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Abstract. We study both upper and lower bounds on the average-case complexity of shortest-

paths algorithms. It is proved that the all-pairs shortest-paths problem on n-vertex networks can

be solved in time O(n2 logn) with high probability with respect to various probability distributions

on the set of inputs. Our results include the first theoretical analysis of the average behavior

of shortest-paths algorithms with respect to the vertex-potential model, a family of probability

distributions on complete networks with arbitrary real arc costs but without negative cycles. We

also generalize earlier work with respect to the common uniform model, and we correct the analysis

of an algorithm with respect to the endpoint-independent model. For the algorithm that solves the

all-pairs shortest-paths problem on networks generated according to the vertex-potential model, a

key ingredient is an algorithm that solves the single-source shortest-paths problem on such networks

in time O(n2) with high probability. All algorithms mentioned exploit that with high probability,

the single-source shortest-paths problem can be solved correctly by considering only a rather sparse

subset of the arc set. We prove a lower bound indicating the limitations of this approach. In a

fairly general probabilistic model, any algorithm solving the single-source shortest-paths problem

has to inspect Ω(n logn) arcs with high probability.

Kurzzusammenfassung. In dieser Arbeit werden sowohl obere als auch untere Schranken für die

average-case-Komplexität von Kürzeste-Wege-Algorithmen untersucht. Wir beweisen für verschie-

dene Wahrscheinlichkeitsverteilungen auf Netzwerken mit n Knoten, dass das all-pairs shortest-

paths problem mit hoher Wahrscheinlichkeit in Zeit O(n2 logn) gelöst werden kann. Insbesondere

können wir dieses Laufzeit für einen Algorithmus beweisen, dessen Eingaben gemäß des vertex-

potential model erzeugt werden, einer Familie von Wahrscheinlichkeitsverteilungen auf vollständigen

Netzwerke mit reellen Kantenkosten, die jedoch keine negative Kreise besitzen. Theoretische Er-

gebnisse für dieses Eingabemodell waren bislang nicht bekannt. Wir verallgemeinern außerdem

frühere Arbeit bezüglich des uniform model und korrigieren die Laufzeit-Analyse eines Algorith-

mus bezüglich des endpoint-independent model. Der Algorithmus, der das all-pairs shortest-paths

problem auf Netzwerken löst, die gemäß des vertex-potential model erzeugt werden, baut entschei-

dend darauf auf, dass wir auch einen Algorithmus entwickeln, der das single-source shortest-paths

problem auf solchen Netzwerken mit hoher Wahrscheinlichkeit in Zeit O(n2) löst. Alle bislang

erwähnten Algorithmen nutzen aus, dass das single-source shortest-paths problem auch dann mit

hoher Wahrscheinlichkeit korrekt gelöst werden kann, wenn wir nur einen Teil der Kantenmenge

betrachten. Wir beweisen eine untere Schranke, die die Grenzen dieses Reduktionsansatzes belegt.

Auf einer Klasse von Netzwerken mit ganzzahligen Kantenkosten muss jeder Algorithmus mit hoher

Wahrscheinlichkeit Ω(n logn) Kanten inspizieren, um das single-source shortest-paths problem zu

lösen.
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Chapter 1

Introduction

A large variety of combinatorial-optimization problems can be modeled by networks, that is, by

directed graphs in which arcs are assigned real numbers. We refer to these numbers as arc costs ;

the cost of an arc represents, for example, the amount of time or money that is consumed whenever

this arc is traversed. Shortest-paths problems interpret arc costs as “lengths” of the arcs and ask

for distances between pairs of vertices. For any two vertices v and w, the distance of vertex w

from vertex v is defined as the infimum of the costs of all directed paths from v to w, where the

cost of a path is the sum of the costs of its arcs. All distances are finite real numbers if and only

if the network is strongly connected and does not contain any negative cycles, that is, directed

cycles of negative cost.1 We will ensure that input networks can safely be assumed to be strongly

connected. The presence of a negative cycle, however, is an issue of investigation, since we allow any

shortest-paths algorithm to stop its computations immediately whenever it encounters a negative

cycle in the input network. We concentrate on two types of shortest-paths problems. In the single-

source shortest-paths problem, we are interested in the distances of all vertices from a given source

vertex; in the all-pairs shortest-paths problem, we want to compute the distances between all pairs

of vertices.

Shortest-paths problems not only model problems from transportation industries or telecommuni-

cation, which suggest themselves as possible areas of application, but also model problems from

areas as diverse as production planning, DNA sequence alignment, and robotics; see the references

in [1, Chapter 4]. Moreover, shortest-paths problems often arise as subproblems in algorithms

solving other combinatorial-optimization problems such as minimum-cost flow problems. There is

1Put differently, some distances are −∞ if the network contains a negative cycle, since this cycle can be arbitrarily

often traversed by paths. If we had required in addition that shortest paths may traverse negative cycles at most

once, the problem would become at least as hard as the traveling-salesperson problem, as it was first observed by

Dantzig [15]. This would mean a drastic change in the complexity of the problem.
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also an intimate relation between shortest-paths problems and the theory of (discrete) dynamic

programming. Not only can dynamic programming be viewed as solving a special shortest-paths

problem, but many algorithms for solving shortest-paths problems can in turn be explained nicely

in the framework of dynamic programming. For all these reasons, research on the design of efficient

algorithms for solving shortest-paths problems dates back to the advent of computer science in the

late fifties, and has been an active line of research ever since.

1.1 Worst-case analysis of shortest-paths algorithms

As a method for measuring the efficiency of an algorithm, worst-case analysis of its running time

is well-established. Worst-case analysis asks for an upper bound on the running time that is valid

on any instance of the problem to be solved by the algorithm; the bound is usually parameterized

by the size of the respective problem instances. If the input instances are networks, as in shortest-

paths problems, the size of the input network is commonly measured by the cardinality n of its

vertex set and by the number m of its arcs. We can sometimes obtain sharper worst-case bounds

on the running time of an algorithm if we use less coarse-grained parameters in the analysis; we

will see examples shortly.

The worst-case complexity of known algorithms for the single-source shortest-paths problem depends

heavily on whether or not arc costs are allowed to be negative. In fact, if all arc costs are non-

negative, then Dijkstra’s algorithm2 [20] solves the single-source shortest-paths problem in near-

linear time O(m + n logn), if implemented with efficient data structures such as Fibonacci heaps

[28]; see also [21, 9, 81]. (We use log to denote logarithms to base e and log2 to denote logarithms

to base 2.) In the general case of possibly negative arc costs, Dijkstra’s algorithm has exponential

worst-case running time [47, 76], but the Bellman–Ford algorithm [7, 26] solves the single-source

shortest-paths problem in time O(νm), where ν is the maximum number of arcs on a shortest path.

(This follows from the usual correctness proof for the algorithm; see, for example, [1, p. 142].) The

quantity ν is a first example of what we announced as less coarse-grained complexity measures in

the preceding paragraph. In the worst case, however, ν can be of order n, which gives us an O(nm)

bound on the running time of the Bellman–Ford algorithm.

Somewhat better running times for algorithms solving the single-source shortest-paths problem

are known if the arc costs are assumed to be integers from some fixed range; see [2, 33, 12, 75].

Recently, Thorup [82, 83] has shown that on undirected graphs with positive arc costs (which may

be integers or floating-point numbers of size w bits each), the single-source shortest-paths problem

can be solved in linear time Θ(m+n) in the word RAM model of computation. Thorup’s algorithm

2an “obscure but powerful piece of graph theory”, according to digital-economy expert Menduno [62]
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and the data structures used therein exploit the fact that in the word RAM model with word size

w, bitwise logical operations, arbitrary bit shifts, and arithmetic (addition and multiplication) on

O(w)-bit operands can be performed in constant time. In this thesis, however, we adhere to the

standard RAM model with unit-cost measure, and we also allow for real arc costs.

The all-pairs shortest-paths problem can be solved by Floyd’s dynamic-programming algorithm

[25], which runs in Θ(n3) time. Another approach to the all-pairs shortest-paths problem simply

solves n separate single-source shortest-paths problems, one for each source vertex. As has been

observed by many authors [84, 23, 67, 48], the solution of one single-source shortest-paths problem

allows us to transform a problem with arbitrary real arc costs into an equivalent problem with

non-negative arc costs. All-pairs shortest-paths problems with arbitrary real arc costs can thus be

solved by a single execution of the Bellman–Ford algorithm, followed by at most n calls of Dijkstra’s

algorithm. Since transformed arc costs and distances in the original problem can be computed in

Θ(m + n2) time, this results in a running time of O(nm + n2 log n) for the all-pairs shortest-

paths problem in the general case. Two algorithms for the all-pairs shortest-paths problem with

non-negative arc costs were proposed that dismiss the idea of iterating over the n possible source

vertices and of solving the corresponding single-source shortest-paths problem in each iteration.

Instead, the algorithms of McGeoch [57] and Karger, Koller, and Phillips [49] iterate over the arcs,

thereby solving the single-source shortest-paths problems simultaneously. The running time of their

algorithms is O(n|H |+ n2 logn), where H denotes the set of arcs that are a shortest path between

their starting point and their endpoint. The arcs in H are essential for shortest-path computations

in that any shortest path is built of arcs from H . In the worst case, however, the algorithms of

McGeoch or Karger, Koller, and Phillips do not improve upon the straightforward approach, since

there are networks on which |H | is Θ(m). For example, any network in which all arcs have the same

positive cost, has |H | = m. (In the word RAM model of computation with word size w, Hagerup

[40] describes an algorithm for the all-pairs shortest-paths problem on directed graphs with integer

arc costs in the range {−2w, . . . , 2w} that runs in time O(nm + n2 log log n).)

All algorithms for the all-pairs shortest-paths problem mentioned above (and even the algorithm

of Bellman–Ford) have a cubic worst-case running time Θ(n3) on dense graphs, that is, on graphs

where m is of the order of n2. The known algorithms with subcubic worst-case running time do

not really improve upon this situation.3 For applications of practical relevance, this leaves only

3Fredman’s algorithm [27] for the all-pairs shortest-paths problem with non-negative arc costs uses an efficient

technique for the multiplication of matrices over the semiring (R,min, +) and results in a near-cubic running time of

O(n3((log log n)/ log n)1/3), which was slightly improved to O(n3((log log n)/ log n)1/2) by Takaoka [80]. If arc costs

are assumed to be small integers, then shortest-paths problems can also be solved by a series of matrix multiplications

over the ring of integers. If one follows this approach, the current best running time of Õ(C0.681n2.575) for the all-pairs

shortest-paths problem on directed graphs can be proved for an algorithm of Zwick [91, Theorem 5.2]; see [90, 92] for

a detailed account. (C denotes an upper bound on the absolute value of the arc costs; the Õ-notation hides factors
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the combinatorial algorithms with cubic worst-case running times. If cubic running times were

indeed incurred on many “natural” networks, then this would render large-scale problem instances,

as they arise in applications, quite inefficient to solve. Experimental evaluations of shortest-paths

algorithms show however that most of the combinatorial algorithms “usually” perform much better

than predicted by their worst-case running times. These observations can sometimes be explained

in the context of worst-case analysis by sound arguments, for example, if the quantities ν and

|H | introduced above can be proved to be substantially smaller than their worst-case bounds. (In

fact, in the analysis of Chapter 4, we exploit this in the case of the networks that we consider

there.) It seems however that no simple fine-grained parameter is known that would truly reflect

the complexity of a shortest-paths problem in the sense that the parameter tends to be small

whenever the problem is easy to solve. Worst-case analysis, even in its refined variants, has thus

failed so far to provide insight into the good practical performance of algorithms. The shortest-

paths algorithm of Pape [70, 71, 72] is a striking example in this respect. This algorithm, which

is a variant of the Bellman–Ford algorithm, has turned out to be among the fastest algorithms in

many experimental evaluations [18, 43, 11, 89], though only an exponential worst-case bound on its

running time is known [76]. In general, it seems that high running times are encountered only on

few but exceptionally difficult-to-solve problem instances. In fact, not many types of networks are

known on which the shortest-paths algorithms mentioned above actually require their worst-case

running times, and these networks appear to be quite artificial; see [58, Sect. 7.5.8] (Bellman–Ford)

or [1, Ex. 5.27] (Pape).

1.2 Pros and cons of average-case analysis

Surely the most natural remedy to the failings of worst-case analysis would be to evaluate the

performance of (shortest-paths) algorithms on real-life data. However, road maps and other such

realistic networks usually lack two requirements that seem essential if one heads for generating input

instances that allow a meaningful performance evaluation. (These requirements are discussed, for

example, by Iri [44].) First, real-life networks are usually available as benchmark instances of a

fixed size, though one would require them to be scalable to a wide range of input sizes. Second, it

is hard to identify, let alone control, what primarily influences the behavior of algorithms on these

networks.

The approach most often suggested as an alternative to real-life input instances is to generate

input instances (of a certain size) according to a probability distribution on the set of possible

inputs of this size. This input model gives rise to the average-case analysis of an algorithm. The

that are polynomial in log(Cn).) However, the approach is marred by the fact that the current techniques for fast

matrix multiplication are known to be “notoriously impractical” [3, p. 1167].
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quantity of interest for performance evaluation is then, for example, the expected running time of

the algorithm—the running times of the algorithm on specific instances are averaged with respect

to the probability distribution on the set of instances.

It should be stressed that for the average-case analysis of an algorithm to be meaningful, the choice

of the probability distribution on the set of possible inputs is crucial. Any reasonable probability

distribution fulfills the two requirements mentioned above (namely, that it can be scaled and that

it can be parameterized). Beyond this mere prerequisite for asymptotic analysis, we require the

probability distribution to exhibit also the following two properties.

1. The probability distribution should be realistic in the sense that problem instances that rarely

occur in practice are unlikely to be generated according to the distribution and vice versa.

2. The probability distribution should be simple enough so that the behavior of algorithms on

randomly generated inputs is still amenable to mathematical analysis.

It turns out however that this is rather difficult to fulfill. The first property alone is already hard to

establish. For the reasons we mentioned at the beginning of this section, real-life data evades any

statistical analysis; we therefore cannot hope to deduce any reasonable probabilistic information

from real-life instances. By simply choosing a probability distribution on one’s own, one very

easily puts too much emphasis on extreme input instances. Li and Vitányi [54] provide an intricate

example of a “malignant” probability distribution, which renders average-case analysis meaningless.

They prove that if inputs are generated according to the so-called universal distribution, then the

average-case complexity of algorithms essentially equals their worst-case complexity.4 Naturally,

we should also ensure that the distribution does not trivialize the problem to be solved by putting

too much emphasis on those instances that are easily-solved special cases of the problem. Again,

it is not always obvious that a probability distribution is flawed in such a way. Any specific

probabilistic input model might have further drawbacks in this respect, and we will mention them

when discussing the specific models. Related topics are discussed by Frieze and Reed [32, Section 7].

The second property, too, is hard to establish. The correct analysis of even simple quantities related

to the average-case behavior of an algorithm usually turns out to be subtle and involved. Even

if quantities (say, arc costs) were generated as the outcomes of independent random experiments,

intricacies may arise from the fact that the very execution of the algorithm establishes dependencies

4Roughly speaking, under the universal distribution, those inputs occur with high probability that are easily

algorithmically described (in the sense of the Kolmogorov complexity measure; see, for example, [53]), whereas

complex or “truly” random inputs occur with low probability. Since worst-case inputs are more structured, however

artificial this structure might be, than truly random inputs, the behavior on worst-case inputs dominates the average-

case evaluation of any algorithm with respect to the universal distribution.
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between the quantities it computes (say, the costs of arcs on a shortest path). Many analyses can

be found in the literature that are based on the unjustified assumption that the quantities can be

considered as independent random variables, and which are thus flawed.

The most popular model for randomly generating networks with non-negative arc costs is the so-

called uniform model. In its basic variant, input networks in the uniform model are complete graphs

with arc costs drawn at random, independently of each other, according to a common probability

distribution. On the one hand, this model certainly allows for an elegant analysis of many network

problems and thus has the second property required above; many of these results are surveyed by

Frieze and McDiarmid [30, Sections 7 and 8]. On the other hand, complete graphs in which arc

costs occur as values of independent, identically distributed random variables exhibit a homogeneity

(with respect to both connectedness and distribution of arc costs) that is missing from most realistic

problem instances. This makes it difficult to argue convincingly that “typical real” networks look

as if they were generated according to this model.

Another severe drawback of the uniform model is that it cannot be extended straightforwardly

to an input model for studying shortest-paths problems on networks with arbitrary real, possibly

negative, arc costs. Suppose that networks are generated according to the uniform model with a

distribution function F chosen so that arc costs have a (constant) non-zero probability of being

negative. It is then very likely for an instance of the shortest-paths problem on such a network

that all distances are −∞. Namely, with very high probability, each vertex has an outgoing arc

of negative cost, which implies that a negative cycle exists that can be reached from all vertices.

Shortest-paths problems thus become solvable in linear expected time under the uniform model,

since topological sorting allows us to decide in linear time whether the subnetwork formed by the

arcs of negative costs contains a cycle.

This simple example points out yet another pitfall of average-case analysis. The chosen probabil-

ity distribution might very likely generate input instances with artifacts that render average-case

analysis meaningless. In fact, the algorithm in the example just given, which “solves” the all-pairs

shortest-paths problem in linear time on average, was designed to exploit such artifacts of the input

networks—the algorithm does not make a serious attempt to compute distances, but checks for a

negative cycle. In most cases, due to the deficiencies of the input model, this allows the algorithm

to finish its computations with the correct result (that is, all distances are −∞) rather quickly.

The algorithm can be characterized by the following features. It is clearly tailored to inputs gener-

ated according to the specific input model, and the algorithm gains its efficiency by exploiting the

structural properties exhibited by the inputs. (Most likely, the algorithm performs poorly if inputs

are generated according to another model.) We call algorithms of this kind probabilistic algorithms,

taking up a notion that has been suggested by Snyder and Steele [77].
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At first sight, the average performance of probabilistic algorithms might seem to be rather un-

correlated to the performance of existing, non-probabilistic algorithms or heuristics. However,

probabilistic algorithms should not be underrated. Their design usually builds on insights into the

structure of instances generated according to a certain probabilistic input model. The study of the

structure of these randomly generated instances might add to our understanding of what makes

instances difficult in the worst case. Even more importantly, this study can indeed help to better

understand the performance of existing algorithms. In fact, a huge bulk of literature evaluates the

performance of non-probabilistic algorithms on randomly generated instances. The outcomes of

these experiments are surely influenced by the structure (the structural artifacts, possibly) that

most of these instances exhibit. We feel that in the interpretations of these empirical evaluations,

this influence is usually not taken into account to a sufficient extent.

1.3 Extensions of the uniform model

The arguments that we have collected in the preceding section might lead the reader to believe

that the uniform model oversimplifies the task of average-case analysis. Certainly, the complete

connectedness of the networks generated by the uniform model, the strong homogeneity of arc costs

caused by the assumptions of independence and identical distribution, and the rare occurrence of

networks with reasonably few negative cycles are shortcomings of the uniform model when it is used

for the average-case analysis of shortest-paths algorithms. In this thesis, we study three extensions

of the uniform model, each of which addresses one of these shortcomings.

As one such extension, it has been suggested in the literature that one considers (what we call) the

extended uniform model. In the extended uniform model, not only the cost of an arc but also its

presence is random. The structure of a network (on n vertices) can be interpreted as the outcome

of an experiment in the well-known D(n, p) model—each arc in a directed graph on n vertices is

present with probability p, independently of the presence of all other arcs. (We allow the parameter

p to depend on n.) Costs of arcs that were determined as present in this first experiment are then

drawn at random in a second experiment, independently of each other, according to a common

distribution function F . The advantage of the extended uniform model over the uniform model

is obvious, as the extended uniform model generates not necessarily complete graphs. It would

be overly optimistic, however, to consider the extended uniform model to be the cure of all the

failings of the uniform model. Inputs generated according to the extended uniform model still

show a considerable regularity with respect to the number of arcs leaving or entering any vertex.

More severely, the extended uniform model suffers from the same drawback as the uniform model

when it comes to modeling input networks for shortest-paths problems with possibly negative arc

costs. Whenever p ≥ C · (logn)/n, for a sufficiently large constant C, then it is very likely that all

7



vertices in a network generated according to the extended uniform model belong to a single strongly

connected component and that the subnetwork formed by the arcs of negative cost contains a cycle.

However, if both these events occur, then all distances are −∞, and the all-pairs shortest-paths

problem can be “solved” in linear time on such a network.

The other two extensions of the uniform model that we study in this thesis address these drawbacks

of both the uniform model and the extended uniform model. The vertex-potential model extends

the uniform model to a more reasonable input model for the average-case analysis of shortest-

paths algorithms on networks with arbitrary real arc costs. (It generates networks that contain no

negative cycles at all.) When inputs are generated according to the endpoint-independent model, a

set of arc costs may be fixed arbitrarily, even by an adversary; only the assignment of the costs to

individual arcs is random.

In the vertex-potential model, there is a potential π(v) for each vertex v ∈ V and a random variable

r(v, w) for each arc (v, w) ∈ V × V . (We set r(v, v) ≡ 0, for v ∈ V . As usual, V denotes the vertex

set of the input networks.) The arc costs are defined by

c(v, w) = r(v, w)− π(v) + π(w) , for all arcs (v, w) .

Only the c(v, w)’s are revealed to an algorithm and the r(v, w)’s and π(v)’s are hidden parameters

of the model. The variables r(v, w), v, w ∈ V , v 6= w, are assumed to be independent, identically

distributed random variables with values in the interval [0, 1]. (That is, the r(v, w)’s are generated

as in the uniform model. Some additional assumptions on the common distribution function F of the

r(v, w)’s are needed. This is made more precise in Section 4.2.) The assumption r(v, w) ≥ 0, v, w ∈
V , guarantees that networks generated according to the vertex-potential model do not contain any

negative cycles. The vertex potentials π(v), v ∈ V , may be arbitrarily chosen. The vertex-potential

model was used previously by Cherkassky, Goldberg, and Radzik [11] in an experimental evaluation

of shortest-paths algorithms, but a theoretical analysis of the average behavior of algorithms with

respect to the vertex-potential model was first provided by Cooper, Frieze, Mehlhorn, and Priebe

[14].

The endpoint-independent model preserves the following property of the uniform model: If the arcs

leaving a specific vertex are sorted according to their costs, then the associated endpoints occur

in random order. To generate an input instance according to the endpoint-independent model, we

randomly fix, for each vertex v ∈ V independently of the other vertices, an order of the endpoints

of the arcs as they appear in the sorted adjacency list of vertex v. This corresponds to drawing a

permutation σv of V uniformly at random for each v ∈ V . The actual arc costs are then arbitrarily

fixed as lists of (sorted) non-negative arc costs. It was first noticed by Bloniarz [8] that the average-

case behavior of many algorithms for solving shortest-paths problems can still be analyzed when

instances are generated according to the endpoint-independent model.
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The endpoint-independent model has been extended to arbitrary real arc costs by Kolliopoulos and

Stein [51], and to the best of our knowledge, this is the only probability distribution proposed for

networks with arbitrary real arc costs (in order to generate instances of shortest-paths problems)

besides the vertex-potential model.

1.4 Our results

We are now ready to describe the contributions of this thesis to the average-case analysis of shortest-

paths algorithms. Throughout this description, we refer to problem instances on n vertices. We

say that an event occurs with high probability on these instances if it occurs with probability at

least 1 − O(n−γ) for any arbitrary but fixed constant γ.

In Chapter 3, we deal with the all-pairs shortest-paths problem under the assumption that networks

are generated according to the extended uniform model. We prove in Section 3.4 that the maximum

number ν of arcs on a shortest path is O(logn) with high probability. (The result was conjectured by

Hassin [41].) We also show that the all-pairs shortest-paths problem can be solved in O(n2 logn)

time with high probability. Our proofs are based on a detailed review of results by Frieze and

Grimmett [31], which these authors used in their design of a probabilistic algorithm that solves

the all-pairs shortest-paths problem in O(n2 logn) time with respect to the uniform model. (A

similar result was independently obtained by Hassin and Zemel [42].) In Section 3.3, we extend

these results to the extended uniform model. We prove that if p ≥ C · (logn)/n, for a sufficiently

large constant C, and given that the distribution of arc costs “is linear” in a neighborhood of 0, the

maximal shortest-path distance in networks generated according to the extended uniform model

is O((logn)/(np)) with high probability. Furthermore, under the same assumptions, the set H of

essential arcs can be shown to be of cardinality O(n logn) with high probability.

Our second contribution, which is presented in Chapter 4, concerns the average-case complexity of

algorithms for shortest-paths problems with arbitrary real arc costs. We show that on networks

generated according to the vertex-potential model, the single-source shortest-paths problem can

be solved in O(n2) expected time and that the all-pairs shortest-paths problem can be solved in

O(n2 logn) expected time. In both cases our algorithms are reliable, that is, finish their com-

putations within the respective time bounds with high probability. The running times have to

be compared with the currently tightest worst-case running times of O(νm) for the single-source

shortest-paths problem and of O(νm + n|H |+ n2 logn) for the all-pairs shortest-paths problem on

networks with arbitrary real arc costs. (Kolliopoulos and Stein [51] proposed an algorithm that

needs time O(n2 log n) with high probability for solving the single-source shortest-paths problem in

the endpoint-independent model with arbitrary real arc costs. The differences between this model
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and the vertex-potential model complicate a direct comparison of their result and ours.)

The algorithms that we propose in Chapters 3 and 4 are probabilistic, that is, they exploit struc-

tural properties that are exhibited with high probability by networks generated according to the

respective input models. The mutual independence of arc costs allows us to apply a quite natural

pruning idea, which we describe in Section 2.1.1. This idea already lies at the core of the algorithm

of Frieze and Grimmett. We argue in Section 4.3 that this idea can also be utilized if networks are

generated according to the vertex-potential model. Our analysis partly builds on the close relation

between the vertex-potential model and the uniform model; in particular, we use our result on the

maximum number of arcs on shortest paths from Section 3.4.

We also study the performance of the (non-probabilistic) algorithm of Moffat and Takaoka [65]

for the all-pairs shortest-paths problem when networks are generated according to the endpoint-

independent model. Earlier results for the all-pairs shortest-paths problem with respect to this

model include an algorithm of Spira [78] that has expected running time O(n2(logn)2), which

was later improved by Bloniarz [8] to O(n2 logn log∗n). (It is log∗x := 1 for x ≤ e and log∗x :=

1+log∗log x for x > e.) The algorithm of Moffat and Takaoka first sorts all adjacency lists in order

of increasing costs. It then solves n single-source shortest-paths problems, one for each vertex.

Each single-source shortest-paths problem can be solved in O(n logn) expected time; this is due to

the fact that by the assumptions of the endpoint-independent model, endpoints appear in random

order in the sorted adjacency lists. The algorithm of Moffat and Takaoka thus solves the all-pairs

shortest-paths problem in expected time O(n2 logn); this also subsumes the time spent on sorting.

The expected running time of the algorithm has been analyzed before. In Chapter 5, we point out

some mistakes in the analyses and show how to avoid them. Moreover, we prove that the running

time of the algorithm is O(n2 log n) with high probability and not just in expectation. This running

time has to be compared with the worst-case running time O(n|H |+ n2 logn) of the algorithms of

McGeoch or Karger, Koller, and Phillips. Note that no better bound on |H | than O(n2) can be

proved in the endpoint-independent model.

Our final contribution, which we present in Chapter 6, is a result on the “inherent” complexity of

the single-source shortest-paths problem, that is, its average complexity in the following sense. We

provide a lower bound for the single-source shortest-paths problem in a fairly general probabilistic

model. We assume that for every vertex v and each integer k, for 1 ≤ k ≤ n, there is exactly one arc

with cost k. (This means that algorithms are allowed to exploit the fact that arc costs are integers!)

We prove that if these arc costs are distributed as in the endpoint-independent model, then any

algorithm solving the single-source shortest-paths problem has to inspect Ω(n logn) arcs with high

probability. This has to be compared to our upper bound for solving single-source shortest-paths

problems in Chapter 5.
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Chapter 2

Preliminaries

2.1 Shortest-paths problems on directed graphs

We model shortest-paths problems on directed graphs D = (V, A), where, as usual, V denotes the

vertex set and A ⊆ V × V the arc set of the graph D; we often write Dn for a directed graph on

n vertices.5 Note that we allow loops, that is, arcs (v, v), for any v ∈ V . For any arc (v, w), we

call v the starting point and w the endpoint of the arc. We also refer to (v, w) ∈ A as one of v’s

outgoing arcs, as an arc leaving v, or as an arc entering w. The number of arcs leaving (entering)

a vertex is called the out-degree (in-degree) of this vertex. The adjacency list of a vertex v contains

all vertices w with (v, w) ∈ A; we interpret a corresponding entry in the adjacency list of v either

as the endpoint w of the arc with starting point v or as the arc (v, w) itself, as is convenient.

A directed path P from v to w in D is a sequence [(v1, v2), . . . , (vm, vm+1)] of arcs in A with v1 = v

and vm+1 = w, for some m ≥ 1. We refer to the vertices v and w as the starting point and the

endpoint of P , respectively. Directed cycles are those directed paths for which starting point and

endpoint coincide. The graph D is said to be strongly connected if it contains a directed path from

v to w, for each tuple (v, w) ∈ V × V .

In fact, our model for shortest-paths problems are networks, that is, directed graphs D = (V, A) in

which arc costs are given by a function from A to the reals, and we write (D, c) for a network D

with arc costs c. The cost of (v, w) ∈ A is denoted by c(v, w). We extend this notation to directed

paths P in (D, c), for which we define the cost c(P ) of P with respect to c as
∑

(v,w)∈P c(v, w).

For any pair v, w of vertices, let δc(v, w) be the infimum of the costs of all paths from v to w. The

quantity δc(v, w) is referred to as the distance of w from v (with respect to c). All distances are

5We parameterize complexity bounds by the cardinality n of the vertex set. Therefore, we sometimes refer to n

as the size of an instance, though, naturally, a graph on n vertices might have as many as n2 arcs.
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finite real numbers if and only if (D, c) is strongly connected and does not contain any negative

cycles, that is, directed cycles of negative cost. The maximum of the distances (over all tuples of

vertices) is called the diameter of D with respect to c; it is denoted by ∆c. In Chapters 3 and 4,

we denote arc costs by r if we want to stress that they are non-negative.

We concentrate on two types of shortest-paths problems on a network (D, c). For a given source

vertex s ∈ V , the single-source shortest-paths problem asks for the distances of all vertices v ∈ V

from s. If s is fixed and no confusion is possible, we denote these distances by δc(v) instead of

δc(s, v), for v ∈ V . In the all-pairs shortest-paths problem, we want to compute the distance between

all pairs of vertices. Our output convention is as follows. If w cannot be reached by any directed

path from v, then δc(v, w) should be set to +∞. We allow any shortest-paths algorithm to stop its

computations immediately whenever it encounters a negative cycle in the input graph.6

The following observation is crucial for solving shortest-paths problems efficiently.

Any subpath of a shortest path is itself a shortest path from its starting point to its

endpoint.

In fact, this is a special case of Bellman’s principle of optimality [6], which lies at the core of the

theory of dynamic programming. When solving a single-source shortest-paths problem with source

s in a network (D, c) without negative cycles, we deduce from Bellman’s principle that the distances

δc(v) = δc(s, v) must satisfy the following system of equations [7],

δc(s) = 0 and δc(w) = min
(v,w)∈A

δc(v) + c(v, w) , for w ∈ V − {s} . (2.1)

The distances δc(v), v ∈ V , can be determined from these equations by computing, for v ∈ V ,

successive approximations d(1)(v) ≥ d(2)(v) ≥ . . . that converge to δc(v), or by applying a relaxation

procedure that is derived from a linear-program formulation of the system (2.1). A particularly

nice exposition of this well-known material is given by Lawler [52, Chapter 3]. The system (2.1)

of equations actually governs the optimality of path costs for any path-cost function from a rather

general class, which includes, for example, the function assigning cost max(v,w)∈P c(v, w) to path

P ; see Frieze [29].

Specifications of the two shortest-paths problems mentioned above usually include not only the

task of computing the distances, but also the task of computing information on the actual shortest

6Mehlhorn and Näher [58, Section 7.5] require shortest-paths algorithms to output δc(v,w) = −∞ if there is a

path from v to w that contains a negative cycle; see also [61]. In this case, paths from v to w can traverse the negative

cycle arbitrarily often, and to output δc(v,w) = −∞ would be in accordance with our definition of distances. We

have nevertheless chosen to adopt the output convention mentioned in the text, since it appears to be more common

in the literature.
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paths. By Bellman’s principle, the collection of shortest paths from s to all other vertices, for

an arbitrary but fixed source s in a network without negative cycles, forms a subtree in which

all paths are directed away from s, that is, forms a so-called arborescence rooted at vertex s. It is

easily checked that any of the shortest-paths algorithms that we encounter in the following chapters

could compute these arborescences without an increase in its asymptotic running time (by simply

maintaining, for any vertex v and any source s, a pointer to the predecessor of v on a shortest path

from s to v), but we omit this part of the computations for ease of presentation.

2.1.1 A pruning idea

To motivate the algorithms in Chapters 3 and 4, we introduce a rather simple but general pruning

idea (and some terminology). The idea can be used to reduce the search space of many algorithms

that solve combinatorial-optimization problems modeled by directed graphs D = (V, A) with arc

costs c. (It was described before, for example, in work of Hassin [41].)

Given an input instance of the all-pairs shortest-paths problem with possibly negative arc costs

c, suppose that we know the diameter ∆c. By definition, the diameter is an upper bound on

the cost of any shortest path. It follows from Bellman’s principle that any arc a contained in a

shortest path must satisfy c(a) ≤ ∆c, since a itself is a shortest path from its starting point to its

endpoint. All arcs whose costs are strictly greater than ∆c are therefore insignificant for solving

the all-pairs shortest-paths problem and could thus be pruned away from A in a preprocessing step

without changing any of the distances. In turn, we call arcs whose costs are less than or equal

to ∆c significant, since they are possibly contained in a shortest path. As a consequence, any

shortest-paths algorithm could solve the problem instance more efficiently if it were run on the

network with the sparser arc set of only the significant arcs (given that the running time of the

algorithm increases with the cardinality of the arc set). If only the diameter ∆c were known before

the execution of the algorithm!

However, we may just try any cut-off value ∆̄, and solve the all-pairs shortest-paths problem on

the network whose arc set was pruned down to the set of low-cost arcs {a ∈ A ; c(a) ≤ ∆̄}. Let

∆′ be the diameter on this pruned instance; it clearly satisfies ∆′ ≥ ∆c. We have succeeded in

determining all distances correctly if ∆̄ ≥ ∆′, since then ∆̄ ≥ ∆c, and only insignificant arcs were

removed in the pruning step. If we failed, then we could simply solve the optimization problem

on the original input network without pruning down the arc set. Or we could take ∆′ as the new

cut-off value and apply the pruning idea to the original network again. This time, an optimal

solution would be computed, since ∆′ ≥ ∆c.

Clearly, the pruning idea is more widely applicable. For example, it can be applied to any network

problem whose objective is to minimize a function ϕ that is defined on a family of subsets of the arc
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set A, where ϕ has the property that for any set {a1, . . . , ak} in the domain of ϕ, ϕ ({a1, . . . , ak}) ≥
max{c(a1), . . . , c(ak)}.

2.2 Probabilistic preliminaries

When studying the average-case complexity of shortest-paths algorithms, we assume that input

instances (of a certain size) are generated according to a probability distribution on the set of pos-

sible inputs of this size. We consider several input models (probability spaces); they are described

in detail in the respective chapters. For any given probability space, we denote by Pr and E

the probability measure and the corresponding expectation operator, respectively. For an instance

of size n, we say that an event occurs with high probability if it occurs with probability at least

1 − O(n−γ) for any arbitrary but fixed constant γ ≥ 1. To ensure a probability of failure O(n−γ),

in most of our statements, we have to choose sufficiently large constants, depending on the actual

value of γ.

2.2.1 Stochastic dominance and order statistics

Given two random variables X and Y with distribution functions FX and FY , respectively, we say

that X equals Y in distribution, written X
d
= Y , if for any real t, FX(t) = FY (t). We say that X

is stochastically dominated by Y , written X ≤st Y , if

for any real t, Pr(X > t) ≤ Pr(Y > t) or, equivalently, FX(t) ≥ FY (t) . (2.2)

In particular, X ≤st Y implies E[X ] ≤ E[Y ] if the expected values of X and Y are finite. Note that

equality in distribution and stochastic dominance are properties of the distribution functions of X

and Y alone; the random variables X and Y need not be defined on the same probability space.

We recall two basic results about stochastic dominance, namely that, after a distribution-preserving

transformation, stochastic dominance can be considered (almost surely) a pointwise property of

random variables, and that stochastic dominance of random variables is preserved when taking

sums.

Proposition 2.1 Suppose that the random variable X is stochastically dominated by the random

variable Y . Then there exist random variables X∗ and Y ∗, defined on the same probability space

and distributed as X and Y , respectively, for which X∗ ≤ Y ∗ (with probability 1).

Proof. For any distribution function G, we consider its generalized inverse G←, defined by

G←(y) = inf{x ∈ R ; G(x) ≥ y} ∈ R∪ {±∞}
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for y ∈ R, where we set inf ∅ := +∞. Since limx→−∞ G(x) = 0 and limx→+∞G(x) = 1, G←(y) is

a finite real number if y ∈ (0, 1). Furthermore, since the distribution function G is increasing and

right-continuous, the following equivalence is true for any x, y ∈ R,

G←(y) ≤ x ⇐⇒ y ≤ G(x) . (2.3)

Let FX and FY be the distribution functions of X and Y , respectively, and let U be a (single) random

variable that is uniformly distributed on (0, 1). If we define X∗ := F←X (U) and Y ∗ := F←Y (U), then

the random variable X∗ has distribution function FX , since by (2.3), for any real x,

Pr(X∗ ≤ x) = Pr(F←X (U) ≤ x) = Pr(U ≤ FX(x)) = FX(x) ,

and similarly, Y ∗ has distribution function FY . Furthermore, it follows from the assumption X ≤st

Y that for any u ∈ (0, 1),

{x ∈ R ; FX(x) ≥ u} ⊇ {x ∈ R ; FY (x) ≥ u} ,

see (2.2), which means that for any u ∈ (0, 1), F←X (u) ≤ F←Y (u). This implies X∗ ≤ Y ∗. 2

It is worth noting that the proof of the following lemma would work for any (component-wise)

increasing function φ : R
m → R, not just for φ(x1, . . . , xm) = x1 + · · ·+ xm.

Proposition 2.2 Let X1, . . . , Xm be independent random variables (defined on the same probabil-

ity space), and suppose that for each i, 1 ≤ i ≤ m, Xi is stochastically dominated by some random

variable Yi, where Y1, . . . , Ym are independent random variables (defined on the same probability

space). The random variable X1 + · · ·+ Xm is then stochastically dominated by Y1 + · · ·+ Ym.

Proof. For 1 ≤ i ≤ m, define random variables X∗i , Y ∗i as in Proposition 2.1, that is, X∗i
d
= Xi,

Y ∗i
d
= Yi, and X∗i ≤ Y ∗i with probability 1. We may also assume that both X∗1 , . . . , X∗m and

Y ∗1 , . . . , Y ∗m are collections of independent random variables; hence, X1 + · · ·+Xm
d
= X∗1 + · · ·+X∗m

and Y1 + · · ·+ Ym
d
= Y ∗1 + · · ·+ Y ∗m. It follows from the pointwise dominance that X∗1 + · · ·+ X∗m ≤

Y ∗1 + · · ·+ Y ∗m. This implies that for any t,

Pr(
∑m

i=1 Xi > t) = Pr(
∑m

i=1 X∗i > t) ≤ Pr(
∑m

i=1 Y ∗i > t) = Pr(
∑m

i=1 Yi > t) ,

that is, X1 + · · ·+ Xm ≤st Y1 + · · ·+ Ym. 2

If the random variables X and Y take values in the positive integers, then (2.2) is clearly equivalent

to the condition that Pr(X > k) ≤ Pr(Y > k) for all k ≥ 0. In particular, for 0-1 (Bernoulli)

random variables I ′ and I , we have I ′ ≤st I if and only if Pr(I ′ > 0) = p′ ≤ p = Pr(I > 0). The
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random variable S is said to be binomially distributed with parameters n and p if S
d
= I1 + · · ·+ In,

where I1, . . . , In are independent copies of the 0-1 random variable I with probability of success

p = Pr(I > 0).

Proposition 2.3 Suppose that n ≥ 1 and 0 ≤ p′ ≤ p ≤ 1. If S ′, S, and T are random variables

that are binomially distributed with parameters (n, p′), (n, p), and (n + 1, p), respectively, then

S ′ ≤st S ≤st T .

Proof. S ′ ≤st S follows directly from the discussion preceding this proposition and from Proposi-

tion 2.2. Let I0 and I be 0-1 random variables with Pr(I0 > 0) = 0 and Pr(I > 0) = p, respectively.

Observe that S
d
= I0 + S ≤st I + S

d
= T by Proposition 2.2. 2

We also need the following result, which is slightly more general than Proposition 2.2. (A special

case of this lemma appears in [74, Lemma 7].)

Lemma 2.4 Let X1, . . . , Xn, Y1, . . . , Yn be random variables that take values in the positive inte-

gers. Suppose that each Xi, 1 ≤ i ≤ n, conditioned on any possible tuple of values for X1, . . . , Xi−1,

is stochastically dominated by Yi, and that Y1, . . . , Yn are independent. Then X(n) := X1+ · · ·+Xn

is stochastically dominated by Y (n) := Y1 + · · ·+ Yn.

Proof. The proof is by induction on n. For the base case (n = 1), we have X(1) = X1, Y (1) = Y1,

and Pr(X1 > k) ≤ Pr(Y1 > k) for any k ≥ 0 by assumption. For the induction step (n − 1 → n),

note that, one the one hand, for any k ≥ n,

Pr(Y (n) > k) = Pr(Yn > k − n + 1) +

k−n+1∑

j=1

Pr(Yn = j) ·Pr(Y (n−1) > k − j) , (2.4)

since Pr(Y (n−1) ≥ n − 1) = 1. On the other hand, for any k ≥ n,

Pr(X(n) > k)

= Pr(X(n−1) > k − 1) +

k−n+1∑

j=1

Pr(Xn > j and X(n−1) = k − j)

= Pr(X(n−1) > k − 1) +

k−n+1∑

j=1

Pr(Xn > j | X(n−1) = k − j) ·Pr(X(n−1) = k − j)

≤ Pr(X(n−1) > k − 1) +

k−n+1∑

j=1

Pr(Yn > j) ·Pr(X(n−1) = k − j) ,
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since Xn is stochastically dominated by Yn, regardless of the value of X(n−1). Using Pr(X(n−1) =

k − j) = Pr(X(n−1) ≥ k − j)−Pr(X(n−1) > k − j) and rearranging the sum, we get

Pr(X(n) > k) ≤ Pr(Yn > k − n + 1) +
k−n+1∑

j=1

Pr(Yn = j) ·Pr(X(n−1) > k − j) . (2.5)

By the induction hypothesis and (2.4), we deduce from (2.5) that

Pr(X(n) > k) ≤ Pr(Yn > k − n + 1) +

k−n+1∑

j=1

Pr(Yn = j) ·Pr(Y (n−1) > k − j)

= Pr(Y (n) > k) .

Since Pr(X(n) > k) = 1 = Pr(Y (n) > k) for 0 ≤ k < n, we have thus proved that X(n) ≤st Y (n). 2

Let G be an arbitrary but fixed distribution function, and let X be distributed according to G.

For a sample X1, . . . , Xn of independent copies of X , we will denote by (X(1:n), . . . , X(n:n)) the

order statistics of X1, . . . , Xn, that is, X(1:n) = min{X1, . . . , Xn} and for 2 ≤ k ≤ n, X(k:n) =

min({X1, . . . , Xn} − {X(1:n), . . . , X(k−1:n)}). The distribution functions of the order statistics can

be characterized as follows. For any real x, if I1, . . . , In denote independent Bernoulli variables

with probability G(x) = Pr(X ≤ x) of success each, then for any k with 1 ≤ k ≤ n,

Pr
(
X(k:n) > x

)
= Pr(I1 + · · ·+ In < k) . (2.6)

The random variable I1+· · ·+In in (2.6) is binomially distributed with parameters n and G(x), and

we can therefore apply to order statistics the stochastic-dominance relations provided in Proposi-

tion 2.3. For the sake of later reference, we mention two consequences of this kind. Since binomially

distributed random variables are “stochastically increasing” in their first parameter, it follows from

(2.6) that for any k, 1 ≤ k ≤ n, the order statistics X(k:k), X(k:k+1), . . . , X(k:n) are a “stochastically

decreasing” sequence of random variables, that is,

X(k:n) ≤st · · · ≤st X(k:k) . (2.7)

Suppose that the distribution function GX dominates the distribution function GY (pointwise, as

in (2.2)), and let X1, . . . , Xn and Y1, . . . , Yn be independent copies of the random variables X and Y

distributed according to GX and GY , respectively. By our assumptions, X ≤st Y , and this carries

over to the order statistics of the samples. Namely, for any real x, we have GX(x) ≥ GY (x). Thus

if the random variables I1 + · · · + In and J1 + · · · + Jn are assumed to be binomially distributed

with parameters (n, GX(x)) and (n, GY (x)), respectively, then, for any k,

Pr(I1 + · · ·+ In < k) ≤ Pr(J1 + · · ·+ Jn < k)
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since binomially distributed random variables are “stochastically increasing” in their second pa-

rameter; see Proposition 2.3. It now follows directly from (2.6) that for any k with 1 ≤ k ≤ n,

X(k:n) ≤st Y(k:n) . (2.8)

2.2.2 Concentration of random variables

For a sum X of independent, not necessarily identically distributed random variables, we are

interested in bounds on the tail of the distribution of X . More precisely, our analyses will make

frequent use of so-called large-deviation estimates for X , that is, bounds on Pr(X > x) or Pr(X <

x), where x is of about the order of E[X ]. We use the following form of the well-known Chernoff–

Hoeffding bound.

Lemma 2.5 Let X be the sum of independent random variables X1, . . . , Xm with values in [0, 1].

(The Xi’s need not be identically distributed.) Then for any ε > 0,

Pr(X ≤ (1− ε) ·E[X ]) ≤ e−ε2
E[X ]/2 (2.9)

and

Pr(X ≥ (1 + ε) ·E[X ]) ≤
(

eε

(1 + ε)(1+ε)

)
E[X ]

. (2.10)

See, for example, [56, Section 2] for a detailed account of the proof and related inequalities; we

comment on the proof of Lemma 2.5 in the next paragraph. It follows from (2.10) that under the

assumptions of Lemma 2.5 and for any ε with 0 ≤ ε ≤ 1,

Pr(X ≥ (1 + ε) ·E[X ]) ≤ e−ε2
E[X ]/3 ; (2.11)

the bound in (2.10) also implies that

Pr(X ≥ x) ≤ e−x for x ≥ 9 ·E[X ] . (2.12)

We now would like to pinpoint precisely where the assumptions on the random variables are used

in the proof of Lemma 2.5. Its proof is based on the observation that, for any real x and any h > 0,

Pr(X ≥ x) = Pr
(
ehX ≥ ehx

)
≤ e−hx · E[ehX ]. (This rather elementary chain of inequalities is

sometimes referred to as the Bernstein inequality.) The term E[ehX ] can be rewritten as

E
[
ehX

]
= E

[
eh(X1+···+Xm)

]
= E

[
m∏

i=1

ehXi

]
=

m∏

i=1

E
[
ehXi

]
, (2.13)

where the last equality holds, since X1, . . . , Xm are assumed to be independent random variables.

Since 0 ≤ Xi ≤ 1 for any i, the convexity of the exponential function implies that E[ehXi ] ≤

18



1 − E[Xi] + eh · E[Xi]. Putting these observations together, we get for x = E[X ] + mt, setting

p = E[X ]/m,

em(p+t)h·Pr(X ≥ E[X ]+mt) ≤
m∏

i=1

E
[
ehXi

]
≤

m∏

i=1

(1−E[Xi]+eh·E[Xi]) ≤
(
1 − p + eh · p

)m
,

where the last bound follows again from a convexity argument (namely, from the inequality between

the geometric mean and the arithmetic mean) and the linearity of expectation. With a simple

substitution of variables, this chain of inequalities may, for any t with 0 ≤ t < 1 − p, be rewritten

as

Pr(X ≥ E[X ] + mt) ≤
((

p
p+t

)p+t (
1−p

1−p−t

)1−p−t
)m

. (2.14)

It is now an exercise in calculus (using no assumptions at all about the random variables) to deduce

inequality (2.10) from (2.14); see [56, Theorem 2.3(b)]. If we apply the bound (2.14) on the right tail

of X =
∑m

i=1 Xi to the random variables X ′i = 1−Xi, 1 ≤ i ≤ m, for which X ′ :=
∑m

i=1 X ′i = m−X ,

we get for any t with 0 ≤ t < p = 1 −E[X ′]/m,

Pr(X ≤ E[X ]− mt) = Pr (X ′ ≥ E[X ′] + mt) ≤
((

1−p
1−p+t

)1−p+t (
p

p−t

)p−t
)m

,

and mere calculus again allows us to deduce inequality (2.9); see [56, Theorem 2.3(c)]. This

completes the proof of Lemma 2.5.

We have used the assumption that the Xi’s are independent random variables only in equation

(2.13), but equality is actually not essential there. In fact, the statement of Lemma 2.5 remains

true if we replace the independence assumption by the weaker requirement that the inequality

E

[
m∏

i=1

ehXi

]
≤

m∏

i=1

E
[
ehXi

]
(2.15)

holds for the random variables X1, . . . , Xm and for any h > 0. Inequality (2.15) holds for a class of

“strongly” negatively dependent random variables, namely, so-called negatively associated random

variables, as we now argue.

Informally speaking, random variables are said to be negatively dependent, if they have the following

property: if any one subset of the variables takes “high” values, then other (disjoint) subsets of the

variables take “low” values. Many formal definitions of negative dependence of random variables

have been studied in the literature. We employ a notion of negative dependence called negative

association that first appeared in [4, Section 4] and [46]. It generalizes negative correlation (and

other notions of negative dependence) to the case of vectors of random variables.

Definition 2.6 The random variables (X1, . . . , Xm) are negatively associated if for every index set

I ⊆ {1, . . . , m} and for all non-decreasing functions f : R
|I | → R and g : R

m−|I | → R, the random
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variables f(Xi, i ∈ I) and g(Xi, i ∈ Ī) are negatively correlated, that is,

E[f(Xi, i ∈ I)g(Xi, i ∈ Ī)] ≤ E[f(Xi, i ∈ I)] ·E[g(Xi, i ∈ Ī)] . (2.16)

(For I ⊆ {1, . . . , m}, we denote the set {1, . . . , m} − I by Ī. A function h : R
k → R is said to be

non-decreasing, if h(x) ≤ h(y) whenever x ≤ y in the component-wise ordering on R
k.)

The negatively associated random variables that we encounter in Section 6.1 are 0-1 vectors. Hence,

we can safely assume that all expectations in Definition 2.6 exist. It readily follows from this

definition by induction on m that for negatively associated random variables (X1, . . . , Xm) and non-

decreasing functions fi, 1 ≤ i ≤ m, which take values in the non-negative reals, E [
∏m

i=1 fi(Xi)] ≤∏m
i=1 E [fi(Xi)]. Since for any h > 0, the functions fi(Xi) := exp(hXi), 1 ≤ i ≤ m, are non-

decreasing with values in the non-negative reals, this observation proves that (2.15) is satisfied for

negatively associated random variables (X1, . . . , Xm). To extend the proof of the bound on the

left tail in Lemma 2.5 to the case of negatively associated random variables, we remark that for

negatively associated random variables (X1, . . . , Xm), inequality (2.16) also holds if f and g are

both non-increasing functions. Hence, if (X1, . . . , Xm) are negatively associated random variables

with values in [0, 1], so are (1 − X1, . . . , 1− Xm).

The following large-deviation estimates for sums of negatively associated random variables can thus

be proved completely along the lines of argument for Lemma 2.5.

Lemma 2.7 Let X be the sum of negatively associated random variables X1, . . . , Xn with values

in [0, 1]. (The Xi’s need not be identically distributed.) Then for any ε > 0,

Pr(X < (1− ε) ·E[X ]) ≤ e−ε2E[X ]/2 (2.17)

and

Pr(X > (1 + ε) ·E[X ]) ≤
(

eε

(1 + ε)(1+ε)

)E[X ]

.

We use this result in Chapter 6; see page 64. For the proof that the random variables considered

there are negatively associated, we utilize the fact that negative association of random variables

is preserved when forming unions of independent sets, and under forming sets of non-decreasing

functions that are defined on disjoint subsets of the random variables. The following proposition

makes these properties more precise; see [46] for a proof.

Proposition 2.8

(a) If the random variables (X1, . . . , Xn) and (Y1, . . . , Ym) are both negatively associated and

mutually independent, then the random variables (X1, . . . , Xn, Y1, . . . , Ym) are also negatively

associated.
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(b) Suppose the random variables (X1, . . . , Xn) are negatively associated. Let I1, . . . , Ik ⊆
{1, . . . , n} be disjoint index sets, for some positive integer k. For 1 ≤ j ≤ k, let hj : R

|Ij | → R

be non-decreasing functions, and define Yj := hj(Xi, i ∈ Ij). Then the random variables

(Y1, . . . , Yk) are also negatively associated. That is, non-decreasing functions of disjoint sub-

sets of negatively associated variables are also negatively associated. The same is true if each

hj is a non-increasing function.
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Chapter 3

The extended uniform model

The basic uniform model for generating complete directed graphs with arc costs is defined with

respect to a distribution function F . The cost of any arc is drawn according to F , independently

of the costs of other arcs. Once chosen, the function F is considered to be fixed for all sizes n of

instances that are to be generated according to the model (in our context, for all numbers n of

vertices of the graphs). In the extended uniform model, the presence of each arc (and not only its

cost) is random. To this end, a third parameter p (besides the distribution function F and the size

n of the instances) is introduced; the parameter p is a real number from the unit interval (0, 1] and

may depend on n. The structure of a graph (on n vertices) generated according to the extended

uniform model can be interpreted as the outcome of an experiment in the well-known D(n, p)

model—each arc in a directed graph on n vertices is present with probability p, independently of

the presence of all other arcs. Costs of arcs that were determined as present in this first experiment

are then drawn at random in a second experiment, independently of each other, according to the

common distribution function F . Clearly, the extended uniform model contains the uniform model

as the special case p = 1.

Both the uniform model and the extended uniform model have been studied in the literature as input

models for the probabilistic analysis of network algorithms, the uniform model quite intensively so.

In the course of this chapter, we discuss work related to shortest-paths problems (in Section 3.5, in

particular), and otherwise refer to the survey by Frieze and McDiarmid [30].

3.1 A probabilistic algorithm for shortest-paths problems

In this chapter, we are concerned with the all-pairs shortest-paths problem under the assumption

that networks are generated according to the extended uniform model. We prove in Section 3.4
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that each shortest path consists of at most O(logn) arcs with high probability; see Lemma 3.10.

Apparently, the result of this lemma is new, though it was conjectured by Hassin [41] that such a

result should hold. (We use this result in Chapter 4, where we analyze probabilistic shortest-paths

algorithms on networks (D, c) with possibly negative arc costs.) We also show that the all-pairs

shortest-paths problem can be solved in O(n2 logn) time with high probability. Our proofs are

based on a detailed review of results by Frieze and Grimmett [31], which these authors used in their

design of an algorithm that solves the all-pairs shortest-paths problem in O(n2 log n) if networks

are generated according to the uniform model. (The algorithm was also suggested by Hassin and

Zemel [42] and Hassin [41].)

The algorithm of Frieze and Grimmett is a prime example of what we called a probabilistic algorithm

in the introduction. It exploits the following properties that are exhibited by graphs (D, r) with

non-negative arc costs r that are generated according to the uniform model. If such instances are

of size n, their diameter ∆r is O((logn)/n) with high probability. (To prove this bound, we need

the additional assumption that F ′(0) > 0; see Section 3.2.2 for more details. We comment on

the case F ′(0) = 0 in Remark 3.8.) Since the diameter is rather small, one can make good use

of the pruning idea of Section 2.2.1. (In the following, we refer to the terminology introduced in

that section.) If we choose r̄ = C(log n)/n as a cut-off value, for a sufficiently large constant C,

then r̄ ≥ ∆r, and the pruned network that contains only the low-cost arcs (with respect to r̄) still

allows us with high probability to compute the correct distances. As for the efficacy of the pruning

step, for this choice of a cut-off value r̄, the arc set of the pruned graph has cardinality O(n logn)

with high probability, since for each vertex, only the O(logn) shortest arcs leaving this vertex are

low-cost (with respect to r̄). The probabilistic algorithm of Frieze and Grimmett thus solves the

all-pairs shortest-paths problem on instances generated according to the uniform model in time

O(n2 logn) with high probability by running Dijkstra’s algorithm n times on the pruned network,

once for each source vertex.

We prove in Section 3.3 that this algorithm can easily be adjusted to deal within the same time

bounds with instances generated according to the extended uniform model, given that the param-

eter p is large enough to ensure with high probability that the instances are strongly connected;

see Theorem 3.7. (It has been mentioned already by both Hassin and Zemel [42] and Hassin [41]

that this extension should be possible, but no proofs were given in these two papers.) Namely, in

Lemma 3.4, we provide an O((logn)/(np)) bound on the diameter, which holds with high probabil-

ity. In Lemma 3.6, we prove that on instances generated according to the extended uniform model,

the corresponding bound on the number of low-cost arcs is O(n logn) with high probability. We

give a detailed account of our assumptions on the extended uniform model in the following section.
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3.2 Model interpretation and additional assumptions

It is convenient for our analyses in the following sections to view the extended uniform model with

parameters F , n, and p as a variant of the basic uniform model, that is, as a model in which a

random arc cost is assigned to each arc in the complete directed graph (on n vertices) according

to some distribution function Fp. Namely, if we define Fp as p · F on the non-negative reals and

with a point mass of 1 − p at +∞, then both views of the extended uniform model, either with

parameters F , n, and p or with distribution function Fp and size parameter n, are equivalent. Arcs

that are assigned infinite cost by Fp correspond to arcs that are not present in the corresponding

instance of the extended uniform model with parameters F , n, and p. Note that the view of the

extended uniform model as a variant of the uniform model stretches the assumptions on the basic

uniform model slightly, since in general, limx→+∞ Fp(x) = p < 1, and Fp depends on n through the

parameter p, but we need not be concerned about this; see Lemma 3.1.

3.2.1 Two-round exposure of instances in the (extended) uniform model

Our analyses in the following sections actually focus on networks whose adjacency lists have been

sorted with respect to increasing arc costs. According to our discussion in the last paragraph, we may

assume that the unsorted arc costs were generated according to the uniform model with respect

to some distribution function G, where, for the time being, G may denote either a distribution

function F with limx→∞ F (x) = 1 or a distribution function Fp with a point mass at +∞. If

G = Fp, we assume in addition that ties among the arcs of cost +∞, when sorted, are resolved

randomly. If the arcs with starting point v, for any vertex v, are sorted according to their costs,

then the order of their endpoints is a random permutation of the vertex set: In the uniform model,

the costs of the arcs with starting point v are values of independent, identically distributed random

variables, and therefore each permutation of the endpoints is equally likely to occur. It is helpful

to formalize this observation and to interpret directed graphs (on n vertices) with sorted adjacency

lists as being exposed in two rounds. For problem instances on n vertices, we denote their vertex

sets by V (n).

In the first round, permutations of V (n) are drawn uniformly at random, independently of each

other, for every vertex v ∈ V (n). For each vertex, the corresponding permutation determines in

which order the endpoints of the arcs appear in the sorted adjacency list of this vertex.

In the second round, the actual arc costs are determined. For any vertex v, the costs of the arcs as

they appear in the sorted adjacency list of v are determined as the order statistics (R(1:n), . . . , R(n:n))

of a sample R1, . . . , Rn of independent random variables, all distributed according to G; see Section

2.2.1. The n-tuples of sorted arc costs are determined independently of each other for any vertex
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v ∈ V (n). Furthermore, the n-tuples of sorted arc costs are independent of the outcomes of the

experiments in the first round.

It should be stressed that the interpretation above applies without changes to the extended uniform

model, that is, to the case G = Fp. The exposure of instances can there be split into the same

two rounds of independent random experiments. For the sake of clarity, we mark random variables

by an extra ˆ in this case. At many places in our analyses, however, it is possible to put away

the cumbersome point mass at +∞ of the distribution function Fp, since there are “sufficiently

many” finite elements in the samples with common distribution function Fp. The following lemma

provides a precise formulation of this intuitive idea.

Lemma 3.1 Let F be a fixed distribution function with limx→∞ F (x) = 1, and for some p ∈ (0, 1),

let Fp be the corresponding distribution function that equals p · F (x) for real x and has a point

mass of 1 − p at +∞. Consider the order statistics R̂(1:n), . . . , R̂(n:n) of a sample R̂1, . . . , R̂n of

independent random variables, all distributed according to Fp. If the random variable L denotes

the number of finite elements in the sample R̂1, . . . , R̂n, then for any k, ` with k ≤ ` ≤ n and any

real x,

Pr
(

R̂(k:n) > x
∣∣∣ L ≥ `

)
≤ Pr

(
R(k:`) > x

)
. (3.1)

That is, conditioned on L ≥ `, the random variable R̂(k:n) is stochastically dominated by the

random variable R(k:`), the k-th order statistic of a sample of ` independent random variables, all

distributed according to F .

Proof. For a sample R̂1, . . . , R̂n as in the statement of the lemma, the characterization of the

distribution of R̂(k:n) from (2.6) is still true, that is, for 1 ≤ k ≤ n and any real x,

Pr(R̂(k:n) > x) = Pr(I1 + · · ·+ In < k) , (3.2)

where I1, . . . , In is a sequence of independent Bernoulli variables with probability p ·F (x) of success

each. In the present context, however, we prefer to replace the variable I1 + · · ·+In by a compound

binomial random variable. Let J1, . . . , Jn be a sequence of independent Bernoulli variables with

probability F (x) of success each. We also assume that J1, . . . , Jn are independent of the number L

of finite elements in the sample R̂1, . . . , R̂n; according to our assumptions, the random variable L

is binomially distributed with parameters n and p. (Clearly, L and the variables R̂(k:n), 1 ≤ k ≤ n,

are not independent.) It is easy to check that the compound random variable J1 + · · ·+ JL is then

binomially distributed with parameters n and p · F (x), where, conditioned on the event {L = l},
J1 + · · · + JL is distributed as J1 + · · · + Jl. For a proof of the stochastic-dominance relation in

(3.1), fix any ` ≤ n. For any k with 1 ≤ k ≤ ` and any real x, it follows from (2.7) (applied to the
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order statistics R(k:m) with ` ≤ m ≤ n, all of which are stochastically dominated by R(k:`)),

Pr
(
R̂(k:n) > x and L ≥ `

)
= Pr(J1 + · · ·+ JL < k and L ≥ `)

≤ Pr
(
R(k:`) > x and L ≥ `

)
.

The stochastic-dominance relation (3.1) follows from this inequality, since the two events {R(k:`) >

x} and {L ≥ `} are independent. 2

3.2.2 Assumptions on the model parameters

From a formal point of view, the extended uniform model can be studied for any triple of parameters

F , n, and p. However, if we want to generate reasonable instances of shortest-paths problems, then

we should restrict the range from which we choose the parameters. Otherwise, the average-case

analysis of the complexity of these algorithms might not be meaningful. For example, concerning the

distribution function F , if we assume F (0) > 0, both the uniform model and the extended uniform

model do not allow a particularly enlightening analysis of shortest-paths algorithms. Indeed, as we

have already argued for the uniform model in the introduction (see page 6), if limx↑0 F (x) > 0, that

is, if there is a non-zero probability for the cost of any arc of being negative, then all distances are

−∞ with high probability. If F is concentrated on [0, +∞), then the assumption F (0) > 0 means

that there is a positive probability for any arc of having cost 0, which implies that the subgraph of

zero-cost arcs consists of a single strongly connected component with high probability. In this case,

all distances equal 0. The same pitfalls occur in the extended uniform model if p ≥ C · (logn)/n,

for a sufficiently large constant C; see page 7 in the introduction. We assume throughout this

chapter that this assumption on p holds; we fear the least confusion if we refer to it as “np/ logn”

being “sufficiently large”. The assumption is natural, since it ensures that the instances generated

according to the extended uniform model are strongly connected with high probability. This could

be deduced from a known threshold for strong connectivity [69], but it also follows from our analysis;

see Remark 3.5.

We describe our actual assumptions on F in more detail. The first two assumptions should appear

natural after the discussion above.

(A1) F is concentrated on [0, +∞) and has the properties that F (0) = 0 and that F ′(0) exists and

is strictly positive.

In particular, the cost of any arc is positive with probability 1. We now explain how we exploit

the assumption on F ′(0). (See Remark 3.8 for the case of a vanishing derivative.) By definition of
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F ′(0) and since we assume F (0) = 0,

F (x) = Pr (r(v, w) ≤ x) = F ′(0) · x + o(x) , as x ↓ 0 , (3.3)

where for any arc (v, w), r(v, w) denotes its cost. (In this chapter, we denote arc costs by r to stress

the point that they are non-negative.) The assumption limx↓0 F (x)/x = F ′(0) > 0 implies that the

distribution of the arc costs can be approximated in a neighborhood of 0 by uniform distributions,

both from above and from below. More precisely, for a distribution function F as in (A1), we fix

ε0 = ε0(F ) with 0 < ε0 < 1/(1.2 · F ′(0)) such that

0.9 · F ′(0) · x ≤ F (x) ≤ 1.1 · F ′(0) · x , for 0 ≤ x ≤ ε0 . (3.4)

The function F (a) defined by

F (a)(x) :=

{
0.9 · F ′(0) · x , 0 ≤ x < ε0 ,

F (x) , x ≥ ε0 ,
(3.5)

is a distribution function that satisfies

F (a)(x) ≤ F (x) for all x ≥ 0 . (3.6)

If R(a) and R are random variables distributed according to F (a) and F , respectively, then (3.6)

just means that R ≤st R(a); see (2.2). Note that for 0 ≤ x < ε0, F (a)(x) = Pr(U (a) ≤ x), where

U (a) is a random variable that is uniformly distributed on [0, 1/(0.9 · F ′(0))].

From now on, we assume the distribution function F to be fixed. Furthermore, we fix a parameter ε0

in accordance with (3.4) and a distribution function F (a) as in (3.5). Also take CF = 1/(F ′(0) · ε0),

and observe that, by the assumption on ε0, we have CF > 1.

Remark 3.2 The choice of uniform distributions as distributions approximating F is for technical

convenience only; see how we use it in (3.13). It is clear that the assumption (3.3) on F allows for a

much wider range of possible approximating distributions. In fact, Janson argues in his study [45]

of quantities related to shortest-paths problems in the uniform model that a distribution function

as in (3.3) can be approximated by the distribution function of an exponential distribution, which

permits the use of elegant arguments exploiting the “lack of memory” property of exponential

distributions; see [55] also.

3.3 Diameter and number of significant arcs

Let D = (V, V ×V ) denote the complete directed graph (with loops). Recall that given a designated

vertex s, an arborescence rooted at vertex s is any subtree of D in which all paths are directed away
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from s. Frieze and Grimmett [31] construct, for every vertex s, a spanning arborescence rooted at

vertex s. For any vertex w, the cost of the path from s to w in the spanning arborescence then

serves as an upper bound on the distance δ(s, w) of vertex w from vertex s, from which we obtain

an upper bound on the diameter of (D, r).

3.3.1 Construction of the spanning arborescence

We assume that for any vertex v, the arcs with starting point v appear in v’s adjacency list in the

order of increasing arc costs r(v, ·). An arc is said to have v-rank k, for 1 ≤ k ≤ |V |, if it is the k-th

entry in the sorted adjacency list of v. For an arbitrary but fixed vertex s, a spanning arborescence

T rooted at s is constructed in stages. In the zero stage, T just consists of the single vertex s, and

we define S(0) := {s}. In the first stage, if (s, u) has s-rank 1, then S(1) := S(0) ∪ {u}, and the arc

(s, u) is inserted in the arc set of T if u 6= s. In this case, the arc (s, ws) of s-rank 2 and the arc

(u, wu) of u-rank 1 are considered in the second stage. We set S(2) := S(1) ∪ {ws, wu}; (s, ws) is

inserted in the arc set of T if ws 6= s, and (u, wu) is inserted in the arc set of T if wu /∈ {s, ws, u}.
(In the case u = s, only the arc (s, ws) of s-rank 2 is considered in the second stage.) In general,

suppose that after the (k − 1)-th stage, k ≥ 1, the vertex set of T is S(k−1) := {v0, v1, . . . , vl}, for

some l = l(k) ≥ 0, and for 0 ≤ j ≤ l, let kj be the index of the stage in which vj was added to

the vertex set of T . Suppose further that (vj , wj) is the arc with vj-rank (k − kj). In the k-th

stage, the vertex set of T is then expanded to S(k) := S(k−1) ∪ {wj ; 0 ≤ j ≤ l}. The arcs (vj , wj),

0 ≤ j ≤ l, are incrementally tested for insertion in the arc set of T (in the order of increasing

j, say), and arc (vj , wj) is actually inserted if and only if wj 6= s and wj has in-degree 1 after

the insertion. This maintains the invariant that T is an arborescence rooted at vertex s. The

construction process terminates as soon as the vertex set of T equals V , that is, when T is indeed

a spanning arborescence. It is a key ingredient for the analysis that for any k and for any vertex w

added to T in the k-th stage, the ranks of the arcs that constitute the path in T from s to w sum

to k. This is independent of the order in which arcs are tested for insertion in the arc set of T in

one of the stages; the order of insertion does also not affect the set of vertices added to T in this

stage.

It is clear that, in general, T is not the shortest-paths tree for the single-source shortest-paths

problem with source s. The “greedy” construction of T , however, suggests that the paths from

the root s to any other vertex are of low cost. Indeed, this can be proved if instances (D, r) are

generated according to the extended uniform model; see Section 3.3.2.

For the construction process itself, Frieze and Grimmett prove that in the uniform model for net-

works on n vertices, the random number K(n) of stages that is needed to complete the construction

of T , for an arbitrary s ∈ V (n), is O(logn) with high probability. More precisely, it is proved in
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[31, Theorem 5.2 and Corollary 5.3] that for any γ > 0 and all ε > 0,

K(n) ≤ (1 + ε)(log2 n + (γ + 1) loge n) with probability at least 1 − o(n−γ) , (3.7)

which implies that, for any γ > 0, K(n) ≤ (γ + 2.45) loge n = (γ + 2.45) logn with probability at

least 1−O(n−γ). Intuition on this bound is given in Remark 3.3. We first explain why the analysis

of K(n) carries over to the extended uniform model without any changes.

How much of the randomness of the uniform model is used in the argument leading to the bound

on K(n) in (3.7)? It should be clear that the actual arc costs are not relevant for the random

construction process under consideration. When K(n) is determined, it suffices to know that,

originally, for any vertex v, the costs of the arcs with starting point v are values of independent,

identically distributed random variables, and hence, that if the arcs with starting point v are sorted

according to their costs, then the order of their endpoints is a random permutation of the vertex

set V (n).

In Section 3.2.1, we formalized what we had observed in the previous paragraph as the first round

of a two-round exposure of instances in the extended uniform model: In the first round, random

permutations of V (n) are drawn, which determine the endpoints of the sorted adjacency lists. We

have already argued in Section 3.2.1 that the exposure of instances in the extended uniform model

can be split into the very same two rounds of independent random experiments. Therefore, the

bound on K(n), that is, on the time needed to complete the construction of a spanning arborescence

T , holds in the extended uniform model as well.

Remark 3.3 A different argument leading to a result similar to (3.7) has been given in the ex-

tended uniform model by Feige, Peleg, Raghavan, and Upfal [24]. We sketch an intuitive expla-

nation by Pittel [73] how a bound on K(n) as in (3.7), comprising two logarithmic terms with

different bases, can be obtained. It has already been argued in [31, proof of Corollary 5.3] that

the completion of the random arborescence “is only delayed” (this could be made precise by a

stochastic-dominance argument) if each of the vertices already added to the arborescence proposes,

over the consecutive stages, vertices for possible expansion of the arborescence by sampling with

replacement from V (n). (The permutations of V (n) that we fix for each vertex in the random

process studied above correspond to sampling without replacement.) For any stage k ≥ 0, let yk

denote the cardinality of the vertex set of the “delayed” arborescence after the k-th stage. Surely,

y0 = 1, and it is not hard to see that for k ≥ 0,

E[n − yk+1 | yk ] = (n − yk)
(
1 − 1

n

)yk ≈ (n − yk) · e−yk/n .

Pittel [73, Section 2] proves that for every k, the conditional distribution of n − yk+1 given yk = y

is indeed sharply concentrated around (n − y) · e−y/n . Therefore, the (deterministic) difference
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equation n − yk+1 = (n − yk) · e−yk/n or, equivalently,

yk+1 = n − (n − yk) · e−yk/n (3.8)

approximates quite closely how the actually random quantities yk, k ≥ 0, behave. If we set

xk = yk/n, then (3.8) reads xk+1 = f(xk), for k ≥ 0, where f(x) = 1− (1− x) · e−x, and x0 = 1/n.

The completion time of the construction process, that is, the minimum k for which yk > n−1, then

corresponds to the minimum k for which xk > 1− 1/n. Observe that f(0) = 0, f(1) = 1, f ′(0) = 2,

and f ′(1) = 1/e. Therefore, xk is almost doubled at every stage as long as it is rather small, and

1 − xk decreases with a factor of approximately 1/e once 1 − xk becomes sufficiently small. These

observations correspond to the log2 n bound and the loge n bound, respectively, on the number of

stages in (3.7). One also expects from this heuristic argument that the high-probability parameter

γ appears in front of the loge n term.

3.3.2 Path costs in the spanning arborescence

For an arbitrary but fixed vertex s ∈ V (n), let T denote a spanning arborescence rooted at s that

is constructed as in Section 3.3.1. Without any restriction on the parameter p in the extended

uniform model, it might happen that T contains arcs of cost +∞, that is, arcs that we actually

consider as nonexistent. We now prove that for np/ logn being sufficiently large, the costs of all

arcs in T are finite. More precisely, we extend the analysis of Frieze and Grimmett [31] to prove

that the cost of any path in T is O((logn)/(np)) with high probability if networks (Dn, r) are

generated according to the extended uniform model. (This result has been stated, though without

proof, by Hassin and Zemel [42]. Their paper discusses in detail only the case where p = 1 and arc

costs are uniformly distributed in the unit interval.)

For the following analysis of path costs in T , we interpret the extended uniform model as the uniform

model with distribution function Fp, as described in the introductory paragraph of Section 3.2. We

start by fixing the outcomes of the experiments in the first round of the two-round exposure of

random instances that we described in Section 3.2.1, that is, we fix a permutation πv of V (n) for

each v ∈ V (n). This determines the shape of T , that is, the number of stages needed to construct

T , and the rank of any particular arc in the adjacency list of its starting point.

For an arbitrary vertex w 6= s, let the unique path Pw in T from s to w consist of the arcs (s = v1, v2),

. . . , (vm, vm+1 = w), for some m ≥ 1, and given Pw , let kj , for 1 ≤ j ≤ m, denote the rank of

(vj , vj+1) in the sorted adjacency list of vertex vj . According to our discussion in Section 3.2.1,

the cost of this path is the value of a sum of independent random variables Q̂1, . . . , Q̂m, where

for 1 ≤ j ≤ m, the variable Q̂j is distributed as R̂(kj :n), the kj-th order statistic of a sample of

n independent random variables, identically distributed according to the distribution function Fp.
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We now prove that, provided np/ logn is sufficiently large and Pw is what we call non-extreme, Pw

has cost O((logn)/(np)) with high probability. More precisely, for an arbitrary but fixed γ ≥ 1, we

assume that np ≥ 8(γ + 3)CF · log n, where CF = 1/(F ′(0) · ε0) > 1, and that (this is the definition

of non-extreme paths)

k1 + · · ·+ km ≤ (γ + 3.45) · logn . (3.9)

Under these assumptions, the cost Q̂1+· · ·+Q̂m of Pw can be proved to be less than CQ·(logn)/(np+

1) with probability at least 1 − O(n−(γ+2)), where CQ = 7(γ + 3.45)/F ′(0). For an interpretation

of the definition in (3.9), recall that it follows from the rules governing the construction of T that

the ranks satisfy k1 + · · ·+ km ≤ K(n) in any case, where K(n) is the number of stages needed to

construct T . Indeed, the definition above is closely related to the high-probability bound on K(n)

in (3.7).

The proof proceeds in three steps. In the first step, we show that our assumption on p ensures that

with high probability, any vertex is the starting point of sufficiently many arcs of finite costs. In

the second step, we exploit the fact that the result of Lemma 3.1 together with the assumptions on

the distribution function F allows us to show that the random variable in question, Q̂1 + · · ·+ Q̂m,

is with high probability stochastically dominated by a sum of order statistics derived from samples

of random variables that are uniformly distributed on the unit interval. In the third step, we derive

a sharp bound on the distribution of this sum. Steps 2 and 3 adapt arguments already present in

[31].

For the first step of the proof, let, for each vertex v, the random variable L(v) describe how

many of the arcs leaving v have finite costs. For n-vertex instances generated according to the

extended uniform model, the random variables L(v), v ∈ V (n), are independent and each of them

is binomially distributed with parameters n and p. According to the large-deviation estimate (2.9),

for any vertex v, Pr(L(v) ≤ bnp/2c) ≤ e−np/8. Hence, since we assume that np ≥ 8(γ+3)CF ·logn

with CF ≥ 1, the event

Lp := {L(v) ≥ `p := dnp/2e for all v ∈ V (n)}

occurs with probability at least 1−O(n−(γ+2)) if instances of size n are generated according to the

extended uniform model. That is, with probability at least 1− O(n−(γ+2)), each vertex in V (n) is

starting point of at least `p = dnp/2e arcs with finite costs. Hence, for any x,

Pr
(
Q̂1 + · · ·+ Q̂m > x

)
≤ Pr

(
Q̂1 + · · ·+ Q̂m > x

∣∣∣ Lp

)
+ O(n−(γ+2)) .

For our argument in the second step, observe that the event Lp defined above ensures that the

finiteness condition L ≥ ` in Lemma 3.1 holds with ` = `p for any vertex. Our assumptions imply

in particular, that `p ≥ np/2 ≥ (γ + 3.45) · logn, so that, by the definition in (3.9), for any of the
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ranks kj , 1 ≤ j ≤ m, we have kj ≤ `p, as required for (3.1) in Lemma 3.1 to hold. It follows from

inequality (3.1) that for any 1 ≤ j ≤ m, the variable Q̂j is stochastically dominated by a random

variable Qj that is distributed as R(kj :`), the kj-th order statistic of a sample of ` = `p = dnp/2e
independent random variables, identically distributed according to the distribution function F .

We now exploit what we assume on the behavior of F in a neighborhood (to the right) of 0. If

F (a) denotes the distribution function defined in (3.5), then we have F (a) ≤ F , as observed in

(3.6). Thus, by (2.8), any of the variables Qj , 1 ≤ j ≤ m, is stochastically dominated by a random

variable Q
(a)
j that is distributed as R

(a)
(kj :`)

, where R
(a)
(kj :`)

denotes the kj-th order statistic of a sample

of ` independent random variables, identically distributed according to the distribution function

F (a). Since stochastic dominance is preserved under taking sums of independent random variables

(Proposition 2.2), these arguments imply that for any x,

Pr
(

Q̂1 + · · ·+ Q̂m > x
∣∣∣ Lp

)
≤ Pr (Q1 + · · ·+ Qm > x) ≤ Pr

(
Q

(a)
1 + · · ·+ Q

(a)
m > x

)
.

(3.10)

To derive a bound on the rightmost probability in (3.10), recall that for any x with 0 ≤ x < ε0 and

ε0 as defined before (3.4), F (a)(x) = Pr(U (a) ≤ x), where the random variable U (a) is uniformly

distributed on [0, 1/(0.9 · F ′(0))]. Hence, if U
(a)
(k:`)

denotes the k-th order statistic of a sample of `

independent copies of U (a), then, for any x with 0 ≤ x < ε0 and any k ≤ `,

Pr
(
R

(a)
(k:`)

≤ x
)

= Pr
(
U

(a)
(k:`)

≤ x
)

, (3.11)

since both terms equal Pr(J1 + · · ·+ J` ≥ k), where J1, . . . , J` are independent Bernoulli variables,

each with probability F (a)(x) = Pr(U (a) ≤ x) of success. It follows from (3.11) that for any k ≤ `,

the random variables min{R(a)
(k:`)

, ε0} and min{U (a)
(k:`)

, ε0} are equal in distribution. Thus, if, as

above, Q
(a)
1 , . . . , Q

(a)
m denote independent random variables with Q

(a)
j

d
= R

(a)
(kj :`)

, for 1 ≤ j ≤ m, and

Y
(a)
1 , . . . , Y

(a)
m are independent random variables with Y

(a)
j

d
= U

(a)
(kj :`)

, for 1 ≤ j ≤ m, then, for any

x < ε0,

Pr
(
Q

(a)
1 + · · ·+ Q(a)

m > x
)

= Pr
(
min{Q(a)

1 , ε0} + · · ·+ min{Q(a)
m , ε0} > x

)

= Pr
(
min{Y (a)

1 , ε0} + · · ·+ min{Y (a)
m , ε0} > x

)

= Pr
(
Y

(a)
1 + · · ·+ Y (a)

m > x
)

. (3.12)

The third step of the proof, finally, uses the fact that a bound on the probability in (3.12) can be

derived completely along the lines of the proof of Lemma 4.2(b) in [31]. Namely, if Y1, . . . , Ym denote

independent random variables with Yj distributed as U(kj :`), for 1 ≤ j ≤ m, where U(k:`) denotes

the k-th order statistic of a sample of ` independent random variables, all uniformly distributed on

the unit interval, then, for any x with 0 ≤ x < ε0,

Pr
(
Y

(a)
1 + · · ·+ Y (a)

m > x
)

= Pr
(
Y1 + · · ·+ Ym > 0.9 · F ′(0) · x

)
.
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Frieze and Grimmett [31, Lemma 4.2(b)] prove that for any κ ≥ k1 + · · ·+ km and any µ > 1,

Pr
(
Y1 + · · ·+ Ym > µκ

`+1

)
≤ e−µκ(eµ)κ = e−κ(µ−1−log µ) , (3.13)

which is independent of m and the specific value of k1 + · · · + km; see Appendix A of this thesis

also. For any non-extreme path, k1 + · · · + km ≤ (γ + 3.45) · logn by definition, and we take

κ = (γ + 3.45) · logn for this reason. Observe that for any µ ≥ 3.15, we have µ − 1 − logµ ≥ 1.

Furthermore, `+1 = dnp/2e+1 ≥ (np+1)/2, and with µ = 3.15 and κ as defined above, we derive

from (3.13) that

Pr
(
Y1 + · · ·+ Ym > 6.3(γ+3.45)·logn

np+1

)
= O(n−(γ+2)) , (3.14)

which through combination of the above estimates reads

Pr
(
Q̂1 + · · ·+ Q̂m > CQ · log n

np+1

)
= O(n−(γ+2)) , (3.15)

where CQ = 7(γ + 3.45)/F ′(0). Our assumptions ensure that np ≥ CQ/ε0 · log n, which implies

that CQ · log n
np+1 is indeed strictly less than ε0, as we assumed in the calculations leading to (3.12).

Recall that so far all probabilities in this section have been implicitly conditioned on the n-tuple

π = (πv)v∈V (n), where the πv’s are permutations of V (n) drawn in the first-round experiments

of the two-round exposure of instances generated according to the extended uniform model; see

our discussion at the beginning of this section. In the proof of the following lemma, we make

these conditional probabilities explicit. With the help of the considerations above, we can prove

the following bound on the diameter ∆r = max{δr(v, w) ; v, w ∈ V } in networks (D, r) that are

generated according to the extended uniform model.

Lemma 3.4 Suppose networks (Dn, r) are generated according to the extended uniform model

with parameters F and p, where F satisfies assumption (A1). If np/ logn is sufficiently large, then

the diameter of the generated graphs is O((logn)/(np)) with high probability.

Proof. Let ∆r = max{δr(v, w) ; v, w ∈ V (n)} denote the diameter. The quantities ∆r(v) :=

max{δr(v, w) ; w ∈ V (n)}, for v ∈ V (n), are identically distributed so that for any x,

Pr(∆r > x) ≤
∑

v∈V (n)

Pr(∆r(v) > x) = n ·Pr(∆r(s) > x) , (3.16)

where s is an arbitrary vertex in V (n) that we assume to be fixed for the remaining proof. The

lemma follows from (3.16) if we prove that ∆r(s) is O((logn)/(np)) with high probability.

Any n-tuple π of permutations of V (n) that we choose in the first round of the two-round exposure

of instances in the extended uniform model determines a spanning arborescence T = T (π) rooted

at vertex s; let K(π) denote the number of stages that it takes to construct T (π). If we write
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∆r(T ) for the maximum of path costs in T = T (π), then surely ∆r(s) ≤ ∆r(T ) on this instance.

Thus, for any x and any κ,

Pr(∆r(s) > x) ≤
∑

π

Pr (π chosen and ∆r(T ) > x)

≤
∑

π,K(π)>κ

Pr(π) +
∑

π,K(π)≤κ

Pr (π chosen and ∆r(T ) > x) , (3.17)

where Pr(π) is a shorthand for Pr(π chosen). Let γ ≥ 1 be arbitrary but fixed. With K(n) denot-

ing, as before, the random number of stages needed to complete the construction of the spanning

arborescence rooted at s on instances of size n, the first sum in (3.17) just equals Pr(K(n) > κ),

and we know from (3.7) that this probability is O(n−(γ+1)) if κ ≥ (γ+3.45) · logn =: CK · logn. Ob-

serve that if we condition on the choice of π with K(π) ≤ CK · logn, then any path in T = T (π) is

non-extreme according to the definition in (3.9). For any vertex w ∈ V (n), denote by Pw the unique

path in T from vertex s to w, and let r(Pw) be the cost of this path. By the observation we just

made, it follows from (3.15) that for x ≥ CQ · (logn)/(np+1) = 7(γ +3.45)/F ′(0) · (logn)/(np+1),

Pr(r(Pw) > x | π chosen with K(π) ≤ CK · logn) = O(n−(γ+2)) ;

recall that the proof of this estimate requires that np/ logn is sufficiently large. The estimate above

implies for any of the summands in the second sum of (3.17),

Pr (π chosen and ∆r(T ) > x) ≤
∑

w∈V (n)

Pr(r(Pw) > x | π) ·Pr(π) = Pr(π) · n · O(n−(γ+2))

if x and κ are chosen as above. We conclude that with x ≥ CQ · (logn)/(np + 1)

Pr(∆r(s) > x) = O(n−(γ+1)) + Pr(K(n) ≤ (γ + 3.45) · logn) · O(n−(γ+1)) = O(n−(γ+1)) ,

which, by (3.16), proves that ∆r is less than CQ ·(logn)/(np+1) = O((logn)/(np)) with probability

at least 1 − O(n−γ). 2

Remark 3.5 Networks with finite diameter are necessarily strongly connected, and if we prune

away all arcs of cost greater than the diameter, then the pruned network is still strongly connected.

If networks are generated according to the extended uniform model, then these pruned networks

occur as if they were generated according to the D(n, p · F (∆r)) model. For any γ ≥ 1, if ∆r =

7(γ+3.45)/F ′(0) ·(logn)/(np+1) and if np/ logn is as large as required in the proof of Lemma 3.4,

we have ∆r < ε0, and thus

p · F (∆r) ≤ p · 1.1 · F ′(0) · ∆r ≤ 7.7(γ + 3.45) · (logn)/n .

This implies that for any p′ ≥ 7.7(γ + 3.45) · (logn)/n, directed graphs generated according to the

D(n, p′) model are strongly connected with probability at least 1 − O(n−γ).
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3.3.3 Number of significant arcs

We also prove an analogue of [31, Lemma 4.3]: For networks (Dn, r) generated according to the

extended uniform model, the cost of any arc with rank k, where k > B logn (for a sufficiently large

constant B), is greater than the diameter ∆r with high probability. In view of the discussion in

Section 3.1, we state this result more algorithmically in terms of a cut-off value.

Lemma 3.6 Suppose networks (Dn, r) are generated according to the extended uniform model

with parameters F and p, where F satisfies assumption (A1). Then there are a cut-off value

∆̄ = Θ((logn)/(np)) and some k = Θ(logn) so that for any vertex, its arc of rank k has cost

greater than ∆̄ with high probability. The set Ā = {(v, w) ; r(v, w) ≤ ∆̄} of low-cost arcs (with

respect to this cut-off value) is thus of cardinality O(n logn) with high probability. Furthermore, if

np/ logn is sufficiently large, the set Ā contains with high probability the set {(v, w); r(v, w) ≤ ∆r}
of arcs that are significant for shortest-paths computations in (Dn, r).

Proof. Let γ ≥ 1 be arbitrary but fixed. We prove that for any vertex, the cost of its arc of

rank d70(γ + 3.45)CF · logne, with CF = 1/(F ′(0) · ε0) > 1, is greater than the cut-off value

∆̄ = 7(γ + 3.45)/F ′(0) · (logn)/(np) with probability at least 1 − O(n−(γ+1)). We distinguish two

cases depending on the value of p. The condition of the first case, np ≥ 7(γ + 3.45)CF · logn, can

equivalently be stated as ∆̄ ≤ ε0. For an arbitrary but fixed vertex v, let the random variable L∆̄

then describe how many of the arcs leaving v have costs at most ∆̄. If networks (Dn, r) are generated

according to the extended uniform model, the random variable L∆̄ is binomially distributed with

parameters n and p · F (∆̄); in particular, by (3.4),

E[L∆̄ ] = np · F (∆̄) ≤ np · 1.1 · F ′(0) · ∆̄ = 7.7(γ + 3.45) · logn .

Hence, k = d70(γ + 3.45)CF · logne satisfies k ≥ 9 · E[L∆̄ ], and it follows from the Chernoff–

Hoeffding bound (2.12) that Pr(L∆̄ ≥ k) is at most e−k = O(n−(γ+1)). Intuitively speaking, in the

second case, only logarithmically many arcs have finite costs anyway. More formally speaking, let

the random variable L describe how many of the arcs leaving an arbitrary but fixed vertex v have

finite costs. In the extended uniform model, L is binomially distributed with parameters n and

p. Hence, if np < 7(γ + 3.45)CF · logn, then k = d70(γ + 3.45)CF · logne is strictly greater than

9 ·E[L], and it follows again from the Chernoff–Hoeffding bound (2.12) that Pr(L ≥ k) is at most

e−k = O(n−(γ+1)).

It follows immediately that the set Ā is of cardinality at most n · d70(γ + 3.45)CF · logne with

probability 1−O(n−γ). The last statement in the lemma follows from the fact that for np/ logn ≥
9(γ+3)CF , the event {∆r ≤ ∆̄} occurs with probability at least 1−O(n−γ), as proved in Lemma 3.4.

2
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Theorem 3.7 Suppose networks (Dn, r) are generated according to the extended uniform model

with parameters F and p, where F satisfies assumption (A1). If np/ logn is sufficiently large, then

the all-pairs shortest-paths problem can be solved in time O(n2 logn) with high probability.

Proof. Let ∆̄ be chosen as in Lemma 3.6. We prune away all arcs whose costs exceed ∆̄ and run

Dijkstra’s algorithm n times on the pruned network, once for each source vertex. According to

Lemma 3.6, this takes total time O(n2 logn) with high probability, since the arc set of the pruned

network has cardinality O(n logn) with high probability. We have solved the all-pairs shortest-

paths problem correctly, if the maximum of the computed distances is less than or equal to ∆̄,

which, according to Lemma 3.6, happens with high probability. If the inequality does not hold, we

simply run Floyd’s algorithm in time Θ(n3) on the original network. 2

Remark 3.8 Suppose networks are generated according to the uniform model with parameter G,

where G′(0) = 0. Can bounds on the diameter and the number of significant arcs be derived

also in this case? This has been studied by Walley and Tan [85], and we give a plausibility

argument in support of their statements. For some a > 1, let G(x) = G∗ · xa + o(xa), as x ↓ 0;

we assume furthermore that G−1 exists and is concave in a neighborhood (to the right) of 0. If

R is distributed according to G and U is uniformly distributed on (0, 1), then G−1(U) equals R

in distribution. Likewise, for the corresponding order statistics, we have (R(1:n), . . . , R(n:n))
d
=

(G−1(U(1:n)), . . . , G
−1(U(n:n))). Similarly to the proofs in Section 3.3.2, we have to bound the right

tail of sums of independent random variables Qi, 1 ≤ i ≤ m, where Qi
d
= R(ki:n), for k1, . . . , km as

in (3.9). If Yi, 1 ≤ i ≤ m, denote independent random variables with Yi
d
= U(ki:n), then

∑m
i=1 Qi

d
=

∑m
i=1 G−1(Yi). By the assumption that G−1 is concave,

∑m
i=1 G−1(yi)/m ≤ G−1 ((

∑m
i=1 yi)/m), for

any m ≥ 1 and any y1, . . . , ym ≥ 0. Thus, with
∑

i as a shorthand for
∑m

i=1, for any x,

Pr
(∑

i G
−1(Yi) > x

)
≤ Pr

(
m · G−1((

∑
i Yi)/m) > x

)
= Pr (

∑
i Yi > m · G(x/m)) .

Since m = O(logn) with high probability by (3.7), we deduce from the tail bound (3.14) that
∑

i Qi

is O((logn)/n1/a) with high probability. From arguments as in the proof of Lemma 3.6, it follows

that with high probability, O((logn)a) arcs are significant for shortest-paths computations.

3.4 Number of arcs on shortest paths

We have argued above that each of the spanning arborescences T rooted at s, for some s ∈ V (n),

has depth O(logn), that is, that these short (in cost, though not necessarily shortest-cost) paths

in T consist of O(logn) arcs with high probability. One might imagine that a considerable fraction

of shortest paths has more (but shorter) arcs, but we will prove in Lemma 3.10 that, with high
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probability, shortest paths also consist of only logarithmically many arcs. Put differently, paths with

more than logarithmically many arcs have with high probability cost greater than the diameter.

This will be made precise with the help of the following lemma. Similar observations, together

with the efficiency of quite involved data structures, have been exploited recently by Meyer [63]

in the design of an algorithm that solves the single-source shortest-paths problem on an arbitrary

network in linear time if arc costs are chosen independently at random, according to the uniform

distribution on [0, 1]. (This result is of interest, for example, if the network has o(n logn) arcs. The

analysis leading to this result has been simplified by Goldberg [34].)

Lemma 3.9 Let G be a fixed distribution function with the properties that G(0) = 0 and that

G′(0) exists. Then there are constants S = SG and εG such that for any collection X1, . . . , Xm of

independent random variables, all distributed according to G, and for any ε < εG,

Pr(X1 + · · ·+ Xm ≤ ε) ≤
(

eSε

m

)m

. (3.18)

Proof. By our assumptions on G, G(ε) = G′(0) · ε + o(ε), as ε ↓ 0, and there exist constants

S = SG > G′(0) and εG ≤ 1/S so that, for all ε < εG, G(ε) ≤ S · ε. Let X be a random variable

that is distributed according to G, and let Y be a random variable that is uniformly distributed on

[0, 1/S]. For all ε < εG, we have by construction,

Pr(X ≤ ε) = G(ε) ≤ S · ε = Pr(Y ≤ ε) ,

which implies that

Pr
(
min{X, εG} ≤ ζ

)
≤ Pr

(
min{Y, εG} ≤ ζ

)
for all ζ ≥ 0 .

This means that the random variable min{Y, εG} is stochastically dominated by the random variable

min{X, εG}. Let Y1, . . . , Ym be independent copies of Y . Since stochastic dominance is preserved

under taking sums of independent random variables (see Proposition 2.2), for any ε < εG, we get

the following bound on Pr(X1 + · · ·+ Xm ≤ ε),

Pr(X1 + · · ·+ Xm ≤ ε) = Pr
(
min{X1, εG} + · · ·+ min{Xm, εG} ≤ ε

)

≤ Pr
(
min{Y1, εG}+ · · ·+ min{Ym, εG} ≤ ε

)

= Pr(Y1 + · · ·+ Ym ≤ ε) . (3.19)

It is easily seen that Pr(Y1+ · · ·+Ym ≤ ε) = (Sε)m/m!, for any ε < εG ≤ 1/S, since the probability

in question equals the volume of a suitably scaled standard simplex in R
m. We thus get from (3.19)

that

Pr(X1 + · · ·+ Xm ≤ ε) ≤ (Sε)m

m!
≤

(
eSε

m

)m

,

for any ε < εG, as desired. 2
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Lemma 3.10 Suppose networks (Dn, r) are generated according to the extended uniform model

with parameters F and p, where F satisfies assumption (A1). If np/ logn is sufficiently large, then

shortest paths in (Dn, r) consist of O(logn) arcs with high probability.

Proof. For this proof, it will be convenient to view the extended uniform model as we described

it in the introductory paragraph of this chapter. We determine the structure of the graph in

a first experiment according to the D(n, p) model. In a second experiment, costs of arcs that

were determined as present in the first experiment are drawn at random, independently of each

other, according to F . For an arbitrary but fixed γ ≥ 1, let a threshold value εs be defined

as 7(γ + 3.45)/F ′(0) · (logn)/(np) =: C(log n)/(np). (This value is motivated by the proof of

Lemma 3.6.) If np/ logn is sufficiently large, then εs < ε0, with ε0 as defined before (3.4). Let us

call a path P in (Dn, r) short if r(P ) =
∑

(v,w)∈P r(v, w) ≤ εs. For a given (directed) path consisting

of a fixed number of m arcs that are all present according to the first, structural experiment, the cost

of this path is the value of a sum of m independent, identically distributed random variables, whose

common distribution function F satisfies the assumptions of Lemma 3.9 because of assumption (A1).

More precisely, we can apply Lemma 3.9 with G = F , S = 1.1, und εF = ε0. Lemma 3.9 implies that

a given path with m arcs is short with probability at most (eSεs/m)m = ((eSC logn)/(npm))m.

This upper bound is at most (enp)−m if m ≥ m0 := M logn, for some M ≥ e2SC. Hence, taking

the first, structural experiment also into account, short paths with more than m0 arcs exist in

(Dn, r) only with probability at most
∑

m≥m0
(m + 1)!

(
n

m+1

)
· pm · (enp)−m ≤ n2 · n−M . If we also

ensure that M ≥ γ+2, this probability is O(n−γ). It follows from Lemma 3.4 and the considerations

above that with probability at least 1 − O(n−γ), the diameter ∆ in (Dn, r) does not exceed the

threshold value εs and all short paths consist of O(logn) arcs. If this is the case, shortest paths in

(Dn, r) (with respect to r) are also short (with respect to the definition above), which proves the

lemma. 2

3.5 Related work

In the uniform model, that is, for the case p = 1, the bounds on the quantities with which we

were concerned in Lemmata 3.4 and 3.10 are essentially tight, as is indicated by the following

results. Davis and Prieditis [17] showed that for r distributed exponentially (with parameter 1),

the expected cost of a shortest path is of order (logn)/n+O(1/n). This is also true for r uniformly

distributed; see [17, 57]. In fact, this result holds if the distribution of r is chosen from a fairly

general class of distributions, including both exponential and uniform distributions, as was proved

(for undirected graphs) by Janson [45] recently. Janson also studied the number of arcs on shortest

paths, proving (among other results) that for νs the maximum number of arcs on shortest paths
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from a given vertex s, νs/ logn converges in probability to e. A similar result is conjectured in [45]

for the maximum number of arcs on any shortest path. The proof techniques of Davis and Prieditis

or Janson seem to break down as soon as the underlying graph is not complete.

In the variant of the uniform model in which arc costs are assumed to be positive integers, the

distribution of distances and the number of arcs on shortest paths were studied by Walley, Tan,

and Viterbi [86, 87]. We admit that we found it difficult to distill the essence of their results from

their papers. We note, however, that for the case when the arc costs of networks on n vertices are

drawn uniformly at random from the set {1, . . . , n}, the evolution of distance levels is very closely

related to the processes mentioned in Remark 3.3. A result related to Lemma 3.10 (but somewhat

weaker) appeared in a recent paper by Subramanian [79]. He considered the variant of the extended

uniform model in which arc costs for instances on n vertices are integers drawn uniformly at random

from the set {0, . . . , n − 1}. Subramanian proved that if p ≥ 19(log2 n)/n, then there exists with

high probability between any pair of vertices a path of cost O((log2 n)/p) that consists of exactly

blog2 nc arcs. Note that this statement leaves open whether a shortest path consists of fewer arcs.

The proof is based on elaborate counting arguments and thus works only for integer costs. It uses

a generalization of the Janson inequalities (see, for example, [5]), exploiting that the costs of most

paths exhibit only a limited dependence (depending on the number of arcs that they share).
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Chapter 4

The vertex-potential model

In this chapter, we address the problem of analyzing the average-case complexity of shortest-

paths problems on directed graphs D with arbitrary real arc costs c. As already mentioned in the

introduction, it is not obvious how to define an input model that allows negative arc costs but does

not trivialize the problem by overemphasizing instances with negative cycles; see our discussion

on pages 6–7. We study the so-baptized vertex-potential model, which generates instances of

shortest-paths problems with arbitrary real arc costs but without negative cycles. This model

was previously used by Cherkassky, Goldberg, and Radzik [11] in an experimental evaluation of

shortest-paths algorithms. We show in Section 4.3 that if networks (Dn, c) are generated according

to the vertex-potential model, then the single-source shortest-paths problem can be solved in O(n2)

expected time, and the all-pairs shortest-paths problem can be solved in O(n2 logn) expected time.

In both cases our algorithms are reliable, that is, finish their computations within the respective

time bounds with high probability. The algorithms are probabilistic, that is, tailored to networks

generated according to the vertex-potential model. The results presented in this chapter are the

joint work of Colin Cooper, Alan Frieze, Kurt Mehlhorn, and myself [13, 14].

4.1 Absence of negative cycles in (D, c) and reduced arc costs

If an algorithm is supposed to solve the single-source shortest-paths problem with source s on

(D, c), the correctness of its output can be checked by the following correctness conditions ; see, for

example, [1, Section 5.2] for a proof.

Proposition 4.1 (Correctness conditions) For every vertex v ∈ V , let dc(v) denote the cost

(with respect to c) of some directed path from s to v, with dc(s) = 0. The dc(v)’s are equal to the
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distances δc(s, v), v ∈ V , if and only if they satisfy

c(v, w) + dc(v)− dc(w) ≥ 0 , for all arcs (v, w) . (4.1)

Suppose that on (D, c), a (vertex) potential π(v) is given for each vertex v. In the vein of Prop-

osition 4.1, we define, for each arc (v, w), its reduced (arc) cost with respect to the π(v)’s by

c(v, w) + π(v) − π(w). The following proposition characterizes arc costs c for which (D, c) does

not contain any negative cycles. In fact, Proposition 4.2 is hardly more than a reformulation of

Proposition 4.1, since in a strongly connected directed graph D with arc costs c, finite real shortest-

path distances dc(v), v ∈ V , exist if and only if (D, c) does not contain any negative cycles, and

shortest-paths distances dc(v), v ∈ V , satisfy (4.1).

Proposition 4.2 The absence of negative cycles in a strongly connected network (D, c) is equiva-

lent to the existence of finite real vertex potentials π(v), v ∈ V , so that the reduced arc costs r (of

c with respect to the π(v)’s) are non-negative, that is,

r(v, w) := c(v, w) + π(v)− π(w) ≥ 0 , for all arcs (v, w) .

Shortest-paths problems are invariant under reduction of arc costs with respect to vertex potentials.

This well-known fact is a key ingredient of our analyses of shortest-paths problems in the vertex-

potential model. We summarize this knowledge in the following proposition.

Proposition 4.3 Suppose that we associate a vertex potential π̂(v) ∈ R with each vertex v ∈ V

and that we define reduced arc costs ĉ (of c with respect to the π̂(v)’s) by ĉ(v, w) = c(v, w)+ π̂(v)−
π̂(w), for each arc (v, w). Then, for any directed path P from vertex s to vertex t,

ĉ(P ) =
∑

(v,w)∈P

(c(v, w)+ π̂(v)− π̂(w)) = c(P ) + π̂(s) − π̂(t) . (4.2)

Therefore, distances with respect to c and ĉ relate to each other through δĉ(s, t) = δc(s, t)+ π̂(s)−
π̂(t), for all s, t ∈ V . It also follows from (4.2) that, for any directed cycle C,

∑
(v,w)∈C ĉ(v, w) =

∑
(v,w)∈C c(v, w); in particular, (D, ĉ) contains a negative cycle if and only if there is a negative

cycle in (D, c).

4.2 The vertex-potential model

The vertex-potential model is motivated by the propositions in the previous section. In the vertex-

potential model, arc costs c(v, w) are generated according to

c(v, w) = r(v, w)− π(v) + π(w) , for all arcs (v, w) , (4.3)
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with random quantities r(v, w) ≥ 0 and arbitrary vertex potentials π(v), v, w ∈ V . We set r(v, v) ≡
0, for v ∈ V . Instances generated according to the vertex-potential model thus have real, possibly

negative arc costs. However, it follows from the definition in (4.3), from the assumption r(v, w) ≥ 0,

for v, w ∈ V , and from Proposition 4.3 that these instances do not contain any negative cycles. Of

course, only the c(v, w)’s are revealed to our algorithms, and the r(v, w)’s and π(v)’s are hidden

parameters of the vertex-potential model. Our precise assumptions for these variables are as follows:

(A1) The quantities r(v, w), v, w ∈ V , v 6= w, are drawn at random, independently of each other,

according to a common distribution function F . We assume that F (0) = 0, F (1) = 1, and

that F ′(0) exists and is strictly positive.

(A2) The vertex potentials π(v), v ∈ V , are arbitrary real numbers.

The reader might be worried about our use of label (A1) for both the first assumption on the

parameters in vertex-potential model, as defined above, and the assumption on the distribution

function in the uniform model, as defined in Section 3.2.2. However, the use of the same label is

fully justified and should not lead to any confusion, since assumption (A1) above states nothing

more than that the (hidden) arc costs r in the vertex-potential model are indeed generated according

to the uniform model. Put differently, the uniform model is contained in the vertex-potential model

as the special case π ≡ 0. The assumption F (1) = 1, which we added in this section to (A1), is not

restrictive. Lemma 4.5 is the only place where we use the assumption that the random variables

are bounded, and the assumption is there more for convenience than necessity. It could be replaced

by bounds on the tails of the distributions. It should be clear from our analyses in Chapter 3 that

the independence assumptions in (A1) are the most important (and restrictive) ones.

4.3 Shortest-paths algorithms in the vertex-potential model

In Section 3.1, we discussed a probabilistic algorithm for solving shortest-paths problems on net-

works that are generated according to the uniform model. The algorithm is based on the pruning

idea presented in Section 2.1.1. This idea could also be applied to networks (D, c) generated accord-

ing to the vertex-potential model. At first sight, however, it seems that because of the completely

arbitrary vertex potentials, we have lost any control over the size of the diameter ∆c, and thus no

effective cut-off value can be derived. This is indeed true for arc costs c, but we can effectively

exploit the fact that shortest paths are invariant under reduction of arc costs with respect to vertex

potentials; see Proposition 4.3.

More precisely, our algorithm for the single-source shortest-paths problem computes vertex poten-

tials π̂(v), v ∈ V , with the property that for any v, w ∈ V , the difference π̂(v) − π̂(w) is close to
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π(v)− π(w). The π̂(v)’s are then used to define reduced arc costs ĉ by

ĉ(v, w) := c(v, w)+ π̂(v)− π̂(w) = r(v, w)+(π̂(v)−π(v))− (π̂(w)−π(w)) , for all arcs (v, w) .

The shortest-paths problems (Dn, c) and (Dn, ĉ) are equivalent. However, (Dn, ĉ) is more efficiently

solvable, since arc costs ĉ allow a substantial pruning of the arc set. If (v, w) is contained in a

shortest path (with respect to ĉ), then, by Bellman’s principle, ĉ(v, w) = δĉ(v, w) ≤ ∆ĉ. Note

that arc costs ĉ can also be interpreted as arc costs r reduced with respect to vertex potentials

(π̂(v) − π(v)), for v ∈ V . It thus follows from Proposition 4.3 that for any two vertices u, t,

δĉ(u, t) = δr(u, t) + (π̂(u) − π(u))− (π̂(t) − π(t)), which implies

∆ĉ ≤ ∆r + max
u,t

|(π̂(u)− π(u))− (π̂(t) − π(t))| . (4.4)

We know a tight bound on ∆r from Lemma 3.4, and we prove one for the second term on the

right-hand side of (4.4) in Lemma 4.5. As a consequence, we can prune away from instances of size

n all but O(n3/2(logn)1/2) arcs with high probability without changing the shortest-path distances;

see the discussion in Section 4.3.2.

The reduced arc costs ĉ are still not necessarily non-negative. The single-source shortest-paths

problem is thus solved by running the Bellman–Ford algorithm [7, 26] on the pruned network. The

running time of the algorithm depends on the maximum number ν of arcs on a shortest path. On

instances of size n, ν is of order n in the worst case. Recall that on instances generated according

to the uniform model, ν is O(logn) with high probability, though, as we proved in Lemma 3.10.

We exploit once again the fact that shortest paths are invariant under reduction of arc costs with

respect to vertex potentials: the following is an immediate consequence of Lemma 3.10.

Corollary 4.4 Let arc costs r be distributed as specified in (A1), and let arc costs ĉ be obtained

by reducing the arc costs r with respect to some vertex potentials. Shortest paths in (Dn, ĉ) consist

then of O(logn) arcs with high probability.

The Bellman–Ford algorithm thus computes the correct distances for the single-source shortest-

paths problem in O(n3/2(logn)3/2) = o(n2) time with high probability on the pruned graph. This

is dominated by the time spent on pruning the arc set and on checking the computed distances,

which are responsible for the O(n2) running time of our algorithm; see Theorem 4.7. Given a

solution of one single-source shortest-paths problem, we transform a problem with arbitrary real

arc costs into an equivalent problem with non-negative arc costs and apply one of the algorithms of

McGeoch [57] and Karger, Koller, and Phillips [49], which finish their computations in O(n2 logn)

time with high probability; see Theorem 4.9.

We now describe our probabilistic algorithms in more detail. For instances of size n, we denote

their vertex sets by V (n).
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4.3.1 Approximating the vertex-potential differences

We first show how to compute vertex potentials π̂(v), v ∈ V (n), so that, for any u, t ∈ V (n), with

high probability, the difference π̂(u) − π̂(t) is a good approximation of the actual vertex-potential

difference π(u)− π(t).

Lemma 4.5 Let arc costs c be generated according to the vertex-potential model. For any v ∈
V (n), define

π̂(v) := − 1

n
·

∑

w∈V (n)

c(v, w) . (4.5)

Then, for any u, t ∈ V (n), the term |(π̂(u) − π̂(t)) − (π(u)− π(t))| is of order O(
√

(logn)/n) with

high probability.

Proof. For any u, w ∈ V (n), we have −c(u, w) = π(u) − r(u, w)− π(w) by the definition in (4.3).

Thus, if
∑

w denotes summation over all vertices w ∈ V (n),

−∑
w c(u, w) = n · π(u)− ∑

w r(u, w)− ∑
w π(w) ,

from which we conclude with (4.5) that

π̂(u)− π(u) = − 1
n ·∑w r(u, w)− 1

n · ∑w π(w) .

Note that the rightmost term, 1
n ·∑w π(w), is independent of u. Hence, for any u, t ∈ V (n),

|(π̂(u) − π(u))− (π̂(t) − π(t))| ≤
∣∣∣ 1
n−1 · (∑w r(u, w)− ∑

w r(t, w))
∣∣∣ . (4.6)

By the assumptions on the vertex-potential model, the sums
∑

w r(·, w) on the right-hand side of

(4.6) are determined independently as values of
∑n−1

i=1 Ri, where the Ri’s are independent copies of

a random variable R distributed according to F as in (A1). Let ρ = E[R]; for any arbitrary but

fixed constant γ, the Chernoff–Hoeffding bounds (2.9) and (2.11) imply that, for sufficiently large

n,

Pr
(∣∣∣ 1

n−1 ·∑n−1
i=1 Ri − ρ

∣∣∣ ≥
√

3(γ + 1) · (logn)/((n− 1)ρ) · ρ
)

≤ 2 ·e−(γ+1)·logn = O(n−(γ+1)) .

(4.7)

(Observe that we normalized the sum on the left-hand side.) By applying the triangle inequality

to (4.6), we get, for any u, t ∈ V (n),

|(π̂(u)− π(u))− (π̂(t) − π(t))| ≤ 2 · maxv∈V (n)

∣∣∣ 1
n−1 ·∑w r(v, w)− ρ

∣∣∣ .

We conclude from (4.7) that 2·maxv∈V (n) | 1
n−1 ·

∑
w r(v, w)−ρ| and thus |(π̂(u)−π(u))−(π̂(t)−π(t))|,

for any u, t ∈ V (n), are all O(
√

(logn)/n) with high probability. 2

45



Remark 4.6 In [13], we assumed the π(v)’s to be independent, identically distributed random

variables with values in [−1, 1]. Using these stronger assumptions on the π(v)’s, one can prove

that |π̂(v) − π(v)| = O(
√

(logn)/n) with high probability, if the approximate vertex potentials

π̂(v) are defined as ρ̂ − 1
n−1 · ∑w c(v, w), for v ∈ V (n), with ρ̂ = 1

n(n−1) ·
∑

v,w c(v, w) = 1
n(n−1) ·∑

v,w r(v, w). (The “observed mean” ρ̂ is a good approximation of ρ.) It turns out, however, that

the approximation of single vertex potentials is not needed in the analysis of our algorithms, and

that the generalized assumption (A2) suffices.

4.3.2 Solving shortest-paths problems in the vertex-potential model

We are now ready to explain in detail how we solve shortest-paths problems on a network (Dn, c) if

arc costs in (Dn, c) are generated according to the vertex-potential model. Our algorithm proceeds

in three phases, a preprocessing phase, a computation phase, and a postprocessing phase, in which

the correctness of the solution from the second phase is checked. Let the source vertex for the

single-source shortest-paths problem under consideration be denoted by s.

Preprocessing. The algorithm computes, for every vertex v ∈ V (n), a vertex potential π̂(v) as in

Lemma 4.5 and transforms the arc costs c(v, w) to

ĉ(v, w) := c(v, w)+ π̂(v)− π̂(w) = r(v, w)+(π̂(v)−π(v))− (π̂(w)−π(w)) , for all arcs (v, w) .

(4.8)

Recall from (4.4) that

∆ĉ ≤ ∆r + max
u,t

|(π̂(u)− π(u))− (π̂(t) − π(t))| .

For γ ≥ 1 arbitrary but fixed, we know from Lemmata 3.4 and 4.5 that constants Cγ and Mγ exist

so that

∆r ≤ Cγ(logn)/n and max
u,t

|(π̂(u)− π(u))− (π̂(t) − π(t))| ≤ Mγ

√
(logn)/n (4.9)

with probability at least 1 − O(n−γ). For the time being, we assume that (4.9) holds. For an

arbitrary (but fixed) constant Lγ > Mγ and sufficiently large n, all significant arcs (that is, arcs

that are possibly contained in a shortest path) are then contained in

Â :=
{
(v, w) ; ĉ(v, w) ≤ Lγ

√
(logn)/n

}
.

(It follows from the proof of Lemma 4.5 that we could set Lγ = 5
√

γ. This value is not optimal but

nevertheless indicates that, for given γ, some explicit constant Lγ is easily derivable.) The vertex

potentials π̂(v), v ∈ V (n), the reduced arc costs ĉ, and the set Â can be computed in O(n2) time.

Let D̂n denote the graph (V (n), Â).
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Computation. We now solve a single-source shortest-paths problem with source s on the pruned

graph (D̂n, ĉ) by running the Bellman–Ford algorithm [7, 26]. This algorithm maintains tentative

distances d(v) for every vertex v. The d(v)’s are initially set to ∞ (except for d(s) = 0), and

d(v) always represents the cost of some path in (D̂, ĉ) from s to v. The Bellman–Ford algorithm

proceeds in passes over the arc set Â, maintaining the following invariant. After the k-th pass, the

Bellman–Ford algorithm has correctly computed the distances of all vertices to which there is a

shortest path from s consisting of at most k arcs. The algorithm actually checks the correctness

conditions (4.1) for all arcs (in Â) in each pass, and it therefore terminates (with all distances

in (D̂n, ĉ) computed correctly) after the ν-th pass, where ν is the maximum number of arcs on a

shortest path in (D̂n, ĉ). The running time of the Bellman–Ford algorithm is therefore O(ν · |Â|),
which is O(n3) in the worst case but o(n2) with high probability, as we now argue.

By (4.8) and (4.9),

Â ⊆
{
(v, w) ; r(v, w) ≤ (Lγ + Mγ)

√
(logn)/n

}
.

Since we assume that the distribution function of the arc costs can be approximated in a neighbor-

hood of 0 by a uniform distribution (see (A1) and (3.3)), any arc (v, w) is an element of the set on

the right-hand side with probability p̂ = Θ(
√

(logn)/n) for sufficiently large n, independently of all

the other arcs. The random variable |Â|, the cardinality of Â, is therefore stochastically dominated

by a random variable that is binomially distributed with parameters n(n − 1) and p̂. We apply

the tail estimate (2.12) to deduce that |Â| = O(n(n − 1)
√

(logn)/n) = O(n3/2
√

logn) with high

probability. As we have argued in Corollary 4.4, ν = O(logn) with high probability. Hence, with

high probability, it takes O(n3/2(logn)3/2) = o(n2) time to run the Bellman–Ford algorithm on the

pruned graph (D̂, ĉ).

Postprocessing. The second phase has failed to compute all distances correctly only if (4.9) does

not hold, which happens only with probability O(n−γ). The correctness conditions (4.1) (checked

for all arcs) are an O(n2)-time certificate for the correctness of the solution. Since the worst-case

running time of the Bellman–Ford algorithm on (Dn, ĉ) is O(n3), we can easily afford to run the

Bellman–Ford algorithm on (Dn, ĉ) in case of failure, without affecting the bounds on the running

time. Finally, it takes O(n2) time to compute the distances δc(v) = δĉ(v) − π̂(s) + π̂(v), for all

v ∈ V (n).

The discussion above is summarized in the following theorem.

Theorem 4.7 Assume that the arc costs in (Dn, c) are generated according to the vertex-potential

model. The single-source shortest-paths problem can then be solved in time O(n2) with high

probability.
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Remark 4.8 Theorem 4.7 still holds if the Bellman–Ford algorithm takes time O(n2) on (D̂, ĉ)

(with high probability). This means that because of Corollary 4.4, we could afford to restrict the

Bellman–Ford algorithm to the arc set {(v, w) ; ĉ(v, w) ≤ R/ logn}, which is a set of cardinality

O(n2/ logn) with high probability for a suitable constant R. In fact, even if we omitted the com-

putation of both vertex potentials and reduced arc costs and just ran the Bellman–Ford algorithm

on the complete input graph, we would solve the single-source shortest-paths problem in time

O(n2 logn) with high probability because of Corollary 4.4.

Theorem 4.9 Assume that the arc costs in (Dn, c) are generated according to the vertex-potential

model of Section 4.2. The all-pairs shortest-paths problem can then be solved in O(n2 logn) with

high probability.

Proof. We first compute distances δc(v), v ∈ V (n), with respect to an arbitrary source vertex s

by solving a single-source shortest-paths problem as in the proof of Theorem 4.7 or as indicated

in Remark 4.8. With high probability, this takes time O(n2) or O(n2 log n), respectively. Let c̃ be

the reduced arc costs of c with respect to the vertex potentials δc(v), v ∈ V (n), that is, for all arcs

(v, w),

c̃(v, w) = c(v, w) + δc(v)− δc(w)

= r(v, w) + (δc(v)− π(v))− (δc(w)− π(w)) . (4.10)

It follows from the first equality and the correctness conditions (4.1) that c̃(v, w) ≥ 0 for all arcs

(v, w). The reduced arc costs c̃ can be computed in O(n2) time, and the same time bound later

allows us to transform distances δc̃(v, w) into distances δc(v, w), for all v, w ∈ V (n).

To compute the δc̃(v, w)’s, we run one of the algorithms of Karger, Koller, and Phillips [49] or

McGeoch [57] on (Dn, c̃), which efficiently solve the all-pairs shortest-paths problem with non-

negative arc costs. Both algorithms run in time O(n2 logn + n|H |) where H = H(c̃) is the set of

essential arcs, that is, of arcs that are a shortest path (with respect to c̃) between their endpoints.

We apply the arguments of Section 4.1 again. Shortest paths are invariant under reduction of the

arc costs with respect to vertex potentials, and it follows from (4.10) that the arcs in H are also a

shortest path between their endpoints with respect to arc costs r. The set H is therefore contained

in the set {(v, w) ; r(v, w) ≤ ∆r}, and it follows by Lemma 3.6 that |H | = O(n logn) with high

probability. This yields a running time of O(n2 logn) with high probability for the algorithms of

McGeoch and Karger, Koller, and Phillips. Since |H | = O(n2) in the worst case, our algorithm

has a running time of O(n3) with probability O(n−γ), γ ≥ 1, which still gives an expected running

time of O(n2 log n). 2
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Chapter 5

The endpoint-independent model

In this chapter, we analyze the average-case complexity of shortest-paths algorithms with respect to

the endpoint-independent model. The graph underlying any instance is the complete directed graph

with loops. We are interested in networks whose adjacency lists have been sorted with respect to

increasing arc costs. To generate such a network according to the endpoint-independent model, we

randomly fix, for each vertex v ∈ V independently of the other vertices, an order of the endpoints

of the arcs as they appear in the sorted adjacency list of vertex v. This corresponds to drawing a

permutation σv of V uniformly at random for each v ∈ V . The actual arc costs are then arbitrarily

fixed as lists of non-negative arc costs in increasing order. How does the endpoint-independent

model generalize the uniform model? This becomes particularly clear if we compare the definition

of the endpoint-independent model given above to the two-round view of the uniform model that

we described in Section 3.2.1.

Since the arc costs may be arbitrarily fixed in the endpoint-independent model, it does not allow

us to deduce anything on the distribution of arc costs. In particular, it is impossible to devise

a probabilistic algorithm in the spirit of Section 3.1. It was first noticed by Bloniarz [8] that,

nevertheless, the average-case behavior of algorithms for solving shortest-paths problems can be

analyzed when instances are generated according to the endpoint-independent model. Noshita [68]

(and later Goldberg and Tarjan [35]) analyzed the average-case complexity of Dijkstra’s algorithm

in a restricted version of the endpoint-independent model; the time bound, however, does not

improve over the worst-case complexity of the best known implementations of the algorithm. Spira

[78] dealt first with the average-case complexity of the all-pairs shortest-paths problem. He proved

an expected time bound of O(n2(logn)2) on instances of size n, which was later improved by

Bloniarz [8] and Frieze and Grimmett [31]. In [64] and [65], Moffat and Takaoka describe two

algorithms with an expected time bound of O(n2 log n). The algorithm in [65] is a simplified

version of that of [64].
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We review the algorithm in [65] and the analysis of its expected running time. We point out some

mistakes in the analysis and show how to avoid them. Moreover, we show that the algorithm of

Moffat and Takaoka is reliable, that is, it runs in time O(n2 log n) with high probability and not

just in expectation. These results represent joint work with Kurt Mehlhorn [60].

5.1 Experiments related to the endpoint-independent model

We refer to the following random-sampling experiments. Let an urn contain n balls that are either

red or blue; let b be the number of blue balls. The balls are repeatedly drawn from the urn

(without replacement) uniformly at random. Let W be the number of drawings until the first blue

ball occurs; then

E[W ] =
∑

0≤k≤n−b Pr(W > k) =
∑

0≤k≤n−b

(
n−b
k

)
/
(
n
k

)
=

∑
0≤k≤n−b

(
n−k

b

)
/
(
n
b

)
,

and from
(
n−k

b

)
=

(
n+1−k

b+1

)
−

(
n−k
b+1

)
, we conclude that

E[W ] =
(
n+1
b+1

)
/
(
n
b

)
= n+1

b+1 .

We are also interested in sampling with replacement. Suppose that in a sequence of independent

trials, the probability of success is p for each of the trials. Let Z be the number of trials until the

first successful one; then

E[Z] =
∑

k≥0 Pr(Z > k) =
∑

k≥0(1− p)k = 1/p . (5.1)

In the so-called coupon-collector problem, we are given a set of n distinct coupons and we try to

complete a collection of all coupons. In each trial, a coupon is drawn (with replacement) uniformly

and independently at random. We call a trial a success if it results in adding a new coupon to our

collection. Let Z∗ denote the completion time, that is, the number of trials required to see at least

one copy of each coupon. We can write Z∗ as Z∗ = 1 + Z1 + · · · + Zn−1, where for 1 ≤ i < n,

the random variable Zi is the number of trials (with probability of success n−i
n each) between the

i-th and (i + 1)-th success (excluding the former, including the latter). By the argument in (5.1),

E[Zi] = n
n−i , and hence, E[Z∗] =

∑
0≤i<n

n
n−i ≤ n(log n + 1) = O(n logn).

In the coupon-collector problem (with n coupons), the probability that a particular coupon has not

been collected after t trials equals (1− 1
n)t. Hence, for any β > 1,

Pr(Z∗ > βn log n) ≤ n
(
1 − 1

n

)βn logn ≤ ne−β logn = n−(β−1) ; (5.2)

that is, the completion time Z∗ in the coupon-collector problem (with n coupons) is O(n logn)

with high probability. (In fact, one can prove even stronger sharp-threshold results on the variable

Z∗; see, for example, [66, Section 3.6].)
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In our analyses, we often (and sometimes only implicitly) refer to the following special case of the

principle of deferred decisions [66, p. 55]. Suppose that from a permutation σ of V that was drawn

uniformly at random, it is only revealed that σ maps V ′ ⊆ V to σ(V ′) ⊆ V . Then the yet unknown

part of σ, that is, the restriction of σ to the domain V − V ′, is still a random mapping of V − V ′

to V − σ(V ′). In particular, we may interpret the process of increasing the set V ′ one by one as

fixing the permutation σ by |V | independent random experiments.

5.2 The algorithm of Moffat and Takaoka

For the sake of future reference, we briefly review the algorithm of Moffat and Takaoka in [65];

its main ideas can actually be traced back to work of Dantzig [16]. We are given a complete

network (Dn, c) with non-negative arc costs c. The algorithm first sorts all adjacency lists in order

of increasing costs (with ties resolved randomly, total time O(n2 logn)) and then solves n single-

source shortest-paths problems, one for each vertex. A single-source shortest-paths problem with

source s ∈ V is solved by labeling the vertices in order of increasing distance from the source. If v is

a labeled vertex, then its exact distance δ(v) from the source is known. We use S to denote the set

of labeled vertices and U = V − S to denote the set of unlabeled vertices. Initially, only the source

vertex is labeled, that is, S = {s} with δ(s) = 0. For each labeled vertex v, one of its outgoing arcs

is called its current arc and is denoted ca(v); we maintain the invariant that all arcs preceding the

current arc ca(v) in v’s (sorted) adjacency list have their endpoint already labeled. We say that

the arcs preceding ca(v) (as well as their endpoints) have been scanned by the algorithm. The

potential of v’s current arc is defined as δ(v) + c(ca(v)). The algorithm proceeds in iterations. In

each iteration, the algorithm selects the current arc of minimum potential; suppose that ca(v) is

selected and that w is its endpoint. If w is not yet labeled, then the algorithm labels w (that is,

adds w to S) and sets δ(w) to δ(v) + c(ca(v)). (It follows by a standard argument as for Dijkstra’s

algorithm that this indeed sets δ(w) to the distance of w from s.) Moreover, some current-arc

pointers are updated. The precise nature of these updates depends on the size of U .

As long as |U | > n/ logn, the algorithm is said to be in Phase I, and the additional invariant is

maintained that the endpoints of all current arcs are unlabeled. Whenever the algorithm selects a

current arc ca(v) of minimum potential, the endpoint of ca(v) is therefore a vertex u in U . The

algorithm labels u and sets δ(u) to δ(v) + c(ca(v)). In order to maintain the invariant of Phase I,

the algorithm advances the current-arc pointer of u and the current-arc pointers of all the vertices

whose current arcs enter u; the pointers are advanced to the next arc with endpoint in V −S in the

respective adjacency lists. Phase I ends when |U | becomes bn/ lognc; let U0 be the set of unlabeled

vertices at the end of Phase I.
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When |U | ≤ bn/ lognc, the algorithm is said to be in Phase II, and instead of the additional variant

of Phase I, the weaker additional invariant is maintained that the endpoint of every current arc

belongs to U0. Suppose that the current arc ca(v) = (v, w) is selected in an iteration. The vertex

w ∈ U0 is not necessarily unlabeled. If w is unlabeled, it is labeled, δ(w) is set to δ(v) + c(ca(v)),

and ca(v) and ca(w) are advanced to the next arc whose endpoint is in U0. If w is already labeled,

only ca(v) is advanced.

Lemma 5.1 The algorithm spends time O((n + ξ) logn + µ) on solving a single-source shortest-

paths problem, where ξ is the number of iterations in Phase II and µ is the total number of arcs

scanned in the two phases.

Proof. Since the algorithm does exactly n − bn/ lognc iterations in Phase I, it performs a total

number of O(n+ ξ) iterations. In each iteration, we select a current arc of minimum potential, and

we have to update the current-arc pointers as well as the information on their potentials. The cost

of updating the current-arc pointers in an iteration is proportional to the increase 4µ in the number

of scanned arcs. The lemma follows if we prove that, in each iteration, selecting the current arc of

minimum potential and updating the information on the potentials can be done in O(logn + 4µ)

time.

Both phases use a priority queue for maintaining information on arc potentials. A priority queue

stores a set of pairs (x, k) where k, the key of the pair, is a real number. We may assume that

our implementation of priority queues supports the insertion of a new pair in constant time, the

deletion of a pair with minimum key (a delete min operation) in time O(log |Q|), where |Q| is the

number of pairs in the priority queue, and an operation decrease key in constant time. A decrease

key operation takes a pointer to a pair (x, k) in the priority queue and allows the replacement of k

by a smaller key k′; see [21, 9].

We propose the following implementation of Phase I. We batch the current arcs with respect to

their endpoints, that is, the priority queue contains all unlabeled vertices. For each vertex u ∈ U ,

we maintain a list L(u) of all vertices v ∈ S whose current arc enters u; the key of a vertex u ∈ U

is ku := minv∈L(u) δ(v)+ c(v, u) (understood to be +∞ if L(u) = ∅). An iteration of the algorithm

corresponds to selecting the vertex u ∈ U with minimal key value ku and deleting u from the

priority queue with a delete min operation. The current-arc pointer must be advanced for each

vertex v ∈ {u} ∪ L(u). Let ca(v) = (v, w) be the new current arc of v and denote w’s current key

by kw. We add v to L(w), and if δ(v)+c(v, w) < kw, we decrease kw appropriately. This is realized

through a decrease key operation on the priority queue. By our assumption on the implementation

of the priority queue, all of this takes time O(logn + 4µ) per iteration.

In Phase II, we represent current arcs by their starting points. We keep the vertices v ∈ S in
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the priority queue with key δ(v) + c(ca(v)). In an iteration of Phase II, selecting the current arc

of minimum potential and updating the information on the potentials thus requires a delete min

operation and the insertion of at most two new pairs in the queue. This takes time O(logn). 2

Remark 5.2 Moffat and Takaoka use a binary heap to realize the priority queue; the implemen-

tation described above had not been invented at that time. In the implementation of Phase I, they

keep the vertices in S in the priority queue; the key of a vertex v ∈ S is δ(v)+ c(ca(v)). Advancing

the current-arc pointers then requires increasing the keys of certain labeled vertices, since the cost

of the new current arc is greater than the cost of the old current arc. An increase key operation in

general takes logarithmic time in a binary heap. However, if networks are generated according to

the endpoint-independent model, Moffat and Takaoka show how to modify the implementation so

that the expected cost of all the increase key operations in an iteration is O(|S|/(n−|S|)+ log |S|),
which is O(logn) during Phase I.

5.2.1 The probabilistic analysis (and its pitfalls)

If networks with sorted adjacency lists are generated according to the endpoint-independent model,

the algorithm of Moffat and Takaoka solves the all-pairs shortest-path problem in this model in

expected time O(n2 logn); more precisely, it solves each single-source shortest-paths problem in

expected time O(n logn). (Theorem 6.4 in Section 6.1 shows that the running time for solving

the single-source shortest-paths problem is actually optimal for a large class of related probability

distributions.) As indicated in Lemma 5.1, the quantities of interest in the analysis are the number

ξ of iterations in Phase II and the total number µ of scanned arcs. We argue in Theorem 5.3 that

the expected values of ξ and µ are O(n) and O(n logn), respectively.

The analysis of µ turns out to be intricate. We want to mention two possible pitfalls. What

is the total number of arcs scanned in Phase I? In [65], Moffat and Takaoka argue as follows.

The cardinality of U0, the set of unlabeled vertices at the end of Phase I, is bn/ lognc by design,

and at the end of Phase I, current-arc pointers have been advanced to the first vertex in U0 in

each adjacency list. Since, for every vertex v, the endpoints of the arcs out of v form a random

permutation of V , the vertices in U0 are randomly scattered throughout each adjacency list. We

should therefore expect to scan about log n arcs in each adjacency list during Phase I and hence

about n logn arcs altogether. This argument is incorrect as U0 is determined by the orderings of

the adjacency lists and cannot be fixed independently. The following example makes this clear.

Assume that all arcs out of the source have cost 1 and all other arcs have cost 2. Then Phase I

scans n − bn/ lognc arcs out of the source and U0 is determined by the last bn/ lognc arcs in the

adjacency list of the source.
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In Phase II, the number of iterations is a random variable with expected value O(n). Moreover,

whenever the current arc of a vertex is advanced in Phase II, it is advanced to the next arc having

its endpoint in U0, and this requires scanning O(logn) arcs on average. It is tempting to state

that the expected number of arcs scanned in Phase II is therefore O(n logn). The claimed result

would follow if the expected number of scanned arcs, given that the algorithm finishes Phase II in

κ iterations, were O(κ logn), and in fact, in a preliminary version of this chapter, [59], we analyzed

Phase II along these lines. We now feel that a more careful argumentation is needed. It is not clear

whether the number of iterations and the number of arcs that have to be scanned in an update of

the current-arc pointer are independent or, for example, positively correlated random variables.

It is for these reasons that we give a new proof of the following theorem. Our proof evolved from

suggestions by Alistair Moffat (personal communication) and by two anonymous journal referees

and replaces a considerably more involved argument in earlier versions of this chapter.

Theorem 5.3 On networks (Dn, c) generated according to the endpoint-independent model, the

algorithm of Moffat and Takaoka runs in expected time O(n2 log n).

Proof. For the purpose of the analysis, we also consider Spira’s algorithm [78, 10]. This algorithm

is similar to the algorithm by Moffat and Takaoka, the only difference being that Spira’s algorithm

does not impose any condition on the endpoints of current arcs but always advances the current-

arc pointer only to the next arc in the adjacency list. The algorithm does not distinguish between

phases. It stops when all vertices have been labeled. Given an ordering of the adjacency lists, the

algorithms by Moffat and Takaoka and by Spira show basically the same behavior. All arcs that

the algorithm by Moffat and Takaoka selects as arcs of minimum potential are also selected by

Spira’s algorithm. However, upon termination, the current-arc pointers in the algorithm of Moffat

and Takaoka may have been advanced beyond those in Spira’s algorithm, since the invariants of the

algorithm by Moffat and Takaoka require that the endpoint of every current-arc pointer is a vertex

in U0. (Nevertheless, the algorithm by Moffat and Takaoka is more efficient, since the scanning

strategies of Phase I and II tend to reduce the number of priority-queue operations.)

The following observations are crucial for the analysis of the algorithms. Suppose we stop Spira’s

algorithm after its first κ iterations, where κ is an arbitrary but fixed number. The behavior of

the algorithm in these iterations is completely determined by the arcs scanned so far. For a set A

of arcs, denote by {A κ = A} the event that Spira’s algorithm scans exactly the arcs in A in the

first κ iterations. We consider an arbitrary but fixed set A with Pr(A κ = A) > 0; assume that

for v ∈ V , A contains exactly nv arcs with starting point v and Wv is the set of their endpoints.

By the definition of the endpoint-independent model and the principle of deferred decisions, for

each v ∈ V , the remaining part of v’s adjacency list can be interpreted as a random permutation
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of V −Wv, since the event {A κ = A} does not yield any information about the remaining parts of

the adjacency lists.

From this we conclude that the total number of arcs scanned by Spira’s algorithm is stochastically

dominated by the completion time of the coupon-collector problem with n coupons. Namely, assume

that A κ = A implies that exactly i vertices have been labeled in the first κ iterations. If the next

arc scanned has starting point v, then the endpoint of the arc is already labeled with probability

(i − nv)/(n − nv) ≤ i/n, since every vertex in V − Wv is equally likely to occur as the endpoint

of v’s current arc. More generally, the probability that the algorithm selects arcs with labeled

endpoints in the next k iterations is bounded from above by (i/n)k = (1 − (n − i)/n)k for every

k ≥ 0. For 1 ≤ i ≤ n, let Mi denote the number of arcs scanned by Spira’s algorithm between the

labelings of the i-th and the (i + 1)-th vertex, and let Zi denote the random variable introduced in

the analysis of the coupon-collector problem in Section 5.1. The conclusion we have just derived

then reads Pr(Mi > k) ≤ (1 − (n − i)/n)k = Pr(Zi > k), for every k ≥ 0, that is, Mi ≤st Zi.

By Lemma 2.4 in Section 2.2.1 we conclude that M := 1 + M1 + · · · + Mn−1, the total number

of arcs scanned by Spira’s algorithm, is indeed stochastically dominated by the completion time

Z∗ = 1 + Z1 + · · ·+ Zn−1 of the coupon-collector problem with n coupons. In particular,

E[M ] ≤ E[Z∗] ≤ n(log n + 1) , (5.3)

that is, Spira’s algorithm scans an expected number of O(n logn) arcs.

An argument of the same kind as in the previous paragraph applies to the endpoints of current

arcs in Phase II of the algorithm by Moffat and Takaoka. If X denotes the number of iterations in

Phase II, then X is stochastically dominated by the completion time of a coupon-collector problem

with b := |U0| = bn/ lognc coupons; in particular,

E[X ] ≤ b(logb + 1) = O(n) .

The expected value of ξ in Lemma 5.1 is therefore O(n).

It remains to analyze the number of extra arcs scanned by the algorithm of Moffat and Takaoka.

For a set A of arcs, denote by {A ∗ = A} the event that Spira’s algorithm scans exactly these arcs

before it stops. We consider an arbitrary but fixed set A with Pr(A ∗ = A) > 0; assume that for

v ∈ V , A contains exactly nv arcs with starting point v and bv of these arcs have endpoints in U0.

Given that {A ∗ = A} occurs, for each v ∈ V , the current-arc pointer in the algorithm by Moffat

and Takaoka has finally been advanced to the (nv + Yv)-th position in v’s adjacency list, where

Yv = 0 if bv = b = |U0| and, otherwise, nv + Yv is the position of the next vertex in U0 in v’s

adjacency list. Again, by the principle of deferred decisions, the remaining part of v’s adjacency

list can be interpreted as a random permutation of n−nv elements, containing b−bv elements from
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U0. This implies that Yv is distributed as in the urn experiment in Section 5.1 with

E[Yv | A
∗ = A] =

n − nv + 1

b − bv + 1
if bv < b . (5.4)

Note that E[Yv | A
∗ = A] ≤ 2n/b as long as bv ≤ b/2.

The expected amount of extra work is E[
∑

v Yv ], where here and in the following,
∑

v denotes the

summation over all v ∈ V . Conditioning on {A ∗ = A}, we get, using (5.4) (or the trivial bound

Yv ≤ n if bv > b/2),

E [
∑

v Yv|A ∗ = A] ≤ 2n
b · |{v ; bv ≤ b/2}|+ n · |{v ; bv > b/2}| ≤ 2n2

b + n · 2
b ·∑v bv . (5.5)

Under the condition {A ∗ = A}, the number X of iterations in Phase II equals
∑

v bv. Hence, by

summing over all sets A with Pr(A ∗ = A) > 0, (5.5) implies

E[
∑

v Yv ] =
∑

A E[
∑

v Yv | A
∗ = A] ·Pr(A ∗ = A) ≤ 2n

b · (n + E[X ]) ,

and since b = bn/ log nc and E[X ] = O(n), we get E[
∑

v Yv ] = O(n logn). Combining this with

(5.3), we conclude that the expected value of µ in Lemma 5.1 is O(n logn).

We deduce from Lemma 5.1 that the algorithm of Moffat and Takaoka solves any single-source

shortest-paths problem in expected time O(n logn) and has therefore an expected running time of

O(n2 logn). 2

We next prove that the algorithm of Moffat and Takaoka is reliable, that is, that, with high

probability, its running time does not exceed its expectation by more than a constant multiplicative

factor.

Theorem 5.4 On networks (Dn, c) generated according to the endpoint-independent model, the

running time of the all-pairs shortest-path algorithm of Moffat and Takaoka is O(n2 logn) with

high probability.

Proof. It suffices to prove that the algorithm solves any single-source shortest-paths problem in time

O(n logn) with high probability. This follows from Lemma 5.1 if the total number of iterations and

the total number of scanned arcs can be proved to be, with high probability, O(n) and O(n logn),

respectively. We use the notation introduced for the proof of Theorem 5.3.

As already observed in the proof of Theorem 5.3, the total number X of iterations in Phase II is

stochastically dominated by the completion time of a coupon-collector problem with b = bn/ log nc
coupons. Using the tail estimate (5.2) in Section 5.1, we deduce that the number of iterations in

56



Phase II is O(b logb) = O(n) with high probability; for any arbitrary (but fixed) γ > 0, we can

choose some constant K so that

Pr(X > Kn) ≤ n
log n

(
1 − 1

bn/ lognc

)Kn
≤ n

log n · e−K logn = O(n−γ) . (5.6)

Hence, the total number of iterations is O(n) with high probability.

Again, by the tail estimate (5.2) for the coupon-collector problem, Spira’s algorithm scans O(n logn)

arcs with high probability. Therefore, we only have to prove that the extra scanning
∑

v Yv of the

algorithm of Moffat and Takaoka (the sum
∑

v is over all v ∈ V ) is O(n logn) with high probability.

As in the proof of Theorem 5.3, we condition on {A ∗ = A}, that is, on the event that Spira’s

algorithm scans exactly the arcs in A before it stops. For v ∈ V , let A contain exactly nv arcs with

starting point v and let bv of these arcs have endpoints in U0. Given {A ∗ = A}, we have, with

b = |U0| = bn/ lognc and for sufficiently large n,

∑
v,bv>b/2 Yv ≤ n · |{v ; bv > b/2}| ≤ 2n

b · (∑v bv) ≤ (3 logn) · X ,

since under the condition {A ∗ = A}, the number X of iterations in Phase II equals
∑

v bv. Thus

Pr(
∑

v,bv>b/2 Yv > 3Kn logn | A
∗ = A) ≤ Pr(X > Kn | A

∗ = A) ,

from which we conclude that

Pr (
∑

v Yv > 4Kn logn | A
∗ = A)

≤ Pr
(∑

v,bv≤b/2 Yv > Kn logn
∣∣∣ A

∗ = A
)

+ Pr (X > Kn | A
∗ = A) . (5.7)

To bound the first term in (5.7), observe that, conditionally on {A ∗ = A}, ∑
v,bv≤b/2 Yv/n is a sum

of independent (not necessarily identically distributed) random variables with values in [0, 1]. We

can therefore derive a large-deviation estimate by applying a Chernoff–Hoeffding bound. By (5.4),

E
[∑

v,bv≤b/2 Yv/n
∣∣∣ A

∗ = A
]

=
∑

v,bv≤b/2
1
n · n−nv+1

b−bv+1 ≤ 2n
b ≤ 3 logn ,

for sufficiently large n, independently of A. Hence, for K chosen sufficiently large, we deduce from

(2.12) in Section 2.2.2 that

Pr
(∑

v,bv≤b/2 Yv/n > K logn
∣∣∣ A

∗ = A
)

≤ e−K log n .

When plugged into the inequality (5.7), this large-deviation bound together with the one in (5.6)

imply that
∑

v Yv = O(n logn) with high probability. 2
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Chapter 6

Lower bounds

In this chapter, we are concerned with establishing lower bounds on the running time of algorithms

that solve shortest-paths problems. If we took our task to an extreme, we would have to prove

that, for networks of a given size, each algorithm performs at least N operations on any problem

instance; it is to be understood that N should be a non-trivial lower bound. This task seems almost

impossible to accomplish if we do not focus on a restricted class of algorithms, possibly with the

additional simplification of proving only the existence of some network on which the algorithms

from this class have to perform a certain number of operations to compute the distances correctly.

Naturally, our statements will be the less meaningful the smaller the classes of competing algorithms

or the number of considered instances are.

Kolliopoulos and Stein [51] studied the class of so-called oblivious algorithms, which includes the

Bellman–Ford algorithm. (It is unlikely, however, that it includes many more algorithms, since

the characterization of oblivious algorithms is very specific.) It follows from a counting argument

that on any m-arc network, any oblivious algorithm must relax Ω(νm) arcs to solve a single-source

shortest-paths problem, where ν denotes the maximum number of arcs on a shortest path.

Karger, Koller, and Phillips [49] considered the class of path-comparison-based algorithms. On any

input network, these algorithms can gain information on the arc costs only by comparing the costs

of two different paths, and the complexity of any such algorithm is the number of comparisons

performed. Many of the known shortest-paths algorithms are indeed path-comparison-based (with

the exception of shortest-paths algorithms based on matrix multiplication). For any n and any

m ≥ 2n with m = Θ(n2), Karger, Koller, and Phillips constructed a (single) network on Θ(n)

vertices and m arcs with non-negative costs, on which any path-comparison-based algorithm must

perform Ω(mn) comparisons to solve the all-pairs shortest-paths problem. (In fact, for any m∗,

2n ≤ m∗ ≤ m, a network can be constructed in which m∗ of the m arcs are essential, that
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is, contained in shortest paths, and any path-comparison-based algorithm compares the costs of

Ω(m∗n) paths on these networks.)

The model of computation studied by Karger, Koller, and Phillips is a restricted version of the

linear decision-tree model. In this model, an algorithm proceeds on n-vertex networks with arc

costs c according to a rooted ternary tree. The internal nodes of the tree are labeled by tests of the

form 〈h, c〉 ? η, for some h ∈ R
n2

and η ∈ R, where 〈·, ·〉 denotes the Euclidean scalar product on

R
n2

; the three arcs leaving an internal node are labeled <, =, and >, respectively. (For example, a

comparison of path costs can be represented by a linear test.) The algorithms starts from the root;

it proceeds by moving down the tree, branching at the internal nodes according to the outcomes of

the linear tests. When a leaf is reached, the knowledge about the input deduced from the outcomes

of the tests allows the algorithm to solve the shortest-paths problem under consideration on input

c correctly. The complexity of the algorithm is defined to be the height of the tree, which is equal

to the number of linear tests that the algorithm performs in the worst case.7

Graham, Yao, and Yao [37] argued that when solving the all-pairs shortest-paths problem on

networks with non-negative arc costs, the information collected at any leaf of a linear decision tree

suffices to compute the actual shortest paths between all pairs of vertices. Perhaps surprisingly

(and in contrast to what had been claimed in an earlier paper [88]), there are, for some constant

C, only exp(Cn2) distinct shortest-paths patterns for networks on n vertices. Therefore, this

information-theoretic argument only provides a lower bound of Ω(n2) on the complexity of the

all-pairs shortest-paths problem in the linear decision-tree model. Dietzfelbinger and Maass [19]

considered the complexity of a decision problem corresponding to the single-source single-sink

shortest-path problem: For a given pair s, t of vertices in a complete (undirected) graph with non-

negative real arc costs, decide whether there is a path between s and t of cost less than 1; we

denote by sp(n) the language corresponding to this decision problem when inputs to the problem

are networks on n vertices. The authors proved that any linear decision tree Tn that recognizes

sp(n) and that uses fewer than f(n) negative coefficients in any of its tests must have height at least

2b
√

n/(4f(n))c; see [19, proof of Theorem 3]. The lower bound on the height of Tn is superpolynomial

in the input size if f(n) = o(
√

n/ log2 n). Hence, it is inherent to shortest-paths problems that

efficient algorithms solving them compare sums formed of many arc costs.

We prove a lower bound on the average-case complexity of the single-source shortest-paths problem.

Our result is different from the work reviewed above in that the bound holds on almost all instances

from a fairly broad class of networks. Our assumptions on the computational primitives are very

7Upper bounds on the complexity of algorithms derived in the linear decision-tree model have to be taken with

a grain of salt. For example, Fredman [27] proved that the all-pairs shortest-paths problem on instances of size n

can be solved with O(n5/2) linear tests, but the sizes of the decision trees that realize these computations may grow

exponentially in n.
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natural and should exclude hardly any algorithm from our considerations. Furthermore, the algo-

rithms are allowed to exploit the fact that arc costs are integers. We actually restrict ourselves

to what we call simple cost functions: For every vertex v and each integer k, 1 ≤ k ≤ n, there is

exactly one arc with cost k and starting point v.

More precisely, for any n, the underlying input model generates complete directed graphs on n

vertices with arc costs by the following random experiments. Similar to how instances are generated

in the endpoint-independent model, a random cost function is given by n independent permutations

of V , one for each vertex, drawn uniformly at random, which determine the order of the endpoints

as they appear in the sorted adjacency lists. The i-th vertex in the sorted adjacency list of vertex

v is the endpoint of the arc with cost i and starting point v. We prove that on a random simple

cost function, any algorithm has to inspect Ω(n logn) arcs with high probability to solve the single-

source shortest-paths problem correctly; see Theorem 6.4. This result represents joint work with

Kurt Mehlhorn [60].

6.1 The single-source shortest-paths problem for simple arc costs

We consider networks that are complete directed graph (with loops) on the set V of n vertices with

simple cost functions. A single-source shortest-paths algorithm gets as its input the number n of

vertices, a source vertex s, and a simple cost function c. We assume that c is provided in the form

of an oracle that answers questions of the following kind:

(Q1) What is the cost c(a) of a given arc a?

(Q2) Given a vertex v ∈ V and an integer k ∈ {1, . . . , n}, what is the endpoint of the arc with

starting point v and cost k?

The algorithm is supposed to compute the function δ of shortest-path distances from s. It is allowed

to ask the oracle questions of type (Q1) and (Q2), thereby gaining partial information about c.

The complexity of the algorithm on a fixed simple cost function c is defined to be the number of

questions asked by the algorithm in order to compute the distance function δ with respect to c.

For simple cost functions, the distance function δ maps the set of vertices into the non-negative

integers. Let ∆ = max{δ(v) ; v ∈ V } and for all i, 0 ≤ i ≤ ∆, define Vi := {v ; δ(v) = i}. We call

Vi the i-th layer with respect to δ. For all i, 0 ≤ i ≤ ∆, let `(i) := |{j ; j > i and Vj 6= ∅}| be the

number of non-empty layers above layer i. Clearly, ∆, the sets Vi, and the function ` depend on c

and s; for ease of notation, we do not make this dependence visible in the notation.

We first provide a lower bound on the complexity of a single-source shortest-paths algorithm in

terms of `.
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Lemma 6.1 Let c be a simple cost function and let δ be the distance function with respect to c.

Then any single-source shortest-paths algorithm has complexity at least

∑

v∈V−V∆

(
`(δ(v))− 1

)
. (6.1)

Proof. We consider the complexity of an arbitrary but fixed single-source shortest-paths algorithm.

Let A′ be the set of arcs queried by the algorithm by a question of either type (Q1) or type (Q2).

For each vertex v ∈ V , let A(v) be the set of arcs with starting point v and let A′(v) := A′ ∩A(v).

We prove that for each vertex v with `(δ(v)) ≥ 2, |A′(v)| ≥ `(δ(v))−1. This is clear if for all i with

1 ≤ i < `(δ(v)), the set A′ contains the arc a ∈ A(v) of cost c(a) = i. If, instead, there is an arc

a◦ ∈ A(v)−A′ with cost c◦ := c(a◦) < `(δ(v)), then the argument is slightly more involved. Assume

that another arc aj = (v, w) with w ∈ Vj , different from a◦, is not queried by the algorithm. Define

the simple cost function c′ by

c′(a) :=





c(a), if a 6∈ {a◦, aj} ;

c(aj), if a = a◦ ;

c◦, if a = aj .

Then c′(a) = c(a) for all a ∈ A′, and therefore the algorithm outputs δ, the distance function with

respect to c, on input c′ as well. By the correctness condition (4.1) with respect to input c′ and for

aj = (v, w), the layer index j necessarily satisfies

j = δ(w) ≤ δ(v) + c′(v, w) = δ(v) + c◦ .

In turn, this proves that all vertices in layers Vj with j > δ(v) + c◦ must be endpoints of arcs in

A′(v). (Non-empty layers above layer δ(v)+c◦ do indeed exist, since `(δ(v)+c◦) ≥ `(δ(v))−c◦ > 0,

by the assumption on c◦.) By the correctness of the single-source shortest-paths algorithm on input

c, all arcs in A(v) with endpoints in a layer Vj , j > δ(v), must have cost at least j − δ(v). If we

choose c◦ = min{c(a) ; a ∈ A(v)−A′}, then the c◦ − 1 arcs in A′(v) with cost less than c◦ and the

arcs in A(v) with endpoints in a layer Vj with j > δ(v) + c◦ are distinct, since the latter ones must

have costs at least j − δ(v) > c◦. Hence, |A′(v)| ≥ c◦ − 1 + `(δ(v) + c◦) ≥ `(δ(v))− 1, as argued

above. The lower bound (6.1) follows, since, by definition, the complexity of the algorithm equals

|A′| =
∑

v∈V |A′(v)|. 2

Table 6.1 shows a typical distribution of vertices over distances for a random simple cost function

on a graph of n = 10, 000 vertices. Observe that during the first stages, there are indeed 2i vertices

with distances at most i, as argued in Remark 3.3. Most vertices have distance about 14 (≈ logn)

from the source but there are vertices that have distance as much as 24 (≈ 2 logn). By the argument

of Lemma 6.1, we can guess that any (correct) algorithm must inquire about Ω(n logn) arcs.
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Table 6.1: A typical distribution of vertices over distances for n = 10, 000

distance δ 0 1 2 3 4 5 6 7 8 9 10 11 12

# vertices 1 1 2 4 8 16 32 64 120 237 449 796 1306

distance δ 13 14 15 16 17 18 19 20 21 22 23 24

# vertices 1845 1952 1562 910 415 181 58 20 16 2 1 2

In the remainder of this section, we make this argument more precise. We derive a lower bound

of Ω(n logn) on the expected value of
∑

v∈V `(δ(v)) for networks on n vertices when simple cost

functions are randomly generated. More generally, we show that any single-source shortest-paths

algorithm has to ask Ω(n logn) questions with high probability.

Our proof strategy is as follows. The lower bound given by Lemma 6.1 depends only on the

distance function δ. For random simple cost functions, we re-interpret the calculation of δ and the

construction of the layers Vi as the outcome of a random labeling process, very much in the spirit

of the processes that we studied in Section 3.3.1 (construction of the spanning arborescence) and in

Section 5.2.1 (analysis of the algorithm of Moffat and Takaoka). For an arbitrary but fixed source

vertex s, the labeling process proceeds in stages. In the zero stage, V0 is set to {s} and δ(s) is set

to 0. In the i-th stage, i ≥ 1, each vertex v ∈ S(i−1) =
⋃

0≤j<i Vj picks the (i−δ(v))-th vertex in its

adjacency list. The newly-reached vertices are put into Vi and their δ-values are set to i. We apply

the principle of deferred decisions again—instead of fixing the n permutations beforehand, we view

them as being fixed on-line. This leads to the following re-interpretation of the random labeling

process: In the i-th stage, i ≥ 1, each vertex in S(i−1) =
⋃

0≤j<i Vj chooses a vertex uniformly and

independently at random from the set of vertices it has not yet seen. The labeling process stops

when S(k) = V for some k.

We have already referred in Section 3.3.1 to a result of Frieze and Grimmett [31], who proved that

this labeling process takes O(logn) stages with high probability. However, we need a lower bound

on the number of stages and therefore their result is of no use to us here.

For i ≥ 1, we call stage i of the labeling process central if n/e ≤ |S(i)| ≤ n−√
n. Layers constructed

in central stages are called central. Our proof proceeds in two steps. First, we show in Lemma 6.2

that there are Ω(logn) central stages with high probability. Second, we prove in Lemma 6.3 that

each central stage gives rise to a non-empty layer with high probability.

Lemma 6.2 With high probability, the labeling process with respect to random simple cost func-

tions has Ω(logn) central stages.

Proof. For a simple cost function c, let i0 be the first central stage with respect to c. Then

n/e ≤ |S(i0)| ≤ 2n/e, since |S(i+1)| ≤ 2|S(i)| for any i ≥ 0. We show that if c was chosen at
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random, then with high probability, the next k = b(logn)/17c stages are also central, that is,

|S(i0+k)| ≤ n − √
n. Let U = V − S(i0) be the set of vertices that are still unlabeled after stage i0.

Note that m := |U | ≥ (e − 2)n/e ≥ n/4.

In an ancillary experiment, we construct an n × m matrix A with 0-1 entries as follows. The rows

correspond to the vertices in V and the columns correspond to the vertices in U ; entry Avu is 1 if

and only if the arc (v, u) is among the k shortest (with respect to c) of those arcs in v’s adjacency

list whose endpoints are elements of U . Let f(A) be the number of all-zero columns in A. Then

|S(i0+k)| ≤ n− f(A) because no vertex in U corresponding to an all-zero column in A is labeled in

the k stages following stage i0. Since A models a process in which all vertices (and not only those

that are currently labeled) are allowed to label new vertices, and in which each vertex is prevented

from choosing vertices that have been labeled by other vertices before stage i0, f(A) may seem to

be a rather crude lower bound on |V − S(i0+k)|. However, we now prove that for random simple

cost functions, f(A) ≥ √
n with high probability.

According to the labeling process with deferred decisions, each row of A is a random 0-1 vector of

length m = |U | with exactly k 1-entries, where each distribution of 1-entries occurs with probability

1/
(
m
k

)
. Row entries Av·, v ∈ V , are independent random variables, but the entries Avu, u ∈ U ,

of row v are certainly not independent. However, the vector (Avu, u ∈ U) is negatively associated

(Definition 2.6); see [46, Theorem 2.11] or [22] for a proof. It thus follows from Proposition 2.8(a)

that the whole vector (Avu, v ∈ V, u ∈ U) of the random entries in A is negatively associated. For

u ∈ U , let Cu denote the 0-1 indicator variable that takes the value 1 if and only if column u in

A is all-zero. For any u ∈ U , the variable Cu can thus be written as 1 − sgn
∑

v∈V Avu, where

sgn 0 := 0 and sgn x := 1 for x > 0. The random variables Cu, u ∈ U , are therefore non-increasing

functions of pairwise disjoint subsets of the entries in A. By Proposition 2.8(b), the random

variables (Cu, u ∈ U) are negatively associated, and we can apply the large-deviation bound of

Lemma 2.7 to f(A) =
∑

u∈U Cu.

The probability that a fixed column is all-zero is
((

m−1
k

)/(
m
k

))n
= (1 − k/m)n; therefore,

E[f(A) | |U | = m] = m
(
1− k

m

)n ≥ me−2kn/m , (6.2)

since (1−1/x)x ≥ e−2 for sufficiently large x. If we use in (6.2) that m ≥ n/4 and k = b(logn)/17c,
we get, for sufficiently large n,

E[f(A) | |U | = m] ≥ 1
4 · n1−8/17 , (6.3)

which is greater than 2
√

n for sufficiently large n. The lower bound in (6.3) is independent of m;

therefore, E[f(A)] ≥ 2
√

n for sufficiently large n. Hence, by the large-deviation bound (2.17)

Pr(f(A) ≤
√

n) ≤ Pr
(
f(A) ≤ E[f(A)]/2

)
≤ e−E[f(A)]/8 ≤ e−

√
n/4 = O(n−γ)
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for any fixed γ > 0, if n is sufficiently large. We have thus proved that with high probability, more

than
√

n columns contain only zeroes in our ancillary matrix experiment. With i0 and k as defined

at the beginning of the proof, this implies that with high probability, |S(i0+k)| ≤ n − √
n in the

labeling process. 2

Lemma 6.3 With high probability, each central layer in the labeling process with respect to a

random simple cost function contains at least one vertex.

Proof. Suppose that |S(i)| = j for some i and j, that is, j vertices are already labeled after stage i.

According to the labeling process with deferred decisions, for any vertex in S(i), the probability of

selecting a vertex in S(i) during this stage is at most j/n. Therefore, the next layer remains empty

with probability at most (j/n)j. Note that x 7→ (x/n)x is an increasing function for x > n/e.

Let E denote the event that in the labeling process on random simple cost functions, at least one

central layer remains empty. By the estimates provided in the preceding paragraph,

Pr(E ) ≤
n−√n∑

j=n/e

(
j

n

)j

≤ n

(
n −√

n

n

)n−√n

≤ ne−
√

n+1 = O(n−γ)

for any fixed γ > 0, if n is sufficiently large. 2

Theorem 6.4 Any algorithm for the single-source shortest-paths problem has complexity Ω(n logn)

with high probability on random simple cost functions.

Proof. Let i denote the first central stage of the labeling process, and let S(i) denote the set of

vertices that have already been labeled up to and in this stage. By definition, |S(i)| ≥ n/e. By

Lemma 6.2, with high probability, the process has Ω(logn) central layers. Lemma 6.3 tells us

that all central layers are non-empty with high probability. With the notation introduced in the

discussion of the labeling process, this reads

∑

u∈S(i)

(
`(δ(u))− 1

)
= Ω(n logn) with high probability.

By Lemma 6.1, the left-hand side term is a lower bound on the complexity of any single-source

shortest-paths algorithm. 2

Any algorithm can gain complete knowledge of the cost function by O(n2) queries to the oracle.

Since our input model does not restrict the computational power of an algorithm, a non-trivial

lower bound on the complexity of the all-pairs shortest-paths problem (such as, say, Ω(n2 logn))

can “certainly not” [50] be obtained under the general assumptions of Theorem 6.4.
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Appendix A

Lemma 4.2(b) from [31]

For the sake of completeness, we include a proof of the following lemma, though it appeared almost

verbatim in [31]. Our version is different in that it does not necessarily assume that κ = Θ(ln `).

This is important for the use of this lemma in Section 3.3.2.

Lemma A.1 ([31, Lemma 4.2(b)]) Let U(k:`) denote a random variable distributed as the k-th

order statistic of a sample of ` independent random variables that are uniformly distributed on

[0, 1]. Suppose that Y1, Y2, . . . , Ym are independent random variables with Yi distributed as U(ki:`),

for i = 1, 2, . . . , m, and let κ be fixed with k1 + k2 + · · ·+ km ≤ κ. If µ > 1, then

Pr
(
Y1 + Y2 + · · ·+ Ym ≥ µκ

`+1

)
≤ e−µκ(eµ)κ . (A.1)

Proof. The random variable U(k:`) has density

fk(x) =

(
`

k

)
kxk−1(1− x)`−k , 0 ≤ x ≤ 1 ;

see, for example, [38, 39, Ex. 4.11.22(b)]. Hence, for any i ≥ 0,

E[(U(k:`))
i] =

∫ 1

0
xifk(x) dx =

(
`

k

)
k

∫ 1

0
xi+k−1(1 − x)`−k dx

=

(
`

k

)
k
(i + k − 1)!(`− k)!

(` + i)!
≤ k(k + 1) · · ·(k + i − 1)

(` + 1)i
,

from which we conclude that, for any t > 0,

E[etU(k:`)] ≤
∑

i≥0

ti

i!

k(k + 1) · · ·(k + i − 1)

(` + 1)i
=

∑

i≥0

(
t

` + 1

)i (
k − 1 + i

i

)
=

(
1 − t

` + 1

)−k

;

see [36, eq. (5.56)]. The (elementary) Bernstein inequality implies that for any real y and any t > 0,

Pr(Y1 + Y2 + · · ·+ Ym ≥ y) ≤ e−tyE
[
et(Y1+Y2+···+Ym)

]
;
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and by the assumption that Y1, . . . , Ym are independent random variables, we get

Pr(Y1 + Y2 + · · ·+ Ym ≥ y) ≤ e−ty
m∏

i=1

E
[
etYi

]
= e−ty

m∏

i=1

E
[
etU(ki:`)

]

≤ e−ty
m∏

i=1

(
1 − t

` + 1

)−ki

= e−ty

(
1 − t

` + 1

)−(k1+···+km)

,

which because of κ ≥ k1 + · · ·+ km results in

Pr(Y1 + Y2 + · · ·+ Ym ≥ y) ≤ e−ty

(
1 − t

` + 1

)−κ

.

The last term is minimal if we choose t = ` + 1 − κ/y. We thus have

Pr(Y1 + Y2 + · · ·+ Ym ≥ y) ≤ e−(`+1)y

(
κ

e(` + 1)y

)−κ

,

and if we choose y = µκ/(` + 1), then this reads

Pr
(
Y1 + Y2 + · · ·+ Ym ≥ µκ

`+1

)
≤ e−µκ(eµ)κ = exp(−κ(µ − 1 − log µ)) .

2

68



Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and

Applications, Prentice Hall, Englewood Cliffs NJ, 1993

[2] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, Faster algorithms for the shortest

path problem, J. Assoc. Comput. Mach. 37 (1990), pp. 213–223

[3] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani, Fast estimation of diameter and shortest

paths (without matrix multiplication), SIAM J. Comput. 28 (1999), pp. 1167–1181

[4] K. Alam and K. M. L. Saxena, Positive dependence in multivariate distributions, Comm.

Statist. Theory Methods A10 (1981), pp. 1183–1196

[5] N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., John Wiley & Sons, New York,

2000

[6] R. Bellman, Dynamic Programming, Princeton University Press, Princeton NJ, 1957

[7] R. Bellman, On a routing problem, Quart. Appl. Math. 16 (1958), pp. 87–90

[8] P. A. Bloniarz, A shortest-path algorithm with expected time O(n2 log n log∗n), SIAM J.

Comput. 12 (1983), pp. 588–600

[9] G. S. Brodal, Worst-case efficient priority queues, in Proc. 7th Annual ACM-SIAM Symposium

on Discrete Algorithms, 1996, pp. 52–58

[10] J. S. Carson and A. M. Law, A note on Spira’s algorithm for the all-pairs shortest-path

problem, SIAM J. Comput. 6 (1977), pp. 696–699

[11] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, Shortest path algorithms: Theory and

experimental evaluation, Math. Programming 73 (1996), pp. 129–174

[12] B. V. Cherkassky, A. V. Goldberg, and C. Silverstein, Buckets, heaps, lists, and monotone

priority queues, SIAM J. Comput. 28 (1999), pp. 1326–1346

69



[13] C. Cooper, A. Frieze, K. Mehlhorn, and V. Priebe, Average-case complexity of shortest-paths

problems in the vertex-potential model, in J. Rolim (ed.), Randomization and Approximation

Techniques in Computer Science (Lecture Notes in Comput. Sci., vol. 1269), Springer-Verlag,

Berlin, 1997, pp. 15–26

[14] C. Cooper, A. Frieze, K. Mehlhorn, and V. Priebe, Average-case complexity of shortest-paths

problems in the vertex-potential model, Random Structures Algorithms 16 (2000), pp. 33–46

[15] G. Dantzig, All shortest routes in a graph, in Theory of Graphs. International Symposium,

Gordon and Breach, New York, 1967, pp. 91–92

[16] G. B. Dantzig, On the shortest route through a network, Management Sci. 6 (1960), pp.

187–190

[17] R. Davis and A. Prieditis, The expected length of a shortest path, Inform. Process. Lett. 46

(1993), pp. 135–141

[18] R. Dial, F. Glover, D. Karney, and D. Klingman, A computational analysis of alternative

algorithms and labeling techniques for finding shortest path trees, Networks 9 (1979), pp.

215–248

[19] M. Dietzfelbinger and W. Maass, Two lower bound arguments with “inaccessible” numbers,

J. Comput. System Sci. 36 (1988), pp. 313–335

[20] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959),

pp. 269–271

[21] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan, Relaxed heaps: An alternative

to Fibonacci heaps with applications to parallel computation, Comm. ACM 31 (1988), pp.

1343–1354

[22] D. Dubhashi, V. Priebe, and D. Ranjan, Negative dependence through the FKG inequality,

Research Report MPI-I-96-1-020, Max-Planck-Institut für Informatik, Saarbrücken, August

1996

[23] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network

flow problems, J. Assoc. Comput. Mach. 19 (1972), pp. 248–264

[24] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, Randomized broadcast in networks, Random

Structures Algorithms 1 (1990), pp. 447–460

[25] R. W. Floyd, Algorithm 97: Shortest path, Comm. ACM 5 (1962), p. 345

70



[26] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton,

NJ, 1962

[27] M. L. Fredman, New bounds on the complexity of the shortest path problem, SIAM J.

Comput. 5 (1976), pp. 83–89

[28] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network opti-

mization algorithms, J. Assoc. Comput. Mach. 34 (1987), pp. 596–615

[29] A. Frieze, Minimum paths in directed graphs, Oper. Res. Quart. 28 (1977), pp. 339–346

[30] A. Frieze and C. McDiarmid, Algorithmic theory of random graphs, Random Structures

Algorithms 10 (1997), pp. 5–42

[31] A. M. Frieze and G. R. Grimmett, The shortest-path problem for graphs with random arc-

lengths, Discrete Appl. Math. 10 (1985), pp. 57–77

[32] A. M. Frieze and B. Reed, Probabilistic analysis of algorithms, in M. Habib, C. McDiarmid,

J. Ramirez-Alfonsin, and B. Reed (eds.), Probabilistic Methods for Algorithmic Discrete Math-

ematics (Algorithms Combin., vol. 16), Springer-Verlag, Berlin, 1998, pp. 36–92

[33] A. V. Goldberg, Scaling algorithms for the shortest paths problem, SIAM J. Comput. 24

(1995), pp. 494–504

[34] A. V. Goldberg, A simple shortest path algorithm with linear average time, Technical Report

STAR-TR-01-03, InterTrust Technologies Corp., Santa Clara, CA, March 2001, to be presented

at ESA ’01

[35] A. V. Goldberg and R. E. Tarjan, Expected performance of Dijkstra’s shortest path algorithm,

Technical Report 96-062, NEC Research Institute, Princeton, June 1996

[36] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for

Computer Science, 2nd ed., Addison-Wesley, Reading MA, 1994

[37] R. L. Graham, A. C. Yao, and F. F. Yao, Information bounds are weak in the shortest distance

problem, J. Assoc. Comput. Mach. 27 (1980), pp. 428–444

[38] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 2nd ed., Oxford

University Press, Oxford, 1992

[39] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes: Problems and

Solutions, Oxford University Press, Oxford, 1992

71



[40] T. Hagerup, Improved shortest paths on the word RAM, in U. Montanari, J. D. P. Rolim,

and E. Welzl (eds.), Automata, Languages and Programming (Lecture Notes in Comput. Sci.,

vol. 1853), Springer-Verlag, Berlin, 2000, pp. 61–72

[41] R. Hassin, A computing scheme for network problems with random edge lengths, in G. An-

dreatta, F. Mason, and P. Serafini (eds.), Advanced School on Stochastics in Combinatorial

Optimization, World Scientific, Singapore, 1987, pp. 228–232

[42] R. Hassin and E. Zemel, On shortest paths in graphs with random weights, Math. Oper. Res.

10 (1985), pp. 557–564

[43] H. Imai and M. Iri, Practical efficiencies of existing shortest-path algorithms and a new bucket

algorithm, J. Oper. Res. Soc. Japan 27 (1984), pp. 43–57

[44] M. Iri, How to generate realistic sample problems for network optimization, in T. Ibaraki,

Y. Inagaki, K. Iwama, T. Nishizeki, and M. Yamashita (eds.), Algorithms and Computation

(Lecture Notes in Comput. Sci., vol. 650), Springer-Verlag, Berlin, 1992, pp. 342–350

[45] S. Janson, One, two and three times logn/n for paths in a complete graph with random

weights, Combin. Probab. Comput. 8 (1999), pp. 347–361

[46] K. Joag-Dev and F. Proschan, Negative association of random variables, with applications,

Ann. Statist. 11 (1983), pp. 286–295

[47] D. B. Johnson, A note on Dijkstra’s shortest path algorithm, J. Assoc. Comput. Mach. 20

(1973), pp. 385–388

[48] D. B. Johnson, Efficient algorithms for shortest paths in sparse networks, J. Assoc. Comput.

Mach. 24 (1977), pp. 1–13

[49] D. R. Karger, D. Koller, and S. J. Phillips, Finding the hidden path: Time bounds for all-pairs

shortest paths, SIAM J. Comput. 22 (1993), pp. 1199–1217

[50] R. M. Karp, personal communication, May 1996

[51] S. G. Kolliopoulos and C. Stein, Finding real-valued single-source shortest paths in o(n3)

expected time, J. Algorithms 28 (1998), pp. 125–141

[52] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and

Winston, New York, 1976
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Zusammenfassung

In dieser Arbeit wird die average-case-Komplexität von Kürzeste-Wege-Algorithmen untersucht.

Eingaben für einen Algorithmus werden dabei gemäß einer Wahrscheinlichkeitsverteilung auf der

Menge aller möglichen Eingaben erzeugt. Im Fall von Kürzeste-Wege-Algorithmen bedeutet dies:

Wir betrachten Wahrscheinlichkeitsverteilungen auf der Menge der Netzwerke (mit einer beliebigen,

aber festen Anzahl n von Knoten), also der Menge der gerichteten Graphen mit Kantenkosten.

Wir zeigen in dieser Arbeit, dass einige Kürzeste-Wege-Probleme auf dem überwiegenden Teil der

so erzeugten Netzwerke schneller gelöst werden können als dies durch die besten bekannten worst-

case-Laufzeiten vorhergesagt wird. Dabei nutzen wir in allen Fällen aus, dass uns die jeweiligen

Eingabemodelle erlauben, die Kürzeste-Wege-Probleme korrekt auch dann zu lösen, wenn wir nur

einen Teil der Kantenmenge der Netzwerke betrachten.

Zur Lösung von Kürzeste-Wege-Problemen sind all diejenigen Kanten ohne Bedeutung, deren Kos-

ten größer als die Kosten des teuersten aller kürzesten Wege, das heißt, größer als der Durchmesser

des Netzwerkes, sind. Diese Beobachtung kann zum Beispiel im uniform model ausgenutzt werden:

Die Netzwerke sind in diesem Modell vollständige Graphen, deren nicht negative Kantenkosten

gemäß einer fixen Verteilungsfunktion F in unabhängigen Zufallsexperimenten bestimmt werden.

Das folgende Vorgehen wurde schon von früheren Autoren vorgeschlagen: Wird ein Netzwerk gemäß

des uniform model erzeugt, so ist (unter schwachen zusätzlichen Voraussetzungen an F ) mit hoher

Wahrscheinlichkeit der Durchmesser O((logn)/n), und nur O(n logn) Kanten haben kleinere Kos-

ten. Auf dem Netzwerk mit entsprechend reduzierter Kantenmenge können somit die Distanzen

zwischen allen Paaren von Knoten (das all-pairs shortest-paths problem) mit hoher Wahrschein-

lichkeit in Zeit O(n2 log n) berechnet werden. Wir weisen nach, dass ein analoger Algorithmus das

all-pairs shortest-paths problem in derselben Zeit auch dann lösen kann, wenn Eingaben gemäß

des extended uniform model generiert werden, in dem jede Kante, unabhängig von allen anderen

Kanten, mit Wahrscheinlichkeit p existiert und den existierenden Kanten Kosten wie im uniform

model zugewiesen werden. Nur O(n logn) Kanten, deren Kosten kleiner als O((logn)/(np)) sind,

sind dann für die Berechnung der Distanzen von Bedeutung. Wir erweitern außerdem das Wissen

um die typische Struktur der Netzwerke in beiden Modellen, indem wir zeigen, dass alle kürzesten
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Wege mit hoher Wahrscheinlichkeit aus O(logn) Kanten bestehen.

Will man die average-case-Komplexität von Algorithmen untersuchen, die Kürzeste-Wege-Probleme

auf Netzwerken mit beliebigen reellen Kantenkosten lösen, so ist eine sinnvolle Analyse mit den

beiden bislang erwähnten Modellen nicht möglich. Denn wenn die Verteilungsfunktion F auch

negative Kantenkosten erlaubt, so enthalten die erzeugten Netzwerke mit hoher Wahrscheinlichkeit

negative Kreise. Wir analysieren das vertex-potential model, in dem eine Kante (v, w) Kosten

r(v, w)− π(v)+ π(w) hat, wobei r(v, w) wie im uniform model erzeugt wird, die Knotenpotentiale

π(v), π(w) jedoch beliebig gewählt werden können. Es folgt aus dieser Definition, dass Netzwerke,

die gemäß des vertex-potential model erzeugt werden, überhaupt keine negativen Kreise haben. Wir

können bei diesen Netzwerken die Kantenmenge so reduzieren, dass der Algorithmus von Bellman–

Ford die Distanzen aller Knoten von einem fixen Ausgangsknoten (das single-source shortest-paths

problem) mit hoher Wahrscheinlichkeit in Zeit O(n2) bestimmt; hier geht auch unser Resultat

über die Anzahl von Kanten auf kürzesten Wegen ein. Diese Laufzeit impliziert, dass das all-pairs

shortest-paths problem mit hoher Wahrscheinlichkeit in Zeit O(n2 logn) lösbar ist.

Im endpoint-independent model wird eine Menge nicht negativer Kantenkosten beliebig gewählt;

zufällig ist hier allein die Zuordnung der Kosten zu bestimmten Kanten. Das endpoint-independent

model erlaubt demnach kein Reduktions-Argument vom in den beiden vorigen Abschnitten be-

schriebenen Typ. Ein schon auf Dantzig zurückgehender Algorithmus zur Lösung eines single-source

shortest-paths problem mit nicht negativen Kantenkosten relaxiert bei Knoten, deren Distanz schon

berechnet wurde, die ausgehenden Kanten inkrementell in der Ordnung steigender Kosten. Es zeigt

sich, dass dieser Algorithmus unter den Annahmen des Modells mit hoher Wahrscheinlichkeit nach

Relaxierung von nur O(n logn) vielen Kanten allen Knoten deren korrekte Distanz zugewiesen

hat. Der nötige Sortieraufwand lässt sich jedoch erst in der Laufzeit O(n2 logn) für das all-pairs

shortest-paths problem subsumieren. Die Laufzeit dieses Algorithmus ist schon früher analysiert

worden; wir glauben aber, dass unsere Analyse die erste korrekte ist.

Wir zeigen schließlich, dass eine weitere Reduktion der zur Lösung eines single-source shortest-

paths problem betrachteten Kantenmenge nicht möglich ist. Wir beweisen, dass auf einer Klasse

von Netzwerken mit ganzzahligen Kantenkosten jeder Algorithmus mit hoher Wahrscheinlichkeit

Ω(n logn) Kanten inspizieren muss, um die korrekten Distanzen zu berechnen.
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