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Abstract

For real time systems not only the logical function is important
but also the timing behavior, i.e. hard real time systems must react
inside their deadlines. To guarantee this it is necessary to know upper
bounds for the worst case execution times (WCETs). The accuracy
of the prediction of WCETs depends strongly on the ability to model
the features of the target processor.

Cache memories, pipelines and parallel functional units are mi-
croarchitectural components which are responsible for the speed gain
of modern processors. It is not trivial to determine their influence
when predicting the worst case execution time of programs.

This report describes a method to predict the behavior of pipelined
superscalar processors and an implementation of this approach for the
SuperSPARC I microprocessor. The results of a preceding cache be-
havior prediction is taken into account. The method uses static pro-
gram analysis. The implementation has been realized using the PAG
(Program Analyzer Generator) tool. The approach is independent of
the source language as it works directly on the instruction level.

1 Introduction

The correctness of a hard real-time system depends not only on the logical
functionality, the programs must also satisfy the temporal requirements dic-
tated by the physical environment. A systematic approach to check whether
these temporal requirements are met is schedulability analysis. Information
necessary to analyze the schedulability of a given set of tasks embraces upper
bounds for the worst case execution times (WCETS) of the particular tasks.
In general, it is not possible to determine these upper bounds by measure-
ments or simulation, because all possible combinations of input values would
have to be considered!. The presented work uses static program analysis to
compute the WCET of programs. Our method uses abstract interpretation,
a semantics based method of static program analysis.

To obtain sharp bounds for the WCET it is necessary to consider the
features of the target processor. Modern processors gain speed through an
increase of their clock rate, the use of caches and pipelines, and the parallel
execution of instructions.

The influence of the clock rate is clear. To consider the remaining three
features within WCET estimation isn’t trivial at all. Caches have been ad-
dressed in the work of Christian Ferdinand [7, 8, 9]. In this report the predic-
tion of pipeline behavior combined with parallel execution on a superscalar

' The worst case input is in general unknown.



microprocessor is presented. For a first implementation of the superscalar
pipeline analysis [22, 23] the SuperSPARC I microprocessor [4, 25, 1] has
been chosen.

To derive the WCET of a program the worst case program path and
the worst case execution time of the instructions of this path has to be
known. Clearly there is a dependence between these two. The worst case
path depends on the execution time of the instructions. Unfortunately in
times of microarchitectural features like cache and pipelines, there is also
a dependence in the other direction. The execution time of instructions
depends on the taken path (history of execution).

We solve this dilemma by predicting the worst case execution time of in-
structions for all paths' (microarchitectural analysis) and deciding the worst
case path (path analysis) based upon this results. This report focus on the
microarchitectural analysis part. The path analysis is treated in [26, 27].

1.1 Analysis framework

The microarchitectural part of the execution time prediction is divided into
several steps. First of all the control flow information is extracted from the
executable program. This information is used by all later steps. At this point
a value analysis can be started. This can be necessary to predict the addresses
of memory references when analyzing data cache behavior. Thereafter the
cache analyzer classifies memory accesses as cache hits or cache misses. This
classification is used by the pipeline analyzer. The results of the pipeline
analysis are the latencies? of any instruction in the considered path classes.
These results are used by the path analysis to predict the worst case path
and thereby an upper bound for the actual WCET of the analyzed program.
The interplay of the different analyses is shown in Figure 1.

2 Superscalar Pipelines

2.1 Principle of Pipelines

The idea of pipelining is to overlap the execution of instructions. This is
accomplished by dividing the execution of instructions into several steps
(pipeline stages) and by simultaneous processing of different stages. E.g.

'We do not explicitly compute the execution time for each path, but distinguish only
between first and other iterations of loops (and recursions), thereby building a finite set
of path classes. For details see Section 6 and [19].

2No. of elapsed clock cycles until instructions have entered the pipeline.
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Figure 1: Analysis framework

if each instruction is divided into five stages there can be up to five simulta-
neously processed instructions, i.e. the first instruction is in stage five, the
second in stage four, and so on.

The pipeline in Figure 2 consist of five pipeline levels. Each stage rep-
resents one phase of instruction execution: Fetch, Decode, Frecute, Memory
Access, and Write Back.

The tasks of the individual pipeline stages of this example are described
in the following.

2.1.1 Fetch

The task of the FI (Fetch Instruction) stage in the pipeline is to provide
the processor with instructions. Therefore, instructions are fetched from
main or cache memory. The duration of this stage depends on whether
these instructions are in the cache or not, i.e. in case of a cache miss the
cache miss penalty is added. The typical cache miss penalty increases the
processing time of this stage by factor ten. During the processing of a cache
miss the earlier instructions, i.e. the ones in higher pipeline stages, can still
advance through the pipeline. The resulting “holes” in the pipeline are called
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FI1 DI EX MEM | WB
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Figure 2: Pipelined execution of instructions in a five stage pipeline: FI
(Fetch Instruction), DI (Decode Instruction), EX (Ezecute), MEM (Memory
access) and WB (Write Back).

pipeline bubbles. In the fetch instruction stage of the pipeline all instructions
are treated equally. The processor does not yet care (even doesn’t know)
about the different types of instructions.

2.1.2 Decode

The main task of this stage is to identify the individual instructions and
their resource requirements. The type of an instruction determines which
functional units are required to execute these instruction. The operands of
an instruction are registers or immediate values.

Since the available resources are limited, there is potential for conflict. To
resolve this and other kinds of conflicts (see Subsection 2.2) pipeline bubbles
are inserted between the competing instructions.

A further task of this pipeline stage is to prepare the operand values for
further computation, i.e. the appropriate registers are read and the immedi-
ate values are converted if necessary.

2.1.3 Execute

In this stage the actual computation is done. These computations can em-
brace one or more of the following actions:

e Arithmetic/logic computations by the ALU (Arithmetic Logic Unit)
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e Address computation for subsequent memory accesses

e Destination address computation for control flow changes, e. g. branches

For many processors the duration of this pipeline stage depends on the
complexity of the particular computations.
2.1.4 Memory Access

The data access to main memory or cache memory is done in this pipeline
stage. This means that the source or destination address must have been
already computed. In case of a data cache miss the duration of this stage is
prolonged by the miss penalty.

2.1.5 Write Back

After the computation/arrival of the results these are written to their des-
tination, e.g. a register, the data cache or the main memory (maybe via a
store buffer). This is usually the last execution step of an instruction.

2.2 Hazards and Stalls

The ideal case for the pipelined execution of instructions is as follows:

e The pipeline can always be filled with instructions

e The pipeline doesn’t stall

Unfortunately, this is not always the case. As mentioned earlier there are
several possible reasons for a delay of the pipelined processing of instructions.
The potential reasons for a pipeline stall are called hazards. There are three
kinds of hazards:

1. Structural hazards are the situations where resource conflicts arise.
2. Data hazards are caused by data dependences.
3. Control hazards can arise in case of control flow changes.

The occurrence of a hazard can cause a pipeline stall, i.e. the affected
instructions wait until the earlier instructions have advanced, so that the
hazard vanishes.



Clock
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2.2.1 Structural Hazards

Most modern processors with pipelines do not have enough resources (e.g.
functional units) to execute all possible combinations of instructions fully
overlapped. Thus resource conflicts occur. The combinations which can
lead to resource conflicts are called structural hazards. If these hazards are
ezposed (i.e. there are no reasons, e. g. a cache miss, that prevent the involved
instructions from occupying the same resources simultaneously) the pipeline
is stalled to avoid the concurrent access.

Consider a processor with only one memory port. While one instruction
uses this port to access data in memory, it is impossible to fetch another in-
struction through this port. The resulting situation for our example pipeline
is displayed in Figure 3.

FI DI EX |MEM | WB
FI DI EX MEM | WB
FI DI EX MEM | WB
Stall FI DI EX MEM | WB
FI1 DI EX MEM

Figure 3: Structural hazard — LOAD on a microprocessor with one memory
port

2.2.2 Data Hazards

The predetermined order of operand accesses of sequential instructions can
be destroyed due to overlapped execution in a pipeline. Whenever this effect
can lead to miscalculations it is called a data hazard.

Consider our example pipeline. Registers are read in DI and written in
WB. That means the registers of the second instruction are read before the
registers of the first are written. This causes no problems as long as the
operands are independent. Otherwise, a data hazard can arise.



Example 2.1
Consider the following example:

ADD R,,R;,Ry
SUB Ry,R;,Rs

The ADD instruction adds the two values in Ry and Rg and writes the result
into R;. The SUB instruction subtracts the values of Ry and R; and writes the
result into Rs. The resulting situation for our example processor is displayed
in Figure 4.

Clock
ADD R, RyRi | FI | DI | EX | MEM | WB
SUB Ru,Ri,Rs FI rea?lIRl EX | MEM | WB

Figure 4: Data hazard

While SUB reads its operands in the DI pipeline stage, ADD is in EX. The
register Ry is not written until ADD is in WB. O

The problem described above is usually solved using forwarding paths, i.e.
the results of the first instruction are immediately forwarded from the execute
pipeline stage to the decode, execute and memory stages of the subsequent
instruction. Where this solution is not possible a pipeline bubble must be
inserted.

Let A and B be two consecutive instructions. The three possible types of
data hazards are as follows:

e RAW, read after write (dependence)—B tries to read out of a location
which is not yet written by A. This is the most common case of a data
hazard. It is the case of the above example.

e WAR, write after read (antidependence)—B wants to write to a desti-
nation which is not yet read by A. Without prevention A would read
the wrong new value. This case cannot occur in our example pipeline,
since all write operations are performed in the last pipeline stage.

o WAW, write after write (output dependence)—B wants to write to a
destination that is not yet written by A. Without prevention the value
written by B would be overwritten. This case can only emerge in a
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pipeline where write operations are permitted in more than one stage
or in out-of-order execution processors.

The RAR (read after read) case is not a hazard, since no change of data
OCCUurs.

2.2.3 Control Hazards

Control flow changes (e.g. jumps or branches) can cause pipeline stalls if the
destination address is not known early enough. These situations are called
control hazards. There are two possible reasons why the destination address
might not be known in time:

e The destination address is not yet computed.

e The condition of a conditional control flow change (e.g. a branch) is
not yet resolved.

Example 2.2
Let BC be a conditional branch, T,T1,T2 the jump target and its successors,
S, S1, S2 the sequential successors of the branch instruction:

BC L
S

S1
52

T1
T2

The resulting situation for the taken branch is displayed in Figure 5. O

To reduce the influence of control hazards on the system throughput
a concept called delayed control transfer is used in many microprocessors.
The sequential successor of the branch is the delay instruction. The delay
instruction is executed regardless of the branch direction, i.e. even if the
branch is taken the immediate sequential successor of the branch is executed.
It is up to the compiler to find a proper delay instruction (if anything else
fails a NOP instruction is used).



Clock

BC FI DI EX MEM | WB

S/T FI FI

/ toteh s | St | goren | DI EX | MEM | WB

T1 stall stall FI DI EX | MEM | WB
T2 stall stall FI DI EX | MEM

Figure 5: Control hazard—taken branch. Initially only the sequential suc-
cessor (S) is fetched. After identifying the branch, resolving the branch
direction, and computing the destination address the target instruction (T)
is fetched.

2.3 Superscalar Execution

A measure for the throughput of a processor is the CPI value (Cycles Per
Instruction). The average cycles per instruction of a microprocessor for a
program P are:

Pl — Nr. of cycles for P

Nr. of instructions in P

With pipelining it is possible to reach at best a CPI value of 1. To in-
crease the throughput, i.e. decrease the CPI value further it is necessary to
introduce parallel execution. The parallelization can be done statically or
dynamically. The static approach is used in e.g. VLIW (Very Large Instruc-
tion Word) processors [11], where the compiler is responsible for selecting
the instructions to execute simultaneously. In superscalar microprocessors
the dynamic approach is used, i.e. the processor selects the instructions to
be processed concurrently during run time.

The additional tasks of a superscalar pipeline are presented in the follow-
ing paragraphs which are structured according to the stages of our example
pipeline.

Fetch For superscalar processors more than one instruction should be avail-
able for concurrent execution. The already fetched but not yet started in-
structions are usually held in a prefetch queue, which is filled by fetching
more instructions than the processor actually starts. If the prefetch queue is
large enough, the effect of a cache miss might be reduced.




Decode Additional tasks are selection and grouping of instructions for con-
current execution. Therefore, the resource conflicts and data dependences
between and inside the groups of instructions must be resolved. Also control
flow changes have to be taken into account.

Execute In this phase grouped instructions are executed concurrently. To
allow data dependences between grouped instructions it is necessary to split
this phase into multiple pipeline stages.

Memory Access The number of data memory accesses is limited by the
number of memory ports. Usually groups are chosen, so that there is only
one data memory reference per group.

Write Back If groups with multiple writing instructions are allowed WAW
hazards must be prevented.

3 A real Pipeline

The above given description of superscalar pipelines are rather general. In
a real pipeline like the one of the SuperSPARC I microprocessor some pecu-
liarities can be observed. Some of these are discussed now.

3.1 Integer Pipeline

The SuperSPARC 1 is a highly integrated superscalar RISC microprocessor,
fully compatible with the SPARC version 8 architecture [24]. It executes up
to three instructions concurrently. It has a main or integer pipeline and a
floating point pipeline. The stages of the main pipeline are shown in Table 1.

3.2 Floating Point Pipeline

The processing of a floating point instruction of the SuperSPARC I starts in
the first part of the main pipeline and continues in the floating point pipeline.
The transfer from the integer pipeline to the floating point pipeline is done
after the decode phase. The stages of the floating point pipeline are shown
in Table 2.

Floating point operands are classified either as normal or subnormal
operands depending on the range of their values [11]. The floating point
pipeline of the SuperSPARC T is capable to execute floating point opera-
tions with normal and subnormal operands. The duration of some floating
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Stage | Tasks
FO e Fetch of up to 4 instructions in case of cache
hit, or up to 8 instructions from memory

F1 e Filling of the prefetch queue

DO e Selection of instructions from the prefetch queue to
form a group of concurrently executable instructions

D1 e Assignment of functional units and register ports
to instructions

e Computation of branch destination addresses

e Reading of address registers for memory accesses

D2 e Reading of operand registers
e Computation of virtual addresses for memory references

EO e Execution of integer computations in
Arithmetic Logic Unit 1 (ALU1)
e Start of data cache accesses
e Transfer of floating point instructions to the FPU

E1l e Execution of dependent instructions
in the same group in the cascaded ALU2
e Completion of data cache accesses

WB | e Write back of integer results
Table 1: Stages of the integer pipeline.

point operations depends on the value of its operands, since operations on
subnormal values are more complicated.

4 Pipeline Analysis by Abstract Interpreta-
tion

Abstract interpretation is a well developed theory of static program analysis

(6, 28]. It is semantics based, thus supporting correctness proofs of pro-

gram analyses. Abstract interpretation amounts to performing a program’s
computations using value descriptions or abstract values in place of concrete

11



Stage | Tasks
FD Decode Floating point operations

FRD | Read FP registers
FE Execution of FP instructions

FL Rounding and normalization of results

FWB | Write back of floating point results
Table 2: Stages of the floating point pipeline.

values.

One reason for using abstract values instead of concrete ones is com-
putability: to ensure that analysis results are obtained in finite time. An-
other is to obtain results that describe the result of computations on a set of
possible (e.g., all) inputs.

The behavior of a program (including its pipeline behavior) is given by
the (formal) semantics of the program. Since we are interested in the pipeline
behavior of a program we consider an operational pipeline level program se-
mantics. To predict the pipeline behavior of a program, we approximate its
“collecting semantics!”. The collecting semantics gives the set of all program
(pipeline) states for a given program point. Such information combined with
a path analysis can be used to derive WCET-bounds of programs. This
approach has successfully been applied to predict the cache behavior of pro-
grams [7, 9, 27].

The approach works as follows: in a first step, we define the “concrete
pipeline semantics” of programs. The concrete pipeline semantics is a simpli-
fied version of the operational pipeline level program semantics that describes
only the interesting aspects of the pipeline behavior but ignores other details
of execution, like input values, register values, results of computations, etc.
In this way each real pipeline state is represented by a concrete pipeline state.
In the next step, we define the “abstract pipeline semantics” that “collects”
all occurring concrete pipeline states for each program point.

From the construction of the abstract semantics follows that all concrete
pipeline states that are included in the collecting semantics for a given pro-
gram point are also included in the abstract semantics [7]. An abstract

'In [6], the term “static semantics” is used for this.
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pipeline state at a program point may contain concrete pipeline states that
cannot occur at this point, due to infeasible paths. This can reduce the
precision of the analysis but doesn’t affect the correctness (see [7]).

The fact that the concrete pipeline semantics ignores some details of exe-
cution doesn’t mean that the analysis can‘t benefit from additional informa-
tion. The results of the value analysis phase for instance can be used either
immediately (e.g. to classify floating point operands as normal or subnormal)
or indirect (e.g. via a data cache analysis).

The computation of the abstract semantics has been implemented with
the help of the program analyzer generator PAG [18], which allows to generate
a program analyzer from a description of the abstract domain (here, sets of
concrete pipeline states) and of the abstract semantic functions.

5 Pipeline Semantics

Before we present our pipeline semantics, which allows to analyze the be-
havior of programs on superscalar pipelines, we try to motivate its design.
The pipeline semantics must at least allow to detect all kinds of hazards
and to model the dynamic decisions of the processor (e.g. the selection of
instructions for concurrent execution).

To detect structural hazards the resource usage of instructions has to be
known. For most modern processors, memory access is too slow to cause data
hazards when the data passes through memory. Dependences over cache en-
tries can be treated within a data cache/store buffer analysis [9]. We assume
that data hazards occur only in case of dependences between data regis-
ters. They can be detected by modeling read and write ports of registers as
resources and checking for dependences, antidependences and output depen-
dences. We can also detect control hazards with information about resource
usage: A control transfer instruction (CTI) must write to a special resource,
e.g. the next program counter register. Thus a CTI can be identified and the
availability of the target address can be predicted.

To model the dynamic processor decisions (regarding the pipeline) the
foundations of this decisions must be observed. These foundations can be
both static (e.g. resource demand of instructions) and dynamic (e.g. state
of resources). For the selection of instructions for concurrent execution the
state of the prefetch queue and the cache behavior is important. The cache
behavior is predicted by a separate cache analysis [8]. To model the prefetch
queue the pipeline semantics must allow the description of resources with
their own state.

Our approach is based on the pipeline analysis framework in [7]. We

13



consider an in-order superscalar processor that can execute a group of up to
N instructions concurrently.

Traditionally a kind of static reservation table for resources is used to
predict pipeline behavior. For superscalar processors this is not sufficient,
since the assignment of resources to pipeline stages of instructions can change
dynamically during the grouping process and the (predicted) state of some
resources must be known.

5.1 Concrete Pipeline Semantics

Definition 5.1 (resource association)

Let R = {ry,...,rm} be the set of resources and resource types of the pro-
cessor. Let PS be the set of pipeline stages. A pair (s, {rj,,...,rj,}) with
s € PSandry,...,r;, € Risa resource association. R = (PS x2%) denotes
the set of all resource associations. a

Definition 5.2 (resource association sequence)
A sequence 7 € R = R* is a resource association sequence. Let “.” be the
concatenation operator for resource associations. O

Definition 5.3

A resource demand sequence is a resource association sequence describing the
statically given resource demand of an instruction (type).

A resource allocation sequence is a resource association sequence describing
an actual assignment of resources to an instruction. It depends on the current
state of the pipeline. O

Resource allocation sequences always start with the resource allocation
for the current pipeline stage, i.e. resource allocations of previous pipeline
stages are removed, when the instruction advances through the pipeline.

Example 5.1
Consider an instruction with the following resource demand sequence

(517{r$17"' 7T$k})'(527{Ty17"' 7Ty1})'
(83, {})-(Sa, {rayy vy o, }) (S {Tayyevn s 0 }) e

This instruction needs the resource types or resources {ry,, - ,rz, } in
pipeline stage s, before {r,,,...,r,} are needed in stage s,. The instruc-
tion requires no resources in stage s3. It stays two cycles in s, and needs
{r.,...,72,} both times before it continues through the remaining stages.
O

14



The resource demand sequence of an instruction depends only on the
instruction type (e.g. ADD or DIV) and the operand types (e.g. register or
immediate value).

How the resource demands of an instruction can be satisfied depends on
the actual situation in the pipeline. The initial resource allocation sequence
of an instruction can differ from the resource demand sequence of the type
of this instruction:

e Where multiple resources of a resource type are available a particular
instance is chosen.

e The allocation of a resource can occur in a higher pipeline stage.
e The number of repetitions of pipeline stages can be increased.

A concrete pipeline state describes the occupancy of the pipeline stages by
instructions, the current and future resource allocations for these instructions
and the state of some special resources, e.g. the prefetch queue.

Definition 5.4 (concrete pipeline state)

A concrete pipeline state p consists of the resource allocation sequences of
the up to N % PS (up to N instructions per pipeline stage) instructions which
are currently in the pipeline ry € Ry = ((R)V)™ and the state sgp € Sg of
some resources, i.e. p = (14, sg). P denotes the set of all possible concrete
pipeline states’. O

The concrete pipeline state changes when a new instruction enters the
pipeline. The resulting new pipeline state depends on the previous pipeline
state, on the (resource demand sequence of the) new instruction and on the
states of other processor parts (e.g. the state of the cache memory).

Definition 5.5 (update function)
Let IS be the instruction set of the processor.

The (concrete) update function U : P x IS — P models the effect on the
concrete pipeline state caused by the entrance of a new instruction into the
pipeline. O

Definition 5.6 (cycles function)

The cycles function C : P x IS — INy computes the number of cycles needed
by a new instruction to enter the pipeline, i.e. the number of cycles needed
to reach the pipeline state U(p, 7). O

! This set is finite. The length of the resource allocation sequences is limited, because
the number of pipeline stages is finite and the number of repetitions of pipeline stages is
also limited. The sets of possible states of resources are finite.
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Definition 5.7 (empty function)

The pipeline empty function £ : P — INg computes the number of cycles
which are needed to flush the pipeline, i.e. the number of cycles needed to
reach the empty pipeline state P.. O

5.2 Control Flow Representation

We represent, programs by control flow graphs consisting of nodes and typed
edges. The nodes represent instructions. Each instruction is statically as-
signed a resource demand sequence, i.e. there exists a mapping from control
flow nodes to resource demand sequences: res, : V — R.

We extend the update function U to sequences of instructions:

Up, (i, iky) =U(L .. UUDP, 1)y i2),s - . k)

The pipeline behavior for a path (iy,...,4;) in the control flow graph is
given by applying U to the empty pipeline state p. and the concatenation
of all instructions paired with the appropriate processor state information
along the path:

U(pe, (i1, .. 1))

5.3 Abstract Semantics

There are only finitely many concrete pipeline states and their representation
is usually small. Therefore, we can use sets of concrete pipeline states as
the domain for our abstract interpretation and do not need space efficient
descriptions of these sets.

Definition 5.8 (abstract pipeline state)

An abstract pipeline state p C P is a set of concrete pipeline states. p=2F
the set of all abstract pipeline states denotes the abstract domain. The
abstract domain P forms a complete lattice, i.e. the power set lattice, with
set inclusion C as its partial order, set union U as its least upper bound, set
intersection N as is greatest lower bound, L., = 0 as its least element and
Teon = 28 as its greatest element. O

An abstract pipeline state at a program point reflects all concrete pipeline
states that may occur at this point. It may contain concrete states that
cannot occur at this point, due to infeasible paths.

The abstract version of the concrete pipeline update function is a canon-
ical extension of the concrete pipeline update function to sets:

Up,i) = {U(p,i) | p € p}

16



Definition 5.9 (pipeline join function)

A join function combines two abstract pipeline states. The join function is
given by the least upper bound of the abstract domain. The pipeline join
function j : P x P — P is set union:

~

T (P1,P2) = P1 U Do
O

The join function is used to union the abstract pipeline states of two or
more merging paths. To combine more than two values we extend the join
function to sequences of instructions:

~

j(ﬁla"' 7]377,) = j(ﬁlaj(ﬁ%'” 7j(]5n—17]§n)"')

5.4 Pipeline Analysis

In order to solve the pipeline analysis for a program, one can construct a
system of recursive equations from its control flow graph. In the program
analyzer generator PAG this is only done implicitly.

The variables in the equation system stand for abstract pipeline states for
program points. For every control flow node k, representing instruction
there is an equation pj, = Z;l(pred(k), ix). If k has only one direct predecessor
k', then pred(k) = py. If k has more than one direct predecessors ki, ..., kg,
then there is an equation py = j(ﬁkl, vy Dk, ), and pred(k) = py. PAG
derives the solution of the abstract interpretation by fixed point iteration.
The iteration starts with the empty abstract pipeline state.

The abstract update function describes the effect of an instruction on
an abstract pipeline state. For each concrete pipeline state in an abstract
pipeline state the pipeline cycles function or the pipeline empty function is
applied to determine the elapsed clock cycles. The solution of the abstract
interpretation is understood in the following way: An abstract pipeline state
p at a control flow node v reflects all concrete pipeline states that may occur
whenever control reaches v.

Let p1,...,p, be the abstract pipeline states at the immediate predeces-

sors of v and let
pred = j(ﬁl, o Pn)

The maximal number of clock cycles needed for the instruction 7 at v to
enter the pipeline is determined with the help of the cycle function as defined
in 5.1:

maz{C(ps,1) | p» € pred}
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The maximal number of clock cycles needed to finish all pending instruc-
tions of the abstract pipeline state p is determined with the help of the empty
function as defined in Section 5.1

mazx{€(p) | p € p}

5.5 Example: SuperSPARC I

In the following an example of an update function for the SuperSPARC I
is given. The update function is provided with the pipeline state p and the
new instruction ni. Since the results of a preceding cache analysis are in-
corporated the cache state isn’t included in sg, but an explicit parameter
cr € CR = {hit,miss} is used. The update function needs two more infor-
mations: the address of the new instruction which is needed to model the
prefetch queue behavior, and an indicator that distinguishes normal and hard
instructions (hard instructions can’t be executed with others in one group).
The two possible values of the indicator are open (the group of concurrently
executed instructions can still be enhanced) and closed (the group can’t
be enhanced). The instruction address depends on the particular instruc-
tion, while the indicator depends on the instruction type. They are accessed
via the functions get_address() and get_ind() respectively. We model the
prefetch queue as a resource with its own state. The following notation is
used: p.sp denotes the prefetch queue state, p.Ry4[s| denotes the resource
allocation sequences of the instructions in stage s, nPC"™ denotes the write
port of the next program counter register.

U(p,ni,cr):

newgrp_stat := get_ind(ni); // closed if ni is a
// hard instruction open otherwise

addr := get_address(ni);
if head(p.sr) # addr AND cr = miss then
// ni neither at top of prefetch queue, nor in cache
// = fetch from memory (let the cache_miss_penalty elapse)
for j := 1 to cache_miss_penalty do
// Either insert a pipeline bubble
// or in case of a stall elapse one cycle
p := insert_pipeline_bubble(p);
od
// Enqueue up to 8 instructions
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p.sg := enq(p.Sg, fetch_from _memory(addr));
fi
if er = hit AND head(p.sg) # addr
// ni in cache but not yet in prefetch queue = fetch from cache
// Enqueue up to 4 instructions (cache hits only)
p.sg := enq(p.sg, fetch_from cache(addr));
fi
// Allocate resources for new instruction
new_res_alloc := allocate res(res_demand(ni), p);
last_res_alloc := p.Ry[FO0;
if res_confl(new _res_alloc,last_res_alloc) OR // (A)
data_dep(new _res_alloc,last_res_alloc) // (B)
OR newgrp_stat = closed
OR grp_stat = closed then
// ni can’t join an existing group
newgrp := create_group(ni);
newgrp-created := True;
if nPC" in new_res_alloc then // (C)
// ni changes the control flow

newgrp_stat := closed,
fi

fi
if newgrp_created then
// Free FO for new group
p = advance_pipeline(p);
fi
while structural hazard(new_res_alloc, p) OR
data_hazard(new _res_alloc, p) OR // (D)
control_hazard(new_res_alloc, p) do
p := insert_pipeline_bubble(p) ;
od
if newgrp_created then
// Let new group enter the pipeline
p.R4[FO0] := newgrp;
else
// Let ni join existing group
p = join_group(p, ni);
if grp_full(p.R4[F0]) then
newgrp_stat := closed,;

fi

19



grp_stat := newgrp-_stat;
return(p);

We model the grouping process by a set of rules. These rules are based
upon the resource demand sequences of available instructions and the re-
source allocation sequences of instructions which are already deeper in the
pipeline.

Example 5.2

One of the rules that are applied in res_confl() (position (A)) in the update
function example says that two instructions that access the data cache cannot
be grouped together.

A rule applied in data_dep() (position (B)) says that instructions which
access a read port of a data register in stage D1 (i. e. load or store instructions)
cannot be grouped with a preceding instruction that uses the write port of
this particular data register.

The rule applied at position (C) says that an instruction which uses the
write port of the next program counter register (e.g. branches) is always the
last in a group.

These rules prevent arising problems from resource conflicts, data depen-
dences, and control flow changes respectively. O

While the application of all these rules can be triggered by the resource al-
locations of instructions, it is not always necessary to exhaustively search the
resource allocation or resource demand sequences for a triggering resource.
From the resource demand sequences of the instruction types some necessary
preconditions can be precomputed.

Example 5.3

Consider the first rule of Example 5.2. Only the resource allocation sequence
of the various types of load and store instructions contain the data cache.
Therefore, we can trigger this rule just by looking at the instruction type. In
this case the precondition is not only neccesary but also sufficient. a

We model the stall behavior of the SuperSPARC T also by rules.

Example 5.4

One of the rules applied in data_hazard() (position (D)) in the update func-
tion example says that a pipeline bubble has to be inserted between a group
wherein the write port of a data register R, and the ALU in stage E1 is used
and a group which uses the read port of R, in stage D1. O

In some special cases the documentation of the SuperSPARC I was insuf-
ficient for our purposes. Therefore pessimism is introduced in the analyzer.
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This pessimism results in pessimistic concrete pipeline states. A pessimistic
concrete pipeline state contains more resources than the instruction actually
uses or allocates resources for more pipeline stages than are actually occupied
by the instruction.

Example 5.5
Consider the following SuperSPARC I instruction sequence:

A 8000: ADD Ry,R,,R3
B 8004: ADD Ry,Rs,Ry
C 8008: LD [Ry+4],Rs
D 8012: SUB Rg,Rs,Rs

The resource demand sequences for these instructions are shown in Ta-
ble 3. R], Ry are the read and write ports of data register z. DC stands for
the data cache and ALU for the resource type arithmetic logic unit.

DL |D2 |E0 El | WB
Al- |RIR,|R,R,LALU |- |RY
B |- rRC | RLRIALU |- | RY
¢|R; |R; |DC DC | RY
D |- rR; | RLR,,ALU |- | RY

Table 3: Resource demand sequences of Example 5.5.

Figure 6 on the following page shows the dynamic change of the resource
allocation sequences and the prefetch queue state for this example. The
prefetch queue state is modeled by a sequence of instruction addresses (shown
in the box under the appropriate call to the update function). The first
address is on top of the queue.

In pipeline state p; a new group is created, which contains just A. The
prefetch queue is filled from the cache and A is dequeued.

In ps B joins the group of A. A dynamic change of the resource alloca-
tion against the statically assigned resource demand for instruction B occurs.
Since the result of B depends on the result of A, B must use the cascaded
ALU (ALU,) and not ALU;. B is dequeued from the prefetch queue.

In ps a pipeline bubble is inserted and a new group is started for C.
The bubble is necessary, since the LD instruction depends on a result of the
cascaded ALU in E1, which otherwise could not be forwarded. A and B
advance four pipeline stages (two cycles). C is dequeued from the prefetch
queue.

In p, D starts a new group since it depends on C which forwards its result
from E1. D is dequeued from the prefetch queue, which is empty then. O
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call to update/prefetch queue  resource allocation sequences

A starts new group FOF1DOD1 D2 | E0 [EIWB]
p1L=U(pe, A, hit) A[-[-[-[-RT.R}R].RY - |RY
8004, 8008, 8012] ALU;
FOF1DOD1 D2 | E0 | E1 [WB
grouping A and B Al-|-|-]-R,RIRIRE - |RY
P2 = u(pla B7 hlt) ALU1
8008, 8012 B [-|-|-]- R} RERS,RERE, RIRY
ALU,
D2 | E0 | E1 WB
C causes stall A RT RIRT R - w
P3s = Z/{(pg, C, hlt) ALU1
8012 B R3,R5R3,R5R5, Ry Ry
ALU,
FOF1DOD1DZEO[E1[WB
c|-1-1-[R;R,DCDCRY
El [WB
D starts new group A - w
Pa = u(p?n D7 hlt)
[-] B Rj3,R5RY
ALU,

DODID2E0[EL[WB
¢ |- [RIR,DCDARY
FOFIDOD1 D2 | E0 [EIWD
D|-|-|-|- RLRYRLRY - |[RY
ALU,;

Figure 6: Application of the concrete update function on Example 5.5
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6 Analysis of Loops and Recursive Procedures

Loops and recursive procedures are of special interest, since programs spend
most of their runtime there.

A loop often iterates more than once. The execution of the loop body
usually changes the cache contents. The pipeline behavior often depends on
the cache behavior. Therefore it is useful to distinguish the first iteration of
a loop from the other ones.

For our analysis we treat loops as procedures so that we can use existing
methods for interprocedural analysis. Figure 7 shows the transformation of
a loop to a procedure. These transformations are done on the control flow
graph only and don’t affect the program code.

proc loop; ();

: if P then
while P do BODY
BODY = loop; O (2)
end; end
1oop,, 0 ; 1)

Figure 7: Loop transformation.

In the presence of (recursive) procedures, an instruction can be executed
in different execution contexts. An execution context corresponds to a path
in the call graph of a program.

The interprocedural analysis methods differ in which execution contexts
are distinguished for an instruction within a procedure. Widely used is the
callstring approach whose applicability to cache behavior prediction (and
thereby to pipeline behavior prediction) is limited [7].

To get more precise results for the cache behavior prediction, the VIVU
approach has been developed [7, 19]. The VIVU approach has been im-
plemented with the mapping mechanism of PAG as described in [2]. Paths
through the call graph that only differ in the number of repeated passes
through a cycle are not distinguished. It can be compared with a combina-
tion of wirtual inlining of all non-recursive procedures and wvirtual unrolling
of the first iterations of all recursive procedures including loops. The results
of the VIVU approach can naturally be combined with the results of a path
analysis to predict the WCET of a program.
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7 Out-of-Order Execution

Processors with out-of-order execution are more flexible in choosing instruc-
tions for parallel execution. If the foremost instruction in row doesn’t fit they
will try the next one. Of course out-of-order pipelines, too, have to check for
data dependences and other hazards.

We stated above, that our semantics is suitable for superscalar pipelines
with in-order execution. As a matter of fact the above semantics is also
suitable for pipelines with out-of-order execution. The decision of an out-of-
order execution machine to choose a subset from the available instructions is
based on the resource requirements of the instructions. Since our semantics is
based on resources, no changes are needed to support out-of-order execution.

Nevertheless the concrete semantic functions, and the cycles and empty
function must be adapted for a new target processor.

8 Practical Experiments

In this section the results of a first implementation of the pipeline analysis
are presented. We have chosen the SuperSPARC I microprocessor as target
system. The implementation has been done with the program analyzer gen-
erator PAG, i.e. the pipeline analyzer is generated from a description of the
semantic functions. For the sake of space, we don’t show this description
here (for further information see [22]).

The analyzer takes as input the control flow graph of a program and the
results of the cache analysis [8]. We conservatively assume that memory
references which are not classified as hits by the cache analysis are cache
misses.! The output of the analyzer is a mapping map of instruction/context
pairs to pairs of clock cycles. The first element of a clock cycle pair is the
result of the cycles function applied to the abstract pipeline state as shown in
Subsection 5.4. The second element is either the result of the empty function
applied to the abstract pipeline state for ezit instructions? or zero for all
other instructions.

A context represents the execution stack, i.e. the trace of function calls
and loops along the corresponding path in the control flow graph to the
instruction. It is represented as a sequence of first and recursive function
calls (call_gy, call_g,) and first and other executions of loops (loop_l, loop_l,)
for the functions g and (virtually) transformed loops [ of a program. INST is

!For the SuperSPARC I this assumption is safe, since cache misses don’t lead to accel-
erations.
2 An exit instruction is a last instruction of the program.
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the set of all instructions in a program. CONTEXT is the set of all contexts
of a program. IC'is the set of all instruction/context pairs.

CONTEXT = {call_gs, call_gy, loop_ly,loop-l, | g is a function, [ is a loop}*
IC = INST x CONTEXT
map : IC — INy x INj

In general it is impractical to regard all possible contexts (paths) of a
program. Instead of distinguishing all paths, path classes are considered for
which similar behavior is expected.

This is realized by the VIVU approach (see Section 6). The advantage of
this approach is, that our results reflect all paths of the input program. The
result for a instruction in a path class is representative for each execution
of this instruction in the included paths. There is no need to bother about
worst case paths during our pipeline analysis, and a subsequent, path analysis
can still benefit from the knowledge about the context of an instruction.

The frontend of the analyzer reads a Sun SPARC executable in a.out
format. Our implementation is based on the EEL library of the Wisconsin
Architectural Research Tool Set (WARTS).

To predict the WCET of a program it is necessary to find a conservative
approximation of the worst case execution path. This is usually the task of
a path analysis. The inputs for such a path analysis are the results of our
pipeline analysis and perhaps some user annotations, like maximal iteration
counts of loops. Thus an architecture dependent worst case execution profile
can be determined.

The worst case execution profile allows to compute how often each in-
struction/context pair is maximally encountered during the execution of a
program. By combination with the results of our pipeline analysis we can
estimate the worst case number of clock cycles needed to execute the input
program.

For our experiments we used “exact” execution profiles instead of deriving
them with a path analysis. This allows us to assess the effectiveness of our
analysis without the influence of possibly pessimistic path analyses. The
profilers used to create the profiles are produced with the help of qpt2 (Quick
program Profiler and Tracer) [3, 13] that is part of the WARTS distribution.
An execution profile maps instruction/context pairs to execution counts:

profile : IC' — INy

We have chosen four small programs (see Table 4) to test our implemen-
tation.
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No. | Program | Comment

1 Isimple | simple for loop

2 matmult | matrix multiplication

3 fib_r recursive computation of the 23. Fibonacci number
4 pi approximative computation of Pi

Table 4: List of test programs

8.1 Improvements by the pipeline analysis

To show the effectiveness of our pipeline analysis we compare the results of
the combined instruction cache/pipeline analysis' with a (virtual) analysis
without cache and pipeline behavior prediction, and with our cache analysis.
The CPI (Cycles Per Instruction) values of the different analyses are com-
pared.? For the SuperSPARC I the best CPI value that an analysis without
cache and pipeline behavior prediction can reach is 13* (assuming no overlap
of instructions and 100% instruction cache miss rate). The best CPI value
that can be reached with a cache analysis alone is 4.

Table 5 displays the improvement by the pipeline analysis. In the second
column the CPI value according to the combined cache/pipeline analysis is
shown. The improvement factor of the cache analysis against the best possi-
ble results of an analysis without cache/pipeline behavior prediction is shown
in the third row. The improvement factor of the combined cache/pipeline
analysis against an optimal instruction cache analysis can be found in the
fourth column. The last column shows the improvement of our combined
cache/pipeline analysis against the best possible results of an analysis with-
out cache/pipeline behavior prediction.

'We assumed 100% data cache miss rate for load instructions and 0% for stores because
of the SuperSPARC store buffer.

2We also did some measurements on a Sun SPARCstation 10 with a SuperSPARC I
under NetBSD. However these measurements are only statistical results, since we couldn’t
yet measure without the influence of a non real time multiuser/multitasking operating
system. But we believe, that the statistical approximated run time values give a fairly
good impression of the capabilities of our pipeline analysis. The ratio of predicted run time
and statistical evaluated measurements are 1.01 (Isimple), 1.10 (matmult), 1.03 (fib_r) and
2.40 (pi with normal operands).

3Cache miss penalty of 9 cycles plus a minimum of 4 cycles (8 half cycle pipeline stages)
for an integer instruction.
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Program | CPI Cache Analysis | Additional Combined
improvement improvement factor | improvement
factor by Pipeline Analysis | factor

Isimple | 0,555570 | 3,24 7,19 23,29

matmult | 3,435746 | 3,24 1,16 3,75

fib_r 1,800034 | 3,24 2,22 7,19

pi 3,137949 | 3,24 1,27 4,11

Table 5: Improvements by the pipeline analysis.

9 Related Work

Healy, Whalley and Harmon developed an approach [10] to predict worst case
execution times in consideration of instruction cache and simple pipeline be-
havior. Their analyzer predicts the WCET of a user specified program part.
The results of a preceding cache analysis are used. Their target processor is
a MicroSPARC I. Since the pipeline of this processor is pretty simple they
can limit the used resources to registers and pipeline stages.

For each instruction type several informations must be presented to the
analyzer. These are the first and the last pipeline stage from or to which
forwarding is possible and the maximum number of clock cycles per pipeline
stage. Each instruction is assigned the registers it uses and the result of the
preceding cache analysis.

The analysis of a program path is done by repeated concatenation of
instructions. Healy et al. use a bottom up algorithm to apply their approach
to programs with loops. For the analysis of the innermost loop all paths
through it are merged. The results of this analysis are used in the next
higher loop level as if the inner loop was a single instruction. The distinction
between first and other loop iterations is not done explicitly but through the
cache classifications (first miss, first hit, always miss, always hit). For the
step from an inner to an outer loop it can be necessary to apply adjustments
to the result of the analysis. To avoid underestimations in the presence of
pipelines they have to use a trick which involves adding of miss penalties
and subtracting them later at outer loop levels. This trick doesn’t work with
superscalar processors since for superscalar pipelines a cache hit can result in
a speed gain that is higher than the miss penalty due to grouping effects [22].

Another approach to predict the WCET of real time programs is pre-
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sented in [14] by Li, Malik and Wolfe. This is an integrated solution, where
both the program path analysis and the cache/pipeline behavior prediction
are based on integer linear programs. The target processor is the iI960KB
from Intel, which has a pretty simple pipeline. Li, Malik and Wolfe consider
only structural hazards. The enhancement of this approach to less simple
pipelines or even superscalar or out-of-order pipelines seems to be not very
promising, since solving integer linear programs is an NP-hard problem.

Widely based on [14], Ottoson and Sjédin [21] have developed a frame-
work to estimate WCETSs for microarchitectures with pipelines, instruction
and data caches. To predict the pipeline behavior they also use a kind of
path concatenation like Healy et al., where the maximal overlapping of two
instructions is computed. Ottoson and Sjodin restrict themselves to pipeline
stages as resources, so it is impossible for them to detect data hazards. In
an experiment to predict the cache behavior of a very small program they
report analysis times of several hours.

In [15] Lim et al. describe a general framework for the computation of
WCETs of programs in the presence of pipelines and caches. To model the
pipeline behavior they construct a reservation table of resources for each
instruction. Registers and pipeline stages are regarded as resources. Lim
et al. also use a kind of path concatenation. They use a bottom up algo-
rithm that starts with isolated program constructs. A new reservation table
is computed, each time an instruction (or a path) is appended to a path.
The reservation tables are shortened if possible, by keeping only information
from the beginning and the end of the path. Lim et al. focus on the R3000
microprocessor from MIPS, which has a simple five level integer pipeline.

The more recent work of Lim, Han, Kim and Min [16] replaces the reser-
vation tables by instruction dependence graphs. In this work they focus on a
virtual microprocessor with an idealized multiple issue pipeline. Like in [15]
concatenation and pruning of paths is done during the execution of the bot-
tom up algorithm. Each concatenation step necessitates the completion of a
three step algorithm and the creation of five tables. Lim, Han, Kim and Min
don’t consider caches or prefetch queues. The space requirement of their in-
struction dependence graphs is O(n?), where n is the number of instructions
in the graph.

Lundqvist and Stenstrém describe a simulation based approach in [17].
The theoretical advantage of a simulation is that the values of all operands
are known and infeasible paths can thereby be eliminated. Usually this is also
the drawback of a simulation approach, since the input is generally unknown.
To simulate the execution of a program for each possible input combination
is in general even more impractical than actually executing it with all input
combinations. To circumvent this problem Lundqvist and Stenstrém intro-
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duce unknown values, i.e. their simulation is capable of handling programs
even if the input values are not known. The introduction of unknown val-
ues leads to several problems. For instance if the target address of a store
instruction happens to be an unknown value, the whole main memory be-
comes unknown. Lundqvist and Stenstrém try to shrink this problem by
reducing the amount of effected memory through relinking of programs in
case of statically linked routines. To circumvent the simulation of each path
in a loop iteration a path merging strategy is used. The merging of paths
leads to loss of information, i. e. to unknown values. The authors report that
this loss of information can lead to non termination of the simulation, even if
the simulated program terminates. The detection of infeasible paths is also
affected by the information loss. The target processor is a PowerPC.

We are aware of two retargetable pipeline analysis approaches that are
based on Maril (Marion’s machine description language) of the Marion [5] sys-
tem of David G. Bradlee. Hur et al. [12] have developed a retargetable timing
analyzer that has been used to generate analyzers for the MIPS R3000/R3100
and the Motorola 83000. Narasimham and Nilsen describe in [20] a retar-
getable tool called pipeline simulator compiler that determines the number of
cycles necessary to execute a given instruction sequence assuming 100% cache
hits. For their tool there are processor descriptions modeling the pipeline
behavior of the MIPS R2000, the Power PC 601, and a SPARC computer
architecture. For a more detailed discussion of these approaches see [7].

10 Conclusion and Future Work

We have shown that abstract interpretation can be used to predict the be-
havior of modern pipelines. The presented semantics was designed for su-
perscalar processors, but is also suitable to reflect the behavior of even more
complicated pipelines, e. g. of out-of-order execution processors.

Our work is the first implementation of a superscalar pipeline analysis for
a real microprocessor we know of.

The displayed results of our first implementation for the SuperSPARC I
microprocessor show a clear improvement against the naive approach.

Our implementation has shown that with the VIVU approach it is possi-
ble to realize the instruction cache and pipeline behavior prediction indepen-
dently without significant loss of accuracy. The advantages of this approach
are that we need not bother about worst case paths during our pipeline anal-
ysis since our results reflect all paths, and that a subsequent path analysis
can access context specific information about the behavior of instructions.

Future work includes the development of pipeline analyses for other pro-
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cessors, especially for processors with out-of-order execution. We are also
working on the integration of the pipeline analysis with the data cache anal-
ysis. For target systems with out-of-order execution of data memory accesses
it is not sufficient to treat data cache and pipeline behavior prediction inde-
pendently.

Additionally it is planned to integrate the pipeline analysis with the path
analysis, like it has been done for the cache analysis [27].

A further step can be to incorporate the results of an analysis of floating
point operands. This can be important for processors like the SuperSPARC 1
which show a significant different execution time of floating point operations
in dependence of their operand values.

Our goal is to develop a set of tools which allows to create a pipeline
analysis for a microprocessor from a concise description of this processor.
This retargetable pipeline analysis includes the generation of a front end and
of a description of the analyzer, which can be used to generate the analyzer
with PAG.
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