
E�cient and Precise Sharing Domains for Logic Programs

Christian Fecht

Universit�at des Saarlandes

Postfach ������

����� Saarbr�ucken

Tel�� 	�
�����
������

Fax � 	�
�����
���
���

fecht�cs�uni�sb�de

Abstract

Sharing information between logical variables is cru�
cial for a lot of analyses of logic programs� e�g�� free�
ness analysis� detection of And�parallelism� and occur�
check� Therefore� the development of accurate sharing
domains has attracted a lot of research� The sharing
domain JL of Jacobs�Langen� which represents sub�
stitutions by powersets of variables� is considered one
of the most precise sharing domains� However� it is
too ine�cient in practice� lots of programs cannot be
analyzed in reasonable time� Improvements of JL� by
adding auxiliary information like linearity� su�er from
the same ine�ciency� too� To improve upon this situ�
ation� we systematically derived a new sharing domain
�JL from JL which represents variables by downward
closed powersets of variables� We combined �JL with
the groundness domainPOS� Both JL and the new do�
main �JL	POS have been implemented with the help
of the Prolog analyzer generator GENA� In order to
study the impact of linearity� we also implemented the
abstract domains JL	LIN and �JL	POS	LIN� The
new domains are much more e�cient as their counter�
parts JL and JL	LIN� respectively� Even more impor�
tant� they can analyze even largest real�world programs
in reasonable time� Surprisingly� the new sharing do�
mains seem to have the same precision than JL and
JL	LIN in practice�

� Introduction

Sharing analysis of logic programs aims at computing
independence information for variables� Two variables
X and Y are independent in a given substitution � if
instantiating X does not instantiate Y and vice versa�
Instead of computing independence directly� the com�
plementary information � possible sharing � is com�
puted� Two variables X and Y share in a substitution

� if they are bound to terms containing at least one
common variable� that is vars�X�� � vars�Y �� �� ��
Independence is important for the following reasons�

And�Parallelism An And�parallel Prolog implemen�
tation ���� �� would try to solve a sequence �A�B� of
goals by solving the goals A and B in parallel� To do
this e�ciently� the goals A and B have to be indepen�
dent� De�nite independence information can be stati�
cally computed by means of a sharing analysis ��
� ����

Freeness For a Prolog compiler the most useful infor�
mation about a variable at a particular program point
is that it is always bound or always free ���� ���� Free�
ness is not closed under instantiation� Thus� a variable
X may lose its freeness� because another variable is in�
stantiated� In order to compute non�trivial and correct
freeness information� one has to know about possible
sharing between variables�

Occur�Check If a variable X is uni�ed with a term
t� one has to test whether X occurs in t� If this is the
case� then uni�cation fails� This test is commonly re�
ferred to as occur�check and is commonly omitted in
Prolog implementations for the sake of e�ciency� The
missing occur�check corrupts the logical soundness of
Prolog� Occur�check reduction aims at detecting uni�
�cations where the occur�check can be omitted safely�
���� describes an occur�check reduction algorithm based
on sharing information�

Because of the importance of available sharing informa�
tion� the development of e�cient and accurate sharing
analyses ���� ��� �
� ��� for logic programs has attracted
a lot of research� Most of these analyses are based on the
technique of abstract interpretation ���
�� The actual
analyzers can be split into a generic abstract interpreter
and an abstract domain which provides a lattice of ab�
stract substitutions� an abstract uni�cation procedure�
and functions for abstract procedure entry and exit�

The well�known sharing domain JL of Jacobs and
Langen ���� is considered one of the most precise sharing
domains� It describes concrete substitutions by sets of
sets of variables� The domain JL does not only express
sharing� but is also able to express ground dependen�
cies between variables� Unfortunately� JL is inherently
ine�cient� Its abstract substitutions can be exponen�
tially large� Abstract uni�cation is done by means of
a closure operator whose computation has exponential
worst�case complexity� Implementations of JL �section
�� ���� ���� indicate that it is not feasible in practice�
since a lot of �even small� programs can not be ana�
lyzed within reasonable time� JL has been enlarged
with additional information� for instance freeness ����
and linearity ��� �
� ���� Linearity helps to infer more
accurate sharing information� Additionally� available
linearity information keeps the sets of sets of variables
small by avoiding the expensive closure operator when�
ever it is possible� Consequently� the abstract domain
JL	LIN is often dramatically faster than JL���� How�
ever� these enriched sharing domains are also not able
to analyze a lot of programs �section �� ������ Appar�
ently� the additional information is either not present in
the concrete computation� or cannot be inferred by the
abstract interpreter�

Our contributions are threefold�

� We systematically derive a new sharing domain
from JL� The new domain �JL is obtained by only
considering downward closed powersets of variables
which can be e�ciently represented by their max�
imal elements� Abstract uni�cation in �JL is de�
�ned on such representations and its soundness is
proven� It is shown that �JL represents sharing
and de�nite groundness� but no ground dependen�
cies� Therefore� we add the groundness domain
POS ���� �� ��� to �JL yielding the new sharing
domain �JL	POS�

� We implemented and JL and �JL	POS with the
help of the Prolog analyzer generator GENA �����
The generated analyzers were run on a large set of
benchmark programs� The new domain �JL	POS
is much more e�cient than JL� Even more impor�
tant� it can analyze even largest real�world pro�
grams in reasonable time� Surprisingly� the new
sharing domain seems to have almost the same
precision than JL in practice� There is only one
program in our benchmark suite where JL com�
putes better sharing information�

� We also implemented the abstract domains
JL	LIN and �JL	POS	LIN in order to study
the impact of linearity on the precision and the
e�ciency of the analysis� Whereas JL	LIN can�
not analyze many �even some small� programs�

�JL	POS	LIN can analyze all programs and is
substantially faster than JL	LIN in most cases�
Furthermore� �JL	POS	LIN seems to have the
same precision than JL	LIN in practice�

The overall structure of our paper is as follows� In sec�
tion � we recall fundamental notions and basic de�ni�
tions of the theory of abstract interpretation of logic
programs� The groundness domains POS and DEF
are brie�y described� Section
 gives a detailed descrip�
tion of the sharing domain JL of Jacobs�Langen and
recalls some of its important properties� In section �
we �rst derive abstract domain �JL from JL by only
allowing downward closed powersets as abstract substi�
tutions� We show how abstract uni�cation can be di�
rectly expressed on representations of downward closed
sets� Furthermore� the expressive power of �JL is in�
vestigated� By adding groundness domain POS to �JL
we obtain our new sharing domain �JL	POS� Section
� theoretically compares �JL	POS with JL� Section
� presents our implementations of JL and �JL	POS�
For a large set of benchmark programs� we present the
analysis time and precision of our sharing analyzers
based on JL and �JL	POS� Section � discusses the
impact of linearity and presents the abstract domains
JL	LIN and �JL	POS	LIN� Finally� we summa�
rize the results from our practical experiments and con�
clude�

� Preliminaries

Let V be a nonempty� �nite set of variables� Terms are
de�ned as usual� A substitution � is an almost iden�
tity mapping from variables to terms� A substitution
� is idempotent i� �� � � holds� We denote the set of
idempotent substitutions by Subst� A substitution �
is an instance of �� �� �� if there exists a substitution
� with � � ��� A variable X is ground with respect
to substitution � � Subst if vars�X�� � �� Two vari�
ables X and Y share with respect to substitution � if
vars�X�� � vars�Y �� �� ��

De�nition � �De�nite Groundness�
ground � P�Subst� � P�V�
ground ��� �

T
��� fX � V j vars�X�� � �g

De�nition � �Possible Sharing�
share � P�Subst� � fR � V	V j R sym� and irre��g
share��� �

S
��� f�X� Y � j vars�X�� � vars�Y �� �� �g

Note that a variable X which is ground with respect to
a substitution � cannot share with any other variable�
Therefore� any reasonable sharing analysis should infer
groundness as well�

�

Abstract interpretation ���
� formalizes program
analysis as approximate computation� Instead of ex�
ecuting a program with data� it is executed with de�
scriptions of the data� In our case� this means that
logic programs are executed with abstract substitutions
instead of concrete substitutions� Concrete and ab�
stract substitutions are related by a description relation�
To every operation on the concrete substitutions� there
must exist a corresponding abstract operation mim�
icking the concrete operation on the abstract substi�
tutions� A generic abstract interpreter ��� is an ab�
stract interpreter which is parametrized over an ab�
stract domain� An abstract domain consists of a com�
plete lattice �Asub�
� �� �� t� of abstract substitu�
tions and the abstract versions of the concrete oper�
ations� The description relation between concrete and
abstract substitutions is often given by an abstraction
function � � P�Subst� � Asub or by a concretization
function � � Asub� P�Subst�� In the case of logic pro�
grams� the abstract domain must further provide an ab�
stract uni�cation procedure aunify � Asub	V	Term�
Asub� and functions for abstract procedure entry and
exit�

An assignment is a mapping � � V � f�� �g from
variables to truth values� A Boolean function f � �V�
f�� �g� � f�� �g maps assignments to truth values� An
assignment � is a model of the Boolean function f if
f��� � � holds� A Boolean function f is positive if
f��� � � where � is the assignment that maps each
variable to truth value �� A Boolean function is de�nite
if the set of all its models is closed under intersection�
Boolean functions can be ordered by the implication
order� The resulting poset is a complete lattice� The
ground variables of substitution � can be represented
by an assignment ����

����X� �

�
� � X is ground with respect to �
� � otherwise

De�nition � A Boolean function f describes a substi�
tution � � Subst if f����� � � for all �� ��

The groundness domains POS and DEF ��� consist of
the complete lattice of positive Boolean functions and
de�nite Boolean functions� respectively� with the above
description relation�

� The Sharing Domain of Jacobs�Langen

The sharing domain JL of Jacobs and Langen ���� rep�
resents substitutions by sets of sets of variables� such
as f�� fXg� fX�Y g� fU� Y� Zgg� The key notion in the
de�nition of JL is that of occurrence�

De�nition �
occ � Subst	V� P�V�
occ���X� � fY � V j X � vars�Y ��g

De�nition 	 The abstract domain JL�
lattice � AsubJL � fS � P�P�V�� j S �� �
 � � Sg
order � vJL � �
lub � tJL � �
abs � �JL��� �

S
���focc��� X� j X � Vg

Example � Let V � fU� V�W�X� Y� Zg be the vari�
ables of interest and � � fU�a�X�g�Y� V �� Z�f�W�Y �g�

occ��� U � � � occ��� V � � fV�Xg
occ���W � � fW�Zg occ���X� � �
occ��� Y � � fX�Y� Zg occ��� Z� � �

Thus� �JL��� � f�� fV�Xg� fW�Zg� fX�Y� Zgg� �

The elements of an abstract substitution S � AsubJL
are called sharing groups and are themselves sets of
variables� It is well known that an abstract substitu�
tion S � AsubJL expresses the following information�

Sharing Variables X and Y share in any substitution
� described by S if there exists a sharing group A � S
with X�Y � A� More formally�

share��JL�S�� � f�X�Y � j X �� Y� �A � S � X�Y � Ag

Groundness Variable X is de�nitively ground in any
substitution described by S if X does not occur in any
sharing group of S� i�e�� X �� vars�S�� More formally�

ground ��JL�S�� � V � vars�S�

Ground Dependencies In ��� it is shown that S ex�
presses ground dependencies which coincide with the
de�nite Boolean function def JL�S� de�ned as

def JL�S� � �f�W� � �W� j �M � S	
�W� �M �� ��
 �W� �M �� ��g

Example � Let V � fU�W�X� Y� Zg be the variables
of interest� Consider the abstract substitution S � f��
fXg� fX�Y g� fY� Zg� fU�X�Zgg� The following infor�
mation is expressed by S�

sharing pairs f�X�Y �� �Y� Z�� �U�X�� �X�Z�g
ground variables fWg
dependencies W � �X � U � � �Z � U �

� �U � Y � Z� � �X � Y � Z�
� �X � Z � Y � �

Abstract Uni�cation

We need some additional de�nitions in order to de�ne
the abstract uni�cation function aunifyJL � Asub	V	
Term� Asub�

S� � S� � fA �B j A � S�� B � S�g

SjM � fA � S j A �M �� �g

De�nition
 A set S � P�P�V�� is closed under union
if A � S and B � S implies A � B � S� The least
superset of S that is closed under union is denoted by
S��

Abstract uni�cation aunifyJL�S� X� t� is de�ned by fol�
lowing three cases�

Case �� X �� vars�S�
X is ground� After the successful uni�cation all vari�
ables occurring in t must be ground� too� Therefore� we
remove all sharing groups from S that contain at least
one variable from t�

 aunifyJL�S� X� t� � S � fA � S j A � vars�t� �� �g�

Case �� vars�t� � vars�S� � �
All variables in t are ground� After the successful uni�
�cation X must be ground� too� Therefore� we remove
from S all sharing groups that contain X�

 aunifyJL�S� X� t� � S � fA � S j X � Ag

Case �� Neither X �� vars�S�� nor vars�t��vars�S� � �

 aunifyJL�S� X� t� � �S�SjfXg�vars �t�� � �SjfXg�� �
�Sjvars�t��

��

The �rst two cases deal with the propagation of ground�
ness� Note that a ground variable cannot share with any
other variable� If variable X becomes ground through
uni�cation� all sharing groups containingX can be safely
removed from S� Case
 is the most complicated one�
The sharing groups which contain a variable occurring
in the uni�cation equation X � t are replaced by the
pairwise union of the closure of all groups sharing with
the left�hand side and the closure of all groups sharing
with right�hand side of the equation�

Example � Consider S � f�� fUg� fXg� fYg�
fX�Y g� fY� Zg� fU�Zgg and the uni�cation equation X �
f�Y� Z�� Let us compute aunifyJL�S� X� f�Y� Z���

SjfXg � ffXg� fX�Y gg

�SjfXg�� � ffXg� fX�Y gg

SjfY�Zg � ffY g� fX�Y g� fY� Zg� fU�Zgg

�SjfY�Zg�
� � ffY g� fX�Y g� fY� ZgfU�Zg� fX�Y� Zg�

fU� Y� Zg� fU�X� Y� Zgg

Thus� �SjfXg�� � �Sjvars�t��
� � ffX�Y g� fX�Y� Zg�

fU�X�Zg� fU�X� Y� Zgg and the result of the uni�cation
is aunifyJL�S� X� f�Y� Z�� � f�� fUg� fX�Y g�
fX�Y� Zg� fU�X�Zg� fU�X� Y� Zgg� �

To summarize�JL accurately models sharing and ground
dependencies� However� it is too ine�cient in practice
�see section ��� The abstract uni�cation procedure is
very ine�cient� The computation of the closure S�

has exponential worst�case complexity� Application of
the closure operator and the subsequent pairwise union
rapidly lead to combinatorial explosion�

� The Abstract Domains �JL and �JL�POS

One of the nice features of abstract interpretation is
that one can always replace a description d by a greater
description d�� e�g�� d v d�� By doing so� the overall re�
sult of the abstract operations may be less precise� but
it will always be correct� The correctness of the �nal re�
sult follows from the monotonicity of the description re�
lation and the monotonicity of the abstract operations�
This idea is utilized� for instance� in the technique of
widening ��� ��� which speeds up �xpoint iterations or
even forces possibly in�nite iterations to terminate� An�
other application of the replacement idea would be to
replace a description d whose computer representation
is to big by a greater description with a more e�cient
representation�

Let us apply this idea in order to cope with the in�
herent ine�ciency of abstract domain JL� Thus� we
replace an S � AsubJL by an S� with S � S�� Unfor�
tunately� S� contains more sharing groups than S� If
we represent power sets of variables explicitly by listing
their elements� then the representation of S� is larger
than the representation of S� Thus� replacing S by S�

does not only result in a loss of precision� but also makes
the abstract interpretation even more ine�cient� Nev�
ertheless� we can apply our idea if we ensure that S� is
always chosen in such a way that it allows for a compact
representation� Good candidates are those sets which
are downward closed�

De�nition � A set S � P�P�V�� is downward closed
i� the following holds� M � S implies N � S for each
N �M �

De�nition
 The downward closure �S of a powerset
S � P �P�V�� is de�ned by �S � fN � V j �M �
S with N �Mg�

A set S � P�P�V�� is represented by a set E � P�P�V��
i� S � �E� It is well�known that downward closed sets
are represented by its maximal elements as the following
lemma states�

Lemma � If S � P�P�V�� is downward closed� then S
can be represented by its maximal elements� S � �fM �
S jM is maximal in Sg�

Example � Consider the downward closed set
S � f�� fXg� fY g� fZg� fWg� fX�Yg� fX�Zg� fY� Zg�
fX�Wg� fX�Y� Zgg� Set S is represented by its maximal
elements ffX�Y� Zg� fX�Wgg� Note that S �
�ffX�Y� Zg� fX�Wgg� �

As explained above� an abstract substitution S � AsubJL
expresses sharing information� de�nite groundness� and
ground dependencies� What is lost when S is replaced
by its downward closure �S�

�

Lemma � �� shareJL��S� � shareJL�S�

	� groundJL��S� � groundJL�S�

� def JL��S� �
V

groundJL�S�

By taking the downward closure� only the ground de�
pendencies are lost� The sharing and de�nite ground�
ness information are not changed� Note� that the union
of downward closed sets is downward closed� too� A new
sharing domain �JL can thus be obtained from JL by
restricting the set of abstract substitutions to downward
closed powersets of variables� The abstract uni�cation
in �JL is the downward closure �aunifyJL�S� X� t�� of
the result of the abstract uni�cation in JL�

De�nition � The abstract domain �JL�

Asub�JL � fX � P�P�V�� j S is downward closedg
v�JL � �
t�JL � �
��JL��� � �

S
��� focc��� X� j X � Vg

aunify�JL�S� X� t� � �aunifyJL�S� X� t�

The soundness of the abstract uni�cation in �JL follows
from the soundness of the abstract uni�cation in JL
and from aunifyJL�S� X� t� � aunify�JL�S� X� t� for all
downward closed S � P�P�V��� X � V� and terms t�

So far� nothing has been gained since abstract uni�
�cation in �JL is de�ned in terms of abstract inter�
pretation in JL� Since a downward closed powerset S
is represented by a powerset E with S � �E� we will
next de�ne abstract uni�cation directly on the repre�
sentation E instead of �E� To this end� we make the
following simple observations�

�� The powerset �E contains the same variables as
its representation E� i�e�� vars�E� � vars��E��

�� Removing all sets from �E which have a common
element with set G is done on the representation
by removingG from each set in E� i�e�� �fA � �E j
A �G � �g � �fA �G j A � Eg�

� The representation of a powerset ��E�� which is
closed under union is simply the union of all sets
in E� i�e�� ���E�� � ��

S
E�� Note that the repre�

sentation of ��E�� is a singleton�

�� ����E�� � ��E��� � ��E� �E���

It should now be relatively easy to de�ne the abstract
uni�cation aunify�JL��E� X� t� on the representation E
directly� We consider the following three cases�

Case �� X �� vars�E�
Since vars��E � � vars�E�� variable X is ground and�
therefore all variables in t have to be ground� too� We
remove all sharing groups from �E which contain a

variable from vars�t�� On the representation� this is
achieved by deleting all variables in vars�t� from E�

 aunify�JL��E� X� t� � �fA� vars�t� j A � Eg

Case �� vars�t� � vars�E� � �
By the same argument as above� we conclude that X
has to be ground� Therefore X is removed from the
representation E�

 aunify�JL��E� X� t� � �fA� fXg j A � Eg

Case �� Neither X �� vars�E� nor vars�t��vars�E� � �

 aunify�JL��E� X� t� � ���E � EjfXg�vars�t�� �S
EjfXg�vars�t��

The third case which actually deals with sharing has
been greatly simpli�ed� Instead of computing closures
under union and pairwise unions of powersets� all shar�
ing groups of the representation which contain a vari�
able in vars�X � t� are replaced by their union�

Theorem � aunify�JL��E�X� t� � �aunifyJL��E�X� t��

In contrast to JL abstract domain �JL does not model
ground dependencies between variables� Hence� �JL
may detect less ground variables than JL� Since no
ground variable can share with any other variable� �JL
may detect much more sharing pairs than JL� In or�
der to compensate this loss of precision� we add the
groundness domain POS ���� �� ��� to �JL� Although
groundness analysis with POS has to solve a theoreti�
cally intractable problem� implementations of POS are
amazingly fast in practice� The reduced product �
� of
�JL and POS is denoted �JL	POS� Abstract domain
POS will never infer less ground variables than DEF�
As a consequence� �JL	POS is more precise with re�
spect to groundness than JL�

Abstract uni�cation in �JL	POS is similar to ab�
stract uni�cation in �JL� The main di�erence is that
ground variables are not inferred from the sharing com�
ponent� but from the POS�component� Principally�
abstract uni�cation is independently done both in the
sharing� and POS�component of the abstract substitu�
tion� and then the resulting pair is reduced� Reduction
amounts to assuring that variables that are ground ac�
cording to the POS�component do not occur in any
sharing group in the sharing component of the abstract
substitution�

� Comparison of JL and �JL�POS

As shown above� �JL does not express ground depen�
dencies between variables� To remedy this� we have
added the groundness domainPOS to �JL yielding the
abstract domain �JL	POS� Since there are programs
for which POS computes strictly better groundness in�
formation than DEF� which is a part of JL� there are

�

also programs where �JL	POS computes strictly bet�
ter sharing information than JL�

Example 	 Consider the following logic program�

main �� p�X� Y�� X � Y�
p�a� ��
p� � b��

POS infers that both X and Y are ground after the
uni�cation X � Y � Thus� �JL	POS infers that X
and Y are independent at the exit point of main�	� To
the contrast� DEF is not able to infer the groundness
of X and Y � Hence� an analysis with JL yields that X
and Y possibly share at the exit point of main�	� �

Besides de�nite groundness and ground dependencies�
JL does express a further property which is useful for
computing better sharing information� This property
�strong coupling between sharing pairs� is illustrated by
the following example�

Example
 Let V � fX�Y� Zg be the variables of in�
terest� Consider the following abstract substitutions in
JL�

S� � f�� fXg� fY g� fZg� fX�Y� Zgg

S� � f�� fXg� fY g� fZg� fX�Y g� fY� Zg

Both S� and S� express the same sharing information
�f�X�Y �� �X�Z�� �Y� Z�g� and the same ground depen�
dencies �� � DEF�� Note that S� is downward closed
and thus S� � �JL� Now consider the uni�cation X �
a� Grounding X in S� yields f�� fY g� fZgg� Thus�
there is no sharing between Y and Z� Although variable
X does not occur in the sharing pair �Y� Z�� the ground�
ing of X has removed the sharing pair �Y� Z�� The shar�
ing pairs �X�Y �� �X�Z�� and �Y� Z� are strongly cou�
pled in S�� Grounding one of fX�Y� Zg will remove all
sharing between these variables� However� grounding X
in S� yields f�� fY g� fZg� fY� Zgg� Thus� there is still
a possible sharing between Y and Z� �

This example shows that there are programs where JL
computes strictly better sharing information than
�JL	POS� Summarizing� JL and �JL	POS are un�
comparable� In practice� however� JL is at least as ac�
curate as �JL�

� Implementation and Experimental Eval	

uation

In order to practically compare e�ciency and precision
of JL and �JL	POS we implemented analyzers based
on these domains and run them on a large set of Prolog
programs� The implementation work has been greatly

simpli�ed by the use of the Prolog analyzer generator
GENA ���� which is implemented itself in SML� The
�xpoint algorithm we used for the benchmarks is the
generic and general algorithm WRT from ��
�� This
algorithm computes a part of the precise abstract input�
output semantics ��P �� � Pred	 Asub� Asub�

Sets of variables are implemented by lists of integers
where each integer is used as a bit vector� Since most
clauses have less than
� variables� this representation
is very compact and e�cient� Powersets of variables
are implemented as balanced binary trees over sets of
variables� Downward closed powersets are canonically
represented as the list of their maximal elements� At
last� Boolean functions are implemented by binary de�
cision diagrams �
� �� ���� the state�of�the�art technique
for representing and manipulating Boolean functions in
computers�

Figure � shows the results of our experiments� The
measurements were done on a Sun �� with ��MB main
memory� We used SML of New Jersey version ��
� The
analysis times include system and garbage collection
time and are the average of �ve runs� Our analyzer
computes call modes for the predicates in the program�
A call mode for a predicate is a statement about its
arguments� The precision of a call mode measured as
the number of sharing pairs between arguments� The
precision in �gure � is the sum of the precisions of the
call modes for all predicates in the program� Recall that
the less the number of sharing pairs� the higher is the
precision�

Some of the programs in our benchmark suite are
large real�word applications� aqua�c is the complete
source code of Peter Van Roy s Aquarius Prolog com�
piler �about ����� lines of code�� b	 is a large math�
ematical application �about ���� lines of code�� chat
is D�H�D� Warrens chat��� system �about ���� lines of
code�� and read and readq are Prolog readers� The other
programs were either taken from the benchmark suite
of Aquarius Prolog or from the benchmark suites of the
GAIA ��� and PLAIA ��
� systems�

The following observations can be made from the
numbers of �gure ��

�� Programs action� aqua�c� chat � chat�parser � re�
ducer and sdda could not be analyzed by JLwithin
one hour� Even worse� none of them could be ever
analyzed completely� For instance� the analysis
of chat�parser had to been interrupted after seven
�!� days� The inability of JL to analyze these pro�
grams is not due to the actual size of the programs
�reducer and sdda are smal programs each having
about
�� lines of code�� but to the large number
of variables in some of their clauses�

�� All programs can be analyzed with �JL	POS�

�

Programm e�ciency precision

�JL�POS JL ratio �JL�POS JL

action�pl ���	
 � � �� �

ann�pl
��� ����� ���� �� ��

aqua�c�pl ����
	 � � ��	� �

b��pl ��
� ����� �
�� �� ��

boyer�pl
��� ����
�� �
 �

browse�pl
��
 ���� ����

chat�pl ����� � � ���� �

chat�parser�pl 	��� � � ��� �

chess�pl
��� ����� ���
 �� ��

circuit�pl
�
�
�
�
��

cs�pl
��� ���� ��� � �

�atten�pl
��� ����
 ���
 �� ��

gabriel�pl
���
��
 ��� �� ��

life�pl
�
�
��� ��� � �

nand�pl
��
 ���� ��	

peep�pl
���
���
�	

press�pl
��� ���
� �
�
 �
 �

read�pl
�
� ��
� 	�� �
 �

readq�pl ���� �
���� ���
 �

 �

reducer�pl
��� � � �
� �

scc�pl
���
���
��

sdda�pl
��� � � �� �

sendmore�pl
���
��� ��� � �

serialise�pl
��� ��	� ���� �
 �

triangle�pl
��

��

�

wgc�pl
�
�
�
�
�	 � �

Table �� Experimental Evaluation of �JL	POS and
JL

Most analysis times are very small or at least mod�
erate� Even the huge aqua�c could be analyzed
within reasonable time� Programs reducer and
sdda which JL was unable to analyze are analyzed
by �JL	POS within half a second� On most pro�
grams� �JL	POS is dramatically faster than JL�

� For most programs� �JL	POS infers the same
number of sharing pairs than JL� Indeed� there is
only one program �chess� where �JL	POS is less
precise and infers one additional sharing pair� This
loss of precision is due to inability of �JL	POS
to express strong coupling between sharing pairs�
Thus� �JL	POS seems to have almost the same
precision than JL in practice�

 The Impact of Linearity

A variable X is linear in a substitution � if no variable
occurs more than once in X�� De�nite linearity infor�

mation is useful for computing accurate sharing infor�
mation ���� �
� ���

Example � Consider the uni�cation X � f�Y� Z� and
assume that X� Y � and Z are all nonground and inde�
pendent before the uni�cation� If X is bound to a linear
term� then Y and Z are still independent after the uni�
�cation� However� if X is bound to a nonlinear term�
variables Y and Z may possibly share after the uni��
cation� e�g�� consider the case where X is bound to the
nonlinear term f�A�A�� �

Linearity does not only help to compute better sharing
information� It heavily a�ects the e�ciency of the shar�
ing analysis� In JL� linearity information helps to avoid
the expensive closure under union operation ����� Not
computing the closure under union keeps the sets of sets
of variables small which additionally speeds up subse�
quent computations� We also implemented the abstract
domains JL	LIN and �JL	POS	LINbased on the
description in ����� The results of our experiments are
shown in �gure ��

�� The abstract domains with linearity JL	LIN and
�JL	POS	LIN often compute substantially bet�
ter sharing information than JL and �JL	POS�
respectively�

�� For some programs� JL	LIN is dramatically faster
than JL� However� there are some programs �ac�
tion� aqua�c� chat � chat�parser� reducer � sdda�
which could not be analyzed with JL	LIN� We
had to interrupt the analyzer after one hour�

� �JL	POS	LIN can analyze all program in rea�
sonable time� Most programs are analyzed very
fast� For all our programs� �JL	POS	LIN has
the same precision as JL	LIN�

� Related Work and Conclusion

We have presented two new domains for sharing anal�
ysis of logic programs� The new domains �JL	POS
and �JL	POS	LIN have been derived systematically
from the sharing domains JL and JL	LIN� As a con�
sequence� the soundness of the abstract uni�cation pro�
cedure was easily established� The new domains were
experimentally evaluated on a large set of Prolog pro�
grams� In practice� they seem to have almost the same
precision than the domains JL and JL	LIN� respec�
tively� More important� the new domains are substan�
tially more e�cient�

In contrast to previous work on sharing analysis ��
�
�
� �
� ��� �� ���� we evaluated our analyzers on a large
set of Prolog programs� including large real�word pro�
grams which are hard to analyze� Our sharing analyzers

�

Programm e�ciency precision

�JL�POS

�LIN
JL�LIN ratio

�JL�POS

�LIN
JL�LIN

action�pl ����� � � �	 �

ann�pl
�	
 ��	�
�� �� ��

aqua�c�pl
�
��� � � ���	 �

b��pl ���� ���� ��� �� ��

boyer�pl
��� ��	
 ��� �
 �

browse�pl
��� ��
� ���
 � �

chat�pl �
�		 � � ��	 �

chat�parser�pl ����� � � �
	 �

chess�pl
�	� ���	� �	�� 	 	

circuit�pl
�

�
�
��

cs�pl
���
��

�

�atten�pl
�
� ���
� ���� �� ��

gabriel�pl
���
��� ��� � �

life�pl
�
�
�

�	

nand�pl ��
�
�
�
�

peep�pl
���
��

�	

press�pl ���
 ��
� ��� �� ��

read�pl
�
� ��
� ��
 � �

readq�pl ���� ����� ���� �� ��

reducer�pl
��	 � � �

 �

scc�pl
���
��	
�

sdda�pl
��� � � �� �

sendmore�pl
���
��

��

serialise�pl
��
 ���
 �
�� � �

triangle�pl
���
��

�

wgc�pl
�
�
�
�
�	

Table �� Experimental Evaluation of �JL	POS	LIN
and JL	LIN

are substantially faster than the analyzers described in
��� ���� This may partly be due to the fact that we use
a highly optimized SML implementation with e�cient
data structures� whereas the analyzers from ��� ��� are
based on the PLAIA system ��
� which is implemented
in Prolog�

Our experiments con�rm that linearity can signi��
cantly improve the quality of the sharing analysis� This
was already pointed out in ��� ���� Thus� future sharing
analyzers should include a linearity component�

Our new abstract domains have been carefully de�
signed in order to remedy the e�ciency problems of JL
and JL	LIN� To our knowledge� �JL	POS	LIN is
the fastest sharing analyzer reported so far� It is pre�
cise and fast enough to be integrated into a production
quality Prolog compiler�

Acknowledgement We would like to thank Helmut
Seidl for many fruitful discussions on the expressiveness
of the sharing domains JL�

References

��� T� Armstrong� K� Marriott� P� Schachte� and
H� S"ndergaard� Boolean Functions for Depen�
dency Analysis� Algebraic Properties and E��
cient Representation� In International Static Anal�
ysis Symposium SAS�
�� pages �������� Springer�
Verlag LNCS ���� �

��

��� K�S� Brace� R�L� Rudell� and R�E� Bryant� E��
cient Implementation of a BDD Package� In 	�th
ACM�IEEE Design Automation Conference� pages
������ �

��

�
� R�E� Bryant� Graph�Based Algorithms for Boolean
Function Manipulations� IEEE Transactions on
Computers� C�
����� August �
���

��� B� Le Charlier and P� Van Hentenryck� Experi�
mental evaluation of a generic abstract interpreta�
tion algorithm for Prolog� TOPLAS� ������
������
�

��

��� M� Codish� A� Mulkers� M� Bruynooghe� M� Garc#$a
de la Banda� and M� Hermenegildo� Improv�
ing Abstract Interpretations by Combining Do�
mains� ACM Transactions on Programming Lan�
guages and Systems �TOPLAS�� ������������ Jan�
uary �

��

��� J�S� Conery� Parallel Execution of Logic Programs�
Kluwer Academic Publishers� �
���

��� A� Cortesi� G� Fil%e� and W� Winsborough� Com�
parison of Abstract Interpretations� In ICALP�
	�
pages �����
�� Springer Verlag� LNCS ��
� �

��

��� P� Cousot and R� Cousot� Abstract Interpretation�
A Uni�ed Lattice Model for Static Analysis of Pro�
grams by Construction or Approximation of Fix�
points� In POPL���� pages �
������ �
���

�
� P� Cousot and R� Cousot� Abstract Interpretation
and Application to Logic Programs� Journal of
Logic Programming� �
������
���
� �

��

���� P� Cousot and R� Cousot� Comparing the Galois
Connection and Widening�Narrowing Approaches
to Abstract interpretation� In M� Bruynooghe and
M� Wirsing� editors� Programming Language Im�
plementation and Logic Programming� PLILP�
	�
pages ��
��
�� Leuven� Belgium� �

�� Springer
Verlag� LNCS �
��

���� L� Crnogorac� A�D� Kelly� and H� S"ndergaard�
A Comparison of Three Occur�Check Analysers�
In Third International Static Analysis Symposium
�SAS�
��� Aachen� Germany� �

�� Springer Ver�
lag� LNCS�

�

���� Saumya K� Debray� Automatic Mode Inference for
Prolog Programs� Journal of Logic Programming�
�������
�� �
���

��
� C� Fecht and H� Seidl� An Even Faster Solver for
General Systems of Equations� In Static Analysis
Symposium �SAS�
��� Aachen� �

�� Springer Ver�
lag� LNCS�

���� Christian Fecht� GENA � a Tool for Generating
Prolog Analyzers from Speci�cations� In Alan My�
croft� editor� Second International Symposium on
Static Analysis �SAS�
��� pages ������
� Springer
Verlag� LNCS
�
� �

��

���� M� Hermenegildo� An Abstract Machine Based Ex�
ecution Model for Computer Architecture Design
and E�cient Implementation of Logic Programs in
Parallel� PhD thesis� University of Texas at Austin�
�
���

���� D� Jacobs and A� Langen� Static analysis of logic
programs for independent and�parallelism� Journal
of Logic Programming� �
��
��
��� �

��

���� G� Janssens and W� Simoens� On the Implementa�
tion of Abstract Interpretation Systems for �Con�
straint� Logic Programs� In Peter Fritzson� editor�
Compiler Construction� �th International Confer�
ence� CC�
�� pages �������� Edinburgh� U�K��
�

�� Springer Verlag� LNCS ����

���� N�D� Jones and H� S"ndergaard� A semantics�based
framework for the abstract interpretation of PRO�
LOG� In S� Abramsky and C� Hankin� editors�
Abstract Interpretation of Declarative Languages�
pages ��
����� Ellis Horwood� �
���

��
� A� King� A Synergistic Analysis for Sharing and
Groundness which Traces Linearity� In Donald
Sannella� editor� ESOP�
�� �th European Sympo�
sium on Programming� pages
�
�
��� Edinburg�
U�K� �

�� Springer Verlag� LNCS ����

���� K� Marriott and H� S"ndergaard� Precise and Ef�
�cient Groundness Analysis for Logic Programs�
ACM Letters on Programming Languages and Sys�
tems� �������
�� �

�

���� A� Mulkers� W� Simoens� G� Janssens� and
M� Bruynooghe� On the Practicality of Abstract
Equation Systems� In ICLP
�� pages �����
��
�

��

���� K� Muthukumar and M� Hermenegildo� Combined
Determination of Sharing and Freeness of Pro�
gram Variables through Abstract Interpretation� In
ICLP
�� pages �
��
� �

��

��
� K� Muthukumar and M� Hermenegildo� Compile�
Time Derivation of Variable Dependency Using
Abstract Interpretation� The Journal of Logic Pro�
gramming� �
�
���
��� �

��

���� Magnus Nordin� Igor� A tool for developing ab�
stract domains for Prolog Analyzers� PhD thesis�
Computing Science Department� Uppsala Univer�
sity� �

��

���� R� Sundararajan and S� Conery� An abstract in�
terpretation scheme for groundness� freeness� and
sharing analysis of logic programs� In Proceed�
ings twelfth FST�TCS conference� pages ��
�����
Springer Verlag� LNCS ���� �

��

���� Andrew Taylor� High Performance Prolog Imple�
mentation� PhD thesis� University of Sidney� �

��

���� P� Van Hentenryck� A� Cortesi� and B� Le Charlier�
Evaluation of the domain Prop� The Journal of
Logic Programming� �
�
���
������ �

��

���� Peter van Roy� Can Logic Programming Execute
as Fast as Imperative Programming� PhD thesis�
University of Berkeley� �

��

Appendix

Proof of Lemma ��

�� From S � �S� immediately follows shareJL�S� �
shareJL��S�� Consider now a sharing pair �X�Y � �
shareJL��S�� Hence� there is an M � �S with
X�Y � M and an M � � S with M � M �� Thus�
�X�Y � � shareJL�S�� too�

�� From groundJL�S� � V � vars�S� and S � �S
follows groundJL��S� � S� Consider now an ar�
bitrary X � groundJL�S�� Then X �� M for each
M � S� Hence� X �� M � for each M � � M and
M � S� From this follows X � groundJL��S��

� def JL��S� �
V
f
V
W� �

V
W� j �M � �S	�W� �

M �� ��
 �W��M �� ��g� Since ��V�vars�S���
M �� ��
 ���M �� �� for allM � S� the conjunc�
tion

V
groundJL�S� is a conjunct of def JL��S��

Consider now two other sets W� und W� which
ful�ll the above condition� Suppose that there is
a variable X with X � W� and X � vars��S��
Hence� fXg � �S und W� � fXg �� �� It must fol�
low that W� � fXg �� �� Thus� X � W�� too� We
have shown that W� � vars�S� � W� � vars�S��
Because of the following two propositional rules
x � y � �y � x � w� � x � y � �x � w and
x�y��x� y�w� � x�y��x� w� we can assume

that W� and W� does not contain variables from
groundJL�S� � V�vars�S�� In this case W� � W�

holds� Thus� the conjunct
V
W� �

V
W� is equiv�

alent to true� �

��

