
New Techniques for the Modeling, Processing
and Visualization of Surfaces and Volumes

Christian Rössl
Max-Planck-Institut für Informatik

Saarbrücken, Germany

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing)
der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

Eingereicht am 11. März 2005 in Saarbrücken.

ii

Betreuender Hochschullehrer — Supervisor
Prof. Dr. Hans-Peter Seidel,
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Gutachter — Reviewers
Prof. Dr. Hans-Peter Seidel,
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Prof. Dr. Marc Alexa,
Technische Universität Darmstadt, Germany

Prof. Dr. Pierre Alliez,
Institut National de Recherche en Informatique et en Automatique,
Sophia-Antipolis, France

Dekan — Dean
Prof. Dr. Jörg Eschmeier,
Universität des Saarlandes, Saarbrücken, Germany

Datum des Kolloquiums — Date of Defense
20. Juli 2005

Christian Rössl
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany
roessl@mpi-sb.mpg.de

iii

Abstract

With the advent of powerful 3D acquisition technology, there is a growing demand
for the modeling, processing, and visualization of surfaces and volumes. The
proposed methods must be efficient and robust, and they must be able to extract the
essential structure of the data and to easily and quickly convey the most significant
information to a human observer. Independent of the specific nature of the data,
the following fundamental problems can be identified: shape reconstruction from
discrete samples, data analysis, and data compression.

This thesis presents several novel solutions to these problems for surfaces
(Part I) and volumes (Part II). For surfaces, we adopt the well-known triangle
mesh representation and develop new algorithms for discrete curvature estima-
tion, detection of feature lines, and line-art rendering (Chapter 3), for connectivity
encoding (Chapter 4), and for topology preserving compression of 2D vector fields
(Chapter 5). For volumes, that are often given as discrete samples, we base our
approach for reconstruction and visualization on the use of new trivariate spline
spaces on a certain tetrahedral partition. We study the properties of the new spline
spaces (Chapter 7) and present efficient algorithms for reconstruction and visu-
alization by iso-surface rendering for both, regularly (Chapter 8) and irregularly
(Chapter 9) distributed data samples.

Kurzfassung

Mit der Einführung leistungsfähiger Verfahren zur Erfassung von dreidimensiona-
len Daten stellt sich verstärkt die Frage nach Techniken zur Modellierung, Verar-
beitung und Visualisierung von Flächen und Volumen. Solche Methoden müssen
effizient und robust sein, gleichzeitig müssen sie es ermöglichen, die wesentliche
Struktur der Daten zu extrahieren und somit einem Anwender einfach und schnell
die wichtigsten Informationen zu vermitteln. Unabhängig von der speziellen Be-
schaffenheit der Daten stellen sich dabei die folgenden grundlegenden Probleme:
Rekonstruktion von diskreten Meßwerten, Datenanalyse und Datenkompression.
Diese Dissertation beschreibt einige neue Lösungsansätze zu diesen Problemen
für Flächen (Teil I) und Volumen (Teil II).

Für Flächen verwenden wir die wohletablierte Darstellung als Dreiecksnet-
ze. Wir entwickeln neue Algorithmen zur diskreten Krümmungsanalyse, der Be-
stimmung von Flächencharakteristika und der Erzeugung von Strichzeichnungen
(Kapitel 3), zur Kodierung der Konnektivität (Kapitel 4) und zur topologieerhal-
tenden Kompression von zweidimensionalen Vektorfeldern (Kapitel 5). Für Volu-
men, die oft in Form von diskreten Datenpunkten gegeben sind, verwenden wir
zur Rekonstruktion und Visualisierung neuartige trivariate Splineräume, die auf

iv

einer bestimmten Tetraederzerlegung definiert sind. Wir studieren die Eigenschaf-
ten der neuen Splineräume (Kapitel 7) und entwerfen effiziente Algorithmen zur
Rekonstruktion und Visualisierung mittels Darstellung von Isoflächen, jeweils für
regulär (Kapitel 8) und irregulär (Kapitel 9) verteilte Datenpunkte.

v

Summary
With the advent of powerful 3D acquisition technology, there is a growing demand
for the modeling, processing, and visualization of surfaces and volumes. The
proposed methods must be efficient and robust, and they must be able to extract the
essential structure of the data and to easily and quickly convey the most significant
information to a human observer. Independent of the specific nature of the data,
the following fundamental problems can be identified: shape reconstruction from
discrete samples, data analysis, and data compression.

This thesis presents several novel solutions to these problems for surfaces
(Part I) and volumes (Part II). For surfaces, we adopt the well-known triangle
mesh representation and develop new algorithms for discrete curvature estima-
tion, detection of feature lines, and line-art rendering (Chapter 3), for connectivity
encoding (Chapter 4), and for topology preserving compression of 2D vector fields
(Chapter 5). For volumes, that are often given as discrete samples, we base our
approach for reconstruction and visualization on the use of new trivariate spline
spaces on a certain tetrahedral partition. We study the properties of the new spline
spaces (Chapter 7) and present efficient algorithms for reconstruction and visu-
alization by iso-surface rendering for both, regularly (Chapter 8) and irregularly
(Chapter 9) distributed data samples.

Surfaces

The first part discusses surface data, which are often represented as triangle
meshes. As this representation does not provide smoothness, the estimation of the
curvature of the represented surface is not straightforward. Curvature estimation
is important and often required by shape interrogation techniques, which analyze
the data. A new approach for the estimation of the curvature tensor is developed,
which is directly applicable to piecewise linear surfaces with a piecewise linear
normal field. The basic idea is similar to the well-known Phong shading. Appli-
cations of discrete curvature analysis are discussed, leading to new algorithms for
the detection of feature lines and computer assisted line-art rendering of shapes.

With the emergence of powerful acquisition techniques, the obtained data sets
tend to grow in size, and consequently there is a demand for efficient compres-
sion techniques. In this thesis, we specifically address connectivity encoding and
vector field compression, i.e., the encoding of the graph structure of the triangu-
lation and the compression of linearly interpolated vector attributes. A divide and
conquer algorithm is developed for connectivity encoding. The output is a binary
tree data structure, which can also be applied for efficient rendering. The vector
field compression problem originates from a flow visualization context, where the
topology of a complex flow data set provides a very compact and intuitive view of

vi

the data. Consequently, the compression should ideally preserve the vector field
topology. Building upon a theoretical framework, new methods for topology pre-
serving vector field compression are presented. The algorithms are efficient, as it
is shown that all decisions during compression can be based on local criteria —
despite topology being a global property.

Volumes

The second part addresses the modeling, processing, and visualization of volu-
metric data. Digital volume data is often given as discrete samples, and a mathe-
matical model is required to reconstruct the data in a feasible way, i.e., to provide
a continuous representation enabling evaluation at arbitrary domain points. Two
different scenarios are discussed: the reconstruction of structured data, which is
laid out on a regular grid, and the approximation of general data, which are dis-
tributed over the volumetric domain. The foundations for both settings are piece-
wise polynomials with respect to certain uniform tetrahedral partitions. The poly-
nomial pieces are represented in Bernstein-Bézier form enabling the use of pow-
erful techniques well-known from computer aided geometric design. The goal is
to use splines on these partitions with low (or even lowest) polynomial degree and
appropriate smoothness properties for model visualization.

The reconstruction of structured data is based on a suitably chosen space of
trivariate, quadratic super splines, i.e., piecewise polynomials in three variables of
total degree two. We analyze the smoothness and approximation properties of the
space and show that elements in the space can be evaluated efficiently. We also
demonstrate the potential of precise iso-surface ray-casting for visualization.

For the approximation of general volumetric data, a new algorithm is devel-
oped, which is based on a certain cubic spline. The method is local and hence
requires only the solution of small linear systems, so that huge data sets can be
processed efficiently. Both approaches use splines which satisfy many smooth-
ness properties. This work shows that such splines provide useful tools with
advantageous properties for the various requirements of efficient modeling and
visualization.

vii

Zusammenfassung
Mit der Einführung leistungsfähiger Verfahren zur Erfassung von dreidimensiona-
len Daten stellt sich verstärkt die Frage nach Techniken zur Modellierung, Verar-
beitung und Visualisierung von Flächen und Volumen. Solche Methoden müssen
effizient und robust sein, gleichzeitig müssen sie es ermöglichen, die wesentliche
Struktur der Daten zu extrahieren und somit einem Anwender einfach und schnell
die wichtigsten Informationen zu vermitteln. Unabhängig von der speziellen Be-
schaffenheit der Daten stellen sich dabei die folgenden grundlegenden Probleme:
Rekonstruktion von diskreten Meßwerten, Datenanalyse und Datenkompression.
Diese Dissertation beschreibt einige neue Lösungsansätze zu diesen Problemen
für Flächen (Teil I) und Volumen (Teil II).

Für Flächen verwenden wir die wohletablierte Darstellung als Dreiecksnet-
ze. Wir entwickeln neue Algorithmen zur diskreten Krümmungsanalyse, der Be-
stimmung von Flächencharakteristika und der Erzeugung von Strichzeichnungen
(Kapitel 3), zur Kodierung der Konnektivität (Kapitel 4) und zur topologieerhal-
tenden Kompression von zweidimensionalen Vektorfeldern (Kapitel 5). Für Volu-
men, die oft in Form von diskreten Datenpunkten gegeben sind, verwenden wir
zur Rekonstruktion und Visualisierung neuartige trivariate Splineräume, die auf
einer bestimmten Tetraederzerlegung definiert sind. Wir studieren die Eigenschaf-
ten der neuen Splineräume (Kapitel 7) und entwerfen effiziente Algorithmen zur
Rekonstruktion und Visualisierung mittels Darstellung von Isoflächen, jeweils für
regulär (Kapitel 8) und irregulär (Kapitel 9) verteilte Datenpunkte.

Flächendaten

Der erste Teil der Arbeit behandelt Flächendaten. Flächen werden oft in Form
von Dreiecksnetzen dargestellt. Da diese Darstellung keine Glattheit – die stück-
weise lineare Funktion ist nicht stetig differenzierbar – bietet, ist unklar, wie die
Krümmung der dargestellten Fläche berechnet werden soll. Die Krümmungsinfor-
mation spielt eine wichtige Rolle in der Bewertung und Analyse von Flächen. Es
wird ein neuer Ansatz zur Bestimmung des Krümmungstensors entwickelt, wobei
die stückweise lineare Fläche zusammen mit einer stückweise linearen Flächen-
normalen betrachtet wird. Die grundlegende Idee ähnelt dem bekannten Phong-
Shading. Anwendungen der Krümmungsabschätzung führen zu neuen Algorith-
men zur Bestimmung von charakteristischen Flächenteilen und zur computerge-
stützten Erzeugung von Strichzeichnungen.

Mit der Einführung von leistungsfähigen Digitalisierungstechniken werden
die erzeugten Datensätze meist größer, und folglich gewinnen Kompressionsver-
fahren an Bedeutung. In dieser Dissertation untersuchen wir speziell die Kodie-
rung der Konnektivität von Dreiecksnetzen sowie die Kompression von stückwei-

viii

se linearen Vektorfeldern. Um die Konnektivität – oder Graphstruktur – von Drei-
ecksnetzen zu kodieren, wird ein Divide-and-Conquer-Algorithmus entwickelt.
Dessen Ausgabe besteht aus einem Binärbaum, der das Dreiecksnetz beschreibt
und eine effiziente Darstellung der Fläche ermöglicht. Eine Motivation zur Kom-
pression von Vektorfeldern stammt aus der Strömungsvisualisierung: Hier bie-
tet die Topologie eines komplizierten Datensatzes ein kompaktes und intuitives
Hilfsmittel, um den gesamten Datensatz schnell überblicken und interpretieren zu
können. Aus diesem Grund sollte eine Kompression die Topologie des Vektor-
felds nach Möglichkeit nicht verändern oder verfälschen. Ausgehend von einem
theoretischen Rahmen werden neue Methoden zur topologieerhaltenden Vektor-
feldkompression vorgeschlagen. Diese Methoden sind vor allem deshalb effizient,
weil gezeigt wird, daß im Verlauf alle Entscheidungen auf lokale Kriterien zurück-
geführt werden können – obwohl Topologie eine globale Eigenschaft darstellt.

Volumendaten

Der zweite Teil der Arbeit behandelt die Modellierung, Verarbeitung und Visua-
lisierung von Volumendaten. Digitale Volumendaten sind oft als eine Menge von
diskreten Datenpunkten gegeben. Mathematische Modelle der Daten erlauben ei-
ne sinnvolle Rekonstruktion der Daten, d.h. eine Fortsetzung zwischen den ge-
gebenen Punkten. Es werden zwei verschiedene Szenarien behandelt: die Rekon-
struktion von strukturierten Daten, die entlang eines regelmäßigen Gitters liegen,
und die Approximation von allgemeinen Daten, die beliebig im Volumen verteilt
sind. Als gemeinsame Grundlage für beide Probleme dienen stückweise Polyno-
me, die auf einer regelmäßigen Tetraederzerlegung des Volumens definiert sind.
Die einzelnen Polynomstücke werden in Bernstein-Bézier-Form dargestellt, so
daß bekannte und leistungsfähige Techniken aus dem Computer Aided Geometric
Design Anwendung finden. Ziel ist es, sogenannte Splines mit möglichst niedri-
gem Polynomgrad und zweckmäßigen Eigenschaften zu verwenden. Die Lösung
des ersten Problems, die Rekonstruktion strukturierter Daten, basiert auf einem
geeignet gewählten Raum von trivariaten quadratischen Super-Splines, also auf
stückweisen Polynomen in drei Variablen vom totalen Grad zwei. Wir analysie-
ren die Glattheits- und Approximationseigenschaften dieses Raums und zeigen,
daß Elemente in diesem Raum effizient ausgewertet werden können. Gleichzeitig
demonstrieren wir das Potential von exaktem Ray-Casting von Isoflächen für die
Visualisierung.

Zur Approximation von allgemeinen Daten wird ein neuer Algorithmus ent-
wickelt, der auf bestimmten kubischen Splines aufbaut. Die vorgestellte Methode
arbeitet lokal, so daß nur kleine lineare Gleichungssysteme gelöst werden müssen,
was die Verarbeitung von sehr großen Datensätzen erlaubt. Beide Ansätze verwen-
den trivariate Splines, die viele Glattheitsbedingungen erfüllen. Die vorliegende

ix

Arbeit zeigt, daß solche Splines ein nützliches und vorteilhaftes Hilfsmittel zur
effizienten Modellierung und Visualisierung darstellen.

x

xi

Acknowledgements
This thesis would not have been possible without the help and support of many
people. First of all, I would like to thank my supervisor Prof. Dr. Hans-Peter
Seidel for his interest in this work, his continuous support, and for providing an
excellent research environment. I enjoyed the freedom to work on diverse prob-
lems, which gave me an always interesting and challenging insight in the field of
geometric modeling and visualization.

I would like to thank the two external reviewers Prof. Dr. Marc Alexa and
Prof. Dr. Pierre Alliez.

I would like to thank all my present and former colleagues at the Computer
Graphics Group, who make MPI such an exciting place for research. When I tried
to compile a list, I realized that it is impossible to name all of them here. As I want
to avoid an implicit “ranking”, I only mention those explicitly who co-authored
some of my publications. These are (in alphabetical order): Mario Botsch, Ioannis
Ivrissimtzis, Holger Theisel, Jens Vorsatz, Rhaleb Zayer, and Frank Zeilfelder,
and many thanks also to Prof. Dr. Leif Kobbelt and Prof. Dr. Günther Nürnberger.
Again, I will not forget all the others, who made the time at MPI so wonderful –
regarding to research as well as to other activities.

Finally, I thank my family and especially my parents for their support over all
the time.

xii

Contents

1 Introduction 1

I Surface Meshes 7

2 Overview of Triangle Meshes 9

3 Discrete Curvature Computation and Applications 13
3.1 Background . 13

3.1.1 Differential Geometry of Smooth Surfaces 13
3.1.2 Curvature Tensor Estimation

from Discrete Shapes . 15
3.2 Normal Based Estimation of the Curvature Tensor 17

3.2.1 Central Idea . 17
3.2.2 Normal Based Estimation of T 18
3.2.3 Properties of the Estimation of T 20

3.3 Evaluation of Curvature Estimation Methods 23
3.4 Detection of Feature Lines . 28

3.4.1 Surface Segmentation and Feature Detection 29
3.4.2 Setup . 31
3.4.3 Morphological Operators and Skeletonization 32
3.4.4 Recovering Structural Information 38

3.5 Line-Art Rendering . 39
3.5.1 Non-Photorealistic Rendering using Lines 39
3.5.2 Line-Art Rendering of Digital 3D Models 42

3.6 Summary . 48

4 Connectivity Encoding 53
4.1 Background . 53
4.2 A Divide and Conquer Approach 55

4.2.1 Preliminaries . 56

xiv CONTENTS

4.2.2 Basic Algorithm . 56
4.2.3 Analysis of the Encoding Algorithm 60
4.2.4 Connection to Edgebreaker 62
4.2.5 Arbitrary Topology . 63
4.2.6 Reverse Decoding . 63

4.3 Tree-based Data Structures . 65
4.3.1 Binary Tree Encodings 65
4.3.2 Weighted Binary Tree Encoding — A First Approach . . . 67
4.3.3 Strip Lengths Encodings 68
4.3.4 Tree First Transmission 69
4.3.5 Strip-lengths First Transmission 71
4.3.6 Valence-3 Vertices . 71

4.4 Stripification: An Application to Rendering 72
4.5 Summary . 74

5 Vector Field Compression 77
5.1 Background . 77
5.2 Theoretical Framework . 79

5.2.1 The Topology of a 2D Vector Field 80
5.2.2 Topologically Equivalent Vector Fields 82
5.2.3 Local Modifications of the Topology 83
5.2.4 Extensions of the Topology Concept 86

5.3 Compressing the Vector Field . 87
5.3.1 The Data Structure . 88
5.3.2 Controlled Half-Edge Collapse 88
5.3.3 The Compression Algorithm 90

5.4 Modifications of the Topology Preserving Compression Algorithm 93
5.5 Topological Simplification and Topology Preserving Compression 95

5.5.1 Creating a system of importance weights 96
5.5.2 Coupling Critical Points and

Finding Initial Weights 96
5.5.3 Making the weights consistent 97
5.5.4 The compression algorithm 99

5.6 Results . 100
5.6.1 Test Data Sets . 100
5.6.2 Topology Preserving Vector Field Compression 101
5.6.3 Combining Topological Simplification and Topology Pre-

serving Compression . 103
5.7 Summary . 105

CONTENTS xv

II Volumes 117

6 Volumetric Data 119

7 Trivariate C1-Splines on Type-6 Tetrahedral Partitions 123
7.1 Trivariate Polynomials and Bernstein-Bézier Form 123
7.2 Type-6 Tetrahedral Partitions ∆ 126
7.3 Trivariate C1-Splines on ∆ . 128

7.3.1 Preliminaries: Cr-Splines on ∆ 128
7.3.2 C1-Smoothness Conditions 128
7.3.3 Dimension of C1-Splines on ∆ 131

7.4 Evaluation of Trivariate Splines on ∆ 132

8 Reconstruction of Volume Data with Quadratic Super Splines 135
8.1 Background . 135
8.2 Overview of the Approach . 137
8.3 Reconstruction with Quadratic Super Splines 138
8.4 Smoothness and Approximation Properties 142
8.5 Visualization: Isosurface Rendering by Precise Ray-Casting . . . 146
8.6 Results . 148

8.6.1 Synthetic Benchmarks 149
8.6.2 Numerical Tests on the Approximation 149
8.6.3 Comparison to Other Methods 152
8.6.4 Visualization of Volume Data with

Quadratic Super Splines 154

9 Approximation of General Volumetric Data 159
9.1 Background . 159
9.2 Overview of the Algorithm . 161
9.3 Consistent Cubic Splines on ∆ 162
9.4 Approximation Method . 164

9.4.1 Local Polynomial Approximation 165
9.4.2 Spline Extension . 166

9.5 Results . 169

10 Summary on Trivariate Splines 177

11 Conclusions and Future Work 179

A Normal Based Curvature Estimation 183

B Approximation Properties of Quadratic Super Splines 189

xvi CONTENTS

Bibliography 191

Curriculum Vitae – Lebenslauf 219

List of Figures

3.1 Estimation of curvature tensor T on a triangle 19
3.2 Visualizing T with focal surfaces; dependence on length of normal 22
3.3 Discontinuity of estimated T; estimation at vertex 22
3.4 Test surfaces and their discrete approximations 24
3.5 Error plots torus 1 . 26
3.6 Error plots torus 2 . 26
3.7 Focal surfaces of Gaussian curvature for torus 2 27
3.8 Focal surfaces of mean curvature for torus 2 27
3.9 Error plots Goldfeather 1 . 28
3.10 Error plots Goldfeather 1 . 28
3.11 Focal surfaces of Gaussian curvature for Goldfeather 2 29
3.12 Focal surfaces of mean curvature for Goldfeather 2 30
3.13 Principal directions of Goldfeather 2 30
3.14 Complex data set Frierende Alte 31
3.15 Extraction of feature lines . 31
3.16 Closing operator (dilation and erosion) 33
3.17 Skeletonization (magnification) 35
3.18 Skeletonization . 37
3.19 Interesting cases and high-level graph elements 37
3.20 Lines of curvature and an artistic line drawing 39
3.21 Examples: screen shots of real-time renderings 42
3.22 Segmentation, direction field and fishbone structure 44
3.23 Blending of strokes; cross hatches 45
3.24 Tone mapping . 48
3.25 Example: technical part . 49
3.26 Example: toy elks . 50

4.1 A divide and conquer approach to connectivity encoding 55
4.2 Zig-zag strip . 56
4.3 Encoding example . 58
4.4 Decoding example (preorder traversal) 59

xviii LIST OF FIGURES

4.5 Special situations during encoding 59
4.6 Configurations with empty submeshes 60
4.7 Reverse decoding example (postorder traversal) 65
4.8 Encoding trees and meshes near the leaves 70
4.9 Stripification for rendering . 74

5.1 Boundary inflow/outflow regions, streamline equivalence, and
topological skeleton . 81

5.2 Topological skeleton, local analysis 84
5.3 Topological equivalence, illustration (1) 85
5.4 Topological equivalence, illustration (2) 86
5.5 Topological equivalence, illustration (3) 87
5.6 Controlled half-edge collapse . 89
5.7 Example of allowed half-edge collapse 91
5.8 Example of prohibited half-edge collapse 92
5.9 Controlled half-edge collapse, equivalence concept 2 95
5.10 Feature flow field . 98
5.11 Half-edge collapse with unimportant critical point present 99
5.12 Half-edge collapse with two unimportant critical points 100
5.13 Test data set 1 (Greifswalder Bodden) and results 107
5.14 Test data set 2 (skin friction) and results 108
5.15 Test data set 2 (skin friction), magnification (1) 109
5.16 Test data set 2 (skin friction), magnification (2) 109
5.17 Test data set 1, algorithms 5.3 and 5.4 110
5.18 Test data set 2, algorithms 5.3 and 5.4 111
5.19 Test data set 2, distribution of importance weights 112
5.20 Test data set 2, important topological features 113
5.21 Test data set 2 (skin friction), algorithm 5.5 (1) 114
5.22 Test data set 2 (skin friction), algorithm 5.5 (2) 115
5.23 Test data set 2 (skin friction), algorithm 5.5, magnification (1) . . 116

7.1 Bernstein Bézier form of a polynomial 124
7.2 De Casteljau algorithm . 125
7.3 Type-6 tetrahedral partition . 127
7.4 Four-directional meshes and type-6 tetrahedral partitions 127
7.5 C1-smoothness conditions . 129
7.6 Stencils for C1-smoothness conditions on ∆ 130

8.1 Marschner-Lobb benchmark . 137
8.2 Local configuration of gridded data 139
8.3 Reconstruction with quadratic super splines 140

LIST OF FIGURES xix

8.4 Marschner-Lobb benchmark, magnification 143
8.5 Inner cube layers . 144
8.6 Approximation error for gradient 150
8.7 Approximation error for the Marschner-Lobb benchmark 152
8.8 Alternative reconstruction methods 155
8.9 Visual comparison of reconstruction methods 156
8.10 Test data set aneurism . 157
8.11 Test data set bonsai . 157
8.12 Test data set MRI head . 157
8.13 Test data sets engine, skull, foot, lobster 158

9.1 General domain and checkerboard coloring 163
9.2 Spline extension, black cube . 172
9.3 Spline extension, white cube . 173
9.4 Approximation of ftest . 173
9.5 Approximation of noisy data . 174
9.6 Approximation of the Max-Planck data set 174
9.7 Max-Planck data set, magnification 175
9.8 Approximation of the mechpart data set 175
9.9 Approximating polynomial piece 175

xx LIST OF FIGURES

Chapter 1

Introduction

The visualization of digital data is a central goal of computer graphics. There is a
multitude of diverse flavors, ranging for instance from scientific and information
visualization over visualization in computer aided design processes, the creation
of photorealistic images to the interactive visualization of virtual worlds in cultural
heritage applications or computer games. Every specific task comes with its own
particular challenges. However, all share the following fundamental problems:
an appropriate digital model of the data is required, these models must enable
the efficient analysis of the data, and the efficient processing of huge data must be
supported, commonly incorporating custom tailored data compression techniques.

There are many different and versatile types of digital data stemming from
a physical acquisition process such as a laser range scan of a real object or a
computed tomography or magnetic resonance imaging scan of a human body, or
from a simulation such as computational fluid dynamics. In general, we observe
that the size of the generated data sets tends to increase over the time with the
emerging acquisition techniques. This is independent of the specific type and
source of the data. And so is the requirement of appropriate mathematical models,
i.e. suitable representations of the diverse discrete, digital data. However, the
particular model is closely related to the specific data on the one side and to the
typical data processing pipeline on the other side. And even here, it often turns
out that there is not the one ideal model for any processing step, rather different
models offer different advantages and disadvantages. In practice, a unified model
is preferred wherever possible to minimize data conversion between intermediate
steps, which tends to induce some error hence spoils robustness.

A well-known example for this dilemma in digital geometry processing is the
decision on an explicit or implicit surface representation: Explicit representations
directly provide a model of the surface, while the implicit representations apply a
volumetric model and define the surface as zero-set (or more generally as level-

2 Chapter 1: Introduction

set or isosurface) of a trivariate (signed-distance) function. In general, the first
alternative is easier to handle, the surface can be evaluated and manipulated di-
rectly. However, certain operations are expensive and hard to realize: these are
modifications which change the genus of the surface, i.e. which add or remove a
topological handle. It is easy to imagine that such changes are hard to realize. In
contrast, this is much easier for the second alternative, the implicit model, where
the surface topology is not encoded explicitly. On the other side, a drawback
is that shape typically has to be resampled leading to conversion errors and that
sharp features may not be reproduced exactly. In summary, although both models
represent a surface, they both have their strengths and weaknesses depending on
the specific requirements of the applications.

So far, we argued that there is no ideal model for any purpose, indicating
that practical demands search for a good compromise. Still there is the following
question: Given a specific data and application, what would the ideal model in
this context provide? Or what distinguishes a good model? Many data are given
as sets of sample points, e.g. a point cloud from shape acquisition. However,
most applications rely on a continuous model of the data, i.e. the model provides
a reliable guess in regions between the discrete points. In other words, the model
must reconstruct the data in a feasible way. For geometric data this means that
the original shape should be approximated as good as possible by the model. At
the same time, the reconstruction or the generation of the model should be effi-
cient in computation (time and memory), and should provide the robustness to
deal with any reasonable distributions of the samples. In addition, contamination
with measurement noise should be taken into account and automatically be re-
duced. Besides the reconstruction, the evaluation of the model is very important
and must be efficient and robust. Potential application dependent requirements
include, for instance, smoothness needed for high-quality visualization or preser-
vation of special features, which may e.g. be of geometric nature like sharp edges
and corners of a shape or consist of more evolved properties.

Of course any useful model must enable the efficient and accurate analysis
of the represented data. The analysis is required for the processing and for the
visualization of the digital data. It again depends in detail on the specific applica-
tion, and manifold scenarios exist. Still, this can often be viewed as classification
and segmentation process. This recovering of structural information plays an im-
portant role, it provides a level of abstraction and is often connected with the
identification and extraction of certain features of the data set, which describe lo-
cal or global properties. In many applications, quality criteria are analyzed, for
example whether a surface is smooth enough or in which geometrically complex
regions the model should be refined by resampling. Segmentation is also a com-
mon building block for the conversion from one model to another one, where the
resulting segments are then handled individually. And in many situations, the vi-

3

sualization of abstract properties derived from an analysis of the data provides a
better view of the model, conveying more (but filtered) information with fewer
rending primitives. Typical examples are the visualization of complex flow data
and non-photorealistic rendering.

The analysis leads to simplification or reduction of complexity. As mentioned
earlier, in practice one has to face very large and ever growing data sets. This
emphasizes the need for efficient data reduction or compression techniques, es-
pecially for storing and transmitting such data. Here, the goal is to transfer one
representation of the data into another one, which consumes less storage and is
either equivalent to the original representation, i.e. the original can be restored
without loss of information, or approximates the original data as close as possible
given an appropriate distance metric. Data compression reduces redundancy in
the data, while some specified properties are preserved. These properties depend
on the specific application imposing an individual challenge and potentially ac-
cept loss of (less important) information. The approximation of a surface with
fewer parameters or coefficients than used in the original representation, i.e. the
projection into a lower dimensional space, is a typical example. In this case, the
compression rate or the number of coefficients generally depends on the maximal
tolerated approximation error, which can be measured geometrically.

In this work, we address the mentioned problems of data reconstruction, or
finding appropriate mathematical models, analysis and compression, and we de-
velop new techniques for the visualization of both surfaces and volumes.

As a fundamental model — for surfaces and volumes — throughout this work
we use piecewise polynomials (or splines). This means that the model is com-
posed of many pieces, each of which is a simple mathematical object, namely
a bivariate or trivariate polynomial, respectively. For efficiency and simplicity,
we strive to keep the polynomial degree as low as possible. In the surface case,
this means we apply piecewise linear splines, including triangular meshes. This
popular surface model has proven to be extremely flexible and enables the effi-
cient representation of complex objects (see Chapter 2). The situation is different
for volumetric models, where additional smoothness properties are required for
high-quality visualization. Here, we apply piecewise quadratic (Chapter 8) and
piecewise cubic (Chapter 9) polynomials for the reconstruction of gridded data —
the samples are laid out on a regular grid — and for the approximation of general,
distributed data, respectively. This leads to challenging problems and interesting
new algorithms to solve the reconstruction and approximation problem for the
visualization of complex data sets.

We analyze surfaces and two-dimensional, piecewise linear vector fields.
Thinking in terms of the differential geometry of a shape, it seems natural to
compute and to make use of the surface curvature for the analysis, e.g. for seg-
mentation and feature detection or for emphasis in the visualization (Chapter 3).

4 Chapter 1: Introduction

Similarly, specific features of vector fields are suited for efficient flow visualiza-
tion, conveying an impression of the whole data set by showing only important
parts.

The so-called topological skeleton of a flow field represents such a feature,
and we develop new compression algorithms that preserve the topological skele-
ton while yielding the best compression rates currently available (Chapter 5). The
compression algorithms are efficient as we will show that — although topology
is a global property of the vector field — all decisions can be made from local
criteria. This compression scheme drops less important information while the
important features are preserved. Such lossy data encoding is tolerated or even
desired for this kind of geometric data, and similarly for the volumetric approxi-
mation. The situation is different for other types of data. Here, we consider the
connectivity of a triangle mesh, i.e. the information on how the individual trian-
gles are interconnected. We propose and study an encoding which compresses this
information by organizing it in a tree data structure and triangle strips, a rendering
primitive for efficient visualization.

Finally, we give a brief overview of the following chapters, summarizing the
main contributions of this work. Along with that we reference the publications
that this thesis is based on. All these articles are published at different conferences
and in journals. The thesis is separated into two parts — surfaces and volumes —
reflecting two different general data models applied in digital geometry processing
and visualization.

• Chapter 2 gives a review of polygonal meshes, as triangle meshes provide
the basic model for two-dimensional data, surfaces and vector fields (see
also [Kobbelt et al. 2000, Kähler et al. 2001]).

• Chapter 3 analyzes techniques for the estimation of discrete curvature and
derives a new algorithm [Rössl and Kobbelt 1999, Theisel et al. 2004b]. We
discuss feature detection [Rössl et al. 2000a, Rössl et al. 2001] and line-art
rendering [Rössl and Kobbelt 2000, Rössl et al. 2000b] as applications and
remark the potential for feature sensitive remeshing [Botsch et al. 2000].

• Chapter 4 presents a tree-based divide-and-conquer approach to con-
nectivity encoding, which leads to an intuitive compression algorithm
[Ivrissimtzis et al. 2002, Ivrissimtzis et al. 2003]. The resulting data struc-
ture can be exploited for efficient visualization [Rössl et al. 2003b].

• Chapter 5 addresses the compression of piecewise linear vector fields. In
this flow visualization context, we develop a theoretical framework and new
methods for the efficient compression, with the additional, non-trivial con-
straint of topology preservation [Theisel et al. 2003b, Theisel et al. 2003a,

5

Theisel et al. 2004a]. The algorithms are efficient despite of the global con-
straint, and we report best compression rates currently available. We remark
that an alternative application based on these techniques is the comparison
of flow fields [Theisel et al. 2003c].

• Chapter 6 provides an introduction to the volumetric setting.

• Chapter 7 introduces trivariate splines on a so-called type-6 tetrahedral par-
tition. The analysis of the spline spaces [Hangelbroek et al. 2004] provides
the basis for developing appropriate algorithms.

• Chapter 8 describes a new, efficient model for the reconstruc-
tion of gridded volume data based on quadratic super splines
[Rössl et al. 2003a, Rössl et al. 2004a] with advantageous approximation
properties [Nürnberger et al. 2004c]. Applying only the lowest polynomial
degree possible, we enable high-quality visualization.

• Chapter 9 presents a first approach to efficient approximation of huge sets
of distributed volumetric samples. The approach is based on piecewise cu-
bic polynomials [Rössl et al. 2004b] which provide an efficient model of
the data with potential to automatic denoising and compression. As in the
previous chapter we apply a concept of consistent splines which satisfy ap-
propriate smoothness conditions for visualization.

• Chapter 10 summarizes the volume setting.

• Chapter 11 concludes the thesis.

6 Chapter 1: Introduction

Notation

We briefly summarize on the notation used throughout this work.

• Scalar values/functions and indices are written in italic letters, e.g. a.

• Bold lower case letters a denote vectors.

• Bold upper case letters A denote matrices.

• diag(a1, . . . , an) denotes a diagonal matrix.

• × denotes the vector product or cross product.

• (ab) is a dot product of two vectors.

• |.| denotes the absolute value of a scalar.

• ‖.‖ denotes the Euclidian distance or the norm ‖.‖2.
The use of other norms will be indicated.

• # denotes the cardinality of a finite set.

• span denotes the linear space spanned by a finite set.

• dim denotes the dimension of a linear space.

• δν,µ denotes Kronecker’s symbol.

• ∂f
∂r

denotes the directional derivative in direction r.

• Dx, Dxx denote the first and second order differential operators, the partial
derivatives are written as fx := Dxf, fxx := Dxxf , respectively.

Part I

Surface Meshes

Chapter 2

Overview of Triangle Meshes

There exists a multitude of models for the representation of digital shapes. Polyg-
onal meshes, are a popular choice, and especially for the representation of highly
complex objects they constitute the de facto standard. Among the various reasons
for this fact we mention the following. In contrast to parametric surfaces, shapes
of arbitrary topology can be handled easily. Increasing shape complexity only
means adding more polygons, while the simplicity of the surface description is
retained. This makes the model itself and manipulating algorithms flexible and
numerically robust. In addition, triangles – as the simplest polygons – are the nat-
ural primitive for efficient, hardware accelerated rendering. Regarding the whole
processing pipeline from the generation over various editing operations to the ren-
dering, triangle meshes provide a simple, efficient, and unified model, which elim-
inates costly and error-prone conversion and enables the seamless integration of
different software tools.

In this section we provide a brief introduction to the topic, where we ex-
plicitly focus on and restrict ourselves to the specific requirements of the sub-
sequent sections. For a more complete overview, we refer to the surveys
[Kobbelt et al. 2000, Kähler et al. 2001], additional references can be found in the
recent article [Bischoff and Kobbelt 2004].

In the following, we consider only triangular meshes as the simplest type of
polygonal meshes, i.e. each individual polygon is triangulated.

Triangle Meshes

A triangular mesh is described compactly as a pair (K,V), where K is a sim-
plicial complex representing the connectivity of vertices, edges and faces, and
V = (v0, . . . ,vn) describes the geometric positions of the vertices. Then i ∈ K is
a vertex of the mesh, (i, j) ∈ K means the vertices i and j are connected by a (di-

10 Chapter 2: Overview of Triangle Meshes

rected) edge, and (i, j, k) ∈ K represents a triangular face. We define the 1-ring
neighborhood of a vertex i ∈ K as the set of adjacent vertices Ni = {j|(i, j) ∈ K.
The number of neighbors #Ni is called the valence of the vertex i.

Piecewise linear interpolation

This definition separates the mesh connectivity K from the geometry information
V. The surface mesh is a piecewise linear function with coefficients V. We
remark that V may represent not only positions in the domain but any (additional)
attributes. Then we can define piecewise linear functions of these attributes over
the triangular domain using the barycentric coordinates λ1, λ2, λ3 as basis.

Given is a (non-degenerate) triangle (i, j, k) ∈ K with vertex positions
xi,xj,xk in the (planar) domain. The barycentric coordinates w.r.t. this triangle
are the linear polynomials λν , ν = 0, 1, 2, which satisfy the interpolation condi-
tions λν(xµ) = δν,µ, ν = 0, 1, 2. The barycentric coordinates are obtained as the
solution of a linear system, and it is easy to see that λ0 + λ1 + λ2 = 1 (see e.g.
[Hoschek and Lasser 1993]).

We will apply barycentric coordinates for linear interpolation of attributes over
individual triangles, e.g. for the linear interpolation of vertex normals in the next
Chapter 3.

2-manifold

Regarding the connectivity information represented by K, for practical reasons,
we restrict ourselves to bounded two-manifolds, i.e. the surface has to be disk-
like at every inner point (vertex) or topologically equivalent to a half-disk on
boundaries. In particular, this rules out edges with more than two adjacent tri-
angles or points, where two triangles meet only at their tips (see for instance
[Kobbelt et al. 2000]).

Topology /connectivity

The complex K represents the graph structure of the mesh and hence its topolog-
ical properties, including the number of handles of the surface and the existence
of boundaries. The Euler characteristic of K is the number χ(K) = V − E + F
(Euler’s formula), where V , E, and F denote the number of vertices, edges, and
faces in K, respectively. The Euler characteristic of a surface is independent of
the particular representation of this surface as a complex. Consider a shape which
is topologically equivalent to a sphere with p handles and q boundary loops, i.e. q
topological disks removed, then its Euler characteristic is given as χ = 2−2p−q.

11

For instance, the Euler characteristic of a sphere and a torus are two and zero,
respectively.

This holds for polygonal surfaces in general. For the special case of triangu-
lated surfaces, one can easily derive the following, well-known relation between
the number of vertices and the number of triangles in a mesh: neglecting the
boundary vertices, we obtain F ≈ 2V . This leads to the observation that the
average valence of an (interior) vertex is six. Vertices of valence six are com-
monly called regular, and consequently meshes with no (or only few) non-regular
vertices are often called (semi-)regular.

The properties listed above will be used in Chapter 4 together with some con-
siderations on data structures, which are reviewed in the following.

Data structures and operators

There are various choices for the representation of triangular meshes, which
enable the efficient access of neighborhood information, like the navigation
between adjacent triangles and traversal of the 1-ring of a vertex. Among
these are the half-edge data structures which are of particular interest (see e.g.
[Campagna et al. 1998, Kettner 1998] and the references therein), due to their
simplicity and the imposed orientation.

Here, every edge is separated into two directed and inversely oriented half-
edges. The basic building blocks — which are reflected by the references stored
by the particular implementation — are the access of the face that the half-edge
is associated to, a map between the source vertex and its excident half-edge, the
enumeration of the next and previous half-edge, to navigate counter-clockwise and
clockwise around a face, and the access to the inverse half-edge, which provides
the opposite face. In the case of triangular meshes, every face consists of exactly
three half-edges, which implicitly provides the references to the face as well as to
the next and previous half-edge as a function of the edge.

It is straightforward to formulate more complex queries or traversals in terms
of the given basic operations: For instance, to traverse the next vertex in the 1-ring,
first take the associated excident half-edge, then the opposite of the next edge, and
finally access the source vertex of the latter half-edge. In a similar fashion, the
associated fan of triangles around a vertex or a triangle strip (cf. Section 4.2.1)
can be traversed.

Mesh decimation

From the so-called mesh processing-pipeline, we apply mesh decimation in Chap-
ter 5. The basic idea of these techniques is to reduce the complexity by clus-
tering and merging or removing entities of the mesh while certain validity and

12 Chapter 2: Overview of Triangle Meshes

approximation constraints are satisfied. We refer to the mentioned surveys and
[Gotsman et al. 2002] for an overview of different techniques and details of the
standard algorithms.

We apply an incremental method for mesh decimation, choosing the half-edge
collapse — which collapses the source into the target vertex and hence removes
two half-edges and the associated triangles — as the basic topological operator for
simplification. Here, to all half-edges a priority value is assigned, which supports
the greedy decision on which edge should be collapsed next. The priority usually
reflects a distance measure between the original and the simplified surface to en-
able good approximation. In addition, certain validity checks are applied, which
may forbid a particular edge collapse because of either (topological) degeneracies
or certain application requirements (see Section 5.3.2).

The basic framework of the incremental mesh decimation algorithm would re-
peat the following until no more reduction is possible: In each iteration get (and
remove) a half-edge from a priority queue and apply the half-edge collapse if al-
lowed. Then re-evaluate and correct the priorities of all half-edges in the affected
neighborhood. For efficiency reasons, it is crucial that all decisions and computa-
tions of the priority values only depend on a local neighborhood. This is given in
the standard setup of geometry simplification (e.g. evaluating triangle normals, er-
ror quadrics, or the one-sided Hausdorff distance, see e.g. [Gotsman et al. 2002]).
However, we will consider an application where a global property — namely the
topology of a piecewise linear vector field — is respected, and it is not trivial to
see how this can be based on local decisions.

Chapter 3

Discrete Curvature Computation
and Applications

3.1 Background

A variety of shape interrogation techniques require the estimation of the curva-
ture of a surface. Curvature is defined for smooth surfaces, i.e., surfaces which
are sufficiently often differentiable. Hence, piecewise linear triangle meshes can
not be analyzed directly in a reasonable way. Instead, concepts of differen-
tial geometry are applied indirectly assuming that meshes are approximations of
smooth surfaces of interest. This leads to discrete differential geometry operators
[Meyer et al. 2002] and discrete curvature estimation. Many techniques for this
purpose haven been developed within the last decade, and in the following we
provide a brief overview. Before, we recall some basic differential geometry for
smooth surfaces.

3.1.1 Differential Geometry of Smooth Surfaces

This section shortly reviews differential geometry of surfaces, we refer to a text
book, e.g. [Do Carmo 1976], for a comprehensive course.

Let S be a sufficiently smooth surface and p ∈ S be a point on this surface.
Consider a neighborhood of p such that x(u, v) is a local parameterization of S.
Then n = xu×xv

||xu×xv ||
denotes the unit normal vector perpendicular to the surface.

The partial derivatives xu and xv of x w.r.t. u and v are tangents to S. The bilinear

14 Chapter 3: Discrete Curvature Computation and Applications

first and second fundamental forms of x are defined by the matrices

I =

[
E F
F G

]
:=

[
xuxu xuxv

xuxv xvxv

]
, and (3.1)

II =

[
e f
f g

]
:=

[
xuun xuvn

xuvn xvvn

]
. (3.2)

We note that II can be expressed alternatively using the identities xuun = −xunu,
xuvn = xvun = −xunv = −xvnu, and xvv = −xvnv.

Let t = axu + bxv be a unit vector in the tangent plane in p, which is repre-
sented as t̄ = (a, b)> in the local coordinate system. The normal curvature κn(t̄)
is the curvature of the planar curve that results from intersecting S with the plane
through p which is spanned by n and t. The normal curvature in direction t̄ can
be expressed in terms of the fundamental forms as

κn(t̄) =
t̄>II t̄

t̄>I t̄
=

ea2 + 2fab + gb2

Ea2 + 2Fab + Gb2

The maximal normal curvature κ1 and the minimal normal curvature κ2 are
called principal curvatures, and the associated tangent vectors t1 and t2 are called
principal directions. t1 and t2 are perpendicular to each other. The principal
curvatures are also obtained as eigenvalues of the Weingarten curvature matrix
(or second fundamental tensor)

W :=
1

EG − F 2

[
eG − fF fG − gF
fE − eF gE − fF

]
. (3.3)

W represents the Weingarten map or shape operator which gives the directional
derivative of the normal, i.e. Wt̄ = ∂

∂t̄
n. Then the normal curvature is given as

κn(t̄) = t̄>Wt̄ .

With a local coordinate system defined by the principal directions t1 and t2, W is
a diagonal matrix, or in general

W =
[

t̄1 t̄2

] [κ1 0
0 κ2

] [
t̄1 t̄2

]−1
. (3.4)

Then the normal curvature can be written as

κn(t̄) = κn(φ) = κ1 cos2 φ + κ2 sin2 φ, (3.5)

where φ is the angle between t̄ and t̄1 (Euler’s theorem).

3.1 Background 15

The curvature tensor T is expressed as a symmetric 3 × 3 matrix with the
eigenvalues κ1, κ2, 0 and the corresponding eigenvectors t1, t2, n. T measures
the change of the unit normal with respect to a tangent vector t independently of
the parameterization. It can be constructed as

T = PDP−1 ,

with P = [t1, t2,n] and D = diag(κ1, κ2, 0).
The Gaussian curvature K and the mean curvature H are defined as the prod-

uct and the average of the principal curvatures, respectively,

K = κ1κ2 = det(W) , and H =
κ1 + κ2

2
= 1

2
trace(W). (3.6)

The mean curvature can alternatively be expressed as the (continuous) average of
the normal curvatures

H =
1

2π

∫ 2π

0

κn(φ)dφ . (3.7)

3.1.2 Curvature Tensor Estimation
from Discrete Shapes

Estimates of the curvature tensor on polygonal meshes are applied in a variety
of applications ranging from the detection of surface defects to the detection of
features. Many techniques have been proposed (see, e.g., [Petitjean 2001] for a
recent survey), in this section we provide an overview of different approaches.

In order to estimate the curvature tensor at a vertex a certain neighborhood of
this vertex is considered, typically its 1-ring. A common approach is to first dis-
cretize the normal curvature along edges. Given is an edge (i, j), vertex positions
xi, xj , and the normal ni, then

κij = 2
(xj − xi)ni

‖xj − xi‖2
(3.8)

provides an approximation of the normal curvature at xi in the tangent direction
which results from projecting xi and xj into the tangent plane defined by ni. This
expression can be interpreted geometrically as fitting the osculating circle inter-
polating xi and xj with normal ni at xi (cf. [Moreton and Séquin 1992]). Alter-
natively, the equation can be derived from discretizing the curvature of a smooth
planar curve (cf. [Taubin 1995]). With estimates κij of the normal curvature for
all edges incident to vertex i, Euler’s theorem (3.5) can be applied to relate the
κij to the unknown principal curvatures (and principal directions). Then approx-
imates to the principal curvatures can be obtained either directly as functions of

16 Chapter 3: Discrete Curvature Computation and Applications

the eigenvalues of a symmetric matrix ([Taubin 1995, Page et al. 2001]) or from
solving a least-squares problem ([Moreton and Séquin 1992, Meyer et al. 2002]).
Alternatively, Watanabe and Belyaev [2001] apply the trapezoid rule to get a dis-
crete approximation of (3.7), which provides the mean curvature H , the Gaussian
curvature K is obtained from a similar integral over κ2

n, and the principal curva-
tures are then obtained from (3.6).

Another class of techniques for curvature tensor estimation locally fits a
smooth parametric surface patch and then derives the differential quantities from
that. This leaves the choice for the surface — typically polynomials of low de-
gree — the geometric quantities to interpolate or approximate — e.g. the vertex
positions in a 1-ring neighborhood — and a projection operator to obtain a param-
eterization — in general the projection into the tangent plane.

A straightforward choice is to consider the quadratic height surface

z(x, y) = 1
2
a20x

2 + a11xy + 1
2
a02y

2 ,

for a local coordinate system spanned by the normal ni (in z-direction) and
two orthogonal tangent vectors (in x- and y-direction) and with origin xi =
0 [Goldfeather and Interrante 2004]. Then the parameters a20, a11, and a02 ob-
tained as a least-squares solution define the Weingarten matrix as W =

[
a20 a11

a11 a02

]
.

This can be interpreted as estimating the normal curvature from parabolas rather
than circles (as with (3.8)) and then solving a least-squares system like in
[Moreton and Séquin 1992].

Welch and Witkin [1994] apply a quadratic Taylor polynomial of different
form, namely

f(u, v) = fuu + fvv + 1
2
u2fuu + fuvuv + 1

2
v2fvv .

The coefficients of the local least-squares approximating polynomial are the first
and second order partials and hence define the fundamental forms. For robustness
reasons, an exponential map is used as projection operator rather than a simple
projection to the tangent plane. Numerical tests in [Rössl and Kobbelt 1999] back
up this choice, moreover the exponential map can be assumed to be nearly iso-
metric.

Most recently, Goldfeather and Interrante [2004] propose the use of a cubic
approximation scheme which takes into account vertex normals in the 1-ring. As
the normals themselves are local estimates, this can be interpreted as enlarging the
neighborhood to a 2-ring. This leads again to a least-squares problem of finding
the coefficients of the cubic height surface

z(x, y) = 1
2
a20x

2 + a11xy + 1
2
a02y

2 + a30x
3 + a21x

2y + a12xy2 + a03y
3 . (3.9)

3.2 Normal Based Estimation of the Curvature Tensor 17

Note that the Weingarten matrix is obtained entirely from the quadratic terms in
the same way as before.

In general, least-squares methods may suffer from degenerate cases — even
for reasonable geometric configurations — which lead to ill-conditioned system
matrices. In [Welch and Witkin 1994] the polynomial basis is successively re-
duced in such cases. An alternative is to provide more samples e.g. from lin-
ear interpolation. Cazals and Pouget [2003] discuss the patch fitting approach
from an approximation theory point of view including robustness and numerical
issues. For high-quality and consistent estimation of curvatures and their deriva-
tives, Ohtake et al. [2004] apply a (rather expensive) global fitting of an implicit
surface to the surface mesh.

In contrast to the previously mentioned techniques, tensor averaging methods
estimate the curvature tensor as an average over a certain region of a polyhedral
mesh. Cohen-Steiner and Morvan [2003] derive the curvature tensor building
upon the theory of normal cycles. This work includes a proof of convergence un-
der certain sampling conditions based on geometric measure theory. The curvature
tensor is defined at each point along an edge, and all contributions are integrated
over a small region (see also [Alliez et al. 2003]). Most recently, Hildebrandt and
Polthier [2004] applied a similar discrete curvature measure.

An interesting technique is proposed in [Rusinkiewicz 2004]: The directional
derivatives of the normal Wt̄ = ∂

∂t̄
n are expressed as finite differences for every

edge of a triangle. The resulting system of 3 × 2 = 6 equations is set up from the
vertex positions (in parameter space) and normals and then solved for the three
unknowns of the Weingarten matrix W in least-squares sense. The tensors which
are obtained per triangle are transformed to a common coordinate system to get a
per-vertex average over the 1-ring. The algorithm can be applied with only slight
modifications to compute curvature derivatives from the prior result.

3.2 Normal Based Estimation of the
Curvature Tensor

3.2.1 Central Idea

The approaches listed above have in common that they target at and yield
discrete estimations of the curvature tensor in the vertices of the mesh.1 In
[Theisel et al. 2004b], we propose an alternative approach to estimating the cur-
vature tensor: instead of computing it per vertex, we do the estimation per tri-
angle. We consider each triangle of the mesh (together with the normals in its

1The first step in [Rusinkiewicz 2004] can be interpreted as an exception.

18 Chapter 3: Discrete Curvature Computation and Applications

vertices) independently and compute the curvature tensor as a smooth function on
the triangle. The basic idea for doing so comes from the well-known concept of
Phong-shading [Phong 1975] (see also e.g. [Foley et al. 1996]): given a triangle
of a mesh together with its vertex normals, two linear interpolations are applied.
The linear interpolation for the vertices gives the current location, while the linear
interpolation of the vertex normals gives the normal for the illumination model.
Although a certain error is taken into account — the normal from the piecewise
linear surface generally differs from the linearly interpolated normal — this ap-
proach has been proven to produce smooth-looking representations of meshes.

Bearing in mind that the curvature tensor of a smooth surface is completely
defined by its first order partials and the first order partials of its normals, we
can use the idea of Phong shading to get an estimation of the curvature tensor
on a single triangle: We use the linear interpolation of the vertices to get the
surface and its first order partials, while the normals and its first order partials are
obtained from the linearly interpolated vertex normals. Similar to Phong shading,
this introduces a certain error which is due to the application of two different linear
interpolations. However, we show that this error can compete with the errors of
other estimation schemes of the curvature tensor.

Rusinkiewicz [2004] similarly takes into account isolated triangles. However,
this recent approach is very different in its central idea and motivation. It defines
the curvature tensor as a constant estimate per triangle rather than as piecewise
smooth function. And from a technical point of view our algorithm does not re-
quire the solution of linear systems or a coordinate transform for averaging around
a vertex.

3.2.2 Normal Based Estimation of T

The new approach we present here considers only a single (non-degenerate) trian-
gle with the vertices x0, x1, x2, and the corresponding (not normalized) normals
n0, n1, n2. Then we can obtain a point and a normal on the triangle by applying a
linear interpolation of xi and ni respectively. We describe these linear interpola-
tions both in barycentric coordinates (λ0, λ1, λ2) and in local cartesian coordinates
(u, v) with the origin x0 and the base vectors x1 − x0 and x2 − x0:

x̃ = x̃(λ0, λ1, λ2) = λ0 x0 + λ1 x1 + λ2 x2

= x̃(u, v) = x0 + u (x1 − x0) + v (x2 − x0)

ñ = ñ(λ0, λ1, λ2) = λ0 n0 + λ1 n1 + λ2 n2 (3.10)
= ñ(u, v) = n0 + u (n1 − n0) + v (n2 − n0).

The conversion between both coordinate systems is a simple affine transformation.

3.2 Normal Based Estimation of the Curvature Tensor 19

The main idea now is to use x̃ and ñ to get the necessary vectors xu, xv, nu,
and nv to compute T. We compute the normalized normal n and its derivatives as

n(u, v) =
ñ

‖ñ‖ , nu = Dun , nv = Dvn . (3.11)

For the partials of the surface we get

x̃u(u, v) = Dux̃ = x1 − x0 , x̃v(u, v) = Dvx̃ = x2 − x0 .

T is completely defined by xu, xv, nu, and nv (Figure 3.1a). For these vectors,
the following statements hold
(i) xu, xv, nu, nv are coplanar, i.e. they are in the tangent plane of x.
(ii) nuxv = nvxu.
(To see this, consider the partials of the equations n2 = 1, nxu = 0, and nxv = 0.)

In order to fulfill (i), we map x̃u and x̃v into the plane defined by nu and nv:

xu = x̃u − (n x̃u)n , xv = x̃v − (n x̃v)n. (3.12)

Figure 3.1b gives an illustration. Now we have all ingredients to compute T: We

xu

xv

nv

nu

n

(a)

xu

xv

nv

nu

n

xv

xu

~

~

n0

n1

n2

x0

x1

x2

(b)

Figure 3.1: (a) xu, xv, nu, nv completely define T. (b) computing xu, xv, nu, nv on a
triangle.

compute the elements of I and II and from this the Weingarten matrix W (i.e.
apply 3.1-3.3) and then determine the principal curvatures as eigenvalues of W.
Doing so, we obtain closed formulations of the Gaussian curvature K and the

20 Chapter 3: Discrete Curvature Computation and Applications

mean curvature H in barycentric coordinates:

K(λ0, λ1, λ2) =
det(n0,n1,n2)

ñ2 · (ñ m̃)
(3.13)

H(λ0, λ1, λ2) =
1

2

(ñ h)

‖ñ‖ · (ñ m̃)
(3.14)

with

m̃ = r2 × r0 = r0 × r1 = r1 × r2

h = (n0 × r0) + (n1 × r1) + (n2 × r2)

and

r0 = x2 − x1 , r1 = x0 − x2 , r2 = x1 − x0.

This way, ñ is the (not normalized) linearly interpolated normal as defined before,
and m̃ is the (not normalized) triangle normal (i.e. ‖m̃‖=

1
2
area(x0,x1,x2)).

Appendix A provides a derivation of these formulas and reveals an elegant
expression for the Weingarten matrix W̃.

3.2.3 Properties of the Estimation of T

We summarize properties if the normal based estimation of T as described in the
previous section:

Theorem 3.1 (properties of normals based curvature estimation)
Given is a triangular mesh which approximates a smooth surface, and the curva-
ture tensor T is estimated as described in Section 3.2.2. The following properties
hold:

(i) T converges to the curvature tensor of the smooth surface when refining the
mesh.

(ii) T depends on the length of the vertex normals.

(iii) In general, T is not symmetric, and the estimated principal directions t1

and t2 are not perpendicular.

(iv) T is not continuous across edges of the triangulation.

3.2 Normal Based Estimation of the Curvature Tensor 21

In order to show (i), we consider the cubic height surface (3.9). Let the coefficients
a20 = κ1 and a02 = κ2 be certain constants, a11 = 0, and a30,a21, a12, a03 are
certain scalar functions of (x, y) describing the higher order terms in the Taylor
approximation (3.9). Note that every surface can be locally represented in this
form. For this surface, the curvature tensor is well-defined at (x = 0, y = 0):

T(0, 0) = diag(κ1, κ2, 0) .

Now we consider a triangulation of (3.9) and repeatedly refine it in the neighbor-
hood of (x = 0, y = 0). In fact, we consider a triangle of the vertices

xi = (t xi , t yi , z(t xi, t yi))
>, 0 ≤ i ≤ 2 , (3.15)

where (x0, y0), (x1, y1), (x2, y2) are certain constants building a non-degenerate
triangle in the domain. Since x0, x1, x2 are on the surface defined by (3.9), we
compute n0, n1, n2 as the surface normals of (3.9):

ni = (−zx(t xi, t yi) , −zy(t xi, t yi) , 1)>, 0 ≤ i ≤ 2 .

Note that for t → 0 the triangle (x0,x1,x2) collapses to the single point (0, 0, 0)>

with the normal (0, 0, 1)>.
Now we compute T(λ0, λ1, λ2) as described before for the triangle defined by

(3.15) and (3.16). We are interested in the behavior of T(λ0, λ1, λ2) for t → 0.
Applying some algebra yields

lim
t→0

T(1, 0, 0) = lim
t→0

T(0, 1, 0) = lim
t→0

T(0, 0, 1)

= diag(κ1, κ2, 0) = T(0, 0) (3.16)

and hence proves (i). We refer to Appendix A for a formal proof of (3.16).
Before we discuss the remaining properties (ii)-(iv), we explain our visual-

ization of T: Given a triangle (x0,x1,x2) with vertex normals (n0,n1,n2), we
represent K and H as focal surfaces (see [Hagen et al. 1992]):

xK(λ0, λ1, λ2) = x̃(λ0, λ1, λ2) + sK · |K(λ0, λ1, λ2)| · n(λ0, λ1, λ2)

xH(λ0, λ1, λ2) = x̃(λ0, λ1, λ2) + sH · |H(λ0, λ1, λ2)| · n(λ0, λ1, λ2)

where sK and sH are global positive scaling factors controlling the distance be-
tween the mesh and the focal surfaces. In order to visualize xK and xH , we
only show their boundary curves in a green (for positive K/H) or red (for nega-
tive K/H) color.2 The estimated principal directions t2 and t2 at a certain point
x̃(λ0, λ1, λ2) are visualized as line segments

(x̃ − sLti , x̃ + sLti), i = 1, 2,

2Here, we prefer such a geometric representation of K and H to a color coding on the surface
(which is the most common approach) because the human eye reacts far more sensitive to small
perturbations in shape than in color.

22 Chapter 3: Discrete Curvature Computation and Applications

where sL is a positive global scaling factor. Figure 3.2 (a) shows an example for a
single triangle.

x0

x1

x2

n0

n1

n2

K

H

(a)

n0

n0

n0

(b)

Figure 3.2: (a) A single triangle with visualizations of H , K (focal surfaces) and t1/t1

in six sample points. (b) Changing the length of n0 changes H , K and t1/t2, the figure
shows three configurations. Here K is negative (red surface), and H is positive (green
surface).

Property (ii) is obvious from the definitions, where the given vertex normals
are not normalized. Figure 3.2 (b) illustrates different curvature values for chang-
ing the length of one normal n0.

(a) (b)

Figure 3.3: (a) K across two adjacent triangles is not continuous. (b) Estimating T at a
vertex xi. Left: Each triangle sharing xi gives another T. Right: principal directions of
the averaged T.

In order to see why (iii) applies, we recall the definition of the second funda-
mental form (3.2) and the Weingarten matrix (3.3). For smooth surfaces we have
xuvn = xvun or −nuxv = −nvxu. This does not hold here, in fact we get instead

W̃ =
1

EG − F 2

[
eG − f1F f2G − gF
f1E − eF gE − f2F

]
,

where f1 = xuvn and f2 = xvun. Hence, T is not symmetric in general, and
consequently t1 and t2 are not necessarily perpendicular.

3.3 Evaluation of Curvature Estimation Methods 23

(iv) is obvious as we consider triangles independently of each other. Fig-
ure 3.3 (a) illustrates this. Both, (iii) and (iv) indicate an error in the estimation of
T. However, our numerical tests in the next section show that this error can com-
pete with errors of other estimation techniques, especially if averages are applied
to compute T at a vertex (see Figure 3.3 (b) and next section).

3.3 Evaluation of Curvature Estimation
Methods

We evaluate several methods for estimating the curvature tensor to rate the normal
based approach described in the previous section. The numerical tests apply dis-
crete, piecewise linear approximations of well-defined smooth parametric surfaces
such that the exact curvature tensor is available at every vertex. The comparison
between the exact and the estimated quantities gives a measure of the quality of
the estimation. We consider a torus and the test surface used by Goldfeather and
Interrante [2004]3. Both surfaces cover a variety of different curvature configura-
tions.

Triangulations of Test Surfaces

Most estimators give good results for rather regular triangulations, while
for irregular triangulations their quality tends to drop significantly (see e.g.
[Goldfeather and Interrante 2004]). We use two different triangulations for each
of the two test surfaces with different types of irregularity. The first triangula-
tion places the vertices on a regular grid in the domain while the triangulation of
each grid cell is chosen randomly. This way the resulting mesh contains vertices
with varying valences ranging from four to eight. For the second triangulation
we apply a perturbation of the grid points in the parameter domain, then a (2D-)
Delaunay triangulation is applied. This way we obtain an irregular triangulation
where the majority of the vertices reaches the average valence six. Figure 3.4 illus-
trates and labels the discrete approximations of the surfaces used for the tests. The
meshes consist of 20.000 (torus) and 10.000 (Goldfeather) triangles, respectively.
Obviously, for the normal based curvature tensor estimation, the quality of T

strongly depends on the quality of the available normals. If the underlying surface
is known in an implicit form, the “perfect” normals (both in direction and length)
are available by considering the gradient. In case of an available parametric de-
scription of the underlying surface, the exact normal direction can be obtained as

3In fact, we consider only the middle part of this surface since the joints to the top and bottom
parts are not curvature continuous.

24 Chapter 3: Discrete Curvature Computation and Applications

a)

b)

c)

d)

Figure 3.4: The four test triangulations: a) Torus 1. b) Torus 2. c) Goldfeather 1. d) Gold-
feather 2.

well. However, in most cases they have to be estimated from a discrete approx-
imation. A number of approaches exist (see e.g. [Max 1999, Meyer et al. 2002]
and the references therein). For our computations we used the simplest weight-
ing triangle normals by the triangle areas (also applied in [Taubin 1995]), which
already provides good results.

Estimation-per-Vertex Setting

In order to find a fair comparison between the described normal based estimation
and pre-existing approaches, we carefully have to choose an appropriate setup
because of the different nature of the estimators: Other methods yield discrete
estimations of T in the vertices, while our method gives continuous functions of
T inside each triangle (with discontinuities at the boundaries and the vertices).
We make both approaches comparable and adapt our method to compute T in
every vertex of the mesh. In general, our method gives n different estimations of
T for a vertex with a valence of n, i.e. one for each attached triangle. We get a
unique T for every vertex from computing the (uniformly weighted) average of
all estimations of T in this vertex. Figure 3.3 (b) illustrates this setting.

Error Measures

We require a distance metric of the estimated T for the evaluation. We do not con-
sider T directly but extract the Gaussian curvature, mean curvature and principal
directions and provide distances based on these measures. In particular, we com-
pute the distances of the Gaussian curvature between two estimations (or between

3.3 Evaluation of Curvature Estimation Methods 25

one estimation and the exact values) as

distK =
1

N

N∑

i=1

(K1(i) − K2(i))
2 ,

where N is the number of vertices of the mesh and K1(i), K2(i) are estimations
of K at the i-th vertex using the two methods to be compared. Distances distH
between estimates H1 and H2 of the mean curvature are defined analog.

We define the distance of estimates t1, t2 and t′1, t′2 of the principal directions
in a vertex i as

distP (i) = 1
2
min {arccos |t1t

′
1| + arccos |t2t

′
2| , arccos |t1t

′
2| + arccos |t2t

′
1|} .

This gives the average angle deviation between the corresponding directions, and
yields

distP =
1

N

N∑

i=1

distP (i)

for the global distance of the principal directions.

Evaluation

We compare the normal based estimation with three well-established estimation
methods which can be considered as being among the most powerful methods
which are currently available (cf. [Goldfeather and Interrante 2004]). In fact, we
compare the following estimations with the exact curvature values:

• The cubic fitting ([Goldfeather and Interrante 2004]) incorporating esti-
mated normals (in the following called CF),

• the quadratic fitting ([Goldfeather and Interrante 2004]) (QF),

• the quadratic fitting ([Welch and Witkin 1994]) (QT),

• the normal based estimation using the exact (perfect) normals (NP), and

• the normal based estimation using estimated normals by a weighted average
of the triangle normals (NE).

For each of the four test meshes we consider five versions: the original one and
four with uniform noise added. The noisy versions are created by translating each
vertex in normal direction, where the length of the displacement is a chosen ran-
domly in the four intervals [0, s · d

100
], where s ∈ {0, 1

2
, 1, 2, 3} and d is the length

of the bounding box diagonal. Figure 3.5 shows error plots for the torus 1 data

26 Chapter 3: Discrete Curvature Computation and Applications

Figure 3.5: Torus 1: Error (vertical axes) against amount of noise (horizontal axes).

set. The horizontal axes of the diagrams show the amount of noise s d, the vertical
axes show the errors between the estimation and the exact values for Gaussian
curvature, mean curvature and principal directions, respectively. The results for
the five different estimation techniques are shown in different colors. The figure
indicates that the normal based estimation outperforms the other techniques if the
exact normals are available (NP), e.g. if an implicit surface is sampled. If the
normals have to be estimated, our method (NE) yields similar results as the cubic
fitting (CF). In fact, in most cases NE performs slightly better than CF. The two
quadratic fitting methods QF and QT show a rather similar behavior revealing a
larger error than NE and CF. This is due to the fact that NE and CF incorporate
a 2-ring to estimate T while QT and QF work only on a 1-ring around the vertex.
Figure 3.6 shows the error plot for the torus 2 data set using the same setup as

Figure 3.6: Torus 2: Error (vertical axes) against amount of noise (horizontal axes.

for Figure 3.5. We obtain a similar result as for torus 1: NP generally performs
best, CF and NE have a similar performance (where NE is slightly better), while
QT and QF tend to produce the largest error. Figure 3.7 visualizes the Gaussian
curvature as focal surfaces over the triangles (see Section 3.2.3) for torus 2 with
added noise (s = 1

2
), comparing the exact result with the different estimations.

Here, we also compare the normal based estimation for independent triangles to
the per-vertex average. The figure clearly shows that NP comes closest to the cor-

3.3 Evaluation of Curvature Estimation Methods 27

a) b) c) d)

e) f) g) h)

Figure 3.7: Focal surfaces of Gaussian curvature for torus 2: a) exact, b) CF, c) QF,
d) QT, e) NP (independent triangles), f) NP (averaged at vertex), g) NE (independent
triangles), and h) NE (averaged at vertex).

rect curvature plot, that CF and NE have a similar behavior, and that QF and QT
introduce the largest errors. A similar statement holds for Figure 3.8 which shows

a) b) c) d)

e) f) g) h)

Figure 3.8: Focal surfaces of mean curvature for torus 2: a) exact, b) CF, c) QF, d) QT,
e) NP (independent triangles), f) NP (averaged at vertex), g) NE (independent triangles),
h) NE (averaged at vertex).

a collection of mean curvature plots for the same data set.
Figure 3.9 shows the error plots for the Goldfeather 1 data set with the same

setup as in Figures 3.5 and 3.6. Figure 3.10 does so for the Goldfeather 2 mesh.
Both plots reveal a rather similar behavior as observed for the tori: NP performs
best, NE and CF have similar errors, while QF and QT give the largest error
for slightly noisy data. The same trend can be seen in the curvature plots of the
Goldfeather 2 surface with added noise (s = 1

2
). Figures 3.11 and 3.12 show

focal surfaces of the Gaussian curvature and the mean curvature, respectively,
while Figure 3.13 visualizes the principal directions.

28 Chapter 3: Discrete Curvature Computation and Applications

Figure 3.9: Goldfeather 1: Error (vertical axes) against amount of noise (horizontal axes).

Figure 3.10: Goldfeather 2: Error (vertical axes) against amount of noise (horizontal
axes).

Finally, we apply our normal based estimation to a large real world data set.
Figure 3.14 (a) shows the triangular which was mesh obtained from a range scan of
the wooden sculpture Freezing Old Woman (Frierende Alte, 1937) by the German
expressionist sculptor Ernst Barlach (1870–1938). The model consists of about
1.5 million triangles, and it took 2.9 seconds to compute the curvature tensor at
each vertex on a 3 GHz Intel Pentium 4 computer. (It was acquired by Hen-
drik Lensch, Holger Theisel, and Heiko Wanning with kind permisson of Volker
Probst, Ernst Barlach foundation, Güstrow.) Figure 3.14 (b) shows a closeup of
the focal surface of the mean curvature for the region near the nose and right
eye. The principal directions are visualized for a region of two fingertips in Fig-
ure 3.14 (c).

3.4 Detection of Feature Lines

A typical application for discrete curvature estimates is the detection of surface
features, e.g. for recovering structural information from a digitized shape in re-
verse engineering. In the following we discuss an approach to surface segmenta-
tion based on morphological operators (cf. [Rössl et al. 2000a, Rössl et al. 2001]),

3.4 Detection of Feature Lines 29

a)
b)

c) d)

e) f) g) h)

Figure 3.11: Focal surfaces of Gaussian curvature for Goldfeather 2: a) exact, b) CF, c)
QF, d) QT, e) NP (independent triangles), f) NP (averaged at vertex), g) NE (independent
triangles), h) NE (averaged at vertex).

which is effective, efficient and simple in implementation.

3.4.1 Surface Segmentation and Feature Detection

We focus on recovering structural information from densely sampled triangu-
lated surfaces potentially with some stochastical noise as they are typically ob-
tained from digitizing real-world objects. Deriving structural information is also
known as segmentation, a tool which is crucial for the reverse engineering process
where suitable computer models are created from surfaces of physical objects. An
overview on this topic is given e.g. in [Várady and Benkő 2000].

There are two generic approaches to surface segmentation. The first one is re-
gion growing or also called face-based approach [Várady et al. 1997]. A small
seed region is grown by adding neighboring regions that are similar with re-
spect to some flatness criterion e.g. [Isselhard et al. 1998, Sapidis and Besl 1995].
Besides the bottom-up region growing there is also a top-down approach. In
[Várady and Benkő 2000] a sophisticated cascade of surface fitting steps is used
that finally decomposes a surface region in the last step when no surface primi-
tive could be determined for this region. An initial segmentation is obtained by a
preprocessing step (planar filtering) similar to the second approach below.

This second approach is called edge-detection or edge-based. Instead of
finding explicitly the different surface regions, the boundaries between these re-
gions are estimated e.g. by assuming rapid changes of angular variation at edges
[Hoschek and Dankwort 1996]. Edge detection schemes may suffer from noise
and poor sampling in sharp surface regions. With our approach, we try to over-
come some of these difficulties:

30 Chapter 3: Discrete Curvature Computation and Applications

a) b) c) d)

e) f)
g) h)

Figure 3.12: Focal surfaces of mean curvature for Goldfeather 2: a) exact, b) CF, c) QF,
d) QT, e) NP (independent triangles), f) NP (averaged at vertex), g) NE (independent
triangles), h) NE (averaged at vertex).

a) b) c) d)

e) f) g) h)

Figure 3.13: Principal direction for Goldfeather 2: a) exact, b) CF, c) QF, d) QT, e) NP
(independent triangles), f) NP (averaged at vertex), g) NE (independent triangles), h) NE
(averaged at vertex).

We use an arbitrary edge detection scheme that is based on discrete surface
curvature information and a conservative criterion for extracting “feature regions”.
The extracted regions will not represent the desired boundaries or surface features
exactly, but most of these feature lines can be expected to lie inside the detected
regions. The wide feature regions are narrowed down to feature lines that approx-
imate the structural information and which can be used as natural boundaries for
different surface regions. Figure 3.15 illustrates this procedure.

In order to implement this skeletonization process, morphological operators
are generalized from digital image processing to triangle meshes. These operators
then work on Boolean valued functions on arbitrary meshes rather than on regular
domains. Dilation and erosion are used for reducing noise on the feature regions
while a skeletonization operator is introduced for shrinking these regions down to
feature lines. For constructing consistent boundary curves, a more sophisticated
graph structure is extracted from the feature lines representing the network of

3.4 Detection of Feature Lines 31

(a) (b) (c)

Figure 3.14: (a) Large data set: Ernst Barlach Freezing Old Woman (1.5 million trian-
gles). (b) Focal surface of mean curvature around nose region. (c) Principal directions for
region of two fingertips.

(a) (b) (c)

Figure 3.15: The figures show a resampled version of the well-known benchmark ob-
ject from [Hoschek and Dankwort 1996]. The maximum curvature on the mesh (a) is
thresholded to obtain the initial feature regions (b). The (smoothed) feature lines are then
extracted from these regions by skeletonization (c).

boundary curves.
The operators used are simple and can be implemented very efficiently be-

cause they only rely on basic operations on the triangle mesh data structures. Of
course there is a tradeoff between simplicity and the capabilities of our algorithm
as will be explained below.

3.4.2 Setup
We assume that the vertex positions are more or less uniformly scattered over the
surface such that the edge lengths do not vary too much and that the connectivity
is rather regular. This is usually the case for digitized shapes, otherwise the input
mesh should be resampled or remeshed in a way that the condition is fulfilled (see

32 Chapter 3: Discrete Curvature Computation and Applications

for instance Vorsatz et al. [2001, 2003a, 2003b]).
This is necessary for our morphological operators to work reasonably, as they

are topological4 operators. As a consequence, a geometric interpretation is only
valid if there is some correlation, i.e. edge lengths are approximately constant.
Working just on the mesh topology results in a very efficient algorithm, much in
the spirit of morphological operators in digital image processing.

Feature regions are detected from discrete curvature analysis, i.e. curvature
information is used to classify feature and non-feature vertices. This may be done
with a simple but robust thresholding operation on e.g. the maximum curvature
at a vertex (cf. Figure 3.15) or a more sophisticated scheme for ridge detec-
tion such as [Lukács and Andor 1998, Watanabe and Belyaev 2001]. Either way,
the criterion for feature vertices is relaxed such that wide feature regions are ex-
tracted.

Consider a triangle mesh with vertices {1, . . . , N} and edges E ⊂ K. Then
we describe the feature region as the vector F ∈ {0, 1}N with

Fi =

{
1, i is a feature vertex,

0, else.

Vertices i with Fi = 1 are called marked. For convenience we introduce an
alternative notation and associate F the set

IF := {i ∈ {1, . . . , N} |Fi = 1} ,

with IF := {1, . . . , N} \ IF.
There is only one operation on the triangle mesh that is needed: the enumer-

ation of the 1-neighborhood of a vertex. We define this neighborhood relation
as

nhd(i) := {i} ∪ {j|(i, j) ∈ E} .

Here, we restrict ourselves to 1-neighborhoods. A recursive definition of d-
neighborhoods is discussed in [Rössl et al. 2001], these enlarged neighborhoods
have been applied alternatively to set up local color tables for visualization in
[Rössl and Kobbelt 1999].

3.4.3 Morphological Operators and Skeletonization
Mathematical morphology is a common tool in digital image analysis. Morpho-
logical operators are particularly interesting and often preferred to convolution
operators because of their simplicity and the fact, that they can be efficiently im-
plemented in hardware (cf. [Haralick et al. 1987]).

4Here and in the following, topology refers to the mesh connectivity graph.

3.4 Detection of Feature Lines 33

We adapt morphological operators to operate on the binary feature vector F.
As we are using discrete curvature for setting up the initial feature region, high
frequency noise may be a problem. Apart from some prefiltering of the input data,
we use the dilation and erosion operators to suppress “classification noise” in F.

The classical definitions of dilation and erosion are based on addition in a
(m-dimensional) Euclidean vector space Em. For instance, the dilation operator
generates from two given sets A,B ⊂ Em the union A ⊕ B = {c ∈ Em | c =
a + b, a ∈ A, b ∈ B}. Here A is the image or pattern to be dilated, and B denotes
the so called structure element. Note that we are dealing with binary values in
contrast to gray scale operators as used e.g. in [Hoschek and Dietz 1998] for edge
detection.

Such definitions for a vector space En cannot be used directly on general trian-
gle meshes. Since the connectivity of the mesh is irregular, there is no reasonable
definition for an addition. Therefore we generalize morphological operators for
triangle meshes — even though in a limited way, i.e. only for special types of
structure elements.

(a) (b) (c)

Figure 3.16: (a) Initial feature region (close up view from Figure 3.15), after dilation (b),
and subsequent erosion (c). This illustrates an application of the closing operator.

Dilation and Erosion

We define the dilation and erosion operators as

dilate(IF) = {j | ∃i ∈ IF : j ∈ nhd(i)} , and
erode(IF) = {j | nhd(j) ⊆ IF} .

This definition resembles the classical one for a Euclidean vector space with the
restriction to a disk-like structure element {(x, y) | − 1 ≤ x, y ≤ 1}. (As one sin-
gle structure element nhd will be employed, we use a unary notation for the oper-
ators.) The dilation operator adds vertices to the feature, i.e. #dilate(IF) ≥ #IF.

34 Chapter 3: Discrete Curvature Computation and Applications

So IF is grown in a way roughly preserving its “shape” on the mesh. The dilation
operator can therefore be effectively used to fill “holes” of unmarked vertices in-
side and at the boundary of the feature. In order to reverse the effect of dilation
and to, ideally, recover the original shape, the erosion operator is used to “shrink”
IF as if it were to cut off undesired branches.

Opening and Closing

As indicated, dilation and erosion remove classification artifacts that may be left
even after prefiltering the geometry, but they do not preserve the overall size of the
feature. This can be avoided by combining both operators. First eroding and then
dilating IF will cut branches while preserving the original shape. The combined
operator is called opening. Furthermore, small isolated regions of marked vertices
are just removed as small branches. By changing the order of the operations we
obtain the closing operator that fills holes in the interior of the feature and cuts
along the boundary.

Opening and closing effectively reduce noise on the feature region IF. Fig-
ure 3.16 shows the effects of closing. Both operators are very easy to implement,
and can be applied efficiently. The resulting feature region approximately pre-
serves the shape of the initial feature, and thus it is still a region rather than lines,
i.e. it is too wide to be useful. So further operators are defined for narrowing and
extracting feature lines.

Skeletonization

Here, feature lines are polygons defined by the triangle edges between feature ver-
tices. A suitable removal criterion (see below) ensures that there are no triangles
in the mesh that contain more than two such feature vertices with the exception of
regions where multiple feature lines meet.

For the extraction of these feature lines, we use a new skeletonization or thin-
ning algorithm similar to techniques used in digital image processing (see e.g.
[Gonzales and Woods 1993]). Mathematically, the skeleton of the feature region
can be defined via the medial axis transformation. The skeleton or medial axis
of a region R with boundary B contains all points in R that have more than one
single closest neighbor in B. This can be imagined as the set of centers of the
largest disks that lie completely in R and are not included in any larger disk in R.

The medial axis transformation is relatively expensive to compute even for
a 2D image. This is why iterative algorithms have been developed which effi-
ciently produce a reasonable approximation of the skeleton. These thinning or
skeletonization algorithms typically thin the region by peeling off one layer after
another until the skeleton finally remains.

3.4 Detection of Feature Lines 35

We propose a similar technique for the problem of refining the feature regions
on a triangle mesh. This can be interpreted as a controlled erosion. So we will
obtain the topological medial axis rather than the geometric one. Defining an ad-
ditional criterion, whether a marked vertex may be removed from the feature or
not, is the essential difference between the skeletonization and the erosion oper-
ator. This guarantees topology preservation. Hence, we define a special class of
vertices that must not be removed from the feature vector F:

Consider a clockwise traversal of the n = #nhd(i) − 1 direct neighbors of
vertex i. Let (vi,ν), 0 ≤ ν ≤ n be the ordered sequence of these neighbors, and let

ci :=
∑

0≤ν<n

|Fvi,ν
− Fvi,ν+1 mod n

| .

We define a vertex i as complex iff Fi = 1 and ci ≥ 4. The number ci is called the
complexity of i.

(a) (b) (c)

Figure 3.17: Results after skeletonize (a), preprune (b) and prune (c).

In order to determine whether a vertex i is complex, one enumerates its neigh-
bors vi,ν while counting the number ci of transitions from marked to unmarked
vertices and vice versa. The resulting complexity ci is always even. Complex
vertices are either part of the feature line (arc, ci = 4) or they belong to a node,
where several of such lines meet (ci > 4). For practical reasons, it might be useful
to define all outer boundary vertices of the mesh as complex, i.e. the boundary of
the surface is always part of the feature lines.

We call a vertex i ∈ IF a center if nhd(i) ∈ IF, a marked vertex with all its
neighbors marked. Based on the definitions of complex vertices and centers we
define the skeletonization procedure as

Algorithm 3.1 (skeletonization step) skeletonize(IF) :=

1. Let IF′ := IF.

36 Chapter 3: Discrete Curvature Computation and Applications

2. For all i ∈ IF′ which are centers w.r.t. IF′,
enumerate all marked neighbors j ∈ IF, (i, j) ∈ E

If j is neither center nor complex w.r.t. IF′ then IF′ := IF′ \ j

3. Output IF′.

The operator skeletonize is iteratively applied to the feature set IF. With every
iteration the outmost layer of feature vertices is peeled off. These vertices can
be characterized as being part of 1-rings around centers while not being centers
themselves, which is equivalent to erosion. By additionally respecting complex
vertices, the resulting thin parts of the feature do not vanish, but will form the final
feature skeleton. The topology of the feature region is preserved, and connected
parts will remain connected.

It is obvious, that IF′ := skeletonize(IF) ⊆ IF. If there are either no centers
in IF or if all neighbors to center vertices are complex, then IF′ = IF, and the
skeletonization terminates. As the number of centers can only decrease with every
iteration, the algorithm always terminates after a finite number of iterations. Note
that the number of complex vertices usually increases with every iteration.

The resulting feature contains complex vertices and vertices that cannot be re-
moved, because they do not have a center as neighbor. These are vertices at the
end of feature-line-branches and vertices which are close to the feature lines and
hence violate the previously demanded property of a maximum of two feature ver-
tices per triangle in “non-node” regions (cf. Figures 3.18/3.19 (a)). Both classes
of vertices are disturbing and will be eliminated in the next step.

The first so called pre-pruning step will remove the second class of vertices
so that the skeleton will consist of feature lines only. Therefore, all non-complex
vertices are removed from the feature set unless they are not situated at the end
of branches, i.e. they have more than one marked neighbor. Note that vertices
are removed iteratively, one after another, where each removal may render other
feature vertices complex. This way configurations of complex vertices as shown in
Figure 3.19 (a) are handled correctly. If there are no more vertices to be removed
the pre-pruning stops.

The resulting feature set represents the feature lines just as demanded (cf.
Figures 3.18/3.19 (b)), but there are still small branches that are regarded as
unwanted artifacts. The ends of these branches are the only non-complex ver-
tices, i.e. the class of non-complex vertices which was not removed by pre-
pruning. Now the definition of an iterative pruning scheme which cuts these
branches is simple: in every iteration all non-complex vertices are removed, or
prune(IF) := {i ∈ IF | i is complex}.

Of course this way one cannot clearly distinguish wanted feature lines from
unwanted artifacts. A simple heuristic is that unwanted branches are short, say

3.4 Detection of Feature Lines 37

of length ≤ m vertices. So prune is iterated m times. In order to prevent open
ended feature lines from being shortened, we store the history i.e. the sequence of
removed vertices. So after pruning, we can back off and restore these vertices for
branches of minimum length m. The back-tracking is started from all open ends
(non-complex vertices) which survived the application of prunem. The separation
into two pruning procedures enables the treatment of these feature branches.

The resulting feature lines represent the topological medial axis of the initial
wide feature regions (cf. Figure 3.18/3.19 (c)). They roughly follow the center
of these regions as the mesh is assumed to have very uniform edge lengths allow-
ing a reasonable geometric interpretation. In order to use the feature lines in a
comfortable way and to be able to implement more high-level operations, some
postprocessing will be done for embedding the lines into the mesh structure.

(a) (b) (c)

Figure 3.18: Results after skeletonize (a), preprune (b) and prune (c).

(a) (b)

arc

branch

node loop

linepatch

(c)

Figure 3.19: (a) The preprune operator must not change the feature topology, so only one
non-complex vertex is removed at a time. (b) The non-complex center vertex is considered
to be part of the node. (c) Elements of the high-level graph structure.

38 Chapter 3: Discrete Curvature Computation and Applications

3.4.4 Recovering Structural Information
After skeletonization and pruning, IF represents the wanted feature lines as a set
of vertices. This set is finally used to construct a graph where the feature vertices
are associated with certain elements of that graph. We distinguish between the
following elements (cf. Figure 3.19 (c) and Figure 3.15 for an example):

• Nodes are clusters of complex vertices i with complexity ci > 4. They are
the first elements to be identified by finding a seed vertex for the next node
and then iteratively adding adjacent node vertices. This is repeated until
no more seed vertices can be found. Prepruning may remove non-complex
feature vertices that will cause “holes” in a single node like the center vertex
Figure 3.19 (b). Such vertices that have only node-vertices as neighbors are
considered to be part of the node.

• Arcs are ordered sequences of complex vertices with ci = 4 that start and
end from a node. They are traced from node to node.

• Branches are just like arcs, but open ended feature lines. They start at a
node and end with a non-complex vertex.

• Loops are closed feature lines that do not touch any node.

• The remaining feature vertices — if any — are isolated lines, i.e. feature
lines with two non-complex vertices at the ends.

• All other vertices of the triangular mesh in IF can now be grouped into
patches that are bounded by or include some of the previous elements.

Extracting the different elements in this given order simplifies the implemen-
tation. The new data structure allows more advanced operations on the feature,
e.g. the feature lines can be edited manually, or small patches can be removed by
first marking/filling them and then re-skeletonizing the feature region. Connecting
branches automatically is straightforward for two branches in the same patch.

We summarize that the presented technique extracts feature lines from a wide
feature region which is defined by a preprocessing like thresholding on estimated
discrete curvature quantities. To do so, we apply easy-to-implement and effi-
cient morphological operators and a skeletonization algorithm to suppress “clas-
sification noise” and to extract their topological medial axis. This way the topol-
ogy of the original feature region is preserved, and the result can be used di-
rectly for segmentation or as initial guess e.g. for dynamic techniques like
[Milroy et al. 1997, Lee and Lee 2001] for optimization. Finally, we note the pre-
sented operators are purely based on the mesh connectivity. This makes their

3.5 Line-Art Rendering 39

definition and application simple and efficient. However, these properties can be
traded for more robustness and accuracy by taking into account geometric infor-
mation, e.g. by defining nhd in terms of Euclidean or geodesic distances instead
of topological distance.

3.5 Line-Art Rendering
Discrete curvature information is commonly used for shape visualization. A
demanding case is the rendering of non-photorealistic, artistic line drawings
from digital models. Figure 3.20 motivates this setting opposing discrete lines
of curvature to an artistic illustration. In the following, we briefly provide
some background before we present our contribution. For a complete intro-
duction to non-photorealistic rendering we refer to [Gooch and Gooch 2001,
Strothotte and Schlechtweg 2002].

Figure 3.20: Lines of curvature visualize characteristics of a digital shape (with color
coded maximum curvature). Similarly, intrinsic geometric properties for hand-crafted
line-art drawings used for centuries. The example is a technical sketch from 1778. Such
illustrations provide a high density of clearly perceptible information while also satisfying
aesthetic standards.

3.5.1 Non-Photorealistic Rendering using Lines

A brief Introduction

In contrast to photorealistic images based on physical simulation, non-
photorealistic rendering techniques offer various advantages for printed illustra-
tions. The higher level of abstraction that they provide helps to put emphasis on
the crucial information of an illustration. Abstraction mechanisms available to
designers include levels of detail and focus attention to stress the important parts
of a drawing or enriching an image with additional visual information and effects.

40 Chapter 3: Discrete Curvature Computation and Applications

Typical applications for the use of non-photorealism are e.g. architectural
sketches, illustrations in medical text books or technical manuals, and cartoons.
Many of these applications prefer a very specific technique: line rendering. Here,
a picture consists of monochrome lines or strokes only. An artist may chose be-
tween different line styles or vary line attributes like length, thickness or waviness.
There is a broad spectrum of drawing styles, that have been developed in fine arts
for centuries. Well known examples are silhouette drawings where just the con-
tours of an object are outlined or more sophisticated techniques like engraved
copper plates that have formerly been used for printing or pen-and-ink illustra-
tions.

Apart from the advantage of abstraction or artistic features line drawings also
provide some technical benefits: they can be stored resolution independent or
come with inherent level-of-detail like features for different resolutions. Besides,
such pictures can easily be reproduced on any monochrome media.

Line Drawings

Various computer based techniques for producing line drawings semi-
automatically or even automatically have been developed. There are two basic
approaches: The first one is image based. Here, the user is assisted in converting
a digital grey scale image into a line drawing without having to draw individual
strokes. Pnueli and Bruckstein [1994] define a potential field over an image and
draw equipotential lines of varying density. Salisbury et al. [1994] use predefined
stroke textures to map the tone of the reference image and to produce a pen-and-
ink illustration. This method is improved in [Salisbury et al. 1997] in a way that
the stroke textures are generated automatically from both a set of reference strokes
and an interactively modifiable direction field.

The second approach takes into account the 3D geometry of a scene. Here,
an early step was the use of haloed lines [Appel et al. 1979] that give an im-
pression of depth and the use of different line styles for outline and shading
[Dooley and Cohen 1990]. Winkenbach and Salesin [1994] apply special stroke
textures to render high quality pen-and-ink illustrations from polygonal models.
These stroke textures are created for different materials and resemble hand drawn
strokes. During shading the strokes are mapped to image space together with the
corresponding polygons and are used for tone mapping then. This system was
extended to process free-form surfaces in [Winkenbach and Salesin 1996] where
isoparametric curves are used for rendering, following [Elber 1995]. Such curves
look especially well for surfaces of revolution. Elber [1998] also employs lines
of curvature of parametric surfaces and contour lines of implicit surfaces. By
precomputing these stokes and applying a simple shader even interactiveness is
achieved [Elber 1999]. Praun et al. [2001] take a texture based approach to

3.5 Line-Art Rendering 41

hardware-accelerated real-time hatching. Interrante [1997] uses principal direc-
tion driven strokes to enhance the visualization of isosurface.

Zorin and Hertzmann [2000] generate a discrete direction field over a triangu-
lated (subdivision) surface, which is based on discrete estimates of the principal
directions. In order to reduce noise and to get a pleasant rendering this field is
globally optimized in a second step by minimizing some energy functional. For
the final picture a silhouette drawing is combined with hatches from the filtered
principal directions.

The previously mentioned approaches that respect the geometry of an object
are all able to produce “real”, continuous stokes, e.g. in Postscript. Besides, there
is another class of techniques that are pixel based and produce discrete images.
[Saito and Takahashi 1990] introduce the concept of G-buffers that provide addi-
tional information per pixel such as depth value, normal vector or the parameter
value of a parametric surface. Non-photorealistic images that resemble line draw-
ings can then be generated by applying well known image processing operators.
In contrast, [Leister 1994] uses a modified ray-tracing algorithm for emulating
engraved copper plates. With processing pixel data it is also possible to take ad-
vantage of graphics hardware: [Deussen et al. 1999] generate copper plate like
images from intersection lines of OpenGL clipping planes with the object.

Overview of our Approaches

We present two approaches to the generation of line drawings based on discrete
curvature. The first approach is described in detail in [Rössl et al. 2000b]. It di-
rectly operates on the triangulated surfaces, it proceeds roughly as follows. Sim-
ilar to the method for parametric surfaces in [Elber 1999], we display lines of
curvature. These are streamlines in a piecewise linear vector field defined on the
surface by the principal directions for every vertex. Here, the goal is an interactive
visualization, i.e. rendering in real time. Therefore, we precompute all possible
strokes of a predefined maximum length by first randomly scattering seed points
and then integrating streamlines from the seeds. For rendering each frame the
view is rendered to the OpenGL z-buffer to solve the visibility problem (render
“hidden lines”). Then a simple local lighting model is evaluated associating each
seed an intensity value. Based on these values each stroke is rendered to a fraction
of its arc-length (including zero length for highlights) to globally approximate the
scalar intensity function over the whole surface mesh. In addition, strokes start-
ing near silhouette edges are rendered with higher priority to accentuate the object
contours. Figure 3.21 shows examples. Comparing them to illustrations generated
with the second approach in Figures 3.25 and 3.26, a high difference in quality is
clearly visible.

This second approach (cf. [Rössl and Kobbelt 2000]) is a semi-automatic, hy-

42 Chapter 3: Discrete Curvature Computation and Applications

Figure 3.21: Screen shots from of line drawings of three models with 9K, 87K, and 97K
triangles, respectively, rendered in real time on a SGI O2 with 225 MHz R10k processor
with different shading parameters (see [Rössl et al. 2000b]).

brid approach considering a certain 2D view of the 3D shape resulting in a drawing
of continuous strokes. Again, the method examines the geometry of model by ap-
proximating the principal directions in every vertex of the given triangle mesh.
However, then this data is interpolated across triangles and sampled per pixel for
the chosen view. Once all data is grabbed from image buffers the user may mod-
ify these buffers as well as an additional (stencil) buffer and interactively place
continuous streamlines. Instead of generating all strokes from streamlines, the
system lets the user chose a few reference lines and generates strokes by interpo-
lation between these curves. This guarantees that only good, visually appealing
strokes that are not disturbed by noise are rendered. For the final Postscript image
the silhouette that has been grabbed from an image buffer and converted to a set
of polygons is added. The following section describes this interactive system for
computer aided generation of line-art drawings in more detail.

3.5.2 Line-Art Rendering of Digital 3D Models
The semi-automatic production of a line-art illustration from a digitized model in
[Rössl and Kobbelt 2000] proceeds in several phases:

Image Sampling and Segmentation

We start with a certain view of the model with principal directions and normals
given per vertex and defining a piecewise linear vector field each. The linear in-
terpolation for the evaluation of the vector field can be done very elegantly by the
underlying rasterization engine which maps the 3D mesh to the frame buffer: vec-
tor or scalar valued attributes are encoded as RGB colors and assigned to the mesh
vertices. Rendering the object without any shading then generates a frame buffer

3.5 Line-Art Rendering 43

pixel matrix which stores the interpolated values. Arbitrary precision is obtained
by appropriate scaling and multi-pass rendering. For vector valued direction at-
tributes a normalization step might be necessary. We render each attribute field
separately. In the end we obtain a set of images, one of them containing the (grey-
scale) shaded view of the object. The other images show the color coded attribute
fields, one for the normal vectors and one for each principal direction. We call
the collection of all these images (with identical resolution) the enhanced frame
buffer with many different values stored for each pixel. We prefer this term to G-
buffer [Saito and Takahashi 1990] because we interpret pixels as discrete samples
that are used to (re-)construct continuous strokes.

Once the given 3D-object is rendered, the enhanced frame buffer contains
all the necessary information for the subsequent steps of the algorithm. Hence,
phases two and three entirely work in 2D which reduces their computation costs.

We sampled all relevant geometric information for a certain view of the 3D
model in a regular pixel matrix. This simplifies the following steps of the al-
gorithm which now do not have to consider the (possibly complex) topology of
the original mesh data. Moreover, most operations can be expressed and imple-
mented as image processing operators which rely on the regular grid structure.
As a preprocessing step, we apply simple Gaussian or Median filters to remove
high frequency noise from the attribute fields which sometimes emerges from
sampling artifacts during the rasterization. From the normal direction field we
can easily extract the silhouette lines for the object. We do this by extracting
the zero-contour from the scalar field defined by the dot product of the normal
vectors with the viewing direction. This works for parallel projection as well as
for perspective projection. We compute a polygonal approximation of that zero-
contour with a two-dimensional variant of the marching cubes algorithm (march-
ing squares) [Lorensen and Cline 1987]. The smoothed contour polygons resem-
ble thick, slightly waved hand drawn strokes.

Our goal is to decompose the image into several regions which have a strong
coherence in the principal direction fields since these areas are to be rendered by
a single set of quasi-parallel hatches. Silhouette lines serve as a reliable detector
for the boundary between such regions. In addition, image processing operators
can be applied to the sampled data. We believe that automatic algorithms can only
provide a rough initial segmentation that is to be refined manually.

The segmentation of the input image is the most sophisticated part of the
generation of line-art images. Since the segmentation is usually driven by non-
geometric attributes such as functional grouping in technical parts or implicit color
and texture information, we allow the user to interactively control the partition-
ing. In our user interface, we display a LIC image (Line Integral Convolution,
cf. [Carbal and Leedom 1993]) based on the maximum curvature direction field
overlayed with the automatically extracted silhouettes (which serve as initial seg-

44 Chapter 3: Discrete Curvature Computation and Applications

(a) (b) (c) (d)

Figure 3.22: To convert the shaded image (a) into a line-art image, it is first partitioned in
regions with coherent principal direction fields. A LIC image (b) with overlayed contours
supports interactive segmentation. In addition streamlines can be probed, here (c) on the
final segmentation. The subsequent hatch generation is based on a fishbone structure (d):
The backbone is defined by a curve following the minimum curvature directions and the
ribs are computed by tracing along the maximum curvature. In order to reduce the noise
in the direction field (left) and to avoid discretization artifacts, the user can define a sparse
set of ”key-ribs” and a dense set of ribs is constructed by interpolation (right).

mentation). The LIC image gives a good and intuitive perception of regions with
coherent flow. The user can now simply draw the segment boundaries on the
screen. In practice we observed that the interactive segmentation can be done in
several minutes even for moderately complex objects. Figure 3.22 illustrates the
segmentation.

We sometimes find regions in the image where no natural direction field for
the stroke orientation can be defined. This is true either in the presence of umbilic
points where κ1 = κ2 or for regions with too much fine detail relative to the sam-
pling density in the frame buffer. In such cases, our interface allows the user to
override the directional information in the frame buffer and to locally define a syn-
thetic direction field. With a technique similar to [Ostromoukhov 1999] we use
the partial derivatives of bi-linear Coons-patches to generate these synthetic direc-
tion fields. In the final line-art image, this fine detail will be taken into account by
the tone mapping.

Generating Curvature Guided Pseudo-Parallel Strokes

For every segment with coherent principal direction fields we define a grid of
hatches. We build this grid in a fishbone fashion by first picking a backbone and
then arranging the ribs in orthogonal direction. To define the backbone, the user

3.5 Line-Art Rendering 45

G0
F0

E0

β2

β1

p2

α2

γ1

α1
p1

p0 = b(t)
b(1)

b(0)
backbone b

γ2

(a)

black band

center polygon

w
′ = (1− c)w

white bands

w

(b) (c)

Figure 3.23: (a) The blending of strokes is based on a decomposition into orientation
(E0,F0) and characteristic shape ({αi},{βi}) and controlled by a parameter t ∈ [0, 1]
with the backbone curve b locally parameterized as shown. (b) Strokes of constant width
are used, with only a certain portion of a stroke drawn in black while the rest is drawn
as two white bands on both sides. (c) Cross hatches are used to enhance the contrast,
the figure shows a rotated region of Figure 3.22. Only the black portion of the strokes is
drawn to avoid overpainting.

can pick an arbitrary point in the interior of the current segment. Starting at that
point we compute the backbone curve by integrating along the minimum curva-
ture direction field. On the backbone curve we distribute samples with constant
(arc-length) distance. The orthogonal ribs are then computed by starting at those
samples and integrating along the maximum curvature direction. In some cases,
however, this simple rib generation technique fails to produce useful strokelines.
Due to the discretization of the direction field, neighboring lines can merge which
destroys the global fishbone structure ((Figure 3.22 (d), left). In order to avoid
this effect, the user can manually place a few sample points on the backbone from
where the key-ribs are traced along the maximum curvature directions. In between
these key-ribs we uniformly distribute additional blended ribs. The blended ribs
result from interpolating between the key-ribs. By properly choosing the starting
points for the key-ribs, we generate a high quality set of pseudo-parallel stroke-
lines (Figure 3.22 (d), right).

Each strokeline is represented by a polygon with constant edge length h (arc-
length parameterization). To uniquely describe the shape of a rib strokeline we
need the first polygon edge E0 and a sequence of angles αi between successive
edges Ei and Ei+1 (cf. Fig. 3.23 (a)). The complete strokeline can then be recon-
structed by starting with the first edge E0 and adding more edges Ei+1 with the
same length in the direction determined by the angles αi. In the strokeline repre-
sentation [E0, {αi}], the edge E0 determines the orientation and the sequence {αi}
determines the characteristic shape. Assume we are given two key-ribs [E0, {αi}]
and [F0, {βi}] which start on the same backbone. Then for every value t ∈ [0, 1]

46 Chapter 3: Discrete Curvature Computation and Applications

we find a new starting point on the backbone arc between the two key-ribs and the
corresponding blended rib is given by [G0, {γi} = {(1 − t) αi + t βi}] where the
orientation G0 is given by an weighted average of E0 and F0 and the characteristic
shape is a weighted blend of the two key-ribs. Using this blending technique we
can generate very good fishbone type strokelines by prescribing only rather few
key-ribs.

After the rib generation, the fishbone structure is given by a set of polygons
with unit edge length h. For rendering purposes, the k-th vertex p

(l)
k of the l-th rib

Rl = [G0, {γi}] can be computed as

p
(l)
k = p0 + G0 + h

k−1∑

i=1

(
cos(

∑i
j=1 γj)

sin(
∑i

j=1 γj)

)
,

and similar for negative index k.
The organization of the rib vertices p

(l)
k to a sequence of sequences [[p

(l)
k]k]l

corresponds to a rectilinear matrix type structure where the vertices of one rib
form a row [p

(l)
k]k and the k-th vertex for all ribs [p

(l)
k]l forms a column. Hence,

it is natural to exploit this structure for the tone mapping. To simplify further
processing, we sample the shading values at the locations p

(l)
k and pass a resam-

pled attribute matrix to the tone mapping procedure. In that procedure, a stroke
width value w

(l)
k is computed for every location p

(l)
k . For this we do not need any

directional information.

Tone mapping

The last step of the algorithm is the translation of grey value shading informa-
tion into stroke widths. For this translation several aspects have to be taken into
account.

First of all the local brightness of the rendered image obviously depends on the
ratio between stroke width and distance between neighboring strokes. If strokes
lie more densely, the width of the strokes has to decrease to maintain constant
shading. Another possibility is to suppress a part of the strokes and leave the
others with their original width. The problem with the suppressing of certain
strokelines is that disturbing low-frequency patterns can appear in the final image
if the lines are chosen according to a periodic rule. Adapting the distance of
neighboring strokes to the local grey value is not an option since that value usually
changes along the stroke but the distance cannot be controlled freely.

Many sophisticated techniques have been proposed for the tone mapping in
line-art images (see e.g. [Salisbury et al. 1994, Winkenbach and Salesin 1996,
Salisbury et al. 1997]). We use a simple and efficient technique which does not

3.5 Line-Art Rendering 47

use any global information but still has flexibility to adjust stroke widths and sup-
press strokes.

The idea is to define strokes to have a constant width w but only a certain
portion w′ = (1 − c) w is drawn in black where c ∈ [cmin, cmax] ⊂ [0, 1] is the
local grey value (0=black). Restricting the grey values to the interval [cmin, cmax]
guarantees a minimum width of the strokes and a minimum width of the white
space between strokes. Since strokes have a constant width they partially overlap
if neighboring strokes come too close together. If the strokes are painted one after
the other then one stroke can delete parts of its neighbors. In the extreme case two
non-neighboring strokes can approach so close that all the strokes between them
are completely removed.

The technique described so far controls the local tone mapping by adjusting
the stroke widths and automatically removes some strokes if their density in-
creases. The remaining question is how to avoid low-frequency patterns in the
distribution strokelines. We solve this problem by drawing the strokes in a special
order which guarantees that the right strokes are overpainted and the surviving
ones are equally distributed.

A sequence of uniformly distributed strokelines (without low frequency pat-
terns) can be generated by drawing every 2k-th line. If the strokelines become
denser we want the strokes from coarser distributions (higher values k) to survive.
Hence we have to start drawing the finest level containing the strokes [21 i]i and
then go to coarser and coarser levels [2k i − 1 + 2k−1]i, k = 2, 3, . . . Here we
chose the index offset −1 + 2k−1 such that no strokeline appears twice for differ-
ent values k. The ordering in which the strokeline have to be drawn can easily
be computed from their index: in the j-th step the rev(j)-th strokeline is drawn,
where rev(j) is the number which has the reverse binary representation of j, i.e.,
the sequence of binary digits is reversed. Figure 3.24 illustrates the tone mapping.

So far we explained the generation of hatches only along the maximum cur-
vature direction. In some cases the image quality can be improved by also adding
hatches in the cross direction since this increases the brightness range (darkest
to lightest grey value). Cross hatches are often used to enhance the contrast at
shadow boundaries.

Since the cross hatches follow the minimum curvature direction, they are typ-
ically less curved than the original hatches. As a consequence the effects of vary-
ing strokeline density are less severe and simple stroke width modulation (without
strokeline suppression) is usually sufficient for the tone mapping. In our imple-
mentation we applied cross hatches in regions of the image where the shading
value falls below a prescribed threshold cmin. Because one set of hatches has al-
ready been painted before the cross hatches are added, we base the stroke width
computation on the offset grey values c′ = c−cmin. In order to avoid overpainting

48 Chapter 3: Discrete Curvature Computation and Applications

Figure 3.24: The special order in which the strokelines are drawn, guarantees that the
surviving lines (the ones that are not overpainted) do not show a low-frequency pattern.
Simply painting black strokes with constant width w does not lead to constant color (far
left). Drawing the strokes with white bands and constant black fraction (as shown in
Figure 3.23 and in sequential top to bottom order leads to low-frequency patterns of sup-
pressed lines (left). The next three images depict our special ordering. The center image
shows the lines with index 2 i (k = 1) only. In the center right image these lines are
partially overpainted by the lines with index 4 i + 1 (k = 2). In the next step another
layer of lines with index 8 i + 3 (k = 3) is painted (far right). The resulting image has
an almost constant shading color which is achieved by suppressing some of the lines in
regions where strokelines become denser.

the already existing hatches, we only draw the black portion of the cross hatches
(no white band, no strokeline suppression). As stated above this simple cross
hatching technique works well because minimum curvature lines usually have a
rather straight characteristic shape (see Figure 3.23 (c)).

Examples

Our examples show a technical model and a toy elk. The original triangle meshes
consist of about 43K and 30K triangles. The technical part (Figure 3.25) nicely
shows the suppression of strokes in the tone mapping process. Cross hatched
strokes are used in dark areas. The elk model (Figure 3.26) was generated from
range scans of a wooden toy. The strokes at the sphere-shaped wheels have been
generated manually as there are no meaningful principle directions defined there.
The two images are identical except that the cross hatch threshold cmin was modi-
fied.

3.6 Summary
We introduced a new technique for estimating the curvature tensor T in a trian-
gular mesh which computes T as a piecewise smooth function on every triangle
given (exact or estimated) surface normals. The approach is intuitive and elegant
and does not incorporate any parameterization or fitting approaches, moreover the

3.6 Summary 49

Figure 3.25: A line-art rendering of a technical generated with our system. The view was
captured from a model of 43k triangles.

50 Chapter 3: Discrete Curvature Computation and Applications

Figure 3.26: Mama elk and baby-elk (30k triangles) with and without cross hatching.

evaluation shows that it competes very well (in general even slightly better than
the cubic fitting in [Goldfeather and Interrante 2004] as best competitor) with ex-
isting approaches both in terms of approximation errors and efficiency. With exact
normals given at the vertices the error drops significantly. Consequently, the ap-
proach benefits from more accurate normal estimation.

Possible improvements of the approach would consider (not normalized) es-
timates of vertex normals with direction and length as an additional parameter
improving the quality of the curvature estimation. Another possible extension is
to apply quadratic interpolation for the normals (see e.g. [Vlachos et al. 2001])
instead of the linear interpolation.

There is a variety of applications for discrete curvature estimation techniques.
The proposed morphological operators for feature detection are simple by their
nature and efficiently recover structural information extracted from the estimated
quantities. While segmentation techniques in general explicitly extract such in-
formation from shapes for further, higher-level processing, other applications are
interested in the visualization of shape intrinsic properties. Such a scenario is the
use of integrated lines of curvature for non-photorealistic rendering. We showed
how the discrete estimates of the curvature tensor are used as basic tool for creat-
ing high-quality line-art drawings from digital models. In addition, we note that a
similar technique provides a basic tool for feature sensitive resampling of surfaces
in [Botsch et al. 2000].

3.6 Summary 51

In this context we deal with piecewise linear vector fields, where the direction
into the maximum normal curvature direction is given for every vertex. Subse-
quently to the next Chapter 4 on the efficient encoding of mesh connectivity, we
discuss the compression of piecewise linear vector fields in Chapter 5.

52 Chapter 3: Discrete Curvature Computation and Applications

Chapter 4

Connectivity Encoding

4.1 Background

With the emergence of very large triangle meshes, for instance from the acquisi-
tion of complex shapes, the efficient encoding of the arising data attained more
and more focus. One basic entity of interest for data compression is the triangle
mesh connectivity, which captures the graph structure and hence the topological
properties of the mesh, including the genus of the surface and the existence of
boundaries.

Certainly, in-core data structures for meshes which enable their manipula-
tion and navigation between adjacent items must trade redundancy for efficiency.
However, things are different for storing or transmitting data. Here, more com-
pact representations are preferred, which at the same time should be intuitive and
simple. The most common choice for encoding the connectivity of reasonably
sized meshes in practice is (still) a shared vertex representation, which consists of
a table of vertices and an associated table of triangles, which in turn are triples of
indices into the vertex table. (Hence, every vertex is shared among the triangles
attached to it.) Nearly every common file format supports this representation —
often as the only choice.

This is in contrast to the fact, that techniques for connectivity encoding have
been studied intensely for many years, dating back to the theoretical foundations
by Tutte [1962] on the enumeration of the planar triangulations. Tutte found gen-
erating functions for the number of distinct triangulations over a plane, and studied
their asymptotic behavior, and his results established a theoretical upper bound of
3.24 bits per vertex for the encoding of sufficiently large triangle meshes. Brown
[1964] removed Tutte’s initial condition that two boundary vertices cannot be con-
nected with a non-boundary edge while yielding the same asymptotic behavior of
the generating functions. The study of the asymptotic behavior of the number of

54 Chapter 4: Connectivity Encoding

polygonal meshes on surfaces of arbitrary topology is still a very active area of
mathematics [Arqus and Braud 2000].

In the following, we provide a brief overview of connectivity encoding
techniques and in addition refer to the recent surveys [Gotsman et al. 2002,
Alliez and Gotsman 2005].

Many diverse techniques have emerged, often with certain advantages
over alternative approaches when a particular class of meshes is considered.
Among the most prominent techniques are the encoding of the connectiv-
ity as a permutation of the vertices [Denny and Sohler 1997], the topologi-
cal surgery method [Taubin and Rossignac 1998], where a mesh is transmit-
ted as a vertex tree together with the dual face tree, and the Cut-Border Ma-
chine [Gumhold and Straßer 1998, Gumhold 1999], which was the first recursive
method based on a traversal of the triangles of the mesh.

We remark that there are several methods, which are not strictly
comparable, but can also be applied in this setting. Among these
are the Face-Fixer [Isenburg and Snoeyink 2000] which encodes polygonal
meshes (with arbitrary faces), and many powerful multiresolution tech-
niques, like e.g. [Hoppe 1996, Taubin et al. 1998, Cohen-Or et al. 1999,
Isenburg and Snoeyink 1999, Pajarola and Rossignac 2000].

We can classify many encoding techniques in two major branches: valence-
driven techniques and Edgebreaker-like methods, where vertices and triangles are
traversed, respectively.

Some of the most efficient techniques are the valence driven methods, which
transmit for each vertex its valence together with some special symbols. This
method was initiated by Touma and Gotsman [1998] with a deterministic traversal
of the mesh vertices. Alliez and Desbrun [2001a] used an adaptive traversal of the
vertices, reporting the best compression ratios in practice. The latter method has
been expanded to more complex problems such as the progressive transmission of
a shape including the geometry data [Alliez and Desbrun 2001b], or the encoding
of polygonal meshes, giving again the best reported results when compared with
any other similar method. The Angle-Analyzer [Lee et al. 2002] applies geomet-
ric attributes to steer the traversal, hence interleaving connectivity and geometry
coding.

Finally, another major branch of recently developed techniques is based on
the Edgebreaker algorithm. The original Edgebreaker was proposed by Rossignac
[1999]. It traverses a tree of the faces of a mesh and for each face returns one
symbol from an alphabet of five, determining the adjacencies of that face with the
not yet conquered part of the mesh. The method was originally published with
a guaranteed worst-case bound of four bits per vertex, which later was improved
to 3.67 bits per vertex [King and Rossignac 1999], and to 3.552 bits per vertex
[Gumhold 2000].

4.2 A Divide and Conquer Approach 55

Figure 4.1: A triangle strip divides each mesh into two submeshes (left). The left and the
right submeshes are processed the same way recursively defining a binary tree. The result
is shown on the right side, the black lines denote the strip connectivity. We can encode
a planar triangle mesh as the resulting binary tree with only the strip lengths stored in its
nodes.

Numerous other improvements in the efficiency of the technique followed.
Rossignac and Szymczak [1999] make the encoding and decoding process linear
in time, Isenburg and Snoeyink [2001] further simplify the decoding algorithm es-
pecially for meshes of arbitrary topology, while [Szymczak et al. 2001] provides
an adaptation of the Edgebreaker for highly regular meshes.

In the following, we present and analyze a divide and conquer approach to
connectivity encoding, which is in this second branch of Edgebreaker-like encod-
ing algorithms. In contrast to other approaches, the output is structured as a binary
tree, with interesting properties and potential applications.

Outside the mesh compression literature, a method for graph compression was
reported in [Deo and Litow 1998], employing an approach similar to the one pre-
sented due course. There, a graph is decimated with the use of graph separators,
i.e. subgraphs whose removal separates the graph into components of roughly
similar size. In a recursive process these components are encoded in a tree data
structure. The different setting — especially the nature of the graph as a combi-
natorial rather than a geometric object — makes much more difficult conclusive
answers, something that, as we see in the following, is not the case with triangle
meshes.

4.2 A Divide and Conquer Approach

In this section, we present the connectivity encoding approach (cf.
[Ivrissimtzis et al. 2002]). The idea is to process a triangle mesh by dividing it
into submeshes, which are then processed recursively. Figure 4.1 illustrates the
principle.

56 Chapter 4: Connectivity Encoding

v v v
v vvv0

1v v v v v v v

2

3

4

5

6

7

8

9

10

11

12

13

Figure 4.2: A zig-zag strip of length 12. The gate (v0, v1) is marked with a dashed dark
arrow, the left leading directed edge (v11, v13) is drawn light, the right one (v13, v12) is
dark, and the leading vertex v13 is marked with a black dot.

4.2.1 Preliminaries

The basic version algorithm encodes planar triangulations with a single boundary
loop. Modifications for triangulations with arbitrary topology, i.e. possibly with
handles and holes, are discussed in Section 4.2.5 (In either case, an oriented man-
ifold surface mesh is assumed.) The following terms will be used throughout the
section. A rooted mesh is a triangle mesh with one of its boundary directed edges
marked. The marked boundary edge is the gate of the rooted mesh.

A zig-zag strip of length n is a mesh consisting of n + 2 vertices
(v0, v1, . . . , vn+1), vi ∈ K, i = 0, . . . , n + 1, and the triangles (vi, vi+1, vi+2) ∈ K
with 0 ≤ i < n (cf. Figure 4.2). In rooted zig-zag strips, the gate will always
be the directed edge (v0, v1). Then the vertex n + 1 is called the leading vertex,
and the triangle (vn−1, vn, vn+1) is the leading triangle. Assuming that all the
triangles have the same orientation as indicated by the gate, the oriented leading
triangle is (vn−1, vn, vn+1) for odd n and (vn, vn−1, vn+1) for even n. For odd n,
(vn, vn+1) and (vn+1, vn−1) are the left and the right directed leading edges, re-
spectively. For even n, the left and right leading directed edges are (vn−1, vn+1)
and (vn+1, vn), respectively. In both cases the left leading directed edge is the one
pointing towards the leading vertex. Figure 4.2 illustrates a rooted zig-zag strip.

4.2.2 Basic Algorithm

The mesh is processed by conquering vertices. In the beginning of the encoding
process, we mark the boundary vertices as conquered, all other vertices are not
yet conquered. If the mesh has no boundary we remove a single triangle, creating
a trivial boundary with three edges. We randomly choose a directed edge on the
boundary of the mesh as the initial gate, and we build a zig-zag strip conquering its
vertices. The construction of the strip stops when arriving at an already conquered
vertex. This happens when the leading vertex of the zig-zag strip reaches either
the boundary of the mesh or another vertex of the strip. In both cases the original
rooted mesh splits into two rooted submeshes: The left submesh with the left
leading directed edge of the strip as gate, and the right submesh with the right

4.2 A Divide and Conquer Approach 57

leading edge of the strip as gate. Note that one of these submeshes or even both
can be empty. We continue recursively, encoding separately the two submeshes,
and the encoding process terminates when all the submeshes are empty.

We organize the data acquired in this process in the form of a binary tree with
the strip lengths stored in its nodes. The length of the initial zig-zag strip is stored
in the root of the tree, the encoding of the left submesh is the left branch of the
tree, and the encoding of the right submesh is the right branch of the tree.

Encoding

Encoding a triangle mesh can be written in pseudo code as

Algorithm 4.1 (encode preorder) encode-preorder (gate) :=

1. (length, left, right) = conquer-strip (gate)

2. output length

3. if length>0

for d ∈ {left, right}: encode-preorder (d)

Here, the procedure conquer-strip grows a zig-zag strip by iteratively conquer-
ing a new leading vertex. The strip starts from the directed edge gate, and it
stops when its leading vertex is already conquered. The procedure returns a triple
(length, left, right), which describes the length of the strip and the two leading
edges left and right. Then the procedure encoding-preorder describes the mesh
as a binary tree, where each node stores the length of the associated triangle strip.
Note that the pseudo code above does not explicitly describe the construction of
a tree data structure. Instead, the lengths are output into a stream such that the
resulting code corresponds to a preorder traversal which implicitly represents the
tree. Figure 4.3 illustrates an example run of the algorithm for a small mesh.
Here, the tree is constructed and shown explicitly, the resulting code is the output
sequence 2,1,1,0,0,0,1,0,0 (where length 0 indicates an empty subtree, not shown
in the figure).

Decoding

The main idea of recursively partitioning and encoding the mesh is reflected in
algorithm 4.1. Conversely, in one recursive step of the decoding process we cre-
ate a zig-zag strip of specified length and two rooted meshes, and we glue them
together. We identify the gate of the left rooted mesh with the left leading edge of
the strip, and we glue the left boundary of the strip with the boundary of the mesh
stopping at the gate of the strip. Then the same is repeated for the right rooted

58 Chapter 4: Connectivity Encoding

2

����������������1
���������
���
���������
���
1 ������������1

2
1

1

2
1

1
1

����������������������������
����������������������������

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

��������������������
������
������

�
�

�
�

�
�

�
�

������
��
����������������������������

��������������������
��������������������

2 2
1

Figure 4.3: Example run of the algorithm. A simple mesh (left) is recursively encoded as
a binary tree (right) starting from the gate denoted by the arrow. The four resulting strips
are filled with different patterns. The first strip of length two partitions the mesh into two
submeshes, all other strips have one or two empty submeshes. The dot denotes the leading
vertex of the current strip, i.e. the point where the strip touches a conquered/boundary
vertex. For every new strip the corresponding tree state is shown with the new node
highlighted.

mesh and the right boundary of the strip. The gate of the new mesh is the gate of
the strip.

Given the preorder traversal of the tree as output of Algorithm 4.1, the recur-
sive decoding reads as follows:

Algorithm 4.2 (decode preorder traversal) decode-preorder :=

1. length = input ()

2. if length = 0 return empty-mesh

3. (gate, left, right)=create-strip (length)

4. for d ∈ {left, right}: gated=decode-preorder ()

5. for d ∈ {left, right}: glue-meshes (d,gated)

Here, input reads an integer length value from the output of Algorithm 4.1. create-
strip generates a new triangle strip analog to conquer-strip but as an individual
mesh. The procedure returns the gate and the leading directed edges of this mesh
as the triple (gate, left, right). The recursive call to decode-preorder creates the
left and right submeshes and returns their gates. Finally, the strip boundaries are
glued to the two submeshes. The number of boundary edges which are traversed
and connected by glue-meshes can easily be calculated from the strip’s length and
its parity, e.g. 6 and 7 for the strip of length 12. Gluing a mesh and empty-mesh
results in a boundary. For instance in the setting shown in Figure 4.1 (left), we
glue starting from the leading edges (top right in the picture) first the submesh in
the right hand side (with the left leading edge as gate) and then the one on the left
of the dividing strip. In both cases gluing stops at the gate of the strip (bottom
left). Figure 4.4 shows an example run of the decoding algorithm. Note that some

4.2 A Divide and Conquer Approach 59

���
���
�������������������������

�������������������������
���
�����������������������������������
�������������������������

������
������
���

���������
���
���������
���
1 ���������

���
1 � � �

 �
!�!!�!!�!
!�!
1

"�""�"#�##�#1
2

$�$$�$$�$
$�$
%�%%�%%�%
%�%
1

2&�&�&&�&�&'�'�''�'�'
1

(�(�((�(�()�)�))�)�)
1

2

��*�**�*�*�**�*�*�**�*�*�**�*�*�*
+�+�+�++�+�+�++�+�+�++�+�+�++�+�+�+
,�,,�,
,�,,�,
,�,

-�--�-
-�--�-
-�-

.�.�.�..�.�.�..�.�.�..�.�.�.
/�/�/�//�/�/�//�/�/�//�/�/�/

0�0�0�0�00�0�0�0�00�0�0�0�00�0�0�0�0
1�1�1�1�11�1�1�1�11�1�1�1�11�1�1�1�1
2�22�2
2�22�2
3�33�3
3�33�3 4�4�4�4�44�4�4�4�44�4�4�4�44�4�4�4�4

5�5�5�5�55�5�5�5�55�5�5�5�55�5�5�5�5
6�66�6
6�66�6
7�77�7
7�77�7

8�8�88�8�88�8�88�8�88�8�8

9�9�99�9�99�9�99�9�99�9�9

:�:�::�:�::�:�::�:�::�:�:

;�;;�;
;�;;�;
;�;

Figure 4.4: For decoding, the tree from Figure 4.3 is traversed in preorder. The strips are
created during the top-down traversal of the tree nodes, and submeshes are glued (thick
line) when an edge of the tree is followed in bottom-up direction. The corresponding tree
nodes and edges are shown below the state of the mesh.

(a) (b)

Figure 4.5: (a) A strip may intersect itself resulting in a loop. (b) Handles or holes prevent
the strip from splitting the mesh into two parts. A special split code is output instead of
the empty left submesh. It references the corresponding edge in the right submesh drawn
black. With this information the remaining boundary (white) can be glued.

modification is needed to handle the cases of self intersection, vertices of valence
three, and non-planar topology cases.

A strip may intersect not only with the boundary of a submesh but also with
itself (or its own boundary) resulting in a loop. Figure 4.5 (a) illustrates this situ-
ation. This is the same setting as before but with an inner and an outer submesh.
However, the leading vertex now induces some kind of singularity for gluing:
When we start gluing from the inner leading edge (light-dark border), we can-
not decide, which direction to take once we arrive back at the leading vertex as
the outer boundary has not been glued yet. This technical problem can easily
be resolved by gluing both — left and right — leading edges first, before gluing
along the whole strips (glue-meshes). As pointed out earlier, the left and right
submeshes may be empty. The following cases can be distinguished (see also
Figure 4.6):

• A strip of length one, i.e. a single triangle, can have one or both submeshes
empty, if one or both leading edges are boundary edges of the mesh, respec-

60 Chapter 4: Connectivity Encoding

1 1 1
2

1

3 2

Figure 4.6: From left to right: All strips are entered through the bottom gate (dashed).
The first strip of length one has both submeshes empty, while the next strip of length one
has only the right submesh empty (dark gate). The strip of length two has the left submesh
empty (light gate). The strip of length three has the right submesh empty (dark gate). Note
that in the case of a strip with length greater than two the empty submesh is in the interior
of the strip and not on the boundary (valence-3 case).

tively.

• A strip of length two can only have the left submesh empty, because the
non-gate vertex of the first triangle of the strip is not boundary. Otherwise
the process of growing the strip would have stopped before.

• In a strip of length greater than two both, the leading directed edges are not
boundary, and an empty submesh occurs only if the strip intersects itself
and the internal submesh is empty. This happens precisely when the strip
passes through a vertex of valence three. The parity of the length of the strip
determines whether the right or the left mesh is empty.

The latter case of passing a valence-3 vertex has to be checked separately, as the
empty submesh does not correspond to boundary. If the strip length is greater than
two and either the left or the right submesh is empty, an extra glue operation is
needed: Let e be the corresponding edge in the strip (cf. dark edge in triangle 1
in Figure 4.6, right). Then the edges e and either left or right, respectively, are
glued together. We note that e can be referenced easily by a fixed navigation path
back through the strip.

4.2.3 Analysis of the Encoding Algorithm
Next, we give two basic properties about the behavior of the encoding algorithm.
The first property addresses the size of the obtained binary tree, and the second
one describes the relationship between the structure of the tree and the strip length
information stored in its nodes.

Let v and t denote the number of vertices and triangles of the mesh, respec-
tively. And let n be the number of the strips obtained from the divide and conquer
algorithm, which is equivalent to the number of nodes in the resulting binary tree.

4.2 A Divide and Conquer Approach 61

We remark that t is also obtained as the sum of all strip lengths. Then following
properties hold.

Theorem 4.1 (number of vertices and nodes)
Let the number of nodes and vertices, n and v, be defined as above. Then we have
n = v − 2.

To see this, we notice that a strip of length l conquers l − 1 vertices, and thus
n strips of total length t conquer t − n vertices. The number of vertices to be
conquered is vI , the number of interior vertices of the mesh. Hence, we have
t − n = vI , giving n = t − vI . The latter can also be written as n = v − 2, which
can be seen immediately from applying Euler’s formula.

Alternatively, there is an inductive proof, which we sketch as follows. Indeed,
the claim is true for a single triangle because then v = 3 and s = 1. Suppose now
that we have two meshes with v1 and v2 vertices, respectively, which are encoded
by the divide and conquer algorithm in s1 = v1 − 2 and s2 = v2 − 2 strips,
respectively. Gluing them along a strip will give a new mesh with v ′ = v1 +v2−1
vertices, because all the vertices of the strip are identified with a vertex from
exactly one of the submeshes, except of the leading vertex which is identified
with one vertex from both the submeshes. The new mesh is one level above the
two submeshes in the recursive process and can be encoded with s′ = s1 + s2 + 1
strips. We have s′ = v′ − 2 completing the inductive step for this case. The four
cases with empty submeshes, shown in Figure 4.6, must be treated separately in
an analog way, they pose no special difficulty.

The binary tree and the strip length information can be combined in a single
data structure, namely a binary tree with positive integer weights assigned to its
nodes. The next question is when such a data structure is valid, i.e. when it
represents a planar triangle mesh. This leads to

Theorem 4.2 (validity of a planar mesh encoding)
Let T be a binary tree with n nodes and let the sum of the strip lengths be t. Then
T represents a planar mesh if and only if

(i) t + 1 ≤ 2n holds for T and all its subtrees.

(ii) The strip lengths of the nodes with only left child are odd, and the strip
lengths of the nodes with only right child are either one or even.

In order to prove the above, let b be the number of the boundary vertices of a
planar mesh. Applying Euler’s formula gives

b = 2v − t − 2

62 Chapter 4: Connectivity Encoding

which from Then 4.1 becomes

b = 2n − t + 2

Then, the inequality 3 ≤ b, which holds for the boundary of the mesh, gives
t + 1 ≤ 2n. We note that the inequality 3 ≤ b is a standard assumption in the
literature of meshes, as b = 2 would give two boundary vertices connected by two
different edges, while b = 1 would give a vertex connected with itself.

Condition (ii) describes the exceptional cases where one of the submeshes
is empty and two edges of the dividing strip are glued together. Conversely, if
the condition (i) holds, there is enough free boundary to perform all the gluing
operations, and we get a valid triangle mesh, while condition (ii) guarantees that
we can perform the gluing in the exceptional cases as well.

4.2.4 Connection to Edgebreaker

Before we discuss the obtained tree data structure, it is worth having a look at the
algorithm in a more general setting. A first observation is that the algorithm, like
the Edgebreaker [Rossignac 1999], implicitly induces a traversal of the triangles
of the mesh. This traversal can be seen at two levels. The first level is the traversal
of the triangles of a zig-zag strip, from the root of the strip to the leading edges,
and the second level is the traversal of the tree that stores these zig-zag strips.

Also, we realize that the algorithm works not only with zig-zag strips but with
general strips as well. In fact, any bit stream the encoder and the decoder would
agree on, defines a way of building general strips, and thus a variation of the
method. Here we use the zig-zag strips as the most natural choice for generating
a strip.

The fan strip is another important class of strips. In this case, assuming a
preorder traversal of the tree, we get the same traversal of the triangles as the
Edgebreaker, and our approach differs only in the interpretation of the obtained
data. In fact, we can translate the encoding of the binary tree and the strip lengths
into the familiar C,L,E,R, S string of the Edgebreaker and vice-versa. Each strip
length n can be written as a string of n − 1 C’s, and for each node of the tree we
use one of the L,R, S,E symbols, depending on whether it has only left child (L),
only right child (R), two children (S) or no child (E). We remark that — because
our data structure is non-linear, namely, a binary tree rather than a symbol stream
— it is not necessary to assume any particular traversal of the tree to interpret the
data.

4.2 A Divide and Conquer Approach 63

4.2.5 Arbitrary Topology

So far, we considered planar triangulations with a boundary. For arbitrary topol-
ogy meshes a strip can have the same non-empty submesh on the left and on the
right. The simplest example is a planar mesh with a hole in it, which is topologi-
cally equivalent to a cylinder, Figure 4.5 (b) illustrates this setting. In this case we
need to encode only one branch of the tree and give some additional information
on how the boundary of this submesh is glued to the other side of the strip.

This situation can be detected in a simple way during encoding: For every
triangle we store the corresponding level of the binary tree when it is conquered.
If a leading edge of a strip touches an edge of a triangle that has been conquered
at the same or a higher level, we output a special split-symbol referencing the
corresponding edge for gluing (cf. Figure 4.5 (b)). Similar techniques to deal
with arbitrary topology are applied by other algorithms.

The modifications of the algorithms are straightforward: For handling arbi-
trary topology, the encoding procedure is made aware of the current recursion
level, and conquered triangles are tagged with this level as well as a serial number
and the index i ∈ {0, 1, 2} of the edge that it has been entered through. This infor-
mation uniquely identifies the edge. The level test is straightforward, the number
and the edge index are coded into the split symbol. If during decoding a split-
symbol is read instead of the code of a submesh, then the edge is extracted, and
the boundary is glued as if there were two submeshes.

The overhead for the encoding can be characterized as follows. Let g be the
genus of the mesh is g, and h the number of holes in it, and v the number of
vertices. It is a simple topological fact that the number of the strips which do not
separate the mesh is at most 2g + h. For each such strip we need O(2 log v) bits
to identify the directed edge for gluing, and in the worst case O(1

2
log v) bits for

the extra split-symbol.

4.2.6 Reverse Decoding

The proposed encoding method is linear in the number of input triangles, as every
triangle is visited once during encoding, and for decoding every node is visited
once during the traversal of the tree. In contrast, the original Edgebreaker algo-
rithm requires a preprocessing phase for computing certain offsets into the list of
active boundary edges, resulting in an asymptotic worst case time complexity of
O(n2) or O(n log n) depending on the choice of data structures.

Our approach better compares to the Edgebreaker’s Wrap&Zip (cf.
[Rossignac and Szymczak 1999]) extension which also guarantees linear time
complexity. Here, visiting a node first during top-down traversal applying create-
strip can be interpreted as the wrapping phase, while glue-meshes before leaving

64 Chapter 4: Connectivity Encoding

the current recursion level does the zipping. In the analogue notation (see previous
section), the C operation in our method would extend the strip while L,R, S,E
steer the gluing.

There are always at most three meshes, the dividing strip and the two sub-
meshes, that have to be taken into account by the procedure decode-preorder, and
the active boundary loops can be implicitly determined from navigation through
the meshes. Still, strips are generated early before the recursion and glued later.
This leads to an effective two-pass algorithm. Even though the tree itself is only
traversed once, every strip is touched twice by create-strip (top-down) and glue-
meshes (bottom-up, see also Figure 4.4).

By using a different tree traversal (cf. [Rössl et al. 2003b]) we can adapt the
decoding algorithm for a bottom-up reconstruction in the spirit of Isenburg and
Snoeyink’s [2001] Spirale Reversi decoding. Assume that the code is given as
a postorder traversal of a tree with the strip length and the tree connectivity c ∈
{L,R, S,E} for each node. The standard iterative algorithm for constructing a
tree from this stream is modified in a way that it will construct the mesh instead,
resulting in Algorithm 4.3.

Algorithm 4.3 (decode postorder traversal) decode-postorder () :=
while (length, c) =input_length_and_LRSE () :

1. (gate, left, right)=create-strip (length)

2. case c = L: gateleft=pop (), glue-meshes (left, gateleft)

3. case c = R: gateright=pop (), glue-meshes (right, gateright)

4. case c = S: for d ∈ {left, right}: glue-meshes (d,pop ())

5. push (gate)

An initially empty stack of gates into submeshes is required. For every symbol
that is read from the input stream a triangle strip is created. The gate of this strip
is just pushed onto the stack in case of a leaf node (E), whereas else either one
(L,R) or two (S) gates are popped from the stack and their submeshes are glued
to the current strip whose gate is then pushed. Figure 4.7 shows an example for
this reverse decoding. Arbitrary topology is handled as described in the previous
section.

The concept of reverse decoding from [Isenburg and Snoeyink 2001] trans-
lates easily to our algorithm. This results in an iterative, single-single pass decod-
ing algorithm. In the following section, we discuss our tree data structure and the
different options for traversal in the context of data compression.

4.3 Tree-based Data Structures 65

<=<<=<>=>>=>1 ?=??=??=?
?=?
@=@@=@@=@
@=@
1 A=AA=AA=A

A=A
B=BB=BB=B
B=B
1

C=CC=CD=DD=D1
E=EE=EF=FF=F1 2

G=G=G=GG=G=G=GG=G=G=GG=G=G=G
H=H=H=HH=H=H=HH=H=H=HH=H=H=H
I=II=I
I=II=I
J=JJ=J
J=JJ=J

2

K=K=KK=K=KK=K=KK=K=K
L=L=LL=L=LL=L=LL=L=L

1

2
M=MM=MN=NN=N1

O=O=O=OO=O=O=OO=O=O=OO=O=O=O
P=P=P=PP=P=P=PP=P=P=PP=P=P=P
Q=QQ=Q
Q=QQ=Q
R=RR=R
R=RR=R

S=S=SS=S=SS=S=SS=S=S
T=T=TT=T=TT=T=TT=T=TU=U=U=UU=U=U=UU=U=U=UU=U=U=U

V=V=V=VV=V=V=VV=V=V=VV=V=V=V
W=WW=W
W=WW=W
X=XX=X
X=XX=X

Y=YY=Y
Y=YY=Y
Z=ZZ=Z
Z=ZZ=Z

[=[[=[
[=[[=[
\=\\=\
\=\\=\

]=]=]]=]=]]=]=]]=]=]
^=^=^^=^=^^=^=^^=^=^_=_=_=__=_=_=__=_=_=__=_=_=_
`=`=`=``=`=`=``=`=`=``=`=`=`

a=a=a=aa=a=a=aa=a=a=aa=a=a=aa=a=a=a
b=b=b=bb=b=b=bb=b=b=bb=b=b=bb=b=b=b

c=cc=c
c=cc=c
d=dd=d
d=dd=d e=e=e=ee=e=e=ee=e=e=ee=e=e=e

f=f=f=ff=f=f=ff=f=f=ff=f=f=f
g=gg=g
g=gg=g
h=hh=h
h=hh=h

i=i=ii=i=ii=i=ii=i=i
j=jj=j
j=jj=j

k=kk=k
k=kk=k
l=ll=l
l=ll=l

E L E S

Figure 4.7: Reverse decoding from a postorder traversal of the tree from Figure 4.3. The
input from encoding this traversal is 1E,1L,1E,2S.

4.3 Tree-based Data Structures
In this section, we study the encoding algorithm while considering the output tree
data structure and the compression of these data (cf. [Ivrissimtzis et al. 2003]).
With the divide and conquer approach, the encoding of triangle mesh connectivity
can be split into two separate but closely related subtasks: the encoding of the
binary tree, and the encoding of the strip lengths stored in its nodes. We study
these two encodings, first separately and then in their interrelation and provide
experimental results. For simplicity, we assume planar meshes for the analysis.
However, arbitrary topology can be treated in a similar manner, taking into ac-
count the special output symbols and the changes of the Euler’s characteristic
they introduce.

4.3.1 Binary Tree Encodings

The binary tree is one of the most popular structures for storage and mainte-
nance of data, and thus, many basic related problems have been widely stud-
ied. For a brief comparative study of different binary tree encodings see e.g.
[Katajainen and Mäkinen 1990] and [Mäkinen 1991].

In our context, the relevance of the tree encoding methods becomes apparent
with the observation that any binary tree can correspond to a planar mesh. Indeed,
if all the strip lengths are equal to one, then by Theorem 4.2 every binary tree gives
a valid planar mesh. The number of all the binary trees with n nodes is given by
the Catalan number Cn

Cn =
(2n)!

n!(n + 1)!
∼ 4n

√
πn3/2

(4.1)

(see e.g. [Graham et al. 1994]). Thus, there is an asymptotic bound of two bits
per node.

Some of the existing methods for binary tree encoding enumerate all the trees
with n nodes so that each tree can be represented by an integer number. Obvi-
ously, such methods achieve optimal compression ratios, but the encoding and

66 Chapter 4: Connectivity Encoding

decoding cost is very high, and especially for the large trees we use here this cost
is prohibitive. Other encoding methods traverse the tree, transmitting one letter
for each node. These methods are separated into two categories: methods which
use a fixed alphabet and methods using an alphabet depending on the number of
the nodes n.

The most common fixed alphabet encoding uses four letters, say {L,R, S,E}
to make the analogy with the Edgebreaker clearer (see Section 4.2.4). Each letter
determines if the corresponding node has only left, only right, both or none chil-
dren. The cost is 2n bits, which, asymptotically achieves the bound of two bits
per node given by (4.1). By Theorem 4.1 this is also equal to two bits per vertex
(2b/v).

Another well-known fixed alphabet encoding are Zaks’ sequences which use
the two letters alphabet {0, 1}. The encoding process first transforms the binary
tree into a complete binary tree by appending new leaves wherever possible, i.e.
two new leaves at any old leaf and one new leaf at any single child node. Then we
traverse the nodes of the complete binary tree in preorder, transmitting a 1 symbol
if the node is internal and a 0 symbol if the node is a leaf. There are standard
algorithms deciding when a given sequence of 0’s and 1’s is the Zaks’ sequence
of a tree.

Concerning compression, the size of the tree code can be further reduced with
entropy coding such as arithmetic coding (see e.g. [Moffat et al. 1998]). In this
case the compression ratio also depends on the traversal of the tree. Note that
there are traversals, like the inorder, which do not work with the above four or two
letter encodings, because we can not reconstruct the tree without some additional
information.

The variable alphabet encodings most often use the letters of the set
{0, 1, . . . , n}. When it comes to compression issues they have the problem that
it is more difficult to find a sharp guaranteed upper bound which can be trivially
found for a fixed alphabet. Nevertheless, many times they are more flexible, and
there are standard algorithms determining the validity of a code, making it easy to
eliminate the transmission of redundant information.

An example of variable length encoding is the weight sequence (see e.g.
[Mäkinen 1991]). There, the letter corresponding to a node is the number of the
nodes of its left subtree. The inductive argument to show that the method works
is as follows. If we know the number of the nodes of the tree and the number of
the nodes of the left subtree, we can find the number of nodes of the right sub-
tree by subtraction, and we can continue this process recursively until we reach
the leaves. The weight sequence encoding of a tree is of special interest because
by Theorem 4.1 the number of the nodes n is related to the number of the ver-
tices v of the mesh. For this reason, the weight sequence is a useful intermediate
representation of the binary tree corresponding to a mesh.

4.3 Tree-based Data Structures 67

Mesh #V #F HC FIXED F&AC A&D
David 1 315 586 3.96 3.59 3.94 2.96
David 2 1512 2924 3.43 3.69 3.56 2.88
David 3 6035 11820 3.20 3.69 3.39 2.70
David 4 24085 47753 3.09 3.71 3.18 2.52
Dinosaur 14070 28136 3.00 3.73 3.13 2.25
Fandisk 6475 12946 2.49 3.51 1.95 1.02
Mannequin 1 428 839 3.63 3.69 3.79 2.51
Mannequin 2 11703 23402 1.91 3.33 1.06 0.37
Venus 8268 16532 3.27 3.71 3.46 2.71
Max-Planck 100086 199996 2.42 3.51 1.42 n/a

Table 4.1: Results from connectivity encoding as described in Section 4.3.2. The first
three columns show the name of the data sets, the number of vertices, and the number
of triangles. The remaining columns provide the compression rates in bits per vertex
for using plain Huffman coding (HC), the fixed alphabeth (FIXED), and the latter with
subsequent arithmetic coding (F&AC). The last column compares to Alliez and Desbrun
[2001a], who report the best compression rates in practice.

4.3.2 Weighted Binary Tree Encoding — A First Ap-
proach

Before we continue to study and exploit the relationships between the binary tree
and the strip lengths associated as weights of nodes, we report on some experimen-
tal results from a straightforward approach taken in [Ivrissimtzis et al. 2002]. We
encode the tree along with the nodal weights in an intervowen fashion: A preorder
traversal of the tree is assumed, and each node is assigned an integer 4n + (blbr)2,
where n denotes the associated strip length and the two-bit binary number (blbr)2

represents the tree connectivity (and hence refers to one of L,R, S,E). This will
increase the number of symbols only slightly due to the fact that empty submeshes,
e.g. bl = 0, do not occur arbitrarily as discussed before. Table 4.1 provides results
for a number of well-known benchmark meshes from Alliez and Desbrun [2001a]
and compares to the results from their best-performing valence-driven approach.

The compression rates are given results in bits per vertex for three variants: for
the Huffman-coded 4n + (blbr)2 symbols (HC), for an alternative, fixed symbol
table (FIXED, guaranteeing < 4b/v, see next Section 4.3.3), and the latter with
arithmetic coding applied (F&AC, [Moffat et al. 1998], bit model) to the output.
The binary trees are traversed in preorder.

In the following sections, we will separate the encoding of the strip lengths
from the encoding of the binary tree and study them in more detail.

68 Chapter 4: Connectivity Encoding

4.3.3 Strip Lengths Encodings

The encoding of the strip lengths is equivalent to the encoding of v − 2 numbers
summing up to t. The range of the numbers is from one up to the length of the
largest strip we create. The largest strip has always length less than b v

2
c, still this

is not a sharp bound with any practical use.
The simplest way to encode such a sequence of numbers is to use a word of k

bits consisting of k − 1 1’s followed by a 0 to represent the number k. The total
cost in this case is t bits, and the total cost of encoding the mesh — including the
tree — is bounded by t+2v−4 < 4v. It is worth noting here that the guaranteed
performance of 4b/v for this simplest encoding method, can not be improved
without going deeper into the study of the relationship between the encoding tree
and the corresponding strip-lengths.

Another, very popular method to encode a sequence of numbers is the Huff-
man code (see e.g. [Storer 1992]). Each number is assigned a unique code, and the
number of bits we spend on each code depends on the probability of each number
to appear in the sequence. After the Huffman coding, we can use arithmetic coding
to further exploit any existing entropy. We remark that the compression achieved
with the arithmetic coding depends on the order the strip lengths are transmitted,
i.e. on the particular traversal of the tree. In addition, we remark that the situation
is different to that in Section 4.3.1 as now the tree is given, hence any traversal
works. For a survey of different tree traversals see for instance [Berztiss 1986].

If we assume that the number of boundary vertices of the mesh is relatively
small, the number of the vertices — and thus, the number of the tree nodes —
is about half the number of the triangles due to Euler’s formula. Therefore, the
average strip length is near two, and the entropy of strip lengths largely depends
on the number of strips with length two. Our experiments show that the more
regular — i.e. almost all vertices have valence six — a mesh the more strips of
length two occur in its encoding. For an intuitive explanation of the latter fact,
consider Figure 4.1: A large strip passing through a regular area of the mesh
creates a regular boundary with vertices of valence four, and this in turn creates
a lot of strips with length two. This observation partly justifies the choice of the
leading directed edges of the dividing strip as the gates of the two submeshes. An
alternative deterministic choice of the gates, for example near the middle of the
dividing strip, would increase the length of the strips near the root of the tree but
the result would be worse in terms of compression ratios, because the total entropy
would decrease.

The Table 4.2 shows the experimental results for preorder and postorder en-
coding of the tree with a four- and a two-letter alphabet, and preorder, inorder,
postorder and level order traversal in the encoding of the strip lengths, for a vari-
ety of meshes. In [Ivrissimtzis et al. 2002] we used preorder traversals for both,

4.3 Tree-based Data Structures 69

Mesh tpre,1 tpre,2 tpost,2 spre,H spre spost sin slevel

David 1 2.46 2.46 2.46 1.40 2.08 2.08 2.03 2.08
David 2 2.11 2.10 2.11 1.43 1.66 1.67 1.66 1.67
David 3 2.03 2.03 2.03 1.46 1.58 1.60 1.53 1.62
David 4 2.05 2.06 2.06 1.46 1.51 1.53 1.39 1.55
Dinosaure 2.04 2.06 2.05 1.45 1.52 1.54 1.37 1.55
Fandisk 1.52 1.50 1.50 1.51 1.23 1.24 0.75 1.57
Mannequin 1 2.34 2.34 2.34 1.36 1.89 1.91 1.87 1.91
Mannequin 2 0.92 0.91 0.90 1.30 0.84 0.83 0.34 1.21
Venus 2.04 2.05 2.05 1.49 1.60 1.61 1.55 1.63
Max-Planck 1.20 1.16 1.16 1.52 1.08 1.06 0.67 1.39

Table 4.2: Results from binary tree and strip lengths encoding for different tree traversals.
The trees (t) are encoded separately from the strip lengths (s). The suffixes indicate pre-,
post-, in-, and level-oder traversal, the 1-alphabet (Zaks) or 2-alphabet. For spre,H only
Huffman coding is applied, arithmetic coding and a fixed alphabet is used in all other
columns.

the tree and the strip lengths, and we transmitted them in an interwoven fashion,
i.e. at each node the code of the strip length is followed immediately after the tree
code. Comparing the results there (see Table 4.1), even with the most favorable
combination of separate transmission of tree and strip lengths file, we see that they
are better. That means that there is a lot of entropy in the blend of tree codes and
strip lengths, and this entropy is exploited by the arithmetic coder.

Next we assume that the tree code and the strip length code of a node are
sent one after the other. This means that we assume the same traversal for both
the tree code and the strip lengths code. We study the relationship between the
two encodings, and we see how we can save information from the tree code using
information from the strip-lengths and vice versa.

4.3.4 Tree First Transmission
For this section, we assume that the code of the tree is sent first, using the
{L,R, S,E} alphabet, and the code of the strip length follows. Some simple
observations can reduce the amount of information we have to send for the strip
lengths.

A first observation is that because of Theorem 4.2, condition (ii), the weight
of an R-node is either one or an even number, while the weight of an L-node is
always odd. Another observation, from the same Theorem, condition (i), is that all
the leaves have strip length one, and do not need encoding. Going one step further
into the study of this situation, we realize that if an R is just above a leaf then,

70 Chapter 4: Connectivity Encoding

2

11

1 1

1
1 1

3

1 1

1

1 1

2

1

Figure 4.8: The encoding trees and the corresponding meshes near the leaves. Note that
some of the rooted meshes are isomorphic as un-rooted meshes.

by condition (i), the corresponding strip length is either one or two and can be
encoded with a single bit. Similarly, an L-node just above a leaf can only have a
strip length one, and we do not need to transmit any information. Figure 4.8 shows
the encoding near the leaves and the corresponding meshes. The above observa-
tions are the simplest instances of a more general feature of our approach, namely
that every node of the tree represents a gluing operation, and Theorem 4.2 gives
a simple criterion to determine when such a gluing operation is legal. Therefore,
we can treat these instances in a unified way by determining at each node all legal
gluing operations and sending only the necessary information for the decoder to
distinguish between them. This assumes a postorder reconstruction of the mesh.

Checking the criterion of the special gluing operations is straightforward. By
Theorem 4.2, condition (ii), if the node is of L-type, then the set of possible strip
lengths is restricted to odd numbers. In contrast, if the node is of R-type, the set
of possible strip lengths consists of the even numbers and the one. For a criterion
to check for regular gluing operations, i.e. Theorem 4.2, condition (i), we require
for each node the number of nodes of its subtree and the sum of the strip lengths
of that subtree.

This information can be held in an auxiliary data structure, where each node
of the tree is assigned a pair of integers (nj, wj), the number of nodes nj and the
sum of strip lengths wj of its subtree. Note that the integers wj are essentially the
weight sequence of the tree (see Section 4.3.1). When we process a new node,
we first find its children and assume that the integers assigned to them are (nl, wl)
and (nr, wr). Then

nj = nl + nr + 1 and wj = wl + wr + s ,

where s is the strip length corresponding to nj . Then, Theorem 4.2, condition (i),
gives

wl + wr + s + 1 ≤ 2(nl + nr + 1) ,

and hence
s ≤ 2nl + 2nr − wl − wr + 1 .

This way we find explicitly the set of all the strip lengths giving a legal gluing
operation at a node. And instead of transmitting the actual strip length, we send

4.3 Tree-based Data Structures 71

an offset determining its position in the set of all legal values. If the set contains
only one element, i.e. for the set {1} we send no information. If the set has
two elements, i.e. this is either {1, 2} or {1, 3}, we send only one bit. In all the
other cases, it is better to resort to Huffman encoding of the offsets rather than
using an ad hoc code for every particular set, because of the significantly higher
frequencies of the short strips.

The algorithm we just described can also be used as a test for the validity of a
code, e.g. with the original encoding of the output of Algorithm 4.1 as proposed
in [Ivrissimtzis et al. 2002], were the actual strip lengths are transmitted. In this
case, we proceed as above and find the set of all legal strip lengths corresponding
to a node, and we check whether the current value of s is included in that set. If
this happens for every node then all the gluing operations are legal, and the code
describes a valid mesh. If there is a node with strip length not included in the set,
then the decoding process will break at that point. Of course the testing algorithm
must be coupled with an algorithm checking the legality of the corresponding tree
code.

4.3.5 Strip-lengths First Transmission
In contrast to the previous section, suppose now that we first transmit the strip-
length of a node and then the tree code corresponding to it. From Theorem 4.2,
condition (ii), even strip lengths correspond to an S- or an R-node, while odd strip
lengths greater than one correspond to an S- or an L-node. Therefore, we need a
single bit for the tree code of the nodes with strip length greater than one.

Table 4.3 shows some more results obtained with the encoding techniques de-
scribed in Sections 4.3.4 and 4.3.5. This setting is similar to the initial experiment
in Section 4.3.2. Depending on the mesh the results here tend to be slightly better.

4.3.6 Valence-3 Vertices
From Theorem 4.2, and the above discussion of its implications, it is apparent
that the vertices with valence three are very characteristic. Their peculiarity arises
from the fact that a zig-zag strip collapses to itself only when passing through a
valence-3 vertex (see Section 4.2.2). Equivalently, it is the only case when a strip
of length greater than two can correspond to an R- or an L-node. Therefore, in
many cases it may pay off to have an initial preprocessing step clearing the mesh
from its valence-3 vertices. A similar strategy to improve mesh regularity and
efficiency of algorithms was also proposed by Alliez and Desbrun [2001b] in the
context of progressive coding.

After the clearance step we proceed as described in Sections 4.3.4 and 4.3.5,
separating the case of tree code transmission first from the case of strip length

72 Chapter 4: Connectivity Encoding

Mesh pre post,H post
David 1 3.94 3.30 3.94
David 2 3.53 3.35 3.53
David 3 3.36 3.40 3.36
David 4 3.13 3.39 3.14
Dinosaure 3.09 3.38 3.10
Fandisk 1.90 3.42 1.94
Mannequin 1 3.79 3.29 3.78
Mannequin 2 1.02 3.27 1.07
Venus 3.42 3.40 3.42
Max-Planck 1.38 3.43 1.42

Table 4.3: The table shows results for transmitting the tree (2-alphabet) and indices of
valid strip lengths in an interwoven fashion in pre- and postoder, the latter with Huffman
coding (post,H) only and arithmetic coding (post), respectively.

transmission first. Sending the tree code first, we know that an L-node can only
store a strip length equal to one, because any greater strip length would create a
valence-3 vertex, and therefore, we do not need to send any strip length informa-
tion. Similarly, a strip length corresponding to an R-node is either one or two, and
it is encoded in a single bit. On the other hand, if we first transmit the strip length
of a node, then any length greater than two corresponds to an S-node, and we do
not need any extra tree code. A strip length equal to two, corresponds to either an
S or an R-node and we need a single bit for the tree code.

4.4 Stripification:
An Application to Rendering

So far, we discussed the divide and conquer connectivity encoding and the result-
ing tree data structure from a data compression point of view. In this section we
show how this structure can be applied for efficient rendering of triangle meshes
(cf. [Rössl et al. 2003b]).

Here, a common technique is to decompose a mesh into a set of triangle strips.
The reason is, that then instead of sending three vertices per triangle to the graph-
ics hardware, only l + 2 vertices have to be transmitted for a strip of length l.
The triangles of a strip are represented as a sequence of vertices just as illustrated
in Figure 4.2. For a penalty of one additional vertex — which is sent twice and
introduces an empty or degenerate triangle — the orientation of the strip can be
swapped, allowing so called generalized strips. This is the representation sup-

4.4 Stripification: An Application to Rendering 73

ported by OpenGL (cf. [Woo et al. 1997]).
If the cost for rendering a mesh is expressed as the total numbers of vertices

which have to be transmitted to the graphics hardware, these are
∑v−2

i=1 (li + 2) =
2(v − 2) + t ≈ 2t vertices using the strips from our encoding method versus
3t vertices without strips but using individual triangles. We can improve this
guaranteed saving of 1

3
of the cost by extending the strips, i.e. concatenating

every parent strip in the tree with one of its children. Here, either the left or
the right child is the natural choice depending on the parity of the strip length,
and a swap-penalty is introduced for the other one. While traversing the tree in
preorder, we do a greedy decision for every node and chose always this natural
child for extending the current strip. A new strip is started beginning from the
other child node.

In fact we can deduce an upper bound cmax for the cost using this kind of
extended strips. Consider a basic cost of t + 2, i.e. the mesh is – hypothetically
– encoded as one single strip. Let s, e, l, r denote the total numbers of the nodes
of type S,E, L,R, respectively. For every S-node we have two children. The
strip is concatenated to the the child strip in the natural zig-zag direction without
any penalty (zero cost). We have to start a new strip from the other child which
costs two vertices for initialization. This yields a total cost of 2s for all S-nodes.
An L- or an R-node might or might not cost a penalty vertex depending on the
orientation. For the upper bound we assume to have always the extra cost, i.e.
l + r vertices in total. An E-node terminates a strip and does not induce any cost.
We now have

cmax = (t + 2) + 2s + l + r

but s = e−1 (relation between splits and leaves in a binary tree) and s+e+r+l =
n = v − 2 (total number of nodes from Theorem 4.1), and we get a guaranteed
50% saving from

cmax = (t + 2) + s + (e − 1) + l + r = t + v − 1 ≈ 3v ≈ 3

2
t

On average, we may assume that only for half of the L- and R-nodes the
swap-penalty must be paid.

Empirically, we get an average saving of > 57% (always between 56% and
59%) for the models used in [Ivrissimtzis et al. 2002]. Figure 4.9 shows typical
results of the stripification. It compares also to stripifications resulting from the
well-known optimization method of Evans et al. [1996] — we used their STRIPE
V2.0 implementation — which provide some few percent more savings. Evans’
method applies heuristics to find a good stripification, as finding the optimal strips
is known to be a NP-complete problem. In a similar context, Isenburg [2000]
presents an algorithm for encoding and compressing the connectivity along with
a stripification, e.g. the one generated by STRIPE, of a polygonal mesh.

74 Chapter 4: Connectivity Encoding

(a) (b)

Figure 4.9: Examples for stripification for rendering. (a) 3219 vs. 7401 cost (57% sav-
ing), 131 strips (661 swaps). (b): 255935 vs. 599988 cost (57% saving), 10711 strips
(49477 swaps). The corresponding cost from STRIPE are 2992 (60%) and 232264 (61%)
vertices, respectively.

In contrast, our encoding algorithm does not do any (expensive) optimization,
nor does it encode a certain stripification, which requires the storage of some extra
amount of data. Using the recursive encoding, we obtain a stripification that is im-
plicitly defined by the resulting binary tree data structure and that does not have to
be encoded explicitly. Still, this stripification comes with a guarantee and is com-
petitive when compared to others generated by more sophisticated algorithms, and
it thus can be exploited for efficient rendering. We remark that, we considered the
quality of this stripification only using a simple cost measure. More sophisticated
measures are applied e.g. in [Bogomjakov and Gotsman 2002].

4.5 Summary

We presented algorithms for the encoding and decoding of the connectivity of
a triangle mesh. The encoding works recursively following the divide and con-
quer principle, which makes its description intuitive. The output of the algorithm
is naturally organized as a binary tree with positive integer weights assigned to
its nodes, and which features additional properties used for the further analysis.
The algorithms can take advantage of different tree traversal strategies, and we
showed how the post order traversal can be exploited for reverse decoding yield-
ing an effective single pass algorithm. We studied the tree data structure, different

4.5 Summary 75

traversals as well as the coupling of the tree structure with the node weights in the
context of data compression. The derived properties reveal some redundancy in
the code which can be either stripped for compression or used for validity checks.

We remark that there is a connection to the Edgebreaker encoding. From this
observation, we can improve the reported four bits per vertex to obtain a guaran-
teed upper bound of 3.585 bits per vertex as compression ratio. In order to see
this, assume the simplest encoding in Section 4.3.3 and associate every 1 with a
C-symbol and each 0 and one of L,R, S,R (see Section 4.2.4), yielding a total
number of one bits per C three bits for the latter symbols. The number of C’s is
t − v + 2, and the number of L,E,R, S is v − 2. Any non-empty string of C
symbols denotes a strip of length greater than one, and — using arguments from
the previous sections — it can be followed by only two of the L,E,R, S, depend-
ing on the parity of the number of C’s. With this correspondence established, we
obtain the guaranteed upper bound following [Gumhold 2000]. In practice, much
better results are achieved, especially for very regular meshes.

Besides compression, we show that the generated tree data structure offers
potential to other applications such as efficient rendering. In this context, we
show that the encoding algorithm generates a partition into generalized triangle
strips at no extra cost, and that this stripification competes well with results of
more expensive optimization algorithms.

Connectivity data is only one part of surface meshes which come with addi-
tional (geometric) attributes such as positions and surface normals. For the ef-
ficient compression of certain attributes, certain traversals may be favored. For
instance zig-zag strips may be of advantage for vertex normals, which are sup-
posed to have low variation along the strip. In general, connectivity and attributes
can be considered in an interwoven fashion as applied by Lee et al. [2002], i.e.
the attribute data steers the construction of the strip. The proposed framework
provides the flexibility to include such considerations.

Clearly, the size of attribute data may dominate the total size of a data set. Con-
sequently, there are many applications which require a (potentially lossy) com-
pression of these attributes, and there are a variety of algorithms dealing with the
most common attributes like vertex positions. A typical example is mesh decima-
tion under the preservation of the overall shape of the surface. In the next section,
we present a framework for the compression of vector valued attributes — i.e.
of a piecewise linear vector field. This is particularly challenging and interesting
due to the constraint of preserving the topology of the vector field, which is a
global property — in contrast to a distance measure to a reference shape as in the
example before.

76 Chapter 4: Connectivity Encoding

Chapter 5

Vector Field Compression

5.1 Background

In the previous section, we discussed the compression of the connectivity of trian-
gle meshes, now we shift the focus to attribute data associated with the vertices.
Here, a particular interesting and challenging problem is the compression of vec-
tor fields under certain global constraints: A vector is assigned to every vertex,
this defines a piecewise linear vector fields over the triangular domain. The goal
is to find a representation which can be stored more compactly, i.e. a piecewise
linear function with considerably fewer coefficients, while the topology of the
original vector field is preserved. The demand and applications for such compres-
sion techniques originate from flow visualization. We give a brief overview in the
following.

Flow visualization is one of the most important subfields of scientific visual-
ization. From its very beginning, flow visualization had to face the problem of
dealing with large and complex data — usually far more complex than a human is
able to process, or than computers can transmit and process in acceptable times.
Thus most of the flow visualization techniques are somehow involved with com-
pressing and simplifying the flow data, either by visualizing only important parts
of the data or by extracting features which contain the most relevant information
about the vector field. We refer to Post et al. [2002] for an overview of flow
visualization techniques.

One of the most important features of a vector field is its topo-
logical skeleton which has been introduced as a visualization tool in
[Helman and Hesselink 1989]. The topological skeleton of a vector field essen-
tially consists of a collection of critical points and special stream lines called
separatrices which separate the flow into areas of different flow behavior. The
attractiveness of the topological skeleton as a visualization tool lies in the fact that

78 Chapter 5: Vector Field Compression

even a complex flow behavior can be expressed (and visualized) by using only a
limited number of graphical primitives.

In the original work of Helman and Hesselink [1989], only first order crit-
ical points were considered, i.e. critical points with a non-vanishing Jacobian.
Based on an eigenvector analysis of the Jacobian matrix, these critical points were
classified into sources, sinks, centers and saddles. Furthermore, the only separa-
trices which were considered started from the saddle points in the directions of
the eigenvectors of the Jacobian matrix there. In addition, separatrices from de-
tachment and attachment point starting at zero-flow boundaries were considered.

In the following years, this concept of the topological skeleton of a vector
field has been extended in several ways. Scheuermann et al. [1998] treat the ap-
pearance of higher order critical points. These critical points are characterized
by a number of sectors of similar flow behavior around them, namely parabolic
sectors, elliptic sectors, and hyperbolic sectors [Firby and Gardiner 1982]. In
[de Leeuw and van Liere 1999a], separatrices starting from boundary switch
points are considered to separate regions of different inflow/outflow behavior
across the boundary of the flow. In [Wischgoll and Scheuermann 2001] the ap-
pearance and detection of closed stream lines is treated. Trotts et al. [2000]
introduce critical points at infinity to obtain additional separatrices. Kenwright
et al. [1999] consider separation and attachment lines as additional topological
features. Bajaj et al. [1998] treat the topology of scalar fields for visualiza-
tion purposes. First approaches for visualizing 3D topological skeletons are in
[Globus and Levit 1991].

Flow data sets tend to be large and complex. This fact has motivated inten-
sive research in simplifying and compressing vector fields. For both challenges,
topological concepts have been applied.

Topological simplification techniques apply if the topological complexity of
the data set is high and if it is known that certain topological features are due to
noise. De Leeuw and van Liere [1999a] collapse critical points by using area met-
rics. The same authors [1999b] propose two methods: an implicit method (apply
a global smoothing over the vector field), and an explicit method (collapse ap-
propriate adjacent first order critical points). In [Tricoche et al. 2000], clusters of
first order critical points are merged to a higher order critical point. Tricoche et al.
[2001] collapse pairs of critical points under preservation of the underlying grid
structure of the vector field. Westermann et al. [2001] analyze the curvature nor-
mal of certain time surfaces to obtain a topology-preserving smoothing of a vector
field. The simplification of the topology of scalar fields (which can be considered
as a special case of vector field topology) is treated in [Edelsbrunner et al. 2001]
and [Bajaj and Schikore 1998]. All these topology simplification algorithms men-
tioned above focus on reducing the number of critical points and do not explicitly
treat separatrices. However, since a high number of separatrices starts and ends in

5.2 Theoretical Framework 79

critical points, a reduction of the number of critical points also reduces the number
of separatrices.

Compression techniques for vector fields are motivated by the necessity of
transmitting large flow data sets over networks with low bandwidth, or by the
goal to produce visualizations of the data in low-end machines with a small main
memory. For these cases the consideration of compressed vector fields makes the
process of visual analysis of the flow data more efficient and is sometimes the
only way to process the data in reasonable time at all. Simple compression tech-
niques ([Heckel et al. 1999], [Garcke et al. 2000], [Telea and van Wijk 1999]) are
based on distance functions which locally compare the vectors of the vector fields
without including topological issues. Since the topological skeleton has proven
to describe the vector field in a compact way, it is a natural approach to search
for compression techniques which are based on the topology of the vector fields.
[Lodha et al. 2000] is a first approach to compress a vector field under the con-
sideration of preserving the characteristics of critical points. Based on a distance
measure of vector fields which compares the present critical points, a compression
is carried out until the difference of original and compressed vector field exceeds
a certain threshold. In [Theisel 2002] a method is introduced which does not
only preserve the critical points but also the behavior of the separatrices. This is
achieved by extracting the topological skeleton and reconstructing it by a new
piecewise linear vector field. For rather simple topologies, this reconstructed
piecewise linear vector field turns out to be a compressed version of the origi-
nal one. However, if the topology of the vector field becomes more complex, the
compression ratio drops and might become even negative.

As the main contribution of this chapter, we introduce a new method
of topology preserving compression of piecewise linear vector field (cf.
[Theisel et al. 2003a]). Contrary to pre-existing compression methods, the
method guarantees that the topology of original and compressed vector field coin-
cides both for critical points and for the connectivity of the separatrices. We show
that even under these strong conditions we achieve high compression ratios for
vector fields with complex topologies. In this context, we study modifications of
the topology preserving algorithm (cf. [Theisel et al. 2004a]) as well as topolog-
ical simplification (cf. [Theisel et al. 2003b]). The experimental results on large
data sets with complex topology illustrate and verify the theoretical framework
and show the efficiency of the proposed techniques.

5.2 Theoretical Framework

In this section we give the theoretical background of our topology preserving com-
pression algorithm (cf. [Theisel et al. 2003a]). The main contribution of this sec-

80 Chapter 5: Vector Field Compression

tion is to show in Theorem 5.1 that for a local modification of the vector field it
can be decided by a local analysis whether the topology is affected by the mod-
ification. This property is not evident, since the topology of a vector field is a
global feature, and local modifications of the vector field may change the global
behavior. To show this property, we have to describe the concept of vector field
topology and local modifications in a formal way. Section 5.2.1 gives a formal de-
scription of the topology of a 2D vector field. Section 5.2.2 discusses the concept
of topological equivalence of vector fields. Section 5.2.3 treats the impact of lo-
cal modifications to the topology of a vector field. Section 5.2.4 discusses further
concepts and extensions of the topology of a 2D vector field from the viewpoint
of topology preserving local modifications.

5.2.1 The Topology of a 2D Vector Field
Let D ⊂ IE2 be a closed point set which is bounded by n continuous boundary
curves Fi (i = 0, .., n − 1). D serves as the domain of the vector field. Normally,
D is bounded by only one curve, but we particularly allow domains with "holes",
i.e. with more than one boundary curve. Then a vector field v is a continuous map
v : D → IR2. We define C(v) as the set of all critical points of v:

C(v) = {x ∈ D : v(x) = (0, 0)T} (5.1)

and assume that C(v) is a finite set, i.e., all critical points are isolated. Also, we
assume that no critical point lies on one of the boundaries of D. Furthermore, let
v be differentiable in a neighborhood of each critical point, which gives that the
Jacobian matrix

Jv(x) = (vx1
(x),vx2

(x))

exists for each x ∈ C(v) (cf. [Helman and Hesselink 1989]). Here we assume
that all critical points are first order critical points, i.e. det(Jv(x)) 6= 0 holds
for all x ∈ C(v). Based on an analysis of Jv, first order critical points can be
classified into saddles, sources, sinks, and centers (cf. Helmann and Hesselink
[1989, 1991]). For the description of the topology, saddle points are of particular
interest. A saddle s ∈ C(v) is characterized by det(Jv(s)) < 0.

Let Fi be a boundary curve of D. Then v partitions Fi into a number of
consecutive regions of heterogenous outflow and inflow behavior of the vector
field (cf. [de Leeuw and van Liere 1999a]). A point b ∈ Fi is called boundary
inflow point iff

∃ ε0 > 0 ∀ ε > 0 : ε < ε0 ⇒ (b + ε v(b)) ∈ D

i.e., the flow enters the domain D there. A point b ∈ Fi is called boundary outflow
point iff

∃ ε0 > 0 ∀ ε > 0 : ε < ε0 ⇒ (b + ε v(b)) /∈ D

5.2 Theoretical Framework 81

i.e., the flow leaves the domain D there. A point b ∈ Fi is called boundary switch
point iff in every ε-neighborhood of b both boundary inflow and outflow points
exist. For the case of differentiable boundary curves, boundary switch points are
characterized by a flow direction parallel to the tangent direction of the boundary
curve in this point. Let B(v) be the set of all boundary switch points of v.

In the following we assume that B(v) is a finite set. We consider the boundary
switch points on the boundary curve Fi. The points on Fi which are located
between adjacent boundary switch points (while traversing in counterclockwise
direction on F) have a similar inflow/outflow behavior: all of them are either
boundary inflow points, or all of them are boundary outflow points. We call the
set of all points on F between two adjacent boundary switch points a boundary
inflow region or boundary outflow region. Figure 5.1a gives an illustration.

x3

x2

x1

a) b) c)

Figure 5.1: a) The domain D (gray area) is bounded by two boundary curves. The outer
boundary curve has four boundary switch points (yellow) which produce two boundary
inflow regions (green line) and two boundary outflow regions (red line). The inner bound-
ary curve has two boundary switch points producing one boundary inflow region and one
boundary outflow region. b) Three points x1,x2,x3 and their stream lines; x2 and x3 are
stream line equivalent while x1 is not stream line equivalent to x2 or x3. c) Topological
skeleton of a vector field consisting of two boundary switch points (yellow), one boundary
outflow region (red line), one boundary inflow region (green line), one saddle point (blue
point), one source (green point), one sink (red point), and the separatrices (black lines).

A stream line of v is a curve in D with the property that for every point on
the curve the tangent direction coincides with the direction of v in this point (cf.
[Helman and Hesselink 1989]). A particular stream line can be obtained by pick-
ing a point x ∈ D and integrating both in forward and backward direction until the
stream line either ends in a critical point or leaves D in a boundary inflow/outflow
point (for now we assume that no circulating behavior of a stream line is present).
Note that through every non-critical point there is exactly one stream line. Further-
more, stream lines cannot intersect each other (except in critical points). These
facts can be used to classify points in D with respect to the behavior of the stream
line through them.

82 Chapter 5: Vector Field Compression

Let x ∈ D, and let Sv(x) be the stream line through x. Sv(x) can be integrated
both in forward and backward direction until it ends in a critical point or leaves D

in a boundary inflow/outflow point. We define

Definition 5.1 Two points x1,x2 ∈ D are stream line equivalent concerning v

(written x1 ∼s
v

x2) if the stream lines through x1 and x2 end in the same critical
point or inflow/outflow region, for both forward and backward integration.

Figure 5.1b gives an illustration of Definition 5.1.
The relation ∼s

v
partitions D into sectors of similar flow behavior. It is known

(cf. [Helman and Hesselink 1991, de Leeuw and van Liere 1999a]) that these sec-
tors are separated by a number of particular stream lines called separatrices. The
set of separatrices can be constructed by considering the stream lines originating
from the boundary switch points (both by backward and forward integration), and
certain stream lines starting from saddle points.

Every boundary switch point b is related to two separatrices: one separatrix is
obtained by forward integration from b, the other by backward integration. From
a saddle point s, four separatrices are constructed: for both eigenvectors of Jv(s)
in forward and backward direction. This means, we construct separatrices from
the four points

(s + ε j1) , (s − ε j1) , (s + ε j2) , (s − ε j2)

where j1, j2 are the two eigenvectors of Jv(s), ε is a very small positive number,
and the integration direction is "away from the saddle point". This is justified by
the fact that for det(Jv(s)) 6= 0, v is governed by a first order approximation in a
neighborhood of s. Using this system of separatrices, each separatrix is uniquely
defined by its starting point and its integration direction.

After introducing the concepts above, we can define the topological skeleton
of a vector field as the collection of critical points, boundary switch points, and
separatrices. Figure 5.1c illustrates an example.

5.2.2 Topologically Equivalent Vector Fields
To compare the topology of vector fields, the concept of topological equivalence
of two vector fields v and w over the same domain D has to be introduced. Several
ways of doing this are possible. One rather restrictive way is to demand that v and
w coincide in all critical points, their Jacobian matrices, and all separatrices. Since
for topologically complex vector fields the separatrices lie rather densely in the
domain, this definition tends to allow only identical vector fields to be equivalent.

On the other hand, a very loose definition of topological equivalence is to de-
mand the coincidence of the structure of the topology graph (i.e., corresponding

5.2 Theoretical Framework 83

critical points may vary both in location and in Jacobian, as far as their connectiv-
ity of the separatrices coincides.)

Here we want to use a compromise of the above-mentioned definitions:

Definition 5.2 The vector fields v and w over the domain D are topologically
equivalent (written v ∼T w) iff the following conditions hold:

i. C(v) = C(w)

ii. ∀x ∈ C(v) : Jv(x) = Jw(x)

iii. B(v) = B(w)

iv. Corresponding separatrices in v and w end in the same critical point or
boundary inflow/outflow region.

Concerning this definition, v and w have identical critical points and boundary
switch points. Thus v and w also have the same number of separatrices. A sepa-
ratrix in v corresponds to a separatrix in w if they start in the same point with the
same integration direction.

This definition of topologically equivalent vector fields is rather restric-
tive to critical points and boundary switch points while giving some freedom
to the separatrices. We made this choice because it ensures that topologi-
cally equivalent vector fields always have a zero distance concerning all known
topology based vector field metrics (cf. [Lavin et al. 1998, Batra et al. 1999,
Theisel and Weinkauf 2002]).

5.2.3 Local Modifications of the Topology
In this section we analyze the effect of local modifications of the vector field
and its topology. Since the topology of a vector field is a global feature, local
modifications can change the topology everywhere in its domain. Imagine for
instance the creation or removal of critical points in the modified area which may
affect the separatrices far away from this area.

Nevertheless, we show in this section that it can be decided entirely by a local
analysis in the area to be modified, whether or not a local modification of the
vector field will change its topology.

Let v and w be two differentiable vector fields over the domain D, and let
D′ ⊂ D be a closed subdomain which is bounded by one closed curve F′ (thus
assuming that D′ does not have any holes). Furthermore, let D′′ = (D \D′)∪F′,
and let v and w differ only inside D′, i.e.

∀x ∈ D′′ : v(x) = w(x). (5.2)

84 Chapter 5: Vector Field Compression

a) b) c)

Figure 5.2: a) Example of a vector field v and its topological skeleton. b) Example of a
vector field w and its topological skeleton. c) Overlay of a) and b): v and w differ only
inside the area D′ (marked by the inner ring). Stream lines which start in D′′ coincide in
v and w until they enter D′. Since they generally leave D′ in different points on F′, they
have different paths in D′′after passing through D′.

Figure 5.2 illustrates an example.
We search for local conditions for v ∼T w. To do so, we collect a number of
points on F′. Let PF′(v) be the set of all intersection points of all separatrices of
v with F′, and let

QF′(v) = PF′(v) ∪ B(v|D′) ,

where v|D′ denotes the vector field v restricted to the domain D′. Assuming
QF′(v) ⊂ F′ to be a finite set, we can formulate

Theorem 5.1 The vector fields v and w fulfilling (5.2) are topologically equiva-
lent (v ∼T w) if the following conditions hold:

1. Every separatrix of v and w intersects F′ at most once, i.e. has at most one
entry point and one exit point with F′.

2. v|D′ ∼T w|D′ .

3. The corresponding points in QF′(v) and QF′(w) are in the same circular
order on F′ (while traversing counterclockwise around F′).

From (5.2) and condition 2 of Theorem 5.1 it follows that v and w have the same
critical points and boundary switch points. Hence, the separatrices of v and w

have a one-to-one correspondence concerning starting point and integration direc-
tion. This and condition 1 of Theorem 5.1 gives that there is also a one-to-one
correspondence between PF′(v) and PF′(w): a point x1 ∈ PF′(v) corresponds
to x2 ∈ PF′(w) if their creating separatrices correspond, and both are either entry
points or both are exit points of D′ while integrating in integration direction. This

5.2 Theoretical Framework 85

unique correspondence between PF′(v) and PF′(w) (and therefore also between
QF′(v) and QF′(w)) justifies the formulation of condition 3 of Theorem 5.1.

Theorem 5.1 means that for checking the topological equivalence of v and w,
we simply have to collect the points of QF′(v) and QF′(w), find the correspond-
ing pairs, and compare their order on F′.

To prove Theorem 5.1 we have to show that the conditions 1–3 of Theorem 5.1
yield the conditions i–iv of Definition 5.2. Conditions i–iii of Definition 5.2 fol-
low directly from (5.2) and condition 2 of Theorem 5.1. Only iv of Definition 5.2
remains to be shown. To do so, we construct the topological skeleton of the vector
fields v|D′′ = w|D′′ as shown in Figure 5.3a. This gives PF′(v|D′′) = PF′(w|D′′).
Furthermore, we construct the topological skeleton of the vector fields v|D′ and

a) b) c)

Figure 5.3: a) Example vector field v|D′′ = w|D′′ (grey area) and its topological skele-
ton. b) v|D′ and its topological skeleton: PF′(v|D′) consists of the marked points on the
boundary of the grey area. c) w|D′ and its topological skeleton.

w|D′ , and compute PF′(v|D′) and PF′(w|D′). Figures 5.3b and 5.3c illustrate
this. Condition 2 of Theorem 5.1 ensures that there is a one-to-one correspon-
dence between PF′(v|D′) and PF′(w|D′). Also, we have

PF′(v|D′′) ∪ PF′(v|D′) ⊆ QF′(v),

PF′(w|D′′) ∪ PF′(w|D′) ⊆ QF′(w).

This and condition 3 of Theorem 5.1 ensure that corresponding points of
PF′(v|D′′) ∪ PF′(v|D′) and PF′(w|D′′) ∪ PF′(w|D′) are in the same order
on F′.

The joint of the topological skeletons of v|D′ and v|D′′ does not yield the
topological skeleton of v yet. In fact, all separatrices which intersect F′ end there.
Figure 5.4 illustrates this. In order to complete the topological skeleton of v, we
have to do the following constructions:

A. continue the integration of all separatrices of v|D′ if they leave D′ in a point
on F′,

86 Chapter 5: Vector Field Compression

a) b) c)

d)

Figure 5.4: a) Joining the topological skeletons of v|D′ and v|D′′ does not yield the
topological skeleton of v, since the separatrices of v|D′ and v|D′′ end when crossing F′.
b) Joining the topology of w|D′ and w|D′′ ; c) PF′(v|D′′) ∪ PF′(v|D′) consists of the
marked points on F′. d) PF′(w|D′′) ∪ PF′(w|D′).

B. continue the integration of all separatrices of v|D′′ if they leave D′′ in a
point on F′.

(The similar statement holds for the vector field w.) Concerning A mentioned
above, let S1 be a separatrix in v|D′ , and let S2 be the corresponding separatrix in
w|D′ . This means that S1 and S2 start from the same point in the same integration
direction. Let S1 intersect F′ in the point x1, and let S2 intersect F′ in x2. In
general, x1 and x2 differ. Nevertheless, from condition 3 of Theorem 5.1 we
know that x1 and x2 are located between the same adjacent points of PF′(v|D′′) =
PF′(w|D′′). This means that x1 and x2 are not separated by a separatrix in v|D′′ =
w|D′′ . Hence the integration of the stream lines in D′′ starting from x1 and x2 ends
in the same critical point or boundary inflow/outflow region: the separatrices S1

and S2 in the whole domain D are corresponding.
Concerning B mentioned above, let S1 be a stream line in v|D′′ , let S2 = S1 be

the corresponding stream line in w|D′′ , and let x ∈ PF′(v|D′) be the intersection
of S1 and S2 with F′. We integrate S1 in D′ from x until S1 leaves D′ in a
point x1 ∈ F′. Also, we integrate S2 in D′ from x until S2 leaves D′ in a point
x2 ∈ F′. Figure 5.5 illustrates this. Since x1 ∈ QF′(v), x2 ∈ QF′(w), and
condition 3 of Theorem 5.1, x1 and x2 are located between the same adjacent
points of PF′(v|D′′) = PF′(w|D′′) on F′. Then the same argumentation as in A
gives that S1 and S2 are corresponding in the whole domain D, which proves
Theorem 5.1.

5.2.4 Extensions of the Topology Concept
In Section 5.2.1 we made a number of simplifying assumptions about the consid-
ered vector fields in order to keep the proof of Theorem 5.1 simple. Although
many practical vector fields (including our examples in the next section) fulfill

5.3 Compressing the Vector Field 87

a) b) c)

d)

Figure 5.5: a) Continue integrating separatrices of v|D′′ if they enter D′. b) Continue
integrating separatrices of w|D′′ if they enter D′. c) QF′(v) consists of the marked points.
d) QF′(w) consists of the marked points.

these assumptions, there are vector fields with different topological structures. In
this section we discuss the applicability of Theorem 5.1 to these vector fields:

• Zero flow boundaries:
Zero flow boundaries are present if, for instance, the flow around certain
solids is simulated. Instead of boundary switch points, so called attachment
and detachment points divide the boundary curve there. The proof of The-
orem 5.1 was only based on the fact that the topological skeleton provides
a complete partition into areas of similar flow behavior. If this condition
is fulfilled by the additional consideration of attachment and detachment
points, Theorem 5.1 can also be applied for vector fields with zero-flow
boundaries.

• Closed separatrices:
Vector fields may have additional closed stream lines as separatrices. These
separatrices do not have a unique starting point. Moreover, condition 1 of
Theorem 5.1 is not fulfilled if such a separatrix intersects D′. Hence the
conditions of Theorem 5.1 are not fulfilled if closed separatrices enter D′.

• Higher order critical points:
If higher order critical points are present, the regions of similar flow be-
havior around them are separated by a number of separatrices. Since these
separatrices have a unique starting point, Theorem 5.1 can be applied.

5.3 Compressing the Vector Field
In this section we apply the results of section 5.2 to build an algorithm for topology
preserving compression of 2D vector fields. The algorithm works on a piecewise
linear original vector field. This means, given is a triangulation of the domain

88 Chapter 5: Vector Field Compression

with velocity information in every vertex. This way the vector field can be con-
sidered as a triangular mesh; the problem of compressing the vector data set is
thus converted to a mesh decimation problem.

Techniques for solving this simplification problem have been studied exten-
sively during the last decade, see e.g. [Gotsman et al. 2002] for a recent and com-
prehensive survey. We choose the so called half-edge collapse as basic removal
operator. It collapses a vertex p0 into its neighbor p1 along the directed edge
(p0,p1) (see Figures 5.7c and 5.7d for an example). Before a half-edge collapse
is applied, we have to make sure that it does not change the topology of the vec-
tor field. We describe the algorithm for doing so in Section 5.3.2. Section 5.3.1
describes the necessary data structures for the algorithm. Section 5.3.3 describes
the whole compression algorithm.

5.3.1 The Data Structure
As a preprocess of the algorithm, we have to extract the topology of the original
piecewise linear vector field and store it in an appropriate data structure. This data
structure is essentially a half-edge data structure representing a triangular mesh
with vector information at each vertex. In addition, each triangle has information
about present critical points, boundary switch points and separatrices. If a critical
point appears inside the triangle, its location and classification are stored with the
triangle. If there is a boundary switch point in a boundary triangle, its location
is stored with the triangle. Starting from the boundary switch points and saddle
points, the separatrices are integrated over the vector field. This way a separatrix
usually passes through a number of triangles. For each of these triangles the
following items are stored:

• ID of the separatrix

• entry point into the triangle (or starting point of the integration if the sepa-
ratrix origins inside the triangle) in integration direction

• exit point out of the triangle (or critical point inside the triangle where the
separatrix ends) in integration direction

Note that the integration direction is not necessarily the flow direction of the vec-
tor field. Instead, the integration direction is always “away from” its originating
saddle point or boundary switch point.

5.3.2 Controlled Half-Edge Collapse
Based on the mesh data structure described above, we can apply the results of
Theorem 5.1 to locally check whether a half-edge collapse changes the topology

5.3 Compressing the Vector Field 89

of the vector field. Let p0,p1 be two vertices which are connected by an edge,
let p1, ...,pn be the 1-ring around p0, and let t1, ..., tn be the (counterclockwise
ordered) triangles around p0

1. Figure 5.6a illustrates this setting. A half-edge

p0 p1

p2

p3

p4

p5

p6

p0 p1 p0 p1
t1

t2

t3

t4

t5

t6

a) b) c)

Figure 5.6: a) A half-edge collapse p0 → p1 only affects the vector field inside the
triangles t1, ..., tn. b) Example of an invalid half-edge collapse p0 → p1 because one
separatrix enters D′ (marked grey) twice. c) For the same configuration as b), the half-
edge collapse p1 → p0 may be allowed because the separatrix enters D′ (marked grey)
only once.

collapse p0 → p1 only affects the vector field inside the triangles t1, ..., tn. This
is the area D′ of Theorem 5.1 in which local modifications of the vector field take
place.

Now we can describe the algorithm to check whether a half-edge collapse
changes the topology of a vector field:

Algorithm 5.1 (controlled half-edge collapse)

1. Check if there are critical points inside D′ = (t1, ..., tn).
If so, stop and prohibit the half-edge collapse.

2. Collect all separatrices which pass through D′. For each separatrix,
store entry point and exit point of D′ in a cyclic list L1 which is or-
dered according to the order of the line segments of the closed polygon
((p1,p2), ..., (pn−1,pn), (pn,p1)).

3. If a separatrix enters D′ more than once, stop and prohibit the half-edge
collapse.

4. Compute the boundary switch points of the vector field on the polygon
((p1,p2), ..., (pn−1,pn), (pn,p1)), insert these points to L1.

5. Simulate the half-edge collapse p0 → p1 while storing the original config-
uration (to allow an undo of the half-edge collapse).

1In order to avoid confusion with the vector field v, we denote vertices by p, here.

90 Chapter 5: Vector Field Compression

6. Apply linear interpolation of the vector field inside the new triangles
(p1,p2,p3), (p1,p3,p4), ..., (p1,pn−1,pn)).
Check whether there are critical points inside one of the new triangles. If
so, stop and prohibit half-edge collapse.

7. Construct a new cyclic ordered list L2 of points on the polygon
((p1,p2), ..., (pn−1,pn), (pn,p1)) consisting of the following points:

(a) all boundary switch points of step 4 of the algorithm

(b) the entry points of all separatrices to D′

(c) integrate the stream lines starting from all points of step 7b of this
algorithm inside D′ until they reach the boundary again; store the exit
points in L2.

8. Undo simulated half-edge collapse p0 → p1

9. Compare the cyclic order of the points in L1 and L2.
If the corresponding points do not have the same cyclic order in L1and L2,
stop and prohibit the half-edge collapse.

10. Stop and allow the half-edge collapse .

Figure 5.7 illustrates this algorithm where an edge collapse is allowed. Figure 5.8
shows an example where the algorithm prohibits an edge collapse.
Algorithm 5.1 needs some remarks:

• The collected points in the lists L1 and L2 correspond to QF′(v) and
QF′(w) of Theorem 5.1. Moreover, steps 1 and 6 of algorithm 5.1 ensure
condition 2 of Theorem 5.1, and step 2 ensures condition 1 of Theorem 5.1.
Hence Theorem 5.1 proves the correctness of algorithm 5.1.

• The entire algorithm works locally on the 1-ring around p0.

• If an edge collapse is impossible because of a re-entry of a separatrix, an
edge collapse of an adjacent edge (or of the opposite half-edge) might still
be possible. Figures 5.6b and 5.6c show an example.

5.3.3 The Compression Algorithm
The vector field compression is achieved by applying a mesh reduction to the
triangulated domain of the piecewise linear vector field. A standard algorithm is
adapted to this specific problem. Its basic topological operator is the controlled
half-edge collapse from Section 5.3.2. The mesh reduction algorithm can now be
sketched as follows:

5.3 Compressing the Vector Field 91

a)

d) e)

b) c)

f)

Figure 5.7: Example of algorithm 5.1. a) Three separatrices passing through D′, and
two boundary switch points (yellow) are present. The empty boxes are the entry points of
the separatrices into D′ (in integration direction), the solid boxes describe the exit points.
b) Cyclic list L1 (grey arrows) after step 2. c) L1 after step 4. d) Collecting points of
new list L2 after half-edge collapse: after step 7a and 7b. e) Integrate new stream lines
(7c). f) Cyclic list L2 after step 7c. The edge collapse is allowed, since the corresponding
points in L1 and L2 (shown in c) and f)) are in the same order.

Algorithm 5.2 (Topology preserving vector field compression)
Repeat. . .

1. Initialization. For all directed edges (pi,pj):

(a) Apply Algorithm 5.1 to check whether half-edge collapse is allowed.

(b) If allowed: evaluate priority and put (p0,p1) into priority queue PQ.

2. Iterative removal. While PQ not empty

(a) Get and remove (pi,pj) from PQ.

(b) If half-edge collapse (pi,pj) allowed: apply half-edge collapse.

(c) Update topology data structure.

(d) Re-apply Algorithm 5.1 to all edges incident to pj and to pj’s 1-ring,
and update PQ accordingly.

92 Chapter 5: Vector Field Compression

a) b) c)

Figure 5.8: Another example of algorithm 5.1. a) Three separatrices passing through D′,
and two boundary switch points (yellow) are present: L1 consists of the marked points
on the boundary. b) Points of L2 after step 7b. c) Points of L2 after step 7c. The edge
collapse is not allowed, since the corresponding points in L1 and L2 (shown in a) and c))
are in different order.

. . . until no more collapses possible.

Here, the inner loop reflects the standard mesh reduction algorithm. The outer
loop that causes repeated reinitialization reflects the fact that local changes may
have global impact and may thus allow collapses that have been prohibited before.
The update to the topology data structure (step (2c) of algorithm 5.2) is the most
expensive part of the algorithm. If a half-edge collapse is carried out, the topology
data structure (described in Section 5.3.1) has to be updated: all separatrices which
pass through the 1-ring around p0 have to be reintegrated from their entrance point
into the 1-ring.

The whole process is a greedy optimization driven by a priority queue. In a 3D
setup the priority of a collapse would be some kind of quality measure as e.g. dis-
tance to the original surface. In the 2D case we are left with an additional degree
of freedom. A natural choice would be to locally apply some difference measure
for flow fields (see e.g. [Garcke et al. 2000], [Heckel et al. 1999]). We do not
consider advanced quality measures for the following. Instead, we apply a simple
heuristic to gradually coarsen the mesh and merely assign priorities proportional
to edge lengths, preferring short edges for collapse.

5.4 Modifications of the Topology Preserving Compression Algorithm 93

5.4 Modifications of the Topology Preserving
Compression Algorithm

We provide two modifications to algorithm 5.2 in order to better evaluate the
topology preserving compression (cf. [Theisel et al. 2004a]). Both modifications
affect the notion of the equivalence of topological skeletons (see Section 5.2.2,
Definition 5.2). While the first modification applies a stronger concept of topo-
logical equivalence, the second modification relaxes the original concept:

The original concept of topological equivalence requires that the skeletons
have the same critical points (both location and Jacobian matrices) and that the
corresponding separatrices end in the same critical points or inflow/outflow re-
gions.

We define the two alternative equivalence concepts as follows:

Equivalence concept 1 (strong equivalence) Two topological skeletons are
equivalent iff both, their critical points and their separatrices are identical.

Note that this is a rather strong concept: v1 and v2 are supposed to have the
same critical points (including the Jacobian matrices) and the same separatrices.
The original Definition 5.2 relaxes this concept 1 by allowing that corresponding
separatrices have different paths (as long as they end in the same critical point or
inflow/outflow region). In the following concept 2, we further relax this condition
and also allow the critical points to move, as long as they do not merge or change
their classification.

Equivalence concept 2 (relaxed equivalence) The topological skeletons of v1

and v2 are equivalent iff there is a one-to-one map between the critical points
of v1 and v2, such that saddles are mapped to saddles, sources to sources, and
sinks to sinks, and corresponding separatrices of v1 and v2 end in corresponding
critical points or inflow/outflow regions.

Based on these two alternative concepts of topological equivalence of vector
fields, we construct two new compression algorithms. In both cases, the algorithm
framework remains the same as for the original algorithm 5.2, because exchanging
the equivalence concept only affects steps 1a and 2d. This is in fact the core of the
compression method, namely the algorithm which decides whether a particular
half-edge collapse changes the topology of the whole vector field. So instead of
applying the controlled half-edge collapse according to algorithm 5.1, we provide
the modifications below.

A compression algorithm which preserves equivalence concept 1 can easily be
formulated as

94 Chapter 5: Vector Field Compression

Algorithm 5.3 (controlled half-edge collapse, concept 1)

1. If one of the triangles t1, ..., tn contains a critical point or a part of a sepa-
ratrix, stop and prohibit the half-edge collapse.

2. Simulate the half-edge collapse p0 → p1.

3. If one of the new triangles contains a critical point, stop and prohibit the
half-edge collapse.

4. Stop and allow the half-edge collapse.

This algorithm is justified in the fact that any local modification will change the
location of a critical point or a separatrix. Hence, only in regions without any
topological features, a half-edge collapse can be allowed.

Now we want to modify algorithm 5.1 to handle equivalence concept 2. To
do so, we have to compare the critical points in D′ before and after the half-edge
collapse to check if some of the critical points collapsed. We get the following

Algorithm 5.4 (controlled half-edge collapse, concept 2)

1. Extract and store the critical points inside D′ = (t1, ..., tn). If there is
more that one saddle, or if there is more than one source/sink, then stop and
prohibit the half-edge collapse.

2. – 5. as in algorithm 5.1

6. Apply linear interpolation of the vector field inside the new triangles
(p1,p2,p3), (p1,p3,p4), ..., (p1,pn−1,pn)). Check the new triangles for
critical points.

If the number of saddles does not coincide with step 1, or if the number
of sources/sinks does not coincide with 1, stop and prohibit the half-edge
collapse.

If there is one saddle, integrate its four separatrices until they leave D′.
Store the four exit points into a new cyclic list L2 of points on the polygon
((p1,p2), . . ., (pn−1,pn), (pn,p1)).

7. Insert the following points into L2 . . . — substeps as in algorithm 5.1

8. – 10. as in algorithm 5.1

Figures 5.9a and 5.9b illustrate an example of algorithm 5.4 where the half-edge
collapse is not allowed. Figures 5.9c — 5.9e show an example with an allowed
half-edge collapse.

5.5 Topological Simplification and Topology Preserving Compression 95

c) d) e)
a) b)

Figure 5.9: Controlled half-edge collapse for equivalence concept 2. a) 1-ring containing
one saddle (solid circle) and one source (hollow circle). Three of the four separatrices
created by the saddle leave the 1-ring while one ends in the source. In addition, two
separatrices enter the region from outside (hollow boxes): one ends in the source, the
other leaves the region. b) Simulated half-edge collapse removes the critical points: half-
edge collapse is not allowed. c) Another example of a 1-ring containing one saddle (solid
circle) and one source (hollow circle). d) Simulated half-edge collapse gives two new
critical points: one saddle and one sink. e) Cyclic list L2 after step 7 of algorithm 5.2. e)
The half-edge collapse is allowed.

5.5 Topological Simplification and Topology
Preserving Compression

In this section we combine topology simplification and topology preserving com-
pression of 2-dimensional vector fields [Theisel et al. 2003b]. Although these two
techniques are somehow opposite approaches which had been developed indepen-
dently of each other, for real life data sets both problems appear simultaneously.
In fact, a data set may have unimportant topological features due to noise, but has
to be compressed under preservation of the important topological structures.

This motivates the development of a compression technique which preserves
important topological structures but removes the unimportant ones. The basic
algorithm is as follows:

Algorithm 5.5 (combining topological simplification and topology preservation)

1. Extract the complete topological skeleton (i.e., all critical points, boundary
switch points and separatrices) of the original vector field.

2. Assign a weight w ∈ [0, 1] to every critical point and every separatrix. This
weight describes the importance of the critical point or the separatrix: the
higher the weight, the more important the feature is.

3. Pick a threshold w0 ∈ [0, 1] which makes the distinction between important
(w ≥ w0) and unimportant features (w < w0).

96 Chapter 5: Vector Field Compression

4. Apply a compression of the vector field which ensures the preservation of
the important topological features.

As a result of this algorithm, we obtain a compressed version of the original
vector field in which the important topological features are preserved. Step 1 is
straightforward, step 3 is subject of interaction to steer the process, and step 4
essentially applies algorithm 5.2 (with a slight modification). In the following,
steps 2 and 4 will be discussed in detail.

5.5.1 Creating a system of importance weights
The problem of creating a system of importance weights for the topological fea-
tures (step 2 of algorithm 5.5) is strongly related to the problem of topological
simplification of vector fields: in both approaches important features have to be
depicted. However, we need to compute the importance of both critical points
and separatrices. Since all pre-existing topology simplification algorithms only
consider critical points, we have to introduce a new algorithm.

The main problem to provide a system of weights is to make it topologically
consistent for every threshold w0. This means, for every w0 ∈ [0, 1] the subskele-
ton consisting of all critical points and separatrices with a weight larger or equal
w0 must describe a valid topological structure. Thus, the following conditions
have to be fulfilled:

• Fulfill the index theorem for the whole vector field: the sum of the indices
of all important critical points must be constant and independent of w0.

• Consistency of separatrices: every separatrix must start in a saddle or
boundary switch point, every separatrix must end in a source/sink or leave
the domain of the vector field, from every saddle exactly four separatrices
and emanating.

In order to fulfill the first condition, we first group the critical points to pairs such
that each pair consists of a saddle and a non-saddle (i.e., source or sink). Then both
points of a pair are assigned the same weight. The next Section 5.5.2 discusses
this step in detail. In order to fulfill the second condition, a system of weights for
the separatrices has to be found as well as the initial weights of the pairs of critical
points have to be updated. Section 5.5.3 presents the details of this step.

5.5.2 Coupling Critical Points and
Finding Initial Weights

Several approaches to couple critical points are reported in the literature. De
Leeuw and von Liere [1999b] use the Euclidean distance of the critical points

5.5 Topological Simplification and Topology Preserving Compression 97

to couple them, Tricoche et al. [2001] demand that critical points building a pair
have a common separatrix. However, these coupling strategies do not always
yield unique solutions especially in areas containing many critical points. More-
over, they do not provide an importance weight of a critical point. Because of
this, we propose an alternative approach which is based on the concept of fea-
ture flow fields [Theisel and Seidel 2003] which originally had been developed to
track critical points in time-dependent vector fields. Given a 2D vector field v, we
construct a vector field vs by applying a very strong Laplacian smoothing which
only keeps the boundary of the domain of v unchanged. This operator can be ex-
pected to smooth out many topological features of v. In fact, we expect vs to have
significantly less critical points than v. Now we consider the time-dependent vec-
tor field v(x, t) = (1 − t)v + tvs in the time interval 0 ≤ t ≤ 1. In order to track
the behavior of the critical points of v over the time, we construct a 3D vector
field f in such a way that the paths of the critical points of v over time correspond
to stream lines of f . In [Theisel and Seidel 2003] it is shown that

f(x, t) =




det(vx2
,vt)

det(vt,vx1
)

det(vx1
,vx2

)


 . (5.3)

To check if a critical point x0 in v has a partner critical point, we simply integrate
the stream line of f starting from (x0, 0). Doing so, the integration direction has to
be chosen such that the stream line initially moves inside the time slab [0, 1]. Since
v and vs coincide in the boundaries of their domains, the stream line of f leaves
the valid domain either in a point (x1, 0) or in a point (x1, 1). In the first case it
can be shown ([Theisel and Seidel 2003]) that x1 is a critical point of v with an
index opposite to x0: x0 and x1 become a couple, and their common weight w
is determined by the maximal t-value of the stream line of f between (x0, 0) and
(x1, 0). If the stream line of f ends in a point (x1, 1), x0 does not have a partner
critical point in v, it gets the weight 1. Figure 5.10 gives an illustration.

5.5.3 Making the weights consistent
Given the partner relation and the initial weights of the critical points from the
algorithm described above, we now have to adjust these weights and find weights
for the separatrices in such a way that this system is consistent for every threshold
w0. This means, the following conditions have to be fulfilled:

• Two critical points which are partners must have the same weight. This
ensures the index theorem of the vector field for every w0.

• The four separatrices starting from a saddle point must have the same weight
as their creating saddle.

98 Chapter 5: Vector Field Compression

Figure 5.10: Three critical points x0, x1, x2 of v and their stream lines of the feature
flow field f . x0 gets the weight 1 since it does not have a partner critical point in v. x1

and x2 are detected to be partners and are assigned with the common weight w.

• If a separatrix ends in a source or a sink, the weight of this source/sink
must not be smaller than the weight of the separatrix. This ensures that if a
separatrix is considered to be important, its ending source/sink is important
as well.

We start with the following initial weights: every critical point is assigned the
weight from the previous Section 5.5.2, every separatrix starting from a boundary
switch point gets a weight of 1, and every separatrix starting from a saddle gets
a weight of 0. Then we iteratively correct the weights which contradict to the
conditions above:

Algorithm 5.6 (consistent importance weights)

Iterate until the above conditions re fulfilled:

1. If two partner critical points have a different weight, they are set to the
maximum of both weights.

2. If a separatrix starting from a saddle has a smaller weight than the saddle,
its weight is set to the weight of the saddle.

3. If a separatrix ends in a source/sink and the weight of the source/sink is
smaller than the weight of the separatrix, the weight of the source/sink is
set to the weight of the separatrix.

Obviously, the termination of this algorithm is ensured: in the worst case the
algorithm stops when all weights reach the value 1. Section 5.6.3 shows results of
applying algorithm 5.6.

5.5 Topological Simplification and Topology Preserving Compression 99

5.5.4 The compression algorithm

To compress the vector field, we use an adapted version of algorithm 5.2. The
algorithm needs some modifications, since now we distinguish between important
and unimportant critical points and separatrices: Algorithm 5.2 is designed to not
allow any changes of critical points. Here, this condition is relaxed such that only
the presence of an important critical point (i.e. a critical point with a weight above
the threshold) prohibits the collapse. If unimportant critical points are inside a 1-
ring, they are allowed to move, change and even collapse with other unimportant
critical points. —- In fact, a collapse of unimportant critical points is even desired,
since it increases the chances to find more allowed half-edge collapses.

If a 1-ring contains unimportant critical points and they do not disappear dur-
ing the simulated half-edge collapse, the test is very similar to algorithm 5.1. If
a saddle point is present, its new location after the half-edge collapse has to be
extracted, and the new separatrices starting from it have to be integrated until they
end in a source/sink or leave the 1-ring. Figure 5.11 illustrates this situation.

Figure 5.11: a) 1-ring containing an unimportant saddle (solid circle) and an unimportant
source (hollow circle). Three of the four separatrices created by the saddle leave the 1-ring
while one ends in the source. In addition, two separatrices enter the region from outside
(hollow boxes): one ends in the source, the other one leaves the region. b) Simulated half-
edge collapse under preservation of the entry points of the separatrices and extracting the
new locations of the inner critical points. c) Integrating the separatrices gives a similar
cyclic order of the corresponding points like in a): the half-edge collapse does not change
the topology.

If the half-edge collapse leads to a collapse and disappearing of a saddle and
a non-saddle (both unimportant critical points), this test applied in algorithm 5.2
has to be modified such that the separatrices coming from the saddle are not con-
sidered for the test. Figure 5.12 gives an illustration.

Note that, although we could distinguish between important and unimportant
critical points in the algorithm, this distinction cannot be done for separatrices. In
fact, all separatrices passing through a 1-ring have to be equally treated as impor-

100 Chapter 5: Vector Field Compression

Figure 5.12: a) 1-ring containing two unimportant critical points. b) if a half-edge col-
lapse makes the critical points disappear, the separatrices starting from the saddle point
are not considered for comparing the cyclic order (grey arrows) in a). c) reintegrating the
remaining separatrices and comparing the cyclic order with a): here the half-edge collapse
changes the topology because the cyclic orders differ.

tant. This is due to the fact that the theoretical foundation of the algorithm 5.1 is
based on the assumption that the complete topological information about the vec-
tor field is present for the local analysis. However, by applying half-edge collapses
which remove unimportant critical points, unimportant separatrices are removed
as well.

So far, the decision which of the allowed half-edge collapses is carried out first
was done by a greedy optimization driven by a priority queue where the priority
is based on the edge length, preferring short edges to collapse. For algorithm 5.5,
we modify the priority function by assigning half-edge collapses which remove
unimportant critical points and separatrices with a higher priority. This strategy
is based on the observation that the removal of unimportant separatrices increases
the chances that half-edge collapses at other locations become possible.

Results are summarized in Section 5.6.3.

5.6 Results

In the following we present results from vector field compression. All tests were
performed on an 1.7 GHz Intel Xeon processor for a moderate and a fairly com-
plex data set.

5.6.1 Test Data Sets

We applied our compression algorithm to two test data sets. The first data set
Greifswalder Bodden describes (the perpendicular of) the flow of a bay area of

5.6 Results 101

data set triangles cp bsp sep Figures
1: Greifswalder Bodden 14,086 72 44 168 5.13a,c,e
2: skin friction 12,726 338 34 714 5.14a,c,e; 5.15a,c,e; 5.16a

Table 5.1: Test data sets used for vector field compression. The columns denote the data
set and the number of triangles, critical points (cp), boundary switch points (bsp), and
separatrices (sep), respectively. The last column refers to Figures showing the original
data sets.

the Baltic Sea near Greifswald (Germany). The data set was created by the De-
partment of Mathematics, University of Rostock (Germany). The data was given
as an incomplete flow data set on a regular 115 × 103 grid. Each grid cell is split
in two triangles such that a regular triangulation consisting of 14,086 triangles
(see Figure 5.13a) is obtained as the domain of the piecewise linear vector field.
Figure 5.13e shows the topological skeleton of the vector field while Figure 5.13c
shows its LIC image. This flow data set consists of 71 critical points, 44 boundary
switch points, and 168 separatrices.

The second test data set skin friction describes the skin friction on a face of a
cylinder which was obtained by a numerical simulation of a flow around a square
cylinder. The data set was generated by R.W.C.P. Verstappen and A.E.P. Veld-
man of the University of Groningen (the Netherlands) and provided by Wim de
Leeuw. The same data set has been analyzed in [de Leeuw and van Liere 1999a]
and [Lodha et al. 2000]. The data was given on a rectangular 102 × 64 grid with
varying grid size. After splitting the grid cells uniformly we get a triangular do-
main consisting of 12,726 triangles (see Figure 5.14a). As we can see in this
picture, all triangles there tend to be large and thin. Figure 5.14c shows the LIC
image of the vector field while Figure 5.14e shows its topological skeleton. This
vector field consists of 338 critical points, 34 boundary switch points, and 714
separatrices. Therefore, it can be considered as a vector field of both large size
and complex topology.

Table 5.1 summarizes facts on the test data sets.

5.6.2 Topology Preserving Vector Field Compression

Applying compression algorithm 5.2 to test data set 1 (Greifswalder Bodden),
we obtained a new piecewise linear vector field which consists of 660 triangles.
Figure 5.13b shows the triangular domain of the compressed vector field. Fig-
ure 5.13d shows the LIC image, and Figure 5.13f shows the topological skeleton
of the compressed vector field. Note that the topological skeletons of original
and compressed vector field (Figures 5.13e and 5.13f) are equivalent concerning
Definition 5.2. The compression ratio is 95.3%, and the complete compression

102 Chapter 5: Vector Field Compression

algorithm 5.2 algorithm 5.3 algorithm 5.4data sets 4 ratio 4 ratio 4 ratio
1: Greifswalder Bodden 4,944 64.9% 660 95.3% 374 97.3%
2: skin friction 10,680 16.1% 2,153 83.1% 1,071 91.6%

Table 5.2: Results of topology preserving vector field compression. The table compares
the three algorithms, the columns show the number of triangles, the compression ratio,
and the run time, respectively.

algorithm took 280 seconds. The algorithms 5.3 and 5.3 reduce the number of
triangles to 4,944 (64.9%) and 374 (97.3%), respectively. Figure 5.17 shows the
triangulations and the topological skeletons.

After applying our compression to the test data set 2 (skin friction) algorithm,
we obtained a vector field with the triangular domain shown in Figure 5.14b. This
domain consists of 2,153 triangles which gives a compression ratio of 83.1%.
Figure 5.14d shows the LIC image of the compressed vector field, Figure 5.14f
shows the topological skeleton. The complete compression algorithm took 299
seconds.

Because of the high complexity of this data set, the visualizations in Fig-
ure 5.14 appear to be cluttered. Therefore, we present two magnifications of the
skin friction data set in figures 5.15 and 5.16. The larger rectangle in Figure 5.14c
denotes the magnified area considered in Figure 5.15. The smaller rectangle of
figure 5.14c is magnified in Figure 5.16. In the pictures, the characteristics of the
critical points are color coded: blue for a saddle, red for a source, and green for
a sink. Note that the topological skeletons of the original (Figure 5.14e) and the
compressed vector field (Figure 5.14f) are equivalent, even though separatrices in
the compressed flow tend to be very close together.

Figure 5.18 shows the triangulations and the topological skeletons after apply-
ing algorithms 5.3 and 5.4. The number of triangles is 10,680 (16.1%) and 1,071
(91.6%), respectively.

We remark — especially the skin friction data set — tends to have many sepa-
ratrices running very close to each other. This can be explained with the presence
of attachment and separation lines (cf. [Kenwright et al. 1999]). For these cases,
in practice a half-edge collapse may be forbidden due to numerical instabilities.
We solve this technical problem, clustering the entry points of separatrices at the
1-ring of a vertex: entry points of separatrices which are very close to each other2

are set to the same entry point and thus have the same exit point as well.
Table 5.2 summarizes results for both data sets and the topology preserving

compression algorithms. Comparing the results, we observe that the equivalence

2We used 1

1000
of the length of the respective boundary edge in the ring.

5.6 Results 103

concept 1 (and algorithm 5.3) yields very poor compression ratios. This is due
to the fact that only the presence of a critical point or a segment of a separatrix
in a triangle prevents it from taking part in an edge collapse. The resulting trian-
gulations visualize this restriction: in Figure 5.17 (a) there are rather large flow
regions which have been simplified, the dense triangulations follow the skeleton.
However, Figure 5.18 (a) shows that this is infeasible for complex data sets, there
are hardly any regions which can be simplified. While algorithm 5.3 is the easiest
to implement, in general it cannot considered to be useful in practice.

The original algorithm 5.2 guarantees that the topological skeletons of the
original and the compressed vector field coincide in the critical points and in
the connectivity of the separatrices. It achieves high compression ratios even for
topologically complex data sets. We compare these compression ratios to exist-
ing topology preserving compression techniques. [Lodha et al. 2000] analyzed
the skin friction data set, but uses a significantly less strict definition of topol-
ogy. In fact, small changes of the Jacobian of critical points are permitted, and
separatrices are not considered at all. Even with this less strict topology concept,
the compression ratio under topology preservation (37%) is significantly less than
achieved with algorithm 5.2. Theisel [2002] uses a topology concept similar to
the one used here, i.e., the complete Jacobian matrix of the critical points as well
as the connectivity of the separatrices are considered. The compression algorithm
presented there can only be applied for data sets with a rather simple topology.
For vector fields with a topological complexity as in the examples, very low or
even negative compression ratios have to be expected.

We conclude that algorithm 5.2 gives significantly better compression ratios
than known existing topology-preserving compression techniques when applied
to topologically complex data sets.

A further, significant reduction of the number of triangles by a factor of ap-
proximately 50% is provided by algorithm 5.4 (equivalence concept 2). The vi-
sualization of the topological skeleton shows that the critical points change their
locations, but these changes tend to be limited to the neighborhood of the original
critical points.

5.6.3 Combining Topological Simplification and Topol-
ogy Preserving Compression

We show results of applying algorithm 5.5 for the complex data set 2 (skin fric-
tion), first analyzing the assigned importance weights. After finding pairs of crit-
ical points and attaching them with weights as described in Section 5.5.2, we
analyzed the distribution of the weights on all critical points. The solid curve in
Figure 5.19 shows the result of this analysis. It turns out that approximately 22%

104 Chapter 5: Vector Field Compression

of all critical points have a very low weight (between 0 and 0.1) while only ap-
proximately 2% of the critical points have a very high weight (between 0.9 and
1). The distribution between these extreme values is approximately linear.

In the next step we initialized the separatrices and made the weights consistent
as explained in Section 5.5.3. Then the distribution of the weights of the critical
points is shown in the dotted line in Figure 5.19. It turns out that in general the
weights are higher than before making them consistent: only 11% of the critical
points have a low weight between 0 and 0.1, but 17 % have a high weight between
0.9 and 1. This corresponds to the fact that the algorithm 5.6 actually consists of
a number of weight increments until all contradictions are removed.

The dotted line in Figure 5.19 also shows that the distribution between very
low and very high weights has a high deviation: 3% of the weights are between
0.6 and 0.7, 24% are between 0.7 and 0.8, and 7% are between 0.8 and 0.9. This
shows that the algorithm 5.6 tends to build clusters of critical points with identical
weights.

The slash-dotted line in Figure 5.19 shows the distribution of the weights of
the separatrices after making the weights consistent. This distribution corresponds
approximately to the distribution of the critical points after making them consis-
tent. This holds because a separatrix and its creating saddle correspond in their
weights. Only for very high weights the percentage of separatrices is bigger than
the percentage of critical points, because the weights of the separatrices starting
from boundary switch points have been initialized to 1.

Figure 5.20 shows the important topological features of the data set for dif-
ferent thresholds w0. The upper image (w0 = 0) shows the complete topological
skeleton of the data set while the lowest image (w0 = 1) shows only the topo-
logical features with a weight of 1. Here it turns out that most of the important
features are close to the shorter boundary edges of the domain of the vector field.
A reason for this lies in the Laplacian smoothing on which the algorithm is based
upon: since this smoothing leaves the boundary of the domain untouched, features
in regions close to the boundary tend to get higher weights.

Figure 5.21c shows the result of our algorithm 5.5 for w0 = 0. Here we ended
up with 1,805 triangles giving a compression ratio of 85.5%. The computing time
was 415 seconds. Since the threshold w0 = 0 means that all critical points and
separatrices are considered to be important, the algorithm coincides with the com-
plete topology preserving algorithm 5.2. The difference in the obtained compres-
sion ratio is due to fact that in the new version we allow a clustering of the entry
points on a 1-ring as described in Section 5.5.4. Figure 5.21d shows the result of
our algorithm for w = 0.5. Here we obtained 1,367 triangles and a compression
ratio of 89.2% at a computing time of 424 seconds. For w = 1, we achieved 1,040
triangles (compression ratio of 91.8%) at a computing time of 472 seconds. This
is shown in Figure 5.21e.

5.7 Summary 105

Figure 5.22 shows the the topological skeletons for the data sets in the same
order as in Figure 5.21. Figure 5.22 illustrates the topological skeletons together
with an underlying LIC image. The order of the images corresponds to Fig-
ures 5.21 and 5.22. Figure 5.23 shows a magnification of the simplified and com-
pressed data sets for w0 = 0, w0 = 0.5 and w0 = 1.

Figures 5.21–5.23 show that for the test data set 2 our approach can signifi-
cantly decrease the number of obtained triangles (and thus increase the compres-
sion ratio) in comparison to algorithm 5.2, if important and unimportant topo-
logical features are treated in a different way as explained in section 5.5.4. The
algorithm has full control over important features, since they are guaranteed to
be preserved. However, the algorithm does not have control over the unimportant
features, since they may move and disappear during the compression. In fact, the
example has shown that parts of the unimportant features disappear while others
only change their location. It would be useful to have a compression algorithm
which removes all unimportant topological features, but we have to consider this
as an unsolved problem.

5.7 Summary
We presented new algorithms for the compression of piecewise linear vector
fields. The particular challenge and the main difference to other work in this
field is imposed by the constraint of topology preservation. We provide a sound
theoretical framework and show that preservation of this global property can be
ensured by applying only local tests. The latter enables the application of adapted
mesh decimation techniques for the compression. This is the first method which
guarantees topology preservation, and the results confirm the effectiveness and ef-
ficiency of the method. In fact, the compression rates are significantly better that
for previous work under considerably weaker constraints.

We shows how the initial concept of topological equivalence can be modi-
fied, to either stronger or relaxed constraints, and develop alternative algorithms
based on these concepts. The experimental results show that the compression rate
can be improved significantly, taking into account only the graph structure of the
topology, and hence relaxing positional constraints. Alternatively, we studied the
simplification of the topology by introducing a system of consistent importance
weights. The resulting algorithm can be applied in the compression context as
discussed, moreover it is interesting and useful on its own.

So far, the main criterion to rate the results is the size of the obtained data set.
Other measures might be useful and interesting for the comparison, especially
in the presence of topological simplification. A new approach to the topological
comparison of vector fields was developed in [Theisel et al. 2003c]. The proposed

106 Chapter 5: Vector Field Compression

metric is based on the concept of feature flow fields, incorporating both, the char-
acteristics and the distribution of the critical points. It can be evaluated efficiently
with reasonable small computation times even for topologically complex vector
fields.

We note that although only vector fields over planar triangulations have been
considered, this is no general restriction of our algorithm. In fact, the approach
can be applied to vector fields on arbitrary triangular domains, i.e. on vector fields
defined on surfaces. This requires a modification of the mesh decimation core
to additionally respect the geometry of the shape, just as the familiar geometry
simplification setting. Here, it would be interesting to study the interplay between
vector field compression techniques and mesh simplification techniques.

In summary, we presented new algorithms for the compression of vector val-
ued attributes defined over a triangulation. Before, we have been studying the
generation related attributes in the context of discrete curvature approximation
and applications. And we have addressed the compression of the triangulations
per se, namely connectivity encoding. The topology preserving compression con-
cludes the first part of this work on surface meshes. The second part will discuss
volumetric data.

5.7 Summary 107

a) b)

c) d)

e) f)

Figure 5.13: Test data set 1 (Greifswalder Bodden), compressed with algorithm 5.2.
a) Triangular domain of the original data set. b) Triangular domain of the compressed
data set. c) LIC of original data set. d) LIC of compressed data set. e) topological skele-
ton of original data set. f) topological skeleton of compressed data set.

108 Chapter 5: Vector Field Compression

a)
b

)

c)
d

)

e)
f)

Figure 5.14: Test data set 2 (skin friction), compressed with algorithm 5.2. Please ro-
tate page. a) Triangular domain of the original data set. b) Triangular domain of the
compressed data set. c) LIC of original data set. d) LIC of compressed data set. e) Topo-
logical skeleton of original data set. f) Topological skeleton of compressed data set.

5.7 Summary 109

a) b)

c) d)

e)
f)

Figure 5.15: Magnification of test data set 2, compressed with algorithm 5.2 (from Fig-
ure 5.14). a) Triangular domain of the original data set. b) Triangular domain of the
compressed data set. c) LIC of original data set. d) LIC of compressed data set. e) Topo-
logical skeleton of original data set. f) Topological skeleton of compressed data set.

a) b)

Figure 5.16: Magnification of test data set 2, compressed with algorithm 5.2 (from Fig-
ure 5.14). a) Topological skeleton and underlying grid of original data set. b) Topological
skeleton and underlying grid of compressed data set.

110 Chapter 5: Vector Field Compression

a) b)

c) d)

Figure 5.17: Compression of test data set 1 (Greifswalder Bodden) with modified algo-
rithms 5.3 and 5.4. Triangular domain a) and topological skeleton b) after compression
with algorithm 5.3). The skeleton is identical to Figure 5.13 due to equivalence concept 1.
c) and d) show the same after compression with algorithm 5.4.

5.7 Summary 111

a)

b)

c)

d)

Figure 5.18: Compression of test data set 2 (skin friction) with modified algorithms 5.3
and 5.4. Triangular domain a) and topological skeleton b) after compression with algo-
rithm 5.3). The skeleton is identical to Figure 5.13 due to equivalence concept 1. c) and
d) show the same after compression with algorithm 5.4.

112 Chapter 5: Vector Field Compression

Figure 5.19: Distribution of the importance weights for data set 2 (skin friction). The
figure shows the percentages of the features with a weight in the interval (i

10 , i+1
10) for

i = 0, .., 9. Solid line: critical points after initializing. Dotted line: critical points after
making the weights consistent. Dash-dotted line: separatrices after making the weights
consistent.

5.7 Summary 113

Figure 5.20: Important topological features for different thresholds w0. The upper image
(w0 = 0) shows the complete topological skeleton.

114 Chapter 5: Vector Field Compression

a)

b)

c)

Figure 5.21: Triangular domains after the application of algorithm 5.5 with different
thresholds w0: a) w0 = 0 (1,805 triangles). b) w0 = 0.5 (1,367 triangles). c) w0 = 1
(1,040 triangles).

5.7 Summary 115

a)

b)

c)

Figure 5.22: Topological skeleton and LIC-like image after the application of algo-
rithm 5.5 with different thresholds w0: a) w0 = 0. b) w0 = 0.5. c) w0 = 1.

116 Chapter 5: Vector Field Compression

a)

a)

b)

c)

c)

b)

Figure 5.23: Underlying triangular grid and topological skeleton on LIC-like image
(magnification) after the application of algorithm 5.5 with different thresholds w0. a)
w0 = 0. b) w0 = 0.5. c) w0 = 1.

Part II

Volumes

Chapter 6

Volumetric Data

In the first part, we considered the visualization of two-dimensional objects,
namely surfaces and (2d-)vector fields. In the second part, we now approach vol-
umetric representations or data given in a three-dimensional domain. Generally,
things get more involved when adding another dimension. Here, we focus on the
fundamental problem of finding efficient models for such volumetric data.

Two different scenarios are of particular interest: the reconstruction of struc-
tured data, where the samples are placed along a regular grid, and the approxima-
tion of general data, where the sample points are distributed in the domain. For
both, the goal is roughly to find a function in three variables that assigns each
point in the domain a value related to the values of nearby samples.

There is a multitude of techniques for the visualization of volumetric data (see
e.g. [Chen et al. 2000] and the references therein). The demands on the model and
its evaluation for high-quality visualization are similar for different techniques:
efficient evaluation of function values and partial derivatives, where appropriate
smoothness and approximation conditions must be satisfied.

We achieve this by using trivariate splines, i.e. piecewise polynomials
which are defined w.r.t. a partition of the volumetric domain. Similar to a
triangulation as a partition of the plane, a tetrahedral complex is applied now, and
the polynomials are defined w.r.t. tetrahedral cells of the complex. In contrast
to the proposed techniques for the two-dimensional setting, which made use of
piecewise linear functions, the demand for appropriate smoothness in volume
visualization enforces a higher polynomial degree. A particular challenge is
to develop models, which fulfill all requirements and at the same time apply
only low polynomial degrees. We remark that the constructions generally
gets easier with higher polynomial degrees as more degrees of freedom are
provided for satisfying smoothness and approximation conditions. Moreover,
the construction of splines does not easily translate from the univariate case

120 Chapter 6: Volumetric Data

to higher dimensions, and it is not obvious what is the best generalization
combining simple and elegant construction with computational efficiency. We
consider the Bernstein-Bézier representation of the polynomial pieces and
interpret the spline as a net of their coefficients, where certain coefficients are
variable while others are determined by continuity and smoothness conditions.
This is a common approach in multivariate spline theory (see e.g. [Chui 1988,
Davydov and Zeilfelder 2003, Hangelbroek et al. 2004, Kohlmüller et al. 2003a,
Kohlmüller et al. 2003b, Lai and Méhauté 2003, Nürnberger et al. 2003a,
Nürnberger and Zeilfelder 2000, Schumaker and Sorokina 2004a,
Zeilfelder 2002, Nürnberger and Zeilfelder 2003]).

In Chapter 7, we explain these general considerations in more detail, review-
ing Bernstein-Bézier techniques and introducing splines w.r.t. so-called type-6
tetrahedral partitions.

Building upon this, we develop a new model for the reconstruction of gridded
volume data with quadratic super splines in Chapter 8. The approximating splines
are determined in a natural and completely symmetric way by averaging local data
samples, such that appropriate smoothness conditions are automatically satisfied.
This new approach enables efficient reconstruction and visualization of the data.
As the piecewise polynomials are of the lowest possible total degree two, and we
can efficiently determine exact ray intersections with an isosurface for ray-casting.
Moreover, the optimal approximation properties of the derivatives enable the sim-
ply sampling of the necessary gradients directly from the polynomial pieces of the
splines.

In Chapter 9, a new algorithm for the efficient approximation of
huge general volumetric data sets is developed, which is based on cubic
trivariate splines. Similar as in recent bivariate approximation approaches
(cf. [Davydov and Zeilfelder 2003, Haber et al. 2001]), the splines are automat-
ically determined from the discrete data as a result of a two-step method (see
[Schumaker 1976]), where local discrete least squares polynomial approximations
of varying degrees are extended by using natural conditions, i.e. the continuity and
smoothness properties which determine the underlying spline space. The main
advantages of this approach with linear algorithmic complexity are as follows:
no tetrahedral partition of the volume data is needed, only small linear systems
have to be solved, the local variation and distribution of the data is automatically
adapted, noisy data are automatically smoothed.

Both approaches to processing regular and general data are related but dif-
ferent, and we provide the specific background for the two problems individu-
ally. However, we emphasize that both methods share the idea of using consistent
splines on tetrahedral partitions, which satisfy many smoothness conditions. Ac-
cording to our knowledge, these are the first approaches in the literature, where it
is shown that such splines provide useful tools with advantageous properties for

121

the various requirements of efficient visualization.

122 Chapter 6: Volumetric Data

Chapter 7

Trivariate C1-Splines on
Type-6 Tetrahedral Partitions

We construct splines as piecewise polynomials w.r.t. a certain tetrahedral par-
tition of the volumetric domain. This chapter reviews trivariate polynomials in
Bernstein-Bézier form, introduces the type-6 tetrahedral partitions, and discusses
the construction and evaluation of C1-splines w.r.t. such partitions. These are
the basic building blocks for the subsequent chapters on the reconstruction and
approximation.

7.1 Trivariate Polynomials and
Bernstein-Bézier Form

In the following, we briefly recall some notation. We apply Bernstein-
Bézier techniques which are well established tools from CAGD (see
e.g. [Hoschek and Lasser 1993, Prautzsch et al. 2002]). The related Bernstein-
Bézier form of the polynomial pieces plays a key role for multivariate splines.

For any integer q, we call

Pq = span{xiyjzk : i, j, k ≥ 0, i + j + k ≤ q}
the
(

q+3
3

)
dimensional space of trivariate polynomials of total degree q.

Given a (non-degenerate) tetrahedron T = [v0, v1, v2, v3] in IR3 with vertices
v0, v1, v2, and v3, the linear polynomials λν ∈ P1, ν = 0, . . . , 3, with the interpo-
lation property

λν(vµ) = δν,µ, µ = 0, . . . , 3,

are called the barycentric coordinates w.r.t. T . It is easy to see that for any point
u ∈ R

3, the barycentric coordinates λν(u) ∈ R, ν = 0, . . . , 3, of u are uniquely

124 Chapter 7: Trivariate C1-Splines on Type-6 Tetrahedral Partitions

determined as the solution of the 4 × 4 linear system

λ0(u)
(

v0

1

)
+ λ1(u)

(
v1

1

)
+ λ2(u)

(
v2

1

)
+ λ3(u)

(
v3

1

)
=
(

u
1

)
. (7.1)

Every polynomial p ∈ Pq can be written in its Bernstein-Bézier representation
as

p =
∑

i+j+k+l=q

ai,j,k,l Bq,T
i,j,k,l, (7.2)

where
Bq,T

i,j,k,l = q!
i!j!k!l!

λi
0λ

j
1λ

k
2λ

l
3 ∈ Pq, i + j + k + l = q,

are the Bernstein polynomials of degree q w.r.t. T .
Each Bernstein-Bézier coefficient ai,j,k,l ∈ IR of p is associated with the do-

main point (or Bézier point)

ξT
i,j,k,l = (iv0 + jv1 + kv2 + lv3)/q,

and the set of domain points in T is denoted by

Dq,T = {ξT
i,j,k,l : i + j + k + l = q}.

Figure 7.1 illustrates the Bernstein-Bézier representation of a quadratic polyno-
mial, the ten coefficients are indicated by white dots (and the ray intersection is
discussed in Section 8.5).

a1,1,0,0

a0,1,0,1

a0,0,0,2

a0,0,2,0 a0,0,1,1

a1,0,0,1

a1,0,1,0

v0
a2,0,0,0 a0,2,0,0 v1

v2

v3

w
1

w
2

w

q
1

q

q
2

a0,1,1,0

T:

Figure 7.1: The ten Bézier points (white dots) of a quadratic polynomial inside a tetra-
hedron T are associated with the Bernstein-Bézier coefficients. The restriction of this
trivariate polynomial piece to an arbitrary ray (red line) is a quadratic, univariate polyno-
mial (red curve) which is uniquely determined by the values (red boxes) at three points
(black boxes), see Section 8.5.

The Bernstein-Bézier representation allows for the efficient and stable
evaluation of a polynomial p by applying the de Casteljau algorithm (cf.

7.1 Trivariate Polynomials and Bernstein-Bézier Form 125

[de Casteljau 1963], see also [Farin 1986, Hoschek and Lasser 1993]), which is
based on the recurrence relation of the Bernstein polynomials

Bq,T
i,j,k,l = λ0B

q−1,T
i−1,j,k,l + λ1B

q−1,T
i,j−1,k,l + λ2B

q−1,T
i,j,k−1,l + λ3B

q−1,T
i,j,k,l−1

(where terms with negative indices are set to zero). The trivariate version of this
algorithm to determine the value p(u) = a

[q]
0,0,0,0 at a point u ∈ T reads as follows:

Algorithm 7.1 (de Casteljau Algorithm)
For ` = 1, . . . , q and i + j + k + l = q − ` compute

a
[`]
i,j,k,l = λ0(u) a

[`−1]
i+1,j,k,l + λ1(u) a

[`−1]
i,j+1,k,l + λ2(u) a

[`−1]
i,j,k+1,l + λ3(u) a

[`−1]
i,j,k,l+1,

where a
[0]
i,j,k,l = ai,j,k,l, i + j + k + l = q.

Figure 7.2 illustrates the evaluation of a quadratic polynomial with the de Castel-
jau algorithm.

v0

v3

v1

v2

[1]

0,0,1,0a
[1]

0,0,0,1a

[1]

1,0,0,0a
[1]

0,1,0,0a

u

Figure 7.2: Evaluation of a polynomial piece p at a point u (yellow dot) with the
de Casteljau algorithm. The configuration is the same as in Figure 7.1, the white dots
show the Bézier points associated with the coefficients ai,j,k,l = a

[0]
i,j,k,l, i+ j +k+ l = 2.

The four new coefficients a
[1]
i,j,k,l, i + j + k + l = 1, on level ` = 1 indicated as cyan

dots are determined from affine combinations by weighting with the barycentric coordi-
nates of u w.r.t. T = [v0, v1, v2, v3]. The arrows show which coefficients are involved,
the different colors represent the barycentric coordinates λi(u). For ` = 2 the final re-
sult p(u) = a

[2]
0,0,0,0 (yellow dot) is computed in the same way recursively. Note that the

intermediate coefficients a
[1]
i,j,k,l (cyan dots) define the directional derivatives (∂p

∂ςν
)(u).

The de Casteljau algorithm simultaneously computes partial derivatives of
p: Let ςν be a vector in the direction of the edge vν+1 − v0 of T with length
‖vν+1 − v0‖, then the partial derivative of p in direction of ςν denoted by ∂p

∂ςν
∈

Pq−1 is given as

∂p
∂ςν

= q
∑

i+j+k+l=q−1

(ai,j+jν ,k+kν ,l+lν − ai+1,j,k,l) Bq−1,T
i,j,k,l , (7.3)

126 Chapter 7: Trivariate C1-Splines on Type-6 Tetrahedral Partitions

or
∂p
∂ςν

(u) = q(a
[q−1]
0,jν ,kν ,lν

− a
[q−1]
1,0,0,0), (7.4)

where (jν , kν , lν) = (δν,µ)2
µ=0, ν = 0, . . . , q (see e.g.

[Hoschek and Lasser 1993]). Hence, there exist unique α0, α1, α2 ∈ R

such that, for instance,

∂p
∂x

= α0
∂p
∂ς0

+ α1
∂p
∂ς1

+ α2
∂p
∂ς2

. (7.5)

This allows for the efficient computation of the gradient

(∇p)(u) = ((∂p
∂x

)(u), (∂p
∂y

)(u), (∂p
∂z

)(u)). (7.6)

Degree raising methods express a degree q polynomial

p =

(
∑

i+j+k+l=q

ai,j,k,lB
q,T
i,j,k,l

)
(λ0+λ1+λ2+λ3)

ν =
∑

i+j+k+l=q+ν

a∗
i,j,k,lB

q+ν,T
i,j,k,l ,

as a polynomial of degree q + ν, where

a∗
I,J,K,L =

∑

i+j+k+l=q

(
I
i

)(
J
j

)(
K
k

)(
L
l

)
(

q+ν
q

) ai,j,k,l, (7.7)

and I + J + K + L = q + ν (see e.g. [Hoschek and Lasser 1993]).

7.2 Type-6 Tetrahedral Partitions ∆

We call a set of tetrahedra ∆ a tetrahedral partition of a finite polyhedral domain
Ω ⊆ IR3 if the intersection of any two different tetrahedra from ∆ is a common
vertex, common edge or common triangle, and the union of all tetrahedra from ∆
is equal to Ω.

We consider tetrahedral partitions ∆ of the unit cube domain Ω = [0, 1] ×
[0, 1]× [0, 1] ⊆ IR3 which are obtained as follows. Given an integer n, we first use
n + 1 parallel planes in each of the three space dimensions, and subdivide Ω into
n3 subcubes denoted by

Qi,j,k = [i, i + 1] h × [j, j + 1] h × [k, k + 1] h,

for i, j, k = 0, . . . , n − 1, where h = 1
n

is the length of the edges. This defines a
cube partition ♦1.

1The results can be extended to more general cubic domains, see [Hangelbroek et al. 2004] and
Figure 9.1.

7.2 Type-6 Tetrahedral Partitions ∆ 127

We split each of the n3 cubes Q into six (Egyptian) pyramids by connecting
its center point vQ with the four vertices of every face of Q. Then, we insert
both diagonals in these six faces of Q and connect their intersection points with
vQ. This subdivides each of the six pyramids in Q into four tetrahedra, forming a
natural, uniform tetrahedral partition ∆ of Ω, where every cube Q ∈ ♦ contains
24 congruent tetrahedra. A more intuitive way to describe this type-6 tetrahedral
partition ∆ is to say that ∆ is the tetrahedral partition obtained by slicing Ω with
the six planes which contain opposite edges of Ω. In [Carr et al. 2001a] the above
construction is called a face-centered 24-fold subdivision of the cubes.

Figure 7.3 illustrates the construction of ∆. The partition ∆ is a generaliza-
tion of the four-directional mesh which is well-known in the bivariate setting (cf.
[Chui 1988, Davydov and Zeilfelder 2003, Haber et al. 2001]). The relation to the
bivariate setting is shown in Figure 7.4.

Figure 7.3: The tetrahedral partition ∆ is obtained by uniformly subdividing each cube
of ♦ into 24 tetrahedra. Since six planes are needed, ∆ is called a type-6 tetrahedral
partition.

Figure 7.4: The intersections of ∆ with planes parallel to the three coordinate planes are
four-directional meshes which are well-known from the bivariate setting.

128 Chapter 7: Trivariate C1-Splines on Type-6 Tetrahedral Partitions

It is easy to see that for this uniform tetrahedral partition ∆, we have

T∆ = 24 n3,

F∆ = 48 n3 + 12 n2,

E∆ = 29 n3 + 18 n2 + 3 n, (7.8)
V∆ = 5 n3 + 6 n2 + 3 n + 1,

for the number of tetrahedra T∆, the number of triangular faces F∆, the number
of edges E∆, and the number of vertices V∆ of ∆, respectively.

7.3 Trivariate C1-Splines on ∆

7.3.1 Preliminaries: Cr-Splines on ∆

Given a tetrahedral partition ∆ of Ω, we set

Sr
q (∆) = {s ∈ C1(Ω) : s|T ∈ Pq for all tetrahedra T ∈ ∆} (7.9)

for the space of trivariate Cr-splines of degree q w.r.t. ∆.
The coefficients aξT

i,j,k,l
(s) := ai,j,k,l(s|T), i + j + k + l = q, of s ∈ S0

q (∆) in
the representation (7.2) of its polynomial pieces s|T ∈ Pq, T ∈ ∆, are uniquely
associated with the domain points in Ω

Dq,∆ =
⋃

T∈∆

Dq,T . (7.10)

Following [Alfeld et al. 1987], we call M ⊆ Dq,∆ a determining set for a
linear subspace S of S0

q (∆), if setting the coefficients aξ(s), ξ ∈ M of a spline
s ∈ S to zero, implies that s ≡ 0. A determining set M is called minimal
determining set for S , if no determining set for S with fewer elements than M
exists. Equivalently, M is a minimal determining set, if the following property
holds: if we set the coefficients aξ(s), ξ ∈ M, of a spline s ∈ S to arbitrary
values, then all its coefficients aξ(s), ξ ∈ Dq,∆ are uniquely determined, i.e. s is
uniquely determined. If M is a minimal determining set for S , then it is obvious
that #M coincides with the dimension dim S of S .

In the following, we consider continuous splines in S0
q and C1-splines in S1

q

on ∆.

7.3.2 C1-Smoothness Conditions
A convenient description for C1-smoothness of neighboring polynomials (i.e.
polynomials defined on tetrahedra which have a common triangular face) in
Bernstein-Bézier form can be found in [de Boor 1987, Chui 1988, Farin 1986].

7.3 Trivariate C1-Splines on ∆ 129

Let p = s|T be given on T as in (7.2), and set p̃ = s|T̃ ∈ Pq for a neighboring
polynomial on T̃ = [v0, v1, v2, ṽ3] with Bernstein-Bézier coefficients ãi,j,k,l, i +
j+k+ l = q. Then s is a continuous spline on T ∪ T̃ , if the coefficients associated
with the common triangular face T = [v0, v1, v2] coincide, i.e. ai,j,k,0 = ãi,j,k,0 for
all i + j + k = 2. And s is C1-smooth across T iff, in addition,

ãi,j,k,1 = λ0(ṽ3) ai+1,j,k,0 + λ1(ṽ3) ai,j+1,k,0 + λ2(ṽ3) ai,j,k+1,0 + λ3(ṽ3) ai,j,k,1,

for all i + j + k = q − 1.
Analogously to the univariate and bivariate cases, for each condition of this

form there is the geometric interpretation that five points in R
4 lie in the same

(three-dimensional) hyper-plane, in general. The fourth components of these
points are the Bernstein-Bézier coefficients while the first three components are
the associated Bézier points. In general, there are five coefficients involved for
every single smoothness condition. If one or even two of the barycentric coordi-
nates vanish at ṽ3, the number of involved coefficients is four and three, respec-
tively. For instance, this holds if ṽ3 lies in the plane that contains the triangle
[v0, v1, v3] and if ṽ3 lies on the line that contains the edge [v0, v3], respectively.
In these cases, the smoothness conditions degenerate to lower dimensional con-
ditions known from the bivariate and univariate setting, respectively. Figure 7.5
illustrates a degenerated and the general case.

Figure 7.5: Smoothness conditions of neighboring quadratic polynomials across the com-
mon triangular face of two tetrahedra. The domain points associated with coefficients
involved in the smoothness conditions are shown as blue dots. In general, there are five
coefficients involved in each of the three conditions (left). If exactly one barycentric co-
ordinate vanishes at the point ṽ3, then four coefficients are involved in every smoothness
condition (middle). If two barycentric coordinates vanish at the point ṽ3, i.e. three ver-
tices lie on a line, then the conditions even degenerate to univariate smoothness conditions
(right).

For the type-6 tetrahedral partition ∆ defined in the previous Section 7.2, there
are three cases, i.e. we have to consider neighboring tetrahedra lying in

• two different cubes of ♦,

130 Chapter 7: Trivariate C1-Splines on Type-6 Tetrahedral Partitions

• the same pyramid (cf. Figure 7.3) of a cube,

• two different pyramids of a cube.

We observe that the smoothness conditions for the first two cases (inter-cube and
intra-pyramid) degenerate to simple univariate conditions involving three coef-
ficients (Figure 7.5, left), while in the third case (inter-pyramid) the smooth-
ness conditions are of the general form involving five coefficients (Figure 7.5,
right). Due to symmetry, there are essentially two conditions with always the same
barycentric coordinates involved, and one can easily see that enforcing smooth-
ness over the common triangular face of neighboring tetrahedra in ∆ is to apply
one of these two simple averaging formulae2 illustrated in Figure 7.6.

−1
2

−11

1/2
1/2

Figure 7.6: C1-smoothness conditions on a type-6 tetrahedral partition ∆. The condi-
tions are shown as the stencils of the two averaging rules which apply on ∆, where the
outlined Bernstein-Béziercoefficient is determined from the solid ones. The left stencil
corresponds to the degenerate, univariate case (inter-cube and intra-pyramid, cf. Fig-
ure 7.5 (left)). The right stencil corresponds to the non-degenerate, general case (inter-
pyramid, cf. Figure 7.5 (right)).

According to their computational simplicity and numerical stability, C 1-
splines are spaces of particular interest in multivariate spline theory and CAGD.
On the other hand, the structure of C1-splines is much more complex than in the
case of continuous splines and many open question currently exist for the overall
smooth spaces, even in the bivariate case, see the results and methods presented
in [Beatson and Ziegler 1985, Chui and He 1986, Dagnino and Lamberti 2004,
Jeeawock-Zedek 1994, Nürnberger and Zeilfelder 2001, Morgan and Scott ,
Powell 1974, Powell and Sabin 1977, Sablonnière 1987, Sablonnière 2003b,
Sablonnière 2003a, Schumaker 1984], for instance. This is in striking contrast to
the univariate theory. Clearly, the complexity of the spline spaces even increases
for three variables as indicated in the following section.

2For the ease of notation, we do not explicitly describe the application of the stencils (including
their translation and rotation) here. A formal characterization of all C1-smoothness conditions on
∆ is given in [Hangelbroek et al. 2004, Nürnberger et al. 2004c].

7.3 Trivariate C1-Splines on ∆ 131

q dim S1
q (∆) dim S0

q (∆) dim S−1
q (∆)

1 4 5 n3 + 6 n2 + 3 n + 1 96 n3

2 3 n2 + 9 n + 4 34 n3 + 24 n2 + 6 n + 1 240 n3

3 6 n3 + 24 n2 + 18 n + 4 111 n3 + 54 n2 + 9 n + 1 480 n3

4 39 n3 + 66 n2 + 27 n + 4 260 n3 + 96 n2 + 12 n + 1 840 n3

5 120 n3 + 132 n2 + 36 n + 4 505 n3 + 150 n2 + 15 n + 1 1344 n3

6 273 n3 + 222 n2 + 45 n + 4 870 n3 + 216 n2 + 18 n + 1 2016 n3

7 522 n3 + 336 n2 + 54 n + 4 1379 n3 + 294 n2 + 21 n + 1 2880 n3

8 891 n3 + 474 n2 + 63 n + 4 2056 n3 + 384 n2 + 24 n + 1 3960 n3

9 1404 n3 + 636 n2 + 72 n + 4 2925 n3 + 486 n2 + 27 n + 1 5280 n3

Table 7.1: Comparison of dimensions of splines on type-6 tetrahedral partitions ∆ for
low polynomial degrees q.

7.3.3 Dimension of C1-Splines on ∆

Given an arbitrary tetrahedral partition ∆̃, the dimension of S0
q (∆̃), q ≥ 1, is easy

to determine (cf. [Alfeld et al. 1992]). In this case, it is obvious that Dq, e∆ is a
MDS for S0

q (∆̃) and a straight forward computation shows that

dim S0
q (∆̃) =

(
q−1
3

)
Te∆ +

(
q−1
2

)
Fe∆ + (q − 1) Ee∆ + Ve∆, q ≥ 1,

For a type-6 tetrahedral partition ∆ of a cubic domain, (7.8) and some elemen-
tary computations imply

dim S0
q (∆) = (4q2 + 1) q n3 + 6 q2 n2 + 3 q n + 1, q ≥ 1.

More complex arguments are needed to determine the degrees of freedom of C 1-
smooth splines. We summarize the results on the dimension of C1-splines on ∆.

Theorem 7.1 The dimension of S1
q (∆) is given by

3 n2 + 9 n + 4, if q = 2,

and

(4q3 − 24q2 +53q− 45) n3 +6 (2q2 − 7q +7) n2 +9 (q− 1) n+4, if q ≥ 3.

Table 7.1 compares the dimensions of splines on ∆ for low polynomial degrees q.

The proof of Theorem 7.1 is complex, and we refer to
[Hangelbroek et al. 2004], here. It roughly proceeds as follows: First, min-
imal determining sets for C1-splines on a particular cube cell Qi,j,k ∈ ♦ is

132 Chapter 7: Trivariate C1-Splines on Type-6 Tetrahedral Partitions

constructed. Then, a minimal determining set for the whole C1-spline space is
constructed step by step. This is done inductively by considering tetrahedra of the
partition in an appropriate order. In each step, the remaining degrees of freedom
are determined.

The construction of the minimal determining set gives some deeper insight
on the structure of the spaces. We apply these results in the remaining sections
to develop appropriate tools for efficient approximation in these spline spaces for
high-quality visualization.

7.4 Evaluation of Trivariate Splines on ∆

In this section we discuss some practical issues of the efficient evaluation of the
spline s w.r.t. ∆. Given a point u ∈ Ω we want to compute the value s(u) and the
gradient (∇s)(u). In order to apply the de Casteljau algorithm (see Section 7.1),
which computes both quantities simultaneously for a polynomial piece s|T , we
need to identify the supporting tetrahedron T ∈ Ω and local barycentric coordi-
nates. Hence, we have to determine the cube Q ∈ Ω with u ∈ Q, the tetrahedron
T ∈ Q with u ∈ T , and the barycentric coordinates λν(u), ν = 0, . . . , 3,, of u
w.r.t. T .

We apply a uniform scaling by 1
h

such that ũ = (x̃, ỹ, z̃) := 1
h
u. The indices

of the cube Q with u ∈ Q are found by simple rounding of the coordinates of
ũ, i.e. we have Q = Q[x̃],[ỹ],[z̃], where [b] denotes the maximal integer ≤ b. The
uniformity of ∆ allows a translation of ũ such that the remaining computations
can be performed for (the tetrahedral partition of) the unit cube Q0 = [−1

2
, 1

2
]3,

hence from now we may assume that ũ ∈ Q0.
For finding the tetrahedron which contains q, we use the observation men-

tioned in Section 7.2 that the partition of Q0 in 24 congruent tetrahedra is obtained
by slicing with the six planes

Pν(x, y, z) = 0, ν = 0, . . . , 5, (7.11)

where

P0(x, y, z) = x + y, P1(x, y, z) = x − y, P2(x, y, z) = x + z,

P3(x, y, z) = x − z, P4(x, y, z) = y + z, P5(x, y, z) = y − z.

The orientation of ũ with respect to these planes is determined by performing one
addition to compute Pν(ũ) followed by a sign check for each of the six planes.
This gives a 6-bit binary code for the orientation of ũ and the tetrahedron T ⊆ Q0

with ũ ∈ T is found by a simple table lookup. The whole operation requires six
additions, six sign checks and five bit shifts.

7.4 Evaluation of Trivariate Splines on ∆ 133

For determining the barycentric coordinates λν(ũ), ν = 0, . . . , 3, of ũ with
respect to T , the vertices of T = [v0, v1, v2, v3] are organized such that v0 is the
origin, v1 and v2 are two corner vertices of Q0, and v3 is the intersection point
of the diagonals in a face of Q0. We use the precomputed general solution of
the system (7.1). For instance, if v1 = (−1

2
,−1

2
,−1

2
), v2 = (1

2
,−1

2
,−1

2
), and

v3 = (0, 0,−1
2
), we have

λ0(ũ) = 1 + 2 z̃, λ1(ũ) = −x̃ − ỹ, λ2(ũ) = x̃ − ỹ,

and λ3(ũ) = 2 (ỹ − z̃). Similar expressions for the barycentric coordinates in-
volving five of the variable factors from the ordered list

L = (Lν)
5
ν=0 = [x̃, ỹ, z̃, −x̃, −ỹ, −z̃]

are obtained for the other 23 tetrahedra in Q0. We exploit this simple fact for
generating another lookup table with 24 entries of the precomputed solutions. If
T is the tetrahedron from the above example, its entry E in this table is given by

E = [(2) | (3, 4) | (0, 4)],

with the interpretation that the barycentric coordinates of ũ with respect to T are
computed from L by setting

λ0(ũ) = 1 + (L2 + L2), λ1(ũ) = (L3 + L4), λ2(ũ) = (L0 + L4),

and λ3(ũ) = 1−λ0(ũ)−λ1(ũ)−λ2(ũ). These are seven additions and five essen-
tial table lookups. In this way, we determine the barycentric coordinates of ũ (and
hence of u) while avoiding expensive rotation or transformation operations, with-
out explicit branching over 24 cases, and without performing any multiplication
(not even by −1).

Given the barycentric coordinates of u, we apply the trivariate version of
de Casteljau algorithm (see Section 7.1) to evaluate the polynomial piece, which
requires a total number of 4

(
q+3
4

)
multiplications and 3

(
q+3
4

)
additions, in general.

We focus on quadratic (cubic) polynomials. Then these are 20 (60) multiplications
and 15 (45) additions. If one or even two barycentric coordinates of u vanish, then
this algorithm degenerates to its bivariate and univariate versions, respectively. In
these cases, u lies in the interior of a triangular face on T or on an edge of T , and
the number of necessary arithmetic operations reduces to 12+8 and 6+3 (30+20
and 12 + 6), respectively. The bivariate case occurs in ray casting algorithms (see
Section 8.5).

The de Casteljau algorithm simultaneously computes the partial derivatives in
direction of the edges of the tetrahedron. The gradient is obtained easily from
(7.3) or (7.4) and the basis transformation (7.5). Again, we use a lookup table for
precomputed numbers αµ for the different tetrahedra.

134 Chapter 7: Trivariate C1-Splines on Type-6 Tetrahedral Partitions

Chapter 8

Reconstruction of Volume Data
with Quadratic Super Splines

There are different setups for the problem of reconstruction of volume data. The
reconstruction problem is less complex if the data is structured so that the sam-
ples are arranged on a regular three-dimensional grid (compared to unstructured,
general data as discussed in Section 9. For instance, CT or MRI sensors, seis-
mic applications or results from numerical simulations typically generate this
type of gridded data which is subsequently visualized by volume rendering. In
Rössl et al. [2003a, 2004a], we propose new models of such gridded volume
data, namely quadratic, trivariate super splines on uniform tetrahedral partitions
which yield efficient approximations that can be evaluated and implemented eas-
ily. This method builds upon the trivariate spline spaces discussed in the previous
sections. We describe the precise smoothness and approximation properties of
the quasi-interpolating splines and provide comparisons with some alternative ap-
proaches to reconstruction based on piecewise polynomials (linear continuous, tri-
linear continuous, quadratic continuous, and triquadratic smooth splines). These
comparisons include the visual appearance of the reconstruction for very few data
samples of a well-known benchmark together with a detailed discussion on the
approximation aspect that is of fundamental importance for any method.

8.1 Background

Reconstruction of volume data has been an active area of research for the last
decades and many different models have been proposed. General reconstruction
of a discrete sampling is well studied in signal processing, and Fourier analy-
sis leads to optimal models. However, optimal models are often not feasible in

136 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

practice as they are based on global properties. In order to keep computational
costs low, local methods have been studied extensively (cf. [LaMar et al. 1999,
Marschner and Lobb 1994, Mitchell and Netravali 1988, Möller et al. 1998]). It
turns out that local (piecewise) polynomial constructions are often preferred due
to their simplicity, efficiency and satisfying reconstructions.

In this context, the simplest model is a piecewise constant approximation
based on the closest sample or on some averaging of nearby samples. The
next natural model is to use trivariate linear polynomials

∑
i+j+k≤1 ai,j,k xiyjzk,

where ai,j,k ∈ R, i + j + k ≤ 1. Using these functions, a tetrahe-
dral partition ∆ is needed, and the model becomes a linear trivariate spline
on ∆ (see [Bonneau et al. 1996, Carr et al. 2001a, Gerstner and Rumpf 2000,
Grosso et al. 1997], for instance). More sophisticated models are needed if
gradient information is required, e.g. for high quality shading. One of the
most popular models in volume visualization is to use trilinear interpolants∑

i,j,k=0,1 ai,j,k xiyjzk, where ai,j,k ∈ R, i, j, k = 0, 1, i.e. piecewise poly-
nomials with total degree three of specific type (cf. [Marschner and Lobb 1994,
Parker et al. 1998], and the references therein). Approaches of this type often use
central differences of the surrounding data samples to faithfully determine the
gradient at a given point location.

Alternatively, models satisfying smoothness properties have been constructed.
In this case, the necessary gradient information is directly available from the
model, but the data stencil needed for the reconstruction generally increases.
In some of the local approaches listed above, the models are based on tricubic
splines (also known as cubic filters), i.e. piecewise polynomials of the form∑3

i,j,k=0 ai,j,k xiyjzk, where ai,j,k ∈ R, i, j, k = 0, . . . , 3. These are special
polynomials of total degree nine. Recently, smooth approximation models us-
ing triquadratic tensor splines have been proposed to further reduce the poly-
nomial degree. In this case, the data stencil consists of 27 grid points, and
27 coefficients of the form ai,j,k ∈ R, i, j, k = 0, 1, 2 determine each polyno-
mial piece. These methods are based on the piecewise monomial representation
(cf. [Barthe et al. 2002, Mora et al. 2001]) or on the B-spline expansion of tensor
splines (cf. [Thévenaz and Unser 2001]), and the total degree of the polynomial
pieces is six.

Moreover, reconstructions with high smoothness are discussed in
[Möller et al. 1998, Thévenaz and Unser 2001], a mathematical framework using
NURBS was developed in [Martin and Cohen 2001], and trivariate Coons patches
were proposed in [Holliday and Nielson 2000]. In the A-Patch methods (cf. e.g.
[Bajaj 1997, Bajaj et al. 1995, Dahmen 1989, Dahmen and Thamm-Schaar 1993]
and the references therein) the zero-sets of trivariate piecewise polynomials
are used for surface construction. The literature shows that designing an ap-
propriate model for the visualization of volume data is always a compromise

8.2 Overview of the Approach 137

between computational efficiency and visual quality, where the most successful
methods are based on local reconstructions. For further information on the
field, we refer to the recent books [Bajaj 1999, Chen et al. 2000], the surveys
[Brodlie and Wood 2001, Kaufman 2000, Meissner et al. 2000, Nielson 2000,
Theußl et al. 2003] and the references therein.

Figure 8.1: Isosurfaces of the synthetic Marschner-Lobb bench-
mark [Marschner and Lobb 1994] (413 samples, isovalue 1

2 , see Section 8.6.1).
The approximation error to the original function (see (8.9)) in the uniform norm is color
coded (from red≥ 0.075 to blue=0) for the standard trilinear model (left) and our new
quadratic super splines (right). The center image shows a visually perfect reconstruction
using our model for (4 × 41)3 samples. The maximum error is 0.0065 (center) compared
to 0.088 (right) which illustrates that the quasi-interpolating spline yields nearly optimal
approximation order.

8.2 Overview of the Approach
We develop a new approach to efficiently visualize gridded volume data using a
local spline model. In contrast to the existing approaches, the splines used here
are piecewise polynomials of lowest possible total degree, namely, the polynomial
pieces have the form

∑
i+j+k≤2 ai,j,k xiyjzk, where ai,j,k ∈ R, i+ j +k ≤ 2. This

means that the total degree is two. The quadratic splines are defined with respect
to a tetrahedral partition ∆. Hence their polynomial pieces are given on tetrahe-
dra. Splines of this natural type have not yet been studied in the context of local
volume data reconstruction. Based on our theoretical investigations of the struc-
ture concerning smooth trivariate splines of arbitrary degree (cf. Section 7.3.3,
[Hangelbroek et al. 2004], and the references therein) and the facts known for
bivariate splines (see [Nürnberger and Zeilfelder 2000, Zeilfelder 2002] and the
references therein), we choose an appropriate uniform tetrahedral partition ∆ (see
Section 7.2) and design a super spline model which we show to be appropriate for
efficient volume visualization. We develop a natural and completely symmetric re-

138 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

construction method for these trivariate splines. Their coefficients are computed
locally and directly by repeated averaging of the given data, while appropriate
smoothness properties necessary for the visualization are automatically satisfied.
As a non-standard phenomenon the derivatives of the splines yield optimal ap-
proximation order for smooth data, while the theoretical error of the values is
nearly optimal because of the averaging (see [Nürnberger et al. 2004c]). We take
advantage of the (trivariate) Bernstein-Bézier representation of the quadratic poly-
nomial pieces. This piecewise representation allows us to exploit the Bernstein-
Bézier techniques (see Section 7.1) to efficiently represent, compute, evaluate and
visualize our volume spline model.

Our approach allows efficient and high-quality visualization of volume data,
which we illustrate by rendering isosurfaces of well-known synthetic and mea-
sured test data sets using ray-casting. Along an arbitrary ray the quasi-
interpolating splines are univariate piecewise quadratics and consequently their
exact intersection for a prescribed isovalue can be easily determined in an ana-
lytic and precise way by solving quadratic equations. Note that all the meth-
ods described above (except for those based on constant and linear trivariate
splines) need to solve higher order equations through either approximative numer-
ical methods, or – for cubic and quartic equations – implementation of Cardano’s
and Ferrari’s exact formulae, respectively (cf. [Schwarze 1990]). Finally, the gra-
dient, necessary for quality shading, is determined efficiently in our method using
Bernstein-Bézier techniques. This direct sampling from the polynomial pieces is
motivated by the optimal approximation properties of the derivatives of our new
spline model, our examples illustrate the resulting visual quality.

8.3 Reconstruction with
Quadratic Super Splines

In the following we are interested in consistent splines which satisfy many
smoothness conditions — such splines are called super splines. The space of
quadratic super splines with respect to ∆ is defined by

S2(∆) = { s ∈ C(Ω) : s|T ∈ P2, for all T ∈ ∆, and
s is smooth at v, for all v vertices of ♦ }.

In our approximation method described below we use quasi-interpolating splines
from S2(∆) which posses many additional natural smoothness properties. Mathe-
matically speaking, this means that we deal with appropriate subspaces of S2(∆),
where the number of free parameters is considerably lower.

8.3 Reconstruction with Quadratic Super Splines 139

Figure 8.2: In each cube Q ∈ ♦ (grey) the splines are reconstructed by using a stencil
of 27 data samples (black boxes). The derivative of the splines at the grid points of ♦ in
each of the three space directions are determined as the average of four differences. For
instance, the x derivative at the lower right vertex of Q is obtained from averaging the
differences illustrated by the green arrows. Similarly, the y derivative and z derivative
at this point are obtained by averaging the differences associated with the red and blue
arrows, respectively.

Given gridded volume data, i.e. data points of the form (2i+1
2

, 2j+1
2

, 2k+1
2

) ∈
R

3, with corresponding data values fi,j,k ∈ R, i, j, k = −1, . . . , n, the outline
of our reconstruction method is as follows: The coefficients in the piecewise rep-
resentation (7.2) of the reconstruction s from S2(∆) are determined by repeated
averaging of the data values. First, for every vertex v of ♦, we determine the
Bernstein-Bézier coefficients of s close to v by using an averaging of the data val-
ues at the center points of the eight cubes which have v as a common vertex. This
uniquely determines the value s(v) and the three derivatives (∂s

∂x
)(v), (∂s

∂y
)(v),

and (∂s
∂z

)(v). Then, we use repeated averaging of the Bernstein-Bézier coefficients
associated with these nodal values at the eight vertices of every cube Q ∈ ♦
to uniquely determine the 65 coefficients of s|Q (cf. Table 7.1 for q = 2, n = 1)
in its piecewise representation (7.2) while satisfying additional natural appropriate
smoothness conditions. Hence, similarly to [Barthe et al. 2002, Mora et al. 2001],
where a triquadratic tensor spline model is used as a reconstruction, the 27 data
values at the centers of the cubes which have a non-empty intersection with Q
are needed to reconstruct s|Q for every cube Q ∈ ♦ (see Figure 8.2). Note that
although in one variable our method would coincide with these approaches, this
is completely different in the multivariate case. An illustration of our reconstruc-
tion is given in Figure 8.3, where we show the Bézier points from one face of the
three different layers within an arbitrary cube Q of ♦. Here, the different colors
indicate the order of determining the corresponding coefficients of the splines, as
described below. The details of our natural and completely symmetric reconstruc-
tion are as follows. Let Q ∈ ♦ be an arbitrary cube. For every edge e of Q, we

140 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

Figure 8.3: A cube is decomposed into three layers of Bézier points. The colored dots
show the Bernstein-Bézier coefficients associated with the Bézier points of s for one of the
six pyramids — i.e. four tetrahedra — in a cube on each layer. For the whole cube there
are 50 coefficients on the outer layer (left), 14 coefficients on the middle layer (center),
and the center coefficient (right). These 65 coefficients are determined layer by layer in
the following order: blue (ae), red (av), green (am1

), yellow (ad), white (ac), black (ag),
magenta (avQ

).

first determine the Bernstein-Bézier coefficient ae associated with the Bézier point
at the midpoint of e (blue dot in Figure 8.3). We do this by averaging the four data
values f0, f1, f2, f3, which correspond to the data points at the center points of
the four cubes in ♦ which share a common edge e, i.e. we set

ae = 1
4

(f0 + f1 + f2 + f3). (8.1)

We then determine the Bernstein-Bézier coefficient av associated with the Bézier
point at every vertex v of Q (red dot in Figure 8.3). This is done by choosing
two edges e1 and e2 with endpoint v which lie on the same line segment of
♦ and by averaging the two Bernstein-Bézier coefficients ae1

, ae2
, i.e. we set

av = 1
2

(ae1
+ ae2

). Note that av is uniquely determined and independent from
the chosen line segment of ♦ since for each of the three possible choices of edges
e1 and e2 with endpoint v, we obtain due to uniformity

av = 1
8

(f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7), (8.2)

where f0, . . . , f7, are the data values at the center points of the eight cubes with
vertex v. Moreover, the derivatives (∂s

∂x
)(v), (∂s

∂y
)(v), and (∂s

∂z
)(v) are uniquely

determined in an automatic way. For instance, it follows from a standard relation
(cf. [Farin 1986]) of (∂s

∂x
)(v) with the two Bernstein-Bézier coefficients associated

with the points v = (i, j, k) and (2i+1
2

, j, k) that

(∂s
∂x

)(v) = 1
4

(fi,j−1,k−1 − fi−1,j−1,k−1 + fi,j,k−1 − fi−1,j,k−1 +

fi,j−1,k − fi−1,j−1,k + fi,j,k − fi−1,j,k) .

8.3 Reconstruction with Quadratic Super Splines 141

This means that (∂s
∂x

)(v) is determined as an average of four simple differences
which approximate the derivative in x-direction. Similar interpretations hold for
(∂s

∂y
)(v) and (∂s

∂z
)(v) (see Figure 8.2). Note that in contrast to the standard central

differences approach for approximating derivative information in volume graph-
ics, similarly as in [Barthe et al. 2002, Mora et al. 2001], no information from an
intermediate data sample is lost here.

We proceed by setting the remaining five Bernstein-Bézier coefficients associ-
ated with points on each of the six faces of Q. Let F be a square face of Q, d the
point where the two diagonals in F intersect, and m1, m2, two midpoints of edges
in the interior of F which lie on the same diagonal in F . The Bernstein-Bézier
coefficient am1

associated with the Bézier point m1 (green dot in Figure 8.3) is
determined by averaging the two Bernstein-Bézier coefficients ae1

, ae2
, where e1

and e2 are the edges of F from ♦ which intersect at the vertex of Q closest to m1,
i.e. we set

am1
= 1

2
(ae1

+ ae2
). (8.3)

We determine the coefficient am2
analogously. Then, we set the Bernstein-Bézier

coefficient ad associated with the Bézier point d (yellow dot in Figure 8.3) as

ad = 1
2

(am1
+ am2

).

It is well known in bivariate spline theory (see e.g. [Davydov and Zeilfelder 2003,
Nürnberger et al. 2003a, Nürnberger and Zeilfelder 2000]) that ad is uniquely de-
termined, independently of the two possible choices for m1 and m2. Moreover,
this setting implies the smoothness within the faces of Q. In particular, the direc-
tional derivative (∂s

∂ς
)(d) is uniquely determined, where ς 6= 0 is an arbitrary vector

in three-dimensional space which lies in the plane through the origin parallel to
F .

We proceed by setting the remaining 15 Bernstein-Bézier coefficients associ-
ated with points from the interior of Q. First, let c be a midpoint of an edge of
∆ which connects the center vQ with a vertex v of Q, and let e be the common
edge of any two faces F , F ∗ of Q with vertex v. Moreover, let m1 and m∗

1 be the
midpoints of the edges in the interior of F and F ∗ with endpoint v, respectively.
Using the same notation as above, the Bernstein-Bézier coefficient ac associated
with c (white dot in Figure 8.3) is determined by

ac = (am1
+ am∗

1
) − 1

2
(av + ae). (8.4)

We note that it follows from Section 7.3.2 (see also [Hangelbroek et al. 2004])
that this setting (together with (8.3)) now guarantees that s ∈ S2(∆). Moreover,
ac is uniquely determined independent of the three possible choices of F and

142 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

F∗. The coefficient ag associated with the midpoint g of the edge which connects
the intersection point d of the diagonals of a face F of Q with vQ (black dot in
Figure 8.3) is now determined by setting

ag = 1
4

(ac0 + ac1 + ac2 + ac3),

where c0, . . . , c3, are the midpoints of the edges which connect the vertices of F
with vQ. It remains to determine the Bernstein-Bézier coefficient avQ

at the center
vQ of Q (magenta dot in Figure 8.3). This done by setting

avQ
= 1

3
(ag0

+ ag1
+ ag2

+ ag3
+ ag4

+ ag5
) (8.5)

−1
8

(ac0 + ac1 + ac2 + ac3 + ac4 + ac5 + ac6 + ac7),

where g0, . . . , g5, are the midpoints of the edges which connect the intersection
point of the diagonals of the six faces of Q with vQ, and c0, . . . , c7, are the mid-
points of the eight edges which connect the vertices of Q with vQ.

The above settings for ag and avQ
are motivated by the fact that they

are the average of two and twelve smoothness conditions, respectively,
which would have been satisfied simultaneously by an overall smooth spline
(cf. [Hangelbroek et al. 2004]), and hence the approximation properties of the
model are preserved by an argument of weak-interpolation type, for instance (cf.
e.g. [Nürnberger and Zeilfelder 2003]). Now all the coefficients of the spline s
are set appropriately. The computation of the 65 coefficients for a single cube
Q ∈ ♦ of s|Q requires 66 multiplications with constants and 121 additions. The
implementation of the model is straightforward. Finally we note that a close in-
spection shows that the resulting quadratic quasi-interpolating spline s is smooth
for all points on the faces of any Q ∈ ♦, and s yields nearly optimal approxi-
mation order while the (piecewise) derivatives of s yield optimal approximation
order for data coming from smooth functions.

8.4 Smoothness and Approximation
Properties

From Section 7.3.3 we know that the degrees of freedom of the quadratic C 1-
spline space w.r.t. ∆ is only 3n2+9n+4. Unfortunately, this shows that quadratic
C1-splines on ∆ do not have enough degrees of freedom to provide appropriate
tools for the efficient approximation of three-dimensional data. One reason for this
is that the quadratic C1-splines have to simultaneously satisfy a huge number of
smoothness conditions while on the other hand the number of coefficients involved
is extremely low.

8.4 Smoothness and Approximation Properties 143

Figure 8.4: Zoomed regions of Figure 8.1 (same color code for upper image parts): Tri-
linear (left) and our quadratic (right) reconstruction.

One main motivation for our approach was to find a volume reconstruction
method which results in approximating, quadratic splines s on ∆ while the essen-
tial smoothness properties needed for the visualization process are satisfied (see
the results from Section 8.6.4). The basic idea presented here is to relax some
of the C1-smoothness conditions which would have been satisfied by an overall
quadratic C1-spline on ∆ and to replace some of them by other useful conditions,
i.e. averages of smoothness conditions (cf. the setting of ag and avQ

described
in the previous Section 8.3). Due to the simple repeated averaging rules, the co-
efficients of the splines s can be computed efficiently by using a local procedure
involving only small data stencils. We note that the corresponding averaging rules
are chosen carefully such that many smoothness conditions are automatically sat-
isfied while certain approximation properties of the quasi-interpolant s are guaran-
teed. Hence, our approach can be understood as a suggestion for finding a satisfy-
ing compromise between visualization and approximation quality using trivariate,
quadratic splines.

The coefficients ag and avQ
in (8.4) and (8.5) are set as averages of two and

twelve smoothness conditions, respectively. To see this, assume the coefficients
are indexed as shown in Figure 8.5, and aci

, 0 ≤ i ≤ 7, are already determined
as described in the previous Section 8.3. Then for ag0

the two (univariate, intra-
pyramid) smoothness conditions

ag0
= 1

2
(ac0 + ac2) and ag0

= 1
2
(ac1 + ac3)

apply. The average of these two conditions gives equation (8.4), and the same ar-
guments apply for the remaining coefficients agi

, 1 ≤ i ≤ 5. In order to show that
(8.5) is an average of twelve smoothness conditions which are used to determine
the center coefficient avQ

, we consider all conditions in which avQ
is involved.

144 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

c2

c6c7

c1

c3

c5c4

c0

g0

g1

g2

g3

g4

g5

vQ

Figure 8.5: The 15 coefficients aci
, agj

, avQ
, 0 ≤ i ≤ 7, 0 ≤ j ≤ 5, of the two inner

cube layers from Figure 8.3. The figure labels the Bernstein-Bézierpoints with the indices
of the respective coefficients. The coefficients agj

and avQ
are determined from averages

of two and twelve smoothness conditions, respectively.

These are the twelve (inter-pyramid) conditions

avQ
= (ag0

+ ag4
) − 1

2
(ac0 + ac1), avQ

= (ag1
+ ag4

) − 1
2
(ac1 + ac5),

avQ
= (ag2

+ ag4
) − 1

2
(ac5 + ac4), avQ

= (ag3
+ ag4

) − 1
2
(ac4 + ac0),

avQ
= (ag0

+ ag1
) − 1

2
(ac1 + ac2), avQ

= (ag5
+ ag1

) − 1
2
(ac2 + ac6),

avQ
= (ag2

+ ag1
) − 1

2
(ac6 + ac5), avQ

= (ag0
+ ag5

) − 1
2
(ac2 + ac3),

avQ
= (ag3

+ ag5
) − 1

2
(ac3 + ac7), avQ

= (ag2
+ ag5

) − 1
2
(ac7 + ac6),

avQ
= (ag0

+ ag3
) − 1

2
(ac3 + ac0), avQ

= (ag2
+ ag3

) − 1
2
(ac4 + ac7),

and summation leads to

12 avQ
= 4

∑

0≤i≤5

agi
− 3

2

∑

0≤i≤7

aci
,

which is equivalent to (8.5). The careful choice of these rules enables high-quality
visualization and nearly optimal approximation.

In the following we summarize smoothness and approximation properties. The
complete proofs are provided in [Nürnberger et al. 2004c] (see also Appendix B).

The spline s ∈ S2(∆) satisfies the essential smoothness properties needed for
the visualization process.

Theorem 8.1 (smoothness) The spline sf ∈ S0
2 (∆) is in C1(v) for all points

v in Ω of the form v = (ih, y, z) or v = (x, ih, z) or v = (x, y, ih), where
i ∈ {0, . . . , n} and x, y, z ∈ [0, 1].

This can be shown by reconstruction from samples fi,j,k, i, j, k ∈ {−1, 0, 1} and
checking the individual C1-conditions. Hence, s is not only smooth at the ver-
tices of ♦ but at all points in R

3 from the planes x = i, i = 0, . . . , n, y =

8.4 Smoothness and Approximation Properties 145

j, j = 0, . . . , n, and z = k, k = 0, . . . , n. Moreover, our approximation approach
can be understood as a quasi-interpolation as well as a Hermite-interpolation type
method.

Concerning the approximation properties, the splines s yield nearly optimal
approximation order, while its derivatives yield optimal approximation order of
smooth functions f . More precisely:

Theorem 8.2 (approximation properties) Let f ∈ C(Ω∗). Then the following
statements hold.
(i) If f ∈ W 2

∞(Ω∗), then we have for all T ∈ ∆,

‖(f − sf)‖T ≤ 5 |f |2,∞,Ω∗ h2,

‖Dα
xDβ

y Dγ
z (f − sf)‖T ≤ 111 |f |2,∞,Ω∗ h, α + β + γ = 1.

(ii) If f ∈ W 3
∞(Ω∗), then we have for all T ∈ ∆,

‖Dα
xDβ

y Dγ
z (f − sf)‖T ≤ 97 |f |3,∞,Ω∗ h2, α + β + γ = 1,

‖Dα
xDβ

y Dγ
z (f − sf)‖T ≤ 422 |f |3,∞,Ω∗ h, α + β + γ = 2.

Here, we denote by W m
∞(Ω∗) the usual Sobolev space with the semi-norm

|f |m,∞,Ω∗ =
∑

α+β+γ=m

‖Dα
xDβ

y Dγ
z f‖Ω∗ ,

where Dα
xDβ

y Dγ
z f, α + β + γ = m, denote the m-th derivatives of a function

f ∈ Wm
∞(Ω∗). Appendix B sketches the proof of the theorem.

The above is a non-standard mathematical phenomenon. The key to show (ii)
is the following quasi-interpolation property of the spline sf :

Theorem 8.3 (reproduction of polynomials) The following statements hold.
(i) If p ∈ span{1, x, y, xy, xz, yz}, then sp ≡ p.
(ii) If p ∈ span{x2, y2, z2}, then sp ≡ p + 1

4
h2.

(iii) If p ∈ P2, then sp ≡ p + c, where c is some constant.

(i) and (ii) can be shown by sampling the polynomials and reconstruction as de-
scribed in Section 8.3. Note that the construction of the splines is completely
symmetric, hence it is sufficient to consider the polynomials 1, x, xy, and x2.
(iii) is an immediate consequence of (i) and (ii): As the derivative Dα

xDβ
y Dγ

z p,
α + β + γ = 1, 2, of the quadratic polynomial p ∈ P2 is either a linear or a
constant polynomial, it follows that

Dα
xDβ

y Dγ
z sp ≡ Dα

xDβ
y Dγ

z (p + c) ≡ Dα
xDβ

y Dγ
z p ≡ sDα

x Dβ
y Dγ

z p.

In other words, we may swap the order of the differential and the reconstruction
operator.

146 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

8.5 Visualization: Isosurface Rendering by
Precise Ray-Casting

A visualization technique for volume data frequently used in computer graph-
ics is rendering isosurfaces from a given reconstruction model. Ray-casting
is an image-space technique to compute particular views of these surfaces
(see e.g. [Foley et al. 1996]). Other methods such as the marching cubes
algorithm are described e.g. in [Brodlie and Wood 2001, Chen et al. 2000,
Lorensen and Cline 1987]. Ray-casting considers the model along arbitrary rays
r,

r = r(t) : t 7→ q0 + t r0, t ≥ 0, (8.6)

where the goal is to find the smallest (intersection) parameter t∗ ≥ 0, such that the
model along r coincides with a prescribed isovalue. Here, q0 ∈ R

3 is the position
of the viewer and r0 ∈ R

3 is the (normalized) viewing direction determined as the
difference of the current pixel position in the projection plane and q0. Therefore
q∗ = r(t∗) is the point closest to the viewer position, where the model intersects
the isosurface. A standard ray-casting algorithm generates rays through all pixel
positions, examines the model along each ray in order to find the closest intersec-
tion point q∗ with the isosurface, and (if q∗ exists) finally evaluates the gradient
for proper shading of the isosurface at the current pixel position.

In order to show the potential of our method for efficient visualization of vol-
ume data, we apply ray-casting on the reconstruction model s ∈ S2(∆) from
Section 8.3. In the following, we focus on the specific advantages of our model
in contrast to other reconstructions, namely the efficient and exact computation
of the intersection point q∗ of s along r, and the effective determination of exact
gradient information at q∗. Since the approximation s along r is a quadratic uni-
variate spline, and by the choice of the underlying space S2(∆), it follows that
these computations can be made by solving a very simple equation and apply-
ing the tools described in Sections 7.1 and 7.4. This uniquely distinguishes our
approach from the previously developed methods.

Let r be an arbitrary ray as in (8.6), and let us assume that Q ∈ ♦ lies within
the current region of interest when casting r through Ω. This means that r inter-
sects Q at two points. In the following, we call these points enter and exit points of
Q, respectively. We must then process all the tetrahedra in Q which intersect r. A
naive approach would be to intersect r with the six cutting planes from (7.11) and
to obtain a sequence of all intersection points with the tetrahedra in Q by sorting
the (non-negative) ray parameters. In order to avoid unnecessary computations,
we first determine a tetrahedron T0 in Q from the enter point of Q as described
in Section 7.4. The intersected face of T0 is axis aligned. In this case, the second

8.5 Visualization: Isosurface Rendering by Precise Ray-Casting 147

intersection point of r with T0 lies in another non-axis aligned face of T0.
The three candidate faces lie in one of the six cutting planes from (7.11). If

needed, we analogously determine another tetrahedron in Q containing the second
intersection point from T0, and proceed similarly. We eventually iterate until r
meets the tetrahedron which contains the exit point of Q. As Q is sliced by six
planes, previously computed results can be reused here, and we calculate at most
six intersection parameters at a cost of two additions and one division each.

Given r as in (8.6) and a prescribed isovalue which we may assume to be
zero, for the current tetrahedron T ∈ ∆, we have to determine the closest point
q∗ ∈ T to the viewer, where the trivariate polynomial piece p = s|T ∈ P2 vanishes
along r, and we have to find out quickly when such a point q∗ does not exist in
T . Let q1 = r(t1) and q2 = r(t2), where t1 < t2, be two intersection points
of r with T . Then, the restriction of p to the line segment [q1, q2] is a quadratic,
univariate polynomial (see Figure 7.1). It is therefore obvious that we only have
to consider a quadratic equation, whose roots can be found in an analytic way
with only small computational effort. For setting up the necessary equation, we
first compute the values w1, w, and w2 of p at the three points q1, q = q1+q2

2
, and

q2 in T , i.e. w1 = p(q1), w = p(q), and w2 = p(q2). This is done by applying
de Casteljau’s algorithm from Section 7.1. We access the 10 coefficients of p
via an index table into the 65 coefficients for the whole cube. Since the points
q1 and q2 both lie within a triangular face of T , we first perform the bivariate
version of the de Casteljau algorithm twice. The third run of the algorithm is
done for the point q. This is the only run which is of trivariate type, in general.
We use some previously computed results such that the total number of required
operations reduces to 15 multiplications and 13 additions. Note that except for the
tetrahedron T0 (containing the enter point of a cube Q) the above bivariate version
of de Casteljau’s algorithm has to be performed only once per tetrahedron, since
the second intersection point q2 of T becomes a point of type q1, when we move
on to the adjacent tetrahedron. The intersection point q∗ is now determined as
follows. Using a precomputation of Newton’s interpolation form, we find the
unique quadratic polynomial on an appropriate interval [0, δ], which interpolates
the three values w1, w, and w2 at the points 0, δ

2
and δ. From this, we obtain the

quadratic equation

α τ 2 + δ β τ + δ2 γ = 0, τ ∈ [0, δ], (8.7)

where α = 2 (w1 + w2 − 2 w), β = 4 w − 3 w1 − w2, and γ = w1. Hence, once
w1, w and w2 are determined, the equation (8.7) is set up by using 10 additions.
If (8.7) degenerates to a linear equation, i.e. α = 0, we obtain

t∗ = t1 + δ
2

(w1

w1−w
) (t2 − t1).

148 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

Otherwise, we get

t∗ = t1 + δ
2α

(
−β ±

√
β2 − 4 αγ

)
(t2 − t1), (8.8)

and we choose the (smaller) solution in [t1, t2] to fix q∗, if it exists. The latter is not
the case if β2−4 αγ < 0, or, otherwise, if the solution(s) from the above equations
do not lie in [t1, t2]. Note that depending on α, β and γ the solution can always
be determined in a numerically stable way, switching to another formula of same
type, if needed. The necessary arithmetic operations are at most 5 multiplications,
6 additions and one square root evaluation.

Still, in the worst case, all the tetrahedra T ⊆ Q along r have to be processed in
order to check if s|Q is not intersected by the isosurface. We can easily accelerate
this process by applying a quick conservative test on whether s restricted to r
cannot intersect the isosurface locally in a tetrahedron or in a cube. If p = s|T is
given in the form (7.2), then we check σ ai,j,k,l > 0, i + j + k + l = 2, where
σ ∈ {−1, 1}. If this sign criterion is satisfied, then we do not have to consider T
and can skip it because of the well-known convex hull property of the Bernstein-
Bézier form. A similar test can be applied to all the 65 coefficients of s|Q, where
the minimum and maximum coefficients can be precomputed and stored for each
cube, e.g. in a min-max-octree for optimized ray-casting with eventually varying
isovalues.

Once an intersection point q∗ = r(t∗) is found, we determine the gradient
(∇p)(q∗) as defined in (7.6) following Section 7.4. A well-known result from
differential geometry shows that the normal vector n∗ at q∗ is given by n∗ =
(∇p)(q∗)/‖(∇p)(q∗)‖. The normal n∗ is required for shading computations, e.g.
using the standard Phong illumination model. The results given in Section 8.6.4
show that the isosurfaces are visually smooth due to the high quality normals
obtained from the local gradients from our spline model.

The evaluation of roots along a ray is exact and inexpensive for quadratic
polynomials, non-trivial for cubics [Schwarze 1990] (trilinear) and analytically
impossible for degree six polynomials (triquadratic), i.e. a numerical root find-
ing algorithm must be applied. In addition, the univariate quadratic polynomials
allow efficient integration by applying quadrature formulae and evaluation of the
extreme values along a ray. The necessary computations can be performed in a
straightforward way by following the method from Section 8.5.

8.6 Results
In this section we present results which on the one side confirm the theoretical
properties of our reconstruction method on synthetically generated data sets. On

8.6 Results 149

the other side we show that the method enables efficient visualization of real-world
data.

8.6.1 Synthetic Benchmarks
We apply the following smooth test functions to obtain synthetic data for numeri-
cal tests.

The Marschner-Lobb test function (cf. [Marschner and Lobb 1994]) is fre-
quently used as benchmark in volume visualization. It is defined as ml : [−1, 1]×
[−1, 1] × [−1, 1] 7→ IR with

ml(v) = (1 − sin
πz

2
+ α (1 + cos(2πfM cos

πr

2
))/(2(1 + α)), (8.9)

for all v = (x, y, z) ∈ [−1, 1]× [−1, 1]× [−1, 1], where r :=
√

x2 + y2, α = 1/4
and fM = 6. The function is extremely oscillating and therefore a difficult test
for any efficient three-dimensional reconstruction method. This concerns in par-
ticular the cases when only very few data is taken and simultaneous derivative
approximation plays a role. Figures 8.1 and 8.4 show isosurfaces of ml, the sam-
pling on the 41 × 41 × 41 grid is near the Nyquist rate of the function ml, which
makes the reconstruction a challenging test for any approximation method.

As a second test we use the smooth trivariate test function of exponential type
(cf. [Holliday and Nielson 2000])

ftest(v) = 1
2

e−10((x−
1
4
)2+(y−

1
4
)2))

+ 3
4

e−16((x−
1
4
)2+(y−

1
4
)2+(z−

1
4
)2)) (8.10)

+ 1
2

e−10((x−
3
4
)2+(y−

1
8
)2+(z−

1
2
)2))

− 1
4

e−20((x−
3
4
)2+(y−

3
4
)2)),

for v = (x, y, z) ∈ [− 1
2
, 1

2
] × [−1

2
, 1

2
] × [−1

2
, 1

2
]. This function does not have the

same extreme oscillatory behavior as the Marschner-Lobb function. Figure 9.4
shows different isosurfaces of ftest.

8.6.2 Numerical Tests on the Approximation
In order to illustrate the approximation and smoothness properties of the splines,
we give some numerical examples.

We first consider the Marschner-Lobb benchmark (8.9). We compute the
quasi-interpolating splines sml as described in Section 8.3 for decreasing side
length h of the cubes and consider different kinds of errors. The numerical results

150 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

(a) (b) (c) (d)

Figure 8.6: Isosurfaces showing the error of the respective models’ gradient for the (a)
piecewise quadratic, continuous spline on ∆F (cf. Section 8.6.3), (b) trilinear, (c) for
triquadratic reconstruction and (d) for our quadratic super spline model. For the top row 83

samples are applied in contrast to 163 gridded data points for the bottom row. The samples
are taken from a spherical function f(x, y, z) = ||(x, y, z)||, (x, y, z) ∈ [− 1

2 , 1
2]3. The

angular deviation from the perfect gradient ∇f is color coded (from red≥ 1◦ to blue=0◦)
on the isosurface f(x, y, z) = 0.4. As expected, the underlying grid structure imposes
visible artifacts for this extreme diagram.

are given in Table 8.1. The first column of this table contains h, the remaining
columns contain different types of errors. Here, we denote by

errml
data := max{|(ml−sml)((2i + 1, 2j+1, 2k+1) h/2)| : i, j, k = 0, . . . , n−1}

the maximal error at the gridded data points. In addition, the maximal error in the
uniform norm is given as

errml
max := max{|(ml − sml)(v)| : v = (x, y, z) ∈ Ω}.

The latter error is computed approximatively as follows. We choose 10 uniformly
distributed points in each tetrahedron of ∆, and denote the set of all points from
Ω chosen in this way by V . Then the error errml

max is approximatively given as the
maximal error at the points from V . Note that we did the same test with higher
numbers of (scattered) points, and the results were similar. Moreover, we give the

8.6 Results 151

h errml
mean errml

rms errml
max errml

data

1/16 0.0637338 0.0763573 0.1794933 0.0886842
1/32 0.0469557 0.0548679 0.1202057 0.0923545
1/64 0.0175995 0.0206885 0.0395824 0.0368751

1/128 0.0049393 0.0058288 0.0105322 0.0103358
1/256 0.0012735 0.0015042 0.0026710 0.0026593

Table 8.1: Approximation of the Marschner-Lobb test function ml by sml.

h errDxml
mean errDxml

rms errDxml
max errDxml

data

1/16 4.0446910 5.1182602 12.3920158 10.0356594
1/32 3.2655525 4.3084310 12.8719495 12.5411960
1/64 1.2419448 1.6807952 5.6377440 5.6073735
1/128 0.3483834 0.4733294 1.6051045 1.5936699
1/256 0.0896466 0.1220021 0.4144013 0.4115753

Table 8.2: Approximation of the first derivative Dxml of ml by Dxsml.

(approximative) average error

errml
mean := 1

#V

∑

v∈V

|(ml − sml)(v)|,

where #V denotes the cardinality of V , and the (approximative) root mean square
error,

errml
rms :=

√
1

#V

∑

v∈V

((ml − sml)(v))2.

The results in Table 8.1 show that the quasi-interpolating splines yield approx-
imation order two, since in each step the error decreases by about the factor four.

h err
D2

xml
mean err

D2
xml

rms err
D2

xml
max err

D2
xml

data

1/16 329.2754617 460.6656652 1381.6373930 1140.3801860
1/32 285.6398127 405.5817230 1504.0177006 1008.4225786
1/64 149.7005648 217.5784357 1188.2312690 427.7408473

1/128 70.6715715 107.0387996 656.3764722 239.3863193
1/256 34.0443422 53.1077465 335.8704193 123.7781568

Table 8.3: Approximation of the second derivative D2
xml of ml by D2

xsml .

152 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

Figure 8.7: Reconstruction of the Marschner-Lobb test function with quadratic super
splines for different regular sampling grids. The pictures show isosurfaces (from left,
isovalue 1

2) for the grid spacings h = 2−5, h = 2−6, h = 2−7, and h = 2−8 with
the approximation error to the original function in the uniform norm color coded (from
red≥ 0.03 to blue= 0). For h = 2−8 the maximum error of the spline to the function is
0.00267.

Figure 8.7 visualizes the approximation error for the reconstruction of ml from
different sample grids. Moreover, Table 8.2 and 8.3 show that the first derivative
Dxml of ml behaves in the same way (i.e. is optimal), and that for the second
derivative D2

xml the error decreases by about the factor two, respectively. This
confirms the theoretical results presented in Theorem 8.2. Note that we did the
same test with the remaining first and second derivatives and the results were sim-
ilar. Moreover, we remark that in our method we do not use any derivatives of
ml at prescribed points — only functional values are needed. Hence, using the
data of a smooth function, the derivatives are simultaneously approximated by
the splines. This has to do with the theoretical observation that our method au-
tomatically generates approximative derivatives from the given gridded data (see
Section 8.3).

In a second test we use the test function (8.10). In Table 8.4 , we summarize
the results of our computations for these test functions, where we use analogous
notations for the different errors as in the above test. In addition, we compute
the analogous errors for the derivatives Dα

x (sfi
− fi), i = 1, 2, α = 1, 2, which

are given in Tab. 8.5 and 8.6, respectively. Again, this confirms the result in
Theorem 8.2: the derivatives of the approximating splines sfi

converge optimally
to the derivatives of fi for h tending to zero.

Further numerical tests are provided in [Nürnberger et al. 2004c].

8.6.3 Comparison to Other Methods

We compare to some alternative, straightforward reconstruc-
tion methods based on piecewise quadratic polynomials, like
[Marschner and Lobb 1994, Parker et al. 1998, Barthe et al. 2002,

8.6 Results 153

h err
ftest
mean err

ftest
rms err

ftest
max err

ftest
data

1/16 0.0038309 0.0066271 0.0429973 0.0430021
1/32 0.0009200 0.0016158 0.0109885 0.0109880
1/64 0.0002248 0.0003975 0.0027622 0.0027620
1/128 0.0000555 0.0000985 0.0006915 0.0006914
1/256 0.0000138 0.0000245 0.0001729 0.0001729

Table 8.4: Approximation of the function ftest by sftest .

h err
Dxftest
mean err

Dxftest
rms err

Dxftest
max err

Dxftest
data

1/16 0.0203633 0.0333122 0.2238992 0.1562143
1/32 0.0050603 0.0083125 0.0603967 0.0393916
1/64 0.0012533 0.0020636 0.0152990 0.0098670
1/128 0.0003114 0.0005133 0.0038459 0.0024764
1/256 0.0000776 0.0001280 0.0009622 0.0006192

Table 8.5: Approximation of Dxftest by Dxsftest .

h err
D2

xftest
mean err

D2
xftest

rms err
D2

xftest
max err

D2
xftest

data

1/16 0.6418473 0.9323099 6.6045684 5.8388519
1/32 0.3094677 0.4531853 3.3131101 3.0231247
1/64 0.1524176 0.2239878 1.6240159 1.5090936
1/128 0.0757079 0.1114145 0.8012538 0.7509042
1/256 0.0377399 0.0555706 0.3980345 0.3742364

Table 8.6: Approximation of D2
xftest by D2

xsftest .

154 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

Mora et al. 2001, Thévenaz and Unser 2001]. We remark that these meth-
ods have the same theoretical approximation order (cf. Theorem 8.2 (i)) for
the error, hence up to a constant scaling numerical tests would look similar.
However, we use lower degree piecewise polynomials, and it is not always clear
whether these methods provide an error bound for the derivatives as given in
Theorem 8.2 (ii).

Considering the existing methods in the literature on visualization,
higher approximation orders can be obtained by using piecewise polynomi-
als of degree nine (see e.g. [Marschner and Lobb 1994, LaMar et al. 1999,
Mitchell and Netravali 1988, Möller et al. 1998]) assuming that the necessary
approximative derivatives possess proper weak-interpolation properties (see
[Nürnberger et al. 2003b]).

A straightforward method would use piecewise quadratic, continuous splines
(with no smoothness properties) interpolating at all Bézier points of a Freudenthal
(6-fold) tetrahedral partition ∆F of a cube partition (see e.g. [Carr et al. 2001a]).

This obviously yields optimal approximation order for the quadratic splines as
well as for its derivatives, assuming that the data comes from a C3-function. A
visual comparison for the Marschner-Lobb benchmark of linear, trivariate splines
on ∆, quadratic, continuous trivariate splines on ∆F and triquadratic C1-splines,
i.e. approximations by piecewise polynomials of total degree six, is provided in
Figure 8.8. Figure 8.9 illustrates that all models provide effective approximation.
(Both figures use the same color code as Figure 8.1). Figure 8.6 visualizes the
quality of the gradients. Note that the Freudenthal partition ∆F is defined with
respect to cubes with edge length 2h, i.e. there are data points given on the edges
and on the faces of the cubes in order to guarantee the optimal approximation
properties. Also, this partition requires the choice of a major diagonal and is hence
not symmetric which might be one reason for the direction dependent artifacts in
the reconstruction.

8.6.4 Visualization of Volume Data with
Quadratic Super Splines

We applied our new reconstruction by quadratic super splines to a number of well-
known volume data sets. The figures show the visualization of isosurfaces using
classical perspective ray-tracing as previously outlined. All local calculations such
as evaluation and intersection are performed efficiently. However, our overall ray-
casting algorithm is not yet tuned for speed and not competitive to more sophis-
ticated systems like e.g. [Barthe et al. 2002, Parker et al. 1998] which may even
aim towards interactive frame rates (see [Wald and Slusallek 2001, Wald 2004]
for a recent survey). There are numerous optimizations of the general ray-casting

8.6 Results 155

Figure 8.8: Alternative reconstructions of the Marschner-Lobb test function from 413

samples. Each row shows the isosurfaces (isovalue 1
2) on the overall domain and a zoomed

region for comparison with Figures 8.1 and 8.4 (same color code), respectively. From
left: piecewise linear, continuous reconstruction on ∆p; piecewise quadratic, continuous
reconstruction on ∆F (both: interpolation); triquadratic C1 reconstruction (approxima-
tion).

algorithm, any optimization can be combined with our model in a straightfor-
ward way with a direct benefit in ray-casting performance. In particular, this
includes hierarchical space partitioning or efficient cube traversal by an object-
order ray-casting algorithm as applied for triquadratic tensor spline models (cf.
[Barthe et al. 2002, Mora et al. 2001]).

We perform a simple preprocessing of the data for a given isovalue, precom-
puting all cubes and keeping only the relevant ones in memory, i.e. those which
potentially intersect the isosurface (typically only some few percent for our exper-
iments). This allows us to provide timings for the construction of a single cube
and to estimate a faithful lower bound for more sophisticated preprocessing as
the generation of a min-max-octree. All runtimes are measured on a 2.8GHz In-
tel Xeon CPU, where we observe 0.27µs for the construction of the spline on a
single cube (Section 8.3) plus an average of 0.13µs for the convex hull tests to
determine the relevance of a cube (Section 8.5). We report per frame timings for
quadratic reconstruction (average 38.7µs per ray), as well as the isovalues and the
percentages of relevant (and precomputed) cubes for the Figures 8.10, 8.11 8.12,
and 8.13 which are rendered into a 512× 512 viewport. For all respective figures,
we computed high-quality, non-local gradients on the trilinear model (see below)

156 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

Figure 8.9: Different reconstructions of the Marschner-Lobb test function from (4×41)3

samples for comparison with Figure 8.1 (center). Top left quadrant: piecewise linear,
continuous reconstruction on ∆. Top right: piecewise quadratic, continuous reconstruc-
tion on ∆F (both: interpolation). Bottom right: triquadratic C1 reconstruction. Bottom
left: our quadratic super spline model (both: approximation).

to ensure a fair visual comparison. The difference between the models becomes
most visible for high frequency areas (e.g. arteries, leaves of the bonsai) with a
feature size of only few samples. Figures 8.1 and 8.4 show a synthetic bench-
mark. And the experiment visualized by Figure 8.6 emphasizes the quality of the
gradients.

Regarding the number of floating point operations, our quadratic approach is
close to the simple trilinear interpolation and much cheaper than a triquadratic
model. The same is true for the computation of the gradients. However, as the
trilinear model does not satisfy smoothness conditions, local gradient evaluation
is inexact for general data, while the costs for better gradients such as using cen-
tral differences from evaluation in six neighboring cells (as used here) is more
expensive. The price for our approach is a slight overhead of point location in a
tetrahedron and the requirement of 65 coefficients instead of 27 (triquadratic) or
working directly on the data (trilinear).

For our experiments we only store a fraction of the cubes in memory. How-
ever, it is clear that for the complete spline (even though not necessary for the
visualization) far less than 65n3 coefficients are needed. In this case computation
time can be balanced against storage and memory bandwidth depending on the
application by precomputing and storing only certain coefficients which allow for
faster local reconstruction. For instance, precomputing and storing only the coef-
ficients on the vertices (av) and edges (ae) of the cubes results in a total memory
requirement of 4n3 coefficients (the original data is not needed anymore).

8.6 Results 157

Figure 8.10: Isosurface of the aneurism data set (courtesy of Philips Research, Hamburg,
Germany; 2563 samples, isovalue 50). Trilinear (left) and our quadratic (center and right)
reconstruction (12.7s and 11.7s, 0.66% relevant cubes).

Figure 8.11: Isosurface of the bonsai data set (courtesy of Stefan Röttger, VIS, University
of Stuttgart, Germany; 2563 samples, isovalue 40). Trilinear (left) and our quadratic
(center and right) reconstruction (7.1s and 9.1s, 3.1% relevant cubes).

Figure 8.12: Isosurface of an MRI scan of a human head; 256 × 195 × 107 samples).
Trilinear (left) and our quadratic (center and right) reconstruction (2.4s and 1.97s, 14.99%
relevant cubes).

158 Chapter 8: Reconstruction of Volume Data with Quadratic Super Splines

Figure 8.13: More isosurfaces rendered from our quadratic model. engine courtesy of
General Electric (141× 198× 110 samples, isovalue c = 80, 2.5s (full) and 1.95s (close-
up), 9.7% relevant cubes). skull courtesy of Siemens Medical System, Forchheim, Ger-
many (2563, c = 40, 4.3s and 5.41s, 5.2%). foot courtesy of Philips Research, Hamburg,
Germany (2563, c = 90, 8.7s and 6.8s, 2.37%). lobster courtesy of SUNY Stony Brook
(301 × 324 × 56 samples, isovalue c = 40, 4.2s (full) and 4.47s (close-up).

Chapter 9

Approximation of General
Volumetric Data

9.1 Background
General data fitting is an important problem in many scientific areas and applica-
tions. The general goal in this field is to efficiently compute suitable models which
approximate given sets of discrete data of different types. This gets challenging
for very large data sets with arbitrarily distributed data samples possibly con-
taminated with some noise resulting from measurement. A very well-known and
important example in computer graphics, approximation theory and numerical
analysis is the bivariate problem of surface approximation, i.e. fitting the height
data at given points which are arbitrarily distributed over a planar domain. The
literature shows that even in this case it is a complex task to find appropriate meth-
ods which satisfy (almost all) requirements of efficient and exact fitting for data
of general type. In the following sections we go a step further and consider fitting
of general volumetric data, i.e. we assume that sets of discrete points are arbitrar-
ily distributed in a volume domain and some associated (scalar) density values at
the points are given, and we are interested in finding a suitable non-discrete ap-
proximating model of the data, which allows a convenient further processing (cf.
[Rössl et al. 2004b]).

It is obvious that the most important property of any fitting method should be
that it approximates well, i.e. the values evaluated from the model should be close
to the data values at the given points. Besides this main point of good approxima-
tion quality there are a number of additional requirements which should be ideally
satisfied by an approximation method. In brief, some of these requirements are:
efficient computation, evaluation and representation of the models, applicability
to reasonable distributions of general data, the models should satisfy smoothness

160 Chapter 9: Approximation of General Volumetric Data

conditions for high quality visualization, the models should have the potential to
automatically reduce noise in contaminated data and for automatic data reduction.
Depending on the specific applications this list of desirable properties may even
be increased.

Due to the importance of data fitting in the different fields of application
there exists a vast literature on this topic. We list some of the methods al-
though we are aware that this list is far from being totally complete. An ap-
proach is to use radial basis functions and related hybrid and Shepard-like meth-
ods (see e.g. [Buhmann 2000, Franke and Hagen 1999, Lodha and Franke 1999,
Schaback 2000]). Recently, such methods have been tuned towards surface re-
construction from volumetric data (see e.g. [Carr et al. 2001b, Dinh et al. 2001,
Ohtake et al. 2003, Turk and O’Brien 2002]), which has typical applications in
computer graphics and reverse engineering. Other methods are based on dif-
ferent types of splines. We mention local and global methods based on
tensor product splines in three variables and the simplex spline approach
[Pfeifle and Seidel 1995, Pfeifle and Seidel 1996]. If the data is structured (for
instance, as a result from some local nearest neighbor estimation, quantization
type or gridding algorithm), then the usage of tensor product splines and related
methods is often straightforward (see e.g. [Foley 1986, Martin and Cohen 2001,
Nürnberger 1989, Park and Lee 1997] and the references therein).

In the following, we also use local spline models, based on piecewise
cubic polynomials which are defined w.r.t. type-6 tetrahedral partitions of the
three-dimensional domain and satisfy smoothness conditions. Due to their
mathematical complexity currently there are only a few papers on trivariate
splines and many open questions concerning these spaces exist to date (see
[Alfeld 1984, Chui 1988, Hangelbroek et al. 2004, Lai and Méhauté 2003,
Schumaker and Sorokina 2004a, Schumaker and Sorokina 2004b,
Worsey and Farin 1987] and the references therein). Neverthe-
less, we show here that the trivariate splines provide the neces-
sary potential to be useful tools for solving volume fitting prob-
lems. For further information on the topic of data fitting we refer to
[Alfeld 1990, Lancaster and Šalkauskas 1986, Schumaker 1976, Zeilfelder 2002]
and the references therein.

For developing the method presented here, we approach the problem from two
sides. On the one side we benefit from the techniques described in the previous
sections on the approximation of gridded data with quadratic super splines. On the
other hand, it has only been recently that algorithms for the efficient interpolation
and approximation of general bivariate data sets appearing in certain real-world
settings have been developed which take many of the above requirements into
account. These methods (see [Davydov and Zeilfelder 2003, Haber et al. 2001,
Kohlmüller et al. 2003a, Nürnberger et al. 2004a, Nürnberger et al. 2004b,

9.2 Overview of the Algorithm 161

Nürnberger et al. 2003a, Nürnberger and Zeilfelder 2004], and the survey ar-
ticle [Nürnberger and Zeilfelder 2000] as well as the references therein) are
based on bivariate splines, i.e. piecewise polynomials satisfying smoothness
conditions which are defined w.r.t. planar and three-dimensional triangulations.
In fact, the method presented here is the first generalization of the recent
bivariate fitting methods [Davydov and Zeilfelder 2003, Haber et al. 2001]
to the more complex trivariate setting and therefore falls into the class of
spline extension methods. Roughly speaking, this two-step approach (see
[Schumaker 1976]) works as follows. In a first step, we independently com-
pute trivariate polynomial approximations to appropriate local portions of
the data directly in its Bernstein-Bézier form. This can be done by impos-
ing a checkerboard-coloring (see [Nürnberger et al. 2001]) to the uniform
type tetrahedral partition associated with the splines. Following the ideas in
[Davydov and Zeilfelder 2003, Haber et al. 2001], we adapt the degree of the
local polynomials to the local variation and distribution of the data as well as
for the type of data. This makes this step stable and robust and provides some
smoothing of the noisy data if this is necessary. In contrast to earlier methods
known from the literature based on trivariate piecewise polynomials, we directly
use these local polynomial approximants as pieces of the trivariate splines. In
the second step, these local pieces are glued together using the continuity and
smoothness conditions which define the underlying spline space. In this way,
the splines are defined on the whole volumetric domain as a result of building
extensions of the local representants of the data.

The complexity of this general algorithm is linear in the number of (reason-
ably distributed) data points. In brief, its main advantages are as follows. No
computation or storage for a tetrahedral partition of (a subset) of the data points is
needed. Only small linear systems have to be solved - this can be done indepen-
dently and in parallel, and therefore enables the handling of huge data sets (i.e. the
number of data points is of order O(106)). The computation, evaluation and rep-
resentation of the approximating splines is efficient due to the exploitation of the
Bernstein-Bézier techniques. The algorithm provides an insensitiveness concern-
ing data contaminated with moderate noise. Moreover, only basic operations and
tools available in standard numerical libraries are applied. These facts ensure not
only the efficiency of the method but also the simplicity of its implementation.

9.2 Overview of the Algorithm

We briefly sketch the basic idea of the algorithm. The method is based on cubic
splines w.r.t. a type-6 tetrahedral partition ∆, i.e. piecewise polynomials of total
degree three which satisfy continuity and smoothness conditions across the com-

162 Chapter 9: Approximation of General Volumetric Data

mon triangular faces of neighboring tetrahedra. Basically, the method consists of
two steps. In the first step, we use a checkerboard coloring and choose a subset of
tetrahedra for which we compute local least squares polynomial approximations
of varying degrees for small portions of the data close to the respective tetrahe-
dron. On the set of these (pairwise distinct) tetrahedra, we define the spline to be
equal to the local polynomial approximations. In the second step, we use the con-
ditions of the underlying spline space to uniquely extend the polynomial pieces
obtained in the first step to a consistent spline on the whole domain. Hence, the
algorithm completely follows the basic ideas known from approximation method
of the bivariate setting ([Davydov and Zeilfelder 2003, Haber et al. 2001]). What
is new here, is that we generalize these methods to the more complex trivariate
setting on ∆. Comparing with [Davydov and Zeilfelder 2003, Haber et al. 2001],
we observe that in the trivariate setting the second step (extension to a consistent
spline) becomes more complex, while the first step (local polynomial approxi-
mation) essentially coincides. For the second step, we skip a few of the smooth-
ness conditions and replace others by some different natural conditions in this first
method dealing with general volumetric data. One motivation for doing this comes
from the observations on the reconstruction of gridded data with quadratic super
splines. Below we show that the whole approach applies only basic computations
and averaging operations and therefore the algorithm is simple and straightfor-
ward to implement. Moreover, we note that we use cubics, because according
to our experience these spaces provide at least some of the additional flexibility
(comparing with quadratics) needed for the efficient approximation of arbitrarily
distributed, three-dimensional data.

9.3 Consistent Cubic Splines on ∆

The approximation method is based on cubic splines, i.e. piecewise polynomials
of total degree three which are defined w.r.t. the same type-6 tetrahedral partitions
∆ as used for reconstruction of gridded data. For ease of explanation we choose
again a cubic domain Ω = [0, 1]3 ⊆ R

3 which is decomposed into n × n × n
cubes, although more general domains are possible, which are decomposed into
cubes (cf.cFigure 9.1). Given a set of discrete volumetric data points X = {x =
(xν , yν , zν) ∈ Ω : ν = 1, . . . , N} ⊆ R

3 with associated functional (scalar)
values fx ∈ R, x ∈ X , we set n = b 3

√
N/10c and cover the domain Ω with

cubes Qi,j,k, i, j, k = 0, . . . , n − 1, of edge length h = 1/n. This choice of n
ensures that the number of degrees of freedom of the spline space approximately
coincides with the number of scattered data points. On the other hand, this is just a
reasonable heuristic choice which performed well for many of the computational
examples presented in Section 9.5. We also note that for automatic data reduction

9.3 Consistent Cubic Splines on ∆ 163

Figure 9.1: Example of a more general domain Ω than the unit cube. The domain is
decomposed into uniform cubes which are colored black and white.

different choices of n might be advantageous. In addition, we need a ring of
border cells surrounding the union ♦ of the cubes Qi,j,k to completely determine
the approximating spline on Ω.

We impose a checkerboard coloring (a concept introduced in the context of lo-
cal Lagrange interpolation by bivariate splines in [Nürnberger et al. 2001]) to the
cubes from ♦: Cubes Qi,j,k where i + j + k is even are called black cubes, while
the rest of the cubes are called white cubes. For every black cube we choose the
same tetrahedron, e.g. always the front facing one in the bottom pyramid (cf. Fig-
ures 7.3 and 9.2), and call these in the remainder of this paper the black tetrahedra
of ∆.

We will define a piecewise cubic spline on ∆ with polynomial pieces defined
over every tetrahedron. As shown before, the C1-smoothness for the polynomial
pieces of the splines on two adjacent tetrahedra of the type-6 tetrahedral partition
∆ are relatively simple to describe by using the piecewise Bernstein-Bézier form.
On the other hand, if we consider the complete partition ∆, these conditions con-
nect the coefficients of an overall C1-smooth spline in a highly non-trivial way,
because for each (interior) tetrahedron T of ∆ the conditions have to be satisfied
simultaneously across all the four triangular faces of T - and they can obviously
not be considered independently. This observation is contrasted to the situation of
splines in one variable, in the sense that for smooth multivariate spline spaces of
low (and lowest possible) polynomial degree, one can sometimes observe that the
splines have to simultaneously satisfy a huge number of smoothness conditions,
while on the other hand the number of coefficients involved is relatively low. From
Section 7.3.3 we know that in the particular case of C1 cubics on ∆ the number of
degrees of freedom of the spline spaces fits into the formula 6 n3+24 n2+18 n+4,
which shows that the spaces allow to deal with trivariate data, in principle.

164 Chapter 9: Approximation of General Volumetric Data

On the other hand, some basic observations motivated by the bivariate approx-
imation methods in [Davydov and Zeilfelder 2003, Haber et al. 2001] (see also
[Schumaker and Sorokina 2004b], Remark 7.3) seem to indicate that this number
is too small for designing a local approximation method with optimal properties
using the overall C1-smooth cubic splines. As noted above, this makes the ex-
tension step of the below algorithm more complex and different to the bivariate
case. More precisely, in this first approach for local extension described below
we use cubic splines on ∆ with about 10 n3 + O(n2) free parameters (i.e. the 20
coefficients associated with the complete set of domain points in each of the n3/2
black tetrahedra are chosen), where most of the C1-smoothness properties (but
not all) are satisfied and only few of them are skipped or replaced by other useful
conditions, so that the local approximation of the data is preserved. An additional
motivation for proceeding this way comes from the results on piecewise quadratic
reconstructions from gridded volume data. We note, that it can be easily seen
from the description of the extension step in Section 9.4.2 in conjunction with the
specific form of the stencils of the averaging rules representing smoothness con-
ditions (cf. Figures 7.5 and 7.6) that the resulting splines satisfy a huge number
of smoothness conditions including those essential for certain visualization pur-
poses and therefore have an almost similar behavior as mathematically smooth
functions. In addition, this is confirmed by the computational examples given in
the results section.

9.4 Approximation Method

We use the basic ideas from the two-step methods [Davydov and Zeilfelder 2003,
Haber et al. 2001] and adapt them to the trivariate setting. With the uniform tetra-
hedral partition ∆ defined, in the first step, we determine least squares polynomial
approximations for small, local portions Xloc of the given data from X . Comput-
ing the trivariate local polynomials ploc with ploc(x) ≈ fx, x ∈ Xloc, can be done
by using the same basic principles as described in [Davydov and Zeilfelder 2003,
Haber et al. 2001] (see also [Davydov 2002]) and applying them in a straightfor-
ward way to the trivariate setting. In contrast, finding methods for extending the
local trivariate polynomial pieces to a consistent cubic spline (second step) are
more difficult and different to the two-dimensional case. In the approach de-
scribed below, we mainly concentrate on the important aspects of computational
efficiency.

9.4 Approximation Method 165

9.4.1 Local Polynomial Approximation
In the first step, we determine least squares polynomial approximations for a huge
number of small, local portions of the given data points X and the associated
values fx, x ∈ X . To do this, only the black tetrahedra (cf.Section 9.3) in ∆
are considered. More precisely, for each such tetrahedron T , we choose an ap-
propriate subset Xloc = X T

loc of X containing data points which are close to T ,
and compute ploc = pT

loc, trivariate polynomials of degree d ∈ {0, . . . , 3} in its
Bernstein-Bézier form w.r.t. T , such that the error

∑

x∈XT
loc

(pT
loc(x) − fx)

2 (9.1)

becomes minimal. To do this algorithmically, for each of the black tetrahedra
T ∈ ∆ we choose an initial sphere centered at the barycenter of T such that the
volumetric domain is completely covered by the union of these spheres. Then,
we collect the data points within each such sphere. The finding of these points
can be done efficiently by initially sorting the data points from X into an ap-
propriate uniform grid data structure. Following [Davydov and Zeilfelder 2003,
Haber et al. 2001], we analogously balance the number of data points distributed
within a particular sphere depending on the local distribution of data points. This
is done either by thinning or increasing the radius of the spheres. In this way,
for each black tetrahedron T , we obtain a local portion X T

loc of the data which
is contained in an appropriate sphere ST

loc. Then, we determine the local poly-
nomial pT

loc on T which approximates the data values fx at the points x ∈ X T
loc

in the above discrete least squares sense. We solve the arising system of linear
equations by computing the singular value decomposition (SVD). Since the cor-
responding observation matrices are of moderate size (the polynomial degree pT

loc

and the cardinality of X T
loc are both small) this can be done in a fast and robust

way. In addition, as is well-known the SVD allows to check if this system is well-
conditioned or not (in our current implementation, we follow [Haber et al. 2001]
at this point, although we are aware that this can be improved). If the latter case
appears (i.e. there is some hidden redundancy in X T

loc), we proceed by dropping
the polynomial degree d and consider a new system for polynomials of degree
d − 1, and iterate this process until either the system is well-conditioned or the
polynomial degree is zero. This procedure is initialized with d = 3. If the re-
sulting polynomial is of lower degree we can rewrite it as a cubic polynomial by
applying (successive) degree raising (7.7)). This local approximation procedure is
analogous to the bivariate case [Davydov and Zeilfelder 2003, Haber et al. 2001]
(see also [Davydov 2002]), and provides numerical stability of the approximation
part of the algorithm. Figure 9.9 shows a visualization of a single local polynomial
approximant.

166 Chapter 9: Approximation of General Volumetric Data

9.4.2 Spline Extension

The approximation step described in the previous subsection determines the poly-
nomial pieces of the approximating spline on the set of all black tetrahedra. More
precisely, for each such tetrahedron T , we set the approximating spline to be equal
to the local polynomial approximation pT

loc, i.e. the 20 Bernstein-Bézier coeffi-
cients of the spline piece in (7.2) coincide with the 20 Bernstein-Bézier coeffi-
cients of pT

loc. Now, in this second step, we show how to compute the Bernstein-
Bézier coefficients of the approximating spline on the remaining tetrahedra of ∆
which are not black and have a non-empty intersection with Ω. As noted above
this can be understood as an extension of the local approximating pieces obtained
in the first step, where we use the continuity and many smoothness conditions.

For ease of explanation, we proceed by considering only a black and a white
cube of the partition ♦ (see Section 7.2). Figures 9.2 and 9.3 show the domain
points associated with the coefficients of the polynomial pieces defined on tetrahe-
dra in a black and a white cube, respectively. These two cubes represent all interior
cubes of ♦. As coefficients of the outermost layer (called layer 3) coincide with
those of neighboring cubes, we only show the inner layers of the white cube. We
use these figures to explain how the remaining coefficients are determined. The
coefficients are computed step by step and this is done locally, i.e. simultaneously
for all the cubes in ♦. To understand the below description, it may help to simul-
taneously think of what happens in each step to the imaginary neighbors of the
black and the white cube (which have a common edge or a common vertex with
these cubes). We denote the coefficients by ai, i = 0, . . . , 239, their indices i are
shown in the diagram. The indices i are chosen to represent the order in which
the ai are determined, i.e. for i < j the coefficient ai is computed before (or even-
tually simultaneously with) aj , so the value of aj may depend on the value of ai.
We decided to give the following description of the second step, because it follows
the method we basically used to implement it — obviously a pure mathematical
description could be done shorter — but would require additional notation.

Since the spline is already determined on the black tetrahedra, it follows that
the coefficients a0, . . . , a19 as well as a20, . . . , a25 are already uniquely deter-
mined. For the latter coefficients this can be seen by taking into account that
there are other black cubes which share a common edge or a vertex with the black
cube of consideration. These initial coefficients (resulting from the approximation
procedure of the first step) are marked yellow. We will determine the main part
of the remaining coefficients by applying the simple averaging rules connected
with the smoothness conditions (cf. Figures 7.5 and 7.6). The given sequential
order implicitly defines the appropriate rule, structural ambiguities do not impose
any over-determination since in this case we skip the smoothness conditions or
replace by appropriate averages, which are non-standard rules. Only some few ai

9.4 Approximation Method 167

will be treated in such a specific, unusual way — on the other hand this makes the
whole construction possible. The light green coloring gives a hint on finding the
coefficients a26, . . . , a147, which are computed before the first non-standard rule
is applied.

Using intra-pyramid rules gives a26, . . . , a37, e.g. a26 = 2a6 − a2. An inter-
pyramid condition determines a38 = a12−a6 + 1

2
(a3+a26), then a39 = 2a38−a26,

and a40 = 1
2
(a2 + a39). An inter-cube condition gives a41 = 2a38 − a12 in the

neighboring white cube. We continue this way and apply the smoothness con-
ditions to obtain a42, . . . , ...a92. Hence, we determine all coefficients around the
cube vertices, i.e. the spline becomes smooth at all vertices of ♦. Note that as
we “walk around” a vertex, we consider the already determined coefficients in
the neighboring cubes, i.e. for the diagram we imagine a continuation of cubes in
all directions. Using the smoothness conditions, we compute a93, . . . , a105 which
completes the bottom sides of layers three and two (cf. Figure 9.2) for all cubes.
Then, we determine the top side of layer three, i.e. the coefficients a106, . . . , a114

and of layer two, i.e. a115, . . . , a136. After that, the inner layers one and zero of all
black cubes can be computed, i.e. the coefficients a137, . . . , a147 and the spline be-
comes smooth at the midpoints of black cubes. We have now fixed all coefficients
marked light green, where we used smoothness conditions from the C 1-spline
spaces. At that point, one can see that there would be some hidden overdetermi-
nation for the overall C1- splines (cf. [Schumaker and Sorokina 2004b], Remark
7.3) - therefore, we have to proceed differently.

Now, consider the unknown five coefficients a148, . . . , a152 on the layer two of
the black cubes (marked by light red squares). Applying the C1-conditions on the
same layer and between layers two and one, we obtain the six equations

a152 = 2 a149 − a33

a152 = 2 a148 − a11

a152 = 2 a151 − a116

a152 = 2 a150 − a118

a148 + a149 = 1
2

(a12 + a152) + a17

a150 + a151 = 1
2

(a58 + a152) + a141

for the five unknowns. As the system is over-determined, we suggest to average
smoothness conditions as follows. Straightforward substitution provides

a148 = 1
2

(a12 − a33) + a17

a149 = 1
2

(a12 − a11) + a17

a150 = 1
2

(a58 − a116) + a141

a151 = 1
2

(a58 − a118) + a141

168 Chapter 9: Approximation of General Volumetric Data

and hence determines a148, . . . , a151. Back-substitution gives four conditions on
a152 that are averaged to

a152 = 1
2
(a12 − a11 − a33 + a58 − a116 − a118) + a17 + a141.

We apply the same averaging of coefficients obtained from smoothness conditions
symmetrically to determine a153, . . . , a157 on the front left side of the black cubes
(marked by red squares).

Next we compute the coefficients a158 and a159 in the black cubes (marked by
light blue rhombs). Due to an intra-pyramid smoothness condition, we can use
a158 = 2 a159 −a135. In order to uniquely determine both coefficients, in addition,
we impose the individual C2-super-smoothness condition

4 a159 = a39 + 4 a158 − a78 ,

which is a standard procedure to eliminate undesirable degrees of free-
dom for splines (see [Davydov and Zeilfelder 2003, Nürnberger et al. 2004b,
Schumaker and Sorokina 2004a]). This is illustrated by using the dashed line in
Figure 9.2 showing the coefficients that are involved, here.

Now, we uniquely determine a160, . . . , a167 using the smoothness conditions
involving these coefficients around the vertical edge. Note that this is possible
due to the careful choice of a152 and a159. Analogously, we determine a168 and
a169 (marked by blue rhombs) using a C2-condition (illustrated as a dashed line),
and walking around the corresponding edge uniquely determines the coefficients
a170, . . . , a175 via smoothness conditions.

We now complete the outermost layer of the black cubes by applying intra-
pyramid rules, and we obtain a176, . . . , a193. For the computation of the coeffi-
cients a194, . . . , a204 on layer two of the black cubes we consider intra-pyramid
conditions only, and we skip seven inter-pyramid conditions. Note that this does
not affect the smoothness across the common faces of black and white cubes. Fi-
nally, we determine the inner levels one and zero of the white cubes by using
smoothness conditions, and we obtain a205, . . . , a224 and a225, . . . , a239, respec-
tively.

Now, all the remaining coefficients of the spline (essential for the representa-
tion on Ω) are uniquely determined, and hence we have extended the local poly-
nomial approximations from the first step to a spline defined on the whole domain
Ω. The extension to the spline turns out to be a repeated averaging of coeffi-
cients using very simple and natural rules most of which representing smoothness
conditions, making this step easy to implement and very efficient. Let us point
out that the resulting consistent spline is C1 between cubes sharing a common
square face, as well as inside the pyramids (consisting of four tetrahedra sharing
a common edge) and at the midpoints of all cubes. Moreover, many additional

9.5 Results 169

smoothness conditions are automatically satisfied by applying the above method.
In the diagram of Figures 9.2 and 9.3 the coefficients are indexed for illustration
purposes, and we assume that all ai (for fixed index i and variable cube index)
are computed simultaneously for all the cubes. In the implementation this would
require an iteration over all cubes and to compute each ai individually. We can
minimize the number of iterations to six by reordering the computation of coeffi-
cients (or appropriately permutating the 240 indices) while using the same rules
to compute the coefficients.

9.5 Results

In this section we demonstrate the efficiency of the algorithm and the high qual-
ity of the spline approximations. In the following, all computation times are
measured in seconds on a (single) 3 GHz Intel Xeon CPU using double pre-
cision arithmetic. Tests on an SGI Onyx3 using eight 400 MHz R12k proces-
sors concurrently show that we get nearly optimal speedup from parallelizing
the algorithm. The isosurfaces of the approximating splines are visualized as
very fine triangular meshes generated by applying the Marching Cubes algorithm
[Lorensen and Cline 1987].

In order to investigate the quality of the approximation, we first consider the
smooth trivariate test function ftest as defined in (8.10), see Section 8.6.2. Fig. 9.4
shows several isosurfaces of the spline approximation sftest

of ftest.
We sample ftest at N randomly distributed points x and approximate the val-

ues ftest(x) at these data points with sftest . Here, the number of cubes in every
dimension is chosen as described in Section 9.3 so that the degrees of freedom
of the spline approximately matches the number of data points. Table 9.1 shows
different measurements of approximation errors and computation times for in-
creasing numbers N of random samples and the respective choice of n. The third
column shows the average error measured at the data points, the fourth columns
lists the maximum error to the data, and the fifth column contains the maximal
error to ftest in the uniform norm. The latter error is approximately computed
by choosing 20 uniformly distributed points in each tetrahedron of ∆, evaluating
the error for all these points, and computing the maximal error over all these ap-
proximative errors. The computed errors are obtained by considering the essential
tetrahedra, i.e. tetrahedra contained in cubes from the complete interior of Ωftest.
Note that passing from the i-th row to (i + 1)-th row of the table (doubling N),
the side length of the cubes decreases only by the factor 2−(1/3) ≈ 0.79. The
last column shows the time for the local least squares approximation measured in
seconds. Every row in the table is an average of 50 independent scattered tests,
each of which uses a different random distribution of the data points. The time for

170 Chapter 9: Approximation of General Volumetric Data

N n errmean errdata errmax time
1 000 4 0.05612090 0.16392300 0.18640600 0.05
2 000 5 0.01758270 0.07843640 0.08240110 0.08
4 000 7 0.00247124 0.02297960 0.02867510 0.17
8 000 9 0.00076832 0.00766123 0.00922203 0.32

16 000 11 0.00030479 0.00374684 0.00429214 0.57
32 000 14 0.00010208 0.00147255 0.00168576 1.10
64 000 18 0.00003375 0.00054775 0.00062212 2.20

128 000 23 0.00001175 0.00021318 0.00023703 4.38
256 000 29 0.00000441 0.00008587 0.00009686 8.52
512 000 37 0.00000160 0.00003636 0.00004275 17.14

1 024 000 46 0.00000065 0.00001530 0.00001765 32.90
2 048 000 58 0.00000025 0.00000618 0.00000747 65.26
4 096 000 74 0.00000009 0.00000292 0.00000375 133.49

Table 9.1: Approximation errors of the splines sftest and computation times in seconds.

determining the coefficients in the extension step (see Section 9.4.2) are not listed
explicitly, since it is clearly linear in the number of cubes. In our computations,
we observed that this is less than 5% of the time required for determining the local
polynomial approximations (first step of algorithm). The test shows the quality of
the spline approximation as well as the efficiency of its computation, particularly
confirming the linear complexity of the algorithm. Moreover, we give a test that
shows that our algorithm provides the potential to deal with noisy input data. It is
illustrated by the results shown in Figure 9.5. In this test, the domain is decom-
posed into 293 cubes to approximate 128 000 samples as before (cf. Table 9.1),
and we added uniformly distributed noise to the sampled function values of ftest.
Similar results were obtained for different smooth test functions. Obviously, for
cubic trivariate polynomials, our method yields errors which are negligible. Ex-
amples for simple but non-trivial test functions are of truncated power type, e.g.

g(x, y, z) = (x − 1
2
)5
+ + (x(y − 1

2
)(z − 1))5

+ + (x(y − 1)(z − 1
2
))5

+,

where (x, y, z) ∈ Ωg = [0, 1]3. Choosing N = 8000, for this simple test func-
tion we obtain the following errors of the approximating spline sg: errmean =
0.00000950, errdata = 0.00010017, and errmax = 0.00011770.

We proceed by applying our method to some real-world data sets. An example
for an interesting test in computer graphics is volume-based surface reconstruc-
tion. Here, we assume that samples of the signed distance to a surface are given,
and the goal is to (locally) find a trivariate model representing the data whose

9.5 Results 171

zero-set approximates the surface. We consider this as a very intuitive test be-
cause the desired result is the shape of a known object and hence needs no extra
interpretation. However, we currently do not directly compete with existing sur-
face reconstruction methods, as the goal of our algorithm is more general, and
our current setup is not optimized for the specific requirements of efficient recon-
struction of surfaces. We consider an existing, high-resolution triangular mesh
that was initially acquired by digitizing a real-world object as the Max-Planck
bust. We then sample the signed distance to this surface not only in vicinity of
the surface but randomly distributed in an extended bounding box. This way we
generate a huge amount of data even for regions of the volume that are very dis-
tant from the zero-set and would be negligible for surface reconstruction. Hence,
this is obviously a difficult test for any method. For the test, we explicitly want
to cover the whole volume and stress the algorithm with large input. Given the
Max-Planck data set, we randomly distribute N = 2 ∗ 106 data points at which
we measure the signed distance in a straightforward (but rough) way. The domain
is decomposed into 58 × 97 × 73 cubes, hence about 205 000 local least squares
polynomial approximations are computed to determine the approximating spline
splanck. The average number of data points used for the local approximation in
this test is 66. The approximation takes about 133 seconds, so more than 1500
local approximations are performed per second. Figures 9.6 and 9.7 visualize
the results of our algorithm — we observe that the reconstructed surfaces inherit
a visual smooth appearance from the trivariate splines. In addition, we provide
a similar test using the mechpart data set, which is a well-known benchmark in
CAGD (cf. [Hoschek and Dankwort 1996]). The original data is a discrete height
field over a two-dimensional 82 × 50 grid. A known difficulty for the reconstruc-
tion is the coarseness of this data in conjunction with the relatively high varia-
tion of the heights. As a test, we distributed N = 512 000 points randomly in
the volume bounding box and measured signed distances w.r.t. an almost regular
(two-dimensional) triangulation of the data. Fig. 9.8 shows the reference data and
zero-sets of spline approximations smp of the signed distance for two different
partitions ∆.

We integrated our algorithm in the AMIRA visualization system
[Stalling et al. 2003], and note that all the visualizations given in this sec-
tion have been created with AMIRA. Using this framework enables experiments
like the interactive approximation or visualization of local pieces of the spline as
for instance single polynomials on prescribed tetrahedra of ∆. Fig. 9.9 shows an
example, where we illustrate the behavior of the extension step of our algorithm.

172 Chapter 9: Approximation of General Volumetric Data

2 3
4 5

7 8
9

6

20 21 23

24 25

26
27

28

29
30

31
32

38
39

43

44

45
46

52

53

93

60

62

64

65

66

67

68

69 73

74 95

109

106

136

107

113112
114

133

159

168

173

176

171 160

177

179

181192

166 183

185186

189190

193

55

22

76

87

162

164

96
92

90

86
8580

91

82
81

84

94

88

135

78
77

79

51

83

108

110

42
63

134

49 40

180

178

158

184

61 175

182

188187 111

169

0 1

191

10 11 12
13

15
14

33
34

35
36

37

5859 116

150

115

120

121

152157 194

163

195
197

198200

202

154
54

203

204

156
201

165 199

174

7511772

89

153

155

148

151

149

196
118123

119

122

19

138

17

18

16

142

139

141

147
143146

140
145

137

144

Figure 9.2: The four layers 3, 2, 1, 0 of Bézier points for a black cube, each cube layer is
cut into its back-facing and front-facing part. The dots show the 175 associated Bernstein-
Bézier coefficients, and their numeric labels. The meaning of the colors are described in
Section 9.4.2. The 24 polynomial pieces of the splines inside the cube are represented
by the 10, 6 and 3 domain points in the respective triangles and the midpoint over all
layers, e.g. points with label 0–19 on the black tetrahedron (cf. Sections 7.2 and 9.3 and
Figure 7.3). Note that coefficients on the edges of the outermost layer (top row) coincide
with those of some nearby black cubes. The innermost layer (numbered with 0) consists
of a single point (bottom right). Fig. 9.3 shows the remaining coefficients of the white
cubes.

9.5 Results 173

41

4850 98

56

126

70 71

97100

102

103104

105

167 170

172

205

222

206

207

209

210

212

215 216

218

219

99 47
101

214
211

161

217

127

213

128

131

125 57

124

130

208

220

221
224

223

132
129

226225

227

228

230

231

233

239

238

237
234

236
235

229
232

Figure 9.3: The inner layers 2, 1, 0 of a white cube contain 65 Bézier points, see also
Fig. 9.2 and Section 9.4.2. The white cube shares faces with six black cubes, and their co-
efficients on the outermost layer coincide by the continuity. For this reason it is sufficient
to consider the three inner layers only.

Figure 9.4: Isosurfaces of an approximation sf to the test function ftest sampled at N =
128 000 randomly distributed points. The color code visualizes the approximation error
for the surface points. The isovalues starting from top left are −0.1, 0, 0.1, 0.3, 0.5, and
0.8.

174 Chapter 9: Approximation of General Volumetric Data

Figure 9.5: Approximation of noisy data. As for Fig. 9.4, N = 128 000 randomly dis-
tributed samples are used for the spline approximation, and uniformly distributed noise
is added. The maximal amplitude of noise is (from left) 0.5%, 1% and 2.5% relative
to the maximum range of f , where f(x, y, z) ∈ [−0.25, 1.27], (x, y, z) ∈ Ωftest . We
observe average approximation errors (errmean) of about 0.0038, 0.0075, and 0.019 re-
spectively. The pictures show the isosurface with isovalue 0.3 extracted from the approx-
imating splines sftest .

Figure 9.6: Visualization of the spline approximation splanck for the Max-Planck data
set. The domain is decomposed into 58 × 97 × 73 cubes. The left and center image
show different views of the zero-set of the spline splanck. The right image shows a slice
through the approximative volume model splanck(x, y, const) for signed distance values,
where the distances are color coded.

9.5 Results 175

Figure 9.7: Close-ups of different isosurfaces of the spline approximation splanck for the
Max-Planck data set as used in Fig. 9.6. The isovalues are (from left) 2, −2, and −4. The
corresponding isosurfaces can be considered as offset surfaces to the zero-set of the spline
splanck shown in Fig. 9.6.

Figure 9.8: Approximation of the mechpart data set. Top: The original surface that was
sampled at N = 512 000 randomly distributed points. Center and bottom: Zero-sets
of the approximating splines smp. The domain is decomposed into 64 × 39 × 22 and
42 × 26 × 15 cubes, the computation times are 26s s and 20 s, respectively.

Figure 9.9: An isosurface of a least squares approximating polynomial piece on a black
tetrahedron (transparent red) together with the positions of the samples (red spheres) that
were used for the local fitting procedure (using a local portion Xloc of the extended mech-
part data set). For this visualization the polynomial is extrapolated out of the respective
tetrahedron as indicated. The transparent blue surface shows the same isosurface for the
complete approximating spline, which shows that the local difference is small and the
extending behaves in a natural and smooth way.

176 Chapter 9: Approximation of General Volumetric Data

Chapter 10

Summary on Trivariate Splines

We presented a new model for the reconstruction of discrete volume data given
on a regular grid which is a typical problem in volume visualization. In contrast
to earlier approaches, our method approximates the data by quadratic trivariate
super splines on a tetrahedral partition. The reconstruction is natural, completely
symmetric and efficient, and reveals interesting approximation properties. The
local quasi-interpolating spline model can be evaluated efficiently including pre-
cise local gradients due to appropriate smoothness properties. The new approach
uses piecewise polynomials of total polynomial degree two, and it compares to
existing trilinear and triquadratic approaches based on piecewise polynomials of
total degree three and six, respectively. We exploit this fact for efficient and pre-
cise isosurface ray-casting. The results show that the model is effective, efficient,
simple in implementation and appropriate for high-quality volume rendering.

In addition, we present a new method for the efficient approximation of huge
volumetric data sets distributed over an arbitrarily shaped domain. The two-step
algorithm is of linear algorithmic complexity w.r.t. the number of samples, it
uses the same natural, uniform tetrahedral partition of the domain which is given
implicitly, it requires only the (independent) solution of small linear systems, it
automatically adapts to local variation and distribution of the data, and it auto-
matically smoothes noisy data. The method is based on trivariate, cubic splines,
and it is known that finding local constructions based on these spaces is a com-
plex task. In this first approach to the problem of local approximation of general
volumetric data, we balance computational simplicity against overall smoothness
and construct consistent cubic splines which satisfy almost all smoothness condi-
tions. The results confirm the high quality of the approximation and show visually
smooth isosurfaces of the reconstructed real-world objects. Further, we note that
the current implementation can be improved by either applying the average oper-
ators introduced in [Davydov and Zeilfelder 2003] and perhaps by making use of

178 Chapter 10: Summary on Trivariate Splines

different local approximations similar as in [Davydov et al. 2004]. Moreover, one
can think of integrating our method in straightforward hierarchical constructions
over nested sequences of cube partitions, tuning the approach towards surface re-
construction and providing direct visualization of the trivariate splines, e.g. by
ray-casting.

We addressed two independent problems, the reconstruction from structured,
gridded data and the approximation of general data. While the settings are dif-
ferent and lead to different algorithms, we apply a similar basic framework. Both
approaches share the same tetrahedral partition. We observe that the type-6 par-
titions provide the flexibility for the local construction. This is not obvious but
was indicated by the relation to the four-directional meshes commonly used in
the bivariate case. Our experiments and considerations lead us to this choice.
Also, in both approaches consistent splines are constructed, which satisfy many
smoothness conditions, essential for visualization. We analyzed the smoothness
and approximation properties, and the theoretical results are confirmed by numer-
ical experiments with synthetic and real-world data. We showed that these splines
provide a valuable tool for visualization.

Chapter 11

Conclusions and Future Work

In this thesis, we focus on various aspects in the visualization of digital data,
representing surfaces or volumes. Of course, visualization is a broad field in com-
puter graphics, and we identify specific fundamental problems: the quest for an
appropriate model of the data, the analysis of the data, and data compression. We
developed new techniques for the solution of each subproblem given a particu-
lar context. Complementing the summaries on the individual contributions, we
conclude the thesis with a brief summary, reviewing the fundamental problems.

Throughout this thesis we applied piecewise polynomials as model of the data.
Typically such spline models combine simplicity with efficiency, and they are
commonly used in visualization. In the two-dimensional case, we chose the well-
known triangular meshes as the simplest model, more precisely, we use piecewise
linear polynomials for the representation of surfaces and vector fields. The design
of suitable mathematical models of the data is much more involved in the volu-
metric case. In this context, we develop two new models for the reconstruction
from volumetric samples. Both models are based on piecewise polynomials with
respect to the same uniform tetrahedral partition of the domain. Our considera-
tions show that the design of methods for the efficient reconstruction with smooth
splines is a difficult task. We approach two related but different tasks: the recon-
struction from structured samples, which are laid out on a regular grid, and the ap-
proximation of general data, consisting of distributed samples. In either case, the
number of samples can be huge, so there is a demand for efficient, local methods.
Consequently, we focused on keeping the polynomial degree as low as possible
and presented models based on piecewise quadratic and piecewise cubic polyno-
mials, respectively. We note that the commonly applied trilinear interpolation —
the simplest tensor spline model for gridded data — already has total polynomial
degree three, i.e., it consists of piecewise cubics. The presented models provide
robust and efficient computation and evaluation, and Bernstein-Bézier techniques,

180 Chapter 11: Conclusions and Future Work

well-known from CAGD, can be exploited. We analyzed smoothness and approx-
imation properties theoretically and by numerical experiments. Moreover, the
spline models enable efficient and precise ray-casting, e.g., for the visualization
of isosurfaces.

On the data analysis side, we focused on curvature estimation of discrete
shapes. The tensor of curvature is only defined for sufficiently smooth surfaces.
Consequently, the problem is to find an appropriate discretization of curvature,
which fits the non-smooth piecewise linear surface model. Here, we develop a
new method, which views every triangle individually and which is inspired by
Phong shading: The linear interpolation of the estimated vertex normals imitates
higher order smoothness inside the triangle. This “fake smoothness” from com-
bining a piecewise linear surface and a piecewise linear normal field is a common
tool in visualization and computer graphics. Here, it is applied for the first time to
estimate surface intrinsics, resulting in a similarly simple algorithm, which pro-
vides the tensor of curvature as a smooth function over the triangle and elegant
closed formulas for the Gaussian and mean curvature. We provide a theoretical
analysis of the method, and our numerical results show that it competes well in
approximation error and efficiency with the best existing alternatives. We show
applications of the curvature analysis which result in new algorithms for the re-
covering structural information from data sets in a reverse engineering context and
the semi-automatic generation of line-art illustrations. The latter application from
the field of non-photorealistic rendering is particularly interesting here, because it
gives a good impression of the shape using only a very limited number of draw-
ing primitives or strokes. There is a similar setting in flow visualization, where
huge, complex data sets are processed and only a meaningful fraction of informa-
tion is displayed. We identify this most significant information as the topological
skeleton.

This leads to data compression. Here, we considered the encoding of the tri-
angulation, i.e. the mesh connectivity, and the topology preserving compression
of piecewise linear vector fields. The two settings are very different: the first one
encodes all information (up to permutation of the vertex sequence) without loss,
while the second one enables efficient compression by simplifying the data un-
der a global constraint. Each setting comes with its particular challenges, and we
developed new algorithms for either one. For connectivity encoding, we apply
a divide-and-conquer approach, which partitions a mesh into two submeshes by
growing a triangle strip and then recursively encodes the left and right submeshes.
The result is a weighted binary tree data structure with subtrees corresponding to
submeshes, where each node corresponds to triangle strip and stores its length as
weight. We analyze this intuitive algorithm, provide variations, and show that the
resulting data structure can be applied for efficient visualization by rendering tri-
angle strips. For vector field compression, we already emphasized the importance

181

of vector field topology and the topological skeleton in flow visualization appli-
cations. This leads to the design of compression algorithms, which preserve the
topology of the vector field. The major difficulty here is to design efficient, practi-
cal algorithms, which is constrained by the fact that topology is a global property
while efficient simplification algorithms work locally. We provide a theoretical
framework and show how all decisions in the simplification can be carried out
based on local information only. This results in a new algorithm,which is efficient
in computation and compression. Based on this, we discuss several modifications
that affect the compression rate by applying a stronger and a relaxed definition of
topological equivalence, and we design a new method for topology simplification.

In conclusions, we presented several new techniques for the visualization of
surfaces and volumes. We focused on particular problems of designing appropri-
ate models of the data, analyzing and compressing the data. New solutions tend
to reveal new questions, and we list the following for future work.

As we consider surface and volume data, it seems natural to generalize tech-
niques to higher dimensions, i.e., from surfaces to volumes. Here, we mention
the topology preserving compression of vector fields. In our implementation and
experiments, we so far only considered a planar domain. However, we already
remarked that there is no general restriction, and we can easily process surfaces
embedded in a three-dimensional domain. The necessary extensions are rather
straightforward compared to a volumetric setting: in this case, we would like to
simplify trivariate, piecewise linear vector fields defined with respect to an arbi-
trary tetrahedral partition of the domain. We expect that the general concepts from
the theoretical framework translate to the trivariate setting, however, more cases
have to be considered and the overall setup gets much more complex. Considering
the new trivariate spline models, we remind that we took kind of a compromise,
trading smoothness against simplicity and locality. We showed that the resulting
splines provide useful tools with advantageous properties for the various require-
ments of efficient visualization. According to our knowledge these are the first
suchlike approaches in the literature, and consequently they reveal new questions.
The theoretical analysis of the dimension of C1-splines indicates the limits of any
approaches using type-6 tetrahedral partitions (and low polynomial degree). Ac-
cording to our current knowledge, overall smooth trivariate spline models require
some additional degrees of freedom, so that we might either need a higher (but
as small as possible) degree of the piecewise polynomials or different partitions.
Both options are subject of future research, and from a current point of view it
seems to be a complex task to end up with an intuitive and computationally sim-
ple smooth reconstruction.

182 Chapter 11: Conclusions and Future Work

Appendix A

Normal Based
Curvature Estimation

We derive the formulas (3.13) and (3.14) for approximation of the Gaussian and
mean curvature, respectively. As intermediate results we obtain new expressions
for the Weingarten matrix and the curvatures in terms of determinants.

Let x̃, x̃u, x̃v, ñ, and n be defined as in Section 3.2.2. From the definition of
n we get

xu = x̃u −
(x̃uñ)

(ññ)
ñ ,

and a similar term for xv. We derive the elements of the Weingarten curvature
matrix, starting with the elements of the fundamental forms. We obtain

F = (xuxv) = (x̃ux̃v) − 2
(x̃uñ)(x̃vñ)

(ññ)
+

(x̃uñ)(x̃vñ)

(ññ)2
(ññ)

= (x̃ux̃v) −
(x̃uñ)(x̃vñ)

(ññ)
,

and analog for the symmetric terms

E = (xuxu) = (x̃ux̃u) −
(x̃uñ)2

(ññ)
,

G = (xvxv) = (x̃vx̃v) −
(x̃vñ)2

(ññ)

of the first fundamental form. The partial derivatives of the (not normalized) nor-
mal ñ are ñu = n1 − n0 and ñv = n2 − n0. Hence for the (normalized) normal n

184 Chapter A: Normal Based Curvature Estimation

we get

nu = Du
ñ√
(ññ)

= − (ñuñ)

(ññ)
√

(ññ)
n +

ñu√
(ññ)

=
(ññ)ñu − (ñuñ)ñ

(ññ)
√

(ññ)
, and

nv =
(ññ)ñv − (ñvñ)ñ

(ññ)
√

(ññ)
.

Then the second fundamental form is defined by

L = −ñux̃u

= − 1

(ññ)
√

(ññ)

(
((ññ)ñu − (ñuñ)ñ)(x̃u −

(x̃uñ)

(ññ)
ñ)

)

= − 1

(ññ)
√

(ññ)
((ññ)(x̃uñu) − (x̃uñ)(ñuñ) − (ñuñ)(x̃uñ) + (ñuñ)(x̃uñ))

= − 1

(ññ)
√

(ññ)
((ññ)(x̃uñu) − (x̃uñ)(ñuñ)) , and similar

M1 = −ñux̃v = − 1

(ññ)
√

(ññ)
((ññ)(x̃vñu) − (x̃vñ)(ñuñ)) ,

M2 = −ñvx̃u = − 1

(ññ)
√

(ññ)
((ññ)(x̃uñv) − (x̃uñ)(ñvñ)) , and

N = −ñvx̃v = − 1

(ññ)
√

(ññ)
((ññ)(x̃vñv) − (x̃vñ)(ñvñ)) .

(Note that M1 6= M2.) Next, we obtain

EG − F 2 =
1

(ññ)

(
(x̃ux̃u)(x̃vx̃v)(ññ) − (x̃ux̃u)(x̃vñ)2 − (x̃vx̃v)(x̃uñ)2

−(x̃ux̃v)
2(ññ) + 2(x̃ux̃v)(x̃uñ)(x̃vñ)

)
,

and define for convenience µ :=
√

(ññ)(ññ)(EG − F 2). Inserting in (3.3) gives

185

the elements w̃ij , i, j ∈ {1, 2}, of the Weingarten matrix W̃ as

µ w̃11 = −(x̃ux̃v)(x̃vñu)(ññ) + (x̃vx̃v)(x̃uñu)(ññ) − (x̃uñu)(x̃vñ)2

+(x̃vñu)(x̃uñ)(x̃vñ) + (ñuñ)(x̃ux̃v)(x̃vñ) − (ñuñ)(x̃vx̃v)(x̃uñ) ,

µ w̃12 = −(x̃ux̃v)(x̃vñv)(ññ) + (x̃vx̃v)(x̃uñv)(ññ) − (x̃uñv)(x̃vñ)2

+(x̃vñv)(x̃uñ)(x̃vñ) + (ñvñ)(x̃ux̃v)(x̃vñ) − (ñvñ)(x̃vx̃v)(x̃uñ) ,

µ w̃21 = (x̃ux̃u)(x̃vñu)(ññ) − (x̃ux̃v)(x̃uñu)(ññ) + (x̃uñu)(x̃uñ)(x̃vñ)

−(x̃vñu)(x̃uñ)2 − (ñuñ)(x̃ux̃u)(x̃vñ) + (ñuñ)(x̃ux̃v)(x̃uñ) , and
µ w̃22 = (x̃ux̃u)(x̃vñv)(ññ) − (x̃ux̃v)(x̃uñv)(ññ) + (x̃uñv)(x̃uñ)(x̃vñ)

−(x̃vñv)(x̃uñ)2 − (ñvñ)(x̃ux̃u)(x̃vñ) + (ñvñ)(x̃ux̃v)(x̃uñ) .

Now we insert vertex positions xi = (xi0,xi1,xi2)
> and normals ni =

(ni0,ni1,ni2)
>, i = 0, 1, 2. Here, without loss of generality, we assume that

the triangle is translated and rotated so that x0 = 0 and x1,x2 are located in the
plane z = 0. Then it is straightforward to show the identity

(EF − F 2)(ññ) = (x10x21 − x20x11)
2(λ0n02 + λ1n12 + λ2n22)

2

= det(x̃u, x̃v, ñ)2 .

And for w̃11 we get

µ w̃11 = (λ0(x20n01n12 − x20n02n11 − x21n00n12 + x21n02n10)

+λ1(x20n01n12 − x20n02n11 − x21n00n12 + x21n02n10)

+λ2(x20n01n22 − x20n02n21 − x20n11n22 + x20n12n21

−x21n00n22 + x21n02n20 + x21n10n22 − x21n12n20))

(x10x21 − x11x20) (λ0n02 + λ1n12 + λ2n22)

= − det(x̃v, ñu, ñ) det(x̃u, x̃v,n) .

Similar relations hold for w̃12, w̃21, and w̃22, such that the Weingarten matrix can
be expressed in terms of determinants:

W̃ =
1√

(ññ) det(x̃u, x̃v, ñ)

[
− det(x̃v, ñu, ñ) − det(x̃v, ñv, ñ)

det(x̃u, ñu, ñ) det(x̃u, ñv, ñ)

]
.

Hence, the mean curvature is expressed as

H =
1

2
(w̃11 + w̃22) =

det(x̃u, ñv, ñ) − det(x̃v, ñu, ñ)

2‖ñ‖ det(x̃u, x̃v, ñ)
.

We consider the identities

det(x̃u, ñv, ñ) − det(x̃v, ñu, ñ) = det(ñu, x̃v, ñ) − det(ñv, x̃u, ñ)

= (ñv × x̃u − ñu × x̃v) ñ = ((n2 − n0) × x̃u − (ñ1 − ñ0) × x̃v) ñ

= (n0 × x̃v − ñ0 × x̃u + n1 × (−x̃v) + n2 × x̃u) ñ

= (hñ) ,

186 Chapter A: Normal Based Curvature Estimation

where h is defined as in Section 3.2.2 (with r0 = x̃v − x̃u, r1 = −x̃v, r2 = x̃u),
and

det(x̃u, x̃v, ñ) = (x̃u × x̃v)ñ = (ñm̃) ,

with the (not normalized) triangle normal m̃ = r1 × r2 = x̃u × x̃v (cf. Sec-
tion 3.2.2). This yields the formulation of the mean curvature (3.14).

For the Gaussian curvature we obtain

K = w̃11w̃22 − w̃12w̃21

=
det(x̃v, ñv, ñ) det(x̃u, ñu, ñ) − det(x̃v, ñu, ñ) det(x̃u, ñv, ñ)

‖ñ‖2 det(x̃u, x̃v, ñ)2
.

The following identity proves the equivalence to (3.13)

det(n0,n1,n2) det(x̃u, x̃v, ñ)

= det(n0,n1,n2)(x10x21 − x11x20)(n02λ0 + n12λ1 + n22λ2)(λ0 + λ1 + λ2)

= det(x̃v, ñv, ñ) det(x̃u, ñu, ñ) − det(x̃v, ñu, ñ) det(x̃u, ñv, ñ) ,

after factoring and canceling the term det(x̃u, x̃v, ñ), where (ñm̃) is expressed
as above for the mean curvature. (Note that for the barycentric coordinates
λ0 + λ1 + λ2 = 1. Here and in the following, we include the term to indicate
the factorization.) Hence, we showed the equivalence, and we remark that the
Gaussian curvature can be alternatively expressed in terms of determinants as

K =
det(n0,n1,n2)

‖ñ‖2 det(x̃u, x̃v, ñ)
.

This proves the relations (3.13) and (3.14).

Finally, we apply the limit (3.16) to prove the convergence of T when refining
the triangulation (Theorem 3.1 (i)). Following the sketch in Section 3.2.3, we now
assume that xi and ni, are defined in terms of a scaling parameter t > 0, the cubic
height function z(x, y) and certain scalar constants xi, yi, 0 ≤ i ≤ 2.

We examine the limit of the Weingarten map W̃ for t → 0. Let p
(j)
Q (t) :=∑

i∈Q cijt
i denote certain polynomials with coefficients cij . Considering the indi-

187

vidual terms of W̃, we obtain polynomials of the following types

(ññ) = (λ0 + λ1 + λ2)
2 + p

(0)
{2,3,4}(t) ,

det(x̃u, x̃v, ñ) = (x0y1 − x0y2 − x1y0 + x1y2 + x2y0 − x2y1) t2 + p
(1)
{4,5,6}(t) ,

det(x̃v, ñu, ñ) = ((x0y0 − x0y2 − x1y0 + x1y2) κ1 − (x0y0 − x0y1 − x2y0 + x2y1) κ2)

(λ0 + λ1 + λ2) t2 + p
(2)
{3,4,5,6,7}(t) ,

det(x̃v, ñv, ñ) = (y0 − y2)(x0 − x2)(κ1 − κ2)(λ0 + λ1 + λ2) t2 + p
(3)
{3,4,5,6,7}(t) ,

det(x̃u, ñu, ñ) = (y0 − y1)(x0 + x1)(κ1 − κ2)(λ0 + λ1 + λ2) t2 + p
(4)
{3,4,5,6,7}(t) ,

det(x̃u, ñv, ñ) = (y2 − y0)(x0 − x2)(κ1 − κ2)(λ0 + λ1 + λ2) t2 + p
(5)
{3,4,5,6,7}(t) .

We realize that for limt→0(ññ) = 1. In order to compute the limit of W̃, we
factor t2 in the remaining expressions. Then limt→0 w̃ij , i, j ∈ {1, 2}, are given
as the respective quotients. After canceling t2 all remaining non-constant terms
p

(j)
Q (t)/t2 vanish as t → 0. From this, we compute the limits of the Gaussian and

mean curvature, which yields

lim
t→0

K = lim
t→0

(w̃11w̃22 − w̃12w̃21) = κ1 κ2 , and

lim
t→0

H = lim
t→0

(
1

2
(w̃11 + w̃22)

)
=

1

2
(κ1 + κ2) ,

and hence shows the equivalence of the principal curvatures κ1, κ2 of z(x, y) to
the eigenvalues of W̃. (Here, we commemorate the definition of the cubic height
surface z(x, y).) From this result we obtain the principal directions to construct
the tensor of curvature, which proves (3.16).

188 Chapter A: Normal Based Curvature Estimation

Appendix B

Approximation Properties of
Quadratic Super Splines

We give a short sketch of the proof of Theorem 8.2 (Section 8.4), including the
main ideas. The complete proof is given in [Nürnberger et al. 2004c].

We associate the operator Q(f) :≡ sf , f ∈ C(Ω∗) with the reconstruction
method described in Section 8.3. Furthermore, ‖.‖B is the standard infinity norm

‖f‖B := sup{|f(x, y, z)| : (x, y, z) ∈ B}

for continuous functions f ∈ C(Ω) on a compact subset B ⊆ Ω, and W m
∞(Ω∗)

and |f |m,∞,Ω∗ are defined as before. We use the following Lemmata from
[Nürnberger et al. 2004c]:

Lemma 1 (boundedness of derivatives) Let T ∈ ∆ be a tetrahedron and p ∈ P2

a quadratic polynomial on T . Then the following statements hold.
(i) For the first derivatives of p in x, y, and z direction denoted by
Dx p,Dy p,Dz p, respectively, we have

max{‖Dα
xDβ

y Dγ
z p‖T : α + β + γ = 1} ≤ (29/h) ‖p‖T .

(ii) For the second derivatives of p in x, y, and z direction denoted by D2
x p, D2

y p,
D2

z p, DxDy p, DxDz p,DyDz p, respectively, we have

max{‖Dα
xDβ

y Dγ
z p‖T : α + β + γ = 2} ≤ (128/h2) ‖p‖T .

Lemma 2 (uniform boundedness)) Let f ∈ C(Ω∗), T ∈ ∆ and Qi,j,k ∈ ♦ the
cube with T ⊆ Qi,j,k. Then, we have

‖Q(f)‖T ≤ (9/8) ‖f‖ΩT
,

where ΩT ⊆ Ω∗ is an appropriate cube with edge length 3h containing Qi,j,k.

190 Chapter B: Approximation Properties of Quadratic Super Splines

Lemma 1 follows from the definition of the tetrahedral partition ∆ and the ex-
pression of the partial derivatives in Bernstein-Bézier form. Lemma 2 can be
shown by considering the reconstruction from the 27 samples of an arbitrary
function. Similarly, to show Theorem 8.3 (reproduction of polynomials) the
respective polynomials are considered. We omit the details here and refer to
[Nürnberger et al. 2004c]. Now the proof of Theorem 8.2 reads as follows:
Let T ∈ ∆ be an arbitrary tetrahedron with T ⊆ Ω, and Qi,j,k ∈ ♦ the cube with
T ⊆ Qi,j,k. Moreover, let ΩT be chosen as in Lemma 2.

In order to show (i), we consider the linear Taylor polynomial pf of f ∈
W 2

∞(Ω∗) at the center point vQi,j,k
= (vx, vy, vz) of Qi,j,k, i.e.

pf (v) =
∑

0≤α+β+γ≤1

Dα
xDβ

y Dγ
z f(vQi,j,k

) (x − vx)
α(y − vy)

β(z − vz)
γ,

for all v = (x, y, z) ∈ ΩT . Since the diameter of the smallest sphere containing
ΩT is 3

√
3 h, it follows from a well known property of pf that

‖f − pf‖ΩT
≤ (27/8) |f |2,∞,Ω∗ h2. (B.1)

Similarly,

‖f − pf‖T ≤ (3/8) |f |2,∞,Ω∗ h2. (B.2)

Moreover, applying the mean value Theorem, we have for all v ∈ T ,

|Dα
xDβ

y Dγ
z (f − pf)(v)| = |Dα

xDβ
y Dγ

z f(v) − Dα
xDβ

y Dγ
z f(vQi,j,k

)|
≤ (

√
3/2) |f |2,∞,Ω∗ h, α + β + γ = 1.(B.3)

It follows from Theorem 8.3, (i) that Q(pf) = pf , and therefore the triangle in-
equality implies that for all α + β + γ ∈ {0, 1},

‖Dα
xDβ

y Dγ
z (f −Q(f))‖T ≤
‖Dα

xDβ
y Dγ

z (f − pf)‖T + ‖Dα
xDβ

y Dγ
zQ(pf − f)‖T . (B.4)

In view of (B.2) and (B.3), it remains to consider the second term on the right of
this inequality. If α + β + γ = 0, then it follows from Lemma 2 and (B.1) that

‖Q(pf − f)‖T ≤ (9/8) ‖pf − f‖ΩT
≤ (243/64) |f |2,∞,Ω∗ h2.

Moreover, since obviously Q(pf − f)|T ∈ P2, we can apply Lemma 1 to obtain
for all α + β + γ = 1,

‖Dα
xDβ

y Dγ
zQ(pf − f)‖T ≤ (29/h) ‖Q(pf − f)‖T ≤ (881/8) |f |2,∞,Ω∗ h.

191

The assertions in (i) now follow from (B.2), (B.3), and (B.4).
For proving (ii), we argue differently. We already know from Theorem 8.3

that if p ∈ P2 and α + β + γ ∈ {1, 2} then Dα
xDβ

y Dγ
z Q(p) = Q(Dα

xDβ
y Dγ

z p). In
the following we will use this fact.

Consider the Taylor polynomial pf ∈ P2 of f ∈ W 3
∞(Ω∗) at the center point

vQi,j,k
= (vx, vy, vz) of Qi,j,k, i.e.

pf (v) =
∑

0≤α+β+γ≤2

Dα
xDβ

y Dγ
z f(vQi,j,k

)/(α!β!γ!) (x − vx)
α(y − vy)

β(z − vz)
γ,

for all v = (x, y, z) ∈ ΩT . It is known that

‖f − pf‖ΩT
≤ (27

√
3/16) |f |3,∞,Ω∗ h3, (B.5)

and similar as above, we have

‖Dα
xDβ

y Dγ
z (f − pf)‖T ≤ (

√
3/2) |f |3,∞,Ω∗ h, α + β + γ = 2. (B.6)

By applying the mean value Theorem to the first derivative of the error and a
standard argument, we get

‖Dα
xDβ

y Dγ
z (f − pf)‖T ≤ (3/4) |f |3,∞,Ω∗ h2, α + β + γ = 1.(B.7)

The triangle inequality implies that for all α + β + γ ∈ {1, 2},

‖Dα
xDβ

y Dγ
z (f −Q(f))‖T ≤
‖Dα

xDβ
y Dγ

z (f − pf)‖T + ‖Dα
xDβ

y Dγ
z (pf −Q(f))‖T . (B.8)

In view of (B.6) and (B.7), it remains to consider the second term on the right of
this inequality. For α + β + γ ∈ {1, 2}, the polynomial Dα

xDβ
y Dγ

z pf is obviously
linear or constant, and therefore Theorem 8.3 (i) implies that

Dα
xDβ

y Dγ
z pf ≡ Q(Dα

xDβ
y Dγ

z pf).

On the other hand, we have pf ∈ P2, and therefore it follows from Theorem 8.3
as pointed out above that for all α + β + γ ∈ {1, 2},

Dα
xDβ

y Dγ
z (pf −Q(f)) ≡ Dα

xDβ
y Dγ

z Q(pf − f).

If α + β + γ = 1, then it follows from Lemma 1, Lemma 2 and (B.5) that

‖Dα
xDβ

y Dγ
z (pf −Q(f))‖T ≤ (111

√
3)/2 |f |3,∞,Ω∗ h2.

Analogously, we have for α + β + γ = 2,

‖Dα
xDβ

y Dγ
z (pf −Q(f))‖T ≤ 243

√
3 |f |3,∞,Ω∗ h.

The assertions in (ii) now follow from (B.6), (B.7), and (B.8). This completes the
proof of the theorem.

192 Chapter B: Approximation Properties of Quadratic Super Splines

Bibliography

[Alfeld et al. 1987] ALFELD, P., PIPER, B., AND SCHUMAKER,
L. L. 1987. An explicit basis for C1 quar-
tic bivariate splines. SIAM J. Numer. Anal. 24,
891–911.

[Alfeld et al. 1992] ALFELD, P., SCHUMAKER, L., AND SIR-
VENT, M. 1992. The dimension and existence
of local bases for multivariate spline spaces.
Journal of Approximation Theory 70, 243–264.

[Alfeld 1984] ALFELD, P. 1984. A trivariate C1 Clough-
Tocher interpolating scheme. CAGD 1, 169–
181.

[Alfeld 1990] ALFELD, P. 1990. Scattered data fitting in two
and three variables. In Curves and Surfaces:
Olso 1989, Academic Press.

[Alliez and Desbrun 2001a] ALLIEZ, P., AND DESBRUN, M. 2001.
Valence-Driven connectivity encoding for 3D
meshes. In Proc. Eurographics, 480–489.

[Alliez and Desbrun 2001b] ALLIEZ, P., AND DESBRUN, M. 2001. Pro-
gressive compression for lossless transmission
of triangle meshes. In Proc. SIGGRAPH, 195–
202.

[Alliez and Gotsman 2005] ALLIEZ, P., AND GOTSMAN, C. 2005. Recent
advances in compression of 3d meshes. In Ad-
vances in Multiresolution for Geometric Mod-
elling, Springer, N. Dodgson, M. Floater, and
M. Sabin, Eds., 3–26.

194 BIBLIOGRAPHY

[Alliez et al. 2003] ALLIEZ, P., COHEN-STEINER, D., DEV-
ILLERS, O., LÉVY, B., AND DESBRUN, M.
2003. Anisotropic polygonal remeshing. ACM
Transactions on Graphics 22, 3 (July), 485–
493.

[Appel et al. 1979] APPEL, A., ROHLF, F., AND STEIN, A. 1979.
The haloed line effekt for hidden line elimina-
tion. In Proc. SIGGRAPH, 151–157.

[Arqus and Braud 2000] ARQUS, A., AND BRAUD, J.-F. 2000. Rooted
maps on orientable surfaces, Riccati’s equation
and continued fractions. Discrete Mathematics
215, 1-3, 1–12.

[Bajaj and Schikore 1998] BAJAJ, C., AND SCHIKORE, D. 1998.
Topology-preserving data simplification with
error bounds. Comput. & Graphics 22, 1, 3–
12.

[Bajaj et al. 1995] BAJAJ, C., BERNARDINI, F., AND XU, G.
1995. Automatic reconstruction of surfaces and
scalar fields from 3D scans. In SIGGRAPH’95,
109–118.

[Bajaj et al. 1998] BAJAJ, C., PASCUCCI, V., AND SCHIKORE,
D. 1998. Visualization of scalar topology for
structural enhancement. In Proc. IEEE Visual-
ization ’98, 51–58.

[Bajaj 1997] BAJAJ, C. 1997. Implicit Surface Patches.
In Introduction to Implicit Surfaces, Morgan
Kaufmann, J. Bloomenthal, Ed., 99–125.

[Bajaj 1999] BAJAJ, C. 1999. Data Visualization Tech-
niques. John Wiley & Sons.

[Barthe et al. 2002] BARTHE, L., MORA, B., DODGSON, N., AND

SABIN, M. 2002. Triquadratic reconstruction
for interactive modelling of potential fields. In
Shape Modeling International 2002, 145–153.

[Batra et al. 1999] BATRA, R., KLING, K., AND HESSELINK, L.
1999. Topology based vector field comparison

BIBLIOGRAPHY 195

using graph methods. In Proc. IEEE Visualiza-
tion ’99, Late Breaking Hot Topics, 25–28.

[Beatson and Ziegler 1985] BEATSON, R. K., AND ZIEGLER, Z. 1985.
Monotonicity preserving surface interpolation.
SIAM J. Numer. Anal. 22, 2, 401–411.

[Berztiss 1986] BERZTISS, A. 1986. A taxonomy of binary
tree traversals. BIT 26, 266–276.

[Bischoff and Kobbelt 2004] BISCHOFF, S., AND KOBBELT, L. 2004.
Teaching meshes, subdivision and multiresolu-
tion techniques. Computer Aided Design 36,
14, 1483–1500.

[Bogomjakov and Gotsman 2002] BOGOMJAKOV, A., AND GOTSMAN, C.
2002. Universal rendering sequences for trans-
parent vertex caching of progressive meshes.
Computer Graphics Forum 21, 2, 137–148.

[Bonneau et al. 1996] BONNEAU, G.-P., HAHMANN, S., AND NIEL-
SON, G. 1996. BLaC-Wavelets: A multiresolu-
tion analysis with non-nested spaces. In IEEE
Visualization 1996, 43–48.

[Botsch et al. 2000] BOTSCH, M., RÖSSL, C., AND KOBBELT, L.
2000. Feature sensitive sampling for interac-
tive remeshing. In Proc. Vision, Modeling, and
Visualization, 129–136.

[Brodlie and Wood 2001] BRODLIE, K., AND WOOD, J. 2001. Recent
Advances in Volume Visualization. Computer
Graphics Forum 20, 2, 125–148.

[Brown 1964] BROWN, W. 1964. Enumeration of triangula-
tions of the disk. Proc. Lond. Math. Soc., III.
Ser. 14, 746–768.

[Buhmann 2000] BUHMANN, M. D. 2000. Radial Basis Func-
tions. Acta Numerica, 1–38.

[Campagna et al. 1998] CAMPAGNA, S., KOBBELT, L., AND SEIDEL,
H.-P. 1998. Directed edges – a scalable rep-
resentation for triangle meshes. Journal of
Graphics Tools 3, 4, 1–12.

196 BIBLIOGRAPHY

[Carbal and Leedom 1993] CARBAL, B., AND LEEDOM, L. 1993. Imag-
ing vector fields using line integral convolution.
In Proc. SIGGRAPH, 263–272.

[Carr et al. 2001a] CARR, H., MÖLLER, T., AND SNOEYINK, J.
2001. Simplicial subdivisions and sampling ar-
tifacts. In IEEE Visualization 2001, 99–106.

[Carr et al. 2001b] CARR, J., BEATSON, R., CHERRIE, J.,
MITCHELL, T., FRIGHT, W., MCCALLUM,
B., AND EVANS, T. 2001. Reconstruction and
representation of 3d objects with radial basis
functions. In SIGGRAPH’01, 67–76.

[Cazals and Pouget 2003] CAZALS, F., AND POUGET, M. 2003. Esti-
mating differential quantities using polynomial
fitting of osculating jets. In Symposium on Ge-
ometry Processing, 177–187.

[Chen et al. 2000] CHEN, M., KAUFMAN, A., AND YAGEL, R.
2000. Volume Graphics. Springer.

[Chui and He 1986] CHUI, C. K., AND HE, X. 1986. On the
location of sample points for interpolation by
c1 quadratic splines. In Numerical Methods
in Approximation Theory, Vol. 8., L. Collatz,
G. Meinardus, and G. Nürnberger, Eds., 30–43.

[Chui 1988] CHUI, C. 1988. Multivariate Splines. CBMS
54, SIAM.

[Cohen-Or et al. 1999] COHEN-OR, D., LEVIN, D., AND REMEZ, O.
1999. Progressive compression of arbitrary tri-
angular meshes. In Proc. IEEE Visualization,
67–72.

[Cohen-Steiner and Morvan 2003] COHEN-STEINER, D., AND MORVAN, J.-
M. 2003. Restricted delaunay triangulations
and normal cycle. In Proceedings of the nine-
teenth Conference on Computational Geometry
(SCG-03), 312–321.

[Dagnino and Lamberti 2004] DAGNINO, C., AND LAMBERTI, P. 2004.
Some performances of local bivariate quadratic

BIBLIOGRAPHY 197

c1 quasi-interpolating splines on non-uniform
type-2 triangulations. In University of Turin,
Department of Mathematics (preprint).

[Dahmen and Thamm-Schaar 1993] DAHMEN, W., AND THAMM-SCHAAR, T.-
M. 1993. Cubicoids: modeling and visualiza-
tion. Computer Aided Geometric Design 10, 2,
89–108.

[Dahmen 1989] DAHMEN, W. 1989. Smooth piecewise quadric
surfaces. In Math. Methods in CAGD, Aca-
demic Press, T. Lyche and L. Schumaker, Eds.,
181–194.

[Davydov and Zeilfelder 2003] DAVYDOV, O., AND ZEILFELDER, F. 2003.
Scattered data fitting by direct extension of lo-
cal polynomials with bivariate splines. Adv.
Comp. Math. (to appear).

[Davydov et al. 2004] DAVYDOV, O., MORANDI, R., AND SES-
TINI, M. 2004. Local hybrid approximation
for scattered data fitting with bivariate splines.
(preprint).

[Davydov 2002] DAVYDOV, O. 2002. On the approximation
power of local least squares polynomials. In
Algorithms for Approximation IV, J. Levesley,
I. Anderson, and J. Mason, Eds., 346–353.

[de Boor 1987] DE BOOR, C. 1987. B-form basics. In Geomet-
ric Modelling, SIAM, G. Farin, Ed., 131–148.

[de Casteljau 1963] DE CASTELJAU, P. 1963. Courbes et surfaces
à poles. André Citroën, Automobiles SA, Paris.

[de Leeuw and van Liere 1999a] DE LEEUW, W., AND VAN LIERE, R. 1999.
Collapsing flow topology using area metrics.
In Proc. IEEE Visualization ’99, D. Ebert,
M. Gross, and B. Hamann, Eds., 149–354.

[de Leeuw and van Liere 1999b] DE LEEUW, W., AND VAN LIERE, R. 1999.
Visualization of global flow structures using
multiple levels of topology. In Data Visualiza-
tion 1999. Proc. VisSym 99, 45–52.

198 BIBLIOGRAPHY

[Denny and Sohler 1997] DENNY, M., AND SOHLER, C. 1997. Encod-
ing a triangulation as a permutation of its point
set. In Proceedings of the 9th Canadian Con-
ference on Computational Geometry, 39–43.

[Deo and Litow 1998] DEO, N., AND LITOW, B. 1998. A struc-
tural approach to graph compression. In MFCS
Workshop on Communications, 91–101.

[Deussen et al. 1999] DEUSSEN, O., HAMEL, J., RAAB, A.,
SCHLECHTWEG, S., AND STROTHOTTE,
T. 1999. An illustration technique using
hardware-based intersections and skeletons. In
Proc. Graphics Interface, 175–182.

[Dinh et al. 2001] DINH, H., TURK, G., AND SLABAUGH,
G. 2001. Reconstructing surfaces using
anisotropic basis functions. In International
Conference on Computer Vision (ICCV), 606–
613.

[Do Carmo 1976] DO CARMO, P. 1976. Differential Geometry of
curves and surfaces. Prentice-Hall, Englewood
Cliffs.

[Dooley and Cohen 1990] DOOLEY, D., AND COHEN, M. 1990. Au-
tomatic illustration of 3d geometric models:
Lines. Computer Graphics 23, 77–82.

[Edelsbrunner et al. 2001] EDELSBRUNNER, H., HARER, J., AND

ZOMORODIAN, A. 2001. Hierarchical morse
complexes for piecewise linear 2-manifolds. In
Proc. 17th Sympos. Comput. Geom. 2001.

[Elber 1995] ELBER, G. 1995. Line art rendering via a cov-
erage of isoparametric curves. IEEE Transac-
tions on Visualization and Computer Graphics
1, 3, 231–239.

[Elber 1998] ELBER, G. 1998. Line art illustrations of para-
metric and implicit forms. IEEE Transactions
on Visualization and Computer Graphics 4, 1,
1–11.

BIBLIOGRAPHY 199

[Elber 1999] ELBER, G. 1999. Interactive line art rendering
of freeform-surfaces. In Proc. Eurographics,
1–12.

[Evans et al. 1996] EVANS, F., SKIENA, S., AND VARSHNEY, A.
1996. Optimizing triangle strips for fast render-
ing. In Proce. IEEE Visualization, 319–326.

[Farin 1986] FARIN, G. 1986. Triangular Bernstein-Bézier
patches. CAGD 3, 2, 83–127.

[Firby and Gardiner 1982] FIRBY, P., AND GARDINER, C. 1982. Surface
Topology. Ellis Horwood Ltd., ch. 7, 115–135.
Vector Fields on Surfaces.

[Foley et al. 1996] FOLEY, J., VAN DAM, A., FEINER, S., AND

HUGHES, J. 1996. Computer Graphics, Prin-
ciples and Practice. Addison-Wesley Publish-
ing Company, Reading Massachusetts.

[Foley 1986] FOLEY, A. 1986. Scattered Data Interpolation
and Approximation with Error Bounds. CAGD
3, 163–177.

[Franke and Hagen 1999] FRANKE, R., AND HAGEN, H. 1999. Least
Squares Surface Approximation using Mul-
tiquadrics and Parameter Domain Distortion.
CAGD 16, 3, 177–196.

[Garcke et al. 2000] GARCKE, H., PREUSSER, T., RUMPF, M.,
TELEA, A., WEIKARDT, U., AND VAN WIJK,
J. 2000. A continuous clustering method for
vector fields. In Proc. IEEE Visualization 2000,
T. Ertl, B. Hamann, and A. Varshney, Eds.,
351–358.

[Gerstner and Rumpf 2000] GERSTNER, T., AND RUMPF, M. 2000.
Multiresolutional Parallel Isosurface Extrac-
tion based on Tetrahedral Bisection. In Volume
Graphics, Springer, M. Chen, A. Kaufman, and
R. Yagel, Eds., 267–278.

[Globus and Levit 1991] GLOBUS, A., AND LEVIT, C. 1991. A tool for
visualizing of three-dimensional vector fields.

200 BIBLIOGRAPHY

In Proc. IEEE Visualization ’91, IEEE Com-
puter Society Press, 33–40.

[Goldfeather and Interrante 2004] GOLDFEATHER, J., AND INTERRANTE, V.
2004. A novel cubic-order algorithm for ap-
proximating principal directions vectors. ACM
Transactions on Graphics 23, 1, 45–63.

[Gonzales and Woods 1993] GONZALES, R., AND WOODS, R. 1993. Dig-
ital Image Processing. Addison-Wesley.

[Gooch and Gooch 2001] GOOCH, B., AND GOOCH, A. 2001. Non-
Photorealistic Rendering. A K Peters.

[Gotsman et al. 2002] GOTSMAN, C., GUMHOLD, S., AND

KOBBELT, L. 2002. Simplification and
compression of 3D meshes. In Tutorials
on Multiresolution in Geometric Modelling,
A. Iske, E. Quak, and M. S. Floater, Eds.,
Mathematics and Visualization. Springer,
319–361.

[Graham et al. 1994] GRAHAM, R. L., KNUTH, D. E., AND

PATASHNIK, O. 1994. Concrete Mathematics:
A Foundation for Computer Science. Addison-
Wesley.

[Grosso et al. 1997] GROSSO, R., LÜRIG, C., AND ERTL, T. 1997.
The multilevel finite element method for adap-
tive mesh optimization and visualization of vol-
ume data. In IEEE Visualization 1997, 387–
394.

[Gumhold and Straßer 1998] GUMHOLD, S., AND STRASSER, W. 1998.
Real time compression of triangle mesh con-
nectivity. In Proc. SIGGRAPH, 133–140.

[Gumhold 1999] GUMHOLD, S. 1999. Improved cut-border ma-
chine for triangle mesh compression. In Proc.
Vision, Modeling and Visualization, 261–267.

[Gumhold 2000] GUMHOLD, S. 2000. New bounds on the
encoding of planar triangulations. Tech. Rep.

BIBLIOGRAPHY 201

WSI-2000-1, Wilhelm-Schikard-Institut für In-
formatik, Tübingen, Mar.

[Haber et al. 2001] HABER, J., ZEILFELDER, F., DAVYDOV, O.,
AND SEIDEL, H.-P. 2001. Smooth approxima-
tion and rendering of large scattered data sets.
In IEEE Visualization 2001, 341–347.

[Hagen et al. 1992] HAGEN, H., ET AL. 1992. Surface interroga-
tion algorithms. IEEE Computer Graphics and
Applications 12, 5, 53–60.

[Hangelbroek et al. 2004] HANGELBROEK, T., NÜRNBERGER, G.,
RÖSSL, C., SEIDEL, H.-P., AND ZEIL-
FELDER, F. 2004. Dimension of C1 splines
on type-6 tetrahedral partitions. Journal of Ap-
proximation Theory (to appear).

[Haralick et al. 1987] HARALICK, R., STERNBERG, S., AND

ZHUANG, X. 1987. Image analysis using
mathematical morphology. IEEE Transactions
on Pattern Analysis and Machine Intelligence
9, 4, 532–560.

[Heckel et al. 1999] HECKEL, B., WEBER, G., HAMANN, B.,
AND K.I.JOY. 1999. Construction of vector
field hierarchies. In Proc. IEEE Visualization
’99, D. Ebert, M. Gross, and B. Hamann, Eds.,
19–26.

[Helman and Hesselink 1989] HELMAN, J., AND HESSELINK, L. 1989. Rep-
resentation and display of vector field topology
in fluid flow data sets. IEEE Computer 22, 8
(August), 27–36.

[Helman and Hesselink 1991] HELMAN, J., AND HESSELINK, L. 1991. Vi-
sualizing vector field topology in fluid flows.
IEEE Computer Graphics and Applications 11
(May), 36–46.

[Hildebrandt and Polthier 2004] HILDEBRANDT, K., AND POLTHIER, K. 2004.
Anisotropic filtering of non-linear surface fea-
tures. In Proc. Eurographics, 391–400.

202 BIBLIOGRAPHY

[Holliday and Nielson 2000] HOLLIDAY, D., AND NIELSON, G. 2000. Pro-
gressive volume models for rectilinear data us-
ing tetrahedral Coons volumes. In Data Visual-
ization 2000, Springer, 83–92.

[Hoppe 1996] HOPPE, H. 1996. Progressive meshes. In Proc.
SIGGRAPH, 99–108.

[Hoschek and Dankwort 1996] HOSCHEK, J., AND DANKWORT, W. 1996.
Reverse Engineering. Teubner.

[Hoschek and Dietz 1998] HOSCHEK, J., AND DIETZ, U. 1998. A geo-
metric concept of reverse engineering of shape:
Approximation and feature lines. In Mathemat-
ical Methods for Curves and Surfaces II, 253–
262.

[Hoschek and Lasser 1993] HOSCHEK, J., AND LASSER, D. 1993. Funda-
mentals of Computer Aided Geometric Design.
A.K. Peters.

[Interrante 1997] INTERRANTE, V. 1997. Illustrating surface
shape in volume data via principal direction
driven 3d line integral convolution. In Proc.
SIGGRAPH, 109–116.

[Isenburg and Snoeyink 1999] ISENBURG, M., AND SNOEYINK, J. 1999.
Mesh collapse compression. In Proceedings
of the Conference on Computational Geometry,
419–420.

[Isenburg and Snoeyink 2000] ISENBURG, M., AND SNOEYINK, J. 2000.
Face fixer: Compressing polygon meshes with
properties. In Proc. SIGGRAPH, 263–270.

[Isenburg and Snoeyink 2001] ISENBURG, M., AND SNOEYINK, J. 2001.
Spirale reversi: Reverse decoding of the edge-
breaker encoding. CGTA: Computational Ge-
ometry: Theory and Applications 20.

[Isenburg 2000] ISENBURG, M. 2000. Triangle strip compres-
sion. In Proc. Graphics Interface, 197–204.

BIBLIOGRAPHY 203

[Isselhard et al. 1998] ISSELHARD, F., BRUNNET, G., AND

SCHREIBER, T. 1998. Extraction of
first-order feature lines from a discretized
surface. In Mathematics of surfaces, R. Cripps,
Ed., 125–137.

[Ivrissimtzis et al. 2002] IVRISSIMTZIS, I., RÖSSL, C., AND SEIDEL,
H.-P. 2002. A divide and conquer algorithm
for triangle mesh connectivity encoding. In
Proc. Pacific Graphics, 294–303.

[Ivrissimtzis et al. 2003] IVRISSIMTZIS, I., RÖSSL, C., AND SEIDEL,
H.-P. 2003. Tree-based data structures for
triangle mesh connectivity encoding. In Ge-
ometric Modeling for Scientific Visualization,
G. Brunnett, B. Hamann, and H. Müller, Eds.
Springer, Heidelberg, Germany, 171–187.

[Jeeawock-Zedek 1994] JEEAWOCK-ZEDEK, F. 1994. Operator norm
and error bounds for interpolating quadratic
splines on a non-uniform type-2 triangulation
of a rectangular domain. Approx. Theory and
Appl. 10, 2, 1–16.

[Kähler et al. 2001] KÄHLER, K., RÖSSL, C., SCHNEIDER, R.,
VORSATZ, J., AND SEIDEL, H.-P. 2001. Ef-
ficient processing of large 3d meshes. In Proc.
Shape Modeling International, 228–239.

[Katajainen and Mäkinen 1990] KATAJAINEN, J., AND MÄKINEN, E. 1990.
Tree compression and optimization with appli-
cations. Int. J. Found. Comput. Sci. 1, 4, 425–
447.

[Kaufman 2000] KAUFMAN, A. 2000. State-of-the-art in vol-
ume graphics. In Volume Graphics, Springer,
M. Chen, A. Kaufman, and R.Yagel, Eds., 3–
28.

[Kenwright et al. 1999] KENWRIGHT, D., HENZE, C., AND LEVIT, C.
1999. Feature extraction of separation and at-
tachment lines. IEEE Transactions on Visual-
ization and Computer Graphics 5, 2, 135–144.

204 BIBLIOGRAPHY

[Kettner 1998] KETTNER, L. 1998. Designiung a data struc-
ture for polyhedral surafces. In Proc. ACM
Symposium on Computational Geometry, 146–
154.

[King and Rossignac 1999] KING, D., AND ROSSIGNAC, J. 1999. Guar-
anteed 3.67V bit encoding of planar triangle
graphs. In Proceedings of the 11th Canadian
Conference on Computational Geometry, 146–
149.

[Kobbelt et al. 2000] KOBBELT, L., BISCHOFF, S., BOTSCH, M.,
KÄHLER, K., RÖSSL, C., SCHNEIDER, R.,
AND VORSATZ, J. 2000. Geometric model-
ing based on polygonal meshes. In Tutorials
Eurographics, 1–47.

[Kohlmüller et al. 2003a] KOHLMÜLLER, N., G.NÜRNBERGER, AND

ZEILFELDER, F. 2003. Construction of cubic
3D spline surfaces by Lagrange interpolation at
selected points. In Curve and Surface Fitting,
Saint-Malo 2002, 245–254.

[Kohlmüller et al. 2003b] KOHLMÜLLER, N., NÜRNBERGER, G., AND

ZEILFELDER, F. 2003. Optimal approxima-
tion order of interpolation by cubic spline sur-
faces. In Curve and Surface Fitting, Saint-Malo
2002, Vanderbilt University Press Nashville,
235–245.

[Lai and Méhauté 2003] LAI, M.-J., AND MÉHAUTÉ, A. L. 2003. A
new kind of trivariate C1 spline. Adv. Comp.
Math. (to appear).

[LaMar et al. 1999] LAMAR, E., HAMANN, B., AND JOY, K.
1999. High-quality rendering of smooth isosur-
faces. Journal of Visualization and Computer
Animation 10(2), 79–90.

[Lancaster and Šalkauskas 1986] LANCASTER, P., AND ŠALKAUSKAS, K.
1986. Curve and Surface Fitting. Academic
Press.

BIBLIOGRAPHY 205

[Lavin et al. 1998] LAVIN, Y., BATRA, R., AND HESSELINK, L.
1998. Feature comparisons of vector fields us-
ing earth mover’s distance. In Proc. IEEE Visu-
alization ’98, 103–109.

[Lee and Lee 2001] LEE, Y., AND LEE, S. 2001. Geometric snakes
for triangular meshes. In Proc. Eurographics,
229–238.

[Lee et al. 2002] LEE, H., ALLIEZ, P., AND DESBRUN, M.
2002. Angle-analyzer: A triangle-quad mesh
codec. In Proc. Eurographics, 383–392.

[Leister 1994] LEISTER, W. 1994. Computer generated cop-
per plates. Computer Graphics forum 13, 1,
69–77.

[Lodha and Franke 1999] LODHA, S. K., AND FRANKE, R. 1999. Scat-
tered Data Techniques for Surfaces. In Proc.
Dagstuhl Conf. Scientific Visualization, H. Ha-
gen, G. Nielson, and F. Post, Eds., 182–222.

[Lodha et al. 2000] LODHA, S., RENTERIA, J., AND ROSKIN, K.
2000. Topology preserving compression of 2D
vector fields. In Proc. IEEE Visualization 2000,
343–350.

[Lorensen and Cline 1987] LORENSEN, W., AND CLINE, H. 1987.
Marching cubes: A high resolution 3D surface
construction algorithm. SIGGRAPH’87 21, 5,
79–86.

[Lukács and Andor 1998] LUKÁCS, G., AND ANDOR, L. 1998. Com-
puting natural division lines on free-form sur-
faces based on measured data. In Mathematical
Methods for Curves and Surfaces II, 319–326.

[Mäkinen 1991] MÄKINEN, E. 1991. A survey in binary tree
codings. The Computurer Journal 34, 5, 438–
443.

[Marschner and Lobb 1994] MARSCHNER, S., AND LOBB, R. 1994. An
evaluation of reconstruction filters for volume

206 BIBLIOGRAPHY

rendering. In IEEE Visualization 1994, 100–
107.

[Martin and Cohen 2001] MARTIN, W., AND COHEN, E. 2001. Rep-
resentation and extraction of volumetric at-
tributes using trivariate splines: a mathematical
framework. In Solid Modelling and Applica-
tions 2001, 234–240.

[Max 1999] MAX, N. 1999. Weights for computing vertex
normals from facet normals. Jounal of Graph-
ics Tools 4, 2, 1–6.

[Meissner et al. 2000] MEISSNER, M., HUANG, J., BARTZ, D.,
MUELLER, K., AND CRAWFIS, R. 2000. A
practical comparison of popular volume render-
ing algorithms. In Symposium on Volume Visu-
alization and Graphics 2000, 81–90.

[Meyer et al. 2002] MEYER, M., DESBRUN, M., SCHRÖDER,
M., AND BARR, A. H. 2002. Discrete
differential-geometry operators for triangulated
2-manifolds. In Proceedings of VisMath.

[Milroy et al. 1997] MILROY, M. J., BRADLEY, C., AND VICK-
ERS, G. 1997. Segmentation of a wrap-around
model using an active contour. Computer Aided
Design 29, 299–320.

[Mitchell and Netravali 1988] MITCHELL, D., AND NETRAVALI, A. 1988.
Reconstruction filters in computer graphics.
SIGGRAPH’88, 221–228.

[Moffat et al. 1998] MOFFAT, A., NEAL, R., AND WITTEN, I.
1998. Arithmetic coding revisited. ACMTOIS:
ACM Transactions on (Office) Information Sys-
tems 16.

[Möller et al. 1998] MÖLLER, T., MUELLER, K., KURZION, Y.,
MACHIRAJU, R., AND YAGEL, R. 1998. De-
sign of accurate and smooth filters for function
and derivative reconstruction. In Symposium on
Volume Visualization 1998, 143–151.

BIBLIOGRAPHY 207

[Mora et al. 2001] MORA, B., JESSEL, J.-P., AND CAUBET, R.
2001. Visualization of isosurfaces with para-
metric cubes. In Eurographics 2001, 377–384.

[Moreton and Séquin 1992] MORETON, H., AND SÉQUIN, C. 1992. Func-
tional optimization for fair surface design. In
Proceedings of the 19th Annual ACM Confer-
ence on Computer Graphics and Interactive
Techniques, 167–176.

[Morgan and Scott] MORGAN, J., AND SCOTT, R. The dimension
of the space of c1 piecewise polynomials. In
Unpublished manuscript.

[Nielson 2000] NIELSON, G. 2000. Volume modelling. In
Volume Graphics, Springer, M. Chen, A. Kauf-
man, and R.Yagel, Eds., 29–50.

[Nürnberger and Zeilfelder 2000] NÜRNBERGER, G., AND ZEILFELDER, F.
2000. Developments in bivariate spline interpo-
lation. J. Comput. Appl. Math. 121, 125–152.

[Nürnberger and Zeilfelder 2001] NÜRNBERGER, G., AND ZEILFELDER, F.
2001. Local lagrange interpolation on powell-
sabin triangulations and terrain modelling. In
Recent Progress in Multivariate Approxima-
tion, W. Haussmann, K. Jetter, and M. Reimer,
Eds., vol. 137, 227–244.

[Nürnberger and Zeilfelder 2003] NÜRNBERGER, G., AND ZEILFELDER, F.
2003. Lagrange interpolation by bivariate C1-
splines with optimal approximation order. Adv.
Comp. Math. (to appear).

[Nürnberger and Zeilfelder 2004] NÜRNBERGER, G., AND ZEILFELDER, F.
2004. Lagrange interpolation by bivariate C1-
splines with optimal approximation order. Adv.
Comp. Math. (to appear).

[Nürnberger et al. 2001] NÜRNBERGER, G., SCHUMAKER, L., AND

ZEILFELDER, F. 2001. Local Lagrange In-
terpolation by Bivariate C1 Cubic Splines. In
Mathematical Methods In CAGD, Vanderbilt
University Press, 393–404.

208 BIBLIOGRAPHY

[Nürnberger et al. 2003a] NÜRNBERGER, G., SCHUMAKER, L., AND

ZEILFELDER, F. 2003. Lagrange interpolation
by C1 cubic splines on triangulated quadrangu-
lations. Adv. Comp. Math. (to appear).

[Nürnberger et al. 2003b] NÜRNBERGER, G., STEIDL, G., AND ZEIL-
FELDER, F. 2003. Explicit estimates for bi-
variate hierarchical bases. Comm. Appl. Anal.
7, 1, 133–151.

[Nürnberger et al. 2004a] NÜRNBERGER, G., RAVESKAYA, V., SCHU-
MAKER, L., AND ZEILFELDER, F. 2004. La-
grange Interpolation by C2-Splines of degree 7
on triangulations. In Proc. Adv. Constr. Approx.
(to appear).

[Nürnberger et al. 2004b] NÜRNBERGER, G., RAVESKAYA, V., SCHU-
MAKER, L., AND ZEILFELDER, F. 2004. Lo-
cal Lagrange interpolation by bivariate splines
of arbitrary smoothness. (submitted).

[Nürnberger et al. 2004c] NÜRNBERGER, G., RÖSSL, C., SEIDEL, H.-
P., AND ZEILFELDER, F. 2004. Quasi-
interpolation by quadratic piecewise polynomi-
als in three variables. Computer Aided Geomet-
ric Design (accepted for publication).

[Nürnberger 1989] NÜRNBERGER, G. 1989. Approximation by
Spline Functions. Springer.

[Ohtake and Belyaev 2004] OHTAKE, Y., AND BELYAEV, A. 2004. Ridge-
valley lines on meshes via implicit surface fit-
ting. In Proc. SIGGRAPH, 609–612.

[Ohtake et al. 2003] OHTAKE, Y., BELYAEV, A., ALEXA, M.,
TURK, G., AND SEIDEL, H.-P. 2003. Multi-
level partition of unity implicits. In SIG-
GRAPH’03, 463–470.

[Ostromoukhov 1999] OSTROMOUKHOV, V. 1999. Digital facial en-
graving. In Proc. SIGGRAPH, 417–424.

BIBLIOGRAPHY 209

[Page et al. 2001] PAGE, D. L., KOSCHAN, A., SUN, Y., PAIK,
J., AND ABIDI, A. 2001. Robust crease de-
tection and curvature estimation of piecewise
smooth surfaces from triangle mesh approxi-
mations using normal voting. In Proceedings
on Computer Vision and Pattern Recongition.

[Pajarola and Rossignac 2000] PAJAROLA, R., AND ROSSIGNAC, J. 2000.
Compressed progressive meshes. In IEEE
Transactions on Visualization and Computer
Graphics, vol. 6 (1). 79–93.

[Park and Lee 1997] PARK, S., AND LEE, K. 1997. High-
dimensional trivariate NURBS representation
for analyzing and visualizing fluid flow data.
Computers & Graphics 21, 4, 473–482.

[Parker et al. 1998] PARKER, S., SHIRLEY, P., LIVNAT, Y.,
HANSEN, C., AND SLOAN, P.-P. 1998. Inter-
active ray tracing for isosurface rendering. In
IEEE Visualization 1998, 233–238.

[Petitjean 2001] PETITJEAN, S. 2001. A survey of methods for
recovering quadrics in triangle meshes. ACM
Computing Surveys, 2.

[Pfeifle and Seidel 1995] PFEIFLE, R., AND SEIDEL, H.-P. 1995. Fit-
ting triangular B-splines to functional scattered
data. Eurographics 1995 14, 3, 15–23.

[Pfeifle and Seidel 1996] PFEIFLE, R., AND SEIDEL, H.-P. 1996. Scat-
tered data approximation with triangular B-
splines. Advance Course on Fairshape, 253–
263.

[Phong 1975] PHONG, B. T. 1975. Illumination for computer
generated pictures. Communications of ACM
18, 6, 311–317.

[Pnueli and Bruckstein 1994] PNUELI, AND BRUCKSTEIN, A. M. 1994.
digi

dürer – a digital engraving system. The Vi-
sual Computer 10, 277–292.

210 BIBLIOGRAPHY

[Post et al. 2002] POST, F., VROLIJK, B., HAUSER, H.,
LARAMEE, R., AND DOLEISCH, H. 2002.
Feature extraction and visualisation of flow
fields. In Proc. Eurographics 2002, State of the
Art Reports, 69–100.

[Powell and Sabin 1977] POWELL, M. J., AND SABIN, M. A. 1977.
Piecewise quadratic approximation on trian-
gles. ACM Trans. Math. Software 4, 316–325.

[Powell 1974] POWELL, M. J. 1974. Piecewise quadratic
surface fitting for contour plotting. In Soft-
ware for Numerical Analysis, Academic Press,
D. Evans, Ed., 253–277.

[Praun et al. 2001] PRAUN, E., HOPPE, H., WEBB, M., AND

FINKELSTEIN, A. 2001. Real-time hatching.
In Proc. SIGGRAPH, 579–584.

[Prautzsch et al. 2002] PRAUTZSCH, H., BOEHM, W., AND

PALUSZNY, M. 2002. Bézier and B-Spline
Techniques. Springer.

[Rossignac and Szymczak 1999] ROSSIGNAC, J., AND SZYMCZAK, A. 1999.
Wrap&zip decompression of the connectiv-
ity of triangle meshes compressed with edge-
breaker. CGTA: Computational Geometry:
Theory and Applications 14.

[Rossignac 1999] ROSSIGNAC, J. 1999. Edgebreaker: Connec-
tivity compression for triangle meshes. IEEE
Transactions on Visualization and Computer
Graphics 5, 2, 47–61.

[Rössl and Kobbelt 1999] RÖSSL, C., AND KOBBELT, L. 1999. Approx-
imation and visualization of discrete curvature
on triangulated surfaces. In Proc. Conference
on Vision, Modeling, and Visualization, 339–
346.

[Rössl and Kobbelt 2000] RÖSSL, C., AND KOBBELT, L. 2000. Line-
art rendering of 3D-models. In Proc. Pacific
Graphics, 87–96.

BIBLIOGRAPHY 211

[Rössl et al. 2000a] RÖSSL, C., KOBBELT, L., AND SEIDEL, H.-
P. 2000. Extraction of feature lines on triangu-
lated surfaces using morphological operators.
In Smart Graphics (AAAI Spring Symposium-
00), Technical Report / SS / American Associ-
ation for Artificial Intelligence, 71–75.

[Rössl et al. 2000b] RÖSSL, C., KOBBELT, L., AND SEIDEL, H.-
P. 2000. Line art rendering of triangulated sur-
faces using discrete lines of curvature. In Proc.
WSCG, 168–175.

[Rössl et al. 2001] RÖSSL, C., KOBBELT, L., AND SEIDEL, H.-
P. 2001. Recovering structural information
from triangulated surfaces. In Mathematical
Methods for Curves and Surfaces: Oslo 2000,
Vanderbilt University, Oslo, Norway, T. Lyche
and L. L. Schumaker, Eds., 423–432.

[Rössl et al. 2003a] RÖSSL, C., ZEILFELDER, F., NÜRNBERGER,
G., AND SEIDEL, H.-P. 2003. Visualization
of volume data with quadratic super splines. In
IEEE Visualization 2003, 393–400.

[Rössl et al. 2003b] RÖSSL, C., IVRISSIMTZIS, I., AND SEIDEL,
H.-P. 2003. Tree-based triangle mesh con-
nectivity encoding. In Curve and Surface Fit-
ting: Saint-Malo 2002, Nashboro Press, Saint
Malo, France, A. Cohen, J.-L. Merrien, and
L. L. Schumaker, Eds., 345–354.

[Rössl et al. 2004a] RÖSSL, C., ZEILFELDER, F., NÜRNBERGER,
G., AND SEIDEL, H.-P. 2004. Reconstruction
of volume data with quadratic super splines.
IEEE Transactions on Visualization and Com-
puter Graphics 10, 4, 397–409.

[Rössl et al. 2004b] RÖSSL, C., ZEILFELDER, F., NÜRNBERGER,
G., AND SEIDEL, H.-P. 2004. Spline approx-
imation of general volumetric data. In Proc.
ACM Symposium on Solid Modeling and Ap-
plications, 71–82.

212 BIBLIOGRAPHY

[Rusinkiewicz 2004] RUSINKIEWICZ, S. 2004. Estimating curva-
tures and their derivatives on triangle meshes.
In Proc. of Second International Symposium on
3D Data Processing, Visualization, and Trans-
mission (3DPVT).

[Sablonnière 1987] SABLONNIÈRE, P. 1987. Error bounds for her-
mite interpolation by quadratic splines on an α-
triangulation. IMA J. Numer. Anal. 7, 495–508.

[Sablonnière 2003a] SABLONNIÈRE, P. 2003. Quadratic b-splines
on non uniform criss-cross triangulations of
bounded rectangular domains in the plane. IR-
MAR (Preprint).

[Sablonnière 2003b] SABLONNIÈRE, P. 2003. Quadratic spline
quasi interpolants on bounded domain of
IRd, d = 1, 2, 3. Spline and radial functions
(preprint).

[Saito and Takahashi 1990] SAITO, T., AND TAKAHASHI, T. 1990.
Comprehensible rendering of 3-d shapes. In
Proc.SIGGRAPH, 197–206.

[Salisbury et al. 1994] SALISBURY, M. P., ANDERSON, S. E.,
BARZEL, R., AND SALESIN, D. H. 1994.
Interactive pen-and-ink illustrations. In Proc.
SIGGRAPH, 101–108.

[Salisbury et al. 1997] SALISBURY, M. P., WONG, M. T., HUGES,
J. F., AND SALESIN, D. H. 1997. Orientable
textures for image-based pen-and-ink illustra-
tion. In Proc. SIGGRAPH, 401–406.

[Sapidis and Besl 1995] SAPIDIS, N. S., AND BESL, P. 1995. Direct
construction of polynomial surfaces from dense
range images through region growing. ACM
Transactions of Graphics 14, 2, 171–200.

[Schaback 2000] SCHABACK, R. 2000. Remarks on meshless
local construction of surfaces. In The Mathe-
matics of Surfaces IV, Springer, 34–58.

BIBLIOGRAPHY 213

[Scheuermann et al. 1998] SCHEUERMANN, G., KRÜGER, H., MENZEL,
M., AND ROCKWOOD, A. 1998. Visualizing
non-linear vector field topology. IEEE Trans-
actions on Visualization and Computer Grapics
4, 2, 109–116.

[Schumaker and Sorokina 2004a] SCHUMAKER, L., AND SOROKINA, T. 2004.
Quintic spline interpolation on type-4 tetrahe-
dral partitions. Adv. Comput. Math. (preprint).

[Schumaker and Sorokina 2004b] SCHUMAKER, L., AND SOROKINA, T. 2004.
A trivariate box macro element. (preprint).

[Schumaker 1976] SCHUMAKER, L. 1976. Fitting surfaces to
scattered data. Approximation Theory II, 203–
268.

[Schumaker 1984] SCHUMAKER, L. L. 1984. Bounds on the
dimension of spaces of multivariate piecewise
polynomials. Rocky Mountain Journal of Math-
ematics 14, 251–264.

[Schwarze 1990] SCHWARZE, J. 1990. Cubic and quartic roots.
In Graphics Gems, A. Glassner, Ed. Academic
Press, 404–407.

[Stalling et al. 2003] STALLING, D., WESTERHOFF, M., AND

HEGE, H.-C. 2003. Amira — an Ob-
ject Oriented System for Visual Data Anal-
ysis. In Visualization Handbook, Academic
Press (preprint).

[Storer 1992] STORER, J. A., Ed. 1992. Image and text com-
pression, 2nd printing 1995 ed. Kluwer, Dor-
drecht.

[Strothotte and Schlechtweg 2002] STROTHOTTE, T., AND SCHLECHTWEG, S.
2002. Non-Photorealistic Computer Graphics:
Modeling, Rendering, and Animation. Morgan
Kaufmann.

[Szymczak et al. 2001] SZYMCZAK, A., KING, D., AND ROSSIGNAC,
J. 2001. An edgebreaker-based efficient com-
pression scheme for regular meshes. CGTA:

214 BIBLIOGRAPHY

Computational Geometry: Theory and Appli-
cations 20.

[Taubin and Rossignac 1998] TAUBIN, G., AND ROSSIGNAC, J. 1998.
Geometric compression through topological
surgery. ACM Transactions on Graphics 17, 2,
84–115.

[Taubin et al. 1998] TAUBIN, G., GUEZIEC, A., HORN, W., AND

LAZARUS, F. 1998. Progressive forest split
compression. In Proc. SIGGRAPH, 123–132.

[Taubin 1995] TAUBIN, G. 1995. Estimating the tensor of cur-
vature of a surface from a polyhedral approxi-
mation. In Proceedings International Confer-
ence on Computer Vision, 902–907.

[Telea and van Wijk 1999] TELEA, A., AND VAN WIJK, J. 1999. Sim-
plified representation of vector fields. In Proc.
IEEE Visualization ’99, D. Ebert, M. Gross,
and B. Hamann, Eds., 35–42.

[Theisel and Seidel 2003] THEISEL, H., AND SEIDEL, H.-P. 2003. Fea-
ture flow fields. In Data Visualization 2003.
Proc. VisSym 03, 141–148.

[Theisel and Weinkauf 2002] THEISEL, H., AND WEINKAUF, T. 2002. Vec-
tor field metrics based on distance measures of
first order critical points. In Journal of WSCG,
Short Communication, vol. 10, 121–128.

[Theisel et al. 2003a] THEISEL, H., RÖSSL, C., AND SEIDEL, H.
2003. Compression of 2D ’vector fields under
guaranteed topology preservation. In Proc. Eu-
rographics, 333–342.

[Theisel et al. 2003b] THEISEL, H., RÖSSL, C., AND SEIDEL, H.-
P. 2003. Combining topological simplifica-
tion and topology preserving compression for
2d vector fields. In Proc. Pacific Graphics,
419–423.

[Theisel et al. 2003c] THEISEL, H., RÖSSL, C., AND SEIDEL, H.-P.
2003. Using feature flow fields for topological

BIBLIOGRAPHY 215

comparison of vector fields. In Proc. Vision,
Modeling and Visualization, 521–528.

[Theisel et al. 2004a] THEISEL, H., RÖSSL, C., AND SEIDEL, H.-
P. 2004. Topology preserving thinning of vec-
tor fields on triangular meshes. In Advances
in Multiresolution for Geometric Modelling,
N. A. Dodgson, M. S. Floater, and M. A. Sabin,
Eds. Springer, Heidelberg, 353–366.

[Theisel et al. 2004b] THEISEL, H., RÖSSL, C., ZAYER, R., AND

SEIDEL, H.-P. 2004. Normal based estimation
of the curvature tensor for triangular meshes. In
Proc. Pacific Graphics.

[Theisel 2002] THEISEL, H. 2002. Designing 2D vector fields
of arbitrary topology. Computer Graphics Fo-
rum (Eurographics 2002) 21, 3, 595–604.

[Theußl et al. 2003] THEUSSL, T., MÖLLER, T., HLADUVKA, J.,
AND GRÖLLER, M. 2003. Reconstruction
issues in volume visualization. In Data Vi-
sualization: The State of the Art, F. Post,
B. Hamann, and G.-P. Bonneau, Eds., 109–126.

[Thévenaz and Unser 2001] THÉVENAZ, P., AND UNSER, M. 2001. High-
quality isosurface rendering with exact gradi-
ents. In ICIP’01, 854–857.

[Touma and Gotsman 1998] TOUMA, C., AND GOTSMAN, C. 1998. Tri-
angle mesh compression. In Proce. Graphics
Interface, 26–34.

[Tricoche et al. 2000] TRICOCHE, X., SCHEUERMANN, G., AND

HAGEN, H. 2000. A topology simplification
method for 2D vector fields. In Proc. IEEE Vi-
sualization 2000, 359–366.

[Tricoche et al. 2001] TRICOCHE, X., SCHEUERMANN, G., AND

HAGEN, H. 2001. Continuous topology sim-
plification of planar vector fields. In Proc. Vi-
sualization 01, 159 – 166.

216 BIBLIOGRAPHY

[Trotts et al. 2000] TROTTS, I., KENWRIGHT, D., AND HAIMES,
R. 2000. Critical points at infinity: a missing
link in vector field topology. In Proc. NSF/DoE
Lake Tahoe Workshop on Hierarchical Approx-
imation and Geometrical Methods for Scientific
Visualization.

[Turk and O’Brien 2002] TURK, G., AND O’BRIEN, J. 2002. Model-
ing with implicit surfaces that interpolate. ACM
Transactions on Graphics 21, 4, 855–873.

[Tutte 1962] TUTTE, W. 1962. A census of planar triangu-
lations. Can. J. Math. 14, 21–38.

[Várady and Benkő 2000] VÁRADY, T., AND BENKŐ, P. 2000. Reverse
engineering b-rep models from multiple point
clouds. In Geometric Modeling and Process-
ing, 3–12.

[Várady et al. 1997] VÁRADY, T., MARTIN, R., AND COX, J. 1997.
Reverse engineering of geometric models — an
introduction. Computer Aided Design 29, 255–
268.

[Vlachos et al. 2001] VLACHOS, A., PETERS, J., BOYD, C., AND

MITCHELL, J. L. 2001. Curved PN triangles.
In Proceedings of the Symposium on Interactive
3D graphics, 159–166.

[Vorsatz et al. 2001] VORSATZ, J., RÖSSL, C., KOBBELT, L., AND

SEIDEL, H.-P. 2001. Feature sensitive remesh-
ing. In Proc. Eurographics, 393–401.

[Vorsatz et al. 2003a] VORSATZ, J., RÖSSL, C., AND SEIDEL, H.-P.
2003. Dynamic remeshing and applications. In
Proc. ACM Symposium on Solid Modeling and
Applications, 167–175.

[Vorsatz et al. 2003b] VORSATZ, J., RÖSSL, C., AND SEIDEL, H.-
P. 2003. Dynamic remeshing and applications.
Journal of Computing and Information Science
in Engineering 3, 4, 338–344.

BIBLIOGRAPHY 217

[Wald and Slusallek 2001] WALD, I., AND SLUSALLEK, P. 2001. State
of the art in interactive ray tracing. In STAR,
EUROGRAPHICS 2001, 21–42.

[Wald 2004] WALD, I. 2004. Realtime Ray Tracing
and Interactive Global Illumination. PhD
thesis, Computer Graphics Group, Saarland
University. Available at http://www.mpi-
sb.mpg.de/∼wald/PhD/.

[Watanabe and Belyaev 2001] WATANABE, K., AND BELYAEV, A. 2001. De-
tection of salient curvature features on polygo-
nal surfaces. In Proc. Eurographics, 385–392.

[Welch and Witkin 1994] WELCH, W., AND WITKIN, A. 1994. Free–
Form shape design using triangulated surfaces.
In Proceedings of SIGGRAPH ’94, A. Glassner,
Ed., 247–256.

[Westermann et al. 2001] WESTERMANN, R., JOHNSON, C., AND

ERTL, T. 2001. Topology-preserving smooth-
ing of vector fields. IEEE Transactions on Vi-
sualization and Computer Graphics 7, 3, 222–
229.

[Winkenbach and Salesin 1994] WINKENBACH, G., AND SALESIN, D. H.
1994. Computer-generated pen-and-ink illus-
tration. In Proc. SIGGRAPH, 91–98.

[Winkenbach and Salesin 1996] WINKENBACH, G., AND SALESIN, D. H.
1996. Rendering parametric surfaces in pen-
and-ink. In Proc. SIGGRAPH, 469–476.

[Wischgoll and Scheuermann 2001] WISCHGOLL, T., AND SCHEUERMANN, G.
2001. Detection and visualization of closed
streamlines in planar flows. IEEE Transactions
on Visualization and Computer Graphics 7, 2,
165–172.

[Woo et al. 1997] WOO, M., NEIDER, J., DAVIS, T., AND

SHREINER, D. 1997. OpenGL Programming
Guide. Third Edition. Addison-Wesley.

218 BIBLIOGRAPHY

[Worsey and Farin 1987] WORSEY, A., AND FARIN, G. 1987. An n-
dimensional clough-tocher interpolant. Const.
Approx. 3 2, 99–110.

[Zeilfelder 2002] ZEILFELDER, F. 2002. Scattered data fitting
with bivariate splines. In Tutorials on Multires-
olution and Geometric Modelling, Springer,
243–286.

[Zorin and Hertzmann 2000] ZORIN, D., AND HERTZMANN, A. 2000.
Illustrating smooth surfaces. In Proc. SIG-
GRAPH, 517–526.

Curriculum Vitae – Lebenslauf

Curriculum Vitae
1974 born in Auerbach in der Oberpfalz, Germany
1980-1984 Grundschule Auerbach
1984-1993 Gymnasium Pegnitz
1993-1994 Military service in Oberviechtach and Amberg
1994-1999 Study of Computer Science, University of Erlangen-Nuremberg, Germany
1999 Diploma (Diplom-Informatiker, Dipl.-Inf.)
1999-2005 Ph.D. Student at the Max-Planck-Institut für Informatik, Saarbrücken, Germany

Lebenslauf
1974 geboren in Auerbach in der Oberpfalz
1980-1984 Grundschule Auerbach
1984-1993 Gymnasium Pegnitz
1993-1994 Grundwehrdienst in Oberviechtach and Amberg
1994-1999 Informatikstudium an der Universität Erlangen-Nürnberg
1999 Abschluss als Diplom-Informatiker (Dipl.-Inf.)
1999-2005 Promotion am Max-Planck-Institut für Informatik, Saarbrücken

