Cache Behavior Prediction by Abstract Interpretation

Christian Ferdinand Florian Martin Reinhard Wilhelm
Martin Alt

Universitit des Saarlandes, Fachbereich Informatik, Postfach 15 11 50, D-66041
Saarbricken, Germany, {ferdi, florian,wilhelm,alt} @cs.uni-sb.de

Abstract

Abstract interpretation is a technique for the static detection of dynamic proper-
ties of programs. It is semantics based, that is, it computes approximative properties
of the semantics of programs. On this basis, it allows for correctness proofs of anal-
yses. It replaces commonly used ad hoc techniques by systematic, provable ones,
and it allows the automatic generation of analyzers from specifications as in the
Program Analyzer Generator, PAG.

In this paper, abstract interpretation is applied to the problem of predicting
the cache behavior of programs. Abstract semantics of machine programs are de-
fined which determine the contents of caches. For interprocedural analysis, existing
methods are examined and a new approach that is especially tailored for the cache
analysis is presented. This allows for a static classification of the cache behavior of
memory references of programs. The calculated information can be used to sharpen
worst case execution time estimations. It is possible to analyze instruction, data,
and combined instruction/data caches for common (re)placement and write strate-
gies. Experimental results are presented that demonstrate the applicability of the
analysis.

Keywords: abstract interpretation, program analysis, cache memories, real time
applications, worst case execution time prediction.

1 Cache Memories and Real-Time Applications

Caches are used to improve the access times of fast microprocessors to rela-
tively slow main memories. They can reduce the number of cycles a processor
is waiting for data by providing faster access to recently referenced regions
of memory!. Caching is more or less used for all general purpose processors,

! Hennessy and Patterson [10] describe typical values for caches in 1990 worksta-
tions and minicomputers: Hit time 1-4 clock cycles (normally 1); Miss penalty 8-32
clock cycles.

Preprint 26 March 1997

and, with increasing application sizes it becomes more and more relevant and
used for high performance microcontrollers and DSPs.

Programs with hard real-time constraints have to be subjected to a schedu-
lability analysis, e.g. by the compiler [32,8]. This should determine whether
all timing constraints can be satisfied. WCET (Worst Case Execution Time)
extimations for processes have to be used for this. The degree of success for
such a timing validation [31] depends on sharp WCET estimations. There are
two components to the prediction of WCETS:

(i) architecture modeling, the determination of how much time it will take
to execute an execution path on the target system, and
(ii) program path analysis, the determination of a worst case execution path.

Here, we focus on the first point.

For hardware with caches, the typical worst case assumption is that all accesses
miss the cache. This is an overly pessimistic assumption which leads to a waste
of hardware resources.

2 Overview

In the following Section we briefly sketch the underlying theory of abstract
interpretation and present the program analyzer generator PAG. Cache mem-
ories are briefly described in Section 4. In Section 5 we give a semantics for
programs that reflects only memory accesses (to fixed addresses) and its ef-
fects on cache memories, and we present the must analysis that computes for
all program points a set of memory blocks that must be in the cache when-
ever control reaches this point and the may analysis that computes a set of
memory blocks that may be in the cache. The behavior of memory references
within loops and recursive procedures can be analyzed with interprocedural
analysis methods. In Section 6 existing approaches are discussed and a new
approach is presented. An example is given in Section 7. Section 8 describes
extensions to data and combined caches. In Section 10 we present and discuss
the results of practical experiments from an implementation of the analyses,
and Section 11 describes related work.

3 Program Analysis by Abstract Interpretation

Program analysis is a widely used technique to determine runtime properties
of a given program without actually executing it. Such information is used

for example in optimizing compilers [33] to enable code improving transfor-
mations. A program analyzer takes a program as input and computes some
interesting properties. Most of these properties are undecidable. Hence, both
correctness and completeness of the computed information are not achievable
together. Program analysis makes no compromise on the correctness side; the
computed information is reliable as for enabling optimizing transformations. It
can’t thus guarantee completeness. The quality of the computed information,
usually called its precision, should be as good as possible.

There is a well developed theory of static program analysis called abstract
interpretation [5-7]. With this theory, correctness of a program analysis can
be easily derived. According to this theory a program analysis is determined
by an abstract semantics. Usually, the meaning of a language is given as func-
tions for the statements of the language computing over a concrete domain.
A domain is a complete partially ordered set of values. For such a semantics,
an abstract version consists of a new simpler abstract domain and simpler
abstract functions which define the abstract meaning for every program state-
ment.

For an abstract semantics and an input program, a system of recursive equa-
tions can be constructed. The variables in this system stand for the values
of the abstract domain at every program point. In this equation system, the
value at a program point depends on the values at all program points which
can directly precede the execution of this program point. For example, the
value after the exit of a loop depends on the value at the end of the loop
body and on the value before the loop because it is possible that the loop
is never executed. The control flow graph of a program describes every pos-
sible flow of control and therefore all dependencies between the variables of
the equation system. Lattice theory underlying abstract interpretation states
that the recursive equation system can be solved by fixpoint iteration if the
abstract domain has only finite ascending chains, i.e., every chain of values
vy C vy C - - - has only finite length, and if in addition every semantic function
is monotonic.

The program analyzer generator PAG [1,2] offers the possibility to generate a
program analyzer from a description of the abstract domain and of the ab-
stract semantic functions in two high level languages, one for the domains and
the other for the semantic functions. Domains can be constructed inductively
starting from simple domains using operators like constructing power sets
and function domains. The semantic functions are described in a functional
language which combines high expressiveness with efficient implementation.
Additionally the user has to supply a join function combining two domain
values into one. This function is applied whenever a point in the program has
two (or more) possible execution predecessors.

4 Cache Memories

A cache can be characterized by three major parameters:

— capacity is the number of bytes it may contain.

— line size (also called block size) is the number of contiguous bytes that
are transferred from memory on a cache miss. The cache can hold at most
n = capacity/line size blocks.

— associativity is the number of cache locations where a particular block may
reside. n/associativity is the number of sets of a cache. A set can be consid-
ered as a fully associative subcache.

If a block can reside in any cache location, then the cache is called fully
associative. If a block can reside in exactly one location, then it is called direct
mapped. If a block can reside in exactly A locations, then the cache is called
A-way set associative [30].

In the case of an associative cache, a memory block has to be selected for
replacement when the cache is full and the processor requests further data.
This is done according to a replacement strategy. Common strategies are LRU

(Least Recently Used), FIFO (First In First Out), and random.

We restrict our description to the semantics of A-way set associative caches
with LRU replacement strategy. The fully associative and the direct mapped
caches are special cases of the A-way set associative cache where A = n and
A =1 rsp.

5 Cache Semantics

In the following, we consider an A-way set associative cache as a sequence of
(fully associative) sets F' = (f1,..., fuj4), a set f; as a sequence of set lines
L ={(li,...,l4), and the store as a set of memory blocks M = {mq,...,ms}.

The function adr : M — Ny gives the address of each memory block. The
function set : M — F' gives the set where a memory block would be stored
(% denotes the modulo division):

set(m) = f;; where ¢ = adr(m)%(n/A) + 1

To indicate the absence of any memory block in a set line, we introduce a new

element [; M' = M U {I}.

Our cache semantics separates two key aspects:

— The set where a memory block is stored: This can statically be determined
as it depends only on the address of the memory block. The dynamic dis-
tribution of memory blocks into sets is modeled with the cache states.

— The aspect of associativity and the replacement strategy within one set of
the cache: Here the history of memory reference executions is relevant. This
is modeled with the set states.

Definition 1 (concrete set state) A (concrete) set state is a function s :
L — M’. S denotes the set of all concrete set states.

Definition 2 (concrete cache state) A (concrete) cache stateis a function
c: I"— 5. C denotes the set of all concrete cache states.

If s(l,) = m for a concrete set state s, then x describes the relative age of
the memory block according to the LRU replacement strategy and not the
physical position in the cache hardware.

The update function describes the side effects on the set (cache) of referencing
the memory:

— The set where a memory block may reside in the cache is uniquely deter-
mined by the address of the memory block, i.e., the behavior of the sets is
independent of each other.

— The LRU replacement strategy is modeled by using the positions of memory
blocks within a set to indicate their relative age. The order of the memory
blocks reflects the “history” of memory references.

The most recently referenced memory block is put in the first position
[1 of the set. If the referenced memory block m is in the set already, then
all memory blocks in the set that have been more recently used than m
are shifted by one position to the next set line, i.e., they increase their
relative age by one. If the memory block m is not yet in the set, then all
memory blocks in the cache are shifted and the ‘oldest’, i.e., least recently
used memory block is removed from the set.

Definition 3 (set update) A set update function Us : S x M — S describes
the new set state for a given set state and a referenced memory block.

Definition 4 (cache update) A cache update function U : C x M — C

describes the new cache state for a given cache state and a referenced memory

block.

Updates of fully associative sets with LRU replacement strategy are modeled

in the following way:

[llev
lil—>8(li_1)|i:2...h,
Us(s,m) = Li—s(l)|i=h+1.. A if3l,:s(l)=m

[11 = m,

liv— s(lizq) for e =2... A]; otherwise

Notation: [y +— z] denotes a function that maps y to z. fly — z] denotes a
function that maps y to z and all « # y to f(x).

Updates of A-way set associative caches are modeled in the following way:

Uc(e,m) = c[set(m) — Us(set(m),m)]

5.1 Control Flow Representation

We represent programs by control flow graphs consisting of nodes and typed
edges. The nodes represent basic blocks®. For each basic block, the sequence

3

of references to memory is known | i.e., there exists a mapping from control

flow nodes to sequences of memory blocks: £ : V. — M*.

We can describe the working of a cache with the help of the update function
Uc . Therefore, we extend Upx to sequences of memory references:

Uc(e,(ma,...,my)) =Uc(. . . Uc(e,my) ... ,my)

The cache state for a path (ki,...,k,) in the control flow graph is given by
applying Uc to the initial cache state ¢y that maps all set lines in all sets to [
and the concatenation of all sequences of memory references along the path:

Uc(er, L(ky). .. L(ky)).

2 A basic block is a sequence (of fragments) of instructions in which control flow
enters at the beginning and leaves at the end without halt or possibility of branching
except at the end. For our cache analysis, it is most convenient to have one memory
reference per control flow node. Therefore, our nodes may represent the different
fragments of machine instructions that access memory.

3 This is appropriate for instruction caches and can be too restricted for data caches
and combined caches. See Section 8 for weaker restrictions.

5.2 Abstract Semantics

The domain for our abstract interpretation consists of abstract cache states
that are constructed from abstract set states:

Definition 5 (abstract set state) An abstract set state § : L — 2" maps
set lines to sets of memory blocks. .S denotes the set of all abstract set states.

Definition 6 (abstract cache state) An abstract cache state ¢ : F — S
maps sets to abstract set states. €' denotes the set of all abstract cache states.

We will present two analyses. The must analysis determines a set of memory
blocks that are definitely in the cache whenever control reaches a given pro-
gram point. The may analysis determines all memory blocks that may be in
the cache at a given program point. The latter analysis is used to guarantee
the absence of a memory block in the cache.

The analyses are used to compute a categorization for each memory reference
that describes its cache behavior. The categories are described in Table 1.

Table 1

Categorizations of memory references.
Category Abb. | Meaning
always hit ah | The memory reference will always result in a cache hit.
always miss am | The memory reference will always result in a cache miss.

not classified nc | The memory reference could neither be classified as ah

nor am.

The abstract semantic functions describe the effect of a memory reference
on an element of the abstract domain. The abstract set (cache) update
function ¢ for abstract set (cache) states is an extension of the set (cache)
update function U to abstract set (cache) states.

On control flow nodes with at least two* predecessors, join-functions are used
to combine the abstract cache states.

Definition 7 (join function) A join function J : (' xC — C combines two
abstract cache states.

4 Qur join functions are associative. On nodes with more than two predecessors,
the join function is used iteratively.

5.3 Must Analysis

An abstract cache state ¢ describes a set of concrete cache states ¢, and an
abstract set state § describes a set of concrete set states s.

To determine if a memory block is definitely in the cache we use abstract set
states where the position (the relative age) of a memory block in the abstract
set state §is an upper bound of the positions (the relative ages) of the memory
block in the concrete set states that § represents.

m, € §(l;) means that the memory block m, is in the cache. The position
(relative age) of a memory block m, in a set can only be changed by references
to memory blocks my with set(m,) = set(my), i.e., by memory references that
go into the same set. Other memory references do not change the position of
m,. The position is also not changed by references to memory blocks m; €
5(1,) where y < x, i.e., memory blocks that are already in the cache and are
“younger” or the same age as m,.

m, will stay in the cache at least for the next A — x references that go to the
same set and are not yet in the cache or are older than m,.

The meaning of an abstract cache state is given by a concretization function
concg @ O — 29, The concretization function for the must analysis conc? is

o
given by:
concy(¢) = {c | V1 <i<nfA:c(f;) € concy(c(fi))}
concg(é) ={s|V1<a<A:Ymei(l,):3b:s(l,) =m and b < a}

We use the following abstract set update function:

[11 = {m}v
ZZI—>§(ZZ_1) |Z:2h—1,
= 3(lh—1) U (3(1n) — {m}),

n¢a _
UGS m) = sy lim bt 1. Al i3 m € 3(0)
[11 = {m}v
Liv—38(licq) i =2... A otherwise

Example 1 (L?g) h Iy I3 ly
{may | {3 | {mp,me} | {ma}

>

G3Gmo) | fmd | fma) | fm) | ()

The address of a memory block determines the set in which it is stored. This
is reflected in the abstract cache update function in the following way:

A~

Us(e,m) = elset(m) — Z;lg(é(set(m)),m)]

The join function for abstract set states is similar to set intersection. A memory
block only stays in the abstract set state, if it is in both operand abstract set
states. It gets the oldest age, if it has two different ages.

jg(éhéz) = 5, where:
§(1;) ={m | 3, I, with m € 51(1,),m € 33(l;) and @ = max(a,b)}

Example 2 (jsn) A Iy I3 Iy
St Amad | {mw} | {met | {ma}

2| {me} [{me} | {ma) | {ma}

JEGud) | Y |) [{mamd) | {ma)

The join function for abstract cache states applies the join function for abstract
set states to all its abstract set states:

T 62) = [fi = TR i), ()]s forall 1 <i < n/A

An abstract cache state ¢ at a control flow node k is interpreted in the following
way: Let m a memory block and § = é(set(m)). If m € §(l,) for a set line
[, then m is definitely in the cache every time control reaches k. Therefore, a
reference to m is categorized as always hit (ah).

5.4 May Analysis

To determine, if a memory block is never in the cache, we compute the set
of all memory blocks that may be in the cache. We use abstract set states §
where the position (the relative age) of a memory block in the abstract set

state is a lower bound of the positions (the relative ages) of the memory blocks
in the concrete set states that § represents.

m, € §(l;) means the memory blocks m, may be in the cache. The position
(relative age) of a memory block m, in a set can only be changed by references
to memory blocks my with set(m,) = set(my), i.e., by memory references that
go into the same set. Other memory references do not change the position of
m,. The position is also not changed by references to memory blocks m; €
5(1,) where y < x, i.e., memory blocks that are already in the cache and are
“younger” as m,.

If there are no memory references to m,, then m, will be removed from the
cache after at most A — x 4 1 references to memory blocks that go into the

same set and are not yet in the cache or are older or the same age than m,.

The concretization function for the may analysis conc is given by:

concg(c) = {c |Vl <i<n/A:c(f)Econc (e(fi))}
concz(3) ={s|V1<a<A:Vmes(l,):3b:3(l;) =m and b < a}

We use the following abstract set update function:

[11 = {m}v
li I—>§(ZZ_1) | 7 :2...h,
lhr = S(lhga) U (5(1k) — {m}),

Usa _
USEm) =0) L= bt 2 Al 30 m € 3(0)
[11 = {m}v
Liv—38(licq) i =2... A otherwise
Example 3 (Z/Algj) h ly I ly

{ma} | {fmp,me} | {3 | {ma}

>

U(3,me) | {me} | {ma} | {mu} | {ma}

The abstract cache update function for the may analysis has the same struc-
ture as the one for the must analysis:

US(¢,m) = ¢set(m) — Z;lg(é(set(m)),m)]

10

The join function is similar to set union. If a memory block s has two different
ages in two abstract cache states then the join function takes the youngest
age.

N

jgu(éhéz) = 5, where:

(1) ={m | ., I, with m € 3;(1,),m € 33(ly) and & = mun(a,b)}
U{m | m € §(l;) and Al, with m € 33(1,)}
U{m | m € 8(l;) and Al, with m € 51(1,)}

Example 4 (j;) A Iy I3 Iy
S1 {ma} {re } {me} | {ma}

S {me} {me,myp} | {ma} | {ma}

T80 80) | fmayme} | {mymemys} | {} | {ma)

The join function for abstract cache states for the may analysis has the same
structure as for the the must analysis:

TE(er,62) = [fi = T i), e f))]; for all 1 < i < n/A

An abstract cache state ¢ at a control flow node k is interpreted in the following
way: Let m be a memory block and § = é(set(m)). If m is not in 5(/,) for an
arbitrary [, then it is definitely not in the cache whenever control reaches k.
Therefore, a reference to m is categorized as always miss (am).

5.5 Termination of the Analysis

There are only a finite number of sets and set lines and for each program a
finite number of memory blocks. This means the domain of abstract cache
states ¢ : F' — (L — ZMI) is finite. Hence, every ascending® chain is finite.
Additionally, the abstract cache update functions U and the join functions J
are monotonic. This guarantees that our analysis will terminate.

5 The order is given by set inclusion and the concretization functions.

11

6 Analysis of Loops and Recursive Procedures

Loops and recursive procedures are of special interest, since programs spend
most of their time there. In a control flow graph, a loop is represented as a
cycle. The start node of a loop® has two incoming edges. One represents the
entry into the loop, the other represents the control flow from the end of the
loop to the beginning of the loop. The latter is called loop edge (see Figure 1).

\
y

s o

\

loop edge

-]

Fig. 1. Control flow graph of a loop.

There are loops that can iterate more than once. Since the execution of the
loop body usually changes the cache contents, it is useful to distinguish the
first iteration from others. This could be achieved by conceptually unrolling
each loop once.

Example 5 Let us consider a sufficiently large fully associative data cache
with LRU replacement strategy and the following program fragment:

/* Variable x not in the data cache */

for i:=1 to .. do ... y:=x ... end

6We consider here loops that correspond to the loop constructs of ‘higher pro-
gramming languages’. Program analysis is not restricted to this, but will produce
more precise results for programs with well behaved control flow.

12

In the first execution of the loop, the reference to x will be a cache miss,
because x is not in the cache. In all further iterations the reference to x will
be a cache hit, if the cache is sufficiently large to hold all variables referenced
within the loop.

For the abstract interpretation, the join function J" combines the abstract
cache states at the start node of the loop. Since the join function is ‘similar’
to set intersection, the combined abstract cache state will never include the
variable x, because x is not in the abstract cache state before the loop is
entered. For a WCET computation for a program this is a safe approximation,
but nevertheless not very good.

Loop unrolling would overcome this problem. After the first unrolled iteration,
x would be in the abstract cache state and would be classified as always hit.

For our analysis of cache behavior we treat loops as procedures to be able to
use existing methods for the interprocedural analysis” . This is done by trans-
forming all loops into “loop-procedures” in the control flow graph according
to Figure 2. This is only done for the analyses and has no influence on the
program code.

proc loop; ();

if P then
while P do BODY
BODY = loop; () ; (2)
end; end

loop; () ; (1)

Fig. 2. Loop transformation.

In the presence of (recursive) procedures, a memory reference can be executed
in different execution contexts. An execution context corresponds to a path in
the call graph of the program.

The interprocedural analysis methods differ in which execution contexts are
distinguished for a memory reference within a procedure. Widely used are the
callstring approach and the functional approach which have been proposed by
Sharir and Pnueli [29] and are implemented in PAG.

"Ludwell Harrison III [9] also proposed this transformation for the analysis of
loops.

13

The callstring approach limits the number of distinguished execution contexts
statically. To do this the call graph is considered. The goal is, not to merge
information that is obtained on different paths through the graph. But in
presence of recursion, the graph is cyclic and therefore has an infinite number
of paths. So only the information obtained on paths which differ in suffixes of
a fixed length K are kept separated.

In the functional approach, the number of distinguished execution contexts is
not statically limited. The PAG generated analyzer tabulates all different input
values and output values of the abstract domain (here: abstract cache states)
for every procedure. To guarantee termination of the analysis, the abstract
domain has to be finite. The functional approach computes the most precise
solution.

The applicability of these approaches to the cache behavior prediction is lim-
ited:

— Callstring approach: If we restrict the callstring length K to 0 (call-
string(0)), then one categorization for each memory reference in the program
is computed. This is fast, but yields not very precise information.

Callstring(1) gives better results, as it distinguishes as many different
execution contexts of a memory reference in a procedure as there are calls.
For each transformed loop there is one call to the loop—procedure at the
original place of the loop in the program (1) (see Figure 2) and one for the
recursive call of the loop-procedure (2). The first call corresponds to the first
iteration of the loop. The second call corresponds to all other iterations of
the loop.

Longer callstrings increase the analysis effort and lead to a more pre-
cise categorization. The precision gained is quite poor with respect to the
enormously increasing analysis costs, as there are many execution contexts
distinguished that are “non interesting” for our analysis.

— Functional approach: The dynamically distinguished execution contexts
cannot be easily combined with the results of a program path analysis that
determines a safe approximation to the worst case execution path. This
makes a WCET estimation more difficult.

To overcome the deficiencies of the callstring(>1) and the functional ap-
proaches, we have developed the VIVU approach which has been imple-
mented with the mapping mechanism of PAG as described in [1]. It corre-
sponds to callstring(oo), but paths through the call graph that only differ
in the number of repeated passes through a cycle are not distinguished. It
can be compared with a combination of virtual inlining of all non recursive
procedures® and virtual unrolling of the first iterations of all recursive proce-

8 This has also been used in [22,15].

14

dures (and loop-procedures). The results of the VIVU approach can naturally
be combined with the results of a path analysis to predict the WCET of a
program.

The results of the callstring(0), callstring(1), and the VIVU approach are
compared in Section 10.

7 Example

We consider must and may analyses for a fully associative data cache of 4
lines for the following program fragment of a loop, where ..x.. stands for a
construct that references variable z:

d..;

oy e

while ..c.. do ..b..;..c..; c.. end

G

oy e

The control flow graph and the result of the analyses with VIVU? are shown in
Figure 3. We assume that all variables are stored in pairwise different memory
blocks. The nodes of the control flow graph are numbered 1 to 6, and each node
is marked with the variable it accesses. For the analysis, we assume the loop
has been implicitly transformed into a loop-procedure according to Figure 2.

Each node is marked with the abstract cache states (in the same format as in
Example 1) computed by the PAG-generated analyzer immediately before the
abstract cache states are updated according to the memory references. The
loop entry edge is marked with the incoming abstract cache states. The loop
exit edge is marked with the outgoing abstract cache states.

8 Data Caches and Combined Caches

Our analysis can be used to predict the behavior of data caches or combined
instruction/data caches, if the addresses of referenced data can be statically
computed.

Addresses of references to global data can usually be easily determined. Local
variables and procedure parameters that are allocated on the stack are ad-
dressed relatively to the stack pointer or frame pointer, i.e., a register that
points to a known address within the procedure frame on the execution stack.
If the values of the stack pointer or frame pointer are known, the absolute
addresses of the variables and parameters can be determined by a data flow

9 Here, the analyses with callstring(1) yield the same results.

15

may | (be} [(43 [0 | ©]
ENTRY must | {} | {} | (o) | fer) |

1
* may, [{e} | bdet | 0] 0|
must; | {e} | (3 |) | (bday]
e] @ @] & |
may, | (b} | {e} | (o) | O]
must; | (b} | {e} [() | {do) |
] © | @]

(o) | {0} | (o} | (0} |

2 must,/may,

3 must,/may,

+ may; | {c} [(b} | {e} | {d} |
must; | {c} | (0} [(] O
must,/may, | {c} | {b} | {e} | {d}

must;/may; | {a} | {c} | (b} | {e} |
(a) | (o |) [e |

must,/may,

musto/may, | {d} | {a} | {c} | (b}

|
10

+ musty/may,; | {d} | {a} | {c} | {b}
()

|

v EXIT
may | {e} | {bedae} | {a} | {} |
must‘{e}‘ {} ‘{}‘{d}‘

Fig. 3. Must and may analysis for a fully associative data cache with VIVU. must
and may are the abstract cache states for the must and the may analysis. musty
and may; are the abstract cache states for the first loop iteration. must, and may,
are the abstract cache states for all other iterations. The abstract cache states can
be interpreted for each variable reference as follows:

(Node,Variable) | first iteration | other iterations
(Le), (2,b) always hit always miss
(3,¢) always miss always hit
(4,a), (5,d) always miss always miss
(6,¢) always hit always hit

16

analysis [12]. For programs without recursive procedures, it is possible to de-
termine all values of the stack or frame pointers for all procedures for the
distinguished execution contexts of the cache behavior analysis.

To support the analysis of programs for which not all addresses of the memory
references can precisely be determined, the ¢/ functions are extended to handle

a set of possibly referenced memory locations .

Since it 1s not definitely known which memory block is put into the cache, the
update function Z/Ig for the must analysis applied to a set of possible memory

locations {my,...,m,} and an abstract cache state ¢ only affects the ages of
the memory blocks in ¢ in all sets where an element of {mq,...,m,} could be
stored:

UR(E, {ma, oma}) = Elfi > US(Ef), Xp) for all fi €
{set(mq), ..., set(my)}]
where Xy, = {m, | m, € {mq,...,m,} and

set(my) = fi}
U3, {ma,coma) = US(US(S, {ma}) . {me))

[11 = {}7
ZZI—>§(ZZ_1) |Z:2h—1,
lh = 3(lh-1) U 3(11),

YN _
USEAMD = sy o= h 1. AL i3k m € 3(1)

[11 = {}7

liv—38(licq) i =2...A; otherwise

The update function Z/AILCJ for the may analysis applied to a set {mq,...,m,} of
possible memory locations and an abstract cache state ¢ inserts all elements
of {my,...,m,} into their corresponding sets. The ages of the memory blocks
that are already in ¢ are not changed, because it is not known which set of

10 References to an array X can be treated conservatively by using a reference to
the set {mq,...,m,} of all memory blocks of X.

17

the concrete cache is touched:

Z/A{g(év {mh 7ml’}) = é[fz = Z/A{g(é(fz)vaz) for all fz €
{set(mq), ..., set(my)}]

where Xy, = {m, | m, € {mq,...,m,} and

set(m,) = £}

Z;{g(év {mlv 7mx}) = [ll = ll U {ml, ...,mx},

L= 8(L) — {m1,...,mz} |t =2... A];

9 Writes

So far, we have ignored writing to a cache and only considered reading from a
cache. There are two common cache organizations with respect to writing to

the cache [10]:

— Whrite through: On a cache write the data is written to both the memory
block and the corresponding set line.

— Whrite back: The data is written only to the set line. The modified set line
is written to main memory only when it is replaced. This is usually imple-
mented with a bit (called dirty bit) for each set line that indicates whether
the set line has been modified.

The execution time of a store instruction often depends on whether the mem-
ory block that is written is in the cache (write hit) or not (write miss). For the
prediction of hits and misses we can use our analysis. There are two common
cache organizations with respect to write misses:

— Write allocate: The block is loaded into the cache. This is generally used
for write back caches.

— No write allocate: The block is not loaded into the cache. The write changes
only the main memory. This is often used for write through caches.

Writes to write through/write allocate caches can be treated as reads for the
cache analysis. For no write allocate caches, a write access to a block m is
treated as a read access, if m is already in the concrete or abstract cache
state. Otherwise, the write access is ignored.

Write back caches write a modified line to memory when the line is replaced.
The timing of a load or store instruction may depend on whether a modified or

18

an unmodified line is replaced ' . To keep track of modified set lines, we extend
the cache states by a ‘dirty’ bit, i.e., we use pairs (m, b) of memory blocks and
dirty bits instead of memory blocks in the set/cache states, where b = d
means modified, b = p means unmodified. The update functions distinguish
reads and writes. The dirty bit is set to d on writes, and to p on reads. The
join function for the must analysis sets the dirty bit for a memory block to d,
only if it is set to d in both arguments. The join function for the may analysis
sets the dirty bit for a memory block to d, if it is set to d in at least one
argument.

Let k& be a control flow graph node, m be a memory reference at k, ¢f the
abstract cache state for the may analysis immediately before m is referenced,
and ¢ the abstract cache state immediately after m was referenced, ¢]' the
abstract cache state for the must analysis immediately before m is referenced,
and ¢} the abstract cache state immediately after m was referenced.

If the memory reference to m cannot be classified as always hit, then all dirty
memory blocks that may have been replaced by the memory reference to m
are contained in:

nfA A nfA A
Rep = {m| om.d)e U U }— {m im0y e U glé;wfi)(zj)}

— If the memory reference to m has been classified as always hit or Rep = 0,
then no dirty memory block has been replaced. This reference has defini-
tively caused no write back.

— If Rep #), then we have to consider a possible write back.

— If there is a (m,d) pair in ¢]' that is not in &5, then a dirty memory block
has been replaced. This reference has definitively caused a write back.

The identified (possible) write backs can be used in another abstract inter-
pretation similar to the cache analysis for the prediction of the write buffer
behavior.

10 Practical Experiments

For reasons of simplicity, we have restricted our practical experiments to the
analysis of instruction caches.

1 Many cache designs use write buffers that hold a limited number of blocks. Write
buffers may delay a cache access, when they are full or data is referenced that is
still in the buffer. To analyze the behavior of the write buffers possible ‘write backs’
have to be determined.

19

The cache analysis techniques are implemented in a PAG generated analyzer
that gets as input the control flow graph of a program and an instruction
cache description and produces a categorization cat of the instruction/context
pairs of the input program. A context represents the execution stack, i.e., the
function calls and loops along the corresponding path in the call graph. It is
represented as a sequence 1% of first and recursive function calls (call_f;, call f,)
and first and other execution of loops (loop_l;, loop_l,) for the functions fand
(conceptually) transformed loops [of a program. INST'is the set of all instruc-
tions inst in a program. CONTEXT is the set of all execution contexts context
of a program. IC'is the set of all instruction/context pairs ic.

CONTEXT = {call_f;, call_f,, loop_l;, loop_l,}"
1C =INST x CONTEXT
cat : IC — {ah, am, nc}

Additionally, we compute for every instruction/context pair ic with cat(ic) =
nc the set of competing instructions, i.e., the instructions that are in the same
fully associative set in the abstract cache state of the may analysis. For in-
stance, if the competing instructions reside in less than A (= level of asso-
ciativity) memory blocks, then all executions of the instruction will result in
at most one cache miss. Generally, an upper bound of the number of cache
misses of the instruction is given by one plus the maximal number of possible
sequences of length A of executions of competing instruction that are stored
in pairwise disjoint memory blocks. To determine the bound is a nontrivial
problem. We use simple heuristics to compute a safe approximation to the
upper bound.

Our experiments have been performed for the Sun SPARC architecture. The
Sun SPARC is a RISC architecture with pipelined instruction execution. It has
a uniform instruction size of four bytes. The front end to the analyzer reads a
Sun SPARC executable in a.out format. Our implementation is based on the
EEL library [13] of the Wisconsin Architectural Research Tool Set (WARTS).
EEL (Executable Editing Library) is a C++ library for building tools to an-
alyze and modify an executable (compiled) program. It hides system-specific
detail (like executable file format) and allows to edit linked executables, not
just object files.

The objective of our work is to improve the WCET estimation of programs on
computer systems with caches. The execution time of a program depends on
the program path, i.e., the sequence of instructions that are executed and their
individual execution times. But the program path is usually dependent on the
program input and cannot generally be determined in advance. Therefore, a

12 For callstring(K') the sequence has a maximal length of K.

20

Specification:
cache.optla [=

Static Cache Analysis:

CFG-Builder
¢ / cat:

INST x CONTEXT
|
/

-> {ah,am,nc}

R
Dyn. Cache
$ Behavior
+ | Prediction
e
\ "Program Path Analysis': \‘/ T BCET,
Worst Case Input Tracer Profiler & profile:)
BestCaselnput | (| (apt2) *é Cache Simulator |[| INST X CONTEXT
- ->Num
Sample Input I

V
Cache Hit Ratio

Fig. 4. The structure of the analysis.

program path analysis is part of a WCET analysis [27,17,14,15]. For example,
with the help of user annotations, like maximal iteration counts of loops, an
architecture dependent worst case execution profile can be determined that
gives a conservative approximation to the worst case execution path.

The program path analysis can be very accurate. Yau-Tsun Steven [i and
Sharad Malik report that their estimated bounds are within two percent of
the (calculated) worst case bounds for their set of benchmark examples [14].
The worst case execution profile allows to compute how often each instruc-
tion/context pair is maximally encountered. Combined with the categoriza-
tions of our cache analysis, the overall number of cache hits and cache misses
can be estimated (see Figure 4).

In our experiments, we have circumvented the program path analysis problem
and combine the categorizations cat with “exact” execution profiles instead
of worst case execution profiles (see Figure 4). This allows us to assess the
effectiveness of our analysis without the influence of possibly pessimistic path
analyses. The profilers that produce the profiles are produced with the help
of qpt2 (Quick program Profiler and Tracer) that is part of the WARTS dis-
tribution. A profiler for a program computes an execution profile profile, i.e.,
the execution counts for the instruction/context pairs.

profile: IC' — Ng

21

Table 2
Test set of C programs with number of instructions.

Name Description Inst.
matmult | 50x50 matrix multiplication 154
ndes! data encryption 471
matsum' | 100x100 matrix summation 135
dhry Dhrystone integer benchmark 447
fdct? JPEG forward discrete cosine transform 370
stats two arrays sum, mean, variance, standard deviation, and | 456

linear correlation

fft fast Fourier transformation 1810
djpeg? | JPEG decompression (128x96 color image) 1760
lloops | Livermore loops in C 5677
avl2 inserts and deletes 1000 elements in an AVL tree 614

"Worst case input data

2Random input data

For the experiments we use parts of the program suites of Frank Miiller [3,22],
the djpeg and fdct program of Yau-Tsun Steven Li [16], and some additional
programs (see Table 2). For some programs, there exists a worst case input,
so that our execution profiles are worst case execution profiles. The programs
are compiled with the GNU C compiler version 2.7.2 under SunOS 4.1.4 with
-02, and (if applicable) the FDLIBM (Freely Distributable LIBM) library of

SunPro version 5.2.

The programs £ft, stats and 1loops use arithmetic library functions. These
functions are more or less structured into treatment of special cases, normal-
ization, computation, and final rounding. Not all parts are necessarily executed
when the function is called. This uncertain execution path typically leads to
relatively many occurrences of nc in our categorizations.

The executable of 11o0o0ps consists of more than 100 loops in deeply nested loop
nests. This program structure leads to a very high number of distinguished
execution contexts with the VIVU approach.

The AVL tree as implemented in av12 is a height balanced binary tree. Every
insert or delete operation may lead to a series of recursive calls for rebalancing.
The code of the insert and delete operations consists of many cases for the
different rebalancing operations called rotations. Such a program structure
seems to be rather typical for the handling of many dynamic data structures.

22

Table 3
The numbers of occurrences of ah, am, and nc in the categorizations for a 1KB
4-way set associative instruction cache with 16 byte linesize.

callstring(0) callstring(1) VIVU
Name ah am nc ah am nc ah am nc
matmult | 113 15 26 168 25 21 406 40 0
ndes 339 14 118 734 36 131 1407 123 39
matsum 99 18 18 139 25 13 212 35 0
dhry 297 30 120 427 39 140 798 145 136
fdct 277 9 84 617 93 0 617 93 0
stats 311 16 129 612 26 213 1109 126 197
fft 1233 145 432 | 2212 239 629 | 19261 1206 5536
djpeg 1225 39 496 | 2297 188 497 | 65190 6421 5596
lloops | 3928 22 1727 | 26750 7099 3470 | 585994 54221 48156
avl2 37739 198 | 1112 123 400 2949 287 1290

Table 3 shows the distribution of ah, am, and nc in the categorizations for
the test programs for callstring(0), callstring(1), and VIVU for one selected
cache configuration. The sum of ah, am, and nc in the categorizations is the
number of distinguished instruction/context pairs. It is a measure for the
complexity of the analysis. In our current implementation, the categorization
for a given cache configuration can be computed within seconds on a SUN
SPARCstation 20 for most of our test programs, but the computation for
1loops with VIVU requires about 7 minutes. In our implementation, there is
room for improvements, though.

To give a more expressive presentation of the results of our experiments than
bounds on cache hit ratios, we assume an idealized hardware that executes
all instructions that result in an instruction cache hit in one cycle and all
instructions that result in an instruction cache miss in 10 cycles?.

The cache behavior of the test programs for different cache configurations is
computed by simulating the cache for the program trace. The cache simula-
tion is always started with the empty cache, and we assume uninterrupted
execution. For technical reasons, instructions in functions from dynamic link

libraries ™

are not traced and their effects on the cache are therefore ignored.
From the number of hits and misses in the trace we compute the execution

time I'T of our idealized hardware.

13 These are the same parameters as used in [21].
MTn our case, these are the calls to IO routines and timers.

23

With our categorization an upper and a lower bound of the execution time
can be computed by combining the profiles with the results of our analysis. An
upper bound of the execution time is given if we count all instructions in the
profile as misses that cannot be determined from the categorization as cache
hits. A lower bound of the execution time is given if we count all instructions
in the profile as hits that cannot be determined from the categorization as
cache misses. The upper and lower bounds of the test programs for various
cache configurations are shown in Figures 5 and 6 in percent of the execution
time KT (the meaning of the x axis tic marks is given in Table 4).

Table 4
The cache parameters (size - level of associativity) of the x axis tic marks of Figures 5
and 6. The linesize is 16 bytes.

1=128B-1 2=128B-2 3=128B-4 | 4=256B-1| b5=256B-2

6=256B-4 7=512B-1 8=512B-2 | 9=512B-4 | 10=512B-8
11=512B-16 | 12=512B-32 | 13=1kB-1 | 14=1kB-2 | 15=1kB-4
16=2kB-1 17=2kB-2 18=2kB-4 | 19=4kB-1 | 20=4kB-2
21=4kB-4 22=8kB-1 23=8kB-2 | 24=8kB-4 | 26=20kB-5

Figures 5 and 6 can be interpreted as follows:

— The VIVU approach generally leads to the most precise predictions.

— Conditionally executed code, e.g. as found in the arithmetic library functions
or in avl2, can lead to less precise predictions which result from many nc
in the categorizations.

— There can be a wide variation of the quality of the prediction depending on
the cache configuration.

— For all test programs our method (especially with VIVU) gives much better
results than the naive methods that counts all memory references as misses
for a WCET estimation, and as hits for a BCET estimation.

11 Related Work

The computation of WCETs for real-time programs is an ongoing research
activity. Park and Shaw [24] describe a method to derive WCETs from the
structure of programs. In [27], Puschner and Koza propose methods to guide
the computation of WCETSs by user annotations like maximal loop counts.
This approach seems to be commonly used in WCET analysis tools. Both
approaches do not take cache behavior into account.

The possibilities to use optimizing compilers to improve cache performance of
programs has extensively been studied [18,19,25,26,34]. But all the proposed

24

00.90 9
0080 To ? §

7
ga&0de £ 157k]
00:500 f- |t/ §
00.40 A f
00:30% |-+ %
00:20% |-t 9 I ST T T
00'10 1 3 e
Y E AR RS Aas Sas fas Sas ha &T

. 0

1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
matmult/callstring(0) ndes/callstring(0)

00.08 115.00%
00.07 % A
8889 \ 110.00% \
00.04 | 105.00%
00:05 | 100.00%

! A 0 i Y \\ o
0007 P
00.00 e85 00508% 95.00% annd
8888 } - 90.00%

. ! 0

1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
matmult/callstring(1) ndes/callstring(1)
115.00% UB <%— 108.00%
110.00% LB —~— 106.00% A e
. 104.00%
105.00% 102.00% \
100.00% ¢4 000> 100.00% 9y
98.00% 7\\‘\+
95.00% 96.00%
90.00% 94.00% N/
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
matmult/VIVU ndes/VIVU
%88.%8:? 140.00%

. 0
100.00% OGO OPOOOOO OO OO 120.00%

88.883} ﬁ I’ R AR 100.00% Na e e e

. 0
99770% H--|- | 80.00%

99.60% I 60.00% ey
99'50% 20.00% N e
99.40% .00% g
99.30% = 20.00%
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
matsum/callstring(0) dhrystone/callstring(0)
100.05% 130.00%
100.00% feoteedocdecdoctoctootos 1200006
99.95% | '00%
99.90% -/ \\ / 1888831 G D
99.85% || 20-00% i /
99.80% 1 | 080000 SRR
99.75% U 60.00% /
99.70% 50.00% R
99.65% 40.00%
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
matsum/callstring(1) dhrystone/callstring(1)
115.00% UB <%— 120.00%

0 LB —+— 110.00% UB <—
110.00% 100.00% P bp>dobog LB —+—
105.00% 90,000 [t it /

100.00% $-4-4<4-0-0-bo-0b00-00b0obooboo 388831

95.00% 60.00% =

90.00% 50.00%

1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
matsum/VIVU dhrystone/VIVU

102.00% 300.00%

100.00% =009 o<

82.883&1 i 250.00%

! 0

94.00% -+ | 200.00%
92:00%) \
90.00% | 150.00%
ggggzé) \ 100 OOU/ - bt by VNN VNN PN VNN
84:00%(; -00% Ao 00000000
82.00% e 50.00%
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
fdct/callstring(0) stats/callstring(0)
115.00% gggg:
110.00% 60.00 P

) 50.00

105.00% 2000 [

100.00% $-6--6-0-b-0-0--0-0-b-0-0-b-0->->-00-b00 30.00 |

95.00% 10:90 ~

90.00% 88.88 S R

! 0 !

1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
fdct/callstring(1) stats/callstring(1)
115.00% UB <— 88%4212 e UB <—
110.00% LB +— 2015 / \ LB —+—

) 00.08

105.00% 0008 | |
PO DU S O O WY 00.04
100.00% $-6-6--6-0-d-0--b-0-0--- 000000000 8362 i

0, !
gg-gg;ﬂ 9990 242 NI SN A A A A A4 A

! 0 .

1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
fdct/VIVU stats/VIVU

Fig. 5. Upper (UB) and lower bounds (LB) for the execution time for different cache
parameters in % of execution time for callstring(0), callstring(1), and VIVU.

25

200.00% 300.00%
180.00% 0
160.00% \\ 250.00% e
140.00% 200.00%
120.00% 150.00%
100.00% et 0> oo
ggggv/g etk 100.00% e =t P00
60,000 Tt 50.00%
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
fft/callstring(0) djpeg/callstring(0)
150.00% 70.00
140.00%] £0.00
130.00% 2889
120.00% 30.00
o = il
.00% -4 - oo
90.00% o AT 000000 T e 9o
80.00% ¢ 8000 /"\4* +/ o
70.00% '70.00
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
fft/callstring(1) djpeg/callstring(1)
130.00% 20.00
e B || B R
! 0 !
175800 o 0200
i o o anann:
103:00% e S0V SO 30:0000 S L
95.00% ooy 85.00 "ok
90.00% e 80.00 N
85:00% P/ 7500 y
80.00% '70.00
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
fft/vVIvU djpeg/VIVU
240.00% 200.00%
220.00% 180.00%
200.00% 160.00%
180.00% = 140.00%
160.00% 120.00%
140.00% 100.00% — N e e s
120.00% 80.00%
100.00% S A 60.00% ~+
80.00% 40.00%
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
lloops/callstring(0) avl2/callstring(0)
130.00% 180.00%
125.00% 160.00%
%%818802 140.00%
110.00% 120.00%
105.00% 100.00% -0
100:00% Fooeee PN I o 50.00% I
30,0050 S </ 60.00% b
85.00% 40.00%
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
lloops/callstring(1) avl2/callstring(1)
110.00% UB <— 180.00%
105.00% LB —+— 160.00% ! 'ﬂg e
100.00% £ 770 A e 140.00% \
05.00% i 120.00%
Do T~ 7\“’\ 100.00% ot b oo b0
90.00% \/ 80.00% 7
85.00% 60.00% f
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
lloops/VIVU avl2/VIVU

Fig. 6. Upper (UB) and lower bounds (LB) for the execution time for different cache
parameters in % of execution time for callstring(0), callstring(1), and VIVU.

program transformations and code reorganizations do not necessarily help in
computing the worst case execution time of a program.

An overview of ‘Cache Issues in Real-Time Systems’ is given in [4]. We restrict
our examination here to the intrinsic cache behavior.

The work of Arnold, Miiller, Whalley, and Harmon has been one of the start-
ing points of our work. [22,20] describes a data flow analysis for the prediction
of instruction cache behavior of programs for direct mapped caches. The ex-
tension to set associative instruction caches has later been given in [21]. Two
data flow analyses are used. The result of the first corresponds to the result of
our may analysis. The second is only required for set associative caches for the
categorization of instructions within loops. It corresponds to the first analysis

26

whereby the loop back edges are deleted in the control flow graph. In contrast
to our method that derives semantics based categorizations of memory refer-
ences only from the results of our analyses, an additional complex bottom-up
algorithm over the control flow graph is used to compute a classification of the
instructions for each loop level. The distinction of a first or a further execution
of a loop is not explicit but expressed by the classifications first miss and first
hit. For a set of small programs the same or slightly worse upper bounds of the
execution time than our results are reported in [21]®. But the assessment is
difficult as the environment for the experiments is not the same, e.g., different
compilers have been used to compile the test programs.

In [15,16] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe describe an
integrated method to determine the worst case execution path of a program
and to model architecture features like instruction caches and/or pipelines.
The problem of finding an accurate worst case execution time bound is for-
mulated as an integer linear program that must be solved, which is a NP-hard
problem. This approach has been implemented in the cinderella tool 1. Un-
like the method described in [22] or our method that rely only on the control
flow graph to determine the cache behavior of a memory reference, user pro-
vided functionality constraints can be used to describe the control flow more
precisely. For direct mapped instruction caches and programs whose execution
path is well defined and not very input dependent the predictions can be com-
puted fast and are very accurate [16]. Increasing levels of associativity where
the cache behavior of one memory reference depends on more other references
and less defined execution paths lead to prohibitively high analysis times.

In [17], Lim et al. describe a general framework for the computation of WCET's
of programs in the presence of pipelines and cache memories. Two kinds
of pipeline and cache state information are associated with every program
construct for which timing equations can be formulated. One describes the
pipeline and cache state when the program construct is finished. The other
can be combined with the state information from the previous construct to
refine the WCET computation for that program construct. Unlike our method
that is based on well explored theories and tools for abstract interpretation,
the set of timing equations must be explicitly solved. An approximation to
the solution for the set of timing equations has been proposed. The usage of
an input and output state provides a way for a modularization for the timing
analysis. Experimental results are reported for three small programs, but they
cannot be easily compared with our experiments.

The approach of Lim et al. has also been applied to data caches. In [11], Hur
et al. treat references to unknown addresses as two cache misses. The reported

15 For the sake of space, the results of not all programs could be reported here.
16 See http://www.ee.princeton.edu/ yauli/cinderella-3.0/

27

results are worse than the ones without data cache analysis where one assumes
one cache miss for every data reference. But the authors expect that the results
improve with better methods to resolve addresses of data references. For loops
that reference only data that fit entirely into the cache, Kim et al. [12] have
improved the approach based on the pigeonhole principle. Applied to the cache
analysis, the pigeonhole principle says: If we have n memory reference to m
memory locations and n > m and all referenced memory blocks fit into the
cache, then there must inevitably some cache hits.

A method for the data cache analysis by graph coloring is described in [23,28].
Similar to the Chow-Hennessy register allocator, variables are allocated to
cache lines. The objective of the analysis is to show that throughout the live
range of a cache line, no other memory access interferes with this particular
cache line. This approach has limited success even for small programs.

12 Conclusion and Future Work

We have described semantics based analysis methods by abstract interpreta-
tion that allows to predict the intrinsic cache behavior of programs for various
types of one level caches. The theory of abstract interpretation supports the
correctness proofs for the analysis and provides efficient implementation meth-

ods.

The analyzers are generated by the program analyzer generator PAG from very
concise specifications. It is possible to trade time for precision, but even with
the VIVU approach our implementation of the analyses is quite fast. No special
input of a skilled user is required to tune for acceptable results. This makes it
feasible to use our analyses as part of the compilation process to support the
automatic schedulability analysis by the compiler.

The applicability of our methods has been shown with the results of our prac-
tical experiments. The newly developed VIVU approach makes it possible to
predict the cache behavior within tight bounds for many programs and cache
configurations.

We directly analyze executables and there are no special compilers or link-
ers required. Our current implementation supports the SPARC architecture.
Other architectures can be supported by supplying additional front ends to our
analyzers. The analyses are extensible to accommodate further cache designs
like multilevel caches or wrap around line fill.

Future work includes the integration of our tool with a program path analysis.
We are working on extension to predict the pipeline behavior of processors.

28

The pipeline analyzers will be generated from a description similar to the
specifications used for the generation of code schedulers. For the analysis of
array references, there exist methods based on data dependency analysis which
should be combined with our approach. Finally, we will explore methods that
allow to combine the separated analyses of modules, libraries, or operating
systems calls and thereby support the modularization of the analysis.

Acknowledgement

We like to thank Mark D. Hill, James R. Larus, Alvin R. Lebeck, Madhusud-
han Talluri, and David A. Wood for making available the Wisconsin architec-
tural research tool set (WARTS), Thomas Ramrath for the implementation
of the PAG front end for SPARC executables, Yau-Tsun Steven Li and Frank
Miiller for providing their benchmark programs, and the latter for fruitful
discussions.

References

[1] M. Alt and F. Martin. Generation of Efficient Interprocedural Analyzers with
PAG. In SAS795, Static Analysis Symposium, LNCS 983, pages 33-50. Springer,
Sept. 1995.

[2] M. Alt, F. Martin, and R. Wilhelm. Generating Dataflow Analyzers with PAG.
Technical Report A10-95, Universitat des Saarlandes, 1995.

[3] R. Arnold, F. Mueller, D. B. Whalley, and M. Harmon. Bounding Worst-Case
Instruction Cache Performance. In IEFFE Symposium on Real-Time Systems,
pages 172-181, Dec. 1994.

[4] S. Basumallick and K. Nilsen. Cache Issues in Real-Time Systems. In
Proceedings of the 1994 ACM SIGPLAN Workshop on Language, Compiler
and Tool Support for Real-Time Systems, June 1994.

[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Conference Record of the Jth ACM Symposium on Principles of Programming
Languages, pages 238-252, Jan. 1977.

[6] P. Cousot and R. Cousot. Static Determination of Dynamic Properties of
Generalized Type Unions. In Proceedings of an ACM Conference on Language
Design for Reliable Software, volume 12(3), pages 77-94, Mar. 1977.

[7] P. Cousot and R. Cousot. Static Determination of Dynamic Properties of
Recursive Procedures. Formal Description of Programming Concepts, pages
237277, 1978.

29

[8] W. A. Halang and K. M. Sacha. Real-Time Systems. World Scientific, 1992.

[9] L. Harrison. Personal communication on Abstract Interpretation, Dagstuhl
Seminar, 1995.

[10] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 1990.

[11] Y. Hur, Y. H. Bea, S.-S. Lim, B.-D. Rhee, S. L. Min, Y. C. Park, M. Lee, H. Shin,
and C. S. Kim. Worst case timing analysis of RISC processors: R3000/R3010
case study. In IFEFE Real-Time Systems Symposium, pages 308-319, Dec. 1995.

[12] S. Kim, S. Min, and R. Ha. Efficient worst case timing analysis of data caching.
In IFEFE Real-Time Technology and Applications Symposium, June 1996.

[13] J. R. Larus. FFEL Guts: Using the EEL Ezecutable Editing Library. Computer
Sciences Department, University of Wisconsin-Madison, 1996.

[14] Y.-T. S. Li and S. Malik. Performance Analysis of Embedded Software Using
Implicit Path Enumeration. In Proceedings of the 32nd ACM/IEEE Design
Automation Conference, pages 456-461, June 1995.

[15] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient Microarchitecture Modeling and
Path Analysis for Real-Time Software. In Proceedings of the IEEFE Real-Time
Systems Symposium, pages 298-307, Dec. 1995.

[16] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache Modeling for Real-Time Software:
Beyond Direct Mapped Instruction Caches. In Proceedings of the IEFEFFE Real-
Time Systems Symposium, Dec. 1996.

[17] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin,
K. Park, S.-M. Moon, and C. S. Kim. An Accurate Worst Case Timing Analysis
for RISC Processors. IFEE Transactions on Software Engineering, 21(7):593—
604, July 1995.

[18] S. McFarling. Program Optimization for Instruction Caches. In Architectural
Support for Programming Languages and Operating Systems, pages 183-191,
Boston, Massachusetts, Apr. 1989. Association for Computing Machinery ACM.

[19] A. Mendlson, S. S. Pinter, and R. Shtokhamer. Compile Time Instruction Cache
Optimizations. Computer Architecture News, 22(1):44-51, Mar. 1994.

[20] F'. Mueller. Static Cache Simulation and its Applications. Phd thesis, Florida
State University, July 1994.

[21] F. Mueller. Generalizing Timing Predictions to Set-Associative Caches.
Technical Report TR 96-66, Institut fiir Informatik, Humboldt-University, July
1996.

[22] F. Mueller, D. B. Whalley, and M. Harmon. Predicting Instruction Cache
Behavior. In Proceedings of the 1994 ACM SIGPLAN Workshop on Language,
Compiler and Tool Support for Real-Time Systems, June 1994.

30

[23] K. D. Nilsen and B. Rygg. Worst-Case Execution Time Analysis on Modern
Processors. In Proceedings of the 1995 ACM SIGPLAN Workshop on Language,
Compiler and Tool Support for Real-Time Systems, June 1995.

[24] C. Y. Park and A. C. Shaw. Experiments with a Program Timing Tool Based
on Source-Level Timing Schema. IEEE Computer, 25(5):48-57, May 1991.

[25] K. Pettis and R. C. Hansen. Profile Guided Code Positioning. In
ACM SIGPLAN’90 Conference on Programming Language Design and
Implementation, pages 16-27, White Plains, New York, June 1990.

[26] A. K. Porterfield. Software Methods for Improvement of Cache Performance
on Supercomputer Applications. Phd thesis, Rice University, May 1989.

[27] P. Puschner and C. Koza. Calculating the Maximum Execution Time of Real-
Time Programs. Real-Time Systems, 1:159-176, 1989.

[28] J. Rawat. Static Analysis of Cache Performance for Real-Time Programming.
Masters thesis, lowa State University, May 1993.

[29] M. Sharir and A. Pnueli. Two Approaches to Interprocedural Data Flow
Analysis. In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis:
Theory and Applications, chapter 7, pages 189-233. Prentice-Hall, 1981.

[30] A. Smith. Cache Memories. ACM Computing surveys, 14(3):473-530, Sept.
1983.

[31] J. A. Stankovic. Real-Time and Embedded Systems. ACM 50th Anniversary
Report on Real-Time Computing Research.

[32] A. D. Stoyenko, V. C. Hamacher, and R. C. Holt. Analyzing Hard-Real-
Time Programs For Guaranteed Schedulability. ITEFE Transactions on Software
FEngineering, 17(8), Aug. 1991.

[33] R. Wilhelm and D. Maurer. Compiler Design. International Computer Science
Series. Addison-Wesley, 1995. Second Printing.

[34] M. E. Wolf and M. S. Lam. A Data Locality Optimizing Algorithm. SIGPLAN
Notices, 26(6):30-44, June 1991. Proceedings of the ACM SIGPLAN 91
Conference on Programming Language Design and Implementation.

31

