Graph Layout for Applications
in Compiler Construction

Technical Report A/01/96

Georg Sander
(sander@cs.uni-sb.de)

Universitat des Saarlandes,
FB 14 Informatik,
66041 Saarbricken

February 27, 1996

Abstract: We address graph visualization from the viewpoint of com-
piler construction. Most data structures in compilers are large, dense
graphs such as annotated control flow graph, syntax trees, dependency
graphs. Qur main focus is the animation and interactive exploration
of these graphs. Fast layout heuristics and powerful browsing methods
are needed. We give a survey of layout heuristics for general directed
and undirected graphs and present the browsing facilities that help to
manage large structured graphs.

Contents
1 Introduction
2 Notation

3 Force and Energy Controlled Placement
3.1 Spring Embedding oo oo
3.2 Gravity
3.3 Magnetic Fields oo oo
3.4 Simulated Annealing L oL
3.5 Temperature Schemes. oL
3.6 Applications in Compiler Construction

3.7 Related Approacheso

4 Layout in Layers
4.1 Layout Phases
4.1.1 Phase 1: Partitioning into layers
4.1.2 Phase 2: Sorting of nodeso
4.1.3 Phase 3: Positioning of nodes
4.1.4 Phase 4: Positioning of edges
4.2 Application in Compiler Construction
4.3 Related Approacheso

5 Grouping and Folding
5.1 Compound Graphs and Dynamic Grouping
5.2 Layout of Compound Graphs
5.3 Graph Grammarso

6 Browsing
6.1 Linear Views
6.2 Fisheye Viewso
6.2.1 Distorting Fisheye Views
6.2.2 Filtering Fisheye Views
6.2.3 Logical Fisheye Views
6.2.4 3-D approacheso

7 Conclusion

8 Acknowledgments

16
16
18
19
21
24
26
27

28
30
33
34

35
35
36
37
39
40
41

41

42

Abstract: We address graph visualization from the viewpoint of com-
piler construction. Most data structures in compilers are large, dense
graphs such as annotated control flow graph, syntax trees, dependency
graphs. Qur main focus is the animation and interactive exploration
of these graphs. Fast layout heuristics and powerful browsing methods
are needed. We give a survey of layout heuristics for general directed
and undirected graphs and present the browsing facilities that help to
manage large structured graphs.

1 Introduction

We address graph visualization from the viewpoint of compiler construction.
Drawings of compiler data structures such as syntax trees, control flow graphs,
dependency graphs [WiMa95], are used for demonstration, debugging and doc-
umentation of compilers. In real world compiler applications, such drawings
cannot be produced manually because the graphs are automatically gener-
ated, large, often dense, and seldom planar. Graph layout algorithms help to
produce drawings automatically: they calculate positions of nodes and edges
of the graph in the plane.

Our main focus is the animation and interactive exploration of compiler
graphs. Thus, fast layout algorithms are required. Animations show the be-
haviour of an algorithm by a running sequence of drawings. Thus there is not
much time to calculate a layout between two subsequent drawings. In interac-
tive exploration, it is annoying if the user has to wait a long time for a layout.
Here, a good layout quality is needed, but the speed of visualization is even
more important. As long as the layout quality is good enough to comprehend
the picture, the user may accept small aesthetic deficiencies of the drawing.

In contrast, consider graph visualization for textbook publishing. Here, typ-
ically pictures of small graphs are used to demonstrate idealized abstractions
of facts. Such pictures are mostly produced by hand. Their quality must be
optimal in order to make the facts very easily comprehensible for the reader of
the textbook. If automatically calculated layout is used, the techniques are dif-
ferent from those in interactive visualization: The calculation time may range
up to hours because the quality of the drawing is more important in textbook
publishing.

Layout techniques for interactive graph exploration usually are iterative
heuristics. Iterative algorithms allow to trade time for quality. If the layout

quality is not satisfactory, more iterations are calculated, which is slower but
gives better results. Heuristics are used because this allows to satisfy several
potentially contradicting aesthetic requirements in a balanced way. General
aesthetic layout criteria include minimization of edge crossings and node over-
lappings, display of symmetries, reduction of bend points in edges, uniform
orientations of directed edges, and closeness of related nodes.

Apart from the layout heuristics, powertul browsing mechanisms are needed
for interactive graph exploration. Many facilities such as unlimited scaling,
searching of nodes, and following chains of edges are offered as a matter of
course in today’s graph drawing tools. Some advanced facilities are grouping
nodes, collapsing groups into summary nodes (folding), hiding classes of nodes,
and displaying special views onto the graph.

We present layout methods and browsing facilities suitable for graph vi-
sualization in compiler construction. After defining the general notation, the
section 3 gives a survey of straight line drawing heuristics derived from phys-
ical models. Section 4 presents variants of a method for layered (hierarchical)
layouts. Section 5 sketches some ideas about interactive grouping and folding
of graphs, and section 6 presents browsing facilities with special views. Most
of the mentioned algorithms and methods are implemented in the VCG tool, a
graph layout tool designed for applications from compiler construction [Sa94].
All examples of this paper are generated by the VCG tool.

2 Notation

A (directed) graph GG = (V, E) consists of a set V' of nodes and a set E of
ordered pairs of nodes. An element (v,w) € E is called an edge of the graph.
A graph is undirected if for each edge (v,w) € E also (w,v) € E holds. The
set pred(v) = {w € V | (w,v) € E} is the set of predecessors of a node v € V.
The set suce(v) = {w € V | (v,w) € E} is the set of all successors of a node v.
The sizes of these sets are indeg(v) = |pred(v)| and outdeg(v) = |succ(v)].
The degree of a node v is degree(v) = indeg(v) 4+ outdeg(v).

A sequence v, ..., v, is a path from vg to v, if there are edges (v;_1,v;) € F
for 1 <2 < n. A cycle is a nonempty path from v to v. A graph without cycles
is called acyelic. A graph is dense if it contains many edges and sparse if it
contains only few edges. It would be superfluously pedantic to define these
notions precisely. A graph with [F| < |[V] is always considered sparse, while a
graph with |E| ~ |V]? is always considered dense.

3 Force and Energy Controlled Placement

The simplest kind of graph layout is a straight line layout. All edges are drawn
as straight lines between the centers of the adjacent nodes. Calculation of the
layout reduces to the problem of finding node positions.

The main idea of the heuristic is to simulate physical-chemical models.
Many objects occurring in physics and chemistry (e.g. molecules, crystals, com-
bined inoperative pendulums, etc.) have a high degree of uniformity and bal-
ance. These are just the aesthetic criteria aimed at by a good layout method.
The uniformity of physical-chemical objects is a result of the force and energy
effects at the particles. The particles move according to the forces, and come
to inoperative positions when the forces eliminate each other, and the physical
system is balanced if the energy sum is minimal. In the heuristics, we consider
the nodes as particles, start from an arbitrary initial position, simulate the
movements of the nodes and lower the energy stepwise such that the nodes
come to rest.

(1) Set all nodes v € V to initial positions;
(2) for actround = 1 to maxrounds do

(3) Select a node v € V;

(4) Calculate the forces at v;

(5) Move v an amount 6 into the direction of the sum of forces;
(6) Calculate the energy E of the system;

(7) if £ is small enough then stop loop;

(8) od

3.1 Spring Embedding

The earliest heuristics of force-directed placement were based on the spring
embedder model [QuBr79, Ea84]. Nodes are considered as mutually repulsive
charges and edges as springs that attract connected nodes.

Let A(v,w) be the distance vector between two nodes v and w. Then,
|A(v,w)]|| is the Euclidean distance. Between each pair of nodes, there are
repulsive forces inversely proportional to the distance, e.g. the force vector

A(v,w)
A, w)]?

Between nodes connected by edges (v, w), there are attractive forces directly
proportional to (a power of) the distance, e.g.

Fun(v,0) = Aare Av, w) | A(v, w)]||?
Different formulas for forces have been used in [QuBr79, Ea84, SuMi94, SuMi95],

but the resulting effects are always similar. The parameters A,., and A,y al-

Frep(v,w) = =X

low to adapt the heuristics. An edge (v,w) is at equilibrium if F,.,(v,w) +

5

Figure 1: Animation of Spring Embedding of Grid Graph

Fau(v,w) = 0. The length of the edge in this case is

A
Alv,w)]| = =2
I8, w)l = {322

Although the algorithm does not explicitly support the detection of sym-
metries, it turns out that in many cases the resulting layout shows existing
symmetries. If the iteration steps are animated, there is the impression of a
three-dimensional unfolding process starting with a randomly produced bunch.
The more symmetric a graph is, the more obvious is this effect. Fig. 1 shows
the animation sequence of a regular grid graph.

3.2 Gravity

It is obvious that connected components of a disconnected graph will move
apart in a simple spring model because of lack of attractive forces. Often,
loosely connected components are also positioned far from each other such
that the edges in between are unaesthetically long. Thus, Frick e.a. introduce
additional gravity forces [FLM95]. All nodes vy,...,v, are attracted by the
gravity to the barycenter (the average of all node positions p(v)):

1
Bcenter — g Zp(vz)
=1

In the proposal of Frick e.a., gravity forces depend on the number degree(v)
of adjacent edges at a node v. Nodes with high degree are more important since

Gravity and charge repulsion, without Gravity, repulsion and attractive spring
attractive spring forces forces

Figure 2: Layout of Hexagonal Grid

they drag along many nodes in the same direction. The gravity force at a node
can be defined as

Fyran(v) = Agran(1 + degree(v))(Beenier — p(v))

Although gravity forces are attractive as of themselves, they are not a total
replacement of spring forces. If only gravity and charge repulsion take effect,
the nodes are placed evenly around the barycenter, but regularities of the edge
structure are not visible (Fig. 2, left). Only the spring forces contribute to the
symmetry of the layout.

Since gravity forces are polar directed to the barycenter, they enforce a
round structure of the layout. Fig. 3 shows the effect of gravity on a grid graph.
However, the main advantage of gravity is visible if the graph is partitioned
into very dense parts which are loosely connected. Without gravity, the nodes
of the parts are very close together but the parts themselves are far from each
other. Thus, the edge lengths are not uniform. Gravity has the effect that the

N e:.@ :.
{J 7

oy

'~ g

TN

e —®

without gravity gravity Agpqp = 0.6 strong gravity Ag.qp = 1.5

Figure 3: Layout with Gravity

N

203
7]

=
,' i
4

S8

Zi

SIS
L5 Z\\ o4
A‘.z(z:i};‘ =

without gravity strong gravity Agyq, = 2.0

Figure 4: Layout of Multiplied K

parts are positioned closer such that the layout is much more homogeneous

(Fig. 4).

3.3 Magnetic Fields

Spring embedders do not take into account edge directions. In directed graphs,
all edges should point into the same direction when possible. Recently, Misue
and Sugiyama [SuMi94, SuMi95] proposed an extension that enforces this ef-
fect: Edges are considered as springs, but also as magnetic needles which are
oriented according to a magnetic field. Spring forces depend on the length of
the edges and are parallel to the edges. A magnetic force additionally depends
of the angle a between edge and magnetic field, and is directed orthogonally
to the edge. Thus, it rotates the edge. The magnetic force becomes zero when
the edge points exactly in the direction of the field (Fig. 5). In the formula
of magnetic forces, L(v,w) denotes the unit vector orthogonal to A(v,w) and

A A

Spring
-
S S FMagnetic

Magnetic

I:Spri ng

Magnetic Field Magnetic Field

Figure 5: Spring Force and Magnetic Force

parallel: concentric: orthogonal:

Mi(e,y) = (0.1) My(e,y) = {5 %Zgiiﬂt))

Figure 6: Magnetic Fields

the parameters \,,,, and ¢ allow to tune the force:
Frag = Amag@®[|A(v, w)]|* L(v, w)

Different magnetic fields have been used (Fig. 6). A parallel field can be
used to give most edges a top down orientation (Fig. 7). The number of edges
pointing against the field direction depends on the strength of the field; it is
small but seldom minimal.

A concentric field can be used to illustrate cycles in the graph (Fig. 8).
Binary trees are often drawn in orthogonal layouts. A similar effect can be
produced by a compound magnetic field where different sets of edges are influ-
enced by different components of the field (Fig. 9). However, larger trees often
produce edge crossings in the orthogonal field, such that this method is not
perfectly suited for orthogonal drawings.

without magnetic field parallel field

Figure 7: Ternary Tree with Magnetic Field

without magnetic field concentric field

Figure 8: Layout of Cube with Magnetic Field

orthogonal field orthogonal field without magnetic field

Figure 9: Layout of Binary Trees with Magnetic Fields

3.4 Simulated Annealing

The spring embedders of Eades [Ea84] and Misue und Sugiyama [SuMi94,
SuMi95] apply a fixed number of iterations to get the layout. It may happen
that the number of iterations is too small, which gives an unbalanced layout,
or the number is too high, which is waste of time. Different extensions were
proposed to get better termination conditions for the heuristic. Some spring
embedders [QuBr79, KaKa89] are based on the energetic states of the nodes.
The aim is to minimize the global energy F (the sum of all energetic states).
A minimum of £ can be found by solving the equation system

OE OF

axi—ayi:()forlgign

for the positions (x;,y;) of all n nodes. The equation system can be solved by
numerical methods (e.g. the method of Newton-Raphson [BoPr91]). However,
this only finds some local minimum of F which is not the global one.

Thus, Davidson and Harel [DaHa89] applied a randomized optimization
method from statistical mechanics: simulated annealing. In addition to the
global energy F., there is a global temperature T' which is lowered as the

10

iterations progress. In each step, a random move is tried at some node. If the
global energy E gets smaller with the new position of the node, the move is
done. If F is enlarged by AF, the move is accepted with the probability

AB
Prob=e"T

otherwise the move is rejected.! The uphill changes of the energy prevent the
layout to go towards a local minimum very early. By lowering the temperature
T in each step, uphill changes get more improbable as the algorithm progresses.

As long as the temperature is decreased slowly enough, this randomized
method results in uniform and symmetric layouts. The method has the ad-
vantage that no vector calculations are needed, because no force vectors need
to be calculated. Any complex scalar formula for the energy is allowed, e.g.
taking into account the border of the layout ,,in, Tmazy Ymin and ypaz, or the
number of crossings and overlappings. Typical formulas are

Eglobal = Z Erep(v7 w) + Z Eatt(v7 w) + Z EbOTdeT(v) + Elap + ECTOSS
v,weV (vw)eE veV
vEW
where
A
E.. (v7w) A —
’ [A(v, w)|[?
Eatt(vvw) =)\att HA(U,U))HQ
)\border)‘bOTdBT
E order =
porter (V) = e T (0] — 2 P
+)\border)‘bOTdBT

I
(y(v) - ymm)2 (y(v) - ymax)2
By = Aap #Overlappings

Ecross =)‘cross #C?“OSSiTLgS

The disadvantage of simulated annealing is the fact that the cooling must be
very slow to enforce regularities of the layout. It needs about 10 times more
iterations than normal spring embedders (see also [BHR96] for a comparison
between spring embedders and simulated annealing). Thus, it is not very well
suited for large graphs.

Experiments have shown that the combination of both spring embedding
and simulated annealing can be useful. We move the nodes in direction of the
forces, but add a small random force F,,,; and with a certain probability, we
reject moves that would increase the global energy. Because the positioning of
the nodes is not completely random, simulated annealing becomes faster, and

IThis is derived from the Boltzmann probability of thermodynamic moves of particles of
energy E in an ideal gas: Prob = e~ T . Here, K is the Boltzmann constant.

11

Spring Embedder Combined Method

Figure 10: Layout of Torus

because the energy state is checked, it is possible to enforce aesthetics that are
not expressible as force vector. Fig. 10 shows an example: The spring embedder
produces a symmetric layout of the torus, while the combined method allows
to press the torus into a rectangular border.

3.5 Temperature Schemes

Fruchterman and Reingold [FrRe91] adapted the concept of cooling to the nor-
mal spring embedders. Nodes are moved in direction of the force vector instead
of randomly. The amount of movement ¢ is limited by the global temperature
T, i.e. the smaller T is, the smaller is the movement distance 6(7). If T' = 0,
the nodes don’t move anymore. The global cooling function depends only on
the size of the graph.

Frick e.a. [FLM95] expanded this concept by introducing local temperatures
T'(v) for each node. The distance of movement of a node v is 6(7T(v)). Thus,
the amount of movement may vary for each node. The global temperature is
the average of all local temperatures: Ty, = % > T(v;). The simulation
is iterated until Ty, is cooled down to a threshold Tyj.es,. There is no global
cooling function, but the temperature of a node is determined by its movement
behavior. The old movement impulse vector [,4(v) is compared to the new
impulse I,.,(v) (Fig. 11). If both nearly point into the same direction, the
ideal position of node v can probably be found in this direction. Thus, its
local temperature T'(v) is enlarged in order to move the node v faster (i.e. in
larger steps) to its ideal position. If both nearly point into opposite directions,
we assume that the node v was moved too much and now starts to oscillate
around the ideal point. Thus, T'(v) is decreased to damp the oscillation until

12

old impulse I (v)

S newimpulsel(y)/
e

Rotation Rotation
to the left to theright
Oscillation

Figure 11: Detection of Rotations and Oscillations

the node has found its inoperative position. If a node turns several times in
the same direction to the right (or to the left, respectively), it probably circles
around its ideal point (like a rotation), thus T'(v) is decreased, too. Since the
local temperature is sensitive to the movement behavior, it is automatically
recognized when the simulation can stop without wasting iterations where the
layout quality does not change anymore.

3.6 Applications in Compiler Construction

Although magnetic fields can be used to influence orientations of directed
edges, force-directed and energy-controlled placement is mainly used for sparse,
undirected graphs, e.g. symmetric relations. A typical example is the visualiza-
tion of register collision graphs in compiler construction. If a compiler trans-
lates a program into machine code, it uses an infinite set of virtual processor
registers at first. This is for simplicity of the code generation. Afterwards the
virtual registers must be mapped to the limited number of real CPU registers.
Here, the so called register collision graph helps: The nodes of this graph are
the virtual registers. There is an (undirected) edge between two nodes if the life
times of both virtual registers are overlapping. Register allocation is now done
by coloring the graph with n colors representing n real CPU registers with the
restraint that adjacent nodes must never get the same color. The problem of
minimizing the number of colors (or the number of real CPU registers, resp.) is
NP-complete, but there are good heuristics to solve this problem [WiMa95].

Example 1 Fig. 12 shows the register collision graph of the 3-address code
of sequence 1. Here, the 8 virtual registers R1, ..., RS are used. The graph
is labeled by the life times of the registers. The graph can be colored by 4 real
registers: R2 and R6 are mapped to the CPU register A, R2, R4 and R6 to B,

13

Figure 12: Register Collision Graph

R5 to C and R1 and R7 to D. The result is shown in sequence 2.

Sequence 1 (before reg. allocation): Sequence 2 (after reg. allocation):
intermediate code using 8 wirtual code with 4 real registers
registers

(1) R2 =1 (1) A=1

(2) R3 = 7 () B=7

(3) RS = 9 (3)c=09

(4) R1 = R2 + R3 (4) D=A+B

(5) R4 = R1 * R5 (5) B=D *x C

(6) R6 = R1 + R4 (6) A=D + B

(7) R7 = R6 * R4 (7) D=A * B

(8) R8 = R7 + R6 (8) B=D+ A

Simulations of parallel programs often require the visualization of the paral-
lel computer architecture. Because spring embedders often display symmetries,
they are in particularly suitable for that. Fig. 13 shows some of these networks
(see [AlGo89, Br93] for a description of these network topologies).

3.7 Related Approaches

Genetic layout algorithms [Ma92, Pa89] are very similar to simulated anneal-
ing. They are randomized methods that calculate generations of layouts of the
same graph. The best layout (according to some quality function similar to
the energy function of simulated annealing) is selected as new layout. Genera-
tions of layouts are produced by two operations in correspondence to biology:
mutations (a layout changes randomly) and crossovers (two layouts are com-
bined into a new layout). After a sequence of mutations and crossovers, the
quality function is applied to all layouts. Bad layouts are deleted, and only the
best layouts survive. Just as simulated annealing, genetic layout algorithms
are relatively slow and need a lot of memory space.

Tunkelang [Tu94] developed a method similar to simulated annealing which

14

Computer Net Cube Connected Cubic Grid

Circles

Figure 13: Network Topologies

does not place the nodes randomly but according to a fixed pattern. The energy
function is applied during the initialization in order to find a good initial layout,
and afterwards to improve the layout. The disadvantage of this method: with
a fixed pattern of node movements some layouts are never taken into account.
Thus, the algorithm does not always give optimal results. On the other hand,
a good selection of the movement pattern may speed up the heuristics very
much.

Spring embedders and simulated annealing do not necessarily produce pla-
nar layouts for planar graphs. Harel and Sardas [HaSa93] use a combined
approach: First a planar layout (or for nonplanar graphs: a layout with only
few edge crossings) is calculated, and afterwards, simulated annealing is used
to improve the layout. In this optimization step, all node moves are rejected
that would produce edge crossings. This guarantees symmetric, uniform planar
layouts for planar graphs.

15

4 Layout in Layers

Straight line layout is sometimes not very useful for several reasons: (a) it does
not ensure that nodes do not overlap, (b) is does not ensure that edges do not
cross nodes, (c) it is for certain applications simply a wrong layout pattern.
For instance control flow diagrams in compiler construction look completely
different from typical straight line layouts. It is important that nodes do not
overlap because their labels must be readable. In branches of the control flow,
the user expects labels directly near the node that represents the branch con-
dition. The start node of the control flow should be at the top. To draw such
graphs differently may also produce nice pictures (see Fig. 14, right), but they
look unfamiliar for users that expect a control flow graphs, because they do
not satisfy the drawing conventions.

Next, we present a layout method that avoids node overlappings and allows
edges with bends. Here, not only node positions must be found, but edge
routing must be done, too.

4.1 Layout Phases

The main idea of the algorithm is to partition the nodes into layers and order
the nodes within the layers such that edge crossings are reduced. Variants of
this idea were first described in [Wa77, Ca80, STT81]. The method described
here is mainly based on the algorithm by Sugiyama e.a. [STT81, EaSu90].
Layer layout consists of four phases (Fig. 15):

e Partitioning of nodes into layers. The goal is to construct a proper hi-

<>

typical flow diagram straight line layout of this graph

Figure 14: Control Flow Graphs

16

Positioning of nodes Positioning of edges

Figure 15: Phases of Layer Layout Algorithm

erarchy, i.e. a partioning where edges may only occur between adjacent
layers. If this is not possible, long edges crossing several layers must be
split into sequences of short edges and dummy nodes must be inserted
appropriately.

e Sorting the nodes (and dummy nodes) within a layer, such that only few
edge crossings exist. This gives the relative positions of the nodes.

e Positioning of nodes. This gives the absolute coordinates of the nodes.
The goal is to find balanced positions without overlappings.

e Positioning of edges. Start and end points of edges are approximately
given by the node positions, because they must be adjacent to the borders
of the nodes. However, bend points must be calculated to avoid crossings
through nodes, or control points for certain edge styles (e.g. splines).

17

4.1.1 Phase 1: Partitioning into layers

For each node v, a rank R(v) has to be calculated, that specifies the number
of the layer that v belongs to. Layer 1 is the topmost layer. The span of an
edge is S(v,w) = R(w) — R(v). In a directed graph, it might be required that
most edges point downwards, i.e. that the spans are positive. However, it is
NP-complete to find the minimal number of edges that cannot point down-
wards in a graph which contains cycles [GaJo79]. There are many heuristics
for calculation of the rank (some more are described in [EaSu90]):

o If the graph is acyclic, sort it topologically and calculate
R(v) = max{R(w) | w € pred(v)} + 1

in topological order of the nodes. This results in a partitioning where all
edges will point downwards in time complexity O(|V| + |E]).

o If the graph is acyclic, solve the problem to minimize

D=3 (R(v) - R(w)~1)

(vw)eE

subject to (1) R(v) > 1 for each node v and (2) R(v) — R(w) > 1
for each edge (v,w). This can be done by standard linear programming
methods [GKN93]. Even an integer solution exists and can be obtained.
This results in a downward partitioning with minimal number of edge
spans, i.e. minimal number D of dummy nodes.

e Calculate R(v) by a depth first search or breath first search. This results
in an arbitrary partitioning in time complexity O(|V| + |E]).

e Calculate the minimum cost spanning tree [Me84] on the undirected
instance of the graph. This is useful if edges e have priorities p(e). We
use the cost 1/p(e). The result is a partitioning where edges of high
priority gave small spans. The layout will be wide but not deep. The
time complexity is O(|E|log|V]).

o If the edge orientation is not important, apply a spring embedder as
described in the section before. It is sufficient to take only F,., and Fi;
into account. Instead of two-dimensional coordinates, calculate a one-
dimensional coordinate R(v). This results in a ranking where edges tend
to have the same absolute value of span.

As mentioned above, some heuristics can only cope with acyclic graphs.
Graphs with cycles have to be made acyclic first by (conceptually) reversing
some edges. A heuristic to find these edges works as follows: Calculate the
strongly connected components of the graph [Me84] in time O(|V| + |E]). In

18

each component C' that contains more than one node, reverse an edge. Now
try again to calculate the strongly connected components. Continue this loop,
until each component has only one element. At the end, the converted graph
will be acyclic. A good heuristic to find the edges to be reversed is to look
for edges (v, w) where outdeg(v) is minimal but indeg(v) and indeg(w) are
maximal.

This method can be implemented by recursion. In practice, it very often
finds the minimal number of edges that must be reversed, although it is only
a heuristic. However, it has the high time complexity O(r(|V| 4+ |E|)) where r
is the number of reversed edges.

Each ranking induces a hierarchy. In order to proceed, a proper hierar-
chy is needed, i.e. all edges must have span S(e) = 1. Thus, edges (v, w)
with S(v,w) < 0 are reversed, i.e. replaced by edges (w,v). Then edges with
S(v,w) =n > 1 are split into dummy nodes vy, ..., v,—1 with R(v;) = R(v)+1
and smaller edges (v,v1),..., (v, viq1)s ..., (Vy_1,w), and edges with S(v,w) =
0 are diverted in a similar way. Edge splittings and reversions are always done
only conceptually. The resulting edges are marked such that we can later draw
one arrowheads at the appropriate position.

4.1.2 Phase 2: Sorting of nodes

For each node v, a relative position P(v) within its layer has to be calculated,
such that there are only few edge crossings. Since the hierarchy is proper, the
number of crossings ¢ originated by the edges F; between two adjacent layers
Vi and V1 can be easily determined by a plane sweep algorithm [Sa94] in time
O(|Vi| + |Vig1| + |Ei| + ¢). However, the problem of finding permutations of
the sequences V; and V5 to get a minimal number of crossings is NP-complete
[GaJo83]. Methods to solve the crossing problem can be found in [STTS8I,
EaWo86, EaKe86, EaSu90, Sa94, JuMu96]. In practice, the most successful
algorithm is the layer-by-layer-sweep:

(1) while the crossing number is not satisfactory do

(2) for each layer V; from ¢+ =1 to n do

(3) for each v € V; do

(4) Calculate weight W,(v);

(5) od

(6) Sort the nodes of V; according to the weight W,(v);
(7) od

(8) for each V; from ¢ =n to 1 do ... similar with Wi(v) od
(9) od

The first traversal (line (2)-(7)) is a top down traversal, the second (line (8))
is a bottom up traversal. Other variations of this method sweep only top down

19

or only bottom up, or from the center outwards. [Sa94] describes a variation
with limited backtracking: if a sweep did not reduce the number of crossings,
the old configuration is taken. The crucial point is the selection of the weights
W, and W;. [STT81] proposes the barycenter weight (P(w) is the relative
position of the node w in the predecessor or successor layer, respectively):

1
w® () = EECTEY Flw
> (v) indeg(v) wep%e:d(v) "
1
(b) = A F
W (v) outdeg(v) wes%::C(U) "

[EaWo86, GKN93] propose the median of the sequence wy, ..., Windeg(v) Of
predecessors of a node v:

. 1
WZS)(v) = §(P(wLind2g v J‘|‘1) ‘I’ P(wl—indzg v -|))
We also made experiments with combinations of both, using

WM () = M W (v) + A WM(0)

A method of calculating the optimal permutation of two layers where one
layer is fixed was proposed in [JuMu96]. Assume that the permutation of V] is
fixed, and a permutation of V; should be calculated. Let ¢;; denote the number
of crossings among edges adjacent to v;,v; € V5 in a permutation of V; where
P(v;) < P(v;). Let 2;; = 1 if P(v;) < P(v;), and x;; = 0 otherwise. Then the

number of crossings of a permutation of V, can be described as

[Va|—1 |V2]
C= >, > (egui+cill —2ji))
=1 j=i+1

The optimal permutation of V3 can be found by calculating x;; € {0,1} such
that C'is minimal,subject to (1) 0 < aj;4a—ay < 1for 1l <i<j <k < |V,
and (2) 0 < @y < 1for 1 < ¢ < 5 < |Va|. The "3-cycle constraints” (1)
guarantee that the result describes a valid permutation. This linear integer
programming problem can be solved by a variation of the branch and cut
algorithm [JuMu96]. This method is suitable up to |V3| < 60, but it is much
too slow for larger graphs.

Statistical experiments [JuMu96, Sa96b] show that apart from the optimal
method for two layers where one is fixed, the best heuristic is W with Ay >
Az, followed by W®) and at last by W™, These methods are also closer to
the optimum and faster than various greedy or stochastic methods described
in [EaKe86, JuMu96]. However, this experimental result does not hold if there
are more than two layers, and a layer-by-layer-sweep is used. Firstly, a sweep
with the two-layer-optimal algorithm does not calculate the optimal crossing

20

number of the whole multi-layer-graph since a nonoptimal permutation of some
adjacent layers might produce less crossings than a situation where the first
layer is optimal, but the other layers are only optimal derived from the first
layer. Secondly, it is not obvious which of W® W) and W® produces the
fewest crossings in a multi-layer-graph: there are many examples where any of
the three is the best.

4.1.3 Phase 3: Positioning of nodes

For each node v, absolute coordinates X (v) and Y (v) must be calculated such
that (1) R(v) < R(w) implies Y(v) < Y(w) and (2) P(v) < P(w) implies
X(v) < X(w). Nodes should not overlap. The layout should be balanced.

Again, we use a layer-by-layer-sweep that is motivated by physical models.
As we have seen in section 3, physical simulations often result in very balanced
positionings. We start with an arbitrary layout that satisfies conditions (1) and
(2). The goal is to minimize

Z=3_ 1 > (X(w)—X()

VeV (vw)EE
(ww)eE
subject to condition (2) and to the condition that nodes must not overlap.
Again, this could be solved by standard linear programming methods.
However, a heuristics that is much faster in practice is the rubber band
network simulation: the edges pull the nodes like rubber bands. The nodes
move horizontally according to the sum of the forces. We define the force

1
Frop(v) = m (U%:GE(X(U)) — X(v))
(wv)eE

If Fup(v) < 0, we move the node v to the left by the amount min{|F,.;(v)|, X(v)
—X(u;) — d(uy,v)}, otherwise, we move the node to the right by the amount
min{ | Fu(v)|, X(u,) — X(v) — d(v,u,)}. Here u; and w, denote the left and
right neighbor of v in its layer, and d(u,v) is the minimal distance required
between nodes u and v. It is easy to see that Z is decreased by these moves.

If the distance between two neighbored nodes of the same layer is minimal,
we call the nodes touching. Touching nodes influence each other: if the left is
drawn to the right and the right node is drawn to the left, none of both nodes
can move. In order to get balance in this case, too, we use regions of nodes:
touching nodes vy,...v, belong to the same region iff P(vy) < --- < P(vy,)
and Frup(v1) > -+ > Fop(v,). The force at a region is

1 n
Fmb({vl, . ,vn}) = g Z Frub(vi)
=1

We move all nodes of the region by min{|F,;({v1,...,v,})|, available space}.
By these moves, 7 decreases further.

21

(1) while Z is not satisfactory small do

(2) for each layer V; from =1 to n do

(3) Calculate all regions of V;;

(4) Move all nodes according to F,., of their regions;
(5) od

(6) od

In the rubber band method, both predecessors and successors influence the
position of a node at the same time. As a variation of this method, we can
do downward and upward traversals of the layers where only the predecessor
or only the successor positions are inspected. This model is more similar to
a physical pendulum system. The nodes are like balls, the edges like strings.
The uppermost balls are fixed at the ceiling. Then the pendulum system swings
until the deflections are balanced. We define the predecessor force for downward
traversals

1

m(Y (X(w) - X(v))

w)EE

Fpendulate_down(v) =

and the successor force for upward traversals

LS (X(w) - X))

F endulate_u ~ outdeg(v)
pendulat p(v) outdeg(v) (vyw)eE

The construction of regions is the same as in the rubber band method. Al-
though experiments show that this pendulum method decreases Z usually
much faster than the rubber band method, Z does not decrease in each step.
Thus, in practice, we combine both methods [Sa94].

[Sa96a] presents a variation of the pendulum method that enforces long
edges (sequences of edges in the proper hierarchy) to be strictly vertical. Sev-
eral other variants of layer-by-layer-sweep to position the nodes of a layer are

described in [STT81, EaSu90] and [GKN93].

Figure 16: Vertical Positioning at the Levels

22

Y (v) is calculated such that all nodes of the same layer are centered along
a horizontal line (Fig. 16). There are two strategies to assign Y (v):

o The vertical distance between layers is a constant ¢: the layer V; gets the
reference line at Y(V;) = ¢ ¢.

e The vertical distance between two layers depends on the number of over-
lappings of the projection of the edges to the horizontal. Two different
edges (v1,w1) and (vq,wy) overlap horizontally at one point between
X(vy) and X(wy), iff X(v1) < X(v2) < X(wq) or X(v1) < X(wy) <
X (wy). The maximal number of overlappings L; between two layers
V; and V41 at any point can be calculated by a plane sweep in time
O(Vi| + |Vig1| + |Ei| + Li) [Sa96b]. We calculate the reference lines top
down: Y (Vi) =6 and Y(V;) =Y (Vi1) + 6 Li_1.

The advantage of variable vertical distance between layers is that the angle
of edges does not get too small. In particular, inhomogeneous dense graphs are
more readable in this way (Fig. 17).

variable layer distance

Figure 17: Layer Distance Strategies

23

centered edges evenly distributed ports port sharing

Figure 18: Edge Port Distribution

4.1.4 Phase 4: Positioning of edges

Start and end points of edges must be adjacent to the border of the corre-
sponding nodes. These points at the border are called edge ports. There are
several strategies to calculate edge ports:

e All edges point to the center of the node (Fig. 18, left). This is very easy
to implement. Disadvantage: the ports may be so close together that
arrowheads get lumpy and are not well readable.

e Fach edge has its own edge port at the node (Fig. 18, middle). The
ports are evenly distributed at the border. Such a distribution avoids
concentrations of ports, if there are only few edges.

o Edges with the same orientation or style of arrowhead may share the
same edge port (Fig. 18, right). The ports are evenly distributed at the
border. This is even feasible if there are many edges, because edges share
the arrowheads, too.

In the proper hierarchy, long edges are split into small edge segments and
dummy nodes. This ensures that edges rarely cross nodes, because the dummy
nodes don’t overlap other nodes. Two situations may occur:

Due to the node positioning algorithm, the edge segments at a dummy
node have (nearly) the same gradient. In this case, the dummy node can be
removed and the edge can be replaced by a long segment that across several
levels.

On the other hand, it may happen that a short edge segment still crosses a
node. Then additional bend points are needed. This is the case if edges start at
small nodes which are close to large nodes (Fig 19, left). It is obvious that for
an edge (v, w) between adjacent layers, at most two additional bend points are
needed (Fig 19, middle). As a variant, we can calculate for each angular edge
two additional bend points such that the edge segments are oriented strictly
horizontally or vertically. Then we get an orthogonal layout (Fig 19, right).

24

without bendings with bendings orthogonal edges
Figure 19: Bending of Edges

It is important that horizontal and vertical edges should not share segments,
because otherwise the flow of the edges is not well visible. [Sa96a] presents a
plane sweep method for the calculation of the additional bend points in time
O(Vi| + |Vig1] + | Fi| + k) where k is the number of rows of horizontal edge
segments between layer ¢ and layer ¢ 4 1.

The final result is a routing of edges such that edges never cross nodes.
The drawing of an edge is a polygon. [Sa94] and [GKN93] present methods to
convert this polygon into a sequence of splines with smooth transitions instead
of bend points. Fig. 20 shows a PERT chart with spline edges.

Figure 20: Spline Layout of PERT Chart

25

A

& @

Combined nodein phase 1 and 2 Final Drawing with two neighbored nodes

Figure 21: Neighbored Nodes

4.2 Application in Compiler Construction

The layer approach is mainly used to visualize the directed and the dense graphs
that occur in compilers. The reason is the capability of the method to enforce
uniform edge orientations and to avoid node overlappings. A compiler first
parses the input program and checks the semantical rules of the programming
language in a frontend. Usually, the intermediate program representation of
the compiler frontend is a syntax tree annotated with attributes from the
semantical analysis (e.g. types). Layout in layers produces good results for
trees, where many simplifications of the algorithm can be done, e.g. partioning
and crossing reduction for trees can be done simultaneously by only one depth
first search traversal. The technical problem that annotations should occur as
neighbors of the syntax nodes at the same level can be solved by combining
neighbored nodes in phase 1 and 2 conceptually into one large node (Fig. 21).
Fig. 22 shows a syntax tree annotated with two kinds of attributes: types and

Overview

Figure 22: Annotated Syntax Tree

26

LT

Overview Detail

Figure 23: Data Structure Graph (858 Nodes, 1109 Edges)

defined and used resources.

Typical compiler optimizations of the middle end use data flow analysis and
work on procedure call graphs, annotated control flow graphs, or basic block
graphs. The edges represent abstractions of the program flow. Together with
various annotations such as data dependence edges, these graphs might become
quite dense and complex. Control flow graphs are usually drawn with orthog-
onal edges (Fig. 14, left, Fig. 29). This convention comes from the flowchart
diagram style of Nassi-Shneiderman.

Data structure graphs show the details of the data structs used in the
compiler. The nodes represent the structs containing several fields, and the
edges visualize the pointers to the structs. Because pointers are related to
certain fields, anchor point facilities are important, i.e. methods to specify
the position of an edge port at a node. Because data structure graphs visualize
many details, they are usually very large. Fig. 23 shows an example in overview
and details.

4.3 Related Approaches

Woods presents an algorithm to draw planar graphs. This method has simil-
iarities to layout in layers [Wo81]. Ranks R(v) and relative positions P(v) are
calculated in one step such that the embedding has no edge crossings. This
step is based on st-numbering, which is a very special way to number nodes
of a graph. After this step, the normal positioning of nodes and edges can be
applied as described in section 4.1.3 and 4.1.4. This way of rank calculation is
applied preferably for undirected graphs, because it does not take edge orien-
tation into account. The problem to find an embedding of a directed planar

27

graph where all edges point into the same direction is N'P-complete [GaTa94].

If the graph is not planar but not dense, planarization techniques can be
used [BNT86, PSTI1]. In a first step, a large planar subgraph is calculated.
The remaining edges are routed separately, such that only few edge crossings
occur. There are efficient algorithms to calculate orthogonal layouts of fixed
embedding settings of planar graphs on a grid [Ta87, TaTo89, FoKa96]. The
main problem to find a maximal planar subgraph of a nonplanar graph, how-
ever, is N'P-hard [Jo82], such that heuristics must be used.

B -
’ T I T
I SR 1 s i

i L LB
8 A S A
= T
IR | S | =)
T - I — M A |
1| i Lo LB LBIH) WA H
iR | T | \"‘ ‘ |
(. f T AR I . HEE
I O — A L]
—1 |

Example of a useless situation: flat graph with 1371 nodes, 3815 edges. The graph
is rather dense, thus the layout is so narrow that only little is recognizable, unfor-
tunately (Layout time: 18 sec. real time, Sparc 20).

Figure 24: Big, Flat Graph Without Structure

5 Grouping and Folding

Even if the layout algorithms are rather fast, there is a limit for the usability of
flat graphs. If the size of a graph exceeds this limit, the layout algorithm takes
a lot of time but the resulting picture of the graph is still unstructured with
tangled edges (e.g. Fig. 24). Facilities are needed to stamp structures on the
graph, to make them visible, to extract important parts or hide unimportant
parts of the structures.

An example shows the main idea: A large program consists of many pro-
cedures with many statements. If we would visualize the control flow graph of
all these statements at once, then we would see nothing but a black hole. But
conceptually, the net of procedures is nested. All procedures are partitioned
into the source files of the large program to be visualized. This fact can be
exploited for visualization. At the first level, we show just the files as nodes
(Fig. 25a). If a procedure of one file is used in another file, we draw an edge
between those files. Multiple edges between the same nodes can be summa-
rized to one thick edge, to improve the readability. To inspect the procedures

28

() (d) (e) (f) (8)

(a) file dependence graph: nodes represent the source files of the program (b) file

dependence graph: one file is opened (c) procedure call graph of this file: nodes
represent procedures (d) procedure call graph: one procedure is opened (e) basic
block graph of this procedure: nodes are basic blocks (f) basic block graph: one
block is opened (g) statement list of this block

Figure 25: Zooming into a Program Graph

of some file, we zoom into this file (Fig. 25b), i.e. we unfold the corresponding
node. Then, we see the call graph of the procedures of this file. The nodes
are the procedures and there is an edge from procedure A to B, iff A calls B
(Fig. 25¢). Next, we unfold one procedure (Fig. 25d) and see the basic block
graph that shows the structure of the control flow of this procedure (Fig. 25e).
To inspect statements of this graph, we select a basic block (Fig. 25f) and show
its statement list exclusively (Fig. 25g). As we unfolded the graph, we can also
fold the nodes in the inverse order.

It is also useful to see all statements at the same time. But then, it must be
clearly which statement belongs to which procedure. We don’t want to trust
that the layout algorithm will place the nodes of the same procedure close

29

[oven (20

Wrapped nodes Clustered nodes

Figure 26: Interprocedural Control Flow Graph of 3 Procedures

together by accident. A very simple method is to mark nodes by a unique
colored wrapper (Fig. 26, left). Nodes that belong to the same procedure have
the same color. Another possibility is to cluster the nodes, i.e. to calculate
a layout such that the related nodes are so close together that a surrounding
frame can be drawn (Fig. 26, right). In this case, the picture of a graph contains
nested frames.

5.1 Compound Graphs and Dynamic Grouping

In all these cases, we don’t deal any more with flat graphs G = (V, E), but
with compound graphs. A compound graph consists of a set V' of primitive
nodes, a set F' of frames, a nesting relation I C (V U F') x (V U F) (inclusion
relation) and a set of primitive edges £ C (V U F) x (V U F'). Since no frame
can be nested into a primitive node or into itself, the nesting relation can be
seen as a tree T'= (V U F,I) with f € F' as inner nodes and v € V as leaves.

If the structure of the graph is static (as in applications such as Fig. 25
and 26) the nesting is defined in the graph specification. It is also useful to
group nodes dynamically by user operations. For instance, during the analysis
of large syntax trees, it is convenient to fold interactively parts of the tree that
are currently not in the focus of interest (Fig. 28). Another example is to ap-
proximate paths of the control flow graph if only the reachability of statements
but not the exact path between statements must be inspected (Fig. 29, middle
and right). There are several possibilities for grouping selections:

e Manual selection: point at individual nodes with the mouse, or drag a
rectangle which contains all nodes to be selected, etc. If the group of

30

Graph L
® OO S T

Graph 112
o Graph 1.1.1
Edges F Graph L2

Graph 1.2

|

6 b0 bo

Nesting Relation Tree T’ Picture of the Compound Graph

Figure 27: Compound Graph
nodes is very large and accidentally not placed closely together, manual
selection is awkward and involved.

o Algorithmic selection: an algorithm to traverse the graph is used to col-
lect the selected nodes. The user has only to select the kind of traversal.

Complete Syntax Tree With Folded Subtree

Figure 28: Folding of Syntax Tree

31

Henry [He92] describes a system with a generic interface for selection of
groups of nodes, and shows applications of algorithmic selections by reacha-
bility or shortest path algorithms. In compiler construction, the graphs are
usually partitioned such that there are different classes of edges. For instance,
the program graph of Fig. 25 is an interwoven compound graph consisting of
edges of the classes file dependencies, procedure calls, and control flow. By
including edge classes in the graph specification, it is possible to make detailed
algorithmic selections. Examples:

o the path region of a set S of start nodes, a set T' of end nodes and a class
(' is the set of nodes reachable from a start node v € S by a path of
edges of class C' which does not contain an end node w € T'. Folding parts
of a control flow graph (Fig. 29, middle and right) is done by selecting
the path region between two delimiting nodes, and collapsing it into one
node.

o the neighbor region of S and C with radius n is the set of nodes reachable
from a start node v € S by a path of edges of class €' with the maximum
length n. Folding a subtree (Fig. 28) is done by selecting the neighbor
region of the subtree root node with radius co, and collapsing it into one

with Annotations Annotations hidden Compressed Path

Figure 29: Path Compression and Annotation Hiding in Control Flow Graph

32

Many compiler graphs have annotations, e.g. syntax trees with type at-
tributes, control flow graphs with data flow information etc. In these cases, we
have a main graph (tree, control flow graph) and smaller annotations (type
trees, data flow lists) at each node of the main graph. To hide or expose all an-
notations at once, we select a node class. With hidden nodes, also all adjacent
edges disappear (Fig. 29, left and middle).

5.2 Layout of Compound Graphs

There are several common layout methods for compound graphs. The recursive

method is mostly used [PaTi90, No93, He92, MMPH96, Sa96b]:

(1) traversing the nesting tree T in postorder, for each f € F do
(2) layout graph consisting of the children of f in T

(3) compute bounding box of f

(4) od

(5) layout unnested nodes

The layout of each frame f is calculated independently. For the layout of
the surrounding frame, f is considered as a large node. The advantages: (1) It
is very simple to implement. (2) Each frame can use a specific layout algorithm.
(3) If there is a change in frame f, it is not necessary to recalculate a complete
layout. Only the frames on the path in T" from the root to f are recalculated.
The disadvantage: edges between nodes of different frames are not positioned
properly, since the position of a node is calculated only with respect to the
frame it belongs to.

The nondividing method [SuMi91, Sa96b| is more complex: It applies a
layout method at once to all frames, and thus it is able to deal properly with
edges crossing frames. It is a variant of the hierarchical layout algorithm by

Sugiyama e.a. [STT81, EaSu90]:

1. Calculate a flat representation R of the compound graph. The flat repre-
sentation is used to calculate the levels of the nodes such that most edges
point downwards. It contains representatives of all nodes V' and frames
F. A frame f € R represents the upper border of the frame [SuMi9l];
we can also add a second instance f’ of f to R that represents the lower
border [Sa96b]. A node v of a frame f must be positioned in between the
borders f and f’, which is represented by edges f — v — f’. A primitive
edge e has an instance in R as it requires different levels of source and
target nodes.

2. Calculate levels for the nodes and frame borders by sorting R topologi-
cally. If R is cyclic, some primitive edges are removed until R is acyclic.
This is very similar to the partitioning phase of the normal hierarchical
layout algorithm.

33

3. Normalize the representation. Edges crossing several levels are split into
short edges and dummy nodes. For the dummy nodes, it must be decided
which frame they belong to. Thus, [SuMi91] propose a proper compound
digraph representation where nested frames are used instead of dummy
nodes. [Sa96b] uses a simple heuristics by inspecting the frames of the
start and end node of the edge.

4. At each level, permute the nodes in order to reduce edge crossings. This
gives the relative position of the node. It is important that (a) all nodes
belonging to a frame are in a consecutive sequence in the permutation,
(b) the frames are not intertwined, i.e. the relative order of the frames is
the same on all levels they occur. The crossing reduction is a recursive
variant of the barycenter method.

5. Finally, calculate absolute positions of nodes and frames. Nodes of the
same frame should be placed close together with a distance to the nodes
of the other frames, such that a surrounding rectangle can be drawn.
[Sa96b] uses a variant of the pendulum method in this step.

The advantage of this method: the layout shows the compound graph prop-
erly without overlappings. If there are edges from the outside of a frame to
an inner node, then the placement of the node is not only influenced by the
situation in the frame, but also by the global situation. The disadvantages:
(1) It is relatively slow compared to the recursive divide-and-conquer method.
(2) Every local change causes a global relayout. (3) Frames are not indepen-
dent, thus all frames must be treated with the same layout parameters.

5.3 Graph Grammars

Grouping methods are closely related to graph grammars. While interactive
grouping allows the selection of arbitrary sets of nodes, graph grammars are
a mechanism for rule based selection of groups. Similar to context free string
grammars, graph grammars consist of production rules that describe how a
nonterminal node of a graph can be replaced. Fig. 30 shows an example gram-
mar and a graph derivation. The application of a production rule is very similar
to the unfolding of a collapsed graph.

It is possible to use the derivation of a graph to control the layout process.
In this case, productions are annotated with layout rules. This is called a
layout graph grammar [Br95]. For instance, in Fig. 30, there may be a layout
rule that the subtree generated from terminal A must always be to the left
of the subtree of B, while a general tree layout algorithm may permute the
order of the subtrees in order to improve the balance of the tree. Layout graph
grammars have been used in several systems [Hi95, BBH94, MSG95, ShMC96].

Since most compiler graphs are structured according to certain rules, layout
graph grammars are quite appropriate. This gives syntax trees and control

34

2] [e]

0
(5] > @ (8] =
‘ i

Productions

Al = @ Al =

Example Derivation

Figure 30: Graph Grammar of Binary Trees

flow graphs a uniform appearance that is easy to recognize. However, since the
layout rules are local to a production, a layout method only based on graph
grammars does not take the global structure of the graph into account. The
results are rarely optimal wrt. used space, edge crossings, etc [Br95].

6 Browsing

A good graph layout tool does not only provide many fast layout algorithms,
it also includes powertul interactive operations to browse the resulting picture.
Usually, the layout is shown in a window on the screen. If the graph is very
large and does not fit in the window, either only a part is visible or the picture
must be shrunk. If the visible part is very small, the user often looses the
orientation during the navigation through the graph. If the graph is scaled too
much, details, e.g. labels of nodes, are not readable anymore.

6.1 Linear Views

In a linear view, the picture is uniformly scaled. The relation between picture
and original layout is linear. There are several possibilities to solve the conflict
between detailed and full view:

o Overview while details can be selected: The main window shows the
shrunk layout. Labels of nodes or edges can be made visible by selecting
them. Then, boxes appear with the labels in normal size. However, these
boxes overlap and hide parts of the picture (Fig. 31, left).

35

=
B lect mert wowks o oged Dedfoormes e
Al gt mouss orrow te camesl

Selection of Details Multiple Windows for Overview
Figure 31: Browsing Methods

o Detailed view with panner: The main window shows a part of the layout
in normal magnification. A second window (panner) shows an overview.
Positioning of the visible part of the main window can be done by select-
ing rectangles in the overview window (Fig. 31, right).

6.2 Fisheye Views

Fisheye views show the point of interest in detail and the overview of the
graph in the same window. This is done by distorting the picture. The picture
is scaled nonuniformly. Objects far away from the focus point are shrunk while
objects near the focus point are magnified. The degree of visual distortion
depends on the distance from the focus point. The visual effect is very similar
to the fisheye lenses in photography (Fig. 32, right).

Fisheye views were inspected by [Fu86, SaBr94, No93, KRB95, MiSu9l,
FoKe96, StMu96, CCFS96]. They can be divided into graphical fisheye views,
where the distance from the focus point is a function of the coordinates (e.g.
the Euclidean distance), and logical fisheye views, where the distance is any
logical function wrt. the graph (e.g. the length of the shortest path between
focus point and node). A fisheye view might be distorting, i.e. objects far away
from the focus are shrunk, and filtering, i.e. unimportant objects far away from
the focus point are hidden. Further, a fisheye view is layout independent [No93],
if first the demagnification or filtering is calculated and then the layout is done.
Otherwise, it is layout dependent. Layout independent fisheye views have the
advantage that the layout can be calculated using the knowledge which nodes
are shrunk or filtered. This resembles the folding mechanism in that it saves
space in the layout. Graphical fisheye views must be layout dependent, because
in order to calculate the distance by coordinates, the layout must be known.

36

6.2.1 Distorting Fisheye Views

Graphical fisheye views are based on a bijective transformation function h
that describes the mapping of the distances from the focus f; in the layout
into distances from the focus f, in the picture. General rules are:

e 1(0) = 0: The focus point in the layout is mapped to the focus point of
the picture.

e i must be strictly increasing: Points cannot overtake during the trans-
formation, i.e. points in the layout being closer to f; must be mapped to
points being closer to f, as well.

e /1 must be bijective. Fisheye views must not only be drawn, but also react
on mouse picks. Thus the inverse function must exist.

If A(z) > « for all points & > 0, then the focus point is magnified, if
h(x) < @ the focus point is demagnified. The magnification at distance from

9k (). Transformation functions commonly used for

the focus point is just 3

fisheye views are

Kz
Az +1
h(z) = K sin(Az) with z €0, %]
h(x) = K arctan(Ax)

Linear View Fisheye View

Figure 32: Different Views

37

Kyl
i
0
(i
Qﬁﬁ

y
a{?;

llllll
aaaaaaa

]
=

.........
]y
IEEEECEE RS
oo

deh94444845545

ol o o o

ddfhadydddbadss s
Wl iy ““*‘m
===

|
E

5,
K

aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaa

Cartesian Fisheye
View

Figure 33: Graph with Different Views

Linear View Polar Fisheye View

K and A allow to select the magnification at focus point, and the radius
of interest. The Cartesian fisheye view applies & independently to the x and
y directions: (z,y) — (h(x), h(y)). Polar fisheye views are based on the polar
coordinates. h is applied to the distance, and the angle of the ray though the
origin remains: (d, ¢) — (h(d), ¢). Cartesian views are invariant with respect to
horizontal and vertical lines, thus they are appropriate for orthogonal drawing.
Polar views however are more closer to the fisheye lenses of the photography.

The idea of a fisheye is to make the area near the focus point well visible.
A distortion near the focus point is often unwelcome. Thus, it is better to use
focus areas instead of focus points. Inside the focus area, there is a linear mag-
nification without distortion. The simplest way is to define a transformation
in two parts, e.g.:

Kz for z <ugq Here is a linear scaling.

h(l’) - K(z—qa;)

yTErnrsy +a, for x>aq Here is a distortion.

a; 1s the radius of the focus area in the layout, and a, = K¢, is the radius of
the focus area in the picture. With this simple method, we get a focus square
for Cartesian fisheye views and a focus circle for polar fisheye views. Recently,
fisheye views with arbitrary focus polygons were developed [FoKe96]. These
methods are more complex and require the calculation of Voronoi diagrams.
Another extension is the usage of multiple fisheye points [KRB95, MiSu91].
These are implemented by converting each display point of the graph once for
every focus point and then taking the mathematical average of the transformed
points as the picture location. Due to the special construction, superposition
of two Cartesian views introduces two focus points but also two mirror focus
points (Fig. 34). The mirror focus points are located an the further corners
of the rectangle whose diagonal is given by the normal focus points. So there

38

* =
¥

iR i Gl G e s
S e M R e S Y
WaSabateatatady
S i ofe o

|

-

L i
TR AT
on Ehg
e e -\;;';:- i II

i

(L I.'-

Cartesian fisheye view

Polar fisheye view

Figure 34: Fisheye Views with Two Focus Points

are four points where the magnification is maximal. This effect does not occur

with polar fisheyes.

6.2.2 Filtering Fisheye Views

Filtering fisheyes [SaBr94, Sa96b] show many details at the focus point, but
they filter graphical objects that are far from the focus point. This improves
the visibility of the main structure, which would probably go lumpy with all the
shrunk, unimportant details far from the focus point. Thus, objects are filtered
according to their visual worth. The visual worth depends on the distance to
the focus point and on an a priori importance (api) of the nodes and edges of a
graph, which is given in the graph specification. For instance, in an attributed
syntax tree, the main structure is the tree, thus it has an larger api than the
attributes. The user can select the threshold level of detail (lod) to influence

B Sy
- = . S
P "'-'.El'_"!!ﬂ-c- : s o,
Lis o = o iTe-cae -
I=I‘--l--. L - — _—-ﬁ-;_ﬂ
o '
e
"ii:“"'—_:“:—ﬁ
——

no filtering, lod = 0

il |
i

[r——)
—

with filtering, lod = 130

Figure 35: Polar Filtering Fisheye View of Attributed Syntax Tree

39

the amount of visible objects. An object is visible if h(x,api) > lod, where
is the distance to the focus point and h is the function calculating the visual
worth. Properties of h:

o h(x,api) < h(a,api) if @ > 2’. The function & is monotonic decreasing
wrt. distances. Objects far from the focus point are less interesting, since
the focus point is the point of interest.

o h(x,api) < h(z,api’)if api < api’. The function £ is monotonic increasing
wrt. api. Objects with small api are less important and can be preferred
for filtering.

A function commonly used for filtering fisheyes (S(x) is the transformed size
of a node in distance « in the picture, the parameters ¢, d, e > 0):

h(z,api) = cS(x)api?+ e

6.2.3 Logical Fisheye Views

On logical fisheye views, the distance is not calculated wrt. coordinates but
with respect to the structure of the graph. Distorting and filtering views are
possible. The typical distance is the length of the shortest path from the fo-
cus node [Fu86]. For compound subgraphs, a combined method must be used
taking into account the primitive edges and the nesting structure [No93]. The
reason: a node should not be larger (or filtered later) than the frame it belongs
to. Logical fisheye views have two advantages:

o They reflect the structure of the graph, because a logical fisheye view
does not depend on the node positions. A graphical fisheye might filter
a node that is closely related to the focus node by the fact that it is
accidentally placed far away from the focus point.

e They allow to calculate the layout after the fisheye effect. Layout calcu-
lation becomes the faster the more nodes are filtered away. Furthermore,
the space occupation might be better it the layout is calculated after-
wards.

As disadvantage, logical fisheye views don’t have similarities with optical physics.
Human beings are not used to deal with such effects. For instance, moving the
focus point of a logical fisheye view might change the graph so much that the
layout afterwards cannot be compared with the layout before.

40

6.2.4 3-D approaches

We described fisheye views as two dimensional transformation. However, the
fisheye picture of a graph especially with graphical polar view looks like a
projection of the 2 D drawing space into 3 D (e.g., a sphere). The focus point
seems to be near to the viewer of the picture, thus it is enlarged. There are
true three dimensional approaches [CCFS96, MRC91]: Instead of a distortion
function, a mapping into 3 D (e.g., onto a surface) is provided with a viewpoint
of a synthetic camera. The use of an underlying grid and shading technics
improves the 3 D effect. On the other hand, the exploration of the graph
might be slightly more complex since the user has to navigate through 3 D
and control the surface at the same time.

7 Conclusion

We have described methods for interactive graph visualization in the appli-
cation domain compiler construction. Most heuristics which we presented are
implemented in the VCG tool [Sa94] and are successfully used as debugging
aid in a commercial compiler project [AAS94] and in teaching at the university.
Since the VCG tool is publicly available, we know also about applications of
the tool ranging from the generation of genealogical trees up to circuit design
and debugging tools. The tool seems to fit to many more application areas.
Some similar visualization tools exist [Hi95, FrWe93, GKN93, Sc95] that focus
on different areas.

How usetul is a visualization tool, in compiler construction or in general?
We believe that the success of such a tool does not only depend on the qual-
ity of the graph layout algorithm, but also very much on the facilities of the
user interface. Powerful browsing methods simplify the interactive graph ex-
ploration and are absolutely necessary for the acceptance of visualization. The
implementation of a comfortable user interface means a considerable amount
of work, and unfortunately, this is often neglected. Another important factor
for the usability of an interactive tool is its speed. This, however, is a never
ending story: as visualization tools become faster the graphs get larger that
are dealt with.

There are many empirical studies about the usefulness of program visu-
alization (for an overview, see [Hy93]). These take into account psychologi-
cal effects, such as time pressure during debugging, education and familiarity
of the subjects of the tests with visualization techniques. The results vary a
lot. Although most experiments found graphical representations better, others
made just the contradictory observation [GPB91]. The usability of graphical
representations of data and programs can not be assured in the general case. It
depends on the knowledge and expectations of the users (in many experiments,
the subjects are students), on the aim of the visualization, on the visualiza-

41

tion method (static visualization or animation), and on the capabilities of the
visualization tool.

We think that in the research community of compiler construction, visual-
ization of compiler data structures is widely accepted. This may be influenced
by the fact that advanced compiler construction is usually taught by using
graph theoretical terminology: data structures in compilers are graphs. Thus,
the compiler construction community is familiar with graphs. Our experience
is that visualization allows better understanding of the behavior of compilers,
if suitable layout strategies and powerful browsing methods are used.

8 Acknowledgments

We like to thank P. Bouillon, R. Heckmann and R. Wilhelm for their comments
on the presentation of this survey.

References

[AAS94] Alt, M.; ABmann, U.; Someren, H.: Compiler Phase Embedding
with the CoSy Compiler Model, in Fritzson, P.A., ed.: Compiler
Construction, Proc. 5th International Conference CC’94, Lecture
Notes in Computer Science 786, pp. 278-293, Springer, 1994

[A1Go89] Almasi, G.S.; Gottlieb, A.: Highly Parallel Computing, The Ben-
jamin/Cummings Publishing Company, Inc., 1989

[BBH94] Bachl, W.; Brandenburg F.J.; Hickl T.: Hierarchical Graph De-
sign Using HiGraD, Technical Report MIP 9405, Fakultat Math-

ematik und Informatik, University of Passau, Germany, 1994.

[BHR96] Brandenburg, F.J.; Himsolt, M.; Rohrer, C.: An Experimental
Comparison of Force-Directed and Randomized Graph Drawing

Algorithms, in [Br96], pp. 76-87, 1996

[BNT86] Batini, C.; Nardelli, E.; Tamassia, R.: A Layout Algorithm for
Data Flow Diagrams, IEEE Trans. on Software Engineering, SE-
12(4), pp. 538-546, 1986,

[BoPr91] Boehm, W.; Prautzsch, H.: Numerical Methods, A.K. Peters,
Vieweg, 1991.

[Br93] Braunl, T.; Parallele Programmierung, Eine Finfihrung, Vieweg,
1993.
[Br95] Brandenburg, F.J.: Designing Graph Drawings by Layout Graph

Grammars, in [TaTo95], pp. 416-427, 1995.

42

[Br96]

[Ca80]

[CCFS96]

[DaHag9]

[Ea84]

[EaKe86]

[EaSu90]

[EaWo86]

[FLM95]

[FoKe96]

[FoKa96]

[FrRe91]

[FrWe93]

Brandenburg, F.J., ed.: Proc. Symposium on Graph Drawing,
GD’95, Lecture Notes in Computer Science 1027, Springer, 1996

Carpano, M.J.: Automatic Display of Hierarchized Graphs for
Computer Aided Decision Analysis, IEEE Trans. Sys., Man, and
Cybernetics, SMC 10(11), pp. 705-715, 1980.

Carpendale, M.S.T.; Cowperthwaite, D.J.; Fracchia, F.D.; Sher-
mer T.: Graph Folding: Extending Detail and Context Viewing

into a Tool for Subgraph Comparisons, in [Br96], pp. 127-139,
1996

Davidson, R.; Harel, D.: Drawing Graphs Nicely Using Simulated
Annealing, Technical Report CS589-13, Department of Applied
Mathematics and Computer Science, The Weizmann Institute of
Science, Rehovot, Israel, 1989

Eades, P.: A Heuristic for Graph Drawing, Congressus Numeran-
tium 41, pp. 149-160, 1984.

Eades, P.; Kelly, D.: Heuristics for Reducing Crossings in 2-
Layered Networks, Ars Combinatorica 21-A, pp. 89-98, 1986.

Eades, P.; Sugiyama, K.: How to Draw a Directed Graph, Journal
of Information Processing, 13 (4), pp. 424-437, 1990

Eades, P.; Wormald N.: The Median Heuristic for Drawing 2-
Layers Networks, Technical Report 69, Department of Computer
Science, University of Queensland, 1986

Frick, A.; Ludwig, A.; Mehldau, H.: A Fast Adaptive Layout Al-
gorithm for Undirected Graphs, in [TaTo95], pp. 388-403, 1995

Formella, A.; Keller, J.: Generalized Fisheye Views of Graphs, in
[Br96], pp. 242-253, 1996

Fofimeier, U.; Kaufmann, M.: Drawing High Degree Graphs with
Low Bend Numbers, in [Br96], pp. 254-266, 1996

Fruchterman, T.M.J.; Reingold, E.M.: Graph Drawing by Force-
Directed Placement, Software — Practice and Experience 21, pp.

1129-1164, 1991

Frohlich, M,; Werner, M.: Das interaktive Graph Visual-
isierungssytem daVinci V1.2, Technical Report (in German),

Fachbereich Mathematik und Informatik, University of Bremen,
Germany, 1993

43

[FuS6]

[GaJoT9]

[GaJo83]

[GaTa94]

[GKNO3]

[GPBI1]

[HaSa93]

[He92]

[Hi95]

[Hy93]

[Jo82]

[JuMu96]

Furnas, G.W.: Generalized Fisheye Views, Proc. ACM
SIGCHI'86, Conference on Human Factors in Computing Sys-
tems, pp. 16-23, 1986

Garey, M.R.; Johnson, D.S.: Computers and Intractability: A
Guide to the Theory of NP-completeness, Freeman & Co., San
Francisco, 1979

Garey, M.R.; Johnson, D.S.: Crossing Number is NP-complete,
SIAM Journal of Algebraic and Discrete Methods, 4(3), pp. 312-
316 1983

Garg, A.; Tamassia, R.: On the Computational Complexity of
Upward and Rectilinear Planarity Testing, Technical Report CS-
94-10, Department of Computer Science, Brown University, 1994

Gansner, E.R.; Koutsofios, E.; North, S.C.; Vo, K.-P.: A Tech-
nique for Drawing Directed Graphs, IEEE Trans. on Software
Engineering, 19(3), pp. 214-230, 1993

Green, T.R.; Petre, M.; Bellamy, R.K.E.: Comprehensibility of
Visual and Textual Programs: A Test of Superlativism Against
the Match-Mismatch Conjecture, Fourth Workshop on Empirical
Studies of Programmers, pp. 121-146, 1991

Harel, D.; Sardas, M.: Randomized Graph Drawing with Heavy-
Duty Preprocessing, Technical Report CS93-16, Department of
Applied Mathematics and Computer Science, The Weizmann In-
stitute of Science, Rehovot, Israel, 1993

Henry, T.R.: Interactive Graph Layout: The Exploration of Large
Graphs, Ph. D. Thesis, TR 92-03, Department of Computer Sci-
ence, The University of Arizona, 1992

Himsolt, M.: GraphEd — A Graphical Platform for the Implemen-
tation of Graph Algorithms, in [TaTo95], pp. 182-193, 1995.

Hyrskykari, A.: Development of Program Visualization Systems,
Report, Department of Computer Science, University of Tam-
pere, Finland, presented at the 2nd Czech British Symposium of
Visual Aspects of Man-Machine Systems, Praha, 1993

Johnson, D.: The NP-completeness column: An ongoing guide,

Journal on Algorithms, 3(1), pp. 215-218, 1982

Junger, M.; Mutzel, P.: Exact and Heuristic Algorithms for 2-
Layer Straightline Crossing Minimization, in [Br96], pp. 337-348,
1996

44

[KaKa89]

[KRBY5]

[Ma92]

[Me84]

[MiSu91]

[MMPHO96]

IMRC91]

[MSGO5]

[No93]

[Paso]

[PaTio0]

[PSTO1]

Kamada, T.; Kawai, S.: An Algorithm for Drawing General Undi-
rected Graphs, Information Processing Letters, 31, pp. 7-15, 1989.

Kaugars, K.; Reinfels, J.; Brazma A.: A Simple Algorithm for
Drawing Large Graphs on Small Screens, in [TaTo95], pp. 278-
281, 1995

Masui, T.: Graphic Object Layout with Interactive Genetic Al-
gorithms, Proc. IEEE Workshop on Visual Languages, pp. 74-80,
1992

Mehlhorn, K.: Data Structures and Algorithms, Vol. 2: Graph
Algorithms and NP-Completeness, Springer, 1984,

Misue, K.; Sugiyama K.: Multi-viewpoint Perspective Display
Methods: Formulation and Application to Compound Graphs,
Human Aspects in Computing, in Bullinger H.J., ed.: Proc. 4th
Intern. Conf. on Human-Computer Interaction pp. 834-838, El-
sevier, 1991

Madden, B.; Madden, P.; Powers, S5.; Himsolt, M.: Portable
Graph Layout and Editing, in [Br96], pp. 385-395, 1996

Mackinlay, J.D.; Robertson, G.G.; Card, A.K.: The Perspective
Wall: Detail and Context Smoothly Integrated, in Proc. ACM
SIGCHTI'91, Conference on Human Factors in Computing Sys-
tems, pp. 173-179, 1991

McCreary C.L.; Shieh F.S.; Gill H.: CG: A Graph Drawing Sys-
tem Using Graph Grammar Parsing, in [TaTo95], pp. 270-273,
1995.

Noik, E. G.: Layout-independent Fisheye Views of Nested
Graphs, Proc. IEEE Symposium on Visual Languages, pp. 336-
341, 1993

Pazel, D.: A Graphical Interface for Evaluating a Genetic Algo-
rithm for Graph Layout, Technical Report RC 14348, IBM T.J.
Watson Research Center, 1989

Paulisch, F. N.; Tichy, W.F.: EDGE: An Extendible Graph Edi-
tor, Software — Practice and Experience 20 (S1), pp. 63-88, 1990

Protsko, L.B.; Sorenson, P.G.; Tremblay, J.P.; Schaefer, D.A.:
Towards the Automatic Generation of Software Diagrams, IEEE
Trans. on Software Engeneering, 17(1), pp. 10-21, 1991,

45

[QuBr79]

[Sa94]

[Sa96a]

[Sa96b]

[SaBr94]

[Sc95]

[ShMC96]

[StMu96]

[STTS81]

[SuMi9l]

[SuMi94]

[SuMi95]

[Ta87]

Quinn Jr., N. R.; Breuer, M. A.: A Force Directed Component
Placement Procedure for Printed Circuit Boards, IEEE Trans. on
Circuits and Systems, CAS-26(6), pp. 377-388, 1979.

Sander, G.: Graph Layout through the VCG Tool, Technical Re-
port A03-94, FB 14 Informatik, University of Saarbriicken, Ger-
many, 1994, an extended abstract is in [TaTo95], pp. 194-205,
1995.

Sander, G.: A Fast Heuristic for Hierarchical Manhattan Layout,
in [Br96], pp. 447-458, 1996

Sander, G.: Visualisierungstechniken fiir den Compilerbau, Doc-
toral Thesis, to appear in German, FB 14 Informatik, University
of Saarbricken, Germany, 1996

Sarkar, M.; Brown, M. H.: Graphical Fisheye Views, Communi-
cations of the ACM, vol. 37, no. 12, pp. 73-84, 1994

Scott, A.: A Survey of Graph Drawing Systems, Technical Report
95-1 Department of Computer Science, University of Newcastle,

Australia, 1995

Shieh F.-S.; McCreary C.L.: Directed Graphs Drawing by Clan-
based Decomposition, in [Br96], pp. 472-482, 1996

Storey, M.D.; Miiller, H.A.: Graph Layout Adjustment Strategies,
in [Br96], pp. 487-499, 1996

Sugiyama, K.; Tagawa, S.; Toda, M.: Methods for Visual Under-
standing of Hierarchical Systems, IEEE Trans. Sys., Man, and
Cybernetics, SMC 11(2), pp. 109-125, 1981.

Sugiyama K.; Misue K.: Visualization of Structural Information:
Automatic Drawing of Compound Digraphs, IEEE Trans. Sys.,
Man, and Cybernetics, 21(4), pp. 876-892, 1991.

Sugiyama, K.; Misue, K.: Graph Drawing by Magnetic-Spring
Model, Research Report ISIS-RR-94-14E, Inst. Social Informa-
tion Science, Fujitsu Labs. Ltd., 1994

Sugiyama, K.; Misue, K.: A Simple and Unified Method for Draw-
ing Graphs: Magnetic-Spring Algorithm, in [TaTo95], pp. 364-
375, 1995

Tamassia, R.: On Embedding a Graph in the Grid with the Min-
imum Number of Bends, STAM Journal of Computing, 16(3), pp.
421-444, 1987.

46

[TaTo89]

[TaTo95]

[Tu94]

[WaT77]

[WiMa95]
[Wo8l]

Tamassia, R., Tollis, [.G.: Planar Grid Embedding in Linear
Time, IEEE Trans. on Circuits and Systems, 36(9), pp. 1230-
1234, 1989.

Tamassia, R.; Tollis, [.G., eds.: Graph Drawing, Proc. DIMACS
Intern. Workshop GD’94, Lecture Notes in Computer Science
894, Springer, 1995.

Tunkelang, D.: A Practical Approach to Drawing Undirected
Graphs, Technical Report CMU-C5-94-161, School of Computer
Science, Carnegie Mellon University, Pittsburgh, 1994

Warfield, J. N.: Crossing Theory and Hierarchy Mapping, IEEE
Trans. Sys., Man, and Cybernetics, SMC 7(7), pp. 505-523, 1977.

Wilhelm, R..; Maurer, D.: Compiler Design, Addison Wesley, 1995

Woods, D.R.: Drawing Planar Graphs, Technical Report STAN-
(CS-82-943, Computer Science Department, Stanford University,
1982

47

