Complexity and Correctness
of a Super-Pipelined Processor

Dissertation

zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften
der Naturwissenschatftlich-Technischen Fakiglh
der Universiat des Saarlandes

Jochen Preil}

preiss@de.ibm.com

Saarbiicken, April 2005

Tag des Kolloquiums:
Dekan:

Vorsitzender des Bfungsausschusses:
Erstgutachter:
Zweitgutachter:

akademischer Beisitzer:

29. April 2005
Prof. Dr. drg Eschmeier

Prof. Dr. Gerhard Weikum
Prof. Dr. Wolfgang J. Paul
Priv. Doz. Dr. Silvia M. Mler

Dr. Sven Beyer

Out Out!!
You demons of stupidity!!
— Dogbert

Danke

Diesen Abschnitt riachte ich all denen widmen, die zum Gelingen dieser Arbeit bei-
getragen haben.

Zuallererst nichte ich meinen Eltern daf danken, dass sie mich in allen Phasen mei-
ner Ausbildung untergétzt haben und mir gerade in schwierigeren Zeiten stets ein
Ruckhalt waren.

Mein ganz besonderer Dank gilt auch Herrn Prof. Paublie Vergabe dieses interes-
santen und herausfordernden Themas limdiie wissenschaftliche Untetgzung.

Bei Christian Jacobi wchte ich mich fir das Korrekturlesen dieser Arbeit und die
vielen Vorschhge, die mir geholfen haben, diese Arbeit immer weiter zu verbessern,
bedanken.

Meinen Freunden von der Uni Werner Backes, Christoph Berg, Beser, Mark
Hillebrand, Thomas In der Rieden, Michael Klein und Dirk Leinenbadgictime ich
danken @r die fruchtbaren Diskussionen und das gute Klimapggrt durch Tisch-
fuBball, Skat- und Doppelkopf-Abende und das Verschonen meire=nRa

Meinen Kollegen bei IBM, insbesonderedric Lichtenau und Thomas Bfer, gilt
mein Dank f@ir ihr Verstindnis und die Unter§tzung gerade in der letzten Phase mei-
ner Dissertation.

Abstract

This thesis introduces the DLX, a super-pipelined processor with variable cycle
time. The cycle time of the DLX, may be as low as 9 gate delays (including 5
gate delays for registers), which is assumed to be a lower bound for the taye.

For the parts of the DLX, that significantly differ form previous implementations
correctness proofs are provided. Formulas are developed whichutemgstrictions

to the parameters of the DLX, e.g., the maximum number of reservation station
entries for a given cycle time. The formulas also compute what modifications to the
base design have to be made in order to realize a certain cycle time and wihgtdce

is on the number of pipeline stages. This lays the foundation for computing the time
per instruction of the DLX . for a given benchmark and different cycle times in future
work in order to determine the “optimum?” cycle time.

Kurzzusammenfassung

In dieser Arbeit wird die DLX; eingefihrt, ein super-gepipelineter Prozessor mit va-
riabler Zykluszeit. Die Zykluszeit der DLX, kann bis auf 9 Gatter-Delays (inklusive
5 Gatter-Delaysifr Register) reduziert werden, was als untere Schrainkdié Zy-
kluszeit angesehen wirdilFdie Teile der DLX; ., die sich signifikant von bisherigen
Implementierungen unterscheiden, werden Korrektheits-Beweise gel@ésweite-
ren werden Formeln entwickelt, die Besghkungeniir die Parameter der DL wie
zum Beispiel die maximale Anzahl von Reservation Station Bgen fir eine gege-
bene Zykluszeit berechnen. Die Formeln errechnen ausserdenevivtdifikationen
am Basis-Design notwendig sind, um eine bestimmte Zykluszeit zu erreicklenal-
chen Einfluss dies auf die Anzahl der Pipeline-Stufen hat. Damit wird diedage
gelegt, um als zuknftige Arbeit die beitigte Zeit pro Instruktion der DLX,; fur
einen gegebenen Benchmark bei verschiedenen Zykluszeiten zzhéees und da-
mit die “optimale” Zykluszeit zu bestimmen.

\Y

Extended Abstract

In order to increase the performance of a processor regardingifisbenchmark one
can either decrease the cycle time of the processor or the CPI (cyclasaction)
that the processor needs for the benchmark. Usual ways to detneaSeI are, e.g.,
pipelining, out-of-order execution, branch prediction, or supelasaiesigns. This
thesis focuses on the cycle time.

The cycle time of a processor can be improved by increasing the numbpebthp
stages of the processor and therefore decreasing the amount adbviberklone in each
stage. This is called super-pipelining. Note that super-pipelining may isetba CPI
for several reasons. Due to the increased number of pipeline stagaslapendencies
may have a larger impact. Also, the fewer amount of logic that fits into one oyaje
have a negative impact on the micro-architecture, e.g., reduce the maximmubenu
of possible reservation stations entries. This may increase the frequiesteyi®and
therefore increase the CPI. Thus, the minimum cycle time may not be the opticial cy
time for a design and a given benchmark.

This thesis introduces the DLX , a super-pipelined processor with variable cycle
time, i.e., with a variable number of pipeline stages. For computation of cycle time
and cost of the DLX the technology independent gate model from [MPOO] is used.
The cycle time of the DLX, may be as low as 9 gate delays (including 5 gate delays
for the registers). For comparison, a 16 bit addition (which has 12 comitmadgate
delays in the used model) needs less than half a cycle in the deeply pipelmathire
4 processor [HSH01], but needs 3 cycles in the DLX with 9 gate delays cycle time.

The variant of the DLX . with 9 gate delays cycle time is more a proof of concept
rather than it is assumed to have a good performance. Therefore, theangaii this
thesis only handles cycle times of at least 10 in order to simplify the designridnta
of the DLX, with a cycle time smaller than 9 is not assumed to be possible, although
no formal proof for this is provided.

In this thesis formulas are developed which compute restrictions to the paramete
of the DLX 4, e.g., the maximum number of reservation station entries for a given
cycle time. Other formulas compute what modification to the base design have to be
made in order to realize a certain cycle time and what the impact is on the number
of pipeline stages. This lays the foundation to write a cycle-accurate,DLstmu-
lator, that computes the performance of the DLXfor a given benchmark and dif-
ferent cycle times in future work. Using this simulator the optimum cycle time of the
DLX . for the benchmark could be determined.

The DLX; ., is an out-of-order processor that uses the Tomasulo scheduler [Tom67
The design is based on the work ofdfiing [Kr699]. The instruction set architecture
(ISA) is taken from the MIPS R3000 processor [KH92] with small modifigsisim-
plifying the adaptation of the design. This allows a simulation of the DLith
MIPS R3000 instruction traces [Hil95] of the SPEC92 benchmark [SPEC].

In order to realize the small cycle times, parts of the QL Xiffer significantly
from the design presented by dfring. In particular new stalling and forwarding tech-
niques are used. If these techniques are used it is for example not tingeus that a
RAM access returns the correct result. Therefore, correctnesséspare provided for
the critical parts of the DLX, .

Vii

Zusammenfassung

Um die Leistung eines Prozessors igirch eines spezifischen Benchmarks zu verbes-
sern, kann man entweder die Zykluszeit oder die CPIdbgte Anzahl von Zyklen
pro Instruktion) des Prozessors reduzieren. Bekannte Method@#Pdlieu reduzieren
sind zum Beispiel Pipelining, Out-of-order Execution, Branch Prediatider super-
skalare Designs. In dieser Arbeit geht es hingegen in erster Linie uRatiazierung
der Zykluszeit.

Die Zykluszeit eines Prozessors kann durchd&en der Anzahl von Pipeline-
Stufen des Prozessors und damit durch Reduzierung der Arbeit, daeindeser Stu-
fen verrichtet werden muss, verbessert werden. Dies wird Supeliritng genannt.
Man beachte, dass Super-Pipelining die CPI aus verschiedeiiadé&rerbhen kann.
Auf Grund der gof3eren Anzahl von Pipeline-Stufearkne Daten-Ab&ngigkeite einen
groRBeren Einflul? haben. Ausserdem kann die geringe Menge von Ldigilkg einen
Zyklus passt, negative Auswirkungen auf die Mikro-Architektur dexPssors haben,
indem zum Beispiel die maximaltgliche Anzahl von Reservation Stations Eagen
reduziert wird. Dies kann die &lfigkeit von Stalls und damit die CPI étnen. Daher
muss die minimale Zykluszeit nicht notwendigerweise die optimale Zykluszedif
Design und einen gegebenen Benchmark sein.

In dieser Arbeit wird die DLX . eingetihrt, ein super-gepipelineter Prozessor
mit variabler Zykluszeit, das heisst mit variabler Anzahl von Pipeline-8&tufer Be-
rechnung von Zykluszeit und Kosten der DLX wird das von der Technologie un-
abhangige Gatter Model aus [MPO0Q] verwendet. Die Zykluszeit der DLXann bis
auf 9 Gatter-Delays (inklusive 5 Gatter-Delays flie Register) reduziert werden. Zum
Vergleich, die Berechnung einer 16 bit Addition (die in dem benutzten Gislibelel
12 Gatter-Delays béitigt) braucht weniger als einen halben Takt im tief gepipelineten
Pentium 4 Prozessor [HSW01], aber braucht 3 Takte in der DLX mit 9 Gatter-
Delays Zykluszeit.

Die Variante der DLX.; mit 9 Gatter-Delays Zykluszeit dient nur als Machbarkeits-
Beweis. Es wird nicht erwartet, dass sie eine gute Leistung erreichtalbdstirachtet
der Hauptteil dieser Arbeit nur Zykluszeiten von mindestens 10 um ddgas ver-
einfachen. Eine Variante der DLX mit einer Zykluszeit von weniger als 9 wird nicht
als nbglich erachtet, auch wenn kein formaler Beweididafegeben wird.

In dieser Arbeit werden Formeln entwickelt, die Besatkungentir die Parameter
der DLX,wie zum Beispiel die maximale Anzahl von Reservation Station &j&n
in Abhangigkeit von der Zykluszeit berechnen. Andere Formeln errechmelche
Modifikationen am Basis-Design notwendig sind um eine bestimmte Zykluszeit zu
erreichen und welchen Einfluss dies auf die Anzahl der Pipeline-ShderDamit
wird die Grundlage gelegt, um als Ziukftige Arbeit einen Zyklus-genauen DI X-
Simulator zu schreiben, der die Leistung der DLXfUr einen gegebenen Benchmark
und verschiedenen Zykluszeiten berechnet. Mit diesem Simulaie &s mglich, die
optimale Zykluszeit der DLX, fur den Benchmark zu bestimmen.

Die DLX ;. ist ein out-of-order Prozessor der den Tomasulo Scheduler [Tom67]
benutzt. Das Design basiert auf der Arbeit voidKing [Kr699]. Der Instruktions-Satz
wurde mit kleinerAnderungen, die die Anpassung des Designs erleichtern, vom MIPS
R3000 Prozessar [KH92]bernommen. Dadurch ist eglich, die DLX, mit Hilfe

viii

von MIPS R3000 Traces [Hil95] des SPEC92 Benchmarks [SPEC] zUisir@io.

Um die geringe Zykluszeit zu erreicheniissen Teile der DLX, gegeiiiber dem
Design von Kbning signifikant vedindert werden. Insbesonderéssen neue Techni-
ken zum Stallen und Forwarden dihft werden. Durch den Einsatz dieser Techniken
ist es zum Beispiel nicht mehr offensichtlich, dass ein RAM-Zugriff digékien Da-
ten liefert. Deshalb werderiif die kritischen Teile der DLX, Korrektheits-Beweise
gefuhrt.

Contents

1 Introduction| 1
1.1 Outline e 3
2 Basics 5
21 NOWHON . o v v v e e e e 5
2.2 Costand DelayModel 6
2.3 BaSICCIICUILS . . o o o o o oo e 7
2.4 Encodings 8
25 Pipelining 9
251 SHGES . . o e e 9
2.5.2 Computation of Stall Signals 11
253 Optimization of the Stall Computation 13
2.5.4 Maximum Delayof Stall Inputs 17
2.6 Pipelining of RAM BIOCKSo 18
2.6.1 Forwarding 19
2.6.2 Forwardingwith Stalling 21
2.6.3 Pipelining of the Forwarding Circuits 21
2.6.4 CostandDelayo 25
3 Tomasulo Algorithm 27
3.1 OVerview e 27
3.2 Basic Data StUCIUIES . . . o . v o e e 28
3.21 Functional Units o oo 28
3.2.2 Register Files and Producer Tables 28
3.2.3 Reservation Stationso 29
324 CommONDAtaBUS o oo 29
3.25 Reorder BUffer oi 29
3.3 INSHUCHON EXECULION .« « o o v o v e e e e 29
331 DECOdE . . oo 29
332 DISPACN .« o v e 31
3.3.3 Execuﬂe 31
3.3.4 Completio\n 31

3.35 Retire 31

X Contents

4 Processor Core 33
41 DECOUE .« o v e e 33
A11 OVEIVIEW . o o o o oo e 33
412 0perandso 35
4.1.3 Instruction Decoding CirCUIt .« v oo oo e 36
4.1.4 Operand Generation 37
4.1.5 Destination Computation 38
4.1.6 InStruction IssUe o oo 39
417 Stalling 45
4.1.8 CostandDelayo 47
4.2 Dispatch 51
421 Entries 52
4.2.2 Reservation Station Control 55
4.2.3 Pipelining 58
4.3 FUNCONal UNItS . « . o o o oo e e e 63
44 COMPIBLION . . o o 64
440 ADItEr . .. 64
4.42 Pipelining . . . o 66
4.43 CostandDelay 68
45 REUIE 70
451 OVEIVIEW . . o oo oo e 70
452 TagCheck 72
453 Interrupt HandIng 72
45.4 Costand Delay 75
4.6 Reorder Buffer ENVIrONMENt v oo 76
461 OVEIVIEW . o o o o oo e 76
4.6.2 Pipelining of the Retiring—Contéxt 78
4.6.3 Forwarding 79
4.6.4 Implementation of Forwarding 81
46.5 Control 82
\4.6.6 Correctneés 87
4.6.7 Delay Optimizations 90
4.6.8 Costand Delay 93
4.7 Register File Environment 94
471 Forwarding 95
4.7.2 General Purpose RegisterFile 98
4.7.3 Floating Point RegisterFile 99
4.7.4 Special Purpose RegisterFile 100
4.75 CostandDelayo 103
4.8 Producer Table ENVIFONMENt . . . o . v oo oo 104
48.1 Forwarding 104

4.82 CostandDelay 107

Contents Xi

5 Memory Unit 109
5.1 OVEIVIEW e e e 109
5.2 Overviewofthe Data Cache 110
5.2.1 Execution of Memory ACCESSES 111
5.2.2 Cache Core and Main Memory 112
5.2.3 SPECUltion . . . o v ot 113
5.3 Hit Computation 113
5.3.1 Overview of the Hit Signal Computation 114
5.3.2 Local Hit Signals 116
5.3.3 Static Hit Signals 117
5.3.4 Global HitSignalso 119
535 Actions e 120
5.3.6 Stall Computation, 122
5.3.7 CostandDelayo 122
5.4 Cache COTe . . . o v oo 126
5.5 Update Quelhe 127
551 ENMIES . o oo ot 128
552 CONIOl . o o oot 130
5.5.3 Delay Optimizations 133
5.5.4 Optimized Completion for Store Instructions 136
555 CostandDelayo 137
5.6 Read QUEUE e 140
5.6.1 CostandDelayo 141
5.7 Stall Computatidn 143
5.8 CostandDelayo 143
6 Instruction Fetch 149
6.1 Instruction Fetch MEChanism oo vt 149
B.11 OVEIVIEW . . o o o oo e 149
6.1.2 Clocking of the InstructionFetch 150
6.1.3 Branch Prediction. oo oot 150
6.2 Instruction FEtch UNit . . .« o v v oo e e 151
621 OVEIVIEW . « o o oo e e 151
6.2.2 INSUCHON CaChe . .« « o v oo 153
6.2.3 Computation of the Next Fetch-PC 155
6.2.4 Instruction Fetch Control oo 158
6.2.5 Costand Delay, 159
6.3 Instruction Fetch Que\ue 159
6.3.1 IF% ENMHES . o o o o oo 160
6.3.2 Control e 161
6.3.3 CostandDelay 161
6.4 Instruction Register ENVIroNmMent oo v vt o 162
6.5 Branch Checking Unit 162
6.5.1 Stall COMPULAtioN oo 165
6.5.2 CostandDelayo 165

\6.6 Processor FIuEh 166

Xii Contents
7 Discussioh 169
7.1 Stagedepthsbelow5 169
7.2 GateModel 173
7.3 Overall Cost and Delby 174
7.4 Related WOrK oo 178
8 Summary 181
8.1 FUUFEWOIK . « o o o oo e e e e 181
A Instruction set architecture 183
Al INStructions 183
A.2 Encodinb 184
B Emulation of a MIPS R3000 189
C Additional Circuits 191
\C.l Basic CirCuits o o e 191
C.11 Design i e 191
C.1.2 CostandDelay 191
\C.2 Instruction Deco&ie 193
C.21 Decoae 194
C.2.2 Destination computation 196
D Functional Units 199
D.1 Integer ALU e 199
D.2 Integer Multiplicative Unit 201
D.3 FloatingPointUnits 203
\D.4 Memory Unit 205
D.4.1 ShiftforStore. 205
D.4.2 ShiftforLoad 207
E Cost and Delay 209

Chapter 1

Introduction

Over the past fifty years the performance of microprocessors hasadcally in-
creased. The advances in lithography allowed the building of constanthiesitnan-
sistors. This made the transistors faster and also increased the numbailablav
transistors. A larger number of transistors made it possible to additionalkaserthe
performance of the processor by implementing more advanced and coneglgrsl

The performance of a processor regarding a specific benchmatkecareasured
in TPI, the average time per instruction. The TPl can be computed as thecprod
of the cycle time of the processor and the CPI (cycles per instruction). Tedse
the performance of a processor one can either decrease the cycle tiime GPI.
Known technigues that may decrease the CPI are, e.g., pipelining, outi@fexecu-
tion, branch prediction, or super-scalar designs. This thesis fooums@sproving the
cycle time of the processor.

If technology improvements are neglected and the total work for progessin
instruction is not changed, a lower cycle time can only be achieved by Bingethe
number of pipeline stages of the processor. Increasing the numberatihpigtages
over the 5 stages of a simple pipelined processor, e.g., the MIPS R30(2]Kid
called super-pipelining. However, extensive super-pipelining in aalerinimize the
cycle time does not necessarily maximize the TPI, since it may have a negatetimp
on the CPI.

An increased number of pipeline stages increases the number of cyetisdfer
“critical” loops, e.g, the execution of an ALU instruction and the forwardafgts
result to the following instructions, or the resolving of a branch mispredicfitms,
the penalty for data dependencies or mispredicted branches beconess gk leads
to stall conditions occurring more often which increases the CPI. Note ttaistant
part of the cycle time is consumed by the register delay. Only the remainingspart
available for useful work. Splitting the cycle time in half therefore reducesutieful
work by more than the half. The number of cycles needed for a computaiobe
more than doubled. Hence, the gain due to the lower cycle time may be lower ¢han th
loss due to the increased CPI.

Additionally, the decreased logic depth that fits into a cycle may have a negativ
impact on the micro-architecture of the processor. For example, if a refilisteccess
must be pipelined, forwarding of the write ports must be implemented whichesese
the combinational delay of the register file access. Also, it may happendhatrc

2 Introduction

parameters of the micro-architecture such as the number of reservationstntries
are bounded by the cycle time. Hence, for small cycle times it might be negdssar
reduce the number of reservation station entries which could increas@thN@ner-
ous other examples can be found throughout this thesis.

In order to investigate the side-effects and the limits of super-pipelining, #sssth
introduces the DLX ., a super-pipelined processor with a variable cycle time. The cy-
cle time and the cost of the DL X is computed using the technology independent gate
model from [MP0O]. Additionally to the cycle time the DLX supports other vari-
able parameters, e.g., cache size, number of functional units, or nufmeseovation
station entries.

The minimum cycle time of the DLX, is only 9 gate delays (including 5 gate de-
lays for the registers, thus leaving 4 gate delays for useful work). thatdhe deeply
pipelined Pentium 4 processor can compute a 16 bit addition (which hagvildrca
tional gate delays in our model) in less than half a cycle [Fi8L)]. Hence, based on
our model the amount of useful work that can be done in one cycle ofahtiuen 4 is
at least six times higher than the 4 gate delays in one cycle of the,DXth mini-
mum cycle time. Even though the delay model may not be accurate as it negiects w
delay and fanout, the error is probably much less than a factor of sixmitienum
cycle time of the DLX ., is therefore assumed to be far smaller than the cycle time of
the Pentium 4 processor.

Some critical circuits of the DLX;. need two levels of multiplexers which together
have 4 gate delays and hence use up all the useful work that cand®dbminimum
cycle time. Although no formal proof is provided, the author thereforarass that it
is not possible to build a DLX, with a cycle time below 9 without sacrificing, e.g, a
best-case CPI of 1. On the other hand, several trade-offs neethedmade in order
to realize the DLX . with 9 gate delays cycle time that can significantly increase the
CPI for realistic benchmarks. Therefore for simplicity the main part of thisishenly
treats cycle times of at least 10.

For cycle times of 10 and above this thesis develops formulas that definetthe-b
ior of the DLX,.,. Dependent on the cycle time these formulas compute the necessary
modifications, the number of pipeline stages of the different parts of thgrjesnd
the cost of the processor. Additionally, formulas are developed that utenestric-
tions to the parameters of the DL.Xfor a given cycle time. Using these formulas one
can write a cycle-accurate DLX simulator that computes the TPI of the DLX for
a given benchmark and different cycle times. Hence, one can deternarfepti-
mum” cycle-time giving maximum overall performance for the benchmark. Téis p
is future work.

The design of the DLX, is based on Kining's out-of-order variant [Ki99] of
the DLX [HP96] implementation by Mller and Paul [MPOQ]. The instruction set
architecture (ISA) is taken from the MIPS R3000 processor [KH92] wittall modi-
fications simplifying the adaptation of the design. In contrary to the designitieM
and Paul, the DLX, supports integer multiplications and divisions and does not use
a delayed PC. The choice of the MIPS R3000 ISA allows for an accuiatdas
tion of the DLX; by using MIPS R3000 instruction traces [Hil95] of the SPEC92
benchmark [SPEC]. A complete listing of the DLXinstruction set can be found in
appendix A.

1.1 Outline 3

The DLX implementation by Kining is used as the starting point for the DLX
However, most circuits of Kiming's design have been redesigned. The changes either
decreased the combinational delay of the design or were necessaryviosaiiall
cycle times. Especially an instruction fetch mechanism using branch predietibio
be introduced.

1.1 Outline

This thesis is structured as follows: the basics needed for the designi¥e, are
presented in chapter 2. Chapter 3 describes the Tomasulo algorithm thatlibyithe
DLX ;. in order to execute instructions out-of-order. The design of the psocesre

of the DLX,.+ with a cycle time of 10 and above is presented in chapters 4 to 6. Chap-
ter 4 details the core of the DLX , chapters 5 and 6 detail the design of memory unit
and instruction fetch. The results of this thesis including the modificationssaige

for the DLX,., with a cycle time of 9 are discussed in chapter 7. A summary is given
in chapter 8.

Introduction

Chapter 2

Basics

In this chapter basic concepts used in this thesis are discussed. Thematatioam-

ing conventions are summarized in section 2.1. Section 2.2 introduces the ghk mo
used to compute cost and delay of circuits. The basic circuits used in this #nres
presented in section 2.3. Section 2.4 introduces half-unary encodidgthusigh-
out this thesis. Sections 2.5 and 2.6 discuss pipelining of circuits and RAMsloc
These techniques are essential for the design of the,DLpfocessor and the general
discussion simplifies the description in the later chapters.

2.1

Notation

In this thesis the following naming conventions will be used for circuits andasign

Circuit names are written igans serif.
Register and signal names are writteritalic.

The output signal of a registeeg is also denoted byeg. The data input signal
is denoted byeg'.

A busbus with indexes fromj to ¢ is denoted byus|j : i].

Signals and busses can be combined to a multi-bus. A siggalf a multi-bus
mbus is denoted bynbus.sig. The whole multi-bus is denoted bybus..

The outputs of a circui€irc are often combined to the multi-bd&rc.*.

The concatenation of two signaldsgl andsig2 is denoted by{sigl, sig2}. If
the signals belong to the same multi-busus the notationmbus.{sigl, sig2}
is used.

If multiple signals are differentiated by an index (edgg to sigy,), thensig,
denotes all signals of this kind.

For readability the usage efto denote all signals of a multi-bus or all indexes
may be used imprecisely if it is clear from the context which signals are mdadhé |
context differentiates the signatsbus.a andmbus.x, thenmbus.x means all signals
of the multi-bus except the signalbus.a.

6 Basics

2.2 Cost and Delay Model

To compare the performance and the cost (i.e., the area) of differerggmor designs
a simple gate model based on the gate model in [MP95] is used. All gatestaste re
have constant delay. Fanout is not taken into account. The cost Eydad¢he gates
are summarized in table 2.1. A register has a delayfof the outputs and additionally
a setup time of for the inputs resulting in an overall delay &f

| [INV [NAND [NOR [AND | OR [MUX | XOR | XNOR | REG |

cost 1 2 2 2 2 3 4 4 8
delay| 1 1 1 2 2 2 2 2 4+1

Table 2.1: Cost and delay of gates

The delay of a combinational path in a circuit is defined as the sum of thesdgflay
the gates on the path. The delay of a signal is the maximum delay of all combadation
paths from a register to the signal (excluding the delay of the registeg)délay of a
circuit is the delay of the longest combinational path from an input or atergisside
the circuit to an output or a register inside the circuit. The following notatiomsised
for cost and delay of gates, signals, and circuits:

e For a gateGATFE or a registerREG, the delays are denoted Wys 47z and
Dgrga. The cost are denoted 6y 47 andCreg.

e The delay of the signalig is denoted byD(sig).
e D(sig, sige) denotes the maximum delay of two signaig; andsigs.

e For signalssig; andsigs, D(sig1 ~ sig2) denotes the maximum delay of all
combinational paths fromig; to sigs.

e For acircuitCirc, D(Circ) denotes the delay and Ci¢c) denotes the cost of the
circuit.

[INV NAND [NOR[AND | OR | MUX | XOR [XNOR|[REG |

Rk ik dn Ak dh A

Table 2.2: Gate symbols

The symbols used for gates in this thesis are shown intable 2.2. Invertediaes
indicated by small circles at the input or output of gates or circuits (sed¢redNOR
gate). All registers have a clock enable signal. The clock enable sigoahigected
to the triangle shape of the register symbol. If no signal is connected to thgl&ia
shape, the clock enable is tied to one, i.e., the register is always clocked.

Registers are assumed to deliver both the negated and the non-negiz¢ed kas,
it is possible to replace any AND or OR gate on the critical path by NAND an&®kNO
gates using de Morgan’s law. For the same reason all inverters on thelgoiith

2.3 Basic Circuits 7

can be removed. If a signal is used in multiple critical paths, it may be negessa
to compute both the negated and non-negated value. For the sake dffiligatethe
designs AND- and OR-gates will be used, but with the reduced delay éctraftlesign
with NAND- and NOR-gates. The revised delay of inverters, AND- anddakes is
summarized in table 2.3.

| [INV]AND [OR]|
o[o1]1]

Table 2.3: Revised delay of inverters, AND-, and OR-gates

A RAM block with A lines, D data bits, and a single read/write port is denoted by
RAM(A, D). Cost and delay of such a RAM block can be computed by the following
formula from [MP95]:

C(RAM(A,D)) =3-(A+3)- (D + [loglog D}),

D(RAM(A, D)) {mgm +[A/4] A<64
3-[logAl+10 A >64

RAM blocks may have multiple read and write ports. The write ports are numbere
from 1 to w. If multiple write accesses have the same target address, the write ports
with smaller index have higher priority.

A RAM block with r read ports ana write port is denoted bRAM(A, D, r, w).
Cost and delay of this RAM block is based on the delay of a simple RAM blobk. T
formula is taken from [K&99]:

C(RAM(A, D, 7, w)) = C(RAM(A, D)) - (0.4 4 0.3 - (r + 2w)),
D(RAM(A, D, r,w)) = D(RAM(A, D)) - (0.5 + 0.25 - (r + 2w)).

At higher frequencies it is not possible to access a RAM block in a single.cy
A RAM block which needs: cycles for every access is denotedR&M(A,D,r,w,c).
The additional registers increases the cost of the RAM block by 10%ypée.c

C(RAM(A, D,r,w,c)) = C(RAM(A, D, r,w)) - (0.9+0.1-¢).

The design of pipelined RAM blocks that take multiple cycles for accessesadet!
in section 2.6. The given cost does not include any additional circuitdenkefor
forwarding between the write and the read ports (see section 2.6.1).

2.3 Basic Circuits

Basic circuits such as adder, decoder, etc. which are used in this thesistadis-
cussed in detail. For cost and delay of the basic circuits and the desigratifanary
find-last-one circuit see appendix C.1. The symbols for the basic cirgeishawn in

table 2.4

8 Basics

@ Decoder / Encoder

Select Circuit (multiplexer with unary select signals)
Find-First-One Circuit / Find-Last-One Circuit
Half-unary Find-Last-One Circuit

Adder / Incrementer

Parallel-Prefix-OR / Parallel-Prefix-AND
Left-Shifter / Right-Shifter
Cyclic-Left-Shifter / Cyclic-Right-Shifter
Equality Checker / Test against constant k

; ; AND-Tree / OR-Tree

Tree of associative circutirc

Table 2.4: Basic Circuits

2.4 Encodings

The binary encoding with bits of a numbef with 0 < i < 2" is denoted by), ()-

If the width of the encoding is clear from the context, it can be omitted, i.e., the en
coding can be denoted ky);,,. The number represented by an binary encodiog
lengthn is denoted byv). Thus:

In multiple parts of the design of the DL unary respectively half-unary encod-
ings are used to represent numbers. The unary or half-unaryiegaafdengthn of a
numberi is denoted by(i),;,(,) respectively(i) ... It is defined by:

(Z)un(n) = 0n7i727 L, 0i7

(Z)hun(n) = 0n7i727 1,

The value represented by a vectoin unary or half-unary encoding is denoted by
(v)un respectively(v) .. Thus, assuming is a valid encoding it holds:

(V)un = j if 0[j] =1,
(V) hun = max{jlv[j] = 1}.

2.5 Pipelining 9

SfullIn dataln

clear

stall full stall -

combinational
logic

SfullOut dataOut

Figure 2.1: Stage

For unary and half-unary encodings, incrementers and decremeatebg imple-
mented by one bit shifters, which have a constant delay of; x:

(i 4 Dun = () — 2 : 0], 0, (i = Dun = 0, (i)unln — 1: 1],
(i + Dhun = (§)un[n —2: 0], 1, (i = Dnun = 0, ({)un[n — 1 : 1].

Unary and half-unary encodings additionally allows the comparison o&fhresented
value against a given constant with zero delay since this information cdirdutly
derived from the signal with the corresponding index. Unary encadarg usually
used if it must be checked whether the value is equal to the constant,naaf-en-
codings are used if it must be checked whether the value is larger tharstaob For
a vectorv in unary respectively half-unary encoding and a numbleolds:

Note that in half-unary encoding the ltitis always one. Thus, it can often be
removed to reduced the size of the vector. In this case the Oatueepresented by all
bits being zero.

2.5 Pipelining

2.5.1 Stages

The circuits of the processor are divided istages A stage is a combinational circuit
with a set of input registers (see figure 2.1). The delay of the combinatonait is
calledcombinational delayf the stage. Usually a stage has an explfeit! register
indicating whether the stage contains valid information. A stage is ciileidithe full
bit is set. The clear signalear resets the full bit, thus invalidating the content of the
stage. The stall signatall is active if the registers of the stage may not be updated.
A sequence of numbered stages, where the outputs of stagaused as inputs of
stagei + 1 is calledpipeline[Kog81] (see figure 2.2). If the signal namsdgy is used in
multiple stages, the index of the stage is added to the signal napigto distinguish
the signals. The combinational delay of a pipeline is the sum of the combinational
delays of the stages. Usually all stages of a pipeline have a common clear sign

10 Basics

Sfullln dataln

fullln dataln
clear ——| clear
0 stage 0
stall” — o stall
fullOut dataQut
*fu]lo *datao
Sullln dataln
| clear stage 1
stall' —] stall
fullOut dataOut
P fullt Vdata!

+full“’2 +dam”’2
Sullln dataln

i clear
I stage n-1
stall — stall
fullOut dataQut

v v

fullOut dataOut
Figure 2.2: Pipeline withn stages

If the clear signal is not active, the flow of information through the pipeline is
steered by the stall signals. Assume the stagefull. If the stagei + 1 is stalled
(i.e., the signaktall’*! is active) the information in stagecannot proceed to the next
stage. Then the stagenust also be stalled because otherwise the information in stage
1 would be overwritten. If the stage+ 1 is not stalled, but the stages stalled (e.g.,
due to a cache miss), the output full bit of stagehich is the input full bit of stage
1+ 1 must be invalidated. Otherwise the information of stageuld be duplicated. If
a stage is not full it does not have to be stalled, as no information coulddre/giten
or duplicated.

The stall engine of [K#01] also computes additional update enable signals that
control the update of the data registers. The update enable signal gfed &aacti-
vated if the signastall® is not active and the full bit of the stage- 1 is set. Hence, the
stagei is only updated if valid information flow from stage- 1 to <. However, this it
not necessary for correctness, since the content of the data regéstdye arbitrary if
the full bit is not set. Therefore, the update enable signals are omitted in éiis.th

In some circuits, parts of the registers of a stage have to be updated dahen if
stage is stalled. These registers are not directly controlled by the stall, digh#he
new value of the registers often depends on the stall signal. Note thatl#lyeod¢he
stall signal may be large and may increase combinational delay of the stage.

In order to combine multiple pipelines, a pipeline has two additional stall signals
stallIn and stallOut. The input signaktallIn must be active if the pipeline may
not output data on its data outptdtaOut. The output signaktallOut is active if
the first stage of the pipeline cannot accept new data on its datadapuin, i.e.,
stallOut = stall®.

Consider a stage with a combinational delay The input registers have a delay
of Drec = 4. Due to the setup time of registers (which is 1), the stage bounds the
cycle timer to be at leasD + 5. To allow cycle times smaller thabP + 5, the stage
can be replaced by a pipeline of multiple stages that computes the same outpsits. T
is done by splitting the combinational circuit in parts and adding registers vgtoca
the intermediate results, called “pipelining the stage”.

If a certain cycle timer has to be reached, pipelining of the circuit must be done

2.5 Pipelining 11

such that the combinational delay of each stage may be atimest — 5. This max-
imum value for combinational delay of the stagds calledstage depthin this thesis
¢ is considered instead of the cycle timéo reflect the frequency of the processor.

The transformation of a circuit into a pipeline ektages changes the number of
cycles needed to compute the result. For many circuits presented in this thesis th
value ofs is not relevant for the correctness of the processor. For examphzestrabt
matter if a floating point computation is divided in2oor 5 stages. It can be chosen
such that the pipeline adheres to the maximum stage degththis case this thesis
only describes the combinational circuit.

The transformation of a stage into a pipeline witkstages increases the cost of the
circuit (mainly) by the cost of the staging registers. Computing the exact euofb
staging registers is usually difficult and needs to be done for eaeparately, because
it largely depends on the width of the intermediate results. In this thesis the addlitio
cost is only approximated by:

(c=1)-1(I+0)/2]-Crec- (2.1)

where | is the number of inputs and O is the number of outputs of the combinationa
circuit. This includes all additional hardware of the pipelining including thi cban-
putation and the buffer circuits (see the following section).

2.5.2 Computation of Stall Signals

A stagei of a pipeline can be stalled for two reasons. The sta@m generate the stall
itself, e.g., a cache stage might generate a stall due to a detected cachehisigs. T
indicated by the signajen.Stall’. If the stage + 1 is stalled, the stagehas also to be
stalled as the information in stageannot proceed to the stage 1. Both cases can be
ignored, if stageé is not full (full* = 0). In this case the registers of the stage do not
contain valid information and the stage can therefore receive new dasandimarize,
the stall signal of a stage is computed as:

stall' = full’ A (genStall® V stall'™).

Similar to pipelines two signalstallIn’ and stallOut’ are defined for every stage
i. The signalstallIn® corresponds to the signatall’*!, stallOut® corresponds to
stall®.

A pipeline stage including the computation of the stall signal is shown in figure
2.3. The dashed line can be ignored for now. The full outfiif Out is only set to
zero if the signalenStall is active in contrary to figure 2.1 where the stall signal is
used to resefullOut. This simplification can be made as the information in the stage
cannot be duplicated ifen.Stall is not active. Otherwise the stage can only be stalled
if the signalstallin is active. In this case the succeeding stage is stalled too, will thus
not be updated, and hence the succeeding stage ignores the full output.

Consider a pipeline witla stages. Assume that no stage can generate a stall, i.e.,

12 Basics

stallOut clear fullln dataln

stallOut: data

Y

combinational
logic

gensStall

stallln SfullOut dataOut

Figure 2.3: A stage with stall computation

genStall® = 0 for all 7. This simplifies the computation of the stall signal to:

stall' = full’ A stall'™!

c—1

= N full? A stallIn

j=i
Thus, a stage can only be stalled if all succeeding stages are full. Assages s
the non-full stage with the highest index. If the stall input of the pipeline tisaall
stages with index higher tharare stalled and all stages with index lower or equal to
are not stalled. This removes the invalid information in sta@lled pipeline-bubble
removal).

Theorem 2.1. If the above implementation of the stall computation is used, the com-
binatorial depthD of a pipeline may be at most:

D<§-2°

Proof. Let c be the number of stages of the pipeline. It must hold D /§. The stall
signal for stage is computed as AND of the full bits of all stages and the input bit.
Thus, the delay is at leaf! sy p - [log(c + 1)]. The stall signal must be computed in
one cycle. Thus:

d > Danp|-log(c+1)] > log(c) > log(D/4)
& 2°>D/§
=5.22>D

O]

The combinational delay of the multiplicative floating point unit used in this thesis
is 168. The theorem bounds the stage depto be larger thars since5 - 25 = 160.
Hence, in order to reduce the stage depth ¢o below, a different implementation for
stall computation must be found.

2.5 Pipelining 13

stallOut clear Sfullln dataln

stallOut data

stallOut fullln dataln

full Buf

> dataBs |

~ buffer circuitBuf

I
dataQut |

genStall

combinational
logic

!

stallln fullOut dataOut

Figure 2.4: Stage with buffer circuit

2.5.3 Optimization of the Stall Computation

The simplest way to raise the bound given by the theorem is to change thetzbiom
of the stall signal such that pipeline-bubbles are no longer removedof@ctness it
is usually sufficient to compute the stall signal the following way:

stall’ = genStall’ V stall'™.

Yet the minimum stage depth is still bounded by the delay of the OR of all signals
genStall* and the delay of the stall input of the pipeline. The delay of the stall input
can be significant, e.g., if the information in the last stage in the pipeline can ftow in
multiple succeeding pipeline (as during decode where an instruction casussl i
different reservation station (see chapter 3). Then the stall input neusbimputed
from the stall output of all acceding pipelines.

The bound given by the signajsnStall* and the stall input is highly implementa-
tion dependent and therefore not treated in detail. Instead a more sagtk@dolution
to reduce the bound for the stage depth is described. This solution sdthecdelay of
the stall sighals by pipelining the stall computation itself, i.e., registers are idserte
the stall computation circuit. This can be done by inserting a buffer circtiitden the
registers of a stage and the combinational circuit, as shown in figure 2etbffer
circuit is inserted at the dashed line of figure 2.3.

As long as the stage is not stalled, the buffer circuit is transparent, i.euthets of
the buffer circuit are equal to the corresponding inputs. The sifdiBu f is then0
and hence connects the data output with the data input. However, if thestigked,
the content of the full and data registers is saved in the buffer circuit.ertables the
stage to receive data from the preceding stage into the input registersitlibeing

14 Basics

the current information; the stall needs not to be propagated to the prgctdge. If
the buffer circuit contains a valid instruction, the output stall signal is a@id the
stage is stalled. Hence, the stage is stalled not earlier than one cycle afignihstall
signhal becomes active. As soon as the stage is no longer stalled, theérdavetion
from the buffer circuit is sent, i.e., the buffer circuit is emptied, befordotiféer circuit
goes back into transparent mode.

The buffer circuit decreases the delay of the sigrialiOut to the delay of an
AND gate independent of the delay of the stall inptitliIn. It divides the pipeline
in two pipelines with smaller stall circuits. Hence, the maximum combinational delay
is not longer limited by the stall signals. Note that each buffer circuit ineeése
combinational delay of the pipeline by the delay of a mux. The correctnegsof
buffer circuit is summarized in the following theorem. Note that the theorem only
handles the buffer circuit. Thus the signals used in the theorem asst@lgl,n and
stallOut describe the inputs and output of the buffer circuit and not the stage.

Theorem 2.2. Assume the inputs of the buffer circuit obey the following properties.
The clear signal is active exactly in cycle 0:

1 ift=0
clear = I . (PO)
0 ift>0
The signalstallIn is live:
Ve > 03t t' >t A stallln®) = 0. (P1)

The data of all instructions which enter the buffer circuit are distinguishable
Vet > 0 fullln® = fullln®) =1 A stallOut® = stallOut®™) = 0
A dataIn® = dataIn®) = ¢t = ¢'. (P2)

Then the buffer circuit adheres to the following statements:
The buffer circuit is empty in cycle

fullBufM = 0. (S0)
The signalstallOut is live.
Ve > 03t t > t A stallOut™) = 0. (S1)

Every instruction which enters the circuit leaves the circuit exactly in thepassible
cycle:

V>0 fullln® =1 A stallOut® =0
= {t,’fUllOUt(t/) = 1A stallIn’) = 0 A dataOut®) = datafn(t)} (S2)
= {min{t' > ¢|StallIn*) = 0}}

The ability to distinguish the instruction is needed for statement (S2). It can be
reached by adding a unique index to every instruc&i(ﬁince this index has no influ-
ence on the behavior of the buffer circuit, it must not be implemented in lzaedto
reach correctness. It is merely a means to state the theorem.

It is a common trick to use a infinite set of tags for a completeness critdriazan be proven later
on that a finite set suffices for correctness as, e.g., in {RK.

2.5 Pipelining 15

Proof. Statement (S0): The statement follows directly from the construction of the
clear signal.
Statement (S1): The output stall signal may only be active if the input stalhkig
was active in the preceding cycle.
stallOut® = fullBuf(t)
= (full Buf*=Y v full® D) A stallIn®V
< stallIn®t=Y

The statement follows from property (P1).
Statement (S2): The equivalence of the sets is proven in two steps.

“2" Let ¢ be such thafullIn® = 1 andstallOut® = 0. It follows:
fullBuf® = stallOut®) = 0. (2.2)

Let# bemin{t' > t|StallIn(*) = 0}. The following two cases can be distin-
guished:

t' = t: It follows:

Fullout™) = fullout® = fFullln® v full Buf® 2 fullin® =1,

dataBuf® if fullBuf® =1

dataOut'’) = dataOut® =)
dataIn® if fullBuf® =0

@2 dataIn®:

t' + t: Hence,stallIn® = 1. If follows:

Full Buf ™Y = (fullBuf® v fullIn®) A stallIn® > fullIn® =1,

dataBuf® if fullBuf® =1
dataIn® if fullBuf® =0

@)dataln(t).

dataBuf(tH) = {

By definition oft’ for all Z with ¢ < < ¢’ holdsstallIn® = 1. For these
t the following can be proven by induction:

Full Buf ™) = (fullBuf® v full®) A stallIn®
> fullBuf® ™, (2.3)
dataBuf® if fullBuf® =1
dataln® if fullBuf(f) =0
= dataBuf O gatarn®. (2.4)

dataBufh = {

16 Basics

Thus, the content of the registefall Buf anddataBuf does not change
as long astallIn and full Buf are active. For the cyclé it follows:

Fullout™) = fullln®) v fullB Fey

dataOut®) — 4 dataBuf) it full Buf(t) _
atalJu = ,))
dataIn®) i fullBuf®) =0

@ dataBuf ()& gotaln®.

Thus,t is in the set{t/| fullOut®) = 1 A stallIn*) = 0 A dataOut) =
dataIn®}

“C” Let ¢ be such thafullOut“,) =1, stallIn®) = 0 anddataOut!) = data®.
Lett” bemax{t" < t'|stallOut®") = 0}. It follows:

fullBuf®") = stallOut™) =0 (2.5)

t" = t': If follows:

FullIn®) E i) v fullBuf®) = fullOut™”)
= fullOut ") =1

dataBuf"") if fullBuf®) =1

dataOut®) = dataOutt) = " . "
dataIn®") if fullBuf®) =0

€9 dataIn®")

" £ t'+ Hence,fullBuf") = stallOut®) = 1. It follows:

dataOut®) dataBuf®) if fullBuf®) =1
ataOut'’) = / ! /
dataIn®) if full Buf®) =

= dataBuf(t/)

By definition of¢” for all Z with ¢ < & < ¢’ holdsstallOut® = 1. For
theset the following can be proven by induction:

fullBuf(E) — stallOut® =1 (2.6)
stallIn® > stallIn® A (fullBuf® v fullln®)
= full Buf@™) &
dataBuf 0 if fullBuf(E) =
dataIn® if fullBuf(E) =
20 dataBuf® 2.7)

dataOut") "™ dataBu) = {

2.5 Pipelining 17

clear

clear

fullBuf
Sull

SullBuf

Sfull genStall

SfullBuf'
genStall

stallln
stallln
(@ (b)
Figure 2.5: Optimized computation of ull Bu f’

For the cycle” it follows:

fullBuf®) = stallOut®™) =0 (2.8)
stallIn™") > stallIn®™) A (full Buf®) v fullIn®")
— full Buf®')&

dataBuf®) if fullBuf®) =1

dataOut®) @)dataBuf(t”H) = " . "
dataInt") if fullBuf®) =0

@8 dataInt”)

From the property (P2) it follows” = t. As stallIn® = 1forallt < < ¢’ it
follows: ¢ = min{t’ > t|StallIn(*) = 0}.

O

2.5.4 Maximum Delay of Stall Inputs

Let the stage of a pipeline have a buffer circuit and assume none of the stages
{i+1,...,n} forann > i has a buffer circuit. For all stagegsthe AND-gate that
forces the clocking of the full register in case the clear signal is acteefigure 2.3)
can be removed from the critical path by rebalancing. The computation cftalie
signal for stageé comprises the stall signals for all stagesHence, the delay of the
stall signals for all stagegis at most as high as the delay of the input of the register
fullBuf in the buffer circuit of stagé(see figure 2.4). Thus, if the delay of this signall
fullBuf"’ is at most the stall signals for all stagescan be computed in one cycle.
Therefore, only the stages with a buffer circuits have to be checkethesthe delay

of the stall inputs is too large.

Figure 2.5(a) details the computation of the sigfiall Bu. f’ from figure 2.4. The
stall inputstallIn usually is computed by an AND-Tree. If the siggah.Stall is not
constantly zero the OR-gate hinders the integration of the last AND-gate istinah.

If the order of the gates is switched using the distributive law as shown irefR)6(b),
the AND-gate can be integrated into the tree in order to reduce the delay.

Figure 2.6 depicts an example of the integration into the AND tree if the stall input
is computed as AND of the signajg:li! to full*. The overall delay of the circuit
is equivalent to the delay of the AND-tree of the full bits witht+ 2[Por/Panp]
additional inputs (i.e.3 additional inputs if the delay of AND and OR gates is equal as

18 Basics

[Dor/Danp
fullBuf
Full FullBuf

Sfull

clear

clear

o J] 1k
f“” fll”l”'k

Figure 2.6: Merging logic into the tree of the stall input computation

in the gate model used in this thesis). Hence, if the input stall signal of arhifEuit
is computed by an AND-tree with inputs and the stage with the buffer circuit cannot
generate a stall, the signakil! Bu f’ can be computed in one cycle if:

5 > D(AND-tree(k + 3)).

If the stage with the buffer circuit can generate a stall the delay of the miput
the registerfull Buf increases be the rightmost OR-gate in figure 2.5(b). Thus, the
following equation must hold:

0 > D(AND-tree(k + 3)) + Dor.
Leti be chosen as above ande the length of the pipeline. Then, the input of the

registerfull Buf of stagei depends on the input stall signdkilIn of the pipeline.
If the stagei cannot generate a stall, it holds:

Fullbuf = (full Buf® v full’) A clear A /\ full? A stallIn
j=i+1
Thus, if the stall inputtallin is computed by an AND-Tree withinputs it must hold:

D(AND-Tree(n —i+3+1)) <.
If stalllIn cannot be merged into the AND-tree of the full signals it must hold:

D(AND-Tree(n —i+3)) <6 — Danp and
D(stallln) < 6 — Danp. (2.9)

The delay of the stall computation increases by at Iéast, if any stagej for
1 < j < ncan generate a stall. Thus, in order to minimize the restrictions for the stall
input stallIn, i should be chosen such that no such stagen generate a stall. If last
stage of a pipeline can generate a statknnot be chosen as above. It must then hold:

D(stallIn) <6 — (Dor + DanD)- (2.10)

2.6 Pipelining of RAM Blocks

In order to reduce the access time of a RAM block it is mandatory to also pipeline
the RAM block. A schematic view of a RAM block with address bits angh data

2.6 Pipelining of RAM Blocks 19

Decode Select

write

addr

dataout
m

datain

Figure 2.7: Schematic view of a RAM block

Read.addr Writex
]
Y ¥ v ¥
R.addr Wk R.addr Wk
RAM
Forward
R.data
e RAMdata

dataout

Figure 2.8: Forwarding of a write port

bits is shown in figure 2.7. A RAM block can be divided into three parts: thede
of the address bus, the update of the data registers and the selectioradéithesed
data [KP95].

Inserting registers in the decode and the select stage allows for smalketinyes.
However a read access to such a pipelined RAM takes into account onlyritiee
accesses that have been started before the read access. At the timsuthefra
read access is on the output data bus, the accessed address maytareeawritten
by a succeeding write access. Thus, the RAM only returns the value attiessed
address at the time the read access entered the RAM. However in manyatppéidn
this thesis the read access must return the value of the accessed atlthesime it
leaves the RAM. To obtain the latest value of an address, all write ascésgchave
been started after the read access have to be forwarded to the outpaitrefad.

2.6.1 Forwarding

If forwarding is used it could happen that an instruction does not emtkrawe the
RAM environment in the same cycle in which the instruction enters respeckbaalgs
the RAM block. In the following the term “a RAM access is started” alwaysmsea
that the access enters the RAM environment (which is usually as soonsagrells
needed for the access are available). “An access finishes” alwayssrteat the access
leaves the RAM environment.

The forwarding of a write portV to a read portR is done using the forwarding
circuit from figure 2.8. If the RAM block is pipelined into stages, the forwarding
circuit is also divided inta: stages. The stages of the forwarding circuit contain the
data corresponding to the read access in the corresponding stagdraéfithblock.

In every cycle the forward circuit compares the newly started write aceih all

20 Basics

W.Aaddr, write, data} R.addr

— Test.data’
| | Test
Test. forward®
. forwUpd~'y dataUpd'—* ﬁ‘
Test ! I:j ; [
TTTTTTTTTT T | addr | forw <I | data’ <I ! @
W.data ——#f—— data i T ! =
Lm | I —— Test.data’ | =
addr ——+—>»| | | | | Test] ! |
1 n EQ b forward ! Test. forward' «
W.Awrite, addr} _lil_. | I
T | !

addrOut forwOut dataOut

Figure 2.9: Forwarding circuit (with sub-circuitest)

read accesses of all stages. If the write access overwrites the sareesadsl a read
access in the pipeline, the corresponding stage of the forwarding é¢grapitdated with
the new write data. At the last stage of the forwarding circuit the readtisselected
between the output of the RAM block and the data potentially saved in the ridirvga
circuit. In that way any write data to the read address is forwarded.

The details of the forwarding circuit are shown in figure 2.9. The addoéshe
read access in stages saved in the registerddr®. The registerforw® carries the
information whether the stageof the forwarding circuit holds valid forwarded write
data. In that case the data of the last forwarded write access is savedriggthter
data’. The stageé computes the updated valugsrwU pd® anddatalUpd?, which take
the current write access div.x into account. The outputs of stagare saved in the
registers of stage+ 1.

A write access is forwarded to the read access in stagfethe write signal is
active and the address of the accesses are equal. This is indicated bigribe
Test. forward® computed by the sub-circulfest shown in the left part of figure
2.9. For simplicity the circuit also bypasses the data of the write access totfhé ou
Test.data’. Using the signaldest. forward® and Test.data’, the updated values
forwUpd' anddataUpd’ can be computed as:

forwUpd' = forw® V Test.forward,

Test.data’ if Test.forward =1

dataUpd' = .) . .
data® if Test.forward' =0

At the last stage — 1 of the forwarding circuit, the signglorwUpd®~! is active,
if there has been a write access started after the read access, whiabhehastten
the content of the accessed address. In this case the gigndlpd“—! contains the
newest content of the RAM address. fifrwUdp°~! is not active, the output of the
RAM RAM .data contains the correct value. Hence, the current content of the ac-
cessed address can be computed as:

dataUpd®=' if forwUpd“! =1

dataOut = . .
RAM data if forwUpd®™ =0

2.6 Pipelining of RAM Blocks 21

W.A{addr, write, data} R.addr

Test.data®
o Test |
I'd

Test. forward®

forwUpd—* dataUpd'~*)

stall' —\0 1 —\0 1

I

I

I

| IE:?B" stall’ | forw? <I | data’ <I i
"’,E‘i Test.data’ 3
‘el T 51 fOTwaT A L l |
J ||

r RAM .data

,,,,,,,,,,,,,,,,,,,,,,,

s — 1times

———»\0 1

addrOut forwOut dataOut
Figure 2.10: Forwarding circuit with stalling

2.6.2 Forwarding with Stalling

If the read access to a RAM block can be stalled it is not sufficient to upkdatead
access with new write data only in those cycles the read advances to thetampxt
Since new write accesses may be started even if the read access is siaNadjihg
must be possible within a stage when the read access does not progress.

Figure 2.10 shows a forwarding circuit with stalling. It is based on the dodng
circuit without stalling in 2.9. If the staggis stalled, the updated valugsrwUpd'
anddata’ must not be written into the registers of stage 1 but in the registers of
stagei itself. Thus, a mux above the registérta and forw of the stage selects the
outputs of the stagesandi — 1 as inputs for the registers depending on the stall signal
stall”:

data dataUpd’ if stall’ =1
ata® = . , ,

dataUpd=" if stall’ =0

Fforw” forwUpd! if stall’ =1
orw' = A . .
forwUpdi=' if stall’ =0

Note that the stall signal is used in the combinational circuit to control the muxes
above the registers. Thus, the stall signals of all stagasst adhere to:

D(stall’) < 6 — Dyux. (2.11)

2.6.3 Pipelining of the Forwarding Circuits

Let n be the width of the address bus. The critical path of the circuit presented in
section 2.6.1 goes from the write pd¥t« to the updated datéataOut. The delay of
this path is

D(EQ(n+1)) +2-Dyux.

22 Basics

W addri=! tmpUpd' =" forwUpd~' dataUpd—"

addrt q | tmp* q | forw* q | data® q
Test

y

| ar]dr“lq | tmp' Tt q |fm'w1“q | data’™t q
> Test 1]

y
10
\/ y

addri+! tmpUpd' ! forwUpd*' dataUpd+!

Figure 2.11: Pipelined forwarding circuit

W addri=! tmplUpd' ! tmp2Updi—* forwUpd—* dataUpd'—!
[[

= [F8 . l+—

stall — 0 1 0 0 1 0 1
Y
addB" stall | tmpl q | tmp2" q | forw' q | data’ q

1 0

Y Y Y *

addr® tmplUpd' tmp2U pd* SforwUpd' dataUpd'

Figure 2.12: Pipelined forwarding circuit with stalling

-

To reduce the cycle time below this bound, the path from the write port to the
updated data must be pipelined. The intermediate results of the pipelined ctioiputa
are stored in registers and flow together with address, forward bitatadtttough the
pipeline of the forwarding circuit. Figure 2.11 depicts as an example thesstamel
1 + 1 of a forwarding circuit without stalling where the computation of the updated
data is split after the circuifest. The registetmp'*! is used to store the outputs of
the circuitTest and to pipeline them into the next forwarding stage.

The forwarding circuit is now pipelined in two dimensions. Within the same cycle
the read access moves to the next stage of the forwarding circuit andrtipitation
of the updated data moves to the next part of the computation (see the paithtegh
in figure 2.11). While the computation of the updated data for one write antesss
to the second part, a new computation can be started for the next writessacces

In the forwarding circuit with stalling the forwarding of the write port musigeed
to the next part of the computation even if the instruction does not move to #ie ne
stage of the forwarding circuit. Therefore, above every registangakie temporary
results a multiplexer is added. This multiplexer selects depending on the stall sign
whether the register is updated with the output of the current or the pnecsthge
(analogously to the multiplexers above the forward bit and the data registégsre
2.10).

Figure 2.12 depicts as an example a stagéa forwarding circuit with stalling,
where the circuifTest is divided into two circuitsTestl and Test2 and pipelining

2.6 Pipelining of RAM Blocks 23

registers are added after both circuits. The path highlighted in the figomesstine
forwarding of the write port if the stage is stalled twice.

In order to pipeline the computation of the updated data in the forwardingitcircu
without stalling (calledForward), the computation must be divided into parts with
a combinational delay of at most In the forwarding circuit with stalling (called
ForwardStall), every inserted pipelining register increases the combinational delay
from the write input to the updated data by the delay of the multiplexer above the
register. Hence, for the circuforwardStall the computation of the updated data must
be divided into parts with a combinational delay of at mbst D7 x.

Note that the new values written into the regisferw and data in the circuit
ForwardStall depend on the previous value of the registers. If a pipelining register
would be added into this path, old data would be used to update the registars. F
the data register this would mean that it holds the correct data only evenyayttie.

A general solution to pipeline these one-cycle dependencies cannatdme lgut the
resulting bound to the stage depth from this dependency is acceptable:

o> maX{DOR, DMUX} + Dyox (2.12)

In our gate model this only requires that 4.

Compensating the pipelining cycles

Assumek pipeline registers are inserted into each stage of the forwarding circ@ih Th
the forwarding circuit needs + 1 cycles to forward the write port into the data regis-
ters. Thus, the write accesses which have been started in thedgsles before the
read access is finished are not taken into account for the read resaltohe pipelin-
ing it is not possible to take all writes into account that have been starteceltsefead
access, but it often suffices to take all those writes into account, thatdmigred the
RAM block at the time the read access finishes.

For a read access in order to take into account all the write accessdmtat
entered the RAM block at the time the read is finished, forwarding must kedtair
leastk cycles before the write accesses enter the RAM block. This can be gone b
delaying the write port by: cycles and forwarding the un-delayed writes (see figure
2.13(a)).

Due to delaying of the write port, the up towrite accesses in the registéi§ .x
to Wi_1.x have been started before the read access but not yet entered thblB&kM
If the read access directly enters the RAM block when its started, thesées are
not taken into account for the result of the RAM block. Therefore, &aelport is also
delayed byk cycles. The forwarding circuit must be increasedkbgtages to align
with the read access.

Delaying the write port usually has no impact on the performance (as lotigeas
un-delayed write is forwarded). The delaying of the read port of thtMRAcreases
the overall delay of the read access and therefore the overall delag oircuit where
the RAM is used.

Figure 2.13(b) shows a solution to take therites started directly before the read
access into account for the result without delaying the read acces® #ine the read
is started, the addresses, write signals and data of thesée accesses are known and

24 Basics

Read.addr Wo.{addr, write, data} Read.addr Wo.{addr, write, (llal,a}

Y ¥) Y

R.addr W.x Wy
] v

y

£

Forward
\ \ vy) w
R.addr Wx R.addr W.x R.addr W, x R.addr Wox
RAM Forward RAM
R.data Forward Tree R.data
RAMdata le—— RAMdata
—— |
dataout dataout
(@) (b)

Figure 2.13: Forwarding with pipelined forwarding circuit

R.addr Wy Wix

RAM.data

dataOut

Figure 2.14: Forwarding Tree

stored in the registerd’; .x to W, _;.x. These write accesses are forwarded separately
using a forwarding tree.

A circuit for a forwarding tree withk inputs is depicted in figure 2.14. All write
accesses are tested in parallel using the cif@st. The circuitForw computes from
the signalsforw anddata of two successive write accesses the combined values of
the signalsforw anddata. The write access at input;.x is assumed to be started
after the write access at inpfibo.x. Thus, the inputfn;.x has higher priority. If the
forward bitIn,. forw is active, the bugn,.data is the new data output, otherwise the
bus Ins.data. The outputforw is active if either of the inputgn,. forw is active.
The circuitsForw can be arranged in a tree structure due to following lemma.

Lemma 2.3. The function

o: B x B* — B2, (f1,d1) o (f2,d2) — (fi V f2, fid1 V fid2)

is associative

2.6 Pipelining of RAM Blocks 25

Proof.

((f1,d1) o (fa,d2)) o (f3,d3) = (f1 V f2, frd1 V fidy) o (f2,d2)
= (fiVv 2V f3,(frV f2)(frdi V fid2) V (f1 V f2)d3)
=(fiV 2V [s,
fufidiV fifida V fafidy V fafida V ofifads)
=(fiV faV fs, fidi V fifada V f1fods)
=(f1V faV f3, frdi V fi(fad2 V fods))
= (f1,d1) o (faV f3, fada V fads)
= (f1,d1) o ((f2,d2) o (f3,d3))

O

Using the pipelined forwarding circuit it is possible to compute the content of a
RAM block at the time a read access is returned even for a small stageddé{bla-
ever the write accesses which have been started but have not yetdetiterRAM
block at the time the read access finishes cannot be forwarded. Additidaetying
the write port may have further implications to the circuit writing the RAM. There-
fore, in the following sections for every RAM it is discussed which and boewvrite
ports are forwarded to the read ports and why the forwarding sufficgsarantee the
correctness.

2.6.4 Cost and Delay

If forwarding can be done without using a forwarding tree, the readsxto the RAM
is delayed by an additional mux for selecting between the forwarding datahan
RAM output into the forwarding circuit. If a forwarding tree is used (it is@awed
to be faster than the RAM access), the access is delayed by two muxedeittirg
between the RAM output, the data output of the forwarding tree and the atat @f
the forwarding circuit (see figure 2.13(b)).

The longest combinational path for both forwarding circuits is the path fianm
inputs W.x to the outputsiataOut. Letn be the number of address bits. Then the
delay of the forwarding circuits are:

D(ForwardStall(n))

< D(Test(n)) +2 - Duux,
D(Forward(n)) < st

D
D(Test(n)) +2- Dyux.

When pipelining the circuiForward with n address bits the computation of the out-
puts from the input$?.x takes

er(n) < [D(Forvx;ard(n))" '

cycles. In order to pipeline the circuftorwardStall an additional mux is needed
before every inserted register. Thus, the path ~~ dataout must be divided into

26 Basics

parts with combinational delay of — Ds7x. In the last stage no additional mux is
needed. Thus, the computation of the outputs of the circuit takes

ers(n) < {D(Forward(n)) — DMUXW

0 — Dyux
cycles (if it is not stalled).

Let n be the number of address bits, the number of data bits, andbe the
number of stages of the forwarding circuits. Without temporary registersdbt of
the forwarding circuits is:

C(Forward(n, m,c)) < C(Test) +m - Cyrux + (¢ — 1) - (C(Test)
+ (m+n+1)-Crec+ Cor +m- Cyux),
C(ForwardStall(n, m, c)) < C(Forward(n,m,c)) + (c—1)- (m+1) - Cyux.

Let cp andcrg be the minimum number of cycles needed for forwarding respec-
tively forwarding with stalling. The total cost of the forwarding circuits éapproxi-
mated with equation 2.1):

C(Forward(n,m, ¢, cp) < C(Forward(n,m,c)) + (¢ — 1) - cp
T(m+n+n+ 1)+ (m+1))/2- Crpd]
< C(Forward(n,m,c)) + (¢ — 1) - cp
-(m+n+1)-Crpc.

C(ForwardStall(n, m, ¢, cps) < C(ForwardStall(n,m,c)) + (¢ — 1) - cps
f(m+n+n+1)+(m+1))/2]
-(CreG + CuUx)
C(Forward(n, m, c))
+(—=1)-cp-(m+n+1)- (Crec + Cuux)-

The cost of the forwarding tree withinputs (without registers) is:
C(ForwardTree(n, m,k)) < k- C(Test) + (k — 1) - C(Forw) +m - Cprux.

The forwarding tree needs to be divided into as many stages as the RAdgsadet
¢ be the number of stages of the RAM access. Then the total cost of the pipelin
forwarding tree is approximately:

C(ForwardTree(n, m, k,c) < (ForwardTree(n m, k)) +(c—1)
(FonNardTree(n m, k))
+(

c—1)-k-(n+m+1)- Crec-

Chapter 3

Tomasulo Algorithm

The DLX variant presented by Bning which the DLX,, is based on, uses the Toma-
sulo algorithm [Tom67] to execute instructions out-of-order which allowsdie CPI
ratios [MLD199]. It is assumed that the reader is familiar with this algorithm. There-
fore this chapter gives only an informal description of the algorithm to defia terms
used throughout this thesis. A formal description including correctresggpcan be
found, e.g., in [KMP99].

The description of the Tomasulo algorithm is divided into three parts. In sggtlo
a general overview is given which defines the most important terms. Secfate-
scribes the basic data structures used by the algorithm. Finally in section &lgdhe
rithm is presented in more detail showing the execution of an example instruction

3.1 Overview

For the Tomasulo algorithm every instruction which is being processedsrieduke
identified by a unique number. This number is caliagl The instructions which are
processed at a given time are calbadive instructions

Figure 3.1 shows an overview of the Tomasulo hardware. The instrueticimdinit
does not differ from in-order processors. It loads the instructiaastrfrom the main
memory and delivers it in-order to the decode environment. In the decwiterement
the operands of the instructions are determined. If an operand is notuteanyet,
the decode environment determines the tag of the instruction which will compute th
operand. Afterward the instruction is sent to a reservation station.

The instructions wait in the reservation stations until all operands are Vitid.
reservation stations check if the CDB carries the result of an instructiorsthaeded
as operand for a waiting instruction. If this is the case the data is copied and th
operand is validated. This forwarding from the CDB is cakedoping As soon as
all operands are valid, the instruction is sent to a functional unit, indegperad the
instruction order.

The functional unit computes the result of the instruction and writes it to tire co
mon data bus. The common data bus forwards the result to the reservatimmssaad
writes it in the reorder buffer. The reorder buffer reorders the ticisn in program
order before it writes the result in the register file.

28 Tomasulo Algorithm

Instruction Fetch Unit fetch
y
™ Decode Environment bl
n decode
@
p Yy v y v
© Reservation] . . _ |Reservation
g Station Station dispatch
S 7 O
IS Functional . o s Functional
8 Unit Unit execute
] ; | N I R
. complete
Reorder Buffer Environment il
1]
Register File Environment retire

Figure 3.1: Overview of the Tomasulo hardware

mnemonic| functional unit
BCU branch checking unit
Mem memory unit

IAlu integer ALU

IMul integer multiplicative unit

FAdd floating point additive unit
FMul floating point multiplicative unit

—

FMisc | floating point miscellaneous un

Table 3.1: Functional units types of the DLX

3.2 Basic Data Structures

3.2.1 Functional Units

Thefunctional units(FUs) perform the actual execution of the instructions. A proces-
sor can have different FU types, each executing only subsets of ttnadiien set.
Multiple FUs of the same type are supported. The FU types of the,DLa¢e listed

in table 3.1. Tables A.1 to A.7 in the appendix list all DL Xinstructions sorted by
the type of their functional unit.

3.2.2 Register Files and Producer Tables

The DLX,;has three differentegister files(RF): the general purpose register file
(GPR), the floating point register file (FPR), and the special purposseefile (SPR).
For every register file entry, the Tomasulo algorithm additionally stores a vilghd

a tag field. If no active instruction will write a register file entry, the contdnhe
register file can be used as operand of a new instruction. In this casalighbivof the
register file entry is set to one. If one or more active instructions will writerny,
the valid bit is zero and the tag field stores the tag of the youngest activedtistr
which will write this entry.

3.3 Instruction Execution 29

The valid bits and the tag bits of the register file entries are saved jprticleicer
tables(PT). Usually the producer tables have more access ports than therélgiste
Therefore, they are saved in different RAM blocks.

3.2.3 Reservation Stations

The reservation stationgRS) consist of multiple entries. Each entry can hold one
instruction. The instructions wait in the entries until all operands are validke€p
track of the state of the operands, each operand of an entry has aivalid b tag field,
either indicating that the data in the entry is already valid or identifying the irg&iruc
which will eventually compute the value of the operand data.

The DLX,; has exactly one reservation station (of multiple entries) for every func-
tional unit. Therefore, the reservation station if often identified with its funetionit.
It is also possible to use only one reservation station per instruction typeoroaly
one global reservation station [HP96]. For simplicity the latter cases atesadéd in
this thesis.

3.2.4 Common Data Bus

All functional units write the instruction results to tltemmon data buéCDB). To
identify the current result on the CDB, the CDB has a valid and tag field. réfases

the result to the instruction which computed that result. The common data bus write
the result to the reorder buffer. Also, the result is forwarded to thervaion stations.
This allows the reservation stations to snoop on the CDB, i.e., check whetirestht

is needed as operand for a waiting instruction.

3.2.5 Reorder Buffer

The reordering of the instructions before the update of the register fitksis by the
reorder buffer(ROB). For every instruction, an entry in the reorder buffer is allocated
in program order. For each entry the reorder buffer has a valid bis [ihis active

if the result of the instruction has already been computed. If the valid bitoblidtest
instruction in the ROB is active, the instruction is removed from the ROB in order
to write its result to the register file. The address of the reorder buffiey eh an
instruction is used as tag for the instruction.

3.3 Instruction Execution

The execution of an instruction is done in six phases: fetch, decodatdisgxecute,
complete, and retire. The instruction fetch does not differ from in-opdecessors.
Let I be an instruction which is being executed by the processor.

3.3.1 Decode

In the decode phase the opcode of the instructfiosidecoded and the valid bit, the
tag, and the data field of the operands are determined. The produceemdtylef
the destination register dfis updated and a new entry foiis reserved in the reorder

30 Tomasulo Algorithm

buffer. Afterward the instruction is sent to the reservation stations. Thisteg is
calledissue

The decoding of the instructiahis straightforward and does not differ much from
an in-order processor. The decode environment computes the selsioéshe operand
and the destination registers as well as the control signals used by thiefahanits.

For each operand the decode phase must determine the valid bit, the talge and
data field. The correct value for the data field of an operand can el fauone of
four different places:

e The register file: If no preceding active instruction writes the register fliteye
the register file contains the valid data for the operand. In this case the valid
bit of the corresponding producer table entry is set. If the valid bit is eft s
the valuetagp of the tag field of the producer table entry identifies the latest
instruction/ p which will compute the value of the operand.

e The reorder buffer: If the instructiofy has already completed but is not retired
yet, the data for the operand can be found in the reorder buffer. &nide
tested by checking the valid bit of the reorder buffer entry of the instmdtio
Note that the address of the entrylgf in the reorder buffer isagp.

e The common data bus: If the instructidp is about to complete, the operand
can be found on the CDB. This is the case if the valid bit of the CDB is active
and the tag of the CDB equalggp.

e The reservation stations or the functional units: In this case the value of the
operand is not computed yet.

In the first three cases the valid bit of the operand can be set to oneaddtthcan be
taken from the corresponding place. In the last case, the valid bit opér@nd has to
be set to zero and the tag field of the operand is s&tdg. Then the instruction will
wait in the reservation station until the result of the instructipriidentified bytagp)
becomes available on the CDB.

In parallel to the determination of the operands, the decode phaseessemew
entry in the ROB for the instructioh For this the valid bit of the entry is reset. All the
instruction’s information which are known at decode time (e.g., the destinatupster
address) are written into the corresponding ROB fields.tkgte the address of the
reorder buffer entry of.

For the succeeding instructions to use the correct data, the produleeetaty of
the destination register of the instructidns updated. The valid bit of the entry is set
to zero and the tag is settag. This tells succeeding instruction that the new value of
the register will be computed by instructidn

At the end of the decode phase the instruction is sent to the reservation sfatio
the functional unit that corresponds to the type of the instruction. If multiphe-fu
tional units respectively reservation stations of one type exist, one @ thesrvation
stations has to be chosen. In this thesis the first reservation station thatfigl it
used.

3.3 Instruction Execution 31

3.3.2 Dispatch

The instruction/ waits in the reservation station until all of its operands are valid.
Assume an operand défis not valid and depends on instructidp. The Decode phase
guarantees that in this case the instructipris in a reservation station or a functional
unit (see above). Hence, the result/gfwill eventually be sent via the common data
bus. The reservation station entry of instructiosnoops on the CDB for the taggp
of the instruction/p. If the tag of the CDB matcheagpr and the valid bit of the CDB
is active, the data of the CDB is copied to the data field of the operand angdehznal
is marked as valid in the reservation station.

As soon as all operands are valid, the instructios sent to the functional unit
(dispatch. If multiple instructions in a reservation station are valid at the same time,
the oldest instruction is dispatched.

3.3.3 Execute

During the execute phase, the actual execution of the instruction is pexdiorThis is
done in the functional units. The functional units do not necessarilyrréterinstruc-
tions in the order they enter. For example a floating point multiplication can &eerta
a floating point division [Jac02].

3.3.4 Completion

During the completion phase the results of the functional units are written toQBe R
and forwarded to the reservation stations via the CDB. The number didnatunits

is usually larger than the number of results which fit on the CDB. Therghorarbiter
decides which functional unit with an available result may write to the common data
bus. During the completion phase the valid bit of the ROB entry of the instruiion
set to one.

3.3.5 Retire

The original Tomasulo algorithm [Tom67] writes the register files out-okordror
precise interrupt handling it is necessary to be able to restore the cohtbatregister
file as if the instructions would be executed in order. This can be very carifpte
structions write the register file out-of-order. Therefore, the instructaseordered
into program order before updating the register files using the ROB [SP85

To restore the program order, only the oldest instruction in the ROB iskedec
for whether it has already completed. In this case the instruction is takeof the
reorder buffer and the result is written into the destination register entheakgister
files. The valid bit of the register file can then be set to flag valid data unksssreger
active instruction writes to the same register.

In order to check whether a younger active instruction will write the sagistes,
the producer table entry of the destination register is read. If the tag dtotbe
producer table matches the tag of the instructiamo younger instruction may write
the same destination register. Otherwise it would have updated the tag obtheer
table entry. In this case the valid bit of the producer table entry can be set.

32 Tomasulo Algorithm

In the retire phase the instruction is also checked whether it causes anphtar
whether a branch misprediction occurred. In these cases all succéestmigtions are
invalid and the processor has to be flushed. Since the register file is ivartidly
correct state, the producer table entries are all set to valid to indicatethmatructions
will write the registers.

Chapter 4

Processor Core

In this chapter the design of the DL.X core (without instruction fetch unit) is pre-
sented. The stage depth of the presented design is variable and is aseureeak
least 5 gate delays. Sections 4.1 td 4.5 describe the hardware for thedisesof the
instruction processing in the core (decode, dispatch, execute, compkatidmetire).
Since the main RAM structures are accessed in multiple phases, they arbetbsc
afterwards in the sections 4.6 to 4.8.

The design of the core is based on the Tomasulo DLX @frirg [Kr699]. Split-
ting of the ROB into multiple smaller RAMs to reduce the number of ports was intro-
duced by Hillebrand [Hil0Q]. Yet almost all non-trivial circuits had to bdesigned in
order to maximize the performance and to allow a stage depth of 5 gate delays.

4.1 Decode

4.1.1 Overview

The decode phase is divided into the two sub-phdsesnd D2. In the sub-phase
D1 the instruction word is decoded and the control signals for the instructsocoan-
puted. The valid bit, the tag, and the data of the operands are read frorurtieat
content of the producer tables respectively register files. In the sabe®?2 the in-
struction is issued to a reservation station corresponding to the type of thection.
In parallel the reorder buffer is checked if any of the instruction ideukifig the tags
of the operands have already completed. If this is the case, the valid bihamhta
field of the operand are updated. The decode phase uses the instregigter as
input. The instruction register environment is described in section 6.4 asfohe
the instruction fetch chapter.

Sub-phase D1

Figure 4.1 gives an overview of the sub-phdsk The sub-circuiDecode computes
the control signals for the current instruction. In parallel to the decaditieg@perands
of the instruction are determined. For this the register files in the sub-cREu&nd
the corresponding producer tables in the sub-cirBlitare accessed. Each register
file type (GPR, FPR, and SPR) is accessed speculatively under theigsuthat the
operands are registers of this register file. The addresses of thesas@re computed

34 Processor Core

IR

7 R DestCmp I
PT RF Decode
DR.*
OP,. x {valid, tag}i iOP*. *.data W
OP, {qpr, fpr,spr PT
| OpGen OP,.imm
OP, {valid, tag, data} misc

Figure 4.1: Decode sub-phas@1?

inside the register file and producer table environments using the instruetistar
IR. The design of the register files and the producer tables are descriethihin
sections 4.7 and 4.8.

The circuitOpGen selects for each operandhe register file which is used based
on the outputs of the circuidecode. If none of the register files is selected an imme-
diate constant computed IBecode is used as operand data.

To update the destination register entry of the producer table, the redistandi
the address of the destination register must be known. Theses valuesngpated
by the circuitDestCmp. Due to the delay of the circuibestCmp, the update of the
producer table entry of the destination register is starigd > 1 cycles after the
read of the operand’s producer table entries. The read access toothegr tables
for the operands must return the content of the producer table afteetioelidg of all
preceding instructions. Hence, to maintain correctness, the update aédtieation
register must be forwarded to the nexjc instructions. This is done in the producer
table environment (see section 4.8).

Apart from the instruction the instruction fetch unit delivers data to the dkeco
phase which is needed for interrupts and branch checking, e.g., thétR€instruc-
tion and the predicted target of branches. This data is not modified by tuelele
sub-phaséD1.

Sub-phase D2

The design of the decode sub-phds32 differs from the design proposed in [E99].
In Kroning’s work the instructions first access the ROB and are then issuee to th
reservation stations. For the correctness of the Tomasulo algorithm itéssay that
no update of the ROB by the CDB is missed by the instruction until the instruction is
written to a reservation station and starts to snoop on the CDB. This can tzentped
easily if the whole decode phase including issuing of the instruction fits intcyuoie
as in the design presented byding. However, for a small stage depth it is difficult
to forward the CDB while issuing.

Figure 4.2 shows an overview of the decode sub-plizizeThe design presented
in this thesis issues the instructions in parallel to the ROB access. This camée d
because the operands of an instruction have consistent values foalithéoit, the

1The producer table is accessed twice during decode. In order to sipgltiaat the two accesses are
largely independent the producer table environment is depicted twice ffigtire, even if it is imple-
mented only once.

4.1 Decode 35

OP, {valid, tag, data}, misc

OP*Atag+ +
R Issue | W
ROB ROB

toRS
OP,.ROB . {valid, tag, data}i

toRS

Figure 4.2: Decode sub—phas@f

tag and the data when the instruction leaves the decode sub-piase., if valid is
active, the data field contains the correct operand data, otherwise tberttgns the
tag of the instruction that computes the operand. If the result of the readsato the
ROB by this instruction is available, it is used to update the instruction’s ope&iatad
in the reservation station. For this the reservation stations snoop on the ofithe
ROB access in the same way they snoop on the CDB.

The ROB access and the issuing must not be aligned, i.e., if issuing is stalled, the
ROB access can still progress. It must only be guaranteed, that thectitris issued
before the ROB access finishes. Otherwise the instruction would miss thieaiehe
ROB access, as this only updates the reservation stations but not thetinagin the
issue circuit. This may lead to a dead lock, since then the reservation stationaitay
indefinitely for receiving valid operand data.

The ROB read access by an instruction must take all writes to the ROB by the
CDB into account, that have been started until the instruction is issued teraatsn
station. This is guaranteed by the ROB environment (see section 4.6). d0rice
struction is issued to a reservation station all updates to the ROB by the ChiBexte
to update the instruction’s operands through snooping of the resergaitbon.

In parallel to the read access to the ROB a new ROB entry must be allocated fo
the instruction. This is done by resetting the valid bit of the ROB entry and writing
all information about the instruction that is already known during decodethiso
entry (e.g., the destination address, the PC of the instruction, or interrcgisriog
during fetch or decode). The design of the ROB environment is deslcinbdetail in
section 4.6.

4.1.2 Operands

An instruction may have up to four operan@; for i € {1,...4}. The first two
operands have up to 64 bits for double precision operations. Theyhaded into
a low part andOp;.lo and a high parOp;.hi each 32 bits wide. The operan@%s
andOp, contain the floating point mask and the rounding mode which are needed by
floating point instructions. The floating point mask is 5 bits wide, the roundingemo
is 2 bits wide. These operands are not divided into high and low part. Natehti
operandDps andOp, always read the special register file.

In the Tomasulo algorithm each part of an operand consistsvatid bit, atag,
and adata field. The valid bit is set if thdata field contains valid data. If thealid bit

2As in figure 4.1 the ROB environment is depicted twice to emphasize the tvepémdient accesses
to the ROB.

36 Processor Core

is not set, theag field contains the tag of the instruction which computes this operand.
In case an operand is not needed for an instruction, the valid bit is saetm@rder
to prevent the reservation station from waiting and snooping for this ngera

Each operand can be either an immediate constant or an entry of one egiter
files GPR, FPR, andSPR. The signals for the operar@p; from the register file are
denoted byOp; R.{valid, tag, data}. If the operand is an immediate constant the bus

Op;.CO {valid, tag, data} := {1,0'7°8 Op;.imm}

is used, wher®p;.imm is the immediate constant f@?p; computed by the circuit
Decode.

The memory uniMem and the branch checking uBCU may use a third operand
as address offset. This operand is always an immediate constant, hena@nihys
valid and does not need to be updated in the reservation station. This\dpaey
thus be treated like a control signal rather than as operand for the foaltiaits.
This saves the logic for this operand in the reservation station.

4.1.3 Instruction Decoding Circuit

The sub-circuitDecode of the decode sub-phagel computes the following control
signals for every instruction. The precise definition and the computation aighal
is described in appendix C.2.1:

o FU{Mem, I Alu,IMul, FAdd, FMul, FMisc, BCU}: These signals indi-
cate to which functional unit type an instruction is sent. If an instruction has
been predicted to be a branch instruction (indicated by the sighn@l.pb, see
section 6.3), the instruction is sent to the BCU, independent of the reatlepc
(see the BCU section 6.5). To simplify the ROB environment, all instructions
use an FU, even if they do not produce a result, e.g., due to an instruetgen p
fault. Such instructions use the integer ALU as fake FU. This guarantags th
exactly one of the signalBU.x is active at any cycle.

e Op;{gpr.fpr.spr}: These signals indicate from which register file the operand
iisread { € {1,2}). For each operand at most one of these signals may be
active. If none of the signals is active, the operand is assumed to be aniatened
constant.

e Op;.dbl: For operands € {1, 2}, this signal is active if the operand is a double
precision floating point register.

e Op;.imm: If the operandi € {1,2} is an immediate constant, the value of
this constant is encoded @ P;.imm. On an instruction memory interrupt the
immediate constant is set to the PC of the instruction. This simplifies the reorder
buffer (see section 4.5.3).

e {ll: This signal is active if an illegal instruction occurred. This can happen,
due to an invalid opcode or due to a double precision floating point accass to
odd register address.

4.1 Decode 37

e readl EEE f,writel EEE f: These signals are active if the instruction is a
move instruction that reads respectively writes the special redistérr f.

e F'Pstore: This signal is active for floating point stores.

Cost and Delay
Cost and delay of this circuit are (see appendix C.2.1):

C(Decode) < 381 - Canp +64-Cor+32- Dyyx,
D(Decode) < 6-Danp + 5 Dor.

4.1.4 Operand Generation

The circuitOpGen determines the operands of the instruction. If one of the control
signalsO P,.{gpr, fpr, spr} is active, the output for the operandf the corresponding
register file is selected. If none of the control signals is active, the immediattant
OP;.CO.xis used.

The operand®) P; and OP, are only used by floating point operations. They
always read the same special registers: the floating point maskSBt&[(]) and the
rounding mode§ PR[6]). Thus:

OP, x:= OP,,SPR.% fori ¢ {3, 4}

The high part of the operandsP; andO P is only used if the operand is a floating
point double precision register (indicated ©y;.dbl = 1). Thus, the high part always
reads the floating point register file:

OP,;.hi.valid :=

P,.FPR.hi.valid if OP;,.dbl =1)
{O R.hi.valid if O fori € {1,2},

else
OP;.hi{tag,data} == OP;.F PR.hi.{tag,data}.

The low part of the first two operands can be an immediate constant orstereg
from any register file. The signal3P;.{gpr, fpr, spr} from the circuitDecode de-
termine which register file is used. At most one of these signals may be attiee.
low part of the first two operands can then be computed as:

OP,GPR.x if OP;.gpr =1
P, FPR.lox if OP;. =1 ,
OP;.lox := © f.lox I OF:.fpr fori € {1,2}.
OP;.SPR.* if OP;.spr =1

OPF,.CO % else

The reservation stations require four additional control sigoER.dep Dbl and
OP,.odd for i € {1,2} to decide whether the data needed by an operand is on the
low or the high part of an instruction’s result. The sigoaP;.dep Dbl is active if the
operand depends on a 64 bit result. The signaP;.odd indicates, that the address of
the operand) P; is odd. Since 64 bit operands must read an even address it follows,
that the operand is 32 bits wide and therefore only uses the low part opérard. If

38 Processor Core

both signals are active, it follows, that the low part of the operand dipen the high
part of an 64 bit result (64 bit instructions always write its low part in agnenegister
and its high part in an odd register). In all other cases the low part of gbeand
depends on the low part of the result. The high part of an operandwaysaread the
high part of a result as 32 bit instructions write their result on both the haghtlae
low part of the CDB and the ROB (see section 4.3).

64 bit results are either written to the floating point register files or to the dpecia
purpose register file (by integer multiplications / divisions). The prodteigles of
these register files return the signé®;.2R.dbl indicating that an odd register is writ-
ten by a 64 bit result foi € {1,2} andR € {FRP,SPR}. The overall signals
OP;.depDbl andO P;.odd can be computes as:

OP;.FPR.depDbl if OF,.fpr=1
OP,;.depDbl := § OP,.SPR.depDbl if OP;.spr =1 .
0 else

The FPR and the SPR also return the lowest bit of the addresses usexddpetands
1 and2, OP;.R.addr[0]. Then the signaD P;.odd can be computed as:

OP,;.FPR.addr[0] if OP;,.fpr=1
OP;.odd := ¢ OP;.SPR.addr[0] if OP;.spr =1 .
0 else

Cost and Delay

The circuitOpGen is implemented as a unary select circuit. It is controlled by the
signalsO P, .{gpr, fpr, spr} and(OPy.gpr A OP;.fpr A OP,.spr). The last signal
can be computed by the circuitecode, its delay is part of the delay of this circuit.
Letirop be the width of the tags. Cost and delay of the cir@pGen are as follows:

C(OpGen) <2-Cor+2-2-CanpD
+2- (1 + 32 + lROB) . C(Sel(4)) +4- C(Sel(2)),
D(OpGen) < D(Sel(4)).

4.1.5 Destination Computation

The circuitDestCmp computes the signal3.x needed for updating the producer table
entry of the destination register of the instruction. The valid bit of the predtable
entry is always set to zero and the tag field is set to the tag of the instructigntag

of the instruction is the current tail pointer of the ROB:

D.valid := 0,
D.tag := ROB.tail.

For each register fil&t the circuitDestCmp computes a write signdD.R.write
and an addresB .fR.addr. It also computes a double signal for the register HER

4.1 Decode 39

andSPR (integer multiplications / divisions write their 64 bit result into two SPR reg-
ister). As for the circuiDecode the detailed computation for this circuit is described
in the appendix C.2.2.

At most one of the write signalB®.R.write is active. This signal determines the
register file that the result is written to. Thus, the actual address of thimatémn
registerD.addr can be computed by selecting the addresses for the register files with
the write signals. An instruction writes a double precision result if the floataigtp
or the special purpose double bit is active. Thus:

D.GPR.addr if D.GPR.write =1
D.FPR.addr if D.FPR.write=1
D.SPR.addr if D.FPRwrite=1"
* else

D.dbl := (D.FPR.dbl N D.FPR.write) V (D.SPR.dbl N D.SPR.write).

D.addr :

The signalsD.addr, D.dbl, and D .R.write are saved in the ROB to define the desti-
nation register for the retire phase.

Cost and Delay

The cost and the delay of the circidestCmp can be estimated as follows (see ap-
pendix C.2.2):

C(Destcomp) <58 -Canp +16-Cor +27- Cyux,
D(DestComp) < max{2- Dor,2- Danp,Dyvux} +2- Dog.

4.1.6 Instruction Issue

The circuitlssue issues the instructions to the reservation stations. For simplicity a
number is assigned to every functional unit type (see table 4.1). Theotsignal
FU.x computed by the circubecode are renamed té'U;, i € {0,...,6}, wherei is

the number of the type of the functional unit (e.§L/.1 Alu is renamed td"U;). An
instruction which uses a functional unit of typés called “instruction of type”.

Due to restrictions in the dispatch order (see section 14.2.2) the processor mu
have exactly one memory and one branch checking unit. For all other typkis
ple functional units are possible. The number of functional units of tyfur i €
{0,...,6} is denoted byn;. The functional units of type are denoted byU; ; for
j €40,...n;—1}. The total number of functional unitsis defined byn := Z?:O ;.

The processor has one reservation station per functional unit. Theaésn sta-
tion of a functional unit of type is called “reservation station of typ& The reser-
vation station of functional unfU; ; is denoted byRS; ;. All reservation stations of
one type have the same number of entries.

An instruction of typei is issued to the first reservation statiB®; ; which can
accept a new instruction (i.eR.S; ;.stallOut = 0). The instruction is sent to that
reservation station by asserting its full input. If none of the reservatidiostof type
1 can accept new instructions, issuing has to be stalled.

40 Processor Core

] no \ mnemonic\ functional unit

0 | Mem memory unit

1 | TAlu integer ALU

2 | IMul integer multiplicative unit

3 | FAdd floating point additive unit

4 | FMul floating point multiplicative unit
5 | FMisc floating point miscellaneous unjt
6 | BC branch checking unit

Table 4.1: Functional unit numbers

stallOut FUy_¢ fullln

Sel

FUy.stall FUg.stall
ZEero J o zZero J
FFO " | FU, full FFO s

out out 5 FU(;.fUll
Y Y
FUpo.full). FUqng1.full FUs.full | FUgpy1.full

1 1

stallOut In.full stallOut In.full stallOut In.full stallOut In.full
RSO‘U eee RSOm,gfl * RSG.U e RSGAN,Gfl

Figure 4.3: Computation of stall signal and full bits for issue

Figure 4.3 gives an overview of the circissue. It shows the computation of the
output stall signaktallOut of the circuitlssue and the full signals for the functional
units F'U; ;. full. The full signals for the functional units are connected to the full
inputs of the corresponding reservation station. The data signals of tinectitn
to be issued (i.etag, operands, andcontrol) are not shown in figure 4.3. The are
simply distributed to all reservation stations and connected to the correagangut
busses.

The selection of the reservation station is done as follows: first the sfagriain
(indicating that the input registers of the issue circuit contains a valid ingin)ds
AND-ed with the FU-type indicators'U; to obtainF'U;. full fori € {0,...,6}. The
signal F'U;. full indicates that a valid instruction needs to be issued to a reservation
station of typei. Next, the numbey € {0,...,n;} of the first reservation station of
typei that can accept an instruction is determined. This can be done by a fitd+ii
circuit using the negated stall signals of the reservation stations ofitypiee output
of the find-first-one circuit is AND-ed to the sign&lU;. full to obtain the full signals
for the functional unitsU; ;. full for j € {0, ..., n;}.

The zero output of the find-first-one circuit for the typmdicates that no reser-
vation stations of a type can accept a new instruction. It is used as stall &igrthe
functional unit typeF'U;.stall. The overall stall signal for the circuissue is com-
puted by selecting the stall signal of the type of the instruction to be issufiddddy
the FU-type indicatoF'Uy_). This is done by the select circuit in figure 4.3.

If the number of the functional units of a type is one, the find-first-one circuit

4.1 Decode 41

stallOut ~ FUG, fullln

FUG.full FUG . full
N
FUG).stall FUy_(g-1) FUG - .stall FUgr—g,)6
A \
. L] .
Buf
Issue(go) Issue(gy—1)

Figure 4.4: Pipelined distribution to the FU types

and the AND gate can be omitted. In this case the full and stall signals for this un
type and reservation station are the same.

Pipelining
The delay of the stall outputallOut of the issue circuit is:

D(stallOut) < max{ max (D(RS; ,.stallOut) + D(FFO(n;))), D(FU,)}
0<i<6 (4.1)
+ D(Sel(7)).

Assume the processor has two integer ALUs and FP additive units;j.es,ng = 2.
The delay of the signaltallOut would then beD(FFO(2)) + D(Sel(7)) = 5. In
order to compute the stall signal for the input register of the issue circuitércygcle,
the delay of the signaltallOut may be at mosi— D nyp = d — 1 (see section 2.5.4).
Thus, to support the above values the stage depth must be &.least

In order to relax this bound the distribution to the FU types can be split into mul-
tiple cycles. For this the FUs types are combined to groups (and subgyifotie
circuit Issue is split in more than two cycles). The instructions are first distributed to
their group (and sub-group) and then to the functional units. Since tlag déthe
stall signal is critical, a buffer circuit is placed after the registers for ttegFoup to
decompose the stall computation.

Figure 4.4 shows an overview of a pipelined issue circuit. The FU typetivaded
into g groups (G to G4—1). The groupG; hasg; members (fod in {0,...,g — 1}).
For each groupy; a new signalF’'UG,; has to be computed, indicating whether the
instruction has to be issued to a FU type of this group:

FUG, := \/ FU,.
1€G

These signals can already be computed in the decode circuit. Then, theyda@ctly
out of the output registers of the decode sub-phase Therefore, it is assumed that
the signalsF'U G, have the same delay as the signals,.

Let the typei of an instruction be in the grou@,. In the pipelined issue circuit
the instructions are first issued to the grauip. From the groug, the instruction is
sent to the circuitssue(gx) which needs to support only, FU types.

42 Processor Core

The buffer circuit inserted after the registers for a group decoupéest#il signal
for the issuing to a group and the stall signals for the issuing from the grimughe
reservation stations. Note that the stall signal$G,.stall are compute by AND-ing
the full bit of the register and the buffer circuit for that group and tf@eshave delay
Danp (see figure 2.4 on page 13). For the sake of readability, this AND-gatgt is n
shown in figure 4.4.

If issuing from the group~;. to the reservation station still cannot be done in one
cycle, the groups can be further divided into sub-groups. The cissue(g;) is then
build analogously to the pipelined issue circuit in figure 4.4. If the circuit fits ane
cycles it is build analogously to the non-pipelined circuit in figure 4.3.

The computation of the full bit for the grougsU G full and the output stall sig-
nal stallOut based on the stall signals of the group8 G...stall happens analogously
to the computation for the instruction types in the non-pipelined case. Note that th
input signals for the circuitéssue(x) come out of buffer circuits. For the equation
(4.1) then holdD(FU,) = Dypx (see figure 2.4).

The circuit described above pipelines the issuing of an instruction to its type,
not the issuing from an instruction type to the reservation stations. In torgigpeline
this part registers need to be inserted into the computation of the stall sighal B
typesF'U;.stall. This would mean that also the computation of the sighdls ;. full
would take several cycles. However, these signals are used insidesthrgation sta-
tion to compute the output stall signals of the reservation stations for the yegt ¢
(see section 4.2.2) and therefore its own value for the next cycle.

Inserting registers into this computation can lead to inconsistencies due to the one
cycle dependency, e.g., two instructions could be sent to a reservatiiom skeat can
only accept one instruction. In order to avoid this problem, issuing fronfrthéype
to the functional units of the type has to be done in one cycles. The bound ateglic
by this is acceptable.

Cost and Delay

If the size of the group from which an instruction of typis issued to the reservation
stations is one, the full signal for the FU typ&/;. full can be directly derived from
the full bit of the group. It does not have to be AND-ed with the FU type iaitdic
FU;. The delay of the full bit for the group iBog from the buffer circuit. The find-
first-one circuit and the AND-gate at its output are only needeg if 1. This reduces
the delay of the full signals for the FUSU; .. full to:

D(FU, 4. full) < max{Dogr, Orgaé(G(D(RSi,*.stallOut) + D(FFO(n;)))}

+ . .
Dynyp ifn; >1

Let erg, be the number of entries of the reservation stations of fypehen the
delay of the stall output of these reservation station3(BP-ORerg,)) as will later
be derived in section 4.2.2. The input full signal to the reservation statiayshave
at most the delay — D,y x (see section 4.2.1). Since the issuing from the FU type

4.1 Decode 43

to the reservation station is not pipelined,andergs, are bounded by the following
equation:

0> Dyux + D(FUZ,*full)
> Dayprx + max{ Do, mas (D(PP-ORers,)) + D(FFO(n,)))}

0 if ni:1
+ . .
DanD if n; > 1

The input registers of the decode sub-phasrare not assumed to have buffer
circuits. This reduces the delay of the input signal to the issue cifdlijt to zero.
The delay of the output stall signal (see equation (4.1)) may be atinesb onp.
Let the variableo; be one, if the circuitssue has to be pipelined. Hence:

(4.2)

0 if o> maxogigg(D(PP-OReRsi)) + D(FFO(TLZ)))
Pr = +D(Se|(7)) + DAND
1 else

If pr is one, three numberH, I, and.J have to be computed. The numh&r
defines the maximum number of FU types to which an instruction can be issued in 0
cycle. The maximum number of groups an instruction can be issued to in cofe cy
is denoted byl. The maximum number of sub-groups an instruction can be issued to
from a group is denoted hy.

The delay of the data output of a buffer circuitlis,;;; x and the delay of the stall
output of a buffer circuit i) 4y p. The delay of the output stall signal of an stage may
be at mostD 4np, as it is computed by an select circuit and therefore the AND-gate
of the buffer circuit cannot be merged into the computation (see sectior).Z%ds,

H, I, andJ can be computed using the following equations:

H = max{h|d > max{orilaéi(D(PP—OReRsi)) + D(FFO(n;))), Dmux }

+D(S€|(h)) +-DAND}5
I = max{i|0 > Danp + D(Sel(i)) + Danp},
J = max{j\é > maX{DAND,DMUx} + D(Sel(j)) + DAND}-

The value ofJ can be increased using the following optimization. Assume issuing
takesc; cycles. Instead of clearing the issue circuit if the sigiabr is active, it
suffices to clear the reservation stationsdpcycles when clear is active. After the first
clear cycle, the reservation stations do not produce a stall and theteéoinstructions
in the issue circuit advance in at magt— 1 cycles to the reservation stations where
they are cleared. Note that no valid instruction can enter the reservatimmsta the
¢y cycles after a clear .

Therefore, it can be assumed, that the registers of the issue circuittdmave
to be cleared. Figure 4.5 (a) depicts the computation of the input of the registe
FUG. fullBuf of a groupFUG that issues an instruction to the sub-gro#fisS G
to FUSG ;1 without taking the clear signal into account. The figure includes the
OR-gate that is used inside the buffer circuit of the group to compute theutput

44 Processor Core

FUG.full Buf' FUG.full Buf'

FUG. full
FUG. fullBuf

FUG. full
FUG. fullBuf

FUSG.stall FUSG _;.stall FUSG.stall FUSG ;_;.stall

FUSGy. full FUSG j_y.full FUSGy. full FUSG j_y.full

FUSGy.fullBuf — FUSG_i.full Buf FUSGy.fullBuf — FUSG_i full Buf

@ (b)
Figure 4.5: Optimized issuing to sub-groups

(see figure 2/4 on page 13. It also includes for each sub-gfdugG; the AND-
gate that is used inside the buffer circuit of the sub-group to compute thewiaut
FUSG;.stall.

The signald’U SG, have delayD iy x since they are part of the data output of the
buffer circuit for the group” UG (see figure 2.4). All other input signals in the figure
come directly out of registers. Hence, the delay of the sigia. full Buf’' can be
reduced by moving the last AND-gate of the computation below the selecit¢see
figure 4.5 (b)). Then the value of can be computed as:

J =max{j|0 > max{2- Danp,Danp + Dor, Dyux} + D(Sel(j))}.

In order to reduce the number of FU types per grolipsid J must be at least.
Thus, it must hold:

o> DAND+D(SeI(2))+DAND, (4.3)
0 >max{2- Danp,Danp + Dumux, Duux} + D(Sel(2)). (4.4)

Both equations hold fa§ > 5.
The number of cycles needed for the cirdsigue ¢; can be computes as follows:

if pr=0

fpr=1ANH-I>7
fpr=1ANH-I<7TANH-I-J>7
fpr=1AH-I-J<T

cr =

S

The delay of the output stall signal is:

maxo<i<6(D(PP-ORegs;))
+D(FFO(ny))) + D(Sel(7))
D(stallOut) < § Danp + D(Sel([7/GY)) ifc;=2.
Danp + D(Sel([7/(G - H)T)) ifcp =3
| Danp + D(SE[7T/(G-H-1)])) if cr =4

ifC]:l

The inputs to the circuissue are the full bit, the tag, the operands, and the control
bits. The width of the control bits for the functional units except the memodytha

4.1 Decode 45

branch checking units is approximated by 8. The memory unit needs an adtiti®
bitimmediate constant. The branch checking unit needs and 24 bitimmediatamion
the PC of the instruction, the predicted branch target, and the way of thetbrarget
buffer as additional control signals (see chapter 6). Thus, the nuofiligout 7; and
outputsO; of the issue circuit are:

Iy =147 -lpop+64+64+5+2+8+24+32+ 32+ kprp,
OI:n~(1+3-ZROB+64+8)+(n3—|—n4+n5)-(4~ZROB—|—64+5)
+16+24 + 32+ 32+ kprB.

Then the approximated cost of the issue circuit is:

6
C(Issue) Z C(FFO(n;)) + ni-Canp) + 7-Canp + C(Sel(7))
=0

+(cr—1)- [(Ir + O1)/2] - CrEG-

4.1.7 Stalling

The first stage of the sub-phasd has to be stalled if the ROB is full or if decoding
has to be stopped until a detected branch misprediction has retired. ThésR@B

if the signal ROB. full computed by the ROB control (see section 4.6.5) is active.
Decoding has to be stopped due to a misprediction if the sibfidlaltdec computed

by the instruction register environment (see section 6.4) is active. Thus:

D1.genStall® := ROB. full V IR.haltdec, (4.5)
D1.stall® := D1.full® A (D1.stallIn® v D1.genStall®). (4.6)

An instruction which reads the special regisf&f £ E f (indicated by the con-
trol signalreadI EEE f computed in the circuiDecode) must wait until all floating
point operations have retired. This is due to the fact that all floating pairiictions
write the registed EEE f implicitly. For simplicity the instructions reading that reg-
ister wait until all preceding instructions have retired, which is indicated bsitnal
all Ret computed by the ROB control. Instructions reading the regicieF FE [are
considered rare, hence the performance impact can be neglected.

The instructions which read the regisfdr £ E f must wait in the pipeline stage of
the decode sub-phagel in which the register files in the circuRF return the result
of the read access (denoted &yr). The SPR guarantees that the correct content of
register/ EEE f is returned as soon as the signélRet is active without restarting
the read access (see section 4.7.4). Thus:

D1.genStall°RT := readl EEE f A all Ret, 4.7)
D1.stall°RF := D1. full°®* A (D1.stallIn°RF V D1.genStall°RF). (4.8)

As discussed in the overview section, the ROB access in sub-gh2seust not
finish before the corresponding instruction has been issued. Othehgigestruction
would miss the result of the ROB access. If issuing is done in one cycle,ahibe

46 Processor Core

In.issued
FUy. full, RSy.stall, FUy.tag EQ
10, D2.ROB.tag . D jewissuc stall
.
FUs. full, RSg.stall, FUs.tag EQ
\J

Out.issued

Figure 4.6: Issue test

guaranteed without extra hardware. It suffices that the output staklsig the issue
circuit is used as stall signal of the input register of the sub-phese

D2.stall’ := D2.full® A I'ssue.stallOut. (4.9)

An instruction then waits in the input register of the decode sub-pbdsentil it is
issued. The ROB access does not have to be stalled.

If issuing is pipelined additional hardware is needed to detect whethestingn
tion has already been issued. For each stage of the ROB access,italsiweTest
(see figure 4.6) checks if the instruction which is in this stage is alreadydigeus
reservation station.

An instruction is issued to a functional unit of typef the stall signal for this
type RS;.stall is not active and the full bit for this typ&'U;. full is active (see sec-
tion[4.1.6). To check whether the issued instruction is the instruction in the ROB
access stage, the tags are compared. The tag of the instruction in the B3B stage
is calledD2. RO B.tag in the figure. The signatewissue is active if the instruction
in the ROB access stage is issued to any functional unit. The valueg@tsue are
accumulated in the registégsued, i.e., issued is active if the instruction has been
issued in any previous cycle.

The registeissued has to be updated even if the stage of the ROB access is stalled.
The update of this register is done analogously to the update of the refyisterin
the forwarding circuit with stalling (see section 2.6.3), i.e., if the ROB acdage $s
stalled, the registersued is updated, otherwise the updated result is saved in the next
stage. The computation efewissue can be pipelined similar to the computation of
forw in the forward circuit with stalling.

Let cpo be the number of stages of the ROB read access in the decode sub-phase
D2. The output register of the ROB access has to be stalled if it is full and gistee
issued is not active:

D2.stall®P? := D2. full®®?* A\ D2.issued®pz2.

This guarantees that the ROB read access of an instruction is held in tstalgestof
the access until the instruction is in the reservation station and snoops antplo¢ of
the ROB. The other stages are stalled as usualsi@lOut := stallIn A full. Thus,
the stall output of the ROB acce&®) B.stallOut can be computed as:

CD2
ROB.stallOut := [\ D2.full’ A D2.issued> (4.10)
i=1

4.1 Decode 47

The input register of the decode sub-phakeis stalled if either the ROB access
or the issue circuit produce a stall:

D2.stall’® := D2.full® A (ROB.stallOut V Issue.stallOut). (4.11)

Let ¢; be the number of cycles needed for issuing. Then, combining formulas 4.9
and 4.11 one gets for stall output of the decode sub-phasgvhich is the stall signal
of the first stage 0D?2):

D2.full® AN ROB.stallOut ifcr =1
D2.full’ A (ROB.stallOut V Issue.stallOut) if c; > 1
(4.12)

Letlrop be the width of the tags. The the delay of the ciréssiueTest is:
D(IssueTest) < D(EQ(lgon + 1)) + D(OR-Tree(7)) 4+ Dor.

D2.stallOut := {

Let ¢;r be the number of cycles needed for the cirdagueTest. The number of
inputs and outputs a®- [rop + 15 respectively 1. It holds
crr = [D(IssueTest) /(0 — Dyux)],
C(Issue Test) < 7-C(EQ(lrop + 1)) + 8- Cor + Cyux + CrEc
+ecrr - (4-lroB +8) - (CreG + Cuux)-

4.1.8 Cost and Delay

The delay of the decode phase depends on the number of buffer cihatiteave to be
inserted in order to compute the stall signals within the cycle time. Up to two buffer
circuits are inserted in order to reduce the delay of the stall signals. Eudfiffer
circuit is inserted after the stager in which the register files return the results. The
second buffer circuit is inserted somewhere before the stageTo further decrease
the delay of the stall signal, more buffer circuits could be inserted into thestalgy
D1 and the ROB access iR2; however, this is not necessary for a stage depth of 5
and greater.

If no buffer circuit has to be inserted into the decode sub-pliaisets delay is:

D(D1) < max{D(PT), D(RF), D(Decode)} + D(OpGen).

The values for the number of cycles of the sub-phBdecp; and forcrr can be
computed based on the number of buffer circbits

cp1(b) = [(D(D1) +b- Dyux)/0],

{[D(SPR-RF) /5] if b< 1
crr(b) = . .
[(D(SPR-RF) + Dyux)/6] ifb>1

If no buffer circuits are inserted in the sub-phabé, the stall signal for the
first stage of D1 (and therefore the output stall signal of the whole decode phase
D1.stallOut) is computed as (see equation 4.6):

D1.stallOut = D1.full® A (D1.stallIn® v D1.genStall®)
D1, full® A (D1.stallIn® v ROB.full V IR.haltdec).

48 Processor Core

The stages to cgr — 1 do not generate stall signals. Thus:

crr—1
Dl.stallOut = D1.full® A((\ D1.full’ A Dl.stallIn°r ")
=1
V ROB. full V IR.haltdec).

This can be transformed using the distributive law to:

crr—1
Dl.stallOut = (/\ D1.full’ A D1.stallIn°~")
1=0
V (D1.full® A (ROB. full V IR.haltdec)).

Using formula 4.8 for the computation &fl.stall°?F = D1.stallIn®?F~! it follows:

CRF

D1.stallOut = (/\ D1.full’ A (D1.stallInRF D1.genStall°RF)) (4.13)
1=0 .

V (D1.full® A (ROB.full V IR.haltdec))
CRF
(N DLfull' A (D1.stallIn® V (read] EEEf A allRet)))
=0
V (D1.full® A (ROB.full V IR.haltdec))

The remaining stages of the sub-phd3g& do not generate stalls. Lel; be the
number of stages dP1. Then, if no buffer circuits are inserted in1, the stall output
of the decode phase can be computed as:

CRF CD1-1
Dl.stallOut = (\ DLfull’ A((\ D1.full’ A D2.stallOut)
=0 Jj=crr+1

V (readl EEEf A allRet)))

V (D1.full® A (ROB. full V IR.haltdec))

Figure 4.7 shows the computation of the sighdl.stallOut.

Let ¢; be the number of stages needed for the cirtagtie andcp, the number
of cycles needed for the ROB access in the decode sub-ghasd@he value ofcps
is computed in the ROB section 4.6. Then the delay of the output stall signdiefor
decode sub-phade2 can be computed as:

@10
) < D(AND-Tree(cpz2)),

win D(Issue.stallOut) ifcp=1
D(D2.stallOut) < { max{D(ROB.stallOut),
D(Issue.stallOut)} + Dor

D(ROB.stallOut

ifC[>1.

4.1 Decode 49

IR.haltdec
ROB.full

D1.genStall’

D1. fullerr+1-cpi-1 D1.full®

D1.stallInrr

D1.stallOut
D2.stallOut

AllRet
IEEE fRead

D1. full®crr

Figure 4.7: Computation of the decode stall output without buffer circuit

The control signalsiliRet, IEEE f Read, andI R.haltdec come directly out of
registers and therefore have delay zero. The si@@aB. full has delayD;;yx as
discussed later in the section 4.6.7. The stall output of the decode phase# magt
have the delay — D, x (see section 6.4). Thus, the number of buffer circiitan
be zero if the following equation holds:

0 — Dyyx > max{max{D(D2.stallOut), D(AND-Tree(cp1(0) — crr(0) — 1))}
+ Danp + Dok,
D(AND-Tree(cpr(0) + 1)), D(ROB. full) + Dor}
+ Danp + Dor.

The first buffer circuit is inserted in the stage after the output of the tediides
return the result of the read accesses, igr(1) + 1. This allows to split the stall
computation at the signaD1.stall°?*+t! = D1.stallIn°?*. In equation 4.13 the
signal D1.stallIn°RF can then be computed as (see figure 2.4 on page 13):

D1.stallIn°"F = D1.full®* Tt D1. full Bu ferFT1,

The critical signal of the stall computation of the sub-ph&ddor the stages below the
stagery is then the input of the full bit of the buffer circuip1. full Buf<rr+1’. The
AND-gate in the buffer circuit that is needed for the computation of this $igea fig-
ure 2.4) can be incorporated into the AND-Tree for the sighailsful[¢rF+1-cp1—1,
This increases the number of inputs by 2 (see section 2.5.4). Figure 48 she
computation of the critical signals of the stall computation if one buffer circuit-is
serted.

Thus, one buffer circuit is sufficienb & 1) if the following equations holds:

d > max{D(D2.stallOut), D(AND-Tree(cpi(1) — crr(1) + 1)) + Danp},
d > max{Danp + Dor, D(AND-Tree(crr(1) + 1)), Dyux + Dor}
+ Danp + Dor + Duux.

50 Processor Core

IR.haltdec
ROB.full

D1.genStall®

D1.full®
D1.stallIn°rr

D1. fullerr+t
;) FCRPHL
D1.fullBuf D1.stallOut

AllRet
IEEE fRead

D1. full®crr

D1. full Bu ferF+!
DI fullenr+1

clear

D1 fullenr+2-cpi=1 D1.full Buferr+!

D2.stallOut

Figure 4.8: Computation of the decode stall signal with one buffer circuit inserted

D1. full Buf®

D1. full®
IR haltdec D1.full Buf"”
ROB. full

D1. fullesprtt
D1. full Bu fesrrtl

AllRet
IEEE fRead

D1. fullt--<sen
Figure 4.9: Computation of the signdD1. full Buf* with two buffer circuits inserted

The AND-gate and the two OR-gates needed for the computation of OR afjtiedss
D1.stallIn°kF and D1.genStall°RF (see figure 4.8) can be merged into the AND-
tree below. This effectively increases the number of inputs of the AN®Hye4 and
allows the balancing of the AND-tree in order to minimize the overall delay. ;Tthes
second equation can be replaced by:

o> max{D(AND-Tree(cRF(l) + 5)), Dyux +Dor + DAND}
+ Dor + Dyux.

If § does not fulfill the last equation a second buffer circuit is inserted intgesta
of D1. The the delay of the stall output of the decode phade s p since it comes
directly out of a buffer circuit. Thus, fa¥ > 5, the requiremenD(D1.stallOut) <
0 — Dyux (see section 6.4) holds.

Figure 4.9 depicts the computation of the ingt. fullBuf° of the full register
of the buffer circuit in stagé of sub-phasé)1 if two buffer circuits are inserted into
D1. Using the trick presented in figure 2.5 on page 17 the last AND-gate ofrthétc

4.2 Dispatch 51

can be removed from the critical path. This adds 3 more inputs to the ANDTthess,
if two buffer circuits are inserted, the following equations must hold:

d > max{D(D2.stallOut), D(AND-Tree(cpi(2) — crr(2) + 1)) + Danp},
6> max{D(AND-Tree(cRF(Q) + 7)), Dyux + Dor + DAND} + Dorg.

These equations hold for= 5.

The inputs of the decode sub-phdse consist of the full bit, the instruction regis-
ter, and the signals used by the branch prediction. The width of the inpRdiskz g
(the full bit, the 32 bit instruction word, the 32 bit instruction address, thbiBgre-
diction result, two interrupt signals, a control signal, dng-g bits for the branch
target buffer way, see section 6.9). The outputs of the decode sageph consist of
the inputs to the issue circuit and the data written into the ROB in sub-ph2as&he
width of the output id; + 15. The total cost for the decode sub-phaxkis (excluding
the RAM environments):

C(D1) < C(Decode) + C'(DestCmp) + C(OPGen)
+cp1 - ((115 + kprp + I])/2-| - CRrEG.

Letc; be the number stages of the cirdssgue and letcp, be the number of stages
of the read access to the ROB durib@. The cost of the sub-phage2 not counting
the ROB environment is:

C(DZ) < C(lSSUG) + ([[+ 15) - CrEC

n 0 ifc; =1
cps - C(lssueTest) if ey >1°

4.2 Dispatch

As described in chapter 3 each functional unit has one reservatiomnstdtame or
more entries. The instructions wait in the reservation stations until all ogerare
valid. The operands get valid by snooping on the CDB and on the outpledOB
access started during decode. The snooping on the ROB output isalcsisice the
instructions are issued before the ROB access. As soon as all openandalid, the
instruction is sent to the functional unit and the entry holding the instructideased.

Figure 4.10 shows a reservation station witly entries. Each entry can hold one
instruction. The circuits for the entrid®S-Entry;, (k € {0,...egs — 1}) form a
gueue. New instructions are always filled into eritryVhenever possible instructions
move to the next entry to make room for new instructions in efiti§ince instructions
cannot overtake each other in the reservation station, the oldest ingtrisctitways
in the entry with the highest number.

The busse€’DB.x and D2.0OP,.ROB.x are connected to every entry. If the
tag on one of the busses equals the tag of a not already valid operancofrg the
operand in the entry is updated. The data on the bus is saved and thedigaerearked
valid. An arbitration of the two busses is not necessary, as they capdataithe same

52 Processor Core

D2.OP,.ROB* CDB.% D2.FUx stallOut
In dispy, filly
RS-Entry, _
Out Entryg.* o
|

+ RS-Control
o In dib‘peRH,l, fillfrmfl
_| RS-Entry,,,_1 _

Entryeps—1-%
v
stallIn RS x

Figure 4.10: Reservation station

operand in the same cycle, since otherwise the instruction that is forwaxldd be
on the CDB and in the ROB at the same time.

The reservation station is controlled by the cird&-Control. This circuit selects
the oldest instruction which is ready (i.e., all operands are valid) andssetmthe
functional unit via the bugS.x. This step is called dispatch of an instruction. The
reservation station control also controls the movement of the entries in tie qune
computes the output stall signal of the reservation station.

4.2.1 Entries

The circuitRS-Entry for one reservation station entry is depicted in figure 4.11. The
input busin.x equals the output bus of the preceding entry respectively the input
received from the issue circuit in case of the erttryThe output bu®)ut.x contains
the updated content of the entry. If the control sigfidl is active, the entry is filled
with the content of the busn.x. Otherwise the current content is updated and held in
that stage.

The registerfull indicates that the entry contains a valid instruction. It is set by
filling a valid instruction into the entry via the bus..x. The full signal is reset if
the instruction is dispatched to the functional unit (indicatedibyp = 1) or if the
reservation station is cleared{ar = 1). The registeron contains information about
the instruction which are not altered by the reservation station, for exanglagtand
the opcode of the instruction. Hence, it is only updategiif = 1.

The circuitRS-Entry has a sub-circuiRS-Op for every operand. Each operand
has a valid bit, a tag and a data field. The number of operamgpends of the type
of the functional unit. The maximum number of operands is six for the floatiigi p
units. Table 4.2 maps the operands to Rf®-Op circuits of the reservation station
entries for the functional units.

The operands are updated by the CDB 6U3B.x and the output of the ROB read
access which was started in decode sub-pli2seNote that the ROB is accessed for
every operand in parallel and therefore computes one separatertawefyg operand
(see section 4.6). Similar to the forwarding circuit with stalling the CDB and thB RO
update the output buSut.x of the entry. Thus, if the instruction flows from entry
to i + 1 the entryi + 1 is updated. If the instruction remains in enirythis entry is
updated.

The busEntry.x is sent to the control circuRS-Control. The content of this bus

4.2 Dispatch 53

In.Op, .+ In.Op,.x In. full In.con
D2.OP,.ROB.* S f?.OR,.ROB.*
CDB.x
!] Y D2.0P.ROBx ¥ ¥ v
In CDB.% ROB.x In CDB.% ROB.x \;’-7 fill
RS-Op; e RS-Op, Y
Out Out | Sfull <I | con
.data .data > Entryx
walid

R req
walid D/reud’l/ >

\) \ \
Out.Opy.x Out.Op,.* Out. full Out.con

Figure 4.11: Reservation station entry

RS-Op; | RS-Op, | RS-Op; | RS-Ops | RS-Ops | RS-Opg

width 32 32 32 32 5 2
Mem OPl.lO OPQ.ZO

[Alu OPl.lo OPQ.ZO

IMulDiv OPylo | OPR.lo

FAdd OPl.hi OPl.ZO OPQ.hi OPQ.ZO OP3 OP4

FMulDiv | OPy.hi | OP1.lo | OPs.hi | OP.lo OPs OPy
FMisc OP; .hi OP;.lo OP;.hi OP,.lo OP; OP,
BCU OPi.lo | OPs.lo

Table 4.2: Mapping of the operands

is the same as the content of the likigt.x with two differences: first, the full bit of
the busEntry holds the content of the registénll instead of the updated value. This
old value of the full bit is used to decide whether new informations can be fiited
the entry (see section 4.2.2). Second, the Busry.x has an extra biteq indicating
that the entry contains a valid and ready (i.e., all operands are valid)dtistriand
hence requests that the instruction in this entry gets dispatched:

ready = /\ Opj.valid,
j=1
req = full A ready.

Let we be the width of the registewn. Then the cost of an entry withoperands
with width w; to w, can be estimated as:

C(RS-Entry(we, 0, wy)) < ZC(RS-Op(wj)) + C(AND-Tree(0))
j=1
+2-Canp + Cyux + (we + 1) - Crpe.

54 Processor Core

In.tag In.valid In.data

et i
tag fitl data ‘
> data 1) cdata
Test 0
CDB.x > forward
cforw _
» data v > vy
Test 10
ROB.x > forward
\
Out.tag Out.valid Out.data

Figure 4.12: Single operand of a reservation station entry

depDbl
odd

data

lroB EQ }V— forward
WA full, tag) —r——»
lrop +1

Figure 4.13: Modified test circuit for low part operands reading double precisien re
sults

Operands

Figure 4.12 shows the operand circRiB-Op. The circuit saves the valid bit, the tag
and the data of the operand in the respective registers. Ifitiesignal is active, the
content of the input busn.x is saved into the registers, otherwise the current operand
is held in the entry, i.e., the output bas.t.x with the updated values for the operand
is latched.

Similar to the RAM forwarding circuit in section 2.6.1 the sub-circiést com-
pares the tag of the buss€® B.x and RO B.x with the tag of the operand. If the tags
match, the signal€’' D B. full respectivelyRO B. full indicate valid forwarding data,
and the operand is not yet valid, the respective forwarding data are hexdipinto
the data outpuOut.data. The new valid signal is computed as OR of the old valid
and the forward signals from the two test circuits.

Assume a 32 bit instruction uses the high part of a 64 bit result as opeTéisl
can happen if the 32 bit instruction depends on a 64 bit result and readislaegister.
64 bit results are either written into the floating point register file or the regigi@nd
9 of the special purpose register file (integer multiplication / division instruclifes
as target. The high part of these registers can only be used by thend2eoh the
memory unit and the integer ALU, and operardand4 of the floating point units.

For these operands, the circliest is replaced by a modified circuit that uses
the high part of the CDB respectively the ROB output if the instruction readsdd
address and the depends on 64 bit result (see figure 4.13). Thedigh! indicates
that the instruction that the operand depends on is a double precisiorciimsiruhe

4.2 Dispatch 55

Entryo..eps—1-full Entrye,g—1..0-meq
EFO Entryeps—1..0x
PP-OR zero ffo
selectepe—1.0 >\ Sel
stallln
Y
filly...eps—1 RS.full dispeyg—1..0 RS

Figure 4.14: Reservation station control

signal odd is active if the operand address is odd. These two signals are computed
during decode (see section 4.1.4) and are part of the contreblbusf the reservation
station entries.

The cost of an operand circuit with data bits can be estimated as:

C(RS-Op(w)) < 2-C(Test(lrop)) + 3 -w-Cyux +w - CrEc
+2-Cor+ Canp + Cyux + (1 +roB) - CrG-
The additional costs for the entries of a reservation station of type= 2 for an

integer ALU reservation station, € {4,5,6} for floating point reservation stations)
are:

32-Cyux +Canp ifi=1
C(RS_Entry(07 Wiy wC))Jr <42 (32 : CMUX + CAND) if i € {3747 5} ’
0 else

4.2.2 Reservation Station Control

The reservation station control circlS-Control (see figure 4.14) computes the con-
trol signalsdisp, and fill, for the entries, the outpuRS.x of the reservation station
to the functional unit, and the stall signahllOut to the issue circuit.

The entryk can be filled if the entry is not fullfull}) or the content is filled into
the next entry fill;..1). The reservation station can accept new data if the first entry
may be filled. Since the last entry (numhgfs — 1) cannot be filled into any other
entry, it follows:

ers—1

filly == \/ fullj,
j=k
stallOut := filly.

Note that the stall output only depends on the full bits of the entries. Héimee,
reservation station splits the stall signal similar to the buffer circuit. The dralvis
that the issue circuit may be stalled even if an instruction is currently disghtohe
the functional unit and therefore its entry could be filled. Taking the dibpsimals
into account for the computation of the fill and the stall signals would significan
increase the delay of the stall output. This could make it necessary to acdffea b

56 Processor Core

Entryepg—1..1.5tore. Entryepe1..o0-full
@ Entryeps-1..0-req Entryeqg-1.0-full
PP-OR FFO FFO
ffo ffo
0 3 Entryepg—1..0.ready
Y
stallln stallln
\
dispeps—1..0 selecteopg—1..0 selecteops—1..0 dispeps-1..0
(a) (b)

Figure 4.15: Dispatch computation for memory (a) and branch checking (b) unit

circuit above the reservation station. Instead one could just increasgzthef the
reservation station by one entry to get the same effect.

If the stall inputStallln from the functional unit is not active, the control circuit
dispatches the oldest instruction in the reservation station which is ready finite
tional unit. The entryk contains a valid and ready instruction if the signal request
signal of this entryEntry,.req is active. A find-first-one circuifFO using the re-
guest signals computes as outyb the entryk with the highest index that contains a
valid and ready instruction. Hence, the signal&ct,, computed from the outpytfo
unary select the entry containing the oldest ready instruction. The negtibe stall
input stallIn is AND-ed to this output obtaining the dispatch signaéisp,. Thus, no
instruction is dispatched if the stall input is active.

The outputzero of the circuitF FO indicates that no entry is full and ready. If this
signal is not active, a valid instruction can be sent to the functional units,Tiregation
of the zero output can be used g&:ll signal for the output bufS.x. The signals
select, are used to select from the entry outpléitstry, .+ the instruction which is
sent to the functional unit via the output bAS .

For the memory unit and the branch checking unit small changes have todee ma
to the computation of the dispatch signals due to restrictions of the dispatehidaode
that due to these restrictions the DLX must have exactly one memory and branch
checking unit.

The reservation station of the memory unit has to guarantee that no memory in-
struction overtakes a store instruction, as the store may write to the samasaddre
Note that the address of a memory access is computed inside the memory unit and
therefore not known by the memory reservation station. A memory instruction may
only be dispatched if no older instruction is a store instruction. In orderdckcfor
all entries whether an older instruction is a store instruction, a parallek@é&fiof the
signalsEntry,.store A Entry,. full indicating a valid store instruction is computed.
The output of the parallel prefix OR is used to turn off the dispatch signedanputed
from the find first one circuit (see figure 4/15 (a)).

The branch checking unit can check branches only in-order. Hémeeeservation
station of the branch checking unit must dispatch the instructions in orddy. tke

4.2 Dispatch 57

> Entry. full
clear

Out. full
Figure 4.16: Full bit computation for one entry

oldest valid instruction is checked if it is ready. The oldest valid instructem lme
computed using a find-first-one circuit on the full bits. The output of the-first-one
circuit is AND-ed with the ready bits in order to check whether the oldestiostm is
actually ready (see figure 4.15 (b)). Since only the oldest instruction mdispatched
to the branch checking unit the signaldect, can be derived directly from the output
of the find-first-one circuit.

If the number of entriesgg is 1, the requirements for memory and branch check-
ing unit are automatically fulfilled. Thus, no special circuit is needeér# is 1.
Additionally the signalsfill anddisp cannot be active at the same time (the full bit
must be inactive foyfill and active forisp). This allows to move the AND gate which
resets the full bit on dispatch in figure 4,11 below the multiplexer controlledéfilth
signal (see figure 4.16). Hence, the delay of the path through the disgigttal is
further reduced.

The cost of the control circuRS-Control for a reservation station of typewith
o operands of widthv; to w, andw¢ control bits is:

C(RS-Control(erg, 0, wy, we)) < C(PP-OR(ers)) + C(FFO(egs))
+2-eps - Canp
+ (O wj +we +1) - C(Sel(ers))
=0
C(PP-OR(ers — 1))
+{ +ers-Canp

0 if i £0

ifi=0

58 Processor Core

In.req In. full
ot
| req <I | Sull <I
L » Entry.req
clear
‘g
Op,.valid
D ready K
Opy.valid
disp
\

Out.req Out. full

Figure 4.17: Inserting a register after the request bit

4.2.3 Pipelining

For a integer ALU reservation station of type withs entries, the delay of the path
from the busse€’' D B.x and RO B.x to the full bit is:

D({ROB,CDB}.x ~ Entry,.full') < D(Test(lgrog)) + 2 Dor
(Out.valid, figure 4.12)

+ D(AND-TREE(2))
(ready, figure 4.11)

+ Danp (req, figure 4.11)

+ D(FFO(ers)) + Danp
(dispy, figure 4.14)

+ Danp + Dyux.

Even if the number of entries is(which deceases the delay by the find-first-one circuit
and the multiplexer) this computation cannot be done in one cycle for a stptiedde
of 5. Thus, the computation must be pipelined if the stage depth is too small.

No pipelining registers are inserted inside the last part of the computatidimgtar
at the signalreq,. The bound ford given by the last part of the path is acceptable.
The pipelining of the path until the signakady, can be done similarly to the for-
warding circuit with stalling, i.e., using two-dimensional pipelining (see sectié/32
In one dimension the path from the signdBO B, C DB} . to the signalready, is
pipelined, the second pipelining dimension is the movement of the instructiorgtinrou
the reservation station queue.

In order to insert a pipelining register after the computation of the reqigestls
some modifications have to be made to the reservation station entries (sedfig)re
in order to maintain correctness. The modification to the entries is depicted in fig-
ure 4.17. The request signal is reset whenever the full bit is resgbdaudispatch or a
clear. Otherwise, if the valid bit is reset in the last cycle due to dispatchirigstreic-
tion or a clear, the request bit would still be active. This could lead to dispai@n

4.2 Dispatch 59

instruction twice or dispatching invalid data if the construction of the reservata-
tion entry from figure 4.11 would not be adjusted. Note that the extra logiepisted

in figure 4.17 introduces an additional AND-gate on the path from the bG5BEB.x
and RO B . to the full bit. Also, the clear signal is AND-ed to the full bit before the
full bit is used to compute the request signal (in contrast to figure 4.1d¢ sitherwise
the delay of the path would increase by a second AND-gate.

In the memory unit the computation of the dispatch signal also depends on the
AND of the signalsEntry,.write and Entry,. full indicating valid store instructions.
A register can be inserted after the computation of this AND similar to the regftger a
the request bit. Thus, the minimum delay of the dispatch signals for the a¢iserv
stations of the memory and branch checking unit is onlybyy p greater than for the
other reservation stations.

In order to compute the minimum delay of the inputs to the full registers and there-
fore the bound for the stage depththe following assumptions are made: the input
stall signalstallIn from the FU comes directly out of a buffer circuit. Thus, the delay
of this signal isD 4y p (see section 2.5.3). A register is added directly after the request
signals as in figure 4.17, leading to delayodbr these signals. Létbe the type of the
reservation station (see table 4.1 on page 40,ii .0 for the memory and = 6 for
the branch checking reservation station). Then is must hold for a etgBT\station
with erg entries:

3'DAND if eRS:1
o> maX{DAND,D(FFO(eRs))} +2-Danp +Dpyux ifegrg > 1A ¢ {0,6} .
maX{DAND,D(FFO(eRS))} 4+3-Danp +Dyyx ifepg >1ANi0€ {0,6}
(4.14)

Note that for a given this bounds the number of entriegg of the reservation stations.

Cost and Delay

To compute the number of cycles needed for dispatching instructions, tie lpave
to be considered. The path from the input Busx to the registerfull determines the
minimum number of cycles that an instruction has to stay in the reservation station,
if all operands of the instruction are already valid during issue. The initialevof
the request signaleq (i.e., the AND of the full bit and the operand valid signal) can
be computed during issue without increasing the delay of the issue circuis, &h
issued instruction for which the operands are all valid can be dispatchéd imext
cycle@.

The path from the bussd80 B.x andC D B.x to the full register determines the
minimum number of cycles it takes from receiving the last operand RE3.x or
C D B.) to dispatching of the instruction. In order to compute the delay of the path
the boolean variablg,., has to be introduced, which indicates whether a pipelining
register is added after the computation of the request bjt..ifis one (i.e., a register
is added), the delay increases by the delay of the AND which resets thestesignal
as in figure 4.17.

3The additional cost of C(AND-Tree(o+1)) is added to the cost of teeration station

60 Processor Core

To compute the cases wheasg, must be one the stall inpytall/n from the FU
is again assumed to come directly out of a buffer circuit (L¥.stallIn) = Danp).
If ers = 1, the stall inputstallin is at least as timing critical as the request bit. Thus,
in this casep,., can be zero. Fotrs > 1, the delay of the find-first-one circuit is at
leastD 4np. Thus, the the path from the request signal is critical. The varighle
can then be zero if the path from the signedady, to the input of the full registers
fits into one cycle. Let be the type of the reservation station. Thep, is:

5> D(FFO(ers)) +3- Danp + Dyux ifi#0
)0 if 7 | D(FFO(ers)) +4-Danp + Dyux ifi=0
Preq Vens — 1

1 else

Using the variable,.,, the delay of the path from the bus§g80 B, C DB} . to
the full register foregg > 1 can be computed as follows:

D({ROB,CDB}.x ~ Entry,.full') < D(Test(lgrog)) + 2 Dor (Out.valid)

+ D(AND-TREE(0)) (ready)

+ (Preq +1) - Danp (req)
0 ifi=6

+ 4 D(FFO(egs)) + Danp ifi=0
D(FFO(ers)) else

+ DanD (dispy)

+ Danp +Dyux.

If ers = 1 then no special computation is made for the branch checking and the
memory reservation station and hengg, is zero. Thus, the delay of the path is:

D({ROB,CDB}.x ~ Entry,.full') < D(Test(lgrog)) + 2 - Dor (Out.valid)

+ D(AND-TREE(0)) (ready)
+ DanD (req)
+ Danp (dispy)
4+ DanD.

The number of cycles needed from receiving the last operand fror@EH or the
RAM to dispatching the instructiofy;»p can be computed similarly as the forwarding
circuit with stalling (see section 2.6.4):

[D({ROB, CDB} . ~ Entry,. full’) — DMUX—‘
Cu2p = .
0 — Dyux
Now consider the output buBS.x from the reservation station to the functional
unit. This bus is computed by selecting the busBesry,.x using the signalselect,
(see figure 4.14). The delay of the bus&asry,.x and the signalselect, is smaller
thand due to the pipelining of the path from the bus$&%) B, C'D B} .x to the full bits

4.2 Dispatch 61

of the entries (see above). Due to the additional delay of the select citmudelay of
the output bugRS.x may be greater than but the select circuit can be pipelined easily
since it does not contain any loops. For simplicity this is done by adding thg dkla
the path that does not fit into one cycle to the delay of the functional unit. tRate
if the delay of the busS.x is smaller thary, the delay of the functional unit can be
decreased, because the functional unit can already do useful tatiops in the cycle,
in which the instruction is dispatched.

In order to compute the delay of the bl$.x the delay of the bussésntry,.x and
the signalsselect, after pipelining of the reservation station must be computed. Let
D’ (Entry,.x) andD’(select,) denote the delay of these signals before any pipelining
registers are inserted into the path fr@fRO B, C D B} . to the full bits of the entries.
For the reservation station of the BCIU=€ 6) the select signal only depends on the full
bits of the entries. For the other reservation stations the select signalsddepé¢he
request signal&ntry,.req. The delay of this signal can be derived from the formula
above for the path from the bussg®O B, C' D B} . to the full bit of the entries. Thus:

D(Entry..req) ifi#6
D(Entry,.full) ifi==6
D(FFO(ers))
D(Test(lror)) +2 - Dor + D(AND-Tree(o))
<< +(Preq+1)-Danp
0 ifi==6
+ D(FFO(eRs)).

D'(select,) < {
+

if i 6

The delay of the bugntry,.x is dominated by the data of the operands. Thus, the
delay of the bus is (see baxut.data in figure 4.12).

D'(Entry,.*) < D(Test(lrop)) + max{Dor + Danp, Duux} + Dyuux-

Due to the pipelining intey.p stages the delay ofelect, and Entry,.x can be re-
duced by up tdcyap —1)- (0 — Dypx). Since no pipelining registers are inserted be-
tween the request signalgq, and the signalselect,, the delay of the signalelect,
cannot get smaller than the delay from request signals. Thus, aftetingggipelining
registers the delays are reduced to:

(1 _preq) : DAND if 4 7é 6

0 ifi=6"
D'(selecty) — (cyap — 1) - (§ — Dyux),

D(Entry,.*) < max{0, D'(Entry,x) — (cuvep — 1) - (6 — Dyux)}-

D(select,) < max{D(FFO(egrs)) + {

If ers = 1 no select signals are needed to compute the outpufsus. Thus, the
delay added to the functional unit of the reservation station is:

D(Entry,.*) — 6 if eps =1

D(FU(egs))" < . :
max{D(select,), D(Entry,.x)} —o0 if egg > 1

62 Processor Core

Note that if this value is negative, the delay of the functional unit is effelstireduced,
i.e., logic from the functional unit is pulled into the last cycle of dispatch.

The delay of the output stall signalallOut is:
D(stallOut) < D(PP-OR)(egrs).

In order to compute the maximum number of entiégg for a givend, the delay of
the stall inputstallIn was assume to bBogr. For a giveregs the delay of the stall
input stallIn from a functional unit of typé is bounded by:

2-DanD if eps =1

. 4.15
(2-Danp + Dyux) iferg>1 (*4.15)

D(stallln) < § — {

The number of inputs and outputs of an entry witbperands of widthu; to w,
andw¢ control signals i€ - Z§:1 wj~+o-(lrop+1)+33+1roB +wc respectively
Z?:1 w; + 3 + wce. Thus, the cost of the entries increases through pipelining by:

C(RS-Entry(o, w*,wc))+ < (CUQD — 1) . (CMUX + CREG)

- ((S-ijJr(OJr 1) (lgop + 1) +2-we + 35)/2].
j=1

The cost of a reservation station withentries and operands of widthu, to w,
is:
C(RS(ers, 0, w,,wc) < ers - C(RS-Entry(o, w,, we))
+ C(RS-Control(egrs, 0, Wy, we))
+ C(AND-Tree(o + 1)).

Let n; be the number of functional units args, the number of entries of the
reservations stations of typec {0, ...,6}. Using the width of the control signals as
approximated in section 4.1.6 the total cost of the dispatch phase is:

C(Dispatch) < C(RS(ers,, 2, 32,32,24))
+ C(PP-OR(ers, — 1)) + ers, - Canp

+n1 - C(RS(ers,,2,32,32,8 + lron))

+ng - C(RS(ers,,2,32,32,8 + lron))

+n3 - C(RS(ens,, 6,32,32,32,32,5,2,8 + lpop))

+ng - C(RS(ens,, 6,32,32,32,32,5,2,8 + lpop))
(
(

Q Q

+ ng - RS(eRS5,6,32,32,32,32,5,2,8JrlROB))
+ C(RS(ers;,2,32,32,96 + kprp + lrOB))-

Note the additional cost for the memory unit=£ 0) due to parallel prefix OR that
checks for older store instructions in the queue.

4.3 Functional Units 63

| FU | CDB.hi | CDB.lo case

BCU target PC| result

ALU result.lo | result.lo

IMulDiv || result.hi | result.lo

FPU result.hi | result.lo dbl
result.lo | result.lo dbl

Mem effective address dpf VvV dmal
result.lo | result.lo (dpf Vv dmal)

Table 4.3: Mapping of the FU output to the CDB

4.3 Functional Units

The processor has seven different types of functional units: menndrynteger ALU,
integer multiplier / divider, three different floating point unit types (additimulti-
plicative, and misc) and a branch checking unit. To comply with the fastegsmr
core, the fastest published additive and multiplicative floating point unitdaden
from [Sei99]. The delay values for these FUs are taken from [SeiDB¢ miscella-
neous floating point unit is not assumed to be critical and taken from2Jab@lay
values are from synthesis of the Verilog description [Lei02] using Synggd97].

Pipelining of the floating point and integer units is straightforward usingebuff
circuits if the stall path gets to long. These functional units are not desirilbgetail
here. The delay value and the computation of the stall signals for these anitsec
found in appendix D. The memory unit is described in chapter 5, the bidratking
unit is described together with the instruction fetch in section 6.5.

Tablel 4.3 shows the mapping of the outputs of the FUs to the CDB. In order to
allow the high part of the reservation station operands to 32 bit resultst B2shlts
are written to the high and the low part of the CDB. This is only needed fon#tich
may write the floating point register file (Alu, Mem, and floating point FUs).

If the memory unit returns an interrupt, the effective address is savéleolow
part of the CDB. This allows to omit an additional exception data field in the ROB
entries. The branch checking unit returns the target PC which is néedederrupts
of type continue (see section 4.5.3) on the high part, and the result oheharestruc-
tion on the low part. A branch instruction produces a result if it writes to &steg
file entry: jump and link instructions write the address of the next instructiontlireo
general purpose register file; return-from exception instructions #ir@tealue of the
special register ESR (which is used as second operand of these tiosiyuicto the
special purpose register file.

Different units can produce different interrupts. For example only taifig point
units can producé EEE f interrupts. Hence, all interrupts which cannot occur for a
unit are set to zero at the output of the unit. Then all interrupt signals tefined
values for all units. The outputs of the functional units have width- [zo g, (the full
bit, 64 data bits, 8 interrupt bits, a misprediction signal from the BCU,iapg bits
for the tag).

64 Processor Core

FU, I ... FU,,,fll
FUp. FU, ..
stally 0 stall, 1

Arbiter

toRS

ROB I

Figure 4.18: Completion phase

4.4 Completion

In the completion phase the functional units write their result to the CDB. If multiple
functional units have results available, one unit is selected and may writesitk re
in the CDB register. The other functional units are stalled. The conteneo€bB
register is written into the ROB and distributed to the reservation stations.

Figure 4.18 depicts an overview of the completion phase. For the completise ph
the type of a functional unit is irrelevant. For simplicity the FUs are numbewad 0
ton — 1. The selection of the functional unit which may write to the registérB.x
is done by the arbiter circurbiter. This arbiter assigns the CDB to the functional
units round robin, i.e., starting from the unit that wrote to the CDB in the ladécitc
selects the next functional unit whose output is full. If the output of mzfienal unit
with higher index is full, the search is continued from indexf none of the FUs has
a valid result ready the index is unchanged and the full bit of the CDB i@ $et

Let j(denote the index of the last FU which has written to the CDB and st
the number of functional units. The indg¥*! of the next FU which may write to
the CDB can be computed by the following formula:

min{i|(FU;. full = 1) A (j® <i <n)} if V"L, FU. full =1

i=j (041
G = S min (i (FU;. full = 1) A (0 < i < n)} else if\/"} FU;. full = 1.
§® else

(4.16)

The write access to the ROB is never stalled. Hence, the regidbds.x may be
updated every cycle and the arbiter has no stall input.

4.4.1 Arbiter

The circuit for the arbiter is shown in figure 4.19. The sub-ciréuk computes the
acknowledge signaldck which unary selects the FU that may write to the CDB. The
FUs that are not selected have to be stalled. Therefore, the negatieraakiowledge
signals can be used as stall input to the functional units. The ckclitilso computes
the full bit of the CDB.

The width of the data bus i3 + [rop (64 data bits, 8 interrupt signals, the
misprediction bit, and the instruction tag). Thus, cost and delay of the adbiberit

4.4 Completion 65

FU,.full stall, FU, x

Out.x

Figure 4.19: Arbiter circuit

In,. full
l
% \ é \
\ A
HFLO,, HFLO, FLO}, FLO;
flo zero flo zero flo zero flo

I I
5
Ack

Out. full
Figure 4.20: Computation of the acknowledge signals

are:

D(Arbiter(n))
C'(Arbiter(n))

< D(Ack(n)) + D(Sel(n)),
< C(Ack(n)) + Canp + (T4 + lros) - C(Sel(n)).

Acknowledge computation

Figure 4.20 shows the implementation of the cirauik which computes the round
robin acknowledge signals. It is a delay optimized version of the circuit nd9H]
which is based on the formula (4.16). The indéX of the last functional unit which
has written on the CDB is saved in the regigtest in half-unary encoding (see section
2.4), i.e., all bits of the registéust with an index equal or lower thajt") are one, the
other bits are zero. Thus, the AND-gate above the rightmost find-lasthamngt FLO;

in figure 4.20 forces the full bits of those FUs to zero which have an indegrlor
equal toj(¥). The circuitFLO; thus computes the following functions:

FLOy.flo := (min{i|(FU;. full = 1) A (jP < i < 1)})un,

n—1
FLO;.zero := /\ FU;. full.
i=j (41

If the minimum does not exist, the zero signal is active and the output of tthe fin
last-one circuit with unmasked inpug.O,, is taken. If none of the full bits is active,
the zero bit of the circuiELOy, is active. Hence, the negation of this signal becomes
the full bit for the CDB register.

For the registeiast, the index is needed in half-unary encoding. This is done
by the find-last-one circuits that return the result in half-unary encadifigO in the

66 Processor Core

left part of the circuit (see appendix C.1.1 for the construction of them:iH:FLO)E
The registeriast is only updated if a functional unit has written on the CDB, i.e.,
CDB.valid = 1.

The delay and cost of the acknowledge computation are:

D(ACk(n)) < Danp + D(FLO(TL)) + Dyux, (4.17)
C(Ack(n)) < 2 - C(FLOH(n)) + 2 - C(FLO(n))
+n-(2-Canp +2-Cyux + Crec)-

4.4.2 Pipelining

The path from the acknowledge signals to the CDB register has no loopsaand
therefore be pipelined easily; it is not treated in detail here. Yet the adkdge
signalsAck are used to compute the stall inputs of the functional units and therefore
the delay must be small enough that the functional units can compute theirggialbks
within one cycle.

In order to compute the maximum delay allowed for the ciréak(n), the follow-
ing assumptions are made which minimize the delay of the inputs and the requirements
of the acknowledge signal: the last stage of all functional units is notresdto gen-
erate stall signals (i.egenStall = 0) and are not assumed to have a buffer circuit.
Thus, for all functional unité D(F'U;. full) = 0 holds true. The acknowledge signals
are not computed using an AND-Tree. Hence, in order to be able to cortieustall
signals in the functional units it must hold (see equation/ (2.9) in section 2.5.4):

0 — Danp > D(Ack(n))
Gxe) §>2- Danp + D(FLO(n)) + Dy (4.18)

Sincen must be at least, the proposed circuit cannot be used at a stage depth
of 5. The delay of the circuiAck can be reduced in two different ways. The arbiter
can be replaced by a tree of arbiters, thus reducing the number of irfghts single
arbiters or the full outputs of the functional units can be pre-computedyarie ahead
which allows to compute the acknowledge signals in two cycles. In this thesishanly
arbiter tree is presented.

Figure 4.21 depicts as an example an arbiter tree with two stages. The original
arbiter withn inputs is divided intos arbiters witht := [n/s] inputs in the first stage
and one arbiter withs inputs in the second stage. All stages except the first stage of
the arbiter tree have buffer circuits on their input registers in order toug#e the stall
signals in the tree.

In contrary to the arbiter on the root of the tree, the arbiters in the upplesneed
to process a stall input from the lower stages. If the stall input signatiiseabe buffer
circuit cannot accept new data. Thus, none of the acknowledgelsigithe arbiter
may be active. The stall sighal can be incorporated in the presented aituitét with
only small changes that do not change the delay of the arbiter (see4i@®e Due to
the half-unary encoding, the least significant bit of the register is always 1. The

“The original arbiter in [K©99] uses a parallel prefix OR over the biisk to compute the half-unary
encoding which increases the delay of the arbiter circuit.

4.4 Completion 67

stallOuty FUy* FU_1x stallOut,_; stallOuty, 1 FU,_4—1.% FU,_1x stallOut,_,
Arbiter(t) Arbiter(t)
stall stall

B Uf()
stall

Arbiter(s)

Bufo I
stall
Out.*

Figure 4.21: Arbiter tree

In,. full
l

stallln

HFLO,, HFLO, FLO}, FLO;

flo zero flo zero flo zero flo

Ack

Out. full
Figure 4.22: Acknowledge computation with stall input

least significant bit of the input of the rightmost find-last-one cirEli©; is therefore
always 0 and can be ignored. Instead the stall inputl I is used as least significant
bit of the input of FLO;. Thus, ifstallln is active the least significant bit of th&o
output of FLO; is active. Since this bit is replaced byan figure 4.22 and theero
output of FLO; is not active, none of the acknowledge signals is active if the stall input
is active.

The registeiast is only updated if new data is written into the buffer circuit, i.e.,
if the following signal is active:

updlast := stallln A Out. full

To allow for a small stage depth, the arbitration circuit for only two inputs @n b
optimized using a binary encoding for the regidiest (see figure 4.23). For an op-
timized delay the sub-circuAck(2) computes different signals for stalling the inputs
and for selecting between the two data ports. The stall outygut$, are computed
exploiting that the value of the stall output may be arbitrary if the correspgridput
full signal is not active, since in this case the input is not stalled anywdso, Ahe
select signal for the data may be arbitrary if the input stall signal is actimeg then
the output data is not latched into the next stage anyway.

68 Processor Core

Ing.full Ing.full stallln — Ing. full Ing. full Ingx Ing.x

Yy

stally stally Out. full Out.x

Figure 4.23: Arbiter with stall for two inputs (with sub-circuck(2))

The delay of the stall input of the arbiter is at m@f v p since it comes directly
out of a buffer circuit. Thus, for the 2 input arbiter it holds (see figugsi

D(Ack(2)) < max{Dyuvx,2 - Danp, Danp + Dor}, (4.19)
D(Arbiter(2)) <2- Danp + Dyux,
C(Arbiter(2)) <4-Danp +3-Cor + (74 + lgoB) - Cryux + CrEc-

Assume that the last stages of the functional units cannot generate agstall s
Then for all stages of the buffer tree the delay of the input full signalsnsost Do
(see figure 2/4). The delay of the stall outputs of the arbiters to the pngcstdge of
the tree respectively to the functional unit may be at mesD 4y p (See equation 2.9)
in section 2.5.4). Thus, using a tree of two-port arbiters, the bountiffom equation
(4.18) can be reduced to:

d — Danp > Dor + D(Ack(2))

P22 0 > Danp + Dor +max{Dyuvx,2- Danp, Danp + Dor},

(4.20)

which holds ford > 5. Note that this bound is independent of the number of functional
unitsn.

4.4.3 Cost and Delay

In order to compute the number of stages of the arbiter tree of the completse,ph
two variables are introduced: the varialbledenotes the maximum number of inputs
of the arbiters at the leaves of the tregedenotes the maximum number of inputs of
the inner nodes of the tree.

For the computation of;, it is assumed that the last stages of the functional units
do not generate a stall and do not have buffer circuits. Thus, the déldne full
signals of the inputs is zero and the delay of the outputs may be attmog? 4np.
Using equations (4.17) and (4.19) can be computed as:

tr, = max{t|6 — Danp > D(Ack(t))}

f 6 > D(FLO(t)) + Dyux +2- Danp ift>2
— max . .

0> Danp +max{Dyux,2 - Danp,Danp + Dor} ift =2
(4.21)

4.4 Completion 69

stallOutg, ;1 stallOuty, 41, n1
FUy. 4—1-full FUy. 4 1.data FU, ¢ 1. p1-full FU, 4 1. n1.data

Ack(t) |4 | Aok |t

ull \ ull

.

y

A
el(t | Ack(s) Ack el(t
data data

YSull ¥ I

Out. full Out.data
Figure 4.24: Arbiter tree with pipeline select circuits

For the inner nodes the delay of the input full signal®isi due to the buffer circuits
between the stages (see section 2.5.3). Henaan be computed as:

tr = max{t|5 — Danp 2 Dor + D(ACk(t))}

0 > Dor + D(FLO(t)) + Dyjux +2 - Danp ift > 2

=maxy t| ¢ d > Dor + Danp if+—29
+max{Dyux,2- Danp, Danp + Dor}

Then the number or arbiter stagegr in the arbiter tree is:
CAT = ﬂOgtI [n/tLH :

The path from the acknowledge signals through the selection circuit to tae da
output can be easily pipelined if necessary. Note that the delay of thewlddge
computationD(Ack(n)) is at least as large as the delay of the select cifeygel(n)).
Thus, the output of the arbiter can be computed in at most two cycles.

In an arbiter tree, the computation of the data output of stagfeéhe tree can be
done in parallel to the arbiter of stage- 1 of the tree. See figure 4.24 for an example
with 2 stages. In the figure, the select circuftsl(t) compute the data for stage 1
in parallel to the acknowledge computation circiak(s) of stage 2. Thus, only the
select circuit of root of the arbiter tree needs an additional stage.

Note that performing the selection of staiga parallel to the arbitration of stage
delays the data inputs for the section of stagel. Thus, even if the Arbiter of stage
1+ 1 itself would fit into one cycle, the selection must then be moved to the next stage
due to the delay of the data inputs. Thus, if the outputs of any arbiter in théstree
computed in two cycles, the overall number of cycles needed for the cotigoued
the output of the arbiter tree is the number of stages of the tree plus one.

Let the boolean variablesr be one if either the arbiters at the leaves or the arbiters
at the inner nodes of the tree need two cycles to compute the data outputthe For

70 Processor Core

arbiters at the leaves of the tree the delay of the full inputs is zero. For tiee in
arbiters of the tree the full bits come out of a buffer circuit and therefiaree delay
Dorg. Thus:

{1 if max{D(Arbiter(t;)), Dor + D(Arbiter(t;))} > &
PAT = ’
0 else

The total number of stages for the completion phases then:

CC = CAT + PAT.

Due to the buffer circuits the delay of the stall inputs of the arbiters on theseav
of the arbiter tree i 4y p. Hence, the stall input is at most as critical as the full input
(see figures 4.22 and 4.23). Since the full inputs of these arbiters dmnt out of
buffer circuits it holds:

D(FU,.stallIn) < D(Ack(tr,))

DAND—|—D(FLO(min{tL,n}))—|—DMUX if t; > 2
max{Dyux,2 - Danp,Danp + Dor} iftp =2
(4.22)

<

Let n be the number of functional units. The number of inputs of the complete
phase is approximately- (74 + lrop), the number of outputs I8t + I zro5. Then the
cost of the completion phase can be approximated by:

C(Arbiter(n)) + (n+ 1) - (74 + lroB) - CrEG iftp, >n

C(Complete) < [n/tr] - C(Arbiter(tz)) - .
(#6477 1) /(¢ — 1) - C(Arbiter(t1)) if tr, <n

+(cc+1)- [((n+1)- (74 +IroB))/2] - CrECG

4.5 Retire

During the retire phase the results of the instructions are written into the refijeste
In order to support branch prediction and precise interrupts, the atistng are re-
ordered using the reorder buffer before they write the register fileo Ifucceeding
instruction writing the same register is processed at the time the register filesitedpd
the retiring instruction sets the valid bit of the producer table entry of the dgistin
register.

45.1 Overview

An overview of the retire phase is depicted in figure 4.25. The retire ghabeided
into three sub-phaseBetl, Ret2, and Ret3 such that in each phase only one RAM
access is made. The following sections describe the three sub-phases.

4.5 Retire 71

ROB sub-phaseet1

ROB.IEFEEf

I sub-phaseiet2

newl EEEf| newSR

RE I sub-phaséict3

Figure 4.25: Retire pha&

Sub-phase Retl

The first sub-phas&et1 reads the oldest instruction which is currently in the ROB.
If this instruction in the ROB has already completed, i.e., the valid bit of the entry is
set, the instruction is retired. The hardware for the sub-pRase is presented in the
ROB section 4.6.

Sub-phase Ret2

In the second sub-phag&t2 the producer table is checked for whether no succeeding
instruction currently being processed write to the same destination registgrthen

the valid bit of the producer table entry of the destination register may behsst w
the destination register is written. Otherwise the producer table entry mustirstay
changed. In order to check whether the instruction being retired is theradb write

a register, the sub-phag&t2 reads the producer tableT for the destination register
entry of the retiring and then compares the tag with the tag of the instruction in the
circuit TagCheck. Since every instruction writes its tag to the producer table entry of
its destination register during decode, no other instructions currentlegsed writes

its result to the same register if and only if the tags match. If the tags don’t match th
write signal for the producer table is disabled.

In parallel to this check the sub-phaRet2 computes all remaining signals which
are needed for retiring the instruction. In particular, these are the niew f@r the
floating point flag registef EEE f and the interrupt bugSR.. For this the sub-
phaseRet2 accesses the special purpose register which delivers the value péttials
register/ EE'E f and SR for the time the instruction enters the sub-ph&%e3 (see
section 4.7.4). The regist&R is then used to compute the interrupt bus.

Sub-phase Ret3

In the sub-phaséiet3 the producer tables and the register files are updated. If an
interrupt or a branch misprediction has occurred, the processor efiusy activat-
ing the signakiear. The signallear resets the full bits of all stages as well as the

5The producer tables and the SPR are accessed twice during retire his S€cessed the second
time as part of the register files). Both RAMs are depicted twice in order fihagize the independent
accesses.

72 Processor Core

producer tables and the ROB. Since retire is done in order this leavesabespor

in a consistent state. The computation of the clear signal depends on thiengari
branch misprediction and is therefore presented in more detail in the insirfieta
chapter 6. The sub-phag&:t3 only consists of these RAM accesses and is presented
in the sections for the register file and the producer table (4.7 anhd 4.8).

45.2 Tag Check

The circuitTagCheck checks for all register file®t € {GPR,FPR,SPRIf the tag of
the destination registePT.R.tag of the instruction equals the taO B.tag of the
instruction read from the ROB. If the tags are equal and the write signtddaegister
file type ROB.D SR.write is active, the valid bit of the destination register entry must
be set by writing to the producer table. Thus, the write signals for the pevdables
are computed as follows:

D.PT R.write :== D Rwrite A (ROB.tag = PT R.tag).

Let I be an instruction in the retire sub-phaBet2. The outputPT.R.tag of
the read access to the producer tablefonust contain the value of the entry at the
time the instruction/ enters the sub-phadeet3. Otherwise it could happen that a
new instructionl,, which updates the producer table during its decode phase is not
recognized. The updated value f could be overwritten by the instructianin sub-
phaseRet3 which may lead to data inconsistencies. Hence, all write accesses to the
PT during decode that start befafeenters the sub-phagert3 must be forwarded to
the read access in the retire sub-ph&se2. The forwarding of the producer table
described in detail in section 4.8.

The cost and delay of the circuiagCheck are:

C(TagCheck)
D(TagCheck)

<3-C(EQ(lros + 1)),
< D(EQ(lroB +1)).

4.5.3 Interrupt Handling

The circuit JISR computes all interrupt related signals. If an interrupt occurs, the
processor is flushed and the instruction fetch is restarted at the stag witénrupt
service routine (ISR). The service routine then executes code toaedce interrupt

(it “handles” the interrupt). The last instruction of the ISR is always arreftrom-
exception (rfe) instruction which returns to the code that caused theuptefn order

to allow precise interrupt handling some registers of the SPR definingsdaine type

of the interrupt must be updated when an interrupt occurs. A detailextipésn of

the interrupt handling including a correctness proof can be found irOp}IP

The supported interrupts are shown in table 4.4 ordered by priority. Iftfferent
interrupts occur for one instruction, the interrupt with higher priority (Iowelex)
is handled first. The internal interrupts (priority 1 to 12) are detected in hiasgs
instruction fetch, decode, and execute. The corresponding sigratobected and
saved in the ROB. The external interrupts are assigned to the first itistruehich
enters the retire sub-phaBet2 after the interrupt occurred. As in [MPO0O], the external

4.5 Retire 73

| name | signal | priority | type | maskable| external|
reset reset 0 yes
illegal instruction ill 1 abort
misaligned access | mal 2 o
page fault IM Ipf 3 repeat
page fault DM Dpf 4
trap trap 5
FXU overflow ovf 6 no
FPU overflow fOVF 7
FPU underflow fUNF 8
FPU inexact result FINX 9 continue yes
FPU divide by zero | fDBZ 10
FPU invalid operation fINV 11
FPU unimplemented | uFFOP 12 no
external I/O ex; 124 yes yes

Table 4.4: Interrupts

interrupts signals are required to remain active until the processor i®eflushhe
internal and external interrupts are combined in the®ug31 : 0] according to their
priority:

pup ifi=0
ROB.ill ifi=1
ROB.dmal vV ROB.imal ifi=2
ROB.Ipf if i =3
CA[i] := { ROB.Dpf if i =4
ROB.trap ifi=25
ROB.ovf ifi=26
ROB.IEEE{[i — 7] if 7<i<12
exli — 13] if i >13

Misaligned memory accesses can occur during instruction feétell} or during data
memory accesseshfial). Both interrupts are combined to the misaligned interrupt
signalC A[2].

The interrupts 6 to 11 and 13 to 31 can be masked by the mask registerhese
interrupts are ignored if the corresponding bit of the regiStiis not set. The masked
interrupt busM C A is defined as:

CA[i)ASR[i] if6<i<11VvI13<i

MCAJi] := _ o o
CAli if i <5Vvi=12

The signaljisr indicates that a non-masked interrupt has occurred:

31
jisr = ROB.full A \/ MCA[i]
=0

74 Processor Core

An interrupt can be of one of the typabort, repeat or continue If an abort inter-
rupt occurs, the processor is restarted. If the interrupt is of typeatethe instruction
that caused the interrupt has to be repeated after the interrupt hahdmdied by
the ISR. If the interrupt is of type continue, the processor continuegaitceeding
instruction after the execution of the ISR. Since the content of the regigidiir-
relevant if the interrupt is of type abort, the processor core distingsiishly between
the types repeat and continue:

repeat == MCA[3] Vv MCA[4] = CA[3] vV CA[4].

Repeat interrupts have higher priority than continue interrupts and araaskable.
Thus, the interrupt with highest priority cannot be of type continuejikat is active.

The PC of the instruction which must be executed after the interrupt hashlame
dled is stored in the special registePC. For abort interrupts the value written into
this register may be arbitrary. If the interrupt is of type repeat, this is thefRkeo
instruction that caused the interrupt. If the interrupt is of type continue,ighise
PC of the next instruction. The PC of the next instruction depends on teeofyihe
instruction for which the interrupt occurred. If the instruction is a brainskruction
(indicated by the signdiranch in the ROB entry), the branch target has been com-
puted in the BCU, which delivers the target on the high part of the resslt{tee
table 4.3). Otherwise the PC of the next instruction is the PC of the curréniétisn
plus 4. The special registerPC' is updated using the busPC which therefore is
defined by:

ROB.data.hi if repeat AN ROB.branch
ePC := { ROB.PC + 4 if repeat N ROB.branch .
ROB.PC if repeat

If the interrupt is caused by a trap instruction, the regisfesta must be updated
with the immediate constant of the instruction. If the interrupt is caused byeafpaly
or a misaligned memory access the registernta must be updated with the effective
address of the memory access. In any case the value that has to be wtatémein
registere Data can be found in the low part of the result bR® B.data as explained
in the foIIowing@

For instruction memory interrupts, the decode circuit sets the immediate constant
to the PC of the instruction, i.e., the effective address of the memory aceessgs
tion 4.1.3). Thus for both trap instructions and instruction memory interruptetie
ister eData must be set to the value of the immediate constant. In both cases the
instruction causing the interrupt uses the integer ALU which then copies the-imme
diate constant to the low part of the result bus. If a data memory interrgotr&c
the memory unit also stores the effective address on the low part of thk (ese
table 4.3). The special registePata is updated using the busData. Thus:

eData := ROB.data.lo.

5Thus, the ROB entries of the DL do not need an extra 32 bit field for the exception data as the
designs proposed in [KB9] and|[Hil00Q].

4.5 Retire 75

Before the processor jumps into the ISR, all instructions preceding thadtisin
that caused the interrupt must have updated the register files. This Engpea as
retiring is done in order. The instruction causing the interrupt may only tepitie
register files if it is not of type repeat. Thus, the write signal for a regfiefi <
{GPR,FPR,SPRmay not be active for interrupts of type repeat:

D.RFR.write := D R.write A repeat.

The bus/ IS R.x updates the instruction fetch unit. The full bit must be active if an
interrupt occurred. It forces the instruction fetch unit to continue theunson fetch
at the start of the ISR, i.e., at addre&sS R.sisr. This bus is set to the constant SISR
(start of the interrupt service routine):

JISR. full := jisr,
JISR.sisr := SISR

Stalling

The last stage of the retire sub-phaet2 has to be stalled if an interrupt occurs
and the instruction fetch unit cannot accept new data, which is indicatétetsignal
IF.lastcycle (see section 6.1.2). If the retire sub-phd&é?2 is divided into multiple
stages the stalling only affects the last stage. The other stages aretadiedr Since
the interrupt flushes the whole processor core anyway, inconsisténfar the suc-
ceeding instructions do not affect the correctnessckgt be the number of stages of
the retire sub-phasket2. Then:

Ret2.stall' :== 0 fori e {0,..., CRet2 — 2},
Ret2.stall°F2~1 .= JISR. full A TF.lastcycle.

Cost and Delay

The cost and delay of the circuWitSR are:

C(JISR) < C(OR-Tree(32)) + C(INC(32)) + 32 - C(Sel(3)) + 30 - Canp + Cor,
D@JISR) < max{D(INC(32)),2 - Danp + D(OR-Tree(32))}.

4.5.4 Cost and Delay
Sub-phase Retl

For performance measurements the number of cycles needed to read ROB

in the sub-phaséet1 has no impact. The minimum number of cycles between the
completion and the retiring of an instruction is defined by the number of cyelgs

it takes to forward the data on the CDB to the output of the ROB in the readsote
sub-phaseretl. The value ofcoor is computed in the ROB section 4.6. The retire
sub-phaseiet1 needs no additional hardware apart of the ROB.

76 Processor Core

Sub-phase Ret2
The total delay and the number of stages needed for the the subpbidsare:

D(Ret2) < max{D(PT. x .tag) + D(TagCheck), D(SPR.newSR) + D(JISR),
D(SPR.newlIEEEf)},
cret2 < [D(Ret2)/4].

The inputs to the retire phageet2 are the outputs of ROB and producer table and
the external interrupts. Thus, the number of inputs is 140. The output® oétine
phaseRet2 are the interrupt bug IS R.x, the destination register bus.x, and the
interrupt signals for the special purpose register file. The numbertptibhits is 264.
The cost of the sub-phase is:

C(Ret2) < C(TagCheck) + C(JISR) + 5 - Cor + Cret2 - 182 - CrEq-

Sub-phase Ret3

The number of stages of the retire sub-ph&sé&3 has no impact on the performance
of the processor. The cost of the sub-ph&se3 is the cost of the input registers:

C’(Ret3) < 264 - Crgg.

4.6 Reorder Buffer Environment

The reorder buffer is a queue used to rearrange instructions intogpnagyder before
they are retired. This is needed for precise interrupt handling [SP884 entries in
the ROB are allocated during decode. When an instruction completes, théivalfd
the entry is set. If the oldest instruction in the ROB is valid, it is retired.

4.6.1 Overview

The ROB is implemented as a RAM block with head and tail pointer. The head pointe
addresses the oldest entry, the tail pointer points to the entry which shefiliéd next
with a new instruction. When an instruction retires, the head pointer is increthente
when a new entry is allocated, the tail pointer is incremented. If the ROB isdulew
instructions are decoded (see section 4.1.7). Thus a new entries awmdloolted, if
the ROB is not full.

The ROB is read in two different contexts and written in two further contdnrts.
order to distinguish these four contexts a hame is introduced for evetgxtomhe
four different accesses to the ROB are listed in the following:

Allocation-context: During the decode sub-phag® (see section 4.1.1) a ROB entry
is allocated for the new instruction by writing to the ROB. The address of the
entry which is allocated is given by the tail pointer. This access resetslide va
bit of the entry to indicate that the instruction has not yet completed and writes
the information for the instruction which are known during decode (e.g., the
address of the destination register) into the ROB.

4.6 Reorder Buffer Environment 77

| group || name | width | purpose
valid valid 1 valid signal for entry
datalLow || data[31 : 0] 32 | lower 32 bit of result
dataHi data[31 : 0] 32 | upper 32 bit of result
ill 1 illegal instruction
imal 1 misaligned IMem access
ipf 1 IMem page fault
trap 1 trap instruction
uFOP 1 unimplemented FP instruction
D.addr 5 destination address
onlssue || D.dbl 1 double precision result
D.GPR.write 1 GPR destination
D.FPR.write 1 FPR destination
D.SPR.write 1 SPR destination
branch 1 branch instruction
writel EEE f 1 instruction writes IEEET registef
PC 32 | instruction PC
dmal 1 misaligned DMem access
dpf 1 DMem page fault
onCompl || ovf 1 ALU overflow
IEEEf 5 | IEEE flags
mp 1 misprediction

Table 4.5: Components of an ROB entry

Operand-read-context: In parallel to the access-context the ROB is read for each of
the (up to six) operands of the new instruction. If the entry read for tieeanyul
has already completed, the result can be forwarded to the reservation.sta

Completion-context: During completion the result of the instruction is written into
the ROB. This access also sets the valid bit of the ROB entry.

Retiring-context: In the retire sub-phasBet1 the ROB entry addressed by the head
pointer is read in order to retire the oldest instruction. If the valid bit of the re
instruction is set, the instruction is retired.

Table 4.5 lists the fields of the ROB entries. Not all fields are used in evetgxio
The components which are used in the same contexts are combined into thénigllow
groups as proposed in [HilDO0]:

valid: This group contains the valid bit of the entry. This bit indicates that the instruc
tion which is saved in this entry has already completed and hence the ROB entry
contains the valid result of this instruction. It is accessed in every context.

dataHi, dataLo: The two groups dataHi and dataLo contain the high respectively low
part of the result. Both groups are read in the operand-read contbiti@retire-
context and written in the completion-context. Note that data needed by the high

78 Processor Core

group ports width
allocation| operand-read completion| retiring

valid 1w 6R 1w 1R 1

datalLo 3R 1w 1R 32

dataHi 3R 1w 1R 32

onlssue 1w 1R 48

onCompl 1w 1R 9

Table 4.6: Data width and number of ports of the ROB groups

parts of the operand3 P, andO P, can only be found in the group dataHi (see
section 4.1.2). The low part of the operar@d®; andOP, can only be found
in the group datalLo. The operan@d’; andO P, can only be written by 32 bit
results and can therefore be found in both the groups dataHi and dgga&o
section 4.3). In order to distribute the read ports evenly for the opetand
the group datalo is read and for the operang, the group dataHi is read.
Therefore, only three read ports are needed for the operand:oeseakt.

onlssue: All information about the instruction which do not change after the decode
phase are combined in the group onlssue. This comprises the interngs co
tions which are detected during instruction fetch and decode, the information
about the destination register, the PC of the instructionpthech bit indicat-
ing a branch instruction (i.e., a branch or a jump), and thevbite/ EEE f
indicating a movel2S instruction which writes the special regisieE E f. The
group onlssue is written in the allocation-context and read in the retir@xton

onCompl: This group contains the interrupt conditions which are detected during ex-
ecute and the branch misprediction signal. Since these informations are not
needed by succeeding instructions this group is not accessed in trendper
read context. Thus, the group is only accessed in the completion- andg-etirin
context.

Tablel 4.6 shows the width and the number of ports needed by the groups of th
ROB. The valid group needs seven read ports. To reduce the numlsadoports the
three copies of the RAM block for the valid group are used with the same vaits p
but less read ports. The first two RAM blocks witlhead ports each correspond to the
RAM blocks of the groups dataLo and dataHi and are accessed in theceamests.

The last RAM block has only one read port and is accessed in the retitexto In
order for all sub-groups to have the same content, every sub-gesithé same two
write ports. Since the valid group consists of only one bit, the additionalfooghe
RAM blocks is not significant.

4.6.2 Pipelining of the Retiring-Context

Pipelining of the ROB access in the retiring-context must be done differemtiyl
other RAM accesses as the decision which address has to be rea@pentd on the
last read result.

4.6 Reorder Buffer Environment 79

Let cre1 be the number of cycles needed for a read access to the ROB in the retire-
context. In [Ki699] the read access for the oldest instruction is restarted if the valid
bit of the oldest instruction is not set. Then no instruction could be retinethéonext
cret1 — 1 cycles. This degrades the performancesif;; is larger than one. In order to
avoid a restart of the read access, the read access of the oldesttiostfus stalled
in the last stage of the ROB if thehas not completed yet. Upon completion/ahe
result is forwarded to this read access. The forwarding also sets lilebiteof the
data read from the ROB and the instruction can retire.

Since a read access for the ROB takgs: cycles, the read access for the second-
oldest instruction must already have been started, when the oldestiiwstiggetired.
Otherwise instructions could only be retired evegy;; cycles. Lett be the tag of the
oldest instruction in the ROB. In order to be able to retire an instruction exee,
the read access for the entry 1 must be in the second-last stage of the read access, the
access for entry + 2 in the third last and so on. If the processor is flushed, the oldest
instruction in the ROB will have the tay Thus, upon activation of the clear signal the
pipeline of the read access is set up such that the last stage contaidsagceas for
the entry zero, the second last stage a read access for the entrywdrs®, @n. Thus,
the first stage of the read access in the retire context must contain acoess for the
entrycgre: — 1. The address of the first stage of the read access is determined by the
head pointer. Thus, the head pointer does not point to the oldest instrumticto the
cret1 — 1-oldest instruction. If the oldest instruction is retired, all read accenses
to the next stage and the head pointer is incremented. Hendés tlife tag of the oldest
instruction in the ROB, the stag@do cr.;1 — 1 of the read access in the retire-context
always contain read accesses to the entriegre;; — 1 t0 t.

Note that the read accesses in the retire context are started specuylaéyeyread
access can be started even before the entry has been allocated faraction. Thus,
the RAM will not return any valid data for the read access. In this casefaftiration
of the instruction must be returned by means of forwarding.

4.6.3 Forwarding

In this section the forwarding of the write accesses in the allocation- andletomp
contexts to the read accesses in the operand-read- and retiringtsdatdrscribed.
Every of the four possible combinations is discussed separately.

Allocation-Context to Operand-Read-Context

Only the valid bit of the ROB entries are written in the allocation-context and rea
in the operand-read context. The allocation-context disables the valid leihce
forwarding of this bit would mean that the entry of an instructions that hamdyr
retired is invalidated. Yet, the register file and producer table environmeatha fact
that the results of instructions that have been retired can still be read the BOB.
This allows to omit forwarding in the register file and producer table enviromifnem
the retire phase to the decode phase (see section 4.7.1). Hence, aaifogis done
from the allocation-context to the read-context.

The read accesses in the operand-read-context can be stalled $iaseadtwait
until the instruction is issued (see section 4.1.7). The write accesses in ttatialie

80 Processor Core

context is not stalled. Thus, a write accesses can overtake a readescH the read
access uses the same address as the write access, the read adcstwrouhe data
written by the write access. Thus, even if no forwarding is done, theaeaeks could
return data written by write accesses that have not been started béfooeder to
prevent this it must be guaranteed that the write accesses that carkeweread do
not use the same address as the read access.

The accesses in the allocation and operand-read-context for arctistrare both
started when the instruction enters the decode sub-pgh2s&he read access is stalled
in the first stage oD2 if the output stall signal of the issue circuit is active. The read
access must not finish before an instruction is issued (see section #.130ing can
be done in one cycle the read access does not have to be stalled, onterdttee
second stage ab2. If issuing takes multiple cycles, the last stage of the ROB read
access is stalled if the control signakued is not active. Thus, in this case all stages
of the ROB access can be stalled.

The write access in the allocation-context is never stalled. In fact if theictgin
is stalled in the first stage of the decode sub-pHagenultiple write accesses will be
started for the instruction. Hence, if issuing can be done in one cyclege#lueaccess
in the operand-read-context of an instructiooan be overtaken by the write access in
the allocation-context of itself. Once the read access is in the second stage no more
write accesses can overtake the read. Thus, in this case it must batgaedrthat the
tags of the operands dfreturned by the producer table may not have the same value
as the tag of.

If issuing takes multiple cycles, a read access can be stalled in every $tidige o
access. Hence, a read access in the operand-read-context stration/ can be
overtaken by the write accesses in the allocation context of all instructiahsah be
in the decode sub-phade2 at the same time ak Letcpsy be the number of cycles of
the decode sub-phag22 and lett be the tag off. Since decode is done in order, the
writes that can overtake the read access in the operand-read-aoiniehdve the tags
t+ cps — 1 tot (modulo the size of the ROB o). Thus it must be guaranteed, that
the instruction/ does not depend on any instruction with these tags.

Completion-Context to Operand-Read-Context

If not all operands of an instructioh are valid, the results of all instructions that
have not updated the register files must be forwarded to the instruktiortil all
operands are valid. The read access to the ROB RAM in the operatit:oatext of
instruction/ returns the results of all instructions which have already completed at the
time the read access is started. As soon as the instruti®im a reservation station,
the forwarding is done by the reservation station by snooping on the CBis, The
forwarding circuit for the ROB read access in the completion-context mketat
instructions into account that complete in the window from the start of theaeeekss
of the instruction/ to the arrival off in the reservation station.

If issue is done in one cycle, the window consists of exactly the one cyclhizhw
the instruction is issued. The forwarding of this cycle is done by a forwgrttee
with one input. If the issuing takes multiple cycles, the CDB has to be forwardtid
the signalissued is active (see section 4.1.7). Since the read access can be stalled if
issuing takes multiple cycles, the forwarding is done by means of a forwpcthicuit

4.6 Reorder Buffer Environment 81

D2.x ROB.head CDB.*
] [
Y Y Y Y \ Y Y v Y
ROB.datalo,
ROB.onlssue ROB.valid ROB.dataHi,
ForwardStall ForwardStall ROB.onCompl
dataQut forwOut ROB.empty SforwOut dataOut

RAM.valid

RO Bhead.valid

Figure 4.26: Forwarding for the ROB access in the retiring-context

with stalling.

Allocation-Context to Retiring-Context

The read access in the retiring-context is done speculatively. Thusdleaccess in
the retiring-context for an instructioh can have been started even before an entry
was allocated for in the allocation-context. Therefore, the allocate context must be
forwarded to the retiring-context in order to read, e.g., the destinatioessidAlso the
forwarding from the allocation-context must reset the valid bit of the e@tlgerwise

if the the read access in the retiring-context is started before the write ifidbatéon-
context, the read could return a spurious valid signal. As the read dndbsgetiring-
context can be stalled, the forwarding is done using a forwarding cisgthitstalling.

Completion-Context to Retiring-Context

Due to the speculative read, the read access in the retiring-context iiastauction/
can have been started before the instruction writes its result to the ROB iartime:
tion context. Thus, the write access in the completion context is also fordiémdhe
retiring-context by means of a forwarding circuit with stalling.

4.6.4 Implementation of Forwarding

Figure 4.26 depicts an overview of the ROB forwarding in the retiring-canfdote
that all groups of the ROB RAM except the valid group are only written in eithe
the allocation- or the completion-context. Thus, for each of these granlgsooe
forwarding circuit is needed. The valid bit is reset in the allocation-cadrated set in
the completion-context and therefore depends on both forwardingtsircu

The output of the ROB is forced to zero when the ROB is empty (indicated by the
signalRO B.empty, computed by the ROB control), resulting in the sigRal M .valid.
This is done to prevent spurious valids. This output of the RAM is combirigudtie
signalsreset andset generated from the outpuferwQOut of the forwarding circuits

82 Processor Core

W.Atag, valid, data} addri=* forwUpd—! datalipdi~!

clear
stall®

| data® <I

Test.data'
»| Test |
H

Test. forward' ¥ v

vy v v

addr? forwUpd" datalUpd'

Figure 4.27: Stagei of the forwarding circuit for the ROB

for the allocate- respectively completion-context. These signals indicatéhthéast
stage of the corresponding forwarding circuit contains data to be fdega

The signalreset is active if the allocation of the entry for an instructidéms done
after the read access in the retire contextffdras been started. Since the allocation
resets the valid bit the signatset forces the signaRAM.valid to zero. The signal
set is active if the instruction stored in the ROB entry has completed since the RAM
access has been started. This signal forces the sigAal.valid to one, resulting in
the signalRO Bhead.valid. The signaket has higher priority than the signedset as
the write in the completion-context for an instruction is always started aftemtite
in the allocation-context. The sigh&lO Bhead.valid indicates whether the oldest
instruction in the ROB is valid. It is used as full input of the retire sub-phiage.

Note that upon activation of the clear signal the ROB access in the retivimigyd
is not started from the beginning, but the whole pipeline is filled with the requabists
for the ROB entriesg.;1 —1t0 0 (see section 4.6.2). The valid outg®® Bhead.valid
of the RAM access in the retire-context depends on the forward sightile torward
circuits, hence these signals have to be reset upon clear. Figure pi2sdemodified
stage of the forwarding circuit for the read access in the retiring co(gegtfigure 2.10
on page 211 for the unmodified stage). If the sigriakir is active, the stage resets the
bit forw and sets the address of the access;tg, — i.

4.6.5 Control
Stall signals

The write accesses in the allocation- and the completion-context are teied.sThe
stalling of the ROB read accesses in the operand-read context haslibegssed in
section 4.1.7. The read-access in the retiring-context has to be stalledvilithdvit
ROBhead.valid (see figure 4.26) of the oldest instruction (which is in the last stage
of this read-access) is not active:

Retl.stallln := ROBhead.valid.

If ROBhead.valid is not active, the oldest instruction is stalled in the last stage of
the read access in the retiring-context until the instruction completes anoiriter €l-

4.6 Reorder Buffer Environment 83

ing circuit for the completion-context forces the sig@D Bhead.valid to one, as
depicted in figure 4.26.

This stall signal is used in a forwarding circuit with stalling. Thus it must hedg(
equation (2.11) on page 21):

D(ROBhead.valid) := D(Retl.stallIn) <6 — Dyyx. (4.23)

The signalRO Bhead.valid is computed using the outpuferwOut of forwarding
circuits with stalling (see figure 4.26). The outputs are based on the upidateatd
bits of the last stage of forwarding circuit (see figure 4.27). Thus, #laydof the
output f orwOut must hold:

(423
D(forwOut) + Dog + Danp < D(ROBhead.valid) < § — Dyjurx
= D(foerut) < o — (DMUX + DOR =+ DAND)- (424)

If a pipelining register is added after the test circuit in the stages of theafding
circuit (see figure 4.27), the outpufsrwlUpd* of the stages have deldyor. Hence
the outputforwOut of the forwarding circuit has delalpor and the equation holds
true forgd = 5.

Head and tail pointer

The head and the tail pointer of the ROB are implemented using two counters in the
circuit HeadTail (see figure 4.28). The head pointer addresses the oldest instruction
in the ROB. When this instruction is retired (.60 Bhead.valid = 1), the head
pointer is incremented. The tail pointer addresses the next free entrg &QIB. If

a new instruction enters the core, the value of the tail pointer is assigneg! tasttee
instruction and the tail pointer is incremented. A new instruction enters thef¢hee

first stage of the decode sub-phdsg is full and not stalled. The incrementation of
head and tail pointer is controlled by the signatadce andtailce:

headce := ROBhead.valid,
tailce := D1.full’ A D1.stall®

= D1.full® A D1.full® A (D1.stallIn® v D1.genStall®))
= D1.full® A (D1.stallIn® V D1.genStall®).

If the signalclear is active the head and the tail pointer are reset. The tail pointer is
set to zero. Due to the pipelining of the ROB accesses the head pointeids ggt —
1, wherecg.1 is the number of stages of the retire sub-phisgl (see section 4.6.2).
The delay of the computation of the new values for the head and tail poieter (s
the figure 4.28) i (Inc(lgron)) + Dumux. If this cannot be computed in one cycle,
the counter can be pipelined easily. Upon clear of the counters the pipealagisgers
must be setup such that the counters increment correctlyGn@spectivelyre; — 1.
The cost of the circuiHeadTail can be estimated as:

C(HeadTail) < 2. (C(Inc(lrop) + Cor + lros - (Cvux + Crec)) + Canb.

84 Processor Core

Olros

clear 10 clear

tail

head

tailce headce

4 lroB 4 lroB
\j \
ROB.tail ROB.head

Figure 4.28: Head and tail pointer computation

Full and empty bit

The ROB control computes two signa) B. full and RO B.empty indicating that
the ROB is full respectively empty. The signaD B. full is used as stall signal in the
decode phase, since new instruction may only enter the decode phas®DbBé
not full. If no instruction is in the ROB, the output of the ROB is invalid. In artte
prevent an invalid instruction from retiring, the valid output of the ROB is rgddf
the signalRO B.empty is active as depicted in figure 4,26.

The computation of the full and empty bits is based on a circuit which counts the
number of valid instructions in the ROB as proposed in [Lei99]. Due to thdipipg
of the decode and retire phases two separate counters have to bemutbeddompu-
tation of the full and the empty signal.

The ROB full signal is used to guarantee tag-uniqueness, i.e., that nosmoadan
tions with the same tag are active at the same time. Therefore, the countee for th
ROB full signal must take all instructions into account which have alreathred the
decode sub-phagel but have not yet written the register files, i.e., entered the retire
sub-phasediet3. These instructions are calledtiveinstructions.

The ROB empty signal is used to invalidate the ROB output if the ROB does not
contain any valid instruction. Therefore, the counter for the ROB emptyakignst
only count the instructions which really are in the ROB, i.e., the instructionsfigrh
the write access in the allocation-context during decode has been stadtdteaead
access in the retiring-context has not yet finished. The write accesg ialldtate
context is started in decode sub-phd¥2 The read access in the retiring-context is
finished if an instruction enters the retire sub-phRse2.

In [Lei99] decoding or retiring an instruction only takes one cycle. Tinsruc-
tions allocate a ROB entry in the same cycle they enter the decode phaseitnd wr
the register files in the same cycle they are read out of the ROB. Ther#iereame
counter can be used for the full and the empty bit in [Lei99].

Figure 4.29 depicts the circURullEmpty with the counters ent andecnt for the
computation of the ROB full signaO B. full and ROB empty signaRO B.empty.
Instructions get active when they enter the decode sub-phase€his is indicated
by the signatailce. Instructions get inactive when they enters the last retire sub-phase
Ret3. Since this sub-phase is never stalled, this is indicated by the full bit of the
input registersket3. full’. Hence, the signalsiilce and Ret3. full® can be used to
increment respectively decrement the courfi@tt.

4.6 Reorder Buffer Environment 85

in,]iOB
caop — 1 times{ %’ ﬁ . li
inROBd, RetS.full”—b
0 1
headce == RS(1) tailce = | S(1)
clear —+ ' clear —+

A

Lros Lron

ROB.empty ROB. full

Figure 4.29: Computation of the full and empty bit

An instruction is read out of the ROB if it the oldest instruction in the ROB and
already has completed. In this case the instruction enters the retire sséb#pdia.
This is indicated by the signaleadce which thus determines whether the counter
ecnt shall be decremented. A new write access in the allocate-context is staated if
instruction is in the first stage of the decode sub-pHagand this stage is not stalled:

inROB = D2.full’ A D2.stall"

Thus, the signal$n RO B can be used to increment the courdert with the follow-
ing small restriction: Letsor be the number of cycles needed for forwarding from
the allocation-context to the retiring-context. Thus, it takegr cycles to clear the
valid output of the ROBRO Bhead.valid using forwarding (by the signakset, see
figure 4.26). Then the signal RO B must be delayeds,r — 1 cycles and the delayed
versionin RO Bd must be used to increment the countent in figure 4.29. Other-
wise the empty signal might become inactive before the write in the allocatideton
is forwarded to the retiring-context and has reset the valid ougpid/.valid of the
ROB. The valid bit stored in the ROB RAM could still be active from the last irstr
tion that used the entry. Thus the sigf&D Bhead.valid could be active which would
lead to a spurious retirement of an invalid ROB entry.

To reduce the delay of the countefant andecnt, half-unary counters are used.
This allows to increment the counter with a 1-bit left-shift&¥(1) and to decrement
with a 1-bit right-shifteRS(1) (see the figure 4.29). Since the last bit of the half-unary
encoding is always zero these bits is ignored for the counters, es eepresented
by all bits being zero. Both counters can be cleared using the silnadl.

The ROB empty signakRO B.empty must be inactive if the value represented by
ecnt is at least one. Thus:

0 if (ecnt)pun > 1

ROB.empty :=
1 else

- (4.25)
= ecnt[0].

86 Processor Core

The ROB full signal must be computed differently depending on whetheinigsan

be done in one cycle. Let be the number of cycles needed for issuing an instruction
and letcps be the number of cycles needed for the read access to the ROB in the
operand-read-context. As described in section 4.6.3 up4avrites in the allocation-
context can overtake a read of the ROB in the operand-read contestiimgscannot

be done in one cycle (i.ec; > 1). Otherwise only the write access in the allocation-
context of an instruction can overtake its own read access in the operaddtontext.

If issuing can be done in one cycle, the ROB full signal is set to onegifp — 1
instructions are active, otherwise it is already set to onegifz — cps instructions
are active. This is required by the correctness proofs of the fomgfdr register file
and producer table. If follows:

1 ifeg=1AN <fcnt>hun > Lrop —1

ROB.full :=<1 ifeg>1A <fcnt>hun > LroB — ¢p2

0 else (4.26)
) fent[Lrop — 2] ifc;=1
B fcnt[LROB —1- CDQ] if ey >1 .

Note that the new value of the registers:t and fcnt must be computed in one
cycles based on the old value. Thus

6 > D(LS(1)) + D(RS(1)) + Danp
=2-Dyux +Danp (4.27)

which holds foré > 5. The cost of the circuiFullEmpty is:

C(FullEmpty) <2- Lgog - (2- Cyux + Canp + CreG)
+ (cazr — 1) - Crec + Canp.

Check for oldest instruction

Instructions reading the special regisfdf EE f must wait at the stagegy of the
decode sub-phasiel until all preceding instructions have retired, which is indicated
by the signalallRet (see section 4.1.7). This is necessary as instructions write the
register/ EEE f implicitly, i.e., forwarding is not done using the Tomasulo algorithm.
Figure 4.30 shows the computation of the sigildRet. Let D1.tag°kF be the tag
of the waiting instruction. The instruction is the oldest instruction in the ROB if the ta
of the instruction in the last stage of the read access in the retiring-cofftinet BOB
ROB.tag matchesD1.tag®EF. No instruction is in the retire sub-phagt2 if all
full bits of Ret2 are zero. This is indicated by the sigrdt2.clean. All instructions
preceding the waiting instructions have retired if the tags matchRuid.clean is
active.
The cost of the computation of the signal Ret is:

C(allRet) < C(EQ(lroB)) + cRret2 - Canp + 2 - Crpg-

4.6 Reorder Buffer Environment 87

ROB.tag
D1.tag®srr EQ allRet
Ret?2. full0-cret2=1 E Ret2.clean

Figure 4.30: Computation of the signail! Ret

4.6.6 Correctness

The goal of this thesis is not to formally prove the correctness of the DL XYet
“paper-and-pencil” proofs are given for the parts of the designebthX ., that differ
from a Tomasulo DLX with a simple pipeline (of which the correctness is formally
proven, e.g., in [K601]) and that are not obviously correct. These are especially the
different computation of the ROB full and empty signals and the forwardgte
that some of the lemmas proven here are needed for the correctnets qirtdloe
forwarding of register files and producer tables in sections 4.7.1 and 4.8.1

The following definitions are used in the theorems and lemmas below.

Definition 4.1. An instruction is called “active” if it has entered the decode sub-phase
D1, but has not written the register files (i.e., has not entered the retire habep
Ret3).

An instruction is called “in the ROB” if for this instruction the write access in
the allocate-context has been started, but the instruction has not ye¢eite retire
sub-phaseret2.

Let c4or be the number of cycles needed for forwarding from the allocation- to
the retiring-context. An instruction is called “visible in the ROB” if the ROB write
access in the allocation context has been started at least — 1 cycles before, but
the instruction has not yet entered the retire sub-phiase.

The ROB is called empty if no instruction is in the ROB.

Note that from the time instruction is visible in the ROB, all read accesses in the
retiring-context that finish, will take the write access in the allocation-coméx ac-
count due to forwarding. This cannot be guaranteed for instructianatiea“in the
ROB” but not “visible in the ROB”. Also note that every instruction that is flvis in
the ROB” is also “in the ROB” and every instruction that is “in the ROB” is also-“a
tive”. If decoding and retiring is done in one cycle angr = 1 (as, e.g., in [Lei99])
all three terms define the same set of instructions.

Lemma 4.2. The number of active instructions is equakttent, 1)4.,,. The number
of instructions that are visible in the ROB is equaktent, 1) .

Proof. The lemma can be proven by induction on the number of cycles since the last
cycle in which the clear signal was active.

Induction baseThe clear signal is active, hence the core is cleared and no instruc-
tion is active or visible in the ROB at the end of the cycle. The cournjters andecnt
are set td)“roB due to the clear signal (see figure 4.29), which proves the induction
base.

Induction step:Assume the clear signal is not active and the claim holds for the
previous cycle. The countgicnt is increased if a new instruction becomes active and

88 Processor Core

it is decreased if an instruction retires. The sighakO Bd is active if the allocate
access for an instruction has been started exagtly cycles ago. This signal incre-
ments the countetent. The signalheadce which is active if an instruction enters the
retire sub-phas&et2 decrements the counteent. Thus, it remains to show that the
counters do not overflow or underflow to prove the induction step.

If the signal ROB. full is active, the first stage of the decode sub-ph@seis
stalled (see section 4.1.7). Thus, no instruction can become active, theecfent
cannot overflow. As every instruction that is visible in the ROB is also atteealue
of ecnt cannot be larger than the value fafnt and hencecnt cannot overflow, too. If
RO B.empty is active, no instructions can enter the sub-phase. Thus, the counter
ecnt cannot underflow. Since an instruction cannot be visible in the ROB if itis no
active, the value of cnt must be larger than the value @fnt and hencefent cannot
underflow. O

Corollary 4.3. Let cpo be the number of cycles needed for the ROB access in the
operand-read-context. If issuing is done in one cycle, at Mgtz instructions are
active at any time. If issuing is done in multiple cycles, at nlogtg — cpo + 1
instructions are active at any time.

Proof. If issuing is done in one cycle andrzpo g — 1 instructions are active, the signal
ROB.full := fent[Lrop — 2] is active (see equation (4.26)). This stalls the first
stage of decode sub-phasd. Thus, including the instruction in the first stage of
decode sub-phas@1, at mostL zo instructions can be active. If issuing is done in
multiple cycles the statement can be proven analogously from equation. (4.26)]

Corollary 4.4. No two instructions with the same tag can be active at the same time.

Proof. Assume two instructiong, I’ with the same tag are active. Thgog bit
wide tail counter is incremented whenever an instruction becomes actives, @h
leastLrop — 1 = 2'roB — 1 instructions must have become active between the two
instructionsI, I’. The instructions/ and I’ are active and therefore have not yet
retired. Since retire is done in order it follows that the other instructions hatyet
retired, too. Thus, at leadtrop + 1 instructions must be active which contradicts
corollary 4.3. O

Corollary 4.5. If the signal RO B.empty is not active, the ROB is not empty. Let in
this casel be the oldest instruction in the ROB. Then the allocate access fas
been started at leagtysp — 1 cycles before.

Proof. If ROB.empty is not active, the signalcnt[0] is one (see equation(4.25)).
Thus,(ecnt, 1) pypn > 1. It follows from lemma 4.2 that there is at least one instruction
which is visible in the ROB. This instruction is therefore in the ROB and the ROB is
not empty.

Let I be the oldest instruction in the ROB. Since allocation is done in order, the
instructions that are visible in the ROB cannot have started the ROB accéss in
allocation-context beforé. Hence,l must also be visible in the ROB. O

Lemma 4.6. Let cpy be the number of cycles needed for the ROB access in the
operand-read-context and Iétbe an active instruction with tag If issuing is done in

4.6 Reorder Buffer Environment 89

one cycle, no older active instruction can have thettalj issuing is done in multiple
cycles no active instruction can have one of the tagst + c¢p, — 1 (modulo the size
of the ROBLROB).

Proof. Let Iy be an active instruction with tag and let/; be an instruction older than
Iy with tagt;. Letd be such thaty = t; + d (mod LROB) ford e {1, .. 7LROB}-
The tail pointer assigning tags to the instruction is incremented for everyatisinie-
coming active. Since decoding and retiring are done in order, for gveryo, ..., d}

an instructions with tag := ¢; +j (mod Lrop) must be active. Hence, at least those
d + 1 instructions are active.

If issuing is done in one cycle, it follows from corollary 4.3 thak Lrop and
hencety # t;. If issuing is done in multiple cycles, if follows from the corollary that
d < Lrop — cp2 + 1. Hence, the instruction; cannot have one of the tagsto
to + cp2 — 1 (moduloLropB).]

The lemma guarantees that decoding is stopped before any ROB entriasethat
read in the operand-read-context are invalidated by the allocatiosssscef succeed-
ing accesses.

Theorem 4.7.Let L po g be the number of entries of the ROB and-et;; be the num-
ber of cycles needed for the ROB read access in the retiring-contdxtol > crest

and the signalRO Bhead.valid is active, then the ROB is not empty and the instruc-
tion in the last stage of the read access in the retire-phase has alreadyl&teah.

Proof. Assume the signakO Bhead.valid is active. For this either the signadt or
the output of the RAM must be active (see figure 4.26).

Case 1, the signale:t is not active. Then the output of the ROB valid RAM must
be one and the signateset and RO B.empty must be inactive. Thus, according to
corollary/4.5 the ROB is not empty. Lédtbe the oldest instruction in the ROB. It
follows from corollary 4.5 that a write access in the allocation-contex{ foas been
started at least4or — 1 cycles before. Sinceeset is not active, this write access
must have been started before the read access in the retiring-corddadrastarted.
Therefore, the RAM block returns the correct value for the valid bit efrirction?.
Since the output of the RAM is activé must have already completed.

Case 2, the signalkt is active. Lett be the address (i.e., the tag) of the last stage
of the ROB access in the retiring-context. If the sigeal is active, an instruction
I with tagt has completed after the ROB access in the retiring-context to the entry
with addresg has been started. An instruction can only complete if it has been is-
sued before. The write access in the allocation-context is started whastarction
is issued. Thus, the instructiohmust already have started the write access in the
allocation-context. This proves the first partlois in the ROB from definition 4.1.

In order to prove that is in the ROB it remains to show that instructidmas not
yet retired. From the correctness of the Tomasulo algorithm follows thiaistruiction
can complete twice. Sinceet is active the instructioh cannot have already completed
before the read access in the retiring-context withitdgs been started. Thus, the
instruction/ cannot have retired without setting the sigeal of an read access in the
retiring-context as proven in case 1. Frdmop > cres it follows that no two stages
with the same address can exist in the retire access to the ROB. Thus,uthefrédse

90 Processor Core

instruction/ can only have been forwarded to the read which is now in the last stage
of the ROB access in the retiring-context. Hence, the instrudticennot have retired
yet.

Since the instructiod has not yet retired, it must be in the ROB, the ROB is not
empty. It follows that the instruction in the last stage of the retiring-contextds th
instruction!, which has already completed. O

Note that the requiremetdtzrop > cret1 Of the theorem holds true for reasonable
values ofLroB.

Theorem 4.8. If the ROB is not empty, the signRIO Bhead.valid gets active even-
tually.

Proof. Let I be the oldest instruction in the ROB. Since the read access in the retiring
context is stalled ifRO Bhead.valid is inactive, the instructiod remains the oldest
instruction unitRO Bhead.valid gets active.

The liveness of the Tomasulo algorithm guarantees that the instructiompletes
eventually (as proved, e.g., in [B@1]). If the read access in the retiring-context for
has been started befofeeompletes, the signakt gets active eventually which forces
ROBhead.valid to one.

If the read access in the retiring-context fonas been started after the instruction
completes, the ROB RAM for the valid bit returns a one. The write access in the
allocation-context is started in parallel to the issue of an instruction. Thusyst
have been started before the instruction completes. According to cordlirgo
other instruction with the same tag &san be active. Therefore, no write access in
the allocate context can have been started to the entry of instructiod henceeset
cannot be active. Since the allocation access has already been startest after
caar cycles the signaRO B.empty gets inactive and hencBO Bhead.valid gets
active. O

Cost

The total cost of the ROB control is (including the gates to compute the valid utpu
RO Bhead.valid):

C(ROB-Control) < C(HeadTail) + C(FullEmpty) + C(allRet)
+2-Canp + Cor.

4.6.7 Delay Optimizations

The critical signals of the ROB control are the clock enables for the heddail
pointer headce andtailce. In the described implementation the signatsidce and
tailce may have a delay of at most- (D, x + Danp) as they control the counters
ecnt and fent

The signalheadce is derived directly from the signdO Bhead.valid which has
at most the delay — Dy x (see equation (4.23) on pagel 83). In the computation
of the ROB empty signakRO B.empty in figure 4.29 the AND gate for clearing the
counter can be moved above the right shifter controlleddayice (see the left part

4.6 Reorder Buffer Environment 91

mROB
{ Ret3. full®
caor — 1times E !
inROBd LS(1) i tailce clel,ar RS(1) I
{’[{’(17‘ l
Y Y

AR

headce = RS(1) + Lios E l D> fentl Lios

tailced

ecnt fent

ROB.empty ROB.full

Figure 4.31: Optimized Computation of the full and empty bit

of figure/4.31). Even ifieadce is active while clearing the counter, the value of the
counter will still be set to all zeros as the right-shift only increases the rupflzeros.
Then the signakeadce may have a delay af — Dy x.

The signaltailce is derived from the signaD1.stallIn® v D1.genStall® (see
section 4.1.8) which is assumed to have a delay of at md3h the other hand the de-
lay of the signalRO B. full was assumed to b,y x in the computation of the stall
signals for the decode phase. This allows moving the left shifter in the cotigputa
for the signalROB. full in figure 4.29 below the register and using a delayed version
tailced of the signaltailce to control the shifter (see the right part of figure 4.31). If
the counter is reset, the left-shift behind the register is prevented bndaite signal
tailced to zero on clear. The AND gate does not increase the delay of the sgnal a

tailce A clear = D1.full® A (D1.stallIn® v D1.genStall%) A clear
= =(D1.full® v D1.stallIn® v D1.genStall’ V clear)

and the OR-Tree can be balanced such that the delay is the same as thef deéay
signalD1.stallIn® v D1.genStall® (see figure 4.9 on page 50). Hence, in the circuit
in figure/ 4.31 only bounds by the loops throughcnt and fent:

0>2-Dyux +Danp,

which holds true fop = 5.

The signalheadce andtailce are also used to control the clocking of the head
and tail pointers in figure 4.28. Due to the clear logic the delay of the signals may
be at mosty — Dpgr, which is already achieved fdreadce. However, to achieve
this requirement for the signakilce the logic for clearing the tail counter must be
changed (see figure 4/32). The circuit in the figure forces the outptlteofegister
tail to zero from the cycle after the clear signal has been active to the cyele\te
first instruction enters the decode sub-phBde As a side-effect the modification also
forces the output to zero, whenever the input register of the decddplaseD1 is
not full, but in this case the tail pointer may have arbitrary value.

92 Processor Core

D1.full®

D i T
»\1 0
clear —D
cleard
lroB

ROB tail

Figure 4.32: Optimized clearing of the tail counter

The circuit delays the signalear is delayed by one cycle. This allows to optimize
the computation of the clock enable signal of the regisiél, since the signaticar
resets the full bits of the decode stage, the ROB full sigt@lB. full, and the signal
I R.haltdec (see section 6.4). Thus, when the delayed clear sigaatd is active, the
signalsD1.stallIn® and D1.genStall’ are inactive, i.e.:

cleard = 1 = D1.stallIn® v D1.genStall’ = 0. (4.28)

Therefore, the signaleard V tailce used to reset the output of the tail counter can be
simplified as:

cleard V tailce = cleard V (D1.full® A (D1.stallIn® V D1.genStallO))
= (cleard vV D1.full®) A (cleard v (D1.stallIn® v D1.genStallO))
@)(cleard V D1.full®) A (D1.stallIn® vV D1.genStall®)
= —((cleard vV D1.full®) vV D1.stallIn® v D1.genStall®).

The OR-Tree can again be balanced such that the delay of the sigwed \ tailce
has the same delay as the sighl.stallIn® v D1.genStall® which is at mosb.

In order to force the signakO B.tail to zero until the first instruction enters the
decode sub-phadel the registetail is also cleared if the signdb1. full is not active.
Since the stall signal for the first stage cannot get active until the fgstiction enters
the decode sub-phagel the stall signal must not be taken into account.

Assume the number of cycles needed for issuing is greater than one. Then the
write access in the completion-context must be forwarded to the readsaoctse
operand-read-context with a forwarding circuit with stalling. This respithat the
stall signalsD2.stall’ of all stages; of the read access in the operand-read-context
have at most delay — D,y x (see equation (2.11) on page 21). If the read access
takescpo cycles and the stall signals are computed the usual way, it must hold for the
stall signal for the second stage:

0 —Dyuyx > D(D2.stall1)
= D(ROB.stallOut)2”D(AND-Tree(cps + 1))

Forigrop > 6 andé = 5 it holdscp, > 7. Then, the equation does not hold.

4.6 Reorder Buffer Environment 93

To reduce the delay of the stall signal Instead pipeline bubbles are antwesl
in the last seven stages of the ROB read access, i.e., only the full bits oftlsel@n
stages are taken into account for computing the stall signals as propotefirst
part of section 2.5.3. Thus, for all other stages the stall signal is compstted a

CpD2
stall = /\ D2.full® A D2.issued P?

i:CDQ—G
The additional cost for the delay optimizations are:

C(HeadTaiI)* <2-Cor+ Cgreag,
C(FUllEmpty)" < Canp + Cric.

4.6.8 Cost and Delay

The delay of the ROB access in the operand-read context determinesldlyeotithe
decode sub-phase2. The delay of the ROB access in the retire context determines
the delay of the retire sub-pha&et1. The delay of the ROB accesses are:
D(D2) < max{D(RAM(LroB,1,3,2)), D(RAM(LroB,32,4,1))} + Dyux,
D(Retl) < max{D(RAM(Lgrog,1,1,2)) +2- Danp + Dor,
max{D(RAM(Lrop,32,4,1)), D(RAM(Lrop,48,1,1)),
D(RAM(Lgo5,9,1,1))}
+ Dyux)
Let cps andcres1 be the number stages of the two ROB accesses respectively the

corresponding sub-phases. Defing s to be the maximum number of cycles needed
for any of the two ROB read accesses:

cp2 = [D(D2)/6],
cren1 = [D(Ret1)/d],
CROB = Max{cp2, CRet1}-
The number of stages for the retire sub-ph&sel is only needed for cost com-

putations. The minimum number of cycles between the complete and the retire of an
instruction is bounded by the number of cycles needed for forwarding stétling

CCO2R-

ccer = [(D(Test(lrop)) +2- Dor + Danp — Dyux) /(0 — Dyux)]-
The number of cycless,r Needed to forward from the write accesses in the allocation-
context is computed analogously, i.€4or = co2r.

The cost of the ROB RAM blocks can be estimated as:

C(ROB-RAM) < C(RAM(Lro5,1,1,2,croB))
+2-C(RAM(Lgos,1,3,2,croB))
+2-C(RAM(LRog,32,4,1,croB))

+ C(RAM(LROB, 48,1,1, CROB))
+ C(RAM(LROB, 9,1,1, CROB)).

94 Processor Core

For the retire context two forwarding circuits with stalling are needed. ©ne f
warding circuit forwards the valid and the onlssue group from the dkocantext
(width 48), the other circuit forwards the valid, datalLo, dataHi, and th@oompl
group from the complete context (width 74). Letbe the number of stages of the
issue circuit. Ife; = 1 the forward circuit in the forward context consists of a For-
warding Tree with one leaf for each operandcjf> 1 a forward circuit with stalling
is needed for each operand.

Let crs(lrop) be the number of cycles needed for forwarding with stalling (with
lrop address bits). Then the cost of the forwarding circuits of the ROB castie
mated as:

C(ROB-Forward) < C(ForwardStall(lzrop, 48, cRret1, crs))

+ C(ForwardStall(irop, 74, CRet1, CFS))
4 - C(Forward-Tree(lrop, 32,1, ¢p2))
+C(Forward-Tree(lros, 5,1, cp2)) ifc;r =1
+C(Forward-Tree(lros, 2,1, cp2))

4- C(FOFW&I’dSt&ll(lROB, 32, cpo, CFS))
+C(ForwardStall(lron, 5, cp2, cFs)) ifer >1
+C(ForwardStall(lgos, 2, cp2, crs))

The total cost of the ROB environment is:

C(ROB) < C(ROB-RAM) + C'(ROB-Control) + C(ROB-Forward).

4.7 Regqister File Environment

The processor has three different types of register files: the dgnepmse register file
GPR, the floating point register filEPR, and the special purpose register HER.
All register files have one write port used in the retire sub-phass to store the
result and multiple read ports used in the decode sub-phade read the operands.
The SPR has two additional read ports and one additional write port. Tditoadl
read ports are used in the retire sub-ph&g¢2. These read ports always read the
registersSR andI EE'E f and therefore have constant address busses. The additional
write port is used in sub-phadeet3 to store the new value of the registeE E'E f
computed in the sub-phag&:¢2 from the old value and the floating point exceptions
of the instruction. The standard port for storing the result cannot &g igswrite the
register/ EEE f as floating point compare instructions may write two special registers,
namelyF'C'C for the comparison result andv E'E f for the exceptions.

The addresses of the read accesses during decode subfphase computed in
the register file environments from the instruction regigtg{31 : 0]. The encodings
of the addresses in the instruction words is listed in table A.8 in the appendiké. T
address and write signals used for the write access are computed in theubtiphase
Ret2. They are combined in the bu#et. D ..

4.7 Register File Environment 95

IR Ret3.{ full,newI EEEf, D%} Ret2.x
|
i v v ¥ ¥ ¥
GPR FPR SPR
Forward
l l l IEEEf,SE
OP,.GPR.data OP,.FPR.data OP,.SPR.data Ret2.{newl EEEf,newSR}

Figure 4.33: Register files

4.7.1 Forwarding

No forwarding is done from the write accesses in the retire sub-pRas®writing
the instruction results to the read accesses in the decode sub-phasading the
operands. This is not needed for the correctness as stated by thdriglkborem.

Theorem 4.9. The write accesses to the register files in the retire sub-plias8
need not to be forwarded to the read accesses to the register files ports detode
sub-phaséD1.

Proof. LetIp be an active instruction in the decode phase that depends on the result of
an instruction/z. If Iz has written its result to the register file befdie starts its read
access to the register file, no forwarding has to be done because ifterrég RAM
will return the result of the instructiofiz. Thus, assume thd, is still active (i.e., has
not yet written the register file) at the tinlg starts its read access to the register file.
Then the producer table entry of the operand gfthat depends oifiz still contains
the tag of/r. Hence, the instructiofp will check the ROB if it contains the result of
Ig.
If Ir has not completed before the instructibs starts the ROB read access in
the operand-read-context, it follows from the construction of the fodimg circuit for
the ROB (see section 4.6.3) that the result gfis forwarded tol. Thus, assume
that Iz has completed beforg, starts the read access to the ROB. Thus, the ROB
contains the result ofg. It remains to show that the read access to the ROB in the
operand-read-context of the instructifn returns the result of ;.
At the timep is in the first stage of decode sub-phds3g the instruction/z has
not yet written the register file, i.el is active. Thus, from lemma 4.6 it follows that
no instruction older or equal tbp and younger tharz can have the same tag &s
and therefore will not overwrite to the ROB entry B and hence the ROB entry of
IR is still valid at the timel, starts the ROB read access in the operand-read-context.
If issue is done in one cycle, only the write access to the ROB in the allocation-
context of the instructiod, can overtake the read access to the ROB in the operand-
read-context of p as discussed in section 4.6.3. Sidgehas not the same tag 4s
the write access in the allocation-context will not overwrite the entdgoHence, the
read access returns the value of the ROB at the time the read accesehasanted,
i.e., the valid result of ;.
Let cpo be the number of cycles needed for the read access to the ROB in the
operand-read-context. If issuing is done in multiple cycles also the writesaes to
the ROB in the allocation-context of tlag, — 1 instructions followingl/, can overtake
the read access to the ROB bf. From lemma 4.6 it follows that these instructions

96 Processor Core

dy dy wy Wo
N\

\L_9 \

dOut wOut

Figure 4.34: Forwarding circulEEEfC

cannot have the same tagfasand thereford p reads the valid result afx. O

IEEETf

Let I be an instruction in the retire sub-phaBet2. As discussed in section 4.5 the
special purpose register must return the values of the special regi#iér& f and
SR at the time the instructiorh enters the retire sub-phag®t3. The register files
are only written in the retire sub-pha&et3. Thus, to obtain the value of the registers
at the time the instructiof enters the sub-phadeet3 it suffices to read the register
when/ enters the sub-phageet2 and forward the writes to these registers of all older
instructions in the sub-phagect2.

The forwarding for the registe$ R can be done using a standard forwarding tree
(see section 2.6.1). This forwarding tree combines the updates to the regjiste
of the instructions inRet2 which are older tharf in parallel to/'s read access to
the registerSR. The outputs of the forwarding tree and the register access are then
combined to obtain the bug:w.S R containing the value of the registéR? at the time
the instruction/ will enter the sub-phasBet3.

To forward the registef EEE f a modified forwarding tree must be used as the
registerl EFEE f can be written in two different ways: if the instruction which retires
is a floating point operation, the new value E EE f is computed by OR-ing the
floating point exception bits of the instruction to the old valud 6fE E f [IEEE]; if
the instruction explicitly writes the registé E'E f (e.g., a movel2S instruction), the
old value is overwritten.

The circuitlEEEfC (see figure 4.34) combines the updates to the regigtét I f
of two succeeding instruction. For this it uses the typesnd datal for updating the
register/ EEE f of an instruction. The type of an instruction is one if the instruction
explicitly writes the registef EEE f with the datad; if w is zero, the datd is to be
OR-ed to the old value.

Letw; andd; be type and data of an instructidnthat succeeds an instructidg
with type wy and datady,. The combined typevOut of the instructiong/; andj is
the OR the types indicating that any of the instructidnand, will directly write the
register. Ifw; is one, the instructiod; will overwrite the access done hy. Thus,
in this case the combined dat®ut is the datad; of instruction;. If w; is zero
the datad; will be OR-ed to the datd, of the instructionly. In this case, ifwg is
active, the preceding instructions will be overwritten with the OR of both icttns,
otherwise the OR of both instructions will be OR-ed to the old vale. Thus,tiqgda
the registed £ EE f with the combined values Out anddOut has the same effect as
the sequential updates of instructiaigsand ;.

4.7 Register File Environment 97

Using the fact that the circllEEEfC computes an associative function (proven in
the following lemma 4.10) a forwarding tree can be built with the cirtifEfC at the
nodes. Using all instructions in the retire sub-ph&sé2 as inputs, this tree computes
the combined update of these instructions to the regifidt £'f. The output of the
special purpose register RAM can then be combined with the output of tvariding
tree by anothetEEEfC circuit obtaining the valueew! EEE f of the register at the
time the youngest instruction in the tree retires.

The typew and datad for every instruction can be computed as follows. A
stage in the sub-phageet2 contains amovel2S instruction which writes the reg-
ister[EEE f and therefore will explicitly write the register, if the stage is full and the
sighal ROB.writel EEE f is active. Thus, the type can be computed as:

w := full N ROB.writel EEE f.

If w is one, the data that has to be written into the regisleE'F f is located in the
lowest 5 bits of the result buBO B.data. Otherwise the floating point exception bits
read from the ROBROB.IEEE f are used. If the stage is not full the floating point
exception bits of the stage are set to zero. Then thedlatzed to update the register
IEEEf are:

g ROB.D.data.lo[4: 0] if w

" | ROB.IEEEf A full itw

Hence, if the stage is not full the registelf £'F f is not changed as it is OR-ed with a

constant zero. Especially if no instruction is retiring the hus/ I EEE f contains the
value stored in the register file.

Lemma 4.10. The circuitlEEEfC computes an associative function.

Proof. Without loss of generality lef be only one bit wide. Letwg, dy), (w1,d1),
and(wz, d2) be in{0, 1}2. The functiono computed by the circulEEEfC is:
(w1 , dl) o (wg , do) = (’LU1 Vawy, wy ?dy: (d1 \/do))
= (w1 Vwg , widy V uT(dl \Y do))
It holds:

((we , da) o (wy , dy)) o (wo , dp)
= (wg Vwy , wads V wa(ds Vdy)) o (wy, do)
= (wga Vwy Vwy, (wyVw)(wady Vwz(dyVdy))
V (wa V wy) (wads V Wa(da V di) V dp))
= (w2 Vw1 V wp , wady V wawidy V wewz(da V di) V wawi (da V dy)
V wawt (wads V Wa(da V dy) V Wwady V wadp))
= (wq Vwy Vwg , wads V wawi(de V dy) Vwawi(de Vdy V dp))
we V wy V wy , wedy VW (widy V widy V widy V wi(dy V dp)))
we V wy V wy , wedy V wa(de V widy Vwi(dy Vdy)))
weg , dg) o (w1 Vwy, widy Vwy(dy Vdp))
way , dg) o ((w1, di) o (wo, do))

o~ o~ o~ o~

98 Processor Core

Ret3.D {addr, data.lo}
Ret3. full w1
Ret3.D.GPR.write 3';#;'\42

IR[25: 21] —»{R2 b D1.0OP,.GPR.data.lo
IR[20 : 16] —»{R1 > D1.0P,.GPR.data.lo

Figure 4.35: General purpose register file

Cost and Delay
The cost and delay of the circdEEEfC are:

D(|EEEfC) < DOR + DMUXv
C(IEEEfC) < 5- Cpux + 6 - Dor.

Since the delay of the forwarding tree used to compute the sigral$ EEE f
andnewSR are only logarithmic in the number of stagesR®dt2, the circuit is not
assumed to be critical compared to the register file access. The delay aftthe o
SPR.newlIEEEf andSPR.newSR then are:

D(SPR.newIEEEf) < D(SPR-RF) + D(IEEEfC),
D(SPRTLG’LUSR) < D(SPR-RF) + Dyux.

Let crr be the number of cycles needed for an register file read access and let
cret2 e the number of cycles needed for the retire sub-phi&a$2. Then the cost of
the forwarding for the register files are:

C(RF-Forward) < C(Forward-Tree(5, 32, cret2, CRF))
+ CRet2 - (5- Cuux +6 - Canp + C(IEEEFC))
+ crr - [(CRet2 - 12+ 6)/2] - Crig-

4.7.2 General Purpose Register File

The GPR consists of 32 register each of which is 32 bits wide. The addvegsu-
tation for the read accesses of tB®R is rather simple. For all instructions which
access th&PR, it holds (see appendix A):

OP,.GPR.addr[4 : 0] := IR[25 : 21],
OP,.GRP.addr[4 : 0] := IR[20 : 16].

The design of the GPR is straightforward (see figure 4.35). It is a RARkbAdgth
32 entries each consisting of 32 bits and two read and one write port. Tiessignal
may only be active if an instruction is in the retire sub-ph&sé3. Only the low part
of the data bus is used for read and write accesses. No forwardingassay for the
GPR as stated in theorem 4.9.

The write path of does not influence any critical path or the number of pgelin
stages. Therefore, only the delay of the read access of the GPR isnékacount.
The same holds true for all other register files. Hence, the delay of the<zGRERmated
as:

D(GRP-RF) < D(RAM(32,32,2,1)).

4.7 Register File Environment 99

Ret3.D.{addr[4 : 1], data.hi}
Ret3. full wi
Ret3.D.FPRwrite.hi RAM
16x32

odd

TR[19 : 16] > R1 » D1.0P,.FPR.data.hi
IR[14:11] »|R2 » D1.0P,.FPR.data.hi

Ret3.D {addr[4 : 1], data.lo}

< »(W1 0
Ret3. full] D1.0P,.FPR.data.lo
Ret3.D.F PR.write.lo RAM > 1
16x32
even IR[15]

L—» 0 B D1.OP,.FPR.data.lo

IR[20 FPstore

Figure 4.36: Floating point register file

Let crr be the delay of a register file access. The cost of the GPR environment is:

C(GRP-RF) < C(RAM(32,32,2, 1>CRF)) + CanD-

4.7.3 Floating Point Register File

The FPR holds 32 single precision registers with 32 bits. The 16 pairs of &we
odd registers (i.e., the pairs 0 and 1 to 30 and 31) can also be acce$geblimswvide
double precision registers using the address of the even register. leDangizision
accesses with an odd address raise an illegal instruction interrupt indbéedphase.

To support the two access modes, BeR is divided in two register files of 16
entries for even and odd registers (see figure|4.36). The lowest thie @fddresses of
the two read ports select the outputs of the RAMs for the low parts of the tiputsu
The high part always uses the odd RAM, as 64 bit register accessagsdhave even
addresses.

The FPR uses the two separate write signals. The signaP R.write.lo controls
the RAM block containing the odd registerB,. F'PR.write.hi controls the RAM
block containing the even registers. For 64 bit results (indicatef layl), the write
signals for both RAM blocks must be active. For 32 bit results only the wigpeas
for the addressed RAM block may be active. Analogously to the GPR the paite
is only active if the retire sub-phageet3 is full. The write signalsD.F'PR.write.lo
and D.F PR.write.hi are computed during the sub-phdge?2 as:

D.FPR.write.lo := D.FPR.write A D.addr|0],
D.FPR.write.hi := D.FPR.write A\ (D.addr[0] V D.dbl).

The low part of the resulD.data.lo is connected to the RAM block for the even
registers, the high pafd.data.hi is connected to the RAM block for the odd registers.
Note that in order to write 32 bit results into the results must be available on b®th th
high and the low part of the data bus (see table 4.3 on/page 63).

For all instructions which read the FPR except floating point stores thessldf
the first operand i R[20 : 16], the address of the second operand/i§l5 : 11] (see
appendix A). The floating point store instruction (indicated by the sigh@ktore

100 Processor Core

computed in theDecode circuit) uses the the bit§ R[20 : 16] as second operand.
Thus, the address of the floating point operands is:

OP,.FPR.addr := IR[20 : 16],

IR[20: 16] if F'Pstore

OP,.FPR.addr := .
IR[15:11] if FPstore

To hide the delay of the signél Pstore, the FPR is accessed under the assumption
that the instruction in not a floating point store. If the instruction sign&lstore is
active, the output for the first operand is used as output for the dexgmrand. This is
done by the multiplexer controlled by the sigdaPstore in figure 4.36.

The selection of the operands using the sigh&store can be combined with
the select circuit in the circutbpGen (see section 4.1.4), which selects between the
outputs of the different register files. Hence, instead of a 4 input selettit an 5
input select circuit is used. The difference in delay and cost aredatdine floating
point register file. It holds:

D(Sel(5)) — D(Sel(4)) = Dor,
C(Sel(5)) — C(Sel(4)) = Danp + Dor.

Hence, the delay of the last multiplexer for the computatioP®fO P, . F PR.data.lo
can be replaced b . The overall delay of the FPR RAM is:

D(FPR-RF) < D(RAM(16,32,2,1)) + Dyux + Dog.

Let crr be the number of cycles for a register file access. The cost of the FRR-nc
ing the computation of the write signals is approximated by:

C(FPR-RF) < 2- C(RAM(16,32,2,1,cgp)) + 4 - Canp + Cor
+64-Cyux +32- (Canp + Cor)-

4.7.4 Special Purpose Register File

The special purpose register file consists of 10 register which are surecham ta-
ble/4.7. The register 0 to 4 are used for interrupt handling. The roundodg for
floating point operations is stored in register 5. Register 6 collects the flgating
exception flags. The result of floating point compares are stored inteegiswhich
may then be used by floating point branches. The registers 8 and 9eateoustore
the 64 bit wide results of integer multiplication and divisions.

When an interrupt occurs, the special purpose register file must petfa fol-
lowing actions:

SR :=0,
ESR:= SR,
EPC := Ret3.ePC,
ECA .= Ret3.MCA,
EData := Ret3.eData.

4.7 Register File Environment 101

| addr || name | purpose \

0 SR status register (interrupt mask)
1 ESR | exception status register
2 EPC | exception program counter
3 ECA | exception cause register
4 EData| exception data register
5 RM floating point rounding mode
6 IEEEf | IEEE interrupt flags
7 FCC | floating point condition code
8 LO LO register
9 HI HI register
Table 4.7: Special purpose registers
Ret3.D.{addr|2 : 0], data.lo}
Ret3. full wi 2 hN_SPR[6] » [EEEf
Ret3.D.SPR.write07 RAM* é SR
. 8x32 L) SPRI5 l_> b
1,110, Ret3new EEE f ————W2 (3.7 g [5] » DI1.RS;.SPR.data
] SPR[0
TR[3 1] Ro _ 5 SPRT » D1.RS,.SPR.data
Ret3.D.data.lo &l 5 sprap " ' 1> D1.OP.SPR.data
, i >—>Wl El S
Ret3. full — RAM <]
Ret3.D.SPR.writel —»| 1x32 %
8 g
Ret3.D.data.hi
Ret3. full -] j }’VélA " D1.0P,.SPR.data
Ret3.D.SPR.write9 —» 1x32
9

Ret3.newl EEE f
IR[11] read EEEf IR[14]

Figure 4.37: Special purpose register file

The implementation of this operation is not discussed in detail here. It is adshate
a special RAM block can be used which performs these operations if taesitgal
is activated. A construction for such a RAM block using discrete gatebedaund,
e.g., in [Kr99].

The circuitSPR is depicted in figure 4.37. It consists of one RAM block with
entries and two RAM blocks with one erﬁrjor the registerd.O and HI. Similar
to an even / odd pair of floating point registers these two registers camithermin
parallel to store the 64 bit wide result of an integer multiplication or division.

The following four instruction types have SPR registers as operandsafggen-
dix/A):

e moveS2| instructions: These instructions read an arbitrary speciateegs
second operand and save it in an general purpose register. Tresadd the

A RAM block with only one entry is basically a single register and therefoesin® address entry.
For the sake of description they are yet treated as RAM blocks.

102 Processor Core

special register is encoded in the Hit5 : 11] of the instruction word.

e return-from-exception (rfe) instructions: The rfe instruction sets thad”(Gie
value of the special registdf PC' and copies the special registBiSR into
the special registes R. It uses the registeE'SR as first andE PC' as second
operand.

e branch on floating point condition code (BC1) instructions: B €1 instruc-
tions are conditional branches that depend on the value of the spegigtkre
FCC. This register is used as first operand of the instruction.

¢ floating point instructions: These instructions depend on the speciateegis
RM andSR as third and fourth operand.

Hence, the addresses of the four special purpose register openand

OP,.SPR.addr : L,
00111 if rfe

00010 if rfe
- {]}ﬂ15:11] if e’
OP;.SPR.addr := 00101,
OPy.SPR.addr := 00000,

B {00001 if fe

OP,.SPR.addr :

To implement this, the SPR has one variable read port and five constdriora for
the entriesE PC, ESR, FCC, RM, andSR. Similar to the floating point store for
the FPR, a multiplexer controlled by the signgk indicating an rfe-instruction selects
the data output for the first and second operand.

If the instruction is anoveS21 instruction which reads the registeEEE f (in-
dicated by the signateadl EEE f), the SPR returns the current content of the bus
Ret3.newl EEE f and not the content of the register. Recall that an instruction read-
ing the registeif EEE f waits in the pipeline stage of the decode phase in which the
SPR return the result. These instructions wait there until all precedingidétisins
have retired (see section 4.1.7). As soon as this happens, the SPR tumurstive cor-
rect value of the registedrE E'F f without restarting the read access. This can be done
by returning the bufket3.newl EEE f which then contains the correct value of the
register (see section 4.7.1).

Every instruction/ which enters the retire sub-pha&et2 must read the reg-
istersSR and [EEE f from the SPR in order to compute the busses SR and
newl EEE f containing the value of these registers at the time the instruéténers
the sub-phas®et3 (see section 4.7.1). The SPR has already a constant read port for
the registelS R, thus only one additional constant read port is needed for reading the
register/ EEEf.

The registers 8 and 9 must be written at the same time to store the 64 bit result
of integer multiplications or divisions. Therefore, these registers arettsaparately
from the registers 0 to 7. The registers 8 and 9 are divided into two RAMk&Joc
which may be written in parallel. If the register 9 is written with a 32 bit result (ley th

4.7 Register File Environment 103

instructionmovel2S), the data must be on the high part of the input data bus. Since
movel2S instructions use the ALU which writes its results to both the high and low
parts of the result bus, this is already guaranteed (see table 4.3 on3)age 6

To compute the write signals for the two RAM blocks the sighadbl computed
by the circuitDestCmp is used. If the result is stored in the SPR this signal indicates
an integer multiplication or division. Thus, iD.dbl is active the address bits of the
destination address can be ignoredDIfibl is not active, the bitg and3 of the address
are used to decide which RAM block is written. As for the FPR, the write sigarals
assumed to be computed during the retire sub-pRas2.

SPR.write07 := D.SPR.write A D.dbl A\ D.addr[3],

SPR.write8 := D.SPR.write A\ (D.dbl vV (D.addr[3] A D.addr|[0])),
SPR.write9 := D.SPR.write A (D.dbl vV (D.addr[3] A (D.addr[0])).

The IEEEf register is written using an additional write port with constant ad-
dress. If the retire sub-phase is not full, the value of the inputtwi8.newl EEE f
is the unchanged value of the previous instruction (see section 4.7.19, fhigiwrite
port can be active in every cycle. Due to the construction of the foliwguarcuit, the
inputs of both write ports are identical if an instructions writes the regiskef E f
explicitly. Hence, the priority of the write ports is irrelevant.

The rightmost multiplexers in figure 4.37 can be incorporated into selecitadfcu
the circuitOpGen analogously to the FPR. Hence, the delay and cost of this multi-
plexers can be replaced Wyor respectivelyCanp + Cor. The delay of the SPR
RAM is:

D(SPR-RF) < max{D(RAM(8,32,2,2)), D(RAM(1,32,1,1)) + 2 - Dyvx}
+ Dyux + Dor,

The cost and delay of the RAM block for the SPR registers 0 to 7 are xippated
by the cost and delay of RAM block with 2 variable read and write portscketbe
the number of cycles needed for a register files access. Then thendadtlay of the
circuit SPR can be approximated by:

C(SPR-RF) < C(RAM(8,32,2,2, cpp)) + 2 - C(RAM(L, 32,1, 1, cp))
+5-Canp+Cor+3-32-Cyux +2-32-(Canp + Cor).

4.7.5 Cost and Delay

The read accesses to the SPR in the retire sub-pghageaare not assumed to be critical
for the overall delay of the register file environment, as they use redsd wih con-
stant addresses. For the register file accesses in the decode sel®piveo forward-
ing in necessary (see theorem 4.9). Hence, the delay of the registeniterenent
and the number of cycles needed for a register file acggsss:

D(RF) < max{D(GPR-RF), D(FPR-RF), D(SPR-RF)},
crr = [D(RF)/4].

104 Processor Core

The cost of the register files is:

C(RF) < C(GPR-RF) + C(FPR-RF) + C(SPR-RF).

4.8 Producer Table Environment

The producer tables are similar to their corresponding register filesakatdne addi-
tional read and one additional write port. The new write port is used dtindecode
sub-phasé1 to write the tag of the instruction into the producer table. The additional
read port is used during the retire sub-ph&sé2 to check if no succeeding instruction
has overwritten the entry. All producer tables have a reset signal vslishall valid
bits to one.

The environment of the RAM blocks itself is basically the same as for the registe
files and therefore not discussed in detail. The address and write signdie addi-
tional ports are computed in advance by the cirb@stCmp. The priority of the new
write access duringp1 is higher than the priority of the write access durifigr3.

The entries of the producer tables consist of the valid bit and the tag faothe
responding register file entries. The entries for the odd registers ofoiduinfy point
producer table and the regist&iof the special purpose producer table need an extra
bit dbl that indicates whether this register is written by a double precision result. The
outputO P, R.dbl for i € {1,2} and®R € {FPR, SPR} returns the value of this bit,
if one of these registers is addressed by the operand, othérwige output is needed
by the reservation stations to decide if it needs to use the high or the low pgdabe
an operand. The value of the bl is set to the value of the signal.?R.dbl computed
by the circuitDestCmp if one of the registers is written during the decode sub-phase
D1. Itis set to0 if the producer table is written during the retire sub-phBEsé3.

4.8.1 Forwarding

The producer tables are accessed in four different contexts (opeead, updating,
checking, and retiring). In the decode sub-phaXethe producer tables are read to
obtain the valid bit and the tag of the operands (operand-read-contels). ilithe
decode sub-phasl the tag of the new instruction is written into the producer table
entry of the destination register of the instruction (updating-context). Iretfire sub-
phaseRet2 the producer table entry of the destination register is read again to check
whether a succeeding instruction will write the same register (checkinigsadn If

no such instruction exists, in the retire sub-phag#3 the producer producer table
entry of the destination register is set valid in order to flag valid register filtecd
(retiring-context). The following lemmas summarize the dependencies betiveen
accesses.

Lemma 4.11. The result of the read access to the producer table in the checking-
context for an instructiod must take all write accesses to the producer table in the
updating-context into account that are started before the instrudtiamites the pro-
ducer table in the retiring-context.

Proof. All write accesses to the producer table that are started before thecasstan
the checking-context starts are taken into account by construction B&ANe Hence,

4.8 Producer Table Environment 105

let an instruction/; write the producer table in the updating-context after an older
instructionl; has started the read access in the checking-context and ligfstarts

the write access in the retiring-context. Ligtbe the first instruction succeedidg
that writes the same destination registed@slf the write in the updating-context by

I, is not forwarded to the read access in the checking-contex§, ke instruction/,

will read its own tag. Thusl, will set the valid bit in the retiring-context, even if the
content of the register is not valid as it will eventually be overwritterf oy Ol

Theorem 4.12. The write access to the producer table in the retiring-context does not
have to forwarded to the read access in the checking-context.

Proof. Let Iy be an instruction which writes its result into the register file in the
retiring-context and; be an instruction which simultaneously reads the producer ta-
ble in the checking-context. Assume the instructifnand/; write the same register.
Then both instructions have written their tags to the producer table entry aktiis
ister in the updating-context. As decode and retire are done in order,dinedtion

I, has written the producer table entry after the instrucfipim the updating-context.
This update of the instructioh, must have been forwarded to the read access in the
checking-context of instructiofy, (see lemma 4.11). Thus, the instructincannot
have read its own tag in the check-context. Thus, the instrugtiovill not write the
producer table in the retire context. Ol

Let ¢ denote the number of cycles it takes from the start of the forwarding of
a write access in the updating-context to the end of the retire sub-ptw8e Then
in order to compute the content of the producer table at the time an instructens en
the retire sub-phasket2, the write access in the updating-context must be delayed by
cro — 1 cycles (see section 2.6.3). As the content of the register does notcdepen
the write access in the retire context (see thedorem 4.12), this write patdoeeed
to be delayed.

Theorem 4.13. The read access in the operand-read-context does not depené on th
write access in the retiring-context.

The accesses in the operand-read-context and the retiring-contegsmond to
the read and write accesses to the register files. Instead of forwardimgite access
the data are read out of the ROB. Thus, this theorem can be provemgaunsiipto the
theorem 4.9 on page 95.

Lemma4.14.The read access in the operand-read-context must take exactlyitbe wr
in the updating-context into account that are started by preceding insbruc

Proof. Aninstruction must not depend on a succeeding instruction; therefoveritiee
access in the updating-context by succeeding instruction must notveeréted. Since
an instruction may depend on any preceding instruction the writes in the ugdatin
context of all preceding instructions must be forwarded. Ol

Figure 4.38 details the forwarding for the producer tables. The writesadoe
the retiring-context does not interfere with any other accesses andaésatedirectly
connected to the RAM blocks of the producer tables.

106 Processor Core

Ret2.D.addr® Ret3.D.x° D1.OP,. x .addr® Dl IR°
' DestCmp !
1
D1.D .xpc
D1.OP,. x .addr® i
;Dl D xepctl
.
D1.D x¢pcterc—1
Y Y ; + Y Y Y Y Y Y
R.addr W R.addr W,.% R4.x Wo.x W, x R.addr
Wlx RO...3.%
+ere
Forward PT-RAM Forward DLDeperere
Forward Tree Rd.data RO ...3.data Tree :
S— L ;
ﬁ
2-cpotera—1
Ret2.PT. x .tag D1.0P,. x {valid, tag} D1.Dzepetere

Figure 4.38: Forwarding of the producer table

Due to the circuitDestCmp the address, data, and write sigdal.D.x for the
write access in the updating-context are not known before eygleof D1. At this
cycle, the write access in the updating-context is forwarded to the readamn the
checking-context (to addre$&:t2. D.addr) analogous to figure 2.13 on page 24 using
the forwarding circuit and the forwarding tree on the left side of figur&4hte that
in order to realize this forwarding, the write access has to delayed byamgth — 1
cycles and hence enters the RAM blocks in cygle + cre — 1.

The read access in the operand-read-context enters the RAM blocksl@t of
the decode sub-phadel. It must take all write accesses in the updating-context of
preceding instructions into account. Since the write access in the updatitgxtis
not started before cyclerc + ¢y — 1, the RAM blocks do not return the data of the
write accesses in the updating-context of the: + crc — 1 preceding instructions.
These write accesses must be forwarded using a forwarding tree.

The address and write signal of the write access in the updating-contegt is
known before cycleepc of D1. Therefore the forwarding tree is delayed &yc
cycles and compares the address of the read access in the opexdsabnéext in
cyclecpc D1.OP,. % .addr®P¢ with the addresses of the write access in the updating-
context of the instructions in the,c + ¢ — 1 succeeding stages (i.e., stages + 1
to2 - cpce + ere — 1). Note that the delay of the circulestCmp is relatively small
in comparison to the delay of the RAM access. Therefore, it can be adshaiehe
forwarding tree needs less cycles than the RAM access even if it is detgye,-
cycles.

4.8 Producer Table Environment 107

4.8.2 Cost and Delay

Letd := [rop+1 be the width of the producer table entries. The delay of the producer
tables without forwarding can be estimated as:

D(GRP-PT) < D(RAM(32,b,3,2)),

D(FPR-PT) < D(RAM(16,b + 1,3,2)) + Dywx + Danb,

D(SPR-PT) < max{D(RAM(S,b,3,3)), D(RAM(1,b + 1,2,2)) + 2 - Dyjux }
+ Dyux + Danp,

D(PT-RAM) < max{D(GPR-PT), D(FPR-PT), D(SPR-PT)}.

The delay of the read access in the operand-read context is:

D(D1.OP;. x {valid,tag}) < D(PT-RAM) + Dyx.

Let cpo be the number of cycles needed from forwarding the write port in the
updating-context to the end of the retire sub-ph&s&2. The producer table access is
assumed to be the critical path of the retire sub-pliage, otherwise it can be delayed
such that it has the same delay as the critical path. In anygasis determined by the
delay of the forwarding circuit fof address bits and the delay of the circlagCheck:

cre = [(D(Forward(5)) + D(TagCheck))/d].

If ecpc = 1, the write in the updating-context does not have to be delayed and no
additional forwarding tree is needed for the read access in the checturigxt. In

this case the forwarding increases the delay of the read access in gkingheontext

by the mux inside the forwarding circuit needed for merging the outputswiialing
circuit and RAM, otherwise by the two muxes for first merging the outputeRAM

with the output of the forwarding tree inside the forwarding tree and fogimgiwith

the output of the forwarding circuit (see figure 4.38). Thus, the deldlyeoproducer
table access in the checking-context is:

D if cro = 1
D(Ret2.PT. tag) < D(PT-RAM) + J ~Mux ere="1
2-Dyux if cro > 1

The maximum delay of the read accesses to the producer table and the mimber
cyclescpr needed is:

D(PT) < max{D(D1.0OP,. x {valid,tag}), D(Ret2.PT. x .tag)},
cpr = [D(PT)/é].

108 Processor Core

The costs of the producer tables without forwarding are:

C(GRP-PT) < C(RAM(32,b,3,2,cpr)) + CanD,
C(FPR-PT) < C(RAM(16,b,3,2,cpr)) + C(RAM(16,b + 1,3,2,cpr))
4+6-Canp +Cor+6-Cnux
+2-b-Cyux +2-2-b-Canp,
C(SPR-PT) < C(RAM(8,b,3,3,cpr))
+ C(RAM(1,0,2,2, cpr)) + C(RAM(1,b + 1,2,2, cpr))
+12-Canp +2-Cor+3-b-Cpyux +4-b-Canp,
C(PT-RAM) < C(GPR-PT) + C(FPR-PT) + C(SPR-PT).

The number of cycles needed for the computation of the destination registers
is:

cpc = [D(DestComp)/d].

The forward circuit for the read access in the checking-contextistsnsf a forward
circuit and a forwarding tree withy¢ inputs for each PT. The forward circuit for the
read access in the operand-read-context consists of a forwardingithcrc+cpc —

1 leaves for each operand output of the PTs (note that the high parts BPRend
the SPR uses only 4 address bits). The total cost for the forwardingtaifcthe PT
are:

C(PT-Forward) < 3 - C(Forward(5, b, cpr, cr(5)))
+ 3 - C(Forward-Tree(5, b, crc, cpr))
+ 4 - C(Forward-Tree(5,b, cpc + cre — 1, ¢cpr))
+ 6 - C(Forward-Tree(4, b, cpc + cre — 1, ¢cpr))
+ (cpr +cre) - 38 - CrEg-

The total cost for the producer tables is:

C(PT) < C(PT-RAM) + C(PT-Forward).

Chapter 5

Memory Unit

This section describes the memory unit of the DLX An overview of the memory
unit is given in section 5/1. Sections 5.2 to 5.8 describe the non-blockingdele
used in the memory unit.

5.1 Overview

The memory unit handles all load and store accesses to the main memory. iThe un
presented in this thesis does not support virtual memory, i.e. the adslsesgdoy the
processor can be directly used to address the main memory. Page fauliptgere

not computed by the memory unit but are assumed to be computed by the main mem-
ory. Furthermore the memory unit is not assumed to be able to write to the instructio
memory. Thus, no cache coherency protocol is needed between theiiostrand the

data cache. Lines in the cache do not have to be invalidated.

The memory unit is divided into the three circu8a4S, DCache, andSh4L (see
figure' 5.1). The data cache which does the actual memory access is edritathe
circuit DCache. All accesses to the data cache must be aligned to word-addresses.
The adaption for instructions which do not access whole words are lulpiiee cir-
cuits Sh4S and Sh4L. In contrary to the memory unit of the DLX by dler and
Paul [MPOO] double word accesses are not supported by the MIBSIRSA.

The memory unit gets as input the control hus: that defines the type of the
access (including the signal-ite indicating a store and an immediate constatn),
the tag of the instruction, and the two operantdB, andO P,. The circuitSh4S first

Sh4s

DCache

Sh4L

v
Figure 5.1: Memory Unit

110 Memory Unit

computes the effective addresédr of the access as sum of the first operand and the
immediate constant. If the memory access is misaligned, the cBbdif raises the
data access misaligned interruptnal. In this case the instruction is sent directly to
the circuitSh4L. Thus, the data cache does not need to handle misaligned accesses.

Based on the lower bits of the effective address, the second operahiftés to
the correct position for a word-wise access, resulting in the datddsus In parallel
the circuitSh4S computes for every bytec {0,...,3} of the data word a usage bit
ub; which marks the bytes used by the access. Hence, for loads thé,bsslects the
bytes to be read, for store$, selects the bytes that are written.

The data cache uses the write bit, the effective address, the data thtisearsage
bits to perform the memory access. For load accesses the data cache tfetwesult
on the data bus. Along with the result, the data cache returns the effedtivesa
of the access, the page fault interrupt sighalf received from the main memory,
and the control signals which are passed unchanged by the cachéheetgg of the
instruction.

The memory unit is able to handle load word left (LWL) respectively loaddwor
right (LWR) instructions (see table A.1 in the appendix). These instructipdste
only parts of the target registers and are used to access misaligned \#imde the
processor core updates always whole register entries, the destiregister is also
used as second operand. The result of the load access is combinedevdtintant of
the destination register to compute the result. Thus, for LWL/LWR instructites,
data cache must return the content of the main memory for the bytes for wiicéh
active, and the content of the second operand for the bytes for whjcis inactive.

The circuitSh4L shifts the result of the cache access as requested by the instruction
based on the lower bits of the effective address and the value of theksigimals in
the buscon. The result of load accesses is returned to the processor on the digtean
low part of the CDB (see table 4.3 on page 63). If an interrupt occuhednemory
unit returns the effective address on the low part of the CDB.

The construction and the pipelining of the circu#is4S andSh4L is straightfor-
ward and not discussed in detail. The circuits can be found in the appentielay
and cost of the circuits are:

D(Sh4S) < max{D(Add(32)), D(Add(2)) + D(HDec(2)) + 2 - Dasirx},
D(Sh4L) < 4- Dy,
C(Sh4S) < C(Add(32)) + 2 - C(Dec(2)) + C(HDec(2))
+104 - Crpyx +11-Cogp + 10 - Canp,
C(Sh4L) < C(Inc(2)) + C(Dec(2)) + C(Sel(4))
+ 186 - Cyyux +3 - Dor + Danp-

5.2 Overview of the Data Cache

The data cache presented in this thesis is a “non-blocking write-throlghallocate”
cache. In contrary to the simpler blocking cachespa-blockingcache does not stall

the memory unit in case of a cache miss. It can service multiple misses at a time and
return the result of a hit before a preceding miss has completedité-throughcache

5.2 Overview of the Data Cache 111

updates the main memory (or the next cache level) for every write accessdacdhe.
Thus, the main memory always contains the same data as the cache. Inyctirar
write-back variant only updates the memory if a line that has been written idvic
out of the cache. A new cache-line is written into the cache whenevercasamisses
the cache. This is calledrite-allocate A read-allocate cache would only write new
lines into the cache for read-misses.

A cache-linecontainsSpc = 2°P¢ (aligned) bytes. On a miss always a whole
cache-line is read from the main memory and saved in the cache. The datigac
assumed to be non-sectored, i.e. the width of the cache RAM equals the dvalth o
cache-line. Accesses to the cache RAM always write or read wholedads. The
data cache is & pc-way set associative cach& o = 2Fpc). Every line of the
main memory can be saved &t different locations in the cache. The location of a
cache-line currently saved in the cache is defined bywheof the cache-line.

The basics of non-blocking caches were presented by Kroft [Qro&he pre-
sented design of a non-blocking cache is based on the work of Sicolc2|Sit®
his thesis Sicolo gives an overview of the basic structures of a nonibhfpciache,
but does not handle the gate-level implementation, pipelining and interrupsnlve
these problems the design of Sicolo had to be adopted significantly.

The cache design presented by Sicolo combines two succeeding storesaont
cache-line to a single store. This is not possible for a first level cacheites have
to be executed in order due to interrupts. Also Sicolo uses a write-batégstnahich
has the following drawback not handled in his work: before a new ctichés written
into the cache it must be checked if any succeeding access will replatia¢hilf this
is the case and the cache-line has been modified by a store the cache-limoties
written into the cache but back into the main memory.

Note that for the check the way in which the succeeding accesses writedede
Hence, only those accesses can be taken into account for which thieasajready
been computed. To cover the remaining accesses, additionally everycoessanust
be checked if it will overwrite a cache-line which is about to be written into tuhe.
This can only be done after the hit signal for the instruction has been d¢ethpnd
therefore delays misses.

Figure 5.2 depicts an overview of the data cache. The cache consists aiub-
circuits: the hit computatioklC, the update queugpdQ, the read queuReadQ, and
the cache cor€ore containing the actual cache RAM. The update queue combines
the miss queue and the replace queue of the design presented in [Sic92].

The cache core contains the cache memory, the cache directory angldoere
ment circuit. The update queue holds all accesses that will update the cach
eventually (i.e., store instructions and cache misses). The read qudamsatl read
misses. The circullC computes the overall hit signal, taking the content of the queues
and the cache core into account.

5.2.1 Execution of Memory Accesses

Depending on the type of the memory access, different data are refprited execu-
tion of the access. Loads only require the data that are actually reads &quire the

112 Memory Unit

™ UpdQ |~

Core

Y V{

Figure 5.2: Overview of the data cache

whole cache-line in order to update the cache core. This are called thieeakdata of
the access.
New memory accesses first enter the hit computation. The hit computation com-
putes a hit signal indicating whether the required data of the access amdadhe.
It may happen that only parts of the data needed by an access are itliee €a., if
a load follows a store to the same address. In this case the access is tecatied.a
Apart from the hit signal the hit computation also returns all required lgft@gich
the value is known. These bytes are marked valid using an additional vatiertiyte.
Based on the result of the hit computation the type of the access instructeons a
sent to different queues. Stores are sent to the update queue. hEses are sent to
both the update queue and the read queue. The load hits are directhedetartine
memory unit. Hence, the data cache can return instructions out-of-order.
The misses in the update queue start read requests to the main memory. The main
memory returns the result of the access on the result bus. The contbatrekult bus
is used to update the entries in the update queue as well as the read geesmonA
as all bytes of a load in the read queue are valid, the result is returnedneethery
unit. If all the bytes of a cache-line in the update queue are valid, the cachean
be updated. Since the cache is a write through cache, no cache-lineevayitted to
the main memory before it is overwritten. If the entry in the update queue is&, stor
the main memory is also updated and the store is returned to the memory unit.

5.2.2 Cache Core and Main Memory

The handling of misses is done outside the cache core macro. Therefatatthpath
of the cache core can be the same as for a simple blocking cache. Addititrelly
cache core does not handle any data dependencies. This enablsfyt@ipaline
the core. The only problem may be the replacement circuit, which decidiet wh
cache-line has to be overwritten. Advanced replacement algorithms (R(), take
all preceding instructions into account and assume that the instructions aache
are handled in order. Yet a strict adherence of the replacement ciarording to

5.3 Hit Computation 113

the strategy is not needed for data-consistency. Therefore, in this thegoelined
LRU algorithm that does forward the preceding instructions is used wimgpliies
the design of the cache core.

The main memory is not assumed to return the read accesses in order. Tas mak
it possible to build multiple levels of non-blocking caches using the preseetgdgrd
To identify the results returned from the main memory, the main memory must return
the address of the request along with the data.

5.2.3 Speculation

If an instruction causes an interrupt or has been mispredicted, allesdingeinstruc-
tions must be aborted. Updates of the cache core or the main memory aeeoarr
able. Thus, a store instruction may not update the cache core or the mainyrasnor
long as the instruction may be aborted. An instruction won't be aborted if i
tion does not cause a repeat interrupt (i.e., a page fault) and all prgdadiructions
have retired, i.e. the instruction is the oldest active instruction.

The page fault interrupt is computed by the main memory. It can only be @dause
by accesses to cache-lines that are not in the cache. Thus the valeepaigth fault
interrupt is known before a store instruction updates the cache or the maiome
since the instruction first tries to fetch the cache-line from the main memoryéodas
a miss. If this read access causes a page fault, the store instruction xeoatieel.

To guarantee that store instructions won'’t update the cache core or then®ian-
ory before they become the oldest active instruction, two solutions asgopmsThe
simple solution is to stall a store instruction at the end of the hit computation until it
becomes the oldest active instruction. Due to the special memory reserstatimm
(see section 4.2.2) a store instruction is always the oldest memory instrudtiem w
it enters the memory unit. Thus, no preceding instruction gets stalled and the sto
instruction eventually becomes the oldest active instruction.

This simple variant has some drawbacks: load instructions may not ovettake
instructions in the reservation station. Thus, a store instruction stalls akedicg
load instructions. Further more, before a store instruction can leave ttanmitutation
all queues of the cache have to be emptied. This means especially that aheegire
instruction can be in the update queue.

A more efficient solution is to stall store instructions in the update queue jistbe
they update the cache RAM or the main memory. The stores are stalled until they
become the oldest instruction and it is clear that they did not cause an pitefhis
method is used in the presented design and is described in more detail in #ie upd
gueue section 5.5.

5.3 Hit Computation

The hit computation computes the two signalsé andsl. The signalhit (calledhit

signal is active if the required data is already in the cache. The sigr{ablledsame-

line signa) is active if a preceding instruction inside the cache accesses the same line.
In this case even if the requested data is not yet in the cache, no neastequhe

main memory has to be made. The sigrfalsand sl may be active at the same time,

114 Memory Unit

e.g., if the cache-line containing the required data has been requestqutdxeding
instruction and has just been returned by the main memory. The hit signahigiser
priority.

If an memory access succeeds a store that writes some of the requeatetitta
access, it may happen that only parts of the requested data are kntvertiate the
hit computation returns the data for the access. Therefore, the ditCuitomputes a
byte-valid signabuv; for every bytei of the requested data. The sigiba) is active if
the value of the byte is known. The hit signahit is active if the byte-valid signals
for all required bytes of the access are active. The signals:, andbv, together are
calledglobal hit signals

For every bytei for which bv; is active, the hit computation returns the value
written by the last store being processed by the cache which updates thisfoyo
such instruction exists, the hit computation returns the current content afaithe
RAM for this byte.

In order to later update the cache core, the hit computation also computassthe b
way Which points to the way of the cache core which has to be written. If the cache
currently processes an access that addresses the same cachesliway tmust be
the way computed for this access. Otherwise the value computed by thecraplaic
circuit of the cache core is used. Note that in case of a hit the replaceineuit
returns the index of the way that contains the requested data.

Based on the type of the access and the value of the global hit signalsit the h
computation computes the action to be done for the instruction. The instructidreca
sent to the update queue, the read queue, both queues, or can diescttyimed to
the memory unit.

Note that an access is treated as hit whenever the requested data candaf
the cache, even if it would be a miss if the accesses would be handlechtatiyie
Assume the cache core contains a cacheéjjrsnd an access to the cache-linavill
replace the cache-ling. If a second access to the cache-lipés started before the
line is replaced, this access is treated as hit as the cache core returns#oe data.
If the access to the cache-lifgis a store, it will update the cache core and thereby
overwrite the cache-ling written into the cache core by the preceding access. Since
the cache is a write-through cache this can be done without checking Wvdatd be
lost.

5.3.1 Overview of the Hit Signal Computation

The requested data of an instruction can be located in four differerd@gpilathe cache:
in the cache core, in the update queue, on the result bus of the main menasryyrite
data of a preceding store in the hit computation itself. If the requested datatdae
found in any of these places, the data must be loaded from the main memory.

The update queue and the hit computation compute for every entry reshecti
pipeline stage a local same-line signal and local byte-valid signals. Thieslacee-
line signal is active if the entry or stage contains an instruction which aesd¢ke
same line as the instruction for which the global hit signals are being complugéd.
Spc = 2°0¢ be the number of bytes of a cache-line. Then two instructions access the
same lines if the bits 31 tepc of the addresses (calldidie-addres} are equal. The

5.3 Hit Computation 115

local byte-valid signals indicate that the entry or stage contains the coalee for
that byte. They may only be active if the local same-line signal is activethéarache
core and the result bus of the main memory all bytes are valid on a hit. Thertéfese
circuits only compute a local hit signal which is active if the requested lineuisdo

The global hit signals must reflect the content of the cache at the time thegjue
are updated. The computation of the global hit signals may take multiple cyads du
pipelining. Therefore, all changes to the content of the cache duringptingutation
must be forwarded in order to be reflected in the result. The cache aumlyigpdated
by the update queue. Thus, in order to forward all possible changbs chche core
it suffices to forward the content of the update queue at the time the hit ¢atigqouis
started and all updates to the update queue.

The entries of the update queue are updated by the result bus of the maimymemo
and by the hit computation for allocating new entries. Note that stores aregzed
in order. Thus, only the instructions in the hit computation which are startiuebe
the instruction for which the global hit signals are being computed have tokba ta
into account. Hence, all possible updates to the update queue by the hittediomp
are known at the time the hit computation for an access is started. The upmties
update queue by the main memory are not known at the time the hit computation is
started. They must be forwarded in every cycle of the hit computation.

Figure 5.3 shows an overview of the computation of the global hit signals. Fo
the computation of the global hit signals, the hit computation first compmttas
and dynamic hit signals The static hit signals are based on the content of the hit
computation, the update queue, and the cache core. They must réghesgalue
of these circuits at the time an instruction enters the hit computation and have to be
computed only once. The dynamic hit signals are based on the content refstiie
bus of the main memory and have to be computed in every cycle. Since all bytes o
result bus are valid, the dynamic hit signals only consist of a hit signaldighamic
hit signal) without byte-valid signals.

The dynamic hit signal must be set if the line-addresses of the currenbdahe
result bus and the instruction for which the hit signals are being computegiaial.
Assume the cache is a RAM block wi2 — spc address bits that is written by the
result bus of the main memory. If the computation of the global hit signal is agen
read to that RAM block the dynamic hit signal must be set exactly if the write por
would be forwarded to the read port of the RAM block. Thus, the computatiohe
dynamic hit signals can be done using a forwarding circuit (with stallingluohsa
RAM with 32 — sp~ address bits.

Letcproi denote the number of cycles needed for the computation of the global hit
signals based on the content of the result bus of the main memory. In orddetall
data from the result bus into account that have updated the updateajubadime the
global hit signals are computed, the result bus is delayed,By; — 1 cycles similar
to the pipelined forwarding circuits (see section 2.6.3). The forwardirgicithen
uses the un-delayed result bus anddhey — 1 additional stages of the result bus are
forwarded using a forwarding tree. This tree is included into the computafitime
static hit signals.

The circuitstaticHC in figure[5.3 computes the static hit signalg (static same-
line) andsbuv, (static byte-valid) along with the corresponding data bussgs&:, and

116 Memory Unit

MMP° %
|
MM
HCOiaddr
M Memzn—1
v v IR 2
Raddr ~ Wx I Lo |
, Core ' | UpdQ !
1 1
L T SN
ForwardStall | { Core.x ; UpdQ.* |
staticHC
forwUpd dataUpd
*dhit * dbyte, * ssl, sbu,, sbyte,, sway
globalHC

hit, sl, bu,, byte,, way

Figure 5.3: Overview of the hit signal computation

the waysway. For this computation, the cache core and the update queue are accessed
to compute local hit signals. Additionally to these local hit signals the cistattcHC
uses the stagésto cy;o — 1 of the delayed result bus and the preceding instructions
in the hit computation to compute the static hit signals.

The dynamic hit signadlhit and the corresponding data busdégte, are com-
puted using a forwarding circuit with stalling-¢rwardStall). This circuit uses the
un-delayed result bus. The outputs of the two circslisdicHC andForwardStall are
combined in the circuiglobalHC to compute the global hit signals, byte values and
the way.

5.3.2 Local Hit Signals

For the computation of the static hit signals, first local same-line and bytesrghidls
must be computed for all stages of the hit computation and all update queigs.en
These signals are callgdiC'.lsl; (local same-line) andi C'lbv, ; (local byte-valid) for
stage: of the hit computation ant/pd().lsl; respectivelyUpd().lbv, ; for the entry:
of the update queue. For the stages of the delayed result bus of the maimynrzamo
the cache core a local hit signal must be computed. These signals adelddifel hit;
(local hit) for the stage of the delayed result bus, aidthre.lhit for the cache core.
The local same-line signal indicates that the stage or entry holds an adtiebs w
addresses the same cache-line as the access for which the hit sigrizdengreom-
puted. Which bytes of this cache-line are valid is defined by the local lalié-sig-
nals. The local hit signals for the result bus and cache core are #dieerequired
data is in the delayed result bus stage respectively cache core. Thatatimpof the
local signals for cache core and update queue are described in tios$ed and 5.5.
To compute the local hit signals for the hit computation stages, the:bumdi-
cating which bytes of a word are used must be extended to a whole line.eBgur

5.3 Hit Computation 117

ub, addr(spc—1:2] data
4 - [Sn '/4*1]) [0] - 32
[3] ‘ . ..‘ . [0] " L] ..‘ L] [3] " . ..‘ . [0] "

([_3'1‘; 2] * v([7 0] * v([3'1‘; 24] * v([? £ 0]

eubs,,—1 bytes,,—1 eubg,.—a bytes, —a eubs bytes euby byteg

Figure 5.4: Computation of the signalsub, andbyte,

MM full ~ MM'.addr[31 : BIC°.addr[31 : 1] HCY. full HCV.addr(31:1] HC9.write HCY.cub,
a\
£Q
\
MM.lhit; HC.Isl; HC.lbv,,

Figure 5.5: Computation of the local hit signals for a delayed result bus stagel a
hit computation stage

depicts the computation of the extended usage+its. The byte4 - m + n for

m € {0,...,L/4— 1} andn € {0,...,3} of aline is used if the instruction accesses
the wordm of the line and the byte of the word is used. Which word of a cache-line
is accessed can be computed by decoding thespitgs— 1 to 2 of the address. Ad-
ditionally the circuit in figure 5.4 computes the byte budsges, 1.0 by copying
the data bus$p/4 times. The computation of the signalsb, andbyte, must only
be done once for every instruction which enters the hit computation.

The circuit in figure 5.5 computes the local hit signals from the accesses hitth
computation and the stages of the delayed result bus:Lebe the number of cycles
of the hit computation. Lef be an instruction which enters the hit computation, i.e.,
I is in stage 0. An instruction in stagec {1,...,cgc — 1} of the hit computation
accesses the same line A# the line addresd7C” .addr of the instruction in stage
j is the equal to the line addre$5C°.addr of the instruction/ in stage0. If this is
the case and the stageontains a valid access/(CV. full = 1) the signalH C.lsl; is
activated. IfHC'.lsl; is active, the local byte-valid signals are activated for all bytes
written by the instruction in stagg(indicated byH C7.eub, A HCY write). Note that
this disables all byte-valid signals if the access in stagea load.

The local hit signal for stagec {1, ..., cy2p—1} of the delayed result bus can be
computed by comparing the line addresses of the delayed result bus\stelge:ddr
with the address of and checking the full bif/ A/%. full. Since all bytes of the result
bus are valid no byte-valid signals are needed.

5.3.3 Static Hit Signals

The static byte-valid signal for a byte sbv, must be active if any local byte-valid
signal for the byte: of a hit computation stage or an update queue entry is active or
the local hit signal for a delayed result bus stage or the cache cordvie.alf the

118 Memory Unit

HC.lbuy 1 HCe#e bytey, UpdQ.lbuy.o UpdQ.byteg .y M M.lhity M Mevza=1 bytey
l HC*.bytey, HC 1bvg,cpy—1 l l UpdQ.byteyo UpdQ.lbvg e l l MM byte,, MM.lhit,,,,, 1 l

Forw

qbuy. qbyte

Core.hit
l Core.bytey,

Yy

Forw

vy o

sbu, sbytey,

Figure 5.6: Computation of the signalsv; andsbyte; for a bytej

signalssbuy, is active, the busbyte;, for the corresponding data must contain the value
of the last instruction preceding to | which updates that byte. If no su¢tuttn
exist, the busbyte;, must contain the current content of the main memory. Figure 5.6
shows the computation of the signala), andsbyte;, for a bytek.

The computation of the byte-valid signals and the corresponding byte®aionke
using a tree as in the forwarding tree (see section 2.6.3). The tree corapuf#® of
the local byte-valid signals (respectively hit signals for cache coreresdlt bus).
Parallelly the tree selects the first byte (from the left) for which the byte-gadjdal is
active.

The outputs of the cache cot&re.lhit andCore.byte, are assumed to be timing
critical as they depend on an access to the cache RAMs. Therefoyerthaot used
before the last stage of the tree. The outputs of the tree which do not k@tials
from the cache core into account are callgd, respectivelyybyte,. Thus, for a byte
kwith0 < k < Spc — 1 holds:

sbvy, = gbuy, V Core.hit, (5.2)
byt if gbvp, =1

sbyte,, = DYk) 70k . (5.2)
Core.byte, if gbvp, =0

The instructions in the hit computation have been started after the instruction in
the update queue and must have a higher priority in the tree. Since instauetitar
hit computation and update queue in order and are not reordered withistages
respectively entries with lower index must have higher priority. The rdsust of
the main memory and the cache core only contain data written by already completed
instructions and therefore have a lower priority than hit computation anatejpgieue.
Since cache and main memory contain the same data due to the write-througjystrate
the order is irrelevant for the result bus stages and the cache core.

The static same-line signa$! must be active if the local same-line signal is active
for any hit computation stage or update queue entry. The statjanust be the way of
the last instruction for which the local same-line signal is active. If norta@same-
line signals is active, the way must be set to the way output of the(¢are.way. The
circuit for the computation of the signais! andsway is shown in figure 5.7.

5.3 Hit Computation 119

HC".way UpdQ.way HC.Isly UpdQ.1sly
HC e~ way | UpdQ.waye 1 l HC.lsIC,,(,,ll UpdQ.isl,
FFO
Core.way ffo Z

Sel

sway ssl

Figure 5.7: Computation of the signalssi andsway

Among other things, the static way of the instruction in stage 0 of the hit com-
putationsway depends on the way of the instruction in stage 1 which is computed
only one cycle beforeway. Thus, the delay of the path C'.way ~ sway must be
at most one cycle. In order to minimize the delay on this path, the static way is not
computed using a forward tree like the byte-valid signals and the data. dnskea
first instruction for which the local same-line signal is active is computedjusiind-
first-one circuit. If none of the local same-line signals is active the zetmubr of the
find-first-one circuit is active. Thus, the static same-line signal must theead the
zero output is inactive. Using the outpfifo which unary selects the first instruction
with active same-line signal, the way of this instruction is selected. If the adpub
is active, the way of the core is selected. In order to minimize the delay forghals
HC' .way andCore.way, the select circuit is “unbalanced” accordingly.

5.3.4 Global Hit Signals

The global byte-valid signal for a bytebv;, has to be active if either the static byte-
valid signal for this bytesbu;, or the dynamic hit signalhit is active. Since only the
processor writes the main memory, the dynamic datge, from the main memory
cannot be newer than the static dabgte, in the cache. Thus, if the static byte-valid
signal is active, the static data have to be returned:

bu,, = sbuy V dhit, (5.3)
if =1

bytey, = sbyter I sbuk . (5.4)
dbytey, if sbvg, =0

The global hit signahit must be active if all bytes required by the instruction
are valid. For write instructions all bytes of the cache line are requireddardo
update the cache core. Yet the bytes of the line written by the instruction (iedibg
HCY .eub,) are valid and need not to be found in the cache. For read instructions the
bytes to be read (indicated ByC°.eub,) need to be valid:

Spc—1
hit = N\ <bvk\/(HCO.eubk@HCO.write)>.
k=0

Note that the signal C°.eub, and HC®.write are known early in the hit com-
putation and not as timing critical as the dynamic hit signal and the hit signal fro
the cache core. Therefore, the computation of the hit signal is optimized thsn

120 Memory Unit

distributive law:

Spc—1
hit & /\ (dhit V sbug, V (HCO.euby, @ HC’me’te))
k=0
Spc—1
€D /\ (dhit V Core.hit V gbug V (HCO.euby, & HC’O.write))
k=0
Spc—1
= dhit V Core.hit V /\ (qbvk V (HCY.euby & HCO.write)) .
k=0

No dynamic way and same-line signal are computed for the result bus of the ma
memory. The static way and same-line signal are therefore used as glapang
same-line signal:

sl = ssl

way = sway

5.3.5 Actions

Based on the global hit signals the hit computation either directly returns sk re
to the memory unit or allocates new entries in the read and the update queale. If
new update queue entry is allocated, also theskitsandrdy for this entry have to

be computed. The request bitg has to be active if the entry must request the line
from the main memory. The ready bity indicates that the entry contains already the
correct data. Based on the signals andmiss and the type of the access (indicated
by the signalurite which is active for stores), the following actions have to be taken:

e write A hit: The instruction is a load-hit. The result of the load can be returned
from the hit computation directly to the memory unit.

e write A hit A sl: The instruction is a load-miss but a preceding instruction
accesses the same line. A new entry in the read queue has to be made. &ince th
required data will be requested by a preceding instruction no new updete q
entry is needed.

e write A hit A sl: The instruction is a load-miss and no preceding instruction
accesses the same line. New entries in the read queue and the updateayecue
to be made. The request bitg of the new entry is set to one. The readyhiy
of the entry is set to zero.

e write A hit: The instruction is a store-hit. A new entry in the update queue has
to be made. The bitdy is set to one and the bitq is set to zero.

e write A hit A sl: The instruction is a store-miss but a preceding instruction
accesses the same line. A new entry in the update queue has to be made. Since
no new read request for the cache-line has to be made, thedhiendreq are
set to zero.

5.3 Hit Computation 121

HC®.addr[spc —1:2]

HCO.ub, HC.data

Read@.Byte,.bv ReadQ.Byte,.data ShdL.data

Figure 5.8: Computation of the data bus to the read queue and the memory unit

e write A hit A sl: The instruction is a store-miss and no preceding instruction
accesses the same line. A new entry in the update queue has to be made, which
requests the required cache-line from the main memory. Thedpiis set to
zero and the biteq is set to one.

The result of a load access is returned to the memory unit using th&/BuUs .
New entries for the update queue and the read queue are allocated @simgsties
UpdQ .~ respectivelyRead(.. The full bit of the busses is active if the corresponding
action has to be taken. Based on the preceding list the full bits to the o4t and
the two queues as well as the hits; andrdy for the bus to the update queue can be
computed as follows:

ShAL. full = write A hit,
ReadQ. full = write A hit,
UpdQ. full = write v (hit A sl), (5.5)
UpdQ.rdy = hit,
UpdQ.req = hit A sl.

The byte-valid signals and the corresponding data sent to the update gresu
calledUpdQ.Byte,.bv andUpdQ).Byte,.data. The valid signals for the bytes of the
update queue must be active for all bytes for which the byte-valid sigfakeedit
computation are active or which are written by the instruction. The byte dathdo
update queue are the global byte values. For a bytgh 0 < k < Spc — 1 holds:

UpdQ.Bytey,.bv = (HC.euby, N HCO .write) V buy,
HCO . bytey, if HCY.euby, = 1

UpdQ.Bytey.data = .
pdQ-Byte {bytek if HCO.euby, =0

The data busRead.Byte,.data to the read queue is only 32 bits wide. Thus,
the requested word must be selected out of the cache-line returned glpkiae hit
computation. LetV be the index of the requested word in the cache-line, i.e.:

W = (HC®.addr[spc — 1 : 2]).

Then, the bytedV to W + 3 have to be selected in order to compute the data bus to
the read queue. The byte-valid signals for the read quguel(). Byte,.bv must be
active for all bytes of the word which are valid or not used by the ad@ediated by

122 Memory Unit

the un-extended usage b#&C.ub). Due to the LWL and LWR instructions the bytes
which are not used by the instruction have to be set to the value of the Viatbe o
input data bus of the instruction. Hence, the busResdQ.Byte,.{bv, data} to the
read queue can be computed @s{(k < 3):

Read@.Bytey.bv = HCO.uby, V boyy 4,
HC datal8-k+7:8 -k if HCOub, =1
ReadQ.Bytey.data = atal +] I U0k .
bytew yx if HCY.ub, =0
The data on the buBead@Q. Byte,.data contains all requested data in case of a cache-
hit. Thus, the data bus to the memory usitt4 .data can be directly derived from the
busReadQ.Byte,.data. The bus to the memory unit does not need byte-valid signals,
since all bytes have to be valid for read hits. Figure 5.8 depicts the compubétios

data busses and the byte-valid signals to the read queue and the data busdéoibry
unit.

5.3.6 Stall Computation

The hit computation has to be stalled if the action for the access cannotaihdds
above be performed. A result cannot be returned to the memory Whtlif.. stallOut

is active. A new read or update queue entry cannot be made if the pondiag stall
signalsRead@.stallOut or UpdQ.stallOut are active. Hence, the input stall signal
for the hit computation can be computed as:

HC'.stallIn = (Sh4L.full AN Sh4L.stallOut)
V (ReadQ. full A ReadQ.stallOut)
V (UpdQ. full A UpdQ.stallOut).

5.3.7 Cost and Delay

The overall delay of the hit computation is dominated by the access to the Radfie
in the cache core. Thus, the critical signals @ee.hit andCore.byte,. AS one can
easily verify the output of the hit computation with the highest delay is the dattobu
the read queu&ead(.Byte,.data. Thus, the overall delay of the hit computation is:

D(HC) < D(Core) (Core.byte,)
+ Dymux (sbyte, equation (5.2))
+ Dymux (byte,, equation (5.4))

+ (SDC’ — 2) -Dyux + Dyux. (Read(@.Bytey.data, figure 58)

To compute the number of cycles the result bus of the main memory has to be
delayed, the maximum delay from the first stage of the result\lBg® .« to the out-
puts of the hit computation needs to be known. As above, the path from tathe b
ReadQ.Byte,.data has the highest delay out of all paths that sta/at/® x. The

5.3 Hit Computation 123

Mem.data >
8- Spc

[spc—1:2]
addr

31:spc
Mem®.addr[31 : [[81.+ soc]

—>1_> =? > hit
Mem® write

Figure 5.9: Modified test circuit

delay this path is:

D(MM?° % ~ ReadQ.Byte,.data) < D(EQ(33 — spc)) + Duux
(dbyte,, figure 5.3)

+ Dyux (bytey, equation (5.4))
+ (spc —2) - Dvyux + Dyux-

This delay can be reduced, if the selection step from the cache-line todbssac
word in figure 5.8 is removed from the critical path. The selection for thbesdines
of the result bus can be done in parallel to the computation of the forwarélsiging
a modified circuitTest (see figure 5.9) in the forward tree. The circuit computes a
second data outputhyte, which contains the data needed by read accesses. This
output is treated like the standard data in the forwarding circuit, i.e. the fdmg
circuit computest - Spc + 32 data bits. The additional byte busses computed by the
forwarding circuit are calledrbyte,.

Using the new bugrbyte, the output to the read queue can be computed as follows
(forabytekwith0 < k <3 andB :=8-k):

HC".data[B +7: B] if HC®.uby =1
ReadQ.Bytey.data = { ata[B + J i uby,

bytew+k if HCO.ubk =0
HCC.data[B +7: B] if HCO.ub, =1
&4 sbytew 4k if HC®.uby, = 0 A sbuyyyp, = 1
dbytew 1 else
HCO.data[B +7: B] if HCO.ub, =1
= q sbytew 1k if HCO.ub, = 0 A sbuyyp, = 1
drbytey, else
HCO.data[B +7: B] if HCO.uby, =1
qgbytew 1k if HCO.uby, = 0 A gbuyy g, = 1
(5.2)
= . HCOuby =0 A gbuyyy, =0 .
Core.byte if
yrew sk ANCore.hit =1
drbytey, else

Note that the most critical bus on which the RsidQ. Byte,.data depends igrbyte,
since it determines the delay of the path from the main memory to the read qukue an
therefore determines the number of cycles the result bus has to be delageskcond

124 Memory Unit

byte, Core.byte,
qoy Y qbyte, Core.byte,

qbu,
dbyte, HC .addr(spc —1: 2

HC.data
HCO ub,
HC®.addr[spc —1: 2]

HCC.addr[spc —1: 2]

Core.hit

HCO.ub, dhit

ReadQ.Byte,.bv Read.Byte,.data UpdQ.Byte,.bv UpdQ.Byte,.data
Figure 5.10: Optimized computation of the byte-valid and data signals for the read

queue

most critical signals are the outputs of the cache ¢bree.x since they determine the
overall delay of the hit computation.

Figure[5.10 depicts how the order of the multiplexers which compute the bus
Read@.Byte,.data can be changed in order to use the critical signals as late in the
multiplexer-tree as possible. The left side of the figure depicts the computdtiba
signalsReadQ.Byte,.{data,bv} as described in the previous sections. This circuit
can be transformed into the circuit on the right side of the figure by movingitiie
tiplexers for the signal€’ore.byte, anddbyte, to the bottom (and replacingpyte,
by drbyte,). Note that this also reduces the delay of the sigidadQ.Byte,.bv
that also depends on the output of the cache core and the memory unite(gigtials
Core.hit respectivelydhit). The modifications depicted in figure can also be used in
order to reduce the delay of the busses to the update dued®.Byte,.{data, bv}.

Finally the delay of the reduction from the cache-line to the accessed \waordec
reduced if the address is decoded and a unary select circuit is igade .11 shows
a version of the global hit computation which takes all optimizations into account.

Using the circuit in figure 5.11 the overall delay of the hit computation is:

D(HC) < D(Core) + D(Sel(Spc/4)) + 2 - Dyux. (5.6)
The delay of the path from the result bus to outputs of the hit computation are:

D(MM?° % ~ ReadQ.Byte,.data) < max{D(EQ(33 — spc)),

(spc —2)-Dyux}
(hit, rbyte,, figure 5.9)

+ Dyux (drbyte, figure 5.3)
+ Dyux.-

Let cyc be the number of cycles needed for the hit computation, and jet; be the
number of cycles needed to compute the outputs of the hit computation basieel on

5.3 Hit Computation 125

HCOwrite HC®.eub, HCO.ub, HC.addr[l —1: 2]
qbu, gbyte, Core.byte,

J[SDC
! 8- Spc 8- Spc
SD(,'/4

3
5DC

HC® write HC®.eub, Sel
32

HC®.data

Core.byte,
| l)
dbyte, Y drbyte,
dhit
l
UpdQ.Byte,.data UpdQ.Byte,.bv hit ReadQ.Byte,.bv Read@.Byte,.data

Figure 5.11: Delay optimized hit computation

result bus. Then:

cuc = [D(HC)/d],

ey = [D(M M % ~~ ReadQ.Byte,.data)/d].

The result bus must be delayed by, — 1 cycles.

The delay of the hit computation depends on the width of the cache-fipes
It can be reduced without changirffp- be using a sectored cache. In a sectored
cache, the width of the cache-lines are a multiple of the width of the data RAM and
the data bus to the memory unit. Assume> 32 is the width of the data RAM and
Spc = k - w. The cache core returnsuabit wide data bus and the delay of the hit
computation is reduced to:

D(HC) < D(Core) + D(Sel(w/4)) + 2 - Dyux-

The disadvantage of a sectored cache is that it takasles to return the result of a
read request from the main memory or to write a cache-line into the cacheTdwee
details of the necessary modifications are not discussed in this thesis.

Let K pc = 2¥pc be the associativity of the cache core. Thus: is the width of
the busway. Leteyg be the number of entries of the update queue. The cost of the
static hit computation is (excluding registers):

C(staticHC) < C(Dec(spc —2)) + (Spc + 1) - Canp
+ (cgc — 1+ cpog — 1) - C(EQ(33 — spe)) + (cage — 1) - Canp
+ C(ForwardTree(32 — spc, 8 - Spc, cuc — 1+ eyg + eam, cuc))
+ C(FFO(cuac — 1+ epq)) + kpc - C(Sel(cuc + evq))-

126 Memory Unit

The cost for the global hit computation is (excluding registers):

C(globalHC) < 3 - Canp + Cor + Spc - (Canp + Cxnor)
+ C(Dec(spc — 2)) + 68 - C(Sel(Spc/4))
+ C(AND-Tree(Spc)) + (2 Spc + 10) - Cog
+3-(Spc+32)- Cypux.

The hit computation ha32 + 32 + 4 + 1 + 1 inputs from the memory unit -
Spc + kpc + 1 inputs from the cache coreyg - (9 Spc + 1) inputs from the update
gueue, an® - Spc + 32 inputs from the result bus. The hit computation computes
32 + 3 signals sent to the memory unit; Spc + 5 signals sent to the update queue,
and32 + 4 + 3 signals sent to the read queue. The total cost for the hit computation
(including all registers) is thus estimated as:

C(HC) < C(staticHC) + C(globalHC)
+ C(ForwardStall(32 — spc, 8 - Spc + 32, cre, ez)
+ (cuc —1) - [(25-Spc + kpc + 182+ epyg - (9- Spc +1))/2] - Crec-

5.4 Cache Core

For the cache core the same hardware can be used as for simple bloa&ireg(ex-
cluding the control and the interface to the main memory). The cache corsicalba
a k way set associative cache. The design of the cache core is nasshsicin this
thesis. It can be found, e.g., in [MP0OO]. The cache core must follow ¢hexbor
described below.

The cache core has a read and a write port which are used by the hittzdiop
for reading and the update queue for writing. On a read access the caghreturns
additionally to the data a hit signal and a way. The hit sigmalis active if the
requested line is in the cache. Then the data oufptit contains the requested line
and the way outputay points the the way of the cache where the line is savellit|f
is inactive,way points to the way in which the requested line should be written. This
is determined from the internal replacement algorithm of the cache corewrie
accesses the address ladlr must contain the address of the line which is written
and the input busyay must point to the way in which the line is written. The klsga
must contain the current value of the line.

For correctness the replacement algorithm is irrelevant, e.g., a leastlyacsed
(LRU) algorithm can be used. It must only be made sure that a line is stoetanost
one way. Note that multiple accesses to the cache can be made between the comp
tation of the way for an access and the update of the cache by this adtess.for
an LRU-algorithm at the time an access writes to the cache core the cacliealiie
overwritten may not longer be the least recently used. For this to happerakac-
cesses to addresses that are stored in the same line of the cache cdre prnasessed
at the same time. Since this is considered rare and the replacement algoritgimodo
affect the correctness it is acceptable.

Let Spc = 2°P¢ be the number of bytes of a liné,pc = 2!°¢ be the number
of lines, andK pc = 2¥P¢ be the number of ways of the data cache. > be the

5.5 Update Queue 127

number of cycles of the hit computation. If a LRU algorithm is used, the coghe
replacement circuiCore-Replace with 34 — spc + kpc inputs andk pc outputs are
(formulas taken from [MPOQ]):

C(Core-Replace) < C(RAM(Lpc, Kpe - kpe, 1,1, cue))
+ Kpc - (C(EQ(kpc)) + Canp) + C(PP-OR(Kpc))
+ Kpc -kpc - 5- Cyux + C(Enc(Kpe))
+ 34 —Ipc +2-kpc/2] - cuc - Crec-

The number of inputs to the cache core 33e- kpc + Spc - 8, the number of outputs
of the cache core are+ kpc + Spe - 8. The cost and the delay of the cache core are:

D(Core) < max{D(RAM(Lpc,8 - Spc, 1,1),
D(RAM(Lp¢, 33 —lpc — spc, 1,1)) + D(EQ(33 — Ipc — spc)))}
+ D(Sel(Kpe)),
C(Core) < Kpc - (C(RAM(Lpc, 8- Spc, 1,1, ¢ue))
+ C(RAM(Lp¢,33 — lpc — spc, 1, 1, cac))
+ C(EQ(33 —Ipc — spc)))
+8-Spc - C(Sel(Kpc)) + C(OR-Tree(Kpc))
+ C(Dec(kpc)) + Kpc - Canp

0 if Kpc=1
C(Core-Replace) if Kpc > 1

5.5 Update Queue

The update queue contains all cache accesses that will update theRxsEheven-
tually, i.e., load misses and stores. A store access may only update the dslighe R
or the main memory if all preceding instructions have retired and no pagearitart
rupt occurred for the instruction. This is necessary for precise uptsrand branch
speculation.

Figure 5.12 depicts the update queue with) entries. The update queue is built
similar to the reservation stations (see section 4.2). The update queue @ledrity
the circuitUpdQ-Control. The circuitsUpdQ-Entry, form a queue and contain the
update queue entries. New instructions are always filled into the @mtryhe circuit
UpdQ-Entryy. An instruction proceeds to the next entry whenever this entry is empty.

If the update queue is full, the control raises the sign@llOut. This prevents the
hit computation from filling new entries into the update queue. New entriesliaa fi
into the update queue by the hit computation on theBasU pdQ .*.

The control circuit starts all read or write accesses to the main memory uging th
busUpd@.M M .. The main memory can accept new requests, if the control signal
M M .ack is active. The result of the read accesses are sent to all queue esimnigthe
result bus of the main memoi/ M .x similar to the CDB in the reservation stations.

If the result bus is delayed, the last stage of the delayed result buslibyitiee update
gueue (see figure 5.3 in section|[5.3).

128 Memory Unit

HC.UpdQ.* stallOut
In filly, sento, T fqo
M M UpdQ-Entry, b UpdQ. MM .+
Out Entryg.* o
|
+ UpdQ-Control
In f”leUQ—l: senteuQ—l y Tf%pQ—l
UpdQ-Entry.,, 1 - e— M M. Ack
Entrye,q-1% o

v t
UpdQ.{Core, Sh4L}* stallln
Figure 5.12: Update queue

In.Bytes,,.—1{bv, data} In.con In.req In.rdy In.Dpf In.awrite

In.Byteg{bv, data}
EE A R I
0

. \%I.__w_ .
Bytegs,, . Byte, v
Q‘J | req <I | rdy <I | Dpf <I | u'rith‘J | Sfull <I

» Entry.x

| con

clear

sent upd MM.Dpf
Y v upd y
0 1
\J
v Out.Byteo{bv, data} y { { { v
Out.Byteg,,.—1{bv, data} Out.con Out.req Out.rdy Out.Dpf OQut.write Out. full

Full 1 tag

1 M M.addr Ret2.clean

Figure 5.13: Update queue entry

The update queue updates the cache core using théhi3.C'ore.x and returns
the stores to the memory unit on the buigdQ).Sh4L.x. Stores need to be returned
to the memory unit in order to be removed from the reorder buffer. Notestbets
must return the effective address in case of an interrupt and heodaqer a result in
this case. This result then has to be written into the reorder buffer via tiie Eihe
memaory unit cannot accept an instruction, the signallIn is raised.

5.5.1 Entries

Figure 5.13 depicts the circuit for the update queue entries. The bagituserequals
the reservation station entries. If the sigifall is inactive the updated values of the
instruction currently stored in the entry are written into the registers. If theakjgi!

is active the registers are overwritten with the updated values of the insiructibe
preceding entry (respectively the hit computation for the first entry).

For every bytek € {0,...,Spc — 1} of a cache-line, the update queue entries
have a sub-circuiByte,. These sub-circuits store for each byte a valid bit and the
data similar to the operands of the reservation station entries. Additionallyeaéigh
contains the following registers:

5.5 Update Queue 129

In.bv In.data

o e i
| b <I | data <I

upd MM .bytey,
\
1 0

Out.bv Out.data

Figure 5.14: Update queue entry byie

full: This bitindicates that the entry contains a valid instruction. Itis reset if the
processor is flushed (indicated by the global control sighalr) or the entry is
removed from the queue (indicated by the signgj).

e write: This bit is active for store instructions.

e req. This bit indicates that a read request to the main memory has to be made.
It is initialized with one for misses and zero for hits or same-line misses (see
equation/(5.5) on page 121). The register is reset when the request i® she
main memory (indicated by the signaint).

e rdy: This bit is active if all bytes are valid and initialized with one for hits (see
equation|(5.5) on page 121). The bit is set if the memory returns the rteques
line (indicated by the signalpd).

e con: This field contains all information about the instruction which are not al-
tered by the update queue. These are the address of the requestetdtinde
tag of the instructionag, and the opcode of the instruction.

e Dpf: This signal is active if the access caused a page fault interrupt. Iis co
puted by the main memory and updated when the memory returns the requested
line.

The circuit Byte, for each bytek is shown in figure 5.14. For every byte the
circuit saves a valid bibv. This valid bit is initialized with the value of the signal
HC.UpdQ.buy, (see page 121).

The control signalgill, sent, andr fq are computed by the update queue control
circuit. The entry computes the control sign&ag upd, andallRet. The signalisi
is active if the instruction in the entry accesses the same line as the instruciicn wh
enters the hit computation. It is computed by the static hit computation. For the com-
putation of the signals/ the addresses of the two instructions are compared and the
full bit of the entry is checked. The signapd has to be active if the result bus returns
the data needed to update the entry. This is the case if the cache-linesaddrethe
result bus and the entry match and the full bit of the result bus is active.sigmal
all Ret indicates, that all instructions preceding to the instruction in the entry have re
tired. This signal can be computed analogously to the sighi&let computed by the
ROB control (see section 4.6.5).

130 Memory Unit

Entry,. full Entry,.{lsl, Byte,.x}

PP-OR

fill, UpdQ{lsl,, lbu, 4, lbyte, . }

Figure 5.15: Update queue control (part 1)

Let Spc = 2°P¢ be the number of bytes of a cache line aigbp = 2!705 be
the number ROB entries. The cost of an update queue entry is (witholinpipe

C'(UpdQ-Entry < Spc - (Cor +10- Cyux +9 - Cre)
+2-C(EQ(33)) + C(EQ(lroB)) + Canp
+Cor+3-Canp +5-Cyux + (384 lgroB) - CrEG-

5.5.2 Control

The control circuitUpdQ-Control controls the entries of the update queue and com-
putes the global outputs. The entries are controlled by the sigidls sent,, and
rfq. which are computed for every entry. The global outputs are the stalllggna
the hit computatiorstallOut, the busUpdQ.M M x which starts new read or write
requests to the main memory, the BisdQ.H C.x containing the local hit signals for
the hit computation, the buspd@.Core.x which is used to update the cache core, and
the busUpdQ.Sh4L.x which returns the results of a store instruction to the memory
unit.

Figure 5.15 shows the first part of the update queue control. ThE pi§. H C.x
sent to the hit computation can be computed directly by renaming the outputs of the
entries according to the naming convention used in section 5.3. The sigjiials
controlling the movement of the instructions in the queue can be computed as in the
reservation station. An instruction proceeds to the next entry wheneveeit entry is
empty. This is computed by the parallel-prefix OR in figure 5.15. The sign&lOut
is active if the first entry cannot be filled:

stallOut = filly.

The remaining signals computed by the update queue control depend dm whic
actions need to be performed for the instructions in the entries. If an itistris not
ready it must start a read request to the main memory to load the needed dirstoré
instruction is ready it must update the main memory and the cache core. Aasoon
a store instruction has updated main memory and cache core, it can be deinomae
the update queue and be returned to the memory unit. Load instructions tipelate
cache core as soon as they are ready. They can be removed frompddite gueue
afterwards without being returned to the memory unit, since load missestaneas
to the memory unit by the read queue.

In order to simplify the coherency, all actions except the read requdist tmain
memory are done in one cycle. Thus, store instructions must update the maimynemo
and the cache core, be returned to the memory unit and be removed frouethe at

5.5 Update Queue 131

the same time. Load misses are removed from the queue when they updatehie ca
core.

If an instruction accesses a non-valid page, the main memory activatesghe pa
fault interruptM M.Dpf and returns invalid data. Yet the ready bit for the instructions
is set in order to return the instructions to the memory unit. To stay consistent, all
updates to the main memory or the cache core must be prevented if an insthagion
caused a page fault. Note that a page fault can only occur on a rassstetWhen the
main memory is updated by a store instruction, the cache-line is already in the cac
and therefore the access cannot cause a page fault.

The main memory is assumed to be single ported. Thus, at most one read or
write request can be started in one cycle. The sigidll.ack indicates that the main
memory can accept a new request. If the instruction in enggnds a read request to
the main memory the signaént; is activated. This signal resets the request bit of the
instruction to prevent the same request to be sent twice. If a store inempgates
the main memory the signalfg; is activated which removes the store from the queue.

If two entries need to start accesses of the same type, the entry with the highe
index (i.e., which holds the older instruction) is preferred. Read acebsse a higher
priority than write accesses. This is done to minimize the delay of loads, whech ar
assumed to be performance critical.

To compute the control signakent, andr fq, for all entries the requests made
by the update queue entries must be computed. Three different typegusfsts are
possible. If an entry contains an access that is not ready (i.e., notalbfilne cache-
line is valid) it must start a read request. If an entry contains a ready tsiarenay
update the main memory (since all preceding instructions have retired) a eqitest
must be started. A write request also indicates that the store needs to thededehe
core, removed from the update queue and returned to the memory unit.etitgn
contains a ready load it must start a update request in order to updatecties eore
and be removed from the update queue. Note that at any time only one ofdke th
requests may be active.

The entryi needs to start a read request if it contains a valid access and thetreques
bit req of the entry is set:

rreq; = Entry;. full A Entry;.req. (5.7)

Note that the request bit is reset once the read request is granted to pdevent that
the access starts a second read request.

The entryi needs to start a write request to the main memory (indicatedray;)
if it is valid, a write instruction, all preceding instructions are retired, ant\ks are
valid. Thus:

wreq; = Entry;. full A Entry;.write A Entry;.all Ret A\ Entry;.rdy. (5.8)

Since the signalll Ret can be active for at most one instructiam;eq; can by active
for at most one entry.

If the full bit of the entryi is active an the write bit is inactive the entry must start
update request indicated byeg;:

creq; = Entry;. full N Entry; write A Entry;.rdy.

132 Memory Unit

rreqs MM.Ack wreq, creq,
MM.Ack
stallln rreq wreq
FFO FFO
ffo ffo
rreq wreq Entry,.x } wry,. creq
‘n rreq

UpdQ. M M.x v UpdQ.{Sh4AL,Core}.* UpdQ.ShAL. full
UpdQ.MM. full sent, rfq. UpdQ.Core. full

Figure 5.16: Update queue control (part 2)

From the construction of the update queue and the hit computation it follows tha
the bitsreq andrdy of a single entry cannot be active at the same time. Thus, at most
one of the request signals may be active for an entry at a certain time.

A read request must be ignored if the main memory cannot accept a neesteq
i.e., if the signalM M. Ack is inactive. A write request must be ignoredifM. Ack is
inactive or the store cannot be returned to the memory unit (indicatethbiyn). The
signalsrreqy, wreq,, andcreq, are combined to overall request signateq, wreq,
andcreq which are active if any of the entries wants to start a request of this tygpe an
the request does not have to be ignored:

eyg—1
rreq = \/ rreq; | A MM.Ack, (5.9)
=0
eUQ—l
wreq = \/ wreq; | N MM.Ack A stallln, (5.10)
1=0
eyg—1
creq = \/ creg;.
=0

Read requests to the main memory have the highest priority. They are seat to th
main memory even if an older write request wants to update the main memory. Note
that this is consistent since the data of the write has already been fodniardee
hit computation. Updates to the cache core are forwarded to the hit compuaatio
therefore not performance critical. Updates of the cache core by lsaddtions have
lowest priority as the stalling the entry in the update queue does not pitieergad
gueue from returning the result to the memory unit.

Figure 5.16 shows the second part of the update queue control. Theunatioh
of this part of the control is to compute the bussest, andr fq, (in the center of the
figure). For each request type the entry holding the oldest instructionawitiguest
of this type is computed. For the signaileeq, andcreq, this is done using a find-
first-one circuit. Since at most one of the write requestgq, may be active, the
find-first-one circuit may be omitted for these signals.

5.5 Update Queue 133

The write requests are ignored M M. Ack is inactive orstallln is active. For
the read requests-eq,, the signalM M. Ack is used as most significant input of the
find-first-one circuit computing the oldest instruction with a read requebus,Tif
M M.Ack is inactive only the most significant bit of the output of the find-first-one
circuit is active. This bit is ignored and therefore no read requeshisifstne signal
M M.Ack is inactive.

The read requests to the main memory have the highest priority. Therdiere,
signalssent, can be computed directly from the outputs of the find-first-one circuit
for the read requests. A store instruction can be removed from the upalebe if a
write request to the main memory can be domedg is active) and no read request is
done (req is inactive). In this case the write requests are used to compute the signal
r fq.. Otherwise the outputs of the find-first-one circuit using the requestlsigreq,.
are used.

The control circuit in figure 5.16 also computes the busses to the main memory
UpdQ.M M x, the cache cor& pdQ).Core.x, and the memory uniVpdQ.Sh4L .x.
An access to the main memory is made (indicatedwiQ.M M. full) if rreq or
wreq are active and the selected instruction did not cause a page fault inténdip
cated by the signaDpf of the entry). Note that the signélpf cannot be active for
read accesses since it can only be activated when the memory returasutief the
read request. Ifreq is active, the read requests are used to select the instruction which
accesses the main memory, otherwise the write requests are used.

An instruction is returned to the memory unit (indicatedydQ.Sh4L. full if
a write request to the main memory is made. The cache core is updated (indicated
by UpdQ.Core. full) if an instruction is returned to the memory unit or the queue
contains a ready load instructiogrég is active). The cache core must not be updated
if the selected instruction caused a page fault. Cache core and memomeumtdated
by the same instruction and therefore use the same data. The instructiorciedsele
with the signals- f ..

5.5.3 Delay Optimizations

The computation of the signatseq andwreq of an entry can be pipelined similar to
the signaleq in the reservation station entries (see section 4.2.3). The signalsnd
wreq must be reset if the control signalsnt respectively fq are active or the update
gueue is cleared by the signdkar. Figure 5.17 shows the pipelined computation of
the request signalsreq andwreq for an update queue entry. Note that the update
queue is then pipelined in two dimensions.

In order to fit into one cycle, the delay of the sigmdlly, in figure/ 5.17 must be at
mostd — Danp — Dyyx. Due to the pipelining the delay of the signalseq, and
rreg, can be assumed to be 0. The first stage of the ciflutl is assumed to have
has a buffer circuit, thus the delay of the sigealllin is equal toD 4y p. Using the
proposed circuit for the update queue control bounds the stage dl¢pthe at least
(with the critical path going through the signateq (see equation (5.10)) on the right

134 Memory Unit

In.req In.wreq In.write In.req In.rreq In.full

0 1 ’ \\oTll._ 0 0 1 fill
Y

| wreq <I| write req q | rreq <I | Sfull <I
\ \

clear

» Entry.{wreq,rreq}

|

Y

o/

sent sent rfq

_1
e
all Ret :D
v] B

g

v v v

Out.rdy Out.wreq Out.write Out.req Out.rreq Out. full

Figure 5.17: Pipelining of the request signals computation

side of figure 5.16):
6 —Danp — Dyux > D(rfqy)
> D(wreq) + Danp + Dyux
> D(OR-Tree(eyq)) +2 - Danp + Duux
PN d > D(OR-Tree(eyq)) +3- Danp +2- Dyux

For ¢ = 5 this does not hold true.

To reduce the delay of the critical path of the control circuit the followirgjrie-
tion to the update queue is introduced: only the last entry of the update quenue
update the cache RAM or the main memory. Thus, no sigfigl has to be computed
fori < eyg—1. Forload instructions this has no performance impact because the read
gueue can already return the instruction to the memory unit while the instrutilion s
waits in the update queue for updating the cache core. However, it mighehahat
the update queue is full more often. Write instructions are only delayed if the w
is the last active instruction and the data are valid before the instructiors ¢énécliast
entry. For small stage depth and small numbers of entries, this is not astu ok
a significant performance impact.

Figure 5.18 shows the delay optimized version of the second part of theteupd
gueue control using the above restriction. The restriction allows the folgpwiod-
ifications of the control circuit. If the last queue entry contains a readg toss
(indicated byEntrye,,—1.write A Entrye,,—1.7dy), it can update the cache core in
any case. Thus the instruction can be removed from the queue. Thigaconb by
overwriting the entry by activating the fill signal for this entfyll.,,-1. The com-
putation of the fill signals is adjusted accordingly. Thus, for the computafidheo
signalr fge,;,—1 l0ad misses do not have to be taken into account. Since only the
last entry may update the main memory or the cache core, the page faultcfigmal
entry that does the update must not longer be computed with a select ciraigitteT
duces the delay of the full signals for main memoétydQ.M M. full and cache core
UpdQ.Core. full.

Assume the delay of the request signals and the acknowledge sighahck is 0
and the delay of the stall signadaliin is D snp. Then, the modifications reduce the

5.5 Update Queue 135

TTeqs MM.Ack wreqe,q-1
MM Ack ﬁi
stalln Entrye,q-1-write. Entrye,q-1.7dy
FFO
- Entry,. full
Wregeyg—1 Entrye,o—1.Dpf rreg
rreg Entry,.* erequ 1 PP-OR
S
En'trl/u;cgfl‘Dp-f
_+ Entrye,q-1%
\ I UpdQ.ShAL. full fill,
UpdQ-MM.full UpdQ.MM sent, 7fGeyq1 UpdQ.Core. full UpdQ.{Core, ShAL} %

Figure 5.18: Delay optimized update queue control (part 2)

In.req In.wreq In.write In.req In.rreq In.full

% el
Y e wk—\a_l/&ﬁo.é—g}g

| rdy <I ur(q<l| write | req <I | rreq <I | Sfull <I
\

allRet » clear
| *
upd sent sent \J
Y % y é
v

\
Out.rdy ()ut wreq Out.write Out.req Out.rreq Out. full

Figure 5.19: Optimized clearing of full bit and write request for the last entry

4}

» Entry.{wreq,rreq}

delay of the signat fgc,,, 1 to:
D(rfqeyo-1) < max{D(rreq),2- Danp} + Danp

(59
< max{D(OR-Tree(eyq)) + Danp,2 - Danp}+ Danp
< max{D(OR-Tree(eUQ)), DAND} +2- DAND

If r fge,,—1 1S active it follows that the last entry is not empty and does not contain
a load miss. Hence, the signalil.,, -1 can not be active. This allows to move the
AND-gates that clear the full and the write request signal of the lastageetry below
the multiplexer controlled byill,,, 1. Figure 5.19 depicts the modification applied
to figure' 5.17. With this modification, the bound f®regarding the signalsfq, is
reduced to:

= Danp = D(rfqs) (5.11)
= o> maX{D(OR-TI'EG(eUQ)), Danp}+3-Danp. (5.12)

136 Memory Unit

D2.% R()Bl.head CDB.x
ForwardStall ROB.valid ForwardStall
forwOut ROB.empty forwOut

UpdQ.Entrye,,-1.7fq

ROB.valid
oo UpdQ.Entrye,q-1-Dpf

ROBhead. full

Figure 5.20: Optimized completion for stores

Note that the signalgill, do not depend on the signafqc,,,-1 in order to re-
duce the delay. Thus, if a store updates the cache core and the main meenlaist th
update queue entry is not filled in the next cycle. Hence, store instruatamsnly
complete every other cycle. This is not assumed to have a performance assiore
instructions must wait until they are the oldest active instruction anyway.

5.5.4 Optimized Completion for Store Instructions

If a store instruction does not cause an interrupt, it does not produesuét which
would be forwarded to the succeeding instruction. Thus, it is not necess send
a store instruction via the CDB. At the time the store instruction updates the cache
core and the main memory, it must be at the head of the ROB. Thus, to complete
a store instruction that did not cause an interrupt, it suffices to activatsighel
RO Bhead.valid indicating that the instruction at the ROB head has completed.

The modified completion of store instructions has the following advantages. Th
number of cycles needed to complete stores can be reduced. If the timstsifollow-
ing the store have completed earlier, this can reduce the number of insteuictithre
ROB. Also store instructions do not block the CDB for instructions of whiehr#sult
is needed by later instructions. The modifications to the ROB environmentigisho
figure 5.20.

The simplest way to modify the update queue control accordingly is to satlithe f
signal to the memory unit/pd@.Sh4L. full to 0 for store instructions if their page
fault signal Entrye,,—1.Dpf is inactive. This modification does not affect the delay
of the update queue. However, stores are then stalled by the input sigiidh even
if they do not use the circuBh4L.

In order to complete store instructions even if the stall input is active, the com-
putation of the signals fq.,,—1, UpdQ.Sh4L. full, andUpdQ.Core. full must be
adopted as shown in figure 5/21. Note that this modification increases tlyefideta
the stall input to the signalfq.,,-1. Yet, if stallIn directly comes out of a buffer
circuit the delay of fq,,,—1 based orstallIn is Dogr + 3 - Dayp and thus it holds
D(rfquQ_l) < é— Dunp for§ > 5. Therefore, this second option can be used.

5.5 Update Queue 137

stallln Entrye,,—1.Dpf MM.Ack wrege,q-1
j rreg stallln Entrycw,l.Dpf
\
rreq
CT€Geyq—1
Entryez»‘gfl Dpf
T fqeyo-1 UpdQ.Core. full UpdQ.ShAL. full

Figure 5.21: Update queue control with optimized completion

5.5.5 Cost and Delay

For the bound taj given by the update queue, the stall inptitilIn is assumed

to come directly out of a buffer circuit, i.e., the delay @f:llIn is assumed to be
Danp. Also it is assumed that a register is inserted after the computation of the
signalswreqe,,-1 andrreg,. The delay of the signaifquQ_l may be at most

§ — Danp (see equation (5.11)). The modified computation of the sigfial,,, 1

from figure 5.21 increases the bound éaio

o> max{D(OR—Tree(eUQ)), 2. DAND} +3-DanD. (5.13)

The delay of the signalsent, (computed in figure 5.18) may be not larger than
0 — Dyux — Danp (see figure 5.13). Thus, it must also hold:

52 D(FFO(eUQ—i-l))—i-DAND—i-DMUx. (514)

Note that the equations (5.13) and (5.14) imply a bound for the number afteipd
queue entriesy g for a givend.

Let the boolean variablg,,., andp,,., be zero if the requirements for the signals
7 fqeyq—1 @nd sent, also hold if no register is added after the computation of the
signalsrreq, andwrege,, 1. If no registers are added the delay from the full bits of
the entries through the signatseq, andwrege, -1 to the signal fqe,,, -1 (which
updates the full bit of entryyg — 1) is (see equations (5.7), (5.8), and (5.9) and
figure 5.21):

D(Entrys. full ~ rreqe ~ 7fqeyo-1) < Danp (rreqy)
+ D(OR-Tree(eyq))
+ Danp (rreq)
+ Danp, (rfa.)
D(Entry. full ~ wregeyo—1 ~ 7 fdeyo—1) <2 Danp (wregeyo-1)
+3-DanD.

The delay of the path from the request bits of the entries through the signralsto
the signalssent, is (see equation (5.7) and figure 5.18):

D(Entry..req ~ rreq, ~ sent,) < Danp (rregy)
+ D(FFO(epyg+1))- (senty)

138 Memory Unit

Thus, the variables, ., andp,,., can be computed as:

0 > max{D(OR-Tree(eyq)) +4- Danp,

0 if
Prrq = D(FFO(eUQ+1))+2'DAND+DMUX} ,
1 else
0 fd>6-Danp
Pwrq = .
1 else

The read request signateq, (see equation (5.7)) of an entry that is filled into the
update queue can already be computed during the hit computation (foddioaal
cost of Cynp). Thus, it can be assumed that an access that is filled into the update
gueue can start a read request to the main memory within the following cycle.

Let cpow be the minimum number of cycles needed between the update of the
update queue by the result bus of the main memory and the retiring of a stivueins
tion. The number of cycles is defined by the delay of the path from the ressiito
the full bit of the last entry of the update queue. The stall input! I is not assumed
to be timing critical, otherwise a buffer circuit can be inserted in the first statjee
memory unit. The delay of the path via the signaleq.,,,-1 is (see equation (5.8)
and figures 5.13 and 5.18) :

D(MM .x ~~ wreqe,q—1 ~ EntryeUQ_l.full/) < D(EQ(33)) (Entry,.upd)

+ Dor (Entrys.rdy)

+ (2 + pqu) : DAND
(wT’€quQ_1)

+3-Danp (7 fqeyo-1)
+ Danp.

Thus:

[D(MM.* ~ WTeeyo—1 ~ EntryeUQ_l.full’) — DMUX"
evow < .
0 — Dyux

For read instructions the delay of the path from the memory unit to the full bit of
the last entry via the signdtili.,,, 1 is (see figures 5.13 and 5.21):

D(M M %~ cregeyo-1 ~ EntryeUQ,l.full') < D(EQ(33)) (Entrys.upd)
+ Dogr (Entrys.rdy)
+ Danp + Dor (filleyg-1)
+ Dyux + Danp.
Let cpror be the minimum number of cycles between the requested data being in the

last stage of the result bus and the update of the cache core by a loadtinstr Then
it holds:

D(MM.x ~ creqeyq—1 ~ Entrye,o—1-full’) — DMUX"

cpm2RrR <
{ 0 — Dyux

5.5 Update Queue 139

The delay of the output8 pd@.M M .x which does not fit into the cycle in which
the entries are updated is added to the delay of the main memory. It depetids on
signalssel,. which select the entry sent to the main memory. The delay of the signals
sel, depends on whether the read or write request is critical and whethstersgare
added after the request signals:

D(sel,) < max{(1 — pwrq) - 2-Danp +2- Danp,
D(EQ(33)) + Dor +4 - Danp — (cpaw — 1) - 6,
(1 = pprq) - Danp + D(OR-Tree(eyq)) + Danp,
D(EQ(33)) + Dor +2- Danp + D(OR-Tree(eyq))
— (em2r —1) -0} + Dyux.

Then the following delay has to be added to the delay of the main memory:

D(MM)*™ < D(Sel(eyq)) + D(sely) — 0.

The delay of the signaidtallOut sent to the hit computation is:
D(stallOut) < D(PP-OR(epq + 2)). (5.15)

If the optimized completion for stores is used and the control is modified assimow
figure 5.21 the delay of the stall inpsitallIn is bounded by

o> D(stall[n) +4-DanD- (516)

Note that if the stall input is computed with an AND-tree the first AND-gate @an b
merged into this tree. If this bound does not hold, the update queue coatrolot be
modified as in figure 5.21 and thus stores are stalled by the sigialn even if they
are not returned to the memory unit (see section 5.5.4).

Let Spc = 2°P¢ be the number of bytes of a cache-line. The number of inputs of
the update queue from the main memory 38er 8 - Spc. The number of outputs to
the update queue abet 8 - Spc. The additional cost for the update queue entries due
to pipelining are approximated by:

C(Ude-Entry)+ < (cpow —1)- (194 8- Spc) - (Cyux + Crec) +2 - Canp.-
The cost of the update queue control are:

C(UpdQ-Contro) < C'(FFO(eyg + 1)) + C(PP-ORepqg + 1))
+2:-Cor+6-Canp
+ (34 +8-Spc) - C(Selerq))
+eyg-3-Canb.

The overall cost for the update queue are:

C(UpdQ) < eyq - C(UpdQ-Entry + C(UpdQ-Contro].

140 Memory Unit

In.Bytes{bv, data} In.con In.Dpf In.rdy In.full

In.Byteo{bv, data} Ll Ll Ll
EE N R
Pa— ¢ o 1 0 1 0 1 fill
Byte; Byte, v \TI.__\T,‘_
| con Q‘J | Dpf <I | rdy <I | Sfull <I

» Entry.x
”Djreq

clear

Y

Dpf upd rfq
upd v
0 1

\J
v Out.Bytep{bv,data} g ;

Out.Bytes{bv, data} Out.con Out.Dpf Out.rdy Out. full

1

addr
MM. full upd
M M.addr

Figure 5.22: Read queue entry

5.6 Read Queue

The read queue holds one entry for each load miss. The load misses waitrgath
queue until the needed line is obtained from the main memory. When the main memory
sends the required cache-line, the entry is updated and the load canrpeddo the
circuit Sh4L of the memory unit (see figure 5.1). The main memory access will be
started from the corresponding entry of the update queue. Note thab daee-line
miss multiple loads and up to one store can share the same entry in the update queu
(see section 5.3.5).

Similar to the update queue, the read queue entries have a valid bit fortsiery
of the requested word. The bytes that are not needed by the load arakthe bytes
that are valid at the time the load is filled into the read queue due to forwarding ar
marked valid already during the hit computation (see figure 5.8). In ordalimate
the other bytes, the read queue snoops on the result bus of the main memory.

If the result bus is delayed, the read queue must snoop on the last $tdge o
delayed result result bus. Otherwise it could happen that a load whidledsifito the
read queue misses the cache-line required by this load. This would besthé tze
required line was requested by a preceding access and is already tadhe ef the
delayed result bus at the time the second load is sent to the read quetefofichehe
read queue must snoop on the last stage of the delayed result budetnammprove
the performance the read queue could additionally snoop on the un-deéssyét bus.
This optimization is not discussed in detail.

The general design of the read queue is very similar to the update quelie or
reservation stations. Figure 5.22 shows a read queue entry. Theuea€ has one
Byte sub-circuit for each of the four bytes of a word. The registers, Dpf, rdy
and full have the same meaning as the corresponding registers of the update queue

5.6 Read Queue 141

Entryg. 1. full Entry,_1..0.7eq
PP-OR FFO Entry, 1o
Zero ffo
select, 1.0 >\ Sel
stallln
Y
fillo..r1 ReadQ.ShAL.full 7fq.—1.0 ReadQ.Shal.

Figure 5.23: Read queue control

If the signalsfull andOut.rdy are active, the load in the entry can be returned to the
memory unit. This is indicated by the signal;.

The control of the read queue (see figure 5.23) is built analogously totiteol
of the reservation stations (see section 4.2.2). An entry can be filled if ittifuto
A find-first-one circuit selects the oldest load (i.e., the load in the entry withdsig
index) for which the request biteq is active. If the read queue is not stalled, the
load can be returned to the circ8h4L of the memory unit. Therefore, the output
select, of the find-first-one circuit is AND-ed with the negated stall input to compute
the signals f ¢, which clears the entry containing the load. The signalsct, can
be used to compute the outpRtad(.Sh4L.x of the read queue, which is sent to the
memory unit. The full bit of the bus to the memory unit is set if at least one entry is
ready (indicated by the negated zero output of the find-first-one circuit.

If the number of entries of the read queug, is one, the same simplifications as
for the reservation station can be made to reduce the delay requiremehis $aynals

7 f Q.

5.6.1 Cost and Delay

Let erg be the number of read queue entries. The computation of the requedt signa
req, := full, A rdy, can be pipelined as in the reservation station (see section 4.2.3).
Then, the maximum number of entries of the read qugigis bounded by:

3-D if =1
5> AND "ere =1 (517
maX{DAND,D(FFO(eRQ))}+2'DAND+DMUX if erg > 1
The delay of the stall outputallOut is:
D(stallOut) < D(PP-OR(ergq))- (5.18)

The variablep,, is 1, if a register needs to be added in the computation of the
signalregqy, otherwise)d. Thus:

0 if § > D(FFO(erq))+3-Danp+ Dyux Verg =1
Pra=91 else '

Let cpror be the minimum number of cycles between the last stage of the result
bus containing the needed data and a read miss being returned to the memory un

142 Memory Unit

This number depends on the delay of the path from the resulfibisx to the full
bits of the entries. The delay of this path fgfs > 1 is:

D(MM % ~ Entry,. full') < D(EQ(33)) (Entry,.upd)
4+ Dor (Entrys.rdy)
+ (1 +prg) - Danp (reqy)
+ D(FFO(erq)) + Danp (rfq)

+ Danp + Dyux-
If ers = 1 the delay of the path is:

D(MM % ~ Entry,. full') < D(EQ(33)) (Entry,.upd)
+ Dor (Entry.rdy)
+ Danp (regs)
+ Danp (rfq.)
+ DanD.

It holds:
D(M M % ~ Entry.full') — Dyux
e < { 5~ Dujirx -‘ .

The delay of the output®eadQ.Sh4L.x to the memory unit which does not fit
into the cycle where the entries are updated is added to the delay of the Sinduit
The additional delay depends on the delay of the signg&s. The delay of- f ¢, is:

D(rfq.) < max{max D(stallIn), (1 — pyq) - Danp + D(FFO(erg))},
D(M M % ~~ Entry,. full’) — (carag — 1) - (6 — Dyux) }-
Then the additional delay for the circ8h4L is:
D(Sh4L)* < max{0, D(rfq.) + D(Sel(erg)) — 6}
The delay of the stall inputtallin from the memory unit is bounded by:

2-DanpD if eps =1

d > D(stallIn) + { (5.19)

2-Danp + Dyux ifers>1

The number of inputs of a read queue entry from the main memor33afes - L.
The number of outputs to the read queue controBaré he cost of a read queue entry
are approximated by:

C(ReadQ-Entry) < 4-(Cor +10-Cynux +9 - Crec) + C(EQ(33)) + Cor

+2-Canp +4-Cyux + (36 + lgoB) - CrEG
+ (earer—1)-(34+4-L) - (Cyux + CrEG)-

The cost of the read queue control is:

C(ReadQ-Control) < C(FFO(erg)) + C(PP-OR(erq))
+2-erg-Danp + (67 + lroB) - C(Selerq)).
The overall cost for the read queue is:
C(ReadQ) < erq - C(ReadQ-Entry) + C(ReadQ-Control).

5.7 Stall Computation 143

Sh4S.Sh4L.x UpdQ.Sh4L.x HC.Sh4L.x Read@.Sh4L.x

Sh4S.stall UpdQ.stall HC'stall cad@.stall

{Sh4S. UpdQ, HC. ReadQ} . full

L, — stallIn
A
FFO
PP-OR zero ffo
Sel
{Sh4S,UpdQ, HC, ReadQ}.stall ~ Sh4L.full Sh4L.x

Figure 5.24: Arbiter circuit to the memory unit

5.7 Stall Computation

Data can be returned from the data cache to the memory unit by the hit computatio
the read queue, and the update queue. Additionally instructions areisatitydrom

the circuitSh4S to the output of the data cache in case of a misaligned access. A small
arbiter circuit is needed to select between the busses from the fouitircaads are
assumed to be most performance critical. Therefore the read queueehiigitiest
priority, followed by the hit computation and the update queue. Misaligneelsaes
have the lowest priority as they cause an interrupt anyway.

The arbiter circuit can be seen as part the cir@ndL and is added to its cost
and delay. The circuit is depicted in figure 5.24. The find-first-one itisglects the
input with the highest priority that wants to send an access (indicated bwyltHast}.

An input is stalled if the full bit of the input is active and the full bit of any impith
higher priority (computed by a parallel-prefix OR) or the stall input of theuifiSh4L
is active.

The total delay of the circuBh4L (including the additional delay from the queues)
is

D(ShAL) < max{D(FFO(4)), D(Sel(erq)) + D(ReadQ.r fg.) — &}
+ D(SE|(4)) +4-Dyux.

The input stall signal of the hit computati¢iC is defined as

HC'.stallIn = (Sh4L. full N ShAL.HCstall)
V (Read@. full A ReadQ.stallOut)
V (UpdQ. full A UpdQ.stallOut).

The input stall signal for the circugh4S is defined as

Sh4S.stallIn = (Dmal N Sh4L.Sh4S.stall) V (Dmal N HC.stallOut). (5.20)

5.8 Cost and Delay

Up to one buffer circuit in inserted into each of circu8k4S, Sh4L, andHC. Let the
variablesbsnas, bsnar, andbg o be one if a buffer circuit is inserted in the respective

144 Memory Unit

circuit, otherwise the variables are zero. Then the number of stages, csnas, and
cgc for the respective circuits are

cshar(bsnar) = [(D(Sh4L) + bspar, - Dyux) /6],
cshas(bsnas) = [(D(Sh4S) + bspas - Dyux) /01,
=

cuc(bac) = [(D(HC) 4+ buc - Dyux)/0].

Letn be the number of functional units angl be the number of inputs of the first
stage of the arbiter tree in the completion circuit (see equation (4.21) ong&ge
Then the delay of the input stall signdfem.stallIn from the completion phase to
the functional unit is (see equation (4.22) on page 70)

Dinp + D(FLO(min{tL,n})) + Dyux it > 2

D(Mem.stallln) < _ .
Danp + Dor ift, =2

Then for the four stall outputs of the circi8h4L holds:

D(Sh4L.ReadQ.stall(bgpar)) < max{D(Mem.stallIn),
D(AND-Tree(cSh4L(bgh4L) + 1))}
+ Danp,
D(ShAL.HC'stall(bspar)) < max{D(Mem.stallln),
D(AND-Tree(cspar (bspar) + 1))}
+ Danp + Do,
D(Sh4L.UpdQ.stall(bspar)) < max{D(Mem.stallIn), Dor + Danp,
D(AND-Tree(cspar (bspar) + 1))}
+ Danp + Dor,
D(Sh4L.Sh4S.stall(bgpar)) < max{D(Mem.stallIn),2- Dor + Danp,
D(AND-Tree(cspar (bsnar) + 1))}
+ Danp + Dor.

The delay of the stall output of the hit computation is (see equations (5.d%%&l8)
for the delay of the stall outputs of the queues)

D(HC'.stallOut(bgc)) < max{max{D(UpdQ.stallOut), D(ReadQ.stallOut)}
+ DanD + 2 Dor,
D(ShAL.HC.stall) + Danp + Do,
D(AND-Tree(cuc(buc))),
+ DanD-

Note that the delay of the path from the hit computation to the queues igonlyx .

Thus, inserting a buffer circuit at the output registers of the cinddtto the queues
does not increase the delay. These output registers for cache migség stalled
independently from the output registers for cache hits to the ci8hdl (which are

5.8 Cost and Delay 145

the input registers of the circugh4L). Then the stall outputs of the queues must obey
the following restriction:

d > max{D(UpdQ.stallOut), D(ReadQ.stallOut), Dog + Danp}
+ Danp + Dor
which holds true if the restrictions for the queues (equations (5.13) atd)jsare

fulfilled. Thus, by inserting a buffer circuit at the output registers to theugs the
delay of the stall output of the circutC can be reduced to:

D(HC'.stallOut(bpc)) < max{2-Danp + 2 - Dor,
D(Sh4L.HC.stall) + Danp + Dor,
D(AND-Tree(cyc(buc))),
+ DaND.

Finally for the stall output of the circuih4S respectively the memory unit it
holds true:

D(Sh4S.stallOut(bsnas, brc)) < max{max{D(HC.stallOut(brc))
D(S4hLSh4SStG”)} + DMUX,
D(AND-Tree(cshas(bsnas)))t + Danp.

Let egg be the number of entries of the read queue apgl be the number of
entries of the memory reservation station. Due to the restrictions of reae (egua-
tion (5.19)), update queue (equation (5.16)) and reservation statioat{eq (4.15) on
page 62) regarding the delay of the stall inputs, without any bufferititoeifollowing
equations must hold:

2.D if eppy = 1
§ > D(Sh4L.ReadQ.stall(0)) + AND "eRQ =1 (521)
2-Danp +Dyux iferg >1
§ > D(ShAL.UpdQ.stall(0)) + 3 - Danp, (5.22)
2.D if eps, = 1
5 > D(Sh4S.stallOut(0,0)) + AND "ers =1 (523
3-Danp+Dyux ifers, >1

Note that the restriction for the update queue can be reduced as theNisgate on
the stall path of the update queue can be merged into the computation of thie signa
Sh4L.UpdQ.stall using the distributive law.

The bounds fow are successively reduced by setting firgtsr,, thenbye, and
finally bgn4s to one. The position of the buffer circuit in the circ@h4L depends on
0. Ford = 5 the buffer circuit is placed in the first stage, for- 5 it is placed in the
second stage.

If 6 = 5 it must hold¢;, = 2 (see equation (4.21) on page 68) and therefore
D(Mem.stallln) = Danp + Dor. Hence, the stall input from the completion
phase is uncritical. For stall signal of the first stage of the cirfShiL it must hold
true:

o> maX{S - Dorg, D(AND—Tree(CSM(l)) + DAND} + Dor+ DanD

146 Memory Unit

which is assumed to hold far = 5. The equations (5.21) and (5.22) then hold by
construction of read queue and update queue. The stall output to thé Ei€€ and
Sh4S come directly out of buffer circuits, thus:

D(ShAL.{HC, ShaS}.stall) = D anp.

If & > 5 for the stall input from the completion phad¥ Mem.stallIn) it can
only be guaranteed th&@(Mem.stallIn) < § — Danp. Only the first stage of the
circuit Sh4L can generate a stall. Thus, if the buffer circuit is placed in the second
stage, the stall input fulfills the requirements for the stall signals of stage mdo a
above (see section 2.5.4). The delay of the stall outputs of the cBhdit then are:

D(Sh4L.ReadQ.stall) = Danp + Danp,
D(ShAL.HC'stall) = Danp + Dor + Danp,
D(Sh4L.UpdQ.stall) = max{Danp, Dor} + Dor + Danp,
D(ShAL.Sh4S.stall) = max{Danp,2- Dor} + Dor + DanD-

Thus, the equations (5.21) and (5.22) holdfasr 5.

Buffer circuits are inserted into the circuitfC andSh4S if the equation (5.23)
does not hold for the new delay of the stall inputs to the cirddifsandSh4S. First
a buffer circuit is inserted into the first stage of the cir¢d@. This replaces the equa-

tion (5.23) by:

o> maX{Q -Danp +2- Dog, D(AND-Tree(ch(l) + 3))} + DanD, (5.24)
d > max{max{Danp, D(Sh4L.Sh4S.stall)} + Dyux,

D(AND-Tree(cspas(0)))} (5.25)

2'DAND If €RS, =1

+ Danp + , :
{2 *Danp + Dyux if ergy > 1

Note that the number of cycles;c needed for the hit computation is mainly deter-
mined by the delay of the cache core (see equation 5.6). Yet, the equafidi i&
assumed to hold true for afl > 5 for a reasonably large data cache. If the equation
(5.25) does not hold, a buffer circuit is inserted into the first stage dfithait Sh4S.
Ford > 5 the first AND-gate of equation (5.20) for the computation of the stall input of
the circuitSh4S can be merged into the computation of the sigsVal L.Sh4S.stall.
Then the equation (5.25) can be replaced by:

5 { D(Sh4L.Sh4S.stall) + Dyyx ifd=05
max 9
o D(Sh4L.Sh4S.stall) + Dor if6>5 (5.26)

D(AND-Tree(cSh45(1) + 2))} 4+ DanD.

which is assumed to be fulfilled for all > 5. The requirements for the stall input of
the reservation station then hold true by construction of the reservatiomstatio

The inputs to the circuiBh4S are the full bit, the tag, the operands, a 16 bit
immediate constant and 8 bit control sign&8 { I zo 5 bits in total). The outputs are

5.8 Cost and Delay 147

the full bit, the tag, the write data, the effective address, theubysnd 8 bit control
signals {7 + lrop bits in total). The cost of the circu8h4S including pipelining is
approximated by (see appendix D/4.1):

C'(Sh4s) < C(Add(32)) + 2 - C(Dec(2)) + C(HDec(2))
+ 104 - Cyiux +11-Cor +10- Canp
+ (csnas(bs) = 1) - (83 + lroB) - CrEG-
The inputs to the circuiBh4L are the full bit, a tag, 32 data bits, and 8 control bits for
from the read queue as well as the hit computation, and a full bit, a tag, arujtte
signal, and the effective address fr@h4S and update queud48 + 4 - [rop bits
in total). The outputs are the full bit, the tag, 64 bit data, and 2 interruptsisigna

(67 + lrop bits in total). Thus, the total cost of the circ@h4L including pipelining
is (see appendix D.4.2):

C(Sh4L) < C(Inc(2)) + C(Dec(2)) + C(Sel(4))
+186 - Cvux +3 - Dor + Danp
+ C(PP-OR(4)) + C(FFO(4)) + (34 + lron) - C(Sel(4))
+ (csnar(br) — 1) - [(215 4+ 5 - lroB) /2] - CrEc-
Let Spc be the width of the data cache-lines. The number of inputs of the hit com-
putation is77 + [rop. The outputs are the full bit, the tag, effective address, the hit
signal, the cache-line and byte-valid signals to the update queue and thewtior

valid signals to the read queugs(+ lrop + 9 - Spc bits in total). Then cost of the
data cache are:

C(DCache) < D(HC) + D(Core) + D(UpdQ(eyq)) + D(ReadQ(erq))
+cpo(bg) - (105+2-lgop +9 - Spc) - CrEG-

The overall cost of the memory unit is:

C(Mem) < D(Sh4S) + D(DCache) + D(Sh4L).

148 Memory Unit

Chapter 6

Instruction Fetch

This chapter presents the circuits which perform the instruction fetch. ingteic-

tion fetch mechanism and the branch prediction used by the RisXpresented in
section 6.1. Sectian 6.2 describes the instruction fetch unit, which deliyeasatiel

instruction stream. The instruction fetch queue presented in section 6.[&ssrthe

stream and sends the instructions to the instruction register environmeribddsn

section 6.4. The branch checking unit presented in section 6.5 cheektsartbranch
predictions made by the instruction fetch unit are correct and initiates a ckliba
case of a misprediction. The flush of the processor needed for thedolbdetailed
in section 6.6.

6.1 Instruction Fetch Mechanism

6.1.1 Overview

The instruction fetch loads the instructions to be executed from the main mehory.
a branch instruction (i.e., a conditional branch or a jump) is fetched, theessldf
the next instruction to be fetched is not known. Since waiting for the corertgpate
the target of the branch instruction would take several cycles, the sxldféhe next
instruction is predicted. To ensure the correctness, the branch cheakin(BCU)
verifies the prediction and initiates a rollback in case it detects a misprediction.

The rollback of a mispredicted branch instruction is done in two steps. If@i¢ B
detects a misprediction, the program counter (PC) pointing to the addréss oéxt
instruction is set to the correct branch target of the branch instructionprdvent
wrongly fetched instruction from initiating another rollback, all branch ungion fol-
lowing the mispredicted branch are invalidated. This is done by clearing thk B€
reservation station of the BCU, and the decode stage. Since decodéspattial of
branch instructions is done in order no instruction preceding to the brasirhction
is cleared.

The wrongly fetched instructions may have altered the producer tables, be-
fore new instructions may enter the decode phase, the producer tabldsemestored.
The restore can be done when the mispredicted branch instruction r8imes.retire
is done in order, all remaining instructions in the core have been wroniglyde after
the mispredicted branch and thus have to be invalidated. Hence, no valigttitsis

150 Instruction Fetch

i
v

reset
CLK

lastCycle IFCLK
CLK
lastCycle
IFCLK LI LI LI

Figure 6.1: Generation of the slow clock fon = 4

are in the core after clearing and the producer table can simply be reset) valid
bits are set to one. As soon as the producer table is reset, new instrdietaired from
the correct branch target address can enter the decode phase.

6.1.2 Clocking of the Instruction Fetch

To be able to fetch one instruction per cycle, the instruction fetch must prdic
address of the next instruction within one cycle. If the stage déptbes down to 5
gate delays a nontrivial branch prediction is not possible. Therefloeecycle time
of the clock of the instruction fetch circuif £C LK) is an integer multiplen of the
cycle time of the core clock({LK). In each cycle of the slow clockFCLK the
instruction fetch delivers up t6'S = 27¢ instructions, withF'S > m. The parallel
instruction stream is loaded into an instruction fetch queB®), from which every
CLK-cycle one instruction can be sent to the decode phase.

The divided clock/ FCLK can be produced, e.g., by the circuit shown in fig-
urel 6.1. This circuit also provides the sigiaktCycle which is active during the last
cycle of the fast clock before the rising edge of the slow clock. Note tleatitiouit in
figure 6.1 does not generate a symmetric clock as shown in the timing diagrasn. Th
is not problematic as edge-triggered registers are used.

6.1.3 Branch Prediction

The instruction fetch mechanism is based on a design of an instruction fétch w
branch prediction for super-scalar processors proposed in feh8s required in

the previous section, this mechanism delivers multiple instructions per cycle. Th
branch prediction is based on the division of the instruction streanbeda blocks

A basic block is a sequence of non-branch instructions followed by desbrgnch
instruction. Since only the last instruction of a basic block is a branch, ttredtions

of a basic block are stored in consecutive memory cells. Therefore, sténeaddress

of the basic block is known, the whole basic block can be fetched withquibi@mch
prediction. The start address of the next basic block is predicted itlgdamthe
fetching of the basic block.

The instruction cache delivers up to one aligned block of $ife= 2/ words

6.2 Instruction Fetch Unit 151

respectively instructions per cycle, calliedch block A basic block may be distributed
over multiple fetch blocks. In this case the fetching of the basic block has dore
in multiple cycles. If the current fetch block does not contain a branchuictsbn, the
instruction fetch continues at the start of the next fetch block.

The address used to fetch a fetch block is cafetdh address The branch pre-
diction uses the fetch address to predict the fetch address for theyuwbxtand the
number of instructions which belong to the current basic block. If the fietobtk is
the last fetch block of a basic block this number identifies the address ofdhelb
instruction of the basic block.

It is also possible to identify the branches by the start address of théirtidask.
This scheme is called basic block addressing in contrast to the fetch addiesme.
More detailed information on the basic block addressing can be foundpgeh93].

The prediction can be overruled by two events. If the branch checkingletects
a misprediction, the instruction fetch continues at the correct target of tipeedisted
branch. The prediction circuit is then updated with the corrected resal iiterrupt
occurs, the instruction fetch continues at the start of the interrupt semitine.

The prediction circuit presented in this thesis computes the prediction in ene cy
cle. To implement more complex prediction circuits with a reasonable cycle time, the
prediction must be done in multiple cycles. Then fetching usually continuesfayld
at the beginning of the next fetch block. If the prediction circuit detect&entaon-
ditional branch or a jump, the already fetched instructions are invalidatetetrhing
continues at the target of the branch instruction. Details on branch poedéchemes
requiring multiple cycles are not treated in this thesis.

6.2 Instruction Fetch Unit

6.2.1 Overview

Figure 6.2 depicts an overview of the instruction fetch circuit. The circuitpmises
the instruction cachBCache and the circuiiNextPC which computes the PC for the
next cycle using branch prediction. The circhigxtPC computes the fetch-PEPC
containing the current fetch address. The fetch-PC is used to aceesadhe. The
outputs of the two circuits are sent to the instruction fetch queue (IFQ)hveeigalizes
the parallel instruction stream (see section 6.3).

The instruction cache delivers ti&S = 2% word wide fetch block, the page fault
signallpf, and a hit signal. As long as the hit signal is zero the other signals are not
valid and the instruction fetch has to be stalled.

The instruction fetch queue expects the valid instructions to be right aligrnedle-
fore, the data returned by the instruction cache is shifted to the right if thle &l-
dress does not point to the beginning of an aligned fetch block. Theirfgstic-
tion in the fetch block which belongs to the current basic block is at wordipos
(fPC[fs+ 1 : 2]). Thus, by shifting the fetch block byf PC[fs + 1 : 2]) words
to the right, this first instruction is at the bit positigsl : 0] of the shifter out-
put. The output of the shifter is then divided into the 32 bit wide busses-; for
i € {0,...,FS — 1} whereinstry contains the first instruction in the fetch block

152 Instruction Fetch

from main memory from BCU from Ret2
Mem.x MP.x JISR.x

fPC

NextPC
ICache

hit Ipf data | (F'S — 1)pin(ss), - - -

e I

|R-shift Je— R-Shift

L“lr';trFS—l...O LPCFS—I...U[fS +1:2]

hit

to IFQ
Figure 6.2: Instruction Fetch Unit

[Ca(?lie.dat(z
{ ¥ ¥

[[[127:96] | [95:64] | [63:32) | 1:o) | [11 [10 | o1 [00 |

R o] [127:96] | [95:64] [[63:32 | PN N
v v v v v v v v
instrs instrs instry instro PC33:1] PCy[3:1] PCy[3:1] PCy[3:1]
Figure 6.3: Instruction Shift forfs = 2 and(fPC[fs+1:2]) =1

that belongs to the current basic block. See figure 6.3 for an examples ahilft for
fs=2and(fPC[fs+1:2]) =1.

All instructions returned by the cache belong to the same (aligned) fetch,bloc
thus the high order bit81 : fs+ 2] of the addresses of these instructions are identical.
Let PC;[fs + 1 : 2] denote the low order bits of the address of the instruction with
indexi. The value ofPC;[fs + 1 : 2] can be computed by adding the value of the bits
fs+1:2of the fetch-PC ta. Hence, the bussd3C,[fs+ 1 : 2] can be computed by
shifting the constant vect@r'S — 1)yin(r5), - - - » (0)pin(ss) BY (fPC[fs +1:2]) - fs
positions to the right.

To invalidate the instructions following the predicted branch position in the fetch
block, the busnask computed by the circuiilextPC is used. It encodes the number
of instructions in the fetch block which belong to the current basic block ditiac
to the instruction addressed by the fetch-PC. Therbusk uses half-unary encoding,
thus if in total j instructions of the fetch block belong to the current basic block, the
bits mask[j — 1 : 0] are one, the bitsnask[F'S — 1 : j] are zero. Note that the
number of ones in the encoding is the number of valid instructions in the ¢deteh
block as bit0 of half-unary encodings is always one. Hence, the signatk|i] for
i € {0,...,FS — 1} can be used as valid signal for the instruction bus;. Note
that by shifting the output of the cache to the right, invalid data are shifted isto th
leftmost (f PC[fs + 1 : 0]) instruction busses. Thus, the bugisk may at most
encode the numbérS — (fPC[fs+1:0]) — 1.

The circuitNextPC gets updated by the misprediction busP.x from the branch
checking unit (see section 6.5) and the interrupt Bii§ R.x computed by the retire

6.2 Instruction Fetch Unit 153

fPC Mem.x
) S
\ + + \ 1 Test i
R.addr Wk R.addr Fox F.Ipf .
I

IC-Core F.data : data
ForwardStall |
R.hit R.data ! |
0 |
Ié—» RAM .data addr
forw data

Fl.addr[31 : 5} : 1 ’ =? forward
“valid —— > |

,,,,,,,,,,,,,,,,,

Ipf,data

Figure 6.4: Instruction Cache

sub-phaseiet2 (see section 4.5.4). The bud P.x contains information about all
mispredicted branches, including instructions which have been wrongtigbed to
be branches. Using the bud SR.x, the instruction fetch is updated in case of an
interrupt.

The instruction fetch unit delivers apart from the actual instructions tbeeades
of the instructions, the predicted next fetch-PC, and the way of the bbtarget buffer
(see section 6.2.3). These informations are needed by the branchincheok (see
section 6.5) and for interrupt handling (see section 4.5.3) and arelsegtwith the
instructions through the processor.

6.2.2 Instruction Cache

The instruction cache is a simple blocking cache witlz: = 2%/¢ bytes per line
(Stc > 4- FS), Lic = 24¢ lines, andK ;- = 2¥1¢ ways, similar to the cache core
of the data cache. Since instruction fetch is done in order a non-blocketgedas no
advantages. The instruction cache is only updated by the main memory. Borgvar
can be done by a forwarding circuit with stalling.

Figure 6.4 depicts the instruction cache. The cache core cl@u@ore contains
the cache RAM including the replacement circuit. The cache core is assonred
not sectored; the modifications for a sectored cache core are simplethitgated in
this thesis. The page fault signglf is computed by the main memory. It can not be
active if the data is already located in the cache core.

The sub-circuitTest of the forwarding circuit must be adopted $f- > F'S.
Then the requested fetch block is selected from the cache-line retuyribe Inain
memory. The same has to be done to the line returned by the cache coreojmntis
the figure).

Note that the memory might return data from a fetch request that was stefted b
the instruction fetch has been cleared due to a misprediction or an intertu, fhe
returned data may be not valid for the fetch. Thus, it is necessary thattress on
the result bus of the main memory is checked for each stage of the forganidtuit.

If neither the core nor the forwarding circuit return valid dat&ai¢ V forw = 0)
and the last stage of the forwarding pipeline contains a valid entry, thesaisceeated
as a miss. In this case the stage (and the preceding stages) are stalletiemadry

154 Instruction Fetch

req

Figure 6.5: Instruction Cache Control

request is started. When the memory returns the flatay gets active and the valid
data is sent to the output.

Figure 6.5 shows the computation of the request signal to the main memory. A new
request to the main memory is started if a miss is in the last stagé“ (v —! A hit)
and no request is pendingegp = 0). As soon as the main memory does not stall,
i.e. Mem.Ack = 1, the request is accepted and the registep is set. The register
regp stays set until the request returns drid gets active. The address for the main
memory request can be taken from the last stage of the forwarding circuit.

Cost and Delay

Let Lpc = 2!P¢ be the number of lines§;c = 2°7¢ be the number of bytes of a
line, andK ;¢ = 2*1¢ be the number of ways of the instruction cache. > be the
number of cycles of the instruction fetch. If an LRU algorithm is used fplagement,
the cost and delay of the instruction cache can be computed similar to thecmaehe
of the data cache. The delay and cost of such a cache are [MPOQ]:

D(IC-Core) < max{D(RAM(L;¢,8 - Stc, 1,1)),
D(RAM(L;¢,33 —ljc — sic,1,1))
+ D(EQ(33 — l1c — s1¢))}
+ D(Sel(K1e)),
C(IC-Core-Replace) < C(RAM(L;¢c, Kic - k1o, 1,1, ¢1r))
+ Kico - (C(EQ(k1¢)) + Canp) + C(PP-OR(K¢))
+ Kic - ko -5 - Cyux + C(Enc(Kp¢))
+ (34 —lic+2-kic)/2] - cir - CrEG,
o(IC-Core) < Kic - (C(RAM(Lyc, 8 - St 1,1, e1))
+ C(RAM(L1c,33 — lic — s10, 1,1, c17))
+ C(EQ(33 — l1c — s10)))
+ 8- Sic - C(Sel(Kic)) + C(OR-Tree(K¢))
+ C(Dec(krc)) + Kic - Canp
0 if Kijc=1
{C(IC-Core-RepIace) if Kjo>1"

Let F'S be the number of instructions per fetch block and:}e$(32 — s;¢) be the
number of cycles needed for forwarding with stalling & — sy address bits. For

6.2 Instruction Fetch Unit 155

MPx JISR*
UpdPC
fPC = !
[fs+1:2] v L [31:fs+2]\}
Pred Inc
HDec
De fault.mask Pred.mask| [Pred.npPC 0fs+2
\ YD ult.nPC'
0 1 Pred.hit »11 0 efaultn
mask nPC

Figure 6.6: Next PC Circuit

the overall delay and cost of the instruction cache it holds:

D(ICache) < D(IC-Core) + max{2 - Danp, Dyux}t + Danp,

C(ICache) < C(IC-Core)
+ C(Forwardstall(32 — sy, 8 - Sto + 1, c1r, crs(32 — s1¢)))
+Dor+ (c;p+1)-32-FS-C(Sel(4- Sic/FS))
+5-Canp +2-Cor + CrEq.

6.2.3 Computation of the Next Fetch-PC
Overview

The circuitNextPC is divided into two parts. The first part computes the current fetch-
PC fPC based on the predicted fetch-PC from the last cyple() and the input
bussesVi Px andJI.SR.x. The second part computes the fetch-PC for the next cycle
and the number of valid instructions in the current fetch block using braretdiction.
The branch prediction is based on the valug 61C computed in the first part.

Figure 6.6 shows the circuNextPC. The fetch-PCf PC' is computed in the sub-
circuitUpdPC. If an interrupt has occurred (indicated BY S R. full = 1), f PC'is set
to the start of the interrupt service routidé S R.sisr. Otherwise, if a misprediction
has been detected by the BCU (indicatedMi\P. full), fPC' is set to the corrected
branch targef/ P.cPC. If neither an interrupt occurred nor a misprediction has been
detected the address predicted in the last cycle which is saved in the registisr
used. Thus, the circuidpdPC computes:

JISR.sisr if JISR.full
fPC =< MP.cPC if JISR.full N MP.full .
pPC if JISR.full N MP.full

The fetch-PC is used in the circited to predict the next fetch-PE@PC and the
busmask which encodes the number of valid instruction in the current fetch block. If

156 Instruction Fetch

the prediction circuit does not produce a valid prediction (indicateiwd.hit = 0)
default values are used farPC and mask. The default values are based on the
assumption that the fetch block does not contain any branch instructiémsifm the
addressf PC. Accordingly,nPC'is set to the beginning of the next cache-line and all
instructions following the fetch address are assumed to be valid. Theltdethue for
the next fetch-PC is:

default nPC[31: 0] = ((fPC[31 : fs+2],07572) 4 2752, .

The busmask must encode the number of valid instructions in the current fetch block
in half-unary encoding (not counting the instruction addressed by tble RC). The
current fetch block containB.S — (fPC|fs+1 : 2]) — 1 instructions that succeed the
instruction addressed by the fetch-PC. Thus, the default value foughmbsk can be
computed as:

de fault.mask[fs —1:0] = (FS — (fPC[fs +1:2]) — 1)pun(rs)
(fPClfs+1:2]) (mod FS))pun(rs)
(fPC[fs+1:2])) hun(Fs)-

Hence, the default values can be computed using a half-decoder amdtementer.
Let F'S = 2/¢ be the size of the fetch block in words. The cost and delay of the
circuit nextPC are:

{
{

D(fPC) < D(UdeC) <2-Dpux,
D(NextPC) < D(fPC) + max{D(HDec(fs)), D(Pred), D(Inc(30 — fs))}
+ Duux,
C(UpdPC) <2-32-Cyux,
C(NextPC) < C(HDec(fs)) + C(Inc(30 — fs)) + C(Pred) + C(UpdPC)
+ 32+ FS)-Cyux +32- Crec-

Prediction Circuit

The circuitPred does the actual branch prediction. In this thesis a simple branch target
buffer (BTB) [LS84] is described. It is a cache which saves the lagetaaddress of
jumps and taken branches. More sophisticated algorithms using a retuef\/s&88]
or combining multiple prediction schemes [McF93] lie beyond the scope of thégsthe

For not-taken branches the fetching must continue at the next instrudtiors,
regarding the address of the next instruction not-taken brancheg ¢tagaked like non-
branch instructions. To exploit this fact the BTB does not contain entiasdt-taken
branches. The BTB predicts the target of the first branch instructioneircdirent
fetch block which is a predicted to be taken branch. Hence, the predidticuitc
can correctly predict up t@'S branch instructions in one cycle if the firgtS — 1
instructions are not-taken branches.

The branch prediction reads the BTB every cycle in order to check whdth
contains information about the current fetch-PC. On a hit the BTB rethengredicted
values formask andnPC and sets the signalit to one. Otherwise the signalt is
set to zero.

6.2 Instruction Fetch Unit 157

fPC MPA full,branch, cPC, PC,mask, way}
|
Y v] ¥
R.addr W R.addr Fx
BTB-Core
BTB-Forw
R.hit R.data
L RAM.data
forw data

hit mask nPC way

Figure 6.7: Prediction circuit

The update of the BTB is controlled by the branch checking unit. The simple
BTB used here needs to be updated only in case of a misprediction. Mangeo
prediction schemes also learn from correctly predicted branches, thses skhemes
update the BTB for every branch instruction.

Two different cases of mispredictions must be kept apart. If the rekalboanch
was predicted wrongly, the corrected result is saved in the branch tarffer. If the
branch target buffer contains an entry for a non-branch instructiaan lwranch that
should be predicted to be not taken, the entry must be invalidated. Note ¢haisth
case may occur due to self-modifying code.

The BTB is built as ak gy = 2¥875 way cache withL g = 2875 lines of
width 32 + F'S (nPC andmask) and can be built similar to the instruction cache.
Figure 6.7 shows the prediction circiited containing the BTB. The memory bus
used in the instruction cache is replaced by theMu3 . In contrast to the instruction
cache a miss does not produce a stall or a memory request.

The BTB has to be updated if the branch checking unit returns a mispredictio
(M P.full is active). The signalMl P.branch indicates if the predicted branch was
indeed a branch. This signal is used to write the valid bit of the cache difeyfields
mask andn PC of the entry are updated with the values of the bugdd3mask and
the correct branch targét/ P.cPC. The busM P. f PC contains the fetch-PC of the
mispredicted branch and is used to select the line and update the caclargirec

The prediction circuit also computes returns wayhilfis active the way addresses
the BTB entry that caused the hit and that has to be updated in case of adigspn.

If hit is inactive the way indicates which entry has to be updated if a new entry is made
Since the updates of the BTB are started by the BCU, the way must be semB8Gth
along with the instruction. The BCU then returns the way on theMudway that
determines, which way is written on an update of the BTB.

Pipelining of the circuit is not possible as the predicted/®¥ has to be com-
puted in one cycle of the slow clockF’C LK. However, for performance reasons
forwarding is used in order to instantly use the results of the BCU. To stippdates
and requests at the same time all RAM blocks have separated read andontste p

If a basic block is distributed over multiple fetch blocks, the fetch-PC of taadir
is always the address of the fetch block containing the branch. Hemcprdabability
that the lastf s 4 2 bits of the fetch-PC are all equal to zero is disproportionately high.

158 Instruction Fetch

For this reason the bifg's + 3 : 4] are used to address the cache-lines instead of the
usual bitg fs + 1 : 2]. This usually results in a better prediction, as shown in [Yeh93].

If Kprp = 2878 and Lgrp = 2875 are the number of ways and lines of the
BTB andF'S = 2/ is the fetch size, the cost and delay of the core of the BTB can be
estimated as:

D(BTB-Core) < max{D(RAM(Lprp,32 + fs,1,1)),
D(RAM(Lprp,33 —lprB,1,1))
+ D(EQ(33 — lprn))}
+ D(Sel(KprB)),
C(BTB-Core-Replace) < C(RAM(Lgrs, Kprp - kBre,1,1,1))
+ Kprp - (C(EQ(kprB)) + CaAND)
+ C(PP-OR(KprB))
+ Kprp - kpre -5 - Cyux + C(Enc(KprR))
+[(34 —Iprp +2-kprp)/2] - CrEG,
C(BTB-Core) < Kprs - (C(RAM(Lprs, 32 + FS,1,1,1))
+ C(RAM(LprpB,33 —lprB,1,1,1))
+ C(EQ(33 — IprB)))
+(32+ FS)-C(Sel(Kprp)) + C(OR-Tree(Kprg))
+ C’(Dec(kBTB)) + Kpre - CanD
0 if Kprg =1
{C(BTB—Core—Replace) if Kprg>1

The overall delay and cost of the prediction circuit are:

D(Pred) < D(BTB-COFG) + max{2 -DanD, DMUX}7
C(Pred) < C(BTB-Core) + Cor
+ C(ForwardStall(32,33 + F'S + kprp, 1,crs(32))).

6.2.4 Instruction Fetch Control

The instruction fetch control (see figure 6.8) computes the stall signalis€fanstruc-
tion fetch unit. Note that the branch prediction done in the cirblgxtPC must be
done within one cycle. However, the access to the instruction cache gapdiieed as
the prediction does not depend on the result of the cache access tHdimstruction
fetch unit can have multiple stages.

Additionally the instruction fetch control synchronizes between the faskeld. K
and the slower clockFFC LK. Letcrr be the number of stages of the instruction fetch.
The synchronization of the clocks is done via the full sigh&lfuli/# for the output
registerd F.x of the instruction fetch unit (see figure 6.2). The full sighal full°/F is
updated every cycle of the fast clo€k. K. Itis set to one if at the end of the laSIL K
cycle before the rising edge éf'C LK (indicated bylastcycle = 1) the instruction
cache returns a hit and the preceding stage is fullJitefull“/F A IC.hit = 1.

6.3 Instruction Fetch Queue 159

IFQ.stallout IF.fuller IC.hit IF.fullcrr=10
lasteycle IF.fullerr—!

PP-AND

1C.hit
fPCl] fPC(0]

IF.stall®'r

IF. full®rr IF.stallerF-0 Imal

Figure 6.8: Instruction Fetch Control

The output registers of the instruction fetch unit are stalled as long aslts&hal
IF. full°’F is active and théFQ cannot accept new data{'Q).stallOut = 1). Note
that full signall F. full'¥ is clocked with the fast clock’ LK. Thus, as soon as the
stall output of the IFQI F'Q.stallOut becomes zero, the signaF. full“’F is reset
in order to mark that the instructions in the output registers of the instructich fe
unit have been sent to the IFQ. Then the output registers can be updttdde next
rising edge of the slow clockFFC' LK. The last stage df can generate a stall if the
instruction cache returns a miss. The stall computation is adapted as usual.

The instruction fetch control also computes the interrupt signat! indicating a
misaligned fetch. It can be computed by OR-ing the two least significant bitseof
fetch address.

6.2.5 Cost and Delay

The new value for the registé?C has to be computed in one cycle. Thus, the delay
of the circuitNextPC gives a lower bound for the cycle time - + of the instruction
fetch clockl FC LK. Thus, it must hold:

m -7 —5 > D(NextPC).

The overall delay of the instruction fetch and the number of cyclesneeded for the
instruction fetch are:

D(IF) < max(D(fPC) + D(IC) + fs - Dyyx, D(NextPC)),
CIFp = [D(IF)/(m T — 5)—|

The width of the register$ F.x is 67 + F'S - (33) + kprp (full bit, two interrupts,
fetch-PC, predicted PQ 'S instructions including valid bit, and the way of the BTB).
Thus, the cost of the instruction fetch is:
C(IF) < C(IC) + C(NextPC) + (8- S;¢ — F'S) - Cyux
+ (67+ FS-33+kpre) - CreG-

6.3 Instruction Fetch Queue

The instruction fetch queuéRQ) serializes the parallel instruction stream delivered
by the instruction fetch unit. It is a parallelly loadable FIFO queue ith entries.

160 Instruction Fetch

IFQ.stallOut IF.full IF{mask,instr,, PC,} IF{fPC,nPC,way,hit,Ipf, Imal}

1FQ.update
IFQ{clear,update, fill} — IFQ-Core

lPC[fs +1:2] fPC[31: fs+2]

IR.stallOut Sfull instr PC nPC,way, hit, Ipf, Imal

Figure 6.9: Instruction fetch queue

In.full In.instr

IF.mask[FS —1— 1

IF.full update clear fill fill

IF.instrps_1_; IF.PCps_1_;

update update

Out. full Out.instr Out.PC

Figure 6.10: IFQ entryi

New instructions are only filled into tH&Q if the queue is empty. This simplifies the
design of the IFQ as an instructienstr; for i € {0,... F'S — 1} is always filled into
the entry numbeF'S — 1 — 4. Also all valid instructions in the queue share the signals
fPC[31 : fs+ 2], nPC, way, hit, Ipf, andImal are the same, since these signals
are the same within a fetch block.

Figure 6.9 depicts an overview of the instruction fetch queue. The sig#&§31 :
fs+ 2], nPC, way, hit, Ipf, andImal are stored only once for all entries of the
gueue. They are updated whenever new instructions are loaded intocihe @.e., the
gueue is empty). The instructiomsstr, and the lower order bits of the instruction’s
addressPC,[fs + 1 : 2] are stored in the sub-circuEQ-Core, which is built similar
to the other queues, e.g., the reservation station. This circuit also compeitslih
output of the IFQI FQ.stallOut, and the full bit which is sent to the instruction reg-
ister environment. The addref” of the instruction sent to the decode phase can be
obtained by concatenating the common high order pR€’[31 : fs + 2] and the low
order bitsPC[fs + 1 : 2] of the instruction.

6.3.1 IFQ Entries

A single entry of the circuitFQ-Core is shown in figure 6.10. New instructions and
addresses are filled into the IFQ when the signalate is active. The instruction
FS — 1 —iisthenfilled into entryi for i € {0,... F'S — 1}. The instruction is valid
if the signall F.mask[F'S — 1 —i] is active and the output of the instruction fetch unit
is valid (indicated byl F. full).

If the signal fill is active, the content of the entry advances into the next entry.

6.3 Instruction Fetch Queue 161

Since the IFQ is only loaded parallelly the inguit. f«ll of entry0 has to be constantly
zero. The signatlear clears all entries of the IFQ, even if new entries are filled into
the IFQ.

6.3.2 Control

The instruction fetch aligns all valid instructions within a fetch block by shiftiregrth

to the right (see section 6.2.1). The rightmost instructiestr is filled into entry
F'S — 1. Therefore, no invalid instruction is followed by a valid one inside the queue
Thus, it is not necessary to remove empty entries from the queue. Higthegnstruc-
tion register produces a stall R.stallout = 1), all entries of the queue are stalled.
Thus, for each entry € {0,... F'S — 1} of the IFQ it holds:

1FQ.fill = IR.stallout.

Note that in contrary to the reservation stations the fill signal directly deppendhe
stall input. This means that a new fetch block may be loaded into the queue, and
simultaneously the fill bit is active, i.e. the queue instructions in the queuaeglva
Thus, if the instruction register environment does not produce a stall Wisld-Q is
loaded, the instructioinstr is directly sent to the instruction register. The instruction
FS — 1 —iisthenfilled into entry + 1.

Since no full entry may follow an empty one in the IFQ, the whole queue is empty
if the last entry (numbeF'S — 1) is empty. New instructions are filled into theQ
if the queue is empty. The instruction fetch must be stalled if the IFQ is not empty.
Hence,

1FQ.empty = fullpg_1,
I1FQ.update = fullpg_1,
1FQ.stallOut = fullpg_1.

The decode phase also needs the sig#a).pb which indicates whether an in-
struction was predicted to be a taken branch (see appendix C.2.1). Thisdadh if
the hit signal of the prediction circuit was active and the instruction is thevdit
instruction in the fetch block. Thus:

IFQ.pb = IFQ.hit N Entryps_1.full N Entryps_o. full.

6.3.3 Cost and Delay

The critical path in the IFQ is the update of the full bits of the entries. This paihdbs
0 to be at least

d>2-Danp + Dor+ Dyux. (6.1)
The cost of the IFQ entries and the IFQ control are:

C(IFQ-Entry) < (6542 FS)-Cyux + (334 FS) - Creg)
+4-Canp + Cor,
C(IFQ-Control) < 2-Canp + Cor.

162 Instruction Fetch

Ret2.mp MP.full

haltdec

IR.haltdec

Figure 6.11: Instruction Register Control

The total cost of the IFQ is:

C(IFQ) < FS - C(IFQ-Entry) + C(IFQ-Control)
+ (67— F'S + kprB) - (CrEG + CMUX)-

This cost is added to the cost of the of instruction fetch unit.

6.4 Instruction Register Environment

The decoding of instructions must be stopped if a branch mispredictiondessde-
tected. Instruction decoding may be resumed with the correct instructiogs thie
mispredicted instruction has retired. This is done by the instruction registéroto
(see figure 6.11).

The registerhaltdec is set if a misprediction occurred (i.eV/ P. full is active).
If haltdec is active, the instruction register is stalled (see section 4.1.7). The register
haltdec is reset again if the mispredicted instruction leaves the second retire phase.
This is indicated by the signdtet2.mp.

The cost of the instruction register control is added to the cost of theddesu-
phaseD1:

C'(Dl)Jr < Crga + Canp + Cog.

6.5 Branch Checking Unit

The branch checking unit (BCU) computes the target of branch instnscaiod checks
if the branch prediction has correctly predicted that target. In orderdolkcthe pre-
diction every instruction that has been predicted to be a branch instructsemtigo

the BCU, even if the instruction is actually no branch instruction (see sectlod)4
In case of a misprediction, the BCU initiates a rollback and updates the btanget

buffer. For jump-and-link and return-from-exception instruction the B&léb com-

putes a result that has to be written into the register files.

The BCU is divided into the two circuit8Comp and BCheck. The circuit
BComp computes the result and the branch target of a branch instruction. Fhe cir
cuit BCheck uses the outputs @dComp to check whether the target of the branch
instruction has been predicted correctly.

6.5 Branch Checking Unit 163

OP, OP, PC imm

[31] L vy ¢ ¢ [31: 2](v

Fpb 0 1
=0? EQ ir ’\TI Inc Add

btaken cPC result

Figure 6.12: Branch Computation

The circuitBComp is shown in figure 6.12. The circuit uses multiple control
signals which can be computed from the opcode of the branch instructiecdm-
putation of these signals is not assumed to be critical and not discussediln Tee
left part of the circuit computes the signahken which indicates if a branch has to
be taken. Using the signalaken the corrected PEPC of the branch instruction is
computed in the right part of the circuit.

Two types of branches are supported: regular branches whick dhée two
operand$) P, andO P, are equal and branch-zero instructions (indicated by the signal
bz) which compares the first operand against zero. Regular branahdsecdivided
into branch-equal and branch-not-equal instructions (indicatéa.dxy). The type of a
branch-zero instruction is defined by the sigriéls bgz, andbeqz indicating a branch-
less-than-zero, branch-greater-than-zero, respectively ineoeal-zero. Multiple of
these signals may be active to indicate, e.g., a branch-greater-equal-zer

Note that branch on floating point condition code (BC1) instructions (sé=Aab
in appendix A) use the special registeC'C' as first operand. Thus, the instruction
BC1F can be implemented by settibw; > to one, the instruction BC1T by settihgz
to one.

The correct PC of the instruction following the branch instructi®d' can have 4
different values:

e The signalfpb (computed in the decode phase) is active if the instruction is not
a branch instruction but has been wrongly predicted to be a branchdtistru
by the branch prediction. The instruction fetch must then be restarted at the
wrongly predicted branch, i.ezPC must be set to the address of the instruction
PC.

e For jump-register and return-from-exception instructions (indicateghbye)
the buscPC' must be set to the value of the second operand.

e For jump instructions (indicated byump) and taken branches (indicated by
btaken), an immediate constant is added to the address of the instruction to
computecPC.

e For not-taken branches the bu®C' is the by 4 incremented address of the
branch instruction.

164 Instruction Fetch

npb btaken branch — fpb nPC c¢PC PC way
[fs+1:2]

[

Sfull

\ \ / \
MP. full M P.branch MP.cPC MP.PC MP.mask MP.way

Figure 6.13: Branch Checking

For jump-and-link and return-from-exceptions instructions, the BCU coespa
result. For jump-and-link instructions this is the addr&%s of the instruction incre-
mented by 4, for return-from-exception instructions it is the first operand

The circuitBComp computes the misprediction bg P. full (see figure 6.13). If
the instruction that caused the misprediction is a taken branch, the 8ibRal-anch
is set. This signal is used to set the valid bit of the BTB, i.e. on a misprediction the
signal M P.branch defines whether the entry that caused the misprediction is updated
or removed. A misprediction has occurred in one of the following threescase

e A branch instruction has wrongly been predicted not to be a branch. i§his
indicated by the signalpb computed in the decode phase.

e An instruction has been wrongly predicted to be a branch instruction (itedica
by fpb).

e The fetch-PC of the next basic block was predicted incorrectly foradbréi.e.,
nPC' is not equal taPC).

If a not-taken branch was not predicted to be a branch instruction theh#sU
correctly continued fetching at the following address. Thus non-takamches that
have not been predicted to be a branch instruction does not need tmtledhas
mispredictions. Therefore the signéd P. full is set to zero in this case and no new
entry is made in the BTB for the not-taken branch.

In case of a misprediction, the sigmdlP.branch must not be active for instruction
that have wrongly predicted to be a branch and for not-taken branthéesremoves
the entry which produced the misprediction.

The target of the branch instructie?C is used to update the branch target buffer
via the busM P.cPC. The busM P.mask indicating the position of the branch in the
fetch block is computed by a half-decoder on the bi&”[fs + 1 : 2]. The signal
M P.way indicating the way of the BTB that is updated is set to the value of the bus
way that was computed during the prediction (see section 6.2.3).

6.5 Branch Checking Unit 165

to/ from RS

RS .x
BCU.StallOut

BComp

BCheck

BCheck.M P,

I F.lastcycle

BCU.Stallln |BCU.%

MP.full
to IF from / to Completion

Figure 6.14: Branch Checking Unit

6.5.1 Stall Computation

If the BCU detects a misprediction, it must update the instruction fetch unit. Hbe |
can only accept new data if the sigraktcycle is active. In order not to affect the
completion of correctly predicted branches an extra stage is added in migphe-
dicted branches wait until the signalstcycle gets active (see figure 6.14). If this
stage contains a mispredicted branch, the BCU is cleared.

A branch instruction proceeds to the additional stage at the same time it emters th
completion stage. If the branch instruction cannot proceed to the complétise the
additional stage must not be filled. Otherwise if the branch instruction wagenisp
dicted, the BCU would be cleared and the branch instruction does not demplech
is needed for the rollback.

This additional stage does not have to stall the other stages of the BCU as all
stages of the BCU are cleared anyway if a misprediction is in the additiona stag
(indicated by the signaBC'U.mp). Thus, the other stages of the BCU are only stalled
by the signalBCU.stallIn received from the completion phase. The additional stage
is stalled by

MP. full N TF.lastcycle.

Note that once a misprediction is in the additional stage, the stage is stalled until the
instruction fetch unit can be updated. Thus, the mispredicted branch inlditeoaal
stage will not be overwritten be succeeding instructions.

6.5.2 Cost and Delay
The delay of the BCU is:

D(btaken) < max{D(EQ(32)) + Dxor, D(Zero(32)) +2- Danp + Dor}
+ Dmux,
D(BCU) < max{D(Add(32)), D(Inc(32)) + Dy x,
D(btaken) + Danp + Dor}
+ Dyux + D(EQ(32)) + Dor + Danp.

166 Instruction Fetch

Let the variablégcy be one if a buffer circuit is added after the input registers of
the BCU, otherwisépcy is zero. The number of cycleg oy needed for the BCU is:

cgeu(bpeu) = [(D(BCU) + bpcu - Duux)/9]-

Let BCU.stallIn be the stall input of the BCU from the completion phase. If
bpou = 0, the delay of the output stall sign&lallOut of the BCU is:

D(stallOut) < max{D(AND-Tree(cpcu(0) + 1)), D(BCU.stallIn)} + Danp-

Let erg, be the number of entries of the reservation station of the BCU. The reserva
tion station then requires (see equation (4.15) on page 62):

2. DanD if epg, = 1

§ > D(BCU.stallOut) + _ .
3-Danp +Dyux if €RS; > 1

If this equation can not be fulfilledzcy must be one. This reduces the bound to:
d > max{D(AND-Tree(cpcu (1) +2)), D(BCU.stallIn)} + Danp

which hold true fow > 5. The requirement for the input stall signal of the reservation
station are then fulfilled by construction of the reservation station.

The number of inputs of the BCU 51 + kg5 + lros, the number of outputs
is97 + fs + kprs + lrop- The cost of the BCU is approximated by:

C(BCU) < C(Add(32)) + C(Inc(32)) + 2 - C(EQ(32)) + C(Zero(32))
+129-Cyux +9-Canp + 7 Cor + Cxor
+ (32 + fs+ kBTB) -Crea+2-Canp
+ (CBCU — 1) . [(258 + fs+2-kprp+2- ZROB)/2-| - CRrEG.

6.6 Processor Flush

The processor must be flushed if an interrupt occurred or a mispreditdi®ieen
detected. Interrupts are detected during the retire sub-pRafe mispredictions are
detected by the BCU. After a flush the processor must be in a state it wowdd ha
after the execution of the instruction that caused the flushing (respedbietdye the
execution depending on the type of the interrupt of misprediction) if all in8omis
would be executed sequentially. This is done when the instruction enterstitlee re
sub-phasdiet3 since then all registers have the correct value and the producer tables
can be reset.

In order to reduce the penalty of mispredictions, the instruction fetch is redtar
at the correct address as soon as the misprediction is detected by therf@ guar-
antee that no wrongly fetched instruction causes another mispredictionsheofithe
processor is done in two steps. As soon as a misprediction is detectedcaléding
branches are flushed. This is done by clearing the instruction fetch wnihdtiuction
fetch queue, the decode phase, and the BCU including the corresgaedarvation
station. Since these parts of the processor execute instructions inrorgeeceding
instruction is cleared. After the clear the instruction fetch is resumed at thecto

6.6 Processor Flush 167

address, but the instruction succeeding the mispredicted instruction is stiztihexin-
struction register (see section 6.4). When the mispredicted instruction graeetire
sub-phaseRet3 the remaining parts of the processor are flushed and the succeeding
instruction can be decoded.

Interrupts are detected at the end of the retire sub-pRase Therefore, the flush
of the processor is not done in two steps. When an instruction that cansetirrupt
enters the retire sub-pha&et3 all parts of the processor are cleared.

Note that in parallel to first part of the flush due to a misprediction of the tisé flu
due to an interrupt the instruction fetch unit must be updated. This can erdpihe
if the signallastcycle is active. The flushing must not affect the additional stage of
the BCU and the first stage of the retire sub-ph&sé3 since these stages contain
the instructions that caused the flush. Note that interrupts have a highetyphan
mispredictions. Thus, if a mispredicted instruction is in the additional stage of the
BCU at the same time an instruction that caused an interrupt is in the fist sttye of
sub-phaseRet3 the misprediction has no effect.

Also the remaining stages of the sub-ph&%#3 must not be flushed as they con-
tain instructions preceding the instruction that caused the flush. Hovibeanrites
to the producer table durinBet3 are overwritten by the clear signal of the producer
table. It follows:

IF.clear
1FQ.clear

D1.clear

D2.clear
RSg.clear
FUg.clear)

RSy 5.clear
FUy s5.clear
Complete.clear
Retl.clear » = (JISR.full Alastcycle) V Ret2.mp.
Ret2.clear
ROB.clear
PT.clear

= (JISR.full V MP.full) A lastcycle,

The clear signals are assumed to have a delay of zero. This is not arpriasle
the signals/ISR. full, Ret2.mp, andlastcycle as they are not assumed to be critical.
The signalM P. full is the critical signal of the BCU, but the OR- and AND-gate for
the computation of the clear signal can be put in the additional stage for iisige:
branches and therefore have no impact on the delay of the BCU.

168 Instruction Fetch

Chapter 7

Discussion

This chapter discusses the results of the preceding chapters. In sidtitwe reduc-
tion of the stage depth below five gate delay is investigated. Section 7.2 disahss
advantages and disadvantages of the gate model used in this thesissiTéedcdelay
values of the DLX; that can be derived from the formulas in the preceding chapters
are presented in section 7.3 and compared against the Tomasulo DLXKra®9]

on which the DLX_, is based. Related work is discussed in section 7.4

7.1 Stage depths below 5

In this thesis all circuits of the DLX, where designed in order to allow a stage depth
0 > 5 for the given gate model. This section describes possible enhancemerdsiin o
to allow a stage depth af.

All basic bounds for§ regarding forwarding and stalling hold for = 4. If a
stage can generate a stall the stall input may have at most delay see e(Riafipon

page 18)
D(stallIn) < 6 — (Dor + Danp).
If a stall signal is used in a forwarding circuit with stalling it must hold:
D(stall) <6 — Dyux.

Since the delay of stall signals can be reducedtgyp by inserting buffer circuits
these equations can be satisfied with= 4. The forwarding circuits require (see
equation (2.12) on page 23)

0 > max{Dyuvx,Dor} + Dyux,

which is fulfilled for§ = 4.

The equation| (4.14) on page 59 boundfor a reservation station of typeas
follows:

3-Danp if epg =1
o> max{DAND,D(FFO(eRS))} +2-Danp+Dyux fegrs >1AN0 & {0,6} .
maX{DAND,D(FFO(6R5>)} +3-Danp +Dpyux ifegrg >1AGE {0,6}

170 Discussion

This equation can be fulfilled faf = 4 only if egg = 1, i.e. all reservation stations
may have at most one entry. The number of functional unitsf a type: for a given
d is bounded by equation (4.2) on page 43:

0> Dyux + ma’X{DOR’OIE?EG(D(PP-ORBRSi)) + D(FFO(n;)))}

+ . .
DanD if n; > 1
Hence, ford = 4 the number of functional units of for each type may be at raost

The issue circuit also requires that in one cycle an instruction can balissat
least two groups (see equations (4.3) and (4.4) on page 44):

0 > Danp + D(Sel(2)) + Danp,
o> max{2 - Danp,Danp + Dyux, DMUX} + D(Sel(2)).

Both equations hold true far > 4. The requirements for the remaining stall signals
of the decode phase can be reduced by adding additional buffeitgirdote that this
would mean to add a buffer circuit into a RAM block (see figure 2.7) whichois n
necessary fof > 5.

The completion phase can be built #e= 4 if a tree of two-port arbiters is used.
These arbiters reduce the requirements of the completion phase to thedieemby
equation (4.20) on page 68:

6>2-Danp+2-Dopg

which also holds true fof = 4.

The retire phase has no additional requirements to the stagedditiwvever, the
ROB environment used in the retire phase introduces multiple bounds on dbka.
delay of the outputforwOut of the forwarding circuits for the retire context of the
ROB access is bounded by (see equation (4.24) on/page 83)

D(forwOut) < § — (Dyux + Dor + Danp).-

In the standard implementation of the forwarding circuit the ouffatoOut has at
least delayDogr and thus the equation does not hold foe= 4. In order to fulfill
the bound, the signaforwOut must be derived from the registgorw st —1 of
the last stage of the forwarding circuit (see figure 4.27 on page 82hainilom the
signal forwUpd°r<1~1 which has a delay of at lea&pr. This does not affect the
correctness but increases the number of cyglegs andcaor needed to forward from
the write access in the completion- respectively allocation-context to theazass
in the retiring-context by one.

The delay optimizations for the ROB control signaladce and tailce in sec-
tion 4.6.7 also apply foh = 4. They only assume that equation (4.24) holds true
and the delay of the signdd1.stallIn’ v D1.genStall® is at mosts, which can be
achieved by inserting buffer circuits in the decode phase (see above).

The counters for the full and empty bits require (see equation (4.27)gm§®)

0>2-Dyux + Danp

7.1 Stage depths below 5 171

clear—+ li clear—+ li

o f P

lrsw | | s |

L l P

10

s | [rs |

\ /
t l Ret3. full®
a et3. full
Lros
b o]

caor — 1times
—_

inROB—»

ecnt fent

0 1

\i
LS(1)

headce —»

ROB.empty ROB. full

Figure 7.1: Optimized full and empty counter for= 4

due to the loop for the computing of the next counter value. This does hatdro

0 = 4. Therefore, the counters for the full and empty bit must be modified as de-
picted in figure 7.1. Both counter delay one of the control signals formerging and
decrementingt@ilce respectivelyheadce) by one cycle and use the delayed signal to
modify the output of the counter (similar to the counter for the full bit in figu@14
on page 91). Due to the delaying of the signaldce andheadce all control signals
for the counter come directly out of a register. This allows to use a 4 inpedt&mn
circuit instead of two variable shifters to compute the next value of the colBdsed

on the value of the increment respectively decrement signals the seleictioit se-
lects between the shifted or the un-shifted counter value. If only one afichement

or decrement signals is active, the left- respectively right-shifted valseléxted. If
none or both signals are active the un-shifted counter value is seleictegl tise left-
and the right-shift eliminate each other. Note that the constant shifters i figl
only consists of wiring and therefore have no delay. Thus, the modifiedteoonly
bounds delta by:

§ > max{D(Dec(2)), Danp} + D(Sel(4))

which holds true fop = 4.

The update queue of the data cache bouhés follows (see equation (5.12) on
page 135):

6> HlaX{D(OR-TI’GE(BUQ))7 Danp}+3-Danp.

Thus, foré = 4 the number of entries of the update quewe) must be one. If the
optimized completion for stores is used, the path from the stall input to the fudf bit
the entry bounds the stage depth by (see equation (5.13) on page 137):

o> maX{D(OR-TI'EG(eUQ)), 2-Danp} +3-Danp.

172 Discussion

In.instr In.PC
fill Jill—=\1 0f
IF.mask[FS — 1 — 1] update cdlear IFinstreg_1_s IF.PCrs_1_;
A
update update w
fs
Out. full Out.instr Out.PC

Figure 7.2: Optimized IFQ entry

Since this does not hold far= 4 the optimized completion cannot be useddfct 4.
The signalssent, bound the stage depthby (see equation (5.14) on page 137)

1) > D(FFO(eUQ + 1)) =+ DAND =+ DMUX

which holds true foeyg = 1 ando = 4.
For the read queue it must hold (see equation (5.17) on page 141):

5> 3-Danp if erg =1
B maX{DAND,D(FFO(eRQ))} +2-Dunp +Dyox if €rqQ > 1

Thus, the number of read queue enteégg must also be one far = 4.

The instruction fetch queue requires that the stage depth fulfills the eqétion
on page 161

0>2-Danp + Dor+ Dyux

which does not hold fob = 4. In order to be able to build the IFQ for = 4 the
following modifications have to be made: the AND-ing of the full bit and the mask
is done in the instruction fetch unit. This can be done without increasing thg, de
but upon activation of the clear signal all mask bits have to be reset. Tharirthuit
depicted in figure 7.2 can be used for the entries of the instruction fetareqidote
that in this optimized version the entries might be filled even if the clear signaiveac
Thus, the clear signal for the IFQ must be active at least two cycles.

Using the modifications described in this section it is possible to build the,DLX
with a stage depth of 4. However, equation (4.14) on page 59 bounds the number of
reservation station entries for all reservation stations to one. Note thagbevation
stations stall output is active even if an instruction is currently dispatcivemk ether-
wise the delay of the stall output would get too large. Thus, instructionbedsued
to reservation stations with one entry only every other cycle.

Thus, in order to be able to issue one instruction of a type in every cycle the
DLX . needs two functional units of the type. Since the maximum number of func-
tional units of a type is two due to equation (4.2) on page 43, at most two itistiac

7.2 Gate Model 173

of a type can wait for their operands. Since for such a deep pipeline dryslikely
that the operands of an instruction are not valid at the time the instruction edissu
this is assumed to have a large performance impact.

Also, the optimization of the update queue from figure 5.21 on page 13then
done (see equation 5.16 on page 139). Thus, despite the optimized comsiteties
can only be completed if the stall from the memory unit to the read queue of the da
cache is inactive.

For these reasons and the large increase in the number of cycles litdedexty
unlikely that the performance of the DL.X regarding a reasonable benchmark can be
improved by reducing the stage depth frérto 4. Therefore, in this thesis only stage
depthsd > 5 were discussed in detalil.

This thesis does not provide a formal proof that it is impossible to build the,DLX
with a stage depth = 3 without sacrificing fundamental aspects of the DLX e.g.,
the out-of-order execution, the precise interrupts, or the possiblefssCPI (cycles-
per-instruction) of 1. However, the author thinks that it is at least vatikely that
such a DLX; is possible, since even after the described enhancements most equa-
tions bound the stage depth to be at leladn particular the bound given by the loop
for the data of the forwarding circuit with stalling (see equation (2.12) g&23) that
bounds delta to

0>2-Dyux

is assumed to be hard to improve.

7.2 Gate Model

The gate model used in this thesis is rather simple, since it does not také damore
delays into consideration. Note that some of the path that bound the stadbé tlepe
large fanout, e.g., the sign&lO Bhead.valid which stalls the whole ROB read access
in the retiring context. Due to the reduction of the device sizes in integrateditsirc
the delay of wires will have an increasing influence on the combinationay déla
signals and therefore should not be neglected [HHM99]. This can #ist aome of
the critical paths (in particular stall signals) of the DLX Thus, the gate model used
in this thesis could be too optimistic regarding delay.

On the other hand the gate model only allows two-input gates and two-pogsnux
Thus, using the more complex gates available in real designs like multi-inpuD$AN
and NORs or wide transmission-gate-muxes [WHO04] the delay of the critathl p
could be reduced. This could make up for the too optimistic estimations of the gate
model due to the neglected fanout and wire delays.

Even if one assumes that the gate model is not very realistic, the degrpelip
ing presented in this thesis is still very high in comparison to previous work. Fo
example in the deeply pipelined Pentium 4 processor a 16 bit addition (whichzha
combinational gate delays in our model) can be in less than half a cycle {BgU
Thus, even if the used gate model is off by a factor of two, the amountedfiisork
that can be done in a cycle of the Pentium 4 is still more than three times more than
the 4 gate delays of the DLX with minimum cycle time.

174 Discussion

| Variable | Description
T =d+5 | cycletime of the DLX
Lrop = 2'r0o5 || #lines of the reorder buffer
n; # FU’s of typei (0 < i < 6)
€RS, # entries of the RSs of typg(0 < i < 6)

Lpc = 2pc || #lines of the data cache
Spc =2%p¢ || # bytes of the cache-lines of the data cache
Kpo = 2Fpc associativity of the data cache

evQ # entries of the update queue

€RQ # entries of the read queue

Lo =2uc # lines of the instruction cache

S =2°%1¢ # bytes of the cache-lines of the instr. caghe

Ko =2Fpo || associativity of the instruction cache
Lprp = 2'878 || #lines of the branch target buffer
Kprp = 2F878 || associativity of the branch target buffer
FS =27F3 # instructions fetched pail’C' LK cycle

Table 7.1: Parameters of the DLX,

The author thinks that even for a more realistic model (e.g., the logicalt effor

model [SSH99]) it would still be possible to allow a similarly extensive supeelming.

In addition to the techniques discussed in this thesis it would probably besseydo
further decrease the delay of stall signals, e.g., by pipelining the full baa ofstruc-
tion one cycle ahead of the actual data and thus computing the stall signeydae
ahead. Also the functional units (except the memory unit) would not nekdigtzals

if the number of CDBs were equal to the number of functional units and tigins
could not “collide” inside the functional units. Collisions could be preveyged, by
handling divisions in software and therefore resolving loops, or bytautathe dis-
patch logic.

7.3 Overall Cost and Delay

In this section the variables describing the pipelining of the Rl Xe.g., the number
of cycles needed for decoding) in dependence of the parameterscielg. time or
ROB size) are presented. The parameters of the DLXre listed in table 7.1. The
variables describing the behavior of the DL Xare listed in table 7.2.

Using the formulas presented in this thesis it is straightforward to write a small
program that computes the variables and the cost of the,DLiX dependence of the
parameterg. In appendix E the values of the variables for some combinations of the
parameters are described.

Table/ 7.3 compares the DLX with the out-of-order DLX presented in [K89]
which is in the following called DLX . In order to match the DL, the following
parameters are chosen for the DLX

The program can be found at
http://ww+w p.cs. uni-sb.de/l eute/private_honepages/jochen/ DLX+. tgz.

7.3 Overall Cost and Delay 175

| Variable || Description

m multiplier for [FCLK

CIF # IFCLK cycles of the instruction fetch

¢p1 # cycles needed for the decode sub-ph2age

cD2 # cycles needed for the ROB access in the decode sub-phase

cr # cycles needed for issuing

cr # cycles (needed if; > 1)

CU2DM minimum # cycles from the update of an instruction in the memory| RS
to the dispatch of the instruction

CU2DI minimum # cycles from the update of an instruction in an integer or
BCU RS to the dispatch of the instruction

CU2DF minimum # cycles from the update of an instruction in an FP RS tq the
dispatch of the instruction

CU2DB minimum # cycles from the update of an instruction in an branch check-
ing RS to the dispatch of the instruction

CAT # cycles needed for the arbiter tree in the complete phase

co # cycles needed for the complete phase

CO2R minimum # cycles from the completion to the retiring of an instruction

CRet2 # cycles needed for the retire sub-ph#ke2

CShAS # cycles needed for the shift for store circuit

CHC # cycles needed for the hit computation

CM2H # cycles the result bus must be delayed

CMoOW minimum # cycles between the returning of a memory request and the
update of the cache core by a store in the update queue

CM2R minimum # cycles between the returning of a memory request and the
update of the cache core by a load in the update queue

CM2Q minimum # cycles between the returning of a memory request and the
returning of a load by the read queue

CShAL # cycles needed for the shift for load circuit

CI Alu # cycles needed for the integer ALU

CIMull # cycles needed for the first part of the integer multiplicative unit

CIMul2 # cycles needed for the second part of the integer multiplicative unit

CIMul3 # cycles needed for the third part of the integer multiplicative unit

CFPAdd # cycles needed for the FP additive unit

crpMull || # cycles needed for the first part of the FP multiplicative unit

crpMmul2 || # cycles needed for the second part of the FP multiplicative unit

crpyvws || # cycles needed for the third part of the FP multiplicative unit

crpyvua || # cycles needed for the fourth part of the FP multiplicative unit

crpymise || # cycles needed for the FP miscellaneous unit

CBCU # cycles needed for the branch checking unit

Table 7.2: Variables describing the behavior of the DL X

176 Discussion

e The ROB has 16 entries.

e Every functional unit type is instantiated only once. In the QL¥e reservation
stations of the floating point units have two entries, all other reservationrsatio
have four entries. The reservation stations of the RLéan issue an instruction
into a reservation entry in the same cycle an instruction is dispatched from the
reservation station, even if the reservation station is full. This is not possible
the DLX,, see section 4.2.2. Therefore, the number of entries is increased by
one for the DLX_ ;.

e The DLXk uses a common 16KB direct-mapped cache for data and instructions.
In order to match the size, the DL.X uses two 8KB direct-mapped caches for
the instruction fetch and the memory unit.

e The other parameters have no counterpart in the Rlaxd are chosen as fol-
lows: update queue and read queue have 4 entries, the BTB has 2866 antt
is 4-way set associative. The instruction fetch unit fetches 8 instrucfiens
IFCLK-cycle.

The cycle time of the DLX is 106 [Kr099]. The cycle time of the DLX,, must
be at leasti2 (6§ = 7) in order to allow five reservation station entries (see sec-
tion|4.2.3). Thus, for cycle times € {10,11} the number of reservation stations
is set to at mos2 respectivelyt. Note that in table 7.3 the columns for those values of
the cycle timer have been omitted which would have the same entries as the column
for the next smaller.

Only the variablesn andc;r change their value for cycle times greater #7e
At a cycle timer = 50 the multiplierm can be set to one, but then the instruction
cache access must be pipelined, igr, becomeg. If - = 68 both valuesn andc; g
can be one. Since the instruction fetch unit delivers upittstruction per instruction
fetch cycle, is not assumed to be performance critical if the instruction fekes two
cycles. Therefore, in the following only cycles times3gfand below are investigated
for the DLX ..

Note that the DLX%; does not divide the decode phase into the sub-phasesd
D2. Therefore, the number of cycles needed for issuing and for the RO&a in the
decode sub-phade?2 are set to zero for the DLK. For cycles times 080 and above,
the valuec; 4y Of the DLX is zero. This indicates that the integer ALU does not
contain any registers. Thus, the instruction can directly proceed fromegieevation
station through the integer ALU to the CDB register. In the the RLXI functional
units must have a register, but the completion phase has no register, \ahitttetsame
effect. In order to simplify the comparison the variables;; andco of the DLXx
are set to the same value as for the DLXwith a cycle time 0f30.

The DLX, with a cycle time of37 needs in the best case 5 cycles to process an
integer ALU instruction (instruction fetch not counted): 1 cycle decodscle issue,
1 cycle dispatch + execution, 1 cycle completion, and 1 cycle retiring. Thigds o
cycle more than needed for the DiXwhich does decoding and issuing in the same
cycle. However, the cycle time of the DLXis roughly 3 times as large as the cycle
time of this variant of the DLX, . Thus, even without super-pipelining the DLXis
assumed to have a much better performance than thegDLX

7.3 Overall Cost and Delay 177
DLX DLX g
7]10]11][12[13[14]15]16/17|18]20|21] 23] 25] 30| 34/35|37|50[68|| 106
m| 5| 5| 5] 4| 4| 4| 4| 3| 3| 3| 3| 3| 2| 2| 2] 2| 2| 1] 1 1
crr|| 2| 2| 2] 2] 21 2| 2| 2] 2] 22 1 2] 2|1 1] 1 2|1 1
cp1| 7| 6| 5| 4| 4| 4| 3| 3| 3| 2| 2| 2| 2] 2| 2| 1] 1] 1] 1 1
cpa| 4] 4| 3| 3| 3| 2| 22 2 2|22 11 11 1|11 0
cr|| 2 2| 211, 1| 1} 1,11 1] 1} 11,1111 1 0
coepm || 3| 4| 3| 3| 2| 2| 2 2| 2] 2] 1] 1] 1| 1, 1| 1] 1] 1] 1 1
cvepr|| 4| 4| 3| 3| 2, 2 2|2 211 1| 1| 1|1 1] 11 1 1
coopr|| B 4| 3| 3| 2| 2| 2| 2| 2, 2| 1| 1] 1| 1) 1| 1| 1] 1 1 1
cvepp|| 3| 3| 2| 2| 2| 2| 2/ 1] 1| 1] 1] 1| 1, 1| 1] 1|1 11 1
cell 3| 3| 2] 22 2|1 1|21, 1| 1] 1} 2|1 1| 1] 11 1 1
coorll 2| 2| 2| 1) 1} 1| 1| 1| 21| 1] 1] 1|1 1| 1|11 11 1
Cret2|| 7| 6| 5| 5| 4| 4] 4| 3| 3| 3| 2| 2| 2/ 2, 2| 2| 1] 11 1
crarv| 4] 3| 3| 2| 1| 1] 2/ 2| 1| 1| 1] 1] 1| 0/ 0| 0] 0| O O 0
Table 7.3: Comparison of selected variables of the DL Xand DLXx

DLX 1+ DLX i

| 10 [11 || 12 | 15 | 18 | 25 | 37 | 106
IF/BCU|| 344895 342703 339568 337376 335337334241 291155189741
Decode| 22637| 21125 17764 9001 7489 5977, 4465| 3970
Dispatch| 216404 314301 272798 193953 169423 74372 74372| 43679
Complete) 11776 12684 7268 7268 7268 7268 7268 196
Ret./ROB| 49464 43650, 35197, 28106 26648 16822 15364 19807
RF|| 23433 20055 18103 14722 14184 11856 11670 19545
PT|| 29690 25117 19802 12320 12320 7083 4966| 15574
Mem|| 1202498 973211 904068 601757 507442329466 277848225336
IALU 4502 4038 4038 3110] 3110 3110 2646 3693
IMul || 16813 15445 14533 14077 12709 12709 12253 na?
FPAdd| 43447 38967 36279 32695 30903 27319 25527 23735
FPMull| 75333 69957 65477 59205 56517 52933 50245 47557
FPMisc| 19510 18614| 17718 16822 16822 15926 15926(18135
Total|| 2060402 1899867| 1752613 1330412 1200172 899082 793705 610968

Table 7.4: Comparison of the costs of the DL.X and the DLX¢

The critical path of the DLX starts at the instruction register, goes through the de-

code phase and finally updates the PC register which determines thesaafdhesnext
instruction. The last part of this path has been removed for the,DLbY using branch
prediction. Then by splitting the decode phase into two sub-phases and/ingptioe

circuits of the decode phase, the cycle time could be dramatically improved withou

increasing the number of stages significantly.

Table 7.4 list the cost of the DLX_ and the DLX for some selected cycle times

2The DLXx does not support integer multiplications and divisions.

178 Discussion

y] 10 | 11 | 12 | 15 | 18 | 25 | 37 |
IF/BCU | 118.5%][117.7%|| 116.6%] 115.9%| 115.2%] 114.8%| 100.0%
Decode| 507.0%| 473.1%|| 397.8%| 201.6%| 167.7%| 133.9%| 100.0%
Dispatch|| 291.0%| 422.6% | 366.8%| 260.8%| 227.8%| 100.0%| 100.0%
Complete|| 162.0%| 174.5% | 100.0%| 100.0%| 100.0%| 100.0%| 100.0%
Ret/ROB|| 321.9%| 284.1%| 229.1%| 182.9%| 173.4%| 109.5%| 100.0%
RF | 200.8%| 171.9%|| 155.1%| 126.2%| 121.5%| 101.6%| 100.0%

PT || 597.9%| 505.8% | 398.8%| 248.1%| 248.1%| 142.6%| 100.0%
Mem | 432.8%| 350.3%)|| 325.4%| 216.6%| 182.6%| 118.6%| 100.0%
IALU || 170.1%| 152.6%| 152.6% | 117.5%| 117.5%| 117.5%]| 100.0%
IMul || 137.2%| 126.1%|| 118.6%| 114.9%| 103.7%| 103.7%| 100.0%
FPAdd || 170.2%| 152.7% | 142.1%| 128.1%| 121.1%| 107.0%| 100.0%
FPMul || 149.9%| 139.2% | 130.3%| 117.8%| 112.5%| 105.3%| 100.0%
FPMisc || 122.5%| 116.9%| 111.3%| 105.6%| 105.6%| 100.0%| 100.0%
Total | 259.6%| 239.4%|| 220.8%| 167.6%| 151.2%| 113.3%| 100.0%

Table 7.5: Relative increase of the cost of the DLX

from tablel 7.3. The cost of the cache of the DikXvere evenly distributed to the
instruction fetch and the memory unit. The higher cost of the DL With cycle time

37 compared to the DL is mainly due to the branch prediction and the non-blocking
cache, which increase the cost of the instruction fetch respectively thmjeinit.

Table 7.5 lists the relative increase of the cost for the DLXf the cycle time is
reduced (normalized to the DLX with a cycle time of37). The increase of the cost
is only due to the additional forwarding circuits and registers, the numhgates for
the actual computations is the same. The number of registers that has tcebledaed
to pipelining is reciprocal to the stage depth. Note that forwarding circudsjarues
use two-dimensional pipelining, i.e., the number of registers increasesatjcatly if
the stage depth is reduced.

Queues are used in the memory unit and the dispatch phase. Extengigediog
is used in the ROB and the producer table environment. Therefore, thasehpve
a large relative increase. The cost of the dispatch get smaller againdfof10, 11}
since the number of reservation station entries has to be reduced focyotsEmes.
The cost of the decode phase increases drastically if the issue cirsud pgelined.
The cost of the instruction fetch is not sensitive to the decrease of the tiye as
the multiplierm for the instruction fetch clock FC LK increases if the cycle time
decreases. Since the total cost of the instruction fetch is high this retheceslative
increase of the DLX, .

7.4 Related Work

Super-pipelining is a well-known technique to improve processor perfucealt is
used in many commercial processors, e.g., in the succeeding generattien\fPS
R3000 processor on which the DLX ISA is based on [BLM91]. Other work com-
bines super-pipelining with other techniques such as super-scalangid3igL94],
multi-threading|[GV95], or both [GV96]. However these studies use ratiwlerate

7.4 Related Work 179

super-pipelining which at least allows the computation of a 16-bit additiofictwias

12 combinational gate delays in our model) in a single cycle [GV95]. Note thhein
deeply pipelined Pentium 4 a 16-bit addition can be computed even with dogble th
core frequency [HS®H01].

Extreme super-pipelining as done in this thesis is considered in previokgiveadr
studies the optimum pipeline depth of a processor [KS86][HH[SCO2][HP02].
Usually these studies are based on an existing processor. They compatanthi-
national work to be done per instruction from the cycles needed and iipe dégth
of the processor. The cycles needed for other frequencies is then siompputed by
dividing the combinational work by the corresponding stage depth. Toeyttake
into account that the combinational work may depend on the stage deptlif fg.,
warding of RAM ports becomes necessary (see section 2.6.1). The optagaldepth
is obtained by simulating a benchmark suite for different processordrenes. None
of the studies details the effects on the logic if the cycle time is reduced or assume
lower bound for the stage depth. We now discuss the cited work in some miaie d

An initial study on the optimum pipeline depth of a processor was done byédunk
and Smith [KS86]. Their work is based on a CRAY-1S supercomputer broiu f
discrete ECL gates. Kunkel and Smith assume that interlocking (i.e., stallingomus
computed in one cycle and that central RAM blocks must be accessed icyolee
These bounds can be overcome using the techniques used in this thesididmsita
the minimum stage depth are noted in [KS86] but are later ignored in the simulations
They conclude that the maximum performance is achieved with a stage d&HEChf
gate levels for scalar code (4 levels for vector code).

Hrishikesh et. al. [HJF02] studied the optimum stage depth of an Alpha 21264
with large register files and large cache. They assume that the instructi@upvand
instruction select logic are critical circuits that bound the stage depthdéar tw allow
lower stage depths Hrishikesh et. al. propose to pipeline these circuitvidjndi
the issue window in multiple stages. They do not discuss the consequdrités o
pipelining to the correctness of the logic, e.g., if an instruction moves frons@ge
to the next. Using these pipelined circuits and assuming that all other circuoitseca
perfectly pipelined into arbitrary stages Hrishikesh et. al. conclude the optistage
depth to be 6 FO¥or integer benchmarks and 4 FO4 for floating point benchmarks.

Sprangle and Carmean [SC02] measured the performance fossome critical
loops (ALU, branch prediction, cache accesses) if the loops areasetdoy one cycle.
They model the performance loss for a loop withadditional cycles to b€l — s)™.
The total performance is computed as product of the losses for the [dhgsmodel
matches their simulations. They derive that the performance of a Pentiuotdspr
sor can be improved by 35 to 90% through implementing deeper pipelines ged lar
caches. Sprangle and Carmean assume that all circuits can be pipebiteatiby
They address the problem of forwarding in order to pipeline RAM a&sebsit do
not handle pipelining of the forwarding itself and do not include forwagdmtheir
simulations.

Hartstein and Puzak [HP02] developed an analytical formula for thempeahce
of a S/390 processor in dependence of the stage depth. The optimundsfabes
found by equating the derivation function to zero. Yet the formula uses gwocessor

3Fan-out-of-four (FO4) is defined as the delay of an inverter thaedffiour inverters of the same size.

180 Discussion

and benchmark dependent constants which are hard to determine. Alsorthda
assumes that processor logic can be uniformly divided into an arbitranpeiuof
stages.

Recent studies [HP03] [SB®2] also take power consumption into account. Since
low stage depths dramatically increase the power consumption due to therfeogeta
of necessary latches this generally leads to a larger optimum pipeline demth.tise
power consumption depends in first order on the cost of processotatibe included
in our model by not just optimizing the performance of the processor hugktyymet-
ric

1

lity =
Quality Per formancel=1 - Cost?

foraq € [0;1] as proposed by Gn [Gri94].

To the author’s best knowledge the theoretical limits of super-pipeliningtaand
minimum stage depth as presented in this thesis have not yet been studiedheAlso
consequences to the logic if even the forwarding circuits are pipelinenidigst been
discussed.

Chapter 8

Summary

In this thesis the basic techniques needed for super-pipelining of grsesere de-
scribed. These techniques comprise the insertion of buffer circuits totilsplgtall
trees and the pipelining of RAM blocks. In order to pipeline RAM blocks it isase
sary to forward the data written by succeeding writes to ongoing readseseThe
forwarding circuits presented in this thesis even allow to reduce the cycle &loe/ b
the time needed for forwarding data by pipelining the forwarding circuit itseiich
introduces two-dimensional pipelining.

Using these techniques the DLX, an out-of-order processor with multiple vari-
able parameters including the cycle time was presented. The cycle time of thg, DLX
can be reduced to down to five gate delays, with restrictions even downitagé#e
delays. Formulas were developed that compute the cost and the humbpelofep
stages based on the cycle time. Correctness proofs were given farthdahat differ
significantly from the DLX presented in [K©9]. In particular for every RAM block it
was proven that the forwarding circuits deliver the correct data refnleéhe overall
correctness of the Tomasulo algorithm.

8.1 Future Work

Using the formulas presented in this thesis it is possible to compute the variables d
scribing the pipelining of the DLX, in dependence of the parameters. The next step
would be to write a simulator for the DL . This simulator could use instruction
traces of a benchmark suite in order to compute the average time per instiTéijpn
of the DLX,+ configured to different cycle times, ROB sizes, etc. for this benchmark
suite. This would allow to examine the parameters of the DLXhat deliver the best
TPI values. In particular the optimal cycle time for the DLXcould be determined.
Apart from super-pipelining the number of active instructions in a pmesan
be increased by issuing multiple instructions in one cycle (super-scaleegsors).
The DLX,+ only supports issuing of one instruction per cycle. A super-scalar DLX is
presented in [Hil00], methods to reduce the cycles time of the central cirditger-
scalar processors can be found, e.g., in [PJS97]. An expansioe @fLtK ., could
combine multi-issuing and super-pipelining to investigate the advantages offdre d
ent approaches.
Modern processors are able to execute multiple threads at the same timel- This a

182 Summary

lows for better utilization of the resources. Using multi-threading in a suipediped
processor could decrease the optimum cycle time since useful work ciombeavhile
an instruction waits for data.

The DLX;+ uses a rather simple branch prediction scheme. The performance im-
pact of the branch prediction increases if the cycle time is reduced, sisdadieases
the number of cycles needed for the roll-back of a mispredicted branehce in-
creasing the hit-rate of the branch prediction would be worthwhile. Alsodiack
could be improved, such that the mispredicted instruction do not need tobetore
the succeeding instructions from the corrected branch target carcbdete

The cost and delay calculations of the DL Xare based on a rather simple gate
model that does not take fanout and wiring into account. Since the stadilsighthe
DLX .+ have a large fanout, a gate model that includes fanout, e.g. the logictl eff
model [SSH99], could have significant impact on the bounds of the cycle time
order to investigate the impact, the delay calculations of the DL Zould be adopted
for the logical effort model.

Appendix A

Instruction set architecture

A.1 Instructions

In this section the instructions which are supported by the processonmmraaized.
All instructions which do not handle special registers or the programteouare di-
rectly taken from the MIPS 32000 instruction set[KH92]. Since the pimredoes
not support delayed branch, the control flow change instructionalteesd accord-
ingly. Special register and interrupt handling are based on the DLX implitieam
by Muller and Paul [MPQO].

The instructions of the processor are presented in the tables A.1 to Aetedrd
by the type of functional unit they use. If the bja : 26] of the instruction indicate
an floating point instruction, but the rest of the instruction matches none dbliow-
ing opcodes, the FOP (unimplemented floating point operation) interrupt is raised.
Otherwise if the instruction matches none of the following opcodes;jlih@legal
instruction) interrupt is raised. In this case the instruction is not sent taratiénal
unit but the valid bit of the ROB entry is set.

The instructions have up to four parameters: the destination registersadeyre
the two operand address@d?, and O P,, and an immediate constaiitm. For the
description of the instructions, the following abbreviations are used fordpister
files:

GD := GPR|D] FD := FPR|D] SD := SPR|D]
GOP, := GPR[OP,] FOP, := FPR[OP]] SOP; := SPR[OP]
GOPy:= GPR[OP,] FOPy:= FPR[OP)] SOP, := SPR[OP,]

Gi := GPRJi Si := SPRJi]

The following abbreviation is used to describe a memory location of variablinrfd
the memory is seen as an one-dimensional array):

M (addr,d) := M[8 - (addr +d) — 1 : 8 - addr]

The memory is usually addressed by the sum of the operand 1 and the immediate
constant. This sum is abbreviated &y. For the description of the instructidl,
lwr, swl, andswr (load / store word left / right), the base addréasand the offset

184 Instruction set architecture

[IR[31:26] | Instr. | Group | Effect \

100000 | Ib [GD] = [M(ea, 1)]

100001 | Ih [GD] = [M (ea,2)]

100011 |w | Load | [GD] = [M(ea,4)]

100100 | Ibu (GD) = (M (ea, 1))

100101 | Ihu (GD) = (M(ea, 2))

100010 [l | . | GD = M(ba,00+ 1), GD[23 — 8 -0 : (]
100110 | Iwr GD =GDJ[31:8- (4 — oa)], M(ea,4 — oa)
110001 | wcl | LoadFP | [FD] = [M(ea, 4)]

101000 | sb M(ea,1) = GOBR|T7 : 0]

101001 | sh Store M (ea,2) = GOP;[15 : 0]

101011 | sw M(ea,4) = GOPs

101010 | swl StoreLR M(ba,0a+ 1) = GOP,[31: 8- (3 — oa)]
101110 | swr M(ea,4 —oa) = GOP[8- (4 —oa) —1: 0]
111001 | swcl| StoreFP| M(ea,4) = FOP;,

Table A.1: Memory instructions

addressaq are used:

ea := [GOPy] + [imm]
ba := |ea/4]

oa :=ea mod 4

A.2 Encoding

The table A.8 shows the encoding of the instructions paraméersP;, OP,, and
imm. The parameter®, OP;, andO P, have always width 5 bit. The width of the
immediate constaritnm depends on the width of thenm field in the encoding.

A.2 Encoding

185

| IR[31:26] || Instr. | Group | Effect
001000 || addi [GD] = [GOP,] + [imm]
001001 || addiu (GD) = (GOP) + (imm)
001010 || slti GD = ([GOPy] < [imm])?031 : 032
001011 || sltiu Al GD = ((GOPy) < (imm))?0%1 : 032
001100 | andi GD = GOPy A (016 imm)
001101 || ori GD = GOP; Vv (016 imm)
001110 | xori GD = GOP; @ (016 imm)
001111 || lui GD = (imm, 01°)
111111 || trap Trap trap =1, eData = [imm)]
IR[31 : 26] = 000000
IR[5:0] [Instr. | Group | Effect
000000 || sl GD = GOP, << (imm)
000010 || srl Shiftt | GD = GOP, >> (imm)
000011 | sra GD = GOP, >> (imm) (arith.)
000100 || sliv GD = GOP, << (GOP,[4:0])
000110 | srlv Shift | GD = GOP, >> (GOP[4:0))
000111 || srav GD = GOP, >> (GOPy[4 : 0]) (arith.)
100000 || add [GD] = [GOP,| 4 [GOP;]
100001 || addu (GD) = (GOPy) + (GOP,)
100010 || sub [GD] = [GOP,| — [GOP,]
100011 || subu (GD) = (GOP)) — (GOP,)
100100 || and Alu GD = GOP, NGOP,
100101 || or GD =GOP,V GOP»
100110 || xor GD = GOP, & GOP,
100111 || nor GD =GOP, vV GOP,
101010 || slt GD = ([GOPy] < [GOPy))?70%1 : 032
101011 || sltu GD = ((GOP;) < (GOPy))?031 : 032
TR[31 : 26] = 010001
IR[25:21] || Instr. | Group | Effect
00000 | movef2i Move?| GD =FOP,
00010 moves2i GD = SOP,
00100 movei2f Movel2 FD=GOP,
00110 movei2s SD =GOP,

Table A.2: Integer ALU instructions

186 Instruction set architecture

IR[31 : 26] = 000000
IR[5:0] || Instr. | Group | Effect

011000 mult [.~ [[59.58] = [GOP] + [GOP;]
011001 | multu (59, 58) = (GOP,) * (GOP,)
011010|| div {SS}:[GOP J/GOP,]

59] = [GOP] mod [GOP,)
(S8) = (GOP)/(GOP)
(S9) = (GOP;) mod (GOP;)

Div
011011} divu

Table A.3: Integer multiplicative instructions

TR[31 : 26] = 010001
IR[21] | IR[5:0] | Instr. | Group | Effect
0 [000000 fadd.s [FD] = [FOP,] + [FOP]
0 | 000001 fsubs | .\ | [FD] =[FOP] — [FOP,]
1 | 000000| fadd.d [FD¥] = [FOP;]+ [FOP,]
1 | 000001 fsub.d [FD¥] =[FOP] — [FOP,]

Table A.4: Floating point additive instructions

IR[31 : 26] = 010001
IR[21] | IR[5:0] | Instr. [Group | Effect
0 | 000010 fmul.s [FD] = [FOP,] * [FOR,]
0| 000011 fdivs | ., | [FD] = [FOP]/[FOP)]
1 000010| fmul.d [FDV] = [FOP[| *[FOPS]
1 | 000011 fdiv.d [FD¥] = [FOP]/[FOP;]

Table A.5: Floating point multiplicative instructions

IR[31 : 26] = 010001
IR[23:21] | IR[5:0] | Instr. | Group | Effect
000 11c[3:0] | fcomp.s ST = ([FOP]Jop[FOP2])?1:0
001 11c[3:0] | fcomp.d S7 = ([FOP{ Jop[FOP5])?1:0
000 000101 | fabs.s [FD] = |[FOP]|
000 000110 | fmov.s [FD] =[FOP]
000 000111 | fneg.s [FD] =—-[FOP]
001 000101 | fabs.d I
001 000110 | fmov.d I
001 000111 | fneg.d I
001 100000 | fevt.s.d I
[
[
[
[

FComp

FMisc

FD] = [FOP;"
100 | 100000 | fovtsw | VS FD%—PFOP;]]]
000 | 100001 | fovtd.s FD'] = [FOP]
001 | 100001 | fevtd.d | FCvtD | [FD¥] = [FOP]
100 | 100001 | fevt.d.w FD¥] = [FOP)]
000 | 100100 | foviws | - [FD] = [FOP|]
001 | 100100 | fovtw.d W ED = [FOP]

Table A.6: Floating miscellaneous instructions

A.2 Encoding 187
| IR[31:26] | Instr. | Group | Effect |
000100 [beq | g [PC]+ = ([GOPy] = [GORy])?[imm] - 4
000101 || bne [PC]+ = ([GOP,| £ [GOPy))[imm] - 4

000110 [[blez | o~ | [PCl+ = ([GOP\] < 0)7[imm] : 4
000111 || bgtz [PC]+ = ([GOPy] > 0)?[imm] : 4

000010 ||] Jump [PC]+ = [imm]
. [PC]+ = [imm]
000010 | jal JumpAL G31] = [PC] + 4
[PC] =[S2]
111111 | rfe | RFE (501 = [51]
IR[31 : 26] = 000000
IR[5:0] | Instr. | Group | Effect
001000 || jr JumpR [PC]+ = [GOP]
. [PCI+ = [GOP]
001001 | jalIr JumpALR (GD] = [PC] + 4
TR[31 : 26] = 000001
IR[20:16] || Instr. | Group | Effect
00000 | bltz [PC]+ = ([GOPy] < 0)2[imm] : 4
00001 | bgez | BN I BaIT = (GO S 0)7fimm] < 4
21 .
10000 | bitzal [PCL+ = (IGOR] < 0)7[imm] : 4
(G31] = [PC] + 4
BranchZAL
10001 || baezal [PC|+ = ([GOPy] > 0)?[imm)] : 4
g [G31] = [PC] + 4

IR[31 :26] = 010001 A IR[25 : 21] = 01000

IR[20:16] || Instr. | Group | Effect
00000 [l BCIF [54 [PCl+ = ([S7] = 0)?[imm] : 4
00001 | BCIT [PC]+ = ([S7] = 1)?[imm] : 4

Table A.7: Control flow change instructions

188 Instruction set architecture

| Group | [31:26] | [25:21] | [20:16] | [15:11] | [10:6] | [5:0] |
*

Shift 000000, OP, OP; D 8881}0
*

Shiftl 000000 OP, D imm 8888}0

100***

Alu 000000| OP; OP, D 10101*

Alul 001** [OP, D imm

MoveF2l 010001| 00000 | D OP,

MoveS2I 010001| 00010 | D OP,

Movel2F 010001| 00100 | OP, D

Movel2S 010001| 00110 | OP, D

trap 111110 mm

Mult 000000| OP; OP, 01100*

Div 000000 OP, OP, 01101*

Load 188021 OP, D imm

LoadLR 100*10| OP, | ORID imm

LoadFP 110001| OP; D imm

**

Store 181210 OP, OPR, imm

StoreFP 111001| OP; OoP, imm

Branch 00010*| OP OPR, immm

00011* .

Branchz 000001 OP; 0000* mm

BranchZAL || 000001| OP; | 1000* imm

Jump 000010 mm

JumpAL 000011 imm

JumpR 000000| OP; 001000

JumpALR || 000000| OP; D | 001001

BC1 010001| 01000 | 0000* imm

rfe 111111

FAddSub [010001] 1000* | OP, | OP, | D | 00000* |

FMulDiv._ [010001] 1000* | OPy | OP, | D [00001* |

FComp 010001| 1000* | OP; OPs 117

FMisc 010001| 1000* OP, D 8881’;
FCvt.W 010001| 1000* OP, D 100100
FCvt.S 010001 1828(1) OPs D 100000
FCvt.D 010001 1828; OP, D 100001

Table A.8: Instruction set architecture encoding

Appendix B

Emulation of a MIPS R3000

Apart from interrupt handling, the ISA of the DLX differs in the following points
from the MIPS R3000 processor ISA [KH92]:

e The DLX,;does not support delayed branch. The semantic of branch instruc-
tions are altered accordingly.

e The DLX;does not have a co-processor 0 (memory management unit). CPO
instructions cause an illegal instruction interrupt.

e All special registers (including floating point special registers and thisters
HI and LO) are combined in the special register file. Instructions acggessin
special registers must be emulated by the instructiaeses2i respectively
mover2s.

e The floating point special register is divided into the special registe(floating
point mask),RM (rounding mode)/ EEE f (floating point flags), and’C'C
(floating point condition code). Instructions accessing the floating ppétial
register are assumed to access the special rediBtEF f.

The MIPS R3000 instructions which cannot be mapped directly are emulated a
summarized in table B.1.

MIPS instruction

DLX, instruction \

syscall,break trap

cfcl,mflo,mflo moves2i(OP, = 6,8,9)
ctcl,mtlo,mthi movei2s(D = 6,8, 9)
mfcl movef2i

mtcl movei2f
bcO0,cfc0,mfcO,mtcO,tibr,tibwi,tlbwr,tlbp not implemented

Table B.1: Translation of MIPS R3000 instructions

190 Emulation of a MIPS R3000

Appendix C

Additional Circuits

In this chapter all additional circuits needed for the design of the plafe described.

C.1 Basic Circuits

C.1.1 Design

Figure C.1 depicts the design of a half-unary find-last-one circuit. Notettbaircuit
computes additionally to the find-last-one outgiiit an outputzero which indicates
that all input signals are zero. Foar= 1 the design of the circuit is simple. Foar> 1
the circuit is build from two half-unary find-last-one sub-circuits with ondflof the
input bits. One circuit uses the upper half of the input bits, the other ther loalé
The zero output is active if both zero outputs of the sub-circuit areeadfithe lower
parts of the inputs contains a one (i.e., the zero output of the lower part &ctie,
the outputflo of the upper part must be forced to zero.

C.1.2 Cost and Delay

This section lists the formulas for the cost and delay of the basic circuitsinisiid
thesis.

n>1 n=1

infn —1: n/2]] 7',77,[_77/2i7 1:0] in

HELO(n/2]) | | HFLO((n/2)) 1

zero zero flo
|
* Y Y i

o

zero flojn—1:[n/2]] flo[[n/2] —1:0] zero flo

Figure C.1: Design of a half-unary find-last-one circuit

192 Additional Circuits

Find-Last-One / Find-First-One

D(FLO(n)) < [logn] - Danp,

0 ifn<l1
C(FLO(n)) < { C(FLO([n/2])) + C(FLO([n/2])) o |
+([n/2]+1) - Canp
D(FFO(n)) < D(FLO(n)),
C(FFO(n)) < C(FLO(n)),
D(HFLO(n)) < D(FLO(n)),
C(HFLO(n)) < C(FLO(n)),

Decoder / Encoder

D(Dec(n)) < [logn] - Danp,

C(Dec(n) < {0 st
C(Dec([n/2])) + C(Dec(|n/2])) + 2" - Canp ifn>1

D(HDec(n)) < n-max{Danp, Dor},

0 ifn<1

C(HDec(n — 1) + 2"~ (Canp + Cor) ifn>1’

0 ifn<1

D(Enc([n/2])) + Dyux ifn>1"

C(HDec(n)) < {

D(Enc(n)) < {

0 ifn<l1
C(Enc(n)) < { C(Enc([n/2])) + C(Enc(|n/2])) . o1
+Canp + ([n/2]) - Cymux

Parallel Prefix

D(PP-FUNC(D(FUNC), n)) < [logn] - D(FUNC),

0 ifn<l1
C(PP-FUNC(C(FUNC), C(PP-FUNC([n/2])) ,
+C(PP-FUNC(|n/2]))
+(n—1)-C(FUNC) ifn>1
D(PP-AND(n)) < D(PP-FUNC(Danp,n)),
C(PP-FUNC(Canp,n)),
D(PP-FUNC(Dog, n)),
C (

PP-FUNC(Cog,n)),

(
C(PP-AND(n
D(PP-OR(
C(PP-OR(n

n

) < D(
) < C(
)) < D(
) < C(

C.2 Instruction Decode 193

Incrementer / Adder

< D(PP-AND(n — 1)) + Dxor ifn>1’

C(Inc(n)) < C(PP-AND(n — 1)) + (n — 1) - Cxor,

D(Add(n)) < Dxor + D(PP-FUNC(Dypx,n — 1)) + max{Dyux, Dxor},
C(Add(n)) < C(PP-FUNC(Cyix,n)) +2-n-Cxor.

D(Inc(n)) {0 tn<l

Trees

D(FUNC-Tree
C(FUNC-Tree
D

—~

D(FUNC), n
C(FUNC), n

AND-Tree(n
C

(
(
D(OR-Tree(
C(OR-Tree(n

—

logn] - D(FUNC),
—1)-C(FUNC),
FUNC-Tree(Danp,n)),
FUNC-Tree(Danp,n)),
FUNC-Tree(Dogr,n)),
FUNC-Tree(Dog,n)).

Checks

Dxor + D(AND-Tree(n)),

n-Cxor + C(AND-Tree(n)),
D(OR-Tree(n)),
C(OR-Tree(n)).

ININ N CIA

Selection Circuit

D(Sel(n)) < Danp + D(OR-Tree(n)),
C(Sel(n)) <n-Canp + C(OR-Tree(n)),

C.2 Instruction Decode

The instructions are decoded by the two circliesstCmp andDecode. The circuit
DestCmp computes the bu®.x which contains all signals regarding the destination
address. Since these signals are needed to update the producethalplase consid-
ered timing critical. The circuiDestCmp is therefore delay optimized. The remaining
control signals are computed by the cirddicode.

194 Additional Circuits

C.2.1 Decode

This section only describes the control signals which are needed bydtbdalphase.
The computation of the control signals used by the functional units is deddritthe
together with the functional units.

The main purpose of the circuidecode is to compute the following busses:
FUtmp{IAlu, IMul, Mem, BCU, F Add, F Mul, F Misc}, OPy, {gpr, fpr, spr},
and O P,.{gpr, fpr,spr}. These busses define which FU should be used by an in-
struction and from which register file the operands have to be taken. Atanesof
a signal of a bus may be active. If none of the sigralg, .x or O P,.x is active, an
immediate constant is used as operand.

The computation of the control signals is based on the division of the instnsctio
into instruction groups. The instruction group of a instruction is defined iie tat8
along with the encoding for the group. Table C.1 shows for each instrugtiounmp
which control signal must be active.

The circuitDecode computes for each instruction to which instruction group it
belongs. The control signals are computed as or of the instruction girowugsch the
signal is active. The last column of the table C.1 defines for which grodjtiawial
control signals needed in the decode phase have to be valid.

If an instruction is a floating point instruction (i.d.R[31 : 25] = 0100011), but
belongs to no group, the signallUunimp must be activated. If the instruction is
not a floating point instruction and belongs to no group, the signal illegalict®on
interrupt:ll must be activated.

If the branch prediction assumes that an instruction is an control flow atitnu
(indicated byl F'Q).pb), the instruction has to be sent to the branch checking unit in
any case. Hence, the signdll. BCU has to be active and the remaining signals of
the busF'U.x must be 0. IfI F().pb is not active, the value af Utmp.x can be used
to computel'U .

If the instruction is not an control flow instruction, the sigrfalb is activated
to indicate an falsely predicted branch. If an instruction is a branch initrubut
IFQ.pb is not active, the signalpb (not-predicted branch) is activated. The signals
fpb andnpb are needed by the BCU. It follows:

FU.BCU = FUtmp.BCU V IFQ.pb
FUx = FUtmp.x AN IFQ.pb

fpb = IFQ.pb AN FUtmp.BCU

npb = TFQ.pb A FUtmp.BCU

The operands may only be double precision values, if the instruction isamgio
point instruction. For floating point instructions double precision opesamd indi-
cated by the bif R[21]. If the first operand is an immediate constant, the constant is
always determined by the bifs?[10 : 6]. The immediate constant for operand 2 is the
address of the instruction if an instruction memory interrupt occurredywibe the

C.2 Instruction Decode 195

| Group | FUtmp. | OP,. | OP;. |

Alu gpr | gpr

Alul gpr

Shift gpr | gpr

Shiftl gpr
MoveS2F | IAlu fpr
MoveF2S qgpr
MoveS2| spr
Movel2S gpr

Trap trap
M.u It IMul gpr | gpr

Div gpr gpr

Load gpr

LoadLR gpr | gpr
LoadFP Mem gpr

Store gpr qgpr
StoreFP gpr | fpr | storeF’P
Branch gpr | gpr
Branchz gpr

BranchZAL gpr

Jump

JumpAL BCU

JumpR gpr

JumpALR gpr

BC1 spr

RFE spr spr | rfe
’ FAdd ‘ FAdd H fpr ‘ for ‘ ‘
’ FMul ‘ FMul H fpr ‘ for ‘ ‘
FComp for | fpr

FMisc for
FCvt.W FMisc for
FCvt.S for
FCvt.D for

Table C.1: Active control signals

sign extended bits R[15 : 0.

OP; 2.dbl = IR|[21],
OPy.imm = IR[10 : 6],
fPC if IpfV Imal

OPy.imm = tpy vV Ima
2 {13[15]1613[15:01 if Tpf A Tmal

The only instructions that explicitly read or write the special regisfeF E f are
moves2i respectivelymovei2s. These instruction access the registétE E f if the

196 Additional Circuits

| Variable| Meaning | Value |

Armax length of longest monomial in table A.8 17
Asum, accumulated length of all monomials in table A.8 395
Vmaz maximum number of monomials per group in table /A|82

Veum, number of monomials in table A.8 41

0% number of groups in table C.1 32
Bmaz maximum frequency of a control signal in table C.1 | 15
Bsum accumulated frequency of all control signals in table C720

w number of output signals in table C.1 16

Table C.2: Variables of the Decode Computation

bits TR[15 : 11] encode the number of this register (6):

read EEEf = MoveS2I A TR[15 : 11] = 00110
write] EEEf = Movel2S A IR[15 : 11] = 00110

Cost and delay of the circuibecode can be computed using the variables from
table C.2 derived from the tables A.8 and C.1:

C(Decode) < (Asum — Vsum) - CAND + (Vsum — ¥ + Bsum —w) - Cor
+(124+8+4+7)-Canp +Cor +32- Cyux
<381-Cuanp +64-Cor+32-Cyux
D(Decode) < [log Mnaz | - Danp + [10g(Vmaz * Bmaz) | - Dor + Danp
<6-Danp +5-Dor

C.2.2 Destination computation

The computation of the signal3.{gpr, fpr, spr}, D.addr, andD.dbl can be derived
from Table C.3. To avoid unnecessarily many stages of forwarding inebed# sub-
phaseD1 the delay of the circuiDestCmp should be minimized.

The computation of the signals can be simplified using the fact, that the illegal
instruction signalill causes an abort interrupt. Thus the value of the write signals
may be arbitrary for illegal instructions. For the implementatidfR.impl.write of a
write signalD .2R.write of a register filéR it suffices if the following equation holds:

D SRwrite < D.R.ampl.write < DR.SR.write V ill

The other signals for the register file D.2R.x (excluding the write signal) need only
to have correct values if the write signal is active. This simplifies the condiiotine
implementation of these signal®.R.impl.x as follows:

DR+ if DRwrite=1

DSR.ampl.x = {
* else

For the sake of simplicity the implementation of the above signals and their defin-
ition will be identified. Figures C|2 to C.2 show the parts of the cirBgstCmp for

C.2 Instruction Decode

197

Group

[D]

D.addr

[D.dbl

Movel2F

LoadFP

IR[20 : 16]

FCvt.W

FCwt.S

FAddSub

fpr

FMulDiv

FMisc

FCvt.D

IR[10 : 6]

IR[21]

Alul

MoveF2I|

MoveS2I

Load

LoadLR

IR[20 : 16]

Alu

gpr

Shift

Shiftl

JumpALR

IR[15 : 11]

BranchZAL

JumpAL

11111

Mult

Div

01000

Movel2S

spr

TR[15 : 11]

rfe

00000

FComp

00111

Table C.3: Destination registers

GPR, FPR, and SPR. Cost and delay of the circuit are:

D(DestCmp) < maX{Q . DORa 2. DAND, DMUX} +2. DOR
C(DestCmp) <58 - Canp +16-Cor + 27 - Cyux

198

Additional Circuits

IR|
IR[31: 29]4>| =100
D D.GPR.write
13[31:29]44 =001
IR[31,29,28,26]4>‘ =0001
IR[31:
IR[30,25 : 23];»‘ =1000 IR20: 16
IR[27] IR[15:
IR[20]
IR[30] IR[31:
Figure C.2: Destination computation for GPR
IR[4) TR0 6l ———>TY 1 b bR addr
IR[5) IR[20: 16] ——»{ 0 e
IR[25] IR([25]
IR[31] IR[31] =g

IR[25 : 21] —»| =00100

IR[30 : 26] | =10001

IR[31 : 26] *‘=111111
IR[31: 26] -»‘zOlOOOl 00111
IR[15: 11]

IR[4)
IR]5]
IR[22]
IR[23]
IR[25)

HE

IR[0] ' D.FPR.dbl
IR[21]

IR]5]

D.FPR.write

Figure C.3: Destination computation for FPR

IR[31 : 26] -»{=000000}— D.SPR.dbl

D.SPR.write
IR[25]

B D.SPR.addr
00000

01000 B
IR[31]

IR[30]

ITR[31] -.

Figure C.4: Destination computation for SPR

D.GPR.addr

Appendix D

Functional Units

The pipelining of the functional units is straightforward. The functiondtsunsed

by the DLX;are only listed for completeness and to compute the costs and number
of cycles for the computations. The design of the integer multiplicative unitlzad
floating point units is not detailed here as it lies beyond the scope of this.thesis

D.1 Integer ALU

Figure D.1 depicts an overview of the integer ALU. It consists of an arithmutic
AU, a shift unitSU, and a logic unit.U.

TheAU is detailed in figure D.2. It performs additions, subtractions and test-opera
tions. TheAU consists of an 32 bit adder and some glue logic to compute subtractions
and the correct negative and overflow signals. Cost and delay ofithenatic unit
are:

D(AU)
C(AU)

D(Add(32)) + 2 - Dxonr,

<
< C(Add(32)) +36-Cxor +2-Canp.

The SU (see figure D.3) uses a cyclic shifter to compute right and left shifts. The
shift amount for right shifts in computed by an incrementer. A mask reptheasost
significant bits by zero of the sign bit for arithmetic shifts. Cost and dela@shift

AU SuU LU

ov, e Sum
Loid

031

add

Figure D.1: Integer ALU

200 Functional Units

31
unsigned 31] — test

test

neg ovf sum

Figure D.2: Arithmetic unit

OP, OP[4:0]

;HDec>
Q
sra
o ST Y
A

CLS

1 0

Out
Figure D.3: Shift unit
unit are computed as:

D(SU)
C(SU)

<7-Dyux,
< C(Inc()) + 229 Dyux + Canp-
TheLU (see figure D.4) computes logic operations on the operands depending on
the opcode. It also copies the second operand to the output for trayciitstis. Cost
and delay of the logic unit are:

D(LU) < Dxor + D(Sel(5)),
C(LU) <64-Cyunp +32-Cor+32-Cxor+32-Cnogr + 32-C(Sel(5)).

Let ers, be the number of entries of the integer ALU reservation station and let
D(FU(ers,))™ be the additional delay to the integer ALU from the reservation station.
Letn be the number of functional units and igtbe computed as in section 4.4. Then
the delay of the integer ALU and the delay of the stall input from the completiasg

D.2 Integer Multiplicative Unit 201

OP, OP,

Out

Figure D.4: Logic unit

are:

D(IALU) < D(FU(egs,))"™ + max{D(AU), D(SU), D(LU)} + 2 - Dyux,
D D(FLO(min{¢ D if ¢ 2
DUALU.stallIn) < 4 DAnp + DIFLOGmin{t, n})) + Daox ity > 2
Danp + Dor if t7, =2
Let the variable; 41y be one if a buffer circuit needs to be added to the integer
ALU. This is the case if the following equation does not hold (similar to the B@¥, s

section 6.5.2):

0 > max{D(AND-Tree(|D(ALU)/d]| + 1)), D({ Alu.stallIn)} + Danp

2'DAND if €RS: =1
2-Danp +Dyux ifegs, >1

Hence, the number of cycles s, and the cost of the integer ALU can be approxi-
mated by:

craruy = [(D(ALU) + braru - Dvux) /0],
C(IALU) < C(AU) + C(SU) + C(LU) + 96 - Dyjux + Canp + Cor
+ (cary — 1) - [(65 +8+34+ lROB)/ﬂ - CRrEG-

D.2 Integer Multiplicative Unit

Figure D.5 depicts the integer multiplicative unit. The first part of the unit distrib
utes the instructions to either the multiplication of the division part of the unit. dt als
computes the booth recoding for the multiplier. The second part of the inmegjér
plicative unit consists of a Wallace tree for the multiplication and a SRT baseatkdi
circuit (see, e.g., [HOH97]. In the last part the carry-save respygtcarry-borrow
result of divisions or multiplications is compressed using a 64 bit adderd&sign of
the divider circuit is not detailed here. It is assumed that it has the sameatethe
Wallace tree and computes 4 result digits. Thus, it has to be used 8 times te §ét th
bit quotient and remainder.

The delay of the distribution part is given by the cost and the delay of théhbo
recoding (see [MPOOQ] for the formulas) and the additional delay intredury the

202 Functional Units

OP, OP,

Distribute

R

Wallace

I-: Divide Tree

Compress

v

to Completion

Figure D.5: Integer multiplicative unit

integer multiplicative reservation station. Legs, be the number of entries of the
reservation station anf(FU(erg,)) be the additional cost. Then:

C(Distribute) < 16 - (2- Cxor + Cnor) + 33 - (3-Cnanp + CxoR),
D(Distribute) < D(FU(ers;)) + Dxor + Dnor + 2 - Danp + Dxor.

The delay and cost of a Wallace Tree with 32 bits can also be derivedififormulas
in [MPOO]:

C(WallaceTree)
D(WallaceTree)

(35-14+2-2-16) - C(Add(1)),

<
<2.3. D(Add(1)).

The cost of the divider are approximated by the cost of 4 32 bit cavg-adders and
a 64 bit shifter.

C(Divide) < 4 - 32 - C(Add(1)) + 64 - (Casvx + Crec).

The circuitCompress in the last part of the unit also selects between the outputs of
the wallace tree and the divider circuit. Therefore, cost and delay otifusit are
approximated by:

D(Compress) < Dypx + D(Add(64),
C(Compress) <64 -Cyux + C(Add(64)

Buffer circuits are added to the first stages of the cir@ailnpress andDistribute
if necessary. Let the variablg ;3 be one if a buffer circuit is inserted into the
circuit Compress, andb;as1 be one if a buffer circuit is inserted into the circuit
Distribute. Let I Mul.stallIn be the stall input of the integer multiplicative unit from
the completion phase. Then the delay of the stall output to the reservatiom statio
(design not detailed here) is assumed to be:

D(IMul.stallOut) < max{max{D(AND-Tree(] D(Compress)/J])),
D(IMul.stallIn)}, D(AND-Tree(| D(WallaceTree)/d1))}
+ Danp + Dor + Dyux + Danp.

D.3 Floating Point Units 203

If the equation

2-DanD if erg, =1

d > D(IMul.stallOut) + .
2-Danp+Dyux ifers, >1

does not hold; 5s.,3 is set to one. This reduces the requirement to:
d > D(AND-Tree(| D(WallaceTree)/d]) + 2) + Dor

2'DAND if €RS; =1
2-Danp +Dyux ifers, > 1
If this equation does not holbl ;.1 is also set to one. Then all requirements are
assumed to hold fof > 5. Let ¢rprut, crvui2, crawg be the number of cycles
needed for the circuitBistribute, WallaceTree, andCompress. It holds:
[(D(Distribute) + b1 pull - DMUX)/5—|7
crvue = [D(Multiply) /61,
crvwz = [(D(Compress) + brarus - Dvux) /0],
C(IMul) < C(Distribute) + C(Divide) + C'(WallaceTree) + C(Compress)
+ (ermutt + crvuz + cravrusz) - [(65 + 8 +34) /2] - Creg-

CIMull =

D.3 Floating Point Units

The delay of the additive and multiplicative floating point unit are from [SeiTBe
delay of the miscellaneous floating point unit is computed by synthesis using Syn
ergy [Cad97] from the Verilog source [Lei02] of the corresponding from [Jac02].

The additive and the miscellaneous floating point units have straight pipelirets
ers, andegs, be the number of entries of the reservation stations for the additive
and miscellaneous floating point units andI&tFU(ers,)) andD(FU(ers,)) be the
additional delay introduced by the reservation stations. The delay of tlitvadand
miscellaneous floating point units is approximated by:

D(FPAdd) < D(FU(egs,))" + 114,
D(FPMisc) < D(FU(egs,))" + 30.
A buffer circuit is inserted into the first stage of the additive and miscellasmieo
floating point unit if the requirements for the stall input of the correspandaser-
vation stations do not hold. This is assumed to suffice for the miscellaneatisiglo

point unit and a stage depth= 5. However a second buffer circuit has to be inserted
into the additive floating point unit if the following equation does not hold:

§ > max{D(FPAdd.stallIn), D(AND-Tree([D(FPAdd) /5] + 1))} + Danp.

Letbrpaqgq andbrparise be the number of buffers inserted into the respective floating
point units. Then the number of cyclegp 444 andcrpasise are approximated by:

crpadd = [(D(FPAAd) + brpada - Dyvux)/61,
crpMise = | (D(FPMisSC) + brparise - Dvux) /9]

204 Functional Units

oprP, 0P,

Unpack

Multiply
L

to Complete

Figure D.6: Floating point multiplicative unit

An overview of the multiplicative floating point unit is depicted in figure D.6. The
first part of the uniUnpack unpacks the operands. The approximation circuit for the
reciprocalApprox is only needed by divisions. The third part of the unit is the actual
multiplier circuit Multiply. While multiplication use this circuit only once, divisions
need to use the circuit 5 times for single precision and 7 times for double iprecis
The last two multiplications of the divisions are independent and can bedsiarte
two succeeding cycles. The last part of the WRatLnd rounds the result. Letrg,
be the number of entries of the multiplicative floating point reservation statidn an
let D(FU(egs,)) be the additional delay for the functional unit from the reservation
stations. Then the delays of the circuits are as follows [Sei03]:

D(Unpack) < D(FU(ers;)) + 29,
D(Approx) < 38,
D(Multiply) < 67,

D(Round) < 34.

The delay of the stall output (design not detailed here) if no buffer itgr@re
inserted is:

D(stallOut) < max{D(FPMul.stallIn), D(AND-Tree([34/5] + [67/5] + 1))}
+Danp +Dor + Danp +Dyux + Danp.

If this does not fulfill the requirements of the stall input of the reservatiatios, a
buffer circuit in inserted into the first stage of the circMitltiply. This reduces the
delay of the stall output to:

D(stallOut) < max{Danp + Dor, D(AND-Tree([38/46]))}
Danp + Dyux + Danp-
If this also does not fulfill the requirements another buffer circuit is iteskinto the
first stage of the circuitnpack. Let cpparuils CEPMw2y CEP M3, @NAcrpirua bE

the number of cycles needed for the circltispack, Approx, Multiply, andRound.
Let the variabled,;,;1 andby,;3 indicated if buffer circuits are inserted into the

D.4 Memory Unit 205

circuitsUnpack andMultiply. Then:

crpymun = [(D(Unpack) + brparui - Duux)/d1,
crpymu2 = [D(APProx/dl,
crpyruz = [(D(MUltiply) + brparus - Duux)/01,
crpmas = [D(Round/é7,

The cost of the floating point circuits are approximated by the cost of ttre-co
sponding floating point units from [Lei99]. The number of inputs of thetif@apoint
units is146 + lgro B, the number of outputs iB) + [rop. Then the costs of the units
are approximated by:

D(FPAAd) < 23735 + (crpadd — 1) - (108 + lros) - Cric,
D(FPMisc) < 15926 + (¢rparisc — 1) - (108 + lroB) - CrEG,
D(FPMul) < 47557 + (crpamuit + cFPMw2 + CFPMw3 + CFPMuls — 4)
(108 + lroB) - CrEG-

D.4 Memory Unit

This section describes the circuits shift for st&®4S and shift for loadSh4L used
by the memory unit.

D.4.1 Shift for Store

The shift for store circuiSh4S mainly computes the effective address of the memory
access and shifts the store data to the right position. The design of Gied8 is
straightforward except for the load / store word left / right instructiofiable D.1
shows the mapping of the source bytes to the destination bytes for thesetinsiin
dependence of the bits 0 to 1 of the effective address. The bold nunubetrefload
instructions are the bytes of the destination register (which is also operangdtihat
may not be changed.

The data cache can replace a bitanly with the bytei of the word loaded from
the memory. Thus, the operand two has to be shifted before the caclss aceevay
that the bytes which must not be replace are in the positions that are nonhwiiitie
circuit Sh4L then shifts the bytes at the final position. Table D.2 shows the result of
the data cache, if the bytes to be preserved are shifted at the positiorsdhadt
overwritten.

For default store instructions, the bytes to be written have to be sHiftéd : 0])
bytes to the left. This also holds for store word right and load word righitiingons.

If cyclic shifters are used it suffices to pre-shift the data by one byté&a word left
and store word left instruction.

Figure D.7 shows the circuBh4S. Apart from the effective addregs and the
busdata it computes the busb, that indicates which bytes are used, and the data
misaligned interruptDmal. The circuit uses multiple control signals which can be
derived from the opcode and are not assumed to be timing critical. Thdssigria

206 Functional Units

dest. byte dest. byte
3 2 10 3 2 10
~ 313 2 1 0 —~ 3|0
T 2 3 21 T 2|/1°0
=1 3 2 = 1|2 1 0
<0 3 L 0(3 2 10
SWL SWR
dest. byte dest. byte
3 2 1 0 3 2 1 0
—~ 3[/3 210 —~ 0]3 2 1]3
T 2|2 1 0f0 T 1|3 2[3 2
= 1|1 01 0 = 2|3[3 21
L 0|02 1 0 L 3/3 210
LWL LWR

Table D.1: Mapping of source bytes to destination bytes

mem byte mem byte

3 21 0 3 21 0
—~ 3|3 210 —~ 3[3]3 2 1
T 2[0]2 1 0 T 213 2]3 2
= 1|1 0]1 0 = 1|3 2 13
£ 0|2 1 0|0 £ 0|3 2 10

LWL LWR

Table D.2: Result of the data cache access for load word left / right instructions

and swl indicate a load respectively store word left instruction. If the sigiialr

OP, OP, imm

w hw
v v .
b’z;:D. CLS(8) Add o w
v [1:0] [1]1 [1]&
CLS(8) [0l \i \i \i
]
cLs@s) fe—L
v v
data ea Dmal

Figure D.7: Shift for Store

D.4 Memory Unit 207

is active, the instruction is a store / load word left / right instruction. Otieawhe
sighalshw andw indicate a half-word respectivetyord wide access.

For standard accesses the computation of thesbubased on the signada|1 : 0],
hw, andw is straight-forward. For load / store word left / right instructions the bus
can be computed with half-decoders. The interrDptal must be active if the bit
ea[0] is active and the instruction is a half-word or word-wide access or they[it
is active for a word-wide access. The the data misaligned intePupil is active the
instruction must not be sent to the data cache but to the ciBti4it.. Hence:

DCache. full = full N Dmal,
Sh4L.full = full AN Dmal.

Note that only the lowest order bits of the effective addressre used by the other
circuits. The delay and cost of the circ@ibh4S are (including the computation of the
control signals):

D(Sh4S) < max{D(Add(32)), D(Add(2)) + D(HDec(2)) +2- Dyux},
C(Sh4S) < C(Add(32)) + 2 - C(Dec(2)) + C(HDec(2))
+104 - Cpiux +11-Cop +10- Cynp.

D.4.2 Shift for Load

The shift for load circuitSh4L mainly receives the result from the data cache, shifts
the bytes to be read to the right, and does a sign extension if necessararbiter
circuit to the memory unit which selects the source of the next data to be comhjgete
described in the section 5.7 of the memory unit. Figure D.8 shows the resetgfith

for load circuit.

The upper part of the circuit computes the result (including sign extengion
standard read accesses. If the instruction is a load word left or loadl ngiit, the
word must be shifted from the position in table D.2 to the position in table D.1. This
can be done using a cyclic shifter and an incrementer. If an interrupirrect; the
memory unit must return the effective address as result.

Note that the control signals are not critical as they can be computed dhifhg s
for store. Then the delay and cost of the circsiit4L (including the computation of
the control signals) are:

D(Sh4L)
C(Sh4L)

4-Dyux,
C(Inc(2)) + C(Dec(2)) + C(Sel(4))
4+ 186 - Cpyux +3- Dor + Danb.

<
<

208 Functional Units
hw
cal0] dataln[31,23,15,7] datalIn[31 : 24] dataln[15:8] dataIn[31 : 0]
all
call call] N1 0] cal] >\ 0
_— sext
unsigned
dataIn[31 : 16] 16 8 8 16
\
},
w 10 i) w eal0] w
w
ldata[31 : 16] ldata[15 : 8] ldata|7 : 0]
dataln
eal: 0]
CRS

ldata

Dpf
Dmal

dataOut

lwl
-r—lwr
Figure D.8: Shift for Load

Appendix E

Cost and Delay

This appendix lists the variables of the DLXin dependence of the parameters listed
in table E.1. In order to reduce the number of dimensions only three paranaeer
assumed to be variable: the cycle time, the ROB size and the number of entries pe
reservation station. For all other parameters reasonable default eatielsosen.

The other parameters are set as follows: The DLXas only one functional unit
per type. The data and the instruction cache are both 4-way set as&déK large
and have both 32 byte wide cache-lines. The update queue of the datisdas 4
entries, the read queue has 8 entries. The BTB is 4-way set assoeiadiveas 256
entries. The cache fetches 8 instructions €’ LK cycle.

Note that for a stage depthof 5 it is not possible to build an update queue or read
gueue with more than two entries. Fbr= 6 the read queue may have at most four
entries. In these cases the number of entries of the queues are set taxthmeima
possible value.

The cycle time is between 10 and 100 gate delays (i.e5,é < 95). The ROB

| Variable | Description | Default |
T :=d +5 | cycle time of the DLX 10 — 100
Lrop :=2'708 || #lines of the reorder buffer 32 — 128
n; # FU's of typei (0 < i < 6) 1
€RS; # entries of the RSs of typg(0 < ¢ < 6) 2—38
Lpc :=2'v¢ | #lines of the data cache 128
Spc =2°%pC # bytes of the cache-lines of the data cache 32
Kpe :=2Fpc associativity of the data cache 4
evQ # entries of the update queue 4
eRQ # entries of the read queue 8
Lic :=2uc # lines of the instr. cache 128
Sic =2%1C # bytes of the cache-lines of the instr. caghe 32
Ko =2Fpc associativity of the instruction cache 4
Lprp:=2'878 | #lines of the branch target buffer 64
Kprp:=2F875 | associativity of the branch target buffer 4
FS =27s # instructions fetched per cycle 8

Table E.1: Parameters of the DLX,

210 Cost and Delay

has between 32 and 128 lines. The reservation stations have betwee8 2ainies.
For simplicity all reservation stations have the same number of entries. Notethat
5 € {5,6} the all reservation stations except the memory and the branch checking
reservation station may have at most two respectively four entries. Fonehgory
and branch checking reservation station, the allowed number of entrigendess.
Therefore, for theses reservation stations also the results for onlgringis given.
No results are given if the number of reservation station is larger than thienuax
possible number.

Tables E.2 and E|3 list the variables of the DLXin dependence of the three free
parameters. If the variables do not change if one of the parameterséasec, the
line respectively column is omitted. Tables E.4 and E.5 list the overall cost of the
DLX .+ in dependence of the three free parameters.

211

Lros |

7 [10[11]12]13[14[15]16/17]18]19|20[21| 22| 23| 25 27| 29| 33| 34|35|37] 41 49|50/ 67| 77 ers,

32

64
128

*

*

*

*

*

1
2
4

8
*
1
2
4
8
2
4
8
2
4

8
1
8

*

*

*

5/ 5 5| 4 4] 4| 4] 3| 3| 3| 3| 3| 3| 3| 2| 2| 2| 2| 2| 2| 2] 2| 2] 1] 1| 1

20 2| 2| 2| 2| 2| 2| 2|2 222 21 2222 11 1] 1| 1 2| 11

7| 6| 5| 4| 4| 4| 3| 3| 3| 3| 2| 2| 2| 2| 2| 2| 2| 2| 2|1 1] 1] 1] 1] 1|1

6| 5| 4| 4| 4| 3| 3| 3| 3| 2| 2| 2| 2| 2| 2|2 2|1 1|1 1] 1] 1 1] 11

9| 8| 7| 6| 5| 5| 4| 4| 4| 4| 3| 3| 3| 3| 3| 2| 2| 2, 2| 2| 2| 21 1] 11

(1,111 2212|112 211 212 1|1 1}2 1|1 11 11
201 11| 1 1|1 1|2 111 1)1 12111 1{2 1121 1/ 11
na 2| 1 1 1, 1} 1| 1} 1| 1, 1} 1, 1} 1, 1} 1| 1} 1| 1} 1|1 1}1 111

15/12|11| 9| 8| 8| 7| 6| 6| 6| 5| 5| 5| 4] 4| 4| 3| 3| 3| 3| 3] 2| 2| 2| 2| 1

nana 2| 1,1 1} 1} 1| 1| 1| 1| 21|, 21 1{ 1} 1} 1| 1| 21|, 2| 21} 1| 1} 1 1] 1
322211 1)1} 221} 1|21} 1)1} 12} 12121 21 12111
31 3/ 22221 1,2)2 211 1} 1] 1| 2,221} 1 11/1/ 1 1
na 4| 3| 2| 2| 2 2|2 21, 1} 1, 1| 1, 1| 1, 1| 1,1} 1,21} 1] 1] 1|11
nana 3| 3| 2| 2 2 2221121211} 1} 1| 1| 1, 2|21} 1|1 1 11
najnana 3| 2| 2| 2|2 2,2 2|1, 1| 1, 1| 1,1} 1,1} 1,1} 1| 1] 1] 1 1
4, 3| 3| 2| 2| 2|2 2|1 1| 1 1| 2 1| 2| 1| 2|1} 2112 115 11 1
na 4| 3| 2/ 2| 2 2 2|21 1| 1,111} 1} 1| 1| 21,2211 1 11
najnal 3| 3| 2| 2| 2|2 22 11,1} 1, 1| 1, 1| 1,1} 1221} 1] 1] 1] 11
5/ 4, 3| 3] 2| 2|22 22 1|1 1] 1| 1| 1| 2, 2|21} 1] 1] 1] 1] 1/ 1 1
na 4| 3| 3| 2| 2| 2|2 2|2 21 1| 1,1} 1,1} 1,1} 12,21} 1] 1] 1] 11

najna 4 3| 3| 2| 2|2 2,2 2,2 11 11|11} 1 1|1 1}1 111

3| 3/ 22 221 1|11} 1 1} 2| 1} 2| 1} 1| 11|21 11| 11|11

nanana 2/ 2/ 2 2,1 11 11 1} 1, 1} 1| 1} 1} 1} 1|1 1}1 111

3/ 2/ 11111 1| 111 121 2| 11| 1 1{12 11/ 11/ 11

3| 3/ 22 2211111 111 1] 1 1)1 1|1 11| 11|11

202|211 1|1 1|2 1121 1)1 1|1 1{2 1{2 11211 11

7| 6| 5| 5| 4| 4] 4] 3| 3| 3| 3| 2| 2| 2| 2| 2| 2| 2| 2|21 1] 1] 1] 1] 1

m

CIF

CD1
CD2
CD2
CD2

C1

Cr
Cr

Cr
cr

CU2DM
CU2DM
CUu2DM
CU2DM
Cu2DI
Cu2DI
Cu2DI
CU2DF
CU2DF

CU2DF

CUu2DB

CU2DB

CAT

cc
CC2R

CRet2

Table E.2:

Variables of the DLX, (part 1)

212 Cost and Delay

1
2
4
8
*
*
*
2
4
8
*
*
2
4
8
*
*
*
*

nana 2 22 1, 1{ 1|1, 1 1 1, 1} 1} 1| 1| 1 1 1/ 0] 0] 0] 0] O] O O] O] O] O] O] 0] O] O] O
csh4as ||N@Najna 2 2y 1, 1,1, 1, 1| 1,1y 1, 11, 1,1, 1,1 1 0/ 0 0] 0O 0] O 0] O O] Oj0O] O] OO
4 3| 3| 2| 2| 2| 2|2 2|21 1] 11| 11|21 1|2 112|112} 1/1{11{2 112 11|11
3/ 3/ 202 222 2211 11 1} 1)1 1|11) 111 1121 2] 11|11/ 11 11
4| 3| 3| 3| 2| 2| 2| 2 2|2 21 11} 11|21 1|2 1121|112} 1/1{11{2 1125 11|11
3/ 22,2 111 1|11} 1 11 1} 1)1 12|11} 1 11 1121 12]1 121|111 1 11
4, 3/ 3| 211 2,2 1,1/ 11/ 1/ 1|1 11 1,1 0/ 0[O0 O] O O] O O] O O] O]0O]0O]OO
2/ 1) 1 1| 1/ 0| 0 O] 1| 1] 1| O] O] O| O] O| O] O| O] O O] O] O| O] O| O] O| O] O O] O O] 0] O
naj 1) 1, 1| 1| 0| 0| 0| O/ 1| 1, 1| O] O] O] O] O| O] O| O] O] O] O] O] O O] O] O] O] O] 0] 0] 0| O
najna 1/ 1} 1| 1) 0| 0] 0| O/ 1| 1| 1| 0| O] O] O] O] O| O] O| O] O| O] O] O] O] O| O] O] 0] O] O] O
6| 5| 4| 4| 3| 3| 3| 3| 2| 2| 2|2 2|2 2|2 2{2 11 1/ 1|1/ 1|1 121 1151 1|1 1|1
4/ 3| 2| 2| 2| 221 11 1 1} 11|12 1|21 1|2 112|112} 11/ 1{2 1125 11/ 11
23/18|15|14{12/11| 9| 9| 9| 8| 7| 6| 6| 6| 5| 5| 5| 5| 4| 4 4 4 4| 3| 3| 3| 3| 2, 2| 2| 2| 2] 1] 1
6| 5| 4| 4| 3| 3| 2| 2| 2| 2| 2| 22221 11 11, 11| 11| 1 1|1 1[0 0/ 0 0/0]O0
na| 5| 4| 4| 3| 3| 2| 2| 2| 2 2| 2 2|2 21| 11| 1 1|1 1} 1| 1] 1| 1} 1| 1| 1| 0/ 0] 0|0 O
najna 4 4| 3| 3| 3| 2| 2| 2 2| 2 2| 2221 1 1 1|1 1, 1| 1} 1| 1} 1] 1] 1] 1 0{ 0|00
8| 7| 6| 5 5| 4| 4] 4| 3| 3| 3| 3| 3| 2| 2| 2| 2| 2| 2| 222 22 221 1] 11|11 1|1
14112|10| 9| 8| 7| 7| 6| 6| 5| 5| 4| 4| 4| 4| 4| 4| 3| 3| 3| 3| 3| 3| 3| 3| 2| 2| 2| 2| 2| 2| 2] 2| 1
7| 5| 4| 4| 4| 3| 3| 3| 3| 2| 2| 2| 2|2 2|2 2|2 22 21 111 11 111 1|1 11
504/ 3/ 32 2 21 22211 1 1111|1211 1 1, 1 1] 0{ 0] 0|00/ 0] 0]0]0]O
5 33/ 2 21 22,211 11 1,1, 1} 1| 1 1] 1] 1| 0/ 0] 0/ 0] 0| O] O] O] O] O] O] 0| O

7 [|10]11]12[13]14[15[16[17]18]19] 20| 22| 23| 24| 25| 26| 27| 28/ 29| 30| 31| 33| 34| 35| 38| 39| 43| 45| 46| 47| 48] 62| 65| 72| ers,
3] 2| 2] 2| 1] 1| 2| 1] 1] 1| 1] 1] 1] 1] 1] 1] 1] o] o] o] O] o] o] o] o] o] of o] o] o] o] o] o] O

1
1
1
12
13
dd
1
11
1
12
13
14

cac ||12|10| 9| 8| 7| 6| 6| 5| 5| 5| 4| 4| 4| 3] 3| 3| 3| 3| 3| 3| 3| 3| 2| 2| 2| 2 2| 2| 2| 2| 2|1 1] 1
CFPMu

cshas ||NA 2| 2| 2 2| 1 1} 1 1, 1| 11| 1, 1|1 11 1 0/ 0] 0] O O] O O] O O] O O] O]0O]0O]O O

CSh4sS
CSh4s
CM2W
CM2R
CM2Q
CShaL
CIALU
CBCU

CFPMu
CFPMu
CFPMu
CFPMu
CFPMisc

Table E.3: Variables of the DLX . (part 2)

(T wed) T%71@ 8y 401s0D '3 9|qel

| 10 | 11 12 | 13 | 14 15 | 16 | 17| 18 | 19 | 20 || ers, | Lros
2748823[2428247] 2247879] 2067335| 1899064 1784354 1748697 1649984 1637588| 1563675| 1447715 2 32
2820714| 2503079| 2319473| 2123671| 1936419 1830683| 1783910, 1685063 1672439| 1607267| 1479595|| 2 64
2971889| 2633813| 2445418| 2227592| 2030252 1920692| 1870585 1760683| 1744375 1678605| 1550465 2| 128
na | 2599696 2402933| 2217131| 2002000| 1887290| 1851633| 1742998| 1742062| 1651431| 1555667|| 4 32

na | 2667841| 2477693| 2276523| 2041597 1935861| 1889088| 1780209| 1779257| 1697045| 1589943 4 64

na | 2788361 2606804| 2383500| 2137672| 2028112| 1978005| 1857961| 1853537| 1770405 1663209|| 4| 128

na na | 2775631| 2551181 2342078| 2093720| 2058503| 1929120| 1928184| 1860937| 1731273| 8 32

na na | 2846436 2617345| 2388535| 2146783| 2100450| 1970595| 1969643| 1911247| 1769593 8 64

na na | 2967405| 2731094| 2491470| 2243526| 2193859| 2052611| 2048187| 1989303| 1846903 8| 128

| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31| ers, | Lros
1445719 1427559| 1365538 1289197 1349252 1348348| 1348348| 1347444[1345292] 1344820] 1344820 2 32
1477599| 1459407| 1397386| 1321037| 1381084| 1380172| 1369087| 1368175/ 1365999| 1365519| 1365519 2 64
1545013| 1526789| 1453850| 1377493| 1437532| 1436612 1433156| 1432236| 1419113| 1418625| 1418625 2| 128
1486615| 1468919| 1406434 1330093| 1390148| 1389244| 1389244| 1388340 1386972| 1385716 1385716 4 32
1519703| 1501983| 1439490 1363141| 1423188| 1422276 1411191| 1410279| 1408895| 1407623| 1407623| 4 64
1588325| 1570581| 1497162 1420805| 1480844| 1479924| 1476468| 1475548| 1463225| 1461937| 1461937 4| 128
1702613| 1550805| 1488784| 1411979| 1472034| 1472034 1471130| 1470226| 1468858| 1468386| 1467602| 8 32
1740493| 1586285| 1524264| 1447443| 1507490 1507490 1495493| 1494581| 1493197| 1492717| 1491925 8 64
1813907| 1657299| 1584360| 1507523| 1567562| 1567562 1563186 1562266 1549943| 1549455| 1548655 8| 128

€l¢

(z ved) %@ au1J01s0D 53 9|qeL

| 32 33] 34 35] 37| 38| 39 41 43 45| 46 [ers, | Lros
1342495] 1331144[1198225] 1195777] 1194133[1193229] 1192325] 1192325] 1191421] 1190517| 1189613] 2 32
1362985| 1360961| 1228042| 1225562| 1223918| 1223006| 1222094| 1222094| 1221182| 1220270| 1219358|| 2 64
1415884| 1413844| 1280925| 1278405| 1273305| 1272385| 1271465| 1260547| 1259627| 1258707| 1257787| 2| 128
1383391| 1372040| 1239121| 1236673| 1235029| 1234125| 1233221| 1233221| 1232317| 1231413| 1231413 4 32
1405089| 1403065| 1270146| 1267666| 1266022| 1265110| 1264198| 1264198| 1263286| 1262374| 1262374| 4 64
1459196| 1457156| 1324237| 1321717| 1316617| 1315697| 1314777| 1303859| 1302939| 1302019| 1302019 4| 128
1465277| 1453926| 1321007| 1318559| 1316915| 1316011| 1315107| 1315107| 1314203| 1313299| 1313299|| 8 32
1489391| 1487367| 1354448| 1351968| 1350324| 1349412| 1348500| 1348500 1347588| 1346676 1346676 8 64
1545914| 1543874| 1410955| 1408435| 1403335| 1402415| 1401495| 1390577| 1389657| 1388737| 1388737 8| 128
47 48 49 50 62 65 67 69 72 77 ers. | Lros

1189613| 1189613| 1189613| 1251634| 1185290| 1184386| 1122365| 1122365| 1121461| 1121461| 2 32

1219358| 1219358| 1208272| 1270293| 1203949| 1203037| 1141016| 1141016| 1140104| 1140104| 2 64

1257787| 1257787| 1257787| 1319808| 1253464| 1252544| 1190523| 1187067| 1186147| 1175224| 2| 128

1230509 1230509| 1230509| 1292530 1226186| 1225282| 1163261| 1163261 1162357| 1162357|| 4 32

1261462| 1261462| 1250376| 1312397| 1246053| 1245141| 1183120| 1183120| 1182208| 1182208 4 64

1301099| 1301099| 1301099 1363120| 1296776| 1295856| 1233835| 1230379| 1229459| 1218536/ 4| 128

1313299| 1312395| 1312395| 1374416| 1308072| 1307168| 1245147| 1245147| 1244243| 1244243|| 8 32

1346676| 1345764| 1334678| 1396699| 1330355| 1329443| 1267422| 1267422| 1266510| 1266510| 8 64

1388737| 1387817| 1387817| 1449838| 1383494| 1382574| 1320553| 1317097| 1316177| 1305254 8| 128

vi¢c

Aeja@ pue 150D

Bibliography

[BIK*03]

[BLM91]

[Cad97]
[Grii94]

[GV95]

[GV96]

[HHMO99]

[Hil95]

[Hil00]

[HIFF02]

Sven Beyer, Christian Jacobi, Danieldfing, Dirk Leinenbach, and
Wolfgang J. Paul. Instantiating uninterpreted functional units and memory
system: functional verification of the VAMP. BHARME 2003volume
2860 ofLNCS pages 51-65. Springer, 2003.

Asghar Bashteen, Ivy Lui, and Jill Mullan. A superpipeline eggch to
the MIPS architecture. IRroceedings of the IEEE COMPCQMNages
8-12,1991.

Cadence Design Systems ISgnergy HDL Command Referent897.

Thomas din. Quantitative Analyse von I/O-ArchitekturerDisserta-
tion (paul), Universiat des Saarlandes, Computer Science Department,
Saarbiicken, 1994.

Bernard Goossens and Duc Thang Vu. Further pipelining anidi-mu
threading to improve risc processor speed. a proposed architecire an
simulation results. IfProceedings of the 3rd International Conference of
Parallel Computing Technologiepages 326—-340, September 1995.

Bernard Goossens and Duc Thang Vu. Multithreading to imprgetec
width and cpi in superpipelined superscalar processor®rdneedings

of the International Symposium on Parallel Architectures, Algorithms and
Networks pages 36—42, June 1996.

M. Horowitz, R. Ho, and K. Mai. The future of wires. Invited Workshop
Paper for SRC Conferench¥lay 1999.

Mark Hill. SPEC92 Traces for MIPS R3000 processors. Ursitg of
Wisconsin, Madison, 1995.
ftp://tracebase.nmsu.edu/pub/tracebase4/r3000/.

Mark A. Hillebrand. Design and evaluation of a superscalar risc@ssor.
Diplomarbeit, Universit des Saarlandes, Computer Science Department,
Saarbiicken, 2000.

M.S. Hrishikesh, Norman P. Jouppi, Keith I. Farkas, Doug Burger,
Stephen W. Keckler, and Premkishore Shivakumar. The optimal logic
depth per pipeline stage is 6 to 8 fo4 inverter delays.Ptaceedings

of the 29th Annual International Symposium on Computer Architecture
pages 14-24, May 2002.

216

Bibliography

[HOH97]

[HP96]

[HPO2]

[HPO3]

[HSU*01]

[IEEE]

[Jac02]

[JCL94]

[KH92]

[KMP99]

[Kog81]

[KP95]

[Kro81]

[Kr699]

David L. Harris, Stuart F. Oberman, and Mark H. Horowitz. TS#vi-
sion architectures and implementations.Pioceeding of the 13th IEEE
Symposium on Computer Arithmetiages 18-25, 1997.

John L. Hennessy and David A. Pattersddomputer Architecture: A
Quantitative Approach; second editiorMorgan Kaufmann, San Fran-
cisco, California, 1996.

A. Hartstein and Thomas R. Puzak. The optimum pipeline depth for a mi-
croprocessor. IRProceedings of the 29th Annual International Symposium
on Computer Architecturgpages 7—-13, May 2002.

A. Hartstein and Thomas R. Puzak. Optimum power/performance
pipeline depth. InProceedings of the 36th International Symposium on
Microarchitecture 2003.

Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Cannea
Alan Kyker, and Patrice Roussel. The microarchitecture of the pentium 4
processorlntel Technology JournaFirst Quarter 2001.

Institute of Electrical and Electronics EngineerANSI/IEEE standard
754-1985, IEEE Standard for Binary Floating-Point Arithmeti®85.

Christian JacobiFormal Verification of a Fully IEEE Compliant Float-
ing Point Unit Dissertation (paul), Universit des Saarlandes, Computer
Science Department, Saaiiloken, 2002.

Stephan Jourdan, Dominique Careg, and Daniel Litaize. A high out-
of-order issue symmetric superpipeline superscalar microprocessor. |
Proceedings of the 20th Euromicro conferenpages 338—-345, January
1994.

Gerry Kane and Joe HeinrichMIPS RISC Architectute Prentice Hall,
New Jersey, 1992.

Daniel Krdning, Silvia M. Miller, and Wolfgang Paul. A rigorous correct-
ness proof of the Tomasulo scheduling algorithm with precise interrupts.
In Proceedings of the SCI'99/ISAS’99 International Confered&89.

Peter M. KoggeThe Architecture of Pipelined ComputeMcGraw-Hill,
1981.

Jorg Keller and Wolfgang PaulHardware Design — Formaler Entwurf
Digitaler SchaltungenTEUBNER, 1995. (in German).

D. Kroft. Lockup-free instruction fetch/prefetch cache amgation. In
Proceedings of the 8th International Symposium on Computer Architec-
ture, pages 81-87, May 1981.

Daniel Kioning. Design and evaluation of a risc processor with a tomasulo
scheduler. Diplomarbeit, Univergit des Saarlandes, Computer Science
Department, Saarticken, 1999.

Bibliography 217

[Kro01]

[KS86]

[Lei99]

[Lei02]

[LS84]

[McF93]

[MLD +99]

[MP95]

[MPOO]

[PJS97]

[SBG02]

[SC02]

[Sei99]

Daniel Kibning. Formal Verification of Pipelined MicroprocessorBis-
sertation (paul), Universit des Saarlandes, Computer Science Depart-
ment, Saarlircken, 2001.

Steven R. Kunkel and James E. Smith. Optimal pipelining in supercom-
puters. InProceedings of the 13th Annual International Symposium on
Computer Architecturgpages 404—-411, June 1986.

Holger W. LeisterQuantitative Analysis of Precise Interrupt Mechanisms
for Out-Of-Order Execution Processor®issertation (paul), Universit
des Saarlandes, Computer Science Department, Sakdur, 1999.

Dirk Leinenbach. Implementierung eines maschinell verifiziertea ¢s-
sors. Diplomarbeit, Universit des Saarlandes, Computer Science De-
partment, Saarficken, 2002. (in German).

Johnny K. F. Lee and Alan J. Smith. Branch prediction strategids a
branch target buffer desighEEE Computerpages 6—22, January 1984.

Scott McFarling. Combining Branch Predictors. TechnicaldReEpN-36,
DEC Western Research Labratory, June 1993.

Silvia M. Muller, Holger Leister, Peter Dell, Nikolaus Gerteis, and Daniel
Kroning. The impact of hardware scheduling mechanisms on the perfor-
mance and cost of processor designsPioceedings of the 15th GI/ITG
Conference ’Architektur von Rechensystemen’ ARCS)@ges 65—73.
VDE Verlag, 1999.

Silvia M. Muller and Wolfgang J. PaulThe Complexity of simple Com-
puter ArchitecturesSpringer, Berlin;Heidelberg;New York, 1995.

Silvia M. Muller and Wolfgang J. PauComputer Architecture, Complex-
ity and CorrectnessSpringer, Berlin;Heidelberg;New York, 2000.

Subbarao Palacharla, Norman P. Jouppi, and James E. Smifhle&idy-
effective superscalar processorsPimceedings of the 24th Annual Inter-
national Symposium on Computer Architeciyrages 206—-218, 1997.

Viji Srinivasan, David Brooks, Michael Gschwind, Pradip Bos&tef
Zyuban, Philip N. Strenski, and Philip G. Emma. Optimizing pipelines for
power and performance. Proceedings of the 35th International Sympo-
sium on Microarchitecturgpages 333-344, November 2002.

Eric Sprangle and Doug Carmean. Increasing processorpance by
implementing deeper pipelines. Rroceedings of the 29th Annual Inter-
national Symposium on Computer Architectuviay 2002.

Peter-Michael SeidelOn the Design of IEEE Compliant Floating-Point
Units and Their Quantitative AnalysisDissertation (paul), Universit
des Saarlandes, Computer Science Department, Sakdor, 1999.

218 Bibliography

[Sei03] Peter-Michael Seidel. Delay of IEEE Compliant Floating Point Units.
Personal Communication, March 2003.

[Sic92] James E. Sicolo. A multiported nonblocking cache for a superscala
uniprocessor. Ms thesis, University of lllinois, Department of Computer
Science, Urbana IL, 1992.

[SP85] James E. Smith and Andrew R. Pleszkun. Implementation of precise in-
terrupts in pipelined processors.Rnoceedings of the 12th Internationnal
Symposium on Computer Architectupages 36—44, June 1985.

[SPEC] Standard Performance Evaluation Corporatiime SPEC92 benchmark
suite http://www.specbench.org.

[SSH99] Ivan Sutherland, Bob Sproull, and David Hartisgical Effort: Design-
ing Fast CMOS CircuitsMorgan Kauffman Publishers, 1999.

[Tom67] R.M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. IBM Journal Research and Developmght:25-33, January 1967.

[Web88] C. F. Webb. Subroutine call/return stack. Technical Ref{13, IBM
Technical Disclosure Bulletin, April 1988.

[WHO4] Neil H. E. Weste and David HarrisCMOS VLSI Design: A Circuits and
System Perspectivé&ddison-Wesley, 2004.

[Yeh93] Tse-Yu YehTwo-Level Adaptive Branch Prediction and Instruction Fetch

Mechanisms for High Performance Superscalar ProcessBhD thesis,
University of Michigan, Department of Electrical Engineering and Com-
puter Science, 1993.

	1 Introduction
	1.1 Outline

	2 Basics
	2.1 Notation
	2.2 Cost and Delay Model
	2.3 Basic Circuits
	2.4 Encodings
	2.5 Pipelining
	2.5.1 Stages
	2.5.2 Computation of Stall Signals
	2.5.3 Optimization of the Stall Computation
	2.5.4 Maximum Delay of Stall Inputs

	2.6 Pipelining of RAM Blocks
	2.6.1 Forwarding
	2.6.2 Forwarding with Stalling
	2.6.3 Pipelining of the Forwarding Circuits
	2.6.4 Cost and Delay

	3 Tomasulo Algorithm
	3.1 Overview
	3.2 Basic Data Structures
	3.2.1 Functional Units
	3.2.2 Register Files and Producer Tables
	3.2.3 Reservation Stations
	3.2.4 Common Data Bus
	3.2.5 Reorder Buffer

	3.3 Instruction Execution
	3.3.1 Decode
	3.3.2 Dispatch
	3.3.3 Execute
	3.3.4 Completion
	3.3.5 Retire

	4 Processor Core
	4.1 Decode
	4.1.1 Overview
	4.1.2 Operands
	4.1.3 Instruction Decoding Circuit
	4.1.4 Operand Generation
	4.1.5 Destination Computation
	4.1.6 Instruction Issue
	4.1.7 Stalling
	4.1.8 Cost and Delay

	4.2 Dispatch
	4.2.1 Entries
	4.2.2 Reservation Station Control
	4.2.3 Pipelining

	4.3 Functional Units
	4.4 Completion
	4.4.1 Arbiter
	4.4.2 Pipelining
	4.4.3 Cost and Delay

	4.5 Retire
	4.5.1 Overview
	4.5.2 Tag Check
	4.5.3 Interrupt Handling
	4.5.4 Cost and Delay

	4.6 Reorder Buffer Environment
	4.6.1 Overview
	4.6.2 Pipelining of the Retiring-Context
	4.6.3 Forwarding
	4.6.4 Implementation of Forwarding
	4.6.5 Control
	4.6.6 Correctness
	4.6.7 Delay Optimizations
	4.6.8 Cost and Delay

	4.7 Register File Environment
	4.7.1 Forwarding
	4.7.2 General Purpose Register File
	4.7.3 Floating Point Register File
	4.7.4 Special Purpose Register File
	4.7.5 Cost and Delay

	4.8 Producer Table Environment
	4.8.1 Forwarding
	4.8.2 Cost and Delay

	5 Memory Unit
	5.1 Overview
	5.2 Overview of the Data Cache
	5.2.1 Execution of Memory Accesses
	5.2.2 Cache Core and Main Memory
	5.2.3 Speculation

	5.3 Hit Computation
	5.3.1 Overview of the Hit Signal Computation
	5.3.2 Local Hit Signals
	5.3.3 Static Hit Signals
	5.3.4 Global Hit Signals
	5.3.5 Actions
	5.3.6 Stall Computation
	5.3.7 Cost and Delay

	5.4 Cache Core
	5.5 Update Queue
	5.5.1 Entries
	5.5.2 Control
	5.5.3 Delay Optimizations
	5.5.4 Optimized Completion for Store Instructions
	5.5.5 Cost and Delay

	5.6 Read Queue
	5.6.1 Cost and Delay

	5.7 Stall Computation
	5.8 Cost and Delay

	6 Instruction Fetch
	6.1 Instruction Fetch Mechanism
	6.1.1 Overview
	6.1.2 Clocking of the Instruction Fetch
	6.1.3 Branch Prediction

	6.2 Instruction Fetch Unit
	6.2.1 Overview
	6.2.2 Instruction Cache
	6.2.3 Computation of the Next Fetch-PC
	6.2.4 Instruction Fetch Control
	6.2.5 Cost and Delay

	6.3 Instruction Fetch Queue
	6.3.1 IFQ Entries
	6.3.2 Control
	6.3.3 Cost and Delay

	6.4 Instruction Register Environment
	6.5 Branch Checking Unit
	6.5.1 Stall Computation
	6.5.2 Cost and Delay

	6.6 Processor Flush

	7 Discussion
	7.1 Stage depths below 5
	7.2 Gate Model
	7.3 Overall Cost and Delay
	7.4 Related Work

	8 Summary
	8.1 Future Work

	A Instruction set architecture
	A.1 Instructions
	A.2 Encoding

	B Emulation of a MIPS R3000
	C Additional Circuits
	C.1 Basic Circuits
	C.1.1 Design
	C.1.2 Cost and Delay

	C.2 Instruction Decode
	C.2.1 Decode
	C.2.2 Destination computation

	D Functional Units
	D.1 Integer ALU
	D.2 Integer Multiplicative Unit
	D.3 Floating Point Units
	D.4 Memory Unit
	D.4.1 Shift for Store
	D.4.2 Shift for Load

	E Cost and Delay

