Analytic Machines

Thomas Chadzelek Giinter Hotz

Technical Report 12/97 November 1997

e-mall: chadzelek@cs.uni-sb.de, hotz@cs.uni-sb.de
WWW: http://www-hotz.cs.uni-sb.de

Fachbereich Informatik

Fachbereich 14 Informatik
Universitat des Saarlandes
Postfach 15 11 50
66041 Saarbriicken

Germany

Analytic Machines

Giinter Hotz*

Thomas Chadzelek*

27th November 1997

Abstract

In this paper we present some results about analytic
machines regarding the power of computations over
@Q or R, solutions of differential equations and the
stability problem of dynamical systems.

We first explain the machine model, which is a
kind of BLUM-SHUB-SMALE machine enhanced by
infinite convergent computations. Next, we com-
pare the computational power of such machines
over the fields @@ and R showing that finite com-
putations with real numbers can be simulated by
infinite converging computations on rational num-
bers, but the precision of the approximation is not
known during the process. Our attention is then
shifted to ordinary differential equations (ODEs),
dynamical systems described by ODEs and the un-
decidability of a class of stability problems for dy-
namical systems.

1 Introduction

Why should one consider machines computing with
real numbers if only rational numbers appear in ac-
tual computations? First of all one can object that
also nearly all rational numbers will never appear
in a computation and even the successor function is
not actually computable. The introduction of the
infinite and of the real numbers greatly simplified
analysis and insofar real numbers have proven to
be very practical.

We are interested here in computations taking in-
finitely long in order to examine how far machines
over the real numbers can be approximated by com-
putations on finite machines. We regard all func-
tions that can be approximated in this sense as in-
teresting objects for the theory of machines. These

*Fachbereich Informatik, Universitat des Saarlandes,
Postfach 15 11 50, 66041 Saarbriicken, Germany

include closure properties of such functions under
composition and solutions of differential equations
computable in this sense.

But our question formulation is also motivated
by entirely concrete problems. Computers control
vehicles, airplanes, power plants, and chemical fac-
tories. These processes or at least part of them
are continuous and can only be described by dif-
ferential equations. The computer obtains infor-
mation about the current state of the process via
sensors. This information consists of measurements
of limited precision which are available to the com-
puter as inputs. If one wants to ensure the “cor-
rectness” of the whole system—computer plus con-
trolled process—then the theory must contain both
the computer and the continuous process. Our §-Q-
analytic machines take this notion into account by
receiving values as input which are obtained by a
rounding with “precision 6”. Systems of discrete
and continuous components are called hybrid on
the proposal of NERODE [4]. Here we are not inter-
ested in proving the correctness of hybrid systems
but in simulating them approximately and in the
question of their stability.

We establish criteria for the ability to approx-
imate real functions by computations on analytic
Q-machines and show that even simple question to
the stability of such systems are not generally de-
cidable. By showing that these systems can be con-
ceived as dynamical systems we also make a contri-
bution to a classical problem of computer science
[8, ch. 3] [1]. A particular challenge for the theory is
represented by the question of diagnosing systems
which obviously work erroneously [7].

2 Machine Model

We first present an abstract notion of mathemati-
cal machines and analytic computations which we

use later to define a more concrete model of regis-
ter machines over a ring or field. A mathematical
machine in our sense is a tuple

M= (K, Ko, Ko, K., A, A, in, out),

where K is the set of configurations of M and K,
K., K, C K are the initial, final and target con-
figurations. A : K — K with Alg, = idg, is
the next state function of M; in : A — K, and
out : K — A* are called input and output func-
tions over the alphabet' A.

We call a sequence b = (k;)$2, of states k; :=
Ai(ko) a computation of M applied to ko. It is
called finite ifft An: k, € K.; the sequence then
becomes stationary at the nth term and the small-
est such n is called the length and out(ky,) is called
the result of the computation. If kg € K, holds
additionally we call b regular.

For any given topology on A* we can extend
the above definition to infinite convergent compu-
tations. Let b be a computation with ky € K, such
that k;, € K. for infinitely many ¢; and let (k;;);?';0
be the partial sequence of all these target configu-
rations. The computation is now called analytic if

lim out(k;,)
J—00
exists; this limes is the result of b and out(k;,) is
called nth approximation of the result.

This machine M now defines a partial function
Dy 0 A* ~+ A" in the following way. If for any
given # € A* the computation of M applied to in(xz)
is regular or analytic with result y € A* we take
Poi(2) := y and undefined else. Furthermore the
nth approximation @g\%) of this function is defined
on the same domain by @5\2)(1‘) = out(k;,); if a
(regular) computation contains less than n target
configurations we take @5\2)(1‘) =y.

We denote the domain of ®y by Dyy; the halt-
g set D%I{ C Dy contains exactly those inputs
for which the computation of M is regular. Two
machines M and M’ are called equivalent if their
halting sets and domains agree and @9y = Py

2.1 Register Machines

Now we introduce a special kind of register ma-
chines over a ring R which will only be used for

I The notion of alphabet is not confined to a finite set
here.

R € {Q,R} although the definition can easily
be extended to arbitrary rings with unity con-
taining the integers Z. The construction is simi-
lar to [9] and—concerning (finite) computability—
equivalent to the model of BLum, SHUB, and
SMALE [2].

These R-machines (cf. figure 1) are equipped
with a finite program = and a control unit with
an accumulator «, program counter 3, index or ad-
dress register v, and precision register 6. Further-
more there is an infinite input tape X which may
only be read, an infinite output tape Y which may
only be written to, and an infinite memory Z. The
precision register is only used for extended (Q-ma-
chines and explained later.

[o,71,... input tape \
o accumulator | «— 7, .. 7y program |
S pr. counter
v index reg.
— le—|
5 precision [20,%1,... memory |

[¥o,y1,... output tape |

Figure 1: Structure of our register machine

A configuration of such a machine i1s given by
the contents 7 : [1 : N] — £ of the program and
a € R, B €[l:N] 7,6 €N of the registers as
well as z,y,z : N — R of the tapes and memory.
Here € denotes the set of machine instructions to
be specified shortly. For the sake of simplicity we
do not distinguish between the names of registers
and their contents and abbreviate #(7) by z; etc.

K :={k=(a,5,7,6,7 2,y,z) as above},

[(a::{kE[(|Oz:’y:6:O,ﬁ:1’
Vi y]':Z]'IO},

K.:={k € K |73 =end},

K, :={k € K | ng = print}.

The input and output functions interpret z9 and
Yo as the length of a sequence following in the next
cells; in this way the machine operates on words
from R* rather than elements of the infinite direct
sum R*°. The set Q = Q?\{, contains the instructions
in table 1; it depends on the size N of the program
and the ring R but this is usually not denoted ex-
plicitly.

1. assignments (i € NU {~})

(a) @ = @, o = z, Y = @, 7 = «
(b) a:=r forreR

() a: =6

(d) v:=

2. arithmetical operations (i € NU {v})
(a)
(b)
()

3. conditional branching (m,n € [1 : N])

=t oz, @ i=ozg

o

— e 1
o= —a, ai=o
v

=7+1 yi=y-1

if o > 0 then goto m else goto n

4. special instructions

end, next 6, print
Table 1: Instruction set

The semantics of these instructions should be
quite obvious and define in a natural way the next
state function A. = denotes the non-negative dif-
ference, print only marks target configurations,
and ‘next 6’ is reserved for extended (Q-machines.
A program is only deemed correct if o := a~! is
only applied to invertible elements regardless of the

input.

Definition 1. Given a ring R, a natural number
N, and a program 7 : [1 : N] — Q% we call the
abstract machine Mf = (K, Kq, K¢, K., AR, in,
out) uniquely defined by the above construction the
R-machine with program . O

2.2 Extended Q-Machines

An infinite computation of a ()-machine could pro-
duce an output sequence (of rational numbers) that
converges to an irrational real number. In this
way—which is not covered by our definition—a
function f : Q* ~ R* could be computed. We shall
now extend our model of (@-machines in a suitable
way to allow real inputs and thus compute func-
tions f : R* ~ R*. The simple idea is to round
real inputs to a certain precision, compute a ratio-
nal approximation of the result, and then increase

precision so that the output converges to the real
function value.

This means that instructions « := z; read a ra-
tional approximation x5 € Q with |z; —25| < 27° of
the real-valued input z;. We proceed analogously
for assignments « := r of irrational constants. The
precision is increased with each ‘next 6’ which
also restarts the machine. Formally, this means
that for a configuration k = («, 8, v, 8, 7, z, y, 2)
with 73 = ‘next 6’ we have A(k) := (0, 1,0, 6+1,
7, ox, Y, 2') with Vi ¢l = 2/ = 0. Furthermore
we allow real numbers on the input tape and as
program constants (in : R* — K4, ¢ : N — R and
7 :[1: N] — Q%) and the limes lim;_. out(k;,)
in analytical computations need only exist in IR.

Extended @Q-machines are not determined by the
program alone but we also have to specify how to
round.

Definition 2. An R-computable function p : R x
N — @, (z,n) — x, is called rounding function, if
always | — z,| < 277, O

Given a rounding function p the assignment o :=
z; is interpreted as o := p(x;,¢) and the machine
remains deterministic.

Definition 3. Given a program 7 : [1 : N] — Q%
and a rounding function p, we call the abstract
machine My % = (K, Ko, K., K., A, R, in,
out) uniquely defined by the above construction the
6-Q-machine with program #© and rounding function

o O

The dependency on the rounding function is dis-
turbing, thus we are especially interested in pro-
grams 7 which compute the same function regard-
less of which rounding is used. Such programs will
be called robust and any one of the equivalent §-Q-
machines with program = is called Mf{@.

2.3 Computable Functions

Now we are in a position to formalize our notion
of computable functions over a ring, of which there
are many variants. The figure 2 gives an overview
of the hierarchy of classes of computable functions
together with a hint to why the inclusion is strict.
All classes below the line shown are closed under
composition, but none above the line are.

robustly 6-Q-analytic

R2-analytic

; hierarchy theorem
R-analytic

=
6-(Q-analytic

v

not closed

strongly 6-Q-analytic ;

— ‘comput. real cont.’ continuity

=
quasi-strongly 6-Q-analytic

C

closed

C

= KocH’s curve

R-computable

; domain

@Q-computable = TURING-computable

Figure 2: Hierarchy of classes of computable functions

Definition 4. A function f : R > D — R is
called analytically R-computable or short R-ana-
lytic if there exists an R-machine M such that
=%y (and D =Dyy). If D = D%I{ is the halt-
ing set of M and f = ®y|p then f is called R-
computable.

Analogously f : R* D D — R* is called 6-Q-
computable or 6-Q-analytic resp. if there exists a
corresponding 0-Q-machine M := Mf{g. Note that
the program 7 as well as the rounding function p
may be chosen in a suitable way. If we restrict
ourselves to robust programs we speak of robustly
6-Q-computable or -analytic resp. O

A fundamental result (cf. [2, 6]) about R-com-
putable functions is the following representation
theorem.

Theorem 1. An R-computable function decom-
poses its domain into a countable union of semi-
algebraic sets; on each semi-algebraic set the func-
tion is rational.

2.4 Quasi-Strongly Analytic Func-
tions

A naive simulation of the composition My o My of
two robust analytic 6-(Q-machines by a single ma-
chine M fails when M, wants to read its input.
The latter is the limit of the first machine’s output
and must be rationally approximated with a given

precision by an arbitrary rounding function. The
problem is we never know this limit itself but only
(rational) approximations to it with an unknown
precision. It is solved if we turn our attention to
programs which also compute a bound on the pre-
cision of these approximations.

Definition 5. Let (k;;)72, be the subsequence of
target configurations of a §-Q-analytic computa-
tion. By out(k;;) = (y(()]), . ,ygj)) € Q* we denote
the outputs and by y; := lim;_.o yl(»]), the limes of
the ith position. The computation is then called
quasi-strongly 6-Q-analytic iff

Loy =0;
2. |yi — yE”| < y(()j) for almost all 7, .

We regard the limes (y1, . .. , yn) of outputs with-
out the precision bound as result of this compu-
tation. A function f : R* D D — R* is called
quasi-strongly §-Q-analytic if there exists a robust
program w such that D =Dy and for each z € D
the computation of M := M starting with in(x)
is quasi-strongly §-Q-analytic with result f(z). O

Note that if we requested the precision bound to
hold always then the computed function would be-
come continuous; we call such functions strongly
6-Q-analytic and this coincides with GRZEGOR-
Cc7zYK’s [b] and WEIHRAUCH’s [10, 11] definition
of computable real (continuous) functions. Our

weaker requirement suffices nevertheless to achieve
closure under composition.

Lemma 2. Let D C R* and f : R* ~ D as well
as g : D — R* be quasi-strongly 6-Q-analytic, then
g o f is also quasi-strongly §-Q-analytic.

Proof. We denote by M; and M, the quasi-strongly
analytic 6-Q-machines for f and g which w.l.o.g.
execute ‘next §’ infinitely often during each com-
putation, thus dividing them into phases. Now a
single machine M alternately simulates one phase
of My on the original input z and one phase of M,
on the approximation of f(x) computed so far if the
precision bound is suitable else M, waits. One ob-
serves that M, is provided with a wrong—i.e. not
precise enough—input finitely many times, but this
does not matter for the limes of its output. The pre-
cision bound of M itself becomes wrong only finitely
often and the whole computation is quasi-strongly

6-(Q-analytic. O

In contrast to WEIHRAUCH’S class of computable
real continuous functions, the quasi-strongly 6-Q-
analytic functions form a much larger class con-
taining the R-computable ones. One advantage of
the model of extended Q-machines is that it pro-
vides a means to compare the computational power
of machines with rational or real arithmetic on the
same (real) inputs. What we see now is that fi-
nite computations on (infinite) reals can be simu-
lated by infinite (but convergent) computations on
(finite) rationals. A weaker form of the following
statement with a completely different proof can be

found in [6, 9].

Theorem 3 (Simulation Theorem). Every R-
computable function is quasi-strongly 6-Q-analytic.

Proof. The 6-Q-machine M’ simulates the R-ma-
chine M for the given function by interval arith-
metic and with increasing precision é. In doing so
all cells of the memory and output tape as well as
the accumulator of M are recreated by lower and
upper bounds in the memory of M'; they are cor-
rectly initialized to zero. Most instructions can be
emulated in a self-evident way except the following.

Assignments « := z; (and analogously « = r
for r ¢ @) for which a §-Q-machine executes o :=
p(z;,8) assign to the simulated accumulator the in-
terval [a — 2% a + 27%]. The branching condi-
tion if o > 0 then ... 1is interpreted in such a

way that an interval is positive iff its lower bound
is; in this sense it 1s “equal to zero” as long as it
contains zero. The print-instruction is now used
to write the output, i.e. the interval centers of the
simulated output tape together with the maximal
interval length as precision bound. Instead of end
we do a ‘next 6’ to start a new phase of the sim-
ulation.

Please note that in this way the program remains
correct with regards to illegal o := a~!. We can
avoid endless loops by branching at most é times
in each phase. The precision bound is wrong at
most until M’ starts simulating the right computa-
tional path of M. If the content of « is non-zero
at a branching then the interval computed by M’
with sufficient precision reflects the right sign. By
approaching the undecidable case of @ = 0 care-
fully and from the secure side it is always correctly
handled by M’—we call this approach conservative
branching. Thus it is clear that every finite com-
putational path of M will be simulated by M’ after
a finite time and then the output converges as de-

sired. O

2.5 Halting Problems

The analytic equivalent of the classical halting
problem for TURING-machines is a convergence
problem—mnamely the question whether the output
of an R-machine converges for a given input. As
can be expected, a problem of this kind is unde-
cidable and thus its characteristic function—with
which we often identify the problem—is not com-
putable. If we call the composition of i analytic
R-machines an R'-analytic machine and speak of
R'-analytic functions etc., we can summarize the
following results. We do not give proofs here but
merely cite these for later use.

Theorem 4. The convergence problem of Ri-ana-
lytic machines 1s not R*-analytic but R+ analytic;
the same holds for §-Q"-analytic machines.

Proof. The undecidability of the problem by the
same type of machine follows from a more or less
simple diagonalization argument. We have a con-
structive proof of how to simulate ¢ machines on
¢+ 1 while deciding convergence of the output. O

3 Ordinary Differential Equa-
tions and Stability

Many natural or technological processes can be de-
scribed by differential equations, either by ordinary
(ODE) or partial ones. They typically express a lo-
cal understanding of how something happens while
their solutions give a global view of the system. We
now want to demonstrate that analytic functions
form a large class containing the solutions to (cer-
tain) differential equations and then give an unde-
cidability result for a stability problem of dynamic
systems modeled by ODEs.

To this end we restrict ourselves to wnitial value
problems for systems of explicit first order ODEs
with a “right-hand side” which is computable by
an R-machine without division. Let N € N be the
dimension of the system, f : R x RY — RY with
(t, &) — 1(t,€) a computable function over the ring
R, and (tg,xg) € R x RY. We then consider initial
value problems of the form

x'(t) = £(¢,x(¢)), x(to) = xo. (1)

3.1 Solving ODEs

Now we shall clarify the definition, existence,
uniqueness, and computability of solutions to equa-
tion 1. Because the right-hand side as an R-com-
putable function is defined by case distinction we
first have to put the definition of a solution to such
an ODE more precisely. Very important for this is
an understanding of the structure of the function f
as described by the representation theorem 1.

As the R-machine for f executes its program the
flow of control follows a certain computational path
o. The branching conditions along all such paths
decompose the domain of f,i.e. R¥*! into disjoint
basic semi-algebraic sets D, which form the “basins
of attraction” of the paths ¢ and shall be called
regions. This is illustrated in figure 3 for the simple
two-dimensional case.

The ith component f,; of the function f, :=
fo,1 %+ - % fo, v computed along ¢ can be described
as a polynomial with real coefficients, thus it is a
C*°-function, i.e. infinitely often continuously dif-
ferentiable. It is well known from analysis that for
such a (local) problem x'(t) = f,(¢, #(¢)) with ar-
bitrary initial value (r,&) € RYV*! there exists a
unique solution on a maximal open interval I, 3 7.

I Dy, N
__ A
- .
7 N |
// A
\ D,, | Do,
\ /
N
> S _— K\
i AN
| AN
N
|
Dy, | Dy, A

Figure 3: Partitioning of domain R? into regions

We now imagine a global solution analogous to
the representation of f to be piece by piece com-
posed of solutions to the local problems. The solu-
tion should be differentiable and satisfy the ODE
inside a region D, with continuous transitions be-
tween regions.

Definition 6 (solution). We call a function x :
I — R which is continuous on an interval I C R
and satisfies x(tg) = xg a (global) solution, if for all
paths o and all times ¢ € int(7T,) it is differentiable
with derivative x'(t) = £,(¢,x(?)). Here T, := {t |
(t,x(t)) € Dy }. Tt is called mazimal if there is no
extension to an enlarged interval. O

Lemma 5 (existence). For every initial value
problem according to equation 1 there exists a max-
wmal global solution.

Proof. Let oy be the path with (¢5,%g) € Dy,. The
solution to the local problem x' = f,,(¢,x) gives a
global solution if we choose the interval ¢ty € I C
T», suitably. Surely there exists a (not necessarily
unique) extension to a maximal interval. O

Of particular interest now are the conditions for
the uniqueness of a maximal global solution. Be-
cause of symmetry reasons we only consider the be-
havior of a solution after the initial time ¢5. Under
the following two conditions for the right-hand side
and the 1nitial value we can proof that no branching
of the solution occurs.

1. The functions f, each define a vector field in
RN+ by assigning to each point (¢, &) the di-
rection (1,1,(¢,€)) of a tangent to a local so-
lution through this point. If at the border of
a region the local vector field is tangential to

this border then the graph of a solution might
touch this border or even follow it for a while
and the solution might branch (cf. figure 4).
Thus we only call those functions f admissible
whose local vector fields are never tangent to

a border.
EA
X S — =~
e ~
- N
4 \
/ \
| I
\ /
AN 7/
~ - _ e
2
EA p
X
/
7/
. 70D,
4 -
. 2
Ve

Figure 4: Branching of tangential solution

Given an admissible function f we can assume
w.l.o.g. that every region is contained in the
closure of its open interior: D, C int(Dy,);
this 1s a non-degeneracy conditions that does
not influence the behavior of solutions in our
sense.

Dy D1y D1y Dy

T

Figure 5: Dense accumulation of regions

Finally there is one more degenerate case we

would like to avoid; it is illustrated in figure
5. The program that computes f(¢, &) first
checks for t < 0 and than for ¢ > 1/k with
k=12, ... Thus the bor-
ders of regions are dense in the neighborhood
of the &-axis and a solution can cross infinitely
many regions in finite time?. We therefore ad-
ditionally require that every compact subset
of an admissible function’s domain intersects
only finitely many regions.

until 1t succeeds.

2. If the initial value (tg,xp) is chosen in such a
way that the unique local solution leaves its re-
gion in a “multiple corner”, i.e. a point belong-
ing to more than two borders, the extension
need not be unique (cf. figure 6). Thus we call
such initial values suitable for which no (maxi-
mal) global solution hits a multiple corner, not
even in a far-away region.

€A

—_— I~

|
|
|
|
|
|
X |
|
|
|
|
|
|
|

T

Figure 6: Branching at a “multiple corner”

Theorem 6 (uniqueness). For cvery initial
value problem according to equation 1 with admis-
sible £ and suitable (to,%xo) there exists a unique

maximal global solution.

Proof. By contradiction and case distinction. [

We denote such a unique solution by xf;, x, :
It 1o %0 — RN+ where It 14,x, C IR is an interval.

Theorem 7 (computability). With the above
preconditions and notations, Xg 1, x, 15 analytically

R -computable without division.

Proof. Let Mg be an R-machine for the computa-
tion of £, x 1= X¢ 1) x,, and [:= I¢ 1 x,.

20ne is reminded of ZENO’s paradox.

We employ the explicit EULER-algorithm for the
construction of an R-machine M which computes,
for a given time ¢ € I, the value x(¢) of the solution.
Using a step size of h := (¢t — tp)(3)" — 0 with
n — oo we can construct the polygonal chains xy,
without division. For symmetry reasons we only
consider t >ty and have to show that

Vtel: %ir%xh(t) = x(1).

Let oy be the path with (tg,x0) € Dy,, and we
first assume the graph of x|, ;; to be completely
contained in D,,. Furthermore let B C RV*! de-
note the ball around (g, x¢) containing the graphs
of all xp, and L > 0 be a LIPSCHITZ constant of f,,
on B with respect to &, i.e.

V(Tagl)a(Ta€2) S B :
|fUD(T’€1) - fUD(T’€2)| < L|€1 - €2|

Then the global error of EULER’S algorithm is
|x5(t) — x(2)| = O(%e(t_tD)L) and the approxima-
tion converges for h — 0 to the correct value.

We now consider the general case of the solution
crossing a region’s border. In (¢1,x1), the local so-
lution crosses the border from D,, to D,,; this is
by our assumptions no multiple corner and the so-
lution is not tangential to the border. The approx-
imation of this point be (¢1 »,x%1), the first point
generated by EULER’s algorithm outside of D,,.
For a sufficiently small step size h, (t15,%X1,5) €
D,, will hold. Because of the continuous depen-
dency of the solution on the initial value the polyg-
onal chains starting in (¢1 », %1 5) also converge to
x. Thus the procedure can be extended correctly
across the borders of regions. O

We can improve this theorem by observing that
the above construction together with the simula-
tion theorem show the solution to be robustly §-Q-
computable without division.

3.2 Stability of Dynamic Systems

Many mnatural or technological processes—e.g.
the motion of the planets in our solar system—
fundamentally depend on time. The aim of the
general theory of dynamic systems according to [3]
1s to mathematically model such time-dependent
processes, to describe their essential qualitative

properties, and to predict these. Dynamic systems
in a narrower sense are homogeneous 1n time,
i.e. their development depends not on the initial
time, but only on the initial state. One can model
continuous dynamic systems by autonomous ODEs
whose right-hand side f : RY — RN does not
depend on time and choose w.l.o.g.ty = 0.

An important aspect in the study of such sys-
tems is the question about the qualitative long-term
behavior of a solution with respect to convergence
or stability. Our focus is on the computability of
such features of a solution if we are given an initial
value and a program for an R-machine that com-
putes f. By constructing ODEs from computations
we can use our results about the undecidability of
the “halting problem” for analytic R-machines in
this context. We show that the fundamental and
apparently simple problem “Does the solution x(%)
of an initial value problem converge for t — c0?” is
undecidable for analytic R-machines.

It is undecidable whether the one-dimensional
output of an R-machine M := Mﬂf with empty
input converges or not. The idea now is to con-
structively describe the analytic computation of M
by an ODE whose solution at integral times cor-
responds to the output of M and in between in-
terpolates it linearly. We choose £;(0) = 0 and
&= ythJH) — yELfJ) where ygl) is the output of M
in the ith step and obtained by simulation. This de-
fines a non-autonomous initial value problem (the
right-hand side depends on time) with the desired
property.

In the case of dynamic systems, however, we
are restricted to autonomous right-hand sides and
thus emulate time by an additional ODE & =
—log2 - &y with Ex(0) = 1. Then &x(t) = 277,
limi—ooény = 0, and &x — [t] = Uogl/2 1/én]
is R-computable. If we substitute [log;;,1/¢n]
for [¢] in the equation for £; we have a system of
ODEs with R-computable autonomous right-hand
side that simulates the output of an analytic R-
machine in that it converges iff the latter does. We
can pad the system to arbitrary size with equations

g=0

Theorem 8. The problem of deciding whether the
solution of an wnitial value problem

x' = f(x), x(0) = xo

with autonomous R-computable right-hand side f -

RY — RN and xg € RY converges as time ap-
proaches wnfinity, is not decidable for analytic R-
machines if N > 1.

Proof. 1t 1s clear from the above discussion that the
convergence problem can be reduced to the men-
tioned problem. O

In a similar way we can also show that it is un-
decidable for regular R-machines whether the solu-
tion of an initial value problem is sensitive to small
changes in the initial value or converges in the case
N=1.

References

[1] V. 1. Arnold and A. Avez. Ergodic Problems of
Classical Mechanics. Advanced Book Classics.
Addison-Wesley, 1989.

[2] L. Blum, M. Shub, and S. Smale. On a theory
of computation and complexity over the real
numbers: NP-completeness, recursive func-
tions and universal machines. Bulletin (New
Series) of the American Mathematical Society,
21(1):1-46, July 1989. ICSI technical report

TR-88-012.

G. Grosche, E. Zeidler;, D. Ziegler, and
V. Ziegler, editors. Teubner-Taschenbuch der
Mathematik, volume 2. B.G. Teubner Leipzig,
1995.

R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, editors. Hybrid Systems. Num-
ber 736 in Lecture Notes in Computer Science.

Springer-Verlag, 1993.

A. Grzegorczyk. On the definition of com-
putable real continuous functions. Funda-
menta Mathematicae, 44:61-71, 1957.

G. Hotz, B. Schieffer, and G. Vierke. Analytic
machines. Technical Report TR95-025, Elec-
tronic Colloquium on Computational Com-
plexity, 1995. http://www.ecc.uni-trier.
de/eccc.

B. Schieffer. Diagnose komplexer Systeme am
Beispiel eines Tank-Ballast-Systems. Disserta-
tion, Universitdt des Saarlandes, Saarbriicken,
Germany, Dec. 1996.

10

[8]

C. L. Siegel. Vorlesungen tber Him-
melsmechantk. Number 85 in Die Grundlehren
der mathematischen Wissenschaften in Einzel-
darstellungen. Springer-Verlag, 1956.

G. Vierke. Berechenbarkeit reellwertiger Funk-
tionen und analytische Berechnungen. Di-
plomarbeit, Universitit des Saarlandes, Saar-
briicken, Germany, July 1995.

K. Weihrauch. Computabidity. Number 9 in
EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1987.

K. Weihrauch. A foundation of computable
analysis. In K.-I. Ko and K. Weihrauch, ed-
itors, Workshop on Computability and Com-
plexity in Analysis, number 190-9/1995 in In-
formatikberichte, D-58084 Hagen, 1995. Fern-
Universitét.

