
� �

� �

Analytic Machines

Thomas Chadzelek G�nter Hotz

Technical Report ����� November ����

e�mail� chadzelek�cs�uni�sb�de� hotz�cs�uni�sb�de

WWW� http���www�hotz�cs�uni�sb�de

Fachbereich Informatik

Fachbereich �� Informatik
Universit	t des Saarlandes

Postfach �
 �� 
�
����� Saarbr
cken

Germany



Analytic Machines

G�nter Hotz
�

Thomas Chadzelek
�

��th November ����

Abstract

In this paper we present some results about analytic
machines regarding the power of computations over
Q or R� solutions of di�erential equations and the
stability problem of dynamical systems�

We �rst explain the machine model� which is a
kind of Blum�Shub�Smale machine enhanced by
in�nite convergent computations� Next� we com�
pare the computational power of such machines
over the �elds Q and R showing that �nite com�
putations with real numbers can be simulated by
in�nite converging computations on rational num�
bers� but the precision of the approximation is not
known during the process� Our attention is then
shifted to ordinary di�erential equations �ODEs��
dynamical systems described by ODEs and the un�
decidability of a class of stability problems for dy�
namical systems�

� Introduction

Why should one consider machines computing with
real numbers if only rational numbers appear in ac�
tual computations� First of all one can object that
also nearly all rational numbers will never appear
in a computation and even the successor function is
not actually computable� The introduction of the
in�nite and of the real numbers greatly simpli�ed
analysis and insofar real numbers have proven to
be very practical�

We are interested here in computations taking in�
�nitely long in order to examine how far machines
over the real numbers can be approximated by com�
putations on �nite machines� We regard all func�
tions that can be approximated in this sense as in�
teresting objects for the theory of machines� These
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include closure properties of such functions under
composition and solutions of di�erential equations
computable in this sense�

But our question formulation is also motivated
by entirely concrete problems� Computers control
vehicles� airplanes� power plants� and chemical fac�
tories� These processes or at least part of them
are continuous and can only be described by dif�
ferential equations� The computer obtains infor�
mation about the current state of the process via
sensors� This information consists of measurements
of limited precision which are available to the com�
puter as inputs� If one wants to ensure the �cor�
rectness� of the whole system�computer plus con�
trolled process�then the theory must contain both
the computer and the continuous process� Our ��Q�
analytic machines take this notion into account by
receiving values as input which are obtained by a
rounding with �precision ��� Systems of discrete
and continuous components are called hybrid on
the proposal of Nerode ���� Here we are not inter�
ested in proving the correctness of hybrid systems
but in simulating them approximately and in the
question of their stability�

We establish criteria for the ability to approx�
imate real functions by computations on analytic
Q�machines and show that even simple question to
the stability of such systems are not generally de�
cidable� By showing that these systems can be con�
ceived as dynamical systems we also make a contri�
bution to a classical problem of computer science
��� ch� �� ���� A particular challenge for the theory is
represented by the question of diagnosing systems
which obviously work erroneously ����

� Machine Model

We �rst present an abstract notion of mathemati�
cal machines and analytic computations which we
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use later to de�ne a more concrete model of regis�
ter machines over a ring or �eld� A mathematical
machine in our sense is a tuple

M � �K�Ka�Ke�Kz��� A� in� out��

where K is the set of con�gurations of M and Ka�
Ke� Kz � K are the initial� �nal and target con�
�gurations� � � K � K with �jKe

� idKe
is

the next state function of M� in � A� � Ka and
out � K � A� are called input and output func�
tions over the alphabet� A�

We call a sequence b � �ki�
�
i�� of states ki ��

�i�k�� a computation of M applied to k�� It is
called �nite i� �n� kn � Ke� the sequence then
becomes stationary at the nth term and the small�
est such n is called the length and out�kn� is called
the result of the computation� If k� � Ka holds
additionally we call b regular�

For any given topology on A� we can extend
the above de�nition to in�nite convergent compu�
tations� Let b be a computation with k� � Ka such
that kij � Kz for in�nitely many ij and let �kij �

�
j��

be the partial sequence of all these target con�gu�
rations� The computation is now called analytic if

lim
j��

out�kij �

exists� this limes is the result of b and out�kin� is
called nth approximation of the result�

This machine M now de�nes a partial function
�M � A� � A� in the following way� If for any
given x � A� the computation ofM applied to in�x�
is regular or analytic with result y � A� we take
�M�x� �� y and unde�ned else� Furthermore the

nth approximation ��n�
M

of this function is de�ned

on the same domain by ��n�
M

�x� �� out�kin�� if a
�regular� computation contains less than n target

con�gurations we take ��n�
M

�x� �� y�
We denote the domain of �M by DM � the halt�

ing set DH
M

� DM contains exactly those inputs
for which the computation of M is regular� Two
machines M and M� are called equivalent if their
halting sets and domains agree and �M � �M� �

��� Register Machines

Now we introduce a special kind of register ma�
chines over a ring R which will only be used for

�The notion of alphabet is not con	ned to a �nite set
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R � fQ�Rg although the de�nition can easily
be extended to arbitrary rings with unity con�
taining the integers Z� The construction is simi�
lar to ��� and�concerning ��nite� computability�
equivalent to the model of Blum� Shub� and
Smale ����

These R�machines �cf� �gure �� are equipped
with a �nite program � and a control unit with
an accumulator �� program counter �� index or ad�
dress register �� and precision register �� Further�
more there is an in�nite input tape X which may
only be read� an in�nite output tape Y which may
only be written to� and an in�nite memory Z� The
precision register is only used for extended Q�ma�
chines and explained later�

� precision

� index reg�

� pr� counter

� accumulator

y�� y�� � � � output tape

x�� x�� � � � input tape

��� � � � � �N program

z�� z�� � � � memory

Figure �� Structure of our register machine

A con�guration of such a machine is given by
the contents � � �� � N 	 � 
 of the program and
� � R� � � �� � N 	� �� � � N of the registers as
well as x� y� z � N � R of the tapes and memory�
Here 
 denotes the set of machine instructions to
be speci�ed shortly� For the sake of simplicity we
do not distinguish between the names of registers
and their contents and abbreviate x�i� by xi etc�

K �� fk � ��� �� �� �� �� x� y� z� as aboveg�

Ka �� fk � K j � � � � � � �� � � ��

� j � yj � zj � �g�

Ke �� fk � K j �� � endg�

Kz �� fk � K j �� � printg�

The input and output functions interpret x� and
y� as the length of a sequence following in the next
cells� in this way the machine operates on words
from R

� rather than elements of the in�nite direct
sum R�� The set 
 � 
RN contains the instructions
in table �� it depends on the size N of the program
and the ring R but this is usually not denoted ex�
plicitly�
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�� assignments �i � N� f�g�

�a� � �� xi� � �� zi� yi �� �� zi �� �

�b� � �� r for r � R

�c� � �� �

�d� � �� �

�� arithmetical operations �i � N� f�g�

�a� � �� �� zi� � �� � � zi

�b� � �� ��� � �� ���

�c� � �� � � �� � �� � �� �

�� conditional branching �m�n � �� � N 	�

if � � � then goto m else goto n

�� special instructions

end� next �� print

Table �� Instruction set

The semantics of these instructions should be
quite obvious and de�ne in a natural way the next
state function �� �� denotes the non�negative dif�
ference� print only marks target con�gurations�
and �next �� is reserved for extended Q�machines�
A program is only deemed correct if � �� ��� is
only applied to invertible elements regardless of the
input�

De�nition �� Given a ring R� a natural number
N � and a program � � �� � N 	 � 
RN � we call the

abstract machineMR� � �K� Ka� Ke� Kz� �� R� in�
out� uniquely de�ned by the above construction the
R�machine with program ��

��� Extended Q�Machines

An in�nite computation of a Q�machine could pro�
duce an output sequence �of rational numbers� that
converges to an irrational real number� In this
way�which is not covered by our de�nition�a
function f � Q�� R� could be computed� We shall
now extend our model of Q�machines in a suitable
way to allow real inputs and thus compute func�
tions f � R� � R�� The simple idea is to round
real inputs to a certain precision� compute a ratio�
nal approximation of the result� and then increase

precision so that the output converges to the real
function value�

This means that instructions � �� xi read a ra�
tional approximationx� � Qwith jxi�x� j 	 
�� of
the real�valued input xi� We proceed analogously
for assignments � �� r of irrational constants� The
precision is increased with each �next �� which
also restarts the machine� Formally� this means
that for a con�guration k � ��� �� �� �� �� x� y� z�
with �� � �next �� we have ��k� �� ��� �� �� ����
�� x� y�� z�� with � i � y�i � z�i � �� Furthermore
we allow real numbers on the input tape and as
program constants �in � R� � Ka� x � N� R and
� � �� � N 	 � 
RN � and the limes limj�� out�kij �
in analytical computations need only exist in R�

Extended Q�machines are not determined by the
program alone but we also have to specify how to
round�

De�nition �� An R�computable function 
 � R	
N� Q� �x� n� 
� xn is called rounding function� if
always jx� xnj 	 
�n�

Given a rounding function 
 the assignment � ��
xi is interpreted as � �� 
�xi� �� and the machine
remains deterministic�

De�nition �� Given a program � � �� � N 	 � 
RN
and a rounding function 
� we call the abstract
machine M��Q

��� � �K� Ka� Ke� Kz� �� R� in�
out� uniquely de�ned by the above construction the
��Q�machine with program � and rounding function

�

The dependency on the rounding function is dis�
turbing� thus we are especially interested in pro�
grams � which compute the same function regard�
less of which rounding is used� Such programs will
be called robust and any one of the equivalent ��Q�
machines with program � is called M��Q

� �

��� Computable Functions

Now we are in a position to formalize our notion
of computable functions over a ring� of which there
are many variants� The �gure � gives an overview
of the hierarchy of classes of computable functions
together with a hint to why the inclusion is strict�
All classes below the line shown are closed under
composition� but none above the line are�
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Q�computable � Turing�computable

quasi�strongly ��Q�analytic

�

�

�

�

���

Koch�s curve

�Q

� �
�
Q

domain

R�computable

continuity

�strongly ��Q�analytic
closed

not closed
robustly ��Q�analytic

�
��Q�analytic

R�analytic

hierarchy theorem

R��analytic

� �comput� real cont��

Figure �� Hierarchy of classes of computable functions

De�nition �� A function f � R� � D � R
� is

called analytically R�computable or short R�ana�
lytic if there exists an R�machine M such that
f � �M �and D � DM �� If D � DH

M
is the halt�

ing set of M and f � �MjD then f is called R�
computable�

Analogously f � R� � D � R� is called ��Q�
computable or ��Q�analytic resp� if there exists a
corresponding ��Q�machine M ��M��Q

��� � Note that
the program � as well as the rounding function 

may be chosen in a suitable way� If we restrict
ourselves to robust programs we speak of robustly
��Q�computable or �analytic resp�

A fundamental result �cf� ��� ��� about R�com�
putable functions is the following representation
theorem�

Theorem �� An R�computable function decom�
poses its domain into a countable union of semi�
algebraic sets� on each semi�algebraic set the func�
tion is rational�

��� Quasi�Strongly Analytic Func�
tions

A na ve simulation of the compositionM� �M� of
two robust analytic ��Q�machines by a single ma�
chine M fails when M� wants to read its input�
The latter is the limit of the �rst machine�s output
and must be rationally approximated with a given

precision by an arbitrary rounding function� The
problem is we never know this limit itself but only
�rational� approximations to it with an unknown
precision� It is solved if we turn our attention to
programs which also compute a bound on the pre�
cision of these approximations�

De�nition �� Let �kij �
�
j�� be the subsequence of

target con�gurations of a ��Q�analytic computa�

tion� By out�kij � � �y
�j�
� � � � � � y

�j�
nj � � Q

� we denote

the outputs and by yi �� limj�� y
�j�
i � the limes of

the ith position� The computation is then called
quasi�strongly ��Q�analytic i�

�� y� � ��

�� jyi � y
�j�
i j 
 y

�j�
� for almost all i� j�

We regard the limes �y�� � � � � yn� of outputs with�
out the precision bound as result of this compu�
tation� A function f � R� � D � R� is called
quasi�strongly ��Q�analytic if there exists a robust
program � such that D � DM and for each x � D
the computation of M ��M��Q

� starting with in�x�
is quasi�strongly ��Q�analytic with result f�x��

Note that if we requested the precision bound to
hold always then the computed function would be�
come continuous� we call such functions strongly
��Q�analytic and this coincides with Grzegor�

czyk�s �
� and Weihrauch�s ���� ��� de�nition
of computable real �continuous� functions� Our






weaker requirement su!ces nevertheless to achieve
closure under composition�

Lemma �� Let D � R� and f � R� � D as well
as g � D � R� be quasi�strongly ��Q�analytic� then
g � f is also quasi�strongly ��Q�analytic�

Proof� We denote byMf andMg the quasi�strongly
analytic ��Q�machines for f and g which w�l�o�g�
execute �next �� in�nitely often during each com�
putation� thus dividing them into phases� Now a
single machine M alternately simulates one phase
ofMf on the original input x and one phase ofMg

on the approximation of f�x� computed so far if the
precision bound is suitable else Mg waits� One ob�
serves that Mg is provided with a wrong�i�e� not
precise enough�input �nitely many times� but this
does not matter for the limes of its output� The pre�
cision bound ofM itself becomes wrong only �nitely
often and the whole computation is quasi�strongly
��Q�analytic�

In contrast to Weihrauch�s class of computable
real continuous functions� the quasi�strongly ��Q�
analytic functions form a much larger class con�
taining the R�computable ones� One advantage of
the model of extended Q�machines is that it pro�
vides a means to compare the computational power
of machines with rational or real arithmetic on the
same �real� inputs� What we see now is that ��
nite computations on �in�nite� reals can be simu�
lated by in�nite �but convergent� computations on
��nite� rationals� A weaker form of the following
statement with a completely di�erent proof can be
found in ��� ���

Theorem � 	Simulation Theorem
� Every R�
computable function is quasi�strongly ��Q�analytic�

Proof� The ��Q�machine M� simulates the R�ma�
chine M for the given function by interval arith�
metic and with increasing precision �� In doing so
all cells of the memory and output tape as well as
the accumulator of M are recreated by lower and
upper bounds in the memory of M�� they are cor�
rectly initialized to zero� Most instructions can be
emulated in a self�evident way except the following�

Assignments � �� xi �and analogously � �� r
for r �� Q� for which a ��Q�machine executes � ��

�xi� �� assign to the simulated accumulator the in�
terval �� � 
��� � � 
��	� The branching condi�
tion if � � � then � � � is interpreted in such a

way that an interval is positive i� its lower bound
is� in this sense it is �equal to zero� as long as it
contains zero� The print�instruction is now used
to write the output� i�e� the interval centers of the
simulated output tape together with the maximal
interval length as precision bound� Instead of end

we do a �next �� to start a new phase of the sim�
ulation�

Please note that in this way the program remains
correct with regards to illegal � �� ���� We can
avoid endless loops by branching at most � times
in each phase� The precision bound is wrong at
most untilM� starts simulating the right computa�
tional path of M� If the content of � is non�zero
at a branching then the interval computed by M�

with su!cient precision re"ects the right sign� By
approaching the undecidable case of � � � care�
fully and from the secure side it is always correctly
handled by M��we call this approach conservative
branching� Thus it is clear that every �nite com�
putational path ofM will be simulated byM� after
a �nite time and then the output converges as de�
sired�

��� Halting Problems

The analytic equivalent of the classical halting
problem for Turing�machines is a convergence
problem�namely the question whether the output
of an R�machine converges for a given input� As
can be expected� a problem of this kind is unde�
cidable and thus its characteristic function�with
which we often identify the problem�is not com�
putable� If we call the composition of i analytic
R�machines an Ri�analytic machine and speak of
R
i�analytic functions etc�� we can summarize the

following results� We do not give proofs here but
merely cite these for later use�

Theorem �� The convergence problem of Ri�ana�
lytic machines is not Ri�analytic but Ri���analytic�
the same holds for ��Qi�analytic machines�

Proof� The undecidability of the problem by the
same type of machine follows from a more or less
simple diagonalization argument� We have a con�
structive proof of how to simulate i machines on
i� � while deciding convergence of the output�
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� Ordinary Di�erential Equa�

tions and Stability

Many natural or technological processes can be de�
scribed by di�erential equations� either by ordinary
�ODE� or partial ones� They typically express a lo�
cal understanding of how something happens while
their solutions give a global view of the system� We
now want to demonstrate that analytic functions
form a large class containing the solutions to �cer�
tain� di�erential equations and then give an unde�
cidability result for a stability problem of dynamic
systems modeled by ODEs�

To this end we restrict ourselves to initial value
problems for systems of explicit �rst order ODEs
with a �right�hand side� which is computable by
an R�machine without division� Let N � N be the
dimension of the system� f � R	 RN � RN with
�t� �� 
� f �t� �� a computable function over the ring
R� and �t��x�� � R	RN� We then consider initial
value problems of the form

x
��t� � f �t�x�t��� x�t�� � x�� ���

��� Solving ODEs

Now we shall clarify the de�nition� existence�
uniqueness� and computability of solutions to equa�
tion �� Because the right�hand side as an R�com�
putable function is de�ned by case distinction we
�rst have to put the de�nition of a solution to such
an ODE more precisely� Very important for this is
an understanding of the structure of the function f

as described by the representation theorem ��
As the R�machine for f executes its program the

"ow of control follows a certain computational path
�� The branching conditions along all such paths
decompose the domain of f � i�e� RN��� into disjoint
basic semi�algebraic sets D� which form the �basins
of attraction� of the paths � and shall be called
regions� This is illustrated in �gure � for the simple
two�dimensional case�

The ith component f��i of the function f� ��
f���	� � �	f��N computed along � can be described
as a polynomial with real coe!cients� thus it is a
C��function� i�e� in�nitely often continuously dif�
ferentiable� It is well known from analysis that for
such a �local� problem x

��t� � f��t� x�t�� with ar�
bitrary initial value �
� �� � RN�� there exists a
unique solution on a maximal open interval I� � 
 �

D��

D��

D��

D��D��

Figure �� Partitioning of domain R� into regions

We now imagine a global solution analogous to
the representation of f to be piece by piece com�
posed of solutions to the local problems� The solu�
tion should be di�erentiable and satisfy the ODE
inside a region D� with continuous transitions be�
tween regions�

De�nition � 	solution
� We call a function x �
I � RN which is continuous on an interval I � R
and satis�es x�t�� � x� a �global� solution� if for all
paths � and all times t � int�T�� it is di�erentiable
with derivative x

��t� � f��t�x�t��� Here T� �� ft j
�t�x�t�� � D�g� It is called maximal if there is no
extension to an enlarged interval�

Lemma � 	existence
� For every initial value
problem according to equation 	 there exists a max�
imal global solution�

Proof� Let �� be the path with �t��x�� � D�� � The
solution to the local problem x

� � f���t�x� gives a
global solution if we choose the interval t� � I �
T�� suitably� Surely there exists a �not necessarily
unique� extension to a maximal interval�

Of particular interest now are the conditions for
the uniqueness of a maximal global solution� Be�
cause of symmetry reasons we only consider the be�
havior of a solution after the initial time t�� Under
the following two conditions for the right�hand side
and the initial value we can proof that no branching
of the solution occurs�

�� The functions f� each de�ne a vector �eld in
RN�� by assigning to each point �t� �� the di�
rection ��� f��t� ��� of a tangent to a local so�
lution through this point� If at the border of
a region the local vector �eld is tangential to

�



this border then the graph of a solution might
touch this border or even follow it for a while
and the solution might branch �cf� �gure ���
Thus we only call those functions f admissible
whose local vector �elds are never tangent to
a border�

x

t

�

t

�

�D�

x

Figure �� Branching of tangential solution

Given an admissible function f we can assume
w�l�o�g� that every region is contained in the
closure of its open interior� D� � int�D���
this is a non�degeneracy conditions that does
not in"uence the behavior of solutions in our
sense�

D� D��� D��� D�

x

t

�

Figure 
� Dense accumulation of regions

Finally there is one more degenerate case we

would like to avoid� it is illustrated in �gure

� The program that computes f �t� �� �rst
checks for t 
 � and than for t � ��k with
k � �� 
� � � � until it succeeds� Thus the bor�
ders of regions are dense in the neighborhood
of the ��axis and a solution can cross in�nitely
many regions in �nite time�� We therefore ad�
ditionally require that every compact subset
of an admissible function�s domain intersects
only �nitely many regions�

�� If the initial value �t��x�� is chosen in such a
way that the unique local solution leaves its re�
gion in a �multiple corner�� i�e� a point belong�
ing to more than two borders� the extension
need not be unique �cf� �gure ��� Thus we call
such initial values suitable for which no �maxi�
mal� global solution hits a multiple corner� not
even in a far�away region�

x

t

�

Figure �� Branching at a �multiple corner�

Theorem � 	uniqueness
� For every initial
value problem according to equation 	 with admis�
sible f and suitable �t��x�� there exists a unique
maximal global solution�

Proof� By contradiction and case distinction�

We denote such a unique solution by xf �t��x� �
If �t��x� � RN�� where If �t��x� � R is an interval�

Theorem � 	computability
� With the above
preconditions and notations� xf �t��x� is analytically
R�computable without division�

Proof� Let Mf be an R�machine for the computa�
tion of f � x �� xf �t��x� � and I �� If �t��x� �

�One is reminded of Zeno�s paradox
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We employ the explicit Euler�algorithm for the
construction of an R�machine M which computes�
for a given time t � I� the value x�t� of the solution�
Using a step size of h �� �t � t���

�
� �

n � � with
n � � we can construct the polygonal chains xh

without division� For symmetry reasons we only
consider t � t� and have to show that

� t � I � lim
h��

xh�t� � x�t��

Let �� be the path with �t��x�� � D�� � and we
�rst assume the graph of xj	t��t
 to be completely
contained in D�� � Furthermore let B � RN�� de�
note the ball around �t��x�� containing the graphs
of all xh� and L � � be a Lipschitz constant of f��
on B with respect to �� i�e�

� �
� ���� �
� ��� � B �

jf���
� ��� � f���
� ���j 
 Lj�� � ��j�

Then the global error of Euler�s algorithm is
jxh�t� � x�t�j � O� h

L
e�t�t��L� and the approxima�

tion converges for h� � to the correct value�
We now consider the general case of the solution

crossing a region�s border� In �t��x��� the local so�
lution crosses the border from D�� to D�� � this is
by our assumptions no multiple corner and the so�
lution is not tangential to the border� The approx�
imation of this point be �t��h�x��h�� the �rst point
generated by Euler�s algorithm outside of D�� �
For a su!ciently small step size h� �t��h�x��h� �
D�� will hold� Because of the continuous depen�
dency of the solution on the initial value the polyg�
onal chains starting in �t��h�x��h� also converge to
x� Thus the procedure can be extended correctly
across the borders of regions�

We can improve this theorem by observing that
the above construction together with the simula�
tion theorem show the solution to be robustly ��Q�
computable without division�

��� Stability of Dynamic Systems

Many natural or technological processes�e�g�
the motion of the planets in our solar system�
fundamentally depend on time� The aim of the
general theory of dynamic systems according to ���
is to mathematically model such time�dependent
processes� to describe their essential qualitative

properties� and to predict these� Dynamic systems
in a narrower sense are homogeneous in time�
i�e� their development depends not on the initial
time� but only on the initial state� One can model
continuous dynamic systems by autonomous ODEs
whose right�hand side f � RN � RN does not
depend on time and choose w�l�o�g� t� � ��

An important aspect in the study of such sys�
tems is the question about the qualitative long�term
behavior of a solution with respect to convergence
or stability� Our focus is on the computability of
such features of a solution if we are given an initial
value and a program for an R�machine that com�
putes f � By constructing ODEs from computations
we can use our results about the undecidability of
the �halting problem� for analytic R�machines in
this context� We show that the fundamental and
apparently simple problem �Does the solution x�t�
of an initial value problem converge for t���� is
undecidable for analytic R�machines�

It is undecidable whether the one�dimensional
output of an R�machine M �� M

R
� with empty

input converges or not� The idea now is to con�
structively describe the analytic computation of M
by an ODE whose solution at integral times cor�
responds to the output of M and in between in�
terpolates it linearly� We choose ����� � � and

��� � y
�btc���
� � y

�btc�
� where y

�i�
� is the output of M

in the ith step and obtained by simulation� This de�
�nes a non�autonomous initial value problem �the
right�hand side depends on time� with the desired
property�

In the case of dynamic systems� however� we
are restricted to autonomous right�hand sides and
thus emulate time by an additional ODE ��N �
� log 
 � �N with �N ��� � �� Then �N �t� � 
�t�
limt�� �N � �� and �N 
� btc � blog��� ���Nc
is R�computable� If we substitute blog��� ���Nc
for btc in the equation for �� we have a system of
ODEs with R�computable autonomous right�hand
side that simulates the output of an analytic R�
machine in that it converges i� the latter does� We
can pad the system to arbitrary size with equations
��i � ��

Theorem 
� The problem of deciding whether the
solution of an initial value problem

x
� � f �x�� x��� � x�

with autonomous R�computable right�hand side f �

�



RN � RN and x� � RN converges as time ap�
proaches in�nity� is not decidable for analytic R�
machines if N � ��

Proof� It is clear from the above discussion that the
convergence problem can be reduced to the men�
tioned problem�

In a similar way we can also show that it is un�
decidable for regular R�machines whether the solu�
tion of an initial value problem is sensitive to small
changes in the initial value or converges in the case
N � ��
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