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Abstract

Recently, Pomeranz and Reddy [7], presented a test point insertion method to improve

path delay fault testability in large combinational circuits. A test application scheme was

developed that allows test points to be utilized as primary inputs and primary outputs

during testing. The placement of test points was guided by the number of paths and was

aimed at reducing this number. Indirectly, this approach achieved complete robust path

delay fault testability in very low computation times. In this paper, we use their test

application scheme, however, we use more exact measures for guiding test point inser-

tion like test generation and RD fault identification. Thus, we reduce the number of test

points needed to achieve complete testability by ensuring that test points are inserted

only on paths associated with path delay faults that are necessary to be tested and that are

not robustly testable. Experimental results show that an average reduction of about 70%

in the number of test points over the approach of [7] can be obtained.
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1. Introduction

Correct operation of logic circuits requires proper logic and timing behavior. Manufac-

turing defects and random variations in process parameters may cause propagation delays

in the circuit to exceed their specification. Such defects are modeled as delay faults. Two

delay fault models have been proposed in the literature, namely, the gate delay fault

model [1] and the path delay fault model [2]. Gate delay faults model defects that cause

gate delays to be outside their specified range. Path delay faults model defects that cause

cumulative propagation delays along circuit paths to exceed their specification. The path

delay fault model is the more general fault model. It models defects that affect circuit

performance better by incorporating the additive nature of delays along the gates in the

path. Two types of tests have been proposed : robust and non-robust [3-6].

The major disadvantages of the path delay fault model are the number of faults that

need to be targeted and the total number of tests required to test all the faults. These are

often very large and in the worst case can be exponential in the size of the circuit. Also,

the testability of the circuit under this fault model is sometimes very poor.

The works in [8-20] have targeted one or more of these disadvantages. [8-9] tackled

the problem of the prohibitively large size of the fault universe by proposing non-

enumerative techniques for considering faults. However, the fault coverages for large cir-

cuits are still very low, mainly due to the low testability of the circuits. [10,11] showed

that it is not necessary to test all the path delay faults in the circuit to verify the timing

behavior of the circuit. The faults that need not be tested are referred to in [10,12] as

Robust-Dependent Faults(RD faults). However, even after the identification of RD

faults, in large circuits, the subset of faults which needs to be tested to verify the speed of

operation of the circuit (non−RD faults) may be very large and some of the faults may

not be testable.

Synthesis-for-testability and design-for-testability techniques for the path delay

fault model were described in [13-20]. The former start with the circuit function and syn-

thesize a testable circuit. The latter modify a given circuit implementation so that it

becomes testable. However, under these techniques, a testable circuit may result which

has a large fault universe and test set size and, hence, testing of the circuit remains

difficult.

Recently, in [7], test point insertion was introduced as a design-for-testability tech-

nique for path delay faults. It tackled all the disadvantages of the path delay fault model

simultaneously. A test application scheme was presented wherein every path through a

test point is partitioned into two parts, that can be tested separately. It thus reduces the

number of paths that need to be tested and increases the testability of these paths. A
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review of the test application scheme is given in Section 2. In [7], complete robust path

delay fault testability was achieved with low computation times.

The heuristic for test point insertion in [7] is based on reducing the number of paths

and on reducing a lower bound on the test set size introduced in [21]. These were used as

testability measures. It has been noted in [7] that the number of test points needed may be

reduced by targeting a subset of all the path delay faults such as the non−RD faults

and/or by considering more exact measures of testability such as the number of testable

faults by a given test generation procedure. In this work, we explore such a higher com-

putational cost approach based on test generation to guide the insertion of test points.

Experimental results indicate that an average reduction of about 70% in the number of

test points can be achieved.

The goal of the algorithm presented here is to minimize the number of test points

placed to achieve complete robust path delay fault testability. RD fault identification is

performed as in [12] to determine the subset of faults which need not be tested to check

the temporal correctness of the circuit. Among the necessary-to-test faults (non−RD

faults), we determine the faults that are not robustly testable using test generation. Only

these faults are considered for testability modifications. Thus, test points are placed only

on paths associated with path delay faults that are not robustly testable and which are

necessary to test in order to ascertain the timing of the circuit.

As part of the test point insertion procedure, we have to perform test generation and

RD fault identification. Test generation for path delay faults is a difficult and computa-

tionally intensive task mainly because of the total number of faults that need to be tar-

geted. Even after RD fault identification, the subset of faults that needs to be tested is

often very large. Also, the RD fault identification methods of [10-12] and fast test genera-

tors for path delay faults [22,24] cannot handle in a reasonable time circuits with

extremely large numbers of paths like c6288 of the ISCAS85 benchmarks which has over

1020 paths. In this work, these problems are overcome by a bottom up approach where

gradually increasing portions of the circuit are analyzed, as outlined next.

We partition the circuit into subcircuits. Initially, only the paths in every subcircuit

are considered. We identify RD path delay faults and use test generation to determine the

untestable non−RD path delay faults local to the subcircuit. There may be more than one

way to select a non−RD set, however, all these sets have in common the subset of non-

robustly testable faults [12]. Test point insertion is performed to make these faults

testable. This procedure is iterated starting with small subcircuits. As test points are

inserted, the number of path delay faults in the circuit that need to be considered for test

generation is reduced [7], its testability is improved and larger subcircuits can be
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considered. Finally, the analysis can be performed over the entire circuit. In a postpro-

cessing step, we find a non−RD set for the complete circuit and, if necessary, insert addi-

tional test points to make it testable.

The paper is organized as follows. Section 2 gives some definitions and reviews the

basic concepts of test point insertion. The bottom up circuit analysis approach to find

local untestable path delay faults is described in Section 3. Test point insertion to make

the untestable path delay faults testable is explained in Section 4. Section 5 presents the

complete algorithm. Experimental results are given in Section 6. Section 7 concludes the

paper.

2. Definitions

In this section, we start with several definitions followed by a review of the test point

insertion framework from [7].

A directed graph G=(V,E) is used to represent the circuit. The vertices V are the

gates and the fanout points in the circuit and the edges E are the interconnections

between them. A vertex v ∈ V can be one of the following types : nand, nor, and, or, not,

primary input, primary output or fanout point.

A path, p, is defined as a sequence of edges e1 − e2 − . . . − en where each ei con-

nects vertices vi −1 and vi . (Note that vi is not necessarily incident only to ei and ei +1.) If

v0 is a primary input and vn is a primary output, the path is said to be a complete path. If

v0 is not a primary input or vn is not a primary output, the path is said to be a partial

path.

Consider any edge ei on a path p, which connects gates vi −1 and vi . All edges, other

than ei , which feed vi are called off-path inputsof p. ei is called an on-path inputof p.

There are two delay faults associated with each path, viz., the rising transition fault

and the falling transition fault. The type of the fault is determined by the transition at e1.

In general, two-pattern tests are necessary to detect a delay fault on a path p. The first

pattern (T1) serves as an initialization pattern. After the circuit has stabilized, the second

pattern (T2) is applied which launches a transition at the primary input of p and pro-

pagates it to the primary output of p.

A two-pattern test <T1, T2> for a delay fault is said to be robust[5] if and only if

the test is valid independent of the delays in the rest of the circuit. A circuit has 100%

robust path delay fault testabilityif and only if every path delay fault has a robust

test.
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Various definitions for a non-robust test exist in the literature. We will use the one

from [6]. A two-pattern test < T1, T2 > is said to be a non-robust test for a path p if it

launches a transition at the primary input of p and all the off-path inputs of p have non-

controlling values under T2. (The non-controlling value for an and, nand(or, nor) gate is

1(0).)

A test point can be used as a primary input to enhance the controllability and/or as a

primary output to improve the observability of embedded parts of a circuit [25]. As in

[7], we assume that test points are both controllable and observable. The test application

scheme of [7] allows test points to reduce the number of paths that need to be tested as

follows. Let P be a set of paths going through an edge ei . Suppose that a test point is

placed on ei . Then every path p = e0− . . . −ei − . . . −en in P is divided by the test point

into two parts, p1 = e0− . . . −ei and p2 = ei − . . . −en. p1 can be tested by propagating a

transition from e0 to ei along the path and observing the transition on ei after the propa-

gation delay corresponding to p1. We denote this delay by δ1. p2 can be similarly tested

by launching a transition on ei , propagating it to en along the path and observing it on the

primary output en after the propagation delay corresponding to p2. We denote this delay

by δ2. If the propagation delay of p is δ, then δ1 + δ2 = δ. By ensuring that the propaga-

tion delay of p1 is at most δ1 and that the propagation delay of p2 is at most δ2, we can

ensure that the propagation delay of p is at most δ. Thus, p does not have to be tested

directly, if p1 and p2 are tested. This test application scheme involves multiple clock

periods (e.g., δ1 and δ2 in the above example). Its advantage is the following. Let the

number of paths from the primary inputs to ei be N1. Let the number of paths from ei to

the primary outputs be N2. Then the total number of paths through ei is N1 × N2. After

placing a test point on ei , only N1 + N2 paths need to be tested. If N1 and N2 are large,

this is a substantial reduction in the number of paths that need to be tested.

The testability of the circuit also improves due to the test points inserted. This is

because in the presence of test points, partial paths (e.g., p1 and p2 in the above exam-

ple) have to be tested as opposed to complete paths (e.g., p). For partial paths there are

fewer test generation constraints and tests may exist even if the complete path is unte-

stable.

The above concepts are clarified through an example. Consider the circuit given in

Fig. 1a. The line numbers are given in the brackets. This circuit has 11 paths. 8 of these

paths go through line 10. A test point placed on line 10 cuts it into two parts 10o and 10i .

10o is a primary output for the logic feeding line 10 and 10i is a primary input for the

logic driven by line 10. The modified circuit is given in Fig. 1b. The modified circuit now

has only 9 paths. Thus, the total number of paths to be tested has reduced.
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Figure 1(a): Circuit before test point insertion
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Figure 1(b): Circuit after test point insertion at line 10.

The details of the test application scheme can be found in [7]. The test point

inserted at line 10 also improves the testability of the circuit and makes it completely

testable.

3. Bottom up approach to determine untestable path delay faults

The goal of this paper is to minimize the number of test points inserted to achieve com-

plete testability. Our algorithm is based on making testability modifications only to a set

of delay faults that need to be tested (non-RD faults) and that are not robustly testable.

Computation of this set of faults can not be performed for large circuits in reasonable

time. Also, the size of this set of faults can be extremely large. We handle these problems

by using a bottom up approach which is described next.

In the bottom up approach, we partition the circuit into subcircuits. The subcircuits

may not be disjoint. We start with small subcircuits and solve the testability problems

associated with them by inserting test points. Due to the test points inserted, the overall

number of faults in the circuit that need to be tested decreases and untestable faults

become testable. This enables us to handle larger subcircuits and more global problems.
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After choosing a set of subcircuits {Ci | i =1,...,n}, we determine for each Ci a set of

path delay faults Pi in Ci that need to be made robustly testable. Test points are then

inserted to make the faults from P = ∪ {Pi | i =1,...,n} fully testable. In the bottom up

approach used, the size of the subcircuits considered in every iteration is gradually

increased. In this section we discuss the subcircuit selection and the determination of P.

A procedure to insert test points to make a given set of faults P testable is presented in

the next section.

3.1 Selection of subcircuits

We choose the subcircuits such that it would be possible to perform fast

identification of local testability problems. Since a reconvergence is usually the cause

for untestable faults, the subcircuits for analysis are chosen according to the reconver-

gence structure of the circuit. The subcircuits are referred to as reconvergence slices.

Definition 1 : A reconvergenceis said to occur at a line l due to a line f if there exist at

least two disjoint paths from f to l. (Two paths p1 and p2 from f to l are said to be dis-

joint if and only if p1≠p2 and the only edges common to both paths are f and l.)

Definition 2 : Let there exist a reconvergence at line l due to line f. Then the

reconvergence slice of fand l contains all the gates driven by f and driving l and all the

partial paths from f to l. The sizeof the reconvergence slice is equal to the number of par-

tial paths from f to l.

For example, consider the circuit in Fig. 1a. It has two disjoint paths from line 7 to

line 15. They are : 7-8-10-13-15 and 7-9-15. Hence, there is a reconvergence at line 15

due to line 7 where l = 15 and f = 7. The slice is made up of the gates G3 and G5. It

contains two partial paths : 7-8-10-13-15 and 7-9-15 and, hence, its size is 2. A concept

similar to reconvergence slices was used to synthesize delay fault testable circuits in [13].

A reconvergence slice is selected for every line l in the circuit for which it is possi-

ble to find a line f such that a reconvergence occurs at l due to f. At each line l in the cir-

cuit more than one reconvergence may end. In each iteration, we will consider one of

them. If there exists more than one reconvergence slice for l, we select that slice from the

set of previously unconsidered slices which has the shortest maximal path. We refer to

this as the nearestreconvergence slice. We run the algorithm in an iterative manner by

starting the analysis for reconvergence slices with a small size and increasing the size of

the slices analyzed in every iteration. Procedure 1 summarizes the algorithm.
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Procedure 1: Bottom up approach to test point insertion

1. path_limit= 100.

Repeat until all reconvergence slices with size not exceeding MAXPATHhave been
analyzed:

2. For every line l in the circuit, choose a nearestreconvergence slice Cl that was
not analyzed in previous iterations and with size not exceeding path_limit.

3. Determine Pl , the set of faults that need to be made robustly testable in Cl , for
all l. (The derivation of this set is explained in Section 3.2). Set P =

∀ l
∪ Pl .

4. Insert test points to make the faults from P robustly testable. (A procedure for
test point insertion is given in Section 4.)

5. If (path_limit < MAXPATH), path_limit = path_limit *10.

MAXPATHis used to limit the amount of computation time spent in this procedure.

To avoid analyzing the same reconvergence slice at a line l in each iteration (Step 2,

Procedure 1), we maintain a list of the reconvergence slices analyzed for l. We do so by

keeping track of the lines f of the previously picked reconvergence slices for l. This

enables the next nearest reconvergence slice to be considered in the following iteration.

3.2 Determination of Pl

We now discuss the selection of Pl , the set of faults that need to be made robustly

testable in any reconvergence slice Cl . Test points are placed on the basis of this set.

Hence, we want to include in Pl only those faults that are necessaryto be made robustly

testable for the entire circuit to become robustly testable.

Before going into the details of Pl selection, we formally define the notion of testa-

bility of a partial path in a circuit. This is necessary since the paths of Cl are, in general,

only partial paths of the overall circuit C.

Definition 3 : A path delay fault associated with a partial path pin circuit C is said to be

non-robustly testable if and only if there exists a two pattern sequence < T1, T2 > of

input vectors to C such that :

1. The fault transition is launched at the primary input of p (which need not be a pri-

mary input of C since p is a only a partial path) and

2. All the off-path inputs of p have non-controlling values under T2.

The definition of robust testability for a fault associated with a partial path is done analo-

gously.



- 9 -

Some basic facts from [10-12] are now reviewed. This will lead to the method used

to determine Pl . It was shown in [10-12] that it is sufficient to test robustly a subset of all

the path delay faults to check the temporal correctness of the circuit C. This subset of

faults that is sufficient to be tested is referred to as a non−RD set. The non−RD set for a

circuit is not unique and there is flexibility in choosing it. Let Si , i = 1,2, ...,n, denote all

the possible non−RD sets for a given circuit. Let RT (NRT) denote the set of robustly

(non-robustly but not robustly) testable path delay faults. In [12], it has been proven that

the sets RTand NRTmust be part of any Si , i.e, RT∪ NRT⊆ Si for all i.

During the local analysis, we insert test points only to make the NRT set of faults

robustly testable. Thus, we choose Pl such that it consists of all faults in Cl which are

non-robustly testable but not robustly testable in C (cf. Definition 3). A particular

non−RD set Sfor the complete circuit is only selected in the final stage. A way to choose

this set is given in Section 5. The rationale behind considering only the NRTset during

the local analysis is explained intuitively next.

Consider a circuit with two non−RD sets, S1 and S2. Assume that

S1 = RT∪ NRT∪ {p1} and S2 = RT∪ NRT∪ {p2}. When test points are inserted on

the basis of the NRT set, assume p2 also becomes robustly testable and p1 remains

robustly untestable. Then, choosing S2 instead of S1 as the non−RD set of the circuit

results in fewer test points. ( If S1 is chosen as the non−RD set for the circuit, we have to

insert an additional test point to make p1 robustly testable.)

The heuristic for choosing S aims at minimizing the number of untestable faults in

S. This may reduce the total number of test points needed to achieve complete testabil-

ity.

[1]
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[3]

[4]

[5]

[6]

[7] [8]
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Figure 2: Example for determining P

We now determine P for the circuit in Fig. 2. The circuit has two reconvergence

slices C1 with l = 10 and f = 2 and C2 with l = 17 and f = 7. The size of both the

reconvergence slices is 2. The two partial paths in C1 are 2-4-6-10 and 2-5-7-8-10. The

rising and falling transition faults along the above partial paths are robustly testable.
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Hence, P1 = φ (empty set).

The two partial paths in C2 are 7-9-17 and 7-8-10-12-14-17. The rising and falling

transition faults along 7-9-17 are robustly testable. The falling transition fault along

7-8-10-12-14-17 (transition specified at line 7) is only non-robustly testable. The rising

transition fault along 7-8-10-12-14-17 is not even non-robustly testable. Hence, P2 only

includes the non-robustly testable falling transition fault along 7-8-10-12-14-17. Thus,

P = P1∪ P2 = P2 = {falling transition fault along path 7-8-10-12-14-17 }.

Note that the analysis is performed only on the partial paths in a slice. This is possi-

ble since, if the delay fault along a path in a slice is non-robustly testable, it implies that

the delay fault along every complete path in the circuit containing this partial path is at

most non-robustly testable. In a very rare situation, the delay fault along every complete

path containing this partial path may be unnecessary to test and in that case this partial

path need not be considered for testability modifications. However, this is an unlikely

possibility and we approximate by assuming that there exists a delay fault along at least

one complete path containing this partial path which is necessary to test. Hence, we will

consider it for test point insertion.

4. Test point insertion

In this section we describe the test point insertion algorithm. The aim of the algorithm is

to make a given set of faults P robustly testable with the addition of a minimum number

of test points. The problem of determining an optimum set of test points is computation-

ally difficult. Hence, a greedy approach of selecting one test point at a time is adopted

here.

A weighting procedure is used to determine the order in which edges are selected on

which test points are inserted to make P robustly testable. The weight assigned to each

edge is chosen to reflect its "goodness" as a test point. Every p ∈ P contributes to the

edge weights. The weighting is such that an edge with a higher weight makes more faults

from P testable than an edge with a lower weight. The edge weights due to each p ∈ P

are determined as follows.

For every edge on p, we determine if a single test point placed on that edge makes p

robustly testable. If it does, we increase the weight of the edge by 1. If no single edge

can make p testable, (i.e., more than one test point is required) we increase the weight of

every edge on p by 1.

In the weighting procedure explained above, we only considered the edges on paths

from P for weight assignment and, thus, as candidates for test point placement. This is a
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restriction since, in some cases, a partial path can also be made testable by placing a test

point on an edge not included in the path. We reduce our search space and computation

time significantly by only considering a subset of all the edges as test point candidates for

each path in P. This is sufficient since complete robust path delay fault testability can be

achieved by placing test points only on paths along which the delay faults are not

robustly testable. Also, in most cases, we observed that this was the best way to improve

testability.

The weighting procedure is given in Procedure 2. The weight of an edge ei is

denoted by W(ei ).

Procedure 2: Weight of an edge as a test point

1. Initialize the weight of every edge in the circuit to zero.

2. For every p ∈ P, p = e1 − e2 − . . . − en, do :

3. For i = 1 to n do :

If a single test point placed at ei makes p robustly testable, then :

W(ei ) = W(ei ) + 1.

4. If more than one test point is required to make p robust testable, then :

For i = 1 to n do :

W(ei ) = W(ei ) + 1.

The selection of the first test point now involves choosing the edge with the max-

imum weight. After a test point is inserted, we re-evaluate the testability of all paths in P.

The weights are then updated for all the edges in the circuit. Selection of a test point and

updating of weights is done iteratively until P is empty. Procedure 3 summarizes this

process.

Procedure 3: Test point placement for P

1. Compute weights using Procedure 2.

2. Repeat until P is empty :

3. Place a test point on the edge with the maximum (non-zero) weight.

4. Remove all the faults from P that become robustly testable due to this test
point. (Test generation to determine robustly testable faults is done using the
procedure from [23]).

5. Update the edge weights.

During the selection of a test point in Step 3 of Procedure 3, if there is more than one

edge with the maximum weight, we place the test point on that edge which results in a

larger reduction in the total number of paths.
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5. Complete Algorithm

The complete algorithm is presented in this section. The algorithm is divided into two

phases. The first phase is the bottom up phase which starts by analyzing small regions.

Test points are inserted to make these regions testable. This results in an improvement in

the testability and a reduction in the number of paths in the circuit. Thus, larger portions

of the circuit can be handled. This phase, summarized in Procedure 1, considers regions

of size up to MAXPATH.

The first phase of the algorithm is not sufficient to make the circuit completely

testable. This is because the size of the reconvergence slices analyzed is bounded by

MAXPATH. Also, in each reconvergence slice, test points were inserted only on the basis

of the non-robustly testable faults. These faults along with the robustly testable faults are

contained in every non−RD set Si (cf. Section 3.2). However, these faults may only form

a subset of every Si . Hence, the second phase analyzes the entire circuit by choosing a

particular non−RD set S. S is chosen according to Heuristic 1 in [12]. This heuristic com-

putes a near optimal solution to the problem of minimizing the size of S. Note that the

computation of S may not have been feasible at the beginning of phase one for circuits

like c6288 of the ISCAS85 benchmarks which have a large number of paths. However, S

can be determined in the second phase of the proposed algorithm even for large circuits

because the number of paths is much reduced after phase one. Procedure 4 presents the

complete algorithm.

Procedure 4: Complete algorithm

Phase 1:

Perform Procedure 1 with MAXPATH= 10,000, using Procedure 3 for test point
insertion.

Phase 2:

Pick a non−RD set Sbased on Heuristic 1 in [12].

Set P equal to all the faults from Sthat are not robustly testable.

Insert test points using Procedure 3.

Faults which are aborted by the test generator are not considered for test point inser-

tion, i.e. they are not included in P, until the end of Phase 2. If some of the aborted faults

remain robustly untestable even after Phase 2, additional test points are added based on

Procedure 3 to make these aborted faults robustly testable. The resulting circuit is com-

pletely testable for delay faults, i.e. for every path delay fault of the picked non−RD set S

there exists a robust test.
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6. Experimental Results

The complete test point insertion algorithm was implemented in the C programming

language. The underlying test generator of the proposed algorithm is the PODEM-based

delay test generator in [23]. A backtrack limit of 100 was used for the test generator. The

program was run on the modified ISCAS85 benchmark circuits used in [7]. Table 1 gives

the results for these circuits. Under the faults column, the total number of path delay

faults in the circuit is given. The next two columns give the total number of test points

inserted by the proposed algorithm and the algorithm in [7] respectively. The fifth and

sixth columns give the time taken by the proposed algorithm in seconds on a SUN

SPARC20 workstation. Column "Phase 1" lists the time taken for the first phase of the

algorithm. Under "total", the total time taken by the program is given. The percentage

reduction in the number of test points under the proposed algorithm from [7] is listed in

the last column.

Table 1 : Total test points required to achieve complete testability
��������������������������������������������������������������������
circuit faults proposed [7] time %reduction

Phase 1 total��������������������������������������������������������������������
c880 17,284 4 7 25 268 42.86
c1355 644,224 10 10 6354 6503 0
c1908 1,458,050 27 70 3274 8989 61.43
c2670 34,358 32 120 739 2375 73.33
c3540 15,111,450 83 210 28861 44982 60.48
c5315 2,506,220 99 320 1829 23753 69.06
c6288 9.418 × 1015 322 1150 12146 25478 72.00
c7552 1,310,174 215 650 11042 87325 66.92��������������������������������������������������������������������
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At the beginning of Phase 2, if the total number of path delay faults in the circuit

was more than 120,000, then test points were added to reduce the number of path delay

faults maximally as in [7] (cf. Section 2) to below 120,000. This was required only for

c3540. Of the 83 test points added in c3540, 3 of them were added for this purpose.

The proposed heuristics can be added to any test generator for path delay faults. A

more sophisticated test generator which quickly recognizes conflicting assignments will

improve the run times. Also, it may result in a slight reduction in the number of test

points due to fewer aborted faults.

Table 2 gives the number of test points inserted for the ISCAS89 benchmarks.

These circuits have been modified by the same transformations that were applied to the

ISCAS85 benchmarks in [7]. Since the robust path delay fault testability of the ISCAS89
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Table 2 : Results for modified ISCAS89 benchmarks
������������������������������

circuit faults proposed������������������������������
s298 462 2
s344 710 4
s349 710 4
s382 800 4
s386 414 1
s400 800 4
s444 800 4
s510 738 4
s526 816 3
s526n 816 3
s641 3,488 5
s713 3,284 5
s820 984 2
s832 984 2
s953 2,312 2
s1196 6,196 14
s1238 6,216 13
s1423 84,178 23
s1488 1,924 13
s1494 1,924 12
s5378 21,952 37
s9234 66,086 97
s13207 170,756 50
s15850 8,018,412 114��������������������������������
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benchmarks is better than that for the ISCAS85 benchmarks [22], the number of test

points which had to be added to make these circuits completely testable is much less.

There is a trade-off between fault coverage and hardware overhead (i.e. number of

test points). The hardware overhead can be significantly reduced if robust fault coverage

of less than 100% is acceptable. In Fig. 3 we illustrate this trade-off by showing how the

robust fault coverage improves as the number of test points added to the circuit is

increased. Figs. 3(a) and (b) give the variation for c1908 and c5315 respectively. The

curves show that for c1908 (c5315) a fault coverage of about 90% (85%) can be achieved

with only half the number of test points needed to achieve complete testability.

It is also important to note that test points can be used to significantly reduce the

fault universe and, consequently, to reduce dramatically the test generation and test

application time. Most design-for-testability and synthesis-for-testability techniques do

not have this advantage and often result in testable circuits with large fault universes.

Consider the two modified circuits c3540 and c6288 which have 15,111,450 and 9.418
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Figure 3(a): Increase in coverage for c1908 with the addition of test points
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Figure 3(b): Increase in coverage for c5315 with the addition of test points
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× 1015 faults. After the addition of test points to make the circuits completely testable,

the total number of faults in the two circuits is only 11,766 and 31,192 respectively.

7. Conclusions

We considered the problem of design-for-testability for path delay faults in large combi-

national circuits using test points. We presented an algorithm to significantly reduce over

an existing technique the number of test points required to obtain completely robust path

delay fault testable circuits.

The number of test points required to achieve complete testability is still too high

for circuits like c6288 with large numbers of paths and poor path delay fault testability.

For such circuits with large path numbers, an approach often used in practice is to only

test those paths with an expected delay greater than a given threshold. An interesting sub-

ject for future research would be to modify our approach so that test point insertion is tar-

geted at only making these path delay faults robustly testable in order to reduce the

number of test points needed.

In our experiments we found many situations where a single test point improved the

testability of the circuit significantly. If we had to modify the circuit to achieve the same

level of testability (e.g. by Shannon’s expansion [20]), the overhead required would have

been much higher. However, there were also cases where local circuit modifications such

as [19] could have solved the problem at a lower cost. We conjecture that test point inser-

tion should be combined with other design-for-testability and synthesis-for-testability

techniques to obtain testable designs cost-effectively. Future work will investigate such

possibilities.
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