np(w))(s)

To simplify the presentation, we abbreviate the translation of Sy formulas that are expressed in
the syntax of EF-logic or STL.

(6) pEFcp(S) « pzp(s)
PEFy(S) < trans(s,s’), pery(s’)
(7) Pp1EUp; (s) < Py, (s)
Py1EUp, (S) < Do (S)vtrans(sasl)apcmEUsOQ (SI)
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Theorem 4.1 An atom py(s) belongs to the perfect model of the program Py, if and only if the
Sp formula ¢ is true of the state s; or: the denotation of the predicate p, in the perfect-model
semantics of the program P, is exactly the denotation of the Sy formula ¢ wrt. the transition
system P,

[[ptp]]pm(ﬁp) = [[30]]79-

Proof. By structural induction on stratified mu-calculus formulas. [

4.5 Tabled Resolution

In this section, we present the symbolic forward analysis for Sy formulas. Based on Theorem 4.1,
we can formally define it as a procedure for stratified constraint query language programs P.
The input is a query consisting of an atom p(x) and a constraint ¢. The output, if it terminates,
is a complete list of answer constraints [¢1,... ,¢n]. This means: for every tuple v of values
for the argument tuple x, the atom p(v) lies in the perfect model of P and v is a solution of
the constraint ¢ if and only if v is a solution of one of the answer constraints ;. In short: the
denotation of the predicate p in the perfect-model semantics of the program P intersected with
the set of solutions of ¢ is the set of solutions of all answer constraints, i.e. of the disjunction ¢V

.. Von,

[[pﬂpm(?‘) Nle] =[e1 V...V eq].

If the program P arises from the translation given in the previous section (i.e., it is of the
form Py for an Sy formula ) and the constraint ¢ describes the set of initial states, then
tabled resolution starting with the query (p(x), ¢) corresponds to forward analysis (depth-first
or breadth-first, depending on the selection strategy of the resolution procedure; here, we have
formulated a depth-first procedure). The answer constraints then specify which of the initial
states satisfy the Sy formula ¢ (possibly all of them, namely if the disjunction is equivalent
to ¢).

The procedure is based on tabled resolution (see e.g. [TS86b, SI88, CW96]), which we have ex-
tended to handle constraints and nonground constructive negation (i.e. with nonground queries).

The central data structure is a table T of answer constraints. An index in the extendible
table is a query of the form (p'(z),¢') (consisting of an atom p'(x) and a constraint ¢'); the
corresponding field contains a list of answers to that query that have computed to far. Initially,
the table has only one index, namely the original query (p(x), true), whose field contains the
empty list.

The basic idea of the procedure is simple. We start with the initial query (p(x), true).
Iteratively, we apply resolution steps, hereby creating (disjunctions of) new queries, each of the
form (p1(x1) A ... Apg(xXk),?). This goes on until no more steps are applicable (either because
a query is failed or because an answer constraint has been derived). We store all answers
to any query encountered so far in the table T (procedure tabulate). We reuse the tabled
information whenever possible (case (b) in the procedure extend); this is crucial for avoiding
infinite loops. The cases (a) and (b) in the procedure extend give an extension of the original
tabling procedure [TS86b] to handle constraints. The cases (c) and (d) are an extension to
handle constructive negation. Again the idea is simple: to get an answer to a negative query
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—p(x), ¢ we first run the procedure for the positive query (it is important here that we collect
all the answers for the positive query) and then negate the answer.
If the procedure terminates (which in general cannot be guaranteed, already for decidability
reasons), then the table contains all answers to all sub-queries and to the original query p(x).
The examples below give an intuition about the procedure. Example 4.1 shows how tabling
helps avoiding infinite loops. Example 4.2 shows how answers to all subgoals are stored in the
table (for all successful subderivations). Finally, Example 4.3 shows how the negation is handled.

Example 4.1 Consider the query p(z) for the following program.

p(z) < x=0.
p(z) +— zxz=1.
p(z) < p(z).

We start with the structure consisting of one active node p(z), and the table T' containing one
entry T[p(z)] = []. After the first extension we obtain two answers z = 0 and z = 1 and
one new node, again with the query p(z), hence it is classified as a lookup node. Call this
node v. The table is updated with T'[p(z)] = [z = 0,z = 1] and the lookup mapping gives
L(v) = [x = 0,z = 1]. The second resolution step takes the first answer from this list, creates a
new node z = 0 and moves the lookup pointer to the tail of the list, so now L(v) = [z = 1]. Since
the solution z = 0 occurs already in the table, it is not added there. After the third resolution
step the new node x = 1 is created and the value L(v) is set to the empty list. At this point no
more resolution steps are possible and the procedure terminates.

q1(z) A ga(z)

r(y) Nga(z) Nz =y—1

@) Ne=y—-1Ay>1

TN

r=y—1Ay>1Aze<l z=y—-1Ay>1Azx>2

Figure 4.2: Computation tree for Example 4.2
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Example 4.2 Consider the query p(z) for the following program.

p(@) < q(2),q(z).
q(z) « z=y-1Lr(y).
r(z) < x>1.

@) « z<l

@(z) <~ z>2

The derivation tree for this query is shown on Figure 4.2. All nodes (except answers) in this
tree are active. In the fourth node of this tree we obtain an answer x = y — 1 Ay > 1 to the
subquery r(y) and this answer is passed to the procedure tabulate. Before storing it, however,
the formula dz. + = y — 1 Ay > 1 is normalized; in particular the existentially quantified x is
eliminated and the new entry in the table is T[r(y) Az =y — 1] = [y > 1].

Note that the constraint z =y — 1 Ay > 1 is not only an answer to the subquery r(y), but
also to the subquery ¢i(z). In order to find it out, the procedure tabulate is called recursively
to propagate the answer up in the tree. Then it is again normalized (this time the variable y,
and not z, is existentially quantified) and stored: T'[q;(z)] = [z > 0].

The same happens when we reach leaves of the tree. The two answers that we obtain have
to be stored both in the entry for ¢2(x) and p(z), thus we obtain [x > 0Az <1, x > 2] as the
value for T'[p(z)] and T[g2(z) Nz =y — 1Ay > 1].

Example 4.3 Consider the program from Example 4.2 together with a clause p'(z) + —p(z)
and a query p'(x). Since the tree from Figure 4.2 cannot be extended anymore (it is totally
successful in the terminology of Stuckey [Stu91]), we can negate the answers collected for the
query p(z) and obtain correct answers for the query —p(x) that (after transforming to the
disjunctive normal form) we store in the table: T[-p(z)] =[x <0, > 1Az < 2]|. (Note: since
we always eliminate existential quantifiers, negating constraints does not introduce universal
quantification; i.e., we do not have to treat queries with universally quantified variables.)

We will next describe the procedure in detail (see Figure 4.3). The current computation state
of the procedure a triple (F,T, L). Here, F is a set of trees (intuitively, an SLDNF forest; each
call to a negative goal starts a new tree). Each node of F' is a goal of the form A", l;(x;) A ¢
where n > 0. For n = 0 we say that A} ;li(x;) is empty and the goal is an answer ¢. For
n > 1 we write such goal as l3(x1) A R A ¢ to indicate that I1(x;) is the selected literal and
R = A, li(x;) is the rest of the goal. (A literal I(x) is either an atom p(x) or a negated atom
—p(x).) An actual implementation will not keep the whole forest F' but only the relevant parts
of it; instead of having the procedure tabulate go up a path in F', one would use forward pointers
in the table T'; in this presentation, we will not go into such details.

The second component T of the current computation state is the table that we have discussed
above. The third component L is a lookup mapping; it maps nodes of F' to lists of constraints
and is used to go through all answer constraints stored in the table T' that are relevant for the
given node.

Every node in the forest F' is classified as an active or lookup node by procedure classify.
Intuitively, active nodes are the nodes for which we have to compute answers; lookup nodes
are the nodes for which the answers can be found in the table (roughly, the selected literals in
lookup nodes are instances of the selected literals in active nodes). Furthermore, every node
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is positive or negative depending on whether the selected literal is positive or negative; a node
may be also marked as failure. The lookup mapping L is defined only for lookup nodes.

Definition 4.4 In a given current computation state (F,T,L), a node v in F is called a ez-
tendible node of type (a),(b), (c) or (d), respectively, if

(a) v is a positive active node, a leaf in F' and not a failure node, or
(b) v is a lookup node and L(v) is a nonempty list, or
c) v is a negative active node without a companion node in F', or
g p 5

(d) v is a negative active node that is not processed yet (see below) such that the computation
for the companion node is done (see below).

A negative active node —p(x) A R A ¢ is processed if it is either marked as failure node or the
list T[—p(x), ¢] is nonempty. A computation for a positive node is not done if the tree rooted at
this node contains an extendible node or it contains a lookup node v’ such that the computation
for the active node corresponding to v’ is not done.

Definition 4.5 (Successful tabled derivation) A sequence p(x) A ¢,G1 A ¢1,... ,Gp A ¢p
is a successful derivation for the query p(x) A ¢ wrt. the table T if: G, is the empty goal, ¢, is
a satisfiable constraint, and for all i = 0,... ,n — 1 (where Gy = p(x))

- G; = q(x) A R and there exists a clause g(x) < body A ¢ such that G;11 = body A R and
Pit1 = i N1, or

- G; = q(x) AR and Gi+1 = R and there exists a constraint ¢’ such that ¢;=¢', (¢(x), ¢')
is an index of T' and there exists a member 9 of T[(g(x), ¢’)] such that @; 11 = i A .

A sequence p(x) ARAN@,G1 ARN@1,... ,Gp ARNA @y, is a successful subderivation for p(x) A ¢
wrt. T if p(x) A o, G1 A p1,... ,Gn A ¢y is a successful derivation for p(x) A ¢ wrt. T.

Since the original query appears as an index of the table T' and the return statement refers to its
entry, the theorem below implies that the procedure, if it terminates, returns the correct output
according to its specification.

Theorem 4.2 (Correctness) If the tabling procedure terminates them, for every query
(p(x),p) or (—p(x),p) that occurs as an index in the table T, the entry of T at that index
is a list of constraints [¢1,... ,ppn] such that

[[pﬂpm(?‘) Nle] =[e1 V... Vo],

i.€., the denotation of the predicate p in the perfect-model semantics of the program P intersected
with the set of solutions of ¢ is the set of solutions of all constraints p1,... , Yn.

That is, the atom p(v) lies in the perfect model of P and v is a solution of the constraint ¢ if
and only if v is a solution of one of the constraints ¢;.

Proof. The proof of the theorem is (simultaneously) by induction on the level of the query.
For this, we first define the level of a query (Q, ), where @ is a conjunction of literals, as
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follows. For a query (Q, ¢), its level is the larger of (a) the maximum level of the predicates in
the positive literals of @, and, (b) one more than the maximum level of the predicates of the
negative literals of Q.

Base Case: The base case is when the level of query is 0. Le., @ is a conjunction of atoms
such that each predicate in @ has level 0. This case is proved by a simple extension of Lemma
3.17 and Theorem 3.18 in [T'S86a].

Induction Step: Suppose that the theorem holds for queries of level < k. Suppose also
that the query is (@, ¢) where @ is a query of level k + 1.

(Soundness): We use induction on the length n of the refutation. Suppose, first, that
n = 1. Then @ is a literal. Suppose also that @ is a positive literal @Q(x). Suppose that v is
the computed answer in the table entry corresponding to (Q(x),¢). Now there must exist a
nonground fact (or a set of nonground facts) Q(x) +— ¢’ through which the query succeeded.
Hence, {Q(v)|D, v |= ¢} is contained in the perfect model of P. Now suppose that Q(x) = —p(x)
is a negative literal. Then the following happens. Since, the derivation is of length 1, either,
the corresponding derivation starting from the positive literal fails or all clauses with p(x) at
the head are nonground facts. In the first case the answer to the query is ¢ itself. By induction
hypothesis (for the induction on levels), for any tuple v such that D, v = ¢, the atom p(v) is
not contained in the perfect model of P. Therefore, for each tuple v such that D,v |= ¢, the
negated atom —p(v) is contained in the perfect model of P. The reasoning for the success case
is similar.

Suppose now that n > 1 and the result holds for refutations of length less than or equal to
n — 1. Suppose first that the leftmost literal of @Q is a positive literal p(x). Let @ = p(x) A P'.
Assume that there exists no entry in the table for (p(x),n) such that 3_xp |= n. The other
case in which there is such a table entry can be proved similarly. Suppose that the first clause
through which the query resolves is p(x) «— B A ¢'. Let the free variables in the body B be
y- Let the free variables of P’ be z. Then the resolvent is given by (B A P',3_(y o A ¢'). Let
the answers for the table entries corresponding to the literals in B and P’ be 91,... ¢y (for
a query (I(y') A B',¢"), whenever a literal I(y') is called, then if there exists a table entry of
the form (I(y’), ¢’") such that 3_y¢" = ¢, then this goal is made to point to the solution list
corresponding to that entry in the table; otherwise a table entry for (I(y'), 3_ys¢") with an empty
list is created). By induction hypothesis (for the induction over the length of the refutation),
for each literal [; in B A P, for any tuple v, if D, v |= 1); then [;(v) is in the perfect model of P.
Now the answer received by the entry (p(x),3_x¢) is given by ¢y = I _xo A’ A1 A .. A Yy
We show that for any tuple D,v |= ¢, D,v |= ¢ and p(v) is in the perfect model of P. Suppose
that D,v |= ¢. Then, D,v |= . Also there exists a tuple u such that D,v,u = 91 A ... A Y.
For any literal /;(y;) in B, let u; be the values of y; in the tuple u. Then D, u; = ;. Therefore,
for each ¢, I;(u;) is in the perfect model of P. Also, we have that, p(v) +— ly(u1) A... Al (um)
is the ground instance of a clause in P. Hence p(v) is in the perfect model of P.

Now suppose that the leftmost literal of @ is a negated literal. Assume that it is —p(x).
Assume, without loss of generality, that there does not exist an entry in the table of the form
(=p(x),¢') such that 3 _x¢ = ¢'. Then a fresh entry for (—p(x),3_x¢) has been put in the
table with an empty list at the beginning of evaluation of this query. Assume that the answer
obtained for this entry is ¢. Then we have the following. Either, the query Q' = (p(x), ¢"),
where 3_y¢p = ¢", has failed. Or all answers to the query @' have been obtained. In the first
case, the answer ¢y = 3_x¢. By the induction hypothesis (for the induction on the level of the
query), for any tuple v such that D, v |= 3_xp, the atom p(v) is not in the perfect model of P.
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Hence, for any tuple v such that D,v = 3_x¢, —-p(v) is contained in the perfect model of P.
Similarly for the second case.

(Completeness): Now suppose that for a literal [ and a tuple v, [(v) is in the perfect model of
P. Let  be a constraint such that D,v |= ¢. We show that, if the procedure terminates, there
exists a table entry of the form (I(x), ¢') such that ¢ |= ¢’ and the solution list corresponding to
this entry contains a constraint ¢ such that D, v = ¢ (from now, we suppose that the procedure
terminates). First, suppose that I(x) = p(x) is a positive literal. Then the level of the query
(p(x),p) is k + 1. Then, p(v) € T;;H T n, for some n > 0. We prove by induction on n that,
for for any ground atom v, such that D,v = ¢, if p(v) € T7’§+1 1 n, then the solution list of the
table entry corresponding to (p(x),¢) (or of (p(x), ') where ¢ = ¢') contains a constraint ¥
such that D, v |= 4.

Suppose first that n = 1. Then there exists a ground instance p(v) <— D of a clause C such
that the perfect model of P logically implies D. Let the clause C be of the form p(x) «+— BA¢".
Let the free variables occurring in B be y. Then the resolvent of (p(x), ¢) through C is given by
(B,3_yp A¢""). Let n = 3_yp A ¢"'. For a literal [; in B, the level of the query (I;(y;), 3—y,n)
is at most k£ (since n = 1). Let the answers received for each such query (l;(y;i),3-y,n) be ¥;.
Also, let I;(u;) be a conjunct in D. Then, by the main induction hypothesis, D, u; = ¢;. Now,
the answer to the query (p(x), ) is given by ¥/ =3 xo A " Ay A ... Ay Tt is now easily
shown that D,v =

Next, suppose that n > 1. Then there exists a ground instance p(v) +— D of a clause C
such that every ground atom in D is in the perfect model of P. Let the clause C be of the form
p(x) «— B A ¢". Let the free variables in B be y. Then the resolvent of (p(x), ¢) through the
clause C is given by (B, ) where ¢ = 3_yp A ¢"'. We can write B as B’ A B” such that for any
literal /; in B’, the level of the query (I;(yi), 3_y,%) is less than or equal to k and for any literal
I in B", the level of the query (I;(y;), 3-y;%) is k + 1. For each i, let the answers obtained for
the query (l;(yi), 3-y,%) be ¢;. Then, by the main induction hypothesis on k, for each conjunct
l;(u;) in D such that the literal [; is in B', D,u; |= ;. Again, by the induction hypothesis on
n, for each conjunct /;(u;) in D such that the literal [; is in B”, D, u; = ;. Now the answer to
the query (p(x), ) is given by ¥’ = 3_xp A" A1 A ... Abg. Tt can now be easily shown that
D,v =y

We next come to the case when [ is a negative literal —p(x). Then the level of the query
(p(x), @) is k. Let the answer to the query (p(x),¢) be ¢'. Then, by the induction hypothesis
on k, D,v [~ 1¢'. Now the answer to the query (I(x), ¢) is ¥ = —1). Hence D,v = ¢".

H

4.6 Convergence in Timed Automata

The procedure given in Section 4.5 is not guaranteed to terminate even when it is applied only to
logic programs Py, that arise from the translation of timed automata. However, techniques are
known (e.g. extrapolation [DT98] or trimming operation described in Chapter 3) to enforce ter-
mination of forward analysis of timed automata. These techniques operate on the representation
of the constraints; i.e., they are orthogonal to the control aspects and can be integrated directly
into our forward analysis procedure, turning it thus into an always terminating algorithm, i.e. a
decision procedure for the model checking problem of Sy formulas for timed automata.

The stratified p-calculus is expressive enough to capture convergence of timed au-
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tomata [AH97, HNSY94, Tri99]. It is well-known that, for every timed automaton .A, one
can construct a timed automaton A’ (in linear time) such that A is convergent if and only if the
Su formula EF=EF(y > 1) is true for the automaton A'.

Two specialized algorithms for detecting convergence in timed automata have been devel-
oped, one based on backward [HNSY94] and one on forward analysis [Tri99]. We can now see
that both algorithms are instances of two general procedures (bottom-up computation of the
perfect model using the Tp operator, and tabled resolution) to check whether a query is true in
the perfect model of a given stratified logic program P.

4.7 Checking Convergence

To give some intuition for the general approach, we consider an example. The timed automaton
on the left part of Figure 4.4 is supposed to model a switch with two states on’ and ’off’, staying
for at least one and at most two seconds in a state and then switching to the other one. The
variable z stands for a clock; the constraints z < 2 in both states say that the switch can stay
in the state only if the value of the clock does not reach 2, the constraints z > 1 on both edges
mean that the move to the other state can be made only if the value of the clock exceeds 1. The
automaton starts in the state on with the value of the clock set to 0.

This automaton does not model the intended switch; while changing from one state to the
other we do not reset the clock x. However, the automaton still does not deadlock: there still
exist infinite traces of the automaton, but it has to change its state infinitely many times before
the clock reaches the value 2. Such a property of an automaton is called convergence. More
precisely, we say that an automaton A is convergent if there exists a reachable state s of A such
that in every infinite computation of A starting in s the time of the computation is bounded by
a constant. This is clearly a kind of error that one would like to be able to find automatically.

The automaton on the right part of Figure 4.4 consists of two copies of the initial automaton,
where all states are connected by edges labeled y := 0 with their copies. The variable y is a new
clock that we add here. Intuitively, we simulate the initial automaton with an additional clock
which we reset only once at some nondeterministically chosen point of time. It is easy to see
that the new automaton satisfies the formula EF-EF(y > 1) if and only if the initial automaton
is convergent.

The translation of this Sy formula to a constraint query language program involves
defining the predicate trans. For example, the time transition at on gives the clause
trans(on,xz,on,z') «— ' = x+2 ANz > 0A 2" < 2. The edge transitions can be translated
following the same technique as in Chapter 3.
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program tabled resolution
input: program P and a query (p(x), )
output:[¢1, ..., p,] such that [p],,p) N [e] =[p1 V...V o]
set F' as the tree consisting of one node p(x) A ¢
set T as the empty table
set L as the empty mapping
classify(p(x) A ¢, T, L)
repeat
choose a node v that is extendable wrt. (F,T, L)
extend((F,T, L), v)
until there is no extendable node in ¥
return(T|(p(x), ¢)))

procedure classify(v, T, L)

if v is of the form p(x) AR A ¢ % v is not an answer node
then

if T contains an entry indexed (p(x), ¢') such that p=¢'

then

mark v as a lookup node
assign L(v) = T[{p(x), ¢")]
else
mark v as an active node
assign T[(p(x), ¢)] =[]
endif
endif
endproc % classify

procedure tabulate(v,v', 1))
if (v is a positive active node of the form I(x) AR A ¢
and the path from v to v’ in F is a successful subderivation for I(x) A ¢ wrt. T
and T[(l(x), ¢)] does not contain 1’ such that ¥|=v")
or (v is a negative active node of the form I(x) ARA ¢
and v’ is a child of v)
then
assign T[(p(x), ¢)] = append(T[(p(x), ¢)],[NF(¥)]) % NF: elimination of 3’s
endif
if v is not a root in F then tabulate(parent(v),v',T) endif
endproc % tabulate

Figure 4.3: Tabled Resolution
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procedure extend((F,T,L),v)

case type of v of % see Definition 4.4
(a): % positive active node
let v=p(x) ARA¢p
let C1,...,C), be all clauses such that

C; = p(x) < body; N ¢; and ¢ A p; satisfiable
if n = 0 then mark v as failure node
else
for all¢=1,... ,ndo
create new node v; = body; A R A\ ¢ A ¢; as a child of v in F
classify(v;, T, L)
if body, is empty then tabulate(v,v;, o A ¢;) endif

endfor
endif
(b): % lookup node
letv=1I(x)ARAy
let ¢' = head(L(v)) % (the first element of the list)

assign L(v) = tatl(L(v)) % (the remainder of the list)
if o A ¢’ satisfiable then
create new node v/ = RA p A ¢’
classify(v', T, L)
tabulate(v,v', o A ¢')
endif
(c): % negative active node, no companion
let v=-p(x) ARAgp
create a new node v’ = p(x) A ¢ as the root of a new tree in F
classify(v', T, L)
mark v and v’ as companion nodes
(d): % negative active node, companion done
let v=-p(x) ARA ¢
let v' = p(x) A ¢ be the companion of v
let [¢1,... ,¢n] be the list T[(p(x), ¢")]
where ¢ = ¢’ or p=¢' depending on whether v’ is an active or lookup node
if n =0 then set n =1 and [p1,... ,pn] = [false] endif
if o A \_; ~¢; is unsatisfiable then mark v as a failure node
else
let 1 V...V, = DNF(p AN, —¢i) % Disjunctive Normal Form
assign T[(~p(x), ¢)] = (41, . , Y]
for all:=1,... ,k do
create new node v; = R A ¢ A; as a child of v in F
classify(v;, T, L)
tabulate(v,v;, ¢ A @;)
endfor
endif
endcase
endproc % extend
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Chapter 5

Beyond Region Graphs:
Symbolic Forward Analysis of Timed
Automata

5.1 Introduction

A timed automaton [AD94] models a system whose transitions between finitely many control
locations depend on the values of clocks. The clocks advance continuously over time; they can
individually be reset to the value 0. Since the clocks take values over reals, the state space of a
timed automaton is infinite.

The theoretical and the practical investigations on timed automata are recent but already
quite extensive (see e.g. [AD94, HKPV95, LPY95b, Bal96, DT98]). Many decidability results
are obtained by designing algorithms on the region graph, which is a finite quotient of the
infinite state transition graph [AD94]. Practical experiments showing the feasibility of model
checking for timed automata, however, employ symbolic forward analysis. We do not know
of any practical tool that constructs the region graph. Instead, symbolic model checking is
extended directly from the finite to the infinite case; logical formulas over reals are used to
‘symbolically’ represent infinite sets of tuples of clock values and are manipulated by applying
the same logical operations that are applied to Boolean formulas in the finite state case.

If model checking is based on backward analysis (where one iteratively computes sets of pre-
decessor states), termination is guaranteed [HNSY94|. In comparison, symbolic forward analysis
for timed automata has the theoretical disadvantage of possible non-termination. Practically,
however, it has the advantage that it is amenable to on-the-fly local model checking and to
partial-order reduction techniques (see [HKQ98] for a discussion of forward vs. backward anal-
ysis).

In symbolic forward analysis applied to the timed automata arising in practi-
cal applications (see e.g. [LPY95b]), the theoretical possibility of non-terminating
does not seem to play a role. Existing versions that exclude this possibil-
ity (through built-in runtime checks [DT98] or through a static preprocessing
step [HKPV95]) are not used in practice.

This situation leads us to raising the question whether there exist ‘interesting’ sufficient
conditions for the termination of symbolic model checking procedures for timed automata based
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on forward analysis. Here, ‘interesting’ means applicable to a large class of cases in practical
applications. The existence of a practically relevant class of infinite-state systems for which
the practically employed procedure is actually an algorithm would be a theoretically satisfying
explanation of the success of the ongoing practice of using this procedure, and it may guide us in
designing practically successful verification procedures for other classes of infinite-state systems.

As a first step towards answering the question that we are raising, we build a kind of ‘tool-
box’ consisting of basic concepts and properties that are useful for reasoning about sufficient
termination conditions. The central notions here are constraint transformers associated with
sequences of automaton edges and zone trees labeled with successor constraints. The constraint
transformer associated with the sequences of edges eq,... ,e, of the timed automaton assigns
a constraint ¢ another constraint that ‘symbolically’ represents the set of the successor states
along the edges ey,...,e, of the states in the set represented by ¢. We prove properties for
constraint transformers associated with edge sequences of a certain form; these properties are
useful in termination proofs as we then show. The zone tree is a vehicle that can be used to
investigate sufficient conditions for termination without having to go into the algorithmic details
of symbolic forward analysis procedures. It captures the fact that the constraints enumerated
in a symbolic forward analysis must respect a certain tree order.

We show how the zone tree can characterize termination of (various versions of) symbolic
forward analysis. A combinatorial reasoning is then used to derive sufficient termination con-
ditions for symbolic forward analysis. The reasoning essentially involves showing that certain
properties of the control graph of a timed automaton are sufficient for ensuring termination of
symbolic forward analysis. We prove that symbolic forward analysis terminates for three classes
of timed automata. We show that the railroad-crossing example analyzed in [LS85, AD94| as
well as certain fragments of the class of RQ timed automata characterized in [LB93] as a natural
model for timed systems fall into these classes. Our analyses of these three classes demonstrate
how the presented concepts and properties of the successor constraint function and of the zone
tree can be employed to prove termination. Termination proofs can be quite tedious, as the third
case shows; the proof here distinguishes and analyzes many cases (see the proof of Theorem 5.2).

5.2 The Constraint Transformer ¢ — [w](y)

A timed automaton U can, for the purpose of reachability analysis, be defined as a set £ of
guarded commmands e (called edges) of the form below. Here L is a variable ranging over the
finite set of locations, and x = (1, ... ,z,) are the variables standing for the clocks and ranging
over nonnegative real numbers. As usual, the primed version of a variable stands for its value
after the transition. The ‘time delay’ variable z ranges over nonnegative real numbers.

e = L=lA7(x)]| L' =0 Aa(x,x,2).

The guard formula ~.(x) over the variables x is built up from conjuncts of the form z; ~ k
where z; is a clock variable, ~ is a comparison operator (i.e., ~€ {=,<,<,>,>}) and k is a
natural number.

The action formula a.(x,x', z) of e is defined by a subset Reset, of {1,... ,n} (denoting the
clocks that are reset); it is of the form

! _ ! !
ae(x,x',2) = /\ ;=2 A /\ T = x; + 2.
i€Reset, iZReset,
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We write 1, for the logical formula corresponding to e (with the free variables x and x'; we
replace the guard symbol | with conjunction).

Ve(x,X') = L=LA7e(x) ANL' =¥ N3z ae(x,%, 2)

The states of U (called positions) are tuples of the form (¢, v) consisting of values for the location
and for each clock. The position (¢,v) can make a time transition to any position (£,v + §)
where § > 0 is a real number.

The position (¢, v) can make an edge transition (followed by a time transition) to the position
(¢';v') using the edge e if the values ¢ for L, v for x, ¢' for L' and v’ for x' define a solution
for ¥.. (An edge transition by itself is defined if we replace the variable z in the formula for o
by the constant 0.)

We use constraints ¢ in order to represent certain sets of positions (called zones). A con-
straint is a conjunction of the equality L = £ with a conjunction of formulas of the form z;—x; ~ ¢
or z; ~ ¢ where ¢ is an integer (i.e. with a zone constraint as used in [DT98]). We identify so-
lutions of constraints with positions (¢, v) of the timed automaton.

We single out the initial constraint ¢ that denotes the time successors of the initial posi-
tion (£°,0).

0 _ 0
oo = L=0"21>0,20=21,... ,Ln =21

Definition 5.1 (Time-closed Constraints) A constraint ¢ is called time-closed if its set of
solutions is closed under time transitions. Formally, ¢(x) is equivalent to (IxIz(p A 2] =
T+ zA AT =+ 2))[X /X

For example, the initial constraint is time-closed. In the following, we will be interested only in
time-closed constraints.

In the definition below, ¢'[x'/x] denotes the constraint obtained from ¢’ by a-renaming
(replace each z by ;).

We write e;1.... .e, for the word w obtained by concatenating the ‘letters’ ey, ... , en; thus,
w is a word over the set of edges &, i.e. w € E*.

Definition 5.2 (Constraint Transformer [w]) The constraint transformer wrt. to an edge e
is the ‘successor constraint function’ [w] that assigns a constraint ¢ the constraint

[e](v) = (Fx(p Athe))[x'/x]

where e is the logical formula corresponding to e. The successor constraint function [w] wrt. a
string w = e1.... .ey, of length m > 0 is the functional composition of the functions wrt. the

edges €1, ... , em, i.e. [w] =[er] o...o[en].

Thus, [¢](¢) = ¢ and [w.e](¢) = [e](Jw](¢)). The solutions of Jw](¢) are exactly the (“edge
plus time”) successors of a solution of ¢ by taking the sequence of transitions via the edges ey,
., ém (in that order).
We will next consider constraint transformers [w] for strings w of a certain form. In the
next definition, the terminology ‘a clock x; is queried in the edge e’ means that x; is a variable
occurring in the guard formula 7 of e; ‘x; is reset in €’ means that i € Reset,.

Definition 5.3 (Stratified Strings) A string w =ej.... .ey of edges is called stratified if

83



- each clock x1,... ,x, 1s reset at least once in w, and
- if z; 1s reset in e; then x; s not queried in eq, ... , e;.

Proposition 5.1 The successor constraint function wrt. a stratified string w is a constant func-
tion over satisfiable constraints (i.e. there exists a unique constraint ¢, such that [w](y) = @y
for all satisfiable constraints ¢).

Proof. ~ We express the successor constraint of the constraint ¢ wrt. the stratified string w =
€1 ...e, equivalently by

[w](p) = (FxIxT. . Ix™ 13 (P AL AL A ) [x/x™]

where 1)y, is the formula that we obtain by applying a-renaming to the (quantifier-free) conjunc-
tion of the guard formula 7., (x) and the action formula ce, (x,x’, ) for the edge e; i.e.

Y = fyek(xkfl)/\aek(xkfl,xk,zk).

k

Thus, in the formula for e, we rename the clock variable z; to xffl, its primed version z to 7,
and the ‘time delay’ variable z to z*.

We identify the variables z; (applying in ¢) with their “O-th renaming” z) (appearing in 1 );
accordingly we can write x? for the tuple of variables x.

We will transform 3x!...3x™ " 1(¢y A ... A ¢) equivalently to a constraint ¢ containing
only conjuncts of the form zj* = 2Y 4+ ...+ 2™ and of the form 2! +... + 2™ ~ ¢ where [ > 0;
i.e. ¥ does not contain any of the variables z; of ¢. Thus, we can move the quantifiers Ix
inside; formally, Ix(p A ¢) is equivalent to (Ixp) A 1. Since ¢ is satisfiable, the conjunct Ix¢p is
equivalent to true. Summarizing, [w](y) is equivalent to a formula that does not depend on ¢,
which is the statement to be shown.

The variable z¥ (the “k-th renaming of the i-th clock variable”) occurs in the action formula

of 9y, either in the form z¥ = 2% or in the form 2F = :cffl + 2%, and it occurs in the guard

formula of 941, in the form xf ~ C.

If the ¢-th clock is not reset in the edges e, ..., ex_1, then we replace the conjunct a:f =
:cf_l—l—zk by :c{c =a;+ 20 ... 2k

Otherwise, let [ be the largest index of an edge e¢; with a reset of the i-th clock. Then we
replace ¥ = a¥™1 + 2% by af =2+ .. 4 25

If K = m, the first case cannot arise due to the first condition on stratified strings (the i-th
clock must be reset at least once in the edges e1, ..., ep). That is, we replace " = :c;n_l + 2*
always by a conjunct of the form a:f =zl 4. 42k

If the conjunct :Ef ~ ¢ appears in ¥;, 1, then, by assumption on w (the second condition for
stratified strings), the i-th clock is reset in an edge e; where | < k. Therefore, we can replace
the conjunct :cf ~chby zj+ ...+ 2z ~c

Now, each variable xf (for 0 < k < m) has exactly one occurrence, namely in a conjunct C
of the form xf =z 42 ... 2% or a:f = 2! +...2%. Hence, the quantifier Ela:éc can be moved
inside, before the conjunct C; the formula Exf C can be replaced by true.

After the above replacements, all conjuncts are of the form z[* = 2t 4 ... 4 2™ or of the form

2L 4. 4+ 2™ ~ ¢; as explained above, this is sufficient to show the statement. [
We say that an edge e is reset-free if Resete = (), i.e., its action is of the form
0, = /\i:l,...,n z; = x;. A string w of edges is reset-free if all its edges are.
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Proposition 5.2 If the string w is reset-free, and the successor constraint of a time-closed
constraint of the form L = A ¢ is of the form L = 0"\ ¢', then ¢ entails p, formally ¢' = .

Proof. It is sufficient to show the statement for w consisting of only one reset-free edge e.
Since ¢ is time-closed, it is equivalent to (Ix3z(p A x' = x + 2))[x/x].

Then [w](L = ¢Agp) is equivalent to (3... (L = U ApAX' = x+2' Ay (X )AX" = x'+2")[x/x"].
This constraint is equivalent to L = ¢/ A p(x) A y(x). This shows the statement. [

5.3 Zone Trees and Symbolic Forward Analysis

Definition 5.4 (Zone Tree) The zone tree of a timed automaton U is an infinite tree whose
domain is a subset of E* (i.e., the nodes are the strings over ) that labels the node w by the
constraint [w](¢°).

That is, the root ¢ is labeled by the initial constraint ¢°. For each node w labeled ¢, and for each
edge e € £ of the timed automaton, the successor node w.e is labeled by the constraint [e](¢).
Clearly, the (infinite) disjunction of all constraints labeling a node of the zone tree represents
all reachable positions of U.

We are interested in the termination of various versions of symbolic forward analysis of a
timed automaton U. All versions have in common that they traverse (a finite prefix of) its zone
tree, in a particular order. The following definition of a non-deterministic procedure abstracts
away from that specific order.

Definition 5.5 (Symbolic Forward Analysis) A symbolic forward analysis of a timed au-
tomaton U is a procedure that enumerates constraints p; labeling the nodes w; of the zone tree
of U in a tree order such that the enumerated constraints together represent all reachable posi-
tions. Formally,

— @i = [wi](¥°) for 0 < i < B where the bound B is a natural number or w,
- if w; is a prefiz of wj then i < j,
~ the disjunction VO§z’<B ©; 1s equivalent to the disjunction V0§i<w ©i.

We assume that the constraint ¢; is computed by applying any of the known quantifier elimi-
nation algorithms (see e.g. [MS98]) to a conjunction of constraints.

The number i is a leaf of a symbolic forward analysis if the node w; is a leaf of the tree
formed by all the nodes w; where 0 < i < B.

We say that a symbolic forward analysis terminates if the bound B is finite (i.e. not w). We
define that symbolic forward analysis terminates with local subsumption if for all its leafs i there
exists j < ¢ such that the constraint ¢; entails the constraint ¢;. In contrast, it terminates
with global subsumption if for all its leafs ¢ there the constraint ¢; entails the disjunction of all
constraints ¢; where j < i. Model checking is more efficient with local subsumption than with
global subsumption, both practically and theoretically [DP99a).

A depth-first symbolic forward analysis depends on a chosen order of edges. Symbolic forward
analysis terminates if and only if the depth-first symbolic forward analysis of i/ terminates for
every order chosen.
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If the symbolic depth-first forward analysis of I terminates for at least one order of edges,
then the breadth-first version also terminates. The converse need not be true, as the counterex-
ample of Figure 6.6 shows.

Figure 5.1: Example of a timed automaton for which the breadth-first version of symbolic
forward analysis terminates but the depth-first version does not, if the edge numbered 4 is
followed before the edge numbered 7.

A path p in a zone tree is an infinite string over &£, i.e., p € £¥; p contains a node w if the
string w is a prefix of p, written w < p. A node v precedes a node w if v is a prefix of w, written
v < p.

Definition 5.6 (Local finiteness) A path p of a zone tree is locally finite if and only if it
contains a node w labeled by a constraint that entails the constraint labeling some node v pre-
ceding w (formally, there exist v and w such that v < w < p and [w](¥°) = [v](¢°)). A zone
tree is locally finite if every path is.

The relation between the termination of symbolic forward analysis and the local finiteness
of the zone tree for a timed automaton is formalized as follows.

Proposition 5.3 Every symbolic forward analysis of a timed automaton U terminates with local
subsumption if and only if the zone tree of U is locally finite.

We will next investigate the special class of strings (that we call cycles) that correspond to
cycles in the control graph of the given timed automaton. Each cycle in the graph-theoretic
sense corresponds to finitely many cycles in the sense defined here (as strings), depending on
the entry location.

We say that an edge e of the form L=/¢... [ L' =/¢'... leads from the location £ to the
location ¢'. This terminology reflects the fact that there exists a directed edge from £ to ¢’ labeled
by the corresponding guarded command in the control graph of the given timed automaton (we
will not formally introduce the control graph). Semantically, all transitions using such an edge
go from a position with the location £ to a position with the location /. We canonically extend
the terminology ‘leads to’ from edges e to strings w of edges.
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Definition 5.7 (Cycle) The stringw = e1.... .ey of length m > 1 is a cycle if the sequence of
edges e1, ... , eqm lead from a location £ to the same location £ such that there exists a sequence
of edges that leads from the initial location €° to £ whose last edge is different from ep,.

The last condition above expresses that £ is an entry point to the corresponding cycle in the
control graph of the given timed automaton &. The next notion is used in effective sufficient
termination conditions.

Definition 5.8 (Simple Cycle) A cycle w =ej.... .ep is called simple if it does not contain
a proper subcycle; formally, no string e;.... .e; where 1 <1 < j <m is also a cycle.

Proposition 5.4 A locally infinite path p € E“ in the zone tree of the timed automaton U
contains infinitely many occurrences of a simple cycle w; formally, p is an element of the omega-
language (E*.w)*.

Proof. Let p be a locally infinite path. Then there exists a location ¢ such that infinitely
many nodes on this path are labeled by £ (i.e. a constraint of the form L = ¢ A.... The strings
formed by the edges connecting two nodes labeled by ¢ must all contain a simple cycle. Since
the number of simple cycles is finite, some simple cycles must be repeated infinitely often. [

A string is stratifiable if contains a stratified substring (a substring of a string e;.... .ey, is any
string of the form e;.... .e; where 1 <i <j <m).

Proposition 5.5 If every simple cycle of the timed automaton U is either reset-free or strati-
fiable, the zone tree of U is locally finite.

Proof.  Follows from Propositions 5.1, 5.2 and 5.4. [
We apply the above results to obtain our first sufficient termination condition.

Theorem 5.1 Symbolic depth-first forward analysis of a timed automaton U terminates if all
simple cycles of U are either reset-free or stratifiable.

Proof.  Follows from Propositions 5.3 and 5.5. [

To show the applicability of our result, consider the train-gate-controller example adapted
from [AD94, LS85]. This example consists of the parallel composition of three components—
the gate, the controller and the train. The transition systems (timed automata) for the gate,
controller and train are given in Figures 5.2, 5.3 and 5.4 respectively. The transition system
corresponding to the parallel composition of the three systems is given in Figure 5.5. It can
be seen that each simple cycle in the composed system is stratifiable. Hence symbolic forward
analysis train-gate-controller example terminates.

5.4 RQ Automata

A timed automaton U is called RQ [LB93] if for each clock z, U contains exactly one edge with
a reset of x and exactly one edge with a query of z, and moreover, for every transition sequence
of U starting from the initial position, the sequence of resets and queries of z is alternating,
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down
y<1

Figure 5.2: Gate Automaton

z:=0

Figure 5.3: Controller Automaton

exit
x<5

Figure 5.4: Train Automaton
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x:=0
t0g0c0 . t1g0cl

t3g0c1

Figure 5.5: Train || Gate || Controller
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O=<x=<1

w y;:O

true

x>1

Figure 5.6: Example of a timed automaton showing that the property: “Every reachable location
is reachable through a simple path” does not entail termination of depth-first symbolic forward
analysis.

with a reset before the first query; here, U refers to the timed automatonfrom U obtained by
replacing all conjuncts z ~ ¢ in the guard formulas by the conjunct x > 0. We may require
wlog. that no edge e of a timed automaton U contains both a reset of a clock and a query of a
clock.

RQ automata have the following interesting property: if a location is reachable then it is
reachable through a simple path, i.e. a sequence of edges that form a string not containing a
cycle [LB93]. So it is possible to derive specialized terminating graph algorithms for reachability
for RQ automata. Moreover, a cycle is traversable infinitely often if it is traversable once [LB93].
We will now investigate how a generic model checker based on symbolic forward analysis be-
haves on RQ automata. We do not know whether we obtain termination for this special case.
We know that the distinguished property of RQ automata (that reachability is equivalent to
reachability through a simple path) by itself is not sufficient for termination; Figure 5.6 gives a
counterexample.

We will consider two special classes of RQ automata. The first one is characterized by the
cut condition.

Definition 5.9 (Cut condition) A timed automaton U satisfies the cut condition if any two
simple cycles w and w' are either identical or their sets of edges are disjoint.

Graph-theoretically, every simple cycle in the control graph has exactly one entry point (which
is then called the ‘cut vertex’).

Theorem 5.2 Symbolic depth-first forward analysis of an RQ timed automaton U terminates
if it satisfies the cut condition and in every simple cycle, either all or no clock is reset.

Proof. A simple cycle containing a reset for each clock in an RQ automaton satisfying the cut
condition is stratified. Hence, Theorem 5.1 yields the statement. [

The second class of RQ automata is obtained by restricting the number of clocks to two. Many
interesting timed client server protocols belong to this class. See [LB93] for examples.

Theorem 5.3 Symbolic depth-first forward analysis of an RQ timed automaton with two clocks
terminates.
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Proof.  'We name the two clock variables of the automaton z and y. We note R, the unique
edge of the time automaton where z is reset, and @, the one where z is queried; similarly we
define R, and @Q,. By our non-proper restriction, R, # Q, etc..

A segment S of a path p in a zone tree is a sequence of nodes ny,... ,n,, of the zone tree.
The string w = e1 . ..en_1 labels the segment S if n,, is reached from n; by following the edges
€1,... ,€n in the zone tree.

For a proof by contradiction, assume that p is an infinite branch of the zone tree. By
Proposition 5.4, there exists a simple cycle w (leading, say, from the location £ to £) that repeats
infinitely often on p. We write Sy, So, ... for the segments that are labeled by w (in consecutive
order). We write L; for the segment between S; and S;;;. We note v’ the string labeling the
segment L;; each string v¢ is a cycle (leading also from the location £ to £). Below we will use
the terminology ‘w labels S;” and ‘v? labels L;’.

We first distinguish between the cases whether the edge R, is part of the string w (“R, € w”)
or not.

Case 1 R, € w.

The edge @, must then also be an element of w (if the cycle w can be executed once then even
infinitely often [LB93]; if it contained R, but not @, then the RQ condition would be violated).
Case 1.1 Ry € w.

Again, we must have that @, € w.

We distinguish between the cases that the edge R, appears strictly before the edge @, in the
strings w (“Ry < Q") or after (“Q, < R,”).

Case 1.1.1 Ry < Q.

Repeating the above reasoning for x instead of y, we distinguish between the cases “R, < Q,”
and “Q, < R,".

Case 1.1.1.1 R, < Q.

The two assumptions R, < @, and R, < (), mean that the string w is stratified. Hence, by
Proposition 5.1, the successor constraint function wrt. w is constant. Hence, the constraint
labeling the last node of S entails the constraint labeling the last node of S;. Thus, the path p
is locally finite, which achieves the contradiction.

Case 1.1.1.2 Q, < R,.

We distinguish the cases whether the edge @, appears before the edge R, or strictly after.
Case 1.1.1.2.1 Q, < R,.

Combining the assumptions leading to this case, namely R, € w (and hence also Q, € w)
and R, € w (and hence also Q, € w) and R, < Q, and @, < R, and Q, < Ry, we know
that the string w is of the form w = w;.Q;.w2 such that ws contains R, and R,. Hence, the
substring wy of w stratified. By Proposition 5.1, the successor constraint function wrt. ws is
constant, and hence also the one wrt. w. As in the case above, we achieve a contradiction.
Case 1.1.1.2.2 R, < Q,.

Again we combine the assumptions leading to this case: namely R;,Q;, R,,Qy € w and
R, < Qyand Q; < Ry and Ry < Q.

Only using that R, < R;, we know that the string w is of the form w = wi.Ry.w3.R;.w3.

One of the two cases, namely R, ¢ L; or R, € L;, will hold for infinitely many segments L;’s.
Case 1.1.1.2.2.1 R, ¢ L;.

Then also Q, ¢ L; (because of the RQ-condition and since L; is a cycle).

We then distinguish between the analogue cases for y instead of x.

Case 1.1.1.2.2.1.1 R, ¢ L;.
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Again, then Q, & L;.

We are assuming that Ry, Q, Ry, Qy € L; for infinitely many L;. We take two such segments,
calling them L and L'. Let v and v’ be the string labeling (the edge linking the nodes in) L
and L'. Then, the successor constraint functions wrt. v and v’ are the identity.

We form the stratified strings V = Ry.ws.v.wi.Ry and V' = Ry.w3.v".wi.Ry. Since the successor
constraint functions wrt. v and v’ are the identity, the successor constraint functions wrt. V
and V' are the same constant function. The same reasoning as above leads to a contradiction.
Case 1.1.1.2.2.1.2 R, € L;.

Then also @, € L;. Because of the RQ-condition and since the edge R, precedes @, in S;,
the first occurrence of R, precedes the first occurrence of (), in L;. Hence, the strings v
and v' (defined as above, labeling of some L;’s) is of the form v = v1.Ry.v3 or v = v].Ry.v}
where vy, ve, v] and v} do not contain any reset or any query of a clock variable (and hence,
yield the identity as the successor constraint function). We form the stratified substrings
V = Rg.ws.v1.Ry and V' = Rx.wg.v'l.Ry, which yield the same constant successor constraint
function for the same reason as above. Again, this leads to a contradiction.

Case 1.1.1.2.2.2 R, € L;.

Again, then Q, € L;. Now we are assuming that R;, Qz, Ry, Qy € L; for infinitely many L;.
As in Case 1.1.1.2.2.1.2, the first occurrence of R, must precede the first occurrence of @ in L;.
Assume that there is a reset of x in L; before the first reset of y. We form the string R,.ws.v1, R,
where w = w;.R,.ws is such that wy does not contain any reset (by the assumptions for the
cases 1.1.1.2 and 1.1.1.2.2) and v = v;.R,.v5 (the string labeling L;) is such that v; does not
contain any reset. Following the lines of the proof for Proposition 5.2 one can show that for
any constraint ¢, [Ry.w2.v1.R;](¢) entails [R;](¢). This is a contradiction (to the fact that
the path p is locally infinite).

Assume that there is no reset of x in L; before the first reset of y. Then the string formed by
the edges leading from the reset of z in S; to the first reset of y in L; is stratified. We can then
apply the same reasoning as in Case 1.1.1.2.1 to derive a contradiction.

Case 1.1.2 Q, < R,.

Thus now R, € w (and hence Q, € w), Ry € w (and hence @, € w) and @, < R,. Now we
consider the following subcases of this case.

Case 1.1.2.1 R, < Q,

This case is symmetric to Case 1.1.1.2.1 where R;, Ry € w, Q; < R, and Ry < Q.

Case 1.1.2.2 Q, < R,.

The assumption of the case is that the reset occurs after the query for both clocks. Due to
the RQ condition, there cannot be any query between the two resets. Therefore, R;.w;.Ry
(or, symmetrically, R,.wi.R;) forms a stratified substring of w. As before, we obtain a
contradiction.

Case 1.2 Ry ¢ w.

We distinguish between the following subcases of this case.
Case 1.2.1 R, < Q.

One of the following subcases holds for infinitely many L;.

Case 1.2.1.1R, ¢ L;.

As in the proof for Case 1.1.1.2.2.2, we form a substring of the form R,.ws.v1.R; where ws
and v; don’t contain any reset, and again obtain a contradiction.
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Case 1.2.1.2 Ry € L;.

We show that for the case when z is reset more than once in L; after the last reset of y in
L;, we can obtain a contradiction.

We form the string R,.w;.R, is such that w; does not contain any reset (by the assumptions
for the cases 1.1.1.2 and 1.1.1.2.2) and v’ = v;.Rz.w;.Ry.v2 (the string labeling L;). Following the
lines of the proof for Proposition 5.2 one can show that for any constraint ¢, [R;.wa.v1.Rz](¢)
entails [R;](¢). This is a contradiction (to the fact that the path p is locally infinite).

The remain cases are as follows, one of which repeats infinitely often.

Case 1.2.1.2.1. The last reset of y in L; is followed by a query of y in L; which is again

followed by a reset and a query of x in L; in that order.
Note that there cannot be any reset or query of x between R, and @, above as that would
violate the RQ condition. Now consider the substring Ry.w1.Qy.w2.R; of v’. This substring is
stratified and w; and ws do not contain any reset or query. Hence using the same methods as
in the previous cases. we obtain a contradiction.

Case 1.2.1.2.2 The last reset of y in L; is followed by a reset and a query of x in L; in that
order.

Note that the substring Ry.w;.R; of v' is a stratified substring and w; does not contain any reset
or query. Hence using techniques similar to that of the above subcases, we obtain a contradiction.

Case 1.2.1.2.3 The last reset of y in L; is followed by a query of y in L; which is again
followed by a query, a reset and a query of x in L; in that order (assuming that the last reset of
x before the last reset of y in L; was not followed by a query of ).

Note that the substring R;.w;.Ry of v' is a stratified substring and w; does not contain any reset
or query. Hence using techniques similar to that of the above subcases, we obtain a contradiction.

Case 1.2.1.2.4 The last reset of y in L; is followed by a query, a reset and a query of x in L;
in that order (assuming that the last reset of = before the last reset of y in L; was not followed
by a query of x).

Note that the substring R;.w;.Ry of v' is a stratified substring and w; does not contain any reset
or query. Hence using techniques similar to that of the above subcases, we obtain a contradiction.

Case 1.2.1.2.5 The last reset of y in L; is followed only by a query of y in L;.

Note that the substring R, .w1.Qy.w2.R,, of vi.aw is a stratified substring and w; and wy do not
contain any reset or query. Hence using techniques similar to that of the above subcases, we
obtain a contradiction.

Case 1.2.2 Q, < R,.

We consider the case when R, € w, Ry ¢ w and Q, < R,. The following subcases of this case
are to be considered:

Case 1.2.2.1 R, ¢ L;.

Then also Q, € L; (because of the RQ-condition and since L; is a cycle).
We then distinguish between the analogue cases for z instead of y.
Case 1.2.2.1.1 R, ¢ L;.

Again, then Q. ¢ L;.

We are assuming that Ry, Qy, Rz, Q; ¢ L; for infinitely many L;. We form the substring
R,.wi.v .wy.R, where w = wy.Ry.wi. Note that there is no reset of any clock in wi.vtws.
Hence, reasoning as in Case 1.1.1.2.2.2, we obtain a contradiction.

Case 1.2.2.1.2 R, € L;.

The proof for this case is the similar to that of the above case.
Case 1.2.2.2 Ry € L;.
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This case assumes R, € w, (), < R, and for infinitely many ¢, R, € L;. One of the following
subcases of this case occurs infinitely often.

Case 1.2.2.2.1 R, ¢ L;.
First note that there can be at most one reset of y in L; (otherwise, reasoning as in case 1.2.1.2,
we already obtain a contradiction) . Secondly, note that the query of y cannot precede its reset in
L; (otherwise the RQ condition is violated). Lastly note that the string R,.wi.Ry is a stratified
substring of w.v!. Also w; does not involve any reset or query. Hence, reasoning as in the above
subcases, we obtain a contradiction.

Case 1.2.2.2.2 R, € L;.
In this case both x and y are reset in L;. Note the following facts. First between the reset of
in S; and the first reset of y in L;, there cannot be any reset of z (otherwise, reasoning as in case
1.2.1.2, we already obtain a contradiction). Now first consider the case when the first reset of y
in L; precedes its first query in L;. Notice that the substring R;.w;.Q;.w2.Ry or the substring
R,.v.R, (if the first query of z precedes the first reset of y in L;) of w.v’ is a stratified string.
Hence reasoning as in the above cases we can obtain a contradiction. The other case when the
first query of y precedes the first reset of y in L; is dealt as follows. First note that the last
query of z in L; must precede the last reset of x in L;. Second note that the last reset of y in L;
must occur after the last query of y in L;. Third note that after the last reset of x in L; there
can be only one reset of y in L; and no query of y in L;(otherwise, reasoning as in case 1.2.1.2,
we alrteady obtain a contradiction). Hence we can form the stratified substring R,.w1.Ry of v
where wi does not contain any reset or query. Hence, reasoning as in the above cases, we obtain
a contradiction.

Case 2 R, ¢ w. This implies that Q, ¢ w.
We distinguish between the following subcases of this case.

Case 2.1 Ry ¢ w. This implies that Q, & w.
Thus w is a reset free cycle. Hence by Proposition 5.2 we obtain a contradiction.

Case 2.2 Ry € w.
This case is symmetric to case 1.2 above.

5.5 Future Work

The presented work targets theoretical investigations of timed automata not at the verification
problem itself but, instead, at the termination behavior of the procedure solving it in practice,
namely symbolic forward analysis. This work is a potential starting point for deriving interesting
sufficient termination conditions. There are, however, other open questions along these lines.

Our setup may also be used to derive necessary termination conditions. These are useful
obviously in the cases when their test is negative. Another question is whether there exist
decidable necessary and sufficient conditions.

We may also consider logical equivalence instead of local subsumption for a practically more
efficient, but theoretically weaker fixpoint test (used in tools such as Uppaal [LPY95b]). We
observe that Proposition 5.1 is still directly applicable in the new context, but Proposition 5.2 is
not. The comparison of the different fixpoint tests (equivalence, local and global subsumption)
is an interesting subject of research.

We may be able to derive natural and less restrictive sufficient termination conditions when
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we consider the enhancement of symbolic forward analysis with techniques from [Boi98] to
compute the effect of loops, i.e. essentially the constraint transformer Jw“] for simple cycles w.

The constraint transformers [w] form a ‘symbolic version’ of the syntactic monoid [Eil76]
for timed automata. This notion may be of intrinsic interest and deserve further study.
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Chapter 6

Accurate Widenings and
Boundedness Properties

6.1 Introduction

For the last ten years, the verification problem for timed systems has received a lot of attention
(see e.g., [AD94, Bal96, DT98, LPY95b, WT95]). The problem has been shown to be decidable
in [AD94]. Most of the verification approaches to this problem have been based either on a
region graph, which is a finite quotient of the infinite state graph, or on some variants of it (that
use convex/non-convex polyhedra and avoid explicit construction of the full graph). But, as we
show below, region-graph based approaches (or its variants) cannot be used for dealing with
boundedness (unboundedness) properties. This is due to the fact that the partitioning of the
state space induced by the region equivalence (or any other technique that takes into account
the maximal constant in the guards) is guaranteed to be pre-stable but may not be post-stable
(definitions of pre-stability and post stability are provided in Chapter 2).

A boundedness property is of the form 3k > 0 AG(xz < k) where z is a clock (read this
specification as: there exists a nonnegative k such that for all paths starting from the initial
position, the value of the clock = does not exceed k throughout the path). An unboundedness
property is the dual of a boundedness property: Vk > 0 EF(xz > k). These properties are useful
in verification because if the designer knows that the value of a clock should never exceed a
constant, then satisfaction of an unboundedness property by the design immediately informs
the designer of a possible bug in the design. Also, the implementor can use this information to
save some hardware while implementing the design (in hardware).

Consider the timed automaton (see [AD94] for a definition of timed automata) given in
Figure 6.1 (it has two clocks z and y and four locations 0, 1, 2 and 3; the guards and resets
for the edges are indicated at the top of or beside the edges; the invariants of the locations
are indicated above or below the locations). Let us try to see whether the system satisfies the
property 3k > 0 AG(z < k), where the clock z in the formula refers to the clock z in the
automaton. If we use the region graph technique, we will see that the regions (the maximal
constant is 2 here) (1 < y < 2,z > 2), (y = 1L,z > 2) and (0 < y < 1,z > 2) (we do not
enumerate all the reachable regions) are reachable. One may now conclude, on the basis of this
reachability analysis, that the automaton does not satisfy the above boundedness property (note
that all the three regions given above are unbounded). Unfortunately, this is not true; the value
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of the clock z never exceeds 6 (just six)! Region graphs (or its variants) cannot be directly used
for model checking for boundedness properties!

y=<2 y:=0 y=<2 y=<2

y=<2

Figure 6.1: Illustrating Unboundedness (Boundedness) Property

Now consider a reachability analysis for this timed automaton using the algorithm in Fig-
ure 6.3 (this algorithm is a simple symbolic forward reachability analysis algorithm). The
algorithm terminates generating the following set of reachable states: (I_.0(z,y),z = 0,y = 0),
(10(z,y),z = y,y > 0,y < 2), (I.1(z,y),0 <z <2,y =0), (I1(z,9),z —y >0,y —x >
=2,y >0,y <2), ({-2(z,y9),0 <z <4,y =0), ((2(z,y),z -y >0,y —z > -4,y > 0,y < 2),
(13(z,y),0 <y < 2,2 =0) and (I3(z,y),x —y > 0,y < 2, > 0) (the states are tuples of
locations and constraint stores; we write [_i for the location ¢). It can be easily found out from
the set of reachable states (by projecting the constraints on the z-axis) that the value of the
clock x never goes beyond 6 and hence the above boundedness property is satisfied.

It can be shown that if the (symbolic) model checking algorithm in Figure 6.3 terminates,
we can successfully model check for boundedness (unboundedness) properties. It is now natural
to ask the question whether the procedure in Figure 6.3 is guaranteed to terminate. The answer
is 'no’; consider the timed automaton in Figure 6.10 — the algorithm in Figure 6.3 will not
terminate for this example (an infinite sequence of “states” which are not “included” in the
“previously” generated states are produced). Of course, the procedure can be forced to terminate
by including some maximal constant manipulation techniques (as the trim operation introduced
in Chapter 3 or the extrapolation operation [DT98] or the preprocessing step [HKPV95]). But
then, like the region graph technique, it can be shown that these techniques cannot be directly
used for model checking for boundedness properties. So the natural thing now would be to
develop techniques that force the termination of the procedure in Figure 6.3 (in cases where it
is possible) but do not lose any information with respect to boundedness properties. It is in this
context that history-dependent constraint widenings come into play.

Before introducing our framework of history-dependent constraint widenings (accurate
widenings), let us try to see whether the already-existing abstract interpretation frame-
work [CCT77] can provide solutions to the problems described above. Abstraction interpreta-
tion techniques [CCT77| are useful tools to force termination of the symbolic model checking
procedures. Here one obtains a semi-test by introducing abstractions that yield a conservative
approximation of the original property. Such methods have been successfully applied to many
nontrivial examples [DT98, Bal96, WT95, HPR97]. While these abstractions force the termi-
nation of the model checking procedure, they sacrifice their accuracy in the process (note that
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by accuracy, we mean not only accuracy with respect to reachability properties, but also with
respect to boundedness properties). One of the most commonly used abstractions is the convex
hull abstraction [WT95, DT98, Bal96].

The application of automated, application independent abstractions that enforce termina-
tion, as is done in program analysis, to model checking seems difficult for the reason that the
abstractions are often too rough!. To know the accuracy of an abstraction is important both
conceptually and pragmatically. As Wong-Toi observes in [WT95],

... The approximation algorithm proposed is clearly a heuristic. It would be of tremen-
dous value to have analytical arguments for when it would perform well, for when it
would not....

As we saw above, any symbolic model checking procedure that “loses” accuracy will not be able
to model check for boundedness (unboundedness) properties. Hence, in this chapter, we propose
a framework, to provide a partial answer to the question asked by Wong-Toi, viz., to determine
automatically (using analytical methods) whether an abstraction performs well (does not lose
accuracy) in a situation and then apply the abstraction.

We present methods that carry over the advantages of abstract interpretation techniques
without losing precision. To be more specific, we apply history-dependent constraint widening
techniques, as already foreseen in [CC77, CHT78], to provide an application-independent ab-
stract interpretation framework for model checking for timed systems. Basing our intuitions on
techniques from Constraint Databases [JM94], we show that abstractions of the model checking
fixpoint operator, through a set of widening rules, can yield an accurate model checking proce-
dure. These abstractions are based on syntax of the constraints rather than their meaning (the
solution space) in contrast with previous approaches (e.g., [Bal96, HPR97, WT95, BBR97]). As
we demonstrate on examples, they can drastically reduce the number of iterations or even, in
some cases, force termination of an otherwise non-terminating test. In contrast with the ab-
stract interpretation techniques used for program analysis, they do not always force termination;
instead their abstraction is accurate. That is, they do not lose information with respect to the
original property; when they terminate, they provide information which is sufficient even for
model checking for boundedness (unboundedness) properties; i.e., in cases where termination is
achieved, the abstractions are sound and complete. Also, being based on the syntax of the con-
straints they can be implemented efficiently (they do not require computation of the convex hull
like [WT95, Bal96, HPRI7];). We first show toy examples in which our abstractions (henceforth
called widening rules) either achieve termination in an otherwise non-terminating analysis or
drastically accelerate the termination of symbolic forward reachability analysis.> We then show
the performance of a prototype model checker, implemented using the techniques presented in
this chapter, on some standard benchmark examples taken from literature. In the Conclusion,
we discuss the generality of our approach.

'Note the statement of Halbwachs in [Hal93], that “Any widening operator is chosen under the assumption
that the program behaves regularly ... . Now the assumption of regularity is obviously abusive in one case: when
a path in the loop becomes possible at step n, the effect of this path is obviously out of the scope of extrapolation
before step n (since the actions performed on this path have never been taken into account) ... ”

*Note that we consider forward analysis, instead of backward analysis, for the obvious advantages mentioned
in [HKQ98] (Forward analysis is amenable to on-the-fly local model checking and also to partial order reductions.
These methods ensure that only the reachable portion of the state space is explored). Moreover, backward analysis
cannot be used for model checking for boundedness properties.
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p: while(x<=100) do
x:=x+1; od
q ...

Figure 6.2: Fragment of the pseudo-code of a program

6.2 Intuition Behind the Accurate Widening Framework

Even before we delve into the details of timed systems, we try to give the reader a “feeling” of
our accurate widening framework. Consider the fragment of a pseudo-code of an (integer-valued)
program given in Figure 6.2 in which the only declared variable is z. Let us try to analyze this
program fragment using constraints. More precisely, let us try to derive the constraints satisfied
by the variable = at the program point ¢q. Assume that initially the constraint on x at program
point p is given by z < 10. Now let us step through the while loop once. The constraint on z at
program point p is now & < 11. Stepping through the while loop again, the constraint on x at
program point p becomes z < 12. From this, the abstract interpretation techniques described
above [WT95, Bal96] (if we apply the same “widening” rules to this integer-valued program
fragment) would derive ¢rue (i.e., constraint corresponding to the whole set of integers) as the
constraint on x at the program point g. But unfortunately, this is not correct. The constraint on
x at program point g is given by z < 101. The problem with the above techniques is that they
don’t seem to be able to detect that the while-loop in Figure 6.2 does not generate an “infinite
sequence of constraints”.

The accurate widening framework tries to “find out” from the syntax of a program loop (in
cases in which it can) whether it really generates an infinite behavior (e.g., if the guard for the
while loop was x > 10 instead of z < 100 it would indeed have generated an infinite behavior;
thus a while loop with a guard = > ¢ for an integer ¢ and an input constraint of the form x < d
where d is an integer and d > ¢ will indeed generate an infinite behavior). If it finds an infinite
behavior, it applies widening rules to infer the “limit” (e.g., if the infinite sequence is x < 1,
x <2, ..., then the limit of the infinite sequence is true) of the infinite sequence. If it does not
find an infinite behavior, it either “tries” to infer the “limit” of the finite sequence (based on
the syntax) and speed up the computation procedure (in the program in Figure 6.2 it will infer
x < 101) or (if it fails to do so) simply does not apply any widening at all. Note that such an
accurate widening framework will be too restricted for integer-valued programs that are Turing
complete (it may fail to find out an infinite behavior and hence may not use any widening to
accelerate the convergence; it is for this reason that we cannot guarantee termination). But, as
we show below, for a large class of timed systems it can be applied to great effect. Note also that
if a widening is applied according to the norms specified by the accurate widening framework,
it does not lose any information; it is accurate. It is this accuracy that we prove in theorem
6.1. We also provide sufficient conditions under which the accurate widenings are guaranteed to
force the termination of the model checking procedure.
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Procedure Symbolic-Boundedness(®)

Input A set of constraints ®

Output A set of constraints representing sets of states reachable from [®]
@0 = .

repeat

begin

@1 = ®; Upost(®;)

end

until CI)Z'+1 ‘: @‘,’.

return P;.

Figure 6.3: Template for Model Checking for Boundedness Properties

Procedure Symbolic-Boundedness-W(®)

Input A set of constraints ®

Output A set of constraints representing sets of states reachable from [®]
@0 = .

repeat

begin

®,, =2, U WIDEN(CI)Z',pOSt(@,'))

end

until @i-i-l ‘Z @z

return ®;.

Figure 6.4: Template for Model Checking for Boundedness Properties with Widening

Function WIDEN(L,®) = {WIDEN(v,¢) |y €T, ¢ € o}
Function WIDEN (v, ¢)
p1 1= WIDEN1(v, )

If p1 # ¢ return ¢
else {p; := WIDEN,(v, ¢)

If o1 # p return ¢,
else g1 := WIDEN;(vy,¢)}

return ¢

Figure 6.5: Widen Function
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6.3 Timed Automata, Constraints and Model Checking

For the purposes of this chapter, we model timed systems using timed automata. Recall the
notion of timed automata from Chapter 3.

We now fix the formal set up of this chapter. We use lower case Greek letters for a constraint
and upper case Greek letters for a set of constraints (which stands for their disjunction). The
interpretation domain for our constraints is R the set of reals. We write x for the tuple of
variables z1,... ,z, and v for the tuple of values v1,... ,v,. As usual, R,v |= ¢ is the validity
of the formula ¢ under the valuation v of the variables z1,...,z,. We formally define the
relation denoted by a constraint ¢ as:

[Pl ={vIR,v = ¢}

Note that x1,...,z, act as the free variables of ¢ and implicitly all other variables are exis-
tentially quantified. We write ¢[x’] for the constraint obtained by alpha-renaming from ¢. We
define [®], the relation denoted by a set of constraints ® with respect to variables z1,... ,z, in
the canonical way. For a constraint ¢ and a set of constraints {1, ... , ¥}, we write ¢ = szl P;
iff [p] C Ule[w}. For sets of constraints ®; and ®, (where by a set of constraints ® = {¢;},
we mean \/; ¢;), we write ®; |= ®, if for all ¢ € ®; there exists ¢’ € @5 such that [¢] C [¢']
(equivalently, in such a case, we say that there exists a local inclusion abstraction from ®; to @
or ®; is locally included in ®5; see below for a formal definition of local inclusion abstraction;
it is this local inclusion that we will use in our symbolic model checking procedures; see below).
We write an event (an edge transition or a time transition or a composition of several edge and
time transitions) as cond v action ¢, where the guard v is a constraint over zi,...,x, and
the action ¢ is a constraint over the variables z1,... ,z, and i, ... ,z},. The primed variable z’
denotes the value of the variable x in the successor state. Note that we use interleaving seman-
tics for our model. We will use a set of constraints ® to represent a set of states S if
S = [®]. The successor of a set of states of such a set with respect to an event e are represented
by the constraints obtained by conjoining the guard ¥ and the action ¢ of each event with each
constraint ¢ of ®:

post|e(®) = {F_xwp AV A |p € BREQAYAp}

where the existential quantifier is over all variables but x’. Note that the post|, operation can
be easily implemented using well known algorithms for variable elimination from constraint
programming (eg. Fourier’s algorithm [LM92, MS98] or Weispfenning’s algorithm [Wei94]) and
polynomial time algorithms for testing satisfiability of linear constraints over reals [MS98].

We next formulate possibly non-terminating symbolic model checking procedures for bound-
edness properties, in our constraint-based framework, based on local inclusion abstraction
(see the definition below). The template for the algorithm is given in Figure 6.3. Here
post(®) = Uecepost.(®) where £ is the set of all events of the timed system (simple and
compound; see below for definitions of compound (composed) events). The local inclusion
abstraction (local subsumption or constraint entailment, see below for a formal definition of
inclusion abstraction) in the algorithm can be implemented using standard polynomial time
algorithms for (local) constraint entailment [Sri92, MS98]. The algorithm is basically a (infla-
tionary) fixpoint computation algorithm. Note that the template Symbolic-Boundedness can
be used for model checking for the logic £, [LPY95b]. Also note that the algorithm is breadth
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first. In the sequel, we call the algorithm Symbolic-Boundedness as the breadth first (symbolic
forward) reachability analysis algorithm with (local) inclusion abstraction. Recall the notion of
zones from Chapter 3. It can be easily shown (by using Fourier’s Algorithm [MS98, LM92] for
example) that for timed automata, the sets of reachable states in a symbolic forward reachability
analysis can be represented by zones.

6.3.1 Inclusion Abstractions

We first note that the locations of a timed automaton can be encoded as finite domain constraints
(in our algorithms we assume that the locations are encoded as finite domain constraints).
We denote a position (simply a state) [AD94, HK97| of the timed automaton having location
component ¢ as £(v) where v denotes the values of the clocks. In general, for a set S of states
having the location component ¢, we write (£, S), or (£(x), ), where ¢ is a zone constraint and
S =[p] ={v|£(v) € §}. Here the free variables of ¢ are {z1,... ,z,}. In the sequel, we will
refer to a set of states with location component ¢ and represented by (£(x),y) as a symbolic
state or simply a state when it is clear from context. For a timed automaton U, we denote the
set of all reachable symbolic states by Sg/mb.

Definition 6.1 (Local Inclusion Abstraction.) Given a timed automaton U, we say that
Qine Sszmb — Sg/mb is a local inclusion abstraction iff, for any (£(x), ) € Sg/mb, (0(x),p) <
Aine((£(x), ©)) where for any two states (£(x), ) and (¢'(x), "), (L(Z),p) < (£'(x),¢") iff £ and
¢ are identical and [p] C [¢'] (equivalently ¢ = ¢'). Given S,8' C SU . we say that qinc is a

local inclusion abstraction from S to S' iff for all (£(x), ) € S there exists (£(x), ') € S’ such
that ainc((€(x), ¢)) = (£(x),¢").

inc

Definition 6.2 (Global Inclusion Abstraction [DT98].) We say that of,. : SU ., —
9Swmb s g global inclusion abstraction iff, for any (£(x),¢) € SY .. ol ((£(x),¢)) T (L(x),¢),

symb?

where for S C Ss[{u/mb’ (£(x), o) C S iff [¢] € Uqyx),pyesl#’] (or equivalently ¢ =V yx) res ¢')-

There is a local inclusion abstraction from the constraint z > 5 to the constraint x > 4 since
(x > 5) = (z > 4) (we do not show the locations which are assumed to be the same). There is a
local inclusion abstraction from the set of constraints {4 < z < 5,1 <z < 2,16 < x < 20} (where
by a set of constraints , we denote their disjunction) to the set of constraints {0 < z < 5,z > 16}
since (4 <z <5)EF0<2z<5),1<2z<2)=(0<z<5)and (16 <z <20) |= (z > 16).
We write {4 < z < 51 <z <216 <z <20} {0 < 2 <52z > 16}. On the other
hand, there is a global inclusion abstraction from ¢y to the set of constraints {¢1, ¢3} where
Y1 =T1—T2 > 0/\:62—:61 > —2/\:62 > 0/\:62 < 2, Y2 =T1—T2 > 1/\:62—:81 > —3/\.’132 > 0/\:62 < 2
and p3 =21 — w2 > 2Nz — 21 > —4ANx2 > 0A gy < 2since p2 = @1 V 3. Note that the
existence of a local inclusion abstraction from a set of constraints ®; to another set of constraints
®, entails the existence of a global inclusion abstraction from ®; to ®5. But the converse is not
true unless the underlying constraint domain satisfies the independence property (see below).

Note that we have considered only local inclusion abstraction for our algorithm (®;,1 =
®; denotes that there is a local inclusion abstraction from ®;,1 to ®;). It may happen that
the breadth first forward reachability analysis terminates with the weaker condition of global
inclusion but not with local inclusion. Consider the example shown in Figure 6.7. The breadth
first forward reachability analysis procedure terminates for this example with global inclusion
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Figure 6.6: Illustrating Accelarating Effect of Widening Rules

0=<x2=<1

0=<x1=<1 x2:=0

Figure 6.7: Local and Global Inclusion Abstraction

abstraction but not with local inclusion abstraction. However, for constraint domains that do
not satisfy the independence property®, deciding global inclusion is usually very expensive (co-NP
hard [Sri92] for this particular case) where as local inclusion is decidable in polynomial time (for
this particular case [Sri92]). To see that our constraint domain does not satisfy the independence
property, consider the constraints ;1 = 21 — 22 > 0Az9 —x1 > —2A x93 > 0A 22 <2, 0o =
r1—xy > 1Axo—21 > —3Ax3 > 0Axe < 2and g3 = x1—23 > 2Ax9—x1 > —4Ax9 > 0Nz < 2.
It is clear that @9 |= @1 V 3 but ¢y = 1 and @ [~ 3.

6.4 Widening Rules

In this section, we consider how one can achieve (or just speed up) termination of the breadth
first forward reachability analysis algorithms for boundedness (as well as safety) properties. We
define widening rules that are accurate i.e., do not lose information with respect to the original
property. We show that these widening rules can be used to achieve termination in cases where
termination is not guaranteed in forward analysis with local inclusion abstraction. We also

3A constraint domain is said to satisfy the independence property [MS98] if for any constraint ¢ and a set of
constraints {¢1,... ,¢n}, ® = @1 V...V @, implies ¢ = @; for some i.

104



Function WIDEN; (v, ¢')
YENANT; — x5 > ¢
pAY=0ANT; =x;+ 2 ANwy < ¢
if § ¢i; <0
c; >0
NxTEC-x (MNP AY)AF-xbAzi— 25 > cij Azi < ¢;)
YENANZ — x5 > i ANei < ¢
pAY =Nz, =35+ ]
orif{ ¢; <0
c; >0
nxTEC xMAeAP))AE 0Nz — 5 > cij Aai < ¢;)
return n
else return ¢’

Figure 6.8: Widening Rule I

show that for some examples for which termination of forward analysis with (local) inclusion
abstraction is guaranteed, but widening can drastically accelerate the termination.

In general, the events considered here may not be an original event but is constructed as
a composition of events. We write e = event(vy,¢) when application of the event e to the
constraint - results in the constraint .

Definition 6.3 (Compound Events.) Let e; = cond ; action ¢,...,e, =
cond v action ¢ be k original events of the timed system. Assume that the source
location for the first event and the target location for the last event are the same. Assume that
the target location for the jth event and the source location for the (j + 1)st event are same
(1 <j<k—1). Also assume that for each event e;, each variable z; and z} in the guard
and action have been alpha-renamed to xf and :U{H respectively. Then the compound event (or
composed event) corresponding to e, ... ey is given by* cond true action o A1) where p A1)
s given by

P AY = (T sy 01 AL A A o Aty [x, X,

See below for examples of compound events. Given that the theory of reals with addition
and order admits quantifier elimination, ¢ A ¢ can be expressed in a conjunctive normal form.
For the timed automaton given in Figure 6.1, the event cond true action 2’ = z+2,2 > 0,y =
y+ 2,y < 2 is a simple (time) event corresponding to the time transition in location 0 while
cond loc = 0 action y' = 0,2’ = z,loc’ =1 is a simple or original (edge) event corresponding
to the edge from location 0 to 1.

We consider only non-strict inequalities here. The strict inequalities can be dealt with
similarly. The template for symbolic boundedness procedure with widening is defined in Figure

“Note that we can construct an event with empty guard as the events cond ¢ action ¢ and
cond true action ¢ A ¢ are equivalent with respect to symbolic model checking
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Function WIDEN;(v, ¢')
YEnAz; —x; > cij ANxj— i > cji
AP =0Az; — 2 < xj — 2 + ag;

ci; <0
Zf aj; > 0
G AP AN A (Bexb Az — 25 > ci5 Ay — 25 > ¢ji) = (A2 —xp > ¢
n[x'] = ¢
0< 091' < —cyj

return n Ax; — x; > Cj;
Y=ENANjer®i— T > cij
cp/\z,bEG/\/\m-’eI:cj —x; <xj—x +aj
elseif ¢ ¢;; <0
aj; > 0
NxTE G—xe AP AN AC-xO0AN; jermi — x5 > cij)
return 1.
else return ¢’

Figure 6.9: Widening Rule II

6.4. Note that the procedure is based on a breadth-first search. The function WIDEN is
defined in Figure 6.5 in the Appendix. In a call to WIDEN(®;, post(®;)) one of the three
widening rules provided the conditions of that rule are satisfied. If the condition in the WIDEN
function applies to several decompositions of 7, the corresponding widenings are effectuated in
several successive iterations. In the sequel, we refer to the procedure Symbolic-Boundedness-W
as the breadth first forward reachability analysis procedure with widening and (local) inclusion
abstraction. Note that the termination condition ®;,1 |= ®; means that there is a local inclustion
abstraction from ®;,4 to ®;.

We now illustrate the widening rules with examples. The intuition behind the widening rules
is as follows: if we can detect from the syntax of a sequence of events € and a constraint ¢, that
the sequence ¢, post|z(¢),... “grows” infinitely in a particular direction (i.e., actually leads to
an infinite sequence with respect to reachability analysis), we will try to add the union of the
sequence to our set of reachable states. Thus for widening rule I (for the if part), the syntax of
the input constraint (nAz; —2; > ¢;;) and that of the event (9/\:03- = z;+z; Az; < ¢; which may
be a composition of several simple events as described above) tells us that this constraint-event
combination will generate an infinite behavior (n A z; — x; > ¢, n A&y — xj > ¢;j — ¢, ... ; See
example below) provided the other conditions are satisfied (compare the while-loop example in
Section 6.2). Hence we infer the limit of this sequence which is 1 (since ¢;; < 0 and ¢; > 0) and
add it to the set of states. Similar are the intuitions behind the other widening rules.

Consider the example timed automaton in Figure 6.10. Note that forward breadth-first
reachability analysis with local inclusion abstraction does not terminate. Consider the events 4
and 3. Event 4 is given by e = cond z» < 2 action :1:'2 =0, :c'l = z1 (we do not show the location
explicitly). Event 3 is the time event at location 1 and is given by ¢ = cond true action z =
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1 2 3 -
x1:=0 Xx2=<2
@ @ﬁ x2=0 4

Figure 6.10: Illustrating widening rule I

r1 + 2,25 = x3 + 2,2z > 0 (time increases by amount z). We compose transition (sometimes we
will use the term ’transition’ for ’event’) 4 and transition 3 using the method given above. The
resulting compound event is e; = cond true action ¢ A ¢ where

go/\qﬁza:'lzazl-l-xé,xgglx'zzo.

Now consider the infinite sequence of states produced by a breadth-first reachability analysis
for this automaton

10(x), 21 = 0,25 = 0) — (L.0(x), 21 = z2,21 > 0)

[.1(x),z1 = 0,29 > 0) 3 (1-1(x),x9 — x1 > 0,21 > 0)
1(x),0 <z < 2,29 =0) 3 (1-1(x), 21 —x9 > 0,29 > 0,290 — 21 >
1(x),0 < zy < 4,29 =0) 3 (1-1(x), 21 —x9 > 0,29 > 0,290 — 21 > A

—~

(in the above we denote location ¢ by [_i.) Now see that the state under the overbrace along
with event e; satisfies the conditions of the widening rule I (the if part) defined in Figure 6.8
(i=2j=1,y=nAxea—21 > —2wheren =121 — 29 > 0,29 >0,co1 =—2and § =5 >0 ).
Hence, applying the widening, we obtain the state (l1(x),z1 — zg > 0,29 > 0) (the reader can
easily make out that if the sequence of transition 4 and transition 3 is repeated infinitely many
times to the state under the overbrace, the constraint 7 — o > 0,29 > 0 will be obtained).
After this any state generated is subsumed (included) by this state. Hence the breadth first
forward reachability analysis with widening and local inclusion abstraction terminates.

To see the accelerating effect of widening rule I on the convergence of reachability analysis
in case of examples for which breadth-first analysis terminates with local inclusion abstraction,
consider the example in Figure 6.6. If we replace the constant 5 in transition 7 by 10000 say ,
breadth first forward analysis with local inclusion abstraction will terminate in approximately
in 10000 iterations. But, it can be easily seen that composing transitions 4, 5 and 6 gives rise
to a compound event and by using widening rule I on this compound event (it is easy to verify
that the conditions in the widening rule will be satisfied) breadth first forward analysis with
widening and local inclusion abstraction terminates in 11 iterations.

Before defining widening rule II, let us introduce some notation. Let N, denote {1,... ,n}.
Let I denote a subset of NV,,. The widening rule IT is defined in figure 6.9.

To show an example in which application of widening rule II forces termination, we look
at the example in figure 6.11. Note that breadth-first forward reachability analysis with local
inclusion abstraction does not terminate for this example. The following infinite sequence of
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Figure 6.11: Illustrating widening rule II

states is generated in a breadth-first forward reachability analysis for this example.

(10(x), 21 = 0,22 = 0) — (1.0(x), 21 = 23,
A(x),z1 > 0,21 < 2,29 =0) 3, 1-1(
1-2(

)
)
X),r1 —xg > 3,29 — 1 > —6,29 > 0) 3 (I.1(x), 21 —x2 > 3,29 — 21 > —6,29 > 0)
)
)

:C220>
X),z1 — 23 > 0,29 — 21 > —2,29 > 0)
X), &1 — &3 > 3,29 — 1 > —6,29 > 0)

Now consider the compound event es = cond #¢rue action ¢ A i obtained by composing tran-
sitions 3, 4, 5 and 6. Here

pANYp=zi >z —2o+ah+2A2) —xh <z —22+3ANT) > 21 +2h ATh > 0.

See that the conditions of widening rule II (the ¢f part) are satisfied for e; and the state under
the overbrace in the sequence (i = 2,7 =1, n =23 >0, co1 = —6 <0, ¢c12 =3 and § = 2} >
r1— 22+ xh+ 2,2 > x1+ 2,24 > 0). The reader can easily convince herself that the give state
and event ey do not satisfy the conditions of widening rule I). Applying the widening, we obtain
the state (I_1(x),z1 — 2 > 3,29 > 0) (viewing the constraint solving involved geometrically
may provide better intuitions). The states which are further generated are subsumed by this
state. So breadth-first forward reachability analysis with widening and inclusion abstraction
terminates after this. Note that in this case, application of abstract interpretation with the
convex hull operator as is done in [WT95, Bal96, HPR97] would produce the state (I_1(x),z1 —
x9 > 0,29 > 0). This can lead to ’don’t know’ answers to certain reachability questions (e.g.,
consider the reachability question whether the location [_1 can be reached with the values of
the clocks satisfying the constraint z; — x9 > 2,29 — 21 > —3, 22 > 0). As for the extrapolation
abstraction [DT98], we have already stated in the Introduction that it is unsuitable for model
checking for boundedness properties.
In widening rule IIT we use periodic sets following Boigelot and Wolper [BW94].

Definition 6.4 (Periodic Sets [BW94].) A periodic vector set or simply a periodic set is a
set of vectors x € R™ such that

dkeN™ : x=Ck+dAPk<q
where C' and P integer matrices.

The widening rule III is defined in Figure 6.12, where the predicate int(x) is true if and only
if x is a nonnegative integer. Consider the example in Figure 6.13. Note that breadth-first
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Function WIDEN;(y, ¢')

YENANZT; —x; > ¢y ANxj — T = Cjj

PpAY=0Az; =2 +2; Naj=c;

ci; <0

c; >0

Cji 2 Cij

NxT=E G xMAPAY)) A B 0 ANxyg —xj > cij ANy — ;i > cji Axj = ¢j)
return n A3k > 0N int(k) ANx; —xj > cji+kxej ANxj—a; > cji — k x ¢

else return ¢’

Figure 6.12: Widening Rule III

2
- 4
x2=<1
1 20 3 X2=4x2:=0 5

6

Figure 6.13: Illustrating the widening rule III

forward reachability analysis with inclusion abstraction does not terminate for this example.
The following infinite sequence of states is generated in course of a forward (breadth-first)
reachability analysis for this example:

(1.0(x),z1 = 0,29 = 0) — (I.0(x),z1 = 2,22 > 0)
(11(x),z2 = 0,27 > 0,21 < 1) — 3 (1-1(x), 21 — x9 > 0,29 — 21
(12(x), 21 > 4,21 < 5,29 =0) — (I_-2(x), 21 — x93 > 4,29 — 21
— (I11(x), 21 — 29 > 4,29 — 21 > —5,22 > 0) ...

-1,22 > 0)
—5,:!32 Z 0>

(AVARLV]

2
—
4
—
6

Now we compose transitions 4, 5 and 6. The compound event is e3 = cond true action p Ay
where

pANY =] =x1+a5ANTH>0AT0 =4,

It is easy to see that the state under the overbrace in the infinite sequence along with event
eg satisfies the conditions of widening rule III (: = 2,5 = 1, n = 29 > 0, ¢12 = 0, co1 =
—1 < 0). Hence, applying widening rule IIT we get the state (I_1(x), 3k > 0,int(k),z1 — xo >
k*4,22— 21 > —1 —kx*4). The states further generated are subsumed by this state. So
(breadth-first) forward reachability analysis with local inclusion abstraction terminates after
applying the widening rule. Note that application of abstract interpretation with the convex
hull operator [HPR97, Bal96, WT95] will produce the state (I_1(x), 21 — 22 > 0,22 > 0). Hence
for certain reachability questions we can get a ’don’t know’ answer.

Now we show that the widening rules are accurate with respect to boundedness properties.
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Theorem 6.1 (Soundness and Completeness) The procedure Symbolic-Boundedness-W
obtained by abstracting the forward breadth first reachability analysis procedure with widening
defined by the widening rules I,II and III yields (if terminating) a full test of boundedness (un-
boundedness) properties for timed systems ( modeled by timed automata).

Proof. The proof works by showing that [WIDEN;(y,¢)] C [U;5o ®i] for j = 1,2,3 and
v € ®; and ¢ € post(®;) where &g = ® and for i > 0, ®;,1 = ®; V post(®;). Before proving
the theorem, we consider the following properties. Let e be an event with guard ¢ and action ¢
from location £ to itself. Then

pOSte(S) = {E(vl) "R,V,V’ |: oA ¢[X,XI],E(V) € S}

where S is a set of states £(v) of the timed automaton consisting of a location and valuations
to all the clocks. Now

post(®) = {F_xe AY[x,XTAp[p e @R E o AYx XA}

where @ is a set of constraints and S = [®]. Notice that post. and post|, are monotonic with
respect to inclusion and continuous with respect to set union.

U poste(12)) = [ Jlpostl.(2)] = (| postl.(2)]

i>0 i>0 i>0

poste([|J #]) = J poste(le]) = [|J poste(¢)]

ped ped ped

Also
poste([|J @) = [l @]

i>0 i>0

Now we prove the following cases.
Case I. Widening rule I is used. If e = event(y,¢) and ¢ and 7 are as defined in the
conditions of the widening rule, we show that

[\ nAzi—aj > cij—qxe) C [ @)
>0 i>0

The proof is by induction on gq. The base case follows from the assumption. To prove the
induction step observe that:

[post‘e(\/ AT —x; > ¢ —q*c)| = poste([\/ NAT; —x; > cij —q*¢)) C poste([U ®;]) = [U ;]
q>0 q>0 i>0 i>0

Induction Step:

post|e(n AN @y — x5 > cij — q * ;)

El,x/n/\:ci—:vjzcij—q*ci/\G/\xg-zscj—i—x;/\xiSci

FJxMANPAY)AN (i —xj > cij —qrei NO) AT — 25 > ¢y —gqrei Ny =z + T Az < ¢
(Fx @AY AN A Fxrwi —xj 2 cij —q*ci ANO) Nap — x5 > cij — (¢ + 1) x ¢
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Since n[x'] F (Fxwp AY Ay) A (F—xmi — x5 > cij — g % ¢; A 0) therefore [n Az — 2 >
cij — (¢ +1) * ¢i] € [U;> ®i]. Therefore [V oAz —z; > cij —qxci] C[Uiso @il But
\/nAxi—xj >cij—q*xci=nAN \/zci—:vj > Cij —q*ci=mnNtrue=rn.
q20 g0

So [n] C [U;>q ®i]- The case where the or if condition holds can be proven similarly.

Case II. Widening rule II is used. We now show by induction on ¢ that

[\/nAxi—xjZcij—q*aji/\a:j—xiZc]-i]Q[U@,’]
7>0 i>0

The base case follows by assumption.
Induction Step:
Observe that

post‘e(n/\a},’—xj > cij —q*aj; NTj— T > Cjj)
E_XInAxi—a:jZci]-—q*aﬁ/\a:j—xiZCjiAxg—xgng—xi+ajiA9

(Fxp AP An)

(H_XIG/\CEi—xj Zci]-—q*aﬁ/\xj—xiZCﬁ)
(ELXf:ci—:vjZcij/\xg—:v;S:cj—:ci—i—aji/\:vi—:cjZcij—q*aji)
(ELan/\go/\z,b)/\(ﬂ,sz/\:vi—xjZcij—q*aji/\zcj—:cizcji)/\:v;—:c;-zcji—(q—i—l)*aji

>>00

Now we show that

R ‘= (ELXIG Nei—x5 > cy Nxj— 2 > Cji)
<~ (foa NTj— ;2 5 —q*a;; NTj —x; > Cj,') A (3_x19 Nei—x5 2> Cz’j)

Indeed

R ‘: (3_x19 Nxi—xj 2 g Nxj — o > C]'z')
<~ (ELXIG NTi—Tj 2 Cj —q*aj; NTy —Tj > Cj Nxj — T3 > Cji) (Since aji > 0)
<~ (sze/\ Ty —Tj > Cij —q*aj; NT;— T > C]'z') A (3_x19 Nzi—xj; > C,’j)

Now it is easy to see that we can write (F_x @ AYAN)A(F_xOAT;—; > cji—q*ajiAej—z; > cj;)
as (' Az — @i > cjj; where n[x'] = (' and cJ; < ¢j;. Now we prove that
nx Az — 2 > cij — (g + 1) *xaji Aal —xi > cji
= (nx'] A —xp > cji Ao — x> ¢ij — q % aji)
Vo (Fxm A AY)A (T g — X > Cj —q*aji/\:vg —:E; > Cji/\e)) (6.1)
Indeed, suppose R,v = left-hand-side. Then R,v = n[x']. Also R,v = zj — z; > cji.

Suppose v does not satisfy the first disjunct on the right hand side. Then v = x;—x; > cij—q*aj;.
Therefore R, v [= z; — x; > q * aj; — ¢;j. Therefore R, v |= a} — x; > ¢ * aj; — ¢;j. Now

(T AN AN) AN (B g Az — 4 Zcij—q*aji/\xj—xichi)EC'/\x;-—x;Zc;'i.
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Then R,v = 2 — x; > cj; since ¢; < cj. Since R,v | 7n[x'], therefore v |= ('. Also
R,v = z; — @ > ¢ij — ¢ * aji. Since the (solution of ) right hand side of (6.1) is included in
[Uizo ®;] hence [nAzj—x; > cji A —xj > cij —(g+ 1) *aj;] C [Uizo ®;]. Hence by a reasoning
similar to that in the previous case, we get, [p A z; — x; > ¢j;] C [U;5o ®i]. The proof for the
else if part is easy. -

Case II1. Widening rule III is used. We show by induction on ¢ that

[\/nAxi—xjZq*cj-l-cij/\xj—xiz—q*cj+0ji]Q[U@i].
7>0 i>0

The base case follows from the assumption.
Induction Step:

postie(N Ny — xj > q*cj+cij Nxj — T3 > —q % ¢j + ¢ji)
dxnAz;—xj >qxcj+cj N —x; > —qxcj+cii NNy

(Fxn AN AY) A (Boxzi —xj > q*cj+cij ANaj—x; > cji—qxc; AO)
(Fwi—xj > cij+qrciAej—x; > —qxcj+acj ANzp = x; + 25 ANaj = ¢j)
(Fxn AN AY) AN (Foxas —xj > cjxq+cij Nxj —x; > —cjxq+cj; N6)
zp—ay > cij+ (g + 1) *ej Nay —ap > —(g+ 1) *cj + ¢ji

> >0

Hence, by reasons similar to the above cases, [p A x; —x; > ¢;5 + (g + 1) % ¢ Nxj — x; >
cji — (g +1) % ¢;] C [U;>o ®i]. The rest of the proof is similar to that of the previous cases. |
Note that the above theorem also implies that if the procedure Symbolic-Boundedness-W
terminates, then one can get a full test of safety properties as well. Below we provide effective
sufficient conditions for termination of Symbolic-Boundedness-W. By a simple path in a timed
automaton U, we mean a sequence of events ey ... ey, where each e; is an original event of U/ and

— the source location of e;11 is the same as the target location of e; for 1 <i <m — 1,
— any event e; with same source and target locations is a time event,

— for any two edge events e; and e;, 1 < i < j < m, the target locations of e; and e; are
different,

- and if e; is an (original) time event, then e;_; and e;;; are edge events.

With this definition, there are only a finite number of such simple paths in a timed automaton.
The simple path p = e ... e, leads from location ¢! to the location ¢? if there is a the source
location of ey is ¢! and the target location of e,, is 2. The simple path e; ...e,, is a simple
cycle if the source location of e; is the same as the target location of e,,. Note that there are
only a finite number of such simple cycles in a timed automaton.

Theorem 6.2 (Sufficient Conditions for Termination) Let U be a timed automaton and
let £ be a location in U such that there is a simple cycle C' from £ to itself and the following three
conditions are satisfied.

— There is a simple path in U of the form e = cond ¢ action ¥ leading from the initial
location £° to £ such with the cycle C along with the the constraint (3_©° A p A1p)[x] that
satisfies the conditions of the widening rules I, IT or ITT where ¢° is the initial constraint.

112



— For each original event € = cond ¢’ action )’ with target location { that lies on a cycle
in the control graph of U, (3_x¢' AN)')[x] = posty(n) if widening rule I or II is satisfied
in the previous condition and (3 _x¢' A Y')[x] = posty(n A Ik > 0 Adnt(k) A zy — xj >
cjit+kxcjNxj—x; > cj;—kxcj) if widening rule 111 is satisfied in the previous condition,
where 1, cj; are as in the definition of the widening rules and t is the time event at location

L.

— The control graph of U satisfies the temporal formula AG(true = AF(at_{)) where at_l
s an atomic proposition satisfied only by location £.

Then the procedure Symbolic-Boundedness-W terminates for U.

Proof.  The proof follows from the observation that along the breadth-first tree generated by
the procedure Symbolic-Boundedness-W there is a branch that starts from the initial location
0 follows the simple path e and then follows the cycle C. Since, the constraint v at the end of
this simple path along with the guard and action of C satisfies one of the three widening rules
(by the first condition), we get the constraint 7 (if the widening rules I or I are satisfied) or
nAJk > ONint(k)Ax;—xj > cjit+k*cjAxj—x; > cj;—kxc; (if widening rule I17 is satisfied). (Here
n and the other constraints are as in the definition of the widening rules.) Hence, there exists a
finite ¢ such that ®; contains n (or nATk > 0N int(k)Ax;—x; > cji+kkcjAxj—a; > cji—k*cj).
Now since the control graph of U satisfies AG(true = AF(at_{)), therefore along any branch on
the breadth-first tree, the location £ will be reached in some iteration greater than ¢ through an
original event e’ that lies in a cycle. Suppose the constraint generated at this point be (£(x), x).
We show that x [=n (or x En ATk >0ANint(k)Aax; —x; > cji+k*xcjAaj—x; > cjy —kxcj if
widening rule I11 was satisfied in the first condition of the theorem. We prove this in the case
of widening rule I; the remaining cases are similar. Suppose that v |= . Suppose ({(x), x) was
generated by the original event ¢/ = cond ¢’ action ¢'. Then R,v | (3_x ¢’ A¢')[x]. Then
R,v | n. Hence, each branch along the breadth-first tree is finite. Therefore the procedure
Symbolic-Boundedness-W terminates. |

It can be seen that the example in Figure 6.10 satisfies the sufficient conditions stated above.

We have implemented a prototype based on the approach (in the CLP(R) system of Sicstus
Prolog 3.7). The performance shown, so far, by our approach has been quite encouraging. We
have used our implementation to verify the safety and boundedness properties of several well-
known benchmark examples taken from literature. The experimental results are summarized
in the table in Figure 6.14. All results are obtained on a PC (200 MHz Pentium Pro). The
experiments show a marked improvement over the timings obtained without using the accurate
widening rules in Chapter 3. The timings obtained for Fischer’s protocol (two processes), Rail-
Road Crossing, and Audio Protocol without using the widening rules are 4.2s, 1.8s and 7.2s
respectively. All the timings in Figure 6.14 denote the total time taken for reachability analysis.

6.5 Related Work

In this chapter, we have presented a constraint based framework for symbolic model checking
of timed systems against boundedness properties. We have shown that it is possible to achieve
(or just accelerate) termination of our symbolic model checking procedure with abstractions
by widening that are, as we prove, accurate. Our approach allows us to do a full test of the
safety and boundedness (unboundedness) properties without going into the complications of
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Ezample time (seconds)
Fischer’s Protocol (Two Processes) [LPY95b] | 2.1
Rail-road Crossing 0.8
Audio Protocol [HWT95] 2.3

Figure 6.14: Experimental Results

region construction. Regarding the generality of our approach, we do not claim that the three
widening rules described in this chapter encompass (i.e., achieves termination and/or speed-up
of model checking procedure) the full class of timed automata. We have provided sufficient
conditions under which the procedure Symbolic-Unboundedness-W is guaranteed to terminate.
However, for several examples the procedure terminates even though the sufficient conditions
do not apply..

Note that there has been a few attempts at verification of timed and hybrid systems based
on constraint logic programming [GP97, Fri98, CDD*98, DRS99, GP99]. Our work differs
from these approaches in that we exploit the constraint-based setting for defining accelera-
tion techniques based on abstract interpretation. Note that the model checking procedure for
Uppaal [BLL"96] is also based on semantics of constraints but their algorithms are based on
graph-theoretic techniques rather than techniques from constraint programming. We believe
that incorporation of accurate widening framework in UPPAAL and the other approaches men-
tioned above can significantly speed-up model checking procedures based on those approaches.

Our widening operator is closely related to Boigelot and Wolper’s loop-first technique
[BW94] for deriving periodic sets as representations of infinite sets of integer valued states
for reachability analysis. As a difference, Boigelot and Wolper analyze cycles and nested cycles
in the control graph to detect meta-transitions before and independently of their forward model
checking procedure, whereas we construct new events during our model checking procedure and
consider them only if we detect that they possibly lead to an infinite loop. Berard’ and Fri-
bourg [BF99] use a constraint-based framework for reachability analysis for timed Petri nets.
They have been able to verify several interesting examples using their approach based on meta
transitions. Our approach, rooted in the abstract interpretation framework, is different from
theirs in that we accelerate the model checking procedure using widening rules based on syntax.

The application of widening techniques to the verification of systems with huge or infinite
state spaces has proven useful in several examples. Halbwachs et.al. [HPR97|, using linear re-
lational analysis to prove properties for linear hybrid systems, defines a widening operator over
convex polyhedra: unions of convex polyhedra are approximated by their convex hull before the
widening step. Approximation techniques for more general classes of hybrid systems are studied
in [HHWT97, HH95]. Specifically, Henzinger and Ho [HH95] apply an extrapolation operator
which gives better approximations than Halbwachs et. als’ convex widening operator in their ex-
amples. For integer valued systems, abstract interpretation has been used effectively in [BGP97].
In [BGP98], it was explicitly mentioned that one main difficulty with the approximate approach
is that the abstraction is often too rough. We have shown in Section 6.4 that our widening
techniques will give full test of reachability properties for timed systems where the approximate
methods [Bal96, WT95, HPR97] would produce a 'don’t know’ answer. Also, in contrast with
our accurate widenings, the widening techniques proposed in [Bal96, WT95, HPR97] cannot be
used for model checking for boundedness properties. Note that it is not possible to find out

114



in most cases, using semantics-based techniques, whether a program loop really generates an
infinite behavior with respect to reachability analysis. Hence, application of widening combined
with semantics-based techniques may result in loss of accuracy that will render these techniques
unsuitable for model checking for boundedness properties. It would be interesting to look at
how the techniques described in this chapter extend to more general classes of hybrid systems.
The general goal will be a whole library of accurate widening rules for a variety of verification
problems.
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Chapter 7

Compositional Termination Analysis
of Symbolic Forward Analysis for
Infinite-State Systems

7.1 Introduction

Over the last few years, there has been an increasing research effort directed towards automatic
verification of infinite state systems. Research on decidability issues (e.g., [ACJT96, ACHH93,
Boi98, LPY99, HKPV95, CJ98]) has resulted in highly nontrivial algorithms for the verification
of different subclasses of infinite state systems. These results do not, of course, imply the termi-
nation of the semi-algorithms on which practical tools are based (for example, the decidability
of the model checking problem for timed automata does not entail termination for the symbolic
forward analysis of timed automata which is possibly non-terminating). This chapter addresses
the termination for such a procedure, namely symbolic forward analysis; we show termination
for the subclass of o-minimal hybrid systems (for which backward analysis is known to be ter-
minating [LPY99]), and we give compositional syntactic sufficient conditions for integer-valued
systems and for nonlinear hybrid systems; i.e., the syntactic sufficient conditions are on the
individual components rather than on the composed system. The conditions roughly express
that, in each loop, the variables are initialized before they are used.

Sufficient termination conditions for symbolic forward analysis seem interesting for several
reasons. First, since they apply to concrete examples such as practical mutual exclusion pro-
tocols, they may shed a new light on the practical success of symbolic model checking for
infinite-state systems (see e.g. [BGP97, DP99a, DT98, LPY95b]). Second, for a concrete verifi-
cation problem in a practical setting, the model to be checked can possibly be adapted to meet
the sufficient termination conditions (e.g. by adding semantically redundant initializations of
variables).

Moreover, our results suggest a potential optimization of the symbolic forward analysis pro-
cedure. Namely, the termination guarantee continues to hold even when the fixpoint test is made
more efficient by weakening it to local entailment (explained below; e.g. for linear arithmetic
constraints over reals, the complexity of fixpoint test reduces from co-NP hard to polynomial).
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7.2 Infinite State Systems

We use guarded-command programs to specify (possibly infinite-state) transition systems. A
guarded-command program consists of a set £ of guarded commands e (called edges) of the form

e = L=LAyXx)]L =0Aa(x,x)

where L is a variable ranging over a finite set of program locations, x = (z1,... ,z,) is the tuple
of program variables (ranging over a possibly infinite data domain); 7.(x) is a formula (the
guard) whose free variables are among x; ae(x,x’) is a formula (the action) whose free variables
are among x,x of e. Intuitively, the primed version of a variable stands for its value in the
successor state after taking a transition through a guarded command. We translate a guarded
command e to the logical formula 1, simply by by replacing the guard || with conjunction.

Ve =L =LA (x) AL =" N ae(x,x")

A state of the system is a pair (£, v) consisting of the values for the location variable and for
each program variable. The state (£,v) can make a transition to the state (¢/,v') through the
edge e provided that the values of £ for L, ¢' for L', v for x and v’ for x’ define a solution for /..
A run of the system is a sequence (/!,v!) — (£2,v?) — ... such that for each i = 1,2,...
there exists an edge e such that the state (¢!, v!) can make a transition to the state (¢t1, vit1)
through the edge e.

In this chapter, we consider two basic classes of infinite state systems. In the first, the
program variables range over the set of natural numbers A, and the guard and the action for-
mulas are arithmetic constraints. Examples of such systems above include the bakery algorithm,
the bounded buffer producer-consumer problem etc.. In the second, we deal with the so-called
hybrid systems in which the program variables range over the set of reals R.

Systems with Integer-valued Variables. We write Arith(N') for the theory of natural num-
bers with addition multiplication and order; it is interpreted over the structure (N, <, +,-,0,1).
A possibly nonlinear system with integer-valued variables can be defined as a set of guarded
commands as above where the variables x,x’ are interpreted over the set of natural numbers
N. The guard formula 7.(x) is an Arith(N') formula with free variables among x. The action
formula a.(x,x’) of e, with free variables among {x,x'}, is also an Arith(N') formula.

Hybrid Systems We write OF(R) for the theory of the ordered field of reals; it is interpreted
over the structure (R, <, +,-,0,1).

A (possibly non-linear) hybrid system can be defined as a set of guarded commands as above
where the guard . (x) is an OF (R) formula, and the action ae(x,x’) is an OF(R) formula given
by

Qe(x,x') = J2 >0 3x" Je(x,x") A Be (X", X', 2).

Here, d, is an OF(R) formula defining the “update” in e, and S, is the OF (R) formula defining
the continuous evolution at the target location £'.

A transition according to a guarded command e represents an instantaneous ‘jump’ followed
by a continuous evolution over time at the target location ¢'. Namely, a state (¢,v) can make
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a transition through e to the state (¢',v') if the values £ for the location variable L and v for
the tuple of data variables x satisfy the guard L = £ A 7.(x) of e and there exists a v" such
that v, v satisfies the update J, of e and there exists a real value d of the delay variable z such
that v’ is obtained from v" through continuous evolution over the delay d at the location ¢'.
Similarly the time transition (continuous evolution over time at a location) from the state (¢, v)
to the state (¢,v') can be defined. For a location £, let 8y be the (OF(R)) formula denoting the
continuous evolution of time at £ where z is the time delay variable. Thus in the above formula
defining the guard a(x,x'), 8. = Beo.

O-minimal hybrid systems In this paragraph, we define o-minimal hybrid systems. The
definition below is adapted from [LPY99]. In o-minimal hybrid systems, the action formula
ae(x,x') of e with free variables among {x,x'} is defined as follows.

e (x,x') = 3z > 03x" (0. (x") A X' = exp*Aex")

where the free variables in the “update” formula . are among x”, exp is the base of the natural
logarithms, Ay is an n x n rational matrix that is either nilpotent or is diagonalizable with
rational eigenvalues (x' = exp?A¢'x" represents the continuous evolution at the target location
¢"). Tt can be shown [LPY99] that in these cases, a.(x,x’) is definable in OF (R).

7.3 Parallel Composition

We consider asynchronous parallel composition of infinite state systems. We assume that the
component programs do not share variables (except for the synchronizing labels). For the
purpose of parallel composition, we assign to each guarded command a synchronizing label.
Thus with each guarded command program S we associate a (finite) set ¥ of synchronizing
labels and a mapping lab : £ — X that assigns to each guarded command (or edge) a
synchronizing label from X.

Given two guarded command programs §; and Ss with label sets 3; and ¥y and labeling
functions lab; and laby respectively, their parallel composition & = 81||S2 with set of synchro-
nizing labels ¥; U X5 and labeling function lab is defined as follows. Intuitively, in an edge in
the composed program Si||Ss, either only §; “moves” (i.e., takes a transition through an edge)
while S undergoes continuous evolution at the same location (if the synchronizing label o is
in 37 but not in ¥3) or S “moves” while §; undergoes continuous evolution (in case of hy-
brid systems; stays unchanged in case of integer-valued systems) at the same location (provided
the synchronizing label o is in ¥9 but not in ¥1) or both “move” (if the synchronizing label
o € 31N Xy) with the same label lab(e;) = lab(ez) = 0. The composed program S consists of
all guarded commands of the form

e=L1 =" NLy =02 Ayo(x,y)[L} = £ ALy = 02" A ae(x,y, %, y)
with lab(e) = o such that either
- (First component “moves”)

— there is an edge e; = L = 01 Ay, (X)L = £ A e, (x,%') in Sy with laby(er) = o,
where o € &1 and ¢ € ¥, £2 is a location in Sy and %' = (2
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— Ye(x,y) = Yei (x)

— ae(x,y,X,y'") = ae,(x,x') ANy' =y for systems with integer-valued variables and
ae(x,y, X',y ) =32 >0 3t > 0 e, (x,%',2) A Bp2(y,y’,t) A 2 = t for hybrid systems
where ae, (x,x') = 32 > 0 ¢, (x,%/, 2).

— Or (Second component “moves”) Same as the previous point but with the roles of §; and
Sy reversed.

- Or
(Both components “move” )there is an edge e; = L = 1 Ay, (x)[L' = 01 A e, (x, %)
in S; and an edge ez = L = (2 A7, (y)|L' = ?' Aae, (y,y') in S such that o € £1N,,
labi(e1) = o and laba(e2) = 0 Ye(X,¥) = Vi (X) A Ve (¥) (X, x', yl) = Qe (X, XI) A
Qe, (y,y') for systems with integer-valued variables and a.(x,y,x’,y') =32 > 0 3t >

0 @e,(x,%',2) A pe,(y,¥',t) A z = t for hybrid systems where ae, (x,x') = 3z >
0 e, (x, %', 2) and ae, (y,y') = 3t > 0 @, (v, 5", 1).

A state of the composed program is a tuple (£, /', v, w) consisting of values of the locations
and each variable. The semantics of the composed program is defined in the usual way. The
parallel composition operation defined above is commutative and associative. For guarded com-
mand programs Si, ..., Sk, we write Sil|...||Sg to denote (...(S1]/82)||S3)||.-.)||Sk). Tools
like UPPAAL [BLL196], HYTECH [HHWT95] use the kind of parallel composition described
above (they also use urgent transitions; the framework described below can be easily made to
take into account such urgent transitions).

7.4 Constraints Representing Sets of States

In this chapter, by constraints we will mean Arith(N) or OF(R) formulas. We use constraints
¢ to represent certain sets of positions. We will consider only conjunctive constraints. A
constraint ¢ is a conjunction of atomic constraints of the form ¢ relop ¢ where t is a term, c € N
and relop € {>, <, >, <}. We identify solutions of the constraints with states of the system. We
write D, (¢, v) = ¢ to denote that the state (£, v) is a solution of the constraint ¢ where D is the
structure under consideration, i.e., either (N, <,+,-,0,1) or (R, <,+,-,0,1). For a constraint
¢, we define the denotation of ¢, denoted by [¢] as

[p] = {(&,v) | D, (4,v) = ¢}

By a set of constraints we mean their disjunction; i.e., if ® is a set of constraints then
[®] = Uyealp]- For two constraints ¢ and ¢', we say that ¢ entails ¢', denoted by ¢ = ¢', iff
[¢] C [¢']. We assume that given two constraints ¢ and ¢', it is decidable whether ¢ |= ¢’ (though
this is not true for arbitrary Arith(N') constraints, still we assume that for the constraints that
we will deal with, the problem of checking whether a constraint entails another is decidable). For
a constraint ¢ with free variables x, we denote by p(x'), the constraint obtained by replacing
the free variables x by x' (renaming).

A constraint ¢ is time closed if its set of solutions (i.e., its denotation) is closed under time
transitions, i.e., if the constraint ¢ is of the form L = £ A ¢ and if Bp(x",x',2) is the OF(R)
formula representng continuous evolution at the location £ (for hybrid systems), then ¢ is time-
closed iff R |= ¢ <= (32 > 0 3x (¢ A Be(x,%',2)))(x). We denote by ° the formula defining
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the time closure of the set of initial states and call it the initial constraint. In the following,
whenever we talk of constraints in the context of hybrid systems, we will refer to time-closed
constraints. In case of o-minimal hybrid systems we also assume that the initial constraint (°
is definable in OF(R).

We identify two constraints ¢ and ¢' iff they have the same denotations; i.e., [p] = [¢'].
We recall the definition of constraint transformer from Chapterb. This notion is inspired by the
notion of syntactic transformation monoids in classical automata theory [Eil76].

7.5 Bound Variables and Initialized Strings

We consider bindings of variables in infinite state systems. Roughly, a (data) variable is bound
at a location of an infinite state system if its value at that location does not “depend” on
its previous values. Let w = ej...e, be a string of edges of an infinite state system with
integer-valued variables.

Definition 7.1 (Bound Variables) We say that a subset X C {x1,...,z,} of variables is
bound at the edge e; (1 <i < m) in the string w if there exists S C {z1,... ,zn} such that (1)
the action a.,(x,x') can be written as a quantifier free formula 61 N 6y where the variables in 6,
are among X' U S (where X' = {z' |z € X}) and the variables in X' U S do not occur in 02, (2)
ifi=1then S=10 and (8) if i > 1 then

— the variables in S are bound in e;—1 (in w) and

— the guard constraint v, (x) can be written as a quantifier free formula ’yéi A ’ygi where the
variables in %}i are bound in e;_1 (in w) and the variables in 7622. are not bound in e;_1 (in

Thus, consider the guarded commands e, es and e3 given by

er=L=lAx>y|L =N =zAy =yrnz>2,

eo=L=0Nz<dhz<y|L =0"N=zn2">2+4+2ANy >y+4
and
es=L=0"Nz>6|L' =0"N=z2AN2' =2Ny =2+2.

According to the above definition, in the string w = ej.es.e3, only z is bound in ey, and {z, z}
are bound in ey and {z,y, 2z} are bound in eg in w. This is because, at e; the action ae, can
be written as 6 A 62 where 62 =2’ = 2 Ay’ =y (where 2’ does not occur) and 6} =2’ > 2
(where the free variables are among 2'). Hence z is bound at e; in w. At the edge ey, the guard
Ye, can be written as véz A %22 where véz = z < 4 (where the free variable z is bound at e; in
w) and 72, = = < y (where the free variables are not bound at e; in w). Now the action a., of
ez can be written in the form 67, A 62, where 61, = 2/ = 2 Az’ > 2 + 2 (where 2 is bound at e
in w) and 62, =y’ > y+4 (where {2',2', 2z} do not occur free). Hence {z,z} are bound at e, in
w. At the edge e3, the guard v, can be written in the form %}3 A %23 where %}3 =z > 6 (where
the free variable z is bound at ey in w) and 7z, = true. Also the action a., can be written in
the form 6}, A 62, where 6}, = 2' =2 A2’ =z ANy’ =z +2 (where {z, 2} are bound at e; in w).
Hence {z,y, 2} are bound at ez in w.
We next come to the definition of initialized strings.
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Definition 7.2 (Initialized Strings) A string w = ey ...en of edges of an infinite state sys-
tem is initialized if for each variable x;, there exists a k (1 < k < m) such that x; is bound (in
w) in every edge in e ... €.

For the cases of non-linear hybrid systems (with the underlying theory being the theory
of real closed fields) as well as integer valued systems in which the underlying theory is the
Presburger arithmetic extended with all relations z = y(mod k), k > 1, it can be effectively
decided using the methods presented in [Lib00] whether a string is initialized.

7.6 Constraint Trees and Symbolic Forward Analysis

Given an infinite state system S with set of edges £, we define the constraint tree for S as
follows.

Definition 7.3 (Constraint Tree) The constraint tree for S is an infinite tree with domain
E* (i.e., the nodes are strings over £) that labels the node w by the constraint [w](°) where °
18 the initial constraint.

Clearly, the (infinite) disjunction of all constraints labeling a node of the constraint tree repre-
sents all reachable states of S. We now define symbolic forward analysis formally. A symbolic
forward analysis is a traversal of (a finite prefix of) a constraint tree in a particular order. The
following definition of a non-deterministic procedure abstracts away from that specific order.

Definition 7.4 (Symbolic Forward Analysis) A symbolic forward analysis of an infinite
state system S is a procedure that enumerates constraints p; labeling the nodes w; of the con-
straint tree of S in a tree order such that the disjunction of the enumerated constraints represents
all reachable states of S. Formally,

— @i = [w;](¥°) for 0 <i < B where the bound B is either a natural number or w,
- if w; is a prefix of wj then i < j,
~ the disjunction \/o_,_ g i is equivalent to the disjunction \/,_;_, ¥i.

The number ¢ is a leaf of a symbolic forward analysis if the node w; is a leaf of the tree formed
by all the nodes w; where 0 < ¢ < B. We say that a symbolic forward analysis terminates if its
bound B is finite. We define that a symbolic forward analysis terminates with local entailment
if for all its leaves ¢ there exists a j < ¢ such that the constraint ¢; entails the constraint ¢;
(as a passing remark, we note that by changing the notion of local entailment, we can get a
model checking procedure for liveness properties; we can change the notion of local entailment
by requiring that for all leaves 7, there exists a j < 7 such that such that the constraint ¢; entails
the constraint ¢;). In contrast, a symbolic forward analysis terminates with global entailment if
for all its leaves i, the constraint ¢; entails the disjunction of the constraints ¢; where j <i. As
discussed in the Introduction, model checking is more efficient with local entailment than with
global entailment, both theoretically and practically. Many model checking tools for infinite
state systems use local entailment (e.g., UPPAAL [BLL"96], which uses identity; the model
checker for infinite state systems with integer-valued variables described in [DP99a] also uses
local entailment).
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We say that a location £ is a part of a cycle w = ey ... ey, if it is the source of an edge e; of
the cycle; i.e., an edge e; of the cycle is of the form ... L =/]....
A string is initializable if it contains an initialized substring.

Proposition 7.1 If every simple cycle of an infinite state system S s initializable, symbolic
forward analysis for the system terminates with local entailment.

Proof.  We first show that the constraint transformer function associated with each initialized
string w is either a constant function or unsatisfiable. Let w = e; ... e, be an initialized string.
Now, by definition, for each variable z there exists a j (1 < j < m) such that z is bound (in w) in
every edge in e;...en. Let j, be the least such j for . Let I = min{j, |z € {z1,... ,zn}}. We
now introduce some terminology that will be needed in the rest of the proof. Let bound(e;) C
{z1,...,zp} be the set of variables that are bound (in the word under consideration)) at an
edge e;. Then, by definition, there is a partition of the set {z1,... ,2,} into two subsets S, and
S, such that for 1 <4 < m, the guard ~, are can be written as a quantifier free formula of the
form véi A 731, where the free variables in véi are bound (in w) in e;_1 and the free variables in
72 are not bound (in w) in e;_1, the variables in S, are bound in e;_1 (in w) and the action
ae,; (x,x') can be written as a quantifier free formula of the form 6; A 6, such that the variables
occurring free in 6; are among bound(e;)' U S, (where bound(e;) = {z' |z € bound(e;)}) and
the variables in bound(e;)' U Se, do not occur free in 6. We call S, as the past of e; and write
past(e;) = Se;. Now consider the edge e;. If past(e;) = Se, then the variables in S, are bound
(in w) in €;_y. If past(e;—1) = Se,_, then the variables in S, , are bound (in w) in e;_3. We
can continue this reasoning only a finitely many times after which we will get an edge e, in w
such that past(e,) = 0. We will show that the constraint transformer associated with the string
w = ep ... €m is either a constant function or unsatisfiable. The constraint transformer function
associated with w’ is given by

[w'](p) = FxIxP ... 3Ix™ Lo Ahp A A ) ()

where 9, is the formula obtained by applying a-renaming to the conjunction of the guard formula
J )
Ve, (x) and the formula 3z > 03x"4,, (x,x") A ABe, (x", %', z). That is

,lpk = e, (kal) A Ele Z 0 ﬂxk"(sek (kal,xkll) A /Bek (Xk”,Xk,Zk)

We identify the variable z; with its Oth renaming; accordingly we can write x° for x.

Now by definition, we can write 1, as e, (x) A Qé(bound(ep)p) A
Oo(({F, ... ,':vﬁ}\bound(ep‘)p),x) where for any subset X C  {z1,...,2z,} we de-
note by X’ the set {z/ |z € X}. For each ¢ (p < ¢ < m), we can write ¢
as 7 (bound(ei—1)" 1) A A2 ({z1,... ,zp}\bound(ei—1)""1) A 60} (bound(e;), past(e;)t) A
02(({z1,... ,zn}\bound(e;))t, ({z1,... ,zn}\past(e;))*"1). Observe that under this rewriting,
¥ Tewrites to vém(bound(ezj)/wgm({xl, oy zn Y\bound (em—1)™ TABL (x™, past (em_1)™ 1A
02, (({x1,... ,zn}\past(em))™ !). Now we can transform the constraint

(FxIxP ... IX™ e APy Ao Ath))
to a constraint of the form

(Ix3xP ... Elxm_l(go A AY'))
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such that x is not free in 7' and the variables that occur free in ¢ do not occur free in 7)';
in particular, the variables x™ occur free only in ¢’ (this will hold since for each p < i < m,
past(e;) C bound(e;—1)). In this case, we can move the corresponding existential quantifiers
inside; i.e., we can write the above constraint as

Gy A9)) A Ty'y!
where y occur free in ¢ A1, and y'\x™ occur free in ¢'. If ¢ A9 is unsatisfiable, then [w](¢p) is
unsatisfiable. Otherwise, if ¢ A 1 is satisfiable (which we have assumed), therefore the conjunct
Jyp A is equivalent to true. Thus, [w'](p) is equivalent to a formula that does not depend on
¢, and hence a constant function.
Let e4 be the least ¢ such that bound(eq) = {x1,... ,2,} (such a g exists since bound(e,,) =
{z1,... ,zn}). We rewrite the above constraint as follows.

IxIxP ... Ix™ (o AyY) A Y

where
pAY = (0 A7, (%)
A 02(({2f, ... 2h}\bound(ep)P),x)
A ’ygﬂ({x]f, .., zhF\bound(e; 1))
A B2 2k N\ bound (ep )P, ({1, - za}\past (ep11))P))
AN
A2 (({z1,. .z \past(eg))? 1)
AN
. A 91277,(({131,--- axn}\p‘wt(em))mil))
P = 911)(b0und(ep)p) A 7§p+1((b0und(ep))p)
A O;H(bound(epﬂ)p“, past(ep+1)P)
AL
A b, (bound(em-1)™ 1)
A OL (x™, past(em 1)™ 1)

Now let w"” =e;...e,_1. Then w = w".w'. Hence the constraint transformer [w] associated
with w is given by [w] = [w"] o [w']. Since [w'] is either unsatisfiable or constant function, [w]
is also either unsatisfiable or a constant function.

Now seeking a contradiction, assume that symbolic forward analysis for S does not termi-
nate with local entailment. Hence, there must be an infinite path p along the constraint tree.
Following an argument in the proof of Theorem 5.1, p contains infinitely many occurrences of
a simple cycle w; i.e., p is an element of the language (£*.w)”. Now consider any two nodes
s1 = wi.w and s = we.w of p such that s; < sy. Since the constraint transformer function
labeling w is a constant function, the constraints labeling sy and ss are the same. Since this
happens for every path p in the constraint tree, following the argument in Theorem 5.1, we can
obtain a contradiction. Hence symbolic forward analysis for S terminates with local entailment.

H

Corollary 7.1 Symbolic forward analysis of an o-minimal hybrid system terminates with local
entailment.

Proof. Tt is easy to see that each simple cycle of an o-minimal hybrid system is initializable.
Hence the result follows from an application of Proposition 7.1. [
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7.7 Compositional Reasoning about Termination

In this section, we show how to reason compositionally about sufficient termination conditions in
our framework. In order to motivate that just proving termination for individual components is
not enough, consider Figure 7.1. The figure shows two hybrid systems &1 and S;. Each system is
o-minimal and hence symbolic forward analysis for each terminates. The first system Sy consists
of two locations £° and ¢! and one (program) variable z which increases with derivative 1 in each
location. There is an edge from £ to ¢! labeled a. The second system S, consists of a single
location m® and an edge from m? to itself labeled b. The variable y is the only program variable.
It increases with derivative 1 at the location m®. The initial states (constraints) for S; and S»
are respectively L = ¢ A2 = 0 and L = m® A y = 0. The asynchronous parallel composition of
S1 and &y is not o-minimal. In fact, symbolic forward analysis for their asynchronous parallel
composition does not terminate.

@ L

X=

IN
X

< e
i
o

()
S

S1

Figure 7.1: Example showing composition of o-minimal hybrid systems.

The above example illustrates the need to develop sophisticated compositional techniques to
infer the termination of symbolic forward analysis of the composed system based on certatain
sufficient criteria in the component systems. In the rest of this section, we provide sufficient
conditions under which symbolic forward analysis of the parallel composition of n infinite state
systems 81, ..., Sy is terminating. To this end, we first define the notion of an initialized edge.

Definition 7.5 (Initialized Edge) An edge e of an infinite state system is said to be initialized
if the free variables in the action a. are among x'.

Let Sq,...,S; be k infinite state systems with synchronizing alphabet sets ¥1,... , ;. Below,
for a finite set I, we write [],.; S; for the parallel composition of infinite state systems S; where
1€l

Theorem 7.1 If each simple cycle w =e;...ey (m > 1) of each S;
— contains an e; (1 < j < m) such that lab(e;) € X1 N ... Ny

— and for each e € w such that lab(e) € 1N ... N Xy, e is an initialized edge
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then symbolic forward analysis for S = &1l ... ||Sk terminates with local entailment.

Proof. We show that the constraint transformer function associated with each simple cycle
in the composed is either a constant functionor unsatisfiable . The proof requires complicated
combinatorial arguments. Before formally proving this, we state the basic intuition behind our
proof method: since each simple cycle of each component S; contains at least one edge e; such
that lab(e;) € ﬂle >, therefore in each simple cycle w of the composed system, each component
“moves”; i.e., for each component there exists at least one edge in w such that the projection of
that edge on that component is an edge in that component. We now formally state our proof.
Formally, we first show that for any nonempty subset I C {1,...,k}, in each simple cycle w of
the composed system [[;.; S; there exists an edge e such that each component S; (i € I) “moves”

on that edge and lab(e) € ﬂle 3;. We prove this by induction on the cardinality of I. The base
case when I is a singleton is trivial. Let the statement hold for all subsets of {1,... , k} of size less
than or equal to I. Let I C {1,... ,k} be such that |[I| =+ 1 and there exists a simple cycle w
in the composed system [ [;.; S; such that for each edge in w there exists a component S; (i € I)
such that S; does not “move” on that edge. Now consider the simple cycle w. There exists a
component S; (j € I) such that the projection of w on §; is a cycle in §;. Now pick up any a € I.
Consider the composed system Hiel\{a} S;. The projection of w on this system contains a cycle
w' in it. Let w” be a simple cycle within w’. By induction hypothesis, there exists an edge €” in
w" such that every component S; (i € I\{a}) “moves” on e and lab(e") € (i, T. Consider
the edge e in w such that its projection on w’ is €. By our assumption, S, does not “move”
on that e. But since lab(e) € ﬂle Y;, therefore, by the definition of parallel composition, the
existence of this edge e in the composed system [],.; S; is impossible. Hence, we have shown
that for any nonempty subset I C {1,... ,k}, in each simple cycle w of the composed system
[I;c; Si there exists an edge e such that each component S; (i € I) “moves” on that component
and lab(e) € ﬂle Y;. Thus, in every simple cycle w = e;g.... .e,, the composed system Hle Si,
there exists an edge e such that every component §; “moves” on that edge and lab(e) € ﬂle ;.
We now show that the constraint transformer function [w] associated with each simple cycle w
of § is either a constant function or unsatisfiable. Indeed, let w = ey.... .e;, be any simple cycle
of §. Then, there exists an edge e such that every component §; “moves” on that edge and
lab(e) € ﬂle Y;. Let e = e;. Consider the projection of e; on any component S;. The projection
will be an edge €’ in this component and also lab(e') € ﬂle ¥;. Hence, by the assumption of the
theorem, only the primed variables are free in ar. Hence, in S, only the primed variables are
free in a,. Hence . is an initialized edge. It can be easily seen that the constraint transformer
function associated with an initialized edge is either a a constant function or unsatisfiable. Let
w' =e1...ej_1 and w"” =ejy1...¢e;. Then the constraint transformer function associated with
w is given by [w] = [w'] o [e;] o [w"]. Hence [w] is either a constant function or unsatisfiable.
Now we can argue as in Proposition 7.1 and prove termination of symbolic forward analysis with
local entailment. [

To see the applicability of our results, consider the two-process real time mutual exclusion
protocol given in Figure 7.2. The critical section is denoted by cs. Here, the processes do
not share real variables — the communication is through the synchronization labels. The set
of synchronization labels ¥; of process P1 is the set {a,b,g,p,t1} and that for process P2
Y9 = {a,b,9,q,t2}. Each process Pi has only one clock zi. It can be seen that this protocol
satisfies the conditions of theorem 7.1. Hence, symbolic forward analysis for the protocol (i.e.,
symbolic forward analysis of the composed system) terminates.
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P1 P2

Figure 7.2: A two-process timed mutual exclusion protocol.
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Our next two theorems are concerned with infinite state systems with integer-valued vari-
ables. Let S1,..., Sk be k infinite state systems with integer-valued variables with synchronizing
alphabet sets ¥q,... ,X.

Theorem 7.2 If each simple cycle w =ejy ...y (m > 1) of each S; is
— an initialized string and
— contains an e; (1 <i < m) such that lab(e;) € 1N ...N Xy

then symbolic forward analysis for Si||...||Sk terminates with local entailment.

Proof. By following the same line of reasoning as in the proof of Theorem 7.1, we can show
that in every simple cycle w = ej.... .e;, the composed system Hle S;, there exists an edge
such that every component §; “moves” on that edge. This means that the projection of w on
any component S; contains a cycle w' in §;.

We now show that w is an initialized string. We show that for any variable z there exists a j
such that « is bound (in w) in every edge in ej. ... .ep,. Precisely, we show that if w' = é;.... .€p,
then there exists a ¢ (1 < ¢ < p) such that z is bound (in w') in every edge in é;.... .6, where
the variable z belongs to S;. We prove this by induction on the nesting depth of the cycle w'
contained in the projection of w on the component S; that = belongs to. The base case is when
the nesting depth is 0, i.e., when (the control graph of) w' is a simple cycle; i.e., w' is of the form
as below where w' = €;.... .€,. Without loss of generality, we are assuming that the portion of
the projection w of w on §; from the end of w' to the end of w does not contain any cycle of S;.

wl

—_—
0.0 20

In this case, due to the fact that the components do not share variables and the assumption of
the theorem, we can show that there exists a ¢ such that z is bound (in w') in every edge in
€¢. ... .€p. From this it follows that there exists a j such that  is bound (in w) in every edge in
€j.... .em. Now assume that the result holds for all w’ such that the nesting depth of w' is less
than or equal to q. Let w' be of nesting depth ¢ + 1. Then w' must contain a cycle w” which is
of nesting depth less than or equal to q. We can chose w"” such that the portion of w' from the
end of w" to the end of w' does not contain any nested cycle. This situation is depicted below.

wll

_ - - p _ _
[ AT Ny N N N N

Now there can be two cases. The first case is that there exists an edge e between é; and é, such
that z is bound (in w') in every edge in e. ... .€,. In this case, since the components do not share
variables, we can easily show that there exists a j such that z is bound (in w) in every edge in
€j.... .m. For the other case in which such an edge does not exist we appeal to the induction
hypothesis. By the induction hypothesis, there exists a ¢’ such that z is bound in every edge
in €y.... .6, in w”. Also, by the induction hypothesis, every variable in §; is bound in €, (in
w"). The binding of z in €, can be extended to €;.... .¢, (in w'). This is done as follows. First
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observe that the string €;.... .€, is a part of a simple cycle v = €7.... .€p.6.... .6, of S;. Now
we show that the following is an invariant. If a variable y is bound in any edge é, between e; and
€, in v, then it is also bound in €, in the string v’ = ejr.... .€;.... .u where t" is the greatest
t such that é; ... €, is an initialized string (from the induction hypothesis such a string exists).
Indeed, first consider any variable y that is bound in €; in v. Then there exists a partition of
{z1,... ,z,} into two sets S and S’ such that the guard constraint vz (x) can be written as a
quantifier free formula of the form fyét A fygt where the free variables in fyét are bound (in v) in €,
and the free variables in fygt are not bound in €, (in v) and the action ag(x,x’) can be written
as a quantifier free formula of the form 6; A 85 where

— the variables occurring free in #; are among bound(é;)'US (where we use the same notation
as in the proof of Proposition 7.1.

— The variables in bound(ée;)' U S do not occur free either in 35 or in 6.
— Each variable in S is bound in €, (in v).

But each variable in S is bound in €, (in v’). Hence y is bound in & in v'. Now suppose that
this holds for all edges in €;.... .€,. Then it can be easily shown that this holds for é;.... .€511.
Now according to the assumption of the theorem z is bound in every edge €, between é; and
€y in v. Hence it is bound in every edge bound in every edge é, between é; and €, in é;...é,.
Thus z is bound in every edge in the string é; ... é,. From this it easily follows that there exists

a j such that z is bound in every edge in e;.... .e,;. Thus we have proved that every simple
cycle in the composed system Si||...||Sy is an initialized string. The result of the theorem then
follows from Proposition 7.1. [

Our next theorem also considers infinite state systems with integer-valued variables. The
sufficient conditions provided are more graph-theoretic. We first define an exit point for a simple
cycle w =e1...en.

Definition 7.6 (Exit Point) An edge e; of a simple cycle w = e1...en 18 an exit point of w
if the source location of e; is a part of a cycle w' # w; i.e., it is also the source location of some
edge in w'.

For a simple cycle w = ey ... ey, we call the edge e; the last exit point of w if e; is an exit point
of w and for all j with ¢ < j < m, e; is not an exit point of w; i.e., the source location of e; is
the last location in w from which one can leave w. If e; is the last exit point of a simple cycle
w=ej...en, we call the substring w’' = e; ... ey the remainder section of w.

Theorem 7.3 Assume that each S; is an infinite state system with integer-valued variables.
Suppose that

— each simple cycle in each S; is an initialized string and
— the remainder section of each simple cycle in each S; contains an initialized string.

Then symbolic forward analysis for Si||...||Sk terminates with local entailment.

Proof. Seeking a contradiction, suppose that the constraint tree for the composed system
contains an infinite branch w. Then some simple cycle w must repeat infinitely often along that
branch. We now reason on the type of this simple cycle w.
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Case 1. The first case is that each component S; “moves” on w; i.e., for each component S;
there exists an edge e in w such that the projection of e on S; is an edge in S;. In this case we
can reason as in Theorem 7.2 and show that w is an initialized string. Then we can follow the
reasoning of Proposition 7.1 and obtain a contradiction.

Case 2. This case is the negation of the first one. I.e., there exists at least one component
that does not “move” on w = ey...e,. Hence w may not be initialized. However for each
component §; that “moves” on w, for each variable z that belongs to S;, there exists a j such
that z is reset in any edge in e;...e,. This can be proved by using reasoning similar to that
in Theorem 7.2. Now since the branch 7 belongs to the language (£*w)%, it is of the form
TowTiw..... Consider the components that do not “move” on w. Without loss of generality,
the variables that belong to these components be {z4,... ,z,}. Among these, let {z,,...,z4}
be the variables that belong to components that do not “move” after some point in the branch
7. So the variables {z41,...,2,} belong to components such that for every node 7 on 7, for
each of these components there exists a descendant 7' = w’.e of 7 such that the component
“moves” on e. We go down the branch m beyond the point after which the components to
which the variables {z,,... ,2s} belong do not “move” any more. Since the cycle w repeats
infinitely often, we can find below this point two nodes labeled w; and w;.w. From the latter
node, we can still go down until we can find a stretch in which each of the components to which
{Zs+1,...,2n} belong “move” at least once along this stretch. We can find two nodes beyond
this “point” labeled wy and wy.w. Let the word between wi.w and wy be denoted by Ly; i.e.,
wy = wy.w.Ly. Since w repeats infinitely often along 7, we can find nodes w3, ws.w, wg and
wg.w such that we.w < wg and wyg = ws.w.Ly where each component that contains variables
among {Zsi1,... ,2n} “moves” at least once in L. In this way we can get an infinite sequence of
nodes w;, w; w, w;t1, wir1.w where w;11 = w;.w.L; and each component that contains variables
in {xs41,...,2,} “moves” at least once in L;. Now notice that the edges in L; on which the
components, that contain variables {z;11,... ,2,}, “move” must lie within a cycle of §. The
situation for a component S; that “moves” in L; is shown below.

i

c

Cl

e —l— L — ..

Note that by “unpumping” (where if w =€7...€,, isa word and C =e¢...¢; (1 <k <1< m)
is a cycle contained in w, then the word obtained from w by “unpumping” C is given by
€1...€ek—1.€141 - - - €m) is all the cycles that are inside C' we can get a simple cycle. We say that a
component “moves” within a simple cycle C' if the component “moves” in C and C' is obtained
by unpumping all the cycles contained in C and the component “moves” in C'. Now consider the
simple cycles in which each component that contains the variables in {z11,... ,2,} “moves” for
the last time in L;. That is, there is no ”movement” of a component in L; after its corresponding
simple cycle (i.e., the simple cycle in which it “moves” for the last time in L;). Since there are
infinitely many L;s but finitely many simple cycles, there must exist infinitely many indices j7;
such that in each Lj,, for each component that contains variables in {z,11,...,2,}, its last
“movement” in Lj, is contained in the same simple cycle. Consider L;, and Lj,. Consider the
following situation.
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Wiy Wy W wj;w.Lj; wjy . w.Ljw Wjo Wy W Wiy w.Lj, Wiy -w.Lj,.w

Let the constraints labeling the nodes wj,, wj, .w, wj, .w.L;, wj, . w.Lj.w, wj,, wj,.w,
wj,.w.Lj, and wj,.w.Lj,.w be @1, 2, ¢3, Y4, @5, pe, p7 and pg respectively. We will show
that ¢g |= @4. Then reasoning as in Proposition 7.1, we can obtain a contradiction.

Suppose that N, v |= ¢g. Then there must be a run from a solution v’ of ¢ito v. Let us
denote this run by R. Thus

' R *

! ! !
(V1,400 3 Vg 1,Vgs et 3 Vsy Vg gy e, Up) —> (V1. Up)
We will show that N,v = ¢4. Since g3 is satisfiable, there must exist a solution
(V] v 1,0g, 505, UG,y vp) of 3. Hence there must exist a run
nn nn n nn * n n n n
<1)1 g avqflvqu"' av57vs+17"' y Un > <vlv"' avqflavib"' av57vs+1a"- 7vn>
1" nn nn nn _
from the node wj, to the node wj,.w.Lj and N, (v{",... s Vg 1y Ugs - 3 Vs Ugi1y o s Un" )
1. Let us call this run R Now we will construct a run from
(0", g vgs s, U 0p") —* v from the node wj, to the node wj,.w.Lyj, .w.

This will prove that N, v = 4.

This run is constructed as follows. From the node wj, to the node wj,.w we follow the
run R'. Without loss of generality let Sp,...,S; be the components that contain the variables
{s41,... ,2n}. From the node wj, .w to the node wj, .w.Lj;,, we follow the following strategy. For
each of the edges in this stretch other than those in the simple cycles in which some components
in {S1,...,8} “moves” for the last time in L; , we update the variables according to the run
R'. For the simple cycles in which at least one of the components in {Si,...,S;} “moves” for
the last time in L; , we reason as follows. We first notice the following. Consider a cycle C
nested in Lj;, in which the component S; “moves” for the last time in Lj,. It is of the form

C
—_—~—
Cl
—
0.0 0.0
Lj

where C' is a cycle nested inside C. Now there are two cases.

Case 2.1 The component S; does not move in the stretch from the end of C’ to the end of
C. Then it must have "moved” in the stretch from the beginning of C to the beginning of C’.
In that case, it cannot have "moved” in the cycle C'. Now the projection w' of the stretch from
the beginning of C to that of C' on &; must contain a cycle w” of S;. We choose this w" in such
a way that the stretch from the end of w” to the end of w' does not contain any cycle of S;.
Suppose that w” = €j.... .¢p. Now we prove that for each variable  that belongs to S;, there
exists a j such that x is bound (in w") in every edge in €;...€,. We prove this by induction
on the nesting depth of w”. The base case when the nesting depth of w" is zero, i.e., w” is a
simple cycle, is trivial. Now assume that the result holds for all w” such that the nesting depth
of w" is less than or equal to q. Let w” be of nesting depth ¢+ 1. Then w” must contain a cycle
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w"" which is of nesting depth less than or equal to q. We can chose w"”' such that the portion
of w" from the end of w"' to the end of w” does not contain any nested cycle. This situation is
depicted below.

_ - - p _ _
[ AT Ny N N N N

Now there can be two cases. The first case is that there exists an edge e between é; and €, such
that x is bound (in w") in every edge in e.... .€,. In this case we have nothing to prove. The
second case is when there does not exist such an edge. In this case we appeal to the induction
hypothesis. By the induction hypothesis, there exists a ¢’ such that z is bound in every edge
in €y.....€, in w”. Also, by the induction hypothesis, every variable in S; is bound in €,. The
binding of z in e, can be extended to e;.... .e,. This is done as follows.

First observe that the string e;.... .6, is a part of a simple cycle v = €;.... .€p.€;.... €y
of §;. Now we show that the following is an invariant. If a variable y is bound in any edge e,
between ¢€; and €, in v, then it is also bound in &, in the string v’ = ej.... .€;.... .u where
t" is the greatest t such that for the word u = é;...¢€, every variable y in §;, there exists a j
(t < j < p) such that y is bound (in @) in every edge in €} ... €, (from the induction hypothesis).
Indeed, first consider any variable y that is bound in €; in v. Then there exists a partition of
{z1,...,z,} into two sets S and S’ such that the guard constraint vz (x) can be written as a
quantifier free formula of the form fyét A 737 where the free variables in fyét are bound in €, (in v)
and the free variables in 7% are not bound in €, (in v) and the action ag(x,x’) can be written
as a quantifier free formula of the form 6; A 85 where

— the variables occurring free in 6; are among bound(é;)' US (where we use the same notation
as in the proof of Proposition 7.1).

— The variables in bound(ée;)' U S do not occur free either in 35 or in 6.
— Each variable in S is bound in €, (in v).

But each variable in S is bound in €, (in v'). Hence y is bound in € in v'. Now suppose that
this holds for all edges in é;.... .€;. Then it can be easily shown that this holds for €;.... .€511.
Now according to the assumption of the theorem x is bound in every edge é, between e; and ¢,
in v. Hence it is bound in every edge bound in every edge €, between é; and é, in é; ... ¢é,. Thus
x is bound in every edge in the string é; ... é,. Hence, we have shown that for every variable z
that belongs to S;, there exists a j such that x is bound (in w") in every edge in €;. .. €p.

In this case, for the variables that belong to S;, we update them in the edges that corre-
sponding to €; ... e, in the same way as is done in the run R in L;,. Note that since the simple
cycles in which §; “moves” for the last time are same in Lj and Lj;,, we can do this kind of
update (action).

Case 2.2. The component S; "moves” in the stretch from the end of C’ to the of C. We
now show that projection u of the stretch from the end of C’ to the end of C' on the component
S; contains an initialized string. Indeed, let C be the simple cycle obtained by unpumping all
the cycles that are contained in C'. Consider the projection of C on the component S;. Since S;
"moves” in the stretch from the end of C’ to the end of C, either the projection of this stretch
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on the component S; itself contains a simple cycle of S;, or there is a (projection of a) simple
cycle of §; whose starting point corresponds to an edge in the stretch from the beginning of C
to the beginning of C' and it ends in the stretch from the end of C’ to the end of C, after which
the projection does not contain any cycle. In the former case, consider the last simple cycle
contained in the projection of the stretch from the end of C’ to the end of C. By the assumption
of the theorem, it contains an initialized string. For the edges in L;, that corresponding to this
initialized string, update the the variables belonging to S; in the same way as in L;,.

In the latter case, there can be two subcases.

Case 2.2.1 The first subcase is that the component S; does not “move” in C’. In this case,
we reason as follows. If the component S; does not “move” in the stretch from the end of C’
to the end of C, then the projection of the stretch from the beginning of C' to the beginning of
C' on S; must contain a simple cycle of S;. Hence on the projection u of the stretch from the
beginning of C' to that of C’, we choose a simple cycle w’ such that the stretch from the end of
w' to the end of u does not contain any cycle. In this case, for the variables that belong to S;,
we update them in the edges that correspond to w' in the same way as is done in the run R in
Lj,. If the component S; does “move” in the stretch from the end of C’ to the end of C, then
if the projection of this stretch on §; contains a simple cycle of §;, we can reason as in Case
2.1. Otherwise, the projection of C on §; will contain a simple cycle uy.us of S; such that uq
belongs to the projection of the stretch from the beginning of C to the beginning of C' while us
belongs to the projection of the stretch from the end of C’ to the end of C. In this case, for the
variables that belong to S;, we update them in the edges that correspond to ui.us in the same
way as is done in the run R in Lj,.

Case 2.2.2 The second subcase is that the component S; “moves” in the cycle C'. In
this case, if the component §; must “move” in the stretch from the end of C’' to the end of
C (otherwise C is not the simple cycle in which S; ‘moves” for the last time in Lj,). If the
projection of the stretch from the end of C’ to the end of C on S; contains a simple cycle of S;,
then we can reason as in Case 2.2.1. In the other case, the projection of C on S; will contain a
simple cycle uy.us of §; such that u; belongs to the projection of the stretch from the beginning
of C to the beginning of C' while us belongs to the projection of the stretch from the end of C' to
the end of C'. Now the end of u; is an exit point of the simple cycle u;.u3. Hence from the second
condition of this Theorem, us must contain a initialized string. Let w' be the last initialized
string contained in ugy (i.e., if we let uy = w.w’.v/, then, for any u” such that us = u”.w" .u"" and
u is a prefix of u”, w" is not a initialized string). We now show that w'.u’ is an initialized string.
Indeed, consider any variable z tat belongs to S;. Of course z is bound in the edge e in w'.u’
where w' = w".e. Either this binding extends all the way through «’. Or we must get an edge
e in v’ such that ' = u".€’.w"" and z is bound in w'.u' in every edge in w''. In this case, for
the variables that belong to S;, we update them in the same way as is done in the run R in Lj,.

Finally, we note that in all these cases, in the run created, we get a tuple
(v, ... ,v;’_l,vq, c Vs, Usi1,... ,Up). Now we can easily construct a run from this tuple to
the tuple v at the node wj,.w.L;,.w. This is done by the following method. In every edge
in the stretch from tthe node wj,.w.L;;, to the node wj,.w.L;, .w, we update the variables in
{z1,... ,24—1} in the same way as is done in R in the stretch from the node wj,.w.L;, to the
node wj,.w.Lj,.w. Hence N, v = ¢4. I
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7.8 Related Work

Reachability analysis for infinite state systems with integer valued variables has been consid-
ered by Berard and Fribourg [BF99] as well as by Fribourg and Olsen [FO97]. Berard and
Fribourg [BF99] did not identify any (interesting) subclass of such systems for which their
reachability analysis procedure terminates. They relaxed the reachability analysis procedure
over integers to reals with the observation that over the class of constraints that they have con-
sidered, elimination of variables over R (the domain of reals) using Fourier-Motzkin procedure
is exact, i.e., produces the same result as the elimination of variables over A/ (the domain of
natural numbers). However, it can be easily shown that over the class of constraints that they
have considered, the real and integer solving algorithms perform exactly in the same way. Hence,
the relaxation to reals does not provide any advantage with respect to computational complex-
ity contrary to the claim in [BF99]. Like the work of Berard and Fribourg [BF99], Fribourg
and Olsen [FO97] also do not provide any sufficient conditions for termination of their model
checking procedure.

Abdulla, Cerans, Jonsson and Tsay [ACJT96] as well as Finkel and Schnoebelen [FS98]
gave a unifying framework for deriving decidability results for model checking for infinite state
systems. However, their framework requires finding a well quasi-ordering on the states. In many
practical situations, finding such a well quasi-ordering on the states is not feasible. Besides, their
method of deriving sufficient termination conditions for reachability analysis is monolithic; one
has to consider the state-space of the composed system to show the termination of reachability
analysis.

Comon and Jurski [CJ98] obtained decidability results for reachability analysis for a fragment
of the class of multiple counter automata. They showed that the fixpoint of iterating transitions
for this subclass of multiple counter automata is expressible in Presburger arithmetic. Again,
their framework does not provide any means of reasoning about sufficient termination conditions
compositionally.

Boigelot [Boi98] obtained sufficient conditions for termination of reachability analysis for
infinite state systems with integer-valued variables based on graph-theoretic properties of the
underlying control graphs. However, like the works mentioned above, his work does not provide
a compositional way of reasoning about sufficient termination conditions.

Bultan, Gerber and Pugh [BGP97] presented a model checker for infinite state systems
with integer-valued variables based on the Presburger solver from the Omega library [Pug92].
While [BGP97] provided model checking procedures for both safety and liveness properties, no
sufficient conditions for termination of the procedures were provided.

Wong-Toi [WT95] has identified a subclass of linear hybrid systems called skewed clock au-
tomata that can be translated to timed safety automata. The subclass of skewed clock automata
is closed under parallel composition. While symbolic backward analysis is guaranteed to termi-
nate for skewed clock automata, symbolic forward analysis is possibly non-terminating for this
subclass. However, as discussed in the previous chapters, symbolic forward analysis is widely
used in practical experiments. It is also not clear how the methods of [WT95] can be extended
to nonlinear hybrid systems.

Non-linear hybrid systems have been considered by Lafferriere, Pappas and Yovine [LPY99].
For the class of o-minimal hybrid systems, they proved the termination of symbolic backward
analysis by showing that this class admits finite bisimulations. Using our toolbox, we have given
a simple proof of the termination of symbolic forward analysis for o-minimal hybrid systems. In
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fact this result has been obtained as a corollary of a more general theorem. While the reasoning
about termination of symbolic backward analysis in [LPY99] is not compositional, our toolbox
also allows compositional reasoning about termination of symbolic forward analysis for the class
of hybrid systems considered in [LPY99].

Henzinger, Kopke, Puri and Varaiya [HKPV95] considered initialized rectangular automata,
a subclass of linear hybrid systems, for which symbolic backward analysis is guaranteed to
terminate. Henzinger [Hen95] considered hybrid automata with finite bisimulations for which
symbolic backward analysis is guaranteed to terminate. But none of these works addressed the
issue of compositional reasoning about sufficient termination conditions.

Lam and Brayton [LB93] considered alternating RQ timed automata which were closed under
I/O composition. The class of alternating RQ automata is restrictive in the sense that it allows
exactly one reset and exactly one query for each clock in an entire automaton. Moreover the
notion of I/O composition that they used is much more restrictive than the notion of parallel
composition used in this chapter. It is also not known whether symbolic forward analysis for
alternating RQ timed automata is guaranteed to terminate.

Namjoshi [Nam98| considered model checking for parameterized systems in which each pro-
cess is finite state. In contrast, in this chapter, we considered finite families of possibly infinite
state systems.

In Chapter 5, we provided a framework for reasoning about sufficient termination conditions
for symbolic forward analysis of timed automata. The present chapter is an extension of that
framework to the more general context of infinite state systems with integer-valued variables and
(nonlinear) hybrid systems as well as augmenting the framework with compositional reasoning.
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Chapter 8

Constraint Transformer Monoids:
A Unified Algebraic Framework
for Abstract Symbolic Forward
Analysis of Infinite State Systems

8.1 Introduction

Over the last few years, there has been an increasing research effort directed towards automatic
verification of infinite state systems. Research on decidability issues (e.g., [ACJT96, ACHH93,
Boi98, LPY99, HKPV95, CJ98]) has resulted in highly non-trivial algorithms for the verification
of different subclasses of infinite state systems. These results do not, of course, imply termination
guarantees for semi-algorithms on which practical tools are based (e.g., the decidability of the
model checking problem for timed automata does not entail a termination guarantee for symbolic
forward analysis of timed automata; symbolic forward analysis for timed automata is possibly
non-terminating).

Practical tools generally use abstractions to guarantee (or speed-up) the termination of
these semi-algorithms. The abstract semi-algorithms resulting from such abstractions may be
always terminating but approximate (i.e., they always terminate but can produce don’t know
answers; for example the semi-algorithm with widening used in [HPR97]), or both terminat-
ing and accurate (e.g., the algorithm with the extrapolation operator in [DT98] and used in
KRONOS) or possibly non-terminating and accurate (such abstract semi-algorithms are possi-
bly non-terminating; but when they terminate they produce a yes/no answer; examples are the
semi-algorithm with the cycle-step abstraction in [BBR97] and the semi-algorithm with accurate
widening in [MPO00Oa]). Many of these abstractions are inspired by the abstract interpretation
framework of Cousot and Cousot [CCT77].

Symbolic forward analysis is a semi-algorithm that in many cases solves the model checking
problem for infinite state systems in practice. This semi-algorithm is implemented in many prac-
tical model checking tools like UPPAAL [BLL"96], KRONOS [DT98] and HYTECH [HHWT97].
This chapter presents a uniform algebraic framework for deriving abstract symbolic forward anal-
ysis procedures for a large class of infinite state systems with variables ranging over a numeric
domain. We obtain the framework by lifting notions from classical algebraic theory of automata
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to constraints representing sets of states. Our framework provides sufficient conditions under
which the derived abstract symbolic forward analysis procedure is always terminating or accurate
or both. The class of infinite state systems that we consider here are (possibly non-linear) hy-
brid systems and (possibly non-linear) integer-valued systems. The central notions involved are
those of constraint transformer monoids and coverings between constraint transformer monoids.
We show concrete applications of our framework in deriving abstract symbolic forward analysis
algorithms for timed automata and the two process bakery algorithm that are both terminating
and accurate.

Our results suggest a potential optimization of the (abstract) symbolic forward analysis
procedures. Namely, the termination guarantees continue to hold even when the fixpoint test
is made more efficient by weakening it to local entailment (explained below; e.g., for linear
arithmetic constraints over reals, the complexity of fixpoint test reduces from co-NP hard to
polynomial).

8.2 Infinite State Systems

We recall the notion of infinite states systems from Chapter 7. We assume that the program
variables range over the set of natural numbers N or the set of reals R, and the guard and
the action formulas are Arith(N') (the theory of natural numbers with addition, multiplication
and order; it is interpreted over the structure (N, <,+,-,0,1)) or OF(R) (the theory of the
ordered field of reals; it is interpreted over the structure (R, <,+,-,0,1)) formulas. Below, we
will refer to OF (R) or Arith(N') formulas as constraints. For a formula ¢ with free variables x,
we denote by p(x'), the formula obtained by replacing the free variables x of ¢ by x’. Similar
to Chapter 7, we will use constraints ¢ to represent certain sets of states of the system.In the
sequel, we assume only conjunctive constraints; i.e., constraints that are conjunctions of atomic
constraints of the form ¢ relop ¢ where t is a term, ¢ € N and relop € {>, <, >, <}. Examples of
systems as described above include the bakery algorithm, the bounded buffer producer-consumer
problem etc. as well as the so-called hybrid systems.

8.3 Constraint Transformer Monoids

Our definition of constraint transformer monoids is inspired by the definition of (syntactic)
transformation monoids in [Eil76]. Let ® be a (possibly infinite) set of satisfiable constraints
(i.e., each constraint in ® is satisfiable). We denote the set of all partial functions & — @ by
SF(®). Let 1 denote the identity function. The set SF(®) forms a monoid with functional
composition as the multiplication and 1g as the identity element. A constraint transformer
semigroup is a pair (®,S) where S is a subsemigroup of SF(®). The constraint transformer
semigroup (®, S) is a constraint transformer monoid if the identity function 1 is in S. The
elements of ® are called symbolic states. The elements of S are called constraint transformers. A
constraint transformer monoid X = (®,.S) is a constraint transformer submonoid of a constraint
transformer Y = (@', S") if ® C &' and S is a submonoid of S'.

By the denotation of set of constraints ®, we represent the denotation of their disjunction;
ie., [®] = Ulpecb[‘»o}'

We next define a syntactic order C¥ on a constraint transformer monoid X = (®, S) with
respect to a constraint ¢ € @ as follows.
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Syntactic Order. For w,w' € S, w C¥ w' iff w(p) = w'(¢). Given a set of constraints
¥ C &, we say that an infinite sequence wqg, wy,..., where w; € S, is syntactically increasing
with respect to W if for all ¢ > 1, there exists ¢ € ¥ such that w; ¥ w; for all j < 1.

Finitary Constraint Transformer Monoids. We say that a constraint transformer monoid
X is finitary with respect to a set ¥ C @ of constraints if there does not exist any syntactically
increasing infinite sequence with respect to ¥. Note that X is finitary does not mean that & is
finite.

Reachability. For a constraint transformer monoid X = (@, S), a reachability question is of
the form: given ¢!, 9% € ®, does there exist a w € S such that p? = w(p!)?

Constraint transformer monoids generated by infinite state systems: We now show
how an infinite state system generates a constraint transformer monoid. We identify two con-
straints ¢ and ¢' iff they have the same denotations; i.e., [¢] = [¢']. We recall the notion of
constraint transformers from Chapter 5. The constraint transformer monoid generated by an
infinite state system S is given by CT(S) = (®, S) where ® = {¢ | Jw € £*[w](¢°) = ¢} and
S = {[w] | w € £*} with functional composition as the multiplication in S and [¢] as the unit
element.

8.4 Coverings of Constraint Transformer Monoids

Our definition of covering between constraint transformer monoids is inspired by that of covering
between (syntactic) transformer monoids in [Eil76]. Let X = (®,S) and Y = (@', 5’) be two
constraint transformer monoids. Let f be a total (binary) relation from ® to ®'. For w € S and
v € S’ we consider the following diagram.

=3

fl lf

@ITQI

If the above diagram commutes, i.e., for all ¢ € @, v({¢ | f(p,¥)}) = {¥ | f(w(p),?)}, then
we say that v covers w with respect to f where for a set ®, v(®) = {v(p) | ¢ € ®}. If for each
w € S there exists a v € S’ such that v covers w we say that the relation f is a covering between
X and Y. We say that the constraint transformer monoid Y covers the constraint transformer
monoid X if a covering f exists between X and Y and we write X < Y. We are now going to
define a quotient of X with respect to f; we call such a quotient an f-quotient of X.

f quotient. In order to define an f-quotient of X, we first define an equivalence relation ~
on ® as follows. For ¢, ¢’ € ®,

o~p o= {Y]fle, )} ={¥'| f(&, ¥}

Next we define a representant function rep : ®/ ~y— ® as rep([¢]) = ¢, where [p] is the
equivalence class of ¢ with respect to the equivalence relation ~;. Given a covering relation f and
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a representant function rep as above, we call the constraint transformer monoid X' = (rep(®/ ~¢
),8) an f-quotient of X where S = {@ |w € S} and for any constraint 1 € rep(®/ ~y),
w(y) = rep([¢']) iff w(y) =",

Canonicity and Saturation. We say that a constraint ¢ € ® is canonical with respect to
fif for all ' € ® with ¢ # ¢, {¢ | f(p, )} £ {¢'| f(¢',¢'")}. We say that the relation f
saturates a constraint ¢ € @ if there exists a constraint ¢ € &' such that f(y,v) and for all
¢ € @ with f(¢',¢), we have ¢ = ¢'. The notions of canonicity and saturation indicate the
“local” distinguishing power of f.

Definition 8.1 (Homeocovering) We say that f is a homeocovering from X to Y with re-
spect to constraints @' and ¢©? if f is a covering from X toY and one of the following conditions
hold.

~ either f~1 is a covering from Y to a constraint transformer submonoid X' = (®",5") of
X (ie., Y < X' and f~! witnesses the covering) and @', p? € ®",

- or f 1 is a covering from Y to an f-quotient X' of X (i.e., Y < X' and f~! is a witness
to this covering) and ©' and ©? are both canonical with respect to f

Definition 8.2 (Finitary Covering) We say that a covering f is a finitary covering from X
to Y with respect to a set of constraints ¥ C ®, if f is a covering from X toY and Y is finitary

with respect to {¢ | f(p,¥), ¢ € ¥}.

Note that even if f is a finitary covering from X to Y = (&', S"), it does not mean that ®’ is
finite. We will use the notion of finitary coverings to provide sufficient conditions for termination
of abstract symbolic forward analysis in Theorem 8.1.

Proposition 8.1 Let S be an infinite state system. Let X = (®,S) be the constraint trans-
former monoid generated by S. Let Y = (&', S") be a constraint transformer such that X <Y
with f being a covering between X and Y. Suppose that a constraint p? is reachable from the
initial constraint @' in S. Then there exists v € S' such that

{¥1£(e* )} = v({g' [ £(¢" ¥}

If, in addition, f saturates ¢' and f is homeocovering from X to Y with respect to ' and 2,
then the converse also holds.

Proof.  The equality follows directly from the definition of covering between constraint trans-
former monoids. Indeed, if ¢? is reachable from ', then there exists a w € £* such that
[w](p) = 2. Since f is a covering between X and Y, there exists v € S’ that covers [w].
Hence, the equality follows from the definition.

Now assume the equality. If f saturates ¢! and one of the two conditions for homeocovering
holds, then we show that there exists w € £* such that [w](¢!) = ¢?. Suppose that the first
condition holds. Since f saturates ¢!, there must exist a constraint ! in ® such that f(!,!)
and for all ¢’ such that f(¢',9!), o' = ¢/, ie., ' = {¢'| f(¢',¥')}. Also, by the assumed
equality, f(¢? v('). Since f~! is a covering between Y and X', there exists a w € £* such
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that [w] covers v. Therefore {[w](p!)} = {¢'| f(¢',v(¥!)}. Therefore p? = [w](p'). Hence,
¢? is reachable from ¢!.

Suppose now that the second condition holds. Let X' = (®" S") be an f-quotient of X with
rep as the chosen representant function. Since f saturates o', there exists ¢! such that f(p!, )
and for all ¢’ such that f(¢',9!), we have ¢’ = p!. Since ¢! and (? are canonical with respect
to f, we have rep([p']) = ¢! and rep([¢?]) = 2. Hence, we have, f(rep([p'],%!). By the

assumed equality, there exists v € S’ such that f(¢2?,v(y!)). Since, f~! is a covering between

X and X'| there exists [w] € S”, such that {[w](rep([¢*]))} = {rep([¢]) | f(rep([¢]), v(psil))}.

Since, rep([?]) is in the right hand side of this equality, therefore, [w](rep([¢'])) = rep([¢?]).
By canonicity of ¢! and ¢? with respect to f, ¢ = [w](!).

8.5 Constraint Trees and Symbolic Forward Analysis

Given a constraint transformer monoid X = (®,S) with a finite set of generators S (i.e., S
generates S), we define the constraint tree for X as follows. Let S/7® be the free monoid
generated by S. For @ € Sfree we say that w € S is the companion of w iff w is obtained by
replacing concatenation in w with multiplication in S. Thus, for example, w € S is a companion
of g1.92 iff w = g1 o0 go where o is the multiplication in S.

Definition 8.3 (Constraint Tree) The constraint tree for X = (®,S) with respect to a con-
straint ¢ € ® and a finite set of generators S of S is an infinite tree with domain Sf¢¢ that
labels the node W by the constraint w(¢®) where w is the companion of w.

That is, the root ¢ is labeled with ¢°. For a node w labeled ¢, for each g € g, the successor node
w.g is labeled by g(p). We are now in a position to define symbolic forward analysis of a finitely
generated constraint transformer monoid with respect to a constraint formally. A symbolic
forward analysis is a traversal of (a finite prefix of) a constraint tree in a particular order. The
following definition of a non-deterministic procedure abstracts away from that specific order.

Definition 8.4 (Symbolic Forward Analysis) A symbolic forward analysis of a finitely gen-
erated constraint transformer monoid X with respect to a constraint % and a finite set of gen-
erators S is a procedure that enumerates constraints ; labeling the nodes w; of the constraint
tree of X with respect to ¢° and S in a tree order such that the following holds.

— @i = wi(¢°) for 0 < i < B where the bound B is either a natural number or w and w; is
the companion of the word w; € STree,

— if w; ts a prefiz of w; then i < j,
~ the disjunction \/ g, g i is equivalent to the disjunction \/—;_, ¥i.

The number ¢ is a leaf of a symbolic forward analysis if the node w; is a leaf of the tree formed
by all the nodes w; where 0 < 7 < B. We say that a symbolic forward analysis terminates if its
bound B is finite. We define that a symbolic forward analysis terminates with local entailment
if for all its leaves ¢ there exists a j < ¢ such that the constraint ¢; entails the constraint ¢;
(remember that each ; is a conjunctive constraint). In contrast, a symbolic forward analysis
terminates with global entailment if for all its leaves i, the constraint ; entails the disjunction
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of the constraints ¢; where j < ¢. For constraint domains that do not satisfy the indepen-
dence property!, checking for global entailment is usually more expensive than checking for
local entailment. Many model checkers use local entailment for their fixpoint test (e.g., UP-
PAAL [LPY95b] uses identity; the model checker for infinite state systems described in [DP99a]
uses local entailment).

Remark 8.1 A symbolic forward analysis for an infinite state system S with respect to the initial
constraint @0 is a symbolic forward analysis of the constraint transformer monoid generated by
S with respect to ©°. If terminating, the constraint Vo<icp @i represents the set of all reachable
states in S. For an infinite state system S, a constraint ¢® is reachable from the constraint o
if there exists a node w labeled by ¢? in the constraint tree with respect to @' of the constraint
transformer monoid generated by S.

8.6 Abstract Constraint Trees and Abstract Symbolic Forward
Analysis

Let X = (®, S) be a constraint transformer monoid with a finite set of generators S. Let §/7¢€ be
the free monoid generated by S. Let Y = (&', S’) be a constraint transformer monoid covering
X and let f be a covering relation witnessing the covering. We define an abstract constraint
tree of S with respect to Y, f, S and a constraint ° as follows.

Definition 8.5 (Abstract Constraint Tree) An abstract constraint tree for X with respect
to the constraint transformer monoid Y, a constraint ¢©°, a finite set of generators S and a
covering relation f is an infinite tree with domain Sf7¢¢ that labels the node w € STre¢ by the
set of constraints ¥ = {v(¢°) | f(¢° ¥°)} where v € S' covers w (the companion of W).

In the above definition we assume that there is a finite representation for each ¥ labeling
W € S¥ree in the abstract constraint tree. Note that the constraint tree for X with respect to ¢°
is an abstract constraint tree for X with respect to the constraint transformer monoid X and
the identity function as the covering. Also note that the constraint transformer monoid Y may
be arbitrary; i.e., it need not be finitely generated. If for each w € S, we fix a v € S’ covering
w, we call the resulting abstract constraint tree a fixed-cover abstract constraint tree. Below,
whenever we talk about abstract constraint tree, we assume a fixed cover C C §’, i.e., for each
w € S there exists a unique v € C such that v covers w. We denote by T¢ be the abstract
constraint tree of X with respect to Y, f and C, i.e., a node @ is labeled by {v(¢/%) | f(°, 4?)
where v is the unique element of C covering w (the companion of @) and {¢° | f(¢°, %)} labels
the root. We are now in a position to define formally abstract symbolic forward analysis. An
abstract symbolic forward analysis of X with respect to a constraint transformer monoid Y is a
traversal of (a finite prefix of) the (fixed cover) abstract constraint tree of X with respect to Y
in a particular order. The following definition of a non-deterministic procedure abstracts away
from that specific order.

Definition 8.6 (Abstract Symbolic Forward Analysis) An abstract symbolic forward
analysis of a constraint transformer monoid X with respect to a constraint ©° and a fized cover

! A constraint domain is said to satisfy the independence property if for any constraint ¢ and a set of constraints
®, ¢ =V, ¢4 ¢ iff there exists ¢ € ® such that ¢ = ¢
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C is a procedure that enumerates the sets of constraints U; labeling the nodes w; of the abstract
constraint tree Te with respect to p° (and C) in a tree order such that the following holds.

=~ U = {u(¥0) | £(¢°, 4°)} where v; € C covers w; € S (the companion of w;) and the bound
B is either a natural number or w,

- if w; is a prefic of w; then i < j,

~ the disjunction \/o;. 5 \/ V; is equivalent to the disjunction \/o—;_ ., V; where \/ ¥; =
chG\Il- - - -

Similar to symbolic forward analysis, we say that an abstract symbolic forward analysis
terminates if the bound B is finite; the concept of a leaf is defined similarly. We say that an
abstract symbolic forward analysis terminates with local entailment if for all its leaves i, for
each constraint ¢ € ¥;, there exists a j < 7, and a constraint ¢’ € ¥; such that ¢ = ¢'. The
notion of termination with global entailment is defined in the obvious way.

We now present sufficient conditions under which an abstract symbolic forward analysis is
possibly non-terminating and accurate, terminating and possibly inaccurate or both terminating
and accurate with respect to a reachability question.

Theorem 8.1 Let X = (®,S) be a constraint transformer monoid having a finite set of gener-
ators S. Let o', 0? € ®. Let Y = (®',5') be a constraint transformer monoid covering X with
f witnessing the covering and let C C S’ be a fized cover. Then the following hold.

1. Suppose that for all i, ¥; # {3 | f(p?, 1)} where U; is the set of constraints labeling the
node w; of the abstract constraint tree of X with respect to ¢, Y, f, and C. Then the
constraint ¢? is not reachable from ¢! in X.

(a) If, in addition, f is a finitary covering with respect to {¢'}, then each abstract sym-
bolic forward analysis of X with respect to o', Y, f and C terminates with local
entailment. In this case, abstract symbolic forward analysis always terminates with
local entailment but may produce a ‘don’t know’ answer the reachability question.

2. If f saturates @' and f is a homeocovering from X to Y with respect to constraints o' and
©? then ? is reachable from ' in X iff there exists an i such that U; = {¢ | f(©%, 1)}
where ¥; labels the node w; in the abstract constraint tree of X with respect to Y, f, ¢!
and C. In this case, abstract symbolic forward analysis is possibly non-terminating; but
when it terminates, it produces a yes/no answer for the reachability question.

(a) In particular, if f is a function then ©? is reachable from @' in X iff ¢ is not reachable
from % in the abstract symbolic forward analysis of X with respect to Y, f, ¢! and

C where f(o',4°) and f(p2, ).

(b) If, in addition, f is a finitary covering with respect to {¢'} then each abstract sym-
bolic forward analysis of X with respect to ¢', Y, f and C terminates with local
entailment. In this case, abstract symbolic forward analysis always terminates with
local entailment and is accurate.

Proof. The first statement follows from Proposition 8.1. Suppose that the inequality in
the first statement of the theorem holds for all i. Seeking a contradiction, suppose that (2 is

143



reachable from ¢!. Then, there exists w; € S such that ¢ = w;(¢'). Now consider w; € S/ree
such that w; is the companion of w;. The node w; in the abstract constraint tree T is labeled
by ¥; = {v;(¥°) | f(¢',4°)} where v; € C covers w;. By Proposition 8.1, ¥; = {¢ | f(2,9)}.
Hence a contradiction.

Suppose, f is a finitary covering with respect to ¢!. Consider, first, the case when Y is
finite. Then, along every branch of the abstract con the abstract constraint tree, there exists
two nodes w; and wj, where j < 7, labeled by the same set of constraints ¥. Hence, any abstract
symbolic forward analysis terminates with local entailment. Suppose now that Y is finitary with
respect to {¢° | f(p',4°)}. Then, along any branch of the constraint tree there exists a node
w; labeled by ¥; such that for each constraint ¢y € ¥;, there exists a j < 7 and a constraint
Y’ € ¥, such that 9 |=¢'. The statement 2 in the theorem follows from a direct application of
Proposition 8.1. |

8.7 Applications

In this section, we show concrete applications of the framework developed above to timed au-
tomata and the two-process bakery algorithm.

8.7.1 Timed Automata

We recall the notion of timed automata from Chapter 5. Symbolic forward analysis of timed
automata is possibly non-terminating [MP99]. In order to define an abstract symbolic forward
analysis for timed automata, we recall the trim operation on constraints from Chapter 3.

Let 7 be a timed automaton and let X = (®,S) be the constraint transformer monoid
generated by 7. We define the constraint transformer monoid Y obtained by trimming as
follows.

Definition 8.7 (Constraint transformer monoid obtained by trimming) Given a
timed automaton T, the constraint transformer monoid Y obtained by trimming is defined as
Y = (9, 5"), where ® = {trim(p) | ¢ € ®} and S' = {w |w € S} and w(trim(p)) = trim(y’)
if w(p) = ¢'.

It can be easily verified that each w is a function from &' to ®' and that S’ is a monoid with
the identity function as the unit element.

Proposition 8.2 For a timed automaton T with the generated constraint transformer monoid
X = (®,85), the constraint transformer monoid Y obtained by trimming covers X with the
function f : p > trim(p) (note that the trim operation is a function) witnessing the covering.

Proof.  Follows from Proposition 3.2. [
Intuitively, each w is covered with respect to f by w.

Proposition 8.3 The constraint transformer monoid Y obtained by trimming is finite.

Proof.  Follows from Lemma 3.5. [

Proposition 8.4 Any f-quotient of X' of X covers the constraint transformer monoid Y ob-
tained by trimming with f~! witnessing the covering.
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Proof.  The proof is similar to that of Proposition 3.2. [

We call a constraint ¢ bounded if o A\ ;x; < M = ¢. It can be easily verified that any
bounded constraint ¢ € @ is canonical with respect to f. Also for each bounded constraint
¢ € ®, f saturates ¢.

Theorem 8.2 For any constraint ¢, abstract symbolic forward analysis of a timed automaton T
with respect to the constraint transformer monoid Y obtained by trimming, f and ¢ terminates.
Moreover, if p,¢' is are bounded constraints, then ¢' is reachable from ¢ in T iff f(¢') is
reachable in the abstract symbolic forward analysis of T with respect Y, f and .

Proof.  Follows from Propositions 8.1, 8.2, 8.3, 8.4 and Theorem 8.1. [
Note that the constraint transformer monoid Y above is never constructed explicitly. Rather,
it is constructed on-the-fly.

8.7.2 The Two-process Bakery Algorithm

The bakery algorithm implements a mutual exclusion protocol. The guarded commands for
the two-process bakery algorithm are given in Figure 8.1. We say that the two process bakery
algorithm is safe if no state of the form L = (use,use) A 1 is reachable from the initial state.
Let X = (®,S) be the constraint transformer monoid generated by the two-process bakery
algorithm. We define the covering monoid, called the abstract target monoid, as follows.

Definition 8.8 (Abstract target monoid) Given the two-process bakery algorithm, the ab-
stract target monoid Y is defined as Y = (®',S") where ® = {¢1,... ,010}? and ' = {@w|[w] €
S} where the constraints ¢1,... ,¢10 are defined in Figure 8.2.

Here w(yp;) = ¢; if there exists ¢, ¢’ € ® such that [w](¢)) = ¢’ and ¢ |= ¢; and ¢’ = ¢;. It
can be easily verified that each w € S’ is a function from ®' to ®'. Define the relation f from &
to ® as f(p,¢') iff ¢ | ¢'. Note that f is a function in this case.

Proposition 8.5 The abstract target monoid Y covers the constraint transformer monoid X
(generated by the two-process bakery algorithm) with the mapping f witnessing the covering.

Proof.  Follows from the definitions of S’ and f. [
Each w is covered with respect to f by w.

Proposition 8.6 Any f-quotient of X covers the abstract target monoid Y with f~1 witnessing
the covering.

Proof. Consider any ¢; € ®'. Let ¢ = rep({¢ € ®|p = ¢;}) where rep is a chosen representant
function for a quotient. Consider w € S’. We claim that [w] € S covers w with respect to f 1.
Suppose that w(p;) = ¢;. It can be verified that [w](¢) = ¢;. Therefore, in the f-quotient with
the representant function rep, [w](v) = rep([[w](v)]) = ¥'. Therefore, by definition, ¥’ |= ¢;.
Therefore f(¢', ;). [

*These constraints are obtained by a simple inspection of the guards and the actions of the composed transition
system.
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Control variables: p;, pe varying on {think, wait,use}
Data variables: a1, as > 0.

Initial condition: p; = think A ps = think Aa; =as =0
Transitions for 7,5 : 1,2, i # j:

/

Ty, ¢ ¢ p; = think | pi=waitAa),=aqa;+1
Tw;© ¢ pi=waitAa; <a; | pi=use

Tw, ¢ pi=wait Na; =0 [ p;=use

Tu; © 1 Pi = use | pi=waitAa,=0

Figure 8.1: The bakery algorithm

Theorem 8.3 For any constraint ¢, any abstract symbolic forward analysis of the two-process
bakery algorithm with respect to @,the abstract monoid Y and f terminates. Moreover, for any
two constraints ¢ and ¢' such that f saturates both ¢ and ¢', ¢’ is reachable from ¢, iff ¢;, such
that f(¢', ¢;), is reachable from ¢;, such that f(p,¢;), in an abstract symbolic forward analysis
wrt @, the abstract target monoid Y and f. In particular, the two-process bakery algorithm is
safe iff the constraint L = (use,use) A a; > 0 A as > 0 is reachable in the abstract symbolic
forward analysis with respect to L = (think,think) Na; =0ANay =0, f and Y.

Proof.  Follows from Propositions 8.1, 8.5, 8.6 and Theorem 8.1. [
Symbolic forward analysis for the bakery algorithm with respect to the initial constraint
= (think,think) A a; = 0,as = 0 is (possibly) nonterminating. To the best of the knowledge
of the authors, this is the first time that reachability properties for the two-process bakery algo-
rithm have been shown to be verifiable using a terminating abstract symbolic forward analysis.
Previous approaches were based either on symbolic backward analysis [BGP97, DP99a] or on
deductive methods [BBM97, KPV99]. While model checking using symbolic backward analysis
is inherently global model checking [HKQ98], model checking by symbolic forward analysis can
be made local.

¢1 = L= (think,think) Nay =0ANay=0

was = L= (wait,think) Nag > 0ANay =0

w3 = L= (think,use) Nap =0Aag >0

w4 = L= (use,think) Nay >0Aas =0

¢s5 = L= {(wait,wait) Nay =as+1Nag>1

v = L= (wait,wait) Nag =a1+1ANa3 >1

o7 = L= (use,wait) Nag =a1+1ANay>1

vs = L= (think,wait) Nag =0Aas >0

w9 = L= {(wait,use) Nay >1ANa; =as+1

w10 = L= (use,use)Na; >0Aay >0
Figure 8.2: Constraints in @’
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8.8 Summary and Related Work

We have presented a new algebraic theory for abstract symbolic forward analysis. Our frame-
work is well suited to constraint based symbolic model checking of infinite state systems. Our
framework provides sufficient conditions under which the abstract symbolic forward analysis
is always terminating or accurate or both. As in the classical abstract interpretation frame-
work [CC77] one has to establish a Galois connection from the concrete lattice to the abstract
lattice more or less manually, in our framework one has to establish a covering manually. Note
that the covering constraint transformer monoid can be arbitrary (i.e., may not be finitely gen-
erated). Also note that the sufficient termination conditions in our framework do not require
the covering constraint transformer to be finite. Also the termination guarantees continue to
hold even when the fixpoint test is weakened to local entailment.

Colon and Uribe [CU98] present an algorithm that uses decision procedures to generate
finite state abstractions of possibly infinite state systems. Our work is different from theirs;
the denotation of the covering transformer monoid Y = (&', 5"} (i.e., [®']) may be infinite;
moreover ® may itself be infinite. In [CC98], Cousot and Cousot describe improvements to
abstract model checking by combining forwards and backwards abstract fixpoint computations.
It would be interesting to see how their techniques can be adapted to a constraint-based setting
as ours. Cleaveland, Iyer and Yankelevich [CIY95] develop a framework in which they can
establish optimality results by showing that a particular system abstraction is the most precise
one possible among a class of safe abstractions. It is not clear how to apply their techniques
in a constraint-based setting. An automata-theoretic framework for verification by finitary
abstraction has been developed in [KPV99]. There, the authors reduce the verification problem
to the infeasibility problem for Biichi discrete systems. They then provide a general proof method
called WELL to establish the infeasibility of a Biichi discrete system. In contrast, our technique
uses abstract symbolic forward analysis for verification after a covering has been established.
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Chapter 9

Conclusions

9.1 Summary

In this dissertation, we have described a uniform constraint-based framework for the verifica-
tion of possibly infinite state reactive systems. Constraint query languages provide a framework
for representing reactive systems as well as for specifying their properties. Many of the seem-
ingly different formalisms for representing reactive systems have a natural translation into this
framework. The model checking problem reduces to computing (or checking membership in) the
model-theoretic semantics of constraint query languages. We have provided several optimized
methods for computing model theoretic semantics of constraint query languages. The product
construction for timed logic processes introduced in this dissertation allowed us to extend the
methodology to deal with more expressive logics. Several existing model checking procedures
can be obtained as special cases of the model checking procedures that we obtained in our
constraint-based framework. A prototype implementation based on the methodology developed
in this dissertation has shown encouraging results. We have also been able to identify a logic
that can be model checked efficiently in practice within our framework. Our framework has
also been used to solve control-theoretic problems e.g., detection of transient behavior in linear
time-invariant systems.

The two main currents that have run through this dissertation are logic and constraints. The
constraint-based setting has enabled us to reason about the termination of the symbolic model
checking procedures that solve the verification problem for infinite state systems in practice.
We have obtained sufficient termination conditions for these procedures even with a weaker
but more efficient fixpoint test. We have shown several examples for which the termination of
symbolic forward analysis can be explained by using our sufficient termination conditions. Much
of this reasoning has also been compositional. Since the combinatorial (constraint solving) part
is clearly separated from the logical part, we could easily extend our methodology to deal with
nonlinear systems. Moreover, we have been able to reason about the accuracy of constraint-based
abstractions introduced to solve the verification problem in practice.

9.2 Future Work

We end our discussion by addressing some of the future research issues. One obvious research
issue is to try to use our framework to verify larger examples. More experimentation is needed
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in this direction. In this dissertation, the focus was mainly on infinite state systems in which
the variables range over a (possibly infinite) numeric data domain. But our methodology can be
easily adapted to model and verify out-of-order execution in the design of microprocessors. In
this case, the relevant constraint domain is the Herbrand one. A similar line of work would be
to consider many-sorted systems in which in which some variables range a numeric data-domain
while others range over the domain of possibly infinite trees. Another line of research is to use
our framework for analysis of programs written in programming languages like C or Java. It
would also be interesting to see how our framework can be extended to deal with mobility of
processes.
We state below some of the other problems left open in this dissertation.

— Extend the product construction defined in Chapter 3 to decide whether two timed logic
proceseses are timed bisimilar.

— Is the following problem decidable— given a timed automaton, does symbolic forward
analysis for it terminate?

— Can one design an algorithm for deciding whether a timed logic process has a transient
behavior that is more efficient than the one presented in Chapter 37

— Can one come up with a tableau based model checking procedure for timed systems in the
style of Bradfield and Stirling [BS90]?
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compact, 25 Forward analysis, 66
companion, 141
complement, 65 global, 85
complete, 25, 71 greatest model resolution, 30
compositional, 117 guards, 33

conjunction, 65

homeocovering, 140
conjunctive, 138 o &

constant, 92 increment variables, 33

constraint transformer monoids, 138 independence property, 104

constraint transformer semigroup, 138 initial clauses, 33

constraint transformers, 138 initial constraint, 83

constraints, 83 initializable, 123

Convergence, 66

convergence, 77 labeled TLP, 60

convergent, 34, 35 labels, 91

covering, 139 last, 130

coverings, 138 leaf, 85

covers, 139 least-fixpoint closure, 68

cut condition, 90 local entailment, 117, 138

cycles, 86 local inclusion abstraction, 102
locations, 82

denotation, 13 Logic of safety and bounded liveness, 35

disconnected, 25 lookup, 78
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lookup node, 13

metric space, 25
monolithic, 16

necessary, 94
not, 90

o-minimal, 117
open, 25

part of a cycle, 123
path, 86

perfect model, 70
perfect models, 66
positions, 83
Proof, 69

real variables, 36

region graph, 81

region product graph, 30
remainder section, 130
reset, 82

reset-free, 84

saturates, 140

segment, 91

simple path, 90

solution node, 13

solution table, 13

splitting constraints, 30
stratifiable, 67, 87
stratification, 67

stratified, 65, 69, 91-94
strings, 86

symbolic forward analysis, 81
symbolic states, 138
syntactic monoid, 95
syntactic order, 138
syntactically increasing, 139
system clause, 33

table node, 13

table predicates, 13
Tabled resolution, 66
tabled-resolution, 66
tabulate, 71, 73, 78, 79
terminates, 85
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The connection, 66

time (seconds), 52

time closed, 120

time transition, 83, 119
time-closed, 83

timed automaton, 81, 82
timed logic processes, 29, 33
totally bounded, 25

unlabeled, 9

with local subsumption, 85
without, 67

zone constraint, 83
zone constraints, 41
zone trees, 82
zones, 83



