
LEX� A Case Study in Development and Validation of

Formal Speci�cations �

Andreas Ramses Heckler a� Rudolf Hettler b�

Heinrich Hu�mann c� Jacques Loeckx a� Wolfgang Reif d�

Gerhard Schellhorn d and Kurt Stenzel d

a Universit�at Saarbr�ucken � Fachbereich �� � Postfach �� �� ���
D������ Saarbr�ucken

b Forschungsinstitut f�ur Angewandte Software�Technologie e	 V	
FAST� �
Arabellastra�e �
 � D������ M�unchen

c Siemens AG � Bereich �O�entliche Kommunikationsnetze � Hofmannstr	�� �
D������ M�unchen

d Universit�at Ulm � Fakult�at f�ur Informatik � Abt	 Programmiermethodik �
Oberer Eselsberg � D������ Ulm

Abstract

The paper describes an experiment in the combined use of various tools for the
development and validation of formal speci�cations� The �rst tool consists of a
very abstract� �non�executable� axiomatic speci�cation language� The second tool
consists of an �executable� constructive speci�cation language together with a spec�
i�cation environment� Finally� the third tool is a veri�cation system� The �rst two
tools were used to develop two speci�cations for the same case study� viz� a generic
scanner similar to the tool Lex present in Unix� Re�ecting the nature of the tools
the �rst speci�cation is abstract and non�executable� whereas the second speci�ca�
tion is less abstract but executable� Thereupon the veri�cation system was used to
formally prove that the second speci�cation is consistent with the �rst one in that it
describes the same problem� During this proof it appeared that both speci�cations
contained conceptual errors �	adequacy errors
�� It is argued that the combined use
of tools similar to those employed in the experiment may substantially increase the
quality of software�

� This work has been supported by the German ministry of research and technology
�BMFT�� as part of the compound project KORSO �Korrekte Software��

� Introduction

��� Correctness and Adequacy of Formal Speci�cations

To increase the reliability of software it has been proposed to start the design
of a program by drawing up a formal � and hence precise � speci�cation of
the problem to be solved� Taking this speci�cation as a basis one then develops
� in one or several steps � the wanted program� Finally� in a so�called veri�
�cation step one formally proves � by hand or by using a veri�cation system
� that the program obtained ful�lls the speci�cation� Meanwhile di�erent
re�nements and variants of this method have been proposed� The main point
to be stressed here is that the veri�cation step of the method guarantees that
the program is correct with respect to the speci�cation� i�e� that it is free of
�programming errors	�

Unfortunately� even a veri�ed program may fail to solve the given problem�
This occurs when the speci�cation does not correctly describe the problem�
Following a notion introduced� for instance� in
�� such a conceptual error in

the design of� a speci�cation is called an adequacy error�

It is important to note that adequacy can only be tested� not proved� The
reason is that adequacy relates a formal notion
viz� a speci�cation� to an
informal one
viz� a �problem	�� Clearly� a negative result of an adequacy
test disproves the adequacy while a positive result merely may increase the
con�dence in the adequacy�

A classical test method for detecting inadequacies in a speci�cation is rapid
prototyping� Of course� this method requires the speci�cation to be executable�

In the present paper we propose a more elaborate method for testing the
adequacy of a speci�cation and we illustrate its use in a case study� The
method � called method of complementary speci�cation � is presented in
Section ���� The case study is shortly described in Section ����

��� The Method of Complementary Speci�cation

As indicated above the goal of the method is to perform an adequacy test of
speci�cations� It consists of �ve steps�

i� The problem to be speci�ed is given an informal description� this descrip�
tion has to be as precise as possible and may contain formal parts�

ii� An axiomatic speci�cation for the problem is drawn up� This speci�cation
should keep as close to the informal description of step
i� as possible�
Moreover� the speci�cation should be abstract in the sense that it should
avoid any overspeci�cation� To this end it may make use of� for instance�
the full power of �rst�order logic� The resulting speci�cation will be loose

�

in that it may possess di�erent
i�e� non�isomorphic� models� Henceforth�
we refer to this speci�cation as the requirement speci�cation�

iii� Independently from step
ii� but based on its result a speci�cation is
drawn up where the special form of the axioms ensures executability
and � at the price of some proof e�ort � termination
�constructive
speci�cation	�� The speci�er has to take into consideration the informal
description of step
i� as well as the formal requirement speci�cation of
step
ii�� Again� the goal is to obtain a formal speci�cation but now
with axioms of a particular form� The speci�er should abstract from any
consideration concerning the e�ciency of the execution� Being executable
this speci�cation has only one model
up to isomorphism�� Henceforth we
refer to this speci�cation as the design speci�cation�

iv� The design speci�cation may be used to perform some rapid prototyping
and thus already detect some inadequacies� This step is does not belong
to the method proper�

v� It is formally proved that the model of the design speci�cation is a model
of the requirement speci�cation�

The essential step of the method is� of course� step
v�� Note that a positive
result of this veri�cation merely proves that both speci�cations are �mutually
consistent	 im
lying� in particular� that the requirement speci�cation has a
model� It fails to prove the adequacy of the speci�cations in case they both
contain exactly the same adequacy errors� We argue that the probability of this
case is small because the two speci�cations are supposed to have been devel�
oped independently from each other and� more importantly� because the devel�
opment of requirement speci�cations is based on axiomatic thinking whereas
the development of design speci�cations is based on algorithmic thinking�

The method was applied on the case study to be described in Section ����
In this experiment the steps
ii� and
iii� were performed by di�erent teams�
step
ii�� which is described in Section �� was performed at the Technische
Universit�at M�unchen and step
iii�
Section �� at the Universit�at Saarbr�ucken�
Step
v� that is documented in Section � was performed with the help of an
automatic veri�cation system at the Universit�at Karlsruhe� Note that neither
step
i� nor step
iv� were carried out in this case study� As step
iv� is
facultative� it can be safely left out� Step
i� could be omitted because of the
very speci�c nature of the case study� The theory of lexical analysis is a well�
known subject described in many publications such as
��� Furthermore� the
existing Unix tool Lex constituted a good model that was tried out in case
of doubt� Together�
�� and Lex provide more information about the problem
to be solved than is usually contained in an informal problem description�

It is interesting to note that the method proposed may be integrated into a
general method for the design of reliable software� More precisely� the design
speci�cation may be considered to be the �rst re�nement step in the develop�
ment of a program starting from the
requirement� speci�cation�

�

��� The Case Study Lex

The software problem of the case study consists in the construction of a lexical
analyzer similar to the Unix tool Lex� Of course� the case study has an aca�
demic �avor as there exist e�cient and manifestly adequate implementations
of the problem� On the other hand the case study is of moderate size and
well�suited to illustrate the method described proposed�

Informally� lexical analysis � also known as scanning � consists in breaking
up a string into substrings according to a set of regular expressions� More
precisely� each substring has to belong to the language de�ned by a regular
expression of the set� The result is the list of regular expressions corresponding
to the substrings� Hence lexical analysis may in principle be modeled by a
function� say scan� taking two arguments� The �rst argument is a string� viz�
the string to be analyzed� the second argument is a set of regular expressions
and the function value is a list of regular expressions�

Actually� this de�nition of the function scan lacks precision� In fact� depending
on the string and the set of regular expressions the problem of lexical analysis
may have several solutions or� alternatively� no solution� This di�culty will be
addressed in Section ����

By the way� for e�ciency reasons the actual Unix tool Lex constitutes a
somewhat peculiar implementation of the function scan� In a �preprocessing
phase	 the tool turns the second argument of scan
viz� a set of regular expres�
sions� into a program called scanner� In a subsequent �run phase	 this program
reads in the �rst argument of the function scan and yields the function value
as a result� For the user of the Unix tool Lex this scanner�generating feature
is important as it improves the �exibility and e�ciency of the tool� In the
speci�cation of the problem this feature may be ignored� Actually� it may be
viewed as resulting from a decision taken during the design of an implemen�
tation of scan� i�e� during the development of a program for the speci�cation�
Hence this problem is outside the scope of the present paper�

� Tools Used for the Experiment

��� Spectrum

The Spectrum project at the Technische Universit�at M�unchen concentrates
on the process of developing precise and well�structured speci�cations on an
abstract level� Spectrum comprises a speci�cation language� a deduction
calculus and a development methodology� As the name of the project suggests
Spectrum is intended to encompass a wide range of speci�cation styles� For
instance� the constructive speci�cation language Obscure
which was used

�

in the case study for step
iii� of Section ���� can be viewed semantically as a
sublanguage of Spectrum�

Spectrum is based on classical algebraic speci�cation techniques� However�
in contrast to most algebraic speci�cation languages it explicitly supports the
use of partial functions� Moreover� Spectrum is not restricted to equational
or conditional axioms but provides full �rst�order predicate logic extended by
some second�order principles�

Spectrum is oriented towards the development of functional programs� A
number of concepts have therefore been taken over from functional program�
ming languages such as parametric polymorphism and higher�order functions�

The Spectrum speci�cations contained in Section � and � are provided with
comments� For the reader acquainted with some classical concepts and no�
tation from algebraic speci�cation techniques these comments should su�ce
to enable the reading of the paper� For more information on Spectrum the
reader may consult
�����

��� Obscure

The speci�cation language Obscure is described in
���� It has been designed
to be a simple but robust tool� While allowing operator overloading it provides
neither polymorphism nor higher�order functions� On the other hand� stringent
context conditions allow to automatically generate formulas that express the
persistency of a speci�cation� Note thatObscure is a language scheme rather
than a language because it does in particular not �x the speci�cation method
used to draw up the �elementary	 speci�cations i�e� used for speci�cation�in�
the�small�

The speci�cation environmentObscure is described in
���� It consists� among
others� of an editor� a data base� a parser performing a complete syntactical
check and facilities for rapid prototyping� The speci�cations are written in the
speci�cation language Obscure instantiated with a constructive speci�cation
method� viz� the algorithmic speci�cation method
���� The use of this partic�
ular speci�cation method makes Obscure speci�cations look like programs
written in a very abstract programming language�

As already indicated� speci�cations written in the speci�cation language Ob�
scure and� especially� speci�cations written with the help of the environment
Obscure may be viewed as
syntactical variants of� Spectrum speci�ca�
tions� In order not to bother the reader with additional syntactical details the
Obscure speci�cations in Section � are written in Spectrum notation�

��� KIV

KIV stands for Karlsruhe Interactive Veri�er and is an advanced support tool

�

for correct software development for large sequential systems
����������� It
supports the entire design process from formal speci�cation to veri�ed exe�
cutable code and contributes to an economically applicable veri�cation tech�
nology� Substantial veri�cation has been done using KIV� The current pro�
ductivity is between ���� to ���� lines of veri�ed code per year�

KIV relies on an ASL�style
���� �rst�order algebraic speci�cation language to
describe hierarchically structured software systems� Speci�cation components
are implemented by stepwise re�nement using
functional� program modules�
The speci�er has to follow a strict decompositional design discipline leading
to modular systems with compositional correctness� As a consequence the
veri�cation e�ort for a modular system becomes linear in the number of its
modules� KIV o�ers a powerful interactive veri�cation component for module
correctness based on proof tactics� It combines a high degree of automation
with an elaborate interactive proof engineering environment�

A correctness management of KIV keeps track of the development graph
visu�
alizing the development process�� proof obligations and proofs� Furthermore�
it computes and visualizes the impact of modi�cations on the correctness of
other components� An interesting feature of the KIV veri�cation methodology
is the tight coupling of error detection� correction
to speci�cations or pro�
grams� and an intelligent reuse of proofs� Actually� KIV o�ers a mechanism
that goes far beyond proof replay
����

� A Requirement Speci�cation for Lex

This section presents a requirement speci�cation for the scanner described in
Section ���
see also
���� This speci�cation is written in Spectrum and was
developed at the Technische Universit�at M�unchen as the result of step
ii�
of the method of complementary speci�cation� For a detailed description of
the speci�cation language Spectrum and its standard library on which this
speci�cation is based� the reader is referred to
�����

The speci�cation is presented in a bottom�up manner� starting from �elemen�
tary	 speci�cations and ending up with a speci�cation of the function scan

performing the lexical analysis�

��� Naturals� Lists� Characters and Strings� the Elementary Speci�cations

The Standard Library of Spectrum
�� contains� among others� the speci��
cations of lists� natural numbers� characters and character strings�

To provide a �avor of Spectrum Figure � presents the speci�cation called
LISTS that introduces polymorphic lists together with some usual list opera�
tions� The following remarks should help to understand this speci�cation
and
other Spectrum speci�cations presented in this paper as well��

�

LISTS � f �� polymorphic lists

data List � � �
 j cons��first� ���rest� List ���

List���EQ�EQ�

�����List � � List � � List � prio �	�left�

���� strict total�

axioms � s�s
�List �� e�� in

fl�g �
 �� s � s�

fl�g cons�e�s
� �� s � cons�e�s
 �� s��

endaxioms�

g

Fig� �� A Spectrum speci�cation of polymorphic lists

� The text to the right of �� is a comment�
� Spectrum�s data construct is similar to the construct data or datatype
in functional languages like ML
��� or Haskell
��� It introduces a new sort

in the case of the example of Figure � the polymorphic sort List �� to�
gether with its constructors

 � and cons� and selectors
first� rest�� The
exclamation marks in front of the selectors may be ignored in a �rst read�
ing� they merely express the strictness of the constructor in the respective
arguments�

� Spectrum provides a notion of sort classes very similar to the type classes
of Haskell� In Figure �� the line List���EQ�EQ expresses that whenever the
sort constructor List is applied to a sort from the
previously de�ned� class
EQ� it yields a sort which again is from EQ� Note that independently from
this property List may also be applied to arbitrary sorts�

� Functions are de�ned syntactically by signatures and semantically by ax�
ioms� In Figure �� the line

���� � List � � List � � List � prio �	�left

introduces the in�x function ���� which is left associative and has a
certain binding priority� Semantically this function is de�ned by three ax�
ioms� Two of them are given as logical formulae embraced by the keywords
axioms and endaxioms� Such logical axioms can be given names
in our case
l� and l�� embraced by curly brackets in front of the axioms� The third
axiom is given by the line ���� strict total and requires the function
���� to be strict and total�

� According to the speci�cation of Figure � the constructors of the sort
List � are
 � and cons� Writing down concrete lists with the help of these
constructors is quite cumbersome� As lists are an important speci�cation
concept Spectrum provides a shorthand notation� a �nite list may be de�
noted by enumerating its elements� For instance�
a�b�c�d� denotes the list
consisting of the elements a� b� c and d�

In addition to lists the Standard Library of Spectrum contains a speci�ca�

�

tion NATURALS introducing the sort Nat together with the usual operations
on natural numbers� A further speci�cation is CHARACTERS introducing the
sort Char� Finally� the speci�cation STRINGS introduces the sort String of
character strings� This sort is de�ned as an instance of the sort List �� viz�
as

String � List Char�

As strings constitute a special case of lists� the shorthand notation for lists
mentioned above is applicable to strings� too� As this shorthand notation is
still lengthy� Spectrum provides an additional shorthand notation for strings�
�� stands for
 � and� for instance� �abcd� for
a�b�c�d��

��� Some List Operations� the Speci�cation EXT LISTS

In the speci�cation of the function scan the list operations provided by the
standard speci�cation LISTS of Figure � do not su�ce� The speci�cation
EXT LISTS
for �extended lists	� in Figure � introduces the required addi�
tional list operations�

The meaning of the di�erent functions introduced should be clear� Note that
the function flatten maps lists of lists of elements into lists of elements by
removing all parentheses but the outermost ones�

The speci�cation of Figure � consists of two parts introducing the �rst three
and the remaining four functions respectively� This presentation is made for
clarity only and is semantically irrelevant�

��� The Syntax of Regular Expressions� the Speci�cation REGEXP

Classically the set of all regular expressions for a given set of characters is
de�ned inductively
see e�g�
��� � �

� �empty regular expression	 � is a regular expression�
� �empty word	 � is a regular expression�
� �atomic expression	 each character is a regular expression�
� �sequence	 if r� and r� are regular expressions� then
r� � r�� is a regular
expression�

� �sum	 if r� and r� are regular expressions� then
r� k r�� is a regular expres�
sion�

� �Kleene
star	 if r is a regular expression� then
�� r� is a regular expression�

A Spectrum speci�cation re�ecting this de�nition is in Figure �� The reader
should not bother about the syntactical details of this de�nition� The only
important point to remember is that the speci�cation introduces a sort Regexp

� The use of the quite unusual symbols ��jj and �� for the operations on regular
expressions stems from lexical restrictions imposed by the language Spectrum�

�

EXT LISTS � f

enriches LISTS � NATURALS�

�� all functions in this specification are strict and total

strict total�

mklist � � � List ��

length � List � � Nat�

flatten � List �List �� � List ��

axioms �s�List ��ss�List�List ���e�� in

mklist�e� � cons�e��
��
length��
� � 	�

length�cons�e�s�� � succ�length�s���

flatten��
� � �
�
flatten�cons�s�ss�� � s �� flatten�ss��

endaxioms�

��� � ���EQ � � � List � � Bool prio ��

�is prefix of� � ���EQ � List � � List � � Boolprio ��

�is postfix of�� ���EQ � List � � List � � Boolprio ��

precedes in � ���EQ � � � � � List � � Boolprio ��

��prio expresses the operator priority

axioms ���EQ � �s�s
�List �

�e�e
��
in

e � s � �s��s�� s � s� �� mklist�e� �� s��

s is prefix of s
 � �s

� s
 � s �� s

�

s is postfix of s
 � �s

� s
 � s

 �� s�

precedes in �e� e
� s� � �s��s��s
� 	�e
� s��

s � s� �� mklist�e� �� s� �� mklist�e
� �� s
�

endaxioms�

g

Fig� �� The speci�cation EXT LISTS

� the carrier set of which consists of the set of all regular expressions de�ned
in the informal de�nition above� As a minor di�erence a regular expression
consisting of a single character� say c� is written mkreg�c� rather than c�

��� Matching Strings with Regular Expressions� the Speci�cation MATCH

The syntax of regular expressions was introduced in Section ���� The goal of
the present section is to de�ne their semantics�

�

REGEXP � f

enriches CHARACTERS�

data Regexp � � j � j mkreg �� Char�

j ��� �� Regexp�� Regexp� prio ��

j �jj� �� Regexp�� Regexp� prio �	

j �� �� Regexp��

Regexp �� EQ�

g

Fig� �� The speci�cation REGEXP

The meaning of a regular expression is a language� i�e� a set of strings� Clas�
sically� this language is de�ned inductively� Alternatively� one may introduce
a relation� say �matches�� between the set of regular expressions and the set
of all strings� Per de�nition� a regular expression r matches a string s � if and
only if s belongs to the language de�ned by r � This relation may be de�ned
by induction on the structure of regular expressions�

� � does not match any string�
� � only matches the empty string� viz� ���
� a regular expression mkreg
c� only matches the string mklist
c��
� a regular expression of the form
r� � r�� matches a string s� if and only if

s may be broken up into two substrings� say s� and s� with s s���s��
such that r� matches s� and r� matches s��

� a regular expression of the form
r� k r�� matches a string s� if and only if
either r� matches s or r� matches s
or both��

� a regular expression of the form
�� r� matches a string s� if and only if either
s is the empty string or s may be broken up into a number of substrings
each of which is matched by r�

This de�nition may be �translated	 into Spectrum in a straightforward way�
Note that apart from the function �matches� the speci�cation MATCH
Figure
�� also introduces a function �is prefix match of�� This function constitutes
a shorthand notation for later use�

��� Lexical Analysis� the Speci�cation SCAN

At last it is possible to specify the function scan already mentioned in Section
��� that performs the lexical analysis� Remember that the function takes a
string and a set of regular expressions as arguments and has as its value a
list of regular expressions� As already indicated the lexical analysis of a string
with respect to a set of regular expressions may have several solutions� A

��

MATCH � f

enriches STRINGS � EXT LISTS � REGEXP�

�matches� � Regexp � String � Bool prio ��

�is prefix match of� � �String � Regexp� � String � Bool prio ��

�matches�� �is prefix match of� strict total�

axioms � c�Char� r��r��Regexp� s�s
�String in

	�� matches s��

� matches s � �s � ����

mkreg�c� matches s � �mklist�c� � s��

�r��r�� matches s � �s��s�� s � s� �� s�
 r� matches s�

r� matches s��

�r�jjr�� matches s � r� matches s
 r� matches s�

���r�� matches s � �s � ��
 �ss� List String� s � flatten�ss�

�s
 � String� s
 � ss � r� matches s
��

�s�r��is prefix match of s
 � r� matches s
 s is prefix of s
�

endaxioms�

g

Fig� �� The speci�cation MATCH

speci�cation of the function scan would therefore be correspondingly loose�
Instead� the authors have opted for a more restricted de�nition of the notion
of lexical analysis and� correspondingly� of the function scan� Being inspired
from the strategy applied in the Unix tool Lex this restricted de�nition is
characterized by �ve �design decisions	� the �rst four of which are�

i� the second argument of the function scan is chosen to be a list of regular
expressions rather than a set of regular expressions�

ii� the list of regular expressions constituting the value of the function scan

is de�ned iteratively� at each iteration step one chooses the regular ex�
pression matching the longest possible pre�x of the string that remains
to be matched�

iii� in case several regular expressions match the same string one chooses
the leftmost one in the list of regular expressions constituting the second
argument of the function scan�

iv� in order to document an unsuccessful lexical analysis the value of the
function scan is de�ned to be a pair� the �rst element of this pair is
� as before � the list of the matching regular expressions� the second
element is a su�x of the string to be matched� viz� the su�x that remains
unmatched according to the design decision
ii��

��

An example illustrating the design decision
ii� is � �

scan��abb� �
a � a � b � b�� �
a � b � b�� ���

An example illustrating
iii� is�

scan��a� �
a jj b � a�� �
a jj b� � ���

An example illustrating
iv� is�

scan��aabb� �
a � a � b � b � a � a � b�� �
a � a � b� � �b��

By the way� without the design decision
ii� the lexical analysis of the last
example could have been successful yielding
a � a � b � b� as a result!

Actually� even with the above design decisions the function scan is not com�
pletely de�ned� The reason is that the above design decisions do not exclude
the repeated matching of an empty string� Three examples illustrating this
fact are�

� possible values of scan��a� �
a���� are
�
 a � � ����
�
 a � � � � ����
�
 a � � � � � � ����
� � �

� possible values of scan��b� �
a���� are
�
 � � �b���
�
�� � �b���
�
���� � �b���
� � �

� possible values of scan��a� �
��a�� are
�
��a� � ����
�
��a � ��a�� ����
�
��a � ��a � ��a� � ����
� � �

While this looseness may easily be accounted for in a requirement speci�cation
the authors decided to stick to the solution implemented by the algorithm of
the Unix tool Lex� This leads to an additional �design decision	 removing
the looseness illustrated above�

v� any match of the empty string is disregarded�

The speci�cation of Figure � de�nes the function scan� In addition it intro�
duces a function is longest prefix match of that implements the strategy
of the longest pre�x expressed by the design decision
ii��

The value of the function scan consists of a pair the components of which can
be accessed by the selectors tokens and unprocessed of the composite data
type Scan Result�

� For reasons of readability we leave out the application of the constructor mkreg
in the following equations�

��

SCAN � f enriches MATCH�

�is prefix match of� � �String � Regexp� � String � Bool prio ��

�is prefix match of� strict total�

axioms � r��s�s
 in

�s�r��is prefix match of s
 � r� matches s
 s is prefix of s
�

endaxioms�

�is longest prefix match of� �

�String � Regexp� � �String � List Regexp� � Bool prio ��

�is longest prefix match of� strict total�

axioms �s�s
�r�rs in

�s
�r� is longest prefix match of �s�rs� �
r�rs
 �s
�r� is prefix match of s

�s��r�� r��rs
 �s��r�� is prefix match of s
 �s��r�����s
�r� �

length�s���length�s
�
 �length�s���length�s
�

precedes in �r�r��rs���

endaxioms�

data Scan Result � mkres�� tokens� List Regexp�

� unprocessed� String��

scan � String � List Regexp � Scan Result�

scan strict total�

axioms �s�s
�rs�ts in

scan�s�rs� � mkres�ts�s
� �
s
 is postfix of s

��r� r � ts � r � rs�

�ts � �
 � s�s

�s

�r� r � rs
 s

 �� �� �
	��s

�r� is prefix match of s�

�

�ts �� �
 � �s��s�� s � s� �� s�

scan�s�� rs� � mkres�rest�ts�� s
�

�s��first�ts�� is longest prefix match of �s�rs�

��

endaxioms�

g

Fig� �� The speci�cation SCAN

Note that scan is de�ned as a relation� That it is e�ectively a function or�
equivalently� that its de�nition is consistent� is not apparent but is a result of
the veri�cation of Section ��

��

� A Design Speci�cation for Lex in Obscure

According to Step
iii� of the method proposed the present section presents a
design speci�cation for the same case study� It was developed at the Univer�
sit�at Saarbr�ucken with the help of the Obscure system�

As a di�erence with the declarative and non�executable requirement speci��
cation the design speci�cation is constructive and hence executable� On the
other hand the general structure of the design speci�cation should be close to
that of the requirement speci�cation in order to facilitate the veri�cation of
Step
v� of the method proposed� To this end the modularized structure of the
design speci�cation was chosen to be identical with that of the requirement
speci�cation
see Figure ��� Moreover� sorts and functions with the same
or
with a similar� intended meaning have been given the the same
or similar�
names� Finally� the axioms of the requirement speci�cation that are already
�constructive	 have been �taken over	� Hence� the design speci�cation funda�
mentally di�ers from the requirement speci�cation in those places where the
axioms of the latter contain existential quanti�er�

To facilitate the reading of the present paper the design speci�cation is pre�
sented as a Spectrum speci�cation� It constitutes a straightforward �trans�
lation	 of the Obscure speci�cation developed in Saarbr�ucken� The reader
interested in the original version in Obscure may consult
��� This paper
also contains additional details on the � non�trivial! � algorithm implicitly
speci�ed by the axioms of the design speci�cation�

This section does not present the complete design speci�cation but describes
the di�erences that distinguish the design from the requirement speci�cation�
The modularization structure of the design speci�cation is chosen to be identi�
cal to that of the requirement speci�cation� It is shown in Figure �� Therefore�
it is possible to regard the basic speci�cations
SCAN� MATCH� REGEXP� � � � � one
by one�

��� The Elementary Speci�cations

The elementary speci�cations used in the design speci�cation are essentially
the same as those used in the requirement speci�cation and shortly described
in Section ���� As a minor di�erence the design speci�cation uses two addi�
tional list functions� viz�

last � List � � �

allbutlast � List � � List �

These functions deliver the last element of a list and the list from which the
last element is removed respectively� By the way� the functions first and
rest of Section ��� are not used�

��

�
�
�
�
�� C

C
C
C
CC �

�
�
�
�� A

A
A
A
AA

�
�

�
�

�
�

l
l
l
l
l
ll

CHARACTERS LISTS NATURALS

REGEXP STRINGS EXT LISTS

SCAN

MATCH

Fig� �� Modularization structure of the case study

��� The Speci�cation EXT LISTS

This design speci�cation di�ers from the requirement speci�cation EXT LISTS

of Section ��� by the axioms for the functions ��� and �is prefix of�� More�
over� as the functions �is postfix of� and precedes in are not used in the
subsequent speci�cations their declaration and their axioms are missing�

The axioms for ��� and �is prefix of� are�

	�e � �
��
e � cons�e�s��

e �� e
 � �e � cons�e
�s�� � �e � s��

�
 is prefix of s�

	 �cons�e�s� is prefix of �
��
cons�e�s� is prefix of cons�e�s
� � s is prefix of s
�

e �� e
 � 	 �cons�e�s� is prefix of cons�e
�s
���

Although written in Spectrum the above speci�cation re�ects the construc�
tive character of the Obscure speci�cation� The axioms of the function
length
given in Section ����� for instance� constitute a primitive recursive
de�nition and are therefore �executable	� A similar remark holds for a func�
tion such as ��� given a few lines above� being understood that the impli�
cation ��� corresponds to the if�then�else construct of a programming
language� For a more precise formulation of the notion of constructivity the
reader is referred to the chapter �Constructive Speci�cations	 in
����

��

��� The Speci�cation REGEXP

This speci�cation is identical with the requirement speci�cation of Section ����

��� The Speci�cation MATCH

The design speci�cation is identical with the requirement speci�cation of Sec�
tion ��� except for the axioms

�r� � r�� matches s � ���

and

��� r�� matches s � ���

Moreover� it introduces the function

�is match of� � �Regexp � Regexp� � �String �String� � Bool

instead of �is prefix match of� of the requirement speci�cation�

The axioms for ���� �� and the new function are�

�r� � r�� matches s � �r��r�� is match of ����s��

��� r�� matches ���

��� r�� matches cons�c�s� � �r����r�� is match of �mklist�c��s��

�r��r�� is match of �s����� � �r� matches s��
 �r� matches ����

�r��r�� is match of �s��cons�c�s�� �
� �r� matches s��
 �r� matches cons�c�s�� �

 ��r��r�� is match of �s���mklist�c��s���

��� The Speci�cation SCAN

The speci�cation SCAN is now�

SCAN � f

enriches EXT LISTS � MATCH�

�list matches� � List Regexp � String � Bool � Regexp�

longest prefix match �

String � List Regexp � Bool � String � Regexp�

�list matches�� longest prefix match strict total�

axioms �s�s
�String� r�Regexp� rs�List Regexp� b�Bool in

�
 list matches s � �false����
r matches s � cons�r�rs� list matches s � �true�r��

	�r matches s� � cons�r�rs� list matches s � rs list matches s�

rs list matches s � �true�r� �

��

longest prefix match�s�rs� � �true����r��

rs list matches s � �false�r�
 length�s� � � �
longest prefix match�s�rs� � �false�s����

rs list matches s � �false�r�
 length�s� � �

 longest prefix match�allbutlast�s��rs� � �b�s
�r
� �
longest prefix match�s�rs� � �b�s
 �� mklist�last s��r
��

endaxioms�

scan � String � List Regexp � List Regexp � String�

scan strict total�

axioms �s�s
�s

�String� r�Regexp� rs�rs
�List Regexp� c�Char in

s � �� � scan�s�rs� � ��
�����

s �� ��
 longest prefix match�s�rs� � �true�s
�r�

 scan�s
�rs� � �rs
�s

�

� scan�s�rs� ��mklist�r� �� rs
�s

��

s �� ��
 longest prefix match�s�rs� � �false�s
�r�

� scan�s�rs� � ��
�s��
endaxioms�

g

Intuitively� the design decisions
ii� and
iii� of Section ��� are implemented
by longest prefix match and �list matches� respectively� The design deci�
sion
v� is implemented by the second axiom for longest prefix match in the
module SCAN
lines �� � in axioms� � � endaxioms�� the condition length�s���
interrupts the recursion when the string argument consists of a single charac�
ter� Actually� the axioms of longest prefix match induce a search through
the set of all non�empty pre�xes of the string s� This search starts with the
longest pre�x� i�e� the string s itself and terminates at the latest with the
pre�x of length ��

When compared with the requirement speci�cation of Section ��� the de�
sign speci�cation introduces an additional function� viz� �list matches��
Moreover� the function longest prefix match is a genuine function while
�is longest prefix match of� is a predicate�

Finally� it is interesting to note the following subtle di�erence between the
two functions �is longest prefix match of� of the requirement speci�ca�
tion and longest prefix match of the design speci�cation� the latter accepts
an empty string as the longest pre�x only if the string considered is itself the
empty string� More precisely� let
r�� � � � � rn� a list of regular expressions� such
that
at least� one of these regular expressions matches the empty string ���
Let ri� be the �rst regular expression matching ��� Formally

r�� � � � � rn� list matches ��
true� ri��

must hold� Now let s be a string� such that there is no non�empty pre�x s� of
s which is matched by one of the ri� i�e� for each non�empty pre�x s� of s

��

r�� � � � � rn� list matches s�
false� ��

must hold� Then the following equations are valid�

�
��� ri�� is longest prefix match of
s�
r�� � � � � rn�� true�
� longest prefix match
���
r�� � � � � rn��
true� ��� ri��
� � � � and
!�� longest prefix match
s�
r�� � � � � rn��
false� s� ���

if s � ���

By the way� this di�erence is not intentional but is a result from arbitrarily
made decisions in the implementation of design decision
v�� in the requirement
speci�cation it is realized by the axioms for the function scan� in the design
speci�cation by the axioms for the function longest prefix match�

� Veri�cation of Coincidence of Both Speci�cations

��� Proof Obligations

The goal was to prove that the requirement speci�cation of Section � and the
design speci�cation of Section � are �mutually consistent	� To this end the
following two properties were established� First it was shown that the design
speci�cation is consistent in that it terminates
step
iii� of Section ����� This
property is called the property of termination� Second it was shown that any
model of the design speci�cation is a model of the requirement speci�cation�
This property of re�nement establishes step
v� of Section ����

Both properties were translated into sets of formulas� called proof obligations�
Proving a set of proof obligations is necessary and su�cient to establish the
corresponding property� The translation is based on the theory of modular
systems described in
��� and
���� It is performed automatically by the KIV
system� when the two speci�cations are presented to it in the form of a mod�
ular system� The proof obligations for termination and re�nement are now
discussed successively�

To prove the property of termination� recursive functions are generated from
the equations of the design speci�cation� It is then shown that these de�ne
total functions� i�e� that any computation of a function value terminates� This
generation is performed automatically in the same manner as in the Obscure
system for rapid prototyping
step
iv� of Section ����� The termination prop�
erty guarantees that the enrichments from LIST to EXT LISTS� from EXT LISTS

to MATCH and from MATCH to SCAN are hierarchy persistent� i�e� that each model
of LIST
resp� EXT LISTS� MATCH� may be extended to a model of EXT LISTS

resp� MATCH� SCAN�� in fact� the semantics of the additional operations is then
simply the semantics of the algorithms� The basic data types of lists� natural
numbers� regular expressions and tuples are consistent by construction as they
are all de�ned as initial data types with the data�construct of Spectrum�

��

To prove the property of re�nement it is su�cient to prove that the axioms
of the requirement speci�cation are logical consequences of those of the de�
sign speci�cation� In other words� if AxReq and AxDes denote the set of the
axioms of the requirement speci�cation and of the design speci�cation respec�
tively� one has to prove that AxDes j ax for each axiom ax of AxReq � These
proof obligations may be divided into three groups corresponding to the spec�
i�cations EXT LIST� MATCH and SCAN� The obligations for MATCH and SCAN are
as follows� MatchAx and ScanAx stand for the axioms of MATCH and SCAN

respectively�

MatchAx 	
�� matches s�
��

MatchAx 	 � matches s �s ���
��

MatchAx 	 mkreg�c� matches s �mklist c s�
��

MatchAx 	 r� � r� matches s �s��s�� s s� �� s� �
r� matches s� � r� matches s�

��

MatchAx 	 r� jj r� matches s r� matches s
 r� matches s
��

MatchAx 	 ��� r� matches s � s ��

�ss� s flatten ss �

�s	� s	 � ss � r� matches s	 �

��

MatchAx 	 �s�r�� is prefix match of s	 �
r� matches s � s is prefix of s	

��

ScanAx 	
�s	�t� is longest prefix match of �s�rs� �
t � rs � �s	�t� is prefix match of s �
�s��t�� �s��t�� is prefix match of s � t� � rs �

�s��t�� � �s	�t� �
length s�
�
 length s	

�length s� length s	 � precedes in �t�t��rs��

��

ScanAx 	
scan�s�rs� mkres�ts�s	� �

s	 is postfix of s �
��r� r � ts � r � rs� �
�ts
� � s s	 �

�s		�r� r � rs � s		 � �� �

 �s		�r� is prefix match of s� �

�ts �
� �
�s��s�� s s� �� s� �
scan�s��rs� mkres�rest�ts��s	� �
�s��first�s�� is longest prefix match of �s�rs��

��

��

Since there are no de�nitions of �is longest prefix match of� and the func�
tion �is prefix match of� in the design speci�cation the following construc�
tive speci�cation is added to the design speci�cation MATCH

�s�r�� is prefix match of s	 �
r� matches s � s is prefix of s	

���

and the following constructive speci�cation to the design speci�cation SCAN�

longest prefix match�s�� rs� �true� s�� r� �
� �s� r� is longest prefix match of �s�� rs� �
s� s �� s� �

���

longest prefix match�s�� rs� �false� s�� r�� �
� �s� r� is longest prefix match of �s�� rs� �
list matches�rs���� �true� r� �

���

��� The Veri�cation

The veri�cation proceeds in two steps� First� the KIV System automatically
generates the proof obligations discussed in Section ���� These proof obliga�
tions are then tackled by a proof strategy which is based on the paradigm of
tactical theorem proving and constitutes the kernel of the KIV System�

An overview of the results of the veri�cation may be found in Table �� The
�rst line of the table contains the number of automatically generated proof
obligations that ensure the properties of termination and re�nement� The sec�
ond line indicates the number of lemmas that were �invented	
and proved�
by the proof engineer� The proofs required a number of �high level	 proof steps
displayed on the third line� Such high level proof steps include the applica�
tion of an induction hypothesis� the insertion of a lemma� the unfolding of a
function de�nition� etc� The proof engineer had to interact several times with
the KIV system by selecting the proof rule to be applied next� The number of
these interactions is shown on the fourth line� All other proof steps were per�
formed automatically thanks to heuristics� yielding a degree of automatization
indicated in the last line�

Actually� the table does not re�ect the complete proof e�ort� For rewriting
and simpli�cation the system used �� properties of lists and �� properties of
regular expressions� The proofs of these �� properties required ��� additional
proof steps and �� additional interactions� �

The �gures in Table � refer to the �nal versions of the requirement and design
speci�cation� Originally these speci�cations contained several adequacy errors

� It is interesting to note that the veri�cation of SCAN does not require any prop�
erties of match� in this sense the scanner is generic�

��

EXT LISTS

Proof obligations ��

Lemmas �

Proof steps ���

Interactions ��

Automatization ���� �

MATCH

Proof obligations �

Lemmas �

Proof steps ���

Interactions ��

Automatization �� �

SCAN

Proof obligations �

Lemmas ��

Proof steps ���

Interactions ��

Automatization ���� �

Fig� �� Overview over the veri�cation

that were discovered in the course of the veri�cation� The reuse of proofs

��� allowed to minimize the additional proof e�ort necessary to correct these
errors� Altogether the veri�cation could be completed within � days�

��� Detecting Adequacy Errors

The veri�cation led to the discovery of four adequacy errors� � The goal of this
section is to indicate the nature of these errors and to comment on the e�ort
of the proof engineer to detect them�

The �rst error occurred in both the requirement speci�cation and the design
speci�cation� Instead of the axiom�

��� r�� matches s � s ��
 �ss� s flatten ss �
�s	� s� � ss � r� matches s	�

���

of Section ��� the requirement speci�cation contained the much simpler axiom�

��� r�� matches s � s ��
 r�����r�� matches s �
���

This axiom is not adequate because it allows a model in which� for example�
the regular expression ������r�� matches any string� The design speci�ca�
tion contained the same erroneous axiom instead of the two axioms of Section
���� This adequacy error was found during the attempt to prove the termina�
tion property for the function �matches� with the KIV�System� The attempt
yielded an unprovable goal and a proof analysis lead to the counterexample�

��� ��� mkreg�c��� matches mklist�d�
���

where c� d stand for two arbitrary� di�erent characters� This input leads to a
nonterminating computation�

� To be speci�c the fourth error was introduced by the attempt to correct the third
one�

��

The second error was located in the requirement speci�cation� It became ap�
parent� when during the proof of
�� for �is longest prefix match of� the
following subgoal appeared�

t matches �� � t�rs � t� matches �� � t���rs � t� � t
� precedes in�t�t��rs�

���

The precondition of
��� is satis�able since it is always possible to �nd a
regular expression t� di�erent from t� which matches the empty string ��

and which is not member of rs� However� the goal is not provable� since t

can precede t� in rs only if both regular expressions are members of rs� The
problem is that we have to deal with regular expressions we are not interested
in� i�e� that are not member of the considered list of regular expressions rs� An
inspection of the axiomatization of �is longest prefix match of� revealed
that in the �rst version the additional condition t� � rs was missing�

�s	�t� is longest prefix match of �s�rs� �
t � rs � �s	�t� is prefix match of s �
�s��t�� �s��t�� is prefix match of s �

�s��t�� � �s	�t� �
length s� � length s	

�length s� length s	 �
precedes in�t�t��rs��

���

This is an adequacy error which does not lead to an inconsistent speci�ca�
tion but to an irritating counter�intuitive de�nition� the value of the function
�is longest prefix match of� is false for all arguments� The error was
detected during the attempt to prove the property of re�nement for the spec�
i�cation SCAN after only �� proof steps�

The third adequacy error was located in the design speci�cation� Originally�
the two last axioms de�ning the function longest prefix match in Section
��� were

rs list matches s �false�r� � length�s� � �
longest prefix match�s�rs� �false�s���

���

rs list matches s �false�r� � length�s� � �

� longest prefix match�allbutlast s�rs� �b�s	�r	� �
longest prefix match�s�rs�
�b�s	 �� mklist�last s��r	�

���

In other words� the axioms contained the conditions length�s� � and
length�s� � � instead of length�s� � � and length�s� � � respectively�
In the original version a regular expression matching the empty string is con�
sidered a successful match� while in the new version it is not� The error was

��

found during the attempt to prove the termination of the function scan� In
fact� the computation of a value such as

scan�cons�a�����
���
���

failed to terminate� because

longest prefix match�cons�a�����
���
�true�cons�a�������

���

i�e� because the argument in the recursive call did not �decrease	� The cor�
rection adopted �rst consists in the modi�cation of the scan�function� if the
un�nished rest does not decrease in length� the scanning is terminated�

This means that the axiom

s � ��

� longest prefix match�s�rs� �true�s	�r�

� scan�s	�rs� �rs	�s		�

� scan�s�rs� �cons�r�rs	��s		�

���

is replaced by the following two axioms�

s � ��

� longest prefix match�s�rs� �true�s	�r�

� s � s	

� scan�s	�rs� �rs	�s		�

� scan�s�rs� �cons�r�rs	��s		�

���

s � ��

� longest prefix match�s�rs� �true�s�r�

� scan�s�rs� �mklist�r��s�

���

However� with this version the proof of
�� for scan got stuck with the following
subgoal�

longest prefix match�s	�rs� �true�s	�r��

� r� � rs

� s	 � ��

� r� matches ��

� �s��s�� s	 s� �� s�

� scan�s��rs� mkres�
��s	�
� �s��r�� is longest prefix match of �s	�rs�

���

The only possible instantiation for s� is s	� since s	 is the un�nished rest
of the scanning of s� and cannot be longer than s�� This requires s� to
be instantiated by ��
s	 s� �� s	 must hold�� However� scan�s	�rs�
is equal to mkres�cons�r��
���s	�� not mkres�
��s	�� hence this goal is not

��

provable� An analysis of the proof tree showed that the correction
Axioms ��
and ��� was not compatible with the requirement speci�cation�

Originally� both speci�cations were drawn up on the basis of the design de�
cisions
i� to
iv� of Section ���� In the absence of the design decision
v�

Section ���� the match of the empty string was treated di�erently in the re�
quirement and in the design speci�cation� This discrepancy was detected by
the KIV�System during the proof of the re�nement property for the speci�ca�
tion SCAN after ��� proof steps� However� no work was lost because all proof
steps could be reused automatically for the proof of the �nal version of the
speci�cations� even though two functions and one lemma were modi�ed� By
the way� it was the detection of this error that led to the introduction of the
design decision
v��

� Conclusions

This paper has reported on a method which is intended to improve the quality
of functional speci�cations in terms of precision and unambiguity� According
to common experience from software practice this issue is of particular im�
portance since errors made during the early steps of a project are the most
expensive ones�

The quality of a speci�cation may be judged by its logical consistency and
by its adequacy� The basic di�culty in improving this quality is that there is
no formally de�nable notion of the adequacy of a speci�cation� The proposed
method� called method of complementary speci�cation� addresses this topic
by introducing redundancy into the process of speci�cation development� In
the case study treated three groups of people were involved looking at the
application problem from di�erent viewpoints� The �rst group drew up a high�
level requirement speci�cation using a powerful logic language� The second
group produced a design speci�cation in the form of a very abstract model
implementation for the same problem� While using the results of the �rst
group it nevertheless produced a substantially di�erent speci�cation due to
an algorithmic rather than an axiomatic 	way of thinking	� The third group�
�nally� established a formal relation between these two speci�cations� It thus
improved the con�dence in the adequacy of the speci�cations and � as a side
e�ect � showed the consistency of the high�level speci�cation�

The experiment described has shown that the method of complementary spec�
i�cation is a viable way to assess the quality of a formal speci�cation� Al�
though both speci�cations were carefully designed by specialists in formal
methods� signi�cant adequacy errors remained and were detected by applying
the method � as described in Section ���� Moreover� the experiment has en�
abled the e�ective usage of software tools � such as Obscure and KIV �
for the analysis of the speci�cations�

��

The twofold speci�cation e�ort required by this method may seem a signi��
cant drawback� However� the following arguments show that it may make sense
to have both speci�cations available in a project� The high�level requirement
speci�cation is more compact and better suited for the documentation of the
problem� The executable design speci�cation together with a symbolic inter�
preter is an ideal tool to decide cases in which there remains a doubt on the
precise implications of the speci�cation� None of the two speci�cations is sat�
isfactory by itself� the high�level speci�cation lacks good methods for checking
its consistency� and the executable speci�cation is too complex to decide upon
its adequacy�

The method is particularly well�suited for problems of signi�cant algorith�
mic complexity� the problem domain of which is well�de�ned� Of course� the
method makes sense only if the quality requirements are high�

As a summary� for a project with a very high quality demand the method of
complementary speci�cation presented here seems to be a promising way to
establish a sound starting point for the development� It is expected that the
additional e�ort spent during the analysis of the speci�cation will pay back
by savings in the later development phases�

References

��
 A� V� Aho� R� Sethi� and J� D� Ullmann� Compilers	 Principles� Techniques
and Tools� Addison�Wesley� �����

��
 A� Ayari� S� Friedrich� R� Heckler� and J� Loeckx� Das Fallbeispiel Lex�
Technical Report WP������ Uni Saarbr�ucken� �����

��
 M� Broy� C� Facchi� R� Grosu� R� Hettler� H� Hussmann� D� Nazareth�
F� Regensburger� O� Slotosch� and K� St�len� The Requirement and Design
Speci�cation Language Spectrum� An Informal Introduction� Version ���� Part
I� Technical Report TUM�I����� Technische Universit�at M�unchen� Institut f�ur
Informatik� May �����

��
 M� Broy� C� Facchi� R� Grosu� R� Hettler� H� Hussmann� D� Nazareth�
F� Regensburger� O� Slotosch� and K� St�len� The Requirement and Design
Speci�cation Language Spectrum� An Informal Introduction� Version ���� Part
II� Technical Report TUM�I����� Technische Universit�at M�unchen� Institut f�ur
Informatik� May �����

��
 Ch� Choppy� Is my Speci�cation Correct� A Study with Pluss Speci�cations�
Technical Report ���� Univ� Paris�Sud� �����

��
 M� Heisel� W� Reif� and W� Stephan� Tactical Theorem Proving in Program
Veri�cation� In M� Stickel� editor� International Conference on Automated
Deduction� Springer LNCS ���� �����

��

��
 M� Heisel� W� Reif� and W� Stephan� Formal Software Development in the KIV
System� In R� McCartney and M� Lowry� editors� Automating Software Design�
AAAI press� �����

��
 R� Hettler� A Requirement Speci�cation for a Lexical Analyzer� Technical
Report TUM�I����� TU M�unchen� �����

��
 P� Hudak� S� Peyton Jones� and P� Wadler� editors� Report on the Programming
Language Haskell� A Non�strict Purely Functional Language
Version �	���
ACM SIGPLAN Notices� May �����

���
 Th� Lehmann and J� Loeckx� Obscure� A Speci�cation Language for Abstract
Data Types� Acta Informatica� �������������� �����

���
 J� Loeckx� Algorithmic Speci�cations� A Constructive Speci�cation Method for
Abstract Data Types� In ACM Trans	 Progr	 Lang	 Syst	
TOPLAS� �� pages
�������� �����

���
 J� Loeckx� H��D� Ehrich� and M� Wolf� Speci�cation of Abstract Data Types�
Wiley�Teubner Series in Applicable Theory in Computer Science� Wiley�
Teubner� To appear�

���
 J� Loeckx and J� Zeyer� Experiences with the Speci�cation Environment
Obscure� Technical Report WP ������ Univ� Saarbr�ucken� ����� Submitted
for publication�

���
 L� C� Paulson� ML for the Working Programmer� Cambridge University Press�
�����

���
 W� Reif� The KIV�approach to software veri�cation� state of a airs and
perspectives� InKORSO� Correct Software by Formal Methods� Springer LNCS�
To appear�

���
 W� Reif� Correctness of Generic Modules� In Nerode and Taitslin� editors�
Symposium on Logical Foundations of Computer Science� Springer LNCS ����
�����

���
 W� Reif� Veri�cation of Large Software Systems� In Shyamasundar�
editor� Foundations of Software Technology and Theoretical Computer Science�
Springer LNCS ���� �����

���
 W� Reif and K� Stenzel� Reuse of Proofs in Software Veri�cation� In
Shyamasundar� editor� Foundation of Software Technology and Theoretical
Computer Science� pages �������� Springer LNCS ���� �����

���
 D� T� Sannella and M� Wirsing� A kernel language for algebraic speci�cation
and implementation� In Coll	 on Foundations of Computation Theory� pages
�������� Springer LNCS ���� �����

��

