A Parametrized Sorting System for a Large Set
of k- bit Elements

Alexander Gamkrelidze and Thomas Burch

Technical Report A 04/1998

Department of Computer Science, University of Saarland
66041 Saarbriicken, Germany
e- mail: sandro@cs.uni-sh.de burch@cs.uni-sb.de

A Parametrized Sorting System for a Large Set of k- bit Elements*

Alexander Gamkrelidze and Thomas Burch
Department of Computer Science, University of Saarland
66041 Saarbriicken, Germany
e- mall: sandro@cs.uni-sh.de burch@cs.uni-sh.de

Abstract

In this paper, we describe a parametrized sorting system for a large set of k- bit elements. The
structure of the system is independent from the problem size (the number of elements to be sorted)
and the type of the sorting set (for example, a set of k- bit numbers, an alphabetical list of k- bit
words etc.), as well as from the ordering relation defined on the set of the elements (such as ascending
or descending order of k- bit numbers, or a specific order of alphabetical words).

The general structure of the underlying parallel network is based on the n- dimensional hypercube.
The node circuit construction defines the type of the sorting elements, thus defining the semantics
of the system. The structure of the circuit implements the Columnsort algorithm introduced by
Leighton in [Lei85]. By changing only one subcircuit of the size O(k) in the node, we can define
different ordering relations of the sorted elements. The system 1s based on specific VLSI chips that
were developed in [Gam96] with the CAD system Cadic [Bur95], that has been developed in the
project B1 ”VLSI design systems and parallelity “ under guidance of Prof. G. Hotz.

The result is a fast system that sorts the sets of up to 22® 64- bit numbers. The maximal sorting time
is less than 43,6 seconds that is better than some of the fastest software realizations implemented at

32- processor Paragon ([Hard96]), Cray Y — MP ([ZagBlel91]) and MasPar MP — 1 ([BrockWan97]).

Key words: sorting, n- dimensional hypercube, bi-categorial calculus, logic topological net, graphical
user interface

I. INTRODUCTION

The classical calculus for dealing with logical circuits, the Boolean Algebra, was sufficient as
long as the cost of wires were negligible compared with the cost of gates. Since this is no
longer the case in integrated circuit design, new calculus has been developed, the bi-categorial
calculus [Mol 86], where the design is represented by its logical function as well as by some
information about the geometrical arrangement of its components. The first step to extend
the Boolean Algebra to the bi-categorial calculus was given by the introduction of x-category
by G. Hotz in 1965 [Hot 65] and is described in [HotRe 96].

Consider the circuits layed out into a rectangular K. In order to suppress geometrical and
physical details of manufacturing processes and thus to become independent of technology,
we forget the width and the layer of wires. In doing so, wires become simple lines which may
branch and cross one other. Furthermore we suppose that the circuit is constructed by cells
which compute digital values. Assuming that these cells are physically correctly designed, we
suppress their internal structure and size and maintain only the order of external connectors on
their boundaries. If we consider crossings and branchings of wires also as cells which perform
crossings and branchings of signals, this abstraction results in an arrangement of cells in the
plane whose interconnections consist of crossing-free non-overlapping lines (Fig. 1).

Now we define for each cell a northern, southern, eastern and western side, on which connectors
are placed (note that no connector should belong to a corner). We denote for a cell A the
number of connectors onto the northern (southern, eastern and western) side by N(A) (S(A),

*Supported by the DFG, SFB 124 *VLSI design methods and parallelism*

B

-

Fig. 1.

E(A), W(A)). To suppress precise geometrical relations of this abstract layout, we consider
two such layouts to be equivalent iff they can be transformed into each other by a sequence
of deformations that maintain the planar topological structure of the layout. We call a set
of nets that can be transformed into each other by a sequence of such deformations, a logic
topological net, the elements of which are called topographical representatives of logic
topological net.

The advantage of a logic topological net is that it gives a precise characterization of an in-
tegrated circuit, which is sufficiently abstract to suppress geometrical and physical details,
and which is sufficiently concrete to control the arrangement of cells and the global routing of
wires. A detailed and precise theoretical background of this calculus is given in [Mol 86]. If
we relate to each cell its behavior by a boolean function or a more general model, we also get
a precise mathematical characterization of the behavior of logical nets ([Kol 87], [Mol 86]).

Having the components, logic topological nets, we can now define the operations between
them, namely the compositions of nets which are defined by abutment of topographical repre-
sentatives. There are two kinds of compositions, namely the horizontal composition & (”left
ftom“) and the vertical composition ® ("above®). The composition N; © N is defined for two
nets Ny, N, iff there are two topographical representatives of N1, N3 so that the southern side
of N; matches the northern side of N,. his operation can be carryed out iff S(N;)=N(N,).

Consider the construction of a full adder as shown in Fig. 2.

|1

HA

] |
HA——|| AND || EXOR | FA —— HA =

OR

Fig. 2.

In the bi-categorial calculus, it could be described as follows:

HA=(ro(—0r)o(n0+)e+4)0(AND e EXOR), FA=(HAe|)o(|oHA)0(OR o).

In the following example, we consider the construction of the circuit shown in Fig. 3 (a).

OR OR OR

[| [|
1024 times 1024 times

(a) (b)
Fig. 3.

In CADIC, the VLSI design system that is based on the bi-categorial calculus, it could be
realized as shown in Fig. 4.

[P ‘2,,/
AlO] — Aln] — —{ Aln-1] }—{ Aln-1] }7
2 (2~

Fig. 4.

Using the bi-categorial calculus, these circuits can be described as follows:

Al = (+e1) 0 AND, Aln] = Aln—1] e Aln — 1].

The above example shows how compact the hierarchical representations of parametrized cir-
cuits could be compared to the traditional methods. To build a circuit of 1024 elements with

CADIC, one has to generate the circuit A/10].

Now consider a circuit shown in Fig. 3 (b). This is the same circuit as in Fig. 3 (a), with ANDs
changed with ORs. In CADIC, you can build it by substituting only one element: AND with
OR in A/0]. That means, to change the semantics of the parametrized circuit in hierarchical
representation, one has to modify only one element in the design. In non- hieerarchical design,
up to 1024 modifications would be necessary.

This advantage pays out in complex systems, such as a sorting system of a large set of elements
described in this work. Having a basic structure of an underlying graph (such as an n- dimen-
sional hypercube, n x m dimensional meshes, a butterfly network etc.), you can implement
different parallel divide-and-conquer algorithms constructing the specific node circuits.

As an example of the application of our system, we have constructed a sorting system for a
large set of k- bit elements. By changing only one subcircuit of the size O(k) in the design
(and by the automatic generation of the whole system with Cadic), we can specify different
sorting systems that suits for different purposes, such as sorting a large set of k- bit numbers
in ascending or descending order or sorting the alphabetical lists of k- bit entrys in specific
order.

As a basic structure in our system, we have chosen an n- dimensional hypercube, that is
emerging as a popular network for parallel machines. For example, it is used in the Intel

iPSC, NCube of NCube Corporation and the Connection Machine. One of the key features of
a hypercube is a rich interconnection structure which permits many other important network
topologies. Furthermore, the hypercube can be divided into subcubes of which the implemen-
tation of recursive divide and conquer algorithms is supported.

However, this structure has its disadvantages as well in terms of poor scalability and expo-
nential growth of the circuit. It rises a problem of circuit partitioning — the development of
partial circuits on several chips and assembling them as a whole system on a specific board.

The system can be applyed to sort up to 22 64- bit numbers. The time needed to sort 2% 64-
bit numbers is less than 43,6 sec. that is faster than the software realizations implemented

at the 32- processor Paragon ([Hard96]), Cray Y — MP ([ZagBlel91]) and MasPar MP — 1
([BrockWan97]) supercomputers.

This paper is organized in the following manner. Section 2 describes the general topological
structure of an n- dimensional hypercube, independent from further implementations of the
network semantics. In section 3, the Columnsort algorithm will be introduced; The problems
of the efficient implementation of Columnsort at the n- dimensional hypercube are discussed
in section 4. Section 5 gives the upper bounds for the growth of time and area complexity of
the whole system. Based on the results of section 5, we can realize that for a large number
of k- bit elements, the whole system can not be implemented as one chip. That raises the
problem of circuit partitioning discussed in section 6, where we give a method of building a
sorting system of a large number of k- bit keys. In section 7, we give the runtimes of our
system on different problem sizes and compare it with other software realizations of sorting
algorithms on different parallel supercomputers. Some of the most important parts of the
circuit are introduced in section 8, followed by the layouts of the 3- dimensional hypercube
system and its node.

II. DESCRIPTION OF THE NETWORK

In this section, we give a parametrized description of the hypercube, irrespective of the con-
struction of the vertexes: we describe the topology of the network based on the n- dimensional
hypercube, the semantic of which could be specified by the processors inserted into the ver-
texes.

The n- dimensional hypercube is represented as a graph G, = (V,,, F,,) where V,, contains 2"
elements. A unique address is corresponded to every node v € V,,:

addr : 'V, — {0,1}".

Additionally, every vertex has degree n and every edge between two vertexes corresponds to
a dimension d (0 < d < n).

Two vertexes v,v’ € V,, with addr(v) = (ay-1,...,a0) and addr(v') = (a'y—1, ...,d's) are con-
nected via an edge iff

ie{0,...,n—1}:a; # d;.

We assume that, for the moment, all the connections in the hypercube are of undefined type.
The type will be defined later, depending on specific vertex circuit. For example, the edge of
type @t could be a k- bus, a single- or bidirectional connector etc. For simplicity we assume
that all the edges are of the same type @t¢.

In order to get a compact topological description of the hypercube with short connections
between the vertexes, we construct any n- dimensional hypercube by setting two n — 1 di-
mensional subcubes aside or above one another and connecting the corresponding vertexes via
n — 1 -dimensional edges: if n is odd, set the subcubes besides, else over one another. An
example of the construction of a 3- dimensional hypercube is shown in Fig. 5.

010, 011 o0 011 110 111
oO——O 2 O O
O O ; ; 1 1 1 1
o000 ° 001
0 2 . 0 '
OoO——(—0O 000 001 100 101
000 001
1- dim 2-dim 3-dim

(a) (b) (c)
Fig. 5. Construction of a 3- dimensional hypercube

Applying this method, we can recursively describe any n- dimensional hypercube. The recur-
sion terminates on the cube of dimension 0, the vertex of the hypercube (Fig. 6).

D, D, D,

1t f

D> Dy
. | even
: . Dimensions
. Node .
D, <—>| «—>D,
D, D, Dy

odd
Dimensions

Fig. 6. The vertex of the hypercube

In order to work for any n, the interface of the vertex must intend all the connections for the
higher dimensions. To beware the symmetry of the construction, the dimensions are attached
by turns on the N/S and E/W sides respectively. Moreover, same dimensions are passed

through N/S and E/W sides of the circuit.

Consider another example of the construction of a 3- dimensional hypercube:
Example 1.1: Construction of a 3- dimensional hypercube
o The 1- dimensional subcube is constructed by setting two 0- dimensional subcubes (ver-
texes) one besides the other and connecting the 0- dimensional edges, cuted (projected)
on the eastside (resp. westside) of the nodes.

i/ 2|
L v >,
2 2 J
= €=
Ly J
Y Node 0 Node Node
> Dl 0 <> < 0
i 7 i i t— projected
]]

(a) (b)
Fig. 7. The vertex (a) and the 1- dimensional subcube (b)

In Fig. 7 (b), the edges of dim. 2 are passing the vertexes and are connected to the
E/W sides of the subcube of dimension 1, providing the connections in higher steps of the
construction.

o To construct a 2- dimensional hypercube, two 1- dimensional subcubes are set one above
the other, connected via dimension 1 (Fig. 8).

1 1
{ !
v \ 4

projected

Node Node / earlyer
0<—>] > <«>0 :

Node Node
() <> <> -«

projected in
i i this step

1 1

Fig. 8. Construction of a 2— dimensional hypercube

The edges of dimension 1 on the northside of the upper and the southside of the lower
subcubes are cuted (note that the edges of dimension 0 are cuted earlier and do not appear
at this level).

o In the last step of the iteration (Fig. 9), there is no direct connection between the vertexes
via dimension 2. But still it is possible to connect the 2- dimensional subcubes directly,

connecting their west- and eastsides, because of the correct allocation of the edges of
dimension 2 in previous steps.

i
— e

Node Node Node Node

v
e
v

Node Node Node Node
) €| S — <> 0> <> >0

! ! ! !

1 1 1 1

Fig. 9. Construction of a 3— dimensional hypercube

As shown in previous example, in every step of the construction, some edges must bypass the
nodes and be connected to the N/S respectively E/W sides of the subcube. Until now, this
was done manually, that means, in every step, each edge of this kind is passed to specific node.

D, D D D, D D
| J
D[] | DlE— — D,
[5D, o —
L AT TR
Cube,—> Node Cube, — Node Node
D,[<— D, D,<«— D, |«<——> D,
al a g
I v v
D, D L D, P2 D
(a) (b)

Fig. 10. Preparation of the edges («) and the 1- dimensional subcube ()

It we define the vertex as in Fig. 10a, the process of the construction will be simplified in
terms of connecting all the edges at the E/W resp. N/S sides of the subcubes: the edges with
higher dimensions will be bypassed automatically (Fig. 10b). Fig. 12 shows a 4- dimensional
hypercube constructed with the vertexes defined as in Fig. 10a.

As shown in the examples, some edges must be cuted in the respective steps of the iteration.

This is provided by the circuits CutFE, CutW, CutN and C'utS, defined in Fig. 11.

A A A
A\ 4 Y
CutN, —> @NC CutN — CutN CutN,

n,m,0 Im-1/ n,m nmp n,m,p-1 n,m,p-1

A A

S
.
[N
[

\4 v

(a) (b)
Fig. 11. The circuit Cuty, mp

D, D D D,

Prepared D J D, J D, I D, }

Nodes D. 1 — t ‘
T e e

71
1

Node Node Node Node
D, <= N ! D, 3-dim.
I - — - subcube
DT 1 — . —
T T e
Node Node Node Node

Cube, —
S F By S
—
J I I P e =y e
Node Node Node Node
D, <> L C» -« L C» D, 5 d
D. ¥4 — —T — D-dini.
! —F subcube
] L e =
Node Node Node Node
D, «—»| > < L >,

| I S 1t I S

Fig. 12. the four- dimensional hypercube

CutS, Cutll and CutW are projecting the respective edges on the southern, eastern and
western sides of the subcube and are constructed similarly to Cut N: C'utW is the 90° rotated
circuit Cut N, C'utS — vertically mirrored Cut N, Cut K — horizontally mirrored CutW'.

The preparation of the edges of the vertex could be described as in Fig. 13

x
2"
[2"
v >
Cube”‘”‘” 7 Vvy/%«—» N()den,l VO/{);?H W YW 7 o 0
<> PEDAN
1 n-1 n-1
1%}
I
(a) (b) (c)

Fig. 13. The edge- preparation circuits

The circuit VN (respectively V.S) is the circuit V E (respectively VW), rotated 90° clockwise.

Using the bi-categorial notation from [KMO 89] (where © means set besides’, © ’set above’),
we can write:

10

CUth,k,ng © Cube,, g 51 © Cube, g1 © CmEn,hL%J? for odd k;

Cuben,j = { CUth,k,Lng O Cubey, 1 -1 © Cube,, g k-1 © Cmsn,k,[éj? for even k.

(here and further in the notations of Cube, ;x, j = (%W — L%J)

Fig. 14 shows the construction of the subcube in the odd step m.

! !

v
A

Cu bez 1,0,k-1 Cu ben_ 0,k-1

A

Cutk,, iy

A
A

A
\ 4

A
v

Cuth‘h, Por <

Cube,,, —>

\ 4 \ 4

v

Fig. 14. construction of the subcube in the odd step &

11

ITI. COLUMNSORT

In this section, we describe a sorting algorithm Columnsort, introduced by Leighton in [Lei
85].

For simplicity, we describe the algorithm as a series of elementary matrix operations.

Let @ be an r x s matrix of N numbers to be sorted where r - s = N, s|r, and r > 2(s — 1)%
Initially, each entry of the matrix is one of the numbers to be sorted. After completion of the
algorithm, the ¢, j entry (0 <7 <r, 0 <j < s)of @ will contain the p- th sorted number
(0<p< N)wherep=i+j-r.

As an example, we give a 3 X 9 matrix before and after sorting:

8 22 6 1 10 19
27 18 21 2 11 20
5 11 24 3 12 21
17 23 2 | ot 4013 22
9 26 19 [—— | 5 14 23
25 10 3 6 15 24
12 13 7 716 25
14 15 4 8 17 26
1 16 20 9 18 27

Columnsort works in eight steps. In steps 1, 3, 5 and 7 it sorts the numbers within each
column of the matrix. In steps 2, 4, 6 and 8, the entries of the matrix are permuted.

Steps 2 & 4 The permutation of the matrix in step 2 corresponds to a 'transpose’ of the matrix.
The entries are pieced up column by column and then deposited row by row (always going
from top to bottom in a column and from left to right in a row). The permutation in step 4
is the inverse of that in step 2.

0.0 g1 9,51 0.0 1.0 ts—1,0
1.0 1.1 a1,5-1 9 ts.0 Gs41,0 <o A2(5-1),0
_—
%
4
r_10 Ur—11 .- Qp_15-1 Gp_s55-1 OGpr—s41,5-1 -+ Qpr_1,5-1

Note that these steps do not match to real transposition if they are not applyed to a square
matrix, but, for simplicity, we still call them ’transpose‘’ and ’retranspose’.

Steps 6 & 8 The permutation in step 6 corresponds to an |7 |- shift of the entries.

In this step, the matrix r x s is transformed into the matrix r x (s + 1).

12

The permutation in step 8 is the reverse of that in step 6. We call these steps “shift® and

0,0 0,1 0,51 o0 ag5)0 @|gls-2 || 951
al_%J—I,O aL%J—Ll al_%J—LS—l 6 — 0 ar_1,0 Gr—1,5-2 Gr—1,5-1
1310 a1z) a)z],s-1 — 0,0 0,1 0,5—1 +oo

8
Ar_10 Qr_11 r—1,5—1 ajrj—10 @|rj-11 a|rj—1,s-1 400

'reshift’. For short, we call all these steps 'permutation® steps.
The following example shows a step- by- step application of Columnsort to a 9 x 3 matrix:

8 22
27 18
5 11
17 23
9 26
25 10
12 13
14 15
1 16

1 3
2 5
6 7
9 11
12
16
21
23
25

6
21
24

2
19

3

7

4
20

4
8
13
14
18
19
24
26
27

15
16
18
19
17
20
21
22
23

1
5
8
Sort 9
- 12
14
17
29
27
1
3
4
2
retransp. 5
_
8
6
7
13
24
29
26
27 Sort
foo | —
400
400
400

400

10
11
13
15
16
18
22
23
26

9
11
14
10
12
18
15
16
19

17
21
24
20
23
26
22
25
27

—O0

—O0

—O0

U= W N —

o0 -1 O

11
12
13
14

transp.

Sort

15
16
17
18
19
20
21
22
23

24
29
26
27
400
400
400
400
400

1 5
9 12
17 25
10 11
15 16
23
3
7
21

[N]
[N]

[N-]
S O o

9
10
11
12
14
15
16
18

OO ~I O U = W D —

—_
w
—_
Ne

reshift

"

8
14
27
13
18
26

4
19
24

17
20
21
22
23
24
25
26
27

O 00~ O U= Wb —

Sort

shift

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27

13

IV. IMPLEMENTATION OF COLUMNSORT

To implement Columnsort on the n- dimensional hypercube, we proceed as follows:

o Every vertex of the n- dimensional hypercube corresponds to a column of the matrix ().
That means, the number of columns in) must be s = 2". The elements of the columns
are stored in the memory of size r of corresponding vertexes;

o Hence r|s and s > 2(r — 1)? must hold, we assume r = 22*+1,
That means, we have a 22"t x 2" matrix, where 2°"*! elements will be sorted.

In this section, we represent the method of the implementation of each ’sorting® and "permu-
tation® steps of Columnsort.

The ’sorting® steps are implemented with OddFEvenMergeSort circuit [Knu 76], contained in
each vertex. Since every vertex sorts its data independent from his neighbours, no problems
of synchronization arise.

The problems arise while implementing 'permutation® steps. As an example, transform a 4 x 4
matrix (Fig. 15):

o 1 2 3 o 1 2 3
d, a, a, a, da,
d, b, b, b, b,
d, c, ¢ ¢ ¢
d d, d, d, d,

No connection
between the nodes

Fig. 15. Connection problems while transforming a matrix

The columns 0 and 3 must share data with one another, but there is no direct connection
between them. The solution is to send data along the shortest path to the neighbours.

We apply the following scheme of transformation:

o Transform the matrix in n steps;
o Share data between the p — 1 -th neighbour via the edge of dimension p — 1.

In step p € {1,...,n}, the data will be shared between the vertexes with the addresses
(@0, eeey Gnp—2,0,ap—py ooy @p1) and (dag, ..oy Gnep—2, 1, @yp, .oy 1) via dimension n — p as fol-
lows:

14

The data in memory of each vertex is divided into 2P=% blocks. The vertexes exchange the halfs
of each block with one another: the vertex with lower address changes the lower half of the
block with the upper half of the corresponded block of the vertex with higher address.

As an example, we transform a 4 x 4 matrix with this method (Fig. 16):

Step 1: p = 1; divide each column in 2'7 = 1 blocks;
Exchange data via dimension 1 (node 0 with node 2, node 1 with node 3).
Vertexes with lower addresses (0 and 1) change lower halfs with upper halfs of
the vertexes with higher addresses (2 and 3).

o 1 2 3 o 1 2 3

al/ M/ “J Ol)' 6l// Lll CU C/

b, b, b, b, b, b, d, d,
Block 1 -

C, €, ¢ ¢ a, a, ¢, ¢

d, d, d, d, b, b, d, d,

Fig. 16. Step 1 of transposition

Step 2: p = 2; divide each column in 227! = 2 blocks;
exchange data as described (Fig. 17)

0 1 2 3 0 1 2 3

a, ,a, ¢, c, a, d, ¢, c,
Block 1

b,,‘/ b, d,,/ d, b, b, d, d,

a, ,d; G (o3 a, da; C, G
Block 2 ‘ ’ - b
“ b b, af a b b d d,

Fig. 17. Step 2 of transposition

The above method transposes a n x n matrix. To implement it on the r x s matrix, we apply
it step by step on the s x s partial matrixes.

As an example, consider a 8 x 4 matrix to be transposed. After applying the above method
on the upper and lower partial matrixes, we get

ap by e dy a1 d dz G4
az by ¢y dy by by by by
as by c3 ds C1 Gy C3 (4
as by cq dy di dy ds d4
as bs cs5 ds as de¢ a7 ag
ag bg cg dg bs bs br bs
ar by ¢ dr cs Cs C7 Cg
ag by cg dg ds dg dr dg

15

This matrix does not correspond the transposed matrix described in section 2, but as one can
see, each column of it is a permutation of the corresponded column of Columnsort- matrix in
step 2. Hence, after applying the sorting algorithm in step 3, we get exactly the same matrix
as in Columnsort.

To implement the 'retransposition‘, we apply the above method of n x n matrix transposition
on the whole matrix (Fig. 18).

o 1 2 3 0o 1 2 3 0o 1 2 3 o 1 2 3
a, b, a, b, a, b, a, b, a, b, a, b,
, b, a, b a, b,/ a. /b a, b, a, b,
2 b._) Ol() b() Ol,:‘ 2 6 b{) Dl_, h_’ Ol() h(x
a, b, a, b, a, b, a, b, a, b, a, b,
BN BN
<y 6114 ¢ d4 Co du ¢y d4 Co dn C, dg
Ci d'? C; d; CI dl CS d'? C] dl C; df
C() d() C() d() 2 2 6 d() C‘é/ d4 C() dO
¢, d, ¢, d, ¢, d, ¢, d, ¢, d; ¢, d,
(a) (b)

Note that, similar to 'transposition‘, the matrix does not correspond that of Columnsort, but

Fig. 18. retrans

after applying "Sorting’ in step 5, we get the same result.

While ’shifting’, the method of Fig. 19 will be applied:

o 1 2 3 o 1 2 3 o 1 2 3 o 1 2 3
61(1 b(l (’(l df} a(} b/} C() d(} Ol(l b(l (/(l df} Ctll h/) aﬁ b_)
a, b, ¢ d, a, b, ¢ d, a, b, ¢, d, a, b, a, b,
a, b, ¢, d, a, b, ¢, d, a, b, ¢, d, a, b, a, b,
a, b, ¢, d, a, b, ¢, d, a, b, ¢, d, a, b, a, b,
- N
4 b4 C4 d4 b/[ari di Ci b4 aﬁ d4 C/l C() d/) C.; d_’
. b, ¢, d. b, a, d. c. b, a, d. c. ¢, d, ¢ d,
45 3 " B
6 b() C() d() b() d() dO CG b() g(} d() C() CA/ d{ C() dO
a, b, ¢, d, b, a, d, c, b, a, d, c, ¢ ds ¢, d,
Blocked

Fig. 19. shift

The nodes share data in ascending order, that means, in step k, they share data with the
k — 1 -th neighbour via edge £ — 1. Note that, in step k, only the nodes with the addresses
(@p-1,...,ar,0,...,0) share data with their neighbours, the rest of them is blocked (on the
exception of step 1, where all the nodes share data with their corresponding neighbours).

16

The principle of the 'reshift‘- step (Fig. 20) is similar to ’shift‘, with some exceptions:

o The nodes share the upper halfs of their data with their neighbours (on exception of node
0, that shares the lower half of its data with the upper half of its neighbours);

o Only the nodes with the addresses (a1, ..., ax, 1,...,1) share data, the rest is blocked.

o 1 2 3 o 1 2 3 o 1 2 3 o 1 2 3
a, br)) d() a, d4 d(}) a, d4 d«)) a, ¢, dr) d4

, b, ¢ d, a, d. d, c a, d, d, c a, ¢ d, d.

-
a, b, ¢, d, a, d, d, c a, d, d, c a, ¢, d, d,
61.)' b»' c d;’ a d d? C,z’ &l,;’ d7 d:’ C)’ a C,)’ d,)’ d‘
d4 a, b4 ¢ b, a, d4 ¢ b, a, 614 Cs b, a, d4 ¢
d, a, b, c b, a, d; c; b, a, d, c b, a, d; c;
d() a(5 b{) (/(bJ a() él() (/(b_) 61() d(5 C() bJ (6 d() (’(
d, a, b, c b, a, d, c b, a, d, c b, d, c
Blocked
Fig. 20.

There is one important thing to be noted: normally, the elements in each node must be sorted.
In node 0 of the 'reshifted’ matrix , however, the upper and lower parts are exchanged. This
is considered in the data output algorithm described later in this work, so that the user gets
the sorted elements in ascending order.

INPUT AND OUTPUT

The Input / Output algorithm is realized as follows:

For a 1- dimensional cube:

1. Write (read) data to (from) the node 0;

2. Exchange data between the nodes 0 and 1;

3. Execute step 1
This process could be generalized for an n -dimensional hypercube:

1. Write (read) data to (from) the lower n — 1 dimensional subcube;

2. Exchange data between the n — 1 dimensional subcubes:

3. Execute step 1
Note that in step 1, no changes must be undertaken in the higher n — 1 dimensional subcube.

17

V. AREA AND TiME COMPLEXITY

In this section, we give the upper bounds of the growth functions for time (the depth) and
area (number of cells) of the sorting circuit discussed in previous sections.

Because of the specific construction, the vertexes of the hypercube contain the memory cells,
227+1 each. It has the negative effect in terms of the area expansion, but the alternative
construction would require at least 2" - k pins (the connection of each vertex to memory) or
the system should be realized sequentially (we assume that each number to be sorted consists

of k bits).

A. Time Complexity of the Circuit
First we give the time function of the Odd-Even-Merge-Sort, shown in Fig. 21:

2/171 2/171
A

SORT [n-1]

211/¢

MERGE [n]

SORT [n-1]

g

SORT [1] —>» cmp SORT [n] —>»

o

\ 4 A \ 4

Fig. 21.

The circuit Merge[n] (Fig. 22) sorts two pre- sorted sequences of elements. Its components
are explained in Fig. 23.

!

MERGE[1] —>»

cmp

O/E [n]

i

‘ MERGE [n-1] ‘ ‘ MERGE [n-1] ‘

MERGE [n] —>

ET

SHUFFLE [n]

-

CORRECT [n]

5

Fig. 22.
The circuit Shuf fle[n] is the reverse of O/E[n], C M P sorts two elements of its input.

As one can easily see, the depth (i. e. time) of Sort[n] could be calculated with the following
formula:

n-(n—l—l)‘

T(Sort,) = 5

For Sorty, 11, 1t is

18

a, a, a,a,...d,

O/E [1] —> O/E (1] —> ‘ O/E [n] ‘

a, a, a,d,..,d,., a,a,...,d,

(a)

CORRECT [n] —>» CORRECT [n-1] CORRECT [n-1]

Iz]

CORRECT [1] —»

()
Fig. 23.

(2n +1)(2n 4 2)
2

The upper bound of it is O(2r* + 3n + 1) = O(n?).

For N elements to be sorted, the upper bound would be O(log? N).

T(Sorty,+1) = =2n+1)(n+1) =% +3n+ 1.

Let C'ube, be our sorting circuit, realized as the n- dimensional hypercube. Than the time
function would be:

T(Chip,) =4-n 2"t 1 4. T(Sorty, 1)

Its upper bound is O(4 - (n - 2***1 4+ 2p% 4+ 3n + 1)) = O(n - 2°").
That means, the circuit sorts N = 2*"*! elements in time O(v/ N2 - log N).

B. The Area Complexity

As described in [Gam 96], the circuit C'hip, consists of two parts — the n- dimensional
hypercube and the logic unit. Hence, the area function C'(Chip,) could be represented as

C(Chip,) = C(Cube, ;) + C(LU,),
where LU, is the logic unit of the system.
It is also shown in [Gam 96], that
C(ST,) =19 -n + 33 and C(Cube, ;,) = 2" - (2" - (2n® + 5n + 7) + 6n + 3).

It follows:
O(C(Chip,)) = O(n2 . 23”).

That means, the upper bound of the area of the network that sorts N = 237+1

elements is

O(N -log® N).

19

VI. CIRCUIT PARTITIONING

Because of the exponential growth of the network, the circuit could be unrealizable for suffi-
ciently large n.

Definition 5.1: Let Cube,, ;,, be a hypercube to be constructed. A subcube Cube, ; , is called
a maximal subcube of n- dimensional hypercube, if following holds:

Cubey, jm is realizable as one chip;
Cube,1—jmt+1 1s not realizable as a chip.

One method of the construction of large hypercubes could be a construction of their max-
imal subcubes and assembling them to a hypercube. Fig. 24 shows a construction of a 7-
dimensional hypercube with four 5- dimensional subcubes.

‘ CutN,,, ‘
\ \
—‘ Cube,, . H Cube., ; }—
CZ/]’)E?_I R C”tW/:y.m ‘ C”tE; kk
—{ Cube,, . H Cube., ; }7
\ \
‘ cutS,,, ‘
Fig. 24.

The closer look at the system shows the impossibility of this method. As an example, we
construct a 7- dimensional hypercube from four 5- dimensional subcubes. First we count the
number of connections on the E/W and N/S sides of these subcubes.

As shown in [Gam 96], the number of pins of C'ube, ;. could be calculated as follows:

P(Cubey, ;) = 2L 1F 5L L o5 THLIEIHL _omH1 L7 9 4 9.

In our case it is:

P(Cubery5) =27 +27 =25 4+49 — 10 + 9 = 240.

In a 1- bit model, the number of pins (corresponding to the number of connections) of the 5-
dimensional subcube chip is at least 240. That means, C'uber; 5 is not realizable because of
the large number of its pins.

Hence the only problem is the large number of pins, we can solve it by reducing the number
of connections in C'ube,, g 0.

To avoid the above problems, we proceed as follows:

We construct a maximal hypercube (for a 64- bit sorting system, it is a 4- dimensional hyper-
cube).

A 4- dimensional hypercube sorts 2!® elements, that means, it could be used as a node of
a 6- dimensional hypercube. Figure 25 shows a possible scheme for a construction of a 6-
dimensional hypercube system. Each chip is observed as a node of a 6- dimensional hypercube,
sorting its data independent from one another and sharing it with its neighbors according to
Columnsort. The data paths connecting the nodes of the cube with one another or with the

20

outside world are set with additional circuits which we denote as C'. It is not realized as one
chip because of a large number of pins, but, for simplicity, we still represent it as a unit.

In other words, we develop the same system as in previous chapters that do not fit in one chip
and is placed on a specific board.

64 Inputs / Outputs

i i S I

| ¢ |
i i1 v
T] [ow] -
64 sorting chips
Fig. 25.

The system can be even enlarged, if we use a 6- dimensional hypercube as a vertex of a
hypercube with a dimension up to 9 (up to 2*® 64- bit elements could be sorted). We describe
the method, constructing an n- dimensional hypercube (see Fig. 26).

RAM RAM RAM
] 1-st coly
i i - i
| ¢ |
i i
el [op] - - - [
64 sorting chips
Fig. 26.

For the sake of parallelization, we use at least 64 RAM- blocks (because of the same number
of sorting chips), 2® 64- bit words in total. These RAMs build the columns of the Columnsort
matrix as shown in Fig. 27.

The general algorithm is implemented as follows:
for (1 =0,4, +i)

for (7 =0,2" ++7)
{
Read j- th column into the system;
Sort the red- in data;
Write sorted data;
}
/* all 2" columns of the matrix are sorted */
Exchange data between the columns according to Columnsort;

}

In other words, we read the data of each RAM column, sort it and store it back into RAM.
Then we exchange data between the nodes according to Columnsort (note that some steps in
this scheme,such as data exchange and read/write could be parallelized).

e i e e

_ O

21

VII. PERFORMANCE RESULTS

In this section, we give the sorting times of the whole system and compare it with other
software realizations on several parallel supercomputers.

Our calculations are based on the implementation algorithm from previous section.

The system could be even accelerated by the parallelization of the data read/write and ex-
change steps:

o write the sorted data in two columns that must exchange data with one another;
o while exchanging data between these two columns, write data to another pare of columns.

The parallelization requires exact analysis based on the timing diagrams of the selected RAM
modules, so we do not discuss it in depth in this paper and present the sorting times of the

unparallelized system.

The total sorting time of a non- parallelized n— dimensional system can be expressed wit the
following formula:

Tn <4-2"- (TR—I'Tsort—I'TW) +4 . 2n—1 . Tex7

where Tp = Tr = 2'% are times needed to read/write data from/to sorting chips, Ty, is the
time needed to sort data in a 6- dimensional system and T, is the time needed to exchange
data between the nodes of an n dimensional hypercube (the system to be developed).

It is easy to show that

Toory =4-Ty+4-6-2"2=4.3.2"" 14.6.2" =15.2",

where T, = 3 - 2! is the sorting time of one sorting chip.
For T., we have T,, = n -4 - 2'* (2'? elements exchanged in n steps).
Applying these formulae, we get:

T, <4-2"- (152" 42"y 4 4. 2771 o 4. 212 = 27H15 L (1 17)

So, we have estimated the sorting time of the whole system:

T, <25 (n 4+ 17)

22

The Following table shows the number of elements and sorting times of various sorting systems
(for time calculations, we take the clock delation of 100ns).

| n | elements | time / sec |
1| 229=1.048.576 0,1179648
2 | 221=2.097.152 0,2490368
3| 222=4.194.304 0,5242880
4 | 2%=8.338.608 1,1010048
5| 22=16.777.216 | 2,3068672
6 | 225=33.554.432 | 4,8234496
7| 2%%=67.108.864 | 10,0663296
8 | 227=134.217.728 | 20,9715200
9 | 228=268.435.456 | 43,6207616

In the following diagram, we compare the sorting time of our system with that of Bitonicsort
and Samplesort algorithm realizations on the 1024 processor Partysec GCel [Dea] (we have
chosen the fastest implementation from the software realizations on the 32- processor Paragon
[Hard96], Cray Y — MP [ZagBlel91], MasPar MP — 1 [BrockWan97] and 1024 processor Par-
tysec GCel [Deal).

Because of the assumption of Columnsort (section III), to sort 2" —[elements (1 <[< 2" —1),
we build a sorting system of the size 2", that explains the discrete time graph in the diagram.

0118 0525 2307 484 7 8 10067 12 13 14 15 16 17 18 19 20972 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 43691
0249 1101 3 4 6 9 11 20 2 42

— o our system —~<— Bitonic Sort on Partysec GCel —— Samplesort on Partysec GCel
Fig. 27.

23

time (sec.)
3
BV RSOUU
de- Node 1
Sower
2
N\
Fujitsu VPP 700
Our system
1 CRAY T3D
PP Y Cc 90
Faster
— CRAYTDI6 CRAY T3E
0
1 2 4 8 16 32 64 128 256 512 1024 Processors
@)
Processors
1024
512
256 S
128 R hbn sERR
1BM RS/600 SP [T |
ide- Node 1 CRAYTBD | | | T ||
64 — Tt
) e
CRAYT3E | | | T —— |||
16 M
CRAY|C 90
8 jitsu VPR
Fujitsu VPP 300
4 =_Cl 6 [T T
\\\\\\ T ::§‘\-=\
2 4 L \\:\\‘::\\
ECSX482 | || e T
1 I e e R Em—
0 1 2 3 4 5 6 7 8 9 10
time (sec.)
Faster Our system Sower
(b)
Fig. 28.

According to the benchmark results from the NASA Ames Research Center [BBDS 94], we
can compare our system with the realizations of the Integer Sort algorithm on different super-
computers of the problem sizes 2* (Fig. 28(a)) and 2?° (Fig. 28(b)).

24

VIII. IMPORTANT CIRCUITS

In this section, we describe some of the most important circuits of the sorting chip as developed

in CADIC [Bur 94].

In several cases, the diagrams do not match the circuits analyzed earlier because of the com-
plicated wiring system.

As basic elements, we use the CMOS cells described in the following table:

‘ Cells ‘ Description ‘

and2a Boolean AND
vdfrla | Flipfiop

12nvla | Boolean NOT
vmuxlb | Multiplexer
Multiplexer with
two inputs

1or2a Boolean OR
vddeont | The 'Lo” Sygnal

muz2a

25

Output Qbusbreite
Input Q@busbreite .
A n n Sort & WR
OK N
L
Sort|{— AA
n+4 o
e
WR 1A
H
H 2% 41
Sort & WR BA
* o
CCube[n,upper(n/2)-lower(n/2),n] 2*n+1 STE[n]
Shift | trans
4%n 4 5)
WR
AA 2%n41 Shift
EA $2n+1
trans
Sort
L . CK
Res
[P | —
End, In, Out, Res, CK, Ready

The circuit C'HIP[n] — The system at its highest hierarchy level with the control unit ST E[n]

26

+@vConn[0,m]

@vConn[0,m]

@hC[0,m)]

CutW([n,m,lower(m/2)

@in[0, m]

@busbreite

4%n44

'2*(n-m)

Cube[n,0,m-1]

@in[0,m]

@busbreite
e

4% 4

'2*(n- n)

Cube[n,0,m-1]

@in[0,m

@hC[0,m)]

utQO[n,m,lower(m/2)

5%n 48

'2*(n-m)

+@vConn[0,m]

+@vConn[0,m]

Construction of the odd subcube

VN[lower(n/2)]

VS[lower(n/2)]

QadE QvcC
QhcC
anc QadE
- VW ([upper(n/2)] VO[upper(n/2)] @hC
Qdo Qdo
Node[n]
@kuka[n]
7*n49

QvcC

QadE

Preparation of the edges

27

28

+ExIn ExOut
Qbusbreite Qbusbreite
@busbreite n v
@busbreite+ b
Q@busbreite
= Block[n+1] I I
Inp& WH
. —
A n n n
SORT[2*n+1]
Sort
WR |
Sort & WR
Shift I
zu H [RAMI[n] S £
3
3
- -
2*n+1p
N1 N1 N1] 2%n41
AA I [
2% 41
DAT[2*n+1] CADR[n] 2
ADR 5 trans
1 CK
EA o%n 41 [o%n 41 o%n 41 2%n 4
2 2 2
- S AT - TR -

(Set,Res) 2%n Res

The node of the hypercube at the highest hierarchy level

The circuit C ADR[n] (Count Address) contains the binary address of the node. It determines,
whether the data of the node must be shifted.

29

iia imux1b
n-1

- Block[n-1] I—I

n-1

n-1

imux1b

Upper diagram: Hierarchical representation of the circuit BLOC K[n] that determines the
dimension along which the data must be exchanged;

Lower diagram: Termination of the hierarchy of BLOCK[n] — BLOCK]1]

30

SOut

SOut

2(n-1) 2(n-1)
10 RAM][n-1] 10 RAM][n-1] 10
.2ﬁ 217
Sort Sort WR
ExOut ExIn

M 1] | CK 0

pruxl ux2 idfrla or02all | fand2 mux1 Imux2 idfrla ior02a iand2a
| |] [7 [oxu
[J [| I . [[

ExOUT ExIn Sort & WR| WR Sort & WR

Upper diagram: Hierarchical construction of the memory cells;
Lower diagram: Termination of the hierarchy (two memory cells)

n-1

DAT[n-1]

imux2a

n-1

imux2a

31

Upper diagram: The circuit DAT[n] used to calculate the actual addresses of the data to be

shared using FA, AA and @;;

Lower diagram: Termination of the Hierarchy of the circuit DAT [n] — DATY1].

32

WR trans EA A AA
End
land2
2+l 3%n 41
In
Out
v Inputstart
drsl
ior02a |
3%+ 1
v@dcoﬂ | '2*n+]
NlInp [cK_slraTUS I
Sort Ngo Ntr tr Sh
StartOufliifivila
artn [] EndIn
3and?2
— CSTATUS Dro[n]
Sort& WR

es

3*n41

bnda v?dcoﬂt
idfrla
CK OK

Inputsig

The control unit at the highest hierarchy level
The circuit CSTATUS (Count Status) determines the state variables of the system;

DROI[n] determines the variables FA, A and AA used to calculate the data addresses to be
exchanged.

References

[BBDS] D. H. Bailey, E.Barszcz, L. Dagum and H. D. Simon
NAS Parallel Benchmark Results 3-94

RNR Technical Report RNR-94-006

NASA Ames Research Center, March 1994

[BrockWan97] K. Brockmann, R. Wanka
Efficient Oblivious Parallel Sorting on the MasPar MP — 1
In Proc. 30th Hawaii International Conference on System Sciense (HICSS), IEEE, Jan. 1997

[Bur94] Th. Burch
FEine graphische Arbeitsumgebung fur den parametrisierten Entwurf integrierter Schaltungen
PhD thesis, department of Computer Science, University of Saarland, 1994

[Dea] Ralf Dickmann et al.

Sortieren grofler Datenmengen auf einem massiv parallelen System

[Gam96] A. Gamkrelidze
Entwurf eines booleschen Sortiernetzes mit der Struktur eines n— dimensionalen Wiirfels
Masters thesis, University of Saarland, 1996

[Hard96] J. C. Hardwick

An FEfficient Implementation of Nested Data Parallelism for Irregular Divide- and- Conquer
Algorithms

In Proceedings of First International Workshop on High- Level Programming Models and
Supportive Environments, pp. 105 — 114, Apr. 1996

[Hot 65] G.Hotz
Eine Algebraisierung des Syntheseproblems fiir Schaltkreise
EIK 1, 1965, pp. 185 — 205, 209 — 231

[HotRe 96] G. Hotz and A. Reichert
Hierarchischer Entwurt komplexer Systeme
In: 1. Wegener (editor) Highlights aus der Informatik, Springer Verlag, 1996

[Kol 87] R. Kolla
Spezifikation und Expansion Logisch Topologischer Netze
PhD thesis, Saarbriicken, 1986/87

[KMO89] R. Kolla, P. Molitor, H.— G. Osthoff
Einfihrung in den VLS Entwurf. Leitfaden und Monographien der Informatik. B. G.
Teubner Verlag, Stuttgart, 1989

[Knu73] D. E. Knuth
Sorting and Searching, The Art of Computer Programming. Addison — Wesley, 1973.

[Lei85] T. Leighton
Tight Bounds on the Complexity of Parallel Sorting. [EFFE Transactions on Computers, Vol.

C34(4):344-354, April 1985

[Mol 86] P. Molitor
Uber die Bikategorie der Logisch- Topologischen Netze und ihre Semantik

PhD thesis, Saarbriicken, 1986

[ZagBlel91] M. Zagha, G. Blelloch
Radix Sort for Vector Multiprocessors
Supercomputing’ 91, November 1991

