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Abstract

We investigate the parallel implementation of the diagonal�implicitly iterated Runge�

Kutta �DIIRK� method� an iteration method based on a predictor�corrector scheme� This

method is appropriate for the solution of sti� systems of ordinary di�erential equations

�ODEs� and provides embedded formulae to control the stepsize� We discuss di�erent strate�

gies for the implementation of the DIIRK method on distributed memory multiprocessors

which mainly di�er in the order of independent computations and the data distribution� In

particular� we consider a consecutive implementation that executes the steps of each cor�

rector iteration in sequential order and distributes the resulting equation systems among

all available processors� and a group implementation that executes the steps in parallel by

independent groups of processors� The performance of these implementations depends on

the right hand side of the ODE system� For sparse functions� the group implementation is

superior and achieves medium range speedup values� For dense functions� the consecutive

implementation is better and achieves good speedup values�

� Introduction

Nonlinear di�erential equations occur in many simulations in the natural sciences and in engi�

neering� The numerical solution of di�erential equations requires a lot of computational power

which may be provided by parallel machines� Parallel processing requires adequate parallel

methods for the solution of di�erential equations� Thus� a broad area of research deals with a

parallel redesign of numerical methods exploiting the inherent degree of parallelism or investi�

gates the parallel implementation of speci�c simulations�

We restrict our attention to numerical methods for initial value problems �IVPs� associated with

systems of �rst order ordinary di�erential equations �ODEs�

dy�t�

dt
� f�t�y�t��� y�t�� � y�� t� � t � tend �	�
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� INTRODUCTION 


and the numerical approximation of the solution y � IR � IRn on distributed memory multi�

processors� The right hand side of system �	� is a nonlinear function f � IR� IRn � RI n�

Several numerical methods for the solution of partial di�erential equations �PDEs� have been

adapted to parallel machines �see e�g� �		
 �
�
� but relatively little has been done about solution

methods for IVPs of ODEs �	
 �	�
 �	�
� Those methods are di�cult to parallelize due to

their sequential nature� But the investigation of parallel methods for this class of problems is

important because several extremely time consuming situations arise in practice�

� Very large systems of ODEs arise when discretizing the space dimension of time�dependent

PDEs� An ODE �in the dimension of time� appears as a necessary intermediate step in

the numerical solution of nonlinear time�dependent PDEs �	�
 �
�
� The size of the ODE

system depends on the discretization in space�

� The evaluation of the right hand side f of system �	� may be very time�consuming� e�g�

if f is a function that depends on most of the components of its argument vector� Such

functions arize when solving parabolic or hyperbolic nonlinear PDEs with Galerkin or

Fourier methods ��
�

� The problem may have to be solved over a very large period of time �t�� tend
�

� The solution of a nonlinear sti� IVP requires a solution method with good stability prop�

erties ��
� Usually those methods include the solution of a large number of implicit systems

which is very expensive�

A class of solution methods called iterated Runge�Kutta methods have been proposed for a

parallel solution of IVPs �	�
 ��
 �
	
 �
�
� Iterated Runge�Kutta methods are predictor�corrector

�PC� methods based on implicit Runge�Kutta �RK� correctors� i�e� the corrector steps represent

an iteration of the �implicit� basic RK�method� These methods have a large degree of inherent

parallelism and are therefore very attractive for a parallel implementation� Another advantage

of all iterated RK methods is that embedded solutions are provided which allow to control the

stepsizes without further computational e�ort�

The stability properties of iterated RK methods depend on the way the corrector is iterated�

A functional iteration ��xed point iteration� of an implicit RK corrector results in the IRK

method� In �
	
 and �
�
 IRK methods were proposed for a parallel implementation on shared

memory machines with a small number s of processors �s is the number of stages of the corrector

RK�method�� In �	�
 IRK methods has been parallelized for distributed memory machines� But

because of their relatively limited region of stability those methods are only suitable for nonsti�

ODEs�

In this paper� we consider the diagonal�implicitly iterated Runge�Kutta method �DIIRK� that

requires the solution of a nonlinear system of equations in each iteration step� The method

belongs to the class of block structured diagonal implicit Runge�Kutta �DIRK� methods which

is appropriate for the integration of sti� systems ��
� A shared memory implementation of

the DIIRK method is discussed in �
�
 for a small number s of processors� ��
 discusses the

linear algebra of the problem� We investigate parallel implementations of the DIIRK method on

parallel machines with a distributed memory architecture and an arbitrary number of processors�

We present strategies for the parallel implementation of the DIIRK method that di�er in the

order of computations and in the data distributions� The algorithms take into account special

properties of the DIIRK method� e�g� the stepsize control with embedded solutions and a re�

duction of the number of function evaluations by precomputations in the preceding corrector
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iteration� In particular� we consider a consecutive implementation and a group implementation�

The consecutive implementation breaks down each corrector step into dependent pieces and

computes them in sequential order by distributing the resulting equation systems among all

available processors� The group implementation executes the pieces in parallel by independent

groups of processors�

The implementations are expressed in a coarse grain compute�communicate scheme� Computa�

tion phases are described in an SPMD �single�program multiple data� style where similar com�

putations are executed on di�erent portions of the problem data which are distributed among

the available processors� The communication phases are described by communication primi�

tives that re�ect the typical data exchange of numerical problems� Both computation steps and

communication primitives have the problem size and the number of processors as parameters�

We have implemented the di�erent parallel variants of the DIIRK method on an Intel iPSC�����

The experiments take into account di�erent numbers of processors� di�erent dimensions of the

systems and di�erent computational e�ort of the right hand side f of the ODE system� The

experiments show that the performance of the implementations depends strongly on the function

f� For sparse functions� the group implementation is much better and reaches medium range

speedup values� For dense functions� the consecutive implementation is superior and reaches

good speedup values�

The remaining part of this article is organized as follows� Section 
 describes the diagonal�

implicitly iterated Runge�Kutta method and some characteristic properties of the DIIRK method�

Section � develops di�erent parallel implementations� Section � presents the numerical experi�

ments on an Intel iPSC�����

� Diagonal�Implicitly Iterated Runge�Kutta Methods

��� Runge�Kutta methods

Runge�Kutta �RK� methods are one�step solution methods for IVPs of ODEs �	�
 ��
 ��
� One

step of an implicit RK method computes the next iteration vector y��� according to the formula

y��� � y� � h

sX
l��

blf�vl� �
�

where the vectors vl� l � 	� � � � � s� are de�ned by the s � n dimensional fully implicit system�

vl � y� � h

sX
i��

alif�vi� l � 	� � � � � s ���

The s�dimensional vectors b � �b�� � � � � bs� and c � �c�� � � � � cs� and the s � s matrix A � �ali�

describe the basic RK�method� The number s is called the stage of the RK method and h is the

stepsize� The formulae �
� and ��� are given in the in stage�value notation which is appropriate

for the development of correctors for the DIIRK method� �We use the convention to set vectors�

e�g� y��vl� in bold type��

The iteration vector y� represents the approximation of the solution y at time �t� � �h�� i�e�

y� � �y�t���h�� when using the pure implicit RK method for the solution of a system of ODEs�

The computation of y��� is called a time step�
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A predictor�corrector �PC� method performs one time step by executing a number of interme�

diate steps� First a PC method determines an approximation with the predictor method� This

initial approximation is improved in a �xed number of corrector steps where each corrector step

starts with the output of the preceding corrector step� For the DIIRK method we use an s�stage�

implicit� one�step RK method as corrector�

��� DIIRK with Fixed Number of Iterations

Iterated Runge�Kutta A PC method based on the RK method �
�� ��� as corrector results

in an IRK method �


 which is suitable for the solution of nonsti� systems of ODEs� For the

construction of the DIIRK method we introduce a diagonal matrix D of dimension s � s into

the equation ���� This results in the system

vl � y� � h

sX
i��

�ali � dli�f�vi�� hdllf�vl�� l � 	� � � � � s ���

One time step of the DIIRK methods consists of a �xed number m of iteration steps of equation

���� The initial iteration vector is provided by the predictor method� We choose a simple

one�step predictor method �see �
�
�� the last�step�value predictor� This yields the following

standard computation scheme for the DIIRK method�

v
���
l � y� l � 	� � � � � s ���

Std v
�j�
l � y� � h

sX
i��

�ali � dli�f�v
�j���
i � � hdllf�v

�j�
l � l � 	� ��s j � 	� ��m ���

y��� � y� � h

sX
l��

bl f�v
�m�
l � ���

One time step � � � � 	 according to system ���� ���� ��� is called a macrostep of the DIIRK

method� The execution of one iteration step j � j � 	 of equation ��� is called a corrector

step� The number m of corrector steps determines the convergence order of the method� The

convergence order of the DIIRK method is p� � min�p�m� 	� where p is the order of the used

implicit RK�method �
	
�

Considering all m corrector iterations of one time step� the DIIRK method is equivalent to a

diagonal�implicitly RK method with block structure� This can be illustrated by the Butcher

array of the method �
�
�

corrector�iterations

j � � O

j � 	 A�D D

j � 
 O A�D D

j � � O O A�D D
���

���
� � �

� � �
� � �

j � m O � � � O A�D D

�T � � � �T bT

where A is the matrix of the RK corrector� D is the diagonal matrix� O is the s � s matrix

containing � in every item and �T is the s dimensional vector containing ��
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��� Implementation of the DIIRK method

For each corrector step j of a DIIRK method an implicit nonlinear system of equations has to

be solved in order to get the vectors v
�j�
� � � � �v

�j�
s � This is done by the Newton method �
�
�

Newton method The Newton method determines the root z � RI n of a function F � IRn �

IRn by computing a sequence of approximations z���� z���� z���� � � � according to the iteration

scheme�

z�k��� � z�k� �DF �z�k����F �z�k��� i � �� 	� 
� � � � �

z��� is an initial approximation and DF �z�k�� denotes the Jacobi matrix of F at z�k�� i�e� the

matrix DF �z�k�� �
�
�Fi

�zj

�
i�j�������n

�z�k��� Each iteration step k of the Newton method consists

of three phases�

� the computation of the entries �Fi

�zj
�zk� of the Jacobi matrix by a forward di�erence ap�

proximation
Fi�z�k� � rjej�� Fi�z�k��

rj
���

where ej � RI n is the jth column of the unit matrix In and rj � RI is a suitable interval�

� the solution of the linear system of equations DF �z�k��y�k� � �F �z�k�� with the Gaussian

elimination method� An iterative method cannot be employed in the general case� because

we do not necessarily have � � 	� for the spectral radius � of DF �z�k��� i�e� the iterative

methods might not converge� Also the conjugate gradient method cannot be used� because

this requires DF �z�k�� to be positive de�nite�

� the approximation z�k� is updated by z�k��� � z�k� � y�k��

The Newton iteration stops if the error is small enough� i�e� if jjy�k�jj � ���LL where L with

� � L � 	 is the Lipschitz constant of F and � is a prede�ned accuracy�

Implementation of the DIIRK method The execution of the DIIRK method according

to the computation scheme Std results in the following computational structure�

MACROSTEP�loop

� predictor computation according to equation ���

� correctorstep�loop according to equation ���

� Newtonstep�loop

� computation of the Jacobi matrix according to equation ���

� Gaussian elimination with pivoting� forward elimination and backward substitution

� update of the iteration vector according to equation ���

� computation of the next stepsize according to equation �	
�

The presented DIIRK method possesses several properties which we exploit for a fast implemen�

tation� Those properties include�

� An automatic stepsize control is possible without additional computational e�ort� because

the iterations of the RK method in the corrector steps provide embedded solutions ��
� see

Section 
���
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� Each of the m systems ��� of size s � n actually consists of s decoupled subsystems of size

n each of them responsible for the computation of one vector v
�j�
l � l � 	� � � � � s� Because

the solution of a nonlinear system of size n has computational complexity of order n� �	�
�

the solution of the decoupled systems requires computational e�ort of order sn� instead

of �sn���

For the computation of v
�j�
l we have to solve the system Fj�l � � with Fj�l � IR

n � IRn

de�ned as follows

Fj�l�z� � z� y� � h

sX
i��

�ali � dli�f�v
�j���
i �� hdllf�z� ���

� The Jacobi matrix needed in each Newton step for solving a nonlinear implicit equation

has a special shape containing the Jacobi matrix of the function f which is the right hand

side of the ODE to be solved�

��Fj�l�i
�zk

� 	ik � hdll
�fi
�zk

� j � 	� � � � � s�

� In each corrector step the number of function evaluations of f can be reduced when per�

forming some precomputations in the previous corrector step� see Section 
��� The pre�

computed function values can also be used for the update step ��� and the stepsize control

such that both can be implemented in such a way that no further function evaluations are

necessary�

In the following subsections we describe the reduction of the number of function evaluations and

the stepsize control mechanism of the DIIRK method in more detail�

��� Reduced Number of Function Evaluations

The number of function evaluations in the corrector step j � 	 for the computation of v
�j���
l �

l � 	� � � �s� can be reduced by exploiting the corrector step j� By a reformulation of equation

��� of corrector step j we get�

f�v
�j�
l � �

�
v
�j�
l � y� � h

sX
i��

�ali � dli�f�v
�j���
i �

�
��hdll�� l � 	� � � � � s �	��

which represents an alternative way for computing f at vector v
�j�
l � All vectors used on the right

hand side of equation �	�� are known from corrector step j� i�e� we can compute the values of

fval
�j�
l � f�v

�j�
l � for l � 	� � � � � s immediately when the corrector step j is �nished� Instead of

���� we now have

Fj�l�z� � z � y� � h

sX
i��

�ali � dli�fval
�j���
i � hdllf�z� �		�

The computation of f�v
�j�
l � according to formula �	�� not only saves computation time but also

avoids an increase of the approximation error that arizes when applying f to v
�j�
l � The solutions

v
�j�
l � l � 	� � � � � s� of corrector step j are not the exact solutions but only good approximations

determined by the Newton iteration� i�e�

v
�j�
l 	 y� � h

sX
i��

�ali � dli�f�v
�j���
i � � dllf�v

�j�
l � l � 	� � � � � s �	
�
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An application of the function f to this approximation in the next corrector step may increase

the approximation error�

The computation scheme for one macrostep of the DIIRK method with the reduced number of

function evaluations has the form�

fval
���
l � f�y�� l � 	� � � � � s �	��

w
�j�
l � h

sX
i��

�ali � dli�fval
�j���
i l � 	� � � � � s� j � 	� � � � � m �	��

Red v
�j�
l � y� �w

�j�
l � hdllf�v

�j�
l � l � 	� � � � � s� j � 	� � � � � m �	��

fval
�j�
l �

�
v
�j�
l � y� � w

�j�
l

�
��hdll�� l � 	� � � � � s� j � 	� � � � � m �	��

y��� � y� � h

sX
l��

bl fval
�m�
l �	��

��� Stepsize Control

For the solution of system �	� in the interval t� � t � tend � several macrosteps are performed

to approximate the solution y at the points t�� t�� t�� � � � � tend with t��� � t� � h�� In order to

achieve a good solution and to maintain a fast computation time� the stepsizes h�� h� � � � have

to be chosen as large as possible while guaranteeing small approximation errors�

For the problem of chosing appropriate stepsizes� ��
 proposes an automatic stepsize control

using two di�erent approximations y��� and �y��� for the solution y�t���� computed with the

same stepsize h� The error between those two approximations

error � jjy��� � �y���jj �	��

and the upper bound for the solution in the interval �t�� t���


bound � max�jy�j� jy���j�

are used to compute a new stepsize

hnew � h �min��� max�
	

�
� ��� �

�
bound

error

����ord���

�� �	��

where ord is the minimal convergence order of the approximation methods used� The approx�

imation vector y��� is accepted if error � bound� In this case hnew is used to compute y����

Otherwise� the computation of y��� is rejected and is repeated with stepsize hnew �

The DIIRK method provides several approximation solution when using the vectors v
�j�
l � l �

	� � � � � s� for one j� j � m� and equation ���

y�j� � y� � h

sX
l��

bl f�v
�j�
l ��

The solutions y�j� represent embedded solutions of successively increasing order min�p� j � 	�

where p is the order of the basic implicit RK�method �
	
� ��
� �	

� Usually� solutions y�j� are
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used such that the order of y��� and y�j� di�er by 	� Therefore we choose j � m� 	� The error

is computed according to the formula�

error � jjy��� � y�m���jj

� jhj � jj
sX

l��

bl �
�
f�v

�m�
l �� f�v

�m���
l �

�
jj �
��

We can also use the precomputed function evaluations for the error computation�

error � jhj � jj
sX

l��

bl � �fval
�m�
l � fval

�m���
l �jj �
	�

� Parallel implementation of the DIIRK Method

Parallel implementations of the DIIRK method are formulated in a parallel programming model

that is suitable for DMMs� The processors communicate through an interconnecting network

that consists of direct communication links joining certain pairs of processors� The communica�

tion is executed by explicit message passing statements�

The algorithms are expressed in a coarse grain compute�communicate scheme� The computa�

tions are performed according to the SPMD model� i�e� similar computations are executed on

di�erent portions of problem data� The distribution of the problem data among the available

processors is an important part of the design of the implementation� In order to avoid data redis�

tribution when combining di�erent parts of the program� one has to ensure a similar distribution

structure for these parts�

The data exchange is performed in a synchronous communication phase� A communication

phase is expressed by one of the following communication primitives which have e�cient imple�

mentations on almost all interconnection networks �

�

� Single Node to Single Node� One processor sends a message to a single other processor�

� Single Node Broadcast and Single Node Accumulation� A single node broadcast

sends the same message from a given processor to every other processor� For a single

node accumulation� a given processor receives a message from every other processor� The

messages are combined by a reduction operation at each intermediate processor�

� Single Node Scatter and Single Node Gather� A single node scatter sends a separate

message from a single processor to every other processor� The dual problem� called single

node gather� collects a separate message at a given processor from every other processor

without performing a reduction operation�

� Multinode Broadcast and Multinode Accumulation� A multinode broadcast exe�

cutes a single node broadcast simultaneously for all processors� A multinode accumulation

executes a single node accumulation at each processor�

� Total Exchange� A total exchange sends an individual message from every processor to

every other processor�

��� Parallel algorithms

As mentioned before� in each corrector step we have to solve s independent� nonlinear subsystems

each of size n instead of one system of size s�n� The existence of independent subsystems not only
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decreases the computational e�ort but can also be exploited for a parallel implementation� One

possibility would be to exploit the special structure of the system in each step of the Newton

iteration solving corrector step j� Instead� we compute the v
�j�
i � i � 	� � � � � s� by solving the

subsystems by a separate Newton iteration�

Let �j�l for l � 	� � � � � s and j � 	� � � � � n denote the subsystems of one corrector step j� �j�l

is the nonlinear system Fj�l�z� � � with Fj�l according to equation ���� The following �gure

illustrates the order in which the systems �j�l have to be solved�

y�



� ��� � � �� ��� � � �� �� each systems gets y�
���� k � � � k ���s independent computations

� ��� � � �� ��� � � �� �� exchange of v
���
l

���
���

� ��� � � �� ��� � � �� �� exchange of v
�m���
l

�m�� k � � � k �m�s independent computations

� ��� � � �� ��� � � �� �� the computation y��� needs all v
�m�
l




y���

The symbol k indicates that �l and �r of �l k �r are independent and may be solved in

parallel� The horizontal dashed lines indicate a data exchange that is necessary for the numerical

correctness of the method�

�
	
 and �
�
 propose to compute the independent subsystems �j�l� l � 	� � � � � s in parallel on

an s�processors shared memory machine �s is the number of stages and also the number of

independent systems� where each processor is responsible for the solution of one system� For a

general DMM with a given number p of processors� the fastest parallel implementation is not

straightforward� In the following� we present two possible computation schemes for the solution

of the subsystems �j�l� l � 	� � � � � s� of a single corrector step�

Con The systems �j�l� l � 	� � � � � s� are solved in consecutive order by all available processors�

Grp The systems �j�l� l � 	� � � � � s� are solved in parallel by independent groups of processors�

The combination of the two parallel algorithms with the computation schemata Std and Red�

results in four implementations�

parallel implementations standard system Std reduced systemRed

consecutive Con ConStd ConRed

group Grp GrpStd GrpRed

In the following subsections we describe these parallel implementations in more detail and�

especially� concentrate on data distribution and data exchange�

��� Consecutive parallel algorithm � Con

The main part of the computational work arise in the steps of the Newton iterations for solving

the systems �j�l� Therefore� we choose a data distribution that ensures a good load balance in

each step of the Newton iteration and avoids data distribution between them�
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Data distribution Each Newton step consists mainly of the computation of the Jacobian

and the application of a Gaussian elimination� For both computations a row cyclic distribution

of the Jacobian is appropriate� i�e� the rows of the Jacobi matrices DFj�l�z
�k�� are distributed

such that processor q owns the rows fjjj � q mod pg and also the corresponding components of

the right hand side Fj�l�z
�k��� This distribution results in a good load balance for the Gaussian

elimination and avoids unnecessary communication overhead�

The square grid distribution where all entries of the matrix are distributed cyclically for rows

and columns is considered to imply an optimal load balancing when parallelizing the Gaussian

elimination in isolation ��
� But in the case that the Gaussian elimination is part of the DIIRK

method the row cyclic distribution results in a better global execution time for the DIIRK�

From this row cyclic distribution we can conclude the distribution of the iteration vector z�k�

and the vector y�k�� �see Section 
����

� The computation of the Jacobian may require the complete iteration vector z�k� for the

computation of each entry because the evaluation of each component fi of the function

f � IR � IRn � RI n requires the complete argument vector and not only a cyclic parts of

it� Therefore� the iteration vector z�k� must be held replicated on all processors�

� The Gaussian elimination uses a single�node accumulation operation with a maximum

reduction to determine the pivot row� The pivot row is sent to the other processors by a

single�broadcast operation� The backward substitution uses a single�broadcast operation

to make the computed components of the result vector available to the other processors�

This means that the Gaussian elimination delivers the result vector y�k� such that it is

replicated to all processors�

� The update step z�k��� � z�k��y�k� of the Newton method is executed by each processor for

all components to make z�k��� available on all processors� �Details of the implementation

can be found in �	�
��

ConStd Figure 	 shows a pseudocode program for one macrostep of the DIIRK method exe�

cuted on a DMM with p processors P � fq�� � � � � qpg�

The chosen data distribution implies the following data distribution and communication�

Predictor� Each processor initializes the entire vector v
���
l according to equation ���� To do this�

the approximation vector y� must be replicated on all processors�

An alternative would be that each processor initializes dn�pe components of v
���
l � Then a

multi�broadcast operation is necessary to make v
���
l available to all processors� Runtime

tests show that this alternative takes more time than the replicated computation because

the multi�broadcast operation is more expensive than the replicated initialization� espe�

cially for larger number of processors�

Corrector� The nested loops of the corrector step are performed in consecutive order� The

execution of each Newton step is distributed among all processors� The replication of the

result vector z�k� of the Newton method results in a replication of v�j�l without additional

communication�

Update� The subsequent iteration vector y��� is computed in a distributed way� i�e� each proces�

sor computes dn�pe elements of the solution vector� To guarantee the replicated distri�

bution for the next macrostep� the distributed pieces of y��� are then collected by a

multi�broadcast operation� To collect y��� by a single multi�broadcast operation� each
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 predictor 
	

forall q � P do

for l � �� � � � � s do

initialize v���l according to equation �
��

	
 corrector 
	

for j � �� � � � �m do

for l � �� � � � � s do

solve �j�l in parallel by all processors�

	
 update 
	

forall q � P do f

compute dn�pe contiguous components of y��� � y� � h
Ps

l�� bl f �v
�m�
l ��

broadcast dn�pe components of y����g

execute stepsize control in parallel�

Figure 	� Parallel macrostep of the DIIRK version ConStd for processors P � fq�� � � � � qpg�

processor computes dn�pe contiguous elements of y���� i�e� a block distribution is used�

This causes no problems because the corrector step delivers the vectors v
�j�
l replicated�

Stepsize control� The stepsize control is executed in a distributed way as described in �	�
� In

equations �
�� and �
	� the maximum norm is used� The value of bound is computed by

determining the local maximum of each processor in parallel and by collecting the local

maxima with a single�node accumulation operation with maximum reduction� The value

of error is determined according to equation �
�� by computing f�v
�m�
l � � f�v

�m���
l � in

a distributed way and by collecting the result values with a single�node accumulation

operation with maximum reduction�

ConRed In the implementation using the reduced computational scheme Red� the Newton

method still computes the vectors v
�j�
l � But because the corrector step j needs the values

fval
�j���
l as input instead of v

�j���
l � the distribution and communication of fval

�j���
l has to be

considered�

The iteration steps of the Newton method for the computation of v
�j�
l now use the vector fval

�j���
l

for the computation of the Jacobian� The cyclic distribution of the vectors fval
�j�
l corresponds

to the cyclic computation of the Jacobian� Figure 
 shows the resulting pseudocode program�

Predictor� The vectors fval
�j�
l � l � 	� � � � � s� are initialized cyclically according to equation �	���

Corrector� The vectors fval
�j�
l � l � 	� � � � � s� are computed cyclically according to equation �	���

No additional data exchange is necessary� The vectorsw
�j�
l can be implemented as a single

array that is overwritten after its use in equation �	���

Update� The next iteration vector y��� is computed cyclically because the function vectors

fval
�j�
l are available cyclically� To collect y��� after its computation by a single multi�

broadcast operation� each processor has to store its locally computed components in a

contiguous bu�er before the data exchange� see Figure �� After the multi�broadcast the

elements have to be moved to their correct positions�

Runtime tests show that the additional overhead for the bu�er operations is larger than

the saving in the computation time of the update step� Therefore the update step does
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 predictor 
	

forall q � P do

for l � �� � � � � s do f

initialize v���l according to equation �
��

initialize dn�pe components of fval
���
l

cyclically according to �����g

	
 corrector 
	

for j � �� � � � �m do

for l � �� � � � � s do

forall q � P do f

compute dn�pe components of w
�j�
l � h

Ps

i���ali � dli�fval
�j���
i cyclically�

solve Fj�l � � with Fj�l according to ���� in parallel by all processors�

compute dn�pe components of fval
�j�
l cyclically according to �����g

	
 update 
	

forall q � P do f

compute dn�pe contiguous components of y��� � y� � h
Ps

l�� bl f �v
�m�
l ��

broadcast dn�pe components of y���� g

execute stepsize control in parallel�

Figure 
� Parallel macrostep of the DIIRK version ConRed for processors P � fq�� � � � � qpg�
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Figure �� Collecting the distributed pieces of y��� to avoid multiple multi�broadcast operations� The

�rst reorder step transforms the cyclic distribution of y��� into a block distribution of a bu�er array buf�

The multi�broadcast operation makes all components available on all processors� The second reorder step

rearranges the correct order of the components�

not use the precomputed function values� Instead� each processor computes a contiguous

part of the vector y��� and executes the necessary function evaluations� �The bu�ering

technique is successfully used in the group implementation��

Stepsize control� The vector fval
�j�
l can also be used in the stepsize control to compute the value

of error� see equation �
	��

��� Group Parallel Computation �Grp

For the group implementation� the subsystems �j�l� l � 	� � � � � s� are solved in parallel by disjoint

groups of processors� We assume that the number of available processors is greater than the

number of stages� i�e� p � s� The set of processors is divided into s groups G�� � � � � Gs� Group

Gl contains about the same number gl � dp�se or gl � bp�sc of processors� In each corrector
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iteration step j � 	� � � � � m group Gl is responsible for the computation of one subvector v
�j�
l �

l � f	� � � � � sg�

Data distribution Again� the Gaussian elimination determines the data distribution of the

entire macrostep� To get a good load balance� we use a group cyclic distribution� i�e� the rows

of the Jacobian DFj�l� j � 	� � � � � m� are distributed cyclically among the processors of group

Gl� Processor q � Gl with group index iq� iq � �� � � � � gi � 	� is responsible for the computation

of rows

rows�q� � fiji � iq mod gi� � � i � gig�

Group Gl execute the Newton iteration for the computation of v
�j�
l independently from all other

groups�

The Gaussian elimination now uses communication operations that operate on groups of proces�

sors� A single�node group�accumulation is used to determine the pivot row� A group broadcast

operation is used to send the pivot row to the other processors of the group� A group broadcast

operations is also used in the backward elimination phase to make the computed components of

the result vector available to the other processors of the group�

GrpStd The group implementation leads to the pseudocode program in Figure ��

	
 predictor 
	

forall l � f�� � � � � sg do

forall q � Gl do f

initialize v���l according to equation �
��

�rst processor in group� broadcast v���l to other groups� g

	
 corrector 
	

for j � �� � � � �m do

forall l � f�� � � � � sg do

forall q � Gl do

solve Fj�l � � with Fj�l according to ���� in parallel by all gl processors in group Gl�

	
 update 
	

forall q � P do f

compute dn�pe contiguous components of y��� � y� � h
Ps

l�� bl f �v
�m�
l ��

broadcast dn�pe components of y���� g

execute stepsize control in parallel�

Figure �� Parallel macrostep of the DIIRK version GrpStd for processors P � fq�� � � � � qpg�

Predictor� Again� each processor initializes the entire vector v
���
l according to equation ���� To

do this� the approximation vector y� must be replicated on all processors�

Corrector� After corrector step j� the computed vector v
�j�
l � l � 	� � � � � s� must be distributed to

the processors of all groups because they are used in the corrector step j � 	 for the eval�

uation of Fj���l� This is realized by a broadcast operation executed by the �rst processor

of each group�
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Update and stepsize control� The group partitioning is only used for the computation of the

corrector steps� To execute the update step in a distributed way� about the same number

of components dn�pe or bn�pc of y��� is assigned to each processor� These have to be

contiguous elements to collect the di�erent parts by a single multi�broadcast operation�

The stepsize control is executed in the same way as for the consecutive computation�

GrpRed When using the reduced computation system we again have to make sure that the

particular components of fval
�j�
l are available� Figure � shows the resulting pseudocode program�

	
 predictor 
	

forall l � f�� � � � � sg do

forall q � Gl do f

initialize v
���
l according to equation �
��

�rst processor in group� broadcast v
���
l to other groups�

initialize dn�gle components of fval
���
l cyclically according to �����

	
 corrector 
	

for j � �� � � � �m do f

forall l � f�� � � � � sg do

forall q � Gl do f

compute dn�gle components of w
�j�
l � h

Ps

i���ali � dli�fval
�j���
i cyclically�

solve Fj�l � � with Fj�l according to ���� in parallel by all gl processors in group Gl�

compute dn�gle components of fval�j�l cyclically according to �����g

	
 update 
	

forall q � P do f

compute dn�pe components of y��� � y� � h
Ps

l�� bl fval
�m�
l cyclically�

broadcast dn�pe components of y��� with bu�er technique� g

execute stepsize control in parallel�

Figure �� Parallel macrostep of the DIIRK version GrpRed for processors P � fq�� � � � � qpg�

Predictor� Group Gl initializes vector fval
�j�
l cyclically according to equation �	���

Corrector� Group Gl computes vector fval
�j�
l cyclically according to equation �	���

After the computation of fval
�j�
l � this vector must be made available to the processors of

the other groups because they need it for the next corrector step� In particular� processor

q needs the values fval
�j�
l �i
 with i � rows�q� for l � 	� � � � � s� Because the di�erent

groups may contain di�erent number of processors� it is best to make the entire vector

fval
�j�
l available to the processors of the other groups� This is realized by a two step

communication� First� fval
�j�
l is made available to all processors of group Gl and then

fval
�j�
l is distributed to the the processors of the other groups� see Figure �� The �rst

step can be executed by a single group�multi�broadcast operation� if we apply the bu�er

technique shown in Figure �� The second step is realized by a broadcast operation that is

executed by the �rst processor of each group�
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Figure �� Making fval
�j�
l

available to all processors� The �gure shows two groups G� � fp�� p�g and

G� � fp�g and uses a RK�method with s � � stages� fval
�j�
l is represented as fl� l � �� ��

� Numerical Experiments

For the implementation of parallel DIIRK methods on an Intel iPSC���� we use a ��stage Radau

method ��
 of order p � � as corrector and the simple last�step�value predictor from equation

���� Because of p� � min�p�m� 	�� we execute � corrector iterations�

All four implementations are applied to two classes of ODEs that di�er in the amount of com�

putational work of the right hand side f of the ODE� We distinguish two typical cases�

� f has �xed evaluation costs that are independent of the system size �sparse function��

� The evaluation costs of f depend linearly on the system size �dense function��

Both cases may occur when solving systems of di�erential equations with implicit methods�

The discretization of the spatial derivatives of a two�dimensional reaction�di�usion equation

�Brusselator with di�usion� results in a function f with a constant computational e�ort ��
� The

standard discretization of the spatial derivatives on an uniform grid with mesh size 	��N � 	�

leads to an ODE system of dimension n � 
N�� A function f with system size depending eval�

uation costs arises when solving nonlinear partial di�erential equations with Fourier�Galerkin

methods� see e�g� �	�
�

Figures �� �� and � show the measured runtimes and speedup values for sparse functions for

p � �� p � �� and p � 	� processors� Figures 	�� 		� and 	
 show the results for the case that

the evaluation costs of f depend linearly on the system size�

The global execution times of one macrostep are denoted by tConStd tConRed� tGrpStd and tGrpRed�

They include the runtimes for the predictor� the corrector� the update step and the stepsize

control� The Newton iteration stops if the error is smaller than 	��	� The precomputed function

values in the implementations ConRed and GrpRed are used for the computation of the Jacobian�

for the update step� and for the stepsize control� The given speedup values are obtained by

comparing the parallel global execution times with the global execution time of a sequential

program that is running on a single processor�

��� Observations and Interpretations

The experiments with di�erent parallel algorithm �consecutive order or groups�� di�erent com�
putation schemata �standard or reduced function evaluations�� di�erent classes of the right hand
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side f and di�erent numbers of processors show that it is not obvious what parallel implementa�
tion should be preferred� But several observations concerning the runtime and speedup values
can be made on the experiments�

Standard�reduced computation scheme Although the reduced scheme causes more com�
munication in a parallel implementation� the global execution time is considerably reduced if
the precomputed function values are used� Depending on the system size and the number of
processors� the precomputation of the function values reduces the global execution time by

� 	��
�� for sparse functions

� ������ for dense functions

The e�ect is especially large for dense functions� because the global execution time is dominated
by the computation time of the Jacobian�
Using the precomputed function values for the stepsize control and the update step of the DIIRK
method has only a very limited e�ect on the global execution time because these operations are
only executed once for each macrostep�

The speedup values for the variants using scheme Red are always smaller than for the associated
standard version because the contribution of the computational work to the global execution
time is reduced�

Consecutive�group parallel algorithm The runtimes of the group implementation Grp
are getting better with increasing number of processor compared with the consecutive imple�
mentation Con� The e�ect varies for dense�sparse function with the system size� i�e�

� for sparse functions and large system sizes Grp is much better than Con

� for dense functions Grp is only better than Con if the reduced variant is considered�

The group implementation Grp has a smaller communication overhead than the consecutive
implementation Con because the group broadcast operations only involve the processors of the
same group and use therefore less communication time�

E�ciency The e�ciency speedup�p of the four implementations mainly depend on the appli�
cation but also on the number of processor� The application of dense function result in good
speedup values while the speedup values for sparse functions are not satisfactory� A loss of
e�ciency be can be observed in both cases�

� For the consecutive implementation Con the loss of e�ciency is mostly caused by commu�
nication overhead� not by a load imbalance� The load imbalance is small� if the system size
is large compared to the number of processors� In this case� the equations of the system
can be distributed quite evenly among the processors� The communication overhead is
increasing with the number of processors because the costs of the broadcast operations is
increasing� This can be especially observed for sparse functions� see Figure � and ��

� For the group implementation Grp the loss of e�ciency is caused by communication
overhead and load imbalance� The impact of the load imbalance is large for small numbers
of processors if the groups contain di�erent number of processors� This is the case in
Figures � and 	� for p � � processors and s � �� Here� groups G� and G� contain one
processor each and group G� contains two processors�



� CONCLUSIONS 	�

Sparse functions The runtime and speedup values of the four implementations vary with
increasing number of processors� For p � � we have runtimes

tConRed � tConStd � tGrpRed � tGrpStd

which change to
tGrpRed � tGrpStd �� tConRed � tConStd

for p � 	�� Only for p � � processors� the consecutive implementation is slightly better than
the group implementation because of the large load imbalance of the latter one� see Figure ��
For larger numbers of processors� the group implementation reaches global execution times that
are much better than for the consecutive implementation�

The consecutive implementation Con only reaches limited speedup values that are not increasing
with the number of processors� see Figures � and �� This is caused by a large communication
overhead increasing with the number of processors� The communication overhead is caused by
the Gaussian elimination dominating the computation of the Jacobian� For larger number of
processors� the group implementation Grp reaches speedup values that are much better than for
the consecutive implementation� The reason for this lies in the smaller communication overhead
for the Gaussian elimination and in the fact that the load imbalance is getting smaller for
increasing number of processors�

Dense functions For larger system sizes� the parallel implementations using system Red
have runtimes which are considerably smaller than the runtimes of the standard scheme Std�
i�e� tRed �� tStr � The consecutive implementation Con has always smaller global execution
times than the group implementation Grp� i�e� tConStd � tGrpStd� In this case� the load imbal�
ance of the group implementation has a larger impact than the communication overhead of the
consecutive implementation� The communication overhead is decreasing with increasing system
sizes because the computation of the Jacobian is dominating� Only for small systems and larger
number of processors� the additional communication overhead of the consecutive implementation
is larger than the load imbalance of the group implementation�

But the global execution times for the reduced versions change with increasing numbers of
processor� For p � � we have runtimes

tConRed � tGrpRed �� tConStd � tGrpStd

which change to
tGrpRed � tConRed �� tConStd � tGrpStd

for p � 	��

The speedup values for the consecutive implementations Con are better than for the group
implementations Grp but the di�erence decreases with increasing numbers of processors�

� Conclusions

Although IVPs for ODEs are widely considered to be inherently sequential or at best to have a
small degree of parallelism� there exist algorithms for solving systems of ODEs with a large poten�
tial of parallelism� In this article� we considered the diagonal�implicitly iterated Runge�Kutta
methods and have shown that they can be successfully implemented on distributed memory
multiprocessors�
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from a combination of di�erent computation scheme �the original version Std and an improved
version Red� and di�erent parallel algorithms Con and Grp specifying the order of computation
and the data distribution�

The parallel implementations were applied to two classes of ODEs that di�er in the computa�
tional amount for computing the right hand side f of the ODE� It was not obvious what parallel
version would be the best for a speci�c ODE� The result of the experiments con�rm that the
performance of these implementations strongly depend on the application and the number of
available processor�

For dense functions and large systems� the consecutive algorithm results in smaller execution
times than the group algorithm� For small systems� the group implementation is slightly better
than the consecutive implementation� Both implementation reach good speedup values�
For sparse functions� the group implementation has smaller execution times because the com�
munication overhead is smaller than for the consecutive implementation� The speedup values
of the consecutive implementation are only satisfactory for p � � processors whereas the group
implementation reaches medium range speedup values also for larger numbers of processors�
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