[Gur9l]

[Han91]

[1GS93]

[7536]

[7587]

[L1087]

Yuri Gurevich. Evovling Algebras: a tutorial introduction. Bulletin
of the European Association for Theoretical Computer Sci-

ence, 43:264-284, 1991.

J. Hannan. Staging Transformations for Abstract Machines. In Par-
tial Evaluation and Semantics-Based Program Manipulation.

SigPlan Notices, vol. 26(9), 1991.

N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall, 1993.

U. Jgrring and W.L. Scherlis. Compilers and Staging Transforma-
tions. In 13th ACM Symposium on Principles of Program-
ming Languages, 1986.

U. Jgrring and W.L. Scherlis. Deriving and Using Destructive Data
Types. In Program Specification and Transformation. IFIP,
1987.

J.W. Lloyd. Foundations of Logic Programming. Springer Ver-
lag, 1987.

13

11 Implementation

All transformations in this paper can be automated, but testing the mutual
exclusion of run-time rules is not even decidable: Let w,v be inputs to the
Turing Machine M and ¥ be an evolving algebra simulating simultaneously the
computations of M on w and on v. Assume that halt(z) is set to true, as soon
as the simulation of M on z halts and that the rules of ¥ contain the following
rules:

if halt(w) then u;
if halt(v) then us

Since it 1s undecidable to test, whether M holds on an input, 1t is undecidable,
whether halt(w) and halt(v) could not be true at the same time.

Nevertheless heuristics can be used to decide, whether the conditions are mutu-
ally exclusive. But in general some conditions, which are mutually exclusive, can
not be detected. Even checking mutual exclusion at run-time is co-NPcomplete

([Gur9l]).

12 Other Work

In [JS86] the authors use pass separation to generate a compiler and an ab-
stract machine for a functional language from a specification of an abstract
interpreter. The transformations are very sophisticated, but they are neither
formally defined, nor is it likely that they can be automated.

In [Han91] John Hannan defines a pass separation transformation of a very
restricted class of term rewriting systems. From an interpreter for a simple
functional language, which he calls the CLS machine, he derives a compiler and
an abstract machine similar to the CAM ([CCMB85]). Hannan’s CLS machine
can be easily coded as an evolving algebra, but it turns out, that we can not
apply our pass separation transformation, since we would classify code, which
is the input to the CLS machine, to be dynamic, since it is changed depending
on run-time data.

13 Conclusions

We defined evolving algebras in automata theoretic terms and used this defini-
tion as a basis to define some transformations on evolving algebras and prove
some essential properties of these. The pass separation transformation applies
to a huge class of evolving algebras. Unfortunately it turns out, that it can not
handle situations, where run-time and compile-time data are mixed in one data
structure. Here a transformation on the data structure is necessary, similar to

those in [JS87].

References

[BR92] Egon Borger and Dean Rosenzweig. The WAM - Definition and Com-
piler Correctness. Technical Report TR-14/92, Universita Degli Studi
Di Pisa, Pisa,ltaly, 1992.

[CCM85] G. Cousineau, P.-L. Curien, and M. Mauny. The Categorial Abstract
Machine. In Proceedings of FPCA’85. Springer, LNCS 201, 1985.

12

if fst(input)=")" then
{ opstack := rest(opstack),
estack := cons(apply(fst(opstack),snd(estack),fst(estack)),
rest(rest(estack))),
input:=rest(input)
}
}

Using flattening the above transition rule can be converted into a set of transi-
tion rules, which is more suitable for applying the pass separation transforma-
tion:

if islist(input) then input:=rest(input),
if islist(input) & isop(fst(input))
then opstack:=cons(fst(input),opstack),
if islist(input) & isint(fst(input))
then estack := cons(fst(input),estack),
if islist(dinput) & isvar(fst(input))
then estack := cons(env(fst(input)),estack),
if islist(input) & (£st(input)=")")
then opstack := rest(opstack),
if islist(dinput) & (£st(input)=")"
then estack := cons(apply(fst(opstack),snd(estack),fst(estack)),
rest(rest(estack)))

We assume, that input is known at compile-time and env not before run-time
and classify functions and rules as described above. Now we can apply the pass
separation transformation” to generate a simple compiler

if islist(input) then

{ input:=rest(input),
if isop(fst(input)) then opstack:=cons(fst(input),opstack),
if isint(fst(input)) then prg := cons(cons("pushint",fst(input)),prg),
if isvar(fst(input)) then prg := cons(cons("pushvar",fst(input)),prg),
if fst(input)=")" then opstack := rest(opstack),
if fst(input)=")" then prg := cons(cons("app",fst(opstack)),prg)

}

and an abstract target machine

if islist(prg) then
{ if fst(fst(prg))="pushint" then estack := cons(rest(fst(prg)),estack),
if fst(fst(prg))="pushvar'" then estack := cons(env(rest(fst(prg))),estack),
if fst(fst(prg))="app"
then estack := cons(apply(rest(fst(prg)),snd(estack),fst(estack)),
rest(rest(estack))),

prg := rest(prg)
}

For example given the value input = [“(“, X, 4+, (“,7,%,3,”)",")"] at compile
time, the compiler will generate the following abstract machine program:

prg = [(pushvar X), (pushint 7), (pushint 3), (app *), (app +)]

The above example shows, that pass separation can be used for semantics-
directed compiler generation.

"To increase readability we applied the “crushing” transformation, see the conditions
islist(input) and islist(prg).

11

By the induction hypothesis it follows, that eval(ay,Z;) = eval(ay,Z;)

(3): Since T, does not contain an update to a compile-time function, we have
Z{lc = I7,]c and by (1) we have Zj |c = Zi]c.

(4): This part follows by induction on the steps of the computations:

J = 0 : By definition we have: Z¢|, = Z%,|, and by (1) Z% |r = Zo|g. Thus it
follows, that Z¢|g = Zo|gr and ip = 0. j+ 1:

case 1: There is a computation step Z;, 1 LA Zi;,,, where i; < i;4) and a
top-level condition of a run-time rule evaluates to true. Then this guard

. W, . .
also evaluates to ¢rue in the step Zf _, =% Z¢ —and [, dy, ..., dg] is
ti41—1 Ti41 ’ ’ 3
cons’ed to prg. The rules involved are:

tf bthen D|eT

if bthen DY U {prg = cons(cons(i,args),prg)} | € T.

if islist(prg)& fst(fst(prg)) =i then DE|eT,

Since in Wze the value of prg has been reversed and at each step prg :=
rest(prg) is executed, it is easy to see, that [¢, d1, ..., dj] is the first element

of prginZ7. As a consequence we have: updates(T.,Z;) = updates(lN)R, i
{eval(prg := rest(prg))} Since there is no other update to a run-time
function in an intermediate step, we have Z;, g = Lip-1 |r and by the in-
duction hypothesis, Z7|r = I;;|r. Now it follows, that updates([)R, I£) =
updates(DR,L'Hl_lUIﬂ{pTg}) and by (*) we know that d; = eval(ag, Ile_l) =
eval(ay, I;,, 1) and thus updates(DF, Iij+1—1UI;|{p7‘g}) = updates(D,Z;,,, _1).
And by the definition of a computation step: Z7,|r = Z;,,, | r-

case 2: There is no such computation step. Then j = ¢ and we conclude,
that Z,|r = Z,n|r and by the induction hypothesis I§|R = 7,|r and thus
I§|R = Im|R, which is point (5) of the above lemma.

O

10 An Example

Next we will apply the pass separation transformation to an interpreter for
simple arithmetic expressions (F — VAR | INT | (E OP E)). We assume, that
tnput 1s a list of symbols representing an arithmetic expression, e.g. input =
(04 XL+, (4,7, %,3,)7.)"]. Furthermore env maps variable names to values,
e.g. env(X) = 3.

if islist(input) then
{ if fst(input)="(" then input:=rest(input),
if isop(fst(input))
{ opstack:=cons(£fst(input),opstack),
input := rest(input)
},
if isint(fst(input)) then
{ estack := cons(fst(input),estack),
input := rest(input)
},
if isvar(fst(input)) then
{ estack := cons(env(fst(input)),estack),
input := rest(input)

s

10

execution: |if islist(prg)& fst(fst(prg)) =i then DE| eT.

where DY is the set of compile-time rules in D, D is the set of run-time
rules in D and args = [ai, ..., an) is the list of all maximal subterms occurring
in D®, which only consist of compile-time functions. D¥ is obtained from
D by replacing every occurrence of a; by nth(i + 1, fst(prg)). Furthermore
the islist function yields true, if its argument is a non-empty list. Finally we

have ‘ if islist(prg) then prg .= rest(prg) ‘ € T. and all compile-time rules are

elements of T,. Obviously splitting the rule set T can be done in time O(|T).
Now we define the following evolving algebras © :
o ¥, =< oU{prg}, S, T.,I5 >
where Z§|, = Ty and Z§(prg) = nil.
o V. =< oU{prg},S T, I5 >
where Z§|, =I5 o and Z§(prg)() = I, (reverse)(ZS, (prg)()).
We call the algebra executing the program ¥ze to make explicit, that it depends
on the terminal state of the compiling algebra. Taking the time complexities
of all phases of the pass separation into account, the transformation needs time

O(maz(|o],[T1))

Theorem: If 7, 2 Ty 1s a computation in W, then in the compiling algebra

¥, there exists a computation Z§ T 77, and in the executing algebra Wz. there

. . Ve
exists a computation 75 —* Z, where ¢ < m. Furthermore we have I;|a =Tm.

Note, that by the use of 2. we consider only terminating computations.
Proof: First we note, that no dynamic compile-time functions occur in 7;. Let
C' be the set of compile-time rules in 7" and R be the set of run-time rules. We
will prove the following stronger properties:

Lemma:

1. Vje{0,...m}:ZIf|r = To|r

2. Vj e {0, ...,m}:IﬂC =Zle

3.V €{0,...,q} : Il = Tmlc

4. g, oyig <mydp <idpyr V) €H0, ¢} 1 TR = 4|k
5 Iilr =Imlr

(1): Clearly Zf|gr = Zo|r, because there is no update to a run-time function in
any of the rules in 7.

(2): This part follows by induction on the steps of the computations:

J = 0: by definition we have: Z§|, = Ty and as a consequence Z§|c = Zoc

j+ 1: In T, are only updates to compile-time functions, because any rule
containing an update to a run-time function is considered a run-time rule.
As a consequence, for all updates u to compile-time functions we have u €
updates(T,Z;) < u € updates(T,,I;), because the conditions,which have to
be true for adding u to updates(Tc,ch) contain only compile-time functions, for
which we know, that Z;|c = Iﬂc by the induction hypothesis. By the definition
of a computation step it follows, that Z;11]c = 77, |c.

(*): Furthermore we know, that only the guard of one run-time rule can be true
(mutually exclusive rules). In this case prg is updated:

Z; 1 (prg)() = Ij(cons)([i, eval(ar, I}), ..., eval(an, I7)], Z; (prg)).

8The restriction of a function f to a set A is defined as f|4 = {(a, f(a)) : a € A}.

to classify these dynamic functions as run-time functions, too. In the literature
on partial evaluation (e.g. [JGS93]) this process is called binding-time analysis.

Classification of Functions: Let R be the initial set of run-time functions
and ¥ =< ¢,5,7,Zy >. Now we classify the functions in .S as follows:

1. let R = R
2. for all r € F(T)

o if r = t1,...,t,) :=to | and there is a function name ¢ € R’, such
)) g)

that g occurs at least in one of the terms tq, ..., t,, then f € R’

o ifr= ‘ if bthen f(t1,...,ty) ==t ‘ and there is a function name ¢ €

R/, such that g occurs at least in one of the terms b,1y,...,1,, then

Jer
3. if R = R then return R else set R := R’ and goto 2

Now the set of all compile-time functions is just C' = ¢ — R. Note, that all static
functions are classified as compile-time functions. The classification of functions
terminates and needs time O(|o]), because in each iteration the |R'| decreases
and |R'| < |o].

Classification of Rules: Next we have to classify rules as compile-time or
run-time rules: a rule » € 7' is a run-time rule,

o if r = ‘f(tl, woty) =10 ‘ and there occurs at least one run-time function

in one of the terms tg, ..., 1,
o if r = and there occurs at least one run-time function in &
or there is a run-time rule in D
e otherwise r is a compile-time rule.
The classification of rules terminates and needs time O(|T).
For the pass separation transformation, we require that the top-level conditions
in the run-time rules are mutually exclusive, i.e.

Let {‘ if by then uy ‘, .. ,‘zf b, then uy, ‘} be the set of all run-time

rules in 7', then we require: for all interpretations 7 € reach(Zo) :

eval(by,T) = true = for all i # k : eval(b;,T) = false

Next we define the class of separable evolving algebras: An evolving algebra is
separable,
e if the top-level conditions of the run-time rules are mutually exclusive and
consist of compile-time functions only,
e and if there occurs no term f(¢1, ..., %,) in any of the run-time rules, where
f 1s a dynamic compile-time function and a run-time function occurs in
at least on of the ¢;.
Now we construct two evolving algebras: one which generates a program, and
one which executes this program. In the following we assume, that the usual
non-destructive list functions (cons, fst, rest, reverse, nth, islist) are static func-
tions in the evolving algebra and that it is separable.

For each run-time rule |¢f bthen D|in T let i € S be a new instruction and
add the following rules to T, and 7.:

compilation: ‘zf b then DY U {prg := cons(cons(i,args),prg)} ‘ e,

Theorem: Let ¥ =< ¢,5,7,Zy >. Let A be a set of macro definitions and
T eT | A
< 0,5,T" Iy > is operationally equivalent to W.

Proof: In the folded algebra the same updates are done as before, we only
changed the structure of the terms, not their interpretation, i.e. the value they
evaluate to. The operational equivalence follows by the same argument used for
the proofs in the previous sections.

Clearly, in practice we are interested in one set of folded rules. Thus in an
implementation we would have to choose one 7™ € T' | A. The choice can be
based on heuristics® , which depend on what application we want to use the
folding for. Both, folding and unfolding transformations did only change the
terms occuring in rules. Next we will address transformations, which change
the structure of a set of rules.

8 Flattening

Next we consider a simple transformation, which is helpful to prepare a set of
rules to apply other transformations.

Let C' be a set of rules, then we construct the set of flat rules F(C') as follows.
For each r € C' we have:

e If r=|if by then D| € C then
{‘ if by then u|:u € D is function update }
U{[if bi&ebs then u|:|if by then u|€ F(D)} C F(C)

o If r E‘f(tl, tn) =t ‘then r e F(C)

For this construction to be semantics preserving, the interpretation of & has to

be

" " true if a = (true,true
Ya €5 1(k)(a) = false otherwz('se)
Note that in the definition of a computation of an EvA, we defined updates,
such that the rules of a guarded update are only considered, if the condition
evaluates to true.
Flattening and its inverse transformation (“crushing”), can be used to restruc-
if by then {uy, if by then us},
if by then us
Zf bl&bz then Ua, }

ture a set of rules, e.g.: { } can be trans-

formed into { if by then {uy,us}

9 Pass Separation

Now we will classify dynamic functions as compile-time or run-time functions.
The value of a compile-time function is known, before that of a run-time func-
tion, e.g. 1n an interpreter we might consider the program as compile-time data
and the input to the program as run-time data. The idea is now to classify the
rules: There is one group of rules, which depend only on compile-time func-
tions and the remaining rules depend on compile-time or run-time functions. In
practice we consider some of the external functions not to be known before run-
time. Since other dynamic functions can depend on these functions, we have

5e.g. we might always choose the function definition with the longest matching right-hand
side

We will denote ¢ T A...T A by £ 1” A. Considering the above restrictions on
—_———

n times
function definitions, we have the following implications with respect to the A-

unfolding of a term:

1. it is possible, that there is no n such that + |® A =t "t A eg.
A={f(x) = f(x)}

2. there is an n such that ¢ [» A =¢ [*tT A

3.tTA=t12A

Now we define the A-unfolding of a set of transition rules 7', which we will write
asT T A. Let r €T
o ifr=|f(ty, ... tn) ::to‘then‘f(tl TA 1A =t [A ‘eTTA

e if r=|i¢f bthen D |then

if b1 A ¢ {true, false} then‘ibeAthen DTA\ETTA

o] A=truethen DT AT TA
Definition: Let ¥ =< ¢, 5,7, 7y > and let A be a set of macro definitions then
U T A denotes the evolving algebra < o, 5,7 T A Zy >.

Theorem: ¥ | A is operationally equivalent to W.

Proof: In the unfolded algebra the same updates are done as before, we only
changed the structure of the terms, not their interpretation, i.e. the value they
evaluate to. The operational equivalence follows by the same argument used for
the proof in the previous section.

7 Folding Macros

As before let A be a set of macro definitions. First we define the A-folding of
a term ¢, which we will write as ¢t | A. Furthermore we will use M to denote

unification of first-order terms .

o Ift = f(t1,...,tn) and tf €¢; | A then f(t7,...,15) €t] A.
Furthermore, if f(t1,...,t,) and ¢y are unifiable, i.e. f(t1,...,t,) Mty is
defined and g(z1,...,2m) =ty € A
then g(#q,....,8m) €1] A,
where the #; are terms, such that f(t1,....,4,) = to[x1 — &1, .., & — Ty
etect| A
Note, that in an implementation we do not need an occurs check here, because
we always unify a variable free term and a term.
Now we define the A-folding of a set of transition rules 7', which we will write
asT | A. Let r €7

o if r=|f(tr, . 1) i=to | then {{ F(t], .. 13) ==
where ¢ €t; | Aand T* e T\ {r} | A

e if r=|i¢f bthen D |then

if b1 A¢ {true, false} then {|if b* then D* fUT* € T | A
where b* € b | AAD* €D | AandT* €T\ {r} | A
Note, that 7" | A is the set of all possible foldings of the rules in 7T'.

LUT* €T | A,

*For details on the unification of first-order terms see for example [[1087]

Let C be a set of transition rules. We construct the set w(C') of the transition
rules after constant propagation by induction. w(C') is also called the residual
of C'. For all r €

o if r=[f(t1, .. 1) = to | then | f(n(t1), .., 7(1n)) = 7(to) | € 7(C)

e if r=|i¢f bthen D |then

if w(b) & {true, false} then ‘ if m(b) then =(D) ‘ € w(C)

if w(b) = true then (D) C ()
Definition: Let ¥ =< ¢, 5, T, 7 > then w(¥) denotes the residual < o, S, 7(T),Zy >
of U.

Theorem: 7(¥) is operationally equivalent to .

Proof: After constant propagation in the resulting algebra the same updates
are done as before, we only changed the amount of work which is necessary to
evaluate terms. So the inital interpretation and the terminal interpretations
are preserved (correctness). Furthermore for every terminating computation in
¥ there is a terminating computation in 7(¥) (completeness). The operationl
equivalence follows immediately from the correctness and completeness.

5 Macro Definitions

Readability of an evolving algebra can be increased, if we define functions in
terms of other functions. First we might think of macro definitions as simple
combinations of functions like snd = fst o rest implying Z(snd) = Z(fst) o
I(rest). But this is not powerful enough. So we will consider macro definitions
of a different form,e.g. mult twice(x,y) = mult(plus(z, x), plus(y, y)), which is
toimplyVa,y € S : Z(mult twice)(x, y) = T(mult)(Z(plus)(z, x), Z(plus)(y, y)).
Let & be the set of all static functions in o, f € ¢ and ¢y be a first-order term

consisting of function names in ¢ and variables z1, ..., z,, then the following is
a macro definition:
f(l‘l, ceny l‘n) = to

We might suggest the following additional restrictions on the macro definitions.
1. none
2. no recursive definitions

3. none of the macros defined, may occur in the right hand side of a macro
definition

We will address the implications of these restrictions later.

6 Unfolding Macros

Let A be a set of macro definitions. First we define the A-unfolding of a term
t, which we will write as ¢ T A.

Ift=f(t1,....tn) and (f(z1,...,2n) =1p) € A
then t T A =do[ey — 1 TA, .. ap—1, T A
elset] A=t

First we define the value of a term ¢ in an interpretation 7 and the evaluated
form of a function update:

eval(f(ty, ..., tn),T) = I(f)(eval(ty,T),...,eval(ty,T)) forn>0
eval(f(ty,....tn) =10, 7) = fleval(t,T),...,eval(t,,T)) := eval(te,Z) forn >0
(1)
Let T be a set of transition rules and Z be an interpretation, then those func-
tion updates occurring in 7' can be executed, which either depend on guards
evaluating to true in the interpretation or on no guard at all.

updates(T,T) = {eval(u,T) : w € T Au is a function update} U updates(U,T)

where U is the union of all C', such that |if b then C'|€ T and eval(h,T) = true
(2)
There can be several conflicting function updates in updates(T,T), i.e. evaluated
function updates, which change the interpretation of a function for the same ar-

guments to different values. Let M be a set of evaluated function updates, then
M denotes the set of all greatest subsets A of M, such that if‘ flty, .., tn) =10 ‘

in A then there is no update ‘ flte, .. ts) =1 ‘in A where tg # t,. The relation

LA 1s defined as follows:

AU € updates(T,I)Ya e S*,s€ S, f€o:
s if[f@ =slev
T'(f)(a) = ; tf fisan e.xternal function
(for some i € 5)
I(f)(a) otherwise

Note, that if updates(T,Z) is not a singleton, then from every set of conflicting
updates only one member is chosen nondeterministically.

A terminating computation of an evolving algebra ¥ is a sequence < Zg, 71, ..., It >,
such that Zg LA 7 L .2 Ty and updates(T,Z;) = 0. Sometimes we will use

the notation Zg 2 Ty to refer to a computation. Furthermore the set reach(Zy)

is defined as {Z,, : A7, iIl X E>Im}

4 Constant Propagation

In evolving algebras functions are classified as internal or external. External
functions mimic input to the evolving algebra, i.e. how their interpretation
changes at each step of the evolving algebra can not be foreseen. An internal
function f is called static, if there is no function update to f in the transition
rules. We will extend this classification by allowing external functions to be
static or dynamic. We will call an external function static, if we know its value
on all arguments a priori. We actually turn an external function into an internal
static one. Now we will show, how a given EvA can be partially evaluated with
respect to its static functions. First we define the result of constant propagation
7(t) of a term ¢.

o if t = f(t1,...,ts) and f is static then 7(2) = Z(f)(x(t1), ..., 7(tn))

else w(t) = f(w(t1), ..., 7(tn))

o otherwise w(t) =¢
A term is defined to be static, if it does not contain any dynamic function, i.e.
tis static iff t € S or t = f(t1,...,t5) where n > 0 and all ¢; and the function f
are static.

1 Introduction

Evolving algebras (EvAs) have been proposed by Gurevich in [Gur91] and used
by Gurevich and others to give the operational semantics of languages like
Modula-2,Prolog, Occam and C. Borger and Rosenzweig’s proof of the correct-
ness of the Warren Abstract Machine is based on a slight variation of evolving
algebras ([BR92]). An evolving algebra may be tailored to the abstraction level
necessary for the intended application of the semantics, e.g. we might have a
hierarchy of evolving algebras, each being more concrete with respect to cer-
tain aspects of the semantics. In this paper we only discuss syntactic-sugar free
evolving algebras. As a result reading descriptions of an EvA using this notation
is harder than reading descriptions, which make extensive use of syntactic-sugar.
The advantage of considering the syntactic-sugar free EvAs is clearly, that we
have to deal with less constructs when we define EvAs and a variety of transfor-
mations, as well as, when we prove operational equivalence and other properties.

2 Syntactic-sugar free EvAs

For our purposes here, we need a precise definition of what an EvA is, and what
a computation of an EvA looks like.
Definition: An evolving algebra ¥ is a quadruple < ¢, S,7T,Zy > where !
e o is a signature, i.e. a finite set of function names with associated arity
e S is a nonempty set, called the superuniverse?
e T is a finite set of transition rules
e 7y : ¢ — (S — S5) is the initial interpretation of functions in o, i.e.
Zo maps every function name f of arity n to an interpretation function

Transition rules® are of the form:

function update: ‘f(tl, wotn) =1 ‘

where f € o, n > 0 is the anty of f and the ¢; are terms

guarded update: |if b then C
where b 1s a term and C' 1s a set of transition rules

A term ¢t is either of the form f(t1,...,1,), where f € o,n > 0 is the arity of f
and the ¢; are terms, or t € 5.

A function update changes the interpretation of a function f for the arguments
th,...,t, to the value t, where t! is the value of the term ¢; in the current
interpretation. In a guarded update the updates in C' are only executed, if the
guard b is true in the current interpretation.

3 Computations of EvAs

We will use the notation Z - 7’ to indicate, that Z’ is the result of applying
the transition rules of ¥ to Z. We will call this a step of the evolving algebra.
Before we can define a step of an EvA, we have to introduce some notation.

1S = SU(SXx SYU (S xS xS)uU... We could also write S}, instead of S*, where m is
the greatest arity of a function in o.

2We will assume {true, false} C S

3We will only consider finite terms and finite transition rules.

Transformations of Evolving Algebras

Stephan Diehl
FB 14 - Informatik
Universitat des Saarlandes, Postfach 15 11 50
66041 Saarbrucken , GERMANY
Phone: ++449-681-3023915
diehl@cs.uni-sb.de

Keywords: transformation, staging, evolving algebra, partial evaluation, pass
separation, semantics-directed compiler generation

Abstract

We give a precise definition of evolving algebras as nondeterminis-
tic, mathematical machines. All proofs in the paper are based on this
definition. First we define constant propagation as a transformation on
evolving algebras. Then we extend evolving algebras by macro definitions
and define folding and unfolding transformations for macros. Next we
introduce a simple transformation to flatten transition rules. Finally a
pass separation transformation for evolving algebras is presented For all
transformations the operational equivalence of the resulting algebras with
the original algebras is proven. In the case of pass separation, we show,
that the results of the computations in the original and the transformed
evolving algebra are equal. Next we apply pass separation to a simple
interpreter. Finally a comparison to other work is given.

Contents

1 Introduction

2 Syntactic-sugar free EvAs
3 Computations of EvAs

4 Constant Propagation

5 Macro Definitions

6 Unfolding Macros

7 Folding Macros

8 Flattening

9 DPass Separation

10 An Example

11 Implementation

12 Other Work

13 Conclusions

10

12

12

12

Transformations
of
Evolving Algebras

Stephan Diehl
Technischer Bericht A 02/95

FB 14 - Informatik
Universitat des Saarlandes, Postfach 15 11 50
66041 Saarbricken , GERMANY

Phone: +4+49-681-3023915
diehl@cs.uni-sb.de

