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Abstract

To produce high quality code, modern compilers use global optimization algorithms based on abstract
wnterpretation. These algorithms are rather complex; their implementation is therefore a non—trivial task
and error—prone. However, since they are based on a common theory, they have large similar parts. We
conclude that analyzer writing better should be replaced with analyzer generation.

We present the tool PAG that has a high level functional input language to specify data flow analyses. It
offers the specification of even recursive data structures and is therefore not limited to bit vector problems.
PAG generates efficient analyzers which can be easily integrated in existing compilers. The analyzers are
interprocedural, they can handle recursive procedures with local variables and higher order functions. PAG
has successfully been tested by generating several analyzers (e.g. alias analysis, constant propagation, interval
analysis) for an industrial quality ANSI-C and Fortran90 compiler. This technical report consists of two
parts; the first introduces the generation system and the second evaluates generated analyzers with respect
to their space and time consumption.

Keywords: data flow analysis, specification and generation of analyzers, lattice specification, abstract
syntax specification, interprocedural analysis, compiler construction
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Chapter 1

The System

1.1 Introduction

Research in compiler generation has concentrated mostly on front end and lately on back end generation.
The optimization phase has not received much attention. Only a few systems [27, 29, 33] for generation
of analyzers were designed and built. All of them apply ad-hoc methods or heuristics if the language has
subroutines. We present a new generative system for interprocedural analyses, PAG, that is able to produce
analyzers which can be applied in several different compilers by instantiation of a well designed interface. The
system is based on the theory of abstract interpretation. The philosophy of PAG is to support the designer
of an analyzer by providing three languages for specifying the data flow problem, the abstract domains, and
the compiler interface. This simplifies the construction process of the analyzers as well as the correctness
proof and it results in a modular structure. The specifier is neither confronted with the implementation
details of domain functionality nor with the traversal of the control flow graph or syntax tree nor with the
implementation of suitable fixpoint algorithms. In the paper, we first briefly summarize the theory of the
data flow analysis in section 1.2, then we introduce the structure of the generating system in 1.3. Section 1.4
discusses the specification languages, followed by the presentation of our interprocedural solution mechanism
in section 1.5. Some measurements are presented in section 1.6. Finally, section 1.7 summarizes the related
works and exhibits some possible extensions.

1.2 Theoretical Background

The data flow analysis practiced nowadays was introduced mainly by [17] and refined by [16]. It is based
on a control flow graph (CFG) that contains a node for every statement or basic block in a procedure and
an edge for a possible flow of control. Furthermore we add a unique entry node s and exit node e and a
labelling function that yields a syntax tree fragment for every node. A data flow analysis problem (DFP)
or instance of a data flow analysis framework is a combination of such a graph with a complete lattice of
values, called the underlying lattice, and a family of functions (one for each node). These functions express
the local semantics and are therefore called transfer functions. If every transfer function is monotonic the
problem is called a monotone problem. If they are even distributive it is a distributive problem.

To describe the solution of a data flow problem we’ll first define the semantics of a path # = ny,...,n; in

the CFG:

[x] = od ifm=¢
T [(na, -y ne)] o [na] otherwise
The desired solution of the DFP is the union of the semantics of all paths applied to bottom, historically
called the meet over all paths solution:

MOP(n) = I_I {[7](L) | = is a path from s to n}

for every node n of the CFG, where L is the bottom element of the lattice. As the set of all paths from s
to m is usually infinite, this solution is in general not computable. Therefore, the minimal fizpoint solution

L¢ denotes the empty path



was introduced:

_ sI(L) ifn=s
MFP(n) = { [2] (LI{MFP(m) | m predecessor n}) otherwise
Kam has proved in [16] that for every monotone data flow problem the MFP is greater (with respect to the
ordering of the lattice) than the MOP solution, and therefore a save approximation. Moreover, if the DFP
is distributive, both are equal. The interprocedural version of this theorem is presented in [18].

To solve a data flow problem, different iterative solution algorithms can be used which are guaranteed to
terminate if the problem is monotone and the underlying lattice has no infinite ascending chains. Some of
them, like the worklist algorithm, are presented in [14]. Other algorithms are the bounded fixpoint iteration
from [23] or the higher order chaotic iteration sequences in [24]. If the chains in the lattice are infinite or if
a speed up of the fixpoint operation is needed, widening and narrowing, explained in [7], is an appropriate
method to solve the equation system.

1.3 The System

So let’s recall what’s needed for a data flow analyzer:

1. a complete lattice D;

2. a meta transfer function which, if applied to a node of a CFG, yields a (monotone) transfer function
from D to D,

3. a fixpoint algorithm with the appropriate data structures, e.g. an iteration algorithm and a working
list;

4. a control flow graph, which is the input for the analyzer.

Some of these parts do not change much from one analyzer to another. To shorten the time of implementation
and to simplify maintenance of the resulting system, we designed a special purpose programming language to
describe (and create) such analyzers. By freeing the compiler designer from routine matters, he can focus on
the crucial details. Our support language needs three specification components: the underlying lattice, the
transfer functions and the solution method. This idea is not new. There have been a couple of experiments
of generating analyzers, but only a few of them were successful. On one hand, the specification language
should be powerful enough to cover a large class of problems, on the other hand the generated code must be
sufficiently efficient if it is intended to work in a real compiler and not only to be a prototype for performing
some tests.

1.3.1 Overall Structure

PAG has been designed to generate analyzers for compilation systems. The basic assumption is that such a
compilation system offers an interface to the syntax tree and the control flow graph of the program to be
analyzed. This representation of the intermediate structures can be found in nearly any compiler.

The interface to the control flow graph has to offer functions to walk over the graph, to get the identifier
of a node, and to fetch the syntax tree which is the label of the node. To decouple the implementation of data
structures of the graph from their logical functionality, the compiler designer has to write an interface which
can be used for all generated analyzers working with this compiler. It is necessary to know the structure
of the abstract syntax tree. It can be best defined by an extended tree grammar. From this grammar, the
appropriate access and walk functions can be generated. Therefore PAG takes as input a file which describes
the structure of the possible trees. Furthermore there are input files that construct the underlying lattice,
the transfer functions and global parameters of the analyzer like the used fixpoint algorithm. All these
input files are described in detail in section 1.4. An overview of the different input files to PAG is shown in
figure 1.1.

1.4 The Specification Language

A PAG specification is divided in four parts: one for the definition of data types in the language DATLA,
another for the description of the syntax trees, a third to specify the main structure of the analyzer, and
a last to define the transfer functions in a language called FULA. This whole description is compiled into
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Figure 1.1: The Structure of PAG

ANSI C code that performs the analysis outlined in section 1.5. The structure of these four parts will be
shown in detail now. First, we present some notational conventions. We use typewriter style for reserved
words, and italic style for nonterminal symbols. Among these ‘v’ is used for variables, ‘p’ for patterns, ‘¢’
for expressions in general and ‘b’ for boolean valued ones. Finally ‘{}’ is used for grouping and ‘@™ and ‘a*’
for the usual repetitions. A complete example of an analyzer specification is given in appendix 2.4. It is the

description of an analyzer to detect assignments to live variables.

1.4.1 The Domain Specification Language

It is used to define the data types and data manipulation routines for the analyzer. Therefore the language
is called DATLA, an acronym for data type definition language. We distinguish between sets and domains
(complete lattices). They are constructed bottom up. This means that simple sets like numbers or enumer-
ated sets build the base for more complicated sets like the set of all functions from numbers to truth values,
which can be used as input for other set generating operators again. So we have some basic sets, and set
operators. In addition there are operators to construct domains from sets, and to combine domains to new
domains.

The specification is divided into two subparts: one for the set definitions starting with the keyword SET
and the other for the domain definitions with the keyword DOMAIN. Each definition is an equation with a
single name that has to be defined on the left side and an operator applied to a couple of names on the
right side. The predefined sets are up to now: snum: the set of signed integers, unum: the set of unsigned
integers, real: the set of all floating point numbers, bool: the set of truth values true and false, chr: the
character set (ASCII), and string: the set of all character sequences. This list can easily be extended even
with user-defined types. These must have implementations of every function the interface contains. Another
possibility to generate a basic set is to enumerate a finite number of elements. Complex sets can be formed
out of the basic ones through the following operators:

1. disjoint union of a finite number of sets: Disjointness is obtained by tagging the element of the sets
participating in the union.

construction of the tuple space of a finite number of sets

power sets: building the set of all subsets of the original set

set of lists of elements of a set

Tt o W N

set of functions from a set S to a set S5



In the second part of the specification, domains can be formed in one of the following ways:

1. enumeration of elements and of a (complete) partial order. The system checks whether it forms a
lattice.
2. flattening of a set S: S is transformed into a domain by adding a least element L and a greatest
element T. The elements of S are pointwise incomparable.
3. lifting of a domain D: new top and bottom elements are added which are greater respectively smaller
than all other elements. The ordering of D is preserved.
4. building the power domain of a set or domain: the generated ordering is set inclusion.
5. construction of the tuple space of a finite number of domains. Tuples are ordered component-wise.
6. building the domain of functions from a set into a domain with point—wise ordering.
In contrast to other generators, PAG allows simultaneously recursive definition of sets and domains. In this
way, for instance, the tree type can be easily expressed. But this and other features in DATLA result in
the fact that infinite sets and domains, even with infinite chains, can be defined. Therefore the user has to
make sure that only a finite part of the domain is used, or has to guarantee the termination of the analysis
in another way. Environments are an example where only a finite part of some infinite domain is used. It
is typical for program analysis that at each program point, some kind of information is stored for every
variable that occurs in the program. This is usually modelled by a function from variables to the needed
information. Obviously this domain has infinite chains because the set of variables is infinite. But in every
program only a finite subset of variables is used, and so termination is guaranteed.

1.4.2 The Data Flow Description Language

The main part of the description of an analyzer is the specification of the data flow functions. For every node
in the control flow graph, there has to be a function that transforms an incoming flow value into an outgoing
one. This is expressed in a functional language FULA which was designed especially for that purpose. FULA
programs can be compiled to efficient C code.

Overview: FULA is a first order functional language with eager evaluation. It has static scoping rules
and the user defined types from DATLA. Interestingly, the language does not provide an explicit fixpoint
operator. As we will see, the absence of an embedded fixpoint operator and the eager evaluation semantics
do not restrict significantly the language constructs that PAG is able to analyze. In FULA every expression
has a unique type that can be derived statically by a type inference algorithm. There are no implicit
type casts in FULA. Any change of the type must be made explicit. For occurrences of a variable the
corresponding definition is the syntactically innermost definition for that variable. Binding constructs are
function definitions, case and let expressions.

Transfer Functions: The whole FULA source is split in two parts: one for definitions of auxiliary functions
and one for the transfer functions. These transfer functions are written in a special notation: they don’t need
a name and are defined via patterns matching the labels of the control flow graph. They have an implicit
parameter named @ which is the incoming data flow value and they have to return a data flow value again.
Functions: There are two different types of functions in FULA. Firstly the functions defined in the language
itself, and secondly those declared in DATLA. The latter are seen as datatypes and can be arguments to the
first sort. This distinction is made because of the first order character of the language. So it is possible to
write a (FULA) function, that takes a (DATLA) function as argument. For example a function that modifies
the value of an environment for a given variable.

Functions can only be defined with a name, which means that there 1s no lambda expression. Definitions are
made by using patterns, and the cases can be spread over the whole specification. A single case looks like
f(p*) = e. For each function there can be an additional type definition. Nested functions are not allowed in
FULA.

Patterns: They are used to define functions and in case expressions. Only linear patterns are usable,
which means that the same variable 1s allowed only once per pattern. Pattern expressions may be nested.
The following patterns are defined, while some static semantical restrictions, like type conditions, are to be

followed:

1. constants: these can be elements of predefined sets like integers as well as user defined constants of
enumerated sets or domains. Two special constants are | and T, the bottom and top elements of all
lattices.



5.
6.

variables, but each variable once per nested pattern.

empty list and empty set. There are two types of empty lists: those defined in DATLA and those
introduced by the syntax tree (see 1.4.4). They are notated as [] or [!] and {} for the empty set.

cons patterns for both types of lists: p:p.
tuples: (p,---). Notice that a tuple pattern matches always if the sub patterns match.
wild card: it is denoted by an underbar _ and matches every input.

Expressions can be:

1.
2.

constants (built-in and enumerated)

if expressions: if b then e; else ey endif for conditionals. This can be seen as the only non eager
construct in DATLA, because e is evaluated first, and then e; or e; but never both.

let expressions: let { v; = ¢;; }T in e to introduce a number of variables v; local to the expression e.
The eagerness results in the fact that every e; is evaluated before e 1s evaluated.

. case expressions: case {v;}T of {{p;}i => e;; }* endcase gives the possibility to examine the

structure of one or more expressions bound to the variables v;. The result of this expression is the
value of the first e; for which all p;’s match the values of the v;’s

function application: both kinds of functions DATLA and FULA can be applied to zero or more ex-
pressions. The number of expressions applied to must correspond to the arity of the function because
functional expressions that would result if a function is applied to more or less arguments than defined,
are not allowed in a first order language.

print expressions: print ( eg ) ++ e is equivalent to the expression e with the side effect that eq is
printed out.

built in function application (pre- and infix notation). These are functions that are generated for
certain data types. All these functions are listed below (for a more refined documentation see [21]):

e for every type: equal = and not equal !=

o for every domain additionally: 1ub, glb, C, J, C, O

e unum, snum ,real: mathematical operations like: plus +, minus -, times *, integer division /,
modulo %, amount | . |; bitwise operations: and &, or |, xor ~; comparison functions: greater >,
greater equal >= less < less equal <=; cast functions: snum, unum, chr, real

bool: and &&, or ||, not !

chr: cast functions snum, unum, real

string: concatenation ., character selection [.]
flatted, lifted domains: 1ift, drop

lists: cons :

sums: is-type_name, down-type_name, up-type_name to lift an element of a sum component into
the sum and vice versa.

tuples: select !, tuple construction (e, -+, ey,)
e power sets: add an element ~, subtract an element #, member test 77
e functions: application .{. }, value changing .[.\ .], creation with default element [— > .]

1.4.3 Analyzer Description

In order to generate analyzers, some additional declarations are necessary:

1.

direction: values can be forward or backward. This specifies whether the data flow is along the
edges of the control flow graph or in the opposite direction.

carrier: the name of the domain that is used for the analysis; i.e. the type of the flow values.

combine: the name of a FULA function, that merges information which comes over different edges.
This is usually the function lub for the least upper bound.

init: the initial value that is associated with every control flow node. Usually the neutral element of
the combine function (L).

init_start: an initialization value for the start node (the end node for a backward problem).



1.4.4 The Interface Description
This part of the specification is used to define the structure of the syntax tree which is constructed from the
source program by the compiler. With this definition, the PAG compiler is able to generate access functions
for the tree, following certain naming conventions. This is needed because the generated analyzer must be
able to walk over the syntax tree to determine for instance the instruction given on a control flow node.
The form of the tree is introduced as a tree grammar with two additions. Firstly, there is a notation to
introduce lists of nonterminals in order to gain more simplicity in notation and handling. Secondly we have
a notation nonterminal == simple_type to identify a class of nonterminals with a built in type. For such a
rule, PAG generates functions to cast an element of nonterminal into an element of simple_type. Generally
the nonterminals of the syntax tree and lists of them are considered as types that are usable in FULA. The
concrete syntax is quite obvious, and is skipped here with a pointer to the PAG reference manual [21].
Another part of the interface is that to the control flow graph. But this interface is quite simple and
fixed irrespective of the programming language. So the control flow graph is abstracted by a library that
has to be supported by the compiler. It includes functions to fetch the successors or ancestors of a node, or
to access the corresponding syntax tree fragment.

1.5 Interprocedural Analysis

In the previous sections, we have focused our interest on intraprocedural analysis. Yet good programming
style requires a lot of small procedures that are used at many program points. So it is a must not only to
look inside every procedure on its own but at the whole program in order to achieve good analysis results.
As already mentioned, the number of problems with interprocedural analysis is large: to achieve excellent
results very much time is needed, and fast algorithms do not find out everything possible. So one has to find
a compromise between time consumption and precision.

1.5.1 Fundamental Algorithms

There are different methods to handle procedures in data flow analysis. We shortly summarize some tech-
niques:

e Non-recursive procedures can be inlined, and the intraprocedural algorithm can be applied. This is
only applicable for small programs because the transformed program may grow exponentially.

e Procedure calls may be considered as ordinary statements that make all available information invalid.
Or destroy only all information based on those objects that may be modified by that call; this assumes
a previous analysis phase that computes for each procedure the set of potentially modified variables
(data flow problem over call graph).

e Use a two-level algorithm: first compute an abstract form of the procedure (called effect or jump in
[12]), which maps flow information from the beginning of a procedure to its end; then do standard
iteration and use the related effect function at any procedure call; the computation of the effect
functions brings up new restrictions on the underlying lattice, as they cannot be computed in general
or even if they can, the representation may grow exponentially ([4]) This method is especially useful if
the lattices are finite. Many restricted versions of the constant propagation relay on that, e.g. constant
copy propagation [19] or even demand-driven versions [9].

e Do an analysis within the procedure body: one variant of this method summarizes the effects of all
calls at the beginning of a procedure and another keeps different calls separate. This approach is also
known as call string approach and is described in [25].

1.5.2 Owur Approach

Our approach tries to achieve the following goals:

e to guarantee termination for every input and every analyzer that terminates intraprocedurally;

e to keep the additional effort of the compiler designer for the interprocedural analysis low;

e time and space complexity should be as low as possible to guarantee the practical usability of the
generated analyzer;



e the results from the interprocedural analysis should be as good as possible.

To get a precise solution (this means the MOP solution) for the interprocedural case for all problems that
are terminating intraprocedurally is not possible. As stated in [25] this is only possible if the domain is finite
or the DFP is distributive or if there is no recursion in the program. All three cases restrict our mentioned
goals too much. The approach we have chosen is similar to the call string method, because it offers a flexible
technique that can niftily trade time and space for precision (see section 1.5.4). One can observe that in most
‘every day live’ programs calls to a procedure from different call sites? are made with distinct values. And
in addition to that, a large number of function calls are non-recursive. So the different call sites are worth
the effort to analyze them separately. Furthermore it can be useful to keep deeper levels of calls separated.
This will be clarified by the following example:

static int i; r() { q(O) {
main() { q(); i+=1;
i=1; } ¥
r();
r();

If we separate every call chain of length up to two, in a constant propagation analyzer (compare [30])
we can figure out that the call of q in r is made twice with different values. The separation of the calls is
achieved by introducing arrays or vectors of data flow values for each node of the control flow graph instead
of using only one value per node. In the different array elements we can store the data that comes from
different call sites. If there are dynamically more calls than there are fields in the vector (which has a static
length) they will be merged together with the (specified) combination operation.

After the analysis has finished, an extra advantage of this vector is that it can be used in different ways:
for a simple optimization inside the procedure the meet of all elements can be used because that is the flow
value which is valid for all incarnations of the procedure. But it can also be used to determine if 1t is useful
to specialize the procedure for certain values.

1.5.3 Formal Description

Definition 1 (Program Representation)

We represent a program P with the procedures Py, ..., P,, where Py is the main procedure as a super
graph G* = (N* E* sg,e0). G* consists of a number of intraprocedural control flow graphs Gy, ..., Gy
which represent the procedures of P. In difference to the standard CFG's, every call in G is represented by
three nodes: a call site node, a return site node, and a local node. The call node has one edge to the entry
node of the called procedure and another to the local node. The return node has the exit node of the called
procedure and the local node as a predecessor.

Figure 1.2 1s an example of a super graph. The local node between call and return node is useful to model
the behavior of local variables: the compiler designer can specify that after the local node the flow value is
constantly bottom?®. Then the implicitly performed combine operation before the return node will always
yield the value returned from the procedure. But in the constant propagation for example it is also possible
to set all global variables at the local node and all variables local to the call at the procedure exit to bottom.
Then the local variables arrive at the return node directly from the call and all other variables are coming
from the procedure exit. This is correct if none of the local variables can be modified (due to aliasing) in
the procedure. Therefore the concept of the local node results in a large variety of possibilities to handle
local values for the specifier of the analyzer; the interface to the abstract syntax tree allows even to access
information that has been computed by other compiler parts; e.g. alias graphs.

There are two problems with the construction of a super graph: if a call is made to a function variable
the called procedure is not known. Then, there must be an edge to the entry of every (potentially called)
procedure. The second one arises if the called procedure is not known because it’s not in the source code
like any kind of library function. Then we introduce a dummy procedure with which the unknown call is
connected. The analyzer designer has to specify worst case assumptions for that dummy procedure, or can

2j.e. different places in the source code

3if the combine function is specified as a meet
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Figure 1.2: A super graph and its extended super graph

do better if he knows the behavior of the library function. Thus, PAG supports unlike all other generators a
specification mechanism for the semantics of libraries.

In a super graph we can carry out a standard intraprocedural data flow analysis. So we don’t have
any additional expenses for computing the effect of the functions. As a refinement we should use only
interprocedural valid paths in the graph. A path is called a valid interprocedural path if it contains only
matching pairs of call and return nodes of a procedure like a correctly braced expression. Exact definitions
can be found in [19, 20].

Now we can introduce the discrimination of the data of different call sites by assigning not only a single
value of the lattice with every control flow node, but an array of values. It is clear that the length of these
arrays in every procedure should be the same for each of its control flow nodes, and at least one.

Definition 2 (Graph Extension)

For a super graph G*, we define the triple (G*, Arity, map,) to be a graph extension if Arity is a function
that maps every node n € N* to a natural number, the length of the data flow array, and map, s a famaly
of functions for every call site ¢ = call P where map, : [1..Arity(c)] — [l..Arity(entry P)] maps every
position of the data flow array of the calling procedure to a position in the array of P.

Instead of considering paths between nodes of the super graph, we use now paths between the elements of
the data flow arrays. So a new graph with pairs of nodes and vector positions as nodes can be defined.

Definition 3 (Extended Super Graph)

For a graph extension (G*, Arity,map.) we call the graph G% = (N}, EY, 8%,
%) extended super graph, with Nf = {(n,?) | n € N* and i € [1..Arity(n)]}, s = (s*,1), e} = (¢*, 1), and
((n1,41), (n2,12)) € B iff na 1s an entry node and i; = map,, (i1), or ny is an exit node and iy = map,(iz)
with ¢ being the call belonging to na, oris = iy.

An extended super graph with its extended paths is shown in figure 1.2. The interprocedural analysis can
be performed by applying an intraprocedural fixpoint algorithm to the extended super graph. The merging
of the data at different call sites is done automatically, if the map, are chosen appropriately: In figure 1.2,
the two edges of the call to proc from itself are leading into the same data flow element at the head of proc.
So a meet of the two values of the call site will be calculated if the second element of the vector at the entry
of proc is needed. The corresponding element from the exit node will be duplicated and propagated to the
return node inside proc. To solve a data flow problem with extended graphs, it is necessary to find suitable

10



map and arity functions. With these it is possible to tune the analysis: the higher the arities the better the
precision we can achieve, but the more time and space is needed.

1.5.4 Mappings

The task to select a mapping is mainly to find a compromise between time/space complexity and preciseness

of the analysis. So we will now explain some methods to calculate pairs of arity and mapping.

1.

In the simplest case, the arity of each procedure is one, and the mapping functions are the identity. So
the information of each call to a procedure is mixed together.

Another simple way is to count the number of calls to a procedure p in the program text (this is the
number of control flow edges in the super graph that are leading to the entry of p) and to take this
number as the arity of p. Of course one must choose the arity of Py as one although it is formally
not called. Then the map, functions project all elements of the tuple at the call site to a single fixed
position in the array of the called procedure.

The effect of these functions is that the meet of the data flow information at every call site in the
program is kept separately in the called procedure p, but if there are further calls from p to some other
procedure ¢ the information is mixed up with the flow values of all other calls to p. In practice, it
has shown that the arity of some procedures calculated with this method becomes quite large in real
programs (up to 100). So it seems to be reasonable not to use higher values for the arities in large
programs, due to space and time restrictions.

To be more precise, it is necessary to keep deeper levels of the call separated. If there are for example
two different call sites ¢; and ¢y of a procedure p and p calls ¢ we would like to have as many fields in
the array of ¢ as there are fields at ¢; plus the number of fields that are at ¢y in which we can map
the resulting information of ¢; and ¢2. So the arity of a procedure should be the sum of the arities of
all call sites. As induction base we have Arity(entry Py) = 1. But this works only if the call graph is
acyclic which means that the program is non-recursive.

So we have to find the strongly connected components (SCC, see [22]) in the call graph G and consider
them as a single procedure in a call graph G’. To this acyclic call graph ' we can apply the method
described for the non-recursive case, with the additional rule that the arity of a SCC is the arity
calculated for the non-recursive case multiplied by a constant & which reflects the fact that there can
be many recursive calls inside the SCC. Afterwards, we expand the melted nodes again and assign to
every procedure the arity of the compound node.

The resulting mapping for calls leading to a procedure outside any SCC or calls from outside into a
SCC is simple because every element in the call site vector has a corresponding one in the vector at
the procedure entry. For the other mappings, different ways can be chosen. An example is shown in

figure 1.3.

If the underlying lattice D is finite a mapping can be constructed that results in the precise solution
of the DFP. Call chains of length up to |D|* x K (K is the number of call sites in the program) must
be analyzed separately.

Summary
So let’s shortly summarize the advantages and disadvantages of our approach:

— we are usually not precise, but this can be achieved by using an appropriate mapping if the domain is

+

finite.

complex lattices and large programs result in analyzers that use a lot of memory and time; to overcome
the space problems, we added a garbage collector for the flow elements (FULA is functional and therefore
has a copy semantics).

every intraprocedural DFP can be extended to an interprocedural analyzer without further restrictions
of the domain.

additional specification is only needed for parameters, return values and local variables.
tuning is possible through the choice of arity and mappings.
the method yields detailed results about the different calls.
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-~ 2 A N
: k proc 5}%\ proc 3} (2k+3)*k

proc 5 (2k+3)*2k

Figure 1.3: The calculation of the arity in method 3. The numbers on the edges mean the numbers of call
sites, and the numbers at the nodes are the calculated arities, e.g. the edge proc 2 to proc 1 means that
there are two call sites of proc 1 in proc 2.

Lines of Specification Generated | Interface

DATLA | FULA | syntax | 5" | Code (kB) (lines)
copy constant propagation 233 12 144 389 268 1283
linear constant propagation 400 14 144 558 309 1251
full constant propagation 628 12 144 784 371 1283
alias analysis 203 10 144 357 215 1084
live variables 95 10 144 249 222 1054
dominator analysis 22 3 144 169 147 1084

Figure 1.4: The size of specification and the generated analyzer

1.6 Practical Results

PAG generated analyzers have successfully been tested in a large compiler system with ANSI-C and Fortran90
front ends as well as with different back ends (including SPARC) in the ESPRIT project COMPARE. We
have specified the following data flow problems:

e copy constant propagation: only assignments of the form x := ¢ where ¢ is a constant, and x := y
are taken into account.

e linear constant propagation: here additionally, statements of the form x := c*y + d are considered,
where ¢ and d are constants.

e full constant propagation: every right side is taken into account. Note that the lattice for this analyzer
is infinite and the transfer functions are not distributive.

e alias analysis: computes must and may aliases
e liveness: a well known bit vector problem

e dominator: similar to liveness

These analyzers run together with handwritten and generated compiler phases (called engines) in the CoSy
compilation model that has been introduced by [1]. In figure 1.4 we have listed the size of the different
specifications and analyzers. The specification of the syntax tree is the same for all analyzers as well as a
large part of the hand coded interface listed in the last row. As there are some differences in the subsequent
treatment of the computed data, they are not fully identical. We measured the practical relevance of the 2.
mapping of section 1.5.4 by applying the full and the copy constant propagation to several ‘real’ programs.
The results are shown in figure 1.5. We have also generated analyzers for a completely different compiler
which takes a subset of Pascal as input.
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program |procs | nodes | objects | IPCe | IPCr | CON¢ | CONp | #Hobj. | #Hobjp | #sc | #sp

cdecl 32 3209 835 7 7 1010 1010 2/80 3/80 | 357 | 357
ed 46 3448 784 7 9 1481 1509 7/59 1159 138 138
fft 7 638 195 3 3 439 439 0/19 0/19 62 62
flex 128 | 11974 2301 49 49 4926 4980 | 59/355 | 59/336 | 1072 | 1072
flops 2 640 139 9 9 5820 6209 | 90/47 | 161/61 240 | 1105
gzip 99 8332 1740 11 11 4353 4358 | 36/250 | 37/280 | 1148 | 1148
heap 3 361 94 8 8 1432 1432 13/34 13/34 55 55
linpack 12 1196 278 6 6 587 610 | 28/51 32/55 | 490 | 490
ratfor 51 3200 762 0 0 934 934 6/54 6/54 | 323 | 323
twig 81 4525 1085 6 6 1332 1332 3/64 3/64 | 375 375
xmodem 30 4460 1157 38 38 4849 4963 | 6/164 | 12/166 520 526
clinpack 12 1257 285 6 6 668 691 28/51 32/55 | 490 | 490
cloops 126 3212 620 127 131 | 13341 | 14436 | 56/177 | 60/179 | 1377 | 1388
dhry 13 662 239 8 8 279 286 2/13 3/14 99 99
search 3 89 34 2 2 189 189 7/8 7/8 9 9
whet 7 492 121 3 3 397 448 16/44 | 40/49 104 104

Practical results measured for the copy constant propagation (X¢) and the full constant propagation(Xr).
IPC: the number of constant objects at the procedure headers

3 entry » HOl I flow(p)[iT)(0) # L, T}
CON:  the sum of the numbgr of constant object at all nodes
5 ftownode n 11N flow(m)i)(0) # L, TH
#obj:  x/y, x the number of constant source code variables,
y the number of constant temporaries (frontend introduced)
#s: foldings of subexpressions
Figure 1.5: Practical Measurements

1.7 PAG and Beyond

As far as we know, only a few analyzer generators have been implemented. Many papers have discussed
analyzer generators from a theoretical point of view, but not many serious efforts have been undertaken to
produce practical implementations. Projects we know about are the following:

1. Tjiang and Hennessy [27] presented an analyzer generator Sharlit which uses path compression for
evaluating the path functions. The user has to give simplification rules and has to support the im-
plementation of the flow values and graph routines in low level C code. There i1s no possibility of
automatic generation of the domain code and no automatic handling of procedures.

2. Venkatesch and Fischer [29] presented a tool Spare which is based on the abstract interpretation
framework. It is developed mainly for testing purpose of some abstract interpretations. Moreover it
has no built in facilities to handle a function mechanism.

3. Yi and Harrison [33] developed an abstract interpretation based analyzer generator. It has the ability
to tune the analysis by using a restricted form of narrowing. But it allows only domains of finite
cardinality.

We have shown in this paper that PAG is able to generate analyzers that can analyze large programs.
Specifying an analysis like the copy propagation shortens the time of implementation to something between
one and two hours if the interface is already there (which is needed only once per compilation system). One
of the authors was able to adapt an already existing specification of constant propagation to include alias
information within three man hours.

For the future we plan to investigate additional things:

e new fixpoint algorithms: we plan to implement some other fixpoint algorithms and investigate a hybrid
approach, where we can mix different algorithms and keep the correctness and termination properties.

e reduction of the space consumption: the vectors of the data flow elements will be large, if the program
mainly consists of procedure calls. In that case most of the entries at procedure headers are the
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same; thus, a melting of these elements may result in less precise data flow information, however,
with decreased time and space consumption. This can be generalized by replacing the equality with
a distance notion. This distance can be inductively defined on the structure of the lattices. The user
can specify a concrete distance d and during the analysis elements e, es, within this distance, are
replaced by the result of the (specified) combination function combine(e1,e2). Then the mappings of
section 1.5.4 are dynamically redefined.

automatically reasoning over PAG specifications: an interesting research direction is the analysis of
PAG specifications. Using an eager first-order functional language for specifying the transfer functions
allows automatic proof of some properties like monotonicity.
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Chapter 2

Practical Evaluation

2.1 Time and Space consumptions

There exists few knowledge about the space and time consumption of global data flow analyzers on real world
programs as well as the accuracy of the results. The combination of fixpoint algorithm, abstract domain,
transfer functions, and call string length has big effects on the practical usability. Here we present the results
of applying some of the different combinations of these parameters to realistic programs.

The main challenge in building an interprocedural data flow analyzer is the exponential space and time
consumption for specific programs that has been proven in theory. However, sometimes full analysis is needed,
independently of the costs. In [2] the data flow analyzer generation system PAG has been introduced. It
generates efficient interprocedural data flow analyzers from high level specifications for compilation systems
that are flow based. PAG allows to specify the abstract domains, the transfer functions and the interface
for control flow graph access. The fixpoint algorithm is currently implemented using a worklist approach
(also known as single step technique). The worklist contains the set of nodes that have to be processed
at least once. Then a node is selected and processed (related transfer function is applied). If the data
flow value changes, its successors are inserted in the worklist (for a forward problem). The efficiency of the
analyzers depends on a smart selection of the next node, which has been discussed extensively in the past
for the intraprocedural case ([11, 13]). The most general and common idea is that nodes are ordered and
the worklist implementation selects the minimal or maximal node. This technique is called priority queue.
For some control flow graphs an optimal ordering can be computed e.g. the reducible flow graphs ([14]).

PAG generated analyzers have to handle control flow graphs which are often irreducible; that arises from
the presence of procedures (higher order), non-local jumps and exceptions. We have investigated the effect
of different orderings on the costs of interprocedural analyzers. We specified and generated a conditional
constant propagator ([31]) for ANSI-C and applied it to realistic programs (table 2.1).

2.2 The Orderings

We implemented a bottom-up fixpoint algorithm that is based on a worklist containing those control flow
nodes whose data flow values have to be recomputed. In opposition to other implementations, where the
members of the priority queue are control flow nodes, we use pairs of nodes and indices to represent extended
super graph nodes. We implemented the worklist using a priority queue. The priorities of the control flow
nodes are given by seven different heuristics.

The optimal ordering is computable, but assumes an explicit representation of the extended super graph
which is too large for use in practise. But the extended super graph differs only at the procedure entry and
exit points from the super graph and can be safely approximated by it. Thus we base our heuristics only on
the structure of the super graph.

In the remainder of this section we describe the different orderings of the control flow nodes. We have
implemented seven different orderings of the control flow nodes. They differ in the treatment of edge types
and the visiting order of successors. The first four orderings do not take the types of edges into account i.e.
they handle procedure call/return edges like ordinary flow edges.
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dfs: depth first order

the nodes are ordered according to a depth first search visiting sequence of the control flow nodes;

bfs: breath first search
the nodes are ordered according to a breath first search visiting sequence of the control flow nodes;

sceg: strongly connected components (scc)
it first computes the strongly connected components of the super graph. They are ordered by a
topological ordering ([28]). The nodes of the sccs are ordered by the dfs strategy;

scey: strongly connected components
it first computes the strongly connected components of the super graph. They are ordered by a
topological ordering. The nodes of the sccs are ordered using the bfs strategy;

hypa:
it first computes the strongly connected components of the super graph. They are ordered by a variant
of a topological ordering (ATS). The nodes of the sccs are ordered using the dfs strategy;

hyps:
it first computes the strongly connected components of the super graph. They are ordered by a variant
of a topological ordering (ATS). The nodes of the sccs are ordered using the bfs strategy;

In addition we used the chaotic ordering (cha) which means, that the worklist is implemented as a stack.

We now present an algorithm for the computation of a topological ordering of sccs. Because the sccs are
computed intraprocedurally, the projection of the interprocedural graph to these sccs may be cyclic; we start
from the set of sccs and order them as long as there are minimal elements; if none exists we have to apply
a heuristic to determine which cycle we want to break up and where. Our heuristic is to choose a scc that
has a minimal number of predecessor (control flow) nodes which belong to sccs that are already ordered.

Algorithm ATS:
The algorithm ATS orders the strongly connected components of a control flow graph. The root (R.) of a
scc e is the node which is reached first by a dfs algorithm. The algorithm is related to that of [3], because
it defines a weak topological ordering.

Input: strongly connected components of a flow graph {s1,... s}

Output: total ordering ord of sccs

SCC :={s1,...,8m}; count:=1; Vi {l,...,m} ord(s;) := 0;
while SCC' # 0 do
if 3 s € SCC with no predecessor then sel :=s;
else
select {y1,...,yn} C SCC with minimal po(R,,) and on_cycle(Ry,) = true
if 3¢ with y; is procedure begin node then sel := y;; else
if 3¢ with y; 1s procedure end node then sel := y;; else
sel = yq; endif
ord(sel):=count++;endif
SCC = SCC — {sel}
enddo

The function po (predecessors ordered) is defined as :
po(z) = |[{z | ord(R.) # 0 AT edge = — 2’ Ryr = R, }|

It computes the size of the set of control flow nodes that belong to sccs which are predecessors of z. A
small value indicates that this node can be selected next. A better strategy is not to select the node with
minimal number of unordered predecessors but the node with the largest fraction of already ordered number
and the total number of predecessors. This assumes a more sophisticated arithmetic and is not efficient
enough. The predicate on_cycle determines whether a node belongs to a cycle of the control flow graph; this
1s justified because cycle should be analyzed completely before leaving it.
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| program | description | lines | procedures | flow nodes | objects | table |

fft fast fourier trans. 418 8 400 195 2.2
flex scanner generator 5985 129 9209 2301 2.12
ed editor 1506 81 2854 782 2.7
bison parser generator 6438 155 13109 3562 2.11
heap heapsort 546 4 240 94 2.5
twig code generator 2092 81 3576 1085 2.13
gzip* compactor 4056 100 6840 1740 2.6
xmodem communication 2060 31 3526 1157 2.10
whetstone | benchmark 508 8 349 121 2.9
linpack benchmark 821 13 904 285 2.3
cdecl part of C4++4 compiler 2831 33 2536 835 2.8
find* unix command 7341 211 10190 2704 2.4

Table 2.1: Testsuite
2.3 Practical Measurement

The testsuite consists of a rather fair set of real programs of reasonable size. We listed in table 2.1 the
name of the program, the number of source code lines, the number of procedures, the number of control flow
nodes (not of the extended super graph), the number of objects (superset of variables) and the number of
the table with the related results. The star * means that this program contains higher order functions. The
conditional constant propagator consists of 798 lines of analyzer specification, 15 lines of lattice specification
and 144 lines of interface specification. The PAG generated code is 617kB ANSI-C.

We investigated all combinations of the seven orderings and mappings with call string length zero and
one and compared the results in time and preciseness. The tables have the following structure:

Structure of the Tables

The first row contains the name of the program whereas the second shows the preciseness in terms of available
constants (constant objects, which are not necessarily used), interprocedural constants (ipc, constants at
procedure headers) and foldings of form y(z); it means that # source code variables are replaced by their
constant values, and y foldings are done caused by the former replacements; i.e.

ipc: the number of constant objects at the procedure headers

S enery » HOIUESY P flow(p)[i]) (0) # L8, T}

available: the sum of the number of constant objects at all nodes
Arity(n .
Y ttownode n 1ol (" flow(m)[i))(0) # L. T}

We listed for each program the steps of the control (how often a node is selected), the time for the analysis
in seconds and the average size of the priority queue during analysis. The winner of each competition is
marked with a @, and the loser with a &. The following table contains the results for specific programs,
where an enlarged call string length results in higher preciseness.

Swe use the lattice variables — flat(num++real++string)
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Program call string available ipc | foldings steps | time work | strategy
length
ed 2 1362 10 | 10 (11) 20451 55.2 56 hyp,
xmodem 2 4109 38112 (12) 56571 228.9 150 hypg
whetstone 2 935 7191 (54) 4858 6.1 11 hypy
linpack 2 416 6| 60 (21) 8625 7.7 6 hypg
cdecl 2 797 7 4 (2) 68180 53.2 190 hyp,
3 803 7 4 (2) 63453 99.7 111 hyp,
flex 2 3812 50 | 22 (59) | 110052 942.1 233 hyp,
3 8361 | 124 | 24 (84) | 169980 | 1806.0 356 hyp,
4 8367 | 129 | 24 (84) | 284739 | 4892.7 373 hyp,
heap 2 1101 8 8 (15) 1616 2.6 6 hyp,
Results:

For most programs the strategy cha (chaotic iteration) behaves worst whereas hyp, is the fastest one.
Increasing the call string length from 0 to 1 gives always more available constants, but does not necessarily
result in code improvement because they are not used (table 2.10). Available interprocedural constants are
found in most of the programs.

Observation 1
The selection best ordering of the control flow nodes depends on the program and the call string length.

We can see the correctness of this theorem by observing that the runtime of the analyzer consists of two
parts: the time inside the control (priority queue, binomial heaps, straightforward list) and the time inside
the abstract functions. A very fast control which selects unfortunately more often nodes with expensive
abstract functions may be less efficient than a very sophisticated control which selects expensive node less
often. Thus, the combination which cooperates best has to be found.

Observation 2
The analysis time is not a monotonic function in terms of precision.

Assume the abstract functions do follow the ascending chains in the lattice step by step; the earlier this
process stops, the faster and more precise are the analysis results. This does not mean that shorter analysis
yields always better results.

Observation 3
The preciseness 1s not a strictly monotonic function wn terms of the call string length even not before
stabilisation.

This means that the preciseness can be the same for two lengths of the call string but increase again for
higher values. The implication is bad: if we don’t get more preciseness by increasing the call string length,
we can not claim that this i1s also true for all larger call strings. That is clear from the theoretical point of
view, but we have found the practical confirmation.

We now discuss the table for each program in detail; for this we will use c¢sl as short cut for call string
length and ats as short cut for the two ats strategies hypg and hypy:

fft (table 2.2): The number of available constants and ipcs increases from ¢sl 0 to 1 but unfortunately no
code optimization can be done. The bfs strategies are better than the dfs based ones for this program.
csl larger than 1 does not give additional constants.

linpack(table 2.3): The number of foldings increases from esl 0 to 1 and the analysis time decreases for all
except the chaotic iteration. The size of the worklist increases with the call string length.bfs strategies
behave worse than dfs based ones.

find(table 2.4): The precision increases with the csl and more foldings can be done. The analysis times
are high due to the use of higher order functions.
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heap(table 2.5): cha has best runtimes which is very surprising. The dfs strategies behave generally worse
than its bfs counterparts. For csl 1 the ‘expected’ results are obtained, the ats strategies win. The
precision does not grow for csl bigger than 1.

gzip(table 2.6): The analysis times look very bad for gzip but that arises from intensive use of higher order
functions. This 1s probably also the reason why no interprocedural constants are found at all.

ed(table 2.7): The precision increases from ¢sl 0 to 2, but ¢sl 2 finds only more available constants. Al-
though different ats strategies win, the distance to others is not significant.

cdecl(table 2.8): The precision increases for csl 0 to 3. bfs strategies behave worse than dfs ones. For csl
1 the runtime 1s very long. The ats methods can analyze 1t in reasonable time.

whetstone(table 2.9): The precision increases from ¢sl 0 to 2; here we have the interesting fact that the
foldings are equal for c¢sl 0 and 1, but increase significantly for c¢sl 2. The analysis time decreases for
csl 2 and one gets more precise information in short time.

xmodem( (table 2.10): The precision and the number of foldings increase from esl 0 to 2. ¢sl 2 finds a lot
of interprocedural constants, but needs also more analysis time.

bison(table 2.11): The precision increases with the ¢sl, but does not result in more foldings. The analysis
times are relative close compared to the other programs.

flex(table 2.12): The precision increases from c¢sl 0 to 4 and results in more foldings for esl < 3. bfs
strategies are better than its dfs counterparts, but only the ats are suited for practical use.

twig(table 2.13): The precision increases remarkably from ¢s/ 0 to 1.

2.4 Conclusion and Further Work

We have presented the results of applying a (generated) conditional constant propagator which also keeps
track of reference parameter and function results to a set of real-world programs. Our analyzer is based
on the call string approach ([25]). Tt separates different context information for different calls up to a fixed
depth.  We implemented a bottom-up? fixpoint algorithm using a priority queue, where the priorities are
computed according to an ordering of the control flow node. The classical ordering like depth first search
([26]), intervals analysis ([11, 13]) or chaotic iteration strategies ([3]) fail either in the interprocedural setting,
are only applicable to reducible flow graph or assume further properties like absence of non-local gotos or
deal with slightly different topics like the search of nearly optimal widening points. We developed a new
method (ats) which has been proven practically relevant.

We currently implement the functional approach of [25] and plan to compare it with our first technique.
Additionally, we plan to generate parallel analyzers ([10]).

§due to non-local gotos, which make top-down algorithms very complicated
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fft
avail:118 ipc:0 fol:0(0) avail:273 ipc:3 fol:0(0)
call string length 0 call string length 1
order steps | time size order steps | time size
cha 1874 3.1 12 cha & 12750 | 39.8 10
bfs 2657 2.9 14 bfs 5373 9.2 14
dfs & 4169 6.9 23 dfs 14782 | 29.8 27
sccy 2080 2.5 21 sccp, P 5096 8.6 22
sccy 2057 2.2 15 sccy 15015 32.9 40
hypg 1423 1.1 10 hypg 7778 | 11.0 9
hypy, @ 1082 1.0 10 hypy, @ 6488 8.9 7
Table 2.2: Results for £ft

linpack
avail:262 ipc:6 fol:39(8) avail:400 ipc:6 fol:60(21)
call string length 0 call string length 1
order steps time | size order steps | time size
cha 3581 8.1 19 cha 14164 | 24.9 97
bfs © 17278 | 1003.1 79 bfs 20186 | 64.8 102
dfs 1906 6.2 43 dfs 6421 6.2 67
sccy D 1905 6.1 43 sccy 6420 6.3 68
scep 17122 | 995.5 81 sccp © 20148 | 66.2 103
hypq 1483 10.5 54 hyps @ 4498 4.0 44
hypes 1528 10.7 54 hyps 4755 4.7 45

Table 2.3: Results for linpack

find
avail: 4910 ipc:9 fol:42(27) avail:5925 ipc:17 fol:42(29)
call string length 0 call string length 1
order steps time size order steps time size
cha 33064 | 11768 285 cha © T >6000 T
bfs 29294 90.9 405 bfs 192770 2548.0 487
dfs & 38725 | 144.9 450 dfs 193822 5365.7 445
sccy 35247 | 143.4 469 sccy 170254 716.0 576
sccp, @ | 26022 79.2 468 scep 171163 817.6 689
hypa 33810 93.1 172 hyps @ 130136 350.4 285
hyps 33868 98.5 156 hyps 181888 1312.0 339

Table 2.4: Results for £ind
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heap
avail:341 ipc:2 fol:2(8) avail:940 ipc:8 fol:7(13)
call string length 0 call string length 1
order steps | time size order steps | time size
cha @ 1117 1.5 8 cha & 4880 8.4 12
bfs 1633 2.4 240 bfs 3785 7.9 18
dfs © 2858 4.8 18 dfs 3729 7.7 21
sccy 2817 4.8 18 sccy 3704 7.9 21
scep 1599 2.3 17 sccq 3755 7.8 20
hypq 2034 2.6 12 hypg 2957 5.9 15
hypy 1940 2.5 12 hyp, @® 2949 5.8 14

Table 2.5: Results for heap

g7ip
avail:2221 ipc:0 fol:16(34) avail:2976 ipc:0 fol:24(36)
call string length 0 call string length 1
order steps | time size order steps time size
cha 20617 | 103.6 213 cha © 777 >2600 777
bfs 20424 | 396.5 380 bfs 122710 1043.2 967
dfs 18432 | 198.7 309 dfs & 172217 2510.7 862
sccy 18428 | 214.5 309 sccy 171363 2608.1 864
sccy, © | 20396 | 398.5 380 scep 122688 1100.1 969
hypq 11403 | 43.0 256 hyps & 81376 435.3 526
hyp, @ | 11161 39.4 258 hype 82344 446.6 523
Table 2.6: Results for gzip
ed
avail:998 ipc:7 fol:8(8) avail:1331 ipc:9 fol:10(11)
call string length 0 call string length 1

order steps | time size order steps | time | size

cha © 7885 | 134 55 cha & 31331 | 101.5 83

bfs 6180 8.0 81 bfs 22145 | 42.2 63

dfs 7379 9.4 140 dfs 23181 | 46.0 109

sccq 7342 | 11.1 139 sccq 22045 | 50.1 119

scep 6338 8.2 88 scep 21855 | 44.1 73

hypq 5618 7.7 58 hypqs ¢ | 11894 | 16.5 37

hypy & 5163 6.0 59 hypes 11753 17.2 35

Table 2.7: Results for ed

21




avail:506 ipc:2 fol:2(1)

cdecl

avail:789 ipc:7 fol:4(2)

call string length 0

call string length 1

order steps | time size order steps time size
cha © 6004 | 14.11 160 cha 184997 19989.5 471
bfs 6277 8.8 182 bfs © 7771 > 37545 777
dfs 4860 5.3 182 dfs 24256 28.2 418
sccy 4808 4.8 181 sccy 23933 28.8 430
scep 4355 4.3 137 scep 266353 28164.0 441
hypq 3377 3.0 175 hyps & 14822 13.7 370
hypy & 3379 2.8 185 hypes 15155 13.7 360
Table 2.8: Results for cdecl
whetstone
avail:255 ipc:3 fol:79(40) avail:266 ipc:3 fol:79(40)
call string length 0 call string length 1

order steps | time size order steps | time size

cha 1332 0.6 12 cha @& | 11941 6.2 57

bfs 3077 3.3 39 bfs © 15960 72.7 73

dfs © 4444 1 121 51 dfs 9170 11.0 57

sccy 4415 12.1 50 sccy 9129 11.3 58

scep 3025 3.6 39 scep 15738 66.8 75

hypq 769 0.5 30 hypq 4942 21.6 35

hypy & 764 0.5 50 hype 4906 21.1 35

Table 2.9: Results for whetstone
xmodem
avail:998 ipc:7 fol:8(8) avail:1331 ipc:9 fol:10(11)
call string length 0 call string length 1

order steps | time size order steps | time | size

cha © 11407 | 108.5 161 cha & 777 |1 >300 777

bfs 11273 | 27.7 373 bfs 40871 | 66.8 265

dfs 9552 19.5 316 dfs 52278 | 220.5 576

sccq 7596 17.8 309 sccq 36999 | 113.5 507

scep 6101 9.8 217 scep 40820 | 82.8 274

hypq 6020 11.5 241 hyps @ | 26200 | 64.6 218

hypy & 5108 9.7 238 hypes 26222 | 80.5 227

Table 2.10: Results for xmodem
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bison

avail:2258 ipc:11 fol:10(5) avail:2899 ipc:12 fol:10(5)
call string length 0 call string length 1
order steps | time size order steps time size
cha © 29503 | 85.5 470 cha © 155852 728.5 508
bfs 25424 | 83.2 692 bfs 106794 262.2 624
dfs 27446 | 80.5 655 dfs 134463 453.3 671
scCq 26343 | 67.0 635 scCq 135435 363.8 502
scep 22643 | 73.2 585 scep 104238 272.1 734
hypa 21273 | 54.3 406 hypa 93779 234.8 292
hyps @ | 20955 | 54.3 408 hyp, @® 82156 184.1 279

Table 2.11: Results for bison

flex
avail:3285 ipc:45 fol:19(57) avail:3637 ipc:49 fol:22(59)
call string length 0 call string length 1
order steps | time size order steps time size
cha & 24587 | 31.9 338 cha 156312 564.5 525
bfs 17809 | 29.6 427 bfs 113433 1552.8 849
dfs 19942 | 30.7 644 dfs & 84897 3320.2 953
sccy 19682 28.7 641 sccy 128415 3191.8 938
scep 17740 | 28.3 440 scep 89221 253.5 829
hypq 14304 | 19.6 363 hypq 50398 101.1 387
hypy @ | 14159 | 19.6 367 hypy & 48448 98.5 389
Table 2.12: Results for flex
twig
avail:599 ipc:0 fol:3(2) avail:3637 ipc:49 fol:22(59)
call string length 0 call string length 1

order steps | time size order steps | time size

cha 8564 | 20.5 105 cha 55865 | 91.0 460

bfs 17099 | 105.0 359 bfs 37258 | 73.0 278

dfs 7398 | 335 226 dfs 65588 | 165.0 438

sccy 7415 33.3 224 sccy © 65557 | 174.2 467

sccy, © | 25303 | 1715 382 scep 43506 | 132.2 429

hypq 6017 17.2 143 hypq 33599 | 495 155

hypy & 5933 16.9 147 hypy @ | 31212 | 46.6 162

Table 2.13: Results for twig
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Appendix A: Specification of Liveness

DOMAIN
varset = set(unum)
vars = lift(varset)

PROBLEM livevar
direction : backward

carrier : vars

init : bot
init_start: 1lift(bot)
combine : comb
TRANSFER

Assign(el,e2):
minus (@,def (e1)) lub use(el) 1lub use(e2)

Evaluate (exp):
@ lub use(exp)

Local(id,_,_) => id;
Parameter(id,_,_) => id;
Register(id,_,_) => id;

=> error("Unknown object");

endcase));
SYNTAX
START : STMT;

STMT: Evaluate(Expr:EXPR)

BeginProcedure (Params:0bject*,Locals:0bject*)
Assign(Lhs:EXPR,Rhs:EXPR)
Call(Proc:EXPR,Params:EXPR*)
FuncCall(Proc:EXPR,Params:EXPR#,Res:EXPR)
CallRet (Params:0bject*,Locals:0bject*)
EndProcedure (Params:0Object*,Locals:0bject*)

Goto (Target:EXPR)
Return(Value:EXPR,Next :EXPR)
If(Cond:EXPR,Then:EXPR,Else:EXPR)
EndFuncCall (Res:EXPR)

EndCall();

If(exp,t,f):
@ lub use(exp)

FuncCall(_,params,_):

@ lub use_list(params)
EXPR: NoExpr()

IntConst (Value:UNIV_INT)

RealConst (Value:UNIV_REAL)

BoolConst (Value:B0OOL)

Call(_,params):
@ lub use_list(params)

default: ObjectAddr(0bj:0bject)
Q Content (Addr:EXPR)
Subscript (Base:EXPR, Index:EXPR)
Member(Base:EXPR,Field:0bject*)
SUPPORT Convert (Value :EXPR,Rounding :ROUNDING)

Cast (Value:EXPR)

Abs (Value:EXPR)

Neg(Value :EXPR)

Not (Value:EXPR)

Plus (Left :EXPR,Right :EXPR,Strict :BOOL)

Diff (Left:EXPR,Right :EXPR,Strict:BOOL)

Mult (Left :EXPR,Right :EXPR,Strict:BOOL)
And(Left:EXPR,Right:EXPR,Strict:BOOL)
Or(Left:EXPR,Right :EXPR,Strict:BOOL)
Xor(Left:EXPR,Right:EXPR,Strict:BOOL)
Div(OnZero:EXPR,Left :EXPR,Right :EXPR,Strict:BOOL)
Quo (OnZero:EXPR,Left :EXPR,Right :EXPR,Strict :BOOL)
Mod(OnZero:EXPR,Left :EXPR,Right :EXPR,Strict:BOOL)
Rem(OnZero:EXPR,Left :EXPR,Right :EXPR,Strict:BOOL);

comb(a,b) = a lub b;

// Subtracts a list of unums from a set of unums
minus:: vars, [unum] -> vars;
minus (1_set,list) =
let x <= 1l_set;
in lift( case list of
atas => x # a;
[1 => x;
endcase) ;

// Calculate the used objects of expressions
use_list([!']) = lift({});
use_list(x::xs) = use(x) lub use_list(xs);

ROUNDING: Truncation()

// Calculate the used objects of an expression | Nearest()
use::EXPR -> vars; | Floor()
use(Content (ObjectAddr (obj))) = 1ift({} ~ id(obj)); | Ceiling();

use(Content (exp)) = lift(top);

use (Subscript (expl,exp2)) = use(expl) lub use(exp2);
use (Member(exp,_)) = use(exp);

use(Convert (exp,_)) = use(exp);

use(Cast(exp)) = use(exp);

use(Abs (exp)) = use(exp);

use (Neg(exp)) = use(exp); Section: Section(Sname:NAME)
use(Not (exp)) = use(exp);

use(Plus(expl,exp2,_)) = use(expl) lub use(exp2);

Object: DataGlobal(cpid:INT,IsVolatile:BOOL)
| Local(cpid:INT,IsVolatile:BOOL,Procedure:0Object)
| Parameter(cpid:INT,IsVolatile:BOOL,ParamKind:ParamKIND)
| Register(cpid:INT,IsVolatile:BOOL,RegisterId:INT);

ParamKIND: ByValue()

use (Diff (expl,exp2,_)) = use(expl) lub use(exp2); | ByReference ()

use (Mult (expl,exp2,_)) = use(expl) lub use(exp2); | ByCopyInOut();
use(And(expl,exp2,_)) = use(expl) lub use(exp2);

use(0r(expl,exp2,_)) = use(expl) lub use(exp2); BOOL == bool;
use(Xor(expl,exp2,_)) = use(expl) lub use(exp2); NAME==str;
use(Div(_,expl,exp2,_)) = use(expl) lub use(exp2); INT==snum;
use(Quo(_,expl,exp2,_)) = use(expl) lub use(exp2); UNIV_INT == snum;
use(Mod(_,expl,exp2,_)) = use(expl) lub use(exp2); UNIV_REAL == real;
use(Rem(_,expl,exp2,_)) = use(expl) lub use(exp2); UNIV_ADDRESS == unum;

use(_) = lift({});

// calculate a list of the defined objects in an expression
def (ObjectAddr(obj)) = id(obj):[]1;
def (L) = [1;

// Get the identifier of an object
id(obj) = unum(val-INT(
case obj of
DataGlobal(id,_) => id;
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