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Abstract. Performing computation using networks of workstations is increasingly becoming an
alternative to using a supercomputer. This approach is motivated by the vast quantities of un-
used idle-time available in workstation networks. Unlike computing on a tightly coupled parallel
computer, where a fixed number of processor nodes is used within a computation, the number of
usable nodes in a workstation network is constantly changing over time. Additionally, workstations
are more frequently subject to outages, e.g. due to reboots. The question arises how applications,
adapting smoothly to this environment, should be realized.

LIPS! is a system for distributed computing using idle-cycles in networks of workstations. This
system in its version 2.3 is currently used at the Universitdt des Saarlandes in Saarbriicken,
Germany to perform computationally intensive applications in the field of cryptography on a net
of approximately 250 workstations and should be enhanced to work within an environment of
more than 1000 machines all over the world within the next years.

In this paper we present the runtime systems of LIPS along with performance measurements taken
with the current LIPS development version 2.4.

1 Introduction

The number of machines connected to the Internet is growing by a factor greater than two every year.
It is well known, that the idle-time normally exceeds 70 % of the machines’ uptime [LLMS87]. Using the
idle-time of these machines for distributed computations has many benefits which can be summarized
with: “Enormous amount of additional computing power with no or only small additional investments”.

Application programmers working in this environment must be provided with a programming system
facilitating the development of distributed applications. This is accomplished by mechanisms shielding
the programmer from the complexity of system-level programming, thus enabling him to concentrate
on solving application-level problems. For example, a heterogeneous environment of different operating
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systems, network protocols, or processor architectures should be hidden from the programmer. Imple-
menting a distributed application is also made more difficult by frequent changes in the availability of
nodes and networks.

The LIPS system enables users to implement distributed applications in heterogeneous networks of
workstations connecting machines with different processor architectures and UNIX? operating system
flavors. The system ensures that only workstations which are considered idle by their owners, are used
within the distributed computations. It does not need enhanced privileges (e.g. root permissions) to
perform its work. The system design allows the completion of distributed computations in spite of
failing nodes or network links although the performance can be compared to non-fault-tolerant systems.

A programming paradigm that is suited to implement distributed computation in a heterogeneous net-
work of workstations is the tuple space based generative communication, as originally used in the LINDA®
programming language. After introducing this shared memory paradigm for parallel programming in the
next section, we will explain how this is realized in the LIPS runtime systems. Finally, we will present
performance measurements we have taken with the current LIPS version.

2 Generative Communication

In order to implement distributed applications, a programmer must be supplied with primitives enabling
him to create additional processes or tasks, and to exchange messages among them. A conventional pro-
gramming language, when augmented by interprocess communication and process manipulation prim-
itives, is sufficient for implementing distributed algorithms. Interprocess communication (IPC) may be
established accessing the network protocols, using systems like PVM [GS91], Express [Par90] or P4
[BL92]. Another approach, which is used throughout this work, is to use higher level paradigms as the
tuple space based generative communication [Gel85, BCGL87, Gel88]. These approaches differ with
respect to usability, efficiency, and availability on different platforms. While TPC using direct access to
network protocols permits highly efficient communication, applications implemented using this approach
are rather cumbersome to maintain. The generative communication approach to IPC trades efficiency
against ease of use, due to the overhead introduced by tuple space management. This overhead may be
kept down to a reasonable amount by analyzing communication patterns at compile-time.

This section describes the tuple space based generative communication paradigm. Using this paradigm
yields elegant solutions for communication patterns typically found in distributed applications.

2.1 The Tuple Space

The tuple space is an associative, shared memory accessible to all application processes. It is called
associative, as it contains data tuples, which may be retrieved addressable by their contents rather than
by physical addresses, using a pattern-matching mechanism. The implementation of tuple space memory
is hidden from the user and therefore may be realized on a shared-memory machine, a tightly-coupled
parallel computer or on a network of workstations. Data tuples consist of a list of simple data types.
We distinguish active tuples generated with the eval() operator from passive tuples generated with
out (). Active tuples are used to create new threads of control within a distribute application while
passive tuples are merely used to store data items. A set of operations (in(), rd(), inp(), rdp())
is used to retrieve passive tuples. Both blocking and non-blocking versions of tuple retrieval functions
are available. These operations thus may be used for synchronization and communication tasks. The
tuple extracting operations in() and inp() read a data tuple and remove it from the tuple space. If
no tuple is available, the nonblocking operation inp () immediately returns an error as opposed to the

2 UNIX is licensed exclusively through X/Open Company Limited
8 LINDA is a registered trademark of Scientific Computing Association, New Haven, Connecticut



3. The Runtime Systems 3

blocking operation in() which suspends the calling thread until such a tuple is found. The tuple reading
operations rd() and rdp() return a data tuple, again in a blocking and nonblocking manner, but do
not extract the tuple from the tuple space. A more elaborate description of the tuple space can be found
in [Set95].

2.2 Benefits of the Generative Communication

As the tuple space is conceptually separated from an application process, its content is not lost across
thread exits. Data tuples remain available until they are consumed by some other process, which must
not necessarily be around at the time the tuple is created. As a result, interprocess communication is
decoupled in time. As data tuples are identified solely by their contents, and not by any other means
such as senders’ or recipients’ process-ID, communication is made “anonymous”, in that communicating
processes do not need knowledge of their peer’s identity. IPC using the tuple space thus decouples
communicating processes logically and physically. This eases application development when compared
to using a message-passing based paradigm.

As processes in a distributed application have no notion of a peer’s location, migrating processes in the
case that a machine becomes unavailable due to load increase or crash is made easier. A process may still
retrieve messages even when it had to change to a different machine. This mechanism is transparent to
the application programmer as no host addresses are involved. The tuple space communication paradigm
is not tied to a particular programming language, hardware or software environment. It may thus be
used for distributed applications running on a heterogeneous set of workstations. The paradigm also
allows for adapting the number of usable machines, implementing what is called “adaptive parallelism”
in [CFGK94, GK92]. Applications may use all available machines, shrink down to the usage of only
one, and switch between these bounds of possibilities very easily. Finally, integrating the tuple space
based generative communication approach into a conventional programming language requires only six
additional operations.*

Therefore, tuple space based applications turn out to be an adequate choice for implementing distributed
applications running on networks of workstations.

3 The Runtime Systems

The main problem that arises in implementing the runtime systems deals with the question of how to
make the tuple space resilient to faults like machine crashes. Obviously, the solution to this problem is
replication of the tuple space among different machines. This approach is implemented very efficiently
in the so-called fault-tolerant tuple space machine explained later in this section.

We distinguish two fault-tolerant tuple space machines in our runtime systems. The first fault-tolerant
tuple space machine implements the System Tuple Space maintaining data about the system state with
processes called FixServers. The second fault-tolerant tuple space machine maintains the Application
Tuple Space and is implemented with processes called MessageServers. There may exist several appli-
cations concurrently each using a private fault-tolerant tuple space machine. The System Tuple Space
is shared by all applications.

A designated server process called 1ipsd resides on each machine participating in the LIPS system. The
lipsd processes update and retrieve information from the System Tuple Space. For example, node-state
information, like load of a (the) machine can be read (updated) easily through tuple space operations.
lipsd processes update their own node-state information in the System Tuple Space in fixed intervals.
A machine crash can be detected if this information is not received in time. In this case possible

4 Which compares favorably to systems like Express [Par90] sporting about one thousand IPC primitives.
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errors due to lost data are repaired, and watchdog mechanisms will re-integrate the crashed machine
“automagically” immediately after its recovery.

Fault-tolerance on application level is implemented with a checkpointing and recovery mechanism inte-
grated into the fault-tolerant tuple space machine. A checkpoint is correlated to the evaluation of an
eval () operation; recovery is based on the re-execution of a failed eval() together with the replay of
the message logging of the first execution of eval (). Message logging is provided via the fault-tolerant
tuple space machine.

A tracing tool ala syslog(3) in co-operation with a virtual console process allows an easy level-based
tracing of the LIPS-System Runtime System and Application Runtime System behavior.

The relationship between the different runtime systems described above is depicted in Figure 1.
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Figure 1. The different levels of the LIPS runtime systems

In this section we first introduce the design of the fault-tolerant tuple space machine being the basis
for the LIPS-System Runtime System as well as for the Application Runtime System. In the following
subsections we first explain the 1ipsd process in more detail and introduce a tool (1ipsdc, the lipsd
controller) to display the current state of the system configuration. Finally we describe the tracing
facilities.
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3.1 The Fault-Tolerant Tuple Space Machine

The Fault-Tolerant Tuple Space Machine replicates the content of the tuple space among several ma-
chines. If a machine that a MessageServer (FixServer) resides on crashes, the data are still available
on the replicas. An additionally started server process joining the Fault-Tolerant Tuple Space Ma-
chine will be initialized with the data of an old replica. This feature makes the Fault-Tolerant Tuple
Space Machine N Fault-Tolerant. In the Fault-Tolerant Tuple Space Machine every tuple is tagged
with a unique ID (Sequence Number) as a result of the protocol used to replicate data across the
different machines. This unique ID is used to speed up replication of events among the different
servers. The protocols used in the Fault-Tolerant Tuple Space Machine are based on those given in
[ADM193, ADKM92a, ADKM92b, AAD93, Kei94]. An in-depth description of the protocol used and
its implementation is given in [Set96, Set95].

As depicted in Figure 2, the tuple space is managed by several MessageServers residing on different
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Figure 2. Processes of the Tuple Space Machine

machines. MessageServers must reside in the same broadcast domain. The broadcast facility is utilized
to replicate messages very efficiently among the different servers. An additional token circulating among
the servers schedules the permission to use the broadcast facility - avoiding Ethernet saturation because
of collisions. The circulating Token ships additional data enabling among other things flow control
between the replicas. Additionally, each broadcast message (tuple) is tagged in sequence with a unique
ID. This procedure establishes a linear order among the tuples of the Fault-Tolerant Tuple Space Machine
and speeds up replication.?

5 If a broadcast message was not received on a replica this circumstance is easily obtained, as there is a gap in
the sequence of received messages. In this case a retransmission could be requested immediately.
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As shown in Figure 2, an application process sends requests to the MessageServer which is assigned to it.
A request can either contain a tuple or a template. In the following, we first explain how MessageServers
process a tuple, and second how templates are processed.

As the MessageServers share the same broadcast domain, a MessageServer is able to broadcast the tuple
and hence replicate it on multiple MessageServers with only one physical operation. At any time only
one MessageServer may broadcast a tuple, namely the MessageServer holding the token message. After a
MessageServer has finished broadcasting messages (tuples), it sends the token to the next MessageServer.
With respect to this token transfer, the MessageServers form a logical ring. Messages being broadcast
are tagged with a unique sequence number. The sequence number of the last broadcast message of
a MessageServer is sent within the token. The next MessageServer intending to broadcast knows the
sequence number of the last broadcast message and continues the sequence, thereby establishing a total
order on the messages broadcast. Within one token rotation several tuples may be broadcast by each
MessageServer.

If a MessageServer receives a template, it first tries for a match on its local tuple space. If no tuple
matching the template is found, the MessageServer notifies the requesting application process (NACK).
Otherwise, if the MessageServer finds a match, it must first synchronize with the other MessageServers.
In order to notify the other MessageServers of the tuple access, it is sufficient to send the sequence
number (4 bytes), the application process accessing the tuple and the event number in its message
logging (4 bytes) as well as the type of access (1 byte) to identify the operation to the replicas. These
items of access information now are added to the circulating token. The size of the token then determines
the number of reading and extracting tuple space operations which may be replicated within one token
rotation.

3.2 The LIPS Daemon lipsd

A system server process called lipsd resides on each machine in a LIPS installation. This process
gives the LIPS system access to the machine and is responsible to obey the idle-time restrictions for
the machine this particular lipsd is residing on. Furthermore, the 1lipsd processes provide services
such as starting and controlling application processes. Each 1ipsd updates the node state information
of its machine held in the System Tuple Space within a given time. If a 1ipsd fails to update this
information within the given period of time, the machine it resides on is assumed to have crashed. In
this case, all other 1lipsd processes are informed of the crash of the machine, and possibly corrupted
data in the System Tuple Space are repaired. Additionally, all application processes residing on that
machine are scheduled to be restarted on another machine. Informing all 1ipsd processes of this event
is realized with a signal indicator shipped with every tuple space operation. As every 1lipsd updates its
node-state information periodically, it will receive the signal indicator soon after the crash of a machine.
On receipt of the signal indicator, the 1ipsd process triggers appropriate signal handler functions. The
‘first’ 1ipsd, finding himself in the signal handler, will repair possibly corrupted data structures (lost
tuple) and if necessary will schedule lost application processes to be restarted. All other 1ipsd processes
only update their locally cached data. The ‘first’ 1ipsd mentioned above is identified with the help of an
automatically (Fault-Tolerant Tuple Space Machine) generated tuple which will be destructively read
(inp()) by the ‘first’ 1ipsd and is not available to the other 1ipsd processes (inp () returns an error).
Within the 1ipsd process all destructive read operations (in(), inp()) are immediately followed by
a tuple generating operation (out()). This eases the restoring of corrupted data after a crash as the
Fault-Tolerant Tuple Space Machine simply re-injects the tuple into the System Tuple Space if the last
tuple space operation of a crashed 1ipsd has been a destructive read. These mechanisms enables us to
handle recursive crashes of 1ipsd processes.5

As already mentioned, each 1ipsd process maintains a tuple for its machine in the System Tuple Space
which contains the node state information. This information is based on the node’s status (running,

b i.e., if a 1lipsd crashes while it was recovering the data for a formerly crashed 1ipsd.
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idle etc.), number of users, load average, number of application processes and the time of the last
update of this tuple. This information is considered when starting new application processes to achieve
a well-balanced process and load distribution. In order to detect failing application processes, the System
Tuple Space holds a table for each running application process. When this information gets updated by a
lipsd, this old table is compared with the new information. The processes which are marked as running
within the old table but marked as non-running in the new one, need to be restarted by a MessageServer.
These data are periodically read by the applications Fault-Tolerant Tuple Space Machine which then in
turn is able to request a restart of crashed application processes.

As the 1ipsd processes are permanently running on all machines in a LIPS installation, in particular
even if a machine is unavailable to run a LIPS application process due to idle-time restrictions, they are
implemented such that they cause minimal overhead for the machine. In the first place, the runtime and
memory requirements are minimized. As the LIPS system was used in relatively fast networks so far,
the network overhead was not optimized yet. When using LIPS in a huge installation or in wide-area
networks, more attention must be payed to reducing the communication traffic.

3.3 The LIPS Daemon Controller lipsdc

The lipsdc tool can be used for two purposes: on one hand it is the means to initialize the global
data structures of the LIPS-System Runtime System in the System Tuple Space during the start-up
of a LIPS configuration. On the other hand, it enables the administrator of a LIPS installation to
interactively change the configuration during runtime and provides users with the information about
their application processes in the LIPS system.

If used during the start-up of a LIPS configuration, a number of global tables are created in the form
of tuples in the System Tuple Space. Moreover, a configuration file is read containing entries for each
machine becoming a member of the L1PS installation such as the machine architecture or a specification
of what it means for that machine to be idle. Finally, several configuration files are created and updated
resp. which have to be copied together with the 1ipsd binary to all machines taking part in the newly
set-up LIPS installation. These files hold data about the FixServers’ ports, the process IDs for the
different 1ipsd processes and give information on the trace levels for the different modules constituting
the lipsdc process.

In the interactive mode, the 1lipsdc allows to display and change the current LIPS configuration such
as request the load state of each machine, add or remove machines in the installation, change the
specification about idle-time restrictions, or display all application processes including information about
the user to which each process belongs or which machine each process is distributed on within the
network.

3.4 Tracing LIPS

It is very difficult to follow the execution of a program in a distributed environment due to the fact
that there are actions taking place concurrently in different processes possibly residing on different
processors. The LIPS runtime systems provide the user with a facility to trace the output of the system
and the applications running within it in a (one) terminal or/and a (one) file. The same mechanism is
applicable to the LIPS system itself.

Tracing is based on a syslog(3)-like macro call in the source code. Depending on the actual tracing level
of the module, the macro output is redirected to a virtual console, identified by an Internet address
and a port on which the console process is listening, or discarded. The tracing levels of the different
modules are defined in a file. The content of this file is reread on receipt of a signal (SIGTRAP) and
the behavior of the tracing tool changes according to the newly read configuration. In other words, the
tracing behavior of LIPS applications as well as the LIPS system itself is (at runtime) adjustable on a
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per-module basis. Additionally, it is possible to disable tracing with the same mechanisms to gain full
performance, and to switch between these bounds of possibilities very easily.

Besides simple displaying of this tracing information in lines, it can also be used for profiling the
distributed programs. As the output can optionally be generated in the PICL format (Portable In-
strumented Communication Library) [GHPW90], a profiler compatible with this format can be easily
integrated with LIPS.

4 Performance

In this section we present some runtime measurements for tuple space operations with a number of
application processes concurrently accessing the tuple space. The test is based on the benchmark given
in [Mat95]. In this report the tests were performed using PVM Version 3.2.6, p4, TCGMSG and SCA
Linda on a network of IBM RS/6000 model 560 workstations under the operating system AIX 3.2.
In those measurements, the best benchmark timing of different tests suites was used to compare the
different systems because the network on which the tests were made was concurrently used by other users
and therefore, the test conditions were not equal. Our tests were made within another environment and
for this reason, the timings presented here are not really comparable to the timings taken from [Mat95].
Anyway, the timings presented here show, that the timings are in the same order of magnitude. Keeping
in mind that we are comparing a ‘fault-tolerant design’ with non fault-tolerant ones, this is an impressive
result.

In this section we first describe the test environment used and give the skeleton code for the ping/pong
test performed. Then we show the timing for one ping/pong operation using 1 to 3 MessageServer
processes and up to 24 clients.

4.1 Our Test Environment

In our tests, the MessageServers resided on Sun SPARCstation 20’s with 128 MB main memory under
the operating system SunOS 4.1.4. The replication of messages was done in a 10 Mb/s fast Ethernet.
The connection to the machines on which the application processes were residing was made via an ATM-
LAN concentrator with an ATM switch having a theoretical bandwidth of 155 Mb/s. The machines on
which the application processes were residing were Sun SPARCstations SLC and ELC resp. with a
main memory of 16-64 MB under the operating system SunOS 4.1.3.

4.2 Ping/Pong Test

In the ping/pong test, the time needed by an application process to write a tuple into the tuple space
and read the same tuple afterwards is measured. The loop in which those operations are executed is the
following:

for (iters = iterations; iters—- ; ) {
t0 = wtime();

out ("ping", "al", buffer, buffer_size);
in("ping", "AL", buffer, &buffer_size);
*tp = wtime();

*tp++ -= (t0 + twtime);
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The function wtime () calculates the time before and after an in() — out () sequence. The average time
for one iteration is calculated and the best results are taken 7. The tests have been executed using tuples
each with a size of 800 bytes. The size of a tuple is determined by the array buffer, the size of which
is specified in buffer_size.

4.3 Results

The runtime for a different number of application processes and a different number of MessageServers is
given in Figure 3 whereas Table 1 shows the runtime of one application process and one MessageServer.
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Figure 3. Runtime of the Ping/Pong test for tuple space operations with 5 — 24 application processes

In the last case, both the MessageServer and the application process resided on Sun SPARCstation 20’s.

As mentioned earlier, no absolute test results can be obtained from the different test environments.
However, the tests show that the approach presented in this paper achieves comparable results of the
same order. Thus, a similarly efficient communication is realized for fault-tolerant applications.

System Name | Runtime | fault-tolerant

LiPS 5.8 ms yes
TCGMSG 2.3 ms no
P4 2.3 ms no
PVM 2.8 ms no

SCALinda 3.4 ms no

Table 1. Runtime for one application process and one MessageServer

" In the example twtime stands for the correction of the duration of a wtime () call.
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5 Conclusion and Summary

LIPS is a system using the idle-time in a heterogeneous network of workstations for distributed ap-
plications. LIPS provides its users with the tuple space based generative communication paradigm of
distributed computing. The former version of LIPS has proven to work within an environment of about
250 machines. The main problem arising while designing a Runtime System within this environment is
dealing with faults caused by crashing machines or transient network errors. The design for Version 2.4
takes this into account and provides mechanisms to tolerate such faults.

The design is based on a Fault-Tolerant Tuple Space Machine being able to maintain the shared memory
in spite of crashing machines. A dedicated process resides on each node participating in the LIPS system,
the so called 1lipsd, building the interface from the LIPS-System to the machine. 1lipsd processes
communicate through a private tuple space called System Tuple Space. The System Tuple Space is
realized with a Fault-Tolerant Tuple Space Machine. The server processes running the System Tuple
Space are called FixServer. FixServer- and 1ipsd-processes constitute the LIPS-System Runtime System
providing services to the Application Runtime System.

The Application Runtime System is also based on a Fault-Tolerant Tuple Space Machine. To differen-
tiate the application processes from the system processes, the servers for the Applications Tuple Space
Machine are called MessageServers.

The recognition of crashed machines (or unavailable intermediate networks) is based on a timeout for
periodic updates of a node’s state (1ipsd) in the System Tuple Space. In case of a machine crash,
application processes which resided on the crashed machine are easily detected and their restart is
scheduled. Propagation of these data is triggered through a signal mechanism added to the tuple space
operations.

Fault-tolerance on application level is based on checkpoints and message logging. Both mechanisms are
integrated into the Fault-Tolerant Tuple Space Machine.

The performance measurements show that the LIPS runtime systems are favorably comparable with
similar systems, and additionally provides fault-tolerance.
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