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Abstract

The paper describes an experiment in the combined use of various tools for the
development and validation of formal specifications. The first tool consists of a
very abstract, (non—executable) axiomatic specification language. The second tool
consists of an (executable) constructive specification language together with a spec-
ification environment. Finally, the third tool is a verification system. The first two
tools were used to develop two specifications for the same case study, viz. a generic
scanner similar to the tool LEX present in UNIX. Reflecting the nature of the tools
the first specification is abstract and non—executable, whereas the second specifica-
tion is less abstract but executable. Thereupon the verification system was used to
formally prove that the second specification is consistent with the first one in that it
describes the same problem. During this proof it appeared that both specifications
contained conceptual errors (“adequacy errors”). It is argued that the combined use
of tools similar to those employed in the experiment may substantially increase the
quality of software.

I This work has been supported by the German ministry of research and technology
(BMFT), as part of the compound project KORSO (Korrekte Software).



1 Introduction
1.1 Correctness and Adequacy of Formal Specifications

To increase the reliability of software it has been proposed to start the design
of a program by drawing up a formal — and hence precise — specification of
the problem to be solved. Taking this specification as a basis one then develops
— in one or several steps — the wanted program. Finally, in a so-called veri-
fication step one formally proves — by hand or by using a verification system
— that the program obtained fulfills the specification. Meanwhile different
refinements and variants of this method have been proposed. The main point
to be stressed here is that the verification step of the method guarantees that
the program is correct with respect to the specification, i.e. that it is free of
“programming errors”.

Unfortunately, even a verified program may fail to solve the given problem.
This occurs when the specification does not correctly describe the problem.
Following a notion introduced, for instance, in [5] such a conceptual error in
(the design of) a specification is called an adequacy error.

It is important to note that adequacy can only be tested, not proved. The
reason is that adequacy relates a formal notion (viz. a specification) to an
informal one (viz. a “problem”). Clearly, a negative result of an adequacy
test disproves the adequacy while a positive result merely may increase the
confidence in the adequacy.

A classical test method for detecting inadequacies in a specification is rapid
prototyping. Of course, this method requires the specification to be executable.

In the present paper we propose a more elaborate method for testing the
adequacy of a specification and we illustrate its use in a case study. The
method — called method of complementary specification — is presented in
Section 1.2. The case study is shortly described in Section 1.3.

1.2 The Method of Complementary Specification

As indicated above the goal of the method is to perform an adequacy test of
specifications. It consists of five steps:

(i) The problem to be specified is given an informal description; this descrip-
tion has to be as precise as possible and may contain formal parts.

(i7) An axiomatic specification for the problem is drawn up. This specification
should keep as close to the informal description of step (i) as possible.
Moreover, the specification should be abstract in the sense that it should
avoid any overspecification. To this end it may make use of, for instance,
the full power of first-order logic. The resulting specification will be loose



in that it may possess different (i.e. non-isomorphic) models. Henceforth,
we refer to this specification as the requirement specification.

(7ii) Independently from step (i) but based on its result a specification is
drawn up where the special form of the axioms ensures executability
and — at the price of some proof effort — termination (‘“constructive
specification”). The specifier has to take into consideration the informal
description of step (i) as well as the formal requirement specification of
step (i7). Again, the goal is to obtain a formal specification but now
with axioms of a particular form. The specifier should abstract from any
consideration concerning the efficiency of the execution. Being executable
this specification has only one model (up to isomorphism). Henceforth we
refer to this specification as the design specification.

(iv) The design specification may be used to perform some rapid prototyping
and thus already detect some inadequacies. This step is does not belong
to the method proper.

(v) Tt is formally proved that the model of the design specification is a model
of the requirement specification.

The essential step of the method is, of course, step (v). Note that a positive
result of this verification merely proves that both specifications are “mutually
consistent” im[lying, in particular, that the requirement specification has a
model. It fails to prove the adequacy of the specifications in case they both
contain exactly the same adequacy errors. We argue that the probability of this
case is small because the two specifications are supposed to have been devel-
oped independently from each other and, more importantly, because the devel-
opment of requirement specifications is based on axiomatic thinking whereas
the development of design specifications is based on algorithmic thinking.

The method was applied on the case study to be described in Section 1.3.
In this experiment the steps (i7) and (iii) were performed by different teams:
step (i), which is described in Section 3, was performed at the Technische
Universitdt Miinchen and step (i7i) (Section 4) at the Universitéit Saarbriicken.
Step (v) that is documented in Section 5 was performed with the help of an
automatic verification system at the Universitat Karlsruhe. Note that neither
step (i) nor step (iv) were carried out in this case study. As step (iv) is
facultative, it can be safely left out. Step (i) could be omitted because of the
very specific nature of the case study. The theory of lexical analysis is a well-
known subject described in many publications such as [1]. Furthermore, the
existing UNIX tool LEX constituted a good model that was tried out in case
of doubt. Together, [1] and LEX provide more information about the problem
to be solved than is usually contained in an informal problem description.

It is interesting to note that the method proposed may be integrated into a
general method for the design of reliable software. More precisely, the design
specification may be considered to be the first refinement step in the develop-
ment of a program starting from the (requirement) specification.



1.3 The Case Study LEX

The software problem of the case study consists in the construction of a lexical
analyzer similar to the UNIX tool LEX. Of course, the case study has an aca-
demic flavor as there exist efficient and manifestly adequate implementations
of the problem. On the other hand the case study is of moderate size and
well-suited to illustrate the method described proposed.

Informally, lexical analysis — also known as scanning — consists in breaking
up a string into substrings according to a set of regular expressions. More
precisely, each substring has to belong to the language defined by a regular
expression of the set. The result is the list of regular expressions corresponding
to the substrings. Hence lexical analysis may in principle be modeled by a
function, say scan, taking two arguments. The first argument is a string, viz.
the string to be analyzed, the second argument is a set of regular expressions
and the function value is a list of regular expressions.

Actually, this definition of the function scan lacks precision. In fact, depending
on the string and the set of regular expressions the problem of lexical analysis
may have several solutions or, alternatively, no solution. This difficulty will be
addressed in Section 3.5.

By the way, for efficiency reasons the actual UNIX tool LEX constitutes a
somewhat peculiar implementation of the function scan. In a “preprocessing
phase” the tool turns the second argument of scan (viz. a set of regular expres-
sions) into a program called scanner. In a subsequent “run phase” this program
reads in the first argument of the function scan and yields the function value
as a result. For the user of the UNIX tool LEX this scanner-generating feature
is important as it improves the flexibility and efficiency of the tool. In the
specification of the problem this feature may be ignored. Actually, it may be
viewed as resulting from a decision taken during the design of an implemen-
tation of scan, i.e. during the development of a program for the specification.
Hence this problem is outside the scope of the present paper.

2 Tools Used for the Experiment
2.1 SPECTRUM

The SPECTRUM project at the Technische Universitat Miinchen concentrates
on the process of developing precise and well-structured specifications on an
abstract level. SPECTRUM comprises a specification language, a deduction
calculus and a development methodology. As the name of the project suggests
SPECTRUM is intended to encompass a wide range of specification styles. For
instance, the constructive specification language OBSCURE (which was used



in the case study for step (iii) of Section 1.2) can be viewed semantically as a
sublanguage of SPECTRUM.

SPECTRUM is based on classical algebraic specification techniques. However,
in contrast to most algebraic specification languages it explicitly supports the
use of partial functions. Moreover, SPECTRUM is not restricted to equational
or conditional axioms but provides full first-order predicate logic extended by
some second-order principles.

SPECTRUM is oriented towards the development of functional programs. A
number of concepts have therefore been taken over from functional program-
ming languages such as parametric polymorphism and higher-order functions.

The SPECTRUM specifications contained in Section 3 and 4 are provided with
comments. For the reader acquainted with some classical concepts and no-
tation from algebraic specification techniques these comments should suffice
to enable the reading of the paper. For more information on SPECTRUM the
reader may consult [3,4].

2.2 (OBSCURE

The specification language OBSCURE is described in [10]. It has been designed
to be a simple but robust tool. While allowing operator overloading it provides
neither polymorphism nor higher-order functions. On the other hand, stringent
context conditions allow to automatically generate formulas that express the
persistency of a specification. Note that OBSCURE is a language scheme rather
than a language because it does in particular not fix the specification method
used to draw up the “elementary” specifications i.e. used for specification-in-
the-small.

The specification environment OBSCURE is described in [13]. It consists, among
others, of an editor, a data base, a parser performing a complete syntactical
check and facilities for rapid prototyping. The specifications are written in the
specification language OBSCURE instantiated with a constructive specification
method, viz. the algorithmic specification method [11]. The use of this partic-
ular specification method makes OBSCURE specifications look like programs
written in a very abstract programming language.

As already indicated, specifications written in the specification language OB-
SCURE and, especially, specifications written with the help of the environment
OBSCURE may be viewed as (syntactical variants of) SPECTRUM specifica-
tions. In order not to bother the reader with additional syntactical details the
OBSCURE specifications in Section 4 are written in SPECTRUM notation.

2.3 KIV

KIV stands for Karlsruhe Interactive Verifier and is an advanced support tool



for correct software development for large sequential systems [15,17,6,7]. Tt
supports the entire design process from formal specification to verified exe-
cutable code and contributes to an economically applicable verification tech-
nology. Substantial verification has been done using KIV. The current pro-
ductivity is between 1000 to 2000 lines of verified code per year.

KIV relies on an ASL-style [19], first-order algebraic specification language to
describe hierarchically structured software systems. Specification components
are implemented by stepwise refinement using (functional) program modules.
The specifier has to follow a strict decompositional design discipline leading
to modular systems with compositional correctness. As a consequence the
verification effort for a modular system becomes linear in the number of its
modules. KIV offers a powerful interactive verification component for module
correctness based on proof tactics. It combines a high degree of automation
with an elaborate interactive proof engineering environment.

A correctness management of KIV keeps track of the development graph (visu-
alizing the development process), proof obligations and proofs. Furthermore,
it computes and visualizes the impact of modifications on the correctness of
other components. An interesting feature of the KIV verification methodology
is the tight coupling of error detection, correction (to specifications or pro-
grams) and an intelligent reuse of proofs. Actually, KIV offers a mechanism
that goes far beyond proof replay [18].

3 A Requirement Specification for LEX

This section presents a requirement specification for the scanner described in
Section 1.3 (see also [8]). This specification is written in SPECTRUM and was
developed at the Technische Universitdt Miinchen as the result of step (i7)
of the method of complementary specification. For a detailed description of
the specification language SPECTRUM and its standard library on which this
specification is based, the reader is referred to [3,4].

The specification is presented in a bottom—up manner, starting from “elemen-
tary” specifications and ending up with a specification of the function scan
performing the lexical analysis.

3.1 Naturals, Lists, Characters and Strings: the Elementary Specifications

The Standard Library of SPECTRUM [4] contains, among others, the specifi-
cations of lists, natural numbers, characters and character strings.

To provide a flavor of SPECTRUM Figure 1 presents the specification called
LISTS that introduces polymorphic lists together with some usual list opera-
tions. The following remarks should help to understand this specification (and
other SPECTRUM specifications presented in this paper as well):



LISTS = { —— polymorphic lists
data List a = [] | cons(!first: «,!rest: List a);
List:: (EQ)EQ;

.++.:List o X List o — List o prio 10:left;
.+-+. strict total;

axioms V s,s’:List «, e:a in

{11} [] ++ s = s;
{12} cons(e,s’) ++ s = cons(e,s’ ++ s);
endaxioms;
}
Fig. 1. A SPECTRUM specification of polymorphic lists
— The text to the right of —— is a comment.

— SPECTRUM’s data construct is similar to the construct data or datatype
in functional languages like ML [14] or Haskell [9]. It introduces a new sort
(in the case of the example of Figure 1 the polymorphic sort List «) to-
gether with its constructors ([] and cons) and selectors (first, rest). The
exclamation marks in front of the selectors may be ignored in a first read-
ing: they merely express the strictness of the constructor in the respective
arguments.

— SPECTRUM provides a notion of sort classes very similar to the type classes
of Haskell. In Figure 1, the line List: : (EQ)EQ expresses that whenever the
sort constructor List is applied to a sort from the (previously defined) class
EQ, it yields a sort which again is from EQ. Note that independently from
this property List may also be applied to arbitrary sorts.

— Functions are defined syntactically by signatures and semantically by ax-
ioms. In Figure 1, the line

.++. : List a X List a — List « prio 10:left

introduces the infix function .+-+. which is left associative and has a
certain binding priority. Semantically this function is defined by three ax-
ioms. Two of them are given as logical formulae embraced by the keywords
axioms and endaxioms. Such logical axioms can be given names (in our case
11 and 12) embraced by curly brackets in front of the axioms. The third
axiom is given by the line .4++. strict total and requires the function
.++. to be strict and total.

— According to the specification of Figure 1 the constructors of the sort
List « are[] and cons. Writing down concrete lists with the help of these
constructors is quite cumbersome. As lists are an important specification
concept SPECTRUM provides a shorthand notation: a finite list may be de-
noted by enumerating its elements. For instance, [a,b,c,d] denotes the list
consisting of the elements a, b, ¢ and d.

In addition to lists the Standard Library of SPECTRUM contains a specifica-



tion NATURALS introducing the sort Nat together with the usual operations
on natural numbers. A further specification is CHARACTERS introducing the
sort Char. Finally, the specification STRINGS introduces the sort String of
character strings. This sort is defined as an instance of the sort List «, viz.
as

String = List Char;

As strings constitute a special case of lists, the shorthand notation for lists

mentioned above is applicable to strings, too. As this shorthand notation is

still lengthy, SPECTRUM provides an additional shorthand notation for strings:
" stands for || and, for instance, "abecd” for [a,b,c,d].

3.2 Some List Operations: the Specification EXT_LISTS

In the specification of the function scan the list operations provided by the
standard specification LISTS of Figure 1 do not suffice. The specification
EXT_LISTS (for “extended lists”) in Figure 2 introduces the required addi-
tional list operations.

The meaning of the different functions introduced should be clear. Note that
the function flatten maps lists of lists of elements into lists of elements by
removing all parentheses but the outermost ones.

The specification of Figure 2 consists of two parts introducing the first three
and the remaining four functions respectively. This presentation is made for
clarity only and is semantically irrelevant.

3.8  The Syntax of Reqular Expressions: the Specification REGEXP

Classically the set of all regular expressions for a given set of characters is
defined inductively (see e.g. [1])?:

(empty regular expression) () is a regular expression;

(empty word) ¢ is a regular expression;

(atomic expression) each character is a regular expression;

— (sequence) if ry and ry are regular expressions, then (r; o ry) is a regular
expression;

— (sum) if r; and ry are regular expressions, then (r; || ro) is a regular expres-
sion;

— (Kleene—star) if r is a regular expression, then (** r) is a regular expression.

A SPECTRUM specification reflecting this definition is in Figure 3. The reader
should not bother about the syntactical details of this definition. The only
important point to remember is that the specification introduces a sort Regexp

2 The use of the quite unusual symbols o,|| and ** for the operations on regular
expressions stems from lexical restrictions imposed by the language SPECTRUM.



EXT_LISTS =:{
enriches LISTS + NATURALS;

—— all functions in this specification are strict and total
strict total;

mklist : o — List «;
length : List o — Nat;
flatten : List (List «) — List «;

axioms Vs:List a,ss:List(List «a),e:« in
mklist(e) = cons(e,[]);

length([]) = 0;

length(cons(e,s)) = succ(length(s));

flatten([]) = [];

flatten(cons(s,ss)) = s ++ flatten(ss);
endaxioms;

.E. ::EQ = a X List o« — Bool prio

. e

e
.is_prefix of. : a::EQ = List a X List a — Bpoilo
.is_postfix_of.: «a::EQ = List o X List o — Bpoilo
_precedes_in_. : «::EQ = o X a X List o — Bealio
——prio expresses the operator priority

[e) BN e) B> NN e}

-

axioms «::EQ = Vs,s’:List «

Ve,e’:«
in
e € s = ds1,s2. s = sl ++ mklist(e) ++ s2;
s is_prefixof s’ = ds’’. s’ = s ++ s8’7;
s is_postfix.of s’ = ds’’. s’ = s’’ ++ s;

_precedes_in (e, e’, s) = Jsl,s2,s3. —(e’€ s1) A
s = s1 ++ mklist(e) ++ s2 ++ mklist(e’) ++ s3;
endaxioms;

}

Fig. 2. The specification EXT_LISTS

, the carrier set of which consists of the set of all regular expressions defined
in the informal definition above. As a minor difference a regular expression
consisting of a single character, say c, is written mkreg(c) rather than c.

3.4 Matching Strings with Regular FExpressions: the Specification MATCH

The syntax of regular expressions was introduced in Section 3.3. The goal of
the present section is to define their semantics.



REGEXP = {

enriches CHARACTERS;

data Regexp = 0 | ¢ | mkreg (! Char)
| .o. (! Regexp,! Regexp) prio 11
| .||. (! Regexp,! Regexp) prio 10
| *x (! Regexp);

Regexp :: EQ;

}

Fig. 3. The specification REGEXP

The meaning of a regular expression is a language, i.e. a set of strings. Clas-
sically, this language is defined inductively. Alternatively, one may introduce
a relation, say .matches., between the set of regular expressions and the set
of all strings. Per definition, a regular expression r matches a string s , if and
only if s belongs to the language defined by r . This relation may be defined
by induction on the structure of regular expressions:

() does not match any string;

¢ only matches the empty string, viz. " ";

a regular expression mkreg(c) only matches the string mklist(c);

a regular expression of the form (r; o 75) matches a string s, if and only if

s may be broken up into two substrings, say s; and s, with s = s14++s9,

such that r; matches s; and ro matches so;

— a regular expression of the form (r; || 72) matches a string s, if and only if
either r matches s or r, matches s (or both);

— aregular expression of the form (** r) matches a string s, if and only if either

s is the empty string or s may be broken up into a number of substrings

each of which is matched by r.

This definition may be “translated” into SPECTRUM in a straightforward way.
Note that apart from the function .matches. the specification MATCH (Figure
4) also introduces a function .is_prefix match of .. This function constitutes
a shorthand notation for later use.

3.5 Lexical Analysis: the Specification SCAN

At last it is possible to specify the function scan already mentioned in Section
1.3 that performs the lexical analysis. Remember that the function takes a
string and a set of regular expressions as arguments and has as its value a
list of regular expressions. As already indicated the lexical analysis of a string
with respect to a set of regular expressions may have several solutions. A

10



MATCH = {
enriches STRINGS + EXT_LISTS + REGEXP;

.matches. : Regexp X String — Bool prio 6;
.is_ prefix match of. : (String X Regexp) X String — Bool prio 6;

.matches., .is_prefixmatch of. strict total;

axioms V c:Char, rl,r2:Regexp, s,s’:String in

- (0 matches s);

€ matches s = (s = "7);

mkreg(c) matches s = (mklist(c) = s);

(r1lor2) matches s = ds1,s82. s = sl ++ s2 A rl matches si1 A
r2 matches s2;

(r1]|r2) matches s = rl matches s V r2 matches s;
(xxrl) matches s = (s = "7 V dss: List String. s = flatten(ss) A
Vs’ : String. s’ € ss = rl matches s’);

(s,r1)is prefixmatch of s’ & rl matches s A s is_prefix of s’;
endaxioms;

}

Fig. 4. The specification MATCH

specification of the function scan would therefore be correspondingly loose.
Instead, the authors have opted for a more restricted definition of the notion
of lexical analysis and, correspondingly, of the function scan. Being inspired
from the strategy applied in the UNIX tool LEX this restricted definition is
characterized by five “design decisions”, the first four of which are:

(i) the second argument of the function scan is chosen to be a list of regular
expressions rather than a set of regular expressions;

(i7) the list of regular expressions constituting the value of the function scan
is defined iteratively; at each iteration step one chooses the regular ex-
pression matching the longest possible prefix of the string that remains
to be matched;

(77i) in case several regular expressions match the same string one chooses
the leftmost one in the list of regular expressions constituting the second
argument of the function scan;

(iv) in order to document an unsuccessful lexical analysis the value of the
function scan is defined to be a pair; the first element of this pair is
— as before — the list of the matching regular expressions; the second
element is a suffix of the string to be matched, viz. the suffix that remains
unmatched according to the design decision (ii).

11



An example illustrating the design decision (77) is?:

scan("abb” , [a , aob , b)) = (aob, b, ")
An example illustrating (ii7) is:
scan("a” , [a || b, a]) = (fa | b, ™)
An example illustrating (iv) is:
scan("aabb” , [aoa,bob, aoaob]) = (aocaob , Db

By the way, without the design decision (ii) the lexical analysis of the last
example could have been successful yielding [a o a , b o b] as a result!

Actually, even with the above design decisions the function scan is not com-
pletely defined. The reason is that the above design decisions do not exclude
the repeated matching of an empty string. Three examples illustrating this
fact are:

— possible values of scan("a” , [a,c]) are
([ a ] , ),
([ a , s ] , )7

Qa,c,=1], ",

— possible values of scan("b” , [a,c]) are

CI], b,
ClH L, b,
Cleye] L b,

— possible values of scan("a” , [+xa]) are
([**a] , ..-.),
([xxa , =xa], "),
([xxa , *xa , *xa] , 7)),

While this looseness may easily be accounted for in a requirement specification
the authors decided to stick to the solution implemented by the algorithm of
the UNIX tool LEX. This leads to an additional “design decision” removing
the looseness illustrated above:

(v) any match of the empty string is disregarded.

The specification of Figure 5 defines the function scan. In addition it intro-
duces a function is_longest_prefix match of that implements the strategy
of the longest prefix expressed by the design decision (ii).

The value of the function scan consists of a pair the components of which can
be accessed by the selectors tokens and unprocessed of the composite data
type Scan_Result.

3 For reasons of readability we leave out the application of the constructor mkreg
in the following equations.
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SCAN = { enriches MATCH;

.is_prefix match of. : (String X Regexp) X String — Bool prio 6;
.is_prefix match of. strict total;

axioms V rl,s,s’ in
(s,r1)is prefix match of s’ & rl matches s A s is_prefix of s’;
endaxioms;

.is_longest_prefix_match of.
(String X Regexp) X (String X List Regexp) — Bool prio 6;
.is_longest prefix match of. strict total;

axioms Vs,s’,r,rs in
(s’,r) is_longest_prefixmatch of (s,rs) &
rérs A (s’,r) is_prefix match of s A
Vsl,rl. ri€rs A (sl,rl) is prefixmatchof s A (sl,r1)#(s’,r) =
length(sl)<length(s’) V (length(sl)=length(s’) A
_precedes_in (r,rl,rs));
endaxioms;

data Scan Result = mkres(! tokens: List Regexp,
! unprocessed: String);

scan : String X List Regexp — Scan_Result;
scan strict total;

axioms Vs,s’,rs,ts in
scan(s,rs) = mkres(ts,s’) =

s’ is_postfix of s A

(Vr. r € ts = r € rs) A

(ts = [] = s=s’ A
Vs’’,r. r € rs AN s’’’ # 77 =
=((s’’,r) is_prefix match of s)
) A
(ts # [] = 3s1,s2. s = s1 ++ s2 A
scan(s2, rs) = mkres(rest(ts), s’) A
(s1,first(ts)) is_longest_prefixmatch of (s,rs)
);
endaxioms;

}

Fig. 5. The specification SCAN
Note that scan is defined as a relation. That it is effectively a function or,

equivalently, that its definition is consistent, is not apparent but is a result of
the verification of Section 5.

13



4 A Design Specification for LEX in OBSCURE

According to Step (#ii) of the method proposed the present section presents a
design specification for the same case study. It was developed at the Univer-
sitdt Saarbriicken with the help of the OBSCURE system.

As a difference with the declarative and non-executable requirement specifi-
cation the design specification is constructive and hence executable. On the
other hand the general structure of the design specification should be close to
that of the requirement specification in order to facilitate the verification of
Step (v) of the method proposed. To this end the modularized structure of the
design specification was chosen to be identical with that of the requirement
specification (see Figure 6). Moreover, sorts and functions with the same (or
with a similar) intended meaning have been given the the same (or similar)
names. Finally, the axioms of the requirement specification that are already
“constructive” have been “taken over”. Hence, the design specification funda-
mentally differs from the requirement specification in those places where the
axioms of the latter contain existential quantifier.

To facilitate the reading of the present paper the design specification is pre-
sented as a SPECTRUM specification. It constitutes a straightforward “trans-
lation” of the OBSCURE specification developed in Saarbriicken. The reader
interested in the original version in OBSCURE may consult [2]. This paper
also contains additional details on the — non-trivial! — algorithm implicitly
specified by the axioms of the design specification.

This section does not present the complete design specification but describes
the differences that distinguish the design from the requirement specification.
The modularization structure of the design specification is chosen to be identi-
cal to that of the requirement specification. It is shown in Figure 6. Therefore,
it is possible to regard the basic specifications (SCAN, MATCH, REGEXP, ...) one
by one.

4.1 The Elementary Specifications

The elementary specifications used in the design specification are essentially
the same as those used in the requirement specification and shortly described
in Section 3.1. As a minor difference the design specification uses two addi-
tional list functions, viz.

last : List aa = «
allbutlast : List o« — List «

These functions deliver the last element of a list and the list from which the
last element is removed respectively. By the way, the functions first and
rest of Section 3.1 are not used.

14



SCAN
MATCH
REGEXP  STRINGS  EXT_LISTS

AVE

CHARACTERS LISTS NATURALS

Fig. 6. Modularization structure of the case study

4.2 The Specification EXT_LISTS

This design specification differs from the requirement specification EXT_LISTS
of Section 3.2 by the axioms for the functions . €. and .is_prefix_of.. More-
over, as the functions .is_postfix_of. and _precedes_in_are not used in the
subsequent specifications their declaration and their axioms are missing.

The axioms for .€. and .is_prefix_of. are:

—(e € [P
e € cons(e,s);
e # e’ = (e € cons(e’,s8)) = (e € 8);

[] is_prefix of s;

- (cons(e,s) is_prefix of []);

cons(e,s) is_prefix of cons(e,s’) = s is_prefix of s’;
e # e’ = - (cons(e,s) is_prefix of cons(e’,s’));

Although written in SPECTRUM the above specification reflects the construc-
tive character of the OBSCURE specification. The axioms of the function
length (given in Section 3.2), for instance, constitute a primitive recursive
definition and are therefore “executable”. A similar remark holds for a func-
tion such as .€. given a few lines above, being understood that the impli-
cation .=-. corresponds to the if —then—else construct of a programming
language. For a more precise formulation of the notion of constructivity the
reader is referred to the chapter “Constructive Specifications” in [12].
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4.3  The Specification REGEXP

This specification is identical with the requirement specification of Section 3.3.

4.4 The Specification MATCH

The design specification is identical with the requirement specification of Sec-
tion 3.4 except for the axioms

(rl o r2) matches s = ...
and
(k% rl) matches s = ...
Moreover, it introduces the function
.ismatch of. : (Regexp X Regexp) X (String XxString) — Bool
instead of .is_prefix match_of. of the requirement specification.
The axioms for .o., xx and the new function are:

(r1 o r2) matches s = (r1,r2) ismatch.of ("7,s);
(xx rl) matches ~7;
(¥x rl) matches cons(c,s) = (ril,**rl) is_match_of (mklist(c),s);

(r1,r2) ismatchof (s1,”") = (rl matches s1) A (r2 matches "7);
(r1,r2) ismatch_of (s1,cons(c,s)) =

( (rl matches s1) A (r2 matches cons(c,s)) )

V  ((r1,r2) ismatch_of (sl+-+mklist(c),s));

4.5  The Specification SCAN

The specification SCAN is now:
SCAN = {

enriches EXT_LISTS + MATCH;

.list matches. : List Regexp X String — Bool X Regexp;
longest_prefix match :

String X List Regexp — Bool X String X Regexp;
.list matches., longest prefix match strict total;

axioms Vs,s’:String, r:Regexp, rs:List Regexp, b:Bool in
[] listmatches s = (false,();

r matches s = cons(r,rs) list_matches s = (true,r);
—(r matches s) = cons(r,rs) list_matches s = rs list._matches s;
rs list_matches s = (true,r) =
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longest prefix match(s,rs) = (true,””,r);
rs list.matches s = (false,r) A length(s) < 1 =
longest_prefix match(s,rs) = (false,s,0);
rs listmatches s = (false,r) A length(s) > 1
A longest prefix match(allbutlast(s),rs) = (b,s’,r’) =
longest_prefix match(s,rs) = (b,s’ ++4 mklist(last s),r’);
endaxioms;

scan : String X List Regexp — List Regexp X String;
scan strict total;

axioms Vs,s’,s’’:String, r:Regexp, rs,rs’:List Regexp, c:Char in

s = 77 = scan(s,rs) = ([],77);
s # 77 A longest_prefixmatch(s,rs) = (true,s’,r)
A scan(s’,rs) = (rs’,s’’)

= scan(s,rs) =(mklist(r) ++ rs’,s’’);

s # 77 A longest prefix match(s,rs) = (false,s’,r)
= scan(s,rs) = ([],s);
endaxioms;

}

Intuitively, the design decisions (ii) and (ii7) of Section 3.5 are implemented
by longest_prefix match and .list_matches. respectively. The design deci-
sion (v) is implemented by the second axiom for longest_prefix match in the
module SCAN (lines 4, 5 in axioms... endaxioms): the condition length(s) <1
interrupts the recursion when the string argument consists of a single charac-
ter. Actually, the axioms of longest_prefix match induce a search through
the set of all non-empty prefixes of the string s. This search starts with the
longest prefix, i.e. the string s itself and terminates at the latest with the
prefix of length 1.

When compared with the requirement specification of Section 3.5 the de-
sign specification introduces an additional function, viz. .list_matches..
Moreover, the function longest_prefix match is a genuine function while
.is_longest_prefix_match_of. is a predicate.

Finally, it is interesting to note the following subtle difference between the
two functions .is_longest_prefix_match of. of the requirement specifica-
tion and longest_prefix match of the design specification: the latter accepts
an empty string as the longest prefix only if the string considered is itself the
empty string. More precisely, let [r,...,r,] a list of regular expressions, such
that (at least) one of these regular expressions matches the empty string "~
Let r;, be the first regular expression matching “". Formally

[r1,...,7,] list_matches " = (true,r;,)

must hold. Now let s be a string, such that there is no non—empty prefix s’ of
s which is matched by one of the r;, i.e. for each non—empty prefix s’ of s
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[r1,...,7,] list_matches s’ = (false,0)

must hold. Then the following equations are valid:

— (", r;,) is_longest_prefix match_of (s,[r,...,r,]) = true,

— longest_prefix.match(™ ", [ry,...,r,]) = (true, "7, r)

— ...and (!): longest_prefix match(s,[ry,...,r,]) = (false,s,0),
if s 77,

By the way, this difference is not intentional but is a result from arbitrarily
made decisions in the implementation of design decision (v): in the requirement
specification it is realized by the axioms for the function scan, in the design
specification by the axioms for the function longest_prefix match.

5 Verification of Coincidence of Both Specifications
5.1  Proof Obligations

The goal was to prove that the requirement specification of Section 3 and the
design specification of Section 4 are “mutually consistent”. To this end the
following two properties were established. First it was shown that the design
specification is consistent in that it terminates (step (éii) of Section 1.2). This
property is called the property of termination. Second it was shown that any
model of the design specification is a model of the requirement specification.
This property of refinement establishes step (v) of Section 1.2.

Both properties were translated into sets of formulas, called proof obligations.
Proving a set of proof obligations is necessary and sufficient to establish the
corresponding property. The translation is based on the theory of modular
systems described in [16] and [17]. It is performed automatically by the KIV
system, when the two specifications are presented to it in the form of a mod-
ular system. The proof obligations for termination and refinement are now
discussed successively.

To prove the property of termination, recursive functions are generated from
the equations of the design specification. It is then shown that these define
total functions, i.e. that any computation of a function value terminates. This
generation is performed automatically in the same manner as in the OBSCURE
system for rapid prototyping (step (iv) of Section 1.2). The termination prop-
erty guarantees that the enrichments from LIST to EXT_LISTS, from EXT_LISTS
to MATCH and from MATCH to SCAN are hierarchy persistent, i.e. that each model
of LIST (resp. EXT_LISTS, MATCH) may be extended to a model of EXT_LISTS
(resp. MATCH, SCAN); in fact, the semantics of the additional operations is then
simply the semantics of the algorithms. The basic data types of lists, natural
numbers, regular expressions and tuples are consistent by construction as they
are all defined as initial data types with the data-construct of SPECTRUM.
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To prove the property of refinement it is sufficient to prove that the axioms
of the requirement specification are logical consequences of those of the de-
sign specification. In other words, if AzReq and AxDes denote the set of the
axioms of the requirement specification and of the design specification respec-
tively, one has to prove that AzDes = ax for each axiom ax of AzReq. These
proof obligations may be divided into three groups corresponding to the spec-
ifications EXT_LIST, MATCH and SCAN. The obligations for MATCH and SCAN are
as follows. MatchAz and ScanAz stand for the axioms of MATCH and SCAN
respectively:

MatchAz = — () matches s) (1)
MatchAzx - ¢ matches s = (s = 7)) (2)
MatchAzr - mkreg(c) matches s = (mklist ¢ = s) (3)

MatchAx Frl o r2 matches s — ds1,82. s — s1 ++ 82 A
rl matches s1 A r2 matches s2

MatchAz F rl || r2 matches s = rl matches s V r2 matches s(5)

MatchAxz F (xx r) matches s = (s = 77 V
dss. s = flatten ss A (6)
Vs’. s’ € ss = rl matches s’ )

MatchAz = (s,rl) is_prefix match_ of s’ & (7)
rl matches s A s is_prefix of s’
ScanAz
(s’,t) is_longest_prefix match_of (s,rs) &
t € rs A (s’,t) is_prefix match of s A
Vs1l,tl. (sl,tl) is_prefix matchof s A tl € rs A (8)
(s1,t)#(s’,t) =
length s1 $<$ length s’ V
(length s1 = length s’ A precedes_in (t,tl,rs))

ScanAzx F
scan(s,rs) = mkres(ts,s’) =
s’ is_postfix_of s A
Vr. r € ts = r € rs) A

(ts =[] = s=3s8"A
Vs’’,r. rersAs’ #7 = (9)
- (s’’,r) is_prefix match of s) A
(ts # [ =
ds1,s2. s = s1 ++ s2 A
scan(s2,rs) — mkres(rest(ts),s’) A

(s1,first(s)) is_longest_prefix match of (s,rs))
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Since there are no definitions of .is_longest_prefix match of. and the func-
tion .is_prefix match of. in the design specification the following construc-
tive specification is added to the design specification MATCH

(s,rl) is_prefix match of s’ & (10)
rl matches s A s is_prefix_of s’

and the following constructive specification to the design specification SCAN:

longest _prefix match(sO, rs) = (true, si, r) =
( (s, r) is_longest_prefix match_of (s0O, rs) & (11)
sO0 = s ++ s1 )

longest_prefix match(sO, rs) = (false, si, r0) =
( (s, r) is_longest_prefix match_of (s0, rs) & (12)
list_matches(rs,””) = (true, r) )

5.2 The Verification

The verification proceeds in two steps. First, the KIV System automatically
generates the proof obligations discussed in Section 5.1. These proof obliga-
tions are then tackled by a proof strategy which is based on the paradigm of
tactical theorem proving and constitutes the kernel of the KIV System.

An overview of the results of the verification may be found in Table 7. The
first line of the table contains the number of automatically generated proof
obligations that ensure the properties of termination and refinement. The sec-
ond line indicates the number of lemmas that were “invented” (and proved)
by the proof engineer. The proofs required a number of “high level” proof steps
displayed on the third line. Such high level proof steps include the applica-
tion of an induction hypothesis, the insertion of a lemma, the unfolding of a
function definition, etc. The proof engineer had to interact several times with
the KIV system by selecting the proof rule to be applied next. The number of
these interactions is shown on the fourth line. All other proof steps were per-
formed automatically thanks to heuristics, yielding a degree of automatization
indicated in the last line.

Actually, the table does not reflect the complete proof effort. For rewriting
and simplification the system used 26 properties of lists and 11 properties of
regular expressions. The proofs of these 37 properties required 415 additional
proof steps and 88 additional interactions. *

The figures in Table 7 refer to the final versions of the requirement and design
specification. Originally these specifications contained several adequacy errors

41t is interesting to note that the verification of SCAN does not require any prop-
erties of match: in this sense the scanner is generic.
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EXT_LISTS MATCH SCAN

Proof obligations 13 Proof obligations 9  Proof obligations 4
Lemmas 0 Lemmas 5 Lemmas 13
Proof steps 223 Proof steps 360  Proof steps 470
Interactions 28  Interactions 90 Interactions 63

Automatization 87.4 %  Automatization 75 %  Automatization 86.5 %
Fig. 7. Overview over the verification

that were discovered in the course of the verification. The reuse of proofs
[18] allowed to minimize the additional proof effort necessary to correct these
errors. Altogether the verification could be completed within 4 days.

5.3 Detecting Adequacy Errors

The verification led to the discovery of four adequacy errors.® The goal of this
section is to indicate the nature of these errors and to comment on the effort
of the proof engineer to detect them.

The first error occurred in both the requirement specification and the design
specification. Instead of the axiom:

(%% rl) matches s = (s = "7 V dss. s = flatten ss A (13>
Vs’. s¢ € ss = rl matches s’)

of Section 3.4 the requirement specification contained the much simpler axiom:

(%% r1l) matches s = ( s="" V rlo(kxrl) matches s ) (14)

This axiom is not adequate because it allows a model in which, for example,
the regular expression (kxx(xxr)) matches any string. The design specifica-
tion contained the same erroneous axiom instead of the two axioms of Section
4.4. This adequacy error was found during the attempt to prove the termina-
tion property for the function .matches. with the KIV-System. The attempt
yielded an unprovable goal and a proof analysis lead to the counterexample:

(#x (%% mkreg(c))) matches mklist(d) (15)

where c, d stand for two arbitrary, different characters. This input leads to a
nonterminating computation.

® To be specific the fourth error was introduced by the attempt to correct the third
one.
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The second error was located in the requirement specification. It became ap-
parent, when during the proof of (8) for .is_longest prefix match of. the
following subgoal appeared:

t matches "7 A t€rs A tl matches "7 A tldrs A tl#t (16)
= precedes_in(t,tl,rs)

The precondition of (16) is satisfiable since it is always possible to find a
regular expression t1 different from t, which matches the empty string =~
and which is not member of rs. However, the goal is not provable, since t
can precede t1 in rs only if both regular expressions are members of rs. The
problem is that we have to deal with regular expressions we are not interested
in, i.e. that are not member of the considered list of regular expressions rs. An
inspection of the axiomatization of .is_longest_prefix match of. revealed
that in the first version the additional condition t1 € rs was missing:

(s’,t) is_longest_prefix match of (s,rs) &
t € rs A (s’,t) is_prefixmatch_of s A
Vsi,tl. (s1,tl) is_prefix match of s A
(s1,t1) # (s7,t) = (17)
length s1 < length s’ V
(length s1 = length s’ A
precedes_in(t,tl,rs))

This is an adequacy error which does not lead to an inconsistent specifica-
tion but to an irritating counter-intuitive definition: the value of the function
.is_longest_prefix match_of. is false for all arguments. The error was
detected during the attempt to prove the property of refinement for the spec-
ification SCAN after only 29 proof steps.

The third adequacy error was located in the design specification. Originally,
the two last axioms defining the function longest_prefix match in Section
4.5 were

rs list_matches s = (false,r) A length(s) = 0 =

1
longest_prefix match(s,rs) = (false,s,() (18)
rs list matches s = (false,r) A length(s) # 0
A longest_prefix match(allbutlast s,rs) = (b,s’,r’) = (19)
longest_prefix match(s,rs) =
(b,s’ ++ mklist(last s),r’)
In other words, the axioms contained the conditions length(s) = 0 and

length(s) > Oinstead of length(s) < 1 and length(s) > 1 respectively.
In the original version a regular expression matching the empty string is con-
sidered a successful match, while in the new version it is not. The error was
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found during the attempt to prove the termination of the function scan. In
fact, the computation of a value such as

scan(cons(a, ") ,[z]) (20)

failed to terminate, because

longest _prefix match(cons(a, ™),[z]) = (21)
(true,cons(a,” ") ,s)

i.e. because the argument in the recursive call did not “decrease”. The cor-
rection adopted first consists in the modification of the scan-function: if the
unfinished rest does not decrease in length, the scanning is terminated.

This means that the axiom

s £

A longest _prefix match(s,rs) = (true,s’,r)
A scan(s’,rs) = (rs’,s’?)
= scan(s,rs) = (cons(r,rs’),s’’)

(22)

is replaced by the following two axioms:

s £

A longest_prefix match(s,rs) = (true,s’,r)
ANs # s’ (23)
A scan(s’,rs) = (rs’,s’?)

= scan(s,rs) = (cons(r,rs’),s’’)

s £

A longest_prefix match(s,rs) = (true,s,r) (24)
= scan(s,rs) — (mklist(r),s)

However, with this version the proof of (9) for scan got stuck with the following
subgoal:

longest_prefix match(s’,rs) = (true,s’,r2)
N T2 € rs
NS £
A r2 matches "~ (25)
= ds1,s82. s’ = sl ++ s2
A scan(s2,rs) = mkres([,s’)

A (s1,r2) is_longest_prefix match of (s’,rs)

The only possible instantiation for s2 is s’, since s’ is the unfinished rest
of the scanning of s2 and cannot be longer than s2. This requires s1 to
be instantiated by "~ (s> = s1 ++ s’ must hold). However, scan(s’,rs)
is equal to mkres(cons(r2,[),s’), not mkres([],s’); hence this goal is not
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provable. An analysis of the proof tree showed that the correction (Axioms 23
and 24) was not compatible with the requirement specification.

Originally, both specifications were drawn up on the basis of the design de-
cisions (i) to (iv) of Section 3.5. In the absence of the design decision (v)
(Section 3.5) the match of the empty string was treated differently in the re-
quirement and in the design specification. This discrepancy was detected by
the KIV-System during the proof of the refinement property for the specifica-
tion SCAN after 110 proof steps. However, no work was lost because all proof
steps could be reused automatically for the proof of the final version of the
specifications, even though two functions and one lemma were modified. By
the way, it was the detection of this error that led to the introduction of the
design decision (v).

6 Conclusions

This paper has reported on a method which is intended to improve the quality
of functional specifications in terms of precision and unambiguity. According
to common experience from software practice this issue is of particular im-
portance since errors made during the early steps of a project are the most
expensive ones.

The quality of a specification may be judged by its logical consistency and
by its adequacy. The basic difficulty in improving this quality is that there is
no formally definable notion of the adequacy of a specification. The proposed
method, called method of complementary specification, addresses this topic
by introducing redundancy into the process of specification development. In
the case study treated three groups of people were involved looking at the
application problem from different viewpoints. The first group drew up a high-
level requirement specification using a powerful logic language. The second
group produced a design specification in the form of a very abstract model
implementation for the same problem. While using the results of the first
group it nevertheless produced a substantially different specification due to
an algorithmic rather than an axiomatic "way of thinking”. The third group,
finally, established a formal relation between these two specifications. It thus
improved the confidence in the adequacy of the specifications and — as a side
effect — showed the consistency of the high-level specification.

The experiment described has shown that the method of complementary spec-
ification is a viable way to assess the quality of a formal specification. Al-
though both specifications were carefully designed by specialists in formal
methods, significant adequacy errors remained and were detected by applying
the method — as described in Section 5.3. Moreover, the experiment has en-
abled the effective usage of software tools — such as OBSCURE and KIV —
for the analysis of the specifications.
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The twofold specification effort required by this method may seem a signifi-
cant drawback. However, the following arguments show that it may make sense
to have both specifications available in a project. The high-level requirement
specification is more compact and better suited for the documentation of the
problem. The executable design specification together with a symbolic inter-
preter is an ideal tool to decide cases in which there remains a doubt on the
precise implications of the specification. None of the two specifications is sat-
isfactory by itself: the high-level specification lacks good methods for checking
its consistency, and the executable specification is too complex to decide upon
its adequacy.

The method is particularly well-suited for problems of significant algorith-
mic complexity, the problem domain of which is well-defined. Of course, the
method makes sense only if the quality requirements are high.

As a summary, for a project with a very high quality demand the method of
complementary specification presented here seems to be a promising way to
establish a sound starting point for the development. It is expected that the
additional effort spent during the analysis of the specification will pay back
by savings in the later development phases.
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