Distributed computation of the number

of points on an elliptic curve

over a finite prime field

Johannes Buchmann, Volker Muller, Victor Shoup

SFB 124-TP D5
Report 03/95

27th April 1995

Johannes Buchmann, Volker Miiller, Victor Shoup

Fachbereich Informatik

Universitat des Saarlandes

Postfach 15 11 50

D—-66041 Saarbrucken

Germany

email: buchmann@cs.uni-sb.de, vmueller@cs.uni-sb.de, shoup@cs.uni-sb.de

1 Introduction

In this paper we study the problem of counting the number of points on an elliptic
curve over a finite prime field. This problem is not only very interesting for number
theorists but has recently gained a lot of attention among cryptographers. The use
of elliptic curves in public key cryptography was suggested by Koblitz [5] and Miller
[7]. The security of their elliptic curve cryptosystems is based on the intractability
of the problem of computing discrete logarithms in the elliptic curve group. The
best algorithms known for solving this problem for arbitrary elliptic curves are the
exponential square root attacks [9] which have running time proportional to the
largest prime factor dividing the group order. Consequently, in order to guarantee
the security of the system it is necessary to find this group order and its prime factor-
ization. Although Schoof [11] proved that the cardinality of an elliptic curve group
over a finite field can be computed in polynomial time, his algorithm is extremely
inefficient in practice.

Recently, there has been a lot of progress concerning the problem of computing
this group order #E(IF,). Atkin [2] and Elkies [4] have developed new efficient
algorithms. Those algorithms have been partially improved and implemented in
Paris (see [3]) and Saarbriicken (see [6]). In both implementations the algorithm
is distributed over a network of workstations by means of the system LIPS [10]
which supports such distributions. The current record is the computation of the
group order #E(FF,), where p is a 375-digit prime (see [6]). That computation
took approximately 1765 MIPS days. In this paper we briefly describe the state
of the art of counting points on elliptic curve over finite prime fields. We explain
the main computational problems and their solution by means of distributed and
parallel computation.

2 The problem

We describe the problem explicitely. Let p be a prime number, p > 3. An elliptic
curve over the prime field IF, of characteristic p is a pair E = (a,b) € IF; with

4a® 4 276* # 0. For example, for p = 13 the pair E = (2,3) is such a curve. The set
E(IF,) of points on E is the set of all solutions (x,y) € IF; of the equation

vt = 2® 4+ ax 4+ b (1)

together with an additional point O “at infinity” obtained by considering the projec-
tive closure of (1). The set E(IF,) has a group structure with the point O acting as
the identity element. The problem is to find the cardinality #E(IF,) of this group,
i.e. the number of solutions of (1). It is known that

p+1-2yp < #EI,) < p+1+2p

There is an obvious method for finding #E(IF,): for any pair (x,y) € IF; check
whether (z,y) is a solution of (1). Clearly, this method requires more than p?

1

arithmetic operations and 1is, therefore, infeasible for large primes p. In our example,
however, this method yields

3 The algorithm

We present a short overview of the algorithm and then describe the parts in detail
(for a more exact description of the algorithm see [8]).

In a precomputation, the algorithm of Atkin and Elkies (AE) determines for the first
few prime numbers [a polynomial G;(X,Y) € Z[X,Y] which is of degree [4+ 1 in
X.

If a particular finite prime field IF, and an elliptic curve E = (a,d) € IF; are given,
AE uses the polynomials G;(X,Y) to find #E(IF,). It first determines for “suffi-
ciently many” primes [the polynomial G; (X) which is obtained from G;(X,Y) by
replacing the coefficients by their residue classes mod p and by substituting for YV
the value j(E) € IF, which is

4a3

Next it computes the degrees of the irreducible factors of G; g(X). The sequence of
those degrees is called the decomposition type of G; p(X). From the decomposition
type of Gig(X) AE deduces possible values for the group order #E(F,) mod .
Once there is information about # E(IFF,) mod [for sufficiently many prime numbers
[, that information is used to find a multiple m of the order of a random point P
on E in the interval [p + 1 —2,/p, p + 1 4 2,/p|. Typically, we have m = #E(IF,),

which can be checked by a verification procedure.

4 The precomputation

In the precomputation step we compute the polynomials G;(X,Y) € Z[X,Y]. We
will now describe how this is done. Let j(7) be the Klein modular function (see
[1]). That function is meromorphic and admits a Fourier expansion which can be
explicitely determined. The first few terms of that expansion are

J(r) = 7T 4744 + 196884 €27 421493760 '™ 4 864299970 57T 4

The function j(7) is trancendental over €. Thus, substituting ¥ with j(I7), we can
view G(X,Y) as a univariate polynomial in Z[j(I7)][X]. Set P(X) = Gi(X, j(IT)).
The coefficients of P,(X) belong to Z[j(I7)]. They have, therefore, a Fourier expan-
sion. On the other hand, the zeros of P;(X) are explicitely known. If

where 7(7) is the Dedekind n-function and s is minimal such that s(/—1) is divisible
by 12, then those zeros are

J— Zs
N fl(ZT)

The coefficients of P;(X) can be determined via Newton’s formulas (see [14]) from
the power sums

zk(7) = fi (T + %) , 0<k<l and z(T)

!
so(T) = Zzg, 1<n<Il+1.
k=0

From Fourier series expansions for n(7) and n(I7) it is possible to deduce Fourier
series expansions for the coefficients of P(X). On the other hand, since P(X) =
Gi(X,j(IT)), we can also write down the coefficients of P;(X) using the Fourier
expansion of j(I7). Comparing coefficients, we find G;(X,Y).

For example, for [= 3 we have
f(7) = €77 — 12454 €77 — 76 '™ — 243 57T 4 1188 ™7 — 1384 "7 4 ...
Using the power sums

s1(r) = —36, so(T) = 756

and
ss(1) = 37T — 17532 + 5906527 + 64481280 M7 4 ...,
so(T) = 1447577 4 424548 — 28351296 577 — 3095101440 "7 4.

we can compute G3(X,Y) € Z[X,Y] as

G3(X,Y) = X' 4+36-X°4+270- X*+756-X — X - Y +729.

Computing G;(X,Y") means performing additions, subtractions, multiplications and
divisions of truncated Fourier series expansions. A large prime [, for which we have
computed Gi(X,Y), is [= 829. In that computation, we had to use 44766 terms
of all occurring Fourier series. The coefficients of Gsa9(X,Y) have approximately
640 decimal digits. To avoid computing with multi-precision integers, we use Chi-
nese remaindering, i.e. we determine G;(X,Y") modulo many 32-bit primes, the so
called Chinese primes. We then use the FFT-algorithm to do the multiplication of
the truncated Fourier series. This requires a special choice of the Chinese primes.
The computation of Gj(X,Y) modulo the various Chinese primes is distributed over
a network of workstations using the distributed system LIPS [10]. For comput-
ing Ggao(X,Y), 86 Chinese primes were necessary. The computation of Gszo(X,Y)
modulo each of those primes took approximately 9 hours on a SPARC ELC work-
station. Distributed over a network of 36 SPARC ELC workstations, the real time
for computing Gs29(X,Y) was 28 hours; the total running time was approximately

827 hours (689 MIPS days).

5 Computing the group order modulo a prime
number [

We describe, how to obtain information about #FE(IF,) mod [for a prime p, an
elliptic curve E over IF, and a prime /. So far the largest p, for which such a
computation has been carried out, is p = 103™ 4 169; the elliptic curve was E =

(9051969,11081969) (see [6]). We will illustrate the description by giving numerical

data of this computation.

Instead of determining # E(IF,) mod ! directly, the algorithm exhibits information
about ¢ = p+1—#(IF,). It is known that |c| < 2,/p (see [13]). First the j-invariant
of E is computed which is

4a3

Then we calculate the polynomial G; g(X) € F,[X] which is obtained by substi-
tuting in G4(X,Y") the variable Y with j(E) and reducing the coefficients by their
residue classes modulo p. In order to obtain information about ¢ mod ! we now
exhibit the degrees of the irreducible factors of G; p(X) in F,[X]. It can be shown
that there are only the following possibilities:

1. G;p(X) has a linear factor in IF,[X]. Then ¢ mod [can be computed exactly
using a method of Elkies [4].

2. Gy g(X) factors into a product of irreducible polynomials in IF,[X] which are
all of the same degree d > 1. Using all elements of order d in the finite field
IF},, we can compute a list of ¢(d) possible values for ¢ mod I, where () is
the Euler totient function.

Here is a list of decomposition types of polynomials G z(X) and the corresponding
number k(1) of possibilities for ¢ mod [for our example. We also list the computation
times.

[decomp. type k(1) | comp. time
) (3, 3) 2 2 min 30 s

7 (8) 4 3 min 50 s

11 T, 1, 10) 1 | 13 min 32 s
13 (1.1, 12) 1 | 11 min 38 s
17 (9, 9) 6 | 20 min 10 s
211 (212) 104 | 51 16 min
223 T, 1, 222) 1 | 7L 43 min
227 (1, 1, 226) 1 |11 L 45 min
229 (230) 83 | 51b 2 mn
233 (234) 72 5 h 22 min
101 (1, 1, 400) 1 |17 L 53 min
409 (1, 1, 408) 1 22 h 7 min
419 (140, cee 140) 43 (10 h 12 min
421 (422) 210 | 10 h 52 min
31| (L 1,215, 215) | 1 |26 L 40 min
607 (608) 288 | 17 h 25 min
617 | (103,...,103) | 102 | 15 b 40 min
619 (4, - ,4) 2 13 h 43 min
631 (1, 1, 630) 1 |34 L 42 min
641 | (1,1,128,...,128) | 1 | 32 L 6 mn

A major portion of the computing time is spent on the determination of the de-
composition type of Gi(X). We first compute X? mod G; g(X). Then we compute
ged(X? — X, G p(X)). If this ged is non-trivial, then we can compute a root of
Gi.5(X) modulo p, and from this we compute the value of ¢ mod [exactly using the
Elkies algorithm. Otherwise we search for the smallest d dividing the degree [4+ 1
of the polynomial G; (X)), such that X?" = X mod G1.5(X). The computation of
X?" mod Gi.5(X) is done with a repeated modular composition algorithm (see [12]),
which uses the following fact: let xXr = ¢(X) mod Gy g(X). Then we have for all
1 < s < k the following formula for computing X mod Gie(X):

X = g(XpS) mod G g(X).

To carry out these computations, we need to perform polynomial arithmetic modulo
Gig(X). Multiplication of polynomials is done using a combination of Chinese
remaindering and the FFT. Small primes r are chosen so that r — 1 is divisible
by a high power of two, and the product of these primes is a bit bigger than p?.
To multiply two polynomials over IF,, the coefficients (represented as nonnegative
integers less than p) are reduced modulo the small primes; then we compute the
product polynomial modulo each small prime via the FFT; finally, we apply the
Chinese remainder algorithm to each coefficient, and reduce modulo p.

In practice, this runs much faster than the classical “school” method for the size ot
polynomials we are considering (the cross-over point being less than degree 50), and
1s critical in obtaining reasonable running times.

3

Division by G g(X) with remainder is done using a standard reduction to polyno-
mial multiplication; however, as Gy 5(X) remains fixed for many divisions, it pays to
perform some precomputation on Gy g(X). With this precomputation, one squaring
modulo G g(X) costs about 1.5 times the cost of simply multiplying two degree [
polynomials. Details on these algorithms can be found in [12].

To compute the group order #E(IF,), we have to carry out this computation for
many primes [. In our example we had to use all primes [< 839. Again the
computation is distributed over a network of workstations with LIPS.

6 Combining possible values

Suppose that p, F and ¢ are as in the previous section. We will describe how we
actually compute the order of the group E(IF,) after knowing possible values for ¢
mod [; for primes [y,..., [, with [[;_; [; > 4,/p. Let m; be the product of all prime
numbers [; for which we know ¢ mod /; exactly. By Chinese remaindering we find
a number ¢; € {0,...,m; — 1} with ¢ = ¢; mod m;. The remaining primes are
divided into two sets Ly and L3. From the possible values for ¢ modulo the elements
of L, we determine by Chinese remaindering the set C, of all possible values of ¢
modulo the product ms, of the primes in Ly;. The modulus m3 and the set Cs are
obtained from L3 in an analogous way. Ly and L3 are chosen such that €5 and Cj
are approximately of equal cardinality. Now we know that

e ¢ = ¢y mod mq,
® ¢ = ¢y mod my for some ¢y € Cy,

e ¢ = ¢3 mod m3 for some c3 € Cs.

To find the correct values for ¢; and ¢3, we use Atkin’s variant of Shank’s “Baby-
step/Giantstep” method. It is possible to write

c = ¢ +my-(mars+mary)
with integers |ry| < my/2 and |r3| < ms satisfying
ry = ¢y (mym3) ™' — ¢; mod my and r3 = c3 (mymy) ™' — ¢; mod my. (2)

By (2), we can compute a candidate for ry for each element in Cy and a candidate
for r3 for each element of C5. The correct values for r, and r3 are determined using
Lagrange’s theorem which implies that

p+l—-0-Q = O
for any point) on E. We choose a random point ¢) on E and check whether
(¢+1—c1)- Q—mimzry-Q = myimars-Q (3)

6

is satisfied. This check is done by computing and storing the left hand side of (3) for
all candidates for ro. Those points are then ordered according to the z-coordinate to
allow binary search. Then we compute the right hand side of (3) for all candidates
r3 and compare it to the stored points.

We remark that the algorithm only computes a candidate for the group order which
must then be proven correct. So far, we have encountered no case in which the
algorithm failed to find the group order.

In our example, we found 70 primes for which ¢ mod [could be computed exactly.
The values of ¢; and m, were

c_1 = - 9864783057708164595502611646928152198562353124209875699\
3425959176113645649555164159267043456184583649770069315\
0497598992251884698163262879949594064047103794475295456\
48489625068

and
m_1 = 179847212918745329982242834408484972153916201306608847852\

709435718908930374793155545232476215210206598779622481663\
389817546754343007601798901158598203461487993988961747098\
578086 .

The sets Ly and L3 contained 3 primes. The moduli m, and m3 were my = 43055
and m3z = 24735859. We found a set C5 of 160 possible values for ¢; and a set C5 ot
96 possible values for ¢s. The Babystep/Giantstep part took 20 minutes (17 MIPS
minutes).

Using this algorithm, we were able to compute the group order in our example. For
p=103*"4+169 and E = (9051969, 11081969) we computed the group order #E(TF,)

as

999\
999\
99933\
484119377057740549595798019340277299296194413840780451243105834\
253911258272979527787642571590910992330571399128986816096949176\
53999177002350595375701482255870650298836577293810050217802.

The total running time for this computation was approximately 1765 MIPS days (not
including the precomputation step; on a network of 50 SPARC ELC workstations
the computation took one week of real time.

7 Further improvements

As we have seen, even when distributed on a network of workstations, the determi-
nation of #E(IF,) for a 375-digit prime p required one week of computing time. For

7

cryptographers who wish to check the cryptographic properties of an elliptic curve
this is still too slow. The time critical parts of the computation are the Fourier
series calculation and the polynomial computations in the main part of the algo-
rithm. Both are done using FFT. Those FFT computations can be parallelized and
we expect this parallelization to reduce the running time by a considerable factor.

References

[1] T. Apostol, Modular Functions and Dirichlet Series in Number Theory,
Springer-Verlag, 1990

[2] A.O.L. Atkin, The number of points on an elliptic curve modulo a prime I/11,
unpublished manuscripts

[3] J. M. Couveignes, F. Morain, Schoof’s algorithm and isogeny cycles, Proceed-
ings of ANTS I, 1994

[4] N. Elkies, Explicit Isogenies, Preprint 1991

[5] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation, 48
(1987), 203-209

[6] F. Lehmann, M. Maurer, V. Miller, V. Shoup, Counting the Number of Points
on Elliptic Curves over Finite Fields of Characteristic Greater than Three,
Proceedings of ANTS I, 1994

[7] V. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology:
Proceedings of Crypto ’85, Lecture Notes in Computer Science, 218 (1986),
Springer-Verlag, 417-426

[8] V. Miiller, Die Berechnung der Punktanzahl elliptischer Kurven wber endlichen
Korpern der Charakteristik groffer 3, Thesis, University of Saarland, to be
published

[9] A. Odlyzko, Discrete logarithms and their cryptographic significance, Advances
in Cryptology: Proceedings of Eurocrypt '84, Lecture Notes in Computer Sci-
ence, 209 (1985), Springer-Verlag, 224-314

[10] R. Roth, Th. Setz, LIPS: a system for distributed processing on workstations,
University of Saarland, 1993

[11] R. Schoof, Elliptic curves over finite fields and the computation of square roots
mod p, Mathematics of Computation, 44 (1985), 483-494

[12] V. Shoup, A New Polynomial Factorization Algorithm and its Implementation,
Preprint, 1994

[13] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1985
[14] B. L. van der Waerden, Algebra, Springer-Verlag, 1971

