
Optimal Global Instruction Scheduling for the
Itanium R© Processor Architecture

Dissertation

zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften (Dr.-Ing.) der
Naturwissenschaftlich-Technischen Fakultäten der

Universität des Saarlandes

von
Diplom-Informatiker

Sebastian Winkel

Saarbrücken
September 2004

ii

Das Bildmaterial für den Umschlag und für die Abbildungen auf den Seiten 32, 35 und 42 wurde
freundlicherweise zur Verfügung gestellt von Intel Deutschland GmbH.

Intel, Itanium und Pentium sind eingetragene Warenzeichen der Intel Corporation oder ihrer
Tochterunternehmen in den USA und anderen Ländern. Andere Marken oder Produktnamen
sind Eigentum der jeweiligen Inhaber.

Tag des Kolloquiums: 16.12.2004

Dekan: Prof. Dr. Jörg Eschmeier

Prüfungsausschuss:

Gutachter: Prof. Dr. Reinhard Wilhelm

Priv.-Doz. Dr. Friedrich Eisenbrand,
Max-Planck-Institut für Informatik, Saarbrücken

Prof. Dr. Peter Marwedel, Universität Dortmund

Vorsitzender: Prof. Dr. Raimund Seidel

Akademischer
Mitarbeiter: Dr.-Ing. Stephan Thesing

iii

Abstract

On the Itanium 2 processor, effective global instruction scheduling is cru-
cial to high performance. At the same time, it poses a challenge to the
compiler: This code generation subtask involves strongly interdependent
decisions and complex trade-offs that are difficult to cope with for heuris-
tics. We tackle this NP-complete problem with integer linear program-
ming (ILP), a search-based method that yields provably optimal results.
This promises faster code as well as insights into the potential of the ar-
chitecture. Our ILP model comprises global code motion with compen-
sation copies, predication, and Itanium-specific features like control/data
speculation.

In integer linear programming, well-structured models are the key to
acceptable solution times. The feasible solutions of an ILP are repre-
sented by integer points inside a polytope. If all vertices of this polytope
are integral, then the ILP can be solved in polynomial time. We define
two subproblems of global scheduling in which some constraint classes
are omitted and show that the corresponding two subpolytopes of our ILP
model are integral and polynomial sized. This substantiates that the found
model is of high efficiency, which is also confirmed by the reasonable so-
lution times.

The ILP formulation is extended by further transformations like cyclic
code motion, which moves instructions upwards out of a loop, circularly
in the opposite direction of the loop backedges. Since the architecture re-
quires instructions to be encoded in fixed-sized bundles of three, a bundler
is developed that computes bundle sequences of minimal size by means
of precomputed results and dynamic programming.

Experiments have been conducted with a postpass tool that imple-
ments the ILP scheduler. It parses assembly procedures generated by In-
tel’s Itanium compiler and reschedules them as a whole. Using this tool,
we optimize a selection of hot functions from the SPECint 2000 bench-
mark. The results show a significant speedup over the original code.

iv

v

Zusammenfassung

Globale Instruktionsanordnung hat beim Itanium-2-Prozessor großen
Einfluß auf die Leistung und stellt dabei gleichzeitig eine Herausforde-
rung für den Compiler dar: Sie ist mit zahlreichen komplexen, wechsel-
seitig voneinander abhängigen Entscheidungen verbunden, die für Heuri-
stiken nur schwer zu beherrschen sind. Wir lösen dieses NP-vollständige
Problem mit ganzzahliger linearer Programmierung (ILP), einer suchba-
sierten Methode mit beweisbar optimalen Ergebnissen. Das ermöglicht
neben schnellerem Code auch Einblicke in das Potential der Itanium-
Prozessorarchitektur. Unser ILP-Modell umfaßt globale Codeverschie-
bungen mit Kompensationscode, Prädikation und Itanium-spezifische
Techniken wie Kontroll- und Datenspekulation.

Bei ganzzahliger linearer Programmierung sind wohlstrukturierte
Modelle der Schlüssel zu akzeptablen Lösungszeiten. Die zulässigen Lö-
sungen eines ILPs werden durch ganzzahlige Punkte innerhalb eines
Polytops repräsentiert. Sind die Eckpunkte dieses Polytops ganzzahlig,
kann das ILP in Polynomialzeit gelöst werden. Wir definieren zwei Teil-
probleme globaler Instruktionsanordnung durch Auslassung bestimmter
Klassen von Nebenbedingungen und beweisen, daß die korrespondieren-
den Teilpolytope unseres ILP-Modells ganzzahlig und von polynomieller
Größe sind. Dies untermauert die hohe Effizienz des gefundenen Modells,
die auch durch moderate Lösungszeiten bestätigt wird.

Das ILP-Modell wird um weitere Transformationen wie zyklische Co-
deverschiebung erweitert; letztere bezeichnet das Verschieben von Befeh-
len aufwärts aus einer Schleife heraus, in Gegenrichtung ihrer Rückwärts-
kanten. Da die Architektur eine Kodierung der Befehle in Dreierbündeln
fester Größe vorschreibt, wird ein Bundler entwickelt, der Bündelsequen-
zen minimaler Länge mit Hilfe vorberechneter Teilergebnisse und dyna-
mischer Programmierung erzeugt.

Für die Experimente wurde ein Postpassoptimierer erstellt. Er liest
von Intels Itanium-Compiler erzeugte Assemblerroutinen ein und ordnet
die enthaltenen Instruktionen mit Hilfe der ILP-Methode neu an. Ange-
wandt auf eine Auswahl von Funktionen aus dem Benchmark SPECint
2000 erreicht der Optimierer eine signifikante Beschleunigung gegenüber
dem Originalcode.

vi

Extendend Abstract

HP and Intel’s Itanium Processor Family (IPF) is considered as one of the most challenging
processor architectures to generate code for. Its performance is highly compiler-dependent since
it relies on static instruction scheduling. The code generator is responsible for extracting a high
amount of instruction-level parallelism and exposing it to the processor. To achieve this, it must
combine global instruction scheduling (with code motion between basic blocks) with the use of
predication and Itanium-specific features like explicit speculation.

When applying these techniques, the compiler must deal with strongly interdependent deci-
sions and keep the increasing resource pressure as a result of compensation copies and specula-
tive computations under control: Overuse can spoil the benefit due to execution unit shortage,
but the opposite, a too conservative application, can lead to many unused execution slots. It
is difficult for the greedy scheduling heuristics found in Itanium compilers to find a balance.
Moreover, resource-constrained instruction scheduling is—even when limited to basic blocks—
an NP-complete problem, for which heuristics deliver only approximations. It is unclear how
far away these are from exact, optimal solutions.

In this thesis we tackle the global instruction scheduling problem for the Itanium 2 processor
with integer linear programming (ILP), a search-based combinatorial optimization method that
yields provably optimal results. Our ILP model comprises global code motion with automated
generation of compensation code, predication, as well as vital IPF features like control and data
speculative loads. The ILP approach can—within certain limits—resolve the interdependences
between the involved decisions and deliver the global optimum in the form of a schedule with
minimal length. This promises faster code, as well as some theoretically well-founded insights
into the potential of the architecture.

In integer linear programming, the search space of feasible solutions is represented by the in-
teger points inside a polytope. A well-structured model, in which these integer points are tightly
enclosed by the polytope, is the key to acceptable solution times. If all vertices of the polytope
are integral, then the ILP can even be solved in polynomial time. Since we are modeling an NP-
complete problem, however, we cannot expect to find such a polytope of polynomial size for the
entire global instruction scheduling problem, but only possibly for subproblems. Therefore we
define several such subproblems in which some constraint classes are omitted (such as the re-
source constraints, which model the occupation of execution units, or the precedence constraints,
which enforce data dependence preservation). For subproblems that are no longer NP-complete,
ILP formulations may exist that describe integral and polynomial sized subpolytopes—and are
in fact developed in this thesis.

vii

viii

For one of these subproblems, this is achieved by reducing it to a node packing problem on
a perfect graph and exploiting a standard result in order to obtain an integral subpolytope. A
further subproblem is modeled as a network flow problem, a problem class for which integral
polytopes are well known, too. In both cases, it is necessary to reduce the complexity of the
resulting ILP formulation afterwards, which is in the former case even exponential. This is
done by removing redundant constraints and by applying integrality-preserving transformations.
These include lifting the polytope to a higher dimension (to reduce the number of constraints
needed to describe it), or inversely, projecting it onto a lower-dimensional subspace (to reduce
the number of needed variables).

As a central theoretical result of this thesis, we further show that the identified integral and
polynomial sized subpolytopes are maximal in the sense that they cannot be extended by other
constraint classes without losing one of their two efficiency properties (integrality or polyno-
mial size). This follows—under the assumption P �= NP—from two NP-completeness proofs
for the extended subproblems. It substantiates that the found ILP model is close to maximal effi-
ciency. The polyhedral analysis also reveals in detail that there is a wide complexity gap between
local and global instruction scheduling.

The developed basic ILP model is enriched with further variants of code motion and spec-
ulation: Predicated code motion extends the scope of code motion via predication. Similarly,
partial-ready code motion is included, which allows instructions to be moved further upwards
along a control flow path by speculatively ignoring data dependences on instructions from other
paths. To increase the scheduling scope in the presence of loops, the model is extended to support
code motion into and out of loops. Upward code motion out of loops includes cyclic code motion
circularly in the opposite direction of the backedges, a variant which can effectively reduce the
schedule length of the loop body. A further add-on models the changes in the branch structure
resulting from blocks that are emptied via code motion. On the Itanium architecture, instructions
have to be encoded in fixed-sized bundles of three, which are further specified by templates.
To bundle the obtained schedules, a method is developed that computes bundle sequences of
minimal size by means of precomputed results and dynamic programming.

The experiments were conducted with a postpass tool that implements the ILP scheduler. It
parses assembly procedures and optimizes them as a whole. Various precomputations are per-
formed to reduce the search space. During the ILP generation, constraints are tightened dynam-
ically. This leads, in combination with the high efficiency of the used ILP model, to reasonable
solution times of not more than a few minutes. Using this tool, we optimize a selection of hot
functions from the SPECint 2000 benchmark. Assembly versions of them are generated with
Intel’s Itanium compiler and fed into the postpass optimizer. The rescheduled code turns out to
run significantly faster than the original version.

Although the ILP method is, because of the comparatively long solution times, not suited for
product compilers, the experimental results show that it is promising as a stand-alone optimiza-
tion tool for compute-intensive application kernels like compression and encryption routines. A
further interesting application is as a research tool: The comparison of the optimal results with
those of heuristics can help find and quantify room for improvements in the latter. Moreover, the
ILP approach can be used to explore the potential of the Itanium architecture since it delivers—in
contrast to all heuristics and limit studies—concretely the best achievable solutions.

Ausführliche Zusammenfassung

Bei der Itanium-Prozessorfamilie von HP und Intel gilt Codeerzeugung als eine gleichermaßen
wichtige und schwierige Compilerphase. Da diese Prozessorarchitektur auf statischer Instruk-
tionsanordnung beruht, ist ihre Leistung stark von der Qualität des Codeerzeugers abhängig.
Dieser ist dafür verantwortlich, ein hohes Maß an Parallelität auf Befehlsebene zu extrahieren
und explizit an den Prozessor zu übermitteln. Zu diesem Zweck muß er globale Instruktionsan-
ordnung (mit Codeverschiebungen zwischen Basisblöcken) mit dem Einsatz von Prädikation und
Spekulation kombinieren.

Dabei muß er zahlreiche wechselseitig voneinander abhängige Entscheidungen überblicken
und insbesondere den erhöhten Ressourcenbedarf infolge von Kompensationscode und spekula-
tiven Berechnungen unter Kontrolle halten: Ein übermäßiger Gebrauch von Codeverschiebungen
und Spekulation durch den Compiler kann zu Knappheit von funktionalen Einheiten führen, die
den Nutzen wieder zunichte macht. Das Gegenteil, eine zu konservative Benutzung, läßt das
Potential der Architektur ungenutzt. Für die in Itanium-Compilern eingesetzten Heuristiken ist
es schwer, hier einen Ausgleich zu finden. Darüber hinaus ist Instruktionsanordnung unter be-
grenzten funktionalen Ressourcen – auch wenn lokal auf einzelne Basisblöcke beschränkt – ein
NP-vollständiges Problem, für das Heuristiken nur Näherungslösungen berechnen. Wie weit
diese beim Itanium vom globalen Optimum entfernt liegen, ist unbekannt.

In der vorliegenden Arbeit wird das Problem globaler Instruktionsanordnung für den Itanium-
2-Prozessor mit ganzzahliger linearer Programmierung (ILP) gelöst, einer suchbasierten Metho-
de zur exakten Lösung kombinatorischer Optimierungsprobleme. Das entwickelte ILP-Modell
umfaßt globale Codeverschiebungen mit automatischer Einfügung von Kompensationskopien,
Prädikation sowie den Einsatz Itanium-spezifischer kontroll- und datenspekulativer Ladebefeh-
le. Der ILP-Ansatz kann – innerhalb gewisser Grenzen – die wechselseitigen Abhängigkeiten
zwischen den modellierten Entscheidungen auflösen und das globale Optimum in Form eines
Schedules mit minimaler Länge berechnen. Das läßt neben schnellerem Code auch theoretisch
fundierte Einblicke in das Potential der Itanium-Prozessorarchitektur erwarten.

Der Suchraum eines ILPs wird durch ganzzahlige Punkte innerhalb eines Polytops repräsen-
tiert. Wohlstrukturierte Modelle, bei denen diese Punkte so eng wie möglich von dem Polytop
umschlossen werden, sind der Schlüssel zu akzeptablen Lösungszeiten. Ganzzahlige Polytope
(mit ausschließlich ganzzahligen Eckpunkten) erlauben sogar Lösbarkeit in Polynomialzeit. Da
wir ein NP-vollständiges Problem modellieren, können wir zwar nicht erwarten, ein solches Po-
lytop polynomieller Größe für das Gesamtproblem zu finden, möglicherweise aber für Teilpro-
bleme. Daher definieren wir mehrere solcher Teilprobleme durch Auslassung bestimmter Klas-

ix

x

sen von Nebenbedingungen (wie zum Beispiel der Ressourcenschranken, die die Belegung der
funktionalen Einheiten modellieren, oder der Vorrangbedingungen, die die Einhaltung von Da-
tenabhängigkeiten sicherstellen). Für diejenigen Teilprobleme, die nicht mehr NP-vollständig
sind, können ILP-Formulierungen polynomieller Größe existieren, die ganzzahlige Polytope be-
schreiben – und werden in der Tat in dieser Arbeit entwickelt.

Für eines dieser Teilprobleme geschieht dies durch Reduktion auf ein Node-Packing-Problem
auf einem perfekten Graphen. Unter Ausnutzung eines bekannten Satzes kann dann eine Be-
schreibung dieses Problems durch ein ganzzahliges Polytop gefunden werden. Ein weiteres Teil-
problem wird als Netzwerk-Fluß-Problem formuliert, eine Problemklasse, für die ebenfalls ganz-
zahlige Polytope wohlbekannt sind. In beiden Fällen ist es allerdings notwendig, die Komplexität
der erhaltenen ILP-Formulierungen anschließend zu reduzieren (im ersteren Fall ist sie anfangs
sogar exponentiell). Dies geschieht durch Entfernung redundanter Nebenbedingungen und durch
die Anwendung von Transformationen auf die Polytope, wie zum Beispiel ein Lifting in eine
höhere Dimension (um die Anzahl der zur Beschreibung notwendigen Ungleichungen zu redu-
zieren), oder umgekehrt, eine Projektion auf einen Unterraum geringerer Dimension (um die
Anzahl benötigter Variablen zu reduzieren). Diese Transformationen werden so durchgeführt,
daß sie die Ganzzahligkeit der Polytope bewahren.

Als ein zentrales theoretisches Ergebnis dieser Arbeit zeigen wir dann, daß die gefundenen
ganzzahligen Teilpolytope polynomieller Größe maximal sind in dem Sinne, daß eine Hinzu-
nahme anderer Klassen von Nebenbedingungen nicht ohne einen Verlust von Ganzzahligkeit
oder polynomieller Größe möglich wäre. Dies folgt – unter der Annahme P �= NP – aus zwei
NP-Vollständigkeitsbeweisen für die auf diese Weise erweiterten Teilprobleme. Es untermauert
die hohe Effizienz der gefundenen Formulierung. Die Ergebnisse der Analyse zeigen außerdem
im Detail auf, daß globale Instruktionsanordnung auch aus komplexitätstheoretischer Sicht ein
wesentlich schwierigeres Problem als die lokale Variante ist.

Das entwickelte Basismodell wird um weitere Varianten von Codeverschiebungen und Spe-
kulation erweitert: Prädikative Codeverschiebung erweitert den Spielraum für die Plazierung von
Befehlen mit Hilfe von Prädikation. Demselben Zweck dient partial-ready code motion, das es
ermöglicht, Befehle auf einem Kontrollflußpfad dadurch weiter nach oben zu verschieben, in-
dem Datenabhängigkeiten von Befehlen auf anderen Pfaden spekulativ ignoriert werden. Um
den Spielraum für die Anordnung von Befehlen bei Anwesenheit von Schleifen zu vergrößern,
wird das Modell um Codeverschiebungen in und aus Schleifen erweitert. Diese umfassen auch
zyklische Codeverschiebung, das Verschieben von Befehlen aufwärts über den Schleifenkopf hin-
aus in Gegenrichtung der Rückwärtskanten der Schleife. Weitere ILP-Formulierungen modellie-
ren Änderungen der Struktur der Sprungbefehle, die sich ergeben, wenn Blöcke durch globale
Codeverschiebungen ganz geleert werden.

Die Itanium-Architektur schreibt eine Kodierung der Befehle in Dreierbündeln fester Größe
vor, deren Befehlstypen durch Auswahl einer Vorlage (template) jeweils genauer spezifiziert
werden. Um die berechneten Schedules entsprechend zu bündeln, wird eine Methode entwickelt,
die Bündelsequenzen minimaler Länge mit Hilfe vorberechneter Teilergebnisse und dynamischer
Programmierung erzeugt.

Für die Experimente wurde ein Postpassoptimierer erstellt. Er liest von Intels Itanium-Com-
piler erzeugte Assemblerroutinen ein und optimiert sie als Ganzes, ordnet die enthaltenen In-

xi

struktionen also mit Hilfe der ILP-Methode neu an. Die hohe Effizienz der verwendeten For-
mulierung führt in Kombination mit Vorberechnungen zur Reduktion des Suchraumes sowie
einer dynamischen Straffung von Ungleichungen während der ILP-Generierung zu moderaten
Lösungszeiten von wenigen Sekunden bis Minuten. Auf einer Auswahl von Funktionen aus dem
Benchmark SPECint 2000 erreicht der Optimierer eine signifikante Beschleunigung gegenüber
dem Originalcode.

Zwar ist der ILP-Ansatz wegen der vergleichsweise langen Lösungszeiten nicht für klassi-
sche Compiler geeignet, die experimentellen Ergebnisse lassen ihn aber hochinteressant als Op-
timierungswerkzeug für kleine, rechenintensive Softwarekomponenten wie Kompressions- oder
Verschlüsselungsroutinen erscheinen. Weitere Einsatzmöglichkeiten ergeben sich in Forschung
und Entwicklung in den Bereichen Compiler- und Prozessordesign: Durch den Vergleich mit
optimalen Ergebnissen kann Spielraum für Verbesserungen bei den Heuristiken eines Codeer-
zeugers lokalisiert und quantifiziert werden. Außerdem kann die Methode dazu genutzt werden,
das Potential der Itanium-Architektur präzise auszuloten, denn im Gegensatz zu allen Heuristi-
ken und Abschätzungen liefert sie konkret bestmögliche Lösungen.

xii

xiii

Acknowledgments

First of all, I would like to thank my advisor Prof. Reinhard Wilhelm for
his continuous guidance and support throughout my graduate study. He
always found the time to give me his counsel when I needed it. Several
invitations to Dagstuhl Seminars allowed me to learn to know other re-
searchers and to present my work to them. He created an open, optimistic
working atmosphere in his group that inspired my research.

I enjoyed working with my pleasant and humorous colleagues. My
thanks go especially to Stephan Thesing for his unflagging helpfulness,
and to Ingmar Stein, who did an excellent job in implementing the
bundler.

I am grateful to the Deutsche Forschungsgemeinschaft for support-
ing this research by a graduate fellowship under the graduate studies pro-
gram “Leistungsgarantien für Rechnersysteme” at Saarland University. In
particular, I wish to thank the former speaker of the program, Prof. Dr.-
Ing. Gerhard Weikum, and the current speaker, Prof. Dr. Raimund Seidel.

My special thanks go to Mary Lou Soffa and Keith D. Cooper for
their encouragement and support. Also, I like to thank Prof. Dr. Kurt
Mehlhorn and the Max-Planck-Institut für Informatik, Saarbrücken, for
granting access to their CPLEX installation over a long period of time.

Finally, I would like to thank my parents Marie and Albert and my
brother Georg for their patience and their steadfast support throughout
the years.

xiv

Contents

1 Introduction 1
1.1 The Quest for Instruction-Level Parallelism . 3
1.2 Overview of this Thesis . 6
1.3 Fundamentals and Basic Notions . 7

1.3.1 Graphs and Paths . 7
1.3.2 Instruction Scheduling . 7

2 The Itanium Processor Family 11
2.1 The IA-64 Architecture . 11

2.1.1 Fundamentals . 11
2.1.1.1 Execution Unit and Instruction Types 11
2.1.1.2 Instruction Bundles . 12
2.1.1.3 Architected Registers and the Register Stack 14
2.1.1.4 Predication . 16

2.1.2 IA-64 Programming . 17
2.1.2.1 Example . 17

2.1.3 Instruction Set Overview . 20
2.1.4 Multiway Branches . 26
2.1.5 Speculation . 27

2.1.5.1 Control Speculation . 27
2.1.5.2 Data Speculation . 29

2.2 The Itanium 2 Microarchitecture . 32
2.2.1 Architectural Overview . 32
2.2.2 Cache Design . 34
2.2.3 Pipeline Design . 37

2.2.3.1 Front End . 37
2.2.3.2 Instruction Dispersal . 39
2.2.3.3 Execution Core . 42

2.2.4 Speculation-Related Penalties . 44
2.3 The State of Affairs . 45

xv

xvi CONTENTS

3 The Global Instruction Scheduling Problem 49
3.1 Overview of Code Generation . 49
3.2 Basic Program Representations . 51
3.3 Global Scheduling . 54

3.3.1 Global Instruction Scheduling Algorithms 55
3.3.2 Formalization . 60

4 Integer Linear Programming 67
4.1 The Theory of Linear Programming . 67
4.2 Integer Linear Programming . 72

4.2.1 The Branch-and-Cut Algorithm . 73
4.3 Solution Efficiency and Integral Polytopes . 78

5 An ILP Model for Global Instruction Scheduling 83
5.1 Precedence-Constrained Global Scheduling . 83

5.1.1 Deriving an Integral Subpolytope of PCGS-B 85
5.1.2 Reducing the Complexity of the Integral Subpolytope 97

5.2 Resource-Constrained Global Scheduling . 110
5.2.1 Deriving an Integral Subpolytope of the Resource Constraints 113
5.2.2 Reducing the Complexity of the Integral Subpolytope 119

5.3 Refinement and Summary of the Model . 127

6 Extensions of the Model 137
6.1 Predication, Branches, and If-Conversion . 137

6.1.1 Procedure Calls . 141
6.1.2 Conditional Branches . 142

6.2 Speculation . 145
6.2.1 Control Speculation . 145
6.2.2 Non-Exclusive Use Forking . 149
6.2.3 Data Speculation . 151

6.3 Partial-Ready Code Motion . 154
6.3.1 Precise Formulation . 161

6.4 Cyclic Scheduling Regions and Cyclic Code Motion 164
6.4.1 Code Motion into Loops . 167
6.4.2 Cyclic Code Motion out of Loops . 168

6.5 Subsequent Optimization Phases . 174
6.6 Bundling . 175

6.6.1 Bundling Constraints . 180
6.7 Future Work . 183

7 Experimental Evaluation 189
7.1 Implementation . 189

7.1.1 Parsing and Precomputations . 190

CONTENTS xvii

7.1.2 Optimizations . 192
7.1.3 ILP Generation and Solving . 193
7.1.4 Postprocessing . 195

7.2 Experimental Setup . 196
7.3 Experimental Results . 197

7.3.1 Generated ILPs . 197
7.3.2 Optimal Schedules . 198

8 Related Work 205
8.1 Global Instruction Scheduling Heuristics . 205
8.2 Exact and Phase-Coupled Methods in Code Generation 207

8.2.1 Heuristic Phase Coupling . 208
8.2.2 Search-Based Methods . 209

8.2.2.1 Based on Integer Linear Programming 209
8.2.2.2 Based on Constraint Logic Programming 213
8.2.2.3 Based on Evolutionary Algorithms 214
8.2.2.4 Based on Enumeration . 215
8.2.2.5 Other Approaches . 217

8.3 Other Recent Work on ILP-Based Compiler Optimizations 217

9 Conclusion and Outlook 219

A Figures 223

B Proofs 229
B.1 Proofs for Chapter 4 . 229

B.1.1 Proof of Lemma 4.3.11 . 229
B.1.2 Proof of Corollary 4.3.12 . 230
B.1.3 Proof of Lemma 4.3.13 . 230
B.1.4 Proof of Lemma 4.3.14 . 230

B.2 Proofs for Section 5.1 . 231
B.2.1 Proof of Theorem 5.1.17 . 231

B.3 Proofs for Section 5.2 . 232
B.3.1 Proof of Theorem 5.2.8 . 232
B.3.2 Proof of Theorem 5.2.11 . 233
B.3.3 Proof of Theorem 5.2.19 . 234

C List of Symbols 257

xviii CONTENTS

Chapter 1

Introduction

In 1994, Intel and Hewlett-Packard began codeveloping a radically new 64-bit computer archi-
tecture that became known as the Itanium Processor Family (IPF) [Alp03]. Ten years and an esti-
mated $5 billion later [ML02], the second-generation Itanium 2 processor has entered the markets
for high-end servers and workstations. What makes the design approach groundbreaking—and
to some observers also arguable—is that it marks a radical departure from prevailing superscalar
CISC and RISC architectures, especially with regard to the division of responsibilities between
processor and compiler. In addition, it introduces new concepts from academic and corporate
research like explicit speculation that aim at increasing the instruction throughput beyond RISC
[SRM+94]. The following introduction gives an understanding of the rationales behind the ar-
chitecture; it uses several terms that are explained in Sec. 1.3 and later (an index is provided at
the end of the dissertation).

VLIW Superscalar Out-of-Order Approach

Packs multiple fixed-length operations
into a very long instruction word

Variable-length encoding of instructions,
no encompassing structure

Static scheduling Dynamic scheduling

No register renaming in hardware Register renaming to remove false
dependences

Static resource binding Dynamic resource binding

Limited hazard detection Processor automatically stalls on hazards

Interwoven instruction-set architecture
(ISA) and microarchitecture

Clear separation between ISA and
microarchitecture

Table 1.1: Typical characteristics of VLIW and superscalar designs: Those adopted by IPF are
provided with a grey shadow.

The Itanium Processor Family—also known as IA-64—is designed as a synthesis of super-
scalar and VLIW design principles [HP03]: it tries to combine the flexibility and scalability of
superscalar architectures—the prevailing standard in desktop and server computing—with the
simplicity and efficiency of VLIW, mostly known from embedded systems. Table 1.1 shows

1

2 CHAPTER 1. INTRODUCTION

which basic characteristics it adopts from both worlds: it borrows from VLIW the concept of in-
struction words—here called bundles—that contain several slots with fixed-length instructions.
In contrast to classic VLIW designs, however, the structure of the words is more flexible: there is
no strict correspondence between the slots and the processor’s execution units, instead the com-
piler selects between different bundle templates that define this correspondence (detailed later in
Sec. 2.1.1.2). This helps combat a VLIW-specific problem, namely the code size increase due to
nops (empty instruction slots).

The flexible bundling scheme also aids in ensuring binary compatibility between different
implementations (microarchitectures). These implementations are intended to be simple in-order
designs that rely on static instruction scheduling through the compiler to achieve sustainably
high instructions-per-clock (IPC) rates. The IPC rate is one of the determining basic factors of
execution speed, as expressed by the following “iron law” of processor performance [RML+01]:

Performance =
IPC × Frequency
Instruction Count

The compiler extracts parallelism and communicates it to the hardware by marking groups
of instructions as independent (EPIC - “Explicitly Parallel Instruction Set Computing”), thereby
guaranteeing that no control and data dependences obstruct their execution in parallel. There is
no need for complex, power-consuming circuits that detect and schedule parallelism among in-
structions (dynamic out-of-order execution). On modern out-of-order processors, the flexibility
of dynamic scheduling is restricted anyway by their long pipelines: The scheduling of the in-
structions often occurs several pipeline stages before the actual execution [HSU+01, TDF+02].
When scheduling a load, this has the consequence that the hardware scheduler does not know
which latency this instruction will later experience. Thus, when scheduling dependent instruc-
tions, it must speculatively assume an L1 cache hit to benefit from the best-case latency. If the
load misses the L1 cache, however, then all scheduled dependent instructions have to be nullified
and issued again (“replayed” [HSU+01, TDF+02]).

Another limitation of hardware schedulers is imposed by the scheduling scope. Though the
instruction windows of state-of-the-art RISC processors can hold a hundred or more instruc-
tions, the sizes of the actual scheduling windows are much smaller. On the IBM POWER4
microprocessor, for example, a total of 100 instructions can be active throughout the out-of-
order segment of the pipeline, but the scheduler (issue queue) for each integer unit can choose
only between at most 18 instructions [TDF+02] (on the AMD Opteron, the ratio is 8 out of 72
[Adv04]). Moreover, dynamic schedulers usually only view instructions from one predicted pro-
gram path—they cannot process speculatively individual critical-path instructions from different
control flow paths.

In contrast, a static scheduler overlooks virtually the whole program, enabling exact knowl-
edge of critical data dependence paths within multiple program paths. It also has the time to base
scheduling decisions on more thorough analyses (milliseconds instead of nanoseconds). On the
downside, however, it suffers from other, inherent limitations of the scheduling scope, such as
those imposed by procedure and loop boundaries.

Out-of-order execution is often combined with dynamic register renaming to remove false
data dependences (see Sec. 1.3.2). In EPIC, this task is delegated to the compiler, too, which

1.1. THE QUEST FOR INSTRUCTION-LEVEL PARALLELISM 3

can utilize a vast number of architecturally visible registers to prevent false register dependences
(128 general purpose registers alone). As with static scheduling, this does not preclude register
renaming in hardware, but it relieves the need for it.

The order of instructions inside the bundles determines—in combination with the bundle
templates—deterministically the allocation of instructions to execution units (resource binding).
Processor-specific dispersal rules describe how the issuing takes place. Typically, the code gen-
erator optimizes the code for a certain IA-64 microarchitecture and can, by taking these rules into
account, anticipate and steer the resource binding on this processor precisely in order to fully
exploit its execution units. When the code is executed on a different implementation with differ-
ent dispersal rules, then the dispersal logic automatically adapts the statically encoded resource
binding to the actual configuration of execution units for correct execution. Hence the resource
allocation at runtime may diverge from the encoded plan to ensure compatibility, but this may
come at the cost of a performance degradation.

The resource binding is a typical example of the division of responsibilities between proces-
sor and compiler in EPIC: On RISC and CISC architectures, the compiler only specifies what
has to be computed and leaves the details of the execution to the processor. In contrast, a VLIW
compiler also determines how the instructions are to be executed, taking detailed pipeline char-
acteristics and latencies into account; in a strict VLIW approach, a mismatch between these
assumptions and the actual hardware properties can even affect the correctness. In the EPIC
approach, the compiler merely specifies how the code can be computed. In other words, it
anticipates the execution on a certain target microarchitecture and optimizes the code for this
design—executing it on a different implementation may then result in performance losses (larger
than comparable losses on RISC architectures), but is guaranteed to never impair the correctness.

This is also the reason why Itanium processors feature—in contrast to some VLIWs—a full
detection of pipeline hazards and stall the pipeline automatically until they are resolved: they
cannot rely on the assumption that the code generator takes pipeline specifics into account. There
is a clear line between the instruction set architecture (ISA), which defines the semantics of the
code, and the specification of the microarchitecture, which describes the rules of instruction
issuing and execution. Each implementation complies with this ISA to ensure full binary code
compatibility, but it relies on specifically optimized code to unleash its performance potential.
As a result, the performance depends to a large extent on decisions made statically at compile
time.

1.1 The Quest for Instruction-Level Parallelism

The main motivation for the use of static scheduling is the perception that it paves the way to an
almost unlimited amount of instruction-level parallelism (ILP) [RF93], which is regarded as the
key to overcoming RISC performance barriers [JH00]. Sustainable IPC rates of more than eight
are difficult to realize with an out-of-order design1, but relatively easy to implement on an EPIC

1Peak rates of this magnitude are possible even with today’s designs, but the sustainable rates are much lower
(3-5 IPC) since they are bound by the lowest throughput of all pipeline stages. Main limiters are instruction fetch
and retirement logic [HP03].

4 CHAPTER 1. INTRODUCTION

processor. A different question is, however, how the compiler can extract such parallelism in the
presence of obstructive control and data dependences—or simply, how much can be extracted at
all.

Various limit studies have tried to measure—independently of the processor hardware—the
amount of instruction-level parallelism in programs. The results vary naturally with the used
compiler and instruction set architecture, but they have in common that they show a large gap
between local and global ILP: locally inside basic blocks, typically not more than 2-3 IPC is
measured [RF93]. But under the assumption that perfect branch prediction resolves all control
dependences—i.e., the whole execution trace is regarded as a single basic block—an average of
more than 20 IPC could be measured on the SPECint95 benchmark [PGTM99]. This underpins
the importance of moving instructions globally between basic blocks to increase the parallelism
(global scheduling).

A further study that is based on an Itanium compiler even measures an IPC of more than
30 in the instruction stream of the same benchmark [LWT00]. However, it relies on perfect
microarchitecture assumptions, namely

• perfect caches with a single-cycle access time,

• perfect branch prediction that resolves all control dependences,

• the removal of all false dependences via renaming, and

• an unlimited scheduling window.

However, when the scheduling window is constrained to function and loop boundaries—which
are both realistic assumptions for static schedulers—the average IPC drops to 12 and 8, respec-
tively. This is still well above the 6 IPC the Itanium 2 is capable to execute; moreover, it can be
assumed that there is still room for ILP-increasing improvements in high-level optimizations and
code selection. However, since in practice the parallelism is distributed unevenly in the schedule
due to control and data dependences, it is inevitable that in many cycles some of the six execution
slots are unused.

The EPIC philosophy proposes to use such empty execution slots for speculation: the early,
tentative execution of code even if it is not yet known if the result will be needed and correct
at a later point of time. If this is not the case, the result is discarded, otherwise it is available
earlier, according to the motto: “Nothing is faster than something that is already done!” [Tri00].
In a simplified view, the potential benefit of speculation is better than leaving the slots unused (in
practice, the cost-benefit calculation is often more complex). Compiler-controlled speculation
can be regarded as the second pillar of the architecture behind ILP; it is supported by dedicated
speculative loads (see Sec. 2.1.5). It helps utilize the full scale of parallel execution units (the
width of the machine) even on programs with little inherent parallelism.

The reality, however, paints a rather sobering picture so far. Studies of IA-64 code generated
by current compilers revealed an average static IPC of 2.5, which is far behind what the hardware
could process and what the limit studies promise. We will take a close look at these numbers in
Sec. 2.3—there are two possible explanations for them: Either the limit studies are too simplistic

1.1. THE QUEST FOR INSTRUCTION-LEVEL PARALLELISM 5

so that their results are misleading, or it is indeed possible to expose the predicted ILP in a
schedule, but the employed scheduling heuristics fail to do so. As described in detail in Sec. 3.3.1,
these algorithms have to deal with strongly interdependent scheduling decisions which involve
complex trade-offs. Moreover, instruction scheduling is—even when restricted to basic blocks—
an NP-complete problem for which heuristics deliver only approximations [GJ79]. On the
whole, the result is a “suboptimal combination of suboptimal partial results” [Käs00a]. The
question of the unexploited scheduling potential could only be clearly answered by computing
globally optimal schedules.

Apart from code generation difficulties, the Itanium Processor Family is further challenged
by two powerful trends that have emerged and aggravated during its decade-long development:
the memory wall and the thermal wall. The former gained attention in the middle of the nineties
when it became apparent that the memory latency does not scale with the same speed as the
processor frequency, leading to ever-growing access times in terms of processor cycles [WM95].

Powerful cache hierarchies have been successfully used to alleviate this gap, but for fun-
damental reasons like wire delay, the latencies of caches are also growing with their sizes
[RML+01, SR03]. They can range from one cycle for the first-level cache to a dozen and more
for an on-chip L3 cache (see Sec. 2.2.2). This hard-to-predict variance in the latencies adds a lot
of dynamics to the execution process. It can be tolerated better by out-of-order designs, which
can rearrange the schedule on a cache miss at runtime (although with limitations, as described
above). In contrast, an EPIC processor is typically an in-order design, which must follow the
static schedule—if an instruction needs a value that the cache has not yet delivered, the proces-
sor stalls. At least, the scheduler can try to minimize these stalls via prefetching and by moving
loads as far away as possible from their uses (see Sec. 6.5).

The second barrier is imposed by a paradigm shift in microprocessor design driven by power
consumption: classical scaling, which allowed processor designers over decades to integrate
ever more complex structures onto the chip while clocking them at the same time at ever higher
frequencies, is hitting a “thermal wall”. As the heat dissipation reaches critical levels in cur-
rent manufacturing processes, power is becoming the major limiting factor in processor design
[RML+01, HP03]. The resulting constraints on the complexity of the microarchitecture are in
line with the “simple hardware promise” of EPIC, but contradict the idea of abundant execution
resources that are lavishly used for speculation. To deal with power constraints, future Itanium
processors might be more restricted, making code generation for them even more difficult.

This thesis applies integer linear programming (ILP)2 to subphases of the code generation
problem on this architecture in order to obtain globally optimal and provably correct solutions.
ILP is a proven combinatorial optimization method that has a long tradition in modeling schedul-
ing problems, also in the area of code generation (Sec. 8.2.2 gives a survey). As a search-based,
exact approach it has the ability to resolve all interdependences between scheduling decisions
and to find in the space of all possible solutions one that is optimal under a given objective
function.

Obtaining optimal solutions for NP-complete problems may be computationally demand-
ing—in our case it can take up to a few minutes for individual routines. Hence this approach

2From now on, “ILP” is meant to refer to this term instead of “instruction-level parallelism”.

6 CHAPTER 1. INTRODUCTION

is—like most earlier ILP-based approaches to code generation—not suited for today’s product
compilers. Instead, it is intended for use in professional optimization tools, or in research to
explore the potential of EPIC architectures. In contrast to all heuristics and limit studies, it
provides theoretically funded insights into the chances and limits of this design direction by
delivering concretely the best achievable solutions.

1.2 Overview of this Thesis

After an introduction to frequently used notation and the basics of instruction scheduling in the
next section, Chapter 2 presents the Itanium architecture in detail. It contains an overview of the
instruction set architecture, followed by a detailed description of the Itanium 2 microarchitecture,
which is the optimization target of this work. The chapter concludes with an analysis of the
current status of IPF and the remaining challenges.

Chapter 3 gives an overview of code generation and basic program representations in gen-
eral. It then provides a survey of existing global instruction scheduling heuristics. The common
ground of these algorithms serves as the basis for the development of a unifying, formal defini-
tion of the global scheduling problem. Several subproblems are defined, too, in which certain
constraint classes are ignored.

Chapter 4 contains a brief introduction to integer linear programming with a special empha-
sis on solution efficiency. Well-structured formulations are characterized, which are crucial to
moderate solution times. On the basis of these insights the main ILP model is then developed
in Chapter 5. To simplify this process, the previously defined subproblems are dealt with sep-
arately. The modeling is accompanied by formal proofs of correctness and well-structuredness.
Two NP-completeness proofs are encountered that reveal the factors that contribute to the hard-
ness of the problem. The chapter concludes with a refinement and a summary of the unified
model.

Chapter 6 incorporates further variants of code motion and speculation into the model, some
of them involving Itanium-specific features. The goal of this chapter is to identify profitable
extensions that have the potential to reduce the schedule length further and to integrate them with
a minimal complexity increase into the model. Chapter 7 then describes our implementation of
the ILP method as a postpass optimizer. It focuses on those parts that contribute to further
improvements in solvability, like precomputations that reduce the search space, or optimizations
during the constraint generation. Then it presents the experimental setup and the results.

After an overview of related work in Chapter 8, the thesis concludes with a summary and an
outlook in Chapter 9. The appendix contains several proofs that are not central or too extensive
to be included in the main part. A list of symbols as well as an index are also given at the end of
the dissertation.

1.3. FUNDAMENTALS AND BASIC NOTIONS 7

1.3 Fundamentals and Basic Notions

1.3.1 Graphs and Paths

We employ several types of directed acyclic graphs (acyclic digraphs) throughout the thesis and
use the following notation: Given a digraph G = (V,E), we denote by G[V ′] for any V ′ ⊆ V the
subgraph of G induced by this node subset. Paths are given by sequences of nodes or edges. The
inner nodes on a path are all traversed nodes except the start and the end node. A node is called a
predecessor of another node in the graph if a nonempty path goes from the former to the latter; it
is called direct predecessor if this path consists of exactly one edge. The definition of successor
is analogous. V ≺(x) ⊆ V and V ≺(V ′) :=

⋃
x∈V ′ V ≺(x) denote all predecessors of a given node

x ∈ V and a subset of nodes V ′ ⊆ V , respectively. We define V �(x) := V ≺(x) ∪ {x} and
V �(V ′) := V ≺(V ′) ∪ V ′, as well as V � and V � analogously.

We call a path maximal or complete if it starts at a node without predecessor and ends at a
node without successor. In the context of a graph, C refers to the set of all complete paths and
C(x) ⊆ C and C(V ′) :=

⋃
x∈V ′ C(x) to those complete paths only that pass through a given node

x ∈ V and a subset V ′ ⊆ V , respectively. C�(x) denotes the set of those paths that start at x ∈ V
and end at a node without successor.

1.3.2 Instruction Scheduling

Instruction scheduling reorders instructions with the typical primary objective to minimize the
schedule length subject to several scheduling constraints. The latter guarantee that the resulting
schedule is feasible, i.e., that it complies with the rules of the target instruction set architecture
(ISA), and that the semantics of the program is preserved.

Preserving semantics requires preserving data dependences [WM97, HP03, SS02]. Two in-
structions are data dependent if they read or write the same components of the machine state
in such a way that reordering them would change the outcome of the computation. The ma-
chine state directly read or written by instructions—also called storage resources or simply re-
sources—usually consists of processor registers and memory locations; data dependences due
to these two storage resource classes are termed register and memory dependences, respectively.
The resources read by an instruction are called its input or source operands, the written ones its
output or destination operands.

An instruction is termed a use (definition) of a storage resource if it reads (writes) it. A
definition is said to reach a program point3 if there is a path in the program from the definition to
the point that contains no other definition of the resource. These notions are typically used with
respect to (processor) registers or, more general, variables or temporaries. The definitions that
reach a given use are termed its reaching definitions. If the set of reaching definitions contains
two or more instructions, then these instructions are termed concurrent definitions.

3The term program point refers typically to a point between two adjacent instructions. Sometimes we use “in-
struction” synonymously with “program point”. Then it depends on the context if the program point immediately
before or after the instruction is meant.

8 CHAPTER 1. INTRODUCTION

A variable reaches all program points that are reached by a definition of the variable. It is
said to be live at all program points from where there exists a path to a use that contains no other
definition of the resource—informally, these are the points where the variable is “in use” and will
(possibly) be read at a later point of time. The intersection of both sets of program points—where
the variable is both reaching and live—is termed the variable’s live range. This range starts at
definitions of the variable and ends at its last uses, which are the uses from where no further uses,
but possibly redefinitions can be reached.

Data dependences can be classified into three categories: From an instruction m to a consec-
utive instruction n there exists4 a

• RAW (read-after-write) or true dependence if n reads a resource that is written by m. RAW
dependences describe the data flow between instructions, i.e., the operation performed by
n needs the result of instruction m as input. In this context n is called consumer and
m producer. These flow dependences are inherent to the program semantics and can, in
contrast to the next two classes, not be overcome.

• WAR (write-after-read) or anti dependence if n writes a resource that is read by m. Then
n must not be executed before m since it would otherwise overwrite the value to be read
by m, changing the program semantics.

• WAW (write-after-write) or output dependence if n and m write the same resource. Then
reordering the two instruction would have the effect that m overwrites the value written by
n instead of the other way round, resulting in a different machine state.

In contrast to true dependences, the latter two classes are name dependences, which arise if
two instructions happen to use the same resources although there is no data flow between them;
therefore they are also called false dependences. During register allocation, the code generator
can prevent the emergence of false register dependences between two instructions by allocating
different registers for them. Fig. 1.1 demonstrates this on the basis of a small code sequence.

r1 r2 + r3

r2 (r4 « 3)

r2 r1 + r2

�

�

�

RAW

WAW+RAW

WAR r1 r2 + r3

r5 (r4 « 3)

r2 r1 + r5

�

�

�

WAR+RAW

RAW

(a) (b)

Figure 1.1: Example: The two false register dependences in (a) can be removed by renaming
two references to register r2 (b).

In practice, the limited and often small number of architected registers (i.e., those exposed by
the instruction set) makes false dependences in the assembler code inevitable. If the micropro-
cessor has a greater number of physical registers, however, these dependences can be removed

4We consider here only these two instructions in an isolated way; the presence of other instructions can change
the data dependences. This is allowed for in the definition of the global data dependence graph in Sec. 3.2.

1.3. FUNDAMENTALS AND BASIC NOTIONS 9

internally by mapping the architected registers onto the larger number of physical registers (reg-
ister renaming) [HP03]. This is performed by many modern RISC processors, but not on the
Itanium with its 128 architected registers (see Sec. 2.2.3.3).

Data dependences are often described by an acyclic digraph with the instructions as nodes.
An edge (m,n) then states that n is dependent on m. There can be an integer wmn associated
with each edge, which means that n must be scheduled at least wmn cycles after m. These
hardware-specific latencies are detailed for the Itanium 2 in Sec. 2.2.3.3. In Sec. 3.2 we also give
a more precise definition of the data dependence graph.

Using this notation, we can formulate a simple (but nevertheless NP-complete [GJ79])
scheduling problem, namely local scheduling for basic blocks (regions of straight-line code with-
out control flow, with a single point of entry and a single point of exit). A basic block schedule
can be regarded as a timetable that lists the instructions to be executed in consecutive clock
cycles.

The number of instructions that can be scheduled per cycle is naturally limited by factors like
the processor’s number of execution units (or synonymously, functional units). The instruction
scheduler ensures that the target processor can follow the schedule, i.e., that it is in fact capable
of executing the instructions scheduled at a cycle in parallel. A simple machine model assumes
that each instruction can execute on one or more execution unit types. The processor may have
several instances of each type. For example, we can assume that a processor has two ALU units
(instances) and one load unit, and that an addition operation can be executed on both the ALU
and load unit types (while a load can only be issued to the load unit type).

Formally, a schedule can be described by a mapping of instructions to tuples of cycles and
execution unit types:

Definition 1.3.1 (Local Instruction Scheduling) Local instruction scheduling is the following
minimization problem: Let a data dependence graph GD = (V,ED) be given. Furthermore, let
R denote the set of all execution unit types of the target processor, Rk the number of available
instances of each unit type k ∈ R, and R(n) ⊆ R the subset of those unit types where an
instruction n can be executed.

The scheduling problem is to find a schedule σ : V −→ {1, . . . , T}×R with minimal T that
satisfies (σ(n))2 ∈ R(n) for all n ∈ V plus the following two constraints5 :

∀1 ≤ i ≤ T,∀k ∈ R : |{n ∈ V |σ(n) = (i, k)}| ≤ Rk (1.3.1)

(m,n) ∈ ED =⇒ (σ(m))1 + wmn ≤ (σ(n))1 (1.3.2)

The constraints (1.3.1) and (1.3.2) are called resource and precedence constraints, respectively.✷

Equ. (1.3.2) implies that the length of the longest path in the data dependence graph is a
lower bound on T (if the length of each edge (m,n) is its associated latency wmn). Such a
maximal-length path is called a critical path.

5(. . .)i denotes the i-th component of the tuple.

10 CHAPTER 1. INTRODUCTION

Chapter 2

The Itanium Processor Family

As mentioned before in the introduction, the Itanium Processor Architecture strictly separates
between the instruction set architecture (ISA) and the microarchitecture to ensure compatibility
between implementations. We will adhere to this separation in this chapter and present first the
basic concepts and features of the ISA. The second part then describes in detail their implemen-
tation on the Itanium 2 processor, the second-generation design that is targeted by this work.

2.1 The IA-64 Architecture

The IA-64 instruction set architecture comprises all the information that is necessary to write
programs that execute semantically correct on any Itanium processor. This information is avail-
able in three volumes of the manufacturer’s “Software Developer’s Manual”: The first covers
the application architecture [Int02a] (programming environment, optimization, etc.), the second
the system architecture [Int02b] (virtual memory, interrupt model, etc.), and the third provides
a comprehensive instruction set reference [Int02c]. This section focuses on the application ar-
chitecture. The concepts are presented on a rather abstract level first and then illustrated by an
example.

2.1.1 Fundamentals

2.1.1.1 Execution Unit and Instruction Types

The Itanium architecture categorizes execution units and instructions into different types. There
are four execution unit types:

• M-Unit: Memory Unit

• I-Unit: Integer Unit

• F-Unit: Floating-Point Unit

• B-Unit: Branch Unit

11

12 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

Five instruction types are distinguished:

• A-Type: Common ALU instructions (simple arithmetic, boolean operations)

• I-Type: More special integer computation instructions like shifts

• M-Type: Memory instructions like loads and stores

• F-Type: Floating-point instructions

• B-Type: Branches

Fig. 2.1 shows on which execution units instructions can be executed, depending on the respec-
tive types.

I-type

A-type

M-type

B-type

F-type

M-unit

I-unit

B-unit

F-unit

I-type

A-type

M-type

B-type

F-type

M-unit

I-unit

B-unit

F-unit

Shift, Multimedia

ALU: Add,

Compare, Logic

Load/Store

Floating-Point

Branch

Figure 2.1: Mapping of instruction types to execution unit types.

While the frequent A-type instructions can be executed on both the M- and I-units, the other
types can only be issued to their corresponding unit types.

2.1.1.2 Instruction Bundles

Each instruction has a fixed length of 41 bits. Three instructions at a time are grouped together
into 128-bit sized and aligned simple structures called instruction bundles. Each instruction
occupies one of the three slots of a bundle (see Fig. 2.2).

Slot 2 Slot 1 Slot 0 T

41+41+41+5 = 128 bit

Slot 2 Slot 1 Slot 0 T

41+41+41+5 = 128 bit

5 087 46127

Figure 2.2: Instruction bundle.

The remaining 5 template bits in the bundle determine the mapping of the instructions to
execution unit types. They specify for each slot the slot type, i.e., the type of a unit where the

2.1. THE IA-64 ARCHITECTURE 13

instruction in this slot can be executed. This helps decode instructions and route them early to
proper issue ports. Evidently five bits are not sufficient to encode all possible mappings, instead
they only select one of the following predefined bundle templates (given in the order slot 0/1/2):

MII,MMI,MFI,MIB,MMB,MFB,MMF,MBB,BBB,MLX (2.1.1)

A-type instructions can be placed in either an M-slot or an I-slot. The last template is a special
case where the last two slots LX contain the double-sized instruction „movl“, which loads an
encoded 64-bit constant into a register.

The order of instructions, as it is given by increasing bundle addresses and slot numbers,
is significant: IA-64 features a strictly sequential execution semantics, i.e., the semantics of a
bundle sequence is defined as if the instructions were executed one after the other in the given
order. However, as this architecture embraces instruction-level parallelism, sequential execution
inside the processor is not intended. Therefore the compiler marks explicitly which instructions
can be executed in parallel.

For this, the template bits specify besides the unit types also the locations of stops. These
can be inserted after the slots of the bundle and delimit groups of instructions that are executable
in parallel, called instruction groups. An instruction group (often only called “group”) starts at
a branch label or a stop and ends at the next following stop. It can be arbitrarily large and span
several bundles—there is no direct correlation between bundle and instruction group boundaries.
Figure 2.3 gives an example where the positions of stops are denoted by underscores.

... MMI M_MI MFI_ MII MMI MIB_ ...

Group 1 Group 2 Group 3

Figure 2.3: Example for instruction groups.

If at runtime the parallel execution of a group as a whole is impossible due to limited ex-
ecution resources, the group can be split up into several parts that are executed consecutively.
Accordingly, the instruction groups encoded in the program are often referred to as static, and
those occurring at runtime as dynamic.

Within a group, RAW (read-after-write) and WAW (write-after-write) register dependences
are not allowed; this concerns all types of registers. If any of these restrictions are not met, the
behavior of the program is undefined. However, WAR (write-after-read) register dependences are
allowed, as are memory dependences, i.e., dependences between loads and stores that can occur
at runtime if their accessed memory regions overlap. In this case, the hardware implementation
guarantees that these instructions behave as if they were executed consecutively in the given
order. However, this may be accompanied by performance penalties (see Sec. 2.2.3). We call
dependences that are allowed inside an instruction group intra-group dependences and the others
inter-group dependences.

The placement of stops is significantly restricted and depends on the bundle template. Possi-
ble locations of a stop are:

14 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

• after the last slot of any bundle (independent of the template), often denoted by an under-
score appended to the template, and additionally/or

• between slot 0 and slot 1 of bundle template MMI, written as M_MI, or

• between slot 1 and slot 2 of bundle template MII, written as MI_I.

These architectural restrictions, especially the limitation of intra-bundle stops to the templates
MMI and MII, make the process of choosing a compact bundle sequence for a series of instruc-
tions (called bundling) a challenging task. Empty slots for which no instruction is left must be
filled with nops, dummy instructions that waste the capacity of the instruction cache. Earlier
work by the author has shown that optimal bundling is feasible, using an approach based on
dynamic programming and precomputed data [Win01, KW01].

2.1.1.3 Architected Registers and the Register Stack

The IA-64 ISA provides the following architected registers:

• 128 general purpose 64-bit integer registers r0-r127;
r0 always reads as 0, writing to this register is disallowed.

• 128 floating-point registers of 82 bits size;
f0 always reads as 0.0 and f1 as 1.0; writing to these registers is disallowed.

• 64 single-bit predicate registers p0-p63 used in predication and conditional branching;
p0 always reads as 1, writing to this register has no effect.

• 8 branch registers b0-b7, used to specify the target addresses of indirect branches.

• Many application and special registers, some of which are presented below.

IA-64 features stacked registers to save and pass register values when a procedure is called.
For this purpose, the general register file is divided into a static and a dynamically renamed
stacked subset. The static part (r0-r31) is equally visible to all procedures; [Int01a] describes
conventions of its usage, for example, the global data pointer, gp, and the memory stack pointer,
sp, are usually stored in r1 and r12, respectively.

The stacked subset is local to each procedure and consists of up to 96 registers, always starting
at r32. As depicted in Fig. 2.4, these registers—also called the register stack frame—are further
partitioned into two variable-size areas: the local area and the output area. In the figure, the
sizes of the total frame (sof) and the local area (sol) are 20 and 16, respectively. The current
configuration of the register stack frame is stored in a special register, the current frame marker
(cfm).

Upon procedure entry, a processor unit called register stack engine (RSE) renames the physi-
cal registers in such a way that the output area of the caller becomes the new register stack frame
of the callee, i.e., the latter obtains its parameters starting from the logical register r32. In the

2.1. THE IA-64 ARCHITECTURE 15

0

8 Reg.

32

0

4 Reg.
Out A

32

Local B
6 Reg.
Out B

0

4 Reg.16 Reg.
Local A Out A

4832

40

0

4 Reg.16 Reg.
Local A Out A

32 Register Static Subset

4832

 br.call b0=B
pfs=cfm

alloc r1=ar.pfs,0,8,6,4

br.ret b0

r1=pfs

cfm=pfs

B:

A:

A:

Physical Registers 0−127
Procedure:

 Instruction

Effect

hidden

hidden

cfm new

cfm new

Figure 2.4: Parameter passing through the register stack.
A calls B, the callee B allocates a new register stack frame and returns with br.ret. The logical
register numbers are given at the bars.

16 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

example, the stacked registers are renamed with offset -16. The renaming makes it necessary to
differentiate between logical or architected registers as they are visible to the software, and the
physical registers inside the processor.

The local registers of the caller are not accessible within the new register stack frame. Be-
fore renaming the register areas, the function call br.call copies the cfm of the caller to the
previous function state (pfs) register. At the end of the routine, the return br.ret automatically
restores cfm from pfs in order to reinstall the previous register stack frame.

The callee can increase the size of its register stack frame with the alloc r1=ar.pfs,i,
l,o,r instruction, which must appear first in an instruction group. The resulting new register
stack frame size sof is the sum of the specified local area size i+l and the size of the output
area o (in the example 14, 8, and 6, respectively). alloc also saves the current pfs in the
destination register (here r1). This is useful if the callee calls subroutines itself: Then this
register must be preserved beforehand and written back to pfs before executing br.ret (using
mov ar.pfs=r1, not shown in the figure). In the same way, the return address in b0 must be
saved if further subroutines are called.

Parameter passing via stacked registers comes at little cost since the register renaming can
be performed in a separate pipeline stage and does not add to the critical path of the machine
(see Sec. 2.2.3.3, [JH00]). However, if the depth of the procedure call stack (that is, the hidden
registers) exceeds the capacity of the physical register file, parts of it must be spilled to memory
or, more precisely, to the L1D cache. This occurs automatically in the background and mostly
transparent to application software: The RSE injects spills and fills into unused, idle memory
ports for this purpose. Details of this process are described in [Int01a, Int02a, Int02b].

2.1.1.4 Predication

Predication is a means of conditionally executing instructions. The encoding of each instruction
contains a 6-bit predicate field that refers to one of the 64 predicate registers, called the qualifying
predicate (qp). If this predicate is true at runtime (i.e., the predicate register has value one), then
the instruction is executed as normal. Otherwise it is ignored and has—like a nop—no effect on
the program semantics (with one exception that is described below).

Predicate registers are written by compare instructions; they replace the condition flags
known from other architectures. Almost every instruction can be predicated, including branches
(this is how conditional branches are implemented).

The most significant benefit of predication is its ability to eliminate branches and the associ-
ated performance costs like branch misprediction penalties (explained in Sec. 2.2.3) [SW04]. As
it replaces control with data dependences, it increases the flexibility during instruction scheduling
and thereby the possibilities to extract instruction-level parallelism. In the ideal case, this means
merging a complex acyclic control flow structure into a contiguous, branchless code block with
a high amount of parallelism, which can be fetched and executed fast without disruptions of the
pipeline. This optimization is known as if-conversion [SS02].

2.1. THE IA-64 ARCHITECTURE 17

2.1.2 IA-64 Programming

In general, the syntax of IA-64 instructions is as follows [Int01b]:

[(qp)] mnemonic[.completer]* dests=sources

• qp gives the qualifying predicate; if omitted, p0 is encoded (which is always one).

• mnemonic describes the operation to be executed. Its semantics can be supplemented by
appended suffixes, the so-called completers.

• dests lists, separated by commas, the destination operands. Except for stores, these are
always destination registers.

• sources lists, separated by commas, the source operands. Except for loads, these are
always source registers or constants.

IA-64 is a load/store architecture where memory accesses can only be performed with dedicated
load/store instructions. All other instructions have registers as operands. There are architectural
limits on the numbers of source and destination operands: Each instruction can read and write
at most two general purpose registers, respectively. The same limitation holds for predicate
registers. Floating-point instructions can read at most three floating-point registers and write one.
Floating-point instructions (F-type) and branch instructions (B-type) cannot access the general
purpose register file directly; instead, there are special instructions to transfer values to and from
floating-point and branch registers.

The bundling can be left to the assembler, or it can be explicitly stated in the assembly code
using the following syntax:

{ .TYPE
Instruction 1 [;;]
Instruction 2 [;;]
Instruction 3 [;;]

}

TYPE denotes the bundle template (2.1.1) without the stops (underscores); the latter are repre-
sented by appended double semi-colons after the instructions.

2.1.2.1 Example

Algorithm 1 shows an example routine in pseudo code. The routine recursively sifts down an
element in a binary heap until the heap property is satisfied [Hag97]. Its functioning is secondary,
we will just use it to demonstrate the semantics of IA-64 assembler on the basis of a hand-coded
translation (shown in Alg. 2). The lines of the translation are labeled with characters. In the
following, we will refer to the instruction in line “A” simply as “instruction A” etc.

18 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

Algorithm 1 Example routine SiftDown: Moves A[i] downwards in a binary heap A[1...n].

SiftDown(i,n,A):
1 Label:
2 k := 2i;
3 if (k > n) return;
4 if (k+1 <= n) {
5 if (A[k+1] < A[k]) k++;
6 }
7 if (A[i] > A[k]) {
8 Swap A[i] and A[k];
9 i := k;
10 } else return;
11 goto Label;

The first instruction alloc manages the register stack. It reserves the eight registers r32-
r40 for use inside the routine. As described before in Sec. 2.1.1.3, the parameter passing dur-
ing a subroutine call takes place via renaming of register areas. After the renaming, the first
parameter—the address of the first heap element here—is to be found in r32. It is saved to r34
by instruction B. For this, an add instruction with second operand r0= 0 is used (often written
as the pseudo-op mov r34 = r32).

In D, the first heap element is loaded into r39 from the memory address in r34. The number
in the mnemonic of the load specifies the size of the value to be loaded (1, 2, 4 oder 8 bytes). For
sizes less than eight bytes, the loaded value is zero-extended to 64 bits. Since there is a RAW
dependence from instruction B to D, they must be separated by a stop (after the first bundle).

The compare instruction cmp with completer gt in E tests if the value in r35 is greater
than that in r33. The result and its complement are written into the first and second destination
predicate register p1 and p2, respectively. If the condition is true, the subroutine should return.
This is performed by the branch instruction F with completer ret, which is executed if and only
if its qualifying predicate is true. Its argument is the return address, which has been saved in the
branch register b0.

We note that the compare and the branch are in the same instruction group although they are
RAW dependent with respect to p1. This is an exception that is only allowed if the consumer
of the compare is a branch. Sec. 2.2.3.3 will show that this is possible because branches are
resolved in a later pipeline stage than the computation of compares.

The instructions D-H are independent and constitute an instruction group—their execution
can commence in parallel in the processor pipeline. However, if the branch F is taken, any
available results of G-H must be discarded. Hence, at runtime, instruction groups can end prior
to a stop, namely at the first taken branch. The next group then commences at the bundle pointed
to by the branch target address1.

1Branch targets are not individual instructions, but 128-bit aligned bundle addresses. The execution always
resumes at the first slot of the bundle. This simplifies the hardware, but has the drawback that each basic block

2.1. THE IA-64 ARCHITECTURE 19

Algorithm 2 Assembly translation of Algorithm 1 (with 64-bit integers as heap elements).

SiftDown:
{ .mii

A alloc r11 = ar.pfs, 0, 8, 0, 0
B add r34 = r32, r0 //r34=&A[i]
C add r35 = r32, r32 ;; //r35=&A[k] (2)
}

Label:
{ .mib

D ld8 r39 = [r34] //r39=A[i]
E cmp.gt p1, p2 = r35, r33 //r33=n (3)
F (p1) br.ret b0
} { .mii

G ld8 r37 = [r35] //r37=A[k]
H add r36 = 8, r35 ;; //r36=&A[k+1]
I cmp.le p1, p2 = r36, r33 ;; // (4)
} { .mmi

J (p1) ld8 r38 = [r36] ;; //r38=A[k+1]
K (p1) cmp.lt.unc p3, p4 = r38, r37 // (5)
L nop.i 0 ;;
} { .mmi

M nop.m 0
N (p3) add r35 = 8, r35 //r35=&A[++k] (5)
O (p3) add r37 = r38, r0 ;; //r37=A[++k] (5)
} { .mib

P cmp.gt p1, p2 = r39, r37 // (7)
Q nop.i 0
R (p2) br.ret b0 // (10)
} { .mib

S st8 [r34] = r37 // (8)
T add r34 = r35, r0 // (9)
U nop.b 0
} { .mib

V st8 [r35] = r39 // (8)
W add r35 = r35, r35 // (9), (2)
X br Label
}

20 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

The if-clause from lines 4-6 of the source program is translated via predication. The condition
of the if-clause is computed into p1 and the instructions J and K are predicated with this register.
The instruction K computes into p3 the condition of the inner if-clause of line 5. The instructions
N and O of this inner if-clause then should only be executed if both p1 and p3 are equal to one,
i.e., if both conditions of the nested if-clause are true.

However, instructions can only be guarded by one predicate register (6 bits in the encoding
must be sufficient). The following approach, for example, does not compute the nested condi-
tional properly in every case:

K (p1) cmp.lt p3, p4 = r38, r37 ;; //
N (p3) add r35 = 8, r35 //inner clause
O (p3) add r37 = r38, r0 //

The problem with this sequence is that the compare does not write p3 at all if its own quali-
fying predicate is zero. Then the value of p3 is undefined (but should be zero). This could be
handled by initializing it to zero beforehand, a plainer solution (used in Alg. 2) uses an uncondi-
tional compare (with the completer unc), which writes both predicate target registers with zero
if predicated off. This is remarkable as this instruction modifies architectural state even if its
qualifying predicate is false.

Further worth noting is the last instruction group with two intra-group dependences:

• The instructions T and S are WAR dependent since the store S writes the value in r37 to
the memory location addressed by r34, and reads for this purpose both registers. Stores
are the only instructions that have source registers, namely the address register, denoted on
the left-hand side of the equal sign (enclosed in square brackets, which symbolize that the
target operand is a memory location).

• Similarly, the instructions W and V are WAR dependent.

The instructions L, M, Q, and U are nops that are unavoidable due to the bundle structure.

2.1.3 Instruction Set Overview

The IA-64 instruction set is large and diversified; only the most common instructions are listed
in the following tables with their syntax and semantics. For most instructions, the semantics is
described in a C-like pseudo code. Technically similar instructions that execute on the same units
with the same latency on Itanium processors are arranged in groups.

Table 2.1 lists A-type instructions: integer addition, subtraction, a shift-left-and-add in-
struction used for address computations, logic operations, and a compare instruction in many
variations. All these instructions (except for the logic instructions) exist also in SIMD variants
(“multimedia instructions”) that treat the general registers as concatenations of eight 8-bit, four

with n instructions inherently must contain at least n modulo 3 nops. If the basic block sizes are assumed to be
distributed randomly, this results in one additional nop per basic block on average.

2.1. THE IA-64 ARCHITECTURE 21

Group Syntax Semantics

IALU add r1=r2,r3 r1=r2+r3

add r1=r2,r3,1 r1=r2+r3+1

add r1=imm,r3 r1=imm+r3

sub r1=r2,r3 r1=r2-r3

sub r1=r2,r3,1 r1=r2-r3-1

sub r1=imm,r3 r1=imm-r3

shladd r1=r2,imm,r3 r1=(r2<<imm)+r3

ILOG and r1=r2,r3 r1=r2&r3

and r1=imm,r3 r1=imm&r3

andcm r1=r2,r3 r1=r2&~r3

andcm r1=imm,r3 r1=imm&~r3

or r1=r2,r3 r1=r2|r3

or r1=imm,r3 r1=imm|r3

xor r1=r2,r3 r1=r2^r3

xor r1=imm,r3 r1=imm^r3

ICMP cmp.CR.CT p1,p2=r2,r3 p1=(r2 CR r3)
r2 can also be ’imm’ p2=~(r2 CR r3)
CR=eq,ne,lt,le,gt,ge CR=!=,=,<,<=,>,>=

ltu,leu,gtu,geu u = unsigned

CT=ε,unc,or, See text

and,or.andcm

MMALU_A paddX.COMP r1=r2,r3 e1=e2+e3

X=1,2,4 SIMD element size

COMP=ε,sss,uuu,uus See manual

psubX.COMP r1=r2,r3 e1=e2-e3

X=1,2,4 SIMD element size

COMP=ε,sss,uuu,uus See manual

pavgX.COMP r1=r2,r3 e1=(e2+e3+1)>>1

X=1,2 SIMD element size

COMP=ε, raz See manual

pavgsubX r1=r2,r3 See manual

X=1,2 SIMD element size

pshladd2 r1=r2,c3,r3 e1=(e1<<c3)+e3

pshradd2 r1=r2,c3,r3 e1=(e1>>c3)+e3

pcmpX.PR r1=r2,r3 e1=(e2 PR e3)
X=1,2 PR=eq,gt See manual

Table 2.1: A-type instructions.

22 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

16-bit, or two 32-bit elements. They perform the operation on each of these elements (denoted
by e in the table) independently and in parallel.

In addition, more complex SIMD operations are available as I-type instructions (Tab. 2.3):
these include parallel multiply, parallel shift and a combination of both, as well as highly special-
ized parallel minimum and maximum operations, and pack and unpack instructions (which con-
vert between different element sizes). The I-type instructions also comprise several non-SIMD
shift instructions that shift the value of a general register by an amount specified by another gen-
eral register (variable shift) or an encoded constant (fixed shift). While the variable shifts shr
and shl are technically similar to SIMD instructions, the fixed shifts are actually performed by
the more general shift-and-mask instructions dep and extr, which move bit fields to different
bit positions. Further I-type instructions transfer values between different register files.

The M-type instructions (Tab. 2.4) include loads, stores, and the prefetch instruction lfetch.
The latter can be employed by the compiler to move the addressed line to a location in the mem-
ory hierarchy in order to speed up future expected accesses to this line. The effect of lfetch
is comparable to a load without a destination register (there are other implementation-specific
differences). The intended destination location inside the memory hierarchy is specified by a lo-
cality hint (given by a completer): for instance, the nt1 completer indicates that the data should
not be prefetched into the highest level of the cache hierarchy, but to all lower levels. This can
be used to prevent the congestion (“pollution”) of a small L1 cache if large amounts of data are
prefetched. Loads and stores support these locality hints, too. They do not affect the functional
behavior of the program, but the performance in an implementation-specific manner.

All memory instructions support post-increment, i.e., an additional source operand that is
added to the address register after the memory access. Both immediate and register post-increment
are defined for loads and prefetches; stores, however, only allow immediate post-increment (oth-
erwise there would be three source registers).

The getf and setf instructions are used to transfer integers from and to floating-point
registers, respectively.

The B-type instructions (Tab. 2.5) comprise IP-relative branches, calls and returns (ex-
plained in Sec. 2.1.1.3), and indirect branches, which use branch registers to specify the branch
target address. Most of these branches can be made conditional via predication. The compiler
can also encode a branch hint, a completer that signals whether the branch should be predicted
taken (dptk, sptk) or not-taken (dpnt, spnt). While the dpxx completers only predefine the
branch direction for the cases where dynamic branch prediction information is not yet available,
the spxx completers indicate that no dynamic prediction resources should be allocated at all for
a branch (this can be used to mark branches that are most likely to be not-taken, for example to
error handlers).

These branch hints can also be provided earlier in the code by specific branch predict instruc-
tions, along with information about the location and the target address of the upcoming branch. If
scheduled several cycles before the actual branch, this information can be used by the processor
to prepare the branch execution, for instance by prefetching instructions from the branch target
address into the instruction cache.

The floating-point (F-type) (Tab. 2.6) arithmetic instructions support the internal 82-bit
floating-point register format as well as single, double or double-extended real formats according

2.1. THE IA-64 ARCHITECTURE 23

Group Syntax Semantics

ISHF dep r1=r2,r3,p,len Deposits bit fields
dep r1=imm,r3,p,len See manual
dep.z r1=r2,p,len Variant with r3=0
dep.z r1=imm,p,len See manual
extr r1=r3,p,len Extracts bit fields
extr.u r1=r3,p,len See manual

FRBR mov r1=b1 Reads branch registers
TOBR mov b1=r1 Writes branch registers
FRAR mov r1=lc Reads the registers

mov r1=pfs lc and pfs
TOAR mov lc=r1 Writes the registers

mov ec=r1 lc, ec and pfs
mov pfs=r1 imm operand also possible

FRPR mov r1=pr Reads predicate registers
TOPR mov pr.rot=imm Writes predicate registers
CHK_I chk.s r2,target Control speculation check
TBIT tbit.R.CT p1,p2=r3,p Tests if bit p in r3

R=nz,z is 1 (nz) or 0 (z)
CT as with cmp

tnat.R.CT p1,p2=r3 Tests NaT bit of r3
MMALU_I pmax1.u r1=r2,r3 e1=max_unsigd(e2,e3)

pmax2 r1=r2,r3 e1=max(e2,e3)
pmin1.u r1=r2,r3 e1=min_unsigd(e2,e3)
pmin2 r1=r2,r3 e1=min(e2,e3)

MMMUL pmpy2.r r1=r2,r3 Parallel multiply
pmpy2.l r1=r2,r3 See manual

pmpyshr2 r1=r2,r3,c2 Parallel multiply and shift
pmpyshr2.u r1=... See manual

MMSHF packX.sss r1=r2,r3 See manual
X=2,4

unpackX.C r1=r2,r3 See manual
X=2,4 C=h,l

pshrX[.u] r1=r2,r3 e1=(e2>>r3) arithmetic
pshrX[.u] r1=r2,imm e1=(e2>>imm) arithmetic

X=2,4 u=unsigned
pshlX r1=r2,r3 e1=(e2<<r3)
pshlX r1=r2,imm e1=(e2<<imm)

X=2,4
shr r1=r2,r3 r1=(r2>>r3) arithmetic

shr.u r1=r2,r3 r1=(r2>>r3) unsigned
shl r1=r2,r3 r1=(r2<<r3)

XTD sxt/zxt/czx r1=r2 Sign extension

Table 2.3: I-type instructions.

24 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

Group Syntax Semantics

LD ldX.LDT r1=[r3] r1=mem(r3)

ldX.LDT r1=[r3],r2 Post incr. r3 += r2

ldX.LDT r1=[r3],imm Post incr. r3 += imm

X=1,2,4,8 Data size

LDT=ε,s,a,sa,c, Completers for speculation

c.clr,fill See text

FLD ldffsz.LDT f1=[r3] f1=mem(r3)

fsz=s,d,e Data size

ST stX [r3]=r2 mem(r3)=r2

stX [r3]=r2,imm Post incr. r3 += imm

X=1,2,4,8 Data size

st8.spill [r3]=... See manual

LFETCH lfetch [r3] Prefetch

lfetch [r3],r2 Post incr. r3 += r2

lfetch [r3],imm Post incr. r3 += imm

FRFR getf.sig r1=f2 r1=f2

TOFR setf.sig f1=r2 f1=r2

ALLOC alloc r1=ar.pfs,i,l,o,r See text

Table 2.4: M-type instructions.

Group Syntax Semantics

BR br.BT.BW target Branch

br.BT.BW b1=target call form

br.BT.BW b2 indirect form

BT=cond,call,ret, See text

cloop, ctop, cexit,

wtop,wexit

BW=spnt,sptk, Branch Hints

dpnt,dptk See Manual

RSE_B clrrrb Clear RRB

clrrrb.pr See Manual

BRP brp.ipwh.ih target,tag Branch Predict

ipwh = sptk, loop, exit, dptk Branch information

ih=ε,imp See text

Table 2.5: B-type instructions.

2.1. THE IA-64 ARCHITECTURE 25

to the IEEE standard [HP03]. The table lists only a small selection of all floating-point instruc-
tions; many exist also in SIMD variants that treat the register’s 64-bit significands as a pair of
IEEE single precision values. The result range and precision are determined either statically via
the instruction’s completer, or dynamically via the precision-control and widest-range-exponent
fields in the floating-point status register (FPSR).

In the latter case, each instruction refers to one of the four identical status fields sf0-sf3
inside FPSR, which serves as a kind of execution context, i.e., which controls and records its exe-
cution: The status field specifies the output format and contains IEEE flags that are set according
to the result (underflow, overflow, etc.). The purpose of multiple status fields is, for example, that
some of them can be used to store the status flags of speculated instructions, which are only later
committed to architectural state (which is typically in sf0).

Group Syntax Semantics

FMAC fma.pc.sf f1=f3,f4,f2 f1=f3*f4+f2

fnma.pc.sf f1=f3,f4,f2 f1=-(f3*f4)+f2

pc=.s,.d,none Precision

sf=sf0,sf1,sf2,sf3 Status Field

FMISC frcpa.sf f1,p2=f2,f3 f1=f2/f3 ∧ p2=0, or

f1=approx(1/f3) ∧ p2=1

frsqrta.sf f1,p2=f3 f1=sqrt(f3) ∧ p2=0, or

f1=approx(sqrt(f3)) ∧ p2=1

fmax.sf f1=f2,f3 f1=max(f2,f3)

fmin.sf f1=f2,f3 f1=min(f2,f3)

FCVT fcvt.xuf f1=f2 Treat 64-bit significand of f2

as an integer, convert to FP

fcvt.fxu.sf f1=f2 Convert FP to (unsig.) integer

XMA xma.xs f1=f3,f4,f2 Integer mul-add: f1=f3*f4+f2

x=l,u f1: lower, upper bits of sum

s=ε,u signed, unsigned

FCMP fcmp.r.t.sf p1,p2=f2,f3 Compare

r=eq,ne,lt,gt,etc. like A-type cmp

t=ε,unc like A-type cmp

Table 2.6: F-type instructions.

The basic building block of all floating-point computations is the fused multiply-and-add
instruction fma, which computes a multiplication combined with an addition (a frequent combi-
nation in linear algebra). The combined execution of these operations is faster and more precise
since only one rounding of the result occurs. If only single additions and multiplications are
needed, one of the source registers can be replaced by f1 (= 1.0) and f0 (= 0.0), respectively.
Many complex operations like divide, remainder, and transcendental functions are not available
in hardware, but explicitly computed by sequences of fma instructions [HKST99, CHN99].

26 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

Algorithm 3 Sequence to compute f8=f6/f7 in double precision.

A frcpa.s0 f8,p6 = f6,f7 ;;
B (p6) fma.s1 f9 = f6,f8,f0
C (p6) fnma.s1 f10 = f7,f8,f1 ;;
D (p6) fma.s1 f9 = f10,f9,f9
E (p6) fma.s1 f11 = f10,f10,f0
F (p6) fma.s1 f8 = f10,f8,f8 ;;
G (p6) fma.s1 f9 = f11,f9,f9
H (p6) fma.s1 f10 = f11, f11, f0
I (p6) fma.s1 f8 = f11,f8,f8 ;;
J (p6) fma.d.s1 f9 = f10,f9,f9
K (p6) fma.s1 f8 = f10,f8,f8 ;;
L (p6) fnma.d.s1 f6 = f7,f9,f6 ;;
M (p6) fma.d.s0 f8 = f6,f8,f9

For example, Alg. 3 shows a sequence from [Int02a] that computes f8=f6/f7 in double pre-
cision. The first instruction frcpa computes an approximation (good to 8 bits) of 1/f7. Then
the remaining instructions perform three (unrolled) iterations of the Newton-Raphson method to
compute the correctly rounded value of f6/f7 [HKST99, MP00]. In special cases, where these
iterations are not necessary or sufficient, the result is provided otherwise—either by frcpa or
by an invoked software handler—then the iterations are predicated off by clearing p6.

The routine takes 30 cycles on the Itanium 2 (4 per fma, which can be executed on both
available F-units). Besides the drawback of code expansion, it has several advantages to com-
pute complex floating-point operations by sequences of simple atomic multiply-and-adds: the
hardware is simpler and the FMA units can be optimized and fully pipelined (in contrast to typ-
ical hardware implementations of division, square root, etc. [MP00]), boosting throughput and
scalability. It is also possible to schedule several sequences in an interleaved manner in order to
exploit the parallelism of the pipelined units.

The FMA units on this architecture are also used to compute integer multiplications: The
integers are transfered to floating-point registers with setf, multiplied with the xma command
and the result is returned with getf.

2.1.4 Multiway Branches

The architecture allows to execute multiple branches in an instruction group in parallel (up to
three on the Itanium 2; visible from the bundle templates (2.1.1) in Sec. 2.1.1.2). Then the first
branch in the group is taken that is unpredicated or has predicate true. Such multiway branches
reduce the critical path of blocks with more than two possible successors, which can emerge
from transformations like if-conversion (see Sec. 2.1.1.4).

2.1. THE IA-64 ARCHITECTURE 27

2.1.5 Speculation

In the computer architecture field, speculation refers to the early, tentative execution of an oper-
ation even if it is not yet known if the result will be needed and correct at a later point of time.
If the assumptions the speculation was based upon turn out to be true, then the result is available
earlier; otherwise, the speculation has failed and the result is discarded.

In the case of successful speculation, its benefit can be measured in the number of saved
cycles, B, due to the earlier availability of the result. Two kinds of associated costs can be
distinguished: a fixed part Cf , which exists regardless of success or failure, and a variable part
Cv, which incurs only if the speculation fails. The former can also be opportunity costs, i.e.,
the profit that would have been possible if the resources bound by the speculation had been used
otherwise; it is often difficult to quantify this speedup in cycles. The latter can be recovery costs
resulting from the roll back of all effects of the speculative action. A speculation is useful on
average if it has a positive expected benefit

pB − (1− p)Cv − Cf

where p denotes the probability of successful speculation.
The following two subsections present the two major kinds of explicit speculation featured

by the Itanium architecture. Both are directed by the compiler and supported by special hard-
ware. They aim at executing loads earlier by moving them upwards before conditional branches
(control speculation) and potentially data dependent stores (data speculation). This early issuing
of loads is generally considered as crucial to cover the memory latency and to avoid load-use
stalls.

2.1.5.1 Control Speculation

Control speculation in general denotes the premature execution of an instruction even if it is not
yet known whether the execution needs to take place. This can occur by moving code upwards
from its original block (termed its source block) to a destination block that is not postdominated
by the former (see later Def. 3.2.5). Then it is executed there earlier at runtime, before it is known
that the control flow will reach the source block where its execution is actually needed. If the
latter is the case, then the result is available earlier and the speculation was successful; otherwise
the execution was superfluous and should have no harmful effect on the architectural state.

Most instructions can be executed speculatively (short: speculated), i.e., have no harmful side
effects if they are executed though this would not have been the case in the original program (see
also the detailed discussion in Sec. 6.2). These instructions are often referred to as speculative;
those without this property are called non-speculative. Memory accesses like loads are in general
non-speculative since the address used during a superfluous execution could be invalid and trigger
a false exception (which would not have occurred in the original program).

Often it can be proven through static analysis that a load is safe at a destination block, i.e.,
that it is never executed with an invalid address there [BRS92]. For the remaining cases, IA-
64 supports the deferral of load exceptions: If the control speculative load instruction ld.s is
used and if the conditions of an exception occur, then the exception is not triggered but instead a

28 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

special NaT (Not a Thing) bit associated with the load destination register is set. This bit signals
that the value of the register is void as the load failed due to a suppressed exception. Each of the
128 GPRs has such an additional NaT bit; for floating-point registers, the condition is represented
by a special register value, NaTVal, which cannot occur as the result of normal computations.

If after the deferral of an exception the source block of the speculated load is not reached,
then the set NaT bit has no effect at all—the load destination register is then not live, i.e., it is
never read, but will be overwritten (together with the NaT bit) somewhere later.

In the opposite case, if the source block of the load or a control equivalent block is reached,
then the exception has been real and must be dealt with. For this purpose a control speculation
check instruction chk.s is scheduled there that branches to a specified label if its register argu-
ment is NaT or NaTVal. At this label the compiler has generated recovery code that reexecutes
the load—this time in a normal, non-speculative version so that the exception is eventually trig-
gered. After the exception has been handled—and if this has not terminated the program—the
recovery code then returns to the bundle after the chk.s and the program execution resumes
there.

Algorithm 4 Control speculation example.

Without Speculation Cycle With Control Speculation Cycle

ld8.s r3=[r2] ;; -X-1

add r4=8,r3 ;; -1

(p1) br.cond label 0 (p1) br.cond label 0

ld8 r3=[r2] ;; 0 chk.s r3,recover 0

add r4=8,r3 ;; X back:

shladd r6=r5,2,r4 X+1 shladd r6=r5,2,r4 0

recover:

ld8 r3=[r2] ;;

add r4=8,r3

br back

It is also possible to speculate uses together with the load; these instructions then must also
be replicated in the recovery code. Alg. 4 shows an example of a load with latency X that is
speculated with its use add r4=8,r3: The latency of the load and the add can be completely
hidden if they are both hoisted across the branch (under the assumption that their execution can
be overlapped with other code before the branch—not shown in the example).

Note that, strictly speaking, the purpose of the recovery code is here not to recover from
a failed control speculation, as the name suggests: The speculation fails in the example if the
branch to label is taken since then the computation of r4 was unnecessary. The check and the

2.1. THE IA-64 ARCHITECTURE 29

recovery code only ensure proper exception handling in the case of successful speculation. This
is different for data speculation introduced in the next section.

NaT bits propagate: All instructions set the NaT bits of all destination registers if at least one
source register is NaT. Otherwise these NaT bits are always cleared by default (except for spec-
ulative loads, of course, which are the only NaT-producing instructions). The same rules apply
to the NaTVals of the floating-point registers. NaTs are even propagated by transfer instructions
that move data between the general purpose and floating-point registers.

The purpose of this propagation is as follows: If several loads are speculated together with
a sequence of dependent instructions, it is sufficient to check the result(s) computed by this
sequence to detect a deferred exception of any of the loads2. The recovery code then repeats
the whole speculative computation (with non-speculative loads). This can become a nontrivial
problem if register values used in the computation are no longer available at the point of recovery.
To ensure recoverability, it can be necessary to enforce the availability or reconstructability of
these values throughout speculative computations.

If a non-speculative load or store receives a NaT as address operand, the program terminates
with a NaT consumption fault. The same happens if it is attempted to store a NaT—as long as
the store has not the completer spill: Then the NaT bit is saved in a special register and can
be restored by a load with completer fill. These instructions are used during context switches.

2.1.5.2 Data Speculation

Data speculation denotes the hoisting of loads above potentially memory dependent (aliased,
ambiguous) stores. In some cases, the compiler might be unable to prove statically that the ac-
cessed memory locations do not overlap. Then it is possible to speculate that no aliasing with the
store occurs by executing the load as an advanced load ld.a before the store. Such an advanced
load executes like a normal load but allocates in addition an entry with the register number and
the memory address in a hardware structure called Advanced Load Address Table (ALAT). The
presence of this entry in the ALAT signals that the corresponding memory location has been
read by an advanced load and not been written afterwards. Consequently, any succeeding store
invalidates (i.e., removes) all entries representing a memory location that overlaps with the one
modified by the store.

After the store, a check load ld.cmust be scheduled with the same operands as the advanced
load in order to verify that no aliasing has occurred (otherwise the advanced load would have read
incorrect data). For this purpose, it searches the ALAT for an entry with the same register number
and type. If such an entry (still) exists, execution continues normally, otherwise the speculation
has failed and the ld.c reissues the load.

Alg. 5 shows an example where the use of an advanced load removes the load latency X from
the critical path. Remarkably, the check load has a zero-cycle latency to consuming instructions
and hence can be scheduled in the same instruction group before them (here the add). Only if it
misses the ALAT it incurs a penalty, which may include a pipeline flush (numbers for the Itanium
2 are given in Sec. 2.2.4).

2For example, it would also possible—but not advantageous—to check r4 in Alg. 4.

30 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

Algorithm 5 Breaking a memory dependence with an advanced load.

W/o Speculation Cycle With Data Speculation Cycle

ld8.a r4=[r3] ;; -X or earlier

st8 [r1]=r2 0 st8 [r1]=r2 0

ld8 r4=[r3] ;; 0 ld8.c r4=[r3] 0

add r4=8,r4 ;; X add r4=8,r4 ;; 0

shladd r6=r5,2,r4 X+1 shladd r6=r5,2,r4 1

Algorithm 6 Data speculation with recovery code. Speculating the use add r4=8,r4 with the
load saves another cycle compared to Alg. 5.

W/o Speculation Cycle With Data Speculation Cycle

ld8.a r4=[r3] ;; -X-1

add r4=8,r4 ;; -1

st8 [r1]=r2 0 st8 [r1]=r2 0

ld8 r4=[r3] ;; 0 chk.a r4,recover 0

add r4=8,r4 ;; X back:

shladd r6=r5,2,r4 X+1 shladd r6=r5,2,r4 0

recover:

ld8 r4=[r3] ;;

add r4=8,r4

br back

2.1. THE IA-64 ARCHITECTURE 31

If uses are speculated together with the load, the advanced load check instruction chk.a
must be used in place of the check load. Instead of simply reissuing the load, the chk.a branches
on an ALAT miss to recovery code that reexecutes the load and its uses (see Alg. 6). The whole
procedure is very similar to control speculation. Control and data speculation can even be com-
bined using a speculative advanced load ld.sa that performs all the operations of both an ld.s
and an ld.a. An ALAT entry will not be allocated if this load defers an exception, so a chk.a
is sufficient to check for both conditions.

A hardware implementation may realize the ALAT functionality incompletely for complexity
or performance reasons. These limitations are always designed in such a way that the ALAT may
only err on the right side, i.e., they may only cause unnecessary recoveries, but must not suppress
a necessary recovery (they are detailed for the Itanium 2 in Sec. 2.2.4). Thus they can never harm
the correctness, but only the performance. However, since the ALAT functionality is integrated
with the critical L1 cache access path, a simplified ALAT may be crucial to enabling shorter
cycle times and thus higher core frequencies.

Frequent ALAT misses—whether due to ALAT limitations or aliasing—can cause penalties
that outweigh the benefit of data speculation. Thus the proper use of this feature in a static
compiler relies heavily on static analyses: Firstly, the compiler should employ extensive alias
analysis to hoist loads above stores even without data speculation [GLS01]. Secondly, a kind
of probabilistic alias analysis is needed that provides estimates of the aliasing probability for
may-aliases (the factor p from Sec. 2.1.5) [JCO98, HCLJ01]. However, it may be considered as
a challenge to obtain such estimates reliably through static analysis—a critic puts it drastically
[Hop00]: “ If the compiler gets the probabilities wrong, the results will be terrible.”

32 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

2.2 The Itanium 2 Microarchitecture

The Itanium 2 is intended for high-end servers and workstations running enterprise and engineer-
ing applications. Its highly complex microarchitecture—designed by hundreds of engineers—is
optimized for large-scale, compute and data intensive workloads. The following exposition is the
essence of several released documents [BMS02, SR03, FO02, NH02, LDMM02, RG02, Int04].
It covers the most prominent features and achievements of the design and details at the same time
all aspects related to instruction scheduling.

2.2.1 Architectural Overview

The newest implementation of the Itanium 2 processor runs at up to 1.6 GHz in a 130nm process
with six copper interconnect layers. The power dissipation of its 410 million transistors is about
110W on a typical server workload [SR03].

IA-32 Emulation Engine

16 KB L1I Cache

ALAT

Hardware Page Walker

Integer Register File

Multimedia Unit

Clock

16 KB L1D Cache

Branch Unit Floating-Point Unit Pipeline Control Integer Unit

256 KB L2 Cache and Control Bus Logic 3 MB L3 Cache L3 Tags

DTLB

© Intel

Figure 2.5: Itanium 2 die photo (180 nm version).

Like the first generation, the processor is a six-issue, in-order design: It can fetch, issue,
execute, and retire two bundles with six instructions in parallel. The execution of instructions
is always started in-order (i.e., in the order defined by the instruction groups), but can complete
out-of-order [HP03]: for instance, the instruction stream can continue to execute while, in the
background, a load is waiting for data from the cache. However, if an instruction reads the
destination register of this load, then the execution core stalls until the cache has delivered the

2.2. THE ITANIUM 2 MICROARCHITECTURE 33

operand. The processor uses a scoreboard to track and resolve register dependences [HP03].
Due to out-of-order completion, the number of in-flight (actively executing) instructions can be
much larger than the issue width of six.

D

A

M

ML MS

M0 M1 M2 M3

I

I0 I1

F

F0 F1

Dispersal Window

Width: 6

ALU

Number: 6

Memory

4

Load

2

Store

2

Integer

2

FP

2

Execution Unit

Types

Real

Execution Units

Figure 2.6: Hierarchy of Itanium 2 execution units.

The Itanium 2 features 11 execution units (composed of several subunits): 4 M-units (denoted
M0, M1, M2, M3), 2 I-units (I0, I1), 2 F-units (F0, F1), and 3 B-units (B0, B1, B3). Six A-type
instructions can be executed per cycle on the M- and I-units; however, the units of these two
types are not completely symmetrical otherwise:

• Integer loads can only be executed on M0 and M1 and stores only on M2 and M3. Ac-
cordingly, the latter units can be grouped in a set ML := {M0,M1}, the former in MS :=
{M2,M3}.

• Floating-point loads execute on M := {M0,M1,M2,M3}, i.e., on all four memory units
(if they are not advanced or check loads, otherwise only ML).

• Control speculation checks can be delivered either to MS or to I := {I0, I1}. Data specu-
lation checks execute like integer loads.

• Instructions from the groups FRFR and ALLOC can only execute on M2; TOFR only on
MS.

• Instructions from ISHF, FRBR, TOBR, FRAR, TOAR, FRPR, TOPR, and MMMUL can only
execute on I0.

There are numerous, further restrictions for special M-type and I-type instructions that are de-
tailed in [Int04]. The floating-point and branch units are almost symmetrical.

The sets ML, MS, M, I, A := {M0,M1,M2,M3, I0, I1}, and F := {F0,F1} group real
execution units that can process a common set of instructions; they can be regarded as execution
unit types or abstract execution units. We can associate to each instruction one execution unit
type that refers to a set of exactly those real units where the instruction can be executed. The

34 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

number of instances of an execution unit type equals the cardinality of the set. It is possible to
arrange real and abstract execution units in a hierarchy, as shown in Fig. 2.6, where the former
are the leaves. In this hierarchy, each abstract execution unit encloses its successor units, i.e., if
an instruction can be executed there, then it can also be executed on all successor execution unit
types.

Sometimes, we also write single real execution units as types, like I0 := {I0}. We often say
that an instruction is of (sub-)type ML, MS, M2, or I0 if it is associated to these unit types—
however, it should be noted that in contrast to the instruction types defined by the ISA (as in
Sec. 2.1.1.1), this classification depends on the microarchitecture.

As a consequence of the asymmetries, there are cases where not all M-type or I-type in-
structions can be executed on all execution units of the corresponding unit type (different from
Fig. 2.1). The instruction issue logic of the processor automatically ensures that instructions
are always delivered (“dispersed”) to proper execution units. However, the compiler should an-
ticipate this dispersal process to avoid performance penalties due to resource oversubscription
(explained later in Sec. 2.2.3.2).

2.2.2 Cache Design

The Itanium 2 microarchitecture features a three-level, on-chip cache hierarchy. Fig. 2.7 depicts
the caches with their respective sizes, associativities, read/write policies, read latencies in cycles
(minimum values for the L2 and L3 cache), and peak read bandwidths at 1.5 GHz. While the L1
cache enforces a write-through policy (WT, all writes go directly through the cache to the next-
lower cache level), the L2 and L3 caches use write-back (WB, lines are written to the next-lower
cache level only on replacement) together with write-allocate (WA, a cache line is allocated also
on a write miss). All floating-point memory accesses bypass the L1 cache and are served directly
by the L2 cache; they take one additional cycle for format conversion.

The four-ported L1 data cache on the top is extremely fast with a single-cycle read latency,
which helps avoid load-use stalls of the in-order execution pipeline [BMS02]. The low access
time has been achieved through a small cache size (16 KB), aggressive circuit techniques and a
prevalidated tag cache design.

The latter technique speeds up the translation from virtual to physical addresses, which is
necessary as the cache is physically-addressed. The key idea is that the tag array of the cache
does not contain the upper bits of a physical address (as usual), but instead a 32-bit pointer
to a TLB (translation lookaside buffer, [HP03]) entry that contains this address. This pointer is
organized as a “one-hot” vector, i.e., with exactly one bit equal to one, to enable a fast comparison
with other pointers. If the i-th bit is set, it is meant to point to the i-th TLB entry. Each L1 cache
access then initiates three parallel accesses to different structures:

• The upper-order virtual address bits are used to access the 32-entry L1D TLB, delivering
an one-hot vector that points to the entry containing the translated physical address (if
existing).

• The lower-order virtual address bits (which do not have to be translated since the way size
(4 KB) is always less than or equal to the page size (4 KB-4 GB)) are used to access all four

2.2. THE ITANIUM 2 MICROARCHITECTURE 35

L2 Cache, 256 KB, 8-way set-associative
WB, WA, 128 byte lines, 5 cyc., 48 GB/s

L3 Cache, up to 6 MB, 24-way set-associative,
WB, WA, 128 byte lines, 14 cyc., 48 GB/s

L1-D-Cache,
16 KB, 4-way

set-associative
WT, no WA,

64 byte lines,
1 cyc., 24 GB/s

L1-I-Cache,
16 KB, 4-way

set-associative,
64 byte lines,

1 cyc., 48 GB/s

1 KB register file,
0 cyc.

Physical memory, up to 2 byte, > 50 cyc., 6.4 GB/s
50

Virtual memory, up to 2 Byte
64

Figure 2.7: The Itanium 2 cache hierarchy.

Data Array
Way 0/1

Data Array
Way 2/3

Address Decoders

Rotating Way Mux

Tag Array

L1 TLB

Address Mux

© Intel

Figure 2.8: L1D cache die photo.

36 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

ways of the tag array and the data array in parallel, yielding four 32-bit one-hot vectors
and four cache lines, respectively.

The four one-hot vectors then can be compared with the one from the TLB very fast (relative
to the comparison of full 64-bit words). The matching one, if existing, determines the way and
selects one of the four cache lines for output. The same design is also used in the 16 KB L1
instruction cache.

The multi-banked unified L2 cache is a complex, non-blocking out-of-order design. All
memory operations that access the L2 cache (L1 misses and all stores) allocate into a 32-entry
queuing structure. In each cycle, up to four independent and non-bank-conflicted requests are
selected from this queue and issued to the L2 array. The issue logic enforces all architectural
memory ordering requirements (semaphore instructions etc.), thus the L2 queue can be regarded
as the “central clearing house for all address transactions” in the memory hierarchy [RG02].

The dynamic nature of the L2 cache design makes a precise specification of the access latency
impossible. Each read that passes through the L2 queue takes at least 9 cycles. However, there
is a feature that allows a request to bypass the queue and issue directly to the L2 data array
(provided, inter alia, that there are no dependences on older operations in the queue), enabling
a 5- or 7-cycle read latency. These bypasses and further details of the L2 cache design are
described in [Int04].

Loads can additionally be delayed if they cause TLB misses: Loads that miss in the L1 DTLB
also miss in the L1D cache; if they hit in the L2 and in the 128-entry L2 DTLB, they incur a 4-
cycle-penalty in addition to the L2 cache latency. An L2 DTLB miss initiates a hardware page
walker (HPW) to perform page look-ups, which costs at least 25 cycles.

Other considerable performance penalties can arise from interferences of ambiguous memory
accesses in the cache system. This can happen if several loads and stores that access overlapping
memory areas are issued in the same cycle (or in consecutive cycles). In these cases, the penalties
with respect to the L1D cache are as follows:

• There will be no conflicts between two loads, or between a load preceding a store in an
issue group, if the load(s) hit(s) in the L1D.

• If a store precedes a memory dependent load, the store data must be forwarded to the load.
This costs 17, 3-5, 3, and 1-3 cycles if the store is executed 0, 1, 2, and 3 cycles before
the load, respectively. In the first two cases, only the lower 12 bits are used for the address
comparison. The 17 cycle delay occurs since both requests are passed to the L2 in this case
and conflict with each other there. To avoid these penalties completely, the store and load
must be separated by at least four cycles.

• Two stores can conflict under circumstances described in [Int04] since the L1D is only
pseudo-dual ported for write accesses. Then the younger store will wait in a store buffer;
the L1D will stall if this buffer is full.

It is important that these penalties are allowed for during scheduling [CL03]. The L2 conflict
conditions are detailed in [Int04].

2.2. THE ITANIUM 2 MICROARCHITECTURE 37

The large on-chip L3 cache is optimized for density. It consumes more than half of the
processor area and is tiled into 140 subarrays to fit the irregular shape of the core. It is a pipelined,
non-blocking design that has its own queue to support up to eight outstanding request. The
minimum read latency is 14 cycles [SR03].

The extensive cache system reflects the necessity to minimize the load latencies on this in-
order processor—in total, up to 54 accesses can be active throughout the memory hierarchy
without stalling the execution pipeline. The design team focused their resources on the cache
hierarchy instead of the pipeline, which has a relatively simple design [MS03].

2.2.3 Pipeline Design

The simplicity imperative of the EPIC philosophy is reflected by the Itanium 2’s straightforward
and—in relation to the frequency target—short pipeline with eight stages (see Fig. 2.9; the last
depicted pipeline stage FP4 is only for floating-point instructions). It is composed of two parts:
The two-stage front end, where instruction fetch and branch prediction occur, and the six-stage
back end, where instructions are decoded and executed (“execution pipeline”). Both parts are
decoupled via an eight-bundle instruction buffer that can be filled by the front end even if the
back end is stalled.

2.2.3.1 Front End

The first pipeline stage IPG generates the instruction pointer (IP) and accesses the L1 instruction
(L1I) cache. It chooses as the IP either the next linear IP or a resteer pointer delivered by the
branch prediction logic (which can result from a predicted branch, or from the correction of a
mispredicted branch).

The design features two levels of branch prediction: The first level is tightly coupled to the
L1I cache. A set of two bundles (32 bytes) is read from this cache per cycle. Each such set is ac-
companied by a branch target address (shared by all six instruction) and branch prediction infor-
mation (for each branch instruction in the two bundles). This information is processed according
to the Yeh-Patt algorithm [YP91]. If the branch to which the branch target address belongs is
predicted taken, then this address is available already in the next cycle (zero-cycle resteer). Taken
IP-relative branches that are correctly predicted this way incur no pipeline bubbles (i.e., penalty
cycles where the IPG stage does not produce a result). If only the target address is predicted
incorrectly, the penalty is one cycle. An incorrectly predicted branch direction (taken/not taken),
however, incurs a six-cycle penalty (see Sec. 2.2.3.3).

The small first-level branch prediction storage (1,000 entries) is backed up by an L2 branch
victim cache (24,000 entries) that stores the branch prediction information that is evicted from
the first-level structure. There are also two levels of TLBs solely serving instruction access.

The next stage ROT rotates the bundles in order to align them for use in the next stage. This
is necessary because the L1I cache is always accessed on even bundle (i.e., 32-byte aligned)
address boundaries. If a branch targets an odd bundle address, then the L1I cache is accessed
with the next lower even bundle address, with the consequence that the first of the two fetched

38 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

Instruction decode and dispersal

M M M M I I F F B B B

IP
G

IP
G

R
O

T
E

X
P

R
E

N
R

E
G

F
P

1
E

X
E

F
P

2
D

E
T

F
P

3
W

R
B

F
P

4

Branch prediction

IP-
relative

prediction

Next
address

IP-relative address
 and return stack buffer

L1l
TLB

IA-32
engine

L2l
TLB

L1l
instruction

cache

Instruction-
streaming

buffer

Instruction buffer:
8 bundles (24 instructions)

Pattern
history

Pipeline
stages

Front
end

Back
end

FP
renamer

Integer
renamer

Integer
register file

FP
register

file

Register
stack engine

Scoreboard and
hazard detection

Branch

F
lo

at
in

g
po

in
t (

2)

P
ip

el
in

e
co

nt
ro

l

L2D
TLB

ALAT
32 entries

L1D
cache

Integer
multimedia

(6)

Integer
ALU (6)

L2
tags

L2
cache

L3
cache
and

system
interface

Hardware
page

walker

ALAT
TLB
IPG

ROT
EXP
REN

Advanced-load address table
translation look-aside buffer
Instruction pointer generation and fetch
Instruction rotation
Instruction template decode, expand, and disperse
Rename (for register stack and rotating registers) and decode

REG
EXE
DET

WRB
FPx

Register file read
ALU execution
Exception detection
Write back
Floating-point pipe stage

© 2003 IEEE

Figure 2.9: Itanium 2 processor pipeline (courtesy of IEEE [MS03]).

2.2. THE ITANIUM 2 MICROARCHITECTURE 39

bundles is useless and discarded in the ROT stage. Hence branch targets should be aligned on
32-byte boundaries to ensure that the front end can deliver two bundles per cycle.

After rotation, the (maximally) two bundles are stored in the instruction buffer if the latter is
nonempty or if the back end is stalled; otherwise they are directly forwarded to the next stage
EXP.

2.2.3.2 Instruction Dispersal

The EXP (expand) stage is the place where the instructions are extracted from the bundles. For
this, the stage logic decodes the bundle templates (and partly the instructions, to allow for the
asymmetries) and disperses the instructions to the 11 issue ports (illustrated in Fig. 2.10). These
ports allocate them to the corresponding 11 execution units two stages later.

F

M

M

M

M

I

I

B

B

B

F

1

0

2

1

2

0

L1I TLBL1I TLB

L1I tag

H
it

PVAB
Prefetch

virtual-address
buffer

P
at

te
rn

 h
is

to
ry

N
ex

t p
re

di
ct

io
n

IP
 n

ex
t

L1l
target
history

L1l
array

L2 histories

Instruction
buffer

Instruction-
streaming

buffer

L2
cache

H
it

+
32

Instruction
bundles

Issue
ports

© 2003 IEEE

Figure 2.10: Itanium 2 processor front end and dispersal logic design (courtesy of IEEE [MS03]).

The dispersal logic views at most two bundles at a time (the so-called dispersal window).
During one cycle in the stage EXP, the instructions in the window are always issued in their

40 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

order (as defined in Sec. 2.1.1.2), schematically one after the other, until

• there is no free issue port available for the next instruction, or

• the end of the dispersal window has been reached, or

• a stop is encountered.

Then all predecessors of the last processed instruction in the dispersal window have been issued,
but none of its successors. The latter instructions remain in the window and wait for dispersal
in the next cycle. Hence, during each (non-stalled) cycle, between one and six instructions are
dispersed in EXP. Accordingly, the processing of either 0, 1 or 2 bundles is completed and the
same number of new bundles are brought from the instruction buffer into the dispersal window
in order to be considered for issue in the next cycle. Predication does not affect the dispersal
process; similarly, nops are issued as if they were normal instructions.

The groups of instructions issued during a cycle in EXP, called issue groups or dynamic
instruction groups, remain constant throughout the rest of the in-order execution pipeline; there
is no further splitting or rearranging. If in one cycle the dispersal does not end at a stop, but
due to one of the other conditions, then the statically encoded instruction group is not issued as
a whole. This is called split issue; the first of the above three cases is also called resource split.
Thus dynamic instruction groups can be smaller than their static counterparts (but never larger).
This dynamic adaptation to the processor’s execution resources allows—in contrast to VLIWs—
binary compatibility between different implementations. However, frequent occurrences of split
issue may degrade performance. Therefore, code generators usually produce instruction groups
that can be issued in one cycle on the given target processor, so that static and dynamic instruction
groups are there equivalent.

To achieve this, the compiler must anticipate the dispersal process; in particular, it must
follow the dispersal rules to avoid an early resource split. These complicated rules determine
to which execution units the instructions are dispersed (depending on the order of their issuing
during a cycle in EXP). The most general dispersal rule states that in most cases, instructions are
assigned one after the other to the lowest numbered matching issue port not already in use. For
example, the first I-slot instruction is issued to I0 and the second to I1 etc.

Figure 2.11 shows the dispersal of a four-bundle sequence in three cycles as an example.
The bundles and instructions, respectively, are depicted in increasing order from left to right; we
distinguish between the older, left (first) and the newer, right (second) bundle in the dispersal
window.

In the first cycle, a resource split occurs after the dispersal of four instructions because there
is no free I-unit for the third I-type instruction. The dispersal continues at this instruction in the
next cycle after a single bundle rotation, i.e., after one new bundle has been inserted from the
right side (the greyed out instruction is not considered as it has already been issued).

This time, the dispersal aborts at the stop in the second bundle. Again, a single bundle rotation
occurs, and in the third cycle, the remaining fragment from the first bundle and the second bundle
can both issue (dual issue). Remarkably, the single F-type instruction issues to F1 in this case:

2.2. THE ITANIUM 2 MICROARCHITECTURE 41

MII MIB MI_I MFI

F1I1I1 B2M3M3M2M2 I0I0 F0 B1B0

Dispersal

Window
Bundle Stream

MIB MI_I MFI

F1I1I1 B2I0I0 F0 B1B0

MI_I MFI

F1I1I1 B2I0I0 F0 B1B0

(1)

(2)

(3)

M1M1M0M0

M3M3M2M2M1M1M0M0

M3M3M2M2M1M1M0M0

Figure 2.11: Instruction dispersal example.

the F-type instruction from the first and the second bundle always map to F0 and F1, respectively.
This is the first exception from the general dispersal rule stated above.

Two further, important exceptions concern A-type and M-type instructions: An A-type in-
struction in an I-slot can also be mapped to an M-port if the two I-ports are already reserved. This
”trick” is intended to increase the flexibility of the bundling scheme. For example, in Fig. 2.11-
(1), if the third I-slot instruction was of type A, then it would issue to M2, and together with the
next instruction a dual issue would take place.

The dispersal rules for M-type instructions are the most complicated. The general rule would
assume that M-slot instructions are allocated to the ports M0, M1, M2, and M3 in this order;
however, this is not flexible enough since it must be possible to issue two loads and two stores
in any possible order, instructions which can only be executed on ML = {M0,M1} and MS =
{M2,M3}, respectively. To enable this, the issue logic can reorder M-type instructions between
the subtypes ML and MS. For instance, if an integer store (MS) precedes an integer load (ML),
then the store will be mapped to M2 and the load to M0. However, it is not possible to reorder
instructions inside the same subtype ML or MS, i.e., if an integer store precedes a getf (both
inside subtype MS), then the store will occupy M2 and a split issue will occur since the getf
can only issue on M2.

The process becomes intransparent when A-type instructions consume M-ports before more
restricted subtypes like integer loads and stores; then the dispersal follows irregular, undoc-
umented rules [Int04]. Hence it is strongly recommended that more restrictive subtypes get
scheduled first in the instruction group (as long as the intra-group dependences allow this).

There are several further processor-specific special cases where bundle pairs will not ex-

42 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

perience dual issue: For instance, the issuing splits always after a bundle with a branch in-
struction: more precisely, it always splits after the bundle templates MBB or BBB and after
MIB/MFB/MMB if the B-slot contains a branch (and not a nop or a brp instruction). Moreover,
dispersal always stops after a bundle with a SIMD FP instruction (as long as the second bundle
is not of type MLX; an MLX bundle uses ports equivalently to an MFI bundle otherwise).

Despite the complexity of these rules, the dispersal takes place in the 2/3 ns of one pipeline
stage.

2.2.3.3 Execution Core

The REN stage translates the stacked registers into physical registers according to the scheme
described in Sec. 2.1.1.3; there is no dynamic register renaming as in typical out-of-order pro-
cessors [HP03]. Instruction decoding is also performed in this stage.

In the succeeding REG stage, the spills and fills of the register stack engine are injected in
the pipeline and the register files are read. The large 128×65 bit integer register file3 delivers a
maximum of 12 integer operands per cycle through its 12 read ports. However, as the write back
to the register file occurs three pipeline stages later, the results from the last four cycles are not
included in the register file although they have to be considered. Thus there are four stages of
bypass multiplexing (utilizing 280 bypass comparators) to select the actual operands among 34
possible results from the register file, the L1D cache, and the next three pipeline stages [FO02].

4 mm

1.87 mm Datapath Control Bypass Control

Register File

Architected Registers

Middle Bypass

Early Bypass

Register Bypass

Six ALUs with
Late Bypasses

© Intel

Figure 2.12: Die photo of the six ALUs, the register file and the bypass network.

In particular, the six ALUs are fully bypassed: All simple ALU instructions require a half
cycle for execution and a half cycle to forward the result to another ALU or the L1D cache as
input of a consumer instruction, totaling an effective single-cycle latency. Fig. 2.12 shows a die
photo of this compact 6-issue integer datapath, closely coupled with the register file.

In some cases, bypassing is not free; thus it is advisable to consider the total latency of a
producer-consumer instruction pair during scheduling, composed of the execution latency of the
producer plus the bypass latency, the time it takes to route the result to the consumer. Table 2.7
lists the total latencies of common instruction classes.

364 data bits plus one NaT bit.

2.2. THE ITANIUM 2 MICROARCHITECTURE 43

Consumer

Producer

Qualifying
Predicate

Branch
Predicate

Simple
ALU

Load/
Store

Address

MM Store
Date

FP getf setf

Simple ALU 1 1 2 1 1

MM 3 3 2 3 3

A-Type Predicate
Write

1 0

F-Type Predicate
Write: fcmp

2 1

F-Type Predicate
Write: others

2 2

getf 5 6 6 5 5

setf 6 6 6

FP 4 4 4

Integer Load N N+1 N+1 N

Table 2.7: Total instruction latencies.

Most common A-type and I-type instructions (“Simple ALU”) exhibit a single-cycle latency,
but multimedia (MM) instructions need two cycles. The latter include integer SIMD instructions
and variable shifts (MMALU_A, MMALU_I, MMMUL, MMSHF); it can also be seen from the table
that bypassing between MM and non-MM instructions takes an extra cycle.

All floating-point instructions, except for compares, have a latency of four cycles. The trans-
fer between general purpose and floating-point registers is expensive with 5-6 cycles. The integer
load-to-use latency is, as discussed in Sec. 2.2.2, highly dynamic with a minimum of N=1. If
the loaded value is used as the address operand of another memory access, an additional cycle is
needed for bypassing.

To steer the bypass network, a register scoreboard is accessed in parallel with the register file.
This structure contains for each register whose actual value has not yet been written to the register
file if and where this value is available in the bypass network. In the next cycle, the execution of
the issue group is started in the stage EXE, provided that all operands are available; otherwise
the whole back end of the pipeline stalls (i.e., a single missing operand of an instruction stalls
the entire issue group and all subsequent issue groups).

All functional units are fully pipelined and can accept a new instruction each clock cycle, so
that the execution pipeline never stalls due to busy execution units (special system instructions
may be an exception). Stalls are typically latency-related.

To avoid unnecessary stalls with respect to predication, a producer-consumer instruction pair
should never trigger a stall if either the producer or the consumer is predicated off. This rule is
implemented with the exception that the execution pipeline will stall for one cycle if

• the operand of an instruction is not yet available and

• the predicate that turns this instruction off was generated in the previous cycle.

The predicate values, which are computed by compares in the EXE stage, are also used to val-
idate conditional branches in the succeeding DET stage. If a misprediction is detected (wrong

44 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

target, wrong direction), the whole pipeline is flushed and a resteer with the correct branch target
address is delivered back to the first pipeline stage. Pipeline flushes cost at least 6 cycles, but the
overall impact on performance is moderate due to a prediction accuracy of 93-95% [NH02].

The DET stage offers the last possibility to flush the pipeline since it is the last speculative
stage; in the next stage WRB, the issue group is retired, i.e., all results are committed to archi-
tectural state: Stores update the data arrays of caches not until now, and results are finally written
back to the register files.

2.2.4 Speculation-Related Penalties

Control speculative loads execute like normal loads if they do not set the NaT bit. Otherwise,
they take two cycles in the case of an L1 DTLB hit. When a control speculative load misses
both DTLB levels, it depends on the configuration of the processor whether it waits for the
hardware page walker to retrieve a translation from the page table, which takes at least 25 cycles,
or whether the NaT bit is set immediately, although it is not yet clear that the load really causes
an exception (early deferral) [Int02b].

The advantage of the second strategy is that it limits the worst-case latency of speculative
loads. If this is not done, and if a use is speculated with the load, then an HPW invocation would
cause the use to stall the pipeline for 25 or more cycles—a speculative stall that is futile if the
speculation fails (otherwise it is neutral as it would also occur without speculation).

Such speculative stalls can also be caused by cache misses; they should be taken into ac-
count when speculating loads with their uses4. Ideally, the use of control speculation should be
guided by a cost model—available from static analysis, heuristics, and profiling—that estimates
the exception deferral probabilities of individual loads. Apart from stall-related issues, control
speculative loads have also the potential to pollute the caches and the TLBs.

Many of these difficulties apply also to data speculative loads. The Itanium 2 processor
ALAT has 32 entries and is fully associative with respect to the register numbers, i.e., no two
such numbers share an entry. If entries are added and the ALAT is full, valid entries are replaced
on a FIFO basis (which may result in unnecessary recoveries).

Each entry stores only the 20 lower bits of the physical address, with the consequence that
a store falsely invalidates an ALAT entry if their addresses share these bits (but are different
otherwise). If the execution distance between a ld.c/chk.a and a preceding store is one cycle
or less, then even only the lower 12 bits will be effectively used for the address comparisons with
this store (since the higher bits have not yet been translated to physical addresses at this point of
time).

Failed data speculation is expensive: A check load that misses the ALAT takes at least 8
cycles (pipeline flush plus load execution). The pipeline flush becomes necessary because the
detection of ALAT misses occurs late in the pipeline in the DET stage, when the incorrect data
of the advanced load has possibly already been used in computations. The cost of a chk.a is at
least 18 cycles for the (always unpredicted) branch to recovery code, plus the cycles needed to
execute this code and to return.

4In the model of Section 2.1.5, they increase the variable part Cv of the speculation costs.

2.3. THE STATE OF AFFAIRS 45

2.3 The State of Affairs

Since its introduction in 2001, the Itanium Processor Family has established itself as one of
the leading processor architectures with respect to performance. However, the superiority in
principle of “Intel’s huge bet” [ML02] over conventional RISC architectures remains in parts to
be proven.

A recent study [Alp03, MK02] has compared various characteristics of the code produced by
Intel’s C++ compiler 6.0 for the Itanium 2 with that of a classic RISC, the Alpha 21264 (using the
Compaq compilers). Basis was the SPEC CPU2000 benchmark [SPE00]. On this benchmark,
the Itanium 2 and the Alpha 21264 achieve SPECint/SPECfp base rates of 683/1396 and 621/776,
respectively (both at 1 GHz, with the compilers mentioned above) [SPE00]. In the following, all
numbers reported from the study refer to the dynamic traces of instructions executed during the
benchmark runs. Profiling was used on the Itanium 2, but not on the Alpha.

The traces show that the total number of executed instructions, including nops, is about 20%
greater on the Itanium. Without nops, however, the numbers for both architectures are almost
equal. The restrictive bundling scheme is the main cause of extra nops. Together with the larger
instruction encodings of IA-64 (due to the larger number of registers, predication, and template
bits), the total size of the fetched instructions is here about 60% larger than on the Alpha, which
inevitably decreases the instruction cache efficiency. Nevertheless, the 16 KB instruction cache
is sufficient for SPECint and SPECfp with their relatively high instruction cache locality: the
performance loss due to instruction access stalls is just 3% and 1%, respectively. However, for
the larger code working sets of server applications, numbers like 31% were reported for the first
generation Itanium [Li01].

An analysis of the instruction mix (without nops) shows that the Itanium needs 40% fewer
memory operations and 30% fewer branches than the Alpha, but 10% more ALU operations,
shifts, and compares. This indicates that features like the large number of architected registers,
the register stack engine (RSE), and predication are successful in reducing the number of “hard”,
stall-inducing instructions like loads and branches. Especially the RSE is seen as an “effective
performance enhancement” [Alp03] as it manages procedure calls with very low overhead: The
time spent on RSE activity is only about 2% of all cycles (1.5-3 cycles per call/return pair on
average).

The effectiveness of predication is more arguable: An earlier study conducted with the first-
generation Itanium confirms that if-conversion via predication can reduce the number of mis-
predicted branches by 29%—but it improved performance by only 2%, which lags far behind
predictions of more than 30% from earlier research studies [CKGN01]. One reason for this is
that these studies assumed fewer and less sophisticated branch execution and prediction resources
than what materialized on the first-generation Itanium processor. The penalty for mispredicted
branches is there only 7% on the SPECint benchmark, which bounds the benefit from removing
them. However, this number is likely to increase if the pipeline is stretched on future imple-
mentations in order to achieve higher frequencies—hence it is too early for a final verdict on
predication. Furthermore, predication is also used by software pipelining: While the benefit of
the latter transformation is negligible for SPECint (1%), it is dramatic for SPECfp (more than
30%).

46 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

7%

38%

3%

2%

1%

49%

Pipeline Flush

Data Access

Instruction Access

RSE Activity

Scoreboard

Unstalled

Figure 2.13: Breakdown of the execution time for SPECint 2000 [MK02].

The study on the SPEC benchmarks on the Itanium 2 also includes an analysis of the com-
piler’s ability to extract instruction-level parallelism [Alp03, MK02]. The found static instruc-
tions per clock rate (without nops and predicated off instructions) for SPECint is 2.5 on average,
far from the maximum rate of 6 IPC the processor was designed for. At runtime, stalls caused by
cache/TLB misses and other hazards almost halve this average rate to 1.3 IPC. In other words,
the unstalled execution time is about half of the total execution time. This is depicted in Fig. 2.13,
where “Data Access” denotes the stalls due to cache-missing loads and “Scoreboard” all stalls
due to other long-latency instructions. The authors also investigated the region sizes in the trace
and measured 19 useful instructions per taken branch, 159 useful instructions per mispredicted
branch and 212 useful instructions per call on average.

While the study did not analyze the benefit of speculation, it measured that about 24% of
loads use control speculation, but only 4.5% data speculation. The failure rates are very low
with less than 0.001% and 1% for control and data speculation, respectively. This shows that the
compiler has the cost of speculation well under control, but it leaves open whether this is merely
due to conservative compiler heuristics that restrict the application of this feature.

Overall, these numbers paint a rather positive picture: the Intel compiler can transform the
architecture’s new features into performance that is “highly competitive with the best RISC pro-
cessors” [Alp03]. But the high percentage of nops and the low static IPC indicate that some
central visions of the architecture’s inventors have not (yet) come true. Intel’s compiler team has
identified the following top-five challenges [Li01]:

1. Managing data caches/DTLB for acyclic code

2. Managing instruction cache/ITLB

3. More effective use of control speculation

4. More effective use of data speculation

2.3. THE STATE OF AFFAIRS 47

5. Creative use of predication

This work tackles all of these items, especially the last three, and it also points out another
candidate for the list: More effective global instruction scheduling.

48 CHAPTER 2. THE ITANIUM PROCESSOR FAMILY

Chapter 3

The Global Instruction Scheduling
Problem

3.1 Overview of Code Generation

The process of compiling a program can be coarsely structured into an analysis and a synthesis
phase [WM97]. The analysis phase computes the syntactic structure and semantic properties of
the input program. The result is an intermediate representation that is (largely) independent of
the language and the target machine. The compiler performs several optimizations like constant
propagation, elimination of common subexpressions, etc., on this intermediate code.

It is the task of the subsequent synthesis phase to convert the intermediate representation into
semantically equivalent target machine code that executes with best possible performance. An
important part of this phase is code generation, which consists itself of several subphases:

• Code selection is the task to find a sequence of target machine instructions for the inter-
mediate code that has the same semantics and minimal execution time. This part is of
subordinate importance on the Itanium processor architecture, which features a RISC-like
instruction set and a load/store architecture without complex addressing modes. Excep-
tions may be programs that make extensive use of the SIMD and floating-point instruc-
tions.

• Register allocation decides where the values of the intermediate representation are kept in
the processor registers. Intermediate code uses an unlimited number of symbolic registers
that must be mapped to the limited number of architected registers. The goal is to minimize
the transfer between registers and memory. Like code selection, register allocation has in
general not the highest priority on the Itanium architecture with its very large number of
architected registers.
However, routines that allocate a large register stack frame can put pressure on the register
stack engine. This can even lead to RSE-related stalls, which may carry weight with short
routines. The register need of software-pipelined loops is also much higher because the
values of several overlapped loop iterations must be held in registers at the same time.

49

50 CHAPTER 3. THE GLOBAL INSTRUCTION SCHEDULING PROBLEM

• Resource binding selects for each instruction the execution unit to which it is issued (on
architectures that let the compiler decide this). This subtask is especially complicated if
this selection has impact on the instruction’s latency or if it restricts the range of registers
it can access, which is both not the case on the Itanium 2. Nevertheless, resource binding
is still nontrivial here due to several asymmetries (outlined in Sec. 2.2.1).

• Instruction scheduling rearranges instructions with the goal to minimize the schedule length.
This phase will be elaborated on in the remainder of this chapter.

The order in which these tasks are accomplished is not arbitrary since there are strong inter-
dependences between them: decisions made in one phase may constrain the scope of possible
decisions of subsequent phases. Performing the phases in an isolated way cannot take all these
interactions into account. This problem is known as the phase-coupling problem [Käs00a].

For example, if scheduling is performed first, then the schedule determines the values that
are concurrently live at each program point. If their number exceeds the number of available
architected registers, further stores and loads have to be inserted that transfer values to and from
memory (“spills” and “fills”), deteriorating the quality of the schedule. Alternatively, if register
allocation is done before, it is likely to introduce false dependences between the instructions
that confine the scheduling phase. Most compilers perform instruction scheduling first, possibly
followed by another pass of scheduling [SS02].

There are various works that tackle the phase-coupling problem directly, either heuristically
or using exact approaches; comprehensive surveys are given in [Bas95, Käs00a]. In the re-
mainder of this chapter we will encounter similar interdependences within the global scheduling
phase; some of them stem from Itanium-specific features like explicit speculation.

The goal of instruction scheduling is, as mentioned earlier, to minimize the overall execution
time by reducing the schedule lengths of the basic blocks. These lengths are static measures; the
performance impact of their reduction depends on which control flow paths are taken at runtime,
which also depends on the input set—the variance resulting from this can be considerable. Static
compilers must optimize for the average case, ideally by means of profiling information. This
information provides an empirical summary of past program executions. It typically has to be
measured by the developer by running an instrumented version of the program before the final
compiler run.

The most commonly used types of profiles are control flow profiles: Node profiles, edge
profiles, and path profiles provide the execution frequencies of basic blocks, control flow edges,
and entire control flow paths (acyclic and intraprocedural), respectively. They are listed here in
the order of increasing precision and increasing instrumentation overhead. Often, it is possible
to identify paths with a dominating execution frequency (hot paths).

Profiling is important to guide compiler decisions that involve “trade-offs between improved
performance in one part of the program and degraded performance in another part of the pro-
gram” [SS02]. However, collecting profiles ahead of time is not always practical. If they are
missing, the compiler must rely on heuristically generated estimates with low confidence. Be-
sides, profiling cannot mitigate an inherent disadvantage of statically scheduled architectures,
namely that it is only possible to optimize for the average case, but not for varying execution
characteristics. Dynamic compilation aims to address both problems [SS02].

3.2. BASIC PROGRAM REPRESENTATIONS 51

A further factor that influences performance besides the schedule length is code size increase.
It must be kept under control by the code generator since it may cause adverse instruction cache
and TLB effects. This must occur not only in the code selection phase, but also during global
instruction scheduling, as it will be shown in what follows.

3.2 Basic Program Representations

Global instruction scheduling works on bounded, contiguous regions of basic blocks, called
scheduling regions. These regions constitute the scheduling scopes within which the global
scheduler can rearrange and parallelize instructions; they should be chosen as large as possible
to provide maximal opportunities for the extraction of instruction-level parallelism. Scheduling
regions are often—initially also in this work—required to be acyclic (free of loops). Apart from
such scheduler-specific restrictions, they are naturally limited by procedure boundaries since
code motion between procedures is not considered viable. The notion “scheduling region” is
often used with two different meanings:

• It denotes the input the scheduler receives on an invocation during code generation.

• It can also refer to subregions formed by the scheduler itself: Some of them partition the
given scheduling region further into smaller regions and pass them to a scheduler proper
in order to be scheduled. They exhibit a two-level structure: region formation and region
scheduling.

The following definitions describe several formal representations of scheduling regions as they
are used for scheduling. They are in some details adapted to the Itanium processor architecture:

Definition 3.2.1 (Control Flow Graph) A control flow graph (CFG) of a scheduling region is
an acyclic digraph GC = (V,EC , Ventry, Vexit) with the region’s instructions as nodes. The edges
represent possible control flow between the instructions and are marked by predicate registers.
If an edge (a, b) ∈ EC is marked by p then instruction b is executed after a if and only if p
has value true. b is then said to be control dependent on a. Ventry contains those nodes without
predecessors (entry points) and Vexit those nodes without successors (exit points). ✷

In this thesis, assembly instructions form the nodes of the CFG, however, this and the fol-
lowing representations can also be instantiated on a source or intermediate level. Conditional
branches are not represented by nodes but only by edges in the graph.

Definition 3.2.2 (Basic Block) A basic block in a CFG is a path of maximal length where no
inner node has more than one successor or predecessor. ✷

Those instructions that are nodes on a path of Def. 3.2.2 are said to be contained in the basic
block embodied by the path. The block is then also called the source block of these instructions.
The control flow inside a basic block is simple: If during program execution a basic block is
reached, then always all of its instructions are executed. To focus on the more dynamic control
flow between basic blocks, we can regard them as nodes of a new graph, the basic block graph:

52 CHAPTER 3. THE GLOBAL INSTRUCTION SCHEDULING PROBLEM

Definition 3.2.3 (Basic Block Graph) A basic block graph (BBG) of a scheduling region is an
acyclic digraph GB = (B, EB,Bentry,Bexit) with the region’s basic blocks as nodes. The edges
EB ⊆ B×B represent possible control flow between the basic blocks and are marked by predicate
registers analogously to Def. 3.2.1. Bentry ⊆ B contains those nodes without predecessors (entry
blocks) and Bexit ⊆ B those nodes without successors (exit blocks). ✷

Definition 3.2.4 (Control Flow Paths) Paths in GC and GB are called control flow paths. They
are said to be complete if they start from a node in Ventry or Bentry and end at a node in Vexit or
Bexit. In the context of a BBG, we denote by C the set of all complete control flow paths and by
C(A) ⊆ C the subset of those paths that pass through block A. Complete control flow paths are
also referred to as program paths. ✷

In both the CFG and the BBG, nodes with more than one predecessor are called joins and
nodes with more than one successor are called splits. Edges from a split to a join are called JS
edges [BMM00]. JS edges can complicate scheduling algorithms; it is possible to remove them
by adding a new block between the split and the join (called JS block). The JS edge is then
replaced by two new edges, one from the split to the JS block and one from there to the join.

In the context of basic block graphs, we often use the notions of (direct) successors or pre-
decessors as known from graphs in general: For instance, we say that a block A is a predecessor
of block B if there exists a nonempty control flow path from A to B, also written A ≺ B. If this
path consists only of one edge, A is called direct predecessor. The predecessor relationship �
imposes a partial order on B.

Definition 3.2.5 (Dominance, Postdominance) We define for two nodes a and b in an acyclic
digraph (typically a CFG or BBG):

• a dominates b (a dom b) if every path from an entry node to b passes through a.

• b postdominates a (a pdom b) if every path from a to an exit node passes through b.

• a and b are control equivalent if a dominates b and b postdominates a (or vice versa).

Each node dominates and postdominates itself. We extend this definition to node sets as follows:
Let a be a node and S be a subset of nodes, then

• a is dominated by S, denoted by a ∈ D−1
+ (S), if every path from an entry node to a passes

through S.

• b is postdominated by S, denoted by a ∈ P−1
+ (S), if every path from a to an exit node

passes through S. ✷

Control flow properties can also be described by control dependence graphs or program
dependence graphs [SS02], but these concepts are not used and presented here. Instead, we
introduce a further essential graph that describes the data dependences of instructions:

3.2. BASIC PROGRAM REPRESENTATIONS 53

Definition 3.2.6 (Global Data Dependence Graph) Let an acyclic control flow graph

GC = (V,EC , Ventry, Vexit)

be given. The corresponding global data dependence graph (DDG) GD = (V,ED) is an acyclic
digraph that contains an edge from node m to n if

• n is data dependent on m with respect to a storage resource (as defined in Sec. 1.3) and

• there exists a control flow path in GC from m to n that contains no definition of this storage
resource, and in the case of a WAW dependence also no use (this condition is here referred
to as the exclusion criterion).

The data dependence edges can be partitioned according to the involved dependence and re-
source types: ED = ERAW

D ∪ EWAR
D ∪ EWAW

D (true, anti, and output dependences) and ED =
Ereg

D ∪ Emem
D (register and memory dependences), respectively. A (total) latency wmn in cycles

is associated with each data dependence edge; this value is often also interpreted as the length of
the edge. ✷

On the Itanium architecture, all intra-group (WAR and memory) dependences have latency
zero since the dependent instructions may appear in the same instruction group (though only
in an order that complies with the dependence). WAW register dependences, however, cause
stalls on the Itanium 2 processor similarly to RAW dependences and are thus assigned the same
latencies.

The existence of a DDG edge implies the existence of a (possibly empty) control-flow path
between the two instructions’ source blocks. Hence acyclic control flow graphs always yield
acyclic data dependence graphs. An instruction is called a DDG predecessor of another instruc-
tion if there is a nonempty path from the former to the latter in the DDG. The order on the
instructions defined by the data dependences is transitive, thus a data dependence edge can be
regarded as redundant if it is already implied by a sequence of other edges. We can assume that
a given DDG has no such redundant edges:

Definition 3.2.7 (Minimal DDG) A data dependence graph GD is called minimal if for no edge
(m,n) ∈ ED there exists a path in GD from m to n that does not contain the edge (m,n) and
has length greater or equal to wmn. ✷

The DDG is sufficient to describe all feasible orders of instructions contained in a basic
block—it renders the CFG, which gives for each basic block a linear instruction sequence (as
one possible order), dispensable. In other words, the DDG extracts from this linear sequence the
information that is relevant for scheduling.

Thus, if we have a function s : V −→ B that gives the source block of each instruction, then
BBG and DDG together are an (almost) complete description of a global scheduling problem
instance. For the example routine from Alg. 2 in Sec. 2.1.2.1, both representations are shown in
Fig. A.1 and Fig. A.2 in the appendix.

54 CHAPTER 3. THE GLOBAL INSTRUCTION SCHEDULING PROBLEM

3.3 Global Scheduling

Local scheduling—introduced in Sec. 1.3—rearranges instructions inside a basic block in order
to minimize its length. The basic block boundaries act like barriers: it is not possible to overlap
the execution of instructions from neighboring blocks unless instructions are moved between
basic blocks. Since basic blocks are often small (typically in the range of 5-20 instructions
[SS02]), local scheduling is not able to extract enough instruction-level parallelism to keep the
parallel execution units of EPIC processors busy.

Therefore global code motion is used to move instructions beyond basic block boundaries.
We say that an instruction is moved from its source block to a destination block, which can be
a predecessor or a successor of the source block (other blocks evidently do not make sense as
destination blocks). The arrows in Figure 3.1 depict schematically these two possible directions:
upward and downward code motion.

A

B C

D

I

II

III

IV

KIII

IV KIV

Figure 3.1: Examples of different directions (upward (I+IV), downward (III+II)) and side-effects
of code motion (speculative (I+II), non-speculative (III+IV)).

Using this example, we will introduce two basic side-effects of code motion: Firstly, we
observe that the upward movement of an instruction from source block B to destination block
A (I) is speculative: If at runtime the path A-C-D is taken, then the instruction is executed
unnecessarily in A (as it would not be executed at all without the movement). It is only useful on
the path A-B-D. This speculative scheduling has also the consequence that an execution slot is
occupied unnecessarily on the path A-C-D. In other words, it increases the demand for execution
slots on this path. In contrast, an instruction moved from A to B (III) is always useful since any
path through B also traverses A; it is an example of non-speculative code motion. Speculative
execution is prohibited for some instructions (as described in detail in Sec. 2.1.5 and Sec. 2.1.5.1)
so that they may only be moved non-speculatively.

Secondly, an upward movement across a join from D to B (IV) enforces the placement of a
duplicate of the instruction in block C (KIV)—otherwise this instruction would not appear on the
path A-C-D (as it is the case without the movement). The addition of such compensation copies
during code motion increases the instruction count and thus also the demand for execution slots.

3.3. GLOBAL SCHEDULING 55

Generally, when considering code motion along a single BBG edge, upward movement across
a join and downward movement across a split enforces compensation copies. Moreover—and
independently of required compensation copies—the movement of an instruction is speculative
if it occurs upwards across a split or downwards across a join; otherwise it is non-speculative.
As it has been shown exemplarily, all these code motion variants increase the resource demand,
i.e., the number of needed execution slots in the schedule.

We will in Sec. 3.3.2 examine more closely what constitutes speculative code motion and
when and where compensation copies have to be scheduled. Before, we will provide a brief
survey of existing global scheduling heuristics.

3.3.1 Global Instruction Scheduling Algorithms

Global scheduling is often introduced on the basis of concrete scheduling methods like trace
scheduling [Fis81], one of the first proposed algorithms. Trace scheduling identifies frequently
executed paths in the basic block graph, called traces, and schedules these linear sequences
of basic blocks as if they were a single basic block, using a local scheduling method like list
scheduling [WM97]. During this local scheduling, instructions can be moved beyond the block
boundaries of the underlying basic block sequence. When doing this, the compiler must avoid
speculative code motion of non-speculative instructions and track where compensation copies
have to be inserted (bookkeeping).

A

B C

D

80%20%

A

B C

D D’

A

B C

D

Figure 3.2: Illustration of a trace, a superblock after tail duplication, and a hyperblock.

These additional copies may increase the schedule lengths of other paths—in this way trace
scheduling optimizes traces at the expense of off-trace paths, which may be disadvantageous for
programs without distinct hot paths. The algorithm first schedules the most frequently executed
trace and then selects, in decreasing order of path frequency, traces with unscheduled blocks,
until all blocks are covered.

Another drawback of trace scheduling is the complexity of the bookkeeping that is related to
joins in the trace (side entrances). Hwu et al. propose superblock scheduling to mitigate this

56 CHAPTER 3. THE GLOBAL INSTRUCTION SCHEDULING PROBLEM

complexity [HMC+93]: the selected traces are transformed via tail duplication (i.e., splitting its
tail at joins into two different copies) into traces with a single entry and multiple exits. Then
upward code motion inside the superblock never enforces compensation copies (the downward
variant can possibly be left out without a significant performance loss). Superblock scheduling
is more straightforward; however, the tail duplication implicates a code size increase.

A superblock can be extended to include basic blocks from different control flow paths via
predication: If it contains an outgoing control flow edge, then the instructions at the branch target
can be merged into the superblock if they are guarded by the predicate that controls the branch
(if-conversion)—the superblock is then called a hyperblock. It remains a linear code sequence
since if-conversion turns all control dependences into data dependences. The hyperblock exhibits
increased parallelism as it contains independent instructions from different paths. This makes
the transformation particularly interesting for highly parallel architectures with predication, like
EPIC architectures.

The technique that forms and schedules the hyperblocks is known as hyperblock scheduling
[MLC+92]. Again, tail duplication is performed to keep the hyperblock free of side entrances.
As in superblock scheduling, the resulting code size increase may be significant and must be kept
under control by the compiler.

All mentioned methods have in common that they tackle global scheduling by reducing it to
local scheduling. For this purpose, they select linear scheduling regions on the basis of profiling
information. In contrast, the following four methods work directly on scheduling regions with ar-
bitrary acyclic control flow: Percolation scheduling [Nic85] applies iteratively four semantics-
preserving transformation rules to the control flow graph, three of which perform upward code
motion (between adjacent blocks). This method originally assumed unbounded resources and
unit latencies (i.e., latencies that are all equal to one) and was extended in further works [SS02].

Gupta and Soffa propose region scheduling [GS90] to increase and balance the parallelism
in a program. The algorithm works on an extended program dependence graph (EPDG), a hier-
archical representation of the scheduling region in which the nodes represent individual instruc-
tions, predicates or regions of control equivalent instructions. Similar to percolation schedul-
ing, the region scheduler repeatedly applies transformations to the EPDG that redistribute code
among the regions until no further transformations are possible or the parallelism in each region
matches that of the target processor.

The transformations are guided by estimates of the parallelism present in each region (the in-
struction count divided by the critical path length). They go beyond code motion and also include
loop transformations (unrolling and invariant code motion) and region copying and collapsing
(which is basically tail duplication and if-conversion, respectively). Code motion is allowed in
both directions, also speculatively or with compensation code. It is not only applicable to the
(leaf) nodes of the EPDG that represent instructions, but also to those higher in the hierarchy
that represent regions. This means that the scheduler is capable of moving entire subgraphs that
represent, for example, an if-statement. In doing so, region scheduling combines scheduling of
fine-grain parallelism with transformations of the control structure that expose such parallelism.

Bernstein and Rodeh [BR91] present a comparatively simple global scheduling algorithm
that processes the basic blocks inside an acyclic scheduling region in topological order (of the
BBG) and schedules them one at a time. The scheduling of each block occurs similarly to list

3.3. GLOBAL SCHEDULING 57

scheduling. In difference to this local method, the list of data ready1 candidates for scheduling
is made up not only of instructions that originate from the block being scheduled, but also of
instructions from control equivalent successor blocks and the direct successors of these blocks. In
this way, (speculative) upward code motion is incorporated; compensation copies, however, are
not supported by the presented implementation. Once all instructions are scheduled that originate
from the current block, the scheduler moves to the next block. The approach has similarities with
wavefront scheduling, the (patented) technique implemented in Intel’s Itanium compiler, which
will be outlined now.

Wavefront scheduling [BMM00] uses a high level driver that selects scheduling regions and
passes them to the scheduler proper. A scheduling region may contain arbitrary acyclic control
flow. After it has been scheduled, it is grouped into one or more new BBG nodes and nested. This
is a recursive process that starts at the innermost loops. When regions of completed blocks are
nested, the data flow information within them (memory references, live-out and live-in values,
outgoing latencies) is summarized in order to allow semantically correct code motion across the
resulting nested nodes. In this way, code can even be moved across a loop that is abstracted away
through nesting.

A specialty of wavefront scheduling is that it makes extensive use of path vectors to represent
control-flow related information. Let C = {P1, . . . , Pk} be the set of complete paths through the
scheduling region, then each subset of C can be represented by a vector x ∈ {0, 1}k where xi is
equal to one if and only if the subset contains Pi. For instance, BPV (A) ∈ {0, 1}k denotes for
each basic block A the subset of paths that flow through it. Prob(x) is the aggregate probability
that the control flows along one of the paths embodied by the path vector. Set operations like “∩”
and “\” can be represented by performing simple boolean operations on the path vectors. The
size of path vectors can grow exponentially with the region size—hence the regions are selected
in such a way that the number of paths does not exceed a certain threshold.

We now describe how a region is scheduled. The scheduler processes the blocks in the region
top-down in a certain topological order. This order is defined by the movement of a wavefront,
a (changing) set of blocks such that each complete path in the region passes through exactly one
block in it. The wavefront can be regarded as the boundary between scheduled and yet to be
scheduled blocks in the region. More precisely,

• the blocks above the wavefront have been scheduled,

• the blocks on the wavefront are being scheduled (simultaneously), and

• the blocks below the wavefront still have to be scheduled.

The initial wavefront consists of all entry blocks. Once the scheduling of a block on the wavefront
is finished, the scheduler attempts to advance the wavefront across it2. Fig. 3.3 depicts how a
wavefront can advance down the region until it passes through all the exit nodes (W1-W6).

1An instruction is data ready if it is not data dependent on another, yet unscheduled instruction.
2It is noteworthy that the algorithm requires all JS edges to be removed via JS blocks. Only then it is guaranteed

that a block-wise advancement of the wavefront is always possible.

58 CHAPTER 3. THE GLOBAL INSTRUCTION SCHEDULING PROBLEM

W1

W3

W2

W4

W6
W5

Figure 3.3: Wavefront advancement in six steps.

By scheduling instructions only into blocks on the wavefront, it is guaranteed that the com-
pensation copies they require can be inserted entirely into other blocks on the wavefront. The
scheduler tracks the compensation need of each instruction by means of a compensation path
vector. This vector for an instruction n with source block s(n) is initialized to CPV (n) :=
BPV (s(n)). When scheduling n into a block D, it is changed to CPV (n) := CPV (n) \
BPV (D) to update the information where further copies still have to be scheduled. Fig. 3.4
shows an example where CPV (n) is changed from 11100 to 01100 after n := op1 is scheduled
into D.

The generation of compensation copies does not have to occur immediately, instead it can
be deferred until a better opportunity arrives in a later wavefront (in Fig. 3.4 along the wave-
fronts W4-W5). Such an opportunity can be a free execution slot in a block for which no other
instruction candidate can be found.

However, the compiler must also keep track of the latest feasible blocks where these copies
can be scheduled: In the example, wavefront W5 is the last possibility. There are other factors
that can constrain the downward movement of an instruction, such as the availability of its qual-
ifying predicate. In all these cases, the scheduler ensures that the wavefront is only advanced
if all instructions that cannot be deferred further have been scheduled (then their compensation
vector is

−→
0). Scheduling multiple copies of an instruction on a path is also avoided.

The actual choice which instruction is scheduled next into a block is performed similarly to
list scheduling [WM97, Muc97]. For each block on the wavefront, a list of candidate instructions
is maintained that contains unscheduled, data ready instructions that originate from a predecessor
or a successor of the block. The scheduler selects one of these instructions for scheduling into
the block based on a cost-benefit analysis. Instructions are preferred that lie on a global critical

3.3. GLOBAL SCHEDULING 59

W3

W4

W5

n:=op1

D

S=s(n)

Path 2/4
P1/3P0

P1/2

P3/4

Figure 3.4: Deferred compensation.

DDG path, and—in the case of a speculative candidate—are likely to be useful if scheduled
speculatively into the block. The usefulness is the likelihood that the speculative execution is not
futile, namely:

Prob (BPV (D) ∩ BPV (s(n)))

Prob (BPV (D))

which is the probability that the control flow passes through the instruction’s source block s(n)
if it flows through D. The cost term of the selection function takes speculation costs (when
employing control and data speculation etc.) and resulting compensation copies into account.

The support of long-range upward and downward code motion, different sorts of speculation,
lazy compensation code insertion, and predication makes wavefront scheduling one of the most
complex and powerful global scheduling techniques. An implementation for the Itanium pro-
cessor achieved a 30% speedup on SPECint 95 over local scheduling (assuming perfect caches)
[BMM00].

One drawback is, however, that it fully relies on path vectors, which limit the complexity of
the scheduling region. Furthermore, it is a greedy, top-down algorithm: scheduling decisions
are made one at a time, based on a heuristic selection function, and never reconsidered. When
deciding about scheduling an instruction into a block, it is unknown whether a better opportunity
will arrive in a later wavefront—this depends on other scheduling decisions still to be made.
Such interdependences between decisions are well known in the area of code generation; we
have already mentioned the phase-coupling problem between code generation phases.

It is evident that data dependences constitute one of the causal links between scheduling deci-
sions that lead to interdependences. But also resource aspects play a major role: Techniques like
global code motion, speculative loads, and predication increase the demand for execution slots

60 CHAPTER 3. THE GLOBAL INSTRUCTION SCHEDULING PROBLEM

(as described for code motion in Sec. 3.3). At the same, they decrease the schedule length (this
is why they are applied) and thereby the supply of execution slots in the schedule. The compiler
must find a trade-off between these two conflicting effects when applying such features. A too
conservative use can lead to empty, wasted execution slots, contrary to the EPIC philosophy. But
overuse can force the schedule length to rise again due to execution-slot shortage, which could
spoil the benefit.

These multifaceted interactions are our incentive to employ integer linear programming: It
has the potential to resolve all interdependences between scheduling decisions and to deliver a
global optimum. Note that the notion of “optimality” is used in an algorithmic sense here: The
resulting schedule is optimal with respect to our mathematical definition of the global scheduling
problem (to be developed in the next section). In a wider context, however, optimality is relative
and more complex: for example, it depends on the input set, which we must approximate by
profiling information. Also there are a lot of difficult to predict, influential dynamic effects
like cache misses interacting with the schedule. Clearly, no mathematical model can fully and
precisely describe and minimize these runtime effects. We can achieve strict optimality only
within a well-defined problem scope. However, on a statically scheduled architecture, there
should be a strong correlation between schedule length and performance—this is also what our
experiments in Chapter 7 confirm.

3.3.2 Formalization

The previous section has shown that numerous algorithms exist that deal with the global schedul-
ing problem. Yet a general, formal definition of the problem is missing in the literature. Before
we develop such a formalization in this section as the first step towards an ILP model, we sum-
marize several common properties of the algorithms:

• They all divide the input program into scheduling regions and tackle them separately.

• Code motion occurs only inside these regions along control flow paths.

• Some permit only upward code motion.

• Most allow speculative code motion.

• Some feature generation of compensation code.

• Most do not schedule more than one copy of an instruction on a single path.

• Most use profiling information to estimate the profitability of code motion.

• All aim at reducing the schedule length, giving blocks with higher execution frequencies a
higher priority.

Our goal is a unifying problem definition that complies with all these observations. One of the
challenges is to provide a straightforward, general, and flexible formalization of when and where
compensation copies are necessary. As we will see, the key to finding such a formalization is a
path-based view of the problem. We begin with some basic definitions:

3.3. GLOBAL SCHEDULING 61

Definition 3.3.1 (Scheduling Positions, Reserved Cycles) Instructions can be scheduled at
(scheduling) positions in the basic blocks. The set of all possible scheduling positions is given
by Pos ⊆ B × N+. A tuple (B, s) ∈ Pos refers to the s-th position or (machine) cycle s in the
basic block B. An order on the positions is defined as follows:

(A, sA) ≺ (B, sB) ⇔
{

A ≺ B in GB if A �= B
sA < sB if A = B

(3.3.1)

Pos is a finite set: For each basic block A, a maximal number of cycles is given and denoted by
GA. Then (A, 1) , . . . , (A,GA) is the range of scheduling positions in Pos belonging to block
A. GA is also called the number of reserved cycles of A; the total number of reserved cycles is
denoted by G :=

∑
A∈B GA. ✷

Each scheduling position consists of one or more execution slots that take up the individual
instructions. Having a finite number of these positions is a realistic assumption that leads to a
finite solution space. This is useful with respect to the later transformation of the definition into
an ILP model. Now we consider in which blocks instructions may be scheduled. We briefly
recapitulate two notions from the previous sections: For each instruction n ∈ V , we call the
block where it originates from before scheduling source block, denoted by s(n). Code motion
moves the instruction from this source block to a destination block. The possible destination
blocks are collected in a set:

Definition 3.3.2 (Destination Block Candidates) For each instruction n ∈ V , the set Θ(n) ⊆
B denotes its destination block candidates, i.e., those blocks where copies of n can be sched-
uled. ✷

The source block and all its predecessors and successors in the BBG are potential destination
block candidates, thus we can initially assume that Θ contains all those blocks. However, the
range of destination block candidates must be constrained for non-speculative instructions (see
Sec. 2.1.5.1): They must not be executed speculatively, which can be ruled out if the source block
dominates and postdominates the destination block for downward and upward code motion,
respectively. Accordingly, we exclude from Θ(n) for a non-speculative instruction n

• all those predecessors of s(n) that are not postdominated by s(n) and

• all those successors of s(n) that are not dominated by s(n).

In the course of this thesis, we will encounter more reasons why further blocks should or must
be excluded from the range of destination block candidates. Thus we make—apart from the
above exclusion for non-speculative instructions—here no further assumptions on Θ and regard
its definition as a given integral part of a global scheduling problem instance.

From now on, we often call destination block candidates simply “candidate blocks”. The
distinction between them and destination blocks is important: in candidate blocks copies of an
instruction may be scheduled. If a copy is actually scheduled in one of these blocks, then the latter

62 CHAPTER 3. THE GLOBAL INSTRUCTION SCHEDULING PROBLEM

becomes a destination block of the instruction. Hence the notion “candidate block” is related to a
scheduling problem instance and ”destination block” to a solution of this problem—a schedule.

Now we examine what constitutes semantics-preserving global scheduling. Before schedul-
ing, we can regard the scheduling region as an original global schedule, σo, where all instructions
are scheduled in their respective source blocks (in the order given by the control flow graph). The
process of global scheduling then can be viewed as a transformation between global schedules
that rearranges instructions, but does not change the control flow structure (although it may empty
some blocks). Hence the set of program paths—paths that go from an entry block to an exit block
through the scheduling region—remains unchanged. This allows us to take a path-based view of
semantics preservation and say that a transformation from schedule σo to σ is correct if the same
computations (and possibly exceptions) are performed in both schedules along every program
path.

To be more precise, this is the case when all instructions that occur along a path in σo also
occur along this path in σ, and when all dependences between these instructions are preserved.
Additionally, non-speculative instructions may only appear on a path in σ if they appear along
this path in σo, too.

These insights are embodied by the following definition: The equations (3.3.2) hold for each
instruction n ∈ V and for each path in C(s(n)), i.e., for each path through n’s source block (see
Def. 3.2.4). They ensure that in σ each such path contains exactly one copy of n, as is the case
with σo (B(P) ⊆ B denotes all blocks along the path P). The constraints (3.3.3) enforce that
instructions are only scheduled in their candidate blocks. The choice of the candidate blocks for
non-speculative instructions makes sure that they appear only on paths in σ that pass through
their respective source blocks. Equ. (3.3.4) guarantees that instructions are assigned to suitable
execution units.

The precedence constraints (3.3.5) preserve the data dependences. The paths in C(s(m)) ∩
C(s(n)) are exactly those paths on which both m and n are located in σo. Then the two copies
of these instructions along each such path in σ must be scheduled at positions that do not violate
the dependence (m,n) ∈ ED. Two such positions (A, sA) and (B, sB) respect the dependence if
block A is a predecessor of B, or if both blocks are equal and n is scheduled at least wmn cycles
later than m there (as stated by the two rows of (3.3.5), together with Def. 3.3.1).

Remarkably, the latency wmn in this definition is only taken into account within basic blocks.
The propagation of latencies greater than one between basic blocks is not incorporated. Thus
only intra-block stalls and no inter-block stalls due to long latencies3 are allowed for. Since most
of the Itanium 2’s latencies are zero or one cycle, this inexactness is tolerated for the sake of
simplicity in both the definition and the later ILP model. Nevertheless, we will discuss possible
corrective measures later in Sec. 6.7.

The resource constraints (3.3.6) finally make sure that not more instructions are scheduled
at a position than can be executed per cycle by the target processor. Note that the form of
these constraints is Itanium-specific in the sense that it implies that all execution units have a
throughput of one operation per cycle (in other words, they are fully pipelined, see Sec. 2.2.3.3).

3In general, “long latencies” refers to latencies greater than one cycle .

3.3. GLOBAL SCHEDULING 63

Definition 3.3.3 (Global Schedule) Let the BBG and DDG of a scheduling region be given as
defined in Def. 3.2.3 and 3.2.6. Let s : V −→ B give the source block of each instruction and
Θ : V −→ P(B) the set of candidate blocks. Pos is the given finite set of scheduling positions
according to Def. 3.3.1. Furthermore, let R(n) ⊆ R denote the set of functional unit types on
which an instruction n can be executed, and let Rk denote for each type k ∈ R the number of
functional unit instances.

A global schedule is a mapping σ : V −→ P(Pos×R) that assigns to each instruction a set
of positions and functional unit types such that for each instruction n ∈ V holds:

∀P ∈ C(s(n)) : |{((A, sA), k) ∈ σ(n) |A ∈ B(P)}| = 1 (3.3.2)

{A ∈ B |((A, sA), k) ∈ σ(n)} ⊆ Θ(n) (3.3.3)

{k ∈ R |((A, sA), k) ∈ σ(n)} ⊆ R(n) (3.3.4)

Moreover, precedence constraints exist for each DDG edge (m,n) ∈ ED:

∀P ∈ C(s(m)) ∩ C(s(n)),
∀((A, sA), k) ∈ σ(m) s.t.A ∈ B(P),
∀((B, sB), l) ∈ σ(n) s.t.B ∈ B(P) :

{
(A, sA) ≺ (B, sB) if A �= B
(A, sA + wmn) � (B, sB) if A = B

(3.3.5)

Resource constraints are generated for each position and for each execution unit type:

∀pos ∈ Pos,∀k ∈ R : |{n ∈ V |(pos, k) ∈ σ(n)}| ≤ Rk (3.3.6)

Sometimes, a global schedule is said to be feasible to emphasize that it meets the above con-
straints. ✷

A consequence of this definition is that along no control flow path two or more copies of the
same instruction can be scheduled:

Proposition 3.3.4 If in a global schedule a copy of an instruction is scheduled in a block, then
no further copy of the same instruction can be scheduled in this block or in one of its predecessor
or successor blocks. ✷

PROOF Suppose for the purpose of contradiction that two copies of an instruction n are sched-
uled in A ∈ Θ(n) and B ∈ Θ(n) with A � B. We show that there exists a control flow path
that traverses A, B, and s(n)—the contradiction then results from Equ. (3.3.2). We note that
both A and B are either a predecessor or a successor of s(n) (or equal to this source block) and
distinguish three possible cases:

• If A ≺ s(n) and B ≺ s(n), then there exists a path leading from A to B and from B to
s(n).

• If A ≺ s(n) and s(n) � B, then there exists a path leading from A to s(n) and from s(n)
to B.

64 CHAPTER 3. THE GLOBAL INSTRUCTION SCHEDULING PROBLEM

• If s(n) � A and s(n) � B, then there exists a path leading from s(n) to A and from A to
B. �

Global scheduling can be regarded as the problem to find a global schedule that yields maxi-
mal performance. In line with the examined heuristics, this is a schedule with a minimal global
schedule length, which we define as the sum of the schedule lengths of all basic blocks, each
weighted by the execution frequency of the block (given by the values fA ∈ R):

Definition 3.3.5 (Global Scheduling) Global scheduling (GS) is the following minimization
problem: Given is a scheduling region together with the execution frequencies. Find a global
schedule according to Def. 3.3.3 that minimizes the global schedule length:

∀n ∈ V, ∀((A, s), k) ∈ σ(n) : s ≤ TA (3.3.7)

min
∑
A∈B

fA · TA (3.3.8)

✷

In any solution that is minimal with respect to the value of (3.3.8), TA equals the schedule
length of block A. In other words, in any optimal solution, TA is equal to the latest cycle where
an instruction is scheduled in A:

TA = max {s ∈ N+ |n ∈ V, ((A, s), k) ∈ σ(n)}
The sum in (3.3.8) has then exactly the value of the global schedule length. Remarkably, the
latter is only defined on the basis of a node profile (via fA) and not on the basis of a more precise
edge or path profile. This is in our case sufficient since we ignore inter-block stalls. Under these
circumstances, a path profile version of (3.3.8) would yield the same results as the node profile
version. Besides, only node profiles will be available later in the experiments.

The schedule length of a basic block is often simply called its block length and the inequalities
(3.3.7) are referred to as block length constraints. They do not constrain the set of feasible
schedules, but the set of schedules with certain maximum block lengths (TA). In doing so,
they provide the link between the schedule constituted by σ and the objective function (3.3.8)
via the TA variables. Our later analysis will reveal that these constraints play a pivotal role in
determining the complexity of global scheduling. To support the complexity analysis and the
stepwise development of the ILP model, we distinguish four subproblems:

Definition 3.3.6 (PCGS) Precedence-constrained global scheduling (PCGS) is the global sched-
uling problem as defined in Def. 3.3.5, but without the resource constraints (3.3.6). ✷

Definition 3.3.7 (RCGS) Resource-constrained global scheduling (RCGS) is the global schedul-
ing problem as defined in Def. 3.3.5, but without the precedence constraints (3.3.5). ✷

If we omit additionally the block length constraints, we have no longer the possibility to
incorporate the global schedule length or the dynamic block lengths (i.e., the values TA, which
depend on σ) into the problem formulation. Without these minimization criteria, the problem
becomes a feasibility problem, namely the problem to find a global schedule that fits into the
static block length limitations imposed by the numbers of reserved cycles of the basic blocks4.

4If we allow unlimed block lengths, a feasible schedule can evidently always be found (the original schedule).

3.3. GLOBAL SCHEDULING 65

Definition 3.3.8 (PCGS-B) Precedence-constrained global scheduling without block length con-
straints (PCGS-B) is the following feasibility problem: Given is a scheduling region as defined
in Def. 3.3.3. Find a feasible global schedule in the absence of resource constraints (3.3.6). ✷

Definition 3.3.9 (RCGS-B) Resource-constrained global scheduling without block length con-
straints (RCGS-B) is the following feasibility problem: Given is a scheduling region as defined
in Def. 3.3.3. Find a feasible global schedule in the absence of precedence constraints (3.3.5). ✷

66 CHAPTER 3. THE GLOBAL INSTRUCTION SCHEDULING PROBLEM

Chapter 4

Integer Linear Programming

Since the invention of the simplex algorithm by George B. Dantzig over fifty years ago [Dan51],
linear programming (LP) has developed into an indispensable tool for the formulation and solu-
tion of optimization problems. This applies especially to the substantially more powerful—and
substantially more difficult to solve—integer linear programming (ILP) variant. Both LP and ILP
minimize a linear objective function subject to linear constraints. The distinguishing feature of
ILP is that the variables range over a discrete set, namely a subset of the integers, which enables
the modeling of combinatorial or discrete optimization problems.

The potential of ILP was almost immediately recognized after its discovery in the fifties
[BFG+00]. But insufficient hardware and software have soon led to some disillusionment and
to the perception that ILP has very limited practical applicability. In the last years, however,
this situation has changed “dramatically” due to advances in solution algorithms as well as ILP
formulations [BFG+00]. This is also confirmed by our own experiences.

Typical ILP applications concern “the management and efficient use of scarce resources to
increase productivity” [NW88], a goal that is pursued—in the broader sense—also by this work.
Operations research, an interdisciplinary field involving mathematics, computer science, and
economics, studies the use of combinatorial optimization for decision-making in business, in-
dustry, and government. This includes areas like supply chain planning, transportation logistics,
and portfolio selection, where “large [ILP] models are routinely solved in many production appli-
cations” today [ILO03b]. Other scientific applications comprise statistics (data analysis), physics
(determination of minimum energy states), bioinformatics (protein-protein docking), and electri-
cal engineering (VLSI circuit design).

This chapter provides a brief introduction to the fundamental definitions, theorems, and al-
gorithms of integer linear programming. It covers only aspects relevant to this thesis; more
comprehensive surveys are available in text books like [NW88, NW89, Sch86].

4.1 The Theory of Linear Programming

We begin with the introduction of linear programming which constitutes the basis of the integer
variant in both theory and practice. For example, we will see that every ILP can be reformulated

67

68 CHAPTER 4. INTEGER LINEAR PROGRAMMING

as an LP. Beyond, ILP solvers often employ solution algorithms for linear programming as sub-
routines. To begin with, the following is a collection of some basic definitions and results from
[NW88]:

1. A subset C of Rn is convex if λx+ (1− λ)y belongs to C for all x, y ∈ C and each λ ∈ R
with 0 ≤ λ ≤ 1. The convex hull conv(X) of a set X ⊆ Rn is the smallest convex set
containing X .

2. A subset P of Rn is called a polyhedron if there exists an m × n matrix A and a vector
b ∈ Rm such that P = {x ∈ Rn|Ax ≤ b}. P is called a polytope if it is bounded, i.e., if
there exists an ω ∈ Rn such that P ⊆ {x ∈ Rn| − ω ≤ x ≤ ω}. P then is the convex hull
of finitely many points in Rn.

3. The points x1, . . . , xk ∈ Rn are called linearly independent if there do not exist λ1, . . . , λk ∈
R such that

∑k
i=1 λixi = 0 and such that the λi are not all equal to 0. They are called

affinely independent if there do not exist λ1, . . . , λk ∈ R such that
∑k

i=1 λixi = 0,∑k
i=1 λi = 0 and such that the λi are not all equal to 0.

4. A polyhedron P ⊆ Rn is of dimension k, denoted by dim(P) = k, if the maximal number
of affinely independent points in P is k + 1. It is called full-dimensional if dim(P) = n.

5. Given a vector π and a real π0, the inequality πx ≤ π0 is called valid for a nonempty
polyhedron P if it is satisfied by all points in P . In this case the polyhedron F =
{x ∈ P | πx = π0} is called a face of P , and πx ≤ π0 is said to represent F . F is called
proper if F �= ∅ and F �= P ; it is a facet of P if dim(F) = dim(P) − 1. An inequality
representing a facet is called facet-inducing.

As an example, Fig. 4.1 shows a three-dimensional polytope with three faces F0, F1, and F2

of dimension 0, 1, and 2, respectively. F2 forms a facet and it holds F0 ⊂ F1 ⊂ F2. In general, it
can be shown that a proper face is a facet if and only if it is inclusionwise maximal [NW88]. The
bounded faces of dimension one are called edges of a polytope; each edge connects two zero-
dimensional faces, which are called extreme points—their convex hull is equal to the polytope.
We often employ a different, equivalent definition:

Definition 4.1.1 (Extreme Point) A point x ∈ P is called an extreme point of P if there do not
exist w, y ∈ P,w �= y and c ∈]0, 1[such that cw + (1− c)y = x. ✷

Given an n-dimensional polyhedron, the extreme points are exactly the intersection points of n
facets whose corresponding matrix rows are linearly independent:

Theorem 4.1.2 ([Sch03b]) Let P = {x ∈ Rn|Ax ≤ b} be a polyhedron and let z ∈ P . Fur-
thermore, let Azx ≤ bz be the system consisting of those inequalities from Ax ≤ b that are
satisfied by z with equality. Then z is an extreme point of P if and only if rank(Az) = n. ✷

4.1. THE THEORY OF LINEAR PROGRAMMING 69

FF1
2

F0

Figure 4.1: Faces of a polytope.

Each polytope P is uniquely characterized by its extreme points, or by its facets: In [NW88]
it is shown that for each facet, one of its representing inequalities is necessary in the description
of P , while every inequality that represents a face but not a facet is irrelevant.

Furthermore, each full-dimensional polyhedron has a unique (to within scalar multiplication)
minimal representation by a finite set of linear inequalities. In particular, this representation con-
tains for each facet exactly one inequality (unique to within scalar multiplication) representing
this facet (Theorem 3.5 of [NW88]).

A polyhedron plus the vector of an objective function can be interpreted as a linear program:

Definition 4.1.3 (Linear Program) Let a linear program (LP) be given by a polyhedron PF ={
x ∈ Rn

+ |Ax ≥ b
}

1, c ∈ Rn, b ∈ Rm and A ∈ Rm×n. Linear programming is the following
optimization problem:

Minimize (or maximize) the objective function cTx subject to x ∈ PF

PF is called the feasible region and each x ∈ PF a feasible solution. The LP is said to be feasible
if PF �= ∅. An x∗ ∈ PF with a minimal objective function value cTx∗ = inf

{
cTx |x ∈ PF

}
is

called an optimal solution. If the infimum does not exist, then the problem is either unbounded
(PF �= ∅) or infeasible (PF = ∅). ✷

1The polyhedron is often given as PF =
{
x ∈ Rn

+ |Ax ≤ b
}

. Both forms are equivalent because we can multiply
the inequalities by (−1). Moreover, we often assume in the following proofs that the nonnegativity constraint
x ∈ Rn

+ is explicitly expressed by additional inequalities xi ≥ 0 (∀1 ≤ i ≤ n).

70 CHAPTER 4. INTEGER LINEAR PROGRAMMING

Example 1 The following linear program has an optimal solution with x1 = 1, x2 = 1.5 and an
objective function value of 2.5:

min x1 + x2

s. t. :
(I) x1 + 2x2 ≥ 4
(II) 3x1 + 2x2 ≥ 6
(III) −x1 + 2x2 ≥ 0 ✷

Intuitively, the goal of linear programming is to find a point inside a polytope that is farthest in
the direction of a vector. The following theorem 4.5 from [NW88] shows that it is sufficient to
consider only the extreme points for this:

Theorem 4.1.4 Let an LP with a full-dimensional polyhedron be given. If it has an optimal
solution, then there exists also an optimal solution that is an extreme point. ✷

This theorem is exploited by the simplex algorithm, an established and efficient method to
solve linear programs. Essentially, simplex works as follows: The first phase determines a feasi-
ble extreme point (illustrated in Fig. 4.2).

Figure 4.2: Illustration of the simplex algorithm.
The path shows the process of finding a feasible solution (darker shade) and then of an optimal
solution (along the polytope edges). The upper right arrow depicts the objective function.

The second phase tries to advance iteratively to adjacent extreme points with lower objective
function values by moving along the edges of the polytope (performing a simplex step, or pivot
step). Candidates for this are all edges that lead in the direction of a nonincreasing objective
function value. If such an edge does not exist, the present solution is known to be optimal.

4.1. THE THEORY OF LINEAR PROGRAMMING 71

The method terminates since there can be no more than

(
m
n

)
extreme points in a polytope

(the number of possibilities to intersect n out of m possible facets), and since cycling can be

avoided. There exist problem classes where simplex actually traverses Ω

((
m
n

))
extreme

points before it reaches an optimal one, hence its worst-case solution time is exponential.
Nevertheless, the simplex method has proven to be highly successful in the solution of real-

world problem instances. This observation has been supported by probabilistic analysis, which
shows that its expected solution time is polynomial (under rather general assumptions on the
underlying distribution of instances) [NW88].

In addition, there are two polynomial-time solution methods that prove that linear program-
ming is in P: the ellipsoid algorithm of Khachiyan [Kha80] and the projective algorithm of
Karmarkar [Kar84]. For both, the linear program must be reformulated as a feasibility (interior-
point) problem. While the former is considered to be only of theoretical value, the latter is
regarded as a competitive alternative to the simplex method in practice.

An important property of linear programs—also with respect to integer programming—is
duality. A possible approach to duality is based upon the observation that linear combinations of
the constraints of an LP can yield lower bounds on the objective function value. For example, the
combination 1

4
·(I)+ 1

4
·(II) of the constraints from Example 1 gives the inequality x1+x2 ≥ 2.5,

which implies—as it must be satisfied by all feasible solutions—a lower bound on the objective
function of 2.5. This bound is even tight in this case.

The process of finding a maximal lower bound through linear combinations can be formulated
as an LP itself, where the variable vector contains the coefficients of the linear combination
described above and the objective function maximizes the resulting lower bound:

Definition 4.1.5 (Dual Problem) The dual problem, short dual, of a linear program as defined
in Def. 4.1.3 is written as:

max yT b
s. t. : yTA ≤ c

y ∈ Rm
+

The original LP from Def. 4.1.3 is called the primal (problem) in this context. ✷

Dual and primal behave symmetrically: The dual of the dual is the primal again. The following
theorem with proof in [NW88] states that the dual computes a lower bound on the primal and,
beyond that—as the central result of duality theory—that this lower bound is tight:

Theorem 4.1.6 (Duality Theorem) Let a linear program and its dual be given as denoted in
Def. 4.1.3 and 4.1.5. For each pair of feasible solutions of the primal and the dual holds:

1. Weak Duality:
yT b ≤ cTx

2. Strong Duality:
yT b = cTx ⇔ x and y are optimal solutions ✷

72 CHAPTER 4. INTEGER LINEAR PROGRAMMING

Hence each dual feasible solution provides a lower bound on the optimal primal objective
function value, a property that will be exploited when solving integer linear programs.

4.2 Integer Linear Programming

Definition 4.2.1 (Integer Linear Program) An integer (linear) program (ILP) is the same as a
linear program, except for the feasible region, which is:

PI =
{
x ∈ Zn

+ |Ax ≥ b
}

If only a subset of the variables is defined as integers, it is called a mixed integer linear program
(MIP). ✷

The feasible region of an ILP consists of integer points inside a polyhedron—thus it is no
longer a convex set and none of the polynomial solution methods for linear programming can be
applied. In fact, integer programming is NP-complete due to the integrality constraint. Drop-
ping this constraint yields the underlying linear program:

Definition 4.2.2 (Relaxation) Let a minimization problem A with feasible region X(A) be given.
A minimization problem R with the same objective function is called relaxation if for the feasible
region X(R) holds:

X(A) ⊂ X(R)

For an ILP with feasible region PI =
{
x ∈ Zn

+ |Ax ≥ b
}

, its LP-relaxation is the LP with the
same objective function and feasible region PR =

{
x ∈ Rn

+ |Ax ≥ b
}

. ✷

Remark 4.2.3 For the optimal objective function values of a minimization problem A and its
relaxation R always holds:

zA ≥ zR ✷

It follows from this (evident) remark that each optimal solution of a relaxation is also an optimal
solution of the original problem if it is feasible there. Hence, if an integer feasible optimal
solution of the LP-relaxation is found, then the corresponding ILP has been solved to optimality,
too. However, the extreme points of PR are often not integral, as in the example of Fig. 4.3.

This would be different if the polyhedron of the ILP, which encloses all of its feasible integer
points, could be made equal to the convex hull of these points, i.e., equal to PC = conv(PI).
Then simplex would compute an integral optimal solution of the LP-relaxation since it always
returns extreme points as optimal solutions, and hence solve the ILP. Polyhedra with this property
are called integral:

Definition 4.2.4 (Integral Polytope) A nonempty polyhedron P ⊆ Rm is said to be integral if
each of its nonempty faces contains an integral point. ✷

Corollary 4.2.5 ([NW88]) A nonempty polyhedron P ⊆ Rm
+ is integral if and only if all of its

extreme points are integral. ✷

4.2. INTEGER LINEAR PROGRAMMING 73

points P

Function
Objective

Feasible region P of the
relaxed problem

ILP

Convex hull P of the

Feasible region P of the

R

feasible integer
C

I

I

Figure 4.3: Feasible regions of the integral and relaxed problem.

It always holds PI ⊆ PC ⊆ PR and in the ideal case PC = PR.

Every ILP can be reformulated such that it has a (unique) integral polytope, however, it is often
unknown how and at which price: in general, there might be exponentially many constraints
necessary to describe PC [Sch86], or the computational complexity of finding these equations
could be exponential—these effects would introduce the exponential complexity “through the
backdoor” again. In particular, this is the case for NP-hard problems (unless P = NP): An
efficient—i.e., integral and polynomial sized—polytope of such a problem cannot exist since
otherwise the ellipsoid method could solve it in polynomial time.

Although integrality often cannot be achieved in practice, it is important that the ILP model
approximates PC as close as possible. One way to achieve this is to use as many facets of PC

(called integral facets) in the description of P as possible. The closeness to PC , also called
tightness of the polytope, is crucial to the solution efficiency and often decides whether the ILP
is tractable at all in practice. We will substantiate this rule theoretically in the next section and
practically in Chapter 7.

4.2.1 The Branch-and-Cut Algorithm

The branch-and-bound algorithm is the standard method for solving integer programs. Many
of today’s ILP solvers employ an extended variant—branch-and-cut—which is outlined in the
following.

The algorithm starts with solving the LP-relaxation. If the result is fractional-valued, branch-
and-cut combines two different approaches to obtaining integral solutions: the first tightens the
polytope by deriving and adding further constraints (cuts), while the second successively parti-
tions the polytope into smaller subpolytopes and tackles them separately (branching).

74 CHAPTER 4. INTEGER LINEAR PROGRAMMING

1 2 3 4

1

2

3

x2

x1 1 2 3 4

1

2

3

x2

x1

Figure 4.4: Illustration of Example 1.
The left-hand side shows the feasible region of the LP with its optimal solution (at the cross).
The right-hand side shows the same problem as an ILP; only after adding the Gomory-Chvátal
cut x1 + x2 ≥ 3 the LP-relaxation has an integer feasible optimal solution (2, 1).

A cutting plane (cut) is an inequality that is valid for PI but not necessarily for PR, i.e.,
that cuts away a subset of non-integral solutions. Usually, this subset includes the current (non-
integral) optimal solution so that reoptimizing is necessary afterwards to obtain a feasible solution
again. As each added inequality increases the size of the constraint matrix, cuts should be applied
selectively. The process is usually guided by heuristics that estimate the effectiveness of possible
cuts.

The ILP solver CPLEX automatically adds cuts from up to nine different classes, depending
on the structure of the ILP [ILO03b]. The following two were most often applied to the ILPs
generated in this work:

• Clique cuts: A group of binary variables x1, . . . , xk forms a clique if at most one of these
variables can be non-zero in any integer feasible solution. Then the inequality

∑k
i=1 xi ≤ 1

is valid and under certain conditions also facet-inducing (see Sec. 4.3). This relationships
can be tracked by ILP solvers via a clique table and dynamically exploited to derive cuts.

• Gomory fractional cuts: The idea behind these classical cuts [Gom58] can be demonstrated
on the basis of the similar Gomory-Chvátal cutting planes: For any inequality aTx ≤ δ that
is valid for PR and where a ∈ Zn, the Gomory-Chvátal cutting plane aTx ≤ �δ� is valid
for all integral points in PR, and thus valid for PI [Eis00, Sch86]. Figure 4.4 illustrates
such a cut obtained from the valid inequality x1 + x2 ≥ 2.5 of Example 1.

Gomory cuts are considered the most general as for any fractional-valued optimal solution of
the relaxation a violated Gomory cut can be found; the successive addition of these cuts always
leads to an optimal integral solution [NW88]. However, this result is, taken alone, of little value

4.2. INTEGER LINEAR PROGRAMMING 75

in practice since the convergence occurs much too slowly. Nevertheless, Gomory cuts have
turned out to be effective if their use is integrated with the branch-and-cut process and if they are
not added one at a time, but in groups [BFG+00].

If the addition of cuts still does not produce an integer feasible optimal solution, a decomposi-
tion into smaller subproblems takes place which are recursively solved using the same algorithm.
The solution of the whole problem is then obtained by combining the solutions of the subpoly-
topes as described by the following proposition:

Proposition 4.2.6 (Divide and Conquer) Let a minimization problem be given with feasible re-
gion P and objective function c : P −→ R, and let P1, . . . , Pk be a partition of P , i.e., Pi ⊂ P
and

⋃k
i=1 Pi = P . If we define zQ = min {c(x) |x ∈ Q} for each subset Q ⊆ P , then

zP = min {zP1 , . . . , zPk
} ✷

Since the decomposition and solution of the subpolytopes occurs recursively, a decomposi-
tion tree is formed in which each subproblem is a node. The active subproblems—those which
still require further processing—are to be found in the leaves of this branch-and-bound tree. The
partitioning usually is performed according to Dakin [Dak65]: The algorithm selects a decision
variable with fractional value δ and branches on this variable by creating two subproblems with
additional bounds xi ≤ �δ� and xi ≥ δ!, respectively. For binary variables, this means that they
are fixed at 0 and 1, respectively.

Carried to the extreme, this decomposition could lead to a total enumeration of the integer
feasible points, which is not viable. Hence the tree is continuously pruned, i.e., certain submodels
are discarded from further processing (fathomed). For this purpose, the algorithm always retains
the best integer solution found so far as the incumbent (solution). Its objective function value,
denoted by z, is a monotonously decreasing upper bound on the objective function value of an
integer feasible optimal solution. Subproblems are fathomed if they cannot contain an integral
solution with an objective function value less than this bound. The incumbent is known to be
globally optimal if no active subproblem remains, i.e., if for all subpolytopes Pi of the leaves of
the tree

1. an optimal integral solution of Pi is known, or

2. it is known that Pi does not contain an integral solution at all, or

3. it is known that all integral solutions of Pi have an objective function value greater or equal
to z.

The occurrence of the second and the third case can be determined efficiently by solving the
LP-relaxation of the subproblem or its dual. Regarding the second case, a subpolytope Pi does
not contain an integral solution if

• its LP-relaxation is infeasible—then there can also be no integral solution,

76 CHAPTER 4. INTEGER LINEAR PROGRAMMING

• or if the dual of its LP-relaxation is unbounded—then it follows from duality (Theorem
4.1.6) that Pi is empty.

Regarding the third case, we observe that for the objective function value zI of any integer
feasible solution in Pi it holds zI ≥ z if

• the LP-relaxation has an objective function value zR ≥ z—then it follows with Remark
4.2.3 zI ≥ zR ≥ z,

• or if the dual of its LP-relaxation has a feasible solution zD ≥ z—then it follows from
duality zI ≥ zR ≥ zD ≥ z.

The latter point gives one reason why branch-and-bound implementations usually solve the dual
of the LP-relaxation at each node (or, equivalently, apply the dual simplex algorithm directly to
the primal): While only an optimal solution of the primal delivers a lower bound, every feasible
solution of the dual already does the same. The greatest lower bound obtained this way is often
referred to as the “best bound” of the node. This value is monotonously increasing with the depth
of the nodes in the tree.

1 2 3 4x1

1

2

3

x2

1 2 3 4x1

1

2

3

x2

Figure 4.5: Application of branch-and-bound to Example 1.

Figure 4.5 depicts an example for a simple branch-and-bound procedure. It starts with an
optimal solution of the LP-relaxation as shown in the left-hand side of Fig. 4.4 (intentionally
no cuts are added). The first partitioning is x2 ≤ �1.5� and x2 ≥ 1.5!, yielding the integer
feasible solution (2, 1) with objective function value 3 in the first of the two subpolytopes (left-
hand side of Fig. 4.5). However, the best bound 8

3
of the other subpolytope does not allow to

exclude the possibility that a better integer feasible solution can still be found here2. Thus a

2At least for the described algorithm. A more sophisticated solver could observe that the objective function has
only integral coefficients and that consequently the objective function value of every integer feasible solution is
integral. This allows to round the best bound up to 3, to fathom the subproblem and to abort the branch-and-bound
process already here.

4.2. INTEGER LINEAR PROGRAMMING 77

further decomposition of this subpolytope occurs (x1 ≤ ⌊
2
3

⌋
and x1 ≥ ⌈

2
3

⌉
, right-hand side),

yielding the best bound 3 in both resulting subproblems. Hence (2, 1) is an optimal solution of
the ILP. The corresponding branch-and-bound tree is depicted in Fig. 4.6.

Optimal Solution: (1,1.5)

Best Bound: 2.5

Optimal Solution: (2,1)

Best Bound: 3

Optimal Solution: (0.6,2)

Best Bound: 2.6

Optimal Solution: (0,3)

Best Bound: 3

Optimal Solution: (1,2)

Best Bound: 3

x2 � 2x2 � 1

x1 � 1x1 � 0

Root node

(�)

(�)

Figure 4.6: Branch-and-bound tree corresponding to Fig. 4.5.

Nodes marked with (*) have subpolytopes consisting only of a single integer vector.

From the description of the branch-and-bound process it becomes clear why a tight ILP for-
mulation is so crucial to efficient solvability: Firstly, then more of its extreme points are integral,
or have more integral components. Secondly, the bound from the LP-relaxation gets tighter and
allows to prune the branch-and-bound tree earlier. This helps to contain its growth, which can be
exponential in the worst case.

Besides the tightness, two major sorts of decisions during the branch-and-bound process
strongly influence this growth. The first decision concerns the choice of the next active node for
branching. After processing a node, the ILP solver can

• continue to dive deeper into the tree from there by selecting one of the two newly created
successors of this node—if available—for decomposition (depth-first search),

• or select one of the other remaining active nodes and proceed there (backtracking).

The first choice prioritizes the early finding of integer feasible solutions, which are more likely
to be found deep in the tree than at nodes near the root [NW88, ILO03b]. The second works at
moving the best bounds, which is essential to proving that an attained incumbent is optimal, i.e.,
that no better integer solution can be found in another active subproblem. ILP solvers balance
these two sometimes-competing aims heuristically. Descriptions of backtracking strategies can
be found in [NW88, ILO03b]; they can be parameterized by the user to emphasize either early
feasibility or proving optimality.

78 CHAPTER 4. INTEGER LINEAR PROGRAMMING

During backtracking, a subproblem has to be selected among all active leaf nodes. The most
common strategy chooses the node with the lowest best bound, which is usually one near the top
of the tree. In contrast to this, an alternative strategy chooses a node that is estimated most likely
to contain an optimal solution (best estimate), which generally means diving deeper into the tree
from a different leaf.

The second decision concerns the selection of a fractional-valued variable for branching at a
node. It is preferable to choose variables whose integrality would also implicate the integrality
of other variables. However, robust methods for identifying such variables have not been estab-
lished, therefore it is common to let the user specify priorities [NW88]. [ILO03b] recommends
that, if integer variables represent different types of decisions, and if a decision depends on an-
other, then variables representing the depending decision should have a lower priority than those
representing the other.

If no priority order is available or if there is more than one variable with maximal priority,
then there exist a variety of heuristics for the choice of a variable; several are described in detail
in [NW88, ILO03b]. It is also possible to predetermine the branch direction of a variable, i.e.,
which of the two subproblems resulting from the division should be explored first.

In modern ILP solvers, the branch-and-cut process is supported by preprocessing and node
heuristics. Preprocessing applies several reductions to the ILP in order to simplify constraints,
reduce the problem size, and eliminate redundancy. This can include tightening bounds, fixing
and substituting variables, and removing redundant constraints [NW88, ILO03b]. In CPLEX,
these operations are applied iteratively in several passes to the root node prior to solving it and—
in a restricted way—also to the subproblems within the tree (node presolve). They can greatly
facilitate the solution process (see Sec. 7.3.1, [NW88]).

Node heuristics try to find integer feasible solutions at nodes during the branch-and-cut pro-
cedure heuristically. These periodically applied routines usually start from an available feasible
solution and fix successively fractional-valued variables to integers, subject to the condition that
the vector remains feasible and has an objective function value less than the incumbent’s one.
If an integral vector results, a new incumbent has been found and the node heuristics was suc-
cessful. Since successively better incumbents are highly important to move the upper bound
and prune the tree through this, the computational effort of the node heuristics pays even if it
succeeds only in a small fraction of all cases.

4.3 Solution Efficiency and Integral Polytopes

Although presolve tries to detect and remove redundant constraints, it can be advisable to deal
with redundant constraints already during the formulation of the ILP: Some models turn out
to be of polynomial size only after an exponential number of redundant constraints have been
removed—we will encounter an example for this in Chapter 5. Hence we will study redundancy
here in more detail:

Definition 4.3.1 (Redundancy) Given a system of linear constraints H, a constraint h ∈ H is
redundant in this system if there exists no point that satisfies all other constraints in H \ {h} but
not h. ✷

4.3. SOLUTION EFFICIENCY AND INTEGRAL POLYTOPES 79

The following lemma concretizes this definition with help of the duality theorem:

Lemma 4.3.2 (Redundancy and Subsumption) Let a polyhedron P = {x ∈ Rn|Ax ≤ b} be
given, and let P ′ = {x ∈ Rn|A′x ≤ b′} be the polyhedron P without the i-th constraint hi =
(Aix ≤ bi). This constraint is redundant in the description of P if and only if there exists a
linear combination of other constraints that subsumes hi, i.e., there exists a λ ∈ Rm−1

+ such that
Ai ≤ λTA′ and λT b′ ≤ bi. ✷

PROOF hi is redundant in the description of P according to Def. 4.3.1 if and only if the linear
program with feasible region P ′ and objective function max Aix has an optimal solution with
objective function value less than or equal to bi. With Theorem 4.1.6, this is the case if and only
if the dual of this LP has an optimal solution λ ∈ Rm−1

+ that satisfies its constraints λTA′ ≥ Ai

and has an objective function value λT b′ less than or equal to bi. The existence of such an λ was
to be shown. �

This lemma provides a means for detecting and removing a redundant constraint, however, it
should be used with care when applied to a group of constraints: The removal of a single redun-
dant constraint can render another, previously redundant constraint irredundant. For instance,
this is the case for the first two of the following inequalities, which are both redundant but cannot
be both removed:

2x1 + x2 ≤ 1 (A)

x1 + 2x2 ≤ 1 (B)

x1 − x2 ≤ 0 (C)

−x1 + x2 ≤ 0 (D)

The point is that for each of these two constraints, the other appears in the linear combination
that constitutes its redundancy ((A) + (D) for (B) and (B) + (C) for (A)). Thus, when one is
removed, the other is no longer redundant. The following lemma shows a way how to deal with
such circular dependences:

Lemma 4.3.3 A subset Ḣ ⊆ H of linear constraints is redundant in H if there exist

• a strict order # on Ḣ and

• for each h ∈ Ḣ a linear combination of other constraints h1, . . . hk ∈ H that subsumes h
and with the property hi # h for all hi ∈ Ḣ. ✷

PROOF We can safely apply Lemma 4.3.2 to remove all constraints in Ḣ if this is done succes-
sively in decreasing order with respect to #. �

Besides a minimal ILP size, a further goal during the formulation of the ILP is the integrality
of the polytope—or at least of a subpolytope. One well-known property that implies integrality
of a polytope is total unimodularity of the coefficient matrix:

80 CHAPTER 4. INTEGER LINEAR PROGRAMMING

Definition 4.3.4 (Total Unimodularity) An integral matrix A is totally unimodular if the deter-
minant of each square submatrix of A is equal to 0, 1, or −1. ✷

Theorem 4.3.5 (Hoffman-Kruskal) The polyhedron is P =
{
x ∈ Rn

+

∣∣Ax ≤ b
}

is integral for
all b ∈ Zm for which is it not empty if and only if A is totally unimodular. ✷

Note that this theorem with proof in [NW88] does not say that each integral polytope has a
totally unimodular coefficient matrix—the requirements for the forward implication are stronger,
namely integrality for different vectors b ∈ Zm. Thus total unimodularity apparently character-
izes only a subclass of all integral polytopes.

In fact, we will introduce now a further class of integral polytopes that goes beyond this
subclass. This class is especially suited for optimization problems that model logical implications
with binary variables: Many of these problems can be formulated—at least in parts—as node
packing problems on a graph. For these problems, integral facets and, under certain conditions,
entire integral polytopes are known:

Definition 4.3.6 (Node Packing Problem [Sch03b]) Let G = (V,E) be an undirected graph.

• A node packing on G is a U ⊆ V with the property that no pair of nodes in U is joined by
an edge. U is also called a stable set.

• The clique matrix KG of G is the (0,1) incidence matrix whose rows correspond to all the
maximal cliques of G and whose columns correspond to the nodes of G.

• The fractional node-packing polytope of G is P =
{
x ∈ R|V |

+

∣∣∣KGx ≤ 1
}

. ✷

Theorem 4.3.7 (Padberg) Each inequality of the fractional node-packing polytope represents
an integral facet. ✷

This result from [Pad73] is not sufficient to reason that the fractional node-packing polytope
is integral—for this result, it had to contain all the integral facets, i.e., all the facets of PC , the
convex hull of its enclosed integer points. This is only the case for a special class of graphs:

Theorem 4.3.8 ([NW88]) A graph is perfect if and only if its fractional node-packing polytope
is integral. ✷

This theorem reveals—in perhaps surprising clearness—that the theory of perfect graphs has
deep connections to integer linear programming. There exist two major characterizations of
perfect graphs, which have only recently been shown to be equivalent through the proof of the
strong perfect graph conjecture [Sch03a]. We do not expand on the complex topic of perfect
graphs here, but we note the following theorem from [Sch03a] for later use:

Definition 4.3.9 A graph G = {V,E} is called transitively orientable (or equivalently, compa-
rability graph) if each edge can be assigned a one-way direction in such a way that the resulting
oriented graph (V, F) satisfies the following property:

(a, b) ∈ F ∧ (b, c) ∈ F ⇒ (a, c) ∈ F ✷

4.3. SOLUTION EFFICIENCY AND INTEGRAL POLYTOPES 81

Theorem 4.3.10 Transitively orientable graphs are perfect. ✷

Often we cannot apply the preceding theorems directly to the polytopes whose integrality we
want to prove. Instead, we show that similar polytopes are integral and apply integrality-preser-
ving transformations to obtain the actual polytope. For example, the resulting polytope remains
integral if we

• turn several inequalities into equations by changing the “≤” relation symbol to “=”,

• or intersect it with a lower-dimensional plane spanned by coordinate axes,

• or project it onto a lower-dimensional plane spanned by coordinate axes,

• or duplicate columns of the constraint matrix.

The first statement, also expressed by the following lemma, is intuitively clear: if an inequality is
turned into an equation, then the resulting polytope, if nonempty, is equal to the face represented
by this inequality—and each face of an integral polytope is also an integral polytope. A formal
proof is given in Appendix B.1.1.

Lemma 4.3.11 Let P =
{
x ∈ Rn

+

∣∣Ax ≤ b
}

be an integral polyhedron. If the row indices I =
{1, . . . ,m} of A ∈ Rm×n are partitioned into two subsets I1 and I2, then

P ′ =
{
x ∈ Rn

+

∣∣AI1x ≤ bI1 ∧ AI2x = bI2
}

is integral (if nonempty). ✷

If we apply this lemma to some of the implicit inequalities xi ≥ 0 that hold for all variables,
then we can conclude that the polytope remains integral if we fix some variables to zero (the
second statement):

Corollary 4.3.12 Let P =
{
x ∈ Rn

+

∣∣Ax ≤ b
}

be an integral polyhedron. If some of the columns
of A are removed from the formulation with their corresponding variables, then the resulting
polyhedron remains integral (if nonempty). ✷

(Formal proof in Appendix B.1.2)

The transformation of the above corollary can be regarded as an intersection with the sub-
space HJ =

{
x ∈ Rn

+

∣∣ ∀i ∈ J : xi = 0
}

for a subset J ⊆ {1, . . . , n}, i.e., the subspace spanned
by the coordinate axes of the variables xi for all i /∈ J . We will finally show that not only an
intersection with HJ , but also an orthogonal projection onto this plane preserves the integrality of
a polytope (the third statement). The projection projJ(x) of a point x ∈ Rn

+ onto HJ is defined
as a vector y ∈ HJ such that

yi =

{
0 if i ∈ J
xi else

82 CHAPTER 4. INTEGER LINEAR PROGRAMMING

The projection of a polytope is then the union of its projected points:

projJ(P) =
⋃
x∈P

projJ(x)

In particular, the projection of a polytope is the convex hull of its projected extreme points.
Together with the fact that the defined kind of projection does preserve the integrality of points,
the following lemma with proof in Appendix B.1.3 is then perspicuous:

Lemma 4.3.13 If P =
{
x ∈ Rn

+

∣∣Ax ≤ b
}

is an integral polytope, then so is projJ(P). ✷

Finally, the last lemma—also with proof in the appendix—says that duplicating columns
of the constraint matrix preserves the integrality of the polytope. This transformation can be
regarded as replacing variables by a sum of new variables in the ILP.

Lemma 4.3.14 Let P =
{
x ∈ Rn

+

∣∣Ax ≤ b
}

be an integral polyhedron and let the m×n′ matrix
A′ be the matrix A with some columns duplicated. Then P ′ =

{
x ∈ Rn′

+

∣∣A′x ≤ b
}

is integral. ✷

Chapter 5

An ILP Model for Global Instruction
Scheduling

After the basics of global instruction scheduling and efficient integer linear programming have
been introduced in Chapters 3 and 4, respectively, this chapter will present our ILP formulation
for global instruction scheduling. We will begin with formulations for two subproblems from
Chapter 3: PCGS and RCGS without the resource and precedence constraints, respectively.

We aim at obtaining integral and polynomial sized polytopes for these subproblems—howev-
er, there is no general way, no silver bullet to achieve this: The determination of integral facets
of a problem is considered “more of an art than a formal methodology” [NW88]. In fact, we
found the presented formulation only to a lesser extent through polyhedral analyses, but more so
through experience and experimentation. However, later polyhedral analyses revealed that the
formulation—with some small changes—measures up to high levels of integrality, as it had been
indicated by the experiments.

During the analysis, we approach the question of efficiency also from the opposite side: By
identifying NP-complete subproblems we can determine the limits of efficiency, since we know
that we cannot obtain integral and polynomial sized subpolytopes for them unless P = NP .
Hence, in this chapter we will prove not only that our formulation is efficient, but also that it is
at the boundary of this limit imposed by NP-hardness.

5.1 Precedence-Constrained Global Scheduling

We first develop a polytope for PCGS of Chapter 3. We briefly recapitulate the notation devel-
oped there: The basic block graph is given by GB = (B, EB,Bentry,Bexit). C denotes the set of
all control flow paths in GB from an entry node (from Bentry) to an exit node (from Bexit) and
C(A) ⊆ C the subset of those paths that pass through block A. The set B(C) contains all blocks
on a path C ∈ C.

We say that a block A is a predecessor of block B if there exists a nonempty control flow
subpath from A to B, also written as A ≺ B. A is called a direct predecessor if there exists
a BBG edge (A,B) ∈ EB . The predecessor relationship � imposes a partial order on B. The

83

84 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

sets of A with its predecessors and successors are denoted by B�(A) := {B ∈ B |B � A} and
B�(A) := {B ∈ B |B $ A}, respectively.

The instructions with their global data dependences are given by the acyclic data dependence
graph GD = (V,ED). Each edge (m,n) ∈ ED has a latency wmn associated with it. An
instruction n ∈ V can be scheduled at a cycle t ∈ G(A) := {1, . . . ,GA} in one of its candidate
blocks A ∈ Θ(n) ⊆ B. This (scheduling) position can also be represented by a tuple (A, t) from
the set Pos ⊆ B × N+.

In order to simplify the development of the ILP model and the accompanying proofs, we
assume that the given scheduling region has several properties:

Remark 5.1.1 We make the following assumptions about the given scheduling problem and the
ILP model to be developed:

1. We allow unlimited code motion, which means that each instruction can be moved into all
predecessors and successors of its source block:

∀n ∈ V : Θ(n) := B�(s(n)) ∪ B�(s(n))

The following equation is a consequence of this definition:

∀(m,n) ∈ ED : Θ(m) ∩Θ(n) = {A ∈ B(C) |C ∈ C(s(n)) ∩ C(s(m))}

2. We assume that the number of reserved cycles of each block is at least two, and greater
or equal to one plus the maximal latency between two dependent instructions that can be
scheduled there:

∀A ∈ B : GA ≥ 2 ∧ GA ≥ max {1 + wmn |(m,n) ∈ ED ∧ A ∈ Θ(m) ∧ A ∈ Θ(n)}

3. We assume that there are no JS edges. As described in Sec. 3.2, this can be achieved by
adding new JS blocks.

4. We assume that there is a single, empty exit block, denoted by Ω:

Bexit = {Ω}

This new block is added as the common direct successor of all exit blocks. It is an empty
block with GA = 0 (the only exception from (2)).

5. We tolerate initially a small deficiency of the ILP model: We allow that a schedule may be
feasible although it violates the data dependences of instructions that are scheduled in the
first cycle of a basic block. ✷

These assumptions are not realistic and are only imposed for proof-technical reasons. They
increase the number of modeled scheduling positions and consequently the size of the ILP. More
seriously, (1) and (5) also affect the correctness. Therefore we will revert them completely after

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 85

the ILP model has been developed and after its integrality properties have been proven. This
will be done simply by removing variables from the formulation (i.e., removing the respective
matrix columns). With respect to (5), for example, this means that we remove the possibility to
schedule instructions at the first cycle of blocks—the second cycle becomes the new first cycle
et cetera. According to Corollary 4.3.12, the removal of matrix columns does not compromise
the integrality of a polytope. A detailed description of the reversal process follows in Sec. 5.1.2.

5.1.1 Deriving an Integral Subpolytope of PCGS-B

Initially, we focus on PCGS-B, the version of PCGS without the block length constraints. Instead
of presenting the final polytope right now, we will start from a naïve node-packing formulation
of the problem and improve—in a detailed, continuous process—its efficiency and complexity
properties. We will do so by providing a series of incrementally improved polytopes, accom-
panied by formal correctness and integrality proofs. This stepwise presentation simplifies the
proofs and makes it easier to adopt the employed methods to similar problems.

Our approach builds on earlier, proven ILP models for instruction scheduling, namely the
seminal OASIC formulation [GE93, CWM94]: Like there, the basic idea is to first model schedul-
ing as a node packing problem and then to exploit well-known results about integral facets and
polytopes of this problem class (as discussed in Sec. 4.3). The first part of the construction uses a
similar approach like [CWM94]. However, we are able to prove stronger results than [CWM94]
(and correct some issues), but above all, we tackle global instead of local scheduling.

We will construct a constraint graph Gc such that PCGS-B corresponds to the node packing
problem on this graph. Two other directed graphs are employed in order to develop Gc: We first
construct a skeleton digraph Gs and its transitive closure G∗

s. Gc is then defined as the underlying
undirected graph of G∗

s (i.e., the graph obtained by ignoring the orientation of the edges): The
single purpose of this indirect construction is that it will allow us later to apply directly Theorem
4.3.10 to conclude that Gc is perfect.

Gs︸︷︷︸
Skeleton Digraph

Transitive
Closure−−−−−−−−→ G∗

s︸︷︷︸
Transitively

Oriented Graph

Underlying
Undirected Graph−−−−−−−−−−−−−−→ Gc︸︷︷︸

Perfect
Constraint Graph

The skeleton digraph Gs = (N,Es) has nodes N ⊆ V × Pos, i.e., the nodes are tuples
composed of an instruction and a scheduling position (sometimes written as triples with the
position split up into its basic block and cycle components). We say that a node (m,B, s) ∈ N
belongs to instruction m, block B, and cycle s. Each node represents the decision to schedule the
instruction at this position. The graph contains for all instructions m ∈ V , all candidate blocks
B ∈ Θ(m), and all cycles s ∈ G(B) such a node (m,B, s), plus edges from this node to the
nodes (if existing):

• (m,A, t) if (A = B ∧ t = s − 1) or ((A,B) ∈ EB ∧ s = 1 ∧ t = GA)
(called type 1 edge)

86 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

• (n,B, s+ wmn − 1) if (m,n) ∈ ED (called type 2 edge)

The type 1 edges always go between nodes belonging to the same instruction, namely from each
node “upwards” to the node with the next lower cycle component (if the latter does not exist,
edges to the last nodes of all direct predecessor blocks are added). In contrast, type 2 edges
exist only between nodes belonging to the same basic block, namely between nodes of two data
dependent instructions.

As an example, Figure 5.1 (a) depicts a simple basic block graph. The circles inside each
block represent the associated nodes of Gs for two dependent instructions m and n (in this ex-
ample, only one or two cycles are reserved in the basic blocks). Figure 5.1 (b) shows the skeleton
digraph and (c) its transitive closure. The type 2 edges, shown in a lighter grey, are vertical in this
example since we assume that the latency wmn is one. Broadly speaking, the rationale behind
this structure is that two nodes are connected by an edge if they represent scheduling decisions
that cannot coexist in any feasible schedule.

(a) (b) (c) (d)

Nodes of m Nodes of n

A

D

B C

(, ,1)m A

(, ,1)n B

(, ,1)m B

(, ,1)m D

(, ,2)m D

(, ,1)n A

(, ,1)m B

(, ,1)n B

(, ,1)n D

(, ,2)n D

Figure 5.1: An example with four basic blocks and two instructions (a), the corresponding skele-
ton digraph Gs (b), its transitive closure (c), and a maximal path in Gs (d).

If an instruction n is dependent on m with latency zero, then there is no type 2 edge due to
this dependence outgoing from a node of the form (m,B, 1), that is, where m is scheduled in the
first cycle of a block. Such an edge would go to the node (n,B, 0), which does not exist (note
the caveat “if existing” in the above definition). This absence causes the deficiency mentioned
in Remark 5.1.1-(5). It could be fixed by adding type 2 edges to all direct predecessor blocks,
however, this is not done for the sake of simplicity, namely in order to uphold the rule that type
2 edges exist only between nodes belonging to the same block. From now on we denote by
PCGS-B* the variant of PCGS-B that tolerates this deficiency.

In the following we will often use abbreviations to describe groups of nodes with a particular
component, that is, we denote by

• N(m) = {(n,B, s) ∈ N |n = m} those nodes that belong to instruction m

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 87

• N(A) = {(n,B, s) ∈ N |B = A} those nodes that belong to block A

• N(C) =
⋃

A∈B(C) N(A) the nodes of all blocks along the control flow path C

• N(P) those nodes on a path P ⊆ Gs

As it can be seen from the last definition, we describe a path in Gs often as a subgraph, written
as P ⊆ Gs. Of special interest are the maximal paths in Gs, i.e., those which cannot be extended
by appending edges to their first or last node (see Figure 5.1 (d)). This is also expressed by the
following definition:

Definition 5.1.2 (Maximal Subgraphs) Given a graph G, a clique (or a path, tournament) F ⊆
G is called maximal if there exists no other clique (path, tournament) H ⊆ G such that F ⊂
H ⊆ G. ✷

The aforementioned tournament can be regarded as a complete directed graph:

Definition 5.1.3 (Tournament) A tournament is a directed graph in which each pair of distinct
nodes {u, v} is joined by exactly one edge (u, v) or (v, u). ✷

Before we proceed with the formulation of the node packing problem, we note for later use three
facts that arise from the construction of Gs:

Proposition 5.1.4 For every maximal path P ⊆ Gs, there exists a unique control flow path
C ∈ C such that N(P) ⊆ N(C). ✷

PROOF While type 2 edges go only between nodes belonging to the same block, type 1 edges
can also go between two nodes belonging to two distinct blocks, but only if they are connected
by a control flow edge. We traverse P in the opposite direction and concatenate these control
flow edges—the result is a unique control flow path.

It remains to be shown that this path is complete, i.e., that it goes from an entry to an exit
block. We remember that we have allowed unlimited code motion (Remark 5.1.1-(1))—as a
result, the first node of every maximal path in Gs must belong to the last cycle of an exit block,
and the last node to the first cycle of an entry block (otherwise it could be extended to include
such nodes by using type 1 edges). Hence the obtained control-flow path goes from an entry to
an exit block. �

Proposition 5.1.5 Let (a, b) be a type 1 edge, then there exists no other path from a to b in Gs

consisting of type 1 edges. ✷

PROOF Let us assume that such a path (a, c, . . . , b) exists. Let the nodes b and c belong to the
basic blocks B and C, respectively. Then B and C must be two distinct direct predecessors of
A since there are two outgoing type 1 edges at node a so that the cycle component of a must
be one—then from the construction of Gs it follows B �= C, A �= B and A �= C. In addition,
since we have a path from c to b consisting of type 1 edges, it follows B � C and (B,A) is a JS
edge—which contradicts the assumption that the BBG has no JS edges (Remark 5.1.1-(3)). �

88 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

Proposition 5.1.6 If a type 2 edge connects two nodes (m,A, s) ∈ N(A) and (n,A, s+ wmn −
1) ∈ N(A), then there exists a path C ∈ C(s(m)) ∩ C(s(n)) that passes through A. ✷

PROOF The existence of the type 2 edge implies A ∈ Θ(m) and A ∈ Θ(n). Thus A is either
a predecessor or a successor of s(n) and s(m) (or equal to one or both of these source blocks).
Since there exists a DDG edge from m to n, there also exists a (possibly empty) control flow
subpath from s(m) to s(n). The latter can be used to connect A, s(m) and s(n) via a control
flow path in the following way:

• If A ≺ s(n) and A ≺ s(m), then there exists a path leading from A to s(m) and from
s(m) to s(n).

• If s(m) � A and A ≺ s(n), then there exists a path leading from s(m) to A and from A to
s(n).

• If s(m) � A and s(n) � A, then there exists a path leading from s(m) to s(n) and from
s(n) to A.

This subpath can be extended to a complete path C with the desired properties. �

m

n

m

n

m nm n

(1)

(1)

(2) (2)

(2)

m

n

m

n

m nm n

(a) (b) (c)

Figure 5.2: Two data dependent instructions m and n (wmn = 2) with their candidate block
ranges (a), the corresponding nodes (b), and the graph Gs with an infeasible (1) and a feasible
(2) solution (c). The two nodes of (1) do not constitute a node packing since they are connected
by a path in Gs—they represent the decision to schedule n before m, violating the dependence.

Now we are ready to define the first polytope of PCGS-B*. The following theorem states
that the node packings on Gc—which is, as mentioned earlier, the underlying undirected graph

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 89

of the transitive closure G∗
s of Gs—correspond exactly to the schedules of PCGS-B* (under

the condition that a further class of inequalities is added as in the theorem below). The hereby
intended relationship between node packings and schedules is obvious: A node (m,B, s) is
element of a node packing if and only if a copy of instruction m is scheduled at cycle s in block
B in the corresponding schedule (see also the example in Fig. 5.2). In the theorem, we directly
give a naïve integer linear programming formulation of the node packing problem: We employ
for each node a in Gc (which has the same nodes as Gs and G∗

s) a binary variable xa that is one
if and only if the node is contained in the node packing.

The purpose of Equ. (5.1.2) is to ensure that instructions are scheduled, namely once along
each program path through their respective source blocks. Otherwise the empty set would—as a
trivial node packing—also be a solution. Equ. (5.1.2) model the requirement of certain schedul-
ing decisions, as opposed to (5.1.1), which models the exclusion of incompatible decisions.

Theorem 5.1.7 (PCGS-B* Polytope I) The following inequalities form a polytope of PCGS-
B*:

∀ edges {a, b} in Gc : xa + xb ≤ 1 (5.1.1)

∀n ∈ V, ∀ paths C ∈ C(s(n)) :
∑

a∈N(C)∩N(n)

xa ≥ 1 (5.1.2)

✷

PROOF We have to show that the above description of PCGS-B* is equivalent to Def. 3.3.3
without the resource constraints (3.3.6). Let there be an assignment of the x variables and a
mapping σ given such that both formalisms describe the same schedule:

x(n,A,s) = 1 ⇔ (A, s) ∈ σ(n) ∀n ∈ V, ∀A ∈ B, ∀s ∈ G(A)

Here σ : V −→ P(Pos) is defined differently than in Def. 3.3.3 since we omit the resource
binding. It is clear that σ satisfies (3.3.3) since the existence of a variable x(n,A,s) implies A ∈
Θ(n). It remains to be shown that the variable assignment satisfies (5.1.1) and (5.1.2) if and only
if σ satisfies (3.3.2) and (3.3.5)—modulo the deficiency described in Remark 5.1.1-(5). This
statement can be written as

X α
1 ∧ X β

1 ∧ X2 ⇔ Y1 ∧ Y2 (5.1.3)

where:

• X α
1 ⇔ The variable assignment satisfies (5.1.1)-α, which denotes all those instances of

(5.1.1) where a and b are nodes that belong to the same instruction (in other words, they
are only connected by paths in Gs without type 2 edges)

• X β
1 ⇔ The variable assignment satisfies (5.1.1)-β, which denotes all those instances of

(5.1.1) where a and b are nodes that belong to different instructions (in other words, they
are only connected by paths in Gs with one or more type 2 edges)

• X2 ⇔ The variable assignment satisfies (5.1.2)

• Y1 ⇔ The mapping σ satisfies (3.3.2)

90 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

• Y2 ⇔ The mapping σ satisfies (3.3.5)

We will successively prove the following four claims:

1. X α
1 ∧ X2 ⇒ Y1

2. X α
1 ∧ X β

1 ∧ X2 ⇒ Y2 (by contradiction)

3. Y1 ⇒ X α
1 ∧ X2

4. X α
1 ∧ ¬X β

1 ∧ X2 ⇒ ¬Y2 (by contradiction)

Equ. 5.1.3 follows from these four claims—the forward implication from the first two and the
backward direction from the last two. We commence with the first claim:
. .

”⇒”: Let us assume that the assignment of the x variables satisfies both (5.1.1)-α and (5.1.2). It
follows from the construction of Gs that the assignment satisfies inequality (5.1.2) with equality—
then σ also satisfies (3.3.2) (Claim 1).

In order to prove the second claim, we assume that the variable assignment fulfills (5.1.1)
and (5.1.2). To show that σ satisfies the precedence constraints (3.3.5), let two arbitrary tuples
(A, sA) ∈ σ(m) and (B, sB) ∈ σ(n) be given for a DDG edge (m,n) ∈ ED such that A and B
lie on a control flow path C ∈ C(s(m)) ∩ C(s(n)). It is sufficient to show that these tuples fulfill
(3.3.5). From x(m,A,sA) = x(n,B,sB) = 1 it follows that there must not exist a path from node
(m,A, sA) to (n,B, sB) in Gs since otherwise this assignment would be excluded by (5.1.1).

We consider the cases A = B and A �= B separately: If A = B, we have to show (A, sA +
wmn) � (B, sB) (to comply with Equ. (3.3.5)). Suppose for the purpose of contradiction sA +
wmn > sB. Let t := min {sA,GA − wmn + 1}, then 1 ≤ t ≤ GA follows with Remark 5.1.1-(2)
and there exists a path in Gs

• from (m,A, sA) to (m,A, t) (consisting of type 1 edges, this (possibly empty) subpath
exists since 1 ≤ t ≤ sA),

• from there to (n,B, t+wmn−1) (consisting of one type 2 edge; the node (n,B, t+wmn−1)
exists since t+ wmn − 1 ≤ GA and 1 ≤ t+ wmn − 1 (with sA + wmn ≥ 2, which follows
from sA + wmn > sB ≥ 1)),

• and from there to (n,B, sB) (consisting of type 1 edges, this (possibly empty) subpath
exists since t+wmn − 1 = sA +wmn − 1 ≥ sB if t = sA, and t+wmn − 1 = GA ≥ sB if
t = GA − wmn + 1).

Because such a path must not exist as pointed out above, we have sA + wmn ≤ sB and thus
(A, sA + wmn) � (B, sB). This proves that constraints (3.3.5) are satisfied if A = B.

If A �= B, we have to show A ≺ B. Let us assume the contrary, namely that B is a
predecessor of A: Then there exists a path in Gs

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 91

• from (m,A, sA) to (m,A, 2) (consisting of type 1 edges, this (possibly empty) subpath
exists since we can assume in this part of the proof sA ≥ 2 with Remark 5.1.1-(5)),

• from there to (n,A,wmn + 1) ((consisting of one type 2 edge; the node (n,A,wmn + 1)
exists due to Remark 5.1.1-(2)),

• and from there to (n,B, sB) (consisting of type 1 edges, this subpath exists since B ∈ Θ(n)
is a predecessor of A)

Again, the existence of this path enforces x(m,A,sA)+x(n,B,sB) ≤ 1, which yields a contradiction.
Thus we have shown that σ satisfies the precedence constraints (3.3.5) (Claim 2) and completed
the first part of the proof.
. .

”⇐”: The proof of Claim 3 is evident: if σ satisfies the assignment constraints (3.3.2), then the
assignment of the x variables satisfies (5.1.2) and (5.1.1)-α. For Claim 4, let us now assume
that the variable assignment satisfies the constraints of the preceding paragraph, but violates an
instance of (5.1.1)-β where a = (m,A, s) and b = (n,B, t) are connected by a path P in Gs with
one or more type 2 edges (although x(m,A,s) = x(n,B,s) = 1). Then it is sufficient to show that σ
violates the precedence constraints (3.3.5)—we suppose for the purpose of contradiction that it
satisfies them. Let e1, . . . , ek ∈ Es be the type 2 edges in P , in the same order as they appear on
this path. Let each edge be of the form

ei = ((ni, Di, si) , (ni+1, Di, t))

with n1 = m, nk+1 = n, and B � Dk � Dk−1 � . . . � D1 � A. We define Dk+1 := B and
say that each type 2 edge ei belongs to the block Di. Let ej be the first edge that does not belong
to A, but to one of its predecessors (if such an edge does not exist, i.e., if ∀i : Di = A, we set
j := k + 1). Furthermore, let wi denote the latency of the DDG edge the type 2 edge ei is based
on. The claim is then proven by means of the following lemma:

Lemma 5.1.8 For the instructions n1, . . . , nk+1 holds:

1. For all i ∈ {1, . . . , j}, no copy of instruction ni is scheduled in A at an earlier cycle than
s+

∑
l<i wl or in a predecessor of A.

2. For all i ∈ {j, . . . , k + 1}, no copy of instruction ni is scheduled in Di or in one of its
predecessors (if j ≤ k):

∀D � Di : {(E, r) ∈ σ(ni) |E = D} = ∅ ✷

The proof of the lemma is by induction on i. We begin with the first statement: The base
case (i = 1) is clear since a copy of n1 is scheduled at cycle s in A (x(m,A,s) = 1). With
Prop. 3.3.4 no further copy may be scheduled earlier in A or in a predecessor of A.

To perform the induction step i → i + 1, we employ Prop. 5.1.6 with the type 2 edge ei
(i < j). We obtain a path C ∈ C(s(ni)) ∩ C(s(ni+1)) that passes through A. Copies of both

92 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

ni and ni+1 are scheduled on this path in the order imposed by the dependence (ni, ni+1) ∈ ED

(since σ is supposed to fulfill (3.3.2) and (3.3.5)). The induction hypothesis states that the copy of
ni on C is not scheduled before cycle s+

∑
l<i wl in A, or in a predecessor of A—consequently,

the copy of ni+1 on C must be scheduled either in a successor of A or in A at cycle s+
∑

l<i+1 wl

or later. In addition, with Prop. 3.3.4 no predecessor of A may contain a second copy of ni+1.
This concludes the proof of the first statement.

The base case of the second statement of the lemma (i = j) follows from the first statement,
which states that no copy of nj is scheduled in a predecessor of A. Dj is a predecessor of A since
there exists a path consisting of type 1 edges from A to Dj (namely the subpath of P between
the type 2 edges ej−1 and ej (if j ≥ 2), or between the node a and ej (if j = 1)).

For the induction step i → i + 1 we again employ Prop. 5.1.6 with the type 2 edge ei. We
obtain a path C ∈ C(s(ni)) ∩ C(s(ni+1)) that passes through Di. Again, copies of both ni and
ni+1 are scheduled on this path in the order imposed by the dependence (ni, ni+1) ∈ ED. Since
ni must not be scheduled in Di or before on C (the induction hypothesis), the copy of ni+1 must
be scheduled in a successor of Di. But then with Prop. 3.3.4 no further copy of ni+1 must be
scheduled in Di or in one of its predecessors (like Di+1 if Di �= Di+1)—this was to be shown.

This concludes the proof of the lemma. It is now used to derive a contradiction for each of
the two cases A = B and A �= B: If A = B, it follows A = D1 = D2 = . . . = Dk+1 = B and
t ≤ s +

∑
l<k+1(wl − 1) from the construction of Gs. This contradicts the first statement of the

lemma with i := k + 1. If A �= B, then the second part with i := k + 1 delivers a contradiction
with the fact that instruction n = nk+1 is scheduled in block B = Dk+1. �

The above result that the transitive closure reflects the PCGS-B* problem is neither evident
nor easy to achieve in the general case. As a matter of fact, we will later encounter a case
where we fail to find a skeleton graph such that the transitive closure constitutes the desired node
packing problem. The following lemma reminds why the transitive closure is of such a high
importance to us:

Lemma 5.1.9 The constraint graph Gc is perfect. ✷

PROOF It is sufficient to show that Gc is transitively orientable (Theorem 4.3.10). A transitive
orientation of the edges of Gc (see Def. 4.3.9) is directly given by the corresponding digraph G∗

s.
This graph satisfies the transitive property because it is the transitive closure of an acyclic graph
Gs. Hence Gc is perfect. �

The fact that we perform the node packing on a perfect graph directly opens the door to an
integral subpolytope of PCGS-B*:

Corollary 5.1.10 (PCGS-B Polytope II) The following inequalities are equivalent to (5.1.1)
and form an integral subpolytope:

∀ maximal tournaments T ⊆ G∗
s :

∑
a∈N(T)

xa ≤ 1

✷

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 93

PROOF Since the maximal tournaments in G∗
s are exactly the maximal cliques in Gc, the in-

equalities describe the fractional node-packing polytope of Gc. This polytope is integral because
Gc is perfect (with Lemma 5.1.9, Theorem 4.3.8). �

The statement of this corollary is, taken alone, of little practical value: There can be an
exponential number of maximal cliques, and even if this is not the case, the problem remains to
find all of them (which is NP-hard in the general case). However, it turns out that by examining
the structure of G∗

s, we can easily gain access to all the maximal tournaments: The following
two theorems express a direct relationship between these maximal tournaments and the maximal
paths in the skeleton graph. The first one is directly taken from [CWM94]:

Theorem 5.1.11 For every maximal tournament T ⊆ G∗
s, there exists a unique maximal path

P ⊆ Gs such that N(P) = N(T). ✷

The proof in [CWM94] relies solely on the fact that G∗
s is the transitive closure of the acyclic

graph Gs, but not on the internal structure of Gs. By exploiting this internal structure, however,
we can in addition to [CWM94] show that the backward direction holds, too:

Theorem 5.1.12 For every maximal path P ⊆ Gs, there exists a unique maximal tournament
T ⊆ G∗

s such that N(T) = N(P). ✷

PROOF Each pair of nodes in N(P) is connected by a subpath of P in GS and thus, due to
transitive closure, also by exactly one edge in G∗

S . Hence T := G∗
s [N(P)] (the subgraph of G∗

s

induced by N(P)) forms a (by definition unique) tournament.
It remains to be shown that the tournament is maximal. Let us assume that a node u0 ∈

N \ N(P) can be added such that T ′ := G∗
s [N(P) ∪ {u0}] forms a larger tournament. Then, if

P is given by the nodes (u1, . . . , un), for each k = 1, . . . , n either the edge (uk, u0) or (u0, uk)
exists in the tournament T ′ by definition.

In particular, either (un, u0) or (u0, un) exists. If (un, u0) exists, then there also exists a path
from un to u0 in GS (because (un, u0) is an edge in the transitive closure of GS). No inner node
on this path may also be on P (otherwise there would be a cycle), hence it can be appended to
P in order to form a longer path—in contradiction to the assumption that P is maximal. Hence
(u0, un) must exist in T ′ and, analogically, also the edge (u1, u0).

Now let k be the smallest index such that (u0, uk) is an edge in T ′. Because (u0, u1) does
not exist and (u0, un) does, we know that k exists and that 2 ≤ k ≤ n. Moreover, (uk−1, u0)
must exist since (u0, uk−1) does not exist. Thus we have identified a subgraph in T ′ as depicted
in Fig. 5.3. We denote the path in Gs from uk−1 to uk through u0 as Q and r as its length.

We will derive a contradiction from the existence of this subgraph to conclude the proof. For
this we distinguish four cases:

1. (uk−1, uk) is a type 1 edge and Q consists only of type 1 edges

2. (uk−1, uk) is a type 1 edge and Q contains at least one type 2 edge

3. (uk−1, uk) is a type 2 edge and Q consists only of type 1 edges

94 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

u uk

u0

*
* Q

k-1

Figure 5.3: Subgraph of T ′ (Bold edges exist also in Gs).

4. (uk−1, uk) is a type 2 edge and Q contains at least one type 2 edge

The first case is refuted by Proposition 5.1.5. For the remaining cases, we consider that each
of the nodes is a triple (n,B, s) that belongs to instruction n, basic block B, and cycle s. Let
the sequence nQ = (n1, . . . , nr) ∈ V r denote the instructions and (s1, . . . , sr) ∈ Nr

+ the cycles
of the r nodes on the path Q (in the same order, i.e., s1 relates to uk−1 and sr to uk). In the
remainder of the proof, we will exploit several properties that are due to the construction of GS ,
among them these two facts about two connected nodes (m,A, s) and (n,B, t):

• they are connected by a type 1 edge iff they belong to the same instruction. Then t = s−1
holds if A = B.

• they are connected by a type 2 edge iff they belong to different instructions that are con-
nected by a DDG edge. In this case A = B and t = s+ wmn − 1 hold.

For example, in case 2, n1 must be equal to nr because uk−1 and uk are connected by a type 1
edge. However, at least one instruction in nQ must be different because there is a type 2 edge in
Q. Thus the (sub-)sequence of different instructions in nQ constitutes a nonempty cycle in the
DDG and thereby a contradiction. The argument for case 3 goes similarly. For the remaining
case 4, we consider the cycle components of the nodes. For (uk−1, uk) we have:

sr = s1 + wn1nr − 1 (5.1.4)

We deduce a similar relationship between s1 and sr using the edges on the path Q. First,
we note that uk−1 and uk belong to the same basic block because they are connected by a type
2 edge—then also all the other intermediate nodes on this path must belong to this block as the
basic block graph must not contain a cycle. Then we observe that the sequence of all type 2
edges along Q constitutes a DDG path from n1 to nr that must have a total latency less than
wn1nr—otherwise the DDG edge (n1, nr) would be redundant according to Def. 3.2.7, but we
have assumed that the DDG is minimal.

Let wq denote the mentioned total latency, and let π1 and π2 be the total number of type 1 and
type 2 edges in Q, respectively. Then we can sum over all edges in Q and estimate:

sr = s1 + wq + π1(−1) + π2(−1)
π1+π2≥2≤ s1 + wq − 1 (5.1.5)

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 95

Combining (5.1.4) and (5.1.5) yields:

sr
(5.1.5)

≤ s1 + wq − 1 < s1 + wq

wq<wn1nr≤ s1 + wn1nr − 1
(5.1.4)
= sr

This contradiction refutes the last case and concludes the proof. �

From Theorems 5.1.11 and 5.1.12 it follows that the maximal paths in Gs correspond exactly
to the maximal tournaments in G∗

s. Thus, to obtain all maximal tournaments and with this an
integral polytope, it is sufficient to simply enumerate all the maximal paths. This enumeration
can be done recursively in time linear in the number of maximal paths—however, this number
itself can still be exponential. At least, it is possible to confine the enumeration to the nodes of
individual control flow paths:

Corollary 5.1.13 For every maximal tournament T ⊆ G∗
s, there exists a unique control flow

path C ∈ C such that N(T) ⊆ N(C). ✷

PROOF Proposition 5.1.4 with Theorem 5.1.11. �

Corollary 5.1.14 (PCGS-B* Polytope III) The following inequalities form a polytope of PCGS-
B*:

∀ control flow paths C ∈ C, ∀ maximal paths P ⊆ Gs[N(C)] :
∑

a∈N(P)

xa ≤ 1 (5.1.6)

∀n ∈ V, ∀ paths C ∈ C(s(n)) :
∑

a∈N(C)∩N(n)

xa ≥ 1 (5.1.7)

The subpolytope described by inequalities (5.1.6) is integral. ✷

PROOF The preceding corollary with Theorem 5.1.11. �

Before we tackle the exponential complexity of this formulation, we examine which impact
the additional inequalities (5.1.7) have on the integrality of the whole polytope. For this purpose
the following observation is helpful: all the left-hand sides of instances of (5.1.7) occur also as
left-hand sides of (5.1.6), namely as exactly those left-hand sides related to paths P ⊆ Gs[N(C)]
without type 2 edges. This is expressed by the following lemma, where τ2(P) denotes the number
of type 2 edges in P :

Lemma 5.1.15 For all control flow paths C ∈ C, all maximal paths P ⊆ Gs[N(C)] holds:

τ2(P) = 0 ⇔ ∃n ∈ V : N(P) = N(C) ∩ N(n) ✷

PROOF ”⇒”: If τ2(P) = 0, then P consists only of type 1 edges and there must be an instruction
n to which all nodes on P belong, i.e., such that N(P) ⊆ N(C)∩N(n). Note that the sub-graph
P̂ = Gs[N(C) ∩ N(n)] constitutes a maximal path in Gs. Hence P ⊆ P̂ , and since both paths
are maximal, we have P = P̂ and with this N(P) = N(P̂) = N(C) ∩ N(n).

”⇐”: Since all nodes of P belong to one instruction, it cannot contain any type 2 edges. �

96 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

The lemma allows us to conclude that the polytope remains the same if we omit the con-
straints (5.1.7) and instead change the “≤” relation symbol in (5.1.6) to “=” for those instances
where τ2(P) = 0. In doing so, we preserve the integrality of the subpolytope defined by (5.1.6),
as guaranteed by Theorem 4.3.11. Thus we have:

Theorem 5.1.16 (PCGS-B* Polytope IV) The following constraints form an integral polytope
of PCGS-B*:

∀ control flow paths C ∈ C,
∀ maximal paths P ⊆ Gs[N(C)]

:

{ ∑
a∈N(P) xa ≤ 1 if τ2(P) ≥ 1∑
a∈N(P) xa = 1 if τ2(P) = 0

(5.1.8)

✷

This formulation’s conciseness should not belie the fact that its complexity is twofoldly ex-
ponential: firstly in the number of control flow paths and secondly in the number of maximal
paths in Gs[N(C)].

k

l

Figure 5.4: Estimating the number of maximal paths in a skeleton digraph.

Figure 5.4 provides a more detailed analysis of the latter number: it shows the nodes of an
(artificially constructed) skeleton digraph for a single basic block with l cycles and a sequence
of k successively dependent instructions (all with latency 1). This graph has a checkerboard
structure, where the type 1 edges go vertically upwards and the type 2 edges go horizontally
rightwards. Each maximal path goes from the left lowermost to the right uppermost node in the
graph. The number of these paths is exactly1(

l + k − 2
k − 1

)
With [CLR01]≥

(
l + k − 2

k − 1

)k−1

=

(
1 +

l − 1

k − 1

)k−1

1Each maximal path is uniquely defined by the numbers of its type 2 edges at each of the l cycles (between 0 and
k − 1 per cycle, k − 1 altogether). Hence the number of possible paths corresponds to the number of possibilities
to distribute k − 1 indistinguishable balls (≈ type 2 edges) among l urns (≈ cycles) of unlimited size, which is(

l + k − 2
k − 1

)
.

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 97

and hence exponential in k if l = Ω(k), which is a realistic possibility. However, if we could
bound the number of type 2 edges allowed in the maximal paths by a constant, no exponential
growth would occur. This is exactly what the next step does.

5.1.2 Reducing the Complexity of the Integral Subpolytope

In this section, we will—one by one—eliminate the two sources of exponential complexity in
our derived polytope of PCGS-B*, while keeping it integral. As indicated before, we can confine
the scope of maximal paths examined during the constraint generation: any path with more than
one type 2 edge is superfluous, as expressed by the following theorem from [CWM94]. Due to
the importance of this theorem we provide a version of the proof from [CWM94] that is adapted
to our own concepts and notions in Appendix B.2.1.

Theorem 5.1.17 Any of the constraints (5.1.8) for a maximal path with τ2(P) ≥ 2 is a linear
combination of those constraints with τ2(P) < 2. ✷

As a result of this theorem, we can remove an exponential number of redundant constraints
from the formulation without altering the polytope. The resulting formulation is given by the
following corollary, where constraints (5.1.10) and (5.1.11) correspond to (5.1.8) for maximal
paths with one and zero type 2 edges, respectively.

We provide a more detailed derivation of the inequalities (5.1.10) since during the transition
from (5.1.8) to (5.1.10) the deficiency from Remark 5.1.1-(5) is fixed. Let Nt ⊆ N be the set of
those nodes with cycle component equal to t, then we simply replace all variables xa such that
a ∈ N1 by zero to exclude the possibility to schedule instructions there. This replacement cures
the deficiency and preserves the integrality of the polytope with Corollary 4.3.12. For reasons of
symmetry, we also replace all nodes of the last cycle, NGA

, by zero; this just serves to simplify
the resulting formulas.

The replacement is allowed for in the sums of the following inequalities (5.1.9), which corre-
spond otherwise to the constraints (5.1.8) for all those paths with exactly one type 2 edge. They
are instantiated for all type 2 edges in Gs, however, their creation is described independently of
Gs here—from now on we will cease using the node packing representation of the problem. The
left and the right double sums add up the variables of the nodes on the path before and after the
type 2 edge ((m,A, t), (n,A, t+ wmn − 1)), respectively:

∑
a∈N(C)∩N(m)\(N1∪NGA)

a�(m,A,t)

xa +
∑

a∈N(C)∩N(n)\(N1∪NGA)
a�(n,A,t+wmn−1)

xa ≤ 1 (5.1.9)

∀(m,n) ∈ ED, ∀C ∈ C(s(n)) ∩ C(s(m)), ∀A ∈ B(C), ∀t ∈ {1, . . . ,GA − wmn + 1}
The used order of the nodes corresponds to that of the scheduling positions (3.3.1):

(m,A, sA) ≺ (n,B, sB) ⇔
{

A ≺ B in GB if A �= B
sA < sB if A = B

98 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

Due to the exclusion of x variables of the first and last cycle from the sums we can shrink the
range of t in Equ. (5.1.9) to {2, . . . ,GA − wmn} without changing the generated constraints. In
the following version (5.1.10), we have furthermore

• removed all nodes in N1 ∪ NGA
from N and decremented the cycle component of the

remaining nodes (and the range of t) by one, so that the former nodes of the i-th cycle
become the new nodes of the (i − 1)-th cycle, and

• incremented GA by two to compensate for the removed nodes of two cycles.

Corollary 5.1.18 (PCGS-B Polytope V) The following inequalities form an integral polytope
of PCGS-B: ∑

a∈N(C)∩N(m)
a�(m,A,t)

xa +
∑

a∈N(C)∩N(n)
a�(n,A,t+wmn−1)

xa ≤ 1 (5.1.10)

∀(m,n) ∈ ED, ∀C ∈ C(s(n)) ∩ C(s(m)), ∀A ∈ B(C), ∀t ∈ {1, . . . ,GA − wmn + 1}

∀n ∈ V, ∀C ∈ C(s(n)) :
∑

a∈N(C)∩N(n)

xa = 1 (5.1.11)

✷

This formulation is a big leap forwards, but it still grows exponentially with the number of
control flow paths. To cope with this effect, we exploit a different form of redundancy in the
formulation that is described by the following lemma. It holds for all solution vectors inside the
polytope and says informally that, for any instruction n and any candidate block A, the sum of
all the x variables of n on a path from an entry block to A has the same value for all such paths.

Lemma 5.1.19 For every real-valued solution of (5.1.11), every instruction n ∈ V and every
block A ∈ Θ(n) there exists a unique real number αA

n ∈ [0, 1] such that:

∀C ∈ C(A) ∩ C(s(n)) :
∑

a=(n,B,s)∈N(C)∩N(n)
B≺A

xa = αA
n (5.1.12)

✷

PROOF Let there be any two distinct paths C,D ∈ C(A)∩C(s(n)) given. We show that for both
paths the left-hand side of the above equation must have the same value under the constraints
(5.1.11). For this purpose we construct a third path E ∈ C(A) ∩ C(s(n)) as a concatenation
of two subpaths: the subpath of C containing only predecessors of A plus the subpath of D
containing only A and its successors (see Fig. 5.5).

This path E traverses s(n) since either the first or the second subpath must traverse s(n): if
s(n) ≺ A, then the first subpath (of C ∈ C(s(n))) passes through s(n); if s(n) $ A, then the

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 99

A

s n()

C D

A

s n()

E

Figure 5.5: Construction of E (right-hand side) from the paths C and D (left-hand side).

second subpath (of D ∈ C(s(n))) passes through s(n). Hence instances of (5.1.11) are created
for both D and E, respectively, and can be written as:∑

a=(n,B,s)∈N(D)∩N(n)
B≺A

xa +
∑

a=(n,B,s)∈N(D)∩N(n)
B�A

xa = 1

∑
a=(n,B,s)∈N(C)∩N(n)

B≺A

xa +
∑

a=(n,B,s)∈N(D)∩N(n)
B�A

xa = 1

Combining these two equations gives∑
a=(n,B,s)∈N(C)∩N(n)

B≺A

xa =
∑

a=(n,B,s)∈N(D)∩N(n)
B≺A

xa

which shows that αA
n exists and is unique. �

From now on we assume that αA
n is always defined as above in the context of a solution of

(5.1.11). This is also the case in the following corollary:

Corollary 5.1.20 For every real-valued solution of (5.1.11), every instruction n ∈ V , every
block A ∈ Θ(n), and every direct successor B ∈ Θ(n) of A holds:

∀C ∈ C(A) ∩ C(B) ∩ C(s(n)) :
∑

a=(n,D,s)∈N(C)∩N(n)
D�A

xa = 1− αB
n (5.1.13)

✷

PROOF Very similar to the proof of the preceding lemma. �

We observe that the left-hand sides of (5.1.12) and (5.1.13) are also contained in the left-hand
sides of Equ. (5.1.10) and (5.1.11) of the current ILP formulation. They represent there—for
each instruction and each basic block—an exponential number of different expressions that must
have the same value in any real-valued solution. To exploit this equivalence in order to simplify

100 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

the formulation, we introduce a new binary variable a↑An for αA
n and replace in the formulation of

Corollary 5.1.18 all occurrences of the left-hand sides of (5.1.12) and (5.1.13) by a↑An and 1−a↑Bm ,
respectively. The resulting polynomial sized formulation is shown in the following theorem,
where the constraints (5.1.15) are the adapted constraints (5.1.10); the so-called a-x constraints
(5.1.16) together with (5.1.17) form the new assignment constraints (resulting from (5.1.11)).
Beginning with this theorem, we use the notation xAt

n instead of x(n,A,t) and this abbreviation:

Gmn(A) := {1, . . . ,GA − wmn + 1} (5.1.14)

Theorem 5.1.21 (PCGS-B Polytope VI) The following constraints form a polytope of PCGS-
B:

a↑An +
∑

tn∈G(A)
tn≤t+wmn−1

xAtn
n +

∑
tm∈G(A)

tm≥t

xAtm
m + (1− a↑Bm) ≤ 1 (5.1.15)

∀(m,n) ∈ ED, ∀A ∈ Θ(m) ∩Θ(n), ∀t ∈ Gmn(A)

∀n ∈ V, ∀A,B ∈ Θ(n) such that (A,B) ∈ EB : a↑Bn = a↑An +
∑

t∈G(A)

xAt
n (5.1.16)

∀n ∈ V : a↑Ωn = 1 (5.1.17)

In (5.1.15), B denotes a direct successor block of A that is element of Θ(m). If no such block
exists, the whole term (1 − a↑Bm) is omitted. For all entry blocks A ∈ Bentry, the variable a↑An is
replaced by zero in (5.1.15) and (5.1.16). ✷

PROOF The proof can be done by showing that the schedules described by these constraints are
exactly the same as those from Corollary 5.1.18, so it is sufficient to show that for each vector in
polytope V there exists a corresponding vector in polytope VI that represents the same schedule
and vice versa. This is expressed by the last of the following three claims, which are stated with
respect to two vectors −→x = (xa)a∈N ∈ [0, 1]+ and −→x∗ =

((
xAt
n

)
∀A∀t∀n ,

(
a↑An

)
∀A∀n

) ∈ [0, 1]+ that
represent the same schedule, i.e., ∀n∀A∀t : xAt

n = x(n,A,t):2

1. −→x∗ satisfies (5.1.16) if and only if ∀n∀A : αA
n = a↑An .

2. −→x∗ satisfies (5.1.16) and (5.1.17) if and only if −→x satisfies (5.1.11) and ∀n∀A : αA
n = a↑An .

3. −→x∗ satisfies (5.1.16), (5.1.17), and (5.1.15) if and only if −→x satisfies (5.1.11), (5.1.10), and
∀n∀A : αA

n = a↑An .

We successively prove these claims. The backward direction of the first claim is straightforward:
we have ∀n∀A : αA

n = a↑An and hence for each instruction n, each block B ∈ Θ(n) and each
direct predecessor A ∈ Θ(n):

a↑Bn = αB
n

By definition of αB
n= αA

n +
∑

t∈G(Ai)

xAt
n = a↑An +

∑
t∈G(Ai)

xAt
n

2It would be sufficient for the proof to restrict −→x and −→x∗ to integer vectors from {0, 1}+. However, we show a
stronger result for real-valued vectors which can be utilized in a later proof.

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 101

The proof of the forward implication is by induction on the depth of the blocks in the basic block
graph: For the base case, let B be an entry block, then we have ∀n : αA

n = a↑An = 0. To perform
the induction step, let an n ∈ V and a block B ∈ Θ(n) with direct predecessors A1, . . . , Ak

be given: For all i ∈ {1, . . . , k} we have a↑Bn = a↑Ai
n +

∑
t∈G(Ai)

xAit
n and, by the induction

hypothesis, αAi
n = a↑Ai

n . It follows for any path C ∈ C(B) ∩ C(s(n)), which must traverse a
predecessor Aj of B:

∑
a=(n,D,s)∈N(C)∩N(n)

D≺B

xa

(xAt
n =x(n,A,t))

=
∑

a=(n,D,s)∈N(C)∩N(n)
D≺Aj

xa +
∑

t∈G(Aj)

xAjt
n

„
α

Aj
n =a

↑Aj
n ∧(5.1.16)

«

= a↑Bn

This equality implies that αB
n is well defined and equal to a↑Bn , which concludes the proof of

the first claim. With its help we can now directly prove the second claim (using the notation−→x∗ |= (5.1.16) for “−→x∗ satisfies (5.1.16)” etc.) :

−→x∗ |= (5.1.16) ∧ ∀n ∈ V : a↑Ωn = 1
(1)⇔ ∀A∀n : αA

n = a↑An ∧ ∀n ∈ V : αΩ
n = 1

⇔ ∀A∀n : αA
n = a↑An ∧ ∀n ∈ V,∀C ∈ C(Ω) ∩ C(s(n)) :

∑
a=(n,B,s)∈N(C)∩N(n)

B≺Ω

xa = 1

⇔ ∀A∀n : αA
n = a↑An ∧ −→x |= (5.1.11)

In the last step we have used the fact that Ω is the single empty exit block, which must be
traversed by all paths. The second claim (2) can now be used to prove the third claim, and with
this the theorem:

−→x∗ |= (5.1.16), (5.1.17) ∧ ∀(m,n) ∈ ED, ∀A ∈ Θ(m) ∩Θ(n), ∀t ∈ Gmn(A) :

a↑An +
∑

tn∈G(A)
tn≤t+wmn−1

xAtn
n +

∑
tm∈G(A)

tm≥t

xAtm
m + (1− a↑Bm) ≤ 1

(2)⇔ ∀A∀n : αA
n = a↑An ∧ −→x |= (5.1.11) ∧ ∀(m,n) ∈ ED, ∀A ∈ Θ(m) ∩Θ(n), ∀t ∈ Gmn(A) :

αA
n +

∑
tn∈G(A)

tn≤t+wmn−1

xAtn
n +

∑
tm∈G(A)

tm≥t

xAtm
m + (1− αB

n) ≤ 1

⇔ ∀A∀n : αA
n = a↑An ∧ −→x |= (5.1.11) ∧ ∀(m,n) ∈ ED, ∀C ∈ C(s(n)) ∩ C(s(m)),

∀A ∈ B(C), ∀t ∈ Gmn(A) :∑
a∈N(C)∩N(m)

a�(m,A,t)

xa +
∑

a∈N(C)∩N(n)
a�(n,A,t+wmn−1)

xa ≤ 1

⇔ ∀A∀n : αA
n = a↑An ∧ −→x |= (5.1.11), (5.1.10)

In the second last step, we have used Corollary 5.1.20 as well as the equality Θ(m) ∩ Θ(n) =
{A ∈ B(C) |C ∈ C(s(n)) ∩ C(s(m))} from Remark 5.1.1-(1). �

102 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

With this new polytope VI we have found a polynomial sized description of PCGS-B. We
observe that, due to the introduction of the new a variables, the new polytope is of higher dimen-
sion than the original polytope V. More precisely, we can imagine that the original polytope is
contained in a subspace of this higher-dimensional space (if the xAt

n axes are equivalent to the
x(n,A,t) axes), namely in that subspace where all the a variables are zero. Then a notable con-
sequence of Theorem 5.1.21 is that the original polytope V matches the projection of the new
polytope VI onto this subspace (for the definition refer to Sec. 4.3).

Thus we have simplified the polytope (with regard to the number of facets or constraints)
by “lifting” it to a higher-dimensional space—the projection of the resulting polynomial sized
polytope onto the original space then produces the original, exponential sized polytope. Interest-
ingly, we will encounter the same phenomenon later again with a different formulation (and in
the opposite direction).

A serious consequence of the lifting is, however, that the integrality result is lost: the new
polytope is no longer a node-packing polytope, which removes the fundament on which the inte-
grality proof was based. But the above theorem has shown a deep similarity between the original
integral polytope and the new one: there is a one-to-one mapping not only between integral
points inside these polytopes, but even between real-valued points. This kind of isomorphism
suggests that the lifting has possibly preserved the integrality of the original polytope. Indeed,
by applying the following theorem we can exploit the similarity to regain the integrality result:

Theorem 5.1.22 Let P ⊂ Rm and Q ⊂ Rn be two polytopes where P is integral, and let
f : P → Q be an affine bijection with integral coefficients:

x +→ Ax+ b, A ∈ Zn×m, b ∈ Zn

Then Q is integral. ✷

PROOF We first show that for all x ∈ P holds: if f(x) is an extreme point in Q, then x is an
extreme point in P . We assume the opposite: let f(x) be an extreme point and x not, i.e., let
there exist w, y ∈ P,w �= y and a c ∈]0, 1[such that cw + (1− c)y = x. Then since f is affine
f(x) = f(cw + (1− c)y) = cf(w) + (1− c)f(y) holds, and from the injectivity of f it follows
f(w) �= f(y). This contradicts the assumption that f(x) is an extreme point.

Now let an extreme point y ∈ Q be given. Since f is surjective there exists an x ∈ P such
that f(x) = y and x is an extreme point. Then x is integral since P is integral, and f(x) = y
must be integral as well since the affine map has only integral coefficients. Hence Q is integral.�

Corollary 5.1.23 The polytope VI of PCGS-B from Theorem 5.1.21 is integral. ✷

PROOF We apply Theorem 5.1.22 with P as the polytope V from Corollary 5.1.18 and Q as the
polytope VI from Theorem 5.1.21. The proof of Theorem 5.1.21 already implies a function f :
P → Q that maps a vector −→x = (xa)a∈N ∈ [0, 1]+ on a vector −→x∗ =

((
xAt
n

)
∀A∀t∀n ,

(
a↑An

)
∀A∀n

) ∈
[0, 1]+such that ∀n∀A∀t:

• xAt
n is assigned x(n,A,t) and

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 103

• a↑An is assigned
∑

a=(n,B,s)∈N(C)∩N(n)
B≺A

xa for an (arbitrarily chosen) path C ∈ C(A) ∩
C(s(n)) (i.e., the value αA

n)

Clearly f is linear and has integral coefficients. In addition, Claim 3 inside the proof of Theorem
5.1.21 shows that the function is total and surjective. Finally, it is also injective because ∀n∀A∀t :
x(m,A,s) �= x(n,B,t) ⇒ xAs

m �= xBt
n and the values of αA

n are unique (Lemma 5.1.19). �

With this proof we have arrived at our goal of obtaining an efficient polytope of PCGS-B:
the polynomial sized ILP formulation from Theorem 5.1.21 is integral—a result that is also con-
firmed empirically: We have generated ILPs of this subproblem for each of the input programs
from Chapter 7 and solved iteratively the LP-relaxation with different, randomized objective
functions (a hundred times for each input). The returned extreme points of the PCGS-B polytope
were always integral.

Before we go about integrating the block length constraints we will examine the functioning
of this ILP formulation and provide a more meaningful interpretation of the a variables. The
semantics of the x variables is clear:

xAt
n = 1 ⇔ A copy of instruction n is scheduled at cycle t in block A.

Lemma 5.1.19 implies for all feasible solutions of the ILP the following semantics:

a↑An = 1 ⇔ A copy of instruction n is scheduled on each program path through s(n)
before A.

The constraint a↑Ωn = 1 (5.1.17) expresses that every path through the source block of an instruc-
tion n must encounter a scheduled (compensation) copy of this instruction. Fig. 5.6 illustrates
this3 using an example: Along each path starting from Ω upwards through the source block, the
a variables are equal to one up to the block with the scheduled copy—from there on, they are
and remain zero-valued, and consequently no further copy of the instruction can be scheduled
along the path according to Equ. 5.1.16. Along the path, the values of the a variables are—also
for real-valued solutions—monotonically decreasing:

Proposition 5.1.24 Let an instruction n ∈ V and a program path through s(n) be given. Let
A1, . . . , Ak be the sequence of blocks encountered when moving along this path in the opposite
direction, starting from A1 = Ω. Along this sequence, the value of

∑
t∈G(Ai)

xAit
n +(1−a

↑Ai−1
m) is

monotonically increasing and the value of a↑Ai
n is monotonically decreasing (in any real-valued

feasible solution). The sum of these terms is always equal to one. ✷

PROOF Follows inductively from the assignment constraints (5.1.17) and (5.1.16). The first
and the second term are equal to the sum of the xn variables4 of the blocks A1, . . . , Ai and
Ai+1, . . . , Ak, respectively. �

3In Fig. 5.6 (b) and in all following illustrations of schedules, those cycles where instructions are scheduled are
shown in a darker shade. Thus the shaded parts represent the schedule lengths of the blocks.

4While the notion “x variables” refers to all generated xAt
n variables,

{
xAt

n |∀n ∈ V,∀A ∈ Θ(n),∀t ∈ G(A)
}

,
“xn variables” is used to refer to those variables only that belong to instruction n:

{
xAt

n |∀A ∈ Θ(n),∀t ∈ G(A)
}

.

104 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

m m

00

nm

00

nm

00

nm

00

nm

00

nm

00

nm

11

nm

11

nm

11

nm

11

nm

10a

nm

10a

nmm
n

n

1��A

na
along this path

1��A

ma
along this path

01

nm

01

nm

n

mm

(a) (b)

�a

�a

�a

�a

�a

�a

Figure 5.6: Semantics of the a variables: A global scheduling problem with two data dependent
instructions ((m,n) ∈ ED) in their respective source blocks (a) and a feasible schedule (b).

In an earlier version of the model, we have generated the following distinct local and global
precedence constraints [Win02, Win04]:

∑
tn∈G(A)

tn≤t+wmn−1

xAtn
n +

∑
tm∈G(A)

tm≥t

xAtm
m ≤ 1

∀(m,n) ∈ ED,
∀A ∈ Θ(m) ∩Θ(n), ∀t ∈ Gmn(A)

(5.1.18)

a↑An ≤ a↑Am ∀(m,n) ∈ ED, ∀A ∈ Θ(m) ∩Θ(n) (5.1.19)

This is not necessary in the current version since all instances of the precedence constraints
(5.1.15) for t := GA − wmn + 1 subsume inequalities of the form:

a↑An +
∑

tn∈G(A)

xAtn
n

︸ ︷︷ ︸
=a↑B

n

+(1− a↑Bm) ≤ 1 ⇔ a↑Bn ≤ a↑Bm (5.1.20)

These are exactly the former global precedence constraints (5.1.19)—they are special cases of
the new, generalized precedence constraints (5.1.15). The local constraints (5.1.18) are trivially
subsumed. The set of integer feasible solutions is unchanged if the separated constraints (5.1.18)
and (5.1.19) are used in place of (5.1.15). But the resulting polytope is “looser” and no longer
integral: When its extreme points are scanned via randomized objective functions as described
above, a part of the obtained points is fractional-valued (less than a half for most inputs). Never-
theless, it can be appropriate to employ the separated variant if it is useful to distinguish between
local and global preservation of data dependences (see Sec. 6.3).

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 105

Now we consider possibilities to integrate the block length variables and constraints into the
PCGS-B polytope, preferably while not destroying its integrality. The classic way represents the
block lengths directly by integer variables [Käs00b, GE93]. For this, we can introduce for each
basic block A a new integer (but not binary) variable TA that is greater than or equal to its length
in the schedule: ∑

t∈G(A)

t · xAt
n ≤ TA ∀n ∈ V, ∀A ∈ Θ(n) (5.1.21)

These constraints work as follows: If block A has length t̃ and n is an instruction scheduled
in this block at cycle t̃, then the left-hand side of the inequality instantiated for this instruction
and this block evaluates to t̃ since only xAt̃

n is equal to one in the sum—t̃ · xAt̃
n = t̃ is the only

non-zero addend. With the execution frequency of block A given as fA, the objective function
can be written as:

min
A∈B

∑
fA · TA (5.1.22)

This objective function is such that in each optimal solution, for each block A at least one instance
of inequality (5.1.21) is tight so that TA is equal to the actual block length. The advantage of
this approach is that it needs only O (|B|) variables and O (|B| · |V |) constraints. But it has the
significant drawback that its efficiency is unclear and difficult to analyze; at least, the experiments
show that it is not integral.

An alternative formulation introduces a new set of binary variables for each block to represent
its length. Such a variable BA

t is equal to one if and only if basic block A has length t in
the schedule. This variable can be interpreted as the variable xAt

lA
of a new imaginary “last”

instruction lA inside block A that is dependent on all other instructions that are scheduled in
A (with latency zero). Accordingly, we can use instances of the local precedence constraints
(5.1.18) to link the BA

t variables to the model. The objective function remains linear:

min
∑
A∈B

fA ·

 ∑

t∈G(A)

t · BA
t


 (5.1.23)

If block A has length t̃, then in any optimal solution the term in the parentheses evaluates to t̃
(because then t̃ ·BA

t̃
= t̃ is the only non-zero addend). This formulation is, with O (G) variables

and O (G · |V |) constraints, larger than the previous one, namely by a factor that corresponds
approximately to the average maximum block length. But the experiments indicate that it is
tighter; however, fractional-valued solutions still occur in the relaxation—hence the resulting
polytope is not integral.

To obtain deeper insights into its integrality properties, we tried to transfer the proofs devel-
oped in Sec. 5.1; however, we encountered two obstacles: Firstly, it seems impossible to extend
the skeleton digraph in such a way that its transitive closure yields a constraint graph that models
the logical characteristics of the B variables (= the x variables of lA) properly. The problem
is that the pseudo instruction lA of a block A should be dependent on other instructions only if

106 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

they are scheduled in A, i.e., these dependences may only be local5. However, by taking the
transitive closure, all dependences are automatically translated to all successor blocks—in other
words, they are made global. This unwanted consequence must not be an obstacle in principle to
obtaining a correct and perfect constraint graph, it could also merely be a limitation of our proof
method.

Secondly, even if the B variables are correctly integrated into the constraint graph, it is un-
clear if and to which extent Theorem 5.1.17 can be adapted to local dependences. In fact, ex-
amples of constraints (5.1.8) with τ2(P) ≥ 2 involving local dependences can be found that are
apparently not redundant. Thus an exponential worst case number of these constraints could
remain.

As all attempts to cope with this complexity do not succeed, the question arises whether a
fundamental barrier has been reached here. In fact—and perhaps surprisingly—we can prove
that, if P �= NP , any attempt to integrate the block length constraints into the polytope while
keeping it efficient is bound to fail:

Theorem 5.1.25 Precedence-constrained global instruction scheduling (PCGS) is NP-com-
plete. ✷

PROOF It is clear that PCGS is in NP: It is surely possible to check in polynomial time whether
a given schedule satisfies the assignment, precedence, and block length constraints. To show the
NP-hardness, we reduce the Max2SAT problem to PCGS:

Definition 5.1.26 (Max2SAT Problem) Let a boolean formula in conjunctive normal form be
given where each clause consists of at most two literals. Given an integer k ≤ n, is there a truth
assignment that satisfies at least k clauses? ✷

Max2SAT is NP-complete6 [GJ79]. Let an instance of this problem be given by a formula
C = C1 ∧ . . .∧Cn and an integer k ≤ n. We assume that each clause Ci has exactly two literals
Li1 and Li2 (otherwise we can duplicate single literals). Our goal is to construct an instance of
PCGS, called PCGS(C), that has a minimal schedule length less than a certain value if and only
if there exists a truth assignment for C that satisfies at least k clauses.

The choice to assign either true or false to a variable must be incorporated into PCGS(C).
For this purpose we employ for each variable a PCGS subproblem that represents its truth as-
signment. Fig. 5.7 (a) shows the basic block graph of this special subproblem: There are five
basic blocks B_X, B_XU, B_XD, B_XU, and B_XD with frequencies 8n, 4n, 4n, 2n, and 2n,
respectively. In addition, there are three instructions OP_X, OP_XU, and OP_XD with source
blocks B_X, B_XU, and B_XD, respectively. The candidate blocks of these three instructions are
chosen as

{
B_X,B_XU,B_XD

}
,
{
B_XU,B_XU

}
, and

{
B_XD,B_XD

}
, respectively.

Figures 5.7 (b) and (c) show two possible schedules with length 1 · 4n + 1 · 2n = 6n. We
observe that in any optimal schedule the instruction OP_X must have been moved either to block

5A further, minor complication resulting from the local dependences is that they introduce redundant edges
according to Def. 3.2.7 into the DDG graph—this complicates the structure of the maximal paths and breaks the
proof of Theorem 5.1.12.

6Interestingly, the problem is polynomial-time solvable if k is chosen as n (2SAT).

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 107

B_XU (4n)

B_ U (2n)X

B_ D (4n)X

B_XD (2n)

OP_ UX

OP_XD

B_X (8n)
OP_X

OP_XD

OP_ UX

OP_XDOP_X

(a) (c)(b)

B_XU (4n)

B_ U (2n)X

B_ D (4n)X

B_XD (2n)

B_X (8n)

B_XU (4n)

B_ U (2n)X

B_ D (4n)X

B_XD (2n)

B_X (8n)

OP_ UXOP_X

Figure 5.7: A PCGS flip-flop.

B_XU or B_XD (otherwise the schedule length would be at least 8n). In the former case—and
only then—also OP_XU must have been moved to B_XU: then it can be scheduled into the same
cycle as OP_X “for free”, i.e., while not increasing the length of B_XU, and B_XU consequently
can have length zero (see Fig. 5.7 (b)). The same holds for OP_XD and B_XD in the other case
(see Fig. 5.7 (c)).

It is evident that there can be no schedules with length less than 6n. Also, it is clear that
there exist no other schedules of this length than the two ones described. Thus these two solely
possible optimal solutions demonstrate the ability of this subproblem to act as a “flip-flop” with
respect to the block lengths: either |B_XU| = |B_XD| = 1 and

∣∣B_XD
∣∣ = ∣∣B_XU

∣∣ = 0 or
|B_XU| = |B_XD| = 0 and

∣∣B_XD
∣∣ = ∣∣B_XU

∣∣ = 1 holds. We can relate these two cases to the
assignments of a variable: both B_XU and B_XD represent the value of X and B_XD and B_XU
the value of ¬X . We will soon see why it is necessary to have two blocks representing each true
and false assignment of a variable, respectively.

For each of the variables X1, . . . , Xm occurring in C, we include one of these subproblems
(called flip-flop) in PCGS(C). The index of the variable is inserted into the names of the blocks
and instructions to distinguish the different flip-flops.

The next step of the construction connects the m flip-flops to the n clauses of the formula: For
each clause Ci we add a further block B_Ci with frequency 1 to the problem which contains two
literal instructions OP_Li1 and OP_Li2 that represent the literals Li1 and Li2 in Ci (see Fig. 5.8
(a)). We define that OP_Li2 has a data dependence on OP_Li1 with latency 1. In addition, the
block contains a further instruction that can only be scheduled there—the only purpose of this
instruction is to ensure that the block has at least length 1 (not shown in the figure).

Now we aim to establish the following relationship: the block of a clause has length 1 in
an optimal schedule if and only if the clause is satisfied by the assignment corresponding to the

108 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

B_X1U (4n)

B_ U (2n)X1

B_ D (4n)X1

B_X1D (2n)

OP_ UX1

OP_X1D

B_X1 (8n)

OP_X1

(a)

B_X2U

B_ UX2

B_ DX2

B_X2D

OP_ UX2

OP_X2D

B_X2 (8n)

OP_X

OP_L11

B_C1 (1)

OP_L 21

B_X1U (4n)

B_ U (n2)X1

B_ D (4n)X1

B_X1D (2n)

B_X1 (8n)

(b)

B_X2U

B_ UX2

B_ DX2

B_X2D

B_X2 (8n)

OP_X

B_C1 (1)

OP_X1 OP_ UX1

OP_X1D

OP_X2D OP_L12

OP_X2

OP_X2

OP_L11

OP_ UX2

1

(4n)

(2n)

(2n)

(4n)

(4n)

(2n)

(2n)

(4n)

Figure 5.8: Connecting two flip-flops to the block of a clause.

schedule. This is the case if at least one literal evaluates to true, or, correspondingly, if at least
one of the two literal instructions has been moved out of the block—otherwise the block must
have length 2 due to the data dependence.

For this purpose, we define B_XjU and B_Ci as the two possible candidate blocks of OP_Li1
(and connect them with a control flow edge) if Li1 is of the form Xj . Otherwise, if Li1 is of the
form ¬Xj , we designate

{
B_Ci,B_XjU

}
as the candidate blocks and add a control flow edge

from B_XjU to B_Ci. The construction for the second literal Li2 is similar: the candidate blocks
of OP_Li2 are chosen as {B_Ci,B_XjD} and

{
B_Ci,B_XjD

}
if Li2 is of the form Xj and ¬Xj

respectively. In general, the instruction of the first literal can only be moved upwards and the
instruction of the second one only downwards7.

Before we give an example, we examine which effect the chosen execution frequencies have
on the form of an optimal schedule: Each of the m flip-flops has at least length 6n and each of
the clause blocks at least length 1, hence 6nm + n ≤ T holds for the global schedule length
T . Moreover, we can always find a schedule with length T ≤ 6nm + 2n: the schedules of the
flip-flops can always be chosen as in Fig. 5.7 (b) or (c), and the n blocks of the clauses have at
most length two.

It follows from this upper bound that in any optimal schedule, the block lengths of the flip-
flops are either exactly as in Fig. 5.7 (b) or in (c), representing an assignment for the formula
(otherwise one flip-flop would have length 8n instead of 6n—then T would be greater than or
equal to 6n(m−1)+8n+n = 6mn+3n). Hence the literal instructions can only be moved into
the block of a flip-flop if this block has length one—in other words, if the literal evaluates to one
under the corresponding assignment. And only if at least one literal instruction can be moved
out of a clause block can this block have length one instead of two—that is, only if at least one

7This is why the proof cannot be performed with 3SAT—we have only two directions for code motion.

5.1. PRECEDENCE-CONSTRAINED GLOBAL SCHEDULING 109

literal evaluates to one is the clause satisfied.
Fig. 5.8 (a) shows an example graph for the clause ¬X1 ∨ ¬X2. Control flow edges from

B_X1U and to B_X2D are connected to the clause block to represent the two literals. The right-
hand side (b) depicts an optimal schedule that corresponds to an assignment that assigns true
to X1 and false to X2. Because block B_X2D has length 1 (X2 is assigned false), instruction
OP_L12 can be moved to B_X2D (literal ¬X2 evaluates to true) so that block B_Ci has length 1
(the clause Ci is satisfied).

Overall, the relationship between assignments and schedules can be precisely characterized
as follows:

• for each optimal schedule of PCGS(C) with length 6mn + n + k there exists a corre-
sponding assignment for C that satisfies k clauses

• for each assignment that satisfies k clauses there exists a corresponding schedule with
length 6mn+ n+ k

It follows that an assignment that satisfies k or more clauses exists if and only if an optimal
schedule has length 6mn + n + k or less. Furthermore, the construction of PCGS(C) can
clearly be done in polynomial time. Hence we have reduced Max2SAT to PCGS and with this
proven that PCGS is NP-hard. �

We can conclude from this theorem that the found integral and polynomial sized polytope
of PCGS-B is maximal in the sense that the inclusion of either the block length or the resource
constraints8 would provably eliminate either its integrality or its polynomial size (if P �= NP).

Furthermore, the proof provides some clues why adding the block length constraints makes
the problem NP-hard: Without these constraints, there are only static maximum lengths for
each block given (the numbers of reserved cycles). With block length constraints, however, one
can effectively provide via the objective function a maximum value for the sum of all block
lengths—with the consequence that there can be an exponential number of combinations of indi-
vidual block lengths such that the sum does not exceed this maximum value. This combinatorial
complexity is a common characteristic of NP-hard problems.

Another typical trait concerns the far-reaching “remote effects” of individual decisions: In the
same way as the truth assignment of a single variable can synchronously determine the values of
literals in many different clauses of a boolean formula, the global movement of an instruction can
enforce the synchronous placement of compensation copies of this instruction in many different
blocks. This analogy helps explain why global scheduling without resource constraints is NP-
complete, but the local variant (without code motion) not.

8It is quite clear that the problem becomes NP-complete when the resource constraints are added—details are
provided in the next sections.

110 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

5.2 Resource-Constrained Global Scheduling

We now concentrate on RCGS, the global scheduling problem without precedence constraints.
Earlier work has shown that for both the OASIC and the SILP formulations of local schedul-
ing, the combined polytope of the assignment and resource constraints is polynomial sized and
integral [Käs00a]. The local nature of the resource constraints (which operate only on the instruc-
tions scheduled at one cycle) suggests that this result can possibly be transferred to the global
problem, however, we can—under the assumption P �= NP—directly exclude this possibility
with the following theorem:

Theorem 5.2.1 Resource-constrained global instruction scheduling without block length con-
straints (RCGS-B) is NP-complete. ✷

PROOF The proof is similar to the previous one dealing with PCGS, but more straightforward.
As in the previous proof, it is clear that RCGS-B is in NP; the main part consists in showing the
NP-hardness. This time, we reduce the classic NP-complete problem 3SAT to RCGS-B:

Definition 5.2.2 (3SAT Problem) Given a boolean formula in conjunctive normal form where
each clause consists of at most three literals, is there a truth assignment that satisfies the for-
mula? ✷

Let an instance of this problem be given by a formula C = C1 ∧ . . . ∧ Cn where each clause
Ci has exactly three literals Li1, Li2, and Li3 (otherwise we can duplicate single literals). We
will construct an instance of RCGS-B, called RCGS_B(C), for which a feasible schedule exists
if and only if there is a truth assignment that satisfies C. During the construction, we must not
use precedence constraints, but we can suppose the existence of resource constraints: we simply
assume that only one instruction can be executed per cycle, i.e., there is one slot per cycle.
Furthermore, we can define how many cycles should be reserved for each block; these numbers
are shown on the left of the blocks in the following figures (one for most blocks, so that they can
host not more than one instruction).

As in the proof of Theorem 5.1.25, we use special subproblems, called flip-flops, to represent
the assignments of variables in the schedule. The flip-flop of a variable x1, depicted in Fig. 5.9
(a), consists of three blocks and four instructions (displayed in their respective source blocks).
Their candidate blocks are defined in such a way that the dummy instructions D_X1 and D_X1
cannot be globally moved, but the other literal instructions OP_X1 and OP_X1 can be moved
into the predecessor and successor blocks of their respective source blocks B_X1 and B_X1
(which are called literal blocks). They must also be moved this way since only one instruction
can be scheduled in these blocks which have one reserved cycle. In particular, at most one can
be moved upwards to the block B_X1U; then the other must consequently be moved downwards
into each of the successor blocks (in each a compensation copy).

These are the two intended states of the flip-flop: either OP_X1 is moved upwards and
OP_X1 downwards, representing a true assignment of x1, or OP_X1 is moved upwards and
OP_X1 downwards, representing a false assignment. There is a third possibility that represents

5.2. RESOURCE-CONSTRAINED GLOBAL SCHEDULING 111

B_X1U1

11

OP_X1 OP_X1D_X1 D_X1

(a) Basic Flip-flop (b) Disjunction (c) Conjunction

n

n ingoing edges

111

1

D_FOP_F

1

D_FOP_F

B_X1B_X1

B_C

Figure 5.9: Basic elements used to construct RCGS_B(C).

an undecided state (both instructions moved downwards), but this will turn out to be unproblem-
atic later.

The hereby established relationship between schedules and assignments is that the downward
movement of an instruction means that the corresponding literal evaluates to false. Fig. 5.9 shows
how conjunctions and disjunctions of literals can be represented under this relationship. The
structure of both scheduling subproblems (b) and (c) enforces that, in each feasible schedule, the
instruction OP_F is moved upwards (again, this is due to the dummy instruction D_X, which
occupies the single reserved slot in its source block). However, this is only possible if each of
the successor blocks is not full, i.e., has a free slot. This is exploited to model disjunction and
conjunction:

• Let there be a clause with three literals given. The corresponding scheduling problem
consists of a flip-flop for each of the variables occurring in the clause plus the subproblem
from Fig. 5.9 (b). Each literal block of a flip-flop, B_Xi and B_Xi, is connected to this
subproblem via a control flow edge if the clause contains the corresponding literal xi and
¬xi, respectively (at “n ingoing edges”, here n=3).
Then an assignment satisfies the clause if and only if it evaluates less than three literals to
false; this corresponds to a schedule where less than three literal instructions are moved
downwards into block B_C—then and only then there is at least one free slot in B_C and
the instruction OP_F can be moved upwards so that the scheduling problem has a solution.

• Let a boolean formula be given as a conjunction of n literals. For the case n = 3, these
literals are represented by the three upper blocks in Fig. 5.9 (c). As above, we have a flip-
flop for each variable and connect each of its two literal blocks, B_Xi and B_Xi, to one of
these three blocks via a control flow edge if they represent the same literal.
Then an assignment satisfies the formula if and only if it satisfies all n literals; this cor-
responds to a schedule where none of the n literal instructions is moved downwards into

112 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

one of the three blocks—then and only then can the instruction OP_F be moved upwards
and the scheduling problem has a solution. This is because in each feasible schedule the
instruction OP_F must be moved upwards, which means that a compensation copy of this
instruction must be scheduled in each of the three upper blocks. This has the consequence
that each of them is full and cannot accept another literal instruction.

The problem for the whole formula, RCGS_B(C), combines these different classes of subprob-
lems: There is a flip-flop for each variable and a clause block for each clause (the upper block
of Fig. 5.9 (b) with n=3). These blocks are connected by control flow edges as described above
(if a literal does not occur in any of the clauses, then the corresponding literal block has no
successor—then we set its maximum length to two instead of one).

333

1 D_F

B_X2U1

11

OP_X2

OP_X2

B_X1U1

11

OP_X1

OP_X1

D_X1 D_X1

B_X3U1

11

OP_X3

OP_X3

OP_X2
OP_X3

OP_F

OP_F

OP_F

D_X2 D_X2 D_X3 D_X3

Literal Level

Clause Level

Formula Level

Figure 5.10: Feasible schedule of RCGS_B(C̃).

A further block represents the conjunction of all clause blocks—i.e., the formula as a whole.
It is the common successor of all clause blocks and has the form of the lower block of Fig. 5.9
(c). A feasible schedule for RCGS_B(C) then exists if and only if C is satisfiable.

Figure 5.10 depicts a feasible schedule of the RCGS-B problem for the satisfiable formula
C̃ = (x1 ∧¬x2 ∧ x3)∨ (x1 ∧ x2 ∧ x3)∨ (¬x1 ∧¬x2 ∧¬x3) as an example. The satisfying truth
assignment corresponding to this schedule is x1 = 1, x2 = 1, and x3 = 0. �

5.2. RESOURCE-CONSTRAINED GLOBAL SCHEDULING 113

5.2.1 Deriving an Integral Subpolytope of the Resource Constraints

As a consequence of the preceding theorem we now concentrate on the resource constraints
alone, which are the same for both local and global scheduling. A common approach mod-
els resource binding explicitly in the ILP, i.e., the ILP variables model on which (real) exe-
cution unit each instruction is executed [Käs00a, GE93]. This early resource binding can be
achieved by splitting up each xAt

n variable into several new variables xAt,k1
n , . . . , xAt,kl

n that rep-
resent the decision to execute on unit k1, . . . , kl. Let the set of feasible execution unit candidates
for each instruction n be given by R(n). Then each occurrence of the variable xAt

n is replaced
by

∑
k∈R(n) x

At,k
n in the previously developed constraints9 and the following resource constraints

are added for all execution units k:∑
∀n:n∈Θ−1(A)

∧k∈R(n)

xAt,k
n ≤ Rk ∀A ∈ B, ∀t ∈ G(A) (5.2.1)

Here Rk is equal to one if k represents a single execution unit, but it can be chosen larger if
there are multiple equivalent (symmetrical) execution units: these then can be regarded as Rk

instances of a type k in order to save variables. The function Θ−1 : B −→ P(V) is defined as
the inverse of Θ : V −→ P(B), i.e., Θ−1(A) := {n ∈ V |A ∈ Θ(n)}.

Example 2 (Early Resource Binding on the Itanium 2) Let n1
A, n2

A, nI0, n1
MS, n2

MS, nML,
n1

CHK.S, and n2
CHK.S be instructions of the types given by the respective lower indices. If all

these instructions can be scheduled in a block A, then the following instances of the resource
constraints (5.2.1) are generated for a cycle t:

xAt,M0
n1

A
+ xAt,M0

n2
A

+ xAt,M0
nML

≤ 1

xAt,M1
n1

A
+ xAt,M1

n2
A

+ xAt,M1
nML

≤ 1

xAt,M2
n1

A
+ xAt,M2

n2
A

+ xAt,M2
n1

MS
+ xAt,M2

n2
MS

+ xAt,M2
n1

CHK.S
+ xAt,M2

n2
CHK.S

≤ 1

xAt,M3
n1

A
+ xAt,M3

n2
A

+ xAt,M3
n1

MS
+ xAt,M3

n2
MS

+ xAt,M3
n1

CHK.S
+ xAt,M3

n2
CHK.S

≤ 1

xAt,I0
n1

A
+ xAt,I0

n2
A

+ xAt,I0
n1

CHK.S
+ xAt,I0

n2
CHK.S

+ xAt,I0
nI0

≤ 1

xAt,I1
n1

A
+ xAt,I1

n2
A

+ xAt,I1
n1

CHK.S
+ xAt,I1

n2
CHK.S

≤ 1

A possible resource binding of the instruction group {n1
A, nI0, n

1
MS, n

2
MS, nML, n

1
CHK.S} is repre-

sented by xAt,M1
n1

A
= 1, xAt,I0

nI0
= 1, xAt,M2

n1
MS

= 1, xAt,M3
n2

MS
= 1, xAt,M0

nML
= 1, and xAt,I1

n1
CHK.S

= 1. ✷

This formulation is not only simple and flexible, but it also produces a highly efficient poly-
tope: [Käs00a] has proven that the resulting constraint matrix is totally unimodular so that these
resource constraints form an integral polytope (with Theorem 4.3.5). However, they have the
crucial disadvantage that the number of variables needed for an instruction is multiplied by the
number of available execution unit type candidates (exhibited by the above example). For highly

9Lemma 4.3.14 guarantees that this preserves the integrality of the associated polytopes.

114 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

parallel EPIC architectures this multiplies the ILP sizes and, as our experiments indicate, the
solution times.

Therefore we have developed in our earlier work [Win01] hierarchical resource constraints,
which avoid any variable expansion by excluding all resource binding decisions from the ILP
model: Not the ILP solver, but the later bundling phase decides on resource binding. The re-
source constraints only ensure that the binding is later possible. We call an instruction group
(that is, the set of instructions scheduled at a cycle) feasible if a resource binding can be found
for it. This requires that the number of instructions does not exceed the number of functional
unit candidates (which would constitute a resource oversubscription).

This late resource binding makes sense anyway since it is the bundling that actually de-
termines the mapping of instructions to execution units on this architecture (see Sec. 2.2.3.2).
However, it can raise difficulties if execution or bypass latencies of an instruction depend on the
functional unit where it is executed, as on the first-generation Itanium. Fortunately, there are
no such interdependences between scheduling and resource binding decisions on the Itanium 2.
Nevertheless the resource constraints developed in this chapter can be configured to allow for a
combination of both early and late resource binding. They will also lift two further restrictions
of the hierarchical resource constraints that are described below.

We first recapitulate our model of the Itanium 2’s execution units from Sec. 2.2.1 and refine
the notation:

• Each instruction is associated to one of the (execution unit) types, which are sets of those
real execution units where the instruction can be executed. Let :R be the set of all the
execution unit types and R : V → :R be a mapping that associates each instruction to a
type. If R(n) = k, we often say that instruction n is of type k.

• Let the number of instances of a type be given by the function c : :R → N+.

The hierarchical resource constraints assume that the types are arranged in a tree-like hierarchy,
as depicted in Fig. 2.6. However, this is too rigid for the Itanium 2: There the control speculation
checks can be executed on both the MS and I unit types. When modeling this by adding a separate
node CHK.S as the common predecessor of these types to the graph, it is no longer a tree.

Moreover, the previous resource constraints assumed that the number of instances of an ex-
ecution unit type is always equal to the cardinality of the underlying set, i.e., ∀T ∈ :R : c(T) =
|T |. Yet it can be reasonable to break this rule in order to model issuing-related limitations, for
example, it is possible to regard the dispersal window as the most general execution unit type D
with c(D) = 6, although it comprises eight real execution units (also shown in Fig. 2.6):

D = {M0,M1,M2,M3, I0, I1,F0,F1}
This removes the need for separate dispersal window constraints with unclear integrality proper-
ties as in [Win04, Win01].

Our following new network flow resource constraints are more flexible: they employ instead
of a tree a more general network for the resource description. Resource binding is regarded as
a flow through this network. This might remind of the SILP formulation, which uses a resource

5.2. RESOURCE-CONSTRAINED GLOBAL SCHEDULING 115

flow graph to describe the program execution as a flow of the available execution units through
its instructions (see Sec. 8.2.2.1, [Käs00a, Zha96])—however, in our case the instructions flow
through the execution units. We first recapitulate the definition and the central theorem of net-
work flow problems [Hag97, NW88]:

Definition 5.2.3 (Network Flow Problem) A single-source network flow problem (S-NFP) is
given by an acyclic digraph G = (V,E), two nodes s and t called the source and the sink,
respectively, and a function c : E → R that assigns to each edge a capacity. A feasible flow is a
function f : E → R such that:∑

∀u:(u,v)∈E

f(u, v) =
∑

∀w:(v,w)∈E

f(v, w) ∀v ∈ V \ {s, t}

f(e) ≤ c(e) e ∈ E (5.2.2)

The value of the flow is defined as |f | := ∑
∀u:(u,t)∈E f(u, t). A flow is called maximal if there

is no other feasible flow with a greater value. ✷

Theorem 5.2.4 (Max-Flow Min-Cut Theorem) The value of the maximum flow of a network
flow problem is exactly the minimal capacity of a set of edges to disconnect G with s and t in
different components. ✷

The proof of the last famous theorem is usually conducted constructively by means of an algo-
rithm that solves the network flow problem; it comprises the following important result:

Theorem 5.2.5 If all of the edge capacities are integer-valued, then there is a maximum flow
that is integer-valued. ✷

Now we adapt both the problem definition and the theorem to our purposes. The following
modifications are performed:

• We assume node capacities instead of edge capacities.

• Inflow is allowed not only at the source, but at each node of the graph (this inflow into each
node should already be taken into account by the node’s capacity limitation).

• There are multiple sinks, namely all those nodes without successors.

Figure 5.11 illustrates how the resulting networks can be employed to model feasible in-
struction groups: The numbers inside the nodes denote the node capacities; the small horizontal
arrows alongside the nodes represent the possibility of inflow. Nodes without this possibility are
greyed out to depict that no instructions are associated to these nodes; they are only included for
the sake of completeness.

The idea behind this resource flow network is that for each feasible instruction group there
exists an integer-valued feasible flow and vice versa: The thereby intended correspondence be-
tween flows and groups is such that the inflow at each node is equal to the number of instructions

116 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

A

M

ML MS

M0 M1 M2 M3

I

I0 I1

F

F0 F1

CHK.S
44

2 2 2 2

6

D 6

1 1 1 11 1 1 1

Figure 5.11: Resource flow network for the Itanium 2.

of this type in the group. In the resulting flow, the flow value of each edge represents a number
of instructions. The ability of the flow to fork at nodes with multiple successors corresponds to
the possibility to decide between different functional unit types for execution (for example, the
inflow at node CHK.S can flow to MS or to I). If an instruction flows through one of the types
that represent only one functional unit (in Fig. 5.12 the nodes M0, M1, M2, M3, I0, I1, F0, and
F1), then this can be interpreted as binding this instruction to this functional unit.

A

M

ML MS

M0 M1 M2 M3

I

I0 I1

F

F0 F1

CHK.S
44

2 2 2 2

6

D 6

1 1 1 11 1 1 1

1

11

2

11

1 1 1

1 1 1 1 1

1 1 1 1 1 1

Figure 5.12: Feasible flow in the resource flow network.

Figure 5.12 depicts an example of a flow that represents a feasible instruction group consist-
ing of two speculation checks (type CHK.S), a variable shift (I0), a store (MS), a load (ML), and
a floating-point load (M). The inflow is shown to the left of each node (if greater zero). A possible

5.2. RESOURCE-CONSTRAINED GLOBAL SCHEDULING 117

resource binding represented by this flow assigns these instructions to the units M3, I1, I0, M2,
M0, and M1, respectively. There are variations possible, for instance it is possible to swap M0
and M1 in the previous assignment. Hence the flows represent resource bindings not completely
precisely but leave some ambiguity. The following definitions formalize the described concepts:

Definition 5.2.6 (Multi-Source Network Flow Problem) A multi-source network flow problem
(M-NFP) with node capacities is given by an acyclic digraph G = (V,E) and a function
c : V → R that assigns to each node a capacity. An inflow assignment is a function δf : V → R
that gives an inflow value for each node. A feasible flow corresponding to this inflow assignment
is a function f : E → R such that

f̌(v) =
∑

∀w:(v,w)∈E

f(v, w) ∀v ∈ V

f̌(v) ≤ c(v) ∀v ∈ V (5.2.3)

where f̌(v) is an abbreviation of the flow through node v:

f̌(v) := δf (v) +
∑

∀u:(u,v)∈E

f(u, v)

An inflow assignment is said to be feasible if there exists a corresponding feasible flow. It is said
to be integral if δf (v) is integral for all v ∈ V . ✷

Definition 5.2.7 (Resource Flow Network) A resource flow network is a multi-source network
flow problem given by

• an acyclic digraph GR = (R, E) whose nodes are execution unit types,

• a node capacity function c : R → R that assigns an integral cardinality to each execution
unit type,

• and a subset :R ⊆ R of those nodes that permit inflow.

A resource flow network is said to model the resource binding of a processor if the following
relationship holds: an integral inflow assignment δf : :R → R is feasible if and only if the
instruction group containing δf (k) instructions of functional unit type k is feasible. ✷

The following overview depicts the relationships between feasible instruction groups, inflow
assignments, and flows as established by the two previous definitions:

Corresponding
feasible flow

exists
⇔

Corresponding
inflow assignment

is feasible
⇔

Instruction
group

is feasible
⇔

Resource
binding
exists

A big advantage of employing network flows in this context is that integral polytopes for
related problems are well known [NW88]. Therefore the following theorem is not surprising:

118 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

Theorem 5.2.8 (Network Flow Resource Constraints) Let a resource flow network for the tar-
get processor be given as defined previously in Def. 5.2.7. Then the following network flow
resource constraints, generated ∀A ∈ B,∀t ∈ G(A), form an integral polytope of resource con-
straints: ∑

∀k:(k,l)∈E′
yAt

(k,l) =
∑

∀m:(l,m)∈E′
yAt

(l,m) ∀l ∈ R (5.2.4)

∑
∀k:(k,l)∈E′

yAt
(k,l) ≤ c(l) ∀l ∈ R (5.2.5)

E ′ contains all edges from E plus a special edge (s, l) for each l ∈ :R with the sole purpose
to model the inflow into this node. For each edge e ∈ E there exists a new integral flow variable
yAt
e which holds the value of the flow through this edge; in addition, the inflow variables yAt

(s,l)

model the inflow into node l. ✷

The functioning of this formulation is evident: it ensures that the total inflow into each node
does not exceed its capacity (5.2.5) and is equal to its total outflow (5.2.4) (Kirchhoff’s law).
The constraint matrix of the equations (5.2.4) is a network matrix and thus totally unimodular
[NW88], yielding an integral polytope with Theorem 4.3.5. However, the complete formulation
with additional node capacities (5.2.5) goes beyond a network matrix; therefore we provide a
separate proof of the theorem in Appendix B.3.1.

In order to connect these network flow resource constraints to the already developed parts of
the ILP model, the inflow variables yAt

(s,l) are for all l ∈ :R replaced by the sum

∑
∀n:n∈Θ−1(A)

∧R(n)=l

xAt
n (5.2.6)

which is equal to the number of instructions of type l scheduled at cycle t in block A (see Def. 5.2.7).
This step does not compromise the integrality of the polytope according to Lemma 4.3.14.

Example 3 (Network Flow Resource Constraints on the Itanium 2) For the instructions from
Example 2, the following instances of the network flow resource constraints are generated for a
cycle t:

xAt
n1

A
+ xAt

n2
A
− yAt

(A,M) − yAt
(A,I) = 0

yAt
(A,M) − yAt

(M,ML) − yAt
(M,MS) = 0

xAt
n1

CHK.S
+ xAt

n2
CHK.S

− yAt
(CHK.S,MS) − yAt

(CHK.S,I) = 0

xAt
nML

+ yAt
(M,ML) − yAt

(ML,M0) − yAt
(ML,M1) = 0

xAt
n1

MS
+ xAt

n2
MS
+ yAt

(M,MS) + yAt
(CHK.S,MS) − yAt

(MS,M2) − yAt
(MS,M3) = 0

yAt
(A,I) + yAt

(CHK.S,I) − yAt
(I,I0) − yAt

(I,I1) = 0

yAt
(ML,M0) − yAt

(M0,D) = 0 yAt
(ML,M1) − yAt

(M1,D) = 0

yAt
(MS,M2) − yAt

(M2,D) = 0 yAt
(MS,M3) − yAt

(M3,D) = 0

5.2. RESOURCE-CONSTRAINED GLOBAL SCHEDULING 119

xAt
nI0
+ yAt

(I,I0) − yAt
(I0,D) = 0 yAt

(I,I1) − yAt
(I1,D) = 0

xAt
nML

+ yAt
(M,ML) ≤ 2 yAt

(A,I) + yAt
(CHK.S,I) ≤ 2

xAt
n1

MS
+ xAt

n2
MS
+ yAt

(M,MS) + yAt
(CHK.S,MS) ≤ 2

yAt
(ML,M0) ≤ 1 yAt

(ML,M1) ≤ 1

yAt
(MS,M2) ≤ 1 yAt

(MS,M3) ≤ 1

xAt
nI0
+ yAt

(I,I0) ≤ 1 yAt
(I,I1) ≤ 1

Some of the constraints (5.2.5) need not to be instantiated if it is apparent that the left-hand side
is never larger than the right-hand side. Above, the instances for the types A, M, CHK.S, and D
could be omitted. ✷

5.2.2 Reducing the Complexity of the Integral Subpolytope

The above formulation does not multiply the number of x variables like (5.2.1), but it still requires
for each cycle modeled in the ILP as many additional flow variables as there are edges in the
resource flow network (22 for Fig. 5.11). There are optimizations conceivable how to eliminate
many of these auxiliary variables, but the ideal solution would be to remove them completely:
As expressed in Def. 5.2.7, it is sufficient to model inflow assignments for which a feasible flow
exists, but the actual flow itself (i.e., the values of the flow through each edge) is of secondary
interest and should be excluded from the ILP.

Thus the remainder of this section will deal with how to remove all additional variables from
the formulation while keeping it integral. More precisely, our goal is an integral inflow polytope
that contains the vectors of all feasible inflow assignments. Node cuts—minimal sets of nodes
that separate parts of the network—will play an important role at this:

Definition 5.2.9 (Node Cut) A node cut is a nonempty subset S ⊆ V such that no node in S is
dominated or postdominated by other nodes in S (as defined in Def. 3.2.5). A node cut is said to
be complete if C(S) = C,10 i.e., if every complete path in the graph passes through a node of S.
Its capacity c(S) is the sum of the capacities of its nodes. ✷

Example 4 In the graph of Fig. 5.11 S1 = {M0,M1,MS, I} is a node cut, but S2 = {M0,M1,M2,
MS, I} not (since M2 is dominated by MS) and S3 = {M0,M1,MS,CHK.S, I} also not (since
CHK.S is postdominated by {MS, I}). ✷

Lemma 5.2.10 The following statements are equivalent for a nonempty subset S ⊆ V :

1. S is a node cut.

2. There exists no S ′ ⊂ S such that C(S ′) = C(S). ✷

10The notation C(S) has been introduced in Sec. 1.3.1 and is used her with respect to the acyclic digraph GR of
the resource flow network.

120 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

PROOF (1) ⇒ (2): For any node v ∈ S, there exist paths from an entry node to this node and
from there to an exit node that do not intersect S \ {v} (since there exist no nodes in S \ {v} that
dominate and postdominate v, respectively). The concatenation of these paths is a complete path
that does traverse S, but not S \ {v}. Hence c(S′) � c(S) for all S′ ⊂ S.

(2) ⇒ (1): Let us assume that (2) holds and (1) not, i.e., that S is not a node cut. Then
by definition there exists a v ∈ S that is dominated or postdominated by a set of other nodes
D ⊆ S \ {v}. It follows C(v) ⊆ C(D) and thus C(S \ {v}) = C(S). Then S′ := S \ {v} is a
counter-example for (2). �

Node cuts can be used to transfer the max-flow min-cut theorem to network flow problems
with node capacities instead of edge capacities (the problem from Def. 5.2.3 with Equ. (5.2.2)
related to nodes instead of edges):

Theorem 5.2.11 (Max-Flow Min-Cut Theorem (Node Capacities)) The value of the maximum
flow of a network flow problem with node capacities is exactly the minimal capacity of a complete
node cut. ✷

The proof is fairly obvious (simulate node capacities with edge capacities and apply Theorem
5.2.4), but for the sake of exactness it is given in Appendix B.3.2. The integrality result can also
be transferred:

Theorem 5.2.12 If all of the node capacities are integer-valued, then there is a maximum flow
that is integer-valued. ✷

As mentioned before, the node cuts are employed to describe the inflow polytope, which
contains exactly the (vectors of) feasible inflow assignments. This is based on the following
observation: Given a node cut S ⊆ R, P−1

+ (S) refers to those nodes that are postdominated by
S in GR (see Def. 3.2.5). The total inflow into the nodes of P−1

+ (S) is limited by the node cut’s
capacity, c(S). This is because all inflow into these nodes must eventually flow through S. The
following theorem states—as the central result of this section—that this is not only a necessary
characterization of feasible flows, but already sufficient:

Theorem 5.2.13 (Inflow Polytope) Given a resource flow network, any inflow assignment δ :
:R → R satisfies the following inflow constraints if and only if it is feasible:∑

v∈P
−1
+ (S)

δ(v) ≤ c(S) ∀ node cuts S ⊆ R (5.2.7)

✷

PROOF ”⇒”: Let an inflow assignment δ be given that satisfies (5.2.7). We employ the backward
direction of the max-flow min-cut Theorem 5.2.11 to show that it is feasible, i.e., that a corre-
sponding feasible flow exists. In order to apply this theorem, we first transform the multi-source
network flow problem into an equivalent single-source instance G′ = (V ′, E ′). G′ contains G,
i.e., we have E ⊆ E ′ and V ′ = V ∪ Vn∪{s, t} where

5.2. RESOURCE-CONSTRAINED GLOBAL SCHEDULING 121

• Vn contains for each node v ∈ V a new node nv with capacity c(nv) := δ(v); hence
c(Vn) =

∑
v∈V δ(v). Analogously to c : P(R) −→ R, we define δ(V) :=

∑
v∈V δ(v).

• E ′ contains all edges from E plus for each nv ∈ Vn an edge (nv, v). The purpose of these
edges is to simulate the inflow in the single-source problem (therefore the capacity of each
nv ∈ Vn is equal to the inflow). In addition, E′ contains edges from the source s to all
nodes in Vn, and from those nodes in V with no successor in G to the sink t.

• s and t have both capacity δ(V).

Fig. 5.13 (b) demonstrates the construction of G′ for a simple resource flow graph (a) (two
execution units E0, E1 belonging to a unit type E). Part (c) shows a possible maximal flow in G′

(the bold arcs are those with flow one).

E
1

E0 E1
10

2

1 1

u

v w

(a) : Simple M-NFP with
inflow assignment
G

E

E0 E1

2

1 1

u

v w

2t

1nu

2s
2

0nv
1nw

E

E0 E1

2

1 1

u

v w

2t

1nu

2s
2

0nv
1nw

(b) : Equivalent S-NFP
instance

G' (c) Possible maximal flow
in G'

Vn

V

Figure 5.13: Example for the construction used in the proof.

From the construction of G′ it becomes clear: if there exists a flow f that is feasible in G′, then
f |E is a feasible flow in G with the same value. In particular, if this value is δ(V), then the flow
is maximal with respect to G′ and the inflow at each node in G is exactly δ(v)—the existence of
exactly such a flow f |E is to be shown. Hence it is sufficient to prove that there exists a maximal
flow with value δ(V) in G′, or—equivalently with the max-flow min-cut Theorem 5.2.11—that
the minimal capacity of a complete node cut in G′ is δ(V).

To prove this claim, let such a complete node cut S ⊆ V ′ be given. Its capacity is δ(V) in
the cases S = Vn, S = {s}, and S = {t}. For the remaining cases we can partition S into two

122 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

subsets Sn = S ∩ Vn and Sv = S ∩ V and estimate:

c(S) = c(Sn) + c(Sv)
Equ. (5.2.7)

≥ c(Sn) +
∑

v∈P
−1
+ (Sv)

δ(v)

(∗)
≥ c(Sn) +

∑
∀u:(u,v)∈E′
u∈Vn\Sn

δ(v)

c(nv)=δ(v)
= c(Sn) + c(Vn \ Sn) = c(Vn) = δ(V)

The step (∗) can be performed because every path through Vn \ Sn must traverse a node in Sv

(otherwise S would not be complete) so that it holds:

{v ∈ V |∃u : (u, v) ∈ E ′ ∧ u ∈ Vn \ Sn} ⊆ P−1
+ (Sv)

Hence there exists a maximal flow f with value δ(V) in G′, and f |E is a feasible flow in G that
corresponds to the inflow assignment δ. The existence of such a flow was to be shown.

”⇐”: Let δ be feasible so that a corresponding feasible flow exits. Let f denote such a
flow. It has to be demonstrated that Equ. (5.2.7) holds for any node cut S. Since all nodes in
P−1

+ (S) are postdominated by S, all inflow into these nodes must also flow through S due to flow
conservation, hence we can estimate:

∑
v∈P

−1
+ (S)

δ(v) ≤
∑
v∈S

f̌(v)
Equ. (5.2.3)

≤ c(S)

�

An important addition to the above theorem is that a feasible flow exists that is integral. This
is expressed by the subsequent corollary; it follows directly by applying Theorem 5.2.12 to G′ in
the above proof.

Corollary 5.2.14 For any integral inflow assignment δ : :R → R that satisfies the inflow con-
straints (5.2.7) there exists a corresponding feasible flow that is integral. ✷

This corollary confirms that the idea behind the resource flow networks is sound, namely
that the flow values represent numbers of instructions (which must naturally be integers). An
integral inflow assignment for which only corresponding flows exist that are non-integral would
contradict this intuition.

The inequalities (5.2.7) describe the inflow polytope if the term δ(v) is replaced by yAt
(s,v):∑

v∈P
−1
+ (S)

yAt
(s,v) ≤ c(S) ∀ node cuts S ⊆ R (5.2.8)

We denote one of these inflow constraints, instantiated for a node cut S, as hS . We can easily
prove that they describe an integral polytope:

5.2. RESOURCE-CONSTRAINED GLOBAL SCHEDULING 123

Theorem 5.2.15 The inflow polytope is integral. ✷

PROOF The inflow polytope is exactly the projection of the integral polytope of the network
flow resource constraints from Theorem 5.2.8 onto the subspace composed of all those vectors
in which all components belonging to the flow variables yAt

e (∀e ∈ E) are equal to zero: There
exists a vector in this polytope (a feasible flow) if and only if there exists a vector with the same
inflow components in the inflow polytope. Notably, we have proven this relationship in Theorem
5.2.13 above for real-valued inflow assignments, as required for the equivalence of polytopes.
With Lemma 4.3.13, the projection is integral. �

For any given resource flow network that models the resource binding of a processor, the
inflow polytope delivers integral resource constraints without additional variables. However, it is
necessary to find all the node cuts in the resource flow network in order to generate all the inflow
constraints. The number of these constraints for a single scheduling position is unclear, but likely
exponential (an analysis follows below). Although it grows only with the size of the resource
flow network and not with the program size, it is necessary to generate this number of constraints
for each scheduling position modeled in the ILP (in other words, for each of the reserved cycles
of each block)—thus it is not negligible.

In Sec. 5.1.2 we have already successfully reduced an exponential sized formulation to a
polynomial sized one by removing redundant constraints. The following theorem identifies two
sources of redundancy in the inflow constraints:

Theorem 5.2.16 A subset Ḣ of constraints is redundant in the description of the inflow polytope
if for each constraint hS ∈ Ḣ one of the following two cases applies:

1. there exist node cuts S1 and S2 such that S1 ∩ S2 = ∅, S1 ∪ S2 = S, and P−1
+ (S1) ∪

P−1
+ (S2) = P−1

+ (S). S is called atomic if such S1 and S2 do not exist.

2. there exists a node cut S ′ such that P−1
+ (S) ⊂ P−1

+ (S ′) and c(S) ≥ c(S ′). S is called tight
if such an S′ does not exist. ✷

PROOF We apply Lemma 4.3.3 to prove the redundancy of the subset. We use as # the transitive
closure of the following relation �⊆ Ḣ × Ḣ:

• If S is redundant due to the first case, we define hS1 � hS if hS1 ∈ Ḣ and hS2 � hS if
hS2 ∈ Ḣ.

• If S is redundant due to the second case, we define hS′ � hS if hS′ ∈ Ḣ.

In order to build the transitive closure, we must ensure that there exists no sequence hS1 �
hS2 � . . . � hSk

such that hS1 = hSk
. For this we observe that for each i ∈ {1, . . . k − 1},

hSi
� hSi+1

holds in this sequence either due to the first or the second case defined above—then
either c(Si) < c(Si+1) or c(Si) ≤ c(Si+1) holds.

124 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

It follows c(S1) < c(Sk) ⇒ S1 �= Sk if there is at least one i ∈ {1, . . . k − 1} such that
hSi

� hSi+1
holds due to the first case. Otherwise we have P−1

+ (Si) ⊃ P−1
+ (Si+1) for all i ∈

{1, . . . k − 1} and thus P−1
+ (S1) � P−1

+ (Sk) ⇒ S1 �= Sk. Thus the transitive closure # does
exist and imposes an irreflexive, antisymmetric, and transitive relation—a strict partial order—
on Ḣ, as required by Lemma 4.3.3.

Now the proof of the actual redundancy is straightforward. In the first case, the sum of hS1

and hS2 yields exactly hS , with hS1 # hS and hS2 # hS if hS1 ∈ Ḣ and hS2 ∈ Ḣ, respectively.
In the second case, hS′ subsumes hS and hS′ # hS if hS′ ∈ Ḣ. Thus, with Lemma 4.3.3 all
constraints from Ḣ can be removed from the description of the inflow polytope. �

The first statement of the above theorem says that a constraint is redundant if it is subsumed
by the sum of two smaller constraints. For example, S = {M0,M1,M2} is not atomic in Fig. 5.11
since it can be partitioned into two subsets S1 = {M0,M1} and S2 = {M2} such that P−1

+ (S1)∪
P−1

+ (S2) = {ML,M0,M1} ∪ {M2} = {ML,M0,M1,M2} = P−1
+ (S). In contrast, for the node

cut S ′ = {M0,M1,M2,M3} there does not exist such a partition, since M is postdominated by
S ′, but not by any proper subset of S′.

The second statement says that a constraint is redundant if its node cut can be “moved down-
wards” in the graph (figuratively) without increasing its capacity. For instance, in Fig. 5.11
S = {ML,MS} can be extended to S ′ = {M0,M1,M2,M3} with the same capacity, and
P−1

+ (S) = {M,ML,MS} ⊂ {M,ML,MS,M0,M1,M2,M3} = P−1
+ (S ′).

We call an inflow constraint (5.2.8) basic if it is created for an atomic and tight node cut. The
constraint created for S′ = {M0,M1,M2,M3} is an example of this. It follows inductively from
Theorem 5.2.16 that each inflow constraint is subsumed by a linear combination of basic inflow
constraints. This result can be extended to linear combinations of constraints:

Corollary 5.2.17 For each linear combination of inflow constraints there exists a linear combi-
nation of basic inflow constraints that subsumes it. ✷

Corollary 5.2.18 All basic inflow constraints constitute a description of the inflow polytope. ✷

It is apparent that the confinement to basic constraints allows us to remove a significant
number of inequalities from the formulation. Nevertheless, an example can be found where an
exponential number remains:

Example 5 The resource flow network in Fig. 5.14 describes, for a given k, 3k + 1 execution
unit types. The 2k nodes Eia and Eib can be interpreted as real execution units; for each of
these units, there exists a class of instructions that can only be executed there (visible from the
associated inflow arrows). Alternatively, one of the Eia and Eib units can accept one instruction
of the more general types Ei or E.

This example is artificial, but not unrealistic, since there are various factors that could explain
the limited number of Ei and E instructions (such as common utilization of a certain subunit or
a bus, or even encoding restrictions). It demonstrates the expressiveness of the network flow
resource constraints, but also its potential complexity:

5.2. RESOURCE-CONSTRAINED GLOBAL SCHEDULING 125

E1

E1a E1b

1

1 1

E2

E2a E2b

1

1 1

Ek

Eka Ekb

1

1 1

E k

Figure 5.14: Resource flow network with an exponential number of basic inflow constraints.

We can assign to each sequence a ∈ {0, 1}k a node cut Sa that contains Ei if ai = 1 and both
Eia and Eib else. Sa is obviously tight and it is atomic since E ∈ P−1

+ (Sa), but E /∈ P−1
+ (S) for

any proper subset S ⊂ Sa. Hence there exist at least 2k basic inflow constraints. ✷

The consequences of this example are not immediately clear: It is still possible that we have
not yet discovered all the redundancy in the formulation and that the number of integral facets
of the inflow polytope is in reality polynomial. However, an indication against this is that in the
above example we can construct for each inflow constraint an infeasible inflow assignment that
violates only this constraint. The following theorem shows that this holds even in the general
case, so that “basic” is synonymous to “irredundant”:

Theorem 5.2.19 (Minimality) All basic inflow constraints constitute a minimal description of
the inflow polytope. ✷

It is necessary to show for any basic constraint the non-existence of a linear combination
of other inflow constraints that subsumes it. The proof of this is extensive (as typical for non-
existence proofs) and therefore given in Appendix B.3.3.

Thus the worst-case complexity remains prohibitive in the general case, but it turns out to be
easily manageable in the case of the Itanium 2: There are a total of 11 atomic and tight node cuts
in the resource flow network of Fig. 5.11, namely:

I = {{M0} , {M2} , {I0} , {F0} , {M0,M1} , {M2,M3} , {I0, I1} , {F0,F1}
{M0,M1,M2,M3} , {M2,M3, I0, I1} , {D}}

Analogously to the previous network flow resource constraints, the inflow constraints (5.2.8) are
adapted to the model by replacing the inflow variables yAt

(s,l) on their left-hand sides by (5.2.6).
They are termed network inflow resource constraints. Given the above set of node cuts, I, eleven
of them are instantiated for each A ∈ B and each cycle t ∈ G(A):

∑
k∈P

−1
+ (S)

∑
∀n:n∈Θ−1(A)

∧R(n)=k

xAt
n ≤ c(S) ∀S ∈ I (5.2.9)

126 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

An instance of this inequality must only be added to the ILP if the number of binary variables on
the left-hand side exceeds the value on the right-hand side—otherwise it is evidently redundant.
Hence we need at most 11 inequalities per scheduling position and no additional variables to
model the resource constraints of the Itanium 2. The subpolytope described by these inequalities
is integral with Theorem 5.2.15 and Lemma 4.3.14. This allows to conclude that the found
formulation is highly efficient for the resource flow network of the Itanium 2. The following
example demonstrates this, especially in comparison to the earlier formulations in Examples 2
and 3:

Example 6 (Network Inflow Resource Constraints) For the instructions from Example 2, the
following instances of the network flow resource constraints need to be instantiated for a cycle t:

xAt
n1

MS
+ xAt

n2
MS
+ xAt

n1
CHK.S

+ xAt
n2

CHK.S
+ xAt

nI0
≤ 4

xAt
n1

A
+ xAt

n2
A
+ xAt

nML
+ xAt

n1
MS
+ xAt

n2
MS
+ xAt

n1
CHK.S

+ xAt
n2

CHK.S
+ xAt

nI0
≤ 6 ✷

Another advantage of the network inflow resource constraints is the high flexibility and ex-
pressiveness of the resource flow network: it clearly encompasses earlier description formalisms
like the hierarchical resource constraints in [Win01] and the resource graph in [Käs00a, Zha96].
In addition, it allows to model more general issuing limitations, which can be due to the com-
mon use of subunits or due to encoding restrictions (like the dispersal window, which cannot be
modeled using the two formalisms mentioned earlier).

However, the question arises how to deal with the exponential worst-case complexity, which
possibly materializes as a result of more comprehensive networks with unfavorable structures.
This inevitable complexity comes from the fact that we project the polynomial sized polytope of
Theorem 5.2.8 onto a lower-dimensional plane. It is not uncommon that an exponential number
of facets emerge in the projection [AZ96]; in Sec. 5.1.2, we have encountered this effect in the
opposite direction: there we have lifted an exponential sized polytope to a higher-dimensional
space in order to obtain a polynomial sized formulation.

A way to contain the possible complexity increase is to perform only a partial projection. A
detailed discussion of this, however, would go beyond the scope of this thesis. A more realistic
adaptation that could become necessary on other target microarchitectures is a partial reintro-
duction of early resource binding to allow for variable latencies, i.e., latencies that vary with the
unit type an instruction is executed on. For example, if an instruction n can be executed on the
unit types k1, . . . , kl ∈ :R with different latencies, then a partial early binding can be modeled
by splitting up each xAt

n variable into l new variables xAt,k1
n , . . . , xAt,kl

n that represent the deci-
sions to execute on the respective unit types. These variables are incorporated into the model as
described at the beginning of Sec. 5.2.1; the precedence constraints related to n, however, must
differentiate between the l unit types to allow for the different latencies. Such resource-binding-
aware precedence constraints have been presented in [Win01]. In the inflow resource constraints
(5.2.9), the l variables are treated as the xAt variables of l different imaginary instructions of the
types k1, . . . , kl so that the integrality of the inflow polytope is not affected.

5.3. REFINEMENT AND SUMMARY OF THE MODEL 127

5.3 Refinement and Summary of the Model

Before we provide a summary of the entire ILP model for global scheduling (PCGS ∩ RCGS),
we will revert the modifications we have applied to the given scheduling region to meet the
five requirements of Remark 5.1.1. We have already dealt with requirement (4)—the remaining
ones determine, inter alia, that the candidate blocks of instructions comprise all predecessors and
successors of their source block—possibly including the newly added JS blocks, which have no
counterparts in the original problem.

As discussed already in Sec. 5.1, these artificial candidate block ranges are unrealistic and
may impair the correctness: Instructions should only be scheduled in their original, effective
candidate blocks as introduced by Def. 3.3.2. Let Θx(n) ⊆ Θ(n) denote these blocks11, then we
can replace the xn variables of all blocks in Θ(n) \ Θx(n) by zero in all constraints of the ILP
formulation—namely in Equ. (5.1.15), (5.1.16), (5.1.17), and (5.2.9). In doing so, we remove
the possibility to schedule instructions into these blocks from the ILP model, as intended.

This replacement only excludes scheduling decisions by predetermining some of the variable
values—the polytope remains correct and also integral with Corollary 4.3.12. We can addition-
ally eliminate all x variables this way that result from the increased values of GA due to Remark
5.1.1-(2). All these adaptations will be incorporated below in the final ILP model of global
scheduling. There we will also remove redundant a variables and, as a consequence of this, re-
dundant constraints. For this, we need the following precise specification of candidate blocks.
Starting with this definition, the notion “candidate blocks” is meant to refer again to the original,
effective candidate blocks from Def. 3.3.2, denoted by Θx(n).

Definition 5.3.1 (Valid Candidate Block Range) A valid range of candidate blocks for an in-
struction n ∈ V is given by four sets with the following properties: The set Θ(n) denotes the
potential candidate blocks; it remains the same as in Remark 5.1.1-(1)

Θ(n) = B�(s(n)) ∪ B�(s(n)) (5.3.1)

and is partitioned into two subsets:

Θ(n) = Θx(n) ∪Θ\x(n)

Θx(n) contains the (actual) candidate blocks for which both xn and an variables are generated.
Θ\x(n) denotes those blocks for which no xn variables are produced. This set includes Ω and
all JS blocks. It can be further partitioned into those blocks for which only an variables exist
(Θa\x(n)) and those blocks for which neither sort of variables is instantiated (Θ−(n)):

Θ\x(n) = Θa\x(n) ∪Θ−(n)

Θa(n) := Θx(n) ∪ Θa\x(n) combines those blocks that have an variables. The following table
summarizes the different subsets of Θ(n):

11Where n ∈ V is, as often implicitly supposed in this section, an arbitrary given instruction.

128 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

Θ\x

Θa

Θx Θa\x Θ−

a variables exist + + −
x variables exist + − −

We require that the set of candidate blocks, Θx(n), fulfills the following three properties:

1. ∀(m,n) ∈ ED:
A ∈ Θ(m) ∩ B�(Θx(m)) ⇒ A /∈ Θx(n) (5.3.2)

A ∈ Θ(n) ∩ B�(Θx(n)) ⇒ A /∈ Θx(m) (5.3.3)

In these formulas, B�(A) and B�(A) denote those blocks in GB that are located before
and after all blocks in A ⊆ B, respectively:

B�(A) := {A ∈ B |¬∃D ∈ A : D � A} B�(A) := {A ∈ B |¬∃D ∈ A : D $ A}

2. For each BBG subpath (A,C1, . . . , Ck, B) ∈ B+ between two blocks A,B ∈ Θx(n) holds:

{C1, . . . , Ck} ⊆ Θ\x(n) ⇒ (B�(A) ∩ B≺(B)) ⊆ Θ\x(n) (5.3.4)

3. The set Θa(n) is contiguous in GB. A subset B′ ⊆ B is called contiguous in GB if it
includes all blocks that lie on a path in GB between any two blocks in it:

A,B ∈ B′ ⇒ (B�(A) ∩ B�(B)
) ⊆ B′ (5.3.5)

✷

The definition allows to specify blocks in Θ\x(n) for which no an variables are produced.
This allows for the fact that the set of candidate blocks of an instruction n, Θx(n), is in practice
often small and contains sometimes only a single block. Then it is unnecessary and wasteful
to instantiate an variables for all predecessors and successors of these blocks in Θ(n)—these
variables must have the same values anyway and can be eliminated. We ignore this possibility at
the moment and will investigate later how the removal can take place.

The first two required properties are easy to fulfill by any scheduling region—they basically
say that a block can be removed from the range of candidate blocks of an instruction if the latter
cannot be scheduled there due to scheduling constraints. This removal of superfluous candidate
blocks does not affect the correctness, but it simplifies proofs and reduces the ILP sizes.

The first property states that, if n is dependent on m, then on any program path through the
BBG the candidate block range of m must not start later or end later than the range of n—this
is because copies of m must always be scheduled before those of n. For example, suppose that
Equ. (5.3.2) is violated, i.e., that there is a block A ∈ Θx(n)∩Θ(m) such that neither A nor one
of its predecessors are elements of Θx(m). From the proof of Proposition 5.1.6 we know that
there exists a path C ∈ C(s(m)) ∩ C(s(n)) that passes through A. If a copy of n is scheduled
in A, then a copy of m must be scheduled in A or in a predecessor of A on C—but this is not

5.3. REFINEMENT AND SUMMARY OF THE MODEL 129

possible due to the choice of Θx(m). So no copy of n can be scheduled in A without violating
the precedence constraints, thus we can remove A from Θx(n).

The second property expresses that if the inner blocks on a path between two blocks A,B ∈
Θx(n) have no xn variables, then the values of the xn variables along any other path between the
two blocks must all be zero, too. Thus these variables can also be removed (to minimize Θx(n)).
Formally, this is a consequence of the following corollary:

Corollary 5.3.2 For each instruction n ∈ V and two blocks A,B ∈ Θ(n), A ≺ B, holds: in
any feasible solution of the global scheduling ILP, the sum of the xn variables of the inner blocks
on any subpath between A and B has the same value. ✷

PROOF Follows from Lemma 5.1.19: the value it refers to is a↑Bn −
(
a↑An +

∑
t∈G(A) x

At
n

)
. �

(a) (b)

m

n

m

n

Destination
blocks of n

Destination
blocks of both
n and m

A

B C

A

B C

Figure 5.15: Candidate blocks Θx(m) and Θx(n) before and after enforcement of the properties
of Def. 5.3.1.

A small example in Fig. 5.15 demonstrates how the enforcement of the two properties can
reduce the candidate block ranges: In (a), the two dependent instructions are shown in their
respective source blocks; the initial candidate block ranges are depicted by different patterns.
We assume that m is non-speculative so that the range of candidate blocks for this instruction
is limited. We furthermore suppose that B is a JS block and thus no candidate block. This has
the consequence that Equ. (5.3.4) removes block C from both Θx(m) and Θx(n) (via the path
(A,B,D)). Since (m,n) ∈ ED exists, Equ. (5.3.2) then removes A from Θx(n).

130 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

The third property in Def. 5.3.1 says that the blocks with an variables in the set Θa(n)
form contiguous regions without “holes”. This condition helps to keep the ILP model correct
and simple at the same time, also with regard to later extensions. By definition, Θa(n) is a
superset of the set Θx(n), which itself does not have to be contiguous; in fact, we have reserved
in Sec. 3.3.2 the possibility to exclude individual blocks from Θx(n) arbitrarily. We choose
Θa(n) as the smallest contiguous set enclosing Θx(n), namely as:

Θa(n) := Θ(n) \ (B�(Θx(n)) ∪ B�(Θx(n))
)

This choice implies Θ−(n) = Θ(n) ∩ (B�(Θx(n)) ∪ B�(Θx(n))
)
; it is based on the observa-

tion that the an variables of the blocks in Θ(n) ∩ B�(Θx(n)) and Θ(n) ∩ B�(Θx(n)) must have
the value zero and one, respectively, in any feasible solution. This can be seen from each pro-
gram path (A1, . . . , Ak,Ω) ∈ B+ through s(n): If {A1, . . . , Ai} ⊆ Θ−(n) ∩ B�(Θx(n)) and
{Aj, . . . , Ak,Ω} ⊆ Θ−(n) ∩ B�(Θx(n)) denote all those blocks along the path that are ele-
ments of the respective sets (i < j), then any a-x constraint (5.1.16) generated for a BBG edge
(A,B) ∈ EB such that A,B ∈ {A1, . . . , Ai} or A,B ∈ {Aj, . . . , Ak,Ω} has the form:

a↑Bn = a↑An

Since Equ. (5.1.16) instantiated for A1 ∈ Θ−(n) yields a↑A1
n = 0 and Equ. (5.1.17) a↑Ωn = 1,

it follows inductively from these equations that the values of all an variables of the blocks in
{A1, . . . , Ai} and {Aj, . . . , Ak,Ω} must be equal to zero and one, respectively, in any feasible
solution. Therefore we can replace these variables by the constants zero and one, respectively, in
the ILP formulation. This substitution decreases the dimension of the polytope while preserving
its integrality: The latter follows from the observation that the new polytope is the projection of
the old one onto the subspace of all those points with A ∈ Θ−(n) ∩ B�(Θx(n)) ⇒ a↑An = 0 and
A ∈ Θ−(n) ∩ B�(Θx(n)) ⇒ a↑An = 1 (Lemma 4.3.13).

The substitution renders many ILP constraints redundant: To begin with, instances of the
precedence constraints (5.1.15) created for an A ∈ Θ−(n) ∩ B�(Θx(n)) and an A ∈ Θ−(m) ∩
B�(Θx(m)) have the property that the first two and the last two terms on their left-hand side
must be zero, respectively, so that they are always satisfied and thus redundant. If A ∈ Θ−(n) ∩
B�(Θx(n)), then it must also hold A ∈ Θ−(m) ∩ B�(Θx(m)) due to Equ. (5.3.3), hence such
instances are redundant, too. Analogously, A ∈ Θ−(m) ∩ B�(Θx(m)) implies A ∈ Θ−(n) ∩
B�(Θx(n))with Equ. (5.3.2) so that we have shown altogether the redundancy of any precedence
constraints generated for an A ∈ Θ−(m) ∪ Θ−(n). Hence it is sufficient to instantiate them for
blocks in Θa(m) ∩Θa(n).

The a-x constraints (5.1.16) created for block pairs from Θ−(n) ∩ B�(Θx(n)) and Θ−(n) ∩
B�(Θx(n)) have the form 0 = 0 and 1 = 1, respectively, after the substitution and can be omitted,
too. As shown by the later Equ. (5.3.11), this omission occurs by instantiating a-x-constraints
only for the blocks B ∈ Θa(n), however, this unintendedly also leaves out the following in-
stances generated for an edge (A,B) ∈ EB such that A ∈ Θa(n) and B ∈ Θ−(n)∩B�(Θx(n)):

1 = a↑An +
∑

t∈G(A)

xAt
n (5.3.6)

5.3. REFINEMENT AND SUMMARY OF THE MODEL 131

These equations are added separately for all A ∈ Θ̃a(n), which are those block such that there
exists an edge (A,B) ∈ EB as described above:

Θ̃a(n) :=
{
A ∈ Θa(n)

∣∣∃B ∈ Θ−(n) : (A,B) ∈ EB

}
(5.3.7)

Equ. (5.3.6) can be regarded as the replacement for the constraints (5.1.17).

A

C

B�
�

�� ��
)(AGt

At

n

A

n

C

n xaa

D

E

�
�

�� ��
)(AGt

At

n

A

n

D

n xaa

�
�

�� ��
)(BGt

Bt

n

B

n

D

n xaa

C

nn aa �	� �

C

n

E

n aa �� �

E

nn aa �	� �

D

n

E

n aa �� �

1�	�
na	

Figure 5.16: Example of redundant an variables.

Figure 5.16 shows an example of the variable and constraint removal (the blocks in Θ−(n)∩
B�(Θx(n)) are shown without pattern, those in Θa(n) with pattern). The originally generated
assignment constraints are given along with the BBG edges; they are all removed. Instead,
instances of (5.3.6) are added for all blocks in Θ̃a(n) = {A,B}. The variables a↑Cn , a↑Dn , a↑En and
a↑Ωn occur no longer in the new formulation.

The following theorem shows that we can go even a step further and restrict the instantiation
of precedence constraints to blocks in Θa(m) ∩Θx(n):

Theorem 5.3.3 A precedence constraint (5.1.15) is redundant and can be omitted if A /∈ Θx(n).✷

PROOF Consider a constraint (5.1.15) produced for a dependence (m,n) ∈ ED and a block
A ∈ Θ(m) ∩ Θ\x(n); we show that it is redundant. There exists a path C ∈ C(s(m)) ∩ C(s(n))
through A as shown in the proof of Proposition 5.1.6. If no predecessor of A on C is element of
Θx(n), then the first two terms of the left-hand side of Equ. (5.1.15) must be zero (the a↑An and
the left double sum)—but then the constraint is always satisfied and can be omitted.
Otherwise, let A1, A2, . . . be the blocks we encounter when moving along C from A upwards
(A1 = A), and let Ak be the first encountered predecessor that is element of Θx(n). Due to

132 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

Equ. (5.3.2) this block must also be element of Θa(m) so that precedence constraints are gener-
ated for it and (m,n) ∈ ED. We call such a constraint instantiated for t := GA − wmn + 1 the
“Ak constraint” and observe that it subsumes the inequality

a↑Ak−1
n + (1− a↑Ak−1

m) ≤ 1 (5.3.8)

(see Equ. (5.1.20) for details). We show that this inequality itself subsumes the constraint gener-
ated for A (referred to as the A constraint): The value of a

↑Ak−1
n must be equal to the sum of the

first two terms in the A constraint since no xn variables exist for all the blocks A1, . . . , Ak−1. The
term (1 − a

↑Ak−1
m), however, is greater or equal to (1 − a↑Am) (since the values of the a variables

are according to Prop. 5.1.24 always monotonically decreasing), which itself is greater or equal
to the last two terms of the A constraint. Thus the Ak constraint is tighter than the A constraint
and renders the latter redundant. �

Eventually, we now revert the third and last remaining requirement of Remark 5.1.1, namely
that the scheduling region must be free of JS edges. We show that the ILP model is—after a
small modification—independent of whether JS edges are removed or not so that the requirement
becomes dispensable. For this purpose, we look at differences in the generated constraints with
and without JS edge removal:

Let a JS edge (A,B) in the original BBG be given that is split up into two new edges (A, J)
and (J,B) to and from a newly added JS block J , respectively. Since ∀n ∈ V : J /∈ Θx(n)
(Def. 5.3.1), the insertion of the JS block has only then an effect on the model at all if A ∈ Θa(n)
and B ∈ Θa(n) for an instruction n (otherwise ∀n ∈ V : J ∈ Θ−(n)). Thus we assume
A,B ∈ Θa(n) and consider the two cases J ∈ Θa(n) and J /∈ Θa(n) separately:

If J ∈ Θa(n), then the a-x constraint (5.1.16) generated for (J,B) ∈ EB has the form
a↑Bn = a↑Jn . If the JS edge (A,B) is not removed, the resulting model is the same except that
this equation is missing and that a↑Bn replaces all occurrences of a↑Jn . Since these two variables
have same value anyway, this does not affect the correctness or the integrality properties of the
polytope.

The case J /∈ Θa(n) can only occur if the edge (A,B) goes from a predecessor to a successor
of s(n) (bypassing s(n))—then J /∈ Θ(n), i.e., it is neither predecessor nor successor of s(n). If
in this case the JS edge is not split up, then falsely a-x constraints for the BBG edge (A,B) are
added (which must not occur because this edge is not included in any program path in C(s(n)),
cf. Equ. (5.1.11)). To prevent this from occurring, we must exclude the instantiation of these
constraints for all such bypassing BBG edges, collected in the following set:

E×
n = {(A,B) ∈ EB |A ≺ s(n) ∧ s(n) ≺ B } (5.3.9)

As an example, Fig. 5.17 shows an excerpt of a BBG where the JS edge (A,B) bypasses the
source block of n and must be ignored during the generation of constraints related to instruction.
This omission is shown in Equ. (5.3.11) and (5.3.12) of the following listing which recapitulates
all constraints of the developed ILP model, also allowing for the other modifications developed
in this section.

5.3. REFINEMENT AND SUMMARY OF THE MODEL 133

s(n)

A

B

Figure 5.17: Example of a bypassing JS edge; the candidate blocks of instruction n are shown
with pattern.

In the block length constraints, the BA
t variables correspond—as explained in Sec. 5.1.2—

to the xAt
lA

variables of an imaginary instruction lA that is scheduled once in each block (Equ.
(5.3.15)), but not earlier than any other instruction there. The constraints (5.3.14) are the lo-
cal precedence constraints that allow for this dependence of lA on all other instructions sched-
uled into the block. The additional variable BA

0 is equal to one if and only if the block A is
empty in the schedule (in any solution that is optimal under an objective function that minimizes
BA

1 , . . . , BA
GA

).

. .

Summary of the Developed ILP Model

Assignment Constraints:

a↑An +
∑

t∈G(A)

xAt
n = 1 ∀n ∈ V, ∀A ∈ Θ̃a(n) (5.3.10)

a↑Bn = a↑An +
∑

t∈G(A)

xAt
n ∀n ∈ V, ∀B,A ∈ Θa(n) : (A,B) ∈ EB \ E×

n (5.3.11)

The sums in both equations are omitted if A /∈ Θx(n). The
right-hand side of an a-x constraint (5.3.11) is replaced by zero if
for a B ∈ Θa(n) no block A with the described property exists.

(O (|V | · |EB|) instances)

134 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

Precedence Constraints:

a↑An +
∑

tn∈G(A)
tn≤t+wmn−1

xAtn
n +

∑
tm∈G(A)

tm≥t

xAtm
m + (1− a↑Bm) ≤ 1 (5.3.12)

∀(m,n) ∈ ED, ∀A ∈ Θa(m) ∩Θx(n), ∀t ∈ Gmn(A), B ∈ Θa(m) : (A,B) ∈ EB \ E×
m

The second double sum is omitted if A /∈ Θx(m). As indicated by
the missing universal quantifier, instances of the inequality need
only to be created for one (arbitrary) block B with the described

property (if missing, the term (1− a↑Bm) is replaced by zero).

(O (G · |ED|) instances)

Resource Constraints:∑
k∈P

−1
+ (S)

∑
∀n:n∈Θx−1

(A)
∧R(n)=k

xAt
n ≤ c(S) ∀S ∈ I, ∀A ∈ B, ∀t ∈ G(A) (5.3.13)

Instances with c(S) or fewer x variables on the left-hand side are
redundant and can therefore be omitted.

(O (G · |I|) instances)

Block Length Constraints:

∑
0≤tn<t

BA
tn +

∑
t≤tm≤GA

xAtm
m ≤ 1 ∀A ∈ B, ∀m ∈ Θx−1

(A), ∀t ∈ G(A) (5.3.14)

GA∑
t=0

BA
t = 1 ∀A ∈ B (5.3.15)

(O (G · |V |) instances)

5.3. REFINEMENT AND SUMMARY OF THE MODEL 135

Objective Function:

min
∑
A∈B

fA ·

 ∑

t∈G(A)

t · BA
t


 (5.3.16)

. .

We can assume G = O (|V |), |B| = O (|V |) and that |I| is fixed. Then the asymptotic
overall complexity of the formulation is O (|V |2) variables (including O (G · |V |) x variables,
O (|B| · |V |) a variables) and O (G · |ED|) = O (|V |3) constraints. This shows that the value G
heavily affects the sizes and thereby the solution times of the produced ILPs. Thus GA should
be chosen as small as possible for each basic block A. However, the ILP solver could choose to
grow less frequently executed blocks by moving code into them—this possibility should not be
limited by a too small GA.

A safe choice is to collect all instructions that could possibly be moved into the block,
Θx−1

(A), and compute via list scheduling an upper bound on the length of an optimal local
schedule of all these instructions. A more realistic possibility is to set GA heuristically to the
product (or the sum) of a constant factor and the original length of the block. This factor could
be chosen inversely proportionally to the execution frequency, fA, to allow for increased code
motion into colder blocks. We will deal with this issue again in the description of the implemen-
tation in Sec. 7.1.

The above summary concludes the development of our ILP model for global instruction
scheduling. Before we continue with extensions in the next chapter, we recapitulate the proven
complexity results. The results of Theorems 5.1.25 and 5.2.1 can be summarized as follows:

Corollary 5.3.4 Global instruction scheduling is already NP-complete even without the re-
source or precedence constraints. ✷

Strikingly, this corollary does not apply to local scheduling where the NP-completeness
disappears if either resource or precedence constraints are removed. Hence it highlights a wide
complexity gap between the local and the global variant. As remarked in the discussion of the
NP-completeness proofs, this inherently higher complexity can be partly attributed to the ne-
cessity to schedule compensation copies synchronously in different basic blocks. This multiplies
the interactions between scheduling decisions.

Fig. 5.18 provides a more detailed overview. It contrasts the complexities of several subprob-
lems of global and local scheduling: either they are NP-hard or an integral and polynomial sized
subpolytope is known to exist. The results on the right-hand side are due to [Käs00a, Win01];
regarding the polyhedral complexity of local scheduling without resource constraints, however,
it should be noted that the integrality proofs in both of these works do not comprise the block
length constraints. But since this problem is trivially in P ,12 we can presume that an integral and

12Schedule each instruction n at the earliest possible cycle, ASAP (n)—the resulting schedule has minimal
length.

136 CHAPTER 5. AN ILP MODEL FOR GLOBAL INSTRUCTION SCHEDULING

Global Scheduling Constraints Local Scheduling

Resource

Assignment

Precedence

Block length

PP

PP

NPNP

NPNP P

P
NP

NP=NP-hard subproblem P=Integral and polynomial sized subpolytope

Figure 5.18: Complexity overview.

polynomial sized polytope does exist (thus the dotted brace). The results on the left-hand side
are from Theorems 5.1.25, 5.2.1 and 5.2.8 and from Corollary 5.1.23.

Two points are remarkable in Fig. 5.18: Firstly, as already stated by the corollary, subprob-
lems that are polynomial for local scheduling are NP-hard for global scheduling. Secondly, the
integral and polynomial sized subpolytopes of global scheduling are maximal in the sense that
they cannot be extended by other constraint classes without reaching NP-completeness. This
substantiates that the found formulation is close to maximal efficiency.

Chapter 6

Extensions of the Model

The ILP model developed in the previous chapter is our starting point for several extensions
dealing with predication, speculation, and additional kinds of code motion. We take care that the
extended ILP formulation remains correct and as efficient as possible, but we do not maintain
the same level of formality in the presentation as in the previous chapter.

Completeness of the extensions is not the foremost goal in this chapter, but practicability:
sometimes we impose restrictions where more flexibility would not seem promising or introduce
too much additional complexity. We favor lightweight extensions over exhaustive ones. Other-
wise we would also run into danger of overstraining the available ILP solver technology—as it
will be seen in Sec. 7.3.1, the combined complexity even of the current extensions adds already
significantly to the overall solution times of the model.

6.1 Predication, Branches, and If-Conversion

Predication can be used to extend the scope of code motion for non-speculative instructions, as
it will be shown in the following. We cannot expect that the given input program is free from
predicated instructions: Apart from conditional branches—which will be dealt with at the end
of this section—we can suppose that possibly if-conversion has already been applied in clear
cases, or that expressions have been directly translated into predicated instruction sequences by
the code selector.

We can also suppose that these originally predicated instructions are inherently non-specula-
tive: the fact that a predicate register controls and restricts their execution is an integral part
of their semantics—executing them speculatively would be practically equivalent to removing
this qualifying predicate register1. Furthermore, we can assume that BBG edges have predicate
registers associated with them as described in Def. 3.2.3; we also suppose that these registers are
unique, possibly as a result of renaming. However, we also allow for the possibility that such
registers might not be available for some fall-through edges2 (depending on the input program)—
then we mark these edge by a void predicate register pV.

1In fact, this can be done as an optimization under certain conditions. Details are provided in Sec. 6.2.1.
2I. e., the control flow edge to the subsequent block in memory if no branch is taken at the end of a basic block.

137

138 CHAPTER 6. EXTENSIONS OF THE MODEL

B

D

E

B

F

A

G

C(p4) op5

p3,p4=cmp

(p3) op4
p5,p6=cmp

(p1) (p2)

(p5) (p6)

(p7) (p8)(p9) (p10)

op1

p7,p8=cmp p9,p10=cm

p1,p2=cmp

op3

op2

Figure 6.1: Case study of predication. All instructions op1-op5 are considered non-speculative.

We say that an instruction is controlled by a predicate register, or short predicate-controlled,
if during the execution of the input program the instruction is executed if and only if this predicate
register is true. A closer look shows that not every predicated instruction is predicate-controlled:
In Fig. 6.1,3 for instance, the instruction op5 is executed only if both p4 and p5 are true—
but there is no predicate register that holds p4 ∧ p5. The difference comes from the fact that
our notion of “predicate-controlled” is global (in order to be useful for global code motion):
op5 is controlled by p4 only locally in block C, but not within the whole scheduling region.
The qualifying predicate is only then also the controlling predicate of an instruction if its source
block is control equivalent to that of the compare (as is the case with op4). To find the controlling
predicate of an originally unpredicated instruction, we examine the postdominance frontier of its
source block (cf. [SS02], here defined as an edge set):

3In this and in all other case studies in this chapter, only a small number of instructions are shown (those that
are relevant). They are given in a general, non-specific form “opn rDEST=rSOURCE ” (sometimes abbreviated
“rDEST=rSOURCE”).

6.1. PREDICATION, BRANCHES, AND IF-CONVERSION 139

Definition 6.1.1 (Postdominance (Edge) Frontier) The postdominance frontier of a block D,
P̃+(D) ⊆ EB, is the set of edges (A,B) such that B is postdominated by D and A not. ✷

If P̃+(s(n)) �= ∅, then at runtime the control reaches the source block of an instruction n if
and only if it flows along one of the edges in this set. Hence, if the latter contains only one edge,
then the predicate register associated with this edge is a controlling predicate. For instance, this
set contains only (A,B) for op2, hence p1 controls this instruction.

If a controlling predicate is available for a non-speculative instruction, and if the instruction
is made data dependent on the compare that generates it (the controlling compare), then the re-
strictions with respect to code motion due to its non-speculativeness no longer apply—it can then
be scheduled into speculative destination blocks as long as it is there guarded by the controlling
predicate register to eliminate the speculativeness (predicated code motion [SRM+94]). That
way it is scheduled speculatively, but never executed speculatively. It can be moved arbitrarily
far upwards and downwards—like a speculative instruction—as long as the RAW dependence on
the compare is preserved (and this compare itself is not speculated). In doing so, we incorporate
predication into the ILP as a side effect of speculative code motion.

However, the destination block candidates of downward code motion might be limited by
the availability of the controlling predicate: If the destination block is not dominated by the
compare’s source block, then there exists a path to it where it is undefined. For example, if in
Fig. 6.1 op1 is moved to G and guarded by p6 there, then this predicate register is not written at
all if the path A-G is taken. This can be prevented by initializing the register to zero at a point that
dominates all candidate blocks (block A is such a point in the example). For this, the instruction
cmp.ne.and p1,p2=0,r0 can be scheduled that clears both destination predicate registers.
A larger selection of predicate registers can be written via the instruction mov pr=r0,mask.4

A controlling predicate does not necessarily exist for every instruction. For instance, it is not
possible to determine one in the above way if the postdominance frontier contains more than one
edge. But then we can try to find partially controlling predicates as follows: We successively
mark, for all (A,B) ∈ P̃+(s(n)), the block A and all of its predecessors with the predicate
register associated with this BBG edge (including possibly pV). If during this procedure blocks
are marked more than once, we remove the marking permanently (we do not mark them again).

The candidate block range Θx(n) can then be extended by all blocks that are marked after
this procedure (if at the same time dependence edges from the controlling compares are added):
if at runtime the control flows through a block marked by a predicate register that is associated
with an edge e ∈ P̃+(s(n)), then it flows through e and s(n) if and only if if this register has
value one. Thus the instruction can be scheduled speculatively there if guarded by the predicate
register.

In Fig. 6.1, for example, P̃+(E) is equal to {(C,E), (D,E)} for op3. Thus this instruction
can be moved upwards to C and D if predicated by p8 and p9 there, respectively. B and A,

4It would be easily possible to model that these initializations are automatically inserted in the schedule if and
only if they are needed. The next section outlines the adaptations that would allow this. However, the number of
needed initializations is often zero or low as experienced in Chapter 7, so that it is viable to insert them in a free slot
afterwards manually.

140 CHAPTER 6. EXTENSIONS OF THE MODEL

however, are marked twice and thus no candidate blocks—op3 could only be scheduled there if
guarded by p8 ∨ p9, but this value cannot be expected to be available in a predicate register.

Extending the candidate block ranges of instructions via predication requires some postpro-
cessing after the ILP solver has delivered the schedule. If a copy of such an instruction is sched-
uled in a speculative destination block, then the controlling predicate—or the predicate register
the block is marked with—must be inserted into the instruction’s opcode as qualifying predicate.

It is possible and advisable to compute these associated predicate registers not only for non-
speculative, but also for speculative instructions: If such a register is available in the final sched-
ule at the point of a speculatively scheduled copy—which is not guaranteed as these instructions
are not made dependent on the controlling compares—then it can also be inserted as qualifying
predicate, eliminating the speculativeness of the copy at no additional cost. This has the po-
tential benefit that it prevents speculative stalls as described in Sec. 2.2.4 since predicated-off
instructions cause no (or only reduced) stalls (see Sec. 2.2.3.3).

If the controlling predicate is not available, but instead another one that is a logical implica-
tion of it, then the latter can also be taken as a qualifying predicate in order to reduce (instead of
eliminating) the speculativeness of the scheduled copy. The benefits of this procedure, known as
predicate promotion [MLC+92], are the same as described above.

In Fig. 6.1, for example, if a control speculative load is moved from block E to block A,
it can be guarded by p1 there (if available). There is no disadvantage that could result from
this, but only potential advantages. In the case of a control speculative load, these include also a
reduction of adverse cache effects that possibly result from speculative execution.

As noted above, a controlling compare must not be speculated itself because it controls the
execution of non-speculative instructions. However, it can itself be scheduled speculatively via
predication again. As an example, the following instruction sequence could be placed in block
A of Fig. 6.1 in order to schedule op1 there:

p1,p2=cmp ;;

(p1) p5,p6=cmp ;;

(p6) op1

Interestingly, the opposite predefinition would also be possible, namely to speculate compares
and the instructions they control not. In the above case then both compares could be scheduled in
block A without qualifying predicate and in parallel, but op1 could not be moved upwards across
block B. It can be expected that dependent instructions rarely benefit from an early speculative
execution of a controlling compare since they themselves are then forced to be scheduled non-
speculatively with respect to the compare’s source block.

However, exceptions are imaginable, and it would be possible to cover these cases by means
of a formulation that dynamically switches between both possibilities. We do not expand on this
extension here which would further increase the complexity of the ILP model. Instead we opt
for the first, more promising predefinition and regard compares as non-speculative instructions.
Further arguments in support of this will emerge in Sec. 6.1.2.

6.1. PREDICATION, BRANCHES, AND IF-CONVERSION 141

6.1.1 Procedure Calls

In contrast to all other branches, a procedure call is considered as a normal non-speculative
instruction in the set V (with some special properties, however). In the context of scheduling,
this instruction is interpreted as if it would itself execute the whole procedure; in other words,
it summarizes the data flow to and from the procedure. This leads to a complex input/output
pattern determined by the calling conventions of IA-64 [Int01a]:

The instruction reads the output area of the register stack frame, namely the general registers
from number 32 + sol to number 32 + sof − 1, and may modify all those registers and all
static registers, except for r4-r7 and (usually) the stack pointer in r12, which are preserved.
All predicate registers except for p6-p15 are also preserved. It reads and writes memory like
several loads and stores combined, in line with interprocedural aliasing information [Muc97].
Data dependence edges to and from the call are added according to this data flow.

The interprocedural control flow related to a call is not recorded in the CFG, thus calls do
not end basic blocks as expressed in Def. 3.2.2. They can be moved within a basic block and
even globally between them. The dispersal rules, however, enforce that they are always located
after all non-branch instructions in an instruction group (see the end of Sec. 2.2.3.2). To avoid
that other instructions are scheduled in the same group that impede this, all outgoing dependence
edges of a call with latency zero are turned into edges with latency one. In addition, the latency
of all incoming edges is set to zero—this can be done because in effect, these edges do not model
dependences related to the call instruction itself, but to other instructions in the called procedure.
As a result, instructions that write the parameters to be passed to the procedure can be scheduled
in the same instruction group before the call, as shown in the following bundle:

{ .mmb

sub r73=r3,r21 // (output area r72-r74)

(p14) add r72=r69,r22

br.call.sptk.many b0=flush_block# ;;

}

After the return from the procedure, execution continues at the next instruction group after the
call in the basic block. This is why calls should never be scheduled into the last instruction group
of a block where conditional branches might be located after the call—otherwise they would
not be executed after the return. To prevent calls from being scheduled into the last group, it is
sufficient to change the condition of the first sigma sign of their block length constraints (5.3.14)
from 0 ≤ tn < t to 0 ≤ tn ≤ t.

Finally, to make sure that not more than five instructions are put together with a call into an
instruction group, a call type C can be added as a further predecessor of D in the resource flow
network of Fig. 5.11. The network inflow resource constraints generated for the dispersal window
type D then take calls into account. However, it is not necessary to add resource constraints for C
itself: False dependences between successive calls avoid that more than one of them is scheduled
per cycle.

142 CHAPTER 6. EXTENSIONS OF THE MODEL

6.1.2 Conditional Branches

Conditional branches are special instructions in the sense that they are always located in the last
cycle of a basic block, a position that depends on the block’s schedule length. But not only the
location of branches is variable, also the number of branches that have to be scheduled there
varies with the number of successor blocks in the schedule, as analyzed below. Thus this number
cannot be determined a priori, yet we may assume in advance that not more than dA branches
are needed in a block A (the constant will be defined later).

Because of their special nature, conditional branch instructions are not included in the set V ,
but are inserted into instruction groups after scheduling and before bundling. It is important that
the exact number of needed branch instructions is taken into account by the resource constraints
generated for the dispersal window type D ∈ I—otherwise possibly not enough unused execu-
tion slots would be left for them in the last instruction group. For this purpose, we create new x
variables for branch instructions, namely for each A ∈ B and for all t = 0, . . . ,GA the variables
xAt
br1

, . . . , xAt
brdA

. The variables of the respective cycles are then added to the left-hand side of the
resource constraints (5.3.13) generated for the type D.

Several constraints are necessary to define these variables, and along with this the correct
location and number of branches. The following inequalities make sure that branches are inserted
in no other cycle than the last one of a block (which is the only cycle t with BA

t = 1):

xAt
brj

≤ BA
t ∀A ∈ B, ∀t ∈ {0, . . . ,GA} , ∀j ∈ {1, . . . , dA}

The placement of exactly X branches in a block can be enforced by these constraints:

GA∑
t=0

dA∑
j=1

xAt
brj

= X ∀A ∈ B (6.1.1)

It remains to determine a term for the placeholder X , which is the more complex part. This is
because the ILP solver may empty blocks completely by moving all instructions out of them, with
consequences for the branch structure: Branches to these collapsed blocks disappear and possibly
have to be replaced by branches to (not collapsed) successors of them. This did not happen rarely
during our experiments, where almost 10% of all blocks were collapsed (see Sec. 7.3.2). Hence
a precise model of the branch structure is needed.

We first examine which blocks can be emptied: A block A is said to be collapsible if all
instructions can be scheduled elsewhere, that is, if ∀n ∈ V : Θx(n) \ {A} �= ∅. Let B∇ ⊆ B be
the subset of all collapsible blocks. A block A ∈ B∇ is actually collapsed in a schedule if and
only if BA

0 = 1. Then it must also contain no branches—this is why we have created the variables
xAt
br above not only for t = 1, . . . ,GA, but also for the nonexisting cycle t = 0: These dummy

variables xA0
br1

, . . . , xA0
brdA

represent no scheduled branches, they just ensure that Equ. (6.1.1) is

satisfied even if BA
0 = 1.

Now we analyze which branches can possibly be taken in the schedule: When leaving a ba-
sic block A, the control flows directly to one of those successor blocks to which a path in GB

exists on which all inner blocks (if existing) are collapsed—these blocks are termed scheduled

6.1. PREDICATION, BRANCHES, AND IF-CONVERSION 143

direct successors as they are determined by collapsed blocks, which are determined by the sched-
ule. Branches to all these blocks have to be included in the last instruction group of A—except
possibly for one that can be placed directly after A in memory so that it can be reached via a
fall-through edge. Hence the order of basic blocks in memory also affects the number of needed
branches and should be modeled in the ILP, too.

In order to determine the set of scheduled direct successors within the model, we first form
the set of potential scheduled direct successors, SC(A) ⊆ B�(A): it contains all basic blocks
that can be reached from A via a path on which all inner blocks are collapsible. We introduce for
all B ∈ SC(A) binary variables with the following semantics:

scAB = 1 ⇔ B is a scheduled successor of A.
ftAB = 1 ⇔ B is placed directly after A in memory so that it can be reached

from there via a fall-through edge.

Obviously, a fall-through edge (A,B) can only exist if B is a scheduled direct successor of A:

ftAB ≤ scAB ∀A ∈ B, ∀B ∈ SC(A)

Furthermore, fall-through edges are naturally limited by the fact that only one block can be
placed before or after another block in memory:∑

B∈SC(A)

ftAB ≤ 1 ∀A ∈ B
∑

A:B∈SC(A)

ftAB ≤ 1 ∀B ∈ B

Returns are regarded as branches to the blockΩ, which is defined as non-collapsible and to which
no fall-through edge is possible.

On the basis of these variables, the number of necessary branches in a block A is determined by
the following expression which is substituted into the right-hand side of Equ. (6.1.1):

X :=
∑

B∈SC(A)

scAB −
∑

B∈SC(A)

ftAB

It remains to be shown how the values of the sc variables can be extracted from the schedule. We
recall that scAB must be equal to one if there exists a path from A to B on which all inner blocks
(if existing) are collapsed, but not B itself.

If B is a direct successor of A in GB, then the variable scAB can be directly replaced by one
(if B /∈ B∇) or

(
1− BB

0

)
(if B ∈ B∇). Otherwise, if there is a block C ∈ SC(A) that is not a

direct successor of A, then we can determine scAC recursively by using those direct successors B
of A such that C ∈ SC(B) (of which at least one must exist after the definition of SC): There
exists a path from A to C with collapsed inner blocks if there exists such a path from B to C and
B is collapsed itself:

scBC = 1 ∧ BB
0 = 1 ⇒ scAC = 1

144 CHAPTER 6. EXTENSIONS OF THE MODEL

Or, expressed as a linear inequality:

scBC +BB
0 − 1 ≤ scAC ∀A ∈ B, ∀C ∈ SC(A), ∀(A,B) ∈ EB : C ∈ SC(B) (6.1.2)

The cardinality of SC(A) is a trivial upper bound on X , the number of needed branches in a
block. The bound can be tightened by observing that not all blocks in this set can be scheduled
direct successors at the same time: for instance, we can ignore during the counting all blocks
that dominate other blocks in GB [SC(A) ∪ {A}]. The constant dA is set to this bound, but never
greater than three, the maximum number of branches in an instruction group. If many blocks are
collapsed, this limitation can lead to the emergence of single-cycle “trampoline blocks” that just
contain branches to other blocks.

To demonstrate the functioning of the formulation, we assume that the blocks B, C, D,
E, and G in Fig. 6.1 are collapsible. If in a schedule only the blocks B and D are collapsed,
then scDE = 1, scBC = 1 (since E and C are not collapsed), and scDF = 1 (since F is not
collapsible). These values are propagated upwards to block A via the inequalities (6.1.2). As
a result, scAC = scAE = scAF = scAG = 1, so that—if we suppose a fall-through edge to C—
three conditional branches to E, F , and G with the qualifying predicates p9, p10, and p2,
respectively, must be scheduled there.

If the blocks B, C, and D are collapsed, then a branch from A to E becomes necessary
(if ftAB = 0) that should be taken if p8 ∨ p9—a boolean value that is possibly not available
in a predicate register. This shows a limitation of the current formulation: it makes sure that
the correct number of branch instructions can be inserted at correct positions in the schedule,
but it does not guarantee that their conditions are computed in predicate registers if the former
are disjunctions of predicates. Such cases are rare and we currently remedy them by inserting
additional compares into free slots manually. Nevertheless, a future extension could provide a
more sophisticated management of predicates that automatically schedules compares that com-
pute conditions as they are needed for branches and code motion.

To make sure that conditions consisting of a single predicate are always ready, we for-
bid downward motion of compares across the BBG edges they control (that is, whose associ-
ated predicate register they generate). It is also important that compares are considered non-
speculative, as it has already been predefined in Sec. 6.1.

If in Fig. 6.1 the blocks C, D, E, and G are collapsed, then the whole structure can be merged
into a branchless concatenation of the remaining blocks A, B, and F , connected by fall-through
edges. This demonstrates the flexibility of the formulation, especially if used in combination
with predication: Blocks can be emptied by means of predicated code motion (as previously
described) so that the encompassing branch structure disappears. In other words, the decision to
apply if-conversion is integrated into the model.

It would be easily possible to incorporate also branch misprediction penalties into this de-
cision: If an estimate is available that a branch from block A to B would have a misprediction
probability of εAB, then the term 6fAε

A
BscAB added to the objective function would take the six-

cycle penalty of a misprediction into account (see Sec. 2.2.3.1).

6.2. SPECULATION 145

6.2 Speculation

6.2.1 Control Speculation

Control speculation in the broader sense is already included in the model via speculative destina-
tion blocks. However, in the narrower sense the term means use of control speculative loads. In
this section, we focus on how the decision to use them can be incorporated into the model. After
that, the next section shows that the formulation can be easily extended towards advanced (data
speculative) loads.

Sec. 2.1.5.1 has already made a distinction between speculative and non-speculative instruc-
tions. Basically, there are two reasons why an instruction cannot be speculated:

• it could falsely trigger an exception, or

• it could falsely overwrite a live value.

The first point applies especially to memory instructions. As described in Sec. 2.1.5.1, the Ita-
nium architecture has control speculative loads to overcome this restriction for loads. The sec-
ond point can in principle affect any instruction that writes a destination register that is shared
by another definition. It can often be avoided by renaming the destination register to a different,
previously unused register (together with the source registers of the reached uses).

Thus we rename the destination registers of all definitions—or of as many as possible—to
different registers prior to scheduling. We can introduce new virtual registers for this purpose.
This facilitates not only speculation, but it also removes as many false dependences as possible,
increasing the scheduling freedom. In doing so, we decide on the tradeoff between schedul-
ing and register allocation in favor of scheduling (see Sec. 3.1). Theoretically, this can lead to
schedules for which no register allocation exists afterwards (if not all virtual registers can be
mapped back to architected registers). But as confirmed by the experiments, this is unlikely on
the Itanium with its 128 architected registers.

However, as indicated above, we cannot expect that after the renaming all instructions have
different destination registers, like in a single static assignment form. Instead, we require the
maximal renaming premise, which says that two definitions may write the same destination reg-
ister after the renaming if and only if they are concurrent:

Definition 6.2.1 (Reaching/Concurrent Definitions (cf. Sec. 1.3.2)) The definitions that reach
a given use are termed its reaching definitions. If the set of reaching definitions contains two or
more instructions, then these instructions are termed concurrent definitions. A use that is reached
by a definition is called exclusive use if it is reached only by this definition, and non-exclusive
otherwise. ✷

During the computation of reaching definitions, we must also take those values into account
that flow from outside into the scheduling region. To represent this data flow, we insert a special
instruction αA at the beginning of each entry block A ∈ Bentry that is defined to write exactly
these values. Similarly, the last instruction ωA of each exit block A ∈ Bentry is an artificial

146 CHAPTER 6. EXTENSIONS OF THE MODEL

use that reads the return values of the scheduling region (if any). These instructions are not
scheduled, they just ensure the correct identification of concurrent definitions.

A concurrent definition can reach multiple exclusive uses, but by definition it must also reach
at least one non-exclusive use. During program execution, it depends on the control flow which
of several concurrent definitions actually reaches a non-exclusive use. Hence, if we execute one
of the definitions speculatively, it could falsely overwrite the value written by this definition that
would reach the use in the original program. Thus concurrent definitions must be considered
non-speculative.

op rX=rY

op rW=rZ,rX

ld.s rX’=[mem]

op rZ=rX

op rX=rY

op rW=rZ,rX

ld rX=[mem] chk.s rX’ mov rX=rX’ op rZ=rX’

(a) (b)

Figure 6.2: Control speculation example with candidate “ld rX=[mem]”. The resulting sched-
ule length reduction is depicted by the double-headed arrow.

Figure 6.2 (a) shows an example of this: the load could be moved to the uppermost block
using control speculation, but the result register rX must not be written speculatively because
the load is concurrent with “op rX=rY”. If this is disregarded, the non-exclusive use “op
rW=rZ,rX” could read the wrong value.

The right-hand side (b) directly shows a possible solution: We can let the load write to a
new temporary register rX’. Exclusive uses like the “op rZ=rX” can directly read this register
and can possibly also be speculated with the load, whereas for the “op rW=rZ,rX” we insert
a mov instruction that moves the value back to the original register. All non-exclusive uses are
dependent on this new mov instruction, which must—like the chk.s—be treated as a non-
speculative instruction.

The described use of speculation can be regarded as a general scheme that replaces a non-
speculative instruction—also called the candidate in the following—by its speculative version
plus auxiliary instructions (in the above instance, the candidate is “ld rX=[mem]”, the spec-
ulative version is the “ld.s rX’=[mem]” and the auxiliary instructions are the mov and the
chk.s). This scheme is flexible in the sense that it is also possible to speculate a concurrent
definition that is not a load and vice versa—the chk.s and the mov are then dropped, respec-
tively. This means that the candidate and its speculative version do not have to be loads, as they
are above. If a predicated candidate is to be speculated, then this can be done by omitting the
predicate register in the speculative version—but it must then be used to guard both the chk.s
and the mov.

6.2. SPECULATION 147

The scheme is employed in two stages: During the generation of the ILP possibilities to use
this kind of speculation are detected in advance and integrated into the model. The ILP solver
then decides whether to make use of them.

As we will detail below, the data dependences of the candidate and its speculative version
differ so much that they can be regarded as different instructions. Thus we include them as two
separate instructions and model that one of both should appear in the schedule. More precisely,
one of two mutually exclusive sets of instructions should appear: The first consists of the can-
didate (a load and/or a concurrent definition), denoted by n ∈ V here, and the second of its
speculative version plus the chk.s and/or the mov. In the following, the first and the second set
are denoted by ∆n and ∆C

n , respectively.
To realize that either the instructions from ∆n or those from ∆C

n appear in the final schedule,
we define a new binary variable Sn as a “speculation switch”. Then we replace the right-hand
side of the assignment constraints (5.3.10) by (1 − Sn) and Sn for instructions from the first
and second set, respectively. Consequently, if one of the sets ∆n and ∆C

n is “switched off” via
Sn, then the modified assignment constraints enforce that the x and a variables of the contained
instructions are all equal to zero.

As intended, all other constraints of the ILP are not affected by instructions “switched off”
in this way—except for those instances of the global precedence constraints (3.3.5) where m is
such an instruction: Then (1− a↑Bm) is equal to one, which forces all other terms on the left-hand
side of the inequality to be zero. To avert this unwanted effect, we add Sn and (1 − Sn) to the
right-hand side of these instances if m is element of ∆n and ∆C

n , respectively, in order to relax
them.

(p1) ld rX=[rZ]

Compares
Other DDG
predecessors

Speculative
and exclusive
uses

Non-
speculative
uses

Non-
exclusive
uses

(p1) chk.s rY (p1) mov rX=rY

ld.s rY=[rZ]

Other DDG
predecessors

Speculative
and exclusive
uses

Non-
speculative
uses

Non-
exclusive
uses

0

1 1

1

Compares

Figure 6.3: Data dependences in the sets ∆n (left) and ∆C
n (right).

The chk.s and/or the mov are added as new, separate instructions with the same source
block as the candidate and with their own data dependences. Figure 6.3 depicts how these de-
pendences are created for the most complex case, namely for a predicated candidate that is both a

148 CHAPTER 6. EXTENSIONS OF THE MODEL

load and a concurrent definition. The left-hand side shows different sets of true data dependences
related to this load as arrows. It is distinguished between three groups of dependent instructions:
both speculative and exclusive, non-speculative, and non-exclusive uses, the latter two of which
may overlap, as illustrated in the figure. The right-hand side shows how these dependences are
split up when the speculation scheme is used: the first group can be speculated together with the
ld.s, but the second and the third group are dependent on the check and the move (with latency
zero and one5), respectively.

If both the candidate and one of its uses are loads, and if the former loads the address operand
of the use, then the total latency between both instructions is two (according to Sec. 2.2.3.3).
Then an additional true dependence edge with this latency has to be added between the specu-
lative version and this use in order to allow for the increased latency (not shown in the figure).
Otherwise these two instructions could be scheduled only one cycle apart.

It is important that these speculation possibilities (the new instructions and dependences) are
added in reverse topological order of the DDG. In doing so, newly added speculative versions of
instructions can act as “speculative and exclusive uses” itself when the speculative versions of
DDG predecessor instructions are added. This allows to cascade several dependent speculative
versions, i.e., to schedule a whole sequence of these instructions speculatively.6

Furthermore, a speculation possibility for a candidate should only be added if a benefit can
be expected from using it. This can be excluded in one of the following cases:

• The candidate does not have an exclusive use. Then all uses are dependent on the mov,
which does not allow to schedule them earlier. Candidates that are floating-point loads
constitute an exception since their latency is longer than that of a floating-point move (6
vs. 4 cycles).

• The source block of the candidate does not have predecessor blocks where a speculative
version could be scheduled speculatively (that is, blocks that are not postdominated by the
source block). For example, it does not make sense to speculate loads in the entry block—
the speculative version could not be scheduled earlier than the candidate itself.
However, this rule does not hold for a predicated candidate—there the speculative version
can in principle be scheduled earlier in the same block since it is not dependent on the
compare(s) that generate the predicate. Remarkably, if there is a predicated candidate that
is not a load and has no non-exclusive use, then the qualifying predicate is unnecessary
and can directly be removed—then there is no need to postpone this decision to the ILP
solver.

If the candidate is unpredicated, then its source block can even be excluded from the candidate
block set of the speculative version in order to decrease the ILP size. This is a consequence of
the last point. As a result, this instruction has its own source block not included in its candidate

5The scheme can also be applied to floating-point instructions; then the latency of mov fX=fY, which is a
pseudo-op for fmerge.s fX=fY,fY, is four cycles.

6In Sec. 2.1.5.1 we have noted that checks of the result(s) computed by this sequence only are already sufficient
to detect all possible exceptions. Our current model does not support this simplification and could introduce more
checks than necessary. This was not addressed so far as it was not relevant in practice.

6.2. SPECULATION 149

block range. This may sound problematic at first, but we have never required that the source
block is also a candidate block (although it is normally the case).

In the final schedule, recovery code must be added to which the checks branch if there are
deferred exceptions. In practice, such a branch is a very rare event that happens in less than
0.001% of all cases [Alp03]. Nevertheless, individual speculative loads could experience higher
failure probabilities or incur rare but significant penalties if they miss the L1 cache or the TLBs
[Int04]. Thus, the use of control speculation is ideally guided by a cost model that estimates
these effects. Such information—if available from static analysis, heuristics or profiling—can be
integrated into the objective function of the model to increase its precision.

A cost model was not available during our experiments in Chapter 7, but we have excluded
there—as a general measure—code motion of speculative loads into blocks whose execution
frequency is by a factor k times higher than that of the source block, i.e., we forbid control
speculation that is likely to be useless (we used k = 5 in the experiments).

6.2.2 Non-Exclusive Use Forking

The speculation scheme presented in the previous section can, as remarked there, only then
be profitably applied if the candidate has an exclusive use. This is because all non-exclusive
uses must respect the dependence on the new non-speculative move to ensure that they read
the result of the candidate only if the speculation succeeds (and otherwise that of another,
concurrent definition). Fig. 6.4 shows such a case where speculating the concurrent defini-
tion “add r8=-16,r10” (in (b)) would not allow to schedule the non-exclusive use “sub
r11=r11,r8” earlier than before (in (a)).

However, we can schedule the use earlier if we split it up into two versions: one which reads
the result of the speculative version of the use, “add r8b=-16,r10”, and another which reads
r8 as written by the other concurrent definition, “ld4 r8=[r33]”. As depicted in Fig. 6.4
(c), these two speculative versions of the non-exclusive use are designed to write their results to
two new temporary registers r11a and r11b, respectively. Once the predicates are available in
cycle three, the correct result is written back to r11.

We can go even further and fork not only non-exclusive uses, but also other instructions
that depend on them. In doing so, we effectively execute two versions of the same sequence
of instructions in parallel, one for each of the two possible outcomes of a (yet to be made)
control flow decision (which is represented by the predicates in the example). They are executed
concurrently and once the decision is resolved, the results of the correct sequence are moved
back to the original registers and those of the other one are discarded.

In the example, we have not only forked the use, but also the dependent store. However, this
instruction is special in the sense that it is non-speculative. Such instructions can also be forked,
yet not speculatively; instead the two versions must be guarded by the predicates that represent
the disjoint control flow paths. In this regard, we distinguish between speculative and predicated
forking. Predicated forking can save one cycle if applied to the last instruction in a forked chain
since it avoids the data dependence(s) on the move(s). In Fig. 6.4 (c), for instance, without
forking the store “st4 [r33]=r11” had to be scheduled in cycle four in order to respect the
RAW dependences on the last two moves in cycle three.

150 CHAPTER 6. EXTENSIONS OF THE MODEL

ld4 r9=[r32]
ld4 r8=[r33]
add r8b=-16,r10

sub r11a=r11,r8
sub r11b=r11,r8b
cmp.eq p1,p2=0,r9

(p1) st4 [r33]=r11b
(p2) st4 [r33]=r11a
(p1) mov r8=r8b
(p1) mov r11=r11b
(p2) mov r11=r11a

ld4 r9=[r32]
ld4 r8=[r33]

cmp.eq p1,p2=0,r9

(p1) add r8=-16,r10

sub r11=r11,r8

st4 [r33]=r11

1

2

3

4

5

Cycle

ld4 r9=[r32]
ld4 r8=[r33]
add r8b=-16,r10

cmp.eq p1,p2=0,r9

(p1) mov r8=r8b

sub r11=r11,r8

st4 [r33]=r11

(a) (b) (c)

Figure 6.4: Forking and speculating a non-exclusive use.

The critical path length reductions achievable through forking can be drastic, as demonstrated
by the 40% improvement in the example. However, the example also shows that it has the
potential to triple the instruction count: It duplicates each forked instruction and adds for each
a move. At least, this move can be omitted if there exists no other use of the register that is not
forked, so that the eventual increase lies somewhere between a doubling and a tripling. Such a
trading of an increased number of parallel, speculative instructions for a decreased critical path
length complies with the basic principles of the architecture.

Non-exclusive use forking can be incorporated into the model very similarly to the previous
speculation decisions using mutually exclusive sets of instructions. We do not expand on the
details here, but we make use of a tentative implementation in the experiments (see Sec. 7.2).

The proposed transformation is similar to multipath execution, a hardware technique that
forks on hard-to-predict branches and executes both resulting control flow paths in parallel until
the branch is resolved [ASMC98]. To some extent, speculative upward code motion already
implements such a control speculative execution of instructions from two different paths, but the
presented transformation goes beyond that in the regard that it duplicates instructions from the
point where the two paths join again and speculates them, too. It is an example of how aggressive
speculation in combination with predication can shrink the critical path considerably, which is a
key requirement for more instruction-level parallelism.

6.2. SPECULATION 151

6.2.3 Data Speculation

An inevitable prerequisite for the use of data speculation is the availability of a measure of the
likelihood of aliasing: Ideally, we have for each memory dependence edge e ∈ Emem

D (or at
least for the RAW edges) an aliasing probability κe ∈]0, 1] given. Dependences with κe = 1
are called must-dependences and the others may-dependences. Analogously, we use the terms
must/may-definitions and must/may-uses in the context of such dependences. In the construction
of the global data dependence graph in Def. 3.2.6, it is important that the exclusion criterion (the
second point) applies only to must-definitions and must-uses.

Control Speculation Data Speculation

Loads Checks Loads Checks
Variant Mnmc. Variant Mnmc. Variant Mnmc. Variant Mnmc.
Control
speculative
load

ld.s (Control)
speculation
check

chk.s Advanced
load

ld.a Check
load

ld.c

Speculative
advanced
load

ld.sa Advanced
load
check

chk.a

Table 6.1: Overview of the speculation-related instructions from Sec. 2.1.5. The notions from
[Int02a] are given together with the mnemonics.
(Note: the table does not imply a correspondence between loads and checks in the same line.)

We can employ data speculation separately or in combination with control speculation (using
the advanced loads ld.a and ld.sa, respectively; a short overview of the notions is provided
by Table 6.1). In both cases, only a check load ld.c or an advanced load check chk.a is
required instead of the chk.s. The resulting main difference as regards the scheduler is that the
former two instructions can only be executed on ML units, while the control speculation check
can issue to MS or I. This difference is significant in practice since the two ML units can be
considered as scarce resources. Moreover, it forces us to consider data speculation checks as
separate instructions—they cannot be merged with the control speculation check of the specula-
tion scheme from the previous section, at least not without complicated changes to the resource
constraints.

At least, we can regard the ld.c and the chk.a as one single instruction in the ILP. We refer
to it as the “combined check” ld.c/chk.a in the following. After scheduling, this instruction
is turned into an ld.c or into a chk.a, as described below. Figure 6.5 depicts how it is incor-
porated into the speculation scheme (initially, all dotted arrows can be ignored): All potentially
aliasing stores7 are separated from the group “Other DDG predecessors” and form a group of
their own. Let ST = {st1, . . . , stk} ⊆ V denote the set of these stores. The speculative version

7In principle, a store is “potentially aliasing” with a subsequent load if for the memory dependence edge e
between the two holds κe < 1. In practice, however, memory dependences with κe > 0.1 can already be regarded

152 CHAPTER 6. EXTENSIONS OF THE MODEL

(p1) ld.c chk.a rYrY=[rZ]/

ld.sa rY=[rZ]

Other DDG
predecessors

(2)

Speculative
and exclusive
uses

Non-
speculative
uses

0

1

Compares
Potentially
aliasing
stores

0

0

(*)1

(*)2

Figure 6.5: Data dependences in ∆D
n .

is no longer dependent on them, but the combined check instruction is. All speculative and exclu-
sive uses are dependent on the speculative version, but all non-speculative uses are dependent on
the combined check with latency zero—this is the same as with the control speculation scheme
of Fig. 6.3.

If only the use of data speculation should be made possible, then this scheme can be used in a
stand-alone way: the “ld.sa rY=[rZ]” is replaced by an advanced load “ld.a rY=[rZ]”,
which is a non-speculative instruction. Consequently, it must be guarded by the same predicate
register as the candidate and made dependent on the same compares (differing from Fig. 6.5).

Alternatively—and as originally depicted by the figure—the possibility to use control and/or
data speculation can be included in the ILP. Fig. 6.5 can then be considered as an addendum to
the scheme of Fig. 6.3. Both are to be combined in such a way that “ld.s rY=[rZ]” and
“ld.sa rY=[rZ]” are the same instruction. Altogether, three mutually exclusive (but partly
overlapping) sets of instructions are distinguished:

• ∆n: The candidate.

• ∆C
n : The speculative version plus the chk.s and/or the mov.

• ∆D
n : The speculative version plus the combined check ld.c/chk.a and/or the mov.

(In case of stand-alone control and data speculation, the third and the second set do not exist,
respectively).

as must-dependences since the benefit from ignoring them with data speculation will hardly outweigh the penalty
cycles due to frequent failures. The choice of this threshold depends on the data speculation failure penalties of the
target processor.

6.2. SPECULATION 153

Now two question remain to be clarified regarding the integration with the scheduling ILP:
How can the decision between control speculation alone and combined with data speculation be
modeled? How can it be determined whether an advanced load check instruction chk.a in place
of a simple check load ld.c is necessary, and is this distinction important?

The first question can only emerge if the ILP solver should have the choice between either
control speculation alone or in combination with data speculation. To model this choice, we
employ two new binary variables SC

n and SD
n that are intended to be equal to one exactly in the

first and the second case, respectively, and add the equation:

Sn = SC
n + SD

n

Then we change the assignment constraints and the precedence constraints in such a way that the
sets ∆C

n and ∆D
n appear in the schedule if and only if SC

n and SD
n are equal to one, respectively.

This is done as described in the previous section. Finally, we include instances of the precedence
constraints (5.3.12) for the may-dependences marked by (∗1) in Fig. 6.5, but add SD

n to the right-
hand side of them so that these dependences can be ignored if and only if data speculation is
being used (SD

n = 1).
Such constraints need not to be added for a may-dependence on a store sti that is a DDG

predecessor of another store stj whose source block postdominates that of sti. In this case, a
violated dependence on sti already implies a violated dependence on stj so that the precedence
constraints related to sti are redundant. We denote by S̃T ⊆ ST the subset of those stores for
which the constraints are not redundant.

Regarding the second question, it should be recalled from Sec. 2.1.5.2 that uses can only be
speculated together with an advanced load if the advanced load check instruction chk.a is used,
which branches to recovery code. However, the penalty of failed data speculation is then with
20 cycles and more significantly higher than the 8-cycle penalty if a check load is used (these
penalties are denoted by pDA and pDC , respectively, in the following).

There are three ways how to deal with this difference: Firstly, if it can be supposed that a
failure is extremely unlikely, then the distinction between the two sorts is dispensable and can be
ignored in the ILP. Then after the optimization, the combined checks in the schedule are replaced
by check loads or, where necessary, by advanced load checks with recovery code.

Secondly, if we have for an advanced load a general estimate of the failure probability that is
not negligible (denoted by κ), then this can be taken into account in the objective function. For
this we introduce a further binary variable SDA

n that is intended to be equal to one if and only
if data speculation is used with an advanced load check instead of a check load. If this variable
has value one, then also SD

n must have value one (since then data speculation is being used), as
ensured by the following constraint:

SDA
n ≤ SD

n

Furthermore, we include precedence constraints for the dependences marked by (∗2) in
Fig. 6.5, but this time we add SDA

n to their right-hand sides to model that these dependences
can be ignored if and only if an advanced load check is being used (SDA

n = 1). Then we can add
the term

[
pDCfs(n)κ

]
SD
n +

[
(pDA − pDC)fs(n)κ

]
SDA
n to the objective function to take the penal-

ties into account. In this term, the penalty cycles are weighted by the failure probabilities and by

154 CHAPTER 6. EXTENSIONS OF THE MODEL

the execution frequency of the check’s source block, fs(n); the terms in the square brackets are
constants.

The third and most precise approach breaks the failure probability down into the components
contributed to by the different speculated may-dependences. For this purpose, we introduce for
each store sti ∈ ST a new pair of mutually exclusive binary variables, SDA

(sti,n) and SDC
(sti,n), of

which one is equal to one if and only if the advanced load is scheduled before this store, namely
the former if SDA

n = 1 and the latter if SDA
n = 0, respectively. The reason why we need two

additional variables is that the objective function must remain linear—otherwise we could have
a single variable SD

(sti,n) and use the product SD
(sti,n) · SDA

n instead of SDA
(sti,n), for example. The

penalty weighted by the aggregate failure probability—divided into advanced load check and
check load parts—is then given by the following sum, which is added to the objective function:

k∑
i=1

([
pDAfs(n)κ(sti,n)

]
SDA

(sti,n) +
[
pDCfs(n)κ(sti,n)

]
SDC

(sti,n)

)

Similarly as above, the term SDA
(sti,n) + SDC

(sti,n) is added to right-hand side of all instances of
the precedence constraints (5.3.12) that are generated for a may-dependence (∗1) on a store sti
(instead of the variable SD

n). The following constraints are necessary to connect the SD
n variable

to the new variables. If one of the new variables has value one, then also SD
n must have value

one (since then data speculation is being used):

SDA
(sti,n) + SDC

(sti,n) ≤ SD
n ∀sti ∈ S̃T

Finally, we must add the following inequalities to enforce that the SDC
(sti,n) variables can only be

equal to one if no advanced load check is employed:

SDC
(sti,n) + SDA

n ≤ 1 ∀sti ∈ ST

After the ILP solver has returned a solution, minor postprocessing is necessary if a data
speculation possibility was utilized in the schedule (visible from the value of SD

n in the solution):
Copies of the speculative version are turned into an “ld.sa” if they are scheduled speculatively
and into an “ld.a” else. The combined check is replaced by a check load or an advanced load
check depending on whether a use is speculated in the schedule or not. In the latter case, recovery
code is also added.

6.3 Partial-Ready Code Motion

In principle, partial-ready code motion [BMM00] is a special form of upward code motion in
combination with control speculation: it speculates that a particular control flow path is taken
and ignores the data dependences from other paths. Fig. 6.6 gives an example where this is
profitable.

On the left-hand side (a), we cannot move the load upwards into block A because of the
dependence on the mov. The load is data ready there only under the assumption that the left,

6.3. PARTIAL-READY CODE MOTION 155

op rZ=rY

op rZ=rZ,rX

mov rW=rZ

ld rX=[rW]

0.9 0.1

A op rZ=rY ld.s rX=[rW]

op rZ=rZ,rX chk.s rX

mov rW=rZ

ld.s rX=[rW]

0.9 0.1

A

BB

(a) (b)

C C

�
�

�� ��
)(AGt

At

n

A

n

B

n xaa

�
�

�� ��
)(AGt

At

n

A

n

C

n xaa

�
�

�� ��
)(BGt

Bt

n

B

n

C

n xaa

Figure 6.6: Partial-ready code motion.

likely path is taken (“partial-ready”). On the right-hand side (b), we ignore the dependence by
scheduling the load in block A and insert a compensation copy on the other path that reexecutes it
after the mov, overwriting rXwith the correct value. An important detail is that a speculative load
must be used in A because its load address is undefined if the edge (A,B) is taken. Generally,
the idea is to schedule instructions earlier on a path by speculatively ignoring dependences from
other paths, and to place compensation copies on the other paths that respect these dependences
and, if necessary, overwrite the involved register with the correct value.

Intuitively, we have scheduled the speculative load “around” block B, ignoring all depen-
dences from this block. Note that we could also have done this with a WAW dependent in-
struction (imagine, for example, that the mov was a call instead that would write rX as a
scratch register), but generally not with WAR dependent instructions. Moreover, dependences
(m,n) ∈ ERAW

D ∪ EWAW
D can only then be speculatively ignored if they are not dominating,

i.e., if s(m) does not dominate s(n). We collect such ignorable data dependences in the set
EPR

D ⊆ ERAW
D ∪ EWAW

D ; we will later describe how they are chosen. In the context of a depen-
dence (m,n) ∈ EPR

D , we often also say that m and its source block s(m) are ignorable.
We use the following notation to define partial-ready code motion exemplarily for a use n;

for the sake of simplicity, it is initially tailored towards true dependences with respect to one
source register of n:

Definition 6.3.1 (S-Path, S-Defined) Let a use n ∈ V and one of its source registers r be
given. Let {(d1, n), . . . , (dk, n)} ⊆ EPR

D denote the ignorable data dependences with respect to
r and PRV (n) := {d1, . . . , dk} ⊆ V the corresponding ignorable instructions among its reaching
definitions. Furthermore, let Si denote the source block of di and PRB(n) := {S1, . . . , Sk} the
set of all ignorable blocks. In the context of this use and this source register, we employ the
following notation:

1. We refer to a path C ∈ C(Si) ∩ C(s(n)) as an Si-path (w.r.t. r) if it traverses none of the
other blocks S1, . . . , Sk after Si.

2. A copy of n is called S-defined if it is the latest scheduled copy of this instruction on an
S-path. ✷

156 CHAPTER 6. EXTENSIONS OF THE MODEL

This definition takes into account that partial-ready code motion—abbreviated PR code mo-
tion—introduces multiple scheduled copies of the same instruction on a control flow path: Then
the latest executed copy of this instruction counts since it overwrites all the results of previous
copies with the correct value. This can be seen in Fig. 6.6 along the path A-B-C. The latest
scheduled copy along an executed path is always useful and all copies before are irrelevant
(dead) (along this path). We define the speculative scope of n in a schedule as all those blocks
A such that copies of n are scheduled not only in A or its predecessors, but also in some of
its successor blocks—then it still depends on the control flow what will actually be the latest
executed copy, which writes the value of r definitively.

A copy of n must respect the dependence on a definition di in the schedule if and only if it
is Si-defined: then and only then there exists an Si-path on which it is the latest scheduled copy,
which must read the value written by di. The following definition summarizes these observations:

Definition 6.3.2 (PR Code Motion) A global schedule with partial-ready code motion is de-
fined in the same way as in Def. 3.3.3 except for the following relaxations:

1. More than one copy of the same instruction is allowed along each control flow path, i.e.,
the relation symbol “=” in (3.3.2) is changed to “≥”.

2. A copy of an instruction n may ignore the data dependence on a definition di ∈ PRV (n) if
it is not Si-defined. ✷

As an example, Fig. 6.7 shows a scheduling region with three concurrent definitions in the
blocks B, C, and F , which constitute—together with the implicit, not shown instruction αA in A
(see Sec. 6.2.1)—the reaching definitions of the use Y=r1 (which is also denoted by n). Under
the assumption that PRV (n) is equal to this set of reaching definitions, the right-hand side shows
a possible application of PR code motion: The four scheduled copies of Y=r1 are (from left
to right) C-defined, B-defined, A-defined, and F -defined and respect the dependences on the
respective definitions in these blocks. The second and the third one are scheduled partial-readily.
The latter (the copy in A) is not C-defined, B-defined or F -defined since it is not the latest copy
on any of the paths A-B-C-H , A-B-H or A-D-F -G-H . Thus it may—and it does—ignore the
dependences on all definitions except αA.

The speculative scope of the use consists of A, B, and D. Along the C-path A-B-C-H , the
first two scheduled copies are executed speculatively and in this case also needlessly as their re-
sults are overwritten by the latest scheduled copy (which reads r1 from r1=B). In this example,
the transformation quadruples the number of scheduled copies of the use—nevertheless, it can
be profitable if the path A-D-E-G-H is hot and if this instruction would add to the block length
of H if scheduled there, but not in A where it would fit into a free slot.

In principle, we could move all the non-speculative concurrent definitions in Fig. 6.7 also
upwards to block A via predicated code motion. Then also the use could be moved upwards to
this block, even without partial-ready code motion. However, this would make the definitions—
and indirectly also the use—dependent on the controlling compares (not shown in the figure),
instructions that are often the last ones in long data dependence chains. When scheduled partial-
readily, the use can be executed independently of these chains and thus often earlier.

6.3. PARTIAL-READY CODE MOTION 157

D

F

G

A

H

E

(p1) (p2)

(p5) (p6)(p3) (p4)

r1=C

B

Br1=A

Cr1=B

Y=r1

D

F

G

A

H

E

(p1) (p2)

(p5) (p6)(p3) (p4)

B

C

Y=r1

r1=A
Y=r1

r1=B
Y=r1

r1=C
Y=r1

(=1)an
�H

(=0)an
�C

(=1)an
�G

(=1)an
�E (=0)an

�F

(=1)an
�D

(=0)an
�A

(=0)an
�B

Figure 6.7: Case study of PR code motion.

PR code motion is widely unknown in the literature, but it is employed by wavefront schedul-
ing (see Sec. 3.3.1) where it yields a 20% speedup on individual benchmark programs (the av-
erage benefit is approx. 5%) [BMM00]. The support of this transformation in the ILP model
requires profound changes since it violates the following two basic assumptions the latter is built
on:

Remark 6.3.3 For any global schedule according to Def. 3.3.3 holds:

1. No instruction is scheduled twice on any control flow path (Prop. 3.3.4).

2. If C ∈ C(s(m))∩C(s(n)) and n depends on m, then any copy of n appears after any copy
of m on C (Def. 3.3.3). ✷

In the example of Fig. 6.7, the use violates both assumptions (regarding the second one,
consider the copies of Y=r1 and r1=B scheduled in B and C, respectively). PR code motion
is only possible if these assumptions are relaxed under certain circumstances, of course without
compromising the correctness of the model.

We initially concentrate on the first assumption, especially on how the assignment of the an

variables in Fig. 6.7 violates the a-x constraints (5.3.11): There the variable a↑Bn has value zero
because a copy of this instruction is scheduled in B and the right-hand side of the a-x constraint

158 CHAPTER 6. EXTENSIONS OF THE MODEL

(5.3.11) generated for the BBG edge (B,H) cannot grow larger than one. At the same time,
the right-hand side of the instance generated for (A,B) is one—but then the left-hand side of
this equation, a↑Bn , must also be equal to one, yielding a contradiction. One way to resolve this
contradiction is to turn instances of equation (5.3.11) into inequalities by replacing the “=” by
“≤”:

a↑Bn ≤ a↑An +
∑

t∈G(A)

xAt
n ∀n ∈ V, ∀A,B ∈ Θa(n) : (A,B) ∈ EB (6.3.1)

In these relaxed a-x constraints, the right-hand side can be one even if the left-hand side is zero.
The schedule of Fig. 6.7 is feasible under these modified constraints: In the figure, those BBG
edges for which the produced a-x constraints have value one on both sides are provided with a
grey shadow. The other edges (A,B), (B,C), and (D,F) are exactly those for which the left-
hand side of this constraint has value zero and the right-hand side value one—for those instances
the relaxation is needed.

We now investigate which consequences it would have for the correctness of the formulation
if all a-x constraints were relaxed in this way. Semantically, this step is equivalent to replacing
“⇔” by “⇒” in the characterization of the a variables on page 103. The relaxed constraints still
ensure that at least one copy of each instruction is scheduled along every path through its source
block (previously: exactly one). However, they threaten to invalidate the following proposition,
which is an obvious consequence of the original a-x constraints (cf. Prop. (5.1.24)) and which is
important for the data dependence preservation:

Proposition 6.3.4 In any feasible solution of the global scheduling ILP, a copy of an instruction
n ∈ V is scheduled into a block A ∈ Θx(n) if and only if a↑An = 0 and a↑Bn = 1 for a direct
successor B of A. ✷

This proposition can be violated since the right-hand side of Equ. (6.3.1) can take the value
two after the relaxation. To make sure that this does not happen, we add the following constraints:

a↑An +
∑

t∈G(A)

xAt
n ≤ 1 ∀n ∈ V, ∀A ∈ Θx(n) (6.3.2)

Even with this proposition, data dependence preservation is no longer guaranteed in all cases.
The difference is that now there can be multiple scheduled copies of the same instruction along
program paths, of which only the last one count. The following corollary characterizes the latter
in a solution; it follows from Prop. 6.3.4:

Corollary 6.3.5 The latest scheduled copy of an n ∈ V on a path C ∈ C(s(n)) is placed in
block A ∈ B(C) if and only if a↑An = 0 and a↑Bn = 1 for all B ∈ B�(A) ∩ B(C) ∩Θa(n). ✷

To analyze the effect of multiple copies on data dependence preservation, we have to take a
closer look at what constitutes this preservation: RAW dependences enforce that the two latest
scheduled copies of a pair of instructions are scheduled in a certain order so that data can flow
between them. False dependences—the WAW and WAR types—then just make sure that no
definition is moved from above and below, respectively, between them that would overwrite the

6.3. PARTIAL-READY CODE MOTION 159

op2 r1=..

op ..=r13

op r1=..1

op r1=..4

RAW

WAW

WAR (op r1=..)5

WAR

WAW

Data Flow

Figure 6.8: Relationships of different data dependence types.

live value and thus interfere with the data flow (see Fig. 6.8). In this way, true dependences model
the requirement to schedule instructions in a certain range and false dependences the exclusion.

Based on this observation, we can refine the definition of data dependence preservation—
originally of the simple form of Remark 6.3.3-(2)—in such a way that it takes multiple scheduled
copies of instructions into account:

Definition 6.3.6 (Data Dependence Preservation) A dependence (m,n) ∈ ED is preserved on
a path C ∈ C(s(m)) ∩ C(s(n)) if the copies of both instructions on C fulfill the following
requirements, depending on the dependence type:

• (m,n) ∈ ERAW
D : The latest scheduled copy of m is placed before the latest scheduled

copy of n.

• (m,n) ∈ EWAW
D : No copy of m is scheduled after the latest scheduled copy of n.

• (m,n) ∈ EWAR
D : No copy of n is scheduled before the latest scheduled copy of m. ✷

As mentioned before, this more differentiated definition of data dependence preservation is just a
refinement of the previous definition with regard to PR code motion—both are equivalent under
Remark 6.3.3-(1): then the single scheduled copy on a path is automatically the latest copy, so
that Remark 6.3.3-(2) is equivalent to each of the three requirements.

We now examine the impact of the relaxation on dependences of different types. For this
purpose, we make use of the following inequality, which is implied by the precedence constraints
(5.3.12) (cf. Equ. (5.1.20)):

a↑An ≤ a↑Am ∀(m,n) ∈ ED, ∀A ∈ Θa(m) ∩Θa(n)

Corollary 6.3.5 ensures in combination with this inequality and Equ. (5.3.3) from Def. 5.3.1
that the latest scheduled copy of m is always placed in the same block or earlier than the latest
scheduled copy of n on any path C ∈ C(s(m)) ∩ C(s(n)). As a result, the schedule complies
with Def. 6.3.6 for RAW and WAW dependences, even if all a-x constraints are relaxed.

160 CHAPTER 6. EXTENSIONS OF THE MODEL

WAR dependences, however, are not necessarily preserved because the relaxation enables the
placement of a further copy of n before the latest scheduled copy of m. Our current remedy to
this is to forbid the relaxation of the a-x constraints (5.3.11) for all instructions that are WAR
dependent on others, at least if the constraint is instantiated for a pair (A,B) such that A and B
are candidate blocks of these other instructions. Fortunately, WAR register dependences are rare
in the DDG since we have removed as many false dependences as possible via register renaming
(“maximal renaming premise”). WAR memory dependences are more frequent, but since PR
code motion cannot be applied to stores anyway (see below), this is of no consequence. Hence
the impact of this restriction is only minor.

The special nature of WAR dependences has also the consequence that we must be careful
when removing them: In Def. 3.2.6, a WAR dependence between two instructions is not included
in the DDG if there is an intermediate definition of the same value along all paths between the
two instructions. As depicted in Fig. 6.8 by the dotted edges, this can be done because then
there is a WAW dependence on this intermediate definition (op5), which is itself WAR dependent
on the use (op3). This renders the WAR dependence edge redundant according to Def. 3.2.7.
However, PR code motion could cause the WAW dependence to be violated on some paths—at
least if it is not dominating (that is, if the source block of the intermediate definition does not
dominate that of the later definition). Thus in these cases the exclusion criterion in Def. 3.2.6
must not be applied and the WAR dependence edge must be included in the DDG.

The same effect must be allowed for during the minimization of the data dependence graph as
described in Def. 3.2.7: Only a chain of dominating dependences can render a WAR dependence
redundant. Moreover, the relaxation is only allowed for instructions that are multiply executable
without a changing semantics, which is not the case for instructions whose input and output
operands overlap, such as add r1=1,r18 or memory operations with post-increment.

A further prerequisite of PR code motion is an adaptation of the valid candidate block ranges
(Def. 5.3.1). There we have excluded the possibility to schedule an instruction before all the
candidate blocks of another instruction it depends on Equ. (5.3.2). The basis of this removal
is Rem. 6.3.3-(2), which may be violated by partial-ready copies. If we assume, for example,
that in Fig. 6.7 the candidate blocks of the concurrent definitions comprise only their respective
source blocks, then according to Equ. (5.3.2) the blocks A, B, and D would be excluded from
the candidate block set of the use, making PR code motion impossible.

Thus Equ. (5.3.2) must in this general form not be applied to the ignorable DDG edges. It can
be omitted completely since the dependence preservation does not rely on it (see the discussion
of data dependence preservation after Def. 6.3.6). However, Theorem 5.3.3 is based on it and
must no longer be applied under these circumstances.

Instead of omitting (5.3.2), it is recommended to apply a modified variant, adapted to the
edges in EPR

D , to keep the candidate block ranges as small as possible. For this, we exploit that
these dependences must be preserved at least in certain blocks: If n is scheduled in a block A
that is postdominated by the source block of a definition di ∈ PRV (n), then it must respect the

8It may be possible to prevent via renaming that a register occurs at the same time as a source and destination
register. However, this is not possible if the instruction is RAW dependent on another instruction that is at the same
time a concurrent definition with respect to this register. This can especially occur if the instruction is inside a loop
(see Sec. 6.4).

6.3. PARTIAL-READY CODE MOTION 161

dependence on this instruction; thus, if A is located before all candidate blocks of di, then it
cannot be a candidate block of n:

s(di) pdom A ∧ A ∈ B�(Θx(di)) ⇒ A /∈ Θx(n) (6.3.3)

Similarly, if for a block A a subset D ⊆ PRV (n) exists such that every program path through
A passes also through at least one of the source blocks of the definitions in D, then a copy of
n scheduled in A must respect the data dependence on at least one of these definitions. Thus
A cannot be destination block of n if it is located before all the candidate blocks of all these
instructions in D:

(∀C ∈ C(A)∃di ∈ D : s(di) ∈ B(C)) ∧ A ∈
⋂
di∈D

B�(Θx(di)) ⇒ A /∈ Θx(n) (6.3.4)

These adapted candidate block ranges are—in combination with the relaxed assignment
constraints—called the lightweight implementation of PR code motion since they already per-
mit a certain amount of this transformation: They allow to schedule partial-ready copies around
the candidate block ranges of dependent instructions, which is already sufficient if these ranges
are small. The schedule in Fig. 6.7, for example, is already feasible in this lightweight imple-
mentation if we assume that the candidate blocks of the concurrent definitions consist only of
their respective source blocks.

However, if we allow the concurrent definitions to be moved upwards via predicated code
motion, then the schedule conflicts with the precedence constraints (which enforce Remark 6.3.3-
(2)): For example, if B ∈ Θa(Y=r1), then the general precedence constraint generated for
(r1=B,Y=r1) ∈ ED and the block pair B,C is violated—it enforces a↑Cr1=B = 1, but the value
of this variable is zero since a copy of r1=B is scheduled there (Prop. (6.3.4)). In a precise
implementation of PR code motion, these constraints have to take Def. 6.3.2-(2) into account.

6.3.1 Precise Formulation

The realization of this is more complex; one first step is to use separated local and global prece-
dence constraints for all dependence edges that could be ignored by PR code motion:

a↑An ≤ a↑Am ∀(m,n) ∈ EPR
D , ∀A ∈ Θa(m) ∩Θa(n) (6.3.5)

∑
tn∈G(A)

tn≤t+wmn−1

xAtn
n +

∑
tm∈G(A)

tm≥t

xAtm
m ≤ 1 (6.3.6)

∀(m,n) ∈ EPR
D , ∀A ∈ Θx(m) ∩Θx(n), ∀t ∈ Gmn(A)

We have already discussed in Sec. 5.1.2 that the separated precedence constraint are equivalent to
the general constraints as regards the set of integer feasible solutions, but we have also noted there
that they are not as tight as the latter. The rationale behind the separation is that we have defined
PR code motion at basic block granularity and not at instruction granularity: A partial-ready copy

162 CHAPTER 6. EXTENSIONS OF THE MODEL

is intended to ignore dependences on instructions that are scheduled in other successor blocks
(along other control flow paths), but never on instructions scheduled in the same block. We
schedule around blocks, but never around individual instructions9. In other words, dependences
are ignored globally, but not locally. Thus the local precedence constraints (6.3.6) are never
violated by a partial-ready copy so that we can fully concentrate on the global variant (6.3.5), of
which a far lower number is generated.

We adapt these constraints in such a way that each copy of an instruction n respects the
data dependence on di ∈ PRV (n) if and only if it is Si-defined. For this purpose, we introduce
additional, more differentiated a variables that characterize Si-defined copies:

aSi↑A
n = 1 ⇒ An Si-defined copy of instruction n is scheduled on each program path

through s(n) before A.

These new variables are added for each instruction n ∈ V and each Si ∈ PRB(n) for all blocks
in Θa

Si
(n) := Θa(n) ∩ B≺(Si). They represent additional information about the schedule that is

relevant for the precise modeling of ignorable dependences in the presence of PR code motion. In
the following, we demonstrate their incorporation into the model exemplarily for an instruction
n. To consider how they should be “activated”, imagine that we move, starting from Ω, in a given
schedule in the opposite direction of a program path C ∈ C(s(n)) upwards. Along this path the
conventional an variables are equal to one until the latest scheduled copy of n is encountered or
until a block Si ∈ PRB(n) is reached for the first time: then according to Def. 6.3.1 the next
scheduled copy of n along this path will be Si-defined; thus for the subsequent blocks along the
path the variable aSi↑A

n should be equal to one instead of a↑An . This is achieved by the following
constraints, of which each instance is intended to replace the corresponding instance of constraint
(6.3.1):

a↑Si
n ≤ aSi↑A

n +
∑

t∈G(A)

xAt
n ∀A, Si ∈ Θa(n) : (A, Si) ∈ EB ∧ Si ∈ PRB(n)

Once equal to one, the new an variables are propagated in the same way as the conventional ones:

aS↑B
n ≤ aS↑A

n +
∑

t∈G(A)

xAt
n ∀A,B ∈ Θa

S(n) : (A,B) ∈ EB

The global precedence constraints (6.3.5) are not instantiated for edges (m,n) ∈ EPR
D . In-

stead, the following variant is generated for the new an variables in order to implement Def. 6.3.2-
(2), namely that an ignorable dependence on a definition di ∈ PRV (n) is respected only if the
copy of n is Si-defined:

aS↑A
n ≤ a↑Am

∀(m,n) ∈ ED, ∀S ∈ PRB(n) : S = s(m) ∨ (m,n) /∈ EPR
D ,

∀A ∈ Θa(m) ∩Θa
S(n)

(6.3.7)

9It would also be possible to permit a fine-grain variant of PR code motion at instruction level with multiple,
differently defined copies of a use not only on a single control flow path, but even within a single basic block. We
have not investigated this possibility further since it would entail a massive complexity increase (multiple sorts of x
variables) that stands in no relation to the expected benefit.

6.3. PARTIAL-READY CODE MOTION 163

In both sorts of global precedence constraints ((6.3.5) and (6.3.7)) we have to allow for the
possibility that also the instruction m is subject to PR code motion. Then its global placement
is possibly not only described by the a↑Am variables alone, but also by the new aSi↑A

m variables.
Given an instruction n, multiple of these variables belonging to the same block A can be equal
to one: For example, if ∀i ∈ J : aSi↑A

n = 1 for a subset J ⊆ {1, . . . , k}, then the copies of n
scheduled on all program paths through s(n) before A are Si-defined for all i ∈ J . If such a copy
is actually placed in a block A′ before A, then it holds ∀i ∈ J : aSi↑A′

n = 0 since Equ. (6.3.2) is
also instantiated for the new an variables. As a result, Corollary 6.3.5 still applies if “a↑Bn = 1”
is replaced by:

a↑Bn +
∑

S∈PRB(n):B∈Θa
S(n)

aS↑B
n ≥ 1

Thus, the term
∑

S∈PRB(m):A∈Θa
S(m) a

S↑A
m has to be added to the right-hand sides of Equ. (6.3.5)

and (6.3.7) in order to take partial-ready copies of m into account.

D

F

G

A

H

E

(p1) (p2)

(p5) (p6)(p3) (p4)

B

C

Y=r1

(p1) r1=A
(p3) r1=B

r1=C
Y=r1

a =1n
�H

a =1n
�C

a =1n
�G

a =1n
�E a =0n

�F

a =0n
F D�

a = 1a =l
�B a =1n

�D
a =a =n

C B�

B

l

BC

n aa �� �B

k

B

n aa �� �

n
�B

k
�B

B

l

C

n aa �� �

�
�

�� ��
)(BGt

Bt

n

BC

n

C

n xaa

(k)
(l)

(m)

(n)

(n)

�
�

� �
)(AGt

At

n

B

n xa �
�

� �
)(AGt

At

n

BC

n xa

�
�

� �
)(AGt

At

l

B

l xa

�
�

� �
)(AGt

At

n

D

n xa

�
�

� �
)(AGt

At

n

DF

n xa

F

m

F

n aa �� �

�
�

�� ��
)(DGt

Dt

n

DF

n

F

n xaa

D

m

DF

n aa �� �

a =0m
�D

AX

AX

AX

AX

GB

GB

GBGB

Figure 6.9: A different application of PR code motion in the case study. The three definitions
from blocks B, C, and F are abbreviated as k, l, and m, respectively.

If we assume in the case study that all definitions can be moved upwards through predicated
code motion, then an application of PR code motion as in the schedule of Fig. 6.9 is possible
and feasible in the developed precise formulation (but not in the lightweight version). The figure
depicts the resulting variable values together with a subset of the instantiated a-x constraints

164 CHAPTER 6. EXTENSIONS OF THE MODEL

(marked as AX) and global precedence constraints (marked as GB). It shows, for instance, how
the C-defined, B-defined, and A-defined copy of the use in block A respects the dependences on
both k and l, but ignores the dependence on m globally (since aF↑D

n = 0).

An implementation of the described modeling first identifies candidates for PR code motion.
As mentioned, partial-ready execution occurs with speculative operands and is therefore only
allowed for speculative instructions (including those added in Sec. 6.2). The set of candidates
is formed of all speculative instructions with a not dominating data dependence on another in-
struction. If multiple of such dependences with respect to different source registers exist, then
those on the closest definition is selected for PR code motion. An extension towards simultane-
ous PR code motion with respect to multiple source registers is straightforward, but will not be
elaborated on here because the expected practical benefit is low.

When enabling PR code motion of these candidates in the model as described above, it is
highly recommended to relax the a-x constraints not only for the candidates themselves, but also
for depending instructions that could be speculated together with a partial-ready copy. In the
above presentation, we have only concentrated on the partial-ready copies itself, but in fact the
benefit from their early execution can be multiplied if together with them also data dependent
instructions are scheduled earlier. In Fig. 6.7, for example, copies of an instruction that depends
on Y=r1 could be scheduled after each of the partial-ready copies in the four blocks. Such indi-
rectly partial-ready copies do not directly violate a data dependence on their own, but indirectly
since they are scheduled within the speculative scope of an instruction they depend on. Hence
the relaxation of the a-x constraints (Def. 6.3.2-(1)) is already sufficient to make such copies
feasible.

Partial-ready code motion might seem as a relatively simple variant of code motion at first
sight, but the required adaptations are far-reaching and complicated, even on a semi-formal level
of presentation. As indicated, they are also not without impact on the efficiency of the model.
Nevertheless, it is worth the complications, as the experiments show later: there already the
implemented lightweight variant proves to be highly valuable on some input programs, especially
in combination with cyclic code motion, which is presented in the next section.

6.4 Cyclic Scheduling Regions and Cyclic Code Motion

Up to now, the scheduling scope is restricted to acyclic regions. This restriction is shared by many
other global scheduling algorithms, however, it is hardly acceptable as it leads to a significant
curtailing of the solution space: Loops are frequent, essential elements of every program with a
high impact on performance. Therefore we provide in this section the necessary extensions to
incorporate loops (where software pipelining is not used) and to allow code motion into them
and out of them.

The movement of an instruction into a loop might sound inefficient since it is then possibly
executed during each loop iteration—possibly millions of times—in relation to one single exe-
cution before. Nevertheless, this can still be beneficial if instead a nop would be executed at this
place inside the loop and if it results in a decreased schedule length outside the loop. Generally,

6.4. CYCLIC SCHEDULING REGIONS AND CYCLIC CODE MOTION 165

it is up to the ILP solver to decide which kinds of code motion are profitable—the model needs
only to contain the options to use them.

Even if there are loops inside the scheduling region, we keep the BBG and DDG acyclic
since this is a prerequisite of the so far developed ILP model: We define that backedges are not
included in CFG and BBG—hence also loop-carried data dependences are not included in the
DDG according to Def. 3.2.6. Loops are described separately on top of these formalisms as
follows:

Definition 6.4.1 (Loop) Let an acyclic basic block graph GB = (B, EB,Bentry,Bexit) of a sche-
duling region be given. A loop inside this region is defined by a triple L = (BL, E

�
L, HL) and

comprises all the blocks in the subset BL ⊆ B, which is termed the loop body. It must satisfy the
following two conditions:

• The loop header HL ∈ BL is the unique entry point of the loop10; it dominates all blocks
BL in GB .

• For each block in BL, there is a path in the graph (BL, EB ∪E�
L) leading from this block—

along one of the backedges in E�
L ⊆ BL × {HL}—back to HL.

The loop exit edges are given by E↓
L := EB ∩ BL × (B \ BL). The block sets of two different

loops are either disjoint or one is included in the other. In the latter case, the contained loop is
either nested within the other (if both have different headers) or termed a subloop of the other
(if both have the same header). Loops that do not contain nested loops are called inner loops or
innermost loops. ✷

The concept of subloops arises from loops with multiple backedges: then we can associate to
each backedge a loop of its own, i.e., with only this backedge. We assume in the following that
given loops are maximal with respect to BL so that they are no subloops of other loops. Fig. 6.10
gives an example of an inner loop where the blocks B and D form a subloop.

Backedges do not alter the dominance or postdominance relationships, hence these can be
computed either on (B, EB) or on (B, EB∪E�

L). When determining reaching definitions and con-
current definitions, however, it is important to allow for the possibility that a definition reaches a
use via a backedge: In Fig. 6.10, for example, the definitions op2 r1=.. and op3 r1=.. are
concurrent—even without the load in G—since the op3 reaches the use op4 r2=r1, too, via a
backedge. Thus, they must be considered as non-speculative instructions (executing op3 r1=..
in B speculatively, for instance, would apparently change the program semantics).

The presence of loops can also lead to the phenomenon that a definition is concurrent with
itself , or more precisely, that different executions of it in different loop iterations are concurrent.
This can be the case for a definition n

• if its source block s(n) inside a loop does not postdominate the loop header and

10Loops with this property are termed natural loops [Muc97]. They lead to a reducible control flow graph where
we can identify backward edges by the property that they lead from a block to another one that dominates the former.
Loops with multiple entry block are rare [Muc97], hence we do not address here how to deal with them.

166 CHAPTER 6. EXTENSIONS OF THE MODEL

B

D

F

A

G

C

(p1) (p2)

(p3) (p4)

op r1=..3

op r1=..2

E

ld r3=[r1]

op r2=r14

op r2=..1

op ..=r25

op ..=r26

p1,p2=cmp

p3,p4=cmp

Figure 6.10: Case study of loops.
The loop consists of the blocks B, C, D and F , has header B, backedges (D,B) and (F,B) and
loop exit edges (C,E) and (F,G).

• if it reaches a use with source block outside the loop, or inside the loop but not dominated
by s(n).

For example, the op3 r1=.. in Fig. 6.10 would have to be considered as a concurrent definition
(and thus non-speculative) even without the other definition in block A.

There are further, minor complications due to cyclic regions in combination with the previ-
ously presented extensions: Predicate register initializations due to predicated downward code
motion within a loop must be inserted in a dominating block inside the loop body (like the loop
header). In Sec. 6.1.2, we predefine that BBG backedges are never fall-through edges to avoid
cycles of such edges in the schedule that could not be realized by the basic block order in mem-
ory.

Apart from these adaptations, the main consequences of loops inside the scheduling region
are restrictions with respect to code motion. The general rule that non-speculative instructions
must not be moved into blocks that are not postdominated or dominated by its source block
applies also in the presence of loops. But in addition to this rule, there are further exclusion

6.4. CYCLIC SCHEDULING REGIONS AND CYCLIC CODE MOTION 167

criteria that are discussed in the following two subsections.

6.4.1 Code Motion into Loops

In Fig. 6.10, the mentioned general rule does not exclude the possibility to move the load ld
r3=[r1] upwards out of G into the loop since all blocks in the loop body are postdominated
by G. There it is executed only if it would also be executed in G since the control will eventually
exit the loop and flow through this block. But this view is too shortsighted: The load could be
executed many times prior to this exit with undefined operands (written by op3 r1=..)—in
short, under conditions that must be regarded as speculative.

This leads to a more differentiated conception of control speculation in the presence of loops:
each instruction that is moved upwards into a loop is scheduled speculatively with respect to the
loop exit since it is useful only in iterations where this exit is taken. This is then problematic if
the instruction is non-speculative and if one of its operands is written inside the loop—then an
execution with different operands than in the original program could occur. Hence upward code
motion into loops is prohibited under this condition for non-speculative instructions like normal
loads, stores, speculation checks, and compares.

A speculative version of the load in Fig. 6.10, however, could in principle be scheduled into
the blocks C and D inside the loop. But the movement of control speculative loads into loops
should be dealt with care, especially if its address operand is written there: then executions in
different loop iterations with different addresses could pollute the TLBs and the cache. Thus we
forbid the movement into such loops. Otherwise, if the address operand is loop invariant, then
the broad rule from the end of Sec. 6.2.1 still applies that prevents the movement of speculative
loads into relatively much more frequently executed destination blocks. This excludes moving
them into loops with a relatively high trip count.

Furthermore, definitions must not be moved into a loop that contains another definition that
is concurrent with it. For instance, in Fig. 6.10 the instruction op2 r1=.. must not be moved
into the loop (as it is concurrent with op3 r1=..). Concurrent definitions must also not be
moved upwards into a loop that contains a use of the value they write—an example of this is the
concurrent definition op4 r2=r1 (due to the use op5 ..=r2). However, they may be moved
downwards into a loop that contains such a use11—this applies to the statement op1 r2=..
in Fig. 6.10. In addition to these restrictions, instructions that are not multiply executable (as
characterized in Sec. 6.3) can generally not be moved into loops.

Apparently, all described limitations do not only apply to code motion into a loop, but also
to code motion into a subloop within the same loop. The same argumentation that restricts the
movement into loops holds for subloops, too. However, there is one condition that renders all the
listed exclusion criteria void: if the instruction is guarded inside the (sub-)loop by a predicate that
is true only on (sub-)loop exit (or another predicate that is a logical implication of it). Thus, when
the candidate block ranges of instructions are extended via predication as described in Sec. 6.1,
loops impose no limits (but the dependences on the controlling compares that are introduced do).

11This is possible since the movement occurs across the loop header that dominates all blocks in the loop—but
even then only if none of the other exclusion criteria apply.

168 CHAPTER 6. EXTENSIONS OF THE MODEL

The prerequisites for code motion across loops are more restrictive. We can—similarly to
wavefront scheduling in Sec. 3.3.1—regard a loop as a single instruction that summarizes all
data flow information related to the loop. Then another instruction can only be moved across
the loop if it is not data dependent on this imaginary instruction. This is the case if none of its
destination operands is read or written inside the loop. Additionally, none of its source operands
may be written there.

6.4.2 Cyclic Code Motion out of Loops

Code motion out of loops if trivial if the code is loop invariant [SS02]—for such instructions,
the loop boundaries impose no limits. For instructions like the “op1 rX=rU” in Fig. 6.11 whose
input operand is written inside the loop body, however, passing the loop boundary is more dif-
ficult: Such an instruction can be hoisted upwards out of the loop if it is not only moved into
predecessors of the loop header, but also along each backedge to the bottom blocks of the loop
and their predecessors (illustrated in Fig. 6.11 (b)). We call this kind of code motion cyclic or
circular [Jai91].

B

D

F

A

C

E

p1,p2=cmpC

cmp =rX...

op rX=rU1

op rZ=rY3

cmp =rZ...

op rY=rX2 op rU=4 ...

op rU=5 ...cmp =rZ...

0.9 0.1

0.9 0.1

B

D

F

A

C

E

p1,p2=cmpC op rX=rU1op rZ=rY3

cmp =rZ...

op rU=4 ...

cmp =rZ...

0.9 0.1

0.9 0.1

op rX=rU1

op rX=rU1

cmp =rX... op rY=rX2

op rU=5 ...

op rX=rU1

(a) (b)

Figure 6.11: Case study of cyclic code motion. In (a), each instruction is scheduled in its source
block. (b) demonstrates cyclic code motion of “op1 rX=rU”.

Copies that are moved in such a way in the opposite direction of the backedges are effectively
scheduled in the previous loop iteration. This means that they are (possibly) executed specula-
tively since they are only useful if the control takes one of the backedges, but not if it exits the
loop via one of the loop exit edges. Thus we consider cyclic code motion generally as specu-
lative. It can be profitable if the cyclically moved code is overlapped inside the loop body with

6.4. CYCLIC SCHEDULING REGIONS AND CYCLIC CODE MOTION 169

instructions from the previous iteration, reducing the critical path length here. In Fig. 6.11 (b),
it reduces the length of the hot subpath B-C-E inside the loop from 6 to 4 cycles (of which one
cycle is saved by moving “op1 rX=rU” upwards to block B).

Fig. 6.12 (a) shows that we can go even further and move also “op2 rY=rX” to the previous
loop iteration, reducing the length to 3 cycles. As with the former instruction, four compensation
copies have to be scheduled, one in the predecessor of the loop header and three in different
blocks in the loop body. It is noteworthy about these copies that the cyclic copy of “op1 rX=rU”
in C is partial-ready since it ignores the dependence on the “op5 rU=...” along the subpath B-
C-F .

B

D

F

A

C

E

p1,p2=cmpC

cmp =rZ...

0.9 0.1

0.9 0.1

B

D

F

A

C

E

p1,p2=cmpC

0.9 0.1

0.9 0.1

(a) (b)

cmp =rX... op rZ=rY3

op rY=rX2

op rY=rX2

op rU=4 ...

op rX=rU1

op rU=5 ...

op rX=rU1

op rY=rX2

op rX=rU1cmp =rZ...

op rX=rU1
op rY=rX2

Both acyclic and
cyclic candidate
blocks

Cyclic candidate
blocks
only

Figure 6.12: Moving also “op2 rY=rX ” cyclically (a). (b) shows the candidate blocks of this
instruction.

Cyclic code motion can be regarded as a simple variant of software pipelining [SS02]. In
general, the latter scheduling technique is the first choice for loops, also because it is well sup-
ported by the architecture [Int02a]. However, in practice there are still many loops where the use
of software pipelining is difficult or even disadvantageous [HP03]:

1. If they contain other loops. Although recent work shows that software pipelining can be
performed at an arbitrary level of nesting [RDGG04], implementations like Intel’s Itanium
compiler typically consider only innermost loops for software pipelining [Int03].

2. If they contain procedure calls. Ways to incorporate these branches into software-pipelined
loops are thinkable, but even advanced compilers do not implement them [Int03]. At least
small procedures can be inlined into the loop.

170 CHAPTER 6. EXTENSIONS OF THE MODEL

3. If they contain complex control flow. This limitation is more fundamental than the previ-
ous two. Loops with control flow can be converted to predicated straight-line code via if-
conversion, however, the resulting initiation interval is the worst case over all control flow
paths through the loop body. To avoid this, there exist complicated, code-expanding tech-
niques that generate multiple kernels with variable initiation intervals for different paths
[SL96, Lav97]. Intel’s Itanium compiler removes control flow from the loop body prior to
software pipelining using a combination of if-conversion and tail duplication [MCWL01].

4. If they have low trip counts. Software pipelining increases the throughput of loop iterations
by exploiting parallelism between them, but the time needed to complete a single loop
iteration may increase [Int02a]. If the trip count is low, the increased throughput may not
amortize the increased latency.

When software pipelining does not succeed, cyclic code motion can help alleviate the ineffi-
ciencies due to the static scheduling of the loop; however, it should be used with care since it
comes at the price of code expansion. In contrast to software pipelining, it allows to overlap
instructions from the first loop iteration with code before the loop. This can be regarded as an
instruction-wise application of loop peeling, a transformation that unrolls the first loop iteration
and schedules it before the loop [Muc97].

We have integrated upward12 cyclic code motion into the ILP for speculative instructions13

(including those added in Sec. 2.1.5) out of the innermost loop that contains the instruction’s
source block. Let V L

� ⊆ V denote those instructions that satisfy these conditions with respect to
a loop L and that have been selected as candidates for cyclic code motion (more on the selection
at the end of the section). In the following, we demonstrate the necessary changes exemplarily
considering an instruction n ∈ V L

� .
At first, we define the destination block candidates of cyclic code motion. The previous

candidate blocks are termed from now on acyclic candidate blocks to distinguish them from
these new cyclic candidate blocks. The potential cyclic candidate blocks Θ�(n) are composed of
the predecessors of the loop header, Θ�U(n) := B≺(HL), and the loop bodyΘ�B(n) := BL. The
previous potential candidate blocks (5.3.1) become the new potential acyclic candidate blocks,
Θ�(n). The new set Θ(n) is defined as the union of Θ�(n) and Θ�(n):

Θ�(n) := Θ�U(n) ∪Θ�B(n) Θ(n) := Θ�(n) ∪Θ�(n) (6.4.1)

According to Def. 5.3.1, we define also the (actual) cyclic candidate blocks Θx
�U(n) ⊆ Θ�U(n)

and Θx
�B(n) ⊆ Θ�B(n) for which xn variables are instantiated. The relationships between the

sets

• Θx(n), Θx
�(n), Θ

x
�(n), Θ

x
�U(n), and Θx

�B(n), as well as the sets

• Θa(n), Θa
�(n), Θ

a
�(n), Θ

a
�U(n), and Θa

�B(n)

12The downward variant in the forward direction of the backedges would be possible, too.
13Predicated cyclic code motion for non-speculative instructions is also thinkable. However, we have not followed

this up since the impact of predicated code motion in general is low (see Sec. 7.3.2).

6.4. CYCLIC SCHEDULING REGIONS AND CYCLIC CODE MOTION 171

are analogous to above (6.4.1). The three properties of Def. 5.3.1 are enforced for the sets
Θ�U(n), Θx

�U(n), Θ
a
�U(n), and Θ�B(n), Θx

�B(n), Θ
a
�B(n), respectively, but not for the com-

bined sets Θ(n), Θx(n), and Θa(n), which merge both acyclic and cyclic candidate blocks.
Fig. 6.12 (b) depicts the candidate blocks of instruction op2 in the case study. These are

Θx
�(op2) = {B,C}, Θx

�U(op2) = {A}, and Θx
�B(op2) = {B,C,D,E, F}. This shows that

the sets Θx
�(n) and Θx

�B(n) can overlap so that there exist candidate blocks in which the same
instruction can be placed either acyclically or cyclically. This raises the fundamental question
whether the same or separate x variables should be used to model both (mutually exclusive)
placements. On the one hand, using separate variables—like xAt

�n and xAt
�n—leads to a more

straightforward, simpler model. This is because acyclic and cyclic copies of the same instruction
differ in many ways, also with regard to data dependences (as discussed below). On the other
hand, the duplication can effectively double the number of these variables, which has inevitably
a negative impact on the solution times. Therefore we have decided to use the same x and a
variables to model both acyclic and cyclic scheduling.

As a decision variable for cyclic code motion, the an variable of the loop header, a↑HL
n , is

a suggestive choice. It is defined that if this variable is equal to one, then all copies of n are
scheduled cyclically (in blocks of Θx

�(n)) and else acyclically (in blocks of Θx
�(n)). These

two alternatives are also referred to as the two different states (w.r.t. cyclic code motion) of the
instruction. If a↑HL

n and 1 − a↑HL
n are zero, then all the xn/an variables belonging to candidate

blocks that are only cyclic and acyclic, respectively, must be zero, too. This is explicitly enforced
by the following constraints:

a↑An ≤ a↑HL
n∑

t∈G(B)

xBt
n ≤ a↑HL

n

a↑An ≤ 1− a↑HL
n∑

t∈G(B)

xBt
n ≤ 1− a↑HL

n

∀A ∈ Θa
�(n) \Θa

�(n),
∀B ∈ Θx

�(n) \Θx
�(n)

∀A ∈ Θa
�(n) \Θa

�(n),
∀B ∈ Θx

�(n) \Θx
�(n)

The assignment constraints (5.3.10) of n are adapted to cyclic code motion as follows:

a↑An +
∑

t∈G(A)

xAt
n + a↑HL

n ≥ 1 ∀A ∈ Θ̃a
�(n)

This inequality ensures that either cyclic code motion is switched on via a↑HL
n = 1, or that

otherwise n is scheduled acyclically like a normal instruction: if a↑HL
n = 0, then the constraint

acts like previously Equ. (5.3.10) (note the use of Θ̃a
�(n) instead of Θ̃a(n)). The “≥” in place of

“=” is only necessary if A ∈ Θa
�B(n)∩Θa

�(n)—then due to the double use of the x variables the
left-hand side can grow larger than one if a↑HL

n = 1 (e.g., consider in the case study the instance
created for C ∈ Θ̃a

�(op2)).
It remains to model the effect of a↑HL

n = 1, namely the actual cyclic scheduling of n. This
is implemented by instantiating the a-x constraints also for all BBG edges of the form (A,HL),
including backedges:

172 CHAPTER 6. EXTENSIONS OF THE MODEL

a↑Bn = a↑An +
∑

t∈G(A)

xAt
n ∀B,A ∈ Θa(n) : (A,B) ∈ EB \ E×

n ∪ E�
L (6.4.2)

In doing so, we model that a↑HL
n = 1 implies that a copy of n is scheduled on each program path

through s(n) before HL (in a block from Θx
�U(n)) and additionally on each cyclic subpath that

leads from HL—along one of the backedges—back to HL (in blocks from Θx
�B(n)). In the case

study, four of these equations are instantiated for n = op1 and B = HL:

a↑HL
op1

= a↑Aop1 +
∑

t∈G(A)

xAt
op1

a↑HL
op1

= a↑Eop1 +
∑

t∈G(E)

xEt
op1

a↑HL
op1

= a↑Fop1 +
∑

t∈G(F)

xFt
op1

a↑HL
op1

= a↑Dop1 +
∑

t∈G(F)

xDt
op1

When generating these equations (6.4.2), it is important that the special variable a↑HL
n never

appears on their right-hand side (i.e., that it is omitted if A = HL)—otherwise they could form
a cycle. Moreover, the possible double use of the x and a variables in some blocks in Θa(n)
implies that instances of Equ. (6.4.2) hold in the acyclic as well as in the cyclic state—but this
is not necessarily true: If B ∈ Θa

�(n) \ Θa
�(n) and A ∈ Θa

�(n) ∩ Θa
�(n), for example, then the

inequality should have no effect in the acyclic state because B is then no candidate block. Since
we have not differentiated between the two states with respect to the variables, we must now do
so with respect to constraints.

For this purpose, we check for each instance of (6.4.2) whether it would have been instanti-
ated within the candidate block sets Θa

�(n)
14 and Θa

�(n) (instead of Θa(n)), too. If this would
have occurred in neither case, then it is omitted. If it would be instantiated only within one of
the sets Θa

�(n) and Θa
�(n), then a version must be generated that is cyclic only and acyclic only,

respectively, which means that it may only be effective in these states. For the latter case, such a
version consists of the following two inequalities in place of (6.4.2):

a↑Bn ≤ a↑An +
∑

t∈G(A)

xAt
n + a↑HL

n

a↑HL
n + a↑Bn ≥ a↑An +

∑
t∈G(A)

xAt
n

These two inequalities are equivalent to (6.4.2) if a↑HL
n = 0 and void (always satisfied) otherwise.

For cyclic only instances, a↑HL
n is replaced by 1− a↑HL

n . An example of a cyclic only instance in
Fig. 6.12 is the a-x constraint created for op2 and the BBG edge (B,D).

14In this case, E×
n is omitted in Equ. (6.4.2) since the source block of n in the cyclic state is effectively HL.

6.4. CYCLIC SCHEDULING REGIONS AND CYCLIC CODE MOTION 173

The last remaining constraints that require modifications due to cyclic code motion are the
precedence constraints (5.3.12). The cyclic state of an instruction can introduce new data de-
pendences and nullify others: Consider a dependence (m,n) ∈ ED between two instructions
that can both be cyclically moved (with respect to the same loop). If only m is scheduled in this
way, then the dependence should be ignored: then m is scheduled in the previous loop iteration
and therefore executed before n anyway. In other words, then the dependence does not impose
an order on the scheduled copies of m and n within the loop body since they are semantically
in different loop iterations (consider, for instance, the copies of op1 and op2 in Fig. 6.11 (b),
whose order does not reflect the true dependence from the former instruction to the latter). If
also n is in the cyclic state so that both instructions are scheduled in the previous loop iteration,
however, then the order must allow for the dependence again (as in Fig. 6.12 (a)). The lifting of
the precedence constraints under the described condition is implemented by adding the relaxer
a↑HL
m − a↑HL

n to the right-hand side of Equ. (5.3.12). It nullifies these constraints if m is in the
cyclic state and n not.

An instruction in the cyclic state must also allow for loop-carried data dependences. Given
a loop L, these dependences are collected in the set EL

�D ⊆ V × V (as mentioned, they are not
included in the DDG); they are identified like normal data dependences according to Def. 3.2.6
except that the control flow paths in the definition are required to traverse exactly one backedge
of the loop. Thus an edge (m,n) ∈ EL

�D—termed a DDG backedge—describes a dependence of
n executed in loop iteration i on m executed in loop iteration i − 1. It must only then take effect
in the schedule—i.e., determine the order of m and n—if n is moved cyclically to the previous
loop iteration and m not.

This is implemented by adding precedence constraints for all DDG backedges and providing
them with the relaxer 1 + a↑HL

m − a↑HL
n . Examples of DDG backedges in the case study are

(op4,op1), (op5,op1) (true), and (op2,op1) (anti). WAR backedges (as the latter) typically
emerge as the counterparts of normal RAW dependences (here (op1,op2) ∈ ERAW

D). In this
case, the WAR backedge (op2,op1) forbids in Fig. 6.11 (b) to move the copy of op1 in C
upwards before the copy of op2 in block B (which would in fact alter the semantics).

In both relaxers, a↑HL
m and a↑HL

n are replaced by zero if m /∈ V L
� and n /∈ V L

� , respectively. In
addition, they can be simplified in those instances of Equ. (5.3.12) where A ∈ Θa

�(n) \ Θa
�(n):

In any solution that violates such an instance, the sum of the first two terms on its left-hand
side must be equal to one. This implies that a↑HL

n is equal to one (see page 171) so that it
can be directly replaced by this constant. In an analogous way, it can be substituted by zero if
A ∈ Θa

�(n) \ Θa
�(n) and a↑HL

m by the constants one and zero if A,B ∈ Θa
�(m) \ Θa

�(m) and
A,B ∈ Θa

�(m) \Θa
�(m), respectively.

A further complexity reduction is possible by minimizing DDG backedges analogously to
Def. 3.2.7 and by taking them into account when reducing the candidate block ranges. As men-
tioned earlier, Equ. (5.3.2) is also applied to the set Θx

�B(n) in order to remove candidate blocks
that are impossible due to data dependences. This process can be extended towards loop-carried
dependences to limit upward code motion of cyclic copies inside the loop body. The following
variant of (5.3.2) excludes impossible candidate blocks due to a DDG backedge (m,n) ∈ EL

�D

174 CHAPTER 6. EXTENSIONS OF THE MODEL

(applicable only if m /∈ V L
�):

A ∈ Θ(m) ∩ B�(Θx(m)) ⇒ A /∈ Θx
�B(n) (6.4.3)

As explained in Sec. 6.3, the application of (5.3.2) (and its above variant (6.4.3)) is too
restrictive and thus not permissible in combination with PR code motion. Then versions of
Equ. (6.3.3) and (6.3.4) must be used instead of (5.3.2) and (6.4.3). For the sake of simplicity,
we allow PR code motion for instructions from V L

� only in the cyclic state15 and only with
respect to dependences that are loop-carried (which is no restriction since all other dependences
are dominating in the cyclic state and thus cannot be ignored).

The candidate set V L
� is made up of all speculative instructions that are loop variant and not

data dependent on another instruction in the same loop that is not eligible for cyclic code motion.
For efficiency reasons, this set should be as small as possible. Future implementations could
exclude candidates for which it can be shown that moving them cyclically is counterproductive
since it would yield (due to DDG backedges) a longer schedule than achievable otherwise. For
this purpose, it is possible to schedule the loop body heuristically in order to obtain an upper
bound on its minimal global schedule length. Then cyclic code motion of an instruction can
be excluded from the search space if a lower bound (e.g., critical path length) shows that any
schedule of the loop body resulting from this would exceed the upper bound in length.

6.5 Subsequent Optimization Phases

A consequence of the used objective function is that the ILP solver has a blind spot for everything
that is not related to the schedule length. This can result in schedules that are suboptimal with
respect to other aspects like register usage. To compensate for this we can perform subsequent
optimizations while preserving the minimal schedule length. This can be done by solving a
second ILP subsequently that is the same as the first one, except that it has a different objective
function and that the length of each block is fixed to its solution value of the first phase (this is
achieved by adding respective equations).

In doing so, we optimize for lower priority goals within the space of optimal-length sched-
ules16. We briefly sketch some possible objectives for the second phase; only the first one has
been implemented and is currently used in the experiments.

• Minimization of the instruction count: Nothing detains the ILP solver from using more
speculation and more compensation copies than necessary, as long as the resulting schedule
has minimal length. To deal with this indifference, we use a new objective function during
the second phase that minimizes the number of scheduled instructions (i.e., the sum of all

15This continues to ensure that acyclic and cyclic copies of the same instruction never coexist in a schedule.
16Strictly speaking, this claim is not correct since we fix not the global schedule length (Equ. (5.3.16)), but

the individual block lengths (the variables BA
t). This is more restrictive as there could be different block length

combinations with the same global schedule length. This limitation is accepted because it is minor and leads to very
fast solution times in the second phase. It is in later phases also possible to provide the known solution from the first
phase as a start solution to the ILP solver.

6.6. BUNDLING 175

xAt
n variables, including those for branch instructions). We also add all the variables SD

n

and SDA
n to this objective function to remove unnecessary usages of data speculation and

to avoid the more expensive advanced load check. In the experiments (see Sec. 7.2), this
takes not more than one second for all input programs and reduces the instruction count by
about 5% on average.

• Reducing register pressure: Long-range code motion leads to long live ranges and in-
creases thereby the register pressure. A subsequent phase could alleviate this by minimiz-
ing the distances between definitions and their last uses.

• Stall minimization aims to minimize the stalls caused by cache misses. In the first phase,
we assume that every load is an L1 cache hit which delivers data after one cycle. If a load
misses the L1 cache, however, then the processor stalls at the first use of the loaded value
(if it is not yet available). The resulting stall duration is inversely proportional to the load-
use distance in the schedule. Hence the second phase could reduce potential stall cycles
by expanding these distances. This involves a reordering of instructions, utilizing slack in
the schedule (cf. balanced scheduling [KE93]).

The latter two objectives are conflicting in the sense that the first one aims to shrink live ranges
while the second one aims to expand (some of) them. Because of the large impact of stalls on
performance, the second one should be given a higher priority.

Measuring the distance between two instructions in the schedule, as needed for stall min-
imization, is a challenging problem to model: This distance depends on which control flow
subpath is taken between the blocks where the two instructions are scheduled. To take stalls pre-
cisely into account, distances should be weighted by the execution frequencies of the respective
subpaths. A possible approach to this will be outlined in Sec. 6.7.

6.6 Bundling

The schedule delivered by the ILP solver consists of a series of instruction groups for each
basic block. These groups still have to be integrated into a bundle structure as described in
Sec. 2.1.1.2. This involves the selection of a template (2.1.1) for each bundle, which assigns
one of the execution unit types M, I, F, and B to each of its three slots (numbered 0,1, and
2). The instructions then must be placed into slots of suitable types while preserving possible
intra-group data dependences. These dependences give the placement the characteristics of a
scheduling problem.

The primary goal during bundling is to avoid any occurances of split issue. This term denotes
the condition when an instruction group is split up dynamically into more than one issue group,
resulting in extra cycles (see Sec. 2.2.3.2). Such a departure from the computed schedule should
be completely avoided—each instruction group should be bundled in such a way that it can be
issued to the processor’s execution units in one cycle, as intended. This requires, inter alia, that
it does not extend over more than two bundles.

176 CHAPTER 6. EXTENSIONS OF THE MODEL

A secondary, but also important goal is to minimize the number of nops. One of the main
sources of unused slots are the stops, which must be inserted to delimit instruction groups. They
can only be placed between bundles and—for two templates—also within a bundle. Since the
instruction group sizes are naturally often not multiples of three, intra-bundle stops play a pivotal
role in minimizing the number of nops. However, they also lead to interdependences between
successive instruction groups during bundling: If a group ends inside a bundle, then the next
instruction group automatically starts at the next slot within the same bundle (of the same tem-
plate). In this way, intra-bundle stops can influence bundling decisions of adjacent instruction
groups, an effect that can even propagate over the whole bundle sequence. As intra-bundle stops
can only be used together with the templates MMI and MII (namely after slots 0 and 1 there,
respectively), they also interact with the template selection.

Due to these interdependences it is not advisable to tackle bundling on a per-group basis. Our
approach, which is based on precomputed results and dynamic programming [KW01, Win01],
bundles basic blocks as a whole. It distinguishes between two closely coupled subproblems:
micro-scheduling, which refers to the problem to find a partial bundle sequence for a single
instruction group, and sequencing, the phase that combines the partial sequences to form a se-
quence for the whole basic block. Under the assumption that the given instruction groups are
fixed (i.e., no instructions can be interchanged between them), it computes bundle sequences of
minimal size or, in other words, with a minimal number of nops.

Let for a basic block the instruction groups of the respective cycles be given by G1, . . . , GT ⊆
V . The set of the last cycle, GT , includes all outgoing branches due to Sec. 6.1.2. In order to
obtain a minimal-length bundle sequence for the whole block, we consider concatenations of
partial bundle sequences that span only a certain range of these instruction groups. Such partial
sequences may also start and end within a bundle: We say that it starts at slot 0,1 or 2 if its first
slot has this number (in the last two cases, its first bundle must be MMI and MII, respectively,
and is only partially used). It is said to end at slot 0,1 or 2 if it ends just before a slot with this
number in a bundle. In the last two cases, its last bundle is MMI and MII, respectively, and is
only partially used. Fig. 6.13 depicts for an instruction group given in the box partial sequences
with all possible start/end slot combinations.

Evidently, two partial sequences s and t can be concatenated only if the end slot number of
s and the start slot number of t are equal. The concatenation is denoted by s ⊕ t. We use the
following sets to classify partial sequences:

Sxy(Gi, Gj) = The set of all possible (partial) bundle sequences comprising instruction
groups Gi, . . . , Gj , starting at slot x and ending at slot y.

We say that j − i + 1 is the size of the partial bundle sequence (the number of instruction
groups it comprises) and use the attributes “smaller” and “larger” in this context. In contrast,
its length (“shorter”, “longer”) is defined as the number of bundles it consists of (including
partially used bundles). Let ‖s‖ denote this length of a sequence s. Then it holds for the length
of the concatenation of two partial sequences sxu(Gi, Gk) ∈ Sxu(Gi, Gk) and suy(Gk+1, Gj) ∈
Suy(Gk+1, Gj):

‖sxu(Gi, Gk)⊕ suy(Gk+1, Gj)‖ = ‖sxu(Gi, Gk)‖+ ‖suy(Gk+1, Gj)‖ − δu

6.6. BUNDLING 177

(Third)

2
1

0

2
1 I

MM M

M

M

B

M

I

M

I

M

M

I

M

M

B

Second

First

0

1

0

I I

load
M

MM

B

M

M

B

M

B

II I

I

B

I M M

I

M

M

Bundle Slot

I

extr

store

I

M

Figure 6.13: Nine possible bundle sequences for an instruction group with three instructions;
nops are shown with a white background. The horizontal bars represent the stops.

δ1 = δ2 = 1 δ0 = 0

The factor δu allows for the possibility that two partially used bundles are merged into one if the
concatenation occurs at an intra-bundle stop (u = 1, 2).

On the basis of this notation an algorithm is now presented that finds one element of each
of the sets Sxy(Gi, Gj)—referred to as oxy(Gi, Gj)—that is optimal, i.e., that does not cause
a split issue and is of minimal length. The computation of the small sequences oxy(Gi, Gi)
(i = j) corresponds exactly to the micro-scheduling problem mentioned above. We postpone
this problem for the moment and assume that the sequences oxy(Gi, Gi), ∀i = 1, . . . , T , ∀x, y =
0, . . . , 2 are given. These are for each i exactly the nine sequences shown in Fig. 6.13.

We use dynamic programming [CLR01] to construct larger optimal sequences from smaller
ones bottom-up. When constructing an optimal sequence oxy(Gi, Gj), which spans j − i + 1
instruction groups, we can assume that the smaller optimal sequences (comprising fewer groups)
have already been computed. Candidates for oxy(Gi, Gi) are then all possible concatenations of
these smaller optimal sequences that are elements of Sxy(Gi, Gj):

Oxy(Gi, Gj) = {oxu(Gi, Gk)⊕ ouy(Gk+1, Gj) |i ≤ k < j, 0 ≤ u ≤ 2} (6.6.1)

We choose one sequence of minimal size from this set as oxy(Gi, Gj). An implementation has to
go through maximally 3(j − i) possibilities to find such a sequence. However, often the search
can be aborted earlier if a lower bound shows that the obtained sequence must be of minimal
size. For example, there must be at least as many slots as instructions in the sequence, thus the
following term is a lower bound on ‖oxy(Gi, Gj)‖:



∑j

k=i |Gk|+ x+

{
0 if y = 0

3− y if y > 0

3




178 CHAPTER 6. EXTENSIONS OF THE MODEL

The whole process is repeated iteratively for larger and larger sequences until with o00(G1, GT)
a bundle sequence for the whole basic block is obtained. Evidently, this sequence is of minimal
length since all possibilities of composition were taken into account. The overall worst-case
complexity of sequencing is

∑t
d=2 3(d − 1) = O (t2).

It remains to be shown how the base cases oxy(Gi, Gi) can be computed. A micro-scheduling
instance is characterized by a start/end slot number pair and up to six instructions with their
respective types and intra-group dependences. As mentioned previously, the task to place these
instructions into one or two bundles can be regarded as a scheduling problem and also formulated
as an ILP [KW01, Win01]. However, due to the limited dispersal window size of the Itanium
2 and the resulting small problem sizes, we can alternatively afford to search these partial se-
quences via exhaustive enumeration.

To solve a micro-scheduling instance in this way, we simply enumerate all possibilities to
map the up to six instructions to the slots of up to two bundles of all possible templates. The
remaining unused slots of each possible mapping are then filled with nops of the respective slot
types (in Fig. 6.13 depicted by the white slots). After that, the dispersal of the sequence is
simulated according to the rules of Sec. 2.11. Only sequences that cause no splits are accepted,
and of those only one of minimal length is eventually selected. In Fig. 6.13, for example, only
sequences with three bundles exist for the start/end slot combinations 2/1 and 2/2—these two
micro-scheduling instances are thus considered infeasible.

I BM

BM

BM

M B

Resource split (due to 3 I−type instr.)

F−type nop is not recommended

No split

Filled with nops after template selection

B

B

n

nM

IM

M

M I

I

nI nI

nI

Unused slots

nF

Figure 6.14: Unintended consequences of different nop types.

Since nops are dispersed like normal instructions, they are not unproblematic with regard to
split issue: For instance, a nop in an I-type slot is regarded as a normal I-type instruction by the
dispersal logic and can thus split issue if already two other I-type instructions are in the group
(see Fig. 6.14). However, this can be prevented by using a dummy A-type instruction like add
rX=0,rX in place of an I-type nop (such that register rX is not read or written in the group).
The advantage of such an artificial “A-type nop” is that it can also be mapped to an M-port as
described in Sec. 2.2.3.2. The use of F-type nops is not recommended since these may cause
unintended stalls related to writes to the FPSR register [Int04]. B-type nops are unproblematic,
but not in combination with the MBB or BBB templates, which always trigger a split issue.
Another advantage of B-type nops is that they can possibly be replaced by useful branch predict
instructions after bundling (see Sec. 2.1.3)17.

17During sequencing, it is possible to prefer bundle sequences that have B-type nops as early as possible, i. e. in
one of the first groups. This allows to insert brp instructions early in basic blocks which is favorable since the
distance between a brp and the branch it refers to at the end of the block should be as large as possible. In the

6.6. BUNDLING 179

To avoid the expensive enumeration for each given instruction group (and nine start/end slot
combinations) during bundling, the results can be precomputed for all possible groups and stored
in a hash table. For this purpose we need a key to identify a micro-scheduling instance. The
following information uniquely describes the relevant characteristics of such an instance:

1. The numbers of instructions of each of the eleven possible instruction types (listed in
Sec. 2.2.1) in the group.

2. The start/end slot number pair.

3. The intra-group dependences.

As expressed by the first point, the numbers of occurances of different instruction types are
already sufficient to characterize a group for bundling—the mnemonics of the individual instruc-
tions or their operands are irrelevant. Since these numbers are limited in any feasible instruction
group, the first two characteristics can be described using a 32-bit word [Win01, Ste03]. 10291
possible combinations of them were enumerated in the implementation [Ste03]. The last char-
acteristic, however, has the potential to multiply this number by a significant factor: in theory,
there can be up to 26·5 different sets of intra-group dependences. Even if in practice the number
of possible and relevant combinations is much lower, it is unrealistic to precompute the results
for all of them.

Hence in our solution the third characteristic is ignored when the hash table is created. In-
stead, the table contains not only one optimal solution for each key, but a list of solutions for all
possible orders of the instructions in the group. This list has maximally 6! = 720 entries, but
the actual number is lower because not for all orders feasible partial bundle sequences (without
split issue) exist [Ste03]. Each entry can be stored in a 32-bit word that encodes a mapping of
the maximally six instructions to the slots of up to two bundles (6 · 3 bits) plus the templates of
these bundles in the solution (2 ·4 bits). The list is ordered by increasing lengths so that favorable
solutions come first.

During bundling, a sequence oxy(Gi, Gi) is looked up as follows: a key is generated from the
instruction types in Gi and x/y. Then the list corresponding to this key is traversed and the first
solution is returned whose order does not violate the intra-group dependences of the group. Since
the solutions are the results of exhaustive search, it is clear that the partial sequence obtained in
this way is optimal and thus the same holds for the solution of the entire bundling phase.

We forgo a complexity analysis of the precomputations here since the implementation shows
that they can be performed in a few seconds [Ste03]. Furthermore, the table size of 1.48 MByte
in this implementation demonstrates that the approach is viable. Since most instruction groups
contain no or not more than one intra-group dependence, usually one of the first entries of the list
is returned [Ste03]. Thus only small parts of the table can be expected to be frequently accessed
and thus to be present in the caches. In relation to the basic block size, the table lookup requires
constant time, hence we can perform optimal bundling in quadratic time.

developed bundler, however, the insertion of these instructions is currently not performed because they are ignored
by the branch prediction hardware of the Itanium 2 [Int04].

180 CHAPTER 6. EXTENSIONS OF THE MODEL

6.6.1 Bundling Constraints

In the remainder of this section, we will deal with a possibility that we have optimistically ignored
in the above description of bundling: it can happen—due to intra-group dependences—that no
feasible partial bundle sequence exists for an instruction group at all, even though the latter is
feasible as defined in Sec. 5.2.1 (i.e., a mapping of the instructions to the execution units exists).
Consider, for example, the following group:

A: chk.s r26, .rec_7 //M/I
B: st4 [r20]=r26 //M
C: chk.a.clr r14, .rec_8 //M
D: st4 [r14]=r18 //M
E: ld8.c.clr r8=[r34] //M
F: add r20=r8,r56 //A

The control speculation check A must be scheduled before the store B (which could otherwise
trigger a NaT consumption fault due to r26). Furthermore, the data speculation checks C and
E must appear after the stores B and D, respectively, but before the instructions D and F, which
read r14 and r8, respectively. As a result of these intra-group dependences, the six instructions
may only appear in exactly the given order in a bundle pair—but apparently this is impossible
(A would have to occupy an I-type slot so that according to (2.1.1) none of the four M-type
instructions B-E could be placed in the first bundle, but there is only place for two in the second
bundle).

Our definition of “feasible instruction groups” in Sec. 5.2.1 is optimistic in the sense that it
regards only the numbers of instructions of different types in the group, but ignores bundling-
related issues. We call groups that are feasible according to this definition, but cannot be bundled
without split issue due to the structure of their intra-group dependences structurally infeasible.
They constitute a rarely occurring, but intricate problem that arises from the separation of in-
struction scheduling and bundling in our approach. In the experiments of Chapter 7, only two
such groups (of a similar form as the above example) emerged in the optimal schedule computed
for one of the input routines (qSort3).

It may be possible to remove structurally infeasible groups in the schedule afterwards by re-
ordering instructions between different groups, but it cannot be relied on that the schedule always
permits this postpass remedy. The theoretically ideal solution would be to integrate bundling into
the global scheduling phase. In [CLF+03, CLJ+04] it is shown how this integration can be done
for a heuristic scheduler that targets the first-generation Itanium. When scheduling instructions
into an instruction group, it employs a finite state automaton to keep track of the execution units
occupied by them and to ensure that a template assignment exists for it. Each state encodes the
currently occupied execution units in the group and is associated with a list of all possible tem-
plate assignments that comply with this occupation. The scheduling of an instruction into the
group triggers a transition between states. Such a transition is only legal if at least one template
assignment associated to the new state satisfies all intra-group dependences—otherwise the cor-
responding scheduling decision is rejected. In doing so, the feasibility of bundling is ensured for
all instruction groups.

6.6. BUNDLING 181

An ILP formulation, however, that incorporates bundling—similar to the one developed for
micro-scheduling in [Win01]—would require up to six new variables in place of each x variable
alone to model the placement of instructions into different slots. Thus the number of needed x
variables would be multiplied and also the number of required precedence constraints (5.3.12)
for the intra-group dependences. The experiments indicate that the interdependences between
scheduling and bundling are to weak to justify this massive complexity increase.

Instead, our solution is to prevent the formation of structurally infeasible groups in advance
by means of separate bundling constraints. For this purpose, we collect for each basic block A
and each cycle t ∈ G(A) all instructions that can be potentially scheduled there in a set PAt ⊆ V
(typically, PAt := Θx−1

(A)). We define a relation �⊆ ED on PAt such that m � n holds for a
pair m,n ∈ PAt if these two instructions can appear together in the same group, but then n must
appear after m there. To check the former condition, we can employ the minimum distances that
will be later computed in Sec. 7.1.2: both instructions can be scheduled into the same group only
if d�m,n ≤ 0. The second condition applies if there exists an intra-group DDG edge (m,n) ∈ ED

(with wmn = 0).
The goal is now to find subsets of PAt that constitute structurally infeasible instruction groups

and to exclude them via additional inequalities. We aim at characterizing these groups as gener-
ally as possible. In the above example, the combination that already leads to structural infeasi-
bility (following the above argumentation) is a control speculation check A and four dependent
M-type instructions B-E such that A � B, A � C, A � D, and A � E (F is irrelevant). The
following bundling constraint then prevents the formation of this group at cycle t in block A:

xAt
A + xAt

B + xAt
C + xAt

D + xAt
E ≤ 4

We use patterns as an intuitive, unified representation of this and further structural infea-
sibility conditions, as some of them are shown in Fig. 6.15. The intended meaning of these
patterns is that each potential instruction group that matches one of them (called a match) is
structurally infeasible and should be excluded by means of a bundling constraint. A pattern is a
graph with nodes v1, . . . , vk such that each node vi is assigned an instruction type, R(vi) ∈ :R,
and a cardinality, |vi| ∈ N+. In Fig. 6.15, only cardinalities greater than one are explicitly shown
in parentheses. An instruction group P ′ ⊆ PAt matches this pattern if there exists a function
Φ : P ′ → {v1, . . . , vk} that maps |vi| instructions to each node vi under the following condi-
tions:

1. the instruction types must match the node types and

2. if two nodes vi and vj are joined by an edge, then for each pair of instructions m and n
mapped to vi and vj , respectively, a path from m to n exists in the graph (PAt,�).

So to the nodes of the patterns sets of one or more same-type instructions are assigned and the
edges represent (chains of) intra-group dependences between the instructions in these sets. The
above example group matches Fig. 6.15 (a) by assigning A to the upper node and B-E to the lower
node.

182 CHAPTER 6. EXTENSIONS OF THE MODEL

CHK.S

M (4)

CHK.S

M (4)

I

M (3)

I

M (3)

I

M

A

M

I

I0

I

I0

F (2)

M

(a) (b) (c) (d) (e)

Figure 6.15: Patterns of structurally infeasible instruction groups.

The first three infeasibility patterns in Fig. 6.15 exploit the fact that no M-type instruction
can be scheduled after an instruction in an I-type slot in the first bundle and that then there is
no template for the second bundle that can host more than two M-type instructions ((a), (b)) or
the combination MIM/MMM (c). Fig. 6.15 (d) allows for the rule that the first I-slot instruction
in a group always occupies I0. The second F-type instruction of the last pattern must be placed
in the second bundle with template MFI, MFB or MMF—but then there is no slot for a further
M-type instruction after it in the bundle (the M-type instruction could be a setf with a WAR
(intra-group) dependence on the floating-point instruction).

The bundling constraints for a pattern have the following general form (with w :=
∑k

i=1 |vi|):∑
n∈P ′

xAt
n ≤ w − 1 ∀A ∈ B, ∀t ∈ G(A), ∀ matches P ′ ⊆ PAt (6.6.2)

The number of these constraints is polynomial since |P ′| = w must be less than or equal to six.

Thus the number of possible matches cannot grow larger than

(|PAt|
6

)
≤ |PAt|6. However,

this number can still be considerable so that the following reduction is useful: If for a node
|vi| = c(R(vi)) holds, i.e., if its cardinality is equal to the maximal number of instructions of this
type in any feasible instruction group, then we can assign not only |vi|, but an unlimited number
of instructions to this node, which leads to larger, fewer matches. As an example, consider pattern
(a) and the previous example with a fifth instruction F such that A � F: It is not necessary to
instantiate (6.6.2) for all five possible matches {A,B,C,D,E}, {A,B,C,D,F}, {A,B,C,E,F},
{A,B,D,E,F}, and {A,C,D,E,F} such that A matches the first node of the pattern and the other
four instructions the second node; instead, one constraint for P ′ = {A,B,C,D,E,F} is sufficient.
For nodes without this property, as those in pattern (b), however, this simplification is not allowed
since the bundling constraints would then become too tight and could exclude feasible groups.

To generate all bundling constraints of a pattern, it is necessary to enumerate all matches
of it in the graph (PAt,�). For subgraph isomorphism in general, no better algorithm than
an exhaustive enumeration and checking of all potential matches is known [Epp95] (O (|PAt|6

)
comparisons here). For patterns of a simple tree-like or even linear structure as those in Fig. 6.15,

6.7. FUTURE WORK 183

however, it is apparent that a recursive graph search can find all matches with much fewer com-
parisons than this worst case bound.

The five patterns of Fig. 6.15 represent only a selection of possible bundling constraints; they
are not necessarily complete. Further conditions of split issue could occur, for example, when
intra-group dependences force A-type instructions to occupy M-type slots before other M-type
instructions—dealing with these cases would require knowledge of the undocumented part of the
dispersal rules (see Sec. 2.10, [Int04]). To find all necessary bundling constraints and to prove
that they are sufficient to exclude all possible structurally infeasible groups, a complete, formal
description of the dispersal logic would be needed.

The bundling constraints are an example of how we favor an approximate, lean approach over
a precise one in order to avoid a prohibitive complexity increase as it would be the consequence
of integrating bundling into the main scheduling model. Despite its high worst case complexity,
it turned out to be practicable during the experiments (see Sec. 7.3.1). If in the course of broader
experiments further structurally infeasible groups appear, they would imply further classes of
bundling constraints. These constraints, possibly in combination with postprocessing, appear as
the most efficient way to cope with the phase coupling between scheduling and bundling.

6.7 Future Work

In this section, we consider possible further improvements and extensions of the developed for-
mulations. One useful enhancement has already been indicated in Sec. 6.1.2: There it has been
observed that the collapsing of blocks can lead to branches whose conditions are not available
in predicate registers. It would be beneficial to compute these predicates “on demand” in the
schedule: For each of them that is possibly needed, a set of additional compares could be derived
and included in the ILP that computes it. This set should only then be included in the schedule if
a branch with this condition is actually required, which can be modeled similarly as the mutually
exclusive sets of instructions.

In general, we can subsume such sets of instructions, which should occur in the schedule
only under a certain condition (that is modeled in the ILP), under the notion “conditional sets
of instructions”. They constitute a versatile basis for the integration of complex code genera-
tion decisions into the model. The preceding sections have shown this for speculation decisions,
including non-exclusive use forking, the speculation scheme sketched in Sec. 6.2.2 whose po-
tential has not yet been fully investigated. As a result of the intensive use of these conditional
sets, instructions from them can account for a large fraction of all instructions modeled in an ILP,
possibly even the majority.

Thus, a future, extended analysis of the efficiency of the model should focus on these sets
and could even incorporate them—right from the beginning—in the development of the basic
ILP model and the accompanying proofs of integrality properties in Chapter 5. This promises
further efficiency improvements: In fact, later in Chapter 7, we will describe how the precedence
constraints can be tightened by exploiting the mutual exclusiveness of instructions.

The analysis of partial-ready code motion has revealed further opportunities for fundamental
enhancements of the model: it has led to a more differentiated understanding of data depen-

184 CHAPTER 6. EXTENSIONS OF THE MODEL

dences, namely that true dependences constitute the requirement to schedule instructions (in a
certain range) and false dependences the exclusion. This distinction is currently not reflected by
the model, with the consequence that PR code motion must be restricted in the presence of WAR
dependences (see Sec. 6.3). This could be avoided by handling these dependences differently,
using the following new variables:

z↑An = 0 ⇒ No copy of instruction n is scheduled on any program path through s(n)
before A.

The condition expressed by these variables is contrary to that modeled by the a variables (yet not
directly the logical complement). Their semantics could be implemented very similarly, using
constraints like Equ. (6.3.1); the additional complexity is comparable to that of the a variables
and thus relatively low. It is apparent how they can be employed to model WAR dependences
in compliance with Def. 6.3.6. It is even conceivable to allow for the refined data dependence
preservation—as for the conditional sets—directly in the development of the basic model, so that
the z variables are not integrated afterwards, but introduced together with the a variables. This
could help keep the integrality result from Sec. 5.1.2.

The developed ILP model can be transformed to support software pipelining in a straightfor-
ward way. Details on the reformulation are provided in [Win01]. The unfolded software pipeline
is scheduled as a single basic block; Special modulo resource constraints model the “folding” of
this pipeline within the kernel loop (in order to execute its different stages in parallel). The ker-
nel length (the Initiation Interval II) is assumed constant in the ILP, which reduces its complexity
considerably. Thus possibly multiple ILPs with different values of II have to be solved in order
to find a minimal-length kernel by means of binary or linear search.

As the high parallelism of the kernel loop entails a high number of simultaneously live values,
modeling the allocation of the rotating registers, possibly with spilling, could be considered. An
earlier study has shown that heuristic modulo scheduling compares very well with an ILP-based
exact approach [RGSL96]. However, the results of the latter do not guarantee register optimality
for many loops. The outcome may be different on an EPIC architecture with architectural support
for software pipelining.

This chapter closes with an outline of how one of the presumably most complex, but also
most important extensions could modeled, namely the inter-block propagation of long latencies.
Currently, stalls caused by these latencies are not measured and allowed for at all so that the
model underestimates their impact. How large the inter-block stall triggered by a use-definition
pair is depends on which control flow path between the two instructions is taken at runtime: this
path decides how many cycles are spent between the execution of the two instructions and thus
how much of the latency can be covered (by these cycles).

Fig. 6.16 (a) gives an example of this: the (minimum) latency of the floating-point load ldfs
there is 6 cycles. Along the path A-B-D, four of these cycles are covered by the execution of
other instructions (not explicitly shown), so that a one-cycle stall in block D at the use fma
results. Along the path A-C-D, this stall is one cycle longer since one cycle less is covered.
When the stalls are added to the global schedule length (3.3.8), they should be weighted by the
respective path frequencies, which yields in this example 1 · 0.6 + 2 · 0.4 = 1.4.

6.7. FUTURE WORK 185

A

B C

D

ldfs f6=...1

2

fma =f6...

1

2

0.6 0.4

6 cyc.

A

B C

D

ldfs f6=...1

2

fma =f6...

1

2

0.6 0.4

6 cyc.

(a) (b)

ld8 r2=...
1 cyc.

1

2

1 ld8 =[r2]...1

2

1

Figure 6.16: Case study of inter-block latency propagation.

Thus, a precise model of inter-block stalls must determine them and take them into account
on a per-path basis. This requires for each program path P ∈ C an execution frequency fP by
which the measured stall cycles along this path are weighted. These values can be taken from
path profiles (see Sec. 3.1), or, if these are not available, approximated from node or edge profiles
[SS02]. If they are included as constants in the ILP, however, then the worst-case complexity of
the latter becomes exponential (which is the maximal number of program paths through the
scheduling region). It is unclear whether this exponential complexity can be avoided, in other
words, whether a precise modeling of inter-block stalls exists that is polynomial sized.

Since the path frequencies are often only approximations obtained from edge or node profiles,
anyway, the presumed high complexity of a precise, path-based model does not seem reasonable.
Instead, we follow here an approximate approach that considers latency propagation not along
individual paths, but along bundles of paths that traverse a pair of blocks. The formulation
outlined in the following employs for each pair of blocks A,B ∈ B such that A ≺ B the
following integer variable:

sA���B = The stall cycles in B when a program path from C(A) ∩ C(B) is executed.

Each of these variables, sA���B , is added to the objective function and there weighted by fA,B :=∑
P∈C(A)∩C(B) fP , the aggregate frequency of all program paths that pass through both A and B

(which can be approximated from an edge profile):∑
A,B∈B
A≺B

fA,B · sA���B

The value of this sum is also referred to as the total stall value.

Stalls are the result of latencies that are propagated between blocks. More precisely, we say
that a certain latency is propagated from block A to block B (or between A and B) if the direct

186 CHAPTER 6. EXTENSIONS OF THE MODEL

execution of B after A (without other intermediary blocks) would cause a stall of this duration.
In Fig. 6.16, for example, a three-cycle latency is propagated from A to D. A separate, further
class of integer variables18 is used to model the propagation between block pairs:

lCA���B = The latency propagated from block A to B at the exit of block C.

These variables are instantiated for all A,B,C ∈ B such that A � C ≺ B. The differentiation of
the latencies according to the additional block C models that they decrease monotonously during
the propagation along control flow paths (as described below). The precise semantics of these
variables is as follows: if B would be executed directly after C on a path from C(A) ∩ C(B),
then a stall of lCA���B cycles would occur.

As embodied by the defined variables, the latency propagation is modeled between block
pairs—although the latencies are triggered by pairs of instructions. More precisely, the latency
propagated from a block E to a successor block F—the value of lEE���F —must be greater or
equal to the maximum latency propagated from a copy of an instruction m scheduled in E to
a copy of an instruction n scheduled in F . If (m,n) ∈ ED and such copies of m and n are
scheduled in cycles sm,E and sn,F in E and F , respectively, then the latency propagated between
them equals the total latency wmn minus the cycles that are covered by other instructions in E
(after sm,E) and F (before sn,F):

lEE���F ≥ wmn − (TE − sm,E)− sn,F

These constraints are only schematic; their final form in the ILP model is different since there the
variables sm,E and sn,F are not directly available as integers (we do not expand on possible im-
plementations and their efficiencies here). The purpose of the constraints is to initiate inter-block
latencies; the other remaining constraint classes, to be presented in the following, propagate them
downwards in the BBG and transform them eventually into stalls. When a latency from a block
E to a successor F is propagated along a control flow path (from C(E)∩ C(F)), it is diminished
(covered) by

• the schedule lengths of the encountered blocks,

• the stall cycles incurred in these block on the same control flow path, and

• the latency cycles that are propagated from other blocks on this path to F—if these cycles
were not subtracted, they would be taken into account twice.

More concretely, when a latency from a block E to a successor F is propagated through a block
H on this control flow path, then it is diminished by

• the schedule length TH ,

18It is also thinkable to represent latencies and stalls with binary variables (like the block lengths) since they are
always integral. This could enable a tighter ILP model, but it has the drawback that the complexity of the formulation
then is no longer independent of the latency values, but grows with them.

6.7. FUTURE WORK 187

• the stall cycles sE���H , and

• the latency cycles lHH���F (since the stall variable sH���F already takes account of these
cycles).

This is implemented by the following inequalities:

lGE���F −TH −sE���H − lHH���F ≤ lHE���F ∀E,F,G ∈ B :
E � G∧

(G,H) ∈ EB ∧ H ≺ F
(6.7.1)

The latency that eventually arrives at F determines the stall that occurs there:

lGE���F ≤ sE���F ∀E,G, F ∈ B : E � G ∧ (G,F) ∈ EB

In the example of Fig. 6.16 (a), a three-cycle latency is propagated from block A to D (lAA���D =
3). Along the paths through B and C, the instances of (6.7.1) with H := B and H := C,
respectively, look as follows:

1 = lAA���D︸ ︷︷ ︸
=3

− TB︸︷︷︸
=2

− sA���B︸ ︷︷ ︸
=0

≤ lBA���D + lBB���D

2 = lAA���D︸ ︷︷ ︸
=3

− TC︸︷︷︸
=1

− sA���C︸ ︷︷ ︸
=0

≤ lCA���D + lCC���D

This allows the solution lBA���D = lCA���D = lCC���D = 1 and lBB���D = 0, which yields a total stall
value of sA���D ·1+sC���D ·0.4 = 1.4 in the objective function. Remarkably, in this solution one
cycle of the latency propagated from A to D at block C is effectively transferred to the variable
lCC���D although no instructions in C and D trigger this latency. If this split-up of the latency
would not take place, the value of sA���D had to be two and a total stall of the same value would
be measured. This demonstrates the ability of the formulation to balance propagated latencies
between smaller and larger path bundles as a means of covering and taking them into account on
a finer grain, leading to smaller, more precise total stall values.

In Fig. 6.16 (b), we assume that a further one-cycle latency is propagated from A to C (the
load→load address latency is two cycles, see Sec. 2.2.3.3). The resulting additional stall at C
does not increase the total stall value since it overlaps with the latency propagated from A to D
through this block, decreasing it by the same value. The feasible solution lAA���C = lBA���D =
lCA���D = 1 and lBB���D = lCC���D = 0 with the same total stall value sA���D ·1+sA���C ·0.4 = 1.4
demonstrates this.

In both examples, the measured total stall values are equal to that of the precise formulation—
however, this does not hold in general. The formulation is still an approximation that assigns
uniform latency and stall values to path bundles and not to individual paths. However, if the
precise latency and stall distribution can be expressed as a superposition of these bundle-related
latencies and stalls (which is presumably often the case), then both models measure the same
total stall value. Otherwise, the approximation may overestimate the precise value.

In the current form, the extension supposes that no intra-block stalls occur since the prece-
dence constraints take long latencies locally into account so that two dependent instructions m

188 CHAPTER 6. EXTENSIONS OF THE MODEL

and n are always scheduled at least cycles wmn apart in a basic block. However, latencies in-
side a block can vary in the presence of predication: Consider two instructions m and n with
wmn > 1 that are scheduled via predicated code motion in the same basic block. Then the long
latency wmn is only then propagated from m to n (and can induce a stall) if both instructions are
predicated on—otherwise it is effectively equal to one (see Sec. 2.2.3.3). The current formula-
tion does not allow for this; it considers intra-block latencies static and consequently penalizes
predicated code motion of long-latency instructions.

A possible remedy for this is extensive and therefore here only coarsely sketched: A first,
inevitable step is to switch from the current time-indexed to a group-indexed formulation. That
is, the index t of the x variables is redefined to refer to instruction groups instead of cycles. The
difference between these two measures constitutes the stall cycles. These are modeled separately
via new variables: For each t ∈ {1, . . . ,GA − 1}, an integer variable is added that measures the
stall between the execution of the groups t and t+ 1 in block A. In the objective function, these
stall variables are weighted by the block’s execution frequency, fA.

To allow for varying stalls due to predication, we introduce not only one stall variable per
group t, but several classes of them. If instruction pairs like m and n from above are scheduled
in A via predicated code motion, then they define a class of stall variables of their own that is
weighted in the objective function by the frequency that A is executed and both instructions are
predicated on. Constraints ensure that intra-block latencies and stalls can be balanced between
different classes, similarly to the inter-block formulation.

Many details still have to be clarified on the way to an ILP model of long latencies in global
scheduling. Nevertheless, the presented draft indicates that a close approximation is—at the price
of O (

G · |B|2) additional variables—feasible .

Chapter 7

Experimental Evaluation

The development of the ILP model with its extensions was closely accompanied by a continu-
ous experimental evaluation. This ensured the feasibility of the developed formulations as well
as their relevance with respect to performance. During the experiments, Intel’s compiler for
the Itanium, icc, was taken as a reference: the goal was to improve performance relative to
this state-of-the-art product compiler [DKK+99, BCC+00]. Since a direct integration of the ILP
scheduler into icc was not possible, a postpass approach was used instead. This limits the scope
of the experiments, but it still allows a direct comparison with Intel’s code generator (which em-
ploys wavefront scheduling from Sec. 3.3.1), giving an idea of its perfomance potential. During
the comparison, however, it should always be kept in mind that both approaches play in different
leagues regarding the computation times.

7.1 Implementation

Intel

compiler

7/8

Intel

compiler

7/8

Parse assembly,

reconstruct and

minimize data and

control dependences

Parse assembly,

reconstruct and

minimize data and

control dependences

Generate

ILP

Generate

ILP
Interpret and

bundle solution

Interpret and

bundle solution

Assembly Routine DDG and CFG

CPLEX 9.0 solverCPLEX 9.0 solver
Profile

feedback

Profile

feedback

Bundled Optimized Routine

Figure 7.1: Overview of the implementation.

Fig. 7.1 provides an overview of the implemented ILP optimizer: It reads directly assembly
routines produced by icc (using the -S flag) and reconstructs control flow and data depen-
dences. It also reads the execution frequency estimates of the basic blocks that are annotated by

189

190 CHAPTER 7. EXPERIMENTAL EVALUATION

Intel’s compiler in the assembly code. This information is available from earlier profiling runs.
After the generation of the ILP, the tool invokes the solver and waits until the latter terminates.

Once the solution is available, it constructs the schedule from it and activates the bundler. The
whole process is fully automated, only in some cases manual adjustments are necessary. This is
detailed in the following more comprehensive description.

7.1.1 Parsing and Precomputations

The parser is designed to process entire procedures. It recognizes the types and operands of the
instructions, reconstructs the basic block graph, and computes the dominance and postdominance
relationships using a standard control flow analysis [Muc97]. The dominance relation is then
used to identify backedges and loops. Software-pipelined loops are also recognized and merged
into single, non-moveable instructions that summarize the data flow to and from them (similarly
as described for calls in Sec. 6.1.1).

The qualifying predicates of the conditional branches at the ends of the blocks are read out
and associated to the respective BBG edges. If there is an alloc at the beginning of the proce-
dure, then the sizes of different areas of the register stack frame are extracted from this instruc-
tion; they are needed to determine the input registers of calls.

Then the global data dependence graph is constructed from the control flow graph. This is
done using a simple kind of forward data flow analysis. It computes at each node of the control
flow graph a table that records two sets for each register: these contain those instructions that
could have written and read the current value of the register, respectively, at an earlier program
point.

At each node (instruction) of the control flow graph, the sets of the instruction’s source and
destination registers are looked up in the table. For each source register, RAW dependence edges
on all instructions from the first set are added. In a similar way, WAW and WAR dependences are
detected. An encountered definition of the register clears both sets (cf. Def. 3.2.6)—afterwards,
the definition is added to first set. The clearing reflects the overwriting of the register value by
the definition—it may only be done for unpredicated definitions. Multiple predicated definitions
can and should only then clear the sets if under any possible predicate register assignment one of
them is active. This condition is determined by recording complementary predicate registers, as
outlined in the next paragraph. At a join, the sets are merged. The forward analysis moves once
along each backedge to detect the backward dependences for cyclic code motion.

Whenever the analysis encounters a compare that writes two predicate registers with comple-
mentary boolean values, then these two predicate registers are recorded as complementary in the
table. Then no dependences between instructions are registered that are guarded by these mutu-
ally exclusive predicate registers. Multiple dependences of different types between the same pair
of instructions are summarized into one single DDG edge with the maximum latency of those de-
pendences. Thus in the implementation, a DDG edge can be composed of multiple subedges that
represent distinct RAW/WAR/WAW register or memory dependences between the same pair of
instructions. Precedence constraints are only generated for the summarized edges—this avoids
separate constraints for each of the subedges, which would be redundant.

7.1. IMPLEMENTATION 191

An inherent drawback of the postpass approach is that no information about memory dis-
ambiguation is available. A comprehensive alias analysis, as performed by Intel’s compiler
[GLS01], is not possible at assembly level. Hence all memory dependences must be recon-
structed conservatively. For this purpose, all loads and stores are regarded as references to a
single, special “memory register” in the above analysis. The conservative reconstruction puts the
postpass optimizer at a disadvantage compared to the compiler since it means less scheduling
freedom for memory instructions in the presence of stores.

The tool then undoes all uses of control and data speculation (with manual interaction for
some instances). After that, it performs register renaming to remove as many false dependences
as possible, as required in Sec. 6.2.1. In the process of renaming, also reaching definitions and
concurrent definitions are recorded. The tool does not undo predication where it is used by
Intel’s compiler. In the input routines this feature is used rarely and conservatively so that we
see no benefit in reversing these decisions. The optimizer also does not try to detect and undo
speculative code motion, or to merge multiple compensation copies stemming from the same
instruction.

Next, the speculation possibilities are computed as described in Sec. 6.2. When adding data
speculation possibilities, we encounter the difficulty that no aliasing probabilities are available
and that at assembly level certainly not enough information is present to estimate them. Assum-
ing that they are always zero for any store-load pair could advantage the postpass optimizer over
the compiler—which does not apply this feature in such an opportunistic way—if this assump-
tion is confirmed at runtime. Otherwise, however, data speculation would incur considerable
recovery penalties. Thus our policy towards data speculation is more restricted: we include
such possibilities only for store-load pairs that are independent under the ANSI C aliasing rules1

[ANS89]. In these cases it is assumed that aliasing is unlikely so that the cost of recovering does
not need to be taken into account.

After that, the candidate block ranges are determined as described in the previous chapters,
together with possibilities for partial-ready and cyclic code motion; alloc instructions, calls,
and moves to and from the predicate registers are excluded from global code motion since the
potential scheduling scope of these rare instructions is highly restricted anyway. Then eventually
a choice has to be made with regard to the values GA—the numbers of reserved cycles of the
basic blocks (see the discussion on page 135). In the implementation, GA is pragmatically set
to the length of A in the input schedule plus one cycle as “headroom”. During the experiments,
manual additions for individual blocks are performed in two cases (see Sec. 7.2). Increasing
the headroom generally to two cycles, however, yields more than doubled solution times on
difficult problems (without further improvements of the schedule lengths)—this demonstrates
how sensitive the ILP complexity is with regard to this value. Thus it must be chosen cautiously;
it is the only factor that may require manual adjustments to balance the two goals of optimal
solutions on the one hand, and acceptable solution times on the other hand.

1These rules forbid access to the same data through pointers that have different types.

192 CHAPTER 7. EXPERIMENTAL EVALUATION

7.1.2 Optimizations

The tool performs several optimizations to minimize the data dependence graph and the can-
didate block ranges. The removal of redundant DDG edges—including backedges—according
to Def. 3.2.7 is important to prevent redundant precedence constraints. Subsequent optimization
passes then remove impossible candidate blocks as expressed by Equ. (5.3.2), (5.3.3), and (5.3.4)
in Sec. 5.3. For dependence edges from EPR

D , Equ. (6.3.3) and (6.3.4) must be applied instead of
Equ. (5.3.2). This minimization of the candidate block ranges—which is also extended to cyclic
candidate blocks—is essential to reducing the number of x variables.

We go even further and eliminate these variables not only on a per-block basis, but also on
a per-cycle basis. For this purpose, we determine for each pair of instructions the minimum
distance that must separate the two (due to data dependences) if they are scheduled in the same
basic block. For two instructions m and n, a value for this distance d

�A
m,n in a basic block A ∈

Θx(m) ∩ Θx(n) can be found as follows: Let VC ⊆ V denote all instructions with their source
block on the control flow path C ∈ C. If we initially ignore cyclic and PR code motion, then
for any C ∈ C(A) ∩ C(s(m)) ∩ C(s(n)) the length of the longest path from m to n in GD[VC]

is a lower bound on d
�A
m,n since all instructions on this path must be scheduled between m and n

in A.2 Hence d
�A
m,n can be chosen as the maximum of these lengths over all control flow paths

C ∈ C(A) ∩ C(s(m)) ∩ C(s(n)).
In the implementation, however, we choose the minimum of these lengths over all C ∈

C(s(m)) ∩ C(s(n)). The resulting bound, denoted by d
�
m,n, may be lower, but is also more

general: it holds independently of the destination block and is compatible with PR code motion,
which allows that scheduled copies respect only the dependences from a single control flow path.
If for one of the control flow paths no path in GD[VC] from m and n exists, then d

�
m,n is set to −1

to express that no minimum distance exists.
These bounds are now used to remove x variables as follows: If d�m,n is greater than zero for

two instructions m and n, then we can eliminate for each block B ∈ Θx(m) ∩ Θx(n) such that
no predecessor of B is element of Θx(m) all xBt

n variables of the first d�m,n cycles (i.e., substitute
them by zero). We can do this because if one of these variables is equal to one, then a copy of
m must be scheduled d

�
m,n cycles earlier in the same block or in a predecessor block, which is

not possible since t ≤ d
�
m,n and no predecessor exists in Θx(m). If n can be subject to partial-

ready code motion ((m,n) ∈ EPR
D), however, then we can perform this removal only if s(m) is

a predecessor of B or if it postdominates the latter and no other block in PRB(n) is a successor
of B. Then each path through B is s(m)-defined so that the above argumentation applies.

Analogously, we can remove the last d�m,n xB
m variables of a block B ∈ Θx(m)∩Θx(n) such

that no successor of B is element of Θx(n). In doing so, we effectively derive from the DDG
global ASAP/ALAP3 ranges of cycles for each instruction. This precise analysis reduces the
number of x variables of the ILPs by one fifth on the average.

2If speculation (Sec. 6.2) can reduce this path length, then this possibility must be taken into account. Thus,
when the longest path is searched in the DDG subgraph, it must be assumed that all speculation possibilities are
utilized.

3As soon as possible/as late as possible

7.1. IMPLEMENTATION 193

7.1.3 ILP Generation and Solving

During the generation of the ILPs, we exploit several opportunities to tighten some constraint
classes of the model further. Two of them are detailed in what follows. To discover opportunities
for tightening, it is helpful to take a closer look at the solutions of the LP-relaxations of real
problem instances and especially at the schedules implied by these solutions. Fig. 7.2 (a) depicts
a small excerpt from such a relaxed schedule, a schedule obtained from interpreting the optimal
solution of the LP-relaxation. In this real-valued solution, non-integral values of the variables
xAt
n represent only partly made scheduling decisions. As shown in the figure, instruction that are

“partly scheduled” in this way are also listed in the relaxed schedule, together with the value of
the x variable that represents the scheduling decision in parentheses; this value from the interval
]0, 1[can be regarded as a weight or as a bias.

(a) (b)

ld1.s r23=[r11] (m')

sxt r3=r23 (n)

(p8) ld1 r23=[r11] (m)

sxt r3=r23 (n)

1

2

3

(0.5)

(0.5)

(0.5)

(0.5)

... ...
1

t -1

t ...

...

�

1c
�

kc �

1c
�

lcA

iB

GA

Ai

nx

i

Figure 7.2: Illustration of opportunities to tighten the model further.

Fig. 7.2 (a) shows three cycles of a possible relaxed schedule with three instructions: the
”sxt r3=r23“ (n) is dependent on a load ”(p8) ld1 r23=[r11]“ (m), of which also
a speculative version ”ld1.s r23=[r11]“ (m′) exists. This small example represents an
undecided state with respect to control speculation (which is common in relaxed solutions): in
this case it is assumed that the control speculation decision variable Sm has value 0.5. Therefore
each of the two mutually exclusive instructions m and m′ is scheduled only with weight 0.5 in
this block A (and we assume that none of the three instructions is scheduled (partly) elsewhere,
so that a↑Am = a↑Am′ = a↑An = 0 and a↑Bm = a↑Bm′ = 0.5 for a direct successor B ∈ Θa(m) ∩Θa(m′)
of A).

It can be observed that in this relaxed schedule the copy of n in cycle one violates the data
dependences on the copies of both m and m′. Nevertheless, the schedule represents a feasible
real-valued solution; it fulfills the following instances of the precedence constraints (5.3.12) for
t = 1 with equality, but does not violate them (which is possible since the copies are only partly
scheduled, i.e., xA1

n = xA1
m′ = xA2

m = 0.5):

194 CHAPTER 7. EXPERIMENTAL EVALUATION

a↑An + xA1
n + (xA1

m + xA2
m + xA3

m) + (1− a↑Bm) ≤ 1 + Sm (7.1.1)

a↑An + xA1
n + (xA1

m′ + xA2
m′ + xA3

m′) + (1− a↑Bm′) ≤ 1 + (1− Sm) (7.1.2)

Now we can exploit the fact that n is dependent—with the same latency—on two instructions
that are mutually exclusive, and merge both instances into the following single inequality:

a↑An + xA1
n + (xA1

m′ + xA2
m′ + xA3

m′) + (xA1
m + xA2

m + xA3
m) + (1− a↑Bm − a↑Bm′) ≤ 1

This constraint equals (7.1.1) and (7.1.2) if Sm = 0 (then all variables of instruction m′ are equal
to zero) and Sm = 1 (then all variables of instruction m are equal to zero), respectively. Thus
the merged constraint does not change the set of integral solutions, but it is tighter and excludes
the above example (for which its left-hand side has value 1.5). In the implementation, these
combined precedence constraints are employed for all dependences on speculation candidates.

Above, we have tightened a constraint class by exploiting the mutual exclusiveness of vari-
ables due to speculation choices. In general, two variables are said to be mutually exclusive in
the ILP if no integer feasible solution exists in which both have value one. Inequalities of the
form X1 + . . .+Xk ≤ 1, where X1, . . . , Xk are binary variables, can be strengthened by adding
a further binary variable Xk+1 to the left-hand side that is mutually exclusive to each of the other
variables. This does not affect the set of integer feasible solutions (since all other variables must
be zero if Xk+1 = 1), but it tightens the constraint by lifting it to a higher dimension [NW88].

In Chapter 5 we have shown for most constraint classes that they represent integral facets
of subpolytopes so that they cannot be further strengthened with respect to these subpolytopes.
However, this may be different for the entire polytope of the model, which is the intersection of
all subpolytopes. We focus here on one class for which we have no integrality result at all (due
to the NP-hardness of related subproblems): the block length constraints (5.3.14). An instance
of these constraints, generated for a block A ∈ B, an instruction n ∈ Θx−1

(A), and a cycle
t ∈ G(A) has the following form:

BA
1 + . . .+BA

t−1 + xAt
n + . . .+ xAGA

n ≤ 1 (7.1.3)

Fig. 7.2 (b) illustrates the structure of this inequality graphically: the boxes show which variable
of each cycle it comprises (initially, the columns marked with c≺/c� should be ignored). No
further variable BA

i can be added to the left-hand side since such a variable for an i ≥ t would
not be mutually exclusive to xAi

n . A variable xAi
m of another instruction m, however, is mutually

exclusive to all B variables of the constraint if i ≥ t. It remains to be determined under which
circumstances it is also mutually exclusive to all the variables xAt

n , . . . , xAGA
n , as required.

For this purpose, we utilize the previously computed minimum distances between instructions
that are scheduled in the same basic block: if d

�
m,n > 0, then xAGA

m is mutually exclusive to all
the variables xAt

n , . . . , xAGA
n —this is because if m is scheduled at cycle GA, then n must not be

scheduled before GA + d
�
m,n > GA. Thus xAGA

m can be added to the left-hand side of (7.1.3).
As depicted in Fig. 7.2, we add not only the x variable of one instruction with this property,

but of as many as possible. When adding the variables xAGA

c�1
, . . . , xAGA

c�l
of several instructions

7.1. IMPLEMENTATION 195

c�1 , . . . , c�l ∈ V such that ∀i : d
�
c�i ,n

> 0, however, we must make sure that these variables
itself are mutually exclusive to each other, too. This condition can—based on the minimum
distances—be expressed as follows:

∀i, j :
(
d
�
c�i ,c�j

> 0
)
∨

(
d
�
c�j ,c�i

> 0
)

During the generation of the block length constraints, such variables are added until no further
instruction exists in Θx−1

(A) that satisfies the above conditions. In an analogous way, variables
xAt
c≺1

, . . . , xAt
c≺k

are added such that ∀i : d�
n,c≺i

> 0. The form of the eventually resulting constraint

is not unique, but depends on the order in which the instructions c≺/c� were selected—therefore
it is doubtful whether a closed-form formula of these tightened block length constraints exists.
Their impact, however, is beyond doubt: In combination with the previously presented com-
bined precedence constraints, they halve the solution times of the two most difficult problems
encountered during the experiments (see Sec. 7.3.1).

The ILP is generated with help of ILOG Concert 2.0, a library of classes and functions that
supports this process via C++ concepts [ILO03a]. The Concert framework passes the ILP directly
to the solver without the indirection of a text file. The solver is then started together with several
parameters that improve the solving performance significantly (more than 400% on the two most
difficult input programs, compared to the default settings). The chosen parameter combination
is the result of a long process of analyzing and experimenting. One highly important ingredient
is the specification of suitable branching priorities, i.e., priorities that guide CPLEX to find the
next fractional-valued variable to branch on. In line with the recommendations of Sec. 4.2.1,
it turned out to be advantageous to give the B, S, and a variables a higher priority than the x
variables.

It is also beneficial to emphasize feasibility over optimality via the MIPEmphasisFeasi-
bility setting [ILO03b]. The solver then invests less computational effort in analyses that
aid in moving the best bound and keeping the branch-and-bound tree small (see Sec. 4.2.1),
but tries to find as many integer feasible solutions as early as possible. This involves also less
backtracking. Our ILP model seems to be tight enough to benefit from this strategy.

The same settings and parameters are used for all input programs, there is no input-specific
tuning. Also there is no optimality tolerance interval granted to the ILP solver—only a 100%
optimal result is accepted. After the ILP solver has delivered such a solution, it is started again
with a different objective function that minimizes the number of instructions in the schedule, as
described in Sec. 6.5. The result of this second phase is then the final optimal schedule.

7.1.4 Postprocessing

Features like predication and speculation require postprocessing in the schedule, as described in
Chapters 6.2 and 6.3. In addition, the solution values of the scAB variables are interpreted and the
necessary branches are created and inserted into the schedule. Then the basic blocks are ordered
according to the ftAB variable values (which define the fall-through edges).

196 CHAPTER 7. EXPERIMENTAL EVALUATION

After that, all employed virtual registers are allocated to architected registers, based on a
liveness analysis. If during this more registers are needed than are available in the procedure’s
register stack frame, the latter is extended automatically. This involves a shifting of the output
area, with renaming of those registers that pass parameters to subroutines.

Each basic block is then passed to the bundler, which generates the final assembly output.
Afterwards, possibly predicate register initializations have to be inserted manually into empty
slots of the bundled code (the tool outputs if and where they are needed). In a few cases, empty
bundles (containing only nops) are inserted manually to align hot branch targets on 32-byte
boundaries. This “padding” facilitates fetching (see Sec. 2.2.3.1) and is also done by the Intel
compiler. Finally and also manually, recovery code is added.

7.2 Experimental Setup

Individual routines from the SPECint 2000 benchmark [SPE00] were chosen as input of the
optimizer. The method is too new and too expensive to optimize the whole SPEC suite with it;
instead we had to select several routines according to the following criteria:

• The assembled routine should not have more than a few hundred instructions to limit the
complexity.

• It should be hot enough so that the impact of the optimization can be measured. We have
chosen only routines whose weight (i.e., the time spent in these routines) is at least 5%.

• It should not contain hot software-pipelined loops because software pipelining is currently
not supported by the model. As mentioned above, the tool can handle these loops, but it
cannot optimize them.

• It should not contain too many long-latency instructions because the model is imprecise
here. This concerns mostly floating-point operations.

The selected routines were compiled to assembly with Intel’s Linux compiler for the Itanium 2.
We used full optimization (-O3) and profiling information (-prof_use).4

Table 7.1 lists the routines together with the benchmark programs they were taken from.
We measure the speedup from optimizing these routines as follows: We assemble for each of
them two versions of the program, one with the original version of the routine and one were
it is replaced by the optimized variant. In other words, both binaries are equal except that the
optimized routine is substituted into one of them. Then we run the two on a 1.4 GHz Itanium 2
and measure the execution times using the time utility [GNU]. The speedup of the routine is
derived from dividing the speedup of the program by the weight of the routine.

4Following recommendations from Intel’s compiler team, the first two assembly routines in Tab. 7.1 were gener-
ated with the compiler version 8 instead of 7, and with the additional flags “-ipo” (interprocedural optimizations
across files), “-static” (static linking of all libraries) and “-auto_ilp32” (assume 32-bit address space, use
32-bit pointers).

7.3. EXPERIMENTAL RESULTS 197

Routine Program Input Set Weight #BB #Loops Ins. in

longest_match 164.gzip program 70% 25 2 178

send_bits 164.gzip graphic 11% 11 0 91

deflate 164.gzip random 15% 37 3 226

firstone 186.crafty ref 6% 8 0 37

get_heap_head 175.vpr route/ref 30% 9 2 71

add_to_heap 175.vpr route/ref 13% 12 1 108

qSort3 256.bzip2 graphic 12% 22 4 241

xfree 197.parser ref 5% 9 1 46

prune_match 197.parser ref 7% 10 1 69

Table 7.1: Input routines.

The higher this weight, the higher also the speedup of the entire program and the more pre-
cisely we can measure it. Thus, if there are multiple input sets, we perform the measurements
with those input sets where the weight of the routine is maximal. The next two columns in the
table list these input sets and the corresponding weights. The latter were measured with gprof
[GNU], running an instrumented version of the benchmark program that is obtained from com-
piling with the “-qp” flag.

The remainder of the table shows the numbers of basic blocks, loops, and instructions of the
input routines. All functions are optimized as a whole, except for prune_match, where we have
omitted a large, cold part of the routine (all static numbers presented for it in the following refer
to the optimized part). The “headroom” in the number of reserved cycles is for four blocks (two
in deflate and two in qSort3) manually increased by one cycle (see Sec. 7.1.1). A tentative imple-
mentation of non-exclusive use forking is switched on for the routine get_heap_head, where it
accounts for more than half of the achieved schedule length reduction. Several of the procedures
contain also individual long-latency instructions (floating-point and multimedia operations), but
there is only one (send_bits) where they lead to inter-block stalls, which are unaccounted for in
the model. These stalls are manually calculated into the schedule length reduction given for this
routine in Table 7.5.

The ILPs are solved with ILOG CPLEX 9.0 [ILO03b] on a Sun Fire 15000 compute server.
The ILP solver task is bound to one of its 1.2 GHz UltraSPARC III+ processors via the pbind
command for maximal performance.

7.3 Experimental Results

7.3.1 Generated ILPs

Table 7.2 shows the ILP sizes after preprocessing, i.e., after CPLEX has removed redundant
rows and columns of the constraint matrix. For some input programs, the percentage of removed
constraints and variables is quite large with more than one fourth and 10%, respectively. This is
partly because the ILP generation relies on this redundancy detection—it is itself not specifically

198 CHAPTER 7. EXPERIMENTAL EVALUATION

Routine #Constraints #Variables
Relaxation

Gap

1st Node

Gap

2nd Node

Gap
#Nodes

Sol. Time /

Seconds

longest_m. 5974 3314 10.8% 10.8% 0.8% 376 111

send_bits 2497 1483 4.7% 3.4% n/a 0 2

deflate 4450 2725 5.8% 5.8% n/a 0 2

firstone 411 277 0.0% 0.0% n/a 0 1

get_heap_h. 4079 1655 7.4% 6.8% 0.0% 87 15

add_to_h. 3257 1703 1.6% 0.0% 0.0% 4 3

qSort3 9836 5059 8.2% 8.1% 4.5% 709 151

xfree 657 387 15.1% 15.1% n/a 0 1

prune_m. 1322 805 5.6% 5.5% 1.0% 13 1

Average 6.6% 6.2% 1.3%

Table 7.2: Characteristics of the generated ILPs.

optimized for the detection and removal of redundant instances of constraints.
The next three columns give in three different stages the integrality gaps as a measure of

the tightness of the polytope. This gap is defined as the distance between the objective function
values of optimal solutions of the ILP itself and the corresponding LP-relaxation (as a percentage
of the first value). The gaps in the third and fourth columns of Table 7.2 (“Relaxation Gap” and
“1st Node Gap”) have been measured before and after preprocessing, respectively. Apparently,
CPLEX can tighten the polytope slightly by strengthening bounds, reducing coefficients, etc.
[ILO03b]. After that, CPLEX adds cuts at the root node of the branch-and-bound tree. They
tighten the polytope considerably, as the diminished gap at the succeeding second node shows.
In all except for two routines, the integrality gap is entirely closed before branch-and-bound
is reached. In four cases, also optimal solutions have been found that are integral so that no
branching is necessary.

The last two columns list the total numbers of branch-and-bound nodes and the solution
times. As expected, the gaps are a good predictor for the solvability (except for the small routine
xfree). The ILPs of the second phase are solved in less than one second for all input programs.

Figures 7.3 and 7.4 show breakdowns of the numbers of generated constraints and variables,
respectively, averaged over all input routines. As expected, the constraint numbers are dominated
by the general and local precedence constraints (Equ. (5.3.12) and (6.3.6), respectively) and the
structurally similar block length constraints. The bundling constraints, included in “Others”, are
only generated for the first pattern in Fig. 6.15; they never contribute to more than a half percent
of the total number of constraints.

Fig. 7.4 shows that the x variables account for about 80% of all variables. Compared to them
the variables for the modeling of branches, for instance, are negligible. These statistics confirm
the estimated high impact of the factor G on the ILP sizes.

7.3.2 Optimal Schedules

Before we present the schedule length reductions and speedups achieved by the optimizer, we
take a closer look at the structure of the obtained schedules. Table 7.3 shows several speculation-

7.3. EXPERIMENTAL RESULTS 199

a-x Assignment

Others

0% 20% 40% 60% 80% 100%

ResourcePreced. (global)Precedence (local, Block Length

O(G·|ED|)O(G·|ED|) O(G·|V|)O(G·|V|)

general)

Figure 7.3: Empirical constraint distribution.

Others

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Branch

A

tB

A

na�At

nx

O(G·|V|) O (| |·|V|)BO (| |·|V|)B

Figure 7.4: Empirical variable distribution.

200 CHAPTER 7. EXPERIMENTAL EVALUATION

related characteristics: The first two columns list the number of control or data speculative loads
employed in the input and in the output schedule, respectively. In most cases, the latter uses
significantly more of them. However, in only two routines more data speculation is used than
before (get_heap_head and add_to_heap).

The next two columns give how many speculation possibilities according to Sec. 2.1.5 are
included in the ILP (“Poss.”) and the number that is actually utilized in the output schedule
(“out”). This measure comprises not only speculative loads, but also speculated concurrent def-
initions. The table shows that the number of mutually exclusive pairs of sets of instructions is
often large (more than 40 in two cases), and also that a large proportion of them is eventually
utilized (almost half on the average).

Routine
Control/

Data Spec. in

Control/

Data Spec. out

Spec. Scheme

Poss.

Spec. Scheme

out

Spec. Code

Motion Poss.

Spec. Code

Motion out

longest_m. 15 15 43 26 38% 24%

send_bits 0 1 7 1 27% 9%

deflate 4 2 28 2 21% 5%

firstone 0 5 7 5 33% 21%

get_heap_h. 3 7 23 10 33% 15%

add_to_h. 2 5 16 5 35% 16%

qSort3 7 14 46 19 38% 17%

xfree 2 3 7 4 27% 23%

prune_m. 4 7 19 12 37% 21%

Average: 32% 17%

Table 7.3: Results of the optimization: Used speculation.

The last two columns quantify the usage of speculative code motion: the first shows how
many instructions can be scheduled speculatively according to the candidate block ranges5, the
second the percentage of instructions of which a copy is scheduled speculatively in the output
schedule—the average value of 17% shows that the ILP solver applies speculative code motion
moderately.

Table 7.4 displays in the same form how often different sorts of code motion were used: for
each sort, one column always shows the percentage of instructions to which it can be applied in
the ILP model (“Poss.”) and the subsequent column the percentage to which it has been applied
in the output schedule (“out”) 6. The first two columns reveal that the upward direction of code
motion is used much more frequently than the downward direction. This is not surprising from
the first sight: upward code motion means executing instructions earlier, allowing the schedule
to end earlier.

However, from a more abstract viewpoint, upward and downward code motion are equiv-
alent: Fundamentally, global code motion achieves schedule length reductions by overlapping

5This statistic does not take predicated code motion from Sec. 6.1 into account which allows an instruction to be
scheduled speculatively, but never be executed speculatively.

6All percentages are relative to the numbers of instructions modeled in the ILP, not to the number of scheduled
copies (which can be higher due to compensation copies). For example, “Upward out” gives the percentage of
instructions for which at least one copy is scheduled in the output schedule as a result of upward code motion.

7.3. EXPERIMENTAL RESULTS 201

Routine
Upward

Poss.

Upward

out

Down.

Poss.

Down.

out

Cyclic

Poss.

Cyclic

out
PR Poss. PR out

Pred.

Poss.
Pred. out

longest_m. 41% 20% 9% 2% 19% 8% 13% 7% 8% 1%

send_bits 46% 12% 47% 16% 0% 0% 11% 7% 40% 8%

deflate 46% 11% 37% 5% 4% 1% 12% 4% 58% 8%

firstone 67% 21% 18% 0% 0% 0% 0% 0% 42% 0%

get_heap_h. 19% 8% 16% 6% 23% 11% 1% 1% 13% 1%

add_to_h. 48% 15% 9% 1% 13% 9% 8% 1% 22% 5%

qSort3 57% 14% 11% 2% 21% 4% 20% 12% 32% 1%

xfree 43% 16% 27% 18% 14% 7% 0% 0% 27% 18%

prune_m. 31% 16% 1% 1% 12% 8% 0% 0% 7% 0%

Average: 44% 15% 19% 6% 12% 5% 7% 3% 28% 5%

Table 7.4: Results of the optimization: Used code motion.

(parallelizing) code from different blocks. But if code from a block A can be overlapped with
code from a successor block B, then it makes no difference if instructions from B are moved
upwards to A, shrinking the schedule length of the former block, or if instructions from A are
moved downwards to B, shrinking block A.

A fundamental reason for the subordinate role of downward code motion is that it is restricted
by compares: they cannot be moved past branches they control (see Sec. 6.1.2). Since they
are also often the last instruction in a long data dependence chain, they inhibit downward code
motion of other instructions as well. Thus the upward direction is more widely applicable (44%
vs. 19% in Tab. 7.4) and therefore used more frequently; it is often the only way to overlap code
from different blocks.

The table also shows that cyclic and partial-ready (PR) code motion are limited to relatively
small portions of instructions; but as it will be seen later, both are effective if applied selectively
to critical-path instructions. The last two columns display results for predicated code motion
from Sec. 6.1. This sort of code motion lags remarkably behind its potential (5% vs. 28%). An
analysis of the schedules clearly shows that this is due to the data dependences on the controlling
compares, which must be respected by instructions that use this kind of code motion. This
restricts especially the upward direction since compares are, as mentioned earlier, often on the
critical path and thus frequently scheduled in the last cycle of a basic block.

As a concrete example, Fig. A.3 and Fig. A.4 in Appendix A illustrate the schedules of qSort3
before and after the optimization, respectively. In these figures the basic blocks are vertically
divided into cycles and horizontally into execution slots. The filled boxes represent scheduled
copies of instructions and their different colors in Fig. A.4 different kinds of applied code motion.
The pictures give an impression of how code motion contributes to the schedule length reduction
(which is pointed out by the double-headed arrows).

As a result of global code motion, every fourth instruction is moved out of its source block on
the average over all routines. Table 7.5 lists the number of collapsed blocks resulting from this.
This table also finally lists the achieved reductions of the global schedule length in the second
column. Sometimes the reductions are considerable like for longest_match and get_heap_head;
in other cases the critical path is a limiting factor as in deflate and add_to_heap, but the per-

202 CHAPTER 7. EXPERIMENTAL EVALUATION

Routine
Collaps.

Blocks

Static

Reduction

Weigh.

IPC in

Weigh.

IPC out

Delta

Instruct.

Delta

Bundles

Speedup

Program

Speedup

Routine

longest_m. 1 46% 2.4 5.6 24% 7% 18.50% 26%

send_bits 0 31% 2.4 4.9 10% 10% 3.00% 27%

deflate 4 19% 2.6 3.6 3% -3% 1.72% 11%

firstone 0 37% 2.6 4.7 14% 0% 0.88% 15%

get_heap_h. 0 43% 2.3 4.9 31% 9% 4.25% 14%

add_to_h. 1 17% 3.0 4.0 11% 4% 1.17% 9%

qSort3 1 26% 2.9 4.6 16% 4% 1.93% 16%

xfree 3 22% 2.3 3.6 9% -5% 0.76% 15%

prune_m. 2 41% 2.5 5.3 22% -3% 0.73% 10%

9% 31% 2.6 4.6 15% 3% 16%

Table 7.5: Further characteristics and performance of the optimal schedules.

centages are still respectable here with 19% and 17%, respectively. Later we will examine more
closely how these improvements could have been achieved.

The schedule length reductions are accompanied by drastically increased static instructions-
per-clock rates, as the next two columns point out: the average IPC (without nops and including
branches), weighted by the execution frequencies of the blocks, goes up from 2.6 to 4.6 (the
unweighted IPC from 2.4 to 3.9). This shows that the ILP scheduler is successful in extracting
more parallelism and approaches the maximum IPC of six for the Itanium 2.

A further factor that contributes to the jump in the IPC is the increased instruction count by
15% on average (“Delta Ins.”, without nops and recovery code). One reason for this is that the
ILP scheduler can fill free issue ports uninhibitedly with speculation checks and compensation
copies because it can take the execution unit occupation optimally into account in all scheduling
decisions. So it can fully exploit the maximally possible IPC without running in danger of a
resource oversubscription. It should also be considered that we perform global code motion on
top of the global scheduling already performed by Intel’s compiler. This means, for example,
that compensation copies created by Intel’s compiler are not fused back into single instructions
again (undone), but even more of them are added. If both schedulers had the same starting point,
the increase would likely be lower.

The rising number of instructions is potentially harmful to the instruction cache efficiency.
But strikingly, the relevant number of bundles grows only by 3% (“Delta Bundles”). This comes
from the fact that the new schedules use fewer, but larger instruction groups which fit much better
into the bundling scheme of this architecture. Small groups are more often forced to be filled up
with nops. In other words, most new instructions move into execution slots that were previously
occupied by nops. With the small code size increase, the negative impact on the instruction cache
should be negligible. The impact of growing register stack frames due to the subsequent register
allocation can also be considered as minor: on the average, three more stacked registers are
employed—in all optimized procedures, a reserve of more than 50 unused architected registers
remains.

The second last column of Tab. 7.5 shows the measured speedups of the benchmark pro-
grams. These numbers are sometimes less than 1% because only a single small routine has been

7.3. EXPERIMENTAL RESULTS 203

changed, therefore several runs were performed to determine them precisely. Using the weights,
we derive the speedups of the individual routines from them as described in Sec. 7.2. It is visible
that the runtime impact of the static improvements varies with the different stall characteris-
tics of the routines: the performance improvements are between one third and two thirds of the
schedule length reduction, with the average at half. The latter is plausible because we optimize
the unstalled execution time, which is about half of the total execution time for SPECint 2000
[MK02].

0

5

10

15

20

25

30

35

40

45

50

lo
ng

es
t_

m
.

de
fla

te

se
nd

_bi
ts

fir
st
on

e

ge
t_
hea

p_
h.

ad
d_

to
_h

.

qS
or

t3
xf
re

e

pr
un

e_
m
.

A
ve

ra
ge

S
ec

ond
s

Plus PR Code

Motion

Plus Cyclic

Code Motion

Plus Addition

Speculation

Only Acyclic

Global

Scheduling

.

Figure 7.5: Schedule length reductions (in percent) as different extensions are switched on in-
crementally.

Finally, Figure 7.5 depicts how the schedules shrink as the extensions additional speculation,
cyclic code motion, and PR code motion are switched on incrementally (in this order). In the
setting “Only Acyclic Global Scheduling”, control speculation possibilities are included in the
ILP only for those loads that are already control speculative in the input schedule. “Additional
speculation” then means the full inclusion of speculation possibilities according to Sec. 6.2.

The diagram shows that all these features improve only a subset of the routines, but on the
average, each is essential. The last bar shows the accompanying increase in the average solution
time (the y-axis displays both percents and seconds). While scheduling plus speculation gener-
ally can be solved within a few seconds, the two other extensions cause search space expansions,
especially for the two most difficult to solve routines.

204 CHAPTER 7. EXPERIMENTAL EVALUATION

Chapter 8

Related Work

This chapter is organized as follows: The first section completes the survey of global scheduling
heuristics from Sec. 3.3.1. Some of the further here presented techniques are more exotic. The
following main section covers exact and phase-coupled methods in code generation. These two
classes are treated as a whole since many exact (optimal) instruction schedulers also incorporate
decisions from other code generation phases and are thus phase-coupled. Also near-optimal
or heuristic approaches to phase coupling are presented. Two subsections distinguish between
heuristic and search-based methods. The latter are further subdivided into methods based on
ILP, constraint logic programming, evolutionary algorithms, enumeration, and other approaches.
Finally, to broaden the perspective, Sec. 8.3 outlines recent works on the use of ILP in various
other compiler-related applications.

Within this chapter we focus on publications that are prominent in their field or particularly
related and relevant to our work. More comprehensive surveys with further references, including
historical ones, are to be found in [SS02, MG95, Leu00, Bas95].

8.1 Global Instruction Scheduling Heuristics

Many global scheduling heuristics have similarities with trace scheduling, but differ with regard
to the chosen scheduling regions: In [CS98], for example, two global scheduling techniques are
presented whose scheduling regions are extended basic blocks (traces of blocks that have not
more than one predecessor in the BBG) and dominator paths (BBG paths between two basic
blocks that are adjacent in the dominator tree [SS02]), respectively. Within these linear regions,
code motion is only permitted that does not require compensation copies to limit possible code
growth (the structure of the scheduling regions facilitates this for upward code motion). When
compiling for an eight-issue DSP, a dynamic instruction count reduction of 5% and 6%, respec-
tively, compared to local scheduling is reported.

In tree traversal scheduling, BBG subgraphs with a tree structure (treegions) form the schedul-
ing scope [ZJC01]. The selection of these treegions is accompanied by tail duplication to increase
their size. The basic blocks in each treegion are scheduled successively in the order of a depth-
first traversal of the tree. Each block is scheduled via list scheduling, considering as candidates

205

206 CHAPTER 8. RELATED WORK

all instructions from this block and its successors (this incorporates speculative upward code mo-
tion). The priority function of list scheduling ensures that block-ending branches are scheduled
as early as possible. Their scheduling aborts the processing of a block. All instructions that
are then still unscheduled and originate from this block are moved downwards to the successor
blocks (which requires duplication if there are multiple successors). They are considered again
when the scheduling continues with these successor blocks. Experimental results for tree traver-
sal scheduling show a 4% speedup over an implementation of the same algorithm that works on
linear scheduling regions instead of trees and a 35% speedup over local scheduling.

Gupta proposes a completely different approach to global instruction scheduling, namely
an incremental approach [Gup98]: First, an initial schedule is generated by local basic block
scheduling. Then this schedule is improved by progressive applications of global code mo-
tion transformations till no further opportunity for improvements is found. Even cascaded code
motions—transformations that move whole sequences of dependent instructions at the same
time—are described. An implementation and experimental results are not reported. An ad-
vantage of this approach is that the code motion transformations can be easily combined with
other optimizations; the paper demonstrates this for partial redundancy/dead code elimination.
Furthermore, it achieves a local optimum since the improving transformations are applied until
no further application is possible. Its drawback is, however, that this optimum is not global, but
depends on the heuristically chosen order and shapes of the transformations. In other words, the
approach tackles global code motion decisions one at a time and does not consider interactions
between them, let alone interactions with other scheduling decisions.

A further class of global scheduling heuristics inverts Gupta’s approach: instead of apply-
ing global code motion after basic block scheduling, these methods perform it first, prior to the
scheduling proper. In doing so, they separate code motion decisions from fine-grain scheduling
decisions. This allows to deal with the former decisions on a more abstract level and simpli-
fies the scheduling itself, which needs only to be local. Chang et al.’s bidirectional scheduling
[CCL+96] applies first downward and then upward code motion. Subsequently, each basic block
is scheduled separately using a local scheduling method. The instructions for downward and up-
ward motion are selected on the basis of heuristic indicators obtained from a tentative scheduling
of individual paths and blocks, respectively. For instance, in order to determine the instruc-
tions for upward code motion, each block is first scheduled locally using a special variant of list
scheduling that places instructions as late as possible (without increasing the schedule length).
As a result, most instructions are packed near the bottom of the schedule and typically only a
few in the first cycles. These instructions exposed in the first cycles are presumably critical with
respect to data dependences or resource requirements and therefore selected for upward code
motion. Experiments show for individual routines speedups of more than 10% over hyperblock
scheduling.

A further work by Lo et al. is unique in that it models the selection of instructions for code
motion as a min-cut problem on a graph [LCDT96]. The approach works on pairs of adjacent
basic blocks: Given a block A and a successor block B, let the “maximal moveable set” MS

contain all candidate instruction in B for which upward code motion into A is possible (i.e., per-
mitted). The goal is to select a subset of MS for which it is also profitable. The method decides

8.2. EXACT AND PHASE-COUPLED METHODS IN CODE GENERATION 207

on the selection not on a per-instruction basis, but by considering all moveable instructions at
once. This is done by modeling the selection as a min-cut problem on a directed graph with node
capacities1. This graph is basically the data dependence graph induced by MS (with the instruc-
tions as nodes). The capacity of each node is set inversely proportional to the estimated benefit
of moving this instruction (and all DDG predecessors) from B upwards to A, that is, smaller
capacities correspond to larger benefits. Thus a node cut with minimal capacity corresponds to a
subset of MS with maximal benefit from code motion. In the graph, it constitutes the boundary
between the instructions to be moved and not to be moved. The benefits of code motion are es-
timated using a formula that takes critical-path lengths, long latencies, as well as global register
pressure into account.

The integrated min-cut approach resolves all interactions between code motion decisions with
comparatively little computational effort (cubic worst-case complexity), but only isolated from
fine-grain instruction scheduling decisions, whose impact is only approximated. In other words,
the resulting solution is globally optimal in the space of all code motions from B to A, yet only
with respect to a cost model that approximates the precise effects of code motion heuristically.

8.2 Exact and Phase-Coupled Methods in Code Generation

Phase coupling in compilers continues to be an active area of research. A recent work by Cooper
et al. reports on a large experimental study of the space of compilation sequences [ACG+04],
i.e., the order in which optimizations are applied. The term “optimization” refers generally to
performance-increasing transformations at all levels of program representations; in the broadest
sense, this includes many of the code generation subtasks covered by this thesis.

The study focuses on largely machine-independent medium-level and low-level optimiza-
tions such as partial redundancy elimination and register coalescing. For five different programs,
exhaustive enumerations of the 10-of-5 subspace of orders of optimizations were performed (se-
quences of length 10 drawn from 5 optimizations) and their performance impact was measured.
The results show that the distances between “good” and “bad” orders can be considerable (30%
and more), but that 80% of the local minima in the search space are within 5-10% of the optimal
solution. However, there is also a group of unfavorable minima that are almost 30% worse. Sev-
eral heuristic search algorithms are proposed (greedy, predictive, genetic) to find good sequences
during program compilation.

Another work by Zhao, Childers, and Soffa approaches the problem from a completely dif-
ferent side [ZCS03]: Instead of a search-based approach, it develops analytic models of opti-
mizations. In order to predict their performance impact, it employs optimization, resource, and
code models, which abstract performance-relevant information about the optimization, the target
machine, and the program code, respectively. To estimate the impact of an optimization, the code
model together with optimization parameters is fed into an optimization model. The result is a
new code model that represents the optimized code. The resource model is then applied to the

1The original work does not use node capacities, but we adopt here the concepts from Sec. 5.2.1 for an easier
presentation.

208 CHAPTER 8. RELATED WORK

original and the optimized code model in order to estimate the impact of the optimization. As an
example of a resource model, the work presents a cache model that indicates how many cache
misses a given reference pattern of a loop nest incurs. A corresponding code model abstracts the
loop nest with its references, and three optimization models describe the effect of several loop
transformations (loop interchange, tiling, and reversal) on the code model. The experimental
results show that model-based prediction can help avoid the application of loop transformations
in those cases where they degrade performance.

In principle, the two presented approaches could also be used to guide decisions concerning
Itanium code generation (speculation, if-conversion, cyclic code motion). However, a funda-
mental difference to the ILP-based approach of this thesis is that they address phase ordering
rather than phase coupling: They help determine beneficial transformations, or beneficial orders
of transformations, but do not integrate different types of them. The following section gives an
overview of heuristic and search-based approaches to phase coupling.

8.2.1 Heuristic Phase Coupling

Many heuristic approaches to phase-coupled instruction scheduling focus on the integration with
register allocation. In [EM92], a global instruction scheduling technique with integrated register
renaming is presented. Register allocation is performed prior to scheduling. If during scheduling
a false dependence due to a destination registers obstructs the placement of an instruction, the
destination register is renamed to a free temporary register (if existing). A move operation is
added to transfer the value in the temporary register back to the original register. The procedure
is similar to our speculation scheme for concurrent definitions in Sec. 6.2.1.

A deeper integration is achieved by integrated prepass scheduling (IPS), a classic approach in
which instruction scheduling precedes register allocation [GH88]. The scheduler keeps track of
the number of available registers at the current cycle. An instruction scheduled into this cycle can
decrease (by creating a new live register) or increase (if it terminates a live range) this number.
The basic idea of IPS is that the latter group of instructions is given a higher priority if the
number of available registers falls below a threshold. The subsequently following global register
allocation phase needs to introduce fewer spills and fills since the number of concurrently live
registers in the schedule is limited. Further references and studies regarding heuristic coupling
of instruction scheduling with register allocation can be found in [SS02, Bas95, BGS98].

In [BCGS96], an approach is presented that integrates selected optimizations into the sched-
uler. These optimizations have in common that they are not always useful, or more precisely, that
their usefulness depends on information available not until scheduling, such as the availability
of registers or functional units at a program point. The optimizations include, for example, re-
dundancy elimination (which can significantly increase register pressure) or DDG restructuring
transformations that exploit algebraic properties of operators to reduce the critical path length
(they may lead to increased register and execution unit requirements). These transformations are
applied during scheduling only if there is no shortage of available registers and execution units.

The integration proposed in [BCGS96] is closely related to mutation scheduling, a technique
developed by Novack and Nicolau [NN94]. Mutation scheduling combines instruction schedul-

8.2. EXACT AND PHASE-COUPLED METHODS IN CODE GENERATION 209

ing (based on percolation scheduling, see Sec. 3.3.1), code selection, and register allocation into
a single phase. It is a “value-oriented” approach in that it “allows the computation of any given
value to change dynamically during scheduling to conform to varying resource constraints and
availability” [NN94]. More concretely, for each value in the program there exists a mutation set,
which refers to multiple alternative expressions (typically instructions) that compute this value.
For example, an address computation for an array reference often requires a multiplication with
a constant, which can be done either by using a multiplication instruction or a series of adds
and shifts—which of these computation alternatives is preferable during scheduling depends on
factors like the availability of a multiplication unit.

The expressions are also called mutations and may themselves refer to other mutation sets,
so that a tree structure emerges. They change dynamically during scheduling as new values
become available: For instance, if an instruction is scheduled that writes a value into a destination
register, then this register is added to the value’s mutation set. Similarly, if a value is spilled, then
the corresponding fill instruction (load) is added to the set. In this way, the decision whether to
reload or to recompute (rematerialize) a value is also incorporated. The choice of one mutation
out of the mutation set during scheduling is guided by a heuristic selection function that weighs
the relative merits of each, subject to the available resources at the current cycle (determined by
the target architecture and the partial schedule).

In relation to our work, the mutually exclusive instruction sets from Sec. 6.2 can be consid-
ered as mutations. But unlike the complete phase coupling achieved by our ILP-based approach,
the heuristic phase coupling through the greedy selection function of mutation scheduling does
not take interdependences between mutations of different values into account (there is no back-
tracking). These interdependences are strong since each scheduling of a mutation that computes
a value influences all other mutation sets that refer to this value (see above). It also affects the
available resources and thereby the selection function.

8.2.2 Search-Based Methods

8.2.2.1 Based on Integer Linear Programming

The earliest ILP models for phase-coupled code generation emerged in high-level synthesis, the
automated generation of hardware circuits from a high-level input description. The objective
of high-level synthesis is to generate a VLSI hardware architecture that implements a specified
behavior while satisfying a set of constraints and minimizing a cost function. More concretely,
possible goals are to minimize the execution time under given hardware constraints, or to min-
imize a cost function of the functional units (e.g., chip area) subject to an upper bound on the
execution time. The input program can be given by a CFG and a DDG; the output is a hardware
description together with a corresponding code sequence. The main tasks of the synthesizer
include instruction scheduling, resource binding, and register allocation.

The synthesizer ALPS is one of the first to employ ILP for scheduling and resource binding
[HLH91]. Its ILP model uses time-indexed binary variables to model scheduling decisions and
is extended to minimize the number of buses or the live ranges of registers. Experimental re-
sults, however, are only shown for one small example (a basic block with 34 instructions). It is

210 CHAPTER 8. RELATED WORK

noteworthy that this early approach features already an ASAP/ALAP analysis to minimize the
number of decision variables. In contrast to ALPS, the synthesizer JOSHUA models the cycle
at which an instruction is scheduled directly via an integer variable; an additional set of binary
variables defines the functional unit where it is executed [WGB94, WGHB95]. The ILP formu-
lation allows to synthesize multiple basic blocks at the same time (without global code motion,
however) and to take code selection alternatives as well as register allocation into account. Ex-
perimental results are only given for one very small routine with 24 operations [WGB94]—the
choice of integer variables for the main scheduling decisions makes the ILP formulation compli-
cated and arguably inefficient. Most later approaches use binary variables instead.

The apparently very limited practical applicability of these early attempts is partly the result
of modest ILP solver technology at this time, but it is also due to the fact that the employed ILP
models were ad-hoc formulations whose efficiency was not analyzed and optimized at all. In
particular, they often used the following ad-hoc formulation of the (local) precedence constraints:

∑
tm∈G(A)

tnx
Atm
m + wmn ≤

∑
tn∈G(A)

tnx
Atn
n ∀(m,n) ∈ ED, ∀A ∈ Θx(m) ∩Θx(n) (8.2.1)

These constraints do, in contrast to Equ. (5.1.18), not describe an integral polytope, which
may impair—especially for large inputs—the solvability. Nevertheless, they also have advan-
tages over (5.1.18), namely that a far lower number of them is generated and that they are more
straightforward.

Gebotys and Elmasry [GE92, GE93] are among the first to analyze and advance the poly-
hedral structure of their ILP model: They reformulate high-level synthesis as a node packing
problem and show that some of their constraints represent (under circumstances) integral facets.
For example, this is done for the precedence constraints which have the same form as (5.1.18).
As a result of the well-structured formulation, their OASIC synthesizer achieves solution times
of less than 90 seconds for basic blocks with more than 100 instructions. These numbers do
include resource binding, but not register allocation for which an additional modeling is given.
A further synthesizer, OSCAR [LMD94], implements an ILP model that is based on OASIC
and incorporates further features such as varying latencies of instructions on different functional
units and support for complex components with internal chaining (like fused multiply-and-add
units).

Chaudhuri et al. conduct for the first time an extensive mathematical analysis of the polytope
[CWM93, CWM94] described by their ILP model of local instruction scheduling (which is very
similar to the OASIC model). They prove that the two subpolytopes of the assignment constraints
combined with either the precedence constraints or the resource constraints are polynomial sized
and integral (see Fig. 5.18). For the latter polytope, this is shown by means of total unimodularity;
for the former, the proof is done by reducing the corresponding subproblem to the node packing
problem on a perfect graph—this thesis builds on the same approach and extends it towards
global scheduling (see Sec. 5.1.1). Moreover, in [CWM94] a description can be found of how
the resource constraints can be made stronger in the total polytope by selectively increasing the
coefficients of their x variables from one to larger integers. This tightening could also be applied
to the ILP model of this thesis and further improve its solution efficiency.

8.2. EXACT AND PHASE-COUPLED METHODS IN CODE GENERATION 211

Apart from the use of ILP-based methods in high-level synthesis, there have been several
approaches to integrate them into the code generator of a compiler. In [CCK97] an ILP model
for simultaneous local instruction scheduling and register allocation on a superscalar processor is
presented; the ad-hoc nature of the model (including precedence constraints of the form (8.2.1)),
however, leads to disproportionate solution times such as 20 minutes for a simple 10-instruction
example.

To demonstrate the practicability of optimal instruction scheduling in a product compiler,
Wilken et al. incorporate an ILP-based scheduler into the GNU gcc compiler [HLW00, GNU].
Their time-indexed ILP model comprises local scheduling without phase coupling and uses the
ad-hoc precedence constraints (8.2.1); to tighten the polytope resulting from these constraints,
further “dependence cuts” are added. The ILP-based scheduler performs extensive precompu-
tations in order to minimize the size and the number of the ILPs to be solved: For instance, it
tries to partition the scheduling region into smaller subregions that can be dealt with separately
without losing the global optimality of the combined solution. A further transformation called
region linearization is applicable only because the work targets a single-issue processor.

Basic blocks are not passed to the ILP solver if a lower bounds show that they have already
been optimally scheduled by the heuristic scheduler (which implements critical-path list schedul-
ing). As a result, in the experiments ILPs are generated only for 22 out of more than 7,000 basic
blocks; they are solved in a total of 45 seconds. In the entire program, the ILP scheduler saves a
total of 66 static cycles. The runtime performance impact is not reported. The work shows that
optimal basic block scheduling is feasible, but also that it delivers no extensive improvements
over list scheduling—at least for the targeted single-issue processor with a three-cycle maximum
latency2. Earlier studies confirm that the results of local list scheduling are generally close to the
optimum [CSS98].

This is different for digital signal processors (DSPs), which often have irregular and highly
dedicated microarchitectures. There the quality of the code generated by heuristic code gener-
ators is often insufficient, which is problematic since the domains of embedded processors are
characterized by severe cost restrictions (and often also power constraints) [Käs00a]. Thus the
use of ILP-based, phase-coupled code generators is promising here. The retargetable RECORD

compiler for DSPs employs an ILP model for local code compaction3 that takes encoding con-
flicts into account and allows to select among alternative encoding versions [LM97]. The authors
report solution times of a few seconds for basic blocks with 23-45 operations.

All the ILP-based code generation approaches mentioned so far have in common that they do
not incorporate global code motion. PROPAN, a retargetable framework for postpass optimiza-
tions, lifts this restriction [Käs00b, Käs00a]: Its ILP-based instruction scheduler allows code
motion between control equivalent basic blocks inside superblocks, scheduling regions that are
similar to the traces of trace scheduling (see Sec. 3.3.1). Hence the scheduling regions may not
contain disjoint control flow paths and no code motion is possible that is speculative or requires

2Remarkably, the same problem with a two-cycle maximum latency is already polynomial-time solvable
[HLW00].

3I.e., minimizing the code size. On DSPs, this means minimizing the number of instruction words, which
basically corresponds to the goal of instruction scheduling.

212 CHAPTER 8. RELATED WORK

compensation copies. However, the superblocks may exceed loop boundaries so that code motion
across these boundaries is possible.

PROPAN is based on two alternative, well-structured ILP models for phase-coupled instruc-
tion scheduling, resource binding, and register allocation: one is based on the above-mentioned,
time-indexed OASIC formulation and the other on the order-indexed SILP formulation (more on
the latter below). To model global code motion, the scheduling region is regarded as a single,
contiguous, and linear sequence of cycles that comprises all the basic blocks in the region. This
is possible since the order of the blocks within the superblock (trace) is fixed and sequential.
The mapping of cycles in the sequence to basic blocks is determined dynamically in the ILP via
two integer variables tAi and tEi for each block bi: tAi ≤ t ≤ tEi implies that cycle t belongs to
block bi. In this way, the basic block boundaries can be moved dynamically within the modeled
sequence of cycles so that the same cycle can be mapped to different basic blocks. This is more
flexible than the approach followed by this thesis where each modeled cycle is defined to belong
to only one fixed basic block. Here a dynamic partitioning would be advantageous as it would
ease the difficult choice of the values GA, but unfortunately, it requires linear scheduling regions
and cannot be combined with disjoint control flow in the scheduling region (this is also noted in
[Käs00a]).

Experiments are reported with 19 routines from the dspstone benchmark comprising 9-95
operations. For experiments with the TriMedia TM1000 processor, these routines are compiled to
assembly with Philips’ tmcc compiler. The postpass optimizer PROPAN can reduce the schedule
lengths of five of these assembly routines (four of them by more than 10%). When targeting the
ADSP-2106x SHARC processor, the improvements are larger with 8% on the average.

When restricting the optimization to loop boundaries, the BBGs of the routines are covered by
1-5 superblocks, which are optimized successively. This occurs for most routines in less than one
minute using the OASIC model (targeting the TriMedia). Register allocation is excluded since it
requires an exponential number of constraints in the OASIC formulation. If the superblocks are
allowed to cross loop boundaries, most of the routines are covered by a single superblock and
hence optimized as a whole. The optimization results do not change, but the computation times
are much higher and reach several minutes and hours; no ILP-based solution could be obtained
for 4 large routines within 8 hours (the largest ILP has 68432 constraints and 11562 variables).

Alternatively, the order-indexed SILP formulation can be used in PROPAN, which permits
a more efficient integration of register allocation [Zha96]. Here the main decision variables do
not map the instructions to cycles, but describe instead an imaginary flow of the execution units
through the instructions (which constitute the nodes of a resource flow graph). Concretely, there
are flow variables xk

ij that are equal to one if and only if an instance of the execution unit type
k flows from instruction i to instruction j (then j is executed after i on k). Since integral poly-
topes for network flow problems are well known (see Sec. 5.2.1), a subpolytope of the resource
constraints with this property is easily found. In contrast, the precedence constraints cannot be
directly formulated on the flow variables since the latter define only the order of instructions that
are executed on the same type of execution units. Thus there exist further integer variables that
explicitly hold the cycles where instructions are scheduled, e.g., the variable ti is equal to the cy-
cle of instruction i. The precedence constraints can be formulated easily and very efficiently on
the basis of these variables, but the also required serial constraints, which synchronize them with

8.2. EXACT AND PHASE-COUPLED METHODS IN CODE GENERATION 213

the flow variables, are a weak point in terms of structural efficiency (as typical for constraints
that connect integer variables to binary variables) [Zha96].

The experiments in [Käs00a] show that SILP is well suited for irregular architectures with
little parallelism, while the time-indexed OASIC model is preferable for architectures with a
high-degree of instruction-level parallelism. Thus we have based our model for the Itanium
Processor Family on the latter formulation.

8.2.2.2 Based on Constraint Logic Programming

There are several approaches to model phase coupling with Constraint Logic Programming
(CLP), a more general method than ILP: Here the values of the variables can be from arbi-
trary domains and the constraints can exclude arbitrary combinations of variable assignments.
A solution of a constraint satisfaction problem is an assignment that meets all constraints. As
constraints are added, CLP systems use constraint propagation to reduce the domains of the
variables (and consequently the search space) by excluding values that will lead to infeasible
solutions. Eventually, a constraint solver labels the variables with values of their domains until
a complete, globally feasible solution is found (which is an NP-complete problem). Similar to
ILP, this solving procedure involves backtracking and can be guided by search strategies. If the
structure of the constraints permits it, even an ILP solver can be used.

Such an hybrid approach is employed by Gebotys for simultaneous instruction selection,
compaction, and register allocation [Geb97]: the problem is formulated as a set of logical propo-
sitions, most of which are Horn clauses. These propositions are translated into an ILP with
binary variables. The rationale behind this translation is the following property: if all of the
propositions are Horn clauses, then already the LP-relaxation delivers an optimal integral solu-
tion (if non-integral variable values are rounded to their nearest integer values). This leads to
short solution times (if scheduling is excluded), however, the model is only suitable for very
restricted architectures since its complexity is exponential in the number of modeled registers.

Van Beek and Wilken describe a CLP-based local instruction scheduler for single-issue pro-
cessors with arbitrary latencies [vBW01]. To assist the constraint solver, they add several re-
dundant constraints that reduce the domains of the variables via constraint propagation. These
auxiliary constraints take advantage of the structure of the scheduling problem, in particular by
exploiting that the instructions must be serialized due to the single-issue restriction. As a result, a
standard constraint solver can optimally schedule the basic blocks almost without backtracking,
22 times faster than Wilken’s ILP-based scheduler [HLW00] (see Sec. 8.2.2.1). But as with the
ILP-based approach, these results rely on the single-issue limitation and it is unclear to which
extent they can be transferred to contemporary superscalar processors.

A more comprehensive constraint driven code generator is presented by Bashford and Leu-
pers [BL99b, BL99a]. It integrates code selection, local scheduling, and register allocation and
targets embedded processors with highly restricted and irregular data paths like the Analog De-
vices ADSP-210x. On this DSP there exists no general register file, but only special-purpose
registers that are connected to the inputs and outputs of specific functional units. Thus there are
strong interdependences between code selection and register allocation—and also between reg-

214 CHAPTER 8. RELATED WORK

ister allocation and instruction scheduling since some operations can only be executed in parallel
if they access certain registers.

To enable a tight coupling between these tasks, decisions on code selection and register al-
location are delayed as long as possible. Instead of finalizing them heuristically, a search space
of possible alternative decisions is described by a constraint system. An initial set of constraints
is prescribed by the target architecture. The code generation phases add further constraints and
variables, which reduce the search space. The achieved phase coupling is not complete: some
decisions are made by heuristics, e.g., scheduling is performed by list scheduling. But this al-
gorithm does not schedule concrete, finalized instructions, but spaces of alternative instructions
with sets of alternative storage resources (registers, memories) as operands. The scheduling de-
cisions are represented by additional constraints that may reduce these spaces. In this approach,
code is not constructed, but “obtained by a successive reduction of the solution space based on
the constraints imposed by the target processor” [BL99b].

Eventually, labeling by the constraint solver yields the final code by finding one concrete
solution in the search space. However, it is not guaranteed that such a globally feasible solution
exists since only local feasibility is checked when constraints are added. If the labeling fails,
constraints can be relaxed—but this remedy was not necessary in the experiments. The imple-
mentation is based on the CLP language ECLiPSe and targets the above-mentioned ADSP-210x.
It generates assembly code for four routines from the dspstone benchmark that is more than
twice as compact as code obtained from a GNU compiler; the quality comes close to handwritten
code. The overall compilation speed is 3-5 generated instructions per second.

8.2.2.3 Based on Evolutionary Algorithms

Evolutionary algorithms (EA) mimic natural evolution in order to solve optimization problems.
The population of an EA consists of several individuals, each of them representing a solution of
the optimization problem. Each individual has a chromosome that contains several genes. These
genes can be regarded as sets of variables representing the solution. A concrete assignment of
the gene’s variables is referred to as an allele. An EA applies genetic operators like selection,
mutation, and crossover to remove, randomly modify, and combine members of the population,
respectively. The purpose of selection is to prune the least promising solutions and to ensure that
only the fittest individuals evolve. Such continuous evaluation increases the chance that after a
certain number of generations a near-optimal solution can be found within the population. Thus
EAs are not exact, but heuristic, search-based solution methods.

In [LM04] an EA-based approach to phase-coupled code generation for DSPs is presented.
It integrates code selection, local instruction scheduling, and register allocation. The input basic
block is given as a data flow graph (DFG), which is a type of data dependence graph. Its nodes
represent operations and its edges true dependences. Additional nodes are inserted to model
possible explicit data transfers. In the used chromosomal representation, each gene corresponds
to a DFG node. Its variables describe all feasible combinations of types and operand registers of
an instruction that can execute the operation of the node.

The algorithm first generates an initial population. For this, multiple individuals are instan-
tiated whose genes describe different, concrete solutions of the code generation problem. These

8.2. EXACT AND PHASE-COUPLED METHODS IN CODE GENERATION 215

solutions are generated by list scheduling with probabilistic code selection and register alloca-
tion on the fly. It is ensured that only feasible resource combinations are selected. The evaluation
function favors shorter schedules and among schedules with the same length those with fewer
memory accesses. The crossover operator plays a pivotal role during the evolution process: It
generates new individuals by probabilistically swapping genes between two selected individu-
als. The crossover operator used in the work swaps only those genes that are assigned to cycles
greater than a certain value (in other words, it swaps only the tails of the schedules); the au-
thors report that this leads to faster convergence. The subsequent mutation operator checks the
correctness of the results and introduces randomized variations.

In the implementation, the population size is fixed at 30 and the number of generations to be
explored is set to 8 times the number of DFG nodes. Results for two DSPs are presented: On 15
dspstone benchmarks, the genetic code generator achieves average schedule length reductions
of 51% for the M3-DSP and 38% for the ADSP-2100, compared to a standard implementation
with tree-based code selection and restricted phase coupling. The compilation times range from
several seconds to several minutes.

Cooper et al. uses an EA to find optimization sequences that yield a reduced code size
[CSS99]. The setup is very similar to the experimental study reported on in Sec. 8.2. The
experimental results show that the code compiled with a program-specific order of optimizations
computed by the EA is often smaller (by more than 10% for almost half of the benchmark pro-
grams) than the compiler’s fixed default order. However, the compilation required about one day
for most programs (exploring 1000 generations). A further experiment shows that the EA finds a
solution of the same quality significantly faster than mere random probing of the solution space.
Further works on EA-based code generation can be found in [Bea91, Bli96, ZTB00].

8.2.2.4 Based on Enumeration

There have been various approaches to obtaining optimal or near-optimal through implicit enu-
meration. An exhaustive (explicit) enumeration computes recursively all possible schedules and
selects one that is optimal with respect to an objective function. However, this brute force ap-
proach is impractical since the resulting enumeration tree is of immense size even for small basic
blocks. Therefore, as with branch-and-bound in integer linear programming, techniques to prune
the tree are essential. Any node in the tree represents a partial schedule. The enumeration can be
stopped at a node if a lower bound shows that no completion of the corresponding partial sched-
ule can yield a schedule that is preferable over the best solution found so far. This reasoning can
be regarded as an implicit enumeration of all solutions in the subtree rooted at this node. When
optimizing for schedule length, such lower bounds can be taken from optimal schedules that ig-
nore the resource or the precedence constraints. The lengths of such schedules can be computed
relatively easily; the former is equal to the length of the critical path in the DDG.

A local instruction scheduler for IA-64 based on recursive enumeration is presented in [HB01].
At each step of the recursion, all possible instruction groups are chosen from among the set of
ready instruction. Each selection is bundled (using deterministic template choice) and a recursive
call is performed to find an optimal schedule of the remaining instructions (if various pruning
criteria do not apply). The scheduler does not target a specific microarchitecture and generates

216 CHAPTER 8. RELATED WORK

arbitrarily large instruction groups. Thus the resulting schedule is—in contrast to the approach of
this thesis—not resource-constrained so that its length is predetermined by the length of the crit-
ical path in the DDG. The performance loss from not taking the dispersal into account is unclear
since no dynamic results are given. Optimization goal is a static measure, namely to minimize
the number of nops. The experiments show that the method produces more than a third fewer
nops than a greedy scheduler and bundler, even if the search space is significantly heuristically
curtailed and if a one-second timeout per basic block is imposed. These restrictions lead to a loss
of optimality, but they also manage to limit the compile-time overhead to a few percent.

In [NR01] a refined branch-and-bound technique for instruction scheduling is described that
also allows for resource constraints. In addition to determining a lower bound on the minimal
schedule length of a subtree, also an upper bound is computed via list scheduling. If both bounds
are equal, then the solution obtained from list scheduling is already known to be optimal so that
the subtree does not have to be explored. Results are presented for several DSP floating-point
routines, each consisting of one basic block with up to 100 instructions. Optimal schedules for
several imaginary target processors with different numbers of ALUs and multipliers are com-
puted with both the authors’ and an ILP-based scheduler (using the OASIC formulation). While
the former delivers most solutions in less than 0.1 seconds, the latter requires considerably longer.
This is arguably to a large extent due to the used ILP solver lp_solve.

A very similar approach is taken in [LC02] to generate code for a tightly constrained and ir-
regular network processor. Here also decisions concerning code selection and register allocation
are integrated into the branch-and-bound process. As a result, the method is only suitable for
very small basic blocks; the average number of operations per basic block in the experiments is
9. The enumeration is aborted if the branch-and-bound tree reaches 100,000 nodes, a threshold
that was hit on approximately 10% of all basic blocks. The threshold guarantees solution times
of not more than a few seconds per block, but it also leads to not always provably optimal so-
lutions. Nevertheless, the resulting schedules are 13-15% shorter than those generated by a list
scheduling implementation.

Keßler and Bednarski propose to lift the limitation of schedulers based on enumeration by
combining them with dynamic programming [KB01]. The basic idea is that two partial schedules
reached during enumeration are equivalent if they contain the same instructions and have the
same time-profile. The latter describes the occupation status of the execution units at the end
of the partial schedule, information that may influence future scheduling steps that extend this
schedule. During branch-and-bound, two equivalent schedules can be reached over different
enumeration paths—then the corresponding nodes in the branch-bound tree can be merged so
that the tree becomes a graph. This enables a reuse of partial solutions as known from dynamic
programming. The equivalence is in the implementation determined via hashing. Experiments
with several hundred random DDGs show that inputs with up to 20 operations can often be
scheduled optimally in less than one second and inputs with up to 30 operations in less than one
minute. Problems with 50 or more operations may take several hours, depending on the structure
of the DDG. These results include code selection and allow for a limited number of registers by
discarding partial schedules whose register need exceeds this number. By comparison, a naïve
enumeration algorithm becomes, according to the authors, already impracticable on instances

8.3. OTHER RECENT WORK ON ILP-BASED COMPILER OPTIMIZATIONS 217

with more than 15 operations.
A particular advantage of approaches based on enumeration is that they can handle the id-

iosyncrasies of irregular architectures well since they can be combined with customized routines
that check the feasibility of partial schedules. Architectural restrictions may even be advan-
tageous in that they reduce the search space [LC02]. Nevertheless, the presented works indi-
cate that instances with a hundred and more instructions may be difficult to solve to optimality.
Backtracking schedulers, which may revise individual scheduling decisions by unscheduling in-
structions, can be considered as a limited form of enumeration. They can be employed to deal
with specific weaknesses of greedy schedulers, for instance, to achieve an effective utilization of
branch delay slots [BMA02].

8.2.2.5 Other Approaches

In [MF02] resource-constrained local instruction scheduling is formulated as a satisfiability
(SAT) problem. Given a scheduling problem instance, CNF formulas Ft are constructed that
are satisfiable if and only if a schedule with not more than t cycles exists. The algorithm first
sets t to the length of a schedule obtained from list scheduling and then decrements it until Ft

becomes infeasible—then it is proven that the solution of Ft+1 corresponds to a minimal-length
schedule (this search direction is chosen because infeasible instances are much more difficult to
solve than feasible instances). Despite the high complexity of the resulting formulas (more than
70,000 clauses for the largest DFG in the experiments with 42 operations), the solution times in
most cases do not exceed a few seconds or minutes. In comparison, an ILP model that uses ex-
actly the same binary variables is reported to yield significantly longer solution times; however,
the structure of the employed ILP constraints is not described.

A further work tackles scheduling and resource binding in high-level synthesis with symbolic
scheduling, an approach based on symbolic model checking principles [CLL+02]. Based on a
scheduling automaton, the set of all minimum latency schedules is symbolically computed. Each
of these schedules is symbolically associated with all possible valid allocations of resources, so
that the combined space can be explored for an allocation that is minimal with respect to a cost
function. The experiments demonstrate that instances with 12-78 operations are tractable with
memory usages below 15 MB and solution times of less than 2 minutes.

8.3 Other Recent Work on ILP-Based Compiler Optimiza-
tions

Besides scheduling, a classic area of ILP-based compiler optimizations is register allocation.
Several recent works tackle this code generation subtask, which is also NP-complete [SS02]. In
[FW02], an optimal global register allocator is presented that is faster than previous work since
it applies reduction techniques to identify potential register deallocation and spill decisions in
advance that are unnecessary for an optimal solution. This allows to exclude these decisions
from the ILP. Given a time limit of 7 seconds per function, the ILP-based allocator performs

218 CHAPTER 8. RELATED WORK

optimal register allocations for 2202 out of 2399 functions from the SPEC92 benchmark. With a
1024 second time, it succeeds with 2362 functions and inserts in these functions 3.5 times fewer
loads and stores than a heuristic allocator.

Another work by Appel and George focuses on optimal generation of spill code for IA-32,
which is a relevant problem since this architecture has only six allocable registers [AG01]. In
comparison with a heuristic standard allocator, the ILP-based allocator requires 1522 versus
45 seconds during compilation, but the Pentium code it generates reloads less than half as many
variables and runs almost 10% faster. The approach from this work is carried over to a completely
different, specialized architecture in [GB03], namely to an Intel IXP network processor. The
ILP model presented there deals with multiple heterogeneous register banks, register aggregates
(sets of up to eight adjacent registers that are accessed as a whole by memory instructions), and
variables with multiple simultaneous register assignments.

A further work addresses the efficient generation of spill code for the StrongARM processor
[NP03]: there exist memory instructions that transfer two 32-bit register values in parallel via
the 64-bit memory bus from or to two consecutive memory locations in SDRAM. In order to
utilize these combined loads and stores for spills and fills as often as possible (saving more
than 40 cycles at a time, compared to two separate instructions), the scalar variables have to
be rearranged in memory in such a way that consecutive spills and fills in the code can access
consecutive memory locations. An ILP-based solution to this NP-complete placement problem
is reported to yield an average performance improvement of 4.5%.

Naik and Palsberg [NP04] present an ILP-based, code-size-aware register allocator for Zilog’s
Z86E30 microcontroller. The register file of this processor is organized into 16 banks of 16 reg-
isters each. One of these banks can be specified dynamically as a “working bank” via a special
srp instruction. In the encodings of certain instructions (about 30% in the used benchmark),
registers can be identified either via a 4-bit number—if they are in the working bank—or via an
8-bit number else. Naturally, the former variant is preferable in terms of code size. Thus the
objective of the developed ILP model is to distribute the variables among the different banks and
to insert srp instructions in such a way that the 4-bit encodings can be used as often as possible.

In the experiments, entire programs with up to 949 instructions and up to 48 procedures were
optimized. The resulting code is reported to be nearly as compact as handwritten code. However,
the ILPs of the largest programs can only then be solved within a few hours if the insertion of
the srp instructions is not allowed at any program position, but only at entry and exit points of
procedures and interrupt handlers. Judging from the smaller programs, this restriction degrades
the quality of the solution only slightly.

Chapter 9

Conclusion and Outlook

In this thesis we have tackled global instruction scheduling for the Itanium 2 processor using
integer programming. Our ILP model comprises speculative, partial-ready, and cyclic code mo-
tion with automated insertion of compensation code, support for control/data speculation and
predication. To the best of our knowledge, we are the first to provide an exact solution to this
problem. An extensive polyhedral analysis has proven the high efficiency of the developed ILP
model. This is also confirmed by the reasonable solution times in practice. In the experiments,
ILP-scheduled code has exhibited substantial performance improvements over a state-of-the-art
product compiler. The following listing recapitulates the primary achievements of the disserta-
tion in more detail:

• We have presented a formal definition of global instruction scheduling with speculative
code motion and compensation copies. The simplicity of this definition is enabled by a
path-based view of the problem.

• Based on this formal definition, we have identified different constraint classes and for-
mulated several subproblems of global scheduling. Then we have developed polynomial
sized ILP formulations for PCGS-B (the subproblem without resource and block length
constraints) and for the resource constraints. We have proven their correctness as well as
that both describe integral subpolytopes:

– For PCGS-B, this has been done by reducing this subproblem to a node packing
problem on a perfect graph and exploiting a well-known result in order to obtain an
integral polytope. The size of the obtained formulation is then reduced from exponen-
tial to cubic by removing redundant constraints and lifting the polytope to a higher
dimension (while preserving its integrality).

– The resource constraints are based on a resource flow network, a novel, expressive
description of the resource binding on a processor. Initially, they describe an inte-
gral and polynomial sized subpolytope, but introduce several auxiliary variables. To
remove them, the subpolytope is projected (in an integrality-preserving way) onto
a lower-dimensional subspace. The resulting network inflow resource constraints

219

220 CHAPTER 9. CONCLUSION AND OUTLOOK

do not require additional variables. However, their worst-case number is exponen-
tial (we prove that no polynomial sized description of the projection exists), but this
asymptotic complexity does not materialize on the Itanium 2.

• As a central theoretical result of this thesis, we have proven that the identified integral and
polynomial sized subpolytopes are maximal in the sense that they cannot be extended by
other constraint classes without losing one of their two efficiency properties (integrality
and polynomial size). This follows—under the assumption P �= NP—from two NP-
completeness proofs for the extended subproblems. It substantiates that the found ILP
model is close to maximal efficiency.

• Several extensions of the model have been developed that incorporate further variants of
code motion and speculation:

– Predicated code motion extends the candidate blocks of non-speculative instructions
via predication. A further add-on models the changes in the branch structure resulting
from collapsed blocks. The combination of both extensions includes if-conversion
decisions into the search space.

– We have presented a speculation scheme that combines control speculation with spec-
ulation of concurrent definitions and implemented it on the basis of mutually exclu-
sive sets of instructions. Decisions on data speculation (with or without recovery
code) are incorporated into the same scheme. The data speculation failure penalties
can be taken into account on several levels of precision, depending on the detailed-
ness of available aliasing probability estimates. Non-exclusive use forking is outlined
as a novel transformation that shortens the schedule by duplicating and speculating
instructions from disjoint control flow paths.

– Partial-ready code motion is included, which allows to move instructions further up-
wards along a path by speculatively ignoring data dependences on instructions from
other paths. Unlike earlier work [BMM00], we also develop a formal definition of
this transformation.

– To increase the scheduling scope, the model is extended to support code motion into
and out of loops (that are not software-pipelined). Upward code motion out of loops
includes cyclic code motion in the opposite direction of the backedges, a variant that
can reduce the schedule length inside the loop body.

• A bundler has been developed that computes bundle sequences of minimal size by means
of precomputed results and dynamic programming. It is assisted by bundling constraints
in the model, which prevent structurally infeasible instruction groups.

• The experiments were conducted with a postpass tool that implements the ILP scheduler.
It performs various precomputations to reduce the search space and tightens constraints
dynamically during the ILP generation. Using this tool, we have optimized a selection
of hot functions from the SPECint 2000 benchmark. Each is scheduled as a whole; the

221

solution times vary from a few seconds for smaller inputs to a few minutes for the largest
routine with 241 instructions, 22 basic blocks, 4 loops, and 46 speculation possibilities.
The achieved global schedule length reductions relative to Intel’s Itanium compiler range
approximately between 20-40%. The measured speedup of the routines is 16% on average.
An analysis shows that the extensions contribute heavily to these improvements, but also
to increased solution times.

• Various results of this thesis, and of related research, have been presented in a number of
publications [Win04, SW04, Win02, KW01].

It is important to see the experimental results in the context that the era of low-hanging fruit
in processor performance is over: According to conversations with compiler developers, today
already optimizations are pursued that deliver merely a 1% gain if it is across the board, i.e.,
if it shows up in most of the target benchmarks. Our tested routines may be too few and not
representative enough to draw final conclusions, but the extent of the improvements in both
schedule length and IPC indicates that there is still some considerable performance headroom in
tasks that are very fundamental to EPIC: static scheduling and use of speculation.

Although the ILP method is—because of the relatively long solution times—not suited for to-
day’s product compilers, it is promising as a stand-alone optimization tool for compute-intensive
application kernels like compression and encryption routines. A further interesting application is
as a research tool: The comparison of the optimal results with those of heuristics indicates and
quantifies room for improvements in the latter. It helps determine where the search for improve-
ments can be worthwhile and—not less valuable—where not.

Moreover, the ILP approach can provide theoretically well-founded insights into the perfor-
mance potential of different EPIC microarchitectures: In contrast to scheduling heuristics, it is
simple to model architectural restrictions and asymmetries with this method and to obtain sched-
ules that account for them optimally. It permits to factor out compiler influence (related to the
modeled code generation subtasks) when evaluating the impact of microarchitectural changes on
performance.

This is especially valuable in the context of the increasing necessity to introduce hardware
restrictions to reduce power consumption: With conventional methods it is difficult to judge
whether a performance loss due to such a restriction (on a simulator) is mostly caused by insuf-
ficient scheduling heuristics, which can still be improved to deal better with it, or whether it is
largely inherent to the restriction.

Not only the influence of microarchitectural parameters, but also of compiler settings can be
empirically analyzed with higher validity. For example, the method could be used to study the
impact of profiling and alias information—or a lack thereof—on the performance potential of
scheduling. When employing scheduling heuristics, the impact depends on how they make use
of this information—in contrast, ILP-based analysis allow to abstract away from them. Only
the optimization goal has to be clearly defined, which can be done in a comparatively easy and
flexible way in this search-based approach: The researcher can formulate different goals in the
objective function without caring about how to achieve them.

A further application arises from the fact that we have proven the correctness of the basic
model. It follows that a schedule is proven to be correct if it is a feasible solution of the ILP

222 CHAPTER 9. CONCLUSION AND OUTLOOK

(which can be checked in time that is linear in the size of the ILP). This property can be used
to validate the schedules produced by heuristics. This is a further, inherent advantage of this
approach, which does not build on an algorithm, but on a precise mathematical model.

All these applications are not tied to the Itanium Processor Family, but transferable to other
architectures that rely on static scheduling. To tap the full potential of the ILP scheduler, it is
recommended to integrate it directly into the backend of a compiler: Only this enables access to
high-level information that is crucial to scheduling and the use of speculation, like (probabilistic)
aliasing information.

A different question is whether on the long run ILP-based methods will be fast enough to be
integrated into product compilers, or even into dynamic compilation and optimization infrastruc-
tures. We will leave this question open here, but notice three trends in support of an affirmative
answer:

Firstly, there are vast improvements in the solving performance of ILP solvers (about 40% per
year) [BFG+00]. The theory of integer programming is a highly active area of research, which
will continue to deliver advances in solution methods—or even fundamental breakthroughs, al-
though the worst-case solution time will likely remain exponential.

Secondly, we can expect that the structure of the developed ILP model has still room for
improvements. Possible directions for this have been indicated: Regarding the polytope of the
basic model, information on conditional sets of instructions and on minimal distances due to
data dependences can be exploited to tighten the precedence constraints (see Sec. 7.1.3) and the
resource constraints (see Sec. 8.2.2.1). Among the extensions, especially cyclic code motion
seems to harbor further opportunities to improve the structure of the model. Further increases in
efficiency provide the necessary headroom for future extensions of the model, such as the global
propagation of long latencies (outlined in Sec. 6.7).

Thirdly, computing power continues to improve, not only raw single-task CPU performance,
but also and in particular parallel computing power from multi-core chips and multithreading.
ILP solving can take advantage of this trend since branch-and-bound algorithms are well paral-
lelizable.

Appendix A

Figures

223

224 APPENDIX A. FIGURES

A alloc r11=ar.pfs,0,8,0,0
B add r34=r32,r0
C add r35=r32,r32 ;;

D ld8 r39=[r34]
E cmp.gt p5,p6=r35,r33
F (p5) br.ret b0

G ld8 r37=[r35]
H add r36=8,r35 ;;
I cmp.le p1,p2=r36,r33 ;;

J (p1) ld8 r38=[r36] ;;
K (p1) cmp.lt.unc p3,p4=r38,r37

N (p3) add r35=8,r35
O (p3) add r37=r38,r0 ;;

P cmp.gt p7,p8=r39,r37
R (p8) br.ret b0

Entry

Exit

S st8 [r34]=r37
T add r34=r35,r0
V st8 [r35]=r39
W add r35=r35,r35
X br Label

p1 p2

p3 p4

p7 p8

p5p6

p0

p0

p0

p0

Figure A.1: Basic block graph for Alg. 2; instructions are shown in their respective source blocks.

225

A alloc r11=ar.pfs,0,8,0,0
B add r34=r32,r0
C add r35=r32,r32 ;;

A alloc r11=ar.pfs,0,8,0,0
B add r34=r32,r0
C add r35=r32,r32 ;;

D ld8 r39=[r34]
E cmp.gt p5,p6=r35,r33
F (p5) br.ret b0

G ld8 r37=[r35]
H add r36=8,r35 ;;
I cmp.le p1,p2=r36,r33

J (p1) ld8 r38=[r36] ;;
K (p1) cmp.lt.unc p3,p4=r38,r37

N (p3) add r35=8,r35
O (p3) add r37=r38,r0 ;;

P cmp.gt p7,p8=r39,r37
R (p8) br.ret b0

Entry

Exit

S st8 [r34]=r37
T add r34=r35,r0
V st8 [r35]=r39
W add r35=r35,r35
X br Label

p1 p2

p3 p4

p7 p8

p5p6

p0

p0

p0

RAW

WAR

Memory
WAR/WAW

p0

Figure A.2: Data dependence graph for an acyclic subregion of Alg. 2.

226 APPENDIX A. FIGURES

0
1
2
3
4
5
6

1
1
2
3
4
5

3 4
1 1
2 2
3 3

4
5

31 6
1 7
2 8
3 9
4 10
5

6
32 1

1 2
2 3

21
1 7

1
60 2

1
2 8
3 1
4 2

3
33 4

1 5
2 6

7

11 9
1 1
2 2
3 12
4 1

14 13
1 1

2
19 3

1 4
2 5
3 6
4 7
5 8
6 17
7 1
8 16
9 1
10 2
11 3
12 4
13 18
14 20 1
15 1 2
16 2 3
17 3 4

Frequency

< 15
< 10
< 5
< 1

Figure A.3: Input schedule of qSort3.

227

0
1
2
3
4
5
6

1
1
2
3
4
5

3 4
1 1
2 2
3 3

4
5

31 6
1 7
2 8
3 9
4 10
5

6
32 1

1 2
2 3

21
1 7

1
60 2

1
2 8
3 1
4 2

3
33 4

1 5
2 6

7

11 9
1 1
2 2
3 12
4 1

14 13
1 1

2
19 3

1 4
2 5
3 6
4 7
5 8
6 17
7 1
8 16
9 1
10 2
11 3
12 4
13 18
14 20 1
15 1 2
16 2 3
17 3 4

Global Code Motion

downward
cyclic
upward

Figure A.4: Output schedule with different kinds of employed code motion.

228 APPENDIX A. FIGURES

Appendix B

Proofs

B.1 Proofs for Chapter 4

B.1.1 Proof of Lemma 4.3.11

Lemma Let P =
{
x ∈ Rn

+

∣∣Ax ≤ b
}

be an integral polyhedron. If the row indices I =
{1, . . . ,m} of A ∈ Rm×n are partitioned into two subsets I1 and I2, then

P ′ =
{
x ∈ Rn

+

∣∣AI1x ≤ bI1 ∧ AI2x = bI2
}

is integral (if nonempty). ✷

PROOF Firstly, note that we can write P ′ as
{
x ∈ Rn

+

∣∣ Âx ≤ b̂
}

with

Â =


 AI1

AI2

−AI2


 and b̂ =


 bI1

bI2
−bI2


 .

It is sufficient to show that every extreme point of P ′ is also an extreme point of P and thus
integral. From Theorem 4.1.2 we know that a point in a polyhedron with dimension n is an
extreme point if and only if it is the intersection point of n facets of the polyhedron whose
corresponding matrix rows are linearly independent.

Let x be an extreme point of P ′, and let the corresponding n linearly independent matrix rows
of Â be given by a subset J ⊆ {1, . . . ,m+ |I2|} such that ÂJx = b̂J . We note that if j ∈ J and
j > m, i.e., if j denotes one of the newly added rows, then j − |I2| must not be included in J
because both rows are linearly dependent: Aj = (−1)Aj−|I2|. Let J ′ be the set where each such
j is replaced by j−|I2|, then ÂJ ′ remains linearly independent and ÂJ ′x = b̂J ′ . Since ÂJ ′ = AJ ′

and b̂J ′ = bJ ′ this is equivalent to AJ ′x = bJ ′ . Hence x ∈ P ′ ⊆ P is also an extreme point of P
and thus integral. �

229

230 APPENDIX B. PROOFS

B.1.2 Proof of Corollary 4.3.12

Corollary Let P =
{
x ∈ Rn

+

∣∣Ax ≤ b
}

be an integral polyhedron. If some of the columns
of A are removed from the formulation with their corresponding variables, then the resulting
polyhedron remains integral (if nonempty). ✷

PROOF It is sufficient to consider the case where only one column is being removed: Let A′ be
the matrix A with the i-th column removed. It remains to be shown that P ′′ =

{
y ∈ Rn−1

+

∣∣A′y ≤ b
}

(assumed nonempty) is integral.
Since x ∈ Rn

+, we can write P as
{
x ∈ Rn

+

∣∣Ax ≤ b ∧ −xi ≤ 0
}

, and with the preceding
Lemma 4.3.11 we can conclude that the polytope P ′ =

{
x ∈ Rn

+

∣∣Ax ≤ b ∧ −xi = 0
}

is in-
tegral, too. Then from Def. 4.1.1 it is clear that for any extreme point z = (z1, . . . , zn−1) of
P ′′ =

{
x ∈ Rn−1

+

∣∣A′x ≤ b
}

the point (z1, . . . , zi−1, 0, zi, . . . , zn−1) is an extreme point of P ′

and thereby integral. It follows that also z must have been integral, and hence the polytope P ′′,
too. �

B.1.3 Proof of Lemma 4.3.13

Lemma If P =
{
x ∈ Rn

+

∣∣Ax ≤ b
}

is an integral polytope, then so is projJ(P). ✷

PROOF Since ∀k ∈ J : projJ(S) = projJ\{k}(proj{k}(S)), it is sufficient to consider a projec-
tion onto a (dim(P)− 1)-dimensional subspace, i.e., to prove the lemma for a set J = {k}.

The projection of a polyhedron is a polyhedron according to [NW88], yet it remains to
be proven that the polytope projJ(P) is integral. For this, we show in the remainder of this
proof that for each extreme point y of projJ(P), there exists an extreme point x of P such that
projJ(x) = y. Then since x is integral, projJ(x) = y is integral, too. It follows the integrality
of projJ(P).

We assume the opposite: Let y be an extreme point of projJ(P), and let all the points Q =
{x ∈ P | projJ(x) = y} not be extreme points. Then also this vector x ∈ Q that is minimal
with respect to the k-th component is not an extreme point, i.e., there exist w, y ∈ P,w �= y
and a c ∈]0, 1[such that cw + (1 − c)y = x. However, due to the minimality, w and y
must differ on other components than the k-th (otherwise either wk or yk had to be less than
xk). It follows projJ(w) �= projJ(y), and since these two points are in projJ(P) and y =
c · projJ(w)+ (1− c) · projJ(y), y cannot be an extreme point. This contradiction concludes the
proof. �

B.1.4 Proof of Lemma 4.3.14

Lemma Let P =
{
x ∈ Rn

+

∣∣Ax ≤ b
}

be an integral polyhedron and let the m×n′ matrix A′ be
the matrix A with some columns duplicated. Then P ′ =

{
x ∈ Rn′

+

∣∣A′x ≤ b
}

is integral. ✷

PROOF Let A′ be the matrix A with the last column duplicated. Let there be an arbitrary extreme
point y of P ′ =

{
x ∈ Rn+1

+

∣∣A′x ≤ b
}

given; it is sufficient to show that y is integral. According

B.2. PROOFS FOR SECTION 5.1 231

to Theorem 4.1.2, there exist n + 1 linearly independent matrix rows of A′, given by a subset
J ⊆ {1, . . . , n+ 1}, such that A′

Jy = bJ .
As mentioned in Def. 4.1.3, we can assume that A′ contains the inequalities xi ≥ 0 (∀1 ≤ i ≤

n+1), i.e., we can assume that the constraint xn+1 ≥ 0 for the new variable xn+1 is automatically
added when the new column is appended. Then either xn ≥ 0 or xn+1 ≥ 0 must be included in
the above selection of n + 1 constraints that are satisfied with equality—otherwise the last two
columns in A′

J were equal, so that the column rank of A′
J had to be less than n + 1. Since the

row rank is equal to the column rank, this would contradict the fact that A′
J has n + 1 linearly

independent rows and thus full rank.
Hence either yn = 0 or yn+1 = 0—in the first case we remove from A′

J the n-th column and
the row belonging to xn ≥ 0, in the second case the (n + 1)-th column and the row belonging
to xn+1 ≥ 0. The resulting n × n matrix then is of the form AJ ′ for a subset J ′ ⊆ {1, . . . , n}
and still has full rank; in addition, either y′ = (y1, . . . , yn−1, yn+1) or y′ = (y1, . . . , yn) is the
unique solution of AJ ′y′ = bJ ′ . Hence y′ is an extreme point of P (with the backward direction
of Theorem 4.1.2) and thus integral. Then y must be integral, too. �

B.2 Proofs for Section 5.1

B.2.1 Proof of Theorem 5.1.17

Theorem Any of the constraints (5.1.8) for a maximal path with τ2(P) ≥ 2 is a linear combina-
tion of those constraints with τ2(P) < 2. ✷

PROOF We first observe that each maximal path in Gs[N(C)] (for a given a control flow path
C ∈ C) is uniquely characterized by the order of its type 2 edges. Concretely, let a sequence of
type 2 edges be given as (e1, . . . , es). In the following, we denote the components of a type 2
edge ei always as (ui, vi+1), and the instruction of node ui as ni. Then the subpath from vi to ui

is unique; it consists of all the nodes in N(C) ∩ N(ni) between ui and vi. If N(C) ∩ N(ni) is
abbreviated by Ni, then the left-hand side of constraints (5.1.8) can be written as:

Γ(e1, . . . , es) :=
∑
a∈N1
a�u1

xa +
s∑

i=2

∑
a∈Ni

ui�a�vi

xa +
∑

a∈Ns+1
a�vs+1

xa

Now we prove the claim. Our goal is to show that, given a control flow path C ∈ C and
a maximal path P ⊆ Gs[N(C)] with two or more type 2 edges e1, . . . , et, the inequality 1 ≥
Γ(e1, . . . , et) can be written as a linear combination of those constraints (5.1.8) representing
paths with either one or zero type 2 edges.

For all 1 ≤ i ≤ t, instances of the former constraint sort are given by Γ(ei) ≤ 1. They
correspond to maximal paths with exactly one type 2 edge ei. Instances that represent maximal
paths with zero type 2 edges are given by

∑
a∈Ni

xa = 1 (∀1 ≤ i ≤ t) (see Theorem 5.1.15). To

232 APPENDIX B. PROOFS

deduce 1 ≥ Γ(e1, . . . , et), we first add up t and t− 1 instances of these constraints, respectively:

t ≥
t∑

i=1

Γ(ei) (B.2.1)

t − 1 =
t∑

i=2

∑
a∈Ni

xa (B.2.2)

Subtracting (B.2.2) from (B.2.1) then yields:

1 ≥
t∑

i=1

Γ(ei)−
t∑

i=2

∑
a∈Ni

xa

=
t∑

i=1


 ∑

a∈Ni
a�ui

xa +
∑

a∈Ni+1
a�vi+1

xa


 −

t∑
i=2

∑
a∈Ni

xa

(∗)
=

t∑
i=2


 ∑

a∈Ni
ui�a�vi

xa +
∑
a∈Ni

xa


+

∑
a∈N1
a�u1

xa +
∑

a∈Nt+1
a�vt+1

xa −
t∑

i=2

∑
a∈Ni

xa

= Γ(e1, . . . , et)

In step (∗), we have extracted the first addend (i = 1) from the first summation notation and
then reorganized the latter in such a way that the i-th addend contains only variables xa such that
a ∈ Ni. Previously, these variables were added in consecutive addends. The total of the sum
remains unchanged. �

B.3 Proofs for Section 5.2

B.3.1 Proof of Theorem 5.2.8

Theorem Let a resource flow network be given as defined previously in Def. 5.2.7. Then the
following network flow resource constraints, generated ∀A ∈ B,∀t ∈ G(A), form an integral
polytope of resource constraints:∑

∀k:(k,l)∈E′
yAt

(k,l) =
∑

∀m:(l,m)∈E′
yAt

(l,m) ∀l ∈ R (B.3.1)

∑
∀k:(k,l)∈E′

yAt
(k,l) ≤ c(l) ∀l ∈ R (B.3.2)

E ′ contains all edges from E plus a special edge (s, l) for each l ∈ :R with the sole purpose
to model the inflow into this node. For each edge e ∈ E there exists a new integral flow variable

B.3. PROOFS FOR SECTION 5.2 233

yAt
e which holds the value of the flow through this edge; in addition, the inflow variables yAt

(s,l)

model the inflow into node l. ✷

PROOF It is obvious that the constraints model a resource flow network as described in Def. 5.2.7.
Regarding the integrality claim, we employ the following theorem to prove that the constraint
matrix is totally unimodular. The integrality then follows with Theorem 4.3.5.

Theorem B.3.1 A matrix A ∈ Rm×n is totally unimodular if and only if for every J ⊆ {1, . . . ,m},
there exists a partition J1, J2 of J such that∣∣∣∣∣

∑
i∈J1

aij −
∑
i∈J2

aij

∣∣∣∣∣ ≤ 1 ∀j = 1, . . . , n

✷

Let there be a subset J ⊆ {1, . . . ,m} of the rows of the constraint matrix given. Each
row corresponds either to a constraint (B.3.1) or (B.3.2), generated for a node j ∈ R. For the
constraints (B.3.1), we can assume that the variables on the left-hand side of the equation are
represented by coefficients 1 in the row and those on the right-hand side by −1.

Let the sets A and B contain the instances of constraints (B.3.1) and (B.3.2) whose left-hand
sides are included in the row selection, respectively. Moreover, let RJ

A ⊆ R denote the set of all
nodes for which the constraints in A were generated and RJ

B the analogous set for B.
Now we construct the sets J1 and J2 with the desired properties: First, we collect all the

rows due to (B.3.1) in J1. Then we make the following observation about the j-th column of
these rows (for any j ∈ {1, . . . , n}): If this column corresponds to a variable yAt

(p,q), then the sum∑
i∈J1

aij has either value

• −1 if q /∈ RJ
A and p ∈ RJ

A,

• 0 if q /∈ RJ
A and p /∈ RJ

A, or if q ∈ RJ
A and p ∈ RJ

A,

• or 1 if q ∈ RJ
A and p /∈ RJ

A.

Now we use this observation to distribute the rows due to (B.3.2) to the sets J1 and J2: Such a row
created for an l ∈ RJ

B is included in J1 if l /∈ RJ
A and in J2 if l ∈ RJ

A. This construction yields∑
i∈J1

aij −
∑

i∈J2
aij ∈ {−1, 0, 1} for all j = 1, . . . , n so that the matrix is totally unimodular.�

B.3.2 Proof of Theorem 5.2.11

Theorem The value of the maximum flow of a network flow problem with node capacities is
exactly the minimal capacity of a complete node cut. ✷

PROOF Let a network flow problem be given as described in Def. 5.2.3, but with node capacities.
We transform it into a problem with edge capacities by replacing each node with two new nodes
connected by a new edge that has the same capacity as the previous node capacity. All other
edges are assigned a capacity that is so large that it is never limiting, for instance as large as
the total capacity of all nodes in the original problem. Then we can apply the max-flow min-cut
theorem 5.2.4 to this graph and transfer the result back to the original problem, based on the
following two observations:

234 APPENDIX B. PROOFS

1. The value of a maximal flow is equal in both the original and the transformed problem.

2. The minimal capacity of a complete node cut in the original problem equals the minimal
capacity of a set of edges to disconnect G with s and t in different components in the
transformed problem.

The first observation is evident. To prove (2), it is sufficient to show that for each complete node
cut in the original problem there exists an edge set as described in (2) with the same capacity and
vice versa. The forward implication of this is clear since each such node cut corresponds to a set
of edges in the transformed problem that has the same capacity and disconnects the source and
the sink as required by Theorem 5.2.4 (this set consists of exactly those newly introduced edges
that correspond to the nodes in the node cut).

For the backward direction, let a disconnecting set of edges with minimal capacity be given—
this set then can only consist of the newly created edges. The nodes in the original problem
corresponding to these edges must constitute a complete node cut according to Lemma 5.2.10
(2) ⇒ (1) (with the same capacity).

This proven correspondence, expressed by the two observations, allows to transfer the edge
capacities version of the max-flow min-cut theorem to the node capacities version, which con-
cludes the proof. �

B.3.3 Proof of Theorem 5.2.19

In the following, hS refers to an instance of the inflow constraints (5.2.8) generated for a node
cut S. P−1(S) refers to those nodes that are postdominated by S, but not element of S:

P−1(S) := P−1
+ (S) \ S

Further, we frequently use notation from Sec. 1.3.1 like V �(S) and C�(x); we write P ∩ S �= ∅
if a path P ∈ C�(x) does not traverse a block from S. We first prove a lemma and a proposition
needed in the proof of the theorem:

Lemma B.3.2 For each subset S ⊆ V there exists a linear combination of basic constraints
(5.2.8) that subsumes ∑

v∈P
−1
+ (S)

yAt
(s,v) ≤ c(S) (B.3.3)

✷

PROOF We assume that S is not a node cut, otherwise the lemma follows with Corollary 5.2.17.
We remove successively all nodes from S that are dominated or postdominated by the others
until we have reached a subset that is a node cut. This node cut is below included in a linear
combination with the required properties.

If a node v ∈ S is dominated or postdominated by S\{v}, then P−1(S) ⊆ P−1(S\{v}) since
every path from a node in P−1(S) to v still intersects S \{v}. Thus the removal of this node from
S does not change the set P−1(S). However, v is possibly removed from P−1

+ (S) = S ∪ P−1(S).

B.3. PROOFS FOR SECTION 5.2 235

Thus we have P−1
+ (S)=P−1

+ (S \ {v}) ∪ {v}. Let D = {d1, . . . , dk} be the nodes removed this
way and S ′ := S \ D the resulting node cut, then it follows P−1

+ (S) = P−1
+ (S ′) ∪ D.

Now we conclude the proof by showing that the sum of the constraints hS
′ and h{d1}, . . . , h{dk}

subsumes (B.3.3)—the lemma follows then with Corollary 5.2.17:
Firstly, from P−1

+ (S) = P−1
+ (S ′) ∪ D it follows that each variable on the left-hand side of

(B.3.3) occurs also on the left-hand side of this sum (with coefficient ≥ 1). Secondly, since

c(S)
S⊇D
= c(S \D) + c(D) = c(S ′) + c(d1) + . . .+ c(dk), the right-hand sides are equal. Hence

the sum subsumes (B.3.3). �

Proposition B.3.3 P−1
+ (A) ⊆ P−1

+ (B) ⇒ P−1
+ (C) ⊆ P−1

+ (C \ A ∪ B)

PROOF Let P−1
+ (A) ⊆ P−1

+ (B) and let there be an x ∈ P−1
+ (C). Every path P in C�(x) passes

through C—either through C ∩ A or through C \ A ⊆ C \ A ∪ B. In the former case it also
intersects B ⊆ C \A ∪B since A ⊆ P−1

+ (B). Hence P intersects C \A ∪B in both cases, thus
x ∈ P−1

+ (C \ A ∪ B). �

Now we are ready to prove Theorem 5.2.19:

Theorem All basic inflow constraints constitute a minimal description of the inflow polytope. ✷

PROOF Let S be an atomic and tight node cut. It is sufficient to show that there exists no linear
combination of other basic constraints that subsumes hS (using Corollary 5.2.17). The proof is
by contradiction: we assume that such a linear combination exists and is given by atomic and
tight node cuts S1, . . . , Sk and a λ ∈ Rk

+. Subsumption is a property of the coefficient matrix, as
expressed by Lemma 4.3.2: Firstly, since for all v ∈ P−1

+ (S) the coefficient of yAt
(s,v) in hS is one,

the same coefficient in the linear combination must be greater or equal to one:∑
∀i:v∈P

−1
+ (Si)

λi ≥ 1 ∀v ∈ P−1
+ (S) (B.3.4)

ĉ :=
k∑

i=1

λic(Si) ≤ c(S) (B.3.5)

Secondly, Equ. (B.3.5) states that the right-hand side of the linear combination, its “cost” ĉ,
must not be greater than c(S). We assume here that the given linear combination is minimal with
respect to this cost. Note that from this minimality it follows ∀i : λi ≤ 1 and that each Si is a
subset of V ≺(S)∪ S ∪ V �(S)—otherwise we could intersect each Si with this set and the result
would still satisfy (B.3.4), but have lower cost. Using this observation, we will conduct the proof
in three parts:

1. The first shows ∀i : Si ∩ V �(S) = ∅,

2. the second ∀i : Si ∩ V ≺(S) = ∅, and

3. the third will finally derive a contradiction from the remaining possibility ∀i : Si ⊆ S.

236 APPENDIX B. PROOFS

Part 1:

Let there be an Sk such that Sk ∩ V �(S) �= ∅. We define

S�
k := Sk ∩ V �(S) S�

k := Sk ∩ V �(S)

S�
k := Sk ∩ V �(S) S≺

k := Sk ∩ V ≺(S)

and S∗
k := P−1

+ (S�
k) ∩ S (see the schematic illustrations in Figure B.1 and Figure B.2 (a)).

We will derive a contradiction from each of the following two cases: either c(S�
k) ≤ c(S∗

k) or
c(S�

k) > c(S∗
k).

V S
<
()

V S
>
()

S

P
-1
()S

Sk

P Sk

-1
()

�

Sk

�

Sk

�

(a) S and related node sets. (b) Illustration of Sk.

Figure B.1: Illustration of Part 1

Sk

S *k
S S *k k

�

�

(a) Illustration of S∗
k . (b) S≺

k ∪S∗
k from Part 1, Second Case.

Figure B.2: The node sets S∗
k and S≺

k ∪ S∗
k .

B.3. PROOFS FOR SECTION 5.2 237

First Case

c(S�
k) ≤ c(S∗

k): Then we can remove all blocks from S that are element of S∗
k and replace them

by the blocks in S�
k . We show in the following that this delivers a node cut that subsumes S, but

has lower cost, which delivers a contradiction with the assumption that S is tight (see Theorem
5.2.16-(2)).

From the definitions of S∗
k and S�

k it follows P−1
+ (S∗

k) ⊆ P−1
+ (S�

k) and with Proposition B.3.3
P−1

+ (S) ⊆ P−1
+ (S \ S∗

k ∪ S�
k). We define S∗ := S \ S∗

k ∪ S�
k —as illustrated in Fig. B.3 (a)—and

remove in the following successively all nodes from S∗ that are dominated or postdominated by
the others until S∗ ⊆ S \ S∗

k ∪ S�
k is a node cut. The latter then is shown to be “tighter” than S.

Sk

P
-1
()S*

S*

Sk

�

Sk

Sk

�

v

w

A

B

C

(a) Illustration of S∗. (b) The path from Part 1, First Case.

Figure B.3: Illustration of Part 1, First Case

We first remove all nodes that are dominated by others: Let us assume that a node v ∈ S∗ is
removed because it is dominated by a set D ⊆ S∗ \ {v}. Then v /∈ S, since v ∈ S would imply
D ⊆ S, which contradicts the assumption that S is a node cut (by Def. 5.2.9).

It follows v ∈ S�
k . Hence only nodes from S�

k = S∗ ∩ V �(S) are removed, and since
the removal does not change P−1(S∗) (see the proof of Lemma B.3.2), it still holds P−1

+ (S) ⊆
P−1

+ (S∗) after the removal. We can also prove the stronger result P−1
+ (S) ⊂ P−1

+ (S∗) by showing
that not all nodes from S�

k are removed this way:
Since Sk is atomic, there must exist a v ∈ P−1

+ (Sk) such that v /∈ P−1
+ (S�

k) and v /∈ P−1
+ (S�

k)
(Theorem 5.2.16-(1)). It follows that there must exist a path from v to a node in S�

k (otherwise
v ∈ P−1

+ (S�
k)), hence v ∈ V �(S), and that there must exist a path P from v to a node in S�

k

that does not intersect S�
k (otherwise v ∈ P−1

+ (S�
k)). But P intersects S (since v ∈ V �(S))—let

w ∈ S ∩ P be the first node on the path that is in S. We make three observations:

• From the construction of P we have w /∈ S�
k and w /∈ S�

k . w ∈ P−1
+ (S�

k) holds since
the subpath from v to w (denoted by B in the following) does not intersect Sk before w
although v ∈ P−1

+ (Sk); thus any path going out from w must intersect S�
k . It follows

w ∈ S∗
k \ S�

k ⇒ w /∈ S∗, so that B has no node in common with S∗.

238 APPENDIX B. PROOFS

• Since either v ∈ S or v ∈ V ≺(S), v is not dominated by other nodes from S or from S∗.
Thus we can obtain a path A from an entry node to v that does not intersect S∗.

• Since w ∈ S is not postdominated by other nodes in S and w ∈ P−1
+ (S�

k), there exists a
path C from w to a node in S�

k that does not intersect S∗ before this node.

The concatenation of A, B, and C is a path that starts at an entry node and does not intersect S∗

before it reaches a node in S�
k (see Figure B.3 (b)): this node then cannot be dominated by other

nodes of S∗ since the path contains none of them. Thus after the removal of all nodes dominated
by others from S∗ it still holds:

S∗ ∩ S�
k �= ∅

So there is at least one element in S∗ that is not in S and its predecessors, hence P−1
+ (S) ⊂

P−1
+ (S∗).

Removing a node from S∗ that is postdominated by the others does not change P−1
+ (S∗). Thus

it still holds P−1
+ (S) ⊂ P−1

+ (S∗) after all these nodes have been removed, and S∗ is then by
definition a node cut. Together with

c(S∗) ≤ c(S \ S∗
k ∪ S�

k)
S∗

k⊆S

≤ c(S)− c(S∗
k) + c(S�

k) ≤ c(S)

this contradicts the assumption that S is tight (as defined in Theorem 5.2.16-(2)), and refutes
with this the first case.

Second Case

c(S�
k) > c(S∗

k): Then we can remove all blocks from Sk that are element of S�
k and replace them

by the blocks in S∗
k . This can be used to reduce the cost of the given linear combination of basic

constraints (which includes hSk
), contradicting the assumption that it had already minimal cost.

We first show P−1
+ (S) ∩ P−1

+ (S≺
k ∪ S�

k) = P−1
+ (S) ∩ P−1

+ (S≺
k ∪ S∗

k):

x ∈ P−1
+ (S) ∩ P−1

+ (S≺
k ∪ S�

k)

⇔ ∀P ∈ C�(x) : P ∩ S �= ∅ ∧ P ∩ (
S≺
k ∪ S�

k

) �= ∅
⇔ ∀P ∈ C�(x) : (P ∩ S �= ∅ ∧ P ∩ S≺

k �= ∅) ∨ (
P ∩ S �= ∅ ∧ P ∩ S�

k �= ∅)
(∗)⇔ ∀P ∈ C�(x) : (P ∩ S �= ∅ ∧ P ∩ S≺

k �= ∅) ∨ (P ∩ S �= ∅ ∧ P ∩ S∗
k �= ∅)

⇔ x ∈ P−1
+ (S) ∩ P−1

+ (S≺
k ∪ S∗

k)

The equivalence (∗) is the pivotal step and requires further elaboration:
”⇒”: Let P ∈ C�(x) be a path such that P ∩S �= ∅∧P ∩S�

k �= ∅ and let P ∩S≺
k = ∅ (otherwise

the implication is trivial). Furthermore, let v ∈ P ∩ S be the first node on P that is in S. Then
v ∈ P−1

+ (S�
k)—otherwise there would be a path Q ∈ C�(v) that does not intersect S�

k (and S≺
k).

The concatenation of P between x and v and Q would then not intersect Sk although it is element
of C�(x), which contradicts x ∈ P−1

+ (Sk).
From v ∈ P−1

+ (S�
k) ∩ S = S∗

k it follows then P ∩ S∗
k �= ∅.

B.3. PROOFS FOR SECTION 5.2 239

”⇐”: Follows from S∗
k ⊆ P−1

+ (S�
k).

The proven equation P−1
+ (S) ∩ P−1

+ (Sk) = P−1
+ (S) ∩ P−1

+ (S≺
k ∪ S∗

k) together with

c(Sk) = c(S≺
k ∪ S�

k) > c(S≺
k ∪ S∗

k)

shows that it is possible to replace hSk
by hS≺

k ∪S∗
k

in the linear combination without violating
(B.3.4) and (B.3.5) (both sets are illustrated in Fig. B.1 (b) and Fig. B.2 (b), respectively). The
new linear combination then even has strictly lower cost (the left-hand side of (B.3.5)). However,
in order to constitute a contradiction with the assumption that the linear combination had minimal
cost before, the new linear combination may only use basic constraints and not hS itself.

hS≺
k ∪S∗

k
is not necessarily a basic constraint. But from Lemma B.3.2 we know that there

exists a linear combination of basic constraints that subsumes it. If hSk
is replaced by this linear

combination, then the resulting whole linear combination—denoted by the node cuts Ŝ1, . . . , Ŝl

and a λ ∈ Rl
+ in the following—still subsumes hS and still has a lower cost than ĉ.

It remains the possibility that this linear combination contains hS itself: Without restricting
generality let us assume that Ŝl = S. Then λl < 1 (since the linear combination has lower cost
than ĉ) and we can omit hŜl

and instead divide all λi, i = 1, . . . , l − 1, by 1 − λl. The linear
combination modified this way still satisfies (B.3.4):

∀v ∈ P−1
+ (S) :

∑
∀i:v∈P

−1
+ (Ŝi)

i�=l

(
1

1− λl

)
λi =

1

1− λl




∑
∀i:v∈P

−1
+ (Ŝi)

λi

︸ ︷︷ ︸
≥1

−λl


 ≥ 1

1− λl

(1− λl) = 1

But it has a lower cost than ĉ:

l−1∑
i=1

(
1

1− λl

)
λic(Ŝi) =

1

1− λl




∑
∀i:v∈P

−1
+ (Ŝi)

λic(Ŝi)

︸ ︷︷ ︸
<ĉ

−λlc(Ŝl)




Ŝl=S
<

ĉ − λlc(S)

1− λl

ĉ≤c(S)

≤ ĉ (1− λl)

1− λl

= ĉ

This finally delivers the contradiction with the assumption that the linear combination from the
beginning of the proof had minimal cost.

Part 2:

The second part of the proof shows ∀i : Si ∩ V ≺(S) = ∅. Using the result from the first part,
∀i : Si ⊆ V �(S), we can rewrite Equation (B.3.4) restricted to nodes v ∈ S as:∑

∀i:v∈P
−1
+ (Si)∩S

λi =
∑

∀i:v∈Si∩S

λi ≥ 1 ∀v ∈ S ⊆ P−1
+ (S)

240 APPENDIX B. PROOFS

If we multiply this inequality by c(v) and sum over all nodes of a subset S′ ⊆ S we obtain:∑
v∈S′

c(v)
∑

∀i:v∈Si∩S

λi ≥ c(S ′) (B.3.6)

This inequality holds for all subsets of S and is used in the following derivation to prove ∀i :
Si ⊆ S. It starts with Equ. (B.3.5):

c(S) ≥
k∑

i=1

λic(Si)

=
k∑

i=1

λi (c(Si ∩ S) + c(Si \ S))

=
∑
v∈S

c(v)
∑

∀i:v∈Si∩S

λi

︸ ︷︷ ︸
≥c(S) with (B.3.6)

+
k∑

i=1

λic(Si \ S)

︸ ︷︷ ︸
=0

The last sum must be zero, and can only be zero if ∀i : Si ⊆ S.

Part 3:

We have shown in this proof so far that all node cuts S1, . . . , Sk must be subsets of S. Let Sz be
an arbitrary one of these node cuts. Because S is atomic, there exists a w ∈ P−1

+ (S) such that
w /∈ P−1

+ (Sz) and w /∈ P−1
+ (S \ Sz), and with this:

Sz ∩ V �(w) �= ∅ ∧ (S \ Sz) ∩ V �(w) �= ∅ (B.3.7)

Let J :=
{
i
∣∣w ∈ P−1

+ (Si)
}

, then z /∈ J and Equation (B.3.4) for the node w can be written as:∑
i∈J

λi ≥ 1 (B.3.8)

We use this inequality to derive a contradiction and finally conclude the proof with this. Again,
we start from Equ. (B.3.5):

c(S) ≥
k∑

i=1

λic(Si) =
∑
v∈S

c(v)
∑

∀i:v∈Si

λi

=
∑

v∈S∩V �(w)

c(v)
∑

∀i:v∈Si

λi +
∑

v∈S\V �(w)

c(v)
∑

∀i:v∈Si

λi

=
∑

v∈S∩V �(w)

c(v)
∑

∀i:v∈Si
i∈J

λi

︸ ︷︷ ︸
≥c(S∩V �(w))

+
∑

v∈S∩V �(w)

c(v)
∑

∀i:v∈Si
i/∈J

λi

︸ ︷︷ ︸
=0

+
∑

v∈S\V �(w)

c(v)
∑

∀i:v∈Si

λi

︸ ︷︷ ︸
≥c(S\V �(w))

B.3. PROOFS FOR SECTION 5.2 241

The first double sum in the last row is greater or equal to c(S ∩ V �(w)) because it follows from
(B.3.8) that for each v ∈ S ∩ V �(w) the interior sum is greater or equal to one—the additional
constraint i : v ∈ Si compared to (B.3.8) causes no restriction since i ∈ J ⇒ Si ⊇ S ∩ V �(w).
The estimate for the last double sum is taken from (B.3.6).

Then the middle double sum must be empty since c(S) = c(S ∩ V �(w)) + c(S \ V �(w)).
However, (B.3.7) states that there is at least one index such that Si ∩ V �(w) �= ∅ and i /∈ J : z �

242 APPENDIX B. PROOFS

Bibliography

[ACG+04] Lelac Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W.
Reeves, Devika Subramanian, Linda Torczon, and Todd Waterman. Finding Effec-
tive Compilation Sequences. In Proceedings of the ACM SIGPLAN 2004 Confer-
ence on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages
231–239, Washington, DC, USA, June 2004.

[Adv04] Advanced Micro Devices, Inc. Software Optimization Guide for AMD AthlonTM 64
and AMD OpteronTM Processors, March 2004.

[AG01] Andrew W. Appel and Lal George. Optimal Spilling for CISC Machines with Few
Registers. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation (PLDI), pages 243–253, Snowbird, Utah,
USA, June 2001.

[Alp03] Don Alpert. Itanium Processor Status Report. In-Stat/MDR Microprocessor Report,
July 2003.

[ANS89] ANSI, New York. American National Standard Programming Language C, ANSI
X3.159-1989, December 14 1989.

[ASMC98] Pritpal S. Ahuja, Kevin Skadron, Margaret Martonosi, and Douglas W. Clark. Mul-
tipath Execution: Opportunities and Limits. In Proceedings of the 12th Interna-
tional Conference on Supercomputing, pages 101–108, Melbourne, Australia, 1998.

[AZ96] Nina Amenta and Günter Ziegler. Shadows and Slices of Polytopes. In Proceedings
of the 12th Annual ACM Symposium on Computational Geometry, pages 10–19,
Philadelphia, Pennsylvania, 1996.

[Bas95] S. Bashford. Code Generation Techniques for Irregular Architectures. Technical
Report 596, University of Dortmund, 1995.

[BCC+00] Jay Bharadwaj, William Y. Chen, Weihaw Chuang, Gerolf Hoflehner, Kishore
Menezes, Kalyan Muthukumar, and Jim Pierce. The Intel IA-64 Compiler Code
Generator. IEEE Micro, 20(5):44–53, 2000.

243

244 BIBLIOGRAPHY

[BCGS96] David A. Berson, Pohua P. Chang, Rajiv Gupta, and Mary Lou Soffa. Integrat-
ing Program Optimizations and Transformations with the Scheduling of Instruction
Level Parallelism. In Proceedings of the 9th International Workshop on Languages
and Compilers for Parallel Computing (LCPC), pages 207–221, San Jose, USA,
August 1996. Springer-Verlag.

[Bea91] S.J. Beaty. Instruction Scheduling Using Genetic Algorithms. PhD thesis, Depart-
ment of Mechanical Engineering, Colorado State University, Fort Collins, USA,
1991.

[BFG+00] Robert E. Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wunder-
ling. ILOG CPLEX Division. MIP: Theory and Practice - Closing the Gap. In
M. J. D. Powell and S. Scholtes, editors, System Modelling and Optimization: Meth-
ods, Theory and Applications, pages 19–49. Kluwer, The Netherlands, 2000.

[BGS98] David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Integrated Instruction Schedul-
ing and Register Allocation Techniques. In Proceedings of the 11th International
Workshop on Languages and Compilers for Parallel Computing (LCPC), pages
247–262, Chapel Hill, NC, USA, August 1998. Springer-Verlag.

[BL99a] Steven Bashford and Rainer Leupers. Constraint Driven Code Selection for Fixed-
Point DSPs. In Proceedings of the 36th ACM/IEEE Conference on Design Automa-
tion, pages 817–822, New Orleans, Louisiana, USA, 1999.

[BL99b] Steven Bashford and Rainer Leupers. Phase-Coupled Mapping of Data Flow
Graphs to Irregular Data Paths. Design Automation for Embedded Systems (Kluwer
Academic Publishers), 4(2-3):119–165, 1999.

[Bli96] T. Blickle. Theory of Evolutionary Algorithms and Applications to System Design.
PhD thesis, ETH Zürich, 1996.

[BMA02] Ivan D. Baev, Waleed M. Meleis, and Santosh G. Abraham. Backtracking-Based
Instruction Scheduling to Fill Branch Delay Slots. International Journal of Parallel
Programming (Kluwer Academic Publishers), 30(6):397–418, 2002.

[BMM00] J. Bharadwaj, K. Menezes, and C. McKinsey. Wavefront Scheduling: Path Based
Data Representation and Scheduling of Subgraphs. Journal of Instruction-Level
Parallelism, 1(6):1–6, 2000.

[BMS02] David Bradley, Patrick Mahoney, and Blaine Stackhouse. The 16kb Single-Cycle
Read Access Cache on a Next Generation 64b ItaniumTM Microprocessor. In Pro-
ceedings of the IEEE International Solid-State Circuits Conference, San Francisco,
February 2002.

[BR91] David Bernstein and Michael Rodeh. Global Instruction Scheduling for Superscalar
Machines. Proceedings of the ACM SIGPLAN ’91 on Programming Language De-
sign and Implementation (PLDI), June 1991.

BIBLIOGRAPHY 245

[BRS92] D. Bernstein, M. Rodeh, and M. Sagiv. Proving Safety of Speculative Load In-
structions at Compile-Time. In Proceedings of the 4th European Symposium on
Programming (ESOP), Rennes, France, February 1992.

[CCK97] C-M. Chang, C-M. Chen, and C-T. King. Using Integer Linear Programming for In-
struction Scheduling and Register Allocation in Multi-Issue Processors. Computers
and Mathematics with Applications, 34(9):1–14, November 1997.

[CCL+96] Pohua P. Chang, Dong-Yuan Chen, Yong-Fong Lee, Youfeng Wu, and Utpal Baner-
jee. Bidirectional Scheduling: A New Global Code Scheduling Approach. In Pro-
ceedings of the 9th International Workshop on Languages and Compilers for Par-
allel Computing (LCPC), pages 222–230, San Jose, USA, August 1996. Springer-
Verlag.

[CHN99] Marius Cornea-Hasegan and Bob Norin. IA-64 Floating-Point Operations and the
IEEE Standard for Binary Floating-Point Arithmetic. Intel Technology Journal, Q4,
1999.

[CKGN01] Youngsoo Choi, Allan Knies, Luke Gerke, and Tin-Fook Ngai. The Impact of If-
conversion and Branch Prediction on Program Execution on the Intel R© Itanium R©
Processor. In Proceedings of the 34th Annual ACM/IEEE International Symposium
on Microarchitecture (MICRO), pages 182–191, Austin, Texas, December 2001.

[CL03] Jean-Francois Collard and Daniel Lavery. Optimizations to Prevent Cache Penalties
for the Intel R© Itanium R© 2 Processor. In Proceedings of the First IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO), San Francisco,
March 2003.

[CLF+03] Dong-Yuan Chen, Lixia Liu, Chen Fu, Shuxin Yang, Chengyong Wu, and Roy
Ju. Efficient Resource Management during Instruction Scheduling for the EPIC
Architecture. In Proceedings of the 12th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), New Orleans, September 2003.

[CLJ+04] Dong-Yuan Chen, Lixia Liu, Roy D.C. Ju, Chen Fu, Shuxin Yang, and Chengyong
Wu. Efficient Modeling of Itanium R© Architecture during Instruction Scheduling
using Extended Finite State Automata. Journal of Instruction-Level Parallelism,
2004. www.jilp.org.

[CLL+02] Gianpiero Cabodi, Mihai Lazarescu, Luciano Lavagno, Sergio Nocco, Claudio
Passerone, and Stefano Quer. A Symbolic Approach for the Combined Solution
of Scheduling and Allocation. In Proceedings of the 15th International Symposium
on System Synthesis (ISSS), pages 237–242, Kyoto, Japan, October 2002.

[CLR01] Thomas H. Cormen, Charles E. Leierson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, Massachusetts;London, England, 2001.

246 BIBLIOGRAPHY

[CS98] Keith D. Cooper and Philip J. Schielke. Non-Local Instruction Scheduling with
Limited Code Growth. In Proceedings of the 1998 ACM Workshop on Languages,
Compilers, and Tools for Embedded Systems (LCTES), pages 193–207, Montreal,
Canada, June 1998.

[CSS98] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. An Experimen-
tal Evaluation of List Scheduling. Technical Report TR98-326, Rice University,
September 1998.

[CSS99] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for Re-
duced Code Space Using Genetic Algorithms. In Proceedings of the ACM SIG-
PLAN 1999 Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES), pages 1–9, Atlanta, USA, May 1999.

[CWM93] S. Chaudhuri, R.A. Walker, and J.E. Mitchell. The Structure of Assignment, Prece-
dence, and Resource Constraints in the ILP Approach to the Scheduling Problem.
In Proceedings of the IEEE International Conference on Computer Design: VLSI in
Computers and Processors (ICCD), pages 25–31, Cambridge, USA, October 1993.

[CWM94] S. Chaudhuri, R.A. Walker, and J.E. Mitchell. Analyzing and Exploiting the Struc-
ture of the Constraints in the ILP-Approach to the Scheduling Problem. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2(4):456–471, De-
cember 1994.

[Dak65] R.J. Dakin. A Tree-Search Algorithm for Mixed Integer Programming Problems.
The Computer Journal, 8:250–255, 1965.

[Dan51] G.B. Dantzig. Maximization of a Linear Function of Variables Subject to Linear
Inequalities. In Tj. C. Koopmans, editor, Activity Analysis of Production and Allo-
cation, pages 339–347. Wiley, New York, 1951.

[DKK+99] Carole Dulong, Rakesh Krishnaiyer, Dattatraya Kulkarni, Daniel Lavery, Wei Li,
John Ng, and David Sehr. An Overview of the Intel R© IA-64 Compiler. Intel
Technology Journal, (Q4), 1999.

[Eis00] F. Eisenbrand. Gomory-Chvatal Cutting Planes and the Elementary Closure of
Polyhedra. PhD thesis, Saarland University, 2000.

[EM92] K. Ebcioglu and S. Moon. An Efficient Resource Constrained Global Schedul-
ing Technique for Superscalar and VLIW Processors. In Proceedings of the 25th
Annual ACM/IEEE International Symposium on Microarchitecture (MICRO), Port-
land, Oregon, USA, November 1992.

[Epp95] David Eppstein. Subgraph Isomorphism in Planar Graphs and Related Problems.
In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 632–640, San Francisco, 1995. Society for Industrial and Applied Mathemat-
ics.

BIBLIOGRAPHY 247

[Fis81] J.A. Fisher. Trace Scheduling: A Technique for Global Microcode Compaction.
IEEE Transactions on Computers, C-30(7):478–490, July 1981.

[FO02] Eric S. Fetzer and John T. Orton. A Fully-Bypassed 6-Issue Integer Datapath and
Register File on an ItaniumTM Microprocessor. In Proceedings of the IEEE Inter-
national Solid-State Circuits Conference, San Francisco, February 2002.

[FW02] Changqing Fu and Kent Wilken. A Faster Optimal Register Allocator. In Proceed-
ings of the 35th Annual ACM/IEEE International Symposium on Microarchitecture
(MICRO), pages 245–256, Istanbul, Turkey, November 2002.

[GB03] Lal George and Matthias Blume. Taming the IXP Network Processor. In Proceed-
ings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation (PLDI), pages 26–37, San Diego, USA, June 2003.

[GE92] C.H. Gebotys and M.I. Elmasry. Optimal VLSI Architectural Synthesis: Area, Per-
formance and Testability. Kluwer Academic, 1992.

[GE93] C.H. Gebotys and M.I. Elmasry. Global Optimization Approach for Architectural
Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pages 1266–1278, 1993.

[Geb97] Catherine H. Gebotys. An Efficient Model for DSP Code Generation: Performance,
Code Size, Estimated Energy. In Proceedings of the 10th International Symposium
on System Synthesis (ISSS), pages 41–47, Antwerp, Belgium, September 1997.

[GH88] J. Goodman and W. Hsu. Code Scheduling and Register Allocation. In Proceedings
of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation (PLDI), Atlanta, USA, June 1988.

[GJ79] M. Garey and D.S. Johnson. Computers and Intractability. A Guide to the Theory
of NP-Completeness. Freemann and Company, 1979.

[GLS01] Rakesh Ghiya, Daniel Lavery, and David Sehr. On the Importance of Points-to
Analysis and Other Memory Disambiguation Methods for C Programs. Proceed-
ings of the ACM SIGPLAN ’01 Conference on Programming Language Design and
Implementation (PLDI), pages 47–58, June 2001.

[GNU] GNU Project – Free Software Foundation. www.gnu.org.

[Gom58] R.E. Gomory. Outline of an Algorithm for Integer Solutions to Linear Programs.
Bulletin of the American Mathematical Society, 64:275–278, 1958.

[GS90] R. Gupta and M.L. Soffa. Region Scheduling: An Approach for Detecting and Re-
distributing Parallelism. IEEE Transactions on Software Engineering, 16(4):421–
431, 1990.

248 BIBLIOGRAPHY

[Gup98] Rajiv Gupta. A Code Motion Framework for Global Instruction Scheduling. In
Proceedings of the 7th International Conference on Compiler Construction (CC),
pages 219–233, Lisbon, Portugal, March 1998. Springer-Verlag.

[Hag97] Torben Hagerup. Datenstrukturen und Algorithmen, Forschungsbericht. Technical
report, Max-Planck-Institut für Informatik, July 1997. MPI-I-97-1-013, In German.

[HB01] Steve Haga and Rajeev Barua. EPIC Instruction Scheduling Based on Optimal
Approaches. In Proceedings of the EPIC-1 Workshop, Austin, Texas, December
2001.

[HCLJ01] Yuan-Shin Hwang, Peng-Sheng Chen, Jenq Kuen Lee, and Roy Dz-Ching Ju. Prob-
abilistic Points-to Analysis. In Lecture Notes in Computer Science: Proc. of the
14th Workshop on Languages and Compilers for Parallel Computing (LCPC’2001),
volume 2624, pages 290–305, Kumberland Falls, KY, August 2001. Springer.

[HKST99] J. Harrison, T. Kubaska, S. Story, and P.T.P. Tang. The Computation of Transcen-
dental Functions on the IA-64 Architecture. Intel Technology Journal, Q4, 1999.

[HLH91] Cheng-Tsung Hwang, Jiahn-Hurng Lee, and Yu-Chin Hsu. A Formal Approach to
the Scheduling Poblem in High Level Synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 10(4):464–475, 1991.

[HLW00] M. Heffernan, J. Liu, and K. Wilken. Optimal Instruction Scheduling Using In-
teger Programming. In Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation (PLDI), pages 121–133, Van-
couver, Canada, June 2000.

[HMC+93] W.-m. W. Hwu, S.A. Mahlke, W.Y. Chen, P.P. Chang, N.J. Warter, R.A. Bringmann,
R.G. Ouellette, R.E. Hank, T. Kiyohara, G.E. Haab, J.G. Holm, and D.M. Lavery.
The Superblock: An Effective Technique for VLIW and Superscalar Compilation.
The Journal of Supercomputing (Kluwer Academic Publishers), pages 229–248,
1993.

[Hop00] Martin Hopkins. Guest Viewpoint: A Critical Look at IA-64. In-Stat/MDR Micro-
processor Report, February 2000.

[HP03] J.L. Hennessy and D.A. Patterson. Computer Architecture: a Quantitive Approach.
Morgan Kaufmann, San Francisco, third edition, 2003.

[HSU+01] Glenn Hinton, Dave Sager, Mike Upton, Darrel Boggs, Doug Carmean, Alan Kyker,
and Patrice Roussel. The Microarchitecture of the Pentium R© 4 Processor. Intel
Technology Journal, (Q1), 2001.

[ILO03a] ILOG S. A., Paris. ILOG Concert Technology 2.0 Reference Manual, October 2003.

[ILO03b] ILOG S. A., Paris. ILOG CPLEX 9.0 User’s Manual, October 2003.

BIBLIOGRAPHY 249

[Int01a] Intel. IA-64 Software Conventions and Runtime Architecture Guide, May 2001.

[Int01b] Intel. Intel R© ItaniumTM Architecture Assembly Language Reference Guide, 2001.

[Int02a] Intel. Intel R© Itanium R© Architecture Software Developer’s Manual, Volume 1:
Application Architecture, October 2002.

[Int02b] Intel. Intel R© Itanium R© Architecture Software Developer’s Manual, Volume 2:
System Architecture, October 2002.

[Int02c] Intel. Intel R© Itanium R© Architecture Software Developer’s Manual, Volume 3:
Instruction Set Reference, October 2002.

[Int03] Intel. Intel R© C++ Compiler for Linux Systems User’s Guide, 2003. Compiler
version 8.0.

[Int04] Intel. Intel R© Itanium R© 2 Processor Reference Manual for Software Development
and Optimization, May 2004.

[Jai91] Suneel Jain. Circular Scheduling: a new Technique to Perform Software Pipelin-
ing. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 219–228, Toronto, Canada, 1991.

[JCO98] R. D.-C. Ju, J.-F. Collard, and K. Oukbir. Probabilistic Memory Disambiguation
and its Application to Data Speculation. In Proc. of the 3rd Workshop on Interaction
between Compilers and Computer Architectures, San Jose, October 1998.

[JH00] William S. Worley Jr. and Jerry Huck. Guest Viewpoint: Is Out-of-order Out of
Date? In-Stat/MDR Microprocessor Report, February 2000.

[Kar84] N. Karmarkar. A new Polynomial-Time Algorithm for Linear Programming. Pro-
ceedings of the 16th Annual ACM Symposium on Theory of Computing, pages 302–
311, 1984.

[Käs00a] Daniel Kästner. Retargetable Code Optimisation by Integer Linear Programming.
PhD thesis, Saarland University, 2000.

[Käs00b] Daniel Kästner. PROPAN: A Retargetable System for Postpass Optimisations and
Analyses. In Proceedings of the ACM SIGPLAN Workshop on Languages, Compil-
ers and Tools for Embedded Systems (LCTES), Vancouver, Canada, June 2000.

[KB01] Christoph Keßler and Andrzej Bednarski. A Dynamic Programming Approach to
Optimal Integrated Code Generation. In Proceedings of the ACM SIGPLAN Work-
shop on Languages, Compilers and Tools for Embedded Systems (LCTES), pages
165–174, Snowbird, Utah, USA, June 2001.

250 BIBLIOGRAPHY

[KE93] Daniel R. Kerns and Susan J. Eggers. Balanced Scheduling: Instruction Scheduling
When Memory Latency is Uncertain. In Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and Implementation (PLDI), pages
278–289, Albuquerque, NM, USA, June 1993.

[Kha80] L.G. Khachiyan. Polynomial Algorithms in Linear Programming (in Russian).
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 20:51–68, 1980.

[KW01] Daniel Kästner and Sebastian Winkel. ILP-based Instruction Scheduling for IA-
64. In Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Embedded Systems, Snowbird, June 2001.

[Lav97] Daniel M. Lavery. Modulo Scheduling for Control-Intensive General-Purpose Pro-
grams. PhD thesis, University of Illinois at Urbana-Champaign, 1997.

[LC02] Jack Liu and Fred Chow. A Near-Optimal Instruction Scheduler for a Tightly Con-
strained, Variable Instruction Set Embedded Processor. In Proceedings of the In-
ternational Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), pages 9–18, Grenoble, France, October 2002.

[LCDT96] Raymond Lo, Sun Chan, James C. Dehnert, and Ross A. Towle. Aggregate Oper-
ation Movement: A Min-Cut Approach to Global Code Motion. In Proceedings of
the Second International Euro-Par Conference on Parallel Processing, volume II,
pages 801–814, Lyon, France, August 1996. Springer-Verlag.

[LDMM02] Terry Lyon, Eric Delano, Cameron McNairy, and Dean Mulla. Data Cache De-
sign Considerations for the Itanium R© 2 Processor. In Proceedings of the IEEE
International Conference on Computer Design: VLSI in Computers and Processors
(ICCD’02), Freiburg, Germany, September 2002.

[Leu00] Rainer Leupers. Code Generation for Embedded Processors. In Proceedings of the
13th International Symposium on System Synthesis (ISSS), pages 173–178, Madrid,
Spain, September 2000. IEEE Computer Society.

[Li01] Wei Li. Compiling for Itanium Architecture: Triumphs and Challenges.
http://systems.cs.colorado.edu/EPIC1, December 2001. EPIC-1 keynote slides.

[LM97] Rainer Leupers and Peter Marwedel. Time-Constrained Code Compaction for
DSPs. IEEE Transactions on VLSI Systems, 5(1), September 1997.

[LM04] Markus Lorenz and Peter Marwedel. Phase Coupled Code Generation for DSPs
Using a Genetic Algorithm. In Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition (DATE’04), volume II, Paris, France, February
2004. IEEE Computer Society.

BIBLIOGRAPHY 251

[LMD94] Birger Landwehr, Peter Marwedel, and Rainer Dömer. OSCAR: Optimum Si-
multaneous Scheduling, Allocation and Resource Binding Based on Integer Pro-
gramming. In Proceedings of the EURODAC ’94, pages 90–95, Grenoble, France,
September 1994.

[LWT00] Hsien-Hsin Lee, Youfeng Wu, and Gary Tyson. Quantifying Instruction-Level Par-
allelism Limits on an EPIC Architecture. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages 21–
27, Austin, Texas, April 2000.

[MCWL01] Kalyan Muthukumar, Dong-Yuan Chen, Youfeng Wu, and Daniel M. Lavery. Soft-
ware Pipelining of Loops with Early Exits for IA-64. In Proceedings of the
1st Workshop on EPIC Architectures and Compiler Technology (EPIC-1), Austin,
Texas, December 2001.

[MF02] Seda Ogrenci Memik and Farzan Fallah. Accelerated SAT-Based Scheduling of
Control/Data Flow Graphs. In Proceedings of the IEEE International Conference
on Computer Design: VLSI in Computers and Processors (ICCD’02), Freiburg,
Germany, September 2002.

[MG95] P. Marwedel and G. Goossens. Code Generation for Embedded Processors. Kluwer,
Boston; London; Dortrecht, 1995.

[MK02] James McCormick and Allan Knies. A Brief Analysis of the SPEC CPU2000
Benchmarks on the Intel R© Itanium R© 2 Processor. HotChips 14, 2002.

[ML02] John Markoff and Steve Lohr. Intel’s Huge Bet Turns Iffy. The New York Times,
September 29, 2002.

[MLC+92] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A.
Bringmann. Effective Compiler Support for Predicated Execution Using the Hy-
perblock. In Proceedings of the 25th Annual International Symposium on Microar-
chitecture (MICRO), pages 45–54, Portland, Oregon, USA, December 1992.

[MP00] Silvia M. Müller and Wolfgang J. Paul. Computer Architecture. Complexity and
Correctness. Springer, Berlin;Heidelberg;New York, 2000.

[MS03] Cameron McNairy and Don Soltis. Itanium 2 Processor Microarchitecture. IEEE
Micro, March 2003.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, San Francisco, Kalifornien, 1997.

[NH02] Samuel D. Naffziger and Gary Hammond. The Implementation of the Next Gen-
eration 64b ItaniumTM Microprocessor. In Proceedings of the IEEE International
Solid-State Circuits Conference, San Francisco, February 2002.

252 BIBLIOGRAPHY

[Nic85] A. Nicolau. Uniform Parallelism Exploitation in Ordinary Programs. In Interna-
tional Conference on Parallel Processing, pages 614–618. IEEE Computer Society
Press, August 1985.

[NN94] S. Novack and A. Nicolau. Mutation scheduling: A Unified Approach to Compiling
for Fine-Grain Parallelism. In K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau,
and D. Padua, editors, Languages and Compilers for Parallel Computing, pages
16–30. Springer LNCS, 1994.

[NP03] V. Krishna Nandivada and Jens Palsberg. Efficient Spill Code for SDRAM. In Pro-
ceedings of the International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), pages 24–31, San Jose, USA, October 2003.

[NP04] Mayur Naik and Jens Palsberg. Compiling with Code-Size Constraints. ACM Trans-
actions on Embedded Computing Systems (TECS), 3(1):163–181, 2004.

[NR01] M. Narasimhan and J. Ramanujam. A Fast Approach to Computing Exact Solutions
to the Resource-Constrained Scheduling Problem. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 6(4):490–500, 2001.

[NW88] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John
Wiley and Sons, New York, 1988.

[NW89] G.L. Nemhauser and L.A. Wolsey. Integer Programming. In G.L. Nemhauser,
A.H.G. R. Kan, and M.J. Todd, editors, Handbooks in Operations Research and
Management Science, chapter VI, pages 447–527. North-Holland, Amsterdam;
New York; Oxford, 1989.

[Pad73] Manfred W. Padberg. On the Facial Structure of Set Packing Polyhedra. Mathe-
matical Programming, 5:199–215, 1973.

[PGTM99] Matthew A. Postiff, David A. Greene, Gary S. Tyson, and Trevor N. Mudge. The
Limits of Instruction Level Parallelism in SPEC95 Applications. SIGARCH Com-
puter Architecture News, 27(1):31–34, March 1999.

[RDGG04] Hongbo Rong, Alban Douillet, R. Govindarajan, and Guang R. Gao. Code gener-
ation for single-dimension software pipelining of multi-dimensional loops. In Pro-
ceedings of the Second IEEE/ACM International Symposium on Code Generation
and Optimization, Palo Alto, California, 2004. IEEE Computer Society.

[RF93] B.R. Rau and J.A. Fisher. Instruction-Level Parallel Processing: History, Overview,
and Perspective. The Journal of Supercomputing, 7:9–50, 1993.

[RG02] Reid Riedlinger and Tom Grutkowski. The High Bandwidth, 256KB 2nd Level
Cache on an ItaniumTM Microprocessor. In Proceedings of the IEEE International
Solid-State Circuits Conference, San Francisco, February 2002.

BIBLIOGRAPHY 253

[RGSL96] J. Ruttenberg, G.R. Gao, A. Stoutchinin, and W. Lichtenstein. Software Pipelining
Showdown: Optimal vs. Heuristic Methods in a Production Compiler. In Proceed-
ings of the ACM SIGPLAN 1996 Conference on Programming Languages Design
and Implementation (PLDI), pages 1–11, Philadelphia, USA, May 1996.

[RML+01] Ronny Ronen, Avi Mendelson, Konrad Lai, Shih-Lien Lu, Fred Pollack, and John P.
Shen. Coming Challenges in Microarchitecture and Architecture. Proceedings of
the IEEE, 89(3), March 2001.

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, Chich-
ester; New York; Brisbane, 1986.

[Sch03a] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency; Ma-
troids, Trees, Stable Sets, volume B. Springer, Berlin; Heidelberg; New York, 2003.

[Sch03b] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency;
Paths, Flows, Matchings, volume A. Springer, Berlin; Heidelberg; New York, 2003.

[SL96] Mark G. Stoodley and Corinna G. Lee. Software Pipelining Loops with Conditional
Branches. In Proceedings of the 29th Annual ACM/IEEE International Symposium
on Microarchitecture (MICRO), pages 262–273, Paris, France, 1996. IEEE Com-
puter Society.

[SPE00] SPEC CPU 2000 Benchmark. www.spec.org, 2000.

[SR03] Jason Stinson and Stefan Rusu. A 1.5GHz Third Generation Itanium R© 2 Processor.
In Proceedings of the 40th Design Automation Conference, Anaheim, USA, June
2003.

[SRM+94] Michael S. Schlansker, B. Ramakrishna Rau, Scott Mahlke, Vinod Kathail, Richard
Johnson, Sadun Anik, and Santosh G. Abraham. Achieving High Levels of
Instruction-Level Parallelism with Reduced Hardware Complexity. Technical Re-
port HPL-96-120, HP Labs, November 1994.

[SS02] Y. N. Srikant and Priti Shankar, editors. The Compiler Design Handbook: Opti-
mizations and Machine Code Generation. CRC Press, Boca Raton, 2002.

[Ste03] Ingmar Stein. Bundling for IA-64. Technical report, Saarland University, August
2003. FoPra-Bericht. In German.

[SW04] Peter Sanders and Sebastian Winkel. Super Scalar Sample Sort. In Proceedings
of the 12th European Symposium on Algorithms (ESA), Bergen, Norway, 2004.
Springer LNCS.

[TDF+02] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. POWER4 System
Microarchitecture. IBM Journal of Research and Development, 46(1), 2002.

254 BIBLIOGRAPHY

[Tri00] Walter A. Triebel. Itanium Architecture for Software Developers. Intel Press, July
2000.

[vBW01] Peter van Beek and Kent D. Wilken. Fast Optimal Instruction Scheduling for
Single-Issue Processors with Arbitrary Latencies. In Proceedings of the 7th Inter-
national Conference on Principles and Practice of Constraint Programming, pages
625–639, Paphos, Cyprus, 2001. Springer-Verlag.

[WGB94] T.C. Wilson, G.W. Grewal, and D.K. Banerji. An ILP Solution for Simultaneous
Scheduling, Allocation, and Binding in Multiple Block Synthesis. In Proceedings
of the International Conference on Computer Design: VLSI in Computers and Pro-
cessors (ICCD), pages 581–586, Cambridge, USA, October 1994. IEEE Computer
Society Press.

[WGHB95] T. Wilson, G. Grewal, S. Henshall, and D. Banerji. An ILP-Based Approach to
Code Generation. In [MG95], chapter 6, pages 103–118. 1995.

[Win01] Sebastian Winkel. ILP-basierte Instruktionsanordnung für IA-64. Master’s thesis,
Saarland University, 2001. In German.

[Win02] Sebastian Winkel. Optimal Global Scheduling for Itanium Processor Family. In
Proceedings of the EPIC-2 Workshop, Istanbul, November 2002.

[Win04] Sebastian Winkel. Exploring the Performance Potential of Itanium R© Processors
with ILP-based Scheduling. In Proceedings of the Second IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), Palo Alto, March 2004.

[WM95] Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implications of the
Obvious. ACM SIGARCH Computer Architecture News, 23(1):20–24, 1995.

[WM97] R. Wilhelm and D. Maurer. Übersetzerbau. Theorie, Konstruktion, Generierung;
zweite, überarbeitete und erweiterte Auflage. Springer, Berlin; Heidelberg; New
York, 1997. In German.

[YP91] T. Y. Yeh and Y. N. Patt. Two-Level Adaptive Training Branch Prediction. In
Proceedings of the 24th International Symposium on Microarchitecture (MICRO),
pages 51–61, New York, November 1991.

[ZCS03] Min Zhao, Bruce Childers, and Mary Lou Soffa. Predicting the Impact of Op-
timizations for Embedded Systems. In Proceedings of the ACM SIGPLAN 2003
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES),
pages 1–11, San Diego, USA, June 2003.

[Zha96] L. Zhang. SILP. Scheduling and Allocating with Integer Linear Programming. PhD
thesis, Saarland University, 1996.

BIBLIOGRAPHY 255

[ZJC01] Huiyang Zhou, Matthew D. Jennings, and Thomas M. Conte. Tree Traversal
Scheduling: A Global Instruction Scheduling Technique for VLIW/EPIC Proces-
sors. In Proceedings of the 14th International Workshop on Languages and Compil-
ers for Parallel Computing (LCPC), pages 223–238, Cumberland Falls, KY, USA,
August 2001. Springer-Verlag.

[ZTB00] Eckart Zitzler, Jürgen Teich, and Shuvra S. Bhattacharyya. Evolutionary Algo-
rithms for the Synthesis of Embedded Software. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 8(4):452–456, August 2000.

256 BIBLIOGRAPHY

Appendix C

List of Symbols

Alphabetic

αA
n , 98

B, Bentry, Bexit, 52
B(C), 83
BL, 165
B�(A), B�(A), 84
B�(A), B�(A), 128
B∇, 142

C, C(A), 84, 52
c : R → N, 114, 117
c : P(R) → N, 119
c : E → R, 115
conv(X), 68

D−1
+ (S), 52

d
�A
m,n, 192
∆n, 147
∆C

n , 147
∆D

n , 152
δf : V → R, 117

EB , 52
EC , 51
ED, 53
EPR

D , 155
ERAW

D , EWAR
D , EWAW

D , 53

Ereg
D , Emem

D , 53
E�

L, E↓
L 165

E×
n , 132

εAB , 144

f : E → R, 115
f̌ : V → R, 117
|f |, 115
fA, 64

G, GA, 61
GB , 52
GC , 51
Gc, 85
GD, 53
GR, 117
Gs, G∗

s, 85
Gmn(A), 100

HL, 165

κe, 151

lA, 105

N(A), 87
N(C), 87

257

258 APPENDIX C. LIST OF SYMBOLS

N(m), 86
N(P), 87

Oxy(Gi, Gj), 177
oxy(Gi, Gj), 177
Ω, 84

P−1
+ (S), 52

P̃+(D), 138
PAt, 181
PC , 72
PF , 69
PI , 72
Pos, 61
PRV (n), PRB(n), 155
projJ , 81
Φ : P ′ → {v1, . . . , vk}, 181

R, 117
:R, 114, 117
R, 9, 63
Rk, 9, 63

R(n), 9, 63, 114

SC(A), 143
s(n), 53
σ, 63
ST , 151
S̃T , 153
Sxy(Gi, Gj), 176

TA, 64
τ2(P), 95
Θ : V −→ P(B), 127, 61
Θ−1 : B −→ P(V), 113
Θa(n), Θa\x(n), Θx(n),
Θ\x(n), Θ−(n), 127

Θ̃a(n), 131

V , Ventry, Vexit, 51
V ≺, V �, V �, V �, 7

wmn, 53

Nonalphabetic

⊕, 176
≺, �, 52, 61, 97
#, 79

�, 181
‖. . .‖, 176
[. . .], 7

ILP Variables
a↑An , 100, 103
aSi↑A
n , 162

BA
t , 105

ftAB, 143
lCA���B, 186
sA���B , 185
SC
n , 153

SD
n , 153

SDA
n , 153

SD
(sti,n), 154

scAB , 143
xAt
bri

, 142
xAt
n , 100, 103

yAt
e , 118

z↑An , 184

Index

advanced load, 29
affinely independent, 68
ALAT, 29, 44
ASAP/ALAP range, 192
asymmetries, 34

backedge
BBG, 165
DDG, 173

BBG, 52
backedge, 165

block
basic, 51
candidate, 61
clause, 112
collapsed, 142
collapsible, 142
destination, 61
JS, 52
length, 64
predecessor, 52, 83
source, 51, 61

branch
conditional, 142

branch-and-bound
algorithm, 73
tree, 75

bundle
sequence, 176
template, 13
type, 13

bundling, 175

candidate block, 61
acyclic, 170
cyclic, 170

potential, 127
range, valid, 127

CFG, 51
check load, 29
clique

matrix, 80
maximal, 87

code motion
cyclic, 168
global, 54
non-speculative, 54
partial-ready (PR), 154
predicated, 139
unlimited, 87

collapsible, 142
combined check, 151
concurrent definition, 7, 145, 165
conditional sets of instructions, 183
constraints

a-x, 100
block length, 64, 105
bundling, 181
classical resource, 113
hierarchical resource, 114
inflow, 120
network flow resource, 114
network inflow resource, 125
precedence, 9, 63
redundant, 78
relaxed a-x, 158
resource, 9, 63

contiguous set, 128
control

dependence, 51
equivalence, 52

259

260 INDEX

controlling compare, 139
convex hull, 68
copy

compensation, 54
latest scheduled, 156

critical path, 9
cut, 73
cyclic state, 171

data ready, 57
DDG, 53

backedge, 173
predecessor, 53

definition, 7
dependence

anti, 8
control, 51
data, 7
dominating, 155
inter-group, 13
intra-group, 13
may-, 151
memory, 7
must-, 151
output, 8
RAW, 8, 159
register, 7
true, 8
WAR, 8, 159
WAW, 8, 159

dispersal, 39
rules, 40
window, 39

dispersal window
type, 114

dominance, 52
dual issue, 40
duality, 71

edge
BBG, 52
data dependence, 53
fall-through, 143

JS, 52, 132
loop exit, 165
redundant DDG, 53
type 1, 85
type 2, 86

entry points, 51
execution unit, 9, 33

abstract, 33
type, 9, 33

exit points, 51
extreme points, 68

face, 68
proper, 68

facet, 68
integral, 73

facet-inducing, 68
fathomed subproblems, 75
feasible region, 69
flip-flop, 107, 110
flow variable, 118
fractional node-packing polytope, 80
functional units, 9

graph
basic block, 52
constraint, 85
control flow, 51
data dependence, 53
perfect, 80
skeleton digraph, 85

group-indexed formulation, 188

hierarchy of abstract execution units, 34

if-conversion, 16, 56
in-order execution, 32
incumbent, 75
inequality

irrelevant, 69
necessary, 69
valid, 68

inflow, 115
assignment, 117

INDEX 261

variable, 118
instruction

A-type, 20
B-type, 22
bundle, 12
data ready, 57
F-type, 22
I-type, 22
literal, 107, 110
M-type, 22
predicated, 137

instruction group, 13
dynamic, 13, 40
feasible, 114
static, 13

instruction set architecture (ISA), 3, 11
integer linear program, 72
integrality gap, 198
issue group, 40
issue ports, 39
issue width, 33

joins, 52

latency, 9, 53, 84
bypass, 42
long, 62
propagated, 185
total, 42

linear program, 69
linearly independent, 68
live, 8
live range, 8
load

advanced, 29
check, 29
control speculative, 27

loop, 165
body, 165
header, 165
inner, 165
nested, 165

maximal renaming premise, 145

micro-scheduling, 176
minimum distance (DDG), 192
multiply executable, 160
mutually exclusive instruction sets, 147

NaT bit, 28
network flow

feasible, 115
maximal, 115
problem, 115
problem, multi-source, 117

node
capacity, 115

node cut, 119
atomic, 123
basic, 124
complete, 119
tight, 123

node packing, 80
problem, 80, 85

non-exclusive use forking, 149
nop, 14

objective function, 69
bound on the, 75

operand
destination, 17
source, 17

optimization problem, 69
order-indexed formulation, 212
out-of-order completion, 32

partial-ready, 154
path

complete, 52
control flow, 52
hot, 50
maximal, 87
program, 52

PCGS, 64
PCGS-B, 65
PCGS-B*, 86
phase coupling problem, 50, 207
polyhedron, 68

262 INDEX

polytope, 68
bounded, 68
dimension, 68
full-dimensional, 68
inflow, 119
integral, 72
polynomial sized, 78
tight, 73

postdominance, 52
postdominance frontier, 138
predicate promotion, 140
predicate register initialization, 139
predicate-controlled, 138
problem

dual, 71
infeasible, 69
unbounded, 69

procedure call, 141
program point, 7
projection

of a polytope, 82, 102, 123

qualifying predicate, 16

RCGS, 64
RCGS-B, 65
reaching definitions, 7, 145
recovery code, 28, 31
register stack

engine, 14
frame, 14

registers
architected, 8, 14
destination, 17
physical, 8
source, 17
stacked, 14

relaxation, 72
LP, 72

reserved cycles, 61
resource

flow network, 117
oversubscription, 114

resource binding
early, 113
late, 114

schedule
feasible, 63
global, 63
local, 9
relaxed, 193

scheduled direct successor, 143
scheduling

global, 54
local, 9
region, 51
scope, 51

scheduling position, 61, 84
second phase of optimization, 174
sequencing, 176
simplex algorithm, 70
slot, 12

type, 12
solution

feasible, 69
optimal, 69

solution efficiency, 73
speculation

control, 27
data, 29

split issue, 40
splits, 52
stall, 32

inter-block, 62
intra-block, 62, 187
minimization, 175
modeling, 185
pipeline, 43
speculative, 44

storage resource, 7
structurally infeasible, 180

target processor, 9
template, 13
temporary, 7

INDEX 263

time-indexed formulation, 188
totally unimodular, 80
tournament, 87

maximal, 87
transitive closure, 85
transitively orientable, 80

use, 7
exclusive, 145
non-exclusive, 145

