Parallel Iterated Runge—Kutta Methods and
Applications

THOMAS RAUBER * GUDULA RUNGER
Computer Science Department
Universitat des Saarlandes
Postfach 151150
66041 Saarbricken, Germany
+49-681-302-4130
FAX 49-681-302-4290

{rauber,ruenger } Qcs.uni-sh.de

November 3, 1994

Abstract

The iterated Runge-Kutta (IRK) method is an iteration scheme for the numerical solu-
tion of initial value problems (IVP) of ordinary differential equations (ODEs) that is based
on a predictor—corrector method with an Runge-Kutta (RK) method as corrector. Embed-
ded approximation formulae are used to control the stepsize. We present different parallel
algorithms of the IRK method on distributed memory multiprocessors for the solution of
systems of ODEs. The parallel algorithms are given in an SPMD (single—program multiple—
data) programming style where data exchanges are described with appropriate communi-
cation primitives. A theoretical performance analysis and a runtime simulation allow to
value the presented algorithms. The implementation on the Intel iPSC/860 confirms the
predicted runtimes. The speedup values strongly depend on the particular system of ODEs
to be solved. The parallel IRK method is applied to a typical discretization problem, the
discretized Brusselator equation. Application specific modifications of the general parallel
ODE solver are developed which result in a considerable reduction of the parallel execution
time.

1 Introduction

Large systems of ordinary differential equations (ODEs) with initial value conditions arise, e.g.
when discretizing time dependent partial differential equations. The numerical solution of those
systems require a very large amount of computing power which may be covered by parallel
machines. Although the numerical solution of ODEs with initial value conditions is an inher-
ently sequential procedure (and, thus, difficult to parallelize), systems of ODEs provide a large
potential for parallel processing.

The general form of an initial value problem (IVP) of a system of first order ODEs of dimension
n is
dy(z)
dx
*supported by DFG, SFB 124, TP D4

= f(z,y(x)), y(z0) = Yo, 29 <2 < Tepd, (1)

1 INTRODUCTION 2

where y 1 IR — IR™ and f : IR x IR® — IR™. For the numerical solution of system (1),
several parallel methods have been proposed in the literature [10] [4] [5] [15] [7] [1] [19] [20].
But most of these methods only have a small potential of parallelism. The most promising
methods for a parallel execution are extrapolation methods and iterated Runge-Kutta (RK)
methods [17]. Extrapolation methods have been proposed in [18] for a parallel execution. [12]
and [13] consider the implementation of extrapolation methods on DMMs. Van der Houwen and
Sommeijer suggest IRK methods in [16] and [17] for a parallel execution on a shared memory
machines. They concentrate on mathematical characteristics (stability, convergence order) of
the methods and don’t give a runtime analysis or predict or measure speedup values.

For sequential implementations, implicit RK methods are seldom used as corrector in predictor—
corrector methods because they are much more expensive than linear multistep correctors. The
advantages of using RK methods for a parallel implementation are smaller error-constants and
a high degree of parallelism.

In this article, we consider a predictor—corrector method that uses an implicit Runge-Kutta (RK)
method as corrector. By iterating the corrector equation for a fixed number of times (fixed point
iteration), an explicit Runge-Kutta method is obtained [6]. Those methods are called iterated
Runge-Kutta methods (IRK methods). The used implicit or explicit RK corrector does not
influence the stability properties of the resulting IRK method. The IRK method is implicit or
explicit because of its iteration behavior whatever corrector is used and we, therefore, concentrate
on nonstiff ODEs. We propose parallel versions for the IRK method with stepsize control. We
describe the parallel algorithms in a coarse-grain compute-communicate SPMD (single-program
multiple-data) scheme suitable for the execution on asynchronously working DMMs. Thus, the
breakdown of the workload into subtasks, explicit synchronization points and necessary data
exchanges are specified. The data exchanges of the presented algorithms are expressed with
appropriate communication primitives which are available on all common topologies [2].

The suggested SPMD programming model allows the prediction of runtimes and speedup values
before an actual implementation is performed. An algorithm needs only to be implemented, if
the expected speedup values are satisfactory compared with other algorithms. The timing model

has successfully been applied to design parallel algorithms and predict runtimes for extrapolation
methods [12], [13].

The developed parallel versions of the IRK-methods exploit a parallelization across the method
(time) which means that different parts of one time step of the method are assigned to different
processors. The presented algorithms mainly differ in the ways of distributing the workload and
the data among the processors. Starting with an implementation where groups of processors
are responsible for the computation of subsystems, algorithms with delayed function evaluation
and cyclic data distribution are developed.

The theoretical performance analysis and a comparison of the presented algorithms are carried
out for the machine parameters of the Intel iPSC/860. The analysis is used to decide for a
practical implementation of one of the proposed algorithms on the Intel iPSC/860. Practical
tests with the implementation on the iPSC/860 provide the numerical evidence of the theoretical
predictions.

The attainable speedup values strongly depend on the evaluation time of the right hand side
function f. Large speedup values can be reached, if the function evaluation requires a lot of
computation time. Such functions result e.g. from the solution of partial differential equations
by variational methods [14]. But if the function evaluation only requires a few operations, the
communication time dominates the computation time and the speedup values are small. A
typical example for such a function f is the function that results from the discretization of the
Brusselator equation, a partial differential equation describing a chemical reaction [9].

2 ITERATED RUNGE-KUTTA METHODS 3

For the improvement of the performance of the IRK method when applied to Brusselator like
functions, we consider several alternatives. These alternatives take advantage of the specific
access structure of the Brusselator function by using appropriate communication operations or
a data distribution specially chosen for this application. By this, the efficiency of the method
can be increased by a factor of 2.5.

The remaining part of the paper is organized as follows: Section 2 describes the iterated Runge-
Kutta method with stepsize control. Section 3 briefly presents the parallel computation model
that we use for the runtime analysis. Section 4 investigates parallel algorithms and the resulting
runtimes for the iterated Runge-Kutta method. Section 5 contains the comparisons of the
algorithms which comprises the results of the practical implementation on the iPSC/860 and
theoretical investigations. Section 6 describes the Brusselator equation and discusses application
specific implementations and numerical results.

2 Iterated Runge-Kutta Methods

The iterated Runge—Kutta method is a predictor—corrector method with an s-stage implicit RK

corrector, [16], [17]. The chosen iteration strategy for the corrector phase results in an explicit
ODE solver.

2.1 TIterated Runge-Kutta (IRK) method with Fixed Number of Iterations

An s—stage, implicit, one—step RK-method has the form
S
Untt = Ye +h Dbt
=1

where 7, and y.4; are n-dimensional iteration vectors and the n-dimensional vectors v!, [=
1,...,s, are implicitly defined by the following system of equations of dimension s - n:

vl:f(yﬁ—l_hzalivi), [=1,...,s.
=1

b = (b1,...,bs) is an s—dimensional vector and A = (a;;) is an s X s matrix specifying the
particular RK method under consideration.

From this s—stage RK-method an explicit (iterative) RK-method is obtained by iterating the
equations for v* for a fixed number of times m:

’uéj):f(yﬁ—l_hzalluz]_l)), lzl,...,87]’:17‘”77’)@7

=1

and using the mth iterates ,u%m), .. .,,ufm) as approximations for »!,...,v*. The IRK method
proposed in [16] uses the iterated s—stage RK method described above as corrector method and
a simple (one-step) predictor method for computing the initial approximation :“%0)7 .. .,,ufo) for
vl, ..., v%. Thus, one time step of the IRK method is described by the following iteration scheme
(1):

:uéo) = f(yﬁ)v [= 17"'787 (2)

Hé]) = f(yH‘I'hZah,uz]_l))v lzl,...,S, jzlv"'vmv (3)

=1
Ye+1 = yﬁ—l-thl,uém). (4)

=1

3 PARALLEL PROGRAMMING MODEL 4

The vector y, represents an approximation of the solution y at the point x, and y,41 is an ap-
proximation of y(z,+h) that is obtained from y, by applying one step of scheme (I) with stepsize
h. The computation of y.41 starting from y, according to system (I) is called a macrostep. The
convergence order of the described method is p* = min(p, m + 1), where p is the order of the

used RK-method [16].

2.2 Stepsize Control

For the solution of the ODE system (1) in the intervall 29 < 2 < #.,4, several macrosteps using
iteration scheme (I) are necessary in order to approximate the solution y at the points,

0, 1,22, - -y Tend, With ;.41 = 25 + hy.

In order to achieve a good approximation and to maintain a fast computation time, the stepsizes
ho, hy ... have to be chosen as large as possible while guaranteeing small approximation errors.

For the problem of chosing appropriate stepsizes, we exploit the following automatic stepsize con-
trol [6]. With the same given starting stepsize h two different (embedded) approximations y;4+1
and g;41 for the solution y(z;41) are computed. The new stepsize Ay, is computed according
to the formula

) (5)

which uses the error between those two approximations error = ||y;11 — §;+1|| and the upper
bound bound = maz(|y;|,|yi+1|) of the solution in the intervall [z;,2;41]. ord is the minimal
convergence order of the used approximation method.

bound) 1/(ord+1)

1
hpew = h * min(6, max(g, 0.9 * (
error

The new approximation vector y;4q is accepted if error < bound. In this case, hye, is used
to compute y;42. Otherwise, the computation of y;41 is rejected and is repeated with stepsize
Ponerw -

The system (I) provides several embedded approximation solutions by using iterations ,uéj) for
Jj < m and equation (4) (see [16], [6], [11])

v =yt WY bung.
=1

3 Parallel Programming Model

This section proposes a programming model that is suitable for a DMM where the processors
communicate through an interconnecting network that consists of direct communication links
joining certain pairs of processors. The communication is executed by explicit message passing
statements.

The algorithms are formulated in a coarse—grain compute—communicate scheme. The compu-
tations are performed according to the SPMD model, i.e. similar subcomputations on different
portions of problem data are executed. Thus, the division of the problem data and their assign-
ment to different processors is an important part of the design of an algorithm. In order to avoid
data redistribution when combining different modules, one has to ensure a similar distribution
structure for the modules.

The data exchange is performed in a synchronous communication phase. A communication
phase is expressed by one of the following communication primitives which have efficient imple-
mentations on almost all interconnection networks [2]. (Fach processor represents one node of
the network.)

3 PARALLEL PROGRAMMING MODEL 5

¢ Single Node to Single Node: One processor sends a message to a single other processor.

¢ Single Node Broadcast and Single Node Gather with Reduction: A single node
broadcast sends the same message from a given processor to every other processor. For a
single node gather with reduction, a given node receives a message from every other node.
The messages are combined by a reduction operation at each intermediate node.

¢ Single Node Scatter and Single Node Gather: A single node scatter sends a sep-
arate message from a single node to every other node. The dual problem, called single
node gather, collects a separate message at a given node from every other node without
performing a reduction operation.

¢ Multinode Broadcast and Multinode Gather with Reduction: A multinode broad-
cast executes a single node broadcast simultaneously for all nodes. A multinode gather
with reduction executes a single node gather with reduction at each node.

¢ Total Exchange: A total exchange sends an individual message from every node to every
other node.

The transfer time of a message of M bytes between two processors P, and P, (single node to
single node) using a transfer path with d = dist(Py, P2) processors can be computed by a formula
[3] which is independent of the special interconnection network of the DMM

too(d, M) = 7(d, M)+ M - t.(d, M) (6)

7(d, M) is the startup time of the message which mainly depends on the distance d, but may also
depend on M, e.g. if the target machine uses different communication protocols for messages of
different sizes as in the case of the Intel iPSC/860. t.(d, M) is the time to transfer 1 byte. This
time may also depend on M if different protocols are used.

For a hypercube network, Johnsson and Ho address the exact running times of the other com-
munication primitives [8]. The complexities of the primitives for different topologies are given
in [2].

The performance of a developed parallel algorithm is measured in a tizming model that contains
the problem sizes and machine descriptions like the processor number or the startup time and
the bytetransfer time as parameters. By substituting the actual values of the parallel machine
for these parameters and by using topology dependent runtime formulae for the communication
primitives, we predict upper bounds of the exact runtime of an algorithm on this machine.

Notation: For the formulation of the parallel algorithm, we use a C-like pseudocode nota-
tion. The communication is described with the presented primitives, e.g. single-broadcast,
single-gather, multi-broadcast. The execution of a single node gather at a node ¢ with
reduction operation op and local data Rj,.,; of the single processors is denoted by

R = single-gather, (op)(Riocal)-

After the execution, R is available on g¢.

A computation is expressed by informal descriptions and some control statements. Those state-
ments are forall and for. The iterations of a forall statement are executed in parallel whereas
the iterations of a for statement are executed one after another.

For the prediction of the runtimes, we use the abbreviations 5 proqa(M), ts_gather (M), tim_broaa(M)
which denote the times to execute a single node broadcast, a single node gather or a multinode

broadcast operation of M bytes. We suppose that an arithmetic operation takes time ¢,,, inde-

pendently of the operation. Note that this assumption is correct for most of the modern risc

architectures like the SPARC or SupersPARC processors or the Intel :860.

4 PARALLEL ITERATED RUNGE-KUTTA (PIRK) ALGORITHM 6

/* equation (2) */
forall [€{l,...,s} do
forall ¢ € G; do {
compute [n/g;| components of f(y.);
initialize [n/¢;| components of “&0“"’“3n;
}
/* equation (3) */
for j=1,....,m do {
forall [€{l,...,s} do
forall ¢ € (G; do {
compute [n/g;| components of ﬂU,j)::yﬁ+—h§:iilaHu@_lﬁ
multi-broadcast [n/g;] components of fi(l,j);
compute [n/g;| components of u£ﬁ = f(a(l, j));
multi-broadcast the computed components of ub);
}
/* equation (4) */
forall processors ¢ do
compute [n/p| components of Y.i1;
multi-broadcast the computed components of y.i1;

}

Figure 1: algorithm (A) — Group distribution, System (1)

4 Parallel Iterated Runge-Kutta (PIRK) Algorithm

We propose several parallel algorithm for the implementation of the IRK method. These algo-
rithms combine different ways of distributing the computational work and the data among the
processors. (p denotes the number of available processors.)

(A) Group distribution: First, we describe the group distribution scheme for the case that
the number of available processors is greater than the number of stages, i.e. p > s. The pseu-
docode program of this algorithm is given in Figure 1.

The set of processors is divided into s groups G',...,G 5. The groups G contain about the same
number ¢; = [p/s] or ¢; = |p/s| of processors, [= 1,...,s. The initialization (equation (2))
is performed by each group such that each processor owns [n/g;] components of :“%0)7 .. .,,ufo)
which are needed for the first iteration step. In each iteration step j = 1,...,m of equation (3),

group Gy is responsible for the computation of one subvector ,uéj), [€{l,...,s}. This consists
of the computation of vector i({,7) = y. + h > i, aliﬂé]‘_l) and the evaluation of f(a(l,7)) =
(Al 9)), .o, fulfi(l,4))). In order to achieve an even distribution of the computational work
among the processors, each processor ¢ € (; computes at most [n/g;] components of fi(l,j)
and executes at most [n/g;] function evaluations f;(fi(l,j)). Between these steps, processor ¢
communicates its local elements of fi(/,) to the other members of the same group. After each
iteration step, each processor sends its local elements of ,uéj) to all other processors and, thus,
the vectors ,u%j), <oy J(;y are available on all processors for the next step. The computation of
Yx+1 is performed in parallel by all processors and the result is broadcasted such that y,4q is
available on all processors for the next macrostep.

4 PARALLEL ITERATED RUNGE-KUTTA (PIRK) ALGORITHM 7

(B) Group distribution and delayed function evaluation: In order to save communica-
tion time, it seems to be convenient to delay the evaluation of function f to the next iteration
step by applying the transformation

l l .
f(O'(]')):,u(]‘) ; 7=0,...,m— 1
This yields a macrostep of the IRK method given by the following system (II):
Ufo) = Yy, l=1,....8 , (7)
l 7 .
oGy = yﬁ—l—hZaHf(U(j_l)) , I=1,....s , j=1,...,m, (8)
=1
Yst1 = Yut h Z b[f(O'ém)) . (9)
=1
Again, the set of processors is divided into s groups G, ...,G s of processors. The initialization
of 0(10), .. .,0'(50) is performed by all processors in parallel. In each iteration step j, group G| is
responsible for the computation of subvector O'éj), [=1,...,s, i.e. each processor of group G
performs at most [n/g;] function evaluations of f(afj_l)), t=1,...,5, and computes at most

[n/g1] components of O'éj . Because of the delay of the function evaluation, no communication
of local elements between these two steps is required. Only at the end of an iteration step,
each processor sends its local elements of O'éj) to all other processors such that O'éj), [=1,...,s

are available on each processor. The evaluation of f(afm)) and the computation of y.4q is
distributed among all processors. A broadcast operation ensures that y.4q is available on all

processors for the next macrostep. The pseudocode program of this algorithm is given in Figure
2.

(C) Cyeclic block distribution: The cyclic block distribution exploits the fact that the
system (II) consists of s subsystems each creating one of the next subvector iteration Ufj),
[€ {1,...,s}. The initialization is performed by all processors. The computation of each
subsystem is evenly distributed among all the processors in a similar blockwise way. Considering
the entire system (8), this results in a cyclic blockwise distribution with s cycles and block
sizes [n/p|. Thus, each processor is responsible for the computation of those components of
every subvector O'(lj), .. .,O'(Sj) with the same indices. This consists in at most [n/p] function

evaluations of (fl(afj_l)), .. .,fn(afj_l))) and the computation of a block of [n/p] components
of the new iteration vector O'éj) of each subsystem [. The broadcast operation (*) performs

the data exchange such that O'lj , 1 =1,...,s, are available for the function evaluation in the
next iteration step. The computation of y,41 exploits the same blockwise distribution of the
computational work as the subsystems. The pseudocode program is given in Figure 3. The
blockwise distribution avoids multiple computations of the same function evaluation.

Stepsize control: The stepsize control mechanism presented in Section 2.2 is combined with
the macrostep of the IRK-method. We consider the embedded solutions y,4+1 = y™) and y(m—1)
and choose the maximum norm. For the error, we get the formula

(m—-1) ||

error = ||Ypr1 — ¥

B 13w (£ = (b
=1

B+ max |37 s (Fof) = f(ol,0)) (10)

4 PARALLEL ITERATED RUNGE-KUTTA (PIRK) ALGORITHM

/* equation (7) */
forall ¢ do
for I=1,...,s
initialize all components of U&U;
/* equation (8) */
for j=1,...,m do {
forall [€ {l,...,s} do
forall ¢ € G do {
for :1=1,...,s5 do
compute [n/g;| components of f(a@_lﬂ;
compute [n/g;] components of Ub);

multi-broadcast the computed components of Ub);

¥
¥

/* equation (9) */
forall processors ¢ do {
for ¢=1,...,s8 do
compute [n/p| components of f(a@nﬂ;
compute [n/p| components of Y.i1;
multi-broadcast [n/p| components of ¥.i1;

}

Figure 2: algorithm (B) — Group distribution, System (II)

4 PARALLEL ITERATED RUNGE-KUTTA (PIRK) ALGORITHM 9

/* equation (7) */
forall ¢ do
for I=1,...,s
initialize all components of Uf
/* equation (8) */
for j=1,...,m do
forall ¢ do {
for :1=1,...,s8 do
compute [n/p| components of f(a@_lﬂ;
for [=1,...,s do
compute [n/p| components of Ub);

0)

multi-broadcast the [n/p| computed components of U@d; ()
¥
/* equation (9) */
forall ¢ do {
for :1=1,...,s do
compute [n/p| components of f(a@nﬂ;
compute [n/p| components of y.i1;
multi-broadcast [n/p| components of ¥,41;

}

Figure 3: algorithm (C) : Cyclic data distribution, System (1)

The parallel computation of the stepsize control is given in Figure (4). The value bound is
computed by determining the local maximum and collecting the local results with a single node
gather operation with maximum reduction. erroris determined according to (10) by computing
f(afm)) — f(aém_l)) in a distributed way and again collecting the results with a single node
gather operation.

The following lemma determines approximations t4, tg, tc and c4, ¢g, ¢c to the computation
times and the communication times of the presented algorithms (A), (B) and (C).

Lemma 1 The parallel algorithms of the IRK-method according to Figures 1, 2 and 3 require
computation times

o= (][e (w24 [o) [2o
= m — S 0 m Sy
A _gmin _P_ b Imin Imin / Imin b
n n n n
t = (m -‘—I— —) 2s+1)t,, + (ms[-‘—I—s [—-DT +nst, 12
b _gmin _p_ () g Imin) P / P ()
n n n n
tc = (m —-‘s—l— —) 2s+1)1,, + (ms [—-‘ + s —-DT +nst, 13
» » () P » » f P ()

and communication times

ca = 2min broad ([:m-‘) + tm_broad ([%-‘) (14)
Mty _broad (Lm%-‘) + tm_broad q%-‘) (15)
cc = SMly_broad (%) + i _broad q%-‘) (16)

‘B

4 PARALLEL ITERATED RUNGE-KUTTA (PIRK) ALGORITHM

while & < Zepg do {
parallel IRK algorithm (4), (B) or (C);
/* computation of bound */
forall ¢ do
compute local-maz,= max of local elements of |y.41| ;
for processor 0 do {
norm = single-gatherg(max) (local-maz,);
compute bound = max(||y.+1l, [|yxl]);
broadcast bound;
}
/* computation of error */
forall ¢ do {
compute [n/p| components of 9, ::E:izlbl*(f(aan))—-f(aan_l));
compute the maximum M, = max,(9,) ;
}
for processor 0 do {
M = single-gatherg(max) (M,);
compute error = h* M ;
broadcast error;
}
/* equation (5) */
forall ¢ do {
compute heq;
if (error <bound) z=x+nh
else reject the computed approximation vector

h = hnew;

Figure 4: IRK-method with stepsize control

5 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS 11

where Imin = minl:l,...,s(gl) and Tf = max;=1,.,n teval(fi)-

Proof:
Algorithm (A): The initialization of :“éo) requires [n/g;]s function evaluations and [n/g;]| assign-

ments. In each of the m iterations, the computation of fi(l, j)and ,uéj) takes time [n/¢;](2s+1)t,,
and [n/g;|Ty, respectively. The computation of the next iteration y,4q vector takes time
[n/p](2s + 1) t,,. The multi-broadcast operations result in the given communication time.

Algorithm (B): The initialization requires ns assignments. For each iteration, the computation
of Ufj) require [n/g;]s function evaluations and [n/¢;](2s 4+ 1) arithmetic operations. For the
computation of y.11, [n/p]s function evaluations and [n/p](2s + 1) arithmetic operations are
necessary.

Algorithm (C): The blockwise initialization require ns assignments. Each iteration step performs
[n/pls function evaluations and [n/pls(2s + 1) operations. The computation of y,11 requires
[n/pls function evaluations and [n/p|(2s + 1) arithmetic operations. O

Lemma 2 The stepsize control presented in Fig.4 requires computation time
n n
tstep = ((3s+1) [;-‘ +3) top + 25 [ﬂ T; (17)

and communication time
CSTEP = Q(ts_gather(l) + ts_broad(l)) (18)

Proof: Follows directly from the algorithm presented in Figure 4. O

Lemma 3 A sequential implementation of the IRK method according to system (1) is faster
than a sequential implementation according to system (11). The sequential computation times
are

tyseqg = (Ms+1)n(2s+ 1)ty + (sm+1)n Ty
t(IT)seq = (ms+1)n(2s+ 1) tep +s(m+1)nTy

5 Numerical Experiments and Comparisons of the Algorithms

5.1 Runtime Behavior of the iPSC/860

For the prediction of the runtimes on the hypercube iPSC/860, the machine specific times for
tops ts broad and ts_gatner have to be determined and substituted into the formulae of Lemma 1.
For t,,, we use mean values of the measured runtimes for different operations. This comprises
arithmetic operations but also array access times. For ¢, _jo¢per and ts proqq, We use the theoreti-
cally developed runtime formula for the hypercube architecture [8] that depends on the message
size M, the startup time 7 and the bytetransfer time #.:
p—1

ts_broad(pv M) = ts_gather(pv M) = @Mtc + (

P

I
log p + ng) l

The runtime of t,,,_5,04q not only depends on the interconnection network of the machine but also
on the runtime system. On the iPSC/860, the runtime function geolx is the fastest way to realize

5 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS 12

gl obal execution tinmes in sec for constant Tf for p=4 gl obal execution times in sec for linear Tf for p=4
3 3500

T T T T T T T T T T T T T T T
groups —— groups —<— |
2.5 | groups delayed -+- P 3000 - groups del ayed —+-- A
' cyclic -8 cyclic -m- v
2500 | S
2+ 4
2000 | g
1.5 page
1500 .
1r B ’ h
1000
0.5 B 500 -
= "+/
0 LB . 1 1 1 1 1 0 - s 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
n n
Figure 5: Predicted global execution times with stepsize control for p = 4.
gl obal execution tinmes in sec for constant Tf for p=8 gl obal execution times in sec for linear Tf for p=8
3 T T T T T T 1600 T T T T T T T T T
groups —<— B groups —<— i
2.5 L groups del ayed —+- | 1400 groups del ayed -+-
. cyclic -&- cyclic 8-
1200 B
2+ -
1000 | 4
1.5 F . 800 g
B
600
1k i |
400
0.5 B
200 .
200 ”+f
0 LB ~ 1 1 1 1 1 0 o—m—th=t—if ¥ 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
n n

Figure 6: Predicted global execution times with stepsize control for p = 8.

a multinode broadcast operation. But the concrete implementation on the topology is hidden
for the user. Furthermore, the runtime of gcolx does not obey one of the theoretically developed
runtime functions presented in [8]. Practical tests show that for fixed number of processors p
the runtime for geolz depends linearly on the size of the transmitted messages M, i.e.

Tgcolx(M) = atc,T(P) M + bT(p)

The coefficient b,(p) only depends on p and 7. A possible message size dependent part of the
startup time 7 is contained in the coefficient a4, -(p) which additionally depends on ¢, and p.
The values for ¢, and 7 are fixed for a special machine like the iPSC/860. The coefficients a and b
are monotonically increasing functions of the number of processors p. Tests show a4, -(2) = 0.5,
ar, +(4) = 2.3, ar, -(8) = 5.6, and a¢, -(16) = 12. For b-(p), we get b,(2) = 320, b-(4) = 800,
b-(8) = 1200, and b,(16) = 1800.

5.2 Runtime Comparison of the Algorithms

The runtime prediction formulae of Lemma 1 used with the iPSC/860 specific parameters and
runtime functions result in simulations of the expected runtimes. The Figures 5, 6, 7 present
the predicted runtimes of the parallel IRK algorithms (A), (B) and (C) for different numbers of

5 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS 13

gl obal execution times in sec for constant Tf for p=16 gl obal execution times in sec for linear Tf for p=16
2~ 5 T T T T T T 700 T T T T T T T T T
groups —— groups —<—
groups del ayed -+~ 600 - groups del ayed —+- s
2 cyclic -8-- : cyclic -a--
500 e
1.5 e 400 - i
.o ‘
1k] 300
200
0.5 - _
100
S5 ~+
0 A 1 1 1 1 1 1 0 B = 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
n n

Figure 7: Predicted global execution times with stepsize control for p = 16.

processors p = 4,8, 16. We use a 3—stage Radau method [6] of order p = 5 as corrector. Because
of p* = min(p, m + 1), we execute 4 corrector iterations.

Each of the Figures 5, 6, 7 contains the runtimes for solving a system of ODEs with two different
classes of right hand side functions f:

(con) f has constant evaluation time 7'y and

(lin) f has an evaluation time 7’ that depends linearly on the system size n.

Both cases may occur in applications when solving time dependent partial differential equations.
For example, the spatial discretization of partial differential equations leads to functions f with

constant 7y and a variational method may lead to an ODE with functions f with system size
dependent T'.

Let T4, Tp and T denote the global execution times of the algorithms (A), (B) and (C),
respectively, i.e. for example Ty = t4 + c4. (The dependence on p, n and T is omitted in this
notation.) ;From the simulations, several observations concerning 74, Tg,T¢c can be made:

o The difference of the runtimes of the algorithms (A), (B) and (C) depend on both, the
processor number p and the assumption (con) or (lin) for the right hand side function f.

e For f with constant evaluation time we have:

— T4 >1Tp > T¢, as it was expected when developing the algorithms.

— For increasing processor number p = 4,8, 16 the differences between the runtimes
change from Ty > T >> Tc to Ty >> T > T¢,

e For a right hand side function f with evaluation time depending on n, we have:

—Tg>T4and Ty > T¢ .

— For processor numbers p = 4,8 we have Ty > T4 > T, but for processor number
p = 16, we have Tg > T > Ty, i.e. the first algorithm is the fastest.

The algorithms (B) and (C) have been developed because of an expected speeding up of a
parallel implementation by reducing the data exchange (from (A) to (B)) or the number of
function evaluations (from (B) to (C)). Although this improvement seems to be obvious at first
glance, the observation of the theoretical simulation (for some cases of p and 7’s) do not confirm
the intuition and do even contradict them in some cases. The simulations suggest that the choice

5 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS 14

of the algorithm with the fastest computation time strongly depends on the special application
and the number of the used processors. In order to explain the observed phenomena and to get
a general criteria deciding which of the algorithms is the best in a particular case, we study the
runtime formulae of Lemma 1 in more detail. To this end, the runtime formulae are conceived
as functions with parameters p and 7y and the asymptotic behavior for large n is investigated.

5.3 Asymptotic Behavior of the Runtimes

For a consideration of the asymptotic behavior, it is sufficient to assume that p and || divide

n. (In comparison with n, the numbers p and [2] are very small.) Let d = —— — £ denote
| s Imin P

the difference between T and % with gpmin = [£]. Thus, d > 0 and d = 0 if and only if p is
dividable by s.

Lemma 4 (Runtime comparison for algorithms (B) and (C))
a) For s =1, we have Tc = Tg.
b) If s > 1 and 2b.(p) < Ty, then for all n > 1 we get: T > Tc.
c) If s > 1 and 2b.(p) > Ty, then for all n > ngT_(;ﬁ: Tg > T¢.

d) For fized n and fized Ty, the difference Tp — T is getting smaller if the number of
ProOCeSSOTs p 1S INCTreasing.

Proof: a) follows directly from Lemma 1. For the other cases we use:

TB — TC = Al n 4+ B1 with (19)
s—1
Al = ms (T—l—d)Tf—l—dm ((25—|—1)t0p—|— atM),
B1 = (1-=s)mb.(p),.

from Lemma 1. For 1 Bb (p) < Ty, we get from formula (19): T — Tc > 0 . Thus, b)
and c¢) follow. For d), we assume that s divides p, i.e. d = 0. Then, we have Tp — T¢ =

(ms S;ITf)n + (1 — s)m b-(p) which is an increasing function of p. O

Remark: Lemma 4 confirms that T > T holds for almost all system sizes n. (The lower bound
%% for n is small.) The behavior for the case that T linearly depends on n is covered by
Lemma 4b). Lemma 4d) describes the effect when considering the three simulated plots one

below the other in Figures 5, 6, 7 for fixed n.

Lemma 5 (Runtime comparison for algorithms (A) and (B))

a) For s =1, we have Ty = Tp + mtm_bmad(%) + lp%ptopn.

b) If s> 1 and Ty > m(atcﬁ(m + gmmbT(p)), then for alln € IN: Ty < Tp.
c) If s > 1 and Ty < (5_1)(77T£+gmm) (sl_ilMi"top + atc’T(p)), then for allm € IN: T < T4.

d) For fized n and fized Ty chosen according to c), the difference Ty —T'g is increasing for
an increasing number of processors p.

Proof: a) The case s = 1 follows directly from Lemma 1. For s > 1, we get from Lemma 1

TB — TA = A2 n 4+ B2 with (20)
m 1 1 mayg T(P)
Ay = s—1 +)T+ s(1 — top — = ,

B;

—m bT(p)v

5 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS 15

b) From formula (20), we get T > m (atcﬁ(p) + %gmm bT(p)) and thus Tg > T4.
¢) Ty < =) (Zg_l_gmm) (sl_gmi" top +ar. (p) + %gmm bT(p)), and thus T < Ty.

m

d) T4 — T > mb,(p) which is an increasing function in p. O

Remark: Lemma 5 reflects the fact that T > T4 if the additional computation time (s — 1)7%
is more expensive than the saved m broadcast operations of time. For small, constant 7y and
fixed n, Lemma 5d) explains the varying distances between of Ty and T in Figures 5, 6, 7.

The investigation of the last runtime comparison, the difference between T4 and T¢, depends
on the value d = —1— — 2. Thus, for the decision whether algorithm (A) or algorithm (C) is the
fastest algorithm and should be used, we have to consider T, p,n and d and their interacting
influence on T4 — T¢.

Lemma 6 (Runtime comparison for algorithms (A) and (C))

a) If s=1, thenTy =Tc + mtm_bmad(%) + l%topn.

b) Ifs=2and md—1/p >0 (i.e.d #0), then for alln € IN: Ty > T¢.

c) If s=2and md—1/p < 0, then there exists a constant G, 4 > 0 such that for Ty < G, 4
and all n € IN we get: Ty > Te.

d) If s > 2 then for all n with Sagc_’a(p) - %(5_(2316;@) > 0, there exists a constant G, 4 > 0
(depending on d, p) such that for Ty < Gpq : Ta > Tc.
The constant Gy, 4 is an increasing function of d and a decreasing function in p.

Proof: a) follows directly from Lemma 1. For all other cases, we exploit:

TA — TC = A3 n 4+ B3 with (21)
1-—s m ay T(P) 1
As = (md+ ——)Ty +dm ((2s+ 1)top + a4, 7) + ——= + (1 - tons
Bs = (2-s)mb.(p),

b) If s = 2, then B3 = 0 and Az > 0 for md — 1/p > 0.
¢) For md—1/p <0, we get T4 > T¢ if and only if T is small enough.
d) For

sm ag, - (p)
s—1

p

— 2
1(m(2s+ D) oy + mar, ;) - %(5) pbolpim & p

T z
;< (s—1) s—1"s

d — iy,
b ey

we get according to formula (21) that Ty > T¢. O

Remark: Lemma 6 shows that algorithm (C) is faster than algorithm (A) if the time T is
bounded by a constant depending on the number of processors p and the introduced parameter
d. Thus, for small T} of case (con) the result is obvious (see Figures 5, 6, 7). For the case
(lin) and large T the situation may change. Because the constant (), 4 is decreasing in p (with
fixed n and T%), algorithm (C) may become slower than algorithm (A) which can be observed
in Figure 7 for case (lin).

5.4 Implementation

JFrom the runtime analysis we get that the third algorithm is the best algorithm for most of
our cases. Following the theoretically derived results about the runtimes, we have implemented
algorithm (C) on the Intel iPSC/860 using system (II) with a cyclic data distribution. Figures

5 NUMERICAL EXPERIMENTS AND COMPARISONS OF THE ALGORITHMS 16

neasured and predicted speedup values for p=4

constant 7'y T} linear in n
n|meas.|pred. n meas. pred. a5 LEERETE S °]

242[[0.044]0.032|[100|| 0.156] 0.124 ’

882(/0.143]0.108|| 500|| 2.885| 2.876 sl i
1992(10.213(0.229]| 1000 11.418 11.420 predi cted constant —<—
3362 0.383(0.393| 1500| 25.575| 25.633 . Mored cied inear o |
5202|0.625(0.608| 2000\ 45.346| 45.517 reasured 1inear
7442(10.891/0.865|| 3000|| 101.598| 102.294 N |
10082([1.176]1.169|| 5000|| 282.220| 283.889 T
13122 1.524(1.515([10000]|1128.543(1134.775 LY T o

5
0 2000 4000 6000 8000 10000 12000 14000
n

Figure 8: Algorithm (C): measured and predicted running times in seconds and speedup values for p = 4.

neasured and predicted speedup values for p=8

constant T’s T linear in n it T — %
n|/meas.|pred. n| meas.| pred. ! _ﬁ i

242(10.047(0.030|| 100|| 0.083| 0.071 6 5 .

882(|0.113]0.096|| 500|| 1.472] 1.474 sl oredi cted constant o -
1992|(0.215]0.203|| 1000|| 5.731] 5.756 measured constant -+
3362(|0.352(0.349|| 1500|| 12.810| 12.920 af Preasurod || near -
5202(/0.551]|0.539|| 2000|| 22.643| 22.849 sl 1
7442(0.760(0.767|| 3000(50.737| 51.283
10082||1.006(1.036]|| 5000|/140.834(142.169 2 [gt = = o
13122]11.336(1.345](10000(|561.850(567.835 ,

1
0 2000 4000 6000 8000 10000 12000 14000
n

Figure 9: Algorithm (C): measured and predicted running times in seconds and speedup values for p = 8.

8,9.10 contain tables with the measured and predicted global execution times and diagrams
with the measured and predicted speedup values for p = 4, p = 8, and p = 16 processors. The
execution times are given for the cases (con) and (lin), where T in the first case comes from
the Brusselator example (see Section 6.1) with n = 2N2 N € IN. The given speedup values
are obtained by comparing the parallel global execution times for algorithm (C) with the global
execution time of the sequential program for (I) (see Lemma 3). All speedup values contains the
costs for the stepsize control. Because this is executed by each processor, the speedup values
are reduced.

A comparison of the predicted and the measured execution times and speedup values shows
that the predicted values are quite accurate. Only for small n, the predicted execution times
are smaller than the measured times. This may be caused by a fixed overhead for the parallel
program which is not considered in the runtime analysis.

For all considered processor numbers, the speedup values of the (lin) case are much higher than
those of the (con) case. The reason for the good speedup values for the (lin) case are the function
evaluation times which extremely dominate the communication times. On the other hand, the
attained speedup values in the (con) case are very poor.

The given speedup values suggest that the described IRK method is only suited for an imple-
mentation on a DMM, if the evaluation time for the right hand side function is large compared
with the time to execute a multi-broadcast operation ((lin) case). One possibility to improve

6 APPLICATION TO A DISCRETIZATION PROBLEM 17

neasured and predicted speedup val ues for p=16

16 T T T T T T

constant 1’ T} linear in n 14| gl 5 |

n|/meas.|pred. n| meas.| pred. W

242[10.052[0.029][100] 0.061] 0.046 2 1
882(10.113(0.090| 500/ 0.786| 0.774 10 | predicted constant <-— -
1992(/0.211]0.188|| 1000| 2.950| 2.947 ol Mored cted I near o
3362(/0.341(0.323| 1500| 6.510] 6.527 reasured Tnear
5202([0.505[0.496| 2000/ 11.451| 11.513 °r I
7442|[0.71410.707|| 3000/ 25.623| 25.842 4t -
10082([0.953(0.954|| 5000/ 70.733| 71.416 o) P —e .
13122([1.239(1.239([10000|[281.975(284.349 , , , , ,

0
0 2000 4000 6000 8000 10000 12000 14000
n

Figure 10: Algorithm (C): measured and predicted running times in seconds and speedup values for p = 16.

the communication is to copy the data that has to be communicated into a buffer before the
broadcast operation and to execute the broadcast in one step. But experiments on the iPSC/860
show that this only results in a smaller communication time for small system sizes. For larger
system sizes, the savings in communication time is outperformed by the costs of the copy oper-
ations. For the (con) case, we consider a typical example and try to improve the poor speedup
values in the next section.

6 Application to a Discretization Problem

Systems of ODEs with right hand side function of case (con) arise when solving a time dependent
partial differential equation by spatial discretization. A typical example is the Brusselator
equation which we solve numerically in this section.

6.1 The Brusselator Equation

The Brusselator equation is a nonlinear partial differential equation from chemical kinetics that
describes the reaction of two chemical substances [9]. We consider a particular Brusselator
equation, the following reaction—diffusion equation [6]:

ou 5 *u 9*u
ov 5 *u 0%u
0< <1, 0<y<I, t>0, a=2%10"° (24)
with Neumann boundary conditions
gy
o o

and initial conditions
w(z,y,0)=05+y, wv(z,y,0)=1+ bz.

6 APPLICATION TO A DISCRETIZATION PROBLEM 18

............................ - Po

O=89->0 pe;

| — e - /6 / /
SN

O
v v éi_) 5

P3

o

O
O

Figure 11: Access structure of the Brusselator function.

The standard discretization of the spatial derivatives on a uniform grid with mesh size 1/(N —1)
leads to the ODE of dimension 2N?2.

du;;

dt] = 1+ ufoy — 4dug+ (N = 1) (g g+ i + iy + w0 — 4w) (25)
dv;;

- = 3wy —ufoi +a(N = 1) @i+ vic v+ oo - 4vi) (26)

The boundary conditions result in:

Ug,; = U2,55, UN41,5 = UN—-15, Uj0 = Us2, UiN+1 = Uj Ny

6.2 Parallel Solution of the Brusselator Equation

Explicit Runge-Kutta methods are the adequate numerical method for the solution of the spa-
tially discretized Brusselator equation [6]. For the parallel solution, we use the third parallelized
version of the IRK method presented in Figure 3.

As mentioned before, this algorithm does not attain good speedups for Brusselator like equations.
This is mainly caused by the costs of the broadcast operation (*) in algorithm (C) in Figure 3
after each corrector iterations step. The data exchange is necessary for the numerical correctness
of the method and, thus, no communication phase could be omitted in the general case. But for
a specific application, it is possible to reduce the time needed for each communication phase by
investigating the necessary updating before starting the next iteration.

6.2.1 Application Specific Communication

In the general case, the communication is realized by a multi-broadcast operation, i.e. each
processor executes a broadcast operation, such that the whole iteration vector of size n * s is
available on each processor after the communication. According to the access structure of the
Brusselator equation, it is possible to replace this communication by a more cost—effective data
transmission.

6 APPLICATION TO A DISCRETIZATION PROBLEM 19

0
oo EN N I I . ﬁﬁiﬁlﬁfﬁ S SO RN OOy A O .
p1 i.g ..
0
p2 U ;’1 U
03 ig ...
7 G)) Gy 40

Figure 12: Cyclic and double cyclic data distribution for the Brusselator function. The dotted lines indicate
the data domains of the processors. The size of the system is s - 2N?2. The figure shows the case s = 3.

For the Brusselator equation, the solution vector y of system (II) (and also the iteration vectors

O'éj) and y,) have the form y = (u,v) with

y(ix N+j)=u(i,j), and y(N*+ixN+j)=0(i,j), 0<i,j<N,
see Figure 11. Thus, we can illustrate the cyclic data distribution of algorithm (C) as shown in

Figure 12.

The right hand side function f = (f1,..., fu), n = 2% N2, of the Brusselator equation (25) and
(26) only needs a few of the updated values of Ufj) or Y., see Figure 11. The resulting data
exchange of a processor ¢ is given in the next lemma that implies algorithm (D). (The processors
are numbered consecutively by ¢ =0,...,p—1.)

Lemma 7 Ifp is even and N > p/2, it is sufficient that processor ¢ communicates with at most
three processors. Those processors are:

g+1, q+p/2 for ¢=0

g—1, q+1, q+p/2 for 0<qg<p/2-1
q—1, q+p/2 for q=p/2-1
q+1, q-p/2 for q=p/2

q—1, q+1, q-p/2 for p/2<q<p-1
q—1, q-p/2 for q=p-1

Proof: Consider the computation of u; ;. To access the neighboring elements of v according to
formula (25), processor ¢ has to access elements in the data domain of the neighboring processors
¢ — 1 and ¢+ 1. The accessed element v; ; is located in the data domain of processor ¢ 4 p/2.
This holds for all cases, also if p/2 does not divide N2. O

(D) Algorithm with reduced communication: The multi-broadcast (*) in the parallel
IRK algorithm (C) in Figure 3 is replaced by more cost-effective single-to-single transmissions:

if (¢#0 and ¢q # p/2) send local elements of Ufj) to ¢g—1 ;

if (¢ #p/2—1 and g # p—1) send local elements of Ufj) to ¢+ 1 ;
if (0 < g < p/2) send local elements of O'éj) to ¢+ p/2 ;
if (p/2 < ¢ < p) send local elements of a(j to q—p/2 ;

6 APPLICATION TO A DISCRETIZATION PROBLEM 20

6.2.2 Application Specific Data Distribution

A reduction of the number of processors that participate in the communication phase can be
achieved by changing the data distribution to a double-cyclic blockwise distribution which allo-
cates each of the u and » data blocks to to all processors, see Figure 12. The following Lemma
describes the resulting communication that is used in algorithm (E).

Lemma 8 [Ifp is even and N > p/2, it is sufficient that processor ¢ communicates with at most
two processors. Those processors are:

g+1, for ¢q=0
g—1l,g4+1, for 0<qg<p/2—-1
qg—1, for q=p/2-1
q+1, for q=p/2
q—1,9+1, for p/2<qg<p-1
g—1, for q¢=p-1

Proof: Consider e.g. the computation of u; ;. Because of the double cyclic data distribution,
each processors produces the data from the » data block needed in the next iteration. O

(E) Algorithm with double-cyclic distribution and reduced communication: The
parallel IRK algorithm (C) is used with double cyclic data distribution such that each data block
w and v is distributed blockwise among the processors. The multi-broadcast (*) in the parallel
IRK method in Figure 3 is replaced by a data exchange with at most two other processors.
Compared to algorithm (D), the number of transmitted messages is increased because each
processor now has to send two (smaller) blocks (for u and v) to each neighboring processor, see
Figure 12.

if (¢#0 and ¢q # p/2) send local elements of Ufj) to ¢g—1 in 2 pieces;

if (¢ #p/2—1 and g# p— 1) send local elements of Ufj) to g+ 1 in 2 pieces;

6.3 Numerical Results

We have implemented the presented methods (D) and (E) for the solution of the Brusselator
equation on an Intel iPSC/860. Figure 13 shows typical solutions for the resulting concentrations
of the two chemical substances.

For the implementation on the Intel iPSC/860, we again use a 3-stage Radau method [6] of order
p = 5 as corrector with m = 4 corrector iterations. Figures 14, 15, and 16 contain tables with
the measured global execution times and diagrams with the measured speedup values for for
p=4,p=8,and p = 16 processors. The given speedup values are obtained by comparing the
parallel global execution times for algorithm 3 with the global execution time of the sequential
program for system (I).

According to Figures 14, 15, and 16, the implementations of algorithms (D) and (E) result in
larger speedup values than the original algorithm (C). Although the speedup values are increased
by a factor of about 2.5 for 8 or 16 processors, they are by no means impressive. For p = 16,
a reduction of the efficiency can be observed, if the data size is not increased. The fact that in
algorithm (E) less data have to be transmitted does not result in considerably larger speedup
values.

6 APPLICATION TO A DISCRETIZATION PROBLEM 21

solution for u and v for t=0.5

solution for u and v for t=1.0

Figure 13: Solution of the Brusselator equation for ¢t = 0.5s and ¢ = 1.0s. A discretization of N = 21 has
been used for the figure.

(C)

(D)

(E)

11
21
31
41
51
61
71
81
91

242
882
1922
3362
5202
7442
10082
13122
16562

0.044
0.143
0.213
0.383
0.626
0.891
1.176
1.524
2.049

0.044
0.096
0.200
0.336
0.505
0.697
0.941
1.235
1.633

0.053
0.116
0.221
0.357
0.533
0.750
0.996
1.282
1.619

speedup values for IRK with Brussel ator equation for p=4
3 T T T T T T T T

2
2.
2
2

| Mo !
P N A O © N N A O ©

0 2000 4000 6000 8000 1000012000140001600018000
n

Figure 14: Measured running times in seconds and speedup values on 4 processors for one step of the IRK

method applied to the Brusselator function.

(C)

(D)

(E)

11
21
31
41
51
61
71
81
91

242
882
1922
3362
5202
7442
10082
13122
16562

0.047
0.113
0.215
0.352
0.551
0.760
1.006
1.336
1.747

0.038
0.079
0.144
0.236
0.344
0.493
0.656
0.844
1.080

0.091
0.148
0.229
0.321
0.453
0.596
0.771
0.991

speedup values for IRK with Brussel ator equation for p=8
5

T T T T T T
(Q —-—
4.5 (D) —+-
() =
4r i
3.5 . i} o
[ot = R EEEEEEEE R
,/ L
sl /,,L-» S R . L
o
25| ! _
2 _@/@\Q/@\e’__e—e\<> i
1.5 @ i
1 L L 1 1 1 1

0 2000 4000 6000 8000 10000 12000 14000
n

Figure 15: Measured running times in seconds and speedup values on 8 processors for one step of the IRK

method applied to the Brusselator function.

6 APPLICATION TO A DISCRETIZATION PROBLEM 22

speedup values for IRK with Brussel ator equation for p=16
7

N (©) (D) (E) (o
1] 242[0.052] —[— or (8 & 1
21| 882(0.113|0.057/0.075 e R

5 | e R AR I
31| 1922//0.211]0.095/0.108 P
41| 3362(0.341/0.151]0.167 sl e]
51| 5202(0.505|0.217|0.266
61| 7442(10.714|0.282|0.306 sl o -
7110082(/0.953(0.384(0.399
81/13122/1.233(0.514(0.507 2p e T 1
91/16562[1.6100.643|0.640 L

1
0 2000 4000 6000 8000 1000012000140001600018000
n

Figure 16: Measured running times in seconds and speedup values on 16 processors for one step of the IRK
method applied to the Brusselator function.

6.4 Interpretations of the Numerical Experiments

For the interpretation of the observed phenomena, we use the timing model for the iPSC/860
presented in Section 3.

Lemma 9 The speedup Sp of algorithm (D) is smaller than the speedup Sg of algorithm (E) if

n
T < —t. 27
p (27)

Proof: The speedup values for algorithms (D) and (E) are

P (1), seq
to + 3ts_s (%) + tm broad ()

Sy — L(1),seq
tc-|-4tss()‘|’tmbroad()

where (1) 5c, is the computation time for the sequential method and i¢ is the computation time
for algorithm (C) (t¢ = tp = tg). Using the formula for ¢,,_proad, we get that Sp < D if

n n
4 (tc— —I—T) <3 (tc— + T)
2p P
a

Remarks to Lemma 9:

1. According to Lemma 9, algorithm (E) outperforms algorithm (D), only if the saving that
results from transmitting fewer data elements (¢.n/p) is larger than the additional startup
time 7. For the iPSC/860, we get for 8 processors: Sp < Sg if n > 3589.

2. One possibility to save startup times for algorithm (E) would be to pack the messages
such that only 2 instead of 4 single-to—single transmissions with larger message sizes n/p
(instead of n/2p) have to be performed. But this requires additional packing and unpacking
operations, see Section 4, and does not increase the attained speedup values.

6 APPLICATION TO A DISCRETIZATION PROBLEM 23

3. Another possibility to save communication time results from the observation that processor
q only needs N data elements from each of its neighboring processors. But because the
startup time dominates the communication time, this only leads to an improvement for
large system sizes.

The following lemma shows that the speedup values cannot be increased considerably. This is
shown by examining the time to execute one corrector iteration and determining the efficiency.

Lemma 10 Let T(1yy seq be the sequential time for one corrector iteration according to algorithm
(C). The efficiency of iteration (8) of algorithms (C), (D) or (E) is 1/(1 + co(p)) with the
communication overhead ratio

Tcomm(nv p) p

co - = . Tcomm n,
(p) T(II),seq P ((28 + 1)t0p + TBTuss)n (p)

TBruss denotes the time to evaluate the Brusselator function and T.opm 15 the communication
time for each iteration step. T.omm depends on n, p, and the used algorithms (C)/(D)/(F).

Proof: The computation time for the iteration of equation (8) is

(ms(2s 4+ 1)top + smTBmss)%.

The communication time is smTomm (7, p) With Tepmm according to the used algorithm (C), (D)
or (E). Thus,

SmTcomm(nvp)
ms((25 + 1)top + TBruss)n

co(p) = P

a

Remarks to Lemma 10:

For the algorithm (E) with the lowest communication time (2n/p - t. + 47), we get
2nt. + 4tp

2s + 1)top + TBT’U,SS)n‘

On the iPSC/860, we have ., ~ 0.5us, Tyyss = 7.5ps. For s = 3, we get

0780 +4-175-p

B 11n '

For p = 8 and n = 10000, we have efficiency 1/(1+ co(p)) =~ 0.92 for the corrector iteration. On
the other hand, for algorithm (C), we get

co(p) = (

co(p)

atc,ﬂ'(p)n + bT(p)p
11n '

co(p) =

For p = 8, this leads to co(p) > 1 and therefore we have efficiency < 0.5. The example illustrates
that we really have improved the communication of the corrector iteration and thus, it is no
longer responsible for the insufficient speedup values of algorithm (E). Rather, other effects cause
the small speedup values:

e The multi-broadcast operation at the end of each macrostep (that cannot be improved
because of the numerical correctness) is quite expensive.

e The stepsize control according to equation 5 and 10 is executed by each processor.

e The speedup values are computed by comparing the parallel algorithms not with their
corresponding sequential algorithm, but with a sequential algorithm that has a smaller
execution time.

7 CONCLUSIONS 24

7 Conclusions

Although IVPs for ODEs are widely considered to be inherently sequential or at best to have
a small degree of parallelism, there exist algorithms for solving systems of ODLEs with a large
potential of parallelism. In this article, we consider the iterated Runge-Kutta methods and
describe three parallel algorithms that differ in the order of the function evaluation and/or the
data distribution on the DMM. A detailed runtime analysis compares the proposed algorithms
and is used to select the most promising one for a real implementation. The runtime simulations
do not confirm the intuitively expected behavior of the runtime but the observed phenomena
can be explained by a theoretical runtime analysis. According to the suggestion of the theo-
retical investigation, we have implemented the algorithm with delayed function evaluation and
cyclic data distribution on the Intel iPSC/860. The implementation confirms that the predicted
runtime and speedup values are quite accurate. This shows that the used runtime prediction
technique can be successfully used to compute the speedup values for a given parallel algorithm
on a real parallel machine before implementing it.

We investigate the performance of the method for a typical example that results from the dis-
cretization of a reaction—diffusion equation. We show that the original method cannot achieve
good speedup values for this application, but that the attained speedup values can be increased
considerably by taking advantage of the access structure of the resulting right hand side func-
tion f. Nevertheless, the resulting efficiency is not impressing, but they cannot be improved
because of the necessary communication. Other known numerical methods to solve initial value
problems that are suited for a parallel execution like the extrapolation methods have similar
communication behavior and do not result in a better performance [12] [13].

References

[1] A. Bellen, R. Vermiglio, and M. Zennaro. Parallel ODE-Solvers with Stepsize Control.
Journal of Computational and Applied Mathematics, 31:277-293, 1990.

[2] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computing. Prentice Hall, New
York, NY, 1988.

[3] A. Bingert, A. Formella, A.M. Miiller, and W.J. Paul. Isolating the Reasons for the Per-
formance of Parallel Machines on Numerical Programs. In International Workshop on Au-
tomatic Distributed Memory Parallelization, Automatic Data Distribution and Automatic
Parallel Performance Prediction, pages 34-64, 1993.

[4] M.A. Franklin. Parallel Solution of Ordinary Differential Equations. IEEFE Transactions
on Computers, C-27(5):413-420, 1978.

[65] C.W. Gear. Parallel Methods for Ordinary Differential Equations. Technical Report
UIUCDCS-R-87-1369, Department of Computer Science, University of Urbana—Champaign,
August 1987.

[6] E. Hairer, S.P. Ngrsett, and G. Wanner. Solving Ordinary Differential Fquations I: Nonstiff
Problems. Number 8 in Springer Series in Computational Mathematics. Springer—Verlag,
Berlin, 1987.

[7] D. Hutchinson and B.M.S. Khalaf. Parallel Algorithms for Solving Initial Value Problems:
Front Broadening and Embedded Parallelism. Parallel Computing, 17:957-968, 1991.

REFERENCES 25

[8] S.L. Johnsson and C.T. Ho. Optimum Broadcasting and Personalized Communication in
Hypercubes. IFEE Transactions on Computers, 38(9):1249-1268, 1989.

[9] R. Lefever and G. Nicolis. Chemical Instabilities and Sustained Oscillations. J. Theor. Biol.,
30:267-284, 1971.

[10] W.L. Miranker and W. Liniger. Parallel] Methods for the Numerical Integration of Ordinary
Differential Equations. Mathematics of Computation, 21(99):303-320, 1967.

[11] P. J. Prince and J. R. Dormand. High order embedded Runge-Kutta formulae.
J. Comp. Appl. Math., 7(1):67-75, 1981.

[12] T. Rauber and G. Riinger. Hypercube Implementation and Performance Analysis for FEx-
trapolation Methods. In Proceedings of the CONPAR’94, pages 265-276, Linz, Austria,
1994.

[13] T. Rauber and G. Riinger. Load Balancing for Extrapolation Methods on Distributed
Memory Multiprocessors. In Proceedings of the PARLE’9/, pages 277-288, Athens, Greece,
1994.

[14] G. Riinger. Uber ein Schrodinger- Poisson-System. PhD thesis, Kéln, 1989.

[15] H.W. Tam. Parallel Methods for the Numerical Solution of Ordinary Differential Equa-
tions. Report No. UIUCDCS-R-89-1516, University of Illinois at Urbana—Champaign,
Department of Computer Science, 1989.

[16] P.J. van der Houwen and B.P. Sommeijer. Parallel Iteration of high-order Runge-Kutta
Methods with stepsize control. Journal of Computational and Applied Mathematics, 29:111—
127, 1990.

[17] P.J. van der Houwen and B.P. Sommeijer. Parallel ODE Solvers. In Proceedings of the
ACM International Conference on Supercomputing, pages 71-81, 1990.

[18] P.J. van der Houwen and P.B. Sommeijer. Parallel ODE Solvers. In Proceedings of the
ACM International Conference on Supercomputing, pages 71-81, 1990.

[19] P.B. Worland. Parallel Methods for the Numerical Solution of Ordinary Differential Equa-
tions. IEEFE Transactions on Computers, 25(10):1045-1048, 1976.

[20] P.B. Worland. Parallel Methods for ODEs with Improved Absolute Stability Boundaries.
Journal of Parallel and Distributed Computing, 18(1):25-32, 1993.

