
Layout of Compound Directed Graphs

Technical Report A������

Georg Sander
�sander�cs�uni�sb�de�

Universit�at des Saarlandes�
FB �� Informatik�
����� Saarbr�ucken

June 	� �

�

Abstract� We present a method for the layout of compound directed

graphs that is based on the hierarchical layer layout method� Our method

has similarities with the method of Sugiyama and Misue ��� but gives

di�erent results� It uses a global partitioning into layers and tries to

produce placements of nodes such that border rectangles can be drawn

around the nodes of each subgraph� The method is implemented in the

VCG tool�

�

� Introduction

Compound graphs are graphs where nodes are grouped into nested subgraphs� Compound
graphs are useful in many situations� For instance� in interprocedural control �ow dia�
grams� the nodes of each procedure should be grouped together� and in circuit diagrams�
the elements of each module should be surrounded by rectangles indicating its borders�

There are still not many layout algorithms for compound graphs� Most algorithms
recursively deal with subgraphs as large nodes ��� �	 but ignore the global connectivity

Each subgraph is laid out independently which may result in too much edge crossings� if
there are edges going beyond the borders of subgraphs� Other methods are restricted to
planar graphs ��	�

We present a layout method for general directed compound graphs that is based on
layout in layers ��� �	� A similar method was presented by Sugiyama and Misue �
	� There�
a proper compound digraph is constructed where each subgraph consists of local layers�
Di�erent to that� we use a global partitioning into layers and try to produce placements
of the nodes within the layers such that border rectangles can be drawn around the nodes
of each subgraph afterwards� Thus� we consider our method rather as an alternative to
�
	 than as an extension of �
	�

� General Notation

A simple directed graph G � �V�E� consists of the set of nodes V and the set of edges
E � V �V � The set pred�v� � fw � V j�w� v� � Eg contains the direct predecessors� the
set succ�v� � fw � V j�v�w� � Eg contains the direct successors of a node v� We write
v ��G w for an edge �v�w� � E and v ���

G
w for a �potentially empty� sequence of edges

v ��G v� ��G � � � ��G vn ��G w �a path�� A cycle is a nonempty path v ���

G
v� If a simple

graph does not contain cycles� we call it acyclic or DAG� A tree is a DAG T � �V�E�
consisting of n nodes and n� � edges which has a special root node r � V with r ���

T
v

for each v � V � The leaves v of a tree have the property succ�v� � �� All other nodes
except the leaves are called inner nodes of the tree�

A compound graph G � �G�� T �� consists of a simple directed graph G� � �B � S�EG�
and a tree T � � �B �S�ET � �Fig� ��� The set B contains the leaves of T � which are called
base nodes� and the set S contains the inner nodes of T � which are called subgraphs� In
a compound graph� G� represents a connectivity relation between the base nodes and
subgraphs� T � represents a nesting relation
 subgraphs may contain other subgraphs or
base nodes� We say v belongs to u � S i� u ���

T
v�

Remark
 a compound graph is not recursively de�ned as a graph whose nodes might be
graphs whose nodes might be graphs etc� There� we would only allow connectivity edges
between nodes at the same nesting level� The notion compound graph is more general
because it may contain connectivity edges that cross the borders of nested subgraphs�

�

Connectivity relation G�

Nesting relation T � Layout of the compound graph

Figure �
 Compound Graph

� Layout Conventions

The aim is to visualize the connectivity relation by arrows and the nesting relation by
nested border rectangles� These show which nodes and subgraphs belong to the same
subgraph� We use the following layout conventions
 �a� Base nodes are partitioned into
layers� All nodes of the same layer have �nearly� the same y�coordinate� �b� Base nodes
do not overlap edges or other base nodes� �c� Connectivity edges may have bend points
or may cross each other� but we try to avoid bend points and crossings when possible� �d�
Connectivity edges should be uniformly oriented when possible �e�g�� top down�� If the
graph is cyclic� it is not always possible� �e� A border rectangle of a subgraph u contains
exactly the base nodes and the rectangles of subgraphs that belong to u� �f� The border
rectangles of two nonnested subgraphs do not overlap� �g� Connectivity edges may cross
border lines� but we try to avoid such crossings when possible�

The layout algorithm to satisfy these conventions is a variant of the hierarchical
method of layout in layers ��� �	� First� we partition the base nodes into layers� Here we
must consider conventions �a�� �d� and �g�� Connectivity edges crossing several layers are
split into sequences of dummy nodes and short edges� The result is a proper hierarchy
where all connectivity edges are between adjacent layers� Next� we reorder the base nodes
and dummy nodes within the layers such that the result has few crossings� Here we must
consider conventions �c�� �e� and �f�� Finally� we calculate the absolute coordinates of

�

the base nodes� dummy nodes and the border rectangles �considering conventions �b��
�e� and �f�� and draw the edges as line sequences between the dummy nodes�

� Partitioning into Layers

Layers are numbered top down� The uppermost layer has the number �� The task is to
calculate ranksR�v� � IN for all base nodes indicating the layer v belongs to� Connectivity
edges should preferably point top down� A subgraph u has an upper border with rank
Rmin�u� and a lower border with rank Rmax�u�� The nesting conventions imply the
following rule

� If a bordering rectangle of a subgraph u is above �or below� resp�� another base
node or subgraph w then all nodes v belonging to u are automatically above �or
below� resp�� w�

This in�uences the partitioning� Example
 Let G � �G�� T �� be a compound graph� let
two subgraphs u� and u� be nonnested� let the base node v� belong to u� and v� belong to
u�� If two edges �u�� u�� � EG and �v�� v�� � EG exist� then one of these must be reverted�
i�e�� it points converse to the uniform edge orientation� although G� � �B � S�EG� does
not contain a cycle� The combination �B � S�EG �ET � contains the cycle� On the other
hand� if �v�� u�� � EG exist� then the combination �B � S�EG � ET � contains the cycle
v� ��G� u� ��T � v� but the edge �v�� u�� need not to be reverted� It may point to the lower
border of the rectangle of u��

De�nition � A legal rank assignment consists of numberings R
 B � IN� Rmin

S � IN� and Rmax
 S � IN� where

��� Rmin�u� � Rmax�u� for all u � S�
��� Rmin�u� � R�v� � Rmax�u� for all u � S� v � B with u ��T � v�
��� Rmin�u�� � Rmin�u�� � Rmax�u�� � Rmax�u�� for all u�� u� � S with u� ��T � u��

To calculate the positions of the upper and lower borders of rectangles� we simply
introduce two dummy nodes u��� and u��� for each subgraph u and assign ranks to them�
We call them border nodes� Then� we de�ne Rmin�u� � R�u���� and Rmax�u� � R�u�����
i�e�� the upper �or lower� resp�� border of the rectangle is drawn in the layer that contains
u��� �or u���� resp��� Since the borders of rectangles are usually much thinner than base
nodes� we do not mix base nodes and border nodes within the layers� Layers either contain
only border nodes or only base nodes� Between two layers of base nodes� there may be
at most �k layers with border nodes where k is the depth of the tree T �� Thus� we assign
multiples of �k�� as ranks to the base nodes while all other layers are reserved for border
nodes �Fig� �� left�� After the partitioning� empty layers are removed�

�

(-)b (-)f

c

(-)

(-)

e

...... ...

(-)

d(-)

b(+)

a(+)

f(+)

aa

b

e

f

c d

2k

Nr. 2k+1

Nr. 2 (2k+1)

upper border node lower border node

Layers

up
pe

r
lo

w
er

ne
st

in
g

tr
ee

Nesting graphNested graph Layer partitioning

Figure �
 Layer Assignment and Nesting Graph

......

...

...... ...

Correction of upper border nodesExtended nesting graph Corresponding compound graph

Figure �
 Extended Nesting Graph and Border Correction

De�nition � The nesting graph of a compound graph �G�� T �� consists of
��� the set of nodes B � fu��� j u � Sg � fu��� j u � Sg�
��� an edge �u���� v� for each �u� v� � ET with u � S� v � B�

��� an edge �u
���
� � u

���
� � for each �u�� u�� � ET with u�� u� � S�

��� an edge �v� u���� for each �u� v� � ET with u � S� v � B�

�	� an edge �u
���
� � u

���
� � for each �u�� u�� � ET with u�� u� � S�

We call the edges of the nesting graph nesting edges�

The nesting graph consists conceptually of two copies of the nesting tree T � that are
fused at the leaves� In the upper copy� the nodes u��� are used� In the lower copy� the
nodes u��� are used and the edges are reverted such that all paths point to the copy r���

of the root r � T � �Fig� �� right�� The nesting graph is acyclic�

Theorem � If we traverse the nesting graph in topological order and calculate R�v� �
maxfR�w� j w � pred�v�g� �� then this produces a legal rank assignment�

�

This even holds� if we add edges to the nesting graph but keep it acyclic� Thus� we
successively add the following edges of EG to the nesting graph if they do not produce
cycles �Fig� �� left�

��� �v�w� for each �v�w� � EG with v�w � B�
��� �u���� v� for each �u� v� � EG with u � S� v � B and u ���

T
� v�

��� �u���� v� for each �u� v� � EG with u � S� v � B and 	
u ���

T
� v�

��� �v� u���� for each �v� u� � EG with u � S� v � B and u ���

T
� v�

��� �v� u���� for each �v� u� � EG with u � S� v � B and 	
u ���

T
� v�

��� �u���� � u
���
� � for each �u�� u�� � EG with u�� u� � S and u� ���

T
� u��

�
� �u���� � u
���
� � for each �u�� u�� � EG with u�� u� � S and u� ���

T
� u��

��� �u
���
� � u

���
� � for each �u�� u�� � EG with u�� u� � S and 	
u� ��

�

T
� u� and 	
u� ��

�

T
�

u��
After adding these edges a topological sorting as mentioned above gives the rank

assignment� This rank assignment tends to select the smallest possible ranks� This is
unfavorable for the upper border nodes because the upper border of a subgraph u should
be positioned near to the base nodes of u� Thus� Rmin�u� should be as large as possible�
Thus� the extended nesting graph is �nally traversed in converse topological order and

R�u���� � minfR�w� jw � succ�u����g � �

is calculated to correct this situation �Fig �� right�� Because succ�u���� cannot be empty
in the nesting graph� the formula is well de�ned�

� Production of Dummy Nodes

If we delete the nesting edges from the extended nesting graph� the result is a layer
hierarchy that identi�es for all edges between which layers they must be routed� Next� we
must insert the edges e � EG that could not be added to the nesting graph because they
had produced cycles� In this step� we can select which border of a subgraph is appropriate
as anchor point of an edge� because for instance �u

���
� � u

���
� �� �u

���
� � u

���
� � and �u

���
� � u

���
� �

represent the same connectivity edge� This again avoids reverted edges �convention �d���
If the choice of the borders still produces an edge against the edge orientation� we insert
a reverted edge and mark it such that later the arrow head can be drawn at the correct
end point�

After the removal of empty layers� we now split long edges that range over several
layers into sequences of edge segments and dummy nodes� After this� the span of each
edge �v�w� is R�w� � R�v� � �� In a nested graph� each node must be assigned to a
subgraph u� Thus� we must also add the dummy nodes to the nesting tree T ��

The border nodes u��� and u��� belong to u� i�e�� we add the edges u ��T � u��� and u ��T �

u��� to T �� Since unnecessary crossings of edges and borders of the subgraph rectangles

�

...

Situation Situation

Nesting tree Nesting tree

Strategy 1: Dummy nodes always outside Strategy 2: Dummy nodes often inside

Figure �
 Strategies for the Dummy Node Assignment

should be avoided �convention �g��� a dummy node belonging to an edge �w�� w�� must
be assigned at least to the subgraph that contains both w� and w�� By this way� we avoid
that an edge leaves a border rectangle unnecessarily and later reenters the rectangle
producing two crossings with borders� There are two alternative strategies�

�� Edges �w�� w�� are routed mostly outside of border rectangles� If an edge cannot
be routed completely inside ��u�� because either w� or w� do not belong to u� then
all dummy nodes are placed outside of ��u�� As e�ect in the �nal layout� the edges
cross the borders of the rectangles at the sides �Fig� �� upper left�� We look for the
�rst common predecessor u of w� and w� in the nesting tree and add all dummy
nodes of �w�� w�� to this subgraph u �Fig� �� lower left��

�� Edges �w�� w�� are routed mostly inside of border rectangles� If w� or w� are inside
��u�� then all dummy nodes d of �w�� w�� with Rmin�u� � R�d� � Rmax�u� belong
to u� In T � on the path from w� �and from w�� resp�� to the root of T �� we look for
the �rst subgraph u that satis�es this condition and add the dummy node d to u
�Fig� �� lower right�� As e�ect in the �nal layout� the edges often �but not always�
cross the upper or lower borders of the rectangles �Fig� �� upper right��

Because dummy nodes are added as leaves to T �� we consider dummy nodes as elements
of the set B in the following�

illegal

legallegal illegal

Subgraph 2

Subgraph 2Subgraph 1

Subgraph 1

Figure �
 Forbidden Ordering within the Layers

� Reduction of Crossings

Now� we have a proper hierarchy of layers ��	 consisting of base nodes� border nodes
that are used as start or end point of connectivity edges between subgraphs� and normal
dummy nodes� Each node v has a relative position P�v� within its layer and belongs to
one subgraph� i�e�� it occurs in the nesting tree T �� All edge segments point downwards
and have the span �� In the usual layer layout method for simple graphs ��	� nodes are
now reordered within the layers according to the barycenter weights

Wp�v� �
�

jpred�v�j

X

w�pred�v�

P�w�

Ws�v� �
�

jsucc�v�j

X

w�succ�v�

P�w�

Wp is used in a top down traversal and Ws in a bottom up traversal of the layers� By this
reordering� we get better P�v� for all base nodes v� However� because of the conventions
�e� and �f� of compound graphs� there are two special rules

� Nodes v�� � � � � vn of a subgraph u of the same rank must be placed in an unbroken
sequence within the layer� If there is a node w not belonging to u that is placed
between vi and vj� then it is not possible to draw a border rectangle around vi and
vj that does not contain w �Fig� �� left��

� If two subgraphs u and u� are not nested then u must be placed unambiguously
to the left or to the right of u�� i�e�� both subgraphs must not be intertwined�
Assume v� and v� belong to u and v�� and v�� belong to u� with R�v�� � R�v��� and
R�v�� � R�v���� If P�v�� � P�v��� and P�v�� � P�v���� then it is impossible to draw
two rectangles for u and u� that do not cross� Thus� this situation is illegal �Fig� ��
right��

Normal crossing reduction with barycenter weights does not respect these rules� How�
ever� if we start with the situation after normal crossing reduction� we have already few

�

GK H B C I J

P(u)

P= 1

A B C D E F

G H I

J K

2

3 5 4

6

8 9

10

11

7

P=6 P=4
N=3

P=6

N=3

N=11

P=5.4
N=9

K J

D F E

G H I

A B C

2 7 1064

3 4 5 1 8 9

11

11

65.4

JA B C H I KD F EA G D F E

Initial Order Order produced by a sorted traversal

Nesting Tree, successors sortedNesting tree with N(u) and

Figure �
 Sorted Traversal of Reduced Nesting Tree T �

i

edge crossings� This is a good starting point� Afterwards� we reposition the nodes within
the layers carefully such that nodes of the same subgraph are placed in an unbroken
sequence and subgraphs are not intertwined� The guide value of the relative position of a
subgraph is the average position of its nodes� The complete average position of a subgraph
u is

P�u� �
�

jfv � B ju ���

T
� vgj

X

v�B�u���

T
�

v

P�v�

However� we �rst consider each layer independently� The average position of u for layer
i is

Pi�u� �
�

jfv � B jR�v� � i� u ���

T
� vgj

X

v�B�R�v��i�u���

T
�

v

P�v�

The idea
 if Pi�u�� � Pi�u�� then we expect that many nodes belonging to u� are left of
nodes of u��

We can annotate the nesting tree in time O�jT �j� with the average positions because
we need only one traversal of T �� We store at each node of T � the number Ni�u� of leaves
of T � �base nodes� border nodes or dummy nodes� that belong to u and have rank i� For
simplicity of the formulas� we de�ne Pi�v� � P�v� and Ni�v� � � for leaves of T �� Thus�
during the traversal� we need only to consider the direct successors of u in T � according
to the formula

Ni�u� �
X

u��
T
� w�R�w��i

Ni�w�

Pi�u� �
�

Ni�u�

X

u��
T
� w�R�w��i

Ni�w� Pi�w�

�

2.6

P

3.2

1

1.25

1.5

1.3 2.6

3

Initial situation
needs unnecessary reorderings

Placement according to compl.aver.position Placement without reorderings

Figure

 Bad Reordering Using P

If we consider layer i independently� we use the nesting tree T �

i that is reduced such
that it contains only leaves of rank i �Fig� �� compare �rst and second row�� This reduced
nesting tree can be traversed such that the children of each inner node are sorted according
to Pi�u�� This needs timeO�jT �

i j log jT
�

i j�� By a sorted traversal� the leaves of T �

i are sorted
such that all nodes of the same subgraph are placed in an unbroken sequence �Fig� ���

If all layers are reordered by a sorted traversal of each T �

i � we know that we can draw
subgraph rectangles at each layer� but � with respect to all layers � still two subgraphs
can be intertwined� We could reorder all nodes of all layers in a similar way by the
complete average position P�u� instead of the average position per layer Pi�u�� This
avoids intertwined subgraphs� but often reorders the layers much more than necessary
�Fig�
�� Instead� we use the subgraph ordering graph �Fig� ���

De�nition � The subgraph ordering graph consists of all nodes w � S � B� It
contains an edge �w�w�� i
 there are nodes v� v� and a subgraph u� with R�v� � R�v��
and P�v� � P�v��� � �i�e�� v and v� are directly neighbored nodes at the same layer� and
w 	� w� and u� ��T � w ���

T
� v and u� ��T � w� ���

T
� v��

The subgraph ordering graph consists of edges corresponding to the relation �is left
of�� If two nodes v and v� are neighbored and belong to subgraphs u� ��T � � � � ��T � un and
u�� ��T � � � � ��T � u�m� then each ui is left of each u�j� thus we normally need edges between
all pairs �ui� u�j� with � � i � n and � � j � m� However� if u� is left of u��� the nesting
structure automatically implies that each ui is left of each u�j� Thus� it is su�cient to add
the edge �u�� u��� to the subgraph ordering graph�

If we sort the subgraph ordering graph topologically� we get the ordering �O denoting
which subgraph is left of other subgraphs� If two subgraphs are intertwined� the sub�
graph ordering graph is cyclic and cannot be sorted topologically� We must break these

��

......

...

Situation in the layers

Nesting tree with ‘is left of’ edges

Subgraph Ordering Graph

Figure �
 Subgraph Ordering Graph

cycles by removing edges� Note that there is no direct relation between the number of
removed edges and the number of reordered nodes� Thus it is not necessary to look for the
minimum number of edges to be removed �minimum feedback arc set problem� which is
NP complete�� Instead� we use as heuristics the complete average position of subgraphs�
Cycles of the subgraph ordering graph are broken at the node w with smallest P�w��

If we perform a sorted traversal of all layers according to the order �O� all nodes are
reordered such that they are placed in an unbroken sequence within the layers and no
subgraphs are intertwined� As a variant� we can make the subgraph ordering acyclic by
the heuristics mentioned above� but it is not necessary to use the same �O for each layer�
Topological orderings need not be unique for a given graph� As long as a �O�i for the ith
layer is a topological ordering of the subgraph ordering graph� we get a legal placement of
the nodes� If during the calculation of �O�i there is a choice between several next nodes�
we take the node with the smallest average barycenter weight

Wp�i�u� �
�

jfv � B j R�v� � i� u ���

T
� vgj

X

v�B�R�v��i�u���

T
�

v

Wp�v�

Because this formular is similar to the formula Pi�u�� we can use the same calulation
method in time O�jT �

i j�� This combines the normal crossing reduction by barycenter
weights with the special method of compound graphs� Of course� Wp is used during a
top down traversal of the layers� and a similarly de�ned Ws�i is used during bottom up
traversals of the layers� To sum up� the algorithm is

��

L

T

K

P

NI

CBA

NJMHK

A

I

4

Q

A

O

B

T

C

U

N

R

O

A

P

B

Q

C

R

N

S

P

U

L

T

K

L

H

K

M

H

J

M

E

J

D

E

G

D

F

G

I

F

U

L

S

I

R

B

O

B

T

C

Q

I

L

N

U

O

A

P

B

Q

C

R

I

S

K

U

P

T

S

L

O

K

H

H

E

M

M

J

T

E

D

D

G

G

Q

F

J N

H

F

R

4

A

M

B

7

C

F

D

6

E

J

F

D

G

G

H

4

I

E

J

5

K

D

L

A

M

B

N

C

O

E

PQ Q

A

R

F

S

G

UE T

P1

Wp

H

A

M

B

T

C

F

H

L

I

O

J

R

K

R

U

F

M

U

N

S

O

D

P

G

Q

J

R

N

S

DGJNQ

U

O

T

ABCIKPS

E

O

D

EHMT

G

C

F

P2

Wp

P3

I

A

K

B

P

C

S

N

S

P

O

T

DGJNQ

L

EHMT

K

F

H

R

M

L

J

U

E

P

D

Q

G

L

F

U

I

ABCIKPS

U

4

S

R

RO

L

Q

P λ O

λ O,i

1

1

2.28

4 5.6

4.75

7

7

1

2

3

4

5

6

7

8

1 2 3

2 5 5.5

1 2 2 3.5 5 6 7

1 2 3 3 5 65.5

1

2 3 4 5 6 7

2.5 4.5 6.5

1

2 4

3

5

7

6

3 5 6

Nesting tree Initial situation: 24 crossings

1. layer 2. layer

2. layer 3. layer

3. layer

traverse sorted
according

sort according

12 crossingsReduced nesting tree 22 crossings

traverse sorted
according

sort according

Reduced nesting tree 12 crossings 2 crossings

traverse sorted
according

Reduced nesting tree 2 crossings

Graph EHMT and graph DGJNQ

are still intertwined

Subgraph ordering graph with acyclic subgraph ordering graph with

Layers

traverse sorted
according

2 crossings final drawing

Figure �
 Crossing Reduction of Compound Graphs
��

Algorithm� Crossing Reduction of Compound Graphs

Given� Proper hierarchy H � �V�� � � � � Vn� with set EG of connectivity edges
and set S of subgraphs� Let T � be the nesting tree of this compound graph

��� C � Number of Crossings in this hierarchy�
��� while C is still unsatisfactory do
��� Sorted Traversal of T �

�
according to P�

��� 		 this produces a placement with unbroken sequences of subgraph nodes in layer �
�
� for each Vi from i � � to n do

��� for each v � Vi do calculate Wp�v�� od
��� Sort Vi by Wp�
�
� Sorted Traversal of T �

i according to Pi

��� 		 this produces a placement with unbroken sequences of subgraph nodes in layer i
���� od

���� Calculate subgraph ordering graph OG�
���� Sort OG topologically and break cycles if necessary
���� for each w � V� � S do Wp���w� � �� od
���� 		 We need an arti�cial Wp�� to calculate �O��
��
� Sorted traversal of T �

�
according to �O��

���� for each Vi from i � � to n do

���� for each w � Vi � S do calculate Wp�i�w�� od
��
� 		 We need Wp�i to calculate �O�i
���� Sorted traversal of T �

i according to �O�i
���� od

���� � � � similar with bottom up layer traversals � � �
���� C � Number of Crossings in this hierarchy�
���� od

Lines �������� produce a ordering with unbroken sequences at the layers� This is the
precondition that the subgraph ordering graph OG can be calculated� Lines ���������
reorder the layers such that subgraph u is placed completely left of subgraph u�� if �u� u��
is an edge in OG after OG is made acyclic� If we do this at layer i� the barycenter weights
of layer i � � can change completely� Thus� the Wp�i�� values must be recalculated and
in�uence the placement by �O�i��� Figure � shows a traversal of the layers by this method�

� Positioning of Nodes and Edges

Finally� we calculate the absolute positions of the nodes such that there is su�cient space
for the border rectangles� Here� we cannot place each layer independently� because this
may yield positions where it is impossible to draw straight vertical border lines between
the subgraphs �compare with Fig�
� left�� Border rectangles should not overlap� Thus
we introduce arti�cial sequences of dummy nodes to the left and to the right of each
subgraph� A left border segment of a subgraph u consists of dummy nodes vi for each
layer i � Rmin�u�� � � � �Rmax�u� and invisible edges �vi� vi��� between these dummy nodes�

��

upper border nodes right border segmentsleft border segments

final drawingSituation during node positioning

lower border nodes

Figure ��
 Border Segments and Border Nodes

The dummy nodes are added to the left of the nodes of u into the layers� A right border
segment is added similarly �Fig� ����

In ��	� we called such sequences of dummy nodes and edges linear segments� and we
presented a layout method that places linear segments as straight vertical lines without
bendings� This method additionally considered conventions �a�� �b� and �c�� We use it
now to place the nodes and to route the edges� Because left and right border segments are
placed as straight lines� we can draw the real border of the subgraph rectangle there� It
runs exactly along the border nodes such that in the �nal picture� the edges to subgraphs
seem to point to the rectangles�

Figure ��
 Compound Graph

��

Layers in D-Abductor Layers in VCG tool

Figure ��
 Di�erences of Layout Methods

� Conclusion and Comparision with Similar Meth	

ods

The algorithm is implemented in the VCG tool ��	� Figure � was produced by the VCG
tool� Figure �� shows another typical result produced with this algorithm�

As mentioned above� the presented layout method has similarities with the layout
method used in the tool D�Abductor �
	� Both methods are based on the layout in layers�
There are some di�erences

� In �
	� partitioning of nodes into layers is based on a labeling of the nesting tree
instead of the nesting graph� In principle� this corresponds to the calculation of
the upper rank Rmin of subgraphs while the lower rank Rmax is ignored� This may
result in unnecessary reversions of edges while we try to avoid these as described
in section ��

� The VCG tool starts the layout from a global situation of the graph while D�
Abductor preferably treats subgraphs locally� For instance� the layer lines are glob�
ally valid for all subgraphs in the VCG tool� i�e� all nodes of one layer have nearly
the same y coordinate independent of the subgraphs they belong to �Fig� ��� right��
In �
	� each subgraph has own layer positions �Fig� ��� left��

��

� The layer partitioning in �
	 is converted into a proper compound digraph by using
compound dummy nodes� In a proper compound digraph� the upper corners of
subgraphs of one layer are placed at the same y coordinate� Arrangement that
vertically overlap as in Fig� ��� right� are not allowed while they can be produced
by the VCG tool�

� As side e�ect of the proper compound digraph� edges are routed mostly outside of
border rectangles and cross the borders at the sides� This can be compared with
the e�ect of Fig� �� above left� Our algorithm is more �exible here�

� However� there are often less dummy nodes in a proper compound digraph than
in the global partitioning used by the VCG tool� Since the speed of the layout
methods is in�uenced by the number of dummy nodes� the method of �
	 is often
faster�

� Crossing reduction is based on the barycenter sorting of the layers in both methods�
�
	 works recursivly through the nest of subgraphs and calculates local crossing
reduction while respecting the global situation at the same time� We start with
a global crossing situation� where subgraph borders are still not respected� and
reorder the layers carefully afterwards such that subgraph rectangles can be drawn�

Other layout methods are restricted to recursive layout where subgraphs are treated
as large nodes� Edges pointing beyond the border of subgraphs are ignored during the
crossing reduction� Thus they are not routed optimally ��� �	� Such a method is used in
the Edge tool ��	 that allows constraint speci�cations by the user to in�uence partitioning
and crossing reduction�

The method of the VCG tool gived good results� is �exible and fully automatically�
i�e� it does not need user constraints� It is well suited for the layout of block diagrams
and nested compiler graphs� as the VCG tool is designed for� It is well integrated in
the normal layout method of simple graphs such that it is possible to use all variants
of layouts of the VCG tool �e�g� compound orthogonal layouts� compound spline layouts
and compound polygon layouts��

References

��	 Eades	 P
� Sugiyama	 K

 How to Draw a Directed Graph� Journal of Information
Processing� �� ���� pp� ������
� �����

��	 Feng	 Q
W
� Eades	 P
� Cohen	 R
F

 Planar Drawings of Clustered Graphs�
Technical Report ������ Department of Computer Science� The University of New�
castle� Australia� �����

��

��	 Henry	 T
R

 Interactive Graph Layout� The Exploration of Large Graphs� Ph�
D� Thesis� TR ������ Department of Computer Science� The University of Arizona�
�����

��	 Paulisch	 F
N
� Tichy	 W
F

 EDGE� An Extendible Graph Editor� Software �
Practice and Experience �� �S��� pp� ������ �����

��	 Sander	 G

 Graph Layout Through the VCG Tool� in Tamassia� R�� Tollis� I�G��
eds�
 Graph Drawing� Proc� DIMACS Intern� Workshop GD���� LNCS ���� pp�
�������� Springer� �����

��	 Sander	 G

 A Fast Heuristic for Hierarchical Manhattan Layout� in Branden�
burg� F�J�� ed�
 Graph Drawing� Proc� Symposium on Graph Drawing� GD����
LNCS ���
� pp� ��
����� Springer� �����

�
	 Sugiyama K
� Misue K

 Visualization of Structural Information� Automatic
Drawing of Compound Digraphs� IEEE Trans� Sys�� Man� and Cybernetics� ������
pp� �
������ �����

��	 Sugiyama	 K
� Tagawa	 S
� Toda	 M

 Methods for Visual Understanding of
Hierarchical Systems� IEEE Trans� Sys�� Man� and Cybernetics� SMC ������ pp�
�������� �����

��	 War�eld	 J
N

 Crossing Theory and Hierarchy Mapping� IEEE Trans� Sys�� Man�
and Cybernetics� SMC
�
�� pp� �������� ��

�

�

