
�Hen��� Henry� Tyson Rombauer� Interactive
Graph Layout� The Exploration of
Large Graphs� Ph�D� Dissertation�
available as technical report TR����	
�
The University of Arizona� Department
of Computer Science� June� ����

�HeSa�
� Heckmann� Reinhold� Sander� Georg�
TrafoLa�H Reference Manual�
in
Ho
mann� Berthold� Krieg�Br�uckner�
Bernd� Editors� Program Development
by Speci�cation and Transformation�
Lecture Notes in Computer Science
��	� Springer Verlag ���

�Him��� Himsolt� Michael� GraphEd� An Inter�
active Graph Editor� in Proc� STACS
��� Lecture Notes in Computer Science

��� pp� �
���

� Springer Verlag ����

�KaKa��� Kamada� T�� Kawai� S�� An algorithm
for drawing general undirected graphs�
in Information Processing Letters
��
pp� ����� ����

�KoEl��� Koutso�os� Eleftherios� North� Stephen
C�� Drawing graphs with dot� technical
report� AT�T Bell Laboratories� Mur�
ray Hill NJ� ����

�Lem��� Lemke� Iris� En�
twicklung und Implementierung eines
Visualisierungswerkzeuges f�ur Anwen�
dungen im �Ubersetzerbau� Univer�
sit�at des Saarlandes� Saarbr�ucken� Ger�
many� Fachbereich �� Informatik� �to
appear� in German� ����

�Meh��a� Mehlhorn� Kurt� Data Structures and
Algorithms �� Sorting and Searching�
Springer Verlag ����

�Meh��b� Mehlhorn� Kurt� Data Structures and
Algorithms �� Graph Algorithms�
and NP�Completeness� Springer Verlag
����

�Meh��c� Mehlhorn� Kurt� Data Structures and
Algorithms
� Multi�dimensional
Searching and Computational Geome�
try� Springer Verlag ����

�PaTi�	� Paulisch� Frances Newbery� Tichy�
W�F�� EDGE� An Extendible Graph
Editor� in Software � Practice and Ex�
perience� Vol� �	� No� S�� pp� �
����
June ���	

�PrSh��� Preparata� Franco P�� Shamos� Michael
Ian� Computational Geometry� An In�
troduction� Springer Verlag ����

�STM��� Sugiyama� Kozo� Tagawa� Shojiro�
Toda� Mitsuhiko� Methods for visual
understanding of hierarchical system
structures�
in IEEE Transactions on Systems�
Man� and Cybernetics SMC���� No� ��
pp� �	������ Feb� ����

�War��� War�eld� N�J�� Crossing theory and hi�
erarchy mapping� in IEEE Transac�
tions on Systems� Man� and Cybernet�
ics SMC��� No� �� pp� �	����
� Feb�
����

�WiMa��� Wilhelm� Reinhard� Maurer� Dieter�
�Ubersetzerbau� Theory� Konstruktion�
Generierung� Springer Verlag �����En�
glish Version to appear with Addison
Wesley

��

ple and use heuristics� but they are very fast and
enable to explore very large graphs in reasonable
time�
Further work might address the following�

� Improve the stability of the layout� Similar
graphs must create similar pictures�

� Allow incrementality of the layout� Adding an
edge or a node to an layout should not cause
a complete relayout�

� Allow di
erent layout algorithms for nested
subgraphs� Each subgraph can be laid out by a
specialized variant of a layout algorithm� The
combination of such algorithms must be ana�
lyzed�

� Improve the spline drawing routine�

The implementation of the tool is based on
the diploma thesis of Iris Lemke �Lem��� �VCG
for SunView�� It runs with SunView and X��
on many di
erent platforms �SunOS� IRIX� IBM
AIX� HP�UX� � � � � and can produce di
erent forms
of output �PostScript� PBM� PPM�� The tool is
available via anonymous ftp at ftp�cs�uni�sb�de
��
����������� in the directory �pub�graphics�vcg�

References

�AAS��� Alt� M�� A�mann� U� Someren� H� Cosy
Compiler Phase Embedding with the
CoSy Compiler Model�
in Fritzson� P�A�� Compiler Construc�
tion� �th International Conference� CC
���� Proceedings� Lecture Notes in
Computer Science ���� pp� ������
�
Springer Verlag ����

�BET�
� Battista� Guiseppe Di� Eades� Pe�
ter� Tamassia� Roberto� Algorithms for
Drawing Graphs�
An Annotated Bibliography� available
via ftp from wilma�cs�brown�edu� �le
�pub�gdbiblio�tex ���

a previous version was Eades� Pe�
ter� Tamassia� Roberto� Algorithms for
Drawing Graphs� An Annotated Bib�
liography� technical report CS����	��
Brown University� Department of Com�
puter Science� Providence RI� Oct�
����

�BeOt��� Bentley� Jon L�� Ottmann� Thomas A��
Algorithms for Reporting and Count�
ing Geometric Intersections� in IEEE

Transactions on Computers� Vol� C ���
No� �� pp� ��
����� ����

�Bra�	� Brandenburg� F�J�� Nice Drawings of
Graphs are Computationally Hard� in
Visualization in Human Computer In�
teraction� Lecture Notes in Computer
Science �
�� pp� ����� Springer Verlag
���	

�ChTa��� Cheriton� D�� Tarjan� R�E�� Finding
Minimum Spanning Trees� in SIAM
Journal of Computing �� pp� ��������
����

�EaWo��� Eades� P�� Wormald N�� The me�
dian heuristic for drawing ��layers net�
works� technical report ��� Depart�
ment of Computer Science� University
of Queensland� ����

�EMKW��� Eades� P�� McKay B�� Wormald N�� On
an edge crossing problem� in Proc� �th
Australian Computer Science Conf��
pp�
���

�� ����

�FrWe�
� Fr�ohlich� Michael� Werner�
Mattias� Das interaktive Graph Visu�
alisierungssytem daVinci V���� techni�
cal report �in German�� University of
Bremen� Germany� Fachbereich Math�
ematik und Informatik

�FrRe��� Fruchterman� T�M�J�� Reingold� E�M��
Graph drawing by forcedirected place�
ment� in Software � Practice and Ex�
perience� Vol� ��� pp� ���������� ����

�GaJo�
� Garey� M�R�� Johnson� D�S�� Cross�
ing Number is NP�complete� in SIAM
Journal of Algebraic and Discrete
Methods� Vol� �� No�
� pp�
���
���
���

�GKNV�
� Gansner� Emden R�� Koutso�os� Eleft�
herios� North� Stephen C�� Vo� Kiem�
Phong� A Technique for Drawing Di�
rected Graphs� in IEEE Transactions
on Software Engineering� Vol� ��� No�

� pp� �����
	� March� ���

�GNV��� Gansner� Emden R�� North� Stephen
C�� Vo� Kiem�Phong� DAG � A pro�
gram that draws directed graphs� in
Software � Practice and Experience�
Vol� ��� No� �� pp� �	����	��� ����

��

Figure �
� Di
erent Forms

The times for parsing and rank assignment are
obviously independent of the selected layout al�
gorithms� The time for the additional �ne tuning
phase in�uences tr not very much� For trees� the
�ne tuning phase has no e
ect� However� the omis�
sion of the �ne tuning phase for real graphs leaves
more dummy nodes and more edge segments� such
that the layout is less readable�
It is not clear� whether the barycenter weight or

the median weight results in better layouts� For
the trees� the quality and speed of both methods
is equal� they remove all crossings and result in
nearly the same layout� For the graphs� the median
weight removes more crossings in � cases� while the
barycenter weight is better in � cases� In � cases�

crossing reduction by barycentering is considerably
faster �tc in g�
 Bft� Bnt� g�� Bnt� g�� Bft� g�� Bft��
in � other cases� the calculation of median weights
is faster �g�� Mft� Mnt� g�� Mft� g�� Mft�� As we
see for graph �� graph � and graph �� the time for
the calculation of the median weight increases much
more depending on the degree of nodes� because all
adjacent nodes of v must be sorted in order to cal�
culate the median value of a node v� Thus barycen�
tering has advantages if the average degree of nodes
is large�
Depending on the selected weights for crossing

reduction� the times for the further processing of
the graphs may di
er� Typically� barycentering re�
sults in a more symmetrically ordering of nodes
within the levels� Thus� the pendulum method
needs sometimes much more time to create a bal�
anced layout after using the median weight �see txy
in g�� Bnt�Mnt� g�� Bft�Mft� g��� g����
The times tdp and tds to draw the graph depend

on the part of the graph that is initially visible in
the window� because for e�ciency� only this part is
drawn� The speed of polygon drawings is reason�
able� while splines need a lot of times due to very
suboptimal routines for drawing spline curves� As
consequence� splines are only usable for very small
graphs� Further� all edges of trees are straight� such
that no splines need to be drawn� thus tdp � tds
holds for these cases�
As we see in graph �� � and � and tree �� � and

�� the maximal size of a level and the number of
edges in�uence tc and txy very much� The reduc�
tion of crossings and the optimal placement of the
nodes are the bottleneck during the layout� Thus�
the VCG tool has options to control the maximal
number of iterations during these phases� such that
it is possible to create an unbalanced layout with
very much crossings in very fast time� Using this
feature� large and complex graphs can be visual�
ized in few seconds �e�g� graph � in �	 seconds�� and
in such situations� the aesthetic quality is of minor
interest as long as the graph can be inspected by
following edges and centering nodes�

�� Conclusion

VCG is a tool that allows to visualize complex
graphs in a compact way and in good performance�
It can deal with many di
erent kind of graphs in�
cluding pointer networks of structs� Thus� it is very
well appropriate to help on debugging data struc�
tures� It allows to fold parts of the graph� and to
in�uence the layout to a large degree� We have de�
scribed the layout algorithms�which are rather sim�

�	

Example Alg� tp tr tc txy te tdp tds thand n e l m c

Graph � Bft ���� ���� ���� ���� ���� ���� ���� ��� �� ��� �	 �� ��
Mft ���� ���� ���� ���� ���� ���� ���� ��� �� ��� �	 �� �

Bnt ���
 ���� ���� ���� ���� ���� ���� ��� ��	 �	� �	 �� ��
Mnt ���
 ���� ���� ���� ���� ���� ���� 	�� ��	 �	� �	 �� ��

Graph � Bft ���	 ���� 	��
 ���� ���� ���	 ���� ��� ��
 ��� 		 �	 �	�
Mft ���	 ���� ���
 ���	 ���	 ���� ���� ���� ��
 ��� 		 �	 ���
Bnt ���	 ���� 	�	� ���� ���	 ���� ���� ��� ��� ���	 		 �� ���
Mnt ���� ���� ���� ���
 ���� ���� ���� ��� ��� ���	 		 �� ���

Graph 	 Bft ���� ���� ���� ���� ���� ���� ���� 	�� ��� ��
 �� �� �	
Mft ���� ���� ��	� ���� ���� ��	� 	��	 ��� ��� ��
 �� �� �

Bnt ���� ���� ��	� ��		 ���� ���� 	��� 	�� ��� ��� �� �� �	
Mnt ���� ���� ���� ���� ���	 ���� 	�	� 	�� ��� ��� �� ��
�

Graph � Bft ���� ���� ����� ���	 ��	� ��	� ����	 ����� ���
 �
�� �� �		 �����
Mft ���� ����
��� ����
��� ���� ����� ����� ���
 �
�� �� �		 ��
��
Bnt ���� ���� ��
�� 	��� ���� ��	� ������ ��
�� ���� ���� �� 	�� ����	
Mnt ���� ���� ����� ���
 ���� ���� ������ ����� ���� ���� �� 	�� �����

Graph � Bft ���� ���
 ���� ��	� ���� ���� ���� ���� ���� �		� �� �� ��
�
Mft ���� ���
 ���� ���� ���� ���� �
�
 ���� ���� �		� �� �� �

�

Graph � Bft ���� ���� ���� 	��� ���� ��	� ���� ���� ���� ���� �	 ��� 	
��
Mft ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���� �	 ��� 	���

Graph � Bft ���� ���� ���� ���� ���� ��	� ����� ���� ���� ���� �� ��� �	��
Mft ���� ���� 	��� ���� ���� ���� �	��� ���� ���� ���� �� ��� ��
�

Tree � Bft ���	 ���� ���� 	��� ���� ���� ���� ��� ��� ��	 	� 	
 �
Mft ���� ���� ���� 	��� ���	 ���� ���� ��� ��� ��	 	� 	
 �

Tree � Bft ���� ���	 ���� ���
 ���� ���� ���� ���� ���	 ���� �	� �� �
Mft ���
 ���� ���� ���� ���� ���� ���� ���� ���	 ���� �	� �� �

Tree 	 Bft ���� ���� ���� ��
� ���� ���� ���� ��� ���� ���� �� ���� �
Mft ���� ���� ���	 ��
� ���� ���	 ���� ��� ���� ���� �� ���� �

Tree � Bft ��	
 ���� ���� 	��� ���� ���� ���� �	�� ���� ���� �� ���
 �
Mft ��		 ���
 ���� 	��� ���� ���	 ���� �	�� ���� ���� �� ���
 �

Tree � Bft ���� ���� ��	� 	�
� ���� ���� ���� ���� 	�
� 	���
 ��
� �
Mft ���� ���� ��	� 	�
	 ���	 ���� ���� ���� 	�
� 	���
 ��
� �

Tree � Bft ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���� � ��� �
Mft ���� ���� ���	 ���� ���	 ���	 ���� ���� ���� ���� � ��� �

Table �� Statistics
The standard method for rank assignment is depth �rst search� The layout algorithm Bft and Mft have the

additional �ne tuning phase� while Bnt and Mnt ommit this phase� Bft and Bnt use the barycenter weight for

crossing reduction� while Mft and Mnt use the median weight�

tp is the time for parsing �and folding�� tr is the time for the creation of a proper hierarchy� tc is the time for

the reduction of crossings� txy is the time for the assignment of coordinates� te is the time for the calculation of

edge bendings� tdp is the time for the drawing� Edges are represented as polygon segments� tds is the time for

the additional calculation of all splines and their drawing� All these times are the sum of user time and system

time� measured by the computer�

The complete runtime is either the sum TP � tp � tr � tc � txy � te � tdp� if polygon segments are used� or

TS � tp � tr � tc � txy � te � tds� if splines are used� To compare with� thand is the real time TP we had to wait

until the graph was laid out and drawn� It is measured by hand� All times are measured in seconds�

n is the number of nodes laid out� including real nodes and dummy nodes� e is the number of segments to

represent the edges� l is the number of levels� and m is the maximal number of nodes within a level� Finally� c is

the number of crossings in the layout�

� Graph
 is an intermediate representation of a
program in the Compare compilation system
��� nodes� �� edges��

� Graph � is an intermediate representation of a
larger program ���� nodes� �	� edges��

� Graph �� graph � and graph � are complete
graphs� i�e� all nodes are connected pairwise�
Graph � consists of �	 nodes and ��	 edges�
graph � of �
 nodes and ��
 edges� and graph
� of �� nodes and
�� edges�

� Tree � and tree � are syntax trees with at�
tribute annotations� Tree � consists of ���

nodes and ��
 edges� and tree � of ���
 nodes
and ���� edges�

� Tree
 is a binary tree of �� levels� �	�� nodes�
�	�� edges�

� Tree � is a binary tree of �� levels� �	�� nodes�
�	�� edges�

� Tree � is a ternary tree of � levels�
��	 nodes�

��� edges�

� Tree � is a variant of a ��ary tree with many
neighbor nodes� ���� nodes and ���� edges�

��

Starting triangles at bendpoints Corrected triangles Spline drawing

Figure �	� Spline calculation

be treated as above� After the positioning of the
nodes� the anchor dummy node v is replaced by
edge segments that connect s with the starting
points of the edges on v� i�e� when drawing� the
anchor dummy nodes are invisible� and their image
is a sequence of edge segments�

� Appearance of Objects

Further possibilities to in�uence the appearance of
objects are shown in �gure �
 which visualizes the
dependences of shell programs �from �GKNV�
���
Edges may be solid� dotted or dashed and may have
di
erent colors and sizes� The shape of a node may
be a box� a rhomb� a triangle or an ellipse� It is
possible to specify their rank and order within the
levels� This allows to place the shells at the same
rank as their birth dates� and to place the time axis
at the left side of the graph� To avoid that the com�
ponents of the graph are layouted separately� the
parts of the graph are connected by some invisible
edges� Invisible edges� as all other edges� in�uence
the positions of the nodes as they would pull their
adjacent nodes together� To avoid this e
ect for the
invisible edges� we set the priority of the invisible
edges to zero and the priority of the visible edges
to �		� Finally� edges are drawn as splines�

The label of a node may be too small to contain
all the informationneeded for the node� In this case�
it is possible to specify text �elds that are only
shown on demand� A variant of this method is very

useful� if the graph is scaled so much that the text
label is unreadable� By selecting a node� its label
and its additional text �elds are shown in a readable
size�
The VCG tool is designed as an auxiliary tool to

support debugging of data structures� In a compila�
tion environment� the program to be inspected may
produce a sequence of graphs that must be visual�
ized� Thus� an animation interface is integrated into
the VCG tool� The VCG tool and the program run
concurrently� The program continuously produces
graph speci�cations into a �le while the VCG tool
visualizes in parallel� In order to detect when the
new instance of the graph is produced� the commu�
nication is done by signals and time stamps of the
�le�

� Experiences and Statistics

Table � shows the performance of the di
erent
phases of the VCG tool� All measurements are done
on a Sun Sparc �	�
	 with
� MB memory and
X��R�� �A SunView version exists� too��
The examples are�

� Graph � is the visualization of a LR deter�
ministic automaton produced by the TrafoLa
parser generator �see �HeSa�
��� It consists of
�� nodes and �� edges�

� Graph � is a larger LR deterministic automa�
ton ��
� nodes� ��� edges��

��

level i � �

level ib
b
b
b
b
b
b
bb

�
�
�
�
��

without bendings

level i� �

level i
aaaaaaaaa

�
�
�
�
��

with optimal bendings

level i� �

level i

XXXXXXXXXX
�
��

with extreme bendings

Figure ��� Situations without and with edge bendings

point� As simpli�cation� we assume b�c� such that
we have
 control points that form a triangle that
completely encloses the spline� We now compute
the spline control points by looking for appropriate
triangles at the bendpoints of the edge represent�
ing polygon� If these triangles do not overlap nodes�
dummy nodes or other bendpoints� the spline lines
do not cross nodes or other spline lines� except the
crossings existed already with polygon segments�
The middle control point is obviously the bend�
point itself� and the gradients at the start and end
of the spline are determined by the adjacent poly�
gon segments� Thus� we start with control points
on the middle of the adjacent polygon segments
such that an isoscele triangle is produced� and re�
duce the size of this triangle until all nodes and
bendpoints are outside the triangle� Then� we draw
the spline inside the triangle ��gure �	�� Because
the spline is enclosed by the triangle whenever the
control points b and c are on the sceles of the tri�
angle� we can in�uence the sharpness of the curve
bendings by correcting the control points�
Most important for the e�ciency of this compu�

tation is the fact� that each bendpoint of a polygon
segment belongs to exactly one level� Either the
bendpoint is produced by a dummy node of that
level� or it is a bendpoint of a vertical edge segment
within this level� Thus� in order to check a triangle�
only the nodes and bendpoints of the same level
as the middle control point of the triangle must be
inspected� Because the nodes within the levels are
already sorted� normally a very small number of
nodes which potentially overlaps the triangle must
be checked�

� Layout of Anchored Nodes

The layout of a proper hierarchy is appropriate� if
edges are anchored at the top or bottom of the
nodes� because the edges are split into polygon
segments pointing downwards� Upward edges are

marked by drawing the arrowhead at the upper�
most beginning of the polygons� Edges with anchors
left� right and line i must be converted before
crossing reduction�

� � � �

Figure ��� Chains of neighbor nodes

The VCG tool restricts each node to have at
most one neighbor node at the left and at the right
side� which implies that each node has at most one
edge anchored left and one edge anchored right�
Thus� the nodes connected by such edges form a
linear chain ��gure ���� These chains are fused into
one node before the crossing reduction� because
this works only if the hierarchy is proper� Before
the positioning of nodes� the chains are expanded
again� As the result� the nodes of the chains are re�
ally neighbored at the same level and the left�right
edges can be drawn as short straight edges�

�

���
anchor dummy

nodes

AAJJ
S
SS

���
corresponding

polygon segments

Figure ��� Edges anchored line i

Now� Edges anchored line i can be converted
into an edge anchored right� We add an �an�
chor dummy node� v for each node s with such
edges and replace the edges �s� t� line i� p� c�
by edges �v� t� unspecified� p� c� and one edge
�s� v� right� p� c� ��gure ���� This situation now can

��

right than to the left� the movements to the right
should be done �rst�

In the pendulum method� neighbored node may
in�uence each other� while the rubber band method
ignores these in�uences� A combined method is also
possible� The weights W��v� are used to create re�
gions� which must be fused according to the same
criteria of the pendulum method� and all nodes of
a region are moved by the same amount� The re�
sult is a balanced layout that also forces straight
edges� However� in our experience� this combined
method is much slower than the sequence of two
di
erent methods� The reason is that the weights
W��v� tend to be globally balanced while there are
only small regions in the layout where Force�v� is
not balanced� This imbalance must often be prop�
agated over all nodes to get a complete balanced
layout� i�e� in order to balance the local region�
the whole layout must be changed� The pendulum
method� as described� quickly forces parent nodes
to be centered to children nodes� because an im�
balance of the weights Dpred and Dsucc that are
de�ned only in the predecessor or the successor di�
rection is more probable� Thus� the initial layout
changes much more if the weights Dpred and Dsucc

are used� and hence� the propagation of imbalances
of regions succeeds faster and results faster in a
complete balancement�

� Layout of Edges

Most graph layout tools do a good job when cal�
culating the positions of nodes� but oversimplify the
positioning of edges� Edge segments are drawn as
straight lines from the border of the source node to
the border of the target node� In fact� this results
in readable pictures of the graph� if all nodes have
the same shape and size� because edges are already
split into edge segments and dummy nodes to form
a proper hierarchy� thus it is not probably that an
edge overlaps a node� because the dummy nodes
and normal nodes do not overlap�

In our applications of the VCG tool� nodes very
often have di
erent sizes� Solving the layout prob�
lem ��no edge goes through a visible node�� is here
much more complex� Edge segments must be bent
to get around the large nodes� This sequence of
bendings can be drawn by straight polygon seg�
ments� or optionally as splines� In �GKNV�
�� a
good� but complex spline routine is described that
solves this problem� For e�ciency reasons� our ap�
proach is much simpler�

��� Bendings of Edges

Even in a proper hierarchy� straight edges would be
drawn through large neighbored nodes� if they start
at very small nodes ��gure ��� left�� To avoid this�
we allow each edge to be bent at two points ��g�
ure ��� middle�� In consequence� an original edge�
which is represented by a sequence of n small edges
in the proper hierarchy� may be bent at each of its
n � � dummy nodes and additionally at �n points
within the edges� This worst case of
n � � bend�
ings occurs extremely seldom� because the previous
layout phases force straight lines�
Since the nodes are distributed into layers and

there is a minimum vertical space between the
largest nodes of the layers� a correct layout would
be to bend all edges such that they have vertical
segments of the size of the largest node of the layer
��gure ��� right�� In this case� all nonvertical seg�
ments start at the same y coordinate and stop at
the same y coordinate� They do not in�uence each
other� i�e� they are easy to distinguish� but poten�
tially to much bendings are produced� The graph
looks much better if only the bendings are produced
that are really necessary ��gure ��� middle�� How�
ever� a bending of an edge may cause a new crossing
with a neighbored� straight edge� To avoid this� an
edge is also bent if it is drawn through the verti�
cal segment of a bent edge� Thus� the calculation of
bendings is an iterative algorithm that looks for op�
timal bendings between the two extremes �no edge
is bent� and �all edges are maximally bent�� To test
the overlapping or additional crossings of an edge
between level i and i �� only the nodes at these
levels and the edges between these levels must be
inspected�

while �e � E that overlaps a node
or crosses a vertical segment of an edge e� do
enlarge the vertical segments of e�

od

��� Computing Splines

Finally� edges can be drawn as sequence of straight
line segments between the bendpoints� This is ap�
propriate for the interactive use of the tool where
the picture must be refreshed very fast� If the pic�
ture of a graph must be printed on paper in high
quality� it is worth to spend additional time to
piecewise calculate Bezier splines to get smooth
transitions between the edge segments�
Cubic Bezier splines have � control points a� b� c

and d� such that a is the start point of the spline� d
is the end point of the spline and the segments �a�b�
and �c�d� give the gradient at the start and end

��

��� repeat

��� old sum� Dsum�
�
� traverse the levels top down and for level i do
��� let v�� � � � � vn be the ordered sequence of the nodes of level i�
��� partition the nodes into a ordered sequence of regions R�� � � � � Rm with
��� Rj is a continuous subsequence fvij � � � � � vnjg
��� such that for all nodes v � Rj the value Dpred�v� has the same sign
��� and all subsequent nodes vk� vk�� � Rj are touching�
��� repeat

��	� for subsequent� touching regions Rk� Rk�� do

���� if Dpred�Rk� � 	 and Dpred�Rk��� � 	 then
���� replace Rk and Rk�� by the combined region R�

k � Rk �Rk���
��
� else if Dpred�Rk��� � 	 and Dpred�Rk� � Dpred�Rk��� then
���� replace Rk and Rk�� by the combined region R�

k � Rk �Rk���
���� else if Dpred�Rk� � 	 and Dpred�Rk��� � Dpred�Rk� then
���� replace Rk and Rk�� by the combined region R�

k � Rk �Rk���
���� �

���� od

���� until the sequence of regions does not change anymore�
��	� for each region Rk do

���� if Dpred�Rk� � 	 then
���� move all nodes of Rk to the right by
��
� minfbDpred�Rk�c� space between Rk and Rk��g units�
���� else if Dpred�Rk� � 	 then
���� move all nodes of Rk to the left by
���� minfb�Dpred�Rk�c� space between Rk�� and Rkg units�
���� �

���� od

���� od

�
	� new sum� Dsum�
�
�� until old sum� new sum�

Figure ��� Pendulum Method

only moved to a new x coordinate if there is space
enough around the node� Hence� there is no ten�
dency to oscillate�

De�nition � The force weight of a node v is de�
�ned by

W��v� �
W	�v�P

v�w�a�p�c��E p
P

w�v�a�p�c��E p

The rubber band method is a �ne tuning phase
that optimizes the horizontal positions of nodes
similar to the �ne tuning phase at the rank assign�
ment for the vertical positions� Here� a new posi�
tion of a node is feasible if the node does not over�
lap with other nodes� and the order of the nodes
within the levels has not changed� Since the reduc�
tion ofW��v� for each node v implies the reduction
of Dsum� we can use this value again as stop crite�
rion�

while �v � V with W��v� � threshold do
old sum� Dsum�
T � x�v� bW��v�c�
if feasible�T� v� then xneu�v� � T � �
new sum� Dsum�
if old sum�new sum then break� �

od

��� Remarks about the Speed

Note that in both methods the updating of Dsum

can be done incrementally during the calculation
of new positions of nodes to improve the e�ciency�
Further� the order of the nodes that are selected
for repositioning in�uences the speed� A movement
of a node may prevent other nodes to be moved�
because their surrounding space may disappear� As
general hint� nodes should be preferred that must
move very much� If more nodes tend to move to the

��

� �

�
�

�
	

�

�
	

�

�
� de�ection

�
�

�
��

�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

�
	

�

before the movement

� �

�

�
�

�
��

�
�

�
��

�
�

	
	
	
	

D
D
D
D

D
D
D
D

T
T
T
T

�
�

�
�

after the movement

Figure ��� Region combinations

consists of both ��gure ���� If we have the converse
case� both regions are drawn asunder� they can�
not be combined� Two touching regions that are
pulled into the same direction can be combined� if
the force of the one region is larger than the force
of the other region such that the �rst region in�u�
ences the second region ��gure ���� If two regions
are separated by horizontal space� they are inde�
pendent and cannot be combined� However� they
may move during the pendulum steps such that
the separating space disappears� then they touch
together� i�e� after the movement they may create a
new� combined region� Thus� the pendulummethod
is an iterative process� we continuously traverse all
levels� for each level� the regions are calculated and
all nodes of a region are moved by the same hori�
zontal o
set according to the de�ection value of the
region� Starting from an initial assignment of a x
coordinate x�v� to each node v� this is done until
the layout is balanced�

De�nition � Let �V�E� be a proper n�level hier�
archy	 The predecessor de�ection of an edge
e � �s� t� a� p� c� is de�ned as

Dpred�e� � p �x�s� � x�t��

Mathematically� the de
ection of edges are variants
of the ��norm	
The predecessor de
ection of a node v is de�ned as

Dpred�v� �

P

w�v�a�p�c��E Dpred��w� v� a� p� c��P

w�v�a�p�c��E p

Analogously� the predecessor de
ection of a region
fv�� � � � � vng is

Dpred�fv�� � � � � vng� �

P
i�f������ngDpred�vi�

n

The pendulum method is sketched in �gure ��
using the predecessor de�ections� Nodes v� �
�w�� h�� and v� � �w�� h�� are touching if they
are separated by min dist� they are detected by
x�v�� w� a min dist � x�v��� Regions R� and R�

are touching� if the last node of R� touches the �rst
node of R�� After a top down traversal that bal�
ances the nodes� it is also possible to add a bottom
up traversal using successor de�ections Dsucc that
can be de�ned analogously� Physically� this corre�
sponds to a rotation of the pendulum by ��	 degree
and �xing the former lowermost balls on the ceil�
ing� Top down traversals and bottom up traversals
can be performed alternating�
Furthermore� as in the reality� a pendulum may

start to oscillate� Even if this is very seldom� it is
important to have a good decision function that
stops the oscillation� Here� we use a weight that
represents the sum of all forces on all nodes�

Dsum �
X

v�V

W	�v�P

v�w�a�p�c��E p

P

w�v�a�p�c��E p

where

W	�v� �
X

v�w�a�p�c��E

p �x�w�� x�v��

X

w�v�a�p�c��E

p �x�w�� x�v��

The value Dsum decreases with a high probabil�
ity� because each step of a traversal reduces one
summand very much while other summands may
increase only a little bit� If the pendulum starts to
oscillate� Dsum does not decrease anymore� in this
case the amount of increasing summands is equal
or larger than the amount of decreasing summands�
Then� the algorithm stops�

��� The Rubber Band Method

The pendulum method creates a balanced layout
where all nodes have enough space to move to the
left or to the right� However� the pendulum method
does not force straight edges� if they are split into
sequences of polygon segments and dummy nodes�
because it analyzes only the predecessor edges of
a node� or the successor edges of a node sepa�
rately� When there is enough space between the
nodes� it is appropriate to apply the rubber band
method� as rubber bands� the predecessor and suc�
cessor edges pull on the node at the same time such
that the node is centered in order to eliminate the
forces of di
erent directions� Thus� dummy nodes�
which have exactly one predecessor and one succes�
sor edge of the same priority� are forced to be posi�
tioned such that the gradient of both edges becomes
equal� the combination of both edges appears as a
straight line� In the rubber band method� neigh�
bored nodes do not in�uence each other� A node is

��

same level� whether the reversion of both nodes
would remove crossings� This reduces the number
of crossings again very much �see the statistics in
�GNV�����

� Calculation of Coordinates

Even if after the crossing reduction� it is clear in
which horizontal and vertical order the nodes must
appear� it is still a di�cult task to �nd �x� y� coor�
dinates for them� The aesthetic criterion �balance�
ment� require that a node v is placed in the mid�
dle of all adjacent nodes with edges to v� Good
result come from the spring embedder or rubber
band network algorithms� for instance �KaKa���
and �FrRe���� The positions of nodes is determined
by the forces imposed upon the nodes� e�g� because
edges pull on the nodes similar to springs or rub�
ber bands according to their priorities� While these
algorithms try to place all nodes directly on the
plane� which often results in a nonhierarchical lay�
out and needs a long runtime� we use a similar
method to improve the existing hierarchical layout�
Because in our case� the ordering of the nodes is al�
ready �xed� the situation is much simpler� thus the
speed is reasonable�
If all edges pull on the nodes without constraints�

the layout collapses to one point� To avoid this�
a minimal distance min dist between the nodes is
necessary� and the positions of the outermost nodes
of the rubber band must be �xed not too close to�
gether such that there is some freedom to place the
nodes� Therefore� a prepass is necessary that cre�
ates a good initial layout from which the rubber
band method starts� We use a pendulum method
as prepass�

��� The Pendulum Method

First� we assign to each node v the y coordinate
y�v� such that the node is vertically centered at a
virtual horizontal line that corresponds to a level
��gure ���� The vertical distance of the levels is
selected such that the highest nodes of two adjacent
levels are still separated by some vertical space�
The idea of the pendulum method� the nodes are

the balls and the edges are the strings� If the up�
permost balls are �xed on a ceiling� the balls on the
strings swing to a balanced layout driven by their
gravity� e�g� a ball of a level i � that is �xed by
strings to two balls at level i will swing to a hori�
zontal position just in the middle of these two balls�
because the gravity imposes a horizontal force upon
the ball proportional to the angle of the strings� Be�

level i �

level i

vertical distance

Figure ��� Vertical positioning at the levels

cause the vertical position of the nodes is already
�xed� the pendulum movement of the balls is sim�
pli�ed to horizontal movements� and the angle force
is approximated by the horizontal de�ection of the
edges adjacent to a node �ball�� The de�ection of
a ball is positive if it is pulled to the right by the
de�ection of the strings it hangs on� and negative
if it is pulled to the left�

�

�
�

�
�

�

�
�

�
�� de�ection

�
�

�
�

��

�
�

�
�

	
	
	
	

D
D
D
D

�

before the movement

�

�
	

�

�
�

�
�

�
�	

�
�

�
�

�
�
�
�

L
L
L
L

after the movement

Figure ��� Region movements

� �

�
��

�
�

�
�

�
�

�
�	

�
�� de�ection

L
L
L
L

l
l
l
ll

�
�

�
��

�
�

�
�

�
��

��������
�
�

�
�
�
�

�
�

�
�

�
�	

before the movement

� �

�
�

�
�

�
	

�
�	

�
��

�
��

b
b
b
b
b
bb

l
l
l
ll

�
�

�
�

�
�

�
��

�
�

�
�

�
��
�
�

�
�

after the movement

Figure ��� Region combinations

If several neighbored balls hang touching on the
same ball� they in�uence each other� they cannot
be placed all at the same point such that the de�
�ection of each ball becomes zero� thus they move
into a position such that the summary de�ection of
all these balls is zero� even if some balls still have a
positive or negative de�ection ��gure ���� We call
the set of nodes in�uencing each other a region� We
may have two touching regions whose left region is
pulled to the right and whose right region is pulled
to the left� In this case� these regions start to in�u�
ence each other� i�e� they create a new region that

�

���� repeat
���� if the nodes vi� � � � � vi�k of some level j of new layout have the same weightpred then
���� rotate�vi� � � � � vi�k��
���� traverse the levels starting from j top down and for each adjacent pair of levels do
���� resort the lower level of new layout using weightpred�
�
	� od

�
�� traverse the levels bottom up and for each adjacent pair of levels do
�
�� resort the lower level of new layout using weightsucc�
�

� od

�
�� �

�
�� if crossings�new layout��old nr crossings then
�
�� old layout�new layout� old nr crossings�crossings�new layout�� have alternative�no�
�
�� else if have alternative then
�
�� new layout�old layout� have alternative�no�
�
�� if the nodes vi� � � � � vi�k of some level j of new layout have the same weightpred then
��	� rotate�vi� � � � � vi�k��
���� traverse the levels starting from j top down and for each adjacent pair of levels do
���� resort the lower level of new layout using weightpred�
��
� od

���� traverse the levels bottom up and for each adjacent pair of levels do
���� resort the lower level of new layout using weightsucc�
���� od

���� �

���� if crossings�new layout��old nr crossings then
���� old layout�new layout� old nr crossings�crossings�new layout�� have alternative�no�
��	� else if crossings�new layout��old nr crossings then
���� new layout�old layout� have alternative�no�
���� �

��
� else if crossings�new layout��old nr crossings then have alternative�yes�
���� else new layout�old layout� have alternative�no�
���� �

���� � � � similar for the inverse traversal direction � � �
���� until old layout has not changed anymore�

Figure �
� Reduction of Crossings� Part �

crossings� This has further the advantage that if
both layouts have equal crossings� we keep the old
layout as a second alternative �backtrack point� for
the case that further traversals on the new layout
make it worse� This innovation improves the layout�
because the iterations do not stop as long as a back�
track layout is available where we can start looking
for better layout� At a third place� it may happen
that nodes have exactly the same weight� Since we
use a randomized quicksort �Meh��a� to sort the
levels� the resulting positions of these nodes are
arbitrary and not necessarily optimal� To improve
this situation� we rotate these nodes and check after
a rotation whether a traversal of the levels starting
from this level results in a better layout� The re�
sulting algorithm is sketched in �gures �� and �
�

The speed of the crossing reduction algorithmde�
pends heavily on the implementationof the crossing
calculation algorithm and on the implementation of
quicksort� Since after some initial steps� the lists of
nodes at the levels are presorted to a large degree�
a randomized quicksort must be used� The lists of
nodes are temporary stored into arrays� which are
sorted and stored back into the lists� Further im�
provements are the detection that no crossings are
anymore there in order to stop the algorithm� and
the detection that a level has not changed when
resorting it in order to stop the traversals�

Finally in this phase� the neighbor nodes that
were fused before this phase are expanded again�
At last� a local optimization phase is added that
checks for each neighbored pair of nodes of the

��

��� have alternative�no�
��� new layout�old layout�
�
� old nr crossings�crossings�old layout��
��� repeat

��� traverse the levels top down and for each adjacent pair of levels do
��� resort the lower level of new layout using weightpred�
��� od

��� if crossings�new layout��old nr crossings then
��� old layout�new layout� old nr crossings�crossings�new layout�� have alternative�no�
��	� else if have alternative then
���� new layout�old layout� have alternative�no�
���� traverse the levels top down and for each adjacent pair of levels do

��
� resort the lower level of new layout using weightpred�
���� od

���� if crossings�new layout��old nr crossings then
���� old layout�new layout� old nr crossings�crossings�new layout�� have alternative�no�
���� else if crossings�new layout��old nr crossings then
���� new layout�old layout� have alternative�no�
���� �

��	� else if crossings�new layout��old nr crossings then have alternative�yes�
���� else new layout�old layout� have alternative�no�
���� �

��
� � � � similar for bottom up traversals � � �
���� until old layout has not changed anymore�

Figure ��� Reduction of Crossings� Part �

where v�� � � � � vn is the sequence of predeces�
sors of v ordered according Pos� If n is odd�
then Medianpred�v� is Pos�vd n

�
e�� In �STM���� the

barycenter weight is proposed which is the arith�
metic middle value of the positions of the predeces�
sors�

Barypred�v� �

P
vi�predecessor
v�

Pos�vi�

jpredecessor�v�j

Both weights are appropriate to �nd orderings
of the nodes with few crossings� While the me�
dian weight is theoretical well analyzed �EaWo����
barycentering happens to yield more symmetrical
layouts� It is unclear which weight is more appro�
priate � depending on the graphs� the one or the
other may be better � thus both weights are imple�
mented in the VCG tool� Furthermore� if we assume
the lower level to be �xed� we can also resort the
upper level using similar weights�

Mediansucc�v� �
Pos�vbn

�
c��� Pos�vd n

�
e�

�

where v�� � � � � vn is the sequence of successors of v
ordered according Pos and

Barysucc�v� �

P
vi�successor
v�

Pos�vi�

jsuccessor�v�j

The algorithm now works as follows �where weight
is Median or Bary��

traverse the levels top down and
for each adjacent pair of levels do
resort the lower level using weightpred

od

traverse the levels bottom up and
for each adjacent pair of levels do
resort the upper level using weightsucc

od

Note that the result of these traversals depends
mainly on the initial ordering at the �rst level� be�
cause the ordering of all other levels is inherited
from it� There are several inappropriate situations�
In the �rst place� the bottom up traversal resorts
the �rst level at the end� In this case� a new top
down traversal can improve the result further� such
that both traversals must be iterated until a �xed
point is reached� At the second place� a traversal
does not necessarily result in fewer crossings be�
cause of the usage of heuristical weights� Thus� after
each traversal� it must be checked� whether the new
layout is better than the old layout� We store the
old and the new layout in two bu
ers� and save the
new layout into the old bu
er only if it has fewer

��

�	� procedure calc crossings�leveli� leveli���
��� nr crossings� 	� size of UL� 	� size of LL� 	�
��� UL�empty� LL�empty�
�
� for w in leveli� leveli�� do last occurrence�w� �nil� od
��� for w alternating from leveli and leveli��� i	e	� in the order of Ord do
��� if Ord�w� is odd then
��� k� � 	� k� � 	� k	 � 	�
��� if last occurrence�w� 	�nil then
��� for v in UL from the start of UL to last occurrence�w� including in that order do
��� if v � w then

��	� k� � k� ��
���� k	 � k	 k��
���� delete v from UL�
��
� size of UL�size of UL���
���� else k� � k� ��
���� �

���� od

���� nr crossings�nr crossings k�
size of LL k	�
���� �

���� for all edges e with start point w in order according Ord of their end points do
��	� let w� � endpoint of e�
���� Remark� Note that Ord�w� �Ord�w���
���� Add w� at the end of LL�
��
� size of LL�size of LL ��
���� last occurrence�w�� �this new instance of w� in LL�
���� od

���� else Ord�w� is even
���� � � �symmetrically � � �
���� �

���� od

�
	� end

Figure ��� Calculation of Crossings

line ����� The challenge is to get the edges e starting
at w just in the order of their endpoints� but with�
out sorting the edges� This can be solved be sorting
the edges in advance� i�e� before line ���� When the
procedure starts� we traverse both levels according
to decreasing Ord� We start with empty auxiliary
adjacency list of the nodes� For each node w� we
add the edges �v� w� � � �� with target w at the begin�
ning of the auxiliary adjacency list of v� It follows
that edges with target node w of higher Ord�w� are
later in the �nal adjacency list of v� The creation of
the auxiliary adjacency lists needs O�n� n� e�
because the insertion at the beginning of an adja�
cency list can be performed in constant time� In
line ����� we use these auxiliary adjacency lists to
get the nodes in the right order� �

The number of crossings of the whole graph can
now be calculated by the sum of the crossings of
each adjacent pair of levels�

��� Reordering of Nodes

The reduction of crossings is done by resorting the
doubly linked linear lists of nodes that represent the
levels� The number of crossings between two levels
depends on the order of the nodes within both lev�
els� First� we assume� that the order of the upper
level is �xed� Each node v has an attribute Pos�v�
indicating its position within the levels� Now we try
to sort the lower level according to some weights�
As basic idea of the heuristics� a node of the lower
level must be placed anywhere in the middle of the
nodes of the upper level with edges to it� because
this implies that the edges go not too much cross� In
�EaWo��� and �GKNV�
�� the �interpolated� me�

dian weight is proposed to �nd the middle point
of nodes�

Medianpred�v� �
Pos�vbn

�
c��� Pos�vd n

�
e�

�

�	

level compared to the lower level� Thus we assume
that the horizontal positions of the nodes are alter�
nating� If we use a sweep line to traverse the levels
in horizontal direction� the sweep line touches alter�
nating a node from the upper level and one from
the lower level� The Number Ord�v� gives the hor�
izontal position of v� i�e� Ord�v� is odd for nodes
v at the upper level� and even for nodes on the
lower level� Edges are considered as directed from
the left to the right� i�e� we call v the start node
and w the end node of an edge between v and w� if
Ord�v� �Ord�w�� �This arti�cial direction of edges
is only to support the argumentation and has noth�
ing to do with the direction of the edges in the �nal
drawing�� In order to avoid to count crossings twice�
we inspect the crossings of an edge when the sweep
line touches its end point� If the end point w of an
edge e belongs to the upper level� then e is crossed
by all edges e� starting before w at the upper level
and ending after w at the lower level �situation ��
�gure �	�� Note that crossings of e with edges e�

that end before w are already counted� Further�
more� e is crossed by all edges starting before the
start point v of e at the lower level� and ending af�
ter w �situation ��� For the end points of edges e
at the lower level� the symmetrical case holds� No
other crossings can occur�

t
v
t t

w�

tv
�

tw

�
�
��

Q
Q

QQ

Sweep line

Situation ��

Ord�v�� �Ord�w� �Ord�w��

t
v�
t
v
t

t tw tw
�

�
��

��
��

��

Sweep line

Situation
�

Ord�v�� �Ord�v� �

Ord�w� �Ord�w��

Figure �	� Crossing situations

We must store the active edges� i�e� the edges
that start left to the sweep line� but end right to
the sweep line� Therefore� we use two doubly linked
lists UL and LL�UL contains the end nodes of edges
of the upper level and LL contains the end nodes of
edges of the lower level� Because a node may be end
point of several edges� it may occur several times
in these lists� The lists are sorted according to the
order of the start nodes� i�e� if w is before w� in UL�
then there is an edge with start node v and end
node w and another edge with start node v� and
end node w� and Ord�v� �Ord�v�� holds�
The calculation of crossings �see �gure ��� is done
in this way�

� Situation �� If w in UL is touched by the sweep

line� there are as many edges with endpoint w
as occurrences of w are in UL� All these edges
are crossed by all active edges with end points
at the lower level� which can easyly counted by
looking at the size of LL� Symmetrically for w
in LL�

� Situation �� For each occurrence of w in UL
exist an edge e� All nodes w� 	� w before this
instance if w in UL are endpoints of edges that
have started before the start point of e but end
after w� because otherwise� they would have
been removed from UL by becoming inactive�
Symmetrically for w in LL�

To check how often w is in UL� it is appropriate
to store the last occurrence of w in UL in a �eld
last occurrence� Then� we need not to traverse UL
completely� it is su�cient to traverse it from the
start to last occurrence�w���

Theorem � The number of crossings c between e
line segments starting at n� points at the upper level
and ending at n� points at the lower level can be
calculated in time O�n� n� e c�	

Proof� The correctness of the algorithm in �g�
ure �� follows from the previous discussion� Note
that in line ���� k� is the number of the occurrences
of w in UL� hence k�
size of LL is the number of
crossings produced by situation �� In line ���� k�
is the number of predecessors of the instance of w
in UL that is removed next� Thus� the number of
crossings produced by the corresponding edge with
endpoint w is k� according to situation �� k	 is the
sum of all crossings produced by situation � for
edges with endpoint w�
Because UL and LL are doubly linked lists� inser�
tion at the end of the list and deletion of an ele�
ment are performed in O���� The cost of line ���
� �
� is O�n� n��� Line ��� � ���� ����� and �����
� � �are executed n� n� times� All nodes together
are inserted into UL �or LL� resp�� e times� and
deleted e times� because UL and LL represent the
active edges� and no edge becomes active twice� and
at the end� no edge is active anymore� Thus� line
��	� � ��
� and ��	� � ���� are executed e times�
Line ���� performs the increment of k� and is ex�
ecuted for each crossing of situation �� Since there
is at least one instance of w in UL �because we
check that last occurrence�w� is not nil� thus at
least last occurrence�w� is in UL�� we are sure that
the value of k� is later added to k	� that is �nally
added to nr crossings� Thus� line ���� is executed
not more than c times�
It remains to take a look on the implementation of

�

a downward layout� or if it creates an unintended
horizontal edge to a node at the same level� The
following algorithm sketches the �ne tuning heuris�
tics� As result of this �ne tuning� all edges adjacent
to a node get a balanced length with respect to
their priorities�

while �v � V with W��v� � threshold do
T � R�v� bW��v�c�
if feasible�T� v� then Rneu�v� � T � �
if timeout then break� �

od

��� A n�Level Hierarchy

It is simpler to �nd the layout of the edges� if all
edges are directed downwards and no edge crosses
several levels� Thus� we build a proper hierarchy
�BET�
��War����

De�nition � A proper n ��level hierarchy is
a directed graph G � �V�E� which satis�es the fol�
lowing conditions�

� V is partitioned into n � disjoint subsets� i	e	�
V � V��V�� � � ��Vn� and Vi � fv jR�v� � ig	

� E is partitioned into n disjoint subsets� i	e	�
E � E� � E� � � � � � En��� and Ei � Vi �
Vi�� �A � P �C	

To construct a proper hierarchy fromG � �V�E��
upward edges are reversed� Of course� they are
marked such that arrowheads in the drawing will
show the original direction� Furthermore� edges
crossing several levels are split into small edges and
dummy nodes� Finally� for all edges �v� w� a� p� c�
holds R�v� � R�w� � �� The following algorithm
sketches the partitioning of edges�

procedure check edge �e�
let e � �v� w� a� p� c��
if R�v� � R�w� then

e� �reverse�e�� replace e by e��
check edge�e���

�

if R�v� � R�w� and v and
w can be neighbored then fusion�v� w��

�

if R�v� � R�w�� � or R�v� � R�w� and
v and w cannot be neighbored then
d �create dummy at level R�v� ��
replace e by e� � �v� d� a� p� c� and
e� � �d�w� � p� c� which are new edges�

check edge�e���
�

end

� Reduction of Crossings

The order of the nodes within a level determines the
edge crossings in the layout� and a good ordering is
one with few crossings� The problem of minimiza�
tion of edge crossings is NP�complete �EMKW����
thus we use a heuristics�

��� Calculation of Crossings

In �STM��� and �War���� a representation of a
proper n level hierarchy is proposed by using n� �
interconnection matrices of size jVij � jVi��j� The
representation of the levels is crucial� because in the
following� we often calculate information of a level�
Thus� we store each level Vi as a doubly linked lin�
ear list of nodes� and edges from Ei as predeces�
sor and successor adjacency lists� This has three
advantages� First� the interconnection matrix does
not easily allow multiple edges between two nodes�
which is possible in adjacency lists� and which oc�
curs in our applications often� Secondly� doubly
linked lists of nodes with adjacency lists require
only a space of O�jVij jVi��j jEij�� Thirdly� The
calculation of the number of crossings between two
levels is given in �STM��� by a nested sum over
the interconnection matrix� and thus needs time
O�jVij� jVi��j��� Instead� we use a sweep line algo�
rithm of the complexity O�jVij jVi��j jEij c�
where c is the number of crossings�
A similar plane sweep algorithm is described in

�BeOt���� however for the more general case of ar�
bitrary line segments in the plane with runtime
O��jEj c� logjEj�� But for the number of cross�
ings between two levels of nodes� the situation is
much simpler�

� The sequence of nodes in the doubly linked
lists forms already the horizontal ordering of
nodes� thus the line segments need not to be or�
dered� i�e� the lower bound !�jEj logjEj� given
in �PrSh��� for the more general case does not
hold here�

� Between two adjacent levels� all line segments
go from the upper to the lower level� Their
start and end points have the same vertical
positions� Thus� the sweep line need not to
be implemented by a dictionary �e�g� a bal�
anced tree� reporting vertical positions of line
segments� This allows to reduce the execution
time by the factor logjEj�

The number of crossings depends only on the or�
der of the nodes within the levels� it is independent
of the relative position of the nodes of the upper

�

edge be drawn" We de�ne as convention� that
an arbitrary node of the subgraph is the target
of the edge�

� If a �region fold� operation is performed be�
fore a �graph fold� operation� then it is unclear
which subgraph the region summary node be�
longs to� We solved this by the convention that
the summary node belongs to the same sub�
graph as an arbitrary one of the start nodes of
the region�

� If a folded region or subgraph contains a start
or end node of another �region fold� operation�
then the latter operation cannot be executed
correctly� In this case� we decide to inherits the
property of the summary node to be start or
end node from the nodes that are folded�

By these conventions� it is straightforward to cal�
culate a �at graph G � �V�E�� where V contains
only the visible nodes and E contains only the vis�
ible edges�

	 Partitioning of Nodes and

Edges

��� Rank Assignment

The �rst phase of the layout algorithm partitions
the visible nodes into levels� An integer rank R�v�
is calculated for each node v � V � All nodes with
the same rank form a level and are laid out on the
same vertical position� The ranks correspond to the
depth of the nodes in a spanning tree of the graph�

De�nition 	 Let G � �V�E� a
at� connected
graph	 A tree A � �V� T � with T
 E and jT j �
jV j � � is called spanning tree of G	 The rank
R�v� is the sum of the number of edges on a path
from a root node of A to v in A	

There are many possibilities to calculate the rank�

� Calculate a spanning tree by depth �rst search
or breadth �rst search� This has the time com�
plexity O�jV j jEj�� but it results in an arbi�
trary partition �Meh��b��

� Calculate a minimum cost spanning tree A �
�V� T �� i�e� with

P
e�T C�e� is minimal� where

C is the cost function on edges� Because the
edges of the spanning tree are later drawn be�
tween adjacent levels� these edges are rather
short� We de�ne C��s� t� a� p� c�� � ��p� which

implies that edges of high priority are prefer�
able part of the spanning tree� thus they are
preferable short� To improve this behavior� we
calculate the minimum cost spanning tree on
the undirected graph that results canonically
from the �at graph G� The complexity of this
algorithm is O�jEj logjV j� by reducing it to a
union �nd problem� �ChTa��� present a better
algorithm with complexity O�jEj loglogjV j��

� If the graph is acyclic� then we can use topo�
logical sorting to calculate the rank� R�v� is
set to maxfR�w� jw is predecessor of vg ��
This algorithm results in a downward directed
layout and needs time O�jV j jEj��

Because nodes of the same rank are laid out at
the same level� it is appropriate to give nodes the
same rank� if they are connected by edges anchored
on the left or right side� These nodes can be drawn
as neighbors such that the edge is a straight hori�
zontal line between them� Of course� this is done if
only one neighbor node at the left or right side ex�
ist� During the partitioning� neighbored nodes are
therefore fused into one node�

De�nition
 v and w are neighbor nodes if they
have the same rank R�w� � R�v� and there is an
edge �v� w� a� p� c� with a is left or right	

This rank assignment allows to give a �rst esti�
mate of the quality of the layout� Edges between ad�
jacent levels are approximately shorter than edges
between nonadjacent levels� In �GKNV�
�� an opti�
mal ranking is formulated as an integer program�

min
X

v�w�a�p�c��E

p �R�v� � R�w��

subject to R�v� � R�w� � 	 and is solved by a
network simplex algorithm� In the VCG tool� the
initial rank assignment is improved with respect to
the same cost function by a �ne tuning heuristics
using the following node weight�

W��v� �
W��v�P

w�v�a�p�c��E p
P

v�w�a�p�c��E p

where

W��v� �
X

v�w�a�p�c��E

p �R�w�� R�v��

X

w�v�a�p�c��E

p �R�w�� R�v��

A new rank of a node is not feasible� if it is neg�
ative� if it creates an unintended upward edge in

�

Figure �� The same syntax tree� type annotations
are hidden

Figure �� The same syntax tree� a subtree is folded

cent to these text lines �see �gure ��� As simpli��
cation� we allow to specify only the anchor points
unspecified �these edges are anchored at the top
or bottom of a node�� left� right �anchored any�
where at the left�right side� and line i which indi�
cates that it is anchored at the left or right side of
a node adjacent to the ith line of the node�s label�

De�nition � The layout problem of a graph
G � �V�E�w� h� and a sequence of opera�
tions �fold graph�� �hide class�� and �fold region�

Figure �� The same syntax tree� a region is folded

Figure �� Visualization of Structs by Anchor Points

is to assign coordinates �x�v�� y�v�� to all vis�
ible nodes v � V and a sequence of polygon
segments or Bezier splines with control points
�x��e�� y��e��� � � � � �xn�e�� yn�e�� to each visible edge
e � E� such that

� the visible nodes do not overlap�

� no edge goes through a visible node�

� each edge �s� t� a� p� c� starts at the correspond�
ing anchor point a�s� � �x��e�� y��e�� and end
at an arbitrary anchor point �xn�e�� yn�e�� of
t	

There are three technical di�culties in folding op�
erations�

� If an edge points to a subgraph but the sub�
graph is not folded� to which node should the

�

All edges have the same priority� The tree edges have the higher priority�

Figure �� A Tree with Additional Edges

Figure �� A syntax tree with types

The priority p of an edge �s� t� a� p� c� indicates
the edge�s importance� High priority numbers indi�
cate high importance� This allows to layout graphs
that are interwoven with some additional edges�
where we want to recognize the structure of the
base graph� For instance �gure � shows a tree
�thick edges� with some additional edges� Because
all edges have the same priority� the tree structure
is not recognizable on the left picture� By increas�
ing the priority of the thick edges� the tree structure

becomes visible on the right picture�

The anchor point a of an edge �s� t� a� p� c� spec�
i�es the point where the edge is anchored at the
source node� The visualization of data structures
containing several �elds of pointers often require
the association of an edge with a �eld� The pointer
of that �eld is just represented by the edge� In a
practical example� the �elds are visualized by text
lines of labels� and the anchor points of edges are
realized by the points at the nodes that are adja�

�

annotated by attributes�

De�nition � A nested graphG � �V�E�w� h� is
recursively de�ned� it consists of a set V of nodes
and a set E � �V � V �A� P � C� of edges� and
a width w and height h	
A node v � V is either a simple node �w� h� with
width w and height h� or a nested graph G	
An edge �s� t� a� p� c� consists of the source node s�
a target node t� an anchor point a� a priority p and
an edge class c	
If a graph does not contain nested subgraphs� we
call the graph �at	

k

class k is hidden

Graph Part of

class k
Graph

k

Figure �� Hiding of Edges and their Region
The annotation �dark grey box� is a graph where all

edges are in class k while the main graph is connected

via class j �j �� k�� The bold edges of class k connect

the annotation with the main graph� thus after hid�

ing with respect to class k� the annotation is invisible�

Other nodes �e�g�� the grey node� in the main graph are

unchanged even if there are edges from the invisible an�

notations to these nodes�

Figure �� Folding a Subtree
The striped subtree is folded to the black summary

node�

Graphs can be folded in di
erent ways� The aim
of a folding operation is to reduce the amount of the
object that have to be laid out� This allows the user
to select interactively parts that must be inspected
and to hide parts that currently are not of interest�

� graph fold� A subgraph �V�E�w� h� can be
folded� i�e� all its nodes and edges disappear�
Instead� a summary node is drawn� The width
and height of the unfolded subgraph depends

Figure
� Folding a Part of a Subtree
The striped region is folded to the black summary node�

on the layout� The width and height of the
summary node of the folded subgraph is spec�
i�ed by w and h�

� hide class� All edges of an edge class can
be hidden� They disappear� but unfortunately�
they often leave single nodes that are not any�
more connected with the rest of the graph� It is
appropriate to remove these single nodes� too�

� region fold� While �hide class� changes the
graph globally� a similar local operation can
be used� Given a set of start nodes� a set of
end nodes and a predicate P on edge classes�
the corresponding region consists of all nodes
that are reachable from a start node by a path
that does not contain an end node� where P is
true for all edges of the path� The region can
be folded into one summary node�

The operation �hide class� allows to hide regions
of the graph that are only connected by a certain
class �see �gure ��� Applications are hiding of anno�
tation parts of trees or graphs� A simple example of
the operation �region fold� is a tree where all edges
have the same class k� Folding a node n with re�
spect to the predicate �class�e� � k� is folding the
whole subtree starting from n to one summary node
�see �gure ��� Folding n until m �where m is in the
subtree of n� is folding the path from n to m and
all subtrees along this path except the subtree that
starts from m �see �gure
��
Figure � shows a syntax tree annotated by type

information� The syntax tree edges have the class
�� while the annotations are connected by edges
of class �� The result of the folding operation
�hide class �� is shown in �g� �� The type informa�
tion has disappeared� In �g� �� the region starting
at the uppermost �StatList� node is folded and rep�
resented by a triangle� In �g� �� the region starts
with the same node but end at the both �Assign�
nodes� In our example� we used the predicate �e has
edge class � �� for these operations �fold region��

�

� Introduction

Visualization allows better understanding of the
behavior of data structures in programs� Especially
in compilers � as they are developed by the ES�
PRIT project #�
�� Compare �Compiler Gener�
ation for Parallel Architectures� �AAS��� � many
parts of the data structures are trees or graphs�
e�g�� the syntax tree� the control �ow graph� the
call graph or the data dependence graph �WiMa����
A simple textual visualization of trees and graphs
is too confusing or even unreadable� A special vi�
sualization tool that draws trees and graphs in a
natural way is more helpful�
The main problem in graph visualization is to

place the nodes and edges of a graph in the plane
such that the resulting layout makes the structure
of the graph visible� Since the calculation of a nice
layout is computationally hard �Bra�	��GaJo�
�
and data structure representations are often very
large� an interactive graph drawing tool must use
heuristics and needs facilities to reduce the amount
of information to be displayed� Furthermore� data
structures are often interwoven� and parts of them
are more important than others in a certain situa�
tion� such that it must be possible to assign priori�
ties to the parts of the graph whose structure must
be more readable�
Whether a graph looks nice� depends on the per�

sonal taste of the user� However� there are some
common aesthetic criteria that are used by the
most graph layout tools to �nd good placements
of nodes�

� Place the nodes in a hierarchy of layers�

� Avoid crossings of edges and nodes�

� Keep edges short and straight�

� Favor a balanced placement�

� Position related nodes close together�

There may be graphs where some of these criteria
are contradicting� For instance� to avoid that an
edge is drawn through a node� it may be necessary
that the edge is bent� In these cases� a compromise
is necessary� The VCG tool always distributes the
nodes in a hierarchy and avoids to draw an edge
through a node� while symmetry and closeness of
the layout are regarded as of minor importance�
An interactive tool has an additional criterion�

which is the most important�

� Be reasonably fast�

It is much more annoying for a user to wait a long
time after every keypress or mouse selection than
to see a graph that is slightly ugly� Furthermore�
the user is often not interested in an overall nice
picture� but wants to inspect details of a graph� If
the graph is large� the user does not see all nodes
at the same time� thus the overall layout can be
ugly� as long as the visible region is readable and
the tool provides facilities to follow edges and �nd
nodes� Henry in his Ph�D�Thesis �Hen��� describes
the exploration of very large graphs and came to
similar results�
In the following sections� we describe the lay�

out algorithm of the VCG tool� This algorithm has
common parts with the layout algorithms of simi�
lar tools� but in many cases� it is faster or can deal
with larger graphs� A good overview of the liter�
ature of graph drawing is given in �BET�
�� Re�
lated work is the development of the EDGE tool
�PaTi�	� which was used as predecessor of the VCG
tool in the project Compare� and which has a
nearly compatible speci�cation language� and the
tools daVinci �FrWe�
�� DAG �GKNV�
� �GNV����
and DOT �KoEl���� which use similar approaches�
The graph editor GraphEd �Him��� includes a large
collection of algorithms to create� analyze and lay�
out graphs interactively� Our work is based on the
approach of Sugiyama�Tagawa� and Toda �STM����
We extend their algorithm by several new heuris�
tics� by avoiding their expensive matrix operations
in order to be able to handle large graphs� by the
possibility to include priorities and anchor points
of edges in the layout algorithm� and by a simple
spline routine for drawing edges�
In the next section� we give an introduction to

how to in�uence the layout by the VCG tool� A
requirement speci�cation for the layout algorithm
is derived� The following sections are organized ac�
cording to the phases of the algorithm� after fold�
ing to the parts of the graph that must be laid
out� the nodes are partitioned into layers accord�
ing their rank� Next� the nodes are ordered within
the layers to avoid crossings� then the nodes are
placed to �xed coordinates� Finally� the bendings
and splines of the edges are calculated� At last� we
present some experiences and statistics concerning
speed and applicability�

 Problem Description

In this section� we introduce some general graph no�
tions and explain the task of the layout algorithm�
The graph is given to the VCG tool by a textual
speci�cation of nested subgraphs� nodes and edges�

Contents

� Introduction �

� Problem Description �

� Partitioning of Nodes and Edges 	
��� Rank Assignment �
��� A n�Level Hierarchy �

� Reduction of Crossings

��� Calculation of Crossings �
��� Reordering of Nodes �	

� Calculation of Coordinates ��

�� The Pendulum Method ��

�� The Rubber Band Method ��

�� Remarks about the Speed �

� Layout of Edges ��
��� Bendings of Edges ��
��� Computing Splines ��

	 Layout of Anchored Nodes �	

 Appearance of Objects �

� Experiences and Statistics �

�� Conclusion ��

�

Graph Layout

through the VCG Tool

Georg Sander

�sander�cs�uni�sb�de

Technical Report A��
��
Universit�at des Saarlandes�

FB �� Informatik�
��	�� Saarbr�ucken

October �� ����

Abstract

The VCG tool allows the visualization of graphs that occur typically as data structures in
programs�We describe the functionality of the VCG tool� its layout algorithm and its heuristics�
Our main emphasis in the selection of methods is to achieve a very good performance for the
layout of large graphs� The tool supports the partitioning of edges and nodes into edge classes
and nested subgraphs� the folding of regions� and the management of priorities of edges� The
algorithm produces good drawings and runs reasonably fast even on very large graphs�

�This work is supported by the ESPRIT Project ����� Compare

�

