References

(1]

F. daSilva. Towards a Formal Framework for Evaluation of Operational Semantics. LFCS Report ECS-
LFCS-90-126, Edinburgh University, 1990.

H.P. de Moura. Action Notation Transformations. PhD thesis, University of Glasgow, 1993.

Stephan Diehl. Prolog and Typed Feature Structures: A Compiler for Parallel Computers. Master’s
thesis, Worcester Polytechnic Institute, Worcester, Massachusetts, 1993.

Stephan Diehl. A Prolog Positive Supercompiler. 1994.

John Hannan. Making Abstract Machines Less Abstract . In Proc. of FPCA’91, LNCS 523, pages
618-635. 1991.

John Hannan. Operational Semantics-Directed Compilers and Machine Architectures . ACM Transac-
tions on Programming Languages and Systems, 16(4):1215-1247, 1994.

U. Jgrring and W.L. Scherlis. Compilers and staging transformations. In Thirteenth ACM Symposium
on Principles of Programming Languages, St. Petersburg, Florida, pages 86-96, 1986.

G. Kahn. Natural Semantics. In fth Annual Symposium on Theoretical Aspects of Computer Science,
volume LNCS 247, pages 22-39. Springer Verlag, 1987.

P. Kursawe. How to invent a Prolog machine. In Proc. Third International Conference on Logic Pro-
grammang, pages 134-148. Springer LNCS 225, 1986.

Peter Lee. Realistic Compiler Generation. MIT Press; 1989.

Stephen McKeever. A Framework for Generating Compilers from Natural Semantics Specifications . In
P.D. Mosses, editor, Proc. of the 1st Workshop on Action Semantics, BRICS-NS-94-1. University Of
Aarhus, Denmark, 1994.

P.D. Mosses. Action Semantics. Cambridge University Press, 1992.

H. Moura and D. A. Watt. Action Transformations in the ACTRESS Compiler Generator. In CC"94,
LNCS 768. Springer Verlag, 1994.

F. Nielson and H.R. Nielson. Code Generation from Two-Level Denotational Meta-Languages. Springer

LNCS 217, 1986.

Ulf Nilsson. Towards a Methodology for the Design of Abstract Machines for Logic Programming. Journal
of Logic Programmaing, pages 163-188, 1993.

Mads Tofte. Compiler Generators - What they can do, what they might do, and what they will probably
never do., volume 19. Springer, EATCS Monographs in Theoretical Computer Science, 1990.

14

term rewriting systems are interpreted in Prolog. The next step will be to generate from the term rewriting
rules an efficient implementation of the compiler and the abstract machine preferably in C. In addition one
should introduce a program store and labels at this stage [5].

6 Conclusions

We presented a system, that generates a compiler and abstract machine from a 2BIG specification of a
programming language. We gave the transformations used in our system and as an example we transformed
the 2BIG specification of the OR, action combinator and the GIVE action. We pointed out, that the system
was used to generate a compiler and abstract machine for action notation and that these have been used as
a backend of an action semantics-based compiler generator. Finally we discussed future work.

Acknowledgements

This work has been supported by a grant of the “Deutsche Forschungsgemeinschaft”. Finally I want to thank
Stephen McKeever for discussions and his comments on a draft of this paper.

13

is translated into the following action term:

hence(
furthermore(
before(then(give (num(1),0),
bind(i,the(value,0))),
then(allocate(cell(integer)),
bind(x,the(cell,0))))),
then(
then(
and (then(give(num(2),0),
give(the(value,0),1)),
then(or(give(stored(value,
bound(cell,i)),
0),
give(bound(value,i),0)),
give(the(value,0),2))),
give(add(the(value,1),the(value,2)),0)),
store(the(value,0),bound(cell,x))))

Now this action term is converted into a very long abstract machine program by the generated compiler

hence_0(
furthermore_0(
before_0(
then_0(

(give_0(num_0(1),0);
num_0(1);
conv_7_0;
test_2_0;
conv_8_0;
factor_7_0(0)),

(bind_0(i,the_0(value,0));
the_0(value,0);
conv_14_0;
test_5_0;
conv_15_0;
factor_13_0(i)));

give_0(num_0(1),0);

The execution of the above program by the abstract machine in the empty environment yields the expected
result: a memory cell 1s allocated for the variable x and the value 3 is stored in it.

5 Future Work

Given a determinate 2BIG specification our system automatically generates a compiler and abstract machine
represented as term rewriting systems. Admittedly the transformations introduce a lot of abstract machine
instructions. Especially the number of conversion instructions introduced by sequentialization should be
reduced by replacing similar instructions by one more general instruction, e.g. the instructions conv; and
convs defined by the following rules convy, [true|R] — R and convs,[false|R] — R might be replaced by
pop, [F|R] — R, but this instruction would also pop values different from ¢rue and false. Furthermore there
are instructions, which do nothing besides pattern matching, i.e. test whether the current state has a required
form , and it might be safe to remove them in case, we know that the state will always have the required form.
Thus these and other optimizations have to be investigated further. Currently the 2BIG specifications and the

12

Figure 6: Transforming the GIVE action (part III)

Now a term rewriting system is generated:
< give(Y,N); C, [Z [T, B, S]] >
< fGCtglve() [[[Da S]a true]]
< factgwe(); C,1Z,1[D, 5], false]]
[S

<Y convg; testy; convs; factg,.(N); C[[[S1|12), [T, B, S]] >
[Z, [completed [N — datum(D)],], S]] >

; [Z, [failed,], [, 1]

< testy;C,[7Z [D] [Z, D # nothing]

< convy; C\ [[[S]| 7], datum(D)] > < (IS, D7), [P]] >
< convg; C\[[[S, D]| 7], R] > < C[Z,]ID,S], R]] >

Finally we appl the pass separation transformation and we get the following compiler rules:

f—}

POLuly

give(Y,N) = give(Y,N);Y; convs;testy; convs; factgive(N)
fGCtgive(N) = ﬂitgive(N)

testy — testy

convs —> Convs

convs —> convs

And the following abstract machine rules:

< give(Y,N);,C,[Z,[T, B, S]] > [[S112], [T, B, S]] >

bl

= < /5]
< facty;, (N); C [Z,[[D, S], true]] > = < C,[Z,[completed, [N +— datum(D)],], S]] >
<ﬂ£tgwe(]\7) ,[D, S, falsell > = < C,[Z, [failed,[],], S]] >
< testl, [,[D]] > — < C,[Z, D # nothing] >
< oy O [[S117], datum(D)] > = < C,[[15, DI|2],[D]] >
< eonvs; O [[[S, D]|Z], R] > = <O [Z[[D,s], R]] >

2BIG rules adding additional preconditions, when necessary, to make the rules determinate. Then we used
our system to generate a compiler and abstract machine represented as term rewriting systems.

Figures 2 and 3 demonstrate the generation process by transforming the 2BIG rules for the OR action com-
binator. In the transformation of the 2BIG rules of the GIVE action shown in Figures 4, 5 and 6 we also deal
with side conditions.

Our specification consists of 100 2BIG rules defining the semantics of 39 action notation constructs. After
transformation of side conditions we got 135 rules. Factorization resulted in 191 rules. After sequentialization
we got 276 rules. Finally pass separation yield 216 compiler rules and 276 abstract machine rules. We tested
this compiler and abstract machine by translating mini-A programs based on an action semantics specification
of the language mini-A [13] into action terms. Then we compiled these action terms using the generated
compiler into an abstract machine program and executed the latter by the above abstract machine rules. In
other words we use a 2BIG semantics-based compiler generator to generate a compiler and abstract machine
for action notation, then we use these as the backend in a compiler generator based on action semantics. The
front end of this compiler generator was previously developed and used with a positive supercompiler as its
backend [4].

Now we will show how our action semantics-based compiler generator works by means of a simple example.
The semantics of the language mini-A 1s given by equations like the following one:

(1) execute] X":=" E] =
| evaluate E
then store the value in the cell bound to X

Using the action semantics specification of mini-A the following program

let

const 1 1;

var Xx:integer;
in

X:=2+1
end

11

Figure 5: Transforming the GIVE action (part II)

Now the stack (7) is introduced and temporary variables are allocated:

Y [[S1Z],[T.B,S]|—=[[5]Z] datum(D)] tests [[[S,D]|Z],[D]—=[[[S, DI Z].R] factyive(N),[Z,[[D,S], Rl =2, E]
give(Y,N),[Z,[T,B,S||—[7,F]

factgive(N), [Z,[[D, S], true]l — [Z, [completed, [N — datwm(D)],[], S]]

fGCtgive(N) [[[D S] false]] [) [faileda []a []a S]]

testy,[Z,[D]] — [Z, D # nothing]

)
)

Next these rules can be sequentialized:

Y, [[SIZ],[T,B,S]] [517], datum(D)]

convs, [[S|Z], datum(D)] — [[[S, DI|Z], [D]] testy,[[[S, D]|Z], [D]] — [[[S, D}| 2], R]

COnv6a[[[SaD]|Z]a] [a[[DaS]aR]] fGCtgive(N) [Za [[DaS]aR]]_)[ZaE]
give(Y,N),[Z,[T,B,S]|—[7,E]

Factyive(NY, [Z,[[D, 8], true]] — [Z, [completed, [N — datum(D)],], S]]
factyive(N), [Z,[[D, S], false]] — [Z,[failed, [],], S]]

test,,[Z,[D]] — [Z, D # nothing]

convy, [[S|Z], datum(D)] — [[[S, D]|Z], [D]]

convs, [[S, D]|Z], R] — [Z,[[D, 5], R]]

~— e

3.7 Pass Separation

Pass separation works as described by Hannan [6]. Since it has been described there in great detail and we
did not modify the transformation, we are not going to explain it here. Pass separation detects such parts of
the term rewriting rule which can be rewritten independently of the environment, i.e. at compile time.

By s=2t we mean, that ¢ can be obtained from s via several steps using the rules in R. Basically, pass

separation converts a set of rules R into two sets R, and R, such that the following holds: if ¢, e:R>c’, ¢’ then

cRﬁé

eéé

o 2 o

L
N

Note, that also the environment is compiled, because there might be code sequences stored in the environment.
This occurs for example in the semantics of higher order languages. The rules in R define an abstract
interpreter, the rules in R, a compiler and the rules in R, an abstract executor. The rules in R, belong to
a special class of rewrite rules. Their right sides will only match the whole state, 1.e. they never apply to
subterms of the state. As a result they can be implemented more efficiently than ordinary rewrite rules.

4 Transforming a 2BIG specification of Action Notation

Action semantics [12] has been developed to allow useful semantics descriptions of realistic programming
languages. The language used to write such semantics descriptions is called action notation. In his PhD
thesis [2] deMoura gives a natural semantics specification of a subset of action notation used in the compiler
generator ACTRESS [13]. In this specification the order of rules is important. We converted these rules into

10

Figure 4: Transforming the GIVE action (part I)

In the 2BIG specification the following rules define the action give which evaluates the yielder Y and returns
the resulting value D as a transient:

Y,[T,B,S]—datum(D) D#nothing
give(Y,N),[T,B,S]—[completed [N —datum(D)],[],5]

Y,[T,B,S]—datum(D) not(D#£nothing)
give(Y,N),[T,B,S|—[failed,[],[],5]

There are two side conditions in the above rules, one is the negation of the other. Transforming the side
conditions yields:

Y,[T,B,S]—datum(D) testy ,[D]—true
give(Y,N),[T,B,S]—[completed [N —datum(D)],[],5]

Y,[T,B,S]—datum(D) testy [D]— false
give(Y,N),[T,B,S]—[failed,[],[],5]

testy,[D] — D # nothing

After factorization of the above rules we have:

Y,[T,B,S]—datum(D) testy [D]—R factgive(N),[[D,S],R]—=FE
give(Y,N),[T,B,S]—F

factgive(N), [[D, S], true] — [completed, [N — datum(D)],[], S]

factgive(N), [[D, S], false] — [failed,[],[], S]

testy,[D] — D # nothing

where for each rule of the form p,e — ¢, the command p has the form a(#q,...,#;), @ is a new instruction

symbol and {z1,...,2;} = V(e') — V(e).

3.6 Generation of Term Rewriting Systems

After sequentialization the instructions of each precondition can be proved in the environment resulting from
its preceeding precondition. This property enables us to combine the instructions and generate term rewriting
rules:

Rules of the form ¢,e — ¢’ are transformed into the rewrite rule (¢;p),e — p, €, where p is a new variable
name, which will be bound to the program rest when the rule is applied.

Rules of the form

cr,e1—€] ... cp.ep—el
c,e—e!

are converted 1nto

(e;p)ye—(c15...56n3p), €1

where p is a new variable name.

Figure 3: Transforming the OR action combinator (part IT)

Now a term rewriting system is generated:
< or(A1,A2);C,[Z,[T, B, S]] > = < Ap;eonvy; facto (Aq); C[[[B, TN 2], [T, B, S]] >
< fact,r(A); C[Z,[[T,] [completed, Th, By, 51]]] > = < C,[Z,[completed, T1, By, S1]] >
< fact,.(A); C,[Z,[[T, B], [failed, [],]], S]] > = < A;C[Z,[T,B,S]] >
< convy; C[[B, T]|Z] [O Ty, By, 51]] > = < C,[Z,[[T,B],]0,T1, By, 51]]] >

Finally we apply the pass separation transformation and we get the following compiler rules:
or(A1, As) = oF(A1, A2); A1;convy; factor (Ag)
factor(A) = fact,.(A)
convy = conv

And the following abstract machine rules:

< or(Ay, A); C,[Z,[T, B, S]] > = < C[IB,T2],[T, B, S]] >

< fact,, (A);C,[Z,[[T, B], [completed, Ty, By, S1]]] > = < C,[Z,[completed, Ty, By, S1]] >
< Fact (A),C. [2.[IT, B]. [failed, [[, S]] > — <A GBS >

< vonvy; C,[[B,T]|7], [O Ty, By, 51]] > = < C[Z,][[T,],[O,Tl,Bl,Sl]]]>

rr={x: k& L(x),IneLx)UR(x):n<k
and Im :m € L(x),m >k
orm € R(x),m >k}
zo={z: k&€R(x),In:neLzx),n<k
orn €R(x) n<k
and Im :m € L(x),m >k
orm € R(x),m >k}
rz={x: kel(r) k¢ L(x)
and In € L(2)UR(x) :n < k}
Finally, if v is empty, then we do not change the stack. Note, that allocating temporary variables before
factorization would destroy common initial segments. Consider the two 2BIG rules defining the OR action
combinator in Figure 2. The left hand sides of the first precondition of both rules are equal and would be part
of the common segment. In the first rule no variable is temporary, in the second rule the variables 7" and B
are temporary. Allocating these variables in the second rule would change the left side of its first precondition
and it would no longer be part of the common segment of the rules.

3.5 Sequentialization

Next we will transform the rules, such that the environment on the right side of a precondition is equal to the
environment on the left side of the subsequent precondition. Furthermore the environment on the right side
of the last precondition is equal to the environment on the right side of the conclusion. More precisely, a rule
of the form
cpe1—€e) . cpep—el
c,e—e!

1s transformed 1nto

/ /
C1,€61 — €1 P1,€] — €2

/ / /
Pn—-1,€n—1 — €n Cny€n — €, b, e, —¢€

c,e—e!

and we add the rules

/
P1,€61 — €2

/
Pn-1,€p_1 =7 €n

p,@%—>6

Figure 2: Transforming the OR action combinator (part I)

In the 2BIG specification the following rules define the action combinator or. In the rule the environment
are composed of the transients 7', the bindings B and a single-threaded store S. Furthermore there is the

outcome status O, which can be failed or completed.

Av[T,B,S]—[completed,T1,B1,5]
or(A1,A2),[T,B,S|—[completed, T1,B1,51]

Al a[TaBaS]H[faileda[]a[]aSl] AZ,[TaBasl]H[OQaTZaBZaSQ]
Or(Al aAZ)a[TaBaS]_)[OZaTZaBZaSZ]

There are no side conditions, so the above rules are next factorized:

Ay,[T,B,S]—[04,11,B,51] Jacto, (A2),[[B1],[01,11,B1,5])]—=F
OT(Al ,Az),[T,B,S]HE

factor (A),[[B, T], [completed, Ty, By, S1]] — [completed, Ty, By, S1]

Aa[T’BaS]H[OaTlaBl aSI]
Facto, (AV[B,IT.failed,],],5]—[0,T5,B1,51]

Now the stack (Z) is introduced and temporary variables are allocated, e.g. in the first rule 7', B are allocated
on the stack, because they do not occur on the right side of the first precondition.

Za[[BaT]a[OlaTlaBl ,Sl]]]H[Z,E]

Ay a[[[TaB] |Z]a[TaBaS]]_>[[[T’B] |Z],[01,T1,Bl asl]] Jact,y (AZ)a[
or(A1,A2),[2,[T,B,S||—[%,F]

fGCtor (A)a [Za [[Ba T]a [COmpleted, Tla Bla Sl]]] - [Za [COmpleted, Tla Bla Sl]]

A,[Z,|T,B,S]]—[Z,]0,11,B1,51]]
fClCtOT (A)a[Za[[BaT]a[faileda[]a[]aS]]_)[Za[OaTlaBl aSl]]

Next these rules are sequentialized:

A ([T, Bl 2), [T, B, S]] — ([T, B]|Z],[01, 11, B1, S1]]
convy, [[[T,B]|Z],[01,Th, B1, S1]] = [Z,[[B,T],[01,T1, B1, S1lll factor(A2),1Z,[[B,T1,[01,T1, B1, S11]] = [Z, F]
OT(Al,Az),[Z,[T,B,S]]H[Z,E]

fGCtor (A)a [Za [[Ba T]a [COmpleted, Tla Bla Sl]]] - [Za [COmpleted, Tla Bla Sl]]

A,[Z,|T,B,S]]—[Z,]0,11,B1,51]]
fClCtOT (A)a[Za[[BaT]a[faileda[]a[]aS]]_)[Za[OaTlaBl aSl]]

convy, [[[T, B]|Z], [01, Tl, Bl, Sl]] — [Z, [[B, T], [01, Tl, Bl, Sl]]]

L(x) =[i:x occurs in ¢;]
R(x)=[i:x oceurs in ef]
Cx) =[x occurs in ¢;]

Now we convert the preconditions in the rule as follows: Let ¢, [s1,e1] — [sa, ea] be the k-th precondition in
the rule. Then it is converted into ¢, [[v|s1], e1] — [[v|s2], €2] where v = (21 U z2 U zs) — V(ep) and

Now C is replaced by:

seg cij,015—€ KE—e 0
c,e—e!

where e/ is a new variable name

. . / /
C1(4+1),P1(+) 7 1) - Cimy®imy 7 C1my 9
K,e1j—€)

. . / ’ /
Cn(+1),%n(+1) "7€n(j41) - CnmyCnmg €nmy 0
K,enj—el

3.3 Stack Introduction

In the next step the environments in the rules are extended by a stack. This stack will be used later to store
temporary variables'. A rule of the form

cp.e1—€] .. cpen—el
c,e—e!

1s converted into

ey [se1]—lsel] .. cnlsen]—[s,el]
¢,[s,e]—[s,e’]

where s 1s a new varlable name.

3.4 Allocation of Temporary Variables

Intuitively a variable is called temporary in a rule, if there is an intermediate environment where the variable
does not occur. The rules are transformed, such that variables are passed in the environment from the pre-
condition of their first occurrence to the precondition of their last occurrence. More precisely:

Definition: A variable X is {temporary in a rule,
1. if it does not occur in the commands of the left-hand side of the conclusion and
2. 1ts leftmost occurrence is in the right side of a precondition or the left side of the conclusion and
3. it occurs at least a second time in another precondition or in the right-hand side of the conclusion and
4. one of the following conditions is true

e there is a precondition different from the one in 2. where it occurs in the right hand side but not
in the left hand side

e there are two successive preconditions (the second being different from the one in 2.) where the
variable does not occur in the right side of the first precondition, but in the left side of the second

e it occurs in the right side of the conclusion, but not in the right side of the last precondition

Consider the rule:

cr,e1—€] ... cp,en—el
!
Co,eo—>en+1

We define for every variable name x in the rule, the lists of its right and left hand side occurrences in
environments and commands.

1 An optimization not discussed here stores the results of function calls on the stack.

Side conditions of the form not p(t1,...,%,) are converted into

a(zy, ..., 28), [y1, .-, ym] — false

where a 1s a new instruction symbol. Finally we generate a new rule

a($1a . ~~,$k), [yla . ~~,ym] —>p/(t1, .. .,tn)

where p’ is the characteristic function of the predicate p, {z1,..., 25} = V(c)UV(t1, ..., tn)and {y1,. .., ym} =
V(ty,...,tp) — V(c). Dividing the variables occurring in the side condition this way, guarantees, that only
variables occurring in the commands of the conclusion are arguments of the new instruction. The remaining
variables are passed in the environment.

3.2 Factorization

A transformation, which converts determinate inductive rules into deterministic rules has been proven correct
by daSilva [1]. The following factorization transformation can be regarded as an instance of this trans-
formation. We also extended the transformation to sets of more than two conflicting rules. Basically the
transformation computes for a set of conflicting rules, a new rule, which has the common initial precondi-
tions of the conflicting rules and a precondition, which calls a new instruction, as its preconditions. For each
conflicting rule, we add a rule defining the new instruction, which has the rest of the preconditions of the
conflicting rule as its preconditions.

By =, we will denote equality of terms and formulae modulo renaming of variables. Two rules are conflicting,
if they have the same left hand sides in their conclusions. Let C be the largest set of conflicting rules with
respect to the same left hand side:

/ /
C11,611—€1 <+ Clmy,®lmy —7€m,
¢1,e1—€)

/ : /
Cn1,en1—7€nq Cnmy s€nm; —7€hm,

/
Cn,en—e)

where ¢1,€1 = ... =a Cn, €n.
Let 0 be a renaming of variables and j be the largest integer, such that for all p,q € {1,...,n}: ¢,;6 = ¢4;0
and for all k& < j: (¢pr, €pr — e;k)ﬁ = (¢qr, €qh — ef]k)ﬁ.
Let us call the ordered set (wrt k) of the latter transitions the common segment seg. Furthermore let € be
the common term of €};,...,¢},;,i.e. E=€}; ©... 0 ¢ep;:
€1 ®ex =
e 0 if 18 = es8 are the
same variable name

f(dl,...,dn) ifelﬁzf(al,...,an),
629 = f(bl,,bn)
and d; = a; ©® b;

c(dy, ... dp) if e10 = e(aq, ..., an),
eafl = ¢(by, ..., by) and
d; = a; ©b;

x otherwise

where z 1s a new variable name

Let ¢« be a new instruction symbol and

Vi =

UZ:l V(ck(j-l-l)’ R ikmkaek(j-l—l)a cey ekmkae;g)g
Vo = V(seg,c,e)d U, _; Vick;, en;)0
V = (V1 N Vz) — V(€)9

k=1u(x1,...,2m) where z; €V

Figure 1: Overview of the Transformations

< 2BIG Specification)

l

Transform Side Conditions

l

Factorize

l

Introduce Stack

l

Allocate Temporaries

l

Sequentialize

!

Generate TRS

l

Separate Passes

< Abstract Machine)

while-loops into a compiler. We formally defined similar transformations and implemented them in Prolog.
Applying our system to the above mentioned toy language yields similar results. The goal of our work is
to apply the method to specifications of realistic programming languages and thus detecting missing links,
insufficiencies and possible optimizations of the transformations. We decided to use action notation as such
a programming language, because it offers a rich set of primitives underlying both imperative and functional
programming languages.

2 Two-Level Big-Step Semantics (2BIG)

First we give the syntax of 2BIG, a language designed to write natural semantics specifications. The language
combines the structural approach of natural semantics [8] with the idea to split general and implementation
details by the use of a separately given interpretation for function symbols [10, 14, 16].

T FT*) | e(T*) | @ x variable symbol
T = c(f*) ¢ constructor symbol
C = T f function name
C =T p predicate name
E = T
E =T
S = (,F—F
S = C,E—FE
Q@ == p(I) | not p(T7)
Jooa= 5@

I
R ==

Judgements are transitions of the form C, Fy — F or side conditions of the form p(T™) or not p(T*). We will
use the term left hand side to refer to €', F1 in a transition and the term right hand side to refer to E5. In a
rule of the form JS; the judgements above the line are called preconditions and the judgement below the line
is called the conclusion. We will denote the variables in a term ¢ by V(t). Furthermore we adopt the notation
for list constructors from Prolog. Specifications in 2BIG have to be determinate [1], i.e. whenever two rules
have conclusions, which unify with a goal at most one of the rules can be successfully applied. The restriction
to determinate rule sets is important, because determinate rule sets can be converted into deterministic ones,
i.e. at most one rule will have a conclusion, which unifies with a goal. Deterministic rules can be converted
into term rewriting rules and finally these rewrite rules can be pass separated into rewrite rules for a compiler
and an abstract machine. In the next section the transformations are discussed in more detail.

3 Generating Compilers and Abstract Machines from 2BIG Spec-
ifications

An overview of the system is given in Figure 1. Since the system transforms specifications by successively
applying transformations, we will present the transformations in the order of their application. Actually the
transformations have been devised in reversed order. Starting from the pass separation transformation we
tried to remove restrictions on the input specifications by transforming a more general class of specifications
into the class of input specifications. This process finally lead to determinate 2BIG specifications. Note, that
after each transformation we have an executable specification again.

3.1 Transformation of Side Conditions

This transformation converts side conditions into judgements. Let ¢, e — €’ be the conclusion of a rule. Side
conditions of the form p(t,...,%,) are converted into

a(zy, ..., 2x), Y1, ..., Ym] — true

Automatic Generation of a Compiler and Abstract Machine for
Action Notation

(Preliminary Results)

Stephan Diehl
FB 14 - Informatik, Universitat des Saarlandes,

Postfach 15 11 50, 66041 Saarbriicken,
GERMANY | diehl@cs.uni-sb.de

Abstract

We present a system, that generates a compiler and abstract machine from a Natural Semantics
specification of a programming language. First an overview of the system and the transformations
involved are given. Then we apply the system to a specification of Actress Action Notation. As an
example we trace the transformations of rules for an action combinator. The resulting compiler and
abstract machine can be used as a basis for a compiler generator based on Action Semantics. Finally
we discuss future work.

Contents
1 Introduction 2
2 Two-Level Big-Step Semantics (2BIG) 3
3 Generating Compilers and Abstract Machines from 2BIG Specifications 3
3.1 Transformation of Side Conditions 3
3.2 Factorization 5
3.3 Stack Introduction 6
3.4 Allocation of Temporary Variables 6
3.5 Sequentialization 8
3.6 Generation of Term Rewriting Systems L L 9
3.7 Pass Separation 10
4 Transforming a 2BIG specification of Action Notation 10
5 Future Work 12
6 Conclusions 13

1 Introduction

Abstract machines provide an intermediate target language for compilation. First the compiler generates code
for the abstract machine, then this code can be further compiled into real machine code or it can be inter-
preted. By dividing compilation into two stages abstract machines increase portability and maintainability of
compilers. Usually abstract machines are designed in an ad-hoc manner often based on experience with other
abstract machines. But also some systematic approaches have been investigated. One of those 1s based on
partial evaluation of example programs [9, 15, 3]. Another approach is to use pass separation transformations
[7]. John Hannan [6] introduced a pass separation transformation, which splits a set of term rewriting rules
representing an abstract interpreter into two sets of term rewriting rules: the first set represents a compiler
into an abstract machine language, the second set represents an abstract machine. Since rewrite rules are a
poor language to specify interpreters, Stephen McKeever [11] extended Hannan’s transformations to determi-
nate inductive rules. In McKeever’s framework the factorization algorithm of Fabio daSilva [1] plays a central
role. By hand McKeever transformed a natural semantics specification for an imperative toy language with

Automatic Generation
of a Compiler and an Abstract Machine
for Action Notation

Stephan Diehl
Technischer Bericht A 03/95

FB 14 - Informatik
Universitat des Saarlandes, Postfach 15 11 50
66041 Saarbricken , GERMANY

Phone: 4+4-49-681-3023915
diehl@cs.uni-sb.de

