
Graph Layout for Applications

in Compiler Construction

Technical Report A������

Georg Sander
�sander�cs�uni�sb�de�

Universit�at des Saarlandes�
FB �� Informatik�
����� Saarbr�ucken

February 	
� ����

Abstract� We address graph visualization from the viewpoint of com�

piler construction� Most data structures in compilers are large� dense

graphs such as annotated control �ow graph� syntax trees� dependency

graphs� Our main focus is the animation and interactive exploration

of these graphs� Fast layout heuristics and powerful browsing methods

are needed� We give a survey of layout heuristics for general directed

and undirected graphs and present the browsing facilities that help to

manage large structured graphs�

�



Contents

� Introduction �

� Notation �

� Force and Energy Controlled Placement 	
��� Spring Embedding � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Gravity � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Magnetic Fields � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Simulated Annealing � � � � � � � � � � � � � � � � � � � � � � � � �	
��� Temperature Schemes � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Applications in Compiler Construction � � � � � � � � � � � � � � ��
��
 Related Approaches � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Layout in Layers ��
��� Layout Phases � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Phase �� Partitioning into layers � � � � � � � � � � � � � � ��
����� Phase �� Sorting of nodes � � � � � � � � � � � � � � � � � ��
����� Phase �� Positioning of nodes � � � � � � � � � � � � � � � ��
����� Phase �� Positioning of edges � � � � � � � � � � � � � � � ��

��� Application in Compiler Construction � � � � � � � � � � � � � � � ��
��� Related Approaches � � � � � � � � � � � � � � � � � � � � � � � � � �


	 Grouping and Folding �

��� Compound Graphs and Dynamic Grouping � � � � � � � � � � � � �	
��� Layout of Compound Graphs � � � � � � � � � � � � � � � � � � � ��
��� Graph Grammars � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Browsing �	
��� Linear Views � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Fisheye Views � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Distorting Fisheye Views � � � � � � � � � � � � � � � � � � �

����� Filtering Fisheye Views � � � � � � � � � � � � � � � � � � � ��
����� Logical Fisheye Views � � � � � � � � � � � � � � � � � � � �	
����� �
D approaches � � � � � � � � � � � � � � � � � � � � � � � ��

� Conclusion ��


 Acknowledgments ��

�



Abstract� We address graph visualization from the viewpoint of com�

piler construction� Most data structures in compilers are large� dense

graphs such as annotated control �ow graph� syntax trees� dependency

graphs� Our main focus is the animation and interactive exploration

of these graphs� Fast layout heuristics and powerful browsing methods

are needed� We give a survey of layout heuristics for general directed

and undirected graphs and present the browsing facilities that help to

manage large structured graphs�

� Introduction

We address graph visualization from the viewpoint of compiler construction�
Drawings of compiler data structures such as syntax trees� control �ow graphs�
dependency graphs �WiMa���� are used for demonstration� debugging and doc

umentation of compilers� In real world compiler applications� such drawings
cannot be produced manually because the graphs are automatically gener

ated� large� often dense� and seldom planar� Graph layout algorithms help to
produce drawings automatically� they calculate positions of nodes and edges
of the graph in the plane�

Our main focus is the animation and interactive exploration of compiler
graphs� Thus� fast layout algorithms are required� Animations show the be

haviour of an algorithm by a running sequence of drawings� Thus there is not
much time to calculate a layout between two subsequent drawings� In interac

tive exploration� it is annoying if the user has to wait a long time for a layout�
Here� a good layout quality is needed� but the speed of visualization is even
more important� As long as the layout quality is good enough to comprehend
the picture� the user may accept small aesthetic de�ciencies of the drawing�

In contrast� consider graph visualization for textbook publishing� Here� typ

ically pictures of small graphs are used to demonstrate idealized abstractions
of facts� Such pictures are mostly produced by hand� Their quality must be
optimal in order to make the facts very easily comprehensible for the reader of
the textbook� If automatically calculated layout is used� the techniques are dif

ferent from those in interactive visualization� The calculation time may range
up to hours because the quality of the drawing is more important in textbook
publishing�

Layout techniques for interactive graph exploration usually are iterative
heuristics� Iterative algorithms allow to trade time for quality� If the layout

�



quality is not satisfactory� more iterations are calculated� which is slower but
gives better results� Heuristics are used because this allows to satisfy several
potentially contradicting aesthetic requirements in a balanced way� General
aesthetic layout criteria include minimization of edge crossings and node over

lappings� display of symmetries� reduction of bend points in edges� uniform
orientations of directed edges� and closeness of related nodes�

Apart from the layout heuristics� powerful browsing mechanisms are needed
for interactive graph exploration� Many facilities such as unlimited scaling�
searching of nodes� and following chains of edges are o�ered as a matter of
course in today�s graph drawing tools� Some advanced facilities are grouping
nodes� collapsing groups into summary nodes �folding�� hiding classes of nodes�
and displaying special views onto the graph�

We present layout methods and browsing facilities suitable for graph vi

sualization in compiler construction� After de�ning the general notation� the
section � gives a survey of straight line drawing heuristics derived from phys

ical models� Section � presents variants of a method for layered �hierarchical�
layouts� Section � sketches some ideas about interactive grouping and folding
of graphs� and section � presents browsing facilities with special views� Most
of the mentioned algorithms and methods are implemented in the VCG tool� a
graph layout tool designed for applications from compiler construction �Sa����
All examples of this paper are generated by the VCG tool�

� Notation

A �directed� graph G � �V�E� consists of a set V of nodes and a set E of
ordered pairs of nodes� An element �v�w� � E is called an edge of the graph�
A graph is undirected if for each edge �v�w� � E also �w� v� � E holds� The
set pred�v� � fw � V j �w� v� � Eg is the set of predecessors of a node v � V �
The set succ�v� � fw � V j �v�w� � Eg is the set of all successors of a node v�
The sizes of these sets are indeg�v� � jpred�v�j and outdeg�v� � jsucc�v�j�
The degree of a node v is degree�v� � indeg�v� � outdeg�v��

A sequence v�� � � � � vn is a path from v� to vn if there are edges �vi��� vi� � E
for � � i � n� A cycle is a nonempty path from v to v� A graph without cycles
is called acyclic� A graph is dense if it contains many edges and sparse if it
contains only few edges� It would be super�uously pedantic to de�ne these
notions precisely� A graph with jEj � jV j is always considered sparse� while a
graph with jEj � jV j� is always considered dense�

�



� Force and Energy Controlled Placement

The simplest kind of graph layout is a straight line layout� All edges are drawn
as straight lines between the centers of the adjacent nodes� Calculation of the
layout reduces to the problem of �nding node positions�

The main idea of the heuristic is to simulate physical
chemical models�
Many objects occurring in physics and chemistry �e�g� molecules� crystals� com

bined inoperative pendulums� etc�� have a high degree of uniformity and bal

ance� These are just the aesthetic criteria aimed at by a good layout method�
The uniformity of physical
chemical objects is a result of the force and energy
e�ects at the particles� The particles move according to the forces� and come
to inoperative positions when the forces eliminate each other� and the physical
system is balanced if the energy sum is minimal� In the heuristics� we consider
the nodes as particles� start from an arbitrary initial position� simulate the
movements of the nodes and lower the energy stepwise such that the nodes
come to rest�

��� Set all nodes v � V to initial positions�
��� for actround � � to maxrounds do
��� Select a node v � V �
��� Calculate the forces at v�
��� Move v an amount � into the direction of the sum of forces�
�	� Calculate the energy E of the system�
�
� if E is small enough then stop loop�
��� od

��� Spring Embedding

The earliest heuristics of force
directed placement were based on the spring
embedder model �QuBr
�� Ea���� Nodes are considered as mutually repulsive
charges and edges as springs that attract connected nodes�

Let ��v�w� be the distance vector between two nodes v and w� Then�
k��v�w�k is the Euclidean distance� Between each pair of nodes� there are
repulsive forces inversely proportional to the distance� e�g� the force vector

Frep�v�w� � ��rep
��v�w�

k��v�w�k�

Between nodes connected by edges �v�w�� there are attractive forces directly
proportional to �a power of� the distance� e�g�

Fatt�v�w� � �att��v�w�k��v�w�k�

Di�erent formulas for forces have been used in �QuBr
�� Ea��� SuMi��� SuMi����
but the resulting e�ects are always similar� The parameters �rep and �att al

low to adapt the heuristics� An edge �v�w� is at equilibrium if Frep�v�w� �

�



Figure �� Animation of Spring Embedding of Grid Graph

Fatt�v�w� � 	� The length of the edge in this case is

k��v�w�k � �

s
�rep
�att

Although the algorithm does not explicitly support the detection of sym

metries� it turns out that in many cases the resulting layout shows existing
symmetries� If the iteration steps are animated� there is the impression of a
three
dimensional unfolding process starting with a randomly produced bunch�
The more symmetric a graph is� the more obvious is this e�ect� Fig� � shows
the animation sequence of a regular grid graph�

��� Gravity

It is obvious that connected components of a disconnected graph will move
apart in a simple spring model because of lack of attractive forces� Often�
loosely connected components are also positioned far from each other such
that the edges in between are unaesthetically long� Thus� Frick e�a� introduce
additional gravity forces �FLM���� All nodes v�� � � � � vn are attracted by the
gravity to the barycenter �the average of all node positions p�v���

Bcenter �
�

n

nX
i��

p�vi�

In the proposal of Frick e�a�� gravity forces depend on the numberdegree�v�
of adjacent edges at a node v� Nodes with high degree are more important since

�



Gravity and charge repulsion� without

attractive spring forces

Gravity� repulsion and attractive spring

forces

Figure �� Layout of Hexagonal Grid

they drag along many nodes in the same direction� The gravity force at a node
can be de�ned as

Fgrav�v� � �grav�� � degree�v���Bcenter � p�v��

Although gravity forces are attractive as of themselves� they are not a total
replacement of spring forces� If only gravity and charge repulsion take e�ect�
the nodes are placed evenly around the barycenter� but regularities of the edge
structure are not visible �Fig� �� left�� Only the spring forces contribute to the
symmetry of the layout�

Since gravity forces are polar directed to the barycenter� they enforce a
round structure of the layout� Fig� � shows the e�ect of gravity on a grid graph�
However� the main advantage of gravity is visible if the graph is partitioned
into very dense parts which are loosely connected� Without gravity� the nodes
of the parts are very close together but the parts themselves are far from each
other� Thus� the edge lengths are not uniform� Gravity has the e�ect that the

without gravity gravity �grav � ��� strong gravity �grav � ��	

Figure �� Layout with Gravity






without gravity strong gravity �grav � 
��

Figure �� Layout of Multiplied K��

parts are positioned closer such that the layout is much more homogeneous
�Fig� ���

��� Magnetic Fields

Spring embedders do not take into account edge directions� In directed graphs�
all edges should point into the same direction when possible� Recently� Misue
and Sugiyama �SuMi��� SuMi��� proposed an extension that enforces this ef

fect� Edges are considered as springs� but also as magnetic needles which are
oriented according to a magnetic �eld� Spring forces depend on the length of
the edges and are parallel to the edges� A magnetic force additionally depends
of the angle � between edge and magnetic �eld� and is directed orthogonally
to the edge� Thus� it rotates the edge� The magnetic force becomes zero when
the edge points exactly in the direction of the �eld �Fig� ��� In the formula
of magnetic forces� ��v�w� denotes the unit vector orthogonal to ��v�w� and

F
Magnetic

F
Magnetic

α

F

F

Spring

Spring

Magnetic Field Magnetic Field

Figure �� Spring Force and Magnetic Force

�



parallel�
M��x� y
 � ��� �


concentric�
M��x� y
 �

�y��x�
k�x�y�k

orthogonal�
M��x� y
 � ��� �
�
M��x� y
 � ��� �


Figure �� Magnetic Fields

the parameters �mag and c allow to tune the force�

Fmag � �mag�
ck��v�w�k���v�w�

Di�erent magnetic �elds have been used �Fig� ��� A parallel �eld can be
used to give most edges a top down orientation �Fig� 
�� The number of edges
pointing against the �eld direction depends on the strength of the �eld� it is
small but seldom minimal�

A concentric �eld can be used to illustrate cycles in the graph �Fig� ���
Binary trees are often drawn in orthogonal layouts� A similar e�ect can be
produced by a compound magnetic �eld where di�erent sets of edges are in�u

enced by di�erent components of the �eld �Fig� ��� However� larger trees often
produce edge crossings in the orthogonal �eld� such that this method is not
perfectly suited for orthogonal drawings�

without magnetic �eld parallel �eld

Figure 
� Ternary Tree with Magnetic Field

�



without magnetic �eld concentric �eld

Figure �� Layout of Cube with Magnetic Field

orthogonal �eld orthogonal �eld without magnetic �eld

Figure �� Layout of Binary Trees with Magnetic Fields

��� Simulated Annealing

The spring embedders of Eades �Ea��� and Misue und Sugiyama �SuMi���
SuMi��� apply a �xed number of iterations to get the layout� It may happen
that the number of iterations is too small� which gives an unbalanced layout�
or the number is too high� which is waste of time� Di�erent extensions were
proposed to get better termination conditions for the heuristic� Some spring
embedders �QuBr
�� KaKa��� are based on the energetic states of the nodes�
The aim is to minimize the global energy E �the sum of all energetic states��
A minimum of E can be found by solving the equation system

�E

�xi
�
�E

�yi
� 	 for � � i � n

for the positions �xi� yi� of all n nodes� The equation system can be solved by
numerical methods �e�g� the method of Newton
Raphson �BoPr����� However�
this only �nds some local minimum of E which is not the global one�

Thus� Davidson and Harel �DaHa��� applied a randomized optimization
method from statistical mechanics� simulated annealing� In addition to the
global energy E� there is a global temperature T which is lowered as the

�	



iterations progress� In each step� a random move is tried at some node� If the
global energy E gets smaller with the new position of the node� the move is
done� If E is enlarged by �E� the move is accepted with the probability

Prob � e�
�E

T

otherwise the move is rejected�� The uphill changes of the energy prevent the
layout to go towards a local minimumvery early� By lowering the temperature
T in each step� uphill changes get more improbable as the algorithm progresses�

As long as the temperature is decreased slowly enough� this randomized
method results in uniform and symmetric layouts� The method has the ad

vantage that no vector calculations are needed� because no force vectors need
to be calculated� Any complex scalar formula for the energy is allowed� e�g�
taking into account the border of the layout xmin� xmax� ymin and ymax� or the
number of crossings and overlappings� Typical formulas are

Eglobal �
X

v�w�V
v ��w

Erep�v�w� �
X

�v�w��E

Eatt�v�w� �
X
v�V

Eborder�v� � Elap � Ecross

where

Erep�v�w� �
�rep

k��v�w�k�

Eatt�v�w� � �att k��v�w�k�

Eborder�v� �
�border

�x�v�� xmin��
�

�border
�x�v�� xmax��

�
�border

�y�v�� ymin��
�

�border
�y�v�� ymax��

Elap � �lap �Overlappings

Ecross � �cross �Crossings

The disadvantage of simulated annealing is the fact that the cooling must be
very slow to enforce regularities of the layout� It needs about �	 times more
iterations than normal spring embedders �see also �BHR��� for a comparison
between spring embedders and simulated annealing�� Thus� it is not very well
suited for large graphs�

Experiments have shown that the combination of both spring embedding
and simulated annealing can be useful� We move the nodes in direction of the
forces� but add a small random force Frand and with a certain probability� we
reject moves that would increase the global energy� Because the positioning of
the nodes is not completely random� simulated annealing becomes faster� and

�This is derived from the Boltzmann probability of thermodynamic moves of particles of

energy E in an ideal gas� Prob � e
�

E

KT � Here� K is the Boltzmann constant�

��



Spring Embedder Combined Method

Figure �	� Layout of Torus

because the energy state is checked� it is possible to enforce aesthetics that are
not expressible as force vector� Fig� �	 shows an example� The spring embedder
produces a symmetric layout of the torus� while the combined method allows
to press the torus into a rectangular border�

��� Temperature Schemes

Fruchterman and Reingold �FrRe��� adapted the concept of cooling to the nor

mal spring embedders� Nodes are moved in direction of the force vector instead
of randomly� The amount of movement � is limited by the global temperature
T � i�e� the smaller T is� the smaller is the movement distance ��T �� If T � 	�
the nodes don�t move anymore� The global cooling function depends only on
the size of the graph�

Frick e�a� �FLM��� expanded this concept by introducing local temperatures
T �v� for each node� The distance of movement of a node v is ��T �v��� Thus�
the amount of movement may vary for each node� The global temperature is
the average of all local temperatures� Tglob � �

n

Pn
i�� T �vi�� The simulation

is iterated until Tglob is cooled down to a threshold Tthresh� There is no global
cooling function� but the temperature of a node is determined by its movement
behavior� The old movement impulse vector Iold�v� is compared to the new
impulse Inew�v� �Fig� ���� If both nearly point into the same direction� the
ideal position of node v can probably be found in this direction� Thus� its
local temperature T �v� is enlarged in order to move the node v faster �i�e� in
larger steps� to its ideal position� If both nearly point into opposite directions�
we assume that the node v was moved too much and now starts to oscillate
around the ideal point� Thus� T �v� is decreased to damp the oscillation until

��



Rotation Rotation

to the left to the right

old impulse I(v)

new impulse I(v)

Oscillation

Figure ��� Detection of Rotations and Oscillations

the node has found its inoperative position� If a node turns several times in
the same direction to the right �or to the left� respectively�� it probably circles
around its ideal point �like a rotation�� thus T �v� is decreased� too� Since the
local temperature is sensitive to the movement behavior� it is automatically
recognized when the simulation can stop without wasting iterations where the
layout quality does not change anymore�

��� Applications in Compiler Construction

Although magnetic �elds can be used to in�uence orientations of directed
edges� force
directed and energy
controlled placement is mainly used for sparse�
undirected graphs� e�g� symmetric relations� A typical example is the visualiza

tion of register collision graphs in compiler construction� If a compiler trans

lates a program into machine code� it uses an in�nite set of virtual processor
registers at �rst� This is for simplicity of the code generation� Afterwards the
virtual registers must be mapped to the limited number of real CPU registers�
Here� the so called register collision graph helps� The nodes of this graph are
the virtual registers� There is an �undirected� edge between two nodes if the life
times of both virtual registers are overlapping� Register allocation is now done
by coloring the graph with n colors representing n real CPU registers with the
restraint that adjacent nodes must never get the same color� The problem of
minimizing the number of colors �or the number of real CPU registers� resp�� is
NP
complete� but there are good heuristics to solve this problem �WiMa����

Example � Fig
 �� shows the register collision graph of the ��address code
of sequence �
 Here� the � virtual registers R�� � � � � R� are used
 The graph
is labeled by the life times of the registers
 The graph can be colored by � real
registers� R� and R	 are mapped to the CPU register A� R�� R� and R	 to B�

��



Figure ��� Register Collision Graph

R� to C and R� and R
 to D
 The result is shown in sequence �


Sequence � �before reg
 allocation��
intermediate code using � virtual
registers

��� R� � �

��� R� � �

��� R� � 	

�
� R� � R� � R�

��� R
 � R� � R�

�
� R
 � R� � R


��� R� � R
 � R


��� R� � R� � R


Sequence � �after reg
 allocation��
code with � real registers

��� A � �

��� B � �

��� C � 	

�
� D � A � B

��� B � D � C

�
� A � D � B

��� D � A � B

��� B � D � A

Simulations of parallel programs often require the visualization of the paral

lel computer architecture� Because spring embedders often display symmetries�
they are in particularly suitable for that� Fig� �� shows some of these networks
�see �AlGo��� Br��� for a description of these network topologies��

��� Related Approaches

Genetic layout algorithms �Ma��� Pa��� are very similar to simulated anneal

ing� They are randomized methods that calculate generations of layouts of the
same graph� The best layout �according to some quality function similar to
the energy function of simulated annealing� is selected as new layout� Genera

tions of layouts are produced by two operations in correspondence to biology�
mutations �a layout changes randomly� and crossovers �two layouts are com

bined into a new layout�� After a sequence of mutations and crossovers� the
quality function is applied to all layouts� Bad layouts are deleted� and only the
best layouts survive� Just as simulated annealing� genetic layout algorithms
are relatively slow and need a lot of memory space�

Tunkelang �Tu��� developed a method similar to simulated annealing which

��



Ring Chordal Ring Complete Net

Computer Net
Cube Connected

Circles
Cubic Grid

Figure ��� Network Topologies

does not place the nodes randomly but according to a �xed pattern� The energy
function is applied during the initialization in order to �nd a good initial layout�
and afterwards to improve the layout� The disadvantage of this method� with
a �xed pattern of node movements some layouts are never taken into account�
Thus� the algorithm does not always give optimal results� On the other hand�
a good selection of the movement pattern may speed up the heuristics very
much�

Spring embedders and simulated annealing do not necessarily produce pla

nar layouts for planar graphs� Harel and Sardas �HaSa��� use a combined
approach� First a planar layout �or for nonplanar graphs� a layout with only
few edge crossings� is calculated� and afterwards� simulated annealing is used
to improve the layout� In this optimization step� all node moves are rejected
that would produce edge crossings� This guarantees symmetric� uniform planar
layouts for planar graphs�

��



� Layout in Layers

Straight line layout is sometimes not very useful for several reasons� �a� it does
not ensure that nodes do not overlap� �b� is does not ensure that edges do not
cross nodes� �c� it is for certain applications simply a wrong layout pattern�
For instance control �ow diagrams in compiler construction look completely
di�erent from typical straight line layouts� It is important that nodes do not
overlap because their labels must be readable� In branches of the control �ow�
the user expects labels directly near the node that represents the branch con

dition� The start node of the control �ow should be at the top� To draw such
graphs di�erently may also produce nice pictures �see Fig� ��� right�� but they
look unfamiliar for users that expect a control �ow graphs� because they do
not satisfy the drawing conventions�

Next� we present a layout method that avoids node overlappings and allows
edges with bends� Here� not only node positions must be found� but edge
routing must be done� too�

��� Layout Phases

The main idea of the algorithm is to partition the nodes into layers and order
the nodes within the layers such that edge crossings are reduced� Variants of
this idea were �rst described in �Wa

� Ca�	� STT���� The method described
here is mainly based on the algorithm by Sugiyama e�a� �STT��� EaSu�	��
Layer layout consists of four phases �Fig� ����

� Partitioning of nodes into layers� The goal is to construct a proper hi�

typical �ow diagram straight line layout of this graph

Figure ��� Control Flow Graphs

��



Ordering of nodes (crossing reduction)

Positioning of nodes Positioning of edges

Partitioning of nodes in layers

Figure ��� Phases of Layer Layout Algorithm

erarchy� i�e� a partioning where edges may only occur between adjacent
layers� If this is not possible� long edges crossing several layers must be
split into sequences of short edges and dummy nodes must be inserted
appropriately�

� Sorting the nodes �and dummy nodes� within a layer� such that only few
edge crossings exist� This gives the relative positions of the nodes�

� Positioning of nodes� This gives the absolute coordinates of the nodes�
The goal is to �nd balanced positions without overlappings�

� Positioning of edges� Start and end points of edges are approximately
given by the node positions� because they must be adjacent to the borders
of the nodes� However� bend points must be calculated to avoid crossings
through nodes� or control points for certain edge styles �e�g� splines��

�




����� Phase �
 Partitioning into layers

For each node v� a rank R�v� has to be calculated� that speci�es the number
of the layer that v belongs to� Layer � is the topmost layer� The span of an
edge is S�v�w� � R�w��R�v�� In a directed graph� it might be required that
most edges point downwards� i�e� that the spans are positive� However� it is
NP
complete to �nd the minimal number of edges that cannot point down

wards in a graph which contains cycles �GaJo
��� There are many heuristics
for calculation of the rank �some more are described in �EaSu�	���

� If the graph is acyclic� sort it topologically and calculate

R�v� � maxfR�w� j w � pred�v�g� �

in topological order of the nodes� This results in a partitioning where all
edges will point downwards in time complexity O�jV j� jEj��

� If the graph is acyclic� solve the problem to minimize

D �
X

�v�w��E

�R�v��R�w� � ��

subject to ��� R�v� � � for each node v and ��� R�v� � R�w� � �
for each edge �v�w�� This can be done by standard linear programming
methods �GKN���� Even an integer solution exists and can be obtained�
This results in a downward partitioning with minimal number of edge
spans� i�e� minimal number D of dummy nodes�

� Calculate R�v� by a depth �rst search or breath �rst search� This results
in an arbitrary partitioning in time complexity O�jV j� jEj��

� Calculate the minimum cost spanning tree �Me��� on the undirected
instance of the graph� This is useful if edges e have priorities p�e�� We
use the cost ��p�e�� The result is a partitioning where edges of high
priority gave small spans� The layout will be wide but not deep� The
time complexity is O�jEj log jV j��

� If the edge orientation is not important� apply a spring embedder as
described in the section before� It is su�cient to take only Frep and Fatt

into account� Instead of two
dimensional coordinates� calculate a one

dimensional coordinate R�v�� This results in a ranking where edges tend
to have the same absolute value of span�

As mentioned above� some heuristics can only cope with acyclic graphs�
Graphs with cycles have to be made acyclic �rst by �conceptually� reversing
some edges� A heuristic to �nd these edges works as follows� Calculate the
strongly connected components of the graph �Me��� in time O�jV j � jEj�� In

��



each component C that contains more than one node� reverse an edge� Now
try again to calculate the strongly connected components� Continue this loop�
until each component has only one element� At the end� the converted graph
will be acyclic� A good heuristic to �nd the edges to be reversed is to look
for edges �v�w� where outdeg�v� is minimal but indeg�v� and indeg�w� are
maximal�

This method can be implemented by recursion� In practice� it very often
�nds the minimal number of edges that must be reversed� although it is only
a heuristic� However� it has the high time complexity O�r�jV j� jEj�� where r
is the number of reversed edges�

Each ranking induces a hierarchy� In order to proceed� a proper hierar�
chy is needed� i�e� all edges must have span S�e� � �� Thus� edges �v�w�
with S�v�w� � 	 are reversed� i�e� replaced by edges �w� v�� Then edges with
S�v�w� � n 	 � are split into dummy nodes v�� � � � � vn�� with R�vi� � R�v�� i
and smaller edges �v� v��� � � � � �vi� vi���� � � � � �vn��� w�� and edges with S�v�w� �
	 are diverted in a similar way� Edge splittings and reversions are always done
only conceptually� The resulting edges are marked such that we can later draw
one arrowheads at the appropriate position�

����� Phase �
 Sorting of nodes

For each node v� a relative position P �v� within its layer has to be calculated�
such that there are only few edge crossings� Since the hierarchy is proper� the
number of crossings c originated by the edges Ei between two adjacent layers
Vi and Vi�� can be easily determined by a plane sweep algorithm �Sa��� in time
O�jVij � jVi��j � jEij � c�� However� the problem of �nding permutations of
the sequences V� and V� to get a minimal number of crossings is NP
complete
�GaJo���� Methods to solve the crossing problem can be found in �STT���
EaWo��� EaKe��� EaSu�	� Sa��� JuMu���� In practice� the most successful
algorithm is the layer
by
layer
sweep�

��� while the crossing number is not satisfactory do
��� for each layer Vi from i � � to n do
��� for each v � Vi do
��� Calculate weight Wp�v��
��� od
�	� Sort the nodes of Vi according to the weight Wp�v��
�
� od
��� for each Vi from i � n to � do � � � similar with Ws�v� od
��� od

The �rst traversal �line ���
�
�� is a top down traversal� the second �line ����
is a bottom up traversal� Other variations of this method sweep only top down

��



or only bottom up� or from the center outwards� �Sa��� describes a variation
with limited backtracking� if a sweep did not reduce the number of crossings�
the old con�guration is taken� The crucial point is the selection of the weights
Wp and Ws� �STT��� proposes the barycenter weight �P �w� is the relative
position of the node w in the predecessor or successor layer� respectively��

W �b�
p �v� �

�

indeg�v�

X
w�pred�v�

P �w�

W �b�
s �v� �

�

outdeg�v�

X
w�succ�v�

P �w�

�EaWo��� GKN��� propose the median of the sequence w�� � � � � windeg�v� of
predecessors of a node v�

W �m�
p �v� �

�

�
�P �w

b
indeg�v�

� c��
� � P �w

d
indeg�v�

� e
��

We also made experiments with combinations of both� using

W �h�
p �v� � ��W

�b�
p �v� � ��W

�m�
p �v�

A method of calculating the optimal permutation of two layers where one
layer is �xed was proposed in �JuMu���� Assume that the permutation of V� is
�xed� and a permutation of V� should be calculated� Let cij denote the number
of crossings among edges adjacent to vi� vj � V� in a permutation of V� where
P �vi� � P �vj�� Let xij � � if P �vi� � P �vj�� and xij � 	 otherwise� Then the
number of crossings of a permutation of V� can be described as

C �
jV�j��X
i��

jV�jX
j�i��

�cijxij � cji��� xji��

The optimal permutation of V� can be found by calculating xij � f	� �g such
that C is minimal� subject to ��� 	 � xij�xjk�xik � � for � � i � j � k � jV�j�
and ��� 	 � xij � � for � � i � j � jV�j� The ��
cycle constraints� ���
guarantee that the result describes a valid permutation� This linear integer
programming problem can be solved by a variation of the branch and cut
algorithm �JuMu���� This method is suitable up to jV�j � �	� but it is much
too slow for larger graphs�

Statistical experiments �JuMu��� Sa��b� show that apart from the optimal
method for two layers where one is �xed� the best heuristic is W �h� with �� �
��� followed by W �b�� and at last by W �m�� These methods are also closer to
the optimum and faster than various greedy or stochastic methods described
in �EaKe��� JuMu���� However� this experimental result does not hold if there
are more than two layers� and a layer
by
layer
sweep is used� Firstly� a sweep
with the two
layer
optimal algorithm does not calculate the optimal crossing

�	



number of the whole multi
layer
graph since a nonoptimal permutation of some
adjacent layers might produce less crossings than a situation where the �rst
layer is optimal� but the other layers are only optimal derived from the �rst
layer� Secondly� it is not obvious which of W �b��W �m� and W �h� produces the
fewest crossings in a multi
layer
graph� there are many examples where any of
the three is the best�

����� Phase �
 Positioning of nodes

For each node v� absolute coordinates X�v� and Y �v� must be calculated such
that ��� R�v� � R�w� implies Y �v� � Y �w� and ��� P �v� � P �w� implies
X�v� � X�w�� Nodes should not overlap� The layout should be balanced�

Again� we use a layer
by
layer
sweep that is motivated by physical models�
As we have seen in section �� physical simulations often result in very balanced
positionings� We start with an arbitrary layout that satis�es conditions ��� and
���� The goal is to minimize

Z �
X
v�V

j
X

�v�w��E
�w�v��E

�X�w� �X�v��j

subject to condition ��� and to the condition that nodes must not overlap�
Again� this could be solved by standard linear programming methods�

However� a heuristics that is much faster in practice is the rubber band
network simulation� the edges pull the nodes like rubber bands� The nodes
move horizontally according to the sum of the forces� We de�ne the force

Frub�v� �
�

degree�v�

X
�v�w��E
�w�v��E

�X�w� �X�v��

If Frub�v� � 	� we move the node v to the left by the amount minfjFrub�v�j�X�v�
�X�ul� � d�ul� v�g� otherwise� we move the node to the right by the amount
minfjFrub�v�j�X�ur� � X�v� � d�v� ur�g� Here ul and ur denote the left and
right neighbor of v in its layer� and d�u� v� is the minimal distance required
between nodes u and v� It is easy to see that Z is decreased by these moves�

If the distance between two neighbored nodes of the same layer is minimal�
we call the nodes touching� Touching nodes in�uence each other� if the left is
drawn to the right and the right node is drawn to the left� none of both nodes
can move� In order to get balance in this case� too� we use regions of nodes�
touching nodes v�� � � � vn belong to the same region i� P �v�� � 	 	 	 � P �vn�
and Frub�v�� � 	 	 	 � Frub�vn�� The force at a region is

Frub�fv�� � � � � vng� �
�

n

nX
i��

Frub�vi�

We move all nodes of the region by minfjFrub�fv�� � � � � vng�j� available spaceg�
By these moves� Z decreases further�

��



��� while Z is not satisfactory small do
��� for each layer Vi from i � � to n do
��� Calculate all regions of Vi�
��� Move all nodes according to Frub of their regions�
��� od
�	� od

In the rubber band method� both predecessors and successors in�uence the
position of a node at the same time� As a variation of this method� we can
do downward and upward traversals of the layers where only the predecessor
or only the successor positions are inspected� This model is more similar to
a physical pendulum system� The nodes are like balls� the edges like strings�
The uppermost balls are �xed at the ceiling� Then the pendulum system swings
until the de�ections are balanced� We de�ne the predecessor force for downward
traversals

Fpendulate down�v� �
�

indeg�v�

X
�w�v��E

�X�w��X�v��

and the successor force for upward traversals

Fpendulate up�v� �
�

outdeg�v�

X
�v�w��E

�X�w��X�v��

The construction of regions is the same as in the rubber band method� Al

though experiments show that this pendulum method decreases Z usually
much faster than the rubber band method� Z does not decrease in each step�
Thus� in practice� we combine both methods �Sa����

�Sa��a� presents a variation of the pendulum method that enforces long
edges �sequences of edges in the proper hierarchy� to be strictly vertical� Sev

eral other variants of layer
by
layer
sweep to position the nodes of a layer are
described in �STT��� EaSu�	� and �GKN����

level i

level i+1

vertical distance

Figure ��� Vertical Positioning at the Levels

��



Y �v� is calculated such that all nodes of the same layer are centered along
a horizontal line �Fig� ���� There are two strategies to assign Y �v��

� The vertical distance between layers is a constant �� the layer Vi gets the
reference line at Y �Vi� � i ��

� The vertical distance between two layers depends on the number of over

lappings of the projection of the edges to the horizontal� Two di�erent
edges �v�� w�� and �v�� w�� overlap horizontally at one point between
X�v�� and X�w��� i� X�v�� � X�v�� � X�w�� or X�v�� � X�w�� �
X�w��� The maximal number of overlappings Li between two layers
Vi and Vi�� at any point can be calculated by a plane sweep in time
O�jVij � jVi��j � jEij� Li� �Sa��b�� We calculate the reference lines top
down� Y �V�� � � and Y �Vi� � Y �Vi��� � � Li���

The advantage of variable vertical distance between layers is that the angle
of edges does not get too small� In particular� inhomogeneous dense graphs are
more readable in this way �Fig� �
��

equal layer distance

variable layer distance

Figure �
� Layer Distance Strategies

��



centered edges port sharingevenly distributed ports

Figure ��� Edge Port Distribution

����� Phase �
 Positioning of edges

Start and end points of edges must be adjacent to the border of the corre

sponding nodes� These points at the border are called edge ports� There are
several strategies to calculate edge ports�

� All edges point to the center of the node �Fig� ��� left�� This is very easy
to implement� Disadvantage� the ports may be so close together that
arrowheads get lumpy and are not well readable�

� Each edge has its own edge port at the node �Fig� ��� middle�� The
ports are evenly distributed at the border� Such a distribution avoids
concentrations of ports� if there are only few edges�

� Edges with the same orientation or style of arrowhead may share the
same edge port �Fig� ��� right�� The ports are evenly distributed at the
border� This is even feasible if there are many edges� because edges share
the arrowheads� too�

In the proper hierarchy� long edges are split into small edge segments and
dummy nodes� This ensures that edges rarely cross nodes� because the dummy
nodes don�t overlap other nodes� Two situations may occur�

Due to the node positioning algorithm� the edge segments at a dummy
node have �nearly� the same gradient� In this case� the dummy node can be
removed and the edge can be replaced by a long segment that across several
levels�

On the other hand� it may happen that a short edge segment still crosses a
node� Then additional bend points are needed� This is the case if edges start at
small nodes which are close to large nodes �Fig ��� left�� It is obvious that for
an edge �v�w� between adjacent layers� at most two additional bend points are
needed �Fig ��� middle�� As a variant� we can calculate for each angular edge
two additional bend points such that the edge segments are oriented strictly
horizontally or vertically� Then we get an orthogonal layout �Fig ��� right��

��



level i+1

level i

level i+1

level i

level i+1

level i

without bendings with bendings orthogonal edges

Figure ��� Bending of Edges

It is important that horizontal and vertical edges should not share segments�
because otherwise the �ow of the edges is not well visible� �Sa��a� presents a
plane sweep method for the calculation of the additional bend points in time
O�jVij � jVi��j � jEij � k� where k is the number of rows of horizontal edge
segments between layer i and layer i� ��

The �nal result is a routing of edges such that edges never cross nodes�
The drawing of an edge is a polygon� �Sa��� and �GKN��� present methods to
convert this polygon into a sequence of splines with smooth transitions instead
of bend points� Fig� �	 shows a PERT chart with spline edges�

Figure �	� Spline Layout of PERT Chart

��



Combined node in phase 1 and 2 Final Drawing with two neighbored nodes

Figure ��� Neighbored Nodes

��� Application in Compiler Construction

The layer approach is mainly used to visualize the directed and the dense graphs
that occur in compilers� The reason is the capability of the method to enforce
uniform edge orientations and to avoid node overlappings� A compiler �rst
parses the input program and checks the semantical rules of the programming
language in a frontend� Usually� the intermediate program representation of
the compiler frontend is a syntax tree annotated with attributes from the
semantical analysis �e�g� types�� Layout in layers produces good results for
trees� where many simpli�cations of the algorithm can be done� e�g� partioning
and crossing reduction for trees can be done simultaneously by only one depth
�rst search traversal� The technical problem that annotations should occur as
neighbors of the syntax nodes at the same level can be solved by combining
neighbored nodes in phase � and � conceptually into one large node �Fig� ����
Fig� �� shows a syntax tree annotated with two kinds of attributes� types and

Overview Detail

Figure ��� Annotated Syntax Tree

��



Overview Detail

Figure ��� Data Structure Graph ���� Nodes� ��	� Edges�

de�ned and used resources�
Typical compiler optimizations of themiddle end use data �ow analysis and

work on procedure call graphs� annotated control �ow graphs� or basic block
graphs� The edges represent abstractions of the program �ow� Together with
various annotations such as data dependence edges� these graphs might become
quite dense and complex� Control �ow graphs are usually drawn with orthog

onal edges �Fig� ��� left� Fig� ���� This convention comes from the �owchart
diagram style of Nassi
Shneiderman�

Data structure graphs show the details of the data structs used in the
compiler� The nodes represent the structs containing several �elds� and the
edges visualize the pointers to the structs� Because pointers are related to
certain �elds� anchor point facilities are important� i�e� methods to specify
the position of an edge port at a node� Because data structure graphs visualize
many details� they are usually very large� Fig� �� shows an example in overview
and details�

��� Related Approaches

Woods presents an algorithm to draw planar graphs� This method has simil

iarities to layout in layers �Wo���� Ranks R�v� and relative positions P �v� are
calculated in one step such that the embedding has no edge crossings� This
step is based on st
numbering� which is a very special way to number nodes
of a graph� After this step� the normal positioning of nodes and edges can be
applied as described in section ����� and ������ This way of rank calculation is
applied preferably for undirected graphs� because it does not take edge orien

tation into account� The problem to �nd an embedding of a directed planar

�




graph where all edges point into the same direction is NP
complete �GaTa����
If the graph is not planar but not dense� planarization techniques can be

used �BNT��� PST���� In a �rst step� a large planar subgraph is calculated�
The remaining edges are routed separately� such that only few edge crossings
occur� There are e�cient algorithms to calculate orthogonal layouts of �xed
embedding settings of planar graphs on a grid �Ta�
� TaTo��� FoKa���� The
main problem to �nd a maximal planar subgraph of a nonplanar graph� how

ever� is NP
hard �Jo���� such that heuristics must be used�

Example of a useless situation� �at graph with ���� nodes� ���	 edges� The graph

is rather dense� thus the layout is so narrow that only little is recognizable� unfor�

tunately �Layout time� �� sec� real time� Sparc 
�
�

Figure ��� Big� Flat Graph Without Structure

� Grouping and Folding

Even if the layout algorithms are rather fast� there is a limit for the usability of
�at graphs� If the size of a graph exceeds this limit� the layout algorithm takes
a lot of time but the resulting picture of the graph is still unstructured with
tangled edges �e�g� Fig� ���� Facilities are needed to stamp structures on the
graph� to make them visible� to extract important parts or hide unimportant
parts of the structures�

An example shows the main idea� A large program consists of many pro

cedures with many statements� If we would visualize the control �ow graph of
all these statements at once� then we would see nothing but a black hole� But
conceptually� the net of procedures is nested� All procedures are partitioned
into the source �les of the large program to be visualized� This fact can be
exploited for visualization� At the �rst level� we show just the �les as nodes
�Fig� ��a�� If a procedure of one �le is used in another �le� we draw an edge
between those �les� Multiple edges between the same nodes can be summa

rized to one thick edge� to improve the readability� To inspect the procedures

��



�a� �b�

�c� �d� �e� �f� �g�

�a
 �le dependence graph� nodes represent the source �les of the program �b
 �le

dependence graph� one �le is opened �c
 procedure call graph of this �le� nodes

represent procedures �d
 procedure call graph� one procedure is opened �e
 basic

block graph of this procedure� nodes are basic blocks �f
 basic block graph� one

block is opened �g
 statement list of this block

Figure ��� Zooming into a Program Graph

of some �le� we zoom into this �le �Fig� ��b�� i�e� we unfold the corresponding
node� Then� we see the call graph of the procedures of this �le� The nodes
are the procedures and there is an edge from procedure A to B� i� A calls B
�Fig� ��c�� Next� we unfold one procedure �Fig� ��d� and see the basic block
graph that shows the structure of the control �ow of this procedure �Fig� ��e��
To inspect statements of this graph� we select a basic block �Fig� ��f� and show
its statement list exclusively �Fig� ��g�� As we unfolded the graph� we can also
fold the nodes in the inverse order�

It is also useful to see all statements at the same time� But then� it must be
clearly which statement belongs to which procedure� We don�t want to trust
that the layout algorithm will place the nodes of the same procedure close

��



Wrapped nodes Clustered nodes

Figure ��� Interprocedural Control Flow Graph of � Procedures

together by accident� A very simple method is to mark nodes by a unique
colored wrapper �Fig� ��� left�� Nodes that belong to the same procedure have
the same color� Another possibility is to cluster the nodes� i�e� to calculate
a layout such that the related nodes are so close together that a surrounding
frame can be drawn �Fig� ��� right�� In this case� the picture of a graph contains
nested frames�

��� Compound Graphs and Dynamic Grouping

In all these cases� we don�t deal any more with �at graphs G � �V�E�� but
with compound graphs� A compound graph consists of a set V of primitive
nodes� a set F of frames� a nesting relation I 
 �V � F �� �V � F � �inclusion
relation� and a set of primitive edges E 
 �V � F �� �V � F �� Since no frame
can be nested into a primitive node or into itself� the nesting relation can be
seen as a tree T � �V � F� I� with f � F as inner nodes and v � V as leaves�

If the structure of the graph is static �as in applications such as Fig� ��
and ��� the nesting is de�ned in the graph speci�cation� It is also useful to
group nodes dynamically by user operations� For instance� during the analysis
of large syntax trees� it is convenient to fold interactively parts of the tree that
are currently not in the focus of interest �Fig� ���� Another example is to ap

proximate paths of the control �ow graph if only the reachability of statements
but not the exact path between statements must be inspected �Fig� ��� middle
and right�� There are several possibilities for grouping selections�

� Manual selection� point at individual nodes with the mouse� or drag a
rectangle which contains all nodes to be selected� etc� If the group of

�	



Edges E

Nesting Relation Tree T Picture of the Compound Graph

Figure �
� Compound Graph

nodes is very large and accidentally not placed closely together� manual
selection is awkward and involved�

� Algorithmic selection� an algorithm to traverse the graph is used to col

lect the selected nodes� The user has only to select the kind of traversal�

Complete Syntax Tree With Folded Subtree

Figure ��� Folding of Syntax Tree

��



Henry �He��� describes a system with a generic interface for selection of
groups of nodes� and shows applications of algorithmic selections by reacha

bility or shortest path algorithms� In compiler construction� the graphs are
usually partitioned such that there are di�erent classes of edges� For instance�
the program graph of Fig� �� is an interwoven compound graph consisting of
edges of the classes �le dependencies� procedure calls� and control �ow� By
including edge classes in the graph speci�cation� it is possible to make detailed
algorithmic selections� Examples�

� the path region of a set S of start nodes� a set T of end nodes and a class
C is the set of nodes reachable from a start node v � S by a path of
edges of class C which does not contain an end node w � T � Folding parts
of a control �ow graph �Fig� ��� middle and right� is done by selecting
the path region between two delimiting nodes� and collapsing it into one
node�

� the neighbor region of S and C with radius n is the set of nodes reachable
from a start node v � S by a path of edges of class C with the maximum
length n� Folding a subtree �Fig� ��� is done by selecting the neighbor
region of the subtree root node with radius
� and collapsing it into one
node�

with Annotations Annotations hidden Compressed Path

Figure ��� Path Compression and Annotation Hiding in Control Flow Graph

��



Many compiler graphs have annotations� e�g� syntax trees with type at

tributes� control �ow graphs with data �ow information etc� In these cases� we
have a main graph �tree� control �ow graph� and smaller annotations �type
trees� data �ow lists� at each node of the main graph� To hide or expose all an

notations at once� we select a node class� With hidden nodes� also all adjacent
edges disappear �Fig� ��� left and middle��

��� Layout of Compound Graphs

There are several common layout methods for compound graphs� The recursive
method is mostly used �PaTi�	� No��� He��� MMPH��� Sa��b��

��� traversing the nesting tree T in postorder� for each f � F do
��� layout graph consisting of the children of f in T
��� compute bounding box of f
��� od
��� layout unnested nodes

The layout of each frame f is calculated independently� For the layout of
the surrounding frame� f is considered as a large node� The advantages� ��� It
is very simple to implement� ��� Each frame can use a speci�c layout algorithm�
��� If there is a change in frame f � it is not necessary to recalculate a complete
layout� Only the frames on the path in T from the root to f are recalculated�
The disadvantage� edges between nodes of di�erent frames are not positioned
properly� since the position of a node is calculated only with respect to the
frame it belongs to�

The nondividing method �SuMi��� Sa��b� is more complex� It applies a
layout method at once to all frames� and thus it is able to deal properly with
edges crossing frames� It is a variant of the hierarchical layout algorithm by
Sugiyama e�a� �STT��� EaSu�	��

�� Calculate a �at representation R of the compound graph� The �at repre

sentation is used to calculate the levels of the nodes such that most edges
point downwards� It contains representatives of all nodes V and frames
F � A frame f � R represents the upper border of the frame �SuMi����
we can also add a second instance f � of f to R that represents the lower
border �Sa��b�� A node v of a frame f must be positioned in between the
borders f and f �� which is represented by edges f � v� f �� A primitive
edge e has an instance in R as it requires di�erent levels of source and
target nodes�

�� Calculate levels for the nodes and frame borders by sorting R topologi

cally� If R is cyclic� some primitive edges are removed until R is acyclic�
This is very similar to the partitioning phase of the normal hierarchical
layout algorithm�

��



�� Normalize the representation� Edges crossing several levels are split into
short edges and dummy nodes� For the dummy nodes� it must be decided
which frame they belong to� Thus� �SuMi��� propose a proper compound
digraph representation where nested frames are used instead of dummy
nodes� �Sa��b� uses a simple heuristics by inspecting the frames of the
start and end node of the edge�

�� At each level� permute the nodes in order to reduce edge crossings� This
gives the relative position of the node� It is important that �a� all nodes
belonging to a frame are in a consecutive sequence in the permutation�
�b� the frames are not intertwined� i�e� the relative order of the frames is
the same on all levels they occur� The crossing reduction is a recursive
variant of the barycenter method�

�� Finally� calculate absolute positions of nodes and frames� Nodes of the
same frame should be placed close together with a distance to the nodes
of the other frames� such that a surrounding rectangle can be drawn�
�Sa��b� uses a variant of the pendulum method in this step�

The advantage of this method� the layout shows the compound graph prop

erly without overlappings� If there are edges from the outside of a frame to
an inner node� then the placement of the node is not only in�uenced by the
situation in the frame� but also by the global situation� The disadvantages�
��� It is relatively slow compared to the recursive divide
and
conquer method�
��� Every local change causes a global relayout� ��� Frames are not indepen

dent� thus all frames must be treated with the same layout parameters�

��� Graph Grammars

Grouping methods are closely related to graph grammars� While interactive
grouping allows the selection of arbitrary sets of nodes� graph grammars are
a mechanism for rule based selection of groups� Similar to context free string
grammars� graph grammars consist of production rules that describe how a
nonterminal node of a graph can be replaced� Fig� �	 shows an example gram

mar and a graph derivation� The application of a production rule is very similar
to the unfolding of a collapsed graph�

It is possible to use the derivation of a graph to control the layout process�
In this case� productions are annotated with layout rules� This is called a
layout graph grammar �Br���� For instance� in Fig� �	� there may be a layout
rule that the subtree generated from terminal A must always be to the left
of the subtree of B� while a general tree layout algorithm may permute the
order of the subtrees in order to improve the balance of the tree� Layout graph
grammars have been used in several systems �Hi��� BBH��� MSG��� ShMC����

Since most compiler graphs are structured according to certain rules� layout
graph grammars are quite appropriate� This gives syntax trees and control

��



A a

a

A

A B

A

a

A B

A B

b

b

a

A

A B

b

a

a

a b

b

B B

...

Productions

Example Derivation

Figure �	� Graph Grammar of Binary Trees

�ow graphs a uniform appearance that is easy to recognize� However� since the
layout rules are local to a production� a layout method only based on graph
grammars does not take the global structure of the graph into account� The
results are rarely optimal wrt� used space� edge crossings� etc �Br����

� Browsing

A good graph layout tool does not only provide many fast layout algorithms�
it also includes powerful interactive operations to browse the resulting picture�
Usually� the layout is shown in a window on the screen� If the graph is very
large and does not �t in the window� either only a part is visible or the picture
must be shrunk� If the visible part is very small� the user often looses the
orientation during the navigation through the graph� If the graph is scaled too
much� details� e�g� labels of nodes� are not readable anymore�

��� Linear Views

In a linear view� the picture is uniformly scaled� The relation between picture
and original layout is linear� There are several possibilities to solve the con�ict
between detailed and full view�

� Overview while details can be selected� The main window shows the
shrunk layout� Labels of nodes or edges can be made visible by selecting
them� Then� boxes appear with the labels in normal size� However� these
boxes overlap and hide parts of the picture �Fig� ��� left��

��



Selection of Details Multiple Windows for Overview

Figure ��� Browsing Methods

� Detailed view with panner� The main window shows a part of the layout
in normal magni�cation� A second window �panner� shows an overview�
Positioning of the visible part of the main window can be done by select

ing rectangles in the overview window �Fig� ��� right��

��� Fisheye Views

Fisheye views show the point of interest in detail and the overview of the
graph in the same window� This is done by distorting the picture� The picture
is scaled nonuniformly� Objects far away from the focus point are shrunk while
objects near the focus point are magni�ed� The degree of visual distortion
depends on the distance from the focus point� The visual e�ect is very similar
to the �sheye lenses in photography �Fig� ��� right��

Fisheye views were inspected by �Fu��� SaBr��� No��� KRB��� MiSu���
FoKe��� StMu��� CCFS���� They can be divided into graphical �sheye views�
where the distance from the focus point is a function of the coordinates �e�g�
the Euclidean distance�� and logical �sheye views� where the distance is any
logical function wrt� the graph �e�g� the length of the shortest path between
focus point and node�� A �sheye view might be distorting� i�e� objects far away
from the focus are shrunk� and �ltering� i�e� unimportant objects far away from
the focus point are hidden� Further� a �sheye view is layout independent �No����
if �rst the demagni�cation or �ltering is calculated and then the layout is done�
Otherwise� it is layout dependent� Layout independent �sheye views have the
advantage that the layout can be calculated using the knowledge which nodes
are shrunk or �ltered� This resembles the folding mechanism in that it saves
space in the layout� Graphical �sheye views must be layout dependent� because
in order to calculate the distance by coordinates� the layout must be known�

��



����� Distorting Fisheye Views

Graphical �sheye views are based on a bijective transformation function h
that describes the mapping of the distances from the focus fl in the layout
into distances from the focus fp in the picture� General rules are�

� h�	� � 	� The focus point in the layout is mapped to the focus point of
the picture�

� h must be strictly increasing� Points cannot overtake during the trans

formation� i�e� points in the layout being closer to fl must be mapped to
points being closer to fp as well�

� h must be bijective� Fisheye views must not only be drawn� but also react
on mouse picks� Thus the inverse function must exist�

If h�x� 	 x for all points x 	 	� then the focus point is magni�ed� if
h�x� � x the focus point is demagni�ed� The magni�cation at distance x from
the focus point is just �h

�x
�x�� Transformation functions commonly used for

�sheye views are

h�x� �
Kx

Ax� �
h�x� � K sin�Ax� with x � �	� �

�A
�

h�x� � K arctan�Ax�

Linear View Fisheye View

Figure ��� Di�erent Views

�




Linear View
Cartesian Fisheye

View
Polar Fisheye View

Figure ��� Graph with Di�erent Views

K and A allow to select the magni�cation at focus point� and the radius
of interest� The Cartesian �sheye view applies h independently to the x and
y directions� �x� y� � �h�x�� h�y��� Polar �sheye views are based on the polar
coordinates� h is applied to the distance� and the angle of the ray though the
origin remains� �d� 
�� �h�d�� 
�� Cartesian views are invariant with respect to
horizontal and vertical lines� thus they are appropriate for orthogonal drawing�
Polar views however are more closer to the �sheye lenses of the photography�

The idea of a �sheye is to make the area near the focus point well visible�
A distortion near the focus point is often unwelcome� Thus� it is better to use
focus areas instead of focus points� Inside the focus area� there is a linear mag

ni�cation without distortion� The simplest way is to de�ne a transformation
in two parts� e�g��

h�x� �

���
��

Kx for x � al Here is a linear scaling�

K�x�al�
A�x�al���

� ap for x 	 al Here is a distortion�

al is the radius of the focus area in the layout� and ap � Kal is the radius of
the focus area in the picture� With this simple method� we get a focus square
for Cartesian �sheye views and a focus circle for polar �sheye views� Recently�
�sheye views with arbitrary focus polygons were developed �FoKe���� These
methods are more complex and require the calculation of Voronoi diagrams�

Another extension is the usage of multiple �sheye points �KRB��� MiSu����
These are implemented by converting each display point of the graph once for
every focus point and then taking the mathematical average of the transformed
points as the picture location� Due to the special construction� superposition
of two Cartesian views introduces two focus points but also two mirror focus
points �Fig� ���� The mirror focus points are located an the further corners
of the rectangle whose diagonal is given by the normal focus points� So there

��



Cartesian �sheye view Polar �sheye view

Figure ��� Fisheye Views with Two Focus Points

are four points where the magni�cation is maximal� This e�ect does not occur
with polar �sheyes�

����� Filtering Fisheye Views

Filtering �sheyes �SaBr��� Sa��b� show many details at the focus point� but
they �lter graphical objects that are far from the focus point� This improves
the visibility of the main structure� which would probably go lumpy with all the
shrunk� unimportant details far from the focus point� Thus� objects are �ltered
according to their visual worth� The visual worth depends on the distance to
the focus point and on an a priori importance �api� of the nodes and edges of a
graph� which is given in the graph speci�cation� For instance� in an attributed
syntax tree� the main structure is the tree� thus it has an larger api than the
attributes� The user can select the threshold level of detail �lod� to in�uence

no �ltering� lod � 	 with �ltering� lod � ��	

Figure ��� Polar Filtering Fisheye View of Attributed Syntax Tree

��



the amount of visible objects� An object is visible if h�x� api� 	 lod� where x
is the distance to the focus point and h is the function calculating the visual
worth� Properties of h�

� h�x� api� � h�x�� api� if x � x�� The function h is monotonic decreasing
wrt� distances� Objects far from the focus point are less interesting� since
the focus point is the point of interest�

� h�x� api� � h�x� api�� if api � api�� The function h is monotonic increasing
wrt� api� Objects with small api are less important and can be preferred
for �ltering�

A function commonly used for �ltering �sheyes �S�x� is the transformed size
of a node in distance x in the picture� the parameters c� d� e 	 	��

h�x� api� � c S�x�apid � e

����� Logical Fisheye Views

On logical �sheye views� the distance is not calculated wrt� coordinates but
with respect to the structure of the graph� Distorting and �ltering views are
possible� The typical distance is the length of the shortest path from the fo

cus node �Fu���� For compound subgraphs� a combined method must be used
taking into account the primitive edges and the nesting structure �No���� The
reason� a node should not be larger �or �ltered later� than the frame it belongs
to� Logical �sheye views have two advantages�

� They re�ect the structure of the graph� because a logical �sheye view
does not depend on the node positions� A graphical �sheye might �lter
a node that is closely related to the focus node by the fact that it is
accidentally placed far away from the focus point�

� They allow to calculate the layout after the �sheye e�ect� Layout calcu

lation becomes the faster the more nodes are �ltered away� Furthermore�
the space occupation might be better if the layout is calculated after

wards�

As disadvantage� logical �sheye views don�t have similaritieswith optical physics�
Human beings are not used to deal with such e�ects� For instance� moving the
focus point of a logical �sheye view might change the graph so much that the
layout afterwards cannot be compared with the layout before�

�	



����� ��D approaches

We described �sheye views as two dimensional transformation� However� the
�sheye picture of a graph especially with graphical polar view looks like a
projection of the � D drawing space into � D �e�g�� a sphere�� The focus point
seems to be near to the viewer of the picture� thus it is enlarged� There are
true three dimensional approaches �CCFS��� MRC���� Instead of a distortion
function� a mapping into � D �e�g�� onto a surface� is provided with a viewpoint
of a synthetic camera� The use of an underlying grid and shading technics
improves the � D e�ect� On the other hand� the exploration of the graph
might be slightly more complex since the user has to navigate through � D
and control the surface at the same time�

� Conclusion

We have described methods for interactive graph visualization in the appli

cation domain compiler construction� Most heuristics which we presented are
implemented in the VCG tool �Sa��� and are successfully used as debugging
aid in a commercial compiler project �AAS��� and in teaching at the university�
Since the VCG tool is publicly available� we know also about applications of
the tool ranging from the generation of genealogical trees up to circuit design
and debugging tools� The tool seems to �t to many more application areas�
Some similar visualization tools exist �Hi��� FrWe��� GKN��� Sc��� that focus
on di�erent areas�

How useful is a visualization tool� in compiler construction or in general�
We believe that the success of such a tool does not only depend on the qual

ity of the graph layout algorithm� but also very much on the facilities of the
user interface� Powerful browsing methods simplify the interactive graph ex

ploration and are absolutely necessary for the acceptance of visualization� The
implementation of a comfortable user interface means a considerable amount
of work� and unfortunately� this is often neglected� Another important factor
for the usability of an interactive tool is its speed� This� however� is a never
ending story� as visualization tools become faster the graphs get larger that
are dealt with�

There are many empirical studies about the usefulness of program visu

alization �for an overview� see �Hy����� These take into account psychologi

cal e�ects� such as time pressure during debugging� education and familiarity
of the subjects of the tests with visualization techniques� The results vary a
lot� Although most experiments found graphical representations better� others
made just the contradictory observation �GPB���� The usability of graphical
representations of data and programs can not be assured in the general case� It
depends on the knowledge and expectations of the users �in many experiments�
the subjects are students�� on the aim of the visualization� on the visualiza


��



tion method �static visualization or animation�� and on the capabilities of the
visualization tool�

We think that in the research community of compiler construction� visual

ization of compiler data structures is widely accepted� This may be in�uenced
by the fact that advanced compiler construction is usually taught by using
graph theoretical terminology� data structures in compilers are graphs� Thus�
the compiler construction community is familiar with graphs� Our experience
is that visualization allows better understanding of the behavior of compilers�
if suitable layout strategies and powerful browsing methods are used�

� Acknowledgments

We like to thank P� Bouillon� R� Heckmann and R� Wilhelm for their comments
on the presentation of this survey�

References

�AAS��� Alt� M�� A�mann� U�� Someren� H�� Compiler Phase Embedding
with the CoSy Compiler Model� in Fritzson� P�A�� ed�� Compiler
Construction� Proc� �th International Conference CC���� Lecture
Notes in Computer Science 
��� pp� �
�
���� Springer� ����

�AlGo��� Almasi� G�S�� Gottlieb� A�� Highly Parallel Computing� The Ben

jamin Cummings Publishing Company� Inc�� ����

�BBH��� Bachl� W�� Brandenburg F�J�� Hickl T�� Hierarchical Graph De

sign Using HiGraD� Technical Report MIP ��	�� Fakult!at Math

ematik und Informatik� University of Passau� Germany� �����

�BHR��� Brandenburg� F�J�� Himsolt� M�� Rohrer� C�� An Experimental
Comparison of Force
Directed and Randomized Graph Drawing
Algorithms� in �Br���� pp� 
�
�
� ����

�BNT��� Batini� C�� Nardelli� E�� Tamassia� R�� A Layout Algorithm for
Data Flow Diagrams� IEEE Trans� on Software Engineering� SE

������ pp� ���
���� �����

�BoPr��� Boehm� W�� Prautzsch� H�� Numerical Methods� A�K� Peters�
Vieweg� �����

�Br��� Br!aunl� T�� Parallele Programmierung� Eine Einf!uhrung� Vieweg�
�����

�Br��� Brandenburg� F�J�� Designing Graph Drawings by Layout Graph
Grammars� in �TaTo���� pp� ���
��
� �����

��



�Br��� Brandenburg� F�J�� ed�� Proc� Symposium on Graph Drawing�
GD���� Lecture Notes in Computer Science �	�
� Springer� ����

�Ca�	� Carpano� M�J�� Automatic Display of Hierarchized Graphs for
Computer Aided Decision Analysis� IEEE Trans� Sys�� Man� and
Cybernetics� SMC �	����� pp� 
	�

��� ���	�

�CCFS��� Carpendale� M�S�T�� Cowperthwaite� D�J�� Fracchia� F�D�� Sher

mer T�� Graph Folding� Extending Detail and Context Viewing
into a Tool for Subgraph Comparisons� in �Br���� pp� ��

����
����

�DaHa��� Davidson� R�� Harel� D�� Drawing Graphs Nicely Using Simulated
Annealing� Technical Report CS��
��� Department of Applied
Mathematics and Computer Science� The Weizmann Institute of
Science� Rehovot� Israel� ����

�Ea��� Eades� P�� A Heuristic for Graph Drawing� Congressus Numeran

tium ��� pp� ���
��	� �����

�EaKe��� Eades� P�� Kelly� D�� Heuristics for Reducing Crossings in �

Layered Networks� Ars Combinatorica ��
A� pp� ��
��� �����

�EaSu�	� Eades� P�� Sugiyama� K�� How to Draw a Directed Graph� Journal
of Information Processing� �� ���� pp� ���
��
� ���	

�EaWo��� Eades� P�� Wormald N�� The Median Heuristic for Drawing �

Layers Networks� Technical Report ��� Department of Computer
Science� University of Queensland� ����

�FLM��� Frick� A�� Ludwig� A�� Mehldau� H�� A Fast Adaptive Layout Al

gorithm for Undirected Graphs� in �TaTo���� pp� ���
�	�� ����

�FoKe��� Formella� A�� Keller� J�� Generalized Fisheye Views of Graphs� in
�Br���� pp� ���
���� ����

�FoKa��� F!o�meier� U�� Kaufmann� M�� Drawing High Degree Graphs with
Low Bend Numbers� in �Br���� pp� ���
���� ����

�FrRe��� Fruchterman� T�M�J�� Reingold� E�M�� Graph Drawing by Force

Directed Placement� Software " Practice and Experience ��� pp�
����
����� ����

�FrWe��� Fr!ohlich� M�� Werner� M�� Das interaktive Graph Visual

isierungssytem daVinci V���� Technical Report �in German��
Fachbereich Mathematik und Informatik� University of Bremen�
Germany� ����

��



�Fu��� Furnas� G�W�� Generalized Fisheye Views� Proc� ACM
SIGCHI���� Conference on Human Factors in Computing Sys

tems� pp� ��
��� ����

�GaJo
�� Garey� M�R�� Johnson� D�S�� Computers and Intractability� A
Guide to the Theory of NP
completeness� Freeman # Co�� San
Francisco� ��
�

�GaJo��� Garey� M�R�� Johnson� D�S�� Crossing Number is NP
complete�
SIAM Journal of Algebraic and Discrete Methods� ����� pp� ���

��� ����

�GaTa��� Garg� A�� Tamassia� R�� On the Computational Complexity of
Upward and Rectilinear Planarity Testing� Technical Report CS

��
�	� Department of Computer Science� Brown University� ����

�GKN��� Gansner� E�R�� Koutso�os� E�� North� S�C�� Vo� K�
P�� A Tech

nique for Drawing Directed Graphs� IEEE Trans� on Software
Engineering� ������ pp� ���
��	� ����

�GPB��� Green� T�R�� Petre� M�� Bellamy� R�K�E�� Comprehensibility of
Visual and Textual Programs� A Test of Superlativism Against
the Match
Mismatch Conjecture� Fourth Workshop on Empirical
Studies of Programmers� pp� ���
���� ����

�HaSa��� Harel� D�� Sardas� M�� Randomized Graph Drawing with Heavy

Duty Preprocessing� Technical Report CS��
��� Department of
Applied Mathematics and Computer Science� The Weizmann In

stitute of Science� Rehovot� Israel� ����

�He��� Henry� T�R�� Interactive Graph Layout� The Exploration of Large
Graphs� Ph� D� Thesis� TR ��
	�� Department of Computer Sci

ence� The University of Arizona� ����

�Hi��� Himsolt�M�� GraphEd " A Graphical Platform for the Implemen

tation of Graph Algorithms� in �TaTo���� pp� ���
���� �����

�Hy��� Hyrskykari� A�� Development of Program Visualization Systems�
Report� Department of Computer Science� University of Tam

pere� Finland� presented at the �nd Czech British Symposium of
Visual Aspects of Man�Machine Systems� Praha� ����

�Jo��� Johnson� D�� The NP
completeness column� An ongoing guide�
Journal on Algorithms� ����� pp� ���
���� ����

�JuMu��� J!unger� M�� Mutzel� P�� Exact and Heuristic Algorithms for �

Layer Straightline Crossing Minimization� in �Br���� pp� ��

����
����

��



�KaKa��� Kamada� T�� Kawai� S�� An Algorithm for Drawing General Undi

rected Graphs� Information Processing Letters� ��� pp� 

��� �����

�KRB��� Kaugars� K�� Reinfels� J�� Brazma A�� A Simple Algorithm for
Drawing Large Graphs on Small Screens� in �TaTo���� pp� �
�

���� ����

�Ma��� Masui� T�� Graphic Object Layout with Interactive Genetic Al

gorithms� Proc� IEEE Workshop on Visual Languages� pp� 
�
�	�
����

�Me��� Mehlhorn� K�� Data Structures and Algorithms� Vol� �� Graph
Algorithms and NP
Completeness� Springer� �����

�MiSu��� Misue� K�� Sugiyama K�� Multi
viewpoint Perspective Display
Methods� Formulation and Application to Compound Graphs�
Human Aspects in Computing� in Bullinger H�J�� ed�� Proc� �th
Intern� Conf� on Human
Computer Interaction pp� ���
���� El

sevier� ����

�MMPH��� Madden� B�� Madden� P�� Powers� S�� Himsolt� M�� Portable
Graph Layout and Editing� in �Br���� pp� ���
���� ����

�MRC��� Mackinlay� J�D�� Robertson� G�G�� Card� A�K�� The Perspective
Wall� Detail and Context Smoothly Integrated� in Proc� ACM
SIGCHI���� Conference on Human Factors in Computing Sys

tems� pp� �
�
�
�� ����

�MSG��� McCreary C�L�� Shieh F�S�� Gill H�� CG� A Graph Drawing Sys

tem Using Graph Grammar Parsing� in �TaTo���� pp� �
	
�
��
�����

�No��� Noik� E� G�� Layout
independent Fisheye Views of Nested
Graphs� Proc� IEEE Symposium on Visual Languages� pp� ���

���� ����

�Pa��� Pazel� D�� A Graphical Interface for Evaluating a Genetic Algo

rithm for Graph Layout� Technical Report RC ������ IBM T�J�
Watson Research Center� ����

�PaTi�	� Paulisch� F� N�� Tichy� W�F�� EDGE� An Extendible Graph Edi

tor� Software " Practice and Experience �	 �S��� pp� ��
��� ���	

�PST��� Protsko� L�B�� Sorenson� P�G�� Tremblay� J�P�� Schaefer� D�A��
Towards the Automatic Generation of Software Diagrams� IEEE
Trans� on Software Engeneering� �
���� pp� �	
��� �����

��



�QuBr
�� Quinn Jr�� N� R�� Breuer� M� A�� A Force Directed Component
Placement Procedure for Printed Circuit Boards� IEEE Trans� on
Circuits and Systems� CAS
������ pp� �


���� ��
��

�Sa��� Sander� G�� Graph Layout through the VCG Tool� Technical Re

port A	�
��� FB �� Informatik� University of Saarbr!ucken� Ger

many� ����� an extended abstract is in �TaTo���� pp� ���
�	��
�����

�Sa��a� Sander� G�� A Fast Heuristic for Hierarchical Manhattan Layout�
in �Br���� pp� ��

���� ����

�Sa��b� Sander� G�� Visualisierungstechniken f!ur den Compilerbau� Doc

toral Thesis� to appear in German� FB �� Informatik� University
of Saarbr!ucken� Germany� ����

�SaBr��� Sarkar� M�� Brown� M� H�� Graphical Fisheye Views� Communi

cations of the ACM� vol� �
� no� ��� pp� 
�
��� ����

�Sc��� Scott� A�� A Survey of Graph Drawing Systems� Technical Report
��
� Department of Computer Science� University of Newcastle�
Australia� ����

�ShMC��� Shieh F�
S�� McCreary C�L�� Directed Graphs Drawing by Clan

based Decomposition� in �Br���� pp� �
�
���� ����

�StMu��� Storey� M�D�� M!uller� H�A��Graph Layout Adjustment Strategies�
in �Br���� pp� ��

���� ����

�STT��� Sugiyama� K�� Tagawa� S�� Toda� M�� Methods for Visual Under

standing of Hierarchical Systems� IEEE Trans� Sys�� Man� and
Cybernetics� SMC ������ pp� �	�
���� �����

�SuMi��� Sugiyama K�� Misue K�� Visualization of Structural Information�
Automatic Drawing of Compound Digraphs� IEEE Trans� Sys��
Man� and Cybernetics� ������ pp� �
�
���� �����

�SuMi��� Sugiyama� K�� Misue� K�� Graph Drawing by Magnetic
Spring
Model� Research Report ISIS
RR
��
��E� Inst� Social Informa

tion Science� Fujitsu Labs� Ltd�� ����

�SuMi��� Sugiyama� K�� Misue� K�� A Simple and Uni�ed Method for Draw

ing Graphs� Magnetic
Spring Algorithm� in �TaTo���� pp� ���

�
�� ����

�Ta�
� Tamassia� R�� On Embedding a Graph in the Grid with the Min

imumNumber of Bends� SIAM Journal of Computing� ������ pp�
���
���� ���
�

��



�TaTo��� Tamassia� R�� Tollis� I�G�� Planar Grid Embedding in Linear
Time� IEEE Trans� on Circuits and Systems� ������ pp� ���	

����� �����

�TaTo��� Tamassia� R�� Tollis� I�G�� eds�� Graph Drawing� Proc� DIMACS
Intern� Workshop GD���� Lecture Notes in Computer Science
���� Springer� �����

�Tu��� Tunkelang� D�� A Practical Approach to Drawing Undirected
Graphs� Technical Report CMU
CS
��
���� School of Computer
Science� Carnegie Mellon University� Pittsburgh� ����

�Wa

� War�eld� J� N�� Crossing Theory and Hierarchy Mapping� IEEE
Trans� Sys�� Man� and Cybernetics� SMC 
�
�� pp� �	�
���� ��

�

�WiMa��� Wilhelm� R�� Maurer� D�� Compiler Design� Addison Wesley� ����

�Wo��� Woods� D�R�� Drawing Planar Graphs� Technical Report STAN

CS
��
���� Computer Science Department� Stanford University�
����

�



