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Abstract

Valuations are measure�like functions mapping the open sets of a topological space into

positive real numbers� They can be classi�ed according to some additional properties�

Some topological spaces are de�ned whose elements are valuations from various classes�

The relationships among these spaces are studied� and universal properties are shown for

some of them�

� Introduction

For a topological space X � a valuation on X is a function � which maps the open sets ofX

to real numbers in the range from zero to in
nity �inclusively� with the following properties�

��� The empty set is mapped to zero� �� � 
 �strictness��

��� The values assigned to binary union and intersection are related by the following equation�

��U � V � � ��U � V � � �U � �V for all opens U and V �modularity��

��� Bigger sets are mapped to bigger numbers� if U � V � then �U � �V �monotonicity��

Most often� we consider Scott continuous valuations which enjoy the additional property

��
S
i�I Vi� � ti�I �Vi for every directed family �Vi�i�I of opens Vi of X �

Some authors write evaluations instead of valuations� and some authors immediately

require Scott continuity�

The concept of valuations has some similarity with the concept of measures� Borel

measures are de
ned for all Borel sets of a space� and every open set is a Borel set� Hence�

every measure can be restricted to a valuation� This valuation is not Scott continuous in

general� since measures have to satisfy a weaker property where only countable directed

families �Vi�i�I are considered� On the other hand� a valuation cannot always be extended

to a measure�

Previously� valuations were already used in the following contexts�
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� The probabilistic power domain of Jones and Plotkin ��� �� over some dcpo X is the

dcpo of Scott continuous valuations on X which are bounded by �� It is used to model

the semantics of probabilistic programs� If the semantics of a program p is �� this means

that for every open set U � the number �U is the probability that the result of running

p is in U � The di�erence �� ��X� is the probability that running p yields no result at

all� i�e�� does not terminate�

� In �	�� the author presented a lower bag domain as an analogue to the lower power

domain� but without idempotence of addition� It can be used to specify a bag semantics

for non�deterministic programs which takes multiplicities of results into account� One

possible description of the lower bag domain consists of Scott continuous integer�valued

valuations� In fact� some of the results about integer valuations which are presented in

Section �� were already contained in �	�� but with di�erent proofs�

� In ���� Edalat used Scott continuous valuations to obtain a domain�theoretic treatment

of measures and Riemann�like integrals� In ���� he connected dynamical systems and

fractals with domain theory� The probabilistic power domain� i�e�� the collection of

Scott continuous valuations bounded by �� plays a major role in this connection which

leads to better algorithms for fractal image generation ����

Because of these applications� we feel that the concept of valuations deserves further interest�

In this paper� we investigate valuations in a topological setting� the set VX of Scott con�

tinuous valuations on a space X is made a topological space� whose structure and properties

are studied� Thus� we present some background information about dcpo�s and topological

spaces in Section ��

In Section �� valuations are de
ned formally� In addition to Scott continuity� we introduce

point continuity as a possible property of valuations which is stronger than Scott continuity�

Some special valuations are de
ned� e�g�� the point valuations bx which map open sets con�

taining x to � and all other open sets to 
� We also consider some operations on valuations

such as addition� multiplication by a constant from R�� and restriction to an open set�

In Section �� we de
ne some classes of valuations� In particular� �nite valuations are 
nite

linear combinations of point valuations� The connections among these classes are studied�

In particular� we prove that for continuous dcpo�s� all Scott continuous valuations are point

continuous�

In Section 	� 
nite valuations are studied� It is shown that they can be represented by

assigning 
nite weights to a 
nite number of points� We compare 
nite valuations in terms

of these representations� and prove that the representation is unique�

In Section �� we de
ne the space VX of Scott continuous valuations on X � and the

subspaces of point continuous �VpX� and 
nite valuations �VfX�� We also prove one of the

main results of this paper� the space VpX is the sobri
cation of VfX �

The other main results are shown in Section �� The space VfX of 
nite valuations is the

free locally convex T��cone over X � and the space VpX of point continuous valuations is the

free locally convex sober cone over X � Here� a T��cone is an R��module with a T��topology

such that addition and multiplication are continuous� and a sober cone is a T��cone with

sober topology� We did not 
nd a universal property for V�

� � �



Nevertheless� the universal property of Vp su�ces to 
nd a novel de
nition of integrationR
X � �X � R��	VX � R� of a real�valued function w�r�t� a Scott continuous valuation �see

Section ��� This de
nition allows for elegant proofs of the properties of integration�

In Section �� integration is used to prove that the spaces of valuations are isomorphic to

certain second order function spaces� namely

VX 
� ��X � R��i � R��p and VpX 
� ��X � R��p � R��p�

where the index �� �p� means a function space with pointwise topology� and �� �i� a function

space with Isbell topology�

The 
nal Section �� is devoted to the special case of integer valuations which map all

opens to numbers from N�� In the case of integer valuations� the notions of point continuity

and Scott continuity coincide� The space V
NX of continuous integer valuations is the free

sober N��module over X �

� Some Topology

After 
xing some set�theoretical notation �Subsection ����� we present a brief overview of

the topological notions needed in this paper� In particular� we introduce dcpo�s� topological

spaces� product and function spaces� sobriety and sobri
cation� and the spaces R� of positive

real numbers and N� of positive integers�

��� Some Set�Theoretic Notation

We only mention some slightly non�standard notation� If A is a subset of a 
xed set X �

then the complement of A in X is written �A�

If f � X � Y is a function� then we denote the image of a set A � X by f�A � ffx j

x � Ag� and the inverse image of a set B � Y by f�B � fx � X j fx � Bg� The set f�X �

which is the image of the function� is also denoted by 
f �

For A � B �� �� we briefly write A ��B� Note that f�A � B i� A � f�B� and f�A ��B

i� A �� f�B�

��� Dcpo�s

We use the standard de
nitions� a poset �X� v� is a set X together with a re�exive�

anti�symmetric� and transitive relation �v�� For a subset A of a poset X � we de
ne �A �

fx � X j �a � A � x v ag and �A � fx � X j �a � A � a v xg� We shall often abbreviate

�fag by �a and �fag by �a� The set A is lower if A � �A� and upper if A � �A� The least

upper bound or join of A is denoted by tA �if it exists��

A subset D of a poset is directed if it is non�empty� and for all x� y in D� there is z in

D with x� y v z� A dcpo is a poset where every directed set has a least upper bound� A

function f � X � Y between dcpo�s X and Y is Scott continuous if for all directed subsets

D of X� f�tD� � t f�D holds� The category of dcpo�s and continuous functions is called

DCPO� This category is small complete and cartesian closed� The function space �X� Y�

for instance consists of the continuous functions from X to Y ordered by f v g i� fx v gx

for all x in X�
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��� Topological Spaces

A topological space is a set X together with a set �X of subsets of X which is closed

under 
nite intersections and arbitrary unions� The sets in �X are called open� and their

complements are called closed� A function f � X � Y between two topological spaces X and

Y is continuous i� f�V is open in X for every open set V of Y � Equivalently� f�C is closed

for every closed set C of Y �

A subbase of a space X is a collection S of opens of X such that every open set of X

is a union of 
nite intersections of members of S� Often� the set of opens of a space to be

constructed is speci
ed by de
ning a subbase�

For a subset A of a space X � let O�A� � fO � �X j A � Og� We abbreviate O�fxg� to

O�x�� For every subset A of a space X � the closure clA is the least closed superset of A� A

point x is in clA i� every O in O�x� meets A�

A subset O of a dcpo X is Scott open if it is upper� and for all directed sets D� tD � O

implies D �� O� With this de
nition� every dcpo becomes a topological space� A function

f � X� Y between dcpo�s is Scott continuous i� it is topologically continuous� Thus� DCPO

can be considered as a full subcategory of the category of topological spaces� �Beware� this

inclusion functor does not preserve products� not even binary products��

Every topological space can be preordered by de
ning x v x� i� every open set which

contains x also contains x�� This is called the specialization preorder of the space� A space is

a T��space i� this preorder is a partial order� i�e�� anti�symmetric� The specialization preorder

of a dcpo with its Scott topology is the original order of the dcpo� Hence� every dcpo is a

T��space�

If we use order�notions such as lower� upper� �A� and �A in a topological space� this

always refers to the specialization preorder� All open sets are upper sets� and all closed sets

are lower sets� Hence� A � �A � clA holds for all subsets A of a space� For 
nite F � even

clF � �F holds� For every subset A of a topological space� �A is the intersection of all open

supersets of A�

��� D�Spaces

A space X is a d�space if the induced preorder is a dcpo and all open sets of X are Scott

open w�r�t� this dcpo� A continuous function f � X � Y between two d�spaces is Scott

continuous� Since the order in a dcpo is anti�symmetric� all d�spaces are T��spaces� Every

dcpo with its Scott topology is a d�space� and every T��space is a d�space�

��� Embeddings and Subspaces

A function e � X � Y between two topological spaces is a �topological� embedding i� it

is continuous and injective and e� � �Y � �X is surjective� Every topological embedding

is an order embedding as well� i�e�� ex v ey i� x v y� If Y is a T��space� the condition of

injectivity is redundant�

If e � X � Y is an embedding� then a function f � Z � X is continuous i� e � f � Z � Y

is continuous�
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Let Y be a topological space� and S a subset thereof� We make S into a subspace of Y by

de
ning a subset U of S as open i� U � S � V for some open set V of Y � The T� property

is preserved by subspace formation� The d�space property is not preserved in general� since

some directed joins may be omitted�

If S is a subspace of Y � then the subset inclusion e � S � Y is a topological embedding�

Conversely� if e � X � Y is an embedding� then X is isomorphic to the subspace e�X of Y �

Equalizers are a special kind of subspace� The equalizer of two continuous functions

f� g � X � Y is the subspace fx � X j fx � gxg of X �

��	 The Product of Topological Spaces

For a family �Xi�i�I of topological spaces� we de
ne the product space
Q
i�I Xi with

points �xi�i�I and subbasis fhi� Oi j i � I� O � �Xig where hj� Oi � f�xi�i�I j xj � Og� The

preorder of
Q
i�I Xi is �xi�i�I v �yi�i�I i� xi v yi for all i in I �

The projections �j with �j��xi�i�I� � xj are continuous for every j in I � and moreover� a

function f � Y �
Q
i�I Xi is continuous i� the functions �j �f are continuous for every j in I �

If all the spaces Xi are T� � d�spaces� then so is
Q
i�I Xi�

A special case is the binary product X	Y of two spaces X and Y � An alternative subbase

of X 	 Y is fU 	 V j U � �X� V � �Y g�

��
 The Tensor Product

The tensor product or cross product X � Y of two spaces X and Y has the same carrier

set as the product space X 	 Y � A set W is open in X � Y if for every �x� y� in W � there are

open sets U of X and V of Y such that �x� y� � fxg	V � W and �x� y� � U 	fyg � W � To

compare� W is open in X 	 Y if for every �x� y� in W � there are open sets U of X and V of

Y such that �x� y� � U 	 V � W �

The spaces X � Y and X 	 Y share the same specialization preorder� The topology of

X � Y is a superset of the topology of X 	 Y � whence a function f � X 	 Y � Z is also

continuous as a function from X � Y to Z�

A function f � X � Y � Z is continuous if and only if all the functions fx � Y � Z with

fxy � f�x� y� and fy � X � Z with fyx � f�x� y� are continuous as well� Thus� a continuous

function f � X � Y � Z is often called continuous in the two arguments separately� whereas

continuous functions f � X 	 Y � Z are sometimes called jointly continuous�

If X and Y are T� � d�spaces� then so is X � Y � If X and Y are dcpo�s� then the Scott

topology on the product set X 	 Y is identical with the tensor product topology�

��� Spaces of Open Sets

The set �X of open sets of a space X can be topologized in several di�erent ways�

First� ��X��� is a dcpo� whence it can be endowed with the Scott topology� We call the

resulting space �sX �
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Second� �X can be given the point topology with subbase fO�x� j x � Xg� A set O of

opens is open in the point topology �point open� i� for every O in O there is a 
nite set F

such that O � O�F � � O� We call the resulting space �pX �

Since every set O�x� is Scott open� the topology of �pX is contained in that of �sX �

The two spaces �sX and �pX have the same preorder� namely subset inclusion� Both are

d�spaces�

��� The Pointwise Function Space

For two spaces X and Y � the pointwise function space �X � Y �p consists of all continuous

functions f � X � Y with subbase fhx� V i j x � X� V � �Y g where hx� V i �

ff � X � Y j fx � V g� It is a subspace of the product
Q
x�X Y of copies of Y � The preorder

on �X � Y �p is given �pointwise�� f v g i� fx v gx for all x in X �

The properties T� and d�space carry over from Y to �X � Y �p� no matter which properties

X has�

A function f � X � Y � Z is continuous i� its curried variant g � X � �Y � Z�p with

gxy � f�x� y� is well�typed and continuous�

If � � Y 	 Y � Y is continuous� then so is � � �X � Y �p 	 �X � Y �p � �X � Y �p with

�f � g�x � fx� gx� �It is mathematical custom to reuse the name of the simple function for

that of the function de
ned for functions��

Composition � � �Y � Z�p � �X � Y �p � �X � Z�p with �g � f�x � g�fx� is continuous

�in the two arguments separately��

For every two spaces X and Y � the function �p � �X � Y �p � ��pY � �pX �p with

�pf�V � � f�V is well de
ned and continuous� For� �pf maps opens to opens by continuity

of f � and is continuous since �pf�V � � O�x� i� fx � V i� V � O�fx�� The function �p itself

is continuous since �pf � hV � O�x�i i� f�V � O�x� i� fx � V i� f � hx� V i�

���
 The Isbell Function Space

For two spaces X and Y � the Isbell function space �X � Y �i consists of all continuous

functions f � X � Y with subbase fhU � V i j U � ���sX�� V � �Y g where hU � V i �

ff � X � Y j U � f�V g� Since hx� V i � hO�x�� V i� the topology of �X � Y �i includes

that of �X � Y �p� Both function spaces have the same preorder� namely f v g i� fx v gx

for all x in X �

If Y is T� � a d�space� then so is �X � Y �i� no matter which properties X has�

If f � X 	 Y � Z is �jointly� continuous� then its curried variant g � X � �Y � Z�i
is well�de
ned and continuous� Composition � � �Y � Z�i � �X � Y �i � �X � Z�i with

�g � f�x � g�fx� is continuous �in the two arguments separately��

If X and Y are T��spaces� the function �s � �X � Y � � ��sY � �sX � with �sf � f� is

injective� no matter which topologies are chosen for the two function spaces� If ��sY � �sX �

is equipped with the pointwise topology� it is just the Isbell topology on �X � Y � which

makes �s into an embedding� For� �sf � hV � Ui i� f�V � U i� f � hU � V i� Hence� we
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obtain a continuous function �s � �X � Y �i � ��sY � �sX �p� whose type di�ers from that

of the continuous function �p � �X � Y �p � ��pY � �pX �p of the previous section�

The spaces of open sets �sX and �pX can also be seen as special instances of function

spaces� The Sierpinski space � has points 
 and � with subbase ff�gg� Equivalently� � is the

dcpo f
� �g with 
 � �� The opens of a space X are in one�to�one correspondence with the

continuous functions from X to � by U �� �U and f �� f�f�g� By this correspondence� we

get the isomorphisms �pX 
� �X � ��p and �sX 
� �X � ��i�

���� Sobriety

A subset A of a space X is irreducible if whenever A �
S
i�I Ci for some 
nite family

�Ci�i�I of closed sets� then A � Ci for some i in I � Continuous images of irreducible sets

are irreducible� A set A is irreducible i� clA is so� and singleton closures cl fxg � �x are

irreducible�

De�nition ��� A space X is sober if for every irreducible set A� there is exactly one

point x such that clA � cl fxg�

Every Hausdor� space is sober� and every sober space is T�� Every 
nite T��space is sober�

Every sober space is a d�space� and every continuous function between sober spaces is Scott

continuous� �To prove these facts� note that directed sets are irreducible��

Another equivalent de
nition of sobriety involves sets of open sets� A set O of open sets

of X is a prime �lter i� it is upper� closed under 
nite intersections� and inaccessible by

unions� Equivalently� O is a prime 
lter i� it is Scott open� contains the whole space� does

not contain �� is closed under binary intersection� and has the property that U � V � O

implies U � O or V � O� Every set O�x� � fO � �X j x � Og is a prime 
lter�

Theorem ��� A space X is sober i� for every prime 
lter O� there is a unique point x

such that O � O�x��

For the proof� note that if A is irreducible then fO � �X j O �� Ag is a prime 
lter�

and conversely� if O is a prime 
lter� then the complement of
S
fO � �X j O �� Og is an

irreducible closed set�

Some topological constructions preserve sobriety�

� Products of sober spaces are sober�

� If Y is sober� then �X � Y �p is sober �no matter what X is��

� If f� g � X � Y are continuous� X is sober� and Y is T�� then fx � X j fx � gxg is a

sober subspace of X �

���� Sobri�cation

Let X be a sober space and S a subset of X so that for every x in X and U in �X with

x � U � there is some a in S with a � U and a v x� In this situation� we say that X is the

sobri�cation of the subspace S� We 
rst show that continuous functions from X to some

T��space are uniquely determined by their values on S�

� � �



Proposition ��� Let X be the sobri
cation of its subspace S and let Y be a T��space�

Let f� g � X � Y be two continuous functions with fa � ga for all a in S� Then f � g

follows�

Proof� Let x in X � We prove fx v gx� If fx � V open� then x � f�V � By hypothesis�

there is a in S such that a v x and a � f�V � Then gx w ga � fa � V � Similarly� gx v fx

is shown� whence fx � gx since Y is a T��space� �

The sobri
cation has the following universal property�

Theorem ��� If X is the sobri
cation of its subspace S� then for every sober space Y

and continuous f � S � Y � there is a unique continuous F � X � Y which extends f �

Proof� Uniqueness follows from Prop� ����

In X � cl �S � �x� � �x holds� Thus� S � �x is irreducible in X � and hence in S� By

continuity of f � f��S � �x� is irreducible in Y � Since Y is sober� there is Fx in Y such that

cl f��S � �x� � �Fx�

For continuity of F � consider the inverse image of a closed set C� From the de
nition of F �

Fx � C i� S � �x � f�C� The set f�C is closed in S� Thus� there is a closed set C� of X

with f�C � S � C�� Finally� S � �x � S � C� i� cl �S � �x� � C� i� x � C��

For the extension property� we have to show Fa � fa for all a in S� To this end� we show

cl f��S � �a� � �fa� The inclusion ��� holds by monotonicity of f � and ��� holds since

a � S � �a� �

Extension of functions is continuous�

Theorem ��� If X is the sobri
cation of its subspace S� then for every sober space Y �

the function E � �S � Y �p � �X � Y �p given by Theorem ��� is continuous�

Proof� Let f � S � Y be continuous� x in X � and V in �Y such that Ef � hx� V i� Then

x � �Ef��V which is an open set of X � Since X is the sobri
cation of S� there is some a in

S with a v x and a � �Ef��V � Then fa � Efa � V � whence f � ha� V i�

If g is in ha� V i� then Ega � ga � V � Since a v x� Egx is in V as well� whence Eg in

hx� V i� �

Corollary ��	 If X is the sobri
cation of its subspace S� then �S � Y �p 
� �X � Y �p
holds for every sober space Y �

Proof� One isomorphism is the extension function E given by Theorem ���� The other is

restriction of a function F � X � Y to S� �

Finally� we show that sobri
cation commutes with binary products�

Proposition ��
 If X is the sobri
cation of A � X and Y is the sobri
cation of B � Y �

then X 	 Y is the sobri
cation of A	 B�

Proof� Let �x� y� be in an open set W of X 	 Y � Then there are open sets U of X and V

of Y such that �x� y� � U 	 V � W � By hypothesis� there is a in A with a v x and a � U �

and b in B with b v y and b � V � Thus� �a� b� v �x� y� and �a� b� � U 	 V � W � �
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���� Numbers

Let R� be the set of positive real numbers including 
� but without �� and let R� be

R� together with �� Similarly� N� is the set of natural numbers including 
� and N� is N�

together with �� Arithmetic is extended to R� and N� by x �� � � � x � � for all x�

x � � � � � x � � for all x �� 
� and 
 � � � � � 
 � 
� Subtraction x � y is only de
ned if

x � y and x �� ��

The set R� is ordered in the standard way� which yields a dcpo� It is given the Scott

topology� Hence� the open sets of R� are �� R� itself� and all the sets fx � R� j x � rg for


xed numbers r ��� This space is sober� Addition and multiplication as de
ned above are

continuous�

The subsets R�� N�� and N� are considered as subspaces of R�� The subspace N� is

again a sober dcpo with its Scott topology� The subspaces R� and N� are neither sober nor

dcpo�s�

Sometimes� we shall need the split lemma for real numbers and integers�

Lemma ��� �Split Lemma


Let �ri�i�I and �sj�j�J be two families of members of R� �N��� where the index sets

I and J are 
nite� and let R � I 	 J be a relation� For T � I � we write R��T � for

fj � J j �i � T � �i� j� � Rg�

If for all T � I �
P

i�T ri �
P

j�R��T � sj holds�

then there are numbers tij in R� �N�� for i in I and j in J with

���
P

j�J tij � ri for all i in I �

���
P

i�I tij � sj for all j in J �

��� if tij � 
� then �i� j� � R�

Proof� This is essentially the proof of the Splitting Lemma ���
 of ��� or Lemma ��� of ����

The Max�Flow Min�Cut Theorem 	�� of ��� is applied to a graph with nodes � �source�� i in

I � j in J � and � �sink�� the index sets I and J are assumed to be disjoint� There are edges

from � to i with capacities ri� from i to j with �large� capacity C if �i� j� � R and 
 otherwise�

and from j to � with capacities sj � where C is a constant which is bigger than the sums of

all occurring numbers� The remainder of the proof is in analogy to ��� �� and thus omitted�

The N��version follows from the integrity assertion of the Max�Flow Min�Cut Theorem� if

all capacities are integers� then the maximal �ow has integer values� �

An immediate consequence of the Split Lemma is Hall�s Theorem ��� Theorem �������

Theorem ��� �Hall�s Theorem


Let I and J be 
nite sets� and let R � I 	 J be a relation�

If for all T � I � jT j � jR��T �j holds�

then there is an injective function j � I � J such that �i� j�i��� R for all i in I �

Proof� Let ri � sj � � for all i and j� From the N��version of the Split Lemma� there are

numbers tij in N�� Let j�i� � j i� tij � �� �

� � �



� Valuations

In this section� we de
ne valuations and their potential continuity properties� Then� some

operations on valuations are introduced� e�g�� addition of two valuations� multiplication by a

real number� restriction and corestriction to an open set�

��� De�nition and Continuity Properties

A valuation on a topological space X is a function � � �X � R� with the following

properties�

� �� � 
 �strictness��

� ��U � V � � ��U � V � � �U � �V for all opens U and V �modularity��

� �U � �V for all opens U and V with U � V �monotonicity��

Valuations are partially ordered by de
ning � v �� i� �O � ��O for all O in �X � A valuation

� is bounded if ��X� ���

Mostly� we shall consider valuations with an additional continuity condition� There are

several such conditions according to which topology is chosen for �X �

��� A valuation � is Scott continuous i� � � �sX � R� is continuous� Equivalently� for every

directed family �Vi�i�I of opens� ��
S
i�I Vi� � ti�I �Vi holds�

Since every Scott continuous function is monotonic� the condition of monotonicity in the

de
nition of valuations becomes redundant once we consider Scott continuous valuations�

��� A valuation � is point continuous i� � � �pX � R� is continuous� Equivalently�

��fs � R� j s � rg is point open for every r in R�� or� for every open O and number r

in R� with �O � r� there is some 
nite F � O such that F � O� implies �O� � r�

Since the topology of �pX is a subset of that of �sX � we obtain�

Proposition ��� Every point continuous valuation is Scott continuous�

Remark� There is a notion of continuity in between point and Scott continuity� It uses

the topology on �X which is generated by the sets O�K� with compact K� A valuation �

is continuous in this sense if for �O � r� there is some compact K � O such that K � O�

implies �O� � r� This notion of continuity will not be considered in this paper since we did

not 
nd any remarkable properties for it�

��� Special Properties of Scott Continuous Valuations

Scott continuous valuations have some special properties which are needed later�

Proposition ��� Let X be a topological space with a base B which is closed under binary

intersection� Then every Scott continuous valuation on X is uniquely determined by its

values on members of B�

Proof� Let � be a Scott continuous valuation on X � First we show that the values of �

on 
nite unions ��B� � � � � � Bn� of members of B are uniquely determined� This is done by

induction on n�

� �
 �



Case n � 
� �� must be 
 by strictness�

Case n� �� By modularity�

��B� � � � � �Bn �Bn��� � ���B� �Bn��� � � � � � �Bn �Bn���� � ��B� � � � � �Bn� � �Bn��

holds� If one of the two terms on the right hand side is �� then ��B��� � ��Bn �Bn��� must

be � by monotonicity� If they are 
nite� then the two terms on the left hand side must be


nite as well� and ��B� � � � � � Bn � Bn��� is uniquely determined by the other three terms

which are uniquely determined by the induction hypothesis and the general hypothesis�

Arbitrary opens of X are directed unions of 
nite unions of members of B� Hence� the values

of � on arbitrary opens are uniquely determined by Scott continuity� �

Lemma ��� For every Scott continuous valuation �� there is a closed set C such that

�O � 
 i� O �� C�

Proof� Consider the set W of all open sets O with �O � 
� By strictness and modularity�

this set is directed� Let W �
S
W � By Scott continuity� �W � 
 holds� Hence� �O � 
 i�

O � W � Negating both sides� we obtain �O � 
 i� O �� �W � Let C be the closed set �W ��

��� Operations on Valuations

In this subsection� we present some basic ways to obtain valuations from other valuations

or from scratch�

��� The zero function �U� 
� which maps every open set to 
� is a bounded valuation� As a

constant function� it has all continuity properties you like� thus� it is point continuous�

��� For every point x of X � there is a bounded valuation bx� where bx�U� is � if x � U � and 


otherwise� Valuations of the form bx are called point valuations� Since x � U and x v y

implies y � U � x v y implies bx v by�
Every point valuation is point continuous� For� if bx�U� � r� then r � � and x � U �

Choose fxg as the 
nite set F in the characterization of point continuity�

��� If r is a constant fromR� and � is a valuation� then r �� is a valuation� where �r ����U� �

r � �U � If r �� and � is bounded� then r � � is bounded�

Since �s� r � s � R� � R� is continuous and compositions of continuous functions are

continuous� we obtain�

� If � is Scott continuous � point continuous� then so is r � ��

��� If �� and �� are two valuations on X � then so is ��� ��� where ���� ����U� � ��U � ��U �

If both �� and �� are bounded� then so is �� � ���

Since � � R� 	R� � R� is continuous and �� � �� � ��� � ��� 	 ���� we obtain�

� If �� and �� are Scott continuous � point continuous� then so is �� � ���

�	� Every directed family ��i�i�I of valuations has a least upper bound� namely the valuation

ti�I �i� which is de
ned by �ti�I �i��U� � ti�I �iU � Even if all �i are bounded� ti�I �i
may be unbounded�

For all open sets W of R�� �ti�I �i��U� is in W i� �i�U� in W for some i in I � Hence�

�ti�I �i��W �
S
i�I �

�
i W � Thus we obtain�

� If all �i are Scott continuous � point continuous� then so is ti�I �i�

� �� �



��� If f � X � Y is continuous� then every valuation � on X induces a valuation � � f� on

Y � This operation maps point valuations to point valuations since bx � f� � cfx� The

valuation � � f� is bounded i� � is bounded�

For the continuity properties� we must consider f� � �Y � �X � This function is Scott

continuous� For every x in X and V in �Y � f�V � O�x� i� fx � V i� V � O�fx� holds�

whence f� � �pX � �pX is continuous as well� Thus� we obtain�

� If � is Scott continuous � point continuous� then so is � � f��

��� Let �� and �� be valuations on X � where �� is bounded and �� w �� holds� Then �� � ��
with ��� � ����U� � ��U � ��U is a bounded strict modular function from �X to R��

We require that �� is bounded to avoid di�erences involving �� The condition �� w ��
is needed to ensure that �� � �� yields values in R��

Even if �� and �� are monotonic� the di�erence �� � �� may not be monotonic� On

the other hand� monotonicity of the di�erence is su�cient to derive stronger continuity

results�

Proposition ��� Let �� be bounded and �� be monotonic so that �� w ��� and �����
is monotonic� Then �� � �� is a valuation� If �� is Scott continuous � point continuous�

then so is �� � ���

Interestingly� this holds without requiring the corresponding kind of continuity for ���

Proof� For Scott continuity� let �Oi�i�I be a directed family of open sets� We have to

show ���� ����
S
i�I Oi� � ti�I���� ����Oi�� The relation ��� follows from monotonicity

of �� � �� which is part of the hypothesis� For ���� we have to show

���
�
i�I

Oi� � t
i�I

���Oi � ��Oi� � ���
�
i�I

Oi�

By Scott continuity of ��� the left hand side is ti�I ��Oi� Fix some i in I �

��Oi � ��Oi � ��Oi � ��Oi � t
i�I

���Oi � ��Oi� � ���
�
i�I

Oi�

holds using monotonicity of ���

For point continuity� assume ��O � ��O � r� Then ��O � r � ��O� By point continuity

of ��� there is a 
nite F � O such that F � O� implies ��O
� � r � ��O� We claim that

F � O� also implies ��� � ����O
�� � r�

��� � ����O
�� � ��� � ����O �O�� ��� � �� is monotonic�

� r � ��O � ���O �O�� �F � O �O��

� r ��� is monotonic� �

��� Restriction and Corestriction of Valuations

Let � be a valuation on X � and let W be an open set of X � The restriction �jW of � to

W is de
ned by �jW �U� � ��W � U� for every U in �X � This is again a valuation on X � It

is bounded i� ��W � ��� This holds in particular if � is bounded�

For the continuity conditions� we have to consider the function �U�W � U � �X � �X �

Obviously� it is Scott continuous� For every x in W � W � U is in O�x� i� U is in O�x�� For

every x not in W � W � U is in O�x� i� U is in �� Hence� �U� W � U � �pX � �pX is

continuous� Thus� we obtain�

� �� �



� If � is Scott continuous � point continuous� then so is �jW �

For iterated restrictions� the following equations are obvious� ��jU �jV � ��jV �jU � �jU�V �

Furthermore� �jX � � and �j� � 
 holds� If O � W � then �jWO � �O� and if O �W � ��

then �jWO � 
� If U and V are open sets with W � U � W � V � then �jWU � �jWV �

Let � be a bounded valuation on X � and W an open set of X � The corestriction �jW of

� to W is de
ned by �jW � � � �jW � Hence� �jW �U� � �U � ��U �W �� By modularity� this

is equal to ��U �W �� �W �

We require � to be bounded in order to avoid problems with unde
ned di�erences� Mono�

tonicity of � guarantees � w �jW � Because of �jW �U� � ��U �W � � �W � monotonicity of

�jW follows from monotonicity of �� Using Prop� ���� we obtain�

� If � is a bounded valuation� then so is �jW �

� If � is in addition Scott continuous � point continuous� then so is �jW �

As additional properties� we have �jX � ���jX � ��� � 
 and �j� � ���j� � ��
 � ��

If O � W � then �jWO � �O � ��O �W � � 
� and if O �W � �� then �jWO � �O� For two

opens U and V with W � U � W � V � �jWU � �jWV holds� Note that W � U � W � V i�

�W � U � �W � V �

For iterated corestriction� we claim ��jU�jV � �jU�V � For�

�jU jV �O� � �jU�V �O�� �jU �V � � ��U � V � O�� �U � ��U � V � � �U � �jU�V �O��

By the de
nition of corestriction� restriction and corestriction are related by the equation

� � �jW � �jW for all open sets W � We call this a partition of � along W �

Restrictions and corestrictions commute with each other� ��jU�jV � ��jV �jU � For�

�jU j
V �O� � �jU �O�� �jU �V � O� � ��U �O�� ��U � V �O� � �jV �U �O� � �jV jU�O��

We shall use the abbreviation �jVU for �jU j
V � �jV jU �

The results of this subsection are summarized in the following theorem�

Theorem ���
Restriction �jW Corestriction �jW

de
ned by �jW �O� � ��W � O� �jW �O� � �O � ��W �O�

or �jW �O� � ��W � O�� �W

when de
ned always if � is bounded

Dependencies� W � U � W � V � �jWU � �jWV �W � U � �W � V � �jWU � �jWV

O � W � �jWO � �O �jWO � 


O �W � � � �jWO � 
 �jWO � �O

Whole space� �jX � � �jX � 


Empty set� �j� � 
 �j� � �

Iteration� ��jU�jV � ��jV �jU � �jU�V ��jU�jV � ��jV �jU � �jU�V

Connections� ��jU�j
V � ��jV �jU � � �jW � �jW

If � is Scott continuous � point continuous� then so are �jW and �jW �

� A Taxonomy of Valuations

In this section� some classes of valuations are de
ned and their relationships are investigated�

� �� �



bounded
�

primitive simple point continuous� �

� �

point valuation 
nite�

� Scott continuous

Figure �� Classes of valuations

��� Some more Classes of Valuations

We already know the classes of Scott continuous� point continuous� and bounded valua�

tions� Here� we de
ne some more classes and consider their relationships�

� Valuations bx for some x in X are point valuations�

� Finite linear combinations of point valuations r� � cx� � � � �� rn � cxn with ri � � are

called �nite�

� A Scott continuous valuation � with 
� � f
� �g is called primitive�

� A Scott continuous valuation � whose image 
� is 
nite and does not contain � is

called simple�

The classes of 
nite and of simple valuations are closed under addition� multiplication

by a 
nite scalar� restriction� and corestriction� The inclusions among the various classes

are depicted in Figure �� Most of the inclusions are obvious or were already handled� Point

continuity of simple valuations is proved below� In Section 	� 
nite valuations are studied in

greater detail�

��� Simple and Primitive Valuations

There are various further relationships among the valuation classes� We start with the

left part of the middle line of Figure ��

Theorem ���

A valuation is simple i� it is a 
nite linear combination of primitive valuations�

Proof� Finite linear combinations of primitive valuations are obviously simple� For the

opposite direction� we use induction on the size of the 
nite set 
� for simple valuations ��

Because of strictness� 
� always contains 
�

If 
� � f
g� then � is the empty sum of primitive valuations� Otherwise� let r be the least

non�zero element of 
�� and let W be some open with �W � r� Since � is bounded and

monotonic� it can be restricted and corestricted to W � and we obtain � � �jW ��jW � Because

of the minimality of r� the valuation �jW with �jW �U� � ��U �W � assumes the two values


 and r only� Thus � � �	r � �jW is a well�de
ned primitive valuation� and � � r � � � �jW �

The proof is completed once we have shown that 
��jW � is strictly smaller than 
�� The

following argument for showing this is taken from a proof in ����

� �� �



Let f � 
��jW � � R� be de
ned by fs � r � s� If s � �jW �U� for some U � then

s � ��U � W � � �W � Since �W � r� r � s � ��U �W � � 
� follows� Hence� we obtain

f � 
��jW � � 
�� This function is injective� but not surjective� For� 
 is in 
�� but

fs � r � 
 for all s in 
��jW �� Thus� 
��jW � is strictly smaller than 
�� �

Using this characterization of simple valuations� we can show�

Proposition ��� Every simple valuation is point continuous�

Proof� Since the class of point continuous valuations is closed under 
nite linear combi�

nations� we only need to show that primitive valuations are point continuous�

Let � be primitive� By Lemma ���� there is a closed set C such that �O � 
 i� O �� C�

Because of primitivity� �O � 
 is equivalent to �O � ��

Let �O � r for some open O and r in R�� Then r � � and �O � �� Let x be a point of

O�C� Then fxg is a 
nite subset of O� and fxg � O� implies O� ��C� whence �O� � � � r��

��� Valuations on Sober Spaces

In case of sober spaces� some of the classes of Figure � coincide� We start with the

following lemma about primitive valuations�

Lemma ��� There is a one�to�one correspondence between primitive valuations � on X

and prime 
lters O of open sets� The correspondence is de
ned by �O � � i� O � O and

�O � 
 i� O �� O� Point valuations bx correspond to prime 
lters O�x��

Proof� Arbitrary functions � � �X � f
� �g are in one�to�one correspondence with subsets

O of �X by O � O i� �O � �� The function � assumes the value � i� O contains X � is Scott

continuous i� O is Scott open in ��X� ��� strict i� O does not contain �� and modular i� O

is closed under binary intersection and inaccessible by binary union� �

From this lemma� it is obvious that there are close connections to sobriety�

Theorem ��� For a T��space X � the following statements are equivalent�

��� X is sober�

��� Every primitive valuation of X is a point valuation�

��� Every simple valuation on X is 
nite�

��� Every primitive valuation on X is 
nite�

Proof�

���� ���� Using Lemma ���� in a sober space� every prime 
lter O is the neighborhood 
lter

O�x� of some point x�

���� ���� By Theorem ��� and part ���� every simple valuation is a 
nite linear combination

of point valuations� i�e�� 
nite�

���� ���� Every primitive valuation is simple�

���� ���� Let O be a prime 
lter� By Lemma ���� there is a primitive valuation � with

�O � � i� O � O� By assumption� � is 
nite� whence � �
P

i�I ri � bxi for some 
nite

index set I � Since X � O� or ��X� � �� there is some i in I with ri � 
� We claim

O � O�xi��

� �	 �



If xi in O� then �O � ri � 
� whence �O � �� i�e�� O � O� For the opposite direction�

let O � O and assume xi �� O� Then � � ��X� � ri � ��O� � ri � � � �� which is

impossible� �

��� Valuations on Locally Finitary Spaces

A subset F of a space X is �nitary i� F � �E for some 
nite set E� The space X is

locally �nitary i� for every point x in X and open U of X with x � U � there are a 
nitary

set F and an open V such that x � V � F � U �

Since 
nitary sets are compact� every locally 
nitary space is locally compact� Every

continuous dcpo �with its Scott topology� is locally 
nitary� For� if x in U � there is some

y � x with y in U � whence x � �y � �y � U � �We do not include the de
nitions of

continuous dcpo�s and of compactness and local compactness because they are not needed in

this paper�� A locally 
nitary T��space is discrete�

Theorem ���

Every Scott continuous valuation on a locally 
nitary space is point continuous�

Proof� Let � be a Scott continuous valuation and assume �U � r for some open U

and r � �� Let V be the set of all open sets V such that there is a 
nitary set F with

V � F � U � Since the union of two open � 
nitary sets is again so� V is directed� Because

of local 
nitariness� the union of V is U � Since � is Scott continuous� there is some V in V

such that �V � r� Let E be a 
nite set with V � �E � U � If E � O�� then V � O�� whence

�O� � r� �

Corollary ��	

On a continuous dcpo� every Scott continuous valuation is point continuous�

In general� the notions of point continuity and Scott continuity di�er� For instance� the

length or Lebesgue measure on the unit interval of the reals with the standard Hausdor�

topology induces a bounded Scott continuous valuation which is not point continuous�

��� Approximation by Bounded Valuations

Every valuation can be approximated by bounded valuations�

Theorem ��
 Every Scott continuous � point continuous valuation can be obtained as

a directed join of bounded Scott continuous � point continuous valuations�

Proof� Let � be a Scott continuous valuation� Let !��� be the set of all opens O with

�O � �� and let C be �
S

!���� a closed set� For V in !���� F ��n C� and n � N�� let

�V�F�n � �jV �
P

x�F n � bx� Since �V�F�n�X� � ��V � � n � jF j� this is a bounded valuation� If �

is point continuous� then so is �V�F�n� since this property is enjoyed by point valuations� and

preserved by restriction to open sets� addition� and multiplication by 
nite numbers�

Let D � f�V�F�n j V � !���� F ��n C� n � N�g� This set is not empty since it contains �������

and directed� since �V��F� �n� and �V��F��n� are bounded by �V��V��F��F��n�tn� � Let �� � tD�

We claim �� � ��

� �� �



If O �� C� let x be in O � C� Then ��O � �n � bx��O� � n for all n in N�� whence ��O � ��

On the other hand� if �O were 
nite� then O �
S

!��� � �C in contradiction to O �� C�

If O �
S

!���� then O �
S
fO � V j V � !���g� By modularity� !��� is directed�

�O � tV ����� ��O � V � �� is Scott continuous�

� tV ����� �jV �O�

� t���D ���O� ��V�F�n�O� � �jV �O��

� ��O �

� Finite Valuations

In this section� we consider the 
nite valuations in greater detail� We introduce a standard

representation by �nite point densities� and characterize equality and order of the valuations

in terms of the representing point densities�

��� Representing Finite Valuations by Point Densities

A valuation � on a space X is 
nite if it is a 
nite linear combination of point valuations�

i�e�� if � � r� � cx� � � � � � rn � cxn where 
 � ri � � and xi in X � This representation is

not unique since summands may be permuted� summands with coe�cient 
 may be omitted�

and two summands with the same point may be combined into one� These three kinds of

ambiguities can be avoided by writing � �
P

x�X sx � bx where sx � R� with sx � 
 for all

but a 
nite number of x� Hence� � can be represented by a function x �� sx� We call such

functions point densities�

A �nite point density or shortly density on a space X is a function A � X � R� whose

support "A � fx � X j Ax � 
g is 
nite� A density need not be continuous or even monotonic

in any sense� We are interested in the 
nite valuation A� �
P

x�X Ax � bx �
P

x��AAx � bx
induced by the point density A� and in criteria for equality A� � B� and order A� v B� on

valuations stated in terms of the representing point densities A and B�

��� Finite Point Densities and their Action on Subsets

A density A is below a density B # A � B # i� for all x in X � Ax � Bx holds� Given a

density A on X and an arbitrary subset S of X � we de
ne A�S� �
P

x�S Ax �
P

x�S��AAx�

Since "A is 
nite and all Ax are 
nite� A�X � and thus all A�S� are 
nite� For the special

case of an open set O� A�O� � A��O� holds� where A� �
P

x�X Ax � bx is the 
nite valuation

de
ned above�

The elementary properties of the notion A�S� are as follows�

Proposition ��� For all 
nite point densities A on X and subsets S and T of X �

��� A��� � 
�

��� If S � T � �� then A�S � T � � A�S� �A�T ��

��� A�S � T � � A�S � T � � A�S� �A�T ��

��� If D is a directed set of subsets of X � then A�
S
D� � tS�D A�S��

� �� �



�	� If D is ��directed� then A�
T
D� � uS�D A�S��

Proof� From the de
nition of A�S�� it is not di�cult to prove ���� ���� and ����

Property ��� follows from ��� because of the following disjoint partitions� S � �SnT ���S�T ��

T � �T n S�� �S � T �� S � T � �S n T � � �T n S� � �S � T ��

Property �	� follows from ��� because of A�S� � A�X �� A�X n S� for all S in D� �

Because of parts ���� ���� and ��� of the proposition� we see that every 
nite valuation

� � A� can be extended to a strict modular Scott continuous function to R� de
ned on

arbitrary subsets of X � Because of part �	�� this extended function is even a measure� Hence�


nite valuations can be extended to measures which are de
ned not only on the Borel sets�

but on all subsets of X � Note that this extension is not unique if � � A� � B� for two

di�erent point densities A and B� In Subsection 	��� we shall see that this is impossible in a

T��space�

��� Operations on Densities

The zero density 
 is the function �x� 
� Obviously� 
�S� � 
 holds for all S � X � whence


� is the zero valuation 
�

The sum A � B of two densities A and B is de
ned pointwise� �A � B�x � Ax � Bx�

Obviously� �A�B��S� � A�S��B�S� holds for all subsets S of X � whence �A�B�� � A��B��

The product r � A of a density A by a factor r in R� is de
ned by �r � A�x � r � Ax�

Obviously� �r �A��S� � r �A�S� holds for all subsets S of X � whence �r �A�� � r �A��

For every point x� there is a density Ax with Axu � � if u � x� and � 
 otherwise�

Obviously� Ax�S� � � holds if x � S� and � 
 if x �� S� Thus� �Ax�
� is the point valuation bx�

The restriction AjW of a density A to an open set W is de
ned by �AjW �x � Ax if x

in W � and � 
 otherwise� Obviously� �AjW ��S� � A�W � S� holds for all S � X � whence

�AjW �� � �A��jW �

The corestriction AjW of a density A to an open set W is de
ned by �AjW �x � Ax if x

not in W � and � 
 otherwise� Obviously� �AjW ��S� � A��W � S� holds for all S � X � Since

S is the disjoint union of W � S and �W � S� �AjW ��S� � A�S�� A�W � S� follows� Thus�

�AjW �� � �A��jW holds�

As a consequence of these results� we see that the class of 
nite valuations on a space X

is closed under addition� multiplication by scalars� restriction and corestriction�

If f � X � Y is continuous� and � �
P

i�I ri � bxi is a 
nite valuation on X � then � �f� is a


nite valuation on Y � namely � �f� �
P

i�I ri �
dfxi� In terms of point densities� A� �f� � B�

holds where By �
P

x�f�fygAx�

��� Uniqueness of Representation

In this subsection� we show that two di�erent densities cannot represent the same valua�

tion� We start with some auxiliary properties�

Proposition ��� If A is a density� and S an upper set in a space X � then A�S� �

ufA��O� j O open � Sg�

� �� �



Proof� By Prop� 	�� �	�� since S �
T
O�S O� �

Lemma ��� Let X be a T��space� A a density on X � and x a point of X � Then

Ax � ufA��O� j x � O � �Xg �ufA��O� j O � �X� �x � O � fxgg�

Proof� Since �x is the disjoint union of fxg and �x n fxg� we obtain A��x� � A�fxg� �

A��x n fxg� by Prop� 	�� ���� Hence� Ax � A��x�� A��x n fxg��

The two sets �x and �x n fxg are upper sets� the latter because of the T� property� Thus�

Prop� 	�� can be applied� For an open set O� �x � O holds i� x � O� and �x n fxg � O i�

�x � O � fxg� �

Now we can prove the uniqueness of representation�

Theorem ��� For two densities A and B in a T��space� A� � B� implies A � B�

Proof� For every x in X � Ax and Bx can be expressed in terms of A� � B� by the formula

of Lemma 	��� Thus� Ax and Bx are equal� �

Corollary ��� For every 
nite valuation � on a T��space� there is a unique 
nite point

density A such that � � A��

The T� property is really needed� Consider the space X � fa� bg where � and X are the

only open sets� The 
nite point densities A with Aa � � and Ab � 
� and B with Ba � 


and Bb � � are di�erent� but induce the same valuation � with ���� � 
 and ��X� � ��

��� The Valuation Order in terms of Densities

Our goal in this subsection is to 
nd a criterion for A� v B� in terms of the 
nite point

densities A and B�

Theorem ��	 For two 
nite point densities A and B on a space X � the following state�

ments are equivalent�

��� A� v B��

��� A�U � � B�U � for all opens sets U �

��� A�U � � B�U � for all upper sets U �

��� A�F � � B��F � for all 
nite sets F �

�	� for all T � "A�
P

x�T Ax �
P

y��B��T By�

��� there are numbers txy in R� for x in "A and y � "B with

�a�
P

y��B txy � Ax for all x in "A�

�b�
P

x��A txy � By for all y in "B�

�c� if txy � 
� then x v y�

Proof�

���� ��� by de
nition�

���� ��� � B�U � � uO�O�U�B�O� holds by Prop� 	��� For every such O� B�O� � A�O� � A�U �

holds by ���� whence B�U � � A�U ��

���� ��� � �F is an upper set� Hence� A�F � � A��F � � B��F ��

���� �	��
P

x�T Ax � A�T � � B��T � �
P

y��B��T By�

� �� �



�	�� ���� We apply the Split Lemma ��� with I � "A� J � "B� and �x� y� � R i� x v y�

whence R��T � � fy � J j �x � T � x v yg � "B � �T �

���� ��� � A� �
P

x��AAx � bx
�
P

x��A

P
y��B txy � bx

	
�
P

x��A

P
y��B txy � by

�
P

y��B

P
x��A txy � by

�
P

y��B By � by
� B�

The relation �
	
�� holds� since txy � 
 implies x v y� whence bx v by� �

� Spaces of Valuations

In this section� we de
ne various topological spaces of valuations and study their rela�

tionship�

Let VX be the set of all Scott continuous valuations on X � VpX the set of all point

continuous valuations� and VfX the set of �nite valuations� We topologize these sets as

subspaces of the pointwise function space ��sX � R��p� Thus� the topology of VX is

generated by the subbasic opens hU � ri � f� � VX j �U � rg where U ranges over the

opens of X and r ranges over R� with 
 � r � �� The order de
ned by this topology is

� v �� i� �O � ��O for all opens O�

In general� continuous operations on a space Y can be lifted to continuous operations on

pointwise function spaces �X � Y �p� Hence� addition � � VX	VX � VX and multiplication

� � R� 	 VX � VX are continuous�

The function s � X � VX with sx � bx is continuous� For� s�hU � ri � U if r � �� and

� � otherwise� This also shows that s
� is surjective� whence s is a topological embedding

for T��spaces X �

Every continuous function f � X � Y induces a function Vf � VX � VY where

Vf ��� � � � f�� The function Vf is linear w�r�t� addition and scalar multiplication of VX � It

is continuous since Vf��� � hV � ri i� � � hf�V � ri� Thus� �Vf��hV � ri � hf�V � ri�

From this equation� we see that �Vf�� is surjective if f� is surjective� Hence� Vf is a

topological embedding if f is an embedding�

The operation V has functorial properties� i�e�� V id � id and V�g � f� � Vg �Vf � Because

of Vf �bx� � cfx� we obtain Vf � s � s � f � i�e�� the operation s is �natural� w�r�t� the functor V�

Let us now consider the topological properties of the various spaces�

Proposition 	��

For every space X � the spaces VX and VpX are sober� and VfX is a T��space�

Proof� The space VX is a subspace of the pointwise function space F � ��sX � R��p�

We show that it can be described as an equalizer�

Let J � f
g��X	�X � For every j in J � we de
ne functions fj and gj � F � R� as follows�

f���� � �� g���� � 


fU�V ��� � ��U � V � � ��U � V � gU�V ��� � �U � �V

� �
 �



All these functions are continuous� since for 
xed U in �X � ��� �U � F � R� is continuous�

and � � R� 	 R� � R� is continuous� By tupling� we obtain continuous functions f� g �

F � �R��
J such that f��� � g��� i� � is strict and modular� i�e�� in VX �

Since R� is sober� the pointwise function space F is sober� whence its equalizer subspace VX

is sober� For VpX � we start with F � � ��pX � R��p� The space VfX is T� as a subspace of

VpX � �

Now� we come to one of the main results of this paper� For every space X � VpX is

the sobri
cation of VfX � As de
ned in Subsection ����� we have to prove� For every point

continuous valuation � and open set O of VpX with � in O� there is a 
nite valuation 
 v �

with 
 in O� The proof of this statement is structured into several parts� The results of these

parts are presented as auxiliary lemmas�

The 
rst lemma contains the step from arbitrary to bounded valuations�

Lemma 	�� For every point continuous valuation � and open set O of VpX with � in

O� there is a bounded point continuous valuation �� v � with �� in O�

Proof� By Theorem ���� � is a directed join of bounded point continuous valuations� In a

sober space such as VpX � every open set is Scott open� Hence� there is some bounded point

continuous valuation �� v � with �� in O� �

The next lemma deals with the step from bounded to 
nite valuations in a quite special case�

Lemma 	�� Let � be a bounded point continuous valuation with �W � r for some open

set W and real number r� Then there is a 
nite valuation 
 v � with 
W � r�

Proof� Choose a real number r� such that �W � r� � r� Since � is point continuous� there

is a 
nite set F � fx�� � � � � xng � W such that F � O implies �O � r� for all open sets O�

Since �� � 
� n cannot be 
� Let � � r��r
n

� For every point xi� choose an open set Ui such

that xi � Ui and �Ui � � �uO	xi �O� We also need the unions Vi �
Si
j
� Ui for 
 � i � n�

in particular� V� � ��

Using restriction and corestriction� for every i with � � i � n� �jVi�� � �jVi�� jUi � �jVi�� jUi �

�j
Vi��
Ui

� �jVi � Let �i � �j
Vi��
Ui

� Starting from � � �jV� � we obtain by iteration � � �
Pn

i
� �i� �

�jVn � On the other hand� � � �jVn � �jVn holds� whence
Pn

i
� �i � �jVn �

Let ai � �i�X� and bi � 
 t �ai � ��� With these numbers� let 
 �
Pn

i
� bi � bxi�
To prove 
W � r� we 
rst compute

Pn
i
� ai �

Pn
i
� �i�X� � �jVn�X� � ��Vn� � r� since

F � Vn� Since all xi are in W � we obtain 
W �
Pn

i
� bi �
Pn

i
��ai � �� �
Pn

i
� ai � n � � �

r� � �r� � r� � r�

To prove 
 v �� note that �O �
Pn

i
� �iO �
P

i�xi�O �iO and 
O �
P

i�xi�O bi� Hence� it

su�ces to show �iO � bi for all i with xi � O� By de
nition� �iO � ��O�Ui����O�Ui�Vi���

holds� Since xi in O � Ui� we obtain ��O � Ui� � �Ui � � by the choice of Ui� Thus�

�iO � �Ui � � � ��Ui � Vi��� � �i�X� � � � ai � �� Since �iO � 
 also holds� �iO � bi
follows� �

The next lemma generalizes Lemma ��� from one open set W to any 
nite number of

open sets Oi�

� �� �



Lemma 	�� Let � be a bounded point continuous valuation with �Oi � ri for some open

sets O�� � � � � On and real numbers r�� � � � � rn� Then there is a 
nite valuation 
 v � with


Oi � ri for all i with � � i � n�

Proof� The valuation � can be partitioned along O� into � � �jO�
� �jO� � Both parts can

be partitioned along O� into �jO�
� �jO��O�

� �jO�

O�
and �jO� � �jO�

O�
� �jO��O� � Iterating

this process� we obtain � �
P

T �T where T ranges over the subsets of I � f�� � � � � ng and

�T � �jVTUT with UT �
T
i�T Oi and VT �

S
i�InT Oi� By construction� �TUT � �TX holds�

If i in T � then UT � Oi� whence �TOi � �TX � If i not in T � then Oi � VT � whence �TOi � 
�

Thus� ri � �Oi �
P

T �TOi �
P

T	i �TX � Choose some real number � with 
 � � � � such

that ri � � � �
P

T	i �TX� still holds for all i� Let qT � � � �TX � Then
P

T	i qT � ri for all i�

If �TX �� 
� then �TUT � �TX � qT � By Lemma ���� there is a 
nite valuation 
T v �T
such that 
TUT � qT � If �TX � 
� then qT � 
� and we set 
T � 
� In both cases� we obtain

a 
nite 
T v �T such that 
TUT � qT �

Let 
 �
P

T 
T � This is a 
nite valuation below �� For all i� 
Oi �
P

T 
TOi �
P

T	i
TUT �P
T	i qT � ri holds� �

With these lemmas� we can now prove�

Theorem 	�� For every space X � VpX is the sobri
cation of VfX �

Proof� Let � be in VpX and O in ��VpX� with � � O� By Lemma ���� there is a bounded

�� v � with �� � O�

Using the subbase of VpX � we have �� �
T
i�IhOi � rii � O for some 
nite I � open sets Oi

of X � and ri in R� with 
 � ri � �� From Lemma ���� we obtain a 
nite 
 v �� with


 �
T
i�IhOi � rii � O� �

� Universal Properties

In the sequel� we look for universal properties of the valuation spaces� We shall prove

that VfX is the free locally convex T��cone� and VpX is the free locally convex sober cone�

We did not 
nd a universal property for VX �


�� Cones

A cone or R��module is an algebraic structure �M� �� 
� �� where � � M 	M �M is a

commutative associative operation with neutral element 
 � M � and � � R� 	M �M is an

operation satisfying the module �or vector space� axioms�

r � 
 � 
 r � �m� �m�� � r �m� � r �m�


 �m � 
 �r � s� �m � r �m� s �m

� �m � m �r � s� �m � r � �s �m�

A topological cone is a cone with a topology such that ��� and ��� are continuous if R�

is given the Scott topology� Often� we shall omit the word �topological� if there is already a

topological notion around such as �sober��

� �� �



Homomorphisms between cones are linear functions� where linearity means f�m�m�� �

fm � fm� and f�r �m� � r � fm as usual� Homomorphisms between topological cones are

continuous linear functions�

If �Mi�i�I is a family of �topological� cones� then the product
Q
i�I Mi is a �topological�

cone with �mi�i�I � �m�
i�i�I � �mi �m�

i�i�I � 
 � �
i�i�I � and r � �mi�i�I � �r �mi�i�I �

In every topological cone� 
 is the least element since continuous functions are monotonic�

whence 
 � 
 � m v � �m � m holds for all m in M � Thus� non�trivial topological cones

cannot be T� spaces�

Standard examples of topological cones are given by powers of R� or R�� and linear

subspaces thereof� On the other hand� there are quite strange cones which have nothing to

do with real numbers� Let �L� �� �� be a distributive lattice with least element F and greatest

element T� De
ne a� b � a � b for a and b in L� 
 � F� and for r in R� and a in L� de
ne

r � a � F if r � 
� and � a otherwise� With these operations� L becomes a cone� If L is

endowed with a topology which makes ��� and ��� continuous� then L is a topological cone� A

suitable topology is the Scott topology if L is a continuous lattice�


�� Uniqueness Properties

The notions introduced so far are su�cient to state the uniqueness parts of the universal

properties of Vf and Vp �

Theorem 
�� Let X and Y be topological spaces�

��� Every linear function from VfX to some cone is uniquely determined by its values on

point valuations�

��� Every continuous linear function from VpX to a T��cone is uniquely determined by

its values on point valuations�

��� Every continuous bilinear function from VpX � Vp Y to a T��cone is uniquely deter�

mined by its values on pairs �bx� by� of point valuations� �Bilinear means linear in each

argument if the other one is 
xed��

Proof� Part ��� is obvious since every 
nite valuation is a 
nite linear combination of

point valuations� Part ��� follows from part ��� and Prop� ���� using the fact that VpX is the

sobri
cation of VfX �Theorem ��	��

Let f� and f� be continuous bilinear functions from VpX�Vp Y to a T��cone C which coincide

on pairs �bx� by�� From the functions fi� we derive functions gi � VpX � �Y � C�p with

gi�
� � �y�fi�
� by�� By raising the operations of C to functions� �Y � C�p becomes a T��cone

again� The functions gi are continuous since they result from fi by currying �Subsection ����

and composition with s � �y� by� They are also linear� and g��bx� � g��bx� holds for all x in

X by hypothesis� By part ���� g� � g� follows� whence f��
� by� � f��
� by� holds for all 
 in

VpX and y in Y � Currying fi the other way round yields functions hi � Vp Y � �VpX � C�p
with hi��� � �
� fi�
� ��� Since h��by� � h��by� for all y in Y � we can apply part ��� again

and obtain h� � h�� i�e�� f� � f�� �

Unfortunately� we do not know whether similar properties hold for VX � the space of all

Scott continuous valuations on X � We do not even know the answer for the special case that

the target cone is R��

� �� �



Problem � Are continuous linear functions from VX to R� uniquely determined by

their values on point valuations 

If the answer to this problem is yes� then also the continuous linear functions from VX

to VY are uniquely determined by their values on point valuations� For� the functions

��� �V � VY � R� are continuous and linear for every open set V of Y �


�� Convexity and Local Convexity

In order to formulate the universal properties for Vf and Vp � we need some more notions

connected with cones�

In a cone� a convex combination is a linear combination r� � x� � � � � � rn � xn whose

coe�cients sum up to ��

A subset S of a cone is convex i� all convex combinations of points of S are back in S

again� This is equivalent to the condition that r � x� ��� r� � y is in S for all x� y in S and r

with 
 � r � �� Intersections of convex sets are convex� hence every subset S of a cone has

a least convex superset� the convex hull conS� The convex hull can be described as the set

of all convex combinations of points of S�

Proposition 
�� Let f � M �M � be a linear map between two cones�

��� If S is convex in M �� then f�S is convex in M �

��� con f�S � f��conS� holds for all S �M �

Proof�

��� Let x� y be in f�S� Then r�x����r��y is in f�S since f�r�x����r��y� � r�fx����r��fy

is in S�

��� By ���� f��conS� is a convex superset of f�S� �

A topological cone is convex�based if whenever a point x is in an open set U � there

is a convex open set V such that x � V � U �or� there is an open set V such that

x � V � conV � U�� It is locally convex if whenever a point x is in an open set U �

there is an open set V such that x � V � conV � U �

Clearly� every convex�based cone is locally convex� The two notions are quite similar and

have similar properties� In our proofs� we shall concentrate on local convexity� The reader is

invited to 
nd the corresponding proofs for convex bases�

In both de
nitions� it su�ces to consider open sets U from a subbase S� For� if x is in an

arbitrary open O� then there are opens U�� � � � � Un from S such that x � U� � � � � � Un � O�

Thus� x in Ui for all i� whence there are Vi such that x � Vi � conVi � Ui� Since
T
i conVi is

convex� x �
T
i Vi � con �

T
i Vi� �

T
i conVi �

T
i Ui � O follows�

The topological cones R� and R� are convex�based since all the opens fs j s � rg are

convex� Also� distributive lattices with the Scott topology are convex�based� since convex

combinations are 
nite joins a� � � � � � an with n � 
� and open sets are upper sets� For the

moment� we do not have any examples of cones which are not convex�based�

In the sequel� we present three properties of our notions�

� �� �



Proposition 
�� �Products


If all topological cones Mi are convex�based � locally convex� then so is
Q
i�I Mi�

Proof� The product M �
Q
i�I Mi has a subbase f��i O j i � I� O � �Mig� If x in

��i O� then �ix � O� Since Mi is locally convex� there is an open V in Mi such that

�ix � V � conV � O� whence x � ��i V � ��i �conV � � ��i O� The projection �i is linear�

whence con ��i V � ��i �conV � by Prop� ���� �

Proposition 
�� �Linear subspaces
 If M and M � are topological cones� e � M ��M �

is a linear topological embedding� and M � is convex�based � locally convex� then so is M �

Proof� Let x in O for some open O of M � Since e is an embedding� O � e�U holds for

some U � �M �� Thus ex is in U � Since M � is locally convex� there is an open V in M �

such that ex � V � conV � U � whence x � e�V � e��conV � � e�U � Since e is linear�

con e�V � e��conV � holds by Prop� ���� �

From the two propositions above� we may conclude that the spaces VX � VpX � and VfX

are convex�based as linear subspaces of products of R��

Proposition 
�� �Linear retracts


If M and M � are topological cones� e � M �M � is continuous� and r � M � �M is linear

and continuous with r � e � id� then local convexity of M � implies local convexity of M �

Proof� If x � r�ex� in U where U in �M � then ex � r�U � Because M � is locally convex�

there is an open V in �M � such that ex � V � conV � r�U � Hence� x � e�V � We claim

con �e�V � � U �

We show that every convex combination
P
ti � xi of points xi from e�V is in U � Since exi is

in V �
P
ti � exi is in conV � r�U � Thus� r�

P
ti � exi� �

P
ti � xi is in U � Here� linearity of r

is used� �

The corresponding property for convex�based cones is probably wrong� but we have no

examples� Later� we shall see that the locally convex T��cones are exactly the linear retracts

of the convex�based T��cones �Theorem �����


�� A Universal Property for Vf

In this subsection� we present a universal property for the space VfX of 
nite valuations�

Theorem 
�	 VfX is the free locally convex T��cone over X in T OP � the category of

topological spaces and continuous maps�

This means� VfX is itself a locally convex T��cone� and for every continuous function

f � X �M from a topological space X to a locally convex T��cone M � there is a unique

continuous linear function $f � VfX �M with $f � s � f � i�e�� $f�bx� � fx for all x in X �

Proof� We already know that VfX is a convex�based T��cone� hence locally convex� The

uniqueness statement is given by Theorem ���� We still have to show existence of $f �

Every 
nite valuation 
 can be written as
P

x�F rx � bx for some 
nite set F and some numbers

rx with 
 � rx ��� By Cor� 	�	� this representation is unique� Hence� $f�
� �
P

x�F rx �fx is

a well�de
ned element of M � The function $f � VfX �M de
ned in this manner is obviously

� �	 �



linear and satis
es $f � s � f � The only remaining task is to prove continuity of $f � This turns

out to be quite complex�

Let 
 �
P

x�F rx � bx be a member of VfX where F is 
nite and 
 � rx � �� Let U be

an open set of M � and assume $f�
� � U � Then
P

x�F rx � fx is in U � Since addition and

multiplication are continuous in M � there are open sets Rx of R� and Vx of M such that

rx � Rx� fx � Vx� and whenever sx � Rx and mx � Vx� then
P

x�F sx �mx � U �

Choose numbers r�x � 
 such that rx � r�x � Rx� and applying local convexity of M � choose

open sets Wx of M such that fx � Wx � conWx � Vx� and let Ox � f�Wx� By continuity

of f � the sets Ox are open sets of X with x in Ox for all x in F � For every non�empty T � F �


�
S
x�T Ox� �

P
x�T rx �

P
x�T r

�
x holds� Hence� 
 is in O �

T
�

T�F h

S
x�T Ox �

P
x�T r

�
xi�

which is an open set of VfX � We have to show that for every � in O� $f��� is in U �

Let � �
P

y�G sy � by be in O� Let R � F 	 G be the relation given by �x� y� � R i� Ox � y�

whence R��T � � fy � G j �x � T � y � Oxg for subsets T of I � Since � is in O�X
y�R��T �

sj � ��
�
x�T

Ox� �
X
x�T

r�x

holds for all non�empty subsets T of I � For T � �� both sides are zero� Thus� ��� instead of

��� holds for all subsets T of I � Applying the Split Lemma ���� we obtain numbers txy � R�

for x in F and y in G such that

���
P

y�G txy � r�x for all x in F �

���
P

x�F txy � sy for all y in G�

��� if txy � 
� then y � Ox�

Let �� �
P

x�F

P
y�G txy � by� Then

$f���� �
X
y�G

�
X
x�F

txy� � fy v
X
y�G

sy � fy � $f���

using monotonicity of addition and multiplication in M � The valuation �� may alternatively

be written as

�� �
X
x�F

r�x ��x where �x �
X

y�G�Ox

�txy	r
�
x� � by

The coe�cients of �x sum up to �� Thus� $f ��x� is a convex combination of the points fy

where y in G �Ox� All these points are in Wx� whence $f��x� in Vx by choice of Wx�

Since $f���� �
P

x�F r
�
x � $f��x� where r�x in Rx and $f��x� in Vx� it is in U � Since $f ��� is above

$f����� it is in U as well� �

In Theorem ���� local convexity cannot be dispensed with� if M is a topological cone with

the property that identity id � M � M has a continuous linear extension id � VfM � M �

then M is a linear retract of VfM � whence locally convex by Prop� ��	� As a subspace of

VfM � it is also T��

Theorem ��� also leads to a characterization of local convexity�

Theorem 
�
 A T��cone is locally convex i� it is a linear retract of a convex�based cone�

Proof� Linear retracts of convex�based cones are locally convex by Prop� ��	� Conversely�

if M is a locally convex T��cone� then identity id � M � M has a continuous linear extension

id � VfM �M � Thus� M is a linear retract of the convex�based cone VfM � �

The extension function induced by Theorem ��� is continuous�

� �� �



Theorem 
�� For every space X and locally convex T��cone M � the extension function

E � �X �M �p � �VfX
lin
�M �p given by Theorem ��� is continuous and linear�

Proof� For some 
 �
P

x�F rx � bx in VfX � continuous function f � X � M � and open set

U of M � assume Ef � h
� Ui� Then
P

x�F rx � fx is in U � As in the proof of Theorem ����

there are open sets Rx of R� and Vx of M such that rx � Rx� fx � Vx� and whenever sx � Rx

and mx � Vx� then
P

x�F sx �mx � U � From fx � Vx� we obtain f �
T
x�F hx� Vxi�

If g is in
T
x�F hx� Vxi� then gx � Vx for all x in F � whence

P
x�F rx � gx is in U � Thus� Eg

is in h
� Ui� This proves continuity of E�

Linearity is meant to be w�r�t� the pointwise operations on �X �M �p and �VfX
lin
�M �p� To

prove the equality E�f � g� � Ef � Eg� note that both functions are continuous and linear�

and E�f � g� � s � f � g � �Ef � Eg� � s holds� The equality follows from the uniqueness

statement of freeness� The second equality E�r � f� � r � Ef is shown by similar arguments��

Corollary 
�� For every space X and locally convex T��cone M � the function spaces

�X �M �p and �VfX
lin
�M �p are isomorphic topological cones�

Proof� One isomorphism is given by the function E of Theorem ���� The opposite one is

F �� F � s� �


�� A Universal Property for Vp

Here� we present a universal property for the space VpX of point continuous valuations�

Theorem 
��� VpX is the free locally convex sober cone over X in T OP �

Proof� We already know that VpX is a convex�based� whence locally convex� sober cone�

Let M be an arbitrary locally convex sober cone� and let f � X � M be continuous� By

Theorem ���� there is a unique continuous linear function f� � VfX � M with f� � s � f �

By Theorem ��	� VpX is the sobri
cation of VfX � Hence� by Theorem ���� the continuous

function f� � VfX � M has a unique continuous extension $f � VpX � M � Since $f extends

f�� $f � s � f follows� The only thing which remains to be proved is linearity of $f �

Let r be a 
xed element of R�� Consider the two functions F�G � VpX � R� with

F ��� � $f�r � �� and G��� � r � $f���� They are continuous and coincide on VfX because

of linearity of f�� By Prop� ���� F � G follows�

For addition� consider the two functions F�G � VpX 	 VpX � R� with F ��� � �� � $f�� � ���

and G��� ��� � $f��� � $f����� They are continuous and coincide on VfX 	 VfX because of

linearity of f�� By Prop� ���� VpX 	 VpX is the sobri
cation of VfX 	 VfX � By Prop� ����

F � G follows� �

Theorem 
��� For every space X and locally convex sober cone M � the function E �

�X �M �p � �VpX
lin
�M �p induced by the freeness of VpX is continuous and linear�

Proof� It is continuous as the composition of the function �X � M �p � �VfX
lin
� M �p of

Theorem ��� with a restriction of the function �VfX �M �p � �VpX �M �p of Theorem ��	�

Linearity follows from freeness as in the proof of Theorem ���� �

� �� �



Corollary 
��� For every space X and locally convex sober cone M � the three function

spaces �X �M �p� �VfX
lin
�M �p� and �VpX

lin
�M �p are isomorphic topological cones�

In particular� for every space X � the three topological cones �X � R��p� �VfX
lin
� R��p�

and �VpX
lin
� R��p are isomorphic�


�	 Universality for Vp and Tensor Products

In this subsection� we generalize Theorem ���
 to functions with two arguments which

are separately continuous� i�e�� continuous functions f � X � Y �M �

Theorem 
��� Let X and Y be two spaces and M a locally convex sober cone� For

every continuous function f � X � Y �M � there is a unique continuous bilinear function

F � VpX � Vp Y �M such that F �bx� by� � f�x� y� holds for all x in X and y in Y �

Proof� Starting from f � we obtain a continuous function f � � X � �Y � M �p by cur�

rying �Subsection ����� As mentioned in Subsection ����� sobriety of M implies sobriety of

�Y � M �p� This space is also locally convex as a linear subspace �Prop� ���� of a power

�Prop� ���� of M �

By Theorem ���
� there is a unique continuous linear function g � VpX � �Y � M �p

with g�bx� � f �x for all x in X � By Theorem ����� E � �Y � M �p � �Vp Y
lin
� M �p

is continuous and linear� Composition of g and E produces a continuous linear function

h � VpX � �VpY
lin
� M �p� Uncurrying h �Subsection ���� yields a continuous function

F � VpX�Vp Y �M which is bilinear as required� The behavior on pairs on point valuations

is as wanted�

F �bx� by� � hbxby � E�gbx�by � gbxy � f �xy � f�x� y��

Uniqueness of F follows from Theorem ��� ���� �

� Integration

Several authors ��� �� �� already de
ned integration of real�valued functions w�r�t� a

valuation� Since they de
ned integration from scratch� the proofs of its properties are quite

involved� Here� we present a novel de
nition of integration which is so simple that most

proofs become trivial� �The complexity has not disappeared� though� it is now in the proofs

of Theorems ��� and ���� which are needed to prove Theorem ���
��

For every space X � integration will be a function
R
X � �X � R��i � VX � R� which is

continuous in the two arguments separately� �If one argument is 
xed� then
R
X is continuous

in the other��

Note that the function space �X � R��i is not topologized by the pointwise topology�

but by the Isbell topology which has more open sets �see Subsection ���
��

The function
R
X is built from the following pieces�

�� The function �s � �X � R��i � ��sR� � �sX �p with �sf � f� is continuous� In

fact� the Isbell topology was chosen to guarantee this�

� �� �



�� Using �s� we map from �X � R��i�VX to ��sR�
���
� �sX �p� ��sX

mod
� R��p� where

the labels at the arrows indicate the properties of the resulting functions� Now� we

can use function composition to reach ��sR�
mod
� R��p � VR�� Function composition

� � �X � Y �p � �Y � Z�p � �X � Z�p is continuous in its two arguments separately�

�� Since R� is a continuous dcpo� it is locally 
nitary� whence VR� � VpR� by Theo�

rem ��	�

�� R� is a locally convex �even convex�based� sober cone� By Theorem ���
� identity

id � R� � R� can be extended to a continuous linear function id � VpR� � R� with

the property id �br� � r for all r in R��

Putting all pieces together� we yield a function
R
X � �X � R��i � VX � R� withR

X�f� �� � id �� � f�� which is continuous in its two arguments separately� Of course� this

function can be restricted to a �pointwise� function �X � R��i � VpX � R� which is also

continuous in its two arguments separately� This continuity is not destroyed if the Isbell

topology on the real�valued functions is replaced by the smaller pointwise topology� For� the

function �p � �X � R��p � ��pR� � �pX �p with �pf � f� is continuous� Using �p� we

map from �X � R��p � VpX to ��pR�
���
� �pX �p � ��pX

mod
� R��p� and composition can

be used to reach ��pR�
mod
� R��p � VpR��

Thus� we obtain two variants of integrations with the same de
nition
R
X�f� �� � id���f���

but di�erent continuity properties� the Isbell variant
R
X � �X � R��i � VX � R�� and the

pointwise variant
R
X � �X � R��p � VpX � R��

In the sequel� we derive the essential properties of integration� They hold for both variants

because the de
ning equations are the same� They are collected in Theorem ��� at the end

of this section�

From the construction of the two variants of
R
X � we know that they are continuous in the

two arguments separately� Since �X � R��i� �X � R��p� VX � VpX � and R� are d�spaces�

they are also Scott continuous in both arguments� Integration is linear in the valuation

argument� since
R
X�f� �� � id �� � f��� and id is linear� The e�ect of integration on point

valuations is as follows�R
X�f� bx� � id �bx � f�� � id �cfx� � fx�

A kind of �substitution theorem� is easily proved for continuous functions h � X � Y �

f � Y � R�� and valuations � in VX �R
X�f � h� �� � id �� � �f � h��� � id �� � h� � f�� �

R
Y �f� � � h

��

Our 
nal goal is to show that integration is also linear in its functional argument� If

we only considered point continuous valuations� the proof would be quite easy� Both sides

of the equation
R
X�f � g� �� �

R
X�f� �� �

R
X�g� �� are continuous and linear in � � VpX �

By Theorem ���� it su�ces to consider the special case � � bx� In this case� both sides are

fx� gx� The equation
R
X�r � f� �� � r �

R
X�f� �� would be handled similarly�

Unfortunately� this elegant proof is not possible in the general case since we do not

have an analogous property for continuous linear functions de
ned on VX �cf� Problem ���

Fortunately� there is a way around the problem� Before we can present it� we have to consider

the continuous functions f � X � R� a bit closer�

� �� �



A continuous function f � X � R� is simple if its image 
f is 
nite and does not contain

�� An arbitrary continuous function is the directed join of all the simple functions below it�

Every 
nite linear combination r� �cU�� � � ��rn �cUn of characteristic functions cUi of open sets

Ui is simple� Conversely� every simple function can be written as such a linear combination�

We need some auxiliary statements for our proof of the linearity of integration in the func�

tional argument�

��� For r in R��
R
X�r � f� �� � r �

R
X�f� ���

Proof� Let �r�� � R� � R� be the function de
ned by �r���s� � r � s� Then r � f � �r�� � f �

By the substitution property� we obtain
R
X�r � f� �� �

R
R�

��r��� � � f��� and by the de
nition

of integration� r �
R
X�f� �� � r � id�� � f�� holds� We claim

R
R�

��r��� �� � r � id��� for all

valuations � in VR� � VpR�� Since both sides of the equation are linear continuous functions

in �� it su�ces by Theorem ��� to prove the equation for the special case of point valuations

� � bs where s in R�� In this case� the left hand side is
R
R�

��r��� bs� � �r���s� � r � s� and the

right hand side is r � id�bs� � r � s� �

���
R
X�
� �� � 
 where 
�x� � 
 for all x in X �

Proof� By ���� using 
 � 
 � 
� �

��� For r in R��
R
X�r� f� �� � r � ��X� �

R
X�f� ���

Proof� Apply the same idea as in the proof of ���� Since X � f��R��� equation ��� is

equivalent to
R
R�

��r��� �� � r � ��R�� � id��� where � � � � f� in VR�� This equation

holds for all � in VR�� since both sides are continuous and linear in �� and
R
R�

��r��� bs� �
�r���s� � r � s� and r � bs�R�� � id�bs� � r � � � s� �

��� If fx � gx for all x in the open set W � then
R
X�f� �jW � �

R
X�g� �jW ��

Proof� By hypothesis� W � f�V � W � g�V holds for all V in �R�� By Theorem ��	�

�jW �f�V � � �jW �g�V � follows� whence �jW � f� � �jW � g�� �

�	� If fx � gx for all x in X nW where W is open� and � is bounded� then
R
X�f� �jW � �R

X�g� �jW��

Proof� The valuation � must be bounded so that the corestriction �jW is well de
ned� By

hypothesis� �W � f�V � �W � g�V holds for all V in �R�� By Theorem ��	� �jW � f� �

�jW � g� follows� �

��� For r in R� and W in �X �
R
X�r � cW � f� �� � r � ��W � �

R
X�f� ���

Proof� First assume that � is bounded� Then it can be partitioned along W into � �

�jW � �jW � Since integration is linear in the valuation argument�
R
X�r � cW � f� �� �R

X�r � cW � f� �jW � �
R
X�r � cW � f� �jW � holds� Since cW �x� � 
 for x in X n W � the

second summand equals
R
X�f� �jW � by �	�� Since cW �x� � � for x in W � the 
rst summand

equals
R
X�r � f� �jW � by ���� By ���� this is r � �jW �X� �

R
X�f� �jW �� Hence� we obtain

r � ��W � �
R
X�f� �jW � �

R
X�f� �jW � � r � ��W � �

R
X�f� �� for the sum�

The equation holds for every valuation � in VX � since integration is Scott continuous in the

valuation argument� and � is a directed join of bounded members of VX by Theorem �����

���
R
X�r� � cU� � � � �� rn � cUn� �� � r� � ��U�� � � � �� rn � ��Un��

In particular�
R
X� bU� �� � ��U��

� �
 �



Proof� Apply ��� n times� then ���� �

���
R
X�f � g� �� �

R
X�f� �� �

R
X�g� ���

Proof� First assume that f and g are simple� Since every simple function is a 
nite linear

combination of characteristic functions of opens� the statement follows from ����

The equation for general f and g follows� since every continuous function is a directed join

of simple functions� and integration is Scott continuous in the functional argument� �

Summarizing our results� we obtain�

Theorem ���

��� Integration
R
X � �X � R��i�VX � R� is continuous in its two arguments separately�

��� The variant
R
X � �X � R��p � VpX � R� is also continuous in its two arguments

separately�

��� Integration �in both variants� is Scott continuous in its two arguments�

��� Integration is linear in both arguments�

�	� For f � X � R� and x in X �
R
X�f� bx� � fx holds�

���
R
X� bU� �� � ��U� where bU is the characteristic function of an open U of X �

��� Let h � X � Y and f � Y � R� be continuous� and let � be in VX � ThenR
X�f � h� �� �

R
Y �f� � � h

���

	 Isomorphic Descriptions

Integration may be used to derive isomorphic descriptions of VX and VpX �

Theorem ��� For every space X � the topological cone of Scott continuous valuations on

X � i�e�� strict modular Scott continuous functions from �X to R�� is isomorphic to the

topological cone of linear continuous functions from �X � R��i to R� with the pointwise

topology�

VX � ��sX
mod
� R��p 
� ��X � R��i

lin
� R��p

Proof� For the proof� let F � �X � R��i�

One isomorphism is constructed from integration� De
ne 
 � VX � �F
lin
� R��p by 
��� �

�f�
R
X�f� ��� This function has the claimed type since integration is continuous and linear

in its functional argument� The function 
 itself is linear since integration is linear in its

valuation argument� It is continuous since integration is continuous in its two arguments

separately �see Subsection �����

The inverse isomorphism is de
ned using characteristic functions� For F in �F
lin
� R��p� let

��F � � F � � where � � �X � F with �U � bU � the characteristic function of U � We 
rst

show that ��F � is a Scott continuous valuation�

� ��F � is strict since F �b�� � F ��x� 
� � 
 by linearity of F �

� ��F � is modular since F �f � g� � F �f� � F �g� and dU � V � dU � V � bU � bV �

� �� �



� ��F � is Scott continuous since both F and � are Scott continuous� F � F � R� is Scott

continuous since it is continuous and both F and R� are d�spaces� � � �X � F is

Scott continuous since x in
S
i�I Oi i� x in Oi for some i in I � whence ��

S
i�I Oi��x� �

ti�I ��Oi��x��

The function � itself is obviously linear� Since �F
lin
� R��p is a subspace of

Q
f�F R��

the function �U � �F
lin
� R��p � R� with �U �F � � F � bU� is continuous for every 
xed

U in �X � Since ��sX
mod
� R��p is a subspace of

Q
U��X R�� continuity of the function

� � �F
lin
� R��p � ��sX

mod
� R��p follows�

At this point� we know that both 
 and � are continuous linear functions� We still have to

show that they are inverse to each other�

For � in VX and U in �X � ��
���U� � �
��� bU� �
R
X� bU� �� � ��U� holds using Theo�

rem ��� ���� whence � � 
 � id�

For F in �F
lin
� R��p� 
��F ��g� �

R
X�g� �F � holds for all g in F � Hence� we have to

show
R
X�g� �F � � F �g� for all g in F � Since both integration and the function F are Scott

continuous� it su�ces to show the equation for all simple functions g� Since both integration

and the function F are linear� and every simple function is a 
nite linear combination of

characteristic functions� it even su�ces to show the equation for all functions bU with U in

�X � By Prop� ��� ����
R
X� bU� �F � � �FU � F bU holds as required� �

An analogous theorem can be formulated for point continuous valuations�

Theorem ��� For every space X � the topological cone of point continuous valuations

on X � i�e�� strict modular continuous functions from �pX to R�� is isomorphic to the

topological cone of linear continuous functions from �X � R��p to R� with the pointwise

topology�

VpX � ��pX
mod
� R��p 
� ��X � R��p

lin
� R��p

Proof� Algebraically� the isomorphisms are the same as in the proof of Theorem ����

The di�erence is that the �pointwise� version of integration is used� Hence� 
 de
ned by


��� � �f�
R
X�f� �� has type VpX � ��X � R��p

lin
� R��p in this case�

For F in ��X � R��p
lin
� R��p� we have to show that ��F � � F � � is point continuous� i�e��

continuous with type �pX � R�� We prove continuity of � � �pX � �X � R��p� For x in

X and V in �R�� ��hx� V i is �pX if 
 � V � O�x� if 
 �� V and � � V � and � if � �� V �

The remainder of the proof of Theorem ��� can be taken over unchanged� �

In general� the topology of a pointwise function space �Y � Z�p is the least such that

for every y in Y � the function �f� fy � �Y � Z�p � Z is continuous� Applying this to

��X � R��i
lin
� R��p� we see that its topology is the least such that for every continuous

f � X � R�� the function �F� F �f� is continuous� Using the isomorphism 
 of the proof of

Theorem ���� we conclude�

Theorem ��� The topology on VX is the least such that for every continuous function

f � X � R�� the function f� � VX � R� with f���� �
R
X�f� �� is continuous�

This characterizes the topology of VX as a �weak topology�� Notice that in contrast to

classical results which look similar� the space R� is equipped with the Scott topology instead

of the usual Hausdor� topology�

� �� �



�
 V as a Kleisli Triple

In this section� we show that the construction V can be seen as the object map of a Kleisli

triple in the category of topological spaces� The main work is already done� all what remains

to do is to de
ne the Kleisli operations and to show that they have the required properties�

For every space X � we need a function s � X � VX � This function is given by sx � bx� It

was already de
ned in Section �� There� it was shown that s is continuous� and that it is a

topological embedding of X into VX if X is a T��space�

For every two spaces X and Y and every continuous function f � X � VY � we need a

continuous function $f � VX � VY � Using integration� $f is de
ned as

$f��� � �V�

Z
X

��x� fx�V �� ���

First� we have to show that $f��� is indeed in VY � It is strict since fx is strict for all x� andR
X��x� 
� �� � 
� It is modular since fx is modular for all x� and integration is linear in its

left argument� It is Scott continuous since fx� application� ��abstraction� and integration are

Scott continuous�

Second� we have to show continuity of $f � For 
xed V in �Y � the function � �� $f����V �

is continuous since integration is continuous in its right argument� Since VY is a subspace of

the power
Q
V��Y R�� continuity of $f follows�

For s and extension f �� $f to be part of a Kleisli triple� we have to prove three properties�

��� $f � s � f �

For every point a ofX � we compute� $f�sa� � �V�
R
X��x�fx�V �� ba� � �V�fa�V � � fa�

��� $s � id�

$s��� � �V�
R
X��x� bx�V �� �� � �V�

R
X� bV � �� � �V� �V � ��

��� For f � X � VY and g � Y � VZ� $g � $f � $g � f �

For � in VX and W in �X � we have to showZ
Y
��y� gyW� �V�

Z
X
��x� fxV� ��� �

Z
X
��x�

Z
Y
��y� gyW� fx�� ���

The function �y� gyW is continuous from Y to R�� Generalizing a bit� we even proveZ
Y

�h� �V�
Z
X

��x� fxV� ��� �
Z
X

��x�
Z
Y

�h� fx�� ��

for all continuous h � Y � R�� Since both sides of the equation are continuous and linear

in h� it su�ces to prove the equation for the characteristic functions h � bO of opens O

of Y � After substituting bO for h� both sides of the equation simplify to
R
X��x� fxO� ���

This completes the proof that V is the object map of a Kleisli triple in the category of

topological spaces�

Every Kleisli triple induces a functor which in our case is de
ned by Vf � s � f for

continuous f � X � Y � We verify that this induced functor coincides with the functor

de
ned in Section ��

s � f����V � �

Z
X
��x� s�fx��V �� �� �

Z
X
� df�V � �� � ��f�V �

Every extended function $f and extension E � �f� $f itself are linear� This follows from

the de
nition of $f and linearity of integration in both arguments�

� �� �



Next� we show that Kleisli extension E � �X � VY �i � �VX � VY �p is continuous� Since

the topology on the right is pointwise� and the topology on VY is pointwise as well� it su�ces

to show that for every 
xed � in VX and V in �Y � the function �f�Ef�V � �f�
R
X��x�fxV� ��

is continuous from �X � VY �i to R�� It is the composition of G � �X � VY �i � �X � R��i
with G�f� � �x� fxV and H � �X � R��i � R� with H�g� �

R
X�g� ��� The latter is

continuous because of the continuity properties of integration� The former is continuous

since G�f� � h � f holds where h���� � ���V � is continuous� and composition is separately

continuous w�r�t� the Isbell topologies of the function spaces�

The continuity property E � �X � VY �i � �VX � VY �p looks a bit awkward� At least� it

is su�cient to conclude that E is Scott continuous since both function spaces are d�spaces�

From the continuity property of E� we can derive that the functorial mapping V is contin�

uous from �X � Y �i to �VX � VY �p� For� V � E�S� where S�f� � s�f � and S is continuous

from �X � Y �i to �X � VY �i by separate continuity of composition in the Isbell case�

Finally� we show that the Kleisli triple V cuts down to a Kleisli triple Vp � i�e�� we prove

that for continuous f � X � Vp Y � Ef maps from VpX to Vp Y �

A priori� Ef restricts to a continuous linear function Epf from VpX to VY with Epf�s � f �

Since Vp Y is a locally convex sober cone� the universal property of VpX gives us a continuous

linear function $f � VpX � Vp Y �� VY with $f � s � f � By the uniqueness part of the

universal property� Epf and $f coincide� whence Epf � VpX � Vp Y � By universality again�

Ep coincides with the function of Theorem ����� This shows that it is continuous from

�X � Vp Y �p to �VpX � Vp Y �p� Thus� Ep satis
es a stronger continuity property than

the Kleisli extension E of V� It follows that the functorial mapping Vp is continuous from

�X � Y �p to �VpX � Vp Y �p� Summarizing� we obtain�

Theorem ���� Let s � X � VX with sx � bx and E � �X � VY �i � �VX
lin
� VY �p with

Ef����V � �

Z
X

��x� fx�V �� ���

Then s is a continuous embedding� E is continuous and linear� and �V� s�E� forms a

Kleisli triple� The induced functorial map is the continuous function V � �X � Y �i �

�VX
lin
� VY �p with Vf��� � � � f��

In the point continuous case� E restricts to Ep � �X � Vp Y �p � �VpX
lin
� Vp Y �p� and V to

Vp � �X � Y �p � �VpX
lin
� Vp Y �p�

�� Products of Valuations

In this section� we consider the problem to derive a product valuation on X	Y or X�Y

from given valuations 
 on X and � on Y �

���� Topological Product

Our 
rst problem is to derive a continuous product operation 	 � VX 	VY � V�X 	 Y �

whose result is de
ned on the open sets of the topological product space�

As in ��
�� we start with a function t � X 	 VY � V�X 	 Y ��

� �� �



Proposition ���� Let t � X 	 VY � V�X 	 Y � be a function de
ned by t�x� �� �

�W� ��Wx� where Wx � ��y� �x� y���W � fy � Y j �x� y� � Wg� The func�

tion t is continuous� linear in the second argument� and satis
es t�x� by� � d�x� y� and

t�x� ���U 	 V � � bUx � �V �

Proof� The result t�x� �� � � � ��y� �x� y��� is indeed a valuation on X 	 Y � Linearity in

the valuation argument is obvious�

By de
nition� t�x� by��W � � by�Wx� holds� Since y � Wx i� �x� y� � W � this equals d�x� y��W ��

For the last equation� consider ���U 	V �x�� If x in U � then bUx � � and �U 	V �x � V holds�

and if x is not in U � then bUx � 
 and �U	V �x is empty� In any case� ���U	V �x� is bUx ��V �

For continuity of t� it su�ces to show that all functions tW � X 	VY � R� with tW �x� �� �

�Wx are continuous� Let tW �x� �� � r� i�e�� �Wx � r� By Scott continuity of �� the set

V � fV � �Y j �V � rg is Scott open� By assumption� Wx is in V �

For every y in Wx� �x� y� is in W � By de
nition of the product topology� there are open

sets Uy of X and Vy of Y such that �x� y� � Uy 	 Vy � W � From y � Vy for all y in Wx�

Wx �
S
y�Wx

Vy follows� Since Wx is in V � so is the union� By Scott continuity of V � there is

some 
nite subset G of Wx such that V � �
S
y�G Vy is in V � Let U � �

T
y�G Uy� Then x � U �

and �V � � r� whence �x� �� � U � 	 hV � � ri� an open set of X 	 VY �

Let �x�� ��� be a member of U �	hV � � ri� From Uy	Vy � W for all y in G � Wx� U
�	V � � W

follows� Hence� fx�g 	 V � � W � or V � � Wx� Thus� ���Wx� � ��V � � r holds� �

Of course� there is a dual function� i�e�� a continuous function t
� � VX 	 Y � V�X 	 Y �

with dual properties� A continuous product 	 � VX	VY � V�X	Y � can then be obtained

by composing an instance of t� namely t � VX 	VY � V�VX	 Y � with the Kleisli�extension

t� of t�� Hence

�
	 ���W � � t��t�
� ����W �

�
R
VX�Y ����� y�� t

���� y��W �� t�
� ���

�
R
VX�Y ����� y�� t

���� y��W �� � � ��y� �
� y����

�
R
Y ��y� t

��
� y��W �� ��

where the substitution property Theorem ��� ��� was used for the last equality� Thus

�
	 ���U 	 V � �
R
Y ��y� t

��
� y��U 	 V �� ��

�
R
Y ��y� 
U � bV y� ��

� 
U �
R
Y ��y�

bV y� ��
� 
U � �V

Since the rectangles U 	 V form a base of the topology of X 	 Y � Prop� ��� implies that the

product valuation 
	 � is uniquely determined by the property �
	 ���U 	 V � � 
U � �V �

This uniqueness can be used to derive some further properties� All facts are collected in the

following theorem�

Theorem ���� For two spaces X and Y � there is a unique function 	 � VX 	 VY �

V�X 	 Y � with the property �
	 ���U 	 V � � 
U � �V for all 
 in VX � � in VY � U in

�X � and V in �Y � This function has the following properties�

��� It is continuous�

��� It is Scott continuous�

� �	 �



��� It is linear in each argument�

��� bx	 by � d�x� y� holds for all x in X and y in Y �

�	� The product is symmetric� For all 
 in VX and � in VY � � 	 
 � Vg�
	 �� holds

where g � X 	 Y � Y 	X is de
ned by g�x� y� � �y� x��

��� The product is associative� For all 
 in VX � � in VY � and � in VZ� 
 	 �� 	 �� �

Vh��
 	 �� 	 �� holds where h � �X 	 Y � 	 Z � X 	 �Y 	 Z� is de
ned by

h��x� y�� z� � �x� �y� z���

The function �	� can be restricted to a continuous function 	 � VpX	Vp Y � Vp �X	Y ��

Proof� Existence� uniqueness� and continuity have already been shown� Scott continuity

follows from continuity� One of the equalities belonging to linearity is the following�

�
� � 
��	 � � �
� 	 �� � �
� 	 ��

Both sides of the equation are valuations on X 	 Y � By Prop� ���� they are equal if they

coincide on all open rectangles U 	 V � The computation

��
� � 
��	 ���U 	 V � � �
�U � 
�U� � �V

��
� 	 �� � �
� 	 ����U 	 V � � 
�U � �V � 
�U � �V

shows that the two sides are equal� All the remaining equalities in the theorem can be shown

by similar arguments� The restriction to point continuous valuations works since t� t�� and

the Kleisli extension respect point continuity� �

���� Double Integral and Product Valuation

In this subsection� we prove that a continuous function f � X	Y � R� can be integrated

in three di�erent ways� yielding the same result� If 
 is a Scott continuous valuation onX and

� a Scott continuous valuation on Y � then f can be integrated w�r�t� the product valuation�R
X�Y �f� 
	��� Alternatively� we may form the double integrals

R
X��x�

R
Y ��y�f�x� y�� ��� 
�

and
R
Y ��y�

R
X��x� f�x� y�� 
�� ��� We shall prove that the double integrals are well de
ned�

and all three integrals yield the same value�

Consider the 
rst double integral� For 
xed x� the function �y� f�x� y� is continuous from

Y to R�� �For this� separate continuity of f � i�e�� f � X�Y � R�� would su�ce�� Hence� the

inner integral is well de
ned� We also have to show that �x�
R
Y ��y� f�x� y�� �� is continuous�

This function can be written as composition of F � X � �Y � R��i with Fx � �y�f�x� y� and

G � �Y � R��i � R� with G�h� �
R
Y �h� ��� Function F is continuous as the curri
cation

of f �Subsection ���
�� Function G is continuous since
R
Y � �Y � R��i � VY � R� is

continuous� Thus� the outer integral in the 
rst double integral is de
ned as well� The

second double integral is handled analogously�

Our 
rst step towards the main theorem is to derive a representation of the product

valuation by double integrals�

Proposition ���� For two spaces X and Y � 
 in VX � and � in VY �


	 � � ��W � ��X 	 Y ���
R
X��x�

R
Y ��y�

cW �x� y�� ��� 
�

� ��W � ��X 	 Y ���
R
Y ��y�

R
X��x� cW �x� y�� 
�� ��

� �� �



Proof� The double integrals are well de
ned since for opens W of X	Y � the characteristic

function cW � X 	 Y � R� is continuous� Because of linearity and Scott continuity of

integration� all three terms in the proposition denote Scott continuous valuations on X 	 Y �

By Prop� ���� their equality can be shown by applying them to open rectangles U 	 V � By

Theorem ����� �
	 ���U 	 V � is 
U � �V � We may compute�R
X��x�

R
Y ��y�

dU 	 V �x� y�� ��� 
� �
R
X��x�

R
Y ��y�

bUx � bV y� ��� 
�
�
R
X��x� bUx � RY ��y� bV y� ��� 
�

�
R
X��x� bUx � �V� 
�

�
R
X��x� bUx� 
� � �V

� 
U � �V

The third term yields the same result when applied to U 	 V � Hence� all three terms are

equal� �

The main theorem about double integrals is as follows�

Theorem ���� For spaces X and Y � 
 in VX � � in VY � and continuous f � X	Y � R��R
X�Y �f� 
	 �� �

R
X��x�

R
Y ��y� f�x� y�� ��� 
�

�
R
Y ��y�

R
X��x� f�x� y�� 
�� ��

Proof� By Scott continuity and linearity of integration� it su�ces to consider the case where

f is the characteristic function cW of an openW ofX	Y � Since
R
X�Y �

cW�
	�� � �
	���W ��

the theorem directly follows from Prop� ����� �

���� Tensor Product

Next� we de
ne a tensor product operation � � VpX � Vp Y � Vp �X � Y � whose result

is de
ned on the open sets of the tensor product space� We were not able to generalize the

tensor product to Scott continuous valuations which are not point continuous�

Theorem ���� For two spaces X and Y � there is a unique continuous bilinear function

� � VpX �Vp Y � Vp �X � Y � with the property bx� by � d�x� y� for all x in X and y in Y �

This function has the following properties�

��� It is Scott continuous�

��� �
� ���U 	V � � 
U � �V holds for all 
 in VpX � � in Vp Y � U in �X � and V in �Y �

��� It is symmetric� For all 
 in VpX and � in Vp Y � � � 
 � Vp g�
 � �� holds where

g � X � Y � Y �X is de
ned by g�x� y� � �y� x��

��� It is associative� For 
 in VpX � � in Vp Y � and � in VpZ� 
������ � Vp h��
������

holds where h � �X � Y �� Z � X � �Y � Z� is de
ned by h��x� y�� z� � �x� �y� z���

For W in ��X 	 Y �� �
 � ���W � � �
 	 ���W � holds for all 
 in VpX and � in Vp Y �

where �	� is the product function of Theorem �����

Proof� We apply Theorem ���	 to the function s � X�Y � Vp �X�Y � with s�x� y� � d�x� y��
This is possible since Vp �X � Y � is a locally convex sober cone� By the theorem� there is a

unique continuous bilinear function � � VpX�Vp Y � Vp �X�Y � with bx�by � s�x� y� � d�x� y��
Scott continuity follows from continuity since all Vp �spaces are sober� For ���� 
x U in �X

and V in �Y � The two functions F�G � VpX � Vp Y � R� with F �
� �� � �
� ���U 	 V �

� �� �



and G�
� �� � 
U � �V are continuous� bilinear� and coincide on pairs of point valuations

since d�x� y��U 	 V � � bxU � byV � By Theorem ��� ���� F � G follows� The equalities ��� and

��� can be shown analogously�

The restriction of 
�� to ��X	Y �� which is a subset of ��X�Y �� equals 
	� since both

valuations coincide on open rectangles U 	 V � �

���� Double Integral and Tensor Product

In this subsection� we prove the analogon of Theorem ���� for tensor products and point

continuous valuations� Let f � X � Y � R� be a �separately� continuous function� 
 a

point continuous valuation on X � and � a point continuous valuation on Y � Then f can be

integrated w�r�t� the tensor product valuation�
R
X
Y �f� 
� ��� Alternatively� we may form

the double integrals
R
X��x�

R
Y ��y� f�x� y�� ��� 
� and

R
Y ��y�

R
X��x� f�x� y�� 
�� ��� We shall

prove that the double integrals are well de
ned� and all three integrals yield the same value�

Consider the 
rst double integral� For 
xed x� the function �y� f�x� y� is continuous

from Y to R�� Hence� the inner integral is well de
ned� We also have to show that

�x�
R
Y ��y� f�x� y�� �� is continuous� This function can be written as composition of F �

X � �Y � R��p with Fx � �y� �x� y� and G � �Y � R��p � R� with G�h� �
R
Y �h� ���

Function F is continuous as the curri
cation of f �Subsection ����� Function G is continuous

since
R
Y � �Y � R��p�Vp Y � R� is continuous� Thus� the outer integral in the 
rst double

integral is de
ned as well� The second double integral is handled analogously�

The main theorem about double integrals is as follows�

Theorem ���	 For two spaces X and Y � 
 in VpX � � in Vp Y � and �separately� contin�

uous f � X � Y � R��R
X
Y �f� 
� �� �

R
X��x�

R
Y ��y� f�x� y�� ��� 
�

�
R
Y ��y�

R
X��x� f�x� y�� 
�� ��

Proof� For 
xed f � the three terms of the theorem are separately continuous and linear

in 
 and �� Hence� all three terms induce continuous bilinear functions from VpX � Vp Y to

R�� By Theorem ��� ���� these functions are equal if they coincide on pairs �bx� by� of point

valuations� R
X
Y �f� bx� by� � R

X
Y �f�
d�x� y�� � f�x� y�R

X��x�
R
Y ��y� f�x� y�� by�� bx� � RX��x� f�x� y�� bx� � f�x� y�R

Y ��y�
R
X��x� f�x� y�� bx�� by� � RY ��y� f�x� y�� by� � f�x� y�

This proves the claimed equality� �

A property analogous to Prop� ���� easily follows�

Proposition ���
 For two spaces X and Y � 
 in VpX � and � in Vp Y �


� � � ��W � ��X � Y ���
R
X��x�

R
Y ��y�

cW �x� y�� ��� 
�

� ��W � ��X � Y ���
R
Y ��y�

R
X��x� cW �x� y�� 
�� ��

Proof� This is a specialization of Theorem ���� to the case that f � X � Y � R� is the

characteristic function cW of an open W of X � Y � �

� �� �



���� Comparison of the Product Operations

In the previous subsections� we de
ned a product operation 	 � VX 	 VY � V�X 	 Y �

and a tensor product operation � � VpX � Vp Y � Vp �X � Y �� The two operations agree

on arguments where both are de
ned� i�e�� for 
 in VpX � � in Vp Y � and W in ��X 	 Y ��

�
 	 ���W � � �
 � ���W � holds� Apart from this� the two operations are of incomparable

strength�

For point continuous 
 and �� 
 � � is more powerful than 
 	 �� since the topology of

X � Y is a superset of the topology of X 	 Y � There are examples of spaces X and Y where

this inclusion is strict� i�e�� there are sets W such that �
����W � is de
ned� but �
	���W �

is not�

On the other hand� the operation �	� is more powerful than ��� since the former is

de
ned for all Scott continuous valuations� whereas the latter is de
ned for point continuous

valuations only� We do not know whether this restriction is a necessity�

Problem � Is it possible to extend � � VpX � Vp Y � Vp �X � Y � to a function � �

VX � VY � V�X � Y � with similar properties 

Another advantage of �	� over ��� is that �	� is jointly continuous� whereas ��� is contin�

uous in its two arguments separately� This restriction is tight for T��spaces� If there were a

function � � VpX 	 Vp Y � Vp �X � Y � with bx � by � d�x� y�� then there would be a continuous

function f � X 	 Y � Vp �X � Y � de
ned by f�x� y� � bx � by � d�x� y�� Since the image of f

would be a subset of the image of the embedding s � X � Y � Vp �X � Y � with sz � bz� the
identity�like function g � X 	 Y � X � Y with g�x� y� � �x� y� would be continuous� whence

X 	 Y � X � Y � However� there are T��spaces X and Y where this equality does not hold�

�� Integer Valuations

An integer valuation � on a space X is a valuation with the property that ��O� is in

N� for all O in �X � Almost all operations on valuations create integer valuations or map

integer valuations to integer valuations� The only exception is� of course� multiplication by a

non�integer constant�

Of course� integer valuations inherit all the properties of general real�valued valuations�

In addition� they have some more properties because of their special nature� These additional

properties are presented in this section�

���� The Taxonomy of Integer Valuations

Of course� integer valuations can be classi
ed according to the same principles as general

valuations �see Section ��� The di�erence is that in the integer case� some classes of valuations

become identical which are di�erent in the general case�

Theorem ����

��� Every bounded Scott continuous integer valuation is simple�

��� Every simple integer valuation is a 
nite sum of primitive valuations�

� �� �



��� Every Scott continuous integer valuation is a directed join of simple integer valuations�

��� Every Scott continuous integer valuation is point continuous�

Proof�

��� In N�� every bounded set is 
nite�

��� By Theorem ���� every simple valuation � is a 
nite linear combination of primitive

valuations� In the proof of ���� the coe�cients of this linear combination are obtained

as members of the images of corestrictions of �� Hence� they are integers if � is integer�

valued� A 
nite linear combination with coe�cients fromN� can be considered as a 
nite

sum�

��� In the proof of Theorem ���� a Scott continuous valuation � is approximated by the

bounded valuations �V�F�n � �jV �
P

x�F n � bx where V is open� F is a 
nite set� and n is

in N�� Clearly� this is an integer valuation if � is integer�valued� By ���� bounded integer

valuations are simple�

��� This follows from ���� since simple valuations are point continuous by Prop� ���� and a

directed join of point continuous valuations is again point continuous� �

Thus� the notions of bounded and simple� and the notions of Scott continuous and point

continuous coincide for integer valuations� This is not true for general valuations�

By Cor� 	�	� every 
nite valuation � on a T��space can be uniquely represented by a 
nite

point density A� If � is integer�valued� then so is A�

Proposition ���� Let A be a 
nite point density in a T��space X � If A� is an integer

valuation� then A itself is integer�valued� i�e�� Ax in N� for all x in X �

Proof� By Lemma 	���

Ax � ufA��O� j x � O � �Xg �ufA��O� j O � �X� �x � O � fxgg

holds� Hence Ax is in N� if all A��O� are in N�� �

The T� property is really needed� Consider the space X � fa� bg where � and X are the

only open sets� The 
nite point density A with Aa � Ab � �	� induces the valuation � with

���� � 
 and ��X� � �� which is an integer valuation�

���� Spaces of Integer Valuations

Starting from the space VX of Scott continuous valuations on X � the subspace of integer

valuations is denoted by VNX � and the subspace of 
nite integer valuations by VN
f X � We

need not introduce a notation for the subspace of point continuous integer valuations since

it is identical to VNX because of Theorem ���� ����

The topology of VNX is generated by the subbasic opens hU � ni � f� � VNX j �U � ng

where U ranges over the opens of X and n ranges over N�� Alternatively� we may use

hU � ni � f� � VNX j �U � ng�

In analogy with Prop� ���� we obtain�

Proposition ���� For every space X � the space VNX is sober� and VN
f X is a T��space�

� �
 �



In Section �� we proved that VpX is the sobri
cation of VfX �Theorem ��	�� In the sequel�

we want to show an analogous theorem for integer valuations� The proof for the general case

used three auxiliary lemmas� This proof cannot be taken over because of some R��speci
c

arguments in the proof of Lemma ���� Thus� we present a new proof for the integer case�

which is simpler than the proof for VpX �

We want to show that for every space X � VNX is the sobri
cation of VN
f X � As de
ned

in Subsection ����� we have to prove� For every continuous integer valuation � and open set

O of VNX with � in O� there is a 
nite integer valuation 
 v � with 
 in O� We use two

auxiliary lemmas�

The 
rst lemma is analogous to Lemma ����

Lemma ���� For every continuous integer valuation � and open set O of VNX with �

in O� there is a simple integer valuation �� v � with �� in O�

Proof� By Theorem ���� ���� � is a directed join of simple integer valuations� In a sober

space such as V
NX � every open set is Scott open� �

The next lemma deals with the step from primitive valuations to point valuations�

Lemma ���� For every primitive valuation � and open set O of VNX with � in O� there

is a point x of X with bx v � and bx in O�

Proof� By Lemma ���� there is a closed set C such that �O � 
 i� O �� C� Because of

primitivity� �O � 
 is equivalent to �O � ��

Using the subbase of VNX � there are open sets U�� � � � � Un� and numbers k�� � � � � kn in N�

such that � �
Tn
i
�hUi � kii � O� By primitivity� i�e�� 
��� � f
� �g� ki � 
 and �Ui � �

follows for all i� Let V �
Tn
i
� Ui� By modularity of �� �V � � holds� Thus� V meets C� Let

x be in the intersection�

If bxO � �� then x � O� whence O �� C� whence �O � �� Thus� bx v � holds� Since x is in V �bxUi � � holds for all i� Hence� bx is in
Tn
i
�hUi � 
i � O� �

With these lemmas� we can now prove�

Theorem ���	 For every space X � VNX is the sobri
cation of VN
f X �

Proof� Let � be in V
NX and O in ��VNX� with � � O� By Lemma ����� there is a simple

integer valuation �� v � with �� � O� By Theorem ���� ���� �� is a 
nite sum �� � � � �� �n
of primitive valuations� Since addition is continuous in V

NX � there are open sets U�� � � � � Un
of VNX such that �i in Ui� and whenever �i in Ui� then �� � � � �� �n in O�

By Lemma ���	� there are points xi in X such that bxi v �i and bxi � Ui� Then 
 � cx��� � ��cxn
is a 
nite integer valuation with 
 v �� v � and 
 � O� �

���� Universal Properties

The spaces VN
f X and VNX have universal properties analogous to those of VfX and VpX �

A topological N��module is de
ned analogously to a topological R��module or cone� The

only di�erence is that multiplication has type � �N� 	M �M instead of � � R� 	M �M �

� �� �



N��modules can be equivalently characterized as commutative topological monoids

�M��� 
� with the additional property that 
 is a least element in the specialization pre�

order�

Homomorphisms between topological N��modules are continuous and linear functions�

Here� linearity means f�m � m�� � fm � fm� and f�n � m� � n � fm for n in N�� or

equivalently f�m�m�� � fm � fm� and f�
� � 
�

Standard examples of topological N��modules are given by powers ofN� orN�� and linear

subspaces thereof� In addition� every topological cone is an N��module� Thus� the lattice

examples of Subsection ��� are also N��modules�

In convex combinations with integer coe�cients� all coe�cients are 
 except for one which

is �� Thus all sets are convex in the N��sense� Hence� local convexity is not an issue in the

following theorem�

Theorem ���
 V
N
f X is the free T��topological N��module over X in T OP �

Proof� Let X be a space� M be an N��module with T��topology� and f � X � M be

continuous� As in the proof of Theorem ���� there is a unique linear function $f � VN
f X �M

with $f � s � f which can easily be constructed explicitly� The only problem is to prove

continuity of $f �

An element 
 of VN
f X can be written as a 
nite sum

P
i�I bxi of point valuations� Let U be an

open set of M � and assume $f �
� � U � Then
P

i�I fxi is in U � Since addition is continuous in

M � there are open sets Vi of M such that fxi � Vi� and whenever mi � Vi� then
P

i�I mi � U �

Let Oi � f�Vi� These are open sets of X with xi in Oi for all i in I � For every T � I �


�
S
i�T Oi� �

P
i�T � � jT j holds� Hence� 
 is in O �

T
T�F h

S
i�T Oi � jT ji� which is an

open set of VN
f X � We have to show that for every � in O� $f��� is in U �

Let � �
P

j�J byj be in O� Let R � I 	 J be the relation given by �i� j� � R i� Oi � yj � Since

� is in O�

jR��T �j � ��
�
i�T

Oi� � jT j

holds for all subsets T of I � Applying Hall�s Theorem ���� we obtain an injective function

� � I � J with y�i � Oi for all i in I �

Since fy�i � Vi for all i in I �
P

i�I fy�i � U follows� Since � is injective� this sum equalsP
j���I fyj � In N��modules� m� vm� �m� holds� Hence� the sum over ��I is below the full

sum
P

j�J fyj � $f���� Thus� $f��� is above some element of U � whence it is in U as well� �

The extension function induced by Theorem ���� is continuous�

Theorem ���� For every space X and T��topological N��module M � the function E �

�X �M �p � �VN
f X �M �p given by Theorem ���� is continuous and linear�

Proof� For some 
 �
P

i�I bxi in V
N
f X � continuous function f � X �M � and open set U of

M � assume Ef � h
� Ui� Then
P

i�I fxi is in U � By continuity of addition� there are open

sets Vi of M such that fxi � Vi� and whenever mi � Vi� then
P

i�I mi � U � From fxi � Vi� we

obtain f �
T
i�Ihxi � Vii� If g is in this set� then

P
i�I gxi is in U � whence Eg is in h
� Ui�

Linearity of E follows from freeness as in the proof of Theorem ���� �

� �� �
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Figure �� Two functions named id

Corollary ���� For every space X and T��topological N��module M � the function spaces

�X �M �p and �VN
f X

lin
�M �p are isomorphic�

Like in the general case� the universal property for VN
f X can be used to derive a universal

property for V
NX � The proofs of the following theorems are analogous to the corresponding

proofs for the general case�

Theorem ����� V
NX is the free sober N��module over X in T OP �

Theorem ����� For every space X and sober N��module M � the extension function

E � �X �M �p � �VNX �M �p induced by the freeness of VNX is continuous and linear�

Corollary ����� For every space X and sober N��module M � the three function spaces

�X �M �p� �VN
f X

lin
�M �p� and �VNX

lin
�M �p are isomorphic N��modules�

In particular� for every space X � the three N��modules �X � N��p� �V
N
f X

lin
� N��p� and

�VNX
lin
� N��p are isomorphic�

���� Integration over Integer Valuations

In Section �� two variants of integration were derived� An analogous derivation yields two

variants of integer integration�

� The Isbell variant
R
X � �X � N��i � V

NX � N��

� and the pointwise variant
R
X � �X � N��p � V

N
p X � N��

In contrast to the general case� VNX and VN
p X are actually identical� Thus� the two variants

become comparable� The pointwise variant gives better information since the pointwise

topology on the function space is included in the Isbell topology� Hence� both variants may

be subsumed under
R
X � �X � N��p�V

NX � N� where
R
X is continuous in its two arguments

separately�

General integration is de
ned by
R
X�f� �� � id�� � f�� where id � VR� � R� is the

extension of id � R� � R�� The de
nition of integer integration looks equally� but uses

id � VNN� � N�� the extension of id �N� � N�� The relationship between the two functions

named id is shown in Figure �� Because of the universal property of VNN�� the diagram in this


gure commutes� Hence� id � VNN� � N� is a restriction of id � VR� � R�� Thus� integer

integration is merely a special instance of general integration� and satis
es all the properties

listed in Theorem ���� For general integration� it follows that
R
X�f� �� is an integer if both f

and � are integer valued�

� �� �



Using integer integration� isomorphic descriptions of VNX � V
N
p X can be derived which

are analogous to Theorems ��� and ����

Theorem �����

VNX � VN
p X � ��sX

mod
� N��p � ��pX

mod
� N��p


� ��X � N��i
lin
� N��p � ��X � N��p

lin
� N��p

By Propositions ���� and ����� product 
	� and tensor product 
�� of two valuations

can be obtained by a double integration involving 
� �� and the characteristic functions of

open sets which are integer valued� Hence� if 
 and � are integer valued� then so are 
 	 �

and 
 � �� Thus� we obtain two continuous functions 	 � VNX 	 VNY � VN�X 	 Y � and

� � VNX � V
NY � V

N�X � Y ��
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