Formula Layout

R. Heckmann R. Wilhelm

Technischer Bericht Nr. A 07 / 95
Reinhold Heckmann, Reinhard Wilhelm

FB 14 — Informatik,
Universitat des Saarlandes
Postfach 151150

D-66041 Saarbricken
Germany

e-mail: {heckmann,wilhelm}@cs.uni-sb.de

Formula Layout

Reinhold Heckmann Reinhard Wilhelm

Fachbereich Informatik, Universitat des Saarlandes

Saarbriicken, Germany

{heckmann,wilhelm}@cs.uni-sb.de
July 3, 1995

Abstract

Both the quality of the results of TEX’s formula layout algorithm and the complexity of its
description in the TpXbook [1] are hard to beat. The algorithm is (verbally) described as an
imperative program with very complex control flow and complicated manipulations of the data
structures representing formulae. In a forthcoming textbook [3], we describe TEX’s formula layout
algorithm as a functional program transforming mlist-terms into boz-terms. This transformation

is given in this paper.

1 Introduction

The quality of the results of TEX’s formula layout algorithm are convincing. However, any attempt to
understand the reasons for that leads to deep frustration when Knuth’s description of the algorithm
from the TpXbook [1] is used. In an attempt to understand this problem, one has to cleanly separate
the reasons for the lack of understandability.

1. The problem may have a nature that does not allow for a solution which is easily described in

some readable way. Not much can be done about that.

2. The algorithm used to solve the problem may not be the simplest possible, but may be tuned
for efficiency or optimality of the result. Here, a clean separation between principles of a space
of solutions and the optimizations applied would help the interested reader.

3. The context of the chosen algorithm may enforce a bad design. Here, a new describer may take
the freedom to abstract from this context.

4. The description may not be the best possible for the given algorithm. This is a particularly
favorable situation for an attempt to explain an interesting subject better.

Knuth’s description of formula layout is an imperative program with very complex control flow and
complicated manipulations of the data structures representing formulae. The ‘programming language’
i1s English prose with some formal fragments. In this paper, we present a new description using the
pure functional language Miranda! [2]. The use of a functional language gives a completely new flavor
to the description. Of course, the mere fact that we use a concrete programming language instead of

English phrases adds rigor and exactness to the exposition.

Our criticism and attempt to improve the presentation of the formula layout algorithm of TEX
mainly touches points 2 — 4 above. In Section 2, we consider the input of the layout algorithm, i.e.,
the internal representation of formulae. In 2.1, we discuss Knuth’s original data structure. In our

1Miranda is a trademark of Research Software Ltd.

opinion, it is misconceived. Many difficulties in Knuth’s description result from the design of this data
structure. In 2.2, we propose a new data structure for formulae with a clean and simple design.

In Section 3 we present some more details which influence formulalayout: the styles of formulae and
subformulae (which communicate information about their context), the representation of characters,
and the layout parameters which control the positions of subformulae. Knuth’s account of these things
is very concrete. In contrast, we present an abstract interface which hides the details of font table
organization, and makes clear how the information is used.

In Section 4, we consider the output of the layout algorithm, boz terms. Knuth’s description of
this data structure and its operations is particularly vague. We try to model Knuth’s intentions by a
Miranda data type and functions defined in Miranda.

In Section 5, we present a bunch of specialized functions which translate subformulae of various
kinds into box terms. In Section 6, we deal with the translation of whole formulae, 1.e., the recursive
descent to subformulae and the selection of the appropriate specialized subformula functions.

We give an honest estimation of the improvements in the conclusion (Section 7). Of course, our
functional solution is not simpler than the problem admits. Formula layout is an inherently difficult
problem; not in terms of computational, but of algorithmic complexity. There are many different
kinds of mathematical formulae, whose layout is governed by tradition and aesthetics. Algorithms for
formula layout have to distinguish many cases and pay attention to lots of little details.

2 Internal Representation of Formulae

2.1 The Original TEX-Representation

TEX reads a formula specification from the input and converts it into an internal representation, a
math list. A math list is a sequence of math items.

According to the description in the TgXbook [1, page 157], a math item is an atom, a horizontal
space, a style command (e.g., \textstyle), a generalized fraction, or some other material which we
do not consider here for simplification.

Atoms have (at least) three parts: a nucleus, a superscript, and a subscript. Each of these fields
may be empty, a math symbol, or a math list. There are thirteen kinds of atoms, some of which
with additional parts. Eight atom kinds mainly regulate the spacing between two adjacent atoms: a
relation atom such as ‘=" 1is surrounded by some amount of space, a binary atom such as ‘+’ by less
space, and an ordinary atom such as ‘z’ by no extra space at all. The remaining five kinds of atoms
have a more serious semantics. An overline atom for instance is an overlined subformula.

The formula (z; + y)m for instance may be specified as $(x_i+y) "{\overline{n+1}}$. In
internal form, it is represented by a math list consisting of five atoms: an ‘Open’-atom with nucleus
‘(" (and empty superscript and subscript); an ‘Ord’-atom with nucleus ‘@’, empty superscript, and
subscript 4’; a ‘Bin’-atom with nucleus ‘4+’; an ‘Ord’-atom with nucleus ‘y’; and finally a ‘Close’-atom
with nucleus ¢)’; whose superscript is a math list consisting of a single ‘Over’-atom, whose nucleus is
a math list of three atoms corresponding to n + 1.

This internal representation deserves some criticism. The superscript and subscript fields are
empty in most cases; there should really be superscript and subscript constructors. The thirteen
kinds of atoms combine two completely different aspects: a classification needed to control spacing,
and the adjunction of meaningful constructors. These two aspects should not be mixed into a single
concept. Interestingly, TEX’s layout algorithm internally tries hard to distinguish these aspects, as we
explain by two examples.

Overline atoms are handled during a first pass through the formula. The overline rule is added to
the corresponding subformula, and afterwards, it is transformed into an ‘Ord’ atom since the spacing

of overline atoms and ‘Ord’ atoms is identical. The actual inter-atom spaces are added in a second
pass through the formula.

Fractions are math items, but not atoms. Their layout is computed during the first pass of the
algorithm, and afterwards, they are transformed into ‘Inner’ atoms. The kind ‘Inner’ controls the
spacing around fractions in the second pass of the algorithm.

Thus, we see that the mixture of different concepts into the same notion leads to the need to
destructively transform the data structure of formulae which makes TEX’s layout algorithm hard to
understand.

2.2 An Alternative Representation Defined in Miranda

To avoid the problems mentioned above, we completely redesigned the internal representation of

formulae. The following definition is given in Miranda.
As in the original representation, formulae are math lists (mlist) consisting of math items (mitem).
mlist == [mitem]
Mitems are defined as the elements of a constructor type. We do not distinguish between atoms and
non-atoms, and restrict ourselves to semantically meaningful constructors.
mitem ::=

Sym class mathchar [l a single symbol with its class
MathSpace num | space (in relative math units)
Over mlist [l overlined subformula
Under mlist [l underlined subformula
Frac mlist mlist || fraction with numerator and denominator
Sup mitem mlist [| formula with superscript
Sub mitem mlist [l formula with subscript
|| with superscript and subscript
[l from \mathord{ }, \mathop{ } etc

[l from \displaystyle etc

SupSub mitem mlist mlist
Class_cmd class mlist
Style_cmd style

Group mlist [l a nested group, indicated by {...}

For reasons of simplicity, we omitted some of TEX’s possibilities. To cover the full power of
TEX formulae, additional constructors would be needed for left and right big delimiters, for accented
characters, for roots (\/§+ \75), for vertically centered subformulae, etc. They don’t offer principally
new problems, although the treatment of accented characters and roots in [1] is particularly hard
to grasp. The constructor Frac represents a special case of TEX’s generalized fractions; for a full
treatment, more argument fields would be needed.

To complete our description, we have to define the types class, mathchar, and style. The
type mathchar is defined in Section 3.2, and style in Section 3.1. The type class enumerates nine
constructors:

class ::= Ord | Op | Bin | Rel | Open | Close | Punct | Inner | None
The first eight classes correspond to those atom kinds which control spacing. The ninth class None is

used for mitems which are not atoms in the original TEX representation, and are never transformed
into atoms.

Using our representation, the formula (x_i+y) "{\overline{n+1}} is internally described as the
following term:
[Sym Open °(°,

Sub (Sym Ord ’x’) [Sym Ord °i’],

Sym Bin ’+’,

Sym Ord ’y’,

Sup (Sym Close ’)’) [Over [Sym Ord ’n’, Sym Bin ’+’, Sym Ord ’1’]1]

The internal representation is created by a parser starting from the external formula description.
We have to assume that this parser is a bit more powerful than the one employed in the TEXbook. It
has to correctly transform the input string into our data structure obeying the subformula structure.
Note that the nucleus of Sup etc. needs grouping if it is not a single symbol. (The nucleus is an mitem
instead of an mlist, since otherwise, class computation and spacing would fail.)

When reading a character or mathematical symbol, the parser knows about the pre-assigned class
of this symbol, e.g., Rel for ‘=" and Open for ‘(". This class is stored in the internal representation as
the first argument of the Sym constructor. As the biggest difference to the original TEX-situation, we
assume that the parser is able to recognize binary symbols which are used in non-binary contexts, e.g.,
the plus symbol in f*. The class of these symbols should be Ord instead of Bin. In the original TEX-
algorithm, atoms of kind ‘Bin’ change their kind into ‘Ord’ depending on the kinds of neighboring
atoms during the computation of inter-atom spaces. This solution could also be programmed in
Miranda, but would make function domlist in Section 6.3 overly complex.

In contrast to the original description, classes are not stored with all mitems. The reason is that
in almost all cases, the class of an mitem can be derived mechanically from its structure. The only
exceptions are symbols which are classified by some external declarations, and the Class_cmd items
which come from explicit class assertions in the formula description (by the commands \mathord,
\mathop etc.).

The following function computes the class of every subformula:

class_ :: mitem -> class

class_ (Sym cl mc) = cl [l the class is a symbol property

class_ (MathSpace w) = None || spaces are not atoms, and never will be
class_ (Over ml) = 0Ord [l Over-atoms are changed into Ord-atoms
class_ (Under ml) = 0Ord | Under-atoms are changed into Ord-atoms
class_ (Frac num den) = Inner || fractions become Inner-atoms

class_ (Sup mi sup) = class_ mi

class_ (Sub mi sub) = class_ mi

class_ (SupSub mi sup sub) class_ mi

class_ (Class_cmd ¢l ml) = cl [l class is explicitly set
class_ (Style_cmd st) = None || style commands are not atoms
class_ (Group ml) = 0Ord [l this is an Ord-atom in TeX

In the comments, we tried to explain the reason for this rule. For instance, Over-items are classified
as Ord because they are transformed into ‘Ord’-atoms in the course of TEX’s layout algorithm.

3 Additional Details

In this section, we present some additional detail information needed for the formula layout: the styles
of formulae and subformulae, the representation of characters, and the layout parameters controlling
the positions of subformulae.

3.1 Formula Styles

The layout of formulae and subformulae in TEX documents depends on a style parameter. There are
two kinds of basic styles: formulae may appear on a separate line by their own (display style) or as

part of a line of text (text style). Consider the following displayed formula

n 2

ZAH + yzi—izz

ji=1

y;’%. We observe that in display style, the sum symbol is bigger,
and the limits of the summation are placed vertically below and above it (this is called limit position).

and its inline counterpart Z?Il AV 4

In text style however, the position of the limits is to the right of the symbol. All superscripts are set
in styles with smaller characters and spaces. The same is true for the constituents of the fraction in
text style. Notice also how the position of superscripts depends on their context, i.e., on the style of
the corresponding subformula. In the denominator, their position is lower than in the numerator.

In the TpXbook [1], there are eight styles altogether: display style D, text style T, script style S,
script-seript style S5, and four ‘cramped’ styles D', TV, 7, and $S’. In cramped styles, which are used
for denominators, superscripts are placed in a lower position than in the corresponding uncramped
styles. In analyzing the usage of these styles, it turned out that they may be regarded as pairs of
a main style and a Boolean value ‘cramped’. The two components of the pairs are independently
calculated and used, so that it is easy to separate them completely. This is done in our Miranda
program. Hence, we have only four styles:

style ::= D | T | S| SS

Function script computes the style for subscripts and superscripts from the current style, and
fract calculates the styles of numerators and denominators.

script, fract :: style -> style

script D = S; script T = S; script S = SS; script SS = SS
fract D = T; fract T = S; fract S = SS; fract SS = SS

3.2 Math Characters and Output Characters

Characters from a formula description do not yet completely determine the characters which appear
in the printed document. The formula description x~x for instance yields the printed formula z%,
where the two occurrences of # appear in different sizes. The reason is that the first x 1s set in text
style T, whereas for the second one, script style S is used.

In our description, we model this behavior by using two different types of characters and a style-
dependent transfer function. For characters in the internal representation, whose appearance is not yet
determined, we use type mathchar, whereas type outchar is used for characters in the result of the
formula layout. The transfer function is setchar :: style -> mathchar -> outchar. Although
the two types and setchar could be specified further following the hints in the TEXbook, we refrain
from doing it since a complete definition would be difficult and hardly interesting.

For formula layout, we need some information about the size and form of characters. The height
of a character 1s the distance from its top end to the base line; e.g., ‘a’ and ‘g’ have the same height,
and ‘f’ has a bigger one. The depth is the distance from the base line to the bottom end; e.g., ‘@’
has depth 0, whereas ‘g’ has non-zero depth. The widith is the horizontal size, and the slant gives
information how far the character is slanted to the right.

These character informations are given by the four functions char height, char_depth, char_width,
and char_slant, all with type outchar -> dim, where dim is the type of dimensions, i.e., amounts
of length, measured in basic units. We may simply assume dim == num. The four functions are left
unspecified here; in practice, their values are read off from the appropriate font tables.

3.3 Layout Parameters

The exact layout of a formula depends on some layout parameters. They control the position of
superscripts, the distance between numerator and fraction stroke, the thickness of the stroke, etc.

In the TEXbook, the layout parameters are attached to the fonts used to make formulae. Since
the choice of the font depends on the style, we incorporate the layout parameters as functions of type
style -> dim. The function names are (abbreviations of) the symbolical names given in the table in
[1, page 447].

Height of ‘2’ in current font: x_height

Width of ‘M’ in current font: quad

Parameters for numerators: numl num2

for denominators: denomi denom2

for superscripts: sup_drop supl sup2 sup3
for subscripts: sub_drop subl sub2

for limits at large operators: big_opl through big_op5
Default thickness of rules: rule_thickness

Distance from ‘axis’ to base line: axis_height

The axis is the line where fraction strokes sit on. Consider e.g., x + £. The base line is at the
bottom end of the ‘z” and the ‘4.

Some font parameters are used in special contexts only. This is realised by three auxiliary functions.

num_level, den_level :: style -> dim

num_level D = numl D; num_level st = num2 st

den_level D = denoml D; den_level st = denom2 st

sup_level :: style -> bool -> dim

sup_level D False = supl D || Display style, not cramped
sup_level st True = sup3 st [l all cramped styles

sup_level st cr = sup2 st [l style T, S, or SS; mnot cramped

In addition to the style-dependent layout parameters, there is a constant scriptspace of type dim.

4 The Target Representation: Box Terms

During formula layout, an input term of type mlist is translated

into a term of type box. Boxes are rectangles whose edges are
parallel to the page edges. Compound boxes are built from smaller
boxes, and atomic boxes contain symbols or are filled with black.
Each box has a horizontal base line. It has the reference point
of the box at its left end. Boxes have heights, h, depths, d, and
widths, w. These dimensions may be negative. This is the case for

e]

boxes which are shifted upwards or downwards beyond their base |

line and for boxes which represent negative distances.

In the TEXbook, boxes and their properties are described verbally. At first glance, the size
attributes of a compound box seem to be totally determined by the sizes of its constituents. Later
however, 1t seems as if the size dimensions of a box may be arbitrarily changed. For, the description
of the formula layout contains phrases such as “increase the depth of the box by”, “add ... to the
width of the box”, or “construct a box with depth ... and height ...”.

Here, we represent boxes as a Miranda data type. The operations on boxes are formalized. The size

dimensions of our boxes are determined by their structure. We tried to catch the intended meaning
of the size manipulations in [1] by adding space boxes without visible content.

box ::= HSpace dim | horizontal space with width

VSpace dim dim [l vertical space with height and depth
[l black box with height, depth, and width

| | character box

Rule dim dim dim
Chr outchar
HBox [box]

Vdn [box]

Vup [box] || vertical 1list of boxes, upward

| | horizontal list of boxes

|
|
|
|
|
| || vertical list of boxes, downward

Their are four kinds of atomic boxes and three kinds of compound boxes. An HBox is the horizontal
concatenation of a list of boxes, ordered from left to right. The boxes are concatenated such that their
base lines become adjacent. The reference point of an HBox is the one of its leftmost constituent. An
HBox may be empty.

Both Vdn and Vup boxes represent vertical concatenations of boxes. In both cases, the concatena-
tion is done so that the reference points of the constituent boxes are vertically aligned. In Vdn boxes,
the constituents are ordered from top to bottom. The reference point of a Vdn box is the reference
point of its topmost component. In contrast, the components of a Vup list are ordered from bottom
to top. The reference point of a Vup box is the one of its lowest component. Thus, in both cases, the
reference point of the compound box is the one of the head of its list of components. Both Vdn and
Vup lists should never be empty.

The Dimensions of a Box

Height, depth, and width of a box are uniquely defined from its structure. We call the sum of height
and depth vsize.

height, depth, width, vsize :: box -> dim

vsize box = height box + depth box

height (HSpace w) = 0; height (VSpace h d) = h; height (Rule h d w) = h
height (Chr ch) = char_height ch

height (HBox boxl) = max0 (map height boxl) |l as max, but max0 [1 =0
height (Vdn (top : rest)) = height top

height (Vup (bot : rest)) = height bot + sum (map vsize rest)

depth (HSpace w) = 0; depth (VSpace h d) = d; depth (Rule h d w) = d

depth (Chr ch) = char_depth ch

depth (HBox boxl) = max0 (map depth boxl)

depth (Vdn (top : rest)) = depth top + sum (map vsize rest)

depth (Vup (bot : rest)) = depth bot

width (HSpace w) = w; width (VSpace h d) = 0; width (Rule h d w) = w

width (Chr ch) = char_width ch
width (HBox boxl)
width (Vdn boxl) max (map width boxl)
width (Vup boxl) = max (map width boxl)

sum (map width boxl)

For the sake of efficiency, all three dimensions could be stored at HBox, Vdn, and Vup constructors,
in order to avoid costly recomputations (memoization).

Some Operations on Boxes

hconc concatenates two boxes to form an HBox. If one of them is an HBox already, nesting of HBoxes

1s avoided.

hconc :: box -> box -> box

hconc (HBox boxlil) (HBox boxl2) = HBox (boxlil ++ boxl12) || list concatenation
hconc box1 (HBox box12) = HBox (boxl : boxl2)

hconc (HBox boxlil) box2 = HBox (boxlil ++ [box2])

hconc box1 box2 = HBox [boxl , box2]

right moves a box to the right by putting an HSpace box in front of it.

right :: dim -> box -> box
right 0 box = box
right 1 box = (HSpace 1) $hconc box [l $hconc = hconc as infix operator

center centers a given box inside a space of given width. It uses right.

center :: dim -> box -> box; center w box = right ((w - width box)/2) box
center is only called with w > width box. It does not matter that there is no HSpace to the right of
the box since centered boxes are placed in vertical lists where widths are maximized.

The next operation extends a box to the right (“increases its width”).

extend :: dim -> box —> box

extend 0 box = box; extend 1 box = box $hconc (HSpace 1)

A box is raised by increasing its height and decreasing its depth; the vsize does not change. This is
done by vertically adjoining an empty box of vsize 0, but non-zero height and depth (one of these
must be negative).

raise :: dim —-> box -> box
raise 0 box = box
raise 1 box = Vup [VSpace (1 - d) (d - 1), box] where d = depth box

To verify raise, show the two equations
height (raise 1 box) = height box + 1 depth (raise 1 box) = depth box - 1.
Instead of Vup, Vdn could be used equally well (with a different argument).

Finally, we define an operation vlist which takes three arguments: a box B, a list of boxes in
upward order which goes above B, and a list of boxes in downward order which goes below B. The
reference point of the whole thing is that of B.
vlist :: box —> [box] -> [box] -> box
vlist box up_list dn_list = Vdn (Vup (box : up_list) : dn_list)
v1list could equally well be specified the other way round: ... Vup (Vdn (box:dn_list) : up_list).

5 Setting of Subformulae

In the sequel, we show how subformulae of the various kinds are translated into box terms. Later, we
combine these functions to a function that computes the layout of arbitrary mitems.

5.1 Symbols and Spaces

Symbols (mathchars) are transformed into character boxes by choosing the appropriate output char-
acter (function setchar of Section 3.2) and putting it into a box (Chr) which is vertically centered
around the axis in some cases (vcenter). The result is not only the box, but also the slant (‘italic
correction’) of the produced character. This information is needed later.

set_sym :: style -> class -> mathchar -> (box, dim)
set_sym st cl mc = (vcenter (Chr ch), char_slant ch), if <cl = Op
= (Chr ch , char_slant ch), otherwise
where ch = setchar st mc
vcenter :: style -> box -> box
vcenter st box = raise (axis_height st - (height box - depth box)/2) box

When spaces are set, their size has to be transformed from style-dependent mathematical units
into an absolute dimension.

set_space :: style —> num -> box; set_space st ml = HSpace (ml * quad st / 18)

5.2 Setting Overlined and Underlined Subformulae

We assume that the subformula is already translated into a box. The thickness of the line, th, depends
on the style. Between the line and the formula, there is a gap of size 3th, and above the overline / below
the underline, there is white space of size th. Since the reference point of the whole thing should be
that of the subformula, we use Vup for overlines and Vdn for underlines. In both cases, the list of
constituent boxes starts with the subformula box, followed by the distance to the line, the line itself,
and the white space beyond 1it.

set_over, set_under :: style -> box —-> box

set_over st box = Vup [box, VSpace (3 # th) 0, Rule th 0 w, VSpace th 0]
where w = width box; th = rule_thickness st

set_under st box = Vdn [box, VSpace (3 # th) 0, Rule th 0 w, VSpace th 0]
where w = width box; th = rule_thickness st

5.3 Setting of Fractions

Numerator and denominator are already given as boxes. The desired vertical position of the numerator
is given by num_level relative to the base line. However, the fraction stroke will be positioned at the
axis, an invisible line somewhere above the base line. Thus, we compute the position num_pos of
the reference point of the numerator relative to the axis. From this, the actual distance num_ dist
between the bottom edge of the numerator and the top edge of the stroke 1s calculated. There is a
style-dependent minimal distance min_dist. If num_dist is too small, it is increased up to min_dist.
The denominator is handled analogously. Next, both numerator and denominator are centered to the
maximum of their width. Then, we form a vertical list whose reference point is at the middle of the
fraction stroke using vlist, and finally raise the resulting box to the level of the axis.
set_frac :: style -> box -> box —-> box
set_frac st num den =

raise ax fracbox

where ax = axis_height st; th = rule_thickness st
num_pos = num_level st - ax; den_pos = den_level st + ax
num_dist = num_pos - depth num - th/2
den_dist = den_pos - height den - th/2
min_dist = 3 % th, if st =D

= th, otherwise

num_dist’ = num_dist $max2 min_dist | maximum as infix operator
den_dist’ = den_dist $max2 min_dist

w = (width num) $max2 (width den)

num_list = [VSpace num_dist’ O, center w num]

den_list = [VSpace den_dist’ 0, center w den]

fracbox = vlist (Rule (th/2) (th/2) w) num_list den_list

5.4 Superscripts and Subscripts in Limit Position

The following functions deal with superscripts and subscripts in the limit position, 1.e., vertically above

(o]

and below the nucleus asin > . (In the nolimit position, they are to the right of the nucleus.) Function
i=1

lim sup deals with the case of superscripts only, 1im_sub is called if there are only subscripts, and

lim_supsub is for joint superscript /subscript combinations. We assume that nucleus, superscript,
and subscript are already given as boxes.

In limit position, superscripts are placed above the nucleus in some distance, and white space is
added above them. Superscript and nucleus are first centered to their maximum width. Afterwards,

the superscript is shifted to the right by some amount shift which depends on the slant of the nucleus.
1
This is visible in e.g., [. Subscripts are handled symmetrically.
1
To partially reduce the three functions to two, we use two auxiliary functions mksup and mksub

which transform superscripts and subscripts into a list of boxes. For superscripts, the list is ordered
upward, and for subscripts downward.

mksup :: style -> dim -> box -> [box]

mksup st shift sup =
[VSpace dist 0, right shift sup, VSpace space 0] [l upward list
where dist = (big_opl st) $max2 (big_op3 st - depth sup)
space = big_opb st
mksub :: style -> dim -> box -> [box]
mksub st shift sub =
[VSpace dist 0, right (-shift) sub, VSpace space 0] | downward list
where dist = (big_op2 st) $max2 (big_op4 st - height sub)

space = big_opb st

In the actual functions, the appropriate auxiliary functions are called and their results are vertically
combined.

lim_sup :: style -> dim -> box -> box -> box
lim_sup st shift nuc sup =
Vup (nuc’ : sup_list)
where w = (width sup) $max2 (width nuc)
sup’ = center w sup; nuc’ = center w nuc
sup_list = mksup st shift sup’
lim_sub :: style -> dim -> box -> box -> box
lim_sub st shift nuc sub =
Vdn (nuc’ : sub_list)
where w = (width nuc) $max2 (width sub)
nuc’ = center w nuc; sub’ = center w sub
sub_list = mksub st shift sub’
lim_supsub :: style -> dim -> box -> box -> box -> box
lim_supsub st shift nuc sup sub =
vlist nuc’ sup_list sub_list
where w = (width sup) $max2 (width nuc) $max2 (width sub)
sup’ = center w sup; nuc’ = center w nuc; sub’ = center w sub
sup_list = mksup st shift sup’
sub_list = mksub st shift sub’

5.5 Superscripts and Subscripts in Nolimit Position

Here, the superscripts and subscripts are put to the right of the nucleus as in) ;°,. Their exact
position depends on the fact whether the nucleus is a “character box, possibly followed by a kern”.
This information is passed as a Boolean to the functions nolim_sup, nolim_sub, and nolim_supsub.
The third function has an additional argument: the slant of the nucleus, which is used to move the
superscript to the right. This is visible in e.g., PZ. The functions involving superscripts need the
information whether the style is ‘cramped’.

There are several auxiliary functions to compute the positions of superscripts and subscripts. For
a (partial) motivation for the formulae appearing in these functions, we refer to the TpXbook [1].

10

sup_position :: style —> bool =-> bool -> dim —> dim -> dim

sup_position st cramped is_char hnuc dsup =
sup_pos $max2 sup_level st cramped [l hnuc = height nuc
$max2 dsup + abs (x_height st)/4 [l dsup = depth sup
where sup_pos = O, if is_char

= hnuc + sup_drop (script st), otherwise

sub_positionO :: style —> bool -> dim -> dim

sub_position0 st True dnuc = 0 [l dnuc = depth nuc
sub_positionO st False dnuc = dnuc + sub_drop (script st)
sub_positionl :: style —> bool -> dim -> dim —-> dim

sub_positioni st is_char dnuc hsub = [l hsub = height sub

sub_position0 st is_char dnuc
$max2 subl st
$max2 hsub - 4 * abs (x_height st) / 5

sub_position2 :: style —> bool -> dim -> dim
sub_position2 st is_char dnuc =

sub_positionO st is_char dnuc $max2 sub2 st

The cases where there are only superscripts or only subscripts are relatively simple. Note that
every ‘script’ is extended to the right by scriptspace.

nolim_sup :: style -> bool -> bool —-> box -> box -> box
nolim_sup st cramped is_char nuc sup =
nuc $hconc (raise sup_pos sup’)
where dsup = depth sup; hnuc = height nuc
sup_pos = sup_position st cramped is_char hnuc dsup
sup’ = extend scriptspace sup
nolim_sub :: style -> bool -> box -> box -> box
nolim_sub st is_char nuc sub =

nuc $hconc (raise (-sub_pos) sub’)

where dnuc = depth nuc; hsub = height sub
sub_pos = sub_positionl st is_char dnuc hsub
sub’ = extend scriptspace sub

The case of a joint superscript /subscript combination is much more difficult. First, the desired
position sup_pos of the superscript is computed. It is the distance from the reference point of the
superscript to the base line. From it, the distance sup_dist between the bottom edge of the superscript
and the base line is derived. The subscript is handled analogously. There is a minimum value
min_sup for sup_dist, and a minimum value min_dist for the total distance sup_dist + sub_dist
between superscript and subscript. There are correction values corr_sup and corr_dist if these
minimum values are not reached. The correction of sup_dist is done by raising both superscript and
subscript, i.e., adding corr_dist to sup_dist and subtracting it from sub_dist. The correction of
sup_dist + sub_dist is done by lowering the subscript, i1.e., adding corr_dist to sub_dist.

nolim_supsub :: style -> bool -> bool -> dim -> box -> box —-> box -> box
nolim_supsub st cramped is_char slant nuc sup sub =
nuc $hconc sup_sub
where dsup = depth sup; hsub = height sub
hnuc = height nuc; dnuc = depth nuc
sup_pos = sup_position st cramped is_char hnuc dsup
sub_pos = sub_position2 st is_char dnuc
sup_dist = sup_pos - dsup; sub_dist = sub_pos - hsub

11

min_dist = 4 * rule_thickness st

corr_dist correction (sup_dist + sub_dist) min_dist

min_sup = 4 * abs (x_height st) / 5

corr_sup = correction sup_dist min_sup

sup_dist’ = sup_dist + corr_sup

sub_dist’ = sub_dist + corr_dist - corr_sup

sup’ = right slant (extend scriptspace sup)

sub’ = extend scriptspace sub

sup_sub = vlist (VSpace sup_dist’ sub_dist’) [sup’] [sub’]

The amount of the necessary correction values is computed by the following function:

correction :: num -> num —> num
correction value min_value = min_value - value, if value < min_value
= 0, otherwise

The definitions of sup_dist’ and sub_dist’ can be algebraically simplified to

sup_dist’ = sup_dist $max2 min_sup
sub_dist’ = ((sup_dist + sub_dist) $max2 min_dist) - sup_dist’

After that, corr_sup, corr_dist, and the function correction are no longer needed. We did not
directly introduce the simplified definitions since they are hard to explain by themselves.

6 From Subformulae to Whole Formulae

6.1 Some Auxiliary Functions

In some cases, white space is appended to a symbol to compensate for its slant (italic correction).
it_corr :: (box, dim) —-> box; it_corr (box, slant) = extend slant box
The function 1im_ computes whether superscripts and subscripts are placed in limit position.

lim_ :: style -> class -> bool
lim_ D Op = True; lim_ st ¢l = False
Actually, this is a bit simplified since 1t only realizes TEX’s default rule. In full TEX, there are

commands \1imits and \nolimits which may be appended to large operators. The default rule is
only applied if none of these commands is 1ssued.

6.2 Translation of Math Items

Math items are translated by the function set mitem. For the nucleus of formulae with superscripts
or subscripts, we need a special version of set mitem, called set nuc, which not only returns a box,
but also the information whether its argument was a single character, and if so, its slant (the value
needed for italic correction).

set_nuc :: style -> bool -> mitem -> ((box, dim), bool)
set_nuc st c¢cr (Sym ¢l mc) = (set_sym st cl mc, True)

set_nuc st cr mitem ((set_mitem st cr mitem, 0), False)

Function setmitem deals with the various cases of mitems. It handles the recursive setting
of subformulae and then passes control to specialized functions. Its Boolean parameter is the bit
indicating cramped styles. Notice that denominators, overlined formulae, and subscripts are always
cramped. Other subformulae inherit the cramp status of their context.

12

set_mitem :: style -> bool -> mitem —> box

set_mitem st cr (Sym cl mc) = it_corr (set_sym st cl mc)
set_mitem st cr (MathSpace mw) = set_space st mw

set_mitem st cr (Over ml) = set_over st (set_mlist st True ml)
set_mitem st cr (Under ml) = set_under st (set_mlist st cr ml)

set_mitem st cr (Frac num den)
= set_frac st numbox denbox

where st’ = fract st; numbox set_mlist st’ c¢r num

denbox set_mlist st’ True den

set_mitem st cr (Sup nuc sup)

= lim_sup st (slant/2) boxnuc’ Dboxsup, if lim
= nmnolim_sup st cr is_char boxnuc’ boxsup, otherwise
where lim = lim_ st (class_ nuc)
((boxnuc, slant), is_char) = set_nuc st cr nuc
boxnuc’ = it_corr (boxnuc, slant)
boxsup = set_mlist (script st) cr sup

set_mitem st cr (Sub nuc sub)
= lim_sub st (slant/2) boxnuc’ boxsub, if lim

= mnolim_sub st is_char boxnuc boxsub, otherwise
where 1lim = 1lim_ st (class_ nuc)
((boxnuc, slant), is_char) = set_nuc st cr nuc
boxnuc’ = it_corr (boxnuc, slant)
boxsub = set_mlist (script st) True sub
set_mitem st cr (SupSub nuc sup sub)
= lim_supsub st (slant/2) boxnuc’ Dboxsup boxsub, if lim
= nolim_supsub st cr is_char slant boxnuc boxsup boxsub, otherwise
where 1lim = 1lim_ st (class_ nuc)
st’ = script st
((boxnuc, slant), is_char) = set_nuc st cr nuc
boxnuc’ = it_corr (boxnuc, slant)
boxsup = set_mlist st’ cr sup
boxsub = set_mlist st’ True sub
set_mitem st cr (Class_cmd cl ml) = set_mlist st cr ml
set_mitem st cr (Group ml) = set_mlist st cr ml

The case of the Style_cmd constructor is missing since it is handled by set 1ist presented below.

6.3 Translation of Math Lists

In the TEXbook, there is a second pass during formula layout where appropriate spaces are inserted
between adjacent atoms, ignoring any non-atoms in between.

Here, insertion of inter-atom spaces is done by the function set mlist which translates math lists
into boxes. It does its job by calling an auxiliary function domlist with an additional class argument.
This argument remembers the class of the previously set item, ignoring items of class None. At the
beginning of the math list, the remembered class is None.

set_mlist :: style —> bool -> mlist —> box
set_mlist st cr ml = do_mlist st cr None ml

Function domlist handles style commands, inserts inter-atom spaces (set_space), and calls set mitem
to translate items into boxes.

do_mlist :: style -> bool —-> class -> mlist -> box

13

do_mlist st cr old []
do_mlist st cr old (Style_cmd st’ : ml)

HBox []
do_mlist st’ c¢cr old ml

do_mlist st cr old (mi : ml) =
boxmi $hconc rest

where boxmi = set_mitem st cr mi; new = class_ mi

rest do_mlist st c¢r old ml, if new = None

set_space st (space st old new) $hconc
do_mlist st c¢r new ml, otherwise

The auxiliary function space :: style -> class -> class -> numcomputes the space between
two ‘atoms’ according to the table in the TpXbook [1, page 170]. The output is assumed to be in
relative mathematical units. It depends on the style, and the conversion to an absolute dimension by

set_space 1s again style dependent.

6.4

Setting of Whole Formulae

Function set_display handles displayed formulae, and set_inline formulae within text lines.

set_display, set_inline B mlist -> box
set_display ml = set_mlist D False ml || Display style, not cramped
set_inline ml = set_mlist T False ml [l Text style, not cramped

Actually, the difference between these two functions should be bigger. In TgX, displayed formulae

require some postprocessing for positioning, and potential line breaks are computed within inline

formulae.

7

Conclusion

Let us summarize what we achieved by our description.

Defining an adequate data type separates concerns, i.e., spacing aspects from structure aspects.
This is of great help for a better understanding of the algorithm.

Using a powerful parser instead of a macro expansion mechanism avoids some postprocessing of
the input on the data structure representing math formulae. Hence, we can translate mlists to
box terms in a single pass, whereas Knuth needs two passes.

Defining the result data type (box terms) makes many aspects of the algorithm explicit, which
are implicit or at most verbally described in Knuth’s description.

Using a functional description language forced us to transform the updatable global variables of
Knuth’s description into explicit function parameters. On the one hand, this adds complexity
to the description, but on the other hand, the flow of information becomes visible: it can be
seen where information comes from, where it is updated, and where it is used. Thus, it becomes
apparent which subtasks depend on others, and which are independent from each other.

Some constructs, e.g., roots, were not treated here for space reasons. They don’t offer principally
new problems, although their treatment in [1] is particularly hard to grasp.

Some postprocessing parts of the algorithm look somewhat ‘imperative’. These are those, where
some subformulae are set independently of each other only to detect afterwards, that certain
minimal distances between them are not satisfied (set _frac and nolim supsub). Miranda is not
the best language to describe this, but it is possible as you can see.

In our presentation, we preferred clarity over efficiency. The main problem is the computation
of the size attributes height, depth, and width of box terms which is repeated many terms.
The attributes should already be computed when box terms are constructed, and stored at

14

their constructors so that e.g., HBox [box] becomes HBox dim dim dim [box]. The class_
attribute of mitems should be handled similarly. The necessary program transformations are
not difficult, but afterwards, it is no longer obvious that the size attributes of a compound box
are fully determined by its constituent boxes.

References

[1] D.E. Knuth. The TgXbook. Addison Wesley, 1986.
[2] D. Turner. An overview of Miranda. SIGPLAN Notices, December 1986.
[3] R. Wilhelm and R. Heckmann. Dokumentenverarbeitung. Addison Wesley, 1996.

15

