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Figure A��
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Figure A��
 Motion of a Piano Including Rotation



�� Some Selected Examples

the path search strategy is universally applicable� but it certainly shows the limits of
the programme�

Figure A�� presents the computed solution� the simple search for minimal recursion
depth was used here� The individual steps of the motion are shown from left to right
and top to bottom with every single picture showing a top and a front view of the
room� A wire frame representation is used and the translational part of the path can
be seen� too� This path can be shortened� yielding a surprisingly elegant solution� It
is pictured in A���� as a perspective view from the front� elevated slightly� with some
transparent walls�
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Figure A��
 Putting a Cube Into a Box
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closest to the centre of �a� z	�
The results are given in table A��� It shows that a random point acts quite similar

as the corresponding average point� so this gives no advantage� Centres of intervals
and points close to the middle of �a� z	 are to be preferred� and the optimum is the
synthesis of these two criteria�

A�� Motion Planning For Polyhedra

We developed a system for interactive graphical object assembly and robot simula�
tion�in short IICGOOIR � Its aim is to simulate assembly processes with all participating
objects and tools� while a user is interacting with the system to specify� analyze� and
correct motions� Objects are modelled by polyhedra which can be rotated and trans�
lated freely� emphasis is put on e�cient on�line collision detection in this context�

To simplify work with the system� a module for automatic motion planning was
added� Thus the user only needs to specify the �nal position of an object while a
collision�free path is computed by the programme� Thus we have implemented the
heuristic path search strategy described here and integrated it into the IICGOOIR �system�
in this way motions for single polyhedra using rotations and translations can be con�
structed and incorporated into assembly plans� We will now show some examples of
motion planning problems together with their solutions�

A���� Putting a Cube Into a Box

The scene consists of a cube �tting into a square�like box with little clearance� it
is considered a typical application for our motion planning scheme� A translational
motion is looked for which takes the cube from a place outside the box to its �nal
position inside� Figure A�� shows a sequence of con�gurations during the motion� with
the cube starting behind the box on the upper right side� The problem was solved
within seconds and yielded a path which could be shortened� it is represented by a
black line in space� The cube is shown at the vertices of that path� i�e� at those times
where the direction of motion changes� and reaches its goal within four steps�

A���� The �Piano Movers� Problem

We consider a room containing a piano which should be moved from one wall to another�
a ��� rotation is necessary as well as avoiding collision with a chair� The free�space in
this scene is rather small for this kind of heuristic motion planning� the task is very
demanding and needs a few hours to solve� Note that the algorithm does not �know�
that the piano should stay inside the room� there is an open door and plenty of space on
the outside� but those positions are hard to reach� All via points were considered�so
the solution was not missed�� but then every translational borderline yields two via
points outside the room� We did not want to change this situation however� because
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Table A��
 Variation Of � With Fixed Recursion Depth

avoided� we can say that V� is a useless valuation function for this class of problems�

Choice of Borderline Wementioned the topic of choosing a borderline which is then
searched for suitable via points� The position of that borderline has a great impact on
our path search strategy because it determines the position of the via points relatively
to the obstacles and to the start and goal� It also determines the sub�division of the
original problem into two parts� which should be both easier to solve and approximately
of equal di�culty�

Using � � ���� at most two via points and the best recursion strategy�with its
tree structure�we varied the base point of the borderline on the straight path �a� z	
but kept it perpendicular� The base point was placed in the midst of a collision interval
or randomly� it was also taken as the start of the �rst collision interval� The intervals
considered were the �rst one� the one in the centre of �a� z	 and of the interval list resp��
and a random one� The most elaborate choice was the centre of a collision interval

recursion depth �intersect��calls
location of base point max� mean max� mean
start of �st interval a �� ���
� ���� ��
��
randomly in �st interval � ����� ��� �����
centre of �st interval � ����� ���� ����
centre of random interval 
 ����� ��� ����
centre of middle interval �in list	 
 ����� ��� ����
centre next to centre of �a� z	 
 ����� ��� ����
centre of �a� z	 � ����� ���� ����
randomly in �a� z	 �� ���
� ��
� �����

aDue to the unfortunate behaviour of this strategy for many problems� recursion depth had to be

limited to ��� this restriction prevented the solution of ��� problems� These contribute to the number

of calls� but not to recursion depth statistics�

Table A��
 Di�erent Base Points for Borderline
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 Variation Of � With Minimal Recursion Depth
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Table A��
 Variation of � With Minimal Recursion Depth Re�Using Information

�arithmetic mean	 values� experiments were made with or without a restriction to two
via points per borderline�

Valuation of Via Points In section ���� p� �� we introduced a valuation function
V� to select via points� this function depends on a parameter �� Table A�� shows
results for �ve di�erent values of �� the minimal recursion depth was determined by
repeatedly calling the path search strategy with increasing recursion limit� It turned
out that � � � was extremely bad and sometimes took millions of �intersect��calls and
a large recursion depth of twenty to solve certain scenes� the whole experiment thus
lasted four days and ���� hours� Other values could be analyzed within a few hours�
and � � ��� yields an optimal balance between distance and length of free interval�

Table A�� shows results for three of these ��values computed with the help of
a tree�like data structure to store information about previous solved sub�problems�
This avoids re�computing the early stages of the path construction for each increased
recursion limit� and thus speeds up motion planning considerably� Note that it is
worth�while keeping recursion not too deeply nested because of the exponential growth
in the number of non�deterministic computations� Searching for an accepting one in a
depth��rst manner avoids memory problems� but a breadth��rst approach yields better
paths and takes less time� But even with depth��rst it usually pays to repeatedly try in
vain instead of over�estimating the necessary depth considerably� this was illustrated
in �gure A���

Table A�� shows results for a �xed limit on recursion depth� which was nine for the
left and six for the right column� More values of � have been tried� but � � � was
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Left
 The path planned with recursion
depth ���

Top
 Path planned with minimal recur�
sion depth� Left
 Result of shortening�

Figure A��
 Impact of Recursion Depth

can then tune certain parameters and analyze their in uence on how e�cient certain
classes of problems are solved� For the following experiments the same set of �����
problems was generated� each consisting of �fty discs of equal size spread in the unit
square� which was to be traversed from upper left to lower right� All instances are
guaranteed to be solvable� and the path search strategy of course does not simply
choose a path along the border�

We use two measures for the e�ciency of a solution
 the number of �intersect��
calls made by the path planner� which would dominate running time for realistic three�
dimensional scenes� and the minimal recursion depth allowing a solution� which indi�
cates the complexity of the constructed path� We show both the maximal and average
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was used to store information about subproblems in order to speed up the search for
a minimal necessary recursion depth� This turned out to be three and only �� queries
to the collision detection were needed for that search�

An Axially Parallel Path A General Path

Figure A��
 Comparison of Two Paths

A���� Impact of Recursion Depth

The next example shows a scene which consists of discs of various sizes leaving only
small passages between them� A boundary further restricts the free space of the point�
In this situation a motion has been planned with a given limit of at most �� levels of
recursion� it is shown in �gure A�� in the upper left corner� The path is very complicated
and not only intersects itself several times but also surrounds some obstacles� �����
calls were needed taking considerable time� if more than two via points per borderline
are considered then even ����� calls are generated�

In contrast to that a path with the optimal� i�e� minimal� recursion depth of eight
is remarkably more elegant and faster to construct� taking only ��� �intersect��calls�
Even this relatively good path shows some self�intersections� these are caused by the
restrictions on the positions of borderlines and via points� Shortening the path remedies
this problem�

A���� Statistical Evaluation

The high speed of the path search strategy for simple problems in the plane enables us
to generate and solve a large number of pseudo�random motion planning problems� We
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Some Selected Examples

A�� Two�dimensional Implementation

We have implemented the two�dimensional path search strategy for a simple motion
planning problem� i�e� moving a point between discs within a square part of the plane�
In this case� work space and con�guration space are the same and one can directly
study the heuristic motion planning scheme�

The programme o�ers an interactive graphical user interface as well as methods
for pseudo�random generation of scenes and their statistical evaluation� As a special
option the number of via points considered on a borderline can be restricted to two�
furthermore the two degrees of freedom may be handled separately to construct paths
which are piece�wise parallel to the coordinate axes�

Because our heuristic strategy often yields paths which seem a bit inelegant�
especially if the limit on recursion depth is too high�� we incorporated an algorithm
for shortening them� A graph is build whose vertices are the corners of the path and
whose edges are all direct connections not intersecting an obstacle� The shortest way
from start to goal is then taken as a new path� This method can be easily extended to
higher dimensions where planning a path takes more time than shortening it�

A���� Separate Degrees of Freedom

Figure A�� shows two paths for a point moving between randomly distributed discs of
equal size in the unit square� Start and goal were determined by hand� the paths were
planned considering at most two via points per borderline and with minimal necessary
recursion depth� We will use the number of �intersect��calls as a measure of running
time for the path search stage because it does not depend on the implementation of
the collision detection subroutine�

The left part of the �gure depicts a motion with separated degrees of freedom�
During three seconds ��� calls were made� six levels of recursion su�ced to solve the
problem� In contrast to that� the same �gure on its right side shows a path which
was planned without any restriction on the direction of motion� A tree�like structure





��� Rotational Case ��

�� det�x��w�p� � v� R �

This stems from the test det�q � p�vi�� � vi�p � vi� � � for an edge lp�q
moving against a face fv������vk��� We again reduce this to the same kind
of inequality as the �rst case� Therefore we take apart the determinant by
det�x��w�p� � v� � det�x��w�p�� � det�x��w�v� into two parts describing the
volumes of parallelepipeds� Thus they are obviously invariant under rotation and
we may apply Rr��� yielding det�x��w�p�� � det�x�w���p� � det�w���p�x��
Therefore we only deal with determinants of the form

det�x��v�w� � �v�w	Tx� � sTx�

where v and w and thus s are �xed while x is rotating� Application of formula
��� immediately yields the desired result

sTx� � sT
�
��� cos�	rTxr! cos�x! sin�r� x

�
� �sTx� sTrrTx	 cos�! �sT�r� x		 sin�! sTrrTx

� � cos�! � sin�! �

As shown above� the atomic pieces of our predicate S�P�Q	 can be easily computed
and represented by at most two intervals� The evaluation of the whole predicate takes
place as described in the translational case and gives the list of intervals corresponding
to all times at which surfaces collide�

Containment We choose a suitable point v on the surface of P and test for its
containment within Q to cover all situations where P is contained wholly within P �
Therefore the circle v describes during rotation is intersected with the faces of Q� this
yields all times when v enters or leaves the obstacle during its motion� If faces are not
oriented or the circle does not intersect Q� this will not su�ce� In this case we send
a ray from the point"s original position to �nd out whether v � Q initially holds or
not� Should any degeneracy appear� we randomly pick another v from a triangle on
P "s surface that is not perpendicular to the axis of rotation r� Again not every interior
point can cause a degenerate situation�

Enveloping Techniques There is only one di�erence to the translational case�
Bounding boxes are computed not in a Cartesian coordinate system but in a cylin�
drical one whose axes represent angle� height� and distance with respect to the �xed
rotational axis� Here the angle corresponds in its meaning to the z�coordinate in the
translational case� which was aligned to the direction of motion� It can be neglected in
tests to achieve simpler two�dimensional intersection problems or enlarged to contain
the moving object throughout the whole rotation�



�� E�cient Collision Detection

just like in the translational case� with the exception that rotations lead to quadratic
inequalities instead of linear ones� The test for containment and our enveloping strategy
are also in uenced slightly�

The Predicate For convenience� we choose the notation x� 
� Rr���x	 for a point
rotated about a �xed axis through a certain angle� which may vary� We may again
assume that the edge is moving and the face is not� to achieve this we might have to
swap the role of the object and obstacle while negating the axis of rotation� The two
forms of inequalities and their solutions then are

�� nTx� � c R �

Here n remains �xed while p and q are moving� but we observe that q� � p� �
�q� p	�� Refer to equation ���� p� ��� for the explanation of x��

nTx� � c R �

�	 nT
�
��� cos�	rTxr! cos�x! sin�r� x

�
� c R �

�	 �nTx� nTrrTx	� �z �
�

cos�! �nTr� x	� �z �
�

sin�! �nTrrTx� c	� �z �
�

R �

The original test is thus reduced to � cos�! � sin�! � R �� the corresponding
equation describes the intersection of the line �x ! �y ! � � � with the unit
circle� Depending on R� the inequality describes the intersection of a half�plane
with the unit circle� Intervals of solution for the inequality naturally arise from
the zeros of the equality� which are found as follows�

For angles �� � � � � the substitution t 
� tan �

�
is used and yields cos� � ��t�

��t�
�

sin� � �t
��t�

and after multiplication by � ! t� we get

��� � t�	 ! ��t! ��� ! t�	 � � �	 �� � �	t� ! ��t! ��! �	 � �

For � 
� � the well known solution formula leads to the condition �� ! �� � ��

for solubility and then to the zeros

t��� �
� �p�� ! �� � ��

� � �

which are transformed to angles in ��� ��	 by � � �arctan t� The degenerate case
of a linear equation is trivial�

The angle � � � solves the equation i� �� ! � � �� i�e� the line runs through
���� �	� A second intersection point exists i� � 
� �� else the line is vertical and
only touches the circle or for � � � it degenerates to the plane or the empty
set� The second solution can be found by the former approach which leads to
��t! �� � � in this special case�
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In this way quaternions give a neat description of rotations which is also graphical�
They can be used to describe the path search strategy for purely rotational motions in
a spherical rather than Euclidean geometry� In analogy to the approach described for
the plane� we need only two major concepts� The direct connection of two positions is
given by the unique great circle containing them� The notion of perpendicular dodging�
which meant searching for via points on a hyper�plane perpendicular to the direct
connection� also has a simple meaning based on the following lemma�

Lemma ��� 


Great circles on S� are perpendicular i� the corresponding axes of rotation are�

Proof


Let P � S� be the single common point of both great circles and q� r � S� their respec�
tive axes of rotation� Then Q 
� q �P and R 
� r �P resp� complete the description of
the two circles CP�Q and CP�R� These are orthogonal i� �S � CP�Q 
 S 
 R and sym�
metrically� this follows from P 
 R and Q 
 R which is obvious because of the follow�
ing
 QTR � �q �P	T�r �P	

� ��qTp� p�q! q� p	T��rTp� p�r! r� p	
� qTp rTp! p��q

Tr! p��qT�r� p	 ! �q� p	Tr	 ! �q� p	T�r� p	� �z �
qTr pTp�qTp rTp

� �p�� ! pTp	� �z �
jPj���

qTr! p� �det�q� r�p� ! det�r�q�p�	� �z �
�

� qTr
The other way round� if we start with Q and R� we de�ne q 
� Q � P� and r

analogously and �nd that qTr � P��QT �R	P � QTR�

Path Search Strategy Quaternions and the spherical geometry are applied to mo�
tion planning by a modi�cation of our path search strategy� which is thought of as
taking place on the unit sphere S�� Initial and �nal con�gurations a and z are mapped
to points via the correspondence with quaternions mentioned above� Then the straight
motion from a to z� i�e� a rotation about the axis associated with the great circle
Ca�z through these two points� is checked for its free and unfree segments� To dodge
collision situations� we look at great circles perpendicular to Ca�z� in four dimensions
there is one degree of freedom for this choice� We apply techniques similar to those
mentioned for IRn to select a number of circles and to �nd suitable via points on them�
this involves checking full rotations about axes perpendicular to that of the original
�straight� motion� These via points are then aimed at directly and lead to subdivisions
of the problem etc�

����� Dynamic Collision Detection

We want to �nd out all points of time of a given rotation of one object at which collision
with a certain obstacle takes place and describe these as lists of intervals� This is done
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the fact that one can exchange r and � for �r and ��� this still describes the same
rotation� If we assume the angle to be positive and take Qr�� as de�ned above for the
corresponding quaternion� the mapping becomes univocal�

All Qr�� are unit quaternions� i�e� of Euclidean length one� and form a group under
quaternion product� Each such unit quaternion Q � �q��q	 represents a rotation
through the angle � � �arccos q� about the axis r � �sin �

�
	��q� the latter is not

de�ned for an angle of zero� Composition of rotations corresponds to multiplication of
quaternions� i�e� RP �RQ � RP�Q�

Spherical Geometry The set of unit quaternions can be looked upon as the unit

sphere S� in four�dimensional Euclidean space� where Sn 
� fx � IRn j jxj � �g� We
again read � � IR as the unit quaternion ����	 � S� and r � S� as ��� r	 � S� for
convenience� Also� we will identify points and their position vectors for simplicity�

If we talk of the orientation of a polyhedron we usually describe it by a rotation
with reference to some �xed initial position� thus the initial orientation corresponds
to the unity � � ����	 of the quaternion algebra which denotes non�rotation� During
a rotational motion the object"s orientation varies continuously and the corresponding
quaternion traces an arc of a great circle on the unit sphere� Such a great circle of Sn� i�e�
a circle around the origin with radius �� is uniquely determined by the plane in which it
is contained� the latter can be given by two linearly independent vectors or two distinct
points on the sphere� In the special case of two orthogonal axes P�Q � Sn� P 
 Q

�with respect to the standard scalar product of IRn	 we have

CP�Q 
� f	P ! 
Q j 	� 
 � IR� 	� ! 
� � �g � fcos�P! sin�Q j � � IRg

During a full rotation an object"s orientation describes half a great circle on S��
because of the ambiguity between Q and �Q we could also say it describes both
halves simultaneously� If a �xed axis r � S� is chosen� then two turns correspond to
the orientations fQr�� � cos �

�
� � ! sin �

�
� r j � � ��� ��	g � C��r which form a great

circle with axes �� r � S�� To achieve other axes� let an initial orientation of P � S� be
given together with an axis of rotation r� again fQr�� �P j � � ��� ��	g � CP�r�P forms
a great circle� but now with axes P and r �P� These are also orthogonal because

PT�r �P	 � �p��p	
T��rTp� p�r! r� p	 � �p� rTp ! p� p

Tr! pT�r� p	� �z �
det	p�r�p
��

� �

Thus complete rotations map to great circles� and vice versa� For two given orthogonal
axes P�Q � S� of a great circle we can �nd an axis of rotation r � S� with Q � r �P�
this results from Q 
 P �	 q�p� ! qTp � � and thus

Q �P� � �q��q	 � �p���p	
� �q�p� ! qTp��q�p! p�q� q� p	
� ��� r	 � S�
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Every rotation RU is determined by an axis r � IR�� jrj � � and an angle � � IR� the
axis of rotation is assumed to pass through the origin of the coordinate system� This
yields

U � Ur�� � �� � cos�	rrT ! cos�I! sin�

�
B� � �r� r�

r� � �r�
�r� r� �

�
CA

for the matrix and vice versa

� � arccos
	
�

�
�u��� ! u��� ! u��� � �	




r � �� sin�	���u��� � u���� u��� � u���� u��� � u���	
T

so that we may specify a rotation Rr�� 
� RUr�� directly by axis and angle� We can

then apply it to a vector x � IR� by the function

x �� �� � cos�	rTxr! cos�x! sin�r� x ����	

which describes the rotation in a coordinate system with base vectors r� x� and r� x�
we shall make use of this function later�

Another way to deal with rotations is to use quaternions� and as this is quite elegant
we give a short introduction here and show the applications to our problem�

����� Motion Planning for Pure Rotations

Quaternions The set IR� with the usual vector operations and a suitably de�
�ned multiplication forms a non�commutative division algebra� Quaternions Q �
�q�� q�� q�� q�	T � IR� will now be written as Q � �q��q	� where q� is called scalar
part and q � �q�� q�� q�	T vector part of Q� This in a natural way gives inclusions of
IR and IR� into the set IR� of quaternions� Multiplication is de�ned by the bilinear
function

�p��p	 � �q��q	 
� �p�q� � pTq� p�q! q�p! p� q	

In analogy to complex numbers� quaternions are conjugated by Q � �q��q	 �� Q� 
�
�q���q	 with the properties jQj� � Q �Q� and Q�� � Q��jQj��

A rotation about axis r through angle � is given by the quaternion

Qr�� �
	
cos

�

�
� sin

�

�
r




describing the mapping Rr�� as

RQr�� � Rr�� 
 IR� � IR�� x �� Qr�� � ���x	 �Q�
r��

One should note that Q and �Q obviously represent the same rotation� so that the
mapping of quaternions to the matrices introduced above is not injective� and vice
versa we may as well map r and � to Qr�� or to Qr������ This ambiguity results from
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A hierarchic approach is used which features ever more detailed bounding bodies
around the actual polyhedra and their faces� At the highest level� approximations of
smallest enclosing spheres are computed once for every object� e�g� at startup time�
and associated with it� these can easily be handled even during rotations� A simple
quadratic inequality can tell whether the moving sphere intersects the other at some
time during the motion� in which case we proceed to the next level�

Bounding boxes are then computed in a special orthogonal coordinate system with
r as z�axis� the advantage lies in the fact that x� and y�coordinates now remain �xed
under translation� We use axially parallel rectangloids� these can be computed easily
and may be looked upon as the Cartesian product of x�� y�� and z�intervals� they are
stored with the polyhedron for possible re�use� Collision�freeness is ascertained if the
x�y�rectangles do not overlap or if the z�intervals remain disjunct even if the translation
is considered� For the latter purpose� the moving object"s z�interval is enlarged so as
to contain the object during the whole motion� If we describe each interval as a one�
dimensional circle with center p�i � IR� i � f�� �g� � � fx� y� zg� and radius � � r�i � IR�
the bounding rectangloids are written as

�pxi � rxi � p
x
i ! rxi �� �pyi � ryi � p

y
i ! ryi �� �pzi � rzi � p

z
i ! rzi �

and do not overlap i�

jpx� � px�j � rx� ! rx� � jpy� � py�j � ry� ! ry� � jpz� � pz�j � rz� ! rz�

If these boxes interfere with each other� we eventually have to consider all edge�
face�pairs� In order to speed things up� we also consider bounding rectangloids for
individual faces� Only if the intersection of two faces cannot be ruled out� we take a
close look at their edges and carry out all edge�face�tests�

The investigation whether one polyhedron is contained within the other can also be
improved in such a way� Because of the rectangloids" alignment one object may only
lie totally within another if the same holds for their bounding boxes� Intersection of a
line and a face may be ruled out by such tests� as the line is parallel to the z�axis this
is especially simple�

Incorporating all these improvements into the collision detection scheme results
in a dramatic speed�up for many real�world problems� This matches nicely with the
heuristic approach of the path search strategy and achieves the goal of quickly solving
simple instances of arbitrary motion planning problems�

��� Rotational Case

The moving object now rotates about a �xed axis� either through a given angle or
through one complete turn� this corresponds to bounded and unbounded motions resp�
It is well known that rotations can be described by matrices U � IR���� UTU �
I� det�U	 � �� as a mapping

RU 
 IR� � IR�� x �� RU�x	 
� Ux



��� Translational Case �


As q	�p	 � q�p this is the general form of det�q�p�vi���vi�p�vi� � � if
p and q move� v� w� and x denote �xed points and directions resp� This yields
a linear inequality just like above


det�x�w�p	 � v� � �x�w	T�p ! 
r� v	 � 
 �x�w	Tr� �z �
a

!�x�w	T�p � v	� �z �
b

We have shown that the predicate S consists of such inequalities as atomic pieces�
whose sets of solutions can be represented by at most one interval� The main idea
now is to evaluate S using lists of intervals rather than true and false as intermediate
results� thus yielding all values 
 with lp��q� � fv������vk�� 
� �� The boolean operations
� and � are substituted by intersection and union on interval lists� which can be easily
implemented to run in linear time� A balanced tree for S�P�Q	 has #�n	 leafs because
of the predicate"s size� n 
� jP jjQj� its depth can be restricted to O�log n	� The atomic
inequalities can be evaluated in constant time� there are at most n intervals to handle
at each level of the tree�note that neither intersection nor union can increase the
number of intervals� All in all time O�n log n	 su�ces to determine all sections of the
motion that correspond to collisions�

Containment The test for containment of one polyhedron within the other now has
to be adapted to the translational motion of P while Q is assumed to stay �xed� To
simplify the test� we only consider the direction of motion r as a possible direction of
the ray� After choosing a suitable point v � P � we check the line fv ! tr j t � IRg for
intersections with faces of Q� The normal vector of each face tells whether v enters or
leaves Q during the motion� we can also exploit that v� �� Q� In case of a degeneracy�
another point v is tried� but we cannot restrict ourselves to the vertices of P here� We
rather choose v within a triangle on the surface of P whose projection onto a plane
orthogonal to r does not degenerate to a line� not every point of such a triangle can
collide with an edge or vertex of Q�

For a �xed direction of motion� we compute such a triangle once for every poly�
hedron� this takes time O�jP j	� The intersection test of the line with Q takes time
O�jQj	� if we use sorting to bring the results into order and consider that degeneracies
appear with possibility �� we get O�jQj log jQj	 as the running time for one such test�
Thus this part is irrelevant for the total running time of the collision detection scheme�

Enveloping Techniques If we evaluate the formula which expresses overlap of two
polyhedra naively� a quadratic number of atomic inequalities must be considered� This
of course only re ects the worst�case complexity of the problem� for practical applica�
tions and especially for simple scenes we observe that a much smaller number su�ces�
The moving object often stays far away from most obstacles� so that a detailed analy�
sis of collision is super uous� we can rather use enveloping techniques to quickly state
collision�freeness�
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��� Translational Case

The moving body carries out a translation from its current position into direction
r � IR�� possibly bounded by an amount of 
Max � IR� We write such a general
translation as a mapping

T 	
r 
 IR� � IR�� x �� T 	

r �x	 
� x	 
� x! 
r

and a motion with constant velocity is given by the continuous function $ 
 IR �
IR� t �� $�t	 
� t
Max� Thus the polyhedron at time t is T��t


r �P 	 � P��t
� In the case
of a bounded motion ��intersectSegment�	� t � � denotes the beginning and t � � the
end of the motion� else we have one initial position t � � and simultaneously consider
two in�nite motions �
Max 
� �� t � IR	�

The Predicate To simplify the evaluation of S�lp�q� f	� we assume that the edge is
moving while the face remains �xed� For a given direction r we now have to determine
all relevant times of collision� i�e�

L 
� f
 � IR j S�T 	
r �lp�q	� fv������vk��	g

� f
 � IR j T 	
r �lp�q	 � fv������vk�� 
� �g

This set L may be restricted to ��� 
Max� if appropriate� Note that those points in time
are ignored where a degenerate overlap occurs� yet this does not change the �nal result
if all pairs of edges and faces are considered�

With the above notation� T 	
r �lp�q	 � lp��q�� The predicate S�lp�q� f	 consists of

only two kinds of inequalities� here R denotes any comparison symbol ������ � and
R� represents the symbol resulting from an exchange of � for ��

�� nTx	 � c R �

Formulas of this kind inform about the relative direction of two vectors �nT�q�
p	 � �	 or about which side of a plane a point lies on �nTp � n� � �	� During
the motion� f and thus n remain �xed� p and q change�

nT�x! 
r	� c R � �	


nTr��z�
a

!nTx� c� �z �
b

R � �	
��

��


 R �b�a if a � �
� R �b if a � �

 R� �b�a if a � �

In each case� at most one interval of feasible 
�values is determined� this can also
be IR as a whole or the empty set�

�� det�x�w�p	 � v� R �
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red polygon

blue polygon

v

Figure ���
 Red�Blue�Intersection

Putting all this together� we get the following predicate which is used to test for
the intersection of an edge and a face� note that its size is #�k	�

S�lp�q� fv������vk��	 
�
�
nT�q� p	 � � � nTq� n� � � � nTp� n� � �

� �
��i
k

det�q� p�vi�� � vi�p� vi� � �
�

�
�
nT�p� q	 � � � nTp� n� � � � nTq� n� � �

� �
��i
k

det�p� q�vi�� � vi�q� vi� � �
�

If two polyhedra P and Q are given� we denote the sets of their edges by EP and EQ

and the sets of their faces by FP and FQ� The complete predicate for the intersection
of surfaces results in an expression of complexity #�jP jjQj	


S�P�Q	 
�
� �
fp�qg�EP

�
f�FQ

S�lp�q� f	
�
�
� �
fp�qg�EQ

�
f�FP

S�lp�q� f	
�

Containment We still have to capture those situations where one polyhedron is
completely contained within the other� The test we will derive yields true for a superset
of the con�gurations where P � Q� but only for such with P � Q 
� �� We check
whether some point of P � say an arbitrary vertex v� lies within Q or not� this is easily
decided by looking at a ray from v into a random direction� If the ray intersects
any edges or vertices of Q� we choose another direction� else we count the number of
intersections with faces� An odd number means that v � Q 	 fvg � P � Q 
� ��
and vice versa P � Q 	 v � Q is correctly ascertained� thus the test meets the
requirements mentioned above� Of course this test must also be applied symmetrically
to test whether Q � P �
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This can indeed be written without explicitly mentioning s �cf� �g� ���	� and
by substituting the determinant for the equivalent one with four�dimensional
vectors� symmetry becomes more obvious


� � � i � k 
 det

�
� � � �
p q vi vi��

�
� �

�� �inward�

We have nT�q� p	 � � and exchanging p for q yields

lp�q � f 
� � �	
nTp � n� � nTq � n� � � � � i � k 
 det�p� q�vi�� � vi�q� vi� � �

�� �parallel�

We have nT�q�p	 � �� a degenerate case� For p 
� Pn�n� � there is no intersection�
so assume nTp � n�� In this situation an edge of one polyhedron lies in the same
plane as a face of the other one� we could derive a predicate to check for overlap�
but we prefer a simpler method�

Lemma ��
 


This degenerate case can be safely ignored�

Proof


Assume that lp�q�f 
� � and lp�q � Pn�n� �
 P� i�e� there is a degenerate overlap�
We will show that another pair of edge and face exists which also overlaps� but is
not contained in a plane� Thus if we consider all edge�face�pairs in our collision
test we may neglect these degenerate cases and still get the correct result�

For the purpose of this proof assume that the polyhedra are coloured red and
blue resp� and inspect the plane which contains the red edge and the blue face�
We expand the red area to the whole �connected component of the	 intersection
of the red polyhedron with the plane P and proceed analogously for the blue one�
Because our de�nition of �polyhedron� forbids two�dimensional objects� all outer
vertices and edges in P have adjacent edges and faces which are not contained in
that plane�

Ignoring all interior vertices and edges of the coloured areas yields a red and
a blue polygon which overlap� we take a closer look at the boundary of that
overlapping area� in particular at its vertices �cf� �gure ���� dashed lines denote
interior structure	� Such a vertex v is either a vertex of at least one coloured
polyhedron� say the red one� in which case a red edge leaves P at v and intersects
the blue face containing v� Or v is the intersection of two coloured edges ered and
eblue �which are not collinear	� and thus a blue face adjacent to eblue leaves the
plane and intersects ered� In both cases� the two objects contain three linearly
independent directions and thus they cannot overlap degenerately�
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v -1

v0 = v

v1 = v +1v2

v3

v4

n

Figure ���
 Schematic Polygon

where the �rst form shows f as the convex combination of its vertices� and the second
as the set of all points lying �left� of all oriented edges�

We now distinguish three cases according to the relative position of the oriented
line through lp�q with respect to Pn�n� �

�� �outward�

We have nT�q � p	 � �� The line intersects the plane in exactly one point s�
which lies on the segment i� the latter starts in the interior and ends in the
exterior closed half�space de�ned by the oriented plane� The intersection point s
belongs to f if it is �left� of all edges� Thus the result for this case is


lp�q � f 
� � �	

nTq � n� � nTp � n� � � � � i � k 
 det�q� p�vi�� � vi�p� vi� � �

p

q

v
v +1

s

v

n

Figure ���
 Intersection of Line Segment and Face
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motion� where overlap occurs� can be computed quickly� this concept is due to �Ca�
��
Enveloping techniques are introduced to reduce average running time substantially�
Translational and rotational motions are handled separately� as this is the case within
the collision detection algorithm�

��� Static Detection of Overlap

Polyhedra We de�ne �polyhedron� in such a manner that it means a compact� con�
nected subset of IR�� bounded by  at surfaces which are themselves polygons� and
equal to the closure of its open interior� A boundary representation is used which lists
all vertices� edges� and faces of a polyhedron as well as their adjacency relations� This
gives the description complexity jP j of a polyhedron P as the number of all its ver�
tices� edges� and faces
 v ! e ! f � Note that v� e� f � #�jP j	� so it makes no sense to
further distinguish between these numbers for the purpose of asymptotic running time�
Convexity is required for all faces and can be achieved in pseudo�linear time with no
relevant increase in the polyhedron"s complexity�

Furthermore we expect our data structure �polyhedron� to support enumeration of
all faces in an arbitrary order� For each face f � the normal equation of its supporting
plane is needed� with its normal vector n pointing to the outside of the polyhedron and
thus giving local interior�exterior information� In addition� all vertices of a face must
be listed in counter�clockwise order� where f is viewed from the outside� and bear their
position in space�

The Predicate Two polyhedra overlap i� their surfaces intersect or one is entirely
contained in the other� We derive a boolean predicate for the �rst part� the second will
be handled di�erently in our algorithm� Intersection of surfaces means that an edge of
one body pierces a face of the other including degenerate cases�

Thus let p�q � IR� be the head and tail of an edge� which is written as a line
segment

lp�q 
� fp! 
�q� p	 j � � 
 � �g � IR�

Besides� a convex face of the other body be given by a plane

Pn�n� 
� fx � IR� j nTx � n�g � IR�� n � IR�� jnj � �� n� � IR

with normal vector n and distance n� from the origin� and by its distinct vertices
v�� � � � �vk�� � Pn�n�� k � �� ordered counter�clockwise as shown in �gure ���� For
simplicity� let vk 
� v��vk�� 
� v��

The face itself results in the set of points

f 
� fv������vk�� 
� f
k��X
i��


ivi j
k��X
i��


i � �� � � � i � k 
 � � 
i � IRg

� fx � Pn�n� j � � � i � k 
 det�n�vi�� � vi�x� vi� � �g � IR�



Chapter �

E�cient Collision Detection

In the �rst chapter� a heuristic path search strategy has been introduced and discussed
which is applicable to a wide range of problems� For each special case� con�guration
space will be di�erent and a suitable parameterization has to be found� but apart from
that� the planning algorithm remains unchanged� Still lacking for practical use is a
subroutine to answer inquiries about the intersection of a line with the con�guration
obstacle�a segment can be handled analogously� It is there that some work must be
done to adapt our strategy to each new kind of motion planning problem�

�intersectLine� needs a description of all objects and obstacles in physical space or
work space� as opposed to con�guration space� We will restrict ourselves to handling
polyhedral objects� because real�world bodies can be approximated by them and colli�
sion detection will be more e�cient� From this implicit description� information about
the con�guration obstacle will be derived�

The actual input parameters specify the motions of these objects� their interpreta�
tion depends on con�guration space� For a jointed robot arm this could mean to move
all of its joints simultaneously� perhaps each one with its own speed� and the resulting
motion could be very complicated� To avoid such di�culties we separate the degrees of
freedom and impose the restriction� that at a given time either one object may rotate
about a �xed axis with constant angular velocity or all may translate simultaneously�
each with its own �xed speed and direction� This greatly reduces running time in
practical applications� because enveloping techniques can be used� it was shown how
the path search stage of the algorithm deals with such a separation�

As a drawback this restriction might turn the motion planning problem unsolvable�
e�g� because two objects would have to rotate concurrently and such a motion is not
considered� However we assume the problem is not too hard to solve and allow the
strategy to fail under such circumstances�

We now proceed as follows� Consider only one moving object and one �xed obstacle�
to achieve this we may look at each such pair� for concurrently moving objects� we
exploit the relative nature of translational motions� A predicate will be derived to
test the static overlap of these polyhedra at their current position� it is described by
a boolean expression� By evaluating that expression skillfully� all intervals of a given
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�

connect�a� z 
 C� j 
 � � � � n� �� path 
 List�C	 	 
 List�C	

i� k 
 IN
p� q 
 C
L 
 IntervalList

i� j index of coordinate to change
p� a current position �steps from a to z	

repeat

pi � zi change coordinate i
L� intersectSegment�a� p	
if empty�L	 then piece of direct path is O�K�

path� path � �p�
a� p
i� i! � �mod n	

until � empty�L	 � a � z

if � empty�L	 then collision in coordinate i
�q� k	� viaPoints�a� p� L	 q dodges in coordinate k
path� connect�a� q� k� path	 change coordinate k before i
path� connect�q� z� i� path	 change coordinate i before k

return path

Figure ���
 Planning Strategy for Separate Degrees of Freedom

enlarges the learning scheme"s domain to three�dimensional work spaces� the spherical
geometry approach helps in guiding the edge adding strategies�

There are some interesting similarities between our work and theirs� too� and these
concern the separation of degrees of freedom which seems quite common though often
hidden� For example� their local method for car�like robots consists of simply checking
two possible �straight connections� of con�gurations� These consist of sequences of
pure translational and rotational motions� Regarding articulated robots� they suggest
to de�ne the neighbor con�gurations in such a way as to use only one degree of freedom
at a time� These ideas are in a certain way generalized by our separating degrees of
freedom� All in all� our heuristic path search strategy seems to be a good completion
of their learning approach�
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a z

q

Figure ���
 Order Is Important When Changing Coordinates

��� Related Work

Overmars and �Svestka present a probabilistic learning approach to motion planning
�OS��� which also aims at avoiding the cost of computing and storing exact information
about con�guration space while quickly solving practical problems� Their paradigm
allows a balance between learning time and success for queries and can easily be applied
to robots with non�holonomic constraints� It consists of a global method which con�
structs a graph representing knowledge about the scene and a local method for solving
simple motion planning problems�

This local method is required to be a deterministic� symmetrical �with respect
to start and goal	 motion planner which is allowed to fail �now and then�� but is
expected to run quickly� Obviously� these requirements are satis�ed by the heuristic
motion planning scheme described in this work� and hence we propose to use it as the
local method in that learning approach� By varying the limit on recursion depth� our
strategy can be tuned to run as fast as possible� rarely �nding a path� or to be quite
e�ective in path planning for the cost of increased running time�

Overmars and �Svestka suggest to use very primitive path planners for best perfor�
mance of the global method� As a drawback� this clearly requires a larger graph to
represent the same amount of knowledge� because the local method is not very smart�
Thus nodes in the graph can be saved by a clever planner because the knowledge is
not stored explicitly in the global method"s data structure but implicitly in the local
method"s ability to re�compute information if asked to� We think it is desirable to tune
the local method in order to balance time versus space according to the needs of a
particular application�

Another point of interest is that the local information that our strategy gains
through �intersectLine��calls can be incorporated into the global knowledge stored
in the graph� As this information comes at no extra cost and has the suitable struc�
ture� i�e� via points and direct connections corresponding to nodes and edges� it can
help a lot� Furthermore� using our e�cient collision detection scheme for polyhedra
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Figure ���
 Borderline With Reference Point Outside of �a� z	

��� Separate Degrees of Freedom

Consider the case where a moving object has distinct kinds of degrees of freedom�
e�g� translational and rotational ones� which cannot be used concurrently during a
motion� One could also think of a robot arm whose links may only move one at a
time� such restrictions can simplify the computation of the intersection of a line with
the con�guration obstacle remarkably� This means that con�guration space is divided
accordingly� i�e� d degrees of freedom fall into n groups and we have

C � C� � � � � � Cn�� � IRd

A feasible path for a moving point must then consist of pieces which each change only
coordinates within one group� Another interpretation is that of n coordinates being not
necessarily simple numbers but possibly vectors themselves� this makes no di�erence
to the planning strategy and only a�ects collision detection routines which interpret
the coordinates� Thus we shall write con�gurations as n�tuples� no matter what each
component represents�

We now face another design decision
 in what order should a �direct path� between
a and z change these coordinates� The algorithm given here uses a simple cyclic order
for reasons of e�ciency� this also helps preventing the moving object from running
into the obstacle again� because the wrong coordinate is changed �rst when trying to
reach a via point �cf� ���	� The notion of dodging in a direction perpendicular to the
original path is easily conserved� the motion must use another coordinate group or be
perpendicular within that group in the previously used sense�

Given a separation of con�guration space as shown above� and start and goal points
a � �a�� � � � � an��	 � C� z � �z�� � � � � zn��	 � C� the planning strategy is called with

path� connect�a� z� �� �a�	

and tries to compute a solution� We only show the non�deterministic version for reason
of clarity� determinism is achieved as demonstrated before and adds a little book�
keeping�
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it implements the discussed strategy to construct a borderline and so on�

��� Generalization to IR
n

The concept of the path search strategy described above can be easily generalized to
dimensions higher than two� We again assume that a point is to be moved between
given start and goal positions a and z avoiding an obstacle O� which need not be
represented explicitly� Using a subroutine to answer queries about the intersection
of a segment and line resp� with the obstacle� we proceed as before with one slight
di�erence�

The notion of a borderline must be extended to a hyper�plane separating a from z�
and it is no longer possible to capture all relevant information about it with a single
query to �intersectLine�� Thus we choose a certain number of �borderlines� within that
hyper�plane hoping to �nd useful via points� Note that we can no longer guarantee
that a suitable crossing point exists on any �xed borderline� Possible strategies include
the following


� Take the direction of motion a�z as one vector and supplement it with d�� � � � �dn
to obtain an orthogonal vector basis of IRn� These directions then specify lines
through a point p chosen on the straight path �a� z	 as before� e�g� as centre of
the �rst segment contained in O� In this way representative directions are used
to cover the hyper�plane equally� Should no via point be found on these lines�
then d�� � � � �dn may be rotated about a� z to �nd a di�erent set of borderlines�

� Randomly choose directions di 
 �z � a	� either a �xed number or repeatedly
until enough via points are found� This is quite simple to implement� but has
a subtle disadvantage in practical applications� Real world scenes are full of
orthogonal features like the walls of a room� and often the desired motion of an
object is somehow guided by these features� Thus it is helpful to prefer directions
orthogonal to each other and possibly to the axes of the world coordinate frame�

It is not necessary to choose the reference point of a borderline as a point p � �a� z	�
furthermore it is quite interesting how a point q �� �a� z	 may be looked upon� Imagine
the moving point to make a step sidewards from the original path without regard to the
obstacle� From that new position� another motion is considered and the intersection of
the corresponding line in con�guration space with the obstacle O is inquired for in order
to �nd a suitable via point� This is especially useful� if the subroutine �intersectLine�
cannot handle arbitrary superpositions of motions directly� For example� if translations
are only allowed along coordinate axes� then we might �nd a via point with both
coordinates di�erent from p by moving q away from p in one direction and inquiring
about a borderline running in the other direction� This is illustrated in �gure ����
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takes a limit rmax on the recursion depth� It returns a boolean value indicating success
or failure� which is of special importance to recursive calls�

given


O � IR� obstacle
a � IR� nO start
z � IR� nO goal
rmax � IN maximum recursion depth

wanted


path 
 List�IR�	 computed path
invocation


path� �a� one�element list
connect�a� z� rmax� path	 returns true i� successful

connect�a� z 
 IR�� rec 
 IN� var path 
 List�IR�		 
 Boolean
q 
 IR�

L 
 IntervalList
path	� via 
 List�IR�	
ok 
 Boolean

L� intersectSegment�a� z	 collision intervals
if empty�L	 then

path� path � �z� straight path is free
ok � true

else if rec � � then
ok � false recursion too deep

else

via� viaPoints�a� z� L	 get list of via points
path	 � path remember previous path
ok � false

while �ok � �empty�via	 do
q� head�via	 �rst candidate � � �
via� tail�via	 � � � is removed from list
path� path	 previously computed path
ok � connect�a�q� rec� �� path	 recursive solution � � �

� connect�q� z� rec� �� path	 � � � of subproblems

return ok

Figure ���
 Systematic Trial of Via Points

A subroutine �viaPoints� is used to �nd the list of via points which are to be
tested� Using information about start and goal as well as collision intervals on �a� z	�
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� Search for k starting from zero and increasing by one� This is simple to im�
plement and never overestimates k� thus avoiding excessively long computations
and giving quite elegant paths� It works fast enough because running time grows
approximately exponential in k and is therefore dominated by the largest value
used�

� Search for k in the same way� but keep a tree of already known information about
subproblems� This avoids re�computation of early stages of recursion� but needs
a considerable amount of memory� depending on the number of alternative via
points considered and the �nal recursion depth needed� An advantage lies in the
fact that di�erent subdivisions of a path planning problem can be tracked simul�
taneously� We can then rate the partial solutions according to some criterion�
e�g� path length or recursion depth� and thus try to improve the quality of the
constructed path�

Via Points Statistical results of pseudo�random experiments with a point moving
between discs in the plane as well as theoretical considerations lead to the following
concept� Choose the borderline b as the perpendicular bisector of the collision section
whose centre is closest to that of �a� z	� This is locally symmetrical to a known part of
the obstacle and divides the path planning problem quite fairly into two subproblems�

Via points are chosen as centres of free sections of the borderline� this is again
locally symmetrical and maximizes safety distance as well� experiments support this
decision� Here we assume that the whole scene is bounded in some way� either naturally
by surrounding obstacles or arti�cially by a restriction of con�guration space� Via
points are then rated according to a synthesis of two criteria
 local safety distance and
closeness to the intended path�

Therefore let d denote the distance of the via point v to the straight connection
�a� z	 and l the length of the free section containing v� We use the valuation function

V� 
 IR
�
� � IR� � IR�

� � �d� l	 ��
d

l�

and can vary � � � for diverse results� e�g� with � � � the rating depends only on
the deviation of v from the original path� To emphasize safety distance� � � � can
be used� In order of increasing V� the various via points on a borderline are arranged�
that list is restricted to the best k points� Thus promising points are evaluated �rst
and the number of alternatives at each recursive stage of the algorithm may be limited
to a small number�

For a certain class of problems one could try to �nd an optimal value of �� In the
case of a point moving between discs� � � ��� was found to be the best choice for a
large number of instances�

The Algorithm Putting all this together we get the following deterministic algo�
rithm� In addition to the parameters of the non�deterministic strategy� this programme
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inquiry� a list of intervals is expected with

intersectSegment�a� z	 � ft � ��� �� j a ! t �z� a	 � Og

and analogously

intersectLine�p� r	 � ft � IR j p! t r � Og
These intervals are called collision intervals in contrast to the free intervals which make
up the rest of ��� �� or IR resp� The corresponding sections on the segment and line
resp� are named accordingly�

The programme �rst checks the straight connection of a and z for collisions� if
none are found� the path is extended by the goal point and returned� Otherwise b is
constructed by a point and a direction which are used for an inquiry� The borderline
is then crossed at an arbitrary point outside of O in order to divide the problem�

��� Deterministic Description

The next task is to make the algorithm deterministic so that it may be used in prac�
tice� This implies to search through the possible computations of the nondeterministic
machine for an accepting one� but we cannot consider continuously many potential via
points� So we shall restrict ourselves to a small number of promising crossing points
on each borderline� which are then tried systematically� If we fail to construct a path
we take back some decisions and try again using another via point� this is known as
backtracking�

Recursion Depth A remaining problem is to diagnose failure� i�e� to decide that
a certain computation should no longer be tracked because it will not succeed� This
is of course impossible and can only be approximated by a limit k on the depth of
recursion involved in the path search scheme� If recursion depth exceeds that limit� we
consider our last choice unsuitable and undo it� Thus we should choose k small enough
to quickly skip futile computations� but big enough to allow scope for a solution to
exist�

One situation where endless recursion would occur is if a via point has been chosen
within a di�erent connected component of free con�guration space� i�e� when there is
no way to reach it� This however cannot be determined using only local information�
so we must limit recursion� On the other hand we need a certain depth to allow for
the twists and turns a path has to take to reach the goal� Therefore we need a way to
�nd a useful value for k�

Three approaches have been implemented


� Allow the user to specify k� This is most useful for interactive experiments and
in cases where a suitable limit is already known�
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bisectors are a good choice� but it is even better to erect them on an interval close to
the centre of a and z� This is neglected here for simplicity�

The procedure shown in �gure ��� for a nondeterministic machine constructs a
piecewise linear path for a point moving from a to z avoiding the obstacle O � IR��
it succeeds if such a solution exists� Here the path is represented as a list of points�
which initially contains only the starting point a�

given


O � IR� obstacle
a � IR� nO start
z � IR� nO goal

wanted


path 
 List�IR�	 computed path
invocation


path� connect�a� z� �a�	 �a� denotes one�element list

connect�a� z 
 IR�� path 
 List�IR�		 
 List�IR�	
p�q� r 
 IR�

L 
 IntervalList
t 
 IR

L� intersectSegment�a� z	 collision intervals
if empty�L	 then

path� path � �z� straight connection is free
else

t� mid�head�L		 centre of �st interval
p� �� � t	a ! t z reference point
r� �z� a	
 perpendicular to straight path
L� intersectLine�p� r	 collision intervals
randomly choose t �� L arbitrary free point
q� p! t r crossing point
path� connect�a�q� path	 recursive solution � � �
path� connect�q� z� path	 � � � of subproblems

return path

Figure ���
 Nondeterministic Path Search Strategy

Two functions� �intersectSegment� and �intersectLine� are used to compute the
intersection of a segment and a line resp� with the obstacle O� As a result of such an
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p

q

a z

Figure ���
 A simple motion planning problem

How can such a path be constructed then� Consider the simple example in �gure
���� The attempt to use �a� z	 as a path fails because the obstacle O blocks the
way� The intersection with O is marked on the line segment� a subroutine provides
this information as an answer to the strategy"s inquiry� For the moment we assume
the existence of such a subroutine and will later show how to implement it e�ciently�
Information about the obstacle is accessible to the planning strategy only through such
inquiries which provide considerable abstraction from the representation of O�

The �gure also shows a dashed line b which intersects the segment �a� z	 in the
point p� This line gives rise to the central idea of this path search strategy


Every path from a to z� especially every collision�free one� must cross this

borderline separating a from z� In order to avoid the obstacle O such a

crossing can only take place on the free sections of b�

This means that we guess a crossing point q on the line b outside of O and try to
recursively connect a to q and q to z� As a result� two paths �a� � � � �q	 and �q� � � � � z	
should be found and can be combined to the solution �a� � � � �q� � � � � z	� Such an ap�
proach is widely known as divide�and�conquer�

It is clear that such a method generally does not �nd an optimal path with regard
to any optimization criterion� e�g� path length or safety distance� We are left with
two design considerations
 how to choose the borderline b and the crossing point q�
also known as via point� From a theoretical point of view and using a nondeterministic
version of the above procedure� a random choice will do�as long as a piecewise linear
solution exists� it might be found� We can even construct b deterministically and
choose only q randomly� thus for de�niteness let b be the perpendicular bisector of the
�rst interval of �a� z	 � O� Experiments with practical implementations suggest that
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di�culty consists in �nding the shape of the new obstacle and of the free space for the
point� More generally� the positions of all moving parts are described by certain values
corresponding to their degrees of freedom� e�g� distances or angles� One point in a pos�
sibly high�dimensional space whose coordinates re ect these values can then be used
to represent a current con�guration of the scene� This is known as the con�guration

space approach and was �rst presented by �Lo���� The subset of all points represent�
ing forbidden con�gurations� i�e� those where collision occurs� is called con�guration

obstacle� its complement is named free�space� Representation of that information for
complex scenes also requires large storage capacity�

We shall not build up such information explicitly� but rather try to �nd a way for
the moving object using only minimal information about the environment� Precisely
spoken only the intersection of a line with the con�guration obstacle is computed� This
can be done e�ciently even in high dimensions based only on the description of the
original object and obstacle� To explain the application thereof� we shall �rst describe
the path search strategy in the plane� both nondeterministic and deterministic versions�
The former is mainly used to clarify some ideas� We then extend it to spaces of higher
dimension and show how to handle degrees of freedom separately�this will be very
important for collision detection�

��� Nondeterministic Description

Consider the following simpli�ed problem in two dimensions
 Let O � IR� be a subset
of the plane� called obstacle� together with a start and goal a� z � IR�� Find a way
for a point moving from a to z avoiding the obstacle O� this can be described by a
continuous function w 
 ��� ��� IR� with w��	 � a� w��	 � z� and

� � � t � � 
 w�t	 �� O

For the reasons given above we do not attempt to decide whether such a path exists but
merely try to �nd one� Thus the strategy is allowed to fail or run in�nitely although
there is a collision�free path from a to z� We solely require constructed paths to be
legal solutions to the problems� i�e� especially to avoid the obstacle� It is in this sense
that our heuristic algorithm remains incomplete� By means of this simpli�cation and
without the enormous burden of complete algorithms it should often be possible to
easily and quickly �nd solutions�

Furthermore it is very useful to only compute intersections of a line with the obstacle
O� this will become clear in the next chapter and is related to the fact that O will in
general be represented only implicitly� Therefore paths considered by our strategy are
piecewise linear and may be described by a tuple �v�� � � � �vn	 of points vi � IR�� With
n � IN� the path results in

v 
 ��� ��� IR�� t ��
�
vi nt � i
vi ! �nt� i	�vi�� � vi	 i � nt � i! �



Chapter �

A Simple Path Search Strategy

��� Background

Motion planning is often regarded as part of robotics because it represents the pre�
requisite for autonomous action of a robot within its environment� From this need it
is that the �eld has developed� with an increasing attention by theoretical computer
scientists to abstract problems and especially to their complexity� In this tradition our
work is less oriented to practical problems of concrete autonomous robots but very
generally to a versatile concept�

The generalized movers� problem consists of the description of an object to be moved
together with its initial and �nal position and an obstacle� It is the task of motion
planning then to �nd a collision�free path for the object or to decide that such a path
does not exist� In the case we study here there are no restrictions with respect to the
dynamics of the motion� solely geometric constraints are to be observed� namely the
form of the object and the obstacle�

For the solution of this problem there exists an equally general approach of Schwartz
and Sharir �SS��� based on Collins" method for cylindrical algebraic decomposition
�Co
��� The running time reached is polynomial in the complexity of the scene� but
double exponential in the number of degrees of freedom� In addition to that� the
constants involved are rather large� so this procedure is of no practical importance�
Canny succeeded in developing a single�exponential algorithm �Ca�
�� but this is still
unacceptable for large input sizes�

Many successful trials have been made to give e�cient algorithms for special cases
or to explore the inherent complexity of motion planning problems� Because of the
known lower bounds� e�cient algorithms for general problems cannot be expected�
To nevertheless solve at least intuitively simple problems easily and quickly even in
complex scenes with many degrees of freedom new ways have to be taken�

One cause for the long running time of �conventional� methods lies in the fact that
precise and complete information about the clearance of the moving object within its
environment must be computed� For translational motions of a single rigid body� the
object is typically shrunk to a point whereas the obstacle is grown accordingly� the





Introduction

This work is based on a simple but general path search strategy for spaces of arbi�
trary dimension� It is a heuristic algorithm for the generalized movers" problem that
does not explicitly compute or represent con�guration space� but rather utilizes a col�
lision detection subroutine for inquiries about possible paths� The approach uses
divide�and�conquer and can be applied to many concrete situations� e�g� to motion
planning for a single rigid body moving freely� a jointed robot arm� or even several
objects moving concurrently� The fundamental idea is described in �Sch��� and will
be investigated and re�ned here� we show how to handle translational and rotational
degrees of freedom separately to simplify implementation and speed up execution� We
also discuss similarities with and links to work by Overmars and �Svestka� �OS���� in
section ����

Special care has been taken to make the collision detection scheme as e�cient as
possible� especially with respect to practical applications� since it determines the total
running time of our path search algorithm� It is shown how to compute all intervals
of intersections of a polyhedron P moving by a given rotation or translation amidst
polyhedral obstacles Q in time O�n log n	� where n 
� jP jjQj� The notation jP j means
the size of a description of P "s boundary� We deal directly with arbitrary polyhedra
and use enveloping techniques to reduce the average running time dramatically� these
approaches go back to �Ca�
� and �Sch���� Quaternions make it possible to describe
purely rotational motion planning as a path search problem in a spherical geometry�

Former approaches to motion planning have either led to general procedures which
could not be handled in practice like the famous one described by Schwartz and Sharir
in �SS���� Or they con�ned themselves to solving arbitrary instances of simple motion
planning problems e�ciently� e�g� for the case of a disc moving between polygons in the
plane� In contrast to that we shall try here to solve simple instances of arbitrary motion
planning problems e�ciently� i�e� to �nd a practical algorithm for use with practical
problems� This was especially motivated by an ongoing research project on computer
aided manufacturing where we investigate the interactive simulation and planning of
assembly processes including robots� Fast on�line collision detection schemes were
developed in that context and in uenced this work� Furthermore� motion planning
was needed in order to simplify the speci�cation of assembly plans� i�e� the engineer
should be allowed to describe what she wants done rather than how to do it�
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Abstract

We present a general heuristic approach to the geometric motion planning problem
with the aim to quickly solve intuitively simple problems� It is based on a divide�and�
conquer path search strategy which makes inquiries about feasible paths� to answer
these� we develop an e�cient collision detection scheme that handles translations and
rotations of polyhedra to compute all times of collision� The whole algorithm can
be easily implemented and universally applied and has been successfully tested in a
program for assembly planning�
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