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Abstract

Valuations are measure-like functions mapping the open sets of a topological space into
positive real numbers. They can be classified according to some additional properties.
Some topological spaces are defined whose elements are valuations from various classes.
The relationships among these spaces are studied, and universal properties are shown for
some of them.

1 Introduction

For a topological space X, a valuation on X is a function v which maps the open sets of X

to real numbers in the range from zero to infinity (inclusively) with the following properties:

(1) The empty set is mapped to zero: v{) = 0 (strictness).

(2) The values assigned to binary union and intersection are related by the following equation:
v(UUV)+v(UNnV)=vU +vV for all opens U and V (modularity).

(3) Bigger sets are mapped to bigger numbers: if U C V', then vU < vV (monotonicity).

Most often, we consider Scott continuous valuations which enjoy the additional property
v(Uier Vi) = Uier vV, for every directed family (V;);er of opens V; of X.

Some authors write evaluations instead of valuations, and some authors immediately

require Scott continuity.

The concept of valuations has some similarity with the concept of measures. Borel
measures are defined for all Borel sets of a space, and every open set is a Borel set. Hence,
every measure can be restricted to a valuation. This valuation is not Scott continuous in
general, since measures have to satisfy a weaker property where only countable directed
families (V;);er are considered. On the other hand, a valuation cannot always be extended

to a measure.

Previously, valuations were already used in the following contexts:



e The probabilistic power domain of Jones and Plotkin [6, 7] over some dcpo X is the
depo of Scott continuous valuations on X which are bounded by 1. It is used to model
the semantics of probabilistic programs. If the semantics of a program p is v, this means
that for every open set U, the number vU is the probability that the result of running
pis in U. The difference 1 — v(X) is the probability that running p yields no result at

all, i.e., does not terminate.

e In [5], the author presented a lower bag domain as an analogue to the lower power
domain, but without idempotence of addition. It can be used to specify a bag semantics
for non-deterministic programs which takes multiplicities of results into account. One
possible description of the lower bag domain consists of Scott continuous integer-valued
valuations. In fact, some of the results about integer valuations which are presented in
Section 12 were already contained in [5], but with different proofs.

¢ In [3], Edalat used Scott continuous valuations to obtain a domain-theoretic treatment
of measures and Riemann-like integrals. In [1], he connected dynamical systems and
fractals with domain theory. The probabilistic power domain, i.e., the collection of
Scott continuous valuations bounded by 1, plays a major role in this connection which
leads to better algorithms for fractal image generation [2].

Because of these applications, we feel that the concept of valuations deserves further interest.

In this paper, we investigate valuations in a topological setting: the set V.X of Scott con-
tinuous valuations on a space X is made a topological space, whose structure and properties
are studied. Thus, we present some background information about depo’s and topological

spaces in Section 2.

In Section 3, valuations are defined formally. In addition to Scott continuity, we introduce
point continuily as a possible property of valuations which is stronger than Scott continuity.
Some special valuations are defined, e.g., the point valuations ¥ which map open sets con-
taining = to 1 and all other open sets to 0. We also consider some operations on valuations

such as addition, multiplication by a constant from R, and restriction to an open set.

In Section 4, we define some classes of valuations. In particular, finite valuations are finite
linear combinations of point valuations. The connections among these classes are studied.
In particular, we prove that for continuous depo’s, all Scott continuous valuations are point
continuous.

In Section 5, finite valuations are studied. It is shown that they can be represented by
assigning finite weights to a finite number of points. We compare finite valuations in terms
of these representations, and prove that the representation is unique.

In Section 6, we define the space VX of Scott continuous valuations on X, and the
subspaces of point continuous (V, X) and finite valuations (V¢ X'). We also prove one of the

main results of this paper: the space V, X is the sobrification of Vf X.

The other main results are shown in Section 7. The space V¢ X of finite valuations is the
free locally convex 7y-cone over X, and the space V;, X of point continuous valuations is the
free locally convex sober cone over X. Here, a 7y-cone is an R4-module with a Zp-topology
such that addition and multiplication are continuous, and a sober cone is a 7g-cone with
sober topology. We did not find a universal property for V.



Nevertheless, the universal property of V,, suffices to find a novel definition of integration
[y 1 [X = R4} x VX — Ry of areal-valued function w.r.t. a Scott continuous valuation (see
Section 8). This definition allows for elegant proofs of the properties of integration.

In Section 9, integration is used to prove that the spaces of valuations are isomorphic to
certain second order function spaces, namely

VX 2 [[X = Ry]i = Ry, and VX 2[[X — Ry]p, — Rylp,

where the index ‘[],” means a function space with pointwise topology, and ‘[]’

a function

space with Isbell topology.

The final Section 12 is devoted to the special case of integer valuations which map all
opens to numbers from Ng. In the case of integer valuations, the notions of point continuity
and Scott continuity coincide. The space VNX of continuous integer valuations is the free
sober Ng-module over X.

2 Some Topology

After fixing some set-theoretical notation (Subsection 2.1), we present a brief overview of
the topological notions needed in this paper. In particular, we introduce depo’s, topological
spaces, product and function spaces, sobriety and sobrification, and the spaces Ry of positive
real numbers and Ny of positive integers.

2.1 Some Set-Theoretic Notation

We only mention some slightly non-standard notation. If A is a subset of a fixed set X,
then the complement of A in X is written —A.

If f:X — Y is a function, then we denote the image of a set A C X by ftA = {fz |
x € A}, and the inverse image of aset BCY by fTB={x € X | fr € B}. The set fTX,
which is the image of the function, is also denoted by S f.

For AN B # (), we briefly write A ® B. Note that fTAC Bif AC f~B,and fTAo B
if Ao f~B.

2.2 Dcpo’s

We use the standard definitions: a poset (X, C) is a set X together with a reflexive,
anti-symmetric, and transitive relation ‘C’. For a subset A of a poset X, we define |A =
{reX|dacA:2Ca}and TA={2z € X |Ja € A:aC z}. Weshall often abbreviate
1{a} by la and T{a} by Ta. The set A is lower if A = | A, and upper if A = TA. The least
upper bound or join of A is denoted by U A (if it exists).

A subset D of a poset is directed if it is non-empty, and for all x, y in D, there is z in
D with z,y C z. A dcpo is a poset where every directed set has a least upper bound. A
function f: X — Y between dcpo’s X and Y is Secott continuous if for all directed subsets
D of X, f(UD)=Uf*D holds. The category of dcpo’s and continuous functions is called
DCPO. This category is small complete and cartesian closed. The function space [X — Y]
for instance consists of the continuous functions from X to Y ordered by f C ¢ iff fa C gz
for all z in X.



2.3 Topological Spaces

A topological space is a set X together with a set QX of subsets of X which is closed
under finite intersections and arbitrary unions. The sets in QX are called open, and their
complements are called closed. A function f: X — Y between two topological spaces X and
Y is continuous iff f~V is open in X for every open set V of Y. Equivalently, f~C' is closed
for every closed set €' of Y.

A subbase of a space X is a collection § of opens of X such that every open set of X
is a union of finite intersections of members of §. Often, the set of opens of a space to be
constructed is specified by defining a subbase.

For a subset A of a space X, let O(A) = {O € QX | A C O}. We abbreviate O({z}) to
O(z). For every subset A of a space X, the closure cl A is the least closed superset of A. A
point z is in cl A iff every O in O(z) meets A.

A subset O of a depo X is Seott open if it is upper, and for all directed sets D, LU D € O
implies D @ O. With this definition, every depo becomes a topological space. A function
[ X — Y between dcpo’s is Scott continuous iff it is topologically continuous. Thus, DCPO
can be considered as a full subcategory of the category of topological spaces. (Beware: this
inclusion functor does not preserve products, not even binary products.)

Every topological space can be preordered by defining » C 2’ iff every open set which
contains  also contains @'. This is called the specialization preorder of the space. A space is
a Tg-space iff this preorder is a partial order, i.e., anti-symmetric. The specialization preorder
of a depo with its Scott topology is the original order of the depo. Hence, every dcpo is a
To-space.

If we use order-notions such as lower, upper, | A, and TA in a topological space, this
always refers to the specialization preorder. All open sets are upper sets, and all closed sets
are lower sets. Hence, A C | A C cl A holds for all subsets A of a space. For finite F, even
cl F = | F holds. For every subset A of a topological space, TA is the intersection of all open

supersets of A.

2.4 D-Spaces

A space X is a d-space if the induced preorder is a dcpo and all open sets of X are Scott
open w.r.t. this dcpo. A continuous function f : X — Y between two d-spaces is Scott
continuous. Since the order in a dcpo is anti-symmetric, all d-spaces are 7p-spaces. Every
depo with its Scott topology is a d-space, and every 7q-space is a d-space.

2.5 Embeddings and Subspaces

A function e : X — Y between two topological spaces is a (topological) embedding iff it
is continuous and injective and e~ : QY — QX is surjective. Every topological embedding
is an order embedding as well, i.e., ex C ey iff 2 T y. If Y is a 7y-space, the condition of
injectivity is redundant.

If e: X — Y is an embedding, then a function f: 7 — X is continuous iffeo f: 7 — Y
is continuous.



Let Y be a topological space, and § a subset thereof. We make 5 into a subspace of Y by
defining a subset U of S as open iff U = SNV for some open set V of Y. The 7y property
is preserved by subspace formation. The d-space property is not preserved in general, since
some directed joins may be omitted.

If 5 is a subspace of Y, then the subset inclusion e : 5 — Y is a topological embedding.
Conversely, if e : X — Y is an embedding, then X is isomorphic to the subspace et X of Y.

Fqualizers are a special kind of subspace. The equalizer of two continuous functions
fog: X — Y is the subspace {z € X | fo = ga} of X.

2.6 The Product of Topological Spaces

For a family (X;);er of topological spaces, we define the product space [[;c; X; with
points (z;);er and subbasis {(7,0) | i € I, O € QX;} where (j,0) = {(2;)ier | z; € O}. The
preorder of [[;c; X; is (#;)ier T (¥:)ier iff 2; C y; for all 7in 1.

The projections 7; with 7;((z;);er) = @; are continuous for every j in I, and moreover, a
function f:Y — [[;cy X: is continuous iff the functions 7; o f are continuous for every j in I.

If all the spaces X; are 7Ty / d-spaces, then so is [, X.

A special caseis the binary product X xY of two spaces X and Y. An alternative subbase
of X xYis {UxV|Ue€QX,VeQY}.

2.7 The Tensor Product

The tensor product or cross product X ® Y of two spaces X and Y has the same carrier
set as the product space X X Y. A set W is open in X ® Y if for every (z,y) in W, there are
open sets U of X and V of Y such that (z,y) € {a} xV C W and (z,y) € U x {y} CW. To
compare, W is open in X X Y if for every (z,y) in W, there are open sets U of X and V of
Y such that (z,y) e U x V C W.

The spaces X ® Y and X X Y share the same specialization preorder. The topology of
X ®Y is a superset of the topology of X X Y, whence a function f: X xY — Z is also
continuous as a function from X ® Y to Z.

A function f: X ® Y — Z is continuous if and only if all the functions f, : Y — Z with
fzy= f(z,y)and fY: X — Z with fYz = f(2, y) are continuous as well. Thus, a continuous
function f: X ® Y — Z is often called continuous in the two arguments separately, whereas
continuous functions f: X XY — Z are sometimes called jointly continuous.

If X and Y are 7y / d-spaces, then sois X @ Y. If X and Y are dcpo’s, then the Scott
topology on the product set X x Y is identical with the tensor product topology.

2.8 Spaces of Open Sets

The set QX of open sets of a space X can be topologized in several different ways.

First, (2X,C) is a dcpo, whence it can be endowed with the Scott topology. We call the
resulting space Q. X.



Second, X can be given the point topology with subbase {O(z) | 2 € X}. A set O of
opens is open in the point topology (point open) iff for every O in O there is a finite set F'
such that O € O(F) C O. We call the resulting space Q,X.

Since every set O(z) is Scott open, the topology of ©,X is contained in that of Q.X.
The two spaces ,X and Q,X have the same preorder, namely subset inclusion. Both are
d-spaces.

2.9 The Pointwise Function Space

For two spaces X and Y, the pointwise function space [X — Y], consists of all continuous
functions f : X — Y with subbase {(z — V) | 2 € X,V € QY} where (z = V) =
{f: X =Y | fe eV} Itisasubspace of the product [],cy Y of copies of Y. The preorder
on [X — Y, is given ‘pointwise’ fC g iff fo C gz for all  in X.

The properties 7y and d-space carry over from Y to [X — Y, no matter which properties

X has.

A function f: X @ Y — Z is continuous iff its curried variant ¢ : X — [Y — Z], with
gzy = f(x,y) is well-typed and continuous.

If +:Y XY — Y is continuous, then sois + : [X — Y], x [X — Y], — [X — Y], with
(f+g9)x = fz + gx. (It is mathematical custom to reuse the name of the simple function for
that of the function defined for functions.)

Composition o : Y — Z], @ [X — Y], — [X — Z], with (g o f)z = g(fz) is continuous
(in the two arguments separately).

For every two spaces X and Y, the function Q, : [X — Y], — [Q,Y — Q,X], with
A, f(V) = f~V is well defined and continuous. For, Q, f maps opens to opens by continuity
of f, and is continuous since Q, f(V) € O(z) iff fa € Viff V. € O(fz). The function Q, itself
is continuous since Q,f € (V. — O(z)) iff f~V € O(z) iff fr e Viff f € (a2 — V).

2.10 The Isbell Function Space

For two spaces X and Y, the Isbell function space [X — Y]; consists of all continuous
functions f : X — Y with subbase {(f — V) |U € QQX),V € QY} where (f — V) =
{f: X =Y |U> [V} Since (z — V) = (O(z) — V), the topology of [ X — Y; includes
that of [X — Y],. Both function spaces have the same preorder, namely f C ¢ iff fo C gz
for all z in X.

If Y is 7y / a d-space, then so is [X — Y'];, no matter which properties X has.

If f:X xY — Z is (jointly) continuous, then its curried variant ¢ : X — [Y — Z];
is well-defined and continuous. Composition o : [Y — Z]; @ [X — Y] — [X — Z]; with
(go f)z = g(fz) is continuous (in the two arguments separately).

If X and Y are 7yp-spaces, the function Qg : [X — Y] — [QY — QX ] with Q,f = f~ is
injective, no matter which topologies are chosen for the two function spaces. If [} — QX

is equipped with the pointwise topology, it is just the Isbell topology on [X — Y] which
makes € into an embedding. For, Qsf € (V —U) iff [~V eU iff f € (U — V). Hence, we



obtain a continuous function Qg : [X — Y] — [QY — Q. X],, whose type differs from that
of the continuous function Q, : [X — Y], — [Q,Y — Q,X], of the previous section.

The spaces of open sets ;X and Q,X can also be seen as special instances of function
spaces. The Sierpinski space 2 has points 0 and 1 with subbase {{1}}. Equivalently, 2 is the
depo {0, 1} with 0 C 1. The opens of a space X are in one-to-one correspondence with the
continuous functions from X to 2 by U — xp and f — f~{1}. By this correspondence, we
get the isomorphisms Q, X = [X — 2], and QX = [X — 2];.

2.11 Sobriety

A subset A of a space X is irreducible if whenever A C J;c;C; for some finite family
(C})ier of closed sets, then A C ' for some 7 in /. Continuous images of irreducible sets
are irreducible. A set A is irreducible iff ¢l A is so, and singleton closures cl{z} = |z are
irreducible.

Definition 2.1 A space X is sober if for every irreducible set A, there is exactly one
point x such that ¢l A = cl {z}.

Every Hausdorff space is sober, and every sober space is 7. Every finite 7yp-space is sober.
Every sober space is a d-space, and every continuous function between sober spaces is Scott
continuous. (To prove these facts, note that directed sets are irreducible.)

Another equivalent definition of sobriety involves sets of open sets. A set O of open sets
of X is a prime filter iff it is upper, closed under finite intersections, and inaccessible by
unions. Equivalently, O is a prime filter iff it is Scott open, contains the whole space, does
not contain ), is closed under binary intersection, and has the property that U UV € O
implies U € O or V € O. Every set O(z) = {0 € QX | 2 € O} is a prime filter.

Theorem 2.2 A space X is sober iff for every prime filter (3, there is a unique point z

such that O = O(2).

For the proof, note that if A is irreducible then {O € QX | O ® A} is a prime filter,
and conversely, if O is a prime filter, then the complement of J{O € QX | O € O} is an
irreducible closed set.

Some topological constructions preserve sobriety:
e Products of sober spaces are sober.
o If Y is sober, then [X — Y, is sober (no matter what X is).

o If f,g: X — Y are continuous, X is sober, and Y is 7y, then {# € X | fo = g2} is a
sober subspace of X.

2.12 Sobrification

Let X be a sober space and 5 a subset of X so that for every 2 in X and U in X with
x € U, there is some a in S with ¢ € U and a C z. In this situation, we say that X is the
sobrification of the subspace 5. We first show that continuous functions from X to some
To-space are uniquely determined by their values on 5.



Proposition 2.3 Let X be the sobrification of its subspace 5 and let Y be a 7y-space.
Let f,g: X — Y be two continuous functions with fa = ga for all @ in 5. Then f =g
follows.

Proof: Let z in X. We prove fa C gz. If fz € V open, then z € f~V. By hypothesis,
there is ¢ in 5 such that ¢ C 2 and a € f~V. Then gz 3 ga = fa € V. Similarly, gz C fz
is shown, whence fax = ga since Y is a 7g-space. a

The sobrification has the following universal property:

Theorem 2.4 If X is the sobrification of its subspace 5, then for every sober space Y
and continuous f : 5 — Y, there is a unique continuous F' : X — Y which extends f.

Proof: Uniqueness follows from Prop. 2.3.

In X, (SN Jz) = |a holds. Thus, SN |z is irreducible in X, and hence in 5. By
continuity of f, fT(S N |x) is irreducible in Y. Since Y is sober, there is Fz in ¥ such that
cdfr(Snlez)=|Fa.

For continuity of F, consider the inverse image of a closed set C'. From the definition of F’,
FaeeCiff SN ]a C f~C. The set f~C is closed in S. Thus, there is a closed set C' of X
with f=C = SN’ Finally, SN ]a CSNCiff (SN |a) CCiff x € C.

For the extension property, we have to show Fa = fa for all ¢ in 5. To this end, we show
cd fT(S N la) = | fa. The inclusion ‘C’ holds by monotonicity of f, and ‘D’ holds since
a€ 5N ]a. O

Extension of functions is continuous:

Theorem 2.5 If X is the sobrification of its subspace §, then for every sober space Y,
the function E: [§ — Y], — [X — Y], given by Theorem 2.4 is continuous.

Proof: Let f:5 — Y be continuous, z in X, and V' in QY such that Ef € (z — V). Then
x € (Ef)”V which is an open set of X. Since X is the sobrification of 5, there is some «a in
S with a C 2 and a € (Ef)"V. Then fa =Efa €V, whence f € (a — V).

If g isin (¢ — V), then Ega = ga € V. Since a C z, Ega is in V as well, whence Eg in
(z — V). o

Corollary 2.6 If X is the sobrification of its subspace 5, then [§ — Y], 2 [X — Y],
holds for every sober space Y.

Proof: One isomorphism is the extension function E given by Theorem 2.4. The other is
restriction of a function F': X — Y to 5. a

Finally, we show that sobrification commutes with binary products:

Proposition 2.7 If X is the sobrification of A C X and Y is the sobrification of B C Y,
then X X Y is the sobrification of A x B.

Proof: Let (z,y) be in an open set W of X X Y. Then there are open sets U of X and V
of Y such that (z,y) € U x V. C W. By hypothesis, there is @ in A with « C z and a € U,
and bin B with bC y and b € V. Thus, (a,b) C (z,y) and (a,b) e U x V C W. o



2.13 Numbers

Let Ry be the set of positive real numbers including 0, but without oo, and let Ry be
R, together with oo. Similarly, Ny is the set of natural numbers including 0, and Ny is Ng
together with co. Arithmetic is extended to ﬁ_|_ and Ny by x + o0 = 0o + & = oo for all z,
z-00=00-2 =00 forall 2 #0,and 0-00 =00 -0 =0. Subtraction  — y is only defined if
x>y and x # 0.

The set Ry is ordered in the standard way, which yields a dcpo. It is given the Scott
topology. Hence, the open sets of R are (), Ry itself, and all the sets {z € Ry | = > r} for
fixed numbers r < oc. This space is sober. Addition and multiplication as defined above are
continuous.

The subsets Ry, Ng, and Ny are considered as subspaces of Ry. The subspace Ny is
again a sober depo with its Scott topology. The subspaces Ry and Ng are neither sober nor
dcpo’s.

Sometimes, we shall need the split lemma for real numbers and integers.
Lemma 2.8 (Split Lemma)

Let (7;)ier and (s;);es be two families of members of Ry [Ng], where the index sets

I and J are finite, and let R C [ x J be a relation. For 7" C I, we write RT(T) for

{jeJ|FeTl:(i,j)€ R}.

Ifforall T C I, 3 er7i <> jer+(r)s; holds,

then there are numbers ¢;; in Ry [Ny] for ¢ in [ and j in J with

(1) >eqtiy =ri forall iin 1,

(2) Yserti; <s;forall jin J,

(3) if t;; > 0, then (7,7) € R.

Proof: This is essentially the proof of the Splitting Lemma 4.10 of [6] or Lemma 9.2 of [7].
The Max-Flow Min-Cut Theorem 5.1 of [4] is applied to a graph with nodes L (source), 7 in
I,jin J, and T (sink); the index sets I and J are assumed to be disjoint. There are edges
from L to ¢ with capacities r;, from 7 to j with ‘large’ capacity C if (4,7) € R and 0 otherwise,
and from j to T with capacities s;, where (' is a constant which is bigger than the sums of
all occurring numbers. The remainder of the proof is in analogy to [6, 7] and thus omitted.

The Ng-version follows from the integrity assertion of the Max-Flow Min-Cut Theorem: if
all capacities are integers, then the maximal flow has integer values. a

An immediate consequence of the Split Lemma is Hall’s Theorem [9, Theorem 1.1.3].

Theorem 2.9 (Hall’s Theorem)
Let I and J be finite sets, and let R C I x J be a relation.

Ifforall T C I, |T|<|RT(T)| holds,
then there is an injective function j: I — J such that (¢,5(i)) € R for all ¢in [I.

Proof: Let r; =s; =1 forall 2 and j. From the Ng-version of the Split Lemma, there are
numbers ¢;; in Ng. Let j(¢) = jiff ¢;; = 1. O



3 Valuations

In this section, we define valuations and their potential continuity properties. Then, some
operations on valuations are introduced, e.g., addition of two valuations, multiplication by a

real number, restriction and corestriction to an open set.

3.1 Definition and Continuity Properties

A wvaluation on a topological space X is a function v : QX — Ry with the following

properties:
o V() = 0 (strictness).
o Y UUV)+v(UNV)=vU+vV forall opens U and V (modularity).
o vU < vV for all opens U and V with U C V (monotonicity).

Valuations are partially ordered by defining v C ¢/ iff vO < 'O for all O in QX . A valuation
v is bounded if v(X) < oc.

Mostly, we shall consider valuations with an additional continuity condition. There are
several such conditions according to which topology is chosen for Q.X.

(1) A valuation v is Seott continuous iff v : QX — R is continuous. Equivalently, for every
directed family (V;);es of opens, v(U;cr Vi) = Uier vV; holds.
Since every Scott continuous function is monotonic, the condition of monotonicity in the
definition of valuations becomes redundant once we consider Scott continuous valuations.

(2) A valuation v is point continuous iff v : Q,X — Ry is continuous. Equivalently,
v={s € Ry | s > r} is point open for every r in R, or: for every open O and number r
in Ry with #O > r, there is some finite ' C O such that F' C O’ implies vO’ > r.

Since the topology of 2,X is a subset of that of Q,X, we obtain:
Proposition 3.1 Every point continuous valuation is Scott continuous.

Remark: There is a notion of continuity in between point and Scott continuity. It uses
the topology on QX which is generated by the sets O(K) with compact K. A valuation v
is continuous in this sense if for vO > r, there is some compact K C O such that K C O’
implies #O’ > r. This notion of continuity will not be considered in this paper since we did
not find any remarkable properties for it.

3.2 Special Properties of Scott Continuous Valuations

Scott continuous valuations have some special properties which are needed later.

Proposition 3.2 Let X be a topological space with a base B which is closed under binary
intersection. Then every Scott continuous valuation on X is uniquely determined by its

values on members of B.

Proof: Let v be a Scott continuous valuation on X. First we show that the values of v
on finite unions v(B; U---U B,,) of members of B are uniquely determined. This is done by

induction on n.
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Case n = 0: v{) must be 0 by strictness.

Case n + 1: By modularity,

v(BiU---UB,UB 1)+ v(BiNBpp)U---U(B,NBpyy)) = v(B1U---UB,)+vB,4q
holds. If one of the two terms on the right hand side is oo, then v(ByU---U B, U B, 41 ) must
be oo by monotonicity. If they are finite, then the two terms on the left hand side must be
finite as well, and v(By U---U B, U B,,41) is uniquely determined by the other three terms
which are uniquely determined by the induction hypothesis and the general hypothesis.

Arbitrary opens of X are directed unions of finite unions of members of 5. Hence, the values
of v on arbitrary opens are uniquely determined by Scott continuity. a

Lemma 3.3 For every Scott continuous valuation v, there is a closed set C' such that

vO > 0iff O o C.

Proof: Consider the set W of all open sets O with vO = 0. By strictness and modularity,
this set is directed. Let W = [JW. By Scott continuity, vW = 0 holds. Hence, vO = 0 iff
0O C W. Negating both sides, we obtain vO > 0 iff O @ =W. Let C be the closed set =W .O

3.3 Operations on Valuations

In this subsection, we present some basic ways to obtain valuations from other valuations
or from scratch.

(1) The zero function AU.0, which maps every open set to 0, is a bounded valuation. As a
constant function, it has all continuity properties you like; thus, it is point continuous.

(2) For every point z of X, there is a bounded valuation Z, where Z(U)is 1 if 2 € U, and 0
otherwise. Valuations of the form Z are called point valuations. Since @ € U and z C y
implies y € U, « C y implies & C 7.

Every point valuation is point continuous. For, if Z(U) > r, then »r < 1 and z € U.

Choose {2} as the finite set F in the characterization of point continuity.

(3) If r is a constant from R4 and v is a valuation, then r-v is a valuation, where (r-v)(U) =
r-vU. If r < oo and v is bounded, then r - v is bounded.

Since As.r-s: Ry — R, is continuous and compositions of continuous functions are
continuous, we obtain:

e If v is Scott continuous / point continuous, then sois r - v.

(4) If 1 and vy are two valuations on X, then so is v1 + vz, where (v1 +12)(U) = iU + 15U
If both v and vy are bounded, then so is vy + vs.

Since + : Ry x Ry — Ry is continuous and vy + v = (+) o (11 X 12), we obtain:
e If 14 and vy are Scott continuous / point continuous, then so is vy + v5.

(5) Every directed family (v;);er of valuations has a least upper bound, namely the valuation
U;er vi, which is defined by (W;erv;)(U) = Uier v U. Even if all v; are bounded, U;egv;
may be unbounded.

For all open sets W of Ry, (W;erv;)(U) is in W iff 1;(U) in W for some ¢ in . Hence,
(Wierv)~W = Uiervi W. Thus we obtain:

e If all v; are Scott continuous / point continuous, then so is U;cs v;.
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(6)

If f: X — Y is continuous, then every valuation v on X induces a valuation v o f~ on
Y. This operation maps point valuations to point valuations since ¥ o f~ = fx. The

valuation v o f~ is bounded iff v is bounded.

For the continuity properties, we must consider f~ : QY — QX. This function is Scott
continuous. For every z in X and V in QY, f~V € O(z) iff fa € V iff V € O(fz) holds,

whence f7: Q,X — Q,X is continuous as well. Thus, we obtain:
e If v is Scott continuous / point continuous, then sois v o f~.

Let 141 and v be valuations on X, where v is bounded and vy 3O v5 holds. Then vy — v
with (11 — 12)(U) = 11U — 1»U is a bounded strict modular function from QX to R..
We require that vy is bounded to avoid differences involving oco. The condition vy O vy

is needed to ensure that vy — vy yields values in ﬁ_|_.

Even if 14 and v9 are monotonic, the difference 14 — vo may not be monotonic. On
the other hand, monotonicity of the difference is sufficient to derive stronger continuity

results.

Proposition 3.4 Let 14 be bounded and v5 be monotonic so that 4 O v9, and vy — s
is monotonic. Then vy — v is a valuation. If 14 is Scott continuous / point continuous,

then so is v — vy.

Interestingly, this holds without requiring the corresponding kind of continuity for vs.

Proof: For Scott continuity, let (O;);c; be a directed family of open sets. We have to
show (11 — 19)(U;er Oi) = Wier(vi — v2)(0;). The relation ‘>’ follows from monotonicity
of 11 — vy which is part of the hypothesis. For ‘<’, we have to show

VI(U 0;) < Z,|€|I(V1Oi —120;) + Vz(U 0;)

el el

By Scott continuity of v, the left hand side is Ll;c; 11 0;. Fix some ¢ in 1.

1n0; = 1n0; —1r0; +1,0; < Z,|E|I(V1Oi —10;) + Vz(U 0;)

el

holds using monotonicity of v,.
For point continuity, assume 110 — 120 > r. Then 110 > r 4+ 1v,0. By point continuity
of vy, there is a finite ¥ C O such that ¥ C O’ implies 110’ > r + v50. We claim that
F C O also implies (v; — 112)(0') > 7.

(r1 —12)(0") > (n—w)(0Nn0O") (v1 — g is monotonic)
> 1410 —1n(0n0) (FCONO)
> r (v, is monotonic) |

3.4 Restriction and Corestriction of Valuations

Let v be a valuation on X, and let W be an open set of X. The restriction v|w of v to

W is defined by v|w(U) = v(W N U) for every U in QX. This is again a valuation on X. It
is bounded iff »(W') < oo. This holds in particular if v is bounded.

For the continuity conditions, we have to consider the function AU. W N U : QX — QX.

Obviously, it is Scott continuous. For every z in W, W N U is in O(z) iff U is in O(z). For
every ¢ not in W, WNUisin O(z) iff U is in (. Hence, A\U.WNU : QX — Q,X is

continuous. Thus, we obtain:
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o If v is Scott continuous / point continuous, then so is v|w.

For iterated restrictions, the following equations are obvious: (v|p)|v = (¢|v)|r = v|uav.
Furthermore, v|x = v and v|y = 0 holds. If O C W, then v|wO = vO, and if ONW = 0,
then v|ywO = 0. If U and V" are open sets with W N U =W NV, then v|wlU = v|wV.

Let v be a bounded valuation on X, and W an open set of X. The corestriction v|"V of
v to W is defined by v|" = v — v|w. Hence, v|"V(U) = vU — v(U N W). By modularity, this
is equal to (U U W) — vW.

We require v to be bounded in order to avoid problems with undefined differences. Mono-
tonicity of v guarantees v J v|w. Because of v|"V(U) = v(U U W) — vW, monotonicity of
v|" follows from monotonicity of v. Using Prop. 3.4, we obtain:

e If v is a bounded valuation, then so is v|"V.

e If v is in addition Scott continuous / point continuous, then so is v|"V.

As additional properties, we have v|X = v—v|xy =v—v =0and v|’ = v—v|y = v—0 = v.
If O C W, then vYO = v0 —v(ONW) =0,and if ONW = §, then |V O = vO. For two
opens U and V with WU U =W UV, v|"U = v|"V holds. Note that WU U = W UV iff
-WnU=-wnVv.

For iterated corestriction, we claim (v|Y)|Y = v|VYY.  For,
V1Y) =P (VUO)—v|"(V)=v(U UV UO)—vU —v(UUV)4+vU = v|""Y(0).
By the definition of corestriction, restriction and corestriction are related by the equation
v =v|lw +v|" for all open sets W. We call this a partition of v along W.
Restrictions and corestrictions commute with each other: (v|y)|Y = (v|V)|y. For,
Vo]V (0) = v|r(0) = v[p(VNO)=v(UNO)—v(UnVNnO)=v|Y(UNO)=v|"|(0).
We shall use the abbreviation v|}; for v|y|V = v|V|v.

The results of this subsection are summarized in the following theorem.

Theorem 3.5
Restriction v|w Corestriction |
defined by vlw(0) =v(WnO) vIW(0) =vO — v(WnNO)
or vI(0)=v(WUO)-vW
when defined? | always if v is bounded

Dependencies: | WNU=WnV = vyl =vlwV | -WnU=-WnV = vVU ="V

OCwW= vlwO = v0 IO =0

OonNwW=0= |vlwO=0 WO =v0

Whole space: | v|y =v v|X =0

Empty set: vipg=0 vl =v

Meration: | (vlo)ly = (W)l = vloew WD = (V)| = oI
Connections: )Y = )| v=uvlw+v|V

If v is Scott continuous / point continuous, then so are v|y and v|".

4 A Taxonomy of Valuations

In this section, some classes of valuations are defined and their relationships are investigated.
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Figure 1: Classes of valuations

4.1 Some more Classes of Valuations

We already know the classes of Scott continuous, point continuous, and bounded valua-
tions. Here, we define some more classes and consider their relationships.

e Valuations 7 for some ¢ in X are point valuations.

o Finite linear combinations of point valuations 7y - 7y + -+ + 7, - T,, with r; < oo are

called finite.
e A Scott continuous valuation v with Sv = {0, 1} is called primitive.

e A Scott continuous valuation v whose image Sv is finite and does not contain oo is
called simple.

The classes of finite and of simple valuations are closed under addition, multiplication
by a finite scalar, restriction, and corestriction. The inclusions among the various classes
are depicted in Figure 1. Most of the inclusions are obvious or were already handled. Point
continuity of simple valuations is proved below. In Section 5, finite valuations are studied in
greater detail.

4.2 Simple and Primitive Valuations

There are various further relationships among the valuation classes. We start with the
left part of the middle line of Figure 1.

Theorem 4.1

A valuation is simple iff it is a finite linear combination of primitive valuations.

Proof: Finite linear combinations of primitive valuations are obviously simple. For the
opposite direction, we use induction on the size of the finite set Sv for simple valuations v.
Because of strictness, Sv always contains 0.

If Sy = {0}, then v is the empty sum of primitive valuations. Otherwise, let r be the least
non-zero element of Sv, and let W be some open with vW = r. Since v is bounded and
monotonic, it can be restricted and corestricted to W, and we obtain v = v|w +v|". Because
of the minimality of 7, the valuation v|w with v|w(U) = v(U N W) assumes the two values
0 and 7 only. Thus 7 = 1/7 - v|w is a well-defined primitive valuation, and v = -7 + v|".
The proof is completed once we have shown that S(v|") is strictly smaller than Sv. The
following argument for showing this is taken from a proof in [8].
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Let f : S(v|") — Ry be defined by fs = r +s. If s = y|"(U) for some U, then
s=v(UUW)—vW. Since vW =r, r4+s = v(UUW) € Sv follows. Hence, we obtain
[ %(1/|W) — Qwv. This function is injective, but not surjective. For, 0 is in Sv, but
fs>r>0forall sin S(¢|"). Thus, S(v|") is strictly smaller than Jwv. a

Using this characterization of simple valuations, we can show:
Proposition 4.2 Every simple valuation is point continuous.
Proof: Since the class of point continuous valuations is closed under finite linear combi-

nations, we only need to show that primitive valuations are point continuous.

Let © be primitive. By Lemma 3.3, there is a closed set C' such that 7O > 0 iff O @ C.
Because of primitivity, 7O > 0 is equivalent to 7O = 1.

Let 7O > r for some open O and r in Ry. Then r < 1 and 7O = 1. Let 2 be a point of
ONC. Then {xz} is a finite subset of O, and {z} C O implies O’ ® C', whence 7O’ =1 > r.O

4.3 Valuations on Sober Spaces

In case of sober spaces, some of the classes of Figure 1 coincide. We start with the
following lemma about primitive valuations.

Lemma 4.3 There is a one-to-one correspondence between primitive valuations = on X
and prime filters O of open sets. The correspondence is defined by 71O = 1 iff O € O and
70 = 0iff O € O. Point valuations Z correspond to prime filters O(z).

Proof: Arbitrary functions 7 : QX — {0, 1} are in one-to-one correspondence with subsets
O of QX by O € O iff 7O = 1. The function 7 assumes the value 1 iff O contains X, is Scott
continuous iff O is Scott open in (QX, C), strict iff O does not contain (), and modular iff O
is closed under binary intersection and inaccessible by binary union. a

From this lemma, it is obvious that there are close connections to sobriety.

Theorem 4.4 For a 7g-space X, the following statements are equivalent:
(1) X is sober.
(2) Every primitive valuation of X is a point valuation.
(3) Every simple valuation on X is finite.

(4) Every primitive valuation on X is finite.

Proof:

(1) = (2): Using Lemma 4.3; in a sober space, every prime filter O is the neighborhood filter
O(z) of some point z.

(2) = (3): By Theorem 4.1 and part (2), every simple valuation is a finite linear combination
of point valuations, i.e., finite.

(3) = (4): Every primitive valuation is simple.

(4) = (1): Let O be a prime filter. By Lemma 4.3, there is a primitive valuation = with
7O = 1iff O € O. By assumption, 7 is finite, whence 7 = }",.; 7; - Z; for some finite
index set I. Since X € O, or 7(X) = 1, there is some ¢ in [ with r; > 0. We claim
O = O(x;).
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If ; in O, then 7O > r; > 0, whence 70 = 1, i.e., O € O. For the opposite direction,
let O € O and assume z; ¢ O. Then 1 = (X)) > r; + 7(O) = r; + 1 > 1, which is
impossible. a

4.4 Valuations on Locally Finitary Spaces

A subset F of a space X is finitary iff ¥ = TFE for some finite set £. The space X is
locally finitary iff for every point = in X and open U of X with z € U, there are a finitary
set F and an open V such that z € V C F C U.

Since finitary sets are compact, every locally finitary space is locally compact. Every
continuous dcpo (with its Scott topology) is locally finitary. For, if « in U, there is some
y < x with y in U, whence z € fty C Ty C U. (We do not include the definitions of
continuous dcpo’s and of compactness and local compactness because they are not needed in
this paper.) A locally finitary 7;-space is discrete.

Theorem 4.5

Every Scott continuous valuation on a locally finitary space is point continuous.

Proof: Let v be a Scott continuous valuation and assume vU > r for some open U
and r < oo. Let V be the set of all open sets V such that there is a finitary set I’ with
V C F CU. Since the union of two open / finitary sets is again so, V is directed. Because
of local finitariness, the union of V is U. Since v is Scott continuous, there is some V in V
such that vV > r. Let E be a finite set with V C TE CU. If £ C O’, then V C O, whence
vO' > r. o

Corollary 4.6

On a continuous dcpo, every Scott continuous valuation is point continuous.

In general, the notions of point continuity and Scott continuity differ. For instance, the
length or Lebesgue measure on the unit interval of the reals with the standard Hausdorff

topology induces a bounded Scott continuous valuation which is not point continuous.

4.5 Approximation by Bounded Valuations

Every valuation can be approximated by bounded valuations.

Theorem 4.7 Every Scott continuous / point continuous valuation can be obtained as
a directed join of bounded Scott continuous / point continuous valuations.

Proof: Let v be a Scott continuous valuation. Let @®(v) be the set of all opens O with
vO < oo, and let C' be =[J®(v), a closed set. For V in ®(v), F Cg, C, and n € Ny, let
VEn = Vv + 2 sepn - Z. Since vy Fn(X) = v(V)+ n-|F|, this is a bounded valuation. If v
is point continuous, then so is vy, since this property is enjoyed by point valuations, and
preserved by restriction to open sets, addition, and multiplication by finite numbers.

Let D ={vy ., |V € ®(v), F Cg, C, n € Ng}. This set is not empty since it contains vp g o,
and directed, since vy, F, », and vy, f, n, are bounded by vv,uv, FyuF, nyun,- Let v/ = U D.
We claim v/ = v.
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If OwC,let 2 bein ONC. Then 'O > (n-2)(0) = n for all n in Ny, whence 'O = .
On the other hand, if vO were finite, then O C |J®(rv) = =C in contradiction to O @ C'.

If O CU®(v), then O =J{ONV |V € &(v)}. By modularity, ®(v) is directed.

vO = Uyeapyr(ONV) (vis Scott continuous)
Uvesw) vIv(O)
Uy+epv™(0) (v Fn(0) = v|v(0))
= 0 O

5 Finite Valuations

In this section, we consider the finite valuations in greater detail. We introduce a standard
representation by finite point densities, and characterize equality and order of the valuations
in terms of the representing point densities.

5.1 Representing Finite Valuations by Point Densities

A valuation v on a space X is finite if it is a finite linear combination of point valuations,
e, v=r-27+---+ 7, -7, where 0 < r; < oo and z; in X. This representation is
not unique since summands may be permuted, summands with coefficient 0 may be omitted,
and two summands with the same point may be combined into one. These three kinds of
ambiguities can be avoided by writing v = ) <y s - where s, € Ry with s, = 0 for all
but a finite number of z. Hence, v can be represented by a function z — s,. We call such
functions point densities.

A finite point density or shortly density on a space X is a function A : X — R, whose
support SA = {x € X | Az > 0} is finite. A density need not be continuous or even monotonic
in any sense. We are interested in the finite valuation A* = 3 v Az -7 = 3 g4 Az -7
induced by the point density A, and in criteria for equality A* = B* and order A* C B* on
valuations stated in terms of the representing point densities A and B.

5.2 Finite Point Densities and their Action on Subsets

A density A is below a density B — A < B — iff for all z in X, Az < Bz holds. Given a
density A on X and an arbitrary subset 5 of X, we define A[S] =37 5 Az =3 c5ng4 A2
Since $A is finite and all Az are finite, A[X] and thus all A[S] are finite. For the special
case of an open set O, A[O] = A*(O) holds, where A* =3~ v Az -7 is the finite valuation
defined above.

The elementary properties of the notion A[S] are as follows:

Proposition 5.1 For all finite point densities A on X and subsets S and T of X:
(1) A[] = 0.
(2) It SNT =0, then A[SUT] = A[S]+ A[T].
(3) A[SUT]+ A[SNT] = A[S]+ A[T].
(4) If D is a directed set of subsets of X, then A[JD] = Usep A[S].
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(5) If D is D-directed, then A[ D] = Mgep A[S].
Proof: From the definition of A[S], it is not difficult to prove (1), (2), and (4).

Property (3) follows from (2) because of the following disjoint partitions: S = (S\T)U(SNT),
T=(T\S)usSnT),SuT =(S\T)uT\s)ulnt).
Property (5) follows from (4) because of A[S] = A[X]— A[X \ 5] for all S in D. 0

Because of parts (1), (3), and (4) of the proposition, we see that every finite valuation
v = A* can be extended to a strict modular Scott continuous function to Ry defined on
arbitrary subsets of X. Because of part (5), this extended function is even a measure. Hence,
finite valuations can be extended to measures which are defined not only on the Borel sets,
but on all subsets of X. Note that this extension is not unique if v = A* = B* for two
different point densities A and B. In Subsection 5.4, we shall see that this is impossible in a
To-space.

5.3 Operations on Densities

The zero density 0 is the function Az.0. Obviously, 0[.5] = 0 holds for all $ C X, whence
0* is the zero valuation 0.

The sum A + B of two densities A and B is defined pointwise: (A + B)z = Az + Bu.
Obviously, (A+ B)[S] = A[S]+ B[S] holds for all subsets S of X, whence (A+ B)* = A*+ B*.

The product r - A of a density A by a factor r in Ry is defined by (r - A)z = r - Az.
Obviously, (r- A)[S] = r- A[S] holds for all subsets S of X, whence (r- A)* =r- A*.

For every point ., there is a density A, with A,u = 1 if v = z, and = 0 otherwise.
Obviously, A,[S] =1 holdsif z € §,and =0if 2 € 5. Thus, (A,)* is the point valuation Z.

The restriction Alw of a density A to an open set W is defined by (Alw )z = Az if «
in W, and = 0 otherwise. Obviously, (A|w)[S] = A[W N 5] holds for all S C X, whence
(Alw)" = (A")|w.

The corestriction A|" of a density A to an open set W is defined by (A|"W)z = Az if x
not in W, and = 0 otherwise. Obviously, (A|")[S] = A[-W N 5] holds for all § C X. Since
S is the disjoint union of W N S and =W N S, (A|"W)[S] = A[S] — A[W n §] follows. Thus,
(A]")* = (4%)]" holds.

As a consequence of these results, we see that the class of finite valuations on a space X
is closed under addition, multiplication by scalars, restriction and corestriction.

If f: X — Y is continuous, and v = };c; ;- 7; is a finite valuation on X, then vo f~ is a
finite valuation on Y, namely vo f~ =) .c;r; fw\z In terms of point densities, A*o f~ = B*

holds where By =3 ¢\ Az.

5.4 Uniqueness of Representation

In this subsection, we show that two different densities cannot represent the same valua-
tion. We start with some auxiliary properties.

Proposition 5.2 If A is a density, and 5 an upper set in a space X, then A[S] =
M{A*(0) | O open 2 S}.
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Proof: By Prop. 5.1 (5), since 5 = (p55O. O

Lemma 5.3 Let X be a 7p-space, A a density on X, and 2 a point of X. Then
Az =TH{A™(0) |2 € 0 € QX} -TI{A™(0) | 0 € QX, Te CO U {a}}.
Proof: Since Ta is the disjoint union of {z} and Tz \ {z}, we obtain A[Tz] = A[{z}] +
A[Tz \ {z}] by Prop. 5.1 (2). Hence, Az = A[Tz] — A[Tz \ {=}].
The two sets Ta and Ta \ {2} are upper sets; the latter because of the 7y property. Thus,

Prop. 5.2 can be applied. For an open set O, Ta C O holds iff € O, and Ta \ {2} C O iff
Tz COU{a}. 0

Now we can prove the uniqueness of representation.
Theorem 5.4 For two densities A and B in a 7g-space, A* = B* implies A = B.

Proof: Forevery z in X, Ax and Bz can be expressed in terms of A* = B* by the formula
of Lemma 5.3. Thus, Az and Ba are equal. a

Corollary 5.5 For every finite valuation v on a 7p-space, there is a unique finite point
density A such that v = A*.

The 7y property is really needed. Consider the space X = {a, b} where ) and X are the
only open sets. The finite point densities A with Ae = 1 and Ab = 0, and B with Ba =0
and Bb = 1 are different, but induce the same valuation v with v(0) = 0 and v(X) = 1.

5.5 The Valuation Order in terms of Densities

Our goal in this subsection is to find a criterion for A* C B* in terms of the finite point
densities A and B.

Theorem 5.6 For two finite point densities A and B on a space X, the following state-
ments are equivalent:

(1) A*C B%;

(2) A[U] < B[U] for all opens sets U;
(3) A[U] < B[U] for all upper sets U;
(4) A[F] < B[1F] for all finite sets I
(

(

there are numbers ¢, in Ry for 2 in $A and y € $B with
(a) > yesB loy = Az for all z in $A,

(b) X pesatey < By for all y in $B,

(c)if tyy > 0, then 2 C y.

(1) = (2) by definition.

(2) = (3) : B[U] = Noco) B[O] holds by Prop. 5.2. For every such O, B[O] > A[O] > A[U]
holds by (2), whence B[U] > A[U].

(3) = (4) : TF is an upper set. Hence, A[}] < A[TF] < B[TF].

(1) = (50 Soer Ae = AIT] < BUT) = 5 ceprity B
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(5) = (6): We apply the Split Lemma 2.8 with [ = $A, J = $B, and (z,y) € Riff 2 C y,
whence RY(T)={yeJ|Jo €T :2 Cy}=$BN1T.

(6)=(1): A Yresa AT

er$A ZyE$B Loy

er$A ZyE$B Loy

Zy€$B ZxE$A Loy -

Zy€$B By - g
B*

IA= 1l
=)

@) @)

IN

!

The relation ‘<’ holds, since tzy > 0 implies 2 C y, whence 2 C . a

6 Spaces of Valuations

In this section, we define various topological spaces of valuations and study their rela-
tionship.

Let VX be the set of all Scott continuous valuations on X, V, X the set of all point
continuous valuations, and Vy X the set of finite valuations. We topologize these sets as
subspaces of the pointwise function space [QX — R4],. Thus, the topology of VX is
generated by the subbasic opens (U > r) = {v € VX | vU > r} where U ranges over the
opens of X and r ranges over Ry with 0 < 7 < oc. The order defined by this topology is
v C vV iff vO < 'O for all opens O.

In general, continuous operations on a space Y can be lifted to continuous operations on
pointwise function spaces [X — Y],. Hence, addition 4+ : VX xVX — VX and multiplication
iRy x VX — VX are continuous.

The function s : X — VX with sz = Z is continuous. For, s™(U >r) = U if r < 1, and
= () otherwise. This also shows that s~ is surjective, whence s is a topological embedding
for Tg-spaces X.

Every continuous function f : X — Y induces a function Vf : VX — VY where
Vf(v) =vo f~. The function Vf is linear w.r.t. addition and scalar multiplication of V.X. It
is continuous since Vf(v) € (V > r)iff v € (f~V > r). Thus, (Vf)™(V >r) = (f7V >r).
From this equation, we see that (Vf)~ is surjective if f~ is surjective. Hence, Vf is a
topological embedding if f is an embedding.

The operation V has functorial properties, i.e., Vid = id and V(go f) = VgoV f. Because
of Vf () = fa, we obtain Vfos =so f, i.e., the operation s is ‘natural’ w.r.t. the functor V.

Let us now consider the topological properties of the various spaces.

Proposition 6.1
For every space X, the spaces VX and V, X are sober, and V; X is a 7p-space.

Proof: The space VX is a subspace of the pointwise function space F' = [Q.X — Ry]p.
We show that it can be described as an equalizer.
Let J = {0}UQX x QX. For every j in .J, we define functions f; and g; : ' — Ry as follows:
Jo(v) = v go(v) =0
Joviv)=v(UUV)4+v(UNV) guv(v)=vU + vV
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All these functions are continuous, since for fixed U in QX, Av. vU : F — R is continuous,
and 4+ : Ry x Ry — Ry is continuous. By tupling, we obtain continuous functions f, g :
F — (R4)7 such that f(v) = g(v) iff v is strict and modular, i.e., in VX.

Since Ry is sober, the pointwise function space F is sober, whence its equalizer subspace VX
is sober. For V,, X, we start with /” = [Q,X — Ry],. The space Vt X is 75 as a subspace of
Vp X. ]

Now, we come to one of the main results of this paper: For every space X, V, X is
the sobrification of V¢ X. As defined in Subsection 2.12, we have to prove: For every point
continuous valuation v and open set O of V;, X with v in O, there is a finite valuation ¢ C v
with ¢ in . The proof of this statement is structured into several parts. The results of these

parts are presented as auxiliary lemmas.

The first lemma contains the step from arbitrary to bounded valuations.

Lemma 6.2 For every point continuous valuation v and open set O of V, X with v in
O, there is a bounded point continuous valuation v/ C v with ¢/ in O.

Proof: By Theorem 4.7, v is a directed join of bounded point continuous valuations. In a
sober space such as V|, X, every open set is Scott open. Hence, there is some bounded point
continuous valuation v’ C v with v/ in O. a

The next lemma deals with the step from bounded to finite valuations in a quite special case.

Lemma 6.3 Let v be a bounded point continuous valuation with vW > r for some open

set W and real number r. Then there is a finite valuation ¢ C v with W > r.

Proof: Choose a real number 7’ such that vW > ¢/ > r. Since v is point continuous, there
is a finite set F' = {z1, ..., ,} C W such that F C O implies O > ' for all open sets O.
Since vf) = 0, n cannot be 0. Let ¢ = T/T_T For every point x;, choose an open set U; such
that z; € U; and vU; < € + Mosg, vO. We also need the unions V; = U;‘:1 U; for 0 <1 < n;

in particular, Vo = 0.

Using restriction and corestriction, for every i with 1 <i < n, v|Vi=1 = p|Vi=1 |y, + 0|V |V =
1/|Ei‘1 + |V Let v; = l/|gii_1. Starting from v = |0, we obtain by iteration v = (37, v;) +
v|¥». On the other hand, v = v|y, + v|"» holds, whence >°%, v; = vly,.

Let a; = v;(X) and b; = 0 U (a; — €). With these numbers, let ¢ = 3", b; - ;.

To prove oW > r, we first compute -7 a; = >°°, vi(X) = vy, (X) = v(V,) > 7 since
F CV,. Since all z; are in W, we obtain oW =311 b; > > " (a; —€) => " ja;,—n-€>
= =r)=r.

To prove ¢ E v, note that vO > 7" v,0 > 37, co 0 and 9O = 37, o b;. Hence, it
suffices to show 1,0 > b; for all ¢ with z; € O. By definition, ;0 = v(ONU;)—v(ONU;NV;_1)
holds. Since z; in O N U;, we obtain v(O N U;) > vU; — ¢ by the choice of U;. Thus,
v,O >vU;, —e—-v(U;NViy) = (X)) — € = a; — e. Since 1,0 > 0 also holds, 1,0 > b;
follows. O

The next lemma generalizes Lemma 6.3 from one open set W to any finite number of
open sets O;.
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Lemma 6.4 Let v be a bounded point continuous valuation with vO; > r; for some open
sets O, ..., O, and real numbers rq, ..., r,. Then there is a finite valuation ¢ C v with
©00; > r; for all 7 with 1 <12 < n.

Proof: The valuation v can be partitioned along Oy into v = v|g, + v|°1. Both parts can
be partitioned along O; into v|o, = v|o,no, + 1/|8f and v|9 = 1/|8; + v|91Y9%2 | Tterating
this process, we obtain v = > pvr where T ranges over the subsets of [ = {1, ..., n} and
vy = l/|g§ with Ur = (Y;er O; and Vi = UieI\T 0;. By construction, vyUr = vy X holds.

If ¢in T', then Uy C O;, whence vyO; = vrX. If t not in T', then O; C Vr, whence v70; = 0.
Thus, r; < vO; = 7 vrO; = Y 75, v7X. Choose some real number p with 0 < p < 1 such
that 7; < p - (375, v7X) still holds for all ¢. Let g7 = p- vy X. Then } 7. g7 > r; for all 4.

If v X # 0, then v7pUr = v X > qr. By Lemma 6.3, there is a finite valuation @7 C vp
such that o7 Ur > gr. If yp X = 0, then gr = 0, and we set 7 = 0. In both cases, we obtain
a finite 7 C vy such that opUr > qr.

Let ¢ = > 7 7. Thisis a finite valuation below v. For all i, ¢O; = > 7 o10; > > r5, 07U >
>_73;9T > 7; holds. O
With these lemmas, we can now prove:

Theorem 6.5 For every space X, V, X is the sobrification of V; X.

Proof: Let v bein V, X and O in Q(\, X ) with v € O. By Lemma 6.2, there is a bounded
v C v with v/ € O.

Using the subbase of V,, X', we have v/ € ;,c;(O; > r;) C O for some finite I, open sets O;
of X, and r; in Ry with 0 < r; < oo. From Lemma 6.4, we obtain a finite ¢ C v/ with
? € Nier(0i > 1) € O. M

7 Universal Properties

In the sequel, we look for universal properties of the valuation spaces. We shall prove
that V¢ X is the free locally convex 7y-cone, and V,, X is the free locally convex sober cone.
We did not find a universal property for V.X.

7.1 Cones

A cone or Ry-module is an algebraic structure (M, 4, 0, -) where + : M x M — M is a
commutative associative operation with neutral element 0 € M, and - : Ry x M — M is an

operation satisfying the module (or vector space) axioms:

r-0 =0 re(mi4mg) = Tomy 47 me
0-m =0 (r4+s)-m =r-m+s-m
1-m =m (r-s)-m = r-(s-m)

A topological cone is a cone with a topology such that ‘+’ and ‘-” are continuous if Ry
is given the Scott topology. Often, we shall omit the word ‘topological’ if there is already a
topological notion around such as ‘sober’.
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Homomorphisms between cones are linear functions, where linearity means f(m 4 m’) =
fm+ fm’ and f(r-m) = r- fm as usual. Homomorphisms between topological cones are
continuous linear functions.

If (M;)ier is a family of (topological) cones, then the product [[;c; M; is a (topological)
cone with (mi)ie[ + (mg)ie[ = (mZ + m;)iej, 0= (Oi)ieb and r - (mi)ie[ = (7‘ . mi)ie[.

In every topological cone, 0 is the least element since continuous functions are monotonic,
whence 0 = 0-m C 1-m = m holds for all m in M. Thus, non-trivial topological cones
cannot be 7; spaces.

Standard examples of topological cones are given by powers of Ry or Ry, and linear
subspaces thereof. On the other hand, there are quite strange cones which have nothing to
do with real numbers. Let (L, V, A) be a distributive lattice with least element F and greatest
element T. Definea+b=aVvbforaandbin L,0=F, and for r in R4 and a in L, define
r-a=Fifr =0, and = a otherwise. With these operations, I becomes a cone. If L is
endowed with a topology which makes ‘v’ and ‘-’ continuous, then L is a topological cone. A
suitable topology is the Scott topology if L is a continuous lattice.

7.2 Uniqueness Properties

The notions introduced so far are sufficient to state the uniqueness parts of the universal
properties of Vy and V.

Theorem 7.1 Let X and Y be topological spaces.

1) Every linear function from V¢ X to some cone is uniquely determined by its values on
y quely y
point valuations.

(2) Every continuous linear function from V, X to a Zy-cone is uniquely determined by
its values on point valuations.

(3) Every continuous bilinear function from V, X @ \, Y to a 7y-cone is uniquely deter-
mined by its values on pairs (Z,7) of point valuations. (Bilinear means linear in each
argument if the other one is fixed.)

Proof: Part (1) is obvious since every finite valuation is a finite linear combination of
point valuations. Part (2) follows from part (1) and Prop. 2.3, using the fact that Vj, X is the
sobrification of V¢ X (Theorem 6.5).

Let f; and f; be continuous bilinear functions from V,, X @V, Y to a 7p-cone €' which coincide
on pairs (Z,7). From the functions f;, we derive functions ¢g; : V, X — [Y — (], with
gi(a) = Ay. fi(a,y). By raising the operations of C' to functions, [Y — C], becomes a 7y-cone
again. The functions g; are continuous since they result from f; by currying (Subsection 2.9)
and composition with s = Ay.y. They are also linear, and ¢1(Z) = ¢2(Z) holds for all z in
X by hypothesis. By part (2), g1 = g2 follows, whence fi(a,y) = f2(a,y) holds for all a in
Vp, X and y in Y. Currying f; the other way round yields functions h; : VY — [V, X — C],
with hi(3) = Aa. fi(a, ). Since hy(y) = ho(y) for all y in Y, we can apply part (2) again
and obtain hy = ho, i.e., fi = fo. a

Unfortunately, we do not know whether similar properties hold for V.X, the space of all
Scott continuous valuations on X. We do not even know the answer for the special case that
the target cone is R.
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Problem 1 Are continuous linear functions from VX to R, uniquely determined by
their values on point valuations?

If the answer to this problem is yes, then also the continuous linear functions from VX
to VY are uniquely determined by their values on point valuations. For, the functions

Av. vV : VY — Ry are continuous and linear for every open set V of Y.

7.3 Convexity and Local Convexity

In order to formulate the universal properties for V¢ and V,,, we need some more notions
connected with cones.

In a cone, a convexr combination is a linear combination r - 1 + -+ + 7, - &, whose

coefficients sum up to 1.

A subset S of a cone is convex iff all convex combinations of points of S are back in 5
again. This is equivalent to the condition that 72+ (1 —r)-yisin S for all z, y in S and r
with 0 < r < 1. Intersections of convex sets are convex, hence every subset S of a cone has
a least convex superset, the convex hull con 5. The convex hull can be described as the set
of all convex combinations of points of 5.

Proposition 7.2 Let f: M — M’ be a linear map between two cones.
(1) If S is convex in M’, then f~.S5 is convex in M.
(2) con f75 C f~(con ) holds for all S C M.

Proof:

(1) Let z, ybein f=5. Then r-a+(1—r)-yisin f~5 since f(r-az+(1-7r)-y) =r-fe+(1—7r)-fy
isin 5.

(2) By (1), f~(con ) is a convex superset of f5. O

A topological cone is convez-based if whenever a point z is in an open set U, there
is a convex open set V such that @ € V C U (or: there is an open set V such that
x €V =conV C U). Itis locally conver if whenever a point z is in an open set U,
there is an open set V such that z € V CconV C U.

Clearly, every convex-based cone is locally convex. The two notions are quite similar and
have similar properties. In our proofs, we shall concentrate on local convexity. The reader is
invited to find the corresponding proofs for convex bases.

In both definitions, it suffices to consider open sets U from a subbase §. For, if z is in an
arbitrary open O, then there are opens Uy, ..., U, from § such that z e Uy n---NU, C O.
Thus, x in U; for all ¢, whence there are V; such that x € V; C conV; C U,;. Since ), conV; is
convex, € [; V; Ccon (), Vi) CN;conV; CN); U; C O follows.

The topological cones Ry and Ry are convex-based since all the opens {s | s > 7} are
convex. Also, distributive lattices with the Scott topology are convex-based, since convex
combinations are finite joins ay V ---V @, with n > 0, and open sets are upper sets. For the
moment, we do not have any examples of cones which are not convex-based.

In the sequel, we present three properties of our notions.
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Proposition 7.3 (Products)
If all topological cones M; are convex-based / locally convex, then so is [];c; M;.

Proof: The product M = [];c; M; has a subbase {7;0 | ¢« € 1,0 € QM;}. If x in
7, O, then mz € O. Since M; is locally convex, there is an open V in M; such that
miz € V CconV C O, whence 2 € 77V C 77 (conV) C 77 0O. The projection w; is linear,
whence con; V C 7w (con V') by Prop. 7.2. o

Proposition 7.4 (Linear subspaces) If M and M’ are topological cones, e : M — M’
is a linear topological embedding, and M’ is convex-based / locally convex, then sois M.

Proof: Let 2 in O for some open O of M. Since e is an embedding, O = e~ U holds for
some U € QM'. Thus ex is in U. Since M’ is locally convex, there is an open V in M’
such that ez € V C conV C U, whence z € eV C e (conV) C e~ U. Since ¢ is linear,
cone”V C e (conV) holds by Prop. 7.2. o

From the two propositions above, we may conclude that the spaces VX, V, X, and \y X
are convex-based as linear subspaces of products of R.

Proposition 7.5 (Linear retracts)
If M and M’ are topological cones, e : M — M’ is continuous, and r : M’ — M is linear

and continuous with r o e = id, then local convexity of M’ implies local convexity of M.

Proof: 1If 2 = r(ex) in U where U in QM, then ex € r~U. Because M’ is locally convex,
there is an open V in QM’ such that ex € V C conV C r~U. Hence, x € e~ V. We claim
con(eV)CU.

We show that every convex combination > ¢; - z; of points z; from e~V is in U. Since ex; is
inV,> t;-ex;isin conV Cr~U. Thus, r(3 ¢ -ex;) = > t; - x; is in U. Here, linearity of r
is used. a

The corresponding property for convex-based cones is probably wrong, but we have no
examples. Later, we shall see that the locally convex 7j-cones are exactly the linear retracts
of the convex-based 7y-cones (Theorem 7.7).

7.4 A Universal Property for V;

In this subsection, we present a universal property for the space V¢ X of finite valuations.

Theorem 7.6 Vr X is the free locally convex 7g-cone over X in 7OP, the category of
topological spaces and continuous maps.

This means: V; X is itself a locally convex 7g-cone, and for every continuous function
f: X — M from a topological space X to a locally convex 7g-cone M, there is a unique
continuous linear function f:V X — M with fos = f,i.e., f(7) = fz for all z in X.

Proof: We already know that V¢ X is a convex-based 7g-cone, hence locally convex. The
uniqueness statement is given by Theorem 7.1. We still have to show existence of f.

Every finite valuation ¢ can be written as ) .7, -7 for some finite set " and some numbers
r, with 0 < 7, < oc. By Cor. 5.5, this representation is unique. Hence, f(¢) = Yower Tz fuis
a well-defined element of M. The function f:V X — M defined in this manner is obviously
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linear and satisfies fos = f. The only remaining task is to prove continuity of f. This turns
out to be quite complex.

Let ¢ = Y . cp7s -7 be a member of Vf X where F' is finite and 0 < r, < oo. Let U be
an open set of M, and assume f(¢) € U. Then Y wer Tz fzisin U. Since addition and
multiplication are continuous in M, there are open sets R, of Ry and V, of M such that
Ty € Ry, fo €V, and whenever s, € R, and m, € V;, then ) p s, -m, € U.
Choose numbers 7. > 0 such that r, > 7/ € R,, and applying local convexity of M, choose
open sets W, of M such that fz € W, C conW, C V,, and let O, = f~W,. By continuity
of f, the sets O, are open sets of X with z in O, for all z in F. For every non-empty 7" C F’,
(Uper Oz) > Yer s > Yoper 7 holds. Hence, ¢ is in O = ﬂ@;éTgF<UxeT Or >3 et ™),
which is an open set of Vi X. We have to show that for every ¢ in O, f(#)is in U.
Let b = 3" ce 8y -y bein O. Let R C I x G be the relation given by (z,y) € R iff O, >y,
whence RY(T)={ye G|Jx €T :y € O,} for subsets T of I. Since ¢ is in O,
Yo osi=0(l 00)> >

yERT(T) w€T v€T
holds for all non-empty subsets 7" of I. For T = (), both sides are zero. Thus, ‘>’ instead of
*>" holds for all subsets T" of 1. Applying the Split Lemma 2.8, we obtain numbers #,, € R4
for  in F and y in G such that
(1) X yeq ey = for all @ in F,
(2) > peptey < sy forall yin G,
(3) if ¢z, > 0, then y € O,.
Let le = ZxEF ZyEG tl’y ) g Then

FWY =300 tey) Sy E 3 sy fy = f(4)

yEG zel yEG

using monotonicity of addition and multiplication in M. The valuation ¢’ may alternatively
be written as

=Y e wWhere dp = Y (ty/10) T

el yeGNO,

The coefficients of 1, sum up to 1. Thus, f(3,) is a convex combination of the points fy
where y in G N O,. All these points are in W, whence f(1,) in V, by choice of W,.
Since f(¢') = Y eprh - f(1b:) where 7 in Ry, and f(1b,) in V, it is in U. Since f(4)) is above
F(¥), it is in U as well. O

In Theorem 7.6, local convexity cannot be dispensed with: if M is a topological cone with
the property that identity id : M — M has a continuous linear extension id : Ve M — M,
then M is a linear retract of V¢ M, whence locally convex by Prop. 7.5. As a subspace of
Ve M, it is also 7p.

Theorem 7.6 also leads to a characterization of local convexity.
Theorem 7.7 A Tg-cone is locally convex iff it is a linear retract of a convex-based cone.

Proof: Linear retracts of convex-based cones are locally convex by Prop. 7.5. Conversely,
if M is a locally convex 7g-cone, then identity id : M — M has a continuous linear extension
id: Vg M — M. Thus, M is a linear retract of the convex-based cone Vi M. a

The extension function induced by Theorem 7.6 is continuous.
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Theorem 7.8 For every space X and locally convex 75-cone M, the extension function
E:[X = M, =X K M],, given by Theorem 7.6 is continuous and linear.

Proof: For some ¢ =} pr, -7 in Vf X, continuous function f : X — M, and open set
Uof M, assume Ef € (¢ — U). Then }_ pr, - fzisin U. Asin the proof of Theorem 7.6,
there are open sets R, of Ry and V, of M such that r, € R,, fx € V,, and whenever s,, € R,
and m, € V,, then )~ ps, -m, € U. From fx € V,, we obtain f € (,cp(z — Vo).

If g is in ,ep(x — Vi), then gz € V, for all  in F', whence )~ p 7, - gz isin U. Thus, Eg
is in (¢ — U). This proves continuity of E.

Linearity is meant to be w.r.t. the pointwise operations on [X — M|, and [Vy X i M],. To
prove the equality E(f 4+ ¢g) = Ef + Eg, note that both functions are continuous and linear,
and E(f+g)os= f+¢g = (Ef+ Eg)os holds. The equality follows from the uniqueness
statement of freeness. The second equality E(r - f) = r - Ef is shown by similar arguments.O

Corollary 7.9 For every space X and locally convex 7g-cone M, the function spaces
[X — M], and [V X fin M],, are isomorphic topological cones.

Proof: One isomorphism is given by the function E of Theorem 7.8. The opposite one is
Fr— Fos. a

7.5 A Universal Property for V,

Here, we present a universal property for the space V, X of point continuous valuations.
Theorem 7.10 V,, X is the free locally convex sober cone over X in 7OP.

Proof: We already know that V, X is a convex-based, whence locally convex, sober cone.
Let M be an arbitrary locally convex sober cone, and let f : X — M be continuous. By
Theorem 7.6, there is a unique continuous linear function f*: VW X — M with ffos = f.
By Theorem 6.5, V, X is the sobrification of V¢ X. Hence, by Theorem 2.4, the continuous
function f*: V¢ X — M has a unique continuous extension f : Vp, X — M. Since f extends
f*, fos = f follows. The only thing which remains to be proved is linearity of f.

Let r be a fixed element of Ry. Consider the two functions F,G : V, X — R, with
F(v) = f(r-v) and G(v) = r- f(v). They are continuous and coincide on V¢ X because
of linearity of f*. By Prop. 2.3, F' = G follows.

For addition, consider the two functions F,G : V, X x V, X — Ry with F(v,v') = f(v + v')
and G(v,v') = f(v) + f(v'). They are continuous and coincide on Vf X x V¢ X because of
linearity of f*. By Prop. 2.7, V, X XV, X is the sobrification of Vf X x V; X. By Prop. 2.3,
F = G follows. a

Theorem 7.11 For every space X and locally convex sober cone M, the function E :
(X — M, = [V, X i M], induced by the freeness of V,, X is continuous and linear.

Proof: It is continuous as the composition of the function [X — M], — [V X fin M], of
Theorem 7.8 with a restriction of the function [Vt X — M, — [V, X — M], of Theorem 2.5.
Linearity follows from freeness as in the proof of Theorem 7.8. a
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Corollary 7.12 For every space X and locally convex sober cone M, the three function
spaces [X — M],, Ve X fin M],, and [V, X fin M, are isomorphic topological cones.

In particular, for every space X, the three topological cones [X — Ryl,, [Vi X fin Rylp,

and [V, X fin R, ], are isomorphic.

7.6 Universality for V,, and Tensor Products

In this subsection, we generalize Theorem 7.10 to functions with two arguments which

are separately continuous, i.e., continuous functions f: X ® Y — M.

Theorem 7.13 Let X and Y be two spaces and M a locally convex sober cone. For

every continuous function f: X ®Y — M, there is a unique continuous bilinear function
F:Vp X ®@V,Y — M such that F(Z,y) = f(z,y) holds for all  in X and y in Y.

Proof: Starting from f, we obtain a continuous function f' : X — [Y — M], by cur-
rying (Subsection 2.9). As mentioned in Subsection 2.11, sobriety of M implies sobriety of
[Y — M],. This space is also locally convex as a linear subspace (Prop. 7.4) of a power

(Prop. 7.3) of M.

By Theorem 7.10, there is a unique continuous linear function ¢ : V, X — [V — M],
with ¢(Z) = f'z for all 2 in X. By Theorem 7.11, E : [Y — M], — [\LY by M,
is continuous and linear. Composition of ¢ and E produces a continuous linear function
h: VX — WY by M],. Uncurrying h (Subsection 2.9) yields a continuous function
F:V, X®V,Y — M which is bilinear as required. The behavior on pairs on point valuations

is as wanted:
F(Z,5) = hay = E(g2)) = g2y = fay = f(z,y).
Uniqueness of F' follows from Theorem 7.1 (3). o

8 Integration

Several authors [6, 7, 8] already defined integration of real-valued functions w.r.t. a
valuation. Since they defined integration from scratch, the proofs of its properties are quite
involved. Here, we present a novel definition of integration which is so simple that most
proofs become trivial. (The complexity has not disappeared, though; it is now in the proofs
of Theorems 2.4 and 7.6, which are needed to prove Theorem 7.10).

For every space X, integration will be a function [y : [X — Ry]; ® VX — R4 which is
continuous in the two arguments separately. (If one argument is fixed, then [y is continuous
in the other.)

Note that the function space [X — R.]; is not topologized by the pointwise topology,
but by the Isbell topology which has more open sets (see Subsection 2.10).

The function [y is built from the following pieces:

1. The function Q¢ : [X — Ry]; — [QR4+ — QX], with Qof = f~ is continuous. In
fact, the Isbell topology was chosen to guarantee this.
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2. Using s, we map from [X — Ry]; @ VX to [Q.R, 20 Qs X, @ [Q: X mod R, ], where
the labels at the arrows indicate the properties of the resulting functions. Now, we
can use function composition to reach [Q.R | mod R.], = VR, . Function composition
o[ X =Y, @Y = Z], — [X — Z], is continuous in its two arguments separately.

3. Since R, is a continuous dcpo, it is locally finitary, whence VR = V,, Ry by Theo-

rem 4.5.

4. Ry is a locally convex (even convex-based) sober cone. By Theorem 7.10, identity
id : Ry — Ry can be extended to a continuous linear function id : V, Ry — Ry with
the property id (7) = r for all 7 in R.

Putting all pieces together, we yield a function [y : [X — R4)i @ VX — Ry with
[x(f,v) = id(v o f~) which is continuous in its two arguments separately. Of course, this
function can be restricted to a ‘pointwise’ function [X — R4]i @ V,, X — Ry which is also
continuous in its two arguments separately. This continuity is not destroyed if the Isbell
topology on the real-valued functions is replaced by the smaller pointwise topology. For, the
function Q, : [X — Ry]p, — [QoR4 — Q X, with Q,f = f~ is continuous. Using €, we
map from [X — Ry, ® V, X to [Q,R4 i QX @ [Q,X mod R, ], and composition can
be used to reach [Q, Ry mod Ry, =V, Ry.

Thus, we obtain two variants of integrations with the same definition [y (f, ) = id(vof~),
but different continuity properties; the Isbell variant [y : [X — R4]; ©® VX — Ry, and the
pointwise variant [y : [X — Ry], @V, X — Ry

In the sequel, we derive the essential properties of integration. They hold for both variants
because the defining equations are the same. They are collected in Theorem 8.1 at the end

of this section.

From the construction of the two variants of [y, we know that they are continuous in the
two arguments separately. Since [X — RyJi, [X — R4]p, VX, V, X, and Ry are d-spaces,
they are also Scott continuous in both arguments. Integration is linear in the valuation
argument, since [y(f,v) = id(vo f7), and id is linear. The effect of integration on point

valuations is as follows:

[x(f,2) = d(zo f7) = id(fz) = fa.
A kind of ‘substitution theorem’ is easily proved for continuous functions h : X — Y,
f:Y — R, and valuations v in VX:

Jx(Foh,v) = @(vo(foh)) = @(voh~af) = fy(f,veh)

Our final goal is to show that integration is also linear in its functional argument. If
we only considered point continuous valuations, the proof would be quite easy: Both sides
of the equation [y(f+ g,v) = [x([f,v) + [x(g,v) are continuous and linear in v € V, X.
By Theorem 7.1, it suffices to consider the special case v = Z. In this case, both sides are
fa + gz. The equation [y(r- f,v) =r- [y(f,v) would be handled similarly.

Unfortunately, this elegant proof is not possible in the general case since we do not
have an analogous property for continuous linear functions defined on VX (cf. Problem 1).
Fortunately, there is a way around the problem. Before we can present it, we have to consider
the continuous functions f : X — R a bit closer.
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A continuous function f: X — Ry is simple if its image S f is finite and does not contain
oo. An arbitrary continuous function is the directed join of all the simple functions below it.
Every finite linear combination 7y - ﬁl +oetry, - [/]; of characteristic functions ﬁz of open sets
U; is simple. Conversely, every simple function can be written as such a linear combination.
We need some auxiliary statements for our proof of the linearity of integration in the func-
tional argument.
(1) For rin Ry: [y(r- fov) =71 [y (f,v).
Proof: Let (r-): Ry — Ry be the function defined by (r-)(s) = r-s. Then r- f = (r-)o f.
By the substitution property, we obtain [y (r- f,v) = fEJ,((T')’ vo f7), and by the definition
of integration, r - [x(f,v) = r-id(v o f7) holds. We claim fﬁ+((r-), o) = r-id(o) for all
valuations o in VR = V, R, Since both sides of the equation are linear continuous functions
in o, it suffices by Theorem 7.1 to prove the equation for the special case of point valuations
o = 5 where s in R. In this case, the left hand side is fﬁ+((7‘-), §)=(r-)(s)=r-s, and the
right hand side is r - id(3) = r - s. ]

(2) [x(0,v) =0 where 0(z) = 0 for all z in X.
Proof: By (1), using0=0-0 O

(3) For rin Ry: [y(r+ fiv)=7r-v(X)+ [y ([f.v).

Proof: Apply the same idea as in the proof of (1). Since X = f~(R,), equation (3) is
equivalent to fﬁ+((r—|—),a) =r-o(R4)+1d(o) where 0 = vo f~ in VRy. This equation
holds for all ¢ in VR, since both sides are continuous and linear in o, and fﬁ+((7‘—|—), 5) =
(r+)(s)=r+s,and r-s(Ry) +1d(5) =7 -1+ s. a
(4) If fo = g for all = in the open set W, then [ (f,viw) = [x(g,v|w).

Proof: By hypothesis, W N f~V = W N g~V holds for all V in QR,. By Theorem 3.5,
viw(f~V)=vlw(g~V) follows, whence v|jw o f~ = v|wog™. O
(5) If fa = g for all x in X \ W where W is open, and v is bounded, then [y(f,v|") =

Ix (g, ™).
Proof: The valuation v must be bounded so that the corestriction v|" is well defined. By

hypothesis, =W N f~V = =W N g~V holds for all V in QR,. By Theorem 3.5, 1/|W ofT =

v|" o g~ follows. O

(6) For rin Ry and W in QX, [y(r- W fv)=r W)+ Ix(fv).

Proof: First assume that v is bounded. Then it can be partitioned along W into v =
viw + v|". Since integration is linear in the valuation argument, [y(r - W+ f, v) =
Sx(r- W+ f,vlw) + Sx(r- W + f, v|") holds. Since W(z) = 0 for z in X \ W, the
second summand equals [y (f, v|"") by (5). Since W(z) =1 for 2 in W, the first summand
equals [y (r + f, vlw) by (4). By (3), this is r - v|w(X) + [x(f, ¥|w). Hence, we obtain
rov(W)+ [x(f, vlw) + [x(F, v|"Y) = v (W) + [x(f, v) for the sum.

The equation holds for every valuation v in VX, since integration is Scott continuous in the
valuation argument, and v is a directed join of bounded members of VX by Theorem 4.7. O

(7) fX(Tl'[/]\l—I_""I'fn'ﬁ;vV):Tl'V(Ul)‘|’““|‘7‘n‘l/(Un).
In particular, [y (U, v) = v(U).

- 30 -



Proof: Apply (6) n times, then (2). O
(8) Ix(f+g,v)=[x(f,v)+ [x(g,v)

Proof: First assume that f and g are simple. Since every simple function is a finite linear
combination of characteristic functions of opens, the statement follows from (7).

The equation for general f and g follows, since every continuous function is a directed join
of simple functions, and integration is Scott continuous in the functional argument. O

Summarizing our results, we obtain:

Theorem 8.1
(1) Integration [y : [X — R4]Ji@VX — Ry is continuous in its two arguments separately.

(2) The variant [y : [X — R4], ® V, X — Ry is also continuous in its two arguments

separately.
(3) Integration (in both variants) is Scott continuous in its two arguments.
(4) Integration is linear in both arguments.
(5) For f: X — Ry and z in X, [y(f,2) = fz holds.
(6) fX(ﬁ, v) = v(U) where U is the characteristic function of an open U of X.
(7)

7)Let h : X — Y and f : Y — R, be continuous, and let v be in VX. Then
fX(thv v)= fY(fv voh™).

9 Isomorphic Descriptions

Integration may be used to derive isomorphic descriptions of VX and V, X.

Theorem 9.1 For every space X, the topological cone of Scott continuous valuations on
X, i.e., strict modular Scott continuous functions from QX to Ry, is isomorphic to the
topological cone of linear continuous functions from [X — R,]; to R4 with the pointwise

topology.
VX = [Q.X "' R,), = [X — Ry 2Ry,

Proof: For the proof, let 7 = [X — R4];.

One isomorphism is constructed from integration: Define o : VX — [F i Ry, by a(v) =
Af. [x(f,v). This function has the claimed type since integration is continuous and linear
in its functional argument. The function « itself is linear since integration is linear in its
valuation argument. It is continuous since integration is continuous in its two arguments
separately (see Subsection 2.9).

The inverse isomorphism is defined using characteristic functions: For F'in [F fin Ry]p, let
B(F) = Fox where y : QX — F with xU = U, the characteristic function of U. We first
show that S(F") is a Scott continuous valuation.

o~

o [(F)is strict since F(0) = F(Az.0) = 0 by linearity of F.
e 3(F)is modular since F(f+g)= F(f)+ F(g)and UUV +U NV =0T+ V.
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e B(F)is Scott continuous since both F and y are Scott continuous. F: F — Ry is Scott
continuous since it is continuous and both F and Ry are d-spaces. y : QX — F is
Scott continuous since x in (J;c; O; iff « in O; for some 7 in I, whence x(U;c; O:)(2) =
Uier \(04)(a).

in

The function f§ itself is obviously linear. Since [F — Ry], is a subspace of er]:ﬁ_|_,

~

the function fyr : [F K R.i], — Ry with gy(F) = F(U) is continuous for every fixed
Uin QX. Since [ X med Ry], is a subspace of [[cqy R4, continuity of the function
g F fin Ry, — [QX mod R, ], follows.

At this point, we know that both a and 8 are continuous linear functions. We still have to
show that they are inverse to each other.

For v in VX and U in QX, (av)(U) = (av)(U) = fX(ﬁ,V) = v(U) holds using Theo-
rem 8.1 (6), whence foa =id.

For F in [F Lic Rilp, a(BF)(g) = [x(g,5F) holds for all ¢ in F. Hence, we have to
show [y(g,8F) = F(g) for all g in F. Since both integration and the function F are Scott
continuous, it suffices to show the equation for all simple functions g. Since both integration
and the function F' are linear, and every simple function is a finite linear combination of
characteristic functions, it even suflices to show the equation for all functions U with U in

QX. By Prop. 8.1 (6), fX(ﬁ,ﬁF) = BFU = FU holds as required. O
An analogous theorem can be formulated for point continuous valuations.

Theorem 9.2 For every space X, the topological cone of point continuous valuations
on X, i.e., strict modular continuous functions from Q,X to Ry, is isomorphic to the
topological cone of linear continuous functions from [X — R4], to Ry with the pointwise
topology.

i 1 ~ = 1 lin o
WX = [Q,X = Rilp = [X = Ryfp = Ryl

Proof:  Algebraically, the isomorphisms are the same as in the proof of Theorem 9.1.
The difference is that the ‘pointwise’ version of integration is used. Hence, a defined by
a(v) = Af. [x(f,v) has type V, X — [[X — R4], i R, ], in this case.

For Fin [[X — R4]p fin R ]p, we have to show that S(F) = F o x is point continuous, i.e.,
continuous with type Q,X — Ry. We prove continuity of x : Q,X — [X — R4]p. For z in
Xand Vin QRy, x (e = V)is QX if0€V,0(@)if 0¢V and 1 € V,and 0if 1 € V.

The remainder of the proof of Theorem 9.1 can be taken over unchanged. O

In general, the topology of a pointwise function space [Y — Z], is the least such that
for every y in Y, the function Af. fy : [Y — Z], — Z is continuous. Applying this to
[X — Ry i R.],, we see that its topology is the least such that for every continuous
f: X — Ry, the function A\F. F(f) is continuous. Using the isomorphism a of the proof of
Theorem 9.1, we conclude:

Theorem 9.3 The topology on VX is the least such that for every continuous function
/X — Ry, the function f*:VX — Ry with f*(v) = [y(f,v) is continuous.

This characterizes the topology of VX as a ‘weak topology’. Notice that in contrast to
classical results which look similar, the space R is equipped with the Scott topology instead
of the usual Hausdorff topology.
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10 v as a Kleisli Triple

In this section, we show that the construction V can be seen as the object map of a Kleisli
triple in the category of topological spaces. The main work is already done; all what remains

to do is to define the Kleisli operations and to show that they have the required properties.

For every space X, we need a function s : X — V.X. This function is given by sz = z. It
was already defined in Section 6. There, it was shown that s is continuous, and that it is a
topological embedding of X into VX if X is a Tg-space.

For every two spaces X and Y and every continuous function f : X — VY, we need a
continuous function f:VX — VY. Using integration, f is defined as

f(v) = AV. /X(/\x.fx(V),y).

First, we have to show that f(v) is indeed in VY. It is strict since fz is strict for all z, and
Jx(Az.0, v) = 0. It is modular since fz is modular for all z, and integration is linear in its
left argument. It is Scott continuous since fz, application, A-abstraction, and integration are
Scott continuous.

Second, we have to show continuity of f. For fixed V in QY the function v — f(v)(V)
is continuous since integration is continuous in its right argument. Since VY is a subspace of
the power [[ycqoy R, continuity of f follows.

For s and extension f — f to be part of a Kleisli triple, we have to prove three properties.
(1) Fos= 7

For every point a of X, we compute: f(sa) = AV. [y (Az.fz(V),a) = AV.fa(V) = fa.
(2) s=id:

s(v) = AV, [y (A2 &(V),v) = AV. [x(V,v) = A\V.uV = v
(3) For f: X =VY andg:Y —VZ,gof=go f:

For v in VX and W in QX we have to show

/Y(/\y.gyW, /\V./X(/\x.fxv,l/)) = /X(/\x /Y(/\y.gyW,fx),l/).

The function Ay. gyW is continuous from Y to R,. Generalizing a bit, we even prove

/Y(h,/\V./X(/\x.fo,z/)) - /X(/\x. /Y(h,fx),z/)

for all continuous & : Y — R. Since both sides of the equation are continuous and linear
in h, it suffices to prove the equation for the characteristic functions A~ = O of opens O
of Y. After substituting O for h, both sides of the equation simplify to [y (Az. fzO,v).

This completes the proof that V is the object map of a Kleisli triple in the category of
topological spaces.

Every Kleisli triple induces a functor which in our case is defined by Vf = so f for
continuous f : X — Y. We verify that this induced functor coincides with the functor
defined in Section 6.

STV) = [OestfaV)n = [V = o)

Every extended function f and extension E = Af. f itself are linear. This follows from
the definition of f and linearity of integration in both arguments.
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Next, we show that Kleisli extension E: [X — VY]; — [VX — VY], is continuous. Since
the topology on the right is pointwise, and the topology on VY is pointwise as well, it suffices
to show that for every fixed v in VX and V in QY the function Af.EfvV = Af. [y(Az. faV,v)
is continuous from [X — VY7 to Ry. It is the composition of G : [X — VY], — [X — R4];
with G(f) = Az. faV and H : [X — Ry} — R4 with H(g) = [y(g,v). The latter is
continuous because of the continuity properties of integration. The former is continuous
since G(f) = h o f holds where h(v') = v/(V') is continuous, and composition is separately
continuous w.r.t. the Isbell topologies of the function spaces.

The continuity property E : [X — VY]; — [VX — VY], looks a bit awkward. At least, it
is sufficient to conclude that E is Scott continuous since both function spaces are d-spaces.

From the continuity property of E, we can derive that the functorial mapping V is contin-
uous from [X — Y] to [VX — VY],. For,V = Eo S, where 5(f) =so f, and $ is continuous
from [X — Y; to [X — VY; by separate continuity of composition in the Isbell case.

Finally, we show that the Kleisli triple V cuts down to a Kleisli triple V,, i.e., we prove
that for continuous f: X — VY, Ef maps from V, X to VY.

A priori, Ef restricts to a continuous linear function Ej, f from V, X to VY with E, fos = f.
Since V, Y is a locally convex sober cone, the universal property of V|, X gives us a continuous
linear function f : Vo X — VY — VY with fos = f. By the uniqueness part of the
universal property, E,f and f coincide, whence Epf : Vp X — VY. By universality again,
E, coincides with the function of Theorem 7.11. This shows that it is continuous from
(X — VLY, to Vo X — V,Y],. Thus, E, satisfies a stronger continuity property than
the Kleisli extension E of V. It follows that the functorial mapping V,, is continuous from
[X — Y], to [V, X — \,Y],. Summarizing, we obtain:

Theorem 10.1 Lets: X — VX with sz =% and E: [X — VY]; — [VX i VY], with
EFIV) = [ (e fa(V). ).
Then s is a continuous embedding, E is continuous and linear, and (V,s,E) forms a
Kleisli triple. The induced functorial map is the continuous function V : [X — Y]; —
VX 22 VY], with Vf(v) =vo [~
In the point continuous case, E restricts to E, : [ X — VY], — [\, X i V, Yy, and V to
V, t[X — V] — Vo X 2V, Y],

11 Products of Valuations

In this section, we consider the problem to derive a product valuation on X XY or X ® Y
from given valuations o on X and 8 on Y.

11.1 Topological Product

Our first problem is to derive a continuous product operation x : VX x VY — V(X xY)
whose result is defined on the open sets of the topological product space.

As in [10], we start with a function t : X x VY — V(X x Y).
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Proposition 11.1 Let t : X x VY — V(X x Y) be a function defined by t(z,3) =
AW. B(W;) where W, = (Ay. (z,y))™W = {y € Y | (2,y) € W}. The func-
tion t is continuous, linear in the second argument, and satisfies t(z,y) = (w/,\y) and
t(a, ) (U x V)= Uz -3V,

Proof: The result t(z, ) = fo (Ay.(z,y))” is indeed a valuation on X x Y. Linearity in

the valuation argument is obvious.

By definition, t(z,y)(W) = y(W,) holds. Since y € W, iff (z,y) € W, this equals (;,\y)(W)

For the last equation, consider (U x V'),). If 2 in U, then Uz = 1 and (U x V), = V holds,

and if z is not in U, then Uz =0 and (U x V), is empty. In any case, 5((U xV),) is Uz -pV.

For continuity of t, it suffices to show that all functions ty : X x VY — Ry with ty(z,3) =

GW, are continuous. Let ty(z,8) > r, i.e., W, > r. By Scott continuity of 3, the set

V={V e QY | BV > r}is Scott open. By assumption, W, is in V.

For every y in Wy, (z,y) is in W. By definition of the product topology, there are open

sets U, of X and V, of Y such that (z,y) € Uy, x V, C W. From y € V, for all y in W,

W C Uyew, Vy follows. Since W, is in V, so is the union. By Scott continuity of V, there is

some finite subset G/ of W, such that V' = J,cq Vy is in V. Let U’ = N,eq Uy Then z € U’

and SV’ > r, whence (z,3) € U' x (V' > r), an open set of X x VY.

Let (2, 3") be amember of U’ x (V' > r). From U, xV, C W forall yin G C W, U'xV' CW

follows. Hence, {2’} x V! C W or V! C W,. Thus, /(W) > 'V’ > r holds. O

Of course, there is a dual function, i.e., a continuous function t' : VX x Y — V(X xY)
with dual properties. A continuous product X : VX x VY — V(X xY) can then be obtained
by composing an instance of t, namely t : VX x VY — V(VX x Y') with the Kleisli-extension
t’ of t’. Hence

(ax B)(W) = t(t(a, 5))(W)
= NxxyAw9). (v, 9) (W), ta, 5))
= Nxxy (M@ 9)-Y'(v,)(W), B o (Ay. (@, y))7)
= [y Ay t'(a,y)(W), 5)
where the substitution property Theorem 8.1 (7) was used for the last equality. Thus
(ax YU x V)= fy(Ay.t'(a,y)(U x V), )
= fy(Ay- al - ‘73/75)
=alU - [y (\y. Vy,ﬁ)
=alU-pVv
Since the rectangles U x V form a base of the topology of X x Y, Prop. 3.2 implies that the
product valuation a x 3 is uniquely determined by the property (a x ) (U x V) = aU - V.
This uniqueness can be used to derive some further properties. All facts are collected in the

following theorem.

Theorem 11.2 For two spaces X and Y, there is a unique function x : VX x VY —
V(X xY) with the property (a x S)(U x V) =aU -8V forall ain VX, fin VY, U in
QX,and V in QY. This function has the following properties:

(1) It is continuous.

(2) It is Scott continuous.
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(3) It is linear in each argument.

(4) z2xy= (w/,\y) holds for all  in X and y in Y.

(5) The product is symmetric: For all @ in VX and g in VY, § X a = Vg(a x ) holds
where g : X x Y — Y x X is defined by ¢(z,y) = (y, z).

(6) The product is associative: For all @ in VX, fin VY, and vin VZ, a X (f X 7) =
Vh((aw x B) X v) holds where h : (X xY) x Z — X x (Y X Z) is defined by
h((2,y),2) = (z,(y, 2)).

The function ‘X’ can be restricted to a continuous function x : Vo X xV, Y — V, (X xY).

Proof: Existence, uniqueness, and continuity have already been shown. Scott continuity

follows from continuity. One of the equalities belonging to linearity is the following:

(a1 +az)x 3 = (a1 X §) + (az X )
Both sides of the equation are valuations on X X Y. By Prop. 3.2, they are equal if they

coincide on all open rectangles U x V. The computation

(a1 +a2) x YU x V) = (U + axU) - pV

((a1 X )+ (ag x B)WU x V) =oaqU -V + axU - gV
shows that the two sides are equal. All the remaining equalities in the theorem can be shown
by similar arguments. The restriction to point continuous valuations works since t, t’, and

the Kleisli extension respect point continuity. a

11.2 Double Integral and Product Valuation

In this subsection, we prove that a continuous function f : X xY — R can be integrated
in three different ways, yielding the same result. If a is a Scott continuous valuation on X and
[ a Scott continuous valuation on Y, then f can be integrated w.r.t. the product valuation:
Jx vy (f,ax 3). Alternatively, we may form the double integrals [y(Az. [i-(Ay. f(z,y),5),a)
and [y (Ay. [y(Az. f(2,y),@),3). We shall prove that the double integrals are well defined,

and all three integrals yield the same value.

Consider the first double integral. For fixed , the function Ay. f(z,y) is continuous from
Y to Ry. (For this, separate continuity of f,i.e., f : X®Y — Ry, would suffice.) Hence, the
inner integral is well defined. We also have to show that Az. [,-(Ay. f(z,y), ) is continuous.
This function can be written as composition of F': X — [V — Ry ]; with Fz = Ay. f(z,y) and
G : Y — Ry)i — Ry with G(h) = [-(h,8). Function F is continuous as the currification
of f (Subsection 2.10). Function G is continuous since [y : [V — R4]i @ VY — Ry is
continuous. Thus, the outer integral in the first double integral is defined as well. The

second double integral is handled analogously.

Our first step towards the main theorem is to derive a representation of the product

valuation by double integrals.

Proposition 11.3 For two spaces X and Y, ain VX, and § in VY
ax fB=AWeQUX xY)). [y(r. fy(\y. W(z,y),5),a)
S AW € QX X V). fy (A [x(Az. W(z,5),a), 6)
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Proof: The double integrals are well defined since for opens W of X XY, the characteristic
function W : X x Y — R, is continuous. Because of linearity and Scott continuity of
integration, all three terms in the proposition denote Scott continuous valuations on X x Y.
By Prop. 3.2, their equality can be shown by applying them to open rectangles U x V. By
Theorem 11.2, (o x B)(U x V) is aU - V. We may compute:

SxQa. [y (g UxV(a,y),8),0) = [x(\e. fy(Ay. Uz -Vy, §),a)
= [x(Ax. U - Sy (Ay. ‘73/75)704)
= Jx( .[zx-ﬁv,a)
= [y(Ae.Uz,a)-pV
=alU - gV
The third term yields the same result when applied to U x V. Hence, all three terms are

&

AL
AL

equal. a
The main theorem about double integrals is as follows:
Theorem 11.4 For spaces X and Y, ain VX, 8 in VY, and continuous f : X xY — Ry :
fXxY(fva X B)= fX(’\x' fY(’\y' f(z.y),8), @)
= fY(Ay fX(Aw f(xv y)v Oé), ﬁ)
Proof: By Scott continuity and linearity of integration, it suffices to consider the case where

f is the characteristic function W of an open W of X Y. Since fXXY(W7 axf3)=(axpB)(W),
the theorem directly follows from Prop. 11.3. a

11.3 Tensor Product

Next, we define a tensor product operation @ : V, X @ V, Y =V, (X ®Y) whose result
is defined on the open sets of the tensor product space. We were not able to generalize the
tensor product to Scott continuous valuations which are not point continuous.

Theorem 11.5 For two spaces X and Y, there is a uniqug\continuous bilinear function
@ : Vo X @V,Y — V, (X ®Y) with the property 2@y = (2,y) for all 2 in X and y in Y.
This function has the following properties:

(1) It is Scott continuous.
(2) (a@p)UxV)=alU-pV holds for all e in V, X, fin VY, U in QX, and V in QY.

(3) It is symmetric: For all @ in V[, X and §in VY, 8 ® a = V,g(a ® () holds where
g: XY =Y @ X is defined by g(z,y) = (y,2).

(4) It is associative: For arin V,, X, fin VY, and vin V, Z, a®@(F®@7) = Vo M((a®@5)@7)
holds where h: (X @Y)® Z — X @ (Y ® Z) is defined by h((z,y),z) = (z,(y, 2)).

For Win Q(X xY), (a®@ B)(W) = (a x 3)(W) holds for all @ in V, X and §in LY,

where ‘X’ is the product function of Theorem 11.2.

Proof: We apply Theorem 11.5 to the function s : X®V — V, (X ®Y) with s(z,y) = (w/,\y)
This is possible since V,, (X @ Y') is a locally convex sober cone. By the theorem, there is a
unique continuous bilinear function @ : Vp, X@V, Y — V, (X®@Y) with 20y = s(z,y) = (2, y).

Scott continuity follows from continuity since all \j,-spaces are sober. For (2), fix U in QX

and V in QY. The two functions F,G : V, X @V, Y — Ry with F(a,8) = (e @ 8)(U x V)
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and G(a,3) = alU - BV are continuous, bilinear, and coincide on pairs of point valuations
since (z,y)(U x V) =2zU - yV. By Theorem 7.1 (3), ' = G follows. The equalities (3) and
(4) can be shown analogously.

The restriction of a @ 5 to Q(X x Y'), which is a subset of (X @Y'), equals a x 3 since both
valuations coincide on open rectangles U x V. O

11.4 Double Integral and Tensor Product

In this subsection, we prove the analogon of Theorem 11.4 for tensor products and point
continuous valuations. Let f : X ® Y — Ry be a (separately) continuous function, o a
point continuous valuation on X, and 3 a point continuous valuation on Y. Then f can be
integrated w.r.t. the tensor product valuation: fX@Y(fv a @ ). Alternatively, we may form
the double integrals [y (Az. [y-(Ay. f(z,¥),3), @) and [,-(Ay. [y(Az. f(2,y), @), 3). We shall

prove that the double integrals are well defined, and all three integrals yield the same value.

Consider the first double integral. For fixed z, the function Ay. f(z,y) is continuous
from Y to Ry. Hence, the inner integral is well defined. We also have to show that
Az. [y (Ay. f(z,y),B) is continuous. This function can be written as composition of F' :
X = [Y — Ry]p with Fo = Ay. (z,y) and G : [Y — Ry, — Ry with G(h) = [y-(h, 3).
Function F' is continuous as the currification of f (Subsection 2.9). Function G is continuous
since [y : [Y — Ry, @V, Y — Ry is continuous. Thus, the outer integral in the first double
integral is defined as well. The second double integral is handled analogously.

The main theorem about double integrals is as follows:
Theorem 11.6 For two spaces X and Y, avin V, X, fin VY, and (separately) contin-
uous f:X®Y—>ﬁ_|_:
fX@Y(f? o ﬁ) = fX(Aw fY(Ay f(xv y)vﬁ)v Oé)
= fY(’\y' fX(’\x' f(z.y),a),B)

Proof: For fixed f, the three terms of the theorem are separately continuous and linear
in a and 3. Hence, all three terms induce continuous bilinear functions from V, X @ V, Y to
R,. By Theorem 7.1 (3), these functions are equal if they coincide on pairs (Z,%) of point

valuations.
fX@Y(f7§®§): fX@Y(fv(wvy)) :f(xvy)
fX(Ax' fY(’\y' f(xv y)vg)vf) = fX(’\x' f(xv y),f) f(xv y)
fY(/\y fX(/\x f(xv @/),f),@) = fY(/\y f(xv y)v@) f(xv y)
This proves the claimed equality. a

A property analogous to Prop. 11.3 easily follows.
Proposition 11.7 For two spaces X and Y, ain V, X, and #in V, Y:
a@B=MWeUXaY)). [y(Az. fy(Ay. W(z,y),5),a)
=AW eQUXaY)). Ay [x(Az. W(z,y),a),5)

Proof: This is a specialization of Theorem 11.6 to the case that f : X @ Y — R is the
characteristic function W of an open W of X @ Y. a
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11.5 Comparison of the Product Operations

In the previous subsections, we defined a product operation X : VX x VY — V(X x Y)
and a tensor product operation @ : Vb X @ VY — V, (X ®Y). The two operations agree
on arguments where both are defined, i.e., for a in V, X, fin VY, and W in Q(X x Y),
(a x B) (W) = (a®B)(W) holds. Apart from this, the two operations are of incomparable
strength.

For point continuous a and #, @ ® 3 is more powerful than a x 3, since the topology of
X ®Y is a superset of the topology of X x Y. There are examples of spaces X and Y where
this inclusion is strict, i.e., there are sets W such that (o ® 3)(W) is defined, but (a x g)(W)

1s not.

On the other hand, the operation ‘x’ is more powerful than ‘®’ since the former is
defined for all Scott continuous valuations, whereas the latter is defined for point continuous
valuations only. We do not know whether this restriction is a necessity.

Problem 2 Is it possible to extend @ : Vb X @ VY — V, (X ®Y) to a function ® :
VX @ VY — V(X ®Y) with similar properties?

Another advantage of ‘X’ over ‘®’ is that ‘X’ is jointly continuous, whereas ‘®’ is contin-
uous in its two arguments separately. This restriction is tight for 7p-spaces: If there were a
function * : Vp, X X VY — Vi, (X @Y) with 2+ 7 = (x/,\y), then there would be a continuous
function f: X XY — V(X @Y) defined by f(z,y) =2y = (w/,\y) Since the image of f
would be a subset of the image of the embedding s: X @ Y — V[, (X ®Y) with sz = 2, the
identity-like function ¢ : X x Y — X ® Y with g(z,y) = (2, y) would be continuous, whence
X xY = X ®Y. However, there are Ty-spaces X and Y where this equality does not hold.

12 Integer Valuations

An integer valuation v on a space X is a valuation with the property that v(O) is in
Ny for all O in QX. Almost all operations on valuations create integer valuations or map
integer valuations to integer valuations. The only exception is, of course, multiplication by a

non-integer constant.

Of course, integer valuations inherit all the properties of general real-valued valuations.
In addition, they have some more properties because of their special nature. These additional
properties are presented in this section.

12.1 The Taxonomy of Integer Valuations

Of course, integer valuations can be classified according to the same principles as general
valuations (see Section 4). The difference is that in the integer case, some classes of valuations
become identical which are different in the general case.

Theorem 12.1
(1) Every bounded Scott continuous integer valuation is simple.

(2) Every simple integer valuation is a finite sum of primitive valuations.
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(3) Every Scott continuous integer valuation is a directed join of simple integer valuations.

(4) Every Scott continuous integer valuation is point continuous.

Proof:
(1) In Ny, every bounded set is finite.

(2) By Theorem 4.1, every simple valuation v is a finite linear combination of primitive
valuations. In the proof of 4.1, the coefficients of this linear combination are obtained
as members of the images of corestrictions of v. Hence, they are integers if v is integer-
valued. A finite linear combination with coefficients from Ng can be considered as a finite

suim.

(3) In the proof of Theorem 4.7, a Scott continuous valuation v is approximated by the
bounded valuations vy, = v|y + > wer -7 where V is open, F' is a finite set, and n is
in Ng. Clearly, this is an integer valuation if v is integer-valued. By (1), bounded integer
valuations are simple.

(4) This follows from (2), since simple valuations are point continuous by Prop. 4.2, and a
directed join of point continuous valuations is again point continuous. a
Thus, the notions of bounded and simple, and the notions of Scott continuous and point

continuous coincide for integer valuations. This is not true for general valuations.

By Cor. 5.5, every finite valuation v on a 7p-space can be uniquely represented by a finite

point density A. If v is integer-valued, then so is A:

Proposition 12.2 Let A be a finite point density in a Zp-space X. If A* is an integer
valuation, then A itself is integer-valued, i.e., Az in Ny for all z in X.

Proof: By Lemma 5.3,
Az =TH{A"(0) |2 € 0 € QX} -TH{A™(0)| 0 € QX, Ta COU{z}}

holds. Hence Az is in Ny if all A*(OQ) are in Np. ]
The 7y property is really needed. Consider the space X = {a, b} where ) and X are the

only open sets. The finite point density A with Aa = Ab = 1/2 induces the valuation v with
v(0) = 0 and v(X) = 1, which is an integer valuation.

12.2 Spaces of Integer Valuations

Starting from the space VX of Scott continuous valuations on X, the subspace of integer
valuations is denoted by VNX, and the subspace of finite integer valuations by VfNX. We
need not introduce a notation for the subspace of point continuous integer valuations since
it is identical to VNX because of Theorem 12.1 (4).

The topology of VN X is generated by the subbasic opens (U > n) = {v €¢ VNX | vU > n}
where U ranges over the opens of X and n ranges over Ng. Alternatively, we may use

(U>n)={veVNX |vU > n}.
In analogy with Prop. 6.1, we obtain:

Proposition 12.3 For every space X, the space VNX is sober, and VfNX is a 7y-space.
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In Section 6, we proved that Vj, X is the sobrification of Vf X (Theorem 6.5). In the sequel,
we want to show an analogous theorem for integer valuations. The proof for the general case
used three auxiliary lemmas. This proof cannot be taken over because of some R.,-specific
arguments in the proof of Lemma 6.3. Thus, we present a new proof for the integer case,
which is simpler than the proof for V, X.

We want to show that for every space X, VNX is the sobrification of VfNX. As defined
in Subsection 2.12, we have to prove: For every continuous integer valuation v and open set
O of VNX with v in O, there is a finite integer valuation ¢ C v with ¢ in O. We use two

auxiliary lemmas.
The first lemma is analogous to Lemma 6.2.

Lemma 12.4 For every continuous integer valuation v and open set O of VNX with v
in O, there is a simple integer valuation ' C v with v/ in O.

Proof: By Theorem 12.1 (3), v is a directed join of simple integer valuations. In a sober
space such as VNX | every open set is Scott open. a

The next lemma deals with the step from primitive valuations to point valuations.

Lemma 12.5 For every primitive valuation = and open set @ of VNX with 7 in O, there
is a point z of X with Z C 7 and ¥ in O.

Proof: By Lemma 3.3, there is a closed set ' such that 7O > 0 iff O @ C'. Because of
primitivity, 7O > 0 is equivalent to 7O = 1.

Using the subbase of VNX, there are open sets Uy, ..., U,, and numbers ki, ..., k, in Ny
such that 7 € N/, (U; > k;) € O. By primitivity, i.e., I(7) = {0,1}, k; = 0 and 7U; = 1
follows for all 7. Let V' =_; U;. By modularity of 7, 7V = 1 holds. Thus, V' meets C'. Let
x be in the intersection.

If #0 =1, then z € O, whence O ® ', whence 7O = 1. Thus, Z C 7 holds. Since x is in V,
2U; = 1 holds for all i. Hence, Z is in (/=1 (U; > 0) C O. a
With these lemmas, we can now prove:

Theorem 12.6 For every space X, VNX is the sobrification of VfNX.

Proof: Let v bein VNX and O in Q(VNX) with ¥ € O. By Lemma 12.4, there is a simple
integer valuation v’ C v with v/ € O. By Theorem 12.1 (2), v/ is a finite sum 7 + ---+ 7,
of primitive valuations. Since addition is continuous in VN X, there are open sets Uy, ..., U,
of VNX such that 7; in ;, and whenever v; in if;, then vy + -+ + v, in O.

By Lemma 12.5, there are points x; in X such that #; C 7; and z; € U;. Then o = z7+-- -+ 7,
is a finite integer valuation with ¢ C v/ C v and ¢ € O. O

12.3 Universal Properties

The spaces VfNX and VNX have universal properties analogous to those of Vy X and Vp X.

A topological Ny-module is defined analogously to a topological R-module or cone. The
only difference is that multiplication has type - : Ng x M — M instead of - : Ry x M — M.
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Np-modules can be equivalently characterized as commutative topological monoids
(M,+,0) with the additional property that 0 is a least element in the specialization pre-
order.

Homomorphisms between topological Ng-modules are continuous and linear functions.
Here, linearity means f(m 4+ m') = fm + fm’ and f(n-m) = n - fm for n in Ny, or
equivalently f(m+ m') = fm+ fm' and f(0) = 0.

Standard examples of topological Ng-modules are given by powers of N or Ng, and linear
subspaces thereof. In addition, every topological cone is an Ng-module. Thus, the lattice
examples of Subsection 7.1 are also Ng-modules.

In convex combinations with integer coefficients, all coefficients are 0 except for one which
is 1. Thus all sets are convex in the Ny-sense. Hence, local convexity is not an issue in the
following theorem.

Theorem 12.7 VfNX is the free Typ-topological No-module over X in 7OP.

Proof: Let X be a space, M be an Ng-module with 7p-topology, and f : X — M be
continuous. As in the proof of Theorem 7.6, there is a unique linear function f : VfNX — M
with fos = f which can easily be constructed explicitly. The only problem is to prove
continuity of f.

An element ¢ of VN X can be written as a finite sum 3,7 @, of point valuations. Let U be an

open set of M, and assume f(¢) € U. Then ", fz; is in U. Since addition is continuous in
M, there are open sets V; of M such that fz; € V;, and whenever m; € V;, then )., m; € U.

Let O; = f~V;. These are open sets of X with z; in O; for all ¢ in I. For every T C I,
©(Uier Oi) > Yier 1 = |T| holds. Hence, ¢ is in O = Nrcp(Uier Oi > [T1), which is an
open set of VfNX. We have to show that for every v in O, f(¢) is in U.
Let t» =3 ;c;9; bein O. Let R C I x J be the relation given by (¢,7) € R iff O; 3 y;. Since
¥ is in O,

R = v 00 = T

€T

holds for all subsets T" of I. Applying Hall’s Theorem 2.9, we obtain an injective function
v: I — J with y,; € O; for all 7in 1.

Since fy,; € Vi for all ¢ in I, > .c; fy,; € U follows. Since ¢ is injective, this sum equals
Z]‘GL{-I fy;. In Ng-modules, m; T mq 4+ my holds. Hence, the sum over 11 is below the full
sum ey fy; = f(¥). Thus, f(¢) is above some element of U, whence it is in U as well. O

The extension function induced by Theorem 12.7 is continuous.

Theorem 12.8 For every space X and 7y-topological Ng-module M, the function E :
[X — M], — [VNX — M], given by Theorem 12.7 is continuous and linear.

Proof: For some ¢ =} .c;7; in VfNX, continuous function f: X — M, and open set U of
M, assume Ef € (¢ — U). Then Y ;c; fz; is in U. By continuity of addition, there are open
sets V; of M such that fz; € V;, and whenever m; € V;, then ) ..;m; € U. From fa; € V;, we
obtain f € (;cr(z; — V;). If g is in this set, then )",y ga; is in U, whence Eg is in (¢ — U).

Linearity of E follows from freeness as in the proof of Theorem 7.8. a
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VN,

id

Figure 2: Two functions named id

Corollary 12.9 For every space X and 7p-topological No-module M, the function spaces
[X — M], and [VNX fin M],, are isomorphic.

Like in the general case, the universal property for VfNX can be used to derive a universal
property for VNX. The proofs of the following theorems are analogous to the corresponding
proofs for the general case.

Theorem 12.10 VN X is the free sober Ny-module over X in 7OP.

Theorem 12.11 For every space X and sober Ng-module M, the extension function
E:[X — M], — [VNX — M], induced by the freeness of VNX is continuous and linear.

Corollary 12.12 For every space X and sober Ng-module M, the three function spaces
(X — M],, VX fin M],, and [VNX i M],, are isomorphic Ng-modules.

In particular, for every space X, the three Ng-modules [X — Np],, [VfNX i No)p, and
[VNX i Nylp are isomorphic.

12.4 Integration over Integer Valuations

In Section 8, two variants of integration were derived. An analogous derivation yields two

variants of integer integration:
e The Isbell variant [y : [X — NoJ; @ VNX — Ny,
e and the pointwise variant [y : [X — Ng], ® Vp X — No.

In contrast to the general case, VN X and Vrl,\IX are actually identical. Thus, the two variants
become comparable. The pointwise variant gives better information since the pointwise
topology on the function space is included in the Isbell topology. Hence, both variants may
be subsumed under [y : [X — Nol, @VNX — Ng where [ is continuous in its two arguments
separately.

General integration is defined by [y(f,v) = id(v o f7) where id : VR;y — Ry is the
extension of id : Ry — Ry. The definition of integer integration looks equally, but uses
id: VNN, — Ny, the extension of id : Ny — Ng. The relationship between the two functions
named id is shown in Figure 2. Because of the universal property of VNN, the diagram in this
figure commutes. Hence, id : VNN — Ny is a restriction of id : VR, — R. Thus, integer
integration is merely a special instance of general integration, and satisfies all the properties
listed in Theorem 8.1. For general integration, it follows that [y (f,») is an integer if both f
and v are integer valued.
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Using integer integration, isomorphic descriptions of VNX = Vrl,\IX can be derived which
are analogous to Theorems 9.1 and 9.2.

Theorem 12.13

VNX = VX = [0.X "N, = [2X ™ Noj,
> (X = Nl 2Nyl = [X — NoJp 2 Nl

By Propositions 11.3 and 11.7, product a x # and tensor product a ® 3 of two valuations
can be obtained by a double integration involving «a, 3, and the characteristic functions of
open sets which are integer valued. Hence, if o and 3 are integer valued, then so are a X /3
and o ® 8. Thus, we obtain two continuous functions x : VNX x VNY — VN(X x V) and
@ :VNX @ VY — VN(X @ Y).
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