Software Fault-Tolerant Distributed Applications in
LIPS

Thomas Setz

Keywords: hypercomputing, software fault-tolerance, Linda, idle-time, recovery line

Abstract This paper illustrates how software fault-tolerant distributed applica-
tions are implemented within LIPS version 2.4, a system for distributed computing
using idle-cycles in networks of workstation.

The LIPS system [SR92,SR93,STea94,Set95,SF96,5T96,S1.97,ST97] employs the tu-
ple space programming paradigm, as originally used in the LINDA' programming
language. Applications implemented using this paradigm easily adapt to changes
in availability as they occur in workstation networks. In LIPS, applications are
enabled to terminate successfully in spite of failing nodes by periodically writing
checkpoints, freezing the state of a computational process, and keeping track of
messages exchanged between checkpoints in a message log. The message log is kept
within the tuple space machine implementing the tuple space and replayed if an
application process recovers. This assumes deterministic behavior of the application
process but allows independent checkpoint generation and alleviates the need for

application-wide synchronization in order to generate sets of consistent checkpoints.

1 Overview

Workstation computers are becoming increasingly popular due to their high per-
formance/cost ratio. With increasing numbers of workstations and the advent of
high-speed networks, supercomputer-like aggregate computational power is avail-
able and, as shown in [BLZ93,LMMS94,Web95,BMS95], can be used to perform
useful computations.

Application programmers working in this environment must be provided with a
programming system facilitating the development of distributed applications. This
is accomplished by mechanisms shielding the programmer from the complexity of

! LINDA is a trademark of Scientific Computing Association., New Haven, Connecticut

system-level programming, thus enabling him to concentrate on solving application-
level problems. For example, a heterogeneous environment of different operating
systems, network protocols or processor architectures should be hidden from the
programmer. Implementing a distributed application is also made more difficult by
frequent changes in the availability of nodes and networks.

Transparency, meaning hiding the physical implementation of a distributed appli-
cation, is the utmost goal of every distributed programming system.

The LIPS system enables users to implement distributed applications in hetero-
geneous networks of workstations, connecting machines with different processor
architectures and UNIx? operating system flavors. The system ensures that only
workstations which are considered idle by their users are used within the distributed
computations. The system also guarantees successful completion of distributed
computations in spite of failing machines or network links. Within the last years,
LIPS has been used to distribute computations on about 250 workstations con-
nected to the campus network at the University of Saarbriicken (Germany) and
will be enhanced to distribute applications on more than 1000 machines within the
next years.

This paper presents some basic decisions taken when designing LIPS version 2.4.
This version supports a software-fault-tolerant generative communication paradigm
based on the tuple space, as introduced by the coordination language LINDA
[GCCC85].

The next chapter contains an introduction to generative communication, a pro-
gramming paradigm suited to implement distributed computations in networks of
workstations. Then, an introduction to the terminology used for coping with fault-
tolerance is given along with the model of software failure patterns used throughout
this paper. Next, the concept of software fault-tolerance is introduced. It permits
grouping software components and strategies into layers thus supplying general dis-
tributed applications with a variety of software fault-tolerance mechanisms. This
section also illustrates different methods to restart single crashed processes within
the application framework and discusses the benefits of our approach. The general

? UnIX is licensed exclusively through X/Open Company Limited

2. Related work 3

concept of software fault-tolerance is then applied to distributed applications im-
plemented along the generative communication paradigm. Using layer-3 software
fault-tolerance enables the user to implement fault-tolerant applications. By relay-
ing all communication activities via the tuple space, a complete log of all messages
exchanged between application processes is available in the tuple space machine,
even while individual application processes are prone to failure. Having access to
a complete history of messages exchanged per process permits recovering applica-
tion processes in a highly efficient manner, but this requires a well-suited system
design. The last section presents the design of our Fault-Tolerant Tuple Space Ma-

chine along with its integration into the LIPS system.

2 Related work

There are different approaches to integrate different levels of fault-tolerance into
tuple space based applications. Following [BDE94], these approaches can be divided
into extensions to the tuple space runtime system [Xu 88,L.X89,CKM92,PTHR93]
making tuple space fault-tolerant, resilient data and processes [KS90,KS91] mak-
ing tuple space and processes working on it recoverable, and transaction based or
transaction style like language extensions enabling the programmer to define a se-
quence of tuple space operations as an atomic operation which will be evaluated
completely or not at all [BDE94,BS93].

In LIPS version 2.4 we follow the approach to resilient data and processes. A more
detailed description of the design and the implementation of this concept is given

in [Set95].

3 Generative Communication

In order to implement distributed applications, a programmer must be supplied
with primitives enabling him to create additional processes or tasks, and to ex-
change messages among them. A conventional programming language, when aug-
mented by inter-process communication and process manipulation primitives, is suf-

ficient for implementing distributed algorithms. Interprocess communication (IPC)

4

may be established accessing the network protocols, using systems like PVM [GS91],
Express [Par90] or P4 [BL92]. Another approach, which is used throughout this
work, is to use higher level paradigms as the tuple space based generative commu-
nication [Gel85,BCGL87,Gel88]. These approaches differ with respect to usability,
efficiency, and availability on different platforms. While IPC using direct access
to network protocols permits highly efficient communication, applications imple-
mented using this approach are rather cumbersome to maintain. The generative
communication approach to IPC trades efficiency against ease of use, due to the
overhead introduced by tuple space management. This overhead may be kept down
to a reasonable amount by analyzing communication patterns at compile-time.

This section describes the tuple space based generative communication paradigm.
Using this paradigm yields elegant solutions for communication patterns typically

found in distributed applications.

3.1 The Tuple Space

The tuple space is an associative, shared memory accessible to all application pro-
cesses. It is called associative as it contains data tuples which may be retrieved
addressable by their contents rather than by physical addresses, using a pattern-
matching mechanism. The implementation of tuple space memory is hidden from
the user and therefore may be realized on a shared-memory machine, a tightly-
coupled parallel computer, or on a network of workstations. Data tuples consist
of a list of simple data types. We distinguish active tuples generated with the
eval () operator from passive tuples generated with out (). Active tuples are used
to create new threads of control within a distributed application while passive tu-
ples are merely used to store data items. A set of operations (in(), rd(), inp(Q),
rdp()) is used to retrieve passive tuples. Both blocking and non-blocking versions
of tuple retrieval functions are available. Hence, these operations may be used for
synchronization and communication tasks. The tuple extracting operations in()
and inp() read a data tuple and remove it from the tuple space. If no tuple is
available, the non-blocking operation inp() immediately returns an error as op-

posed to the blocking operation in() which suspends the calling thread until such

3. Generative Communication 5

a tuple is found. The tuple reading operations rd () and rdp() return a data tuple,
again in a blocking and non-blocking manner, but do not extract the tuple from
the tuple space. A more elaborate description of the tuple space can be found in

[Set96).

3.2 Benefits of the Generative Communication

As the tuple space is conceptually separated from an application process, its content
is not lost across thread exits. Data tuples remain available until they are consumed
by some other process, which must not necessarily be around at the time the tuple
is created. As a result, inter-process communication is decoupled in time. As data
tuples are identified solely by their contents, and not by any other means such as
senders’ or recipients’ process-ID, communication is made “anonymous”, in that
communicating processes do not need knowledge of their peers’ identity. IPC using
the tuple space thus decouples communicating processes logically and physically.
This eases application development when compared to using a message-passing
based paradigm.

As processes in a distributed application have no notion of a peer’s location, mi-
grating processes in the case that a machine becomes unavailable due to load in-
crease or crash is made easier. A process may still retrieve messages even when
it has to change to a different machine. This mechanism is transparent to the
application programmer as no host addresses are involved. The tuple space com-
munication paradigm is not tied to a particular programming language, hardware
or software environment. It may thus be used for distributed applications running
on a heterogeneous set of workstations. The paradigm also allows for adapting the
number of usable machines, implementing what is called “adaptive parallelism”
in [CFGK94,GK92|. Applications may use all available machines, shrink down to
the usage of only one, and switch between these bounds of possibilities very easily.
Finally, integrating the tuple space based generative communication approach into
a conventional programming language requires only six additional operations.?

® Which compares favorably to systems like Express [Par90] sporting about one thousand IPC

primitives.

Therefore, tuple space based applications turn out to be an adequate choice for

implementing distributed applications running on networks of workstations.

4 Failure Models

Workstation computers are prone to failures. As a consequence, this may lead to
failures in applications implemented using the LIPS system. Several failure patterns

can be distinguished:

Crash-failures or as called in [SS83] “fail-stop-processors”, are observed when
a machine halts on an error condition, forcibly terminating all application pro-
cesses local to the processor affected.

— Soft-fail-stop-failures are observed when a machine stops on an error, terminat-
ing all local application processes. But there exists storage, possibly residing on
another unaffected machine which remains intact and is accessible.

— Omission-failures are observed when machines sometimes fail to send or receive
messages.

— Byzantine failures, where machine start sending wrong and even contradictory

information as a result of an error.

The LIPS system is able to cope with soft-fail-stop failures. Data that should
remain accessible in spite of machine failures is kept in a storage called repository.
The system further deals with omission-failures as messages are exchanged using
the UDP protocol of the TCP/IP protocol suite*. Handling Byzantine failure is
rather expensive, and these failures are rarely observed in practice. Therefore, we

will not consider Byzantine failures in this work.

5 Software Fault-Tolerance

Distributed applications are usually based on fault-tolerance mechanisms provided
by a node operating system. The term “software fault-tolerance”, as introduced

* This protocol implements a “best-effort” delivery. Datagram messages may be lost or duplicated

by the underlying network layers.

5. Software Fault-Tolerance 7

in [YC83], is used to subsume methods and software components responsible for
detecting and correcting errors causing a distribute application to crash or hang,
that are not already handled in the underlying operating system. Software fault-
tolerance may be organized in layers — Figure 1 gives an overview. Layers are
discriminated along the levels of availability and data consistency.

Normally, distributed applications are based on the services delivered by the node
operating system, the so-called level 0 of software fault-tolerance. If a node crashes,
manual intervention is required to restart the processes which were residing on that
node. Shared data may be lost or left in an inconsistent state.

Layer-1 software fault-tolerance is reached by providing for automatic restart of
application processes in the event of a crash. This layer provides for enhanced
application availability, as no manual intervention is required for the entire appli-
cation to complete. Restarted processes still need to re-do their entire computation,
resulting in a complete loss of effort spent on the previous run. Abort of a single
process may force the entire application to halt if shared global data is left in an
inconsistent state, thus wasting the entire time spent computing so far.

Layer-2 software fault-tolerance requires application processes to create checkpoints
capturing a process’s state. If an application process crashes, it can be restarted
from its latest checkpoint, thereby reducing run time spent as effort to reach the
state at crash time. Furthermore, messages sent and received in the interval between
checkpoint generation are kept in a message log. If an application process restarts
from a checkpoint, it will receive the same set of messages it got on its initial run
and therefore will compute the same results again. This requires computations to be
fully determined by received input messages. Restarting processes from an earlier
checkpoint constitutes a backward error recovery strategy. An application process
is said to be in “recovery” state if it has not yet reached the state at crash time. It
is said to be “active” resp. “operational” if its computation proceeds beyond the
crash state. Layer-2 software fault-tolerance strategies lead to increased application
process availability, as well as increased message-space consistency.

A distributed application is said to be layer-3 software fault-tolerant if data kept in

a file system are recoverable after a failure. If a process is restored from a checkpoint

Highly available processes Layer 4
Software

Recoverable Filesystem Layer 3
Fault-
Tolerance Checkpointing and Recovery Layer 2

Crash detection and Restart Layer 1

o . Operating

Traditional Mirroring, Parity check System
Fault-
Tolerance Replicated Hardware Hardware

Figurel. Layering of Software Fault-Tolerance Strategies

image, all files that were open at crash time should be accessible even if the process
was restarted on another machine. Changes made to the files must be un-done
prior to restarting from a checkpoint. Level-3 software fault-tolerance increases
data consistency of applications and increases process availability as processes are
able to migrate to another machine.

Layer-4 software fault-tolerance mechanisms are used if an application needs a
very high availability. This is accomplished by replicating several copies of each
application process on different nodes. When a process instance fails, identical
output is available from another instance of this application process. Thus, the
application continues to perform its computation apart from the time it takes to
notice node failure, and to use results produced by another process instance. All
it takes to implement layer-4 fault-tolerance is to synchronize replica behavior.

Layer-4 software fault-tolerance increases process availability.

6 Recovery Design Alternatives on the Application Level

If a process of a distributed application has to be started from its last checkpoint,
the question arises how to treat messages sent or received by the process since its

last checkpoint. If e.g. process X in Figure 2 crashes, it may be restarted from

6. Recovery Design Alternatives on the Application Level 9

checkpoint x3 without affecting other processes belonging to the application. How-
ever, if process Y crashes at time ¢ = 14 after sending message m, it will generate

and re-send message m to process X when restarted from checkpoint ys.

X1 X3
X ., " 4 . .,
oyl ///(©]yl y2 / m
le :)& :
7 —® :
2 4 6/ 8 10 12 14 16 t
@ Checkpoint —> Messages

—_ Recovery line

Figure2. Recovery

There are two basic alternatives for dealing with this problem. The first one, later
referenced as Backward Backward Error Recovery (BBER), involves undoing all
effects caused by a process in the time interval between its last checkpoint and
the time of the crash. To undo the effects caused by a failed process on another
active process, the failed process will be rolled back into an earlier state, and the
other process will be restarted from a checkpoint too. Consider process Y failed
after sending message m in the example. The BBER strategy would then require
restarting process X from checkpoint z2 to undo the effects of re-sending message
m after Y is restarted from checkpoint yo. The second alternative, later referenced
as Backward Forward Error Recovery (BFER), ensures that a process restarted
from a checkpoint executes the same instructions as on its initial run. However,
effects affecting other processes are suppressed. Applied to the example, process Y
would be restarted from checkpoint yo. When restarted, Y will again generate and
send m. Duplicate reception of m by X must then be suppressed by some external

means.

10

The BBER may lead to a “domino effect”, requiring the restart of other processes
indirectly affected by a process abort. If process Z crashes after sending n, X, Y,
and Z would need to be restarted from their respective checkpoints z1, y1, and 21,
as they received some messages sent by Z after writing its latest checkpoint image.
Within this context, messages n and m are called “orphan messages”. Orphan mes-
sages may lead to a domino effect which possibly affects all application processes®.
Applying the BBER strategy requires careful scheduling of checkpoints in order to
avoid orphaned messages. In the best case there is no information flow at the time
all application processes create a checkpoint image. This could be accomplished by
scheduling process Y to write its checkpoint image 311 at time £ = 10. At this point
in time, no unreceived messages are present in the system. If process Z would crash
after sending n, restarting processes X and Y from checkpoints x2 and y; ; would
be sufficient to undo all changes made by process Z, which would then be restarted
from checkpoint zo. Checkpoints zs, y1.1 and zo are said to constitute a “recovery
line”, or “strongly consistent checkpoint”. The drawback is that all processes must
be considered when writing checkpoint images for every single application process.
This requires synchronization among all processes in order to determine whether
it is safe to write a checkpoint image.

Applying a BFER strategy alleviates the need for synchronization prior to taking
checkpoints. Individual processes may write checkpoint images at any time. This
requires keeping the message log in some entity surviving the process crash which
is responsible for supressing orphaned messages and replay of already received

messages.

7 Combining Generative Communications and Software

Fault-Tolerance

This section shows how software fault-tolerance mechanisms are added to programs
based on the generative communication paradigm. Applying layer-3 methods yields

an acceptable level of fault-tolerant execution for such applications. Application of

® There are more problems with BBER. An in-depth treatment is given in [MN94]

7. Combining Generative Communications and Software Fault-Tolerance 11

layer-3 strategies to these distributed programs is then examined in greater detail.
As all inter-process communication is done via the tuple space, there is already
a system entity in place to keep the message log for each application process,
unaffected by application process crashes. This lends itself to using the BFER

strategy for process recovery.

in("logic", "I", &a)

out("logic", "1", b)

Figure3. IPC using the Tuple Space

On each machine where application processes are to be executed, a system service
program is installed. Its task is to control and to restart application processes in
the event of a machine crash. Thus layer-1 software fault-tolerance is reached. The
implementation of these system service processes is described in greater detail in
[Fis96]. Layer-1 software fault-tolerance by itself is not sufficient for fault-tolerant
execution of applications using the generative communication approach for inter-

process communication as shared data may be left in an inconsistent state.

Layer-2 software fault-tolerance adds checkpoints and message logging to the layer-
1 software fault-tolerance mechanisms. Applications implemented using the genera-
tive communication approach for IPC are already exchanging messages by adding
and removing data tuples from a global tuple space, as depicted in Figure 3. Tuple
space operations are kept in a per-process log. For each process, its checkpoint

image freezes the state of the particular computation performed by the process.

12

Messages sent or received as the checkpoint generation are commonly referred to
as “events” and are also kept in the message log. Figure 4 shows the message log
after exchanging messages in Figure 3. The call to out () in Process A is uniquely
identified with event number 2. We use the BFER in order to re-integrate a crashed
process into an application. It is sufficient to restart an application process from its
latest checkpoint image and to supply messages from its message log. In particular,
duplicate output messages may now be identified and are suppressed. When a
process succeeded in taking a checkpoint image, events prior to the checkpoint
event may be discarded from the message log. In Figure4, event 4 for process A
would no longer be present in process B’s message log as it is already incorporated
into its checkpoint taken at event 7; process B would not receive this message again
when restarted from this checkpoint. However, when process A is restarted from
scratch after failing after event 5, the output message generated at event 2 must
be prevented from reaching the tuple space, as this would create a duplicate tuple.
Processes are said to be in recovery state when their communication is screened by

a message log.

A ° ° ° ° °
1 2 3 4 5
B ° e e e
1 2 3 4 5 6 7

Time
—>» Message

) Send or Receive Event

O Checkpoint Event

Figured. Message Logging

Distributed applications may need to access large amounts of data kept in files.

If a machine fails and becomes unavailable, data kept on this machine is lost and

8. The LIPS System 13

may cause the entire application to fail. Layer-3 software fault-tolerance addresses
this problem. It ensures that the file system environment® may be restored when
encountering an error. Layer-3 software fault-tolerance may be implemented by
replicating files accessed by application processes. If a process is to be restarted,
all files required by the process have to be copied to its working directory prior to
the process restart.

Normally, there is no need for application processes to be highly available. Applying
layer-4 software fault-tolerance strategies is not necessary as applications are able
to run to completion if layer-3 software fault-tolerance mechanisms are applied.
Replicating individual application processes in order to gain increased availability
would consume additional computing power which could be used by other applica-

tion processes too.

8 The LIPS System

The main problem that arises in implementing a software fault-tolerant system
for applications based on the generative communication paradigm deals with the
question of how to make the tuple space resilient to faults like machine crashes.
Obviously, the solution to this problem is replication of the tuple space among
different machines. This approach is implemented very efficiently in the so-called
Fault-Tolerant Tuple Space Machine explained later in this section.

We distinguish two Fault-Tolerant Tuple Space Machines in the LIPS system.
The first Fault-Tolerant Tuple Space Machine implements the System Tuple Space
maintaining data about the system state e.g. which machine is idle. The second
Fault-Tolerant Tuple Space Machine maintains the Application Tuple Space. Fig-
ure 5 on page 15 gives an overview.

There may exist several applications concurrently each using a private Fault-Tolerant
Tuple Space Machine. The System Tuple Space is shared by all applications.

6 The file system environment of an application consists of all files being accessed by an application

process. Processes are expected to access files present in their working directories; in particular,

no file may be open concurrently by several processes

14

In this section, we first introduce the different components of the runtime systems
of LIPS and their cooperation. A more detailed explanation is given in [SLI7]. The
design and implementation of the Fault-Tolerant Tuple Space Machine is explained

next. A detailed description is given in [Set96].

8.1 The LIPS Runtime Systems

We distinguish two different runtime systems within LIPS. The system runtime
system and the application runtime system. Both are based on a Fault-Tolerant
Tuple Space Machine. The server processes of the Fault-Tolerant Tuple Space Ma-
chine for the system runtime system are called FixServer; those of the application
runtime system’s Fault-Tolerant Tuple Space Machine MessageServer. The relation-

ship between the different runtime systems described above is depicted in Figure 5.

A designated server process called 1lipsd resides on each machine participating
in the LIPS system. The 1lipsd processes update and retrieve information from
the System Tuple Space. For example, node-state information, like load of a (the)
machine can be read (updated) easily through tuple space operations. lipsd pro-
cesses update their own node-state information in the System Tuple Space in fixed
intervals. A machine crash can be detected if this information is not received in
time. In this case possible errors due to lost data are repaired, and watchdog mech-
anisms will re-integrate the crashed machine “automagically” immediately after its

recovery. A more detailed description of these mechanisms is given in [SF96].

Fault-tolerance on application level is implemented with a checkpointing and recov-
ery mechanism integrated into the Fault-Tolerant Tuple Space Machine. A check-
point is correlated to the evaluation of an eval() operation; recovery is based on
the re-execution of a failed eval () together with the replay of the message logging
of the first execution of eval (). Message logging is provided via the Fault-Tolerant

Tuple Space Machine.

SUI0SAS WIYUNI G JIT 99 JO S[OA] JUSISHIP Y], *GaInSI g

LiPS-System Runtime System with LiPS-Application Runtime System
- - -t >A

Application 1 Application 2 :
Application Application Application Application Application :
master client client o master client :
Application Iy Application - = :
Tuple Space 1 5 Tuple Space 2 = = i
- \i - V

L

FTTM

Tuple Space

FTTM Fault-Tolerant Tuple Space Machine

=mmmmm Tuple space access e UDP communication Processes residing on the same machine

[ELE]|
uoneslddy

WiglsAS awnuny
uoneslddy

W8ISAS awnuNy WalsAsS-sdi

wosAS Sl oYL, 8

QI

16

8.2 The Fault-Tolerant Tuple Space Machine

The Fault-Tolerant Tuple Space Machine replicates the content of the tuple space
among several machines. If a machine that a MessageServer (FixServer) resides on
crashes, the data are still available on the replicas. An additionally started server
process joining the Fault-Tolerant Tuple Space Machine will be initialized with the
data of an old replica. This feature makes the Fault-Tolerant Tuple Space Machine
N fault-tolerant. In the Fault-Tolerant Tuple Space Machine every tuple is tagged
with a unique ID (Sequence Number) as a result of the protocol used to replicate
data across the different machines. This unique ID is used to speed up replication of
events among the different servers. The protocols used in the Fault-Tolerant Tuple
Space Machine are based on those given in [ADM™93]. An in-depth description of
the protocols used and their implementation is given in [Set96,Set95].

As depicted in Figure 6, the tuple space is managed by several MessageServers

O Tuple Space

Ethernet

. Message Server

Q Client (Application)

Figure6. Processes of the Tuple Space Machine

residing on different machines. MessageServers must reside in the same broadcast
domain. The broadcast facility is utilized to replicate messages very efficiently

among the different servers. An additional token circulating among the servers

8. The LIPS System 17

schedules the permission to use the broadcast facility - avoiding Ethernet saturation
due to collisions. The circulating token ships additional data enabling, among other
things, flow control between the replicas. Additionally, each broadcast message
(tuple) is tagged in sequence with a unique ID. This procedure establishes a linear
order among the tuples of the Fault-Tolerant Tuple Space Machine and speeds up
replication.”

As shown in Figure 6, an application process sends requests to the MessageServer
which is assigned to it. A request can either contain a tuple or a template. In
the following, we first explain how MessageServers process a tuple, and second
how templates are processed. As the MessageServers share the same broadcast
domain, a MessageServer is able to broadcast the tuple and hence replicate it
on multiple MessageServers with only one physical operation. At any time only
one MessageServer may broadcast a tuple, namely the MessageServer holding the
token message. After a MessageServer has finished broadcasting messages (tuples),
it sends the token to the next MessageServer. With respect to this token transfer,
the MessageServers form a logical ring. Messages being broadcast are tagged with
a unique sequence number. The sequence number of the last broadcast message
of a MessageServer is sent within the token. The next MessageServer intending to
broadcast knows the sequence number of the last broadcast message and continues
the sequence, thereby establishing a total order on the messages broadcast. Within

one token rotation several tuples may be broadcast by each MessageServer.

If a MessageServer receives a template, it first tries for a match on its local tuple
space. If no tuple matching the template is found, the MessageServer notifies the
requesting application process (NACK). Otherwise, if the MessageServer finds a
match, it must first synchronize with the other MessageServers. In order to notify
the other MessageServers of the tuple access, it is sufficient to send the sequence
number (4 bytes), the application process accessing the tuple and the event number

in its message logging (4 bytes) as well as the type of access (1 byte) to identify

T If a broadcast message was not received on a replica, this circumstance is easily obtained as
there is a gap in the sequence of received messages. In this case, a retransmission could be

requested immediately.

18

the operation to the replicas. These items of access information now are added to
the circulating token. The size of the token then determines the number of reading
and extracting tuple space operations which may be replicated within one token

rotation.

9 Summary

This paper addressed the basic design decisions made when building version 2.4
of the LIPS system for implementing fault-tolerant applications in networks of
workstations. The system is currently being used at the University of the Saar-
land at Saarbricken, Germany and enables programmers to implement distributed
applications using the idle-time of networked workstations.

As the application uses the tuple space for inter-process communication, applica-
tions are able to adapt smoothly to the workstation environment. The integration
of mechanisms to add some level of software fault-tolerance handles failures like the
reboot of a machine. Application processes may be recovered very efficiently using
a recovery strategy based on resilient processes and resilient data. The advantage
of this strategy is that application processes are independent both in the choice of
when to take a checkpoint and when to recover from a checkpoint. This enables
exhaustive usage of idle-time present in a workstation network as processes may
be migrated to other idle machines in the event the processor they are running on
becomes busy. The migration of a process can be based on the mechanisms used
to guarantee fault-tolerance. This enables the system to rapidly and easily adapt
to changes in machine usability such as those occurring during the daytime.

The above design buys efficiency from the implementation of a Fault-Tolerant Tuple
Space Machine, replicating the content of the tuple space among different machines.
The LIPS system distinguishes between two runtime systems both based on the
Fault-Tolerant Tuple Space Machine. The first runtime system, the so-called sys-
tem runtime system, provides the applications with software fault-tolerance of level
1 based on a watchdog mechanism. The second runtime system, the so-called ap-
plication runtime system, provides the application with software fault-tolerance of

level 3 based on checkpointing and message logging. The advantage of this strategy

9. Summary 19

is that application processes are independent in taking a checkpoint. In particular,
there is no need to do any synchronization with other application processes when

generating a checkpoint.

References

[ADM*93] Amir Y., Dolev P., Melliar-Smith P., Agarwal D., and Ciarfella P. Fast Message
Ordering and Membership using a Logical Token-Passing Ring. In 13th International
Conference on Distributed Computing Systems (ICDCS), number 13 in IEEE, pages 551—
560, Pittsburgh, 5 1993.

[BCGLS87] Bjornson R., Carriero N., Gelernter D., and Leichter J. Linda the Portable Paral-
lel. Technical Report YALEU/DCS/TR~520, Yale University, Department of Computer
Science, New Haven, 2 1987.

[BDE94] Bakken D. E. Supporting Fault-Tolerant Parallel Programming in Linda. PhD thesis,
The University of Arizona, 6 1994. Department of Computer Science.

[BL92] Butler R. and Lusk E. Users Guide to the p4 Parallel Programming System. Technical
Report ANL-92/17, Argonne National Laboratory, 5 1992.

[BLZ93] Buchmann J., Loho J., and Zayer J. An Implementation of the General Number Field
Sieve. In Proceedings of Crypto’93, Heidelberg, August 1993. Springer Verlag.

[BMS95] Buchmann J., Miiller V., and Shoup V. Distributed Computation of the Number of
Points on an Elliptic Curve over a Finite Prime Field. Technical report, Universitit des
Saarlandes, SFB 124 TP D5, 03/95, 1995.

[BS93] Bakken D. E. and Schlichting R.D. Supporting Fault-Tolerant Parallel Programming
in Linda. Technical Report 93.18, Department of Computer Science, The University of
Arizona, 6 1993.

[CFGK94] Carriero N., Freeman E., Gelernter D., and Kaminsky D. Adaptive Parallelism and
Piranha. Technical Report YALEAU/DCS, Yale University Department of Computer
Science, 2 1994.

[CKM92] Chiba S., Kato K., and Masuda T. Exploiting a weak concistency to implement dis-
tributed tuple space. In Proceedings of the 12th International Conference on Distributed
Computing Systems, 6 1992.

[Fis96] Fischer J. Software Fehlertoleranz vom Level 1 in LIPS. Diplomarbeit, Universitat des
Saarlandes, 1996. Fachbereich Informatik, Lehrstuhl Prof. Buchmann.

[GCCC85] Gelernter D., Carriero N., Chang S., and Chandran S. Parallel Programming in Linda.
IEEE Transactions on Computer, 1985.

[Gel85] Gelernter D. Generative Communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80-112, January 1985.

[Gel88] Gelernter D. Getting the Job Done. Byte, 11 1988.

[GK92] Gelernter D. and Kaminsky D. Supercomputing out of Recycled Garbage: Preliminary
Experience with Piranha. Sizth ACM International Conference on Supercomputing, July
1992.

[GS91] Geist G. A. and Sunderam V. S. The PVM System: Supercomputer level concurrent
computation on a heterogenous network of workstations. In Proceedings of the Sizth IEEE
Distributed Memory Computing Conference, 3 1991.

[KS90] Kambhatla S. Recovery with limited replay: Fault-tolerant processes in Linda. Technical
Report CS/E 90-019, Department of Computer Science, The Oregon Graduate Institute,
9 1990.

[KS91] Kambhatla S. Replication issues for a distributed and highly available Linda tuple-space.
Master thesis, Oregon Graduate Institute, Department of Computer Science, Beaverton,
Oregon, 9 1991.

[LMMS94] Lehmann F., Maurer M., Miiller V., and Shoup V. Counting the Number of Points
on Elliptic Curves over Finite Fields of Characteristic greater than three. In Proceedings
of ANTS I, 1994.

20

[LX89] Liskov B. and Xu A. A design for a fault-tolerant, distributed implementation of Linda.
In Proceedings of the Nineteenth International Symposium on Fault-Tolerant Computing,
6 1989.

[MNO94] Mukesh Singhal and Niranjan Shivaratri. Advanced Concepts in Operating Systems. Series
in Computer Science. Mc Graw Hill, 1994.

[Par90] ParaSoft Corporation, CA. Ezpress C Reference Guide Version 3.0, 1990.

[PTHRI3] Patterson L. I, Turner R. S., Hyatt R.M., and Reilly K. D. Construction of a fault-
tolerant distributed tuple-space. In Proceedings of the 1993 Symposium on Applied Com-
puting. ACM/SIGAPP, 2 1993.

[Set95] Setz T. LIPS Manual Version 2.4, 10 1995. Universitit des Saarlandes, Fachbereich
Informatik, Lehrstuhl Prof. Buchmann.

[Set96] Setz T. Integration von Mechanismen zur Unterstitzung der Fehlertoleranz in LIPS. PhD
Thesis, Universitat des Saarlandes, 2 1996. Fachbereich Informatik.

[SF96] Setz T. and Fischer J. Software Fehlertoleranz vom Level Eins in LIPS. In Clemens H.
Cap, editor, Proceedings of SIWORK’96, Workstations and their applications, pages 102—
112, Universitdt Zirich, Institut fiir Informatik, May 1996. vdf Hochschulverlag AG an
der ETH Ziirich.

[SL97] Setz T. and Liefke T. The LIPS Runtime Systems based on Fault-Tolerant Tuple Space
Machines. In Proceedings of the Workshop on Runtime Systems for Parallel Programming
(RTSPP), 11th International Parallel Processing Symposium (IPPS’97), Geneva, Switzer-
land, April 1997. Appeared as Technical Report, Vrije Universiteit Amsterdam, Faculteit
der Wiskunde en Informatica, No. IR-417, februari 1997.

[SR92] Setz T.and Roth R. LIPS: a System for Distributed Processing on Workstations. Technical
Report SEFB 124 TP D5, Universitiat des Saarlandes, December 1992.

[SR93] Setz T. and Roth R. Distributed Processing with LIPS. In ALCOM, Saarbriicken, August
1993.

[SS83] Schlichting R.D. and Schneider F.B. Fail Stop Processors: An Approach to Designing Fault
Tolerant Computing Systems. ACM Transactions on Computing Systems, 1(3):222-238,
3 1983.

[ST96] Setz T. and Tews M. Heterogenes checkpointing in LIPS. In Clemens H. Cap, editor,
Proceedings of SIWORK’96, Workstations and their applications, pages 85—89, Universitat
Ziirich, Institut fiir Informatik, May 1996. vdf Hochschulverlag AG an der ETH Ziirich.

[ST97] Setz T. Integration von Softwarefehlertoleranz in mit LIPS verteilten Anwendungen.
In D. Tavangarian, editor, Proceedings ARCS97, Architektur von Rechensystemen, 1j.
ITG/GI-Fachtagung, Rostock, Germany, pages 231-241, Universitat Rostock, 9 97. VDE-
Verlag.

[STea94] Setz T., Tews M., and et al. The LIPS Development Systern, 10 1994. Universitat des
Saarlandes, Fachbereich Informatik, Lehrstuhl Prof. Buchmann.

[Web95] Weber D. An Implementation of the Number Field Sieve to Compute Discrete Logarithms
mod p. In Advances in Cryptology Eurocrypt 95. pp. 95-105, 9 1995.

[Xu 88] Xu A. A Fault Tolerant Network Kernel for Linda. Master thesis, MIT, Laboratory for
Computer Science, Cambridge, 8 1988.

[YC83] Yennun H. and Chandra K. Software Implemented Fault Tolerance: Technologies and
Experiences. In Proc. of 23rd IEEE Conference on Fault Tolerant Computing Systems
(FTCS), pages 2-9, 1983.

