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Abstract� We present a method for the layout of compound directed

graphs that is based on the hierarchical layer layout method� Our method

has similarities with the method of Sugiyama and Misue ��� but gives

di�erent results� It uses a global partitioning into layers and tries to

produce placements of nodes such that border rectangles can be drawn

around the nodes of each subgraph� The method is implemented in the

VCG tool�
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� Introduction

Compound graphs are graphs where nodes are grouped into nested subgraphs� Compound
graphs are useful in many situations� For instance� in interprocedural control �ow dia�
grams� the nodes of each procedure should be grouped together� and in circuit diagrams�
the elements of each module should be surrounded by rectangles indicating its borders�

There are still not many layout algorithms for compound graphs� Most algorithms
recursively deal with subgraphs as large nodes ��� �	 but ignore the global connectivity

Each subgraph is laid out independently which may result in too much edge crossings� if
there are edges going beyond the borders of subgraphs� Other methods are restricted to
planar graphs ��	�

We present a layout method for general directed compound graphs that is based on
layout in layers ��� �	� A similar method was presented by Sugiyama and Misue �
	� There�
a proper compound digraph is constructed where each subgraph consists of local layers�
Di�erent to that� we use a global partitioning into layers and try to produce placements
of the nodes within the layers such that border rectangles can be drawn around the nodes
of each subgraph afterwards� Thus� we consider our method rather as an alternative to
�
	 than as an extension of �
	�

� General Notation

A simple directed graph G � �V�E� consists of the set of nodes V and the set of edges
E � V �V � The set pred�v� � fw � V j�w� v� � Eg contains the direct predecessors� the
set succ�v� � fw � V j�v�w� � Eg contains the direct successors of a node v� We write
v ��G w for an edge �v�w� � E and v ���

G
w for a �potentially empty� sequence of edges

v ��G v� ��G � � � ��G vn ��G w �a path�� A cycle is a nonempty path v ���

G
v� If a simple

graph does not contain cycles� we call it acyclic or DAG� A tree is a DAG T � �V�E�
consisting of n nodes and n� � edges which has a special root node r � V with r ���

T
v

for each v � V � The leaves v of a tree have the property succ�v� � �� All other nodes
except the leaves are called inner nodes of the tree�

A compound graph G � �G�� T �� consists of a simple directed graph G� � �B � S�EG�
and a tree T � � �B �S�ET � �Fig� ��� The set B contains the leaves of T � which are called
base nodes� and the set S contains the inner nodes of T � which are called subgraphs� In
a compound graph� G� represents a connectivity relation between the base nodes and
subgraphs� T � represents a nesting relation
 subgraphs may contain other subgraphs or
base nodes� We say v belongs to u � S i� u ���

T
v�

Remark
 a compound graph is not recursively de�ned as a graph whose nodes might be
graphs whose nodes might be graphs etc� There� we would only allow connectivity edges
between nodes at the same nesting level� The notion compound graph is more general
because it may contain connectivity edges that cross the borders of nested subgraphs�
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Connectivity relation G�

Nesting relation T � Layout of the compound graph

Figure �
 Compound Graph

� Layout Conventions

The aim is to visualize the connectivity relation by arrows and the nesting relation by
nested border rectangles� These show which nodes and subgraphs belong to the same
subgraph� We use the following layout conventions
 �a� Base nodes are partitioned into
layers� All nodes of the same layer have �nearly� the same y�coordinate� �b� Base nodes
do not overlap edges or other base nodes� �c� Connectivity edges may have bend points
or may cross each other� but we try to avoid bend points and crossings when possible� �d�
Connectivity edges should be uniformly oriented when possible �e�g�� top down�� If the
graph is cyclic� it is not always possible� �e� A border rectangle of a subgraph u contains
exactly the base nodes and the rectangles of subgraphs that belong to u� �f� The border
rectangles of two nonnested subgraphs do not overlap� �g� Connectivity edges may cross
border lines� but we try to avoid such crossings when possible�

The layout algorithm to satisfy these conventions is a variant of the hierarchical
method of layout in layers ��� �	� First� we partition the base nodes into layers� Here we
must consider conventions �a�� �d� and �g�� Connectivity edges crossing several layers are
split into sequences of dummy nodes and short edges� The result is a proper hierarchy
where all connectivity edges are between adjacent layers� Next� we reorder the base nodes
and dummy nodes within the layers such that the result has few crossings� Here we must
consider conventions �c�� �e� and �f�� Finally� we calculate the absolute coordinates of
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the base nodes� dummy nodes and the border rectangles �considering conventions �b��
�e� and �f�� and draw the edges as line sequences between the dummy nodes�

� Partitioning into Layers

Layers are numbered top down� The uppermost layer has the number �� The task is to
calculate ranksR�v� � IN for all base nodes indicating the layer v belongs to� Connectivity
edges should preferably point top down� A subgraph u has an upper border with rank
Rmin�u� and a lower border with rank Rmax�u�� The nesting conventions imply the
following rule


� If a bordering rectangle of a subgraph u is above �or below� resp�� another base
node or subgraph w then all nodes v belonging to u are automatically above �or
below� resp�� w�

This in�uences the partitioning� Example
 Let G � �G�� T �� be a compound graph� let
two subgraphs u� and u� be nonnested� let the base node v� belong to u� and v� belong to
u�� If two edges �u�� u�� � EG and �v�� v�� � EG exist� then one of these must be reverted�
i�e�� it points converse to the uniform edge orientation� although G� � �B � S�EG� does
not contain a cycle� The combination �B � S�EG �ET � contains the cycle� On the other
hand� if �v�� u�� � EG exist� then the combination �B � S�EG � ET � contains the cycle
v� ��G� u� ��T � v� but the edge �v�� u�� need not to be reverted� It may point to the lower
border of the rectangle of u��

De�nition � A legal rank assignment consists of numberings R 
 B � IN� Rmin 

S � IN� and Rmax 
 S � IN� where

��� Rmin�u� � Rmax�u� for all u � S�
��� Rmin�u� � R�v� � Rmax�u� for all u � S� v � B with u ��T � v�
��� Rmin�u�� � Rmin�u�� � Rmax�u�� � Rmax�u�� for all u�� u� � S with u� ��T � u��

To calculate the positions of the upper and lower borders of rectangles� we simply
introduce two dummy nodes u��� and u��� for each subgraph u and assign ranks to them�
We call them border nodes� Then� we de�ne Rmin�u� � R�u���� and Rmax�u� � R�u�����
i�e�� the upper �or lower� resp�� border of the rectangle is drawn in the layer that contains
u��� �or u���� resp��� Since the borders of rectangles are usually much thinner than base
nodes� we do not mix base nodes and border nodes within the layers� Layers either contain
only border nodes or only base nodes� Between two layers of base nodes� there may be
at most �k layers with border nodes where k is the depth of the tree T �� Thus� we assign
multiples of �k�� as ranks to the base nodes while all other layers are reserved for border
nodes �Fig� �� left�� After the partitioning� empty layers are removed�
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Correction of upper border nodesExtended nesting graph Corresponding compound graph

Figure �
 Extended Nesting Graph and Border Correction

De�nition � The nesting graph of a compound graph �G�� T �� consists of
��� the set of nodes B � fu��� j u � Sg � fu��� j u � Sg�
��� an edge �u���� v� for each �u� v� � ET with u � S� v � B�

��� an edge �u
���
� � u

���
� � for each �u�� u�� � ET with u�� u� � S�

��� an edge �v� u���� for each �u� v� � ET with u � S� v � B�

�	� an edge �u
���
� � u

���
� � for each �u�� u�� � ET with u�� u� � S�

We call the edges of the nesting graph nesting edges�

The nesting graph consists conceptually of two copies of the nesting tree T � that are
fused at the leaves� In the upper copy� the nodes u��� are used� In the lower copy� the
nodes u��� are used and the edges are reverted such that all paths point to the copy r���

of the root r � T � �Fig� �� right�� The nesting graph is acyclic�

Theorem � If we traverse the nesting graph in topological order and calculate R�v� �
maxfR�w� j w � pred�v�g� �� then this produces a legal rank assignment�
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This even holds� if we add edges to the nesting graph but keep it acyclic� Thus� we
successively add the following edges of EG to the nesting graph if they do not produce
cycles �Fig� �� left�


��� �v�w� for each �v�w� � EG with v�w � B�
��� �u���� v� for each �u� v� � EG with u � S� v � B and u ���

T
� v�

��� �u���� v� for each �u� v� � EG with u � S� v � B and 	 
u ���

T
� v�

��� �v� u���� for each �v� u� � EG with u � S� v � B and u ���

T
� v�

��� �v� u���� for each �v� u� � EG with u � S� v � B and 	 
u ���

T
� v�

��� �u���� � u
���
� � for each �u�� u�� � EG with u�� u� � S and u� ���

T
� u��

�
� �u���� � u
���
� � for each �u�� u�� � EG with u�� u� � S and u� ���

T
� u��

��� �u
���
� � u

���
� � for each �u�� u�� � EG with u�� u� � S and 	 
u� ��

�

T
� u� and 	 
u� ��

�

T
�

u��
After adding these edges a topological sorting as mentioned above gives the rank

assignment� This rank assignment tends to select the smallest possible ranks� This is
unfavorable for the upper border nodes because the upper border of a subgraph u should
be positioned near to the base nodes of u� Thus� Rmin�u� should be as large as possible�
Thus� the extended nesting graph is �nally traversed in converse topological order and

R�u���� � minfR�w� jw � succ�u����g � �

is calculated to correct this situation �Fig �� right�� Because succ�u���� cannot be empty
in the nesting graph� the formula is well de�ned�

� Production of Dummy Nodes

If we delete the nesting edges from the extended nesting graph� the result is a layer
hierarchy that identi�es for all edges between which layers they must be routed� Next� we
must insert the edges e � EG that could not be added to the nesting graph because they
had produced cycles� In this step� we can select which border of a subgraph is appropriate
as anchor point of an edge� because for instance �u

���
� � u

���
� �� �u

���
� � u

���
� � and �u

���
� � u

���
� �

represent the same connectivity edge� This again avoids reverted edges �convention �d���
If the choice of the borders still produces an edge against the edge orientation� we insert
a reverted edge and mark it such that later the arrow head can be drawn at the correct
end point�

After the removal of empty layers� we now split long edges that range over several
layers into sequences of edge segments and dummy nodes� After this� the span of each
edge �v�w� is R�w� � R�v� � �� In a nested graph� each node must be assigned to a
subgraph u� Thus� we must also add the dummy nodes to the nesting tree T ��

The border nodes u��� and u��� belong to u� i�e�� we add the edges u ��T � u��� and u ��T �

u��� to T �� Since unnecessary crossings of edges and borders of the subgraph rectangles
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Situation Situation

Nesting tree Nesting tree

Strategy 1: Dummy nodes always outside Strategy 2: Dummy nodes often inside

Figure �
 Strategies for the Dummy Node Assignment

should be avoided �convention �g��� a dummy node belonging to an edge �w�� w�� must
be assigned at least to the subgraph that contains both w� and w�� By this way� we avoid
that an edge leaves a border rectangle unnecessarily and later reenters the rectangle
producing two crossings with borders� There are two alternative strategies�

�� Edges �w�� w�� are routed mostly outside of border rectangles� If an edge cannot
be routed completely inside ��u�� because either w� or w� do not belong to u� then
all dummy nodes are placed outside of ��u�� As e�ect in the �nal layout� the edges
cross the borders of the rectangles at the sides �Fig� �� upper left�� We look for the
�rst common predecessor u of w� and w� in the nesting tree and add all dummy
nodes of �w�� w�� to this subgraph u �Fig� �� lower left��

�� Edges �w�� w�� are routed mostly inside of border rectangles� If w� or w� are inside
��u�� then all dummy nodes d of �w�� w�� with Rmin�u� � R�d� � Rmax�u� belong
to u� In T � on the path from w� �and from w�� resp�� to the root of T �� we look for
the �rst subgraph u that satis�es this condition and add the dummy node d to u
�Fig� �� lower right�� As e�ect in the �nal layout� the edges often �but not always�
cross the upper or lower borders of the rectangles �Fig� �� upper right��

Because dummy nodes are added as leaves to T �� we consider dummy nodes as elements
of the set B in the following�
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Figure �
 Forbidden Ordering within the Layers

� Reduction of Crossings

Now� we have a proper hierarchy of layers ��	 consisting of base nodes� border nodes
that are used as start or end point of connectivity edges between subgraphs� and normal
dummy nodes� Each node v has a relative position P�v� within its layer and belongs to
one subgraph� i�e�� it occurs in the nesting tree T �� All edge segments point downwards
and have the span �� In the usual layer layout method for simple graphs ��	� nodes are
now reordered within the layers according to the barycenter weights

Wp�v� �
�

jpred�v�j

X

w�pred�v�

P�w�

Ws�v� �
�

jsucc�v�j

X

w�succ�v�

P�w�

Wp is used in a top down traversal and Ws in a bottom up traversal of the layers� By this
reordering� we get better P�v� for all base nodes v� However� because of the conventions
�e� and �f� of compound graphs� there are two special rules


� Nodes v�� � � � � vn of a subgraph u of the same rank must be placed in an unbroken
sequence within the layer� If there is a node w not belonging to u that is placed
between vi and vj� then it is not possible to draw a border rectangle around vi and
vj that does not contain w �Fig� �� left��

� If two subgraphs u and u� are not nested then u must be placed unambiguously
to the left or to the right of u�� i�e�� both subgraphs must not be intertwined�
Assume v� and v� belong to u and v�� and v�� belong to u� with R�v�� � R�v��� and
R�v�� � R�v���� If P�v�� � P�v��� and P�v�� � P�v���� then it is impossible to draw
two rectangles for u and u� that do not cross� Thus� this situation is illegal �Fig� ��
right��

Normal crossing reduction with barycenter weights does not respect these rules� How�
ever� if we start with the situation after normal crossing reduction� we have already few
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i

edge crossings� This is a good starting point� Afterwards� we reposition the nodes within
the layers carefully such that nodes of the same subgraph are placed in an unbroken
sequence and subgraphs are not intertwined� The guide value of the relative position of a
subgraph is the average position of its nodes� The complete average position of a subgraph
u is

P�u� �
�

jfv � B ju ���

T
� vgj

X

v�B�u���

T
�

v

P�v�

However� we �rst consider each layer independently� The average position of u for layer
i is

Pi�u� �
�

jfv � B jR�v� � i� u ���

T
� vgj

X

v�B�R�v��i�u���

T
�

v

P�v�

The idea
 if Pi�u�� � Pi�u�� then we expect that many nodes belonging to u� are left of
nodes of u��

We can annotate the nesting tree in time O�jT �j� with the average positions because
we need only one traversal of T �� We store at each node of T � the number Ni�u� of leaves
of T � �base nodes� border nodes or dummy nodes� that belong to u and have rank i� For
simplicity of the formulas� we de�ne Pi�v� � P�v� and Ni�v� � � for leaves of T �� Thus�
during the traversal� we need only to consider the direct successors of u in T � according
to the formula

Ni�u� �
X

u��
T
� w�R�w��i

Ni�w�

Pi�u� �
�

Ni�u�

X

u��
T
� w�R�w��i

Ni�w� Pi�w�
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 Bad Reordering Using P

If we consider layer i independently� we use the nesting tree T �

i that is reduced such
that it contains only leaves of rank i �Fig� �� compare �rst and second row�� This reduced
nesting tree can be traversed such that the children of each inner node are sorted according
to Pi�u�� This needs timeO�jT �

i j log jT
�

i j�� By a sorted traversal� the leaves of T �

i are sorted
such that all nodes of the same subgraph are placed in an unbroken sequence �Fig� ���

If all layers are reordered by a sorted traversal of each T �

i � we know that we can draw
subgraph rectangles at each layer� but � with respect to all layers � still two subgraphs
can be intertwined� We could reorder all nodes of all layers in a similar way by the
complete average position P�u� instead of the average position per layer Pi�u�� This
avoids intertwined subgraphs� but often reorders the layers much more than necessary
�Fig� 
�� Instead� we use the subgraph ordering graph �Fig� ���

De�nition � The subgraph ordering graph consists of all nodes w � S � B� It
contains an edge �w�w�� i
 there are nodes v� v� and a subgraph u� with R�v� � R�v��
and P�v� � P�v��� � �i�e�� v and v� are directly neighbored nodes at the same layer� and
w 	� w� and u� ��T � w ���

T
� v and u� ��T � w� ���

T
� v��

The subgraph ordering graph consists of edges corresponding to the relation �is left
of�� If two nodes v and v� are neighbored and belong to subgraphs u� ��T � � � � ��T � un and
u�� ��T � � � � ��T � u�m� then each ui is left of each u�j� thus we normally need edges between
all pairs �ui� u�j� with � � i � n and � � j � m� However� if u� is left of u��� the nesting
structure automatically implies that each ui is left of each u�j� Thus� it is su�cient to add
the edge �u�� u��� to the subgraph ordering graph�

If we sort the subgraph ordering graph topologically� we get the ordering �O denoting
which subgraph is left of other subgraphs� If two subgraphs are intertwined� the sub�
graph ordering graph is cyclic and cannot be sorted topologically� We must break these
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Situation in the layers

Nesting tree with ‘is left of’ edges

Subgraph Ordering Graph

Figure �
 Subgraph Ordering Graph

cycles by removing edges� Note that there is no direct relation between the number of
removed edges and the number of reordered nodes� Thus it is not necessary to look for the
minimum number of edges to be removed �minimum feedback arc set problem� which is
NP complete�� Instead� we use as heuristics the complete average position of subgraphs�
Cycles of the subgraph ordering graph are broken at the node w with smallest P�w��

If we perform a sorted traversal of all layers according to the order �O� all nodes are
reordered such that they are placed in an unbroken sequence within the layers and no
subgraphs are intertwined� As a variant� we can make the subgraph ordering acyclic by
the heuristics mentioned above� but it is not necessary to use the same �O for each layer�
Topological orderings need not be unique for a given graph� As long as a �O�i for the ith
layer is a topological ordering of the subgraph ordering graph� we get a legal placement of
the nodes� If during the calculation of �O�i there is a choice between several next nodes�
we take the node with the smallest average barycenter weight

Wp�i�u� �
�

jfv � B j R�v� � i� u ���

T
� vgj

X

v�B�R�v��i�u���

T
�

v

Wp�v�

Because this formular is similar to the formula Pi�u�� we can use the same calulation
method in time O�jT �

i j�� This combines the normal crossing reduction by barycenter
weights with the special method of compound graphs� Of course� Wp is used during a
top down traversal of the layers� and a similarly de�ned Ws�i is used during bottom up
traversals of the layers� To sum up� the algorithm is
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Algorithm� Crossing Reduction of Compound Graphs

Given� Proper hierarchy H � �V�� � � � � Vn� with set EG of connectivity edges
and set S of subgraphs� Let T � be the nesting tree of this compound graph

��� C � Number of Crossings in this hierarchy�
��� while C is still unsatisfactory do
��� Sorted Traversal of T �

�
according to P�

��� 		 this produces a placement with unbroken sequences of subgraph nodes in layer �
�
� for each Vi from i � � to n do

��� for each v � Vi do calculate Wp�v�� od
��� Sort Vi by Wp�
�
� Sorted Traversal of T �

i according to Pi

��� 		 this produces a placement with unbroken sequences of subgraph nodes in layer i
���� od

���� Calculate subgraph ordering graph OG�
���� Sort OG topologically and break cycles if necessary
���� for each w � V� � S do Wp���w� � �� od
���� 		 We need an arti�cial Wp�� to calculate �O��
��
� Sorted traversal of T �

�
according to �O��

���� for each Vi from i � � to n do

���� for each w � Vi � S do calculate Wp�i�w�� od
��
� 		 We need Wp�i to calculate �O�i
���� Sorted traversal of T �

i according to �O�i
���� od

���� � � � similar with bottom up layer traversals � � �
���� C � Number of Crossings in this hierarchy�
���� od

Lines �������� produce a ordering with unbroken sequences at the layers� This is the
precondition that the subgraph ordering graph OG can be calculated� Lines ���������
reorder the layers such that subgraph u is placed completely left of subgraph u�� if �u� u��
is an edge in OG after OG is made acyclic� If we do this at layer i� the barycenter weights
of layer i � � can change completely� Thus� the Wp�i�� values must be recalculated and
in�uence the placement by �O�i��� Figure � shows a traversal of the layers by this method�

� Positioning of Nodes and Edges

Finally� we calculate the absolute positions of the nodes such that there is su�cient space
for the border rectangles� Here� we cannot place each layer independently� because this
may yield positions where it is impossible to draw straight vertical border lines between
the subgraphs �compare with Fig� 
� left�� Border rectangles should not overlap� Thus
we introduce arti�cial sequences of dummy nodes to the left and to the right of each
subgraph� A left border segment of a subgraph u consists of dummy nodes vi for each
layer i � Rmin�u�� � � � �Rmax�u� and invisible edges �vi� vi��� between these dummy nodes�

��



upper border nodes right border segmentsleft border segments

final drawingSituation during node positioning

lower border nodes

Figure ��
 Border Segments and Border Nodes

The dummy nodes are added to the left of the nodes of u into the layers� A right border
segment is added similarly �Fig� ����

In ��	� we called such sequences of dummy nodes and edges linear segments� and we
presented a layout method that places linear segments as straight vertical lines without
bendings� This method additionally considered conventions �a�� �b� and �c�� We use it
now to place the nodes and to route the edges� Because left and right border segments are
placed as straight lines� we can draw the real border of the subgraph rectangle there� It
runs exactly along the border nodes such that in the �nal picture� the edges to subgraphs
seem to point to the rectangles�

Figure ��
 Compound Graph

��



Layers in D-Abductor Layers in VCG tool

Figure ��
 Di�erences of Layout Methods

� Conclusion and Comparision with Similar Meth	

ods

The algorithm is implemented in the VCG tool ��	� Figure � was produced by the VCG
tool� Figure �� shows another typical result produced with this algorithm�

As mentioned above� the presented layout method has similarities with the layout
method used in the tool D�Abductor �
	� Both methods are based on the layout in layers�
There are some di�erences


� In �
	� partitioning of nodes into layers is based on a labeling of the nesting tree
instead of the nesting graph� In principle� this corresponds to the calculation of
the upper rank Rmin of subgraphs while the lower rank Rmax is ignored� This may
result in unnecessary reversions of edges while we try to avoid these as described
in section ��

� The VCG tool starts the layout from a global situation of the graph while D�
Abductor preferably treats subgraphs locally� For instance� the layer lines are glob�
ally valid for all subgraphs in the VCG tool� i�e� all nodes of one layer have nearly
the same y coordinate independent of the subgraphs they belong to �Fig� ��� right��
In �
	� each subgraph has own layer positions �Fig� ��� left��

��



� The layer partitioning in �
	 is converted into a proper compound digraph by using
compound dummy nodes� In a proper compound digraph� the upper corners of
subgraphs of one layer are placed at the same y coordinate� Arrangement that
vertically overlap as in Fig� ��� right� are not allowed while they can be produced
by the VCG tool�

� As side e�ect of the proper compound digraph� edges are routed mostly outside of
border rectangles and cross the borders at the sides� This can be compared with
the e�ect of Fig� �� above left� Our algorithm is more �exible here�

� However� there are often less dummy nodes in a proper compound digraph than
in the global partitioning used by the VCG tool� Since the speed of the layout
methods is in�uenced by the number of dummy nodes� the method of �
	 is often
faster�

� Crossing reduction is based on the barycenter sorting of the layers in both methods�
�
	 works recursivly through the nest of subgraphs and calculates local crossing
reduction while respecting the global situation at the same time� We start with
a global crossing situation� where subgraph borders are still not respected� and
reorder the layers carefully afterwards such that subgraph rectangles can be drawn�

Other layout methods are restricted to recursive layout where subgraphs are treated
as large nodes� Edges pointing beyond the border of subgraphs are ignored during the
crossing reduction� Thus they are not routed optimally ��� �	� Such a method is used in
the Edge tool ��	 that allows constraint speci�cations by the user to in�uence partitioning
and crossing reduction�

The method of the VCG tool gived good results� is �exible and fully automatically�
i�e� it does not need user constraints� It is well suited for the layout of block diagrams
and nested compiler graphs� as the VCG tool is designed for� It is well integrated in
the normal layout method of simple graphs such that it is possible to use all variants
of layouts of the VCG tool �e�g� compound orthogonal layouts� compound spline layouts
and compound polygon layouts��
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