
�Gur��� Yuri Gurevich� Evovling Algebras� a tutorial introduction� Bulletin
of the European Association for Theoretical Computer Sci�

ence� �	�
���

�� �����

�Han��� J� Hannan� Staging Transformations for Abstract Machines� In Par�
tial Evaluation and Semantics�Based ProgramManipulation�
SigPlan Notices� vol�
����� �����

�JGS�	� N�D� Jones� C�K� Gomard� and P� Sestoft� Partial Evaluation and
Automatic Program Generation� Prentice Hall� ���	�

�JS
�� U� J�rring and W�L� Scherlis� Compilers and Staging Transforma�
tions� In ��th ACM Symposium on Principles of Program�

ming Languages� ��
��

�JS
�� U� J�rring and W�L� Scherlis� Deriving and Using Destructive Data
Types� In Program Speci�cation and Transformation� IFIP�
��
��

�Llo
�� J�W� Lloyd� Foundations of Logic Programming� Springer Ver�
lag� ��
��

�	

�� Implementation

All transformations in this paper can be automated� but testing the mutual
exclusion of run�time rules is not even decidable� Let w� v be inputs to the
Turing Machine M and � be an evolving algebra simulating simultaneously the
computations of M on w and on v� Assume that halt�x� is set to true� as soon
as the simulation of M on x halts and that the rules of � contain the following
rules�

if halt�w� then u�
if halt�v� then u�

Since it is undecidable to test� whether M holds on an input� it is undecidable�
whether halt�w� and halt�v� could not be true at the same time�
Nevertheless heuristics can be used to decide� whether the conditions are mutu�
ally exclusive� But in general some conditions� which are mutually exclusive� can
not be detected� Even checking mutual exclusion at run�time is co�NPcomplete
��Gur�����

�� Other Work

In �JS
�� the authors use pass separation to generate a compiler and an ab�
stract machine for a functional language from a speci�cation of an abstract
interpreter� The transformations are very sophisticated� but they are neither
formally de�ned� nor is it likely that they can be automated�
In �Han��� John Hannan de�nes a pass separation transformation of a very
restricted class of term rewriting systems� From an interpreter for a simple
functional language� which he calls the CLS machine� he derives a compiler and
an abstract machine similar to the CAM ��CCM
���� Hannan�s CLS machine
can be easily coded as an evolving algebra� but it turns out� that we can not
apply our pass separation transformation� since we would classify code� which
is the input to the CLS machine� to be dynamic� since it is changed depending
on run�time data�

�� Conclusions

We de�ned evolving algebras in automata theoretic terms and used this de�ni�
tion as a basis to de�ne some transformations on evolving algebras and prove
some essential properties of these� The pass separation transformation applies
to a huge class of evolving algebras� Unfortunately it turns out� that it can not
handle situations� where run�time and compile�time data are mixed in one data
structure� Here a transformation on the data structure is necessary� similar to
those in �JS
���

References

�BR�
� Egon B�orger and Dean Rosenzweig� The WAM � De�nition and Com�
piler Correctness� Technical Report TR�����
� Universita Degli Studi
Di Pisa� Pisa�Italy� ���
�

�CCM
�� G� Cousineau� P��L� Curien� and M� Mauny� The Categorial Abstract
Machine� In Proceedings of FPCA���� Springer� LNCS
��� ��
��

�

if fst�input����� then

� opstack �� rest�opstack��

estack �� cons�apply�fst�opstack��snd�estack��fst�estack���

rest�rest�estack����

input��rest�input�

�

�

Using �attening the above transition rule can be converted into a set of transi�
tion rules� which is more suitable for applying the pass separation transforma�
tion�

if islist�input� then input��rest�input��

if islist�input� 	 isop�fst�input��

then opstack��cons�fst�input��opstack��

if islist�input� 	 isint�fst�input��

then estack �� cons�fst�input��estack��

if islist�input� 	 isvar�fst�input��

then estack �� cons�env�fst�input���estack��

if islist�input� 	 �fst�input������

then opstack �� rest�opstack��

if islist�input� 	 �fst�input�����

then estack �� cons�apply�fst�opstack��snd�estack��fst�estack���

rest�rest�estack���

We assume� that input is known at compile�time and env not before run�time
and classify functions and rules as described above� Now we can apply the pass
separation transformation� to generate a simple compiler

if islist�input� then

� input��rest�input��

if isop�fst�input�� then opstack��cons�fst�input��opstack��

if isint�fst�input�� then prg �� cons�cons��pushint��fst�input���prg��

if isvar�fst�input�� then prg �� cons�cons��pushvar��fst�input���prg��

if fst�input����� then opstack �� rest�opstack��

if fst�input����� then prg �� cons�cons��app��fst�opstack���prg�

�

and an abstract target machine

if islist�prg� then

� if fst�fst�prg����pushint� then estack �� cons�rest�fst�prg���estack��

if fst�fst�prg����pushvar� then estack �� cons�env�rest�fst�prg����estack��

if fst�fst�prg����app�

then estack �� cons�apply�rest�fst�prg���snd�estack��fst�estack���

rest�rest�estack����

prg �� rest�prg�

�

For example given the value input � ����� X����� ��� �� �� 	��� ������ ���� at compile
time� the compiler will generate the following abstract machine program�

prg � ��pushvar X�� �pushint ��� �pushint 	�� �app ��� �app ���

The above example shows� that pass separation can be used for semantics�
directed compiler generation�

�To increase readability we applied the �crushing� transformation� see the conditions
islist�input� and islist�prg��

��

By the induction hypothesis it follows� that eval�ak � I
c
j � � eval�ak� Ij�

�	�� Since Te does not contain an update to a compile�time function� we have
Iej jC � IcmjC and by ��� we have IcmjC � ImjC �
���� This part follows by induction on the steps of the computations�
j � � � By de�nition we have� Ie� j� � Icmj� and by ��� IcmjR � I�jR� Thus it
follows� that Ie� jR � I�jR and i� � �� j � � �

case �� There is a computation step Iij����
�
� Iij�� � where ij � ij�� and a

top�level condition of a run�time rule evaluates to true� Then this guard

also evaluates to true in the step Icij����
�c� Icij�� and �i� �a�� ���� �ak� is

cons�ed to prg� The rules involved are�

if b then D � T

if b then DC � fprg �� cons�cons�i� args�� prg�g � Tc

if islist�prg��fst�fst�prg�� � i then �DR � Te

Since in �Icm
the value of prg has been reversed and at each step prg ��

rest�prg� is executed� it is easy to see� that �i� �a�� ���� �ak� is the �rst element
of prg in Iej � As a consequence we have� updates�Te� I

e
j � � updates� �DR� Iej ��

feval�prg �� rest�prg��g Since there is no other update to a run�time
function in an intermediate step� we have Iij jR � Iij����jR and by the in�

duction hypothesis� Iej jR � Iij jR� Now it follows� that updates� �DR� Iej � �

updates� �DR� Iij�����I
e
j jfprgg� and by � � we know that �ak � eval�ak � I

c
ij����

� �

eval�ak � Iij����� and thus updates� �DR� Iij�����I
e
j jfprgg� � updates�D� Iij������

And by the de�nition of a computation step� Iej��jR � Iij�� jR�

case 	� There is no such computation step� Then j � q and we conclude�
that IqjR � ImjR and by the induction hypothesis Ieq jR � IqjR and thus
Ieq jR � ImjR� which is point ��� of the above lemma�

�

�� An Example

Next we will apply the pass separation transformation to an interpreter for
simple arithmetic expressions �E � V AR j INT j �E OP E��� We assume� that
input is a list of symbols representing an arithmetic expression� e�g� input �
����� X����� ��� �� �� 	��� ������ ����� Furthermore env maps variable names to values�
e�g� env�X� � 	�

if islist�input� then

� if fst�input����� then input��rest�input��

if isop�fst�input��

� opstack��cons�fst�input��opstack��

input �� rest�input�

��

if isint�fst�input�� then

� estack �� cons�fst�input��estack��

input �� rest�input�

��

if isvar�fst�input�� then

� estack �� cons�env�fst�input���estack��

input �� rest�input�

��

��

execution� if islist�prg��fst�fst�prg�� � i then �DR � Te

where DC is the set of compile�time rules in D� DR is the set of run�time
rules in D and args � �a�� ���� am� is the list of all maximal subterms occurring
in DR� which only consist of compile�time functions� �DR is obtained from
DR by replacing every occurrence of ai by nth�i � �� fst�prg��� Furthermore
the islist function yields true� if its argument is a non�empty list� Finally we

have if islist�prg� then prg �� rest�prg� � Te and all compile�time rules are

elements of Tc� Obviously splitting the rule set T can be done in time O�jT j��
Now we de�ne the following evolving algebras � �

� �c �� � � fprgg� S� Tc� Ic� �
where Ic�j� � I� and Ic��prg� � nil�

� �Icm
�� � � fprgg� S� Te� Ie� �

where Ie� j� � Icmj� and Ie��prg��� � Icm�reverse��Icm �prg�����
We call the algebra executing the program �Icm to make explicit� that it depends
on the terminal state of the compiling algebra� Taking the time complexities
of all phases of the pass separation into account� the transformation needs time
O�max�j�j� jT j��

Theorem� If I�
�
�� Im is a computation in �� then in the compiling algebra

�c there exists a computation Ic�
�c�� Icm and in the executing algebra �Icm

there

exists a computation Ie�
�Icm�� Ieq � where q � m� Furthermore we have Ieq j� � Im�

Note� that by the use of
�
�� we consider only terminating computations�

Proof� First we note� that no dynamic compile�time functions occur in Te� Let
C be the set of compile�time rules in T and R be the set of run�time rules� We
will prove the following stronger properties�
Lemma�

�� �j � f�� ����mg � Icj jR � I�jR

� �j � f�� ����mg � Icj jC � IjjC

	� �j � f�� ���� qg � Iej jC � ImjC

�� �i�� ���� iq � m� ik � ik�� � �j � f�� ���� qg � Iej jR � Iij jR

�� Ieq jR � ImjR

���� Clearly Icj jR � I�jR� because there is no update to a run�time function in
any of the rules in Tc�
�
�� This part follows by induction on the steps of the computations�
j � �� by de�nition we have� Ic�j� � I� and as a consequence Ic�jC � I�jC
j � �� In Tc are only updates to compile�time functions� because any rule
containing an update to a run�time function is considered a run�time rule�
As a consequence� for all updates u to compile�time functions we have u �
updates�T� Ij� 	 u � updates�Tc� Icj �� because the conditions�which have to
be true for adding u to updates�Tc� Icj � contain only compile�time functions� for
which we know� that IjjC � Icj jC by the induction hypothesis� By the de�nition
of a computation step it follows� that Ij��jC � Icj��jC�
� �� Furthermore we know� that only the guard of one run�time rule can be true
�mutually exclusive rules�� In this case prg is updated�
Icj���prg��� � Icj �cons���i� eval�a�� I

c
j �� ���� eval�an� I

c
j ��� I

c
j�prg���

�The restriction of a function f to a set A is de�ned as f jA � f�a� f�a�� 	 a � Ag�

�

to classify these dynamic functions as run�time functions� too� In the literature
on partial evaluation �e�g� �JGS�	� � this process is called binding�time analysis�

Classi�cation of Functions� Let R be the initial set of run�time functions
and � �� �� S� T� I� �� Now we classify the functions in S as follows�

�� let R� � R

� for all r � F�T �

� if r
 f�t�� ���� tn� �� t� and there is a function name g � R�� such

that g occurs at least in one of the terms t�� ���� tn� then f � R�

� if r
 if b then f�t�� ���� tn� �� t� and there is a function name g �

R�� such that g occurs at least in one of the terms b� t�� ���� tn� then
f � R�

	� if R� � R then return R else set R �� R� and goto

Now the set of all compile�time functions is just C � ��R� Note� that all static
functions are classi�ed as compile�time functions� The classi�cation of functions
terminates and needs time O�j�j�� because in each iteration the jR�j decreases
and jR�j � j�j�

Classi�cation of Rules� Next we have to classify rules as compile�time or
run�time rules� a rule r � T is a run�time rule�

� if r
 f�t�� ���� tn� �� t� and there occurs at least one run�time function

in one of the terms t�� ���� tn
� if r
 if b then D and there occurs at least one run�time function in b

or there is a run�time rule in D
� otherwise r is a compile�time rule�

The classi�cation of rules terminates and needs time O�jT j��
For the pass separation transformation� we require that the top�level conditions
in the run�time rules are mutually exclusive� i�e�

Let f if b� then u� � � � � � if bn then un g be the set of all run�time

rules in T � then we require� for all interpretations I � reach�I�� �
eval�bk � I� � true� for all i
� k � eval�bi� I� � false

Next we de�ne the class of separable evolving algebras� An evolving algebra is
separable�

� if the top�level conditions of the run�time rules are mutually exclusive and
consist of compile�time functions only�

� and if there occurs no term f�t�� ���� tn� in any of the run�time rules� where
f is a dynamic compile�time function and a run�time function occurs in
at least on of the ti�

Now we construct two evolving algebras� one which generates a program� and
one which executes this program� In the following we assume� that the usual
non�destructive list functions �cons� fst� rest� reverse� nth� islist� are static func�
tions in the evolving algebra and that it is separable�

For each run�time rule if b then D in T let i � S be a new instruction and

add the following rules to Te and Tc�

compilation� if b then DC � fprg �� cons�cons�i� args�� prg�g � Tc

Theorem� Let � �� �� S� T� I� �� Let ! be a set of macro de�nitions and
T � � T � !�
� �� S� T �� I� � is operationally equivalent to ��

Proof� In the folded algebra the same updates are done as before� we only
changed the structure of the terms� not their interpretation� i�e� the value they
evaluate to� The operational equivalence follows by the same argument used for
the proofs in the previous sections�

Clearly� in practice we are interested in one set of folded rules� Thus in an
implementation we would have to choose one T � � T � !� The choice can be
based on heuristics� � which depend on what application we want to use the
folding for� Both� folding and unfolding transformations did only change the
terms occuring in rules� Next we will address transformations� which change
the structure of a set of rules�

� Flattening

Next we consider a simple transformation� which is helpful to prepare a set of
rules to apply other transformations�
Let C be a set of rules� then we construct the set of �at rules F�C� as follows�
For each r � C we have�

� If r
 if b� then D � C then

f if b� then u � u � D is function update g

� f if b��b� then u � if b� then u � F�D�g � F�C�

� If r
 f�t�� ���� tn� �� t� then r � F�C�

For this construction to be semantics preserving� the interpretation of � has to
be

��a � S � I�����a� �

�
true if �a � �true� true�
false otherwise

Note that in the de�nition of a computation of an EvA� we de�ned updates�
such that the rules of a guarded update are only considered� if the condition
evaluates to true�
Flattening and its inverse transformation ��crushing"�� can be used to restruc�

ture a set of rules� e�g��

�
if b� then fu�� if b� then u�g�
if b� then u	

�
can be trans�

formed into

�
if b��b� then u��

if b� then fu�� u	g

�

� Pass Separation

Now we will classify dynamic functions as compile�time or run�time functions�
The value of a compile�time function is known� before that of a run�time func�
tion� e�g� in an interpreter we might consider the program as compile�time data
and the input to the program as run�time data� The idea is now to classify the
rules� There is one group of rules� which depend only on compile�time func�
tions and the remaining rules depend on compile�time or run�time functions� In
practice we consider some of the external functions not to be known before run�
time� Since other dynamic functions can depend on these functions� we have

�e�g� we might always choose the function de�nition with the longest matching right
hand
side

�

We will denote t � !��� � !� �z �
n times

by t �n !� Considering the above restrictions on

function de�nitions� we have the following implications with respect to the !�
unfolding of a term�

�� it is possible� that there is no n such that t �n ! � t �n�� !� e�g�
! � ff�x� � f�x�g

� there is an n such that t �n ! � t �n�� !

	� t � ! � t �� !

Now we de�ne the !�unfolding of a set of transition rules T � which we will write
as T � !� Let r � T �

� if r
 f�t�� ���� tn� �� t� then f�t� � !� ���� tn � !� �� t� � ! � T � !

� if r
 if b then D then

if b � !
� ftrue� falseg then if b � ! then D � ! � T � !

if b � ! � true then D � ! � T � !
De�nition� Let � �� �� S� T� I� � and let ! be a set of macro de�nitions then
� � ! denotes the evolving algebra � �� S� T � !� I� ��

Theorem� � � ! is operationally equivalent to ��

Proof� In the unfolded algebra the same updates are done as before� we only
changed the structure of the terms� not their interpretation� i�e� the value they
evaluate to� The operational equivalence follows by the same argument used for
the proof in the previous section�

� Folding Macros

As before let ! be a set of macro de�nitions� First we de�ne the !�folding of
a term t� which we will write as t � !� Furthermore we will use u to denote
uni�cation of �rst�order terms
�

� If t
 f�t�� ���� tn� and t�i � ti � ! then f�t��� ���� t
�
n� � t � !�

Furthermore� if f�t�� ���� tn� and t� are uni�able� i�e� f�t�� ���� tn� u t� is
de�ned and g�x�� ���� xm� � t� � !
then g�#x�� ���� #xm� � t � !�
where the #xi are terms� such that f�t�� ���� tn� � t��x� �� #x�� ���� xm �� #xm�

� t � t � !
Note� that in an implementation we do not need an occurs check here� because
we always unify a variable free term and a term�
Now we de�ne the !�folding of a set of transition rules T � which we will write
as T � !� Let r � T �

� if r
 f�t�� ���� tn� �� t� then f f�t��� ���� t
�
n� �� t�� g � T

� � T � !�

where t�i � ti � ! and T � � T n frg � !

� if r
 if b then D then

if b � !
� ftrue� falseg then f if b� then D� g � T � � T � !

where b� � b � !� D� � D � ! and T � � T n frg � !
Note� that T � ! is the set of all possible foldings of the rules in T �

�For details on the uni�cation of �rst
order terms see for example �Llo�
�

�

Let C be a set of transition rules� We construct the set ��C� of the transition
rules after constant propagation by induction� ��C� is also called the residual
of C� For all r � C�

� if r
 f�t�� ���� tn� �� t� then f���t��� ���� ��tn�� �� ��t�� � ��C�

� if r
 if b then D then

if ��b�
� ftrue� falseg then if ��b� then ��D� � ��C�

if ��b� � true then ��D� � ��C�
De�nition� Let � �� �� S� T� I� � then ���� denotes the residual� �� S� ��T �� I� �
of ��

Theorem� ���� is operationally equivalent to ��

Proof� After constant propagation in the resulting algebra the same updates
are done as before� we only changed the amount of work which is necessary to
evaluate terms� So the inital interpretation and the terminal interpretations
are preserved �correctness�� Furthermore for every terminating computation in
� there is a terminating computation in ���� �completeness�� The operationl
equivalence follows immediately from the correctness and completeness�

� Macro De	nitions

Readability of an evolving algebra can be increased� if we de�ne functions in
terms of other functions� First we might think of macro de�nitions as simple
combinations of functions like snd � fst � rest implying I�snd� � I�fst� �
I�rest�� But this is not powerful enough� So we will consider macro de�nitions
of a di$erent form�e�g� mult twice�x� y� � mult�plus�x� x�� plus�y� y��� which is
to imply�x� y � S � I�mult twice��x� y� � I�mult��I�plus��x� x�� I�plus��y� y���
Let �� be the set of all static functions in �� f � �� and t� be a �rst�order term
consisting of function names in �� and variables x�� ���� xn� then the following is
a macro de�nition�

f�x�� ���� xn� � t�

We might suggest the following additional restrictions on the macro de�nitions�

�� none

� no recursive de�nitions

	� none of the macros de�ned� may occur in the right hand side of a macro
de�nition

We will address the implications of these restrictions later�

 Unfolding Macros

Let ! be a set of macro de�nitions� First we de�ne the !�unfolding of a term
t� which we will write as t � !�

If t
 f�t�� ���� tn� and �f�x�� ���� xn� � t�� � !
then t � ! � t��x� �� t� � !� ���� xn �� tn � !�
else t � ! � t

�

First we de�ne the value of a term t in an interpretation I and the evaluated
form of a function update�

eval�f�t� � ���� tn�� I� � I�f��eval�t� � I�� ���� eval�tn� I�� for n � �
eval�f�t� � ���� tn� �� t�� I� � f�eval�t� � I�� ���� eval�tn� I�� �� eval�t�� I� for n � �

���
Let T be a set of transition rules and I be an interpretation� then those func�
tion updates occurring in T can be executed� which either depend on guards
evaluating to true in the interpretation or on no guard at all�

updates�T� I� � feval�u� I� � u � T � u is a function updateg � updates�U� I�

where U is the union of all C� such that if b then C � T and eval�b� I� � true

�
�
There can be several con�icting function updates in updates�T� I�� i�e� evaluated
function updates� which change the interpretation of a function for the same ar�
guments to di$erent values� Let M be a set of evaluated function updates� then

M denotes the set of all greatest subsets A ofM � such that if f�t�� ���� tn� �� t�

in A then there is no update f�t�� ���� tn� �� t�� in A where t�
� t��� The relation

�
� is de�ned as follows�

I
�
� I� 	

�U � updates�T� I� ��a � S�� s � S� f � � �

I��f���a� �

����
��	

s if f��a� �� s � U

i if f is an external function

�for some i � S�
I�f���a� otherwise

Note� that if updates�T� I� is not a singleton� then from every set of con�icting
updates only one member is chosen nondeterministically�

A terminating computationof an evolving algebra � is a sequence � I�� I�� ���� Ik ��

such that I�
�
� I�

�
� ���

�
� Ik and updates�T� Ik� � �� Sometimes we will use

the notation I�
�
�� Ik to refer to a computation� Furthermore the set reach�I��

is de�ned as fIm � �I�
�
� I�

�
� � � �

�
� Img�

� Constant Propagation

In evolving algebras functions are classi�ed as internal or external� External
functions mimic input to the evolving algebra� i�e� how their interpretation
changes at each step of the evolving algebra can not be foreseen� An internal
function f is called static� if there is no function update to f in the transition
rules� We will extend this classi�cation by allowing external functions to be
static or dynamic� We will call an external function static� if we know its value
on all arguments a priori� We actually turn an external function into an internal
static one� Now we will show� how a given EvA can be partially evaluated with
respect to its static functions� First we de�ne the result of constant propagation
��t� of a term t�

� if t
 f�t�� ���� tn� and f is static then ��t� � I�f����t��� ���� ��tn��
else ��t� � f���t��� ���� ��tn��

� otherwise ��t� � t

A term is de�ned to be static� if it does not contain any dynamic function� i�e�
t is static i$ t � S or t � f�t�� ���� tn� where n � � and all ti and the function f

are static�

�

� Introduction

Evolving algebras �EvAs� have been proposed by Gurevich in �Gur��� and used
by Gurevich and others to give the operational semantics of languages like
Modula�
�Prolog� Occam and C� B�orger and Rosenzweig�s proof of the correct�
ness of the Warren Abstract Machine is based on a slight variation of evolving
algebras ��BR�
��� An evolving algebra may be tailored to the abstraction level
necessary for the intended application of the semantics� e�g� we might have a
hierarchy of evolving algebras� each being more concrete with respect to cer�
tain aspects of the semantics� In this paper we only discuss syntactic�sugar free
evolving algebras� As a result reading descriptions of an EvA using this notation
is harder than reading descriptions� which make extensive use of syntactic�sugar�
The advantage of considering the syntactic�sugar free EvAs is clearly� that we
have to deal with less constructs when we de�ne EvAs and a variety of transfor�
mations� as well as� when we prove operational equivalence and other properties�

� Syntactic�sugar free EvAs

For our purposes here� we need a precise de�nition of what an EvA is� and what
a computation of an EvA looks like�
De�nition� An evolving algebra � is a quadruple � �� S� T� I� � where �

� � is a signature� i�e� a �nite set of function names with associated arity
� S is a nonempty set� called the superuniverse�

� T is a �nite set of transition rules
� I� � � � �S� � S� is the initial interpretation of functions in �� i�e�
I� maps every function name f of arity n to an interpretation function
I��f� � S

n � S�
Transition rules	 are of the form�

function update� f�t�� ���� tn� �� t�

where f � �� n � � is the arity of f and the ti are terms

guarded update� if b then C

where b is a term and C is a set of transition rules

A term t is either of the form f�t�� ���� tn�� where f � ��n � � is the arity of f
and the ti are terms� or t � S�
A function update changes the interpretation of a function f for the arguments
t��� � � � � t

�
n to the value t��� where t�i is the value of the term ti in the current

interpretation� In a guarded update the updates in C are only executed� if the
guard b is true in the current interpretation�

� Computations of EvAs

We will use the notation I
�
� I� to indicate� that I� is the result of applying

the transition rules of � to I� We will call this a step of the evolving algebra�
Before we can de�ne a step of an EvA� we have to introduce some notation�

�S� � S � �S � S� � �S � S � S� � � � � We could also write S�
m

instead of S�� where m is
the greatest arity of a function in ��

�We will assume ftrue� falseg � S
�We will only consider �nite terms and �nite transition rules�

	

Transformations of Evolving Algebras

Stephan Diehl
FB �� � Informatik

Universit�at des Saarlandes� Postfach �� �� ��
����� Saarbr�ucken � GERMANY

Phone� ������
��	�
	���
diehl%cs�uni�sb�de

Keywords� transformation� staging� evolving algebra� partial evaluation� pass
separation� semantics�directed compiler generation

Abstract

We give a precise de�nition of evolving algebras as nondeterminis�

tic� mathematical machines� All proofs in the paper are based on this

de�nition� First we de�ne constant propagation as a transformation on

evolving algebras� Then we extend evolving algebras by macro de�nitions

and de�ne folding and unfolding transformations for macros� Next we

introduce a simple transformation to �atten transition rules� Finally a

pass separation transformation for evolving algebras is presented For all

transformations the operational equivalence of the resulting algebras with

the original algebras is proven� In the case of pass separation� we show�

that the results of the computations in the original and the transformed

evolving algebra are equal� Next we apply pass separation to a simple

interpreter� Finally a comparison to other work is given�

Contents

� Introduction �

	 Syntactic�sugar free EvAs �

� Computations of EvAs �

 Constant Propagation

� Macro De�nitions �

� Unfolding Macros �

� Folding Macros �

� Flattening �

 Pass Separation �

�� An Example ��

�� Implementation �	

�	 Other Work �	

�� Conclusions �	

Transformations

of

Evolving Algebras

Stephan Diehl

Technischer Bericht A �����

FB �� � Informatik
Universit	at des Saarlandes
 Postfach �� �� ��

����� Saarbr	ucken
 GERMANY
Phone�

��������������

diehl�cs�uni�sb�de

�

