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Figure A.5: Shortened Motion of a Piano
Including Rotation
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Figure A.4: Motion of a Piano Including Rotation
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the path search strategy is universally applicable, but it certainly shows the limits of
the programme.

Figure A.4 presents the computed solution; the simple search for minimal recursion
depth was used here. The individual steps of the motion are shown from left to right
and top to bottom with every single picture showing a top and a front view of the
room. A wire frame representation is used and the translational part of the path can
be seen, too. This path can be shortened, yielding a surprisingly elegant solution. It
is pictured in A.2.2 as a perspective view from the front, elevated slightly, with some
transparent walls.
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Figure A.3: Putting a Cube Into a Box
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closest to the centre of (a, z).

The results are given in table A.4. It shows that a random point acts quite similar
as the corresponding average point, so this gives no advantage. Centres of intervals
and points close to the middle of (a,z) are to be preferred, and the optimum is the
synthesis of these two criteria.

A.2 Motion Planning For Polyhedra

We developed a system for interactive graphical object assembly and robot simula-
tion—in short TG . Its aim is to simulate assembly processes with all participating
objects and tools, while a user is interacting with the system to specify, analyze, and
correct motions. Objects are modelled by polyhedra which can be rotated and trans-
lated freely; emphasis is put on efficient on-line collision detection in this context.

To simplify work with the system, a module for automatic motion planning was
added. Thus the user only needs to specify the final position of an object while a
collision-free path is computed by the programme. Thus we have implemented the
heuristic path search strategy described here and integrated it into the IG@R -system;
in this way motions for single polyhedra using rotations and translations can be con-
structed and incorporated into assembly plans. We will now show some examples of
motion planning problems together with their solutions.

A.2.1 Putting a Cube Into a Box

The scene consists of a cube fitting into a square-like box with little clearance; it
is considered a typical application for our motion planning scheme. A translational
motion is looked for which takes the cube from a place outside the box to its final
position inside. Figure A.3 shows a sequence of configurations during the motion, with
the cube starting behind the box on the upper right side. The problem was solved
within seconds and yielded a path which could be shortened; it is represented by a
black line in space. The cube is shown at the vertices of that path, i.e. at those times
where the direction of motion changes, and reaches its goal within four steps.

A.2.2 The ‘Piano Movers’ Problem

We consider a room containing a piano which should be moved from one wall to another;
a 90° rotation is necessary as well as avoiding collision with a chair. The free-space in
this scene is rather small for this kind of heuristic motion planning; the task is very
demanding and needs a few hours to solve. Note that the algorithm does not “know”
that the piano should stay inside the room, there is an open door and plenty of space on
the outside, but those positions are hard to reach. All via points were considered—so
the solution was not missed—, but then every translational borderline yields two via
points outside the room. We did not want to change this situation however, because
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< 2 via points all via points
B || “intersect”-calls || “intersect”-calls
max. mean || max. mean
0 3069 94.74 || 7306 149.2
2/5 || 1933 51.04 ? ?

1/2 | 1793 47.26 || 4178 90.33
4/7 || 1802 46.41 || 3961 86.49
2/3 || 1837 45.97 || 3633 83.38

1 3159 72.19 || 2056 90.52

Table A.3: Variation Of 5 With Fixed Recursion Depth

avoided; we can say that V5 is a useless valuation function for this class of problems.

Choice of Borderline We mentioned the topic of choosing a borderline which is then
searched for suitable via points. The position of that borderline has a great impact on
our path search strategy because it determines the position of the via points relatively
to the obstacles and to the start and goal. It also determines the sub-division of the
original problem into two parts, which should be both easier to solve and approximately
of equal difficulty.

Using 5 = 2/3, at most two via points and the best recursion strategy—with its
tree structure—we varied the base point of the borderline on the straight path (a,z)
but kept it perpendicular. The base point was placed in the midst of a collision interval
or randomly, it was also taken as the start of the first collision interval. The intervals
considered were the first one, the one in the centre of (a,z) and of the interval list resp.,
and a random one. The most elaborate choice was the centre of a collision interval

recursion depth || “intersect”-calls
location of base point max. mean || max. mean
start of 1st interval * 10 5.972 || 9086 547.6
randomly in 1st interval 8 4.612 806 106.8
centre of 1st interval 8 4.463 || 1084 93.9
centre of random interval 7 4.026 440 64.9
centre of middle interval (in list) 7 3.649 591 53.2
centre next to centre of (a,z) 7 3.616 581 51.3
centre of (a, z) 9 4.380 || 1359 89.6
randomly in (a, z) 12 5.972 || 5375 211.0

“Due to the unfortunate behaviour of this strategy for many problems, recursion depth had to be
limited to 10; this restriction prevented the solution of 173 problems. These contribute to the number
of calls, but not to recursion depth statistics.

Table A.4: Different Base Points for Borderline
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at most two via points all via points

3 || recursion depth || “intersect”-calls || recursion depth || “intersect”-calls
max. mean || max. mean || max. mean || max. mean

0 9 4.606 3362 194.4 6 3.812 || 3688 321.2
1/2 7 4.471 1039 167.0 6 3.812 || 4246 304.5
2/3 8 4.463 1937 167.6 6 3.812 || 4367 302.6
1 9 4.573 7655 194.8 6 3.812 || 3808 308.4
2 20 5.528 || 2-107 | 2-10% 6 3.812 || 4545 339.8

Table A.1: Variation Of 5 With Minimal Recursion Depth

at most two via points

all via points

3 || recursion depth || “intersect”-calls || recursion depth || “intersect”-calls

max. mean || max. mean || max. mean || max. mean

1/2 7 4.471 557 94.0 6 3.812 || 3609 236.8
2/3 8 4.463 || 1084 93.9 6 3.812 || 3649 234.5
1 9 4.573 || 2939 106.2 6 3.812 || 3033 234.6

Table A.2: Variation of 5 With Minimal Recursion Depth Re-Using Information

(arithmetic mean) values, experiments were made with or without a restriction to two
via points per borderline.

Valuation of Via Points In section 1.3, p. 8, we introduced a valuation function
Vs to select via points; this function depends on a parameter §. Table A.1 shows
results for five different values of 3, the minimal recursion depth was determined by
repeatedly calling the path search strategy with increasing recursion limit. It turned
out that # = 2 was extremely bad and sometimes took millions of “intersect”-calls and
a large recursion depth of twenty to solve certain scenes; the whole experiment thus
lasted four days and 11.5 hours. Other values could be analyzed within a few hours,
and 3 ~ 2/3 yields an optimal balance between distance and length of free interval.

Table A.2 shows results for three of these f-values computed with the help of
a tree-like data structure to store information about previous solved sub-problems.
This avoids re-computing the early stages of the path construction for each increased
recursion limit, and thus speeds up motion planning considerably. Note that it is
worth-while keeping recursion not too deeply nested because of the exponential growth
in the number of non-deterministic computations. Searching for an accepting one in a
depth-first manner avoids memory problems, but a breadth-first approach yields better
paths and takes less time. But even with depth-first it usually pays to repeatedly try in
vain instead of over-estimating the necessary depth considerably; this was illustrated
in figure A.2.

Table A.3 shows results for a fixed limit on recursion depth, which was nine for the
left and six for the right column. More values of # have been tried, but § = 2 was
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Left: The path planned with recursion
depth 15.

/ / Top: Path planned with minimal recur-

\/ sion depth. Left: Result of shortening.

Figure A.2: Impact of Recursion Depth

can then tune certain parameters and analyze their influence on how efficient certain
classes of problems are solved. For the following experiments the same set of 10000
problems was generated, each consisting of fifty discs of equal size spread in the unit
square, which was to be traversed from upper left to lower right. All instances are
guaranteed to be solvable, and the path search strategy of course does not simply
choose a path along the border.

We use two measures for the efficiency of a solution: the number of “intersect”-
calls made by the path planner, which would dominate running time for realistic three-
dimensional scenes, and the minimal recursion depth allowing a solution, which indi-
cates the complexity of the constructed path. We show both the maximal and average
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was used to store information about subproblems in order to speed up the search for
a minimal necessary recursion depth. This turned out to be three and only 26 queries
to the collision detection were needed for that search.

S

i1 ‘\
L @

| [

An Axially Parallel Path A General Path

Figure A.1: Comparison of Two Paths

A.1.2 TImpact of Recursion Depth

The next example shows a scene which consists of discs of various sizes leaving only
small passages between them. A boundary further restricts the free space of the point.
In this situation a motion has been planned with a given limit of at most 15 levels of
recursion; it is shown in figure A.2 in the upper left corner. The path is very complicated
and not only intersects itself several times but also surrounds some obstacles. 13414
calls were needed taking considerable time; if more than two via points per borderline
are considered then even 26895 calls are generated.

In contrast to that a path with the optimal, i.e. minimal, recursion depth of eight
is remarkably more elegant and faster to construct, taking only 684 “intersect”-calls.
Even this relatively good path shows some self-intersections; these are caused by the
restrictions on the positions of borderlines and via points. Shortening the path remedies
this problem.

A.1.3 Statistical Evaluation

The high speed of the path search strategy for simple problems in the plane enables us
to generate and solve a large number of pseudo-random motion planning problems. We
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A.1 Two-dimensional Implementation

We have implemented the two-dimensional path search strategy for a simple motion
planning problem, i.e. moving a point between discs within a square part of the plane.
In this case, work space and configuration space are the same and one can directly
study the heuristic motion planning scheme.

The programme offers an interactive graphical user interface as well as methods
for pseudo-random generation of scenes and their statistical evaluation. As a special
option the number of via points considered on a borderline can be restricted to two;
furthermore the two degrees of freedom may be handled separately to construct paths
which are piece-wise parallel to the coordinate axes.

Because our heuristic strategy often yields paths which seem a bit inelegant—
especially if the limit on recursion depth is too high—, we incorporated an algorithm
for shortening them. A graph is build whose vertices are the corners of the path and
whose edges are all direct connections not intersecting an obstacle. The shortest way
from start to goal is then taken as a new path. This method can be easily extended to
higher dimensions where planning a path takes more time than shortening it.

A.1.1 Separate Degrees of Freedom

Figure A.1 shows two paths for a point moving between randomly distributed discs of
equal size in the unit square. Start and goal were determined by hand; the paths were
planned considering at most two via points per borderline and with minimal necessary
recursion depth. We will use the number of “intersect”-calls as a measure of running
time for the path search stage because it does not depend on the implementation of
the collision detection subroutine.

The left part of the figure depicts a motion with separated degrees of freedom.
During three seconds 625 calls were made, six levels of recursion sufficed to solve the
problem. In contrast to that, the same figure on its right side shows a path which
was planned without any restriction on the direction of motion. A tree-like structure
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2. det[x,,w,p, — V] R 0

This stems from the test det]q — p,viz1 — vi,p — vi] > 0 for an edge lpq
moving against a face fy, v, ,. We again reduce this to the same kind
of inequality as the first case. Therefore we take apart the determinant by
det[x,, W, p, — v] = det[x,, W, p,] — det[x,, W, v] into two parts describing the
volumes of parallelepipeds. Thus they are obviously invariant under rotation and
we may apply Ry _, vielding det[x,, w,p,] = det[x,w_,,p] = det[w_,, p,x].
Therefore we only deal with determinants of the form

det[x,,v,w] = (v x w)Tx, = sTx,
where v and w and thus s are fixed while x is rotating. Application of formula
2.1 immediately yields the desired result

sTx, = s' ((1 — €08 Q)P T XT 4 €08 pX + sin @r X X)

= (s"x —sTrr'x)cosp + (sT(r x x))sine +s’rr’x

= «acosp+ Fsing + 7

As shown above, the atomic pieces of our predicate S(P, Q) can be easily computed
and represented by at most two intervals. The evaluation of the whole predicate takes
place as described in the translational case and gives the list of intervals corresponding
to all times at which surfaces collide.

Containment We choose a suitable point v on the surface of P and test for its
containment within () to cover all situations where P is contained wholly within P.
Therefore the circle v describes during rotation is intersected with the faces of (); this
yields all times when v enters or leaves the obstacle during its motion. If faces are not
oriented or the circle does not intersect (), this will not suffice. In this case we send
a ray from the point’s original position to find out whether v € () initially holds or
not. Should any degeneracy appear, we randomly pick another v from a triangle on
P’s surface that is not perpendicular to the axis of rotation r. Again not every interior
point can cause a degenerate situation.

Enveloping Techniques There is only one difference to the translational case.
Bounding boxes are computed not in a Cartesian coordinate system but in a cylin-
drical one whose axes represent angle, height, and distance with respect to the fixed
rotational axis. Here the angle corresponds in its meaning to the z-coordinate in the
translational case, which was aligned to the direction of motion. It can be neglected in
tests to achieve simpler two-dimensional intersection problems or enlarged to contain
the moving object throughout the whole rotation.
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just like in the translational case, with the exception that rotations lead to quadratic
inequalities instead of linear ones. The test for containment and our enveloping strategy
are also influenced slightly.

The Predicate For convenience, we choose the notation x, := Ry ,(x) for a point
rotated about a fixed axis through a certain angle, which may vary. We may again
assume that the edge is moving and the face is not, to achieve this we might have to
swap the role of the object and obstacle while negating the axis of rotation. The two
forms of inequalities and their solutions then are

. nTx, —c¢R O

Here n remains fixed while p and q are moving, but we observe that q, — p, =
(q — p),- Refer to equation 2.1, p. 23, for the explanation of x,,.

n'x,—c R 0
== nT( 1—cos<p)rTxr—|—cos<pX—|—sinc,or><X) —¢c R 0
< (n'x—n'rr'x)cosp + (n'r x x)sing + (n'rr’x—¢) R 0

The original test is thus reduced to avcosp + Fsing + v R 0; the corresponding
equation describes the intersection of the line ax 4+ gy + v = 0 with the unit
circle. Depending on R, the inequality describes the intersection of a half-plane
with the unit circle. Intervals of solution for the inequality naturally arise from
the zeros of the equality, which are found as follows.

. . L . . _ 1—t2
For angle;—ﬂ' < ¢ < 7 the substitution ¢ := tan 7 is used and yields cos ¢ = {75,

1442

sinp = and after multiplication by 1 + #* we get

all =)+ 32t + 71+t =0 & (y—a)t* +28t+(a+~)=0

For a # ~ the well known solution formula leads to the condition a® + 3% > +2
for solubility and then to the zeros

I E kS

li1o =
a—y

which are transformed to angles in [0,27) by ¢ = 2arctan t. The degenerate case
of a linear equation is trivial.

The angle p = 7 solves the equation iff —a 4+ = 0, i.e. the line runs through
(—1,0). A second intersection point exists iff 5 # 0, else the line is vertical and
only touches the circle or for @ = 0 it degenerates to the plane or the empty
set. The second solution can be found by the former approach which leads to
20t + 2a = 0 in this special case.
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In this way quaternions give a neat description of rotations which is also graphical.
They can be used to describe the path search strategy for purely rotational motions in
a spherical rather than Euclidean geometry. In analogy to the approach described for
the plane, we need only two major concepts. The direct connection of two positions is
given by the unique great circle containing them. The notion of perpendicular dodging,
which meant searching for via points on a hyper-plane perpendicular to the direct
connection, also has a simple meaning based on the following lemma.

Lemma 2.2:
Great circles on Sy are perpendicular iff the corresponding azes of rotation are.

Proof:
Let P € S, be the single common point of both great circles and q,r € Ss their respec-
tive axes of rotation. Then Q := q-P and R :=r- P resp. complete the description of
the two circles Up g and CUp g. These are orthogonal iff VS € Cp g : S L R and sym-
metrically, this follows from P L R and Q L R which is obvious because of the follow-
ing: Q'R = (q-P)'(r-P)

= (=q'p, poq+9qxp)'(=r'p, por +r x p)

= q'pr'p+p3a"r + po(q*(r x p) + (g x p)"r) + (q x p)*(r x p)

qTr pTp—qTp rTp

= (ps+p'P)a'r + po (det[q, r, p] + det[r,q, p])

|P[?=1 0
= qTI'
The other way round, if we start with Q and R, we define q := Q - P* and r
analogously and find that q'r = P*(QT - R)P = Q'R. [ ]

Path Search Strategy Quaternions and the spherical geometry are applied to mo-
tion planning by a modification of our path search strategy, which is thought of as
taking place on the unit sphere §,. Initial and final configurations a and z are mapped
to points via the correspondence with quaternions mentioned above. Then the straight
motion from a to z, i.e. a rotation about the axis associated with the great circle
Caz through these two points, is checked for its free and unfree segments. To dodge
collision situations, we look at great circles perpendicular to Cj 4, in four dimensions
there is one degree of freedom for this choice. We apply techniques similar to those
mentioned for IR" to select a number of circles and to find suitable via points on them:;
this involves checking full rotations about axes perpendicular to that of the original
“straight” motion. These via points are then aimed at directly and lead to subdivisions
of the problem etc.

2.3.2 Dynamic Collision Detection

We want to find out all points of time of a given rotation of one object at which collision
with a certain obstacle takes place and describe these as lists of intervals. This is done
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the fact that one can exchange r and ¢ for —r and —, this still describes the same
rotation. If we assume the angle to be positive and take Qg as defined above for the
corresponding quaternion, the mapping becomes univocal.

All Qy,, are unit quaternions, i.e. of Euclidean length one, and form a group under
quaternion product. Each such unit quaternion Q = (go,q) represents a rotation
through the angle ¢ = 2arccos go about the axis r = (sin £)7'q; the latter is not
defined for an angle of zero. Composition of rotations corresponds to multiplication of

quaternions, i.e. p o Rg = Rp.q.

Spherical Geometry The set of unit quaternions can be looked upon as the wunit
sphere 8y in four-dimensional Euclidean space, where S, := {x € IR" | |x| = 1}. We
again read 1 € IR as the unit quaternion (1,0) € S; and r € S5 as (0,r) € Sy for
convenience. Also, we will identify points and their position vectors for simplicity.

If we talk of the orientation of a polyhedron we usually describe it by a rotation
with reference to some fixed initial position; thus the initial orientation corresponds
to the unity 1 = (1,0) of the quaternion algebra which denotes non-rotation. During
a rotational motion the object’s orientation varies continuously and the corresponding
quaternion traces an arc of a great circle on the unit sphere. Such a great circleof S, 1.e.
a circle around the origin with radius 1, is uniquely determined by the plane in which it
is contained; the latter can be given by two linearly independent vectors or two distinct
points on the sphere. In the special case of two orthogonal axes P,Q € S,,, P 1L Q
(with respect to the standard scalar product of IR") we have

Cpq = {pP +vQ | p,v € R; p* +v* =1} = {cos pP +sinpQ | p € R}

During a full rotation an object’s orientation describes half a great circle on Sy;
because of the ambiguity between Q and —Q we could also say it describes both
halves simultaneously. If a fixed axis r € S5 is chosen, then two turns correspond to
the orientations {Qr, = cos £ -1 +sin< -r | ¢ € [0,47)} = Cyr which form a great
circle with axes 1,r € S;. To achieve other axes, let an initial orientation of P € &4 be
given together with an axis of rotation r; again {Qr,-P | ¢ € [0,47)} = Cp,.p forms
a great circle, but now with axes P and r - P. These are also orthogonal because

P'(r-P) = (po,p) (—r'p, por+r xp)=—por'p+pp'r+p'(rxp)=0
—_————

det[p,r,p]=0

Thus complete rotations map to great circles, and vice versa. For two given orthogonal
axes P,Q € S, of a great circle we can find an axis of rotation r € S5 with Q =r - P;
this results from Q L P <= qopo + q'p = 0 and thus

Q P = (q07 q) . (p07 _p)
(qopo + 9P, —qop + pod — q X p)
= (0,r) e S*
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Every rotation Ry is determined by an axis r € IR®, |r| = 1 and an angle ¢ € IR; the
axis of rotation is assumed to pass through the origin of the coordinate system. This
yields

0 —7T3 T2
U="U,, =(1-cosp)rr’ 4 cos el + singp rs 0 —rq
—T9 ™ 0

for the matrix and vice versa
1
» = arccos <§(u171 + Uy + usz — 1))

r = (2sin ) (uzg — Usz, Utz — Uz 1, Usy — Upa)'

so that we may specily a rotation Ry, := Ry, , directly by axis and angle. We can
then apply it to a vector x € IR® by the function

X — (1 — cosp)r'xr + cos ¢x + sin pr x x (2.1)

which describes the rotation in a coordinate system with base vectors r, x, and r x x;
we shall make use of this function later.

Another way to deal with rotations is to use quaternions, and as this is quite elegant
we give a short introduction here and show the applications to our problem.

2.3.1 Motion Planning for Pure Rotations

Quaternions The set IR' with the usual vector operations and a suitably de-
fined multiplication forms a non-commutative division algebra. Quaternions Q =
(g0, q1,92,93)T € IR* will now be written as Q = (qo,q), where g is called scalar
part and q = (¢1,¢z2,3)T vector part of Q. This in a natural way gives inclusions of
IR and IR? into the set IR* of quaternions. Multiplication is defined by the bilinear
function

(po,P) - (90,9) = (Pogo — P'Q, Poq + qp + P x Q)

In analogy to complex numbers, quaternions are conjugated by Q = (qo,q) — Q™ :=

(g0, —«) with the properties |Q|* = Q- Q* and Q™' = Q*/|Q[".

A rotation about axis r through angle ¢ is given by the quaternion

Qv = (COS g, sin gr)

describing the mapping R, ., as

RQ e Rr,tp :IR® — IRBa X = QI',@ ) (va) ’ Qr‘,w

r,

One should note that Q and —Q obviously represent the same rotation, so that the
mapping of quaternions to the matrices introduced above is not injective, and vice
versa we may as well map r and ¢ to Qp , or to Qp ,y2-. This ambiguity results from
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A hierarchic approach is used which features ever more detailed bounding bodies
around the actual polyhedra and their faces. At the highest level, approximations of
smallest enclosing spheres are computed once for every object, e.g. at startup time,
and associated with it; these can easily be handled even during rotations. A simple
quadratic inequality can tell whether the moving sphere intersects the other at some
time during the motion, in which case we proceed to the next level.

Bounding boxes are then computed in a special orthogonal coordinate system with
r as z-axis; the advantage lies in the fact that x- and y-coordinates now remain fixed
under translation. We use axially parallel rectangloids; these can be computed easily
and may be looked upon as the Cartesian product of z-, y-, and z-intervals; they are
stored with the polyhedron for possible re-use. Collision-freeness is ascertained if the
x-y-rectangles do not overlap or if the z-intervals remain disjunct even if the translation
is considered. For the latter purpose, the moving object’s z-interval is enlarged so as
to contain the object during the whole motion. If we describe each interval as a one-
dimensional circle with center pf € IR, ¢« € {1,2}, k¥ € {x,y, 2}, and radius 0 < r¥ € R,
the bounding rectangloids are written as

i =iy pi il ol =l pl el Do =iy pi ]
and do not overlap iff
Py —p3l >4y Vol =pal >l 4y VO pT —pil >+

If these boxes interfere with each other, we eventually have to consider all edge-
face-pairs. In order to speed things up, we also consider bounding rectangloids for
individual faces. Only if the intersection of two faces cannot be ruled out, we take a
close look at their edges and carry out all edge-face-tests.

The investigation whether one polyhedron is contained within the other can also be
improved in such a way. Because of the rectangloids’ alignment one object may only
lie totally within another if the same holds for their bounding boxes. Intersection of a
line and a face may be ruled out by such tests, as the line is parallel to the z-axis this
is especially simple.

Incorporating all these improvements into the collision detection scheme results
in a dramatic speed-up for many real-world problems. This matches nicely with the
heuristic approach of the path search strategy and achieves the goal of quickly solving
simple instances of arbitrary motion planning problems.

2.3 Rotational Case

The moving object now rotates about a fixed axis, either through a given angle or
through one complete turn, this corresponds to bounded and unbounded motions resp.
It is well known that rotations can be described by matrices U € IR**?, U'U =
I, det(U) =1, as a mapping

Ry : R’ — R®, x — Ry(x):= Ux
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As g* — p* = q — p this is the general form of det[q — p, Vit — Vi, p— V] > 0 if
p and q move. v, w, and x denote fixed points and directions resp. This yields
a linear inequality just like above:

det[x,w,p* —v]=(xxw) (p+Ar—v) = A(x x w)'r+(x x w)(p —v)

a b

We have shown that the predicate S consists of such inequalities as atomic pieces,
whose sets of solutions can be represented by at most one interval. The main idea
now is to evaluate S using lists of intervals rather than true and false as intermediate
results, thus yielding all values A with Ipx gx N fyy,.v,, 7 . The boolean operations
A and V are substituted by intersection and union on interval lists, which can be easily
implemented to run in linear time. A balanced tree for S(P, Q) has O(n) leafs because
of the predicate’s size, n := |P||@|; its depth can be restricted to O(logn). The atomic
inequalities can be evaluated in constant time, there are at most n intervals to handle
at each level of the tree—mnote that neither intersection nor union can increase the
number of intervals. All in all time O(nlogn) suffices to determine all sections of the
motion that correspond to collisions.

Containment The test for containment of one polyhedron within the other now has
to be adapted to the translational motion of P while () is assumed to stay fixed. To
simplify the test, we only consider the direction of motion r as a possible direction of
the ray. After choosing a suitable point v € P, we check the line {v +tr | t € IR} for
intersections with faces of (). The normal vector of each face tells whether v enters or
leaves ) during the motion; we can also exploit that v® ¢ (). In case of a degeneracy,
another point v is tried, but we cannot restrict ourselves to the vertices of P here. We
rather choose v within a triangle on the surface of P whose projection onto a plane
orthogonal to r does not degenerate to a line; not every point of such a triangle can
collide with an edge or vertex of ().

For a fixed direction of motion, we compute such a triangle once for every poly-
hedron; this takes time O(|P]). The intersection test of the line with @) takes time
O(]Q)]), if we use sorting to bring the results into order and consider that degeneracies
appear with possibility 0, we get O(|@Q]log |@|) as the running time for one such test.
Thus this part is irrelevant for the total running time of the collision detection scheme.

Enveloping Techniques If we evaluate the formula which expresses overlap of two
polyhedra naively, a quadratic number of atomic inequalities must be considered. This
of course only reflects the worst-case complexity of the problem, for practical applica-
tions and especially for simple scenes we observe that a much smaller number suffices.
The moving object often stays far away from most obstacles, so that a detailed analy-
sis of collision is superfluous; we can rather use enveloping techniques to quickly state
collision-freeness.
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2.2 Translational Case

The moving body carries out a translation from its current position into direction
r € IR®, possibly bounded by an amount of Ayar € IR. We write such a general
translation as a mapping

T} R® = IR?, x = TM(x) :=x" 1= x+ Ar

and a motion with constant velocity is given by the continuous function A : IR —
IR, t+— A(t) := tApsaz. Thus the polyhedron at time ¢ is TrA(t)(P) = PMY In the case
of a bounded motion (“intersectSegment”), ¢t = 0 denotes the beginning and ¢ = 1 the
end of the motion; else we have one initial position ¢ = 0 and simultaneously consider
two infinite motions (M., := 1, £ € R).

The Predicate To simplify the evaluation of S(Ip q, f), we assume that the edge is
moving while the face remains fixed. For a given direction r we now have to determine
all relevant times of collision, i.e.

L = {)‘ S IR | S(TI%(ZPKI)?fV07~~~7Vk_1)}
C NeR|TMpg) N fyorvees # 0}

This set £ may be restricted to [0, Aysq.] if appropriate. Note that those points in time
are ignored where a degenerate overlap occurs; yet this does not change the final result
if all pairs of edges and faces are considered.

With the above notation, T3(lp.q) = lprqr- The predicate S(Ipq, f) consists of
only two kinds of inequalities; here R denotes any comparison symbol <, <, >, > and
R~ represents the symbol resulting from an exchange of < for >.

I.nTx*—¢R O

Formulas of this kind inform about the relative direction of two vectors (n*(q —
p) > 0) or about which side of a plane a point lies on (nTp — ny < 0). During
the motion, f and thus n remain fixed, p and q change.

n'(x4+Ar)—cR0O —
AR —=bla if a>0

)\QT/_I;—I-HTX—CRO P 0 R —b if a=0
a b )\ R_ —b/a lf Cl<0

In each case, at most one interval of feasible A-values is determined, this can also
be IR as a whole or the empty set.

2. det[x,w,p* —v] R0
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red polygon

blue polygon

Figure 2.3: Red-Blue-Intersection

Putting all this together, we get the following predicate which is used to test for
the intersection of an edge and a face; note that its size is O(k).

S(lp.qy fvorvies) = (nT(q —p)>0AnTq—n>0 A nTp—ny<0
AN detlq—p,Vigr — vi,p—vi] > 0)
0<i<k

vV (nT(p—q)<0 An'p—nyg>0 A ntq—ny <0

A /\ det[p —q, Vi1 — Vi, q — Vi] > 0)
0<i<k

If two polyhedra P and () are given, we denote the sets of their edges by Fp and Eq
and the sets of their faces by F'p and Fy. The complete predicate for the intersection
of surfaces results in an expression of complexity O(|P||Q|):

S =V V ShheN)V( V V Slpq))

{p.atekp fely {p.a}€Eq fEFP

Containment We still have to capture those situations where one polyhedron is
completely contained within the other. The test we will derive yields true for a superset
of the configurations where P C (), but only for such with P N @ # . We check
whether some point of P, say an arbitrary vertex v, lies within () or not; this is easily
decided by looking at a ray from v into a random direction. If the ray intersects
any edges or vertices of (), we choose another direction, else we count the number of
intersections with faces. An odd number means that v € @) = {v} C PN Q # 0,
and vice versa P C () = v € () is correctly ascertained; thus the test meets the
requirements mentioned above. Of course this test must also be applied symmetrically
to test whether ) C P.
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This can indeed be written without explicitly mentioning s (cf. fig. 2.2), and
by substituting the determinant for the equivalent one with four-dimensional
vectors, symmetry becomes more obvious:

V0§i<k:det(1 bl )zo
P qQ V; Vi1

. “Inward”

We have nT(q — p) < 0 and exchanging p for q yields
baNf#0 =

nTp>nyg A nTq<ng A VO<i<k: det[p—q,Vig1 — vi,q—Vvi| >0

. “parallel”

We have nT(q—p) = 0, a degenerate case. For p & Py ,,, there is no intersection,
so asstime n'p = ng. In this situation an edge of one polyhedron lies in the same
plane as a face of the other one; we could derive a predicate to check for overlap,
but we prefer a simpler method.

Lemma 2.1:
This degenerate case can be safely ignored.

Proof:

Assume that [p qN f # 0 and lpq C Pay, =: P, i.e. thereis a degenerate overlap.
We will show that another pair of edge and face exists which also overlaps, but is
not contained in a plane. Thus if we consider all edge-face-pairs in our collision
test we may neglect these degenerate cases and still get the correct result.

For the purpose of this proof assume that the polyhedra are coloured red and
blue resp. and inspect the plane which contains the red edge and the blue face.
We expand the red area to the whole (connected component of the) intersection
of the red polyhedron with the plane P and proceed analogously for the blue one.
Because our definition of “polyhedron” forbids two-dimensional objects, all outer
vertices and edges in P have adjacent edges and faces which are not contained in
that plane.

Ignoring all interior vertices and edges of the coloured areas yields a red and
a blue polygon which overlap; we take a closer look at the boundary of that
overlapping area, in particular at its vertices (cf. figure 2.3, dashed lines denote
interior structure). Such a vertex v is either a vertex of at least one coloured
polyhedron, say the red one, in which case a red edge leaves P at v and intersects
the blue face containing v. Or v is the intersection of two coloured edges €,.4 and
epe (Which are not collinear), and thus a blue face adjacent to ey, leaves the
plane and intersects ¢,.4. In both cases, the two objects contain three linearly
independent directions and thus they cannot overlap degenerately. [ ]
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V4 Vk-l

Figure 2.1: Schematic Polygon

where the first form shows f as the convex combination of its vertices, and the second
as the set of all points lying “left” of all oriented edges.

We now distinguish three cases according to the relative position of the oriented
line through [, g with respect to Py .

1. “outward”

We have nT(q — p) > 0. The line intersects the plane in exactly one point s,
which lies on the segment iff the latter starts in the interior and ends in the
exterior closed half-space defined by the oriented plane. The intersection point s
belongs to f if it is “left” of all edges. Thus the result for this case is:

lpgqNf#0 —

ntq>ng Antp<ng AVO<i<k: det[q — p,vig1 — vi,p—vy| >0

Figure 2.2: Intersection of Line Segment and Face
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motion, where overlap occurs, can be computed quickly; this concept is due to [Ca87].
Enveloping techniques are introduced to reduce average running time substantially.
Translational and rotational motions are handled separately, as this is the case within
the collision detection algorithm.

2.1 Static Detection of Overlap

Polyhedra We define “polyhedron” in such a manner that it means a compact, con-
nected subset of IR, bounded by flat surfaces which are themselves polygons, and
equal to the closure of its open interior. A boundary representation is used which lists
all vertices, edges, and faces of a polyhedron as well as their adjacency relations. This
gives the description complexity |P| of a polyhedron P as the number of all its ver-
tices, edges, and faces: v+ e + f. Note that v,e, f = O(|P]), so it makes no sense to
further distinguish between these numbers for the purpose of asymptotic running time.
Convexity is required for all faces and can be achieved in pseudo-linear time with no
relevant increase in the polyhedron’s complexity.

Furthermore we expect our data structure “polyhedron” to support enumeration of
all faces in an arbitrary order. For each face f, the normal equation of its supporting
plane is needed, with its normal vector n pointing to the outside of the polyhedron and
thus giving local interior-exterior information. In addition, all vertices of a face must
be listed in counter-clockwise order, where f is viewed from the outside, and bear their
position in space.

The Predicate Two polyhedra overlap iff their surfaces intersect or one is entirely
contained in the other. We derive a boolean predicate for the first part, the second will
be handled differently in our algorithm. Intersection of surfaces means that an edge of
one body pierces a face of the other including degenerate cases.

Thus let p,q € IR? be the head and tail of an edge, which is written as a line
segment

ba={P+Ma-p)|0<A<1}CR

Besides, a convex face of the other body be given by a plane
Pon i={x€R* | n'x=ne} CR®>, n€ R, n|=1, np € R

with normal vector n and distance ng from the origin, and by its distinct vertices
Vo, ... Vi1 € Png,, K > 3, ordered counter-clockwise as shown in figure 2.1. For
simplicity, let v := vo, Viy1 1= Vy.

The face itself results in the set of points

k-1 k-1
Fi=fogves = DAvi| DoA=1,V0<i<k: 0< ) €R}
1=0 =0

= {2 € Pun | VOLZ i<k det[n,viﬂ—vi,x—vi]ZO}Q]RS



Chapter 2

Efficient Collision Detection

In the first chapter, a heuristic path search strategy has been introduced and discussed
which is applicable to a wide range of problems. For each special case, configuration
space will be different and a suitable parameterization has to be found; but apart from
that, the planning algorithm remains unchanged. Still lacking for practical use is a
subroutine to answer inquiries about the intersection of a line with the configuration
obstacle—a segment can be handled analogously. It is there that some work must be
done to adapt our strategy to each new kind of motion planning problem.

“IntersectLine” needs a description of all objects and obstacles in physical space or
work space, as opposed to configuration space. We will restrict ourselves to handling
polyhedral objects, because real-world bodies can be approximated by them and colli-
sion detection will be more efficient. From this implicit description, information about
the configuration obstacle will be derived.

The actual input parameters specify the motions of these objects, their interpreta-
tion depends on configuration space. For a jointed robot arm this could mean to move
all of its joints simultaneously, perhaps each one with its own speed, and the resulting
motion could be very complicated. To avoid such difficulties we separate the degrees of
freedom and impose the restriction, that at a given time either one object may rotate
about a fixed axis with constant angular velocity or all may translate simultaneously,
each with its own fixed speed and direction. This greatly reduces running time in
practical applications, because enveloping techniques can be used; it was shown how
the path search stage of the algorithm deals with such a separation.

As a drawback this restriction might turn the motion planning problem unsolvable,
e.g. because two objects would have to rotate concurrently and such a motion is not
considered. However we assume the problem is not too hard to solve and allow the
strategy to fail under such circumstances.

We now proceed as follows. Consider only one moving object and one fixed obstacle,
to achieve this we may look at each such pair; for concurrently moving objects, we
exploit the relative nature of translational motions. A predicate will be derived to
test the static overlap of these polyhedra at their current position, it is described by
a boolean expression. By evaluating that expression skillfully, all intervals of a given
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connect(a,z: C; j:0...n—1; path: List(C) ) : List(C)

1,k IN
p,q:C
L : Intervallist

1 J index of coordinate to change
p—a current position (steps from a to z)
repeat
iz change coordinate ¢
L « intersectSegment(a,p)
if empty(L) then piece of direct path is O.K.
path «— path o [p]
a<«p

i+—14+1 (modn)
until - empty(L) V a =z

if = empty(L) then collision in coordinate 1
(¢, k) « viaPoints(a, p, L) g dodges in coordinate k
path «— connect(a, ¢, k, path) change coordinate k before ¢
path « connect(q, z, ¢, path) change coordinate ¢ before k

return path

Figure 1.6: Planning Strategy for Separate Degrees of Freedom

enlarges the learning scheme’s domain to three-dimensional work spaces; the spherical
geometry approach helps in guiding the edge adding strategies.

There are some interesting similarities between our work and theirs, too, and these
concern the separation of degrees of freedom which seems quite common though often
hidden. For example, their local method for car-like robots consists of simply checking
two possible “straight connections” of configurations. These consist of sequences of
pure translational and rotational motions. Regarding articulated robots, they suggest
to define the neighbor configurations in such a way as to use only one degree of freedom
at a time. These ideas are in a certain way generalized by our separating degrees of
freedom. All in all, our heuristic path search strategy seems to be a good completion
of their learning approach.
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Figure 1.5: Order Is Important When Changing Coordinates

1.6 Related Work

Overmars and Svestka present a probabilistic learning approach to motion planning
[0594] which also aims at avoiding the cost of computing and storing exact information
about configuration space while quickly solving practical problems. Their paradigm
allows a balance between learning time and success for queries and can easily be applied
to robots with non-holonomic constraints. It consists of a global method which con-
structs a graph representing knowledge about the scene and a local method for solving
simple motion planning problems.

This local method is required to be a deterministic, symmetrical (with respect
to start and goal) motion planner which is allowed to fail “now and then”, but is
expected to run quickly. Obviously, these requirements are satisfied by the heuristic
motion planning scheme described in this work, and hence we propose to use it as the
local method in that learning approach. By varying the limit on recursion depth, our
strategy can be tuned to run as fast as possible, rarely finding a path, or to be quite
effective in path planning for the cost of increased running time.

Overmars and Svestka suggest to use very primitive path planners for best perfor-
mance of the global method. As a drawback, this clearly requires a larger graph to
represent the same amount of knowledge, because the local method is not very smart.
Thus nodes in the graph can be saved by a clever planner because the knowledge is
not stored explicitly in the global method’s data structure but implicitly in the local
method’s ability to re-compute information if asked to. We think it is desirable to tune
the local method in order to balance time versus space according to the needs of a
particular application.

Another point of interest is that the local information that our strategy gains
through “intersectLine”-calls can be incorporated into the global knowledge stored
in the graph. As this information comes at no extra cost and has the suitable struc-
ture, i.e. via points and direct connections corresponding to nodes and edges, it can
help a lot. Furthermore, using our efficient collision detection scheme for polyhedra
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» »

b

Figure 1.4: Borderline With Reference Point Outside of (a,z)

1.5 Separate Degrees of Freedom

Consider the case where a moving object has distinct kinds of degrees of freedom,
e.g. translational and rotational ones, which cannot be used concurrently during a
motion. One could also think of a robot arm whose links may only move one at a
time; such restrictions can simplify the computation of the intersection of a line with
the configuration obstacle remarkably. This means that configuration space is divided
accordingly, i.e. d degrees of freedom fall into n groups and we have

C:COX"'XCn_lgIRd

A feasible path for a moving point must then consist of pieces which each change only
coordinates within one group. Another interpretation is that of n coordinates being not
necessarily simple numbers but possibly vectors themselves; this makes no difference
to the planning strategy and only affects collision detection routines which interpret
the coordinates. Thus we shall write configurations as n-tuples, no matter what each
component represents.

We now face another design decision: in what order should a “direct path” between
a and z change these coordinates? The algorithm given here uses a simple cyclic order
for reasons of efficiency; this also helps preventing the moving object from running
into the obstacle again, because the wrong coordinate is changed first when trying to
reach a via point (cf. 1.5). The notion of dodging in a direction perpendicular to the
original path is easily conserved; the motion must use another coordinate group or be
perpendicular within that group in the previously used sense.

Given a separation of configuration space as shown above, and start and goal points
a=(ag,...,ay-1) € C, 2= (z0,...,2,-1) € C, the planning strategy is called with

path < connect(a, z, 0, [a])

and tries to compute a solution. We only show the non-deterministic version for reason
of clarity, determinism is achieved as demonstrated before and adds a little book-
keeping.
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it implements the discussed strategy to construct a borderline and so on.

1.4 Generalization to R”

The concept of the path search strategy described above can be easily generalized to
dimensions higher than two. We again assume that a point is to be moved between
given start and goal positions a and z avoiding an obstacle O, which need not be
represented explicitly. Using a subroutine to answer queries about the intersection
of a segment and line resp. with the obstacle, we proceed as before with one slight
difference.

The notion of a borderline must be extended to a hyper-plane separating a from z,
and it is no longer possible to capture all relevant information about it with a single
query to “intersectLine”. Thus we choose a certain number of “borderlines” within that
hyper-plane hoping to find useful via points. Note that we can no longer guarantee
that a suitable crossing point exists on any fixed borderline. Possible strategies include
the following:

e Take the direction of motion a—z as one vector and supplement it with ds,...,d,
to obtain an orthogonal vector basis of IR". These directions then specity lines
through a point p chosen on the straight path (a,z) as before, e.g. as centre of
the first segment contained in O. In this way representative directions are used
to cover the hyper-plane equally. Should no via point be found on these lines,
then dj,...,d, may be rotated about a — z to find a different set of borderlines.

e Randomly choose directions d; L (z — a), either a fixed number or repeatedly
until enough via points are found. This is quite simple to implement, but has
a subtle disadvantage in practical applications. Real world scenes are full of
orthogonal features like the walls of a room, and often the desired motion of an
object is somehow guided by these features. Thus it is helpful to prefer directions
orthogonal to each other and possibly to the axes of the world coordinate frame.

It is not necessary to choose the reference point of a borderline as a point p € (a, z);
furthermore it is quite interesting how a point q ¢ (a, z) may be looked upon. Imagine
the moving point to make a step sidewards from the original path without regard to the
obstacle. From that new position, another motion is considered and the intersection of
the corresponding line in configuration space with the obstacle O is inquired for in order
to find a suitable via point. This is especially useful, if the subroutine “intersectLine”
cannot handle arbitrary superpositions of motions directly. For example, if translations
are only allowed along coordinate axes, then we might find a via point with both
coordinates different from p by moving q away from p in one direction and inquiring
about a borderline running in the other direction. This is illustrated in figure 1.4.
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takes a limit r,,,, on the recursion depth. It returns a boolean value indicating success
or failure, which is of special importance to recursive calls.

given:
O C IR? obstacle
acR?\ O start
z € IR*\ O goal
Tmaz € IN maximum recursion depth
wanted:
path : List(IR?) computed path
invocation:
path « [a] one-element list
connect(a, z, rmaz, path) returns true iff successful

connect(a,z : IR* rec: IN; var path : List(IR?)) : Boolean
q: R?
L : IntervalList
path’,via : List(IR?)
ok : Boolean

L « intersectSegment(a, z) collision intervals
if empty(L) then
path « path o [z] straight path is free
ok « true
else if rec < 0 then
ok « false recursion too deep
else
via « viaPoints(a, z, L) get list of via points
path’ «— path remember previous path

ok «— false
while —ok A mempty(via) do

q < head(via) first candidate ...
via — tail(via) ... is removed from list
path < path’ previously computed path
ok « connect(a, q,rec— 1, path) recursive solution ...
A connect(q,z,rec — 1, path) ... of subproblems
return ok

Figure 1.3: Systematic Trial of Via Points

A subroutine “viaPoints” is used to find the list of via points which are to be
tested. Using information about start and goal as well as collision intervals on (a,z),
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e Search for £ starting from zero and increasing by one. This is simple to im-
plement and never overestimates k, thus avoiding excessively long computations
and giving quite elegant paths. It works fast enough because running time grows
approximately exponential in k£ and is therefore dominated by the largest value
used.

e Search for & in the same way, but keep a tree of already known information about
subproblems. This avoids re-computation of early stages of recursion, but needs
a considerable amount of memory, depending on the number of alternative via
points considered and the final recursion depth needed. An advantage lies in the
fact that different subdivisions of a path planning problem can be tracked simul-
taneously. We can then rate the partial solutions according to some criterion,
e.g. path length or recursion depth, and thus try to improve the quality of the
constructed path.

Via Points Statistical results of pseudo-random experiments with a point moving
between discs in the plane as well as theoretical considerations lead to the following
concept. Choose the borderline b as the perpendicular bisector of the collision section
whose centre is closest to that of (a,z). This is locally symmetrical to a known part of
the obstacle and divides the path planning problem quite fairly into two subproblems.

Via points are chosen as centres of free sections of the borderline, this is again
locally symmetrical and maximizes safety distance as well; experiments support this
decision. Here we assume that the whole scene is bounded in some way, either naturally
by surrounding obstacles or artificially by a restriction of configuration space. Via
points are then rated according to a synthesis of two criteria: local safety distance and
closeness to the intended path.

Therefore let d denote the distance of the via point v to the straight connection
(a,z) and [ the length of the free section containing v. We use the valuation function

Vi RE < IRY = RE, (d1) o
and can vary [ > 0 for diverse results, e.g. with 3 = 0 the rating depends only on
the deviation of v from the original path. To emphasize safety distance, §# > 1 can
be used. In order of increasing Vj the various via points on a borderline are arranged;
that list is restricted to the best & points. Thus promising points are evaluated first
and the number of alternatives at each recursive stage of the algorithm may be limited
to a small number.

For a certain class of problems one could try to find an optimal value of 3. In the
case of a point moving between discs, § = 2/3 was found to be the best choice for a
large number of instances.

The Algorithm Putting all this together we get the following deterministic algo-
rithm. In addition to the parameters of the non-deterministic strategy, this programme
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inquiry, a list of intervals is expected with
intersectSegment(a,z) = {t € [0,1] | a+t(z —a) € O}

and analogously
intersectLine(p,r) = {t e R | p+tr € O}

These intervals are called collision intervals in contrast to the free intervals which make
up the rest of [0,1] or IR resp. The corresponding sections on the segment and line
resp. are named accordingly.

The programme first checks the straight connection of a and z for collisions; if
none are found, the path is extended by the goal point and returned. Otherwise b is
constructed by a point and a direction which are used for an inquiry. The borderline
is then crossed at an arbitrary point outside of O in order to divide the problem.

1.3 Deterministic Description

The next task is to make the algorithm deterministic so that it may be used in prac-
tice. This implies to search through the possible computations of the nondeterministic
machine for an accepting one, but we cannot consider continuously many potential via
points. So we shall restrict ourselves to a small number of promising crossing points
on each borderline, which are then tried systematically. If we fail to construct a path
we take back some decisions and try again using another via point; this is known as
backtracking.

Recursion Depth A remaining problem is to diagnose failure, i.e. to decide that
a certain computation should no longer be tracked because it will not succeed. This
is of course impossible and can only be approximated by a limit & on the depth of
recursion involved in the path search scheme. If recursion depth exceeds that limit, we
consider our last choice unsuitable and undo it. Thus we should choose k& small enough
to quickly skip futile computations, but big enough to allow scope for a solution to
exist.

One situation where endless recursion would occur is if a via point has been chosen
within a different connected component of free configuration space, i.e. when there is
no way to reach it. This however cannot be determined using only local information,
so we must limit recursion. On the other hand we need a certain depth to allow for
the twists and turns a path has to take to reach the goal. Therefore we need a way to
find a useful value for k.

Three approaches have been implemented:

e Allow the user to specify k. This is most useful for interactive experiments and
in cases where a suitable limit is already known.
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bisectors are a good choice, but it is even better to erect them on an interval close to
the centre of a and z. This is neglected here for simplicity.

The procedure shown in figure 1.2 for a nondeterministic machine constructs a
piecewise linear path for a point moving from a to z avoiding the obstacle O C IR?;
it succeeds if such a solution exists. Here the path is represented as a list of points,
which initially contains only the starting point a.

given:
O C IR? obstacle
acR?\ O start
z € IR*\ O goal
wanted:
path : List(IR?) computed path
invocation:
path «— connect(a, z, [a]) [a] denotes one-element list

connect(a,z : IR?; path : List(IR*)) : List(IR?)

p.q,r: R
L : IntervalList
t: IR
L « intersectSegment(a, z) collision intervals
if empty(L) then
path < path o [z] straight connection is free
else
t « mid(head(L)) centre of 1st interval
p—(l—-tha+t+tz reference point
r— (z—a)t perpendicular to straight path
L — intersectLine(p,r) collision intervals
randomly choose t ¢ L arbitrary free point
q—p-+ir crossing point
path < connect(a, q, path) recursive solution ...
path < connect(q, z, path) ... of subproblems

return path

Figure 1.2: Nondeterministic Path Search Strategy

Two functions, “intersectSegment” and “intersectLine” are used to compute the
intersection of a segment and a line resp. with the obstacle O. As a result of such an
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Figure 1.1: A simple motion planning problem

How can such a path be constructed then? Consider the simple example in figure
1.1. The attempt to use (a,z) as a path fails because the obstacle O blocks the
way. The intersection with O is marked on the line segment, a subroutine provides
this information as an answer to the strategy’s inquiry. For the moment we assume
the existence of such a subroutine and will later show how to implement it efficiently.
Information about the obstacle is accessible to the planning strategy only through such
inquiries which provide considerable abstraction from the representation of O.

The figure also shows a dashed line b which intersects the segment (a,z) in the
point p. This line gives rise to the central idea of this path search strategy:

Every path from a to z, especially every collision-free one, must cross this
borderline separating a from z. In order to avoid the obstacle O such a
crossing can only take place on the free sections of b.

This means that we guess a crossing point q on the line b outside of O and try to
recursively connect a to q and q to z. As a result, two paths (a,...,q) and (q,...,2)
should be found and can be combined to the solution (a,...,q,...,z). Such an ap-
proach is widely known as divide-and-conquer.

It is clear that such a method generally does not find an optimal path with regard
to any optimization criterion, e.g. path length or safety distance. We are left with
two design considerations: how to choose the borderline b and the crossing point ¢,
also known as via point. From a theoretical point of view and using a nondeterministic
version of the above procedure, a random choice will do—as long as a piecewise linear
solution exists, it might be found. We can even construct b deterministically and
choose only q randomly; thus for definiteness let b be the perpendicular bisector of the
first interval of (a,z) N O. Experiments with practical implementations suggest that
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difficulty consists in finding the shape of the new obstacle and of the free space for the
point. More generally, the positions of all moving parts are described by certain values
corresponding to their degrees of freedom, e.g. distances or angles. One point in a pos-
sibly high-dimensional space whose coordinates reflect these values can then be used
to represent a current configuration of the scene. This is known as the configuration
space approach and was first presented by [Lo83]. The subset of all points represent-
ing forbidden configurations, i.e. those where collision occurs, is called configuration
obstacle; its complement is named free-space. Representation of that information for
complex scenes also requires large storage capacity.

We shall not build up such information explicitly, but rather try to find a way for
the moving object using only minimal information about the environment. Precisely
spoken only the intersection of a line with the configuration obstacle is computed. This
can be done efficiently even in high dimensions based only on the description of the
original object and obstacle. To explain the application thereof, we shall first describe
the path search strategy in the plane, both nondeterministic and deterministic versions.
The former is mainly used to clarify some ideas. We then extend it to spaces of higher
dimension and show how to handle degrees of freedom separately—this will be very
important for collision detection.

1.2 Nondeterministic Description

Consider the following simplified problem in two dimensions: Let O C IR? be a subset
of the plane, called obstacle, together with a start and goal a,z € IR?>. Find a way
for a point moving from a to z avoiding the obstacle O; this can be described by a
continuous function w : [0,1] — IR* with w(0) = a, w(1) = z, and

VO<t<1: w(t)¢O

For the reasons given above we do not attempt to decide whether such a path exists but
merely try to find one. Thus the strategy is allowed to fail or run infinitely although
there is a collision-free path from a to z. We solely require constructed paths to be
legal solutions to the problems, i.e. especially to avoid the obstacle. It is in this sense
that our heuristic algorithm remains incomplete. By means of this simplification and
without the enormous burden of complete algorithms it should often be possible to
easily and quickly find solutions.

Furthermore it is very useful to only compute intersections of a line with the obstacle
O; this will become clear in the next chapter and is related to the fact that O will in
general be represented only implicitly. Therefore paths considered by our strategy are
piecewise linear and may be described by a tuple (vo,...,Vv,) of points v; € IR*. With
n € IN, the path results in

V; nt =1

. 2



Chapter 1

A Simple Path Search Strategy

1.1 Background

Motion planning is often regarded as part of robotics because it represents the pre-
requisite for autonomous action of a robot within its environment. From this need it
is that the field has developed, with an increasing attention by theoretical computer
scientists to abstract problems and especially to their complexity. In this tradition our
work is less oriented to practical problems of concrete autonomous robots but very
generally to a versatile concept.

The generalized movers’ problem consists of the description of an object to be moved
together with its initial and final position and an obstacle. It is the task of motion
planning then to find a collision-free path for the object or to decide that such a path
does not exist. In the case we study here there are no restrictions with respect to the
dynamics of the motion, solely geometric constraints are to be observed, namely the
form of the object and the obstacle.

For the solution of this problem there exists an equally general approach of Schwartz
and Sharir [SS82] based on Collins’ method for cylindrical algebraic decomposition
[CoT5]. The running time reached is polynomial in the complexity of the scene, but
double exponential in the number of degrees of freedom. In addition to that, the
constants involved are rather large, so this procedure is of no practical importance.
Canny succeeded in developing a single-exponential algorithm [Ca87], but this is still
unacceptable for large input sizes.

Many successful trials have been made to give efficient algorithms for special cases
or to explore the inherent complexity of motion planning problems. Because of the
known lower bounds, efficient algorithms for general problems cannot be expected.
To nevertheless solve at least intuitively simple problems easily and quickly even in
complex scenes with many degrees of freedom new ways have to be taken.

One cause for the long running time of “conventional” methods lies in the fact that
precise and complete information about the clearance of the moving object within its
environment must be computed. For translational motions of a single rigid body, the
object is typically shrunk to a point whereas the obstacle is grown accordingly; the






Introduction

This work is based on a simple but general path search strategy for spaces of arbi-
trary dimension. It is a heuristic algorithm for the generalized movers’ problem that
does not explicitly compute or represent configuration space, but rather utilizes a col-
lision detection subroutine for inquiries about possible paths. The approach uses
divide-and-conquer and can be applied to many concrete situations, e.g. to motion
planning for a single rigid body moving freely, a jointed robot arm, or even several
objects moving concurrently. The fundamental idea is described in [Sch92] and will
be investigated and refined here; we show how to handle translational and rotational
degrees of freedom separately to simplify implementation and speed up execution. We
also discuss similarities with and links to work by Overmars and Svestka, [0S94], in
section 1.6.

Special care has been taken to make the collision detection scheme as efficient as
possible, especially with respect to practical applications, since it determines the total
running time of our path search algorithm. It is shown how to compute all intervals
of intersections of a polyhedron P moving by a given rotation or translation amidst
polyhedral obstacles @ in time O(nlogn), where n := |P||@Q]. The notation |P| means
the size of a description of P’s boundary. We deal directly with arbitrary polyhedra
and use enveloping techniques to reduce the average running time dramatically; these
approaches go back to [Ca87] and [Sch94]. Quaternions make it possible to describe
purely rotational motion planning as a path search problem in a spherical geometry.

Former approaches to motion planning have either led to general procedures which
could not be handled in practice like the famous one described by Schwartz and Sharir
in [SS82]. Or they confined themselves to solving arbitrary instances of simple motion
planning problems efficiently, e.g. for the case of a disc moving between polygons in the
plane. In contrast to that we shall try here to solve simple instances of arbitrary motion
planning problems efficiently, i.e. to find a practical algorithm for use with practical
problems. This was especially motivated by an ongoing research project on computer
aided manufacturing where we investigate the interactive simulation and planning of
assembly processes including robots. Fast on-line collision detection schemes were
developed in that context and influenced this work. Furthermore, motion planning
was needed in order to simplify the specification of assembly plans, i.e. the engineer
should be allowed to describe what she wants done rather than how to do it.
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Abstract

We present a general heuristic approach to the geometric motion planning problem
with the aim to quickly solve intuitively simple problems. It is based on a divide-and-
conquer path search strategy which makes inquiries about feasible paths; to answer
these, we develop an efficient collision detection scheme that handles translations and
rotations of polyhedra to compute all times of collision. The whole algorithm can
be easily implemented and universally applied and has been successfully tested in a
program for assembly planning.
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