A Fast and Efficient Cache Persistence Analysis

Christian Ferdinand

Universitat des Saarlandes / Fachbereich Informatik
Postfach 15 11 50 / D-66041 Saarbriicken / Germany
Phone: +49 681 302 5573 Fax: +49 681 302 3065

ferdi@cs.uni-sb.de

Abstract

In this paper, abstract interpretation is applied to the problem of predicting the cache be-
havior of programs. The goal of our analysis is to approximate the set of all cache states for
each program point, i.e., the collecting semantics. We take a two step approach: First, we
define an auxiliary semantics of machine programs called the cache semantics that determines
the contents of caches. Then, from the cache semantics one simple analysis by abstract inter-
pretation is developed that allows to determine memory blocks that will be persistent in the
cache. This is in contrast to former approaches [1, 6] that required two different analyses and
specific interprocedural analysis methods. The persistence analysis is designed generic with the
cache logic as parameter. Experimental results are presented that demonstrate the applicability
of the analysis.

Keywords: cache behavior prediction, program analysis, abstract interpretation, program anal-
ysis, cache memories, real time applications, worst case execution time prediction

1 Cache Memories and Real-Time Applications

Caches are used to improve the access times of fast microprocessors to relatively slow main mem-
ories. They can reduce the number of cycles a processor is waiting for data by providing faster
access to recently referenced regions of memory. Caching is more or less used for all general purpose
processors, and, with increasing application sizes it becomes more and more relevant and used for
high performance microcontrollers and DSPs.

Programs with hard real-time constraints have to be subjected to a schedulability analysis. It has
to be determined whether all timing constraints can be satisfied. The degree of success for such
a timing validation {19] depends on sharp WCET (Worst Case Execution Time) estimations. For
example for hardware with caches, the typical worst case assumption is that all accesses miss the
cache. This is an overly pessimistic assumption which leads to a waste of hardware resources.

2 Overview

In the following Section we briefly sketch the underlying theory of abstract interpretation and
present the program analyzer generator PAG.

Cache memories are briefly described in Section 4. In Section 5 we give a semantics for programs
that reflects only memory accesses (to fixed addresses) and its effects on cache memories, and in
Section 7.1 we present the persistence analysis that computes a set of memory blocks that will be
persistent in the cache, i.e., will not be removed from the cache and describe how the results of the
analysis can be interpreted.

Section 8 describes possible extensions to data and combined caches. In Section 9 we present and
discuss the results of our practical experiments, and Section 10 describes related work.

3 Program Analysis by Abstract Interpretation

A program analyzer takes a program as input and computes some interesting runtime properties.
Most of these properties are undecidable. Hence, both correctness and completeness of the com-
puted information are not achievable together. Program analysis makes no compromise on the
correctness side; the computed information is reliable as for enabling optimizing transformations
[20]. It can’t thus guarantee completeness. The quality of the computed information, usually called
its precision, should be as good as possible.

There is a well developed theory of static program analysis called abstract interpretation [5]. With
this theory, correctness of a program analysis can be easily derived. According to this theory a
program analysis is determined by an abstract semantics.

Usually the meaning of a language is given as functions for the statements of the language computing
over a concrete domain. A domain is a complete partially ordered set of values. For such a
semantics, an abstract version consists of a new simpler abstract domain and simpler abstract
functions which define the abstract meaning for every program statement.

For the abstract semantics used in this paper and an input program, a system of recursive equations
can be constructed. The variables in this system are the values of the abstract domain for every
program point. In this equation system, the value at a program point depends on the values at all
program points which can directly precede the execution of this program point. The control flow
graph of a program describes every possible flow of control and therefore all dependencies between
the variables of the equation system.

Lattice theory underlying abstract interpretation states that the recursive equation system can
be solved by fix-point iteration if the abstract domain has only finite ascending chains, i.e., every
chain of values v; C v, C --- has only finite length, and if in addition every semantic function is
monotonic.

The program analyzer generator PAG [2] offers the possibility to generate a program analyzer from
a description of the abstract domain and of the abstract semantic functions in two high level lan-
guages, one for the domains and the other for the semantic functions. Domains can be constructed
inductively starting from simple domains using operators like constructing power sets and func-
tion domains. The semantic functions are described in a functional language which combines high
expressiveness with efficient implementation. Additionally the user has to supply a join function
combining two domain values into one. This function is applied whenever a point in the program
has two (or more) possible execution predecessors.

4 Cache Memories

A cache can be characterized by three major parameters:

e capacity is the number of bytes it may contain.

e line size (also called block size) is the number of contiguous bytes that are transferred from
memory on a cache miss. The cache can hold at most n = capacity/line size blocks.

e associativity is the number of cache locations where a particular block may reside.
n/associativity is the number of sets of a cache.

If a block can reside in any cache location, then the cache is called fully associative. If a block
can reside in exactly one location, then it is called direct mapped. If a block can reside in exactly
A locations, then the cache is called A-way set associative. The fully associative and the direct
mapped caches are special cases of the A-way set associative cache where A = n and A = 1 rsp.

In the case of an associative cache, a cache line has to be selected for replacement when the cache
is full and the processor requests further data. This is done according to a replacement strategy.
Common strategies are LRU (Least Recently Used), FIFO (First In First Out), and random.

5 Cache Semantics

We restrict our description to the semantics of A-way set associative caches with LRU replacement
strategy. The fully associative and the direct mapped caches are special cases of the A-way set
associative cache where A = n and A = 1 rsp.

In the following, we consider an A-way set associative cache as a sequence of (fully associative) sets
F = (f1,..., fnja) where n = capacity/line size, a set f; as a sequence of set lines L = (I3,...,l4),
and the store as a set of memory blocks M = {m,,...,m,}.

The function adr : M — Ny gives the address of each memory block. The function set : M — F
determines the set where a memory block would be stored (% denotes the modulo division):

set(m) = f;; where i = adr(m)%(n/A) + 1
To indicate the absence of any memory block in a set line, we introduce a new element I; M’ =
Mu{I}.
Our cache semantics separates two key aspects:
e The set where a memory block is stored: This can be statically determined as it depends

only on the address of the memory block. The dynamic allocation of memory blocks to sets
is modeled by the cache states.

e The aspect of associativity and the replacement strategy within one set of the cache: Here,
the history of memory reference executions is relevant. This is modeled by the set states.

Definition 5.1 (concrete set state) A (concrete) set state is a function s: L — M’. S denotes
the set of all concrete set states.

Definition 5.2 (concrete cache state) A (concrete) cache state is a function ¢ : F — S. C
denotes the set of all concrete cache states.

If s(Iz) = m for a concrete set state s, then z describes the relative age of the memory block
according to the LRU replacement strategy and not the physical position in the cache hardware.

The update function describes the side effects on the set (cache) of referencing the memory:

¢ The set where a memory block may reside in the cache is uniquely determined by the address
of the memory block, i.e., the behavior of the sets is independent of each other.

o The LRU replacement strategy is modeled by using the positions of memory blocks within a
set to indicate their relative age. The order of the memory blocks reflects the “history” of

memory references!.

The most recently referenced memory block is put in the first position /; of the set. If the
referenced memory block m is in the set already, then all memory blocks in the set that
have been more recently used than m are shifted by one position to the next set line, i.e.,
they increase their relative age by one. If the memory block m is not yet in the set, then
all memory blocks in the cache are shifted and the ‘oldest’, i.e., least recently used memory
block is removed from the set.

Definition 5.3 (set update) A set update function Us : § x M — S describes the new set state
for a given set state and a referenced memory block.

Definition 5.4 (cache update) A cache update function Uc : C x M — C describes the new
cache state for a given cache state and a referenced memory block.

Updates of fully associative sets with LRU replacement strategy are modeled in the following way:

[!1 = m,
lirss(lic1)|i=2...h,
Us(s,m)={ b st)li=h+1.. 4 if3p:s(la)=m
[lh = m,
lirs s(li—q) for i = 2...A]; otherwise

Notation: [y ~— z] denotes a function that maps y to 2. f[y — 2] denotes a function that maps y

to z and all z # y to f(z).

Updates of A-way set associative caches are modeled in the following way:

Uc(c,m) = c[set(m) — Us(c(set(m)), m))

'Our semantics describes the observable behavior of cache memories. We do not intend to mimic the physical
cache implementation.

6 Control Flow Representation

We represent programs by control flow graphs consisting of nodes and typed edges. The nodes
represent basic blocks®. For each basic block, the sequence of references to memory is known?, i.e.,
there exists a mapping from control flow nodes to sequences of memory blocks: £:V — AM™.

We can describe the working of a cache with the help of the update function Uz. Therefore, we
extend Uc to sequences of memory references:

Uele, (Mg my)) = Ue (o Ue(e; my) -, my)

The cache state for a path (k;,...,kp) in the control flow graph is given by applying Uc to the
initial cache state ¢; that maps all set lines in all sets to I and the concatenation of all sequences
of memory references along the path: Uc(cr, L(k1).L(ky)).

7 Abstract Semantics

In order to generate an analyzer, the program analyzer generator PAG requires the specification of a
domain (this will be the abstract cache states), a transfer function (this will be the abstract cache
update function), and a join function that is used to combine two elements of the domain from two
different paths in the control flow graph.

The domain for our abstract interpretation consists of abstract cache states that are constructed
from abstract set states. In order to keep track of memory blocks that have already been replaced
in the cache, i.e., are relatively older than all memory blocks in the corresponding set, we introduce
additional set lines I in which we will collect the possibly replaced memory blocks, L' = L U It.

Definition 7.1 (abstract set state) An abstract set state 5 : L' — 2M" maps set lines to sets of
memory blocks. S denotes the set of all abstract set states.

Definition 7.2 (abstract cache state) An abstract cache state é : F — § maps sets to abstract
set states. C denotes the set of all abstract cache states.

The abstract semantic functions describe the effect of a memory reference on an element of the
abstract domain. The abstract set (cache) update function I for abstract set (cache) states is
an extension of the set (cache) update function I to abstract set (cache) states.

On control flow nodes with at least two* predecessors, join-functions are used to combine the
abstract cache states.

Definition 7.3 (join function) A join function J : € x C + C combines two abstract cache
states.

? A basic block is a sequence (of fragments) of instructions in which control flow enters at the beginning and leaves
at the end without halt or possibility of branching except at the end.

3This is appropriate for instruction caches and can be too restrictive for data caches and combined caches. See
Chapter 8 for weaker restrictions.

*Our join functions are associative. On nodes with more than two predecessors. the join function is used iteratively.

Example 7.1 (ZA’S)

fl 1{2 £3 14 tlT
§[{m}] {3 [{meyme} | {ma} [{me} |
L}g(gsmf) | {mf} | {ma} | {}] {mb!mc} | {md:me} l

The address of a memory block determines the set in which it is stored. This is reflected in the
abstract cache update function in the following way:

Us(8,m) = E[set(m) — Uy(é(set(m)), m)]

The join function is similar to set union, except that if a memory block s has two different ages in
two abstract cache states then the join function takes the oldest age.

, Where:

(ﬂl
—
s
—
L7}
[%]
~—
Il
s

§(lz) = {m |3, with m € 51(l,), m € 32(ly) and z = maz(a,bd)}
{m | m € §(Iz) and Al, with m € 32(l5)}
U {m|m € §(l;) and Al, with m € §,(Is)}

C

This includes 3(I7) = & (I7T) U $2(I7).

Example 7.2 (J;) L Iy I3 I It
S1 [{me} | {ms} [{me} [{ma} | {ma}]
2 [{me} [{me,my} [{ma} [{ma} [{ms} |
Js(31,5) | {3 [{me,my} [{me} [{ma} | {ma,mu} |

The join function for abstract cache states applies the join function for abstract set states to all its
abstract set states:

jc-.(él,éz) =[fi— jg(él(fi)sé2(fi)) | forall 1 <i< n/A]

An abstract cache state é at a control flow node k that references a memory block m is interpreted
in the following way: Let § = é(set(m)). If m € 3(l) for y € {1,..., A}, then the maximal relative
age of m is less or equal to y provided that m is in the cache. From this follows that m cannot
be replaced in the cache after an initial load. m is persistent. This means that all (repeated)
executions of the reference to m can produce at most one cache miss.

7.2 Termination of the Analysis

There are only a finite number of cache lines and for each program a finite number of memory blocks.
This means, the domain of abstract cache states é : L' — 25 is finite. Hence, every ascending chain is
finite. Additionally, the abstract cache update functions U and the j join functions J are monotonic.
This guarantees that our analysis will terminate.

In the next section we will present the persistence analysis. It determines memory blocks that are
persistent in the cache, i.e., stay in the cache after they have been initially been loaded into the
cache. A memory reference to a memory block that can be determined to be persistent can produce
at most one cache miss for repeated executions. This information can be used to predict the cache
behavior of programs.

7.1 Persistence Analysis

Our goal is to determine the persistence of a memory block, i.e., the absence of the possibility that
a memory block m is removed from the cache. If there is no possibility to remove m from the cache,
then the first reference to m may result in a cache miss, but all further references to m cannot
result in cache misses.

This is achieved by the persistence analysis as follows: It computes the mazimal position (relative
age) for all memory blocks that may be in the cache. This means, the position (the relative age)
of a memory block in the abstract set state § is an upper bound of the positions (the relative
ages) of the memory block in the concrete set states that § represents. In order to keep track
of memory blocks that have already been replaced in the cache, i.e., are relatively older than all
memory blocks in the corresponding set, we introduce additional set lines /1 in which we collect
the possibly replaced memory blocks with the update and join function.

Let m, € 5(I;). The position (relative age) z of a memory block m, in a set can only be changed
by references to memory blocks my with set(m,) = set(ms), i.e., by memory references that go
into the same set. Other memory references do not change the position of m,. The position is also
not changed by references to memory blocks my € 3(l,) where y < z, i.e., memory blocks that are
already in the cache and are “younger” or the same age as m,. m, can stay in the cache at least
for the next A — z references that go to the same set and are not yet in the cache or are older than
M.

The meaning of an abstract cache state is given by a concretization function concg : C — 2°. For
the memory blocks that are collected in the additional set lines /T during the analysis, our analysis
cannot determine the persistence. This does not mean that these memory blocks are never in the
cache during program execution. Accordingly, the concretization function makes no assertion with
respect to these memory blocks. The concretization function for the persistence analysis concg is
given by:

conci(é) = {c | V1 < i < n/A: c(fi) € concs(é(f:))}

concg(3) ={s|V1<a< A:3be {1,..,T}:s(ls) € 3(Iy) and a < b}

We use the following abstract set update function:

([11 = {m}?

L Ml i 9. Bi=d,
Ih = 3(lh-1) U (3(In) — {m}),
Li—=3(L)]i=h+1...4,

Us(3,m) =< 11— 3(17)]; if Ih € {1,...,A} : m € 5(In)
(h — {m},
li— 8(li—q) fori=2...4,
L I+~ (1) = {m})Uus(la)); otherwise

8 Data Caches and Combined Caches

In [1] methods are described to statically determine the addresses of memory references to procedure
parameters or local variables by a static stack level simulation [20]. This allows to use our analysis
to predict the behavior of data caches or combined instruction/data caches for programs that use
only scalar variables. [1] also describes methods to handle writes to caches for common cache
organizations (write through and write back with write allocate or no write allocate) as well as write
buffers.

9 Practical Experiments

For reasons of simplicity, we restrict our practical experiments to the analysis of instruction caches.

In order to reach acceptable analysis results for programs with procedures, we have to use inter-
procedural analysis methods. The interprocedural analysis (e.g., [18, 6]) methods differ in which
execution contexts are distinguished for a memory reference within a procedure. A context repre-
sents the execution stack, i.e., the function calls along the corresponding path in the control flow
graph to the instruction. It is represented as a sequence of function calls (call_f) for the functions
of a program. For our experiments we simply distinguish all execution contexts that corresponds to
a sequence of nonrecursive procedures. This guarantees that there are only finitely many execution
contexts. It corresponds to a virtual inlining of the nonrecursive procedures.

The cache analysis techniques are implemented in a PAG generated analyzer that gets as input the
control flow graph of a program and an instruction cache description and produces a categorization
cat of the instruction/context pairs of the input program.

INST is the set of all instructions inst in a program. CONTEXT is the set of all distinguished
execution contexts contert of a program. IC is the set of all instruction/context pairs ic.

CONTEXT = {callf}"
IC = INSTx CONTEXT

cat : IC — {persistent, unknown}

The frontend to the analyzer reads a Sun SPARC executable in a.out format. The Sun SPARC is
a RISC architecture with pipelined instruction execution. It has a uniform instruction size of four
bytes. Our implementation is based on the EEL library of the Wisconsin Architectural Research
Tool Set (WARTS).

The objective of our work is to improve the WCET estimation of programs on computer systems
with caches. Besides the architecture, the execution time of a program depends on the program
path, i.e., the sequence of instructions that are executed. But the program path is usually dependent
on the program input and cannot generally be determined in advance. Therefore, a program path
analysis is part of a WCET analysis [17, 8, 11]. For example, with the help of user annotations,
like maximal iteration counts of loops, an architecture dependent worst case execution profile can
be determined that gives a conservative approximation to the worst case execution path.

The program path analysis can be very accurate. Yau-Tsun Steven Li and Sharad Malik report
that their estimated bounds are within two percent of the (calculated) worst case bounds for their
set of benchmark examples [11]. The worst case execution profile allows to compute how often

Specification: Static Cache Analysis:

cache.optla |=> :
cache.set |- i s S
CFG-Builder F&S

cat:
= | INST x CONTEXT
-> {persis., unkn.}

s ot mher A
Dyn. Cache
Behavior

Prediction
WCET,
BCET,

Profiler & ' S
Cache Simulator

Sample Input

Cache Hit Ratio

Figure 1: The structure of the analysis.

each instruction/context pair is maximally encountered. Combined with the categorizations of our
cache analysis, the overall number of cache hits and cache misses can be estimated (see Figure 1).

In our experiments, we have circumvented the program path analysis problem and combine the
categorizations cat with “exact” execution profiles instead of worst case execution profiles (see
Figure 1). This allows us to assess the effectiveness of our analysis without the influence of possibly
pessimistic path analyses. The profilers that produce the profiles are produced with the help of qpt2
(Quick program Profiler and Tracer) [4, 7] that is part of the WARTS distribution. A profiler for a
program computes an execution profile profile, i.e., the execution counts for the instruction/context
pairs.

profile : IC — Ny

For the experiments we use parts of the program suites of Frank Miiller [3, 14], the djpeg program
of Yau-Tsun Steven Li [10], and some additional programs (see Table 1). For some programs, there
exists a worst case input, so that our execution profiles are worst case execution profiles. The
programs are compiled with the GNU C compiler version 2.7.2 under SunOS 4.1.4 with -02, and
(if applicable) the FDLIBM (Freely Distributable LIBM) library of SunPro version 5.2.

The programs fft, and stats use arithmetic library functions. These functions are more or less
structured into treatment of special cases, normalization, computation, and final rounding. Not all
parts are necessarily executed when the function is called. This uncertain execution path typically
leads to less precise predictions.

The AVL tree as implemented in avl2 is a height balanced binary tree. Every insert or delete
operation may lead to a series of recursive calls for re-balancing. The code of the insert and delete
operations consists of many cases for the different re-balancing operations called rotations. Such a
program structure seems to be rather typical for the handling of many dynamic data structures.
The prediction of programs with such a structure is also difficult.

Name Description Inst. | ICs | Analysis Time | Persistent

matmult | 50x50 matrix multiplication 154 | 202 0.02 sec. 87.1%
ndes! data encryption 471 | 615 0.11 sec. 95.9%
matsum! | 100x100 matrix summation 135 | 142 0.03 sec. 89.4%
dhry Dhrystone integer benchmark | 447 | 493 0.14 sec. 71.8%
stats two arrays sum, mean, 456 | 1053 0.13 sec. 78.4%

variance, standard deviation,
and linear correlation

Tt fast Fourier transformation 1810 | 6044 4.84 sec. 70.1%
djpeg? | JPEG decompression 1760 | 3838 3.54 sec. 71.4%
avl2 inserts and deletes 1000 614 | 3378 1.09 sec. 93.6%

elements in an AVL tree

*Worst case input data

2Random input data

Table 1: Test set of C programs with number of instructions, number of distinguished instruc-
tion/context pairs, the analysis time on a SUN SPARCstation 20, and percentage of instruc-
tion/context pairs that can be determined to be persistent for a 1KB 4-way set associative in-
struction cache with 16 byte linesize.

The fourth column of Table 1 shows the number of distinguished instruction/context pairs of our
analysis. It is a measure for the complexity of the analysis. In our current implementation, the
persistence analysis for a given cache configuration can be computed within seconds on a SUN
SPARCstation 20 for our test programs (see column 5 of Table 1). In our implementation, there is
still room for improvements, though.

The sixth column of Table 1 shows the percentage of the instruction/context pairs that were
determined to be persistent by our analysis. To asses the quality of our prediction we use the
analysis results to compute guaranteed lower bounds of the cache hit ratios and compare them
with measured cache hit ratios.

The cache hit ratio of the test programs for different cache configurations is measured by simulating
the cache for the program trace. The cache simulation is always started with the empty cache, and
we assume uninterrupted execution. For technical reasons, instructions in functions from dynamic
link libraries® are not traced and their effects on the cache are therefore ignored.

With our analysis results a lower bound of cache hit ratio can be computed by combining the profiles
with the results of our analysis. A memory reference (instruction) that is executed n times (n > 1)
and has been categorized as persistent counts as one cache miss and n — 1 cache hits. A memory
reference (instruction) that is executed n times and could not been categorized as persistent counts
as and n cache misses. The predicted lower bound of the cache hit ratio is the quotient of such
cache hits and the number of all executed memory references (instructions).

The predicted cache hit ratios and the measured cache hit ratios of the test programs for various
cache configurations are shown in Figure 2 in percent.

Figure 2 can be interpreted as follows: Conditionally executed code, e.g. as found in the arithmetic
library functions or in avl2, can lead to less precise predictions. There can be a wide variation of

3In our case, these are the calls to IO routines and timers.

10

100%

95%

hits in trace -e—
predicted LB —+—

hits in trace -e—

predicted LB ~+—

75% | ?
e T IS S S-SR S 70% ;
14 7 10 13 B 19 22 25 1 4 7 10 13 18 19 22 25
matmult ndes
100% p-e—o—g % R e g 1 hits in trace —e— 100% ; T - bt hits in trace -o—
i H i H : predicted LB —— ! i predicted LB —+—
ben ; ! : . . i
80%
B85%
80%
75% a1l
5% I T i
1 4 7 10 13 16 19 22 25 19 22 25
matsum
Nl Sivas o o/ ansnnspag M- LU B
1;\5%0_\/E ; 95% /j /
90% -, o | - :
80% = 80%
75% 75%
T0% T0%
65% 65% !
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25
stats ht
100% T , T } + .%-‘ére—e grm&aet⁡ :: 100% ‘ T » 7.7 e p?:;i::;';aafg :
95% : :] i 95% : :
Y e -
| NJ H H hv4
75% N) 75%
70% ¥ : 70%
e S . 5% : :
1 4 7 10 13 16 19 22 25 1 4 T 10 13 16 19 22 25
dipeg avi2
The cache parameters (size - level of associativity) of the x axis tic marks. The linesize is 16 bytes.
1=128B-1 2=128B-2 3=128B-4 4=256B-1 5=256B-2 6=256B-4 1=512B-1 8=512B-2
9=512B-4 | 10=512B-8 | 11=512B-16 | 12=512B-32 | 13=1kB-1 14=1kB-2 15=1kB-4 16=2kB-1
17=2kB-2 18=2kB-4 19=4kB-1 20=4kB-2 21=4kB-4 22=8kB-1 23=8kB-2 24=8kB-4
25=20kB-5

Figure 2: Predicted lower bounds of the cache hit ratios and the measured cache hit ratios for
different cache parameters in percent.

11

the quality of the prediction depending on the cache configuration. For most test programs and
cache configurations our method allows to predict the cache behavior quite precisely.

10 Comparison with Related Work

The possibilities to use optimizing compilers to improve cache performance of programs has ex-
tensively been studied [12, 13, 16, 21]. But all the proposed program transformations and code
reorganizations do not necessarily help in computing deterministic lower bounds of the cache hit
ratios of programs.

The work of Arnold, Miiller, Whalley, and Harmon has been one of the starting points of our work.
[14] describes a data flow analysis for the prediction of instruction cache behavior of programs for
direct mapped caches. The extension to set associative instruction caches has later been given in
[15]. In contrast to our method that derives semantics based categorizations of memory references
only from the results of our analyses, an additional complex bottom-up algorithm over the control
flow graph is used to compute a classification of the instructions for each loop level.

In [9, 10] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe describe an integrated method
to determine the worst case execution path of a program and to model architecture features like
instruction caches and/or pipelines. The problem of finding an accurate worst case execution time
bound is formulated as an integer linear program that must be solved, which is a NP-hard problem.
This approach has been implemented in the cinderella tool®. Unlike the method described in
[14] or our method that rely only on the control flow graph to determine the cache behavior of a
memory reference, user provided functionality constraints can be used to describe the control flow
more precisely. For direct mapped instruction caches and programs whose execution path is well
defined and not very input dependent the predictions can be computed fast and are very accurate
[10]. Increasing levels of associativity where the cache behavior of one memory reference depends
on more other references and less defined execution paths lead to prohibitively high analysis times.

In [8], Lim et al. describe a general framework for the computation of WCETs of programs in
the presence of pipelines and cache memories. Two kinds of pipeline and cache state information
are associated with every program construct for which timing equations can be formulated. One
describes the pipeline and cache state when the program construct is finished. The other can be
combined with the state information from the previous construct to refine the WCET computation
for that program construct. Unlike our method that is based on well explored theories and tools for
abstract interpretation, the set of timing equations must be explicitly solved. An approximation to
the solution for the set of timing equations has been proposed. The usage of an input and output
state provides a way for a modularization for the timing analysis. Experimental results are reported
for three small programs, but they cannot be easily compared with our experiments.

11 Conclusion

We have described a semantics based analysis method by abstract interpretation that allows to
predict the intrinsic cache behavior of programs for various types of one level caches. The theory
of abstract interpretation supports the correctness proofs for the analysis and provides efficient

®See http://www.ee.princeton.edu/ yauli/cinderella-3.0/

12

implementation methods.

The analyzers are generated by the program analyzer generator PAG from very concise specifications.
The implementation of the analysis is fast and does not necessitate program transformations nor
additional analysis phases. No special input of a skilled user is required to tune for acceptable
results. This makes it feasible to use our analyses as part of the compilation process to support
the automatic schedulability analysis by the compiler.

The applicability of our methods has been shown with the results of our practical experiments.

We directly analyze executables and there are no special compilers or linkers required. Qur current
implementation supports the SPARC architecture. Other architectures can be supported by sup-
plying additional frontends to our analyzers. The analyses are extensible to accommodate further
cache designs like multilevel caches or wrap around line fill.

Acknowledgements

We like to thank Mark D. Hill, James R. Larus, Alvin R. Lebeck, Madhusudhan Talluri, and David
A. Wood for making available the Wisconsin architectural research tool set (WARTS), Thomas
Ramrath for the implementation of the PAG frontend for SPARC executables, Yau-Tsun Steven Li
and Frank Miiller for providing their benchmark programs, and Martin Alt and Florian Martin the
developers of PAG and Reinhard Wilhelm who invented the name for the analysis for very fruitful
discussions.

References

(1] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache Behavior Prediction by Abstract In-
terpretation. In SAS’96, Static Analysis Symposium, LNCS 1145, pages 52-66. Springer, Sept.
1996. Long version accepted for SAS’96 special issue of Science of Computer Programming.

[2] M. Alt and F. Martin. Generation of Efficient Interprocedural Analyzers with PAG. In SAS’95,
Static Analysis Symposium, LNCS 983, pages 33-50. Springer, Sept. 1995.

[3] R. Arnold, F. Mueller, D. B. Whalley, and M. Harmon. Bounding Worst-Case Instruction
Cache Performance. In Proceedings of the IEEE Real-Time Systems Symposium, pages 172—
181, Dec. 1994.

(4] T. Ball and J. Larus. Optimally Profiling and Tracing Programs. In Conference Record of
POPL ’92: 19nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 59-70, Jan. 1992.

[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Conference Record of the 4th
ACM Symposium on Principles of Programming Languages, pages 238-252, Jan. 1977.

[6] C. Ferdinand, F. Martin, and R. Wilhelm. Applying Compiler Techniques to Cache Behavior
Prediction. In Proceedings of the ACM SIGPLAN Workshop on Language, Compiler and Tool
Support for Real-Time Systems, June 1997.

13

[7] J. Larus. Abstract Execution: A Technique for Efficiently Tracing Programs. Software -
Practice and Ezperience, 20(12):1241-1258, Dec. 1990.

[8] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin, K. Park, S.-M.
Moon, and C. S. Kim. An Accurate Worst Case Timing Analysis for RISC Processors. IEEE
Transactions on Software Engineering, 21(7):593-604, July 1995.

[9] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient Microarchitecture Modeling and Path Analysis
for Real-Time Software. In Proceedings of the IEEE Real-Time Systems Symposium, pages
298-307, Dec. 1995.

[10] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache Modeling for Real-Time Software: Beyond Direct
Mapped Instruction Caches. In Proceedings of the IEEE Real-Time Systems Symposium, Dec.
1996.

[11] Y.-T. S. Li and S. Malik. Performance Analysis of Embedded Software Using Implicit Path
Enumeration. In Proceedings of the 32nd ACM/IEEE Design Automation Conference, pages
456-461, June 1995.

[12] S. McFarling. Program Optimization for Instruction Caches. In Architectural Support for
Programming Languages and Operating Systems, pages 183-191, Boston, Massachusetts, Apr.
1989. Association for Computing Machinery ACM.

[13] A. Mendlson, S. S. Pinter, and R. Shtokhamer. Compile Time Instruction Cache Optimizations.
Computer Architecture News, 22(1):44-51, Mar. 1994.

(14] F. Mueller, D. B. Whalley, and M. Harmon. Predicting Instruction Cache Behavior. In
Proceedings of the ACM SIGPLAN Workshop on Language, Compiler and Tool Support for
Real-Time Systems, 1994.

[15] F. Mueller. Generalizing Timing Predictions to Set-Associative Caches. Technical Report TR
96-66, Institut fiir Informatik, Humboldt-University, July 1996.

[16] K. Pettis and R. C. Hansen. Profile Guided Code Positioning. In ACM SIGPLAN’90 Confer-
ence on Programming Language Design and Implementation, pages 16-27, White Plains, New
York, June 1990.

[17] P. Puschner and C. Koza. Calculating the Maximum Execution Time of Real-Time Programs.
Real-Time Systems, 1:159-176, 1989.

(18] M. Sharir and A. Pnueli. Two Approaches to Interprocedural Data Flow Analysis. In S. S.
Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory and Applications, chap-
ter 7, pages 189-233. Prentice-Hall, 1981.

[19] J. A. Stankovic. Real-Time and Embedded Systems. ACM 50th Anniversary Report on Real-
Time Computing Research, 1996.

[20] R. Wilhelm and D. Maurer. Compiler Design. International Computer Science Series. Addison—
Wesley, 1995. Second Printing.

[21] M. E. Wolf and M. S. Lam. A Data Locality Optimizing Algorithm. In Proceedings of the
ACM SIGPLAN 91 Conference on Programming Language Design and Implementation, pages
30-44, June 1991.

14

