
Towards Real-Time Novel View Synthesis

Using Visual Hulls

Ming Li

Max-Planck-Institut für Informatik
Saarbrücken, Germany

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing)

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

Eingereicht am 23. September 2004 in Saarbrücken.

ii

Betreuender Hochschullehrer — Supervisor
Prof. Dr. Hans-Peter Seidel, MPI für Informatik, Saarbrücken, Germany
Dr. Marcus Magnor, MPI für Informatik, Saarbrücken, Germany

Gutachter — Reviewers
Prof. Dr. Hans-Peter Seidel, MPI für Informatik, Saarbrücken, Germany
Dr. Marcus Magnor, MPI für Informatik, Saarbrücken, Germany

Dekan — Dean
Prof. Dr. Jörg Eschmeier, Universität des Saarlandes, Saarbrücken, Germany

Datum des Kolloquiums — Date of Defense
Feb 09, 2005

Ming Li
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany���������	��
������������
��������

iii

Abstract

This thesis discusses fast novel view synthesis from multiple images taken
from different viewpoints. We propose several new algorithms that take advan-
tage of modern graphics hardware to create novel views. Although different ap-
proaches are explored, one geometry representation, the visual hull, is employed
throughout our work.

First the visual hull plays an auxiliary role and assists in reconstruction of
depth maps that are utilized for novel view synthesis. Then we treat the visu-
al hull as the principal geometry representation of scene objects. A hardware-
accelerated approach is presented to reconstruct and render visual hulls directly
from a set of silhouette images. The reconstruction is embedded in the rendering
process and accomplished with an alpha map trimming technique. We go on by
combining this technique with hardware-accelerated CSG reconstruction to im-
prove the rendering quality of visual hulls. Finally, photometric information is
exploited to overcome an inherent limitation of the visual hull. All algorithms
are implemented on a distributed system. Novel views are generated at interac-
tive or real-time frame rates.

iv

Kurzzusammenfassung

In dieser Dissertation werden mehrere Verfahren vorgestellt, mit deren Hilfe
neue Ansichten einer Szene aus mehreren Bildströmen errechnet werden kön-
nen. Die Bildströme werden hierzu aus unterschiedlichen Blickwinkeln auf die
Szene aufgezeichnet. Wir schlagen mehrere Algorithmen vor, welche die Funk-
tionen moderner Grafikhardware ausnutzen, um die neuen Ansichten zu errech-
nen. Obwohl die Verfahren sich methodisch unterscheiden, basieren sie auf der
gleichen Geometriedarstellung, der Visual Hull.

In der ersten Methode spielt die Visual Hull eine unterstützende Rolle bei
der Rekonstruktion von Tiefenbildern, die zur Erzeugung neuer Ansichten ver-
wendet werden. In den nachfolgend vorgestellten Verfahren dient die Visual

Hull primär der Repräsentation von Objekten in einer Szene. Eine hardware-
beschleunigte Methode, um Visual Hulls direkt aus mehreren Silhouettenbil-
dern zu rekonstruieren und zu rendern, wird vorgestellt. Das Rekonstruktions-
verfahren ist hierbei Bestandteil der Renderingmethode und basiert auf einer
Alpha Map Trimming Technik. Ein weiterer Algorithmus verbessert die Qualität
der gerenderten Visual Hulls, indem das Alpha-Map-basierte Verfahren mit ei-
ner hardware-beschleunigten CSG Rekonstruktiontechnik kombiniert wird. Ei-
ne vierte Methode nützt zusätzlich photometrische Information aus, um eine
grundlegende Beschränkung des Visual-Hull-Ansatzes zu umgehen. Alle Ver-
fahren ermöglichen die interaktive oder Echtzeit- Erzeugung neuer Ansichten.

v

Summary

Over the last decade, novel view synthesis from multiple images has become
an interdisciplinary research field between computer graphics and computer vi-
sion. Since real photographs or videos can be used as input, this technique lends
itself to preserving fine details and complex lighting effects present in the origi-
nal images. However, a number of appealing applications, such as 3D-TV, com-
puter games and immersive tele-presence, require not only high-quality virtual
views but also real-time performance.

This work presents solutions to these demanding applications and explores
different approaches to the problem of novel view synthesis. We propose a set
of algorithms characterized by two common features. First, a geometry proxy,
the visual hull, is employed by all the algorithms, either playing an auxiliary
role or serving as the principal shape representation. Secondly, all algorithms
take advantage of increasingly powerful graphics hardware to achieve high per-
formance.

The first algorithm adopts the stereo vision approach, in which multiple
depth maps of scene objects are recovered and warped into novel views along
with color information. For this approach, the visual quality of the novel views
is highly dependent on the accuracy of the depth maps. We reconstruct the vi-
sual hulls of the scene objects and rasterize them using graphics hardware to
obtain a depth range for each depth map. The depth ranges are then utilized to
reconstruct better depth maps using a stereo matching procedure.

Then, we use the visual hull as the core representation of scene objects. An
innovative visual hull reconstruction technique is presented. We encode fore-
ground object masks in the alpha channel of textures and project them onto
silhouette cones extruded from 2D silhouette contours. By modulating the pro-
jected alpha values and enabling the alpha test, visual hulls are implicitly re-
constructed in the novel view in form of depth maps. We name this technique
projective alpha map trimming. Based on this technique, a single-pass visual
hull rendering algorithm is proposed. The color values of reconstructed visual
hulls are computed by compositing the color information of multiple reference
views. In order to allow more views to be taken as input, we also provide a

vi

multi-pass algorithm to synthesize novel views of visual hulls.
Furthermore, we enhance a hardware-accelerated CSG reconstruction algo-

rithm and combine it with alpha map trimming. The resulting hybrid algorithm
benefits from both the high quality of the CSG reconstruction and the fast speed
of the alpha map trimming. An advanced per-fragment blending scheme is pre-
sented to achieve smoother transitions between different projective textures.

Finally, we go beyond the visual hull and explore another representation, the
photo hull, defined by photometric consistency across multiple reference views.
We propose an algorithm to synthesize novel views of photo hulls interactively.
This algorithm rasterizes a stack of slicing planes. Graphics hardware is ex-
ploited to check photo-consistency as well as to maintain visibility information
with respect to reference views. Although we are focusing on photo hulls in this
algorithm, visual hulls help to improve the rendering performance by constrain-
ing the number and the size of the slicing planes.

We implement all algorithms in a distributed system. Experiments are con-
ducted on a number of videos of both real and synthetic objects. Visual re-
sults and measured performance demonstrate that we are able to generate photo-
realistic novel views at interactive or real-time frame rates.

vii

Zusammenfassung

Während der letzten zehn Jahre hat sich die Synthese neuer Ansichten einer
Szene aus mehreren Ursprungsbildern als interdisziplinäres Forschungsgebiet
zwischen Computergrafik und Computervision entwickelt. Da echte Fotografi-
en oder Videos als Eingabe verwendet werden können, hat diese Technik den
Vorteil, dass feine Details und komplexe Beleuchtungseffekte aus den Origi-
nalbildern erhalten bleiben. Allerdings benötigen einige ansprechende Anwen-
dungen, wie z.B.3D-TV, Computerspiele und realistische Telepräsenz, nicht nur
qualitativ hochwertige virtuelle Ansichten, sondern verlangen auch Ausführung
in Echtzeitperformanz.

Diese Arbeit bietet Lösungen für diese anspruchsvollen Anwendungen und
untersucht verschiedene Ansätze, um neue Ansichten einer Szene zu generie-
ren. Wir stellen mehrere Algorithmen vor, die durch zwei gemeinsame Eigen-
schaften charakterisiert sind. Erstens verwenden alle Algorithmen einen Geo-
metrieproxy, die Visual Hull, entweder in einer untergeordneten Funktion oder
als primäre Methode der Formdarstellung. Zweitens machen sich alle Algorith-
men die Funktionen zunehmend leistungsstärkerer Grafikhardware zunutze, um
eine gute Performanz zu erzielen.

Der erste Algorithmus verwendet eine Variante des Stereo Vision Ansatzes,
bei dem mehrere Tiefenbildern von Objekten in einer Szene errechnet werden,
die dann zusammn mit der Farbinformation in eine neue Ansicht gewarpt wer-
den. Bei diesem Ansatz ist die visuelle Qualität der neuen Ansichten hochgradig
von der Genauigkeit der Tiefenbildern abhängig. Daher rekonstruieren wir die
Visual Hulls der Objekte in der Szene und rasterisieren sie mit Hilfe der Gra-
fikhardware, um einen Tiefenbereich für jedes Tiefenbild zu erhalten. Die Tie-
fenbereiche werden anschließend verwendet, um durch eine Stereo Matching

Prozedure genauere Tiefenbildern zu rekonstruieren.
In allen nachfolgenden Algorithmen verwenden wir die Visual Hull als grund-

legende Darstellungsform der Objekte in der Szene. Zunächst wird eine inno-
vative Visual Hull Berechnungsmethode vorgestellt. Wir kodieren Objekte im
Szenenvordergrund in Form von Masken im Alpha-Kanal von Texturbildern und
projizieren sie auf Silhouettenkegel, die aus den Kontouren der 2D Silhouetten

viii

extrudiert wurden. Durch Modulation der projizierten Alpha Werte und Akti-
vierung des Alpha Blendings auf der Grafikkarte werden Visual Hulls in neu-
en Ansichten implizit als Tiefenbildern rekonstruiert. Wir nennen diese Technik
Projective Alpha Map Trimming. Aufbauend auf dieser Technik stellen wir einen
Single-Pass Visual Hull rendering Algorithmus vor. Die Oberflaechentextur der
berechneten Visual Hulls wird aus den Farbwerten mehrerer Referenzansichten
erzeugt. Damit eine größere Anzahl an Bildströmen simultan als Eingabedaten
fungieren können, haben wir auch einen Multi-Pass Algorithmus zur Synthese
neuer Visual Hull Ansichten entwickelt.

In einem weiteren Algorithmus passen wir eine hardware-beschleunigte CSG-
Rekonstruktionstechnik an das Problem an und kombinieren sie mit Alpha Map
Trimming. Das Ergebnis ist ein hybrider Algorithmus, der sowohl von der ho-
hen Qualität der CSG-Rekonstruktion als auch der Schnelligkeit des Alpha Map
Trimmings profitiert. Ein hochentwickeltes Blendingschema für jedes einzelne
Fragment wird vorgestellt, um glattere Übergänge zwischen den verschiedenen
projektiven Texturen zu erreichen.

Im vierten Algorithmus schließlich erforschen wir eine andere Darstellung,
die Photo Hull, die über die Visual Hull hinausgeht und durch photometrische
Übereinstimmung über mehrere Ansichten definiert ist. Wir schlagen einen Al-
gorithmus vor, der neue Ansichten von Photo Hulls interaktiv erzeugt. Dieser
Algorithmus rasterisiert einen Stack von Schnittebenen. Wir nutzen Grafikhard-
ware aus, sowohl um photometrische Übereinstimmung zu überprüfen als auch
um Sichtbarkeitsinformation in Bezug auf Referenzansichten zu verwalten. Ob-
wohl der Schwerpunkt dieses Algorithmus auf Photo Hulls liegt, helfen Visual

Hulls die Renderingleistung zu verbessern, indem sie die Anzahl und die Größe
der Schnittebenen begrenzen.

Wir implementieren alle oben genannten Algorithmen in einem verteilten
System. Experimente mit mehreren Videos von realen und virtuellen Objekten
werden durchgeführt. Die visuellen Ergebnisse und die gemessene Performanz
zeigen, dass wir in der Lage sind, photorealistische neue Ansichten mit interak-
tiven oder Echtzeitbildraten zu erzeugen.

ix

Acknowledgements

First of all, I wish to express my gratitude towards my supervisor
Prof. Dr. Hans-Peter Seidel for his constant support and encouragement, his
valuable comments, as well as for providing me the opportunity of working in
an excellent research environment.

I am very grateful to my second supervisor Dr. Marcus Magnor for his
instructive guidance and inspiring suggestions. He helps me to forge my soft
skills of scientific research. I also would like to thank him for acting as my
second reviewer and providing valuable feedbacks.

Special thanks go to Hartmut Schirmacher. It was in the course of the coop-
eration with him that my research began to take root. We spent days and nights
to catch submission deadlines. I would further like to thank my co-worker Chris-
tian Theobalt for many constructive discussions. We put much effort in building
up the research facilities for this work.

Furthermore, I would like to express my thankfulness to all my colleagues in
the graphics group. They are happy to share their ideas, ready to help wherever
there is need. I really enjoy working with them. I cannot name them all here, but
I would like especially to thank the following people (alphabetical order): Irene
Albrecht, Stefan Brabec, Katja Daubert, Michael Gösele, Jörg Haber, Kolja
Kähler, Jan Kautz, Jochen Lang, Hendrik Lensch, Karol Myszkowski, Chris-
tian Rössel, Annette Scheel, Philipp Slussalek, Marc Stamminger, Jens Vorsatz,
Hitoshi Yamauchi. Sincere thanks go to our secretary Sabine Budde and Conny
Liegl, who always make paper submissions and conference travels go smoothly.

I also owe thanks to my Chinese friends around me. Many hilarious parties
and pleasant excursions helped me to enjoy life outside the lab.

Finally, I wish to thank my beloved family and my dear girl friend Jing, for
their everlasting love and support.

x

Contents

1 Introduction 1
1.1 Problem Statement . 4

1.2 Main Contributions . 5

1.3 Chapter Organization . 6

2 Related Work 7
2.1 Novel View Synthesis . 7

2.2 Depth from Stereo . 11

2.2.1 Depth map reconstruction 11

2.2.2 Rendering with depth maps 14

2.3 Shape from Silhouette . 15

2.3.1 Visual hull reconstruction 17

2.3.2 Visual hull rendering 22

2.4 Shape from Photo-consistency 23

2.4.1 Photo hull reconstruction and rendering 24

2.5 Graphics Hardware . 26

2.5.1 Overview of the rendering pipeline 26

2.5.2 Fixed-function pipeline 28

2.5.3 Programmable pipeline 30

3 Synchronized Acquisition of Pre-calibrated Multi-view Videos 33
3.1 Camera system . 33

3.1.1 Camera calibration . 35

3.1.2 Color calibration . 38

xii CONTENTS

3.1.3 Camera synchronization 38

3.2 Computer Infrastructure . 39

3.3 Image Processing Algorithms 40

3.3.1 Radial distortion correction 40

3.3.2 Image segmentation 41

3.4 Summary . 42

4 Novel View Synthesis Based on a VH-Assisted Stereo Algorithm 45
4.1 Basic Stereo Algorithm . 46

4.2 Visual Hull-Assisted Stereo Algorithm 48

4.2.1 Global disparity range constraint 50

4.2.2 Per-pixel disparity range constraint 51

4.3 Rendering . 55

4.4 System Implementation and Performance 56

4.5 Discussion . 60

4.6 Summary . 61

5 Hardware-Accelerated Novel View Synthesis of Visual Hulls 63
5.1 Hardware-Accelerated Visual Hull Reconstruction 64

5.2 Single-Pass Visual Hull Rendering 67

5.2.1 Multiple texture blending 67

5.2.2 Basic rendering algorithm 69

5.2.3 Extended single-pass rendering 71

5.3 Multi-Pass Visual Hull Rendering 72

5.4 System Performance . 75

5.5 Discussion . 78

5.6 Summary . 80

6 Hybrid Hardware-Accelerated Novel View Synthesis of VHs 81
6.1 Hardware-Accelerated CSG Reconstruction 82

6.2 Hybrid Visual Hull Rendering 84

6.2.1 Valid region determination 84

6.2.2 Novel view depth map generation 86

CONTENTS xiii

6.2.3 Reference view depth map generation 88
6.2.4 Textured visual hull rendering 88

6.3 System Performance . 93
6.4 Summary . 95

7 Hardware-Accelerated Novel View Synthesis of Photo Hulls 97
7.1 Algorithm Overview . 98
7.2 Slicing Plane Generation . 99
7.3 Slicing Plane Rendering . 102
7.4 Visibility Map Updating . 105
7.5 System Performance and Results 106
7.6 Summary . 110

8 Conclusions and Future Work 111

xiv CONTENTS

Chapter 1

Introduction

Light is omnipresent in the real world. It starts from light-emitting objects,
propagates through space and interacts with other objects, either scatters in their
volumes or bounces on their surfaces. Finally, the light is perceived by our eyes
and we form mental images in our brains. In a similar way, photographs are
taken by cameras when the light rays are captured through the lenses.

The above imaging process, depicted in the upper part of Figure 1.1, repli-
cates itself in the virtual world of computer graphics, where objects are de-
scribed with their photometric and geometric properties. In this world, light
interaction is simulated according to physics laws. The mathematical models of
eyes or lenses, often simplified and defined by a few parameters, establish the
geometric relationship between 3D objects and their 2D projections.

Aiming at creating photo-realistic digital images, traditional computer graph-
ics research strives to model the real world as precisely as possible. However,
real objects exhibit extreme complexity both in terms of geometric and photo-
metric properties. It turns out to be a very laborious task to model these prop-
erties with software tools or measuring instruments. In addition, accurate simu-
lation of the light transportation between objects remains intricate and demands
enormous computational power.

All these difficulties faced by computer graphics researchers have provoked
another line of thought — generating novel views from photographs. For brevity,

2 Chapter 1: Introduction

Human eyes
Objects

Mental images

Camera lenses Normal photographs

Photometric
& geometric

properties
of objects

Mathematical
models of

eyes or lenses

R
ea

l w
or

ld
V

ir
tu

al
 w

or
ld

V
ir

tu
al

 w
or

ld

Abstraction Abstraction

Reconstruction

Digitization

Digital
photographs

Synthesized
images

Digital images

Light
interaction

Physics
simulation of

light interaction

Abstraction

Figure 1.1: Imaging pipelines in real world and virtual world

we call this new approach novel view synthesis. In the literature, it is also well
known as image-based modeling and rendering. Usually, this approach exploits
computer vision techniques to reconstruct object properties and camera mod-
els from photographs, as indicated by dotted lines in Figure 1.1. Then, given
a virtual viewpoint, the corresponding novel view is created using the original
images and the recovered information. Compared with traditional approaches,
this new approach has two main advantages. First, photographs are by nature
photo-realistic. Novel views generated from them are potentially able to retain
the same degree of photo-realism. Second, photographs are readily available
since cameras are off-the-shelf commodities and fairly easy to use. For a recent
comprehensive survey on image-based rendering, interested readers are referred
to [ZC04].

Novel view synthesis has many appealing applications in a wide range of
fields, such as education, medical training, entertainment, communication, etc.
Some of them are time-critical and demand real-time performance. Figure 1.2
shows several application scenarios of this kind. The upper three images il-
lustrate the concept of live 3D-TV. In this example, a live sport event, Super-
Bowl, is recorded with multiple cameras located at different viewpoints [CR01].
When the event is broadcast, viewers are able to choose whatever viewpoints

3

(a) (b) (c)

(d) (e)

Figure 1.2: Potential application scenarios for novel view synthesis. (a-c) Live
broadcasting of 3D-TV. A live sport event is recorded using multiple cameras.
When the event is broadcast, viewers are able to choose whatever viewpoints
they like to watch. (d) Screenshot of Eyetoys. The video stream of a person
is superimposed with virtual scenes. The person can interact with virtual ob-
jects. (e) Tele-immersion. Two persons at geographically distributed sites are
discussing and interacting with virtual objects.

they like to watch. Figure 1.2(d) is a screen shot from a console game — Eye-
toys [Son03]. Currently, this game only acquires one video stream from camera
and superimposes the video with virtual scenes. If several views are available
and novel views can be synthesized, we can integrate multiple players into a
common virtual environment. Figure 1.2(e) demonstrates a typical session of
immersive tele-presence [ABUU00], in which two persons at geographically
distributed sites are discussing and interacting with virtual objects as if they
were in a shared physical space.

4 Chapter 1: Introduction

To meet the demands of the above applications, novel view synthesis must
be performed on-line. However, for a long period of time, expensive digi-
tal imaging devices, tedious video acquisition, inadequate processing power of
computers have been the limiting factors for fast on-line novel view synthesis.
In recent years, these limiting factors have started to disappear as high-speed
digital video cameras become available at affordable prices and the processing
power of personal computers keeps increasing at rapid pace. More dramati-
cally, the performance of graphics hardware advances even faster than that of
CPUs. The architecture of graphics chips is also going through a revolutionary
transition. Thanks to the fast progress of technologies, a number of on-line sys-
tems for novel view synthesis have been developed [MBR � 00, SLS01, MBM01,
YEBM02, YWB02]. In order to push the performance further and to improve
the rendering quality, we present several new algorithms that take advantage of
visual hull representation [Lau94] and graphics hardware to generate realistic
novel views of dynamic scenes.

1.1 Problem Statement

The problem we are going to solve in this thesis is stated as follows:

For moving objects in a scene, recorded with a set of calibrated digital cam-

eras from different viewpoints, how does one synthesize novel views of the ob-

jects from arbitrary novel perspective in real time?

The recorded digital images are referred to as reference views. Reference
views can be captured in two configurations. The first configuration uses a mov-
ing camera which takes images from multiple viewpoints at different times. The
second one has multiple cameras mounted at different places. These cameras
take images of the scene simultaneously. For on-line novel view synthesis of dy-
namic objects, we need images taken from multiple viewpoints at each moment
of time. Therefore, we choose the second configuration to acquire reference
views. Details about the acquisition setup will be explained in Chapter 3. Since
in this configuration the reference viewpoints are fixed, the camera models, in-
cluding intrinsic and extrinsic parameters, can be pre-determined and used for

1.2 Main Contributions 5

novel view synthesis later. An image, of which the corresponding camera model
is known, is referred to as a calibrated image.

If novel views can be synthesized at more than 20 frames per second, we
claim that real-time performance is achieved. Interactive frame rates are consid-
ered to be between 2 and 20 frames per second. For a number of reference views
(three to eight), the algorithms that we will present run at least interactively, and
some of them achieve real-time frame rates.

1.2 Main Contributions

Parts of the work have already been published in a number of scientific articles
[SLS01, LSMS02, TLMS03, LMS03a, LMS03b, LMS03c, LMS04a, LMS04b].
This thesis presents these publications in a common framework, reveals their
relationships and gives more insights. The main contributions of this thesis are
summarized as follows:� A novel algorithm that combines stereo and visual hull [Lau94] informa-

tion to synthesize novel views. The visual hull information helps stereo
pairs to reconstruct better depth maps which lead to improved rendering
quality.� An innovative technique that makes efficient use of graphics hardware to
reconstruct visual hulls implicitly. This technique significantly accelerates
visual hull reconstruction.� A hybrid hardware-accelerated algorithm to render high-quality visual
hulls from multiple reference views.� A hardware-accelerated algorithm to create novel views of photo hulls
[KS99]. This algorithm overcomes the inherent drawback of the visual
hull representation. However, it utilizes the novel visual hull reconstruc-
tion technique for acceleration.

All algorithms are implemented in a distributed system that is capable of syn-
thesizing novel views from a set of video streams on line. These algorithms

6 Chapter 1: Introduction

share two common features. First, a geometry proxy, the visual hull, is em-
ployed by all the algorithms, either playing an auxiliary role or serving as the
principal shape representation. Second, all algorithms exploit powerful graphics
hardware to achieve high performance.

1.3 Chapter Organization

The rest of this thesis is organized as follows. Chapter 2 reviews previous work
related to novel view synthesis and gives some background knowledge about
graphics hardware. Chapter 3 describes the acquisition facilities that provide
input video data for all of our algorithms. In Chapter 4 we show how to use
visual hull information to improve the quality of stereo reconstruction for better
view synthesis. Chapter 5 presents a hardware-accelerated approach to syn-
thesize novel views of visual hulls. A basic single-pass rendering algorithm
and its extensions are explained in this chapter. In Chapter 6 we propose a hy-
brid hardware-accelerated algorithm to render high-quality novel views of visual
hulls. Then we address an inherent drawback of the visual hull representation
in Chapter 7. Color consistency checks across multiple views are performed by
graphics hardware to synthesize novel views of photo hulls. Finally, Chapter 8
concludes this thesis and discusses future research directions.

Chapter 2

Related Work

In this chapter, we start with an overview of existing methods for novel view
synthesis. Then we concentrate on three kinds of geometry representations of
scene objects, and review previous work related to reconstruction and rendering
algorithms based on these representations. At last, a short tour of state-of-the-art
graphics hardware gives useful background knowledge that helps to understand
the algorithms presented in this thesis.

2.1 Novel View Synthesis

As explained in the introduction, novel view synthesis technique generates novel
views from a set of reference images. In a simple case, the reference images are
taken from a fixed viewpoint towards different viewing directions. Since there
is only a purely rotational relationship between two sets of camera parameters,
it can be shown that the coordinates of corresponding pixels in two reference
images are related by a 3 � 3 matrix, known as homography [SS97]. This ma-
trix is computed either from pre-calibrated camera parameters or by image reg-
istration. Then, a panoramic image is created by using the matrices between
reference image pairs [Che95, SS97]. Finally, virtual images from novel view-
ing directions can be synthesized from the panoramic image. This method is
called image mosaicing and illustrated by an example in Figure 2.1. Although it

8 Chapter 2: Related Work

(a)

(b) (c)

Figure 2.1: Image mosaicing. (a) three reference images. (b) panorama created
from reference images. (c) a novel view synthesized from the panorama.

is possible to build a real-time image mosaicing system using omni-directional
cameras [Poia], one limitation of the method is that the novel viewpoint has
to be the same as the fixed viewpoint of the reference images. This drawback
severely restricts the freedom of users’ navigation.

In order to allow users to navigate in a scene more freely, reference images
from different viewpoints should be taken. Levoy et al. [LH96] employs a
computer-controlled gantry to position a camera at regular grids on a plane. All
captured images are considered to record radiance values of ray samples in a
scene. These rays are parameterized as a 4D light field function with the help of
two parallel planes (see Figure 2.2a). The rays between the planes collectively
form a light slab. Novel views are synthesized by quadrilinear interpolation
of the ray samples. If more light slabs from different directions are available,
novel viewpoints can be placed anywhere outside the convex hull of the scene
objects. Shum et al. propose to reduce the 4D function to 3D by using a repre-

2.1 Novel View Synthesis 9

sentation termed as concentric mosaic [SH99]. They move a camera along a set
of coplanar concentric circles and capture rays pointing at tangent directions.
Novel views can be generated for the viewpoints on the plane where the con-
centric circles lie. For other ways of parameterization of the light field, readers
can refer to Schirmacher’s PhD thesis [Sch03]. The light field methods circum-
vent the difficult 3D reconstruction problem and synthesize novel views directly
from images. The rendering is efficient since only simple interpolation is in-
volved. However, the interpolation could lead to blurry artifacts in the novel
view because neighboring ray samples may correspond to scene points at differ-
ent depths. To alleviate the artifacts, the scene has to be densely sampled with
a large amount of reference images. Thus, a huge ray database created from
the reference images places heavy burdens on image storage, processing and
transmission. In addition, for dynamics scenes, many cameras are required to
capture the reference images simultaneously. For example, Yang et al. design
a real-time light field rendering system with 64 cameras [YEBM02]. The Stan-
ford multi-camera array [WL03] has up to 128 cameras shown in Figure 2.2b.
Even using a large number of cameras, only a limited field of view is covered
by their system. Overall, it is quite challenging to build a low-cost real-time
rendering system based on the light field methods.

To reduce the number of reference images while staying away from the
blurry artifacts, we need some knowledge about the 3D scene geometry. Ac-
cording to the formal analysis conducted by Chai et al. [CCST00], more ac-
curate geometry information is available, fewer reference images are needed to
maintain the same level of rendering quality. In the work of surface light fields

[WAA � 00], Wood et al. use 3D scanners to obtain accurate geometry. Although
high rendering quality is achieved, it is difficult to accomplish 3D acquisition at
interactive frame rates in a fully automatic way. Moreover, 3D scanners are
usually quite expensive. As an alternative way, 3D geometry information can
be reconstructed from 2D reference images. The reconstruction technique is
also referred to as image-based modeling in literature. Researchers have ex-
plored different geometry representations, for instance, disparity or depth maps
[CW93, SLS01], visual hulls [Lau94], photo hulls [KS99], parameterized prim-

10 Chapter 2: Related Work

ss

tt

uu

vv

Object

Ray

(a)

(b)

Figure 2.2: Light Field Rendering. (a) Two plane parameterization of a light
ray. 4D light field function L=L(s,t,u,v). (b) Stanford Light Field Multi-Camera
Array.

2.2 Depth from Stereo 11

itives [Low91, DTM96]. The first three representations are most relevant to our
work. We will review three categories of reconstruction techniques based on
these representations, i.e. depth from stereo, shape from silhouette and shape
from photo-consistency. Corresponding rendering algorithms will be discussed
as well.

2.2 Depth from Stereo

2.2.1 Depth map reconstruction

“Depth from stereo” [TV98] is a classical 3D reconstruction technique which
has been extensively investigated for decades in the computer vision community.
This technique is based on the simple fact illustrated in Figure 2.3: when a single
point in 3D space is observed by two cameras placed at different locations, it
projects to a pair of pixels with different coordinates on the two image planes.
“Depth from stereo” is trying to solve this problem inversely, i.e. reconstructing
the 3D position of the scene point by locating the corresponding pixels in the
two images. The 3D information is typically represented as a depth map. Each
value in the depth map encodes the distance between the associated scene point
and the viewpoint along the principal axis of a view.

The process of the correspondence search is also known as stereo matching,
which is the key issue for all stereo algorithms. Depending on the primitives
to be matched, stereo algorithms can be divided into two classes: feature-based

methods and area-based methods 1. Feature-based methods match features, such
as edges or contours, extracted from images. They are fast since only a small
number of features are matched. However, feature-based methods only produce
very sparse depth maps, which are not suitable for realistic novel view synthesis.
Therefore, we will discuss more details for the second class of methods.

Area-based methods compare a small area surrounding the pixel in ques-
tion in one image with small areas in the other image. The corresponding pixel
should lie in the most similar area in the other image. The area-based methods

1also known as correlation-based methods

12 Chapter 2: Related Work

pp11 pp22

PP

CC11 CC22

Figure 2.3: Depth from stereo. The viewing parameters of the two views C1 and
C2 are known. The 3D point P projects to different image locations p1 and p2 on
the image planes associated with the two viewpoints C1 and C2, respectively. In
reverse, if the correspondence between p1 and p2 is identified, the 3D position
of the point P can be reconstructed.

are able to generate dense depth maps because the matching process is carried
out for each pixel in an image. The matching criterion is based on image inten-
sities over the local support area. Various metrics can be employed. Among the
most common ones are Normalized Cross-Correlation (NCC), Sum of Squared
Differences (SSD), Normalized SSD and Sum of Absolute Differences (SAD).
To make the matching criterion more reliable, rank transforms can be applied to
image intensities [ZW94]. The shape of the matching area is usually chosen as
a square window with the pixel of interest centered in it. Perspective distortion
of local regions can be compensated by estimating local affine transformations
[MC04]. If the pixels in a local region have different depth values, the similarity
metric might be biased. In this case, multiple shifted windows are used to cover
a relatively constant depth region [FRT97]. For dynamic scenes, the match-
ing window is extended to time domain in space-time stereo methods [ZCS03].
Frame coherence is exploited to reduce matching ambiguity.

Area-based methods find the correspondence for each pixel in a reference

2.2 Depth from Stereo 13

view. Despite that more computation is needed compared with feature-based
methods, area-based methods can be implemented very efficiently. Earlier sys-
tems use specialized hardware to carry out stereo matching [FHM � 93, Kan94].
Recently, some commercial products [Poib, Vid] as well as academic research
prototypes [DMM � 00, SLS01] have demonstrated that area-based methods are
able to run on general purpose computers in real time. Modern graphics hard-
ware is utilized to execute fast depth map reconstruction as well, and achieves
real-time performance [YP03].

Although area-based methods are able to reach real-time performance, a
naive implementation could produce depth maps in poor quality. This is mainly
because the area matching is error-prone in ambiguous regions where occlusions
or uniform textures exist. To improve the depth map quality, more constraints
should be exploited, such as the epipolar constraint [Fau93], the symmetry con-
straint [Fua93] and global constraints, etc. The epipolar constraint is stated as
follows: for a pixel p in one image, the corresponding pixel in the other im-
age must lie on the epipolar line, which is defined by projecting the viewing
ray associated with the pixel p into the other image. This constraint reduces
the dimensionality of the search space from 2D to 1D. Symmetry constraint en-
sures the consistency between the results of the left-to-right and the right-to-left
matches. This is useful for detecting occlusion areas. Global constraints im-
posed on scan-lines or on entire images formulate the correspondence problem
in a global optimization framework. The algorithm robustness can be greatly
improved, but the computational cost is high. Typical stereo algorithms incor-
porated with global constraints find optimal solutions by using dynamic pro-
gramming [OK85] or graph cuts [KZ01].

Depth maps reconstructed from only one pair of reference images cannot
represent the full 3D geometry of a scene object. In order to extract more ge-
ometry information, multiple reference views are needed to recover depth maps
from different perspectives. In addition, extra reference views are also helpful
for eliminating false stereo matches. Narayanan et al. build a “virtualized real-
ity” system consisting of 51 video cameras installed on a hemi-spherical dome
[NRK98]. A multi-baseline stereo algorithm [OK93] is employed to produce a

14 Chapter 2: Related Work

depth map for each reference view. The on-line processing system developed by
Schirmacher et al. reconstructs live depth maps of three stereo pairs [SLS01].

Dhond and Aggarwal have surveyed stereo algorithms developed until late
1980s [DA89]. Recent advances are reviewed in [BBH03]. A comparative eval-
uation of a large number of stereo algorithms is conducted by Scharstein et al.

[SS02].

2.2.2 Rendering with depth maps

Depth maps recovered from stereo algorithms represent scene geometry as ob-
served from reference views. Together with the color information in reference
views, they can be used to render realistic novel views in various ways.

1. Point-based rendering. For a calibrated reference view, knowing the
depth value at one pixel, the associated 3D point can be generated through
back-projection. This way, all pixels in a reference view produce a point
cloud. To synthesize a novel view, we can simply render these points using
standard graphics hardware. The color of each point is assigned to the
color of the corresponding pixel. Since the points are discrete primitives,
holes might appear in the novel view due to under-sampling. The surface
splatting technique [ZPvG01] amortizes this under-sampling artifacts. A
related technique, billboard rendering [YSK � 02], could also be applied.
Another way of rendering a point cloud is based on a stack of planes
sweeping through the volume space containing the points [KS01]. Each
plane is textured with color images and depth maps. Those parts on the
plane that do not match the depth values will be discarded.

2. Mesh-based rendering. As stated before, each depth sample in a ref-
erence view corresponds to a 3D point. When we connect those points
whose projections are neighboring samples with similar depth values, a
dense triangle mesh can be obtained. If multiple triangle meshes are con-
structed from multiple reference views, these partial triangle patches can
be registered together to form a more complete mesh by using an iter-

ative closest point (ICP) algorithm [TL94]. Alternatively, unorganized

2.3 Shape from Silhouette 15

point clouds generated from multi-view depth images are first integrated
into a volumetric model [CL96]. Then the isosurface could be extracted
and triangulated into a polyhedral mesh. Once the mesh representing the
scene geometry is available, for each polygon on the mesh, several tex-
ture patches can be collected from reference views. These texture patches
are blended into a single one and mapped to the polygon during rendering
[RCMS99]. In the case of dynamic scenes, the textures change for every
frame. Projective texture mapping [SKvW � 92, DBY98] should be used
to blend the textures at run time.

3. 3D warping. McMillan proposes a forward 3D warping method that
eliminates the need of rendering 3D geometry [McM97]. This method
operates directly on images and transforms each pixel in the reference
view to a new location in the desired view. The computation can be
performed incrementally by taking advantage of the regular structure of
images. Popescu et al. present the WarpEngine which is a hardware ar-
chitecture designed for efficient 3D warping [PEL � 00]. Oliveira et al.

factorize the 3D warping into a simple 1D pre-warp followed by a planar
projective mapping [OBM00]. The pre-warp is accomplished with only a
few arithmetic instructions and the projective mapping is accelerated by
texture mapping hardware. This rendering method is called relief texture

mapping. When multiple depth maps are available, Layered Depth Images

[SGHS98] can be generated through pre-processing and then rendered by
3D warping methods. Similar as in the point-based rendering, splatting
techniques [SGHS98] should be applied to fill holes. Inverse 3D warping
discussed in [McM97] could also be helpful, but the warping process is
less efficient.

2.3 Shape from Silhouette

“Shape from silhouette” is another widely-used 3D reconstruction technique.
This technique assumes the foreground object in an image can be separated from
the background. Under this assumption, the original image can be thresholded

16 Chapter 2: Related Work

(a) (b)

Figure 2.4: Visual hull reconstruction. (a) Two silhouette cones are extruded
from two silhouette images. (b) The visual hull is created by intersecting the
silhouette cones.

into a foreground/background binary image, which we call a silhouette image.
The foreground mask, known as a silhouette, is the 2D projection of the corre-
sponding foreground object in 3D. Along with the calibration information, the
silhouette defines a back-projected generalized cone that contains the actual ob-
ject. This cone is called a silhouette cone 2, composed by a set of triangular
silhouette faces. Figure 2.4a shows two such cones produced from two silhou-
ette images taken from different viewpoints. The intersection of the two cones
is called a visual hull [Lau94], which is a bounding geometry of the actual 3D
object (see Figure 2.4b).

Strictly speaking, a visual hull is defined as the maximal shape that gives the
same silhouette of the 3D object for any possible view outside the convex hull
of the object. But, in practice, only a limited number of views can be taken into
account. For simplicity, we use the same term visual hull to describe the shape
representation reconstructed from a limited number of views.

The visual hull representation has a main drawback: certain types of con-

2known as visual cone or viewing cone in some literature.

2.3 Shape from Silhouette 17

CC11

CC22

CC33

Figure 2.5: Visual hull limitation. A visual hull created from three reference
views, shown in 2D. The thick lines in image planes indicate silhouettes. The
hatched concave area can never be reconstructed.

cave regions on the object cannot be reconstructed since these regions are not
apparent in the silhouette from any view, as illustrated in Figure 2.5. This limi-
tation is inherent and cannot be overcome even with an infinite number of views.
Despite the limitation, we still employ the visual hull representation in all algo-
rithms presented in this thesis because it has several advantages. First, the visual
hull is a conservative geometric entity that guarantees to enclose the actual 3D
object. Second, the visual hull is able to provide a close approximation of the 3D
object from a few number of widely-separated reference views. In addition, the
accuracy of the reconstruction increases monotonically as more reference views
are used. Third, compared with depth-from-stereo, visual hull reconstruction is
more robust with regard to glossy or textureless surfaces.

2.3.1 Visual hull reconstruction

Research on visual hull reconstruction dates back to Baumgart’s PhD thesis
[Bau74] in the 1970s. Since then, a large number of reconstruction methods have
been proposed. Some researchers consider that reference images are taken by a
moving camera. The viewpoints are dense samples along a continuous trajec-
tory. In this case, a visual hull with curved surfaces can be reconstructed as the

18 Chapter 2: Related Work

envelope of all tangent planes of the target objects by using epipolar geometry
and differential techniques [GW87, CB92, BB97]. However, these reconstruc-
tion methods assume that the target objects are smooth. In addition, the moving
camera configuration is not suitable for handling dynamic objects. Therefore, in
the following we will focus on the methods that reconstruct visual hulls from a
discrete set of reference views. According to the underlying representation, such
visual hull reconstruction methods are grouped in two categories: voxel-based
and boundary-based methods.

2.3.1.1 Voxel-based methods

Voxel-based methods reconstruct volumetric visual hulls composed by voxels,
typically small cubes. These methods operate in a tessellated 3D space called
working volume. This 3D space should be large enough to contain all the objects
to be reconstructed. Earlier voxel-based methods [MA83, Pot87] first construct
volumetric silhouette cones by reprojecting silhouette masks into the scene, and
then intersect the volumetric cones. In fact, the visual hull reconstruction can be
carried out more efficiently by performing two kinds of tests on each voxel in
the working volume.

1. Silhouette-cone test. The test is to verify whether a voxel belongs to a
silhouette cone. This can be accomplished by projecting the voxel to a
reference view and examining the relationship between its 2D projection
and the silhouette. If the projection is inside the silhouette mask or on
the silhouette boundary, the voxel belongs to the corresponding silhouette
cone. The silhouette-cone test should be iterated for all reference views.

2. Silhouette-consistency test. A voxel is said to be silhouette-consistent
if the voxel passes the silhouette-cone test for all reference views. A
straightforward corollary is that a silhouette-consistent voxel must belong
to the intersection of all silhouette cones, i.e. the visual hull. Therefore,
the complete volumetric visual hull can be obtained by identifying all the
silhouette-consistent voxels. Figure 2.6 shows a 2D example.

2.3 Shape from Silhouette 19

CC11

CC22

CC33

Figure 2.6: The volumetric visual hull reconstructed from three views (2D illus-
tration). The hatched area is the volumetric visual hull. The black voxel passes
the silhouette-consistency test. Therefore, it belongs to the visual hull.

Szeliski [Sze93] employs octree data structure to enhance the standard method
described above. The octree structure not only increases the speed and the space
efficiency of the algorithm, but also provides a way to refine the reconstruction
result hierarchically. Moezzi et al. [MKKJ96] develop an off-line system to syn-
thesize novel views based on volumetric visual hulls. Video sequences acquired
from multiple reference views are used as input. To deal with noise existing in
silhouette images, they loosen the criterion of the silhouette-consistency test. A
voxel is identified as silhouette-consistent as long as the voxel passes certain a
number of silhouette-cone tests and this number is greater than a pre-defined
threshold. Saito et al. [SK99] reconstruct volumetric visual hulls in projective
space if the reference cameras are weakly-calibrated.

Recently, increased computational power has led to the emergence of sev-
eral real-time systems. For example, volumetric visual hulls are reconstructed in
real-time for ellipsoid fitting of human figures [CKBH00] or estimation of hu-
man motion parameters [TMSS02]. Another real-time system is built by Mat-
suyama et al. [MT02]. They group 3D voxels as a stack of planes. On each

20 Chapter 2: Related Work

plane, a projected silhouette for each reference view is computed. The projected
silhouettes from all views are then intersected to produce a cross-section of the
visual hull. Parallel processing is conducted by a 16-node PC cluster for accel-
erating the intersection computation. Lok [Lok01] adopts a similar 3D space
discretization. Unlike the work [MT02], graphics hardware features are em-
ployed to accelerate the projection of silhouette images and the intersection of
projected silhouettes on stack planes. This algorithm distinguishes itself from
all the above algorithms because the visual hull reconstruction is embedded in
the rendering process, and the reconstruction result is a view-dependent visual
hull represented as a depth map in a novel view.

Voxel-based methods are able to reconstruct very complex objects, like trees
or hairy animals. The computation is simple and stable. The big disadvantage is
that objects represented as voxels always have quantization artifacts (Notice the
boundary voxels in Figure 2.6). To reduce these artifacts, one needs a very fine
space discretization which will increase the memory requirement and slow down
the speed. For more detailed reviews on volumetric visual hull reconstruction
approaches, we refer interested readers to [SCMS01] and [Dye01].

2.3.1.2 Boundary-based methods

Unlike voxel-based methods, boundary-based methods do not use space dis-
cretization. Silhouette cones are represented as boundary elements, such as sur-
faces or lines. The intersection between them is normally computed analytically.
The intersection results, visual hulls, can be composed by surface patches, line
segments or even points.

Baumgart [Bau74] approximates silhouette contours in multiple views us-
ing 2D polygons and extrudes them to obtain polyhedral silhouette cones. By
applying general 3D intersection between the cones, polyhedral visual hulls are
created. Matusik et al. [MBM01] exploit the projective structure of polyhedral
silhouette cones to reduce the intersection computation from 3D to 2D. This
algorithm is implemented in their real-time system and demonstrates great im-
provement of the intersection speed. Franco and Boyer [FB03] take advantage
of the projective structure of silhouette cones for fast computation of edge seg-

2.3 Shape from Silhouette 21

ments associated with vertices of polygonal silhouette contours. These edge
segments belong to the final polyhedral visual hull, but they are only a subset of
all the edges. Those missing edges are found by applying local orientation and
connectivity rules.

Polyhedral visual hulls usually contain sharp corners and rugged surfaces be-
cause silhouette contours are approximated as piecewise-linear polygons. How-
ever, some applications favor models with smooth surfaces. To get such a
smooth model, Sullivan et al. [SP98] first computes a polyhedral visual hull
as an initial estimation and fits G1-continuous spline surfaces to the polyhedal
model. Then these surfaces are deformed to minimize the difference between
the projections of the smooth model and the silhouette contours. Lazebnik et al.

[LBP01] adopt a different strategy and use 2D B-spline silhouette contours as
inputs. In this case, the boundary representation of silhouette cones is a curved
surface. The reconstruction result, a generalized polyhedral visual hull, consists
of curved surface patches.

Instead of using a polyhedral representation, Cheung et al. [CBK03b] re-
construct visual hulls as a dense set of line segments, which they call bounding

edges. Würmlin et al. [WLSG02] represent visual hulls as surface points ob-
served from reference views. If we treat the surface points as irregular sampled
voxels, the reconstruction result can be regarded as a volumetric visual hull.
Matusik et al. [MBR � 00] present an algorithm to reconstruct visual hulls as
surface points seen by a target view. The result is named as image-based visual

hull (IBVH). The above three algorithms perform similar intersection computa-
tions. First, a viewing line intersects with a polyhedral silhouette cone to pro-
duce a list of line segments. Then, by applying such intersection for different
silhouette cones, multiple line segment lists can be obtained. The intersection of
these segment lists produces boundary elements of visual hulls. Note that the 3D
intersection between a viewing line and a polyhedral cone can be reduced to 2D
as explained in the work [MBM01]. The difference of the three algorithms lies
in the way how to generate viewing lines. The first algorithm generates viewing
lines from point samples of silhouette contours in reference views. The second
one generates viewing lines from silhouette pixels in all reference views. The

22 Chapter 2: Related Work

third one generates viewing lines from all pixels in a target view.
Interactive CSG rendering [Wie96] exploits graphics hardware to generate

view-dependent visual hulls by rendering polyhedral silhouette cones. The inter-
section parts are identified by counting stencil values. In this thesis, we propose
two other hardware-accelerated algorithms to reconstruct view-dependent visual
hulls. More details will be presented in Chapter 5 and Chapter 6.

Generally, boundary-based methods consume little memory and are exe-
cuted faster than voxel-based methods. In addition, they do not suffer from
quantization artifacts while rendering. However, analytic intersection compu-
tation required by most boundary-based methods is susceptible to numerical
instability and often results in corrupted surfaces. By reducing the computation
from 3D to 2D [MBM01], this problem can be alleviated. Hardware-accelerated
methods, such as interactive CSG rendering, totally avoid the stability problem,
but they do not produce explicit 3D models, which are useful in many applica-
tions.

2.3.2 Visual hull rendering

Visual hull rendering bears some similarities with the point-based rendering and
the mesh-based rendering methods discussed in Section 2.2.2. View-independent
volumetric visual hulls can be rendered directly as points [WLSG02] or bill-
boards [GM03]. Since polygons are usually more suitable rendering primitives
for graphics hardware, it is more common to convert a volumetric model into
a polyhedral one, and then to render it [MKKJ96]. View-independent polyhe-
dral visual hulls can be rendered with projective texture mapping and texture
blending.

To render view-dependent visual hulls, Lok [Lok01] builds a coarse mesh
from the depth map in the target view and computes a color value for each vertex
of the mesh. Then the mesh is rendered through color interpolation by graphics
hardware. Matusik et al. [MBR � 00] compute a color value for each pixel in the
novel view of visual hulls. The implementation is purely software-based. In our
work, we render view-dependent visual hulls using projective texture mapping.
Color values from multiple reference views are blended. Both operations are

2.4 Shape from Photo-consistency 23

fully accelerated by graphics hardware.

2.4 Shape from Photo-consistency

Shape-from-photo-consistency methods take advantage of color information in
input images to reconstruct the photo hull representation [KS99], which can
represent the concave regions that the visual hull fails to do. The photo hull is
defined as the maximal shape that consistently reproduces all reference color
images, or equivalently, it is defined as the union of all photo-consistent ob-
jects with respect to a given set of color images. Suppose that the object to
be reconstructed has approximately Lambertian surfaces, the object is said to
be photo-consistent, if for each point on the object surfaces, its corresponding
projections in all visible reference views have similar color intensities within a
pre-defined threshold. The photo-consistency definition can be further gener-
alized to non-Lambetian cases by incorporating more sophisticated reflectance
models [YPW03].

Both the depth-from-stereo and the shape-from-photo-consistency techniques
exploit color information in reference views. However, depth-from-stereo meth-
ods solve the reconstruction problem by searching correspondences in 2D im-
ages, whereas shape-from-photo-consistency methods start from voxels or sur-
faces in 3D space, and reconstruct objects by verifying photo-consistencies of
voxels or deforming 3D surfaces. Working directly in 3D space has the ad-
vantage of being able to model visibilities with respect to reference views ex-
plicitly. As a result, shape-from-photo-consistency methods can handle widely-
separated reference views, which are difficult for depth-from-stereo methods to
process.

Shape-from-photo-consistency can be viewed as generalization of the shape-
from-silhouette technique. For 3D reconstruction, shape-from-silhouette meth-
ods only need binary reference images and create visual hulls by checking silhou-
ette-consistency, whereas shape-from-photo-consistency methods take color im-
ages as input to reconstruct photo hulls by verifying color consistency.

24 Chapter 2: Related Work

VV22

VV11

CC11

CC22

CC33

Figure 2.7: Photo-consistency test during volumetric photo hull reconstruction
(2D illustration). Let the true scene object be composed of the red and the purple
parts. The voxel V1 is photo-consistent since its projections in three reference
views are all red. The voxel V2 fails the photo-consistency test since its projec-
tions are red, red and purple, as observed from the reference viewpoints C1, C2,
C3, respectively. Therefore, V2 is carved away.

2.4.1 Photo hull reconstruction and rendering

Similar to voxel-based visual hull reconstruction, photo hulls can be recon-
structed in a discretized working volume. The photo-consistency of each voxel
in the volume is verified. Those voxels which fail to pass the photo-consistency
test are carved away. The remaining voxels belong to the photo hull. This pro-
cess is illustrated in 2D using Figure 2.7.

The first shape-from-photo-consistency work that we are aware of is pre-
sented by Fromherz and Bichsel [FB95]. Seitz and Dyer [SD97] propose a
plane-sweeping approach called voxel coloring. During photo-consistency check,
this approach traverses the scene in an order that accounts for each voxel’s visi-
bility with respect to each reference view. One constraint is that no scene point
is allowed to be within the convex hull formed by the optical centers of cameras.
Kutulakos and Seitz [KS99] establish a formal theory of the photo hull repre-

2.4 Shape from Photo-consistency 25

sentation. A space carving algorithm is presented for photo hull reconstruction.
This algorithm allows arbitrary camera placement by performing scene traversal
several times from different directions. Since then, many variations or exten-
sions of the space carving algorithm have been proposed. Eisert et al. [ESG99]
take a multi-hypothesis approach to verify photo-consistency of voxels. Proba-
bilistic frameworks of space carving are proposed in [BFK02, BDC01]. Another
work done by Kutulakos [Kut00] improves the stability of the space carving al-
gorithm by taking into account image noise and calibration errors explicitly.
Prock et al. [PD98] and Sainz et al. [SBS02] attempt to accelerate part of the
photo hull computation using graphics hardware. Transparent objects are treated
in the work [dBV99]. Specular surfaces are investigated by Chhabra [Chh01]
and Bonfort et al. [BS03]. Vedula et al. [VBSK00] extend space carving to time
domain and recover a motion vector for each voxel of the photo hull.

Instead of verifying the photo-consistency of each voxel, some other meth-
ods deform a surface embedded in the discretized working volume. For exam-
ple, level-set methods [SSH02] evolve an implicit surface according to photo-
consistency measurement. Graph-cut methods [KZ02] define an energy function
that represents global photo-inconsistency over all the voxels on an embedded
surface. By minimizing the energy function, the surface converges to the shape
of the photo hull.

Apart from voxel-based methods, some researchers build a polyhedral visual
hull mesh as an initial estimate, and then move the vertices on the mesh so
that they become photo-consistent [ESG00, IS02, KHV04]. Since the photo-
consistency is only evaluated for each vertex, the computational cost is normally
lower than those of the voxel-based methods.

All the above algorithms reconstruct a view-independent model. However,
for novel view synthesis, a view-dependent model would be enough. As a natu-
ral extension of the image-based visual hull, image-based photo hull [SSH03] is
reconstructed by checking photo-consistencies of the sample points along each
viewing ray of a target view. Yang et al. [YWB02] exploit graphics hardware
to render a stack of planes and perform the photo-consistency check for each
rasterized fragment. This can be regarded as an extension to Lok’s visual hull

26 Chapter 2: Related Work

reconstruction method [Lok01].
The two surveys [SCMS01, Dye01], already mentioned in Section 2.3.1.1,

also provide thorough reviews on reconstruction of photo hulls.
Visual hulls and photo hulls share the same underlying geometry primitives

such as voxels, points or polygons. Therefore, if the same geometry primitives
are used, the visual hull rendering algorithms in Section 2.3.2 apply to photo
hulls as well. However, compared with the visual hull representation, the photo
hull is a more accurate geometric representation, which generally leads to more
photo-realistic rendering of novel views.

2.5 Graphics Hardware

Graphics hardware is generally understood as the hardware resources available
on the graphics board 3 of a computer. The hardware resources typically in-
clude a graphics processing unit (GPU), dedicated graphics memory, and some
other auxiliary chips and circuits. Modern GPUs implement a rendering pipeline

that is very efficient at processing vector data streams and synthesizing images.
Recently, the processing power of graphics hardware has been exploited to ac-
celerate a diverse range of tasks, such as complex shading, solving equation
systems, physically-based animation, image processing, novel view synthesis as
presented in this work, and so on.

To utilize GPUs, there exist two major graphics programming interfaces:
OpenGL [SA04] and Direct3D [Mic04a]. Although OpenGL is selected for the
implementation of our algorithms, this work is not restricted by the program-
ming interface. Direct3D offers almost the same functionality and can be used
as well.

In the rest of this section, we will briefly describe the rendering pipeline of
OpenGL and introduce some terminology that will be used later in the thesis.

2.5.1 Overview of the rendering pipeline

The rendering pipeline in OpenGL consists of three stages: geometry process-
ing, rasterization and per-fragment operations, depicted in Figure 2.8. At the

3Graphics board is sometimes called graphics card, video card, or graphics accelerator.

2.5 Graphics Hardware 27

Geometry
Processing

Per−fragment
operations

RasterizationTransformed
vertex
data

Vertex
data

pixels

Fragment data

Geometry

Framebuffer

Figure 2.8: The OpenGL rendering pipeline.

beginning, a geometry primitive, represented by a group of vertices, is sent to
the graphics pipeline. In the geometry processing stage, the vertex attributes,
such as positions, colors and texture coordinates, are transformed or evaluated.
During rasterization, the per-vertex attributes are rasterized into fragments. The
color value of a fragment could be further modulated with texture and fog. Fi-
nally, in the stage of per-fragment operations, the fragments undergo a series of
tests. Those fragments passing all the tests are called pixels, and will be used to
update the appropriate locations in the framebuffer. Finally, the color content of
the framebuffer will be displayed on the screen.

All functionalities of the traditional graphics pipeline are fixed. Users only
have the choice to configure the parameters of some functional units, or simply
to switch them on or off. Such pipeline is referred to as fixed-function pipeline.
Recently, it becomes clear that the fixed pipeline is too limited to perform ever
more sophisticated shading tasks. Consequently, parts of the traditional pipeline
are replaced by fully programmable units. In addition, floating-point storage
and computation become available throughout the pipeline which provides high
precision. This evolution is transforming the graphics hardware into a flexible
streaming processor.

In the following, we will look into more details of the fixed-function pipeline
as well as the programmable units that are lately developed.

28 Chapter 2: Related Work

2.5.2 Fixed-function pipeline

2.5.2.1 Geometry processing

Geometry primitives are specified with multiple vertices that represent points,
lines or polygons. The geometry processing mainly consists of three tasks:

1. Geometric transformation of vertex coordinates and normals:
Vertex coordinates are represented with homogeneous coordinates in ob-
ject space. They are first transformed into eye space by a modelview ma-
trix. Then, the coordinates in eye space go through a set of processing
steps: projection, view volume clipping, perspective division and view-
port transformation. Finally, they are converted to window coordinates on
the output screen. Sometimes, vertex normals also need to be transformed
to eye space for lighting computation.

2. Computation of vertex colors:
Vertex colors can be directly specified by the users. When the lighting is
turned on, material and lighting properties are utilized to compute vertex
colors according to a built-in equation, which is based on the Blinn-Phong
model [Bli77].

3. Generation of fog coordinate and texture coordinates
For each vertex, a fog coordinate and a set of texture coordinates can
be either manually assigned or automatically generated from other vertex
data, typically vertex positions and normals. For each texture coordinate,
it is then multiplied by a texture matrix. If the texture matrix defines a
perspective projection, the texturing operation is often called projective

texture mapping [SKvW � 92], which is widely used in our algorithms.

2.5.2.2 Rasterization

Rasterization converts primitives to a two-dimensional array of grids which con-
tain the color and depth information. The rasterizer first figures out which grids
are occupied by a primitive. For each of these grids, the z window coordi-
nate (depth value), color, fog coordinate and texture coordinates are interpolated

2.5 Graphics Hardware 29

across the primitive from its corresponding vertex data. A grid, together with its
associated data, is called a fragment. Then texture values are obtained by look-
ing up texture maps using the interpolated texture coordinates. The output color
of a fragment is evaluated from the interpolated color values, the texture values,
and optionally modified by a fog value computed from the fog coordinate.

2.5.2.3 Per-fragment operations

Per-fragment operations control how the framebuffer is updated by the frag-
ments coming from the rasterization stage. The framebuffer is composed by a
two-dimensional array of pixels. Each pixel contains color, depth, stencil and
accumulation values. Accordingly, the framebuffer is divided into several log-
ical buffers, which are named as color buffer, depth buffer, stencil buffer and
accumulation buffer, respectively. The content of the color buffer is used for the
final display. The depth buffer and the stencil buffer assist in the per-fragment
operations. The accumulation buffer can accumulate a series of color buffers
and copy the accumulated result back to the color buffer for viewing.

The per-fragment operations start from a series of tests performed on the
incoming fragments. The scissor test selects the fragment that lies in a rectan-
gular region in the viewport. The alpha test compares the alpha component of
the fragment’s color with a reference value. The stencil test conditionally dis-
cards a fragment based on the result of a comparison between the value in the
stencil buffer at the fragment’s location and a reference value. The depth test

compares the fragment’s depth value with the depth value stored in the depth
buffer. Depending on the results of the stencil test and the depth test, the stencil
buffer is updated by some pre-defined operations.

If a fragment passes all the tests, its depth value is written to the depth buffer
directly. The color value of the fragment might be modified with optional blend-

ing, dithering and logic operations, before being written to the color buffer.

For some multi-pass rendering algorithms, off-screen rendering is needed
to carry out some computation. OpenGL provides a P-buffer extension (short
for pixel buffer) [Sil, Oped] to address this issue. All the operations for the
framebuffer apply to the P-buffer as well.

30 Chapter 2: Related Work

2.5.3 Programmable pipeline

2.5.3.1 Vertex program unit

A vertex program [Opec] is an assembler program that is written by a user and
executed on the graphics board. For each vertex, the vertex program takes a set
of vertex attributes as input data, performs computations, and outputs a new set
of vertex data for rasterization. When a vertex program is enabled, certain tasks
in the geometric processing stage of the fixed pipeline are bypassed. Therefore,
depending on applications, a vertex program should take over some of the basic
tasks, such as modelview and projection transformation, normal transformation,
color computation, texture and fog coordinate generation, etc.

The latest version of the vertex program [NVIb] features a very flexible in-
struction set, which supports basic arithmetic operators, dot product, compari-
son, trigonometric and exponential functions, vector component swizzling and
masking, branching and subroutine call, texture lookup, etc. Since the input
vertex attributes are mostly 4-component floating-point vectors, the instruction
set is especially designed to process such vectors efficiently. The vertex pro-
gram also has access to OpenGL state variables and a number of environment
variables specified by applications.

2.5.3.2 Fragment program unit

Initially, NVIDIA and ATI add limited programmability to replace parts of the
rasterization unit of the fixed pipeline. More flexible mixture of fragment color
and multiple texture values is supported by OpenGL extensions like register
combiners [NVIc] and fragment shaders [ATI]. Later, the programmability
evolves into a general model that allows a user to run a customized fragment
program [Opea] on graphics hardware. A fragment program takes interpolated
fragment data and computes a color and a depth value for each fragment. The
instruction set is very similar to that of a vertex program.

2.5 Graphics Hardware 31

2.5.3.3 High level shading languages

Vertex and fragment programs must be fed to programmable graphics hardware
in assembler languages. However, as various applications demand ever more
complex programs to accomplish computation-intensive tasks, it becomes im-
practical to write and to debug these programs in assembly languages. There-
fore, a hardware independent high-level shading language needs to take this
challenge since it is easy to use and provides better portability. The graphics
industries have already released several languages of such kind, for example,
Cg [MGAK03] coming from NVIDIA, glslang [KBR04] designed for OpenGL
2.0 and Microsoft HLSL [Mic04b] shipped together with Direct3D. The Cg lan-
guage, which stands for “C for graphics”, is cross-platform and works with both
OpenGL and Direct3D. Therefore in our work, the hardware-accelerated algo-
rithms are implemented using Cg.

32 Chapter 2: Related Work

Chapter 3

Synchronized Acquisition of
Pre-calibrated Multi-view Videos

The input data of the novel view synthesis algorithms to be presented are a set
of color video sequences taken from multiple viewpoints. Since visual hulls are
used in all our algorithms, these video sequences need to be segmented into fore-
ground and background parts so that silhouettes can be identified. In addition,
the video sequences must be synchronized for every frame to ensure that the
multi-view image data contain consistent information. Although synthetic data
can serve as inputs, the ultimate goal of our algorithms is to process data taken
from the real world. This chapter explains how we acquire the synchronized
video data in an indoor environment. Specifically, we will describe our camera
system, the computer infrastructure and the image processing algorithms.

3.1 Camera system

We choose Sony DFW-V500 digital video camera [Son] for image acquisition
because it has the following features:� High-speed acquisition and data transfer.

The Sony video camera can capture color images of up to 640 � 480-pixel

34 Chapter 3: Synchronized Acquisition of Pre-calibrated Multi-view Videos

resolution at a frame rate of 30 fps. The image data are encoded in a
compact format (YUV4:2:2 or YUV4:1:1) and transferred digitally to
a host computer through IEEE1394 interface (also known as Firewire).
Therefore, no Analog-to-Digital conversion is needed. The transfer rate
is 400Mbps. The bandwidth is sufficient to transfer videos at maximum
resolution and highest frame rate.� Synchronization.
The camera has an external trigger containing four pins. When is trigger
function is set to ON, the camera does not start image acquisition until a
pulse is detected in one of the four pins. This feature is of vital importance
for synchronizing multiple view streams.� Programmable control.
A set of registers on the camera store the settings related to image color,
filtering, acquisition and transfer. It is possible to save all settings in a
channel for later use. A control program running on the host computer
can adjust all the settings, load or unload them and start or stop the image
acquisition. This programmable control greatly facilitates the manage-
ment of the camera system.

We have eight cameras1 installed in a room that is approximately 11m � 5m large
and 3m high. The controlling computers only need a small area of the room on
one side. The remaining space is called working space and reserved for the
dynamic objects to be captured. In order to simplify the later image segmen-
tation task, dramatic lighting changes and complex inter-reflections should be
prevented. Therefore, the working space is surrounded by black curtains and
the floor is covered with a black carpet.

Each camera is mounted on a geared head which can be adjusted in three
directions. The head is attached to a pole via a clamp. We can fix the pole
between the ceiling and the floor (See Figure 3.1b). This way, the camera can be
positioned in any free space in the room. Figure 3.1(c) shows eight surrounding

1At the early stage of developing this system, we had six cameras. Thus, the algorithm
presented in Chapter 4 is based on a camera system only containing six cameras.

3.1 Camera system 35

(a) (b) (c)

Figure 3.1: Camera mounting, positioning and arrangement. (a) The camera is
flexibly mounted on geared head attached to a pole. (b) The poles can be fixated
at arbitrary location by jamming them between floor and ceiling. (c) A possible
camera arrangement. Red circles indicate the positions of the cameras.

cameras pointing to the central area of the working space. This is a common
way to arrange cameras. Most video data used in our algorithms are captured
using this configuration.

3.1.1 Camera calibration

Camera calibration is a rudimentary task for 3D reconstruction algorithms. It
calculates a set of camera parameters which determine the geometric relation-
ship between a 3D object and its 2D projection on the image. Most of calibration
algorithms are based on a pinhole camera model (see Figure 3.2). This model is
simple and well accepted both in computer vision and computer graphics com-
munities. The parameters of a pine hole camera can be classified into intrinsic
and extrinsic ones. The intrinsic parameters are related to the imaging system of
the camera itself. In a widely-used camera model, they include radial distortion
coefficient κ, focal length f , principal point c and aspect ratio s. The extrin-

36 Chapter 3: Synchronized Acquisition of Pre-calibrated Multi-view Videos

cc

uu

vv

Object

CC

PP

ff

pp

World Coordinate System

Camera Coordinate System

Image Coordinate

Figure 3.2: Pinhole camera model. C is the optical center of the camera, also
called the viewpoint. The dotted line passing the optical center is the principal
axis. c is the principal point, which is the intersection point of the principal
axis and the image plane. f is the focal length of the camera. It is the distance
between the optical center and the principal point.

sic parameters describe the camera’s 3D position and orientation relative to the
world coordinate system where the coordinates of scene objects are normally
specified.

To calibrate a pinhole camera, classic methods optimize the mappings be-
tween known 3D features of a calibration target and their corresponding 2D
positions in the image. Among these methods, a widely-used algorithm is pro-
posed by Tsai [Tsa86]. This algorithm employs Levenberg-Marquardt optimiza-
tion method [PTVF92] to compute camera parameters and works very well in
practice. The input data are a number of 3D points and its 2D projection in the
image. The 3D points could be coplanar or non-coplanar. We use planar ones
since our calibration pattern is a 2m � 2m checkerboard constructed on the floor
(See Figure 3.3). In the Tsai algorithm, the calibration of the full camera model
needs at least 11 points. However, in order to increase calibration accuracy, we
adjust cameras so that at least 18 corner points of the checkerboard can be seen

3.1 Camera system 37

Figure 3.3: Camera calibration pattern on the stage floor, viewed from one cam-
era.

by each camera. We have developed an interactive calibration program based on
Tsai’s algorithm. The user can easily specify the 2D-3D point correspondences.
The whole calibration process takes less than half an hour for eight cameras.
The average reprojection error is less than one pixel for images at a resolution
of 640 � 480 pixels. This is precise enough for our purpose. It should be men-
tioned that during camera calibration, the black carpet on the floor needs to be
removed to reveal the calibration pattern.

To further simplify the calibration task, more advanced calibration tech-
niques could be employed. For example, automatic 2D-3D correspondence as-
signment can eliminate the need of manual work. Another calibration technique,
self calibration [PKG99], does not need a specific calibration target. This tech-
nique exploits robust estimators like RANSAC [HZ00] to match image features
between different views. Full calibration information could be computed from
the feature correspondences. A scene image usually contains enough feature
points that can be automatically located. In case of lacking feature points, one
can move an LED or a small colored ball around the scene and capture these
images for calibration.

38 Chapter 3: Synchronized Acquisition of Pre-calibrated Multi-view Videos

Since the positions and orientations of all cameras keep unchanged during
acquisition, the calibration procedure only needs to be carried out once for each
camera. The acquired videos are called pre-calibrated videos.

3.1.2 Color calibration

Different cameras have their unique imaging systems. Therefore, even if their
color controls, apertures and shutter times are set to the same, they still produce
images with inconsistent colors. To deal with this problem, we first manually
tune the camera settings to make the captured images have as consistent colors
as possible. Then a color calibration matrix is estimated between each pair of
cameras using least square methods. At runtime, these matrices are used to
perform color transformation on the original images.

3.1.3 Camera synchronization

Camera synchronization guarantees that multi-view images contain information
consistent for the same time instant. This is crucial to 3D reconstruction and
rendering quality. In the Virtualized Reality system [KNR95], VITC (Vertical
Interval Time Code) is embedded into every frame while capturing. During the
off-line analysis of the recorded video sequences, the time stamp in VITC is
examined to perform synchronization.

The above method is only suitable for off-line systems. For live video
streams, external triggers available on the cameras can be used to implement
synchronization. We connect the trigger sockets of all cameras to a pin of the
parallel port on a computer. When an image frame needs to be captured from
each camera, a pulse signal is generated by the computer to notify all cameras to
start capturing. This synchronization scheme is very precise. Depending on the
length of trigger pulse and the internal reference signals of the cameras, the time
shift between two images captured from different cameras is within the range of
several milliseconds. When we take into account the client-server communica-
tion 2, 15 fps is the highest frame rate we can reach under the triggered mode.

2The client-server architecture of our computer system is explained in the next section.

3.2 Computer Infrastructure 39

If the objects in a scene do not move very fast, synchronization using software
[HLS04] or internal computer clocks [YEBM02] can be achieved at the price of
losing precision.

3.2 Computer Infrastructure

Our system is based on a client-server architecture. Connections between com-
puters, cameras, and the synchronization device are illustrated in Figure 3.4.
A pair of cameras is connected to one client computer. Four client computers
are connected to a rendering server via 100Mbps Ethernet network. The syn-
chronization device links the parallel port of the server computer to the external
triggers of the cameras.

Each client computer has an Athlon 1.1GHz CPU and 768Mbyte main mem-
ory. The client computers are responsible for synchronized video acquisition as
well as real-time image processing tasks. The graphics cards installed on the
client computers feature NVIDIA GeForce2 GPUs. Novel views are synthe-
sized on the server machine, which we have equipped with different CPUs and
graphics cards during the course of the development of our system. In the fol-
lowing chapters, when we present the performance, we will give the specific
types of the CPUs and graphics cards.

Most of the software packages are developed using open source projects.
All the computers are installed with Debian Linux operating system. The 1394-
based DC control library [DUD � 04] provides a high-level API to control the
firewire cameras. We create C++ wrapper classes around this API and build
some command-line utility tools. The client-server communication and the
multi-thread management are implemented based on a C++ framework, ACE
(�����
��! � #"�"�"��!$�%�&"�'(�*) �+�,�,'- �.��$ � �/�0� � ,1�2,34� ��� �)). A highly optimized com-
puter vision library, OpenCV [Int], is exploited to perform image processing
tasks described in the next section.

http://www.cs.wustl.edu/~schmidt/ACE.html

40 Chapter 3: Synchronized Acquisition of Pre-calibrated Multi-view Videos

Figure 3.4: Client-server architecture of our system. Connections between com-
puters, cameras, and the synchronization device (the box at the lower left corner)
are shown.

3.3 Image Processing Algorithms

Real images acquired by our cameras need to be processed before they are
passed to the novel view synthesis algorithms. This section describes two com-
mon image processing algorithms applied to the images: radial undistortion and
image segmentation. Other specific processing algorithms will be discussed in
the later chapters when they are required.

3.3.1 Radial distortion correction

Optic lens cause radial distortion in real images. Before we can employ an ideal
camera model, the image distortion must be corrected. The distortion coeffi-
cient κ, an intrinsic camera parameter in Tsai’s calibration algorithm, relates
a real image coordinate (Xd 5 Yd) and its undistorted counterpart (Xu 5 Yu) by the
following set of equations:678 79 Xu : Xd ;�< 1 = κ ; r2

d >
Yu : Yd ;?< 1 = κ ; r2

d >
r2

d : X2
d = Y 2

d

(3.1)

3.3 Image Processing Algorithms 41

From the above equation, we can derive a cubic polynomial equation, which
solves the distorted coordinate (Xd 5 Yd) from a given undistorted coordinate
(Xu 5 Yu). The correspondences for all pixels of the undistorted image are pre-
computed and stored in a lookup table. At runtime, we use inverse mapping to
perform radial distortion correction.

3.3.2 Image segmentation

Since all novel view synthesis algorithms in this thesis employ the visual hull
representation, silhouettes of foreground objects are needed to reconstruct visual
hulls. Thus a common task is segmenting the whole image into “foreground”
and “background” parts in order to identify the silhouette. A commonly-used
technique to accomplish this is bluescreen matting [SB96]. But this technique
requires a background with uniform color. To remove this restriction, a more
general technique — image differencing [Bic94] is used in our system.

First, we accumulate 30-50 image frames when there is no object moving
in the scene. From these images, we build a simple statistical background
model. This model is composed by two floating-point images which contain
mean values and standard deviation values, respectively. When a foreground
object moves into the scene, we subtract the statistical background information
from every new frame and apply thresholding. The resulting binary image con-
tains the object mask (the silhouette), isolated noise pixels in the background
and some small holes within the mask due to misclassification. We remove the
noise with a median filter and apply morphological operators to fill the small
holes. Finally, the contour of the silhouette is retrieved as a 2D polygon [DP73].
A parameter controls how well the silhouette is approximated by the polygon.
Figure 3.5 shows an original image, the extracted foreground object, the corre-
sponding mask and the polygonal silhouette contour.

The image differencing technique encounters difficulties in shadow regions
in the scene. When a moving foreground object casts shadow onto a static sur-
face, the shadow region can be wrongly classified as a fake foreground object
due to color changes. However, the color is mainly altered in intensity. The
hue keeps roughly unchanged. We exploit this fact to make the classification

42 Chapter 3: Synchronized Acquisition of Pre-calibrated Multi-view Videos

(a) (b)

(c) (d)

Figure 3.5: Image segmentation and silhouette extraction. (a) Original image.
Radial distortion correction is already performed. (b) Foreground object. (c)
Foreground mask (silhouette). (d) 2D polygon approximation of the silhouette
contour.

more stable. Silhouette extraction is critical to the later reconstruction and ren-
dering quality. More sophisticated methods are suggested in the future work in
Chapter 8.

3.4 Summary

Our acquisition facility is able to record multi-view video sequences on hard
disks, or to acquire and to process live video streams on the fly. The video frames
are pre-calibrated and synchronized at high precision. The camera system is

3.4 Summary 43

easy to control and flexible enough for various applications. The distributed
architecture makes the video acquisition and processing very efficient. The off-
the-shelf hardware and open source software keep the overall system cost at a
moderate level.

44 Chapter 3: Synchronized Acquisition of Pre-calibrated Multi-view Videos

Chapter 4

Novel View Synthesis Based on
a Visual Hull-Assisted

Stereo Algorithm

In this chapter, we present a novel view synthesis algorithm based on improved
reconstruction of dense depth maps. As mentioned in Section 2.2 in the related
work, area-based depth-from-stereo methods generate dense depth maps that
provide rich surface details. However, such methods are sensitive to image noise
which often leads to poor depth map reconstruction. One way to improve the
stability is to limit search ranges when matching corresponding pixels. This
can be achieved by constructing initial estimates of scene objects and deriving
search ranges from the estimated shapes. In our approach, we employ visual
hulls as the initial estimates and exploit them to improve a depth-from-stereo
algorithm. The better reconstructed depth maps are utilized to synthesize novel
views of dynamic objects through 3D warping [McM97].

The rest of the chapter is organized as follows. We first explain the ba-
sic depth-from-stereo algorithm, and then present the visual hull-assisted stereo
reconstruction as well as the rendering method. After describing our system
implementation and giving the system performance, we compare our algorithm
with other similar work and conclude this chapter with a summary.

46 Chapter 4: Novel View Synthesis Based on a VH-Assisted Stereo Algorithm

4.1 Basic Stereo Algorithm

Matching corresponding pixels is the key step in stereo algorithms. Given two
stereo images I1 and I2, the matching procedure finds the corresponding pixel
in the image I2 for each pixel in the image I1. A naive search procedure has to
examine all pixels in the image I2. One can employ epipolar constraints to limit
the search range along an epipolar line. Figure 4.1(a) shows the epipolar line l2
corresponding to the pixel p1. Notice that under a general stereo configuration,
the epipolar line is not aligned with image scanlines, which makes the pixel
traversal less efficient.

To address this issue, a perspective image warping can be applied to both
stereo images so that the epipolar line coincides with an image scanline (see
Figure 4.1b). The perspective warping step is called rectification [Fau93]. Since
fixed stereo camera configuration in our system results in constant transforma-
tion between the original image and the rectified image, we accelerate the rec-
tification operation using a pre-computed lookup table. After rectification, the
rectified images I @1 and I @2 form a canonical stereo configuration. Under such
a configuration, the pixel traversal becomes more efficient, and the pixel corre-
spondence is expressed with a disparity value, which is the horizontal coordinate
difference between the matching pixels p @1 and p @2.

The disparity value is determined by examining rectangular regions around
the pixel p @1 and a pixel p @ along the epipolar line l @2. We choose sum of abso-

lute difference (SAD) as the similarity metric because it is fast to compute and
suitable for real-time systems. Suppose that the coordinates of the pixel p @1 are< x 5 y > , the horizontal coordinate difference between p @1 and p @ is d, the intensity
functions of the stereo images for a pixel < u 5 v > are I1 < u 5 v > and I2 < u 5 v > , respec-
tively, the size of the rectangular regions is M � N. Then the SAD can be written
as the following Equation:

SAD < x 5 y 5 d > : M

∑
i A 1

N

∑
j A 1 B I1 < x = i 5 y = j >-C I2 < x = i = d 5 y = j > B

By exploiting the coherence of neighboring pixels, the SAD computation is
carried out in a way that the cost is independent of the window size [FHM � 93].

4.1 Basic Stereo Algorithm 47

pp
11

pp
22

PP

CC11 CC22

ll22:epipolar line

II22II11

Baseline

(a)

pp’’
11

pp’’
22

PP

CC11 CC22

ll’’22:epipolar line

II’’22II’’11
Baseline

(b)

Figure 4.1: Stereo rectification. (a) General stereo configuration. Images are
not in a common plane. Epipolar lines are not aligned with image scanlines. (b)
Canonical stereo configuration. Images are in a common plane and parallel to
the baseline. Epipolar lines are aligned with their corresponding scanlines.

48 Chapter 4: Novel View Synthesis Based on a VH-Assisted Stereo Algorithm

Once the SAD is computed for each integer value d within a range D dmin 5 dmax E ,
the disparity value representing the correspondence of the pixel p @1 can be ex-
pressed as:

Disp < x 5 y > : argmin
d

SAD < x 5 y 5 d > 5 dmin F d F dmax (4.1)

We reverse the roles of I @1 and I @2, and compute the disparity value Dispreverse

for p @2. According to the symmetry constraint [Fua93], the disparity values Disp

and Dispreverse should differ only in signs. In other words, the sum of the two
disparity values should be zero. This left-right consistency check is very ef-
fective to remove false matches caused by occlusions. If the disparity value is
identified to be a valid one, sub-pixel accuracy can be obtained by interpolating
the neighboring SAD scores [FRT97]. Finally, the depth value can be computed
directly from the disparity value:

Depth : Baseline G FocalLength
Disp

(4.2)

where Baseline is the distance between the optical centers of a stereo pair,
FocalLength is the effective focal length, which is one of the intrinsic camera
parameters.

4.2 Visual Hull-Assisted Stereo Algorithm

Equation 4.1 suggests that, if the value d varies in a large range, more pixels
need to be examined. This will not only hinder the overall performance but
also increase the possibility to match wrong pixels. Therefore, one key factor
influencing the correspondence search is the disparity range. Based on this ob-
servation, we exploit the conservative shape approximation, the visual hull, to
narrow disparity search range during stereo matching. This is the basic idea of
our approach.

Depth-from-stereo algorithms require that two viewpoints are close to each
other. On the other hand, shape-from-silhouette algorithms can reconstruct bet-
ter shapes if viewpoints are distributed more evenly. Hence, we use a mixed

4.2 Visual Hull-Assisted Stereo Algorithm 49

Figure 4.2: Mixed configuration for visual hull-assisted stereo algorithm. Three
vertical stereo pairs are arranged in a convergent way.

configuration as shown in Figure 4.2, where three vertical stereo pairs are ar-
ranged in a convergent way. Since a pair of stereo cameras are close to each
other, using both of them for visual hull reconstruction does not improve the
shape accuracy very much. Therefore, the visual hulls of scene objects are only
reconstructed from three camera views, each coming from one stereo pair.

We choose polyhedral representations of visual hulls because they are more
suitable for generating disparity ranges. To reconstruct a polyhedral visual hull,
we extract 2D silhouette polygons as described in Section 3.3.2, and then back-
project these polygons into 3D space to create silhouette cones. Finally, an open
source library, Breplibrary [Bek], is employed to carry out 3D intersection of
silhouette cones. Figure 4.3 shows the wireframe model of a polyhedral visual
hull.

Now that the visual hull information is available, we proceed to explain how
to exploit this information. In the following sections, we describe two ways to
limit disparity ranges. The first one imposes a global range constraint on stereo
computation for all pixels. The second one generates per-pixel disparity ranges
using off-screen rendering of visual hulls.

50 Chapter 4: Novel View Synthesis Based on a VH-Assisted Stereo Algorithm

Figure 4.3: The wireframe model of a polyhedral visual hull

4.2.1 Global disparity range constraint

We have already known that a visual hull is a conservative approximation to the
actual object, which means its bounding box must also be conservative. There-
fore, we can compute the bounding box of a visual hull and derive the disparity
range as follows.

For each reference view, we transform eight vertices of the bounding box
from the world coordinate system to the camera coordinate system of the refer-
ence view. Then the minimum and maximum depth values are calculated from
these transformed vertices. The depth range can be converted to a disparity
range using the following formula:

Disp : Baseline G FocalLength
Depth H (4.3)

The main advantage of the above method is that the bounding box computa-
tion can be determined from the polyhedral model of a visual hull very quickly.
The downside is that the disparity range is a global range. For most foreground
object pixels in a reference view, it is over-conservative.

4.2 Visual Hull-Assisted Stereo Algorithm 51

4.2.2 Per-pixel disparity range constraint

To tackle the drawback of the global disparity range constraint, we refine the
disparity range to a per-pixel level. This way, the stereo algorithm can fur-
ther benefit from more precise constraints. In this section, we will present two
schemes for generating per-pixel range constraint. One is not conservative but
faster, the other is truly conservative at the expense of more computation. Since
both of them need a disparity map generated from the visual hull, we will first
discuss this problem.

4.2.2.1 Disparity map computation

Given the polyhedral visual hull and the camera calibration information, we are
able to generate a depth map for each reference view. This is performed by
using OpenGL off-screen rendering which is supported by graphics hardware.
The generated depth maps can be easily converted to disparity maps by applying
Equation 4.3. Since the depth value in this equation is different from the depth
values stored in the OpenGL depth buffer, we need to do this conversion first.

According to the geometric transformation defined in OpenGL [SA04], we
relate the OpenGL depth value Zgl and the real depth value with the following
formula:

Zgl : < Depth ;�< Far = Near > = 2 ; Far ; Near
Depth ;?< Far C Near > = 1 >JI 2 5 (4.4)

where Far and Near are the far and near clipping planes used in the viewing
volume setup, respectively.

We rewrite Equation 4.4 and represent the real depth value as a function of
Zgl:

Depth : Far ; Near
Far C Zgl ;�< Far C Near > (4.5)

52 Chapter 4: Novel View Synthesis Based on a VH-Assisted Stereo Algorithm

Then substituting Equation 4.5 to Equation 4.3 leads to:

Disp : < 1
Near C Zgl ;?< Far C Near >

Far ; Near > ; Baseline ; FocalLength (4.6)

Since Far5 Near5 Baseline 5 FocalLength are all constants, the above equa-
tion suggests that the disparity can be computed as a multiplication followed by
an addition from the OpenGL depth map. Such kind of arithmetic image opera-
tions are supported by the OpenCV library [Int], which is highly optimized for
modern CPUs.

4.2.2.2 Approximate per-pixel range

Normally, the depth buffer contains the depth value for the front surfaces. Thus,
the disparity map obtained from the depth buffer corresponds to the upper bounds
of disparity values. In order to generate the lower bounds, we can simply sub-
tract the upper bounds by a constant threshold. The selection of the threshold
depends on the maximum concavity of actual scene objects. However, since the
concavity of the object is unknown in advance, this scheme does not guarantee
the correct disparity range coverage for the scene object. Consider the situation
of recovering the depth value of point F in Figure 4.4. If the threshold is not big
enough, the correct disparity value will fall outside the approximate range and
cannot be recovered.

For a moving object that does not exhibit noticeable concavities, the approx-
imate per-pixel range works quite well. Figure 4.5 shows the improved recon-
struction results. Note that in Figure 4.5(a) the disparity map is very smooth,
which means the surface detail of the object is poorly represented by the vi-
sual hull. In Figure 4.5(b), there is a region of false depth values on the right
lower part of the body due to large disparity range. The false depth recovery is
corrected in Figure 4.5(c) when we apply the approximate per-pixel range con-
straint. Meanwhile, more details are recovered by the stereo algorithm compared
with the visual hull.

4.2 Visual Hull-Assisted Stereo Algorithm 53

CC22

EE
FF

GG

CC33

CC11

Figure 4.4: Per-Pixel range constraint. The visual hull represented in 2D is
drawn as thick lines.

4.2.2.3 Conservative per-pixel range

In the previous scheme, we only make use of front surfaces of visual hulls to
generate approximate disparity ranges. If we also know depth values of back
surfaces, we can obtain both upper and lower bounds of disparity values that
form conservative ranges. For example, in Figure 4.4, to recover the depth of
the point F, we can create a disparity range from the point E and the point G.
Within this range, it is possible to find the disparity value that corresponds to the
correct depth of the point F.

To generate the depth map of the back surfaces of a visual hull, we use the
following OpenGL settings:

glClearDepth(0)

glDepthFunc(GL_GREATER)

Then the generated depth map is converted to the lower-bound disparity map
using the method described in Section 4.2.2.1.

One disadvantage of this scheme is that it needs two rendering passes to
generate depth maps, one pass for front surfaces and the other for back surfaces.

54 Chapter 4: Novel View Synthesis Based on a VH-Assisted Stereo Algorithm

(a)

(b) (c)

(d) (e)

Figure 4.5: Improved reconstruction using the approximate per-pixel range con-
straint. (a) Disparity map generated from the visual hull. (b) Depth map without
using visual hull information. (c) Improved depth map using approximate range
limit by a threshold. (d) Rendered view using the depth map of Figure 4.5(b).
The rendering method will be presented in Section 4.3. (e) Rendered view using
the depth map from Figure 4.5(c).

4.3 Rendering 55

Fortunately, the depth map generation is performed with graphics hardware. The
real-time performance does not drop too much according to our experiments.

4.3 Rendering

One can merge the depth maps recovered from multiple stereo pairs into a single
polyhedral model and render the model with texture mapping. However, the
polyhedral model extraction is time-consuming and not suitable for real-time
applications. Therefore, we use warping-based methods for rendering. The 3D
warping equation is expressed as follows:678 79 x2 : <J< w11 ; x1 = w12 ; y1 = w13 > ; z1 = w34 >JI z2

y2 : <J< w21 ; x1 = w22 ; y1 = w23 > ; z1 = w24 >JI z2

z2 : < w31 ; x1 = w32 ; y1 = w33 > ; z1 = w34

(4.7)

< x1 5 y1 > and < x2 5 y2 > are the pixel coordinates in a reference view and a novel
view, respectively. z1 and z2 are the depth values corresponding to the pixel< x1 5 y1 > and the warped pixel < x2 5 y2 > , respectively. The constant values wi j< 1 F i F 3 5 1 F j F 4 > are computed from the pinhole camera models of the
reference view and the novel view. By exploiting the spatial coherence between
neighboring pixels in the reference view, the warped pixel coordinates are com-
puted incrementally for efficiency [PEL � 00]. To avoid aliasing artifacts, we
have implemented the splatting technique described in the work [SGHS98], in
which each splat is associated with a Gaussian kernel.

We use a fuzzy Z-buffer algorithm to resolve visibilities in the novel view.
Warped pixels having similar depth values within a pre-defined threshold may
correspond to the same point in 3D. They are combined into a final color C using
the following formula:

C :LK N

∑
k A 1

Wks ; Ck M I N

∑
k A 1

Wks 5 (4.8)

where N is the number of warped pixels that have similar depth values, Wks is
the splatting weight, Ck is the color of a warped pixel.

Ming
Rectangle

Ming
Text Box
14

56 Chapter 4: Novel View Synthesis Based on a VH-Assisted Stereo Algorithm

Figure 4.6 shows the rendering results of a moving object composed in a
virtual room. So far, our current rendering algorithm does not take advantage
of hardware-acceleration. If graphics hardware features like point sprite [Opeb]
and fragment program [Opea] are available, hardware-accelerated 3D warping
[HH02] or point rendering [CH02] can be implemented to increase the rendering
speed.

4.4 System Implementation and Performance

We distribute the reconstruction and rendering computation in the client-server
system described in Chapter 3. Six cameras are used as indicated in Figure 4.2.
They are connected to three client computers. The server machine has the same
configuration with the client computers, i.e. 768Mbyte main memory, an AMD
Athlon 1.1GHz CPU and an NVIDIA GeForce2 graphics card.

The system initialization consists of creating a background model for each
camera and sending camera parameters of reference views to the server. After
the initialization, the system enters a processing cycle, which is defined as the
time of processing one synchronized image set collected by all cameras. Ac-
cording to the direction of the network transfer, each cycle is divided into three
stages as illustrated in Figure 4.7.

Stage 1 (Figure 4.7a) is mainly responsible for rectification and image seg-
mentation. First, each stereo pair is rectified to align epipolar lines along with
image scanlines. This is necessary for the fast stereo computation as already
explained earlier in Section 4.1. Then the moving foreground object in each ref-
erence view is segmented out from the background. Finally, for one camera of
each stereo pair, the 2D polygonal silhouette contour is retrieved and sent to the
server.

In stage 2 (Figure 4.7b), when all silhouette information is available, the
server computes a polyhedral visual hull using general 3D CSG intersection
and then broadcasts visual hull information back to all clients. If global range
constraint is employed, only eight vertices of the visual hull’s bounding box
need to be transferred, which costs trivially. If per-pixel range constraint is

4.4 System Implementation and Performance 57

Figure 4.6: Rendering results of 3D warping. A sequence of dynamic events
rendered from a novel viewpoint at about 10 fps. The two arrows show the
positions of a camera pair (about 30 N away from the current viewpoint).

58 Chapter 4: Novel View Synthesis Based on a VH-Assisted Stereo Algorithm

View 2

View 4

View 6

Server

Client 3

Client 2

silhouette

silhouette

silhouette

Server

Color+Depth

Color+Depth

Color+Depth

Color+Depth

Color+Depth

Color+Depth
View 1

Client 1

Client 2

Client 3

View 3

View 5

Server
Visual
Hull

Client 1

Client 2

Client 3

View 2

View 1

View 4

View 5

View 6

View 1

View 2

View 3

View 4

View 5

View 6

View 3

Client 1

(a) (b) (c)

Figure 4.7: Processing stages of our system. Each client computer processes
two views that form a stereo pair.

required, the polyhedral visual hull itself will be sent back to client computers.

In the last stage (Figure 4.7c), all client computers use visual hull informa-
tion to guide stereo computation and generate depth maps with improved quality.
Since we already have silhouette information, stereo computation only needs to
be performed on foreground object masks instead of whole images. Finally, the
depth maps, together with the color images, are sent to the server for rendering.
For the network transfer, the silhouettes in reference views are again exploited
to create bounding rectangular regions of interest (ROI). Only the ROIs of the
color and depth data are sent to the server. This way, the network bandwidth is
greatly reduced.

From the processing stages we can see that the computation is well dis-
tributed among the computers. The time needed for image capturing, rectifica-
tion, silhouette extraction and stereo reconstruction is independent of the num-
ber of stereo pairs. This provides good scalability and is one of the important
reasons why we can build an on-line novel view synthesis system.

In order to further increase parallelism within each computer, we use multi-
thread implementation for our novel view synthesis system. On each client
computer, five threads are running. Two of them acquire video streams from

4.4 System Implementation and Performance 59

Processing Timing (ms)
Image acquisition & Rectification 29/29

Silhouette extraction 29/43
Visual hull reconstruction 15

Approximate disparity computation from visual hulls 87/74
Disparity computation from stereo 30

Depth computation 25/20
Network transfer of color+depth maps 57/48

Miscellaneous 27/13
Total time 299/272

Table 4.1: Timings measured for one client computer in our system. The ap-
proximate range constraint (see Section 4.2.2.2) is employed. The two numbers
for the timing correspond to different images acquired by one of the stereo pairs.

a stereo pair. The other two perform rectification, silhouette extraction, dispar-
ity range generation from visual hull and communication with the server. The
main thread is responsible for the stereo computation. On the server side, the
main thread visualizes the reconstruction result. The rendering thread is decou-
pled from the visual hull reconstruction and runs at a faster speed in order to
provide interactivity of novel view navigation. The other thread is used to re-
construct the visual hull and generates synchronization signals to trigger all the
cameras. The remaining threads are employed to receive silhouette information
and color-plus-depth images from the client computers.

To evaluate our system performance, we fix the video acquisition resolution
at 320 � 240 pixels. The silhouette mask in each reference view occupies around
1/6 of the whole image. The off-screen rendering of depth maps and stereo
computation are performed at half of the acquisition resolution in order to get
higher frame rate. The size of stereo matching window is chosen as 11 � 11
pixels. Under such settings, we achieve 2-4 fps for the depth map reconstruction,
while the rendering algorithm runs at about 10 fps. We measure the timing of
each step in the processing cycle on one of the client computers and present the
results in Table 4.1.

60 Chapter 4: Novel View Synthesis Based on a VH-Assisted Stereo Algorithm

4.5 Discussion

One idea to use approximate geometry for stereo reconstruction has been pro-
posed by Debevec et al. [DTM96]. With the help of user interaction, they
reconstruct a hierarchy of parameterized primitives instead of visual hulls to
approximate scene objects. Using the geometry information of the primitives,
one image of the stereo pair is warped onto the image plane of the other image.
Thus, the foreshortening problem for the far-apart stereo pair is eliminated and
the stereo reconstruction can be done more robustly. The disadvantage of this
algorithm is that it is not fully automatic. In addition, the types of scene objects
are also limited by the supported primitive types.

Vedula et al. [VRSK98] present a similar way to enhance the stereo algo-
rithm using silhouette information. They execute stereo algorithm and merge
the recovered depth maps to obtain a volumetric model, from which a polygo-
nal mesh is extracted. The polygonal mesh is reprojected to generate per-pixel
search bounds for stereo matching. Meanwhile, silhouette masks are extracted
from depth discontinuities. Then depth map reconstruction is refined by using
the search bounds. The improved depth maps are merged again into a volumetric
model. The above steps are carried out iteratively. Finally, the refined volumet-
ric model is carved using the silhouette information, converted to a polygonal
model and rendered with texture mapping. They call the reconstruction method
Model-Enhanced Stereo (MES) algorithm. Our algorithm shares the same spirit
with theirs in the aspect of employing the restricted search bounds for stereo
computation. However, there are some noteworthy distinctions. First, we ex-
tract silhouette information from original images in the earlier processing stage,
while they generate the silhouettes from the estimated 3D objects in the later
stage. Second, we use a polyhedral visual hull representation for direct and
faster reconstruction of an initial geometry estimate, whereas they use volumet-
ric representation and need to extract polyhedral models, which is very time-
consuming. Third, also as a result of the above two points, our system can do
on-line processing while theirs cannot.

4.6 Summary 61

4.6 Summary

In this chapter we have presented a novel view synthesis algorithm based on
visual hull-assisted stereo computation. The algorithm is demonstrated to run
interactively on an on-line processing system. We adopt the polyhedral visual
hull representation as an initial estimate of scene objects. It can be quickly
reconstructed, and hence meets the requirements of a real-time system. On the
one hand, the estimated visual hull imposes a bounding volume constraint or
per-pixel constraints on the depth-from-stereo algorithm to improve the result
of depth map recovery. On the other hand, stereo algorithm is able to recover
concave regions on the object, which compensates for the inherent limitation of
the visual hull representation. We produce better 3D reconstruction results and
still keep interactive performance. This is made possible by fast reconstruction
of visual hulls, distributed computation across several machines, multi-thread
implementation, and hardware-accelerated depth map generation from visual
hulls.

62 Chapter 4: Novel View Synthesis Based on a VH-Assisted Stereo Algorithm

Chapter 5

Hardware-Accelerated
Novel View Synthesis

of Visual Hulls

The novel view synthesis algorithm presented in the previous chapter is based
on the depth map representation. Although visual hull information is exploited
to improve the quality of depth map reconstruction, there might still exists false
depth recovery, which can affect the rendering quality significantly. In practice,
given multiple reference views (usually more than three), the visual hull repre-
sentation offers a fairly good approximation to the true geometry of a 3D object.
Therefore, when a scene object does not exhibit noticeable concavities, we can
simply reconstruct a visual hull and use it for novel view synthesis.

In this chapter we present an innovative technique to reconstruct visual hull
implicitly by exploiting graphics hardware capabilities. The key idea is trim-
ming polyhedral silhouette cones with projective alpha maps during rendering.
We refer to the reconstruction technique as projective alpha map trimming. A
novel view synthesis algorithm based on this technique has several advantages:

1. The visual hull reconstruction is robust and has no voxelization artifacts
in final rendering results.

64 Chapter 5: Hardware-Accelerated Novel View Synthesis of VHs

2. The novel view synthesis algorithm is more efficient because explicit vi-
sual hull reconstruction is avoided.

3. The novel view synthesis algorithm is fully hardware-accelerated and shows
significant performance improvements over previous ones.

The remaining part of this chapter is organized as follows. Although the visual
hull reconstruction is coupled with rendering, we will explain the reconstruction
technique separately in order to single out how the computation is mapped onto
graphics hardware (Section 5.1). In Section 5.2, a basic single-pass rendering
algorithm is presented to render textured visual hulls. A simple extension is
discussed as well. To support more reference views, a multi-pass visual hull
rendering algorithm is proposed in Section 5.3. After giving the system per-
formance, we compare our reconstruction techniques with other similar ones in
Section 5.5 and summarize this chapter in the last section.

5.1 Hardware-Accelerated Visual Hull Recon-

struction

As we have already known, visual hulls can be reconstructed by intersecting
polyhedral silhouette cones generated from multiple reference views. This sec-
tion first identifies different types of intersections and then explains how to uti-
lize graphics hardware to carry out these intersections.

We classify intersection of silhouette cones into two types: face-cone inter-
section and polygon-polygon intersection. The first one is the intersection of
a silhouette face with a silhouette cone from another viewpoint. It produces
one polygon on the silhouette face. When repeating this intersection for multi-
ple silhouette cones, we obtain a set of polygons on the silhouette face. These
polygons serve as inputs of the second kind of intersection — polygon-polygon
intersection. The result is one visual hull face. An example is shown in Figure
5.1(a). Consider the silhouette face ABC2. The face-cone intersection ABC2 O S1

and ABC2 O S3 produce the polygon KLMN and PQRS, respectively (for clarity,
the actual face-cone intersections are not shown in the figure). By applying

5.1 Hardware-Accelerated Visual Hull Reconstruction 65

PP

MM

NN

QQ

CC11

CC22 CC33

RR

SS

KK

LL

AA

BB

ee

Silhouette cone S
11

Silhouette cone S
33

Silhouette
face ABC

22
Visual hull face PLMS

PP

LL

KK

QQ

CC11

CC22 CC33

11

00

00

BB

11

11

00

00

00

00

11

00

00

(a) (b)

Figure 5.1: The principle of visual hull reconstruction with alpha map trimming.
C1,C2,C3 are reference viewpoints. We assume the visual hull is reconstructed
from three views. (a) Face-cone intersection and polygon-polygon intersection.
The hatched area on each image plane is the silhouette of the object. For the
silhouette face ABC2, the polygons KLMN and PQRS are the face-cone inter-
section results with respect to silhouette cone S1 and S3. The polygon-polygon
intersection between KLMN and PQRS defines the visual hull face PLMS. (b)
Top view of Figure 5.1(a). The alpha values on KL and PQ are set to one by pro-
jecting foreground masks of view 1 and view 3, respectively. If the alpha values
are multiplied per-fragment, only the common part PL gets the final value 1 in
the alpha channel.

polygon-polygon intersection between KLMN and PQRS, the visual hull face
PLMS is obtained.

In [MBM01], the face-cone intersection is computed by projecting the sil-
houette face into each image plane and intersecting the projected face with the
silhouette edges. These intersection results are lifted from the image planes
back to the silhouette face again. Then the polygon-polygon intersection on the
silhouette face is computed. The image-based visual hull technique [MBR � 00]
shares the same spirit in reducing the intersection computation from 3D to 2D.
The difference is that the two kinds of intersections are discretized into line-
polygon and segment-segment intersections. Nevertheless, both approaches carry

66 Chapter 5: Hardware-Accelerated Novel View Synthesis of VHs

out the intersections analytically and suffer from numerical instability problems.
Our hardware-accelerated reconstruction algorithm performs the intersection in
image space of a novel view. The computation is robust for arbitrarily complex
silhouettes cones.

The face-cone intersection is computed by rendering a silhouette face from
a novel viewpoint using projective texture mapping. We load a silhouette im-
age from another reference view as a texture. The corresponding projective
texture matrix is calculated from the calibration data associated with that view.
The alpha value of the texture is set to 1 for foreground objects and 0 for the
background. When the silhouette face is rasterized in the novel view, an alpha
value 1 is assigned to each fragment in the intersection part. By iterating such
processing for all reference views except for the one that produces the silhou-
ette face currently being rendered (the index of this special view is denoted as
k̂), we obtain a set of rasterized polygons marked with the alpha value 1. The
reason for excluding the view k̂ is simple. We need to intersect the silhouette
face in question with other silhouette cones, not the silhouette cones containing
this face.

The second type of intersection, polygon-polygon intersection, is accom-
plished by multiplying the alpha values of the rasterized face-cone-intersection
polygons. The modulation is expressed with the following formula:

A : N

∏
k A 1
k PA�Qk Ak 5 (5.1)

where N is the total number of input images, Ak denotes the alpha channel of
the k-th projective texture, and A is the resulting alpha value. Obviously, only
the common part of all face-cone-intersection polygons has a resulting alpha
value 1. The common part corresponds to exactly one visual hull face and can
be retrieved by enabling the alpha test. Figure 5.1(b) illustrates this idea in 2D.

So far we have described the intersections for one silhouette face of a sil-
houette cone. When iterating this computation over all silhouette faces of all
silhouette cones, we obtain a visual hull, the intersection result of multiple sil-

5.2 Single-Pass Visual Hull Rendering 67

houette cones. For example, in Figure 5.1(b), the area enclosed by thick lines is
a cross-section of the resulting visual hull. Notice that since the reconstruction
is accomplished by rasterization, during which hidden surfaces of visual hulls
are removed. As a result, the reconstruction technique finally produces depth
maps of visual hulls instead of complete geometry information.

5.2 Single-Pass Visual Hull Rendering

The depth masks generated by the above reconstruction technique only indicate
where visual hulls should be rendered. To achieve realistic rendering results,
3D objects must be textured with color images. In the context of novel view
synthesis, original color images taken from different viewpoints are often used
to map onto the recovered 3D geometry. Thus, the user can freely choose a
novel viewpoint to examine the object resembling its counterpart in the real
world. A technical problem to be tackled is that one single image generally
cannot cover all surfaces of the object. Therefore, we should stitch multiple
textures together. For the area covered by more than one texture, we need to
blend multiple textures to achieve smooth appearance.

5.2.1 Multiple texture blending

Suppose we have N input images. Then, for a visual hull face f , the rasterized
fragment color C f can be computed using the following formula:

C f :RK N

∑
k A 1

Wk ; Tk M I N

∑
k A 1

Wk :LK N

∑
k A 1

Vk S f ; Wkd ; Tk M I N

∑
k A 1

Vk S f ; Wkd 5 (5.2)

where Tk is the texture color from the k-th input image, Wkd is a weighting factor
(see Equation 5.4) and Vk S f is the visibility function for the face f with regard to
view k:

68 Chapter 5: Hardware-Accelerated Novel View Synthesis of VHs

Vk S f : T 1 5 f is visible from view k
0 5 otherwise

(5.3)

There are two points that need to be clarified for this visibility function.
First, for the reference view k̂ from which the face f is generated, we state
that f is invisible from this view (namely, Vk̂ S f : 0) since the view k̂ does not
contribute to the rendering of the face f . Second, the surface normal can be used
to compute the visibility if the silhouette cone is convex. For concave geometry,
partially visible or self-occluded faces may occur. This visibility issue will be
addressed in a more complex rendering algorithm presented in the next chapter
by exploiting advanced fragment programmability on modern graphics card.

We achieve view-dependent texturing [DBY98] by including a weighting
factor Wkd . The weight depends on the angle deviation between the principal
axis of a reference view and that of a novel view. Normally, a smaller an-
gle means that the corresponding reference view has similar orientation with
the novel view. Therefore, the texels in this reference view should get higher
weights. A weighting function can be chosen as:

Wkd : 1 I acos < d̄k
� d̄ > 5 (5.4)

where d̄k and d̄ represent the principal axis of the reference view k and the novel
view, respectively. Strictly speaking, the angle deviation should be computed
from the reference and the novel viewing directions for each visible surface
point. But if the principal axis of a view does not depart too much from the
center of an object, the principal axis can approximate the viewing directions
for all surface points on the object. This approximation leads to faster renderig
algorithm as well as less demanding graphics hardware.

In Equation 5.2, there is an expensive per-pixel division operation. Since
both Vk S f and Wkd are fixed values for each face, we avoid this per-pixel division

5.2 Single-Pass Visual Hull Rendering 69

by normalizing their product Vk S f ; Wkd in advance:U
Wk S f : Vk S f ; Wkd I N

∑
k A 1

Vk S f ; Wkd (5.5)

By substituting this normalized weight into Equation 5.2, we obtain the mul-
tiple texture blending function that is to be evaluated on graphics hardware:

C f : N

∑
k A 1

U
Wk S f ; Tk (5.6)

5.2.2 Basic rendering algorithm

In order to implement multiple texture blending, we need a more complex frag-
ment coloring mechanism than the simple OpenGL texture environment. The
OpenGL extension Register Combiners [NVIc] serves well for this purpose.

The register combiners take interpolated colors, filtered texel values as input.
After some computations are performed in a number of general combiner stages,
a final combiner stage output an RGBA value for each fragment. On a Geforce4
graphics card, four texture units are available. This means we are able to handle
four silhouette images in one rendering pass. To evaluate the fragment color
expressed in Equation 6.1, we make use of four general combiner stages and
one final combiner stage.

To render textured visual hulls, we need to load silhouette color images as
an RGBA texture. The RGB channels store the color information, whereas the
alpha channel stores the silhouette mask information. When rendering a silhou-
ette face f with projective textures, for each vertex of the face, we encode the
normalized weights

U
Wk S f in the color/alpha channel of the primary vertex color

and the red/green channel of the secondary vertex color1.
The register combiners are configured to perform the following tasks. At

the first general combiner stage, we use the dot product to separate the weights
stored in the secondary color into two registers. For the general combiner stage
k < k : 2 5 3 5 4 > , we modulate the texel value Tk with

U
Wk S f and accumulate the

1The function glSecondaryColor only accepts 3-component color. Therefore, we cannot
encode the weights in the same way as the primary color.

70 Chapter 5: Hardware-Accelerated Novel View Synthesis of VHs

Set and enable alpha test
loop i over reference views

Load the silhouette color image i as an RGBA texture Ti
Set up the projective texture matrix for Ti

Configure register combiners and enable this extension
Loop Si over silhouette cones

Loop V j over silhouette faces of Si
Compute visibility and weight vector for all views
Compute normalized weight vector
Encode normalized weight vector in the primary

and secondary color of each vertex of V j
Draw V j

Figure 5.2: Basic single-pass rendering algorithm. The rendering is very effi-
cient because the rendered primitives are triangles.

result. The final stage adds the contribution from
U
W1 S f ; T1. This way, multi-

ple textures are blended together with appropriate weights to produce the color
values of the silhouette face f .

The above register combiner configuration is used only for the color evalu-
ation of the silhouette face. In addition, we must compute the alpha value and
enable the alpha test to remove the extra part of the silhouette face. The alpha
portion of the register combiners is configured to simulate the texture environ-
ment GL_MODULATE in order to modulate the alpha values sampled from
different textures.

Once we finish the configuration, we can simply render the silhouette faces.
The single-pass rendering algorithm performs visual hull reconstruction and
color computation simultaneously. The pseudo code of the rendering algorithm
is presented in Figure 5.2. We show snapshots of the rendering results generated
for two novel views in Figure 5.3.

Notice that the algorithm is not limited to NVIDIA graphics cards. Similar
multi-texture blending computations can be performed on ATI’s graphics cards
as well by using the OpenGL extension ATI_fragment_shader [ATI]. Recently-
released more advanced graphics cards, like GeForce FX 5800/5900 series and
Radeon 9700/9800/X800 series, have more powerful and flexible programma-

5.2 Single-Pass Visual Hull Rendering 71

(a) (b)

Figure 5.3: Two textured visual hulls. Four reference views are used. (a) Novel
front view. (b) Novel back view. The visual hull is rendered by blending the
textures from four viewpoints. The background scene is rendered as a textured
box.

bility. With such cards, the color channel and the alpha channel computations
described above can be implemented more straightforward using the standard-
ized OpenGL extension ARB_fragment_program [Opea]. The algorithm is also
not limited to the OpenGL API. The Direct3D API [Mic04a] provides an alter-
native for implementation.

5.2.3 Extended single-pass rendering

The basic rendering algorithm implementation assigns each silhouette image
and projective texture matrix to a fixed texture unit. However, when a silhouette
cone is rendered, only silhouette images from the other views should be pro-
jected onto the cone. Therefore, the silhouette texture corresponding to this cone
must be ignored. For the color computation, it is done by setting the weighting
factor associated with this texture to 0. For the alpha modulation, the alpha
value 1 is used instead of the value sampled from the silhouette mask. Thus, it

72 Chapter 5: Hardware-Accelerated Novel View Synthesis of VHs

Texture object &
Projective texture matrix

Cone 1 2 3 4 5
Cone 2 1 3 4 5
Cone 3 1 2 4 5
Cone 4 1 2 3 5
Cone 5 1 2 3 4

Table 5.1: Rendering visual hulls from five reference images. Four texture units
are available. Each texture object or each projective texture matrix is assigned
with an ID number from 1 to 5.

turns out that this texture unit contributes nothing to the final rendering result.
Or in other words, the hardware resource is wasted.

In order to make use of the wasted texture unit, we switch textures and pro-
jective texture matrices when rendering different silhouette cones. The texture

object, a feature introduced as early as OpenGL 1.1, allows us to load several
textures at one time and switch them very quickly during rendering. This way,
supporting one more input silhouette image becomes straightforward. For ex-
ample, if four texture units are ready to use on a graphics card, we can render
silhouette cones generated from five reference images as shown in Table 5.1.

5.3 Multi-Pass Visual Hull Rendering

Although the number of supported input images is only increased by one in the
extended single-pass visual hull rendering, the idea of switching texture objects
can be employed to generalize this method for accepting arbitrary number of
reference images. This is accomplished by taking a multi-pass rendering ap-
proach. Assuming we have four texture units, and nine input silhouette images,
the texture object and matrix switching should look like this:

However, only switching texture objects and texture matrices is not enough
to implement multi-pass visual hull rendering. Within each rendering pass, the
alpha values from different texture units can be multiplied by utilizing the frag-
ment programmability of graphics hardware, exposed in the form of OpenGL

5.3 Multi-Pass Visual Hull Rendering 73

Texture object &
Projective texture matrix

Cone 1 pass1 2 3 4 5
pass2 6 7 8 9

Cone 2
pass1 1 3 4 5
pass2 6 7 8 9

...

Table 5.2: Switching texture objects and matrices when rendering visual hulls
from nine reference images using four texture units. Each texture object or
each projective texture matrix is assigned with an ID number from 1 to 9. The
switching of texture objects and projective texture matrices is only shown for
rendering the first two silhouette cones.

extensions such as NV_register_combiners [NVIc]. However, we still need to
find a way to modulate the alpha multiplication results from different passes.

Our solution is to use the stencil test, a standard feature available on most
commodity graphics cards. The stencil test operates on the stencil buffer, which
associates a stencil value to each rasterized fragment. Each stencil value is
compared with a reference value. The comparison result decides whether the
fragment should be discarded or not. Meanwhile, the stencil value is modified
according to the stencil test result as well as the depth test result.

In the OpenGL graphics pipeline, the alpha test is ahead of the depth test.
Therefore, the alpha test can control the update of the stencil value indirectly
through its influence on the depth test. We exploit this fact to use the stencil
buffer to record the alpha multiplication results of each rendering pass. Initially,
the stencil values in the stencil buffer are all cleared to 0. The alpha test is set to
“GL_GREATER than 0”. The depth test is set to GL_ALWAYS. During render-
ing, the stencil comparison is configured to test whether the stencil value equals
the index number of the current rendering pass. The stencil update operation is
specified in such a way that the stencil value is increased by 1 only if both the
depth test and the stencil test are passed.

An example shown in Figure 5.4 justifies such settings. In the first pass,
the fragment with the alpha value 1 survives the alpha test and hence passes the

74 Chapter 5: Hardware-Accelerated Novel View Synthesis of VHs

11

00

11 1122

00

11 11

11

22

22 2233

11 00

(a) (b) (c)

Figure 5.4: Stencil buffer update for modulating the alpha results from multiple
rendering passes. The three figures show the stencil buffer after the first, second
and third alpha rendering pass, respectively. The numbers are stencil values in
the stencil buffer.

later depth test. According to our stencil operation setting, the stencil value is
updated to 1 where the alpha value is 1 (see Figure 5.4a). In the second rendering
pass, the stencil value increases to 2 only for those fragments having the stencil
value 1 and the alpha value 1 (see Figure 5.4b). If this process continues, after
the third rendering pass the stencil buffer will look like Figure 5.4(c). The region
where the stencil values are equal to three contains the modulation result of alpha
values from all three passes.

Compared with the alpha channel, the computation in the color channel
is less complex. Through OpenGL framebuffer blending, we accumulate the
weighted sum results from all color rendering passes. The frame buffer blend-
ing function is set to GL_ADD. Both the source and destination blending factors
are set to 1. The color computation cannot be executed together with the alpha
computation. The reason is that coloring each visual hull face needs the stencil
mask, i.e. the alpha modulation results from all alpha rendering passes.

Since we have to use additional rendering passes for the color computation,
we can take this chance to reset the stencil values modified during the alpha
channel computation. This avoids clearing the whole stencil buffer after render-
ing each visual hull surface, which is too expensive. Notice that, for the first< nPassNum C 1 > passes, the regions tagged as the visual hull surface by alpha
rendering passes should be kept intact in order to continue to serve as a mask for
the subsequent color rendering pass. Figure 5.5 illustrates how to clear the sten-
cil buffer generated in Figure 5.4(c). We give the pseudo code of the multi-pass

5.4 System Performance 75

00 11

11

00

00 2233

00

00 00

11

00

00 0033

00

00 00

00

00

00 0000

00

Figure 5.5: Stencil buffer clearing during the color rendering passes. The three
figures show the stencil buffer after the first, second and third color rendering
pass, respectively. Each color rendering pass corresponds to the alpha rendering
pass used for stencil buffer update in Figure 5.4.

rendering algorithm in Figure 5.6. Figure 5.7 shows some rendering results.
The rendering passes required by either the alpha or the color computation

can be determined from the number of reference views and the number of avail-
able texture units using the following formula:

nPassNum :XW nRe fViews C 1
nTextureUnit Y

The total number of rendering passes required to render visual hulls is twice
this value, namely 2 ; nPassNum. However, the rendering cost is not doubled.
This is because we only need to update the stencil buffer during alpha rendering
passes.

5.4 System Performance

The single-pass and multi-pass visual hull rendering algorithms are implemented
in the distributed system described in Chapter 3. For visual hull reconstruction,
the cameras need to be arranged in a convergent way roughly along a circle
(See Figure 3.1c). The video images are acquired at 320 � 240-pixel resolution.
The server is a P4 1.7GHz dual-processor machine with a Quadro4 700 XGL
(GeForce4-class) graphics card 2.

The resolution of the rendered novel view is set to 640 � 480 pixels. Each
2D silhouette polygon is approximated with 100 to 120 edges. For the basic

2Notice that in the original paper [LMS03a] we use a GeForce3 graphics card. Now we test
this algorithm on the GeForce4 card and have a slightly higher performance as shown later.

76 Chapter 5: Hardware-Accelerated Novel View Synthesis of VHs

//Initialization and Texture setup
Clear stencil buffer
Enable stencil, depth and alpha test
Set alpha test to “GL_GREATER than 0”
Set source and destination blending factors both to 1
Set blending function to GL_ADD
Configure and enable register combiners
Compute nPassNum
loop i over reference views

Load silhouette image i as an RGBA texture
Name it as texture object Ti

Loop i over reference views //start rendering
Loop Si over silhouette cones

Loop V j over silhouette faces of Si
Compute view-dependent weights for all views except i

//alpha modulation using the stencil test
Set stencil update operation to GL_KEEP, GL_KEEP,GL_INCR
Set depth test to GL_ALWAYS
Disable color and depth buffer writing
Loop p over alpha computation passes
Set stencil test to “GL_EQUAL to p”
Setup texture object and projective texture matrix for each texture unit
Draw V j

//color accumulation using blending
Set stencil test to “GL_EQUAL to nPassNum”
Set depth test to GL_LEQUAL
Enable color and depth buffer writing
Loop p over color computation passes
Set stencil operation to GL_ZERO, GL_KEEP, GL_KEEP for

the first nPassNum C 1 passes,
Set stencil operation to GL_ZERO, GL_ZERO, GL_ZERO for the last pass
Encode view-dependent weights in the color of each vertex of V j
Setup texture object and projective texture matrix for each texture unit
Draw V j

Figure 5.6: Multi-pass hardware-accelerated algorithm for novel view synthesis
of visual hulls.

5.4 System Performance 77

(a)

(b) (c)

Figure 5.7: Results of multi-pass visual hull rendering. (a) Segmented reference
views. (b) and (c) Rendering results from novel viewpoints.

78 Chapter 5: Hardware-Accelerated Novel View Synthesis of VHs

single-pass visual hull rendering algorithm, the experiment is performed using
synchronized video sequences recorded from four views. We have achieved 86
fps for rendering textured visual hulls. A performance comparison between our
system and similar systems is given in Table 5.3. From this table, we can see
that our algorithm shows considerable performance improvement.

We record another set of synchronized video sequences from eight reference
views for testing the performance of the extended single-pass rendering algo-
rithm as well as the multi-pass one. In Table 5.4, we give the performance of
the rendering algorithms. Notice that when we use the multi-pass algorithm to
render visual hulls from eight reference views, the frame rate drops significantly
compared with the basic algorithm. There are two reasons for the drop of the
frame rate. First, the number of silhouette cones to be rendered is doubled. Sec-
ond, four rendering passes are spent to obtain the final result. Despite more
geometry primitives and more rendering passes, the frame rate is still kept at
near real-time frame rates, 18 fps.

5.5 Discussion

Our visual hull reconstruction technique can be viewed as an hardware-accelera-
ted version of the work [MBM01]. Both techniques take silhouette cones as the
input data. The main difference is that we do not reconstruct a view-independent
3D model of visual hulls while they do. Since the explicit reconstruction is
skipped, our algorithm is more efficient. However, the implicit geometry recon-
structed by our technique is the depth map of a visual hull. It is not suitable for
further geometry processing like editing and deformation.

Similar to our technique, the image-based visual hull technique [MBR � 00]
reconstructs visual hull implicitly as well. The reconstruction is performed in
software in a ray-tracing manner, whereas we carry out the reconstruction using
triangle rasterization, which is well accelerated by commodity graphics hard-
ware.

Our reconstruction technique is also related to Lok’s work [Lok01]. Both re-
construct visual hulls implicitly using graphics hardware rasterization. However,

5.5 Discussion 79

number of input image processing frame rate
cameras size (pixels) power (fps)

IBVH 4 256 � 256 quad 500MHz PC 8(4x600MHz PC)

GVE 9 640 � 480 unknown offline
(9x600MHz PC) (8.77)

OMR 5 720 � 486 SGI 12-15Reality Monster

PVH 4 320 � 240 dual 933MHz PC 30
(4x600MHz PC) (15)

HAVH 4 320 � 240 dual 1.7GHz PC 86
(4x1.1GHz PC)

Table 5.3: Performance comparison. In the column processing power, if the
system is in client-server mode, we distinguish the rendering server from the
clients. The machines listed in parentheses are client PCs. For the frame rate,
the number in parenthesis is the reconstruction frame rate when rendering is
decoupled from reconstruction. IBVH: Image-Based Visual Hulls [MBR � 00].
GVE: Generation, Visualization and Editing of 3D Video [MT02]. OMR: On-
line Model Reconstruction for Interactive Virtual Environments [Lok01]. PVH:
Polyhedral Visual Hulls for Real-Time Rendering [MBM01]. HAVH: Our sys-
tem. Hardware-Accelerated Visual Hull Novel View Synthesis.

rendering
Basic

Extended Extended
algorithm single-pass multi-pass
number of

4 5 8referednce views
number of 1 1 4rendering passes

frame rate (fps) 86 69 18

Table 5.4: Performance of the basic and the extended algorithms for novel view
synthesis from visual hulls. For the multi-pass algorithm, the rendering passes
consist of two alpha passes and two color ones.

80 Chapter 5: Hardware-Accelerated Novel View Synthesis of VHs

in Lok’s work the 3D space is discretized with a stack of planes. Quantization
artifacts arise from space tessellation. We do not have such artifacts because the
input data for the visual hull reconstruction are polyhedral silhouette cones.

5.6 Summary

In this chapter we have presented a new hardware-accelerated algorithms to re-
construct and render visual hulls from multiple-view video streams in real time.
The visual hull reconstruction is accomplished during rendering process and
accelerated by graphics hardware. Thanks to the graphics hardware accelera-
tion, the speed of novel view synthesis is greatly increased compared with the
performance of previously reported similar systems. Furthermore, since the re-
construction is performed in the image space of a novel view, it is robust and
does not suffer from numerical instabilities.

We have implemented a basic and an extended single-pass rendering algo-
rithm as well as a multi-pass extension. All of them run in real-time for up to
eight reference views. For the single-pass algorithm, we employ projective al-
pha map trimming and alpha texture modulation to reconstruct visual hulls. The
color computation can be carried out parallel to the visual hull reconstruction.
The single-pass algorithm is very fast, but has one limitation. The number of
input reference images is limited by the number of texture units. If a graphics
card has few texture units, the visual hull reconstruction is coarse and the ren-
dering quality is low. Therefore, we present a multi-pass extension to address
this issue. Our multi-pass rendering algorithm exploits additional stencil buffer
operations to reconstruct visual hulls. It overcomes the limitation of graphics
hardware resources and is able to take arbitrary number of reference views as
input.

Chapter 6

Hybrid Hardware-Accelerated
Novel View Synthesis

of Visual Hulls

In the previous chapter, the hardware-accelerated algorithm exploits alpha map
trimming to perform novel view synthesis of visual hulls. High rendering speed
has been achieved. However, projective texture mapping causes aliasing artifacts
between visual hull faces generated from different silhouette cones. These arti-
facts become especially noticeable when visual hulls are examined in a close-up
view. Figure 6.1 shows such artifacts with a flat-shaded visual hull reconstructed
by the alpha map trimming technique. This drawback arises from projecting dis-
crete silhouette contours in reference views onto silhouette cones. Using high-
resolution reference images only alleviates the problem, but cannot completely
eliminate it.

In order to overcome the drawback, this chapter presents a hybrid approach
to synthesize novel views of visual hulls. This approach combines the alpha
map trimming with a hardware-accelerated CSG reconstruction technique. The
alpha map trimming offers fast speed while the CSG reconstruction generates
visual hulls without the aforementioned aliasing artifacts. In addition, we pro-
pose an advanced view-dependent texturing scheme which further improves the

82 Chapter 6: Hybrid Hardware-Accelerated Novel View Synthesis of VHs

Figure 6.1: A flat-shaded visual hull shows the aliasing artifacts of the projective
alpha map trimming technique. Different colors represent different silhouette
cones. The visual hull is rendered from four reference images.

rendering quality by applying more accurate per-fragment blending weight com-
putation.

The remainder of the chapter is organized as follows. Section 6.1 briefly
describes the principle of a hardware-accelerated CSG reconstruction technique.
Section 6.2 explains in detail our hybrid algorithm for synthesizing novel views
of visual hulls. Section 6.3 presents the rendering performance. Finally, we
summarize the chapter in Section 6.4.

6.1 Hardware-Accelerated CSG Reconstruction

Hardware-accelerated CSG reconstruction methods [Wie96, SLJ98, GKMV03]
exploit the stencil buffer to perform 3D Boolean operations. Since no projective
texture mapping is involved, this class of methods do not suffer from the aliasing
artifacts.

Generally, CSG operations include union, intersection and difference. For
visual hull reconstruction, the relevant operation is intersection and the intersec-
tion primitives are silhouette cones. Therefore, we are only interested in CSG
intersection operation. The basic idea of hardware-accelerated CSG intersec-
tion is counting front- and back-facing fragments with the help of the stencil

6.1 Hardware-Accelerated CSG Reconstruction 83

C: Novel viewpoint

AA

BB

CC11
CC22

Figure 6.2: Principle of hardware-accelerated CSG reconstruction shown in 2D.
Two silhouette cones extruded from C1 and C2 are intersected. The intersection
region is filled with horizontal lines. The first depth layer is drawn in purple and
the second layer is colored in red and blue. The red parts are the intersection
result rendered from the novel viewpoint. The hollow circles are fragments
behind the second layer. The green circles are fragments in front of or on the
second layer.

buffer. A method proposed by Guha et al. [GKMV03] is adopted by us. We will
describe this method in detail.

Given a novel viewpoint, all depth layers of front faces are traversed from
front to back relative to this viewpoint. For each layer, the depth test is set to
“less or equal”. Then the front faces of all silhouette cones are rasterized. If
a fragment passes the depth test, the corresponding stencil value is increased

by 1. When back faces are rendered, the stencil operation is reversed. Namely,
the stencil value is decreased by 1 if a fragment survives the depth test. After
all depth layers are traversed, only those fragments in the intersection parts are
marked with the stencil values equal to the total number of the objects. In the
end, a complete depth map of the visual hull for the current novel viewpoint is
generated. As an example, the intersection of two silhouette cones is illustrated
in 2D using Figure 6.2. For the second depth layer, two front-facing fragments
pass the depth test along the viewing ray CA, and hence yield a stencil value of 2
(equal to the number of the silhouette cones). For the viewing ray CB, two front-
facing fragments and one back-facing fragment pass the depth test and produce
a stencil value of 1.

84 Chapter 6: Hybrid Hardware-Accelerated Novel View Synthesis of VHs

Most earlier CSG reconstruction methods [Wie96, SLJ98] need to copy
depth buffers to main memory. The operation is typically slow and becomes the
main performance bottleneck. The method proposed by Guha et al. [GKMV03]
utilizes depth peeling [Eve02] for depth layer traversal. The depth peeling tech-
nique copies depth buffers to texture memory, which is an on-board operation
and can be performed much faster. In spite of the performance improvement, its
speed is still far below that of the alpha map trimming. The reason is that the
minimum number of rendering passes required by CSG reconstruction is equal
to the number of silhouette cones (denoted as n) for visual hull reconstruction.
This means all silhouette cones must be rendered at least n times. In contrast,
the single-pass alpha map trimming technique renders all silhouette cones only
once, and therefore is n times faster than the CSG reconstruction. Even with the
multi-pass alpha map trimming, the rendering speed is still k times faster, where
k is the number of texture units.

6.2 Hybrid Visual Hull Rendering

Aiming at attaining good quality of the CSG reconstruction while keeping fast
speed of the alpha map trimming, we design a hybrid approach combining the
strengths of both to synthesize novel views of visual hulls. The whole process
consists of four steps (Figure 6.3) which are described in the rest of this section.

6.2.1 Valid region determination

When we apply the hardware-accelerated CSG reconstruction technique, poly-
gons of silhouette cones have to be rasterized multiple times. These polygons are
usually very large and consume a huge amount of fill-rate capability of graph-
ics hardware. On the other hand, the intersected results, i.e. visual hulls, only
occupy partial region of the output window. We call the region a valid region.
If we know this region a priori, the fill-rate can be greatly reduced by apply-
ing the scissor test. In addition, another operation could benefit from predict-
ing the valid region. During CSG reconstruction, the depth peeling technique

6.2 Hybrid Visual Hull Rendering 85

Valid region determination
(Projective alpha map trimming))

Novel view
depth map generation

(Hardware−−accelerated CSG reconstruction))

Reference view
depth map generation

(Projective alpha map trimming))

Novel view
textured visual hull rendering

(Per−−fragment view−−dependent texture mapping)

Figure 6.3: Workflow of our hybrid approach. The texts in parentheses indicate
the technique utilized in each rendering step.

requires frame-buffer-to-texture copying operations when stepping through all
depth layers. With the knowledge of the valid region, the copying operations
can be carried out on this region only instead of the whole frame buffer.

For the determination of the valid region, we employ the projective alpha
map trimming technique to render a visual hull in a very small off-screen win-
dow (e.g. 80 � 60 pixels). Writing to the color buffer and to the depth buffer
are both disabled. The stencil buffer is enabled and only the pixels covered by
the visual hull are written. The content of the stencil buffer is read back to the
main memory, and a rectangular region enclosing the visual hull is calculated.
This region is expanded by one pixel in order to tolerate some rounding errors
introduced by rendering a smaller version of the visual hull. Finally, the re-
gion is scaled by the size ratio between the actual novel viewport and the small
off-screen window.

Notice that the aliasing artifacts of the alpha map trimming do not have any
effect on the valid region determination. One concern is that some thin features
on the visual hull might be lost when we render down-scaled version of visual
hulls. In this case, we should choose the size of the off-screen window more

86 Chapter 6: Hybrid Hardware-Accelerated Novel View Synthesis of VHs

carefully. Although buffer readback operations are generally expensive, reading
the stencil buffer of a small window does not cost much.

6.2.2 Novel view depth map generation

Once the valid region has been identified, silhouette cones can be rasterized in
the constrained area to perform the CSG reconstruction. The result is the depth
map of a visual hull in the novel view. This depth map guarantees that the final
visual hull rendering is free of aliasing artifacts. Although this rendering step
only produces depth maps, we present a final rendering quality comparison in
Figure 6.4 to demonstrate that the CSG reconstruction method is able to generate
significantly better rendering results compared with the alpha map trimming
method.

The original CSG method used by Guha et al. performs well for visual hull
reconstruction as long as novel viewpoints are outside of any silhouette cone.
Once a novel viewpoint falls inside a silhouette cone, parts of the silhouette
cone’s faces will be clipped by the near plane of the view volume. This leads to
wrong face counting and incorrect rendering results. Such limitation is undesir-
able in the context of novel view synthesis of visual hulls.

To solve this problem, we come up with an idea inspired by Carmack’s zfail

shadow volume algorithm [Car00]. Instead of counting front- and back-facing
fragments between the novel viewpoint and the first visible fragment, we ex-
amine those fragments between infinity and the first fragment. For example, in
Figure 6.2, such fragments are depicted as hollow circles. Accordingly, the up-
dating strategy for the stencil buffer is also changed. A stencil value is decreased
for front faces or increased for back faces when the depth test fails. Since we
can place the far plane of the view volume very distant to the viewpoint, all zfail

fragments will be counted. This way, correct counting results can be achieved
without worrying about the near clipping plane. Apart from this improvement,
we provide two other performance enhancements to the original CSG recon-
struction method, terminating depth traversal using hardware-accelerated occlu-
sion tests [HP] and reducing the number of rendering passes with two-sided
stencil operations [NVIa].

6.2 Hybrid Visual Hull Rendering 87

(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Rendering quality comparison between visual hulls reconstructed
by the projective alpha map trimming and the hardware-accelerated CSG recon-
struction techniques. For (a), (c) and (e), the alpha map trimming technique
is employed, whereas for (b), (d) and (f), the CSG reconstruction technique is
applied. (a) and (b) are rendered in flat-shaded style. One can clearly observe
the inter-penetrations along intersection boundaries. (c)(d)(e)(f) show textured
visual hulls. (e) and (f) are close views of the boxed regions in (c) and (d),
respectively.

88 Chapter 6: Hybrid Hardware-Accelerated Novel View Synthesis of VHs

6.2.3 Reference view depth map generation

Visibilities with respect to reference views are critical to multi-view texture
mapping. For those parts that are invisible in a reference view, the correspond-
ing color information should be neglected when blending multiple textures. This
issue can be addressed in object space. In previous chapter, we use the normal
vectors to compute the reference view visibilities of silhouette surfaces. When
we render a surface invisible in a reference view, the visibility information is en-
coded in the weighting factor corresponding to this view. This approach works
fine if the reconstructed visual hull is convex, but it fails for concave surface
regions. To overcome this limitation, Debevec et al. split triangles of objects
so that each triangle is either fully visible or fully invisible to any reference
view [DBY98]. However, this process takes a long time even for a moderately
complex object.

As an alternative, the visibility issue can be addressed in image space using
the shadow mapping technique [Wil78]. We adopt this technique since it has
been implemented on common graphics hardware [SKvW � 92, Hei99] and is
very suitable for real-time applications. In order to solve the visibility problem
for all reference views, we generate a depth map of the visual hull for each view.
The rendering can be performed by either the projective alpha map trimming or
the CSG reconstruction technique. We choose the former one because of its
considerably higher speed. Although depth maps produced by the alpha map
trimming have aliasing artifacts and the quality is not as good as that produced
by the CSG reconstruction technique, in practice, due to smooth blending of
multiple textures, the artifacts introduced by the quality difference of depth maps
are hard to notice in the final rendering result.

6.2.4 Textured visual hull rendering

Since the depth map of a visual hull has already been created for the novel view
as described in the section 6.2.2, we render the textured visual hulls by enabling
the “equal” depth test and rasterizing all silhouette cones using the multi-view
texture mapping. Note that when a silhouette cone is textured, the reference

6.2 Hybrid Visual Hull Rendering 89

view corresponding to this cone should not be used because it would project
texels along silhouette contours throughout the whole surfaces of the cone.

6.2.4.1 View-dependent multi-view texture mapping

The essential idea of the multi-view texture mapping is the same as that ex-
pressed in Equation 5.2 in the previous chapter. We represent a fragment’s color
C as a convex combination of the texture values in the reference views:

C :RK N

∑
k A 1

Wk ; Tk M I N

∑
k A 1

Wk 5 (6.1)

where N is the number of reference views, Tk and Wk are the texture color
and its associated weighting factor for the k-th reference image, respectively.

The algorithms presented in the previous chapter target graphics hardware
with preliminary fragment programmability (e.g. NVIDIA GeForce2/3/4, ATI
Radeon 8500). As a result, in Equation 5.2, Wk only consists of two compo-
nents: the face visibility factor and the view-dependent weight factor. Tricks
are needed to fit the weight blending computation into a set of register com-
biner stages. The rendering quality is limited. Advanced graphics cards, such as
NVIDIA GeForce FX and ATI Radeon 9700/9800/X800, provide more flexible
fragment programmability, which allow us to perform more complex blending
computation. In our new per-fragment view-dependent texture mapping scheme,
we decompose weight Wk into four components:

Wk : Vk ; Wk f ; Wks ; Wkd H (6.2)

The first component Vk is the visibility function with respect to the reference
view k. Since the depth map corresponding to the view k has been created (see
Section 6.2.3), Vk can be easily determined by the standard shadow mapping
algorithm [SKvW � 92].

The weight Wk f is fetched from a featuring map which helps to eliminate
seams arising from sampling different reference views at silhouette boundaries
[DTM96, SS97, PCD � 97]. The feathering map is generated by applying the

90 Chapter 6: Hybrid Hardware-Accelerated Novel View Synthesis of VHs

(a) (b)

Figure 6.5: Distance transformation. (a) Original foreground object mask. (b)
Foreground object mask after applying distance transformation. It looks thinner
because the pixels close to the contour are too dark to be seen.

distance transformation [Bor86] on a binary silhouette mask. It is then stored
in the corresponding alpha channel. For each pixel in the silhouette mask, the
distance transformation calculates the distance from the pixel to the nearest zero-
value pixel. Mathematically, it can be expressed in the following formula:

W < p > : min Z dist < p 5 q > 5 q [R \ 5
where p and q are pixel positions, R stands for the region where the pixel

values are zeros, dist denotes the distance between p and q. Figure 6.5 gives an
example of the effect of the distance transformation. Notice that different sil-
houette masks have different maximum distance values. To ensure the distance
values in different silhouette masks have the same range (in our case 0 – 255),
an additional scaling operation is required.

Wks is referred to as the surface obliqueness weight. It penalizes surfaces that
are oblique when observed from a reference viewpoint. We use the following
definition:

Wks :^] max < d̃k
� n 5 0 >+_ α H (6.3)

For a point p that is associated with the fragment under consideration, the

6.2 Hybrid Visual Hull Rendering 91

vector d̃k is the viewing direction from p toward the k-th reference viewpoint.
The vector n denotes the normal vector of the point p. When the angle between
d̃k and n is greater than 90 N , their dot-product becomes negative. This means
that we are processing a back-facing fragment with respect to the view k and
should set the weight Wks to zero. The max function in Equation 6.3 serves
for this purpose. The constant α in the equation is a tunable parameter, which
emphasizes a larger weight.

The last weighting component Wkd is dependent on the novel viewpoint. It
gives a higher weight to the fragment whose reference viewing direction d̃k is
closer to its novel viewing direction d̃. The weight function is written as:

Wkd : < d̃k
� d̃ = 1 > β H (6.4)

The constant β plays a similar role as the constant α in Equation 6.3. In
order to obtain a convex combination for the final pixel color, we add one to
the dot-product of d̃k and d̃ so that Wkd is guaranteed to be non-negative. This
view-dependent weight can be represented as a function of the angle between
d̃k and d̃. However, computing the angle requires an inverse cosine operation,
which is costly on current graphics hardware.

6.2.4.2 Per-fragment blending weight computation

In order to compute the weighting factors Wks and Wkd accurately, the 3D co-
ordinate associated with each fragment must be used to determine the viewing
vectors d̃k and d̃. In previous chapter, due to graphics hardware constraints,
the principal axes of reference views and novel views are used to approximate
these two vectors. This approximation is only valid when the object in the scene
is relatively small. Other previous view-dependent texture mapping methods
[PCD � 97, DBY98, PHL � 98, BBM � 01] compute the blending weights for each
vertex of the object and then perform linear interpolation across surfaces to ob-
tain the blending weights for each fragment. However, hardware-accelerated
visual hull rendering methods do not produce vertex information of visual hulls.
The only available geometry entities are silhouette cones. In this case, the

92 Chapter 6: Hybrid Hardware-Accelerated Novel View Synthesis of VHs

(a) (b)

Figure 6.6: Comparison of rendering quality between per-vertex and per-
fragment blending weight computations. (a) and (b) are rendered from the same
viewpoint. (a) Per-vertex weight computation. (b) Per-fragment weight compu-
tation. Rendering artifacts are suppressed considerably because of more accu-
rate weight computation.

weight computation based on a per-vertex basis has large errors and causes no-
ticeable rendering artifacts.

Fortunately, the vertex and fragment programmability [Opec, Opea] of re-
cent graphics hardware can assist us in calculating these weights on a per-
fragment basis. With the more accurate weights, we achieve smooth texture
blending on the objects and continuous texture transitions when changing novel
viewpoints. Our per-fragment view-dependent texture mapping procedure is de-
tailed as follows. First, 3D coordinates of silhouette cone vertices and normal
vectors of silhouette cone faces are passed to a vertex program [Opec], through
which a 3D coordinate together with a normal vector is generated for each frag-
ment by the graphics rasterizer. Then, a fragment program [Opea] takes these
inputs to compute the per-fragment weights Wks and Wkd . Both constants α and
β are set to five in our implementation. The viewing vector normalizations in
Equation 6.3 and 6.4 are replaced by normalization cube map [WD] lookups for

6.3 System Performance 93

acceleration purpose. In the same fragment program, Vk is computed from the
depth map created for the k-th reference view, while Wk f and Tk are sampled
from the alpha and color channels of the reference view k, respectively. Once all
weighting factors are available, the final fragment color is evaluated with Equa-
tion 6.1. We compare the rendering results using per-vertex and per-fragment
weight computations in Figure 6.6, and demonstrate the advantage of using per-
fragment computation. More snapshots of the novel view synthesis results of
visual hulls generated from both real video streams and synthetic animation se-
quences are presented in Figure 6.7.

6.3 System Performance

The hybrid algorithm for synthesizing novel views of visual hulls has been inte-
grated into the distributed system described in Chapter 3. The client computers
are responsible for synchronized video acquisition as well as real-time image
processing tasks, such as foreground/background segmentation, silhouette con-
tour extraction and distance transformation. The server is a P4 1.7GHz processor
machine and carries out the hybrid rendering algorithm on a GeForce FX 5800
Ultra graphics card.

The high-level shading language Cg [MGAK03] is employed to implement
the per-fragment view-dependent blending scheme presented in Section 6.2.4.
Our Cg code can be compiled into low-level shaders suitable for different graph-
ics hardware and different graphics APIs (e.g. OpenGL, Direct3D).

We set the resolution of the rendered novel view to 640 � 480 pixels and ex-
ecute the hybrid rendering algorithm using various numbers of reference views
from one common dataset. The average number of polygons of each silhou-
ette cone is about 50. The valid region occupies about one third of the entire
viewport. Under this setting, we measure the rendering performances and show
the results in Table 6.1. For eight reference views, we also render visual hulls
with pure alpha mapping trimming and CSG reconstruction techniques. The
frame rates are 7.5 fps and 1.7 fps, respectively. If valid region determination is
switched on, we achieve 2.9 fps when the CSG reconstruction is used for depth

94 Chapter 6: Hybrid Hardware-Accelerated Novel View Synthesis of VHs

(a) (b)

(c) (d)

Figure 6.7: Novel views of visual hulls. All images are generated from eight ref-
erence views. Each view is rendered at least 20 N away from the closest reference
view. Real video streams are used to render (a) and (b). Synthetic animation se-
quences are employed to create (c) and (d) .

6.4 Summary 95

Reference Views Rendering Performance(fps)
2 48.4
3 27.0
4 13.2
5 8.8
6 6.4
7 4.7
8 4.0

Table 6.1: Performance of our hybrid hardware-accelerated algorithm for novel
view synthesis of visual hulls.

map generation both for reference views and the novel view.
Furthermore, for the hybrid approach, we compare the performances mea-

sured with and without the valid region determination. Table 6.2 presents the
timings of individual rendering steps for both situations. Notice that the render-
ing speed is approximately doubled when employing the valid region determi-
nation because both hardware-accelerated CSG reconstruction and final view-
dependent texture mapping profit from the scissor test. For depth map rendering
in reference views, using the alpha map trimming technique, it takes 51 ms to
generate eight depth maps at 320 � 240-pixel resolution. If the CSG method is
employed, it takes about 130 ms according to our measurement. Obviously,
the alpha map trimming technique performs better. Another characteristic of
our rendering algorithm is that more graphics power is consumed at the frag-
ment processing stage. This suggests that the geometric complexity of silhou-
ette cones does not affect overall performance very much. In our tests, if the
number of silhouette faces is increased by a factor of two, the rendering speed
drops by about 10%.

6.4 Summary

In this chapter we have presented a hybrid hardware-accelerated algorithm to
render high-quality visual hulls from multiple reference views. The performance
ranges from interactive to real-time frame rates depending on the number of ref-

96 Chapter 6: Hybrid Hardware-Accelerated Novel View Synthesis of VHs

Timings (ms)
w/ valid region w/o valid region
determination determination

Valid region 5 N/Adetermination
Novel view depth 40 115map generation

Reference view depth 51 51map generation
View-dependent 96 300texture mapping
Texture loading 58 58and miscellaneous

Total 250 524
Overall performance 4.0 fps 1.9 fps

Table 6.2: Comparison of the rendering performances that are obtained with and
without the valid region determination. Eight reference views are used. Timings
of individual rendering steps are presented.

erence views. Compared with analytical intersection methods, our algorithm
works robustly for highly complex objects since all intersections are performed
in image space. The two techniques that form the basis of our algorithm, projec-
tive alpha map trimming and hardware-accelerated CSG reconstruction, benefit
from each other. The inherent discretization problem limiting the alpha map
trimming method is elegantly solved, and the slow performance of the CSG
reconstruction method is accelerated. Additionally, rendering quality of tex-
tured visual hulls has been improved with per-fragment view-dependent texture
mapping by taking advantage of programmability of more advanced graphics
hardware.

Chapter 7

Hardware-Accelerated Novel
View Synthesis of Photo Hulls

In Chapter 5 and Chapter 6, we use visual hulls to represent dynamic scene
objects for novel view synthesis. Although the algorithms run at interactive
or real-time frame rates, the 3D reconstruction has an inherent limitation, i.e.
certain concave parts of objects cannot be reconstructed. This limitation leads
to rendering artifacts in synthesized novel views.

To overcome the limitation, the shape-from-photo-consistency approach ex-
ploits color information in reference views to perform more accurate 3D recon-
struction. The reconstruction results are known as photo hulls [KS99]. Although
photo hulls generally provide better rendering results, the performances of photo
hull reconstruction algorithms are rather slow. This chapter addresses the per-
formance issue and presents an efficient hardware-accelerated algorithm to syn-
thesize novel views of photo hulls. The algorithm runs on off-the-shelf graphics
hardware at interactive frame rates. Compared with a purely software-based
implementation, the performance is approximately seven times faster.

We briefly describe our algorithm in Section 7.1. In the subsequent three
sections the algorithm is explained in detail. After giving the performance mea-
surements, we conclude this chapter.

98 Chapter 7: Hardware-Accelerated Novel View Synthesis of Photo Hulls

7.1 Algorithm Overview

Traditionally, the view synthesis problem is treated as a two-step process. First,
explicit 3D models of objects are reconstructed from reference views. Then a
novel view is synthesized by projecting the 3D models onto the image plane of
the view. Unlike the traditional way, we do not explicitly reconstruct complete
photo hulls of 3D objects. Instead, reconstruction is performed implicitly and
embedded in rendering process. This is achieved by adopting a view-dependent
plane-sweeping strategy to render a stack of planes directly into the novel view.
During rendering, photo-consistency is checked on the fly using graphics hard-
ware, and photo hulls are reconstructed in the form of depth maps.

The algorithm runs as follows. First, to reduce rasterization cost, we com-
pute an effective bounding volume of the object under consideration. This vol-
ume is discretized into a set of slicing planes parallel to the image plane of the
novel view. Then the planes are processed in a front-to-back order. While each
plane is rendered, we determine a set of active reference views and project them
onto the plane. The photo-consistency of each rasterized fragment is checked
by exploiting the programmability of graphics hardware. Visibility masks as-
sociated with the active reference views are maintained on the graphics board
and play a critical role during photo-consistency checks. For display, the color
of a photo-consistent fragment is evaluated as the weighted average of visible
samples in the active reference views, and photo-inconsistent fragments are dis-
carded. With the help of the photo-consistency information of each fragment,
we are able to update the visibility masks that are used to process the next slicing
plane. The outline of our novel view synthesis algorithm is given in pseudo-code
in Figure 7.1.

Our algorithm is most relevant to the following two photo hull rendering
algorithms. Slabaugh et al. [SSH03] step along each viewing ray of the novel
view and find for each ray a sample that is photo-consistent with reference views.
All the photo-consistency and color computations are performed on CPUs and
are relatively slow. We share the same strategy with the work presented by
Yang et al. [YWB02], namely, rendering a stack of planes and exploiting graph-

7.2 Slicing Plane Generation 99

Generate slicing planes depending on the novel view
foreach slicing plane H

Render H with multi-view texture mapping and photo-consistency check
Update visibility masks for active reference views

end foreach

Figure 7.1: Outline of our hardware-accelerated algorithm to synthesize novel
views of photo hulls.

ics hardware to perform computations. However, the photo-consistency check
in their work only uses a simple criterion due to graphics hardware limitation.
With more advance graphics hardware, we are able to apply more robust photo-
consistency check. Another limitation of their algorithm is that visibilities with
respect to reference views are completely ignored during the consistency check.
To minimize the reconstruction error caused by this limitation, they require all
reference views should be very close to each other. This imposes severe restric-
tions on the freedom of choosing novel viewpoints. Our algorithm is not only
fully hardware-accelerated, but also takes the visibility issue into consideration.
Table 7.1 summarizes the most relevant work and compares them with our new
algorithm.

7.2 Slicing Plane Generation

We are interested in synthesizing novel views of a dynamic scene object. The 3D
location of the object is unknown. To ensure full coverage of the object, a great
number of planes has to be rasterized along the novel viewing direction, each
of them covering the whole output window. This kind of space discretization
quickly exhausts the fill rate capability of graphics hardware. Therefore, it is
highly desirable to generate slicing planes within a pre-determined bounding
volume of the object.

By specifying a fixed bounding box, one can compute a set of planes by
stepping through this box along the novel viewing direction. However, this so-
lution is not optimal since a fixed bounding box is typically too conservative.
We provide a better solution by computing an effective bounding volume us-

100 Chapter 7: Hardware-Accelerated Novel View Synthesis of Photo Hulls

hardware- considering visibility in
accelerated photo-consistency check

CBSR ` �
IBPH � `
HAPH ` `

Table 7.1: Comparison of most relevant work. CBSR: Real-Time Consensus-
Based Scene Reconstruction [YWB02]. IBPH:Image-Based Photo Hulls
[SSH03]. HAPH, our algorithm: Hardware-Accelerated Novel View Synthe-
sis of Photo Hulls

ing the visual hull, which bounds the actual object more tightly than the fixed
bounding box. The effective volume is dynamically adjusted each time a novel
view is synthesized. This volume remains conservative since the visual hull is
a superset of the photo hull. This property guarantees that no geometry will be
missed when rendering the photo hull.

To determine the effective bounding volume, a depth map of the visual hull
is created for the novel view. From this depth map, we compute both the visual
hull’s bounding rectangle on the image plane and its depth range in the principal
axis of the novel view. Then the effective bounding volume can be constructed
by using the bounding rectangle and the depth range. Note that the depth range
does not span the entire visual hull. It covers only the visible parts of the visual
hull. Thus, we avoid discretizing space of occluded parts that contribute nothing
to the final rendering result.

To create the depth map of the visual hull, we extract silhouette contours
of the foreground object and employ the projective alpha map trimming tech-
nique (see Section 5) to render the visual hull in a small off-screen window (e.g.
80 � 60 pixels). The depth buffer is read back to main memory in floating point
format, and a rectangular region enclosing the visual hull is calculated. We ex-
pand this bounding rectangle by one pixel in order to tolerate rounding errors
introduced by rendering a down-sampled visual hull. The expanded rectangle
is then scaled by the size ratio between the actual novel view and the small
off-screen window. Meanwhile, the minimum and maximum depth values are
determined from the depth map. Since we adopt the OpenGL graphics API, the

7.2 Slicing Plane Generation 101

ZZee

slicing plane

bounding
 rectangle

image
plane

novel
viewpoint

Figure 7.2: Slicing plane generation. Given the bounding rectangle enclosing
the visual hull, and the distance Ze along the viewing direction, the slicing plane
can be directly generated .

depth values must be converted from window space to eye space using Equa-
tion 4.5.

Once we know the depth range in eye space, we discretize the continuous
depth within this range. For each discretized depth value, its corresponding
slicing plane can be directly derived given the bounding rectangle on the image
plane and the novel viewing parameters. This is illustrated in Figure 7.2. To
further tighten the bounding volume, we divide the depth range into several
subranges and compute a smaller bounding rectangle for each of them.

Both visual hull rendering and depth buffer reading do not take much time
because the off-screen window is very small. In our tests, this step amounts to
only 2% of total rendering time. This cost greatly pays off later in our rendering
algorithm.

The idea for reducing rasterization costs is very similar to the valid region
determination used in previous chapter. However, there are two differences. Fist,
effective bounding volume construction requires not only a bounding rectangle
but also a depth range. Second, the ways to utilize the bounding information
are different. Valid regions are used to set the scissor test, whereas effective
bounding volume are used to generate slicing planes.

102 Chapter 7: Hardware-Accelerated Novel View Synthesis of Photo Hulls

7.3 Slicing Plane Rendering

Since we reconstruct photo hulls implicitly, there is no explicit voxel represen-
tation existing in traditional photo hull reconstruction algorithms. The 3D space
is discretized into a set of slicing planes, which are sent through the graph-
ics pipeline, transformed by the target viewing parameters, and rasterized into
fragments. These fragments actually correspond to discrete 3D points in space.
Therefore, we can check the photo-consistency of each fragment and decide
whether to draw the fragment in the output frame buffer. This way, photo hull
reconstruction and rendering are combined into a single process.

To perform the photo-consistency check for a fragment, we need to locate
those corresponding visible samples in the reference views. Notice that it is
not necessary to process all reference views. Those views behind the frontmost
slicing plane can be simply excluded. The remaining views are called active

reference views, in which a 3D point on a slicing plane is more likely visible.
We make use of projective texture mapping to sample the pixels in active views.
Texture matrices are set up to match the viewing parameters associated with the
reference images. To account for visibilities, a visibility map associated with
each active view is kept on the graphics board. The visibility maps indicate
which color pixels should participate in the photo-consistency check as well as
the output color composition. Each visibility map coincides with its associated
active view and shares the same set of texture coordinates. Figure 7.3 gives an
example of the photo-consistency check as well as the visibility issue involved
in the process.

We choose the variance of corresponding visible pixel samples in active
reference views as the photo-consistency metric. Yang et al. [YWB02] ap-
proximate the variance using the sum-of-squared-difference (SSD). Unlike their
method, we compute the true variance value, giving more reliable results. In the
fragment program the variance σ2 is computed as follows:

σ2 :LK M

∑
k A 1

< Rk C R̄ > 2 = M

∑
k A 1

< Gk C Ḡ > 2 = M

∑
k A 1

< Bk C B̄ > 2 M I M 5

7.3 Slicing Plane Rendering 103

slicing plane

C: novel viewpoint

CC11

CC22

CC33

CC44

f: fragment

reference image

visibility map

PP

Figure 7.3: Photo-consistency check of a fragment. C1 5 C2 5 C3 and C4 are refer-
ence viewpoints. The views corresponding to C1 5 C2 5 C3 are active views. The
dotted frame attached to each of them represents a visibility map. Each refer-
ence view is associated with a visibility map. From C1, the point P is occluded
according to its visibility map, and the red pixel in C1 is not used for the photo-
consistency check. The fragment f is photo-consistent because the correspond-
ing pixels in C2 and C3 have the same color.

where M is the number of those active views in which the 3D point associated
with the fragment is visible, < Rk 5 Gk 5 Bk > is the sampled pixel color from the
k-th view, and < R̄ 5 Ḡ 5 B̄ > is the mean color of the corresponding pixels in all M

views. Once we know the variance, the photo-consistency can be expressed as a
threshold function:

photo-consistency : T 1 5 σ2 a T

0 5 otherwise
5

where T is a user-defined threshold. Currently, the variance computation is
based on a single sample from each active reference view. Therefore, calibration
errors and image noise can introduce instabilities to the photo-consistency check
process. Incorporating local neighborhood information will provide more robust
reconstruction results. The mipmapping technique utilized in [YP03] could be
adopted in this context.

Uncertainties of photo-consistency checks could happen to the pixels close
to the silhouette contours in reference images. Such pixels should not contribute

104 Chapter 7: Hardware-Accelerated Novel View Synthesis of Photo Hulls

to the decision on photo-consistency because they often represent mixtures of
the foreground and the background pixels. In order to leave them out, we per-
form distance transformation [Bor86] and compute a feathering map for each
reference view. This map is stored in the alpha channel. The values in the map
are one in the central part of the foreground object mask and drop gradually to
zero at its boundary. By setting a small threshold, we prevent the pixels near the
boundary from being sampled.

Feathering maps are also employed to perform the silhouette-consistency
check, which is useful for rejecting most inconsistent fragments efficiently. In a
feathering map, the value zero represents scene background, whereas non-zero
values indicate the foreground object. A fragment is silhouette-consistent only
if the alpha values sampled from all reference views are greater than zero. This
check is performed before the photo-consistency check in the same fragment
program. It amounts to the visual hull computation as described in [Lok01].

Finally, if a fragment passes both the silhouette-consistency and the photo-
consistency check, RGB color values are assigned to the fragment using the
following formula:

< R 5 G 5 B > : ∑M
k A 1 Wk f G < Rk 5 Gk 5 Bk >

∑N
k A 1 Wk f

5
where Wk f is the sampled alpha value of the k-th feathering map. This weight
eliminates the seam artifacts between different textures projected on the slicing
plane. If view-dependent effect is desired, the view-dependent weighting factor
like the one used in the previous chapter could be incorporated in the color
computation. Parallel to processing the color channels, we set the alpha channel
of the output frame buffer to 1 for the fragments passing the photo-consistency
test. This information will be used for updating the visibility maps in the next
step.

7.4 Visibility Map Updating 105

(a) (b)

Figure 7.4: Influence of visibility maps in photo hull rendering. Eight refer-
ence views are used. (a) Without considering visibilities with respect to refer-
ence views, black colors from the raised leg participate in the photo-consistency
check. Therefore, some regions on the thigh of the other leg fail to be recon-
structed. (b) This artifacts are removed when visibility maps are employed.

7.4 Visibility Map Updating

Initially, all visibility maps contain the value zero, which suggests that the first
slicing plane is visible for all pixels in the active reference views. While we
proceed to render each slicing plane from front to back, implicit geometric in-
formation of the object is produced in the form of alpha maps in the novel view.
This information must be reflected in the visibility maps in order to be able
to check the photo-consistency and to composite final colors correctly. To show
the importance of the visibility maps, we compare the rendering results obtained
with and without visibility maps in Figure 7.4.

The algorithm for updating visibility maps is as follows:

1. Copy the alpha channel of the novel view to a texture Ta.
Since a bounding rectangle is determined in the subsection 7.2, the copy-
ing operation only needs to be carried out for the area of the bounding
rectangle which is usually much smaller than the whole output window.

2. Render the current slicing plane for each active reference view using the

106 Chapter 7: Hardware-Accelerated Novel View Synthesis of Photo Hulls

texture Ta.
The rendering is performed in an off-screen buffer on the graphics card
and does not interfere with the frame buffer of the novel view. The cur-
rent slicing plane, together with the texture Ta, represents one layer of the
photo hull in object space. Therefore, by projecting this layer to a refer-
ence view, we are able to generate the occlusion information for the planes
behind the current one. We divide off-screen buffer into rectangular tiles
and assign them to different reference views. For each active reference
view, the viewport is set to its corresponding tile. Then the slicing plane
is rendered with the texture Ta. The visibility maps are produced in the
alpha channel of the off-screen buffer and copied to separate textures in
preparation for rendering the next plane. If render-to-texture is supported,
the overhead cost of copying textures could be saved.

3. Clear the alpha channel of the novel view.
The alpha channel of the novel view corresponds to the current slicing
plane. It should be erased before processing the next plane. We achieve
this by clearing the output frame buffer with the color channels disabled
for writing.

All these operations are executed on the graphics board. No copying operation
from the frame buffer to main memory is required. Rendering slicing planes
textured by alpha maps is a trivial task for modern graphics hardware.

7.5 System Performance and Results

Like other algorithms presented in this thesis, the hardware-accelerated algo-
rithm for novel view synthesis of photo hulls is integrated into our distributed
system (see Chapter 3). The client computers are responsible for synchronized
video acquisition as well as real-time image processing tasks, such as fore-
ground/background segmentation, silhouette contour extraction and distance trans-
formation. The server is a P4 1.7GHz processor machine equipped with a
GeForce FX 5800 Ultra graphics card. The resolution of the rendered novel

7.5 System Performance and Results 107

view is set to 320 � 240 pixels. The bounding rectangle enclosing the photo
hull occupies about one third of the entire viewport. As the object moves, the
space is discretized into 30-60 slicing planes orthogonal to the novel viewing
direction. The fragment computation code for slicing plane rendering is written
in Cg [MGAK03] and compiled into a fragment program [Opea] that can be
directly executed on graphics hardware.

We have carried out our experiments using three datasets. One consists of the
real image data of a toy puppy. Eight reference cameras are placed in front of the
puppy and span about 120 N along an arc. In Figure 7.5, the comparison between
the visual hull and the photo hull shows that the photo hull-based algorithm
is capable of recovering general concave regions and generating more realistic
novel views.

The second dataset is a synthetic animation sequence of a girl performing
Kungfu. Eight cameras are evenly distributed and along the circumference
around the girl. Figure 7.6(a) illustrates the configuration and Figure 7.6(b)
shows a novel view of the photo hull. We generate slicing planes using the
fixed bounding volume and the effective bounding volume, respectively. The
rendering speed of the latter is approximately 2.5 times higher.

As the third dataset, real video sequences are recorded from eight surround-
ing Firewire cameras to make a parody of the bullet time scene in the movie
“The Matrix”. A snapshot rendered from these videos is presented in Figure
7.6(c).

For the Kungfu girl and Matrix parody datasets, all reference views are used
during rendering. Three of them are the active views for most novel views. The
rendering speed is about 2 fps. For the puppy dataset, the reference views are
closer to each other and the number of active views ranges from 5-8. In this
case, we need more time to update the visibility maps. Therefore, the rendering
speed decreases to 1.7 fps.

The image-based photo hull technique (IBPH) [SSH03] can be regarded as a
software implementation of our algorithm. In order to compare the performance
with it, we apply our algorithm to a subset of the puppy dataset and keep the
rendering configuration as close as possible to theirs. Five reference views are

108 Chapter 7: Hardware-Accelerated Novel View Synthesis of Photo Hulls

(a) (b) (c)

(d) (e)

Figure 7.5: Comparison of the rendering results of the visual hull and the photo
hull. (a) One of the eight input images. (b) A novel view of the visual hull
of the puppy. (c) A novel view of the photo hull generated with our hardware-
accelerated algorithm. In the circle, the empty space between the left ear and the
body are correctly carved away. Also note that the boxed region is less blurry
than the corresponding region in (b). (d) and (e) are the depth maps for (b) and
(c), respectively. Note the fine details revealed in (e).

7.5 System Performance and Results 109

(a)

(b) (c)

Figure 7.6: Photo hull rendering results generated from eight surrounding ref-
erence views. (a) The arrangement of the cameras (b) A novel view from the
Kungfu girl synthetic sequence. (c) A novel view from the matrix parody real
video sequence.

110 Chapter 7: Hardware-Accelerated Novel View Synthesis of Photo Hulls

used, and the novel viewpoint is specified such that all views are active. While
the IBPH runs at 0.4 fps on a machine with dual 2GHz processors, we achieve
frame rates of 2.7 fps, approximately 7 times faster. Notice that in the IBPH
work some higher frame rates are obtained by computing down-sampled photo
hulls in the novel view (For instance, 6.8 fps for a grid size of 4 � 4 pixels). For
fair comparison, we do not use them here.

The number of reference images supported by our algorithm is restricted
by the maximum number of texture units available on the graphics hardware.
However, we expect it will not take long to see the debut of powerful graphics
hardware with more texture units. Another factor influencing the performance
of our algorithm is that the graphics card that we use does not have full support
of branch instructions. Therefore, in our fragment program, final color evalu-
ation has to be carried out not only on the photo-consistent fragments but also
on rejected fragments. This inefficiency will disappear with the latest graphics
cards featuring real branch instruction support (for example, NVIDIA’s GeForce
FX 6800 series), and the performance of the proposed rendering algorithm will
be notably improved.

7.6 Summary

In this chapter we have presented a hardware-accelerated algorithm to synthe-
size novel views of photo hulls from a set of images or videos. By exploiting
color information, our algorithm is able to recover concave parts of an object.
We generate novel views without explicit photo hull reconstruction by render-
ing a set of slicing planes depending on the novel viewpoint. Graphics hardware
is extensively employed to constrain discretization space, to check the photo-
consistency of fragments and to maintain the visibility maps. Thanks to hard-
ware acceleration, the rendering algorithm runs at interactive frame rates, and is
much faster than a software implementation.

Chapter 8

Conclusions and Future Work

In this thesis we have presented a set of new algorithms for interactive and real-
time novel view synthesis.

First, we have shown that visual hulls can assist in the depth-from-stereo
technique by limiting the disparity range effectively. The improved depth re-
construction leads to better visual quality of the rendered novel views.

Second, scene objects are approximated as visual hulls. An innovative tech-
nique has been proposed to use graphics hardware features to reconstruct visual
hulls. We have explained a basic algorithm to synthesize novel views of visual
hulls, and then extended it so that more reference views can be used as input in
case of limited graphics hardware resources.

Third, we have combined our new visual hull reconstruction technique with
hardware-accelerated CSG reconstruction to obtain an optimal balance between
speed and quality. For the hybrid novel view synthesis algorithm, the color
values of visual hulls are computed by a per-fragment view-dependent texture
mapping technique, which improves rendering quality further.

Finally, we adopt photo hulls to represent scene objects in order to achieve
more accurate reconstruction and even better rendering quality. We create novel
views of photo hulls by rendering a stack of planes through the working volume.
The photo-consistency of each rasterized fragment is checked during rendering.
Visibilities with respect to reference views are fully taken into account. To re-

112 Chapter 8: Conclusions and Future Work

duce rendering cost, visual hulls are employed to limit the number of planes as
well as the area of each plane.

Conclusions

Based on the experiences obtained during the development of the above algo-
rithms, the following conclusions can be drawn.

1. Today’s graphics hardware is a powerful tool to improve performance of
novel view synthesis algorithms. Nowadays, GPUs are becoming more
and more flexible and programmable. The processing power of the GPU
is growing at a faster pace than that of the CPU. The GPU is very good
at processing streaming vector data like geometry primitives and images.
Fortunately, the input data for novel view synthesis algorithms are also of
that kind. By migrating more computation onto the GPU, CPU resources
can be saved for other tasks. Graphics hardware is extensively exploited
in the algorithms that we have presented. Depending on the number of
reference views and the expected rendering quality, the performance of
the algorithms ranges from interactive to real-time frame rates.

2. The visual hull representation is quite useful for fast novel view synthe-
sis. As presented in the rendering results, a visual hull reconstructed from
eight surrounding reference views has already provided an acceptable ap-
proximation to the true shape of the 3D object. The reconstructed visual
hull can be directly rendered to generate novel views. Alternatively, other
reconstruction and rendering algorithms can employ the visual hull to im-
prove speed and/or quality.

3. View-dependent 3D reconstruction is suitable for on-line novel view syn-
thesis of dynamic objects. On-line systems process input data streams on
the fly. As such, explicit reconstruction of a complete 3D model is unnec-
essary for novel view synthesis. In addition, view-dependent reconstruc-
tion is performed during the rendering process, which is in most cases

113

accelerated by graphics hardware. The algorithms presented in Chapter
5–7 all perform view-dependent reconstruction and prove to be very effi-
cient.

Future Work

Despite recent progress in fast novel view synthesis, there remain plenty of is-
sues to be addressed and many interesting areas to be explored. This section
discusses some of them and suggests possible research directions.� Accurate foreground/background segmentation

When the visual hull is used for novel view synthesis either as the main
representation or as the auxiliary one, the final rendering quality heavily
depends on whether the foreground objects can be accurately segmented
from the background. However, in practice, it is hard to achieve this in
a complex environment. Even under controlled environment conditions
like our video studio, the segmentation may still exhibit noise. To tackle
this problem, Grauman et al. assume that some prior knowledge about the
object is known. They devise a learning-based method to formulate the
silhouette extraction problem in a Bayesian framework [GSD03]. When
lighting conditions change significantly, gradient information could be ex-
ploited to stabilize the segmentation [JSS02].� Beyond the visual hull
Although visual hulls are good approximations to true 3D objects and they
can be rendered very efficiently by graphics hardware, ever-increasing de-
mand on high-quality rendering calls for more accurate models. As we
have presented in Chapter 4 and Chapter 7, the depth-from-stereo and
the shape-from-photo-consistency techniques provide two ways to incor-
porate color information in order to reconstruct surface details. Other
variations of these two techniques could also be combined with shape-
from-silhouette techniques. Time-domain extensions [MG04], Differen-
tial methods [SSH02], global optimization methods [KZ02] and prob-

114 Chapter 8: Conclusions and Future Work

abilistic methods [BDC01, BFK02] deserve further investigation. For
complex objects like plants and hairs or natural phenomena like fire, tai-
lored algorithms can be designed when considering their specific features
[IM04, RMD04]. Some active 3D reconstruction methods such as shape-

from-structured-light could also help to refine visual hulls [KTS02].� Beyond re-rendering from novel viewpoints
In this thesis, we restrict ourselves to dealing with the problem of re-
rendering from novel viewpoints. Actually, relighting or reanimating real
objects in a scene are challenging problems as well. Recovering reflectance
properties of object surfaces would make it possible to relight the object
under different lighting conditions. In an augmented reality system where
real and virtual objects are mixed, it is very important to maintain consis-
tent illumination. Most existing algorithms to recover reflectance proper-
ties rely on an accurate object model known beforehand [RH01]. In case
of an unknown object, the problem is ill-posed. However, we can subdi-
vide the problem into two stages: geometry reconstruction and reflectance
reconstruction, and then find the optimal solution iteratively. Notice that
the geometry reconstruction should take into account non-Lambertian sur-
faces [JSY03, YPW03, ZPQ04]. Re-animating real objects requires re-
covering motion represented as scene flow [VBK02], rigid transforma-
tions or articulated rigid transformations [CTMS03, CBK03a]. Then mo-
tion could be interpolated, re-defined or re-targeted to other objects. If the
class of object is known, a generic model could simplify the task dramat-
ically. An attempt has also been made to recover geometry, reflectance
and motion simultaneously by using a surfel representation [CK01]. All
these methods require a large amount of computational power, and are not
ready for real-time applications yet.� Graphics hardware
For the visual hull rendering algorithm presented in Chapter 6, a depth
map for each reference view is needed when projecting multiple color
textures on visual hulls. For the photo hull rendering algorithm presented

115

in Chapter 7, a visibility map for each active reference view is created
when evaluating photo-consistency and rendering on each slice plane. In
both cases, the same geometry primitives are rendered several times from
multiple viewpoints. Current graphics hardware has to use multi-pass
rendering. If future graphics hardware is able to perform this in paral-
lel, speed and scalability of the above two rendering algorithms will be
greatly improved. The SLI (Scalable Link Interface) multi-GPU technol-
ogy developed by NVIDIA has already taken the first step in this direction.
Graphics hardware is not limited to accelerating the algorithms presented
in this thesis. One should also think of new ways to employ latest graphics
hardware to design new algorithms or to speed up existing ones.� Evaluation and validation
In the recent years, many novel view synthesis algorithms have been pre-
sented. Thorough analysis and evaluation is desperately needed to recom-
mend application-specific solutions. One can evaluate rendering results
objectively by comparison to ground truth image data. On the other hand,
perception and psychology come into play when human experiments are
carried out to assess realism of synthesized novel views. Algorithm and
system design will benefit from the thorough consideration of the subjec-
tive aspects.� Practical system issues
If more reference views and higher resolution is desired, network transfer
and data compression turn into the limiting factors, which should be con-
sidered in the system implementation. For example, currently we transfer
the color and silhouette mask information of all reference views to the
central server. Actually, given a destination viewpoint, color informa-
tion from those views which only contribute to back-facing surfaces is not
needed for the final rendering. We can take advantage of this fact to devise
a view-dependent image transfer scheme for reducing network bandwidth.
To mix novel views of real and virtual objects and allow real-time inter-
action between them, new paradigms of human-computer interaction are

116 Chapter 8: Conclusions and Future Work

required. A recent system shows some promising results [HLS04]. Mean-
while, tracking devices and wearable displays could be integrated into the
system. Live interaction with virtual objects or virtual representations of
persons at distant places would enable new ways of learning, playing and
communicating. Furthermore, it provides a great feeling of immersion as
well as a lot of fun!

Bibliography

[ABUU00] Advanced Network and Services, Brown University, University
of North Carolina at Chapel Hill, and University of Pennsylvania
(Current participants). National tele-immersion initiative, 1998–
2000. http://www.advanced.org/teleimmersion2.html. 3

[ATI] ATI Technologies Inc. ATI_fragment_shader OpenGL exten-
sion. http://oss.sgi.com/projects/ogl-sample/registry/ATI/fragme-
nt_shader.txt. 30, 70

[Bau74] Baumgart, B. G. Geometric modeling for computer vision. Ph.D.
thesis, Stanford University, October 1974. 17, 20

[Bek] Bekaert, P. boundary representation library. http:// breplibrary.
sourceforge.net/. 49

[BFK02] Bhotika, R., Fleet, D., and Kutulakos, K. A probabilistic theory of
occupancy and emptiness. In 6th European Conference on Com-

puter Vision (ECCV 2002), volume III, pages 112–132. May-June
2002. 25, 114

[Bic94] Bichsel, M. Segmenting simply connected moving objects in a
static scene. IEEE Trans. Pattern Analysis and Machine Intelli-

gence, 16(11):1138–1142, November 1994. 41

[Bli77] Blinn, J. F. Models of light reflection for computer synthesized
pictures. In SIGGRAPH 1977, pages 192–198. July 1977. 28

118 BIBLIOGRAPHY

[BS03] Bonfort, T. and Sturm, P. Voxel carving for specular surfaces. In
9th International Conference on Computer Vision (ICCV 2003),
pages 591–596. October 2003. 25

[Bor86] Borgefors, G. Distance transformations in digital images. Com-

puter Vision, Graphics, and Image Processing, 34(3):344–371,
1986. 90, 104

[BB97] Boyer, E. and Berger, M.-O. 3D surface reconstruction using
occluding contours. International Journal of Computer Vision,
22(3):219–233, 1997. 18

[BDC01] Broadhurst, A., Drummond, T., and Cipolla, R. A probabilistic
framework for space carving. In 8th International Conference

on Computer Vision (ICCV 2001), volume I, pages 388–393. July
2001. 25, 114

[BBH03] Brown, M., Burschka, D., and Hager, G. Advances in computa-
tional stereo. IEEE Trans. on Pattern Analysis and Machine Intel-

ligence, 25(8):993–1008, August 2003. 14

[BBM � 01] Buehler, C., Bosse, M., McMillan, L., Gortler, S. J., and Cohen,
M. F. Unstructured lumigraph rendering. In SIGGRAPH 2001,
pages 425–432. August 2001. 91

[CK01] Carceroni, R. and Kutulakos, K. Multi-view scene capture by sur-
fel sampling: from video streams to non-rigid 3D motion, shape
and reflectance. In 8th International Conference on Computer Vi-

sion (ICCV 2001), volume II, pages 60–67. July 2001. 114

[Car00] Carmack, J. zfail stenciled shadow volume rendering. Unpub-
lished correspondence. http://developer.nvidia.com/attach/5628,
Early 2000. 86

[CTMS03] Carranza, J., Theobalt, C., Magnor, M. A., and Seidel, H.-P. Free-
viewpoint video of human actors. ACM Transactions on Graphics

(SIGGRAPH 2003), 22(3):569–577, July 2003. 114

BIBLIOGRAPHY 119

[CR01] CBS Broadcasting Inc. and Robotics Institute of Carnegie Mel-
lon University. Eye vision, January 2001. http://www.ri.cmu.edu/
events/sb35/tksuperbowl.html. 2

[CCST00] Chai, J.-X., Chan, S.-C., Shum, H.-Y., and Tong, X. Plenoptic
sampling. In SIGGRAPH 2000, pages 307–318. July 2000. 9

[Che95] Chen, S. E. QuickTime VR – an image-based approach to vir-
tual environment navigation. In SIGGRAPH 1995, pages 29–38.
August 1995. 7

[CW93] Chen, S. E. and Williams, L. View interpolation for image synthe-
sis. In SIGGRAPH 1993, pages 279–288. August 1993. 9

[CBK03a] Cheung, K.-M., Baker, S., and Kanade, T. Shape-from-silhouette
of articulated objects and its use for human body kinematics es-
timation and motion capture. In 2003 Conference on Computer

Vision and Pattern Recognition (CVPR 2003), volume I, pages 77–
83. June 2003. 114

[CBK03b] Cheung, K.-M., Baker, S., and Kanade, T. Visual hull align-
ment and refinement across time: A 3D reconstruction algorithm
combining shape-from-silhouette with stereo. In 2003 Conference

on Computer Vision and Pattern Recognition (CVPR 2003), vol-
ume II, pages 375–382. June 2003. 21

[CKBH00] Cheung, K.-M., Kanade, T., Bouguet, J.-Y., and Holler, M. A real
time system for robust 3D voxel reconstruction of human motions.
In 2000 IEEE Conference on Computer Vision and Pattern Recog-

nition, volume 2, pages 714–720. June 2000. 19

[Chh01] Chhabra, V. Reconstructing specular objects with image based

rendering using color caching. Master’s thesis, Worcester Poly-
technic Institute, 2001. 25

120 BIBLIOGRAPHY

[CB92] Cipolla, R. and Blake, A. Surface shape from the deformation
of apparent contours. International Journal of Computer Vision,
9(2):83–112, 1992. 18

[CH02] Coconu, L. and Hege, H.-C. Hardware-accelerated point-based
rendering of complex scenes. In 13th Eurographics workshop on

Rendering, pages 43–52. June 2002. 56

[CL96] Curless, B. and Levoy, M. A volumetric method for building com-
plex models from range images. In SIGGRAPH’96 Proceedings,
pages 303–312. August 1996. 15

[DMM � 00] Daniilidis, K., Mulligan, J., McKendall, R., Kamberova, G.,
Schmid, D., and Bajcsy, R. Real-Time 3D Tele-immersion, pages
253–266. Kluwer Academic Publishers, 2000. 13

[dBV99] de Bonet, J. and Viola, P. Roxels: Responsibility weighted 3d vol-
ume reconstruction. In 7th International Conference on Computer

Vision (ICCV 1999), volume I, pages 418–425. September 1999.
25

[DBY98] Debevec, P. E., Borshukov, G., and Yu, Y. Efficient
view-dependent image-based rendering with projective texture-
mapping. In 9th Eurographics Rendering Workshop, pages 105–
116. June 1998. 15, 68, 88, 91

[DTM96] Debevec, P. E., Taylor, C. J., and Malik, J. Modeling and rendering
architecture from photographs: A hybrid geometry- and image-
based approach. In SIGGRAPH 1996, pages 11–20. August 1996.
11, 60, 89

[DUD � 04] Dennedy, D., Urmson, C., Douxchamps, D., Peters, G., Ron-
neberger, O., and Evers, T. 1394-based DC control library, version
0.9.5, 2004. http://sourceforge.net/projects/libdc1394. 39

BIBLIOGRAPHY 121

[DA89] Dhond, U. R. and Aggarwal, J. K. Structure from stereo – A
review. IEEE Transactions on Systems, Man, and Cybernetics,
19(6):1489–1510, 1989. 14

[DP73] Douglas, D. H. and Peucker, T. K. Algorithms for the reduction
of the number of points required to represent a digitized line or its
caricature. The Canadian Cartographer, 10(2):112–122, Decem-
ber 1973. 41

[Dye01] Dyer, C. R. Volumetric scene reconstruction from multiple views.
In Foundations of Image Understanding, pages 469–489. Kluwer
Academic Publishers, 2001. 20, 26

[ESG99] Eisert, P., Steinbach, E., and Girod, B. Multi-hypothesis, volumet-
ric reconstruction of 3-D objects from multiple calibrated camera
views. In International Conference on Acoustics Speech and Sig-

nal Processing, ICASSP 1999, pages 3509–3512. March 1999. 25

[ESG00] Eisert, P., Steinbach, E., and Girod, B. Automatic reconstruc-
tion of stationary 3-D objects from multiple uncalibrated camera
views. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 10(2):261–277, March 2000. 25

[Eve02] Everitt, C. Interacive order-independent transparency. http://dev-
eloper.nvidia.com/object/Interactive_Order_Transparency.html,
2002. 84

[Fau93] Faugeras, O. Three-Dimensional Computer Vision: A Geometric

Viewpoint. MIT Press, 1993. 13, 46

[FHM � 93] Faugeras, O., Hotz, B., Mathieu, H., Vieville, T., Z., Z., Fua, P.,
Theron, E., Laurent, M., Berry, G., Vuillemin, J., Bertin, P., and
Proy, C. Real time correlation based stereo: algorithm implemen-
tations and applications. Technical Report 2013, INRIA, 1993.
13, 46

122 BIBLIOGRAPHY

[FB03] Franco, J.-S. and Boyer, E. Exact polyhedral visual hulls. In 14th

British Machine Vision Conference (BMVC 2003), pages 329–338.
September 2003. 20

[FB95] Fromherz, T. and Bichsel, M. Multiple depth and normal maps
for shape from multiple views and visual cues. In ISPRS (Inter-

national Society for Photogrammetry and Remote Sensing): In-

tercommission Workshop ’From Pixels to Sequences’, pages 186–
194. 1995. 24

[Fua93] Fua, P. A parallel stereo algorithm that produces dense depth maps
and preserves image features. Machine Vision and Applications,
6:35–49, 1993. 13, 48

[FRT97] Fusiello, A., Roberto, V., and Trucco, E. Efficient stereo with mul-
tiple windowing. In 1997 Conference on Computer Vision and

Pattern Recognition (CVPR 1997), pages 858–863. June 1997.
12, 48

[GW87] Giblin, P. and Weiss, R. Reconstruction of surfaces from profiles.
In 1st International Conference on Computer Vision (ICCV 1987),
pages 136–144. June 1987. 18

[GM03] Goldlücke, B. and Magnor, M. Real-time microfacet billboarding
for free-viewpoint video rendering. In 2003 International Confer-

ence on Image Processing (ICIP 2003), volume 3, pages 713–716.
September 2003. 22

[GSD03] Grauman, K., Shakhnarovich, G., and Darrell, T. A bayesian ap-
proach to image-based visual hull reconstruction. In 2003 Confer-

ence on Computer Vision and Pattern Recognition (CVPR 2003),
volume I, pages 187–194. June 2003. 113

[GKMV03] Guha, S., Krishnan, S., Munagala, K., and Venkat, S. Application
of the two-sided depth test to CSG rendering. In 2003 Symposium

BIBLIOGRAPHY 123

on Interactive 3D Rendering, pages 177–180. April 2003. 82, 83,
84

[HZ00] Hartley, R. and Zisserman, A. Multiple view geometry in computer

vision. Cambridge University Press, 2000. 37

[HLS04] Hasenfratz, J.-M., Lapierre, M., and Sillion, F. A real-time system
for full body interaction. In 10th Eurographics Symposium on

Virtual Environments, pages 147–156. June 2004. 39, 116

[Hei99] Heidrich, W. High-quality Shading and Lighting for Hardware-

accelerated Rendering. Ph.D. thesis, University of Erlangen,
Computer Graphics Group, 1999. 88

[HH02] Hidalgo, E. and Hubbold, R. J. Hybrid geometric-image-based-
rendering. Computer Graphics Forum (Eurographics 2002),
21(3):471–482, September 2002. 56

[HP] HP Corporation. HP_occclusion_test OpenGL extension. http://
oss.sgi.com/projects/ogl-sample/registry/HP/occlusion_test.txt.
86

[IM04] Ihrke, I. and Magnor, M. Volumetric reconstruction and interactive
rendering of trees from photographs. In Eurographics Symposium

on Computer Animation 2004, pages 367–375. September 2004.
114

[Int] Intel Corporation. OpenCV library beta 3.1 for Linux.
http://www.intel.com/research/mrl/research/opencv/. 39, 52

[IS02] Isidoro, J. and Sclaroff, S. Stochastic mesh-based multiview re-
construction. In 1st International Symposium on 3D Data Process-

ing Visualization and Transmission (3DPVT 2002), pages 568–
577. June 2002. 25

124 BIBLIOGRAPHY

[JSS02] Javed, O., Shafique, K., and Shah, M. A hierarchical approach to
robust background subtraction using color and gradient informa-
tion. In IEEE Workshop on Motion and Video Computing 2002,
pages 22–27. December 2002. 113

[JSY03] Jin, H.-L., Soatto, S., and Yezzi, A. Multi-view stereo beyond lam-
bert. In 2003 Conference on Computer Vision and Pattern Recog-

nition. (CVPR 2003), pages 171–178. June 2003. 114

[KTS02] Kampel, M., Tosovic, S., and Sablatnig, R. Octree-based fusion of
shape from silhouette and shape from structured light. In 1st In-

ternational Symposium on 3D Data Processing Visualization and

Transmission (3DPVT 2002), pages 754–757. June 2002. 114

[Kan94] Kanade, T. Development of a video-rate stereo machine. In 1994

DARPA Image Understanding Workshop (IUW 1994), pages 549–
558. November 1994. 13

[KNR95] Kanade, T., Narayanan, P. J., and Rander, P. W. Virtualized reality:
concepts and early results. In IEEE Workshop on Representation

of Visual Scenes, pages 69–76. June 1995. 38

[KS01] Kautz, J. and Seidel, H.-P. Hardware accelerated displacement
mapping for image based rendering. In Graphics Interface 2001,
pages 61–70. June 2001. 14

[KHV04] Kück, H., Heidrich, W., and Vogelgsang, C. Shape from contours
and multiple stereo – a hierarchical, mesh-based approach. In 1st

Canadian Conference on Computer and Robot Vision (CRV 2004),
pages 76–83. May 2004. 25

[KBR04] Kessenich, J., Baldwin, D., and Rost, R. The OpenGL

Shading Language v1.10.59. 3DLabs Inc., April 2004.
http:// oss.sgi.com/ projects/ ogl-sample/ registry/ ARB/ GLSLang
Spec.Full.1.10.59.pdf. 31

BIBLIOGRAPHY 125

[KZ02] Kolmogorov, V. and Zabih, R. Multi-camera scene reconstruction
via graph cuts. In 7th European Conference on Computer Vision,
volume III, pages 82–96. May-June 2002. 25, 113

[KZ01] Komolgorov, V. and Zabih, R. Computing visual correspondence
with occlusions using graph cuts. In 8th International Conference

on Computer Vision (ICCV 2001), volume II, pages 508–515. July
2001. 13

[KS99] Kutulakos, K. and Seitz, S. A theory of shape by space carving.
In 7th International Conference on Computer Vision (ICCV 1999),
pages 307–314. July 1999. 5, 9, 23, 24, 97

[Kut00] Kutulakos, K. N. Approximate N-view stereo. In 6th European

Conference on Computer Vision (ECCV 2000), pages 67–83. July
2000. 25

[Lau94] Laurentini, A. The visual hull concept for silhouette-based image
understanding. IEEE Trans. Pattern Analysis and Machine Intel-

ligence, 16(2):150–162, February 1994. 4, 5, 9, 16

[LBP01] Lazebnik, S., Boyer, E., and Ponce, J. On computing exact visual
hulls of solids bounded by smooth surfaces. In 2001 IEEE Con-

ference on Computer Vision and Pattern Recognition, volume I,
pages 156–151. December 2001. 21

[LH96] Levoy, M. and Hanrahan, P. Light field rendering. In SIGGRAPH

1996, pages 31–42. August 1996. 8

[LMS03a] Li, M., Magnor, M., and Seidel, H.-P. Hardware-accelerated visual
hull reconstruction and rendering. In Graphics Interface 2003,
pages 65–71. June 2003. 5, 75

[LMS03b] Li, M., Magnor, M., and Seidel, H.-P. Improved hardware-
accelerated visual hull rendering. In 8th Fall Workshop on Vi-

sion, Modeling, and Visualization (VMV 2003), pages 151–158.
November 2003. 5

126 BIBLIOGRAPHY

[LMS03c] Li, M., Magnor, M., and Seidel, H.-P. Online accelerated render-
ing of visual hulls in real scenes. Journal of WSCG, 11(2):290–
297, February 2003. 5

[LMS04a] Li, M., Magnor, M., and Seidel, H.-P. Handware-accelerated ren-
dering of photo hulls. Computer Graphics Forum (Eurographics

2004), 23(3):635–642, September 2004. 5

[LMS04b] Li, M., Magnor, M., and Seidel, H.-P. A hybrid hardware-
accelerated algorithm for high quality rendering of visual hulls.
In Graphics Interface 2004, pages 41–48. May 2004. 5

[LSMS02] Li, M., Schirmacher, H., Magnor, M., and Seidel, H.-P. Combin-
ing stereo and visual hull information for on-line reconstruction
and rendering of dynamic scenes. In 5th Conference on Multi-

media Signal Processing (MMSP 2002), pages 9–12. December
2002. 5

[Lok01] Lok, B. Online model reconstruction for interactive virtual envi-
ronments. In 2001 Symposium on Interactive 3D Graphics, pages
69–72. March 2001. 20, 22, 26, 78, 79, 104

[Low91] Lowe, D. Fitting parameterized three-dimensional models to im-
ages. IEEE Trans. Pattern Analysis and Machine Intelligence,
13(5):441–450, May 1991. 11

[MG04] Magnor, M. and Goldlücke, B. Spacetime-coherent geometry re-
construction from multiple video streams. In 2nd International

Symposium on 3D Data Processing Visualization and Transmis-

sion (3DPVT 2004), pages 1–6. September 2004. 113

[MGAK03] Mark, W. R., Glanville, R. S., Akeley, K., and Kilgard, M. J. Cg: a
system for programming graphics hardware in a C-like language.
In SIGGRAPH 2003, pages 896–907. July 2003. 31, 93, 107

BIBLIOGRAPHY 127

[MA83] Martin, W. and Aggarwal, J. Volumetric descriptions of objects
from multiple views. IEEE Trans. Pattern Analysis and Machine

Intelligence, 5(2):150–158, March 1983. 18

[MT02] Matsuyama, T. and Takai, T. Generation, visualization, and edit-
ing of 3D video. In 1st International Symposium on 3D Data

Processing Visualization and Transmission (3DPVT 2002), pages
234–245. June 2002. 19, 20, 79

[MBR � 00] Matusik, W., Buehler, C., Raskar, R., Gortler, S. J., and McMillan,
L. Image-based visual hulls. In SIGGRAPH 2000, pages 369–374.
July 2000. 4, 21, 22, 65, 78, 79

[MBM01] Matusik, W., Bueler, C., and McMillan, L. Polyhedral visual hulls
for real-time rendering. In 12th Eurographics Rendering Work-

shop, pages 115–125. June 2001. 4, 20, 21, 22, 65, 78, 79

[McM97] McMillan, L. An Image-Based Approach to Three-Dimensional

Computer Graphics. Ph.D. thesis, Department of Computer Sci-
ence, University of North Carolina at Chapel Hill, Chapel Hill,
North Carolina, 1997. 15, 45

[MC04] Megyesi, Z. and Chetverikov, D. Affine propagation for surface
reconstruction in wide baseline stereo. In 17th Internation Confer-

ence on Pattern Recognition (ICPR 2004), volume 4, pages 76–79.
August 2004. 12

[Mic04a] Microsoft Corporation. Direct3D Reference, 2004. http://msdn.
microsoft.com/library/default.asp?url=/library/en-us/directx9_c/
directx/graphics/reference/d3d/d3dreference.asp. 26, 71

[Mic04b] Microsoft Corporation. HLSL Shader Reference, 2004.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/directx9_c/directx/graphics/reference/hlslreference/hlslreference
.asp. 31

128 BIBLIOGRAPHY

[MKKJ96] Moezzi, S., Katkere, A., Kuramura, D. Y., and Jain, R. Reality
modeling and visualization from multiple video sequences. IEEE

Computer Graphics and Applications, 16(6):58–63, November
1996. 19, 22

[NRK98] Narayanan, P., Rander, P., and Kanade, T. Constructing virtual
worlds using dense stereo. In 6th International Conference on

Computer Vision (ICCV 1998), pages 3–10. January 1998. 13

[NVIa] NVIDIA Corporation. EXT_stencil_two_side OpenGL exten-
sion. http://oss.sgi.com/projects/ogl-sample/registry/EXT/stencil
_two_side.txt. 86

[NVIb] NVIDIA Corporation. NV_vertex_program3 OpenGL extension.
http://oss.sgi.com/projects/ogl-sample/registry/NV/vertex_prog-
ram3.txt. 30

[NVIc] NVIDIA Corporation. NV_register_combiners OpenGL exten-
sion. http://oss.sgi.com/projects/ogl-sample/registry/NV/register
_combiners.txt. 30, 69, 73

[OK85] Ohta, Y. and Kanade, T. Stereo by intra- and inter-scanline search
using dynamic programming. IEEE Trans. Pattern Analysis and

Machine Intelligence, 7(2):139–154, March 1985. 13

[OK93] Okutomi, M. and Kanade, T. A multiple-baseline stereo. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 15(4):353–
363, April 1993. 13

[OBM00] Oliveira, M. M., Bishop, G., and McAllister, D. Relief texture
mapping. In SIGGRAPH 2000, pages 359–368. July 2000. 15

[Opea] OpenGL Architectural Review Board. ARB_fragment_program
OpenGL extension. http://oss.sgi.com/projects/ogl-sample/regis-
try/ARB/fragment_program.txt. 30, 56, 71, 92, 107

BIBLIOGRAPHY 129

[Opeb] OpenGL Architectural Review Board. ARB_point_sprite
OpenGL extension. http://oss.sgi.com/projects/ogl-sample/regis-
try/ARB/point_sprite.txt. 56

[Opec] OpenGL Architectural Review Board. ARB_vertex_program
OpenGL extension. http://oss.sgi.com/projects/ogl-sample/regis-
try/ARB/vertex_program.txt. 30, 92

[Oped] OpenGL Architectural Review Board. WGL_ARB_pbuffer
OpenGL extension. http://oss.sgi.com/projects/ogl-sample/regis-
try/ARB/wgl_pbuffer.txt. 29

[PHL � 98] Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., and Salesin,
D. H. Synthesizing realistic facial expressions from photographs.
In SIGGRAPH 1998, pages 75–84. July 1998. 91

[Poia] Point Grey Research. Ladybug. http://www.ptgrey.com/products/
ladybug/index.html. 8

[Poib] Point Grey Research. Digiclops stereo vision systems. http://
www.ptgrey.com/products/digiclops/index.html. 13

[PKG99] Pollefeys, M., Koch, R., and Gool, L. V. Self-calibration and met-
ric reconstruction inspite of varying and unknown intrinsic camera
parameters. International Journal of Computer Vision, 32(1):7–
25, 1999. 37

[PEL � 00] Popescu, V., Eyles, J., Lastra, A., Steinhurst, J., England, N.,
and Nyland, L. The WarpEngine: an architecture for the post-
polygonal age. In SIGGRAPH 2000, pages 433–442. July 2000.
15, 55

[Pot87] Potmesil, M. Generating octree models of 3D objects from their
silhouettes in a sequence of images. Computer Vision, Graphics,

and Image Processing, 40(1):1–29, October 1987. 18

130 BIBLIOGRAPHY

[PTVF92] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery,
B. P. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, 2nd edition, 1992. 36

[PD98] Prock, A. C. and Dyer, C. R. Towards real-time voxel coloring. In
1998 DARPA Image Understanding Workshop (IUW 1998), pages
315–321. November 1998. 25

[PCD � 97] Pulli, K., Cohen, M., Duchamp, T., Hoppe, H., Shapiro, L., and
Stuetzle, W. View-based rendering: Visualizing real objects from
scanned range and color data. In 8th Eurographics Workshop on

Rendering, pages 23–34. June 1997. 89, 91

[RH01] Ramamoorthi, R. and Hanrahan, P. A signal-processing frame-
work for inverse rendering. In SIGGRAPH 2001, pages 117–128.
August 2001. 114

[RMD04] Reche, A., Martin, I., and Drettakis, G. Volumetric reconstruction
and interactive rendering of trees from photographs. ACM Trans-

actions on Graphics (SIGGRAPH 2004), 23(3):720–727, August
2004. 114

[RCMS99] Rocchini, C., Cignomi, P., Montani, C., and Scopigno, R. Multiple
textures stitching and blending on 3D objects. In 10th Eurograph-

ics Rendering Workshop, pages 119–130. June 1999. 15

[SBS02] Sainz, M., Bagherzadeh, N., and Susin, A. Hardware accelerated
voxel carving. In 1st Ibero-American Symposium in Computer

Graphics, pages 289–297. July 2002. 25

[SK99] Saito, H. and Kanade, T. Shape reconstruction in projective grid
space from large number of images. In 1999 Conference on Com-

puter Vision and Pattern Recognition (CVPR 1999), pages 49–54.
June 1999. 19

BIBLIOGRAPHY 131

[SS02] Scharstein, D. and Szeliski, R. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. International

Journal of Computer Vision, 48(1-3):7–42, April-June 2002. 14

[Sch03] Schirmacher, H. Efficient Acquisition, Representation, and Ren-

dering of Light Fields. Ph.D. thesis, University of Saarland, 2003.
9

[SLS01] Schirmacher, H., Li, M., and Seidel, H.-P. On-the-fly process-
ing of generalized lumigraphs. Computer Graphics Forum (Euro-

graphics 2001), 20(3):C165–C173, September 2001. 4, 5, 9, 13,
14

[SA04] Segal, M. and Akeley, K. The OpenGL Graphics Sys-

tem: A Specification (Version 2.0). Silicon Graphics, Inc.,
http://www.opengl.org/documentation/specs/version2_0/glspec20.
pdf, September 2004. 26, 51

[SKvW � 92] Segal, M., Korobkin, C., van Widenfelt, R., Foran, J., and Hae-
berli, P. Fast shadows and lighting effects using texture mapping.
In SIGGRAPH 1992, pages 249–252. July 1992. 15, 28, 88, 89

[SD97] Seitz, S. M. and Dyer, C. R. Photorealistic scene reconstruction
by voxel coloring. In 1997 Conference on Computer Vision and

Pattern Recognition (CVPR 1997), pages 1067–1073. June 1997.
24

[SGHS98] Shade, J., Gortler, S., He, L.-W., and Szeliski, R. Layered depth
images. In SIGGRAPH 1998, pages 231–242. July 1998. 15, 55

[SH99] Shum, H.-Y. and He, L.-W. Rendering with concentric mosaics.
In SIGGRAPH 1999, pages 299–306. August 1999. 9

[Sil] Silicon Graphics Inc. GLX_SGIX_pbuffer OpenGL extension.
http://oss.sgi.com/projects/ogl-sample/registry/SGIX/pbuffer.txt.
29

132 BIBLIOGRAPHY

[SSH02] Slabaugh, G. G., Schafer, R. W., and Hans, M. C. Multi-resolution
space carving using level sets methods. In 2002 International

Conference on Image Processing (ICIP 2002). September 2002.
25, 113

[SSH03] Slabaugh, G. G., Schafer, R. W., and Hans, M. C. Image-based
photo hulls for fast and photo-realistic new view synthesis. Real-

Time Imaging, 9(5):347–360, October 2003. 25, 98, 100, 107

[SCMS01] Slabaugh, G. G., Culbertson, B., Malzbender, T., and Schafer,
R. A survey of methods for volumetric scene reconstruction from
photographs. In Volume Graphics 2001, pages 81–100. June 2001.
20, 26

[SB96] Smith, A. R. and Blinn, J. F. Blue screen matting. In SIGGRAPH

1996, pages 259–268. August 1996. 41

[Son03] Sony Computer Entertainment Europe. Eyetoys: Play, 2003.
http://www.scee.presscentre.com/Software/detail.asp?SoftwareID
=24. 3

[Son] Sony Corporation. Brochure of Sony DFW-500 digital video
camera. http:// www.sony.net/ Products/ISP/pdf/guide/GDFWV
500E.pdf. 33

[SLJ98] Stewart, N., Leach, G., and John, S. An improved Z-buffer CSG
rendering algorithm. In 1998 Eurographics/SIGGRAPH Work-

shop on Graphics Hardware, pages 25–30. August 1998. 82,
84

[SP98] Sullivan, S. and Ponce, J. Automatic model construction and
pose estimation from photographs using triangular splines. IEEE

Trans. Pattern Analysis and Machine Intelligence, 20(10):1091–
1097, 1998. 21

BIBLIOGRAPHY 133

[Sze93] Szeliski, R. Rapid octree construction from image sequences.
Computer Vision, Graphics, and Image Processing: Image Un-

derstanding, 58(1):23–32, July 1993. 19

[SS97] Szeliski, R. and Shum, H.-Y. Creating full view panoramic image
mosaics and environment maps. In SIGGRAPH 1997, pages 251–
258. August 1997. 7, 89

[TLMS03] Theobalt, C., Li, M., Magnor, M., and Seidel, H.-P. A flexible and
versatile studio for multi-view video recording. In Vision, Video

and Graphics 2003, pages 9–16. July 2003. 5

[TMSS02] Theobalt, C., Magnor, M., Schüler, P., and Seidel, H.-P. Com-
bining 2D feature tracking and volume reconstruction for online
video-based human motion capture. In Pacific Graphics 2002,
pages 96–103. October 2002. 19

[TV98] Trucco, E. and Verri, A. Introductory techniques for 3-D computer

vision, chapter 7. Stereopsis. Prentice Hall, 1998. 11

[Tsa86] Tsai, R. Y. An efficient and accurate camera calibration technique
for 3-D machine vision. In 1986 Conference on Computer Vi-

sion and Pattern Recognition (CVPR 1986), pages 364–374. June
1986. 36

[TL94] Turk, G. and Levoy, M. Zippered polygon meshes from range
images. In SIGGRAPH 1994, pages 311–318. September 1994.
14

[VBK02] Vedula, S., Baker, S., and Kanade, T. Spatio-temporal view in-
terpolation. In 13th Eurographics Workshop on Rendering, pages
65–76. June 2002. 114

[VBSK00] Vedula, S., Baker, S., Seitz, S., and Kanade, T. Shape and motion
carving in 6D. In 2000 Conference on Computer Vision and Pat-

tern Recognition (CVPR 2000), volume II, pages 592–598. June
2000. 25

134 BIBLIOGRAPHY

[VRSK98] Vedula, S., Rander, P., Saito, H., and Kanade, T. Modeling, com-
bining, and rendering dynamic real-world events from image se-
quences. In 4th Conference on Virtual Systems and Multimedia

(VSMM 1998), pages 326–332. November 1998. 60

[Vid] Videre Design. Small vision system. http://www.ai.sri.com/b konolige/svs/svs.htm. 13

[Wie96] Wiegand, T. F. Interactive rendering of CSG models. Com-

puter Graphics Forum (Eurographics 1996), 15(4):249–261, Au-
gust 1996. 22, 82, 84

[WL03] Wilburn, B. and Levoy, M. Standford multi-camera array, 2003.
http://graphics.stanford.edu/projects/array. 9

[Wil78] Williams, L. Casting curved shadows on curved surfaces. In SIG-

GRAPH 1978, pages 270–274. August 1978. 88

[WAA � 00] Wood, D. N., Azuma, D. I., Aldinger, K., Curless, B., Duchamp,
T., Salesin, D. H., and Stuetzle, W. Surface light fields for 3D
photography. In SIGGRAPH 2000, pages 287–296. July 2000. 9

[WLSG02] Würmlin, S., Lamboray, E., Staadt, O., and Gross, M. 3D video
recorder. In Pacific Graphics 2002, pages 96–103. October 2002.
21, 22

[WD] Wynn, C. and Dietrich, S. Cube maps. http://developer.nvidia.com
/object/cube_maps.html. 92

[YSK � 02] Yamazaki, S., Sagawa, R., Kawasaki, H., Ikeuchi, K., and
Sakauchi, M. Microfacet billboarding. In 13th Eurographics

workshop on Rendering, pages 169–180. June 2002. 14

[YEBM02] Yang, J. C., Everett, M., Buehler, C., and McMillan, L. A real-
time distributed light field camera. In 13th Eurographics workshop

on Rendering, pages 77–86. June 2002. 4, 9, 39

BIBLIOGRAPHY 135

[YP03] Yang, R. and Pollefeys, M. Multi-resolution real-time stereo on
commodity graphics hardware. In 2003 Conference on Computer

Vision and Pattern Recognition, pages 211–220. June 2003. 13,
103

[YPW03] Yang, R., Pollefeys, M., and Welch, G. Dealing with texture-
less regions and specular highlights: A progressive space carving
scheme using a novel photo-consistency measure. In 9th Interna-

tional Conference on Computer Vision (ICCV 2003), pages 576–
584. October 2003. 23, 114

[YWB02] Yang, R., Welch, G., and Bishop, G. Real-time consensus-based
scene reconstruction using commodity graphics hardware. In Pa-

cific Graphics 2002, pages 225–235. October 2002. 4, 25, 98,
100, 102

[ZW94] Zabih, R. and Woodfill, J. Non-parametric local transforms for
computing visual correspondence. In 3rd European Conference

on Computer Vision, pages 150–158. May 1994. 12

[ZPQ04] Zeng, G., Paris, S., and Quan, L. Robust carving for non-
lambertian objects. In Proceedings of International Conference

on Pattern Recognition (ICPR 2004), volume 3, pages 119–122.
August 2004. 114

[ZC04] Zhang, C. and Chen, T. A survey on image-based rendering: Rep-
resentation, sampling and compression. Signal Processing: Image

Communication, 19(1):1–28, January 2004. 2

[ZCS03] Zhang, L., Curless, B., and Seitz, S. M. Spacetime stereo: Shape
recovery for dynamic scenes. In 2003 Conference on Computer

Vision and Pattern Recognition (CVPR 2003), volume II, pages
367–374. June 2003. 12

[ZPvG01] Zwicker, M., Pfister, H., van Baar, J., and Gross, M. Surface splat-
ting. In SIGGRAPH 2001, pages 371–378. August 2001. 14

136 BIBLIOGRAPHY

	Introduction
	Problem Statement
	Main Contributions
	Chapter Organization

	Related Work
	Novel View Synthesis
	Depth from Stereo
	Depth map reconstruction
	Rendering with depth maps

	Shape from Silhouette
	Visual hull reconstruction
	Visual hull rendering

	Shape from Photo-consistency
	Photo hull reconstruction and rendering

	Graphics Hardware
	Overview of the rendering pipeline
	Fixed-function pipeline
	Programmable pipeline

	Synchronized Acquisition of Pre-calibrated Multi-view Videos
	Camera system
	Camera calibration
	Color calibration
	Camera synchronization

	Computer Infrastructure
	Image Processing Algorithms
	Radial distortion correction
	Image segmentation

	Summary

	Novel View Synthesis Based on a VH-Assisted Stereo Algorithm
	Basic Stereo Algorithm
	Visual Hull-Assisted Stereo Algorithm
	Global disparity range constraint
	Per-pixel disparity range constraint

	Rendering
	System Implementation and Performance
	Discussion
	Summary

	Hardware-Accelerated Novel View Synthesis of Visual Hulls
	Hardware-Accelerated Visual Hull Reconstruction
	Single-Pass Visual Hull Rendering
	Multiple texture blending
	Basic rendering algorithm
	Extended single-pass rendering

	Multi-Pass Visual Hull Rendering
	System Performance
	Discussion
	Summary

	Hybrid Hardware-Accelerated Novel View Synthesis of VHs
	Hardware-Accelerated CSG Reconstruction
	Hybrid Visual Hull Rendering
	Valid region determination
	Novel view depth map generation
	Reference view depth map generation
	Textured visual hull rendering

	System Performance
	Summary

	Hardware-Accelerated Novel View Synthesis of Photo Hulls
	Algorithm Overview
	Slicing Plane Generation
	Slicing Plane Rendering
	Visibility Map Updating
	System Performance and Results
	Summary

	Conclusions and Future Work

