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� Real�Time Applications and

Modern Hardware Architec�

tures

A real�time system is one in which the correctness of
the system depends not only on the logical results� but
also on the time at which the results are produced�
Hard real�time systems are those where it is absolutely
imperative that responses occur within the speci�ed
deadlines� Examples of areas where real�time systems
are used include ����	 process control� nuclear power
plants� agile manufacturing� intelligent vehicle high�
way systems� avionics� air tra
c control� telecommuni�
cations �the information super highway�� multimedia�
real�time simulation� virtual reality� medical applica�
tions �e�g�� telemedicine and intensive care monitoring��
and defense applications �e�g�� command� control and
communications�� The market for real�time systems
and real�time software is huge� and real�time technol�
ogy is becoming more and more pervasive� e�g�� in a
�

� Opel Omega� �� microprocessors are used for var�
ious functions and many of them have real�time tasks
like anti locking system� air bag� and motor control� in
a Mercedes�Benz�S�Klasse there are up to �� micropro�
cessors�

Among the typical application areas are many safety
critical� where a failure of the system may lead to se�
vere damage and�or loss of life� Such real�time systems
necessitate a timing validation� usually referred to as
schedulability analysis or scheduling analysis� A sys�
tem is said to be schedulable if it can be shown that
all timing requirements will be met� A real�time sys�
tem is often structured as a set of processes with dead�
lines whereby execution can be distributed over multi�
ple processors� There exist many results and analysis
methods for real�time scheduling� but these analysis
methods require that the WCET �Worst Case Execu�
tion Time� of each task �subtask� critical section� ����
is known�

However� the achievements of modern computer
architectures ��� like cache memories and processor
pipelines that made possible the tremendous perfor�
mance increase in recent years complicate the predic�
tion of sharp WCETs� The state of a cache depends
on the execution history� This means that the cache
behavior of the execution of a reference to an instruc�
tion or data could be in�uenced by instructions that
are very far away in the program text� in other mod�
ules� in libraries� or even in other programs including
the operating system�

In the presence of caches� methods to predict the
WCET from execution time measurements of programs
or tasks like software monitoring� the dual loop bench�
mark approach� direct execution time measurement
with a logic analyzer� or hardware simulation are not
generally applicable as additional instructions to mea�
sure the execution time may change the cache behavior
and a worst case input that takes the cache behavior
into account is usually not known�

Analysis methods that do not consider the cache are
not able to provide tight WCET estimations for cached
systems� The typical worst case assumption is that
all accesses miss the cache�� This is an overly pes�
simistic assumption which leads to a waste of hard�
ware resources in order to guarantee the meeting of all
deadlines� This is especially undesirable for mass prod�
ucts like embedded systems in automobiles and mobile
phones or systems that require very high computing
performance where slight additional computing perfor�
mance requirements can lead to immense increases in
costs�

In this paper� we present an analysis method that is
based on the theory of abstract interpretation and is
capable of predicting tight bounds on the cache behav�
ior of typical programs�

�Hennessy and Patterson ��� describe typical values for �rst
level caches in ���� workstations� Hit time �	
 clock cycles �nor�
mally �
� Miss penalty �	�� clock cycles� In more modern CPU
designs the miss penalty can be even higher�
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� Overview

In the following Section we brie�y sketch the underly�
ing theory of abstract interpretation and present the
program analyzer generator PAG�

Cache memories are brie�y described in Section ��
In Section � we give a semantics for programs that
re�ects only memory accesses �to �xed addresses� and
their e�ects on cache memories� and we present the
must analysis that computes a set of memory blocks
that are always in the cache and the may analysis that
computes a set of memory blocks that may be in the
cache and describe how the results of the analyses can
be interpreted�

The behavior of memory references within loops and
recursive procedures can be analyzed with interpro�
cedural analysis methods� In Section � existing ap�
proaches are discussed and a new approach is pre�
sented� An example is given in Section �� Section �
introduces an additional improvement and Section 

describes extensions to data and combined caches�

In Section �� we present and discuss the results of
our practical experiments�

� Program Analysis by Ab�

stract Interpretation

Program analysis is a widely used technique to deter�
mine runtime properties of a given program without
actually executing it� Such information is used for ex�
ample in optimizing compilers ���� to enable code im�
proving transformations�

A program analyzer takes a program as input and
computes some program properties� Most of the in�
teresting properties are undecidable� though� Hence�
correctness and completeness of the computed infor�
mation is not achievable together� Program analysis
makes no compromise on the correctness side� the com�
puted information has to be reliable for enabling op�
timizing transformations� It thus can�t achieve com�
pleteness� The quality of the computed information�
usually called its precision� however� should be as good
as possible�

There is a well developed theory of static program
analysis called abstract interpretation ���� With this
theory� correctness of a program analysis can be sys�
tematically derived� According to this theory a pro�
gram analysis is determined by an abstract semantics�

Usually the meaning of a language is given as func�
tions for the statements of the language computing over
a concrete domain� For such a semantics� an abstract
version consists of a new simpler abstract domain and
simpler abstract functions which de�ne the abstract

meaning for every program statement�

The program analyzer generator PAG ��� o�ers the
possibility to generate a program analyzer from a de�
scription of the abstract domain and the abstract se�
mantic functions in two high level languages� one for
the domains and the other for the semantic functions�
Domains can be constructed inductively starting from
simple domains using operators like constructing power
sets and function domains� The semantic functions
are described in a functional language which combines
high expressiveness with e
cient implementation� Ad�
ditionally the user has to supply a join function com�
bining two domain values into one� This function is
applied whenever a point in the program has two �or
more� possible execution predecessors�

� Cache Memories

A cache can be characterized by three major parame�
ters	

� capacity is the number of bytes it may contain�

� line size �also called block size� is the number of
contiguous bytes that are transferred from mem�
ory on a cache miss� The cache can hold at most
n � capacity�line size blocks�

� associativity is the number of cache locations
where a particular block may reside�
n�associativity is the number of sets of a cache�

If a block can reside in any cache location� then the
cache is called fully associative� If a block can reside in
exactly one location� then it is called direct mapped� If a
block can reside in exactly A locations� then the cache
is called A�way set associative� The fully associative
and the direct mapped caches are special cases of the
A�way set associative cache where A � n and A � �
rsp�

In the case of an associative cache� a cache line has
to be selected for replacement when the cache is full
and the processor requests further data� This is done
according to a replacement strategy� Common strate�
gies are LRU �Least Recently Used�� FIFO �First In
First Out�� and random�

The set where a memory block may reside in the
cache is uniquely determined by the address of the
memory block� i�e�� the behavior of the sets is inde�
pendent of each other� The behavior of an A�way set
associative cache is completely described by the behav�
ior of its n�A fully associative sets��

�This holds also for direct mapped caches where A � ��
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For the sake of space� we restrict our description to
the semantics of fully associative caches with LRU re�
placement strategy� More complete descriptions that
explicitly describe direct mapped and A�way set asso�
ciative caches can be found in ��� ���

� Cache Semantics

In the following� we consider a �fully associative� cache
as a set of cache lines L � fl�� � � � � lng� and the store
as a set of memory blocks S � fs�� � � � � smg�
To indicate the absence of any memory block in a cache
line� we introduce a new element I � S� � S � fIg�

De�nition � �concrete cache state�
A �concrete� cache state is a function c 	 L� S��
Cc denotes the set of all concrete cache states�

If c�lx� � sy for a concrete cache state c� then x de�
scribes the relative age of the memory block according
to the LRU replacement strategy and not the physical
position in the cache hardware�
The update function describes the side e�ect on the

cache of referencing the memory� The LRU replace�
ment strategy is modeled by putting the most recently
referenced memory block in the �rst position l�� If the
referenced memory block sx is in the cache already�
then all memory blocks in the cache that have been
more recently used than sx increase their relative age
by one� i�e�� they are shifted by one position to the next
cache line� If the memory block sx is not in the cache
already� then all memory blocks in the cache are shifted
and the �oldest�� i�e�� least recently used memory block
is removed from the cache�

De�nition � �cache update� A cache update func�
tion U 	 Cc�S � Cc describes the new cache state for
a given cache state and a referenced memory block�

Updates of fully associative caches with LRU replace�
ment strategy are modeled as in Figure ��

��� Control Flow Representation

We represent programs by control �ow graphs consist�
ing of nodes and typed edges� The nodes represent
basic blocks�� We assume that for each basic block� the

�A basic block is a sequence �of fragments
 of instructions in
which control �ow enters at the beginning and leaves at the end
without halt or possibility of branching except at the end� For
our cache analysis� it is most convenient to have one memory ref�
erence per control �ow node� Therefore� our nodes may represent
the di�erent fragments of machine instructions that access mem�
ory� For non�precisely determined addresses of data references�
one can use a set of possibly referenced memory blocks�
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Figure �	 Update of a concrete fully associative �sub��
cache�

sequence of references to memory is known�� i�e�� there
exists a mapping from control �ow nodes to sequences
of memory blocks	 L 	 V � S��
We can describe the working of a cache with the help

of the update function U� Therefore� we extend U to
sequences of memory references	 U�c� hsx� � � � � � sxy i� �
U�� � � �U�c� sx��� � � � � sxy��
The cache state for a path �k�� � � � � kp� in the control

�ow graph is given by applying U to the initial cache
state cI that maps all cache lines to I and the concate�
nation of all sequences of memory references along the
path	 U�cI �L�k��� ��� �L�kp���

��� Abstract Semantics

The domain for our abstract interpretation consists of
abstract cache states	

De�nition � �abstract cache state� An abstract
cache state �c 	 L � �S maps cache lines to sets of
memory blocks� �C denotes the set of all abstract cache
states�

We will present two analyses� The must analysis
determines a set of memory blocks that are in the cache
at a given program point upon any execution� The
may analysis determines all memory blocks that may
be in the cache at a given program point� The latter
analysis is used to guarantee the absence of a memory
block in the cache�
The analyses are used to compute a categorization

for each memory reference that describes its cache be�
havior� The categories are described in Table ��

�This is appropriate for instruction caches and can be too
restricted for data caches and combined caches� See ��� �� for
weaker restrictions�
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Category Abb� Meaning

always hit ah The memory reference will
always result in a cache hit�

always miss am The memory reference will
always result in a cache miss�

not classi�ed nc The memory reference could
neither be classi�ed as ah
nor am�

Table �	 Categorizations of memory references�
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Figure �	 Update of an abstract fully associative �sub��
cache�

The abstract semantic functions describe the e�ects
of a control �ow node on an element of the abstract
domain� The abstract cache update function �U for
abstract cache states is a canonical extension of the
cache update function U to abstract cache states�

To combine the information from di�erent paths
through the control �ow graph to a node� join�functions
are used� They combine the abstract cache states on
all control �ow nodes with at least two� predecessors�

De�nition � �join function� A join function �J 	
�C � �C �� �C combines two abstract cache states�

��� Must Analysis

To determine if a memory block is de�nitely in the
cache we use abstract cache states where the positions
of the memory blocks in the abstract cache state are
upper bounds of the ages of the memory blocks� �c�lx� �
fsy� � � � � szg means the memory blocks sy� � � � � sz are in
the cache� sy� � � � sz will stay in the cache at least for
the next n�x references to memory blocks that are not
in the cache or are older than sy� � � � � sz� whereby sa is
older than sb means	 �lx� ly 	 sa � �c�lx�� sb � �c�ly�� x �
y�

We use the abstract cache update function depicted in
Figure ��

�Our join functions are associative� On nodes with more than
two predecessors� the join function is used iteratively�
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Figure �	 Join for the must analysis�

The join function is similar to set intersection� A
memory block only stays in the abstract cache� if it
is in both operand abstract caches states� It gets the
oldest age� if it has two di�erent ages �see Figure ���

The solution of the must analysis computed by the
PAG generated analyzers is interpreted as follows	 Let �c
be an abstract cache state at a control �ow node k that
references a memory block sx� If sx � �c�ly� for a cache
line ly then sx is de�nitely in the cache� A reference to
sx is categorized as always hit �ah��

��� May Analysis

To determine� if a memory block sx is never in the
cache� we compute the set of all memory blocks that
may be in the cache� We use abstract cache states
where the positions of the memory blocks in the ab�
stract cache state are lower bounds of the ages of the
memory blocks� �c�lx� � fsy� � � � � szg means the mem�
ory blocks sy� � � � � sz may be in the cache� A mem�
ory block sw � fsy� � � � � szg will be removed from the
cache after at most n � x � � references to mem�
ory blocks that are not in the cache or are older or
the same age than sw� if there are no memory refer�
ences to sw� sa is older or same age than sb means	
�lx� ly 	 sa � �c�lx�� sb � �c�ly�� x 	 y�

We use the following join function	 The join function
is similar to set union� If a memory block s has two
di�erent ages in the two abstract cache states then the
join function takes the youngest age �see Figure ���

The solution of the may analysis computed by the
PAG generated analyzers is interpreted as follows	 Let
�c be an abstract cache state at a control �ow node k
that references a memory block sx� If sx is not in �c�ly�
for an arbitrary ly then it is de�nitely not in the cache�
A reference to sx is categorized as always miss �am��
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Figure �	 Join for the may analysis�

��� Termination of the Analysis

There are only a �nite number of cache lines and for
each program a �nite number of memory blocks� This
means the domain of abstract cache states �c 	 L� �S

is �nite� Hence� every ascending chain is �nite� Ad�
ditionally� the abstract cache update functions �U and
the join functions �J are monotone� This guarantees
that our analysis will terminate�

� Analysis of Loops and Recur�

sive Procedures

Loops and recursive procedures are of special interest�
since programs spend most of their runtime there�

A loop often iterates more than once� Since the exe�
cution of the loop body usually changes the cache con�
tents� it is useful to distinguish the �rst iteration from
others�

For our analysis of cache behavior we treat loops
as procedures to be able to use existing methods for
interprocedural analysis �see Figure ���

proc loopL���
��� if P then

while P do BODY
BODY �
 loopL��� ���

end� end
���

���
loopL��� ���
���

Figure �	 Loop transformation�

In the presence of �recursive� procedures� a memory
reference can be executed in di�erent execution con�

texts� An execution context corresponds to a path in
the call graph of the program�
The interprocedural analysis methods di�er in which

execution contexts are distinguished for a memory ref�
erence within a procedure� Widely used is the callstring
approach �
��
The applicability of this approach to cache behavior

prediction is limited ����
To get more precise results for the cache behavior

prediction� we have developed the VIVU approach
which has been implemented with the mapping mech�
anism of PAG as described in ���� Paths through the call
graph that only di�er in the number of repeated passes
through a cycle are not distinguished� It can be com�
pared with a combination of virtual inlining of all non
recursive procedures and virtual unrolling of the �rst
iterations of all recursive procedures including loops�

The results of the callstring���� callstring���� and the
VIVU approach are compared in Section ���

� Example

We consider must and may analyses for a fully asso�
ciative data cache of � lines for the following program
fragment of a loop� where ��x�� stands for a construct
that references variable x	

while ��e�� do ��b��� ��c��� ��a��� ��d��� ��c�� end

The control �ow graph and the result of the analyses
with VIVU� are shown in Figure �� We assume that
each variable �ts exactly into one cache line� The nodes
of the control �ow graph are numbered � to �� and
each node is marked with the variable it accesses� For
the analysis� we assume the loop has been implicitly
transformed into a procedure according to Figure ��

Each node is marked with the abstract cache states
computed by the PAG�generated analyzer immediately
before the abstract cache states are updated accord�
ing to the memory references� The loop entry edge is
marked with the incoming abstract cache states� The
loop exit edge is marked with the outgoing abstract
cache states�

	 Heuristics to Bound the

Number of Cache Misses

For memory references that can neither be classi�ed
as always hit nor as always miss one can use a sim�
ple heuristics to determine a safe upper bound on the
number of cache misses�

�Here� the analyses with callstring��
 yield the same results�
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mustf �mayf fag fcg fbg feg

musto�mayo fag fcg fbg feg

mustf �mayf fdg fag fcg fbg

musto�mayo fdg fag fcg fbg

mayf fb�eg fd�zg fg fg

mustf f g f g fb�dg fe�zg

musto�mayo fcg fdg fag fbg

mayf feg fb�d�zg fg fg

mustf feg f g f g fb�d�zg

musto�mayo feg fcg fdg fag

mayf fbg feg fd�zg fg

mustf fbg feg f g fd�zg

musto�mayo fbg feg fcg fdg

mayf fcg fbg feg fd�zg

mustf fcg fbg feg fg

musto�mayo fcg fbg feg fdg

may fb�eg fd�zg fg fg

must f g f g fb�dg fe�zg

EXIT

ENTRY

may feg fb�c�d�zg fag f g

must feg f g f g fdg

�Node�Variable
 �rst iteration other iterations

���e
� �
�b
 always hit always miss
���c
 always miss always hit

���a
� ���d
 always miss always miss
���c
 always hit always hit

Figure �	 Must and may analysis for a fully associative
data cache with VIVU�must andmay are the abstract
cache states for the must and the may analysis� mustf
and mayf are the abstract cache states for the �rst
loop iteration� musto andmayo are the abstract cache
states for all other iterations� The interpretation of the
abstract cache states is given in the table above�

For each memory reference classi�ed as nc we com�
pute the set of competingmemory blocks� i�e�� the mem�
ory blocks that are in the same fully associative set in
the abstract cache state of the may analysis� For in�
stance� if the competing memory blocks reside in less
than A �� level of associativity� memory blocks� then
all references to the memory block in the given con�
text will result in at most one cache miss� Generally�
an upper bound for cache misses of the references to
the memory block is given by one plus the maximal
number of possible sequences of length A of references
to pairwise disjoint competing memory blocks� To de�
termine this bound is a nontrivial problem� We use
simple heuristics �described in ���� to compute a safe

approximation to the upper bound�


 Data Caches and Combined

Caches

In ���� methods are described to statically determine
the addresses of memory references to procedure pa�
rameters or local variables by a static stack level sim�
ulation ����� This allows to use our analysis to pre�
dict the behavior of data caches or combined instruc�
tion�data caches for programs that use only scalar
variables� ��� describes methods to handle writes to
caches for common cache organizations �write through
and write back with write allocate or no write allocate�
as well as write bu�ers�
��� presents an analysis that allows to determine the

persistence of memory blocks in the cache� ��� gener�
alizes the persistence analysis to sets of possibly ref�
erenced memory locations� e�g�� arrays� This general�
ization determines memory locations that survive in
the cache thus providing e�ective and e
cient means
to compute an upper bound of the number of possible
cache misses� Furthermore� it is examined how data
dependence analysis and program restructuring meth�
ods to increase data locality can be used to determine
worst case bounds on the number of cache misses�

�� Practical Experiments

For reasons of simplicity� we restrict our practical ex�
periments to the analysis of instruction caches�
The cache analysis techniques are implemented in

a PAG generated analyzer that gets as input the con�
trol �ow graph of a program and an instruction cache
description and produces a categorization cat of the
instruction�context pairs of the input program� A
context represents the execution stack� i�e�� the func�
tion calls and loops along the corresponding path in
the control �ow graph to the instruction� It is repre�
sented as a sequence� of �rst and recursive function
calls �call ff � call fr� and �rst and other executions of
loops �loop lf � loop lo� for the functions f and �virtu�
ally� transformed loops l of a program� INST is the set
of all instructions inst in a program� CONTEXT is the
set of all execution contexts context of a program� IC
is the set of all instruction�context pairs ic�

CONTEXT � fcall ff � call fr� loop lf � loop log
�

IC � INST� CONTEXT

cat 	 IC � fah� am� ncg

	For callstring��
 the sequence has a maximal length of one�
For callstring��
 the sequence is empty�

�



The frontend to the analyzer reads a Sun SPARC ex�
ecutable in a�out format� The Sun SPARC is a RISC
architecture with pipelined instruction execution� It
has a uniform instruction size of four bytes� Our imple�
mentation is based on the EEL library of the Wisconsin
Architectural Research Tool Set �WARTS��
The objective of our work is to improve the WCET

estimation of programs on computer systems with
caches� Besides the architecture� the execution time
of a program depends on the program path� i�e�� the
sequence of instructions that are executed� But the
program path is usually dependent on the program in�
put and cannot generally be determined in advance�
Therefore� a program path analysis is part of a WCET
analysis� For example� with the help of user annota�
tions� like maximal iteration counts of loops� an archi�
tecture dependent worst case execution pro�le can be
determined that gives a conservative approximation to
the worst case execution path�
The worst case execution pro�le allows to compute

how often each instruction�context pair is maximally
encountered� Combined with the categorizations of our
cache analysis� the overall number of cache hits and
cache misses can be estimated �see Figure ���
In our experiments� we have circumvented the pro�

gram path analysis problem and combine the catego�
rizations cat with �exact execution pro�les instead of
worst case execution pro�les �see Figure ��� This allows
us to assess the e�ectiveness of our analysis without the
in�uence of possibly pessimistic path analyses� The
pro�lers that produce the pro�les are produced with
the help of qpt� �Quick program Pro�ler and Tracer�
that is part of the WARTS distribution� A pro�ler for
a program computes an execution pro�le pro�le� i�e��
the execution counts for the instruction�context pairs�

pro�le 	 IC � N�

Name Description Inst�
matmult ��x�� matrix multiplication ���
ndes� data encryption ���
matsum� ���x��� matrix summation ���
dhry Dhrystone integer benchmark ���
stats two arrays sum� mean� ���

variance� standard deviation�
and linear correlation

fft fast Fourier transformation ����
djpeg JPEG decompression ����
lloops Livermore loops in C ����
avl� inserts and deletes ���� ���

elements in an AVL tree
�Worst case input data

Table �	 Test set of C programs with number of in�
structions�

For the experiments we use parts of the program
suites of Frank M!uller� the djpeg program of Yau�Tsun

Steven Li� and some additional programs �see Table ���
For some programs� there exist worst case inputs� so
that our execution pro�les are worst case execution
pro�les� The programs are compiled with the GNU
C compiler version ����� under SunOS ����� with �O��
and �if applicable� the FDLIBM �Freely Distributable
LIBM� library of SunPro version ����
The programs fft� stats and lloops use arithmetic

library functions� These functions are more or less
structured into treatment of special cases� normaliza�
tion� computation� and �nal rounding� Not all parts
are necessarily executed when the function is called�
This uncertain execution path typically leads to rela�
tively many occurrences of nc in our categorizations�
The executable of lloops consists of more than ���

loops that are often deeply nested� This program struc�
ture leads to a very high number of distinguished exe�
cution contexts with the VIVU approach�
The AVL tree as implemented in avl� is a height

balanced binary tree� Every insert or delete operation
may lead to a series of recursive calls for re�balancing�
The code of the insert and delete operations consists
of many cases for the di�erent re�balancing operations
called rotations� Such a program structure seems to be
rather typical for the handling of many dynamic data
structures�

callstring��
 callstring��
 VIVU
Name ah am nc ah am nc ah am nc
matmult ��� �� 
� ��� 
� 
� ��� �� �
ndes ��� �� ��� ��� �� ��� ���� �
� ��
matsum �� �� �� ��� 
� �� 
�
 �� �
dhry 
�� �� �
� �
� �� ��� ��� ��� ���
stats ��� �� �
� ��
 
� 
�� ���� �
� ���
fft �
�� ��� ��
 

�
 
�� �
� ��
�� �
�� ����
djpeg �

� �� ��� 

�� ��� ��� ����� ��
� ����
lloops ��
� 

 ��
� 
���� ���� ���� ������ ��

� �����
avl� ��� �� ��� ���
 �
� ��� 
��� 
�� �
��

Table �	 The numbers of occurrences of ah� am� and nc

in the categorizations for a �KB ��way set associative
instruction cache with �� byte linesize�

Table � shows the distribution of ah� am� and nc

in the categorizations for the test programs for call�
string���� callstring���� and VIVU for one selected
cache con�guration� The sum of ah� am� and nc in
the categorizations is the number of distinguished in�
struction�context pairs� It is a measure for the com�
plexity of the analysis� In our current implementation�
the categorization for a given cache con�guration can
be computed within seconds on a SUN SPARCstation
�� for most of our test programs� but the computation
for lloops with VIVU requires about � minutes� In
our implementation� there is room for improvements�
though�
To give a more expressive presentation of the results
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Figure �	 The structure of the analysis�

of our experiments than bounds on cache hit ratios� we
assume an idealized virtual hardware that executes all
instructions that result in an instruction cache hit in
one cycle and all instructions that result in an instruc�
tion cache miss in ���
The cache behavior of the test programs for di�er�

ent cache con�gurations is computed by simulating the
cache for the program trace� The cache simulation
is always started with the empty cache� and we as�
sume uninterrupted execution� For technical reasons�
instructions in functions from dynamic link libraries	

are not traced and their e�ects on the cache are there�
fore ignored� From the number of hits and misses in
the trace we compute the execution time ET of our
idealized virtual hardware�
With our categorization and heuristics an upper and

a lower bound of the execution time can be computed
by combining the pro�les with the results of our anal�
yses� An upper bound of the execution time is given if
we count all instructions in the pro�le as misses that
cannot be determined from the categorization as cache
hits� A lower bound of the execution time is given if we
count all instructions in the pro�le as hits that cannot
be determined from the categorization as cache misses�
The upper and lower bounds of the test programs for
various cache con�gurations are shown in Figure � in
percent of the execution time ET�
Figure � can be interpreted as follows	

� The VIVU approach generally leads to the most
precise predictions�


In our case� these are the calls to IO routines and timers�

� Conditionally executed code� e�g� as found in the
arithmetic library functions or in avl�� can lead
to less precise predictions which result from many
nc in the categorizations�

� There can be a wide variation of the quality of the
prediction depending on the cache con�guration�

� For all test programs our method �especially with
VIVU� gives much better results than naive meth�
ods which count all memory references as misses
for a WCET estimation� and as hits for a BCET
estimation�

�� Conclusion

We have described semantics based analysis methods
by abstract interpretation that allow to predict the in�
trinsic behavior of programs for various types of one
level caches and processor pipelines� The cache an�
alyzers have been implemented� The applicability of
our methods has been shown with the results of our
practical experiments� Our approach has many advan�
tages	

� The theory of abstract interpretation supports
correctness proofs for the analysis and provides
e
cient implementation methods�

� The cache analyzers are generated by the program
analyzer generator PAG from very concise speci��
cations�

�
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The cache parameters �size � level of associativity� of the x axis tic marks� The linesize is �� bytes�
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Figure �	 Upper �UB� and lower bounds �LB� for the execution time for di�erent cache parameters in " of
execution time for callstring���� callstring���� and VIVU�






� It is possible to trade time for precision� but even
with the VIVU approach our implementation of
the analyses is quite fast�

� The newly developed VIVU approach makes it
possible to predict the cache behavior within tight
bounds for many programs and cache con�gura�
tions�

� We directly analyze executables and there are no
special compilers or linkers required�

� Our current implementation supports the SPARC
architecture� Other architectures can be sup�
ported by supplying additional front ends to our
analyzers�

� No special input of a skilled user is required to
tune for acceptable results� This makes it feasible
to use our analyses in an automatic schedulability
analysis�

� The cache and the pipeline analysis can be natu�
rally integrated ����

� The analyses are extensible to accommodate fur�
ther cache designs like multilevel caches� wrap
around line �ll� or pseudo associative caches�
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