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Abstract

We present a denotational semantics for anAlgol�like languageAlg� which
is fully abstract for the second order subset of Alg� This constitutes the 	rst
signi	cant full abstraction result for a block structured language with local
variables� As all the published 
test equivalences� ��
� �� �
� for Algol�like
languages are contained in the second order subset� they can all be validated
�easily� in our denotational model�

The general technique for our model construction�namely 
relationally
structured locally complete partial orders� with 
relation preserving locally con�
tinuous functions��has already been developed in ��
�� but our particular model
di�ers from the one in ��
� in that we now use a larger set of relations� In a
certain sense it is the 
largest possible� set of relations� an idea which we have
successfully used in �
�� to obtain a fully abstract model for the second order
subset of the functional language PCF ����� The overall structure of our full
abstraction proof is also taken from �
��� but for the single parts of the proof
we had to solve considerable new problems which are speci	c to the imperative
�Algol�like� setting�

� Introduction

Di�culties with the denotational semantics of local variables were �rst observed in
the context of Algol�like languages in the early eighties ���� �	� 
� ��� ��
� In
���
 these di�culties were identi�ed more precisely as having to do with a failure of
full abstraction� Roughly speaking� a denotational semantics is fully abstract if it
does not make any unnecessary distinctions� A more precise de�nition is as follows�
Two program pieces M and N are observationally congruent �denoted M � N��
if they can be replaced by each other in every program without changing the ob�
servable behavior of the program� Every reasonable denotational semantics should
only identify observationally congruent program pieces� i�e� it should satisfy

��M 

 � ��N 

 � M � N

If it even identi�es all such program pieces� i�e� if it satis�es

��M 

 � ��N 

 � M � N

then it is called fully abstract �

�



For many programming languages it is di�cult to �nd a fully abstract denota�
tional semantics� the most prominent one being the purely functional language PCF
���
� The reason is that most denotational models contain nonstandard elements �
i�e� elements which are not de�nable in the language� and that some of these ele�
ments may be very di�erent in nature from the de�nable ones� Two observationally
congruent program pieces may then fail to be denotationally equivalent just when
their free identi�ers are bound to such �critical� nonstandard elements� This means
that full abstraction fails� and then the challenge is to �nd a �smaller� denotational
model from which these critical elements are ruled out� Usually this goal is achieved
when every nonstandard element is the limit �i�e� the least upper bound of a directed
set� of de�nable elements� because then full abstraction follows in a standard way
from the continuity of the semantic functions ���
�
In the traditional model for PCF the critical nonstandard elements are the func�

tions with a �parallel� nature� An example is the parallel or ���
� which returns true
precisely when one of its arguments is true�even if the other argument diverges�
The full abstraction problem for PCF thus amounts to de�ning a smaller model
which only consists of �sequential� functions� In ���
 we solved this problem for the
second order subset of PCF by admitting only those continuous functions which
preserve certain �logical� relations� Here we will transfer this idea from the purely
functional language PCF to the �much� more complicated setting of an imperative
�Algol�like� language�
In traditional models for Algol�like languages ��� �� ��
� termed marked store

models in ���
� the critical elements are the functions which have �access� to an
unbounded number of locations� We brie�y sketch the de�nition of such a model in
order to obtain some hints how our new model should be constructed�
Let Loc be some in�nite set� whose elements l are called locations � let Pfin�Loc�

be the set of �nite subsets of Loc and let next � Pfin�Loc� � Loc be a function
with next�L� �� L for all L � Pfin�Loc�� We de�ne a marked store to be a partial
function ms � Loc �� Zwhose domain dom�ms� is �nite� We think of dom�ms� as
the set of locations which are marked as active� ms l as the contents of location l�
and next�dom�ms�� as the �rst �free� location� i�e� the one to be allocated next��

The meaning of a block with a local variable declaration can then be de�ned by�

��new x in M end

 �ms �

�
� if ��M 

 ��l�x
 �ms�	�l
� � �
ms � n l if ��M 

 ��l�x
 �ms�	�l
� � ms � �� �

where l � next�dom�ms��� This de�nition simply imitates an operational semantics�
Upon block entry the �rst free location l is bound to the local variable x� marked
as active and set to the initial value 	� Then the block body M is executed and�if

�Of course there are innumerable variants of this idea� e�g� a marked store can be represented as
a pair �L� s� with a total function s� or the mark L can be introduced as part of the environment

�� The reader may be assured that the problems which we illustrate here appear mutatis mutandis

for such alternative de�nitions�
�In Algol �� syntax such a block is written as begin integer x �M end�
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it terminates�the location l is �nally deallocated by removing it from the domain
of the resulting store ms �� Now consider the block�

B � new x in y� if � x � 	 then � end

which contains a call of some global parameterless procedure y� It is easy to argue
informally �and it will be rigorously proved in Section �� that B is observationally
congruent to the always diverging command �� Due to the static scope rule in
Algol�like languages� the global procedure y does not have access to the local
variable x� hence�if the call of y terminates at all�the variable x will still contain
its initial value 	 after the call� and this makes the block diverge� On the other
hand� B is not denotationally equivalent to �� Let � y � f where f is the function
which sets all active locations to �� i�e�

f ms � ms� with dom�ms�� � dom�ms� and ms � l � � for all l � dom�ms�

Then even the new location which is bound to the local variable x will be set to �
�because it is active when y is called� and this implies ��B

 � �� ���

 �� Thus we have
shown that every model which contains the above function f �and the traditional
models do contain this function� fails to be fully abstract�
It is clear which lesson we have to learn from this example if we want to achieve

full abstraction� We must de�ne a model in which every function only has access
to some �xed �nite set of locations �in contrast to the above function f�� and we
must carefully choose the new location which we bind to a local variable� so that the
functions which are bound to the global procedure identi�ers do not have access to
it� This means in particular that we must somehow formalize the notion of �access��
For �rst order procedures� it is easy to give an ad hoc de�nition �cf� Theorem �����
but when it comes to second order then we need a more systematic approach�and
this is the point where �logical� relations come again into play�
The idea to use relations for constructing models of Algol�like languages orig�

inates with ���
� but the particular model which was presented there� failed to be
fully abstract because the set of relations was too small� The idea was resumed
in ���
 and ���
 with larger sets of relations� thus leading to improved models in
which all the known test equivalences ���� �� ��
 for Algol�like languages could be
validated� but a full abstraction proof for these models was still missing� Here we
will present such a proof for �a slight variant of� the model in ���
�
It should be mentioned that our motivation for using logical relations is some�

what di�erent from O�Hearn and Tennent�s motivation in ���
� Their intention was
to transfer Reynolds� concept of �relational parametricity� ���
 from polymorphic
languages to Algol�like languages� because they see a close relationship between
information hiding through type variables �in a polymorphic language� and infor�
mation hiding through local variables� Our own view is somewhat more technical�
We know that logical relations can often be used to characterize the de�nable func�
tions ���� �
 or�if the model consists of dcpo�s�the limits of de�nable functions

�We use the ML	notation 
x for explicitly dereferencing a variable x�
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���
� Hence we try to use them a priori �as in ��	
� to construct a model in which
all elements are limits of de�nable ones� so that we obtain full abstraction by the
standard continuity argument� Although it is not clear whether this technique works
for every language� it is certainly not limited to polymorphism and local variables�
rather it is based on the close relationship between de�nability and full abstraction�
Let us now brie�y review the main concepts of an Algol�like language� Due to

��	� 
� ��� �
 it should be a simply typed� statically scoped call�by�name language
which obeys the so�called stack discipline� The latter means that a location never
survives the block in which it has been allocated� this is considered as a semantic
principle and not as a matter of implementation� Finally� there should be a clear
distinction between locations and storable values� and also between commands and
expressions� Commands alter the store but do not return values� expressions return
values but do not have �permanent� side e�ects on the store�
In order to obtain our full abstraction result we had to include one somewhat

unusual feature in the language Alg� namely the so�called snap back e�ect which
goes back to a suggestion of J�C� Reynolds�� Inside the body of a function procedure�
assignments to global variables are allowed� but after each call of such a procedure the
store �snaps back� to the contents which it had before the call� i�e� only a temporary
side e�ect is caused by such an assignment� We will allow the snap back e�ect to
occur in arbitrary �integer� expressions� For an Algol�like language without snap
back� our model de�nitely fails to be fully abstract� but our general techniques
may well be suited for constructing a �di�erent� fully abstract model for such an
alternative language �Section �	�� This is subject to further research�
As another unusual feature we have included a parallel conditional � This operator

often plays a prominent role in full abstraction proofs ���
� but here it does not � If we
remove it from Alg then we can still obtain a �di�erent� fully abstract model with
the same techniques as before �Section �	�� The interesting point about the parallel
conditional is that it may allow us to simplify our model de�nition� namely to use
only relations of arity 	 �� even of a very particular shape �Conjecture ������ This
would not only increase the �tastefulness� of our denotational model but it would
also bring us closer to O�Hearn and Tennent�s parametric functor model ���
� Hence
it may �nally turn out that their model is also fully abstract for the second order
subset of Alg�

Preliminaries

Sets and Functions� Let A�B be sets� We write f � A � B �resp� f � A �� B� to

express that f is a total �resp� partial� function from A to B� �A
t
� B� stands for

the set of all total functions from A to B and Pfin�A� for the set of all �nite subsets
of A� If f� g � A �� B� C 
 A� a� a�� � � � � an � A and b�� � � � � bn � B� then we write

� dom�f� for the domain of f

� f jC for the restriction of f to C

� f n a for the restriction of f to �dom�f� n fag�

� f �C g for f jC � g jC
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� f �b�� � � � � bn�a�� � � � � an
 or just f ��b��a
 for the function f
� � A �� B with

� dom�f �� � dom�f� � fa�� � � � � ang

� f �a �

�
bi if a � ai
fa if a � dom�f �� n fa�� � � � � ang

Complete Partial Orders� Let �D�v� be a partial order� A set  
 D is directed �
if every �nite set S 
  has an upper bound in  � D is called directed complete
�or a dcpo�� if every directed set  
 D has a least upper bound �lub� in D� This
least upper bound is denoted

F
D or just

F
 � A function f � D � E between

dcpo�s D and E is continuous � if f�
F
D � �

F
E f for every directed set  
 D�

�D
c
� E� denotes the set of all continuous functions from D to E�

Overview

Our paper is structured as follows� In Section � we de�ne the syntax of our language
Alg� In Section � we present a structural operational semantics� This semantics is
interesting in its own because of the snap back e�ect and the parallel conditional� In
Section � we introduce the general framework for our denotational semantics� it is
essentially a reformulation of the de�nitions in ���
� Section 
 contains the particular
denotational model which we need for obtaining full abstraction� and in Section �
we prove that the model is computationally adequate� In Section � we illustrate how
to use the denotational semantics for proving particular observational congruences�
and in Section � we take a closer look at �the semantic domains for� types of order
	 �� The full abstraction proof itself is contained in Section �� Section �	 discusses
some variants of the language Alg and Section �� contains some open questions�

� Syntax of the Language Alg

In the spirit of ��� �	
 we de�ne our Algol�like language Alg as a subset of a simply
typed ��calculus� Its types � are given by the grammar

� ��� loc
���

� ��� 	
�� �� � ��

	 ��� iexp
�� cmd

loc stands for �location�� iexp for �integer expression� and cmd for �command�� We
let Type denote the set of all types� The types � ��� loc� are called procedure types �
As usual� ��� associates to the right� hence every procedure type can be written as
� � �� � � � � � �k � 	 with some k � 	� We use �k � � as an abbreviation for
� � � � �� �� �z �

k

� � �k � 	�� The order ord��� of a type � is de�ned by

ord�loc� � 	

ord�	� � �

ord�� � �� � max �ord��� ! �� ord����






It may come as a surprise that we assign the order � to the ground ��� types iexp
and cmd � This does make sense� because�semantically�elements of type iexp and
cmd will be functions which have the current store as an implicit parameter� in
particular� elements of type iexp will be thunks in terms of the Algol jargon��

From an operational point of view this means that parameters of type iexp �and
cmd� are called by name� i�e� they are handled by 
�reduction� Thus we follow
the view that call�by�name should be the main parameter passing mechanism for
an Algol�like language� In addition we have parameters of type loc� they have
been added as a mere convenience because we anyways need identi�ers of type loc
as local variables� Intuitively they may be considered as reference parameters � but
technically they can also be handled by 
�reduction because the only terms of type
loc are location constants and variables�
As usual� we assume that there is an in�nite set Id � of identi�ers x� � y� � z� � � � �

for every type � � the type superscripts will be omitted when the type is clear from
the context� Identi�ers of procedure type � are called procedure identi�ers � those
of type loc are called location identi�ers or variables � This means that we use the
word �variable� in the sense of imperative programming languages and not in the
�more general� sense of the ��calculus� We will preferably use y� z� � � � as procedure
identi�ers and x� x�� � � � as variables �or as generics for arbitrary identi�ers��
The set of Alg�constants c and the type of each constant are de�ned by

l � loc for every l � Loc �location constants�
n � iexp for every n �Z �integer constants�

succ� pred � iexp � iexp �successor and predecessor�
cont � loc � iexp �dereferencing�
asgn � loc � iexp � cmd �assignment�
skip � cmd �empty command�

cond� � iexp � 	 � 	 � 	 �conditional with zero test�
seq� � cmd � 	 � 	 �sequencing�
new� � �loc � 	�� 	 �new �operator�
Y� � �� � ��� � ��xed point operator�

pcond � iexp � iexp � iexp � iexp �parallel conditional with zero test�

Terms M�N� P� � � � of Alg are just the well�typed ��terms over the Alg�constants
with the restriction that the body of a ��abstraction must not be of type loc� in
other words� The sets Alg� of Alg�terms of type � are inductively de�ned by

c � Alg
� if c is a constant of type � �constant�

x� � Alg
� �identi�er�

M � Alg
��� 
 N � Alg

� � �MN� � Alg
� �application�

M � Alg
� � �� x� �M� � Alg

��� ���abstraction�

�Put another way� cmd and iexp are the types of parameterless procedures and function proce	
dures� corresponding to the ML	types �unit � unit� and �unit � int� � and thus it is reasonable
to assign the order � to them�
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As usual� application associates to the left and the scope of a ��abstraction extends
as far as possible to the right�
We let locns�M� stand for the set of locations which occur �as constants� in

M and free�M� for the set of identi�ers which occur free in M � M is closed if
free�M� � �� M �x �� N 
 is the term which is obtained from M by substituting N
for each free occurrence of x �with the usual renaming of bound identi�ers in order
to avoid name clashes�� and M �x�� � � � � xk �� N�� � � � � Nk
 or simply M ��x �� �N 
 is
the term which is obtained by a simultaneous substitution� As further notation we
use

Alg
�
L � fM � Alg

�
�� locns�M� 
 Lg

c�Alg� � fM � Alg
�
�� free�M� � �g

c�Alg�L � fM � Alg
�
�� free�M� � � 
 locns�M� 
 Lg

where L ranges over �nite subsets of Loc�
Finally� we de�ne a program to be a term P � c�Algiexp

� � Note that location
constants �which may be thought of as explicit storage addresses� must not occur in
programs at all� Terms with location constants will be useful for de�ning the oper�
ational semantics� besides that they will play a technical role in the full abstraction
proof�
We conclude this section by introducing some syntactic sugar� First� we gen�

eralize conditional� sequencing and new �operators to arbitrary procedure types� If
� � �� � � � �� �k � 	 �k � ��� then we let

cond� �def � yiexp� z�� � z
�
� � x

��
� � � � � � x

�k
k � cond� y �z�x� � � �xk� �z�x� � � �xk�

seq� �def � ycmd� z�� x��� � � � � � x
�k
k � seq� y �z x� � � �xk�

new� �def � yloc�� � x��� � � � � � x
�k
k � new� �� x

loc� y x x� � � � xk�

Besides that� we introduce some notation which looks more familiar for imperative
languages� namely

�M �def contM
M �� N �def asgnMN

M �N �def seq�MN

if M then N else P �def cond�M N P
new x in M end �def new��� xloc�M�

proc y� � M in N end �def �� y�� N� �Y� �� y
��M��

if M then N �def if M then N else skip
new x�� � � � � xn in M end �def new x� in � � �new xn in M end � � � end

In each case we insist that the term on the right hand side be already well�typed�
Note that some of these constructs are de�ned more generally than in traditional
imperative languages because � ranges over arbitrary procedure types� Finally we
let �� or just � stand for a diverging term of type �� say �� �def Y��� y�� y��
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� Operational Semantics

In this section we de�ne a structural operational semantics ���
 for our language
Alg� i�e� we de�ne a transition relation ��� on a set of �machine� con�gurations�
Our de�nition of con�gurations is somewhat unusual� because the language Alg is
not single threaded�
In a single threaded language� a con�guration can be de�ned to be a pair �M�ms�

where�intuitively�ms is the current �marked� store andM is the term to be evalu�
ated next� For the language Alg� single threadedness fails because of the snap back
e�ect and the parallel conditional� The snap back e�ect forces us to keep book of
earlier stores into which the computation might snap back after the evaluation of an
integer expression� The parallel conditional forces us to make copies of the current
store� because we do not want to allow any interaction between computations which
run in parallel� hence we insist that each argument of the parallel conditional works
on its own �private� copy of the store� In order to handle both features together we
de�ne the set of con�gurations K by

K ��� �M�ms�
��

succK
�� pred K ��

�asgn l K�ms�
�� �cond�KMN�ms�

��
seq�KM

�� dealloc� l K ��
pcondK�K�K�

where M and N are closed terms�
The rules for deriving transition steps between con�gurations are presented in

Table �� An auxiliary transition relation ���� between closed Alg�terms is de�ned
in Table �� We explicitly distinguish between ��� and ���� in order to emphasize
that the operational semantics of an Algol�like language is naturally separated
into two layers ��	� �� �� ��
� ���� describes the purely functional layer� in which
the only transition steps are 
�reduction and recursion unfolding� ��� describes the
imperative layer� where transition steps can depend on the store and"or change the
store� The only connection between the two layers is given by the �interaction��rule
of Table ��
In the �context��rule we make use of so�called evaluation contexts ���
� In our

setting� an evaluation context E is a particular �con�guration with at least one hole�
de�ned by

E ��� succ� 

�� pred � 
 ��

�asgn l � 
� ms�
�� �cond�� 
MN�ms�

��
seq� � 
M

�� dealloc� l � 
 ��
pcond � 
� 
� 


��
pcond � 
� 
�n�ms�

��pcond � 
�n�ms�� 

��

pcond � 
�n�ms��n�� ms�� with n �� n�
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�succ�init� �succM�ms�� succ �M�ms�

�succ�exec� succ �n�ms�� �n!�� ms�

�pred�init� �predM�ms�� pred �M�ms�

�pred�exec� pred �n�ms�� �n��� ms�

�cont� �cont l�ms�� �ms l�ms� if l � dom�ms�

�asgn�init� �asgn lM�ms�� �asgn l �M�ms�� ms�

�asgn�exec� �asgn l �n�ms���ms�� �skip�ms�n�l
� if l � dom�ms�

�cond�init� �cond�MNP�ms�� �cond��M�ms�NP�ms�

�cond�left� �cond��	� ms��NP�ms�� �N�ms�

�cond�right� �cond��n�ms��NP�ms�� �P�ms� if n �� 	

�seq�init� �seq�MN�ms�� seq��M�ms�N

�seq��nish� seq��skip� ms�N � �N�ms�

�new�init� �new�M�ms�� dealloc� l �Ml�ms�	�l
� if l � next�dom�ms��

�new��nish� dealloc� l �c�ms�� �c�ms n l� if l � dom�ms�

�pcond�init� �pcondMNP�ms�� pcond �M�ms� �N�ms� �P�ms�

�pcond�left� pcond �	� ms�K�K� � K�

�pcond�right� pcond �n�ms�K�K� � K� if n �� 	

�pcond�par� pcond K �n�ms� �n�ms��� �n�ms�

�context�
Ki � K�

i for i � �� � � � � n

E�K�� � � � � Kn
� E�K�
�� � � � � K

�
n


Table �� Rules for ���

As usual� � 
 speci�es a hole� and E�K�� � � � � Kn
 denotes the con�guration which is
obtained by �lling K�� � � � � Kn into the n holes of E� The intuition �expressed by
the �context��rule� is that an evaluation context E enforces the parallel evaluation
of the con�gurations K�� � � � � Kn which are placed in its holes�
With the aid of the transition relation ��� we de�ne the observable behavior of

a program P to be the set

beh�P � � fn
�� �P�msinit� �

� �n�msinit�g

where msinit is the �unique� marked store with dom�msinit� � � and �
�
�� denotes

the re�exive transitive closure of ���� We will see below� that beh�P � contains at
most one element and that beh�P � � � if and only if the computation for �P�msinit�
diverges� But �rst we give a small example to illustrate this somewhat unusual
operational semantics and in particular to illustrate the snap back e�ect�
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�
�reduction� �� x� �M�N ��M �x �� N 


�recursion� Y�M ��M�Y�M�

�application�
M ��M �

MN ��M �N

�interaction�
M ��M �

�M�ms�� �M �� ms�

Table �� Rules for ���� and interaction

Example ��� Consider the program

P � new x in if x �� �� � x then � else � x end

� new iexp�� x
loc� condiexp�seqiexp�asgn x �� �cont x�� � �cont x��

We show that �P�msinit�
�
� �	�msinit�� Let l � next��� and let �l � n
 denote the

marked store ms with dom�ms� � flg and ms l � n� Then

�P�msinit� � dealloc l ��� x� cond �seq �asgn x �� �cont x�� � �cont x�� l� �l � 	
�
� dealloc l �cond �seq �asgn l �� �cont l�� � �cont l�� �l � 	
�
� dealloc l �cond �seq �asgn l �� �cont l�� �l � 	
� � �cont l�� �l � 	
�
�
� dealloc l �cond ��� �l � �
� � �cont l�� �l � 	
�
� dealloc l �cont l� �l � 	
�
� dealloc l �	� �l � 	
�
� �	�msinit�

where �
�
�� follows by the �context��rule from

�seq �asgn l �� �cont l�� �l � 	
� � seq �asgn l �� �l � 	
� �cont l�
� seq �asgn l ��� �l � 	
�� �l � 	
� �cont l�
� seq �skip� �l � �
� �cont l�
� �cont l� �l � �
�
� ��� �l � �
�

Note that the marked store �l � 	
 is duplicated in the third step of the compu�
tation and that the �rst copy of �l � 	
 is changed to �l � �
 by the evaluation of
seq �asgn l �� �cont l�� But then the computation snaps back to �the second copy of�
�l � 	
� and thus the evaluation of cont l �nally delivers 	�

We conclude this section by proving some useful properties of our operational
semantics� in particular we want to show that #computations do not get stuck$� To
this end we will prove that all con�gurations which occur during the evaluation of
a program have a certain reasonable shape� For 	 � fiexp� cmdg and L � Pfin�Loc�
we de�ne the sets Conf �L inductively by
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� M � c�Alg�L 
 dom�ms� � L � �M�ms� � Conf �L

� K � Conf iexp
L � succK� predK � Conf iexp

L

� K � Conf iexpL 
 l � L 
 dom�ms� � L � �asgn l K�ms� � Conf cmd
L

� K � Conf iexpL 
 M�N � c�Alg�L 
 dom�ms� � L
� �cond�KMN�ms� � Conf �L

� K � Conf cmd
L 
 M � c�Alg�L � seq�KM � Conf �L

� K � Conf �L 
 l � L � dealloc� l K � Conf �Lnflg

� K�� K�� K� � Conf iexpL � pcond K�K�K� � Conf iexpL

We say that a con�guration is consistent if it is contained in one of the sets Conf �L�
Intuitively� a consistent con�guration is �well�typed� and does not contain any dan�
gling references ���� �

� The latter means that every location which occurs in a
consistent con�guration is �active� in the sense that it is contained in the domain
of the corresponding marked store and hence a computation will never get stuck
because of the restriction �l � dom�ms�� in the rules �cont� or �asgn�exec�� This is
just a particular instance of

Theorem ��� �properties of the operational semantics�

�i� The transition relations ���� and ��� are partial functions�

�ii� If M � c�Alg�L and M ��M � then M � � c�Alg�L�

If K � Conf �L and K � K� then K� � Conf �L�

�iii� K � Conf iexpL
is in normal form i� it is of the form �n�ms��

K � Conf cmd
L is in normal form i� it is of the form �skip�ms��

�i� means that all computations are deterministic� �ii� means that transition steps
preserve types and consistency� and together with �iii� this implies that each com�
putation which starts with a consistent con�guration K � Conf �L either diverges
or terminates with a �proper result� �c�ms� � Conf �L� As �P�msinit� � Conf iexp�
for every program P � this implies in particular that the evaluation of a program
can never get stuck� it either diverges or terminates with a unique result of the
form �n�msinit�� Note that the �nal con�guration �n�msinit� does not contain any
garbage� because our operational semantics explicitly follows the stack discipline�
Every location which is allocated upon block entry by rule �new�init� is eventually
deallocated upon block exit by rule �new��nish�� and thus�in contrast to the sit�
uation in a call�by�value language ���� �

�a location never survives the block in
which it has been allocated�

Proof�

�i� is omitted� It is a routine argumentation about the applicability of rules�
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�ii� The �rst part is obvious� because a transition step M ��M � cannot create any
new location constants� The second part is proved by induction on the derivation
of K � K�� We consider a few cases in which locations play a role� the proofs for
the remaining cases are absolutely straightforward�

Case � � K � �asgn l �n�ms���ms�� K� � �skip�ms�n�l
� by rule �asgn�exec�

Then l � dom�ms� and we obtain

K � Conf cmd
L � dom�ms� � L

� dom�ms�n�l
� � L

� K� � Conf cmd
L

Case � � K � �new�M�ms�� K� � dealloc� l �Ml�ms�	�l
� by rule �new�init�

Here we have l � next�dom�ms�� and thus we obtain

K � Conf �L � M � c�Algloc��
L 
 dom�ms� � L �hence l �� L�

� Ml � c�Alg�L�flg 
 dom�ms�	�l
� � L � flg

� �Ml�ms�	�l
� � Conf �L�flg

� K� � Conf ��L�flg�nflg � Conf �L

Case � � K � dealloc� l �c�ms�� K� � �c�ms n l� by rule �new��nish�

Again l � dom�ms� and hence

K � Conf �L � dom�ms� � L � flg 
 l �� L

� dom�ms n l� � L

� K� � Conf �L

�iii� The �if��parts are obvious from the rules� �only if� is proved by induction on the
structure of K� Assume that K � Conf �L is not of the form �n�ms� or �skip�ms��

Case � � K � �M�ms�

From the de�nition of Conf �L it follows that M � c�Alg�L and dom�ms� � L� By
assumption� M is not a constant� and as 	 is a ground type� M cannot be a ��
abstraction as well� hence it must be an application which can be written as M �
M�M� � � �Mk �k � �� where M� is not an application� If M� is a ��abstraction or a
�xed point operator� then M ��M � for some M � � c�Alg�L� hence K � �M ��ms��
Otherwise� M� must be a constant c �� Y� � and then one of the �init��rules applies in
each case� For example� if M� � asgn� then K must be of the form �asgn lM��ms�
with l � L � dom�ms�� hence K � �asgn l �M��ms��ms� by rule �asgn�init�� The
argumentation for the remaining constants is similar�

Case � � K � E�K�
� where E does not start with �pcond �

If K� � K�� thenK � E�K��
 by the �context��rule� IfK� is in normal form� then one
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of the other rules of Table � can be applied� For example� if E � �asgn l � 
�ms�� then
K� � Conf iexpL and l � L � dom�ms�� hence K� � �n�ms�� by induction hypothesis
and this implies K � �asgn l �n�ms���ms�� �skip�ms�n�l
�� The argumentation for
the remaining evaluation contexts is similar�

Case � � K � pcondK�K�K�

Here either the �context��rule or one of the �pcond��rules can be applied� depending
on which of the con�gurations K�� K�� K� are in normal form� �

� A Cartesian Closed Category

In this section we de�ne the general framework for our denotational semantics� The
intuition is� that every function in the denotational model should only have access to
some �xed �nite set of locations� Hence we would like to identify�for every type �
and every L � Pfin�Loc��a dcpo ��� 

L of �elements of type � which only have access
to L� and then de�ne ��� 

 as the union of the dcpo�s ��� 

L� This is the motivation for

De�nition 	�� Let �W�	� be a directed set �of �worlds� w��

��� A W �locally complete partial order �W �lcpo� is a partial order �D�v� together
with a family of subsets �Dw�w�W such that D �

S
w�W Dw and for all v� w �

W

� v 	 w � Dv 
 Dw

� if  
 Dw is directed� then
F
D exists and is contained in Dw �hence

it is also the lub in Dw� i�e� �Dw�v� is a dcpo�

D is called pointed � if it has a least element which is contained in all Dw�

��� A function f � D � E between W �lcpos D and E is called locally continuous
if �f jDw� � �Dw

c
� Ew� for every w � W �

Note that every �nite subset S of a W �lcpo D is entirely contained in one of the
dcpo�s Dw� because W is directed and v 	 w implies Dv 
 Dw� This implies in turn
that every locally continuous function f � D � E is monotone on the whole of D�
For every directed set W � we let W �LCPO denote the category whose objects

are W �lcpos and whose morphisms are locally continuous functions� It can be easily
checked that this is indeed a category�

Theorem 	�� �W 
LCPO is a ccc� The category W �LCPO is cartesian closed�
The terminal object T � the product D � E and the exponent �D � E� of two W �
lcpos D and E are de�ned by

�i� Tw � f�g

T � f�g
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�ii� �D �E�w � Dw �Ew

D �E �
S
w�W �D �E�w with the componentwise order on pairs

�iii� �D� E�w � ff � D� E
�� �v � w� �f jDv� � �Dv

c
� Ev�g

�D� E� �
S
w�W �D� E�w with the pointwise order on functions

Projection morphisms and pairing� evaluation morphisms and currying and the
unique morphisms to the terminal object are de�ned as usual�

The experienced reader certainly realizes the similarity with a functor category� in
particular �iii� looks like functor exponentiation ���
� Indeed� a W �lcpo D can be
considered as a functor from the category W to the category DCPO of dcpo�s
and continuous functions� which maps every morphism f � v � w in W to the
inclusion map i � Dv � Dw �which is continuous� because

F
Dv
 �

F
D �F

Dw
 for every directed set  
 Dv�� The locally continuous functions between

two W �lcpos then correspond exactly to the natural transformations between the
functors� and exponentiation in W �LCPO corresponds to functor exponentiation�
Hence W �LCPO can be identi�ed with a full subcategory of the functor category
�W � DCPO� which has the same terminal object� products and exponents as
�W � DCPO� itself�
We omit the proof of Theorem ���� because the category W �LCPO is anyways

not su�cient for our purposes� We are aiming for a denotational model in which
the function types ��� � �

 contain only those locally continuous functions which
preserve certain �logical� relations� To this end we must add �relation structure� to
the W �lcpos and then re�ne the de�nition of the exponent �D� E��

De�nition 	�� A W �sorted 	relation
 signature is a family % � �%wn �w�W�n�Nof
sets %wn such that for all m�n � N and v� w � W

� m �� n� %vm � %
w
n � �

� v 	 w � %vn � %
w
n

An element r � %n is called a relation symbol of arity n� We use the abbreviations

%n �def

S
w�W %

w
n � %w �def

S
n�N%

w
n � % �def

S
n�N%n

As we will make extensive use of tuples and relations� we introduce some shorthand
notation for them� A vector �d stands for a tuple �d�� � � � � dn� � Dn� whereD and n are
known from the context� A term T ��d��e� � � �� containing vectors �d��e� � � � of the same
length n stands for �T �d�� e�� � � ��� � � � � T �dn� en� � � ���� This notation is generalized as
usual to sets of tuples� i�e� to relations� If R� S are relations of the same arity n�
then T �R� S� � � �� stands for the set fT ��d��e� � � ��

�� �d � R� �e � S� � � �g� Finally� 
nD or
just 
D denotes the diagonal f�d� � � �� d�

��d � Dg 
 Dn� A few typical examples for
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this notation are

f �d for �fd�� � � � � fdn�

�f �d for �f�d�� � � � � fndn�

fR for f�fd�� � � � � fdn�
�� �d�� � � � � dn� � Rg

�fR for f�f�d�� � � � � fndn�
�� �d�� � � � � dn� � Rg

�f�
D� for f�f�d� � � � � fnd�
��d � Dg

RS for f�f�d�� � � � � fndn�
�� �f�� � � � � fn� � R� �d�� � � � � dn� � Sg

De�nition 	�	 Let % be a W �sorted signature�

��� A W �%�lcpo is a pair �D� I�� where D is a W �lcpo and I is a function which
maps every r � %n to a relation I�r� 
 Dn such that for all w �W

� r � %w � 
nDw 
 I�r�

� I�r��Dn
w is closed under least upper bounds of directed sets

�D� I� is called pointed if the underlying W �lcpo D is pointed�

��� A function f � D � E between W �%�lcpos �D� ID� and �E� IE� is called a
%�homomorphism if f�ID�r�� 
 IE�r� for all r � %�

For every directed set W and W �sorted signature %� we let W �%�LCPO denote the
category whose objects are W �%�lcpos and whose morphisms are locally continuous
%�homomorphisms� Again� it can be easily checked that this is a category�

Theorem 	�� �W 
%
LCPO is a ccc� The category W �%�LCPO is cartesian
closed� The terminal object T � the product D � E and the exponent �D � E�
of two W �%�lcpos D and E are de�ned by

�i� Tw � f�g

T � f�g

IT �r� � f�gn if r � %n

�ii� �D �E�w � Dw �Ew

D �E �
S
w�W �D �E�w with the componentwise order on pairs

ID�E�r� � �ID�r�� IE�r�� �� f��d�� e��� � � � � �dn� en��
�� �d � ID�r�� �e � IE�r� g�

�iii� �D� E�w � ff � D� E
�� �v � w� �f jDv� � �Dv

c
� Ev�


 �r � %w� f�ID�r�� 
 IE�r� g

�D� E� �
S
w�W �D� E�w with the pointwise order on functions

I�D�E��r� � f�f
�� �f �ID�r�� 
 IE�r�g

Projection morphisms and pairing� evaluation morphisms and currying and the
unique morphisms to the terminal object are de�ned as usual�
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Proof� The proofs for the terminal object and the product are straightforward�
hence we only consider the exponent� We must �rst show that �D � E� is a
well�de�ned W �%�lcpo� Obviously� �D � E� is a partial order and v 	 w implies
�D � E�v 
 �D � E�w� because %

v � %w in this case� For the remaining steps it
is su�cient to prove that for all w � W and r � %n

��� if  
 �D� E�w is directed� then f � D � E with fd �
F
 d is a well�de�ned

function in �D� E�w �hence it is the lub of  in D��

��� if r � %w then 
n�D� E�w 
 I�D�E��r��

��� if  
 I�D�E��r�� �D � E�nw is directed� then
F
 � I�D�E��r��

Proof of ���� Let  
 �D � E�w be directed and let d � D� As W is directed�
we may assume that d � Dv for some v � w� hence  d is a directed subset of
Ev and thus

F
 d � Ev 
 E exists� This shows that f � D � E is well�de�ned

and that f�Dv� 
 Ev for all v � w� Moreover� the restriction f jDv is continuous
for every v � w� because it is the pointwise lub of the continuous functions g jDv

with g �  � Finally� if �d � ID�r� for some r � %w � then there is some v � w
such that d�� � � � � dn � Dv� hence g �d � IE�r� � En

v for all g �  and thus also
f �d �

F
g�� g �d � IE�r�� This concludes the proof that f � �D� E�w�

Proof of ���� If r � %w and f � �D � E�w� then f�ID�r�� 
 IE�r�� hence
�f� � � � � f� � I�D�E��r��

Proof of ���� Let  
 I�D�E��r� � �D � E�nw be directed and let
�f �

F
 � For

every �d � ID�r� there is some v � w with d�� � � � � dn � Dv� hence �g �d � I
E�r�� En

v

for every �g �  and thus also �f �d �
F
�g�� �g

�d � IE�r��

This concludes the proof that �D � E� is a W �%�lcpo� It remains to be shown
that it is indeed the exponent of D and E in the category W �%�lcpo� To this end it
is su�cient to prove that

��� the function
eval � �D � E��D � E
eval f d � f d

is a locally continuous %�homomorphism� and

�
� if C is aW �%�lcpo and f � C�D� E is a locally continuous %�homomorphism�
then the function

&f � C � �D� E�
&f c d � f �c� d�

is well�de�ned and is a locally continuous %�homomorphism�

Proof of ���� For every w � W � eval ��D� E�w�Dw� � �D � E�wDw 
 Ew� and
the restriction of eval to �D � E�w � Dw is continuous� because lub�s are de�ned
pointwise on �D � E�w and because every f � �D � E�w is continuous on Dw�
Moreover� eval �I�D�E��D�r�� � eval �I�D�E��r�� ID�r�� � I�D�E��r� �ID�r�� 
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IE�r� for every r � %�

Proof of �
�� Let f � C � D � E be a locally continuous %�homomorphism� let
w � W and c � Cw� If v � w� then &f cDv � f �fcg�Dv� 
 f �Cv �Dv� 
 Ev and
&f c jDv is continuous because f jCv �Dv is continuous� Moreover� &f c �I

D�r�� �
f �c� ID�r�� 
 f �
 Cw� I

D�r�� 
 f �IC�r�� ID�r�� 
 f �IC�D�r�� 
 IE�r� for all
r � %w� This shows that &f c � �D � E�w� Hence &f is a well�de�ned function
which maps Cw to �D� E�w for every w � W � The restriction of &f to each Cw is
continuous� because f is continuous on Cw�fdg for every d � D and because lub�s are
de�ned pointwise on �D � E�w� Finally� &f �I

C�r�� �ID�r�� � f �IC�r�� ID�r�� �
f �IC�D�r�� 
 IE�r�� i�e� &f�IC�r�� 
 I�D�E��r� for every r � %� �

We �nally remark that �D � E� is pointed whenever E is pointed� If �E is the
least element of E� then ��d � D��E� � �D� E�w for all w � W because �E � Ew

for all w � W and ��E � � � � ��E� �
T
w�W 
nEw 
 IE�r� for all r � %� Together

with the following theorem this guarantees that enough �xed point operators will
be contained in our denotational model�

Theorem 	�� �least �xed point operators� Let D be a pointed W �%�lcpo and
let f � �D� D�� Then f has a least �xed point �f � D� which can be characterized
as usual by

�f �
F
n�Nf

n�

Moreover� the least �xed point operator

�D � �D� D�� D
�Df � �f

is a locally continuous %�homomorphism�

Proof� Let f � �D � D�w� As �f jDw� � �Dw
c
� Dw�� we know that

F
n�Nf

n�
exists and is the least �xed point of f in Dw� But then it is also its least �xed point
in D� because�by monotonicity of f�fn� v d for every other �xed point d� This
shows already that �D maps �D � D�w to Dw for every w � W � Moreover� �D
is continuous on every �D � D�w because it is the pointwise lub of the functions
�f� fn� �n � N�� which are continuous on �D � D�w by Theorem ��
� Finally�
let r � %m and �f � I�D�D��r�� Then f�� � � � � fm � Dw for some w � W � hence�
by induction on n��fn� �� � � � � f

n
m�� � I

D�r� � Dm
w for all n � N� and this implies

�D �f � ID�r�� �

W �%�LCPO is the category in which we will de�ne our denotational model �with
an appropriate choice of W and %�� It has a certain similarity with a category of
�parametric functors and natural transformations� ���� ��
� and indeed we succeeded
to prove a connection� Let D be the re�exive graph with vertex category DCPO
as de�ned in ���
� Then�for every W �sorted signature %�we can de�ne a re�exive
graph W with vertex category W such that W �%�LCPO can be identi�ed with a
full subcategory of the parametric functor category �W � D� which has the same
terminal object� products and exponents as �W � D� itself� We do not want to
elaborate on this any further because it seems like a purely technical insight�
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� Denotational Semantics

We will now use the techniques of Section � to de�ne a denotational semantics for
Alg� Of course we choose

�W�	� � �Pfin�Loc��
�

as the directed set of worlds� but the question remains how to de�ne a W �sorted
signature % which serves our purposes� The basic idea is the same as for our PCF�
model in ���
	� In order to achieve full abstraction we try to keep the denotational
model �as small as possible� and to this end we try to make the relation signature �as
large as possible�� For the purely functional language PCF this was easy to achieve�
We simply used all relations on the �at ground type of integers which are preserved
by the meanings of the �rst order PCF�constants� This worked out� because all
relations on a �at dcpo are automatically closed under lub�s of directed sets �as
required in De�nition ���� and because the only higher order PCF�constants are �xed
point operators� For the imperative language Alg the situation is more di�cult�
because the ground types ��iexp

 and ��cmd 

 will certainly be not �at� Thus� in order
to transfer the ideas of ���
 to the Alg setting� we �rst introduce an additional
semantic layer of �at dcpo�s below the ground types ��iexp

 and ��cmd 

� and on this
new layer we de�ne certain auxiliary functions� which are closely related to the
intended meanings of the Alg�constants�
To begin with� we de�ne the set Stores of stores s by

Stores �
S
L�W StoresL where

StoresL � fs � Loc �Z

�� �l � Loc n L� s l � 	g

Note that a store s�in contrast to a marked store ms�is a total function which
delivers 	 for all but �nitely many locations� Working with total instead of partial
functions is a technical trick which makes our denotational semantics somewhat
simpler�
Now let ' � floc� int� stog� where int �� �integer�� and sto �� �store�� are auxil�

iary symbols� We use sto � int and sto � sto as alternative notation for iexp and
cmd � For every � � ' we de�ne a dcpo D� by

Dloc � Loc �discrete dcpo�
Dint � Z�� D

sto � Stores� ��at dcpo�s�

We write �� for the bottom element of D
� �if we want to be precise about �� and

id� for the identity on D� � The set AUX of auxiliary functions is then de�ned by

AUX � fConstn� Succ�Pred �Cont�Asgn�Cond� �Pcond
��n �Z� � �� locg

where
�There are some purely technical di�erences between 
��� and the new approach which we use

here� e�g� we did not speak of a �signature� in 
��� and we used an extensional collapse for the model
construction instead of de�ning a cartesian closed category� We ignore these technical issues here�
because they have nothing to do with the di�erence between PCF and Alg but only with the
particular presentation of the model�
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� Constn � Dsto � Dint

Constn s �

�
� if s � �
n otherwise

� Succ � Dint � Dint

Succ d �

�
� if d � �
d! � otherwise

� Pred � Dint � Dint

Pred d �

�
� if d � �
d� � otherwise

� Cont � Dloc � Dsto � Dint

Cont l s �

�
� if s � �
s l otherwise

� Asgn � Dloc � Dint � Dsto � Dsto

Asgn l d s �

�
� if d � � or s � �
s�d�l
 otherwise

� Cond� � Dint � D� � D� � D�

Cond� b d�d� �

��
�
� if b � �
d� if b � 	
d� otherwise

� Pcond � Dint � Dint � Dint � Dint

Pcond b d�d� �

��
�
� if b � � and d� �� d�
d� if b � 	
d� otherwise

With the aid of these auxiliary functions we can now de�ne the signature %� The
relation symbols of % are so�called ground relations� A ground relation of arity n

is simply a triple R � �R����
 such that R
� 
 �D��n for every � � '� We say

that a function f � D�� � � � � � D�k � D� preserves the ground relation R if
fR�� � � �R�k 
 R� � Finally we let % � �%Ln�L�W�n�Nwhere %

L
n is the set of all

ground relations R of arity n such that

�a� every f � AUX preserves R

�b� 
n�Loc n L�� 
 Rloc for some L� � W with L � L� � �
�i�e� Rloc contains a co�nite part of the diagonal 
nLoc which includes 
nL�

�c� ��sto� � � � ��sto� � Rsto

�and hence ��int� � � � ��int� � Rint by �a��

Note that % is indeed a W �sorted signature� because L 
 L� implies %Ln � %L
�

n �
The motivation for choosing this particular signature % is as follows� Condition

��



�a� will guarantee that ��n

� ��succ

� ��pred

� ��cont

� ��asgn

� ��cond�

 and ��pcond 

 are %�
homomorphisms� Together with �b� this will imply that every R � %L is preserved
by the functions ��cont

 l and ��asgn

 l not only for all l � L but also for all but
�nitely many l �� L� The latter will play a role in the proof that the meanings of
the new �operators are %�homomorphisms� Finally� �c� will be needed for handling
the �xed point operators� Altogether these are the necessary conditions for %� if
we want to de�ne a denotational semantics for Alg in the category W �%�LCPO�
This means that we have indeed chosen the �largest possible� signature % for our
purposes� and thus we can hope for a full abstraction proof along the lines of ���
�
With the de�nition of W and % we have �xed the category in which we want

to de�ne our denotational model� The next step is to associate an object of this
category with each type� For every type � we de�ne a W �%�lcpo ��� 

 � �D� � I�� by

� Dloc
L � L

Dloc � Loc �as before�

Iloc�R� � Rloc

� Dsto	�
L � ff � Dsto � D�

�� fRsto 
 R� for all R � %Lg

Dsto	� �
S
L�W Dsto	�

L with the pointwise order on functions

Isto	��R� � f�f � �Dsto	��n
�� �f Rsto 
 R�g if R � %n

� ��� � �

 � ���� 

� ���

� as de�ned in Theorem ��


It can be easily checked that the �rst two clauses indeed de�ne W �%�lcpos� in par�
ticular Dsto	�

L is always closed under lub�s of directed sets� because every R� is
�trivially� closed under lub�s of directed sets� Note also that ���

 is pointed for every
procedure type � �by a straightforward induction on ��� We write �� for the bottom
element of ���

 and id� for the identity on ���

�
The reader may have realized that the ground types ��iexp

 � ��sto � int 

 and

��cmd 

 � ��sto � sto

 have a certain similarity with our function types �Theorem ��
�
in that they consist of relation preserving functions� Hence the question may arise
whether our model de�nition can be simpli�ed by introducing sto and int as ground
types and de�ning iexp and cmd as function types �sto � int� and �sto � sto��
Unfortunately this is not possible� There is no way to de�ne a W �%�lcpo ��sto

 such
that ��cmd 

 �as de�ned above� coincides with the exponent ���sto

� ��sto

�� O�Hearn
and Tennent have occasionally used �contra�exponentiation� instead of ordinary ex�
ponentiation to overcome this di�culty ��
� ��
� but for our purposes it doesn�t seem
worth to introduce such an extra concept� the above ad hoc de�nition of ��iexp

 and
��cmd 

 is entirely su�cient�
We follow usual mathematical convention and use ��� 

 not only as a notation for

theW �%�lcpo �D� � I�� but also for the underlying W �lcpo �or the partial order or the
set� D� � hence ��� 

L denotes the dcpo D

�
L� Moreover� we use R

� as an abbreviation
for I��R�� As immediate consequences of the de�nitions in Section � we then obtain
the following �reasoning principles� which will be frequently used throughout the rest
of the paper�

�	



��� ��� � �

L ��� 

L� 
 ���

L� whenever L 
 L�

��� fR� 
 R� whenever f � ��� � �

L and R � %L

��� R��� � f�f � ��� � �

n
�� �fR� 
 R�g whenever R � %n

Reasoning principle ��� is equivalent to

���� ��� � �

L ��� 

L� 
 ���

L�L� for all L� L
� � W

which can be rephrased in more intuitive terms as

�A procedure call fd can only have access to those locations to which
either the procedure f � ��� � �

 or the parameter d � ��� 

 has access��

For ��� we do not �yet� have such an intuitive formulation� because our current
de�nition of the sets %L is very technical� but we will come back to this in a moment�
��� means that the family �R� ���Type is a logical relation ���
 for everyR � %� Logical
relations are known to be a useful tool for reasoning about ��terms ���� ��� ��� �� �	
�
We �nally de�ne the support of an element d � ��� 

 to be the set

supp �d� �
T
fL
��d � ��� 

Lg

One may wonder whether d � ��� 

supp�d�� i�e� whether there is a smallest set L with
d � ��� 

L� We have not examined this question� as it is irrelevant for our purposes�
As mentioned above� we are not yet satis�ed with our current� rather technical

characterization of the signature %� It is well suited for the full abstraction proof
�especially for the proof of Theorem ����� but for other purposes�like proofs of par�
ticular observational congruences�a more concrete description of % would certainly
be useful� Unfortunately we have not found a �tasteful� concrete description of the
full signature %� but instead we have identi�ed the following �sub�signature�� which
seems to be su�cient for proving all observational congruences �cf� Section � and
Conjecture ������

De�nition ��� Let L � W � An n�ary ground relation R is called L�de�nable� if

there is a relation RL 
 �L
t
� Z�n such that

� Rsto � f�gn � f�s � Storesn
�� ��s jL� � RL 
 �s �
n�Loc n L�� 
 
nZg

� Rint � 
nDint

� Rloc � f�l � �Dloc�n
��Cont �lRsto 
 Rint 
 Asgn�l RintRsto 
 Rstog

Note that every L�de�nable ground relation R is uniquely determined by Rsto or
even by RL� We let DEF

L
n denote the set of all L�de�nable ground relations of arity

n and OUTL
n �

S
L��W 
L�L���DEF

L�

n the set of those which are de�nable outside

L� Note that OUTL
n � OUTL�

n whenever L 
 L�� hence OUT � �OUTL
n�L�W�n�Nis

itself a W �sorted signature�

��



Theorem ��� �a sub
signature of %� OUTL
n 
 %

L
n for every L � W and n � N�

Proof� Let R � DEFL�

n for some L
� � W with L�L� � �� Then ��� � � � ��� � Rsto�

and it is easy to see that every function f � AUX preserves R� Hence it su�cient
to show that 
n�Loc n L�� 
 Rloc�
Let l � Loc n L�� let �s � Rsto� �d � Rint� �e � Cont l �s and �t � Asgn l �d�s� If

�s � ��� � � � ���� then �e � ��� � � � ��� � Rint� Otherwise �e � �s l � 
nZ
 Rint� If
�d � ��� � � � ��� or �s � ��� � � � ���� then �t � ��� � � � ��� � Rsto� Otherwise ��t jL�� �
��s jL�� � RL� � �t l � �d � 
nZand �t l� � �s l� � 
nZfor all l� � Loc nL� with l� �� l� hence
again �t � Rsto� Thus we have proved that Cont l Rsto 
 Rint and Asgn l RintRsto 

Rsto� i�e� �l� � � � � l� � Rloc� �

As immediate consequences of Theorem 
�� we obtain

� fRsto 
 R� whenever f � ��sto � �

L and R � OUTL

� fR� 
 R� whenever f � ��� � �

L and R � OUTL

In more intuitive terms both can be summarized as

�A procedure f � ���

L preserves all relations which are de�nable outside L��

This is the most important reasoning principle for proving observational congruences
�Section �� as well as other� more general properties of our denotational model like
Theorem 
�� below� A particular instance of this reasoning principle is obtained by
permutations of locations� Let � � Loc � Loc be a �nite permutation� i�e� a bijective
function whose �support� Supp��� �def fl � Loc

��� l �� lg is �nite� Then we de�ne

R� � DEF
Supp���
� by

Rsto
� � f�g� � f�s� s � ��

�� s � Storesg

In order to see that R� is indeed Supp����de�nable� note that it can be rewritten as

Rsto
� � f�g� � f�s � Stores�

�� �l � Supp���� s��� l� � s�l 
 s� �LocnSupp��� s�g

and that ��Supp���� � Supp���� If we �nally let Fix�L� denote the set of all �nite
permutations � � Loc � Loc which leave the locations of L �xed �i�e� those with
L � Supp��� � ��� then we have

� � Fix�L� � R� � OUTL
�

We will now make use of these new relations in order to prove some important
properties of the domains ���

 with ord��� � �� But �rst we extend the notation
for function application� function coincidence and for the variant of a function to
bottom elements by de�ning

�sto l � �int for all l � Loc

�sto �L �sto for all L � W

s�d�l
 � �sto if s � �sto or d � �int

��



Theorem ��� �properties of the �rst order domains� Let L � W � s� s� �
Stores� l�� � � � � lm � Loc �m � 	� and � � Fix�L�� Then

�i� If f � ��	

� then f� � ��

�ii� If f � ��iexp

L� then s �L s� � fs � fs��

�iii� If f � ��cmd 

L� then fs �� � � fs �LocnL s and s �L s� � fs �L fs��

�iv� If f � ��locm � iexp

L� then f�� l�� � � ��� lm� s � fl� � � � lm�s � ���

�v� If f � ��locm � cmd 

L� then f�� l�� � � ��� lm� s � �fl� � � � lm�s ���� �����

Note that by �ii� and �iii�� a function f � ��	

L is uniquely determined by its restric�
tion f j StoresL� Intuitively� �ii� means that f � ��iexp

L cannot read on locations
outside L� �iii� means that f � ��cmd 

L can neither read nor write outside L and
�iv� and �v� mean that a function f � ��locm � 	

L behaves uniformly on locations
outside L� Taking into account that two stores can only be di�erent on a �nite set
of locations� we can reformulate �ii� and �iii� as

�ii�� If f � ��iexp

L and l � Loc n L� then f�s �n�l
� � fs for all n �Z�

�iii�� If f � ��cmd 

L and l � Loc n L� then f�s �n�l
� � �fs� �n�l
 for all n �Z�

Proof� We prove �i�� �iii� and �v�� the proofs for �ii� and �iv� are similar�

�i� Let 	 � sto � � and f � ��	

L� Consider the unary ground relation R with
Rloc � Loc� Rsto � f�stog and Rint � f�intg� R is clearly preserved by all f � AUX
and 
�Loc 
 Rloc� hence R � %L� This implies fRsto 
 R� and hence f�sto � �� �

�iii� Let f � ��cmd 

L�

If s � Stores and l � Loc n L� then let R � DEF
flg
� be de�ned by Rsto �

f�g�ft � Stores
�� t l � s lg� Clearly s � Rsto and fRsto 
 Rsto because R � OUTL�

This implies fs � Rsto� hence fs � � or fs l � s l� Thus we have proved that
fs �� � implies fs �LocnL s�
If s� s� � Stores with s �L s�� then there is some L� � W with L � L� � � and

s �LocnL� s
�� Let R � DEFL�

� with Rsto � f�g� � f�t � Stores�
�� t� �LocnL� t�g� Then

�s� s�� � Rsto and fRsto 
 Rsto because R � OUTL� This implies �fs� fs�� � Rsto�
hence fs �L fs��

�v� Let f � ��locm � cmd 

L� We know that R� � OUTL
� � and it is easy to see

that �� l� l� � Rloc
� for all l � Loc� hence �f�� l�� � � ��� lm� s� fl� � � � lm�s � ��� �

fRloc
� � � �Rloc

� Rsto
� 
 Rsto

� � i�e� f�� l�� � � ��� lm� s � �fl� � � � lm�s � ��� � �
��� �

We now conclude the de�nition of the denotational semantics by assigning meanings
to the constants� We make extensive use of the auxiliary functions in the following
de�nition� This does not only lead to a compact notation but it will also be helpful
for later purposes� For every Alg�constant c we de�ne the meaning ��c

 by

��



��l

 � Dloc

��l

 � l
��n

 � Dsto � Dint

��n

 � Constn

��succ

 � ��iexp

� Dsto � Dint

��succ

fs � Succ �fs�
��pred 

 � ��iexp

� Dsto � Dint

��pred 

fs � Pred �fs�

��cont 

 � ��loc

� Dsto � Dint

��cont 

 � Cont
��asgn

 � ��loc

� ��iexp

� Dsto � Dsto

��asgn

 lfs � Asgn l �fs� s

��skip

 � Dsto � Dsto

��skip

 s � s

��condsto	� 

 � ��iexp

� ��sto � �

� ��sto � �

� Dsto � D�

��condsto	� 

 bfg s � Cond��bs� �fs� �gs�

��seqsto	� 

 � ��cmd 

� ��sto � �

� Dsto � D�

��seqsto	� 

fg s � g �fs�

��new iexp

 � ��loc � iexp

� Dsto � Dint

��new iexp

fs � f l �Asgn l 	 s� with l � next �supp �f��

��newcmd

 � ��loc � cmd 

� Dsto � Dsto

��newcmd

fs � Asgn l �Cont l s� �f l �Asgn l 	 s�� with l � next �supp �f��

��Y�

 � ��� � �

� ���


��Y�

 � ����



��pcond 

 � ��iexp

� ��iexp

� ��iexp

� Dsto � Dint

��pcond 

 bfg s � Pcond �bs� �fs� �gs�

Note that the �xed point operators ����

 are �well�de�ned� locally continuous %�
homomorphisms by Theorem ���� hence ��Y� 

 � ����� ��� �

� for every procedure
type �� The meanings of the other constants are also well�de�ned� but it remains
to be proved that they are �contained in the model�� i�e� that ��c

 � ��� 

 for every
constant c of type � � The �rst step into this direction is to show that the particular
choice of l in the clauses for ��new iexp

 and ��newcmd

 does not play a role� i�e� instead
of l � next �supp�f�� we can use any arbitrary location l �� supp �f��

Proposition ��	 For every l � Loc n supp �f� we have

��new iexp

fs � f l �s �	�l
�

��newcmd

fs � �f l �s �	�l
�� �s l�l


Proof� We only consider ��newcmd

� the proof for ��new iexp

 is similar� Let L � W

be such that f � ��loc � cmd 

L� let l�� l� � Loc nL and let � be the transposition of

��



l� and l�� i�e� the permutation which only interchanges l� and l�� Then we obtain

f l��s�	�l�
� �L�fl�g f l��s�	�l�
�	�l�
�
by Theorem 
�� �iii�� because f l� � ��cmd 

L�fl�g

� �f l� �s�	�l�
�	�l�
�� ��
by Theorem 
�� �v�� because � � ���

�L f l� �s�	�l�
�	�l�
�
because � � Fix �L�

�L�fl�g f l� �s�	�l�
�
by Theorem 
�� �iii�� because f l� � ��cmd 

L�fl�g

This implies �f l� �s�	�l�
�� �s l��l�
 �L �f l� �s�	�l�
�� �s l��l�
 and if they are di�erent
from �� then they both coincide with s on Loc nL by Theorem 
�� �iii�� hence they
are equal in any case�
Now let l�� l� � Loc n supp �f�� say l� � next �supp �f��� Then there are L�� L� �

W with f � ��loc � cmd 

Li and li � Loc n Li for i � �� �� and by choosing some
arbitrary l � Loc n �L� � L�� we obtain ��new cmd

f s � �f l� �s�	�l�
�� �s l��l�
 �
�f l �s�	�l
�� �s l�l
 � �f l� �s�	�l�
�� �s l��l�
� �

Proposition 
�� captures the �operational intuition� that the particular choice of the
new location which we bind to a local variable does not play a role� and thus it already
gives us some con�dence into our denotational semantics� Indeed� Proposition 
��
will be needed for the computational adequacy as well as for the full abstraction of
our denotational model�
As to computational adequacy� note that there is a gap between the operational

and the denotational de�nition of a �new� location l� In the operational semantics
we work with marked stores ms and we let l � next�dom�ms�� in rule �new�init��
i�e� we choose l to be the ��rst location which is not marked as active�� In the
denotational semantics we work with ordinary stores and we let l � next�supp�f��
where f corresponds to the body of the block in which the local variable is declared�
i�e� we choose l to be the ��rst location to which the body of the block does not
have access�� This gap can be closed if we know that the denotational de�nition is
independent of l as long as l �� supp�f� and that supp�f� 
 dom�ms�� i�e� that the
body of the block can only have access to locations which are marked as active�
While these considerations about computational adequacy are somewhat tech�

nical �and could perhaps be avoided by an alternative de�nition of the denotational
semantics�� the role of Proposition 
�� for full abstraction is more signi�cant� If the
particular choice of l in the de�nition of ��new�

 did play a role� then the meaning
of a block with two local variables could depend on the order in which these lo�
cal variables are declared� This means that certain observational congruences �e�g�
Example ���� would not be provable in our denotational semantics and thus full
abstraction would indeed fail�
We continue with a purely technical lemma�

Lemma ��� Let L � W� k � N and let f � ����

� � � �� ���k

� Dsto � D�� If

�




��� fR�� � � �R�kRsto 
 R� for every R � %L and

��� fd� � � � dj�� is continuous on ���j 

L� for all j � f�� � � � � kg� �d�� � � � � dj��� �
����

� � � �� ���j��

 and L� � W

then f � ���� � � � �� �k � sto � �

L�

Proof� By induction on k�

k � 	 �
If fRsto 
 R� for all R � %L� then f � ��sto � �

L per de�nition�

k � 	 �
Assume that ��� and ��� hold for f � If L� � W � L 
 L� and d� � ����

L� � then we

obtain for all R � %L
�

n

fd�R
�� � � �R�kRsto 
 f �
n����

L��R

�� � � �R�kRsto 
 fR�� � � �R�kRsto 
 R�

This means that ��� holds for fd� with L
� instead of L� and of course ��� also holds

for fd�� Hence fd� � ���� � � � � � �k � sto � �

L� by induction hypothesis�
i�e� we have proved f �����

L�� 
 ���� � � � � � �k � sto � �

L� for all L

� � L
and thus also f ����

 
 ���� � � � � � �k � sto � �

� But then ��� means that
f R�� 
 R��������k�sto	� for every R � %L and from ��� we know in particular that
f itself is continuous on all ����

L�� Hence f � ���� � � � �� �k � sto � �

L� �

Now we are ready to prove

Proposition ��� If c is a constant of procedure type �� then ��c

 � ���

��

Proof� We only consider two sample cases� namely c � asgn as a routine case and
c � newcmd as the most interesting case�

Case � � c � asgn

If R � % �� %��� then ��asgn

RlocRiexpRsto 
 AsgnRloc �RiexpRsto�Rsto 

AsgnRlocRintRsto 
 Rsto� The function ��asgn

 itself is continuous and it is easy
to see that ��asgn

 l is continuous on ��iexp

L for all l � Dloc and L � W � Hence
Lemma 
�
 implies ��asgn

 � ��loc � iexp � cmd 

��

Case � � c � newcmd

Let R � %� �f � Rloc�cmd and �s � Rsto� Let L � W with f�� � � � � fn � ��loc � cmd 

L
and l � Loc n L with �l� � � � � l� � Rloc� Then� by Proposition 
���

��newcmd

�f�s � Asgn l �Cont l �s � ��f l �Asgn l 	�s ��

� AsgnRloc �Cont RlocRsto� �Rloc�cmdRloc �AsgnRlocRintRsto��


 AsgnRlocRint �RcmdRsto�


 Rsto

Now let L� � W � By choosing some l � Loc n L� we obtain by Proposition 
���
��new cmd

f � �s�Stores�Asgn l �Cont s l� �f l �Asgn l 	 s�� for all f � ��loc � cmd 

L�

��



This shows that ��new cmd

 is continuous on ��loc � cmd 

L and hence ��newcmd

 �
���loc � cmd�� cmd 

� by Lemma 
�
� �

Theorem ��
 and Proposition 
�� allow us to de�ne the meaning of Alg�terms
in the style of the simply typed ��calculus� more precisely� Let Env be the set of all
environments � i�e� the set of all type preserving functions

� �
S
��Type Id

� �
S
��Type��� 



Then� for every M � Alg
� � the meaning ��M 

 � Env � ��� 

 is inductively de�ned by

��c

� � ��c

 as de�ned before

��x

� � � x

��MN 

� � ���M 

�� ���N 

��

��� x� �M 

� � �d � ��� 

� ��M 

��d�x


As usual� ��M 

� only depends on the restriction of � to free�M�� in particular it is
independent of �� if M is closed� and then we usually write ��M 

 instead of ��M 

��

Proposition ��


�i� If M � Alg
�
L and � x�

�

� ��� �

L for every x�
�

� free�M�� then ��M 

� � ��� 

L�

�ii� If M � c�Alg�L� then ��M 

 � ��� 

L�

Part �ii� captures our intuition that a closed Alg�term has only access to those
locations which explicitly occur in it and not to those which are temporarily bound
to its local variables� An open term may �of course� also have access to the locations
which are bound to its free variables and it may have �indirect� access to additional
locations via the functions which are bound to its free procedure identi�ers�

Proof� Of course it is su�cient to prove �i�� For location free terms we can apply
general principles� For every constant c of procedure type � the meaning ��c

 � ���

�
can be considered as a morphism from the terminal object T to the object ���

�
hence�by the categorical semantics of the ��calculus ��
�the meaning of a term
M � Alg

�
� with free�M� � fx

��
� � � � � � x

�k
k g is a morphism from ����

� � � �� ���n

 to ��� 

�

i�e� it maps ����

L � � � �� ���n

L to ��� 

L� The generalization to terms with locations
is straightforward� �

We conclude this section by explicitly presenting the meaning of a block with a
local variable declaration� Remember that new x in M end is syntactic sugar for
new ��� x

loc�M�� if M is of type 	� Thus we obtain

��new x in M end

 � s � ��M 

 ��l�x
 s�	�l
 if M � Alg
iexp

��new x in M end

 � s � ���M 

 ��l�x
 s�	�l
� �s l�l
 if M � Alg
cmd

where� by Proposition 
��� l is an arbitrary location in Loc n supp ���� x�M 

 ��� The
possibility to choose l freely from an in�nite set will be important in the following

��



sections� because we will often need a location which is di�erent from �nitely many
given ones� In such cases we sometimes brie�y say that we choose a new location
and leave it to the reader to spell out precisely what is meant by �new� in a particular
case�

� Computational Adequacy

In this section we will show that our denotational semantics is computationally ade�
quate� Computational adequacy means ���
 that the observable behavior beh�P � of
a program P can be �easily� derived from its denotational meaning ��P 

� Concretely�
we will show that for every n �Z

n � beh�P � � ��P 

 sinit � n

where sinit is the constant 	 store� i�e� the �unique� store in Stores�� This implies
that beh�P � contains at most one element �as we know already from Theorem ����
and that beh�P � � � � ��P 

 sinit � ��
We begin with ��� which is the easier direction� For a purely functional lan�

guage� this direction is usually proved by showing that each transition step of the
operational semantics preserves the denotational meaning of terms ��� ��
� This is
also the main idea for our proof� but as our transition relation ��� works on con�g�
urations as opposed to terms� we will �rst extend our meaning function� For every
marked store ms we de�ne ms � Stores by

ms l �

�
ms l if l � dom�ms�
	 otherwise

and for every consistent con�guration K � Conf sto	�
L we de�ne its meaning ��K

 �

D� inductively by

� ���M�ms�

 � ��M 

ms

� ��succK

 � Succ ��K



� ��pred K

 � Pred ��K



� ���asgn l K�ms�

 � Asgn l ��K

ms

� ���condsto	�KMN�ms�

 � Cond� ��K

 ���M 

ms� ���N 

ms�

� ��seq�KM 

 � ��M 

 ��K



� ��deallociexp l K

 � ��K



� ��dealloccmd l K

 � Asgn l 	 ��K



� ��pcondK�K�K�

 � Pcond ��K�

 ��K�

 ��K�



��



Lemma ��� Every transition step is meaning�preserving� i�e�

�i� M ��M � implies ��M 

 � ��M �

 for closed terms M�M �

�ii� K � K� implies ��K

 � ��K�

 for consistent con�gurations K�K �

Proof� �i� is obvious� �ii� is proved by induction on the derivation of K � K�� We
consider a few sample cases in which locations play a role�

Case � � K � �asgn l �n�ms���ms�� K� � �skip�ms�n�l
� by rule �asgn�exec�

Then ��K

 � Asgn l ���n�ms��

ms � ms�n�l
 � ms�n�l
 � ��skip

ms�n�l
 � ��K�



Case � � K � �newcmdM�ms�� K� � dealloccmd l �Ml�ms�	�l
� by rule �new�init�

Let K � Conf cmd
L � ThenM � c�Algloc�cmd

L � dom�ms� � L and l � next�dom�ms���
hence l �� L � supp���M 

� and thus we obtain

��K

 � ��new cmdM 

ms

� Asgn l �Cont lms� ���M 

 l �Asgn l 	ms��

� Asgn l 	 ���Ml

 �ms�	�l
��

� Asgn l 	 ���Ml

 �ms�	�l
��

� Asgn l 	 ���Ml�ms�	�l
�



� ��K�



Case � � K � dealloccmd l �skip�ms�� K� � �skip�ms n l� by rule �new��nish�

Then ��K

 � Asgn l 	 ���skip�ms�

 � ms�	�l
 � ms n l � ��skip

ms n l � ��K�

 �

Lemma ��� will deliver the ����part of computational adequacy� The usual approach
for proving the ����part ���
 is to de�ne a relation 	� 
 ��� 

 � c�Alg� for every
type � such that

� �	� ���Type is a logical relation between applicative structures ���


� ��M 

 	� M for every M � c�Alg�

In our setting it is more natural to de�ne a relation 	�
L
 ��� 

L � c�Alg�L for every

type � and every L � W such that

� �	� ���Type�L�W is a Kripke logical relation between applicative structures ���


� ��M 

 	�
L M for every M � c�Alg�L

The relations 	�
L are de�ned by induction on � as follows

l 	loc
L l� � l � l�

f 	iexp

L M � �L� � L� s � Stores� n �Z� fs � n � �ms� �M� s jL��
�
� �n�ms�

f 	cmd
L M � �L� � L� s� s� � Stores� fs � s� � �M� s jL��

�
� �skip� s� jL��

f 	���
L M � �L� � L� d � ��� 

L�� P � c�Alg�L� � d 	

�
L� P � fd 	�

L� MP

��



Lemma ��� Let � be a procedure type� let L � W � f� g � ���

L�  
 ���

L directed
and M�N � c�Alg�L� Then

�i� �� 	
�
L M

�ii� f v g 
 g 	�
L M � f 	�

L M

�iii� ��f �  � f 	�
L M��

F
 	�

L M

�iv� M ��N 
 f 	�
L N � f 	�

L M

Proof� All the proofs are simple inductions on ��

�i� holds vacuously for ground types� and the induction step is obvious�

�ii� For � � iexp note that f v g 
 fs � n implies g s � n� similarly for � � cmd �
For � � �� � ��� note that f v g 
 g d 	��

L� MP implies fd 	��

L� MP by
induction hypothesis�

�iii� For � � iexp note that �
F
 �s � n implies fs � n for some f �  � similarly

for � � cmd � For � � �� � ��� note that ��f �  � fd 	��

L� MP � implies
�
F
 � d �

F
 d 	��

L� MP by induction hypothesis�

�iv� For � � iexp note that M ��N 
 �N� s jL��
�
� �n�ms� implies �M� s jL�� �

�N� s jL��
�
� �n�ms�� similarly for � � cmd � For � � �� � ��� note that

M ��N 
 fd 	��

L� NP implies fd 	��

L� MP by induction hypothesis �because
MP ��NP �� �

Lemma ��� M � c�Alg�L � ��M 

 	�
L M

Proof� As usual ���
 this assertion is �rst generalized to open terms�

Let M � Alg
�
L with free �M� 
 fx��� � � � � � x

�k
k
g and let di � ���i

L� Ni �

c�Alg�iL with di 	
�i
L Ni �i � �� � � � � k�� Then ��M 

 � � �d��x
 	

�
L M ��x �� �N 


for every � � Env �

This generalized assertion is proved by induction on the structure of M �

Case � � M constant of type loc

Then M � l � L and ��M 

 �� �d��x
 � l 	loc
L l �M ��x� �N 
�

Case � � M constant of procedure type �

It must be proved that ��M 

 	�
L M for all L � W � To this end it is su�cient to

prove ��M 

 	�
� M � because 	

�
� is the strongest relation among all 	

�
L� We consider

a few sample cases�

�i� M � cont � loc � iexp

Let L � W � d � ��loc

L and l � c�Algloc
L � L with d 	loc

L l� Then d � l� hence
we must prove ��cont

 l 	iexp

L cont l� Let L� � L� s � Stores and n � Zwith
��cont

 l s � n� Then s l � n� and as l � L� we obtain �cont l� s jL��� �n� s jL���

�	



�ii� M � asgn � loc � iexp � cmd

Let L� d and l be as in �i�� Further let L� � L� f � ��iexp

L� and N � c�Algiexp

L�

with f 	iexp

L�
N � Then we must prove ��asgn

 l f 	cmd

L�
asgn l N � Let L�� � L�

and s� s� � Stores with ��asgn

 l fs � s�� Then there is some n �Zwith fs � n

and s� � s�n�l
� and as f 	iexp

L� N we know that �N� s jL���
�
� �n�ms� for

some marked store ms � As l � L��� this �nally implies �asgn l N� s jL��� �

�asgn l �N� s jL���� s jL���
�
� �asgn l �n�ms�� s jL���� �skip� s� jL����

�iii� M � newcmd � �loc � cmd�� cmd

Let L � W � f � ��loc � cmd 

L and N � c�Algloc�cmd
L with f 	loc�cmd

L N �
We must prove ��new cmd

 f 	cmd

L new cmdN � Let L� � L and s� s� � Stores
with ��new cmd

 fs � s�� Let l � next�L��� hence l �� L� � L � supp�f��
Then there is some s�� � Stores with f l �s�	�l
� � s�� and s� � s���s l�l
�

As f l 	cmd
L�flg Nl� we know that �Nl� s�	�l
 jL� � flg�

�
� �skip� s�� jL� � flg�

and from this we obtain �newcmdN� s jL
�� � dealloccmd l �Nl� �s jL�� �	�l
� �

dealloccmd l �Nl� s�	�l
 jL��flg�
�
� dealloccmd�skip� s�� jL��flg�� �skip� s�� jL��

� �skip� s� jL���

�iv� M � Y� � �� � ��� �

Let L � W � f � ��� � �

L and N � c�Alg���
L with f 	���

L N � We �rst
prove by induction on n that fn�� 	

�
L Y�N �

n � 	 � f�� � � 	�
L Y�N holds by Lemma ��� �i��

n � 	 � Let fn��� 	�
L Y�N � Then fn� � f�fn���� 	�

L N�Y�N� because
f 	���

L N � and from this we obtain fn� 	�
L Y�N by Lemma ��� �iv��

because Y�N ��N�Y�N��

Now  � ffn�
��n � Ng is a directed set in ���

L� and thus we �nally obtain

��Y�

f �
F
 	�

L Y�N by Lemma ��� �iii��

Case � � M � x�ii for some i � f�� � � � � kg

Then ��M 

 �� �d��x
 � di 	
�i
L Ni �M ��x �� �N 
�

Case � � M � PQ with P � Alg
���
L and Q � Alg

�
L

As free�P �� free�Q� 
 fx��� � � � � � x
�k
k g we have ��P 

 ��

�d��x
 	���
L P ��x �� �N 
 and

��Q

 �� �d��x
 	�
L Q��x �� �N 
� hence also ��M 

 ���d��x
 � ���P 

 �� �d��x
� ���Q

 ���d��x
� 	�

L

P ��x �� �N 
 �Q��x �� �N 
� �M ��x �� �N 
 per de�nition of 	���
L �

Case 
 � M � � y� � P with P � Alg
�
L

Without loss of generality we may assume that y� �� fx��� � � � � � x
�k
k
g� We must prove

��M 

 �� �d��x
 	���
L M ��x �� �N 
� Hence let L� � L� e � ��� 

L� and Q � c�Alg�L� with

e 	�
L� Q� Then ��M 

 ��

�d��x
 e� ��P 

 �� �d� e��x� y
 andM ��x �� �N 
Q� �� y� P ��x �� �N 
�Q
�� P ��x� y �� �N�Q
� As P � Alg

�
L� and free�P � 
 fx��� � � � � � x

�k
k
� y�g� we obtain

��



��P 

 �� �d� e��x� y
 	�
L� P ��x� y ��

�N�Q
 by induction hypothesis� and this �nally implies
��M 

 �� �d��x
 e 	�

L� M ��x ��
�N 
Q by Lemma ��� �iv�� �

Theorem ��	 �computational adequacy� For every program P and every n �Z

n � beh �P � � ��P 

 sinit � n

Proof�

���� n � beh�P � � �P�msinit�
�
� �n�msinit� per de�nition of beh�P �

� ���P�msinit�

 � ���n�msinit�

 by Lemma ���

� ��P 

 sinit � ��n

 sinit because ms init � sinit

� ��P 

 sinit � n

���� By Lemma ��� we have ��P 

 	iexp

� P � hence

��P 

 sinit � n � �ms � �P�msinit�
�
� �n�ms� because msinit � sinit j �

� �P�msinit�
�
� �n�msinit� by Theorem ��� �ii�

� n � beh�P �
�

A computationally adequate semantics can be used to prove observational congru�
ences� Here is the precise de�nition�

De�nition ��� A context C� 
 is a term with a hole� C�M 
 denotes the term which
is obtained from C� 
 by placing M into the hole� C� 
 is a program context forM and
N if both C�M 
 and C�N 
 are programs� M and N are observationally congruent
�denoted M � N� if beh�C�M 
� � beh�C�N 
� for every program context C� 
�

Theorem ��� �observational congruence� ��M 

 � ��N 

 � M � N

Proof� ��M 

 � ��N 

 implies ��C�M 


 � ��C�N 


 for every program context C� 
 by
the compositionality of �� 

 and then beh�C�M 
� � beh�C�N 
� by Theorem ���� �

� Observational Congruences

In this section we will illustrate by a series of examples how to prove particular
observational congruences with the aid of Theorem ���� Most of the examples have
already appeared in the literature ���� �� ��
� some of them originally served as
counter �examples for earlier denotational models of Algol�like languages� i�e� they
were used to prove that these models are not fully abstract ���� �
�
We will no longer slavishly stick to the Alg�syntax� but freely use operators like

!��� ��div� abs�������
��� � � � with their standard interpretation� in particular
each of them is assumed to be strict in all its arguments� These operators are of
course de�nable by closed Alg�terms�

��



The intuitive idea behind all our examples is that a global procedure cannot
have access to a local variable� The corresponding formal argumentation in the
denotational model works as follows� If f is the function which is bound to a global
procedure identi�er y�� then there is some L � W such that f � ���

L and we
may assume that all locations l�� � � � � ln which are bound to the local variables are
not contained in L� The desired semantic equality then usually follows by applying
Theorem 
�� �in the case of a �rst order procedure� or by choosing some appropriate
fl�� � � � � lng�de�nable ground relation R and exploiting the fact that f preserves �the
logical relation induced by� R�

Example 
�� ��new x in M end� y� 

 � ��new x in M � y� end



Proof� Let � � Env � s � Stores and L �W with � y � ���

L� If � � cmd � then

��new x in M end� y

 � s � � y ���M 

 ��l�x
 �s �	�l
� �s l�l
�

for some new location l �� L

� �� y ���M 

 ��l�x
 �s �	�l
�� �s l�l


by Theorem 
�� �iii��

� ���M � y

 ��l�x
 �s �	�l
�� �s l�l


� ��newx in M � y end

 � s

The proof for � � iexp is similar and the generalization to arbitrary procedure
types � is a routine calculation in the ��calculus �remember that sequencing and
new �operators for higher types have been introduced as syntactic sugar�� �

The intuition for Example ��� is that the global procedure y cannot read on the
local variable x� hence it does not matter whether y is inside or outside the scope of
the local variable� As an immediate consequence of Example ��� we obtain

��new x in x �� n� y end

 � ��new x in x �� n end� y

 � ��skip� y

 � ��y



which is essentially Example � in ���
�

Example 
�� ��ycmd� new x in M end

 � ��new x in ycmd�M end



Proof� We only consider the case M � Alg
cmd� Let � � Env � s � Stores and

L � W with � y � ��cmd 

L� Then

��y� new x in M end

 � s � ��new x in M end

 � �� y s�

� ���M 

 ��l�x
 ���y s� �	�l
� ��y s l�l


for some new location l �� L

� ���M 

 ��l�x
 ��y �s �	�l
��� �s l�l


by Theorem 
�� �iii� and �iii��

� ���y�M 

 ��l�x
 �s �	�l
�� �s l�l


� ��new x in y�M end

 � s
�

��



The intuition for Example ��� is that the global procedure y can neither read nor
write on the local variable x� hence moving the procedure call of y into the scope of
the local variable has no in�uence on the computation of y or M � As an immediate
consequence of Example ��� we obtain

��new x in y� if � x � 	 then � end

 � ��y� new x in if � x � 	 then � end

 � ���



which is essentially Example � in ���
�

Example 
�� ��new x� x� in M end

 � ��new x�� x in M end



Proof� For M � Alg
cmd we obtain

��new x� x� in M end

 � s � ��M 

 ��l�x
�l��x�
 �s �	�l
�	�l�
� �s l�l
�s l��l�


where l� l� � Loc n supp ���� x�M 

 �� and l �� l�

� ��newx�� x in M end

 � s

and similarly for M � Alg
iexp� The generalization to M � Alg

� is routine� �

Example ��� is a generalization of Example � in ���
� Note that it is not an ��
conversion� because we do not rename x and x� inside the block body M � The
crucial point is� that it does not matter which location we bind to the �rst local
variable and which to the second�

Example 
�	 ��new x in ycmd�cmd�x �� � x! ��� if � x � 	 then � end

 � ���



Proof� Let � � Env � s � Stores and L � W with � y � ��cmd � cmd 

L� We may
assume that the location l which is bound to the local variable x is not contained
in L� If we now choose R � DEF

flg
� with Rsto � f�g � ft � Stores

�� t l � 	g�
then we have s �	�l
 � Rsto and ��x �� � x ! �

 � �l�x
 � Rcmd� Hence the store
t � ��y �x �� � x! ��

 � �l�x
 �s �	�l
� is contained in � y RcmdRsto 
 Rsto� i�e� t � � or
t l � 	� and this easily implies the desired equality� �

Example ��� is similar to Example � in ���
� It illustrates #a form of representational
abstraction� which is one of the main themes of modern programming methodology$
���
� in particular of object oriented programming� The local variable x may be
considered as the instance variable of a counter object which is initially set to 	 and
which can only be accessed through a single method � namely through the parame�
terless procedure� x �� � x! �� Although we do not know how often this method is
used by the client y� we can be sure that the representation invariant � x � 	 of the
counter object will be preserved� and this �nally implies that the whole block must
diverge�

�Note that Alg is a full �edged call	by	name �	calculus� hence�in contrast to Algol ���there
is no need to introduce a name for the procedure x �� 
x� � and�in contrast to the call	by	value
language ML�there is no need to explicitly delay evaluation of x �� 
x � � with the aid of a
�	abstraction�

��



Example 
�� For i � �� � let

Mi � new x in ycmd�iexp�iexp�x �� � x! i� �� x div i� end

Then ��M�

 � ��M�

�

Proof� Let � � Env � s � Stores and L � W with � y � ��cmd � iexp � iexp

L�
Again we may assume that the new location l is not contained in L� We choose

R � DEF
flg
� with Rsto � f�g� � f�s � Stores�

�� s� l � � � s� l 
 s� �Locnflg s�g� Then
we have �s �	�l
� s �	�l
� � Rsto� ���x �� � x ! �

 � �l�x
� ��x �� � x ! �

 � �l�x
� � Rcmd

and ���� x div �

 � �l�x
� ��� x div �

 � �l�x
� � Riexp� Hence the pair �d�� d�� with
di � ��y �x �� � x! i� �� x div i�

 � �l�x
 �s �	�l
� is contained in � y RcmdRiexpRsto 

Rint � 
�Dint� i�e� d� � d�� and this proves the equality� �

Example ��
 is a variant of Example � in ���
� It shows that #there is more to
representational abstraction than preservation of invariants$ ���
� Again� the local
variable x may be considered as the instance variable of a counter object� which
now has two methods� namely one which increases the counter and one which reads
the counter� M� and M� use two di�erent internal representations of such a counter
object� and the observational congruence between M� and M� shows that the client
y cannot distinguish between these di�erent internal representations� This is an
instance of representation independence ���� ��
�

Example 
�� ��new x in x �� �� yiexp�iexp �� x� end

 � ��yiexp�iexp �



Proof� Let � � Env � s � Stores and let L and l as usual� Let R � DEF
flg
�

be de�ned by Rsto � f�g� � f�s � Stores�
�� s� l � � 
 s� �Locnflg s�g� Then

�s ���l
� s� � Rsto and ���� x

 � �l�x
� ���

 �� � Riexp� Hence the pair �d�� d�� �
���y �� x�

 � �l�x
 �s ���l
�� ��y �

 � s� is contained in � y RiexpRsto � Rint � 
�Dint� i�e�
d� � d� and this easily implies the equality� �

Example ��� was presented in ��
� Note that the simpler term �x �� �� y �� x�� is not
observationally congruent to y �� because � x is a name parameter and the function
procedure y may have a temporary side e�ect on the global variable x before it uses
its parameter� Hence it is indeed necessary for the example that x is a local variable�

Example 
�
 ��y��cmdz� 

 � ��new x in y �x �� � x! �� z� end



Proof� We only consider � � cmd � Let � � Env � s � Stores and L � W
with � y � ��cmd � cmd 

L and � z � ��cmd 

L� and let l � Loc n L� We choose

R � DEF
flg
� with Rsto � f�g� � f�s � Stores�

�� s� �Locnflg s�g� Then we obtain
�s� s �	�l
� � Rsto and �� z� ��x �� � x ! �� z

 � �l�x
� � Rcmd� because s� �Locnflg s�
implies � z s� �Locnflg � z s� �Locnflg ��x �� � x! �� z

 � �l�x
 s� by Theorem 
�� �iii

���
Hence the pair �t�� t�� � ���y z

 � s� ��y �x �� � x ! �� z�

 � �l�x
 �s �	�l
�� is contained
in � y RcmdRsto 
 RcmdRsto 
 Rsto� i�e� t� �Locnflg t�� This implies t� � t��s l�l

because t�l � s l by Theorem 
�� �iii�� and thus the equality is proved� �

�




The intuition for Example ��� is that the local variable x counts the procedure calls
of z during the computation of y z �occasionally the counter may snap back� namely
when z is called inside an integer expression�� The equivalence shows that adding
such a counter has no in�uence on the procedure call y z� Example ��� will play a
role in the full abstraction proof�

� First and Second Order Domains

As a preparation for the full abstraction proof in Section � we will now prove some
further properties of our denotational semantics� in particular we will take a closer
look at types of order 	 �� The following theorem presents an alternative description
of the domains ���

L with ord��� � �� This description is more concrete than the
original one in that it does no longer refer to the signature %�

Theorem ��� �concrete description of the �rst order domains� Let L � W�
Then

�i� ��iexp

L � ff� Dsto � Dint
�� f� � � 
 �s� s� � Stores� s �L s� � fs � fs� g

�ii� ��cmd 

L � ff� D
sto � Dsto

�� f� � �

 �s � Stores� fs �� � � fs �LocnL s


 �s� s� � Stores� s �L s� � fs �L fs� g

�iii� ��locm � iexp

L � ff� Loc � � � �� Loc � ��iexp


��

�l�� � � � � lm � Loc� s � Stores� � � Fix�L��
f l� � � � lm � ��iexp

L�fl������lmg

 f��l�� � � ���lm� s � fl� � � � lm�s � �� g

�iv� ��locm � cmd 

L � ff� Loc � � � �� Loc � ��cmd 


��

�l�� � � � � lm � Loc� s � Stores� � � Fix�L��
f l� � � � lm � ��cmd 

L�fl������lmg

 f��l�� � � ���lm� s � �fl� � � � lm�s � ��� � �

�� g

Proof� In each case only ��� must be proved� because �
� already follows from
Theorem 
��� We consider �ii� and �iv�� the proofs for �i� and �iii� are similar�

�ii� Let f be in the set on the right hand side� Per de�nition of ��cmd 

L we must only
show that f preserves all R � %L� Hence let R � %Ln and �s � Rsto� Because of the
�rst and third condition for f there is some M � c�Algcmd

L �consisting of tests and
assignments over location constants in L� such that s �L si implies ��M 

s �L fsi
for all s � Stores and i � f�� � � � � ng� This means in particular ��M 

si �L fsi for
i � �� � � � � n� hence either ��M 

si � � � fsi or ��M 

si �LocnL si �LocnL fsi by the
second condition for f � and this implies again ��M 

si � fsi� Thus we have proved
f�s � ��M 

�s � ��M 

Rsto 
 Rsto�

�iv� Let f be in the set on the right hand side� Again it is su�cient to show that
f preserves all R � %L �local continuity is not an issue� because ��loc

 is ordered

��



discretely�� Hence let R � %Ln �
�l�� � � � ��lm � Rloc and �s � Rsto� We de�ne a relation

� on Locm by

�l�� � � � � lm� � �l
�
�� � � � � l

�
m� � �� � Fix �L�� �i � f�� � � � � mg� � li � l�i

Obviously� � is an equivalence relation on Locm �because Fix�L� is a group with
respect to function composition�� and the equivalence class of a tuple �l�� � � � � lm�
is uniquely determined by the two sets f�i� j� � f�� � � � � mg�

�� li � ljg and
f�i� l� � f�� � � � � mg � L

�� li � lg� Hence� with the aid of the term EQ �def

� x� x�� x �� � x�! �� � x � � x� � Alg
loc��iexp

� which tests the equality of locations�

it is easy to construct a term CLASS � c�Alglocm�iexp

L which determines the ��
equivalence class of a tuple in Locm� i�e�

��CLASS

 l� � � � lms � ��CLASS

 l
�
� � � � l

�
ms � �l�� � � � � lm� � �l

�
�� � � � � l

�
m�

for all l�� � � � � lm� l
�
�� � � � � l

�
m � Loc and s � Stores�

Now let eq be one of the ��equivalence classes� We will �rst construct a term
Neq � c�Alglocm�cmd

L such that

��Neq

 l�i � � � lmisi � fl�i � � � lmisi whenever �l�i� � � � � lmi� � eq

Without loss of generality we may assume eq � f�l��� � � � � lm��� � � � � �l�k� � � � � lmk�g
for some k 	 n� Then there are functions �i � Fix�L� such that �l�i� � � � � lmi� �
��il��� � � � � �ilm�� for i � �� � � � � k� Since fl�� � � � lm� � ��cmd 

L�fl�������lm�g� we can
�rst choose some M � c�Algcmd

L�fl�������lm�g
as in the proof of �ii�� such that ��M 

 and

fl�� � � � lm� coincide on the �nitely many stores si � �i� i � �� � � � � k� and from M

we can easily construct a term Neq � c�Alglocm�cmd
L with ��Neq

 l�� � � � lm� � ��M 

�

Thus we obtain indeed

��Neq

 l�i � � � lmisi � ���Neq

 l�� � � � lm��si � �i�� � �
��
i

� ���M 

 �si � �i�� � �
��
i

� �fl�� � � � lm��si ��i�� � �
��
i

� fl�i � � � lmisi

for i � �� � � � � k� Finally� we can use the term CLASS for branching between the
various Neq and thus obtain a term N � c�Alglocm�cmd

L such that ��N 

 l�i � � � lmisi �

fl�i � � � lmisi for all i � f�� � � � � ng� This means f �l�s � ��N 

�l�s � Rsto� �

For second order types we do not have such a concrete description of all the
domains ���

L as for the �rst order types� Instead� the following proposition presents
only one particular example� namely the domain ��cmd � cmd 

�� It is meant as a
warm�up exercise for Section �� because it anticipates certain techniques which will
reappear in the full abstraction proof in a �much� more complicated form�

Proposition ��� For m � n � 	 let fm�n � ��� zcmd� if zm� 	 then zn

 where z� �
skip and zk � z� � � � � z� �z �

k

if k � 	� Then ��cmd � cmd 

� � f�g � ffm�n

��m � n � 	g�

��



Proof� Choose some arbitrary l � Loc and de�ne

inc	i � ��if � l � i then l �� � l! � else �

 for every i � N

inc	
 � ��l �� � l! �



Then inc	� � inc	� � � � � is an ��chain in ��cmd 

flg which has inc	
 as its least
upper bound� Now let f � ��cmd � cmd 

�� De�ne

m � card fi � N
�� f inc	i s� � �g � N� f�g

n � f inc	
 s� l � Z�

where s� is some arbitrary store with s� l � 	� Note that m and n are independent
of the particular choice of s� because f inc	i � ��cmd 

flg for every i � N � f�g�
Moreover� n � Zwhenever m � N because of the monotonicity of f � We will show
that

f � � if m ��

m � n � 	 
 f � fm�n if m � N

To this end let g � ��cmd 

 and s � Stores� Then there is some L � W with l � L
and g � ��cmd 

L� The intuition is� that the computation of fg s can be simulated
by the computation of f inc	k �s �	�l
� for some appropriate k � N � f�g� and
that this simulation can be expressed by one of our logical relations� We choose
k � sup fi � N

�� gis �� �g and we de�ne R � DEFL
� by

Rsto � f�g� � f�s � Stores�
���i � N� i	 k 
 s�l � i 
 s� �L gis 
 s� �LocnL s�g

Then �s �	�l
� s� � �s �	�l
� g�s� � Rsto and it is easy to see that �inc	k � g� � Rcmd�
This implies �f inc	k �s �	�l
�� fg s� � fRcmdRsto 
 Rsto� If m � �� then we have
f inc	k �s �	�l
� � �� hence also fg s � �� Thus we have proved f � � in this case�
If m � N� then

fg s � � � f inc	k �s �	�l
� � �

� k � m per de�nition of m

� gms � � per de�nition of k

and

fg s �� � � � i � N� f inc	k �s �	�l
� l� i 
 fg s �L gis

� n � N 
 fg s �L gns because i can only be n

� n � N 
 fg s � gns because fg and gn are in ��cmd 

L

Thus we have proved

fg s �

	
� if gms � �

gns �� � if gms �� �

for all g � ��cmd 

 and s � Stores� This implies m � n and f � fm�n� �

��



Note that by Proposition ��� the domain ��cmd � cmd 

� consists of in�nitely many
descending chains fn�n � fn���n � � � � which only meet in the bottom element� the
maximal elements of this domain are the �Church numerals� fn�n � ��� z� z

n

� If we
de�ne pi � ��cmd � cmd 

� � ��cmd � cmd 

� for all i � N by

pif �

�
f if f � fm�n for some m�n 	 i
� otherwise

then p� � p� � � � � is an ��chain of idempotent de�ations ��
 which have the identity
as their least upper bound� i�e� ��cmd � cmd 

� is an SFP object ��

� But a di�erent
property of the functions pi is more interesting for us� With the notation from the
above proof we can reformulate the de�nition of pi as

pif �

��
�
� if f inc	i s� l � �

fm�n if f inc	i s� l �� ��
m � card fj � i

�� f inc	j s� l � �g and n � f inc	
 s� l

This shows that pif is uniquely determined by the �nitely many values f inc	j s� l
with j � f	� � � � � i��g� Such functions will be called ��nitely determined� in Sec�
tion �� and sequences of �nitely determined functions which have the identity as
their least upper bound will play a prominent role in the full abstraction proof�
We conclude this section with a technical lemma�

Lemma ��� Let � � Loc � Loc be a �nite permutation and let R� � DEF
Supp���
�

as in Section �� Then there is a term SWAP�
� � c�Alg���

Supp��� for every procedure

type �� such that R�
� is the graph of ��SWAP�

� 

 and ��SWAP�
� 

 � ��SWAP�

��� 

 � id��

Proof� It is easy to construct SWAP� � c�Algcmd

Supp��� such that ��SWAP�

 s l �

s �� l� for all s � Stores and l � Loc� i�e� such that Rsto
� is the graph of ��SWAP�

�

By induction on � we then de�ne SWAP�
� � c�Alg���

Supp��� by

SWAPiexp
� � � yiexp� SWAP��� � y

SWAPcmd
� � � ycmd� SWAP��� � y� SWAP�

SWAP loc��
� � �yloc�� � �xloc�

if EQ x l�� then SWAP�
� �y l�� else

���
if EQ x l�n then SWAP�

� �y ln� else SWAP�
� �y x�

where EQ �def � x� x
�� x �� � x� ! �� � x � � x� tests the equality

on locations� fl�� � � � � lng � Supp��� and l�i � � li for i � �� � � � � n

SWAP����

� � � y���� � � z�� SWAP��

� �y �SWAP�
���z��

A straightforward induction on � shows that every ��SWAP�
� 

 has the desired prop�

erties� �

��



	 Full Abstraction

We will now present our full abstraction proof� The overall structure of the proof
is the same as for PCF in ���
� In the �rst part we show that for every function
f � ���

L with ord��� 	 � and every �nite set B of argument tuples for f there is
a term M � c�Alg�L such that ��M 

 and f coincide on B� As in ���
 we will prove
this result by using #logical relations which have large arity and are reminiscent of
value tables$ ��
� As a preparation we prove a technical lemma which allows us to
��ll up� a ground relation with a co�nite part of the diagonal 
nLoc�

De�nition ��� Let R be an n�ary ground relation with Rsto�
n�Loc n L�� 
 Rint�
Then the L�closure of R is de�ned to be the ground relation S with

� Sint � Rint�

� S loc � Rloc � 
n�Loc n L�

� Ssto � f�s � �Dsto�n
�� ��t � Rsto� �s �L �t 
 �s �
n�Loc n L�� 
 Rintg

Note that R is �contained� in its L�closure S� i�e� R� 
 S� for every � � '�

Lemma ��� Let R be an n�ary ground relation with Rsto�
n�Loc n L�� 
 Rint and
Rloc 
 Ln� Then every function f � AUX� which preserves R� also preserves the
L�closure of R�

Proof� Let f � AUX preserve R� and let S denote the L�closure of R� We show
that f preserves S�

Case � � f � Constm

If �s � Ssto and �t � Rsto with �s �L �t� then Constm �s � Constm �t � Rint � Sint�

Case � � f � fSucc�Pred�Cond int�Pcondg

Obvious� because Sint � Rint�

Case � � f � Condsto

First note that Condsto d s t l � Cond int d �s l� �t l� for all d � Dint� s� t � Dsto and
l � Loc� Now let �d � Sint � Rint� �s��t � Ssto and �u��v � Rsto with �s �L �u and
�t �L �v� Then Condsto �d�s�t �L Condsto �d�u�v � Rsto because Cond int �d ��s l� ��t l�
� Cond int �d ��u l� ��v l� for all l � L� and Condsto �d�s�t l � Cond int �d ��s l� ��t l� �
Cond intRintRintRint 
 Rint for all l � Loc n L� This proves Condsto �d�s�t � Ssto�

Case � � f � Cont

Let �l � Sloc� �s � Ssto and �t � Rsto with �s �L �t� If �l � Rloc 
 Ln� then Cont �l�s �
�s�l � �t�l � Cont �l�t � Rint � Sint� If �l � 
n�Loc nL�� then Cont �l �s � �s�l � Rint � Sint

per de�nition of Ssto�

Case 
 � f � Asgn

Let �l � Sloc� �d � Sint� �s � Ssto� �t � Rsto with �s �L �t and let �u � Asgn�l �d�s� If

�	



�l � Rloc 
 Ln� then �u �L Asgn�l �d�t � Rsto� because Asgn�l �d � ���cmd 

L�n� and
�u l � �s l � Rint for every l � Loc n L� hence �u � Ssto� If �l � �l� � � � � l� � 
n�Loc n L��
then �u �L �s �L �t � Rsto� �u l � �d � Sint � Rint and �u l� � �s l� � Rint for all
l� � Loc n �L� flg�� hence again �u � Ssto� �

Notation� If f � ���� � � � �� �k � sto � �

� then we let fd denote the completely
decurried version of f � i�e�

fd � ����

� � � �� ���k

�Dsto � D�

fd�d�� � � � � dk� s� � fd� � � �dk s

Theorem ��� ��nite coincidence with a de�nable function� Let L � W and
� � �� � � � � � �k � 	 �k � 	� with ord��� 	 �� Let f � ���

L and let B 

����

� � � �� ���k

�Dsto be �nite� Then there is some M � c�Alg�L with ��M 

d �B fd�

Proof� Let B � f�d��� � � � � dk�� s��� � � � � �d�n� � � � � dkn� sn�g� let �dj � �dj�� � � � � djn�
for j � �� � � � � k� �s � �s�� � � � � sn� and let R be the n�ary ground relation with

� Rloc � f�dj
�� �j � locg � 
nL

� R� � f��M 

 �d� � � � �dk �s
��M � c�Alg��������k�sto	�

L g for � � int � sto

Then we must prove that f �d� � � � �dk �s � R� �if 	 � sto � ��� As a �rst step we show
that every g � AUX preserves R�

Case � � g � Constm

Let �t � Rsto� i�e� �t � ��M 

 �d� � � � �dk �s for some M � c�Alg��������k�cmd

L
� Then

Constm�t � ��� x�� � � � � xk�Mx� � � � xk� m

 �d� � � � �dk �s � Rint�

Case � � g � Succ �similarly for Pred �Cond� and Pcond�

Let �e � Rint� i�e� �e � ��M 

 �d� � � � �dk �s for some M � c�Alg��������k�iexp

L � Then

Succ �e � ��� x�� � � � � xk� succ �Mx� � � � xk�

 �d� � � � �dk �s � Rint�

Case � � g � Cont

Let �l � Rloc and �t � ��M 

 �d� � � � �dk �s � Rsto� If �l � �dj with �j � loc� then

let P � � x�� � � � � xk�Mx� � � � xk� � xj� and if �l � �l� � � � � l� � 
nL� then let P �

� x�� � � � � xk�Mx� � � � xk� � l� In both cases Cont �l�t � ��P 

 �d� � � � �dk �s � Rint�

Case � � g � Asgn

Let �l � Rloc� �e � ��M 

 �d� � � � �dk �s � Rint and �t � ��N 

 �d� � � � �dk �s � Rsto� If �l � �dj with

�j � loc� then Asgn�l �e�t � ��P 

 �d� � � � �dk �s� where

P � � x�� � � � � xk�newx in x ��Mx� � � �xk � Nx� � � � xk� xj �� � x end

Intuitively� P works as follows� First� Mx� � � � xk is evaluated and the result �e is
stored into the local variable x� After evaluation of Mx� � � � xk the computation

��



snaps back to �s� and then �t is computed by evaluating Nx� � � �xk � Finally� �t is
updated to �t ��e��l 
 by the assignment xj �� � x� The precise argumentation is as
follows�

��P 

 �d� � � � �dk �s

� ���x ��Mx� � � �xk � Nx� � � � xk� xj �� � x

 �� �l�x
 ��s �	�l
�� ��sl�l


where l is some new location and �� � Envn with �� xi � �di for i � �� � � �k

� ���Nx� � � � xk� xj �� � x

 �� �l�x
 ��s ��e�l
�� ��sl�l


because l is new and hence ��M 

 �d� � � � �dk ��s �	�l
� � ��M 

 �d� � � � �dk �s � �e

� ���xj �� � x

 �� �l�x
 ��t ��e�l
�� ��s l�l


because l is new and hence ��N 

 �d� � � � �dk ��s ��e�l
� � �t ��e�l


� �t ��e�l
 ��e��l 
 ��s l�l


� �t ��e��l 
 because l is new and hence �s l � �t l

� Asgn�l�e�t

If �l � �l� � � � � l� � 
nL� then we replace the assignment xj �� � x in P by l �� � x� Thus

we obtain again Asgn�l�e�t � ��P 

 �d� � � � �dk �s� i�e� Asgn �l �e�t � Rsto in both cases�

So far we have shown that every g � AUX preserves R� Now let L� � L be such
that �dj � ����j 

L��

n for j � �� � � � � k and �s � �StoresL��
n� Then Rsto�
n�Loc n L��� �

Const�R
sto 
 Rint� hence we can de�ne the L��closure S of R� By Lemma ���� every

g � AUX preserves S� moreover 
n�Loc n �L� n L�� 
 Sloc because 
nL 
 Rloc� and
�nally ��� � � � ��� � Ssto because ��� � � � ��� � ��� x�� � � � � xk��

 �d� � � � �dk �s � Rsto�
Altogether this proves S � %L and hence f preserves S�
If we can now show that �dj � S�j for j � �� � � � � k� then we obtain f �d� � � � �dk �s �

fS�� � � �S�kRsto 
 fS�� � � �S�kSsto 
 S� � For � � int this already concludes the
proof� because Sint � Rint� For � � sto we �rst obtain f �d� � � � �dk �s �L�

�t for some
�t � Rsto� and then f �d� � � � �dk �s �LocnL� �s �LocnL�

�t implies f �d� � � � �dk �s � �t � Rsto�

Hence let j � f�� � � � � kg� If �j � loc� then �dj � Rloc 
 Sloc� As �j is a type of
order 	 �� we are left with the case �j � locm � 	 �m � 	�� In order to keep the
notation simple� we consider only one particular case� namely �j � loc � cmd �

Let �l � Sloc��t � Ssto� �u � Rsto with �t �L� �u and let M � c�Alg��������k�cmd

L

with �u � ��M 

 �d� � � � �dk �s� If �l � �di with �i � loc� then �dj�l�t �L�
�dj�l �u because

�dj�l � ���cmd 

L��
n� hence �dj�l�t �L� ��� x�� � � � � xk�Mx� � � � xk� xjxi

 �d� � � � �dk �s � Rsto�

and moreover �dj�l�t l � �t l � Rint for all l � Loc n L�� This proves �dj�l�t � Ssto� If
�l � �l� � � � � l� � 
nL� then we replace xjxi by xj l in the above term and thus obtain

again �dj�l�t � Ssto� Hence we are left with the case �l � �l� � � � � l� � 
n�Loc nL�� �
As �t � Ssto� we have �t l � Rint� i�e� there is some N � c�Alg��������k�iexp

L with
�t l � ��N 

 �d� � � � �dk �s� Now we de�ne

P � � x�� � � � � xk�newx in x �� Nx� � � �xk � Mx� � � �xk � xjx end

Q � � x�� � � � � xk�newx in x �� Nx� � � �xk � Mx� � � �xk � xjx� � x end

��



We may assume that our particular location l � LocnL� is bound to the local variable
x� hence we obtain

��P 

 �d� � � � �dk �s

� ���x �� Nx� � � � xk� Mx� � � � xk� xjx

 ���s� �	�l


where �� � Envn with �� xi � �di for i � �� � � �k and �� x � �l� � � � � l�

�L� ��x �� Nx� � � � xk� Mx� � � � xk� xjx

 �� �s

� ��Mx� � � �xk � xjx

 �� ��s ��t l�l
�

� ��xjx

 �� ��u ��t l�l
�

because ��M 

 �d� � � � �dk ��s ��t l�l
� � �u ��t l�l
 by Theorem 
�� �iii��

� �djl ��u ��t l�l
�

�L�
�djl �t because djl � ���cmd 

L��flg�

n and �t �L��flg �u ��t l�l


This shows that �djl �t �L� ��P 

 �d� � � � �dk �s � Rsto and similarly we can prove �djl �t l �

��Q

 �d� � � � �dk �s � Rint� Moreover� if l� � Loc n �L� � flg�� then �djl �t l
� � �t l� � Rint

because �djl � ���cmd 

L��flg�
n� Thus we have shown that �djl �t � Ssto� and this

concludes the proof� �

From Theorem ��� we can obtain a sequence of de�nable functions ��M�

� ��M�

� � � �
�Mi � c�Alg�L� which �converge� to the given function f � ���

L in the sense that
they coincide with f on more and more argument tuples� But for a typical full
abstraction proof ���
 we must know that f is the least upper bound of a sequence �or
a directed set� of de�nable functions� In ���
 we succeeded to close the gap between
these two kinds of �convergence� by showing that the meaning of each type is an
SFP object� in which the identity is the lub of an ��chain of de�nable idempotent
de�ations� But a closer look at the full abstraction proof in ���
 reveals that we did
not really need to know that these de�nable functions are idempotent or that they
have �nite image� Instead we only used the fact that they are ��nitely determined�
in the sense of the following de�nition�

De�nition ��	 Let Di� Ei �i � �� �� be sets� let Fi 
 �Di
t
� Ei� and p � �F�

t
� F���

��� B 
 D� is called a determining set for p� if f �B g implies pf � p g for all
f� g � F�� p is called �nitely determined if it has a �nite determining set�

��� (p � �D�
t
� D�� is called a determining function for p� if f�(pd� � g �(pd� implies

pfd � p g d for all f� g � F� and d � D�� p is called locally determined if it has
a determining function�

Finitely determined functions are those which we need for the full abstraction proof�
but sometimes it is very di�cult to prove �directly� that a particular function is
�nitely determined� Hence we use locally determined functions to construct new
�nitely determined functions from given ones� This is possible by

Lemma ��� Let Di� Ei� Fi �i � 	� �� �� as before� p � �F�
t
� F�� and q � �F�

t
� F���

��



�i� If p and q are locally determined� then p � q is locally determined�

�ii� If q is �nitely determined� then p � q is �nitely determined�

�iii� If p is �nitely determined and q is locally determined� then p � q is �nitely
determined�

Proof�

�i� Let (p� (q be determining functions for p and q� Then f�(q �(pd�� � g �(q �(pd�� �
qf�(p d� � q g �(pd� � p �qf� d � p �q g� d for all d � D� and f� g � F�� This shows
that (q � (p is a determining function for p � q�

�ii� Clearly every determining set for q is also a determining set for p � q�

�iii� Let B be a ��nite� determining set for p and let (q be a determining function for
q� Then f ��qB g � f � (q �B g � (q � qf �B q g � p �qf� � p �q g� for all f� g � F��
This shows that (qB is a ��nite� determining set for p � q� �

Notation� Let �� �� be procedure types and let p � ����


t
� ����

�� Then we let pD

denote the corresponding function on the completely decurried types� i�e�

pD � ���

d � ����

d

pDfd � �pf�d

Note that �p � q�D � pD � qD� if q � ����


t
� ����

� and p � �����



t
� �����

��

De�nition ��� Let �� �� be procedure types and let L � W �

��� An L�FD�sequence on � is a sequence of terms Pn � c�Alg���
L such that

���Pn

�n�Nis an ��chain with
F
n�N��Pn

 � id� and ��Pn



D j ����

L�
d is �nitely

determined for every n � N� � is called an L�FD�type if there is an L�FD�
sequence on ��

��� An L�section�retraction�pair �or L�SR�pair� between � and �� is a pair of terms
S � c�Alg����

L � R � c�Alg�
���

L such that ��R

 � ��S

 � id� and ��S

D is locally
determined� � is called an L�retract of �� �notation� � �L ��� if there is an
L�SR�pair between � and ���

Note that L�retracts are closely related to ordinary retracts ��� �
� If �S�R� is an
L�SR�pair between the types � and ��� then ���S

 j ���

L� ��R

 j ����

L� is an �ordinary�
s�r�pair between the dcpo�s ���

L and ���

�

L�
Our ultimate goal is to prove that every procedure type � with ord��� 	 � is

an L�FD�type� whenever L �� �� But�as mentioned before�it is sometimes very
di�cult to prove directly that particular functions are �nitely determined� This is
the point where L�retracts come in�

Theorem ��
 �L
retracts of L
FD
types� Every L�retract of an L�FD�type is
an L�FD�type�

��



Proof� Let �Pn�n�Nbe an L�FD�sequence on � and let �S�R� be an L�SR�pair
between �� and �� For every n � N let P �n � � y�

�

� R �Pn �Sy�� � c�Alg�
����

L � By
monotonicity of ��R

� the functions ��P �n

 form an ��chain� and by its local continuityF
n�N��P

�
n

 �

F
n�N��R

 � ��Pn

 � ��S

 � ��R

 � �

F
n�N��Pn

� � ��S

 � ��R

 � id� � ��S

 �

id�� � Moreover� by Lemma ��
 �ii� and �iii�� the functions ��P �n


D j �����

L�d �

���R

D� j ����

L�
d � ��Pn



D j ����

L�
d � ��S

D j �����

L�

d are �nitely determined� This
proves that �P �n�n�Nis an L�FD�sequence on �

�� �

In order to make good use of Theorem ��� we will now provide some �recipes� for
obtaining L�retracts� First note that �L is a preorder for every L � W � because
procedure types and L�SR�pairs form a category� The morphisms from � to �� are
the L�SR�pairs between � and ��� the identity morphism on � is �� y�� y� � y�� y��
the composition of two morphisms �S�R� from � to �� and �S�� R�� from �� to ���

is �� y�� S��Sy�� � y�
��

� R �R�y��� Note that ���S�

 � ��S

�D � ��S�

D � ��S

D is indeed
locally determined by Lemma ��
 �i�� In order to obtain some more interesting facts
about the relations �L we need the following technical lemma�

Lemma ���

�i� Let � � �� � � � �� �k � 	 and �� � �m�� � � � �� �k � 	 for some m � 	�

let pi � ���� 


t
� ���i

� for i � �� � � � � m and let p � ����



t
� ��� � ��

� with

pfd � f�p�d� � � ��pmd� for all f � ���

� d � ��� 



Then pD is locally determined�

�ii� Let q � �����


t
� ���

� and let p � ���� � ��



t
� ��� � �

� with

pf � q � f for all f � ��� � ��



Then pD is locally determined� if qD is locally determined�

Proof�

�i� For all d � ��� 

 and all �dm��� � � � � dk� s� � ���m��

 � � � � � ���k

 � Dsto we have
pDfd �d� dm��� � � � � dk� s� � pfd dm�� � � �dk s � fd�p�d� � � � � pmd� dm��� � � � � dk� s��
This shows that hhp�� � � � � pmi � fst � sndi is a determining function for pD�

�ii� For all d � ��� 

 and all �d�� � � � � dk� s� � ����

 � � � � � ���k

 � Dsto we have
pDfd�d� d�� � � � � dk� s� � pfd d� � � � dk s � q �fd� d� � � �dk s � qD�fd�d�d�� � � � � dk� s��
Now let (q be a determining function for qD� Then we obtain

fd�d� (q�d�� � � � � dk� s�� � gd�d� (q�d�� � � � � dk� s��

� �fd�d�(q �d�� � � � � dk� s�� � �gd�d�(q �d�� � � � � dk� s��

� qD�fd�d�d�� � � � � dk� s� � qD�gd�d�d�� � � � � dk� s�

� pDfd�d� d�� � � � � dk� s� � pDgd�d� d�� � � � � dk� s�

This shows that hfst � (q � sndi is a determining function for pD� �

�




Lemma ��� Let L � W � Then�

�i� � �L �� implies � � � �L � � �� and � � ��� �L �� � ���

�ii� L �� � implies iexp �L cmd

�iii� � �L loc � �

�iv� � � � � �� �L �loc � ��� ��

�v� � � � � � � �L � � � � � �

The condition L �� � is necessary in �ii�� because�by Theorem ������iexp

� is
isomorphic to Z� and ��cmd 

� is isomorphic to f���g� hence ��iexp

� cannot be a
retract of ��cmd 

��

Proof�

�i� Let �S�R� be an L�SR�pair between � and �� and de�ne

�R � � y����� � z� � R �yz� �S � � y���� � z� � S�yz�
)R � � y�

����� � � z�� y �Sz� )S � � y����� � � z�
�

� y �Rz�

�� �S

D is locally determined by Lemma ��� �ii�� because ��S

D is locally determined
and �� �S

f � ��S

�f for all f � ��� � �

� �� )S

D is locally determined by Lemma ��� �i��
because �� )S

fg � f ���R

 g� for all f � ��� � ���

 and g � ����

� Moreover� �� �R � �Sy� z

 �
��R � �Syz�

 � ��R �S�yz��

 � ��yz

 shows that �� �R � �Sy�

 � ��y

� and �� )R � )Sy� z

 �
�� )Sy �Sz�

 � ��y �R �Sz��

 � ��y z

 shows that �� )R � )Sy�

 � ��y

�

�ii� Let l � L� let R � � ycmd� y� � l and S � � yiexp� l �� y� For all f � ��iexp

 and
s � Dsto we have ��S

fs � s �fs�l
� hence ��S

D � ��S

 is locally determined with
determining function idsto� Moreover� ��R �Sy�

 � ��Sy� � l

 � ��l �� y� � l

 � ��y

�

�iii� Let R � � yloc�� �newx in y x end and S � � y�� � xloc� y� Then ��S

D is lo�
cally determined by Lemma ��� �i�� because ��S

fl � f for all f � ���

 and l � ��loc

�
Moreover� ��R �Sy�

 � ��new x in Sy x end

 � ��new x in y end

 � ��y

�

�iv� Let R � � y�loc������ � � z�� � z
�
� � y �� x

loc� if � x � 	 then z� else z�� and S �
� y������� � zloc��� y �newx in x �� 	� z x end� �newx in x �� �� z x end�� Then
��S

D is locally determined by Lemma ��� �i� and

��R �Sy� z�z�

 � ��Sy �� x� if � x � 	 then z� else z��



� ��y �new x in x �� 	� if � x � 	 then z� else z� end�
�new x in x �� �� if � x � 	 then z� else z� end�



� ��y �new x in x �� 	� z� end� �newx in x �� �� z� end�



� ��y z�z�

 by the remark after Example ���

hence ��R �Sy�

 � ��y

�

�If we had product types in Alg� then we could replace �iv� by � � � �L loc � � and �v� by
� � � � �L � � � � �

��



�v� R � � y�
����� � � z�� � z

� �

� � y z� z� and S � � y��� ��� � � z�
�

� � z
�
� � y z� z� de�ne �even�

an isomorphism� and obviously ��S

D is locally determined� �

Theorem ���� �L
FD
types� Let � be a procedure type with ord��� 	 � and let
L �� �� Then � is an L�FD�type�

Proof� We will prove that

��� locm � cmd is an L�FD�type for every m � 	� L �� �

��� �locm � cmd�� cmd is an L�FD�type for every m � 	� L �� �

��� �loc � �� is an L�FD�type for all L �� �� if � is an L�FD�type for all L �� �

From ��� we obtain by Theorem ��� that all �rst order types are L�FD�types� because
locm � iexp �L locm � cmd by Lemma ��� �i� and �ii�� From ��� we obtain� again
by Theorem ���� that �� � � � � � �k � 	 is an L�FD�type� provided that all
�i are �rst order types� namely� If �i � locmi � 	i and m � maxfm�� � � � � mkg�
then �� � � � � � �k � 	 �L �loc

m � cmd�k � 	 �L �loc
m�k�� � cmd� � cmd

by Lemma ��� �i���iv�� Together with ��� this implies that all types of the form
locm � �� � � � � � �k � 	 with �rst order types �i are L�FD�types� But from
these we obtain any arbitrary second order type by a permutation of the parameter
types� hence another application of Theorem ��� combined with Lemma ��� �v�
shows that all second order types are L�FD�types�

Proof of ���� Let � � locm � cmd and L � W � We will show that �P�
n�L�n�Nwith

P�
n�L � �y�� �xloc� � � � � � xlocm �

proc z � if
Vm
i�� abs�� xi� 	 n 


V
l�L abs�� l� 	 n then skip else �

in z� y x� � � � xm� z end

is an L�FD�sequence on � with the additional property that� for every n � N� ��P�
n�L



is idempotent and ��P�
n�L

 ����

L� is �nite �hence ���

L is an SFP object�� To this end

we de�ne pston�L� � ��cmd 

L� for every n � N and L
� � W by

pston�L� s �

�
s if sL� 
 f�n� � � � � ng
� otherwise

Clearly� for every L� � W � �pston�L��n�Nis an ��chain of idempotent functions in
��cmd 

L� such that

F
n�Np

sto
n�L�

� ��skip

 and psto
n�L�
�StoresL�� is �nite for every n � N�

Now note that

��P�
n�L

fl� � � � lm � pston�L�fl������lmg

� �fl� � � � lm� � p
sto
n�L�fl������lmg

for all f � ���

 and l�� � � � � lm � Loc� This implies immediately that ���P�
n�L

�n�Nis

an ��chain of idempotent functions with
F
n�N��P

�
n�L

 � id� � It remains to be shown

that� for every n � N� ��P�
n�L



D j ����

L�
d is �nitely determined and that ��P�

n�L

 ����

L�
is �nite�

��



To this end let f � ���

L and l�� � � � � lm � Loc� By Theorem 
��� ��P�
n�L

fl� � � � lm �

��cmd 

L�fl������lmg is uniquely determined by its restriction to StoresL�fl������lmg and
hence also by the restriction of fl� � � � lm to p

sto
n�L�fl������lmg

�StoresL�fl������lmg� n f�g�
This means that

A � f�l�� � � � � lm� s�
�� l�� � � � � lm � Loc 
 s � pston�L�fl������lmg

�StoresL�fl������lmg� n f�gg

is a determining set for ��P�
n�L



D j ����

L�d� In order to obtain a �nite determining set
we de�ne an equivalence relation � on A by

�l�� � � � � lm� s� � �l
�
�� � � � � l

�
m� s

��� �� � Fix �L�� �i � f�� � � � � mg� � li � l�i 
 s � s� ��

This equivalence relation has �nite index� because the equivalence class of an element
�l�� � � � � lm� s� is uniquely determined by the sets f�i� j� � f�� � � � � mg�

�� li � ljg and

f�l� i� � L � f�� � � � � mg
�� l � lig� the function �s jL� � �L

t
� f�n� � � � � ng� and the

tuple �sl�� � � � � slm� � f�n� � � � � ngm� Moreover� the restriction of fd to any equiva�
lence class is uniquely determined by its value for one representative of the class�
because fd�� l�� � � �� lm� s ����� � f�� l�� � � ��� lm� �s ����� � �fl� � � � lms� ���� �
fd�l�� � � � � lm� s� � �

�� by Theorem 
�� �v�� Thus� every representation system B for
� is a �nite determining set for ��P�

n�L


D j ����

L�d� Finally note that ���P�

n�L

f�
d �B

���P�
n�L

g�

d implies ��P�
n�L

f � ��P

�
n�L

 ���P

�
n�L

f� � ��P

�
n�L

 ���P

�
n�L

g� � ��P

�
n�L

g for all

f� g � ���

L� i�e� ��P�
n�L

f is uniquely determined by the �nite value table

���P�
n�L

fl� � � � lms��l������lm�s��B

The set of all such value tables is �nite� because the possible entries for any element
�l�� � � � � lm� s� � B can only range over the �nite set psto

n�L�fl������lmg
�StoresL�fl������lmg��

This shows that ��P�
n�L

 ����

L� is �nite�

Proof of ���� Let �� � �locm � cmd� � cmd and L � W � We continue to use the
notation from the proof of ���� in particular � stands for locm � cmd �
The �rst idea which comes to mind for de�ning an L�FD�sequence on �� is to

imitate the de�nition of idempotent de�ations ��
 for the functional language PCF
���� ��� �	
� i�e� to de�ne

P��

n�L

�
� � y�

�

� � z�� P cmd
n�L �y �P

�
n�Lz��

Unfortunately this idea is too naive� As the elements of ����

L cannot be considered
as functions from ���

L to ��cmd 

L �but also map ���

L� to ��cmd 

L� for all L

� � L��
we cannot really expect that this simple PCF�approach carries over to Alg� and
indeed it turns out that the functions ��P��

n�L


D j �����

L�

d are not �nitely determined
�nor do they have �nite image�� Somewhat to our own surprise� this problem can
already be solved by using a slightly modi�ed de�nition� namely

P��

n�L � � y�
�

� � z��newx in P cmd
n�L �y �if � x � n then x �� � x! ��P�

n�Lz else ���end

��



The di�erence to the �rst de�nition is� that we now use a local variable x to count
the procedure calls of z �as in Example ���� and that we let P��

n�Ly z diverge as soon
as the number of these procedure calls exceeds n� We will show that these new terms
P��

n�L indeed de�ne an L�FD�sequence on �
��

Clearly� P��

n�L � c�Alg�
����

L and ���P��

n�L

�n�Nis an ��chain with
F
n�N��P

��

n�L

 �
��� y� � z�newx in y �x �� � x! �� z� end

 � ��� y� � z� y z

 � id�� � where the second
equality holds by Example ���� The hard part is to show that ��P��

n�L


D j �����

L�d is

�nitely determined for every n � N�
Let A and � be de�ned as before� As the set A�� of all ��equivalence classes

eq is �nite� we may encode a word w � �A���� as an integer and thus store it into
a location� We use eq�w to denote the concatenation of eq and w and jwj to denote
the length of w and�in order to simplify notation�we do not explicitly distinguish
between a word w and its code� Below we will use an element eq � A�� as a�n
incomplete� description of a procedure call of some �xed procedure g � ���

� hence
a word w � �A���� stands for a sequence of such procedure calls�
Now let Seq	n � fw � �A����

�� jwj � ng and let l � Loc nL� For every function
* � Seq	n � ��P �

n�L

 ����

L� we de�ne c� � ���

L�flg by

c�l� � � � lms �

�
*�sl� l� � � � lm�s �class l� � � � lms � sl�l
� if sl � Seq	n
� otherwise

where class � ��locm � iexp

L is such that

class l� � � � lm s �

�
eq if �l�� � � � � lm� s� � eq
� if �l�� � � � � lm� s� �� A

for all l�� � � � � lm � Loc� s � StoresL�fl������lmg� Note that by Theorem ��� �i� and
�iii� such a function class exists and is uniquely determined� Moreover� each c� is
indeed in ���

L�flg� because it is de�ned by a �nite case distinction on the contents
of l from the function class and the functions *�w� � ���

L �w � Seq	n�� To obtain
some intuition for these functions� note that each c� uses the location l to keep a
record of its own history of procedure calls and diverges as soon as the recorded
history becomes longer than n� The role of the index * is to describe how a call of
c� depends on the previously recorded history�
From the proof of ��� we know that ��P�

n�L

����

L� and pston�L�StoresL� are �nite�
hence the set

C � f�c�� s ���l
�
��* � Seq	n � ��P�

n�L

 ����

L� 
 s � pston�L�StoresL� n f�gg

is also �nite� and we will prove that it is a determining set for ��P��

n�L


D j �����

L�d�

More precisely� we will show that for every �g� s� � ���

 � Stores there is some
�c�� s

����l
� � C such that fc��s
����l
� � f �c��s

����l
� � ��P��

n�L

fg s � ��P
��

n�L

f
�g s

whenever f� f � � ����

L �i�e� ��P��

n�L


D j �����

L�d is not only �nitely determined but

also locally determined�� The intuition for the proof is� that the computation of
��P��

n�L

fg s can be simulated by the computation of fc��s
����l
� for some appropriate

��



* and s�� This is a surprising fact and we consider it as one of the central
points of the whole full abstraction proof� Note that� although every single
function g � ���

 can only have access to �nitely many locations l�� � � � � lk � Loc nL�
there is no upper bound on the number k of these locations� Moreover� the values
which are stored in l�� � � � � lk during the computation of ��P

��

n�L

fg s can in no way be

controlled by ��P��

n�L

f � i�e� the simulation must cope with arbitrarily large values in
l�� � � � � lk� On the other hand there are only �nitely many functions c�� which only
use a single location l � Loc nL and� by their very de�nition� can only store �nitely
many di�erent values in l� namely the words w with jwj 	 n� Altogether this means
that there is no hope for a naive simulation� which uses some direct encoding of the
values in l�� � � � � lk into the contents of l� The trick is to use an �indirect encoding�
which is based on histories of procedure calls� This encoding will now be de�ned�
Let g � ���

 and s � Stores� The idempotence of ��P�

n�L

 implies that ��P
��

n�L

fg s �

��P��

n�L

f ���P
�
n�L

 g� s for all f � ����

� hence we may assume that g itself is already

contained in ��P�
n�L

 ���

� Now let l�� � � � � lk � Loc n L be such that g � ���

L�fl������lkg�

s � StoresL�fl������lkg and l � fl�� � � � � lkg� For every equivalence class eq � A�� and

every i � f�� � � � � kg we de�ne geqi �Z
k
�� Z� by

geqi �d�� � � � � dk� � g l�� � � � l
�
m�t �d��l�
 � � � �dk�lk
� li

where �l��� � � � � l
�
m� t� � eq and l��� � � � � l

�
m �� fl�� � � � � lkg

In order to see that the functions geqi are well�de�ned� �rst note that every eq does in�
deed contain a tuple �l��� � � � � l

�
m� t� with l

�
�� � � � � l

�
m �� fl�� � � � � lkg� Moreover� if we have

two such tuples in the same equivalence class eq� then we may assume that the cor�
responding permutation � in the de�nition of � is contained in Fix�L�fl�� � � � � lkg�
and then Theorem 
�� �v� implies g �� l��� � � ��� l

�
m� ��t � �

��� �d��l�
 � � � �dk�lk
� li �
g �� l��� � � ��� l

�
m� ��t �d��l�
 � � � �dk�lk
���

��� li � g l�� � � � l
�
m�t �d��l�
 � � � �dk�lk
� ��

��li�
� g l�� � � � l

�
m�t �d��l�
 � � � �dk�lk
� li� i�e� both tuples lead to the same result�

Finally we de�ne a value dwi �Z� for every w � �A���� and i � f�� � � � � kg by

� d 
i � sli

� d eq�w
i � geqi �d

w
� � � � � � d

w
k �

Intuitively� dwi is the current contents of the location li� if w describes the history
of procedure calls of g �and if the initial contents of l�� � � � � lk is given by s�� The
above argumentation has shown that the values dwi are uniquely determined by the
�incomplete� description w� hence w is indeed an �indirect encoding� of the current
contents of l�� � � � � lk� Moreover� the counter x in the de�nition of P

��

n�L will guarantee
that the sequence of procedure calls of g will never become longer than n� hence we
will need only words w of length 	 n for the encoding�
Now we are ready to choose the appropriate function c� which will make our

simulation work� Let * � Seq	n � ��P�
n�L

����

L� be such that

*�w� l�� � � � l
�
m t �L�fl�

�
�����l�mg

g l�� � � � l
�
m�t �d

w
� �l�
 � � � �d

w
k �lk
�

for all l��� � � � � l
�
m � Loc n fl�� � � � � lkg� t � Stores


	



It follows easily from Theorem ��� �ii� and �iv� that the function * exists and is
uniquely determined� To obtain some intuition for *� note that the procedure calls
*�w� l�� � � � l

�
m and g l

�
� � � � l

�
m have the same e�ect on L � fl

�
�� � � � � l

�
mg� provided that

w describes the history of procedure calls of g� Hence c�l
�
� � � � l

�
m indeed simulates

g l�� � � � l
�
m in the following sense� First it reads the word w from the location l� then

it behaves like *�w� l�� � � � l
�
m� i�e� it acts like g l

�
� � � � l

�
m on L�fl

�
�� � � � � l

�
mg� and �nally

it extends the contents w of l by the description eq of the current procedure call�
The last step guarantees that the contents eq �w of l after the call of c� encodes the
contents d eq�w

� � � � � � d eq�w
k of l�� � � � � lk after the call of g� Of course� all this is only

a vague intuition� which will now be replaced by a mathematically rigorous proof�
In particular� our intuitive understanding of a �simulation� will be expressed by an
appropriate logical relation�
To this end let s� � pston�L�s �	�l�
 � � � �	�lk
� � pston�L�StoresL�� We must show that

��P��

n�L

fg s is uniquely determined by fc��s
����l
�� First note that ��P��

n�L

fg s �

���P cmd
n�L 

 �fg

�� �s�	�l�
�� �sl��l�
� where l� is new� say l� �� L � fl�� � � � � lkg� and g� �
���

L�fl������lk�l�g is de�ned by

g�l�� � � � l
�
mt �

�
g l�� � � � l

�
m �t �t l

�! ��l�
� if t l� � n

� otherwise

Now let S � DEF
fl������lk�l

�g
� 
 OUTL

� be de�ned by

Ssto � f�g� � f�t � Stores�
�� �w � �A����� t�l � w 
 t� l

� � jwj 	 n 

� i � f�� � � � � kg� t� li � dwi 
 t� �Locnfl������lk�l�g t�g

Clearly� �s �	�l�
 � � � �	�lk
 ���l
� s �	�l
�
� � Ssto� and if we can prove �c�� g

�� � S�� then
we obtain

���P cmd
n�L 

 �fc�� �s �	�l�
 � � � �	�lk
 ���l
�� ��P

cmd
n�L 

 �fg

�� �s �	�l�
�� � Ssto

for all f � ���

L� because ��P
cmd
n�L 

 � f is also in ���

L� The left hand side of this pair

equals pston�L�fc��s
����l
�� and the right hand side uniquely determines ��P��

n�L

fg s� As

Ssto is a partial function� this implies that ��P��

n�L

fg s is indeed uniquely determined
by fc��s����l
��
It remains to be shown that �c�� g

�� � S�� It can be easily seen that Sloc �

��Loc n fl�� � � � � lk� l�g�� hence we must prove �c�l�� � � � l

�
m� g

�l�� � � � l
�
m� � Scmd for all

l��� � � � � l
�
m � Loc n fl�� � � � � lk� l

�g� To this end let �t�� t�� � Ssto n f�g�� Then there
is some w � �A���� with t�l � w� t� l� � jwj 	 n� t� li � dwi for i � �� � � � � k
and t� �Locnfl������lk�l�g t�� If t�� t� �� psto

n�L�fl�
�
�����l�mg

�Stores� then c�l�� � � � l
�
mt� � � be�

cause class l�� � � � l
�
mt� � �� and g�l�� � � � l

�
mt� � � because g � ��P�

n�L

���

� If jwj � n
then c�l

�
� � � � l

�
mt� � � because t�l � w �� Seq	n� and g�l�� � � � l

�
mt� � � because

t� l
� � jwj � n� Hence we have �c�l

�
� � � � l

�
mt�� g

�l�� � � � l
�
mt�� � ����� � Ssto in both

cases� The only remaining case is t�� t� � psto
n�L�fl�

�
�����l�mg

�Stores� 
 jwj � n� Then


�



there is some eq � A�� with class l�� � � � l
�
mt� � eq and we obtain

g�l�� � � � l
�
mt� � g l�� � � � l

�
m�t��t�l

�!��l�
�
because t� l

� � jwj � n

�L�fl������lk�l
�

�
�����l�mg

g l�� � � � l
�
m�t��d

w
� �l�� � � � � d

w
k �lk
�

because t��t�l
�!��l�
 �Locnfl�g t��d

w
� �l�� � � � � d

w
k �lk


�L�fl�
�
�����l�mg

*�w� l�� � � � l
�
mt�

per de�nition of *

�L�fl�
�
�����l�mg

*�w� l�� � � � l
�
m�t��eq�w�l
�

because t� �L�fl�
�
�����l�mg

t��eq�w�l


� c�l
�
� � � � l

�
mt�

because class l�� � � � l
�
mt� � eq 
 t�l � w

If g�l�� � � � l
�
mt� � c�l

�
� � � � l

�
mt� � � then we are done� otherwise note that

� c�l
�
� � � � l

�
mt�l � eq�w

� g�l�� � � � l
�
mt� l

� � t� l
� ! � � jeq �wj

� g�l�� � � � l
�
mt� li � g l�� � � � l

�
m�t��d

w
� �l�
 � � � �d

w
k �lk
� li � geqi �d

w
� � � � � � d

w
k � � d eq�w

i

for every i � f�� � � � � kg

� g�l�� � � � l
�
mt� and c�l

�
� � � � l

�
mt� coincide on Loc n fl�� � � � � lk� l

�
�� � � � � l

�
m� l

�g

The latter observation implies that g�l�� � � � l
�
mt� and c�l

�
� � � � l

�
mt� even coincide on

Loc n fl�� � � � � lk� l
�g� Altogether this proves �c�l

�
� � � � l

�
mt�� g

�l�� � � � l
�
mt�� � Ssto and

thus concludes the proof of ����

Proof of ���� Let �� � loc � � and L � W � L �� ��
We choose some location l � LocnL� By assumption� there are an L�FD�sequence

�P�
n�L�n�Nand an �L � flg��FD�sequence �P

�
n�L�flg�n�Non �� For every n � N let

P�
n�L�fxg � Alg

���
L be the term which is obtained from P�

n�L�flg by substituting a

fresh variable x for the location constant l� and let P��

n�L � c�Alg�
����

L be de�ned
by

P��

n�L � � y�
�

� � xloc� if
W
l��LEQ x l� then P�

n�L�y x� else P
�
n�L�fxg�y x�

where EQ � c�Algloc��iexp

� is the equality on locations and y�
�

is some fresh iden�
ti�er� Let f � ����

� Then

��P��

n�L

f l
� �

	
��P�

n�L

 �f l
�� if l� � L

��P�
n�L�flg

 �f l� if l� � l

and for l� �� L � flg we conclude by Lemma ��� that

��P��

n�L

f l
� � ��SWAP�

�l l��

 ���P
��

n�L

 ���SWAP��

�l l��

f� l�

� ��SWAP�
�l l��

 ���P

�
n�L�flg

 ���SWAP��

�l l��

f l��


�



where �l l�� denotes the transposition of l and l�� From these equations it follows
easily that ���P��

n�L

�n�Nis an ��chain with
F
n�N��P

��

n�L

 � id�� �

It remains to be shown that ��P��

n�L


D j �����

L�d is �nitely determined for all n � N�

Let f � ����

L� Then ��SWAP��

�l l��

f � f whenever l� � Loc n L and thus we obtain
from the above equations

��P��

n�L

f l
� �

	
��P�

n�L

 �f l
�� if l� � L

��SWAP�
�l l��

 ���P

�
n�L�flg

�f l�� if l� �� L

Now let B and B� be �nite determining sets for the functions ��P�
n�L



D j ����

L�
d and

��P�
n�L�flg



D j ����

L�flg�
d� Then� for every l� � L� ���P�

n�L

 �f l
���d � ��P�

n�L


D�f l��d

is uniquely determined by �f l��d jB and ���P�
n�L�flg

 �f l��

d � ��P�
n�L�flg



D�f l�d is

uniquely determined by �f l�d jB�� Thus it follows from the above equation that
��P��

n�L


Dfd � ���P��

n�L

f�
d is uniquely determined by fd j �L � B� � �flg � B��� i�e�

��P��

n�L


D is indeed �nitely determined� �

We conjecture that the restriction L �� � can be dropped from Theorem ���	 and
that all the domains ���

L with ord��� 	 � are SFP objects �as we already know for
� � locm � cmd�� But the only way to prove this would be to directly construct L�
FD�sequences for all types of order 	 � in order to avoid applications of Lemma ���
�where the restriction L �� � comes from� and Theorem ��� �where the idempotence
of functions gets lost�� We preferred to take the indirect way via L�retracts� because
it allowed us to restrict the tricky encoding in the proof of Theorem ���	 to types
of the form �locm � cmd� � cmd � and because we consider the use of L�retracts
as an interesting technique in its own�
We are now ready to prove full abstraction�

Theorem ���� �approximation by de�nable functions� Let � be a procedure
type of order � or � and let L �� �� Then every f � ���

L is the least upper bound of
an ��chain of de�nable functions ��M 

 with M � c�Alg�L�

Proof� Let �Pn�n�Nbe an L�FD�sequence on �� and for every n � N let Bn be a �nite
determining set for ���Pn

�

D j ����

L�
d� By Theorem ��� there are termsMn � c�Alg�L

with ��Mn


d �Bn f

d� hence ��PnMn


d � ��Pn



D��Mn


d � ��Pn



Dfd � ���Pn

f�
d for every

n � N� This implies f �
F
n�N��Pn

f �

F
n�N��PnMn

� �

Now we obtain our full abstraction result by the usual argumentation ���
�

Theorem ���� �full abstraction� Let � be a type of order 	 � and let M��M� �
c�Alg�� � Then

��M�

 � ��M�

 � M� �M�

Proof� Only ��� remains to be proved� Let � � �� � � � �� �k � 	 �k � 	� and
assume that ��M�

 �� ��M�

� i�e� there are dj � ���j 

 for j � �� � � � � k and s � Stores
such that

��M�

 d� � � � dk s �� ��M�

 d� � � � dk s


�



Let L �� � be such that dj � ���j

L for j � �� � � � � k� By Theorem ����� every dj is the
least upper bound of a directed set of de�nable elements in ���j 

L �for �j � loc� dj is
itself de�nable�� hence the local continuity of ��M�

 and ��M�

 implies that there are
Nj � c�Alg

�j
L with

��M�N� � � �Nk

 s �� ��M�N� � � �Nk

 s

From this� it is easy to construct a program context C� 
 with ��C�M�


 �� ��C�M�


�
Hence M� ��M�� �

We have formulated Theorem ���� for closed terms of order 	 �� Instead� we could
have used open terms of order 	 � whose only free identi�ers are of order 	 �� In
any case the main role is played by procedure identi�ers of order 	 �� that�s why we
speak of �full abstraction for the second order subset��

�
 Variants of the Language Alg

We have included some features in our language Alg which are not typical for an
Algol�like language� hence it seems worth to discuss whether they can be removed
or whether some further ones can be added�

Removing the parallel conditional

The observant reader may have realized that the parallel conditional did not really
play a role in our full abstraction proof� and indeed it can be removed from the
language Alg without any di�culties�
Let Algseq be the sequential subset of Alg� which is obtained from Alg by

removing the constant pcond � If we replace AUX by AUX nfPcondg in the de�nition
of the signature %� then we obtain a new signature %seq which is strictly greater than
%� in particular it contains ground relations which are similar to the sequentiality
relations of ���
� One such example is the ground relation R with

� Rloc � 
�Loc

� R� � f�d � �D���
�� d� � � � d� � � � d� � d� � d�g for � � int � sto

which is contained in �%seq�L for all L � W �as can be easily checked�� If we replace
% by %seq in the construction of our denotational model� then we obtain a �smaller�
model which is computationally adequate and fully abstract for the languageAlgseq�
This can be proved exactly as before� because we have never made any real use of the
parallel conditional in the proofs of computational adequacy and full abstraction�
In the new model we can validate additional denotational equivalences like

��y skip �! y� skip

 � ��� � y��



where y � cmd � cmd � iexp� This is a variant of the famous PCF�equivalence
���� ��
� and it can be validated similarly as in ���
� Let � � Env � s � Stores and let


�



R be de�ned as above� Then ���skip

� ���

� ���

� � Rcmd� ����

� ��skip

� ���

� � Rcmd and
�s� s� s� � Rsto� hence ���y skip �

 � s� ��y� skip

 � s� ��y��

 � s� � � yRcmdRcmdRsto 

Rint� This means that one of the �rst two components must be � or all three must
be equal� and in both cases the above equality follows easily�
Note that�for the �rst time in this paper�we have used a relation of arity

greater than � for proving an observational congruence� Indeed� it can be shown
that no binary relation works for this example� and similar examples show that
there is no upper bound at all on the arity of relations which are needed for proving
observational congruences in Algseq� This is in contrast to Alg itself� where binary
relations seem to be su�cient �cf� Sections � and ����

Removing the snap back e�ect

In contrast to the parallel conditional� the snap back e�ect does play an important
role in our full abstraction proof� and it is not �yet� clear whether we can obtain a
fully abstract model without it�
First note that there are at least two �signi�cantly� di�erent options for a lan�

guage without snap back� namely

� a languageAlg�se in which integer expressions have no side e�ects at all ��� �
�
not even temporary ones�

� a language Alg�se in which integer expressions may have permanent side
e�ects ���
�

Alg
�se can be de�ned by removing the constant seqiexp from Alg� As it is a

subset of Alg� its observational congruence relation can only be coarser than the
Alg�congruence� and indeed it is strictly coarser� as is illustrated by the terms

Mi � new x in ycmd�cmd�x �� �� x� �� i�� if � x � � then � end �i � �� ��

In Alg�se we have M� �M� by the following �somewhat informal� argumentation�
If we start M� and M� in the same initial store� then it only depends on this store
�and not on the particular parameter� whether the procedure y ignores its parameter
or whether it calls its parameter at least once� In the �rst case it is obvious thatM�

andM� either both diverge or terminate with the same result� In the second case the
local variable x contains � after y �x �� �� x� �� �� and also after y �x �� �� x� �� ���
because the global procedure y has no access to x and because the contents of x
cannot snap back to 	� Hence M� and M� both diverge in this case� In Alg itself
we haveM� ��M� because M� and M� can be distinguished by the program context
C� 
 � new x� in proc ycmd�cmd � � zcmd� x� �� �z� � x�� in � 
� � x� end end�

Alg
�se can be de�ned to have the same syntax as Algseq �the parallel condi�

tional does not make sense if integer expressions can have permanent side e�ects�
but of course it must have a rather di�erent operational and denotational seman�
tics� in particular ��iexp

 must consist of functions from Dsto to Dsto � Dint� The
two observational congruence relations of Algseq and Alg�se are incomparable� On







the one hand� the above termsM� andM� are observationally congruent in Alg
�se

�with the same argumentation as before� but not in Alg
seq� On the other hand

there are trivial examples of Algseq�congruences which do not hold in Alg�se� e�g�
�x �� 	� �� � ��
As to �nding fully abstract semantics� both Alg�se and Alg�se seem to create

new problems� AlthoughAlg�se is just a syntactic restriction ofAlg� we cannot use
the same trick as forAlgseq in order to obtain a larger signature �and thus a �smaller�
model�� because AUX does not contain an auxiliary function which corresponds to
the constant seqiexp� Hence� if there is an appropriate signature at all for Alg

�se�
new ideas seem to be necessary for de�ning it� For Alg�se it is of course necessary
to restructure the whole denotational model before searching for an appropriate
signature� Some �rst steps which we have made into this direction seem to suggest
that Alg�se is more promising than Alg�se�

Removing reference parameters

We have included parameters of type loc as a matter of convenience� but they are not
important for our full abstraction result� Only some minor changes are necessary if
we want to remove them from Alg� Of course �new x in � � � end� can no longer be
considered as syntactic sugar� it must be introduced as an extra binding mechanism�
Besides that we must only insist that environments � are injective on the set Id loc

because sharing between location identi�ers is no longer possible in the restricted
language� At some points the full abstraction proof must be carried out with more
care in order to avoid redundant ��abstractions �with reference parameters� in the
distinguishing contexts �cf� ���
�� but all in all it will even become simpler because
some nasty case distinctions will disappear �especially in the proof of Theorem �����

Adding value parameters

It should be no problem to add parameters of type int to Alg� i�e� to introduce
call�by�value as an additional parameter passing mechanism �at ground type level��
We conjecture that they can be handled similarly as the parameters of type loc�

�� Conclusion and Open Questions

We have de�ned a denotational semantics for an Algol�like language� and we have
proved that it is fully abstract for the second order subset of that language� Our
denotational model satis�es the usual �goodness� criteria� namely it is de�ned in a
cartesian closed category� it is syntax�independent and�despite of its rather tech�
nical de�nition�it allows us to give rigorous and simple proofs for all the test
equivalences which have been proposed in the literature� The simplicity of these
equivalence proofs is partially due to the fact that they are all based on relations of
arity 	 � from the sub�signature OUT � This leads us to


�



Conjecture ���� Theorem ��
� remains valid� if we use a smaller signature for
our model construction� namely the signature �% with

�%L� � OUTL
� � f�f�intg� f�stog�Loc�g �%L� � OUTL

�
�%Ln � � for n � �

From our e�orts to construct counter�examples� we have already gained some ev�
idence that Conjecture ���� really holds� This would increase the �tastefulness� of
our model� because OUT �and hence �%� is de�ned more concretely than the original
signature %� Moreover we would come closer to O�Hearn and Tennent�s parametric
functor model ���
� and so it could �nally turn out that their model is also fully
abstract for the second order subset of Alg� Therefore we consider Conjecture ����
as a worthwhile subject of further research�
The most obvious open question is of course� whether our model is fully abstract

for the full language Alg and not only for the second order subset� We believe
that the answer is negative� Our intuition is that a global procedure acts on a local
variable like a pure ��term and hence the full abstraction problem for Alg should
be closely related to the de�nability problem in the pure �simply typed� ��calculus�
From ��	
 it follows that �at least for a �nite ground type� the ��de�nable functions
of order � cannot be characterized by logical relations� and so we expect that full
abstraction for our Alg�model also fails �already� at order �� In order to repair this�
one might try to use �Kripke logical relations of varying arity� ��� �	
 instead of our
�nitary logical relations� but this would certainly lead to a terribly di�cult model
construction and it is questionable whether such a model would provide any new
insights into the nature of local variables� Hence we think that our �full abstraction
for the second order subset� is indeed the best result which one may expect at the
current state of the art�
One may �nally wonder whether our techniques can be transferred to call�by�

value �i�e� ML�like as opposed to Algol�like� languages ���
� This is a question
which we have not yet investigated� Although the observations in ���
 indicate that
additional problems might come up in the call�by�value setting� we are con�dent
that at least our main ideas will be helpful�
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