Foresighted Graphlayout

Stephan Diehl
Carsten Gorg
Andreas Kerren

Technischer Bericht Nr. A/02/2000

FR 6.2 - Informatik
Universitat des Saarlandes, Postfach 15 11 50
D-66041 Saarbriicken, Germany
Phone: +449-681-3023915
{diehl, goerg, kerren}@Qcs.uni-sb.de



Abstract

In this technical report we introduce the concept of graph animations as a se-
quence of evolving graphs and a generic algorithm which computes a Foresighted
Layout for dynamically drawing these graphs while preserving the mental map.
The algorithm is generic in the sense that it takes a static graph drawing algo-
rithm as a parameter. In other words, using an appropriate static graph layouter
different kinds of graphs can be animated.
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1 Introduction

Most work on graph drawing addresses the problem of layouting a single, static
graph. Algorithms have been developed for different classes of graphs (trees,
dags, digraphs, ...) and different aesthetic criteria, like minimizing crossings and
bends or maximizing symmetries [1, 6]. But the world is full of dynamic graphs,
e.g. animations of graph algorithms or algorithms which work on pointered data
structures, dynamic visualisations of resource allocation in operating systems and
project management, network connectivity and the constantly changing hyperlink
structure of the web.

Dynamic graph drawing addresses the problem of layouting graphs which
evolve over time by adding and deleting edges and nodes. This results in an
additional aesthetic criterium known as “preserving the mental map” [7].

The ad-hoc approach is to compute a new layout for the whole graph after
each update using those algorithms developed for static graph layout. In most
cases this approach produces layouts which do not preserve the mental map.
The common solution is to apply a technique known from key-frame animations
called inbetweening to achieve “smooth” transitions between subsequent graphs,
i.e. animations show how nodes are moved to their new positions. This approach
yields decent results if only a few nodes change their position or whole clusters
are moved without substantially changing their inner layout. But in most cases
the animations are just nice and do neither convey much information nor help to
preserve the mental map. Incremental algorithms try to change the layout just
as far as to accomodate the update. Unfortunately, in the worst case they have
to compute the layout of the whole graph.

In this technical report we present a totally different approach. Given a
sequence of n graphs we compute a global layout which induces a layout for
each of the n graphs. A unique features of this approach is that once they are
drawn on the screen neither nodes nor the bends of edges change their positions
in graphs subsequently drawn. Using static graph layouters, which accepts fixed
node positions as an additional input, it is also possible that only the bends
change their positions. We call the algorithm Foresighted Layout as it knows the
future of the graph, i.e. the next n — 1 modifications.

2 Graph Animations

In the following we consider graphs with multi-edges. For this we add unique
identifiers to each edge.

Definition 1 (Graph)
A graph g = (V, F) consists of a set of nodes V, a set of edges E CV x V x Id
and for all (vy,ve,n), (v],vh,m) € E:n=m= v =], vy = v}



We define a graph animation as a sequence of graphs. A graph results from
modifications (adding or deleting nodes and edges) of its preceding graph. Usually
subsequent graphs in a graph animation share some nodes and edges. But in the
worst case each graph can consist of totally different nodes and edges.

Definition 2 (Graph Animation)

A graph animation G is a sequence G = [g1, . . ., g, of graphs with G; = (V;, E;)
and for all (vi,ve,n) € Ep, (vi,vh,m) € E, with 1 <p,r<n:n=m= v =
v, Vg = V).

The restriction in this definition ensures that edge identifiers are used consistently
in all graphs, i.e. for edges between the same nodes.

3 Foresighted Layout

A first approach to layout a graph animation is to compute its super graph and
to reuse its layout information for the layout of the individual graphs in the
animation.

Definition 3 (Super Graph)
Let G be a graph animation G = [g1, ..., g,| with g; = (V;, E;), then the super

graph G of G is defined as G = (V, E) with V = J", V; and E = J, E..

In general the super graph will be large and there will be much unused space in
the layout of each individual graph. To avoid this Foresighted Layout constructs
on the basis of the super graph a smaller graph by taking into account the live
times of the nodes and edges in the graph animation.

Definition 4 (Live Time) R
Let G =[g1,...,gn] be a graph animation and G = (V| F) its super graph where

gi = (V;, E;). Then T(v) = {i|v € V;} are the live times of the node v € V and
T(n) = {i|(v,w,n) € E;} are the live times of the edge identified by n.

3.1 Graph Animation Partitionings
Definition 5 (Graph Partitioning) L o
Let g = (V,E) beagraphandV CP(V)and E C VxVxId. Agraphg=(V,E)
is a graph partitioning of g iff the nodes in V' are disjoint, | J,.yv = V and
(01,09,n) € E < vy € 0y and vy € Uy & (v1,v9,n) € E. We call E the set of
edges induced by V.

In other words, Visa partitioning of V. Each node in 1 represents one or

more nodes from V and all edges between two nodes in V' are converted into
edges between the representatives of the two nodes.



Definition 6 (Graph Animation Partitioning GAP) R L
Let G = [g1,...,9,] with g; = (V;, E;) be a graph animation and G = (V| FE)
be the super graph of G. A graph partitioning g = (V,E) of G where V =
{Pi,..., P} is a graph animation partitioning of G iff v,v' € P, = T(v) N
T =0.

We call g a minimal GAP of G, if there exists no GAP of G with less nodes.

In a GAP nodes with disjoint live times are grouped together. Unfortunately,
the problem of computing a minimal GAP (hence mGAPP) is N'P-complete. To
prove this we first prove the A"P-completeness of a sets partitioning problem.

Definition 7 (Minimal Disjoint Sets Partitioning Problem mDSPP)
Let T ={T\,...,T,} be a set of finite sets. Compute a minimal partitioning P of
T such that in each partition there are only disjoint sets, i.e. VM € P :S;,S; €

M:>51ﬂ52:(b.

Lemma 1
mDSPP is N'P-complete.

Proof: We can now show that minimal graph coloring MGC can be reduced to
the above partitioning problem and vice versa. As minimal graph coloring is
NP-complete [5], it follows that the partitioning problem is N'P-complete.

e Reduce mDSPP to MGC:
Given a mDSPP we compute an undirected graph G = ({T1,...,T,},
{1, T;}T: N T; # 0}). After coloring the graph with a minimal num-
ber k of colors we compute the set P = {{7}|1} has color i}|1 <i < k}. P
is a minimal disjoint sets partitioning.

e Reduce MGC to mDSPP:
Let G = (V, E) be an undirected graph. We get the corresponding mDSPP
by computing for each node v € V the set T, = {{v,w} € E} and the
set T = {T,|lv € V}. Then we solve the mDSPP for this 7. Let P =
{Pi,..., P} be the resulting partitioning, then for every T, € P; the node
v gets color 7.

O

Theorem 1
mGAPP is N'P-complete.

Proof:

e Reduce mGAPP to mDSPP:
A node in a GAP represents several nodes with disjoint live times. In a
minimal GAP nodes are grouped together, such that there are a minimal
number of groups and the live times of the nodes in a group are disjoint.
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Thus the mGAPP computation is reduced to solving a mDSPP for their
live times T} = T'(vy), ..., T = T(vy,).

e Reduce mDSPP to mGAPP:
It remains to reduce a mDSPP T' = {T1,...,T,} to a mGAPP. For this we
compute the following graph animation G = [g;,,..., g, ] with t; € T =
U?:l T, 9, = ({Tj|tl € T]}7(Z)) and m = |T|. Let g = ({P17"'7Pk}7(b) a
minimal GAP of G, then P = {P,,..., P;} is the solution of the mDSPP.

O

Now we present an algorithm which computes a GAP in O(n?) where n is the
number of nodes of the super graph.

Algorithm 1 (Computing a GAP)
W .= 17,]3 =[],p:=0
While v € W do
If 35 : T(v)NT(P;) =0 then
P;:=P;U {v} T(P;):=T(P;)UT(v)
else
p=p+1,P,:={v},T(P,):=T(v)
—{v}

Theorem 2 (Total Correctness of Algorithm 1)

The algorithm terminates and the graph ((J!_, P;, E'), where E is the induced set
of edges, is a GAP.

To prove the above theorem we prove the following stronger lemma:

Lemma 2 B
After and before each iteration ({J, o {v} Ui, P, E) is a GAP.

Proof:

Induction basis: Before the first iteration W = V and P = [] and thus the
lemma holds.

Induction step: Assume that the lemma holds before the next iteration and we
select v* € W. There are two cases:

first case: Test T'(v*) NT(P;) =0 is true.

Then we get a new graph (U, ey 10} YU, i P,u{P;U{v*}}, E).
Only the node P; got an additional element v*. Because of the above
test, it satisfies the condition of Definition 6.

second case: The added node {v*} is a singleton and thus satisfies the
condition of Definition 6.



Because after each iteration W is reduced by one, the algorithm terminates.
At the end of the algorithm W is empty and from the lemma follows Theorem 2.
O

3.2 Strategies for Computing a GAP

From an aesthetical point of view it is not too bad that we do not compute
minimal GAP’s. A minimal GAP is often not the best choice as we pay for
the minimal number of nodes by an increased number of edge crossings. In
Algorithm 1 we have not specified in which order the life times of the node v
and the already computed partitions P; are compared, i.e. how to find a j such
that T'(v) NT(P;) = (0. In our implementation we can choose one of the following
strategies which in general yield different GAPs:

1. Search the list from P; to P,.
2. Search the list from P, to P;.
3. Add v to the partition with the smallest number of nodes.

4. Only allow a limited number of nodes in a partition. If there is no partition
with less nodes, then create a new partition.

5. Only allow a limited number of edges in a partition.

6. Give priority to nodes with induced edges to the same already computed
partitions.

3.3 Reduced Graph Animation Partitionings

In a GAP the number of nodes of the super graph of a graph animation is reduced.
In a similar way, the number of edges can be reduced.

Definition 8 (Reduced Graph Animation Partitioning RGAP)
Let G = [g1,...,gn] with g; = (V;, E;) be a graph animation and g = (V, E) be
a GAP of G. The graph g = (V,E), where E C V x V x P(Id), is a reduced
GAP, iffV(v1, vy, {m1,...,my}) € E the following holds:

(01, O, my), (01, O3, m;) € B = T(my) NT(my) =0 for1 <i<j<k

We call g a minimal RGAP of GG, if there exists no RGAP of G with less edges.

An edge (01, vs, {mq,...,my}) of the RGAP represents k edges which exist at
different times, i.e. in different graphs of the graph animation, between a node
in v; and v,. But it does not represent two or more multi-edges which exist at
the same time; they can not be represented by a single edge in the RGAP. Also
the problem of computing a minimal RGAP (hence mRGAPP) is N'P-complete.



Theorem 3
mRGAPP is N'P-complete.

Proof:

e Reduce mRGAPP to mDSPP:
An edge in an RGAP represents several edges with disjoint live times. Con-
sider two nodes v; and U and let {my,...,m,} be the edges between these
two nodes in the GAP. In a minimal RGAP edges are grouped together,
such that there are a minimal number of groups and the live times of the
edges in a group are disjoint. Thus for each pair of nodes a mDSPP is
solved for their live times Ty = T'(my), ..., T, = T(my,).

e Reduce mDSPP to mRAGPP:
It remains to reduce a mDSPP T = {T},...,T,} to a mRGAPP. For this
we compute the following graph animation G = [g,,...,g,] with ; €
T = UL T g = ({on, 02} {(on, 00, Tt € T3}) and m = [T]. Let
g = ({{v1}, {v2}}, {(v1, 09, P1),..., (v1,ve, P)}) be a minimal RGAP of G.
Then P = {P,..., P} is a solution of the mDSPP.

O

As computing minimal RGAPs is NP-complete, we present a faster algorithm
(O(m?) where m = |E|) which does not compute minimal RGAPs, but yields
good results in practice, i.e. RGAPs with small numbers of edges. The algorithm
actually computes the partitioning of the edge identifiers for an RGAP.

Algorithm 2 (Computing a RGAP) N
W :={my,...,my}, i.e. the set of all identifiers occuring in E
P:=[],p:=0
While n € W do
Let (v, w,n) be the edge identified by n.
p=p+1,P,:={n}, T(P,) :=T(n)
While 3m € W with (v, w, m) and T(P,) NT(m) = () then
P,:=P,U{m},T(P,) :=T(P,)UT(m),W =W — {m}
W =W —{n}
Theorem 4 (Total Correctness of Algorithm 2)
The algorithm terminates and the graph (V,{(v, w, P;)|1 < i < p and 3(v,w,n) €
E and n € P,}) is an RGAP.

To prove the above theorem we prove the following lemma:

Lemma 3

After and before each iteration of the outer loop of Algorithm 2 the graph
(V. {(@,w, P)|3(,@,n) € E and n € P} U{(@,0,{n})|n € W and (v,@,n) €
E}) is an RGAP.



Proof:

Induction basis: Before the first iteration W = {my,..., m,} and P = []. This
means that there is no edge (v1, U2, {mi,...,mg}) with £ > 1 in the RGAP
and thus the lemma holds.

Induction step: Assume that the lemma holds before the next iteration of the
outer loop and we select n € W. Then we build a new singleton partition
{n} and the lemma still holds. In the inner loop we add edges to the current
partition which have disjoint live times with all edges that are already in
the partition, which means that all edges in one partition are in different
E, and thus the lemma also holds after the inner loop.

Because in each loop W is reduced by one, the algorithm terminates. At the
end of the algorithm W is empty and from the lemma follows Theorem 4. O

3.4 Algorithm

After we have seen how to compute RGAPs, we now show how they can be used
in combination with a static graph layouter to draw a sequence of graphs while
preserving the mental map.

Algorithm 3 (Foresighted Layout)
foresightedLayout([gi, ..., gk], staticLayouter()) {
g =computeGAP (g1, ..., gx)
g =computeRGAP(g)
layout=staticLayouter(q)
fori=1tok
drawGraph(g;, layout)

We call the static layouter to compute a layout of the RGAP of the graph
animation. We assume that the static layouter returns a layout, i.e. a data
structure containing the positions of each node and polylines (or bends) for each
edge. The function drawGraph() gets this data structure and a graph of the
graph animation. For each node in the graph it uses the layout information of its
super node, i.e. the node in the RGAP it is a member of. For each edge it uses
the layout information of the bends of the edge in the RGAP which contains its
identifier.

4 Implementation

We have implemented Foresighted Layout in Java as part of an API which we use
for algorithm animations. The class AnimatedGraph of this API has the following
interface:



class AnimatedGraph {
public AnimatedGraph(GView view)
public void insertNode (Node n)
public void insertEdge (Edge e)
public void deleteNode(Node n)
public void deleteEdge(Edge e)

public void snapshot()

public void play()
public void next()
public void back()

public void perform(Object target, String methodname, Object arg)
throws NoSuchMethodException
public void perform(Object target, String methodname, Object arg,
Object reverseTarget, String reverseMethodname,
Object reverseArg)
throws NoSuchMethodException

The class provides methods to build and modify a graph, to record a graph
animation by doing snapshots of individual graphs and replay the animation
afterwards.

A node can be a specialization of any AWT component which has to imple-
ment a certain interface (a few additional methods). Thus it is also possible to
draw a graph in a node of a graph again. As the nodes can be AWT components,
one can also destructively change attributes of these objects during the recording
sessions. To defer these changes until the animation is replayed, such changes
must be done using the method perform(), which puts the method calls into a
data structure and invokes them later using Java Reflection.

5 Examples

The basic idea of the static layout algorithm used in our examples is to divide the
nodes into several levels. Then the algorithm computes the relative positions of
the nodes within these levels, so that edge crossings are minimized [10, 8]. Ideally
this method can be used for directed graphs, because the direction of the edges
can be used for the layouting process.

5.1 Algorithm Animation

The GaniFA applet visualizes and animates several generation algorithms from
automata theory including the generation of a non-deterministic finite automaton



Figure 1: Ad-hoc and Foresighted Layout of the intermediate and final NFA for
(alb)".

(NFA) from a regular expression RE [11]. We have included GaniFA into an
electronic textbook on automata theory to allow interactive exercises [2, 3, 4].

In case of visualizing transition diagrams of finite automata our static layout
algorithm is a good choice, but the algorithm RE — NFA changes the graph
successively.

Animations of algorithms which change graphs, i.e. add or delete nodes and
edges, are often very confusing, because after each change a new layout of the
current graph is computed. In this new layout nodes are moved to different places
although the algorithm didn’t actually change these nodes. As a result it is not
clear to the user what changes of the graph are due to the graph algorithm and



Figure 2: Foresighted and Ad-Hoc Layout for deadlock situation.

what changes are due to the layout algorithm.

The lower part of Figure 1 shows how Foresighted Layout can be used to
animate the conversion of a regular expression (a|b)* into an appropriate nonde-
terministic finite state automaton (RE — NFA). In contrast to the upper part
of Figure 1, which shows the same conversion, this visualization is significantly
more clear because once created, a node doesn’t change its position.

5.2 Resource Allocation

In Figure 2 we show a classical deadlock situation which in practice can be avoided
by using ordered resources. Process P1 requests resource R1 (indicated by the
dashed arrow) and gets exclusive access (indicated by the solid arrow). Then P2
requests and gets exclusive access to R2. Next P1 requests access to R2, but the
resource is locked by P2. Then P2 requests access to R1 which is locked by P1.
As long as none of the two processes releases its lock both are stuck.

In the animation using ad-hoc layout it is difficult to see what is changed
between subsequent graphs. In the 6 pictures of the ad-hoc layout P1 is drawn
at 4, P2 at 2, R1 at 3 and R2 at 4 different positions. As a result for example the
dashed arrow from P1 to R1 is drawn upwards in some and downwards in other
pictures. Using Foresighted Layout nodes remain at their position and edges are
drawn consistently in all graphs.

5.3 Buffered I/0

In Figure 3 we show four different techniques to layout a graph animation. In this
example several users share a printer, but the access to the printer is buffered by
using a printer spool. In the ad-hoc layout the positions of the nodes ” Printer”
and ”Spool” change several times. In the supergraph-based foresighted layout
node positions are fixed, but there is much unused space. In the GAP-based
foresighted layout node positions do also not change, but as the nodes ”Userl”

10
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Figure 3: Different graph animations of buffered I/O example.
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and ”User2” share the same position, the layout is more compact. But there are
sharp bends in the edges of the first three graphs and normal bends in those of
the last four graphs. Finally in the RGAP-based foresighted layout there are no
sharp bends as edges at different live times share bend positions. Obviously, for
this example RGAP-based foresighted layout produces the best results.

6 Interactive Graph Animations

In most applications the future of a graph depends on user input. Nevertheless
between such points in time when the user interacts with the application, the pro-
gram can perform several “foreseeable” changes of the graph. Thus the execution
of such an interactive application can be modeled as a sequence of graph anima-
tions. When we draw a graph animation of such a sequence on the screen, we do
not know the next animation in the sequence but we know the one before. As a
“smooth” transition between the previous and the actual graph animation we can
use the traditional morphing approach. More precisely: Let G = [gy, ..., gs] be
the previously drawn graph animation. Then graph g, was drawn on the screen
using the Foresighted Layout for an RGAP g of G. Now the user does some input
and triggers the graph animation G’ = [¢], ..., g;]. To draw this animation the
application computes an RGAP ¢’ of G’ and uses morphing between the graph
gn with node and edge positions as in ¢’ and ¢} with node and edge positions as
in ¢'.

7 Conclusion

We have presented the motivation and theory behind Foresighted Layout. Us-
ing our generic algorithm existing static graph drawing algorithms can be used
for graph animations which preserve the mental map. The algorithm has been
implemented in Java and in particular used for algorithm animations. For this
kind of application it provides better results than traditional approaches which
use smooth transitions and/or incremental changes of the layout, e.g. using the
VCG tool [9].
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