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Die erste Benutzerstudie, die in der vorliegenden Arbeit beschrieben wird, wurde unter der
Mitarbeit von Prof. Dr. Andreas Butz und Dr. Antonio Kr üger durchgef ührt. Die Firma Eyeled
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Ja, mach nur einen Plan
Sei nur ein großes Licht!
Und mach dann noch ’nen zweiten Plan
Geh’n tun sie beide nicht.

Bertolt Brecht, Dreigroschenoper
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Kurzzusammenfassung

W ährend eine Reihe von benutzeradaptiven Systemen existiert, die entscheidungstheoretische Me-
thoden zum Zwecke individueller Entscheidungen verwenden, wurde die entscheidungstheoreti-
sche Planung im Kontext benutzeradaptiver Systeme bislang kaum genutzt. Die vorliegende Ar-
beit fokussiert die Anwendung entscheidungstheoretischer Planung in benutzeradaptiven Syste-
men und demonstriert, wie bei einem solchen Ansatz konkurrierende Ziele und Ressourcenbe-
schr änkungen des Benutzers ber ücksichtigt werden k önnen. Der Ansatz wird mit Beispielen aus
folgenden Anwendungsgebieten illustriert: benutzeradaptive Assistenz bei der Bedienung eines
technischen Ger äts, benutzeradaptive Navigationsempfehlungen in einen Flughafenszenario und
schließlich benutzeradaptive und ortsbezogene Einkaufsassistenz. Anhand des Einkaufsassisten-
ten wurden in zwei Benutzerstudien Bedienbarkeitsfragen eines auf entscheidungstheoretischer
Planung basierenden Systems untersucht.

Wir beschreiben, wie man in einem entscheidungstheoretischen Ansatz feste Zeitbeschr än-
kungen, die beispielsweise in einem Flughafennavigationsszenario durch das Boarding des Flug-
gasts bedingt werden, ber ücksichtigen kann. Ausserdem schlagen wir einen auf Zielpriorisierung
basierenden, hierarchischen entscheidungstheoretischen Planungsansatz vor, mit dem die Kom-
plexit ät der Behandlung realistischer Probleme handhabbar gehalten wird. Weiterhin pr äzisieren
wir den allgemeinen Arbeitsablauf (Workflow) f ür die Entwicklung und Anwendung von Mar-
kov Entscheidungsprozessmodellen im Kontext benutzeradaptiver Systeme, und wir beschreiben
M öglichkeiten der Erweiterung eines auf entscheidungstheoretischer Planung basierenden benut-
zeradaptiven Systems um eine Erkl ärungskomponente.
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Short Abstract

While there exists a number of user-adaptive systems that use decision-theoretic methods to make
individual decisions, decision-theoretic planning has hardly been exploited in the context of user-
adaptive systems so far. This thesis focuses on the application of decision-theoretic planning
in user-adaptive systems and demonstrates how competing goals and resource limitations of the
user can be considered in such an approach. The approach is illustrated with examples from
the following domains: user-adaptive assistance for operating a technical device, user-adaptive
navigation recommendations in an airport scenario, and finally user-adaptive and location-aware
shopping assistance. With the shopping assistant, we have analyzed usability issues of a system
based on decision-theoretic planning in two user studies.

We describe how hard time constraints, as they are induced, for example, by the boarding of
the passenger in an airport navigation scenario, can be considered in a decision-theoretic approach.
Moreover, we propose a hierarchical decision-theoretic planning approach based on goal prioriza-
tion, which keeps the complexity of dealing with realistic problems tractable. Furthermore, we
specify the general workflow for the development and application of Markov decision processes
to be applied in user-adaptive systems, and we describe possibilities to enhance a user-adaptive
system based on decision-theoretic planning by an explanation component.
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Zusammenfassung

Ziel der Arbeit war die Konzeption, Entwicklung, Anwendung und Validierung entscheidungs-
theoretischer Planungsmethoden f ür Probleme im Kontext benutzeradaptiver Systeme. Insbeson-
dere wurde dabei gezeigt, dass der Einsatz entscheidungstheoretischer Planung geeignet ist, um
die aktuelle Situation des Benutzers, und damit dessen m öglicherweise konkurrierende Ziele und
gegebenenfalls vorhandene Ressourcenbeschr änkungen, zu ber ücksichtigen.

W ährend benutzeradaptive Systeme bisweilen h äufig nur die Situation zu einem bestimmten
Zeitpunkt als Grundlage der Adaptionsentscheidung betrachten, erlaubt der Einsatz enscheidungs-
theoretischer Planung das Vorausschauen auf mehrere Interaktionsschritte in der Zukunft und da-
mit die Ber ücksichtigung der Konsequenzen, die Adaptionsentscheidungen im weiteren Verlauf
einer Interaktion haben k önnen. Das bedeutet, dass das Systemverhalten nicht in Bezug auf den
Nutzen eines einzelnen, n ämlich des n ächsten Schritts optimiert wird, sondern dass ein System in
die Lage versetzt wird den erwarteten Nutzen einer Sequenz von Interaktionsschritten (Aktionen
des Systems und des Benutzers), m öglicherweise der vollst ändigen Sequenz, die zum Erreichen
eines Interaktionsziels ben ötigt wird, zu maximieren. Wie der Begriff “erwarteter Nutzen” bereits
andeutet, wird dabei die Unsicherheit bez üglich der Handlungen des Benutzers, bzw. der Ergeb-
nisse seiner Handlungen, ber ücksichtigt.

Anhand verschiedener Beispiele werden entscheidungstheoretische Modelle zur Planung der
Interaktion von System und Benutzer im Kontext benutzeradaptiver Systeme entwickelt. Zwei
Hauptanwendungsbeispiele werden in der Arbeit betrachtet: (1) die Assistenz bei der Benutzung
eines technischen Ger ätes und (2) die Assistenz bei der Navigation innerhalb eines komplexen
Geb äudes. Beiden Beispieldom änen ist gemeinsam, dass bei der Vorausplanung der Interakti-
on zwei oder mehrere konkurrierende Interaktionsziele ber ücksichtigt werden m üssen. Dar über
hinaus wird anhand dieser Anwendungsbeispiele gezeigt, wie sich ein System auf Ressourcen-
beschr änkungen—insbesondere die kognitive Belastung des Benutzers, dessen subjektiv emp-
fundenen Zeitdruck, sowie objektiv vorhandene Zeitbeschr änkungen—anpassen kann. In diesem
Zusammenhang wird eine m ögliche Variante des Zusammenspiels einer entscheidungstheoreti-
schen Planungskomponente und einer davon unabh ängigen Benutzermodellierungskomponente
erl äutert. In komplexeren Szenarien erlaubt diese Art des Zusammenspiels die Ber ücksichtigung
partiell beobachtbarer Informationen (Informationen über den Benutzer, die indirekt aus der Be-
obachtung seines Verhaltens geschlossen werden), ohne dass im Planungsansatz die partielle Be-
obachtbarkeit der f ür die Planung relevanten Informationen explizit modelliert werden muss.

Die Arbeit gibt einen Überblick über die wichtigsten bislang verwendeten Methoden der Ent-
scheidungsfindung in Systemen aus dem Bereich benutzeradaptiver Systeme. Die Grundlagen der
entscheidungstheoretischen Planung werden zun ächst anhand eines einfachen Beispiels erl äutert.
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Dabei wird ein einfaches entscheidungtheoretisches Modell auf der Basis empirsch ermittelter
Daten entwickelt. Danach werden zwei ausf ührliche Beispiele f ür die Entwicklung eines entschei-
dungstheoretischen Modells und des aus dessen Anwendung resultierenden Handlungsschemas
(engl.: policy) besprochen. In diesem Zusammenhang werden zwei unterschiedliche Rollen von
Zeit bei der entscheidungstheoretischen Planung betrachtet: Zum einen Zeit als reiner Kostenfak-
tor unter der Annahme, dass w ährend der Interaktion beliebig viel Zeit verbraucht werden kann,
zum anderen Zeit als eine beschr änkte Ressource, die durch eine feste Deadline spezifiziert ist.
Die Zuordnung eines entscheidungstheoretischen Planungsproblems zu der einen oder der anderen
Kategorie bez üglich der Rolle der Zeit entscheidet über den f ür den Planungsprozess betrachteten
Planungshorizont.

F ür komplexe Planungsprobleme, d.h. f ür Probleme, in denen mehrere Interaktionsziele be-
r ücksichtigt werden m üssen, wird in dieser Arbeit ein auf Zielpriorisierung basierender, hierarchi-
scher entscheidungstheoretischer Planungsansatz beschrieben. In einfachsten Fall unterscheidet
dieser Ansatz zwischen obligatorischen und optionalen (prim ären und sekund ären) Zielen und
ber ücksichtigt eine feste Deadline f ür das Erreichen des übergeordneten Ziels. Das durch die ge-
steigerte Anzahl betrachteter Interaktionsziele entstehende Komplexit ätsproblem wird dabei inso-
fern vereinfacht, als dass durch einen Planungsprozess auf übergeordneter Ebene eine Aufteilung
von Sekund ärzielen auf Prim ärziele erreicht wird, so dass in den Planungsprozessen auf unterge-
ordneter Ebene jeweils lediglich Teilmengen der Gesamtmenge an Sekund ärzielen ber ücksichtigt
werden m üssen.

Die aus der Entwicklung entscheidungstheoretischer Modelle und der Anwendung der aus
den entsprechenden Planungsprozessen resultierenden Handlungsschemata gewonnen Erkenntnis-
se werden in der Beschreibung eines allgemeinen Arbeitsablaufs (Workflow) zusammengefasst.
Dieser Workflow unterscheidet die Entwicklung und Anwendung entscheidungstheoretischer Mo-
delle f ür einfache und komplexere Planungprobleme. F ür komplexere Planungsprobleme wird der
zuvor entwicklete Ansatz der zielpriorisierten, hierarchischen Dekomposition zugrunde gelegt und
verallgemeinert. Die Beschreibung des Workflows kann als ein erster Schritt auf dem Weg zu ei-
nem allgemeinen Werkzeug f ür die Entwicklung entscheidungstheoretischer Planungsmodule f ür
benutzeradaptive Systeme betrachtet werden.

Die Arbeit berichtet über zwei Studien zur Untersuchung der Akzeptanz des entscheidungs-
theoretischen Plannungsansatzes im Kontext eines mobilen Einkaufsassistenten. Die erste Studie
wurde in einem fingierten Einkaufszentrum in einem Informatikgeb äude der Universit ät des Saar-
landes unter Verwendung von Infrarot-Lokalisierungstechnologie durchgef ührt. Die zweite Studie,
in der der Versuchsleiter die Infrarot-Lokalisierungstechnologie simulierte, fand im Saarparkcen-
ter in der Stadt Neunkirchen statt. Beide Studien legen nahe, dass der entscheidungstheoretische
Planungsansatz eine ad äquate Methode der Entscheidungsfindung f ür Systeme in der Art des mo-
bilen Einkaufsassistenten darstellt. In einer weiteren Studie wurden M öglichkeiten der Entwick-
lung einer Erkl ärungskomponente f ür entscheidungstheoretische Planer im Kontext mobiler Ein-
kausassistenten untersucht. Die in der Arbeit vorgeschlagenen Strategien zur Realisierung einer
solchen Erkl ärungskomponente stellen einen weiteren Beitrag zur Steigerung der Bedienbarkeit
und Benutzerfreundlichkeit auf entscheidungstheoretischer Planung basierender benutzeradapti-
ver Systeme dar.
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2.2.2.3 André et al. (1996): PPP, the Personalized Plan-Based Presenter 32
2.2.2.4 K üpper & Kobsa (1999, 2001): User Tailored Plan Generation

and Presentation . . . . . . . . . . . . . . . . . . . . . . . . . 32
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1 INTRODUCTION

1.1 Motivation: An Example from Everyday Life

“Good evening. I’d like to go from Trier to Ludwigshafen. What are the next train connections,
please?”. The young lady at the ticket desk feeds her computer with some data. Then she says:
“There’s a connection at 7:48pm. You need to change trains in Saarbr ücken and Kaiserslautern.
Arrival in Ludwigshafen is at 11:38pm. Another train leaves at 8:16pm. You need to change trains
in Koblenz and Mannheim. Arrival in Ludwigshafen is at 11:40pm.”

“Uh, it is nearly a quarter to eight. I don’t want to hurry. I think, I take the second train and
go to the newsagent first to buy a magazine for the journey. The arrival times are about the same,
anyway. Thank you very much for your assistance!”

The two connections differ only marginally in journey and arrival time. At first sight, they
seem to be more or less equally well suited for the trip to Ludwigshafen. Our traveler, let us
call him � , has compared two plans consisting of three sequential actions. Plan A: go from
Trier to Saarbr ücken, go from Saarbr ücken to Kaiserslautern, and go from Kaiserslautern to Lud-
wigshafen. Plan B: go from Trier to Koblenz, go from Koblenz to Mannheim, and go from
Mannheim to Ludwigshafen. If everything works out well, there is no reason for � to favour
one decision over the other. Unfortunately, railways are often not very reliable. Figure 1.1 shows
the regular timetables for both plans as well as the timetables for fallback strategies if � missed
any of the trains.

If � missed a train following plan A, no matter if in Saarbr ücken or Kaiserslautern, then there
is another one that gets � to Ludwigshafen at 0:57am. That is, wherever � misses a train on this
route, he would reach Ludwigshafen with a delay of at most about 1:20h compared to the regular
arrival time. Now we reconsider plan B.

If � missed the train from Koblenz to Mannheim, he can choose only a connection via Frank-
furt airport. From there, he will take the train via Mannheim reaching Ludwigshafen at 4:37am.
This is nearly 5 hours later than the regular arrival time. Things get even slightly worse if �
additionally missed the train at Frankfurt airport. In this case, the next train would get � to Lud-
wigshafen via Bruchsal and Mannheim only at 5:12am—about 5:30h later than the regular arrival
time.

Figure 1.2 shows a graphical representation of best, bad, and worst cases for the two routes.
The information was retrieved from the web server1 of German Railways (Deutsche Bahn AG) for
Monday and Tuesday, September 15 and 16. Considering what could go wrong following each

1Times retrieved from the schedule valid from 15.06. through 13.12.2003 at http://www.bahn.de/.

1

http://www.bahn.de/
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Figure 1.1: Timetables to get from Trier to Ludwigshafen by train.
(The decision about the connection is often mainly based on a best case analysis. Fallback strategies—in
this example possible connections after missing a train at some point—are usually not considered.)

of the two plans might well make � change his mind and decide not to buy a magazine first, but
instead hurry a bit to get the 7:48pm train from Trier to Ludwigshafen via Saarbr ücken.

The example illustrates that it is sometimes worthwhile to look ahead and to analyze the future
consequences of a decision. In fact, a more detailed analysis can be made. Taking into account
how likely it is at each station that � will miss a train (e.g., based on statistics about train delays
or based on an estimation of the likelihood to miss a train considering the time available to change
trains) would enable � to assess the two alternatives more precisely. � ’s decision will probably
depend also on another question: How important is it for him to be well rested the next day? If
he is not working the next day, he might take the risk of not getting to sleep during the night, as
he estimates the likelihood for that case to be rather low, anyway. Whereas, if he has a business
meeting the next morning at 9am, he might rather want to exclude entirely that he will not get to
sleep before 6am in the morning.

The kind of planning and looking ahead that we just described in the context of a railway
information service can be helpful and valuable in many other domains. It is called decision-
theoretic planning (DTP) and was originally developed in operations research to make decisions
about business processes (Bellman, 1957; Howard, 1960; Astr öm, 1965). Beside its application in
economics, decision-theoretic planning was introduced to the field of artificial intelligence during
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Figure 1.2: Graphical representation of relevant connections from Trier to Ludwigshafen.
(If everything works out well, plan A and plan B are equally well suited to get from Trier to Ludwigshafen.
But in the worst case plan B turns out to be very unfavorable.)

the last decade, primarily to tackle the difficult problem of robot control (e.g., Dean, Kaelbling,
Kirman, & Nicholson, 1995; Kaelbling, Littman, & Cassandra, 1998; Boutilier, Dean, & Hanks,
1999).

This thesis is driven by the belief that decision-theoretic planning can contribute a lot to an-
other sub-area of artificial intelligence: the area of user-adaptive systems. Computer users are
frequently complaining about the difficulty in understanding the user interface of systems and
programs.

Sometimes the problem is simply that a system’s graphical user interface (GUI) makes it awk-
ward for people to interact with it. In this situation the problems can easily be overcome by
re-working the GUI’s design.

More challenging problems are those that become apparent only during the interaction of
the user with a system. Some systems only work well for some users and in some situations.
Research to date has focused on methodologies and techniques for obtaining information about
the user and the situation, and then adapting system behavior as a result of this information. For
example, web pages that adapt the presentation of information to the current user. However, most
intelligent systems only adapt to the current situation and fail to even consider how the situation
might evolve during the course of interaction. If a system were capable of planning ahead, then
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it would be able to steer the interaction with the user into favorable directions and thereby avoid
dead ends early during the interaction, instead of waiting until the user faces them directly. We
want to enable systems to analyze potential courses of the interaction and to decide at each stage
of the interaction in the way that is most beneficial for the user.

In the following, we will briefly introduce the closely related areas of intelligent user inter-
faces and user-adaptive systems. The two areas overlap, and it is often difficult to decide if a
particular system belongs more to one or the other category. Therefore, many of the conclusions
concerning the application of decision-theoretic planning for user-adaptive systems apply also for
the application of decision-theoretic planning for intelligent user interfaces.

In the section about user-adaptive systems, we will highlight the concepts of resources and
resource-adaptivity. These concepts provide the background for the READY project, in which the
research described in this thesis was carried out.

1.2 Intelligent User Interfaces

Maybury and Wahlster (1998) define intelligent user interfaces (IUIs) as human-machine inter-
faces that aim to improve the efficiency, effectiveness, and naturalness of human-machine inter-
action. To realize these properties, they employ explicit models of the user, the domain tasks, the
discourse of the interaction, and the available media.

Intelligent user interfaces include systems that automatically process coordinated language,
gesture and gaze input, and that provide multi-modal output. Some perform automatic content
selection, media allocation, media realization and layout. There are systems that can automatically
design graphics from structured data or coordinate the layout of multimedia content in time and
space. Intelligent user interfaces often come as anthropomorphic agents, such as assistants or
mediators. Behind the scenes, intelligent user interfaces often exploit models of the discourse and
user, build or maintained during interactive sessions.

Figure 1.3 illustrates in what parts of the general architecture of an intelligent user interface
(as it is defined by Maybury & Wahlster, 1998) decision-theoretic planning may be involved2 . Ac-
cording to this architecture, decision-theoretic planning can be employed as part of the interaction
management. We will show in Chapters 4, 5, and 7 how decision-theoretic planning can be used
for discourse modeling, plan generation, and presentation design and how it has an effect on media
design and output rendering.

How intelligent the behavior of a computer system appears to its user is a function of how
appropriately the system chooses its actions. The more trivial a problem is, the more a user
should expect the system to act more or less like the user would do. Of course, a problem that
appears trivial to a human cannot necessarily be (in fact is often not) solved trivially by a computer
system—researchers in AI have often experienced this phenomenon. The more complex a problem
is, the more often a system might be expected to make a decision that is unexpected by the user.
For some problems (of high complexity) the user will be unable to make the right (or at least a
reasonable) decision at all.

How does the railway information service example translate to the field of intelligent user
interfaces? We discuss an intelligent user interface example that involves a sequential decision

2In principle, decision-theoretic planning can also be involved in input processing and plan recognition. Consider,
for example, a situation with two persons both using assistance systems based on decision-theoretic planning, where
the system of one person tries to anticipate the actions of the other, for example, to arrange a meeting.
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Figure 1.3: General architecture of an intelligent user interface.
(Maybury and Wahlster (1998) describe the general architecture of an intelligent user interface. In this
architecture, a decision-theoretic planner is considered as part of the interaction management, and it has an
effect on the Media Design and Output Rendering.)

making similar to the decision making in the railway information service example to answer this
question: the interaction of a customer � with an automatic teller machine. The dialog between a
customer and an ATM usually follows a rigid structure. The system starts by asking the customer
to enter his PIN and then to select a service. Assume � most of the time uses the ATM to withdraw
some cash, and � has the habit to frequently withdraw an uneven amount, say $35. If the ATM
could access information about the way � enters his PIN (e.g., rather quick or rather slow, with or
without delay after entering the bank card, with or without mistake) or about � ’s physical state,
for example, from biosensors in the keyboard (e.g., to measure skin conductivity), or from an eye
tracker (e.g., to measure the pupil diameter), then it might be able to infer if � is in a hurry. Maybe

� is on the way to the cinema, and the movie starts shortly. In that case, � might appreciate if the
ATM offers him to withdraw the amount of $35 immediately after he has entered his PIN. This
service would save � two dialog steps because he does not need to select a service first and then
enter the amount. Saving two dialog steps probably means saving less than thirty seconds. But the
subjective value of saving two dialog steps might well be more than just saving some seconds (see
also Smyth & Cotter, 2002, who analyze the value of personalized navigation techniques for WAP
portals and information services in general). Rather, the added value achieved through the flexible
dialog is reflected by the enhanced customer convenience. Figure 1.4 shows the two alternative
interaction sequences (in part).

Tailoring the dialog exactly to the user’s current needs is not as easy as the example might
suggest at first sight. Maybe, sometimes � just wants to check his account balance, sometimes the



6 CHAPTER 1. INTRODUCTION

Withdraw Cash
View Account Balance

Sevice Selection:

Withdraw $20
Withdraw $50
Withdraw $100
Withdraw $200
Withdraw $500
Different Amount

Eject Bank Card
Eject $35

Other Service
Withdraw $100
Withdraw $50
Withdraw $35
Withdraw $20

Eject Bank Card
Eject $35

Withdraw Cash
View Account Balance

Sevice Selection:

Enter PIN Enter Amount

Rigid Dialog Structure:

Enter PIN

Tailored Dialog Structure:

Figure 1.4: Two dialogs with an ATM to withdraw $35.
(Dashed path: Following the rigid dialog structure takes four steps to withdraw $35. Green path: The user
tailored dialog structure allows to withdraw $35 in only two steps.)

amount of money he wants to withdraw is a bit higher or lower than usually. If the ATM makes a
wrong guess in the beginning, the result might be that � feels disturbed or irritated by the system
behavior3 . Maybe the dialog will even require an additional step compared to following the rigid
strategy. A user-friendly ATM has to account for this possibility. It should be able to trade off
alternatives precisely based on the likelihood of their results and the values that the results have
for � . Decision-theoretic planning provides the formal methods to do so.

The example illustrates how the ATM can adapt to the customer’s situation. Adapting to the
customer’s situation means in this case to adapt to the customer’s time pressure. Time can be
considered as a resource that is available to the user of a system. In this thesis, we focus on a
class of systems closely related to intelligent user interfaces: user-adaptive systems. Some user-
adaptive system take in particular the user’s resource limitations into account. Such systems are
sometimes explicitly labeled with the term resource-adaptive systems.

3In our previous work, we have not yet explicitly considered how the utility of an adapted system behavior compares
to a behavior the customer is used to, but it could be done in principle. It involves estimating the cost to the user of
adapting to a new (adapted but unexpected) system behavior.
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1.3 User-Adaptive Systems

Jameson (2003) summarizes all systems that perform an adaptation to the individual user in some
nontrivial way under the term user-adaptive systems. Depending on their form and function, such
systems have been given labels ranging from adaptive interfaces through user modeling systems
to software agents or intelligent agents; the broader term personalization became popular in the
1990s, especially in connection with commercially deployed user-adaptive systems.

Figure 1.5 surveys the general schema for the processing in a user-adaptive system given
by Jameson (2003) and indicates the processing of a user-adaptive system based on decision-
theoretic planning. Central to the general schema is a user model for the given task. In an approach
based on decision-theoretic planning, all relevant information about the user is represented in a
Markov decision process4 . The Markov decision process comprises all relevant possible courses
of the interaction between the system and the user and incorporates the parameters that specify the
possible actions of the user. On the basis of the Markov decision process, the user-adaptive system
can compute an interaction policy that determines the system’s instructions or recommendations
for the user.

(a) (b)

USER MODEL

THE USER

PREDICITONS OR

DECISIONS ABOUT
INFORMATION

ABOUT THE USER

USER MODEL ACQUISITION USER MODEL APPLICATION

MARKOV DECISION PROCESS

INFORMATION ABOUT

POSSIBLE ACTIONS

OF THE USER

ACTION PARAMETERS

DETERMINATION OF COMPUTATION OF AN

INTERACTION POLICY

FOR THE USER

RECOMMENDATIONS

INSTRUCTIONS OR

Figure 1.5: Schema for the processing (a) in a user-adaptive system in general and (b) in a DTP-
based user-adaptive system in particular.
(Ovals: input or output; rectangles: processing methods; cylinder: stored information. Dashed arrows: use
of information; solid arrows: production of results.)

1.3.1 Resources and Resource-Adaptivity

In habitual language use, the meaning of the term resource includes physical objects, human abil-
ities and skills, knowledge, information, energy, time, etc. Some resources can be consumed,
while others can be used arbitrarily often. Some resources can be portioned, while others can rea-
sonably be used only as a whole. In the context of interdisciplinary research in the collaborative
research program 378 on resource-adaptive cognitive processes5—started at Saarland University
in 1996—Wahlster and Tack (1997) define the following resource concept: A cognitive agent �

4The Markov decision process constitutes the mathematical framework of decision-theoretic planning. We will
introduce Markov decision processes in Section 3.1.

5Information on the SFB378 can be found at http://www.coli.uni-sb.de/sfb378/.

http://www.coli.uni-sb.de/sfb378/
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solves a given task � in a situation � using a resource � , whereby resource-dependent variations
of result quality and the used processes can be observed for ��� � � � � ��� . They classify three types
of resource sensitive processes. A slightly modified classification is described by Jameson and
Buchholz (1998). We adopt the latter classification and illustrate it with an example of a system
guiding a user through the airport on the way to his gate. The “agent” here is rather the system-
user combination than the system alone, as the resource limitations are those of the user, while the
behavior is determined mainly by the system.

Jameson and Buchholz (1998) divide resource-adaptive processes into (1) resource-adapting,
(2) resource-dependent, and (3) resource-adapted processes. Resource-adaptivity is the superor-
dinate concept: A process can generally be called resource-adaptive if the way in which it solves
a task depends on the restrictions of the relevant resources. A system guiding a user to his gate
acts in a resource-adapted way, for example, if the system recommends fixed routes, whose basic
definitions take resource restrictions, such as the user’s working memory capacity, implicitly into
account. The system acts in a resource-dependent way if the quality of the navigation recommen-
dations changes with different levels of working memory capacity although the system has not
modeled this resource explicitly. If the user cannot follow a recommendation correctly, the system
might just give another recommendation that is simpler, for example, a recommendation of which
the system designers assumed that it would be easier to follow. Eventually, the system acts in a
resource-adapting way if it explicitly models a resource, for example, the user’s working memory
capacity, and considers it in the generation of the navigation recommendations. This behavior
represents the strongest notion of a resource-adaptive process.

1.3.2 READY: REsource-Adaptive Dialog sYstem

There are plenty of ways for a user to interact with a system. Pure command line interfaces from
the early beginnings of desktop computers have quickly been replaced by the windows, icons,
menus, and pointing (WIMP) paradigm. Mouse and keyboard are familiar to every user of a
desktop PC. The spread of mobile devices has established pens as pointing devices. Some systems
incorporate spoken language, and many projects pay attention to multi-modal interaction. No
matter what form of input is used, there is always some information in addition to the content of
the user’s input to a system: symptoms that allow to make (at least vague) inferences about the
user’s current situation. This additional information is usually neglected and in fact is often not
relevant for the application at hand. For example, if someone types some text in a command line, it
is usually not important if he types it quick or slow, or how often he makes corrections in the text.
Yet, the information could be used, for example, to assess if the user is a novice, an intermediate,
or an advanced computer user. READY uses this kind of information (symptoms in the user’s
interaction with the system, for example, speech symptoms or symptoms in the usage of a pen on
a PDA display) to reason about the user’s cognitive load or time pressure.

The project READY (Jameson, Sch äfer, Weis, Berthold, & Weyrath, 1999) started in 1996 as
part of the collaborative research program 378 on resource-adaptive cognitive processes. From
its beginnings, the research in the project was driven by two questions: (1) How can a system
recognize resource limitations of a dialog partner, and (2) how can the system adapt its behavior
to recognized resource limitations? The prototype developed during the first research period was
based on a car breakdown scenario. The system assists car drivers in the event of a breakdown
via the phone. The prototype uses dynamic Bayesian networks to reason about the user’s resource
limitations and influence diagrams for the decision making. These methods are especially well



1.4. PLANNING INTERACTIONS 9

suited for the integration of unreliable evidence, incremental use of sparse evidence, and explicit
reasoning about the ways in which the user’s resource limitations change during the interaction.

This thesis summarizes the research in the READY project that deals with adaptation processes
based on planning an interaction several steps ahead. Most examples throughout the thesis are
placed in an airport scenario, which was jointly used by several projects of the SFB 378 during
the 2nd and 3rd phase of the research program. There was a particularly tight cooperation with
the partner project REAL; both projects are hosted by the AI lab at Saarland University. Two
examples of services of an envisaged mobile airport assistance system will repeatedly be used in
the upcoming chapters to illustrate the advantages of planning the interaction between a system and
its user ahead: (1) The system shows the user round in an airport terminal. Thereby, it considers
secondary desires of the user (e.g., buying a snack or finding a rest room) and eventually gets the
user to the gate in time. (2) The system interactively explains to the user how to operate a technical
device (e.g., a credit card phone or an automated check-in counter).

Both services have in common the facts that the outcome of the user’s reaction to the system’s
recommendations is uncertain (e.g., the user buys a snack or not, the user operates the credit card
phone correctly or not) and that the result of the whole interaction (the sequence of the system and
the user’s actions) cannot be optimized by optimizing individual decisions.

1.4 Planning Interactions

Planning the behavior of a user-adaptive system always means building a plan that considers the
actions of two agents: those of the user and those of the system. The dialogic nature of interaction
planning and its implication for the planning approach is the subject of this section.

Usually the examples employed in decision-theoretic planning literature apply to situations
with a single agent only (e.g., robot navigation). Although there are usually two cooperative
agents involved in human computer interaction, the problem of planning the interaction between a
user and a system is usually not considered as a multi-agent planning problem6 . The main reason
for the single-agent perspective is probably the fact that one agent, the user, takes a rather passive
part in the interaction in the sense that he merely reacts to the system’s actions. The user does not
determine his actions according to a joint plan, and to at least gain access to the user’s plan, the
system has to explicitly employ plan recognition methods. Yet, what might have the appearance of
a two-agent planning problem at first sight can in fact easily be mapped to a single-agent planning
problem. Consider the example in which the system gives a recommendation and the user tries to
understand and to follow the recommendation. One way to capture this circumstance is to mask
the user’s actions as system actions. The user’s action of following the recommendation can be
masked as “the system waits for the user to follow the recommendation”. This way, the user’s
action is described from the system’s perspective although important parameters of the action (its
cost, the likelihoods of its outcomes) describe properties that are related to the user.

An alternative approach, which emphasizes the passiveness of the user in the planning process
even more, could be to treat the user as a part of the system’s uncertain and dynamically changing
environment. However, this approach degrades the role of the user too much, and makes the user’s
actions appear less important to the planning process than they actually are.

6We assume throughout the thesis that the user is cooperative. If the user tries to fool the system in some way, then
there is usually something wrong with the system. In that case, that is, for non-cooperative situations, game theoretical
analyses might have to be taken into consideration.
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Keeping these considerations in mind will help to understand the modeling of the planning
processes described in chapters 4, 5 and 7. In the following, we will take a closer look at two
further aspects that are particularly important for planning the interaction of a system and a user:
(1) What can the system know about the state of the user and the interaction, respectively? (2)
What is the role of time in the planning process?

1.4.1 Feedback: Degrees of Observability

The selection of an appropriate planning approach for a planning problem depends on the answer
to the following question: Does the agent executing the plan perceive the results of its actions,
and how reliable does it perceive them? Or put in other words, how accessible are changes of the
world to the plan executor at runtime?

The purpose of planning an interaction ahead of time is to have a good (or optimal with regard
to some optimality criterion) strategy at hand for whatever situation might occur during the course
of the interaction. Starting from this fundamental idea, those scenarios in which we can assume
that the system has some means to gain some knowledge about the current situation at runtime
are the most interesting ones for our studies. In some cases, a system can perceive the current
situation reliably, in other cases it cannot. How good the assessment of the situation is, depends
on the amount and quality of information that is available to the system. Some examples are:

� A tutoring system must know about the student’s state of knowledge, that is, how much
of the subject matter the student has already understood. The system can ask the student
questions to find out about the student’s state of knowledge. In order to take the student’s
current receptiveness or affective state into consideration, the system can analyze the user’s
input behavior, for example, it can measure how long the student takes to read an exercise
or to answer a question.

� A system that gives repair instructions via the phone must find out about the state of the
broken car as well as the driver’s standard of technical knowledge and maybe his affective
state to give reasonable recommendations. The driver’s affective state can be inferred from
symptoms in his speech, his standard of technical knowledge through an analysis of his
vocabulary. The recognition of his affective state and standard of technical knowledge can
be used for the decision about what questions to ask about the state of the car and how to
phrase them.

� A system that gives egocentric (from the perspective of the user) navigation recommenda-
tions has to know what the user’s current location and orientation are. Dependent on the
underlying technology, the location can sometimes be sensed precisely, whereas sometimes
the system will have only rough (noisy) localization information available. The user can
also be involved in the localization process. The same accounts for information about the
user’s orientation.

� A shopping assistant, that guides a user to a number of stores to buy items from a shopping
list, needs to know which items have already been bought, what the user’s current location
is, and which stores the user has already visited. Some of this information can be sensed
automatically in an instrumented environment, some might be given by the user explicitly.
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How much of this information can be considered to be reliable is crucial for the selection of the
planning process that can be applied to the problem. If no information about the changes of the
situation is accessible to the system, the best the system can come up with is a plan: a sequence
of actions, which is worked off independently of the state of the world. Applying a plan implicitly
assumes that actions always have the desired and unambiguous outcome, that is, that the model
employed for the planning process reflects the considered fraction of the world well enough, such
that nothing else can happen other than is assumed in the model. In many real world problems,
this assumption does not hold, as the railway information service example at the very beginning
of this chapter has already illustrated.

On the other end of the spectrum, there is the assumption that the relevant fraction of the
world can be perceived perfectly. In this case, the planning process is said to be fully observable.
The result of such a planning process is not called a plan anymore, but a policy: a table in which
the system can look up what action to take for every possible situation. For example, the route
planning problem of a GPS-based car navigation system can be considered to be fully observable if
one considers the precision of GPS-based localization to be sufficient for car navigation. Chapter 3
will survey in detail the elements of fully observable Markov decision processes (FOMDP), which
we use to model the fully observable planning problems in chapters 4, 5, and 7.

Some processes are neither unobservable nor fully observable. Sometimes a system makes
observations that do not allow the system to determine the current state of the world precisely, but
give the system an estimation of the likelihood that the world is in any of the potential world states.
For example, the user of the telephone repair service mentioned above tells the system about some
steam rising from the engine compartment and a red lamp that flashes on the dash board. These
symptoms do not tell the system exactly what the status of the engine is. However, the system
can estimate, for example, that it is more likely that there is not enough water in the cooling unit
than that the temperature sensor is broken. A planning process that takes the uncertainty about the
actual world state into consideration is said to be partially observable.

The observability classification is not inherent to a property or a sensor type used to determine
a property. For example, a route planning process based on GPS information for car navigation
might be considered to be fully observable, whereas a route planning process based on GPS infor-
mation for pedestrian navigation might be considered to be only partially observable. The system
designer has to answer the question: Is it necessary to account for some uncertainty about the
state of the world? For a car navigation system it might be sufficient to know that the user is at
most 10 meters away from a crossing—the route planning process can be considered to be fully
observable. The same localization technique might be insufficiently precise for a pedestrian navi-
gation system—in this case, the route planning process might rather be considered to be partially
observable.

Most state knowledge (information about the situation at hand) that will be relevant in the
scenarios that we consider in chapters 4, 5 and 7 can be perceived with sufficient accuracy. There-
fore, we can focus on fully observable planning processes in the best part of this thesis. We will,
however, hint to scenarios in which the modeling as partially observable Markov decision process
(POMDP) promises some extra value. While the complexity to represent FOMDPs allows at least
the modeling of a certain range of problems with practical relevance (which can be extended by
appropriate approximation methods as we apply them in chapter 5), POMDPs suffer even more
from what is often called the MDP curse of dimensionality. There are hardly any practically
relevant partially observable planning processes that can be represented as POMDPs.
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1.4.2 Different Roles of Time

We distinguish two different roles of time in a planning process: (1) time as a pure cost factor for
the interaction of a system with its user, that is, in principle as an unrestricted resource, and (2)
time restricted by a fixed deadline specifying the end of an interaction (a latest point in time at
which the interaction has to be finished), that is, time as a restricted resource.

Time as unrestricted resource (time as a pure cost factor) An interaction can be optimized
with regard to the interaction duration. In many applications such optimization will require a
trade-off between the interaction duration and some other performance criterion. Some examples:

� A tutoring system might claim to convey as much content of the curriculum in the shortest
possible time; the lessons must be comprehensible enough for the student being able to
follow, but they must not be unnecessarily verbose such that it bores the student;

� a system giving assistance for the driver of a broken down car might attempt to derive a
good assessment of the situation and in order to being able to give good recommendations
after the shortest possible period of interviewing;

� a system giving instructions on how to operate a technical device might attempt to instruct
the user in a way that the user can operate the technical device correctly as fast as possible.
At the same time, the system might try to minimize the probability that the user operates the
device incorrectly.

In all these examples, optimizing the result of the planning process means: at the same time
minimizing the required time and minimizing or maximizing some other variable. Time is not
a restricted resource in this approach. The planned sequence of actions can in principle take
as much time as required, as long as the increased duration of the interaction is justified by a
commensurable increase of output quality. A slightly better result of the planned process might not
justify the immoderate timely extention of the sequence of actions (e.g., reflected by the number
of actions required) to achieve the result. We will see in Chapters 3 and 4 that decision-theoretic
planning provides a mathematical framework that suites these requirements well. It allows to
trade-off the costs of required actions against the value of the achieved result.

Time as restricted resource (time restricted by a fixed deadline) Some applications require
that the interaction of a system with its user takes at most some predefined amount of time. Some
typical interactions with a fixed deadline are the following:

� A shopping assistant helps a shopper to find as many of the items on the shopping list as
possible before the shopping mall closes;

� a personal assistant for operating a railway ticket machine tries to finish the interaction early
enough, such that the traveler can get to his platform in time;

� an airport assistance system helps a passenger to navigate within an airport building. It tries
to satisfy as many of his desires (e.g., buying a snack or finding a rest room) as possible, but
in particular, it cares for the passenger not to miss his flight. The boarding time determines
a fixed deadline in this case.
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Decision-theoretic planning allows to consider a fixed deadline in terms of a finite-horizon plan-
ning problem. finite-horizon planning allows to determine an optimal strategy for a fixed amount
of process steps or stages. In the basic decision-theoretic planning framework, performing one
action corresponds to proceeding one stage in the process to be planned. This notion has to be
modified to match finite-horizon planning for a process that must be finished before a fixed dead-
line. If the costs of actions can be represented by an integer amount of time and if stages in the
planning process correspond to time units, finite-horizon planning suits the requirements. Chapter
3 will explain the technique to deal with fixed deadlines formally.

Note that there is a difference between finishing the planning of a process before a deadline
(the planning itself must not take longer than a certain amount of time) and planning a process in a
way that the planned process is finished before a deadline. The technique that we described in the
last paragraph applies to the latter case. The first case, the problem of ensuring that the planning
process itself is finished after some period of time, is related to the area of anytime algorithms (see
e.g., Zilberstein, 1996). This issue represents an interesting area of its own, but it is not substantial
to the objectives of this thesis.

1.5 Objectives

Many user-adaptive systems base adaptation decisions solely on an analysis of the situation at
hand. The overall idea of the research presented in this thesis is to provide user-adaptive sys-
tems with a means to consider future consequences of the decision on how to act in and adapt
to the situation at hand. Decision-theoretic planning has successfully been applied, for example,
to robot navigation problems. Just like a smart robot that sometimes decides for the fastest route
and sometimes considers a deviation to avoid a dangerous, unfavorable situation, a user-adaptive
system should sometimes plan its interaction with the user several steps ahead to avoid unfavor-
able situations for the user. We present an approach based on decision-theoretic planning, which
is general enough to be applied to a broad range of domains. We group the questions that drove
the research presented in this thesis into three topics: (1) General issues concerning decision-
theoretic models for the planning in user-adaptive systems; (2) usability issues of user-adaptive
systems based on decision-theoretic planning; and (3) special requirements of specific types of
application.

General issues concerning decision-theoretic models for the planning in user-adaptive sys-
tems Decision-theoretic planning allows a system to “think out” an interaction, to compare
different courses of interaction, to steer an interaction into a direction that is favorable for the
user, and to avoid pitfalls that the user would otherwise be confronted with. The development
of decision-theoretic models that allow to exploit the described advantages of decision-theoretic
planning in the context of user-adaptive systems brings up the following questions:

� Can we formulate general guidelines for the development of decision-theoretic models for
user-adaptive systems?

The development and application of decision-theoretic models for various user-adaptive
systems should exhibit some similarities that may be captured in a general workflow de-
scription. We will study several examples throughout this thesis, which will help to elicit
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the individual steps of the general development and application workflow, which must be
applicable to problems of different complexity.

� How can the parameters required for decision-theoretic planning be determined?

Decision-theoretic planning is based on quantitative measures that describe the available
actions. In particular, these parameters are the costs of actions and the probabilities of their
outcomes. We will explore appropriate ways to determine the parameters required by the
models for decision-theoretic planning.

� How can a system trade off multiple objectives?

One advantage of decision-theoretic methods in general is their ability to handle trade-offs
between competing goals quantitatively. However, it is not obvious how to handle trade-offs
between multiple goals in the context of planning for user-adaptive systems.

� How can a fixed deadline for reaching a goal with a user-adaptive system be dealt with?

While planning problems with a finite planning horizon are in general simpler to solve than
those with an infinite planning horizon, a fixed deadline imposes some extra effort when
modeling and dissolving a decision-theoretic planning problem with non-uniform action
durations. Some of the user-adaptive systems considered in this thesis require to take fixed
deadlines under such conditions into account.

� How can a reasonable look-ahead in a complex domain be accomplished?

More complex instances of planning problems in the context of user-adaptive systems con-
sidered in this thesis may require specific methods to make decision-theoretic planning actu-
ally applicable. We will explore existing approaches to deal with complex decision-theoretic
planning problems and if necessary enhance a promising approach according to the require-
ments of the corresponding domain.

Usability issues of user-adaptive systems based on decision-theoretic planning It is not clear
if the benefit of applying decision-theoretic planning in a user-adaptive system is actually appre-
ciated by the users. Empirical studies are necessary to get feedback about how the users react to
user-adaptive systems based on decision-theoretic planning. Such empirical studies will address
questions like:

� In what kind of realistic scenario can a user-adaptive system be implemented and tested?

In order to study how users can cope with a system based on the decision-theoretic planning
approach, we need to build a complete prototype of the system for a realistic scenario.
We have identified a PDA-based location-aware shopping guide as one interesting example
application. The system should help its user to buy the items on his shopping list more
efficiently by taking expected product availability and expected waiting times at cash desks
into account.

� How do users get along with a system giving recommendations based on decision-theoretic
planning and how is the acceptance of such a system?

Once we have implemented a complete prototypical system, for example, for a shopping
scenario, we can conduct user studies to find out about the usability and the user acceptance
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of the corresponding system. The feedback about the users’ experience with the system can
be collected in questionnaires and the user’s performance with the corresponding system
can be evaluated in comparison with alternative approaches for the corresponding task.

� How can recommendations based on decision-theoretic planning be explained and justified?

It may be difficult for users to comprehend recommendations based on decision-theoretic
planning. The decision-theoretic planning process itself offers nothing but the notion of
highest expected utility of a recommendation to justify a decision. The information con-
tent of a justification based on highest expected utility will in general not be satisfying for
a user. Therefore, we need to develop appropriate methods to generate more descriptive
explanations of decision-theoretically planned recommendations.

Special requirements of specific types of application Some example applications that we want
to consider in this thesis include special problems whose solutions may not be relevant for user-
adaptive systems in general. The special requirements of such specific applications bring up the
following interesting research questions:

� What is the relationship between decision-theoretic planning and user modeling?

Many user-adaptive systems maintain a user model that may comprise information relevant
for a decision-theoretic planning process. For example, the planning of the right form of
output presentation for a sequence of recommendations may depend on parameters like the
user’s cognitive load or his subjectively felt time pressure. We will explore how such infor-
mation can influence a decision-theoretic planning process in the context of a user-adaptive
system. As a user’s cognitive load and subjectively felt time pressure are not observable
directly, this line of research may bring up a way to consider partially observable informa-
tion in the complex decision-theoretic planning for a user-adaptive system without having
to consider partial observability in the model for the decision-theoretic planning explicitly.

� How can the planning of navigation recommendations be integrated with the planning of
their presentation?

One type of interaction that we are especially interested in is concerned with location-aware
adaptive navigation recommendations. The planning of navigation recommendations and
the planning of the presentation of navigation recommendations are typically not indepen-
dent from each other. We will analyze a scenario for which dealing with the navigation
planning and the presentation planning in separate planning processes may yield subopti-
mal results. To avoid suboptimal results, we develop a decision-theoretic model that allows
an integrated planning of navigation recommendations and their presentation.

� How can decision-theoretic planning of navigation recommendations and their presentation
be combined with traditional route planning?

Where navigation recommendations are involved, it is possible that a preferred route exists,
for example, a route that the user is already familiar with or a route that has some other spe-
cial properties (e.g., a minimized number of turning points). We show how the presentation
of predefined routes can be augmented by a decision-theoretic planning approach.



16 CHAPTER 1. INTRODUCTION

1.6 Outline

Chapter 2 surveys different approaches to decision making in user-adaptive systems. We analyze
systems that make only individual decisions, and describe general approaches for individual de-
cision making. We give an overview of different planning approaches and describe how far these
approaches have already been applied in user-adaptive systems. Chapter 3 gives an introduction
to decision-theoretic planning and illustrates the main concepts with a simple example from the
context of user-adaptive systems. We describe the elements of Markov decision processes and
put some emphasis on different state space representations. Moreover, general complexity issues
will be considered in the third chapter. Chapter 4 explains the modeling of the fully observable
Markov decision processes that we use in both a stationary and a mobile scenario of low com-
plexity. In the stationary scenario, we describe a system that gives the user instructions about
how to operate a technical device. The mobile scenario is based on an airport assistance system
that guides a passenger to the gate and thereby tries to take a secondary goal of the passenger
into consideration. We show how both models can be coupled with a user modeling component.
In the context of airport navigation assistance, we explain how decision-theoretic planning and
other approaches for navigation planning can be combined. Moreover, we describe a method
that guarantees that the interaction meets a fixed deadline. Chapter 5 addresses the scalability
of the decision-theoretic approach. We describe a hierarchical decision-theoretic planning ap-
proach based on goal priorization to cope with complex planning problems. In the context of
airport navigation assistance, we demonstrate goal-priorized decision-theoretic planning involv-
ing two planning layers. In this example, we apply a macro decision-theoretic planning process
to break down the complex planning problem into several tractable decision-theoretic planning
problems on the micro level. Eventually, we show how to deal with fixed deadlines in hierarchical
decision-theoretic planning. Chapter 6 presents the workflow for the development and application
of decision-theoretic planning in the context of user-adaptive systems. We describe the workflow
on the basis of examples of low complexity and eventually extend the workflow description such
that it is applicable to more complex problems. Chapter 7 focuses on two usability issues. The
first issue is user acceptance: We describe the development of a decision-theoretic shopping guide
on a commercially available hand-held computer and the experience that subjects made with the
system in two user studies. The second issue is explainability of decision-theoretically planned
navigation recommendations. We report the results of a study in which we discovered what kind
of recommendations users wish, and we examine how appropriate explanations can be generated.
Chapter 8 concludes with a summary of contributions of this thesis. We review the main limita-
tions of the decision-theoretic planning approach in the context of user-adaptive systems and point
out to some interesting open questions.



2 DECISION MAKING AND PLANNING IN

USER-ADAPTIVE SYSTEMS

There exist various approaches to the problem of making decisions in user-adaptive systems. In
this chapter, we will give on overview of the most prominent alternatives to decision-theoretic
planning, which have been applied in user-adaptive systems so far. First, we consider systems that
do not plan ahead but rather make individual decisions about actions to be performed. We dis-
cuss three approaches to making individual decisions and thereby focus on the decision-theoretic
methods.

The potential of individual decision making is limited. There are undoubtfully situations in
which the performance of a system can be improved by employing planning to look several steps
ahead. This way, a system can take the future consequences of a decision into consideration.
We give a selective overview of the spectrum of planning approaches that have been applied in
user-adaptive systems already, and we expose the potential of decision-theoretic planning in this
context.

Some systems that we describe combine several techniques and could therefore be addressed
in more than one of the following sections. We assigned them to the individual sections according
to the aspects that we want to emphasize about the system. For example, the PRACMA system is
described in a section about systems that rate alternatives, but it would also have fit to the section
on decision-theoretic methods for individual decisions.

2.1 Systems That Make Only Individual Decisions

Among the approaches most frequently used for decision making in intelligent user interfaces,
Jameson et al. (2001) distinguish three principle types. In the following, we use the same cate-
gorization to discuss our selection of user-adapted systems. The three types can be summarized
as (1) observing and imitating the user, (2) rating alternatives in terms of their relevance with re-
spect to the user’s needs, and (3) using decision-theoretic methods to evaluate the consequences
of decisions. As the examples will show, each of the three types of individual decision making can
be implemented in very different ways. We go into some more detail with regard to the decision-
theoretic methods, as they represent the core of research in the READY project and provide the
background for a better understanding of the decision-theoretic planning methods.

17
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2.1.1 Systems That Imitate the User

It is a very attractive approach to have user-adaptive systems learn from the user himself. There
are a lot of scenarios in which the user of a system has to perform the same or similar sequences of
actions over and over again. A user-adaptive system that can detect such recurrent sequences and
perform the corresponding tasks automatically is appealing. A very natural approach to achieve
such automation is to have a system learn from the user’s behavior like a human apprentice would
do—by “looking the user over the shoulder”. The main job done by an apprenticeship model is the
prediction of the action that the user would most likely be doing. Two examples for this approach
are Maxims, an email assistant, and Eager, a system that detects and anticipates repetitive tasks in
the HyperCard environment on Apple Macintosh computers.

2.1.1.1 Maes (1994): Maxims, an Electronic Mail Assistant

Maxims (Maes, 1994) is a system that assists the user with electronic mail. The Maxims agent
learns to prioritize, delete, forward, sort and archive email messages on behalf of the user. The
agent continuously ”looks the user over the shoulder” while the user deals with email. It memo-
rizes the situation-action pairs generated while the user works with the system. For example, if
the user saves a particular email message after having read it, the email agent adds a description
of the situation and the action taken by the user to its memory of examples.

When a new message arrives, the agent tries to predict the action(s) of the user based on
the examples stored in its memory. The agent compares the new situation with the memorized
situations and tries to find a set of nearest neighbors (or close matches). The most similar of these
memorized situations contribute to the decision of which action to take or suggest in the current
situation. The distance metric used is a weighted sum of the differences for the features that make
up a situation. Some features carry more weight than others. The weight of a feature is determined
by the agent: Occasionally (e.g., at night), the agent analyzes its memory and determines the
correlations between features and actions taken. For example, the agent may detect that the ”from”
field of an email message is highly correlated to whether its user reads the message, while the
”date” field is not correlated. The detected correlations are employed as weights in the distance
metric.

Maxims has some properties in common with today’s spam filters. However, while Maxims
learns from the user to predict the correct folder for all types of incoming emails, spam filters
are specialized in detecting spam emails. To improve their performance, spam filters can learn
from what the user recognizes as spam, but they typically employ a multitude of predefined filters
already right from the start.

The Maxims agent does not only predict which action is appropriate for the current situation,
but it also measures its confidence in each prediction. The confidence level is determined by (1)
whether or not all the nearest neighbors recommended the same action, (2) how close or distant the
nearest neighbors are, and (3) how many (similar) examples the agent has memorized (a measure
of the accuracy of the correlation weights). Two thresholds determine how the agent uses its
predictions. When the confidence level is above the ”do-it” threshold, then the agent autonomously
takes the action on behalf of the user. In that case, it writes a report for the user about the action
it automated. The user can ask the agent for its report of automated actions at any time. If the
confidence level is above the ”tell-me” threshold, then the agent will offer its suggestion to the
user but will wait for the user’s confirmation to automate the action. The user is responsible for
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setting the ”tell-me” and ”do-it” thresholds for actions at levels the user feels comfortable with.
For example, if the user feels paranoid about the agent autonomously deleting messages, then the
user can set the ”do-it” threshold for that action at a maximum.

The Maxims agent gradually gains competence by observing the user and acquiring more ex-
amples. As there are no or just a few examples available at the beginning, there are two additional
competence acquisition schemes: (1) It is possible for the user to instruct the agent explictly, and
(2) the agent can asks for help from other agents that are assisting other users with electronic mail.

2.1.1.2 Cypher (1991): Eager, Programming Repetitive Tasks by Example

Cypher (1991) describes the programming by example system Eager for the HyperCard environ-
ment on Apple Macintosh computers. Eager constantly monitors the user’s interaction with the
HyperCard environment and tries to complete the interaction automatically when it detects an
iterative pattern.

Eager highlights menus and objects on the screen to indicate what it expects the user to do
next. As users continue to perform their activity, they will notice that the objects they are about to
select have already been highlighted by the system. When it becomes apparent that Eager knows
how to perform the task correctly, they can tell Eager to complete the task for them, that is, when
Eager is correct, the user’s intended selection will appear highlighted in green before it is selected.
When Eager is incorrect, the user’s choice will not match the highlighted item, and Eager will use
the actual choice to revise its program.

The use of anticipation allows Eager to interfere minimally with the user’s normal activities.
Eager is written so that it never asks the user for information; the only information comes from
recording the user’s ongoing actions. In particular, the user does not signal the start of an example,
and never explicitly confirms or rejects a hypothesis. Performing an action that matches the an-
ticipation is implicitly confirming, and performing any other action is implicitly rejecting Eager’s
anticipation.

Eager is written in LISP and runs as a background application. It receives information about
high-level user events in the HyperCard environment via interprocess communication. Whenever
a new event is reported, Eager searches through previous events in the history to find one that is
similar.

When two similar events are found, Eager assumes that the second event marks the beginning
of the second iteration in the loop. All preceding events, back to the first similar event, are pre-
sumed to constitute the first iteration in the loop. Eager now monitors each new incoming event to
see if it is similar to the corresponding event from the first iteration. If patterns can be found for
each pair of events, Eager concludes that it has detected an iterative loop, and the Eager icon pops
upon the screen. Based on the generalizations formed from these two iterations, Eager instantiates
the next steps in the pattern and directs HyperCard to highlight the appropriate items in green.

2.1.1.3 Applicability and Limitations

A requirement for the applicability of the methods described in Section 2.1.1 is that the user knows
very well how he should/wants to act in a given situation. The method can be used in situations
in which the system’s assistance consists mainly in automating (more or less) simple tasks, that
otherwise would not put the user in front of a challenging problem, but would rather annoy the
user because of their simplicity and monotony. The method is not based on an explicit model of
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the user and does not make inferences about the user’s current situation nor about the current state
of the interaction of the system with the user. Future consequences of the system’s decision are not
taken into account, for example, what will happen if Maxims automatically deletes or forwards an
email incorrectly one, or two, or three times? However, the method is well suited, for example, to
provide some sort of guidance or to enable a system to automate and take over some tasks from
the user, thereby allowing him to work with a system more conveniently. Moreover, such systems
have the potential to improve over time: the more examples are available to the system, the better
will its performance be.

2.1.2 Systems That Rate Alternatives

Systems that recommend documents, products, or other objects to the user often do that on the
basis of certain features of the recommended entity. A frequent approach is to rate a large number
of entities, for example products, in terms of their relevance with respect to the user’s desires—as
expressed, for example, in the user’s query. Sometimes a decision is not based on a single rating,
but on a combination (e.g., a weighted sum) of ratings. Multi-attribute utility theory provides a
mathematical framework for this approach.

2.1.2.1 Multi-Attribute Utility Theory

The basic idea of the multi-attribute utility theory (von Winterfeldt & Edwards, 1986) is simple.
It reflects a common human decision making strategy for the selection of one option out of many.
The value function � ��� � of an object (e.g., a product that one might want to buy) or a characteristics
(e.g., of a hotel that one might want to book) � is defined as a weighted addition of its evaluation
with respect to its relevant value dimensions:
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���
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For example, suppose one would like to go on holiday and to select an appropriate hotel. There
are typically a number of relevant aspects that influence the decision on what hotel to choose. For
example, for the evaluation of a hotel, one can consider: How expensive is the hotel? How close
is it to the beach? What sports facilities does it offer? How comfortable is the hotel? In equation
2.1, 	
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�
. For example, for the evaluation of the comfort a hotel offers, one can consider:

What is the size of the rooms? Are the rooms air conditioned? Do they have a balcony?
In the following, we survey three systems that rate alternatives: PRACMA, an interactive

electronic sales agent that uses MAUT to adaptively advertise a car; Letizia, an interface agent
that recommends web pages; and Apt Decision, an assistant for rental real estate decisions that
learns the user’s preferences from his interaction with the system.

1In order to evaluate attributes, it is necessary to construct a scale representing the properties of the levels of an
attribute, for example, a scale from 0 (very small) to 10 (very large) specifying the room size.
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2.1.2.2 Jameson et al. (1995): PRACMA, a Car Purchasing Dialog System

PRACMA2 (Jameson, Sch äfer, Simons, & Weis, 1995) is a dialog system for purchasing a car.
PRACMA builds a profile about the customer’s preferences and acts as a consultant. The user can
specify his requirements for a car in a language that is familiar to him, that is, he does not have to
know about any technical terms. The system identifies the user’s desires and infers his preferences
about product categories or features the desired car should offer.

PRACMA uses multi-attribute utility theory (MAUT) to represent each customer as a vector
of weights on multiple evaluation dimensions. The total value of an object is the sum of the
weighted evaluations on each dimension. Dimensions of evaluation include, for example, how
ecological or how sporty a car is. The PRACMA system assigns these attributes to the different
types and models of cars of the brand and estimates the importance of an attribute for a specific
dimension. The customer’s preferences for certain dimensions are inferred from observations
about evaluations of attributes with Bayesian networks (see Section 2.1.3.1). For example, from a
negative assessment of the lack of air conditioning, the system draws the inference that comfort is
a rather important dimension for the current customer.

2.1.2.3 Lieberman (1995): Letizia, an Assistant for the Web

Letizia (Lieberman, 1995) is a user interface agent that assists a user browsing the Web. It was
developed at about the same time as WebWatcher (see Section 2.2.6.3) and provides a very similar
service. It tracks the behavior of its user and attempts to anticipate items of interest by doing
concurrent, autonomous exploration of hyperlinks from the web page which the user currently
visits. Unlike WebWatcher, Letizia does not ask the user about his interests at the beginning of
a session but tries to infer them from the user’s browsing behavior. Letizia conducts a resource-
limited search through the space of web pages in parallel with the user’s browsing. This way,
the user may request a set of recommendations at any time. While a user of WebWatcher gets
recommendations automatically as soon as there are recommendable links available on a page, the
Letizia user has to ask for recommendations explicitly if he is unsure about what to do next.

Letizia does not use information about the browsing behavior of other users. The inferences
about appropriate links to recommend are drawn using heuristics about the meaning of certain
browsing behaviors of the current user only. For example, saving a reference to a document
indicates interest in the topic of that document, whereas passing over a link indicates that the topic
of that link is rather uninteresting for the user (within the current session). Letizia’s content model
of a document is simply a list of keywords. Rather than to estimate the importance of a document
for a user (e.g., by assigning an importance probability to it), Letizia determines a preference order
of interest among a set of links. Letizia can explain why it has chosen a document in that it refers
to anticipated topics of interests that correspond to the recommendation.

2.1.2.4 Shearin & Lieberman (2001): Apt Decision, Rental Real Estate Decisions

The Apt Decision agent (Shearin & Lieberman, 2001) learns user preferences in the domain of
rental real estate by observing the user’s critique of apartment features. The agent uses interactive
learning techniques to build a profile of user preferences. In the beginning, the system presents
a list of sample matching apartments using a sparse initial profile provided by the user. Thereby,

2PRACMA stands for PRocessing Arguments between Controversially-Minded Agents.
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the user can discover a new feature of interest and assign this feature a new weight. The user
can emphasize the importance of a particular feature by referring to it repeatedly. New profile
information can also be derived automatically when the user expresses his preference with regard
to one of two sample apartments proposed by the Apt Decision agent on request.

When the user is finished examining the sample apartments, he has a profile of apartment
preferences that can be saved to a file. The profile can be used to retrieve matching apartments
from the set provided with the agent, or it can be taken to a human real estate agent as a starting
point for a real-world apartment search. As the user modifies the profile, the system updates the
weights on its representation of the ideal apartment and re-orders the potential matches in the data
set to reflect the new weighting.

2.1.2.5 Applicability and Limitations

The methods described in Section 2.1.2 are well suited for situations in which the decision about
what option (possibly out of many options) to choose is influenced by several (and possibly many)
factors. The impact of the relevant factors can vary, and the methods explicitly (e.g., Letizia)
or implicitly (e.g., PRACMA) determine a preference order among the available options. In the
examples, we have seen how a user is modeled in terms of his interests. Similar to the methods
described in Section 2.1.1, also the methods described in this section do not take future conse-
quences of actions into account. For example, Letizia, although looking ahead in that it carries
out a search in Web space, cannot take into account what the consequences of recommending a
“bad” hyperlink will be for the further course of interaction with the user. Similarly, PRACMA is
only able to reason about what the consequences of an inappropriate question or recommendation
might be once it applies the method of global anticipation feedback, which we will describe in
Section 2.2.5. But even then, PRACMA’s look-ahead is limited to a small number of future steps.

2.1.3 Systems That Use Decision-Theoretic Methods

Decision theory (see, e.g., Russell & Norvig, 2003, Part V, for an introduction) is a branch of
statistics concerning strategies for decision making in non-deterministic systems. Decision theory
combines probability theory and utility theory in that it seeks to find strategies (based on uncer-
tain actions) that maximize the expected value of a utility function measuring the desirability of
possible outcomes. The fundamental idea of decision theory is that an agent is rational if and
only if it chooses the action that yields the highest expected utility, averaged over all the possible
outcomes of the action it chooses (principle of maximal expected utility, MEU). Decision-theoretic
methods are most applicable to problems in which a system (a) has a small number of possible
actions to achieve a given result, and (b) the system’s decision whether to perform an action or not
is a yes-or-no decision (Jameson et al., 2001). In particular, such problems tend to be fine-grained
and each decision represents only a small part of the system’s overall processing, while the overall
impact of many such decisions can be important. We give several examples for the decision-
theoretic approach that come from the Microsoft research labs: the Lumière project, which sets
the stage for the Microsoft Office Assistant, Microsoft’s Presenter for the Powerpoint application,
and Microsoft’s Bayesian Receptionist. Moreover, we will describe the decision-theoretic tutoring
system DT Tutor. The systems reviewed in this section are similar to the READY prototype in that
they all use Bayesian networks or dynamic Bayesian networks to make inferences about the user’s
situation or the state of the interaction of the system with the user.
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2.1.3.1 Bayesian Networks and Influence Diagrams

Pearl (1988) introduces Bayesian networks (BNs)3 as an inference mechanism to draw conclu-
sions from uncertain knowledge. The main mathematical equation underlying the inferences with
Bayesian networks is known as Bayes’ rule4 and describes how to compute the conditional prob-
ability of a proposition B given evidence A:
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� � ����� � reads as “the probability of A given that all we know is B”. What makes Bayes’
rule very useful in practice is that there are many cases where good probability estimates for� � � � � � ��� � , and
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networks superior to working on joint probability distributions of random variables—an approach
which was used before the advantages of using conditional probabilities were recognized. If one
describes the conditional probability of a proposition B given evidence A by
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then one has to maintain a possibly huge joint probability table to compute
� ����� � � . The joint

probability distribution over � Boolean variables is a table with � � entries.
A Bayesian network typically represents uncertain dependencies between random variables,

for example in READY, symptoms and possible causes for these symptoms. A Bayesian network
consists of a directed acyclic graph, whose nodes represent random variables, and a set of condi-
tional probability tables, each of which is associated with one of the nodes in the graph. Each of
the directed links connects exactly one pair of nodes � and � and can be interpreted as “ � has a
direct influence on � ”. The conditional probability table of a node quantifies the influence that its
parents have on the node.

Figure 2.1 shows a simple Bayesian network that was used in an experimental setting within
the READY project—the experiment is described in detail in Section 3.1.1. A subject is supposed
to follow some simple instructions given by a computer system. The system can give instructions
either stepwise or in bundles of two, three, or four instructions. Sometimes the subject is distracted
while executing the instructions. The Bayesian network of Figure 2.1 can be used to make infer-
ences in two directions: (1) to make predictions about the effect of certain circumstances under
which the subject executes instructions; for example, knowing that the instructions are given in
bundles of two and that the subject feels distracted with a certain probability, we can use the BN to
predict how much time the subject will need to execute the instructions and what the probability is
that the subject makes an error; (2) to reason about the causes for observed symptoms; for example,
knowing that the subject needed a certain amount of time to execute some instructions and made
an error, we can use the BN to estimate the probability that the subject was given the instruction
stepwise or bundled and if the subject was distracted while executing the instructions. It is also
possible to instantiate both cause and symptom variables. For example, knowing that the subject
was instructed stepwise, that he needed a certain amount of time to execute the instructions, and
that he made an error, we can estimate the probability that the subject was distracted.

3Bayesian networks are also called belief network, probabilistic network, or causal network.
4The Bayes’ rule is also known as Bayes’ law or Bayes’ theorem.
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Presentation Mode

stepwise
bundled           100%

Number of Steps

two
three            100%
four

Distraction

no           60%
yes         40%

Error?

no    91%
yes    9%

Execution Time

very quick    55%
quick            40%
moderate       4%
slow            0.9%
very slow    0.1%

Figure 2.1: A simple Bayesian network for an experimental setting.
(The BN represents causal dependencies between symptoms—the variables ’Execution Time’ and
’Error?’—and causes—the variables ’Number of Steps’, ’Presentation Mode’, and ’Distraction’. The his-
togram for each variable shows a probability distribution that represents the system’s belief about the value
of that variable.)

The Bayesian network of Figure 2.1 can be extended to an influence diagram (see, e.g., Howard
& Matheson, 1984 or Neapolitan, 1990) and thereby be used by a system to make decisions. Two
steps are necessary: (1) A utility node has to be added, which expresses the systems evaluation
of a particular combination of values of the dependent variables ’Error?’ and ’Execution Time’,
and (2) the node ’Presentation Mode’ has to be turned into a decision node. Step two makes
explicit that the system can freely choose the value of this variable instead of just forming a belief
about it. The system can read out the optimal decision about the presentation mode directly from
the corresponding decision node. The values of the two alternatives (in principle there can be
more than two options) specified in the decision node are determined by evaluating the complete
influence diagram on the basis of the utility declared in the utility node. The resulting influence
diagram is shown in Figure 2.2.

Influence diagrams are also used in the context of two or more decisions in sequence. In this
case, a decision node is added to the influence diagram for each decision. The determination of
a decision influences later decisions—the influence of future decisions on the current decision
cannot be considered.

2.1.3.2 Horvitz et al. (1998): Lumière and Microsoft Office Assistant

Research in the Lumière project provided the basis for the Microsoft Office Assistant in the Mi-
crosoft Office ’97 environment (Horvitz, Breese, Heckerman, Hovel, & Rommelse, 1998). The
assistant’s overall goal is to take automated actions in office applications and thereby optimize the
user’s expected utility of the interaction with these applications. For example, the assistant can
detect if a user applies inefficient command sequences and call his attention to a more effective
alternate sequence or a shortcut for the task. A system taking autonomous actions to assist users
needs to balance the benefits and the costs of such actions. Poor advice can be quite costly to users:
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Utility

Presentation Mode

stepwise                 0
bundled          −7647

Number of Steps

two
three            100%
four

Weight of Error

  1 sec
  5 sec
10 sec
15 sec
20 sec         100%

Distraction

no
yes       100%

Error?

no   82%
yes 18%

Execution Time

quick            56%
moderate       9%
slow            0.9%
very slow    0.1%

very quick    34%

Figure 2.2: Extending the Bayesian network of Figure 2.1 to a simple influence diagram.
(A utility node has been added, and ’Presentation Mode’ has been turned into a decision node. The expected
utility of the bundled presentation of three instructions given DISTRACTION? is -7647. Apart from the
minus sign, the value is essentially the sum of (a) the expected execution time (in msec) and (b) a penalty
that reflects the possibility that the user will make an error. By comparing this utility with that of stepwise
presentation, the system can decide which mode to use. The variable ’Weight of Error’ represents the
amount of additional execution time that would be worth accepting in order to avoid an error.)

They can become distracted by the advice and get annoyed about the system’s performance.
The project explores Bayesian user models to infer a user’s needs from information about his

background, actions, and queries. Using Bayesian networks and influence diagrams, the assistant
can take actions based on probability distributions over the user’s goals.

2.1.3.3 Paek & Horvitz (2000): MS Presenter and MS Bayesian Receptionist

Based on the research in the Lumière project, Paek and Horvitz (2000) propose the task indepen-
dent architecture Quartet for supporting robust continuous spoken dialog. The architecture was
used for Presenter, a prototype system for navigating Microsoft Powerpoint, and the Bayesian Re-
ceptionist, a prototype system for dealing with tasks typically handled by front desk receptionists
at the Microsoft corporate campus.

The idea behind the Quartet architecture is to put much emphasis on the grounding of a dia-
log. Grounding is the process by which dialog partners try to coordinate the presentation of their
utterances to establish, maintain, and confirm mutual understanding (Clark & Brennan, 1991).
In Quartet, the process of grounding is treated as decision making under uncertainty. Again,
key uncertainties are represented with Bayesian networks. Local expected utility and value-of-
information analyses are used to identify actions that maximize mutual understanding. Quartet
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supports grounding on different levels of understanding. The selected grounding strategy is re-
fined using value-of-information analysis to ask questions, make recommendations, and seek out
information in a dialog setting. The system calculates for every observation the expected utility
of the best decision associated with each value the observation can take considering the likelihood
of different values. Once value-of-information analysis recommends a piece of evidence to ob-
serve, the system can explicitly provide that recommendation or phrase a question to solicit that
information.

2.1.3.4 Dynamic Bayesian Networks and Dynamic Decision Networks

Dynamic Bayesian networks (DBNs)5 extend Bayesian networks in that they allow to consider the
changes of random variables over time. Dynamic Bayesian networks have a generic structure:
They are composed of time slices (each of which contains a static Bayesian network) for each
discrete time step up to the current time step � . There are links that connect nodes of consecutive
time slices. Dynamic Bayesian networks are used to calculate the probability distribution for the
state at time � , considering all evidence that was collected in earlier time slices up to time � .

In analogy to the extention of Bayesian networks to influence diagrams, dynamic Bayesian
networks can be extended to dynamic decision networks (DDNs) by adding utility nodes and de-
cision nodes for actions. While dynamic Bayesian networks are used (e.g., also in the READY
prototype) to interpret events that occurred in time steps up to time step � , dynamic decision net-
works allow to calculate a decision for time � that maximizes an agent’s expected utility over the
remaining state sequence. Thus dynamic decision networks provide approximate solutions for
partially observable Markov decision processes (cf. Section 3.1.6). The degree of approximation
depends on the amount of look ahead. While dynamic decision networks cannot be used directly
to compute a policy (a mapping from states or belief states to actions, cf. Section 3.1.4), they can
be used as a means of representation for the dynamics of a partially observable process. Russell &
Norvig, 2003, Part V, Chapters 15.5 and 17.5, give a much more detailed introduction to dynamic
Bayesian networks and dynamic decision networks.

2.1.3.5 Murray et al. (2001): DT Tutor, Selecting Tutorial Discourse Actions

Murray, Van Lehn, and Mostow (2001) describe a decision-theoretic approach for selecting tuto-
rial discourse actions. DT Tutor uses a dynamic decision network to consider the tutor’s objectives
and uncertain beliefs in adapting to and managing the changing tutorial state. The system tries to
predict both the tutor’s and the student’s next actions and their effects on the tutorial state, that is,
the discourse between the tutor and the student and their progress at completing the tutorial tasks.
The tutor might have various objectives at the same time, for example, increasing the student’s
knowledge, helping the student achieve a task, or reassure the student’s affective state.

DT Tutor represents the tutor’s uncertain beliefs by means of Bayesian networks, the changes
of the tutorial state over time by means of dynamic Bayesian network (DBN), respectively. Ex-
tending the DBN with decision nodes representing the tutorial action alternatives and utility nodes
representing the tutor’s preferences among the possible outcomes results in a dynamic decision
network, which is used to determine what tutorial action to take next in order to achieve the high-
est expected utility. In this respect DT Tutor and PRACMA (cf. Section 2.1.2.2) are very similar.

5DBNs are also called dynamic belief networks.
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2.1.3.6 Applicability and Limitations

The decision-theoretic methods described in this section typically represent a part of a system’s
user modeling component, which can be extended to compute the optimal next action to take.
The methods are applicable in situations where probabilities and utilities of possible outcomes of
actions can be quantified—the more accurate the numbers are, the more reliable are the system’s
predictions and decisions. If accurate numbers are available, the system—assuming a correct mod-
eling of the dependencies in the problem at hand—can act in the way that yields the maximum
utility for the user. The identification of the dependencies is a non-trivial problem in many do-
mains. Wittig (2003) describes an approach for the learning of Bayesian networks to overcome
these difficulties in the context of user-adaptive systems.

One general advantage of decision-theoretic methods for decision making is that they fit in
well with decision-theoretic methods for inference under uncertainty, such as Bayesian networks.
Section 2.1.3.1 explained how a Bayesian network can easily be extended to an influence diagram
by adding utility and decision nodes.

The dynamic methods (DBNs and DDNs) can be used to track the state of the user or the state
of the interactions between the system and the user over time. This characteristic allows to consider
the complete history of an interaction for the decision about the next step. As the DT Tutor system
illustrates, dynamic decision network can be used to anticipate the student’s next action in order
to decide on the systems next action. DDNs could in principle be used to plan several steps under
partial observability ahead (as already mentioned in Section 2.1.3.4). However, known algorithms
that work on DDNs are not effective for this purpose (cf. also Russell & Norvig, 2003, Part V,
Chapter 17.5).

2.1.3.7 Other Approaches to Reasoning with Uncertainty

AI has considered other approaches to deal with uncertainty (see, e.g., Russell & Norvig, 2003,
Part V, Chapter 14.7, for a selection). Among these, Dempster-Shafer theory and fuzzy logic
belong to the most successful ones. Dempster-Shafer theory (Dempster, 1968; Shafer, 1976) con-
siders the degree of belief that an agent has about the probability of a proposition. Consider the
following example: For flipping a fair coin, we regard the probability of 0.5 as a reasonable prob-
ability for heads. For flipping a coin that is biased, but we do not know which way, probability
theory would still propose a probability of 0.5 for heads. Dempster-Shafer theory distinguishes
these two cases and thereby makes a difference between uncertainty and ignorance. Rather than
computing the probability of a proposition, it computes the probability that some evidence sup-
ports a proposition. In the context of user-adaptive systems, Dempster-Shafer-theory has been
applied, for example, for the assessment of UNIX expertise (Petrushin & Sinitsa, 1993) and for
the recognition of an email user’s plans (Bauer, 1996).

Decision making with Dempster-Shafer theory often requires initially some ad hoc assump-
tions or decisions on the part of the designer. As indicated by Bauer, 1996 (Section 8) and sum-
marized in comparison with Bayesian networks by Jameson, 1996 (Section 3.1.1.), relying on
weak assumptions for the plan recognition process in the beginning complicates decision making
after the plan recognition process. Using a Bayesian network, each hypothesis is associated with
a single probability, while in Dempster Shafer theory, it happens that there are several different
measures of the extent to which a set of hypotheses is compatible with the evidence.

Fuzzy logic (Zadeh, 1965, 1968) introduces a notion of vagueness. Instead of claiming that
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events are either true or false—like both first-order logic and probability theory do—fuzzy logic
allows events to be “sort of” true. That is, while probability theory is concerned with degree of
belief6, fuzzy logic works on degrees of possibility. Fuzzy logic is based on fuzzy set theory, which
implements classes of data with boundaries that are not sharply defined. A fuzzy subset � of a
set � is characterized by assigning to each element � of � the degree of membership of � in �
(e.g., � is a group of people, � the fuzzy set of old people in � ). If � is a set of propositions,
then its elements may be assigned their degree of truth, which may be ’absolutely true’, ’absolutely
false’, or some intermediate truth degree: Some proposition may be more true than some other, for
example, in the case of a vague (imprecise) proposition like ’this person is old’. In the context of
user-adaptive systems, fuzzy logic has been applied, for example, in the user modeling component
Knome of the Unix Consultant system (see, e.g., Chin, 1989), and in the Sales Assistant (Popp &
L ödel, 1996) to predict how a user will evaluate a particular product.

Popp and L ödel (1996) illustrate how a sort of multi-attribute utility theory can be realized
with fuzzy logic. The fuzzy membership functions that they use are similar to value functions
within MAUT. Even if they do not explicitly arrive at decisions with these rules, one could do so
by treating the recommendations to the user as decisions made by the system.

We refer to Jameson (1996) for a broader survey of user modeling techniques. The survey
includes systems that use Dempster-Shafer theory or fuzzy logic, discusses several aspects of the
usability of such techniques for user modeling, and compares the two techniques to Bayesian
networks.

2.2 Planning in User-Adaptive Systems

The systems described in Section 2.1 have a great deal to offer in situations where it is sufficient to
look a single step ahead. Some applications do not necessarily require a look ahead, for example,
email assistance as provided by Maxims or recommendations for rental real estates as provided by
Apt Decision. Other applications can undoubtedly benefit from looking ahead, as the following
section will show. In such applications, the quality of the system behavior can typically not be
determined locally (in terms of the quality of the next decision to take) but has to be optimized
globally (in terms of the result of a whole sequence of decisions). The optimization of a sequence
of decisions becomes particularly complex if the results of the actions taken cannot be predicted
with certainty. This uncertainty almost always evolves if a system tries to take the user’s actions
into account. In this section we will survey both systems that assume complete determinism in
the results of actions and systems that face up to the uncertainty in the results of actions taken
by the user. Moreover, we consider systems that—at runtime—assume perfect knowledge about
the state of the interaction and eventually systems that try to deal with partial observability of the
interaction state.

6Probability theory is the mathematical study of probability. Two crucial concepts in the theory of probability are
the random variable and the probability distribution of a random variable. Some statisticians will assign probabilities
only to events that they think of as random, according to their relative frequencies of occurrence, or to subsets of
populations as proportions of the whole; those are frequentists. Others assign probabilities to propositions that are
uncertain according either to subjective degrees of belief in their truth, or to logically justifiable degrees of belief
in their truth. Such persons are Bayesians. A Bayesian may assign a probability to the proposition that there was
life on Mars a billion years ago, since that is uncertain; a frequentist would not assign such a probability, since it
is not a random event that has a long-run relative frequency of occurrence. From Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Probability_theory.

http://en.wikipedia.org/wiki/Probability_theory
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2.2.1 Plan Libraries

The interaction of a system (e.g., an assistant or a tutor) with different users often follows the
same patterns over and over again. These patterns can be represented as raw plans and collected
in libraries. Such off-the-shelf plans (sometimes called scripts, recipes, or the like) specify the
raw structure of an interaction and usually have to be instantiated for a particular application or
a particular session. We review the use of plan libraries in this section because in the broadest
sense the selection of a plan from a library (i.e., in particular the reuse and possibly the adapta-
tion of a previously computed plan) can be considered as an effective approach to planning for
some domains. The applicability of plan libraries is very limited because of the inflexibility and
insufficient scalability of the approach. Plan scripts were also used in READY (in particular dur-
ing the first and second phase of the collaborative research program). However, scripts became
less important in READY as many planning problems in the context of READY are meanwhile
solved with decision-theoretic planning. We describe two approaches that use (not exclusively,
though) plan libraries: (1) The use of plan libraries in the PHI system illustrates how the effort for
repeatedly generating similar plans can be reduced by modifying already existing plans; (2) the
COLLAGEN architecture is the general basis for a collection of applications that use recipes to
interpret the user’s actions and react to them.

2.2.1.1 Bauer et al. (1993): PHI, a Logic-Based Tool for Intelligent Help Systems

Bauer, Biundo, Dengler, Koehler, and Paul (1993) combine plan generation and plan recognition
in their logic based tool PHI to supply help systems with services like semantic plan completion.
They illustrate the tool with examples taken from the UNIX mail domain. The plan generation
component can either plan from first principles or reuse already existing plans (i.e., do planning
from second principles—see K öhler, 1994, and Koehler, 1996). The plans provided serve as plan
hypothesis in the plan recognition process. While observing the user’s actions step by step, the
plan recognizer tries to confirm the plan hypotheses by proving that the action sequence observed
up to the time being is an admissible instance of the current plan hypothesis.

PHI is based on the logical language for planning (LLP). The plan generation is done deduc-
tively (using a sequent calculus for LLP) and the plan recognition is done abductively.

The reuse of the plans is a particularly interesting aspect of the PHI system. The planner tries
to reuse plans to avoid the repetition of previous planning effort. It thereby searches for a plan in
the library, which can be reused for the planning problem at hand with some modifications. The
plan is repeatedly modified until the formal proof of the current plan succeeds (i.e., at least the
preconditions required by the plan hold in the current situation and at most the goals achieved by
the plan are required as current goals). However, the effort for modifying an existing plan can in
some cases be enormous.

2.2.1.2 Rich & Sidner (1998): COLLAGEN, a Collaborative Agent Middleware

COLLAGEN7 (Rich & Sidner, 1998; Rich, Sidner, & Lesh, 2001) is a middleware for building
interface agents based on collaborative discourse theory (Lochbaum, 1998). COLLAGEN is used
as the basis for intelligent tutoring systems (such as Paco, a simulation-based training system for
operating gas turbine engines that propel naval ships described by Rickel, Lesh, Rich, Sidner, &

7COLLAGEN stands for COLLaborative AGENt.
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Gertner, 2002) and assistance systems (such as Triton, an air travel planning assistant described
by Davies et al., 2001; or the COLLAGEN Email Assistant described by Lesh, Rich, & Sidner,
1999). COLLAGEN uses the generic recipes specified by the system developer to interpret the
user’s actions and decompose the user’s goals into subgoals.

Rickel et al. (2002) describe how Paco uses straightforward discourse generation rules. Paco
represents the procedures it will teach using COLLAGEN’s declarative language for domain-
specific procedural knowledge. This knowledge serves as a model of how domain tasks should be
performed. Each task is associated with one or more recipes (i.e., procedures for performing the
task). Each recipe consists of several elements drawn from a relatively standard plan representa-
tion. First, it includes a set of steps, each of which is either a primitive action (e.g., press a button)
or a composite action (i.e., a subtask). Composite actions give tasks a hierarchical structure. Sec-
ond, there may be ordering constraints among the steps that define a partial order over them. Third,
a task and its steps can have parameters, and a recipe can specify constraints (bindings) among the
parameters of a task and its steps. Finally, steps can have preconditions (to allow COLLAGEN to
determine whether a step can be performed in the current state) and postconditions (to determine
whether the effects of a step have been achieved).

2.2.2 Planning With Deterministic Actions

The classical AI planning paradigm8 is strongly influenced by systems like GPS, the General
Problem Solver (Newell & Simon, 1963), and STRIPS, the Stanford Research Institute Problem
Solver (Fikes & Nilsson, 1971).

STRIPS has established a restricted language to describe states and operators, which is still
used by many deterministic planners today. States are represented by conjunctions of function-free
ground literals, that is, predicates applied to constant symbols, possibly negated. Many planning
systems adopt the convention that if a state description does not mention a given positive literal
then the literal can be assumed to be false (closed world assumption). STRIPS operators consist
of three components: (1) the name or description of the action, (2) a list of preconditions that have
to hold for an action to be applicable, and (3) the effects of the operator in terms of an add list and
a delete list. The basic idea of STRIPS planning is to find a sequence of actions (applications of
operators) to turn the initial state representation to a goal state representation.

There exist several extensions of STRIPS, for example, ABSTRIPS (Sacerdoti., 1974), the
first hierarchical planning system. Hierarchical task net (HTN) planning is addressed in more
detail by Sacerdoti (1977). Some of the most popular planners for deterministic actions include
Prodigy (Veloso et al., 1995) and UCPOP (Penberthy & Weld, 1992).

Some planning approaches with deterministic actions are based on a special data structure
called plan graph. A plan graph allows to give better heuristic estimates for the exploration of
the state space. IPP (Koehler, 1998) is a planning approach based on Graphplan (Blum & Furst,
1997), which explicitly takes resources into account. It assumes that actions consume or pro-
duce resources and thereby is able to guarantee that a plan is compliant with existing resource
limitations.

It is beyond the scope of this thesis to mention more than just some of the most important plan-
ning approaches developed during the last four decades. A comprehensive survey of the complete
field of automated planning is given, for example, by Ghallab, Nau, and Traverso (2004).

8We use the terms planning with deterministic actions and classical planning synonymously in this thesis.
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This section reviews systems that adopt one of the planning approaches within the classical
AI planning paradigm. They all use some STRIPS-like representation (preconditions and effects)
of the planning operators. We consider two examples, Extended TEXPLAN and WIP/PPP, for
plan-based approaches to generate multimedia explanations and presentations (similar approaches
for the generation of pure textual explanations are described by Moore & Paris, 1993, and Cawsey,
1993), a plan-based elevator controller by Koehler and Schuster (2000), and Writer’s Aid, a
writer’s collaborative assistant.

2.2.2.1 Maybury (1991): Extended TEXPLAN, Planning Multimedia Explanations

Maybury (1991) describes an extension of the text planning system TEXPLAN9 for the plan-based
generation of multimedia explanations of route descriptions. The system can answer queries like
“Where is city A?” or “How do I get from A to B?”. Extended TEXPLAN is a hierarchical planner
working on plan operators that describe communicative acts. It focuses on the design of dynamic,
narrated animations of routes over an object-oriented cartographic information system. Thereby,
higher level rhetorical (media-independent) actions (such as narrate, explain, argue, compare, and
so forth) can be composed of one another or of more primitive speech acts. Similarly multimedia
communication can be composed of, for example, linguistic, graphical, or physical (gestures) acts
that, appropriately coordinated, can perform a communicative goal. The plan operators defining
the communicative acts are encoded in an extension of first order predicate calculus.

2.2.2.2 Wahlster et al. (1993): WIP, a Multimodal Presentation System

The multimodal presentation system WIP10 (Wahlster, André, Finkler, Profitlich, & Rist, 1993)
allows the generation of alternate presentations of the same content taking into account various
contextual factors. WIP is a highly adaptive interface since all of its output is generated on the
fly and customized for the intended target audience and situation. All presentation decisions are
postponed until runtime. WIP does not use any predesigned texts or graphics, that is, each pre-
sentation is designed from scratch by reasoning from first principles. The system was tested in
different application domains like generating illustrated explanations and instructions on using an
espresso machine, assembling a lawn-mower, and maintaining a modem. A basic principle un-
derlying the WIP model is that the various constituents of a multimodal presentation should be
generated from a common representation of what is to be conveyed. The system coordinates out-
put in different modes, enforcing a consistent, harmonious, and esthetic integration of the output’s
multimodal constituents. WIP plans a multimodal presentation incrementally to be able to respond
to unexpected events promptly. This means that many elements of the presentation are determined
not long before they are actually output (cf. Section 2.2.2.3).

In the WIP system, content and mode selection are interleaved by the use of a uniform planning
mechanism. Presentation planning and content realization are performed by separate components.
This modularization enables parallel processing, but requires the communication between single
components. WIP’s planning module (RAT11) is implemented as an extension of the terminologi-
cal logic KRIS12 (Baader & Hollunder, 1991) to combine reasoning about concepts and instances

9TEXPLAN stands for Textual EXplanation PLANner.
10WIP stands for Wissensbasierte Informationspr äsentation [knowledge based information presentation].
11RAT stands for Representation of Actions in Terminological Logics.
12KRIS stands for Knowledge Representation and Inference System.
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of the domain as well as actions, plans, and relations between them. In contrast to the system
developed in the follow-up project PPP, WIP does not allow for much interactivity. We come back
to the WIP system in Section 4.1.1.1 in the context of external assistance systems for technical
devices.

2.2.2.3 André et al. (1996): PPP, the Personalized Plan-Based Presenter

PPP, the Personalized Plan-Based Presenter (André, M üller, & Rist, 1996), generates multimedia
presentations that are presented by a life-like character, the so-called PPP Persona. Similar to
WIP, PPP can be used for the automated generation of instructions for technical devices or for the
presentation of predesigned material retrieved from the web. The PPP Persona shows, explains,
and verbally comments textual and graphical output on a window-based interface, and it can use
a pointing stick to refer to graphical objects or textual information on the display. It responds to
follow-up questions concerning the domain as well as to meta comments on the act of presentation.

Using a life-like character requires temporal coordination of different media. The principles
that underly coherent text-picture combinations in the PPP system are based on (a) the generaliza-
tion of speech act theory to the broader context of communication with multiple media, and (b)
the extension of rhetorical structure theory to capture relations that occur not only between pre-
sentation parts realized within a particular medium but also between parts conveyed by different
media.

When designing a presentation, PPP employs PrePlan, a presentation planner based on the
work of André (1995), to build up a temporal constraint network. The temporal constraint net-
work is checked for consistency by computing the numeric ranges on each interval endpoint, the
difference endpoints, and all so-called Allen relationships13 between each pair of intervals (cf.
Rist, André, & M üller, 1997). Then, a partial schedule is constructed by resolving all disjoint
temporal relationships between intervals and computing a total temporal order. Since the temporal
behavior of presentation acts may be unpredictable at design time, the schedule is refined at run-
time by adding new metric constraints to the constraint network. This behavior could with some
respect also be considered as interleaving planning and execution (cf. Section 2.2.3).

2.2.2.4 Küpper & Kobsa (1999, 2001): User Tailored Plan Generation and Presentation

K üpper and Kobsa (1999, 2001) regard the output of an advice-giving system as a plan to be
executed by the user. They present an approach for advice-giving in online help and assistance
systems employing several off-the-shelf tools in a two-stage process: (1) The plan generation pro-
cess (K üpper & Kobsa, 1999) uses the partial order planner UCPOP (Penberthy & Weld, 1992)
to generate plans that take the capabilities of the users into account. The underlying user model
specifying the user’s capabilities are represented with the user modeling shell BGP-MS (Kobsa &
Pohl, 1995). (2) The plan presentation process (K üpper & Kobsa, 2001) determines what knowl-
edge must be provided to ascertain that the user understands the plan and is able to perform it.
Unexpected problems during plan execution may involve replanning (i.e., the plan generation pro-
cess and the plan presentation process are interleaved). Two peculiarities of the approach are: (a)
It provides explanations for the plan steps, and (b) the plan generation process can be biased such
that it prefers plans that contain as little information unfamiliar to the user as possible.

13Allen (1983) introduces an interval-based temporal logic together with a computationally effective reasoning algo-
rithm based on constraint propagation.
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2.2.2.5 Köhler & Schuster (2000): Elevator Control as a Planning Problem

Koehler and Schuster (2000) have developed a plan-based elevator controller that serves as a basis
for the elevator control software in Schindler elevators. The plan-based approach allows for new
services, such as access restrictions, VIP service, nonstop travel, and the like. The system presup-
poses a so-called destination control, that is, passengers input their destination before they enter
the elevator. After input of the destination, the elevator control system selects an elevator for the
transport of the passenger—it is assumed that more than one elevator is available. The selected
elevator meets all requirements (i.e., it cares for all demanded services) and offers the fastest and
most comfortable ride. Passengers with identical destinations can be grouped together and can
thereby reach their destination faster and more comfortable than otherwise. The system uses a
domain-independent planning approach based on the PDDL14 planning formalism (Ghallab et al.,
1998).

2.2.2.6 Baus et al. (2002): REAL, a Resource-Adaptive Pedestrian Navigation System

Baus, Kr üger, and Wahlster (2002) describe a resource-adaptive mobile pedestrian navigation sys-
tem developed in the READY partner project REAL. The system applies different technologies to
detect the user’s position (e.g., GPS or GSM/UMTS for outdoor positioning, infrared or bluetooth
for indoor positioning) and adapts the multimodal presentation of route descriptions and naviga-
tion recommendations according to the detected limited technical and—if provided15—cognitive
resources. The REAL system combines presentations on a stationary information kiosk with out-
put on mobile devices like PDAs or glasses with clip-on-display. Forms of presentation range from
static and dynamic sketch-like graphics to birds-eye or user-perspective walk-throughs.

REAL uses the presentation planner PrePlan (André, 1995), that was also the basis for plan-
ning techniques applied in the PPP project (cf. Section 2.2.2.3). The main idea is to decompose a
goal until no others but primitive actions (simple presentation steps) remain to be executed.

For the generation of adaptive route recommendations, REAL also uses the method described
by Bohnenberger and Jameson (2001). Moreover, Bohnenberger and Kr üger (2001) describe an
approach that allows to combine predefined routes with decision-theoretic planning. Providing a
predefined route can be useful for different reasons, for example, to guide a user on a route that
he is already familiar with. The motivation for a combination is that, by the decision-theoretic
planning process, the predefined routes can be augmented to provide good recommendations after
the user has taken a wrong turn. In Section 4.3, we describe this approach in detail.

2.2.2.7 Babaian et al. (2002): Writer’s Aid, a Writer’s Collaborative Assistant

Babaian, Grosz, and Shieber (2002) describe Writer’s Aid, a system that deploys AI planning tech-
niques to help an author identifying and inserting citation keys. The system autonomously gen-
erates and executes plans for finding and caching potentially relevant papers and their associated
bibliographic information from various sources on the Internet. The system identifies the user’s
preferred bibliographies, his own bibtex files, and online scientific collections. While working
with the system, the user, instead of citing a reference explicitly, specifies some search parame-
ters: keywords and an indication whether he wants only the bibliographic data to be retrieved or

14PDDL stands for Planning Domain Definition Language.
15An assessment of the cognitive resources can be provided, for example, by the user modeling component of the

READY prototype.
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also an electronic version of the paper itself. Writer’s Aid processes the requests in a round-robin16

fashion, gradually increasing the maximum complexity level of finding and executing the solution
plan. To implement the gradual increase of solution complexity, Writer’s Aid performs iterative
deepening in hypotheticals, that is, in partial plans that hypothesize on the value of an unknown
proposition (e.g., the location from where a paper might be available) or subgoal (e.g., how to find
out about the location of a paper). By verifying a hypothesis via execution of a sensing action, the
planner eventually is able to either find a plan or determine that the goal is unsatisfiable.

2.2.2.8 Applicability and Limitations

As Extended TEXPLAN and WIP/PPP illustrate, classical planning is a powerful means for sys-
tems to generate well coordinated output, for example, for multimedia presentations. Plans can
be used to provide different presentations for different contexts, but the context has to be speci-
fied right from the beginning in terms of the initial state from which the planner starts. Changing
contexts cannot be considered during the execution of a plan. Moreover, this approach cannot
take the user’s reaction to the presented output into consideration—taking the user’s feedback into
account requires at least some kind of conditional planning (see Section 2.2.4). In unconditional
planning, a plan is used to specify a sequence of actions to be applied in an unobservable envi-
ronment. Therefore, a plan cannot take future events that are initiated by anyone else but the plan
executor into account. For example, the plan-based elevator controller (Section 2.2.2.5) cannot
consider future passengers arriving at the elevator. Recent work in the same domain employing
decision-theoretic planning (Nikovski & Brand, 2003) can take exactly this uncertainty into ac-
count. Writer’s Aid faces a similar problem and uses a trick to deal with the uncertainty in its
environment (intranet and Internet): It repeatedly generates new plans (in a clever way) until one
plan finally succeeds. This approach works for the planning of the system’s interaction with the
sources of the intra- and Internet but would not work for the planning of the interaction with a
human. The user would soon be tired of a system that repeatedly confronts him with plans in
a trial-and-error manner. The next two sections describe methods to deal qualitatively (i.e., not
requiring knowledge of probabilities) with uncertainty about future events.

2.2.3 Interleaving of Planning and Execution

As an alternative to quantitatively modeling uncertainties about a process to be planned, planning
and execution of plan steps can be interleaved (see, e.g., Pryor & Collins, 1996). The idea is
simply to construct a plan that is fully specified up to the information-gathering step, then execute
the plan to that stage, and construct the rest (or the next part) of the plan once the information has
been gathered. Interleaving planning and execution in this way has the advantage that it avoids
planning for contingencies that do not actually arise. However, it loses some of the advantages
of planning in advance, for example, possible interference between actions performed before and
after the information gathering might be missed, meaning that the planner might find a suboptimal
plan. The complexity evolving from the consideration of uncertainty is avoided at the price that
the result of the whole process to be planned cannot be foreseen entirely.

16In the given context, round-robin means: Try a plan with some hypothesized propositions or subgoals; if it does
not succeed, try a more complex plan, possibly with different hypotheses.
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2.2.3.1 Wahlster et al. (2001): SmartKom, a Multimodal Dialog System

Wahlster, Reithinger, and Blocher (2001) and Wahlster (2002) describe the multimodal dialog
system SmartKom, which combines speech, gesture, and mimics input and output. The system
supports situated understanding of possibly imprecise, ambiguous, or partially multimodal input,
and the generation of coordinated, cohesive, and coherent multimodal presentations. SmartKom
merges three user interface paradigms (spoken dialogs, graphical interfaces, and gestural interac-
tions) to achieve multimodal interaction. Like PPP (cf. Section 2.2.2.3), the system employs an
agent visualized as a life-like character to which the user can delegate a task. The agent elicits the
specification of the delegated task in a collaborative dialog and elaborates a plan to achieve the
user’s intentional goal.

There are several subsystems of SmartKom that do planning. The main planner, which is
domain independent, is both responsible for the dialog planning and for the coordination of
SmartKom’s actions, for example, the synchronization of devices. It is a hierarchical approach
in that, during the execution of a plan, it can invoke subordinate planning processes to achieve
subgoals. That is, the user can always interrupt the system during a task. For example, while the
system gives a route description, the user might ask “What is the building over there?”. In such
a case, the system stops the execution of the current plan, generates a plan for the new subgoal,
and after achieving the subgoal continues with the execution of the superordinate plan. In this
sense, the main planner can also be considered as a hierarchical planner. It is based on a STRIPS-
like planning language. A text generator, a presentation generator, and a dynamic help module
employ individual subordinate planners, for example, PrePlan (André, 1995), which has already
been used in PPP (Section 2.2.2.3) and REAL (Section 2.2.2.6) for the generation of (multimodal)
presentations.

2.2.4 Contingency/Conditional Planning

The term contingency (or conditional) plan17 refers to a plan that contains actions that may or
may not actually be executed, depending on the circumstances that hold at the time of the execu-
tion of a plan (Pryor & Collins, 1996). Contingency plans involve alternative courses of action
to be performed in different circumstances. Contingency planners are related to the method of
interleaving planning and action in that they cannot use information about probabilities, but they
can construct plans in circumstances in which no such information is available. They differ from
planners that interleave planning and execution in that contingency plans cover the whole process
to be planned, while interleaving planning and actions gets a system only as far as no additional
information is required. Contingent planners merely decide at runtime which branch of the plan-
ning tree to select. But no branches have to be constructed in addition to those that already exist
as more information becomes available. The PHI system, which we have introduced in Section
2.2.1.1, uses conditional planning.

2.2.5 Global Anticipation Feedback

Ndiaye (1998) introduces the concept of global anticipation feedback (GAF), a strategy that allows
dialog participants to predict the responses of their dialog partners by hypothetically assuming the

17The terms contingency planning and conditional planning are often used synonymously in literature. For an intro-
duction, see, for example, Russell & Norvig, 2003, Part IV, Chapter 12.4.
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partner’s role. The technique was developed to extend the reasoning capabilities of the PRACMA
system (Section 2.1.2.2) and carries on the idea of local anticipation feedback as it is described by
Jameson (1989) in the context of the Imp system. The GAF approach allows the system to take
either roles, buyer or seller. To anticipate several steps of a dialog, the system alternatingly takes
the role of the buyer and the role of the seller in a recursive way. That is, the system takes up the
perspective of the user and in effect invokes itself as a subroutine. The action that its own instance
generates is the predicted response of the user. This way, the system implicitly generates a decision
tree with all potential actions of the system and the reactions of the user in turn (cf. Ndiaye, 1998,
Chapter 7) and propagates utilities from the leave nodes to the root node, resembling the minimax
algorithm used for board games. The method of Ndiaye focuses largely on the aspect of mutual
invocation of the same module taking different roles. The branching factor of the corresponding
decision tree is enormous, such that the look ahead usually has to be restricted to a small number
of steps of steps. Clever strategies for the exploration and evaluation of the decision tree contribute
to a slight relaxation of this problem.

2.2.6 Reinforcement Learning

Reinforcement learning (see, e.g., Kaelbling, Littman, & Moore, 1996, for a survey) is a method
to learn a strategy solving a problem through trial-and-error interactions with a dynamic environ-
ment. It is a way to achieve a desired behavior of a system without explicitly specifying how a
task is to be achieved. The system learns from indirect and delayed rewards to choose the desired
behavior in terms of the sequences of actions that produce the greatest cumulative reward. Re-
inforcement learning and decision-theoretic planning are based on the same mathematical frame-
work. A decision-theoretic planner constructs a policy18 (i.e., a strategy to accomplish a task) on
the basis of a process model specified at design time, while a reinforcement learner learns a policy
via the reinforcement it gets in terms of rewards for the actions that it selects. This means that
reinforcement learning is especially suitable if the interrelations between actions and effects are
not clear at design time—or too complex to be specified manually. On the other hand, a system
using pure reinforcement learning will usually show a poor initial behavior—unless the system is
trained beforehand. Yet, training may require a huge amount of sample cases, depending on the
complexity of the domain. Reinforcement learning has successfully be applied to, for example,
robot control problems, optimization problems in factories, or playing board games. In the context
of user-adaptive systems, we will in the following discuss ELVIS, a spoken dialog front end for
email systems, ATIS, a prototypical air travel information system, and WebWatcher, an assistant
for the World Wide Web.

2.2.6.1 Walker (2000): ELVIS, the Email Voice Interactive System

ELVIS19 is a spoken dialogue system that supports access to email over the phone (Walker, 2000).
ELVIS is able to learn from its experience with other users what information to communicate, as
well as how and when to communicate it. It can select from a set of strategies to summarize email
folders. A summary can consist of a simple statement about the number of messages in different
folders (“You have five new messages.”) or it can provide more details (e.g., sender and subject)
about the messages in a particular folder.

18The technical term policy is defined in Section3.1.4.
19ELVIS stands for EmaiL Voice Interactive System.
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ELVIS applies Q-learning to determine the optimal summarization strategy. Q-learning is a
form of reinforcement learning. It is called a model-free method because it does not require a
model for either learning or action selection (see, e.g., Russell & Norvig, 2003, Part VI, Chapter
21, for an introduction to reinforcement learning; Q-learning is explained in Chapter 21.3). As a
prerequisite for this approach to work, the system needs a performance function for assigning a
utility to the final state of a dialogue. ELVIS uses the PARADISE evaluation framework (Walker,
J., Kamm, & Abella, 1997) for this purpose.

2.2.6.2 Levin et al. (2000): ATIS, an Air Travel Information System

Levin, Pieraccini, and Eckert (2000) describe a stochastic model for dialog systems based on
Markov decision processes. They characterize the problem of finding a dialog strategy as opti-
mization problem and show how to solve this problem by reinforcement learning. Their approach
is illustrated by example dialogs in the context of the air travel information system ATIS. The
system’s goal is to steer the dialog into a direction such that the user’s query is constrained in a
way that a reasonable amount of appropriate flights can be fetched from the airline database in the
end. Levin et al. (2000) show that a system which starts without any initial knowledge eventually
converges to a very reasonable dialog strategy. Yet, convergence can already take a large amount
of training cases for strategies to accomplish rather simple tasks.

2.2.6.3 Armstrong et al. (1995): WebWatcher, a Tour Guide for the Web

WebWatcher (Armstrong, Freitag, Joachims, & Mitchell, 1995) is a tour guide software agent
for assisting users browsing the world wide web. WebWatcher accompanies users from page to
page and recommends hyperlinks that it expects to be of interest for the user (cf. Letizia, Section
2.1.2.3). WebWatcher gains experience from the interaction with its users. It can learn that two
concepts are related to each other even though they share no words in common and might be
connected only by a sequence of hyperlinks.

WebWatcher’s task is to recommend an appropriate hyperlink given an interest (which the
user describes in terms of keywords at the beginning of each session) and a Web page. The quality
of a hyperlink is interpreted as the probability that a user will select this link given the current
page and the user’s interest. WebWatcher combines two approaches (see also Joachims, Freitag,
& Mitchell, 1996, 1997) to learn the quality of a hyperlink: (1) It uses previous tours (of other
users) to augment the internal representation of the links contained in a page with several keyword
lists that relate to possible interests; the link quality for each hyperlink is estimated to be the
average similarity of the � (usually 5) highest ranked keyword sets associated with the link; a
hyperlink is suggested if its quality exceeds a threshold; for each page, up to three hyperlinks can
be recommended. (2) It tries to find tours through the web that maximize the amount of relevant
information over the complete trajectory. In general, a user can select a hyperlink recommended
or not. Each selection of a hyperlink is used as a training example for learning to improve future
advice. Learning is accomplished by annotating each hyperlink with the interests (keyword lists)
of the users who took this hyperlink on tours with positive feedback. Thus, whenever a user
follows a hyperlink on a successful tour, the description of this link is augmented with the keyword
list the user typed in at the beginning of the tour. The initial description of a link is the underlined
text.
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2.2.6.4 Applicability and Limitations

Reinforcement learning is a comfortable approach to learn strategies (policies) for sequential de-
cision processes that are inaccessible or too complex to be modeled by hand. The major drawback
of the approach is the necessity of a preparatory training phase before a system can be used in
practice. This training phase can be—dependant on the size of the domain—extensive and time-
consuming, as indicated in the context of the ATIS system (Section 2.2.6.2). Some domains require
systems that can hardly be trained other that in operation with “real” users—users that actually pre-
fer to benefit from the system and not vice versa. In some domains, for example, recommender
systems for the World Wide Web (cf. Section 2.2.7.1), it would be completely unacceptable to
train the system with real users.

As the examples reviewed in this section suggest, reinforcement learning is nevertheless use-
ful for user-adaptive systems. In some domains, a large amount of training examples can easily
be acquired or is already available, for example, in terms of logs of the system’s earlier interac-
tions with the current or with other users. Sometimes, the system can learn unnoticedly during
interactions with the user. For example, in domains where the user might just ignore poor initial
recommendations, while he gets to appreciate the recommendations as they improve over time. In
such a case, it is important that the user is not dependent on the system’s recommendations. Or
more general, that the user is always in control, that is, that he can choose if he makes use of what
the system offers to him or not.

2.2.7 Decision-Theoretic Planning

Decision-theoretic planning is recognized as an attractive extension to the classical AI planning
paradigm. It found its way into AI through applications in robot control. By its mathematical
foundation, decision-theoretic planning provides a neat approach to deal precisely with the uncer-
tainties of a domain. The solution to a decision-theoretic planning problem is a policy (a mapping
from states to actions, cf. Section 3.1.4). There are two classes of decision-theoretic planning
problems: fully observable Markov decision problems, in which only the uncertainties about the
results of actions are considered, and partially observable Markov decision problems, which ad-
ditionally take uncertainty about the current state into account. We give a detailed introduction to
the formal framework of Markov decision processes in Chapter 3. User-adaptive systems that use
decision-theoretic planning are still rare. Due to the close cooperation with the READY project,
the decision-theoretic planning methods described in this thesis have also been applied in the
REAL project for the generation of adaptive route recommendations. Other successful applica-
tions of decision-theoretic planning are the MDP-based recommender system for the Mitos book
store and the spoken dialog front end of the nursebot Florence Nightingale.

2.2.7.1 Brafman et al. (2003): MDP-Based Recommender System for the Mitos Book Store

Brafman, Heckerman, and Shani (2003) introduce an MDP-based recommender system that is
used in the Mitos online book store. To the best of our knowledge, it is the first commercially
used recommender system based on decision-theoretic planning. Standard reinforcement-learning
techniques are inadequate for the use in online recommender systems because a period of random
recommendation during training is unacceptable for a commercial site. Therefore, historical data
describing user behavior is exploited to learn a stochastic model, which forms the basis for the ini-
tialization of the MDP. The stochastic model provides the probability that the user will purchase a
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particular item given his sequence of past purchases. The states of the MDP are composed of a k-
tuple specifying the items purchased so far. The system’s actions correspond to a recommendation
of an item. After each recommendation, the user can (1) accept the recommendation and purchase
the recommended item, (2) select some non-recommended item, or (3) select nothing. A recom-
mendation increases the probability that a user will buy an item (see also Brafman, Heckerman, &
Shani, 2004, for a more detailed description of the approach).

The optimal policy takes the likelihood of a recommendation to be accepted by the user into ac-
count. Using decision-theoretic planning allows the system to maximize the expected utility of its
recommendations (e.g., the system can recommend a product that has a slightly lower probability
of being bought, but generates higher profits) and take future consequences of its recommenda-
tions into account (e.g., the system suggests an item whose immediate reward is lower, but leads
to more likely or more profitable rewards in the future). The approach includes several approxi-
mation techniques to cope with the huge size of the state space. It exploits the special structure
inherent to the domain in several ways and thereby prunes the state-space such that a standard
algorithm (policy iteration) can be employed as a tractable solution method.

2.2.7.2 Roy et al. (2000): Florence Nightingale, Spoken Dialog Management

Roy, Pineau, and Thrun (2000) describe a spoken dialog manager for the nursebot Florence
Nightingale (Flo). Flo’s job is to assist elderly people with their daily tasks. Users can inquire,
for example, about the time, the patient’s medication schedule, or what is on different TV stations,
and they can select from a range of robot motion commands (e.g., move to the kitchen). The sys-
tem uses POMDPs (see Section 3.1.6) to generate dialog strategies. Thereby, the state represents
the user’s intentions (rather than the system state), which are only partially observable from the
perspective of the system. The system can make inferences about the user’s intentions only from
the observations about the user (in this case from the speech input). Flo’s dialog management is
robust with regard to noisy conditions: It adjusts the dialog policy as the quality of speech recog-
nition degrades and makes fewer mistakes if compared to an FOMDP (see Section 3.1) approach
for the same purpose.

The computations for an exact solution of such a real world dialog scenario modeled as
POMDP would be computationally intractable. Flo therefore uses an algorithm based on aug-
mented MDPs (Roy & Thrun, 1999), which approximates solutions for POMDP-style problems.
Augmented MDPs base on the assumptions that the most likely state and the entropy of the belief
state together approximate a sufficient statistics for the actual belief state.

2.3 Discussion

In this chapter, we reviewed important approaches for decision making in user-adaptive systems
and a variety of systems to exemplify these approaches. We distinguished two main classes of
systems: systems that make individual decisions and systems that use some kind of planning for
the interaction with the user.

Among the systems that confine themselves to making individual decisions, we started with
those that observe and imitate the user. This approach is well described by the term “looking
the user over the shoulder”, which implies that systems following this approach usually have the
ability to learn from examples and to improve over time. The ability to learn, which is a very
desirable property in principle, is connected with the problem that a system’s initial performance



40 CHAPTER 2. DECISION MAKING AND PLANNING IN USER-ADAPTIVE SYSTEMS

can be poor if the system learns its behavior from scratch. Additional competence acquisition
schemes, as described for Maxims, can be employed to overcome this problem. The purpose of
looking the user over the shoulder is usually that the system tries to automate certain tasks. These
tasks are often not very difficult but rather tedious to the user because of their monotonous nature.
The approach allows to predict the user’s next action and adopt it as the system’s recommendation.
Scalability is usually not a critical aspect of systems that imitate the user.

Next, we considered systems that rate alternatives in terms of their relevance with respect to
the user’s needs. These systems (explicitely or implicitly) determine a preference order among the
available options and are dedicated to make recommendations or provide some sort of guidance.
As Letizia illustrates, a preference order can also be learned solely on the basis of examples. A
neat mathematical framework to model a user’s preferences provides the multi-attribute utility
theory.

Decision-theoretic methods for making individual decisions are based on the principle of max-
imal expected utility (MEU). Making a decision according to the MEU principle is considered
rational. The basic tools for making rational decisions are Bayesian networks, influence dia-
grams, dynamic Bayesian networks, and dynamic decision diagrams. Besides READY, several
projects in the Microsoft Decision Theory & Adaptive Systems Group (DTAS)20—starting with
the Lumière project—and the DT Tutor system have used these methods for the purposes of gen-
erally assisting the user, automating tasks, giving recommendations, grounding21 , and tutoring.
Decision-theoretic methods are most applicable for selecting an action from a small number of
options (e.g., selecting a form of output presentation or selecting the next tutorial task) and under
the condition that the decision whether to perform an action is a yes-no-decision (e.g., offering
to automate a task or phrasing a question to solicit some information). The ability to learn is
not inherent to decision-theoretic methods, but an automatic fine tuning of probabilities can be
incorporated by processing the relative frequencies of the outcomes of relevant uncertain actions.
Scalability can be a problem in the context of dynamic Bayesian networks and dynamic decision
networks, respectively. There exist approximative and exact methods to overcome the complexity
problems (see, e.g., Kjærulff, 1995; Boyen & Koller, 1998; Brandherm, 2003).

Systems that make only individual decision do not question what the influence of the current
decision on forthcoming situations is. Taking a decision’s future consequences into account re-
quires optimizing the result of a sequence of actions or—considering that the results of individual
actions can be uncertain—optimizing the result of all possible sequences of actions. We reviewed
examples of different planning approaches used in user-adaptive systems.

As a first approach to decide about complete sequences of actions, we considered plan li-
braries. This approach is often too static, inflexible, and problematic with regard to scalability. In
particular, the reuse of a plan can require much effort to adapt an old plan to a new situation, such
that planning from scratch is sometimes faster. Nevertheless, the approach has successfully been
applied in assistance systems and tutoring systems. Its main advantage is the potential reuse of
plans in domains where reuse works effectively.

There exist a lot of user-adaptive systems that employ planning under the assumptions that the
considered action are deterministic. Such planning was applied, for example, for the presentation
of route descriptions or operating instructions. Among others, several projects in the Intelligent

20Information on the Microsoft Decision Theory & Adaptive Systems Group can be found at
http://research.microsoft.com/research/dtg/default.asp.

21Grounding: the process of establishing, maintaining, and confirming mutual understanding.

http://research.microsoft.com/research/dtg/default.asp
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User Interface Lab at DFKI22 have used planners for deterministic actions. Various techniques
have been developed for planning with deterministic actions. The hierarchical nature of many
planning problems yielded hierarchical planners, as for example used in TEXPLAN or SmartKom.
A common problem of planning with deterministic actions is: What can the system do if a plan
fails? In this case, a system can either try to repair the current plan or to construct a new plan from
scratch. Both can be time-consuming and is therefore not practical for domains in which a quick
response is important and expected from a system. Moreover, the need to repair a plan or to do
replanning already implies that the original plan did not account for all relevant eventualities, that
is, some aspects about the process to be planned have not been considered in the original plan. The
resulting successive execution of the two plans can be suboptimal. In fact, not all eventualities can
be foreseen. However, appropriate approaches exist to consider those that can be foreseen.

A simple approach to deal with information that becomes available only during the execution
of a plan is interleaving planning and execution, as for example the SmartKom system does. Un-
fortunately, the approach has the same major drawback as replanning or repairing a plan: The
process to be planned is possibly not planned ahead to the extend that it could be in principle. Fu-
ture consequences of decisions can be considered only up to the next information gathering step.
The overall result can be suboptimal.

Conditional planning allows to plan a process in which some information becomes available
only during the execution of a plan to the very end. Conditional plans are not just sequences
of actions, but they have a tree structure: The branch of the tree is selected according to the
information that becomes available at the corresponding plan step. The ability to incorporate
feedback from the user does not yet enable the system to steer the interaction into a favorable
direction for the user. If several options are available (several outcomes of the user’s actions are
possible, respectively), the approach considers all possibilities to be equally probable. Moreover,
the goal of a planning process sometimes consists of several subgoals (e.g., buying several items
from a shopping list), and the achievement of these subgoals might have to be traded off against a
competing goal (e.g., finishing a shopping task as fast as possible). To deal with such problems,
quantitative considerations as expressed by rewards for goals, costs for actions, and probabilities
for the outcomes of actions are indispensable.

The global anticipation feedback approach by Ndiaye (1998) describes a step towards decision-
theoretic planning. The system repeatedly makes individual decisions, alternatingly taking the role
of both the system and the user. However, because of an enormous branching factor of the corre-
sponding decision tree, the scalability of this approach is problematic: It can be used to look ahead
only some but not many steps.

A very promising approach to globally optimize a process with quantitatively known uncer-
tainties is reinforcement learning. We already emphasized its close relation to decision-theoretic
planning by the same underlying mathematical framework. Reinforcement learning has already
successfully been applied in user-adaptive systems. But for complex processes, the training phase
required by a reinforcement learner can be very time-consuming—which is in general not accept-
able for systems that can be trained only by real users. Apart from this restriction, systems using
reinforcement learning have the same advantages that claim to be beneficial for the application of
decision-theoretic planning in user-adaptive systems.

Decision-theoretic planning is an approach on a well-founded mathematical basis that com-

22Information about DFKI, Deutsches Forschungszentrum f ür K ünstliche Intelligenz [German Research Center for
Artificial Intelligence] can be found athttp://www.dfki.de/.

http://www.dfki.de/
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bines probability and utility theory. It allows to take the uncertainty about the outcome of actions
quantitatively into account and to trade off the utility of a goal with the costs for the actions to
achieve the goal. The desirability of a goal can be quantified, and several goals can be considered
in parallel. The MDP-recommender system for the Mitos book store illustrates how decision-
theoretic planning enables a system to take the future consequences of its decisions into account.
The interaction with the user can thereby be steered into a favorable direction. Decision-theoretic
planning also has some drawbacks: It is sometimes difficult to provide probabilities and to come
up with appropriate measures for costs and rewards. Where partially observable Markov decision
processes are involved, it is in particular the scalability problem that restricts the applicability of
the decision-theoretic planning approach. Approximation techniques, as for example described
for Florence Nightingale, allow at least to consider some small problems relevant in practice.

The possible degree of look ahead of a system taking the future consequences of its decisions
into account is important for the quality of its adaptive behavior. Only the DT Tutor system,
Ndiaye’s global anticipation feedback approach, and the systems using reinforcement learning or
decision-theoretic planning look more than a single step of the interaction with the user ahead.
The systems that make individual decisions either predict the user’s next action and adopt it as
recommendation, or they deduce their next recommendation according to the user’s anticipated
interests. As for the systems that use recipes to control the interaction, it is rather the designer of
the recipes that looks ahead. Systems that use planning with deterministic actions or interleave
planning and execution restrict their look ahead to their own actions and do not adequately take
the user’s actions in their decision making into account.

Some of the systems that we reviewed in this chapter are able to give explanations of their
decisions. The systems based on the COLLAGEN architecture can provide static explanations as
far as they are predetermined in corresponding recipes. Letizia and the general approach of Kobsa
and K üpper provide at least rudimental explanations of how they arrive at decisions. The term
explanation was also used in conjunction with Extended TEXPLAN, WIP, and PPP. Note that these
systems indeed explain the generated multimedia contents. But they do not provide explanations of
how they arrive at a decision. The fact that not many systems provide explanations does not mean
that the underlying approaches for decision making do not allow for explanations in principle. The
effort to equip a system with an explanation component can vary widely. Presumably, researchers
who develop a system often simply refrain from taking this effort because the ability to explain
decisions is not in the focus of their research. However, if a system is to be applied in practice, the
ability to explain decisions and to answer metacommunicative questions (e.g., why has the system
given a particular recommendation?) can enhance the users’ acceptance of a system remarkably.
We discuss our approach to provide explanations for decision-theoretically planned decisions in
the context of user-adaptive systems in Section 7.4.

Eventually, scalability is in general a crucial requirement for an approach to be applicable in
practice. Not all of the approaches that we discussed in this chapter scale well. Unfortunately,
this in general applies also for decision-theoretic planning. However, in some realistic domains,
scalability problems can be overcome by approximative methods.

Tables 2.1 and 2.2 compare some general pros and cons of the approaches and systems dis-
cussed in this chapter with the goal-priorized decision-theoretic planning approach for a navigation
assistance scenario, which we will explain in Chapter 5.
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System Domain & Purpose Decision Method FC UC MG RL TI

Maes (1994): Maxims Electronic mail assistance; automation of incoming
email processing

comparison with
memorized situations

– – – – –

Cypher (1991): Eager Repetitive tasks anticipation; task completion and
automation of tasks in the HyperCard environment

programming by example – – – – –

Jameson et al. (1995): PRACMA Dialog system for purchasing a car; recommendations MAUT, preference order (+) + – + +

Lieberman (1995): Letizia WWW browsing assistance; guidance,
recommendations

examples, history,
preference order

– – – (+) –

Shearin and Lieberman (2001):
Apt Decision

Rental real estate recommendations examples, history,
preference order

– – (+) – –

Horvitz et al. (1998): Lumière and
Microsoft Office Assistant

Office applications; automation, assistance BNs, influence diagrams – + – – +

Paek and Horvitz (2000): MS Presenter
and MS Bayesian Receptionist

Office applications; grounding, recommendations DBNs, DDNs – + – – +

Murray et al. (2001): DT Tutor Tutor system; selecting tutorial discourse actions DDNs – + + – +

Rickel et al. (2002): Paco Simulation-based training system; tutoring plan libraries/recipes – – – – +

Davies et al. (2001): Triton Air travel planning assistance plan libraries/recipes – – – – +

Lesh et al. (1999):
COLLAGEN Email Assistant

Email assistance plan libraries/recipes – – – – +

Bauer et al. (1993): PHI Logic-based tool for interactive help in a UNIX mail
system; assistance, anticipation

planning from first and
second principles

– – – – +

Maybury (1991): TEXPLAN Multimedia route explanations; guidance, presentation planning with deterministic
actions

– – – – +

Wahlster et al. (1993): WIP Generating illustrated explanations and instructions;
assistance, presentation

planning with deterministic
actions

– – – – +

Andr é et al. (1996): PPP Multimedia presentations with life-like character;
assistance, presentation

PrePlan, planning with
deterministic actions

– – – – +

Table 2.1: Approaches for decision making in user-adaptive systems—part I.
(The table describes the domain, purpose, and main method of decision making of the systems discussed in this chapter. Moreover, it compares the following
characteristics: FC: Can

�

adequately take the future consequences of its decisions into account? UC: Can

�

take uncertainty about the possible outcome of
actions into account? MG: Can

�

trade off multiple goals? RL: Can

�

adapt to resource limitations? And TI: Is the performance of

�

training-independent?)
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System Domain & Purpose Decision Method FC UC MG RL TI

K üpper and Kobsa (1999, 2001):
Online help systems in general

Advice-giving in online help systems; assistance planning with deterministic
actions

– – – (+) +

Koehler and Schuster (2000):
Elevator control

Plan-based elevator control planning with deterministic
actions

– – – – +

Baus et al. (2002): REAL Adaptive route descriptions; assistance, presentation PrePlan, planning with
deterministic actions

– – – (+) +

Babaian et al. (2002): Writer’s Aid Identifying and inserting citation keys; planning
information retrieval

planning with deterministic
actions

– – – – +

Wahlster et al. (2001): SmartKom Multimodal dialog system; assistance, guidance,
presentation

Interleaving planning and
action, hierarchical
planning

– – – – +

Ndiaye (1998): GAF in PRACMA Sales conversation; anticipation, guidance,
recommendations

global anticipation
feedback

(+) + – + +

Walker (2000): ELVIS Email assistance via phone reinforcement learning + + – – –

Levin et al. (2000): ATIS Air travel information system; information retrieval reinforcement learning + + – – –

Armstrong et al. (1995): WebWatcher WWW browsing assistant; recommendation reinforcement learning + + – – –

Brafman et al. (2003): Mitos Online book recommendation FOMDPs + + – – +

Roy et al. (2000):
Florence Nightingale

Spoken dialog management for robot control augmented MDPs + + – (+) +

Bohnenberger (2004): GPDTP for the
READY Airport Assistant

Airport navigation recommendations goal-priorized DTP + + + + +

Table 2.2: Approaches for decision making in user-adaptive systems—part II.
(The table describes the domain, purpose, and main method of decision making of the systems discussed in this chapter. Moreover, it compares the following
characteristics: FC: Can

�

adequately take the future consequences of its decisions into account? UC: Can

�

take uncertainty about the possible outcome of
actions into account? MG: Can

�

trade off multiple goals? RL: Can
�

adapt to resource limitations? And TI: Is the performance of

�

training-independent?)



3 DECISION-THEORETIC PLANNING

Decision-theoretic planning (DTP) has been noticed as an attractive extension of the classical AI
planning paradigm for sequential decision problems under uncertainty (see, e.g., Boutilier et al.,
1999; Russell & Norvig, 2003; Ghallab et al., 2004). Decision-theoretic planning allows to
determine optimal sequences of actions that have uncertain effects and, if necessary, even if the
system has only incomplete information about the world. In the context of user-adaptive systems,
incomplete information can relate, for example, to the current situation of the user who interacts
with the system.

The key idea of decision-theoretic planning is to represent the planning problem as an opti-
mization problem. Thereby, the planning domain is modeled as a stochastic system, that is, the
uncertain outcomes of an action are represented by nondeterministic state transitions. Reaching a
goal is associated with a reward, and the solution of a decision-theoretic planning problem is a pol-
icy: roughly speaking, a strategy that specifies the optimal action for each possible situation. The
utility function used in decision-theoretic planning can express preferences on the entire execution
path of a policy, rather than just on desired final states.

The problems that can be treated with decision-theoretic planning involve systems whose
dynamics can be modeled as stochastic processes. A stochastic process in the context of user-
adaptive systems is a process in which actions with uncertain results change the state of the inter-
action between a system and its user. In particular, the outcomes of the user’s actions are uncertain
(reflected by several transitions from the current to possible next states). A stochastic process can
be modeled by states and transitions. Each action in the dialog between the system and the user
corresponds to one or several transitions in the stochastic process. Transitions can also correspond
to exogenous events, that is, events that are beyond the system’s control. In Section 1.4, we have
explained different perspectives from which a human-computer interaction process can be con-
sidered. It would not be wrong to regard the user’s actions as exogenous events but, as we have
discussed in Section 1.4, we prefer to view the user’s actions on an equal footing with the system’s
actions in a human-computer interaction process.

In this chapter, we will use a simple abstract human-computer interaction example to explain
the basic elements of Markov decision processes—the main framework for modeling and solving
decision-theoretic planning problems—and to illustrate common methods to solve them.

45
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3.1 Markov Decision Processes

The problem of planning in an accessible, stochastic environment with a known transition model is
called a Markov decision problem1. The stochastic process by which a Markov decision problem
can be solved is called Markov decision process. The term Markov denotes a special property of
the considered stochastic processes: The transition probabilities from any given state depend only
on the state and not on the state history. This property is called the Markov property2 . Both, the
problem and the process are abbreviated as MDP in the literature. Much research on decision-
theoretic planning has explicitly adopted the MDP framework as an underlying model. Markov
decision processes, as mentioned above, assume an accessible environment and are therefore more
precisely called fully observable Markov decision processes (FOMDP3). Planning in an unacces-
sible, stochastic environment, that is, an environment in which the decision maker does not have
complete knowledge about the current world state, requires partially observable Markov decision
processes (POMDP). Methods used for FOMDPs are not directly applicable for POMDPs. We
will see that the problems that we consider in the context of user-adaptive systems can to a great
extent be treated as fully observable Markov decision problems.

We explain the framework of Markov decision problems with a simple, illustrating example
in the context of user-adaptive systems. Thereby, we refer to an experimental setting that captures
important, typical aspects of user-adaptive systems. The corresponding experiment4 was intro-
duced by Jameson, Großmann-Hutter, March, and Rummer (2000) and referred to in different
contexts by researchers in the READY project (e.g., Bohnenberger, 2000; Jameson et al., 2001).

3.1.1 Experiment

Jameson et al. (2000) wanted to find out how the performance of a user following spoken instruc-
tions of an assistance system (e.g., a computer support hot-line) varies with different instruction
strategies. They set up an abstract environment that captures some typical characteristics of a
user’s interaction with a computer system. The subject had to handle a primary and a secondary
task. The primary task consisted of executing sequences of simple spoken instructions. The sec-
ondary task was to observe a lamp and press the space bar whenever the lamp repeatedly flashes
in the same color during the experiment. The secondary task was supposed to distract the subject
while he tried to handle the primary task and expected to increase the mismatches rate.

The question to be answered by this experiment was: Should the system present the instruc-
tions rather (a) in a stepwise manner, that is, allowing the subject to execute each instruction in the
sequence before hearing the next one, or (b) in a bundled manner, that is, the subject starts exe-
cuting the first instruction only after the system has given the complete sequence of instructions.
Both the stepwise and the bundled presentation have advantages and disadvantages. Giving the
instructions stepwise requires the subject to confirm each execution of an instruction (pressing an
okay button), which requires a certain amount of time and effort on the subject’s part. The bundled
presentation requires the subject to store several instructions in his working memory, which may
cause a higher error rate for executing the instructions. This should in particular be the case if

1Andrei Andreyevich Markov (1856-1922) was a Russian mathematician at Saint Petersburg University, where he
began as a professor in 1886. His work launched the theory of stochastic processes.

2One can also say: “A stochastic process is Markov” or “The Markov assumption holds for a stochastic process”.
3We use the term FOMDP only if we want to emphasize the full observability of the corresponding process.
4We sometimes refer to this experiment as the instructions experiment.
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the subject is distracted by a secondary task. Figure 3.1 summarizes the error rates and execu-
tion times for different bundle sizes and situations with and without distraction by the secondary
task. The planning of the instruction strategy is supposed to yield a trade-off between minimizing
the error rate and minimizing the time needed to complete an instruction sequence (cf. the ATM
example explained in Section 1.2).

� � ��

���

���

���

���

	��


���
����������������������� !�!� �"���

#%$$
& $'
(%)
*$(%+
, $ -
. ,'
/01
2

34����576 �85:9��;���<�����<=��!� �"�> �<��9�?@� �<�A9��B���<�����C=��D� �"�

EF EF

EF

GH

GH

GH

IJ IJ IJKL KL KL
M N OP�Q R

N�Q�P

OSQ O

T�Q U

U�Q V

WYX�Z\[�]�^`_�aYbdc8egfD^hX�iDfjb _Scke

l mno p
qr s
tqr u
nr tv
wr u
x w y
q xz
{| z
no}

~� ��
��b fD�8_�Xkf4e�]�iD_�c�����^���f���eD���b fD��e�]�iD_�c�����^��\f��8e!�

��

��

��

��

��
��

��

��

��

��

��

��

Figure 3.1: Error rates and execution times in the experimental setting.
(The diagram on the left hand side shows that the subjects made remarkably more mistakes with increasing
bundle size, especially when they were distracted by the secondary task. The error rate was generally low
when instructions were presented stepwise. The diagram on the right hand side indicates the tendency that
subjects needed more time for the execution when the instructions were presented stepwise.)

The display for the experiment (Figure 3.2) shows a lamp (used for the secondary task) on top
of the screen and a panel for the primary task below it. The panel for the primary task is divided
into six regions, each of which is labeled with a letter. There are four buttons numbered 1 to 4
in each of the regions. The subject was given a sequence of simple instructions and was asked
to execute correctly as many of them as possible. The instructions were simple and abstract, for
example, set B to 2, set J to 4 (in the following abbreviated as B2, J4). The subject then had to click
with the mouse to button 2 in region B and to button 4 in region J. The probability that the subject
mismatches instructions was determined for sequences of different lengths. For example, if the
subject was instructed to set B2 J4 V1 X3, the probability that one or more mismatches occurred
was higher than if he was first instructed to set B2, then J4, then V1, and eventually X3. Moreover,
the error probability was in general higher if the subject was distracted by the secondary task than
if he was able focus on the primary task without distraction. Qualitatively, these results are not
surprising. But the precise quantitative results—the probabilities determined this way—can be
used to ground the decision-theoretic planning approach for the experimental setting on a proper
empirical base.

For the rest of the chapter, we consider the problem of planning the optimal strategy for giving
a subject two instructions of the kind that we described above. We will refer to this problem as
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Stepwise:
System: Set X to 3.
Subject: ... [ok]
System: Set M to 1.
Subject: ... [ok]
System: Set V to 4.
Subject: ... [ok]

Bundled:

   Set X to 3,
   set M to 1,
   set V to 4.
Subject: ... ... ... [ok]

System:

Figure 3.2: The abstract user interface of the instructions experiment.
(The subjects executed spoken instructions of the kind “set B to 2” by clicking with the mouse to button 2 in
region B. Several presentation strategies were tested: stepwise presentation, and the presentation in bundles
of 2, 3, and 4 instructions. After executing the given instruction(s), the subject had to confirm completion
by clicking on the okay button on the bottom of the screen.)

the simple instruction problem (and as the instruction problem for sequences with more than two
instructions, respectively).

3.1.2 Elements of MDPs

The basic elements of a Markov decision process are states and actions. A state is defined by a set
of state features. Actions cause a transition of the system in consideration from its current state
to a successor state. In the following sections, we illustrate the basic elements of MDPs with two
concrete instances of the simple instruction problem.

3.1.2.1 States and State Features

A state describes all aspects of the world relevant for the process to be planned at a particular point
in time. The choice of an appropriate set of state features is an important part of the modeling of
the problem design. We define each state for the simple instruction problem by the following four
state features: (1) N TO GIVE, the number of instructions that remain to be given by the system, (2)
N IN BUNDLE, the current size of the instruction bundle, (3) N IN WM, the number of instructions
currently in the user’s working memory, and (4) CORRECT?, the information if a mismatch has
occurred in at least one of the executed instructions so far (here, + means no mismatch, – means
at least one mismatch has occurred). The general structure of the MDPs for instances of the
instruction problem is summarized in Figure 3.3
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+1

+1

−1

−1

⇒ 0 iff
no more
instructions

If +, ⇒ − with
probability depending
on N IN BUNDLE and
N IN WM

Always 1.964 sec

Empirically derived
value, depending on
N IN BUNDLE and
N IN WM

COST OF ACTION
The averge duration of

the action

N TO GIVE:
0, 1, 2, ...
How many

instructions does S
still have to give?

N IN BUNDLE:
0, 1, 2, ...

How long is the
current bundle of

instructions?

N IN WM:
0, 1, 2, ...
How many

instructions does U
now have in working

memory?

CORRECT?
+, −

Has U so far
avoided making any

errors?

GIVE
INSTRUCTION

S utters a single
instruction (e.g. "Set

X to 3")

WAIT FOR
EXECUTION
S waits for U to
execute a single

instruction

Action 1 Action 2State Features

Cost

Figure 3.3: General structure of the MDPs for instances of the instruction problem.
(The actions GIVE INSTRUCTION and WAIT FOR EXECUTION change the world state. Action GIVE

INSTRUCTION has an effect on the state features N TO GIVE, N IN BUNDLE, and N IN WM; WAIT FOR

EXECUTION has an effect on N IN BUNDLE, N IN WM, and CORRECT?. Both actions are associated with
costs that correspond to their duration.)

State features are in principle not restricted to simple numeric or symbolic data types. For
example, instead of keeping track only of the number of instructions in the user’s working memory,
we could also consider a list with more specific information of the user’s working memory content
(cf. Bohnenberger, 2000). There often exist various possibilities to represent the same information
about a world state. For example, a list can be encoded by several simpler state features for each
element in the list. Some tools for solving MDPs allow only boolean state features, for example,
earlier versions of SPUDD5 (Hoey, St-Aubin, Hu, & Boutilier, 1999), which we will study in
comparison with our own implementation in Section 3.1.5.1.

States can be represented extensionally (i.e., each state is explicitly named) or intensionally
(i.e., each state is described by a set of variables: the state features). Figure 3.4 indicates the
extensional representation by the state denotations ���

���������
� � � and the intensional representation

by the four state features of each state. Intensional representations are often used in AI planning

5SPUDD stands for Stochastic Planning Using Decision Diagrams.
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systems. For example, the world representation used by the STRIPS planner is an intensional
representation. An intensional state representation can easily be converted to an extensional one
(but not vice versa). Both, the use of the extensional and the intensional representation have certain
advantages and disadvantages for the implementation of an MDP and the algorithm to solve it. We
will explain our decision to use an extensional representation that is derived from an intensional
one in Section 3.1.5.2.

3.1.2.2 Actions and Transitions

Transitions between states correspond to actions. In the context of user-adaptive systems, both
the user and the system can cause a state change by executing actions. In the simple instruction
problem, we consider two actions: (a) The system can give an instruction and (b) the user can
execute an instruction (i.e., the system waits for the user to execute the given instruction—this
view describes the user’s action from the perspective of the system). Figure 3.3 describes the
effect of each of the two actions on each of the state features. If an action is deterministic, then
it corresponds exactly to one transition in an MDP. Applying a deterministic action in a particular
state leads to one particular successor state with probability

�
� �
. In the simple instruction problem,

we consider the system’s actions (giving instructions) to be deterministic. As MDPs allow for
uncertain outcomes of an action, one action can also correspond to several transitions. Applying
an uncertain action in a particular state means that there exist several transitions corresponding to
this action, which lead from the current state to different successor states. In the simple instruction
problem, we consider the user’s actions (executing instructions) to be uncertain. We denote these
two actions from the system’s perspective as GIVE INSTRUCTION and WAIT FOR EXECUTION
(or G and E in Figure 3.4, respectively). Figure 3.4 shows the transition diagram of an instance6

of the simple instruction problem by which the system can plan the optimal strategy to give two
instructions. The MDPs constructed according to the generation recipe of Figure 3.3 do not exhibit
cycles, but MDPs do not need to be acyclic in general.

Each of the transitions in an MDP is annotated with a probability—the probability that the
world is in the corresponding successor state after the uncertain action is executed. In the simple
instruction problem, the user executes an instruction correctly with probability � and makes a
mistake with probability

��� � . As we have said, there can be more than two transitions for
one action. The probabilities of all transitions that correspond to the same action sum up to 1.
Tables 3.1 and 3.2 show the transition matrices of the actions GIVE INSTRUCTION and WAIT
FOR EXECUTION, respectively. Each matrix is a complete description of a particular action’s
effects in any possible state. An action that is in practice not applicable in a particular state is
assigned a probability of

�
� �
for the successor state being the same as the current state (i.e., the

action does not change the current state, e.g., applying action GIVE INSTRUCTION in state ���
does not change the state; see Table 3.1).

Note the following peculiarity about the structure of the MDP of Figure 3.4: Although the
desired goal state ��� cannot be reached anymore once the first instructed has been executed incor-
rectly, the subject has to execute both instructions in any case. Various assumptions about the error
handling can be implemented, for example, that the system stops the interaction immediately after
the first incorrect execution of an instructions, or that the system repeats an incorrectly executed
instruction once or several times (cf. Section 4.1.4.1).

6We speak of an instance of the (simple) instruction problem to denote the initialization of the MDP with a particular
reward for the desired goal state.
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Figure 3.4: Transition diagram for the simple instruction problem (2-step sequences).
(Transitions from the start state to the goal states. G denotes the action GIVE INSTRUCTION and E corresponds to the action WAIT FOR EXECUTION.
The features listed for the states are explained in Figure 3.3. The transitions are annotated with the costs and probabilities empirically determined in the
experiment described in Section 3.1.1. The states �� and �� � are goal states with different rewards.)
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��� ��� ��� ��� ��� ��	 ��
 ��� ��� ��
 �����
��� 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
� � 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
� � 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
��� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
��� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
� 	 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
� 
 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
��� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
��� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
� 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
� ��� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 3.1: Transition matrix for the action GIVE INSTRUCTION.

(Transition matrix for the action GIVE INSTRUCTION under the condition that the user is distracted by the
secondary task described in the text. All transitions are deterministic.)

� � � � � � � � � � � 	 � 
 � � � � � 
 � ���
� � 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
��� 0.0 0.0 0.0 0.996 0.004 0.0 0.0 0.0 0.0 0.0 0.0
��� 0.0 0.0 0.0 0.0 0.0 0.993 0.007 0.0 0.0 0.0 0.0
� � 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
� � 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
��	 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.971 0.029
��
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
� � 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.996 0.004
� � 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
��
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
����� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 3.2: Transition matrix for the action WAIT FOR EXECUTION.

(Transition matrix for the action WAIT FOR EXECUTION under the condition that the user is distracted
by the secondary task described in the text. Trying to execute instructions in state ��� , ��� , ��� , ��� , and �����
although N IN WM �

�
does not change the state).

3.1.2.3 Costs and Rewards

Each action has a cost, each goal state is associated with a reward. Decision-theoretic planning
trades off the costs of a sequence of actions with the expected reward for reaching a goal. The cost
function, assigning a cost to each action executed in a particular state, must have the same range as
the reward function, assigning a reward to each state. The interpretation of an action’s cost allows
for some flexibility, but it has to comply with the interpretation of the reward(s) for goal state(s).

In the simple instruction problem, we associate the cost of an action with the time that it needs
to be carried out. For example, giving an instruction might take � sec, executing an instruction
might take � sec. As we define � and � to be the costs of the corresponding actions in terms of
the actions’ duration, we must consider the reward for the preferred goal state in terms of time,
too. For example, we can say that executing both instructions without making a mistake is worth
as much as � sec.
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Cost functions can be represented in matrices analogous to transition functions (cf. the transi-
tion matrices of Table 3.1 and 3.2). Having introduced all elements of a Markov decision process,
we can now define a Markov decision process as follows.

Definition 3.1 A (fully observable) Markov decision process is a tuple ��� ��� � � � � � ��� , where

� � ��� � � ��������� �
	�� is a finite set of world states

�
� ��� � � ��������� ��
�� is a finite set of actions

� ������� ��� � ��� � is the state-transition function, specifying for each pair of world
state and action a probability distribution over world states. We write � � � � � � ��� � for the
probability of ending in state � � , given that action � is executed in state �

� ������� �����
is the cost function, specifying the cost for applying a particular action in

a particular state. We write � � � � � � for the cost of taking action a in state s; and

� ��� � �!�
is the reward function, specifying the expected immediate reward gained for

being in a particular state. We write � � � � for the expected reward7 for being in state s.

The solution of a planning problem is a sequence of actions that achieves a desired state. In
the traditional planning paradigm, goal states are defined by logical expression, and a plan consists
of a sequence of operators that are applied until the initial world state is transformed into the goal
state (cf. Section 2.2.2). In the decision-theoretic planning paradigm, a policy maps each state to
an action, and this action is determined by its expected utility (compared to the expected utility of
alternative actions).

Definition 3.2 A policy "#�$� ���
is a mapping from the finite set of world states � to the finite

set of actions
�

.

The expected utility of an action is determined by the values of the states that can be reached
by this action. Therefore, the goal states are associated with a numeric reward. In the simple
instruction problem, the goal states are those in which no instructions remain to be given by the
system and no instructions in the subject’s memory remain to be executed. In the example of Fig-
ure 3.4, there are two states for which these conditions hold. We give a positive reward only to the
one in which no mismatch has occurred during the execution of the instructions (i.e., CORRECT?
= yes). Applying the iterative solution algorithm that we will describe in Section 3.1.4 means to
propagate these rewards from the goal states via the probabilistic transitions through the complete
MDP, thereby allowing to compute the expected utility of every single state in the process.

3.1.3 Evolution of an MDP

A discrete-time stochastic dynamical system consists of a state space and probability distributions
describing possible state transitions. We assume that the modeled process evolves in stages: The
transition from stage � to the next stage ��% �

corresponds to any of the actions (or events) specified

7Some authors (e.g., Boutilier et al., 1999) prefer a reward function of the kind &('
)+*-,/.10 . This allows to
use the reward function to express the cost of an action in terms of a negative reward and thereby integrates cost and
reward function. We assume that merely being in a particular state is already rewarded, no matter if the decision maker
performs any action in that state or not, and consider the cost function separately.
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in the MDP. We refer to the set of all stages as � . The progression through stages is only roughly
analogous to the passage of time. In the basic MDP framework, each execution of an action
corresponds to proceeding to the next stage in the process. As usually not all actions take the same
amount of time, it is not clear how the notion of time can be captured in MDPs. Two different
roles of time in the context of MDPs were sketched in Section 1.4.2. We will describe the formal
consequences of considering time as a pure cost factor and time restricted by a fixed deadline in
Chapter 4.

We can model uncertainty about the state � of a process at some stage � as a random variable
��� that takes values from � . The assumption of forward causality requires that the variable ���
does not depend directly on the value of future variables ��� � � � � . In analogy, we can model
uncertainty about the action � taken in a process at some stage � as a random variable � � . The
history8 � of a process up to the stage � can then be defined by the sequence of pairs

� � � � � � � � � � � � � � � ������� � � � ��� � � � ��� � � .

According to the Markov property, it is commonly assumed that a state contains all information
necessary to predict its successor state(s). That is, any information about the history of the consid-
ered process relevant to predict the next state is captured in the state itself. Formally, the Markov
property holds if � � � �
	 � � � � � � ��� � ������� � � � � � � � � �
	 � � � � � � (3.1)

The Markov assumption claims that the knowledge of the present state includes all relevant
information about the past to make predictions about the future. Luenberger (1979) shows that
any non-Markovian model can be converted to an equivalent though larger Markov model.

Moreover, it is sometimes assumed that the effects of an action depend only on the current
state and not on the stage at which an action is executed. If the probability distribution predicting
the next state is the same regardless of stage, the model is said to be stationary.

The number of stages considered in a decision-theoretic planning process is called the planning
horizon. We distinguish finite-horizon and infinite-horizon problems. In finite-horizon problems,
the performance of a system interacting with its user is evaluated over a fixed, finite number of
stages. The aim is to maximize the total expected reward associated with a course of interaction
of a fixed length. Infinite-horizon problems appear in the context of user-adaptive systems in the
sense of the horizon of the interaction being unknown: The interaction of the system with its user
will inevitably come to an end at some point. This holds also for the problems that we consider in
this thesis. The total reward gained in an infinite-horizon problem can in general be unbounded,
which means that any policy could be arbitrarily good or bad if it was executed for long enough.
Therefore, a discount factor is introduced, ensuring that rewards and costs at earlier stages count
more than those at later stages.

3.1.4 Solving MDPs

The problem of solving a finite-horizon MDP can be rephrased as finding a strategy that maximizes
the total expected reward over some fixed, finite number of stages � . Such a strategy is commonly
called a policy in decision-theoretic planning. Two types of policies are distinguished: stationary
and non-stationary policies. A stationary policy " is defined as a mapping from states to actions:
"�� � � �

, that is, a stationary policy describes which action to take in a particular state, but

8A history is also called trajectory.
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regardless of stage. A non-stationary policy additionally considers the stage of the process to
specify the action to be taken. Let � be the set of all stages. A non-stationary policy " � is a
mapping from states and stages to actions: " � � � � � � �

, that is, a non-stationary policy
describes which action to take in a particular state and at a particular stage in the process. Non-
stationary policies will be particularly important in the scenarios that require to consider time
restricted by a fixed deadlines (see Section 4.4).

3.1.4.1 Finite-Horizon Problems

To describe the value of a state at a particular stage, we define a value function
� ��� � � ���

to be a mapping from states and stages to reals. Two assumptions about value functions are
commonly made in the MDP literature: The value function is time-separable and additive.

Boutilier et al. (1999) describe time-separability and additivity as follows: A value function
is time-separable if it is a stage-independent combination of the reward and the cost function.
That means, the costs and rewards can depend on the stage, but the function that combines them
must be independent of the stage. For the problems that we consider in this thesis, neither the
function combining costs and rewards nor the cost and reward functions themselves depend on the
stage. A value function is additive if the combination function is a sum of the rewards and costs
accumulated over the history’s stages.

Under these assumptions, Bellman (1957) shows that the expected value of a policy at any
state can be computed using the t-stage-to-go value function

�
�
�

with
�
�
� � � � � � and

� �
� � � � � � � � � % � � " � � � � � � % �

��� ��� � � � � �
" � � � � � � � � � ���� � � � � � � (3.2)

The recursive structure of the formula relating the value of a state to the immediate expected
rewards for being in a state already indicates the iterative notion that characterizes the dynamic
programming solution algorithms.

A policy is optimal if
���
� � � �
	

��� �
� � � � for all policies " � and all ��� � . The optimal � -stage-

to-go value function
��

� is defined as the value function of any optimal � -horizon policy. Bellman’s

principle of optimality forms the basis of the stochastic dynamic programming algorithms used to
solve MDPs. It describes the relationship between the optimal value function at stage � and the
optimal value function at stage �

� �
:

� 

� � � � � � � � � %������
 ��� � � ��� � % �

��� ��� � � � � � � � � � � 
��� � � � � � � � (3.3)

The optimal finite-horizon policy at stage � is described by the formula

" 
� � � � �������������
���� � � � � � % �
��� ��� � � � � � � � � � � 
��� � � � � � � � (3.4)

Value Iteration Equation 3.3 forms the basis of a standard dynamic programming approach for
solving finite-horizon Markov decision problems called value iteration. Value iteration takes the
immediate expected rewards as the initial value for being in a state, that is,

��

� � � for all ��� � ,

and then iteratively applies Equation 3.3 to compute the expected values of all states and at all
stages up to the horizon � .
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We can now apply value iteration to our simple instruction problem. We first assume a reward
function that assigns a reward of 2.0 for being in state � � and no reward for being in any of the
other states. Here are two examples for the computation of the expected utilities of executing an
action in a particular state and at a particular stage9:

��� � � ��� ��� � � �����
	�� � 

� � � � � % ��� � � � � 
� � � � � � � �
� ��	 	

� ����	�
�� � � 
� � ��� �
��� � � � � ��� � � ��������� � 
� � ��� � % ��� ����	 � 
� � ��� � � �
��� ���

� � ����	�
 	 � � 

� � � � �

The expected utility of waiting for the user to execute an instruction in state ��� with one stage to go
is the weighted sum of the immediate rewards for being in state � � or � � � , minus the cost of action
E, which reflects the average time that the user needs to execute an instruction in that situation.
The expected utility of waiting for the user to execute an instruction in state � � with two stages to
go is the weighted sum of the values for being in state � � or � � , minus the cost of action E. In the
states ��� and � � , there exists no alternative action. Therefore,

��
� � ��� � coincides with
��� � � ��� ��� �

and
� 

� � � � � coincides with

��� � � � � ��� � . If we compute the value for being in state � � with three
stages to go, we have to maximize over the expected utilities of the two actions G and E:

����� � � � ��� � � �
� � � 

� � � � � � �
����
 	

� � � ��	 � �

��� � � � � ��� � � ��������
 � 

� � � � � % ��� ���
	 � 


� � ��� � � ��������� � ����� ���

� � � ��	����

� 
� � � � � � � � � � � %������ � ��� � � � � ��� � � ��� � � � � ��� � �
� ��� � %������ � � � ��	 � � � � � ��	���� � � � � ��	 � �

��� ��� � � ��� ��� ��	 ��
 ��� ��� ��
 �����
� ��� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0� � � -1.964 -1.814 -1.518 -1.964 -1.964 0.768 -1.174 0.993 -0.999 2.0 0.0� � � -3.778 -3.482 -0.764 -0.971 -2.963 0.768 -1.174 0.993 -0.999 2.0 0.0� ��� -5.446 -2.728 -0.764 -0.971 -2.963 0.768 -1.174 0.993 -0.999 2.0 0.0� � � -4.692 -2.728 -0.764 -0.971 -2.963 0.768 -1.174 0.993 -0.999 2.0 0.0

Table 3.3: The optimal n-stage-to-go ( � � �����������
	
) value functions for the simple instruction

problem with a reward of 2.0 for being in state �
� .

Four iterations of the value iteration algorithm result in the value functions up to stage
	

presented in Table 3.3. The value of states close to the goal states � � and � � � do not change
anymore after the first iteration. The state � � needs three iterations, the state � � four iterations
until its value does not change anymore.

��

� � ��
� for all � 	 �

.

9The numeric results in this section are all rounded in the third position after decimal point.
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Figure 3.5: Simple instruction problem: State utilities after 4 iterations; reward = 2.0.
(Value iteration converges after 4 iterations, resulting in the given state utilities. Given the rather low reward
for executing all instructions correctly, the system decides to bundle the two instructions. That is, it selects
action G in state ��� . The highlighted state is the successor state after the decision made in state ��� .)

Figure 3.5 relates the optimal
	
-stage-to-go value function to the transition diagram. The only

state in which the system can make a decision is state � � . Assuming a reward of � � � for state � �
results in the expected utilities

���
� � � � ��� � � � � ��	 � � and

���
� � � � ��� � � � � ��	���� . Therefore, the

system’s rational decision in this state is to choose action G, that is, to give the second instruction
and thereby bundle two instructions.

� � � � � � � � � � � 	 � 
 � � � � � 
 � ���
� � � 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0� � � -1.964 -1.814 -1.518 -1.964 -1.964 8.536 -1.174 8.961 -0.999 10.0 0.0� � � -3.778 -3.482 6.950 6.997 -2.963 8.536 -1.174 8.961 -0.999 10.0 0.0� � � -5.446 5.143 6.950 6.997 -2.963 8.536 -1.174 8.961 -0.999 10.0 0.0� � � 3.179 5.143 6.950 6.997 -2.963 8.536 -1.174 8.961 -0.999 10.0 0.0

Table 3.4: The optimal n-stage-to-go ( � � �����������
	
) value functions for the simple instruction

problem with a reward of 10.0 for being in state � � .

If we assume a higher reward for getting to state � � , say � � � � � � ����� �
, then the system’s

decision in state � � is different. The expected utilities are
���

� � � � ��� � � 	 ������

and

���
� � � � ��� � �� � � 	��

. Therefore, the system’s rational decision under these circumstances is to choose action E,
that is, to wait for the user executing the given instruction and thereby give the two instructions
of the complete sequence stepwise. Table 3.4 shows the evolution of the optimal value function
up to stage 4, assuming a reward of 10.0 for being in state � � . Figure 3.6 relates the optimal	
-stage-to-go value function to the transition diagram.
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Figure 3.6: Simple instruction problem: State utilities after 4 iterations; reward = 10.0.
(Value iteration converges after 4 iterations, resulting in the given state utilities. Given the rather high
reward for executing all instructions correctly, the system decides to give the two instructions stepwise.
That is, it selects action E in state � � . The highlighted states are the possible successor states after the
decision made in state � � .)

3.1.4.2 Infinite-Horizon Problems

In some cases, there is no restriction about how many stages exactly there are to go in an inter-
action of a system with its user. Instead, the system might want to ensure that the user reaches
desired states as soon as possible. Such problems can be considered as infinite-horizon discounted
Markov decision problems. The basic idea is to compute a stationary policy, that is, a policy
that recommends the same action at each stage in a continuous and (in principle) infinite process.
Thinking of a process for which the horizon is just not known might yield a better intuition for
the concept of an infinite-horizon problem. The formula satisfied by the optimal policy for an
infinite-horizon problem differs from the one for a finite-horizon problem (Equation 3.3) only in
the discount factor � ��� ��� � � . It is used to give more emphasis to earlier rewards than to rewards
gained at later stages in the process:

� 
 � � � � � � � � %������
 ��� � � ��� � % � �
��� ��� � � � � � � � � � � 
 � � � � � (3.5)

The optimal infinite-horizon policy is described by the formula

" 
� � � � �������������
 ��� � � � � � % � �
��� ��� � � � � ��� � � � � 
��� � � � � � � (3.6)

Howard (1960) shows that there always exists an optimal stationary policy for infinite-horizon
problems. It can be computed by a slightly modified version of the value iteration algorithm,
which takes the discount factor into consideration:

�
�
	 � � � � � � � � � %������
 ��� � � ��� � % � �

��� ��� � � � � � � � � � � � � � � � � (3.7)
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Starting with arbitrary assignments of values for
�
� � � � , the sequence of function

�
� converges

linearly to the optimal value function
��
 � � � after some finite number of iterations � . The number

of iterations � depends on a stopping criterion that generally involves measuring the difference
between

�
�
	 � and

�
� . The iteration process stops if this difference is sufficiently small. Puterman

(1994) discusses different stopping criteria and the convergence of the value iteration algorithm
for infinite-horizon problems.

Policy Iteration Howard (1960) introduces an alternative algorithm to value iteration for infinite-
horizon problems. The approach is called policy iteration. While value iteration iteratively im-
proves the estimated value function, policy iteration modifies the policy directly. The key idea of
policy iteration is to start from a random policy " � and then iteratively improve the policy by com-
puting "

�
	 � from "

�
. The policy iteration algorithm alternates two steps, called policy evaluation

and policy improvement, until convergence:

� Policy evaluation: For each ��� � compute the value function
��� � � � � based on the current

policy "
�
.
� � � � � � is the value of � if "

�
� � � was executed as the next action.

� Policy improvement: For each ��� � , find the action � 
 that maximizes

�

�
	 � ��� � � � � � � � � % � ��� � % � �

��� ��� � � � � � � � � � � � � � � � � (3.8)

and update "
�
	 � � � 
 if

�

�
	 � ��� 
 � � � � � � � � � � ; otherwise "

�
	 � � � � ��"

�
� � � .

The algorithm terminates when "
�
	 � � � � � "

�
� � � for all � � � , that is, when the policy im-

provement step yields no further change in the expected utilities. The policy improvement step is
guaranteed to improve the policy (if it is not already optimal).

For infinite-horizon problems, both algorithms, value iteration and policy iteration, result in
the optimal policy (see, e.g., Puterman, 1994). Puterman (1994) shows also that policy iteration
usually requires fewer steps in total than value iteration (or at least not more) because it makes
policy improvements based on more accurate information. Boutilier et al. (1999) emphasize that
in practice, policy iteration tends to converge in a lot less iterations than does value iteration. Koller
and Parr (2000) propose an approximative version of policy iteration for factored MDPs. There
exist extensions of the policy iteration algorithm, such as modified policy iteration (Puterman &
Shin, 1978) and asynchronous version of policy iteration (Bertsekas, 1987), that aim at further
speeding up the convergence of the algorithm.

We do not consider policy iteration in more detail because it is not applicable to finite-horizon
problems and therefore cannot be used for many of the problems that we consider in the context
of user-adaptive systems. Moreover, as we will explain in Section 3.1.7, the crucial problem with
MDPs is not the performance of the algorithms, but rather the exponential growth of the state
space.

3.1.5 State Space Representations

We have distinguished extensional and intensional representations of the state space in Section
3.1.2. This distinction is used to describe a state space representation on a conceptual level. In this
section, we will compare two approaches to solve MDPs. The first approach, SPUDD, is based
on an extensional representation and provides a general framework to solve MDPs. SPUDD can
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be considered as a state of the art AI approach for solving MDPs. It follows the tradition of AI
planning to represent a state by the relevant attributes that describe the state. Other approaches
(e.g., Feng & Hansen, 2002) use SPUDD as a basis and try to improve SPUDD’s performance with
special techniques. The second approach is based on an intensional representation and provides
problem-tailored solutions. The key idea of this approach is the object-oriented representation of
state-transition diagrams. On the one hand, the approach sticks with the traditional OR approach in
that it explicitly enumerates states. On the other hand, it goes beyond the traditional OR approach
in that it emphasizes the object-oriented programming paradigm for the efficient representation of
an MDP and the convenient incorporation of a solution algorithm like value or policy iteration.
Both approaches have advantages and disadvantages.

3.1.5.1 SPUDD

Hoey et al. (1999) introduce SPUDD10, a method that applies a version of the policy iteration
algorithm (called structured policy iteration, SPI) on a factored11 representation of an MDP called
algebraic decision diagrams (ADDs). ADDs allow to represent the dynamics of a process (in terms
of the action specifications), the value function, and the policy in a compact decision graph. The
SPI algorithm derives from an earlier approach that employs decision trees to represent value
function and policy (see, e.g., Boutilier, Dearden, & Goldszmidt, 1995). The ADD formalism
requires an MDP state space to be represented by a set of boolean variables � � � � ������� � � � .
The fact that ADDs require boolean variables is not a general restriction (any n-ary variable can
be expressed by several boolean variables), but it is the reason that versions of SPUDD earlier than
SPUDD 2.0 allow only boolean variables for the specification of the process dynamics. The system
is perpetually improved12. For example, it is meanwhile possible to use multi-valued variables for
the specification of our illustrating example, the simple instruction problem. However, SPUDD
internally translates the multi-valued specification into ADDs, such that no performance increase
compared to earlier version of the system results from this improvement.

The dynamics of an MDP can be captured in terms of a dynamic Bayesian network (see Sec-
tion 2.1.3.4) with two time slices for each action � � � . The links represent causal dependencies
between variables of � and � � at two consecutive stages. Figure 3.7 shows the DBN representa-
tion of the action WAIT FOR EXECUTION.

SPUDD uses ADD representations of the conditional probability tables instead of working
on the inefficient tabular representation. Figure 3.8 shows the tree structure of the CPT for the
variable CORRECT?. It is to be read like “if at stage � CORRECT? equals yes, N IN BUNDLE
equals two, and N IN WM equals two, then after applying WAIT FOR EXECUTION the probability
that CORRECT? equals yes at stage � % �

is
���������

”, and so forth. SPUDD internally translates the
tree structure to the binary tree structure of an ADD.

SPUDD 3.0 was the first version of SPUDD to allow the specification of action costs within
action effects. In the simple instruction problem, the cost of the action WAIT FOR EXECUTION
depends on the state features N IN BUNDLE and N IN WM, for example, executing the first instruc-
tion of a bundle of two on average takes 1.518sec, while executing the second one of a bundle of
two takes on average only 1.174sec. Modeling this distinction in the actions’ costs in SPUDD 2.0

10SPUDD stands for Stochastic Planning Using Decision Diagrams.
11The term “factored representation” in this context means “feature-based”.
12At the time of submission of this thesis, the latest version of SPUDD is 3.4.0. The ongoing improvements of

SPUDD are documented at http://www.cs.ubc.ca/spider/staubin/Spudd/.

http://www.cs.ubc.ca/spider/staubin/Spudd/
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Figure 3.7: 2-time-slice DBN representation of the action WAIT FOR EXECUTION
(Links represent causal dependencies between variables of stage � and stage ����� . The conditional prob-
ability table for variable CORRECT? � reveals the inefficiency of representing causal dependencies in a
tabular representation.)

required to model three different variants of the action WAIT FOR EXECUTION: (1) WAIT FOR
EXECUTION OF FIRST OF ONE, (2) WAIT FOR EXECUTION OF FIRST OF TWO, and (3) WAIT
FOR EXECUTION OF SECOND OF TWO, each of them with a different cost. This circumstance
made the specification of the simple instruction problem in SPUDD representation quite inconve-
nient. It required the one who specifies the problem to ensure that each variant of the action WAIT
FOR EXECUTION is applicable only in the right situation. There is a complete and commented
specification of the simple instruction problem for SPUDD 2.0 in Appendix A.

We apply SPUDD to the two instances of the simple instruction problem that we have already
considered in Section 3.1.4: once with a reward of � � � and once with a reward of

����� �
for the

goal state in which all instructions have been given and executed correctly. Figure 3.9 and 3.10
show the resulting policies: As expected, they propose to bundle two instructions in the case of a
low reward ( � � ��� � � � � � ) and to give the two instructions stepwise in the case of a high reward
( � � � � � � ����� �

).
The strength of SPUDD is its generality. In principle, it is possible to specify arbitrary MDPs

such that they can be understood and solved by SPUDD. Hoey et al. (1999) have demonstrated
the performance of their approach on a class of MDPs with up to 63 million states. This number
of states corresponds to a state space spanned by 25 state features, which is sufficient for certain
classes of real world problems. With APRICODD13, St-Aubin, Hoey, and Boutilier (2001) pro-
pose a method for approximative dynamic programming, which they apply to problems with state
spaces that comprise up to 34 billion states (which corresponds to 35 state features). APRICODD
uses the same representation as SPUDD (algebraic decision diagrams) and generates near-optimal
value functions and policies. There exists work by Feng and Hansen (2002) based on the SPUDD
approach, that applies symbolic heuristic search on a factored representation of Markov decision
processes. The approach aims at further constraining the computational effort to states that are
reachable from a starting state. The assumption that a starting state is known would, for exam-
ple, not be problematic for instances of the instruction problem. In other domains (e.g., giving

13APRICODD stands for APpRoxImate Policy COnstruction Using Decision Diagrams.
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Figure 3.8: Tree structure of the CPT of the variable CORRECT?.
(The tree structure of the CPT of the variable CORRECT? of the DBN representation for the action WAIT

FOR EXECUTION is more compact than the tabular representation. It is to be read top down: For example,
after the action WAIT FOR EXECUTION at stage � , the value of the variable CORRECT? at state � � � is no
with a probability of

�
�
�����

if at stage � CORRECT? equals yes, N IN BUNDLE equals one, and N IN WM

equals one. SPUDD internally translates the tree structure into the binary tree structure of an ADD.)

navigation recommendations in an airport building—cf. Section 4.2) it might be unnecessarily
restrictive.

Both methods, SPUDD and APRICODD, are described at full length by Hoey, St.Aubin, Hu,
and Boutilier (2000). The authors allude the requirement that variables be boolean as one major
drawback. When multi-valued variables are split up into boolean variables, the structure contained
in the original problem specification can in general not be preserved completely, which usually
results in a state space larger than the original. For domains with relatively few multi-valued
variables, SPUDD is assumed not to be handicapped by the requirement of variable splitting.

Apart from this conceptual drawback, our experience with SPUDD has shown that the specifi-
cation of MDPs in the SPUDD representation is rather inconvenient, even for small problems such
as the simple instruction problem. Specifications of MDPs in the SPUDD representation are com-
plex, difficult to maintain, and illegible—even though their structure might in principle be simple
to describe (e.g., the description of the simple instruction problem in Figure 3.3). Preserving the
complete structure inherent to the problem requires meticulously constraining the applicability of
each action. Since we have not done this to the full extend for the simple instruction problem, the
resulting policies map optimal actions to some unreachable states. For example, the policy assum-
ing a reward of 10.0 for being in state � � (see Figure 3.10) specifies an action for N TO GIVE =
one, N IN BUNDLE = two, N IN WM = zero, and CORRECT? = no. This situation cannot occur in
practice.

3.1.5.2 Object-Oriented State-Transition Diagrams

The SPUDD approach, which bases the value iteration algorithm on an intensional representation
of the planning problem, ties in with the traditional AI paradigm. The main argument in favor of
this approach is its ability to capture some, much, or ideally all of the structure inherent to the
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WAIT FOR EXECUTION FIRST OF ONEWAIT FOR EXECUTION FIRST OF TWO

Figure 3.9: Policy for the simple instruction problem produced by SPUDD; reward = 2.0.
(SPUDD produces a tree structured representation of the policy. It is to be read top down: As an example,
we have highlighted (with dashed lines and shading) the action proposed by the policy for the situation in
which the system has given the first instruction, the bundle size and the number of instructions in the user’s
working memory is one, and not mistake has been made in executing instructions so far. The proposed
action is to give the next instruction—which is in accordance with the policy represented for the case with
low reward in Figure 3.5.)

process to be planned for. In this respect, decision-theoretic planning based on a factored repre-
sentation is clearly superior to earlier approaches that base on inefficient tabular representations
(matrices) to represent the domain.

However, an alternative that suggests itself with regard to capturing as much as possible of the
structure inherent to the process to be planned is to model the structure of the process explicitly.
A straightforward approach to do so is offered by object-oriented programming. Object-oriented
programming provides everything that is necessary to represent a Markov decision process con-
cisely. States are modeled as objects, state feature are captured as object attributes. Transitions
between states are represented as links (references/pointers to other instances of the class state
node) between objects, and transition probabilities and costs are stored in direct adjacency to the
links. During the computation of the optimal policy, values can be propagated through the object-
oriented MDP via message passing.

Note that what we introduce in this section is not a new algorithm, but merely the object-
oriented implementation of an existing algorithm, which we call object-oriented value iteration.
We find the way of implementing the approach worth being explained in some detail as it di-
verges from the implementation suggested by the vast majority of state of the art AI approaches
for decision-theoretic planning (e.g., Boutilier et al., 1999; Feng & Hansen, 2002). This applies
in particular for the underlying representation used to implement value iteration. To our knowl-
edge, an object-oriented version of value iteration is not explicitly described in decision-theoretic
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Figure 3.10: Policy for the simple instruction problem produced by SPUDD; reward = 10.0.
(SPUDD produces a tree structured representation of the policy. We have highlighted (with dashed lines
and shading) the action proposed by the policy for the situation in which the system has given the first
instruction, the bundle size and the number of instructions in the user’s working memory is one, and no
mistake has been made in executing instructions so far. The proposed action is to wait for the execution of
the first instruction—which is in accordance with the policy represented for the case with high reward in
Figure 3.6.)

planning literature. We have used object-oriented value iteration already in the work described by
Bohnenberger and Butz (2000), and Bohnenberger (2000). All results presented in Chapters 4, 5,
and 7 were produced on the basis of the object-oriented approach.

Figure 3.11 describes the state node class with its main attributes and operation. Usually a
bunch of other (auxiliary) attributes and operations will be necessary for the actual implementa-
tion, which we do not describe here as they are not essential for the modeling. However, the class
description in Figure 3.11 contains all information necessary to generate a one-to-one image of
the Markov decision process of an simple instruction problem instance.

Two phases can be distinguished in solving an MDP with the object-oriented approach: (1)
generating the object-oriented representation of the Markov decision process and (2) applying
value iteration (or a related algorithm, e.g., policy iteration) on the object-oriented representation.

The generation of the object-oriented state-transition diagram can be accomplished in a rule-
based fashion or according to a “flat” representation (an appropriate explicit specification of the
MDP structure). By rule-based, we mean any function that arranges the generation of the object-
oriented state-transition diagram according to a set of rules as they are described for the simple
instruction problem in Figure 3.3. Once the generation function realizing the corresponding set
of rules is implemented in a generic way, it can also be used to generate object-oriented state-
transition diagrams for instruction problems with more than two instructions14 .

14In principle, object-oriented state-transition diagrams for instruction problems with an arbitrary natural number of
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N TO GIVE = one
N IN BUNDLE = one
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TRANSITIONS:
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   s  # 0.996 # 1.814
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s1

N TO GIVE: {zero, two, one}
N IN BUNDLE: {zero, one, two}
N IN WM: {zero, one, two}
CORRECT?: {yes, no}

TRANSITIONS:
   State Node 1 # TransProb 1 # Cost 1

   State Node k # TransProb k # Cost k

...

Value Iteration One Stage()

State Node
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4

Figure 3.11: State node used in the model for the instruction problem: class and object.
(The state node class comprises one attribute for each state feature N TO GIVE, N IN BUNDLE, N IN WM, and
CORRECT?. The attribute TRANSITIONS basically contains a list of triples describing the transitions from
the state node instance at hand. There are transitions from � � to ��� , ��� , and ��� with transition probabilities
and costs as specified in Figure3.4. The main operation of the state node class is the function implementing
the computation of one iteration of the value iteration algorithm.

In other domains, the structure of an MDP is not (exclusively) defined by a set of rules, but
rather depends on characteristics of the domain environment. Spatial information, for example, the
position of a user, can be relevant in a human-computer interaction process. The airport scenario in
Section 4.2 is an example for such a domain. The specification of the relevant spatial information
for a process, for example, the definition of important locations for giving navigation recommen-
dations within a building, will usually be handcrafted. However, the required effort is independent
of the selected representation formalism, that is, neither SPUDD nor the object-oriented approach
described below can take advantage of the characteristics of such scenarios.

The application of the value iteration algorithm on the object-oriented representation can be
split up in three phases: (1) initializing the value of the states, in particular of the goal states, (2)
simultaneously computing the value function for the next stage, and (3) simultaneously updating
the values of all states. The first phase basically means that the value of all non-goal states and
undesired goal states is set to 0.0, and the value of the desired goal state(s) is set to positive
reward(s). The values of the goal states do not need to be updated during phase two and three
of the value iteration algorithm. In phase two, each state node object computes the expected
utilities of all actions applicable in the corresponding state. Each state node gets the values of the
successor15 state nodes (the successor state nodes are known locally, as there exist pointers to them
in the TRANSITIONS attribute) via message passing—a standard communication pattern between
objects, which is based on remote method invocation (i.e., object � calls a method of object �
and is passed the result). That is, the values of the successor states, as well as the transition
probabilities and costs, are locally available in each state node object, such that each state node
object can compute a part of the value function locally (cf. Equation 3.3). It is important to notice
that the value of each node must not be updated before each state node has computed its value
at the next stage. Otherwise, a state node might use values of adjacent states of different stages.
Therefore, we split the computation of one iteration step in two phases—first computing the values

instructions could be considered. But computational resources impose an upper bound in practice.
15We speak of successor states, as the simple instruction problem has no cycles; in the general case, that is, if an

MDP contains cycles, one has to speak of adjacent nodes or nodes in the direct neighborhood.



66 CHAPTER 3. DECISION-THEORETIC PLANNING

of all states locally (phase two), and then update the values of all states (phase three).
For the (simple) instruction problem, phase two and three of the object-oriented value iteration

algorithm are repeated for a fixed number of times that equals the finite horizon � . In the case of an
infinite-horizon problem, phase two and three are repeated until the difference between the values
of two consecutive stages is sufficiently small in all state nodes.

3.1.5.3 Object-Oriented Approach Versus SPUDD

The last sections reveal advantages and disadvantages of both SPUDD and the object-oriented
approach. Both approaches try to capture as much as possible of the structure inherent to the pro-
cess to be planned. The object-oriented approach achieves a one-to-one mapping of the problem
structure, as the state-based nature of decision-theoretic planning with MDPs perfectly matches
the object-oriented programming paradigm. In fact, the decision for the extensional representation
on which SPUDD is based brings about the need to put much emphasis on keeping at least part of
the structure inherent to the problem. In this sense, the object-oriented approach appears to be the
more “natural” approach if one puts emphasis on keeping as much structure as possible.

A clear advantage of SPUDD over the object-oriented approach is its generality. While
SPUDD allows in principle to specify arbitrary MDPs (constrained only by the number of state
features), the object-oriented approach is problem-tailored and requires low-level programming.
However, the manual specification of problems in the format understandable by SPUDD is hardly
feasible except for very small problems16 . This means, that building a generator for the SPUDD
representation of a problem requires some low-level programming, too. And in fact, the low-
level programming required with both approaches is similar, as in both cases, it is supposed to
achieve the automatic generation of an MDP representation, for example, according to a set o
rules describing the structure of the MDP. In the case of SPUDD, the result is a specification of
the MDP that SPUDD can understand, in the case of the object-oriented approach, the result is an
object-oriented MDP.

Experiments with larger instances of the instruction problem on identical hardware indicate
that the required computing time with the object-oriented approach is at least not worse than with
SPUDD. Policy visualization and exploration come for free with SPUDD, but they can also easily
be incorporated into the objects-oriented approach.

Considering all aspects, the object-oriented approach appears to be a competitive alternative
to SPUDD. All problems that we describe in the following chapters were solved with the object-
oriented approach. Our programming language of choice was the Mozart Programming System17,
which beyond other programming paradigms supports object-oriented programming. Table 3.5
summarizes the characteristics of SPUDD and the object-oriented approach.

3.1.6 Partially Observable Systems

So far, we have considered processes in which only the outcome of actions can be uncertain.
There is a second type of uncertainty that can be relevant in decision processes. A system may
not know the world state exactly when making its decisions on how to act, that is, it may have
to rely on imprecise and noisy information and therefore have to base its choice of action on a

16Note that this is not in contradiction with the size of the problems (as stated in Section 3.1.5.1) that SPUDD can
handle once they are specified.

17Mozart is documented at and can be downloaded from http://www.mozart-oz.org/.

http://www.mozart-oz.org/
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SPUDD OO-approach
representation extensional, based on algebraic deci-

sion diagrams (ADDs)
intensional, based on objects-oriented
programming paradigm

applicability general Markov decision problems
(constrained by the problem size)

tailored to specific problem (constraint
by the problem size)

MDP specification ADD representations of action effects
and rewards; illegible and complex for
all but very small problems

rules defining the generation of the
object-oriented state-transition diagram

capability of capturing
problem structure

cannot always guarantee to capture the
complete structure inherent to the prob-
lem

naturally captures the complete struc-
ture inherent to the problem

policy visualization/
exploration

provides general visualization and ex-
ploration tools

provide problem-tailored visualization
and exploration facilities where neces-
sary

Table 3.5: Comparison: Main characteristics of SPUDD and the object-oriented approach.

probabilistic estimate of the world state (see, e.g., Drake, 1962; Astr öm, 1965; Sondik, 1971;
Smallwood & Sondik, 1973). This characteristic is called the partial observability of a process.
To give an example of partial observability of a process, we can extend the simple instruction
problem in the following way: Suppose, the system cannot directly determine the correctness of
the execution of instructions, but each time the subject has executed one ore more instructions,
the subject—instead of only confirming the execution by pressing the okay button—informs the
system about if he thinks that he has executed the instruction(s) correctly or not. In this case, the
system would have only uncertain information about the world state as the subject might think that
he has executed a sequence of instructions correctly but (with a particular probability) in fact has
not.

The partially observable extension of a Markov decision process is called a partially observ-
able Markov decision process (POMDP). Formally, the MDP framework is extended by a finite
set of observations and an observation function.

Definition 3.3 A partially observable Markov decision process is a tuple ��� ��� ��� � � ��� � � � ��� ,
where

� � ��� �
�
� � � � describe a Markov decision process;

�
�

is a finite set of observations about the world state; and

�
� � � � � � � � � � is the observation function, which gives, for each action action and
resulting state, a probability distribution over possible observations; we write

� � �$� � � ��� � for
the probability of making observation

�
given that the system took action � and the world

state changed to � � .
Kaelbling et al. (1998) give an overview of the POMDP framework. The main difference for

a system acting on a partially observable environment compared to a fully observable environment
is that instead of keeping track of the exact world state, the system keeps an internal belief state.
The belief state is a probability distribution over states of the world and summarizes the system’s
complete experience in the environment. That is, given the current belief state, no additional data
about past actions or observations would supply any further information about the current world
state. A system acting on a partially observable environment needs basically two components: a
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state estimator (which updates the belief state-based on the last action, the current observation, and
the previous belief state) and a policy that provides the optimal next action based on the system’s
belief state (rather than on the exact world state as in a fully observable environment).

For both exact and approximate algorithms to solve POMDPs, different new approaches have
been studied during the last decade. Zhang and Liu (1996) and Cassandra, Littman, and Zhang
(1997) describe the incremental pruning algorithm. Like preceding approaches, incremental prun-
ing uses a form of dynamic programming in which a piecewise-linear and convex representation
of one value function is transformed into another. According to the results presented by Cassandra
et al. (1997), incremental pruning outperforms other algorithms like, for example, the witness
algorithm introduced by Littman (1994). However, Kaelbling et al. (1998) describe the witness18

algorithm as one of the most efficient algorithms to compute exact solutions for POMDPs. Ex-
perimental results (Littman, Cassandra, & Kaelbling, 1995) suggest that the witness algorithm
becomes impractical for problems of modest size (e.g., � � � � ���

and � � � � ���
), and incremental

pruning does not outperform the witness algorithm in orders of magnitude. Moreover, all problems
considered for comparison are at best of a moderate size (e.g., 12 states, 6 actions, 5 observations,
4 stages).

Approximate algorithms for POMDPs have in particular been analyzed in the context of robot
navigation (e.g., Roy & Thrun, 1999; Thrun, 2000) and recently also for spoken dialog manage-
ment (e.g., Roy et al., 2000; Montemerlo, Pineau, Roy, Thrun, & Verma, 2002—cf. also Section
2.2.7.2). The approximation is based on the idea that the most likely world state in addition with
the entropy of the belief state provides a sufficient statistic for the entire belief state. That is, a
policy is computed for every � � � � ���

�
� � ���

� � � � -pair instead of the continuous belief state. Pineau,
Roy, and Thrun (2001) and Pineau, Gordon, and Thrun (2003) describe a hierarchical approach to
POMDPs and among other domains test it for spoken dialog management.

Several other approaches to compute approximate solutions for POMDPs have been proposed.
For example, Hansen (1998) introduces an approach that represents a policy explicitly as a finite-
state controller and iteratively improves it by searching in policy space. A new heuristic search
algorithm focuses the computational effort on regions of the problem space that are reachable or
likely to be reached from a start state. Ng and Jordan (2000) propose a method that transforms
a POMDP into an “equivalent” POMDP in which all state transitions are deterministic and then
search for a policy with high estimated value. Hansen and Feng (2000) describe an approach using
a factored state representation, and thereby extend the framework introduced by Boutilier and
Poole (1996). Brafman (1997), Hauskrecht (2000), Zhang and Zhang (2001), Zhou and Hansen
(2001) and others describe grid-based approximation methods for POMDPs. The basic idea is to
place a finite grid over the belief simplex19, compute values for points in the grid, and interpolate
to evaluate all other points in the simplex.

This section indicates the particular complexity problems involved in solving POMDPs. We
will summarize some of the important general aspects about complexity involved in solving both
fully observable and partially observable Markov decision processes in the next section.

18The name “witness” refers to the technique that is used to determine when an exact representation of the value
function is found.

19A simplex
��� 0�� is the convex hull of 	�

� points � � that do not all belong to the same hyper plane; for

example, a two-dimensional simplex is a triangle, a three-dimensional simplex is a tetrahedron.
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3.1.7 About the Complexity of Solving MDPs and POMDPs

The question if the techniques considered in this chapter scale to solve planning problems of
reasonable size has to be analyzed from two perspectives: (1) by considering the complexity of
the state space and (2) by considering the complexity of policy construction. We will comment on
the results for both questions in the light of the problems that we will consider in the context of
user-adaptive systems.

3.1.7.1 State Space Complexity

We have already mentioned Bellman’s curse of dimensionality in earlier sections: The state space
of an FOMDP grows exponentially with the number of state features. Using a general approach for
arbitrary Markov decision problems (e.g., SPUDD), one has to arrange for an algorithm working
on a factored representation of the state space to focus computational effort on reachable parts of
the state space (e.g., as supported by the use of ADDs in SPUDD). Hand-crafted or automatically
generated, problem-tailored models ensure—assuming a proper construction—that only relevant
states are considered by any algorithm working on such explicit representation. However, in the
worst case, all combinations of the state features’ values represent a relevant (reachable) state,
that is, neither the factored nor the explicit representation of the state space overcomes Bellman’s
curse of dimensionality. The simple instruction problem as well as the examples of the forthcom-
ing chapters illustrate that decision processes in the context of user-adaptive systems are often
sufficiently well structured to allow the consideration of problems (and problem sizes) relevant in
practice.

In the context of POMDPs, the state space problem is aggravated: Instead of considering a
discrete (world) state space, one faces a continuous (i.e., infinite) belief state space. However, all
approaches to POMDPs exploit the insight that the finite-horizon value function over the belief
space is piecewise linear and convex for every horizon length. That is, for each iteration of the
value iteration algorithm, it is required to find only a finite number of linear segments that make
up the value function. Problems of the size of a partially observable instance of the simple instruc-
tion problem—one might say toy problems—can in principle be tackled using any of the exact
approaches described in Section 3.1.6.

Work on approximate methods, for example, as proposed by Roy et al. (2000), promises to
allow addressing at least some interesting partially observable problems that might arise from our
domains of interest in the future. By compressing the belief state to the most likely state and
the entropy of the belief state, they solve problems that involve 20 actions, 16 observations, and
13 world states. However, the authors comment only on the time needed to solve a considerably
smaller test problem.

For solving partially observable Markov decision processes, Poupart and Boutillier (2004)
identify two major sources of intractability: (1) the curse of dimensionality and (2) the policy
space complexity. With their VDCBPI20 algorithm, they describe the first approach to tackle
both these sources of intractability and can demonstrate the scalability of the VDCBPI algorithm
on synthetic network management problems with up to 33 million states. Thus, the VDCBPI
algorithm might allow to use POMDP models in the context of user-adaptive system in the future.

20VDCBPI stands for the Value Directed Compression technique with Bounded Policy Iteration.
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3.1.7.2 Complexity of Policy Construction

FOMDPs with time-separable, additive value functions can be solved in time polynomial in the
size of the state space, the number of actions, and the size of the inputs21 (Boutilier et al., 1999).
Finite-horizon and discounted infinite-horizon problems require a polynomial amount of compu-
tation per iteration—

� � � � � � � ��� � and
� � � ��� � � � � %�� ���

�
� , respectively—and converge

in a polynomial number of iterations. This explains why the size of the state space that has to be
considered is crucial for the time required to solve an FOMDP. The space required to store the
policy for an � -stage finite-horizon problem is

� � � � � � � , the space required for the stationary
policy of an infinite-horizon problem is

� � � � � � . Further complexity results for FOMDPs are
summarized by Littman, Dean, and Kaelbling (1995).

The problem of finding an optimal policy for a POMDP with the objective of maximizing
expected total reward or expected total discounted reward over a finite horizon � is exponentially
hard both in � � � and � (Papadimitriou & Tsitsiklis, 1987). The problem of finding a policy that
maximizes or approximately maximizes the expected discounted total reward over an infinite hori-
zon is shown to be undecidable (Madani, Hanks, & Condon, 1999). Further nonapproximability
results for POMDPs are summarized by Lusena, Goldsmith, and Mundhenk (2001).

3.2 Synopsis

In this chapter, we have surveyed the elements of Markov decision processes22 and the standard
algorithms to solve them. We have illustrated the basic concepts with a simple example from an
experimental setting, and we have emphasized on different possibilities to represent an MDP. The
analysis of two approaches, an off-the-shelf approach based on a factored representation and a
domain-tailored approach based on object-oriented programming, has revealed that the latter is
more appropriate for the problems that we consider in the context of user-adaptive systems. More-
over, an empirical comparison of the two approaches (based on the simple instruction problem
that we have used throughout this chapter) has shown that our approach is about ten times faster
than the approach based on the factored state space representation.

We have briefly looked at partially observable Markov decision processes, which would have
allowed to consider problems in user-adaptive systems that involve uncertain feedback about the
state of the interaction between the system and the user. Unfortunately, the problem of how to
solve large POMDPs efficiently is still an open question that keeps the AI planning community
busy. As the remaining chapters will show, there exist manifold problems of relevance in the
field of user-adaptive systems for which it is appropriate to assume full observability of the state
of interaction. In the next chapter, we apply the object-oriented approach to moderately sized
Markov decision problems of practical relevance for user-adaptive systems.

21More precisely, the maximum number of bits required to represent any of the transition probabilities or costs.
22Closely related to Markov decision processes are hidden Markov models (see, e.g., Rabiner, 1989). A hidden

Markov model (HMM) is a statistical model where the system being modeled is assumed to be a Markov process
with unknown parameters. Based on this assumption, the challenge is to determine the hidden parameters from the
observable parameters. The extracted model parameters can then be used to perform further analysis, for example, for
pattern recognition applications. Prominent application areas of HMMs are, for example, speech recognition, optical
character recognition, natural language understanding, bioinformatics, and genomics.



4 FOMDPS IN SCENARIOS OF LOW

COMPLEXITY

In the previous chapter, we have introduced the basic concepts of decision-theoretic planning and
illustrated its application with an example based on a simple form of interaction between a system
and its user. In this chapter, we will describe two examples for the application of decision-theoretic
planning in realistic contexts. We will consider one problem in the context of a stationary appli-
cation, in which a system provides adaptive assistance for operating a technical device, and one
problem in the context of a mobile application, in which the system provides adaptive navigation
recommendations within a complex building. To make the examples more concrete, we place both
applications in an airport scenario: We will describe an airport assistance system that (1) helps
the user with instructions on how to operate a credit card phone and (2) provides the user with
adaptive navigation recommendations to get to the gate and potentially buy something in one of
the stores along the way.

4.1 Assistance for Operating a Technical Device

Many technical devices provide some kind of build-in assistance, for example, for situations in
which the user needs some information before he can proceed with a task (e.g., the DT Tutor
system; see Section 2.1.3.5) or to make the user aware of ways to do a task that he is already
familiar with more efficiently (e.g., the Microsoft Office Assistant; see Section 2.1.3.2). The case
that we consider in this section is different. We analyze a situation in which an assistance system �
explains to the user

�
how to operate a credit card phone that is installed somewhere in an airport

building. That is, the assistance functionality that we consider is not build-in to the system (i.e.,
the credit card phone) itself, but the system acts as an external assistant for a technical device.
We assume that this assistance system runs on a small handheld computer that provides input and
output facilities like pen, microphone, display, loudspeaker, and the like.

4.1.1 External Assistance Systems for Technical Devices

In this section, we come back to the WIP system, which we have already described in Section
2.2.2.2, and compare WIP with the READY assistance system for operating a credit card phone.
As a further example of assistance systems for technical devices, we describe ADAPTS, an assis-
tance system for maintenance technicians in the helicopter domain.

71
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4.1.1.1 Wahlster et al. (1993): WIP (revisited)

In Section 2.2.2.2, we have reviewed the multimodal presentation system WIP (Wahlster et al.,
1993). To illustrate its functionality, it was applied for providing assistance to operate an espresso
machine, to assemble a lawn-mower, and to maintain a modem. In contrast to the READY as-
sistance system for operating a credit card phone, WIP plans presentations incrementally, that is,
all presentation decisions are postponed until runtime. With regard to the limited computational
resources available on many handheld computers, complex decision making at runtime can be
disadvantageous.

The decision-theoretic planning approach yields a policy as the solution to a planning problem.
As a policy can be computed offline, for example, on the workstation of an information kiosk or on
the personal computer at home, the handheld device merely needs to apply the policy like a look-
up table. While interactivity is not a strength of the WIP system (a drawback that was eliminated in
the PPP system based on WIP—see Section 2.2.2.3), the application of a policy allows for some
interactivity as far as the user’s actions are foreseeable and considered in the decision-theoretic
model. In restricted domains, such as the ones that WIP was used for, a decision-theoretic model
can cover the potential variations of the interaction between the system and its user to a great
extend.

WIP coordinates output in different modes. In the READY assistance system for operating
a credit card phone, we have not taken different forms of presentation into account. However,
different forms of presentation for this application can be considered in the decision-theoretic
model in analogy to the model described in Section 4.2.3. Different forms of presentation will be
discussed in more detail in Section 4.1.3.1.

4.1.1.2 Brusilovsky & Cooper (2002): ADAPTS

ADAPTS1 (Brusilovsky & Cooper, 2002), an electronic performance support system (EPSS) for
maintenance technicians, integrates adaptive guidance from diagnostics systems with adaptive ac-
cess to technical information. ADAPTS adjusts the diagnostic strategy to who the technician is and
what the technician is doing, dynamically adapting the sequence of setups, tests, and repair/replace
procedures based on the technician’s responses. New activities are planned depending on the tech-
nician’s responses to current recommended activities. The system assembles information content
on the fly in response to the steps of that diagnostic process. The technician receives dynamically
selected technical support information appropriate for the the setup, test, and remove/replace pro-
cedure being performed. The user model determines what task to do, what technical information
to select to describe the task, and how to best display that information for a given technician.

Typical hypermedia systems identify a predefined course through technical information. The
ADAPTS system, on the other hand, dynamically defines a unique course each time it presents
technical information. In this case, the adaptive diagnostics components serves as the expert tech-
nician, driving the troubleshooting strategy based on a dynamic assessment of time, effort, payoff,
resources, and a specific technician’s knowledge and experience with a specific troubleshooting
scenario.

Like in an earlier version of the READY system, ADAPTS bases its adaptation strategy ex-
clusively on the user model and the assessment of the situation at the time of decision making. In

1Possible scenarios for using adaptive hypermedia for adaptive performance support were explored in the context
of the ADAPTS (Adaptive Diagnostics and Personalized Technical Support) project.
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the scenario at hand, we would expect that it is worthwhile to take potential ways of how the trou-
bleshooting process might evolve in the future into account, and thereby guide the troubleshooting
that the technician performs into the right direction (i.e., such that it can be completed effectively).

In the following sections, we will illustrate how decision-theoretic planning can be applied in
the context of an external assistance systems for operating a credit card phone.

4.1.2 Example Domain

Although operating a credit card phone is not a very difficult task in general, people get frequently
confused about the procedure under certain circumstances. The unfamiliarity with a particular type
of credit card phone stands to reason, for example, if the user is a traveler who has just arrived
in a foreign country. A similar problem arises, for example, in the context of operating a ticket
machine (for bus or train tickets) or operating the petrol pump of a filling station (especially those
that offer different sorts of petrol at the same petrol pump and allow to pay by credit card at the tap
directly). Not all systems that should provide assistance in fact do provide (sufficient) assistance.
The lack of language ability enforces the need for external assistance—yet, the problem exists also
for people with adequate knowledge of a language. Therefore, providing external assistance for
such devices is a reasonable attempt to help users and to offer a valuable service to them.

I want to use the
credit card phone!

Well, how do I have to,
shhhh, arrrgh, have to
operate this credit card
phone?

Let me down, mom!
Get out your credit card
Lift the receiver
Dial 0

?

Get out your credit card

Figure 4.1: Assistance for operating a credit card phone in two different situations.
(A user-adaptive system should take the user’s situation into account when making the decision about how
to present information to the user.)
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The ability to operate a technical device is not only dependent on static preconditions (such
as the knowledge of a language) but also on the user’s current situation. Figure 4.1 illustrates two
situations that require different strategies by � to provide assistance for

�
. The woman who carries

her luggage and child is distracted by the kid’s complaints and will hardly be able to concentrate
and follow several instructions given in one turn. Short and simple instructions, possibly illustrated
with meaningful pictures, might be more appropriate for her. The young man, who apparently has
already got rid of his luggage, seems to be relaxed and can fully concentrate on operating the
phone. For him, the bundling of several instructions might be more appropriate. He might even be
annoyed if being assisted with unnecessarily verbose instructions (cf. Section 1.2; dialog between
a customer and an ATM). We use the decision-theoretic planning approach in particular to achieve
adaptation to situative resource restrictions (see also Bohnenberger, 2001).

4.1.3 Assumptions

Operating a credit card phone requires a sequence of actions starting with holding the credit card
ready and lifting the handset, dialing some preliminary digits before entering credit card infor-
mation, and eventually dialing the desired number. � could for example use the following eight
instructions to assist

�
during the operating process:

1. “Hold your credit card ready.”

2. “Lift the handset.”

3. “Dial 0.”

4. “After the tone, dial 9.”

5. “After the tone, enter your credit card number.”

6. “Enter two digits for the month of expiration.”

7. “Enter two digits for the year of expiration.”

8. “After the tone, dial the desired number.”

Even with this small set of instructions, a number of different instruction sequences can be gener-
ated by bundling several instructions together. Neither giving all of these instructions step by step,
nor giving all of them in one turn seems to be the appropriate strategy in all situations. In some
situations, the optimal strategy might lay somewhere in between, for example, bundling the first
three instructions, giving two instructions stepwise, bundling two instructions, and giving the last
instruction stepwise again. The bundling strategy depends also on the complexity of individual
instructions.

4.1.3.1 Variations of the Form of Output Presentation

The number of possible variations grows if we consider different forms of presentation and syn-
tactical variations of the same content. The instruction “Hold your credit card ready.” can, for
example, be prompted on the display of the handheld computer, but it can also be given in spoken
language by playing the corresponding sound file on the handheld computer, or it can be visu-
alized, for example, by an appropriate illustration or animation on the display of the handheld
computer. Also combinations of different forms of output presentation can be appropriate in some
situations. Using the same form of output presentation, there still exist reasonable variations. For
example, instead of the utterance “Hold your credit card ready.” the more verbose version “You
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will need information from your credit card to use this phone. Please, hold the credit card ready.”
can be more appropriate under certain circumstances (e.g., to reassure that

�
knows that the phone

he wants to use works with credit card).

All of the mentioned options have advantages and disadvantages. For example, speech output
does not require

�
to hold the handheld computer in a position such that he can read the output

on the display. On the other hand, speech output might be error prone in a noisy environment.
Advantages and disadvantages of this kind can be identified for each form of output that we have
listed. With the Markov decision process that we describe in Section 4.1.4, we will focus only on
the bundling of instructions and not on variations of the form of output presentation or syntactical
variations of the same content. Different forms of output presentations are used in the application
described in Section 4.2.2: The system described there can use different forms of presentation,
for example, one providing only the basic navigation information and one providing additional
information about the close environment.

4.1.3.2 Feedback About the Interaction

As � is an external help system— � is not integrated in the device to operate and therefore has
no means to find out about

�
’s performance directly—

�
has to give feedback explicitly whenever

he is finished with an instruction. He could, for example, press a push-button (as they can often
be found below the display of a handheld computer), tab with a pen2 on an okay button on the
display of the handheld computer or say something like “Okay, I’ve done this...” if the system can
deal with speech input. However, giving feedback takes time and is annoying for

�
if required

unnecessarily often. Instead, � should bundle instructions in the most convenient way for
�

’s
current situation and thereby minimize the number of times

�
is required to give feedback.

We assume that
�

’s feedback, no matter what form of input
�

chooses, is fully observable
for � . If

�
, for example, says “Okay, I’ve done this...”, this means that

�
was able to execute

� ’s last instruction (or bundle of instructions) completely and correctly. Note that this model does
not consider the case in which

�
has completed one or several instructions, thinks that he has

completed all of them correctly, but in fact has made one or several mistakes when following � ’s
instructions. Considering this case would involve a partially observable model, in which

�
might

provide uncertain feedback about the state of the interaction in terms of observations that he might
report to the system. Uncertainty about the state of the world often results from the user not being
able to determine exactly what problem he faces. For example, after having inserted the credit
card,

�
might say something like “I can hear a sequence of short tones, now...”, by which � might

infer that with a certain probability
�

has inserted the credit card incorrectly, that
�

has executed
two instructions in the wrong order, that the credit card phone is out of order, or something similar.

However, we assume that
�

provides reliable and sufficient feedback for � to assume the
interaction to be fully observable. If

�
is, for example, uncertain about the order in which he

is supposed to execute two instructions, we assume that he would ask for repetition of the last
instruction or instruction bundle. How a repeat action can be realized and what effect it has on the
bundling strategy of the system will be described in Section 4.1.4.1.

2Most of today’s handheld computers are mainly operated with a pen. However, the form of input is secondary in
this context.
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4.1.4 Model

The model that we have developed for the experimental setting in Section 3.1.1, and by which we
have explained the decision-theoretic planning approach, can directly be transfered to the example
at hand—giving adaptive assistance for a technical device. Figure 4.2, which describes the struc-
ture of the Markov decision process to plan the dialog between � and

�
, is more or less a blueprint

of the structure of the MDP to plan the interaction in the experimental setting (cf. the explanation
of Figure 3.3 for more details about the structure of the decision-theoretic model at hand.).

Time it takes
for S to utter
a single instruction

GIVE
INSTRUCTION

COST
OF ACTION

WAIT FOR
EXECUTION

N TO GIVE:

N IN BUNDLE:

N IN WM:

Action 1

CORRECT
PERFORMANCE?

+1

−1

+1

−1

a single instruction

The average
duration of
the action

How long is the
current bundle of

instructions?

How many
instructions does
U have in working

memory?

Has U so far
avoided making

any errors?

S utters a single
instruction, e.g.
"Lift handset"

0 iff
no more
instructions

Time it takes
for U to execute

(depending on
N IN BUNDLE
and N IN WM)

S waits for U to
execute a single

instruction

Turns from
correct to
incorrect with
probability depending
on N IN BUNDLE
and N IN WM

instructions does
S still have to give?

How many

State Features Action 2

Cost

Figure 4.2: Structure of the MDP to plan the instructions for operating a credit card phone.
(The structure for the given problem is identical to the structure in the experimental setting (cf. Figure 3.3).
The difference is merely of a quantitative nature and cannot be seen in this figure. The same MDP structure
could be used for similar problems in other contexts, too.)

The construction of the MDP starts with a state in which the variable N TO GIVE equals
the number of instructions that are to be given. If we want to plan the complete sequence of
instructions, N TO GIVE equals 8. The variables N IN BUNDLE and N IN WM equal 0 in the initial
state, the variable CORRECT PERFORMANCE? equals true. The only possible action in this state
is GIVE INSTRUCTION (“Get out your credit card”). The corresponding transition is deterministic
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and leads to the state where N TO GIVE equals 7, N IN BUNDLE and N IN WM equal 1, and
CORRECT PERFORMANCE? is still true. From this state, � can either give the next instruction
or wait for

�
to execute the instruction already given by � . The transition of the action GIVE

INSTRUCTION from this state has the same effects as in the initial state: N TO GIVE is decreased
by 1, N IN BUNDLE and N IN WM are increased by 1. The action WAIT FOR EXECUTION brings
about two transitions. One leads to a state where CORRECT PERFORMANCE? is still true, the
other leads to a state where CORRECT PERFORMANCE? is false—the user has made a mistake
when executing the instruction, for example, he has taken out the wrong credit card. In both
successor states, the variable N TO GIVE has not changed its value compared to its predecessor
state, but N IN WM has been decreased by 1 and N IN BUNDLE has been set to 0. The two
transitions are annotated with the probabilities that

�
executes the instruction (given a bundling

size of 1 and 1 instruction in his working memory) correctly or with a mistake, respectively. The
procedure for creating new states and transitions for the two possible actions is repeated until all
new transitions end in goal states (where N TO GIVE and N IN WM both equal 0).

While the structure of the resulting MDP is the same as the structure of the MDP for the
simple instruction problem (see Section 3.1.2), the costs, that is, each of the durations of � giving
a particular instruction and

�
executing a particular instruction, as well as each of the probabilities

of
�

making a mistake when trying to execute a particular instruction, have to be adjusted. As
in the experimental setting of Section 3.1.1, the time needed by � to give an instruction can be
measured directly, the time needed by

�
to execute a particular instruction can be determined

by averaging the times needed in a number of test cases, and the probability that
�

executes a
particular instruction correctly can be derived from the relative frequency of correct executions of
a particular instruction in a number of test cases.

4.1.4.1 An Additional Repeat Action

Bohnenberger (2000) has studied the effects of introducing an additional action REPEAT IN-
STRUCTION in the context of the experiment described in Section 3.1.1. The idea is that the
user can ask the system to repeat the last instruction(s) if he was not able to execute them cor-
rectly. Thereby, we assume that the system can only repeat a fixed number of instructions. This
assumption requires an additional state feature in the decision-theoretic model to keep track of the
remaining number of repetitions that the system is allowed to do.

In the experimental setting, we have studied the policies for giving 4 instructions with varia-
tions in the following parameters: (1) the reward for executing all 4 instructions correctly, (2) the
information if the user is distracted or not, and (3) the maximal number of allowed repetitions.
The rewards reflect the importance of executing all instructions correctly. A reward can be inter-
preted as having an additional amount of time available when reaching the goal. For example,
a reward of 10000 means that executing all instructions correctly is worth for the user as much
as having some additional 10000msec (or 10sec) available. Against this background, the results
shown in Figure 4.3 must be interpreted as follows: For example, if the user is not distracted and
the system is not allowed to repeat any instruction, then the dominant strategy3 is to bundle two
times two instructions together. If the system is allowed to repeat one instruction, the dominant
strategy is to give all instructions stepwise—the policy recommends other strategies only for very
small rewards. If the system is allowed to repeat two instructions, the dominant strategy is to

3We use the term dominant strategy in an informal way; it means that this strategy is chosen for nearly all rewards.
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bundle two times two instructions together if executing all instructions correctly is worth less than
about 12.4sec of additional time, to give the first two instructions stepwise and bundle the last two
instructions if executing all instructions correctly is worth between about 12.4sec and 24.2sec of
additional time, and to give all instructions stepwise if executing all instructions correctly is worth
more than about 24.2sec of additional time. The other table entries can be interpreted analogously.
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Figure 4.3: Bundling policies under varied parameters.
(The table specifies the reward intervals for which the system uses a particular instruction policy, given the
information if the user is distracted or not and the number of instructions the system is allowed to repeat.)

Figure 4.3 gives a notion of how the assumption that the user can ask the system for repetition
of instructions changes the overall instruction strategy of the system. In the READY prototype
demonstrating the assistance for operating a credit card phone, the user is also allowed to ask
for repetition of instructions. We have experimented with different degrees of look ahead and
different numbers of allowed repetitions. The example of assisting the user when operating a
credit card phone includes eight instructions altogether. Effective configurations for this example
are to plan either the first three, then two, and the last three instructions, or to plan two times four
instructions, each time allowing two or three instructions to be repeated if necessary. Dealing,
for example, with two times four instructions in two planning processes instead of considering
all eight instructions in one planning process facilitates the incorporation of updated information
from the user modeling component during the interaction of the system with the user. In the
following example of the system behavior, the user does not ask for repetition but manages to
execute all instructions correctly in the first attempt. Appendix B lists a part of a sample trace of
the computations for planning a sequence of three instructions with one repetition allowed.
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4.1.5 System Behavior

In this section we describe the behavior of the system assisting a passenger who is in a hurry when
he requests help from the airport assistance system. His articulation rate is high, and on his first
attempt he does not click accurately on the phone icon displayed on his PDA’s display, clicking
slightly next to it instead. For the example, we assume the kind of environment that is described
in Section 4.1.6, including a user modeling component based on a dynamic Bayesian network. In-
stantiation of the nodes that correspond to the above described symptoms in the dynamic Bayesian
network causes � to infer a relatively high level of time pressure. The updated user model is now
used to parameterize the decision-theoretic planning process. A dialog policy is computed, which
determines the system’s next four instructions. � starts with a single instruction:

� � : “Get out your credit card.”
� � waits for feedback (e.g., � might say something like “OK, I’ve got my credit card ready

now . . . ”).

� then bundles the next two instructions:

� � : “Lift the receiver.”
� � : “Dial 0.”
� � waits for feedback.

In principle, � could have given the first three instructions in one bundle. Many factors contributed
to the decision to give the first one separately; one of them is the relatively long duration of the
action of getting out the credit card, which decreases the likelihood that any subsequent instruc-
tions within the same bundle would be remembered correctly. Although

�
’s articulation rate has

meanwhile decreased to a moderate level, � ’s estimate of
�

’s time pressure is still relatively high,
since the dynamic Bayesian networks incorporate the assumption that the degree of time pressure
is unlikely to change suddenly at any given moment. There is still no evidence for an unusual level
of cognitive load.

� bundles the next two instructions again:

� � : “After the tone, dial 9.”
� � : “After the tone, enter your credit card number.”
� � waits for feedback.

These instructions would not be bundled if the actions were to be performed in the reverse order:
After the complex action of entering the credit card number, the probability of remembering any
other instruction would be relatively low.

� gives the last three instructions stepwise:

� � : “Enter two digits for the month of expiration.”
� � waits for feedback.
� � : “Enter two digits for the year of expiration.”
� � waits for feedback.
� � : “After the tone, dial the desired number.”
� � waits for feedback.



80 CHAPTER 4. FOMDPS IN SCENARIOS OF LOW COMPLEXITY

This choice of stepwise presentation is influenced in part by the working memory demands of
the actions involved. For example, entering information about the expiration date is classified as
being more demanding than lifting the receiver. It is possible to classify the inherent difficulty of
executing a particular instruction as simple, moderate, or difficult in the READY prototype (see
Section 4.1.6), which specifies the influence that the situative resource restrictions have on the
probabilities used in the decision-theoretic planning process.

4.1.6 Assistance for Operating a Technical Device in the READY Prototype

With the READY prototype, we describe the type of environment in which decision-theoretic
planning can be useful to adapt the system behavior to the user’s current situation.

In Section 3.1.4 we have seen how a decision based on decision-theoretic planning depends
on the reward for a desired goal state (cf. in particular Figures 3.5 and 3.6). A high reward for
the desired goal state results in a policy that recommends giving the two instructions of the simple
instruction problem stepwise, while a low reward results in a policy that recommends bundling the
two instructions. In fact, the qualitative measures for the rewards, costs, and probabilities provide
the interface to a system’s user modeling component.

In the following subsections, we describe the individual components of the READY prototype
and how they interact with each other. In particular, we will explain the relation between the user
modeling component and the decision-theoretic planner.

4.1.6.1 The Architecture of the READY Prototype

We take a brief look at the architecture of the READY prototype (see also Bohnenberger, Brand-
herm, Großmann-Hutter, Heckmann, & Wittig, 2002) and in particular to its user modeling compo-
nent before we explain the influence of the user model on the decision-theoretic planning process.
Figure 4.4 summarizes the components of the READY prototype and indicates which components
interact with each other.

We first survey all components of the complete READY architecture before we describe the
particular relation between the Decision-Theoretic Planning component and the User Modeling
component in Section 4.1.6.3. The two pass information via the so called Interaction Manager. The
role of the Interaction Manager is to establish the connections to the Decision-Theoretic Planning
component, the User Modeling component, and the User Interface, and to execute a script which
determines the individual coarse steps of the interaction between the system and the user. Each
of the components listed in Figure 4.4 runs in its own process. They interchange data via the
Interaction Manager on the basis of socket communication—the interface specification is given in
Appendix C.

The two architecture segments Experiments and BN Learning/BN Adaptation (upper half of
Figure 4.4) do not belong to the runtime components of the READY prototype. The empirical
data gained in Experiments are exploited in both the Decision-Theoretic Planning component and
for the learning and adaptation of Bayesian networks (BN Learning/BN Adaptation; cf. Wittig,
2003). The Bayesian networks form the core of the User Modeling component.

User Modeling Bayesian networks (see Section 2.1.3.1) have gained increased popularity for
making inferences in user modeling components of complex systems (see, e.g., Horvitz et al.,
1998). In particular, two properties of Bayesian networks make them especially appropriate for
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Figure 4.4: Components of the READY prototype.
(The decision-theoretic planning component, the user modeling component, and the user interface commu-
nicate with each other via a so called interaction manager. Parts of the user model can be learned, which
involves the learning of Bayesian networks. Empirical data gained in experiments are exploited by the
learning component and the decision-theoretic planning component.)

the purpose of user modeling: (1) their ability to handle uncertainty, which is typically pervasive
when making inferences about a user, and (2) their interpretability.

READY employs dynamic Bayesian networks to model user properties that change over time.
In particular, these properties are time pressure (as it is felt by the user himself—in contrast to time
pressure that can objectively be measured with regard to a deadline) and cognitive load. Evidence
for time pressure and cognitive load can be gained from symptoms in the user’s input.

A dynamic Bayesian network consists of a sequence of time slices. Each time slice of the
dynamic Bayesian network used in the READY prototype contains three types of nodes: (1) dy-
namic nodes, such as nodes that represent time pressure or cognitive load, (2) temporary nodes,
such as nodes that represent occurrences of disfluencies or pauses in spoken user input, and (3)
static nodes, such as nodes that represent the base rates of occurrences of disfluencies or pauses.
Figure 4.5 describes the dynamic Bayesian network as it is used in the READY prototype.

Links between dynamic nodes of consecutive time slices represent causal dependencies that
persist over time. Temporary nodes have a direct influence only to nodes within the same time
slice. Static nodes have only a single instantiation in the complete dynamic Bayesian network and
have a direct influence on temporary nodes in all time slices.

Dynamic nodes of time slice � depend on nodes of time slice � � �
. For example, the as-

sessment of cognitive load at time � depends on the assessment of cognitive load at time � � �
.
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Figure 4.5: Dynamic Bayesian network for the recognition of a user’s resource limitations.
(A new time slice is added each time when new evidence becomes available to he system. Dynamic nodes
represent properties of � that have a probabilistic relation to corresponding instances of the preceding time
slice, temporary nodes represent symptoms in � ’s input in a particular time slice, and static nodes represent
stable properties of � ’s behavior—in particular the base rates of symptoms.)

Temporary nodes are used to represent information that is only relevant at a particlar point in time.
For example, the dynamic node cognitive load depends on the temporary node disfluencies. Static
nodes have only a single instance in a dynamic Bayesian network. For example, the base rates for
speech symptoms do usually not change during the interaction of the system with the user and can
therefore be modeled as static nodes. The current assessment of speech symptoms (within a single
time slice) depends on the corresponding static node that represents the base rate of the speech
symptom under consideration.

A more detailed explanation about how the READY prototype gains evidence for time pressure
and cognitive load from symptoms that occur in the interaction between the system and the user
are described, for example, by Jameson et al. (2000) and Lindmark (2000).

The READY User Modeling component based on Bayesian networks is only an example for
a component that yields information which can be used by a decision-theoretic planner. If, for
example, a user modeling component using Dempster-Shafer theory or fuzzy logic (see Section
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2.1.3.7) is designed in a way that it yields similar assessments of cognitive load and time pressure,
then such a user modeling component can be connected to a decision-theoretic planner in the way
described in Section 4.1.6.3.

4.1.6.2 The User Interface of the READY Prototype

The user interface of the READY Prototype is realized on a workstation display as a simulation of
a handheld device. To be able to simulate the use of a broad range of types of input and output, the
prototype does not include components such as real speech recognizers and synthesizers; instead,
all input and output is specified with the typical controls of graphical workstations (e.g., menus
and graphical and textual displays).

Figure 4.6: The user interface of the READY prototype.
(The user interface is divided in four parts. Starting with the upper left part and moving clockwise, they
show: (1) a trace of the inter modular communication, (2) the assessment of the user’s time pressure and
cognitive load, (3) the specification of the speech input of the user and the speech output of the system, and
(4) the specification of the manual input of the user and the graphical/textual output of the system.)

Figure 4.6 shows a screen shot of the user interface of the READY prototype. The user inter-
face is divided in four parts: (1) The upper left part, the window entitled intermodule communi-
cation, shows a trace of the communication between the READY components; (2) the upper right
part is used to monitor the assessment of the user’s time pressure and cognitive load; (3) the lower
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right part shows the simulated system’s speech output and provides means to specify the user’s
speech input; and (4) the lower left part shows the simulated system’s graphical or textual output
and provides means to specify manual input (e.g., how the user has typed with the pen on an icon
or how he behaved when selecting an item from a menu on the handheld computer display).

The trace of the intermodule communication is displayed merely for supervision purposes. It
is used to explain the functioning of the prototype in demonstrations. The assessment of the user’s
time pressure and cognitive load takes place in discrete time steps. Each action of the user implies
a new assessment of the user’s time pressure and cognitive load. Each assessment corresponds
to a new time slice in the dynamic Bayesian network that represents the user model The initial
probability of time pressure and cognitive load is 0.5, that is, the system assumes that it is equally
likely that the user is under time pressure or not, and that the user’s cognitive load is high or not,
respectively.

The specification of the user’s speech input comprises information about disfluencies in the
user’s speech, his articulation rate, the quality of an utterance, the number of syllables of an utter-
ance, as well as information about silent and filled pauses. The specification of the user’s manual
input (e.g., typing on the handheld computer display with a pen) comprises information about the
speed of movement (e.g., how quick does the user scroll through a menu), the speed of processing
(e.g., how long does the user need to select an item of a menu), the force of typing on the handheld
computer display4 , information about repetitions (e.g., does the user click on an icon several times
although only a single click is required), the information if the user clicks only close to a target
(e.g., an icon) instead of exactly on the target, and other informative patterns of behavior that can
occur in particular forms of manual input.

4.1.6.3 The Influence of the User Model

What impact should it have on the dialog planning process when the user modeling component has
inferred a high degree of time pressure? We have said before that rewards, costs, and probabilities
used in the decision-theoretic planning process provide the interface to a system’s user modeling
component. One way of modeling time pressure is to assign a high cost to each second of time
that is required by an action performed by the system or the user. In practice, it is easier to achieve
the same effect by decreasing the reward(s) for the goals state(s). Where the system is planning
sequences of instructions, increasing the cost of time causes the system to derive policies that
involve relatively large bundles of instructions. This is the general result that one would expect
intuitively, since such policies tend to lead to faster task completion.

When the user modeling component has inferred a high degree of cognitive load of the user,
the probabilities of correct executions of actions by the user should be lowered. For the scenario
considered here, no empirical data for the estimation of these probabilities are available. Section
6.4 discusses various possible strategies for estimating parameters of this sort. However, the data
of the experiment introduced in Section 3.1.1 allowed at least a rough estimation of the relevant
transition probabilities for a low and a high level of cognitive load. If we call these probability
levels �

�
� � � ����� and �

�
� � � �

�
� � for the execution of the � � � instruction of a bundle of size � , then the

actual transition probability �

�
� � of the � � � instruction of a bundle of size � , given an evidence for

4The described features are not standard for most available handheld devices, but there exist already some devices
that are equipped with a sensor of this kind.



4.2. NAVIGATION ASSISTANCE IN COMPLEX BUILDINGS 85

cognitive load ����� � � ��� ��� , can be computed as

�

�
� � � �

�
� � � ����� � � � ����� � % �

�
� � � �

�
� � �����

�
(4.1)

The policies that result if the system has high evidence for cognitive load tend to be more
careful (involving smaller bundles of instructions or even stepwise presentation), while the policies
that result if the system has low evidence for cognitive load, the system pushes the completion of
the whole sequence of instructions giving instructions in larger bundles.

4.2 Navigation Assistance in Complex Buildings

The problem considered in the last section involved only a single goal: executing a sequence of
instructions correctly. Thereby, the decision-theoretic approach allowed us to trade off achieving
the goal as fast as possible versus achieving the goal as reliably as possible.

In this section, we examine a problem with two competing goals. In addition, the structure of
the problem considered in this section has a topological component that will be reflected in the
structure of used Markov decision process. We explain a decision-theoretic planning approach for
the purpose of providing navigation assistance in a complex building. The approach copes with
both navigation planning and presentation planning in a single decision-theoretic model.

There exists a range of systems that assist their users in some sort of (pedestrian) navigation
task. Before we will explain our decision-theoretic approach in the context of navigation assis-
tance, we will survey some of the systems that have called attention in the user-adaptive system and
IUI community in the past. We will discuss our approach in comparison to the selected systems
of this survey in Section 4.2.1.7.

4.2.1 Guides Based on Handheld Computers

While car navigation systems already approach the level of standard equipment in current models
of (in particular upper class) cars, pedestrian navigation systems are still an exception in practice.
However, pedestrian navigation tasks appear in the context of diverse scenarios: For example,
shopping guides, tourist guides, or conference guides might involve some sort of navigation as-
sistance. It is rather a question of acceptance than of feasibility (cf. Chapter 7) if systems for
pedestrian navigation tasks make it to everyday life. This section gives a notion of the kind of
applications that we possibly may take for granted within the next few years. The inclined reader
may wish to consider the theses of Baus (2003) or Kray (1995) for a broader survey of the field.

4.2.1.1 Asthana et al. (1994): Personalized Shopping Assistance

An early example of an intelligent mobile system put into practice is PSA, the Personal Shopping
Assistant introduced by Asthana, Cracatts, and Krzyzanowski (1994). It claims to personalize the
attention provided to a customer based on individual needs without limiting his movement or caus-
ing distractions for other people in the shopping center. The PSA is mounted to the shopping cart
and connected to a central server via a small area wireless network. The central server maintains
a customer database (some sort of user model) and a store database (containing the information
about products, product availability, etc). The system was designed to provide audio (via head set)
and visual responses to inquiries of up to some hundreds of customers in real-time. The services
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provided by the system include guidance through the store, providing the customer with details on
products of interest, pointing out items on sale, doing comparative price analysis, reminding the
customer of products that were not available at the previous visit, and helping to locate an item.

The PSA is characterized by four basis functions and features: (1) simplicity of use and hands-
free operation, (2) helping the customer to localize items, (3) engaging the customer by a friendly
conversation and keeping his attention, and (4) helping the customer to focus to new products or
products that are of particular interest for him.

The hardware as it is described in the article would allow the system at most to roughly esti-
mate the customer’s current location. The system does not seem to have the possibility to find out
the customer’s orientation automatically, that is, it cannot provide navigation recommendations
from a user-centered perspective.

4.2.1.2 Malaka and Zipf (2000): Deep Map

Malaka and Zipf (2000) and Kray (1995) describe Deep Map, a mobile tourist guide prototyp-
ically implemented for the city of Heidelberg. Deep Map integrates information from different
sources, such as geographical information systems (GIS), multi-media databases, and interactive
Internet data sources (e.g., reservation systems). Deep Map provides guided walks that consider
personal interests and needs, social and cultural backgrounds (age, gender, education), and context
information (season, weather, traffic conditions, financial resources).

Deep Map is realized as a multi agent system organized in three conceptual layers: (1) The
interface layer comprises all agents that interact directly with the user, (2) the cognition layer
consists of agents reasoning about the user’s request, and (3) the knowledge layer made up of
agents providing data.

4.2.1.3 Sumi & Mase (2001): PalmGuide

Sumi and Mase (2001) describe the mobile conference assistant PalmGuide. It aims at facilitat-
ing communications among conference participants. The project combines mobile services with
information kiosk services and online services to be assessed via the World Wide Web. Among
other services, the system can recommend the user which presentation to visit next, based on the
current time and the user’s ratings for presentations he had attended earlier. In order to localize
the conference participants, each participant wears an infrared badge. These badges emit a unique
ID every four seconds, which is detected by the nearest sensor. Moreover, each of the badges
has a button: By pushing the button, the participant can mark an interesting presentation when
attending it. The infrared sensors are installed in the halls for oral session and at booths for poster
sessions. This way, the system can track in which room a particular participant currently is. The
use of infrared technology in the projects REAL and READY is inverse compared to its use in the
context of the PalmGuide. While PalmGuide users carry the infrared transmitters (badges) whose
signals are received by sensors in the environment, the environment in the projects READY and
REAL is equipped with infrared transmitters (beacons) whose signals are received via the build-in
infrared interface of the user’s handheld device.

4.2.1.4 Wahlster et al. (2001): SmartKom (revisited)

In Section 2.2.3.1, we have reviewed the multi-modal dialog system SmartKom (Wahlster et al.,
2001; Wahlster, 2002), which combines speech, gesture, and facial expression input and output.
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The system supports situated understanding of possibly imprecise, ambiguous, or partial multi-
modal input and the generation of coordinated, cohesive, and coherent multi-modal presentations.
SmartKom merges three user interface paradigms (spoken dialogs, graphical interfaces, and gestu-
ral interactions) to achieve truly multi-modal interaction. The system employs an agent visualized
as a life-like character to which the user can delegate a task. The agent elicits the specification of
the delegated task in a collaborative dialog and elaborates a plan to achieve the user’s intentional
goal.

SmartKom-Mobile5 integrates car and pedestrian navigation. The services currently provided
by the system include guidance, tour recommendation, and location-based online booking of tick-
ets for movie theaters. SmartKom-Mobile uses GPS for the positioning and GSM/UMTS for
interactive transmission of information, for example, map data.

4.2.1.5 Pospischil et al. (2002): LoL@

Pospischil, Umlauft, and Michlmayr (2002) and Anegg, Kunczier, Michlmayr, Pospischil, and
Umlauft (2002) describe Lol@ (Local Location Assistant), a mobile tourist guide prototypically
implemented for the city of Vienna. The system is designed to run on advanced hardware like
GPRS or UMTS mobile phones and to provide tourists with predefined or user defined tours. The
use of the system is assumed to proceed in three phases: (1) In preparation of a sightseeing tour,
the user retrieves sightseeing information (points of interest) from his hotel room. (2) The user is
on the actual sightseeing tour. And (3) the user accesses tour information (e.g., a tour diary) after
finishing the tour.

Different location methods and environmental conditions may cause considerable variations
in positioning accuracy. The system considers this uncertainty by representing a location estimate
rather than a guess for the exact position. This location estimate is represented by the graphical
metaphor of a disc with the color and opacity fading from the center to the edge of the disc. The
radius corresponds to the current level of accuracy.

Lol@ applies a hybrid routing concept combining automatic user positioning with GPS and
explicit interaction with the user to elicit his position. The user can choose to receive the route
recommendations indicated on a map on the mobile phone display or translated by a text-to-speech
engine and read out by the system.

4.2.1.6 Wahlster et al. (2001): REAL (revisited)

In Section 2.2.2.6, we have reviewed the REAL system (Wahlster, Baus, Kray, & Kr üger, 2001;
Butz, Baus, Kr üger, & Lohse, 2001; Baus et al., 2002), which features a seamless integration of
different positioning technologies for a hybrid navigation system. REAL integrates two subsys-
tems: (1) IRREAL (InfraRed REAL) for indoor navigation based on a special infrared transmitter
infrastructure, and (2) ARREAL (Augmented Reality REAL) for outdoor navigation based on
GPS. Being part of the Collaborative Research Program 378 on Resource-adaptive cognitive pro-
cesses, adapting to both the limited technical resources (screen size, resolution, color capabilities,
etc.) of mobile devices and the limited cognitive resources of the user (e.g., limitations due to
unfamiliarity with the environment, a secondary task performed in parallel, or time pressure) are
central research objectives in the project.

5There are three versions of SmartKom: SmartKom-Public, SmartKom-Mobile, and SmartKom-Home/Office. They
are described in detail by Wahlster et al., 2001.
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The system considers resource limitation already during the process of way finding. For ex-
ample, instead of recommending the user the shortest route, the system might choose a route that
is slightly longer, but minimizes the number of turning points and thereby the number of recom-
mendations needed to describe the route (and the level of attention that the user requires for the
navigation task).

4.2.1.7 Synopsis

The systems described in the preceding sections all have different strengths: The strength of the
Personalized Shopping Assistant is its ability to provide up-to-date-information about products
on demand and at the place where it is needed to make decisions—right at the shelves of the su-
permarket. Deep Map provides guided tours that cover personal interests and needs, social and
cultural backgrounds, and context information. Its strength is the ability to integrate information
from different sources. SmartKom provides similar services as Deep Map, but puts a focus on
multi-modal dialog capabilities (including speech, gesture, and mimics input and output). More-
over, it provides a seamless integration of outdoor pedestrian and car navigation. The PalmGuide
focuses on facilitating communications among conference participants. Its strength is the combi-
nation of mobile services with information kiosk services and online services to be assessed via the
World Wide Web. The hardware environment is similar to the one that we usually assume when
applying decision-theoretic planning for navigation tasks. LoL@ and REAL attach importance to
localization techniques. Both aim at adequately dealing with information about the user’s current
location. REAL additionally features a seamless integration of indoor and outdoor positioning.

The strength of the decision-theoretic planning approach is that it enables a system to plan
several steps ahead and guide the interaction between the system and the user into a favorable
direction. All systems mentioned above could in principle profit from the ability of planning ahead.
In Section 7.2, we give an example of how a shopping guide can profit from decision-theoretic
planning. A further strength of the decision-theoretic planning approach is the ability to address
the user’s desire to perform other tasks (achieve secondary goals) in addition to just getting from A
to B. Finally, decision-theoretic planning can take uncertainty about the consequences of actions
explicitly into account. As user-adaptive system planning problems usually involve considering
a human user’s (often unreliable) actions, many kinds of user-adaptive systems should be able
to profit from the ability to take uncertainty about the outcome of actions into account. In the
next section, we will see an example for uncertain user’s actions that a system applying decision-
theoretic planning can deal with.

4.2.2 Example Domain

We illustrate the application of decision-theoretic planning to provide navigation assistance in
complex buildings with an airport assistance system that gives the user adaptive navigation rec-
ommendations to get to the gate and helps him to buy something in one of the stores along the
way. That is, the system tries to accomplish a trade-off between two goals: (a) the primary goal,
getting to the gate quickly and (b) the secondary goal, buying something along the way if possi-
ble. Reaching the primary goal is obligatory, reaching the secondary goal optional. We consider
only one obligatory (primary) goal and one optional (secondary) goal in this chapter. More com-
plex variants of this kind of problem (involving several obligatory and several optional goals) are
treated in Chapter 5.
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Figure 4.7 shows two passengers in different situations. It illustrates that it is reasonable to
assist two users in different situations with different recommendation strategies. As in the example
of Section 4.1, the system can make inferences about the user’s situation, for example, from the
symptoms in his speech. An intelligent system should be able to adapt both the content (which
is reflected in the selected route for the particular user) of its recommendations and the way of
presenting them (which can involve, e.g., a simple arrow on the display of his handheld computer,
which is easy to follow, or a map with additional information about the upcoming part of the route,
which might require more attention).

... please proceed to Gate B29 ...

about time for me to
head on off to ...
Gate C22 ....

Well, uh, I guess it’s

Get something to eat

Get something to read

Look for a present

to do anything
on the way?

Would you like
Where’s
Gate C38?!

?

Figure 4.7: Navigation assistance for getting to the gate in two different situations.
(The middle-aged man, who obviously suffers from time pressure, should rather be guided to the gate on
a direct route with simple route recommendations—ignoring the desire of buying something for this wife.
The senior, who seems to have plenty of time before having to reach the gate, might rather appreciate being
guided along some shops, where he might like to use his spare time to buy a gift for his grandchild.)

We consider a handheld system that gives recommendations (and other information) to a visitor
�

in an airport terminal. Assuming that � gives
�

directions as to how to get from his current
location to his departure gate, there is often significant uncertainty about what will happen when

�

has been given a recommendation. For example,
�

may choose not to follow the recommendation;
and if he does follow it, his action may not bring about the intended result. Suppose

�
would like

to pick up a gift on the way to the gate but would also like to get to the gate relatively soon (e.g.,
in order to get a good seat assignment). Then � ’s navigation recommendations should take into
account both the time it will take

�
to follow the recommendations and the likelihood that

�
will

see a suitable gift in one of the shops along the way.
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Figure 4.8 depicts a simple environment for a scenario of this sort. There are two possible de-
parture gates on the right, as well as a number of shops distributed all over the terminal building.
In the center of the terminal, there are four regions of hight pedestrian traffic. In these areas, walk-
ing from one location to the next has a relatively high time cost. Moreover, there are two locations
(Location 5 and Location 11, indicated with larger circles) with particularly high probability that

�
makes a wrong turn: If

�
is instructed to go east or west at these places, he might end up going

north or south with some probability.
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Figure 4.8: Topology of the airport terminal referred to in the example.
(Each numbered circle represent a transmitter. G1 and G2 are departure gates. At Locations 5 and Location

11, the probability the � takes a wrong turn is particularly high. The areas north and south of Locations 5

and Location 11 are often crowded, i.e., moving in these areas takes more time than in other corridors. A
number of shops is spread all over the considered part of the terminal building.)

For simplicity, we assume that � can choose between two presentation modes for its recom-
mendations: (a) speech mode, in which � presents a recommendation in simple speech; and (b)
map mode, which displays a map of the area around

�
’s current location. Each map shows the

recommended next destination, but it also offers supplementary information about the location
and nature of the shops in the area. Speech mode will tend to make

�
move faster, but map mode

will will increase the likelihood that
�

will find a gift. That is, by well considered application of
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either one or the other mode, � can influence the time that
�

will need to get to the gate and the
likelihood that

�
will find a gift on the way to the gate.

Finally, we assume that, whenever
�

is near a transmitter, � is aware of both
�

’s current loca-
tion and orientation, as well as whether

�
has found a gift (the latter piece of information perhaps

being supplied explicitly by
�

). The information about
�

’s current location and orientation can be
gained, for example, from infrared transmitters (or by beacons repeatedly emitting their ID) that
could be installed in the airport building. We will introduce a suitable hardware configuration for
this purpose in the context of the user study reported in Section 7.2.

We assume the information about
�

’s current location and orientation, as well as the informa-
tion whether

�
has found a gift or not, to be fully observable. The technology that the scenario is

based on provides reliable feedback about
�

’s current location and orientation: A proper arrange-
ment of the infrared beacons guarantees that

�
’s handheld device will never receive signals from

more than one beacon at a time, that is, the mapping from received signals to a location and orien-
tation is unambiguous. � makes decisions and communicates recommendations only if it receives
a signal of any beacon. It does not provide any assistance while

�
is between two distinct places

marked by a beacon. If � —assuming the given hardware configuration, that is, not equipped with
any additional means for localization—was supposed to provide assistance between two beacons,
it could only guess its current location based on the observation of the last beacon. This would
require a partially observable decision-theoretic model (cf. also Section 4.1.3.2). The same holds
if we do not assume that the user reliably gives feedback about having bought a gift: If we wanted
� to consider the possibility that

�
might have bought a gift but has not indicated his purchase

to the system, this would again involve a part of the decision-theoretic model to be considered as
partially observable. The type of modeling described in the next section is appropriate only if there
is not significant uncertainty about the consequences of actions once feedback has been obtained.
The user study described in Section 7 illustrates that at least in some cases this assumption holds
in our example domain.

4.2.3 Model

This section describes how the example domain can be modeled in terms of a fully observable
Markov decision process. Each state in the transition model has two features: (1) the current loca-
tion of

�
and the information as to whether

�
has bought a gift or not—we denote this information

by a “+” or “–”. This means that there are two states for each of the 18 locations (including G1
and G2) of the transmitters, which results in 36 states altogether.

Each recommendation action comprises a subsequent destination and a presentation mode. As
Figure 4.9 illustrates, each action in a given state corresponds to one or more possible transitions
to a following state. The cost of a given transition is the time that

�
will require to reach the

corresponding subsequent destination. If
�

is in a state tagged with a “–” (i.e., he has not yet
bought a gift), he will reach the adjacent location and will have bought a gift with a particular
probability � , and he will reach adjacent location and will not have bought a gift with probability� � � . If

�
is in a state tagged with a “+” (i.e., he has already bought a gift), then he will reach the

adjacent location and will have bought a gift with certainty (� � �
). This merely describes that

�

will never lose a gift that he has already bought.
The cost of a transition leading from a “–” to a “+” state is much higher than the cost of a

transition from a “–” to another “–” state or from a “+” to another “+” state. This difference is due
to the assumption that if

�
in fact has bought a gift on the way from one location to another, then
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Location 2 Location 5

− −

++

0.96 / 1.6

0.04 / 11.6

1.00 / 1.6

1.00 / 2.0

0.10 / 12.0
0.90 / 2.0

Figure 4.9: State transitions, probabilities, and costs associated with a recommendation that
�

go
from Location 2 to Location 5.
(Dark and light arrows represent possible transitions when � uses speech mode and map mode, respectively.
Each pair of numbers next to the arrow gives (a) the probability that the corresponding transition will be
made if the recommendation is given; and (b) the cost of making that transition.)

he has entered one or several shops, has looked for a gift for a while, has found something, and
had to stand in line to pay for the item. If he does not buy a gift on the way from one location to
another (either because he has already bought a gift or none of the shops on the current part of the
route seem interesting to him—this may also be because � does not make him aware of the shops
along the way), he either does not enter shops at all or he enters a shop, realizes rather quickly
that he will not find a gift in this shop, and moves on. The model is not appropriate for a user who
tends to frequently enter shops, spend a rather long period of time there, and then leaves again
without having bought anything. However, we could construct a different model that captures the
characteristic behavior of such a user.

Uncertainty about
�

going into the recommended direction can be handled similar to the un-
certainty about

�
finding a gift on his way from one location to another. Figure 4.10 describes the

relevant part of the decision-theoretic model for the case that
�

has already bought a gift and is
recommended to go from Location 11 to Location 14. Here, the assumption is that a recommenda-
tion in map mode will rather increase the probability (compared to speech mode) that

�
will take a

wrong turn and end up in Location 10 or Location 12. Note that this assumption is not empirically
validated. However, if it turned out that this assumption does not hold (e.g., that it would be the
other way round, i.e., speech mode would increase the probability that

�
will take a wrong turn)

then the model can be corrected by simply adjusting the probabilities. Note also that we have
assigned a relatively high cost to (no matter if accidentally or intendedly) go from Location 11 to
Location 10 or Location 12 to indicate that these corridors are crowded. This assignment illustrates
that the costs of a transition in this scenario does not correspond to the physical distance between
two locations, but rather to the time needed to go from one location to another.
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Figure 4.10: State transitions, probabilities, and costs associated with a recommendation that
�

go from Location 11 to Location 14 if he has already bought a gift.
(Dark and light arrows represent possible transitions when � uses speech mode and map mode, respectively.
Each pair of numbers next to the arrow gives (a) the probability that the corresponding transition will be
made if the recommendation is given; and (b) the cost of making that transition.)

There are also two states for each of Location G1 and Location G2, the gates. The reward for
reaching the gate without a gift (the state at G1 or G2 tagged with a “–”) is 0; and the reward for
reaching the gate with a gift (the state at G1 or G2 tagged with a “+”) is some nonnegative number
that reflects the importance (or the additional value) that

�
attaches to the goal of finding a gift,

relative to the goal of arriving as early as possible at the gate6

The reward and the time costs together determine the expected utility of any possible trip of
�

to the gate. � ’s job is to compute the policy—the mapping from states into recommendation
actions—that has the highest expected utility. Such a policy is sensitive to the probabilities of
transitions, the costs of transitions, and the rewards of goal states. These sensitivities jointly allow
to express (1)

�
’s desire to find a gift, that is, the importance that

�
assigns to finding a gift on

6To take into account, for example, the possibility that � will miss his plane if he arrives after a certain point in
time, a more complex modeling of time, such as it is described in Section 4.4, is required.
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the way to the gate relative to getting to the gate early and (2)
�

’s reliability to follow navigation
recommendations correctly. The following section will explain some examples to illustrate these
relations.

4.2.4 System Behavior

Figure 4.11 and 4.12 show the policies that were computed for eight situations that differ along
two dimensions:

�
’s “reliability”—that is, his ability to avoid making wrong turns—and the im-

portance to
�

of finding a gift. We will explain the figures top down.
The two graphs in the top row of Figure 4.11 show the recommendations that � will make in

the case where
�

attaches absolutely no importance to a gift—or where he has already found a gift.
The reliable

�
is steered towards the gate as quickly as possible, even when this means that he will

pass through one of the locations where other users might make a wrong turn. The less reliable
�

,
in contrast, is drawn away from the central area of the terminal whenever this is possible because
of the danger that he might make a wrong turn and waste time in one of the congested areas. For
both users, all of the recommendations are presented in speech mode; the slower map mode can
be worthwhile only if there is some value to finding a gift.

The graphs in the second row of Figure 4.11 show parts of policies that are suitable when
�

attaches some (low) importance to finding a gift. As soon as
�

has found a gift, � will switch to the
corresponding recommendations shown in the top two graphs; for clarity, these recommendations
are not included in the other graphs. The reliable

�
is still directed to the gate along the fastest

possible route, that is, the policies in the left column are the same because � does not expect the
reliable

�
to get lost in the crowded areas of the building. The unreliable

�
is still steered away

from the dangerous locations. But an interesting change of system behavior is reflected in the
policy for the unreliable

�
at the middle location in the left-hand part of the building: Instead of

directing
�

northward, through the area with the most stores, � sends him southward. The reason
is that, if

�
passed through the store-rich area, he might stop to buy a gift, although according to

his expressed preferences it would not be worthwhile for him to do so
If

�
has expressed moderate interest in a gift (top row of Figure 4.12), he is given some

recommendations in map mode (lighter arrows). From some locations, both users are led to the
region in the upper left-hand corner with the highest shop density. Here, � will advise

�
to go

back and forth, past the shops, until he finds a gift, at which point � will lead him to the gate in
the way shown in the two graphs in the top row of Figure 4.11. According to the probabilities
specified in the model,

�
is likely to find a gift quite quickly in this area, such that there is no

danger of a long or infinite loop.
Finally, if

�
has expressed a sufficiently strong interest in finding a gift (bottom row of Figure

4.12), � will direct him towards the area with the highest density of shops, even when he is already
very close to his destination gate G1. In this situation, the time costs of walking around the airport
are dominated by the perceived benefits of finding a gift.

Note that these eight examples are only selected snapshots of the policy space. They cover the
system behavior only for some of the most interesting situations. Probabilities and rewards are
continuous variables, and each slight modification can in principle result in a slight modification
of the recommendation policy. Appendix D lists a part of a sample trace of the computations for
an instance of problem considered in this section.

The decision-theoretic approach does not necessarily need to cover all aspects of the process
to be planned, that we consider in this section. For example, the decision-theoretic model can
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Figure 4.11: Policies as a function of
�

’s ability to follow recommendations correctly and
�

’s
desire to find a gift.
(Dark and light arrows represent recommendations given in speech mode and map mode, respectively.
Dashed lines show where movements are possible but not recommended. The width of an arrow or a line
between two locations reflects the number of shops between them. Each graph describes only a part of a
policy, for example, the two graphs in the top row describe the part for the situation in which � has already
found a gift (or the gift is assigned no importance), the two graphs in the bottom row describe the part for
the situation in which � has not yet found a gift and the gift is assigned low importance.)
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Figure 4.12: Policies as a function of
�

’s ability to follow recommendations correctly and
�

’s
desire to find a gift.
(Dark and light arrows represent recommendations given in speech mode and map mode, respectively.
Dashed lines show where movements are possible but not recommended. The width of an arrow or a line
between two locations reflects the number of shops between them. Each graph describes only a part of a
policy. All graphs of this figure describe a part of a policy for the situation in which � has not yet found a
gift.)
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be modified such that it covers only the navigation planning (i.e., the selection of the direction)
or only the presentation planning (i.e., the selection of the presentation mode). However, it is a
strength of the introduced decision-theoretic model that it can consider both aspects of the process
to be planned in an integrated manner: The selection of a particular direction at one location
can influence the presentation mode at another location and vice versa. Both, the recommended
directions and the selected presentation mode at a particular location have an effect on the expected
utility of a recommendation. Therefore, it is reasonable to optimize the expected utility of a
sequence of recommendations considering both aspects of each recommendation. Section 4.3
illustrates a scenario in which it is reasonable to restrict the decision-theoretic model in a way that
is covers only a part of the process to be planned.

4.2.5 Sensitivity Analysis

So far, we made the assumption that we can acquire the probabilities required for the decision-
theoretic model exactly. This assumption is correct if the probabilities can, for example, be de-
termined in a controlled experiment as the one that we have described in Section 3.1.1. We will
see in Section 6.4 that there exist various approaches to determine more or less exact probabilities.
However, what if the probabilities that we use to describe the process which we want to plan for
are not 100% accurate? By simulation, we analyzed the quality of policies computed on the basis
of inaccurate probabilities and compared them to the quality of plans computed on the basis of
inaccurate probabilities for the same domain.

In preparation for the analysis, we first compute a set of plans7 (i.e., in the scenario at hand,
these are fixed sequences of navigation recommendations to guide

�
from a given location to the

gate), such that from every location in the airport building, there is a plan to get to the departure
gate taking the desire to buy something along the way into account. Then, we simulate both the
application of the policy and of the set of plans in 1000 randomized runs for the problem at hand.
That is, during each application of a policy or a plan, the event of finding a gift in any of the
shops along the way occurs randomly according to the probabilities specified for the simulation of
the real world process. Moreover, in each run, the gained reward is determined for each possible
starting position of

�
. While a policy is valid for each possible starting position anyway, from the

set of plan, the right plan for the given starting position has to be selected for this purpose. The
results can be seen in Figure 4.13. A sample traces of the corresponding computations is listed in
Appendix E.

If the used probabilities are accurate, that is, the probabilities applied in the decision-theoretic
model (and for the computation of the plans, respectively) equal the probabilities applied in the
simulation, the expected utility of a policy equals (up to some positions after decimal point) the
actual average reward gained in the simulations. Figure 4.13 shows that the policy is more robust
with regard to underestimation (i.e., a situation where the actual probabilities are smaller than the
probabilities used in the decision-theoretic model) than to overestimation. In the given example
domain, this effect can be explained by an analysis of the following system behavior: If there is
a high probability of finding a gift on a particular part of the way, the systems tends to send

�

along that part of the way a second or third time if he does not find a gift there at first go. This
system behavior is not effective if the probabilities of finding a gift there are overestimated. Apart
from the situation of heavy probability overestimation, the policy for the given example problem

7We did not use a sophisticated planning algorithm for this purpose but constructed the plans in a brute force
combinatorial way.
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Figure 4.13: Average rewards for
�

following plans and policies based on more or less inaccurate
probabilities in the navigation assistance domain.
(Comparison of the average rewards gained by following plans and policies with accurate probabilities for
finding a gift in the stores along the way to the gate and applied probabilities deviating from real probabil-
ities for 25, 50, and 75 percent, thereby considering both too optimistic and too pessimistic expectations,
that is, over- and underestimation of the probabilities.)

is very robust with regard to inaccurate probabilities, and even in the case of heavy probability
overestimation, the policy is still useful and yields good results.

The average reward gained when applying plans is clearly less than the average reward when
applying a policy. This holds regardless of the accuracy of the probabilities used in the planning
process. In the example problem at hand, plans tend to be less robust with regard to heavily
underestimated probabilities. The reason is that plans tend not to consider achieving the secondary
goal at all if the probabilities say that the chances are low, while policies still try to achieve the
secondary goal at least in some cases.

An important disadvantage of a plan in this context is that it might accept a deviation from the
direct route to the gate in order to increase the probability of finding a gift although

�
has already

bought a gift. However, the idea of plans is that they are applied in a non-observable scenario, that
is, in a scenario in which it is not possible to get any feedback about the state of the process. The
non-observability assumption causes plans to be completely inflexible. Policies, in contrast, are
applied on the assumption that the process which they control is fully observable and therefore are
much more flexible than plans.
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4.2.6 Navigation Assistance in the READY Prototype

The decision-theoretic model for the airport navigation assistance domain of low complexity has
been implemented for demonstration purposes. The implementation allows to visualize the system
behavior for simple navigation tasks (achieving a primary goal without considering any secondary
goal) and navigation tasks with one secondary goal (e.g., getting to the gate and picking up a snack
from a fast food restaurant on the way). The goal selection window on the left hand side at the top
of Figure 4.14 shows the combinations of a primary and secondary goals that can be dealt with in
the implementation.

If a combination of a primary and a secondary task is selected, the parameters time pressure
and cognitive load can be specified manually. The parameter specification window in the middle
of Figure 4.14 allows to adjust the time pressure as it is subjectively felt by the user on a scale
from 0 to 20 and to specify the cognitive load of the user as low, medium, or high. The manual
specification of time pressure and cognitive load can be replaced by a user modeling component,
such as it is described in Section 4.1.6.1, with little effort.

Figure 4.14 (bottom) shows a part of a screen shot of the policy as it is displayed for a user
who does not feel any time pressure but whose cognitive load is high. The topology that is used
in the implementation is only slightly more complex than the topology introduced in Figure 4.8.
It includes a part of the physical environment of the AI lab at Saarland University—this is the
highlighted part in Figure 4.14. The physical environment of the AI lab served as a mock-up
of a hallway in an airport terminal hosting the baggage claim and several fast food restaurants.
The decision-theoretic planner has an interface to the physical environment, such that the user
can receive navigation information via the infrared transmitters mounted on the ceiling in the AI
lab. If a recommendation is given in map mode, the map includes information about fast food
restaurants placed in the mock-up of the airport terminal along the way. The integrated system has
been demonstrated at the AI lab (see Figure 4.14, top right).

In the policy visualization, five locations are highlighted with red circles. These locations are
assumed to be particularly dangerous with regard to not following navigation recommendations
correctly. This assumption is reflected in the decision-theoretic model as described in Section 4.2.3
(Figure 4.10). As a result, the prototype tries to avoid these locations in particular if the cognitive
load of the user is specified to be high. However, as with the decision whether to guide the user
along shops or not, the decision whether to avoid a “dangerous” place or not is always based on a
trade-off between getting to the gate quickly and getting to the gate without taking a wrong turn.
That is, if at the same time the importance of getting to the gate quickly is high enough (which
is reflected in the user’s subjectively felt time pressure), the system can decide to recommend a
shorter path despite the danger that the user might take a wrong turn.

4.3 Combining Predefined Routes with Decision-Theoretic Planning

The route that a navigation system offers to a user can be planned according to miscellaneous
criteria. For example, it can be the shortest or the most enjoyable path to a goal, the path with the
least number of divergencies, or the path most often used by the user before. For whatever reason,
the system can sometimes rely on predefined routes, for example, if the system is aware of the
routes that the user has already taken. Under these circumstances, no planning is needed and the
route descriptions can be retrieved directly from a database. These route descriptions can be used
to explain the way to the user in advance (e.g., at an information kiosk), but they are not suitable
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Figure 4.14: Goal selection window, parameter specification window, snapshot of the system
in use, and part of the recommendation policy for a user who feels no time pressure but whose
cognitive load is high.
(Top left: A combination of an obligatory primary and an optional secondary goal is selected; evidence
for subjectively felt time pressure is manually set to 0, evidence for cognitive load is set to high. Bottom:
Dark and light arrows represent recommendations given in speech mode and map mode, respectively. The
topology used in the prototypical implementation is different from the topology of Figures 4.8, 4.11, and
4.12—but the prototype uses the model described in Figure 4.9 and 4.10. Top right: Part of the prototype
was realized on a handheld computer and navigating through the airport building was simulated in a mock-
up at the AI lab.)
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to handle unpredicted user actions during the navigation. Predefined routes can also be augmented
with additional navigation recommendations based on decision-theoretic planning to guide a user
who has taken a wrong turn back to the original route. And finally, decision-theoretic planning
can be used to determine the form of output presentation of the directions given by a predefined
route.

4.3.1 Example Domain

In this section, we will explain how to integrate predefined routes in the decision-theoretic planning
approach. We refer to the example domain introduced in Section 4.2.2. Suppose

�
has intimated

that he would like to be guided to gate G1 and to buy a gift (something not further specified, which
he wants to bring home for his wife) on the way to the gate. Suppose further, that � has already
selected the route from

�
’s current position (Location 1) to his departure gate G1 indicated with

the dotted arrow in Figure 4.15. The reason for this selection might have been, for example, that
this is the path

�
has used most often before or that the shops along this way match best

�
’s

shopping interests according to the user model � maintains of
�

. We assume that, as long as
�

is on the given route, � should recommend to follow this route. This is a plausible assumption,
for example, if it is known that

�
does not like to use moving stairways with his luggage cart,

such that � holds a predefined route avoiding moving stairways ready for this particular user. An
alternative to this assumption is, for example, that the system recommends deviations from the
given route when there is a particularly good reason, such as a bargain nearby.

A predefined route for the problem at hand specifies the direction that � recommends to
�

only for some locations in the airport terminal. According to Figure 4.15, � will first recommend
�

to go from Location 1 to Location 2, then to continue to go straight ahead from Location 2 to
Location 3, then to turn right and go from Location 3 to Location 9, and so forth—as it is indicated
in the figure. It is not yet specified (1) how � should give the recommendations (speech mode
or map mode) and (2) what � should recommend if

�
takes a wrong turn and gets to one of the

locations lying outside the predefined route.

4.3.2 Model

The model that we describe in this section focuses on the determination of the presentation mode
for each navigation recommendation and the system behavior if

�
deviates from the predefined

route. We represent the problem in analogy to the model described in Section 4.2.3. Each location
is represented by two states: One state is used to compute a recommendation for

�
when he has

already bought a gift, the other when he has not yet bought a gift. The transitions between the
states are annotated with probabilities and costs as before. We assume that the probability to enter
a shop and to find a gift when going from one transmitter location to the next depends on the
number of shops on this part of the route; the cost of a transition corresponds to the time to get
from one transmitter location to the next. As before, we assume that a recommendation given in
map mode increases the probability that

�
will buy a gift on the recommended part of the route,

as it makes
�

aware of shops. On the other hand, a recommendation given in speech mode is
short and easier to follow, such that we assume that

�
makes the upcoming part of the route a little

quicker.
The key idea of the hybrid approach is as follows: As is customary, we compute the optimal

recommendation (direction plus mode) for each state by our preferred standard algorithm—value
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Figure 4.15: Topology of the airport terminal including a predefined path to the gate.
(Each numbered circle represents a transmitter. G1 and G2 are departure gates. A number of shops is spread
all over the considered part of the terminal building. The indicated path might, for example, be the path
most often used by � before.)

iteration. That is, for each state of the MDP, the expected utility of each alternative recommen-
dation is computed iteratively according to the expected utilities of the adjacent states, the prob-
abilities each of them is reached with and the costs to reach them. The only peculiarity is that
recommended directions along the predefined route are fixed, that is, we assume that there are no
alternatives for directions in those states which belong to the transmitter locations on the prede-
fined route. This approach makes sure that correct expected utilities with respect to the constraints
given by the predefined route are computed for all states. It is possible to take into account how
important it is to follow the predefined route. This can be achieved by adjusting the transition
costs between two states of which one lies outside the predefined route. Assigning increased costs
for these transitions will make � find routes drifting away from the predefined route less attractive
than the predefined route itself. Such an assignment will consequently make � recommend

�
to

go back to the predefined route on the shortest path.
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4.3.3 System Behavior

Figure 4.16 shows parts of four generated policies that integrate the predefined route indicated in
Figure 4.15. As in Section 4.2.4, the policies have been computed as a function of

�
’s desire to

find a gift. Additionally, the importance to follow the predefined route as good as possible is taken
into account. Dark and light arrows represent recommendations in speech mode and map mode,
respectively. Dashed lines show where movements are possible but not recommended. The width
of an arrow or a line reflects the number of shops between two locations. We will explain the
figure top down from left to right.

The two graphs in the first row describe the system behavior for a passenger who has indicated
that he either has already found a gift or that finding a gift is not important to him. In both situations
(low and high importance to follow the predefined route), � gives recommendations exclusively
in speech mode: There is no need to make

�
aware of nearby shops. If � can assume that it is

very important for
�

to follow the predefined route (lefthand side of the figure), then � tries to
guide

�
back to the predefined route after

�
has taken a wrong turn (e.g., at Location 2, Location

9, or Location 14—see Figure 4.15). If � assumes that sticking to the predefined route is not as
important for

�
(righthand side of the figure), then � tends to guide

�
on a shorter path through

the center of the terminal to his gate. For example, at Location 7, � has three options with equal
costs to guide

�
back to the predefined route. Here, � selects the path that leads

�
back to the

predefined route at the spot which is closest to the gate (i.e., to Location 14).
The two graphs in the second row describe the system behavior for a passenger who has

indicated medium importance to find a gift on the way to the gate. In both situations, � still gives
some recommendations in speech mode, but it gives especially those leading

�
along many shops

in map mode. With increasing importance, � would increasingly give recommendations in map
mode.

Comparing the graphs column by column (upper with lower left side and upper with lower
right side) yields that the directions in which

�
is recommended to go to do not change with

decreasing importance of finding a gift. The property that
�

is always led back to the predefined
route (in the left column) does not change, but on appropriate parts of the route, the mode in which
� gives the navigation recommendations to

�
is adjusted.

4.4 Dealing with Fixed Deadlines

In the preceding sections of this chapter, we assumed that the interaction between a system and its
user will always terminate at some point, but we do not consider this as a fixed deadline. Instead,
our model is based on the assumption that the interaction gets more expensive the longer it takes.
We can call this a soft deadline.

Not all deadlines in the context of human computer interaction are soft. The key idea is: A
fixed deadline corresponds to an event that represents high costs for the user, which cannot be
traded off against any of his options available in the scenario at hand. Consider, for example,
a shopping mall scenario. Here, not finishing the shopping of all items that one needs until the
closing time of the mall means having to buy the remaining items in some other shop (where they
might be more expensive) or having to come back the other day to finish the shopping (i.e.,

�

has costs in terms of the time needed to come back, the cost of driving to the mall a second time,
or maybe the cost of not having something to eat at night). In the case of the shopping mall, the
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Figure 4.16: Generated recommendation policies as a function of
�

’s ability to follow recommen-
dations correctly and

�
’s desire to find a present. The importance to follow a predefined route is

taken into account.
(Dark and light arrows represent recommendations given in speech mode and map mode, respectively.
Dashed lines show where movements are possible but not recommended. The width of an arrow or a line
between two locations reflects the number of shops between them.)
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fixed deadline is an extraneous restriction that cannot be bypassed by the user. That is, there is no
alternative to leaving the shopping mall at the fixed deadline.

In the airport scenario, we can assume a soft deadline for the navigation task only if it is
guaranteed that the passenger makes it to the gate in time anyway, that is, if arriving late at the gate
can at most, for example, cause a bad seat assignment but not missing the flight. This assumption
requires that the system can determine in advance if a deadline can never be exceeded, no matter
what happens. However, for uncertain processes, this guarantee can never be given. At best, a
system can guarantee to make a deadline with a particular probability.

In what scenarios are deadlines truly relevant? The airport scenario is possibly the most strik-
ing example, as the result of not meeting the deadline—missing the flight—represents an unpleas-
ant experience that one would like to avoid at any price. This is exactly what matters where a
fixed deadline is involved: the price of not meeting the deadline. Missing a flight has such a high
cost (e.g., the cost of not getting to a conference because no backup-flight is available—or only
at a tremendous price) that there is usually nothing to do in an airport worth taking the risk of
missing the flight (i.e., there is usually nothing important enough on the way to the gate that could
be traded-off against missing a flight). This assumption implies that whether a deadline is fixed or
not depends on the proportion of costs and rewards.

We will discuss two possible approaches to solve problems that involve a task to be finished
before a fixed deadline. The first one, finite-horizon decision-theoretic planning, is rather easy to
implement, the second one, time-dependent Markov decision processes (Boyan & Littman, 2000),
is more general than the first one. We will illustrate the first approach in the context of a system
giving navigation recommendations in an airport building, thereby taking the fixed deadline to get
to the gate into account.

4.4.1 Finite-Horizon Decision-Theoretic Planning

The key idea of the approach that we have chosen to deal with fixed deadlines is to keep different
policies ready for different available portions of time until a given deadline. Thereby, we face
the following problem: In the basic MDP framework, a process evolves in stages that do not
correspond to any particular amount of time. The execution of each action corresponds to the
proceeding of the process by one stage—no matter how much time elapses during the execution
of the action. If all actions considered in an MDP took the same amount of time (say one time
unit), � stages of a process (or the execution of � arbitrary actions from the set of actions

�
)

would correspond to � time units elapsing. As there is no such restriction on the time that elapses
during the execution of a particular action, the duration of � stages is in general not predictable
in the basic MDP framework. To solve the fixed deadline planning problem with finite-horizon
planning, we have to establish a relation between stages and the duration of actions.

In the original MDP framework, each n-stage-to-go policy (cf. Section 3.1.4) represents the
optimal policy for the situation in which the interaction between the system and the user does
not exceed � actions of arbitrary length. Each execution of an action corresponds to the decision
process proceeding exactly one stage.

Instead of allowing stages to be arbitrarily long, we now define each stage to correspond to
exactly one time unit. We chose the duration of that time unit in a way that the duration of each
action � � � can be expressed as a multiple of that time unit. Now, we can define the t-time-units-
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to-go value function as
�
� � � � � �

and

�
� � � � �������
 ��� ����� � ��� ��� ���	��
�� � ��� � % �

� � ��� � � � � � � � � � � ����
�� 
�� � � � ��
�����
 � � (4.2)

with � ��� � the duration8 of action � . As a consequence of this definition, actions that take longer
than � time units ( � ��� � � � ) will not be considered at stage � at all. The policy

" � �������������
 ��� ����� � ��� ��� ������
�� � ��� � % �
��� ��� � � � � ��� � � � � ����
�� 
�� � � � ��
�����
 �
� � � (4.3)

represents the optimal t-time-units-to-go-policy (with �
� � corresponding to “no action available
that allows to reach the goal before the deadline”). We will illustrate the approach with a simplified
version of the navigation assistance problem described in Section 4.2.2.

Example We assume that the airport assistance system � wants to show passenger
�

the way to
the gate and consider a single secondary tasks, for example, buying a gift along the way. Suppose
that

�
is at Location B and wants to get to gate G1.

In this context, it is convenient to use positive integers to denote points in time such that lower
integers represent later points in time and 0 denotes the deadline (i.e., in the scenario at hand the
last point in time to get on board of the plane). Figure 4.17 shows the t-step-to-go policies for

� � ��� �
� � � � �
and

���
. If

�
is still at Location B for � � �

, then he is just about to miss his flight.
For � � �

, � has no recommendation available for
�

at Location B because it is not possible for
� to assist

�
in a way that

�
gets from Location B to the gate in time. These are situation that

will not occur if (1) the interaction between � and
�

starts early enough such that
�

can at least
in principle reach his departure gate in time and (2) � ’s model is accurate in that, for example,
it describes correctly how much time

�
needs to get from one place to another. For this simple

example, we assume that
�

can reliably follow � ’s recommendations, that is, he never ends up in
a wrong place when following a recommendation.

For � 	 �
, � is able to give

�
a recommendation that allows

�
to reach the gate from Location

B before the end of the boarding. � sends
�

to gate G1 via Location E, although this is not the
shortest path—we assume that the length of the arrows is proportional to the distances between
two places. The reason for the duration that

�
needs from Location E to Location F being much

shorter than the duration that he needs to go from Location B to Location D (although the distance
being equally long) might be, for example, that

�
can step onto some sort of conveyor belt, as they

are common in large airports.
The approach also takes into account different durations for

�
to get from one place to the

next dependent on the recommendation mode that � has chosen. For example, one can specify
that to get from one location to another,

�
will need one additional time unit for each shop along

the way that he is made aware of by being recommended in map mode instead of speech mode.
Additionally, the time that it takes

�
to buy something in a shop has to be considered in the model.

For � � ���
, � sends

�
towards the gate G1 via Location C and makes him aware of the shops

along the way by selecting map mode to present the navigation recommendations. There is enough
time to select the longer way (in terms of duration, not distance) for

�
and make him aware of

shops, thereby inviting him to spend time on shopping.

8The duration in this approach is assumed to be constant and certain, while the approach by Boyan and Littman
(2000) allows varying, uncertain action durations.
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Figure 4.17: Finite-horizon policies for a simple navigation problem.
(The graphs shows parts of selected t-time-units-to-go policies (with 1 time unit = 1min). Green arrows
mean that speech mode is used, yellow arrows mean that map mode is used. The thickness of the ar-
rows/lines corresponds to the probability of finding a gift on the corresponding part of the route. Although
longer in distance, the path from Location B to gate G1 via Location E is faster than the path via Location C.
Therefore, the system tends to send the user via Location E to the gate if the deadline (boarding) is not far
in the future anymore.)
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We have implemented the finite-horizon decision-theoretic planning approach for the scenario
of high complexity in Chapter 5 (see in particular Section 5.3). The space required to store the
finite-horizon policies grows linearly in the number of time steps if coded in a naive way. The
representation of the finite-horizon policies can be compressed by deriving time step intervals for
which particular recommendations are given.

4.4.2 Boyan & Littman (2000): Time-Dependent MDP Approach

Boyan and Littman (2000) introduce the time-dependent MDP (TMDP) model, which includes
both stochastic state transitions and stochastic, time-dependent action durations (action costs). In
contrast to the approach described in the last section, this allows to consider problems in which the
costs for transitions or the rewards for goal states vary over time. A TMDP is a special continuous-
state Markov decision process (see, e.g., Puterman, 1994) consisting of states with both a discrete
component and a real-valued time component.

The TMDP model is motivated by a scenario that involves decisions about optional means of
transportation. Buses, trains, and subways vary in their expected travel time according to the time
of day: Buses and subways come more frequently during the rush hour; trains leave on or close to
scheduled departure times; highway driving times vary with time of day, with heavier traffic and
longer travel times during the rush hour.

The TMDP model enhances the MDP model in the following way: In addition to a discrete
state space � and a discrete action space

�
, Boyan and Littman (2000) introduce a discrete set of

outcomes � , each of the form � � � � �� � � � � � � � with

� � �� � � : the resulting state,

� � � � � ABS, REL � : specifies the type of the resulting time distribution, and

�
� � � � � � if � � � ABS: probability distribution over absolute arrival times of � , or

�
� � ��� � � if � � � REL: probability distribution over durations of � .

Moreover, they define

��� ��� � � � �
� � � as the likelihood of outcome � given state � , time � , and action � ,

� � ��� � �
� � � as the reward for outcome � at time � with duration � , and

��� ��� � � � the reward rate for “dawdling” in state � at time � .

The optimal value function for a TMDP in terms of these quantities is then defined with the
following Bellman equations:

� ��� � � � �
	���

� ��� �

��� � �

�
� ��� � � � � � % � ��� � � � ��� (4.4)

� ��� � � � �������
 ��� � ��� � �
� � � � (4.5)
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where

� ��� � �
� � � � �� ��� � ��� � � � � � � � � ��� � � � (4.6)

� ��� � � � �
�����

�
� � � � � � � � � ��� � �

�
� � � � � % � ��� �� � � � � � � � � if � � � ABS���

�
� � � � � � � � � � � ��� � �

�
� � � � � % � ��� �� � � � � � � � � if � � � REL

� (4.7)

The solution to a TMDP is a policy mapping state-time pairs � � � � � to actions. The time-
value functions for each state can be arbitrarily complex in the general TMDP model. It is im-
possible to represent them exactly, but the model can be restricted in that the time-value function�
�
� � � is represented as a piecewise linear function of time, which allows value functions to be

manipulated exactly.
Rewards must be constrained to be piecewise linear functions of start and arrival times and

action durations: � ��� � �
� � � � � � ��� � � � % � 
 ��� � � % � � % � 
 ��� � � � where � � � � 
 , and � 
 are

piecewise linear functions of start time, arrival time, and duration, respectively. In addition, the
dawdling reward K and the outcome probability function L must be piecewise constant. Arrival
and duration probability distribution functions must be discrete.

In the context of the navigation assistance example, representing absolute time as part of the
state space allows to consider the value of a navigation recommendations dependent on the time
of day. For example, the value of the recommendation to pass a narrow corridor might be smaller
at times when the corresponding part of the airport building is congested in the morning hours,
or the recommendation to go to a particular shop might be more valuable if it is known that the
time to stand in line at the cash desk is short in the afternoon. Similarly, the recommendation to
“dawdle” in the current area because the shops will open in some minutes time can receive higher
value than going somewhere else if the decision-theoretic model can take the shops’ opening
hours into account. What looks attractive at first sight also poses a problem: A lot more and more
complex data has to be provided to initialize a TMDP model. Moreover, the implementation of a
TMDP model involves the application of the Bellman Equations 4.4, 4.5, 4.6, and 4.7, which are
more complex than the standard Bellman equations (cf. Equation 3.2). We have not implemented
the TMDP approach for the navigation assistance example but assumed constant action durations
instead.

Some objectives that can be achieved by considering absolute time as part of the state space
can be approximated well by the finite-horizon approach or are not desirable in the scenarios that
we consider. For example, minimizing the expected time for getting to the gate or maximizing the
probability of making it to the gate in time might not be convenient if it involves unnecessarily
wasting time at the gate that could be spent more conveniently (e.g., by some shopping or having
a snack in a fast food restaurant).

4.5 Synopsis

In this chapter, we have explained the decision-theoretic models and their application in two sce-
narios with comparatively low complexity. The first scenario—providing assistance for operating a
technical device—is a typical example for how decision-theoretic planning can contribute to a sys-
tem’s adaptation capabilities. We have described how variations of the form of output presentation
along different dimensions (in particular the bundling size of instructions, but also decisions about
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speech versus text output or short versus verbose instructions) can be based on decision-theoretic
planning and thereby on the expected utility for a strategy. The interplay of the decision-theoretic
planner and the user modeling component, as we have described it in the context of the READY
prototype, allows the system to adapt to the user’s resource limitations (i.e., the user’s subjectively
felt time pressure and his cognitive load).

The second part of the chapter focused on adaptive navigation assistance in complex build-
ings. In this context, adaptivity with regard to the system’s output presentation cannot adequately
be achieved without taking the spatio-temporal constraints of the complete navigation task into
account. We have shown how navigation planning and presentation planning can elegantly be
combined in a single decision-theoretic planning process, which can again be parameterized by
a user modeling component providing estimations of the user’s time pressure and cognitive load.
The integrated approach accounts for the navigation task and the presentation task influencing
each other. However, if—for example, for modularity reasons—such integration is deprecated,
the decision-theoretic model that we have described can without much effort be modified (and
sometimes simplified) such that the decision-theoretic planner exclusively solves the navigation
task or the presentation task. The latter has been explained in the context of combining predefined
routes with decision-theoretic planning. Eventually, we have used the navigation task to describe
how fixed deadlines can be dealt with in a decision-theoretic planning approach. The approach
that we have chosen to deal with fixed deadlines turns out to be helpful to manage more complex
scenarios, as they will be the topic of the next chapter.



5 FOMDPS IN SCENARIOS OF HIGH

COMPLEXITY

The two examples that we have used in the previous chapter to illustrate the development of a
decision-theoretic model for an intelligent adaptive user interface planning problem are both low
in complexity. To restrict the complexity of the decision-theoretic planning approach, we have
committed to some simplifications in the problem descriptions. For example, for the navigation
assistance problem (see Section 4.2.2), we have assumed—apart from a simplified airport terminal
topology—that the user has exactly one navigation goal (getting to the departure gate) and one
subordinated goal (buying a gift) that he would like to achieve on the way to the gate.

In this chapter, we explore approaches to deal with a class of more realistic and hence more
complex instances of the navigation assistance problem. The complex example problem is based
on a more realistic airport terminal and involves several navigation goals as well as several subor-
dinated goals that the user would like to achieve in parallel with the navigation tasks. Later in this
chapter, we will discuss the classification of goals not only as primary and secondary, but more
generally as n-ary goals.

Much work has focused on factored representations (see Section 3.1.5.1) to deal with large
Markov decision problems. However, approaches based on factored representations, such as those
introduced, for example, by Hoey et al. (1999) or Feng and Hansen (2002), do in general not scale
well enough to deal with realistic problems1.

Plutowski (2003) reports an evaluation of four MDP solvers based on factored representations
(cf. Section 3.1.5.1) in a shopping scenario similar to the one described in Chapter 7. More-
over, he introduces a composite MDP solver that draws from each of the four techniques. With
the composite MDP solver, it is feasible to solve moderately sized task instances from the class
of problems described in Chapter 7. In addition to the modeling that we employed for the user
studies of Section 7.2 and 7.3, the decision-theoretic model used by Plutowski considers the infor-
mation which stores have already been visited. This additional information blows up the decision-
theoretic model in the same way as the information about which items have already been bought.
Therefore, an MDP encoded as described by Plutowski for a problem with 13 locations and 7
items to be bought requires already 17 billion states.

The second approach to deal with complexity in decision-theoretic planning is hierarchical
decomposition: Complex decision-theoretic planning problems are decomposed into less com-

1For example, we have mentioned in Section 3.1.5.1 that SPUDD has been demonstrated on a class of problems
involving up to 63 million states; this may sound a lot but in fact is not, considering that the state space grows exponen-
tially in the number of binary state features.

111
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plex decision-theoretic planning problems. We will survey some examples of decomposition ap-
proaches in the next section. Decomposition has advantages and disadvantages: It allows to deal
with more complex problems at the price of requiring additional domain knowledge and typically
only approximating the optimal solution of a decision-theoretic planning problem.

The decomposition approaches that we will survey in the next section are not suitable for the
kind of problems that we are interested in. None of them exploits hard time constraints and the
potential of distinguishing different types of goals. We will introduce a new approach of hierarchi-
cal decomposition which takes advantage of the existence of hard time constraints (as they were
described in Section 4.4) and different types of goals that occur in domains like the airport domain
introduced in Section 4.2.2. The hierarchical approach can be characterized as goal-priorized
decision-theoretic planning (GPDTP) with Markov decision processes on � levels. Thereby, the
decision-theoretic planning processes on levels � and � % �

can pairwise by considered as macro-
level and micro-level decision-theoretic planning processes. The approach—apart from enabling
us to deal with complex realistic problems—has positive side effects for the system’s usability and
its capability to consider partial observable information appropriately without explicitely modeling
the interaction as POMDP. The example that we employ throughout this chapter distinguishes only
primary and secondary goals, hence requires two-level goal-priorized decision-theoretic planning,
only.

5.1 Hierarchical Decomposition

Hierarchical decomposition (Sacerdoti., 1974) is a well known concept in the classical planning
paradigm (for a survey, see, e.g., Ghallab et al., 2004, Part III, Chapter 11, or Yang, 1997). The
key benefit of hierarchical decomposition in general is that, at each hierarchy, a computational
task is reduced to a (small) number of simpler subtasks at the next lower level to downsize the
computational cost for finding a solution to the top-level problem. In the best case, hierarchical
methods can result in linear-time instead of exponential-time planning algorithms (see, e.g., the
comments by Russell & Norvig, 2003, in their survey of hierarchical planning approaches).

Much of the effort in the context of decomposition has focused on methods that decompose
MDPs into “communicating” subproblems (Bertsekas & Tsitsiklis, 1989). Typically, a Markov
decision process is either already specified in terms of a set of “pseudo-independent” subprocesses
(see, e.g., Singh & Cohn, 1998) or is automatically decomposed into such subprocesses (see, e.g.,
Boutilier, Brafman, & Geib, 1997).

Meuleau et al. (1998) describe an approach for solving very large weakly coupled Markov
decision processes in which they exploit two key properties of particular planning problems: (1)
The problems are composed of multiple tasks whose utilities are independent, and (2) the actions
taken with respect to a task do not influence the status of any other task. They model these tasks
as Markov decision processes which are weakly coupled by resource constraints in that actions
selected for one MDP restrict the actions available to other MDPs. The solutions of the sub-MDPs
are merged or used to construct an approximate global solution.

The method of Meuleau et al. (1998) is based on so called Markov task sets, which are approx-
imated by a strategy they call Markov task decomposition. Markov task decomposition is divided
into two phases: (1) In an offline phase, value functions are calculated for the individual tasks
using dynamic programming. (2) In an online phase, these value functions are used to calculate
the next action as a function of the current state of all processes. Meuleau et al. (1998) apply
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their approach with encouraging results in domains such as job shop scheduling, allocation of re-
pair crews to different jobs, and disaster relief scheduling. Similar approaches for weakly coupled
Markov decision processes are explained by Dean and Lin (1995), who in particular introduce two
algorithms for the generation of a global solution from the solutions of the subproblems, and Parr
(1998), who emphasizes the benefit of decomposing weakly coupled Markov decision processes
for problems with similar substructures.

Hauskrecht, Meuleau, Kaelbling, Dean, and Boutilier (1998) investigate the use of macro-
actions2 to build abstract MDPs that approximate the original MDP and can be solved more
efficiently. They propose a hierarchical model that works with macro-actions only and thereby
significantly reduces the size of the state space. Their key idea is to treat macro-actions as local
policies that act in certain regions of the state space and thereby restrict the states in the abstract
MDP to those at the boundaries of regions in the original MDP. This way, they construct models
on the basis of macro-actions that allow the macro-actions to be treated as if they were ordinary
actions in the original MDP. That is, a macro-action for a region is a local policy for this region. A
similar approach is described by Lane and Kaelbling (2001), where each macro represents knowl-
edge about how to achieve one particular sub-goal within nearly-independent regions of the state
space. Hauskrecht et al. (1998) apply their approach in a grid-world maze domain, where they
achieve a remarkable reduction in the size of state and action spaces. They also emphasize the
advantage of potential reuse of macros to solve multiple related MDPs.

While most hierarchical MDP algorithms rely on hand-designed, knowledge-intensive state
abstraction, Pineau et al. (2003) propose an algorithm which plans from the bottom of the hier-
archy up and thereby automatically finds good abstractions contingent on their subtasks’ optimal
policies. They claim that this so called policy-contingent approach can often abstract away more
details than a human can, because it has access to its subtasks’ policy when it decides whether to
cluster states. The approach is also applicable to partially observable MDPs. Pineau et al. (2003)
test their approach in the taxi domain (Dietterich, 2000), a commonly used example problem in
the hierarchical MDP literature, where the overall task is to control a taxi agent with the goal of
picking up a passenger from an initial location and then dropping him off at a desired destination.
In this domain, their approach outperforms comparable approaches such as MAXQ (Dietterich,
2000) with regard to the parameters required to learn the solution.

Also Moore, Baird, and Kaelbling (1999) try to automate the decomposition process. They
introduce an approach for automatically generating action hierarchies for Markov decision pro-
cesses with multiple goals. They present an algorithm that defines landmarks in the state space
and thereby partitions the state space automatically. They tested their algorithm in grid-world
mazes of different size.

Region-based decomposition has also been studied in the context of plan recognition. Bui,
Venkatesh, and West (2000) describe how abstract Markov policies can be recognized from exter-
nal observations, for example, to track and predict human movement in large spatial environments.

5.2 Example Domain

In the example of Section 4.2.2, we assume that the passenger needs navigation assistance to the
gate and wants to buy a gift along the way. This assumption simplifies the procedure that we

2For deterministic action models, macro operators have been studied, e.g., by Korf (1985).
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usually have to go through before we are seated in the correct air plane, once we have entered the
airport building.

Typically, one of the first things that we want to do after arrival at the airport is to get rid of our
luggage, that is, to go to one of the assigned check-in counters rather quickly. Already on the way
to the check-in counter, we might bear in mind desires such as finding a rest room, completing our
travel pharmacy with things that we did not have the time to buy before our trip, having a snack in
a fast food restaurant and maybe a coffee in a café, buying duty-free items or some other gift item
for the friend who we are visiting, buying some batteries for our new digital camera, a book or a
magazine to read the flight, or some mint drops to chew during the landing. Usually, one would
not try to achieve all subordinated goals right in the beginning. But if the situation is adequate,
some of the goals on the to-do-list can already be achieved on the way to the check-in counter, for
example, if the passenger happens to come along some kiosk or rest room. Other desires might
typically be left to be considered after the passenger has already checked in and does not have
to carry his luggage anymore, for example, buying a book, the batteries for the camera, or some
item for the travel pharmacy. And eventually, some items would be considered after the passenger
has already passed the passport control, for example, the mint drops or items to be bought in a
duty-free shop.

The list of subordinated goals that a passenger wants to achieve while he goes through the
standard procedure at the airport (checking in, going through the passport control, and going to
the gate) might in general not be huge but sometimes can get to a considerable size, in particular,
if several people, for example a whole family, are traveling together. To consider an increasing list
of navigation goals and desires that a passenger might want to be considered by the system during
his stay in the airport terminal in a single decision-theoretic model has two major disadvantages:
(1) The size of such a decision-theoretic model is hardly manageable and (2) the system behav-
ior resulting from such a decision-theoretic model is rather intransparent, which means that the
usability of a system employing such a complex decision-theoretic model will suffer. Usability
issues will be the topic of Chapter 7.

5.2.1 Goal Priorization: Primary and Secondary Goals

As has already been indicated, our decomposition approach for the airport domain at hand is
based on the distinction of two classes of goals to be achieved by the decision-theoretic planning
approach: (1) obligatory or primary goals and (2) optional or secondary goals. Of both classes, we
have already introduced one particular instance in the example problem of Section 4.2.2. There,
the primary goal is getting to the gate, and the secondary goal is buying a gift on the way to the
gate if possible. We have already indicated what other primary and secondary goals typically exist
in the airport domain. As primary goals, we have identified the physical locations in the airport
terminal, which the passenger is obliged to go to at some point: the check-in counter, the passport
control, and eventually the gate.

In the airport domain, the order in which the primary goals have to be achieved is fixed. In
other domains it can be flexible. Consider, for example, a patient’s trip through a hospital to
get through preliminary check-ups for a medical treatment before lunch time3. Here, the order
in which to visit, for example, the lab for the blood test, the x-ray cabin, and the audiometry
lab, might be flexible. In this example, getting to the corresponding labs in the hospital can be

3We say “before lunch time”, because the time restriction has consequences for our decomposition approach; sec-
ondary goals in this scenario might be buying a magazine or a phone card while going from lab to lab.
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Figure 5.1: Decomposition of a complex decision-theoretic planning problem.
(The considered instance of a complex decision-theoretic planning problem involves three navigation goals
and several subordinated goals to be achieved during the navigation tasks. The decomposed decision-
theoretic planning problems involve one navigation goal each and only a subset of possible subordinated
goals to be achieved during the navigation task. Blue labels: Subordinated goals that could not be achieved
can be considered in later micro-level decision-theoretic planning processes again.)

considered as primary goals that can be achieved in arbitrary order. Flexibility with regard to
the primary goal order has no consequence for the applicability of our decomposition approach
in principle. However, it causes an increased complexity of the macro-level decision-theoretic
planning process, as it requires additional state features in the macro-level MDP, including the
information which primary goals have already been achieved.

Apart from buying a gift, we have already mentioned other potential secondary goals in the
airport domain, for example, visiting a rest room, having a snack in a fast food restaurant, or
buying various articles before the departure. They all have in common that the passenger usually
tries to achieve them only if there is enough time to do so. Ideally, they passenger would like to
achieve all secondary goals, but in general, he can only try to achieve as many of them as possible
in the time that remains before the boarding. The order in which secondary goals are achieved
is usually arbitrary, but the passenger might consider some secondary goals more important than
others. For example, finding a rest room might be assigned hight importance in some situations.
However, strictly trying to achieve secondary goals in the order of their importance might not be
appropriate. If an important secondary goal can with high probability be achieved rather shortly
before the boarding (e.g., buying a duty-free item), while a less important secondary goal can
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be achieved early in the process (e.g., buying a magazine for the flight), then trying to achieve
the less important secondary goal before the more important one will typically be considered to
be appropriate. Even if not all secondary goals can be achieved in the given time, the passenger
might not necessarily want to consider the most important secondary goal first. For example, if the
most important secondary goal is difficult (unlikely) to be achieved, the passenger might prefer to
try to achieve two less important secondary goals whose achievement is more likely.

5.2.2 Decomposition and Time Restrictions

The airport domain involves the consideration of a fixed deadline: The passenger must reach
the gate in time. What does this fixed deadline mean for time restrictions of preceding primary
goals—getting to the check-in counter and going through the passport control? How do the time
restrictions for the complete process (from entering the airport building to boarding) influence the
time restrictions for each particular primary goal?

If we can determine appropriate time restrictions for the achievement of each primary goal, we
can consider the achievement of each of the primary goals as a separate finite-horizon decision-
theoretic planning problem that can be solved as described in Section 4.4. Considering several
secondary goals while trying to achieve a particular primary goal turns out not to be difficult, as
we will explain in Section 5.3.

However, it is not trivial to derive the time restrictions for each particular primary goal from
the fixed deadline for reaching the gate. A naive approach, such as assigning the same amount of
time to each primary goal, does not seem to be appropriate. The distances to get from one location
to another (e.g., from the entry to the check-in and from the check-in to the passport control) can
be very different, and so can the number of secondary goals that can potentially be achieved (and
hence the time spent trying to achieve these secondary goals) on different sections of the way
to the gate. The hierarchical decision-theoretic planning approach described in the next section
incorporates time restrictions in an elegant way into the decomposition process and considers them
adequately by interleaving the macro-level policy and the micro-level policies.

5.3 Goal-Priorized Decision-Theoretic Planning

In this section, we introduce goal-priorized decision-theoretic planning (GPDTP), a new form of
hierarchical decision-theoretic planning with fixed deadlines. The airport domain requires only
the distinction of primary and secondary goals—the general case with a more complex goal prior-
ization will be discussed in Chapter 6.

We illustrate the macro- and micro-level decision-theoretic models for the airport domain and
explain how the solution to the global problem evolves from the solutions generated on the micro-
level. The two key insights involve the benefit of taking advantage of the existence of a fixed
deadline for the overall planning goal and distinguishing two types of goals that are present in the
airport domain. The idea is to assign an appropriate subset of secondary goals and appropriate
portions of time to the achievement of each of the primary goals. Thereby, the performance of
the user in one section (trying to achieve one primary goal) can be taken into account with regard
to the system’s recommendations in succeeding sections (trying to achieve other primary goals).
Using decision-theoretic planning on a macro- and a micro-level of the planning process allows to
take these dependencies into account without requiring any replanning.
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5.3.1 Preliminary Computations

On the micro-level, the airport domain is specified in terms of the distinct physical locations in the
airport building, that is, the positions at which infrared beacons would be installed in the physical
environment to enable the system to localize the user. Each physical location has an identification
number, and we know for each physical location what its adjacent locations are. For each pair
of adjacent locations, we know the physical distance between the two locations—from which we
can derive the time needed to get from one location to another for any individual user—and the
probability that the user achieves any of the secondary goals on the way from one location to
another. Moreover, each physical location is assigned to a distinct area of the airport building. In
our example implementation, we have studied an airport building with four areas: two public areas
and two non-public areas. A user is in a public area before he passes the passport control. A public
area of a terminal building usually hosts check-in counters, stores, cafés, fast food restaurants, rest
rooms and the like. A passenger is in a non-public area of a terminal building after he has passed
the passport control. Non-public areas host, for example, duty-free shops, cafes, rest rooms and
eventually the gates. In our example implementation, each physical location in the airport building
is assigned to one out of the four distinct areas.

The preliminary computations for the macro-level decision-theoretic planning includes three
steps: (1) the determination of the regions that are involved to achieve the next primary (or naviga-
tion) goal, (2) the partitioning of the total time, that is, a rough estimation of appropriate portions
of the available total time for the achievement of each of the primary goals, and (3) the derivation
of macro-level probabilities from micro-level probabilities, that is, an assessment of the probabil-
ity for each secondary goal to be achieved by the user in any particular section of the way to the
gate (i.e., together with any of the primary goals).

Determination of the regions: The determination of the regions that are involved to get to the
next navigation goal (i.e., to achieve the next primary goal) is not difficult. A straightforward
approach is to determine the shortest path from one location to another and check for all locations
on the path to which areas they belong to. The micro-level decision-theoretic planning process
must cover all areas identified for the primary goal at hand. Alternatively, for example, the most
likely or the most common path can be considered. In the example implementation, we decided
to consider the shortest path, which can be computed with Dijkstra’s algorithm (Dijkstra, 1959, or
see, e.g., Sedgewick, 2003, Chapter 21).

Partitioning the total time: We have applied the following heuristics for the estimation of ap-
propriate portions of the available total time for the achievement of each of the primary goals:
First, we compute for each primary goal the minimal time that is required for its achievement.
In our example, this includes the minimal time to get from the current position to the check-in
counter, the minimal time to get from the check-in counter to the passport control, and eventually
the minimal time to get from the passport control to the gate. Then, we partition the total time
proportionally to the minimally required times for achieving each of the primary goals to obtain
reasonable maximal times to achieve each of the primary goals. Note that these times are only
used in the macro-level decision-theoretic planning process. Alternative heuristics might be con-
sidered under particular circumstances, for example, a heuristic taking the number of opportunities
to achieve particular secondary goals in a particular section of the airport building into account. It
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might also be possible to learn from empirical data acquired about the proportions of time spent
by a number of passengers to achieve the typical primary goals before departure.

The micro-level decision-theoretic planning processes have to take into account that more time
than the originally estimated maximal time for the achievement of a primary goal can be available
because preceding primary goals have been achieved faster than preliminarily estimated. We say
more about how time is dealt with in the micro-level decision-theoretic planning processes in
Section 5.3.3.

Derivation of macro-level costs and probabilities from micro-level costs and probabilities:
The costs of macro-level actions are composed of the time needed for covering the distance to
achieve a particular primary goal and the duration(s) to achieve the secondary goal(s) considered
by the macro-level action at hand (see also Figure 5.3).

The last piece of information that we need for the decision-theoretic planning on the macro-
level is the probability that a particular secondary goal is achieved together with any of the primary
goals. The idea is to estimate this probability from the probabilities that are used on the micro-
level, that is, the probabilities to achieve a particular secondary goal on the way from one distinct
location4 to an adjacent distinct location. We determine these probabilities heuristically: An ap-
proximation for the probability ��� ��� � to achieve the secondary goal � together with the primary
goal � can be computed from the total number of possibilities ��� ��� � to achieve the secondary goal
� in any of the regions � from the set of regions ��� that are relevant for the achievement of the
primary goal � and the total length � � � � of all paths that make up the regions ��� � � :
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(5.1)

This heuristic can be interpreted as follows: The more possibilities to achieve a particular sec-
ondary goal exist in the region(s) corresponding to the considered primary goal and the closer
the corresponding locations lie together, the higher is the probability that the secondary goal is
actually achieved together with the primary goal at hand. This heuristic yields an intuitive sys-
tem behavior in the example implementation. The macro policy suggests to consider secondary
goals with a reasonable chance for being achieved if the remaining time allows. However, other
heuristics might do similarly well.

5.3.2 Decision-Theoretic Planning on the Macro Level

The preliminary computations provide all quantitative information that we need to build an appro-
priate decision-theoretic model for the macro-level planning and to compute a macro-level policy.
A macro-level policy in this context can be considered as a time-dependent assignment of sets of
secondary goals to primary goals. It consists of directions of the following form: If while starting
to work on primary goal � � at time � only ��� of the set of all secondary goals � � � � � � � � � � ���
� has
been achieved, then try to achieve � � and �

�
together with the primary goal at hand (i.e., consider

� � and �
�

in the micro-level decision-theoretic planning process for the primary goal at hand).
With equally important secondary goals and decreasing remaining time to achieve the primary

4Recall that the distinct locations on the micro-level are those that correspond to a position of an infrared beacon.
Distinct locations on the macro-level are locations such as the initial position of the user, the check-in counter, the
passport control, or the gate.
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goal � � , the set of secondary goals to be considered together with � � will typically become smaller
and secondary goals consuming much time will be replaced by secondary goals consuming less
time. In particular, if the time assigned to the achievement of a primary goal is running out, then
the macro-level policy will eventually assign no secondary goal at all to the primary goal at hand.
Figure 5.2 sketches a part of the macro-level t-time-units-to-go policies for � �
� � � ��� , and

�
.
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Figure 5.2: Decomposition approach dealing with fixed deadlines—sketch of a macro policy.
(The macro policy specifies dependent on the remaining time—we consider the finite-horizon policies with
25, 15, and 5 minutes until the gate is closed—which subset of all secondary goals is supposed to be
considered in the micro decision-theoretic planning processes in different sections of the passenger’s way
to the gate. For example, in the first section—entrance to check-in counter—with 25 minutes remaining,
the system will only take into account assistance for finding a rest room, a magazine, and batteries. If not
being achieved in one section, some secondary goals can be reconsidered in other sections, presuming that
there is enough time to do so. The closer it gets towards the fixed deadline, the less secondary goals will
the macro policy assign to be considered in the micro decision-theoretic planning processes.)

In the decision-theoretic model underlying the macro-level planning process, the states are
described by the important macro-level locations (the entrance of the airport building5 , check-in
counter, passport control, and gate6) and the information about which of the secondary goals have
already been achieved. The latter piece of information is not included in Figure 5.2.

Figure 5.3 shows a fraction of the macro-level decision-theoretic model: the transitions from
the state describing the situation that the user’s next primary goal is the gate and two out of four
secondary goals have already been achieved. We only regard the action consider duty-free shops

5For the preliminary computation of the quantitative information used for the macro-level planning process, the
system needs to know the initial position of the user; for the given example problem, we assume that the initial position
is the entrance of the airport building; however, any other location as initial position would work equally well.

6Check-in counter, passport control, and gate have to be specified exactly in the concrete example, e.g., check-in
counter 121, passport control in hall B, and gate B37
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and rest rooms as secondary goals on the way from the passport control to the gate. The action
yields four transitions which are associated with costs and probabilities that are computed as de-
scribed in Section 5.3.1. In the figure, we assume the situation in which the passenger has already
achieved two secondary goals (buying batteries and having a snack in a fast food restaurant) when
leaving the passport control. The figure then shows the transitions for the action consider duty-free
shops and rest rooms as secondary goals on the way from the passport control to the gate, that is,
while trying to achieve the last one of the primary goals.
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Action: consider duty−free shops and rest rooms

Figure 5.3: The macro-level action “consider duty-free shops and rest rooms as secondary goals”.
(Transition costs and probabilities of macro-level actions can be determined heuristically from costs and
probabilities specified for micro-level actions as explained in Section 5.3.1. Thereby, ������� corresponds
to the probability to achieve secondary goal � together with the primary goal at hand, ������� corresponds
to the costs associated with the cumulated micro-level costs—costs that correspond to distances from one
infrared beacon to another—to achieve secondary goal � , and �
	���� �
� � � � � ����� corresponds to the costs
to actually achieve secondary goals � � to � � , for example, the average time needed to visit a duty-free
shop and buy a duty-free item.)

For the state on the left-hand side of Figure 5.3, the decision-theoretic model includes the
transition of three further actions: consider (only) duty-free shops, consider (only) rest rooms, and
do not consider any secondary goal at all. The macro-level policy will always switch to the action
do not consider any secondary goal at all for all states if the time to achieve a primary goal runs
short. In other words, for some � , the t-time-units-to-go policy, which is computed as described in
Section 4.4.1, will assign the action do not consider any secondary goal at all to all states.
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The user might also achieve a goal that is actually not recommended to be considered on
the way from the passport control to the gate. For example, he might visit a rest room on his
own initiative, while the macro-level policy (and thereby the recommendations determined by the
micro-level policy) take only the duty-free shops into account. To consider this in the decision-
theoretic model, one defines the corresponding transitions, which are usually associated with small
probabilities. That is, in the example at hand, one of the transitions for the action consider duty-
free shops ends in a state for the position at the gate with the secondary goal of visiting a rest room
achieved while the secondary goal of having a duty free item bought is not achieved.

Despite the small number of locations that are considered in the macro-level decision-theoretic
planning, the state space can be large. It grows exponentially in the number of secondary goals
that are considered. Because the number of locations considered on the macro-level is small, the
problem remains tractable for a medium number (up to about 10) of secondary goals. A particular
characteristic of the airport scenario is favorable to the complexity of the macro-level decision-
theoretic model: As the order of the primary goals is fixed, the state features do not need to
include information about which macro-level locations have already been visited or which primary
goals have already been achieved, respectively. Appendix F lists a part of a sample trace of the
computations for the macro-level decision-theoretic planning in the airport assistance scenario.

5.3.3 Decision-Theoretic Planning on the Micro-Level

Once the macro-level decision-theoretic planning has determined which secondary goals are sup-
posed to be considered together with which primary goals, the micro-level decision-theoretic
model can proceed very much like we have described it for a scenario of low complexity in Sec-
tion 4.2.3. In the model described in Section 4.2.3, we have only considered one secondary goal
together with a primary goal. However, extending this model in a way that several secondary goals
can be considered involves only two steps: (1) For all secondary goals, the topology description
(describing how adjacent locations are connected) is augmented with the information about pos-
sibilities to achieve the secondary goal on the way from one location to another, and (2) new state
features are added to the state description in order to maintain the information about which of the
secondary goals (that are considered with the primary goal at hand) have already been achieved. It
depends on the user’s current location and the set of already achieved secondary goals where the
user is recommended to go to and whether he is made aware of possibilities to achieve any of the
secondary goals (which he has not achieved yet) along the upcoming part of the way. The rewards
for the secondary goals, which express the importance that the user assigns to each of them, are
identical to those used in the macro-level decision-theoretic planning process.

An important advantage of decision-theoretic planning in general is that policies, as they con-
sider all possible situations that can—as long as they are encoded in the decision-theoretic model—
occur during the interaction of the user and the system, can be computed offline. If the micro-level
policies are supposed to be computed offline in the hierarchical decomposition approach, then we
have to compute a set of finite-horizon decision-theoretic policies for each macro-action that can
be proposed by the macro-level policy. A macro-action can have different outcomes, that is, it is
not known in advance which of the secondary goals that are considered with a particular primary
goal will actually be achieved. For example, the macro-level policy might specify for the situation
when the user is at the check-in counter at time � and has not yet achieved any secondary goal, to
consider (1) visiting a fast food restaurant and buying batteries, (2) visiting a fast food restaurant
only, (3)buying batteries only, or (4) not trying to achieve any secondary goal at all. In this case,
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four sets of micro-level policies have to be computed and the appropriate one has to be selected at
runtime. In the prototypical implementation running on a workstation, we refrained from precom-
puting all possible micro-level policies (1) because there was enough computing power available
to do the planning online, and (2) because online micro-level planning allowed to incorporate
updated information from the user modeling component from time to time.

In Section 5.3.1, we have described how the time restriction for the achievement of each of
the primary goals can be computed. The fixed deadlines are considered by finite-horizon decision-
theoretic planning just as it is described in Section 4.4. However, on the micro-level, it is not
sufficient to compute the t-time-units-to-go policies up to the maximal amount of time that is as-
signed to the achievement of a primary goal on the macro-level. As we have mentioned before,
the user will usually not achieve a primary goal exactly in the maximal time that is assigned to
this primary goal, but will need less time than he actually has available. This means that sav-
ing time while achieving one primary goal allows the user to spend more time to achieve later
primary goals. Therefore, the planning horizons of the individual micro-level decision-theoretic
planning processes must overlap in the sense that the sum of the planning horizons of the micro-
level decision-theoretic planning processes is greater than the total available time.

To guarantee that the planning horizon is sufficient, one can simply define the total available
time as the horizon for each individual micro-level decision-theoretic planning process. However,
this strategy results in many t-time-units-to-go policies that will never be used. As a better heuristic
for the maximal finite horizon required for the achievement of a particular primary goal on the
micro-level, we subtracted the sum of the minimal times to achieve each of the preceding primary
goals from the total available time in the implementation.

Alternatively, if the micro-level policies do not need to be computed in advance (i.e., if the
computing power of the handheld device allows online decision-theoretic planning), then one can
subtract from the total available time the actual time that has already elapsed during the achieve-
ment of preceding primary goals. If a computation of the micro-level policies on demand is pos-
sible, that is, if the hardware on which the system runs is sufficiently fast, then the computation
on demand is also preferable because it requires only a single set of micro-level policies—instead
of several—to be computed for the achievement of each primary goal. The reason is that the
exact state from which the user starts to achieve a particular primary goal is already specified
under these circumstances, that is, the system knows which secondary goals the user has already
achieved together with preceding primary goals.

5.3.4 Integrating Macro- and Micro-Level Decision-Theoretic Planning

The integration of the macro- and micro-level decision-theoretic planning processes results from
the alternating application of the macro-level policy and appropriate micro-level policies. Figure
5.3.4 summarizes the algorithm computing the micro-level policies on demand (i.e., when the
micro-level policies are not precomputed).

After the macro-level policy has been computed, the system checks which secondary goals are
supposed to be considered on the micro-level in the situation at hand. According to the unachieved
secondary goals (initially, all secondary goals are unachieved), the system selects the t-time-units-
to-go policy according to the remaining time and starts giving navigation recommendations to the
user.

When the user achieves the first primary goal (i.e., when he reaches the check-in counter in the
airport scenario), the system computes the set of finite-horizon policies for the next primary goal
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Figure 5.4: Hierarchical decision-theoretic planning.
( ��� : list of primary goals; ��� : list of secondary goals; ��� : rewards for secondary goals; ���! #"%$�&"'&)(%*+( : cost table
for macro-level actions; � �! #"%$�&, $�&)-%( : probability table for macro-level actions; �/.�01. : topology description,2�35476 �98�"%$�& : overall deadline. Further explanations are given in the text.)

(e.g., getting to the passport control) according to which of the secondary goals have been achieved
during the achievement of the preceding primary goal. From this set, the system selects the right
t-time-units-to-go policy again and applies it by giving navigation recommendations to achieve
the next primary goal. This procedure is repeated until all primary goals have been achieved (i.e.,
in the airport scenario, until the user has reached the gate).

We have implemented the hierarchical approach described in this section for the airport sce-
nario prototypically on a workstation and not on a mobile device. Note that on a mobile device,
the computation of the micro-level policies can only be accomplished on demand if the mobile
hardware is fast enough. Under this assumption, on demand computation is in particular prefer-
able if memory space is restricted. In fact, the system could be implemented such that it detects
memory and micro-processor restrictions and then decides automatically whether to precompute
the micro-level policies or to compute them on demand. This was a contribution to the system’s
resource-adaptivity on a different dimension.

5.3.5 System Behavior

The hierarchical decision-theoretic planning approach was implemented for the airport assistance
domain. The user interface of the prototype (see Figure 5.5) includes controls to simulate the
user input (upper right part of the figure) to a mobile airport assistance system, a visualization
of the finite-horizon policies (lower half of the figure) used by the system, and eventually the
simulated system output (upper left part of the figure). The screen shot captures the following
simulated situation: The user has just entered one of the airport entrances and specified his overall
goal with the speech utterance “My flight number is LH768.” From this information, the system
derived three primary goals by a database look-up: check-in B121, passport control B, and gate
B16. Moreover, the system derived the time until the boarding for flight LH768. Asked if there
is anything the system can try to help with, the user specified four secondary goals via further
(simulated) speech utterances: “If possible, I would like to pass some shops to buy a gift for
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Figure 5.5: Hierarchical, goal-priorized decision-theoretic planning in the READY prototype:
Providing airport assistance.
(Explanation in text.)
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my girlfriend. And I need to buy a book and some batteries... and I need a snack.” Primary
goals, secondary goals, and the time until the boarding are displayed in the upper half of the user
interface, left from the middle7.

After the hierarchical decision-theoretic planning process has been triggered (via a button), the
system first computed the macro policy. For the given remaining time, the macro policy specified
that the first micro-level decision-theoretic planning process will consider two secondary goals
with the primary goal check-in B121: buying a book and trying to find a fast food restaurant.
The first micro-level policy considers only those areas in the airport terminal that are relevant to
achieve one of the two secondary goals on the way to the check-in counter. The slightly darker
(green) arrows in the policy visualization correspond to simple navigation recommendations (e.g.,
an arrow indicating the direction to go to) on the PDA display, the slightly lighter (yellow) arrows
correspond to maps on the PDA display, which include a navigation recommendation and in addi-
tion information about opportunities to achieve the secondary goals that are currently considered
(cf. Section 4.2.2).

The prototype allows to simulate the moving through the airport building using the cursor
keys. At those places in the airport where secondary goals can be achieved (e.g., at a book store
or a fast food restaurant), the user interface of the prototype allows to specify if the user actually
achieves the corresponding secondary goal or not. This specification is realized by a pop-up
window with check buttons. Moving through the airport building, the user notices how the time
until the boarding decreases and the navigation recommendations and their presentation change,
with the consequences that we have already described in Section 4.4.1: The less time is available,
the more directly will the system try to guide the passenger to the individual navigation goals and
the less importance will the system assign to making the user aware of opportunities to achieve any
secondary goals along the way. After the user has reached the check-in counter, another micro-
level decision-theoretic planning process for the next primary goal will be triggered according
to the remaining time and the macro policy. If the user follows the system’s instructions in the
example correctly, he will eventually reach the gate in time and have the chance to achieve all
specified secondary goals along the way.

The prototype demonstrating the goal-priorized decision-theoretic planning approach—like all
other prototypical implementations mentioned in this thesis—has been realized with the Mozart
programming system8.

5.3.6 Positive Side Effects of Decomposition

Decomposition has two positive side effects: (1) It contributes to the system’s usability and (2) it
allows to consider partially observable information without explicitly modeling them in a POMDP.

Usability: Decomposition can increase the system’s transparency—one of the important usabil-
ity issues that we will discuss in Section 7.4.1. A smart user, who tries to achieve several primary
and secondary goals in the airport scenario without the assistance of an airport assistance system,
would possibly try to decompose the problem in a similar way as described in this chapter. He

7The user interface of the prototype provides displays to visualize further information from the user model that
can be used to parameterize the decision-theoretic planning process (cf. Section 4.1.6.2 and Section 4.1.6.3). More-
over, it provides controls to specify further information that can be used as input for the user modeling component: a
specification of the user’s manual input, eye-tracker data, and biosensor data.

8Mozart is documented at and can be downloaded from http://www.mozart-oz.org/.

http://www.mozart-oz.org/
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would intuitively distinguish primary and secondary goals and intuitively decide which of the sec-
ondary goals to consider together with a particular primary goal. However, without the detailed
knowledge about the environment (as it is modeled for the micro-level decision-theoretic planning
processes), he would not be able to plan ahead his trip through the airport terminal as profoundly
as the system does—based on the goal-priorized decision-theoretic planning approach.

We suppose that many passengers in an airport scenario decompose planning problem simi-
lar to those described in this chapter in the way that the described system does. The similarity
of the user’s intuitive strategy and the goal-priorized decision-theoretic planning approach should
help the user understand the system behavior better than if the system does not decompose the
problem. Due to the macro-level decision-theoretic planning, the system can explain what sec-
ondary goals are considered with the primary goal at hand and what other secondary goals are
not. In addition, the number of secondary goals that are considered together with a particular
primary goal is smaller than if all secondary goals are considered in a single decision-theoretic
planning process. Finally, the information gained in the decomposition process can be exploited
to generate sophisticated explanations for the system’s recommendations (see Section 7.4). For
example, if requested why a particular secondary goal is currently considered, the system can re-
fer to the density of opportunities to achieve this particular secondary goal in the area around the
user’s location at hand. In general, the system can first try to use information from the macro-level
decision-theoretic model to give an explanation for its recommendations and use information from
the micro-level decision-theoretic model if a more detailed explanation is requested.

Partial Observability: In Sections 4.1.6 and 4.2.6, we have described how information of the
user model, in particular information about cognitive load and time pressure of the user, can be ex-
ploited in a decision-theoretic planning process. Cognitive load or subjectively felt time pressure
refer to mental states of the user and can therefore not be observed directly9 but must be consid-
ered to be partially observable. We have explained in Section 4.1.6 how this partially observable
information can be inferred from observations (such as symptoms in the interaction of the user
with the system or biometric information) by using Bayesian networks.

In principle, it is possible to incorporate the information about symptoms in the interaction of
the user with the system in a partially observable Markov decision process and abandon an explicit
user modeling component. Cognitive load and time pressure would then be two partially observ-
able state features whose value depends on observations about the behavior of and the biometric
data about the user, respectively. However, we have indicated in Section 4.1.6 how sophisticated
and complex the user model based on the Bayesian network approach is, and it would by far exceed
the capabilities of today’s most performing exact algorithms to solve POMDPs if one tried to cover
all relations between the symptoms and the variables COGNITIVE LOAD and TIME PRESSURE.

The idea of a hybrid approach with a separate user modeling and decision-theoretic planning
component yielded an intuitive system behavior in the scenarios of low complexity that we have
discussed in Sections 4.1.6 and 4.2.6. Therefore, it is not only a question of feasibility when think-
ing about discarding a sophisticated user modeling component based on a Bayesian network ap-
proach in favor of a POMDP approach. Apart from complexity reason, there is also the advantage
of a clear modularization when keeping the assessment of important aspects the current situation
(i.e., the user modeling) and the finding of a strategy to adapt to the identified situation (i.e., the

9Even if neuro scientists might at some point be able to measure mental states reliably, such methods are not likely
to be incorporated in devices of everyday use in the near future.
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decision-theoretic planning) in separate processes. Modularization facilitates the implementation
and maintenance of the system.

The goal-priorized decision-theoretic planning approach introduced is this chapter allows to
incorporate important partially observable information on the micro-level in an appropriate way.
We do not consider information about the user’s cognitive load and subjectively felt time pressure
to be relevant in the macro-level decision-theoretic planning process. Cognitive load or the feeling
to be under time pressure may last for some seconds or minutes but are not likely to be constant
over the whole period of time that the user spends in the airport building. The goal-priorized
decision-theoretic planning approach offers the opportunity to consider changes in the user model
with each computation of a micro-level policy. Updated information about cognitive load and
time pressure can be used to parameterize the micro-level decision-theoretic planning processes
as described in Section 4.1.6.3. Once again, note that this requires the micro-level policies to
be computed online, which is currently feasible on a powerful workstation but not on standard
handheld computers.

5.4 Synopsis

In this chapter, we have introduced goal-priorized decision-theoretic planning (GPDTP), a new
type of hierarchical decision-theoretic planning to deal with complex scenarios. In contrast to
existing decomposition approaches, goal-priorized decision-theoretic planning takes advantage of
two typical characteristics of complex assistance tasks that occur in domains such as the airport
assistance domain: (1) the distinguishability of primary, secondary, and in general n-ary goals and
(2) the existence of a fixed deadline for the overall task.

For the scenario at hand, we employ a two-level goal-priorization, which implies hierarchical
decision-theoretic planning on two levels: (1) A macro-level decision-theoretic planning process
determines which secondary goals to consider together with each individual primary goal and
(2) several micro-level decision-theoretic planning processes solve the resulting low-complexity
sub-problems in the way described in Chapter 4. Each of the resulting micro-level policies is
used to achieve only a subset of all secondary goals together with an individual primary goal and
considers only particular areas of the physical environment. The time restrictions for the complete
task are propagated to the achievement of the individual primary goals in a way that the successive
execution of the micro-level policies suffices the time restrictions for the complete task. We will
consider further aspects of (a broader) goal ranking in Chapter 6.

The diminution of the planning horizon in the micro-level decision-theoretic planning pro-
cesses (compared to the time horizon of the complete process) and the strategy to determine some
of the parameters for the macro-level decision-theoretic planning process heuristically (e.g., the
assignment of a particular portion of time for the achievement of an individual primary goal)
mean that the goal-priorized decision-theoretic planning approach can only be an approximation.
However, a single (i.e., not decomposed) decision-theoretical model, which can treat primary and
secondary goals in a similar way as our decomposition approach does, is too complex for exact
decision-theoretic planning approaches. It grows exponentially in the number of primary and sec-
ondary goals because the information about the achievement of all goals has to be included in each
state.

The hierarchical decomposition approach that we have introduced is applicable only to prob-
lems that allow at least a distinction of primary and secondary goals. The existence of a fixed
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deadline for the overall task is helpful for the decomposition approach but not obligatory. The
approach could without much effort be adjusted to a situation without time restrictions. The key
idea that leads to a reduction of the problem complexity is to guarantee that the system is not
obliged to consider all secondary goals in all micro-level decision-theoretic planning processes. If
the number of considered secondary goals is small in the micro-level decision-theoretic planning
processes, then they can be computed in reasonable time even though the micro-level state spaces
grow exponentially in the number of secondary goals.

Hierarchical decomposition assuming a fixed order for the achievement of primary goals
makes the macro-level state space grow only linear in the number of primary goals. Further ease of
the complexity problem is achieved by considering in the macro-level decision-theoretic planning
process only those physical locations that are associated with a primary goal. This way, also the
macro-level policy can be computed in reasonable time as long as the number of secondary goals
is not too large.

All decomposition approaches that we have surveyed at the beginning of the chapter do only
consider one type of goals—those that correspond to what we call primary goals. Apart from
complexity reasons, making the distinction between primary and secondary goals in the airport
assistance domain allows for a problem decomposition that contributes to a more transparent sys-
tem behavior and thereby increases the user’s understanding of the system’s decision making.
Transparency improves the system’s usability. Eventually, the goal-priorized decision-theoretic
planning approach allows to consider at least some partially observable information in the micro-
level decision-theoretic planning processes without requiring to switch to a POMDP model with
discouraging complexity.



6 APPLYING DTP FOR USER-ADAPTIVE

SYSTEMS: WORKFLOW

Preceding chapters have only indicated how to get from a user-adaptive system planning prob-
lem to an appropriate decision-theoretic model and a good solution to the problem. The aim of
the current chapter is to make this procedure comprehensible on a more abstract level, such that
it can be applied to a range of user-adaptive system planning problems similar to those consid-
ered in this thesis. We will first describe the workflow for the development and application of
decision-theoretic planning in the context of user-adaptive system problems of low complexity,
i.e., for problems similar to those that we have described in Chapter 4, and then extend the work-
flow description so that it covers the application of decision-theoretic planning in the context of
more complex scenarios, such as the example discussed in Chapter 5. We illustrate the devel-
opment and application of a decision-theoretic model in the context of user-adaptive systems by
referring back to the examples of the preceding chapters. At the end of the chapter, we will survey
some approaches acquiring the necessary quantitative measures needed for the decision-theoretic
approach.

6.1 Workflow Overview: Scenarios of low Complexity

This section provides an overview of the workflow for applying decision-theoretic planning for
user-adaptive system problems of low complexity. The basic concepts (i.e., the elements of
Markov decision processes and the algorithms to solve them) that are mentioned in Figure 6.1
have already been explained in Chapter 3. Before we describe in detail the individual development
steps, we first illustrate the chronology of the development process and the relationship between
a user-adaptive system problem specification and the basic decision-theoretic planning concepts.
Some of these interrelations might become clear to the reader only in the next section, when we
illustrate the workflow with some examples from preceding chapters.

Figure 6.1 describes the individual steps that are necessary for the development and applica-
tion of a decision-theoretic model for a scenario with low complexity. The figure indicates the
chronological order in which the individual steps should ideally be taken. However, for some
steps, there is no strict order that the system developer needs to stick to.

The software developer starts by checking the applicability of the decision-theoretic planning
approach. Some processes in the context of user-adaptive systems, which can be planned in prin-
ciple, might not be appropriate for a decision-theoretic planning approach. To find out about the
appropriateness of the decision-theoretic planning approach, the developer answers some ques-
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tions that shed light on the nature of the interaction that is to be planned.

If the result is positive, then the next step is the identification of important top level character-
istics of the interaction. In the figure, we distinguish the identification of interaction goals and the
identification of logical and spatial relations. Decision-theoretic planning can consider goals to
be obligatory or optional. The identification of the interaction goals determines not only the basic
elements of the Markov decision process (such as the required state features or the reward func-
tion) but also if an infinite or finite planning horizon is appropriate for the problem at hand. The
identification of logical relations between the actions that make up the interaction to be planned
(e.g., the order in which two actions have to be executed) determines in particular the transition
function. Some problems additionally exhibit spatial structure. The identification of spatial re-
lations (e.g., the connections between individual locations or what action can be executed at a
particular location) is often straightforward.

From the identification of interaction goals, logical relations, and spatial relations, the devel-
oper should be able to map the interaction to be planned to an initial decision-theoretic model by
determining states, actions, the reward model, and the transitions model. There is usually not just
one correct decision-theoretic model to describes the process to be planned. The determination of
a “good” decision-theoretic model (i.e., one that describes the dynamics of the process sufficiently
well and not unnecessarily verbose) is a process that requires some creativity by the developer.
Eventually, it requires the determination of action parameters (costs and probabilities), which can
be gained, for example, by expert judgments or experiments.

In principle, the decision-theoretic model describes the complete Markov decision process.
However, if we want to build the Markov decision process explicitly as described in Section
3.1.5.2, a declarative description of the MDP is not sufficient. It is necessary to formulate con-
struction rules to generate the required object-oriented state-transition diagram. As long as no
general interpreter for construction rules exists, the construction rules have to be encoded in the
programming language chosen for the project. The formulation of the construction rules is made
easier if it is based on a “good” decision-theoretic model (see above). Once the construction rules
are formulated, the generation of the Markov decision process is automatic.

Before the computation of a policy, it has to be clarified if the problem must be considered as
an infinite-horizon or a finite-horizon problem. If time can be considered as a pure cost factor, the
policy is computed with an infinite-horizon algorithm; if a fixed deadline has to be considered, the
policy is computed with a finite-horizon algorithm. The identification of the role of time can be
derived from the nature of the interaction goals and the logical relations of events that make up the
interaction.

The policy is the solution of the user-adaptive system planning problem, and the application
of the policy allows the system to control the interaction with the user. If the quantities used for the
initial decision-theoretic model were only estimates, it is possible to collect data during the use of
the system and adjust the parameters (costs and probabilities) in the decision-theoretic model.

6.2 Development of a Simple Decision-Theoretic Model

We now go into some more detail of the individual development steps described in the overview.
To explain and illustrate the individual steps of the workflow, we will refer back to the examples
used in Section 4.1 and 4.2 where appropriate. We refer to these examples as the phone assistance
example and the simple airport navigation assistance example.
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Check Applicability of DTP Approach At the beginning of the development process, the de-
veloper has to answer the question: Can the problem at hand—a particular interaction between a
system and its user—be addressed by decision-theoretic planning at all? The following questions
can help the developer to decide if it is worthwhile to apply decision-theoretic planning to the
problem at hand.

� Is the interaction of a sequential nature? In addition to long sequential interactions, decision-
theoretic planning is also well suited to very small sequences of interactions (see the simple
instruction problem in Section 3.1.1); however, if only a single decision needs to be made
then other techniques are more appropriate (cf. Section 2.1).

� Do system and user act alternately? Acting alternately does not mean that the system and
the user each execute exactly one action in turn; one turn can consist of several actions by
either the system or the user (e.g., in the simple instruction problem of Section 3.1.1 and
in the phone assistance example of Section 4.1, both the system and the user can execute
several actions in succession before the turn changes.)

� Will the system have to trade-off multiple goals in the interaction with the user? The con-
sideration of competing interaction goals makes the decision-theoretic modeling particularly
interesting; in the phone assistance example, the system trades off completing the interac-
tion with the user fast and completing the interaction without the user making a mistake; in
the simple airport navigation assistance example, the system trades off helping the user to
reach the gate fast and helping the user to buy a gift along the way to the gate.

� Is the outcome of the user’s (or the system’s) actions uncertain? Although it is possible to
consider completely deterministic processes by decision-theoretic planning, the strengths of
DTP are not brought out this way.

� Can the feedback that the system perceives about the progression of the interaction be con-
sidered to be reliable (i.e., is the interaction process fully observable)? If the process is
completely unobservable or only partially observable, other methods than those described
in this thesis must be applied.

If the test about the reasonable application of decision-theoretic planning for the problem at hand
is positive, then the next step of the development process is the identification of important top level
characteristics of the interaction.

Identify Interaction Goals As the preceding chapters have illustrated, decision-theoretic plan-
ning can distinguish different types of goals, which have to be treated in different ways. Some
goals are obligatory, for example, the completion of a dialog that includes executing a number of
instructions or getting to a particular location after following a number of navigation recommen-
dations. We have referred to obligatory goals as primary goals. In a simple decision-theoretic
model, we can only deal with a single primary goal.

Some goals are optional, for example, accomplishing subordinated tasks along the way while
following navigation instructions to a particular location. We have referred to optional goals as
secondary goals. While not reaching a primary goal is associated with not receiving any posi-
tive reward at all, not reaching a secondary goal (while following a particular primary goal) only
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decreases the reward for the primary goal. In a simple decision-theoretic model, one or few sec-
ondary goals can be considered.

The identification of the interaction goals generates the question: What propositions must
hold in a goal state? Answering this question will elicit characteristics of the state space (in terms
of relevant state features) in general, as well as characteristics of potential actions (in terms of
transition properties). Moreover, the identification of the interaction goals is a prerequisite for the
determination of a reward model.

Identify Logical and Spatial Relations Some user-adaptive system problems do not involve
considering any spatial structure at all (e.g., the simple instruction problem that we have introduced
in Section 3.1.1 or the phone assistance problem. For such problems, only the logical relations
of the system’s and the user’s actions have to be identified. While there are user-adaptive system
problems that lack any spatial structure, all interactions of a system with its user that we address
with decision-theoretic planning must exhibit some logical structure.

Identifying logical relations corresponds to answering questions like, for example: How does
an action change the world state? What is the duration of an action? In what state can the system
take an action? In what state can the user take an action? Which action (of the system/of the user)
can be followed by which other action (of the system/of the user)?

Identifying spatial relations corresponds to answering questions like, for example: How can
spatial information (e.g., a location at which the user receives a recommendation by the system)
be encoded in the state description? How is the user’s movement in a physical environment re-
flected in the the state transitions? How is the spatial information interweaved with other state
information, for example, with the information about where the user can achieve a secondary goal
dependent on the recommendations of a system?

The identification of logical and spatial relations of states and actions that describe the inter-
action between a system and its user is usually not done in isolation. It is rather accomplished
in parallel with the identification of the interaction goals. Identifying logical or spatial relations
within the interaction can give hints for the identification of interaction goals and vice versa.

Determine Elements of MDP Once the interaction goals as well as logical and spatial relations
of the user-adaptive system problem are identified, the developer can start to define the elements
of a Markov decision process for the problem at hand. It is reasonable to determine first a set
of state features that appears to be relevant for the process to be planned1 . State features do not
need to be boolean in general—as it is sometimes assumed for practical reasons when a factored
representation is involved—but they should be kept simple. For example, the working memory
content of a user in the simple instruction problem (cf. Section 3.1.1) can be described sufficiently
in terms of two simple (integer valued) features (N IN WM and N IN BUNDLE) instead of using a
list that describes the working memory content unnecessarily in greater detail. Similarly, locations
can be represented by a simple integer state feature for the location ID. For some state information,
boolean state feature are sufficient, for example, to describe if the user has achieved a particular
secondary goal or not.

1From our own experience, we can report that the initially identified state features sometimes have to be adjusted or
refined later on in the development process, for example, because it turns out that some characteristics of the process
can be described more compactly or more comprehensible with slightly different state features.
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After the relevant state features have been identified, the next step is the determination of
the available actions and the transition model. Actions can often be described on an abstract
level and thereby be generalized in the transition model. For example, in the simple instruction
problem, the decision-theoretic model takes only two (generalized) actions into account: GIVE
INSTRUCTION—the system has the initiative—and WAIT FOR EXECUTION—the user has the
initiative. It is not necessary to specify an action in more detail than is really needed for a concise
model: In the decision-theoretic model for the simple instruction problem, it does not matter if
the instruction that the system gives (or the user executes) is, for example, set B to 2 or set J to
4. Important for the decision-theoretic model is only the information about how long the system
needs to give and how long the user needs to execute the corresponding instruction, and what
the probability is that the user executes the instruction correctly. For example, if the execution
of set B to 2 is by itself more error prone than the execution of set J to 4, then this difference
has to be considered in the decision-theoretic model—which in fact can be the case if actions are
not as homogenous as in the simple instruction example. In the simple instruction example, we
have assumed that the probability of a user executing an instruction correctly depends only on
the bundling size and the number of instructions that the user has in his working memory when
he executes an instruction—the same holds for the time needed to execute an instruction. Based
on this assumption, it is possible to represent similar actions generically in the decision-theoretic
model. The generic specification of actions is essential to create a Markov decision process from
a concise set of construction rules (see below).

The transition model describes the effects that actions have on the state in which they are
executed and thereby defines the structure of the Markov decision process for the problem at
hand. It can be represented graphically: either on a general level (see, e.g., Figure 3.3) or for a
particular (but sufficiently small) instance of a problem (see, e.g., Figure 3.4). A small instance
of a transition model can help to define the general version. The general transition model is
more useful for the formulation of the construction rules than the transition model for a particular
instance. If the planning problem has a spatial component, the spatial structure can serve as a basis
for the transition model.

The reward model follows from the identified goals. For example, having completed a se-
quence of instructions or reaching a particular location after following a sequence of navigation
recommendations can be associated with a reward. The developer has some freedom with regard
to the absolute value for reaching a goal. In general, the reward reflects the importance of reaching
a particular goal and is traded off in the decision-theoretic planning process against the cost for
the actions to reach the goal. Insofar, rewards and costs have to be coordinated.

Determine Action Parameters The need to collect (sometimes a large number of) numerical
values for a Markov decision process (probabilities, cost, and rewards) is routinely criticized as
a form of the knowledge acquisition bottleneck2 of decision-theoretic planning. Gaining precise
numbers is in fact associated with considerable effort. In Section 3.1.1, we have described one
way to deal with this problem: an experiment that allowed us to derive costs and probabilities for a
decision-theoretic model that describes the dynamics of the experimental setting sufficiently well.

2The knowledge acquisition bottleneck was originally formulated in the context of expert systems; machine learning
as a general approach to overcome the knowledge acquisition bottleneck is discussed, for example, by Alonso, Mat é,
Juristo, Muñoz, & Pazos, 1994; for Bayesian networks, which similar to MDPs require the collection of large amounts
of probabilities, Skaanning, 2000, has proposed a knowledge acquisition tool to overcome the knowledge acquisition
bottleneck.
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Another warrantable approach, for example, is the collection of judgments by experts. As this
topic is of particular importance, we go into more detail about the acquisition of of the numerical
values in Section 6.4.

Formulate Construction Rules We have mentioned above that the formulation of construction
rules takes the transition model as a starting point. Thereby, it is easier to revert to a general
transition model to formulate construction rules than to derive them from a particular instance
of a problem. Insofar, the specification of a general transition model is recommendable before
formulating the construction rules.

The construction rules can be considered to be (mainly) if-then-rules, which describe the com-
plete construction of a Markov decision process. Consider the simple instruction problem. As an
example, we formulate a subset of the rules to build the structure described in Figure 3.4.

� Start by creating a state with N TO GIVE ��� , N IN BUNDLE � �
, N IN WM � �

, and
CORRECT � � ��� � (where ����� � corresponds to % in the figure).

� If N TO GIVE
�� �

and N IN BUNDLE � N IN WM, then create a transition for the action
GIVE INSTRUCTION and the successor state with N TO GIVE’ � N TO GIVE

� �
.

� If N IN WM
�� �

, then create two transitions for the action WAIT FOR EXECUTION and
the successor states with CORRECT � � ��� � and CORRECT ��� � � � � (+ and – in the
corresponding Figure 3.4, respectively), N IN WM’ � N IN WM

� �
, and N IN BUNDLE’ � �

if N IN WM’ = 0.

We have simplified the construction rules for this example. According to our experience, a large
part of the effort for an object-oriented implementation of a Markov decision process is usually
dedicated to the formulation of appropriate construction rules.

An interesting line of research in this context is followed by Boutilier, Reiter, Soutchanski, and
Thrun (2000) and Boutilier, Reiter, and Price (2001), who present a framework in which Markov
decision processes can be specified in first-order logic and that permits a symbolic representation
of value functions and policies.

Generate MDP Once the construction rules have been formulated, the generation of the Markov
decision process is automatic. If the problem at hand exhibits some spatial structure, the construc-
tion process will be geared to this spatial structure.

In the simple airport navigation assistance example, the construction procedure can, for exam-
ple, first generate two state objects—one representing the state where the user has not yet bought
a gift, one representing the state where he has—and then connect the state objects according to
the specification of the state transitions. That is, the construction procedure checks for each par-
ticular state what other states can be reached from that state and maintains a pointer to them in the
corresponding state object, as well as the information about costs and probabilities related to the
corresponding transition3 .

For the phone assistance example, the generation of the MDP is slightly more complex. As
there is one particular start state, it is more appropriate to create the corresponding state object first

3We describe the strategy that has shown to work well in the implementation; however, other strategies might work
equally well, for example, alternately generating state objects and transitions, as we have done for the phone assistance
example.
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and then start a recursive procedure that creates all possible successor state objects and connects
them (via pointers) according to the generation rules. This results in a depth-first MDP construc-
tion process. The leaf state objects of such an object-oriented state diagram correspond to the goal
states of the Markov decision process.

Identify Role of Time We distinguish two roles of time for a decision-theoretic planning pro-
cess: (1) Time as a pure cost factor, such that it can be traded off against the reward for reaching a
goal state; and (2) time as a fixed quantity, such that it additionally constitutes a fixed deadline for
the end of the process to be planned.

If for an interaction planning problem, there is no fixed point in time when a primary goal has
to be reached (but it is better if the primary goal is reached earlier than later), then it is reasonable
to consider time as pure cost factor for that problem. If there exist one or several secondary goals,
the consideration of time as cost factor allows to trade off the costs for actions that help to achieve
a secondary goal against the reward for achieving the primary goal. An infinite-horizon algorithm
will be appropriate to solve a problem of this kind. Later on, during the interaction of the system
with its user, the same policy will be valid throughout the complete process, that is, until the
primary goal will eventually be achieved.

Where one or several secondary goals are involved and the time available to achieve a primary
goal is limited by a fixed deadline, the policy for the interaction planning problem will not be the
same for different points in time. The more the fixed deadline approaches, the less time consuming
actions helping the user to achieve a secondary goal can the system select. In the simple airport
navigation assistance example, we have seen how the system selects quicker routes and gives less
information about opportunities to buy something along the way to the gate as the deadline—in
this case, the boarding—approaches. A finite-horizon algorithm will be appropriate to solve a
problem of this kind. Later on, during the interaction of the system with its user, the system will
have to apply the right t-time-units-to-go policy (cf. Section 4.4.1) according to the time remaining
until the fixed deadline.

A more complex model has to be applied if the costs for transitions or the rewards for goal
states vary over time. The TMDP approach, which we have described in Section 4.4.2, is appro-
priate for problems of this kind. We have not considered problems in the context of user-adaptive
systems that require this kind of time-dependent decision-theoretic planning.

Compute Policy In Section 3.1.5.2, we have described the three phases of the computation of
a policy (i.e., the application of value iteration) on an object-oriented representation of a state-
transition diagram: (1) the initialization of the state values, in particular the values of the goal
states, (2) the simultaneous computation of the value function for the next stage, and (3) the si-
multaneous update of the values of all states. The three phases of the computation are independent
of the structure of a Markov decision process, that is, we can apply them to the decision-theoretic
model of the phone assistance example and the decision-theoretic model of the simple airport
navigation assistance example equally well.

According to the role of time for the problem at hand, step (2) and (3) of the algorithm will
be repeated for a fixed number of iterations (in the finite-horizon case, i.e., where a fixed deadline
is involved) or will be repeated until another iteration yields no further alteration of the policy
anymore (cf. the paragraph regarding the stopping criterion in Section 3.1.4.2).
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Apply Policy The application of a policy is simple. As a policy is a mapping from states to
actions (cf. Section 3.1.4), it can be represented by a look-up table that can easily be installed and
applied on any handheld device. Applying a policy means merely perceiving the current state and
finding the optimal action for that state in the policy (look-up table).

One important advantage of controlling the interaction of a system with its user based on a
policy has already been mentioned in Section 5.3.3: The execution of a policy that is completely
computed offline needs hardly any computational resources at run time, that is, the system can
react immediately as soon as a new state is perceived. This advantage may not be surprising, as it
comes along with the (moderate4) disadvantage of the memory space consumption for representing
the policy. In this sense, a policy reflects the classical trade-off between time and space in computer
science.

Model Refinement? If it was not possible to determine the parameters of the decision-theoretic
model precisely beforehand, the system developer has the opportunity to adjust the decision-
theoretic model taking collected data during the first application into account.

Collect Data/Machine Learning The collection of data for the adjustment of the decision-
theoretic model used for the problem at hand is not obligatory. Sometimes, the costs and prob-
abilities used in a decision-theoretic model can be determined reasonably accurate prior to the
application of the policy in practice. In cases that do not allow to acquire these data with adequate
precision in advance, an initial model can be based on estimations and later—once the system is
put into practice—be refined by adjusting costs and probabilities according to data gained during
first applications of the policy based on the initial model. If the parameters of the initial model are
only estimates, the initial policy will in general be suboptimal but can be considered as a more or
less (dependent on the accuracy of the estimated parameters) good approximation of the optimal
policy. Machine learning techniques can be applied to adjust the decision-theoretic model. We
will discuss the acquisition of the parameters (in particular action costs and the probabilities of
action outcomes) for a decision-theoretic model in more detail in Section 6.4.

6.3 Development of a Hierarchical Decision-Theoretic Model

Figure 6.2 describes the necessary extensions of the workflow for the development and appli-
cation of a goal-priorized decision-theoretic model. Compared to Figure 6.1, those parts of the
workflow description that are new or extended are highlighted. The extension involves in partic-
ular the macro-level decision-theoretic planning and its preliminary computations, as well as the
interleaving of the macro-level policy with micro-level policies.

Goal Priorization: Identify Goal Ranking For the application of the goal-priorized decom-
position approach as we have described it in Chapter 5, apart from identifying several secondary
goals, it is necessary to identify several primary goals. The example of Chapter 5 required only
a simple goal priorization distinguishing primary and secondary goals. In principle, that is, if
the considered planning process is complex enough, we can consider n-ary goals. Think of the

4The memory capacity of prevalent handheld computers is already far beyond what is needed to store the policy of
any of the examples given in this thesis. However, sometimes a large portion of the available memory might already be
occupied by other programs.
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following extension of the example given in Chapter 5: A system that guides the user from the
city center to the airport. On the way, the user might want to pass by his office and visit a friend
in hospital. He might want to buy some flowers on the way to the hospital and refuel his car on
the way to the airport. In this scenario, we need additional goal ranks for the navigation between
buildings and the given subordinated goals. However, there will be a natural bound for the scale
of the goal ranking. The scenario might be extended to several cities, and also within the level
that we have mentioned, the goal rankings might be refined a bit further. But in practice, the goal
ranking will not exceed a medium number of levels.

In the airport assistance example of Chapter 5, primary goals are associated with particular
locations (check-in counter, passport control, and gate). Consequentially, we can treat the infor-
mation about the achievement of the primary goals in the macro-level decision-theoretic model
in analogy to the location information in the micro-level decision-theoretic model. The order
in which the primary goals are supposed to be achieved will be reflected in the structure of the
macro-level Markov decision process.

Preliminary Computations In Section 5.3.1, we have explained the necessary preliminary com-
putations for the macro-level decision-theoretic planning. These computations are based on the
logical and spatial relations identified for the user-adaptive system problem at hand and take the
action parameters determined for the micro-level decision-theoretic planning processes as input.
For example, the computation of macro-level action costs and probabilities depends on the loca-
tion associated with the corresponding primary goal and the availability of opportunities to achieve
particular secondary goals in the adjacent area.

Macro-Level Decision-Theoretic Planning Some of the workflow steps for the development
of a hierarchical decision-theoretic model are identical in the macro-level and the micro-level
decision-theoretic planning: The macro-level development steps determine macro-level DT model,
formulate construction rules, generate MDP, and compute policy can be accomplished in analogy
to the corresponding steps on the micro-level (see Section 6.2).

Interleaving Macro-Level and Micro-Level DTP The interleaving of macro-level and micro-
level decision-theoretic planning is indicated with two dashed arrows in Figure 6.2. The macro-
level policy and the micro-level policies are executed alternately. Each action that the macro-level
policy recommends specifies the secondary goals that are considered in the subsequent micro-
level decision-theoretic planning process. If a micro-level policy has been executed, the system
knows which secondary goals where achieved in parallel with the last primary goal and how much
time the user needed to achieve the last primary goal. This information completes the system’s
knowledge about the current macro-level state. The system can determine the next macro-level
action and start the corresponding micro-level decision-theoretic planning process thereafter. For
each micro-level decision-process, it is possible to incorporate updated information from a user
modeling component (see Section 5.3.6). The process terminates when the application of a micro-
level policy results in a goal state that at the same time corresponds to a macro-level goal state. In
the airport assistance scenario, this is the case when the passenger reaches the gate.

If more than two decision-theoretic planning levels are involved, that is, if the goal-priorization
yields n-ary goals with � � � , then the interleaving of the decision-planning processes from
different levels can get more complicated and will in general not be domain independent.
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6.4 Parameter Determination

For the decision-theoretic models that we have developed in the preceding chapters, a great many
specific quantitative parameters need to be specified. These include measures like the duration of
giving and following some abstract instructions, the probability of correctly following an instruc-
tion for operating a credit card phone, and the probability of finding, for example, a gift in a given
store, or walking and waiting times in a shopping mall (see Chapter 7).

In contrast to reinforcement learning approaches, decision-theoretic planning requires some
quantification of probabilities, costs, and rewards in an initial model. Because small changes
of parameters in the decision-theoretic model do often not change the resulting policy, a system
using a decision-theoretic model can sometimes yield reasonable results even without being based
on parameters that reflect the processes in the real world precisely (cf. Section 4.2.5). Sometimes
good parameter estimations are sufficient for the initial application of decision-theoretic planning.
Moreover, even if a system applies a policy that is slightly suboptimal in some situations, it might
still help the user manage the overall problem better than without any assistance at all. Therefore,
it is often appropriate to start with inaccurate parameters and refine these parameters later. In the
following, we distinguish between parameter determination before the first use of a system and
during the use of a system.

6.4.1 Parameter Determination Before Use

We have identified four ways to acquire the required data for a decision-theoretic model before the
first use of a system: (1) Appropriate data already exists, (2) necessary data can be gained with
appropriate experiments, (3) it is possible to obtain judgments from experts, or (4) task analysis
models can be used to determine the required data.

Existing Data The first example that we have mentioned in Chapter 1 involves information about
train connections. Some of the information needed for a decision-theoretic model to plan a train
trip is readily available, for example, in terms of a time table. The costs involved in the planning
problem at hand correspond to the durations of getting from one station to another or waiting at a
train station for a connection, which can both directly be read out from a time table. About other
information required in this context, the railway company might already have collected statistics,
for example, on train delays. Here, it will rather be a question of the railway company’s willingness
whether such information is provided or not, for example, if it makes the service of the railway
company appear in a bad light.

Experiments We have shown with the experimental study in Section 3.1.1 how the parame-
ters for a decision-theoretic model of the corresponding experimental setting can be determined
exactly. This involves measuring the time that the system needs for its deterministic actions, aver-
aging the time that a number of users need for a particular action, and computing probabilities for
transitions from the relative frequencies of the outcome of a number of users’ actions.

Expert Judgments In some cases, experts can provide information that can be incorporated in
a decision-theoretic model. For example, if the railway company does not collect statistics about
train delays, the software developer can ask conductors about the frequency of train delays on a
particular connection. In this case, commuting passengers might be considered as experts equally
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well. In the case of providing assistance for operating a technical device, psychologists might be
able to provide information about how well people memorize and recall sequences of instructions
of a particular length. In a shopping scenario, a sales clerk might, for example, provide information
such as how long people usually stand in line at the cash desk.

Where probabilities are involved, good estimations are sometimes sufficient to provide a ba-
sis for a decision-theoretic model that yields reasonable results. This is because sometimes the
relative weight between probabilities is particularly important. For example, when estimating the
probability that a particular user finds a book in one of two stores X and Y, it might be reasonable
to estimate the probability that the user finds a book in store X as being twice as high as that he
finds a book in store Y (e.g., because store X is twice as big as store Y). Similarly, one can guess
that entering a 16 digit credit card number to a credit card phone is, for example, four times as
error prone as entering a four digit expiration date. Experts may base such estimations on the
results of experiments that study a situation similar to the one that is to be modeled.

Figure 6.3 illustrates a simple situation in which decreasing all probabilities by 50% results in
the same policy if both achieving secondary goal � and secondary goal � are associated with a
positive reward and the costs of all transitions are equal in the decision-theoretic model. For a user
at location ��� , the policy, in particular the recommendation sequence to go to the goal via location
��� and ��� , does not change if all probabilities are changed proportionally.
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Figure 6.3: Unchanged policy for proportionally decreased probabilities.
(Secondary goal 	 can be achieved at location 
�� and 
�
 , secondary goal � can be achieved at location 
��
and 
�� . The numbers represent the probabilities that a secondary goal 	 or � is achieved by going to the
destination via a particular location. With unchanged uniform transition costs and unchanged rewards for
achieving 	 and � , bisecting all probabilities in the decision-theoretic model does not change the policy—
cf. the upper labels/solid arrows and the lower, underlined labels/dashed arrows—in this simple example.)

After all, the system has to make a decision in favor of one out of a restricted number of
options. The sensitivity analysis in Section 4.2.5 has shown that sometimes the exact probabilities
are not very important. The system developer can always make a sensitivity analysis if he is
worried about the inaccuracy of probabilities elicited by experts. If the numbers acquired before
use allow the system to come up with some useful service for the user, then it might be sufficient
to refine the parameters during the use of the system.

Nilim and El Ghaoui (2004) have recently proposed an algorithm to compute robust solutions
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of Markov decision processes, that is, solutions that are guaranteed to be robust with respect to
estimation errors on the state transition probabilities within given boundaries. Bounded parameter
Markov decision process have also been explored by Givan, Leach, and Dean (1997), who give
references to earlier work on this subject in the operations research literature.

Task Analysis Techniques Task analysis techniques, such as the GOMS5 family of user inter-
face analysis techniques described by John and Kieras (1996), can sometimes be used to calculate
information that is important for a decision-theoretic model. The analysis of descriptions of user
procedures can provide quantitative predictions, such as the expected average execution time of
an action performed by the user in the phone assistance example.

Similarly, for example, the expected walking time from one location to another, given the
distance between the two locations and the average speed of a user, can be calculated for the
navigation assistance example. Moreover, using distance measures instead of time measures to
describe transition costs provides for a user-independent specification. To compute costs in terms
of time, the average speed of a particular user might be provided by a user model and used to
adjust the general model for the particular user before the computation of a policy.

6.4.2 Parameter Determination During Use

In the Chapter 7, we describe two user studies on the acceptance of a PDA-based decision-theoretic
shopping guide (see Section 7.2 and 7.3). In the first user study, we were able to construct a reality
that corresponded to our model. In the second user study, the estimation of the parameters was
based on a thorough analysis of the shopping mall. Similarly, the estimation of the parameters can
be accomplished for system for real use. If this initial specification is accurate enough to ensure
that the system is of some use to shoppers, further data (e.g., times to get from A to B, success
in finding a particular item in a particular shop) can be obtained from the PDAs of shoppers who
have used the system, provided that they are willing to take a few seconds to allow data about their
searches to be (anonymously) transmitted back to the central system. In addition to supporting
estimates of the parameters, this method opens up the prospect of introducing some form of social
navigation (see, e.g., Riedl, 2001 or Svensson, H ö ök, Laaksolahti, & Waern, 2001) or collaborative
filtering (see Goldberg, Nichols, Oki, & Terry, 1992; an overview is given by Resnick & Varian,
1997) in the shopping scenario.

6.5 Synopsis

The development workflow presented in this chapter describes how to get from a user-adaptive
system planning problem to an appropriate decision-theoretic model and a good solution to the
problem, respectively. First, we have described the workflow for scenarios of low complexity.
For such scenarios, we have illustrated the overall chronology of the development process and the
relations between a user-adaptive system problem specification and the basic decision-theoretic
planning concepts. Then, we have then extended the workflow description such that it can be
applied for scenarios of higher complexity, involving goal-priorized decision-theoretic planning.
In this context, we have also discussed how a more general goal ranking with n-ary goals can be
applied in domains even more complex than the example considered in Chapter 5. With regard

5GOMS stands for Goals, Operators, Methods, and Selection rules.
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to the extended workflow description, the interleaving of macro-level and micro-level decision-
theoretic planning was of particular interest. The last section of the chapter was dedicated to the
determination of the quantitative parameters required for a decision-theoretic model. Thereby, we
have distinguished between methods for the parameter determination before and during the use of
a system.

The description of the development workflow may serve as a basis for a tool that supports the
developer of a user-adaptive system when incorporating decision-theoretic planning to enhance a
system’s adaptation capabilities. The actual development of such a tool is beyond the scope of this
thesis.



144 CHAPTER 6. APPLYING DTP FOR USER-ADAPTIVE SYSTEMS: WORKFLOW



7 USABILITY ISSUES

In this chapter, we focus on two usability issues of systems that use decision-theoretic planning to
give navigation recommendations. The first issue is the general user acceptance of a system giving
navigation recommendations on the basis of decision-theoretic planning. We report two studies
in which we studied if users accept a decision-theoretic shopping guide on a mobile computing
platform. The first study was conducted in a mock-up of a shopping mall (Bohnenberger, Jameson,
Kr üger, & Butz, 2002a, 2002b), which we established on two floors of the computer science
building at Saarland University. For this study, infrared localization technology was used, such
that the shopping guide under examination can be characterized as location-aware. The second
study was conducted in a real shopping mall (Bohnenberger, Jacobs, & Jameson, 2005). Here,
the assumed location awareness of the system was simulated by the experimenter, who imitated
the signals that would otherwise have been transmitted by infrared beacons. Decision-theoretic
planning was used to determine the system behavior in both user studies. The shopping guide
used in the second study is an enhancement of the system used in the first study and takes the
lessons learned in the first study into account.

One important result of the first user study was that people usually want to stay in control
while they are guided by the system. Instead of being led blindfolded through a building, the
users want to know why the system gives a particular recommendation. A system that makes
its decisions based on a decision-theoretic planning approach has in the first instance not much
information to offer to the user in order to justify or explain its decisions. It can always point out
that the selected recommendation offers the highest expected utility for the user (according to the
specified optimality criterion), but this will in general hardly be satisfying the user. Therefore,
the second part of this chapter describes a user study (see also Bohnenberger et al., 2005) in
which we analyzed what kind of information can serve as good explanation for recommendations
based on decision-theoretic planning, and how such information should be represented. Finally,
we describe techniques to aquire the necessary information to provide good explanations when
they are requested.

7.1 User Acceptance of a Decision-Theoretic Shopping Guide

With user-adaptive systems, as in human endeavor more generally, intelligence alone does not
guarantee success. It may be easy to equip an interactive system with knowledge and reasoning
capabilities that are in principle highly relevant to the tasks that users perform with the system.
It may be much more difficult to ensure that users will want and be able to benefit from this

145
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intelligence, given their customary patterns of activity and the constraints of their situations.
Part of the problem lies in the technical limitations of current wireless technology, which lead

to long waits and frequent interruptions of connections, in addition to clumsy interaction with
small devices (cf. Singh, Jain, & Singh, 1999). One remedy is to aim for designs that work well
with the current limited technology, checking with users to see whether they really do work well
enough.

Another type of problem concerns designs that do not adequately take into account the condi-
tions under which mobile systems are used (e.g., while the user is in motion and/or is simultane-
ously engaging in some other activity). Only realistic tests conducted early enough in the design
process can reliably prevent such problems (see, e.g., Sawhney & Schmandt, 2000 or Jameson,
2002).

In this section we report on an effort to apply this strategy in the design and development of
an intelligent shopping guide based on AI techniques of decision-theoretic planning.

Combining Product Location With Navigation Support Location-aware mobile commerce
systems that aim to bring together customers and products1 have so far fallen into two main
categories (see Duri, Cole, Munson, & Christensen, 2001, for more a extensive discussion and
examples).

1. Product location services: A user
�

queries his system � about the availability of a par-
ticular type of product near his current location (see, e.g., the iGrocer system described by
Shekar, Nair, & Helal, 2003, or the shopping guide described by Newcomb, Pashley, &
Stasko, 2003).

2. Location-dependent alerting services: When
�

arrives at a given location, he is automat-
ically notified about nearby products that are known to be of special interest to him (see,
e.g., Shopper’s Eye described by Fano, 1998, or the Shopping Jacket described by Randell
& Muller, 2000).

In both of these schemes, the route of
�

is not planned ahead in any way, and the job of � is to
help

�
do as well as possible in or near the given location2 . Consequently,

�
may discover that no

especially desirable products are available near his current location even though there exist more
attractive ones at some location that he might just as well have visited.

The alternative approach to be examined in the first two user studies described in this chapter
take into account the fact that people often have considerable freedom in determining what par-
ticular locations to visit. To take an example that involves a small geographic region, consider a
user who wants to walk through a large shopping mall on the way to some other destination and
would like to pick up a few items along the way—providing that he can do so without investing
too much extra time. Instead of taking the shortest route through the shopping mall and finding
out about products that happen to be available along that route, he may well be willing to take a
longer route that leads him by places where he is more likely to find the desired products. Suppose
now that

�
is to be guided through the shopping mall by a system running on a handheld device:

1To facilitate exposition, we will use the term products even when what is really meant is products, services, and
combinations of both. As in preceding chapters, the symbol ) will denote the system under discussion, while � will
refer to a user of that system.

2A system may provide navigation support to guide � from his current location to the exact nearby place where he
can obtain the recommended product; but the current location is still treated as given.
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It makes sense for the system to apply techniques similar to those used in the more sophisticated
route planning systems for automobiles, which choose a route according to a mixture of criteria
such as driving time, gas consumption, and scenic attractiveness.

On the other hand, the planning problem in the shopping mall has an important difference
from the typical route planning problem: the need to deal with the uncertainties that are inherent
in almost any attempt to match customers with products. For example, if

�
is looking for a book,

but the exact type of book is rather indefinite (e.g., “Something amusing to read on the plane”),
there will be uncertainty because: Even if � has exact information on the available books, � cannot
predict with certainty if

�
will find one of them that fulfills his requirements.

As is explained in the preceding chapters, � can deal adequately with this uncertainty if it
computes not a fixed plan but a policy in the sense of decision-theoretic planning. A policy can
specify, for example, that if

�
doesn’t find a suitable book in Bookstore A he should make a slight

detour to try the nearby Bookstore B.
One of the issues to be addressed in this chapter is whether this type of decision-theoretic

planning can actually lead to more effective shopping in the context of a working system. And even
if the shopping is more effective, how do users evaluate it subjectively? We have first addressed
this question within a mock-up of a shopping mall, have then improved the system on the basis of
what we have learned in the mock-up case, and have finally tested the improved system in a real
shopping mall (yet, without the infrared localization technology). The basic method is applicable
on very different scales, such as the shopping within a single large store or an entire city.

7.2 Study in a Mock-Up of a Shopping Mall

We have implemented and tested a PDA-based system that gives a shopper directions through a
shopping mall on the basis of (a) the types of products that the shopper has expressed an interest
in, (b) the shopper’s current location, and (c) the purchases that the shopper has made so far. The
system uses decision-theoretic planning to compute a policy that optimizes the expected utility
of a shopper’s walk through the shopping mall, taking into account uncertainty about (a) whether
the shopper will actually find a suitable product in a given location and (b) the time required for
each purchase (cf. Figure 7.1). To assess the acceptability of this approach to potential users, we
constructed a mock-up of a shopping mall with 15 stores on two floors of the computer science
building at Saarland University. Each of 20 subjects in our study shopped twice in the mall, once
using our system and once using a paper map. The subjects completed their tasks significantly
more effectively using the PDA-based shopping guide, and they showed a clear preference for
it. They also yielded numerous specific ideas about the conditions under which the guide will be
useful and about ways of increasing its usability.

7.2.1 Realization of the Shopping Guide

For concreteness, we will explain the workings of the shopping guide with reference to the hard-
ware used and the (fictitious) shopping mall that we set up for the user study. Consider a user

�

who enters a mall with the intention of buying five products: a CD, some bread, a newspaper, a
PDA, and a plant. As the partial map in Figure 7.2 indicates, products of each of these types are
available in one or more stores. But when deciding which stores to visit,

�
needs to take into ac-

count the facts that (a) it is not certain that he will find a truly suitable product even in a potentially
relevant store; and (b) stores differ in the time it takes to wait in line to pay for a product.
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Gee, that’s easy!
I just need to follow

the recommendations!

Shop localization with the
PDA-based shopping guide

Shop localization with a map

SOLD OUT,
SORRY

Figure 7.1: Navigating in a shopping mall.
(Using a conventional paper map, the planning of a shopping expedition can be a complex task. The
navigation during a shopping expedition can be facilitated with a PDA-based shopping guide. In particular,
uncertainty about product availability and expected times to stand in line can be taken into account using a
decision-theoretic planning approach.)

The goal is to allow
�

’s PDA to determine at each point in time which store
�

should visit next.
Since the necessary planning (described below) is computationally expensive, it is performed on
a stationary computer at which

�
enters a specification of the desired products through some

suitable form of interaction (e.g., menu selection on a touch screen). The resulting policy is
compact enough to be transferred to

�
’s PDA, and it contains all the information that the PDA-

based application requires.
As Figure 7.3 indicates, the PDA guide should at any moment direct

�
towards the next store

by displaying a navigation instruction on the PDA screen; � will determine the current location
and orientation3 by receiving an infrared signal from one of a number of beacons affixed to the
walls, and � will know what products

�
has already found because

�
will check each one off after

purchasing it.

7.2.1.1 Hardware

The particular hardware configuration employed in the user study (see Figure 7.3) gives an idea of
the typical hardware requirements: The specific PDA was a Compaq iPAQ 3620 Handheld, which
can receive signals from the small infrared beacons via its built-in IrDA interface. We mounted
30 of these beacons at decision points (i.e. turns, crossings, stairs) in the building in which the
study was conducted, each at a height of about 2.5 meters. The beacons emit a 16 bit ID twice a

3A beacon transmits signals only within a small angle: therefore receiving signals from a beacon means pointing
with the PDA’s infrared interface into the opposite direction the beacon transmits to. This information can be used by
) to present orientation-aware recommendations.
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Figure 7.2: Part of one of the maps representing the shopping malls for the first user study.
(Icons represent stores, arrows indicate directions the subject is allowed to walk to. The arrows can be
interpreted as some sort of one-way passages, which guarantee that the subject will reach the mall exit
without passing along any of the shops more than once.)

second, and they have a transmission range of about 7 meters. Running on batteries, they do not
need access to the power supply system or to a data network.

The PDA software for the shopping guide is implemented in TCL/TK. When a beacon signal
is received, the browser displays the corresponding navigation recommendation according to the
precomputed navigation policy, taking into account both the beacon’s location and the products
that

�
has checked off on the shopping list shown on the right-hand part of the screen. If a beacon

ID corresponding to a store location is received, the items offered in that store are highlighted in
the shopping list.

7.2.1.2 Decision-Theoretic Model

The model used for the decision-theoretic planning is similar to the one described in Chapter 4.2.3.
Our basic assumptions are: (a)

�
moves from a starting point to a destination (entry and exit of

the shopping mall) via distinct positions in the building, (b) on his way he wants to find as many
items of his shopping list as possible in a relatively short time, (c) in each of the stores he has a
chance to purchase some of the items needed, and (d) in each of the stores in which he finds an
item, he will spend a certain amount of time waiting in line to pay for it.

We encode this information in the state features and the transitions between the states as fol-
lows: A state is defined by (a) the position of an infrared transmitter, (b) a list of the needed
shopping items (products) and the items already purchased, and (c) a flag indicating the status
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PRODUCTS
LOOK FOR

!
Figure 7.3: The hardware of the PDA-based shopping guide.

(Left: Example display on the PDA, which receives location signals from a beacon (middle). Right: Close-
up of part of the display in the situation where the user has arrived at a relevant store. � checks off the items
found in the current store and clicks “okay“ to proceed with the next navigation recommendation.)

of
�

’s shopping procedure at that position—a feature that is significant only if there is a store at
the position in question. This flag has one of four values: (1) NEUTRAL, indicating that

�
has

not yet checked if any of the desired products is available at the current store (2) NOT FOUND,
indicating that none of the products needed is available in the store, (3) FOUND, indicating that

�

has determined that at least one of the products needed is available; and (4) BOUGHT, indicating
that

�
has bought at least one product.

Figure 7.4 shows an example of the system dynamics. Suppose
�

approaches a junction
located at position 2. Whether or not he has already purchased product A (corresponding to the
two states shown for position 2), � has the choice between recommending LEFT or RIGHT, which
would lead

�
to position 6 or position 3, respectively. Each of these transitions has a cost that

depends on the time it will take
�

to reach the next position.
Suppose that

�
, who has not yet purchased product A, approaches the store at position 3,

which offers product A. In this case, � can recommend RIGHT to have
�

pass by the store and
go ahead towards position 4. But � can also recommend that

�
enter the store and LOOK FOR

PRODUCT A. In this case, � needs to consider what
�

’s chances are of finding product A in this
store. Moreover, looking for product A is associated with a cost: the usual time needed to check
if product A is available or not. If

�
finds product A in the store, it remains uncertain how long

he will have to wait in line to pay for it. This waiting is modeled in a simple fashion by a circular
WAIT-transition which is associated with a particular probability of the form � � � � ��� � for an
integer � . This model would be entirely accurate if (a) the cashier required a constant amount of
time to deal with each customer, (b) there were always � customers waiting, and (c) the cashier
always chose the next customer at random from the � who were waiting. These assumptions
will seldom be satisfied exactly, but they do make it possible to approximate a broad range of
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Figure 7.4: Illustration of the modeling underlying the decision-theoretic planning employed in
the shopping guide.
(Explanation in text.)

more realistic waiting processes. Once
�

has finally BOUGHT product A, � will give the next
navigation recommendation: in this case the only option is RIGHT.

The Markov decision process described here is fully observable: We can assume that the sys-
tem always knows with certainty

�
’s position, the items needed and the items already purchased.

The rewards for the goal states, which are associated with the position at the mall exit, are a
function of the number of products that

�
has bought during his shopping expedition.

Given this representation of the planning problem, we can use value iteration (see Section
3.1.4) to compute the navigation policy. This takes no longer than some seconds on a workstation
since the number of state features is small in the problem at hand. A part of the policy that
was applied in this user study is listed in Appendix G. Its syntax is in the style of the tcl/tk
programming language, such that it can directly be applied by a tcl/tk interpreter, which we have
used to visualize the navigation recommendations on the handheld device for the user study.

The modeling underlying the decision-theoretic planning can in principle take into account a
variety of factors other the ones included in our current implementation, such as, for example, the
difficulty of correctly following each instruction (cf. Section 4.2.3).

7.2.2 First User Study: Method

The overall purpose of the first user study was to check the objective effectiveness and subjective
acceptability of the shopping guide just described, with regard to both its planning methods and
its hardware solution.

In order to have a point of comparison for the results with the PDA guide, we also had the
subjects perform the same basic task with a conventional paper map (see the example in Figure
7.2). The map was designed to be at least as helpful as the best maps that can be found in shopping
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malls: It was portable (in contrast to the frequently found wall-mounted maps, which burden users’
memory), and it showed all of the relevant information that could reasonably be expected to be
found on a paper map. This information did not include probability distributions for waiting times
or for the likelihood of finding suitable items of particular categories.

Mock-Up of the Shopping Malls One configuration of 30 beacons was installed on two floors
of the main Computer Science building at Saarland University. Two alternative shopping malls
(equivalent in navigational complexity), each comprising 15 stores, were defined, so that each
subject would be able to perform a distinct shopping task with each of the two types of guidance.
Figure 7.2 shows the upper floor of one of these malls. It was not feasible to decorate the building
with physical representations of stores, but the subject could always see from the map or the PDA
display when he had reached a given store.

In addition to the physical constraints on movement enforced by the architecture of the build-
ing, we added some further constraints that might be found in a more complex setting: Some
segments of hallways were designated as “one-way passages”, as is indicated by the arrows in
Figure 7.2. Subjects using the map were instructed not to walk in the wrong direction on these
segments, and the instructions given by the PDA guide likewise obeyed these constraints. Analo-
gous constraints are found in real shopping malls, for example, in the form of escalators that run
in only one direction or entrances through which shoppers are not allowed to exit (and vice-versa).

Since we designated a relatively large number of one-way segments in our malls (partly for
technical reasons that will be discussed below), our malls may have been untypically challenging
in this respect. Because of the one-way segments, in many situations a subject found that there
was no permissible path by which he could reach a relevant store that offered a product that he
was (still) looking for.

Experiments on consumer behavior in which subjects are only pretending to buy are routinely
criticized. Yet, unlike in most e-commerce studies, not the buying of products itself, but rather the
navigation to find the products is the central aspect of the first study described here. A drawback
we are aware of is that the subjects were the only shoppers in the mall at a time, that is, they were
able to do their shopping completely undisturbed by other visitors that would usually be present
in a real shopping mall. To come up against this criticism, we have conducted the second user
study—reported in Section 7.3—in a real shopping mall.

Shopping Tasks Each subject employed the paper map and the PDA guide in two successive
trials.4 The subjects’ task in each case was to buy as many products as possible from a shopping
list with 5 categories: bread, a plant, a CD, a newspaper, and a PDA. Each of the following
combinations and temporal orderings was employed with 5 of the 20 subjects:

� PDA in mall 1; map in mall 2

� PDA in mall 2; map in mall 1

� map in mall 1; PDA in mall 2

� map in mall 2; PDA in mall 1

4A within-subject design was chosen over a between-subject design because of (a) our expectation that individual
differences would be large; and (b) our desire to hear the comparative comments of subjects who had used both types
of shopping guidance.
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Therefore, neither learning effects nor differences between the two malls could bias the overall
pattern of results.

Subjects We recruited 20 subjects (15 of them female). Of these subjects, 15 were students, 3
were employed persons, 1 was a homemaker and 1 was an unemployed person. Only 2 of the
subjects had used a PDA before, neither of them for a navigation task. Most of the subjects knew
what a PDA is and what it is normally used for. The subjects’ reward was made up of (a) a fixed
amount of money (15.00 Deutsche Mark5) plus (b) an additional performance-dependent amount:
They received 2.00 Deutsche Mark for each product they managed to “buy”, but 0.01 Deutsche
Mark was deducted for each second that they spent shopping. This cost of time was explained by
analogy to the parking costs incurred during shopping.

Procedure Each subject performed the tasks individually under the guidance of an experimenter.
First, the experimenter explained the nature of the tasks. He then familiarized the subject with the
paper map (e.g., how the paths between stores were visualized) and with the usage of the PDA
guide (e.g., how to hold the device to ensure good reception of the beacons’ signals). During the
explanation of the reward policy, the subject was instructed not to race through the building in
order to maximize his financial reward but rather to walk at a normal pace, obeying the constraints
shown on the map (when using the map) or following the PDA guide’s directions.

In each of the two trials, the subject began at the mall entrance and was followed around by
the experimenter6 . When the subject reached a store, the experimenter took on the role of the sales
clerk at that store: He informed the subject about the availability of the desired product(s); and if
at least one was available, he determined how long the subject would have to wait in line to buy it,
enforcing the waiting time with a stopwatch.

To ensure that the results concerning product availability and waiting time were consistent
with the PDA guide’s model of the shopping mall, the experimenter made these determinations
with the help of a small program on his own PDA that generated random numbers and compared
them with the probabilities specified in the model of the shopping mall.

After both trials had been completed, the subject filled in a questionnaire and was interviewed
briefly.

7.2.3 First User Study: Results

The study proceeded without problems; the subjects showed considerable interest in the problem
and the two guidance methods presented, and they supplied detailed comments on the question-
naire and in oral discussion.

7.2.3.1 Objective Results

As illustrated in Figure 7.5 (left), the PDA guide did enable subjects to complete their shopping
task 11% faster on the average than with the map, the difference being statistically significant
according to a paired � -test ( � � ��� � � � ��
�� � ��� � �
�

). This difference in itself may not seem to
constitute a practically important advantage, but it seems more noteworthy when we consider two
factors:

52.00 Deutsche Mark roughly correspond to 1.00 Euro.
6The procedure of the user study is illustrated in a short video that can be requested by the author.
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Figure 7.5: Results of the first user study.
(Left: Mean values for the quantitative performance index for each of the two types of shopping guidance.
Each bracket indicates the standard error of the corresponding mean. Right: Frequency distribution of
answers to the question “Which method would you rather use if you had to perform more shopping tasks
like the ones you performed in this study?”)

� In the map condition, subjects were allowed to study the map as long as they wanted before
starting to shop, and this study time was not counted. In the PDA condition there was
nothing to study, and the subjects set off immediately.

� Whereas all subjects were familiar with paper maps, none had previously used a PDA nav-
igation aid like the one in this study, and only 2 had used PDAs at all. So the time for the
PDA condition includes any time that subjects might have required to get used to using the
PDA guide and to dealing with the infrared signals from the beacons.

The map and PDA conditions were just about identical in terms of the number of products
that subjects found; the very slight advantage of the PDA condition does not approach statistical
significance. It is not surprising that there is no reliable difference here: The number of products
found is a relatively coarse-grained variable, the possible values being just the integers between
0 and 5; and the situation was set up in such a way that in general most of the desired products
could be found, so there was little room for large differences. This circumstance is also known as
ceiling effect.

It is unclear how well these quantitative results would generalize to other concrete scenarios
and to qualitatively different users. Still, the results for this study demonstrate that the PDA guide
can fulfill its promise of enabling shoppers to complete their task more effectively despite the two
handicaps just listed.

7.2.3.2 Subjective Results

While the objective effectiveness of the PDA guide may be a necessary condition for its ultimate
acceptance, it is not a sufficient condition. An important question is how attractive subjects would
find the prospect of using such a guide in real shopping (bearing in mind the fact that they had no
opportunity to experience it in truly realistic conditions). As an assessment of overall preference,
the questionnaire included a question that asked which method they would prefer to use if they
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had to perform further shopping tasks like the ones they had just completed. Figure 7.5 (right)
shows that the subjective preference is much clearer than the objective advantage. We cannot rule
out that some subjects were biased in favor of new technology or such that they wanted to please
the experimenter (cf. Landauer, 1997 for a discussion of the bias problem).

As another way of assessing preference for the PDA guide, the questionnaire asked how much
time subjects would be willing to spend initializing the PDA guide for each new shopping expedi-
tion. All but 6 subjects wanted to keep preparation time below 2 minutes.

It might be suspected that this difference (and perhaps the objective speed difference as well)
were due to specific inadequacies in the design of the paper map. But subjects’ responses to the
relevant questions made it clear that they saw fewer correctable problems with the map than with
the PDA. Nevertheless, the usage of multiple maps put up in important locations of the building
(and designed strictly according to principles as they are stated by, e.g., Darken & Peterson, 2001)
instead of a map carried along by the subjects might facilitate the subjects’ orientation in the map
condition.

We had tried to ensure a fair comparison by designing each of the two “interfaces” as ap-
propriately as possible. As a check for the success of this effort, the questionnaire included two
questions which asked to what extent the subject thought that the map (or the PDA interface) could
have been designed so as to support their tasks better. The distributions of the responses were al-
most identical, with more than half of the subjects judging in each case that the design “couldn’t
have been better”.

In sum, although subjects did have some important suggestions for the improvement of both
guidance methods (to be discussed next), they showed a clear preference for the type of experience
created by the PDA guide.

In order to understand these quantitative subjective results and to judge how they can be gen-
eralized, we need to understand the experience and reasoning that underlie them. On the ques-
tionnaire, subjects were encouraged to add verbal comments to their ratings. In addition, the
questionnaire contained open questions asking about (a) problems and sources of irritation with
the map and the PDA guide; and (b) ways of improving the PDA guide. Since in many cases
closely related comments were made to different questions, we summarize them here not in terms
of the individual questions but in terms of the overall pattern of ideas that emerged.

7.2.3.3 Reasons Given for Preferring the PDA Guide

The reasons that the subjects have given for preferring the PDA-based decision-theoretic shopping
guide over the paper map can roughly be summarized in three categories: (1) The subjects felt that
they had to spend less time and effort compared to using the paper map; this subjective assessment
was approved by the quantitative results reported in Section 7.2.3.1; (2) they rated the cognitive
effort for using the PDA guide less than for using the paper map; and (3) they pointed out the
reduced need for thinking about orientation when using the PDA guide.

Saving Time and Effort The most obvious advantage of the PDA guide is that the shopper can
typically complete his tasks in less time than with a map. As one subject mentioned, there is
also a corresponding savings of effort in moving around the shopping mall—an advantage which
some users may find appealing even if they are not concerned about time, for example, if their
mobility is for some reason limited or if the mall is much larger than the one used in this study.
These comments confirm that subjects recognized the superior ability of the PDA guide to deal
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with complexities such as uncertainties about product availability and waiting time—despite their
unfamiliarity with systems of this sort and with the underlying technology. The comments also
confirm that the potential advantages conferred by the PDA guide’s knowledge and reasoning were
not seen by subjects as being outweighed by problems of usability or unfamiliarity. Altogether, 12
subjects gave comments that corroborate this result.

Less Cognitive Effort and Frustration A less objectively measurable advantage is the reduced
need for mental exertion with the PDA guide. As one subject put it, “You don’t have to plan where
you’re going to go, or think for yourself.” When using the map, most subjects recognized the
advisability of planning ahead, though it would not have been feasible for them even to attempt
the type of decision-theoretic planning that is applied on the PDA guide. A typical strategy was to

� plan a few steps ahead, assuming that the products they wanted to get in the nearby stores
would be available; and

� replan whenever an product proved unavailable.

In addition to leading in general to suboptimal solutions, even this simple strategy requires
more mental exertion than simply following the advice given by the PDA guide. Moreover, users
found it frustrating to have to abandon part of a plan that they had already spent some effort
devising. Altogether, 6 subjects gave comments that point into this direction.

Less Need for Thinking About Orientation A small number of subjects pointed out that with
the map, they continually had to ensure that the map was oriented correctly and to keep in mind
where they were. By contrast, the PDA guide simply gave directions relative to their current
position and orientation; it can take into account the direction the user is facing to a certain ex-
tent because each beacon only transmits signals within a limited angle.7 Our subjects’ problems
when navigating with the map are similar to those already unveiled in a more general analysis by
(Thorndyke & Hayes-Roth, 1982) about problems that people may have with orientation under
different conditions. Altogether, 5 subjects either admitted that they have problems with maps in
general or pointed out explicitly that they appreciate not having to think about orientation when
using the PDA guide.

7.2.3.4 Perceived Drawbacks of the Current PDA Guide

Even subjects who were on the whole enthusiastic about the PDA guide mentioned some limita-
tions, most of which we were able to eliminate through improvements in its design. For example,
the system used in the study reported in Section 7.3 exhibits new features that help to prevent the
user from not having the big picture or feeling like not being in control. The other drawback that
some subjects have mentioned—the need to attend to the PDA and to the beacons—is merely a
question of technical capability of the infrared-based localization method.

7Where uncertainty about orientation was possible, the PDA display included an identifiable landmark, such as a
flight of stairs, in the immediate vicinity of the user’s current position.
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Feeling of Not Having the Big Picture Although some subjects appreciated not having to think
about their orientation and location, for other subjects this consequence was associated with a
drawback: They felt almost as if they were being led blindfolded through the shopping mall—a
feeling that was evidently not entirely satisfactory to them even if they were convinced that the
system was leading them in an optimal way. Altogether, 9 subjects pointed out this drawback.

Proposals made by subjects for improving their overall feeling of orientation included some
ideas that are familiar from GPS-based navigation systems:

� Display overview maps of (parts of) the mall. For example, while
�

is walking from one po-
sition to the next, an overview map showing his position within (some part of) the shopping
mall could be displayed.

� Make it possible for
�

to be given longer sequences of directions. Instead of always being
led from one beacon to the next, subjects sometimes prefer longer sequences of instructions
(e.g., the graphical equivalent of “Go straight ahead, then take the next right and then the
next left”). In addition to giving users a greater sense of knowing where they are going,
such sequences can save time, because they reduce the number of occasions on which

�

needs to acquire information from a beacon and consult the PDA. On the other hand, longer
sequences place heavier demands on

�
’s working memory, and they lead to a greater like-

lihood that some instruction will be executed incorrectly. This type of tradeoff was investi-
gated in the experimental setting described in Section 3.1.1. Chapter 3 showed that finding
an optimal instruction sequence length is a task that can be handled within the framework
of decision-theoretic planning.

� Give advance announcements of upcoming stores. Some subjects wanted to know not only
what direction they should proceed in but also what they could expect to find there. For
example, if the PDA displayed along with the arrow a message like “Saraphon (CDs), 40
m”,

�
could utilize the walking time to prepare mentally for the task of looking for a suitable

CD.

In addition to the advantages already mentioned, users who have more than the minimally
necessary amount of information about their surroundings are in general better able to cope with
problems with the technology, which will be discussed next.

Need to Attend to the PDA and to the Beacons The current realization of the PDA guide
requires users to attend to a certain extent to the handheld device and/or to the beacons even while
walking:

�
needs to know when he has reached the range of the next beacon, so that he can attend

to the next instruction.
�

may therefore

1. look out for the physical beacons themselves,

2. aim the PDA explicitly at a beacon and/or,

3. keep looking at the PDA to see when a new instruction appears.

Altogether, 12 subjects reported difficulties with this procedure or described it as being inconve-
nient. The first two activities should be facilitated by more powerful beacons, so that their signals
reach the PDA whenever the user comes into the relevant area. Stronger beacons (with a range
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longer than twice the range of the beacons used in the study) have already been developed by
Eyeled GmbH shortly after the user study.8

The third activity can interfere with
�

’s walking, for example, increasing the danger of collid-
ing with other persons or stumbling on stairs. An obvious solution, mentioned by some subjects, is
the use of acoustic stimuli, which could be delivered via a loudspeaker or a headset. The acoustic
output can range from (a) acoustic signals that alert

�
to a change in the display to (b) the use of

speech for all navigation instructions. We have incorporated this idea into the improved system
that we used in the study reported in Section 7.3.

7.2.4 Further Issues

The aspects of the shopping guide that could be tested in the present study passed their tests fairly
well, and the improvements that proved desirable can be realized without much difficulty. But the
goal of deploying the system in real shopping situations raises some issues that were not (fully)
addressed in the present study.

7.2.4.1 Increasing the Volume of Products Purchased

One important potential advantage of the PDA guide was not demonstrated in the results of the
present study: the advantage that shoppers might find more products that they want to buy. But
this advantage might well be achieved in situations with somewhat different properties than the
situation of the present user study:

First, if the time available is more severely limited (e.g., because stores are about to close),
shoppers with the slower map method will have to stop shopping before they have exploited all
possibilities. In this case, shopping times will tend to be equalized, with the difference appearing
in the number of products found.

Second, shoppers often have a choice between shopping or not shopping (e.g., on the way to
their gate in an airport) or between shopping in mall A or shopping in mall B. If a given shopping
mall, by providing a shopping guide, offers the prospect of getting the job done more efficiently
and with less cognitive effort, this mall has an advantage over competing malls in attracting cus-
tomers to shop there in the first place.

7.2.4.2 Applicability to Spontaneous Shopping Behavior

Especially recreational shopping is often highly spontaneous; a shopper may suddenly abandon
any plans he may originally have had in order to pursue some attractive new option. However,
in situations where it is very hard to predict what the shopper might do, it is hard to specify an
accurate model as a basis for decision-theoretic planning. The approach presented here is therefore
most applicable when the shopper has particular goals that he wishes to achieve within a limited
amount of time.

Our approach does not, however, presuppose that the shopper is blindly tracking down specific
products on a shopping list with maximal efficiency. If

�
is allowed to specify vague product

descriptions like “something to read” or “a present for my 3-year-old daughter”, � will lead
�

to

8This technical solution does not overcome the problem if � points with the interface to the floor. Other technolo-
gies, e.g., bluetooth, might be employed to indicate the presence of a transmitter without any special requirements for
holding the PDA.
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relatively promising stores, and
�

can be as creative as he likes in deciding what (if anything) to
buy there9.

It is possible to extend the model that underlies the decision-theoretic planning to account for
possible events such as

�
’s spontaneously stopping to spend time at stores that he passes. The

proportion of shoppers whose behavior is adequately fit by the model’s assumptions will depend
on the sophistication and the accuracy of the modeling effort.

7.2.4.3 The Role of One-Way Passages in the Shopping Domain

As we have already explained in Section 3.1.7, decision-theoretic planning based on Markov deci-
sion processes has an inherently high computational complexity. For the user study, we made some
assumptions about the reality being modeled which ensured that decision-theoretic planning would
be computationally tractable. In particular, the introduction of one-way passages made it impos-
sible for subjects to visit any store twice, thereby making it unnecessary for the decision-theoretic
model to include information about the stores that

�
has already visited. The decision-theoretic

modeling described by Plutowski (2003), which we have already mentioned in the introduction of
Chapter 5, does without the assumption of one-way passages, but consequently works on shopping
domains with less locations than those that we consider.

7.2.4.4 Learning of Parameters

For the modeling, a great many specific quantitative parameters need to be specified, concerning
matters like walking and waiting times and the probability of finding a given type of product in
a given store. We have already discussed solutions to this problem in Section 6.4. In our study,
we were able to construct a reality that corresponded to our model. For real use, one approach
would be to estimate the parameters initially on the basis of a more or less thorough analysis of
the shopping mall. If this initial specification is accurate enough to ensure that the system is of
some use to shoppers, further data can be obtained from the PDAs of shoppers who have used the
system.

7.2.5 Conclusions

The first user study has provided an initial demonstration of the feasibility and acceptability to
users of several aspects of a new approach to intelligent location-aware shopping guidance. The
method is characterized by (1) an integration of navigation assistance with product location; (2) the
exploitation of decision-theoretic planning techniques that perform computations too complex for
humans to approximate mentally; and (3) the use of robust location-awareness technology which
is already available at reasonable cost.

Our study with 20 users in a semi-realistic situation yielded a number of insights into the rea-
sons why users find the system acceptable—and the conditions on which this acceptability depends
(e.g., unfamiliarity with the environment or time pressure). It also turned up some problems and
limitations, along with ideas for overcoming them. The results of the first user study encouraged
us to test an improved version of the shopping guide in a real shopping mall. The ensuing second
user study is reported in the next section.

9Compare also to the shopping task of the second user study described in Section 7.3.2.
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7.3 Study in a Real Shopping Mall

The first user study conducted in a mock-up of a shopping mall has revealed potential improve-
ments of the PDA-based shopping guide. The flaws most often mentioned in the first study have
been eliminated in an improved version of the system. To help the user keep the big picture of
what he is doing (or what the system recommends him to do, respectively) the new shopping guide
features overview maps including the current location of the user and the location of the next rec-
ommended store. Photographs of stores are displayed on the PDA screen once the next goal is
reached. This helps the user recognize which stores exactly he is supposed to visit next. Gener-
ally, the visual output of the new system is more attractive and lively, yet, free from unnecessary
details that might disturb the user. Also the audio output has been improved.

As the first study was routinely criticized for not being conducted in a realistic environment,
we took the opportunity to test the improved system in a real shopping mall. This way, the subject
uses the shopping guide in an environment where he is surrounded by other people, is possibly
disturbed by other people, and should take care about not disturbing other people by bumping into
them when concentrating too much on the interaction with the system. We wanted to find out if this
circumstance restricts the usage of a PDA-based shopping guide, and if it has a negative influence
on the results of the study in any respect. There are a bunch of further differences between the
study in the mock-up and the study in a real shopping mall: In particular, a real shopping mall
allows real shopping! That is, the shopping situation is realistic in that the subject feels like a
real shopper; the subject’s motivation to use the shopping guide can be increased by a realistic
reward scheme in that the subject can keep the items that he was able to buy; the topology of a
real shopping mall is different from the topology of the mock-up in a computer science building,
in particular, the shopping mall is bigger and more complex than the mock-up that we were able
to establish in the first user study.

7.3.1 Realization of the Improved Shopping Guide

Apart from an improved service, the realization of the shopping guide used in the second user
study includes two important differences compared to the realization of the shopping guide in
the first user study: (1) The use of infrared beacons to localize the user of the system in the first
study is simulated by a second handheld device operated by the experimenter and (2) the decision-
theoretic model of the new shopping guide takes a fixed deadline into account, which is more in
line with the airport shopping example of Chapters 4 and 5.

7.3.1.1 Hardware

In this study, we use two Compaq iPAQ 5450 Pocket PCs. Both handheld computers run the
Microsoft Pocket PC 3.0 operating system and are equipped with a build-in Wireless Local Area
Network (WLAN) card to establish a radio link between the two devices. The subject’s handheld
computer hosts the actual shopping guide—in principle an improved version of the software used
in the first user study. The handheld computer operated by the experimenter hosts a simulator of
the localization infrastructure.

The experimenter uses the handheld computer to simulate the localization infrastructure in that
he sends a radio signal to the subject’s handheld device whenever the subject approaches a place
where an infrared beacon would be installed in a fully equipped environment. We call such a radio
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signal a virtual beacon. The radio signal is interpreted by the subject’s handheld computer (the
actual shopping guide) exactly in the way that a signal from an infrared beacon is interpreted in
the first study. Figure 7.6 shows the hardware used in the study and a part of the shopping mall
map including positions of some of the virtual beacons. The application of this hardware setting
is described in the corresponding paragraph of Section 7.3.2.

Positions of virtual beaconsSubjectExperimenter

Figure 7.6: Hardware used by the experimenter and the subject; positions of virtual beacons.
(The two PDAs of the experimenter and the subject are connected via wireless LAN. The experimenter can
invoke a virtual beacon by pressing a button on his display. Thereby, he simulates the signal that would
otherwise be transmitted by an infrared beacon in a fully equipped environment and causes the subject’s
PDA to display the right navigation recommendation according to the policy. The right-hand part of the
Figure shows the positions of some virtual beacons.)

7.3.1.2 Decision-Theoretic Model

The structure of the Markov decision process used to compute the policy for the study at hand is in
principle the same as the structure of the MDP applied in the first user study described in Section
7.2.1.2 (cf. Figure 7.4). However, instead of computing the infinite-horizon policy (which was
appropriate in the first user study where we have assumed that time is a pure cost factor), we now
compute finite-horizon policies in the way that we have described in Section 4.4.

The decision-theoretic model does not consider that the time to move through the aisles of the
shopping mall or to stand in line at the cash desk might depend, for example, on the day of the
week or the time of the day.

7.3.2 Second User Study: Method

The overall purpose of the second user study was to confirm under realistic conditions the shopping
guide’s objective effectiveness and subjective acceptability, which were indicated in the first user
study based on the mock-up of a shopping mall (Section 7.2). We do not further question the
underlying localization technology in the study at hand but instead focus on the acceptance of
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the improved (with regard to the system used in the first study) decision-theoretic PDA-based
shopping guide in an authentic shopping environment.

User Study with Simulated Infrared Localization In the first place, the user study conducted
in the mock-up of a shopping mall investigated the basic usefulness of the decision-theoretic plan-
ning approach. In addition, it showed the appropriateness of the hardware solution and in particular
of the localization technology on which the shopping guide is based. While it was reasonable to
check in the first study if the complete solution that we propose is feasible, useful, and accepted,
we do not question the localization technique in the second user study anymore. We are convinced,
that the localization technique is in principle appropriate—especially after the transmission range
of the infrared beacons has been extended. Therefore, the experimenter takes on the task of the
localization infrastructure in the real shopping mall. That is, we have not equipped the shopping
mall with infrared beacons but instead the experimenter simulates the signals that would otherwise
be transmitted by such beacons.

In order to represent a one-to-one mapping of the infrared localization service provided by
real beacons, the reception of the radio signal would have to be dependent on the orientation
of the subject. This can only be approximated in a study with simulated infrared localization.
The experimenter can only estimate when the subject enters the transmission range of a virtual
beacon Moreover, the experimenter will not be able to take the exact angle between the infrared
interface of the shopping guide and the simulated infrared beacon into account to decide at what
exact point in time to send the radio signal. Insofar, the technically feasible infrared localization
method is idealized, but especially in the light of improved infrared beacons can be assumed to be
approximated to a realistic extend.

We have tried to facilitate the simulation of the infrared beacons by the experimenter as much
as possible, such that this task is not very demanding and is not distracting the experimenter him-
self. As the experimenter is not supposed to spend much effort on the simulation of the localization
infrastructure, the system assists him with this task in the following way: Both, the information
about the shopping mall topology (i.e., the locations of the virtual beacons or, more precisely,
the mapping from locations to beacon IDs) and the current policy are known to the part of the
system running on the handheld device of the experimenter. The experimenter needs to have a
good notion of where in the shopping mall real infrared beacons would be installed. When a sub-
ject reaches one of the locations where a beacon would be installed, the experimenter only has to
press the button “next beacon” to transmit the right signal—this is shown in Figure 7.7 (a). The
system knows the initial position of the subject. From the information about the shopping mall
topology, the policy, and the feedback given by the experimenter about where the subject walks,
the system can always compute which beacon the subject will reach next. From the buttons on
the handheld device of the experimenter, only those are activated that make sense in a particular
situation. For example, if the subject can only go straight ahead or left, only the buttons to give
feedback if the subject has gone straight ahead or left are activated—this is shown in Figure 7.7
(b). If the experimenter has given feedback about the direction to which the subject has gone to,
only the button to indicate that the subject has reached the next simulated beacon is activated. As
the system provides no navigation assistance within a shop, the experimenter has to give feedback
when the subject leaves a shop, such that the shopping guide can take up navigation assistance
again—this is shown in Figure 7.7 (c). In a fully equipped environment, this feedback would we
realized by an infrared beacon at the shop exit.
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(a) (b) (c)

Figure 7.7: Graphical user interface on the Pocket PC by which the experimenter simulates in-
frared beacon signals.
(The two buttons in the top row are used by the experimenter to indicate that the subject has reached the
next beacon (left) or the exit of a shop (right). With the rest of the buttons, the experimenter provides the
feedback on how the subject walked. Only valid directions are highlighted. The experimenter can, e.g.,
give the following feedback: (a) Subject has reached next beacon, (b) subject went left or straight ahead at
a beacon, and (c) subject has completed the shopping in a particular shop and reached the shop exit, i.e., the
system can continue to give navigation recommendations.)

Shopping Task As in the first user study, each subject is asked to buy a number of items (some
bread, a book, a gift item, some fruits, a journal or magazine, and some stationary) from a shopping
list. The results of the first study give reasonable reassurance about the principle competitiveness
with (if not superiority over) conventional navigation aids such as a paper map. Unlike we did
in the first user study, we therefore do not compare the results of using the PDA-based shopping
guide in the realistic environment with the alternative use of a paper map in the second user study.

In contrast to the first user study, the buying of the individual products is not simulated in the
study at hand. Instead, each subject has a fixed maximum budget (25 Euro) to actually buy one
product from each of the six categories listed above—and keep them. To make the shopping as
appealing as possible for the subjects, we asked each subject to specify a more or less concrete item
for each category. This could, for example, be an item which the subject wanted to buy anyway
in the near future. For example, in the category of newspapers and magazines, the subject could
specify his favorite weekly magazine, or in the category of bread, he could specify a particular type
which he usually buys. This reward policy is supposed to make the shopping task as authentic as
it can be and increase the subject’s motivation to behave as natural as possible.

The navigation support of the shopping guide ends at the entrance of the individual shops.
That is, within a particular shop, the subject himself has to locate the appropriate shelves to find
a particular shopping item. Once the subject has found an product, the experimenter checks if the
product corresponds to what the subject has specified beforehand and if the price of the selected
item is in the allowed range. The maximum budget for the complete shopping task is divided into
realistic portions (e.g., 2 Euro maximum to buy a bread, 9 Euro maximum to buy a book). If the
subject has selected a valid item, then the experimenter pays for the shopping item at the cash
desk. The reward policy enforces that the subject’s total reward for taking part in the study is the
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higher the more products he manages to buy. The difference of the maximum budget and the value
of the products that he eventually was able to buy was not payed off.

An additional difference with regard to the first study is a fixed deadline for the shopping to be
finished. While in the first study, time was considered as a cost factor (i.e., for each second that the
subject shopped, the reward was reduced by a small amount of money), in the second study, each
subject was allowed to shop at most 20 minutes. This was explained to the subjects in analogy to
having an important appointment (or even the closing time of the shopping mall10).

Subjects We recruited 21 subjects (10 of them female). The subjects’ age ranged from 21 to 73
years (with an average age of 33.6 and the median age of 27 years11). 14 subjects have not visited
the shopping mall in which the user study was conducted within the 12 months before the user
study, 7 subjects have visited the shopping mall one to three times within the 12 months before the
user study. 6 subjects had experience with a navigation system, most of them with a car navigation
system. Most of the subjects had experience with a PC, but only two have used a PDA before.
Figure 7.8 summarizes the subjects’ experiences.
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Figure 7.8: The subjects’ familiarity with the shopping mall and their experiences with navigation
systems, PCs, and PDAs.
(We tried to find in particular subjects who were not familiar with the shopping mall in which the shopping
guide was tested. 6 subjects had experience with a navigation system. Most of the subjects have used a PC
from time to time or even frequently, but only two have used a PDA before.)

10This model also fits well with the airport scenario, where the user of a shopping guide must be at the gate in time.
11Median age 27 years means: The age of 50% of the subjects was less or equal 27 years
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Procedure Each subject performed the task individually together with an experimenter. First,
the experimenter explained the nature of the tasks. He then familiarized the subject with the usage
of the PDA guide (e.g., what type of information is presented on the PDA display, how to interpret
the icons on the overview maps, what the audio signal means, how to check off an item that
the subject has bought, and also how the simulated infrared localization technology works). The
subjects were explained the reward policy described in the paragraph Shopping Task.

In each trial, the subject begins at the mall entrance and is followed around by the experi-
menter. Each time the subject comes close to a place where an infrared beacon would be installed
if the shopping mall was fully equipped with the infrared localization technology, the experi-
menter simulates the corresponding beacon by pressing the button “next beacon” on the display of
his PDA. The virtual beacon is received by the shopping guide and induces the navigation recom-
mendations according to the policy. When a subject enters a shop, the navigation assistance stops
and the subject takes a look-around in the shop unguidedly. If he finds an item, the experimenter
checks if the item is valid according to what the subject has specified before the trial. If the se-
lected item is valid, the experimenter pays the item on behalf of the subject at the cash desk. The
subject checks off the item in the shopping list displayed on the PDA screen. If no appropriate
item is available in the recommended shop, the subject moves on to the exit of the shop. At the
exit, the experimenter triggers the system to take up navigation assistance again. At this point, the
system processes the information whether an appropriate product has been found in the last shop
or not.

After the user has visited a number of stores, he will eventually reach the mall exit. At this
point, the trial is completed. The subject fills in a questionnaire and is interviewed briefly.

7.3.3 System Behavior

Figure 7.9 gives a notion of what the navigation with the shopping guide used in the second study
looks like. The sequence starts in the situation when the subject has just visited a shop and just
arrives at the exit of the shop—Figure 7.9 (a). The subject has not yet bought anything (no check
box on the bottom of the display is checked off; all check boxes are disabled). The upper left
corner of the display announces the time that has already elapsed during the current trial. The
subject is about to leave the shop, facing the main aisle of the shopping mall. Shortly after he has
turned left, the first overview map is displayed—Figure 7.9 (b). The map includes the position
of the user (light green character on the left-hand side of the display) and the location of the next
shop that the user is recommended to visit next (light green dot on the right-hand side of the
display). As the subject moves through the aisle and reaches the next virtual beacon, the next
navigation recommendation (turn half left) is given—Figure 7.9 (c). Navigation recommendations
and overview maps (with updated user position information) alter accompanied by audio signals
until the subject reaches the next shop and a picture of the storefront is shown on the display—
Figure 7.9 (h). The shop is a stationary shop, thus the check box for stationaries is activated. The
shopper finds an appropriate stationary item in the shop, buys it, and checks it off. At the exit of
the shop, the subject receives the next navigation recommendation (turn right), which recommends
him walk on along the main aisle of the mall—Figure 7.9 (i). All check boxes are disabled again.
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left half left

left

right right

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.9: Nine steps to get from one shop to another.
(The sequence of screen shots (a) to (g) shows the alternation of navigation recommendations and overview
maps that guide the user to the next shop. Once the next shop is reached, the corresponding storefront
is displayed (g) in order to facilitate the identification of the right shop. Part (a) like part (i) show the
navigation recommendation in the moment when the user is about to leave a shop. Further explanations are
given in the text.)
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7.3.4 Second User Study: Results

With the second user study, we wanted to find out if the acceptance results of the user study in
the mock-up of a shopping mall could be repeated in a real shopping mall. We did not compare
the shopping guide with any other navigation aid in the second user study. The study proceeded
without problems; the subjects showed considerable interest in the problem and the shopping
guide, and they supplied detailed comments on the questionnaire and in oral discussion. In the
following, we have analyzed the subjects’ performance with the shopping task and the acceptance
of the shopping guide in a real shopping mall.

The Subjects’ Performance With the Shopping Task Different from the user study in the
mock-up of a shopping mall, the shopping guide used for the study in a real shopping mall takes
a fixed deadline into account: The subjects had to be at the mall exit within 20 minutes time. To
arrange for the subjects arriving at the mall exit in time, we have applied finite horizon decision-
theoretic planning as we have described it in Section 4.4.1. The deadline was made by all of the
21 subjects. Most of the subjects managed to buy all 6 items that they had specified before their
trial. However, 6 subjects managed to buy only five items, and one subject managed to buy only 4
items (cf. Figure 7.10).
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Figure 7.10: The subjects’ success in completing the shopping task.
(The shopping list contained 6 items. Most subjects managed to buy all of them and arrive at the mall
exit within the time limit of 20 minutes. Those subjects who did not complete the shopping task were
recommended by the shopping guide to renounce one or two items from the shopping list in order to arrive
at the mall exit in time.)

On average, the subjects spend 18.72 Euro (with a standard error of the mean of 0.8 Euro and
a median of 19.35 Euro). The minimum amount spent was 8.36 Euro (the subject managed to buy
only 4 items in the given time), the maximum amount spent was 23.92 Euro.

Of those subjects who managed to buy all 6 items, 4 needed between 10 and 15 minutes and
10 needed more than 15 minutes—cf. Figure 7.11 (a). For those 7 subjects who did not manage to
buy all 6 items, 5 subjects had between 2 and 4 minutes, and 2 subjects between 4 and 6 minutes
left when they reached the mall exit—cf. Figure 7.11 (b).

We have analyzed why it was not possible for 7 of the subjects to buy all 6 items from the
shopping list. The subject who managed to buy only 4 items in the given time had slightly less
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Figure 7.11: Time needed for the shopping task.
(Left: Of those subjects who managed to buy all 6 items from the shopping list, 4 subjects needed between
10 and 15 minutes, which was particularly fast, and 10 subjects needed more than 15 minutes, which was
consistent with our expectations. Right: Of those subjects who did not manage to buy all items from the
shopping list, 5 subjects had between 2 and 4 minutes, 2 subjects between 4 and 6 minutes left when they
reached the mall exit. )

than 6 minutes left when he arrived at the mall exit. However, the two items that he was not able
to buy were a book and a gift. For both items, we have assumed that it would already require
5 minutes to find an appropriate item in a corresponding store, plus some time to stand in line
at the cash desk—this amount of time is specified stochastically in the domain description. That
is, according to the decision-theoretic model, the subject would just have missed the deadline if
the shopping guide had recommended to visit a book store or gift shop. Comparing the policy
and the log-file assigned to the subject at hand yields that in fact the subject would have been
recommended to visit either a book store or a gift shop if he had reached any of the appropriate
shops just some seconds earlier. It might be worth mentioning that the subject considered was 73
years old, and although he did not need noticeably more time to move from one location to another,
he spend noticeably more time in the shops to compare and find appropriate items. Nevertheless,
this subject enjoyed using the shopping guide and could imagine to use it in a similar situation, in
particular if he was under time pressure.

For those 6 subjects who managed to buy only 5 items from the shopping list, the shopping
guide recommended to renounce the gift item. When they arrived at the mall exit, all of these
subjects had only between 2 and 5 minutes left—less than the time assumed for finding a gift item
according to the decision-theoretic model. Insofar, it is a desired system behavior if the subject
is not recommended to enter the gift shop in favor of getting to the mall exit in time. However,
why does the policy not recommend to renounce a less important item (in terms of its monetary
value) at an earlier stage of the shopping task (e.g., the magazine) in order to enable the subject
to buy a more important (more expensive) item—the gift item—later? In fact, a thorough analysis
of the policy yields that the system exhibits exactly this behavior for particular time windows.
Yet, if a subject performs well in the early stages of the shopping, it is not necessary to renounce
a less important item, as the system’s expectation is that the subject will manage to complete
the entire shopping task. If the subject then performs worse at a later stage (e.g., needs more
time than specified in the decision-theoretic model to find an item in a particular store), then the
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system cannot help but renounce an item that is supposed to be bought at a later stage of the
shopping. Insofar, it is rather unfortunate that the gift shop is close to the mall exit in the user
study. However, all of the subjects who managed to buy only 5 items enjoyed using the shopping
guide and could imagine to use it in a similar situation, in particular under time pressure or in an
unfamiliar shopping mall.

Acceptance of the Shopping Guide in a Real Shopping Mall Figure 7.12 summarizes the
feedback that the subjects gave in the questionnaire and that reflects the acceptance of the shopping
guide. All subjects enjoyed using the shopping guide, only one subject declared that he enjoyed
it just a little. None of the subjects declared that he would not use the shopping guide (provided
a fully equipped environment) in a similar situation. With regard to preconditions for which the
subjects considered the shopping guide to be particularly useful, 16 subjects mentioned unfamiliar
environments, 13 subjects referred to time pressure, and 5 quoted particularly large shopping
malls.
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Figure 7.12: Acceptance of the improved shopping guide elicited in a user study conducted in a
real shopping mall.
(The subjects answers to the questions: (a) Did you enjoy using the shopping guide? (b) Would you use
such a system in an adequately equipped environment? (c) Did you have difficulties in using the shopping
guide? (d) Did you feel restricted by the system?)

Asked about particularly positive aspects about the shopping guide, 9 subjects declared the
rapidness of finding adequate shops, 4 subjects mentioned the photos of the shops, which are
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displayed when a shop is reached, another 4 subjects commended the reliability of receiving the
recommendations at the right locations, 3 subjects commended the user-centered recommenda-
tions reflected by the arrows on the PDA display, and 2 subjects pointed out the overview maps.

Of those who declare that they would maybe use the shopping guide, 3 subjects pointed out
that for each recommended store, a selection of alternatives should be presented, another 3 subjects
wished that the next item12 to be bought was displayed, and 2 subjects quoted that changes of the
way (initiated by themselves) should be possible.

Only 3 subjects declared that they had difficulties using the shopping guide. One subject
mentioned that the guidance was not transparent. He referred to a particular situation, in which
the system changed the next shop to be visited along the way to a shop. After the experimenter
emphasized in the instructions that the stores indicated in the overview maps of the system reflect
only the expected next shop to be visited, no other subjects complained about this feature of the
system. The system behavior is in fact reasonable (and explainable): If the subject needed less or
more time to go from one location to another than it was specified in the decision-theoretic model,
then the selected t-time-steps-to-go finite-horizon policy at the next decision point does not need
to be consistent with the t-time-steps-to-go finite-horizon policy at the preceding decision point.
This might be confusing (because of the obvious incoherence) to the user of the shopping guide
if not sufficiently explained in the introduction. For the use of the shopping guide in practice, the
system itself should in fact be able to explain such a behavior. This insight stresses the need of an
explanation component—a subject which we will study in Section 7.4.

One subject complained that some items (e.g., a book, which could also be considered as a
gift item) were not designated to be bought in other shops than those for which the corresponding
category was modeled. A more thorough categorization of the items available in each shop will
solve this problem. Another subject complained about the feeling of being under time pressure.
Although the discomfort of time pressure is understandable, we have explicitly designed the study
this way in order to test the finite-horizon decision-theoretic planning approach.

The subjects were also asked if they felt restricted by the use of the shopping guide. Of the 12
subjects who declared that they felt restricted by the system, 8 subjects complained about having
to carry the device (i.e., permanently having only one hand free during the shopping), 3 subjects
complained about the wire of the ear phone (which could be solved. e.g., by a bluetooth headset),
and 4 subjects complained that the shopping guide takes their attention away from the environment
or decreases their freedom of decision about their route too much. Although the latter restriction
was mentioned explicitely only by 4 subjects, the experimenter noticed indication of this problem
in the behavior of other subjects, who did not declare this restriction in the questionnaire, too.
An explanation component as we describe it in Section 7.4 might yield relief with regard to this
restriction. It seems noteworthy that one subject considered it to be an advantage that the shopping
guide takes the attention away from the environment because this way, he was not tempted to buy
items that he would not really need.

Suggestions for Improvements of the Shopping Guide The subjects suggested mainly techni-
cal improvements of the shopping guide. For example, 3 subjects wished that the device would be
smaller. Hardware industry might soon accommodate the users with this desire. Another 3 sub-
jects suggested speech output for the navigation recommendations. Technically it is no problem

12The overview maps contained only the information about the next store to be visited, which not necessarily indi-
cated the next item to be bought.
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to enable the shopping guide to use speech output. 2 subjects liked the audio signals indicating
that the display has changed only if also the way has changed. That is, they did not want to be
made aware that they have reached the next location considered in the decision-theoretic model if
they are supposed to go on straight, but only if they are supposed to turn. 2 subjects wanted to see
a countdown of the remaining time instead of seeing the time elapsed since the shopping started.
Another 2 subjects found the directions slightly ambiguous. This problem should be relieved by
the use of the real infrared localization technique (as in the user study in the mock-up of a shopping
mall). One subject would have preferred vibration alarm instead of (or in addition to) receiving
audio signals only. One subject would have appreciated seeing information about queues at the
cash desks in the shops. This service requires the consideration of ongoing data from the shops
by the shopping guide. And finally, one subject suggested to provide forward-up overview maps.
Although this was explicitly declared only by one of the subjects, it could be inferred from how
other subjects handled the PDA when an overview map was displayed that they had problems with
the orientation of the map, too.

7.3.5 Conclusions

The second user study, conduced in a real shopping mall, has underpinned the feasibility and
acceptance of a location-aware shopping guide based on decision-theoretic planning. The first
user study was routinely criticized for being conducted in a mock-up of a shopping mall. This
criticism was encountered by the second user study.

An important extension of the system used in the second user study was the consideration
of a fixed deadline, which involves the application of finite-horizon decision-theoretic planning.
Considering that all 21 subjects of the user study have made the deadline (and have managed to
buy at least 4 out of 6 items from the shopping list), the second user study has substantiated that
finite-horizon decision-theoretic planning is a suitable approach to deal with a fixed deadline in
the scenario at hand.

A major drawback mentioned about the system used in the first user study has been corrected
to a large extend: The improved shopping guide features overview maps to help the users keep
the big picture. Another drawback—the need to attend to the PDA—has not been overcome by
the corresponding improvements of the guide used in the second user study and needs further
exploration. Moreover, the second user study yielded further suggestions for improvements of
the shopping guide, which mainly relate to technical aspects and the usability of the system. En-
hancing the shopping guide with an explanation component would be an important step to further
increase the usability of the shopping guide.

7.4 Explaining Recommendations

One strength of decision-theoretic planning is that it can take into account the potential conse-
quences of a decision in the future. Decision-theoretic planning trades off the risks and chances
by comparing the expected utilities of different options that are available. Suppose, for example,
in the airport shopping domain, a user wants to buy a magazine and a book. The system’s decision
whether to recommend to visit a particular shop � to buy the magazine depends on other possibil-
ities to get the magazine further down the way to the gate, for example, in a shop � or � where
at the same time the book can be bought. Decision-theoretic planning can take into account how
important the magazine and the book are to the user, at what probability the magazine and the book



172 CHAPTER 7. USABILITY ISSUES

are available in shop � , � , and � , and even uncertain information about how long the user has to
expect to stand in line in a particular shop. However, all this information is cumulated in a single
number: the expected utility of a recommendation. Communicating only the expected utility of a
recommendation leaves the complexity of the information that yields a particlar recommendation
completely intransparent to the user.

In this regard, recommender systems based on decision-theoretic planning are typically black
boxes to their users. Similar to how Herlocker, Konstan, and Riedl (2000) have described this
flaw in the context of automated collaborative filtering systems, the computations that result in a
particular recommendation based on decision-theoretic planning are in general far too complex to
be understood by the user. Therefore, the upcoming sections explores three questions:

1. What information do the users of recommender systems based on decision-theoretic plan-
ning wish?

2. How should appropriate information be presented?

3. How can appropriate information be computed?

7.4.1 Transparency, Predictability, and Controllability

Transparency, predictability, and controllability are among the most prominent usability chal-
lenges in HCI. Jameson (2003) associates these challenges with the following questions: (1)
Transparency: To what extend can the user understand the system’s actions? (2) Predictabil-
ity: To what extend can the user predict the effects of his actions? And (3) Controllability: To
what extend can the user bring about or prevent particular actions or states?

The results of the first user study (see Section 7.2.3.4) have revealed the users’ strong desire
to keep the big picture when being guided by the PDA-based system (11 out of 20 subject gave
comments that pointed into this direction). The desire to keep the big picture relates in to the last
two of the three characteristics mentioned above: transparency and predictability.

Wexelblat and Maes (1997) offer the following guidelines to achieve transparency13 for soft-
ware agent user interfaces: (1) Use task-specific vocabulary; (2) keep descriptions of the agents’
states simple; (3) allow the agent to make functionality suggestions at appropriate times and in a
gradual way. In particular, the third advice is important for further improvement of the decision-
theoretic shopping guide.

The improvement of the system (used in the second user study) with regard to the ability to
provide overview maps helps the user to keep the big picture and enhances the system’s trans-
parency and predictability. However, overview maps are good to answer questions like “Which is
the shop I am recommended to go next?” or “How far away is the shop that I am recommended to
go to next?” But they are not appropriate to answer questions like “Why am I recommended to go
to shop X next?” or “Why am I supposed to go left here?” These are questions that explanations
generated by the shopping guide are supposed to answer. Apart from an explicit request for expla-
nations by the user, the system can also give explanations automatically, for example, if the user
indicates to deviate from the recommendation and if the difference between the expected utility of
the system’s recommendation and the user’s intention exceeds a threshold.

A major challenge will be the exploration of means to enable the system to give useful in-
formation at appropriate times, that is, to make sure that the system has the required information

13Wexelblat and Maes (1997) use the term understanding when relating to transparency.
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available when an explanation is requested. To provide appropriate information in a gradual way,
the system will have to be able to assess the importance of particular pieces of information for
the current user and situation. Herlocker et al. (2000) provide experimental evidence that pro-
viding explanations can improve the acceptance of automated collaborative filtering systems. In
a similar way, we expect the transparency and predictability of the system behavior that the user
gains by an explanation component to increase the acceptance of a recommender system based on
decision-theoretic planning.

In Section 2.1.1.1, we have reviewed the Maxims mail filtering system with respect to its
decision making strategy. The interface agents introduced by Maes (1994) try to increase the
transparency of the mail filtering system’s internal state via facial expressions that appear in a
small window of the user’s screen. In the same domain, Pazzani (2000) studies how different
representations of user profiles influence the acceptance of mail filtering systems. In an empirical
study, Pazzani (2000) finds that some mail filtering profile representations are trusted better than
others, although they represent the same content. Similarly, we expect different representations of
explanations to be more accepted or less accepted by the users of a shopping guide.

With respect to control, Wexelblat and Maes (1997) recommend to (1) allow variable degrees
of control; (2) give users the highest-feasible level of control specification (3) help users under-
stand the agent’s model of the user; (4) keep users meaningfully in the loop, particularly for key
decision points; and (5) begin with suggestions and move to actions later. For the shopping guide,
these guidelines entail that the user should at least at some point have the possibility to make
a different decision than the one recommended by the system. On the other hand, allowing the
user too much freedom will run the decision-theoretic approach ad absurdum. If the user devi-
ates from the system’s recommendations time and again, the policy will most probably have been
computed based on incorrect assumptions. However, if the user decides differently than the sys-
tem recommends in a particular situation because of a specific reason (e.g., the user turns to a not
recommended direction to watch the news on a public tv screen for a while but then continues
his shopping expedition in accordance to the assumptions that the policy is based on), then the
decision-theoretic approach might still be appropriate, even though it might not yield the optimal
course of action anymore. Instead of not considering any future consequences of decisions at all,
we argue that it is better to plan ahead as far as it is possible, even though we are aware that the
system can always be “surprised” by unexpected extraneous events or user behaviors.

The decision-theoretic planning approach is tolerant if the user deviates from the system’s
recommendations in a way that the user’s action is still a good action according to the policy. That
is, if the user chooses, for example, the second best option (with regard to expected utility) because
of a particular reason, then this choice does not violate the key concept behind decision-theoretic
planning so much. In particular, if the second best option has an expected utility not much worse
than the expected utility of the optimal (with regard to the assumptions made) and recommended
action, then future consequences of actions are still taken into account reasonably well and the
complete course of action might only be marginally suboptimal. This implies that in particular
when explicitly allowing the user for some freedom about decision making, the system should
offer options that are compliant with the decision-theoretic approach and suppress those that are
not. This way, the user is kept meaningful in the loop, and variable degrees of controllability
can be realized: If several nearly equally good options are available, the system can allow for
more controllability, while if no reasonable alternative to the recommended actions is available,
the system should rather prohibit controllability.

Kay (2001) points out the importance of enhanced controllability for the users of teaching
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systems in order to increase their motivation and help them to achieve a task effectively. Jameson
and Schwarzkopf (2002) discuss pros and cons of controllability in the context of a hotlist for a
conference web site. They suggest to check if particular preconditions hold in order to decide if
enhanced controllability actually yields the advantage that it may yield in principle. The same
holds for controllability of recommender systems based on decision-theoretic planning: The sys-
tem designer must trade off whether the benefit of enhanced controllability compensates potential
suboptimality with regard to the result of the decision-theoretic planning.

7.4.2 Explanations of a Shopping Guide’s Recommendations

The decision-theoretic planning approach used in the shopping guide bases its decisions on a
comparison of the expected utilities of available options. However, although this is a neat criterion
for making rational decisions, it is not very meaningful as a justification for a decision to be
understood by a human user. For example, if the user asks why the system prefers to recommend
turning right over turning left, he will usually not be satisfied if answered that the expected utility
if he turns right is

������	
, while the expected utility if he turns left is only


 ���
. Expected utility

is not useful as the basis for generating explanations for decisions based on a decision-theoretic
planning approach. Instead, a shopping guide might present a comparison of the available options
as indicated by Figure 7.13 (b).

until arrival at the gate

Expected length of time

the directions

Difficulty of followingOverall

rating

(b)(a)

Option

?

BEST AVERAGE WORST

BEST AVERAGE
WORST

Why am I supposed

more interesting...
to go right? Left looks

!

!

expected utility:

10.7

6.8
expected utility:

Figure 7.13: Explaining navigation recommendations—motivation.
(Expected utility (a) is not convenient to justify or explain a recommendation given on the basis of decision-
theoretic planning. (b) Instead, the system should come up with information like: an overall rating for a
recommendation, the expected time for finishing a task, and the difficulty of following upcoming direc-
tions.)

7.4.2.1 User Study: Method

We have developed a questionnaire to study (1) which information potential users of a shopping
guide consider to be useful in terms of explanations of decisions made by the system and (2) what
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users consider to be appropriate representations for such explanations. The questionnaire was
filled out mainly by third year students of a lecture on Intelligent Environments14 .

Materials The questionnaire comprises 6 pages. The first part of the questionnaire comprises 4
pages, which are concerned with the question about what information potential users of an airport
shopping guide find helpful as explanations of decisions made by the system. The second part
comprises 2 pages, which are concerned with the appropriateness of different forms of represen-
tation for recommendation explanations.

The first part of the questionnaire has two subparts. The first subpart—we refer to it as part
1.1—involves three tables, each with assessments of three optional routes (see Figure 7.14). These
tables were supposed to help the subjects familiarize with the kind of recommendation explana-
tions that we had in mind. Each table gives an overall rating for each of the optional directions.
Moreover, for each optional direction, it contains information about the expected duration of get-
ting to the gate (best, worst, and average duration), an assessment of the difficulty of following
upcoming navigation recommendations, and eventually information about shops along the way.
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Number of Turning Points:
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Difficulty of following

the directions
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(best/average/worst)
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AVERAGE
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Figure 7.14: Example of a table describing three navigation options.
(For each of the three options, the table gives an overall rating and compares some characteristics of each of
the options. To represent the characteristics, different representations were used in the other two tables—see
Appendix H. The subjects were asked to select the option that appeared most attractive to them and give
comments on why they have decided for this option.)

We have altered the representation of particular information and also the degree of detail of
particular types of information among the three tables. For example, the expected duration until
arrival at the gate is once represented with bars and once with a clock-like diagram, and it includes

14The lecture was given by my colleagues Andreas Butz and Antonio Kr üger in the winter term 2002/03.
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information about the boarding time or not. In this part of the questionnaire, the subjects were
asked to choose from each table the option that appears most attractive to them and explain why
they have decided for the option. For each table, there was half a page of space for the explanation
of the subject’s selection and for comments of any kind.

The second subpart—we refer to it as part 1.2—summarized the three tables of the first subpart
and the students were asked if some of the information used in the three tables (i.e., overall rating,
duration until arrival at the gate, difficulty of following upcoming recommendations, and informa-
tion about shops along the way) can be left out. The subjects assessed the usefulness of each type
of information (independent of how it was presented in each particular table) by checking off one
of the following statements: (1) Better to leave it out; (2) equally good left out or included; (3) can
be left out if necessary, but better kept; (4) should definitely not be left out.

The second part of the questionnaire analyzes which of the forms of presentation that were
used in the first part of the questionnaire have been most comprehensible to the subjects. For each
type of information, three different forms of presentation were used.

(a) Overall rating: (1) Smiley representation; the more happy the smiley looks like, the better
is the assessment of the option; we decided to use the smiley representation in the questionnaire
because of the assumption that it can at least roughly be understood without any accompanying
commentary; we assumed five grades of the facial expression to be easily distinguishable; (2)
textual representation; one or two words describing the quality of the option, for example, “rec-
ommended” or “highly recommended”; similar textual assessments can be found in magazines
testing and comparing technical devices; (3) star rating; a number of stars (0 to 5) reflects the
quality of an option; this kind of representation is well known, for example, in the context of
movie ratings. The three representations are shown in Figure 7.15 (a).

Another option to represent an overall rating would have been a mark as it is used in the
school system (e.g., A level, B level, and so forth, as in the American and British school system,
or a number from 1 to 6 or from 00 to 15, as in the German school system). However, we did not
find this representation intuitive enough.

(b) Expected length of time until arrival at the gate (best/average/worst): (1) Bar repre-
sentation of best, average, and worst duration, but no information about how the durations relate
to the boarding time; (2) bar representation of best, average, and worst duration, including infor-
mation about how the durations relate to the boarding time; (3) clock-like representation of best,
average, and worst duration, including information about how the durations relate to the boarding
time.

By leaving out the information about the boarding time in the first representation, we wanted
to find out if people automatically assume that the boarding time has been taken into account
even if not being represented explicitly, that is, if they feel like they do not have to care about
getting to the gate on time if the boarding time is not mentioned in the histogram. Option (3) was
supposed to elicit if the same information that is given in option (2) is more comprehensible if
the representation resembles a clock, that is, if the representation is somehow associated with the
concept of time. The three representations are shown in Figure 7.15 (b).

(c) Difficulty of following the directions: (1) Caution sign representation; the size of the sign
corresponds to the difficulty of following upcoming recommendations; we assumed that people
from most cultures, especially if they drive a car, are familiar with the caution sign and interpret it
in a reasonable way; (2) minimal, average, and maximal number of turning points represented in
one row; (3) minimal, average, and maximal number of turning points represented in three rows.
The three representations are shown in Figure 7.15 (c).
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Figure 7.15: Different representations of the overall rating for a recommendation, information
about the expected time to get to the gate, the difficulty of following upcoming directions, and
information about stores along the way.
(Explanation in text.)
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As an alternative to the discrete representations (2) and (3), we initially thought of a continuous
representation like the one for time until arrival at the gate. However, if the difficulty of following
the directions is related to discrete events, for example, the expected number of turning points, then
the discrete representation is more reasonable. If the measurement of the difficulty of following
the directions additionally includes other criteria (e.g., the number of possible directions at turning
points and the expected amount of pedestrian traffic along the way), than a different, possibly a
continuous representation might be more appropriate.

(d) Stores along the way: (1) Information about categories of stores along the way (presented
on small cards) and estimations of the likelihood (which corresponds to the height of a particular
card) to find an appropriate product in any particular store; (2) information about concrete stores
along the way and estimations of the likelihood to find an appropriate product in each particular
store; (3) information about concrete stores along the way, but no estimations of the likelihood to
find an appropriate product in any particular store. The three representations are shown in Figure
7.15 (d).

The representation of information about stores along the way can be arbitrary complex. Even
trying to capture just some of the useful information about stores can result in a rather complex
representation. The cards, which we used in all three variations, allow to represent information
compactly by overlappings and can be further refined. It is possible to accommodate more infor-
mation in the cards, for example, use the size of the icons and labels to indicate the probability
that the user will actually get to a particular store. Or the cards might include information about
opening hours, the expected time to stand in line at the cash desk, or details about the products sold
in a particular store—viewing such kind of information might involve zooming into a card. There
seem to be so many possible variations of this kind of information that these variations might well
be the subject of a user study of its own.

Each subject assessed each of the three different forms of presentation for each type of in-
formation on a scale with seven grades ranging from “not useful at all” to “very useful”. The
complete questionnaire is summarized in Appendix H.

Design The questioning was designed as a within-subject study. All subjects were asked to
complete the same questionnaire under the same conditions.

Subjects We asked 33 subjects to fill in the questionnaire. All subjects were students in a com-
puter science lecture on Intelligent Environments. Some of the students were neither German nor
English native speakers, but all of them spoke English well enough to follow a computer science
lecture held in English. Therefore, we assume that all subjects were able to follow the instructions
and understand the questionnaire.

Procedure All subjects were jointly instructed at the beginning of the lecture. The experimenter
asked the subjects to imagine that they would be using an airport shopping guide: a system that
guides the user to the gate and assists him in locating appropriate stores for their shopping on the
way to gate. The subjects were already familiar with the kind of system that they should imagine
to use, because similar systems and their underlying technology have already been introduced and
explained in preceding lectures. The experimenter gave a survey of the airport shopping guide and
its underlying technology to refresh the subjects’ knowledge.
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Then, the experimenter put slides on an overhead projector. The first slide showed the shop-
ping guide screen depicted in Figure 7.16 (left-hand side), with a PDA giving the navigation rec-
ommendation to turn right. In this situation, the subjects were asked to imagine that they wanted
to know why they are supposed to turn right—although some other direction might look more
interesting to them. The introductory slides were also used to explain each individual page of the
questionnaire at length.

°

°

°

°

You want to know why the system
gives this recommendation.

Therefore, the system should be able
to give you an explanation.

Questionnaire to find out what kind 
of explanations are useful.

For the questionnaire, assume that
you have no recommendation by the
system but just an assessment of
available options!

right

Figure 7.16: Part of the materials shown on an overhead projector while the experimenter in-
structed the subjects.
(Left: The display of the pretended shopping guide depicts the situation which the subjects were asked to
imagine. Right: Extracts of the slides which the experimenter used to explain the instructions for filling out
the questionnaire.)

After having given the instructions, the experimenter handed out the questionnaire (surveyed
in the paragraph Materials and described at length in Appendix H) with questions on the useful-
ness of particular pieces of information for explanations and forms to present the information. The
subjects were asked to take up to about 20 minutes to complete the questionnaire and pose ques-
tions at any time if anything had remained unclear during the instructions or in the questionnaire.

7.4.2.2 Results and Discussion

The questionnaire was designed on the basis of a particular recommender system based on decision-
theoretic planning in the airport shopping domain. It gives answers to two questions: (1) What
information is desired as explanations? And (2) how to present explanatory information? Some
of the comments given by the subjects provide interesting feedback that relates to the concept of
controllability.

In the first instance, part 1.1 of the questionnaire was supposed to help the subjects to get
familiar with the situation that they were supposed to imagine and the kind of explanations that we
had in mind for the recommendations given by the decision-theoretic airport shopping guide. Each
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of the three tables in part 1.1 was designed in a way that one option appears superior to the other
two. However, as Figure 7.17 shows, for each of the tables, there were some subjects who did
not select the apparently superior option. Some of the comments by which the subjects justified
their decision in such cases were surprising to us: For example, one subject holds the view that “a
small number of stores makes the selection of a suitable product easy.” Another subject pointed
out that he “does not expect to need the worst case time until arrival at the gate”, while missing
their flight in the worst case was probably the strongest argument against this option for most
of the other subjects. Altogether, part 1.1 shows that the subjects give different priorities to the
offered pieces of information. From this result, we infer that if offered controllability, the users of
a system like the airport shopping guide would in fact sometimes decide differently from how the
system recommends to.
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Figure 7.17: Results of the questionnaire’s part one, subpart one.
(In part 1.1 of the questionnaire, for each of the three tables, the subjects were asked to decide which one
out of three options characterized in each table they would choose. We designed each table in a way that
one option appeared to be superior to the other two. However, for each table, there are a few subjects who
decided for one of the apparently inferior options.)

Of those subjects who have selected the apparently superior option, nearly two-thirds referred
to the expected time until arrival at the gate to justify their decision. Not surprisingly, most com-
ments bring out the importance of reaching the gate before the boarding. But three subjects also
note that they “don’t have to wait too long at the gate” when choosing this option, which indicates
that they would feel like wasting time if they would reach the gate (far) too early. The decision-
theoretic planning approach is well suited to care about not wasting time waiting while possible
secondary goals can still be reached (see Section 4.4).

What Information is Desired as Explanations? The comments given in part 1.1 already antic-
ipate some of the qualitative results of part 1.2, for example, the high importance that is attached
to the expected arrival time at the gate. The comments that relate to the information about stores
along the way already show that the assessment of the probability to find a suitable product in a
particular shop is taken into account by some subjects. The comments that relate to the difficulty
of following the directions indicate that, in particular because of being guided by a navigation
system, some subjects do not care too much about this piece of information (6 subjects gave com-
ments that indicate this opinion). Finally, with regard to the overall rating (in the case of a textual
representation) one subject gave the comment that he has “just chosen HIGHLY RECOMMENDED
because there is not much difference in the rest of the information” about the three options. This
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indicates that an overall rating is rather considered to be the last resource, which is probably be-
cause of the marginal explanatory nature of this piece of information.

In part 1.2 of the questionnaire, the subjects were directly asked about the importance that
they attach to the four pieces of information they were offered in the three tables of part 1.1. The
histograms of Figure 7.18 reflect what the subject’s comments in connection with part 1.1 have
already indicated: The most important criteria for the subject’s selections are the expected time
until arrival at the gate and the information about the stores along the way. With regard to the
overall rating and the assessment of the difficulty of following the directions, the corresponding
histograms show the tendency that the subjects have the feeling that they could well do without
this information.

How to Present Explanatory Information? The histograms of Figure 7.19 show the subjects’
preferences among the different representations for the explanatory information used in the three
tables of part 1.1. We discuss the representation assessments for each piece of information in turn.

(a) Overall rating: With regard to the overall rating, the star representation attained the best
assessment. The subjects in particular appreciated that the difference between different ratings
is easy to recognize (3 comments) and mentioned that they know this representation from other
assessments (3 comments). The representation was characterized as precise, useful, compact, clear
and easy to compare. Mentioned drawbacks (e.g., the difficulty to distinguish between good an
best) can easily be eliminated.

The overall rating represented by smileys or textually still received good assessments. Pros
mentioned about the smileys are, for example, that they are intuitive and universally understood.
However, the mentioned cons indicate that the different ratings are difficult to distinguish (more
than a third of the subjects gave comments pointing to this drawback). The smiley representation
was also characterized as ambiguous, too imprecise and childish. In addition to difficulties with
regard to the graduation of the textual representation (3 comments), two subjects pointed to the
(obvious) drawback of language specifity. Another two comments indicated that the subjects just
prefer icons/pictures to text.

(b) Expected length of time until arrival at the gate (best/average/worst): With regard to
the expected length of time until arrival at the gate, the subjects considered it to be crucial to see
this information in relation to the boarding time. The histogram that says nothing about how the
expected time until arrival at the gate relates to the boarding time received the worst assessment—
15 subjects complained about this shortfall. The histogram that includes the boarding time is
assessed better than the clock-like representation that includes the boarding time.

The histogram including the boarding time was characterized as clear, well structured, and
easy to understand. One drawback that was mentioned is the lack of a time scale (4 comments).
The clock-like representation also received a rather good assessment. Similar to the histogram
including the boarding time, it was characterized as exact, clear, and quickly understood. However,
some comments indicate that in a direct comparison, the clock-like representation is not as easy
to understand as the histogram representation (both including the boarding time). The comments
of 7 subjects pointed into this direction. Some subjects found the clock-like representation too
complex, unclear, or confusing. A few subjects felt that the clock-like representation wastes PDA
screen space or could be difficult to be recognized on a small display. One subject pointed to
problems when the displayed times exceed one hour.
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Figure 7.18: Results of the questionnaire’s part one, subpart two.
(In part 1.2 of the questionnaire, the subjects were asked to assess the importance/usefulness of each piece
of information. In the particular domain of airport shopping, an estimation about the time until arrival at
the gate was assessed to be highly important. Also information about stores along the way are found very
useful. Many subjects felt like being able to do without an overall rating for the different options and also
the information about the difficulty of following the directions was not considered to be essential.)
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Figure 7.19: Results of the questionnaire’s part two.
(In the second part of the questionnaire, the subjects were asked to assess the appropriateness of the expla-
nation representations: For an overall rating, the well established representation by a number of stars was
preferred; for the expected time until arrival at the gate, the subjects liked the histogram including informa-
tion about the boarding time best; for the difficulty of following the directions, the qualitative description by
a caution sign was assessed about as good as the quantitative description in terms of the expected number
of turning points; and eventually for the stores along the way, the subjects appreciated the most detailed
representation including a precise declaration of upcoming shops and an assessment of the likelihood to
find some appropriate item there. The bars in the histograms are labeled with the mean values and the
standard error of the mean values. The overlapping intervals of the standard error of the mean in the his-
togram Difficulty of following the directions indicate that the ratings of the Caution sign and Three lines
representations do not differ significantly. The overlapping intervals of the standard error of the mean in the
histogram Stores along the way indicate that the ratings of the Different heights, icons and Same heights,
icons representations do not differ significantly.)



184 CHAPTER 7. USABILITY ISSUES

(c) Difficulty of following the directions: With regard to the representation of the difficulty
of following the directions, the assessments of the caution sign representation (pure qualitative
information) and the three line representation of the expected number of turning points (including
quantitative information) are nearly equal. They both outperform the representation of minimal,
average, and maximal number of turning points in one row.

In their comments, the subjects appreciated that the caution signs are clear just at a glance,
intuitive, easy to understand and to compare. What is considered as advantage by some subjects
(clearness just at a glance) implies a disadvantage for other subjects: The scale is not known, the
representation does not give full information, and the signs are imprecise. Two subjects mentioned
a conceptual problem with the caution signs: Even a small caution sign is still a caution sign! If
the directions will be very easy to follow, these subjects would prefer a thumbs-up sign instead of a
small caution sign. For the representation of the difficulty of following the directions in three lines,
neither the pros nor the cons mentioned by the subjects were very strong. Two subjects mentioned
explicitely that they do not consider this information to be very important. Compared to the same
information represented in one line, one subject liked the three line representation better if enough
space was available. The compactness of the single line representation was emphasized by the
comments of four subjects.

(d) Stores along the way: With regard to the information about stores along the way, the
representation including shop labels and information about the probability of finding some appro-
priate product there received the best assessment. The representation that gives information about
the probability of finding a suitable product in a particular shop but does not say the name of the
shop received the worst assessment. If the representation includes the shop label but gives no
information about the probability of finding a suitable product there, then it is not assessed much
worse than if the probability of finding a suitable product is indicated by the height of the cards.
That is, the precise labels of the shops seem to be preferred to an assessment of the probability to
find a suitable product in a shop if the subject does not know which shop it is.

Most of the comments show that the subjects appreciate a high level of detail with regard to this
piece of information—which is in contradiction with the findings of (Herlocker et al., 2000), who
conclude that people preferred simple explanations. So it may be that simplicity itself is not the
criterion but rather: Does the added complexity add really valuable information? 11 subjects gave
comments that point to the preference for detailed information. 6 subjects explicitly complained
when the names of the shops were missing. A few subjects made general comments like all of the
three representations might be too large for a small display (or not recognizable) or that they do
not trust probabilities in general.

Two subjects mentioned that the auxiliary lines (cf. Figure 7.15), which are used if different
heights of the cards indicate the probabilities to find a suitable product, are useful. One subject
proposes to indicate with green and red backgrounds if a shop is open or closed.

7.4.3 Computing Explanations

The histograms of Figure 7.18 indicate the following importance ranking of the types of infor-
mation that we suggested as explanations for navigation recommendations: Most important to the
subjects comparing different options is the information about the expected time of arrival at the
gate in relation to the boarding time. This result underpins the need to consider fixed deadlines
in the decision-theoretic model as described in Section 4.4. Second most important seems to be
the information about stores along the way. This means that the two most important pieces of
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information relate to the user’s primary goal and secondary goals. Slightly less important seems
to be an overall rating of alterative options. Eventually, the subjects were discordant about how
to assess the usefulness of the information about the difficulty of following upcoming directions
of alternative options. The following paragraphs will present approaches to provide the neces-
sary information in the order of how the subjects rated the importance of the particular pieces of
information. The implementation of these approaches goes beyond the scope of this thesis.

Expected Length of Time Until Arrival at the Gate (Best/Average/Worst): The expected
length of time until arrival at the gate can for each physical location be computed straight from the
policy15 and the domain description (i.e., the topological description of the airport building and
where infrared beacons are arranged in the building). We usually declare the distance between
two adjacent locations in terms of the time needed to move from one location to another. These
measures can initially be estimates (determined by the software designer simply by measuring
the time that he needs to cover the corresponding distances). Such estimates can successively be
adjusted by an analysis of the data collected during the use of the system.

Determining the best case length of time until arrival at the gate requires only a single simula-
tive execution of the policy. During the simulation, the system assumes that everything works out
ideally, for example, that the user never takes a wrong turn and achieves any secondary goal (e.g.,
buying a product) in the first attempt.

The average length of time until arrival at the gate can be determined by repeatedly simulating
the execution of the policy and averaging the length of time needed to reach the gate. The system
thereby simulates stochastic actions according to their probabilities. As in the decision-theoretic
model, the probabilities applied in the simulations can depend, for example, on the time of the day
or the day of the week.

Determining the worst case length of time until arrival at the gate is more difficult than con-
sidering the best and average case. If the domain description contains cyclic transitions, the worst
case time is in theory infinite. This information is useless as explanation. Instead, the system
can provide information about a “soft” worst case, e.g., the worst case that occurred during the
simulations for the average case.

It is possible to determine the worst case time if the domain description does not contain any
cyclic transitions. The domain description in the model that we employed for the user studies in
a shopping mall scenario described in Sections 7.2 and 7.3 were nearly acyclic: By introducing
one-way passages, we could guarantee that the user could never come along any physical location
more than once. However, the waiting procedure at the cash desks of the shops brings about cycles
in the decision-theoretic model. If we chose a different, acyclic model for the waiting procedure,
the worst case length of time until arrival at the gate could be computed in analogy to the best case
time. During the simulation, the system assumes that everything “goes wrong”, for example, that
the user always takes the worst wrong turn and never achieves any secondary goal. However, it
is doubtful that this procedure really yields information that is useful as an explanation. Instead,
strategies similar to the computation of “soft” worst cases seem to be more appropriate.

Stores Along the Way: What stores the user is recommended to go to depends strongly on the
results of visiting other stores along the way. If there are several possible stores to buy a particular

15When we speak of a policy in this section, we mean both a single infinite-horizon policy for the case of time being
considered as a pure cost factor and a set of finite-horizon policies if a fixed deadline is involved.
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item, then those options other than the one with the highest expected utility will only get relevant
if the user does not find the item in the first store. This implies the following strategy to give
information about upcoming stores: The approach requires one simulative execution of the policy
for each item to be bought (or in general, for each secondary goal to be achieved). During the
simulation, it is assumed that the user does not find the desired item in any store and thereby
checks what other stores that offer the desired item will be recommended in consequence.

As the information is supposed to show the user in how far existing options differ in terms of
the upcoming stores, it might not be necessary to simulate the execution of the complete policy.
If two alternative routes join again after some navigation recommendations, the comparison of the
alternatives can be restricted to the those parts that really differ.

Which stores the policy will recommend for a particular item depends also on what other
items the user has already bought (or which other secondary goals the user has already achieved,
respectively). For example, if the user has items � and � on his shopping list, then the next
recommendation to find item � can depend on whether he will find item � before he gets to the
next store offering item � or not. If he does not find item � before he gets to the next store
offering item � , the system might recommend a store in which the user can buy both items �
and � together. This system behavior implied by the policy complicates the analysis of upcoming
stores. The problem can be solved by making additional assumptions, for example, that the user
finds no items at all during the simulation, or that he finds all other items that are in principle
available along the way following the recommendations given by the simulated execution of the
policy.

Overall Rating: During the decision-theoretic planning process, the system computes the ex-
pected utilities of alternative options in each state. This is a standard characteristic of algorithms
like value iteration or policy iteration (cf. Section 3.1.4). The object-oriented representation that
we have described in Section 3.1.5.2 allows easy access to this information. Expected utility might
be the best source of information to give an overall rating of alternative navigation recommenda-
tions because it takes the whole range of information on which the decision-theoretic planning
process is based on into account.

A simple approach to map expected utility to a discrete number of ratings (e.g., a five star
rating or a rating with five different facial expressions of a smiley) works as follows: Compute
the difference of the expected utility of the best and the worst option; divide this difference by the
number of discrete grades; add the resulting numbers to the minimal expected utility (the expected
utility of the worst option) to gain a number of expected utility grades; map each expected utility
to the discrete grade that corresponds to the closest expected utility grade.

Difficulty of Following the Directions: A quantitative measure for the difficulty of following
the upcoming directions has already been indicated in the questionnaire: the expected number of
turning points for alternative navigation options. The required information can be ascertained by
similar simulations as described with regard to information about stores along the way.

Best and worst cases can be determined by assuming that the user finds every desired item at
the first attempt or that he does not find any item at all. The average number of turning points
can be determined by repeated simulation during which the success about finding an item or not
is determined according to the given probabilities.

In the decision-theoretic models described in Section 4.2.3, we have shown how the possibility
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that the user takes a wrong turn can be considered. The probability of taking a wrong turn can be
used to derive the difficulty of following directions, in particular if the horizon for a look ahead
is short. For example, comparing two alternative routes, the system could determine the total
probability to take a wrong turn when trying to follow the next � navigation recommendations.

7.5 Synopsis

We have presented three user studies in this chapter. By the first two studies, we learned about how
users react to a PDA-based shopping guide combining product location with navigation support
based on a decision-theoretic policy. The first study, conducted in a mock-up of a shopping mall,
confirmed our expectation that users would prefer our PDA-based system over a traditional paper
map: A large majority of the subjects accepted the application of a decision-theoretic shopping
guide and stated that they would like to use such a system in the future in situations similar to the
situation of the first user study. Furthermore, we found that the subjects managed to complete their
shopping task more quickly. On the basis of the feedback given by the subjects in the question-
naire used in the first user study, we improved the shopping guide with features such as overview
maps and information about upcoming shops—the improved shopping guide did not feature an
explanation component, yet.

The fact that we conducted the first user study in a mock-up of a shopping mall was often crit-
icized. Therefore, we asked the subjects in a second user study to use the improved version of the
shopping guide in a real shopping mall. In the improved shopping guide, we have also employed
an enhanced decision-theoretic model taking a fixed deadline into account—a feature that is par-
ticularly important in an airport shopping scenario. In the second user study, the experimenter
simulated the infrared localization technology that was applied in the first user study. The second
user study confirmed that users accept the idea of a PDA-based decision-theoretic shopping guide
also in a real shopping mall and a realistic shopping situation. Moreover, the second user study
substantiated our expectation that the decision-theoretic approach would be applicable to a real
world problem of reasonable size. However, the overall system can still be improved with regard
to the usability requirements of everyday life application.

As an example for further improvement of the shopping guide, we explored in a third user
study the possibilities of enhancing a decision-theoretic shopping guide by an explanation com-
ponent. We presented the subjects a questionnaire by which we tried to elicit what kind of in-
formation users of a shopping guide might find useful as explanations for the system’s decisions.
Thereby, the first part of the questionnaire focused on the information content, whereas the second
part of the questionnaire focused on the information representation. The subjects assessed those
information that relates to primary and secondary goals in the decision-theoretic planning process
as most useful: the expected time until arrival at the gate (primary goal) and information about
upcoming stores (secondary goals). We have described approaches (mainly based on repeated
simulations) to acquire the necessary information for providing such explanations of navigation
recommendations. The implementation of these approaches goes beyond the scope of this thesis.
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8 CONCLUSIONS

Decision-theoretic planning is applied in domains as diverse as the planning of business processes
and robot navigation control. Our motivating example in the introduction of this thesis illustrated
the usefulness of decision-theoretic planning in a situation of everyday life and demonstrated the
benefit of a complex look-ahead taking the consequences of uncertain future actions into account.

8.1 Contributions

In this thesis, we showed how decision-theoretic planning can successfully be applied in the con-
text of user-adaptive systems. The contributions of this thesis can be arranged in three groups: (1)
General contributions concerning the development and application of decision-theoretic models
for the planning in user-adaptive systems; (2) the analysis of usability issues and in particular the
empirical validation of the decision-theoretic planning approach for user-adaptive systems; and
(3) the consideration of special requirements of specific types of user-adaptive application. In the
following, we will itemize the individual contributions of these three groups.

General contributions concerning the development and application of decision-theoretic mod-
els for the planning in user-adaptive systems

� We described the general workflow for the development and application of decision-theoretic
models for planning in the context of user-adaptive systems: The workflow description pro-
vides guidelines for all steps of the development process starting from checking the appli-
cability of decision-theoretic planning for the problem at hand to the actual application of
a policy. The workflow description paves the way for the development of a tool that sup-
ports the designer of a user-adaptive system when incorporating decision-theoretic planning.
In addition, we summarized several approaches to determine the parameters required for a
decision-theoretic model in a structured way.

� We extended the workflow description such that it covers the development and applica-
tion of decision-theoretic models for planning complex problems involving multiple goals:
The extension of the workflow describes how a decision-theoretic model can be developed
and applied for complex, decomposable problems that can be managed by goal-priorized
decision-theoretic planning, a special form of hierarchical decision-theoretic planning.

189
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� We analyzed the pros and cons of factored and object-oriented representations: We ex-
plained the differences of a factored representation (in particular, the SPUDD approach)
and an object-oriented representation of a Markov decision process. We analyzed the pros
and cons of these representations and motivated our decision to use the object-oriented state
space representation for all prototypical implementations reported in this thesis. The object-
oriented state space representation allows a structured implementation of Markov decision
problems, that is, a direct mapping from a state-transition diagram to an object structure.

� We exploited existing empirical data for the development of a decision-theoretic model for
a planning problem in an experimental setting: A large data base with empirical data de-
scribing the effects of different strategies of a system interacting with a number of subjects
has been build on the basis of an experiment preceding the research described in this the-
sis. This data base contains two types of information for different instruction strategies:
the probabilities that the user can execute instructions correctly and the costs for the user’s
actions in terms of the time needed to execute the system’s instructions. We developed a
decision-theoretic model that exploits this kind of information to plan the system’s instruc-
tion strategy ahead and thereby optimizes the interaction of the system with a user according
to the maximum expected utility for the user. It is a strength of the approach that it allows
the system to trade-off competing goals: executing all instructions as fast as possible versus
executing all instructions correctly.

� We dealt with the problem of planning instruction sequences in generalizable way: The
decision-theoretic model build on the basis of the empirical data of the experiment was for-
mulated in a way that it can be applied to problems that are similar to the problem considered
in the experiment. We adapted the decision-theoretic model developed for the experimental
setting and applied the adapted model to plan ahead the interaction of a system providing
assistance for a user trying to operate a credit card phone. In this context, we discussed
different forms of output presentation that could be used by a system to adapt to the user’s
situation and possible resource limitations.

� We developed GPDTP, a goal-priorized decision-theoretic planning approach dealing with
fixed deadlines: The exploration of more complex domains, that is, domains featuring an
increased number of goals, revealed that the planning based on a single exact decision-
theoretic planning process is not tractable. We developed a hierarchical decision-theoretic
planning approach based on goal priorization, which takes advantage of a distinctive con-
sideration of primary, secondary, and in principle n-ary goals, as well as the existence of
a fixed deadline for the overall task. Thereby, scalability is achieved by decomposing the
problem such that it can be split up and solved in decision-theoretic planning processes on
two (macro-level and micro-level decision-theoretic planning) or more levels.

� We described a method to incorporate partially observable information by the interplay of
a hierarchical decision-theoretic planner and a user modeling component: Today’s best
known methods to solve partially observable Markov decision process exactly do not scale
well. In this thesis, we explained in how far the interplay of a hierarchical decision-theoretic
planner and a user modeling component can compensate for not considering partially ob-
servable aspects of a planning problem explicitely in terms of a partially observable Markov
decision process.
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Analysis of usability issues and empirical validation of the decision-theoretic planning ap-
proach for user-adaptive systems

� We validated the basic decision-theoretic approach in a user study conducted in a mock-up
of a shopping mall: In a first study, conducted in a mock-up of a shopping mall, we showed
that people are in principle willing to use systems like the PDA-based decision-theoretic
shopping guide, and that the use of such a system is superior to a traditional navigation aid
such as a paper map. Moreover, the first user study showed the principle acceptance of the
hardware configuration, in particular, the infrared localization technology.

� We improved the decision-theoretic shopping guide taking various usability issues into ac-
count: The improved decision-theoretic shopping guide takes a fixed deadline into account
and features a more transparent decision making (e.g., by overview maps indicating upcom-
ing stores, which help the user to understand the system’s recommendations and to keep the
big picture). Altogether, we discussed various aspects of the decision-theoretic shopping
guide in the light of the usability concepts transparency, controllability, and predictability.

� We validated the improved decision-theoretic shopping guide in a user study conducted in a
real shopping mall: The second user study, conducted in a real shopping mall, substantiated
our findings about the user acceptance of the decision-theoretic shopping guide in the first
user study. In addition, it showed the feasibility of capturing the topology of a real environ-
ment (a real shopping mall) and a realistic task with the decision-theoretic model that we
developed.

� We prepared the development of an explanation component for decision-theoretic recom-
mender systems: It is a drawback of the decision-theoretic approach that the underlying
decision criterion (expected utility) is not appropriate to generate comprehensive explana-
tions for the recommendations given by a system that applies decision-theoretic planning.
We conducted a user study to elicit what kind of information potential users of a decision-
theoretic shopping guide find useful and how this information should be presented. We
discussed the results of this user study and derived approaches to provide the required infor-
mation for giving useful explanations.

Consideration of special requirements of specific types of application

� We integrated a decision-theoretic planner with a user modeling component based on Bayes-
ian networks to take potential resource limitations of the user into account: The integration
of a decision-theoretic planner and a user modeling component was exemplified with a
system providing assistance for a user trying to operate a credit card phone. Thereby, the
user modeling component provides estimates for two important resource limitations of the
user: the user’s cognitive load and his subjectively felt time pressure. This information
is given in terms of probabilities, which we used to parameterize the decision-theoretic
planning process.

� We developed a decision-theoretic model for the integrated planning of navigation recom-
mendation and information presentation: The planning of information presentation cannot
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always be considered independently from the discourse for which the information presenta-
tion takes place. This dependence is in particular important for the presentation of naviga-
tion recommendations. We developed a decision-theoretic model that allows an integrated
planning of navigation recommendations and their presentation.

� We modified the decision-theoretic model for the integrated planning of navigation recom-
mendation and information presentation such that is can deal with predefined routes: The
modification of the decision-theoretic model used for the integrated planning of navigation
recommendation and information presentation allowed to incorporate and augment prede-
fined route descriptions. Thereby, we exemplified the flexibility of the decision-theoretic
planning approach, demonstrating that it is possible to separate navigation and presentation
planning if this is necessary, for example, because of modularity reasons.

� We modified the decision-theoretic model for the integrated planning of navigation recom-
mendations and information presentation such that it can deal with fixed deadlines: We
identified two roles of time in the context of decision-theoretic planning process: time as a
pure cost factor and time as a limited resource reflected by a fixed deadline. The latter role
required the application of a particular kind of finite-horizon planning, in which action costs
and planning stages are unified in terms of a time measure.

8.2 Limitations and Open Questions

The research concerning the application of decision-theoretic planning in the context of user-
adaptive system problems left some interesting questions open and provides challenges for practi-
cal and conceptional future work.

Realization of an explanation component for decision-theoretic recommender systems: Sec-
tion 7.4 provides some detailed descriptions of methods to compute the required information to
be used in an explanation component for a decision-theoretic recommender system. The meth-
ods are simulative, that is, they are applied after the planning process is completed and possibly
only on demand because the required simulations would typically start from the state in which an
explanation is requested. It is an open question if some of the information required to give expla-
nations can already be computed during the decision-theoretic planning approach, such that it is
immediately available when an explanation is requested. The corresponding algorithms may work
in a similar way as the iterative algorithms to compute the expected utilities of actions during the
decision-theoretic planning process.

Combination of decision-theoretic planning with classical planning approaches: In partic-
ular in the context of an explanation component, the combination of decision-theoretic planning
with classical planning approaches seems to represent an interesting line of research. Thereby,
decision-theoretic planning can be employed for navigation and presentation tasks as in the shop-
ping guide examples of Chapter 7, while either a decision-theoretic or a classical planning ap-
proach may provide the solution for the problem of how to present/communicate explanations.
Existing tools like the COLLAGEN agent middleware (see Section 2.2.1.2) can possibly be ex-
ploited for this purpose. This possibility would require to make policies processable inside COL-
LAGEN agents.
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Further exploration of possibilities to deal with complex scenarios: An extension of the
decision-theoretic model that we developed for the user study described in Section 7.3 requires to
maintain in each state the information about which stores have already been visited. Augmenting
the given decision-theoretic model with this information makes the corresponding Markov deci-
sion problem intractable for all but small instances. Plutowski (2003) has compared four existing
approaches and combined them in a heuristic approach to solve moderately sized instances from
this class of problems. In a different domain, Meuleau, Dearden, and Washington (2004) conclude
recently that problems with an increased number of goals can only be tackled with heuristic and
approximate approaches. The exploration of such approaches to solve larger instances from the
class of problems that we consider in this thesis seems to be worthwhile if corresponding systems
are supposed to be put into practice.

Analysis of the applicability of DTP for further dialog situations: We successfully applied
decision-theoretic planning for the dialog planning of a system assisting a user operating a tech-
nical device in Section 4.1. A general analysis of dialog situations in the context of user-adaptive
systems will probably reveal further dialog situations for which decision-theoretic planning can
be beneficial. Future work may include a systematic categorization of dialog types and the de-
velopment of appropriate decision-theoretic models to plan these dialogs ahead. A repository of
“plug & play” decision-theoretic models (e.g., a module which takes as input a set of instructions
to be given or questions to be posed by a user interface, together with a specification of different
forms of output presentations including costs and probabilities of the variants’ outcomes and the
user’s reactions, respectively) for frequent dialog situations may prepare the ground for routine
application of decision-theoretic planning in particular types of user-adaptive systems.

Development and testing of further application-oriented systems: There is a range of appli-
cations similar to the shopping guide examples of Chapter 7. Systems like museum, conference,
exhibition, and city/tourist guides can clearly benefit from decision-theoretic planning in the same
way as the shopping guide does. Also car navigation systems and railway information systems
(cf. Chapter 1) have potential for a successful application of decision-theoretic planning. Even-
tually, web-based recommender systems, such as the Mitos online bookstore described in Section
2.2.7.1, represent an interesting domain in the context of user-adaptive systems, which we have not
explored within the scope of this thesis. Such systems will presumably lead to new requirements
and challenges.

A tool to support the implementation of decision-theoretic planning for user-adaptive system
problems: The general framework for the development of decision-theoretic models for user-
adaptive system problems can serve as a basis for the implementation of a tool to support user-
adaptive system designers who want to incorporate decision-theoretic planning to enhance the
adaptive capabilities of a system. The main challenge with regard to a tool for the automatic
generation of a decision-theoretic model will be the development of an interpreter that builds a
fully observable Markov decision process from declarative construction rules. The state space
representation with object-oriented state-transition diagrams may have advantages over factored
representations for this purpose.
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A SPUDD SPECIFICATION OF THE SIMPLE

INSTRUCTION PROBLEM

This appendix provides the specification of the simple instruction problem in a format recognizable
by SPUDD1 , version 2.0. While SPUDD in versions earlier than 2.0 allows only boolean variables
as state features, SPUDD 2.0 can handle multi-valued variables as state features. That is, we can
use the variables for the state features of the simple instruction problem as we have introduced
them in Section 3.1.5.1:

(variables (n_to_give two one zero)
(n_in_bundle two one zero)
(n_in_wm two one zero)
(correct yes no))

An action is described by its effects on the state variables. We describe two actions in Figure
3.3: GIVE INSTRUCTION and WAIT FOR EXECUTION. The action GIVE INSTRUCTION can be
expressed in the SPUDD representation as follows:

action give_instruction 1.964
n_to_give (n_to_give (two (0.0 1.0 0.0))

(one (0.0 0.0 1.0))
(zero (0.0 0.0 1.0)))

n_in_bundle (n_in_bundle (two (1.0 0.0 0.0))
(one (1.0 0.0 0.0))
(zero (0.0 1.0 0.0)))

n_in_wm (n_in_wm (two (1.0 0.0 0.0))
(one (1.0 0.0 0.0))
(zero (0.0 1.0 0.0)))

correct (correct (yes (1.0 0.0))
(no (0.0 1.0)))

endaction

The first entry of the specification means: The action GIVE INSTRUCTION changes the state
feature N TO GIVE from 2 to 1, from 1 to 0, and keeps it constant if it is already 0.

SPUDD 2.0 does not allow for the specification of action costs dependent on the state features.
That is, we cannot express different costs of action WAIT FOR EXECUTION in different situations.
Therefore we specify three versions of the action WAIT FOR EXECUTION with different costs.

1Stochastic Planning Using Decision Diagrams
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Each of the three versions is only applicable under certain circumstances, e.g., WAIT FOR EXE-
CUTION FIRST OF ONE is only applicable in the situation when N IN BUNDLE equals one and N
IN WM equals one. To guarantee the restricted applicability, we have to make sure that applying
the action does not lead to an undesired change of the state feature values. For example, the def-
inition of the dynamics of the CORRECT? feature of action WAIT FOR EXECUTION FIRST OF
ONE specifies that the CORRECT? feature changes to value ’no’ every time it is applied in a state
in which N IN BUNDLE and N IN WM do not both equal one. The restriction of the applicability is
rather tricky, complex, and intransparent in the SPUDD problem representation language.

action wait_for_execution_first_of_one 1.814
n_to_give (n_to_give (two (1.0 0.0 0.0))

(one (0.0 1.0 0.0))
(zero (0.0 0.0 1.0)))

n_in_bundle (n_in_bundle (two (1.0 0.0 0.0))
(one (n_in_wm (two (1.0 0.0 0.0))

(one (0.0 0.0 1.0))
(zero (1.0 0.0 0.0))))

(zero (1.0 0.0 0.0)))
n_in_wm (n_in_wm (two (1.0 0.0 0.0))

(one (n_in_bundle (two (1.0 0.0 0.0))
(one (0.0 0.0 1.0))
(zero (1.0 0.0 0.0))))

(zero (1.0 0.0 0.0)))
correct (correct (yes (n_in_bundle (two (0.0 1.0))

(one (n_in_wm (two (0.0 1.0))
(one (0.996 0.004))
(zero (0.0 1.0))))

(zero (0.0 1.0))))
(no (0.0 1.0)))

endaction

action wait_for_execution_first_of_two 1.518
n_to_give (n_to_give (two (1.0 0.0 0.0))

(one (0.0 1.0 0.0))
(zero (0.0 0.0 1.0)))

n_in_bundle (1.0 0.0 0.0)
n_in_wm (n_in_wm (two (n_in_bundle (two (0.0 1.0 0.0))

(one (1.0 0.0 0.0))
(zero (1.0 0.0 0.0))))

(one (1.0 0.0 0.0))
(zero (1.0 0.0 0.0)))

correct (correct (yes (n_in_bundle (two (n_in_wm (two (0.993 0.007))
(one (0.0 1.0))
(zero (0.0 1.0))))

(one (0.0 1.0))
(zero (0.0 1.0))))

(no (0.0 1.0)))
endaction
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action wait_for_execution_second_of_two 1.174
n_to_give (n_to_give (two (1.0 0.0 0.0))

(one (0.0 1.0 0.0))
(zero (0.0 0.0 1.0)))

n_in_bundle (n_in_bundle (two (n_in_wm (two (1.0 0.0 0.0))
(one (0.0 0.0 1.0))
(zero (1.0 0.0 0.0))))

(one (1.0 0.0 0.0))
(zero (1.0 0.0 0.0)))

n_in_wm (n_in_wm (two (1.0 0.0 0.0))
(one (n_in_bundle (two (0.0 0.0 1.0))

(one (1.0 0.0 0.0))
(zero (1.0 0.0 0.0))))

(zero (1.0 0.0 0.0)))
correct (correct (yes (n_in_bundle (two (n_in_wm (two (0.0 1.0))

(one (0.971 0.029))
(zero (0.0 1.0))))

(one (0.0 1.0))
(zero (0.0 1.0))))

(no (0.0 1.0)))
endaction

Finally, we have to specify the reward function, the discount factor and the tolerance factor.
The discount factor is used as we have explained in Section 3.1.4.2. The tolerance factor parame-
terizes SPUDD’s stopping criterion.

reward
(correct (yes (n_to_give

(two (0.0))
(one (0.0))
(zero (n_in_wm

(two (0.0))
(one (0.0))
(zero (n_in_bundle

(two (0.0))
(one (0.0))
(zero (10.0))))))))

(no (0.0)))

discount 0.99
tolerance 0.01

The example problem as it is specified in this appendix can be solved using interactive SPUDD
at http://www.cs.ubc.ca/spider/staubin/Spudd/form.html. To compute the
policy for the case where executing all instructions correctly is rewarded less, the reward function
has to be modified in the canonical way.

http://www.cs.ubc.ca/spider/staubin/Spudd/form.html
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B COMPUTATION TRACE EXAMPLE: PHONE

ASSISTANCE

This appendix lists a part of the computation trace for a small instance of the planning problem
for assisting a user to operate a credit card phone. We consider a sequence of 3 instructions
with 1 repetition allowed. The user is not distracted. The probabilities of incorrect execution of an
instruction are 0.01, 0.04, and 0.14 dependent on how long the user had to memorize an instruction
before executing it. In a later version, we have refined the modeling (cf. Figure 4.2) by taking the
exact position of an instruction within a bundle into account. The reward for finishing without
mistake is 25, the reward for finishing with mistake 5. We assume that the duration of giving
an instruction is 0.5sec, the duration of executing an instruction is 0.5sec, and the duration of
confirming the execution of an instruction is 0.5sec. We present the results of the first 10 iterations
of value iteration. Each pair of lines contains the following information:

� First row of each pair: (1) the ID of the state object, (2) the number of instructions to
be given, (3) the number of instructions to be executed, (4) the information if all executed
instructions were executed correctly, where + corresponds to true and – corresponds to false,
and (5) the content of the user’s working memory—the number in brackets indicates how
long the user had to memorize an instruction in the given state, before he can execute it;

� Second row of each pair:(1) the utility of the state, which equals the expected utility of
the best action for the given iteration, (2) the optimal action for the given iteration (g: give,
e: execute, r:repeat), and (3) the expected utilities of the available actions (give, execute,
repeat) in the given state for the given iteration—nodef means that the corresponding action
is not available.

------------------------------------- Iteration: 1 -----------------------------
1 3 3 + nil
utility: ˜1.0 opt. action: g <--- give: ˜1.0 exe: nodef repeat: nodef
2 2 3 + [i(0)]
utility: ˜0.5 opt. action: g <--- give: ˜0.5 exe: ˜1.0 repeat: nodef
3 1 3 + [i(1) i(0)]
utility: ˜0.5 opt. action: g <--- give: ˜0.5 exe: ˜1.0 repeat: nodef
4 0 3 + [i(2) i(1) i(0)]
utility: ˜1.0 opt. action: e <--- give: nodef exe: ˜1.0 repeat: nodef
5 0 2 + [i(2) i(1)]
utility: ˜1.0 opt. action: e <--- give: nodef exe: ˜1.0 repeat: nodef
6 0 1 + [i(2)]
utility: 23.0 opt. action: e <--- give: nodef exe: 23.0 repeat: nodef
8 0 0 - nil
utility: ˜1.0 opt. action: r <--- give: nodef exe: nodef repeat: ˜1.0
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9 0 1 + [i(0)]
utility: 23.8 opt. action: e <--- give: nodef exe: 23.8 repeat: nodef
12 0 1 - [i(2)]
utility: ˜0.3 opt. action: e <--- give: nodef exe: ˜0.3 repeat: nodef
14 0 2 - [i(2) i(1)]
utility: ˜0.5 opt. action: e <--- give: nodef exe: ˜0.5 repeat: nodef
15 0 1 - [i(2)]
utility: ˜0.3 opt. action: e <--- give: nodef exe: ˜0.3 repeat: nodef
17 1 2 + [i(1)]
utility: ˜1.0 opt. action: e <--- give: nodef exe: ˜1.0 repeat: nodef
18 1 1 + nil
utility: ˜1.0 opt. action: g <--- give: ˜1.0 exe: nodef repeat: nodef
19 0 1 + [i(0)]
utility: 23.75 opt. action: e <--- give: nodef exe: 23.75 repeat: nodef
20 1 1 - nil
utility: ˜1.0 opt. action: r <--- give: nodef exe: nodef repeat: ˜1.0
21 1 2 + [i(0)]
utility: ˜1.0 opt. action: e <--- give: nodef exe: ˜1.0 repeat: nodef
22 1 1 + nil
utility: ˜1.0 opt. action: g <--- give: ˜1.0 exe: nodef repeat: nodef
23 0 1 + [i(0)]
utility: 23.8 opt. action: e <--- give: nodef exe: 23.8 repeat: nodef
24 1 1 - nil
utility: ˜1.0 opt. action: g <--- give: ˜1.0 exe: nodef repeat: nodef
25 0 1 - [i(0)]
utility: ˜0.45 opt. action: e <--- give: nodef exe: ˜0.45 repeat: nodef
26 1 2 - [i(1)]
utility: ˜0.5 opt. action: e <--- give: nodef exe: ˜0.5 repeat: nodef
27 1 1 - nil
utility: ˜1.0 opt. action: g <--- give: ˜1.0 exe: nodef repeat: nodef
28 0 1 - [i(0)]
utility: ˜0.5 opt. action: e <--- give: nodef exe: ˜0.5 repeat: nodef
29 2 2 + nil
utility: ˜1.0 opt. action: g <--- give: ˜1.0 exe: nodef repeat: nodef
30 1 2 + [i(0)]
utility: ˜0.5 opt. action: g <--- give: ˜0.5 exe: ˜1.0 repeat: nodef
31 0 2 + [i(1) i(0)]
utility: ˜1.0 opt. action: e <--- give: nodef exe: ˜1.0 repeat: nodef
32 0 1 + [i(1)]
utility: 23.5 opt. action: e <--- give: nodef exe: 23.5 repeat: nodef
33 0 1 - [i(1)]
utility: ˜0.4 opt. action: e <--- give: nodef exe: ˜0.4 repeat: nodef
34 2 2 - nil
utility: ˜1.0 opt. action: r <--- give: nodef exe: nodef repeat: ˜1.0
35 2 3 + [i(0)]
utility: ˜1.0 opt. action: e <--- give: nodef exe: ˜1.0 repeat: nodef
36 2 2 + nil
utility: ˜1.0 opt. action: g <--- give: ˜1.0 exe: nodef repeat: nodef
37 1 2 + [i(0)]
utility: ˜0.5 opt. action: g <--- give: ˜0.5 exe: ˜1.0 repeat: nodef
38 0 2 + [i(1) i(0)]
utility: ˜1.0 opt. action: e <--- give: nodef exe: ˜1.0 repeat: nodef
39 0 1 + [i(1)]
utility: 23.6 opt. action: e <--- give: nodef exe: 23.6 repeat: nodef
40 0 1 - [i(1)]
utility: ˜0.4 opt. action: e <--- give: nodef exe: ˜0.4 repeat: nodef
42 2 2 - nil
utility: ˜1.0 opt. action: g <--- give: ˜1.0 exe: nodef repeat: nodef
43 1 2 - [i(0)]
utility: ˜0.5 opt. action: e <--- give: ˜0.5 exe: ˜0.5 repeat: nodef
44 0 2 - [i(1) i(0)]
utility: ˜0.5 opt. action: e <--- give: nodef exe: ˜0.5 repeat: nodef
--------------------------------Iteration: 2 ----------------------------------
1 3 3 + nil
utility: ˜1.5 opt. action: g <--- give: ˜1.5 exe: nodef repeat: nodef
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2 2 3 + [i(0)]
utility: ˜1.0 opt. action: g <--- give: ˜1.0 exe: ˜2.0 repeat: nodef
3 1 3 + [i(1) i(0)]
utility: ˜1.5 opt. action: g <--- give: ˜1.5 exe: ˜1.99 repeat: nodef
4 0 3 + [i(2) i(1) i(0)]
utility: ˜1.98 opt. action: e <--- give: nodef exe: ˜1.98 repeat: nodef
5 0 2 + [i(2) i(1)]
utility: 21.068 opt. action: e <--- give: nodef exe: 21.068 repeat: nodef
6 0 1 + [i(2)]
utility: 22.96 opt. action: e <--- give: nodef exe: 22.96 repeat: nodef
8 0 0 - nil
utility: 22.8 opt. action: r <--- give: nodef exe: nodef repeat: 22.8
9 0 1 + [i(0)]
utility: 23.8 opt. action: e <--- give: nodef exe: 23.8 repeat: nodef
12 0 1 - [i(2)]
utility: ˜0.3 opt. action: e <--- give: nodef exe: ˜0.3 repeat: nodef
14 0 2 - [i(2) i(1)]
utility: ˜0.512 opt. action: e <--- give: nodef exe: ˜0.512 repeat: nodef
15 0 1 - [i(2)]
utility: ˜0.3 opt. action: e <--- give: nodef exe: ˜0.3 repeat: nodef
17 1 2 + [i(1)]
utility: ˜2.0 opt. action: e <--- give: nodef exe: ˜2.0 repeat: nodef
18 1 1 + nil
utility: 22.75 opt. action: g <--- give: 22.75 exe: nodef repeat: nodef
19 0 1 + [i(0)]
utility: 23.74 opt. action: e <--- give: nodef exe: 23.74 repeat: nodef
20 1 1 - nil
utility: ˜2.0 opt. action: r <--- give: nodef exe: nodef repeat: ˜2.0
21 1 2 + [i(0)]
utility: ˜2.0 opt. action: e <--- give: nodef exe: ˜2.0 repeat: nodef
22 1 1 + nil
utility: 22.8 opt. action: g <--- give: 22.8 exe: nodef repeat: nodef
23 0 1 + [i(0)]
utility: 23.8 opt. action: e <--- give: nodef exe: 23.8 repeat: nodef
24 1 1 - nil
utility: ˜1.45 opt. action: g <--- give: ˜1.45 exe: nodef repeat: nodef
25 0 1 - [i(0)]
utility: ˜0.45 opt. action: e <--- give: nodef exe: ˜0.45 repeat: nodef
26 1 2 - [i(1)]
utility: ˜0.52 opt. action: e <--- give: nodef exe: ˜0.52 repeat: nodef
27 1 1 - nil
utility: ˜1.5 opt. action: g <--- give: ˜1.5 exe: nodef repeat: nodef
28 0 1 - [i(0)]
utility: ˜0.51 opt. action: e <--- give: nodef exe: ˜0.51 repeat: nodef
29 2 2 + nil
utility: ˜1.5 opt. action: g <--- give: ˜1.5 exe: nodef repeat: nodef
30 1 2 + [i(0)]
utility: ˜1.5 opt. action: g <--- give: ˜1.5 exe: ˜2.0 repeat: nodef
31 0 2 + [i(1) i(0)]
utility: 22.022 opt. action: e <--- give: nodef exe: 22.022 repeat: nodef
32 0 1 + [i(1)]
utility: 23.48 opt. action: e <--- give: nodef exe: 23.48 repeat: nodef
33 0 1 - [i(1)]
utility: ˜0.4 opt. action: e <--- give: nodef exe: ˜0.4 repeat: nodef
34 2 2 - nil
utility: ˜2.0 opt. action: r <--- give: nodef exe: nodef repeat: ˜2.0
35 2 3 + [i(0)]
utility: ˜2.0 opt. action: e <--- give: nodef exe: ˜2.0 repeat: nodef
36 2 2 + nil
utility: ˜1.5 opt. action: g <--- give: ˜1.5 exe: nodef repeat: nodef
37 1 2 + [i(0)]
utility: ˜1.5 opt. action: g <--- give: ˜1.5 exe: ˜2.0 repeat: nodef
38 0 2 + [i(1) i(0)]
utility: 22.12 opt. action: e <--- give: nodef exe: 22.12 repeat: nodef
39 0 1 + [i(1)]
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utility: 23.6 opt. action: e <--- give: nodef exe: 23.6 repeat: nodef
40 0 1 - [i(1)]
utility: ˜0.4 opt. action: e <--- give: nodef exe: ˜0.4 repeat: nodef
42 2 2 - nil
utility: ˜1.5 opt. action: g <--- give: ˜1.5 exe: nodef repeat: nodef
43 1 2 - [i(0)]
utility: ˜0.51 opt. action: e <--- give: ˜1.0 exe: ˜0.51 repeat: nodef
44 0 2 - [i(1) i(0)]
utility: ˜0.508 opt. action: e <--- give: nodef exe: ˜0.508 repeat: nodef
--------------------------------Iteration: 3 ----------------------------------
1 3 3 + nil
utility: ˜2.0 opt. action: g <--- give: ˜2.0 exe: nodef repeat: nodef
2 2 3 + [i(0)]
utility: ˜2.0 opt. action: g <--- give: ˜2.0 exe: ˜2.505 repeat: nodef
3 1 3 + [i(1) i(0)]
utility: ˜2.48 opt. action: g <--- give: ˜2.48 exe: ˜2.9704 repeat: nodef
4 0 3 + [i(2) i(1) i(0)]
utility: 19.2048 opt. action: e <--- give: nodef exe: 19.2048 repeat: nodef
5 0 2 + [i(2) i(1)]
utility: 21.0296 opt. action: e <--- give: nodef exe: 21.0296 repeat: nodef
6 0 1 + [i(2)]
utility: 23.912 opt. action: e <--- give: nodef exe: 23.912 repeat: nodef
8 0 0 - nil
utility: 22.8 opt. action: r <--- give: nodef exe: nodef repeat: 22.8
9 0 1 + [i(0)]
utility: 23.8 opt. action: e <--- give: nodef exe: 23.8 repeat: nodef
12 0 1 - [i(2)]
utility: ˜0.3 opt. action: e <--- give: nodef exe: ˜0.3 repeat: nodef
14 0 2 - [i(2) i(1)]
utility: ˜0.512 opt. action: e <--- give: nodef exe: ˜0.512 repeat: nodef
15 0 1 - [i(2)]
utility: ˜0.3 opt. action: e <--- give: nodef exe: ˜0.3 repeat: nodef
17 1 2 + [i(1)]
utility: 21.255 opt. action: e <--- give: nodef exe: 21.255 repeat: nodef
18 1 1 + nil
utility: 22.74 opt. action: g <--- give: 22.74 exe: nodef repeat: nodef
19 0 1 + [i(0)]
utility: 23.978 opt. action: e <--- give: nodef exe: 23.978 repeat: nodef
20 1 1 - nil
utility: ˜3.0 opt. action: r <--- give: nodef exe: nodef repeat: ˜3.0
21 1 2 + [i(0)]
utility: 21.5575 opt. action: e <--- give: nodef exe: 21.5575 repeat: nodef
22 1 1 + nil
utility: 22.8 opt. action: g <--- give: 22.8 exe: nodef repeat: nodef
23 0 1 + [i(0)]
utility: 23.8 opt. action: e <--- give: nodef exe: 23.8 repeat: nodef
24 1 1 - nil
utility: ˜1.45 opt. action: g <--- give: ˜1.45 exe: nodef repeat: nodef
25 0 1 - [i(0)]
utility: ˜0.45 opt. action: e <--- give: nodef exe: ˜0.45 repeat: nodef
26 1 2 - [i(1)]
utility: ˜0.53 opt. action: e <--- give: nodef exe: ˜0.53 repeat: nodef
27 1 1 - nil
utility: ˜1.51 opt. action: g <--- give: ˜1.51 exe: nodef repeat: nodef
28 0 1 - [i(0)]
utility: ˜0.272 opt. action: e <--- give: nodef exe: ˜0.272 repeat: nodef
29 2 2 + nil
utility: ˜2.5 opt. action: g <--- give: ˜2.5 exe: nodef repeat: nodef
30 1 2 + [i(0)]
utility: 21.522 opt. action: g <--- give: 21.522 exe: 21.5025 repeat: nodef
31 0 2 + [i(1) i(0)]
utility: 22.0024 opt. action: e <--- give: nodef exe: 22.0024 repeat: nodef
32 0 1 + [i(1)]
utility: 23.956 opt. action: e <--- give: nodef exe: 23.956 repeat: nodef
33 0 1 - [i(1)]
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utility: ˜0.4 opt. action: e <--- give: nodef exe: ˜0.4 repeat: nodef
34 2 2 - nil
utility: ˜3.0 opt. action: r <--- give: nodef exe: nodef repeat: ˜3.0
35 2 3 + [i(0)]
utility: ˜2.5 opt. action: e <--- give: nodef exe: ˜2.5 repeat: nodef
36 2 2 + nil
utility: ˜2.5 opt. action: g <--- give: ˜2.5 exe: nodef repeat: nodef
37 1 2 + [i(0)]
utility: 21.62 opt. action: g <--- give: 21.62 exe: 21.5575 repeat: nodef
38 0 2 + [i(1) i(0)]
utility: 22.12 opt. action: e <--- give: nodef exe: 22.12 repeat: nodef
39 0 1 + [i(1)]
utility: 23.6 opt. action: e <--- give: nodef exe: 23.6 repeat: nodef
40 0 1 - [i(1)]
utility: ˜0.4 opt. action: e <--- give: nodef exe: ˜0.4 repeat: nodef
42 2 2 - nil
utility: ˜1.51 opt. action: g <--- give: ˜1.51 exe: nodef repeat: nodef
43 1 2 - [i(0)]
utility: ˜0.5145 opt. action: e <--- give: ˜1.008 exe: ˜0.5145 repeat: nodef
44 0 2 - [i(1) i(0)]
utility: ˜0.508 opt. action: e <--- give: nodef exe: ˜0.508 repeat: nodef

...

--------------------------------Iteration: 10 ---------------------------------
1 3 3 + nil
utility: 18.9805 opt. action: g <--- give: 18.9805 exe: nodef repeat: nodef
2 2 3 + [i(0)]
utility: 19.9805 opt. action: g <--- give: 19.9805 exe: 19.9432 repeat: nodef
3 1 3 + [i(1) i(0)]
utility: 20.4805 opt. action: e <--- give: 19.5453 exe: 20.4805 repeat: nodef
4 0 3 + [i(2) i(1) i(0)]
utility: 20.0453 opt. action: e <--- give: nodef exe: 20.0453 repeat: nodef
5 0 2 + [i(2) i(1)]
utility: 21.9435 opt. action: e <--- give: nodef exe: 21.9435 repeat: nodef
6 0 1 + [i(2)]
utility: 23.912 opt. action: e <--- give: nodef exe: 23.912 repeat: nodef
8 0 0 - nil
utility: 22.8 opt. action: r <--- give: nodef exe: nodef repeat: 22.8
9 0 1 + [i(0)]
utility: 23.8 opt. action: e <--- give: nodef exe: 23.8 repeat: nodef
12 0 1 - [i(2)]
utility: ˜0.3 opt. action: e <--- give: nodef exe: ˜0.3 repeat: nodef
14 0 2 - [i(2) i(1)]
utility: ˜0.512 opt. action: e <--- give: nodef exe: ˜0.512 repeat: nodef
15 0 1 - [i(2)]
utility: ˜0.3 opt. action: e <--- give: nodef exe: ˜0.3 repeat: nodef
17 1 2 + [i(1)]
utility: 21.9296 opt. action: e <--- give: nodef exe: 21.9296 repeat: nodef
18 1 1 + nil
utility: 22.978 opt. action: g <--- give: 22.978 exe: nodef repeat: nodef
19 0 1 + [i(0)]
utility: 23.978 opt. action: e <--- give: nodef exe: 23.978 repeat: nodef
20 1 1 - nil
utility: 20.5575 opt. action: r <--- give: nodef exe: nodef repeat: 20.5575
21 1 2 + [i(0)]
utility: 21.5575 opt. action: e <--- give: nodef exe: 21.5575 repeat: nodef
22 1 1 + nil
utility: 22.8 opt. action: g <--- give: 22.8 exe: nodef repeat: nodef
23 0 1 + [i(0)]
utility: 23.8 opt. action: e <--- give: nodef exe: 23.8 repeat: nodef
24 1 1 - nil
utility: ˜1.45 opt. action: g <--- give: ˜1.45 exe: nodef repeat: nodef
25 0 1 - [i(0)]
utility: ˜0.45 opt. action: e <--- give: nodef exe: ˜0.45 repeat: nodef
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26 1 2 - [i(1)]
utility: ˜0.52544 opt. action: e <--- give: nodef exe: ˜0.52544 repeat: nodef
27 1 1 - nil
utility: ˜1.272 opt. action: g <--- give: ˜1.272 exe: nodef repeat: nodef
28 0 1 - [i(0)]
utility: ˜0.272 opt. action: e <--- give: nodef exe: ˜0.272 repeat: nodef
29 2 2 + nil
utility: 20.9689 opt. action: g <--- give: 20.9689 exe: nodef repeat: nodef
30 1 2 + [i(0)]
utility: 21.9689 opt. action: g <--- give: 21.9689 exe: 21.9538 repeat: nodef
31 0 2 + [i(1) i(0)]
utility: 22.4689 opt. action: e <--- give: nodef exe: 22.4689 repeat: nodef
32 0 1 + [i(1)]
utility: 23.956 opt. action: e <--- give: nodef exe: 23.956 repeat: nodef
33 0 1 - [i(1)]
utility: ˜0.4 opt. action: e <--- give: nodef exe: ˜0.4 repeat: nodef
34 2 2 - nil
utility: 18.3987 opt. action: r <--- give: nodef exe: nodef repeat: 18.3987
35 2 3 + [i(0)]
utility: 19.3987 opt. action: e <--- give: nodef exe: 19.3987 repeat: nodef
36 2 2 + nil
utility: 20.62 opt. action: g <--- give: 20.62 exe: nodef repeat: nodef
37 1 2 + [i(0)]
utility: 21.62 opt. action: g <--- give: 21.62 exe: 21.5575 repeat: nodef
38 0 2 + [i(1) i(0)]
utility: 22.12 opt. action: e <--- give: nodef exe: 22.12 repeat: nodef
39 0 1 + [i(1)]
utility: 23.6 opt. action: e <--- give: nodef exe: 23.6 repeat: nodef
40 0 1 - [i(1)]
utility: ˜0.4 opt. action: e <--- give: nodef exe: ˜0.4 repeat: nodef
42 2 2 - nil
utility: ˜1.5145 opt. action: g <--- give: ˜1.5145 exe: nodef repeat: nodef
43 1 2 - [i(0)]
utility: ˜0.5145 opt. action: e <--- give: ˜1.008 exe: ˜0.5145 repeat: nodef
44 0 2 - [i(1) i(0)]
utility: ˜0.508 opt. action: e <--- give: nodef exe: ˜0.508 repeat: nodef



C INITIALIZATION, INTERACTION SCHEMES,
INTERFACE SPECIFICATIONS

This appendix describes the processes while booting the READY prototype. Moreover, we give
an example for an interaction scheme and how it is processed, and we specify the interfaces for
the READY inter-modular communication.

Initialization of the READY Prototype The READY prototype is started via a so called dis-
tribution server that allows to distribute the components of the READY system over different
physical machines. The distribution server starts the user interface and the interaction manager.
The interaction manager (1) loads the interaction schemes, which are specified in a separate file,
(2) opens a new shell and starts the user modeling component, (3) connects to the user modeling
component, (4) connects to the user interface via the distribution server, and (5) initializes the
display with the current information given by the user model—estimations of the user’s cognitive
load and subjectively felt time pressure. After these initial arrangements are completed, the first
interaction scheme can be processed.

Interaction Scheme Example The interaction scheme assist call with credit card specifies the
raw dialog structure that the system will use to assist the user with operating a credit card phone.
The planning will be parameterized with the up-to-date information from the user modeling com-
ponent at the time it is requested. In the specification, degreesOfDifficulty describes the degrees
of difficulty for each instruction of a set of instructions. The coarse grained scale ranges from 1
(easy), 2 (moderate), to 3 (difficult). The degree of difficulty together with the basic probabilities
for not executing an instruction correctly according to its position in a bundle (errorProbsNoDist
and errorProbsDist for situations without and with distraction, respectively) determine the proba-
bilities used in the decision-theoretic planning process. The field costsOfInstructionExe specifies
the basic costs for executing each of the individual instructions. Together with the cost factors
for executing an instruction according to its position in a bundle (exeCostsNoDist and exeCosts-
Dist for situations without and with distraction, respectively), they determine the costs used in the
decision-theoretic planning process. We have translated the interaction scheme originally specified
in Oz syntax one-to-one into a pseudo code syntax with slightly improved legibility.

assist_call_with_credit_card:
[dtp(plan(dialog:

[instructions:3 repetitions:3
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instructionList:["Keep your credit card ready!"
"Lift handset!" "Dial 0!"]

degreesOfDifficulty:[2 1 1]
costsOfInstructionExe:[10 4 4]
errorProbsNoDist:[31#0.00078 32#0.02521 33#0.00840

21#0.00078 22#0.00078
11#0.00078]

errorProbsDist:[31#0.04201 32#0.05882 33#0.06722
21#0.00719 22#0.02877
11#0.00392]

exeCostsNoDist:[31#1.179 32#0.949 33#0.982
21#1.086 22#0.872
11#0.912]

exeCostsDist:[31#1.530 32#1.353 33#1.133
21#1.518 22#1.174
11#0.999]

okay:["<Okay, I’ve done that.>"]
nokay:["<Could you please repeat?>’’]]))

dtp(plan(dialog:
[instructions:2 repetitions:2
instructionList:

["After the tone, dial 9!"
"After the tone, enter the credit card number!"]

degreesOfDifficulty:[1 3]
costsOfInstructionExe:[5 30]
errorProbsNoDist:[21#0.00078 22#0.00078 11#0.00078]
errorProbsDist:[21#0.00719 22#0.02877 11#0.00392]
exeCostsNoDist:[21#1.086 22#0.872

11#0.912]
exeCostsDist:[21#1.518 22#1.174

11#0.999]
okay:["<Okay, I’ve done that.>"]
nokay:["<Could you please repeat?>"]]))

dtp(plan(dialog:
[instructions:3 repetitions:3
instructionList:

["Enter two digits for month of expiration date!"
"Enter two digits for year of expiration date!"
"After the tone, dial the desired number!"]

degreesOfDifficulty:[2 2 3]
costsOfInstructionExe:[8 8 20]
errorProbsNoDist:[31#0.00078 32#0.02521 33#0.00840

21#0.00078 22#0.00078
11#0.00078]

errorProbsDist:[31#0.04201 32#0.05882 33#0.06722
21#0.00719 22#0.02877
11#0.00392]

exeCostsNoDist:[31#1.179 32#0.949 33#0.982
21#1.086 22#0.872
11#0.912]

exeCostsDist:[31#1.530 32#1.353 33#1.133
21#1.518 22#1.174
11#0.999]

okay:["<Okay, I’ve done that.>"]
nokay:["<Could you please repeat?>"]]))

im(next_scheme:toplevelScreen)]
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Interface Specifications The interaction manager has interfaces to the graphical user interface,
the user modeling component, and the decision-theoretic planner. The first two interfaces are
realized by socket communication, the latter works by message passing—interaction manager and
decision-theoretic planner run in the same process.

The interaction manager can send three types of information to the user interface: (1) updates
of the user’s cognitive load and subjectively felt time pressure; these are given in percent, (2) user
input options, and (3) system output. The information about user input options is split up into the
content of the user input and symptoms that can occur during the user input. Here is an example
for a message specifying user input options:

ui(sendMessage:
"3#102#"#
"map;gate%vip lounge%telephone%rest room;"#
"/home/ready2/prototyp/UI/pics/toplevelMapNew.gif#"#
"<I’d like to go there...>;"#
"<What can I do here..?>;"#
"<I’d like to use this...>\n")

The first two numbers specify the modality combination. In the example, the user interface will
provide for multi-modal (speech and gesture) input. The next row specifies that the user can point
to the gate, the vip lounge, the telephone, or the rest room on a map stored at the location given in
the fourth row. Then follows a sequence of three possible speech utterances. All messages used for
socket communication are declared as strings and have to be parsed by the recipient components.
Here is another example, specifying system output:

ui(sendMessage:
"13#401#"#
"/home/ready2/prototyp/UI/pics/pdaWithArrow.gif#"#
"Bitte folgen Sie den Pfeilen!\n")

After each interaction of the user with the system, the interaction manager receives informa-
tion about the user input. The received string starts with a flag for the type of user input (speech,
gesture, both speech and gesture), followed by the content of the user’s input and a list of symp-
toms that occurred during the input (speech symptoms and motor symptoms, respectively). The
messages from the user interface are parsed and processed. The information about speech and
motor symptoms is passed to the user modeling component, which returns updated information
about the user’s cognitive load and subjectively felt time pressure. The information about the up-
dated user model is passed to the user interface, and the next step of the interaction scheme can be
processed.
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D COMPUTATION TRACE EXAMPLE:
NAVIGATION DOMAIN

This appendix lists a part of the computation trace for an instance of planning problem for pro-
viding navigation recommendations in a small airport building. We first specify the topology
represented in Figure 4.8. The specification consists of the location ID, the coordinates of the
location (used for visualization of the policies), and a list of adjacent locations. For each adjacent
location, it is specified in which direction from the current location the individual adjacent location
is situated, what the ID of the adjacent location is, how far it is away (in terms of the average time
required to get there from the location at hand), and a weight reflecting the probability of finding
a gift along the way to the particular adjacent location, which can be interpreted as the number of
stores along the way from the location at hand to the adjacent location.

For the example trace, the costs to get from one location to another is 0.8 time units times the
distance from the location at hand to the adjacent location if recommended with a simple instruc-
tion (we call this quick mode in the trace) and 1.0 time units times the distance from the location at
hand to the adjacent location if recommended with a more complex instruction giving additional
information about shops along the way (we call this info mode in the trace). Analogously, the
probability to find a gift along the way from one location to another is only 0.04 times the weight
for the path to the adjacent location if recommended in quick mode and 0.1 times the weight for
the path to the adjacent location if recommended in info mode. The cost for actually buying a gift
is assumed to be 10.0 time units. For the given trace, we assume that the user is absolutely reliable
when following navigation instructions, that is, the probability that the user takes a wrong turn is
set to zero.

We present the results of the first 5 iterations and the 50th iteration of value iteration. Each
pair of lines contains the following information:

� First row of each pair: (1) The ID of the state object, (2) the information if a gift has
already been bought, (3) the utility of the state, which equals the expected utility of the best
action for the given iteration, and (4) the optimal action for the given iteration (mode: quick
or info; direction: n, e, s, w);

� Second row of each pair: the expected utilities of all available actions (q stand for quick
mode, i for info mode).

TopologyDesc = [[id:1 loc:l(1 1) links:[link(o:n id:2 d:4 w:3)
link(o:e id:13 d:6 w:0)]]

[id:2 loc:l(1 5) links:[link(o:n id:3 d:4 w:2)
link(o:e id:5 d:2 w:1)
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link(o:s id:1 d:4 w:3)]]
[id:3 loc:l(1 9) links:[link(o:e id:9 d:3 w:5)

link(o:s id:2 d:4 w:2)]]
[id:4 loc:l(3 3) links:[link(o:n id:5 d:20 w:2)]] %% traffic
[id:5 loc:l(3 5) links:[link(o:n id:6 d:20 w:0) %% traffic

link(o:e id:7 d:1 w:0)
link(o:s id:4 d:20 w:2) %% traffic
link(o:w id:2 d:2 w:1)]]

[id:6 loc:l(3 6) links:[link(o:e id:8 d:1 w:0)
link(o:s id:5 d:20 w:0)]] %% traffic

[id:7 loc:l(4 5) links:[link(o:n id:8 d:2 w:0)
link(o:e id:11 d:1 w:0)
link(o:w id:5 d:1 w:0)]]

[id:8 loc:l(4 6) links:[link(o:n id:9 d:2 w:2)
link(o:e id:12 d:1 w:0)
link(o:s id:7 d:2 w:0)
link(o:w id:6 d:1 w:0)]]

[id:9 loc:l(4 9) links:[link(o:e id:15 d:3 w:2)
link(o:s id:8 d:2 w:2)
link(o:w id:3 d:3 w:5)]]

[id:10 loc:l(5 3) links:[link(o:n id:11 d:20 w:2)]] %% traffic
[id:11 loc:l(5 5) links:[link(o:n id:12 d:20 w:0) %% traffic

link(o:e id:14 d:2 w:1)
link(o:s id:10 d:20 w:2) %% traffic
link(o:w id:7 d:1 w:0)]]

[id:12 loc:l(5 6) links:[link(o:s id:11 d:20 w:0) %% traffic
link(o:w id:8 d:1 w:0)]]

[id:13 loc:l(7 1) links:[link(o:n id:14 d:4 w:0)
link(o:w id:1 d:6 w:0)]]

[id:14 loc:l(7 5) links:[link(o:n id:15 d:4 w:2)
link(o:e id:17 d:2 w:0)
link(o:s id:13 d:4 w:0)
link(o:w id:11 d:2 w:1)]]

[id:15 loc:l(7 9) links:[link(o:s id:14 d:4 w:2)
link(o:w id:9 d:3 w:2)]]

[id:16 loc:l(9 1) links:nil]
[id:17 loc:l(9 5) links:[link(o:n id:18 d:4 w:0)

link(o:s id:16 d:4 w:0)
link(o:w id:14 d:2 w:0)]]

[id:18 loc:l(9 9) links:nil]]

----------- Iteration: 1 ------------
1 gift:false ˜4.4 quick(n)
[q(n) ˜4.4 i(n) ˜7.0 q(e) ˜4.8 i(e) ˜6.0]
2 gift:false ˜2.0 quick(e)
[q(n) ˜4.0 i(n) ˜6.0 q(e) ˜2.0 i(e) ˜3.0 q(s) ˜4.4 i(s) ˜7.0]
3 gift:false ˜4.0 quick(s)
[q(e) ˜4.4 i(e) ˜8.0 q(s) ˜4.0 i(s) ˜6.0]
4 gift:false ˜16.8 quick(n)
[q(n) ˜16.8 i(n) ˜22.0]
5 gift:false ˜0.8 quick(e)
[q(n) ˜16.0 i(n) ˜20.0 q(e) ˜0.8 i(e) ˜1.0 q(s) ˜16.8 i(s) ˜22.0 q(w) ˜2.0 i(w) ˜3.0]
6 gift:false ˜0.8 quick(e)
[q(e) ˜0.8 i(e) ˜1.0 q(s) ˜16.0 i(s) ˜20.0]
7 gift:false ˜0.8 quick(e)
[q(n) ˜1.6 i(n) ˜2.0 q(e) ˜0.8 i(e) ˜1.0 q(w) ˜0.8 i(w) ˜1.0]
8 gift:false ˜0.8 quick(e)
[q(n) ˜2.4 i(n) ˜4.0 q(e) ˜0.8 i(e) ˜1.0 q(s) ˜1.6 i(s) ˜2.0 q(w) ˜0.8 i(w) ˜1.0]
9 gift:false ˜2.4 quick(s)
[q(e) ˜3.2 i(e) ˜5.0 q(s) ˜2.4 i(s) ˜4.0 q(w) ˜4.4 i(w) ˜8.0]
10 gift:false ˜16.8 quick(n)
[q(n) ˜16.8 i(n) ˜22.0]
11 gift:false ˜0.8 quick(w)
[q(n) ˜16.0 i(n) ˜20.0 q(e) ˜2.0 i(e) ˜3.0 q(s) ˜16.8 i(s) ˜22.0 q(w) ˜0.8 i(w) ˜1.0]
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12 gift:false ˜0.8 quick(w)
[q(s) ˜16.0 i(s) ˜20.0 q(w) ˜0.8 i(w) ˜1.0]
13 gift:false ˜3.2 quick(n)
[q(n) ˜3.2 i(n) ˜4.0 q(w) ˜4.8 i(w) ˜6.0]
14 gift:false ˜1.6 quick(e)
[q(n) ˜4.0 i(n) ˜6.0 q(e) ˜1.6 i(e) ˜2.0 q(s) ˜3.2 i(s) ˜4.0 q(w) ˜2.0 i(w) ˜3.0]
15 gift:false ˜3.2 quick(w)
[q(s) ˜4.0 i(s) ˜6.0 q(w) ˜3.2 i(w) ˜5.0]
16 gift:false 0.0 none
nil
17 gift:false ˜1.6 quick(w)
[q(n) ˜3.2 i(n) ˜4.0 q(s) ˜3.2 i(s) ˜4.0 q(w) ˜1.6 i(w) ˜2.0]
18 gift:false 0.0 none
nil
1 gift:true ˜3.2 quick(n)
[q(n) ˜3.2 i(n) ˜4.0 q(e) ˜4.8 i(e) ˜6.0]
2 gift:true ˜1.6 quick(e)
[q(n) ˜3.2 i(n) ˜4.0 q(e) ˜1.6 i(e) ˜2.0 q(s) ˜3.2 i(s) ˜4.0]
3 gift:true ˜2.4 quick(e)
[q(e) ˜2.4 i(e) ˜3.0 q(s) ˜3.2 i(s) ˜4.0]
4 gift:true ˜16.0 quick(n)
[q(n) ˜16.0 i(n) ˜20.0]
5 gift:true ˜0.8 quick(e)
[q(n) ˜16.0 i(n) ˜20.0 q(e) ˜0.8 i(e) ˜1.0 q(s) ˜16.0 i(s) ˜20.0 q(w) ˜1.6 i(w) ˜2.0]
6 gift:true ˜0.8 quick(e)
[q(e) ˜0.8 i(e) ˜1.0 q(s) ˜16.0 i(s) ˜20.0]
7 gift:true ˜0.8 quick(e)
[q(n) ˜1.6 i(n) ˜2.0 q(e) ˜0.8 i(e) ˜1.0 q(w) ˜0.8 i(w) ˜1.0]
8 gift:true ˜0.8 quick(e)
[q(n) ˜1.6 i(n) ˜2.0 q(e) ˜0.8 i(e) ˜1.0 q(s) ˜1.6 i(s) ˜2.0 q(w) ˜0.8 i(w) ˜1.0]
9 gift:true ˜1.6 quick(s)
[q(e) ˜2.4 i(e) ˜3.0 q(s) ˜1.6 i(s) ˜2.0 q(w) ˜2.4 i(w) ˜3.0]
10 gift:true ˜16.0 quick(n)
[q(n) ˜16.0 i(n) ˜20.0]
11 gift:true ˜0.8 quick(w)
[q(n) ˜16.0 i(n) ˜20.0 q(e) ˜1.6 i(e) ˜2.0 q(s) ˜16.0 i(s) ˜20.0 q(w) ˜0.8 i(w) ˜1.0]
12 gift:true ˜0.8 quick(w)
[q(s) ˜16.0 i(s) ˜20.0 q(w) ˜0.8 i(w) ˜1.0]
13 gift:true ˜3.2 quick(n)
[q(n) ˜3.2 i(n) ˜4.0 q(w) ˜4.8 i(w) ˜6.0]
14 gift:true ˜1.6 quick(e)
[q(n) ˜3.2 i(n) ˜4.0 q(e) ˜1.6 i(e) ˜2.0 q(s) ˜3.2 i(s) ˜4.0 q(w) ˜1.6 i(w) ˜2.0]
15 gift:true ˜2.4 quick(w)
[q(s) ˜3.2 i(s) ˜4.0 q(w) ˜2.4 i(w) ˜3.0]
16 gift:true 0.0 none
nil
17 gift:true 16.8 quick(n)
[q(n) 16.8 i(n) 16.0 q(s) ˜3.2 i(s) ˜4.0 q(w) ˜1.6 i(w) ˜2.0]
18 gift:true 20.0 none
nil

----------- Iteration: 2 ------------
1 gift:false ˜6.352 quick(n)
[q(n) ˜6.352 i(n) ˜8.88 q(e) ˜8.0 i(e) ˜9.2]
2 gift:false ˜2.8 quick(e)
[q(n) ˜7.872 i(n) ˜9.68 q(e) ˜2.8 i(e) ˜3.8 q(s) ˜8.656 i(s) ˜11.04]
3 gift:false ˜5.968 quick(s)
[q(e) ˜6.64 i(e) ˜10.0 q(s) ˜5.968 i(s) ˜7.92]
4 gift:false ˜17.6 quick(n)
[q(n) ˜17.6 i(n) ˜22.8]
5 gift:false ˜1.6 quick(e)
[q(n) ˜16.8 i(n) ˜20.8 q(e) ˜1.6 i(e) ˜1.8 q(s) ˜33.536 i(s) ˜38.64 q(w) ˜3.984
i(w) ˜4.96]

6 gift:false ˜1.6 quick(e)
[q(e) ˜1.6 i(e) ˜1.8 q(s) ˜16.8 i(s) ˜20.8]
7 gift:false ˜1.6 quick(e)
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[q(n) ˜2.4 i(n) ˜2.8 q(e) ˜1.6 i(e) ˜1.8 q(w) ˜1.6 i(w) ˜1.8]
8 gift:false ˜1.6 quick(e)
[q(n) ˜4.736 i(n) ˜6.24 q(e) ˜1.6 i(e) ˜1.8 q(s) ˜2.4 i(s) ˜2.8 q(w) ˜1.6 i(w) ˜1.8]
9 gift:false ˜3.2 quick(s)
[q(e) ˜6.336 i(e) ˜8.04 q(s) ˜3.2 i(s) ˜4.8 q(w) ˜8.08 i(w) ˜11.2]
10 gift:false ˜17.6 quick(n)
[q(n) ˜17.6 i(n) ˜22.8]
11 gift:false ˜1.6 quick(w)
[q(n) ˜16.8 i(n) ˜20.8 q(e) ˜3.6 i(e) ˜4.6 q(s) ˜33.536 i(s) ˜38.64 q(w) ˜1.6
i(w) ˜1.8]

12 gift:false ˜1.6 quick(w)
[q(s) ˜16.8 i(s) ˜20.8 q(w) ˜1.6 i(w) ˜1.8]
13 gift:false ˜4.8 quick(n)
[q(n) ˜4.8 i(n) ˜5.6 q(w) ˜9.2 i(w) ˜10.4]
14 gift:false ˜2.8 quick(w)
[q(n) ˜7.136 i(n) ˜9.04 q(e) ˜3.2 i(e) ˜3.6 q(s) ˜6.4 i(s) ˜7.2 q(w) ˜2.8
i(w) ˜3.8]

15 gift:false ˜5.536 quick(w)
[q(s) ˜5.6 i(s) ˜7.6 q(w) ˜5.536 i(w) ˜7.24]
16 gift:false 0.0 none
nil
17 gift:false ˜3.2 quick(n)
[q(n) ˜3.2 i(n) ˜4.0 q(s) ˜3.2 i(s) ˜4.0 q(w) ˜3.2 i(w) ˜3.6]
18 gift:false 0.0 none
nil
1 gift:true ˜4.8 quick(n)
[q(n) ˜4.8 i(n) ˜5.6 q(e) ˜8.0 i(e) ˜9.2]
2 gift:true ˜2.4 quick(e)
[q(n) ˜5.6 i(n) ˜6.4 q(e) ˜2.4 i(e) ˜2.8 q(s) ˜6.4 i(s) ˜7.2]
3 gift:true ˜4.0 quick(e)
[q(e) ˜4.0 i(e) ˜4.6 q(s) ˜4.8 i(s) ˜5.6]
4 gift:true ˜16.8 quick(n)
[q(n) ˜16.8 i(n) ˜20.8]
5 gift:true ˜1.6 quick(e)
[q(n) ˜16.8 i(n) ˜20.8 q(e) ˜1.6 i(e) ˜1.8 q(s) ˜32.0 i(s) ˜36.0 q(w) ˜3.2
i(w) ˜3.6]

6 gift:true ˜1.6 quick(e)
[q(e) ˜1.6 i(e) ˜1.8 q(s) ˜16.8 i(s) ˜20.8]
7 gift:true ˜1.6 quick(e)
[q(n) ˜2.4 i(n) ˜2.8 q(e) ˜1.6 i(e) ˜1.8 q(w) ˜1.6 i(w) ˜1.8]
8 gift:true ˜1.6 quick(e)
[q(n) ˜3.2 i(n) ˜3.6 q(e) ˜1.6 i(e) ˜1.8 q(s) ˜2.4 i(s) ˜2.8 q(w) ˜1.6 i(w) ˜1.8]
9 gift:true ˜2.4 quick(s)
[q(e) ˜4.8 i(e) ˜5.4 q(s) ˜2.4 i(s) ˜2.8 q(w) ˜4.8 i(w) ˜5.4]
10 gift:true ˜16.8 quick(n)
[q(n) ˜16.8 i(n) ˜20.8]
11 gift:true ˜1.6 quick(w)
[q(n) ˜16.8 i(n) ˜20.8 q(e) ˜3.2 i(e) ˜3.6 q(s) ˜32.0 i(s) ˜36.0 q(w) ˜1.6
i(w) ˜1.8]

12 gift:true ˜1.6 quick(w)
[q(s) ˜16.8 i(s) ˜20.8 q(w) ˜1.6 i(w) ˜1.8]
13 gift:true ˜4.8 quick(n)
[q(n) ˜4.8 i(n) ˜5.6 q(w) ˜8.0 i(w) ˜9.2]
14 gift:true 15.2 quick(e)
[q(n) ˜5.6 i(n) ˜6.4 q(e) 15.2 i(e) 14.8 q(s) ˜6.4 i(s) ˜7.2 q(w) ˜2.4 i(w) ˜2.8]
15 gift:true ˜4.0 quick(w)
[q(s) ˜4.8 i(s) ˜5.6 q(w) ˜4.0 i(w) ˜4.6]
16 gift:true 0.0 none
nil
17 gift:true 16.8 quick(n)
[q(n) 16.8 i(n) 16.0 q(s) ˜3.2 i(s) ˜4.0 q(w) ˜3.2 i(w) ˜3.6]
18 gift:true 20.0 none
nil

----------- Iteration: 3 ------------
1 gift:false ˜7.152 quick(n)
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[q(n) ˜7.152 i(n) ˜9.68 q(e) ˜9.6 i(e) ˜10.8]
2 gift:false ˜3.6 quick(e)
[q(n) ˜9.81056 i(n) ˜11.5744 q(e) ˜3.6 i(e) ˜4.6 q(s) ˜10.5658 i(s) ˜12.8864]
3 gift:false ˜6.768 quick(s)
[q(e) ˜7.44 i(e) ˜10.8 q(s) ˜6.768 i(s) ˜8.72]
4 gift:false ˜18.4 quick(n)
[q(n) ˜18.4 i(n) ˜23.6]
5 gift:false ˜2.4 quick(e)
[q(n) ˜17.6 i(n) ˜21.6 q(e) ˜2.4 i(e) ˜2.6 q(s) ˜34.336 i(s) ˜39.44 q(w) ˜4.784
i(w) ˜5.76]

6 gift:false ˜2.4 quick(e)
[q(e) ˜2.4 i(e) ˜2.6 q(s) ˜17.6 i(s) ˜21.6]
7 gift:false ˜2.4 quick(e)
[q(n) ˜3.2 i(n) ˜3.6 q(e) ˜2.4 i(e) ˜2.6 q(w) ˜2.4 i(w) ˜2.6]
8 gift:false ˜2.4 quick(e)
[q(n) ˜5.536 i(n) ˜7.04 q(e) ˜2.4 i(e) ˜2.6 q(s) ˜3.2 i(s) ˜3.6 q(w) ˜2.4
i(w) ˜2.6]

9 gift:false ˜4.0 quick(s)
[q(e) ˜8.61312 i(e) ˜10.2288 q(s) ˜4.0 i(s) ˜5.6 q(w) ˜9.9744 i(w) ˜12.984]
10 gift:false ˜18.4 quick(n)
[q(n) ˜18.4 i(n) ˜23.6]
11 gift:false ˜2.4 quick(w)
[q(n) ˜17.6 i(n) ˜21.6 q(e) ˜4.08 i(e) ˜4.0 q(s) ˜34.336 i(s) ˜39.44 q(w) ˜2.4
i(w) ˜2.6]

12 gift:false ˜2.4 quick(w)
[q(s) ˜17.6 i(s) ˜21.6 q(w) ˜2.4 i(w) ˜2.6]
13 gift:false ˜6.0 quick(n)
[q(n) ˜6.0 i(n) ˜6.8 q(w) ˜11.152 i(w) ˜12.352]
14 gift:false ˜3.6 quick(w)
[q(n) ˜9.41312 i(n) ˜11.2288 q(e) ˜4.8 i(e) ˜5.2 q(s) ˜8.0 i(s) ˜8.8 q(w) ˜3.6
i(w) ˜4.6]

15 gift:false ˜5.2 info(s)
[q(s) ˜5.36 i(s) ˜5.2 q(w) ˜6.336 i(w) ˜8.04]
16 gift:false 0.0 none
nil
17 gift:false ˜3.2 quick(n)
[q(n) ˜3.2 i(n) ˜4.0 q(s) ˜3.2 i(s) ˜4.0 q(w) ˜4.4 i(w) ˜4.8]
18 gift:false 0.0 none
nil
1 gift:true ˜5.6 quick(n)
[q(n) ˜5.6 i(n) ˜6.4 q(e) ˜9.6 i(e) ˜10.8]
2 gift:true ˜3.2 quick(e)
[q(n) ˜7.2 i(n) ˜8.0 q(e) ˜3.2 i(e) ˜3.6 q(s) ˜8.0 i(s) ˜8.8]
3 gift:true ˜4.8 quick(e)
[q(e) ˜4.8 i(e) ˜5.4 q(s) ˜5.6 i(s) ˜6.4]
4 gift:true ˜17.6 quick(n)
[q(n) ˜17.6 i(n) ˜21.6]
5 gift:true ˜2.4 quick(e)
[q(n) ˜17.6 i(n) ˜21.6 q(e) ˜2.4 i(e) ˜2.6 q(s) ˜32.8 i(s) ˜36.8 q(w) ˜4.0
i(w) ˜4.4]

6 gift:true ˜2.4 quick(e)
[q(e) ˜2.4 i(e) ˜2.6 q(s) ˜17.6 i(s) ˜21.6]
7 gift:true ˜2.4 quick(e)
[q(n) ˜3.2 i(n) ˜3.6 q(e) ˜2.4 i(e) ˜2.6 q(w) ˜2.4 i(w) ˜2.6]
8 gift:true ˜2.4 quick(e)
[q(n) ˜4.0 i(n) ˜4.4 q(e) ˜2.4 i(e) ˜2.6 q(s) ˜3.2 i(s) ˜3.6 q(w) ˜2.4 i(w) ˜2.6]
9 gift:true ˜3.2 quick(s)
[q(e) ˜6.4 i(e) ˜7.0 q(s) ˜3.2 i(s) ˜3.6 q(w) ˜6.4 i(w) ˜7.0]
10 gift:true ˜17.6 quick(n)
[q(n) ˜17.6 i(n) ˜21.6]
11 gift:true 13.6 quick(e)
[q(n) ˜17.6 i(n) ˜21.6 q(e) 13.6 i(e) 13.2 q(s) ˜32.8 i(s) ˜36.8 q(w) ˜2.4
i(w) ˜2.6]

12 gift:true ˜2.4 quick(w)
[q(s) ˜17.6 i(s) ˜21.6 q(w) ˜2.4 i(w) ˜2.6]
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13 gift:true 12.0 quick(n)
[q(n) 12.0 i(n) 11.2 q(w) ˜9.6 i(w) ˜10.8]
14 gift:true 15.2 quick(e)
[q(n) ˜7.2 i(n) ˜8.0 q(e) 15.2 i(e) 14.8 q(s) ˜8.0 i(s) ˜8.8 q(w) ˜3.2 i(w) ˜3.6]
15 gift:true 12.0 quick(s)
[q(s) 12.0 i(s) 11.2 q(w) ˜4.8 i(w) ˜5.4]
16 gift:true 0.0 none
nil
17 gift:true 16.8 quick(n)
[q(n) 16.8 i(n) 16.0 q(s) ˜3.2 i(s) ˜4.0 q(w) 13.6 i(w) 13.2]
18 gift:true 20.0 none
nil

----------- Iteration: 4 ------------
1 gift:false ˜7.952 quick(n)
[q(n) ˜7.952 i(n) ˜10.48 q(e) ˜10.8 i(e) ˜12.0]
2 gift:false ˜4.4 quick(e)
[q(n) ˜10.6106 i(n) ˜12.3744 q(e) ˜4.4 i(e) ˜5.4 q(s) ˜11.3658 i(s) ˜13.6864]
3 gift:false ˜7.568 quick(s)
[q(e) ˜8.24 i(e) ˜11.6 q(s) ˜7.568 i(s) ˜9.52]
4 gift:false ˜19.2 quick(n)
[q(n) ˜19.2 i(n) ˜24.4]
5 gift:false ˜3.2 quick(e)
[q(n) ˜18.4 i(n) ˜22.4 q(e) ˜3.2 i(e) ˜3.4 q(s) ˜35.136 i(s) ˜40.24 q(w) ˜5.584
i(w) ˜6.56]

6 gift:false ˜3.2 quick(e)
[q(e) ˜3.2 i(e) ˜3.4 q(s) ˜18.4 i(s) ˜22.4]
7 gift:false ˜3.2 quick(e)
[q(n) ˜4.0 i(n) ˜4.4 q(e) ˜3.2 i(e) ˜3.4 q(w) ˜3.2 i(w) ˜3.4]
8 gift:false ˜3.2 quick(e)
[q(n) ˜6.336 i(n) ˜7.84 q(e) ˜3.2 i(e) ˜3.4 q(s) ˜4.0 i(s) ˜4.4 q(w) ˜3.2
i(w) ˜3.4]

9 gift:false ˜4.8 quick(s)
[q(e) ˜7.024 i(e) ˜6.76 q(s) ˜4.8 i(s) ˜6.4 q(w) ˜10.7744 i(w) ˜13.784]
10 gift:false ˜17.92 quick(n)
[q(n) ˜17.92 i(n) ˜21.2]
11 gift:false ˜3.2 quick(w)
[q(n) ˜18.4 i(n) ˜22.4 q(e) ˜4.848 i(e) ˜4.72 q(s) ˜35.136 i(s) ˜40.24 q(w) ˜3.2
i(w) ˜3.4]

12 gift:false ˜3.2 quick(w)
[q(s) ˜18.4 i(s) ˜22.4 q(w) ˜3.2 i(w) ˜3.4]
13 gift:false ˜6.8 quick(n)
[q(n) ˜6.8 i(n) ˜7.6 q(w) ˜11.952 i(w) ˜13.152]
14 gift:false ˜3.76 quick(w)
[q(n) ˜7.824 i(n) ˜7.76 q(e) ˜4.8 i(e) ˜5.2 q(s) ˜9.2 i(s) ˜10.0 q(w) ˜3.76
i(w) ˜3.8]

15 gift:false ˜5.84 info(s)
[q(s) ˜6.096 i(s) ˜5.84 q(w) ˜7.136 i(w) ˜8.84]
16 gift:false 0.0 none
nil
17 gift:false ˜3.2 quick(n)
[q(n) ˜3.2 i(n) ˜4.0 q(s) ˜3.2 i(s) ˜4.0 q(w) ˜5.2 i(w) ˜5.6]
18 gift:false 0.0 none
nil
1 gift:true 7.2 quick(e)
[q(n) ˜6.4 i(n) ˜7.2 q(e) 7.2 i(e) 6.0]
2 gift:true ˜4.0 quick(e)
[q(n) ˜8.0 i(n) ˜8.8 q(e) ˜4.0 i(e) ˜4.4 q(s) ˜8.8 i(s) ˜9.6]
3 gift:true ˜5.6 quick(e)
[q(e) ˜5.6 i(e) ˜6.2 q(s) ˜6.4 i(s) ˜7.2]
4 gift:true ˜18.4 quick(n)
[q(n) ˜18.4 i(n) ˜22.4]
5 gift:true ˜3.2 quick(e)
[q(n) ˜18.4 i(n) ˜22.4 q(e) ˜3.2 i(e) ˜3.4 q(s) ˜33.6 i(s) ˜37.6 q(w) ˜4.8
i(w) ˜5.2]

6 gift:true ˜3.2 quick(e)
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[q(e) ˜3.2 i(e) ˜3.4 q(s) ˜18.4 i(s) ˜22.4]
7 gift:true 12.8 quick(e)
[q(n) ˜4.0 i(n) ˜4.4 q(e) 12.8 i(e) 12.6 q(w) ˜3.2 i(w) ˜3.4]
8 gift:true ˜3.2 quick(e)
[q(n) ˜4.8 i(n) ˜5.2 q(e) ˜3.2 i(e) ˜3.4 q(s) ˜4.0 i(s) ˜4.4 q(w) ˜3.2 i(w) ˜3.4]
9 gift:true 9.6 quick(e)
[q(e) 9.6 i(e) 9.0 q(s) ˜4.0 i(s) ˜4.4 q(w) ˜7.2 i(w) ˜7.8]
10 gift:true ˜2.4 quick(n)
[q(n) ˜2.4 i(n) ˜6.4]
11 gift:true 13.6 quick(e)
[q(n) ˜18.4 i(n) ˜22.4 q(e) 13.6 i(e) 13.2 q(s) ˜33.6 i(s) ˜37.6 q(w) ˜3.2
i(w) ˜3.4]

12 gift:true ˜2.4 quick(s)
[q(s) ˜2.4 i(s) ˜6.4 q(w) ˜3.2 i(w) ˜3.4]
13 gift:true 12.0 quick(n)
[q(n) 12.0 i(n) 11.2 q(w) ˜10.4 i(w) ˜11.6]
14 gift:true 15.2 quick(e)
[q(n) 8.8 i(n) 8.0 q(e) 15.2 i(e) 14.8 q(s) 8.8 i(s) 8.0 q(w) 12.0 i(w) 11.6]
15 gift:true 12.0 quick(s)
[q(s) 12.0 i(s) 11.2 q(w) ˜5.6 i(w) ˜6.2]
16 gift:true 0.0 none
nil
17 gift:true 16.8 quick(n)
[q(n) 16.8 i(n) 16.0 q(s) ˜3.2 i(s) ˜4.0 q(w) 13.6 i(w) 13.2]
18 gift:true 20.0 none
nil

...

----------- Iteration: 50 ------------
1 gift:false ˜9.802 info(n)
[q(n) ˜10.5968 i(n) ˜9.802 q(e) ˜12.8 i(e) ˜14.0]
2 gift:false ˜8.46 info(e)
[q(n) ˜10.048 i(n) ˜10.32 q(e) ˜8.624 i(e) ˜8.46 q(s) ˜12.1618 i(s) ˜11.7014]
3 gift:false ˜7.2 info(e)
[q(e) ˜8.88 i(e) ˜7.2 q(s) ˜10.9512 i(s) ˜10.688]
4 gift:false ˜22.648 quick(n)
[q(n) ˜22.648 i(n) ˜25.52]
5 gift:false ˜7.4 quick(e)
[q(n) ˜25.0 i(n) ˜29.0 q(e) ˜7.4 i(e) ˜7.6 q(s) ˜37.9562 i(s) ˜40.9184
q(w) ˜9.7056 i(w) ˜9.574]

6 gift:false ˜9.0 quick(e)
[q(e) ˜9.0 i(e) ˜9.2 q(s) ˜23.4 i(s) ˜27.4]
7 gift:false ˜6.6 quick(e)
[q(n) ˜9.8 i(n) ˜10.2 q(e) ˜6.6 i(e) ˜6.8 q(w) ˜8.2 i(w) ˜8.4]
8 gift:false ˜8.2 quick(s)
[q(n) ˜8.992 i(n) ˜8.48 q(e) ˜9.8 i(e) ˜10.0 q(s) ˜8.2 i(s) ˜8.6 q(w) ˜9.8
i(w) ˜10.0]

9 gift:false ˜8.0 info(w)
[q(e) ˜8.496 i(e) ˜8.04 q(s) ˜9.048 i(s) ˜8.32 q(w) ˜8.72 i(w) ˜8.0]
10 gift:false ˜21.048 quick(n)
[q(n) ˜21.048 i(n) ˜23.92]
11 gift:false ˜5.8 info(e)
[q(n) ˜25.0 i(n) ˜29.0 q(e) ˜6.0 i(e) ˜5.8 q(s) ˜36.3562 i(s) ˜39.3184
q(w) ˜7.4 i(w) ˜7.6]

12 gift:false ˜9.0 quick(w)
[q(s) ˜21.8 i(s) ˜25.8 q(w) ˜9.0 i(w) ˜9.2]
13 gift:false ˜8.0 quick(n)
[q(n) ˜8.0 i(n) ˜8.8 q(w) ˜14.602 i(w) ˜15.802]
14 gift:false ˜4.8 quick(e)
[q(n) ˜9.296 i(n) ˜9.04 q(e) ˜4.8 i(e) ˜5.2 q(s) ˜11.2 i(s) ˜12.0 q(w) ˜7.024
i(w) ˜6.86]

15 gift:false ˜6.8 info(s)
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[q(s) ˜7.2 i(s) ˜6.8 q(w) ˜9.792 i(w) ˜9.48]
16 gift:false 0.0 none
nil
17 gift:false ˜3.2 quick(n)
[q(n) ˜3.2 i(n) ˜4.0 q(s) ˜3.2 i(s) ˜4.0 q(w) ˜6.4 i(w) ˜6.8]
18 gift:false 0.0 none
nil
1 gift:true 7.2 quick(n)
[q(n) 7.2 i(n) 6.4 q(e) 7.2 i(e) 6.0]
2 gift:true 10.4 quick(e)
[q(n) 4.0 i(n) 3.2 q(e) 10.4 i(e) 10.0 q(s) 4.0 i(s) 3.2]
3 gift:true 7.2 quick(e)
[q(e) 7.2 i(e) 6.6 q(s) 7.2 i(s) 6.4]
4 gift:true ˜4.0 quick(n)
[q(n) ˜4.0 i(n) ˜8.0]
5 gift:true 12.0 quick(e)
[q(n) ˜5.6 i(n) ˜9.6 q(e) 12.0 i(e) 11.8 q(s) ˜20.0 i(s) ˜24.0 q(w) 8.8 i(w) 8.4]
6 gift:true 10.4 quick(e)
[q(e) 10.4 i(e) 10.2 q(s) ˜4.0 i(s) ˜8.0]
7 gift:true 12.8 quick(e)
[q(n) 9.6 i(n) 9.2 q(e) 12.8 i(e) 12.6 q(w) 11.2 i(w) 11.0]
8 gift:true 11.2 quick(s)
[q(n) 8.0 i(n) 7.6 q(e) 9.6 i(e) 9.4 q(s) 11.2 i(s) 10.8 q(w) 9.6 i(w) 9.4]
9 gift:true 9.6 quick(s)
[q(e) 9.6 i(e) 9.0 q(s) 9.6 i(s) 9.2 q(w) 4.8 i(w) 4.2]
10 gift:true ˜2.4 quick(n)
[q(n) ˜2.4 i(n) ˜6.4]
11 gift:true 13.6 quick(e)
[q(n) ˜5.6 i(n) ˜9.6 q(e) 13.6 i(e) 13.2 q(s) ˜18.4 i(s) ˜22.4 q(w) 12.0
i(w) 11.8]

12 gift:true 10.4 quick(w)
[q(s) ˜2.4 i(s) ˜6.4 q(w) 10.4 i(w) 10.2]
13 gift:true 12.0 quick(n)
[q(n) 12.0 i(n) 11.2 q(w) 2.4 i(w) 1.2]
14 gift:true 15.2 quick(e)
[q(n) 8.8 i(n) 8.0 q(e) 15.2 i(e) 14.8 q(s) 8.8 i(s) 8.0 q(w) 12.0 i(w) 11.6]
15 gift:true 12.0 quick(s)
[q(s) 12.0 i(s) 11.2 q(w) 7.2 i(w) 6.6]
16 gift:true 0.0 none
nil
17 gift:true 16.8 quick(n)
[q(n) 16.8 i(n) 16.0 q(s) ˜3.2 i(s) ˜4.0 q(w) 13.6 i(w) 13.2]
18 gift:true 20.0 none
nil



E PLANS AND POLICIES: SENSITIVITY

ANALYSIS

This appendix lists a sample for the sensitivity analysis of plans and policies in the airport nav-
igation domain. We assume a reward of 50 to arrive at the gate (Location 18) with a gift. The
maximal plan length was set to 9. For each location in the airport—starting with no gift bought—
we simulated the execution of the plan (assigned to this location) and of the policy 1000 times
(with a randomized finding of the gift) and computed the rewards achieved on average. In the
example given, the probabilities for finding a gift that we used in the computation of the plans
and the policy are 25% smaller than those used in the simulation of the plans and the policy. The
following listing first describes the policy with its expected utilities for the given situation and lo-
cations, then the plans with its expected utilities for the given situation and locations, and finally,
the actually achieved rewards with the plans and the policy averaged over 1000 simulation runs.
Thereby, the number in brackets describes the length of the used plan and the average length of
the action sequence determined by the policy, respectively.

’building topology...’
’computing policy...’

1 noGift info(n) 16.6879 1 gift quick(n) 37.2

2 noGift quick(n) 17.8683 2 gift quick(e) 40.4

3 noGift info(e) 20.6769 3 gift quick(e) 37.2

4 noGift quick(n) 2.03594 4 gift quick(n) 26.0

5 noGift quick(e) 17.1446 5 gift quick(e) 42.0

6 noGift quick(e) 18.7446 6 gift quick(e) 40.4

7 noGift quick(n) 17.9446 7 gift quick(e) 42.8

8 noGift info(n) 19.5446 8 gift quick(s) 41.2

9 noGift info(w) 20.1231 9 gift quick(e) 39.6

10 noGift quick(n) 2.13194 10 gift quick(n) 27.6

11 noGift quick(w) 17.1446 11 gift quick(e) 43.6

12 noGift quick(w) 18.7446 12 gift quick(w) 40.4

13 noGift quick(n) 13.3629 13 gift quick(n) 42.0
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14 noGift info(n) 16.5629 14 gift quick(e) 45.2

15 noGift info(w) 18.5446 15 gift quick(s) 42.0

16 noGift none 0.0 16 gift none 0.0

17 noGift quick(w) 14.9629 17 gift quick(n) 46.8

18 noGift none 0.0 18 gift none 50.0

’generating plans...’
’evaluating plans...’

1 [info(n) quick(n) info(e) info(w) info(e) info(e) quick(s) quick(e) quick(n)]
7.11571

2 [quick(n) info(e) info(w) info(e) info(e) quick(s) quick(e) quick(n)]
9.46543

3 [info(e) info(w) info(e) info(e) quick(s) quick(e) quick(n)]
12.1973

4 [quick(n) info(w) info(n) info(e) info(e) info(s) quick(e) quick(n)]
˜10.1495

5 [quick(e) quick(n) info(n) info(w) info(e) info(e) info(s) quick(e) quick(n)]
8.2043

6 [quick(e) info(n) info(w) info(e) info(e) info(s) quick(e) quick(n)]
9.8043

7 [quick(n) info(n) info(w) info(e) info(e) info(s) quick(e) quick(n)]
9.0043

8 [info(n) info(w) info(e) info(w) info(e) quick(e) quick(s) quick(e) quick(n)]
11.0159

9 [info(w) info(e) info(w) info(e) quick(e) quick(s) quick(e) quick(n)]
12.2069

10 [quick(n) info(e) info(n) info(w) info(e) info(s) quick(e) quick(n)]
˜14.9554

11 [quick(w) quick(n) info(n) info(w) info(e) info(e) info(s) quick(e) quick(n)]
8.2043

12 [quick(w) info(n) info(w) info(e) info(e) info(s) quick(e) quick(n)]
9.8043

13 [quick(n) info(n) info(w) info(w) info(e) info(e) info(s) quick(e) quick(n)]
3.84365

14 [info(n) info(w) info(w) info(e) info(e) info(s) quick(e) quick(n)]
7.04365

15 [quick(w) info(w) info(e) info(w) info(e) quick(e) quick(s) quick(e) quick(n)]
10.1305

17 [quick(w) info(n) info(w) info(w) info(e) info(e) info(s) quick(e) quick(n)]
5.44365
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’simulating plans and policies...’
’average rewards...’

1 plan( 9 ): 10.6 policy( 7.802 ): 19.3698

2 plan( 8 ): 12.64 policy( 7.194 ): 20.0526

3 plan( 7 ): 16.12 policy( 6.334 ): 22.7936

4 plan( 8 ): ˜6.12 policy( 9.814 ): 4.1376

5 plan( 9 ): 12.8 policy( 9.098 ): 19.2444

6 plan( 8 ): 14.52 policy( 8.088 ): 20.866

7 plan( 8 ): 13.04 policy( 8.154 ): 19.856

8 plan( 9 ): 13.6 policy( 7.082 ): 21.6726

9 plan( 8 ): 15.4 policy( 6.724 ): 21.8372

10 plan( 8 ): ˜10.52 policy( 9.586 ): 4.4066

11 plan( 9 ): 12.72 policy( 9.054 ): 19.341

12 plan( 8 ): 14.12 policy( 8.126 ): 20.7304

13 plan( 9 ): 7.84 policy( 8.172 ): 15.9986

14 plan( 8 ): 11.56 policy( 7.336 ): 18.7372

15 plan( 9 ): 14.0 policy( 7.09 ): 20.6456

17 plan( 9 ): 9.0 policy( 8.414 ): 16.9176
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F MACRO LEVEL PLANNING TRACE

This appendix lists a part of the computation trace of the macro-level decision-theoretic planning
process applied in the example of Section 5. We consider the states in the situation when the pas-
senger is at check-in A121 with the next primary goal to go to passport control B. The trace shows
the expected values of system’s macro-level recommendation options for particular numbers of
remaining time steps (10, 40, 50, 60, and 120 minutes) before the gate closes.

The first line of each paragraph shows: (1) the remaining time steps, (2) the assumed location,
(3) already achieved secondary goals, and (4) the macro-level recommendation with the highest
expected utility. After each headline follows a list of value-action pairs. For example, 123.45
look-for+Book+Dutyfree+Fastfood reads as the macro action consider the secondary goals book,
duty-free, and fast food has an expected utility of 123.45.

10 Check-in A121, nil, none
0.0 look-for+Batteries
0.0 look-for+Batteries+Book
0.0 look-for+Batteries+Book+Dutyfree
0.0 look-for+Batteries+Book+Dutyfree+Fastfood
0.0 look-for+Batteries+Book+Fastfood
0.0 look-for+Batteries+Dutyfree
0.0 look-for+Batteries+Dutyfree+Fastfood
0.0 look-for+Batteries+Fastfood
0.0 look-for+Book
0.0 look-for+Book+Dutyfree
0.0 look-for+Book+Dutyfree+Fastfood
0.0 look-for+Book+Fastfood
0.0 look-for+Dutyfree
0.0 look-for+Dutyfree+Fastfood
0.0 look-for+Fastfood
0.0 look-for-nothing

10 Check-in A121, [Batteries], none
0.0 look-for+Book
0.0 look-for+Book+Dutyfree
0.0 look-for+Book+Dutyfree+Fastfood
0.0 look-for+Book+Fastfood
0.0 look-for+Dutyfree
0.0 look-for+Dutyfree+Fastfood
0.0 look-for+Fastfood
0.0 look-for-nothing

10 Check-in A121, [Book], none
0.0 look-for+Batteries
0.0 look-for+Batteries+Dutyfree
0.0 look-for+Batteries+Dutyfree+Fastfood
0.0 look-for+Batteries+Fastfood
0.0 look-for+Dutyfree
0.0 look-for+Dutyfree+Fastfood
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0.0 look-for+Fastfood
0.0 look-for-nothing

10 Check-in A121, [Dutyfree], none
0.0 look-for+Batteries
0.0 look-for+Batteries+Book
0.0 look-for+Batteries+Book+Fastfood
0.0 look-for+Batteries+Fastfood
0.0 look-for+Book
0.0 look-for+Book+Fastfood
0.0 look-for+Fastfood
0.0 look-for-nothing

10 Check-in A121, [Fastfood], none
0.0 look-for+Batteries
0.0 look-for+Batteries+Book
0.0 look-for+Batteries+Book+Dutyfree
0.0 look-for+Batteries+Dutyfree
0.0 look-for+Book
0.0 look-for+Book+Dutyfree
0.0 look-for+Dutyfree
0.0 look-for-nothing

10 Check-in A121, [Batteries Book], none
0.0 look-for+Dutyfree
0.0 look-for+Dutyfree+Fastfood
0.0 look-for+Fastfood
0.0 look-for-nothing

10 Check-in A121, [Book Dutyfree], none
0.0 look-for+Batteries
0.0 look-for+Batteries+Fastfood
0.0 look-for+Fastfood
0.0 look-for-nothing

10 Check-in A121, [Dutyfree Fastfood], none
0.0 look-for+Batteries
0.0 look-for+Batteries+Book
0.0 look-for+Book
0.0 look-for-nothing

10 Check-in A121, [Batteries Book Dutyfree], none
0.0 look-for+Fastfood
0.0 look-for-nothing

10 Check-in A121, [Batteries Dutyfree], none
0.0 look-for+Book
0.0 look-for+Book+Fastfood
0.0 look-for+Fastfood
0.0 look-for-nothing

10 Check-in A121, [Book Dutyfree Fastfood], none
0.0 look-for+Batteries
0.0 look-for-nothing

10 Check-in A121, [Book Fastfood], none
0.0 look-for+Batteries
0.0 look-for+Batteries+Dutyfree
0.0 look-for+Dutyfree
0.0 look-for-nothing

10 Check-in A121, [Batteries Book Dutyfree Fastfood], none
0.0 look-for-nothing

10 Check-in A121, [Batteries Fastfood], none
0.0 look-for+Book
0.0 look-for+Book+Dutyfree
0.0 look-for+Dutyfree
0.0 look-for-nothing

10 Check-in A121, [Batteries Dutyfree Fastfood], none
0.0 look-for+Book
0.0 look-for-nothing

10 Check-in A121, [Batteries Book Fastfood], none
0.0 look-for+Dutyfree
0.0 look-for-nothing
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...

40 Check-in A121, nil, look-for+Book
˜37.0, look-for+Batteries
˜40.0, look-for+Batteries+Book
0.0, look-for+Batteries+Book+Dutyfree
0.0, look-for+Batteries+Book+Dutyfree+Fastfood
0.0, look-for+Batteries+Book+Fastfood
0.0, look-for+Batteries+Dutyfree
0.0, look-for+Batteries+Dutyfree+Fastfood
0.0, look-for+Batteries+Fastfood
84.1611, look-for+Book
˜39.0, look-for+Book+Dutyfree
0.0, look-for+Book+Dutyfree+Fastfood
˜37.0, look-for+Book+Fastfood
˜36.0, look-for+Dutyfree
0.0, look-for+Dutyfree+Fastfood
˜34.0, look-for+Fastfood
66.5217, look-for-nothing

40 Check-in A121, [Batteries], look-for+Book
148.161, look-for+Book
˜39.0, look-for+Book+Dutyfree
0.0, look-for+Book+Dutyfree+Fastfood
˜37.0, look-for+Book+Fastfood
˜36.0, look-for+Dutyfree
0.0, look-for+Dutyfree+Fastfood
˜34.0, look-for+Fastfood
130.522, look-for-nothing

40 Check-in A121, [Book], look-for-nothing
˜37.0, look-for+Batteries
0.0, look-for+Batteries+Dutyfree
0.0, look-for+Batteries+Dutyfree+Fastfood
0.0, look-for+Batteries+Fastfood
˜36.0, look-for+Dutyfree
0.0, look-for+Dutyfree+Fastfood
˜34.0, look-for+Fastfood
123.0, look-for-nothing

40 Check-in A121, [Dutyfree], look-for+Book
˜37.0, look-for+Batteries
˜40.0, look-for+Batteries+Book
0.0, look-for+Batteries+Book+Fastfood
0.0, look-for+Batteries+Fastfood
134.161, look-for+Book
˜37.0, look-for+Book+Fastfood
˜34.0, look-for+Fastfood
116.522, look-for-nothing

40 Check-in A121, [Fastfood], look-for+Book
˜37.0, look-for+Batteries
˜40.0, look-for+Batteries+Book
0.0, look-for+Batteries+Book+Dutyfree
0.0, look-for+Batteries+Dutyfree
140.161, look-for+Book
˜39.0, look-for+Book+Dutyfree
˜36.0, look-for+Dutyfree
122.522, look-for-nothing

40 Check-in A121, [Batteries Book], look-for-nothing
˜36.0, look-for+Dutyfree
0.0, look-for+Dutyfree+Fastfood
˜34.0, look-for+Fastfood
187.0, look-for-nothing

40 Check-in A121, [Book Dutyfree], look-for-nothing
˜37.0, look-for+Batteries
0.0, look-for+Batteries+Fastfood
˜34.0, look-for+Fastfood
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173.0, look-for-nothing
40 Check-in A121, [Dutyfree Fastfood], look-for+Book

˜37.0, look-for+Batteries
˜40.0, look-for+Batteries+Book
190.161, look-for+Book
172.522, look-for-nothing

40 Check-in A121, [Batteries Book Dutyfree], look-for-nothing
˜34.0, look-for+Fastfood
237.0, look-for-nothing

40 Check-in A121, [Batteries Dutyfree], look-for+Book
198.161, look-for+Book
˜37.0, look-for+Book+Fastfood
˜34.0, look-for+Fastfood
180.522, look-for-nothing

40 Check-in A121, [Book Dutyfree Fastfood], look-for-nothing
˜37.0, look-for+Batteries
229.0, look-for-nothing

40 Check-in A121, [Book Fastfood], look-for-nothing
˜37.0, look-for+Batteries
0.0, look-for+Batteries+Dutyfree
˜36.0, look-for+Dutyfree
179.0, look-for-nothing

40 Check-in A121, [Batteries Book Dutyfree Fastfood], look-for-nothing
293.0, look-for-nothing

40 Check-in A121, [Batteries Fastfood], look-for+Book
204.161, look-for+Book
˜39.0, look-for+Book+Dutyfree
˜36.0, look-for+Dutyfree
186.522, look-for-nothing

40 Check-in A121, [Batteries Dutyfree Fastfood], look-for+Book
254.161, look-for+Book
236.522, look-for-nothing

40 Check-in A121, [Batteries Book Fastfood], look-for-nothing
˜36.0, look-for+Dutyfree
243.0, look-for-nothing

...

60 Check-in A121, nil, look-for+Batteries+Book+Fastfood
114.213, look-for+Batteries
131.852, look-for+Batteries+Book
99.2433, look-for+Batteries+Book+Dutyfree
104.609, look-for+Batteries+Book+Dutyfree+Fastfood
137.217, look-for+Batteries+Book+Fastfood
96.517, look-for+Batteries+Dutyfree
86.9692, look-for+Batteries+Dutyfree+Fastfood
119.578, look-for+Batteries+Fastfood
122.857, look-for+Book
109.944, look-for+Book+Dutyfree
115.309, look-for+Book+Dutyfree+Fastfood
130.533, look-for+Book+Fastfood
92.3043, look-for+Dutyfree
97.6696, look-for+Dutyfree+Fastfood
111.449, look-for+Fastfood
105.217, look-for-nothing

60 Check-in A121, [Batteries], look-for+Book+Fastfood
183.047, look-for+Book
173.944, look-for+Book+Dutyfree
179.309, look-for+Book+Dutyfree+Fastfood
193.34, look-for+Book+Fastfood
156.304, look-for+Dutyfree
161.67, look-for+Dutyfree+Fastfood
173.597, look-for+Fastfood
163.304, look-for-nothing
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60 Check-in A121, [Book], look-for+Batteries+Fastfood
170.691, look-for+Batteries
156.517, look-for+Batteries+Dutyfree
143.447, look-for+Batteries+Dutyfree+Fastfood
176.056, look-for+Batteries+Fastfood
148.783, look-for+Dutyfree
154.148, look-for+Dutyfree+Fastfood
167.927, look-for+Fastfood
161.696, look-for-nothing

60 Check-in A121, [Dutyfree], look-for+Batteries+Book+Fastfood
140.139, look-for+Batteries
158.347, look-for+Batteries+Book
167.194, look-for+Batteries+Book+Fastfood
149.377, look-for+Batteries+Fastfood
149.352, look-for+Book
158.199, look-for+Book+Fastfood
139.901, look-for+Fastfood
129.609, look-for-nothing

60 Check-in A121, [Fastfood], look-for+Batteries+Book
164.574, look-for+Batteries
182.782, look-for+Batteries+Book
150.173, look-for+Batteries+Book+Dutyfree
152.517, look-for+Batteries+Dutyfree
173.786, look-for+Book
160.873, look-for+Book+Dutyfree
143.522, look-for+Dutyfree
154.043, look-for-nothing

60 Check-in A121, [Batteries Book], look-for+Fastfood
212.783, look-for+Dutyfree
218.148, look-for+Dutyfree+Fastfood
230.075, look-for+Fastfood
219.783, look-for-nothing

60 Check-in A121, [Book Dutyfree], look-for+Batteries+Fastfood
198.879, look-for+Batteries
206.564, look-for+Batteries+Fastfood
196.379, look-for+Fastfood
186.087, look-for-nothing

60 Check-in A121, [Dutyfree Fastfood], look-for+Batteries+Book
191.227, look-for+Batteries
210.969, look-for+Batteries+Book
198.178, look-for+Book
178.435, look-for-nothing

60 Check-in A121, [Batteries Book Dutyfree], look-for+Fastfood
254.466, look-for+Fastfood
244.174, look-for-nothing

60 Check-in A121, [Batteries Dutyfree], look-for+Book+Fastfood
207.439, look-for+Book
217.731, look-for+Book+Fastfood
197.988, look-for+Fastfood
187.696, look-for-nothing

60 Check-in A121, [Book Dutyfree Fastfood], look-for+Batteries
247.705, look-for+Batteries
234.913, look-for-nothing

60 Check-in A121, [Book Fastfood], look-for+Batteries
223.313, look-for+Batteries
212.517, look-for+Batteries+Dutyfree
203.522, look-for+Dutyfree
210.522, look-for-nothing

60 Check-in A121, [Batteries Book Dutyfree Fastfood], look-for-nothing
293.0, look-for-nothing

60 Check-in A121, [Batteries Fastfood], look-for+Book
231.873, look-for+Book
224.873, look-for+Book+Dutyfree
205.13, look-for+Dutyfree
212.13, look-for-nothing
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60 Check-in A121, [Batteries Dutyfree Fastfood], look-for+Book
256.265, look-for+Book
236.522, look-for-nothing

60 Check-in A121, [Batteries Book Fastfood], look-for-nothing
261.609, look-for+Dutyfree
268.609, look-for-nothing

...

120 Check-in A121, nil, look-for+Batteries+Book+Fastfood
118.009, look-for+Batteries
137.752, look-for+Batteries+Book
130.752, look-for+Batteries+Book+Dutyfree
141.044, look-for+Batteries+Book+Dutyfree+Fastfood
148.044, look-for+Batteries+Book+Fastfood
111.009, look-for+Batteries+Dutyfree
121.301, look-for+Batteries+Dutyfree+Fastfood
128.301, look-for+Batteries+Fastfood
124.96, look-for+Book
117.96, look-for+Book+Dutyfree
128.253, look-for+Book+Dutyfree+Fastfood
135.253, look-for+Book+Fastfood
98.2174, look-for+Dutyfree
108.51, look-for+Dutyfree+Fastfood
115.51, look-for+Fastfood
105.217, look-for-nothing

120 Check-in A121, [Batteries], look-for+Book+Fastfood
183.047, look-for+Book
176.047, look-for+Book+Dutyfree
186.34, look-for+Book+Dutyfree+Fastfood
193.34, look-for+Book+Fastfood
156.304, look-for+Dutyfree
166.597, look-for+Dutyfree+Fastfood
173.597, look-for+Fastfood
163.304, look-for-nothing

120 Check-in A121, [Book], look-for+Batteries+Fastfood
174.487, look-for+Batteries
167.487, look-for+Batteries+Dutyfree
177.78, look-for+Batteries+Dutyfree+Fastfood
184.78, look-for+Batteries+Fastfood
154.696, look-for+Dutyfree
164.988, look-for+Dutyfree+Fastfood
171.988, look-for+Fastfood
161.696, look-for-nothing

120 Check-in A121, [Dutyfree], look-for+Batteries+Book+Fastfood
142.4, look-for+Batteries
162.143, look-for+Batteries+Book
172.436, look-for+Batteries+Book+Fastfood
152.693, look-for+Batteries+Fastfood
149.352, look-for+Book
159.644, look-for+Book+Fastfood
139.901, look-for+Fastfood
129.609, look-for-nothing

120 Check-in A121, [Fastfood], look-for+Batteries+Book
166.835, look-for+Batteries
186.578, look-for+Batteries+Book
179.578, look-for+Batteries+Book+Dutyfree
159.835, look-for+Batteries+Dutyfree
173.786, look-for+Book
166.786, look-for+Book+Dutyfree
147.043, look-for+Dutyfree
154.043, look-for-nothing

120 Check-in A121, [Batteries Book], look-for+Fastfood
212.783, look-for+Dutyfree
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223.075, look-for+Dutyfree+Fastfood
230.075, look-for+Fastfood
219.783, look-for-nothing

120 Check-in A121, [Book Dutyfree], look-for+Batteries+Fastfood
198.879, look-for+Batteries
209.171, look-for+Batteries+Fastfood
196.379, look-for+Fastfood
186.087, look-for-nothing

120 Check-in A121, [Dutyfree Fastfood], look-for+Batteries+Book
191.227, look-for+Batteries
210.969, look-for+Batteries+Book
198.178, look-for+Book
178.435, look-for-nothing

120 Check-in A121, [Batteries Book Dutyfree], look-for+Fastfood
254.466, look-for+Fastfood
244.174, look-for-nothing

120 Check-in A121, [Batteries Dutyfree], look-for+Book+Fastfood
207.439, look-for+Book
217.731, look-for+Book+Fastfood
197.988, look-for+Fastfood
187.696, look-for-nothing

120 Check-in A121, [Book Dutyfree Fastfood], look-for+Batteries
247.705, look-for+Batteries
234.913, look-for-nothing

120 Check-in A121, [Book Fastfood], look-for+Batteries
223.313, look-for+Batteries
216.313, look-for+Batteries+Dutyfree
203.522, look-for+Dutyfree
210.522, look-for-nothing

120 Check-in A121, [Batteries Book Dutyfree Fastfood], look-for-nothing
293.0, look-for-nothing

120 Check-in A121, [Batteries Fastfood], look-for+Book
231.873, look-for+Book
224.873, look-for+Book+Dutyfree
205.13, look-for+Dutyfree
212.13, look-for-nothing

120 Check-in A121, [Batteries Dutyfree Fastfood], look-for+Book
256.265, look-for+Book
236.522, look-for-nothing

120 Check-in A121, [Batteries Book Fastfood], look-for-nothing
261.609, look-for+Dutyfree
268.609, look-for-nothing



228 APPENDIX F. MACRO LEVEL PLANNING TRACE



G SHOPPING GUIDE POLICIES

This appendix contains extracts of the policies that were applied in the user studies of Section
7.2 and 7.3. The syntax is in the style of the tcl/tk programming language, such that the policy
can directly be applied by a tcl/tk interpreter, which we employed to visualize the navigation
recommendations on the handheld device. A policy file for the first user study is of a size less than
100 kbyte and less than about 1500 lines long.

set statetable(0100:n:0:0:0:0:0) "ShowPic stay_on_upper_floor.gif"
set statetable(0200:n:0:0:0:0:0) "ShowPic turn_right.gif"
set statetable(0300:n:0:0:0:0:0) "ShowPic look_for_items.gif;

EnableButtonList { 1 1 0 0 0}"
set statetable(0300:b:1:0:0:0:0) "ShowPic turn_left.gif"
set statetable(0300:b:0:1:0:0:0) "ShowPic turn_left.gif"
set statetable(0300:b:1:1:0:0:0) "ShowPic turn_left.gif"
set statetable(0300:f:0:0:0:0:0) "ShowPic turn_left.gif"
set statetable(0300:h:1:0:0:0:0) "ShowPic stand_in_line.gif"
set statetable(0300:h:0:1:0:0:0) "ShowPic stand_in_line.gif"
set statetable(0300:h:1:1:0:0:0) "ShowPic stand_in_line.gif"
set statetable(0400:n:1:1:0:0:0) "ShowPic look_for_items.gif;

EnableButtonList { 0 0 0 0 1}"
set statetable(0400:n:1:0:0:0:0) "ShowPic look_for_items.gif;

EnableButtonList { 0 0 0 0 1}"
set statetable(0400:n:0:0:0:0:0) "ShowPic look_for_items.gif;

EnableButtonList { 0 0 0 0 1}"
set statetable(0400:n:0:1:0:0:0) "ShowPic look_for_items.gif;

EnableButtonList { 0 0 0 0 1}"
set statetable(0400:b:1:1:0:0:1) "ShowPic turn_left.gif"
set statetable(0400:f:1:1:0:0:0) "ShowPic turn_left.gif"
set statetable(0400:h:1:1:0:0:1) "ShowPic stand_in_line.gif"
set statetable(0400:b:1:0:0:0:1) "ShowPic turn_left.gif"
set statetable(0400:f:1:0:0:0:0) "ShowPic turn_left.gif"
set statetable(0400:h:1:0:0:0:1) "ShowPic stand_in_line.gif"
set statetable(0400:b:0:0:0:0:1) "ShowPic turn_left.gif"
set statetable(0400:f:0:0:0:0:0) "ShowPic turn_left.gif"
set statetable(0400:h:0:0:0:0:1) "ShowPic stand_in_line.gif"
set statetable(0400:b:0:1:0:0:1) "ShowPic turn_left.gif"
set statetable(0400:f:0:1:0:0:0) "ShowPic turn_left.gif"
set statetable(0400:h:0:1:0:0:1) "ShowPic stand_in_line.gif"

...
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set statetable(3000:n:1:1:1:1:1) "ShowPic stop.gif"

Each state has the following features: (1) The ID of a location; e.g., 0400 corresponds to
Location 4, (2) the information about the status of the shopping action, which can be n (normal,
i.e., the user is either outside any shops or he is inside a shop but has not yet found any item), h (hit,
i.e., the user has found one or several items in a shop but has not paid the item(s), yet), f (failure,
i.e., the user has indicated that he has not found any item that he is looking for in the current shop),
and b (bought, i.e., the user has paid the item(s) that he has found in the current shop). The status
feature is followed by five features each corresponding to the information if a particular item from
the shopping list has already been bought or not (1 means item X, e.g., bread, has been bought, 0
means item X has not been bought, yet). This completes the state information. According to the
location, the status, and the information about which of the items on the shopping list have already
been bought, the system can give the next recommendation. In the user study, this corresponded
to either showing only a picture (e.g., turn left.gif) or asking the user to look for shopping items
that the system expects to be available in the current shop and enabling the corresponding check
boxes in the shopping list (which is shown on the handheld display).

Time-Dependent Finite-Horizon Policy To deal with a fixed deadline, we have employed a
special form of finite-horizon decision-theoretic planning for the second user study. The resulting
policy is time-dependent. Each time-dependent recommendation is best read backwards: For
example, the first line reads as follows: With more than 430 seconds remaining until the deadline,
the recommendation is to turn left; with less than 431 seconds remaining until the deadline, the
recommendation is to go straight. A policy file for the second user study is of a size less than 300
kbyte and less than 3000 lines long.

set statetable(0100:n:0:0:0:0:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"go_straight.gif"
431:"turn_left.gif" )

set statetable(0200:n:0:0:0:0:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"turn_left.gif"
361:"look_for_items.gif" ; EnableButtonList { 0 0 0 1 0 0 } )

set statetable(0200:b:0:0:0:1:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"turn_left.gif" )

set statetable(0200:f:0:0:0:0:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"turn_left.gif" )

set statetable(0200:h:0:0:0:1:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"stand_in_line.gif" )

set statetable(0300:n:0:0:0:0:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"halbturn_left.gif" )

set statetable(0300:n:0:0:0:1:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"halbturn_left.gif" )

set statetable(0400:n:0:0:0:0:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"turn_left.gif" )

set statetable(0400:n:0:0:0:1:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"turn_left.gif" )

set statetable(0500:n:0:0:0:0:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"go_straight.gif"
409:"turn_right.gif" 738:"go_straight.gif" 899:"turn_right.gif" )

set statetable(0500:n:0:0:0:1:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"go_straight.gif"
357:"turn_right.gif" 686:"go_straight.gif" 847:"turn_right.gif" )
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set statetable(0600:n:0:0:0:0:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"turn_right.gif"
404:"look_for_items.gif" ; EnableButtonList { 0 0 0 0 1 0 }
736:"turn_right.gif"
894:"look_for_items.gif" ; EnableButtonList { 0 0 0 0 1 0 } )

set statetable(0600:n:0:0:0:1:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"turn_right.gif"
352:"look_for_items.gif" ; EnableButtonList { 0 0 0 0 1 0 }
684:"turn_right.gif"
842:"look_for_items.gif" ; EnableButtonList { 0 0 0 0 1 0 } )

set statetable(0600:b:0:0:0:0:1:0)
recommendation_at_time_t( 0:"stop.gif" 1:"turn_right.gif" )

set statetable(0600:f:0:0:0:0:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"turn_right.gif" )

set statetable(0600:h:0:0:0:0:1:0)
recommendation_at_time_t( 0:"stop.gif" 1:"stand_in_line.gif" )

set statetable(0600:b:0:0:0:1:1:0)
recommendation_at_time_t( 0:"stop.gif" 1:"turn_right.gif" )

set statetable(0600:f:0:0:0:1:0:0)
recommendation_at_time_t( 0:"stop.gif" 1:"turn_right.gif" )

set statetable(0600:h:0:0:0:1:1:0)
recommendation_at_time_t( 0:"stop.gif" 1:"stand_in_line.gif" )

...
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H QUESTIONNAIRE TO ELICIT USEFUL

INFOMATION FOR EXPLANATIONS

This appendix summarizes the complete questionnaire of the user study described in Section 7.4.
The questionnaire was used to elict information that users of a decision-theoretic shopping guide
might find useful to understand the recommendations given by the system.

The questionnaire includes six sheets alltogether. On the first three sheeds, the subjects were
given assessments of three different route recommendations. They were asked to select one and
explain/comment on their selection. On each of the first three sheets, there was half a page of
space for a justification of the subject’s selection. Each of the tables in Figures H.1 and H.2 shows
three route recommendations with the explanations that were used in the study.
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Please select one of the three options and explain your choice:

Option
Overall

rating
until arrival at the gate Stores along the way

Number of Turning Points:

Number of Turning Points:

Number of Turning Points:

Difficulty of following

the directions

Questionnaire on Explanations for Navigation Recommendations − 1/6

Expected length of time

(best/average/worst)

MIN
AVERAGE

MAX

MIN
AVERAGE

MAX

MIN
AVERAGE

MAX

Figure H.1: Questionnaire: Select one of three options—first example.
(For each possible direction, the table used in the questionnaire gives an overall rating, the expected length
of time until arrival at the gate, the difficulty of following the direction, and information about stores
along the way. Based on this information, the subjects were supposed to decide for one direction and
explain/comment on their choice.)
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Questionnaire on Explanations for Navigation Recommendations − 2/6

Option
Expected length of time

Stores along the wayOverall

rating the directions

Difficulty of following

Please select one of the three options and explain your choice:
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(best/average/worst)

BEST

boarding time

AVERAGE
WORST

boarding time

BEST AVERAGE
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boarding time

BEST
AVERAGE WORST

Figure H.2: Questionnaire: Select one of three options—second and third example.
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On the fourth sheet of the questionnaire, the subjects were reminded of the differents expla-
nations that were used in the first three sheets to explain what the user can expect when following
any of the directions. The subjects were asked to examine the information that was given in each
column of the table and to assess how useful each of the pieces of information is, by tagging any
of four options ranging from “This piece of information should better be left out” to “This piece of
information should definitely not be left out”. For their assessment, the subjects should also take
into account the appropriateness of the representation of the information given. Figure H.3 shows
one of the three tables that the subjects were asked to assess.

The last two sheets addressed the representation of information. Figure H.4 shows the three
representations of the overall rating of a navigation recommendation; Figure H.5 shows three
representations of the expected length of time until arrival at the gate; Figure H.6 shows three
representations of the difficulty of following upcoming directions; and Figure H.7 shows three
representations of information on stores along the way. Each form of representation could be
rated on a scale with seven grades ranging from “not useful at all” to “very useful”.
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Can some of the infomation be left out?

Questionnaire on Explanations for Navigation Recommendations − 4/6

Overall

rating
until arrival at the gate Stores along the way

Difficulty of following

the directions
(best/average/worst)

Expected length of time

Better to leave it out

Equally good left out or included

Can be left out if necessary, but better kept

Should definitely not be left out

Number of Turning Points:

Number of Turning Points:

Number of Turning Points:

Option
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rating
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Expected length of time
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MAX
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Figure H.3: Questionnaire: Can some of the explanatory information be left out?
(After being reminding of the tables used on the first three sheets, the subjects were asked how useful they
have found the information characterizing the different options. For each type of information, they could
quote if they prefered some information to be left out or not. The students were asked to take also the form
of representation of the information into account.)
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Please rate the usefulness of the following parts of explanations:

Questionnaire on Explanations for Navigation Recommendations − 5/6

Please rate the usefulness of the following parts of explanations:

Overall rating for a recommendation:

(1)

(2)

(3)

(Only consider how useful the information is for you and ignore how the information gathering and presentation can be realized!)

best: 

RECOMMENDED

best: HIGHLY RECOMMENDED

best: 

very usefulvery usefulnot useful at all

very usefulvery usefulnot useful at all

very usefulvery usefulnot useful at all

Figure H.4: Three representations of the overall rating of a navigation recommendation.

Please rate the usefulness of the following parts of explanations:

Questionnaire on Explanations for Navigation Recommendations − 5/6

Please rate the usefulness of the following parts of explanations:
(Only consider how useful the information is for you and ignore how the information gathering and presentation can be realized!)

15

30

45

0

boarding time

(4)

(5)

(6)

Expected length of time until arrival
at the gate (best/average/worst):

BEST
AVERAGE WORST

BEST
AVERAGE WORST

boarding time

very usefulvery usefulnot useful at all

very usefulvery usefulnot useful at all

very usefulvery usefulnot useful at all

Figure H.5: Three representations of the expected length of time until arrival at the gate.
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Please rate the usefulness of the following parts of explanations:

Questionnaire on Explanations for Navigation Recommendations − 6/6

Please rate the usefulness of the following parts of explanations:

(1)

Difficulty of following the directions:

best: worst:

(Only consider how useful the information is for you and ignore how the information gathering and presentation can be realized!)

Number of Turning Points:

Number of Turning Points:

(2)

(3)

MIN AVERAGE MAX

MIN

AVERAGE
MAX

very usefulvery usefulnot useful at all

very usefulvery usefulnot useful at all

very usefulvery usefulnot useful at all

Figure H.6: Three representations of the difficulty of following upcoming direction.

Please rate the usefulness of the following parts of explanations:

Questionnaire on Explanations for Navigation Recommendations − 6/6

Please rate the usefulness of the following parts of explanations:
(Only consider how useful the information is for you and ignore how the information gathering and presentation can be realized!)

Stores along the way: (4) + (5): Height of card
equals probability of
finding a suitable product

(4)

(5)

(6)

very usefulvery usefulnot useful at all

very usefulvery usefulnot useful at all

very usefulvery usefulnot useful at all

Figure H.7: Three representations of information on stores along the way.
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I VIRTUAL BEACONS IN THE USER STUDY OF

SECTION 7.3

Figures I.1 and I.2 comprise the complete register of all virtual beacons that the experimenter
simulated in the user study described in Section 7.3. Each trial started at virtual beacon number 1
(one of the mall entrances) and ended at virtual beacon number 36 (one of the mall exits).

Figure I.1: Virtual beacons on the first floor of the shopping mall.
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Figure I.2: Virtual beacons in the basement of the shopping mall.
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Bohnenberger, T., & Kr üger, A. (2001). Combining predefined routes and decision-theoretic
planning to generate adaptive navigation recommendations. In R. Malaka & A. Kr üger
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