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Abstract

We present a denotational semantics for an ALGoL-like language ALG, which
is fully abstract for the second order subset of ALG. This constitutes the first
significant full abstraction result for a block structured language with local
variables. As all the published ‘test equivalences’ [13, 8, 23] for ALGoL-like
languages are contained in the second order subset, they can all be validated
(easily) in our denotational model.

The general technique for our model construction—namely ‘relationally
structured locally complete partial orders’” with ‘relation preserving locally con-
tinuous functions™—has already been developed in [13], but our particular model
differs from the one in [13] in that we now use a larger set of relations. In a
certain sense it is the ‘largest possible’ set of relations, an idea which we have
successfully used in [32] to obtain a fully abstract model for the second order
subset of the functional language PCF [26]. The overall structure of our full
abstraction proof is also taken from [32], but for the single parts of the proof
we had to solve considerable new problems which are specific to the imperative
(ALGoL-like) setting.

1 Introduction

Difficulties with the denotational semantics of local variables were first observed in
the context of ArcoL-like languages in the early eighties [29, 30, 5, 37, 31]. In
[13] these difficulties were identified more precisely as having to do with a failure of
full abstraction. Roughly speaking, a denotational semantics is fully abstract if it
does not make any unnecessary distinctions. A more precise definition is as follows:
Two program pieces M and N are observationally congruent (denoted M ~ N),
if they can be replaced by each other in every program without changing the ob-
servable behavior of the program. Every reasonable denotational semantics should
only identify observationally congruent program pieces, i.e. it should satisfy

If it even identifies all such program pieces, i.e. if it satisfies

then it is called fully abstract.



For many programming languages it is difficult to find a fully abstract denota-
tional semantics, the most prominent one being the purely functional language PCF
[26]. The reason is that most denotational models contain nonstandard elements,
i.e. elements which are not definable in the language, and that some of these ele-
ments may be very different in nature from the definable ones. Two observationally
congruent program pieces may then fail to be denotationally equivalent just when
their free identifiers are bound to such ‘critical’ nonstandard elements. This means
that full abstraction fails, and then the challenge is to find a ‘smaller’ denotational
model from which these critical elements are ruled out. Usually this goal is achieved
when every nonstandard element is the limit (i.e. the least upper bound of a directed
set) of definable elements, because then full abstraction follows in a standard way
from the continuity of the semantic functions [26].

In the traditional model for PCF the critical nonstandard elements are the func-
tions with a ‘parallel”’ nature. An example is the parallel or [26], which returns true
precisely when one of its arguments is true—even if the other argument diverges.
The full abstraction problem for PCF thus amounts to defining a smaller model
which only consists of ‘sequential’ functions. In [32] we solved this problem for the
second order subset of PCF by admitting only those continuous functions which
preserve certain (logical) relations. Here we will transfer this idea from the purely
functional language PCF to the (much) more complicated setting of an imperative
(ArLGor-like) language.

In traditional models for ALcoL-like languages [2, 3, 19], termed marked store
models in [13], the critical elements are the functions which have ‘access’ to an
unbounded number of locations. We briefly sketch the definition of such a model in
order to obtain some hints how our new model should be constructed:

Let Loc be some infinite set, whose elements [ are called locations, let Py, ( Loc)
be the set of finite subsets of Loc and let neat : Pp,(Loc) — Loc be a function
with next(L) ¢ L for all L € Py;,,(Loc). We define a marked store to be a partial
function ms: Loc — Z whose domain dom(ms) is finite. We think of dom(ms) as
the set of locations which are marked as active, ms! as the contents of location I,
and next(dom(ms)) as the first ‘free’ location, i.e. the one to be allocated next.!
The meaning of a block with a local variable declaration can then be defined by?

Lo [M]nltfa] (msl0/0) = L

[new in M end]nms = {ms’\l it [M] nll /2] (ms[0/1]) = ms’ # L

where [ = next(dom(ms)). This definition simply imitates an operational semantics:
Upon block entry the first free location [ is bound to the local variable z, marked
as active and set to the initial value 0. Then the block body M is executed and—if

1Of course there are innumerable variants of this idea, e.g. a marked store can be represented as
a pair (L, s) with a total function s, or the mark L can be introduced as part of the environment
7. The reader may be assured that the problems which we illustrate here appear mutatis mutandis
for such alternative definitions.

?In ALGOL 60 syntax such a block is written as begin integer z; M end.



it terminates—the location [ is finally deallocated by removing it from the domain
of the resulting store ms’. Now consider the block®

B = newz in y;if 2 = 0 then Q end

which contains a call of some global parameterless procedure y. It is easy to argue
informally (and it will be rigorously proved in Section 7) that B is observationally
congruent to the always diverging command €: Due to the static scope rule in
ALGOL-like languages, the global procedure y does not have access to the local
variable x, hence—if the call of y terminates at all—the variable z will still contain
its initial value 0 after the call, and this makes the block diverge. On the other
hand, B is not denotationally equivalent to Q: Let ny = f where f is the function
which sets all active locations to 1, i.e.

fms=ms with dom(ms') = dom(ms) and ms'l =1 for all [ € dom(ms)

Then even the new location which is bound to the local variable z will be set to 1
(because it is active when y is called) and this implies [B] n # [©2] . Thus we have
shown that every model which contains the above function f (and the traditional
models do contain this function) fails to be fully abstract.

It is clear which lesson we have to learn from this example if we want to achieve
full abstraction: We must define a model in which every function only has access
to some fixed finite set of locations (in contrast to the above function f), and we
must carefully choose the new location which we bind to a local variable, so that the
functions which are bound to the global procedure identifiers do not have access to
it. This means in particular that we must somehow formalize the notion of ‘access’.
For first order procedures, it is easy to give an ad hoc definition (cf. Theorem 8.1),
but when it comes to second order then we need a more systematic approach—and
this is the point where (logical) relations come again into play.

The idea to use relations for constructing models of ALcoL-like languages orig-
inates with [13], but the particular model which was presented there, failed to be
fully abstract because the set of relations was too small. The idea was resumed
in [23] and [33] with larger sets of relations, thus leading to improved models in
which all the known test equivalences [13, 8, 23] for ALGoL-like languages could be
validated, but a full abstraction proof for these models was still missing. Here we
will present such a proof for (a slight variant of) the model in [33].

It should be mentioned that our motivation for using logical relations is some-
what different from O’Hearn and Tennent’s motivation in [23]. Their intention was
to transfer Reynolds’ concept of ‘relational parametricity’ [11] from polymorphic
languages to ALGoL-like languages, because they see a close relationship between
information hiding through type variables (in a polymorphic language) and infor-
mation hiding through local variables. Our own view is somewhat more technical:
We know that logical relations can often be used to characterize the definable func-
tions [27, 6] or—if the model consists of dcpo’s—the limits of definable functions

?We use the ML-notation !z for explicitly dereferencing a variable .



[32]. Hence we try to use them a priori (as in [20]) to construct a model in which
all elements are limits of definable ones, so that we obtain full abstraction by the
standard continuity argument. Although it is not clear whether this technique works
for every language, it is certainly not limited to polymorphism and local variables;
rather it is based on the close relationship between definability and full abstraction.

Let us now briefly review the main concepts of an ALGoL-like language: Due to
[30, 5, 37, 8] it should be a simply typed, statically scoped call-by-name language
which obeys the so-called stack discipline. The latter means that a location never
survives the block in which it has been allocated; this is considered as a semantic
principle and not as a matter of implementation. Finally, there should be a clear
distinction between locations and storable values, and also between commands and
expressions: Commands alter the store but do not return values, expressions return
values but do not have (permanent) side effects on the store.

In order to obtain our full abstraction result we had to include one somewhat
unusual feature in the language ALG, namely the so-called snap back effect which
goes back to a suggestion of J.C. Reynolds’: Inside the body of a function procedure,
assignments to global variables are allowed, but after each call of such a procedure the
store ‘snaps back’ to the contents which it had before the call, i.e. only a temporary
side effect is caused by such an assignment. We will allow the snap back effect to
occur in arbitrary (integer) expressions. For an ALGoL-like language without snap
back, our model definitely fails to be fully abstract, but our general techniques
may well be suited for constructing a (different) fully abstract model for such an
alternative language (Section 10). This is subject to further research.

As another unusual feature we have included a parallel conditional. This operator
often plays a prominent role in full abstraction proofs [26], but here it does not. If we
remove it from ALG then we can still obtain a (different) fully abstract model with
the same techniques as before (Section 10). The interesting point about the parallel
conditional is that it may allow us to simplify our model definition, namely to use
only relations of arity < 2, even of a very particular shape (Conjecture 11.1). This
would not only increase the ‘tastefulness’ of our denotational model but it would
also bring us closer to O’Hearn and Tennent’s parametric functor model [23]. Hence
it may finally turn out that their model is also fully abstract for the second order
subset of ALG.

Preliminaries

Sets and Functions: Let A, B be sets. We write f : A — B (resp. f : A — B) to

express that f is a total (resp. partial) function from A to B. (A i B) stands for
the set of all total functions from A to B and Py;,,(A) for the set of all finite subsets
of A. If f,lg:A— B, C CA, a,a1,...,a, € Aand by,...,b, € B, then we write

— dom(f) for the domain of f
— f| C for the restriction of f to C
— f\ a for the restriction of f to (dom(f)\ {a})

- f=cglor fIC=yg|C



~ fl[b1,...,ba/a1,...,a,) or just f[b/a] for the function f': A — B with
— dom(f") = dom(f)U{a1,...,a,}

, b ifa=a
"=t ifae dom()\ {ar, ... a0}

Complete Partial Orders: Let (D,C) be a partial order. A set A C D is directed,
if every finite set S C A has an upper bound in A. D is called directed complete
(or a dcpo), if every directed set A C D has a least upper bound ({ub) in D. This
least upper bound is denoted | |5 A or just | |A. A function f: D — E between
depo’s D and F is continuous, if f(| |, A) = [y fA for every directed set A C D.

(D = E) denotes the set of all continuous functions from D to F.

Overview

Our paper is structured as follows: In Section 2 we define the syntax of our language
ALG. In Section 3 we present a structural operational semantics. This semantics is
interesting in its own because of the snap back effect and the parallel conditional. In
Section 4 we introduce the general framework for our denotational semantics; it is
essentially a reformulation of the definitions in [13]. Section 5 contains the particular
denotational model which we need for obtaining full abstraction, and in Section 6
we prove that the model is computationally adequate. In Section 7 we illustrate how
to use the denotational semantics for proving particular observational congruences,
and in Section 8 we take a closer look at (the semantic domains for) types of order
< 2. The full abstraction proof itself is contained in Section 9. Section 10 discusses
some variants of the language ATLG and Section 11 contains some open questions.

2 Syntax of the Language ALG

In the spirit of [7, 30] we define our ALGoL-like language ALG as a subset of a simply
typed A-calculus. Its types T are given by the grammar

m= loc ‘ o
o = B|(r—o0)
f = exp ‘ emd

loc stands for ‘location’, iexp for ‘integer expression’ and cmd for ‘command’. We
let Type denote the set of all types. The types o (# loc) are called procedure types.
As usual, ‘—’ associates to the right, hence every procedure type can be written as

o=7 — ... — 7, — 6 with some k > 0. We use 7% — ¢ as an abbreviation for
T—...—T—0 (k>0). The order ord(7) of a type 7 is defined by
’ ord(loc) = 0
ord(8) = 1

ord(t — o) = maz(ord(T)+ 1, 0rd(0))



It may come as a surprise that we assign the order 1 to the ground (!) types iexp
and emd. This does make sense, because—semantically—elements of type iexp and
emd will be functions which have the current store as an implicit parameter; in
particular, elements of type iezp will be thunks in terms of the ALGOL jargon.?
From an operational point of view this means that parameters of type iexp (and
cmd) are called by name, i.e. they are handled by f-reduction. Thus we follow
the view that call-by-name should be the main parameter passing mechanism for
an ALGoL-like language. In addition we have parameters of type loc; they have
been added as a mere convenience because we anyways need identifiers of type loc
as local variables. Intuitively they may be considered as reference parameters, but
technically they can also be handled by G-reduction because the only terms of type
loc are location constants and variables.

As usual, we assume that there is an infinite set Id” of identifiers 7,47, 27,...
for every type 7; the type superscripts will be omitted when the type is clear from
the context. Identifiers of procedure type o are called procedure identifiers, those
of type loc are called location identifiers or variables. This means that we use the
word ‘variable’” in the sense of imperative programming languages and not in the
(more general) sense of the A-calculus. We will preferably use y, z, ... as procedure
identifiers and x, 2, ... as variables (or as generics for arbitrary identifiers).

The set of ALG-constants ¢ and the type of each constant are defined by

location constants)
integer constants)
successor and predecessor)
dereferencing)

asgn : loc — iexp — cmd assignment )

(
(
(
(
(
skip : cmd Eempty command )
(
(
(
(

l: loc forevery [ e Loc
n: iexp foreveryn €7
suce, pred 1 iexp — iexp
cont . loc — iexp

condg : iexp — 0 — 0 — 0 conditional with zero test)
sequencing)

new-operator)

fixed point operator)

parallel conditional with zero test)

seqg: cmd — 0 — 0

newg : (loc — 6) — 0

Y,: (6 —0)—0
pcond :  iexp — iexp — iexp — iexp

Terms M, N, P,...of ALG are just the well-typed A-terms over the ALG-constants
with the restriction that the body of a A-abstraction must not be of type loc, in
other words: The sets ALG” of ALG-terms of type 7 are inductively defined by

c € ALGT if ¢ is a constant of type 7 (constant)

7 € ALGT (identifier)

M e ALcT77 AN € ALG" = (MN) € ALg? (application)
M e ALc” = (A27. M) e ALc™ 7 (A-abstraction)

“Put another way, ¢md and iexp are the types of parameterless procedures and function proce-
dures, corresponding to the ML-types (unit — unit) and (unit — int), and thus it is reasonable
to assign the order 1 to them.



As usual, application associates to the left and the scope of a A-abstraction extends
as far as possible to the right.

We let locns(M) stand for the set of locations which occur (as constants) in
M and free(M) for the set of identifiers which occur free in M. M is closed if
free(M) = 0. M[z := N]is the term which is obtained from M by substituting N
for each free occurrence of & (with the usual renaming of bound identifiers in order
to avoid name clashes), and M[zy,..., 2 := Ny,..., Ni] or simply M[z := N] is
the term which is obtained by a simultaneous substitution. As further notation we
use

ALay {M € ALG™ | locns(M) C L}
c-ALGT = {M € ALGT| free( 0}

M) =
{M € ALG" | free(M) =0 A locns(M) C L}

.
c-ALGT,

where I ranges over finite subsets of Loc.

Finally, we define a program to be a term P € c—ALGéfxp. Note that location
constants (which may be thought of as explicit storage addresses) must not occur in
programs at all. Terms with location constants will be useful for defining the oper-
ational semantics; besides that they will play a technical role in the full abstraction
proof.

We conclude this section by introducing some syntactic sugar. First, we gen-
eralize conditional, sequencing and new-operators to arbitrary procedure types: If
o=71 —...— 7 — 0 (k>1), then we let

_ 3 o 0 T Tk
cond, =q.5 Ay 27, 25,27 .2k condgy (n2y .. xy) (2920 .. )
_ d o T Tk
seq, =gep MY a7, x )k seqpy (2w .. ay)
new, =g Ay @] ak newg (A2 yr . ag)

Besides that, we introduce some notation which looks more familiar for imperative
languages, namely

'M =45 contM
M:=N =45 asgn M N
Mi;N =45 seq,MN
if M then N else P =,; cond, M NP
newz in M end =4 new,(Az'°. M)
proc y°: Min Nend =4; (Ay".N)(Y,(Ay?. M))
if M then N =4 if M then N else skip
newzy,...,2, in M end =,;; newz; in...newz, in M end... end

In each case we insist that the term on the right hand side be already well-typed.
Note that some of these constructs are defined more generally than in traditional
imperative languages because o ranges over arbitrary procedure types. Finally we
let Q, or just Q stand for a diverging term of type o, say Q, =47 Yo (Ay7. y).



3 Operational Semantics

In this section we define a structural operational semantics [28] for our language
ALG, i.e. we define a transition relation ‘=’ on a set of (machine) configurations.
Our definition of configurations is somewhat unusual, because the language ALG is
not single threaded.

In a single threaded language, a configuration can be defined to be a pair (M, ms)
where—intuitively—ms is the current (marked) store and M is the term to be evalu-
ated next. For the language ALG, single threadedness fails because of the snap back
effect and the parallel conditional. The snap back effect forces us to keep book of
earlier stores into which the computation might snap back after the evaluation of an
integer expression. The parallel conditional forces us to make copies of the current
store, because we do not want to allow any interaction between computations which
run in parallel, hence we insist that each argument of the parallel conditional works
on its own ‘private’ copy of the store. In order to handle both features together we
define the set of configurations K by

K = (M,ms)]|
suce K ‘ pred K ‘
(asgnl K, ms) | (condg K M N, ms) |
seqg K M ‘ deallocg | K ‘
peond K1 Ko K3

where M and N are closed terms.

The rules for deriving transition steps between configurations are presented in
Table 1. An auxiliary transition relation ‘—’ between closed ALG-terms is defined
in Table 2. We explicitly distinguish between ‘—’ and ‘=’ in order to emphasize
that the operational semantics of an Avrcol-like language is naturally separated
into two layers [30, 8, 9, 38]: ‘—" describes the purely functional layer, in which
the only transition steps are g-reduction and recursion unfolding. ‘—’ describes the
imperative layer, where transition steps can depend on the store and/or change the
store. The only connection between the two layers is given by the (interaction)-rule
of Table 2.

In the (context)-rule we make use of so-called evaluation contexts [38]. In our
setting, an evaluation context F is a particular ‘configuration with at least one hole’
defined by

E u= succ[]]|pred] ]|
(asgnl[],ms) | (condg[ JMN,ms) |
seqp| | M ‘ deallocg 1] ] ‘

peond[ ][ ][]
]

peond[ ][ |(n, ms) ‘pcond[ J(n,ms)[ ] ‘
[ J(n,ms)(n',ms") with n # n’

pcond



(succ-init) (suce M, ms) — suce (M, ms)

(succ-exec) suce (n,ms) — (n+1,ms)

(pred-init) (pred M, ms) — pred (M, ms)

(pred-exec) pred (n,ms) — (n—1,ms)

(cont) (contl,ms) — (msl,ms) if | € dom(ms)
(asgn-init) (asgnl M, ms) — (asgnl(M,ms), ms)
(asgn-exec) (asgnl(n,ms’), ms) — (skip, ms[n/l]) if I € dom(ms)
(cond-init) (condg M N P,ms) — (condg(M,ms)N P, ms)
(cond-left) (condg(0,ms" )N P,ms) — (N, ms)
(cond-right) (condg(n,ms' )N P, ms) — (P,ms) if n#0
(seq-init) (seqyM N, ms) — seqg(M, ms)N
(seq-finish) seqq(skip,ms)N — (N, ms)

(new-init) (newgM, ms) — deallocy [ (M1, ms[0/1]) if | = next(dom(ms))
(new-finish) deallocgl (¢, ms) — (¢,ms \ 1) if [ € dom(ms)
(pcond-init) (pcond M N P,ms) — pcond (M, ms) (N, ms) (P, ms)
(pcond-left) peond (0, ms) K1/ — Ky

(pcond-right) peond (n,ms) K1Ky — Ky if n #0
(pcond-par) peond K (n, ms) (n,ms’) — (n,ms)
(context) K; — K] for i=1,...,n

comtex E[K1, ... Kn] — E[K], ... K]

Table 1: Rules for ‘=’

As usual, [ | specifies a hole, and F[K1,..., K,] denotes the configuration which is
obtained by filling Ky,..., K, into the n holes of E. The intuition (expressed by
the (context)-rule) is that an evaluation context F enforces the parallel evaluation
of the configurations Ky, ..., K, which are placed in its holes.

With the aid of the transition relation ‘—’ we define the observable behavior of
a program P to be the set

beh(P) = {n \ (P, mSinit) = (ny MSinit) }

where ms;,;, is the (unique) marked store with dom(ms;,;) = @ and ‘.’ denotes
the reflexive transitive closure of ‘—’. We will see below, that beh(P) contains at
most one element and that beh(P) = @ if and only if the computation for (P, ms;,s,)
diverges. But first we give a small example to illustrate this somewhat unusual
operational semantics and in particular to illustrate the snap back effect.



(f-reduction) (Az".M)N —> Mz := N]

(recursion ) Y, M —M(Y,M)
. /
(application) M > M,
MN — M'N
. ’
(interaction) M = M

(M,ms) — (M', ms)

Table 2: Rules for ‘—’ and interaction

Example 3.1 Consider the program

P = newz inif z:= 1; !z then 1 else !z end

= new;ep(A ' cond;egy(seq;,,, (asgn z 1) (cont z)) 1 (cont x))

We show that (P, ms;n) = (0, mSini). Let I = next(Q) and let [l : n] denote the
marked store ms with dom(ms) = {l} and ms[ = n. Then
0

dealloc |
dealloc | (cond (seq (asgnll)(contl)) 1 (contl),[l:0])

(

(P7 msmn) E
dealloc | (cond (seq(asgnll)(contl),[l:0])1 (contl),[l:0])

(

(

(0,

(Az. cond(seq(asgnz 1) (contz)) 1 (contz))l,[l:0])

deallocl (cond (1,[l : 1]) 1 (contl),[l: 0])
deallocl
deallocl

(07 MSingt

contl [l :0])
0,[/: 0])
)

bbb

where ‘=’ follows by the (context)-rule from

(seq(asgnll) (contl),[l: 0]) seq (asgnl1,[l:0])(contl)

(
seq (asgnl(1,[1:0]),[l:0]) (contl)
seq (skip, [l : 1])(contl)
(contl,[l:1])

(L[2:1)

Note that the marked store [[ : 0] is duplicated in the third step of the compu-
tation and that the first copy of [l : 0] is changed to [l : 1] by the evaluation of
seq (asgnll)(contl). But then the computation snaps back to (the second copy of)
[l : 0], and thus the evaluation of contl finally delivers 0.

bl

We conclude this section by proving some useful properties of our operational
semantics, in particular we want to show that “computations do not get stuck”. To
this end we will prove that all configurations which occur during the evaluation of
a program have a certain reasonable shape: For 6 € {iexp, cmd} and L € Py, (Loc)
we define the sets Conf% inductively by

10



~ M € e-ALGY A dom(ms) =L = (M,ms) € Conf'
- K¢ Confj-fxp = succ K, pred K € Confj-f”’

K € Confy™ N1€L A dom(ms) =1L = (asgnl K, ms) € Confi™?

- Ke¢ Confj-f”’ ANM,N € C—ALG% A dom(ms) = L
= (condg K MN,ms) € Conf4

~ K € Conf™ A M € c-ALGY = sequ KM € Conf§
~ K € Conff ANl€L = deallocgl K € Confi, 1y
- K, Ky, K5 ¢ Confj-fxp = pecond K1 KyK5 € Confj-f”’

We say that a configuration is consistent if it is contained in one of the sets Conf%.
Intuitively, a consistent configuration is ‘well-typed’” and does not contain any dan-
gling references [16, 15]. The latter means that every location which occurs in a
consistent configuration is ‘active’ in the sense that it is contained in the domain
of the corresponding marked store and hence a computation will never get stuck
because of the restriction ‘I € dom(ms)” in the rules (cont) or (asgn-exec). This is
just a particular instance of

Theorem 3.2 (properties of the operational semantics)
(i) The transition relations ‘=" and ‘—’ are partial functions.

(ii) If M € c-ALGgy and M —> M’ then M’ € c-ALG].
If K € Conf$ and K — K’ then K' € Conf?Y.

(i) K € Confj-f”’ is in normal form iff it is of the form (n, ms).

K € Conf§™ is in normal form iff it is of the form (skip, ms).

(i) means that all computations are deterministic, (ii) means that transition steps
preserve types and consistency, and together with (iii) this implies that each com-
putation which starts with a consistent configuration K € Conf% either diverges
or terminates with a ‘proper result’ (c,ms) € Conf}. As (P, msiy) € Conféfxp
for every program P, this implies in particular that the evaluation of a program
can never get stuck; it either diverges or terminates with a unique result of the
form (n, ms;ni;). Note that the final configuration (n, ms;,;;) does not contain any
garbage, because our operational semantics explicitly follows the stack discipline:
Every location which is allocated upon block entry by rule (new-init) is eventually
deallocated upon block exit by rule (new-finish), and thus—in contrast to the sit-
uation in a call-by-value language [16, 15]—a location never survives the block in
which it has been allocated.

Proof:

(i) is omitted. It is a routine argumentation about the applicability of rules.

11



(ii) The first part is obvious, because a transition step M —> M’ cannot create any
new location constants. The second part is proved by induction on the derivation
of K — K'. We consider a few cases in which locations play a role; the proofs for
the remaining cases are absolutely straightforward.

Case 1: K = (asgnl(n,ms’), ms) — K' = (skip, ms[n/l]) by rule (asgn-exec)

Then [ € dom(ms) and we obtain

K € Conf{"* = dom(ms)=1
= dom(ms[n/l]) =L
= K'e Conf{™

Case 2: K = (newgM,ms) — K' = deallocg l (M1, ms[0/l]) by rule (new-init)

Here we have | = next(dom(ms)) and thus we obtain

K € Conf = M € c-ArLc?~% A dom(ms) =L (hencel g L)
= Mle c—ALG%U{l} A dom(ms[0/l]) = L U{l}
= (M, ms[0/1]) € Conf%u{l}
= I(/ € COnf?LU{l})\{l} = COnf%

Case 3: K = deallocgl(c,ms) — K' = (¢, ms\ 1) by rule (new-finish)
Again [ € dom(ms) and hence

K € Conf} = dom(ms)=LU{l} NlgL
= dom(ms\l)=1
= K'e Conff

(iii) The ‘if-parts are obvious from the rules; ‘only if” is proved by induction on the
structure of K: Assume that K € ConfY is not of the form (n,ms) or (skip, ms).

Case 1: K = (M,ms)

From the definition of Conf{ it follows that M € ¢-AncY and dom(ms) = L. By
assumption, M is not a constant, and as # is a ground type, M cannot be a A-
abstraction as well, hence it must be an application which can be written as M =
MoM;y ... My (k> 1) where M is not an application. If My is a A-abstraction or a
fixed point operator, then M —> M’ for some M’ € ¢-ALGY, hence K — (M’, ms).
Otherwise, My must be a constant ¢ Z Y,, and then one of the (init)-rules applies in
each case. For example, if My = asgn, then K must be of the form (asgnl My, ms)
with [ € L = dom(ms), hence K — (asgnl(Mz, ms), ms) by rule (asgn-init). The
argumentation for the remaining constants is similar.

Case 2: K = E[K'], where F does not start with ‘pcond’

If K" — K" then K — FE[K"] by the (context)-rule. If K’ is in normal form, then one
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of the other rules of Table 1 can be applied. For example, if £ = (asgnl[], ms), then
K' € Conf™ and | € L = dom(ms), hence K’ = (n,ms') by induction hypothesis
and this implies K = (asgnl(n, ms’), ms) — (skip, ms[n/l]). The argumentation for
the remaining evaluation contexts is similar.

Case 3: K = pcondK1KsK3

Here either the (context)-rule or one of the (pcond)-rules can be applied, depending
on which of the configurations Ky, Ko, K5 are in normal form. a

4 A Cartesian Closed Category

In this section we define the general framework for our denotational semantics. The
intuition is, that every function in the denotational model should only have access to
some fixed finite set of locations. Hence we would like to identify—for every type 7
and every L € Py,(Loc)—a depo [7]r, of ‘elements of type 7 which only have access
to L’ and then define [7] as the union of the dcpo’s [7]z. This is the motivation for

Definition 4.1 Let (W, <) be a directed set (of ‘worlds” w).

(1) A W-locally complete partial order (W-lcpo) is a partial order (D, C) together
with a family of subsets (D, )wew such that D =, ey Dw and for all v, w €
w

- v<w=D,C D,

—if A C D, is directed, then | |5 A exists and is contained in D,, (hence
it is also the lub in D, i.e. (D,,C) is a dcpo)

D is called pointed, if it has a least element which is contained in all D,,.

(2) A function f: D — E between W-lcpos D and FE is called locally continuous
if (f| Dy) € (Dy = E,,) for every w € W.

Note that every finite subset S of a W-lcpo D is entirely contained in one of the
dcpo’s D,,, because W is directed and v < w implies D, C D,,. This implies in turn
that every locally continuous function f: D — F is monotone on the whole of D.

For every directed set W, we let W-LCPO denote the category whose objects
are W-lepos and whose morphisms are locally continuous functions. It can be easily
checked that this is indeed a category.

Theorem 4.2 (W-LCPO is a ccc) The category W-LCPO is cartesian closed.
The terminal object T, the product D x E and the exponent (D — FE) of two W-
lepos D and E are defined by

(i) Tw = {0}
T =10}
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(i) (D% E)y = Dy x By
D x E=,ew(D x E)y with the componentwise order on pairs

(iii) (D%E)w: {fD%E‘VUZ w(f|Dv) € (Dv £>Ev)}
(D — E)=U,ew(D — E) with the pointwise order on functions

Projection morphisms and pairing, evaluation morphisms and currying and the
unique morphisms to the terminal object are defined as usual.

The experienced reader certainly realizes the similarity with a functor category, in
particular (iii) looks like functor exponentiation [36]. Indeed, a W-lcpo D can be
considered as a functor from the category W to the category DCPO of dcpo’s
and continuous functions, which maps every morphism f : v — w in W to the
inclusion map 7 : D, — D, (which is continuous, because | |5 A = | |[p A =
|—|Dw A for every directed set A C D, ). The locally continuous functions between
two W-lcpos then correspond exactly to the natural transformations between the
functors, and exponentiation in W-LCPO corresponds to functor exponentiation.
Hence W-LCPO can be identified with a full subcategory of the functor category
(W = DCPO) which has the same terminal object, products and exponents as
(W = DCPO) itself.

We omit the proof of Theorem 4.2, because the category W-LCPO is anyways
not sufficient for our purposes. We are aiming for a denotational model in which
the function types [T — o] contain only those locally continuous functions which
preserve certain (logical) relations. To this end we must add ‘relation structure’ to
the W-lcpos and then refine the definition of the exponent (D — F).

Definition 4.3 A W-sorted (relation) signature is a family ¥ = (XY),ewnen of
sets X% such that for all m,n e Nand v,w e W

-m#Zn=>XL NYY =10
—v<w= X DN

An element r € 3, is called a relation symbol of arity n. We use the abbreviations
Yo =der Upew Xy B =aes Upen 2 X =aes Upen

As we will make extensive use of tuples and relations, we introduce some shorthand
notation for them: A vector d stands for a tuple (dy,...,d,) € D", where D and n are
known from the context. A term T(d_; €,...) containing vectors d_; €, ... of the same
length n stands for (T'(dy,e1,...),...,T(dy, €,,...)). This notation is generalized as
usual to sets of tuples, i.e. to relations: If R.S are relations of the same arity n,
then T'(R,S5,...) stands for the set {T(d_; € ...) ‘ de R, g€ 8, .. .}. Finally, 6D or
just 6D denotes the diagonal {(d,...,d) ‘ de D} C D". A few typical examples for
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this notation are

fd  for (fdy,...,fdy)
fd  for (fidy,..., fudy)
R for {(fdi.....[fd,)|(di,...,d,) € R}
FR for {(fidi,..., fado)|(ds,...,d,) € R}

f(6D) for {(fid,..., f.d)|d e D}
RS for {(fidiseos fud) | (fisees fu) € Ry (di,.. . dy) € 5}

Definition 4.4 Let ¥ be a W-sorted signature.

(1) A W-X-lepo is a pair (D,Z), where D is a W-lcpo and 7 is a function which
maps every r € Y, to a relation Z(r) C D" such that for all w € W
-reX¥=:6D,CI(r)
— Z(r)N D7 is closed under least upper bounds of directed sets
(D,T) is called pointed if the underlying W-lcpo D is pointed.
(2) A function f : D — E between W-Y-lcpos (D,I7) and (E,Z%) is called a
Y-homomorphism if f(TP(r)) C ZF(r) for all r € 2.

For every directed set W and W-sorted signature X, we let W-X-LCPO denote the
category whose objects are W-Y-lcpos and whose morphisms are locally continuous
Y-homomorphisms. Again, it can be easily checked that this is a category.

Theorem 4.5 (W-X-LCPO is a ccc) The category W-X-LCPO is cartesian
closed. The terminal object T, the product D X F and the exponent (D — F)
of two W-Y-lepos D and F are defined by

(i) T = {0}
T ={0}
IHr) = {0} ifrex,
(i) (D x E)y = Dy x Ey
D x E=,ew(D x E)y with the componentwise order on pairs
B (r) = (ZP(r), Z(r) (= {((d1, 1), . (dus en)) [ d € TP(r), & € T5(r) })
(i) (D= E)y={f:D— E| Yo >w.(f| D) € (D, = E,)
AYreXv. f(IP(r) CT¥(r)}
(D — F)=U,ew(D — E), with the pointwise order on functions
IB=E)(r) = {J| fZP(r) € T7(r)}

Projection morphisms and pairing, evaluation morphisms and currying and the
unique morphisms to the terminal object are defined as usual.
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Proof: The proofs for the terminal object and the product are straightforward,
hence we only consider the exponent. We must first show that (D — F) is a
well-defined W-X-Icpo. Obviously, (D — F) is a partial order and v < w implies
(D — F), C(D — FE),, because ¥V D X" in this case. For the remaining steps it
is sufficient to prove that for all w € W and r € ¥,

(1) if A C (D — F), isdirected, then f : D — F with fd = | | A dis a well-defined
function in (D — F),, (hence it is the lub of A in D);

(2) if r € X% then 6"(D — E),, C ZP=E)(4);
(3) if A CZWP=E)(ryn (D — E)7 is directed, then | |A € ZP=E)(s),
Proof of (1): Let A C (D — FE), be directed and let d € D. As W is directed,

we may assume that d € D, for some v > w, hence Ad is a directed subset of
FE, and thus | |[Ad € E, C F exists. This shows that f : D — FE is well-defined
and that f(D,) C E, for all v > w. Moreover, the restriction f|D, is continuous
for every v > w, because it is the pointwise lub of the continuous functions ¢ | D,
with g € A. Finally, if d e ZP(r) for some 7 € L%, then there is some v > w
such that dy,...,d, € D, hence gd € ZF¥(r)yn E" for all ¢ € A and thus also
fd= UgeAgJE T%(r). This concludes the proof that f € (D — E),.

Proof of (2): If r € ¥¥ and f € (D — E),, then f(Z”(r)) C Z¥(r), hence
(fro o f) e IDP=E)(p).

Proof of (3): Let A C Z(P=E)(r)n (D — E)" be directed and let f = | |A. Fo
every d € TP(r) there is some v > w with dy,...,d, € Dy, hence gd € P(rnE
for every ¢ € A and thus also fd = |_|§€A§’d cI(r).

This concludes the proof that (D — E)is a W-Y-Icpo. It remains to be shown
that it is indeed the exponent of D and F in the category W-X-lepo. To this end it
is sufficient to prove that

<3 =

(4) the function
eval : (D — E)x D — E
eval fd= fd

is a locally continuous X-homomorphism, and

(5) if C'isa W-Y-lcpoand f: CxD — FEisalocally continuous ¥-homomorphism,
then the function

Af:C—(D—F)
Afed= f(c,d)

is well-defined and is a locally continuous X-homomorphism.
Proof of (4): For every w € W, eval ((D — E),, x Dy) = (D — E), Dy, C E,, and

the restriction of eval to (D — F), x D, is continuous, because lub’s are defined

pointwise on (D — FE), and because every f € (D — FE), is continuous on D,,.
Moreover, eval (ZP=E)*D(r)) = eval (TP=E) (1), IP(r)) = TP=E)(r)(ZP(r)) C
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T¥(r) for every r € ¥.

Proof of (5): Let f: C x D — FE be a locally continuous ¥-homomorphism, let
wéeWandceCyp. If v>w, then AfeD, = f({c} xD,)C f(C, xD,)CFE, and
Afe| D, is continuous because f|C, x D, is continuous. Moreover, Afc(ZP(r)) =
f(e,IP(r)) C f(6C,,TP(r)) C F(Z(r),IP(r)) C f(Z9*P(r)) C TE(r) for all
r € X%, This shows that Afc € (D — F),. Hence Af is a well-defined function
which maps C\, to (D — F),, for every w € W. The restriction of Af to each C,, is
continuous, because f is continuous on €', x{d} for every d € D and because lub’s are
defined pointwise on (D — E),. Finally, Af (Z¢(r)) (ZP(r)) = f(Z°(r),Z(r)) =
FZEP (1)) CTE(r), ie. Af(ZC(r)) C IP=E)(r) for every r € X. 0

We finally remark that (D — F) is pointed whenever F is pointed: If Lg is the
least element of F, then (Ad € D. Lg) € (D — E),, for all w € W because Lg € F,,
for all w € W and (Lg,...,L15) € Nyew 6"Fw C IZ%(r) for all 7 € X. Together
with the following theorem this guarantees that enough fixed point operators will
be contained in our denotational model.

Theorem 4.6 (least fixed point operators) Let D be a pointed W-X-lcpo and
let fe (D — D). Then f has a least fized point uf € D, which can be characterized
as usual by
:uf = uneN fnJ—

Moreover, the least fized point operator

pp (D —D)— D

ppf=pf
s a locally continuous Y-homomorphism.

Proof: Let f € (D — D),. As (f|Dy) € (D = Dy), we know that | |, /"L
exists and is the least fixed point of fin D,,. But then it is also its least fixed point
in D, because—by monotonicity of f—f" L C d for every other fixed point d. This
shows already that pp maps (D — D), to D, for every w € W. Moreover, up
is continuous on every (D — D), because it is the pointwise lub of the functions
Af.f"L (n € N), which are continuous on (D — D), by Theorem 4.5. Finally,
let r € 5, and f € I(D_}D)(r). Then fi,..., fm € D, for some w € W, hence—
by induction on n—(fPL,...,fr 1) € I”(r)n D for all n € N, and this implies
upf € IP(r). 0

W-X-LCPO is the category in which we will define our denotational model (with
an appropriate choice of W and X). It has a certain similarity with a category of
‘parametric functors and natural transformations’ [22, 23], and indeed we succeeded
to prove a connection: Let D be the reflexive graph with vertex category DCPO
as defined in [23]. Then—for every W-sorted signature ¥—we can define a reflexive
graph W with vertex category W such that W-X-LCPO can be identified with a
full subcategory of the parametric functor category (W = D) which has the same
terminal object, products and exponents as (W = D) itself. We do not want to
elaborate on this any further because it seems like a purely technical insight.

17



5 Denotational Semantics

We will now use the techniques of Section 4 to define a denotational semantics for
ALa. Of course we choose

(W, <) = (Ppin(Loc), C)

as the directed set of worlds, but the question remains how to define a W-sorted
signature Y which serves our purposes. The basic idea is the same as for our PCF-
model in [32]°: In order to achieve full abstraction we try to keep the denotational
model ‘as small as possible’ and to this end we try to make the relation signature ‘as
large as possible’. For the purely functional language PCF this was easy to achieve.
We simply used all relations on the flat ground type of integers which are preserved
by the meanings of the first order PCF-constants. This worked out, because all
relations on a flat dcpo are automatically closed under lub’s of directed sets (as
required in Definition 4.4) and because the only higher order PCF-constants are fixed
point operators. For the imperative language ALG the situation is more difficult,
because the ground types [iexp] and [emd] will certainly be not flat. Thus, in order
to transfer the ideas of [32] to the ALG setting, we first introduce an additional
semantic layer of flat depo’s below the ground types [iexzp] and [emd], and on this
new layer we define certain auxiliary functions, which are closely related to the
intended meanings of the ALG-constants.
To begin with, we define the set Stores of stores s by

Stores = |Jpey Stores,  where
Stores;, = {s:Loc— 7 ‘ Vi€ Loc\ L.sl =0}

Note that a store s—in contrast to a marked store ms—is a total function which
delivers 0 for all but finitely many locations. Working with total instead of partial
functions is a technical trick which makes our denotational semantics somewhat
simpler.

Now let I' = {loc, int, sto}, where int (= ‘integer’) and sto (= ‘store’) are auxil-
iary symbols. We use sto = int and sto = sto as alternative notation for iexp and
cmd. For every v € I we define a dcpo DV by

D* = Loc (discrete dcpo)
Dt = 7,, D° = Stores, (flat depo’s)

We write L., for the bottom element of DY (if we want to be precise about 7) and
id,, for the identity on D7. The set AUX of auziliary functions is then defined by

AUX = {Const,, Succ, Pred, Cont, Asgn, Cond.,, Pcond ‘ n € Z,y # loc}

where

®There are some purely technical differences between [32] and the new approach which we use
here, e.g. we did not speak of a ‘signature’ in [32] and we used an extensional collapse for the model
construction instead of defining a cartesian closed category. We ignore these technical issues here,
because they have nothing to do with the difference between PCF and ALG but only with the
particular presentation of the model.
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— Const, : D*? — pDint

1 ifs=1
Const,, s = s .
n  otherwise

— Succ: Dt — pint

1 ifd=_1
Succd = { d+ 1 otherwise
— Pred : D™t — pint

Predd:{J_ ifd=1

d —1 otherwise

o Cont: Dloc . Dsto . Dint
Contls = { Loifs=1

sl otherwise
o Asgn . Dloc . Dint . Dsto . Dsto
L ifd=1lLors=1

Asgnids = { s[d/l] otherwise

- Cond,: D™ — DV— DV — DV
1 ifb=_1
Cond., bdydy = dy ifb=0

dy otherwise

— Pcond : D"t — Dint _, pint _ pint
1 ifb= 1 and dy # d;
Pcondbdydy, =< dy ifb=0

dy otherwise

With the aid of these auxiliary functions we can now define the signature 3. The
relation symbols of ¥ are so-called ground relations. A ground relation of arity n
is simply a triple R = (R"),er such that R C (D7)" for every v € I'. We say
that a function f : D" — ... — D% — D7 preserves the ground relation R if
fR™...RY C RY. Finally we let ¥ = (Eﬁ)LeW,neN where N is the set of all
ground relations R of arity n such that

(a) every f € AUX preserves R
(b) 6™(Loc\ L') C R'* for some L' € W with LN L' =0

(i.e. R'*® contains a cofinite part of the diagonal 6" Loc which includes 6™ L)

(€) (Lytor---s Lyto) € REP°
(and hence (Linsy- .-y Ling) € R™ by (a))

Note that ¥ is indeed a W-sorted signature, because I, C I’ implies ¥2 D £/,
The motivation for choosing this particular signature X is as follows: Condition
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(a) will guarantee that [n], [succ], [pred], [cont], [asgn], [conds] and [pcond] are -
homomorphisms. Together with (b) this will imply that every R € v is preserved
by the functions [cont] ! and [asgn]! not only for all [ € L but also for all but
finitely many [ ¢ L. The latter will play a role in the proof that the meanings of
the new-operators are ¥-homomorphisms. Finally, (c¢) will be needed for handling
the fixed point operators. Altogether these are the necessary conditions for X, if
we want to define a denotational semantics for ALG in the category W-X-LCPO.
This means that we have indeed chosen the ‘largest possible’ signature ¥ for our
purposes, and thus we can hope for a full abstraction proof along the lines of [32].
With the definition of W and ¥ we have fixed the category in which we want
to define our denotational model. The next step is to associate an object of this
category with each type. For every type 7 we define a W-X-Icpo [7] = (D7,717) by

_ ch =L
D' = Loc  (as before)
Iloc(R) — Rloc
- DT =A{f: D" — DY| fR*" C R forall R € B}
Dsto=y — ULeW tho:w with the pointwise order on functions

Isto:>'y(R) — {f"e (Dsto:>'y)n ‘ fRsto C R'y} ifRe En
— [r—= o] =([r] = [e]) as defined in Theorem 4.5

It can be easily checked that the first two clauses indeed define W-X-Icpos, in par-
ticular tho=>w is always closed under lub’s of directed sets, because every R” is
(trivially) closed under lub’s of directed sets. Note also that [o] is pointed for every
procedure type o (by a straightforward induction on o). We write L, for the bottom
element of [¢] and id, for the identity on [o].

The reader may have realized that the ground types [iexp] = [sto = int] and
[emd] = [sto = sto] have a certain similarity with our function types (Theorem 4.5)
in that they consist of relation preserving functions. Hence the question may arise
whether our model definition can be simplified by introducing steo and int as ground
types and defining iezp and cmd as function types (sto — int) and (sto — sto).
Unfortunately this is not possible. There is no way to define a W-X-Icpo [sto] such
that [emd] (as defined above) coincides with the exponent ([sto] — [sto]). O’Hearn
and Tennent have occasionally used ‘contra-exponentiation’ instead of ordinary ex-
ponentiation to overcome this difficulty [35, 21], but for our purposes it doesn’t seem
worth to introduce such an extra concept; the above ad hoc definition of [iexp] and
[emd] is entirely sufficient.

We follow usual mathematical convention and use [7] not only as a notation for
the W-Y-lepo (D7,77) but also for the underlying W-Icpo (or the partial order or the
set) D7, hence [7]r, denotes the depo D7. Moreover, we use R™ as an abbreviation
for Z7(R). As immediate consequences of the definitions in Section 4 we then obtain
the following ‘reasoning principles” which will be frequently used throughout the rest
of the paper.

20



(1) [r = olelr]e € [o]rr whenever L C L/

(2) fRT C R° whenever f € [r — o] and R € XF

(3) R~ ={fe[r—o]" ‘ fR™ C R°} whenever R € %,
Reasoning principle (1) is equivalent to

(1) [t = olcl7]e € [oloury forall L, L' € W
which can be rephrased in more intuitive terms as

‘A procedure call fd can only have access to those locations to which
either the procedure f € [T — o] or the parameter d € [7] has access.’

For (2) we do not (yet) have such an intuitive formulation, because our current

definition of the sets X is very technical, but we will come back to this in a moment.

(3) means that the family (R”)epype is a logical relation [18] for every R € ¥. Logical

relations are known to be a useful tool for reasoning about A-terms [27, 32, 34, 6, 20].
We finally define the support of an element d € [7] to be the set

supp (d) = N{L|d € [r]r}

One may wonder whether d € [[T]]supp(d), i.e. whether there is a smallest set I with
d € [r]r. We have not examined this question, as it is irrelevant for our purposes.

As mentioned above, we are not yet satisfied with our current, rather technical
characterization of the signature 3. It is well suited for the full abstraction proof
(especially for the proof of Theorem 9.3), but for other purposes—Ilike proofs of par-
ticular observational congruences—a more concrete description of ¥ would certainly
be useful. Unfortunately we have not found a (tasteful) concrete description of the
full signature X, but instead we have identified the following ‘sub-signature’, which
seems to be sufficient for proving all observational congruences (cf. Section 7 and
Conjecture 11.1).

Definition 5.1 Let I, € W. An n-ary ground relation R is called L-definable, if
there is a relation Ry, C (L — Z) such that

— Rt = {L}" U {5 € Stores™ | (3| L) € R, AN5(6"(Loc\ L)) C §"Z}
o Rz’nt — 6ant
_ Rloc — {fe (Dloc)n ‘ Cont fRsto g Rint A Asgn fRznt Rsto g Rsto}

Note that every L-definable ground relation R is uniquely determined by R**° or
even by Ry. Welet DEF ﬁ denote the set of all L-definable ground relations of arity
nand OUTEL = Urrew A nani— DEF%I the set of those which are definable outside

L. Note that OUT% D OUT%I whenever L C L', hence OUT = (OUTﬁ)LEW,nEN is
itself a W-sorted signature.
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Theorem 5.2 (a sub-signature of ¥) OUTL C ©L for every L € W and n € N.
Proof: Let R € DEF%I for some L' € W with LN L' = 0. Then (L,..., L) € R,

and it is easy to see that every function f € AUX preserves R. Hence it sufficient
to show that 6"(Loc \ L) C R'°“.

Let [ € Loc\ L', let § € R**, d € R™, & = Contl3 and { = Asgnlds. If
§=(L,...,1), then €= (L,...,L) € R™. Otherwise € = 5l € 6"Z C R™. If
d=(L,...,0)or &= (L,..., 1), thent = (L,..., 1) € R**. Otherwise (1| ') =
(3| L") € Ry, tl=d € ¢"Z and 1’ = 51" € §"Z for all I' € Loc\ L' with I’ # [, hence
again ¢ € R*". Thus we have proved that Contl R*" C R and Asgnl R"™ R C
R de. (1,...,1) € R ]
As immediate consequences of Theorem 5.2 we obtain

— fR* C R” whenever f € [sto = y]; and R € OUT*

~ fR™ C R° whenever f € [t — o]z, and R € OUTT
In more intuitive terms both can be summarized as

‘A procedure f € [o]r preserves all relations which are definable outside L.’

This is the most important reasoning principle for proving observational congruences
(Section 7) as well as other, more general properties of our denotational model like
Theorem 5.3 below. A particular instance of this reasoning principle is obtained by
permutations of locations: Let ¢ : Loc — Loc be a finite permutation, i.e. a bijective
function whose ‘support’ Supp(p) =4.; {l € Loc ‘ @l # 1} is finite. Then we define

R, € DEFS""¥) by
R ={L1}*U{(s,50¢)|s € Stores}
In order to see that R, is indeed Supp(p)-definable, note that it can be rewritten as
R’ = {L}? U {7 € Stores® ‘ Vi € Supp(p). s1(pl) = s2l A S1 =L\ supp(e) 52}

and that o(Supp(e)) = Supp(e). If we finally let Fiz(L) denote the set of all finite
permutations ¢ : Loc — Loc which leave the locations of L fixed (i.e. those with
L0 Supp(p) = 0), then we have

¢ € Fiz(L) = R, € OUTY

We will now make use of these new relations in order to prove some important
properties of the domains [o] with ord(c) = 1. But first we extend the notation
for function application, function coincidence and for the variant of a function to
bottom elements by defining

Lo l= 1, forallle€ Loc
Lyo =1 Ly forall LeW
sld/l] = Ly, ifs=_Llg,ord= L,
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Theorem 5.3 (properties of the first order domains) Let L € W, s,8 €
Stores, ly,..., 1, € Loc (m > 0) and ¢ € Fiz(L). Then

(i) If f €[0], then fL = L.

(ii) If f € [iexp]r, then s =1 &' = fs = fd.

(iv) If f € [loc™ — dexp]y, then f(ely) ... (pln)s= fli...ln(soe).
(v) If f € [loc™ — emd]y, then f(ply)...(@ln)s=(fli...ln(sop)) o™t

Note that by (ii) and (iii), a function f € [#] is uniquely determined by its restric-
tion f|Storesy. Intuitively, (ii) means that f € [iexp]; cannot read on locations
outside L, (iil) means that f € [emd]r can neither read nor write outside L and
(iv) and (v) mean that a function f € [loc™ — 6]r, behaves uniformly on locations
outside L. Taking into account that two stores can only be different on a finite set
of locations, we can reformulate (ii) and (iii) as

)
)
(iii) If f € [emd]p, then fs # L= fs =, s and s =5 s = fs =g [
)
)

(it") If f € [iexp]r and [ € Loc\ L, then f(s[n/l]) = fs for all n € Z.

(iii") If f € [emd]r and I € Loc \ L, then f(s[n/l])= (fs)[n/l] for all n € Z.
Proof: We prove (i), (iii) and (v), the proofs for (ii) and (iv) are similar.

(i) Let # = sto = v and f € [#];. Consider the unary ground relation R with

R = Loc, R** = {1,,} and R"™ = {1;,:}. Ris clearly preserved by all f € AUX
and 6'Loc C R'**, hence R € YV, This implies fR**> C R” and hence f1l,, = L.

(ili) Let f € [emd]r.

If s € Stores and [ € Loc \ L, then let R € DEFil} be defined by R =
{LYu{t € Stores|tl = sl}. Clearly s € R*" and fR** C R*' because R € OUT".
This implies fs € R®', hence fs = L or fsl = sl. Thus we have proved that
fs# L implies fs =;,.p, s.

If s,s" € Stores with s =y, &', then there is some L' € W with LN L' = () and
S =ponrr 8- Let R € DEFY with R*t = {1}2U {f € Stores? ‘ t1 =roe\rs t2}. Then
(s,8') € R** and fR*'® C R** because R € OUTY. This implies (fs, fs') € R*",
hence fs =y fs'.

(v) Let f € [loc™ — emd]. We know that R, € OUTY, and it is easy to see
that (¢l,1) € Ry for all [ € Loc, hence (f(¢ly)...(¢ln)s, fli...ln(s 0 p)) €
SRY...RERY C R ie. f(ol).. (@ln)s=(fli...ln(sop))o oL, O

We now conclude the definition of the denotational semantics by assigning meanings
to the constants. We make extensive use of the auxiliary functions in the following
definition. This does not only lead to a compact notation but it will also be helpful
for later purposes. For every ALG-constant ¢ we define the meaning [¢] by
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[[l]] c Dloc [[n]] Dsto . Dint

=1 [n] = Const,

[suce] : [iexp] — D**° — D™t [pred] : [iexp] — D**° — D't
[succ] fs = Suce(fs) [pred]fs = Pred (fs)

[cont] : [loc] — D®t° — Dint [asgn] : [loc] — [iexp] — D' — D5t
[cont] = Cont lasgn] ifs = Asgnl(fs)s

[skip] : D®*° — Ds*°
[skip] s = s

[[COﬂdstozwy]] . [[Z€$p]] — [[StO = f}/]] — [[StO = 7]] N Dsto N Dry
[cond,io=r]bfgs = Cond.,(bs) (fs)(gs)

Hseqstojfy]] : [[Cmd]] — [[StO = r}/]] — Dsto N Dry
Hseqstozwy]]fg s=49 (fS)

[new;e.p] = [loc — iexp] — D' — Dint

[new;eep]fs = flL(Asgnl0s) with [ = neat (supp(f))

[new.ma] : [loc — emd] — D% — Dt

[new.malfs = Asgnl(Contls)(fl(Asgnl0s)) with [ = next (supp (f))
IYs]: [o— o] — [o]
[Yo] = 1o

[pcond] : [iexp] — [iexp] — [iexp] — D*t° — Dint
[pcond] bfgs = Pcond (bs)(fs)(gs)

Note that the fixed point operators up,] are (well-defined) locally continuous -
homomorphisms by Theorem 4.6, hence [Y,] € [(¢ — o) — o] for every procedure
type o. The meanings of the other constants are also well-defined, but it remains
to be proved that they are ‘contained in the model’, i.e. that [¢] € [7] for every
constant ¢ of type 7. The first step into this direction is to show that the particular
choice of [ in the clauses for [new;.,,] and [new.,, ] does not play a role, i.e. instead
of | = next (supp(f)) we can use any arbitrary location [ ¢ supp (f).

Proposition 5.4 Forevery [ € Loc \ supp (f) we have

[new;e.p]fs = [fL(s[0/1])
[rewenalfs = (fL(s[0/1]))[sl/1]

Proof: We only consider [new.,,,q], the proof for [new;.,,| is similar. Let L € W
be such that f € [loc — emd]y, let 1,13 € Loc\ L and let ¢ be the transposition of
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[y and [3, i.e. the permutation which only interchanges {; and /5. Then we obtain

Fh(s0/h]) =ropy fha(s[0/0][0/1])
by Theorem 5.3 (iii), because fl; € [emd]ruqp

(fl2 (s[0/L][0/12])) 0 0
by Theorem 5.3 (v), because ¢ = ¢~

=L [l (s[0/1][0/12])
because ¢ € Fiz(L)

=runy  Jla(s[0/15])
by Theorem 5.3 (iii), because fly € [emd]ryq,)

1

This implies (f {1 (s[0/l1])) [slh/li] =1 (fl2(s[0/12])) [s12/12] and if they are different
from L, then they both coincide with s on Loc\ L by Theorem 5.3 (iii), hence they
are equal in any case.

Now let ly,l3 € Loc\ supp (f), say {1 = next (supp (f)). Then there are Ly, Ly €
W with f € [loc — emd]y, and I; € Loc\ L; for i = 1,2, and by choosing some
arbitrary | € Loc \ (L1 U Ly) we obtain [new.nq]fs = (fl1(s[0/L]))[sli/l] =
(LI [s1/0) = (F s (s10/50)) [5 /). o

Proposition 5.4 captures the ‘operational intuition’ that the particular choice of the
new location which we bind to alocal variable does not play a role, and thus it already
gives us some confidence into our denotational semantics. Indeed, Proposition 5.4
will be needed for the computational adequacy as well as for the full abstraction of
our denotational model.

As to computational adequacy, note that there is a gap between the operational
and the denotational definition of a ‘new’ location /. In the operational semantics
we work with marked stores ms and we let | = next(dom(ms)) in rule (new-init),
i.e. we choose [ to be the ‘first location which is not marked as active’. In the
denotational semantics we work with ordinary stores and we let | = next(supp(f))
where f corresponds to the body of the block in which the local variable is declared,
i.e. we choose [ to be the ‘first location to which the body of the block does not
have access’. This gap can be closed if we know that the denotational definition is
independent of [ as long as [ ¢ supp(f) and that supp(f) C dom(ms), i.e. that the
body of the block can only have access to locations which are marked as active.

While these considerations about computational adequacy are somewhat tech-
nical (and could perhaps be avoided by an alternative definition of the denotational
semantics), the role of Proposition 5.4 for full abstraction is more significant. If the
particular choice of [ in the definition of [newg] did play a role, then the meaning
of a block with two local variables could depend on the order in which these lo-
cal variables are declared. This means that certain observational congruences (e.g.
Example 7.3) would not be provable in our denotational semantics and thus full
abstraction would indeed fail.

We continue with a purely technical lemma.

Lemma 5.5 Let Le W ke Nandlet f:[n] — ... — [rx] — D" — DV. If
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(1) fR™...R™R** C RY for every R € X1 and

(2) fdy...dj—y is continuous on [r;]p for all j € {1,...,k}, (dq,...,d;_1) €
[m] % ...x[rj-1] and L' e W

then f € [ry — ... — 11 — sto = v]r.

Proof: By induction on k.

k=20:
If fR** C RY for all R € ¥, then f € [sto = v]1 per definition.
k>0:

Assume that (1) and (2) hold for f. If L'’ € W, L C L’ and dy € [7]rs, then we
obtain for all R € ©&'

Jdi R ...RFR* C f(6"[m]p)R?...R*ER" C fR™...R™"R*"* C R"

This means that (1) holds for fdy with L instead of L, and of course (2) also holds
for fdy. Hence fdy € [, — ... — 7 — sto = 7] by induction hypothesis,
i.e. we have proved f([r]r) C [r2 — ... = 7 — sto = ] for all L' O L
and thus also f[n] C [r2 — ... — 7 — sto = 7]. But then (1) means that
fR™ C R+ —s519=7 for every R € ¥ and from (2) we know in particular that

f itself is continuous on all [r1]zs. Hence f € [y — ... = 7 — sto = 7]L. ]

Now we are ready to prove

Proposition 5.6 If ¢ is a constant of procedure type o, then [c] € [o]p.

Proof: We only consider two sample cases, namely ¢ = asgn as a routine case and
€ = New.,q as the most interesting case.

Case 1: ¢ = asgn

If R ¢ ¥ (= X%, then [asgn]RR**?R**® C Asgn R (R*"?R**) R*" C
Asgn R"¢R™™ R C R**°. The function [asgn] itself is continuous and it is easy

to see that [asgn] ! is continuous on [iexp]r for all [ € D" and I, € W. Hence
Lemma 5.5 implies [asgn] € [loc — iexp — cmd]y.

Case 2: ¢ = new,mq

Let R €%, f e Roe=md and §€ R, Let L € W with fi,..., fn € [loc — cmd]y,
and [ € Loc\ L with (I,...,1) € R"*. Then, by Proposition 5.4,

Asgnl(Cont13)(f1(Asgnl03))

Asgn Rloc (Cont RlocRsto) (Rloc—>cdeloc (Asgn RlocRintRsto))
Asgn RlocRint (Rcdesto)

Rsto

[[newcmd]]f§

N 1N m

Now let I/ € W. By choosing some | € Loc\ L’ we obtain by Proposition 5.4:
[new.,q]f = As € Stores. Asgnl(Cont sl) (fl(Asgnl0s)) for all fe [loc — ecmd]p.
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This shows that [new,,,q4] is continuous on [loc — emd]r and hence [new,,q] €
[(loc — e¢md) — emd]y by Lemma 5.5. 0

Theorem 4.5 and Proposition 5.6 allow us to define the meaning of ALG-terms
in the style of the simply typed A-calculus, more precisely: Let Fnv be the set of all
environments, i.e. the set of all type preserving functions

U UTEType Id7 — UTEType[[T]]
Then, for every M € ALGT, the meaning [M] : Env — [7] is inductively defined by

[cln = [e] as defined before

[z]n = na
[MN]n = ([M]n)([N]n)
[Aa™. M]y = Ade[r].[M]n[d/]

As usual, [M]n only depends on the restriction of 7 to free(M); in particular it is
independent of 5, if M is closed, and then we usually write [M] instead of [M]n.

Proposition 5.7
(i) If M € ALG} and nz” € [7']g for every a7 € free(M), then [M]ny € [7]z.
(i) If M € e-Avay, then [M] € [

Part (ii) captures our intuition that a closed ALG-term has only access to those
locations which explicitly occur in it and not to those which are temporarily bound
to its local variables. An open term may (of course) also have access to the locations
which are bound to its free variables and it may have ‘indirect’ access to additional
locations via the functions which are bound to its free procedure identifiers.

Proof: Of course it is sufficient to prove (i). For location free terms we can apply
general principles: For every constant ¢ of procedure type o the meaning [c] € [o]y
can be considered as a morphism from the terminal object T to the object [o],
hence—by the categorical semantics of the A-calculus [4]—the meaning of a term
M € Avcj with free(M) = {z7',...,2;"} is a morphism from [r] x...x[7,] to [7],
i.e. it maps [7]r X ... X [7.]r to [7]r. The generalization to terms with locations
is straightforward. a

We conclude this section by explicitly presenting the meaning of a block with a
local variable declaration. Remember that new z in M end is syntactic sugar for
newg(Az'°c. M), if M is of type . Thus we obtain

[newz in M end]ns = [M]n[l/x]s[0/]] if M € Avg'®?
[newz in M end]ns = ([M]n[l/z]s[0/]])[sl/l] if M € ArLc™™

where, by Proposition 5.4, [ is an arbitrary location in Loc \ supp ([Az. M]n). The
possibility to choose [ freely from an infinite set will be important in the following
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sections, because we will often need a location which is different from finitely many
given ones. In such cases we sometimes briefly say that we choose a new location
and leave it to the reader to spell out precisely what is meant by ‘new’ in a particular
case.

6 Computational Adequacy

In this section we will show that our denotational semantics is computationally ade-
quate. Computational adequacy means [12] that the observable behavior beh(P) of
a program P can be (easily) derived from its denotational meaning [P]. Concretely,
we will show that for every n € Z

n € beh(P) < [P]simit=n

where s;,;; is the constant 0 store, i.e. the (unique) store in Storesy. This implies
that beh(P) contains at most one element (as we know already from Theorem 3.2)
and that beh(P) =0 < [P] Sini = L.

We begin with ‘=’ which is the easier direction. For a purely functional lan-
guage, this direction is usually proved by showing that each transition step of the
operational semantics preserves the denotational meaning of terms [4, 39]. This is
also the main idea for our proof, but as our transition relation ‘—’ works on config-
urations as opposed to terms, we will first extend our meaning function: For every
marked store ms we define ms € Stores by

1 _ msl if [ € dom(ms)
N 0 otherwise
and for every consistent configuration K € Confy°”" we define its meaning [K] €

D7 inductively by
- [(M. ms)] = [M] s
— [suce K] = Suce [ K]
— [pred K] = Pred [K]
~ [(asgnl K, ms)] = Asgnl[K]ms
— [(condpmry KM N, ms)] = Cond.,[ K] ([M]ms) ([N]ms)
~ [seqe KM] = [M][K]
— [dealloc;.., | K] = [K]
— [dealloc,,,q1 K] = Asgnl0[K]

— [pecond K1 Ko K3] = Peond [ K1] [K2] [Ks]
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Lemma 6.1 Fvery transition step is meaning-preserving, i.€.
(i) M — M’ implies [M] = [M'] for closed terms M, M’
(i) K — K’ implies [K] = [K'] for consistent configurations K, K'
Proof: (i) is obvious; (ii) is proved by induction on the derivation of K — K’'. We
consider a few sample cases in which locations play a role.
Case 1: K = (asgnl(n,ms’), ms) — K' = (skip, ms[n/l]) by rule (asgn-exec)
Then [K] = Asgnl[(n, ms" )] ms = ms[n/l] = ms[n/l] = [skip] ms[n/l] = [K']
Case 2: K = (new naM,ms) — K' = dealloc,,,ql (M1, ms[0/1]) by rule (new-init)
Let K € Conf{"®. Then M € c-Arc¥ ™™ dom(ms) = L and | = neat(dom(ms)),
hence I ¢ L D supp([M]) and thus we obtain
K] = [rew.,qM]ms
Asgnl(Contlms) ([M]I(Asgnl0ms))
Asgnl0([MI] (ms]0/1]))
Asgn 10 ([MI] (ms[0/1]))
= Asgnl0O[(MI, ms[0/1])]
- K]
Case 3: K = dealloc.,,q 1 (skip, ms) — K' = (skip, ms \ 1) by rule (new-finish)
Then [K] = Asgnl0[(skip, ms)] = ms[0/l] = ms \ | = [skip] ms \ | = [K'] 0

Lemma 6.1 will deliver the ‘=-’-part of computational adequacy. The usual approach
for proving the ‘«<=’-part [39] is to define a relation <" C [7] x ¢-ALG” for every
type 7T such that

— (<7 )rerype is a logical relation between applicative structures [18]
— [M] <™ M for every M € c-ALG™
y

In our setting it is more natural to define a relation <7 C [7]r X ¢-ALGT, for every
type 7 and every L € W such that

— (<7 )rerype,Lew is a Kripke logical relation between applicative structures [18]
— [M] <7 M for every M € c-ALG],
The relations <7 are defined by induction on 7 as follows
e R
f<ET M VL' D L,s € Stores,n € Z. fs =n = Ims.(M,s| L) = (n, ms)

=4
F<5m™ M & YLD L,s,s' € Stores. fs =5 = (M, 5|L) (skip,s'| L")
fgz_}UM =4 VLIQL,dE [[T]]L/,PG C—ALGL/.dST/P = fd SL/ MP
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Lemma 6.2 Let o be a procedure type, let L € W, f.g € [o]r, A C [o]r directed
and M, N € c-ALGY,. Then

(i)

i) fCgNng< M=f<IM

(iii) (Vfe A f<p M)=[JA<E M
(iv) M—sN A f<{N=f<I M

1, <¢ M

Proof: All the proofs are simple inductions on o.
(i) holds vacuously for ground types, and the induction step is obvious.

(ii) For o = iexp note that f C g A fs = n implies g s = n; similarly for o = cmd.
For 0 = (7 — o') note that f C g A gd <9, MP implies fd <9, MP by
induction hypothesis.

(iii) For o = iexp note that (| |A)s = n implies fs = n for some f € A; similarly
for ¢ = e¢md. For 0 = (1 — o') note that (Vf € A. fd <9, MP) implies
(LUA)Yd=|]Ad <9, M P by induction hypothesis.

(iv) For ¢ = iexp note that M —> N A (N,s| L") = (n,ms) implies (M,s| L) —
(N,s| L") = (n,ms); similarly for 0 = emd. For ¢ = (1 — ') note that
M — N A fd <3, NP implies fd §EI/ M P by induction hypothesis (because
MP — NP). .

Lemma 6.3 M € c-ALcp = [M] <] M
Proof: As usual [39] this assertion is first generalized to open terms:

Let M € ALG} with free (M) C {z1',...,2;*} and let d; € [r]r, N; €
c-ALGgy with d; <} N; (i=1,...,k). Then [M]nld/z] <§ M[z := N]
for every n € Fnov.

This generalized assertion is proved by induction on the structure of M.
Case 1: M constant of type loc

Then M =1€ L and [M]n[d/z] =1 <* 1 = M[z/N].

Case 2: M constant of procedure type o

It must be proved that [M] <7 M for all L € W. To this end it is sufficient to
prove [M] <§ M, because <7 is the strongest relation among all <7. We consider
a few sample cases.

(i) M = cont : loc — iexp

Let L € W, d € [loc];, and | € c-ArLcy® = L with d <i° [. Then d = [, hence
we must prove [cont]l <¢°" contl. Let L' D L, s € Stores and n € Z with
[cont]ls = n. Then sl = n,and as | € L' we obtain (contl,s| L") — (n,s|L’).

30



(i) M = asgn : loc — iexp — cmd

Let L,dand [ be asin (i). Furtherlet I’ O L, f € [iezp]zs and N € c-ALG},”
with f <Z€”’ N. Then we must prove [[asgn]] Lf <574 asgnlN. Let L D L’
and s, s’ € Stores with [asgn] ! fs = s’. Then there is some n € Z with fs =n
and s’ = s[n/l], and as f <77 N we know that (N,s|L") = (n,ms) for
some marked store ms. As [ € L”, this finally implies (asgnlN,s| L") —

(asgnl (N, s| L"), s| L") = (asgnl(n,ms),s| L") — (skip,s' | L").

(iii) M = newnq @ (loc — emd) — cemd

Let L € W, f € [loc — emd]r, and N € c-Arnaye™m with f <pe—emd N,
We must prove [new,,q] f <5 new.,qsN. Let L' O L and s,s € Stores
with [new.nq] fs = §. Let | = next(L'), hence | ¢ L' O L D supp(f).
Then there is some s” € Stores with fl(s[0/l]) = s"” and s = s"[sl/]].
As fL<yutyy NI, we know that (N1,s[0/1]| L' U {l}) = (skip,s”| L' U {1})
and from this we obtain (new.,sN,s|L'") — dealloc,,q (N1, (s|L')[0/1]) =
dealloc g 1 (N1, s[0/1]| L'U{1}) = deallocpq(skip, s” | L'U{1}) — (skip,s" | L")
= (skip,s"| L').

(iv)y M=Y,: (6 —0)—0

Let L e W, fe]o— o]p and N € e-ALci™7 with f <§77 N. We first
prove by induction on n that f"1, < Y,N.

n=0: f°L=1<9Y,N holds by Lemma 6.2 (i).

n>0:Let f7'1 <9 Y,N. Then f"L = f(f"'1) <§ N(Y,N) because
f <577 N, and from this we obtain f*L <7 Y,N by Lemma 6.2 (iv),
because Y, N —> N(Y,N).

Now A = {f"L|n € N} is a directed set in [0];, and thus we finally obtain
[Y-]f =UA <§ Y,N by Lemma 6.2 (iii).

Case 3: M =z for some i € {1,...,k}
Then [M]n[d/z] = d; <} N; = M[z := N].

Case 4: M = PQ with P € ALc; 7 and ) € ALG],

As free(P), free(Q) C {z7',...,2;}} we have [P] n[d/z) <;7? Plz = NJ and
[Q1nld/z] <] [f = N]. hence also [My[d/a] = (IP1 nld/=]) (1@ nld/z]) <7
Plz := N](Q [ N]) = M|z := N] per definition of <777.

Case 5: M = Ay". P with P € ALGY

Without loss of generality we may assume that y” ¢ {z7',.. ,2,*}. We must prove
[M]nld/z]) <;=° M[z := N]. Hence let L' D> L, e € [r]L and Q € c-ALG}, with
e <7, Q. Then [M]n[d/z] e =[P]n[d,e/z,y]and M[z := N]Q = (\y. P[z := N])Q
— Plz,y := N,Q]. As P € Arc], and free(P) C {z]*,...,2*,y"}, we obtain
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[P] n[dle/af, yl <3 Plz,y = N, Q] by induction hypothesis, and this finally implies
[M]nld/z]e <7, M[z := N]@Q by Lemma 6.2 (iv). O

Theorem 6.4 (computational adequacy) For every program P and everyn € Z
n € beh(P) < [P]simi=n

Proof:

‘=70 n € beh(P) = (Pymsinu) — (0, mSini) per definition of beh(P)
= [(P, msini)] = [(n, mSini)] by Lemma 6.1
= [P] Sinit = [7] Sinit because M5, = Sinit
= [P]Sinie=n

‘="t By Lemma 6.3 we have [P] §é)€xp P, hence

[P] Siniz =n = IFms. (P, mSini) R (n,ms) because My = Sinit |0
= (P, mSinit) = (n, MSinit) by Theorem 3.2 (ii)
= n € beh(P)
Od

A computationally adequate semantics can be used to prove observational congru-
ences. Here is the precise definition:

Definition 6.5 A context C[]is a term with a hole; C[M] denotes the term which
is obtained from C[ ] by placing M into the hole. C[]is a program context for M and

N if both C[M] and C[N] are programs; M and N are observationally congruent
(denoted M ~ N) if beh(C[M]) = beh(C[N]) for every program context C| ].

Theorem 6.6 (observational congruence) [M]=[N] == M~ N

Proof: [M] = [N] implies [C[M]] = [C[N]] for every program context C[ ] by
the compositionality of [ | and then beh(C[M]) = beh(C[N]) by Theorem 6.4. O

7 Observational Congruences

In this section we will illustrate by a series of examples how to prove particular
observational congruences with the aid of Theorem 6.6. Most of the examples have
already appeared in the literature [13, 8, 23], some of them originally served as
counter-examples for earlier denotational models of ALGOL-like languages, i.e. they
were used to prove that these models are not fully abstract [13, 8].

We will no longer slavishly stick to the ALG-syntax, but freely use operators like
+, —, %, div, abs,=,>, -, A,V,... with their standard interpretation, in particular
each of them is assumed to be strict in all its arguments. These operators are of
course definable by closed ALG-terms.
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The intuitive idea behind all our examples is that a global procedure cannot
have access to a local variable. The corresponding formal argumentation in the
denotational model works as follows: If f is the function which is bound to a global
procedure identifier y?, then there is some L € W such that f € [o]; and we
may assume that all locations [4,...,[, which are bound to the local variables are
not contained in L. The desired semantic equality then usually follows by applying
Theorem 5.3 (in the case of a first order procedure) or by choosing some appropriate
{l1,...,1,}-definable ground relation R and exploiting the fact that f preserves (the
logical relation induced by) R.

Example 7.1 [newz in M end; y°] = [newz in M; 37 end]
Proof: Let n € Env, s € Stores and L € W with ny € [o]r. If 0 = emd, then

[newz in M end;ylns = ny([M]nll/=](s[0/1])[s1/1])
for some new location [ ¢ L

(ny (IMDnll /] (s [0/1])) [s 1/1]
by Theorem 5.3 (iii’)

= ([M;y]nll/«] (s[0/1])) [s /1]

= [newz in M;y end]ns

The proof for ¢ = iexp is similar and the generalization to arbitrary procedure
types o is a routine calculation in the A-calculus (remember that sequencing and
new-operators for higher types have been introduced as syntactic sugar). O

The intuition for Example 7.1 is that the global procedure y cannot read on the
local variable x, hence it does not matter whether y is inside or outside the scope of
the local variable. As an immediate consequence of Example 7.1 we obtain

[new z in z := n; y end] = [new z in z := n end; y] = [skip; y] = [¥]
which is essentially Example 1 in [13].
Example 7.2  [y*"¢; newz in M end] = [newz in y"%; M end]

Proof: We only consider the case M € ALG™™. Let n € Env, s € Stores and
L € W with ny € [emd]r. Then

ly; newz in M end]ns = [newa in M end]n(nys)
(IM Tt /2] ((ny s)[0/1]) [ny s /1]

for some new location [ ¢ L
([M Tt /=) (ny (s [0/1))) [s /1]
by Theorem 5.3 (iii) and (iii’)
(Ly; M]nl/x](s[0/1) [s /1]

= [newaz in y; M end] ns
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The intuition for Example 7.2 is that the global procedure y can neither read nor
write on the local variable z, hence moving the procedure call of y into the scope of
the local variable has no influence on the computation of y or M. As an immediate
consequence of Example 7.2 we obtain

[new z in y; if 'z = 0 then Q end] = [y; newz in if ! 2 = 0 then Q end] = [©]
which is essentially Example 2 in [13].
Example 7.3 [newz,2’ in M end] = [newa’,z in M end]

Proof: For M € ALc®? we obtain

[M]nll/«)l'/a"] (s [0/1[0/17) [s 1/1[s /1]
where [,I" € Loc\ supp ([Ax. M]n) and | £’

= [newza’,z in M end]ns

[new z,2" in M end]ns

and similarly for M € ALG'"P. The generalization to M € ALG? is routine. a

Example 7.3 is a generalization of Example 3 in [13]. Note that it is not an a-
conversion, because we do not rename z and z’ inside the block body M. The
crucial point is, that it does not matter which location we bind to the first local
variable and which to the second.

Example 7.4 [newz in y*¢~md (g :=!1z 4+ 1);if 'z > 0 then Q end] = [Q]

Proof: Let n € Fnv, s € Stores and L € W with ny € [emd — emd]r. We may
assume that the location [ which is bound to the local variable z is not contained
in L. If we now choose R € DEFil} with R*** = {1} U {t € Stores|tl > 0},
then we have s[0/{] € R and [z :=!x + 1] 5[l/z] € R*™. Hence the store
t=[y(z:=te+ )]n[l/z](s[0/]) is contained in ny R R C R i.e.t = L or
tl > 0, and this easily implies the desired equality. a

Example 7.4 is similar to Example 4 in [13]. It illustrates “a form of representational
abstraction, which is one of the main themes of modern programming methodology”
[23], in particular of object oriented programming: The local variable  may be
considered as the instance variable of a counter object which is initially set to 0 and
which can only be accessed through a single method, namely through the parame-
terless procedure6 xz:='z+ 1. Although we do not know how often this method is
used by the client y, we can be sure that the representation invariant 'x > 0 of the
counter object will be preserved, and this finally implies that the whole block must
diverge.

5Note that ALG is a full fledged call-by-name A-calculus, hence—in contrast to ALGOL 60—there
is no need to introduce a name for the procedure = :=!z + 1 and—in contrast to the call-by-value
language MI—there is no need to explicitly delay evaluation of z :=!2 + 1 with the aid of a
A-abstraction.
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Example 7.5 For¢ = 1,2 let
M; = newx in ym? P (g =y 4 i) (T2 div i) end
Then [[Ml]] = [[MQ]]

Proof: Let n € Fnv, s € Stores and L € W with ny € [emd — iexp — iexp].
Again we may assume that the new location [ is not contained in L. We choose
R e DEF;I} with R*'* = {1}? U{F € Stores® | s31 = 2% 511 A s =roe\{1} S2}. Then
we have (s[0/1],s[0/1]) € R, ([& :='a + 1] n[l/z], [z :='a + 2] n[l/z]) € R*™
and (['z div 1] n[l/z], ['z div 2] 5[l/z]) € R**P. Hence the pair (dy,dz) with
d; = [y(z :='a+4)(te div )] n[l/z] (s[0/1]) is contained in 5y R“™¥Ri*"? R*t° C
Ri™ = §2D . di = dy, and this proves the equality. 0

Example 7.5 is a variant of Example 7 in [13]. It shows that “there is more to
representational abstraction than preservation of invariants” [23]. Again, the local
variable x may be considered as the instance variable of a counter object, which
now has two methods, namely one which increases the counter and one which reads
the counter. My and M, use two different internal representations of such a counter
object, and the observational congruence between My and M; shows that the client
y cannot distinguish between these different internal representations. This is an
instance of representation independence [23, 17].

Example 7.6 [newaz in x := 1; ¢**"? "7 (1g) end] = [y'“ 7 1]

Proof: Let n € Fnv, s € Stores and let L and [ as usual. Let R € DEF;I}
be defined by R*'* = {L}* U {§ € Stores’ |s;1 = 1 A s1 =,y s2}. Then
(s[1/1],s) € R and (['z]n[l/z],[1]n) € R**". Hence the pair (di,dy) =
(Iy (Y2)] n[l/2] (s[1/1]), [y 1] ns) is contained in ny R**F R*'° € R™ = §2D™! i.e.
dy = dy and this easily implies the equality. a

Example 7.6 was presented in [8]. Note that the simpler term (z := 1; y ('2)) is not
observationally congruent to y 1, because !z is a name parameter and the function
procedure y may have a temporary side effect on the global variable z before it uses
its parameter. Hence it is indeed necessary for the example that z is a local variable.

Example 7.7 [y°7"2°] = [neww in y(z:=!z + 1; z) end]

Proof: We only consider ¢ = emd. Let n € Fnv, s € Stores and L € W
with ny € [emd — emd]r and nz € [emd]r, and let | € Loc \ L. We choose
R € DEF;I} with R*"* = {L1}? U {5 € Stores®| s =roc\{1y S2J- Then we obtain
(s,5[0/1]) € R** and (nz, [z :='a + 1; 2] n[l/z]) € R™™, because s1 =p,.\ (1} 52
implies 7251 =po0\ {1} 1252 =poo\(1} [ :=!2 + 1; 2] n[l/2] s2 by Theorem 5.3 (iii’).
Hence the pair (t1,t2) = ([yz]ns, [y(z :=ta + 1; 2)]n[l/x] (s][0/]])) is contained
in gy RE™Rs C ReMIRs C R, ie. §y =roo\{1} 2. This implies ¢; = to[sl/l]
because t1] = sl by Theorem 5.3 (iii), and thus the equality is proved. a
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The intuition for Example 7.7 is that the local variable z counts the procedure calls
of z during the computation of y z (occasionally the counter may snap back, namely
when z is called inside an integer expression). The equivalence shows that adding
such a counter has no influence on the procedure call y z. Example 7.7 will play a
role in the full abstraction proof.

8 First and Second Order Domains

As a preparation for the full abstraction proof in Section 9 we will now prove some
further properties of our denotational semantics, in particular we will take a closer
look at types of order < 2. The following theorem presents an alternative description
of the domains [o]; with ord(c) = 1. This description is more concrete than the
original one in that it does no longer refer to the signature X.

Theorem 8.1 (concrete description of the first order domains) Let L € W.
Then

(i) [iexp]r = {f: D¥*° — D"t ‘ fL=1 AVs,s € Stores.s = ' = fs= fs'}

(ii) [emd]y = {f: D*t® — Dsto

flL=1
A Vs € Stores. fs # L = fs =Loe\L S
A Vs, s € Stores.s =1 s' = fs=p fs'}

(iii) [loc™ — iexp]r, = { f: Loc — ... — Loc — [iexp] |
Vii,...,ln € Loc, s € Stores, ¢ € Fiz(L).
flo Ly € [iexp]nogy,imy
ANflply) .. (pln)s= fli...l(sop)}

(iv) [loc™ — emd]y, = { f: Loc — ... — Loc — [cmd] |
Vii,...,ln € Loc, s € Stores, ¢ € Fiz(L).
Sl by € [emd] pogy,.t)
Aflel) .o (plp)s=(fli...lp(sop))op ™t}

Proof: In each case only ‘D’ must be proved, because ‘C’ already follows from
Theorem 5.3. We consider (ii) and (iv), the proofs for (i) and (iii) are similar.

(ii) Let f be in the set on the right hand side. Per definition of [emd], we must only
show that f preserves all R € XX, Hence let R € XL and € R**°. Because of the
first and third condition for f there is some M € c-ALG{" (consisting of tests and
assignments over location constants in L) such that s =y s; implies [M]s =1, fs;
for all s € Stores and i € {1,...,n}. This means in particular [M]s; =5 fs; for
i = 1,...,m, hence either [M]s; = L = fs; or [M]s; =p,0\1 8 =0\ [Si by the
second condition for f, and this implies again [M]s; = fs;. Thus we have proved

f3 = [M]3 € [M]R** C R**.

(iv) Let f be in the set on the right hand side. Again it is sufficient to show that
f preserves all R € ¥ (local continuity is not an issue, because [loc] is ordered
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discretely). Hence let R € ©L, Ii,...,0L, € R and § € R***. We define a relation
~ on Loc™ by

(ly oy l) ~ (1) & g e Fie(L).Yie{l,...,m}.pli=1!

Obviously, ~ is an equivalence relation on Loc™ (because Fiz(L) is a group with
respect to function composition), and the equivalence class of a tuple (I1,...,1,)
is uniquely determined by the two sets {(i,j) € {1,...,m}2‘li = [;} and
{(i,1) € {1,...,m} x L|l; = 1}. Hence, with the aid of the term EQ =g,

loc? —iexrp

Az, z:=1a'+1;le=12" € ALG

it is easy to construct a term CLASS € c-ALGy
equivalence class of a tuple in Loc™, i.e.

[CLASS|y .. Lys = [CLASS) I, ... s & (I, dp) ~ (I,...,I")

which tests the equality of locations,

7 . .
oc™=ierp which determines the ~-

for all ly,..., L, 15,...,1,, € Loc and s € Stores.

Now let eq be one of the ~-equivalence classes. We will first construct a term
N., € c-Arcye" =" such that

[N i Lnisi = flug. . lypisi whenever (ly;, ..., 1) € eq

Without loss of generality we may assume eq = {(l11,...,m1),- 7(llk7 ceslmi)}
for some k < n. Then there are functions ¢; € sz( ) such that (ly,.. ) =

(eili1y -« oy @ilm1) for ¢ = 1,... k. Since fly1...ln1 € [[C?nd]]LU{llh 7m1}, we can
first choose some M € c- ALGLU{l11 Ly} @i the proof of (ii), such that [M] and
Sfli1 ... L1 coincide on the finitely many stores s; 0 ¢;, ¢ = 1,...,k, and from M
we can easﬂy construct a term N, € ¢- ALGI"C —emd with [[Neq]] ln oy = [M].
Thus we obtain indeed

NGl i lnisi = ([Negllin .. Lna(sio 992)) op;!
([M] (si09i)) 0w
(flir - na(si o)) o ‘Pz’_l

= fllz-- mzsz

for ¢ = 1,..., k. Finally, we can use the term CLASS for branching between the
various N, and thus obtain a term N € c—ALGme_}cmd such that [N]ly;...0pnisi =
flyi .. lys; for all i € {1,...,n}. This means ff§: [N] [5e R, a

For second order types we do not have such a concrete description of all the
domains [o]r, as for the first order types. Instead, the following proposition presents
only one particular example, namely the domain [emd — emd]y. It is meant as a
warm-up exercise for Section 9, because it anticipates certain techniques which will
reappear in the full abstraction proof in a (much) more complicated form.

Proposition 8.2 Form > n > 0 let f,,, = [A 2% if 2™;0 then 2"] where 2° =
skip and 2F = z;.. ;2 if k > 0. Then [emd — emd]y = {L}U{fnn|m > n >0}
H/—/
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Proof: Choose some arbitrary [ € Loc and define

ince; = [if'l<ithen!:=1141else Q] foreveryi e N
inCeoo = [l:=1141]

Then incco C inccy T ... is an w-chain in [emd]y;, which has incco as its least
upper bound. Now let f € [emd — emd]y. Define

m = card{i EN| finceiso =1} € NU{oo}
n = fincces sol € Zi

where sg is some arbitrary store with sl = 0. Note that m and n are independent

of the particular choice of sy because fince; € [emd]yy for every i« € NU {oc}.

Moreover, n € Z whenever m € N because of the monotonicity of f. We will show

that

m>n>0ANf=fn, if meN
To this end let ¢ € [emd] and s € Stores. Then there is some L € W with [ € L
and g € [emd]r. The intuition is, that the computation of fgs can be simulated
by the computation of fincc(s[0/l]) for some appropriate & € N U {o0}, and

that this simulation can be expressed by one of our logical relations. We choose
k=sup{i €N | g's# L} and we define R € DEFY by

R = {1}?U {7 € Stores® ‘ e i<k Asil=iA sy=p¢'s A s =Loc\L S2)

Then (s[0/1], s) = (s[0/], ¢°s) € R*'* and it is easy to see that (inc<k, g) € R*™.
This implies (f inc< (s[0/1]), fgs) € fR™* R C R**. If m = oo, then we have
fincer (s[0/1]) = L, hence also fgs = L. Thus we have proved f = L in this case.
If m € N, then

fos=1 @ finca(s0/)= L
& kE<m per definition of m
& gM™s = 1 per definition of k

and

fgs# L = 3FicN. fincep (s[0/I)I=10 A fgs =1 g's
= mENA fgs=r g"s because i can only be n
= neENA fgs=g"s because fg and ¢" are in [emd]y,

Thus we have proved

L if gms = L
fogs=9 .
gts £ L ifgTs# L
for all g € [emd] and s € Stores. This implies m > n and f = f,, .. a
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Note that by Proposition 8.2 the domain [emd — emd]y consists of infinitely many
descending chains f,, 3 fat1,» J ... which only meet in the bottom element; the
maximal elements of this domain are the ‘Church numerals’ f, , = [Az.2"]. If we
define p; : [emd — emd]y — [emd — emd]y for all i € N by

if f= fn., for some m,n <3
i {0

1 otherwise

then po C py C ...is an w-chain of idempotent deflations [1] which have the identity
as their least upper bound, i.e. [emd — emd]y is an SFP object [25]. But a different
property of the functions p; is more interesting for us: With the notation from the
above proof we can reformulate the definition of p; as

L if fince;sgl =1

pif = fn i finccisol # L,
m = card {j <i‘fz'nc<jsol: 1} and n = finces S0l

This shows that p; f is uniquely determined by the finitely many values finc<; sgl

with j € {0,...,¢,00}. Such functions will be called ‘finitely determined’ in Sec-

tion 9, and sequences of finitely determined functions which have the identity as

their least upper bound will play a prominent role in the full abstraction proof.
We conclude this section with a technical lemma.

Lemma 8.3 Let ¢ : Loc — Loc be a finite permutation and let R, € DEF?UW(@)
as in Section 5. Then there is a term SWAP] € c—ALGCS’u_;);(w) for every procedure
type o, such that R, is the graph of [SWAP]] and [SWAPZ] o [SWAF]_.] = id,.

Proof: It is easy to construct SWAP, € c—ALGg’Z;p(@) such that [SWAP,]sl =
s(pl) for all s € Stores and I € Loc, i.e. such that R} is the graph of [SWAP,].

By induction on ¢ we then define SWAP] € C—ALGCSTU_;);(W) by

SWAPI™ = Ay’ SWAP,-; y
SWAPémd = My SWAP ,—1; y; SWAP,
SWAPLlpoc—mr = Ayloc—wr‘ Awloc‘
if £Q x 1) then SWAP](yl,) else

if £Q x1;, then SWAP] (yl,) else SWAP](yx)
where FQ =g4.¢ Ao, 2’ 2 :=1a"+ 1; 12 =12’ tests the equality
on locations, {ly,...,l,} = Supp(¢) and I! = ¢l; fori=1,...,n
SWAPI=" = Xy =" A2 SWAPS (y(SWAP?_, 2))

A straightforward induction on ¢ shows that every [[SWAPg]] has the desired prop-
erties. a
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9 Full Abstraction

We will now present our full abstraction proof. The overall structure of the proof
is the same as for PCF in [32]: In the first part we show that for every function
f € [o]r with ord(o) < 2 and every finite set B of argument tuples for f there is
a term M € ¢-ALGY such that [M] and f coincide on B. As in [32] we will prove
this result by using “logical relations which have large arity and are reminiscent of
value tables” [6]. As a preparation we prove a technical lemma which allows us to
“ill up’ a ground relation with a cofinite part of the diagonal 6" Loc.

Definition 9.1 Let R be an n-ary ground relation with R**°(6"(Loc \ L)) C R™"™.
Then the L-closure of R is defined to be the ground relation S with

o Sint — Rz’nt

— Slee = Rle U §™(Loc \ L)

- §ste = {F e (Dsto)n ‘ At e R 5=t A 5(8"(Loc\ L)) C R}
Note that R is ‘contained’ in its L-closure 5, i.e. RY C 57 for every v € I'.

Lemma 9.2 Let R be an n-ary ground relation with R**°(6"(Loc\ L)) C R™ and
Rc C L™. Then every function f € AUX, which preserves R, also preserves the
L-closure of R.

Proof: Let f € AUX preserve R, and let S denote the L-closure of R. We show
that f preserves 5.

Case 1: f = Const,,

If §€ S and { € R*'° with § =y, ¢, then Const,, § = Const,, t € R = §"¢,
Case 2: f € {Suce, Pred, Cond;,;, Pcond}

Obvious, because 5" = R,

Case 3: f = Cond,

First note that Cond,,,dstl = Cond;,,d(sl)(tl) for all d € D™ s, ¢t € D**° and
[ € Loc. Now let d € Siﬁt = R™, 31 ¢ 5% and 4, € R with § =p @ and
t =7 @ Then Cond,,dst =1 Condy,duds € R because Cond;; d(51) (fl)
= Condy, d(iil)(51) for all I € L, and Condy,d5tl = Condyy, d(51)(11) €
Cond;p R™R™ R™ C R for all | € Loc \ L. This proves Cond,,, d 5T € §°%°.
Case 4: f = Cont

Let [ € S°, §€ 5% and T € R*° with §=p . If [ € R C L™, then Contl5 =
Fl=11= Contlt € R = §"'. If [ € 6"(Loc\ L), then Cont[5 =3l € R = §in!
per definition of %%,

Case 5: f = Asgn

Let [ € §%, d € §™, 5 e St i € R with § =1,  and let @ = Asgnlds. If
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[ € R¢ C I, then @ =5, Asgnldi € R*'°, because Asgnld € ([emd]r)"™, and
@l =3l e R for every | € Loc\ L, hence @ € S*%°. If [ = (I,...,1) € 6"(Loc\ L),
then @ =p, § =1, t € R, @l = d € §int = R and @I’ = 3I' € R™ for all
" € Loc\ (LU {l}), hence again @ € §°%. |

Notation: If f € [r; — ... — 7, — sto = 7], then we let f? denote the completely
decurried version of f,i.e.

fho[m] x ..o x [m] x Dt — DV
fidy,....dy,s) = fdy...dgs
Theorem 9.3 (finite coincidence with a definable function) Let L € W and

co=1 — ... =1 — 0 (k>0)with ord(c) < 2. Let f € [o]r and let B C
[r] % ...x [rs] x D*'° be finite. Then there is some M € c-ALG] with [M]¢ =g f°.

Proof: Let B = {(d11,...,dk1,51), -+, (diny -+ dkn, 5n)}, let d_; = (dj1,....d;p)
forj=1,...,k, §=(s1,...,5,) and let R be the n-ary ground relation with

— Rlc = {d; |75 = loc}y U§™L

~ R = {[M]d,...d, 3| M € c-ALG} T Ty for 4 = int, sto
Then we must prove that fcil dyFeR (if @ = sto = 7). As a first step we show
that every g € AUX preserves K.

Case 1: g = Consty,

Let i € R, ie. i = [M]dy...d3 for some M € c-ALGT T TR Then
Consty,t = [Nay, ..., x5 My ... 2k m]]d_)lcikE’E ",

Case 2: g = Succ (similarly for Pred, Cond., and Pcond)

Let @ € R™, ie. & = [M]d,...dy5 for some M € c-ALG] 77577 Then
Succ € = [[/\wl,...,xk.succ(Mxl...xk)]]d_)l...d)k§6 R,

Case 3: g = Cont

Let [ € R" and i = [M]dy...dy3 € R, If [ = d_; with 7; = loc, then
let P = Aaq,...,ap. Moy, .2 M, and if [ = (I,...,1) € 6"L, then let P =
Axq, .., xp. Maqy .. xp; VL In both cases Cont [T = [[P]]d_)lcikE’E R,

Case 4: g = Asgn

Let [ € R, € =[M]dy...dy§e R™ and i = [N]dy...dy 5 € R, If [ = d; with
7; = loc, then Asgniét = [[P]]d_)ld_}w?, where

P = Aay,...,zp.newz in z := Moy ...xp; Ny .. .o 25 ;=2 end

Intuitively, P works as follows: First, Mz ...z is evaluated and the result € is
stored into the local variable . After evaluation of Mz, ...z, the computation
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snaps back to & and then t is computed by evaluating Nzq...z. Finally, 7 is
updated to #[¢/(] by the assignment z; :=!z. The precise argumentation is as
follows.

[Pld;...d; 5
= ([ze:=Mazy...2p; Noq..oag; o5 = 2] [l/2] (5]0/1])) [51/1]
where [ is some new location and 77 € Env™ with ﬁxi:ci;forizl,...k
= ([Nay...zp; ;=] q[l/z] (5][€/1])) [51/1]
because [ is new and hence [M]d; . ..dy (3[0/1]) = [M]d,...dy5=¢

—

= [z :="e] /=] (t]e/])) [81/1]
because [ is new and hence [N]d;...dy (3[¢/1]) = {[é/1]

= {le/q e/ 511

= {[é/l] because I is new and hence 51 = i1
= Asgnfé’f

Ifi = (I,...,1) € 6" L, then we replace the assignment z; :=!2 in P by [ :='!z. Thus
we obtain again Asgn [l = [P] dy...dy 3 ie. Asgnl &t € R**° in both cases.

So far we have shown that every ¢ € AUX preserves R. Now let L' O L be such
that d; € ([r;]p)" for j = 1,...,k and § € (Storesy,)™. Then R**°(6"(Loc\ L)) =
ConstgR*" C R™', hence we can define the L'-closure S of R. By Lemma 9.2, every
g € AUX preserves S, moreover 6"(Loc \ (L' \ L)) C S'° because ¢"L C R, and
finally (L,...,L1) € 5% because (L,..., L) = [Az1,...,25 Q] dy...d§ € R,
Altogether this proves 5 € % and hence f preserves S.

If we can now show that d_; € 57 for j =1,...,k, then we obtain fcil S e
fS™ L 8TRRS C fST L §TS5 C §7. For 4 = int this already concludes the
proof, because S = R"'. For v = sto we first obtain fcil cody 3 =5 t for some
f€ R°*, and then fdy...dy 8 =p,01 § =g,y T implies fdy...dy§=1¢€ R,

Hence let j € {1,...,k}. If 7; = loc, then d_; € R'*c C 5%, As 7; is a type of
order < 1, we are left with the case 7; = loc™ — 6 (m > 0). In order to keep the
notation simple, we consider only one particular case, namely 7; = loc — cmd:

Let [ € 57,1 € § @ € R with { =, @ and let M € ¢-Angp 7o
with 4 = [M] dy...dy5 1 = d, with 7, = loc, then d;ff = d;fﬁ because
d_;f € ([emd] )™, hence d;ff =p [Aay, .. ep. Moy oags 2] dy...d, 3¢ Reto,
and moreover d;iil = {1 € R for all [ € Loc\ L'. This proves d;ii € §*°. If
[= (I,...,1) € 6" L, then we replace z;x; by ;[ in the above term and thus obtain
again d;IT € S*%°. Hence we are left with the case [ = (I,...,1) € §"(Loc\ L) :

As t€ §5°%, we have {1 € R™, i.e. there is some N € e-AvG) ~ 7 F 7" with
f1=[N]d,...d,5 Now we define

p
Q

Az, .., . newx in x:= Nxy...xp M2y ... 2p; 252 end

Azy,...,2p.newz in x := Nay...xp; M2y ... 25 2;2; 'z end
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We may assume that our particular location [ € Loc\ L is bound to the local variable
x, hence we obtain

[Pld;...d; 5
= ([e:=Nay...zp; Moy ... 2p; z;2]75)[0/]]
where 77 € Env” with fa; = d; fori =1,...k and iz = (l,...,0)
=p [ :=Nay...xp; Maq. ..z ;2] 75
= [Mzy...2p; 2;2] 7 (F[E1/1])
= [ejalq(alti/l)
because [M]dy ...dy (3[t1/1]) = @[t1/1] by Theorem 5.3 (iii’)
= dil(afe)
= d_;lf because d;l € ([emd] )" and {:L'u{l} @[t/

This shows that d;lf:D [P] dy...dy5€ R and similarly we can prove d;lfl =
[Q1d, ...dp 5 € R™. Moreover, if I € Loc\ (L' U {l}), then d;lil' = {I' € R
because J;l € ([emd]puqy)™. Thus we have shown that d_;lf € 5S¢ and this
concludes the proof. a

From Theorem 9.3 we can obtain a sequence of definable functions [Mi], [M2], ...
(M; € ¢-ALGY) which ‘converge’ to the given function f € [o]z in the sense that
they coincide with f on more and more argument tuples. But for a typical full
abstraction proof [26] we must know that f is the least upper bound of a sequence (or
a directed set) of definable functions. In [32] we succeeded to close the gap between
these two kinds of ‘convergence’ by showing that the meaning of each type is an
SFP object, in which the identity is the lub of an w-chain of definable idempotent
deflations. But a closer look at the full abstraction proof in [32] reveals that we did
not really need to know that these definable functions are idempotent or that they
have finite image. Instead we only used the fact that they are ‘finitely determined’
in the sense of the following definition.

Definition 9.4 Let D;, F; (i = 1,2) be sets, let F; C (D; BN E;)and p € (F; BN ).

(1) B C Dy is called a determining set for p, if f =p g implies pf = pg for all
f,g € Fy. pis called finitely determined if it has a finite determining set.

(2) pe(Dq EA Dy) is called a determining function for p, if f(pd) = g (pd) implies
pfd=pgdforall f,g € Fy and d € D,. pis called locally determined if it has
a determining function.

Finitely determined functions are those which we need for the full abstraction proof,
but sometimes it is very difficult to prove ‘directly’ that a particular function is
finitely determined. Hence we use locally determined functions to construct new
finitely determined functions from given ones. This is possible by

Lemma 9.5 Let D;, F;, F; (i = 0,1,2) as before, p € (I} A Fy) and q € (Fy A ).
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(i) If p and q are locally determined, then p o q is locally determined.
(ii) If q is finitely determined, then po q is finitely determined.

(iii) If p is finitely determined and q is locally determined, then p o q is finitely
determined.

Proof:

(i) Let p,q be determining functions for p and ¢. Then f(¢(pd)) = ¢(G(pd)) =
qf(pd) = qg(pd) = p(qf)d = p(qg)d for all d € Dy and f,g € Fy. This shows
that ¢ o p is a determining function for p o ¢.

(ii) Clearly every determining set for ¢ is also a determining set for p o q.

(iii) Let B be a (finite) determining set for p and let ¢ be a determining function for

q. Then f=49= fod=pgoq=qf=pqg=p(af)=plqg)forall f,g€ F.
This shows that ¢B is a (finite) determining set for p o ¢. O

Notation: Let o,0’ be procedure types and let p € ([o] EA [¢']). Then we let p”
denote the corresponding function on the completely decurried types, i.e.

P ol =[]

PPt = (pf)!
Note that (po q)” = p? 0 ¢P, if ¢ € ([o] = [0']) and p € ([o"] = [o"]).
Definition 9.6 Let 0,0’ be procedure types and let L € W.

(1) An L-FD-sequence on ¢ is a sequence of terms P, € ¢-ALG7 7 such that
([Pa])ner is an w-chain with | |, [P.] = ids and [P,]” | ([o]r)" is finitely
determined for every n € N. ¢ is called an L-FD-type if there is an L-FD-
sequence on o.

(2) An L-section-retraction-pair (or L-SR-pair) between ¢ and o’ is a pair of terms
S € c-ALG]T7, R € c-ALG] 7 such that [R] o [S] = id, and [S]” is locally
determined. o is called an L-retract of o’ (notation: o <, 0’) if there is an
L-SR-pair between o and o’.

Note that L-retracts are closely related to ordinary retracts [1, 4]: If (9, R) is an
L-SR-pair between the types o and o, then ([S]|[o]z, [R]|[o]r) is an (ordinary)
s-r-pair between the dcpo’s [¢]r and [o']r.

Our ultimate goal is to prove that every procedure type o with ord(o) < 2 is
an L-FD-type, whenever L # (). But—as mentioned before—it is sometimes very
difficult to prove directly that particular functions are finitely determined. This is
the point where L-retracts come in:

Theorem 9.7 (L-retracts of L-FD-types) Fvery L-retract of an L-FD-type is
an L-FD-type.
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Proof: Let (P,),ey be an L-FD-sequence on o and let (S5, R) be an L-SR-pair
between o’ and o. For every n € Nlet P! = Ay” . R(P,(Sy)) € ¢-ALc§{ 7. By
monotonicity of [R], the functions [P/ ] form an w-chain, and by its local continuity

UexlPL] = Ues[RL o [P 0 ST = [R] o (Lyex Pl © 151 = [R] o id, o [5] =
id,;. Moreover, by Lemma 9.5 (ii) and (iii), the functions [P.]”|([¢']z)? =
([RI”) | ([e]n)? o [P.JP | (Teln)? o [STP | ([0]n)? are finitely determined. This
proves that (P! ),ey is an L-FD-sequence on o’. a

In order to make good use of Theorem 9.7 we will now provide some ‘recipes’ for
obtaining L-retracts. First note that <y is a preorder for every L € W, because
procedure types and L-SR-pairs form a category: The morphisms from ¢ to ¢’ are
the L-SR-pairs between o and o’; the identity morphism on o is (Ay7.y, Ay7.9y);
the composition of two morphisms (5, R) from ¢ to ¢’ and (5', R') from ¢’ to ¢”
is (Ay7.5(5y), Ay” . R(R'y)). Note that ([S] o [S])” = [5"]° o [S]” is indeed
locally determined by Lemma 9.5 (i). In order to obtain some more interesting facts
about the relations <7, we need the following technical lemma.

Lemma 9.8

(i) Leto=m — ...— 1 — 0 and o' = Tppp1 — ... — 71, — 0 for some m > 0,
let p; € ([[T]]L [r:]) fori=1,....,m and let p € ([[U]]L [r— ') with

pfd= f(pid)...(pmd) forall f € [o],d € [7]
Then pP is locally determined.
(ii) Let q € ([0'] = [o]) and let p € ([r — o] & [r — o]) with
pf=qof foralfe[r— o]
Then pP is locally determined, if ¢° is locally determined.

Proof:

(i) Yor all d € [r] and all (dyg1,-..,dk,3) € [Tmg1] X .. X [7x] X D' we have
PP (d,dpmyts .y diys) = pfddpgr...dys = fApd, ... pmd, dpit,. .., dy, s).
This shows that {((p1,...,pm) o fst, snd) is a determining function for p”.
(ii) For all d € [7] and all (dy,...,dg,s) € [m] x ... x [m] x D**° we have
pPfid,dy, ... dy,s) = pfddy...dys = q(fd)dy...dps = ¢°(fd)(dy,...,dy,s).
Now let ¢ be a determining function for ¢”. Then we obtain
fi(d, q(dy, ... dy,s)) = g¥(d,q(dy, ..., dy,s))

= (fd)Uq(dy,....d,s)) = (9d)"q(dy,...,dy,s))

= () (di, .. dyys) = qP(gd)(dis. s diss)

= pPfid,dy,...,dy,s) = pPg¥(d,dy,. .., dy,s)

This shows that (fst,§ o snd) is a determining function for p”. O
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Lemma 9.9 Let L € W. Then”
(i) o ag, o' implies 7 — o <4, 7 — 0" and 0 — " a4 o' — "

(ii) L # 0 implies iexp ar, emd

)
)
(iii) o az loc — o
(iv) 0 =0 — o' ap (loc —a)—d'
)

T—=17 =0 T'T=7T—=0

(v

The condition L # @ is necessary in (ii), because—by Theorem 8.1—[iexp]y is
isomorphic to Z; and [emd]y is isomorphic to {L, T}, hence [iexp]y cannot be a
retract of [emd]y.

Proof:

(i) Let (5, R) be an L-SR-pair between o and o’ and define

R /\yT_*U AzT. R (yz) 5 AyYyTTONZT S (yz)

R Ay =" Nz Ly (52) S /\yg_“’”./\zg/.y(Rz)

[S]P is locally determined by Lemma 9.8 (ii), because [S]” is locally determined
and [S]f = [S]o f for all f € [r — o]. [S]” is locally determined by Lemma 9.8 (i),
because [S]fg = f([R] g)for all f € [o — ¢”] and g € [o']. Moreover, [R(Sy)z] =
[ (Sy2)] = [R(S(y2))] = [y2] shows that [R(Sy)] = [y]. and [R(Sy)2] =
[Sy(52)] = [y(R(52))] = [y =] shows that [R (5y)] = [y].

(i) Let € L,let R = Ay*™d. y; !l and S = Ay'*F.l:=y. For all f € [iexp] and
s € D*' we have [S]fs = s[fs/l], hence [S]P = [5] is locally determined with
determining function idy;,. Moreover, [R(Sy)] = [Sy; V] =l := y; V] = [y]-

(iii) Let R = Ay ~7.newz in yz end and S = Ay”. A2 y. Then [S]? is lo-
cally determined by Lemma 9.8 (i), because [S]fl = f for all f € [o] and [ € [loc].
Moreover, [R(Sy)] = [new z in Syz end] = [new z in y end] = [y].

(iv) Let R = Ayllor=o)=o" N0 20 y(Aa'.if !z = 0 then 2; else 2;) and § =
Ayo=o=7 A% y(newr in @ := 0; 22 end) (newz in z := 1; 22 end). Then
[STP is locally determined by Lemma 9.8 (i) and

[R(Sy)z1z2] = [Sy(Az.if!lz =0 then 2z else 2;)]
= [y(newz in 2 :=0;if !2 = 0 then 2 else z; end)
(newz in z := 1;if ' 2 = 0 then 2 else z; end)]
= [y(newz in 2 :=0; z; end) (newz in z := 1; 2, end)]

= [yz122] by the remark after Example 7.1

hence [k (S5y)] = [y].

Tf we had product types in ALG, then we could replace (iv) by ¢ x o <z loc — & and (v) by
rx 7 aL T xT.
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(V) R=A YT TN 2, zgl. yzazand S = Ay""7 0N 217/, z].y z2 71 define (even)

an isomorphism, and obviously [S]” is locally determined. a

Theorem 9.10 (L-FD-types) Let o be a procedure type with ord(c) < 2 and let
L #0. Then o is an L-FD-type.

Proof: We will prove that
(1) loc™ — emd is an L-FD-type for every m > 0, L # ()
(2) (loc™ — emd) — emd is an L-FD-type for every m > 0, L # ()
(3) (loc — o) is an L-FD-type for all L # 0, if o is an L-FD-type for all L # ()

From (1) we obtain by Theorem 9.7 that all first order types are L-FD-types, because
loc™ — dexp ar, loc™ — cmd by Lemma 9.9 (i) and (ii). From (2) we obtain, again
by Theorem 9.7, that oy — ... — o5 — 8 is an L-FD-type, provided that all
o; are first order types, namely: If o; = loc” — 6; and m = maz{my,...,my},
then o1 — ... — o — 0 a, (loc™ — emd)* — 0 af, (loc™ =1 — emd) — emd
by Lemma 9.9 (i)-(iv). Together with (3) this implies that all types of the form
loc™ — o1 — ... — o0, — 0 with first order types o; are L-FD-types. But from
these we obtain any arbitrary second order type by a permutation of the parameter
types, hence another application of Theorem 9.7 combined with Lemma 9.9 (v)

shows that all second order types are L-FD-types.
Proof of (1): Let o = loc™ — cmd and I € W. We will show that (P7 | )ney with

[ — o loc loc
L = AYT ATt

proc z: if ALy abs('a;) <n A Mgy abs(!l) < n then skip else
in z; yaq...2,,; 2 end

is an L-FD-sequence on ¢ with the additional property that, for every n € N, [[P;;L]]
is idempotent and [Py ;] ([e]r) is finite (hence [o]z is an SFP object). To this end
we define pi', € [emd]y, for every n € N and L' € W by

cto {5 if s/ C{-n,....,n}

s = i
Po,Lr 1 otherwise

Clearly, for every L' € W, (pi'S )nexn is an w-chain of idempotent functions in
sto

[emd]ps such that | |, o p's, = [skip] and pi's,(Storesy) is finite for every n € M.
Now note that

[[Pg,L]]fll colm = p;t,(iu{ll,...,lm} o(fli...ly)o pff,OLu{zl,...,lm}

for all f € [o] and l1,...,l;, € Loc. This implies immediately that ([P ;])nex is
an w-chain of idempotent functions with | | . [P7;] = id,. It remains to be shown

that, for every n € N, [[PiL]]D | ([e]z)? is finitely determined and that [P7 1 (le]r)
is finite.
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To this end let f € [o]r and ly,...,ln € Loc. By Theorem 5.3, [P7 /[ fly...1;, €
[emd]pugy,... 0,1 is uniquely determined by its restriction to Storesyuy,...1,,) and
st

hence also by the restriction of fly...l, to p Lol lm}(SwresLu{ll,...,lm}) \{L}.
This means that

A={(l,....ln,s) ‘ li,..., 0, € Loc A s € p;ﬁzu{ll,...,lm}(StOTeSLU{h,...,lm}) \{L}}

is a determining set for [P? ;1P| ([¢]r)?. In order to obtain a finite determining set
we define an equivalence relation ~ on A by

(lyeeoslipys) ~ (1,1, 8) & Fp e Fiz(L).Vie{l,....m}.oli=U Ns=5o¢p

This equivalence relation has finite index, because the equivalence class of an element
(l1,... 1y, s) is uniquely determined by the sets {(¢,5) € {1,...,m}? ‘ l; = 1;} and
{(1,i) € L x{1,...,m}|l = I;}, the function (s|L) € (L EA {=n,...,n}) and the
tuple (sly,...,s8l,) € {—n,...,n}™. Moreover, the restriction of f? to any equiva-

lence class is uniquely determined by its value for one representative of the class,

because f(ply,...0ln, 500 ) = flel)...(pln) (soe™ )= (fl1...lns)op™! =

iy, ...yl 8) 0 @~ by Theorem 5.3 (v). Thus, every representation system B for
~ is a finite determining set for [[P;;L]]D | ([e]r)?. Finally note that ([[P;;L]]f)d =B
([P Jg)* implies [P7,1f = [P7 1([P710) = [P (1P Lg) = [P7 L]y for all
frg € o], ie. [[P;;L]]f is uniquely determined by the finite value table

([P el fl - bns)y, ot s)eB

The set of all such value tables is finite, because the possible entries for any element
(li,...,lm,s) € B can only range over the finite set p;t,OLU{ll,...,lm}(StOTeSLU{llwnJm})‘
This shows that [P7, ] ([e]r) is finite.

Proof of (2): Let ¢’ = (loc™ — c¢md) — cmd and L € W. We continue to use the
notation from the proof of (1), in particular ¢ stands for loc™ — emd.

The first idea which comes to mind for defining an L-FD-sequence on ¢’ is to
imitate the definition of idempotent deflations [1] for the functional language PCF
[14, 32, 20], i.e. to define

CT/

n,L

2

= Ay A 2% POy (P 2)

Unfortunately this idea is too naive: As the elements of [o']1 cannot be considered
as functions from [o]z to [emd]r (but also map [o]zs to [emd]rs for all L' O L),
we cannot really expect that this simple PCF-approach carries over to AL, and
indeed it turns out that the functions [P7;]" | ([¢']z)* are not finitely determined
(nor do they have finite image). Somewhat to our own surprise, this problem can
already be solved by using a slightly modified definition, namely

o'

L = Ay” A 2% newx in Py (if o < n then z :=!z+ 1; P] ;= else 2))end
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The difference to the first definition is, that we now use a local variable z to count
the procedure calls of z (as in Example 7.7) and that we let P;L’:Lyz diverge as soon
as the number of these procedure calls exceeds n. We will show that these new terms
Pg,/L indeed define an L-FD-sequence on o’.

Clearly, Pg,/L € -ALcy~7 and ([[Pg:L]])neN is an w-chain with unEN[[Pg,IL]] =
[ANy.Az.newz in y(z:=!z+1; z) end] = [Ay. A z.yz] = id,s, where the second
equality holds by Example 7.7. The hard part is to show that [P7,]P | ([o"])? is
finitely determined for every n € N: 7

Let A and ~ be defined as before. As the set A/~ of all ~-equivalence classes
eq is finite, we may encode a word w € (A/~)* as an integer and thus store it into
a location. We use eq.w to denote the concatenation of eq and w and |w| to denote
the length of w and—in order to simplify notation—we do not explicitly distinguish
between a word w and its code. Below we will use an element eq € A/~ as a(n
incomplete) description of a procedure call of some fixed procedure g € [o], hence
a word w € (A/~)* stands for a sequence of such procedure calls.

Now let Seq,, = {w € (A/~)*||w| < n} and let [ € Loc\ L. For every function
®: Seqe, — [P7 1 1([o]L) we define cg € [o]ruqy by

S(sl)ly .. Ap(sclassly .. . lys.sl/l]) if sl € Seq_,,

L otherwise

cply ... ln,s = {

where class € [loc™ — iexp]y is such that

_[eq if (bl s) € e
0108311---lms_{ L if(ll7...,lm78)€A

for all ly,...,l, € Loc, s € Storespy, ..,1- Note that by Theorem 8.1 (i) and
(iii) such a function class exists and is uniquely determined. Moreover, each cg is
indeed in [z, because it is defined by a finite case distinction on the contents
of [ from the function class and the functions ®(w) € [o]r (w € Seq.,,). To obtain
some intuition for these functions, note that each cg uses the location [ to keep a
record of its own history of procedure calls and diverges as soon as the recorded
history becomes longer than n. The role of the index ® is to describe how a call of
cp depends on the previously recorded history.

From the proof of (1) we know that [P ([o]r) and p;'} (Storesy) are finite,
hence the set

C = {(casle/)|®: Seqe, — [P7L]([o]L) A s € pjlg(Storesy) \ {L}}

is also finite, and we will prove that it is a determining set for [P7,]7 | ([o']r)%.
More precisely, we will show that for every (g,s) € [o] x Stores ‘there is some
(co, /1)) € C such that fea(s[=/1]) = fea(s[/1) = [P7olfgs = [PSL1fgs
whenever f, f' € [o']r (i.e. [P7 1P| ([0']1)? is not only finitely determined but
also locally determined). The intuition for the proof is, that the computation of
[[Pg:L]]fg s can be simulated by the computation of fcg(s'[¢/1]) for some appropriate
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® and s'. This is a surprising fact and we consider it as one of the central
points of the whole full abstraction proof. Note that, although every single
function g € [o] can only have access to finitely many locations ly,...,Ilz € Loc\ L,
there is no upper bound on the number k of these locations. Moreover, the values
which are stored in [, ..., [; during the computation of [[P;L’:L]]fgs can in no way be

controlled by [[PglL]]f, i.e. the simulation must cope with arbitrarily large values in
li,...y 1. On the other hand there are only finitely many functions cg, which only
use a single location [ € Loc\ L and, by their very definition, can only store finitely
many different values in [, namely the words w with |w| < n. Altogether this means
that there is no hope for a naive simulation, which uses some direct encoding of the
values in [y,...,[; into the contents of [. The trick is to use an ‘indirect encoding’
which is based on histories of procedure calls. This encoding will now be defined.

Let g € [o] and s € Stores. The idempotence of [Py ;] implies that [[P;L’:L]]fg s =
[[Pg/L]]f([[PgL]] g)s for all f € [o'], hence we may assume that g itself is already
contained in [P7 ;] [o]. Now let ly,...,0x € Loc\ L be such that g € [o]ruq,,...0.)
s € Storespuq,,..,) and L€ {ly,...,lx}. For every equivalence class eq € A/~ and
every i € {1,...,k} we define ¢;? : Z’j_ — Z1 by

gidr, . dy) = gl U (lda /). de /D) L
where (I{,...,1l ,t) € eqand I},..., 0 & {l1,.... 11}

crtm?Y

In order to see that the functions ¢;? are well-defined, first note that every eq does in-
deed contain a tuple ({{,..., 00, t)with I{,..., I/, & {l1,...,lx}. Moreover, if we have
two such tuples in the same equivalence class eq, then we may assume that the cor-
responding permutation ¢ in the definition of ~ is contained in Fiz(LU{ly,...,l;})
and then Theorem 5.3 (v) implies g (¢ ;) ...(0 ) ((to ™) [di/lL].. . [de/lk]) l; =
G 1) . (o) (L1 /1) [/ ow ) b = g (¢ 1] [ 1G]) (270
=gly... U (t[d1/l]...[dr/lk]) L, i.e. both tuples lead to the same result.
Finally we define a value d* € Z, for every w € (A/~)" and ¢ € {1,...,k} by

- d,f - SlZ
— A = gdy, L d)

Intuitively, d;¥ is the current contents of the location /;, if w describes the history
of procedure calls of g (and if the initial contents of Iy,...,I; is given by s). The
above argumentation has shown that the values d” are uniquely determined by the
(incomplete) description w, hence w is indeed an ‘indirect encoding’ of the current
contents of [1,...,{r. Moreover, the counter x in the definition of P;L’IL will guarantee
that the sequence of procedure calls of g will never become longer than n, hence we
will need only words w of length < n for the encoding.

Now we are ready to choose the appropriate function ¢ which will make our
simulation work. Let @ : Seq_,, — [Py [([o]r) be such that

D(w)ly... 0,1 = LUl ) gly- . 0 (t[dE /0] dy k)
forall if,...,1Il, € Loc\{l1,...,lx}, t € Stores
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It follows easily from Theorem 8.1 (ii) and (iv) that the function & exists and is
uniquely determined. To obtain some intuition for ®, note that the procedure calls
Q(w)ly...ll, and gl ...l}, have the same effect on L U{l],...,l/ }, provided that
w describes the history of procedure calls of g. Hence c¢gly ...l indeed simulates
gly ...l in the following sense: First it reads the word w from the location [, then
it behaves like ®(w) !y ...1/ ,i.e. it actslike g1} ...l on LU{l},...,I. }, and finally
it extends the contents w of [ by the description eq of the current procedure call.
The last step guarantees that the contents eq.w of [ after the call of ¢y encodes the
contents dy ", ..., d; """ of ly,...,1} after the call of g. Of course, all this is only
a vague intuition, which will now be replaced by a mathematically rigorous proof.
In particular, our intuitive understanding of a ‘simulation’ will be expressed by an
appropriate logical relation.

To this end let s' = p;*5 (s[0/l]...[0/lx]) € p;'7(Storesy). We must show that
[[P;L’:L]]fgs is uniquely determined by feco(s'[¢/l]). First note that [[P;L’:L]]fgs =
([P T (fg') (s[0/17)) [sU' /1], where " is new, say ' ¢ LU {l,...,lt}, and ¢’ €
[olrugi,... iy is defined by

o gly ..U ([t +1/U]) iftl <n
gha-tmt =7 | otherwise

Now let 5 € DEFéll""’lk’l/} C OUTE be defined by

§*t = {L}* U {t € Stores® | Jw € (A/~)*. il =w A ta0' = |w[ < n A
Vie {17 e '7k}-t2 lZ = diw Ay —Loc\{l1,...,[g,l'} t2}

Clearly, (s[0/l1]...[0/1k][¢/1], s[0/1]) € S**°, and if we can prove (¢, g’) € 57, then

we obtain

([P (fea) (s10/0]- .. [0/16) (/1) IPE T (f9') (s [0/17)) € 5°*°

for all f € [o]z, because [P o f is also in [o]z. The left hand side of this pair
equals p;i‘i(f0q>(s’[5/l])) and the right hand side uniquely determines [[P;L’:L]]fg s. As
55t is a partial function, this implies that [[P;L’:L]]fg s is indeed uniquely determined
by fealse/1]).

It remains to be shown that (cg,¢’) € 7. It can be easily seen that $'° =
62(Loc \ {l1,...,lg,l'}), hence we must prove (col; ...l , ¢g'l}...Il) € 5™ for all
I,... 0L, € Loc\ {ly,...,lg, l'}. To this end let (t1,t3) € S*\ {L}%. Then there
is some w € (A/~)* with t11 = w, t3I' = |w| < n, t3l; = d¥ for i = 1,...,k
and 11 =gy, 00 Lo M t,t0 € p”‘iu{l, y }(Stores) then eqly ...l t1 = L be-

EARRRAN B T, 1re0bm
cause classly ...ty = L, and ¢l ...0;,t3 = L because g € [P7 ][o]. If |w|=n
then cgli ...l .ty = L because {11 = w ¢ Seq.,, and ¢'li ...l 'ty = L because
tyl" = |w| = n. Hence we have (cgly ... U t1, ¢'ly... U t2) = (L, L) € 5° in both

cases. The only remaining case is 1,1y € pifiu{l’ " }(Stares) A |w|] < n. Then
JLU{l 0l
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there is some eq € A/~ with classl] ...l ,t; = eq and we obtain

gl Uty = gly... 0 (tz[tgl/+1/l])
because t3l' = |[w| < n

FLU{l1endg ) gl L (ldy [l dyf 1))
because ty[tal' +1/U') =1,y taldi”/les - o dfY /1]

SLu{l], 0l S(w)ly... U1
per definition of ¢
SLO{l ol ) S(w) ... U (t1]eqw/1])

because t1 =g, 1y tileq.w/l]
= C@li e l;ntl
because classly ...l t1 =eq N til = w
If gl ... 1 ta = col .. .1l t1 = L then we are done, otherwise note that

—cply. . 1t = eqw

=gl Ul =k + 1 = |eqau]

=gl Ut = gl U (B[d ) AR ) o= gl (dy, . dy) = ditY

for every i € {1,...,k}
= g'ly ..ty and col] ... 10 t; coincide on Loc \ {{y,...,0g, 11, ..., 0, '}

The latter observation implies that ¢'l{...Il t3 and ¢gl]...l/ t; even coincide on
Loc \ {ly,...,l;,I"}. Altogether this proves (caly ...l 11, ¢'li ... .1l 1) € S and
thus concludes the proof of (2).

Proof of (3): Let o/ =loc — o and L € W, L # (.
We choose some location [ € Loc\ L. By assumption, there are an L-FD-sequence
(P71 )nex and an (L U {l})-FD-sequence (PgLu{l})HEN on 0. For every n € N let

P;;LU{Z,} € ALG7 77 be the term which is obtained from Pg,Lu{l} by substituting a

fresh variable z for the location constant /, and let P;L’IL € C—ALG%/_W/ be defined
by

P;L’:L = Ay? Aalclif Vier EQx 1 then P7;(yz) else P? Luf (¥ )

where EQ ¢ c—ALGfDOCZ)_””p is the equality on locations and y° is some fresh iden-
tifier. Let f € [o’]. Then

o [ IPAGY e
S { [[P Lopd (SO il =1

and for I’ ¢ L U {l} we conclude by Lemma 8.3 that

[PIL1F1 = [SWAPGWI([PZ L) (ISWAPG W1
= [SWARG IIPS Loyl (ISWAPG ] f 1)
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where (I1") denotes the transposition of [ and !’. From these equations it follows
easily that ([P L]])nEN is an w-chain with | | [P, L]] id, .

It remains to be shown that [[P;;L]]D | ([¢"]r)? is finitely determined for all n € .
Let f € [0']z. Then [[SWAP(CEIZ,)]]f = f whenever I’ € Loc \ L and thus we obtain

from the above equations

N R L (0 el
[Prolfl = {[[SWAP”,]]([[P Copd(FD) iUEL

Now let B and B’ be finite determining sets for the functions [Py , 17 1 ([e]z)? and
17 o )? | (Iology)’. Then, for every ¥ € L, (LB J(fP) = [PL1P(F 1)
is uniquely determined by (fI')?| B and ([[PULU{I}]] (F)? = [[PULU{I}]]D(fl)

uniquely determined by (f{)?| B’. Thus it follows from the above equation that
[[PglL]]Dfd = ([P L]]f) is uniquely determined by f?|(L x B) U ({I} x B'), i.e
[P L]]D is indeed finitely determined. O

We conjecture that the restriction L # () can be dropped from Theorem 9.10 and
that all the domains [o]y, with ord(o) < 2 are SFP objects (as we already know for
o = loc” — emd). But the only way to prove this would be to directly construct L-
FD-sequences for all types of order < 2 in order to avoid applications of Lemma 9.9
(where the restriction L # () comes from) and Theorem 9.7 (where the idempotence
of functions gets lost). We preferred to take the indirect way via L-retracts, because
it allowed us to restrict the tricky encoding in the proof of Theorem 9.10 to types
of the form (loc™ — emd) — cmd , and because we consider the use of L-retracts
as an interesting technique in its own.
We are now ready to prove full abstraction.

Theorem 9.11 (approximation by definable functions) Let o be a procedure
type of order 1 or 2 and let L # 0. Then every [ € [o]p is the least upper bound of
an w-chain of definable functions [M] with M € c-ALGT.

Proof: Let (P,),ex be an L—FD—sequence on o, and for every n € Nlet B, be a finite
determining set for ([P,])? | ([e]r)?. By Theorem 9.3 there are terms M,, € c-ALGY
with [M,]? =g, f?, hence [P, M,]¢ = [P.]°[M,]? = [P.]JPf¢ = ([P.]f)? for every
n € N. This implies f = ||, o[ Po]f = L[ PrMy]. O

Now we obtain our full abstraction result by the usual argumentation [26]:

Theorem 9.12 (full abstraction) Let o be a type of order < 3 and let My, M, €
c-ArGy. Then

[[Ml]] = [[MQ]] = M1 ~ M2

Proof: Only ‘<’ remains to be proved. Let o =7 — ... — 7, — 8 (kK > 0) and
assume that [M;] # [Ms], i.e. there are d; € [r;] for j = 1,...,k and s € Stores
such that

[[Ml]]dl...dks 7£ [[MQ]]dldkS
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Let L # 0 be such that d; € [r;] for j = 1,..., k. By Theorem 9.11, every d; is the
least upper bound of a directed set of definable elements in [7;]7, (for 7; = loc, d; is
itself definable), hence the local continuity of [M;] and [Mz] implies that there are
N; € c-Aray with

[[MlNl...Nk]]S 7£ [[MQNlNk]]S

From this, it is easy to construct a program context C[ ] with [C[M1]] # [C[M-]].
Hence M; % M,;. ]

We have formulated Theorem 9.12 for closed terms of order < 3. Instead, we could
have used open terms of order < 2 whose only free identifiers are of order < 2. In
any case the main role is played by procedure identifiers of order < 2; that’s why we
speak of ‘full abstraction for the second order subset’.

10 Variants of the Language ALG

We have included some features in our language ALG which are not typical for an
ALGOL-like language, hence it seems worth to discuss whether they can be removed
or whether some further ones can be added.

Removing the parallel conditional

The observant reader may have realized that the parallel conditional did not really
play a role in our full abstraction proof, and indeed it can be removed from the
language ALG without any difficulties:

Let ALG®®? be the sequential subset of ALG, which is obtained from ALG by
removing the constant pcond. If we replace AUX by AUX\{Pcond} in the definition
of the signature X, then we obtain a new signature %*¢¢ which is strictly greater than
Y, in particular it contains ground relations which are similar to the sequentiality
relations of [32]. One such example is the ground relation R with

— R = 63Loc
- R ={de (D) |di=LVdy=1Vd =dy=d3} fory=intsto

which is contained in (¥*¢?)L for all L € W (as can be easily checked). If we replace
3 by X¢¢? in the construction of our denotational model, then we obtain a ‘smaller’
model which is computationally adequate and fully abstract for the language ALG*¢Y.
This can be proved exactly as before, because we have never made any real use of the
parallel conditional in the proofs of computational adequacy and full abstraction.

In the new model we can validate additional denotational equivalences like
[y skipQ + yQskip] = [2+xyQQ]

where y : emd — c¢md — texp. This is a variant of the famous PCF-equivalence
[26, 32], and it can be validated similarly as in [32]: Let n € Fnuv, s € Stores and let
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R be defined as above. Then ([skip], [],[]) € R™, ([Q], [skip], [Q2]) € R and
(s,8,8) € R, hence ([y skip Q] ns,[yQskip]ns, [yQQ]ns) € nyR™ R™IRs C
R"*. This means that one of the first two components must be L or all three must
be equal, and in both cases the above equality follows easily.

Note that—for the first time in this paper—we have used a relation of arity
greater than 2 for proving an observational congruence. Indeed, it can be shown
that no binary relation works for this example, and similar examples show that
there is no upper bound at all on the arity of relations which are needed for proving
observational congruences in ALG*?. This is in contrast to ALG itself, where binary
relations seem to be sufficient (cf. Sections 7 and 11).

Removing the snap back effect

In contrast to the parallel conditional, the snap back effect does play an important
role in our full abstraction proof, and it is not (yet) clear whether we can obtain a
fully abstract model without it.

First note that there are at least two (significantly) different options for a lan-
guage without snap back, namely

se

— alanguage ALG™*¢ in which integer expressions have no side effects at all [8, 9],

not even temporary ones,

— a language ALGT*® in which integer expressions may have permanent side
effects [38].

ALGT? can be defined by removing the constant seq,,,, from ALG. As it is a
subset of ALG, its observational congruence relation can only be coarser than the
ALG-congruence, and indeed it is strictly coarser, as is illustrated by the terms

M; = newz in y 7 (g = 1;2" ;= 4);if lz = 1 then Q end (i=1,2)

In ALG™*° we have My =~ M, by the following (somewhat informal) argumentation:
If we start My and M, in the same initial store, then it only depends on this store
(and not on the particular parameter) whether the procedure y ignores its parameter
or whether it calls its parameter at least once. In the first case it is obvious that M;
and M either both diverge or terminate with the same result. In the second case the
local variable & contains 1 after y(z := 1; 2’ := 1) and also after y (z := 1; 2’ := 2),
because the global procedure y has no access to z and because the contents of x
cannot snap back to 0. Hence My and M, both diverge in this case. In ALG itself
we have My ¢ My because My and M can be distinguished by the program context
C[] = newa' in proc ymi—emd; N zemd g/ .= (z;12') in [ ]; ! 2’ end end.
ALGT*¢ can be defined to have the same syntax as ALG*®? (the parallel condi-
tional does not make sense if integer expressions can have permanent side effects)
but of course it must have a rather different operational and denotational seman-
tics, in particular [iezp] must consist of functions from D**° to D** x D™, The
two observational congruence relations of ALG**? and ALG1*¢ are incomparable: On
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the one hand, the above terms M; and M, are observationally congruent in ALGT*¢
(with the same argumentation as before) but not in ALG**?. On the other hand
there are trivial examples of ALG**‘-congruences which do not hold in ALGT*¢, e.g.
(z:=0;1) = 1.

As to finding fully abstract semantics, both ALG™*¢ and ALG'*® seem to create
new problems. Although ALG™*¢ is just a syntactic restriction of ALG, we cannot use
the same trick as for ALG**? in order to obtain a larger signature (and thus a ‘smaller’

model), because AUX does not contain an auxiliary function which corresponds to

—Sse

the constant seq,,,,. Hence, if there is an appropriate signature at all for AL,

new ideas seem to be necessary for defining it. For ALG™**

it is of course necessary
to restructure the whole denotational model before searching for an appropriate
signature. Some first steps which we have made into this direction seem to suggest

that ALGT* is more promising than ALG™*°.

Removing reference parameters

We have included parameters of type loc as a matter of convenience, but they are not
important for our full abstraction result. Only some minor changes are necessary if
we want to remove them from ArG: Of course ‘new z in ...end’ can no longer be
considered as syntactic sugar; it must be introduced as an extra binding mechanism.
Besides that we must only insist that environments 5 are injective on the set Id"*
because sharing between location identifiers is no longer possible in the restricted
language. At some points the full abstraction proof must be carried out with more
care in order to avoid redundant A-abstractions (with reference parameters) in the
distinguishing contexts (cf. [34]), but all in all it will even become simpler because
some nasty case distinctions will disappear (especially in the proof of Theorem 9.3).

Adding value parameters

It should be no problem to add parameters of type int to ALG, i.e. to introduce
call-by-value as an additional parameter passing mechanism (at ground type level).
We conjecture that they can be handled similarly as the parameters of type loc.

11 Conclusion and Open Questions

We have defined a denotational semantics for an ALGoL-like language, and we have
proved that it is fully abstract for the second order subset of that language. Our
denotational model satisfies the usual ‘goodness’ criteria, namely it is defined in a
cartesian closed category, it is syntax-independent and—despite of its rather tech-
nical definition—it allows us to give rigorous and simple proofs for all the test
equivalences which have been proposed in the literature. The simplicity of these
equivalence proofs is partially due to the fact that they are all based on relations of
arity < 2 from the sub-signature QUT. This leads us to
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Conjecture 11.1 Theorem 9.12 remains valid, if we use a smaller signature for
our model construction, namely the signature X with

SE=ourt U {({Li}, {Lso}, Loc)y  Sh=ovurh L =0 forn>2

From our efforts to construct counter-examples, we have already gained some ev-
idence that Conjecture 11.1 really holds. This would increase the ‘tastefulness’ of
our model, because OUT (and hence %) is defined more concretely than the original
signature ¥. Moreover we would come closer to O’Hearn and Tennent’s parametric
functor model [23], and so it could finally turn out that their model is also fully
abstract for the second order subset of ALG. Therefore we consider Conjecture 11.1
as a worthwhile subject of further research.

The most obvious open question is of course, whether our model is fully abstract
for the full language ALG and not only for the second order subset. We believe
that the answer is negative: Our intuition is that a global procedure acts on a local
variable like a pure A-term and hence the full abstraction problem for ALG should
be closely related to the definability problem in the pure (simply typed) A-calculus.
From [10] it follows that (at least for a finite ground type) the A-definable functions
of order 3 cannot be characterized by logical relations, and so we expect that full
abstraction for our ALG-model also fails (already) at order 3. In order to repair this,
one might try to use ‘Kripke logical relations of varying arity’ [6, 20] instead of our
finitary logical relations, but this would certainly lead to a terribly difficult model
construction and it is questionable whether such a model would provide any new
insights into the nature of local variables. Hence we think that our ‘full abstraction
for the second order subset’ is indeed the best result which one may expect at the
current state of the art.

One may finally wonder whether our techniques can be transferred to call-by-
value (i.e. ML-like as opposed to ArGor-like) languages [24]. This is a question
which we have not yet investigated. Although the observations in [24] indicate that
additional problems might come up in the call-by-value setting, we are confident
that at least our main ideas will be helpful.

Acknowledgements. 'm deeply indebted to Albert Meyer with whom I began
my work on the full abstraction problem for local variables in [13], and from whom
I learnt to ask the right questions about programming languages (and I'm glad to
have found an answer to one of these questions). I'm grateful to Peter O’Hearn and
Bob Tennent for discussions about the relationship between our different approaches
and to Jorg Zeyer for pointing out unclarities in an earlier version of the paper.
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