Efficient and Precise Sharing Domains for Logic Programs

Christian Fecht
Universitat des Saarlandes
Postfach 151150
66041 Saarbrucken
Tel.: +49-681-302-5573
Fax : +49-681-302-3065

fecht@cs.uni-sb.de

Abstract

Sharing information between logical variables is cru-
cial for a lot of analyses of logic programs, e.g., free-
ness analysis, detection of And-parallelism, and occur-
check. Therefore, the development of accurate sharing
domains has attracted a lot of research. The sharing
domain JL of Jacobs/Langen, which represents sub-
stitutions by powersets of variables, is considered one
of the most precise sharing domains. However, it is
too inefficient in practice; lots of programs cannot be
analyzed in reasonable time. Improvements of JL, by
adding auxiliary information like linearity, suffer from
the same inefficiency, too. To improve upon this situ-
ation, we systematically derived a new sharing domain
JJL from JL which represents variables by downward
closed powersets of variables. We combined |JL with
the groundness domain POS. Both JL and the new do-
main |JL+POS have been implemented with the help
of the Prolog analyzer generator GENA. In order to
study the impact of linearity, we also implemented the
abstract domains JL+LIN and |JL4+POS+LIN. The
new domains are much more efficient as their counter-
parts JL and JL+LIN, respectively. Even more impor-
tant, they can analyze even largest real-world programs
in reasonable time. Surprisingly, the new sharing do-
mains seem to have the same precision than JL and
JL+LIN in practice.

1 Introduction

Sharing analysis of logic programs aims at computing
independence information for variables. Two variables
X and Y are independent in a given substitution ¥ if
instantiating X does not instantiate Y and vice versa.
Instead of computing independence directly, the com-
plementary information — possible sharing — 1s com-
puted. Two variables X and Y share in a substitution

¥ if they are bound to terms containing at least one
common variable, that is vars(X¥) N vars(Yd) # 0.
Independence is important for the following reasons:

And-Parallelism An And-parallel Prolog implemen-
tation [15, 6] would try to solve a sequence (A, B) of
goals by solving the goals A and B in parallel. To do
this efficiently, the goals A and B have to be indepen-
dent. Definite independence information can be stati-
cally computed by means of a sharing analysis [23, 16].

Freeness For a Prolog compiler the most useful infor-
mation about a variable at a particular program point
is that it is always bound or always free [28, 26]. Free-
ness is not closed under instantiation. Thus, a variable
X may lose its freeness, because another variable is in-
stantiated. In order to compute non-trivial and correct
freeness information, one has to know about possible
sharing between variables.

Occur-Check If a variable X is unified with a term
t, one has to test whether X occurs in ¢. If this is the
case, then unification fails. This test is commonly re-
ferred to as occur-check and 1s commonly omitted in
Prolog implementations for the sake of efficiency. The
missing occur-check corrupts the logical soundness of
Prolog. Occur-check reduction aims at detecting uni-
fications where the occur-check can be omitted safely.
[11] describes an occur-check reduction algorithm based
on sharing information.

Because of the importance of available sharing informa-
tion, the development of efficient and accurate sharing
analyses [12, 18, 23, 25] for logic programs has attracted
alot of research. Most of these analyses are based on the
technique of abstract interpretation [8, 9]. The actual
analyzers can be split into a generic abstract interpreter
and an abstract domain which provides a lattice of ab-
stract substitutions, an abstract unification procedure,
and functions for abstract procedure entry and exit.

The well-known sharing domain JL of Jacobs and
Langen [16] is considered one of the most precise sharing
domains. It describes concrete substitutions by sets of
sets of variables. The domain JL does not only express
sharing, but is also able to express ground dependen-
cies between variables. Unfortunately, JL is inherently
inefficient. Its abstract substitutions can be exponen-
tially large. Abstract unification is done by means of
a closure operator whose computation has exponential
worst-case complexity. Implementations of JL (section
6, [17, 24]) indicate that it is not feasible in practice,
since a lot of (even small) programs can not be ana-
lyzed within reasonable time. JL has been enlarged
with additional information, for instance freeness [22]
and linearity [5, 19, 25]. Linearity helps to infer more
accurate sharing information. Additionally, available
linearity information keeps the sets of sets of variables
small by avoiding the expensive closure operator when-
ever it is possible. Consequently, the abstract domain
JL+LIN is often dramatically faster than JL[5]. How-
ever, these enriched sharing domains are also not able
to analyze a lot of programs (section 7, [24]). Appar-
ently, the additional information is either not present in
the concrete computation, or cannot be inferred by the
abstract interpreter.

Our contributions are threefold:

e We systematically derive a new sharing domain
from JL. The new domain JJL is obtained by only
considering downward closed powersets of variables
which can be efficiently represented by their max-
imal elements. Abstract unification in |JL is de-
fined on such representations and its soundness 1s
proven. It is shown that |JL represents sharing
and definite groundness, but no ground dependen-
cies. Therefore, we add the groundness domain
POS [20, 1, 27] to |JL yielding the new sharing
domain JJL+POS.

e We implemented and JL and |JL4+POS with the
help of the Prolog analyzer generator GENA [14].
The generated analyzers were run on a large set of
benchmark programs. The new domain |[JL+POS
1s much more efficient than JL. Even more impor-
tant, it can analyze even largest real-world pro-
grams in reasonable time. Surprisingly, the new
sharing domain seems to have almost the same
precision than JL in practice. There is only one
program in our benchmark suite where JL com-
putes better sharing information.

e We also implemented the abstract domains
JL+LIN and |JL+POS+LIN in order to study
the impact of linearity on the precision and the
efficiency of the analysis. Whereas JL+LIN can-
not analyze many (even some small) programs,

JJL+POS+LIN can analyze all programs and is
substantially faster than JL4+LIN in most cases.
Furthermore, JJL4+POS+LIN seems to have the
same precision than JL+LIN in practice.

The overall structure of our paper is as follows. In sec-
tion 2 we recall fundamental notions and basic defini-
tions of the theory of abstract interpretation of logic
programs. The groundness domains POS and DEF
are briefly described. Section 3 gives a detailed descrip-
tion of the sharing domain JL of Jacobs/Langen and
recalls some of its important properties. In section 4
we first derive abstract domain |JL from JL by only
allowing downward closed powersets as abstract substi-
tutions. We show how abstract unification can be di-
rectly expressed on representations of downward closed
sets. Furthermore, the expressive power of |JL is in-
vestigated. By adding groundness domain POS to |JL
we obtain our new sharing domain |JL4+POS. Section
5 theoretically compares |[JL4+POS with JL. Section
6 presents our implementations of JL and |JL+POS.
For a large set of benchmark programs, we present the
analysis time and precision of our sharing analyzers
based on JL and |JJL+POS. Section 7 discusses the
impact of linearity and presents the abstract domains
JL+LIN and |JL4+POS+LIN. Finally, we summa-
rize the results from our practical experiments and con-
clude.

2 Preliminaries

Let 'V be a nonempty, finite set of variables. Terms are
defined as usual. A substitution ¢ is an almost iden-
tity mapping from variables to terms. A substitution
¥ 1s tdempotent iff ¥ = ¥ holds. We denote the set of
idempotent substitutions by Subst. A substitution ¢
1s an nstance of ¥, ¢ <4, if there exists a substitution
¥ with ¢ = J¢. A variable X is ground with respect
to substitution ¥ € Subst if vars(Xv¥) = . Two vari-
ables X and Y share with respect to substitution ¢ if
vars(XJ) Nvars(Yd) # 0.

Definition 1 (Definite Groundness)
ground : P(Subst) — P(V)
ground(©) = yco {X €V | vars(XJ) = 0}

Definition 2 (Possible Sharing)
share : P(Subst) 5> {R C V x V| R sym. and irrefl.}
share(V) = Uyeo 1(X, Y) | vars(X) Nwvars(Yd) # 0}

Note that a variable X which is ground with respect to
a substitution ¥ cannot share with any other variable.
Therefore, any reasonable sharing analysis should infer
groundness as well.

Abstract interpretation [8, 9] formalizes program
analysis as approximate computation. Instead of ex-
ecuting a program with data, it is executed with de-
seriptions of the data. In our case, this means that
logic programs are executed with abstract substitutions
Concrete and ab-
stract substitutions are related by a description relation.
To every operation on the concrete substitutions, there

instead of concrete substitutions.

must exist a corresponding abstract operation mim-
icking the concrete operation on the abstract substi-
tutions. A generic abstract interpreter [4] is an ab-
stract interpreter which is parametrized over an ab-
stract domain. An abstract domain consists of a com-
plete lattice (Asub, <, L, T,U) of abstract substitu-
tions and the abstract versions of the concrete oper-
ations. The description relation between concrete and
abstract substitutions is often given by an abstraction
funetion a : P(Subst) — Asub or by a concretization
funetion v : Asub — P(Subst). In the case of logic pro-
grams, the abstract domain must further provide an ab-
stract unification procedure aunify : Asubx'Vx Term —
Asub, and functions for abstract procedure entry and
exit.

An assignment is a mapping o : 'V — {0, 1} from
variables to truth values. A Boolean function f: (V —
{0,1}) — {0, 1} maps assignments to truth values. An
assignment o is a model of the Boolean function f if
f(¢) = 1 holds. A Boolean function f is positive if
f(1) = 1 where 1 is the assignment that maps each
variable to truth value 1. A Boolean function is definite
if the set of all its models 1s closed under intersection.
Boolean functions can be ordered by the implication
order. The resulting poset is a complete lattice. The
ground variables of substitution ¥ can be represented
by an assignment [¥].

| 1 ,X is ground with respect to ¢
)X = { 0 ,otherwise

Definition 3 A Boolean function [describes a substi-

tution ¥ € Subst if f([¢]) =1 for all ¢ <.

The groundness domains POS and DEF [1] consist of
the complete lattice of positive Boolean functions and
definite Boolean functions, respectively, with the above
description relation.

3 The Sharing Domain of Jacobs/Langen

The sharing domain JL of Jacobs and Langen [16] rep-
resents substitutions by sets of sets of variables, such
as {0, {X},{X,Y},{U,Y,Z}}. The key notion in the

definition of JL 1s that of occurrence.

Definition 4
occ : Subst X V — P(V)
occ(9, X)={Y € V| X € vars(YV)}

Definition 5 The abstract domain JL:
lattice : Asuby, ={S €P(P(V))|S#0=0¢€ 5}
order : Cy, = C
{ub Uy, = U
abs 1 ayL(0) = Uyeploce(V, X) [X €V}

Example 1 Let V. = {U, V., W, X,Y,Z} be the vari-
ables of interest and 9 = {U/a, X/g(Y, V), Z/f(W,Y)}.

oce(0,U) =0 occ(0,V) ={V, X}
oce(9, W) = {W, 7} occ(¥,X) =0

occ(9,Y) = {X,Y, 2} occ(¥,2) =0

Thus, ayiL(¥9) = {0,{V, X} {W, 2}, {X,Y, Z}}.]

The elements of an abstract substitution S € Asubjy,
are called sharing groups and are themselves sets of
variables. It is well known that an abstract substitu-
tion S € Asubjr, expresses the following information.

Sharing Variables X and Y share in any substitution
¥ described by S if there exists a sharing group 4 € S
with X,Y € A. More formally,

share(ysL(S)) = {(X,Y) | X £#Y, 34 € S : X,V € A}

Groundness Variable X is definitively ground in any
substitution described by S if X does not occur in any
sharing group of S, i.e., X & vars(S). More formally,

ground (y5.(S)) =V — vars(S)

Ground Dependencies In [7] it is shown that S ex-
presses ground dependencies which coincide with the
definite Boolean function def j1,(S) defined as

defJL(S) =A {/\Wl — AW | YM e S.
(WQQM#@)j(WlﬂM;é@)}

Example 2 Let V = {U, W, XY, Z} be the variables
of interest. Consider the abstract substitution S = {0,
{XHAX, Y AY, 2}, {U, X, Z}}. The following infor-
mation is expressed by S':
sharing pairs {(X,)Y), (Y, 2),(U,X),(X,2)}
ground variables {W}

dependencies WAX =2U)AN(Z=U)
ANUANY =2 Z2)AN(XANY = 2)
NXANZ=Y) i

Abstract Unification

We need some additional definitions in order to define
the abstract unification function aunify;;, @ Asubx V x
Term — Asub.
S XSy, = {AUB|A651,BESQ}
Sy = {A€eS|ANM #0}

Definition 6 A set S € P(P(V)) isclosed under union
if A€ S and B € S implies AUB € S. The least
superset of S that is closed under union is denoted by

S*.

Abstract unification aunify, (S, X, t) is defined by fol-
lowing three cases.

Case 1: X ¢ vars(S5)

X 1is ground. After the successful unification all vari-
ables occurring in ¢ must be ground, too. Therefore, we
remove all sharing groups from S that contain at least
one variable from ¢.

= aunify;, (S, X, t) =S —{A €S| AN vars(t) # 0}.

Case 2: wars(t) Nwvars(S) =0

All variables in ¢ are ground. After the successful uni-
fication X must be ground, too. Therefore, we remove
from S all sharing groups that contain X.

= aunify;, (S, X, t) =S —{Ae€ S| X € A}

Case 3: Neither X ¢ vars(.S), nor vars(t)Nvars(S) = §
= auninyL(S, X, t) = (S—SHX}Uvars(t)) U(SHX})* X
(S|vars(t))* .

The first two cases deal with the propagation of ground-
ness. Note that a ground variable cannot share with any
other variable. If variable X becomes ground through
unification, all sharing groups containing X can be safely
removed from S. Case 3 is the most complicated one.
The sharing groups which contain a variable occurring
in the unification equation X = t are replaced by the
pairwise union of the closure of all groups sharing with
the left-hand side and the closure of all groups sharing
with right-hand side of the equation.

Example 3 Consider S = {0,{U},{X},{Y},
{X, Y1, {Y, Z},{U, Z}} and the unification equation X =
F(Y, 7). Let us compute aunifyy, (S, X, f(Y,7)).

SHX} = {{X}a{XaY}}
(Oxy)” = {XHA{X Y

Siyv,zy = HYH{XYHAY, 2} {U, Z}}
(Sv.z1)” = YL AXYLY, 21U, 2}, {X, Y, Z},
{(U,Y,Z},{U, X,Y, Z}}

Thus7 (SHX})* Ll (S|vars(t))* = {{XaY}a{XaYa Z}a
{U,X,Z},{U, X, Y, Z}} and the resull of the unification
s auninyL(Sa Xa f(Ya Z)) = {@,{U},{X,Y},
{X’ Y’ Z}’{U’ X’ Z}’{U’ X’ Y’ Z}}’ D

To summarize, JL accurately models sharing and ground
dependencies. However, it is too inefficient in practice
(see section 6). The abstract unification procedure is
very inefficient. The computation of the closure S*
has exponential worst-case complexity. Application of
the closure operator and the subsequent pairwise union
rapidly lead to combinatorial explosion.

4 The Abstract Domains |JL and |JL+POS

One of the nice features of abstract interpretation is
that one can always replace a description d by a greater
description d’, e.g., d C d’. By doing so, the overall re-
sult of the abstract operations may be less precise, but
it will always be correct. The correctness of the final re-
sult follows from the monotonicity of the description re-
lation and the monotonicity of the abstract operations.
This idea is utilized, for instance, in the technique of
widening [8, 10] which speeds up fixpoint iterations or
even forces possibly infinite iterations to terminate. An-
other application of the replacement idea would be to
replace a description d whose computer representation
is to big by a greater description with a more efficient
representation.

Let us apply this idea in order to cope with the in-
herent inefficiency of abstract domain JL. Thus, we
replace an S € Asubyy, by an S’ with S C S’. Unfor-
tunately, S’ contains more sharing groups than S. If
we represent power sets of variables explicitly by listing
their elements, then the representation of S’ is larger
than the representation of S. Thus, replacing S by S’
does not only result in a loss of precision, but also makes
the abstract interpretation even more inefficient. Nev-
ertheless, we can apply our idea if we ensure that S is
always chosen in such a way that it allows for a compact
representation. Good candidates are those sets which
are downward closed.

Definition 7 A set S € P(P(V)) is downward closed
ioff the following holds: M € S wmplies N € S for each
NCM.

Definition 8 The downward closure S of a powerset
S € P(P(V)) is defined by |S = {N C V | IM €
S with N C M}.

A set S € P(P(V)) is represented by a set E € P(P(V))
iff = |FE. It is well-known that downward closed sets
are represented by its maximal elements as the following
lemma states.

Lemma 1 If S € P(P(V)) is downward closed, then S
can be represented by its maximal elements: S = [{M €
S| M is maximal in S}.

Example 4 Consider the downward closed set
S o= {0 AXIAYIAZ} W AX Y AX, 2} {Y, 2},
{X, W} {X,Y, Z}}. Set S is represented by its mazimal
elements {{X,Y, 7}, {X,W}}. Note that S =
W{X,V, Z} {X, W1} O

As explained above, an abstract substitution S € Asubjr,
expresses sharing information, definite groundness, and
ground dependencies. What is lost when S is replaced
by its downward closure |57

Lemma 2

1. shareyr,(1.S) = sharesL(S)
2. groundy, (1S) = ground;;,(S)
3. defy,(1.5) = N\ ground;y (S)

By taking the downward closure, only the ground de-
pendencies are lost. The sharing and definite ground-
ness information are not changed. Note, that the union
of downward closed sets is downward closed, too. A new
sharing domain |JL can thus be obtained from JL by
restricting the set of abstract substitutions to downward
closed powersets of variables. The abstract unification
in LJL is the downward closure Launify;; (S, X, t)) of
the result of the abstract unification in JL.

Definition 9 The abstract domain JJL:

Asubyy, = {X € P(P(V)) | S is downward closed }
Cu =C
Uy =U

an(0) = \I/UﬂEG {oce(9, X) | X € V}
aunify 51,(S, X, t) = Launify;, (S, X, 1)

The soundness of the abstract unification in |JL follows
from the soundness of the abstract unification in JL
and from aunify;, (S, X, t) C aunify ;1,(S, X, t) for all
downward closed S € P(P(V)), X € V, and terms ¢.

So far, nothing has been gained since abstract uni-
fication in JJL is defined in terms of abstract inter-
pretation in JL. Since a downward closed powerset S
is represented by a powerset F with S = |F, we will
next define abstract unification directly on the repre-
sentation F instead of |E. To this end, we make the
following simple observations:

1. The powerset |F contains the same variables as
its representation F, i.e., vars(F) = vars(LF).

2. Removing all sets from | F which have a common
element with set (G is done on the representation
by removing G from each set in E | i.e., [{A € |F |
ANG=0t={A-G|AcE}.

3. The representation of a powerset (|E)* which is
closed under union is simply the union of all sets
in E,i.e, ({F)" = (U F). Note that the repre-

sentation of ([E)* is a singleton.

4. L((LE) M (LE2)) = L(EL U By).

It should now be relatively easy to define the abstract
unification aunify y,(L £, X, t) on the representation ¥
directly. We consider the following three cases.

Case 1: X & vars(FE)

Since vars({E) = vars(FE), variable X is ground and,
therefore all variables in ¢ have to be ground, too. We
remove all sharing groups from £ which contain a

variable from wvars(t). On the representation, this is
achieved by deleting all variables in wvars(t) from E.
= aunify ;,(VE, X, 1) = [{A —vars(t) | A € B}
Case 2: vars(t) Nvars(E) =)

By the same argument as above, we conclude that X
has to be ground. Therefore X is removed from the
representation F.

= aunifyy (LB, X, 0) = WA - {X) | A€ E)

Case 3: Neither X ¢ vars(F) nor vars(t)Nvars(E) = §
= aumfyUL(iE, X, t) = \L((E — E|{X}Uvars(t)) U
U Elixyuvars(t))

The third case which actually deals with sharing has
been greatly simplified. Instead of computing closures
under union and pairwise unions of powersets, all shar-
ing groups of the representation which contain a vari-
able in vars(X =1t) are replaced by their union.

Theorem 1 aunify (L F, X, t) = Launify;, (}E, X,).

In contrast to JL abstract domain |JL does not model
ground dependencies between variables. Hence, |JL
may detect less ground variables than JL. Since no
ground variable can share with any other variable, |[JL
may detect much more sharing pairs than JL. In or-
der to compensate this loss of precision, we add the
groundness domain POS [20, 1, 27] to JJL. Although
groundness analysis with POS has to solve a theoreti-
cally intractable problem, implementations of POS are
amazingly fast in practice. The reduced product [9] of
JJL and POS is denoted |JL+POS. Abstract domain
POS will never infer less ground variables than DEF.
As a consequence, |JL4+POS is more precise with re-
spect to groundness than JL.

Abstract unification in JJL4+POS is similar to ab-
stract unification in JJL. The main difference 1s that
ground variables are not inferred from the sharing com-
ponent, but from the POS-component. Principally,
abstract unification is independently done both in the
sharing- and POS-component of the abstract substitu-
tion, and then the resulting pair is reduced. Reduction
amounts to assuring that variables that are ground ac-
cording to the POS-component do not occur in any
sharing group in the sharing component of the abstract
substitution.

5 Comparison of JL and |[JL+POS

As shown above, |JL does not express ground depen-
dencies between variables. To remedy this, we have
added the groundness domain POS to |JL yielding the
abstract domain |JL+POS. Since there are programs
for which POS computes strictly better groundness in-
formation than DEF, which is a part of JL, there are

also programs where |JL+POS computes strictly bet-
ter sharing information than JL.

Example 5 Consider the following logic program:
main - p(X, Y), X =Y.
p(a.).
p(- b).

POS infers that both X and Y are ground after the
untfication X = Y. Thus, | JL+POS infers that X
and Y are independent at the exit point of main/0. To
the contrast, DEF is not able to infer the groundness
of X and Y. Hence, an analysis with JL yields that X
and Y possibly share al the exit point of main/0. a

Besides definite groundness and ground dependencies,
JL does express a further property which is useful for
computing better sharing information. This property
(strong coupling between sharing pairs) is illustrated by
the following example.

Example 6 Let V = {X Y, Z} be the variables of in-
terest. Consider the following abstract substitutions in
JL.

S {0, {X}a {Y}a {Z}a {XaYa Z}}
Sy = {0, {X}a {Y}a {Z}a {XaY}a {Ya Z}

Both Sy and Sy express the same sharing information
{(X,Y), (X, 72), (Y, Z2)}) and the same ground depen-
dencies (1 € DEF). Note that Sy is downward closed
and thus S € [JL. Now consider the unification X =
a. Grounding X in Sy yields {0, {Y'}, {Z}}. Thus,
there is no sharing between Y and 7. Although variable
X does not occur in the sharing pair (Y, 7), the ground-
ing of X has removed the sharing pair (Y, 7). The shar-
ing pairs (X,Y), (X, Z), and (Y, 7Z) are strongly cou-
pled in Sy. Grounding one of {X,|Y, Z} will remove all
sharing between these variables. However, grounding X
in Sy yields {0, {Y}, {Z}, {Y, Z}}. Thus, there is still
a possible sharing between Y and 7. a

This example shows that there are programs where JL
computes strictly better sharing information than
JJL+POS. Summarizing, JL and |JL+POS are un-
comparable. In practice, however, JL is at least as ac-
curate as |JL.

6 Implementation and Experimental Eval-

uation

In order to practically compare efficiency and precision
of JL and |JL4+POS we implemented analyzers based
on these domains and run them on a large set of Prolog
programs. The implementation work has been greatly

simplified by the use of the Prolog analyzer generator
GENA [14] which is implemented itself in SML. The
fixpoint algorithm we used for the benchmarks is the
generic and general algorithm WRT from [13]. This
algorithm computes a part of the precise abstract input-
output semantics [P] : Pred x Asub — Asub.

Sets of variables are implemented by lists of integers
where each integer is used as a bit vector. Since most
clauses have less than 31 variables, this representation
1s very compact and efficient. Powersets of variables
are implemented as balanced binary trees over sets of
variables. Downward closed powersets are canonically
represented as the list of their maximal elements. At
last, Boolean functions are implemented by binary de-
cision diagrams [3, 2, 27], the state-of-the-art technique
for representing and manipulating Boolean functions in
computers.

Figure 1 shows the results of our experiments. The
measurements were done on a Sun 20 with 64MB main
memory. We used SML of New Jersey version 109. The
analysis times include system and garbage collection
time and are the average of five runs. Our analyzer
computes call modes for the predicates in the program.
A call mode for a predicate is a statement about its
arguments. The precision of a call mode measured as
the number of sharing pairs between arguments. The
precision in figure 1 is the sum of the precisions of the
call modes for all predicates in the program. Recall that
the less the number of sharing pairs, the higher is the
precision.

Some of the programs in our benchmark suite are
large real-word applications: aqua-c is the complete
source code of Peter Van Roy’s Aquarius Prolog com-
piler (about 16000 lines of code), b2 is a large math-
ematical application (about 2000 lines of code), chat
is D.H.D. Warrens chat-80 system (about 5000 lines of
code), and read and readq are Prolog readers. The other
programs were either taken from the benchmark suite
of Aquarius Prolog or from the benchmark suites of the
GATA [4] and PLATA [23] systems.

The following observations can be made from the
numbers of figure 1:

1. Programs action, aqua-c, chat, chat-parser, re-
ducer and sdda could not be analyzed by JL within
one hour. Even worse, none of them could be ever
analyzed completely. For instance, the analysis
of chat-parser had to been interrupted after seven
(1) days. The inability of JL to analyze these pro-
grams is not due to the actual size of the programs
(reducer and sdda are smal programs each having
about 300 lines of code), but to the large number
of variables in some of their clauses.

2. All programs can be analyzed with J[JL+POS.

Programm efficiency precision
JIL+POS JL ratio |[{JL+POS JL

action.pl 11.76 [} [} 41 ?
ann.pl 0.51 14.32 28.3 42 42
aqua-c.pl 212.07 %] %] 3879 ?
b2.pl 1.61 48.83 30.3 48 48
boyer.pl 0.21 1.33 6.5 20 20
browse.pl 0.10 5.35 51.5 6 6
chat.pl 21.95 %] %] 1152 ?
chat-parser.pl 7.85 %] %] 439 ?
chess.pl 0.35 33.83 95.6 19 18
circuit.pl 0.05 0.05 0.9 0 0
cs.pl 0.22 1.92 8.9 2 2
flatten.pl 0.31 15.56 49.6 32 32
gabriel.pl 0.14 0.26 1.8 11 11
life.pl 0.08 0.11 1.4 1 1
nand.pl 0.80 2.99 3.7 0 0
peep.pl 0.19 0.14 0.7 0 0
press.pl 0.85 13.65 16.0 50 50
read.pl 0.65 4.62 7.2 30 30
readq.pl 2.28 | 103.89 45.6 100 100
reducer.pl 0.51 %] %] 104 ?
scec.pl 0.35 0.31 0.9 0 0
sdda.pl 0.42 %] %] 53 ?
sendmore.pl 0.21 0.29 1.4 1 1
serialise.pl 0.11 2.72 25.2 10 10
triangle.pl 0.16 0.10 0.6 0 0
wgc.pl 0.04 0.03 0.7 1 1

Table 1. Experimental Evaluation of |[JL+POS and
JL

Most analysis times are very small or at least mod-
erate. Even the huge aqua-c¢ could be analyzed
within reasonable time. Programs reducer and
sdda which JL was unable to analyze are analyzed
by |JL+POS within half a second. On most pro-
grams, |JL+POS is dramatically faster than JL.

3. For most programs, |JL+POS infers the same
number of sharing pairs than JL. Indeed, there is
only one program (chess) where JJL+POS is less
precise and infers one additional sharing pair. This
loss of precision is due to inability of JJL4+POS
to express strong coupling between sharing pairs.
Thus, |JL+POS seems to have almost the same
precision than JL in practice.

7 The Impact of Linearity

A variable X is linear in a substitution ¥ if no variable
occurs more than once in X 9. Definite linearity infor-

mation is useful for computing accurate sharing infor-
mation [25, 19, 5].

Example 7 Consider the unification X = f(Y,7) and
assume that X, Y, and Z are all nonground and inde-
pendent before the unification. If X s bound to a linear
term, then Y and Z are still independent after the uni-
fication. However, if X is bound to a nonlinear term,
variables Y and Z may possibly share after the unifi-
cation, e.g., consider the case where X 1is bound to the
nonlinear term f(A, A). a

Linearity does not only help to compute better sharing
information. It heavily affects the efficiency of the shar-
ing analysis. In JL, linearity information helps to avoid
the expensive closure under union operation [25]. Not
computing the closure under union keeps the sets of sets
of variables small which additionally speeds up subse-
quent computations. We also implemented the abstract
domains JL+LIN and |JL+POS+LINbased on the
description in [25]. The results of our experiments are
shown in figure 7.

1. The abstract domains with linearity JL+LIN and
JIJL+POS+LIN often compute substantially bet-
ter sharing information than JL and |JL+POS,
respectively.

2. For some programs, JL+LIN is dramatically faster
than JL. However, there are some programs (ac-
tion, aqua-c, chat, chat-parser, reducer, sdda)
which could not be analyzed with JL4+LIN. We
had to interrupt the analyzer after one hour.

3. JJL4+POS+LIN can analyze all program in rea-
sonable time. Most programs are analyzed very
fast. For all our programs, |JL+POS+LIN has
the same precision as JL+LIN.

8 Related Work and Conclusion

We have presented two new domains for sharing anal-
ysis of logic programs. The new domains |[JL+POS
and |JL4+POS+LIN have been derived systematically
from the sharing domains JL and JL+LIN. As a con-
sequence, the soundness of the abstract unification pro-
cedure was easily established. The new domains were
experimentally evaluated on a large set of Prolog pro-
grams. In practice, they seem to have almost the same
precision than the domains JL and JL+LIN, respec-
tively. More important, the new domains are substan-
tially more efficient.

In contrast to previous work on sharing analysis [23,
23,19, 25, 5, 21], we evaluated our analyzers on a large
set of Prolog programs, including large real-word pro-
grams which are hard to analyze. Our sharing analyzers

Programm efficiency precision
HL+POS JL4+LIN| ratio HL+POS JL+LIN
+LIN +LIN
action.pl 32.12 [} [} 37 ?
ann.pl 0.76 4.72 6.2 24 24
aqua-c.pl 690.51 %] %] 3327 ?
b2.pl 2.49 3.54 1.4 23 23
boyer.pl 0.43 1.76 4.1 20 20
browse.pl 0.14 2.04 15.0 2 2
chat.pl 36.77 %] %] 887 ?
chat-parser.pl 12.88 %] %] 267 ?
chess.pl 0.71 19.74 27.9 7 7
circuit.pl 0.06 0.05 0.9 0 0
cs.pl 0.24 0.16 0.6 0 0
flatten.pl 0.63 14.62 23.4 22 22
gabriel.pl 0.22 0.23 1.1 1 1
life.pl 0.09 0.06 0.7 0 0
nand.pl 1.05 0.62 0.6 0 0
peep.pl 0.24 0.16 0.7 0 0
press.pl 1.26 4.02 3.2 42 42
read.pl 0.69 1.08 1.6 5 5
readq.pl 2.81 52.82 18.8 44 44
reducer.pl 0.87 %] %] 100 ?
scec.pl 0.44 0.27 0.6 0 0
sdda.pl 0.91 %] %] 53 ?
sendmore.pl 0.21 0.16 0.8 0 0
serialise.pl 0.26 4.40 16.9 9 9
triangle.pl 0.18 0.10 0.6 0 0
wgc.pl 0.04 0.03 0.7 0 0

Table 2: Experimental Evaluation of JJL+POS+LIN
and JL+LIN

are substantially faster than the analyzers described in
[5, 21]. This may partly be due to the fact that we use
a highly optimized SML implementation with efficient
data structures, whereas the analyzers from [5, 21] are
based on the PLATA system [23] which is implemented
in Prolog.

Our experiments confirm that linearity can signifi-
cantly improve the quality of the sharing analysis. This
was already pointed out in [5, 21]. Thus, future sharing
analyzers should include a linearity component.

Our new abstract domains have been carefully de-
signed in order to remedy the efficiency problems of JL
and JL+LIN. To our knowledge, |JL+POS+LIN is
the fastest sharing analyzer reported so far. It is pre-
cise and fast enough to be integrated into a production
quality Prolog compiler.

Acknowledgement We would like to thank Helmut
Seidl for many fruitful discussions on the expressiveness
of the sharing domains JL.

References

[1] T. Armstrong, K. Marriott, P. Schachte, and
H. Sgndergaard. Boolean Functions for Depen-
dency Analysis: Algebraic Properties and FEffi-
cient Representation. In International Static Anal-
ysis Symposium SAS’94, pages 266-280. Springer-
Verlag LNCS 864, 1994.

[2] K.S. Brace, R.L. Rudell, and R.E. Bryant. Effi-
cient Implementation of a BDD Package. In 27th
ACM/IEEFE Design Automation Conference, pages
40-45, 1990.

[3] R.E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulations. IEFEE Transactions on

Computers, C-35(8), August 1986.

[4] B. Le Charlier and P. Van Hentenryck. Experi-
mental evaluation of a generic abstract interpreta-
tion algorithm for Prolog. TOPLAS, 16(1):35-101,
1994.

[6] M. Codish, A. Mulkers, M. Bruynooghe, M. Garcia
de la Banda, and M. Hermenegildo. Improv-
ing Abstract Interpretations by Combining Do-
mains. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 17(1):28-44, Jan-
uary 1995.

[6] J.S. Conery. Parallel Execution of Logic Programs.
Kluwer Academic Publishers, 1987.

. Cortesi, G. Filé, an . Winsborough. Com-

[7] A. C i, G. Filé, and W. Winsb gh. C
parison of Abstract Interpretations. In ICALP’92,
pages 521-532. Springer Verlag, LNCS 623, 1992.

[8] P. Cousot and R. Cousot. Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Pro-
grams by Construction or Approximation of Fix-

points. In POPL’77, pages 238-252, 1977.

[9] P. Cousot and R. Cousot. Abstract Interpretation
and Application to Logic Programs. Journal of
Logic Programming, 13(2):103-179, 1992.

[10] P. Cousot and R. Cousot. Comparing the Galois
Connection and Widening/Narrowing Approaches
to Abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Programming Language Im-
plementation and Logic Programmaing, PLILP’92,
pages 269-295, Leuven, Belgium, 1992. Springer
Verlag, LNCS 631.

[11] L. Crnogorac, A.D. Kelly, and H. Sgndergaard.
A Comparison of Three Occur-Check Analysers.
In Third International Static Analysis Symposium
(SAS’96), Aachen, Germany, 1996. Springer Ver-
lag, LNCS.

[12]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

Saumya K. Debray. Automatic Mode Inference for
Prolog Programs. Journal of Logic Programming,

5:207-230, 1988.

C. Fecht and H. Seidl. An Even Faster Solver for
General Systems of Equations. In Static Analysis
Symposium (SAS’96), Aachen, 1996. Springer Ver-
lag, LNCS.

Christian Fecht. GENA — a Tool for Generating
Prolog Analyzers from Specifications. In Alan My-
croft, editor, Second International Symposium on
Static Analysis (SAS°95), pages 418-419. Springer
Verlag, LNCS 983, 1995.

M. Hermenegildo. An Abstract Machine Based Ez-
ecution Model for Computer Architecture Design
and Efficient Implementation of Logic Programs in
Parallel. PhD thesis, University of Texas at Austin,
1986.

D. Jacobs and A. Langen. Static analysis of logic
programs for independent and-parallelism. Journal
of Logic Programming, 13:291-314, 1992.

G. Janssens and W. Simoens. On the Implementa-
tion of Abstract Interpretation Systems for (Con-
straint) Logic Programs. In Peter Fritzson, editor,
Compiler Construction, 5th International Confer-
ence, CC"94, pages 172-187, Edinburgh, UK.,
1994. Springer Verlag, LNCS 786.

N.D. Jones and H. Sgndergaard. A semantics-based
framework for the abstract interpretation of PRO-
LOG. In S. Abramsky and C. Hankin, editors,
Abstract Interpretation of Declarative Languages,
pages 123-142. Ellis Horwood, 1987.

A. King. A Synergistic Analysis for Sharing and
Groundness which Traces Linearity. In Donald
Sannella, editor, ESOP’94, 5th European Sympo-
stum on Programming, pages 363-378, Edinburg,
U.K, 1994. Springer Verlag, LNCS 788.

K. Marriott and H. Sgndergaard. Precise and Ef-
ficient Groundness Analysis for Logic Programs.

ACM Letters on Programming Languages and Sys-
tems, 2:181-196, 1993.

A. Mulkers, W. Simoens, G. Janssens, and
M. Bruynooghe. On the Practicality of Abstract
Equation Systems. In ICLP95, pages 781-795,
1995.

K. Muthukumar and M. Hermenegildo. Combined
Determination of Sharing and Freeness of Pro-
gram Variables through Abstract Interpretation. In
ICLPY1, pages 4963, 1991.

[23]

[25]

[26]

[27]

[28]

K. Muthukumar and M. Hermenegildo. Compile-
Time Derivation of Variable Dependency Using
Abstract Interpretation. The Journal of Logic Pro-
grammang, 13:315-347, 1992.

Magnus Nordin. IGor: A tool for developing ab-
stract domains for Prolog Analyzers. PhD thesis,
Computing Science Department, Uppsala Univer-

sity, 1995.

R. Sundararajan and S. Conery. An abstract in-
terpretation scheme for groundness, freeness, and
sharing analysis of logic programs. In Proceed-
ings twelfth FST/TCS conference, pages 203-216.
Springer Verlag, LNCS 652, 1992.

Andrew Taylor. High Performance Prolog Imple-
mentation. PhD thesis, University of Sidney, 1991.

P. Van Hentenryck, A. Cortesi, and B. Le Charlier.
Evaluation of the domain Prop. The Journal of

Logic Programming, 23(3):237-278, 1995.

Peter van Roy. Can Logic Programming Ezecute
as Fast as Imperative Programming. PhD thesis,
University of Berkeley, 1991.

Appendix

Proof of Lemma 2:

1.

From S C |S, immediately follows sharejr(S) C
shareyr,(1.5). Consider now a sharing pair (X,Y) €
shareyr,(1.5). Hence, there is an M € |S with
X, Y € M and an M’ € S with M C M’. Thus,
(X,Y) € shareyL(S), too.

. From groundy;,(S) = V — vars(S) and S C |S

follows grounds;,(1.S) C S. Consider now an ar-
bitrary X € groundy;,(S). Then X ¢ M for each
M € 5. Hence, X ¢ M' for each M’ C M and
M € S. From this follows X € groundyy, (15).

defyr,(1.5) = A{A WL — AW, | VM € LS. (W2 N
M #0)= (WinM #®)}. Since ((V—wvars(S))N
M #0)= (lnM # §) for all M € S, the conjunc-
tion A groundy;,(S) is a conjunct of def (1S).
Consider now two other sets W; und W, which
fulfill the above condition. Suppose that there is
a variable X with X € Wy and X € wars(lS).
Hence, {X} € .S und Wy N {X} # 0. It must fol-
low that W, N {X} # 0. Thus, X € Wi, too. We
have shown that Wy N vars(S) C Wi N vars(S).
Because of the following two propositional rules
tAyAyhe = w) = 2 AyA(r = w and
AYA(z = yAw) = zAyA(z — w) we can assume

that Wi and W5 does not contain variables from
ground;p (S) = V—wvars(S). In this case Wy C W)
holds. Thus, the conjunct A W1 — A Wh is equiv-
alent to true. a

10

