
A Lattice-Theoretic Framework
For Circular Assume-Guarantee

Reasoning

Dissertation

zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

von

Patrick Maier

Saarbrücken

2003

Tag des Kolloquiums: 23. Juli 2003

Dekan: Prof. Dr.-Ing. Philipp Slusallek

Berichterstatter: Prof. Dr. Harald Ganzinger

Prof. Dr. Andreas Podelski

Sriram K. Rajamani, Ph.D.

Kurzzusammenfassung

Wir entwickeln einen abstrakten verbandstheoretischen Rahmen in dem wir die
Korrektheit und andere Eigenschaften bedingter zirkulärer Assume-Guarantee-
Regeln (A-G-Regeln) untersuchen. Wir isolieren eine besondere Nebenbedingung,
non-blockingness, die zu einem verständlichen induktiven Beweis der Korrekt-
heit zirkulärer A-G-Regeln führt. Ausserdem sind durch non-blockingness ein-
geschränkte zirkuläre Regeln vollständig und stärker als eine grosse Klasse von
korrekten bedingten A-G-Regeln. So gesehen erhellt unsere Arbeit die Grundla-
gen des zirkulären A-G-Paradigmas.

Aufgrund seiner Abstraktheit kann unser Rahmen zu vielen konkreten Forma-
lismen instanziiert werden. Wir zeigen, dass mehrere bekannte A-G-Regeln zur
kompositionalen Verifikation Instanzen unserer generischen Regeln sind. So ist
der zirkularitätsauflösende Beweis der Korrektheit nur einmal für unsere gene-
rische Regeln zu führen, dann erben alle Instanzen Korrektheit, ohne dass noch
einmal ein zirkularitätsauflösender Beweis nötig ist. In dieser Hinsicht stellt un-
ser Rahmen eine einheitliche Plattform dar, die verschiedene Ausformungen des
zirkulären A-G-Paradigmas umfasst und von der ausgehend systematisch neue
zirkuläre A-G-Regeln entwickelt werden können.

Abstract

We develop an abstract lattice-theoretic framework within which we study sound-
ness and other properties of circular assume-guarantee (A-G) rules constrained by
side conditions. We identify a particular side condition, non-blockingness, which
admits an intelligible inductive proof of the soundness of circular A-G reasoning.
Besides, conditional circular rules based on non-blockingness turn out to be com-
plete in various senses and stronger than a large class of sound conditional A-G
rules. In this respect, our framework enlightens the foundations of circular A-G
reasoning.

Due to its abstractness, the framework can be instantiated to many concrete
settings. We show several known circular A-G rules for compositional verifica-
tion to be instances of our generic rules. Thus, we do the circularity-breaking
inductive argument once to establish soundness of our generic rules, which then
implies soundness of all the instances without resorting to technically complicated
circularity-breaking arguments for each single rule. In this respect, our frame-
work unifies many approaches to circular A-G reasoning and provides a starting
point for the systematic development of new circular A-G rules.

Acknowledgments

First and foremost I would like to thank Prof. Dr. Harald Ganzinger for accept-
ing me as a PhD student in his group at the Max-Planck-Institut für Informatik.
Even more I owe him for his continued support and interest in my work, which
showed up the form of brilliant questions. There is no answer without a ques-
tion — many of the ideas in this thesis emerged while thinking about Harald’s
questions.

I was most fortunate to have Prof. Dr. Andreas Podelski as my advisor. He
encouraged my interest in circular assume-guarantee reasoning. I thank him for
many fruitful discussions, for his patience and for teaching me simple and effective
rules how to write.

I am grateful to Dr. Sriram Rajamani for his instant commitment to become
a referee of this thesis.

I am indebted to Dr. Friedrich Eisenbrand, Prof. Dr. Andreas Podelski and
Dr. Emil Weydert for reading drafts of the introduction. I owe immense grat-
itude to Dr. Viorica Sofronie-Stokkermans and Dr. Uwe Waldmann for reading
drafts of the thesis in great detail and providing me with valuable comments and
corrections.

Over the years there were a number of colleagues who were always willing to
discuss a problem. The ones I recall are Werner Backes, Dr. Witold Charatonik,
Dr. Giorgio Delzanno, Dr. Friedrich Eisenbrand, Lilia Georgieva, Thomas Hillen-
brand, Dr. Manfred Jaeger, Dr. Hans de Nivelle, Andrey Rybalchenko, Dr. Vior-
ica Sofronie-Stokkermans, Dr. Jürgen Stuber, Dr. Jean-Marc Talbot, Dr. Uwe
Waldmann and Dr. Emil Weydert. Apologies to those I have forgotten.

Special thanks go to Lilia for providing emotional support in hard times.

Contents

Zusammenfassung . 1
Extended Abstract . 5

1 Introduction 7
1.1 Motivation . 7
1.2 Outline . 12
1.3 Related Work . 14

2 Preliminaries 17
2.1 Ordered Sets, Semilattices, Lattices, etc. 17
2.2 Some Examples of Ordered Sets 21

3 Inferences in Semilattices 25
3.1 Terms, Formulas and Relations 25
3.2 Satisfiability and Entailment . 28
3.3 Inference Rules . 33
3.4 Soundness . 37
3.5 Completeness . 39
3.6 Assume-Guarantee Rules . 41

4 The Framework 47
4.1 Well-founded Approximations . 48
4.2 Non-Blockingness . 50
4.3 The Basic Circular Assume-Guarantee Rule 53
4.4 Extension To More Than Two Properties 55
4.5 Another Extension . 61
4.6 Compositional Assume-Guarantee Rules 62
4.7 Beyond Well-founded Approximations 65

5 Instantiations 69
5.1 Rules For Moore Machines . 71

5.1.1 Moore Machines . 71
5.1.2 Linear-Time Semantics . 73
5.1.3 Branching-Time Semantics 81

5.1.4 Comparison to Other Work 88
5.2 Rules for Assume-Guarantee Specifications 92

5.2.1 (Linear-Time) Behaviors And Properties 92
5.2.2 Implication . 94
5.2.3 Safety And Liveness . 96
5.2.4 Assume-Guarantee Specifications 99
5.2.5 Assume-Guarantee Rules 101
5.2.6 Comparison to Other Work 106

Bibliography . 109
List of Symbols . 115
Index . 117

Zusammenfassung

In dieser Arbeit untersuchen wir die Grundlagen für die Korrektheit scheinbar
zirkulärer Schlussregeln, der so genannten zirkulären Assume-Guarantee-Regeln,
wie sie zur kompositionalen Verifikation nebenläufiger Systeme verwendet werden.

Kompositionale Verifikation [Pnu85, CLM89, GL94, Kur94] nutzt die hierar-
chische Struktur komplexer Systeme und Spezifikationen, um ein Verifikationspro-
blem in Teilprobleme aufzuteilen. Sind die Teilprobleme gelöst, kann mit einer
Schlussregel die Lösung des Gesamtproblems geschlossen werden. Zwei solcher
Schlussregeln sind beispielsweise die folgenden:

s1 v p1 p1 u s2 v p2

s1 u s2 v p1 u p2

p2 u s1 v p1 p1 u s2 v p2

s1 u s2 v p1 u p2

Hier stellen die si Systeme und die pj Spezifikationen dar. Die Konklusion beider
Regeln formuliert das Verifikationsproblem, dass die parallele Komposition s1us2

der beiden Systeme die Konjunktion p1 u p2 der beiden Spezifikationen erfüllen
soll. Die Prämissen der linken Regel lesen wir als die Teilprobleme, s1 erfüllt
p1 und angenommen p1 ist erfüllt, dann garantiert (das heisst, erfüllt) s2 p2;
der zweiten Prämisse wegen nennen wir solche Regeln Assume-Guarantee-Regeln
(oder kurz A-G-Regeln).

Die rechte Regel unterscheidet sich von der linken nur in der ersten Prämisse,
welche besagt, dass s1 p1 garantiert, angenommen p2 ist erfüllt. Interpretieren wir
die beiden Regeln jedoch in einem natürlichen algebraischen Rahmen, nämlich
einem Halbverband, wobei v die Ordnung und u der zweistellige Infimumope-
rator ist, so folgt die Konklusion der linken Regel nach den Rechenregeln für
Halbverbände aus den Prämissen, während dies für die rechte Regel nicht gilt
— aufgrund der Zirkularität in ihren Prämissen ist sie inkorrekt. Das heisst, wir
können aus der erfolgreichen Verifikation der Prämissen der rechten Regel nicht
schliessen, dass das Verifikationsproblem gelöst ist.

Wie Fallstudien belegen [McM98, HQR98, HLQR99, HQR00, TB97], kom-
men bei der Verifikation nebenläufiger Systeme Situationen, in denen es natürlich
wäre, eine zirkuläre A-G-Regel anzuwenden — wenn sie denn korrekt wäre —
nicht eben selten vor. Die Ursache dafür ist die hohe Symmetrie nebenläufiger Sy-
steme, die häufig aus vielen gleichartigen Subsystemen aufgebaut sind. Zirkuläre
A-G-Regeln würden es erlauben, diese Symmetrie auf eine natürliche Weise für
die kompositionale Verifikation zu nutzen.

2 ZUSAMMENFASSUNG

Eine Möglichkeit, die Inkorrektheit zirkulärer A-G-Regeln zu heilen, ist ihre
Einschränkung durch eine Nebenbedinung, welche die Zirkularität auflöst. Bei-
spielsweise könnten wir obige inkorrekte zirkuläre Regel durch folgende bedingte
Regel ersetzen:

p2 u s1 v p1 p1 u s2 v p2

s1 u s2 v p1 u p2

if Γ[s1, s2, p1, p2]

Die Nebenbedingung Γ[s1, s2, p1, p2] können wir als Orakel auffassen, das uns für
jedes Quadrupel von Systemen si und Spezifikationen pj sagt, ob wir die Regel
anwenden dürfen.

Wir präsentieren in dieser Arbeit eine Klasse von vollständigen Verbänden,
in welchen wir eine einfache abstrakte Nebenbedingung — Non-Blockingness ge-
nannt — identifizieren, die zirkuläre A-G-Regeln wie die obige korrekt macht.
Die Abstraktheit der Nebenbedingung ermöglicht einen einfachen und direkten
induktiven Korrektheitsbeweis zirkulärer A-G-Regeln. Darüberhinaus ist Non-
Blockingness symmetrisch, so dass die attraktive Symmetrie zirkulärer A-G-
Regeln erhalten bleibt.

Es stellt sich heraus, dass derart bedingte zirkuläre A-G-Regeln weitere vor-
teilhafte Eigenschaften haben. Zum einen sind solche Regeln sowohl vorwärts
als auch rückwärts vollständig. Dabei entspricht Rückwärtsvollständigkeit der
üblichen Vollständigkeit logischer Kalküle, welche in unserem Kontext besagt,
dass in allen Fällen, in denen das Gesamtsystem die Gesamtspezifikation erfüllt,
dies mit Hilfe der rückwärtsvollständigen A-G-Regel geschlossen werden kann.
Dagegen sagt Vorwärtsvollständigkeit, dass in allen Fällen, in denen aus der
Lösung der Teilprobleme tatsächlich die Lösung des Gesamtproblems folgt, in
denen also kein inkorrekter Zirkelschluss vorliegt, die Nebenbedingung die Anwen-
dung der A-G-Regel erlaubt, so dass die Lösung des Gesamtproblems geschlossen
werden kann.

Zum anderen sind unsere zirkulären A-G-Regeln mit Non-Blockingness-Ne-
benbedingungen die stärksten Regeln in der Klasse der voll korrekten A-G-
Regeln, einer wichtigen Unterklasse aller korrekten bedingten A-G-Regeln. Das
bedeutet, dass sich diese stärksten A-G-Regeln auf jedes Verifikationsproblem
anwenden lassen, auf das irgendeine Regel aus der genannten Unterklasse an-
wendbar ist.

Im letzten Teil der Arbeit zeigen wir ausführlich anhand von zwei verschie-
denen Beispielen, wie sich unser abstrakter verbandstheoretischer Rahmen in-
stanziieren lässt zu konkreten Formalismen, die — im Gegensatz zur allgemei-
nen Verbandstheorie — zu Modellierung und Verifikation nebenläufiger Systeme
tatsächlich verwendet werden. Auf diese Weise ergeben sich einige der in der
Literatur bekannte A-G-Regeln als Instanzen unserer verbandstheoretischen Re-
geln. Da die Instanzen die einmal bewiesene Korrektheit der verbandstheoreti-
schen Regeln erben, werden technisch komplizierte induktive Korrektheitsbeweise
im jeweiligen konkreten Modellierungsformalismus überflüssig. In dieser Hinsicht

ZUSAMMENFASSUNG 3

bietet unser verbandstheoretischer Rahmen eine einheitliche Plattform, die ver-
schiedene Ausformungen des zirkulären Assume-Guarantee-Paradigmas umfasst
und von der ausgehend systematisch neue zirkuläre Assume-Guarantee-Regeln
entwickelt werden können.

4 ZUSAMMENFASSUNG

Extended Abstract

In this thesis we study the foundations of the soundness of apparently circular
inference rules, the so-called assume-guarantee rules that are applied to compo-
sitional verification of concurrent systems.

Compositional verification [Pnu85, CLM89, GL94, Kur94] exploits the hier-
archical structure of complex systems and specifications to divide a verification
task into subtasks. Once all subtasks are solved, one may infer by a suitable
inference rule that the general task is solved. For instance, two such inference
rules are the following:

s1 v p1 p1 u s2 v p2

s1 u s2 v p1 u p2

p2 u s1 v p1 p1 u s2 v p2

s1 u s2 v p1 u p2

Here, the si and pj represent systems and specifications, respectively. The con-
clusions formulate the general verification task, which is to establish that the
parallel composition s1 u s2 of both systems satisfies the conjunction p1 u p2 of
both specifications. The premises of the left rule are to be read as the verification
subtasks, which are s1 satisfies p1 and assuming p1, s2 guarantees (i. e., satis-
fies) p2; thanks to this reading of the second premise we call such inference rules
assume-guarantee rules (A-G rules for short).

The rule to the right only differs from the one to the left in the first premise,
which now states that s1 guarantees p1 provided that p2 is assumed. Yet, when
we interpret both rules in a natural algebraic framework, namely in a meet-
semilattice, where v denotes the order relation and u the binary infimum oper-
ator, then they exhibit a big difference. For the rule to the left, the conclusion
logically follows from the premises by the laws for meet-semilattices. For the rule
to the right, however, this is not the case — it is unsound due to the circular-
ity in its premises. Therefore, after having established the verification subtasks
corresponding to the premises of the right rule, we cannot infer that the general
verification task is solved.

A number of case studies [McM98, HQR98, HLQR99, HQR00, TB97] show
that situations in which circular A-G rules were naturally applicable — provided
they were sound — arise frequently in the verification of concurrent systems. This
is caused by the abundant symmetries of concurrent systems, which frequently
consist of a large number of similar subsystems. Circular A-G rules would admit
to exploit these symmetries naturally for compositional verification.

6 EXTENDED ABSTRACT

One way to heal the unsoundness of circular A-G rules is to restrict them by
circularity-breaking side conditions. For example, we might replace the above
unsound circular rule with the following conditional rule:

p2 u s1 v p1 p1 u s2 v p2

s1 u s2 v p1 u p2

if Γ[s1, s2, p1, p2]

The side condition Γ[s1, s2, p1, p2] may be perceived as an oracle which decides,
for every quadruple of systems si and specifications pj, whether it is admissible
to apply the rule or not.

In this thesis we present a lattice-theoretic framework within which we identify
a class of complete lattices — the well-approximable lattices — and a simple ab-
stract side condition — non-blockingness — which ensures soundness of circular
A-G rules like the one above. Because non-blockingness is so abstract, sound-
ness of circular A-G rules is provable by a straightforward inductive argument.
Furthermore, non-blockingness is symmetric and thus retains the attractive sym-
metry of circular A-G rules.

It turns out that conditional A-G rules based on non-blockingness possess
further desirable properties. First, they are both forward and backward com-
plete. Thereby, backward completeness corresponds to the usual completeness
of logical calculi, which in our context means that whenever a complex system
actually satisfies a complex specification then this fact is derivable via the back-
ward complete A-G rule. Forward completeness, however, means that whenever
the results of the verification subtasks actually imply that the complex system
satisfies the complex specification, i. e., whenever there is not really an unsound
circular argument involved, then the side condition admits application of the A-G
rule so as to infer the fact that the general verification task is solved.

Second, our circular A-G rules based on non-blockingness are the strongest
rules among the fully sound A-G rules, which form a substantial subclass of the
class of sound conditional A-G rules. As a consequence, these strongest A-G
rules are applicable to any verification task to which some fully sound A-G rule
is applicable.

The last part of the thesis is concerned with instantiating our abstract lattice-
theoretic framework to concrete formalisms that — contrary to lattice theory —
are used in practice for modeling and verifying concurrent systems. On two
rather different examples, we demonstrate the technique of deriving A-G rules
for particular settings as instances of our generic lattice-theoretic rules. Thus, we
do the circularity-breaking inductive argument once to establish soundness of our
generic rules, which then implies soundness of all the instances without resorting
to technically complicated circularity-breaking arguments for each single rule. In
this respect, our framework unifies many approaches to circular assume-guarantee
reasoning and provides a starting point for the systematic development of new
circular assume-guarantee rules.

Chapter 1

Introduction

Noli turbare circulos meos.
Archimedes

The central motivation of this thesis is to study the foundations of apparently
circular patterns of reasoning that are well-known in the realm of compositional
verification as the assume-guarantee paradigm. We propose an abstract, lattice-
theoretic framework in which assume-guarantee reasoning can be modeled as
conditional inference rules, i. e., inference rules constrained by side conditions. In
this framework, we identify the key concepts of the assume-guarantee paradigm
and give an intelligible inductive proof of its soundness. By means of instantiating
the abstract framework to concrete settings, this soundness result carries over,
i. e., the soundness of well-known circular reasoning patterns in verification can be
derived. Besides soundness, the abstract framework opens the way to investigate
other proof-theoretic questions about the assume-guarantee paradigm, such as
completeness and the relative strength of different assume-guarantee rules.

1.1 Motivation

Verification. In verification, the objective is to establish that a given system
conforms to a given specification. How that can be done depends on how systems
and specifications are presented. For example, if the system is a finite labeled
graph and the specification a formula in some propositional temporal logic then
conformance corresponds to the satisfaction relation of the logic, which can usu-
ally be established via model checking [QS82, LP85, CES86]. In this case, the
class of systems (finite labeled graphs) is distinct from the class of specifications
(propositional temporal formulas).

It is quite common in verification, however, to present systems and specifi-
cations uniformly. For instance, in the automata-theoretic approach to model
checking [VW86], both are presented as finite automata of some kind and con-
formance of the system to the specification corresponds to language containment

8 INTRODUCTION

of automata. In simulation-based approaches [Mil71], systems and specifications
are presented as labeled graphs, and conformance corresponds to simulation of
graphs. And finally in theorem proving, systems and specifications are presented
as formulas in some logic, e. g., propositional or first order logic (possibly with
modalities) [MP95] or even higher order logic [Mel93], and conformance corre-
sponds to entailment of formulas. In all these approaches, conformance is a
reflexive and transitive binary relation, i. e., a pre-order on the class of systems
and specifications.

Composition. Real-world systems are of high complexity. Often this com-
plexity is unmanageable by a single human being, therefore it is good engineering
practice to build up complex systems from simpler subsystems, which in turn may
be built up from even simpler subsystems, and so on. The same applies to com-
plex specifications, which are usually composed from simpler sub-specifications
in a similar hierarchical manner.

The complexity of real-world systems often makes verification infeasible. Par-
ticularly in model checking of concurrent systems, this problem is considered
so serious that it is referred to by the intimidating name state explosion prob-
lem [Val98]. It arises because the parallel composition of two subsystems results
in a system whose size (as a transition graph) often is proportional to the the
product of the sizes of the subsystems. Intuitively speaking, the size of a system
tends to grow exponentially in the number of its subsystems.

Compositional verification1 [Pnu85, CLM89, GL94, Kur94] is one possible way
to fight complexity. It exploits the hierarchical structure of systems and specifi-
cations through a divide-and-conquer approach: Separately for each subsystem,
one establishes conformance to parts of the specification. Having established
these verification subtasks, either directly or again via compositional verification
techniques, one deduces that the full system conforms to the full specification by
a suitable proof rule.

Besides alleviating the complexity of verification, there are other method-
ological advantages of compositional approaches. One is separation of concerns:
Different verification subtasks may fall into different categories, e. g., finite state
versus infinite state problems, and for each category one may use specialized
methods. Another advantage is reuse: Subsystems that are already known to be
verified need not be verified again (provided that their specifications have not
changed).

Framework. Above, we have argued that it is common to deal with systems
and specifications uniformly as elements of a pre-ordered set, where the pre-order
is naturally induced by the conformance relation. In order to fit composition into
the picture, we must extend the pre-ordered set with a binary operation, whose

1Sometimes also called modular verification.

INTRODUCTION 9

properties depend on the type of composition one intends to model. Actually,
any reasonable type of composition should at least respect the conformance pre-
order, i. e., it should be monotonous in both arguments. In fact, we may assume
systems and specifications to form an ordered set (ordered by conformance) with
a monotonous binary operation (composition); this can always be achieved by
quotienting with the equivalence induced by the pre-order.

In our framework, we model the set of systems and specifications as a meet-
semilattice, i. e., as an ordered set in which every pair of elements has a greatest
lower bound, called meet. Throughout this section, we denote the order by the
symbol v, and by x u y we denote the meet of the elements x and y. We
may interpret the order in three different ways, as conformance, refinement or
entailment.

• For a system s and a specification p, s v p means that s conforms to p.

• For two systems s and s′, s v s′ means that s refines s′.

• For two specifications p and p′, p v p′ means that p entails p′.

There are also three different readings for the meet, namely composition of sys-
tems, composition of specifications or constraining a system to conform to a
specification.

• For two systems s1 and s2, s1us2 is the system which arises from composing
s1 and s2.

• For two specifications p1 and p2, p1 u p2 is the specification which arises
from composing p1 and p2.

• For a system s and a specification p, p u s is the system which arises from
constraining s such that it conforms to p; more precisely, pus is the coarsest
refinement of s which conforms to p.

Note that our model abstracts many formalisms for compositional verification of
concurrent systems. All we demand from composition is it to be an associative,
commutative and idempotent operation. Actually, associativity and commuta-
tivity are inherent to parallel composition. Idempotency is naturally present in
many formalisms, for instance when parallel composition amounts to conjunction
of logical formulas as in deductive formalisms, or to intersection of languages as in
formalisms based on automata-theoretic model checking. Even formalisms based
on Moore or Mealy machines, where parallel composition is a partial operation,
fit in the framework because we can extend composition conservatively to an asso-
ciative, commutative and idempotent operation (by identifying it with language
intersection). It should be noted, however, that the framework is not suited for all
possible formalisms. For instance, the parallel composition operator in process

10 INTRODUCTION

algebras like CCS or the π-calculus is associative and commutative but inher-
ently non-idempotent. Also, the sequential composition operator in imperative
programming languages is associative but neither idempotent nor commutative.

Proof rules. Above, we have explained that the backbone of compositional ver-
ification (the conquer step, so to speak) is a proof rule for deducing conformance
of the system to the specification from the results of the verification subtasks.
In the following, we will present a few examples of such proof rules that appear
commonly in compositional verification of concurrent systems. For instance, one
of the rules most often used is (1.1).

s1 v p1 s2 v p2

s1 u s2 v p1 u p2

(1.1)

Here, the si and pj are variables representing (sub-)systems and (sub-)specifica-
tions, respectively. The conclusion of the rule expresses the goal of compositional
verification, namely that the composition of both systems conforms to (the com-
position of) both specifications. The premises state that each si conforms to
pi. Given that we establish these verification subtasks, we may complete our
verification task by applying (1.1).

What can we do if we are not able to establish the premises of such a simple
rule? Assume for the moment that we can actually establish the first premise
of (1.1), i. e., s1 conforms to p1, but not the second. Because the system s2

has been designed to cooperate with s1, it may actually only conform to its
specification p2 if it interacts with an environment that behaves similar to s1,
i. e., if its environment conforms to some specification of s1, say p1. So as a
verification subtask, we would have to establish that s2 conforms to p2 under
the assumption p1 for the environment. Expressed in a more succinct phrase,
this reads as “assuming p1, s2 guarantees p2” — hence the wide-spread term
assume-guarantee rule for rules like (1.2).

s1 v p1 p1 u s2 v p2

s1 u s2 v p1 u p2

(1.2)

Here, we use the fact that systems and properties are treated uniformly, so we
can compose p1 with s2, i. e., constrain s2 such that it conforms to p1.

What if we are able to establish the second premise of rule (1.2) but not the
first? After all, the system s1 may have been designed to cooperate with s2, so it
might require the assumption p2 in order to guarantee p1. In this case, we would
need a rule like (1.3).

p2 u s1 v p1 p1 u s2 v p2

s1 u s2 v p1 u p2

(1.3)

In both verification subtasks, the guaranteed property relies on the other one as
an assumption, hence such rules are named circular assume-guarantee rules.

INTRODUCTION 11

There is a big difference between (1.1) and (1.2) on one hand and (1.3) on
the other hand, namely soundness. The rules (1.1) and (1.2) are sound, i. e., the
conjunction of their premises logically implies their conclusion by the laws for
meet-semilattices. For the circular rule (1.3), however, this is not the case; in fact,
in every non-trivial meet-semilattice there exist counter-examples to soundness,
i. e., values for the variables si and pj such that p2 u s1 v p1 and p1 u s2 v p2 are
true but s1 u s2 v p1 u p2 is not. Hence, (1.3) may not be used for compositional
verification.

Still, such circular rules are desirable for several reasons. They naturally
generalize non-circular assume-guarantee rules like (1.2), and their symmetry
naturally reflects structural symmetries in the design of complex systems. This
raises the question whether unsound circular rules can be modified so that they
become sound. One way to do this is by attaching a circularity-breaking side
condition, which leads to a conditional rule like (1.4).

p2 u s1 v p1 p1 u s2 v p2

s1 u s2 v p1 u p2

if Γ[s1, s2, p1, p2] (1.4)

Here, Γ[s1, s2, p1, p2] is a quaternary relation on the meet-semilattice of sys-
tems and specifications, which constrains the application of the rule to specific
quadruples of values for the si and pj. If every quadruple of values that satis-
fies Γ[s1, s2, p1, p2] either validates the conclusion of (1.4) or falsifies one of the
premises then the conditional proof rule (1.4) is sound, i. e., cannot deduce false
conclusions. In this case, we may view Γ[s1, s2, p1, p2] as an oracle which tells us
when it is safe to apply the rule.

In general, there exist many side conditions which ensure soundness of the
rule (1.4), but not all conditions are reasonable. For instance, the side condition
which is always false yields a sound rule which is never applicable and thus useless.
This raises the question which side conditions are reasonable. We identify the
following list of criteria according to which one might judge the quality of a
circularity-breaking side condition Γ[s1, s2, p1, p2]:

• Intelligibility. Γ[s1, s2, p1, p2] should be intelligible and admit an intelligi-
ble argument justifying soundness of (1.4).

• Symmetry. Γ[s1, s2, p1, p2] should retain the symmetry of (1.4).

• Completeness. With Γ[s1, s2, p1, p2], the conditional rule (1.4) should be
complete.

• Generality. Γ[s1, s2, p1, p2] should be as general as possible.

The basic goal of this thesis is to find circularity-breaking side conditions (or
more general, sound conditional assume-guarantee rules) that meet all four of
the above criteria. In the next section, we briefly outline to what extent we have
achieved this goal. Thereby, we also clarify the last two criteria, completeness
and generality, whose meaning is rather fuzzy as yet.

12 INTRODUCTION

1.2 Outline

Chapter 2. Here, we briefly review basic notions from the theory of ordered
sets and lattices and introduce notation which we will use throughout the thesis.

Chapter 3. This chapter lays the foundations for investigating conditional
proof rules. We formally define the concept of conditional inference rules in
a meet-semilattice, which will be refined to the concept of (conditional) assume-
guarantee rules at the end of the chapter.

Towards the criterion of generality, we develop a stronger-than order on condi-
tional inference rules which captures the intuition that a stronger rule can mimic
a weaker one. More precisely, the stronger rule is applicable in all (and possibly
more) situations where the weaker one is, and the stronger rule derives a stronger
conclusion from weaker premises.

Furthermore, we formally define soundness of conditional inference rules. It
turns out that there are several reasonable ways to ‘reverse’ soundness, resulting
in different notions of completeness. The most important of these are backward
completeness and forward completeness. Roughly speaking, backward complete-
ness ensures that all true consequences are derivable, i. e., whenever the conclusion
of a backward complete rule is true then the premises and the side condition can
be made true, so that the conclusion is derivable via the rule. On the other hand,
forward completeness ensures that all consistent consequences are derivable, i. e.,
whenever the truth of the conclusion of a forward complete rule is consistent
with the truth of the premises then the side condition admits application of the
rule, so that the conclusion is derivable. To summarize, forward completeness
judges whether the side condition of a rule is not overly restrictive, i. e., not
more restrictive than necessary to ensure soundness. Thus, forward complete-
ness determines which rules suit best for forward reasoning, whereas backward
completeness determines which rules are desirable for backward reasoning.

Chapter 4. This chapter is the main contribution of the thesis, a lattice-
theoretic framework in which we present a number of circular assume-guarantee
rules that meet all of the quality criteria stated in the previous section, namely
intelligible proofs of soundness, symmetry, completeness and — to some extent
— generality.

To explain why we move from meet-semilattices to lattices, recall that the
single most important property of a circular assume-guarantee rule is its sound-
ness. Ever since the first publications on circular assume-guarantee reason-
ing [MC81, Jon81], soundness has been established via inductive arguments.
This strongly suggests to use induction in our semilattice-based framework as
well, which requires a notion of approximation on semilattice elements, and the
approximants must be ordered in a well-founded way. A natural notion of approx-
imation is obtained by embedding the meet-semilattice into a complete lattice,

INTRODUCTION 13

which is always possible, e. g., via completion with order ideals. In the complete
lattice, we identify a set of approximants which is join-dense, i. e., every lattice
element is the least upper bound of a subset of the approximants. This leads
us to the first key concept of our assume-guarantee framework, the definition
of well-approximable lattices, i. e., lattices with a set of approximants which is
join-dense and well-founded.

The second key concept is the non-blockingness relation, which is defined in
terms of the order on the approximants and forms the circularity-breaking side
conditions of our assume-guarantee rules. The name non-blockingness is some-
what reminiscent of conditions that ensure the absence of deadlocks in products
of transition systems or automata.

In the framework of well-approximable lattices, we prove soundness of a basic
circular assume-guarantee rule constrained by the non-blockingness relation. We
extend this result to an infinite family of circular assume-guarantee rules, whose
side conditions are conjunctions of non-blockingness constraints. The proofs of
soundness are by a straightforward well-founded induction. Furthermore, all rules
exhibit the same perfect symmetry as the rule (1.3) from the previous section,
and all the rules are both forward and backward complete.

Concerning generality, we show that in well-approximable lattices, our as-
sume-guarantee rules are the strongest (w. r. t. the stronger-than order) among
the fully sound assume-guarantee rules, which form a substantial subclass of the
class of sound assume-guarantee rules. Thus, the goal of generality, which is
to cover all sound assume-guarantee rules, is not completely achieved. Another
limitation to generality lies in our restriction to well-approximable lattices. At
the end of Chapter 4, we have a brief look at lattices that lack this requirement.
Although we cannot prove in general that the concept of well-approximable lat-
tices is necessary for the soundness of circular assume-guarantee rules, we collect
some evidence that it is often necessary for the soundness of rules based on non-
blockingness.

Chapter 5. This chapter addresses generality from a different perspective. We
show several circular assume-guarantee rules from the literature to be special
instances of our rules. Thus, we do the circularity-breaking inductive argument
once to establish soundness of our generic rules, which then implies soundness of
all the instances without resorting to technically complicated circularity-breaking
arguments for each single rule. In this respect, our framework unifies many
approaches to circular assume-guarantee reasoning and provides a starting point
for the systematic development of new circular assume-guarantee rules.

14 INTRODUCTION

1.3 Related Work

This section briefly and abstractly reviews work by other authors which is related
to the topic of this thesis, the foundations of circular assume-guarantee reasoning.
A more detailed account on related work can be found in Chapter 5.

Historically, Misra and Chandy [MC81] and independently Jones [Jon81] were
the first to propose and prove sound circular assume-guarantee patterns in the
early 1980s. Their work focused on proof systems and deductive methods to es-
tablish safety properties of a class of concurrent systems. Since then, their work
has been adapted and generalized to many modeling formalisms and specification
languages for concurrent systems, see the book by de Roever et al. [dRdBH+00]
for a survey. Central to all this work is the distinction between a system and an
environment which is reflected by assume-guarantee specifications, i. e., specifica-
tions that explicitly distinguish the system’s assumptions about the environment
from its guarantee towards that environment. Such assume-guarantee specifi-
cations have been investigated (in the context of various linear-time temporal
logics) in depth by Abadi and others [AP93, AL93, AL95, AM95, JT96, Tsa00]
in the 1990s. We discuss this approach to assume-guarantee reasoning in more
detail at the end of Section 5.2.

Another approach to circular assume-guarantee reasoning arose in the 1990s
in the realm of compositional model checking as a way to fight the state explosion
problem. Systems and specifications are viewed as transition systems, and the
goal is to establish a refinement relation between a system and its specification.
The central observation in this field is that subsystems in isolation may not
refine their corresponding sub-specifications, however, they may do so when they
are composed with other sub-specifications; we have explained this phenomenon
and the arising circularity at length in Section 1.1. Circular assume-guarantee
rules for various modeling formalisms based on transition systems and various
notions of refinement were studied by Alur, Henzinger, McMillan, and others
[AH99, McM97, TAKB96, RR01, HQRT02]. We present this work in more detail
at the end of Section 5.1.

Most of the work on circular assume-guarantee reasoning has been concerned
with soundness only. Completeness has rarely been an issue, except for work on
assume-guarantee proof systems for deductive verification, see [dRdBH+00]. In
the realm of compositional model checking, Namjoshi and Trefler [NT00] were
the first to investigate completeness of circular assume-guarantee rules. They
showed a number of circular rules to be backward incomplete and proposed gen-
eralizations which ensure backward completeness, at the expense of introducing
auxiliary variables.

Not only is investigating soundness and completeness of circular reasoning
patterns a challenging intellectual activity, but assume-guarantee reasoning does
in fact play a role in the verification of complex systems. It has proven a valuable
tool in the verification of real-world systems in a number of case studies [McM98,

INTRODUCTION 15

HQR98, HLQR99, HQR00, TB97], mostly from the area of hardware verification.
Assume-guarantee rules are also successfully applied in tools [FFQ02] for the
verification of thread-parallel software, e. g., system code of distributed operating
systems.

It should be noted, however, that assume-guarantee reasoning cannot save the
world from state explosion. In [Var95, KV00], Kupferman and Vardi study the
complexity of checking whether a system conforms to an assume-guarantee spec-
ification, i. e., the complexity of establishing a verification subtask. Depending
on the temporal logic used for assumptions and guarantees, they show this prob-
lem to be PSPACE- or EXPSPACE-complete, even though checking, whether
the system conforms to the guarantee without considering the assumptions, may
be polynomial. Thus, it may happen that the exponential complexity of the full
verification task, which arises from the size of the state space, is still retained in
the verification subtasks, through the assumptions; in [KV00], this phenomenon
is termed the assumption-explosion problem.

Originally, this work was stimulated by the question whether compositional
verification techniques and in particular assume-guarantee reasoning could be
combined with the symbolic model checking approach based on constraint logic
programs (CLP) due to Delzanno and Podelski [DP99, Pod00, DP01]. However,
this question is not pursued further here.

This thesis builds on our preliminary work about a set-theoretic framework
for investigating the soundness of circular assume-guarantee reasoning [Mai01]. A
sketch of the instantiation of the lattice-theoretic framework to assume-guarantee
specifications (cf. Section 5.2) can be found in [Mai02].

16 INTRODUCTION

Chapter 2

Preliminaries

This chapter reviews basic notions from the theory of ordered sets and lattices.
Most of these definitions can be found in the textbook by Davey and Priestley
[DP90], although our notation may depart from theirs occasionally. For the
definitions of pseudo-complements and Heyting algebras, the reader is referred to
the books by Johnstone [Joh82] or Goldblatt [Gol84]. At the end of this chapter,
partial maps, natural numbers, words and trees are studied as particular examples
of ordered sets, whereby we introduce notation that will be used frequently in
later chapters.

2.1 Ordered Sets, Semilattices, Lattices, etc.

Ordered sets. An ordered set is a tuple 〈X,v〉 whereX is a set andv reflexive,
transitive and antisymmetric binary relation on X. We call the elements of X
points and the relation v an order 2 on X. If v is an order on X, we define the
corresponding strict order @ on X as the binary relation on X such that for all
x, y ∈ X, x @ y if and only if x v y and x 6= y. We say that 〈X,v〉 is linear if for
all x, y ∈ X, x v y or y v x. We call 〈X,v〉 trivial if X is empty or a singleton.

If 〈X,v〉 is an ordered set, Y ⊆ X and ≤ = v ∩ Y × Y then 〈Y,≤〉 is an
ordered set, too, and we say that 〈Y,≤〉 is a suborder of 〈X,v〉. More precisely,
we say that 〈Y,≤〉 is the suborder of 〈X,v〉 which is generated by Y and that ≤
is the order on Y which is induced by v. To save order symbols, we may denote
the induced order also by the symbol v if no confusion can arise.

We say that two ordered sets 〈X,v〉 and 〈Y,≤〉 are isomorphic if there exists
a bijective map ϕ : X → Y such that for all x, y ∈ X, x v y if and only if
ϕ(x) ≤ ϕ(y). The map ϕ is called an isomorphism from 〈X,v〉 to 〈Y,≤〉. An
isomorphism from 〈X,v〉 to a suborder of 〈Y,≤〉 is called an embedding of 〈X,v〉
into 〈Y,≤〉.

2An order may also be called a partial order; and ordered sets are also known as partially
ordered sets or posets for short.

18 PRELIMINARIES

Duality. Let 〈X,v〉 be an ordered set. We define the binary relation w on X
by for all x, y ∈ X, x w y if and only if y v x. Then 〈X,w〉 is an ordered set.
The orders v and w are dual to each other in that each is the converse of the
other. In the following, we will define notions only in terms of v, and we will just
briefly mention name and denotation of the corresponding dual notions, which
arise from reversing the order symbol.

Bounds, extremal points, joins, and meets. Let 〈X,v〉 be an ordered set
and let S ⊆ X. We say that an element x ∈ X is a lower bound of S if x v s for
all s ∈ S. The dual to a lower bound of S is an upper bound of S.

An element s ∈ S is called minimal in S if for all t ∈ S, t v s implies t = s.
A least element of S is a point s ∈ S such that s v t for all t ∈ S. Note that
neither minimal nor least elements need exist, but if a least element exists then
it is unique and minimal. The dual to a minimal element is a maximal element
and the dual to a least element is a greatest element .

If the set of upper bounds of S has a least element then this element is called
the join of S and denoted by

⊔
S. For x, y ∈ X, the binary join x t y exists if

the join of {x, y} exists, in which case x t y =
⊔
{x, y}. By duality, we defined

S, the meet of S, which is the greatest element of the set of lower bounds of
S, and the binary meet of x, y ∈ X, denoted by x u y.

Notation: Families of symbols. So far, we have introduced the order v
and its converse order w, both with their corresponding strict orders @ and
A. Furthermore, we have the join

⊔
and the meet

d
, both with their binary

versions t and u. By their appearance, this whole family of rectangular symbols
is associated with the order symbol v. In order to distinguish operators that are
associated with different orders, we will use different symbol families, e. g., the
family of pointed symbols (≤, ≥, <, >,

∨
,

∧
, ∨, ∧), the family of triangular

symbols (E, D, C, B,
`

,
a

, O, M) or the family of curly symbols (�, �, ≺, �,b
,
c

, g, f). The family of round symbols (⊆, ⊇, ⊂, ⊃,
⋃

,
⋂

, ∪, ∩) is reserved
for operations and relations on sets.

Semilattices. An ordered set 〈X,v〉 is called a join-semilattice if all binary
joins xt y exist for x, y ∈ X. The dual to a join-semilattice is a meet-semilattice.
We say that a join-semilattice 〈Y,≤〉 is a sub-join-semilattice of another join-
semilattice 〈X,v〉 if 〈Y,≤〉 is a suborder of 〈X,v〉. We say that two join-
semilattices 〈X,v〉 and 〈Y,≤〉 are isomorphic if there exists an isomorphism
ϕ from 〈X,v〉 to 〈Y,≤〉. Note that although ϕ views 〈X,v〉 and 〈Y,≤〉 just as
ordered sets, the term isomorphism is justified since ϕ preserves joins as well as
their existence, i. e., for all S ⊆ X, the join of S exists if and only if the join of
ϕ(S) exists, in which case ϕ(

⊔
S) =

∨
ϕ(S).

PRELIMINARIES 19

Since in a join-semilattice 〈X,v〉, t is an idempotent associative and com-
mutative binary operation, 〈X,t〉 is an idempotent Abelian semigroup. On the
other hand, for every idempotent Abelian semigroup 〈X, ◦〉, we can define a bi-
nary relation v onX by for all x, y ∈ X, x v y if and only if x◦y = y, and it turns
out that 〈X,v〉 is an ordered set in which the joins of all finite non-empty subsets
of X exist and in which in fact x t y = x ◦ y for all x, y ∈ X. Consequently,
every idempotent Abelian semigroup can be viewed as a join-semilattice, and
vice versa. Furthermore, a least element in 〈X,v〉 functions as neutral element
in 〈X,t〉, and vice versa. Note that since a join-semilattice is a meet-semilattice
for the converse order, every idempotent Abelian semigroup can also be viewed
as a meet-semilattice.

If a join-semilattice 〈X,v〉 has a least element then we say that 〈X,v〉 is a
bottomed join-semilattice. Note that all finite joins, i. e., all joins of finite sets,
exist in a bottomed join-semilattice. Dually, all finite meets exist in a topped
meet-semilattice. which is a meet-semilattice with greatest element. Usually, we
denote the least element of a bottomed join-semilattice by ⊥ or 0, whereas the
greatest element of a topped meet-semilattice is denoted by > or 1.

Lattices. An ordered set 〈X,v〉 is called a lattice if it is both a join-semilattice
and a meet-semilattice. Note that a lattice satisfies the absorption laws, i. e.,
x t (x u y) = x and x u (x t y) = x for all x, y ∈ X. A lattice 〈X,v〉 is
distributive if it satisfies the distributive laws, i. e., xt (y u z) = (xt y)u (xt z)
and xu (y t z) = (xu y)t (xu z) for all x, y, z ∈ X. A lattice 〈X,v〉 is bounded
if join and meet of the empty set exist. A lattice 〈X,v〉 is complete if joins and
meets of every subset of X exist. Note that a complete lattice is bounded, and a
bounded lattice is both a bottomed join- and a topped meet-semilattice.

Let 〈X,v〉 be a complete lattice. A subset S ⊆ X is called join-dense in
〈X,v〉 if for every x ∈ X there is T ⊆ S such that x =

⊔
T . An element x ∈ X

is join-irreducible in 〈X,v〉 if x 6= ⊥ and for all a, b ∈ X, x = a t b implies
x = a or x = b. We call x completely join-irreducible in 〈X,v〉 if for every subset
S ⊆ X, x =

⊔
S implies x ∈ S. Note that x being completely join-irreducible

implies x being join-irreducible but not the other way round. By J (〈X,v〉),
we denote the set of completely join-irreducible elements in 〈X,v〉. Note that
J (〈X,v〉) ⊆ S for every S which is join-dense in 〈X,v〉.

Like in the case of semilattices, we say that a lattice 〈Y,≤〉 is a sub-lattice
of another lattice 〈X,v〉 if 〈Y,≤〉 is a suborder of 〈X,v〉. And with the same
arguments as for semilattices, it is justified to define two lattices 〈X,v〉 and
〈Y,≤〉 as isomorphic if there exists an isomorphism from 〈X,v〉 to 〈Y,≤〉. If
there is an embedding from an ordered set 〈X,v〉 into a complete lattice 〈Y,≤〉
then 〈Y,≤〉 is called a completion of 〈X,v〉.

An example of a complete lattice is the two-element lattice 〈{0, 1},≤〉, which is
unique up to isomorphism. It consists only of the least element 0 and the greatest

20 PRELIMINARIES

element 1, so join must be the maximum and meet the minimum operation on
{0, 1}. To give another example of a complete lattice, let A be an arbitrary set
and let P(A) denote the power set of A, i. e., the family of all subsets of A. This
family is ordered by set inclusion, and it is easy to see that join amounts to set
union and meet to set intersection. Hence, 〈P(A),⊆〉 is a complete lattice. On
the other hand, consider Pfin(A), the family of all finite subsets of A, which is
also ordered by inclusion. Thus, 〈Pfin(A),⊆〉 is also a lattice — in fact, it is
a proper sub-lattice of 〈P(A),⊆〉 — where join amounts to union and meet to
intersection. However, the union of infinitely many finite sets need not be finite,
so 〈Pfin(A),⊆〉 can’t be complete. Nonetheless, both 〈P(A),⊆〉 and 〈Pfin(A),⊆〉
are distributive.

Pseudo-complements. Let 〈X,v〉 be a lattice with least element⊥ and great-
est element > and let x, y ∈ X. If {p ∈ X | x u p v y} has a greatest element
then this element is called the pseudo-complement of x relative to y and denoted
by x⇒ y. We define the pseudo-complement of x, denoted by ¬x, as x⇒⊥. If
¬x exists and x t ¬x = > then we say that ¬x is called the complement of x.
Note that if 〈X,v〉 is distributive and ¬x is the complement of x then ¬x is the
unique z ∈ X with x u z = ⊥ and x t z = >.

Heyting and Boolean algebras. A bounded lattice 〈X,v〉 is called a Heyting
algebra if all relative pseudo-complements x⇒ y exist for x, y ∈ X. Note that
every Heyting algebra is distributive. Furthermore in a Heyting algebra 〈X,v〉
with greatest element >, the equivalence x v y⇒z iff yux v z and the equations

x u (x⇒ y) = x u y x⇒ x = >
y u (x⇒ y) = y x⇒ (y u z) = (x⇒ y) u (x⇒ z)

hold for all x, y, z ∈ X.

A Heyting algebra 〈X,v〉 is called a Boolean algebra if ¬x is the complement
of x for all x ∈ X. Thus, a Boolean algebra 〈X,v〉 is a Heyting algebra that
satisfies the law of excluded middle, i. e., x t ¬x = > for all x ∈ X.

Notation: Typefaces. Given a set X, we may denote an ordered set (or semi-
lattice, lattice, Heyting algebra, Boolean algebra) with point set X by typesetting
the point set X in bold face, i. e., X = 〈X,v〉 for some order v on X. On the
other hand, we may name an unknown ordered set (or semilattice, lattice, et
cetera) by a letter typeset in bold face, in which case that letter typeset in nor-
mal face denotes the point set. E. g., if Y denotes an ordered set then Y denotes
the point set of Y .

PRELIMINARIES 21

Order ideals. Let X = 〈X,v〉 be an ordered set. A subset S ⊆ X is called an
order ideal3 in X if for all x, y ∈ X, x v y and y ∈ S implies x ∈ S. By O(X)
we denote the family of all order ideals in X. Note that 〈O(X),⊆〉 is a complete
distributive lattice where join amounts to union and meet to intersection.

For every x ∈ X, we define the downward closure of x as {y ∈ X | y v x},
denoted by v(x), and we define the strict downward closure of x as {y ∈ X |
y @ x}, denoted by @(x). Note that v(x) and @(x) are order ideals in X. In
fact, v(x) is the least order ideal containing x; it is also called the principal
ideal4 generated by x. Obviously, the function which maps every x ∈ X to
v(x) ∈ O(X) is an order embedding. In fact, via this embedding, 〈O(X),⊆〉 is
a completion, the ideal completion of X. Note that for every S ⊆ X,

⋃
s∈S v(s) =⋂

{O ∈ O(X) | S ⊆ O}, i. e., the join of all principal ideals generated by elements
in S is the least order ideal containing S. Therefore, we call

⋃
s∈S v(s) the order

ideal generated by S. Obviously, the set of principal ideals {v(x) | x ∈ X} is
join-dense in the ideal completion of X. Moreover, the principal ideals are the
completely join-irreducible elements of this completion, i. e., J (〈O(X),⊆〉) =
{v(x) | x ∈ X}.

We say that X is forest-like if for all x ∈ X, the suborder of X generated by
v(x) is linear. We say that X is tree-like if it is forest-like and there is a least
element of X.

Chain conditions. An ordered set X = 〈X,v〉 satisfies the ascending chain
condition, (ACC), if every infinite ascending sequence eventually stabilizes, i. e.,
if for every infinite sequence x0 v x1 v x2 v . . . of elements in X there is an
index i ∈ N such that xi = xj for all j > i. By duality, X satisfies the descending
chain condition,, (DCC), if every infinite descending sequence eventually stabi-
lizes. Note that an ordered set X satisfies ACC if and only if every non-empty
subset of X has a maximal element. Dually, X satisfies DCC if and only if every
non-empty subset of X has a minimal element.

Given an ordered set X = 〈X,v〉 satisfying DCC, one can establish the fact
that for every subset P ⊆ X, P = X if for all x ∈ X, @(x) ⊆ P implies x ∈ P .
This is known as the principle of well-founded induction (over X), and a more
common way to state it is: For every property P over X, if for all x ∈ X, the
fact that all y ∈ @(x) have P implies that x has P , then all x ∈ X have P .

2.2 Some Examples of Ordered Sets

Partial maps. Let A and B be sets. We denote the set of partial maps from A
to B by A _ B. For every f ∈ A _ B, we denote the domain of f by dom(f).

3Order ideals are also known as downward-closed sets, or down-sets for short.
4Note that for x ∈ X, v(x) is an ideal, i. e., an order ideal which is closed under join.

22 PRELIMINARIES

We define a binary relation E on A _ B by f E g if and only if dom(f) ⊆
dom(g) and f(a) = g(a) for all a ∈ dom(f). Then 〈A _ B,E〉 is an ordered
set with least element, which is denoted by ⊥. The set of maximal elements in
〈A _ B,E〉, i. e., the set of total maps from A to B, is denoted by A→ B. Given
f, g ∈ A _ B, note that the join f O g of f and g exists if and only if the set
of upper bounds of {f, g} is non-empty. Finally, given f ∈ A _ B and X ⊆ A,
we define the restriction of f to X as the partial map f |X ∈ A _ B such that
f |X E f and dom(f |X) = dom(f) ∩X. We extend restriction to sets of partial
maps in the canonical way, i. e., F |X = {f |X | f ∈ F} for every F ⊆ A _ B and
X ⊆ A.

Let A and B be sets and let v be an order on B. Let ≤ be the binary relation
on A _ B such that for all f, g ∈ A _ B, f ≤ g if and only if dom(f) ⊆ dom(g)
and f(a) v g(a) for all a ∈ dom(f). Then ≤ is an order on A _ B; we say
that v has been lifted or more precisely, the order ≤ is called the lifting of v to
A _ B. Note that E may be viewed as the lifting of the identity on B to A _ B.

Let A, B, C and D be sets. Given f ∈ A _ B, we define the range of
f , denoted by rng(f), as the set {f(a) | a ∈ dom(f)}. Given f ∈ A _ B
and g ∈ B _ C, we define the composition of g and f as the partial map
g ◦ f ∈ A _ C such that dom(g ◦ f) = {a ∈ dom(f) | f(a) ∈ dom(g)} and
(g ◦ f)(a) = g(f(a)) for all a ∈ dom(g ◦ f). Note that composition is associative,
i. e., given f ∈ A _ B, g ∈ B _ C and h ∈ C _ D, (f ◦ g) ◦ h = f ◦ (g ◦ h).

Let A, B and C be sets and n ∈ N. Given partial maps f1, . . . , fn ∈ A _ B
and g ∈ Bn _ C, we define the tuple composition of g and f1, . . . , fn as the partial
map g[f1, . . . , fn] ∈ A _ C such that dom(g[f1, . . . , fn]) = {a ∈

⋂n
i=1 dom(fi) |

〈f1(a), . . . , fn(a)〉 ∈ dom(g)} and g[f1, . . . , fn](a) = g(〈f1(a), . . . , fn(a)〉) for all
a ∈ dom(g[f1, . . . , fn]). Note that if n = 1 then g[f1] = g ◦ f1. If n = 0 and
g 6= ⊥ then dom(g[]) = A and g[](a) = g(〈〉) for all a ∈ A; if n = 0 and g = ⊥
then g[] = ⊥.

Natural numbers. By ≤, we denote the usual linear order on the set of natural
numbers N. Note that 〈N,≤〉 has a least element 0 but no greatest element, not
even a maximal one. Sometimes, we extend the natural numbers by attaching
ω, which results in the complete lattice 〈N ∪ {ω},≤〉 with least element 0 and
greatest element ω.

Words. Given a set Σ, a word (over the alphabet Σ) is a partial map w ∈ N _ Σ
such that dom(w) is an order ideal in 〈N,≤〉, i. e., dom(w) = N or dom(w) =
{0, . . . , n−1} for some n ∈ N. We call w infinite if dom(w) = N, finite otherwise.
We call w empty if dom(w) = ∅, i. e., if w = ⊥; we use the symbol ε to denote
the empty word ⊥. By Σ∞, we denote the set of words, by Σω the set of infinite
words, by Σ∗ the set of finite words and by Σ+ the set of finite non-empty words.
We write len(w) to denote the length of a word w ∈ Σ∞, where len(w) = ω if

PRELIMINARIES 23

w ∈ Σω and len(w) = n ∈ N if w ∈ Σ∗ and dom(w) = {0, . . . , n− 1}.
Given u, v ∈ Σ∞, we define the catenation of u and v as the word uv ∈ Σ∞

where len(uv) = len(u) + len(v) if u, v ∈ Σ∗, otherwise len(uv) = ω, and for
all i < len(uv), (uv)(i) = u(i) if i < len(u), otherwise (uv)(i) = v(i − len(u)).
Catenation is an associative operation, therefore we may write a finite non-empty
word w ∈ Σ+ as the sequence of its letters w(0) . . . w(n − 1) where n = len(w);
alternatively we may write wi to denote the letter w(i), so w = w0 . . . wn−1.
We extend catenation to sets of words U, V ⊆ Σ∞ in the canonical way, i. e.,
UV = {uv | u ∈ U, v ∈ V }. Given w ∈ Σ∞ and W ⊆ Σ∞, we may abbreviate the
sets {w}W and W{w} by wW and Ww, respectively.

By the symbol �, we denote the order on Σ∞ which is induced by the order
E on N _ Σ. Note that for all u,w ∈ Σ∞, u � w iff uv = w for some v ∈ Σ∞; for
this reason, we say that u is a prefix of w if and only if u � w. Given L ⊆ Σ∞, we
define prf (L), the prefix-closure of L, by prf (L) =

⋃
w∈L�(w), and we say that

L is prefix-closed if and only if L = prf (L). Note that the set of all prefix-closed
subsets of Σ∞, ordered by inclusion, forms a complete lattice. Given w ∈ Σ∞,
we may sometimes write prf (w) instead of prf ({w}), i. e., prf (w) = �(w).

Given w ∈ Σ∞ and n ∈ N, by wn we denote the n-fold catenation of w with
itself, which is defined inductively through wn = wwn−1 if n > 0, otherwise
wn = ε. We use w∗ to abbreviate the set {wn | n ∈ N}, and we write wω to
denote

b
w∗; note that this join of w∗ always exists. Finally, we may write w+

and w∞ to abbreviate the sets w∗ \ {ε} and w∗ ∪ {wω}, respectively.

Given an order v on Σ, by v∞ we denote the order on Σ∞ which is induced
by the lifting of v to N _ Σ. Note that the empty word ε is the least element in
〈Σ∞,�〉 and, as � ⊆ v∞, also in 〈Σ∞,v∞〉.

Trees. Given an alphabet Σ, a tree (over Σ) is a partial map t ∈ N∗ _ Σ such
that dom(t) is an order ideal in 〈N∗,�〉 and for every w ∈ N∗, {n ∈ N | wn ∈
dom(t)} is an order ideal in 〈N,≤〉. We call the words in dom(t) the nodes of t.
We call a node w of t a leaf node if w is maximal in dom(t), w is a non-leaf node
otherwise. Given a node w of t, we call t(w) ∈ Σ the label of w in t; alternatively
we may write tw to denote the label t(w). We call a tree t empty if dom(t) = ∅,
i. e., if t = ⊥; we use the symbol λ to denote the empty tree ⊥. We call a tree
finite resp. infinite if its set of nodes is finite resp. infinite. By ΣM, we denote
the set of trees and by ΣN the set of finite trees.

Given a tree t ∈ ΣM, we call t infinitely branching if {n ∈ N | wn ∈ dom(t)} =
N for some w ∈ N∗, t is finitely branching otherwise. We say that t is of infinite
depth if ≺(w) ⊆ dom(t) for some w ∈ Nω, t is of finite depth otherwise. Note
that by König’s tree lemma, t ∈ ΣN if and only if t is finitely branching and of
finite depth.

By the symbol �, we denote the order on ΣM which is induced by the order
E on N∗ _ Σ. Given an order v on Σ, by vM we denote the order on ΣM which

24 PRELIMINARIES

is induced by the lifting of v to N∗ _ Σ. Note that the empty tree λ is the least
element in 〈ΣM,�〉 and, as � ⊆ vM, also in 〈ΣM,vM〉.

Chapter 3

Inferences in Semilattices

This chapter defines and investigates conditional inference rules (i. e., rules which
are constrained by a side condition) for inferring inequations in a meet-semilattice.
We develop an order on the set of all inference rules so that rules can be com-
pared. Soundness and various notions of completeness of conditional inference
rules are introduced. Finally, we present a restricted class of inference rules that
is important in verification, the assume-guarantee rules. In Chapter 4, a subclass
of these, the circular assume-guarantee rules, will be examined thoroughly for
soundness and completeness.

3.1 Terms, Formulas and Relations

Definition 3.1 (Variable, Term).
We fix a countably infinite set V , the set of variables . The set of terms T is built
inductively from variables in V , the nullary operator > and the binary operator
u. We consider > neutral w. r. t. u, which is seen as associative, commutative
and idempotent. We define a binary relation v on T by t v t′ if and only if
tu t′ = t. We define the function var : T → Pfin(V) by var(t) = {x ∈ V | t v x}.
We define the function size : T → N by size(t) = |var(t)|, i. e., size(t) is the
cardinality of var(t).

Notation. Given a set of terms T , we may write var(T) instead of
⋃

t∈T var(t).
We call w, the converse of v, the subterm relation on terms as for all t, t′ ∈ T ,
t w t′ iff there is s ∈ T such that s u t = t′.

As T with u and > is an idempotent Abelian monoid, T = 〈T ,v〉 is a topped
meet-semilattice with meet u and greatest element >. Note that every term t
can be uniquely represented by its set of variables var(t) as var : T → Pfin(V) is
an isomorphism from 〈T ,v〉 to 〈Pfin(V),⊇〉.

Notation. Given t, t′ ∈ T , we define the term t− t′ ∈ T such that var(t− t′) =
var(t) \ var(t′); note that this operation is well-defined because var is an isomor-

26 INFERENCES IN SEMILATTICES

phism. We say that t − t′ is the result of factoring out t′ from t. We assume
that u has higher precedence than −, i. e., given terms t, t′, t′′, t′′′, the expressions
t u t′ − t′′ u t′′′ and (t u t′)− (t′′ u t′′′) denote the same term.

Definition 3.2 (Valuation).
Given a topped meet-semilattice S = 〈S,≤〉, a valuation is a partial map from
V to S. Given a valuation α ∈ V _ S, we write α̂ to denote the extension of
α to terms, i. e., α̂ ∈ T _ S, where dom(α̂) = {t ∈ T | var(t) ⊆ dom(α)} and
for all t ∈ dom(α̂), α̂(t) =

∧
{α(x) | x ∈ var(t)}. By V (S), we denote the set of

valuations.

Since T = 〈T ,v〉 is a topped meet-semilattice, there are valuations mapping
variables to terms. Given such a valuation σ, σ̂ ∈ T _ T is the partial function
on terms which is defined for a term t = x1 u . . . u xn ∈ T iff σ is defined
for all xi ∈ V , in which case σ̂ replaces every xi by its image under σ, i. e.,
σ̂(t) = σ(x1) u . . . u σ(xn).

Notation. Given σ ∈ V (T) and T ⊆ T with var(T) ⊆ dom(σ), we may write
σ̂(T) to abbreviate {σ̂(t) | t ∈ T}. Note that V (T) contains the identity id on
V , i. e., dom(id) = V and id(x) = x for all x ∈ V .

Definition 3.3 (Invertible).
Given σ ∈ V (T), we say that σ is invertible if and only if there is τ ∈ V (T)
such that τ̂ ◦ σ = id|dom(σ).

Proposition 3.4. Obviously, σ ∈ V (T) is invertible if and only if for all x, y ∈
dom(σ), var(σ(x)) 6= ∅, and x 6= y implies var(σ(x)) ∩ var(σ(y)) = ∅.

Notation. If the valuation σ ∈ V (T) is invertible then the set {τ ∈ V (T) |
τ̂ ◦ σ = id|dom(σ) and rng(τ) ⊆ V} has a least element, which we denote by σ−1.
We call σ−1 the inverse of σ.

Proposition 3.5. Let σ, τ ∈ V (T) be invertible, and let α ∈ V (S) for some
topped meet-semilattice S. Then obviously

1. dom(σ−1) = var(rng(σ)) and rng(σ−1) = dom(σ),

2. dom(α ◦ σ−1) = var(rng(σ|dom(α))),

3. τ̂ ◦ σ is invertible and (τ̂ ◦ σ)−1 = σ−1 ◦ τ−1, and

4. if σ E τ then σ−1 E τ−1.

Definition 3.6 (Substitution).
We say that σ ∈ V (T) is a substitution if and only if σ is invertible and dom(σ)
is finite. We denote the set of substitutions by S.

INFERENCES IN SEMILATTICES 27

Proposition 3.7. Obviously, for all substitutions σ and all finite sets of variables
X there is a substitution τ such that σ E τ and X ⊆ dom(τ).

Definition 3.8 (Formula).
A formula is a pair 〈t, t′〉 of terms, where we refer to t as the left- and to t′ as the
right-hand side of the formula. We say that a formula 〈t, t′〉 is in normal form iff
var(t) ∩ var(t′) = ∅, and 〈t, t′〉 is in strong normal form iff it is normal form and
t′ ∈ V . By F resp. Fn resp. FN, we denote the set of formulas resp. formulas in
normal form resp. formulas in strong normal form.

Notation. Mostly, we will write a formula 〈t, t′〉 as t v t′. We will do so only if
no confusion can arise, i. e., only if in the current context t v t′ cannot mean the
statement that t′ is a subterm of t. Given a formula t v t′, we denote its variable
set by var(t v t′) and its size by size(t v t′), i. e., var(t v t′) = var(t) ∪ var(t′)
and size(t v t′) = size(t) + size(t′). Given a set of formulas Φ, we may write
var(Φ) resp. size(Φ) to abbreviate

⋃
ϕ∈Φ var(ϕ) resp.

∑
ϕ∈Φ size(ϕ).

Let S = 〈S,≤〉 be a topped meet-semilattice, n ∈ N, Γ ⊆ Sn and t1, . . . , tn ∈ T .
We may view the set Γ as a total function in Sn → {0, 1} by identifying it with
its characteristic function. Furthermore, we may view every term ti as a partial
map in V (S) _ S by defining dom(ti) = {α ∈ V (S) | var(ti) ⊆ dom(α)}
and ti(α) = α̂(ti) for all α ∈ dom(ti). Hence the tuple composition of Γ and
t1, . . . , tn is well-defined. More precisely, Γ[t1, . . . , tn] ∈ V (S) _ {0, 1} with
dom(Γ[t1, . . . , tn]) = {α ∈ V (S) | var({t1, . . . , tn}) ⊆ dom(α)}.

Definition 3.9 (Relation).
Given a topped meet-semilattice S = 〈S,≤〉, a relation Γ[t1, . . . , tn] is the tuple
composition of Γ and t1, . . . , tn where n ∈ N, Γ ⊆ Sn and t1, . . . , tn ∈ T . By
R(S), we denote the set of relations.

Notation. Sometimes, we call Γ[t1, . . . , tn] a named relation to emphasize that
Γ[t1, . . . , tn] rather relates values of variables than tuple entries. We denote
the variable set of Γ[t1, . . . , tn] by var(Γ[t1, . . . , tn]), i. e., var(Γ[t1, . . . , tn]) =
var({t1, . . . , tn}). If Γ = S0 then we may write True to abbreviate the relation
Γ[].

Definition 3.10 (Sequent).
Given a topped meet-semilattice S = 〈S,≤〉, a sequent Λ is a finite non-empty
word consisting of sets of formulas and relations, i. e., Λ ∈ (P(F) ∪R(S))+. We
say that a sequent Λ is finite if and only if Λ ∈ (Pfin(F) ∪R(S))+.

Notation. Let Λ be a sequent and let n = len(Λ). We write Λ as a comma-
separated sequence Λ0, . . . ,Λn−1. We may omit set braces around singletons, i. e.,
we may write Λ0, . . . ,Λi−1, {ψ},Λi+1, . . . ,Λn−1 as Λ0, . . . ,Λi−1, ψ,Λi+1, . . . ,Λn−1,
where ψ is a formula. We denote the variable set of the sequent Λ by var(Λ),
i. e., var(Λ) = var(Λ0) ∪ . . . ∪ var(Λn−1).

28 INFERENCES IN SEMILATTICES

Notation. Let σ ∈ V (T). Given a formula t v t′ with var(t v t′) ⊆ dom(σ),
we may write σ̂(t v t′) to denote the formula σ̂(t) v σ̂(t′); note that t v t′

is in normal form if and only if σ̂(t v t′) is in normal form. Given a set of
formulas Φ with var(Φ) ⊆ dom(σ), we may write σ̂(Φ) to abbreviate {σ̂(ϕ) |
ϕ ∈ Φ}. And given a relation Γ[t1, . . . , tn] with var(Γ[t1, . . . , tn]) ⊆ dom(σ), we
may write σ̂(Γ[t1, . . . , tn]) instead of the relation Γ[σ̂(t1), . . . , σ̂(tn)]. Finally, if
Λ1, . . . ,Λn is a sequent then we may write σ̂(Λ1, . . . ,Λn) to abbreviate the sequent
σ̂(Λ1), . . . , σ̂(Λn).

3.2 Satisfiability and Entailment

In this section, we define satisfiability and entailment of relations and (sets of)
formulas w. r. t. valuations, then we prove a technical but indispensable lemma
about substitution, and we end the section with an investigation of the complexity
of the (unconstrained) entailment problem for formulas. Throughout this section
we fix a topped meet-semilattice S = 〈S,≤〉, i. e., all relations resp. valuations
are implicitly in R(S) resp. V (S).

Contrary to the standard in logic, we define satisfiability and entailment rel-
ative to a given valuation α. Thus, some variables in the formulas and relations
may be constrained to the values given by α whereas others (those not in dom(α))
are to be considered free. This view of formulas being partially constrained by a
valuation will become important in Section 3.3 when defining and comparing in-
ference rules with side conditions. It is also central to the definitions of soundness
(Section 3.4) and completeness (Section 3.5).

Definition 3.11 (Satisfiability of Relations).
Given a relation Γ[t1, . . . , tn] and a valuation α, we say that Γ[t1, . . . , tn] is satis-
fiable under α, denoted by S, α |= Γ[t1, . . . , tn], if and only if there is a valuation
β with α E β and var(Γ[t1, . . . , tn]) ⊆ dom(β) such that Γ[t1, . . . , tn](β) = 1.

Proposition 3.12. Let Γ[t1, . . . , tn] be a relation and let α and β be valuations
with α E β. Obviously, S, β |= Γ[t1, . . . , tn] implies S, α |= Γ[t1, . . . , tn], and
S, α|var(Γ[t1,...,tn]) |= Γ[t1, . . . , tn] implies S, α |= Γ[t1, . . . , tn].

Lemma 3.13. Let Γ[t1, . . . , tn] be a relation, let α be a valuation and let σ be
a substitution with var(Γ[t1, . . . , tn]) ⊆ dom(σ). Then S, α |= σ̂(Γ[t1, . . . , tn])
implies S, α̂ ◦ σ |= Γ[t1, . . . , tn], and if dom(α) = var(rng(σ|X)) for some X ⊆ V
then S, α̂ ◦ σ |= Γ[t1, . . . , tn] implies S, α |= σ̂(Γ[t1, . . . , tn]).

Proof. To prove the first implication, let β be a valuation such that α E β and
var(σ̂(Γ[t1, . . . , tn])) ⊆ dom(β) and σ̂(Γ[t1, . . . , tn])(β) = 1. Clearly, α̂ ◦σ E β̂ ◦σ
and var(Γ[t1, . . . , tn]) ⊆ dom(β̂ ◦ σ). Furthermore, we have Γ[t1, . . . , tn](β̂ ◦ σ) =
Γ[σ̂(t1), . . . , σ̂(tn)](β) = σ̂(Γ[t1, . . . , tn])(β) = 1. Hence S, α̂ ◦ σ |= Γ[t1, . . . , tn].

INFERENCES IN SEMILATTICES 29

To prove the second implication, let β be a valuation with α̂ ◦ σ E β and
var(Γ[t1, . . . , tn]) ⊆ dom(β) such that Γ[t1, . . . , tn](β) = 1. Define a valuation γ =
αO(β|V\X◦σ−1), so we have α E γ and var(σ̂(Γ[t1, . . . , tn])) ⊆ dom(γ). Moreover,
γ̂ ◦ σ E β and var(Γ[t1, . . . , tn]) ⊆ dom(γ̂ ◦ σ), so Γ[t1, . . . , tn](γ̂ ◦ σ) = 1. There-
fore, we have σ̂(Γ[t1, . . . , tn])(γ) = Γ[σ̂(t1), . . . , σ̂(tn)](γ) = Γ[t1, . . . , tn](γ̂◦σ) = 1.
Hence S, α |= σ̂(Γ[t1, . . . , tn]).

Definition 3.14 (Satisfiability of Formulas).
Given a set of formulas Φ and a valuation α, we say that Φ is satisfiable under
α, denoted by S, α |= Φ, if and only if there is a valuation β with α E β and
var(Φ) ⊆ dom(β) such that β̂(t) ≤ β̂(t′) for all 〈t, t′〉 ∈ Φ.

Observe that S, α |= Φ holds trivially for every set of formulas Φ and every
valuation α with var(Φ) ⊆ dom(α) such that α maps all x ∈ var(Φ) to the
greatest element of S. Hence every set of formulas Φ is satisfiable under the least
valuation ⊥ ∈ V (S).

Proposition 3.15. Let Φ be a set of formulas and let α and β be valuations
with α E β. Obviously, S, β |= Φ implies S, α |= Φ, and S, α|var(Φ) |= Φ implies
S, α |= Φ.

Lemma 3.16. Let Φ be a set of formulas, let α be a valuation and let σ be a
substitution with var(Φ) ⊆ dom(σ). Then S, α |= σ̂(Φ) implies S, α̂ ◦ σ |= Φ,
and if dom(α) = var(rng(σ|X)) for some X ⊆ V then S, α̂ ◦ σ |= Φ implies
S, α |= σ̂(Φ).

Proof. To prove the first implication, let β be a valuation such that α E β
and var(σ̂(Φ)) ⊆ dom(β) and β̂(t) ≤ β̂(t′) for all 〈t, t′〉 ∈ σ̂(Φ). Obviously,
α̂ ◦ σ E β̂ ◦ σ and var(Φ) ⊆ dom(β̂ ◦ σ). Furthermore for every 〈t, t′〉 ∈ Φ, we
have β̂(σ̂(t)) ≤ β̂(σ̂(t′)), i. e., (β̂ ◦ σ)(t) ≤ (β̂ ◦ σ)(t′). Hence S, α̂ ◦ σ |= Φ.

To prove the second implication, let β be a valuation with α̂ ◦ σ E β and
var(Φ) ⊆ dom(β) such that β̂(t) ≤ β̂(t′) for all 〈t, t′〉 ∈ Φ. Define a valuation
γ = α O (β|V\X ◦ σ−1), so we have α E γ and var(σ̂(Φ)) ⊆ dom(γ). Moreover,
γ̂ ◦ σ E β and var(Φ) ⊆ dom(γ̂ ◦ σ), so for all 〈t, t′〉 ∈ Φ, we have (γ̂ ◦ σ)(t) ≤
(γ̂ ◦ σ)(t′), i. e., γ̂(σ̂(t)) ≤ γ̂(σ̂(t′)). This is equivalent to γ̂(t) ≤ γ̂(t′) for all
〈t, t′〉 ∈ σ̂(Φ). Hence S, α |= σ̂(Φ).

Definition 3.17 (Truth and Satisfiability of Sequents).
Given a sequent Λ1, . . . ,Λn and a valuation α, we say that Λ1, . . . ,Λn is true
under α if and only if for all i ∈ {1, . . . , n}, var(Λi) ⊆ dom(α) and S, α |= Λi.
We say that Λ1, . . . ,Λn is satisfiable under α, denoted by S, α |= Λ1, . . . ,Λn, if
and only if there is a valuation β with α E β such that Λ1, . . . ,Λn is true under
β.

Proposition 3.18. Let Λ1, . . . ,Λn be a sequent and let α and β be valuations
with α E β. Then obviously, S, β |= Λ1, . . . ,Λn implies S, α |= Λ1, . . . ,Λn, and
S, α|var(Λ1,...,Λn) |= Λ1, . . . ,Λn implies S, α |= Λ1, . . . ,Λn.

30 INFERENCES IN SEMILATTICES

Lemma 3.19. Let Λ1, . . . ,Λn be a sequent, let α be a valuation and let σ be a
substitution with var(Λ1, . . . ,Λn) ⊆ dom(σ). Then S, α |= σ̂(Λ1, . . . ,Λn) implies
S, α̂ ◦ σ |= Λ1, . . . ,Λn, and if dom(α) = var(rng(σ|X)) for some X ⊆ V then
S, α̂ ◦ σ |= Λ1, . . . ,Λn implies S, α |= σ̂(Λ1, . . . ,Λn).

Proof. To prove the first implication, let β be a valuation with α E β such that
σ̂(Λ1, . . . ,Λn) is true under β, i. e., for every i ∈ {1, . . . , n}, var(σ̂(Λi)) ⊆ dom(β)
and S, β |= σ̂(Λi). Thus, α̂◦σ E β̂ ◦σ and var(Λi) ⊆ dom(β̂ ◦ σ), and by Lemma
3.13 or 3.16, S, β̂ ◦ σ |= Λi. Therefore, Λ1, . . . ,Λn is true under β̂ ◦ σ. Hence
S, α̂ ◦ σ |= Λ1, . . . ,Λn.

To prove the second implication, let β be a valuation with α̂ ◦ σ E β such
that Λ1, . . . ,Λn is true under β, i. e., var(Λ1, . . . ,Λn) ⊆ dom(β) and S, β |= Λi

for all i ∈ {1, . . . , n}. Define γ = α O (β|V\X ◦ σ−1), so we have α E γ and
var(σ̂(Λ1, . . . ,Λn)) ⊆ dom(γ) — to be precise, dom(γ) = var(rng(σ|X∪dom(β))).
Moreover, γ̂ ◦ σ E β and var(Λ1, . . . ,Λn) ⊆ dom(γ̂ ◦ σ), so S, γ̂ ◦ σ |= Λi for
every i ∈ {1, . . . , n}. This implies S, γ |= σ̂(Λi) by Lemma 3.13 or 3.16, so
σ̂(Λ1, . . . ,Λn) is true under γ. Hence S, α |= σ̂(Λ1, . . . ,Λn).

Definition 3.20 (Entailment and Equivalence).
Given the sequents Λ and Λ′ and the valuation α, we say that Λ entails Λ′ under
α (or that Λ′ is a logical consequence of Λ under α), denoted by Λ |=S

α Λ′, if and
only if for all valuations β with α E β and var(Λ)∪ var(Λ′) ⊆ dom(β), S, β |= Λ
implies S, β |= Λ′. We say that Λ and Λ′ are logically equivalent under α, denoted
by Λ ≡S

α Λ′, if and only if Λ |=S
α Λ′ and Λ′ |=S

α Λ.

Notation. If α = ⊥ then we may write Λ |=S Λ′ resp. Λ ≡S Λ′ instead of
Λ |=S

α Λ′ resp. Λ ≡S
α Λ′.

Proposition 3.21. Let α be valuation and let Λ and Λ′ be two sequents such that
Λ = ∅ or Λ = True. Obviously, Λ |=S

α Λ′ implies S, α |= Λ′, and if var(Λ′) ⊆
dom(α) then S, α |= Λ′ implies Λ |=S

α Λ′.

Note that unless S is trivial, we cannot identify ∅ |=S
α Λ′ with S, α |= Λ′. The

reason is that if S is non-trivial then there exist a sequent Λ′ and a valuation α
with var(Λ′) 6⊆ dom(α) such that S, α |= Λ′ holds but ∅ |=S

α Λ′ does not hold.
Accordingly, the same applies to True |=S

α Λ′.

Proposition 3.22. Let Λ and Λ′ be two sequents and let α and β be two val-
uations with α E β. Then Λ |=S

α Λ′ implies Λ |=S
β Λ′, and Λ |=S

β Λ′ implies

Λ |=S
β|var(Λ)∪var(Λ′)

Λ′.

Proof. The first implication is immediate from the definition. To prove the second
implication, let X = var(Λ)∪ var(Λ′) and let γ be a valuation with β|X E γ and
var(Λ)∪ var(Λ′) ⊆ dom(γ) such that S, γ |= Λ. Define δ = β O γ|V\dom(β). Then
γ|X = δ|X , so we have S, δ |= Λ. And as β E δ and var(Λ) ∪ var(Λ′) ⊆ dom(δ),
Λ |=S

β Λ′ implies S, δ |= Λ′, which implies S, γ |= Λ′.

INFERENCES IN SEMILATTICES 31

Lemma 3.23. Let Λ and Λ′ be two sequents, α a valuation and σ a substitution
with var(Λ) ∪ var(Λ′) ⊆ dom(σ). Then Λ |=S

α̂◦σ Λ′ implies σ̂(Λ) |=S
α σ̂(Λ′),

and if dom(α) = var(rng(σ|X)) for some X ⊆ V then σ̂(Λ) |=S
α σ̂(Λ′) implies

Λ |=S
α̂◦σ Λ′.

Proof. Observe that σ̂(Λ) |=S
α σ̂(Λ′) if and only if σ̂(Λ) |=S

β σ̂(Λ′), and Λ |=S
α̂◦σ Λ′

if and only if Λ |=S
β̂◦σ Λ′, where β = α|var(σ̂(Λ))∪var(σ̂(Λ′)). Thus w. l. o. g. we may

assume that dom(α) ⊆ var(σ̂(Λ)) ∪ var(σ̂(Λ′)).
To prove the first implication, assume that Λ |=S

α̂◦σ Λ′ and let β be a valuation
with α E β and var(σ̂(Λ)) ∪ var(σ̂(Λ′)) ⊆ dom(β) such that S, β |= σ̂(Λ) —
w. l. o. g. we assume that dom(β) = var(σ̂(Λ))∪ var(σ̂(Λ′)). By Lemma 3.19, we
have S, β̂ ◦ σ |= Λ. Obviously, α̂ ◦ σ E β̂ ◦ σ and var(Λ)∪ var(Λ′) ⊆ dom(β̂ ◦ σ),
so because of our assumption, we get S, β̂ ◦ σ |= Λ′. Again by Lemma 3.19, this
implies S, β |= σ̂(Λ′). Hence σ̂(Λ) |=S

α σ̂(Λ′).
To prove the second implication, let X be a set of variables with dom(α) =

var(rng(σ|X)) and assume that σ̂(Λ) |=S
α σ̂(Λ′). Let β be a valuation with α̂◦σ E

β and var(Λ) ∪ var(Λ′) ⊆ dom(β) such that S, β |= Λ. Define a valuation
γ = α O (β|V\X ◦ σ−1), so we have α E γ and var(σ̂(Λ)) ∪ var(σ̂(Λ′)) ⊆ dom(γ)
— to be precise, dom(γ) = var(rng(σ|X∪dom(β))). Moreover, γ̂ ◦ σ E β and
var(Λ) ∪ var(Λ′) ⊆ dom(γ̂ ◦ σ), so we have S, γ̂ ◦ σ |= Λ. By Lemma 3.19,
this implies S, γ |= σ̂(Λ), which by our assumption implies S, γ |= σ̂(Λ′), which
again by Lemma 3.19 implies S, γ̂ ◦ σ |= Λ′. Thus, S, β |= Λ′ follows. Hence
Λ |=S

α̂◦σ Λ′.

Notation. Let α ∈ V (S) and t ∈ T . When writing α̂(t), by convention we
may assume that α̂ is defined for t, i. e., var(t) ⊆ dom(α). Furthermore, we may
refrain from denoting the extension of α to terms explicitly, i. e., depending on
the context, α may actually stand for α̂.

Employing the above conventions, we can collect the preceding lemmas into the
following more readable Substitution Lemma.

Proposition 3.24 (Substitution Lemma).
Let Λ and Λ′ be two sequents, let α be a valuation and let σ be a substitution.
Then

• S, α |= σ(Λ) implies S, α ◦ σ |= Λ, and

• Λ |=S
α◦σ Λ′ implies σ(Λ) |=S

α σ(Λ′).

If dom(α) = var(rng(σ|X)) for some X ⊆ V then

• S, α |= σ(Λ) if and only if S, α ◦ σ |= Λ, and

• Λ |=S
α◦σ Λ′ if and only if σ(Λ) |=S

α σ(Λ′).

32 INFERENCES IN SEMILATTICES

We can reformulate the Substitution Lemma by replacing the valuation α with
α ◦ σ−1. Note that we do not need a constraint on the domain of α any more
because dom(α ◦ σ−1) = var(rng(σ|dom(α))).

Corollary 3.25. Let Λ and Λ′ be two sequents, let α be a valuation and let σ be
a substitution. Then

• S, α ◦ σ−1 |= σ(Λ) if and only if S, α |= Λ, and

• Λ |=S
α Λ′ if and only if σ(Λ) |=S

α◦σ−1 σ(Λ′).

Note that for α = ⊥, the Substitution Lemma for entailment boils down to
Λ |=S Λ′ iff σ(Λ) |=S σ(Λ′). Here, it becomes obvious that substitutions must be
invertible for the right-to-left direction to hold.

The special case α = ⊥ deserves more attention, as entailment of sets of
formulas under ⊥ is equivalent to the uniform word problem in S. More precisely,
such entailment problems can be translated into uniform word problems and vice
versa, because every formula t v t′ corresponds to the equation t u t′ .= t and
every equation t

.
= t′ corresponds to the set of formulas {t v t′, t′ v t}.

By a representation theorem [Dav93, SS03], every meet-semilattice is isomor-
phic to a sub-meet-semilattice of a product of copies of the two-element meet-
semilattice 〈{0, 1},≤〉. Thus, in every non-trivial meet-semilattice, uniform word
problems yield the same answers as in 〈{0, 1},≤〉. Consequently for sets of for-
mulas Φ and Φ′, the entailment problem Φ |=S Φ′ does not depend on S unless
S is trivial, in which case Φ |=S Φ′ for all Φ,Φ′ ⊆ F .

Definition 3.26 (Entailment and Equivalence of Formulas).
Given two sets of formulas Φ and Φ′, we say that Φ entails Φ′, denoted by Φ |= Φ′,
if and only if Φ |=〈{0,1},≤〉 Φ′. We say that Φ and Φ′ are logically equivalent ,
denoted by Φ ≡ Φ′, if and only if Φ |= Φ′ and Φ′ |= Φ.

Notation. If Φ = {ϕ1, . . . , ϕn} is a non-empty finite set, we may adopt sequent
notation and write ϕ1, . . . , ϕn |= Φ′ instead of {ϕ1, . . . , ϕn} |= Φ′. Likewise, we
may write the right-hand side Φ′ in sequent notation if Φ′ is a non-empty finite
set. Accordingly, the same conventions apply to logical equivalences.

Proposition 3.27. If S is non-trivial then Φ |= Φ′ if and only if Φ |=S Φ′.

As satisfiability and entailment problems generally depend on the semilattice S,
their computational complexity will also depend on S. However, the entailment
problem for formulas does not depend on S, therefore its complexity is expressible
in terms of the size of formulas only. Naively, uniform word problems in the two-
element meet-semilattice 〈{0, 1},≤〉 are decidable in Co-NP, so Co-NP is an upper
bound on deciding entailment of formulas. However, we can do in quadratic time
by reducing entailment in 〈{0, 1},≤〉 to entailment of propositional Horn clauses.

INFERENCES IN SEMILATTICES 33

We sketch a procedure for deciding Φ |= ϕ′ in linear time, where Φ is a finite
set of formulas and ϕ′ a formula. We can flatten Φ and ϕ′ such that all right-hand
sides are variables. This can be done by repeatedly replacing on the right-hand
sides all proper subterms x u y with x, y ∈ V by new variables z (depending on
x and y) and adding the equations z

.
= x u y (each translated into the three

formulas z v x, z v y and x u y v z) to Φ. Formulas of the form t v > ∈ Φ are
simply deleted.5 This transformation preserves entailment and the blow up of Φ
is only linear in the size of the original formulas. Now, we may view 〈{0, 1},≤〉
as the two-element boolean algebra because the meet corresponds to conjunction
and (the characteristic function of) the order to implication. Thus, the formula
x1 u . . . u xm v y1 u . . . u yn may be seen as the propositional formula stating
that the conjunction of the xi implies the conjunction of the yj. In fact, if Φ and
ϕ′ are flattened, then each formula directly corresponds to a propositional Horn
clause. Hence, the original entailment problem Φ |= ϕ′ in meet-semilattices is
reduced (with a linear blowup due to flattening) to entailment of propositional
Horn clauses, which is known to be decidable in linear time [DG84].

Deciding the general case Φ |= Φ′, where Φ and Φ′ are finite sets of formulas,
takes quadratic time as we must decide Φ |= ϕ′ for every ϕ′ ∈ Φ′.

3.3 Inference Rules

An inference rule is conveniently viewed as a set of inferences, where an inference
usually is a pair consisting of a finite set of formulas, the premises, and a for-
mula, the conclusion. When interpreting such an inference with premises Φ and
conclusion ψ in a particular meet-semilattice, truth of Φ under some valuation
α may imply truth of ψ under α, whereas for another valuation β, truth of Φ
under β may not imply truth of ψ under β. Therefore, it makes sense to enhance
the notion of inference in such a way that premises and conclusions can be re-
stricted further. We do so by defining an inference to be a triple consisting of
premises, conclusion and a valuation restricting some variables of premises and
conclusion to particular values. Of course, the valuation must not render the
inference useless, i. e., it must not make the premises unsatisfiable.

Throughout the remainder of this chapter we fix a non-trivial topped meet-
semilattice S = 〈S,≤〉, i. e., all valuations are implicitly in V (S).

Definition 3.28 (Inference).
An inference is a triple 〈Φ, ψ, α〉 where Φ is a finite set of formulas, ψ is a formula
and α is a valuation with dom(α) finite such that S, α |= Φ. The elements of Φ
are called premises (or Φ is called the premise), ψ is called conclusion and α is
called restriction. By I (S), we denote the set of all inferences.

5We assume that ϕ′ is not of the form t v >, otherwise the entailment Φ |= ϕ′ is trivial.

34 INFERENCES IN SEMILATTICES

Notation. We denote the variable set of an inference 〈Φ, ψ, α〉 by var(〈Φ, ψ, α〉),
i. e., var(〈Φ, ψ, α〉) = var(Φ) ∪ var(ψ) ∪ dom(α).

Definition 3.29 (Inference Rule).
An inference rule I is a set of inferences which is closed under substitution and
entailment, i. e., for all inferences 〈Φ, ψ, α〉 and 〈Φ′, ψ′, α′〉 and all substitutions σ
with var(〈Φ, ψ, α〉) ⊆ dom(σ), if Φ′ |= σ(Φ) and σ(ψ) |= ψ′ and α E α′ ◦ σ then
〈Φ, ψ, α〉 ∈ I implies 〈Φ′, ψ′, α′〉 ∈ I. By R(S), we denote the set of inference
rules.

Definition 3.30 (Order on Inference Rules).
Given two inference rules I and I ′, we say that I ′ is weaker than I (or conversely,
I is stronger than I ′) if and only if I ′ ⊆ I.

Obviously, the weaker-than relation is an order the set of all inference rules. In
fact, 〈R(S),⊆〉 is a complete lattice, where join is union and meet is intersection.

Definition 3.31 (Induced Rule).
Given a set of inferences I, by Ī we denote the inference rule which is induced by I,
i. e., the weakest inference rule containing I; formally Ī =

⋂
{I ′ ∈ R(S) | I ⊆ I ′}.

Viewing inference rules as (almost) arbitrary sets of inferences admits an elegant
way of ordering rules. On the other hand, this view hides the structure of many
rules; e. g., there are rules where the premises and conclusions of all inferences
share a common pattern, which is not accessible in the set-based view of infer-
ence rules. Therefore, we introduce another presentation of inference rules which
reveals the common pattern — called schema — directly. Note, however, that
such a schema need not exist, hence only a subclass of inference rules can be
presented schematically.

Definition 3.32 (Inference Schema).
An inference schema (or just schema) R is a triple 〈Φ, ψ,Γ[t1, . . . , tn]〉 where Φ
is a finite set of formulas, ψ is a formula and Γ[t1, . . . , tn] is a relation. Similar
to inferences, we call Φ the premises , ψ the conclusion and Γ[t1, . . . , tn] the side
condition. We call R syntactic if and only if the side condition Γ[t1, . . . , tn] is the
relation True.

Notation. Sometimes, we will write an inference schema R = 〈Φ, ψ,Γ[t1, . . . , tn]〉
as R : Φ/ψ if Γ[t1, . . . , tn] or as

R :
ϕ1 . . . ϕm

ψ
if Γ[t1, . . . , tn]

when Φ = {ϕ1, . . . , ϕm}. IfR is syntactic then we may omit the side condition and
write R : Φ/ψ, simply. By var(R), we denote the set of variables of the schema
R : Φ/ψ if Γ[t1, . . . , tn] i. e., var(R) = var(Φ) ∪ var(ψ) ∪ var(Γ[t1, . . . , tn]).

INFERENCES IN SEMILATTICES 35

Definition 3.33 (Associated Inferences).
Given a schema R : Φ/ψ if Γ[t1, . . . , tn], there is a set of inferences I (R) associated
with R, where

I (R) = {〈Φ, ψ, α〉 ∈ I (S) | dom(α) = var(R) and S, α |= Γ[t1, . . . , tn]}.

Definition 3.34 (Empty Schema).
Given a schema R : Φ/ψ if Γ[t1, . . . , tn], we call R empty if and only if I (R) = ∅.

Observe that a schema R cannot be both syntactic and empty at the same time.

Lemma 3.35. Let R : Φ/ψ if Γ[t1, . . . , tn] be a schema. Then

I (R) = {〈Φ′, ψ′, α′〉 ∈ I (S) | ∃〈Φ, ψ, α〉 ∈ I (R),∃σ ∈ S with dom(σ) = var(R)

such that Φ′ |= σ(Φ), σ(ψ) |= ψ′ and α E α′ ◦ σ}.

Proof. We denote the right-hand side of the above equation by IR. First, we prove
that IR is an inference rule, i. e., closed under substitution and entailment. Let
〈Φ′, ψ′, α′〉 ∈ IR, i. e., there exist an inference 〈Φ, ψ, α〉 ∈ I (R) and a substitution
σ with dom(σ) = var(R) such that Φ′ |= σ(Φ), σ(ψ) |= ψ′ and α E α′ ◦ σ. Let ρ
be a substitution with var(〈Φ′, ψ′, α′〉) ⊆ dom(ρ), let 〈Φ′′, ψ′′, α′′〉 be an inference
and assume that Φ′′ |= ρ(Φ′), ρ(ψ′) |= ψ′′ and α′ E α′′ ◦ ρ. We have to show
〈Φ′′, ψ′′, α′′〉 ∈ IR.

There is a substitution τ such that ρ E τ and var(rng(σ)) ⊆ dom(τ), so
dom(τ ◦ σ) = dom(σ) = var(R). Hence ρ(Φ′) = τ(Φ′), ρ(ψ′) = τ(ψ′) and
α′′ ◦ ρ E α′′ ◦ τ , so we have Φ′′ |= τ(Φ′), τ(ψ′) |= ψ′′ and α′ E α′′ ◦ τ . The latter
implies α′ ◦ σ E α′′ ◦ τ ◦ σ, so α E α′′ ◦ (τ ◦ σ). And by the Substitution Lemma,
Φ′ |= σ(Φ) implies τ(Φ′) |= τ(σ(Φ)), so Φ′′ |= (τ ◦ σ)(Φ). Likewise, σ(ψ) |= ψ′

implies (τ ◦σ)(ψ) |= ψ′′. Thus, the substitution τ ◦σ witnesses 〈Φ′′, ψ′′, α′′〉 ∈ IR,
and hence IR is an inference rule.

Second, we show that IR =
⋂
{I ∈ R(S) | I (R) ⊆ I}, i. e., IR is the weakest

rule containing I (R). The right-to-left inclusion is trivial as obviously I (R) ⊆ IR.
To prove the left-to-right inclusion, let I be an inference rule containing I (R)
and let 〈Φ′, ψ′, α′〉 ∈ IR. Then there exist an inference 〈Φ, ψ, α〉 ∈ I (R) and a
substitution σ with dom(σ) = var(R) such that Φ′ |= σ(Φ) and σ(ψ) |= ψ′ and
α E α′ ◦ σ. As I (R) ⊆ I, 〈Φ, ψ, α〉 ∈ I. Note that var(〈Φ, ψ, α〉) = var(R) =
dom(σ), so because I is closed under substitution and entailment, 〈Φ, ψ, α〉 ∈ I
implies 〈Φ′, ψ′, α′〉 ∈ I. Hence, IR is the weakest rule containing I (R).

Given a schema R : Φ/ψ if Γ[t1, . . . , tn], there are a finite set of formulas Φ′

in strong normal form and a formula ψ′ in normal form such that Φ′ ≡ Φ and
ψ′ ≡ ψ, so by switching from R to the schema R′ : Φ′/ψ′ if Γ[t1, . . . , tn], we do
not change the induced inference rule, i. e., I (R′) = I (R).

36 INFERENCES IN SEMILATTICES

Notation. Given a schema R : Φ/ψ if Γ[t1, . . . , tn], we may w. l. o. g. assume
that Φ ⊆ FN and ψ ∈ Fn. Given two schemas R and R′, we say that R′ is weaker
(stronger) than R iff I (R′) is weaker (stronger) than I (R). The following corol-
laries to Lemma 3.35 provide sufficient resp. necessary criteria for establishing
this weaker-than relation on schemas.

Corollary 3.36. Let R : Φ/ψ if Γ[t1, . . . , tn] and R′ : Φ′/ψ′ if Γ′[t′1, . . . , t
′
n′] be two

schemas. Then R′ is weaker than R if R′ is empty or there exists a substitution
σ such that

1. dom(σ) = var(R) and var(rng(σ)) ⊆ var(R′),

2. Φ′ |= σ(Φ) and σ(ψ) |= ψ′, and

3. Φ′,Γ′[t′1, . . . , t
′
n′] |=S σ(Γ[t1, . . . , tn]).

Proof. If R′ is empty then I (R′) = ∅, hence R′ is trivially weaker than R. So let
σ be a substitution satisfying the conditions 1, 2 and 3. As I (R′) is the weakest
rule containing I (R′), it suffices to show I (R′) ⊆ I (R), so let 〈Φ′, ψ′, α′〉 ∈ I (R′),
i. e., dom(α′) = var(R′) and S, α′ |= Γ′[t′1, . . . , t

′
n′]. Furthermore S, α′ |= Φ′ as

〈Φ′, ψ′, α′〉 ∈ I (S), so we have S, α′ |= Φ′,Γ′[t′1, . . . , t
′
n′]. By the conditions 2 and

3, this implies S, α′ |= σ(Φ) and S, α′ |= σ(Γ[t1, . . . , tn]), respectively. By the
Substitution Lemma, we get S, α′ ◦ σ |= Φ and S, α′ ◦ σ |= Γ[t1, . . . , tn], whereby
the former also implies that 〈Φ, ψ, α′ ◦ σ〉 is an inference. As var(rng(σ)) ⊆
dom(α′) by condition 1, we have dom(α′ ◦ σ) = dom(σ) = var(R), so actually
〈Φ, ψ, α′ ◦ σ〉 is an inference in I (R). Due to condition 2, this inference and the
substitution σ witness 〈Φ′, ψ′, α′〉 ∈ I (R) by Lemma 3.35.

Corollary 3.37. Let R : Φ/ψ if Γ[t1, . . . , tn] and R′ : Φ′/ψ′ if Γ′[t′1, . . . , t
′
n′] be two

schemas. If R′ is weaker than R then R′ is empty or there exists a substitution
σ such that

1. dom(σ) = var(R) and var(rng(σ)) ⊆ var(R′), and

2. Φ′ |= σ(Φ) and σ(ψ) |= ψ′.

Proof. Assume that R′ is weaker than R but R′ is not empty. Then there ex-
ists an inference 〈Φ′, ψ′, α′〉 ∈ I (R′); note that dom(α′) = var(R′). As R′ is
weaker than R, we have 〈Φ′, ψ′, α′〉 ∈ I (R), so by Lemma 3.35 there exist an
inference 〈Φ, ψ, α〉 ∈ I (R) and a substitution σ with dom(σ) = var(R) such that
Φ′ |= σ(Φ), σ(ψ) |= ψ′ and α E α′ ◦ σ. Thus, we have var(R) = dom(α) ⊆
dom(α′ ◦ σ) ⊆ dom(σ) = var(R), hence dom(α′ ◦ σ) = dom(σ), which implies
var(rng(σ)) ⊆ dom(α′) = var(R′).

INFERENCES IN SEMILATTICES 37

3.4 Soundness

To be of any use, an inference rule should be sound, i. e., it should not derive false
conclusions from true premises. Put positively, all conclusions should be entailed
by their premises, at least under the corresponding restriction.

Definition 3.38 (Soundness).
We say that an inference 〈Φ, ψ, α〉 is sound if and only if Φ |=S

α ψ, and we say that
〈Φ, ψ, α〉 is syntactically sound if and only if Φ |= ψ. We say that an inference
rule I is (syntactically) sound if and only if 〈Φ, ψ, α〉 is (syntactically) sound for
all 〈Φ, ψ, α〉 ∈ I. We say that a schema R is (syntactically) sound if and only if
I (R) is (syntactically) sound.

Proposition 3.39. Let I and I ′ be inference rules such that I is stronger than I ′.
Obviously, if I is syntactically sound then I is sound, and if I is (syntactically)
sound then I ′ is (syntactically) sound, too.

Proposition 3.40. Let R : Φ/ψ if Γ[t1, . . . , tn] be a schema. Then the following
statements are equivalent:

1. R is sound.

2. Φ,Γ[t1, . . . , tn] |=S ψ.

3. For all valuations α with dom(α) = var(Γ[t1, . . . , tn]), S, α |= Γ[t1, . . . , tn]
implies Φ |=S

α ψ.

Proof. We will show that 1 implies 3, 3 implies 2, and 2 implies 1.
To prove that 1 implies 3, let α be an arbitrary valuation such that dom(α) =

var(Γ[t1, . . . , tn]) and S, α |= Γ[t1, . . . , tn]. Let β be a valuation with α E β and
var(Φ) ∪ var(ψ) ⊆ dom(β) such that S, β |= Φ. As var(R) ⊆ dom(β), w. l. o. g.
we may assume that dom(β) = var(R), so 〈Φ, ψ, β〉 ∈ I (R) by definition of I (R).
As I (R) ⊆ I (R), the inference 〈Φ, ψ, β〉 is sound by 1, which implies S, β |= ψ
by the definition of soundness. Hence Φ |=S

α ψ.
To prove that 3 implies 2, let β be a valuation with var(R) ⊆ dom(β) such

that S, β |= Φ,Γ[t1, . . . , tn]. By 3, Φ |=S
α ψ follows where α = β|var(Γ[t1,...,tn]). So

as α E β, S, β |= Φ implies S, β |= ψ.
To prove that 2 implies 1, let 〈Φ′, ψ′, α′〉 ∈ I (R), so by Lemma 3.35 there exist

an inference 〈Φ, ψ, α〉 ∈ I (R) and a substitution σ with dom(σ) = var(R) such
that Φ′ |= σ(Φ), σ(ψ) |= ψ′ and α E α′ ◦ σ. By the definition of I (R), we know
that dom(α) = var(R) and S, α |= Φ,Γ[t1, . . . , tn]. This implies S, α |= ψ by 2,
so we have Φ |=S

α ψ. As α E α′ ◦ σ, we get Φ |=S
α′◦σ ψ, which by the Substitution

Lemma implies σ(Φ) |=S
α′ σ(ψ). Hence Φ′ |=S

α′ ψ
′ follows from Φ′ |= σ(Φ) and

σ(ψ) |= ψ′, so the inference 〈Φ′, ψ′, α′〉 is sound.

38 INFERENCES IN SEMILATTICES

Proposition 3.41. Let R : Φ/ψ if Γ[t1, . . . , tn] be a schema. Then the following
statements are true:

1. If Φ |= ψ then R is syntactically sound.

2. If R is syntactically sound and not empty then Φ |= ψ.

3. If R is syntactic and sound then R is syntactically sound and not empty.

Proof. To prove 1, let 〈Φ′, ψ′, α′〉 ∈ I (R). By Lemma 3.35, there is a substitution
σ with dom(σ) = var(R) such that Φ′ |= σ(Φ) and σ(ψ) |= ψ′. By the Substitu-
tion Lemma, Φ |= ψ is equivalent to σ(Φ) |= σ(ψ). Hence, Φ′ |= ψ′ follows, so R
is syntactically sound.

To prove 2, consider some inference 〈Φ, ψ, α〉 ∈ I (R); such an inference exists
as R is not empty. Then Φ |= ψ follows from R being syntactically sound.

To prove 3, observe that since R is syntactic it cannot be empty. By Propo-
sition 3.40, soundness of R implies Φ,True |=S ψ, which in turn implies Φ |= ψ.
Hence R is syntactically sound by 1.

As a consequence of the above proposition, if a syntactically sound schema R is
not syntactic then it is either empty or unnecessarily weak. In particular, if it is
not empty then the syntactic schema R′ : Φ/ψ is both sound and stronger than
R.

We can measure the extent of soundness of a schema by introducing a notion
of soundness for the variables occuring in the schema. When all occuring variables
are sound we classify the schema as fully sound.

Definition 3.42 (Sound Variable, Full Soundness).
Given a schema R : Φ/t v t′ if Γ[t1, . . . , tn], we call a variable x ∈ var(R) sound
in R if and only if Φ,Γ[t1, . . . , tn] |=S t v x, and we call x syntactically sound in
R if and only if Φ |= t v x. We say that R is fully sound if and only if every
x ∈ var(R) is sound in R.

Proposition 3.43. Let R : Φ/t v t′ if Γ[t1, . . . , tn] be a schema. Then the fol-
lowing statements are obviously true:

1. Every x ∈ var(t) is syntactically sound in R.

2. R is sound if and only if every x ∈ var(t′) is sound in R.

3. R being fully sound implies R being sound.

4. If var(R) = var(t v t′) then R being sound implies R being fully sound.

Example 3.44. Let x, y and z be three distinct variables and consider the
syntactic schema R : {x v y, z v y}/x v y. Obviously, R is sound but z is not
sound in R. Hence R witnesses the existence of sound schemas which fail to be
fully sound.

INFERENCES IN SEMILATTICES 39

We finish this section with a full soundness preserving transformation which
strengthens a schema by adding a variable to the right-hand side of the con-
clusion.

Proposition 3.45. Let R : Φ/t v t′ if Γ[t1, . . . , tn] be a schema and x ∈ var(R)
with x /∈ var(t v t′). Then the schema R′ : Φ/t v t′ u x if Γ[t1, . . . , tn] is stronger
than R, and if R is fully sound and then R′ is fully sound, too.

Proof. That R′ is stronger than R follows from Corollary 3.36 as the substitution
id|var(R′) trivially satisfies the conditions 1, 2 and 3. And from the construction
of R′, it is also obvious that a variable y ∈ var(R′) = var(R) is sound in R′ if
and only if it is sound in R. Hence, R being fully sound implies R′ being fully
sound.

3.5 Completeness

Entailment may be viewed as a ternary relation relating sets of formulas Φ and
Ψ and valuations α. Likewise, every set of inferences may be viewed as a ternary
relation relating finite (resp. singleton) sets of formulas Φ and {ψ} and valuations
α with finite domain. Consequently, any sound inference rule I may be seen as an
under-approximation of entailment, as for all inferences 〈Φ, ψ, α〉, 〈Φ, ψ, α〉 ∈ I
implies Φ |=S

α ψ, i. e., if Φ, {ψ} and α are related by the set of inferences I then
they are related by entailment, too.

Not all sound inference rules are useful, e. g., the empty set of inferences is a
completely useless inference rule. Obviously, an inference rule is the better the
closer it approximates entailment; in the best case, which we call (full) complete-
ness, it even over-approximates entailment.

Definition 3.46 (Full Completeness of Inference Rules).
Given an inference rule I, we say that I is fully complete if and only if for all
inferences 〈Φ, ψ, α〉, Φ |=S

α ψ implies 〈Φ, ψ, α〉 ∈ I.

Proposition 3.47. Let I and I ′ be inference rules such that I is weaker than I ′.
If I is fully complete then obviously I ′ is fully complete, too.

Proposition 3.48. Let I = {〈Φ, ψ, α〉 ∈ I (S) | Φ |=S
α ψ}. Obviously, I is the

strongest sound and the weakest fully complete inference rule; in particular, I is
the only sound and fully complete rule.

Corollary 3.49. There is no schema R such that I (R) is sound and fully com-
plete.

Proof. Towards a contradiction, we assume a schema R : Φ/ψ if Γ[t1, . . . , tn] such
that I (R) is sound and fully complete, i. e., I (R) = {〈Φ, ψ, α〉 ∈ I (S) | Φ |=S

α ψ}.
Let x and y be two distinct variables. As x v y |= x v y, i. e., {x v y} |=S

⊥ x v y,

40 INFERENCES IN SEMILATTICES

the inference 〈{x v y}, x v y,⊥〉 is in I (R). By Lemma 3.35, there exist an
inference 〈Φ, ψ, α〉 ∈ I (R) and a substitution σ such that α E ⊥ ◦ σ, so α = ⊥,
i. e., 〈Φ, ψ,⊥〉 ∈ I (R). Hence Φ |=S

⊥ ψ, i. e., Φ |= ψ, which implies that R is
syntactically sound by Proposition 3.41.

Now, let β be a valuation with y ∈ dom(β) and β(y) being the greatest
element of S. Then ∅ |=S

β x v y, so the inference 〈∅, x v y, β〉 is in I (R). And as
R is syntactically sound, we conclude ∅ |= x v y, which is a contradiction.

As full completeness is not useful for classifying the quality of schematically
presented rules, we introduce three notions of completeness that are tailored for
inference schemas.

Definition 3.50 (Notions of Completeness for Schemas).
Given a schema R : Φ/ψ if Γ[t1, . . . , tn], we say that R is backward complete (or
just complete) if and only if for all valuations α with dom(α) = var(ψ), S, α |= ψ
implies S, α |= Φ,Γ[t1, . . . , tn].

We say that R is forward complete if and only if for all valuations α with
dom(α) = var(Φ, ψ), S, α |= Φ, ψ implies S, α |= Γ[t1, . . . , tn].

Finally, we say that the side condition Γ[t1, . . . , tn] is complete in R if and
only if for all valuations α with dom(α) = var(Γ[t1, . . . , tn]), Φ |=S

α ψ implies
S, α |= Γ[t1, . . . , tn].

Let R : Φ/ψ if Γ[t1, . . . , tn] be a schema. Backward completeness of R enables
backward reasoning: Whenever the conclusion ψ is true under some valuation
α then α can be extended to a restriction β such that Φ is true under β and
〈Φ, ψ, β〉 is an inference of R. In other words, backward completeness ensures
that all true conclusions are derivable. It is this property, which is most often
referred to as completeness.

Forward completeness relates to forward reasoning: Given a valuation α which
makes the premises Φ true, we want to infer that the conclusion ψ is true. If R
is forward complete then α can be extended to a restriction β such that and
〈Φ, ψ, β〉 is an inference of R whenever the truth of ψ is consistent with the truth
of Φ. Thus, forward completeness ensures that all consistent conclusions are
derivable from true premises. Put another way: Forward completeness ensures
that the side condition is not too restrictive, i. e., does not prohibit consistent
inferences.

Similar to full completeness, completeness of the side condition aims at char-
acterizing entailment. The side condition Γ[t1, . . . , tn] is complete in R iff truth
of Γ[t1, . . . , tn] under a valuation α is necessary for the premises Φ to entail the
conclusion ψ under α. Compare this to the statement of Proposition 3.40: R is
sound iff truth of Γ[t1, . . . , tn] under α is sufficient for Φ to entail ψ under α.

Note that the three notions of completeness are pairwise incomparable, i. e.,
none entails any of the others. See Chapter 4, which shows that completeness in

INFERENCES IN SEMILATTICES 41

the side condition is neither entailed by backward or forward completeness (Sec-
tion 4.3), nor does it entail any of the two (Section 4.6). The following example
demonstrates that neither backward completeness entails forward completeness,
nor the other way round.

Example 3.51. Let x and y be two distinct variables. To demonstrate that
backward completeness does not entail forward completeness, we consider the
schema R : {x v y}/x v > if Γ[y], where Γ is a strict subset of S containing 1,
the greatest element of S. Obviously, R is backward complete as every valuation
α with dom(α) = {x} can be extended to a valuation β with dom(β) = {x, y}
such that β(y) = 1. However, as Γ is a strict subset of S there exists a valuation
γ with dom(γ) = {x, y} such that γ(x) = γ(y) /∈ Γ. Hence S, γ |= x v y, x v >
and S, γ 6|= Γ[y], i. e., R is not forward complete.

For the other direction, consider the syntactic schemaR′ : {x v y}/x u y v >.
Obviously, R′ is forward complete, as is any syntactic schema. However, as S is
non-trivial there is a valuation α′ with dom(α′) = {x, y} such that α′(x) 6≤ α′(y).
Hence S, α′ |= x u y v > and S, α′ 6|= x v y, i. e., R′ is not backward complete.

Although the different notions of completeness have turned out incomparable,
forward completeness seems to be the weakest notion, for under certain conditions
it is trivially entailed by the others.

Proposition 3.52. Let R : Φ/ψ if Γ[t1, . . . , tn] be a schema. Then the following
statements are obviously true:

1. If var(Φ) ⊆ var(ψ) then R being backward complete implies R being forward
complete.

2. If var(Φ, ψ) ⊆ var(Γ[t1, . . . , tn]) then Γ[t1, . . . , tn] being complete in R im-
plies R being forward complete.

Finally, it should be said that for syntactic schemas, the notions of forward com-
pleteness and completeness of the side condition are void, whereas backward
completeness remains a meaningful notion. More precisely, given a syntactic
schema R : Φ/ψ, R is forward complete and True is complete in R, trivially.
However, R is backward complete iff for all valuations α with dom(α) = var(ψ),
truth of ψ under α implies satisfiability of Φ under α.

3.6 Assume-Guarantee Rules

In verification we often encounter formulas like z u x v y where the variables
x, y and z denote a system, a property of that system and a property of its
environment, respectively. In this context, the formula z u x v y may be read
as follows: Assuming that its environment satisfies z, the system x guarantees

42 INFERENCES IN SEMILATTICES

y. Because of this reading we call z an assumption and y a guarantee. Inference
rules whose premises and conclusion may be read in the style above are called
assume-guarantee rules.

In this section, we generalize the notion of assume-guarantee rule into a purely
syntactical one, in particular, we develop a characterization of assumptions and
guarantees that does not require semantic knowledge about whether a variable
represents a system or a property.

Definition 3.53 (Assumption, Guarantee).
Given a formula t v t′, we call a variable x an assumption of t v t′ if and only if
x ∈ var(t), and we call x a guarantee of t v t′ if and only if x ∈ var(t′). Given a
schema R : Φ/ψ if Γ[t1, . . . , tn] and a variable x ∈ var(R), we say that

• x is a (global) assumption of R if and only if x is an assumption of ψ,

• x is a (global) guarantee of R of R if and only if x is a guarantee of ψ, and

• x is auxiliary variable of R if and only if x /∈ var(ψ).

Furthermore, we call x a local assumption (resp. local guarantee) of R if and only
if x is an assumption (resp. guarantee) of some ϕ ∈ Φ.

Observe that every x ∈ var(R) is either a global assumption or a global guarantee
or an auxiliary variable since the conclusion is in normal form. However, a variable
may be both local assumption and local guarantee even though the premises are
in strong normal form.

Notation. Due to Lemma 3.35, we may henceforth identify schemas with their
induced inference rules. I. e., depending on the context, we may view an inference
rule R as its schema R : Φ/ψ if Γ[t1, . . . , tn] or as the inference rule (presented as
set of inferences) I (R) induced by that schema.

Definition 3.54 (Assume-Guarantee Rule).
We call an inference rule R : Φ/ψ if Γ[t1, . . . , tn] an assume-guarantee rule (or A-G
rule for short) if and only if R has global assumptions and for every x ∈ var(R),
either x is a global assumption or x is a local guarantee, but not both. Given an
A-G rule R : Φ/ψ if Γ[t1, . . . , tn], we say that R is circular if and only if Φ 6|= ψ.

Recall that the premises of an inference rule are in strong normal form, therefore
R : Φ/t v t′ if Γ[t1, . . . , tn] is an assume-guarantee rule iff t 6= > and var(R) =
var(t)]{x | t′′ v x ∈ Φ}, where] denotes the disjoint union of sets. In particular,
if R is an A-G rule then the side condition cannot introduce variables that do
not already occur in the premises or the conclusion, i. e., var(Γ[t1, . . . , tn]) ⊆
var(Φ, ψ). The rationale behind the definition of A-G rules is the following:

INFERENCES IN SEMILATTICES 43

R1 :
S1 v P1 S2 v P2

S1 u S2 v P1 u P2
R4 :

P2 u S1 v P1 P1 u S2 v P2

S1 u S2 v P1 u P2

R2 :
S1 v P1 P1 u S2 v P2

S1 u S2 v P1 u P2
R5 :

P u S1 v P1 P1 u S2 v P2

S1 u S2 v P1 u P2

R3 :
P u S1 v P1 P1 u S2 v P2

P u S1 u S2 v P1 u P2
R6 :

P2 u S v P1 P1 u S v P2 S v P

P u S v P1 u P2

Figure 3.1: Sample assume-guarantee rules

1. Global assumptions may be strengthened. More precisely, truth of the
premises should be preserved if a global assumption is strengthened (i. e.,
in the valuation its value is replaced by a smaller value). This requires that
global assumptions are never local guarantees.

2. Global assumptions must be explicit. For instance, this forces every auxiliary
local assumption (i. e., every auxiliary variable which is a local assumption)
to be a local guarantee also, as otherwise the auxiliary local assumption
would behave (according to 1) like a global assumption although it is not
explicit. Thus, only global assumptions need not be local guarantees.

The requirement that at least one global assumption must exist is a purely tech-
nical one. We want to make sure that the left-hand side of the conclusion is
different from >, so it can be in the range of substitutions. Note that every
inference rule R : Φ/> v t′ if Γ[t1, . . . , tn] without global assumptions can be
transformed into an inference rule R′ : Φ/x v t′ if Γ′[t1, . . . , tn, x] with global
assumption x ∈ V \ var(R), where Γ′[t1, . . . , tn, x] ≡S > v x, Γ[t1, . . . , tn]. Ob-
viously, this transformation preserves the partitioning of variables into global
assumptions and local guarantees. Furthermore, it preserves soundness and full
soundness.

The following example shows that the above definition of A-G rules and cir-
cular A-G rules still encompasses all the rules that one usually (i. e., using the
semantic system/property distinction) terms ‘assume-guarantee rule’.

Example 3.55. As the definition of A-G rules resp. circular A-G rules does not
involve the side condition, we may illustrate these notions by syntactic rules only.
Let S, S1, S2, P, P1, P2 be six distinct variables. Figure 3.1 presents six inference
rules.

The rules R1 to R4 are A-G rules but R5 and R6 are not. More precisely,
R5 fails to be an A-G rule because the auxiliary variable P acts as an implicit
global assumption, whereas R6 fails because the global assumption P also is a
local guarantee. Note that R5 can be modified into a weaker A-G rule in two

44 INFERENCES IN SEMILATTICES

ways, namely by removing P from the first premise (resulting in R2) or by adding
it to the left-hand side of the conclusion (resulting in R3). On the other hand,
R6 can be modified into a stronger A-G rule in two ways, namely by removing
the last premise or by removing P from the conclusion.

The rules R1 to R4 show patterns that are common in the literature about
assume-guarantee reasoning. For the sake of explanation, we assume that the
variables P, P1, P2 resp. S, S1, S2 denote properties resp. systems. Note that
in all rules the system variables function as global assumptions. Therefore in
this system/property distinguishing setting, by convention the term ‘assumption’
refers to a property variable that functions as assumption.

Rule R1 states that if system Si guarantees property Pi for all i ∈ {1, 2}
then the composition of both systems S1 u S2 guarantees the conjunction of both
properties P1 u P2. As no assumptions are involved, R1 is usually called ‘compo-
sitional’ rather than ‘assume-guarantee’ rule. However, one may view such rules
as special cases of assume-guarantee reasoning.

Rule R2 says that if S1 guarantees P1 and assuming P1, S2 guarantees P2

then S1 u S2 guarantees P1 u P2. This is called a ‘hierarchical’ assume-guarantee
rule as the properties form a hierarchy according to which property is guaranteed
assuming which other property; here, P2 is guaranteed assuming P1, which is
guaranteed without assumptions.

The rule R2 arose from R1 by introducing the assumption P1 into the second
premise. R3 arises from R2 by introducing the assumption P into the first premise
and into the conclusion. Thus, R3 states that if assuming P, S1 guarantees P1

and assuming P1, S2 guarantees P2 then assuming P, S1 u S2 guarantees P1 u P2.
Obviously, R3 is still a hierarchical rule.

Finally R4, which also arises from R2 by introducing an assumption into the
first premise, says that if assuming P2, S1 guarantees P1 and assuming P1, S2

guarantees P2 then S1 u S2 guarantees P1 u P2. Here, each of the properties
is guaranteed assuming the other, i. e., the dependency between them is not
hierarchical but cyclic, hence the name ‘circular’ assume-guarantee rule. Note
that this example coincides with our above definition of circular A-G rule; in
fact, out of the four A-G rules R1 to R4, only R4 is circular.

From its definition, the circularity of an A-G rule seems to be related to a lack
of syntactical soundness, which is made precise in the following proposition.

Proposition 3.56. Let R : Φ/t v t′ if Γ[t1, . . . , tn] be an A-G rule. Obviously,
R is circular if and only if some x ∈ var(t′) is not syntactically sound in R.

The link between circularity of an A-G rule and cyclic dependencies of variables,
which has been suggested intuitively by the above example, will be established
by Proposition 3.60 below. For that, we need a formal definition of dependencies.

Definition 3.57 (Dependency Relation).
Given a set of formulas Φ and two variables x and y, we say that x depends on

INFERENCES IN SEMILATTICES 45

P1 →Φ1 S1 P2 →Φ1 S2

P1 →Φ2 S1 P2 →Φ2 S2 P2 →Φ2 P1 P2 →Φ2 S1

P1 →Φ3 S1 P1 →Φ3 P P2 →Φ3 S2 P2 →Φ3 P1 P2 →Φ3 S1 P2 →Φ3 P

P1 →Φ4 S1 P1 →Φ4 P2 P2 →Φ4 S2 P2 →Φ4 P1

Figure 3.2: Dependency relations of the premises of the A-G rules R1 to R4

y in Φ, denoted by x →Φ y, if and only if x 6= y and there is a term t such that
Φ |= y u t v x and Φ 6|= t v x.

Notation. By →+
Φ we denote the transitive closure of →Φ, i. e., →+

Φ is the least
binary relation on V which is transitive and contains →Φ. We say that the
dependency relation →Φ is cyclic if and only if x→+

Φ x for some variable x.

Example 3.58. Consider the A-G rules R1 to R4 from the example above (see
figure 3.1) and denote their premises by Φ1 to Φ4, respectively. Figure 3.2 shows
the corresponding dependency relations. Only →Φ4 is cyclic (P1 →Φ4 P2 →Φ4 P1

is a cycle of length 2), which corresponds to the fact that R4 is the only circular
rule.

Lemma 3.59. Let R : Φ/t v t′ if Γ[t1, . . . , tn] be an A-G rule and let NSS be
the set of variables of R which are not syntactically sound in R, i. e., NSS =
{x ∈ var(R) | Φ 6|= t v x}. Then for every x ∈ NSS there is y ∈ NSS such that
x→Φ y.

Proof. Let x ∈ NSS . Then x /∈ var(t), i. e., x is not a global assumption, so x
must be a local guarantee since R is an A-G rule, i. e., x is a guarantee of some
ϕ ∈ Φ. As ϕ is in strong normal form, ϕ equals tϕ v x for some term tϕ with
x /∈ var(tϕ). The term tϕ can be separated into two terms such that one contains
exactly the syntactically sound variables, i. e., there are terms t′ϕ and t′′ϕ with
var(t′ϕ) ⊆ NSS and var(t′′ϕ) ∩ NSS = ∅ such that tϕ = t′ϕ u t′′ϕ.

Towards a contradiction, assume that x 6→Φ y for all y ∈ NSS , i. e., for all
y ∈ NSS and all t ∈ T , if x 6= y and Φ |= y u t v x then Φ |= t v x. We know
that Φ |= t′ϕ u t′′ϕ v x where var(t′ϕ) ⊆ NSS \ {x}, so by induction on size(t′ϕ),
we can eliminate t′ϕ and get Φ |= t′′ϕ v x. As all variables in t′′ϕ are syntactically
sound in R, we have Φ |= t v t′′ϕ, which implies Φ |= t v x. This contradicts
x ∈ NSS .

Proposition 3.60. Let R : Φ/ψ if Γ[t1, . . . , tn] be an A-G rule. If R is circular
then the dependency relation →Φ is cyclic.

46 INFERENCES IN SEMILATTICES

Proof. Let NSS = {x ∈ var(R) | Φ 6|= t v x}. If R is circular then Φ 6|= ψ,
so NSS 6= ∅. By Lemma 3.59, for every x ∈ NSS there is y ∈ NSS such that
x→Φ y. By finiteness of NSS , there must be x ∈ NSS such that x→+

Φ x.

As a consequence, a circular A-G rule R must have at least two distinct local
guarantees, otherwise the dependency relation cannot be cyclic. By definition
of A-G rules, R must also have at least one global assumption, so the corollary
below follows.

Corollary 3.61. In a circular A-G rule at least three distinct variables must
occur.

Example 3.62. The above proposition says that for circular A-G rules the de-
pendency relation is necessarily cyclic. In general, the converse is not true, i. e.,
a cyclic dependency relation does not necessarily imply that the A-G rule is
circular. Take for instance the syntactic A-G rule

R :
P3 u S v P1 P1 u S v P2 P2 u S v P3

S v >

where S, P1, P2, P3 are variables. This rule is syntactically sound in a trivial way,
hence it cannot be circular. However, the dependency relation of its premises
(which we denote by Φ) is cyclic, since we have Pi →Φ Pj for all i, j ∈ {1, 2, 3}
with i 6= j.

Chapter 4

The Framework

In this chapter, we investigate a number of circular assume-guarantee rules for
topped meet-semilattices. The main challenge is to establish soundness of these
circular rules. This is done inductively, which requires a notion of approxima-
tion on semilattice elements, and the approximants must be ordered in a well-
founded way. We obtain the required notion of approximation by embedding
the semilattice into a complete lattice, which is always possible, e. g., via com-
pletion with order ideals, so we work with complete lattices instead of topped
meet-semilattices. We identify a join-dense subset of the lattice, so we can ap-
proximate all elements by joins over elements of that subset. Then soundness of a
circular assume-guarantee rule is proven by induction on that join-dense subset,
provided that the order on that subset is well-founded.

Our plan is as follows. First, we formally introduce well-founded approx-
imations of a complete lattice, the key step to enable induction. Second, we
define non-blockingness, a constraint that forms the side condition of our lattice-
theoretic circular A-G rules. Then, we prove soundness and completeness of the
basic circular A-G rule, which involves only three variables. We extend these
results to circular A-G rules involving more variables, and we prove that our
rules are actually the strongest fully sound A-G rules. Next, we observe that
the rules presented so far are not compositional. We modify the rules in order
to achieve compositionality and investigate whether soundness and completeness
are preserved. Finally, we briefly examine whether the existence of well-founded
approximations, which is fundamental to our proofs of soundness, is necessary
for sound circular assume-guarantee reasoning.

Throughout this chapter we assume that the variable set V contains the dis-
tinct variables Si, Pj, Ak and Gl for all i, j, k, l ∈ N. We may omit the suffix 0
and write S (resp. P, A, G) to abbreviate S0 (resp. P0, A0, G0).

48 THE FRAMEWORK

4.1 Well-founded Approximations

As already mentioned, the proofs of soundness of circular assume-guarantee rules
will be by induction so we need a well-founded domain over which to induct. We
could require that our semilattice is well-founded already but that is more than
needed. In fact, it suffices to embed the semilattice into a complete lattice L
and identify a suborder A of that lattice which is well-founded yet still allows to
approximate all elements of L as joins over elements of A.

Definition 4.1 (Well-founded Approximation).
Given a complete lattice L, a well-founded approximation (of L) is a suborder
A of L such that A is join-dense in L and A satisfies DCC. We say that L is
well-approximable if and only if there is a well-founded approximation of L.

Notation. Throughout this chapter, ordered sets will be denoted by calligraphic
letters; in particular, L will always denote a lattice. Elements of L will be denoted
by lower-case letters, where the letters a, b, c shall be reserved for approximants,
i. e., for the elements of a join-dense suborder of L. Sets of elements of L will be
denoted by upper-case letters.

Obviously, every complete lattice satisfying DCC (and in particular every fi-
nite lattice) is well-approximable. The following example presents a well-approx-
imable lattice which does not satisfy DCC.

Example 4.2. Let Σ = {0, 1} be an alphabet and consider the lattice L = 〈L,⊆〉
with L = O(〈Σ∗,�〉), i. e., L is the complete lattice of prefix-closed subsets of
Σ∗, ordered by inclusion. Note that L does not satisfy DCC, since for instance
Σ∗ ⊇ 0Σ∗ ⊇ 00Σ∗ ⊇ . . . is an infinite descending chain in L which does not
stabilize. However, the set of principal ideals

{
�(w) | w ∈ Σ∗} is join-dense in

L because for every x ∈ O(〈Σ∗,�〉), x =
⋃

w∈x�(w). And as �(w) is finite for
every w ∈ Σ∗, every infinite descending chain of principal ideals must stabilize
eventually. Hence, the suborder of L which is generated by the set of principal
ideals is a well-founded approximation of L.

While every complete lattice L has join-dense subsets — in fact, L itself is join-
dense in L — well-founded approximations need not exist.

Example 4.3. Consider 〈Z>
⊥,≤〉, the complete lattice which consists of the lin-

early ordered integers plus top and bottom elements. In 〈Z>
⊥,≤〉, every z ∈ Z is

completely join-irreducible, hence any join-dense A ⊆ Z>
⊥ contains Z and thus the

suborder 〈A,�〉 cannot satisfy DCC. Therefore, 〈Z>
⊥,≤〉 is not well-approximable.

However, it turns out that if a lattice has well-founded approximations then there
is a canonical one; more precisely, in that case the completely join-irreducible
elements generate the least well-founded approximation.

THE FRAMEWORK 49

Lemma 4.4. Let L = 〈L,≤〉 be a complete lattice and let A = 〈A,�〉 be a
well-founded approximation of L. Then for all a ∈ A exists J ⊆ J (L) such that
a =

∨
J .

Proof. By well-founded induction over A. Let a ∈ A and assume that for every
b ∈ ≺(a) there is Jb ⊆ J (L) such that b =

∨
Jb. We have to show that a =

∨
J

for some J ⊆ J (L).
If a ∈ J (L) then a =

∨
{a} and we are done, so assume that a /∈ J (L), hence

by definition of complete join-irreducibility, there is S ⊆ L such that a =
∨
S

but a /∈ S, which implies S ⊆ <(a). As A is join-dense, for every x ∈ S there is
Ax ⊆ A such that x =

∨
Ax. Let A =

⋃
x∈S Ax. Then

∨
A =

∨
S. Furthermore,

A ⊆ <(a) since for every b ∈ A there is x ∈ S such that b ∈ Ax, which implies
b ≤

∨
Ax = x ∈ <(a). In fact, A ⊆ ≺(a) as A ⊆ A and the order � on A is

induced by ≤.
By induction hypothesis, for every b ∈ A there is Jb ⊆ J (L) such that

b =
∨
Jb. Let J =

⋃
b∈A Jb, so J ⊆ J (L). Furthermore

∨
J =

∨
A, hence we

have a =
∨
S =

∨
A =

∨
J .

Proposition 4.5. Let L be a complete lattice and let J be the suborder of L
which is generated by J (L). The lattice L is well-approximable if and only if J
is a well-founded approximation of L, and if L is well-approximable then J is
the least well-founded approximation of L.

Proof. The right-to-left direction of the first claim is trivial. To prove the other
direction, let L = 〈L,≤〉 and let A be a well-founded approximation of L. As A
is join-dense in L, J (L) ⊆ A follows by definition of complete join-irreducibility.
This implies that J satisfies DCC because A does so. It remains to show that
J (L) is join-dense in L, so let x ∈ L. As A is join-dense, there is A ⊆ A such
that x =

∨
A. By Lemma 4.4, for every a ∈ A there exists Ja ⊆ J (L) such that

a =
∨
Ja. Let J =

⋃
a∈A Ja. Then

∨
J =

∨
A, so x =

∨
J , and we are done

because J ⊆ J (L).
The second claim holds because by definition of complete join-irreducibility,

J (L) is contained in every subset of L which is join-dense in L, hence J is a
suborder of every well-founded approximation of L.

As a consequence of the above proposition, a lattice may fail to be well-ap-
proximable because the completely join-irreducible elements are not join-dense,
or because they generate a suborder that does not satisfy DCC. The following
example shows three such scenarios.

Example 4.6. First, consider 〈R>
⊥,≤〉, the complete lattice which consists of the

linearly ordered reals plus top and bottom elements. This lattice does not have
any completely join-irreducible elements, and ∅ is not join-dense in 〈R>

⊥,≤〉 but
does satisfy DCC trivially.

50 THE FRAMEWORK

Second, take a look at 〈Z>
⊥,≤〉, the complete lattice of the linearly ordered

integers with top and bottom. The set of completely join-irreducible elements in
〈Z>

⊥,≤〉 is Z, which is join-dense in 〈Z>
⊥,≤〉 but does not satisfy DCC.

Third, construct a new lattice L by placing 〈R>
⊥,≤〉 above 〈Z>

⊥,≤〉 and fusing
the bottom of 〈R>

⊥,≤〉 with the top of 〈Z>
⊥,≤〉. Then L is a linearly ordered

complete lattice whose set of completely join-irreducible elements is Z, which is
neither join-dense in L nor does it satisfy DCC.

4.2 Non-Blockingness

The key step in the inductive proofs of soundness will always require that certain
elements of the lattice are not tied to each other too closely. We are going to
specify what we mean by ‘not being tied too closely’ by defining the opposite,
which we call ‘blocking each other’.

Throughout the remainder of this chapter we fix a non-trivial complete lattice
L = 〈L,≤〉 with least element 0 and greatest element 1.

Definition 4.7 (Non-Blockingness).
Given a suborder A = 〈A,�〉 of L, we say that two elements p1, p2 ∈ L block
each other relative to an element s ∈ L (w. r. t. A) if and only if there exists
a ∈ A such that a ≤ s and p1 ∧ p2 is an upper bound of ≺(a) but a 6≤ p1 and
a 6≤ p2. We define the ternary non-blockingness relation NBA on L (w. r. t. A)
by 〈s, p1, p2〉 ∈ NBA if and only if p1 and p2 do not block each other relative to
s (w. r. t. A).

Notation. We say that two elements p1, p2 ∈ L block each other (w. r. t. A) if
and only if there exists s ∈ L such that p1 and p2 block each other relative to s.
Note that p1 and p2 block each other if and only if they block each other relative
to 1.

Observe that p1 and p2 block each other relative to s if there is a minimal a ∈ A
such that a ≤ s but a 6≤ p1 and a 6≤ p2. The following proposition yields a
characterization of non-blockingness.

Proposition 4.8. Let A = 〈A,�〉 be a suborder of L and let s, p1, p2 ∈ L.
Obviously, the following statements are equivalent:

1. 〈s, p1, p2〉 ∈ NBA.

2. For all a ∈ A ∩ ≤(s), if p1 ∧ p2 is an upper bound of ≺(a) then a ≤ p1 or
a ≤ p2.

3. For all a ∈ A, if a ≤ s and for all b ∈ A, b ≺ a implies b ≤ p1 ∧ p2 then
a ≤ p1 or a ≤ p2.

THE FRAMEWORK 51

Example 4.9. Let Σ be a finite alphabet and let L be the ideal completion of
the prefix-ordered finite words over Σ, i. e., L is the lattice of prefix-closed subsets
of Σ∗, ordered by inclusion. As approximation suborder A, we choose the set of
all prefix-closures of words in Σ∗, again ordered by inclusion. Let s, p1, p2 ∈ L be
three regular languages, i. e., we may think of s, p1 and p2 as finite automata. If
it is the case that p1 and p2 block each other relative to s then there exists a word
w ∈ Σ∗ such that w is accepted by s and all proper prefixes of w are accepted by
both p1 and p2 but neither p1 nor p2 accept w itself, i. e., p1 and p2 block after
reading a proper prefix of w.

On the other hand, if 〈s, p1, p2〉 ∈ NBA, i. e., p1 and p2 do not block each
other relative to s, then every w ∈ Σ∗ which is accepted by s is also accepted
by either p1 or p2 whenever all of its proper prefixes are accepted by both. Put
another way: Given a word uav ∈ s with a ∈ Σ and u, v ∈ Σ∗, if u is accepted
by both p1 and p2 then they cannot block both after reading u because one of
them must accept ua. If both happen to accept ua and v = bw with b ∈ Σ and
w ∈ Σ∗ then the game starts over again, i. e., either p1 or p2 has to accept uab,
and so on.

By definition, non-blockingness depends on the choice of the approximation sub-
order A. We show, that there is a canonical approximation suborder if the
completely join-irreducible elements are join-dense in L.

Lemma 4.10. Let A and J be suborders of L. If J ⊆ A and J is join-dense
in L then NBA ⊆ NBJ .

Proof. Let A = 〈A,�〉 and J = 〈J ,E〉 and assume J ⊆ A and J being join-
dense. Let 〈s, p1, p2〉 ∈ NBA, and let a ∈ J ∩ ≤(s) such that p1 ∧ p2 is an upper
bound of C(a). We have to show a ≤ p1 or a ≤ p2.

As J ⊆ A, we have a ∈ A∩≤(s). And as J is join-dense, for every b ∈ ≺(a)
there is Jb ⊆ J such that b =

∨
Jb. Let J =

⋃
b∈≺(a) Jb. Then

∨
J =

∨
≺(a).

Furthermore, J ⊆ <(a) because for every b ∈ ≺(a), we have
∨
Jb = b ≺ a, which

implies Jb ⊆ ≺(a) ⊆ <(a). Actually, J ⊆ C(a) because a ∈ J and J ⊆ J and
the order E on J is induced by ≤. Therefore, we have

∨
≺(a) =

∨
J ≤

∨
C(a),

so p1∧p2, which is an upper bound of C(a), must also be an upper bound of ≺(a).
By Proposition 4.8, we conclude a ≤ p1 or a ≤ p2 from 〈s, p1, p2〉 ∈ NBA.

Lemma 4.11. Let A be a suborder of L and let J be the suborder of L which
is generated by J (L). If A is join-dense in L then NBJ ⊆ NBA.

Proof. Let A = 〈A,�〉 and J = 〈J ,E〉 where J = J (L) is the set of completely
join-irreducible elements in L. Assume that A is join-dense and note that this
implies J ⊆ A. Let 〈s, p1, p2〉 ∈ NBJ , and let a ∈ A ∩ ≤(s) such that p1 ∧ p2 is
an upper bound of ≺(a). We have to show a ≤ p1 or a ≤ p2. We distinguish two
cases.

52 THE FRAMEWORK

First assume a ∈ J . Then a ∈ J ∩ ≤(s). Furthermore, J ⊆ A implies
C(a) ⊆ ≺(a), so p1∧p2, which is an upper bound of ≺(a), must also be an upper
bound of C(a). Hence by Proposition 4.8, we conclude a ≤ p1 or a ≤ p2 from
〈s, p1, p2〉 ∈ NBJ .

Otherwise assume a /∈ J . By definition of complete join-irreducibility, there is
S ⊆ L such that a =

∨
S but a /∈ S, which implies S ⊆ <(a). As A is join-dense,

for every x ∈ S there is Ax ⊆ A such that x =
∨
Ax. Let A =

⋃
x∈S Ax. Then∨

A =
∨
S. Furthermore, for every x ∈ S, Ax ⊆ <(a) because

∨
Ax = x < a,

and therefore A ⊆ <(a). Actually, A ⊆ ≺(a) because a ∈ A and A ⊆ A and the
order � on A is induced by ≤. So finally, a =

∨
S =

∨
A ≤

∨
≺(a) ≤ a, which

implies a =
∨
≺(a). Since p1∧p2 is an upper bound of ≺(a), we have a ≤ p1∧p2,

which implies a ≤ p1.

Notation. Let J be the suborder of L which is generated by J (L). We may
omit the subscript on the non-blockingness relation w. r. t. J , i. e., instead of
NBJ we may write NB.

Proposition 4.12. Let J (L) be join-dense in L and let A be a suborder of L
such that A is join-dense in L. Then NB = NBA.

Proof. Let J be the suborder of L which is generated by J (L), i. e., J = J (L).
By Lemma 4.11, we have NBJ ⊆ NBA. And asA being join-dense implies J ⊆ A
by definition of complete join-irreducibility, Lemma 4.10 yields NBA ⊆ NBJ .
Hence NB = NBJ = NBA.

Following are a couple of monotonicity results, which relate non-blockingness to
the order of the lattice L.

Proposition 4.13. Let s, s′, p1, p2 ∈ L such that s′ ≤ s. Then 〈s, p1, p2〉 ∈ NB
implies 〈s′, p1, p2〉 ∈ NB.

Proof. This follows immediately from Proposition 4.8 since ≤(s′) ⊆ ≤(s).

Proposition 4.14. Let s, p, p1, . . . , pn ∈ L. If
{
〈s, p1, p〉, . . . , 〈s, pn, p〉

}
⊆ NB

then 〈s, p1 ∧ . . . ∧ pn, p〉 ∈ NB.

Proof. Let � be the order on J (L) which is induced by ≤. The proof proceeds
by induction on n.

• n = 0. Then p1∧ . . .∧pn = 1, so we have 〈s, p1 ∧ . . . ∧ pn, p〉 ∈ NB trivially
by Proposition 4.8.

• n > 0. Assume
{
〈s, p1, p〉, . . . , 〈s, pn, p〉

}
⊆ NB and let a ∈ J (L) ∩ ≤(s)

such that (p1 ∧ . . . ∧ pn) ∧ p is an upper bound of ≺(a). If a ≤ p then we
are done, so assume a 6≤ p. As

{
〈s, p1, p〉, . . . , 〈s, pn−1, p〉

}
⊆ NB implies

〈s, p1 ∧ . . . ∧ pn−1, p〉 ∈ NB by induction hypothesis, a ≤ p1 ∧ . . . ∧ pn−1

follows from a 6≤ p. And due to 〈s, pn, p〉 ∈ NB, a ≤ pn also follows from
a 6≤ p. Hence a ≤ p1 ∧ . . . ∧ pn and we are done.

THE FRAMEWORK 53

Proposition 4.15. Let s, p1, p
′
1, . . . , pn, p

′
n ∈ L. If for every i ∈ {1, . . . , n} we

have pi ∧ s ≤ p′i and 〈s, pi, p
′
i〉 ∈ NB then 〈s, p1 ∧ . . . ∧ pn, p

′
1 ∧ . . . ∧ p′n〉 ∈ NB.

Proof. Let � be the order on J (L) which is induced by ≤. The proof proceeds
by induction on n.

• n = 0. Then p1∧ . . .∧ pn = p′1∧ . . .∧ p′n = 1, so by Proposition 4.8 we have
〈s, p1 ∧ . . . ∧ pn, p

′
1 ∧ . . . ∧ p′n〉 ∈ NB trivially.

• n > 0. Assume pi ∧ s ≤ p′i and 〈s, pi, p
′
i〉 ∈ NB for every i ∈ {1, . . . , n}. Let

a ∈ J (L)∩≤(s) such that (p1∧ . . .∧pn)∧ (p′1∧ . . .∧p′n) is an upper bound
of ≺(a). By induction hypothesis, 〈s, p1 ∧ . . . ∧ pn−1, p

′
1 ∧ . . . ∧ p′n−1〉 ∈ NB,

so a ≤ p1 ∧ . . . ∧ pn−1 or a ≤ p′1 ∧ . . . ∧ p′n−1 In fact, a ≤ p′1 ∧ . . . ∧ p′n−1 as
a ≤ s and (p1∧ . . .∧pn−1)∧s ≤ p′1∧ . . .∧p′n−1 follows from the assumptions.
Similarly, 〈s, pn, p

′
n〉 ∈ NB implies a ≤ pn or a ≤ p′n, which in turn implies

a ≤ p′n due to the assumption pn ∧ s ≤ p′n. Hence a ≤ p′1 ∧ . . . ∧ p′n and we
are done.

As a final remark, the following example shows that non-blockingness is undecid-
able in general, even in very simple well-approximable lattices.

Example 4.16. Let L = 〈P(N),⊆〉 be the power set lattice of the natural
numbers. Obviously, L is well-approximable as J (L) =

{
{n} | n ∈ N

}
, i. e.,

exactly the singleton sets are completely join-irreducible in L. According to
Proposition 4.8, as all elements in J (L) are minimal we can simplify the definition
of the ternary relation NB to for all s, p1, p2 ∈ P(N), 〈s, p1, p2〉 ∈ NB iff s ⊆ p1∪p2.
Still, NB is undecidable. Otherwise, we would have an algorithm which, given
a (representation of a) recursive set p ∈ P(N), decides whether 〈N, p, p〉 ∈ NB,
i. e., whether N = p. It is well-known that such an algorithm cannot exist, see
for instance [Rog87].

4.3 The Basic Circular Assume-Guarantee Rule

In this section, we present a simple circular assume-guarantee rule for the com-
plete lattice L. The rule is proven sound (provided that L is well-approximable)
and complete. Why we consider this rule to be the basic circular assume-
guarantee rule will be revealed at the end of Section 4.4.

Definition 4.17 (Circular Assume-Guarantee Rule AG2).

AG2 :
P2 u S v P1 P1 u S v P2

S v P1 u P2

if NB[S,P1,P2]

To attribute meaning to the inference rule AG2, one should think of it as a proof
rule used in verification. The variable S represents the system to be verified

54 THE FRAMEWORK

and P1 and P2 represent two properties. In this context, AG2 states that the
system guarantees both properties (conclusion S v P1 u P2) if it guarantees
either assuming the other (premises P2 u S v P1 and P1 u S v P2), provided
that the properties do not block each other relative to the system (side condition
NB[S,P1,P2]).

It is rather obvious that — as the above definition claims — AG2 is a circular
assume-guarantee rule. However, it is not obvious that AG2 is sound. Our proof
of soundness, whose main part is the following inductive lemma, requires the
lattice L to be well-approximable. This seems to be a crucial requirement; in
fact, Section 4.7 suggests that AG2 is very likely to become unsound when L fails
to be well-approximable.

Lemma 4.18. Let A be a well-founded approximation of L, let 〈s, p1, p2〉 ∈ NBA
such that p2∧s ≤ p1 and p1∧s ≤ p2. Then for all a ∈ A, a ≤ s implies a ≤ p1∧p2.

Proof. By well-founded induction over A = 〈A,�〉. Let a ∈ A and assume that
for every b ∈ ≺(a), b ≤ s implies b ≤ p1∧p2. We have to show that a ≤ s implies
a ≤ p1 ∧ p2.

Assume a ≤ s. Then b ≤ s for every b ∈ ≺(a) because the order � on A is
induced by ≤. Thus by induction hypothesis, b ≤ p1 ∧ p2 for every b ∈ ≺(a),
i. e., p1 ∧ p2 is an upper bound of ≺(a). Because of 〈s, p1, p2〉 ∈ NBA, we obtain
a ≤ p1 or a ≤ p2 by Proposition 4.8. Together with the assumption a ≤ s, we
get a ≤ p1 ∧ s or a ≤ p2 ∧ s. Case distinction:

• If a ≤ p1 ∧ s then a ≤ p2 follows from p1 ∧ s ≤ p2.

• If a ≤ p2 ∧ s then a ≤ p1 follows from p2 ∧ s ≤ p1.

In any case, we are done because we have a ≤ p1 ∧ p2.

Theorem 4.19. If L is well-approximable then AG2 is sound.

Proof. We use Proposition 3.40 to show soundness. Let α be a valuation with
dom(α) = {S,P1,P2} such that L, α |= P2 u S v P1,P1 u S v P2,NB[S,P1,P2].
We have to show L, α |= S v P1 u P2.

Assume that L is well-approximable, so by Proposition 4.5 J , the suborder of
L which is generated by the completely join-irreducible elements J (L), is a well-
founded approximation of L. Therefore, there is a set of approximants A ⊆ J (L)
such that α(S) =

∨
A. Furthermore, by choice of the valuation α and with the

definition of the non-blockingness relation NB, we have α(P2)∧α(S) ≤ α(P1) and
α(P1) ∧ α(S) ≤ α(P2) and 〈α(S), α(P1), α(P2)〉 ∈ NBJ . So, Lemma 4.18 yields
a ≤ α(P1)∧α(P2) for all a ∈ A, i. e., α(P1)∧α(P2) is an upper bound of A. Thus
α(S) ≤ α(P1) ∧ α(P2) since α(S) is the least upper bound of A. Hence we have
L, α |= S v P1 u P2.

THE FRAMEWORK 55

It turns out that AG2 is not only sound but it is complete, too. Surprisingly (and
unlike the proof of soundness), the proof of completeness is rather trivial. Also,
it does not demand extra requirements of the lattice L; in particular, L need not
be well-approximable.

Theorem 4.20. AG2 is both backward and forward complete.

Proof. To show backward completeness of AG2, choose a valuation α such that
dom(α) = {S,P1,P2} and L, α |= S v P1 u P2. From this, we have to infer
L, α |= P2 u S v P1, P1 u S v P2, NB[S,P1,P2].

Let a ∈ J (L). As L, α |= S v P1 u P2, a ≤ α(S) implies a ≤ α(P1)∧α(P2), so
in particular a ≤ α(S) implies a ≤ α(P1). By Proposition 4.8 and the definition
of NB, we get 〈α(S), α(P1), α(P2)〉 ∈ NB, i. e., L, α |= NB[S,P1,P2]. The rest
follows since {S v P1 u P2} |= {P2 u S v P1, P1 u S v P2}.

Forward completeness trivially follows by Proposition 3.52.

Corollary 4.21. If L is well-approximable then

P2 u S v P1, P1 u S v P2, NB[S,P1,P2] ≡L S v P1 u P2.

Proof. Follows from soundness and (backward) completeness of AG2.

Example 4.22. To show that the side condition NB[S,P1,P2] is not complete
in AG2, consider the finite (and thus complete and well-approximable) lattice
L = 〈P({1, 2, 3, 4}),⊆〉. We define the valuation α with dom(α) = {S,P1,P2} by
α(S) = {1, 3, 4}, α(P1) = {1, 2} and α(P2) = {2, 3}. As the premises of AG2 are
not true under alpha, we get P2 u S v P1, P1 u S v P2 |=L

α S v P1 u P2 trivially.
On the other hand, we have L, α 6|= NB[S,P1,P2] i. e., {1, 2} and {2, 3} block each
other relative to {1, 3, 4}. This is so because J (L) =

{
{1}, {2}, {3}, {4}

}
and

for {4} ∈ J (L) ∩ ⊆({1, 3, 4}), we have {4} 6⊆ {1, 2} and {4} 6⊆ {2, 3} although
{4} is minimal in J (L).

Together with Theorem 4.20, the above example confirms a statement from Sec-
tion 3.5, namely that completeness in the side condition is entailed neither by
backward nor forward completeness.

4.4 Extension To More Than Two Properties

When verifying (through backward reasoning) that a given system guarantees a
given property, the inference rule AG2 enables us to reduce the goal into two
subgoals, provided that the given property can be cast as a conjunction of two
other properties that do not block each other relative to the given system. There is
hope that each of the two subgoals, which are of the form assuming one property,
the system guarantees the other, are easier to establish than the original goal

56 THE FRAMEWORK

since the properties to be guaranteed are simpler. In general, it seems desirable
to cast the original property as a conjunction of as many properties as possible,
as with increasing number of conjuncts the individual properties should become
all the simpler. Hence the n subgoals, which generally take the form assuming
all but the i-th property, the system guarantees the i-th property, should become
all the easier to establish. With the inference rule AG2, however, we are limited
to decompositions into exactly two conjuncts.

In this section, we generalize the circular A-G rule AG2 to a family of A-G
rules {AGn | n ∈ N}, where AGn is suitable for verification if the given property
can be cast as a conjunction of n other properties such that these properties do
not block each other pairwise relative to the given system. We prove soundness
(provided that L is well-approximable) and completeness of every such A-G rule.
Furthermore, we show that the family {AGn | n ∈ N} can be characterized as
the set of strongest rules in an important class of sound A-G rules.

Notation. Givenm,n ∈ N, we may abbreviate the term PmuPm+1u. . .uPn−1uPn

by
dm,n

i Pi. If the superscript m is omitted, we assume 1 as the lower bound, i. e.,dn
i Pi stands for

d1,n
i Pi. Note that

dm,n
i Pi actually denotes > when n < m. The

index variable i may additionally be constrained, i. e., given k ∈ N, we may writedm,n
i6=k Pi to denote the term

dm,n
i Pi−Pk, i. e., Pm u . . .uPk−1 uPk+1 u . . .uPn if

m ≤ k ≤ n, and Pm u . . . u Pn otherwise. Accordingly, by the same conventions
we define the abbreviations

dm,n
i Si,

dm,n
i Ai and

dm,n
i Gi. Also, we may use j

instead of i as index variable.

Definition 4.23 (Assume-Guarantee Rule AGn).
Given n ∈ N, we define the inference rule

AGn :

dn
j 6=1 Pj u S v P1 . . .

dn
j 6=n Pj u S v Pn

S v
dn

i Pi

if
∧

1≤i<j≤n

NB[S,Pi,Pj].

Obviously for all n ∈ N, the inference rule AGn is an assume-guarantee rule. Note
that for n = 2, AGn coincides with AG2 as defined in Section 4.3. In general for
n ∈ N, the side condition of AGn is a conjunction of n(n− 1)/2 non-blockingness
relations, which implies that AGn is syntactic if n ≤ 1. More precisely, for n = 0
resp. n = 1 the above definition yields the syntactic A-G rules AG0 : ∅/S v >
resp. AG1 : {S v P1}/S v P1. Obviously, AG0 and AG1 are syntactically sound.

Proposition 4.24. The A-G rule AGn is circular if and only if n ≥ 2.

Proof. Obviously, AG0 and AG1 are not circular, so assume n ≥ 2. We define the
valuation α with dom(α) = {S,P1, . . . ,Pn}, where α(S) = 1 and α(P1) = · · · =
α(Pn) = 0. Then we have L, α |=

dn
j 6=i Pj u S v Pi for all i ∈ {1, . . . , n}, but

L, α 6|= S v
dn

i Pi. Therefore, the premises of AGn do not entail the conclusion,
i. e., AGn is circular.

THE FRAMEWORK 57

Soundness of a circular A-G rule AGn with n > 2 can be reduced to soundness of
AG2. We sketch how for n = 3. Let α be a valuation with dom(α) = var(AG3)
such that the premises and the side condition of AG3 are true under α. Note that
truth of the side condition in particular implies L, α |= NB[P3 u S,P1,P2] and
L, α |= NB[S,P1 u P2,P3], cf. the propositions 4.13 and 4.14. Therefore, we have
L, α |= P2 u (P3 u S) v P1, P1 u (P3 u S) v P2, NB[P3 u S,P1,P2], which implies
L, α |= P3 u S v P1 u P2 by soundness of AG2. This leaves us in the situation that
L, α |= P3 u S v (P1 u P2), (P1 u P2) u S v P3, NB[S,P1 u P2,P3], which, again
by soundness of AG2, implies L, α |= S v (P1 u P2) u P3. Thus, applying AG2

twice proves soundness of AGn for n = 3. The proof of the following theorem
generalizes this idea to arbitrary n.

Theorem 4.25. If L is well-approximable then AGn is sound for all n ∈ N.

Proof. Assume that L is well-approximable. The proof is by induction on n.

• n ≤ 1. Then AGn is syntactically sound, trivially.

• n > 1. We assume soundness of AGn−1 and want to show soundness of AGn

using Proposition 3.40. Let α be a valuation with dom(α) = {S,P1, . . . ,Pn}
such that for all i ∈ {1, . . . , n}, we have L, α |=

dn
j 6=i Pj u S v Pi, and for

all i, j ∈ {1, . . . , n} with i < j, we have L, α |= NB[S,Pi,Pj]. We have to
show L, α |= S v

dn
i Pi.

We define the valuation β with dom(β) = {S,P1, . . . ,Pn−1} such that
β(Pi) = α(Pi) for all i ∈ {1, . . . , n − 1} and β(S) = α(Pn u S). Obvi-
ously, we have L, β |=

dn−1
j 6=i Pj u S v Pi for all i ∈ {1, . . . , n − 1}. And as

β(S) ≤ α(S), for all i, j ∈ {1, . . . , n} with i < j, we get L, β |= NB[S,Pi,Pj]
by Proposition 4.13. By induction hypothesis, the rule AGn−1 is sound, so
we infer L, β |= S v

dn−1
i Pi, i. e., L, α |= Pn u S v

dn−1
i Pi.

Next, we define the valuation γ with dom(γ) = {S,P1,P2} such that
γ(S) = α(S) and γ(P1) = α(

dn−1
i Pi) and γ(P2) = α(Pn). Then we

have L, γ |= P2 u S v P1 because of the above application of the induc-
tion hypothesis, and L, γ |= P1 u S v P2 because of the truth of the last
premise of AGn under α. Furthermore, we have L, γ |= NB[S,P1,P2], be-
cause by Proposition 4.14, L, α |= NB[S,

dn−1
i Pi,Pn] follows from the fact

that L, α |= NB[S,Pi,Pn] for all i ∈ {1, . . . , n − 1}. By Theorem 4.19,
the rule AG2 is sound, so we infer L, γ |= S v P1 u P2, and therefore
L, α |= S v

dn−1
i Pi u Pn.

The completeness proof for all AGn rules is a straightforward generalization of
the respective proof for AG2.

Theorem 4.26. AGn is both backward and forward complete for all n ∈ N.

58 THE FRAMEWORK

Proof. Let n ∈ N. To show backward completeness of AGn, choose a valuation
α with dom(α) = {S,P1, . . . ,Pn} such that L, α |= S v

dn
i Pi. We have to show

L, α |=
dn

j 6=i Pj u S v Pi, for all i ∈ {1, . . . , n} and L, α |= NB[S,Pi,Pj] for all
i, j ∈ {1, . . . , n} with i < j.

The proof proceeds in a similar way than the proof of Theorem 4.20. Let
i, j ∈ {1, . . . , n} with i < j. Since L, α |= S v

dn
i Pi, we have α(S) ≤ α(Pi), so

for every a ∈ J (L), a ≤ α(S) implies a ≤ α(Pi). By Proposition 4.8, we get
〈α(S), α(Pi), α(Pj)〉 ∈ NB, i. e., L, α |= NB[S,Pi,Pj]. The rest follows because all
premises of AGn are entailed by the conclusion S v

dn
i Pi.

Forward completeness trivially follows by Proposition 3.52.

The AGn rules are not just arbitrary (sound and complete) inferences rules —
they turn out to be the strongest fully sound assume-guarantee rules. This claim
is made more precise by Theorem 4.30 below, whose proof rests on the lemmas
4.27 and 4.29.

Lemma 4.27. Let R : Φ/t v t′ if Γ[t1, . . . , tn] be an A-G rule without auxiliary
variables, i. e., var(R) = var(t v t′). If R is sound then R is weaker than AGm,
where m = size(t′).

Proof. Assume that R is sound and let σ be a substitution with dom(σ) =
{S,P1, . . . ,Pm} such that σ(S) = t and σ(Pi) ∈ var(t′) for all i ∈ {1, . . . ,m}.
Note that such a substitution exists because t v t′ is in normal form, t 6= > and
t′ consists of m distinct variables. We prove the claim that R is weaker than
AGm by Corollary 3.36, so we check its conditions:

1. Obvious.

2. As σ(S v
dm

i Pi) is t v t′, the conclusion of R is trivially entailed by the
conclusion of AGm under σ. We still have to show for all i ∈ {1, . . . ,m}
that Φ |= σ(

dm
j 6=i Pj u S v Pi), so let i ∈ {1, . . . ,m}, let x = σ(Pi) and

t′x = σ(
dm

j 6=i Pj). As x ∈ var(t′), x is a global guarantee. Therefore, x
cannot be a global assumption, so by definition of assume-guarantee rules,
it must be a local guarantee. Thus, there exists a premise tx v x ∈ Φ,
and hence Φ |= tx v x. As tx v x is in normal form, we have var(tx) ⊆
var(R) \ {x} = var(t v t′) \ {x} = var(t′x u t). Therefore, Φ |= tx v x
implies Φ |= t′x u t v x, i. e., Φ |= σ(

dm
j 6=i Pj u S v Pi).

3. For brevity, we denote the side condition of AGm by NB[S,P1, . . . ,Pm].
We have to show Φ,Γ[t1, . . . , tn] |=L σ(NB[S,P1, . . . ,Pm]), so let α be a
valuation with dom(α) = var(Φ,Γ[t1, . . . , tn]) ∪ var(σ(NB[S,P1, . . . ,Pm]))
such that L, α |= Φ,Γ[t1, . . . , tn]. As R is sound, we infer L, α |= t v t′

using Proposition 3.40, i. e., we have L, α |= σ(S v
dm

i Pi). By the Sub-
stitution Lemma, this implies L, α ◦ σ |= S v

dm
i Pi. Note that actually

dom(α) = var(rng(σ)) since var(Φ,Γ[t1, . . . , tn]) ⊆ var(R) = var(t v t′) =

THE FRAMEWORK 59

var(rng(σ)), so dom(α ◦ σ) = dom(σ) = var(S v
dm

i Pi). Therefore, we
get L, α ◦ σ |= NB[S,P1, . . . ,Pm] by backward completeness of AGm, see
Theorem 4.26. Finally, L, α |= σ(NB[S,P1, . . . ,Pm]) follows by the Substi-
tution Lemma; note that this last step required that dom(α) = var(rng(σ)).

Lemma 4.28. AGn is non-empty for all n ∈ N.

Proof. Let n ∈ N and denote the premises resp. conclusion of AGn by Φn resp.
ψn. We define the valuation α with dom(α) = var(AGn), where α(S) = α(P1) =
· · · = α(Pn) = 1. Obviously, L, α |=

dn
j 6=i Pj u S v Pi for all i ∈ {1, . . . , n}, so we

have L, α |= Φn, hence 〈Φn, ψn, α〉 is an inference. As L, α |= NB[S,Pi,Pj] for
all i, j ∈ {1, . . . , n} with i < j by Proposition 4.8, 〈Φn, ψn, α〉 is an inference of
AGn.

Lemma 4.29. For all m,n ∈ N, if AGm is weaker than AGn then m = n.

Proof. Let m,n ∈ N and assume that AGm is weaker than AGn. For brevity,
we denote the premises and conclusion of AGk by Φk and ψk, respectively, where
k ∈ {m,n}. By Lemma 4.28, AGm is non-empty, so by Corollary 3.37, there
exists a substitution σ with dom(σ) = var(AGn), var(rng(σ)) ⊆ var(AGm),
Φm |= σ(Φn) and σ(ψn) |= ψm.

We claim that σ(Pi) ∈ V for all i ∈ {1, . . . , n}. To prove this claim by
contradiction, we assume σ(Pi) /∈ V for some i ∈ {1, . . . , n}. Since Φm |= σ(Φn),
we know that Φm |= σ(

dn
j 6=i Pj u S v Pi). We define the valuation α with

dom(α) = var(AGm) such that for all x ∈ var(AGm), α(x) = 0 if x ∈ var(σ(Pi)),
otherwise α(x) = 1. Then α(σ(

dn
j 6=i Pj u S)) = 1 and α(σ(Pi)) = 0, so we have

L, α 6|= σ(
dn

j 6=i Pj u S v Pi). On the other hand, fix an arbitrary k ∈ {1, . . . ,m}.
As var(

dm
j 6=k Pj u S) = var(AGm)\{Pk} and

(
var(AGm)\{Pk}

)
∩var(σ(Pi)) 6= ∅,

we have α(
dm

j 6=k Pj u S) = 0, which implies L, α |=
dm

j 6=k Pj u S v Pk. Hence, α
witnesses that Φm 6|= σ(

dn
j 6=i Pj u S v Pi), which contradicts Φm |= σ(Φn).

From σ(ψn) |= ψm, i. e., σ(S) v σ(
dn

i Pi) |= S v
dm

i Pi, it follows that
dm

i Pi

is a subterm of σ(
dn

i Pi). And as σ(Pi) ∈ V for all i ∈ {1, . . . , n}, this implies
that m = size(

dm
i Pi) ≤ size(σ(

dn
i Pi)) = n. On the other hand, n ≤ m follows

from dom(σ) = var(AGn) and var(rng(σ)) ⊆ var(AGm). Hence m = n.

Theorem 4.30. If L is well-approximable then in R(L), the lattice of infer-
ence rules ordered by the weaker-than relation, the family of assume-guarantee
rules {AGn | n ∈ N} forms a maximals’ cover of the set of fully sound assume-
guarantee rules — that means

1. every fully sound A-G rule is weaker than AGn for some n ∈ N, and

2. for every n ∈ N, AGn is maximal in the set of fully sound A-G rules.

60 THE FRAMEWORK

Proof. To prove 1, let R : Φ/t v t′ if Γ[t1, . . . , tm] be a fully sound A-G rule and
let t′′ be the term with var(t′′) = var(R) \ var(t v t′), i. e., var(t′′) is the set of
auxiliary variables of R. Then R′′ : Φ/t v t′ u t′′ if Γ[t1, . . . , tm] is an A-G rule
without auxiliary variables. Furthermore, using Proposition 3.45 an induction on
size(t′′) yields that R is weaker than R′′ and R′′ is fully sound, hence sound. By
Lemma 4.27, R′′ is weaker than AGn where n = size(t′ u t′′). Thus, R is weaker
than AGn.

To prove 2, assume that L is well-approximable and let n ∈ N. By Theo-
rem 4.25, the A-G rule AGn is sound. Actually, AGn is fully sound by Propo-
sition 3.43 because AGn has no auxiliary variables. To show maximality, let R
be a fully sound A-G rule which is stronger than AGn. By 1, R is weaker than
AGm for some m ∈ N. Thus, AGn is weaker than AGm, which implies n = m by
Lemma 4.29, which implies R = AGn in turn.

Note that an inspection of the above proof lets us state condition 1 of the theorem
more precisely: Every fully sound A-G rule R is weaker than AGn, where n is
the number of local guarantees in R.

Corollary 4.31. AG2 is the strongest sound circular A-G rule with 3 variables.

Proof. Let R : Φ/ψ if Γ[t1, . . . , tn] be a sound circular A-G rule with var(R) =
{x, y, z}, where x, y and z are three distinct variables. Because of circularity, R
must have one global assumption and two local guarantees; w. l. o. g. we assume
that x is the global assumption and y and z are local guarantees. As the depen-
dency relation must be cyclic, we know that y →Φ z and z →Φ y. Furthermore,
circularity implies that the right-hand side of ψ must be different from >, so we
know that ψ |= x v y or ψ |= x v z; w. l. o. g. we assume that ψ |= x v y.
Then soundness of R yields Φ, Γ[t1, . . . , tn] |=L x v y. And as z →Φ y implies
Φ |= y u x v z, we also get Φ, Γ[t1, . . . , tn] |=L x v z. Hence R is fully sound, so
by Theorem 4.30 it is weaker than AGn, where n is the number of local guarantees
in R, i. e., R is weaker than AG2.

To end this section, we will justify the claim of Section 4.3 that AG2 is the basic
circular assume-guarantee rule. The most important fact supporting this claim
is that the proof of soundness of the generalization AGn uses Theorem 4.19, i. e.,
soundness of AG2. The same applies to the proofs of soundness for all other
circular A-G rules that are presented further below in this chapter. Another fact
is that AG2 is among the simplest circular A-G rules, where we measure simplicity
by the number of variables occuring in a rule. This follows from Corollary 3.61,
which states that there cannot exist any circular A-G rule with less than three
variables. Moreover by Corollary 4.31, AG2 is the strongest sound rule among
these circular A-G rules with three variables.

THE FRAMEWORK 61

4.5 Another Extension

In this section, we present an extension of the circular A-G rule AG2 to a another
family of A-G rules {AG′

n | n ∈ N}. Again, we prove soundness (provided that
L is well-approximable) and completeness.

Definition 4.32 (Assume-Guarantee Rule AG′
n).

Given n ∈ N, we define the inference rule

AG′
n :

A1 u S v G1 . . . An u S v Gn

dn
i Gi u S v

dn
i Ai

S v
dn

i Gi

if
∧

1≤i≤n

NB[S,Ai,Gi].

An inference rule AG′
n is best understood when we think of the variable S as

representing a system whereas the variables Ai and Gj represent properties that
function as assumptions and guarantees, respectively. Assumptions and guaran-
tees are paired to form n assume-guarantee specifications (A-G specs, for short),
and the i-th premise Ai u S v Gi expresses that the system satisfies the i-th A-G
spec, i. e., assuming the i-th assumption, the system guarantees the i-th guar-
antee. As the conclusion expresses that the system guarantees the conjunction
of all n guarantees, the purpose of rule AG′

n is to combine the n A-G specs and
discharge their assumptions. According to the rule, this is possible if there is a
‘feedback’ from the guarantees to the assumptions (cf. premise

dn
i GiuS v

dn
i Ai)

and assumptions and guarantees do not block each other relative to the system
(cf. side condition).

Note that strictly speaking, AG′
n is not an A-G rule because its last premise

is not in strong normal form. However, it can be transformed into an A-G rule by
splitting

dn
i GiuS v

dn
i Ai into the n premises

dn
i GiuS v A1, . . . ,

dn
i GiuS v An.

For the sake of readability we have decided not to do so.

Proposition 4.33. The A-G rule AG′
n is circular if and only if n ≥ 1.

Proof. The syntactic rule AG′
0 : {S v >}/S v > is clearly non-circular, so assume

n ≥ 1. We define the valuation α with dom(α) = {S,A1, . . . ,An,G1, . . . ,Gn},
where α(S) = 1 and α(Ai) = α(Gi) = 0 for all i ∈ {1, . . . , n}. Then all premises
of AG′

n are true under α but the conclusion is not, i. e., AG′
n is circular.

We prove AG′
n sound by the strength of AG2, i. e., we show that AG2 is stronger

than AG′
n, so soundness of the latter follows from soundness of the former.

Theorem 4.34. If L is well-approximable then AG′
n is fully sound for all n ∈ N.

Proof. Let n ∈ N. We are going to show that AG′
n is weaker than AG2. Define

the substitution σ with dom(σ) = {S,P1,P2}, where σ(S) = S and σ(P1) =
dn

i Ai

and σ(P2) =
dn

i Gi. We have to check the conditions of Corollary 3.36:

1. Obvious.

62 THE FRAMEWORK

2. As
dn

i GiuS v
dn

i Ai is σ(P2uS v P1) and A1uS v G1, . . . ,AnuS v Gn |=
σ(P1 u S v P2), the premises of AG′

n entail the premises of AG2 under σ.
Furthermore, σ(S v P1 u P2) obviously entails S v

dn
i Gi.

3. The fact A1 u S v G1, . . . ,An u S v Gn, NB[S,A1,G1], . . . ,NB[S,An,Gn] |=L

NB[S,
dn

i Ai,
dn

i Gi] is implied by Proposition 4.15. Therefore, the premises
and the side condition of AG′

n together entail σ(NB[S,P1,P2]).

By Proposition 3.39, soundness of AG′
n follows from Theorem 4.19, so we know

that the variables S,G1, . . . ,Gn all are sound in AG′
n by Proposition 3.43. Thanks

to the premise
dn

i GiuS v
dn

i Ai, the auxiliary variables A1, . . . ,An are also sound
in AG′

n, hence AG′
n is fully sound.

In principle, the proof of completeness is similar to the proof of Theorem 4.20,
completeness of AG2. However in AG′

n, the variables A1, . . . ,An are auxiliary
variables, so forward completeness no longer follows from backward completeness.

Theorem 4.35. AG′
n is both backward and forward complete for all n ∈ N.

Proof. Let n ∈ N. For brevity, we denote the premises resp. conclusion of AG′
n

by Φn resp. ψn. To show forward completeness of AG′
n, choose a valuation α with

dom(α) = var(AG′
n) such that L, α |= Φn, ψn. Fix an arbitrary i ∈ {1, . . . , n}.

Since L, α |= ψn, we have α(S) ≤ α(Gi), so for every a ∈ J (L), a ≤ α(S) implies
a ≤ α(Gi). By Proposition 4.8, we conclude that 〈α(S), α(Ai), α(Gi)〉 ∈ NB, i. e.,
L, α |= NB[S,Ai,Gi]. As i is arbitrary, the side condition is true under α, hence
AG′

n is forward complete.
To show backward completeness of AG′

n, choose a valuation α with dom(α) =
{S,G1, . . . ,Gn} such that L, α |= ψn. Extend the valuation α to β such that
α E β, dom(β) = var(AG′

n) and β(Ai) = 1 for all i ∈ {1, . . . , n}. Obviously,
we have L, β |= ψn. Moreover, we get L, β |=

dn
i Gi u S v

dn
i Ai, and for all

i ∈ {1, . . . , n}, L, β |= ψn implies L, β |= S v Gi, hence L, β |= Ai u S v Gi.
Thus, we have L, β |= Φn, ψn, so the side condition of AG′

n is true under β
by forward completeness. Therefore, premises and side condition are satisfiable
under α, hence AG′

n is backward complete.

4.6 Compositional Assume-Guarantee Rules

In the introduction to Section 4.4 we claimed that assume-guarantee reasoning
is useful in verification because it reduces a goal to a number of subgoals. These
subgoals are of the form assuming some properties, the system guarantees some
other property. If the system is not monolithic but compound of subsystems then
there is a chance that in each subgoal, assuming the to-be-assumed properties,
the to-be-guaranteed property is guaranteed by some subsystem already. This
potential decomposition of the system in the subgoals is the reason why there is

THE FRAMEWORK 63

hope that the subgoals are easier to verify than the original goal. However, the
A-G rules presented so far do not explicitly force system decomposition, which is
why we term them non-compositional.

To make system decomposition in an A-G rule R : Φ/ψ if Γ[t1, . . . , tn] ex-
plicit, we must explicitly represent the system to be verified as a composition of
subsystems, i. e., the left-hand side of the conclusion ψ must be a term of the
form

dm
i Si, where the variables S1 to Sm represent the subsystems. Certainly, R

cannot be termed compositional if
dm

i Si occurs as a subterm in some premise.
We call R compositional in the premises iff only proper subterms of

dm
i Si occur

in the premises, i. e., iff var(
dm

i Si) 6⊆ var(ϕ) for all ϕ ∈ Φ. In this case, the
system is decomposed in all subgoals arising from premises.

However, not only the premises generate subgoals; establishing truth of the
side condition must also be seen as a subgoal. Therefore, R cannot be termed
compositional if the side condition Γ[t1, . . . , tn] involves the composition of all
subsystems, which would be the case, for instance, if

dm
i Si were a subterm of

some term ti. We call R compositional in the side condition iff the side condition
does not involve all subsystems or it is a boolean combination of conditions none of
which involves all subsystems. Formally, R is compositional in the side condition
iff var(

dm
i Si) 6⊆ var(Γ[t1, . . . , tn]) or there is a finite set of named relations C

such that Γ[t1, . . . , tn] is expressible as a boolean combination of relations in C
and var(

dm
i Si) 6⊆ var(Γ′[t′1, . . . , t

′
n′]) for all Γ′[t′1, . . . , t

′
n′] ∈ C. In these cases,

the system is decomposed in all subgoals arising from the side condition. Finally,
we call R compositional iff it is compositional in the premises and in the side
condition.

For simplicity, we restrict the number of subsystems to two in this section.
Following, we present a compositional circular A-G rule for two properties, i. e., a
variant of AG2 which is compositional in the premises and in the side condition.
Its soundness follows directly from soundness of AG2.

Definition 4.36 (Compositional Circular A-G Rule AGc
2).

AGc
2 :

P2 u S1 v P1 P1 u S2 v P2

S1 u S2 v P1 u P2

if NB[>,P1,P2]

Theorem 4.37. If L is well-approximable then AGc
2 is sound.

Proof. By Proposition 3.39, it suffices to show that AGc
2 is weaker than AG2,

then soundness follows from Theorem 4.19. We define the substitution σ with
dom(σ) = {S,P1,P2} by σ(S) = S1 u S2, σ(P1) = P1 and σ(P2) = P2. Obviously,
condition 1 of Corollary 3.36 holds. Condition 2 holds because P2 u S1 v P1 |=
σ(P2 u S v P1) and P1 u S2 v P2 |= σ(P1 u S v P2). And condition 3 is satisfied
since by Proposition 4.13, NB[>,P1,P2] |=L σ(NB[S,P1,P2]).

Note that AGc
2 is strictly weaker than AG2 because of condition 1 of Corol-

lary 3.37. Moreover, the side condition of AGc
2 is more restrictive, which is why

64 THE FRAMEWORK

AGc
2 is neither forward nor backward complete. However, AGc

2 is complete in
another sense, namely its side condition characterizes exactly when the premises
entail the conclusion.

Theorem 4.38. If J (L) is join-dense in L then the side condition NB[>,P1,P2]
is complete in AGc

2.

Proof. Let J = 〈J ,�〉 be the suborder of L which is generated by J (L), i. e.,
J = J (L). Assume that J is join-dense in L and choose a valuation α with
dom(α) = {P1,P2} such that P2uS1 v P1, P1uS2 v P2 |=L

α S1uS2 v P1uP2. We
have to show that L, α |= NB[>,P1,P2]. Towards a contradiction, we assume that
α(P1) and α(P2) block each other, i. e., there exists a ∈ J such that α(P1)∧α(P2)
is an upper bound of ≺(a) but a 6≤ α(P1) and a 6≤ α(P2).

As J is join-dense, there is J1 ⊆ J such that α(P1) ∧ a =
∨
J1. From

a 6≤ α(P1) follows α(P1) ∧ a < a, so
∨
J1 < a, i. e., J1 ⊆ <(a). Actually,

J1 ⊆ ≺(a) because a ∈ J and J1 ⊆ J and the order � on J is induced by ≤. So
α(P1) ∧ α(P2), which is an upper bound of ≺(a), must also be an upper bound
of J1, which in turn implies that α(P1) ∧ a =

∨
J1 ≤ α(P1) ∧ α(P2) ≤ α(P2).

Likewise, by join-density of J there is J2 ⊆ J such that α(P2) ∧ a =
∨
J2.

By similar arguments than above, a 6≤ α(P2) implies J2 ⊆ ≺(a), hence we obtain
that α(P2) ∧ a =

∨
J2 ≤ α(P1) ∧ α(P2) ≤ α(P1).

Define β to be the extension of α which maps S1 and S2 to a, i. e., dom(β) =
{S1, S2,P1,P2} and α E β and β(S1) = β(S2) = a. The above arguments yield
L, β |= P2 u S1 v P1, P1 u S2 v P2, which implies L, β |= S1 u S2 v P1 u P2 by
choice of α. Hence we have a ∧ a ≤ α(P1) ∧ α(P2), which contradicts a 6≤ α(P1)
and a 6≤ α(P2).

Corollary 4.39. Let α be a valuation with dom(α) = {P1,P2}. If L is well-
approximable then the following statements are equivalent:

1. L, α |= NB[>,P1,P2].

2. P2 u S1 v P1, P1 u S2 v P2 |=L
α S1 u S2 v P1 u P2.

Proof. Follows from soundness and completeness of AGc
2 — recall that by Propo-

sition 4.5, J (L) is join-dense L whenever L is well-approximable.

Example 4.40. To show that AGc
2 is not forward complete, consider any well-ap-

proximable lattice L. Define the valuation α with dom(α) = {S1, S2,P1,P2} such
that α(S1) = α(S2) = α(P1) = α(P2) = 0. Then premises and conclusion of AGc

2

are true under α, i. e., L, α |= P2 u S1 v P1, P1 u S2 v P2, S1 u S2 v P1 u P2. Yet
with β = α|{P1,P2}, we get P2uS1 v P1, P1uS2 v P2 6|=L

β S1uS2 v P1uP2, which
implies L, β 6|= NB[>,P1,P2] by Corollary 4.39. Therefore L, α 6|= NB[>,P1,P2],
i. e., the side condition of AGc

2 is not true under α.
By Proposition 3.52, AGc

2 not being forward complete implies that AGc
2 cannot

be backward complete.

THE FRAMEWORK 65

Together with Theorem 4.38, the above example confirms a statement from Sec-
tion 3.5, namely that completeness in the side condition entails neither backward
nor forward completeness.

Example 4.41. We present a variant of AGc
2, a compositional circular A-G rule

for two properties whose side condition is a boolean combination of two relations,
each of which involves only one subsystem.

AGc
2
′ :

P2 u S1 v P1 P1 u S2 v P2

S1 u S2 v P1 u P2

if NB[S1,P1,P2] ∨ NB[S2,P1,P2]

Soundness of AGc
2
′ (provided that L is well-approximable) is proven in essentially

the same way than soundness of AGc
2. More precisely, the substitution σ from

the proof of Theorem 4.37 witnesses that AGc
2
′ is weaker than AG2; note that

condition 3 of Corollary 3.36 is satisfied as for all i ∈ {1, 2}, NB[Si,P1,P2] |=L

σ(NB[S,P1,P2]) by Proposition 4.13.
Obviously, the side condition of AGc

2
′ is less restrictive than the side condition

of AGc
2, so on the one hand, AGc

2
′ is strictly stronger than AGc

2. On the other
hand, AGc

2
′ is less complete, i. e., it is not all complete. Because there are no

auxiliary variables and all variables occur in the side condition, it suffices to show
that AGc

2
′ is not forward complete; backward incompleteness and incompleteness

of the side condition then follow by Proposition 3.52.
To show that AGc

2
′ is not forward complete, consider the finite (hence well-

approximable) lattice L = 〈P({1, 2, 3, 4}),⊆〉, see also Example 4.22. We define
the valuation α with dom(α) = {S1, S2,P1,P2} by α(S1) = {1}, α(S2) = {2},
α(P1) = {3} and α(P2) = {4}. Obviously, premises and conclusion of AGc

2
′ are

true under α. However, {3} and {4} block each other relative to {1} and relative
to {2}, therefore we have L, α 6|= NB[Si,P1,P2] for all i ∈ {1, 2}. Hence the side
condition of AGc

2
′ is not true under α.

Note that in [Mai03], we prove that no sound compositional circular A-G rule can
ever be forward complete. Sound and backward complete compositional circular
A-G rules may exist, however, as a consequence of Proposition 3.52, they must
necessarily employ auxiliary variables.

4.7 Beyond Well-founded Approximations

The proofs of soundness of all circular A-G rules that have been presented in this
chapter required the lattice L to be well-approximable. But is this requirement
really necessary for soundness of circular assume-guarantee reasoning? This sec-
tion can not provide a definite answer but we will argue that at least the A-G
rules from this chapter tend to become unsound when L is not well-approximable.
Recall from Section 4.1 that L can fail to be well-approximable for two reasons:

66 THE FRAMEWORK

1. Because J (L) is not join-dense in L, or

2. because the suborder of L which is generated by J (L) does not satisfy
DCC.

We show that the first case inadvertently leads to unsoundness of the circular
A-G rule AGc

2
′ from Example 4.41. Addressing the second case, we are able to

show unsoundness only if L satisfies additional requirements.

Proposition 4.42. If J (L) is not join-dense in L then AGc
2
′ is unsound.

Proof. Assume that J (L) is not join-dense in L. Then there is s ∈ L such that∨
X 6= s for all X ⊆ J (L). Let X = {a ∈ J (L) | a ≤ s} and p =

∨
X and note

that p < s. Define the valuation α with dom(α) = {S1, S2,P1,P2} by α(S1) =
α(S2) = s and α(P1) = α(P2) = p. Then L, α |= P2 u S1 v P1, P1 u S2 v P2

because α(P1) = α(P2). But because α(P1 u P2) = p < s = α(S1 u S2), we
also have L, α 6|= S1 u S2 v P1 u P2, so the premises of AGc

2
′ do not entail the

conclusion under α. By Proposition 3.40, unsoundness follows provided that the
side condition of AGc

2
′ is true under α.

We have to show L, α |= NB[S1,P1,P2] or L, α |= NB[S2,P1,P2], which
amounts to showing that 〈s, p, p〉 ∈ NB. Let a ∈ J (L) ∩ ≤(s). Then a ∈ X, so
a ≤

∨
X = p, hence 〈s, p, p〉 ∈ NB by Proposition 4.8.

If J (L) is not join-dense in L then by Proposition 3.39, all stronger rules than
AGc

2
′, in particular AG2, must be unsound, too. Note that the non-blockingness

relation NB loses its restrictiveness if J (L) is not join-dense in L. In the extreme
case when J (L) = ∅, e. g., when L = 〈R>

⊥,≤〉 (see Example 4.6), we have
NB = L3. In this case, even AGc

2 is unsound although it is weaker than AGc
2
′.

Proposition 4.43. Let J be the suborder of L which is generated by J (L). If
J is forest-like and does not satisfy DCC then AGc

2
′ is unsound.

Proof. Let J = 〈J ,�〉, i. e., J = J (L), and assume that J is forest-like and
does not satisfy DCC. This implies that there is an infinite descending sequence
a0 � a1 � a2 � . . . of elements in J . Let s = a0 and p =

∧
{am | m ∈ N}

and note that p < s. Define the valuation α with dom(α) = {S1, S2,P2,P2} by
α(S1) = α(S2) = s and α(P1) = α(P2) = p. Like in the proof of Proposition 4.42,
the premises of AGc

2
′ do not entail the conclusion under α, so unsoundness of

AGc
2
′ follows by Proposition 3.40 again, provided that the side condition of AGc

2
′

is true under α.
Again, we have to show that 〈s, p, p〉 ∈ NB, so let a ∈ J ∩ ≤(s) and assume

that p∧p is an upper bound of ≺(a). Choose an arbitrary i ∈ N. As s = a0 ∈ J ,
we have ai � s and a � s. And as J is forest-like, this implies a � ai or ai � a.
The latter would imply ai+1 ∈ ≺(a), which would contradict p being an upper
bound of ≺(a) because p =

∧
{am | m ∈ N} < ai+1. So we have a � ai, and

as i was chosen arbitrarily, a is a lower bound of {am | m ∈ N}. This implies
a ≤

∧
{am | m ∈ N} = p, hence 〈s, p, p〉 ∈ NB by Proposition 4.8.

THE FRAMEWORK 67

Proposition 4.44. If J (L) does not have minimal elements then AGc
2 is un-

sound.

Proof. Let � be the order on J (L) which is induced by ≤. Assume that there
are no minimal elements in J (L) and note that ≺(a) 6= ∅ for all a ∈ J (L).
Define the valuation α with dom(α) = {S1, S2,P2,P2} by α(S1) = α(S2) = 1 and
α(P1) = α(P2) = 0. Obviously, the premises of AGc

2 do not entail the conclusion
under α, so by Proposition 3.40 again, unsoundness follows provided that the
side condition NB[>,P1,P2] is true under α. By Proposition 4.8 this is the case,
i. e., 〈1, 0, 0〉 ∈ NB, because there is no a ∈ J (L) such that 0 ∧ 0 is an upper
bound of ≺(a); otherwise ≺(a) would have to be empty for some a ∈ J (L).

Again, unsoundness is inherited to stronger rules. I. e., if the suborder which is
generated by J (L) is forest-like and does not satisfy DCC then AG2 is unsound.
And if J (L) does not have minimal elements then both AG2 and AGc

2
′ are un-

sound. Note that the lack of minimal elements in J (L) implies that the suborder
of L which is generated by J (L) does not satisfy DCC.

To demonstrate that the additional requirements of the above two propositions
are not unrealistic, consider the lattice L = 〈Z>

⊥,≤〉 from Example 4.6. Then the
set of completely join-irreducible elements, Z, does not have a minimal element,
and the suborder generated by Z is trivially forest-like and does not satisfy DCC.
Thus, 〈Z>

⊥,≤〉 satisfies the requirements of the propositions 4.43 and 4.44.
Of course, the results of this section do not out-rule the possibility that there

are circular assume-guarantee rules that are sound in non-well-approximable lat-
tices. Firstly, it remains open whether any of the presented A-G rules remain
sound in lattices that do not meet the requirements of the propositions 4.43 and
4.44 although they fail to be well-approximable because the suborder generated
by the completely join-irreducible elements does not satisfy DCC. Secondly, there
may be A-G rules with other side conditions, which may ensure soundness in cer-
tain non-well-approximable lattices. For instance, A-G rules whose side condition
fixes the global guarantees to 1 will always be sound, regardless of the properties
of the lattice. It remains open whether there are more interesting examples of
circular A-G rules which are sound in non-well-approximable lattices.

68 THE FRAMEWORK

Chapter 5

Instantiations

The assume-guarantee rules from Chapter 4 are formulated for a very abstract
setting. The systems and properties to be verified are elements of a complete
well-approximable lattice, which do not have internal structure but must satisfy
certain non-blockingness conditions. In real-life verification, problems are differ-
ent. Usually, systems and properties do not form a complete well-approximable
lattice, and even if they do, it is unclear how to prove non-blockingness conditions
efficiently — they may even be undecidable, see Example 4.16. This prevents ap-
plication of the assume-guarantee rules from Chapter 4 in practice.

As we have outlined in the introduction, it is natural to assume that systems
and properties form a meet-semilattice. It is well-known that every semilat-
tice can be embedded into various complete lattices. Thus, it may be possible
to embed the semilattice of systems and properties into a complete and well-
approximable lattice. If this is the case then we will be able to apply the A-G
rules from Chapter 4 to the given systems and properties provided that we can
establish the truth of their side conditions, which boils down to establishing non-
blockingness. In reality, systems and properties are not black boxes but do have
internal structure, and under certain conditions this structure may greatly sim-
plify (or even trivialize) establishing non-blockingness. Thus, we may specialize
the abstract A-G rules from Chapter 4 to the concrete setting by replacing the
non-blockingness side conditions with other conditions which are (hopefully) de-
cidable and which imply non-blockingness (using the internal structure of systems
and properties). Note that because of this implication, the specialized A-G rule
will be weaker than the original rule, so it inherits soundness.

The above paragraph sketches the two main ideas how to obtain sound circu-
lar assume-guarantee rules for concrete settings by instantiating/specializing the
abstract assume-guarantee framework from Chapter 4. To summarize, such an
instantiation comprises

• a complete and well-approximable lattice into which the meet-semilattice
of systems and properties is embedded, and

70 INSTANTIATIONS

• an A-G rule for that lattice which is weaker than one of the A-G rules from
Chapter 4.

Circular assume-guarantee rules for various formalisms have been published
for more than 20 years now. Common to all of them is an inductive argument
to resolve the apparent circularity and establish soundness, similar to the one we
used to establish soundness of AG2 (cf. Lemma 4.18). Together with the abstract-
ness of our framework, this fact suggests that many known assume-guarantee
rules might be special instances of the framework. In this chapter, we support
this claim by instantiating the framework into two directions:

• system-oriented (see Section 5.1), where the goal is to prove that some
composite transition system refines another composite transition system,
and

• specification-oriented (see Section 5.2) where one has to prove that a con-
junction of assume-guarantee specifications entails another assume-guaran-
tee specification.

In both directions, we derive rules that are known from the literature as well
as variations or generalizations of these, which were not known before. It is
important to note that proving a rule to be an instance of our framework does
not require a circularity-breaking induction any more. Thus for the existing rules,
we have reduced their original (and sometimes obscure) soundness proofs to the
rather intelligible soundness proof of our rule AG2.

FOR MOORE MACHINES 71

5.1 Rules For Moore Machines

Behavioral systems, e. g., hardware circuits, device driver software or graphical
user interfaces, are often modeled as transition systems. Their specifications may
also be given as transition systems, in which case proving conformance of the
system w. r. t. the specification amounts to checking that the system refines the
specification. What we mean by ‘the system refines the specification’ depends on
the notion of refinement, of which there exist many, for instance trace contain-
ment, trace tree containment and simulation.

In the realm of concurrent systems, the complex transition systems, which
form the system and specification to be verified, are composed of simpler ones
running in parallel. Often, each specification component is thought of as an
abstraction of some system component resp. each system component is thought
of as an implementation of some specification component. If each implementation
refines its abstraction then we can conclude that the system as a whole refines
the specification (provided that the notion of refinement is a reasonable, i. e.,
compositional one). However, as the system components are designed to interact
with each other, in isolation they will usually fail to refine their abstractions.
Yet, when composed with abstractions of the other components, each system
component may refine its abstraction. This is a circular situation, so it is not
immediately clear whether we can conclude that the system as a whole refines
the specification — only a circular assume-guarantee rule can yield the desired
conclusion. Such rules are known for different notions of refinement, e. g., trace
containment [AH99] and simulation [HQRT02], and for various presentations of
transition systems, e. g., Mealy machines [McM97] and timed systems [TAKB96].

In this section, we are going to establish soundness of a circular assume-
guarantee rule for another presentation of transition systems, Moore machines,
with trace containment as refinement. We do so by showing it to be an instance
of the assume-guarantee framework from Chapter 4. To this end, we define a
special semantics of Moore machines, the partial trace languages, which form a
complete and well-approximable lattice. For this lattice, we derive an A-G rule
from the rule AGc

2, see Section 4.6. In exactly the same way, we then derive a
second A-G rule for Moore machines, which is based on a different semantics, the
partial trace tree languages. Thus, we obtain a second circular assume-guarantee
rule for Moore machines, with trace tree containment as refinement.

5.1.1 Moore Machines

A Moore machine (see for instance [HQRT02]) is a state transition system with
input and output ports. Transitions depend on the current state and the current
values of the input ports. The transition relation must be non-terminating (i. e.,
for each state and all possible input values there is at least one successor state)
but need not be deterministic (i. e., exactly one successor state). The value of

72 INSTANTIATIONS

each output port only depends on the current state, but is independent of the
current input values.

Definition 5.1 (Port, Value, Assignment, Partial Assignment).
We fix a finite non-empty set X , the set of ports , and a (possibly infinite) non-
empty set D, the domain of values . An assignment is a total map from X to D
and a partial assignment is a partial map from X to D. We denote the set of
assignments by Σ and the set of partial assignments by Σ̂.

Formally, Σ = X → D and Σ̂ = X _ D. Recall that Σ ⊆ Σ̂, that E is an order
on Σ̂, that ⊥ is the least element in 〈Σ̂,E〉 and that Σ forms the set of maximal
elements.

Definition 5.2 (Moore machine).
A Moore machine M is a six-tuple 〈I, O, S, ι, δ, ρ〉, where

• I ⊆ X is the set of input ports ,

• O ⊆ X is the set of output ports ,

• S is the (possibly infinite) state space,

• ι ∈ P(S) \ {∅} is the set of initial states ,

• δ : S × Σ|I → P(S) \ {∅} is the transition function, and

• ρ : S → Σ|O is the output function,

such that I ∩O = ∅, i. e., the sets of input and output ports are disjoint.

Note that the state space of a Moore machine is always a non-empty set as it
contains a non-empty subset of initial states. Contrary to [HQRT02], we do not
demand finite non-determinism, i. e., the set of initial states may be infinite and
for all states s ∈ S and all inputs a ∈ Σ|I , the set of successor states δ(s, a) may
be infinite.

When composing two Moore machines in parallel, inputs and outputs may
be ‘cross-wired’, i. e., input ports of one machine may (but need not) be output
ports of the other, and vice versa. In order to avoid conflicts when two machines
in parallel share the same output port, we prohibit sharing of output ports.

Definition 5.3 (Compatibility, Parallel Composition).
Given Moore machines M1 = 〈I1, O1, S1, ι1, δ1, ρ1〉 and M2 = 〈I2, O2, S2, ι2, δ2, ρ2〉,
we call M1 and M2 compatible if and only if O1 ∩ O2 = ∅. If M1 and M2 are
compatible then the parallel composition (or just composition) of M1 and M2,
denoted by M1 ‖M2, exists and is defined as the six-tuple 〈I, O, S, ι, δ, ρ〉, where

• O = O1 ∪O2 ⊆ X ,

FOR MOORE MACHINES 73

• I = (I1 ∪ I2) \O ⊆ X ,

• S = S1 × S2,

• ι = ι1 × ι2 ∈ P(S) \ {∅},

• δ : S × Σ|I → P(S) \ {∅} such that for all 〈s1, s2〉 ∈ S and all a ∈ Σ|I ,
δ(〈s1, s2〉, a) = δ1

(
s1,

(
a O ρ2(s2)

)
|I1

)
× δ2

(
s2,

(
a O ρ1(s1)

)
|I2

)
, and

• ρ : S → Σ|O such that for all 〈s1, s2〉 ∈ S, ρ(〈s1, s2〉) = ρ1(s1) O ρ2(s2).

Observe that M1 ‖M2 is well-defined due to the following facts:

• ι 6= ∅ because ι1 6= ∅ and ι2 6= ∅.

• The join a O ρ1(s1) exists because dom(a) ∩ dom(ρ1(s1)) = I ∩ O1 = ∅.
Similarly, a O ρ2(s2) exists.

•
(
a O ρ2(s2)

)
|I1 ∈ Σ|I1 because I1 ⊆ (I1 \O2)∪O2 = (I1 \O)∪O2 ⊆ I∪O2 =

dom(a O ρ2(s2)). Similarly,
(
a O ρ1(s1)

)
|I2 ∈ Σ|I2 .

• The product δ(〈s1, s2〉, a) is non-empty because δ1
(
s1,

(
a O ρ2(s2)

)
|I1

)
and

δ2
(
s2,

(
a O ρ1(s1)

)
|I2

)
are non-empty.

• The join ρ1(s1)Oρ2(s2) exists as dom(ρ1(s1))∩dom(ρ2(s2)) = O1∩O2 = ∅.

• ρ1(s1) O ρ2(s2) ∈ Σ|O because O = O1 ∪O2 = dom(ρ1(s1) O ρ2(s2)).

Furthermore I ∩O = ∅, which proves the following proposition.

Proposition 5.4. Let M1 and M2 be compatible Moore machines. Then M1 ‖M2

is a Moore machine.

5.1.2 Linear-Time Semantics

In this section, we will provide a linear-time semantics for Moore machines, i. e.,
we will define the language of a Moore machine as the set of finite words which
it generates (or accepts). It will turn out, that this semantics is too coarse to
instantiate our assume-guarantee framework. Therefore, we will develop a more
fine-grained semantics by defining an ordered set of partial words, which can be
completed into a well-approximable lattice. For this semantics, we will prove
sound an instance of the A-G rule AGc

2 from Section 4.6. Finally, we will show
how to transfer this new A-G rule to the coarser (but more natural) semantics.

Definition 5.5 (Word).
A word is an element of Σ∗. We denote the set of all words by W.

74 INSTANTIATIONS

Definition 5.6 (Run, Trace, Trace Language).
Given a Moore machine M = 〈I, O, S, ι, δ, ρ〉 and a word w ∈ W, we call r ∈ S∗

a run of w in M if and only if

• len(r) = len(w) = 0 or

• len(r) = len(w) > 0 and

– r0 ∈ ι,
– ri+1 ∈ δ(ri, wi|I) for all i ∈ {0, . . . , len(r)− 2}, and

– wi|O E ρ(ri) for all i ∈ {0, . . . , len(r)− 1}.

We call w a trace of M if and only if there is r ∈ S∗ such that r is a run of w in
M . We define the trace language (or just language) of M , denoted by W(M), as
the set of all traces of M .

Note that wi|O = ρ(ri) for all positions i of a run r of w in M . The use of the
order E instead of equality in the above definition will become handy later when
we define partial traces.

The language of a Moore machine is never empty, as the empty word ε is a
run of the empty word ε.

Proposition 5.7. Let M be a Moore machine. Obviously, ε ∈ W(M).

Example 5.8. Let x1, x2 ∈ X be two distinct ports and assume that the distinct
values 0, 1, 2 are contained in the domain of values D. Let M1 and M2 be Moore
machines with Mi = 〈∅, {xi}, {•}, {•}, δi, ρi〉 and δi(•,⊥) = {•} and ρi(•)(xi) = i
for all i ∈ {1, 2}. Then W(Mi) = {w ∈ W | wj(xi) = i for all j < len(w)} for all
i ∈ {1, 2}.

Soon, we will see that the language of a Moore machine is prefix-closed (this
will follow from Lemma 5.16). Now, the prefix-closed subsets of W form a
complete and well-approximable lattice (as the completely join-irreducible ele-
ments are the prefix-closures of words in W). Thus, this lattice suggests itself
for instantiating the framework from Chapter 4. However, W(M1) and W(M2)
block each other as ε is contained in both but no word w with len(w) = 1 and
w0(x1) = w0(x2) = 0 is contained in either language. This shows that we cannot
establish our central notion of non-blockingness, not even for the languages of the
simplest systems (no input ports, just one output port and one state) and not
even when they are compatible (as M1 and M2 are) and completely unrelated.

To summarize the above example, the trace language of a Moore machine is too
coarse to enable non-blockingness because for each trace, the indivisible step of
extending the trace (by appending a new letter) requires to assign values simul-
taneously to all ports. The obvious way out is to break up this simultaneous

FOR MOORE MACHINES 75

assignment into successive assignments of values to individual ports. As interme-
diate results, we get traces whose last letter is a partial assignment in Σ̂. This
partial trace language of a Moore machine is a superset of the trace language.
Moreover, the indivisible step of extending a partial trace requires to assign just
one value to one port, which will later enable us to prove that the partial trace
languages of compatible Moore machines do not block each other (see Proposi-
tion 5.19).

Just like traces are defined to be words, partial traces are defined to be partial
words. Now, we introduce partial words formally.

Definition 5.9 (Partial Word).
We call w ∈ Σ̂∗ a partial word if and only if all but the last letter of w are in Σ.
We denote the set of all partial words by Ŵ, i. e., formally Ŵ = {ε} ∪ Σ∗Σ̂.

Note that W ⊂ Ŵ ⊂ Σ̂∗ ⊂ Σ̂∞ and recall that E∞ is the order on Σ̂∞ which
originates from lifting E.

Notation. We use the same symbol E∞ to denote the order on Ŵ which is
induced by the order E∞ on Σ̂∞. We denote the corresponding strict order on Ŵ
by C∞. Given w ∈ Ŵ, we may write E∞(w) to denote the downward closure of w
in 〈Ŵ,E∞〉, i. e., E∞(w) = {v ∈ Ŵ | v E∞ w}. By C∞(w), we denote the strict
downward closure of w, i. e., C∞(w) = E∞(w)\{w}. Given S ⊆ Ŵ, we may write
E∞(S) to abbreviate the order ideal generated by S, i. e., E∞(S) =

⋃
w∈S E∞(w).

Recall that E∞(S) is the least order ideal containing S, i. e., we have the equality
E∞(S) =

⋂
{X ∈ O(〈Ŵ,E∞〉) | S ⊆ X}.

The downward closures of partial words will turn out to be of particular impor-
tance. Therefore, the following two lemmas provide more information; the first
lemma characterizes the maximal elements in the strict downward closure of a
partial word, which is finite by the second lemma.

Lemma 5.10. Let v, w ∈ Ŵ. Then v is maximal in C∞(w) if and only if

1. w = v⊥, or

2. there are u ∈ Σ∗, a, b ∈ Σ̂ and x ∈ dom(b) such that v = ua, w = ub and
a = b|dom(b)\{x}.

Proof. To prove the forward direction, assume that v is maximal in C∞(w), so
v E∞ w, i. e., len(v) ≤ len(w) and vi E wi for all i < len(v), and v 6= w. Let
n = len(v). Case distinction.

• n < len(w). By maximality of v, len(w) = n+ 1, otherwise we would have
w0 . . . wn ∈ Ŵ and v C∞ w0 . . . wn C∞ w. Also by maximality, wn = ⊥,
otherwise we would have w0 . . . wn−1⊥ ∈ Ŵ and v C∞ w0 . . . wn−1⊥ C∞ w.
Thus, 1 holds.

76 INSTANTIATIONS

• n = len(w). Then n > 0 as v 6= w. Let u = v0 . . . vn−2, a = vn−1 and
b = wn−1. Then v = ua and as v ∈ Ŵ, u ∈ Σ∗ and a ∈ Σ̂. So as ui ∈ Σ and
ui = vi E wi for all i ∈ {0, . . . , n − 2}, we have u = w0 . . . wn−2. Thus, we
get w = ub and b ∈ Σ̂. Furthermore, ua C∞ ub implies a C b, so there is
x ∈ dom(b) \ dom(a). By maximality of v, a = b|dom(b)\{x}; otherwise there

were c ∈ Σ̂, namely c = b|dom(b)\{x}, such that ua C∞ uc C∞ ub. Thus, 2
holds.

To prove the reverse direction, assume that 1 or 2 holds. Then obviously, v C∞ w
and there is no v′ ∈ Ŵ such that v C∞ v′ C∞ w. Hence, v is maximal in
C∞(w).

Lemma 5.11. Let w ∈ Ŵ. Then E∞(w) is finite.

Proof. By induction on len(w).

• len(w) = 0. Then w = ε and E∞(w) = {ε} is finite.

• len(w) > 0. Then there are v ∈ Σ∗ and b ∈ Σ̂ such that w = vb. As v ∈ Ŵ
and v E∞ w, we have E∞(w) = E∞(v) ∪

(
E∞(w) \E∞(v)

)
. By induction

hypothesis, E∞(v) is finite. Moreover, finiteness of X implies that the set
{a ∈ Σ̂ | a E b} is finite, so E∞(w) \E∞(v) = {va | a ∈ Σ̂, a E b} is finite,
too.

In order to instantiate the assume-guarantee rules from Chapter 4 we need a
complete and well-approximable lattice. We obtain a complete lattice via an
ideal completion and we show that the completely join-irreducible elements of
this lattice generate a well-founded approximation.

Definition 5.12 (Ideal Completion of Partial Words.).
We denote the ideal completion of 〈Ŵ,E∞〉 by LW, so formally LW = 〈LW,⊆〉
where LW = O(〈Ŵ,E∞〉).

Lemma 5.13. J (LW) = {E∞(w) | w ∈ Ŵ}.

Proof. In every ideal completion, the completely join-irreducible elements are the
principal ideals — cf. the paragraph on order ideals in Chapter 2.

Proposition 5.14. LW is well-approximable.

Proof. Let J be the suborder of LW which is generated by the completely join-
irreducible elements, i. e., J = J (LW). By Lemma 5.13, J is the set of principal
ideals in 〈Ŵ,E∞〉, which is join-dense in LW because in every ideal completion,
the set of principal ideals is join-dense — cf. the paragraph on order ideals in
Chapter 2. Moreover, J satisfies DCC because every principal ideal in 〈Ŵ,E∞〉
is finite by Lemma 5.11, so every infinite descending sequence of principal ideals
must eventually stabilize. Hence, J is a well-founded approximation of LW.

FOR MOORE MACHINES 77

Now, we extend the definition of traces to partial words, thus obtaining partial
traces and partial trace languages.

Definition 5.15 (Partial Trace, Partial Trace Language).
Given a Moore machine M = 〈I, O, S, ι, δ, ρ〉, we call w ∈ Ŵ a partial trace of M
if and only if there is r ∈ S∗ such that r is a run of w in M . We define the partial
trace language of M , denoted by Ŵ(M), as the set of all partial traces of M .

Observe that the underlying definition of run need not be extended as it is already
general enough to cope with partial traces. Given a run r of a partial trace w in
M with n = len(r), we have wi|O = ρ(ri) for all i ∈ {0, . . . , n − 2}, but on the
last state of the run we may have wn−1|O C ρ(rn−1). This explains why we use
of the order E in the definition of runs.

We investigate the relationship between the trace and the partial trace lan-
guage of a Moore machine. It turns out that the partial trace language is the order
ideal generated by the trace language, and the trace language consists of exactly
those partial traces that happen to be words. From this characterization follows
that trace language containment between two Moore machines is equivalent to
partial trace language containment.

Lemma 5.16. Let M be a Moore machine. Then W(M) = W ∩ Ŵ(M) and
Ŵ(M) = E∞(W(M)).

Proof. Let M = 〈I, O, S, ι, δ, ρ〉. We prove the claim Ŵ(M) = E∞(W(M)) first.
Recall that E∞(W(M)) =

⋃
{E∞(w) | w ∈ W(M)}. Given w ∈ Ŵ(M), there is

a run r ∈ S∗ of w in M . Obviously, there exists w′ ∈ W with len(w′) = len(w)
and w E∞ w′ such that r is run of w′ in M . Thus w′ ∈ W(M), and therefore
w ∈ E∞(w′) ⊆ E∞(W(M)). Now given w ∈ E∞(W(M)), there is w′ ∈ W(M)
such that w E∞ w′. There exists a run r ∈ S∗ of w′ in M . Then obviously,
r0 . . . rn−1 is a run of w in M , where n = len(w). Thus, w ∈ Ŵ(M).

Now, we show that W(M) = W ∩ Ŵ(M). The left-to-right inclusion holds
because W(M) ⊆ W by definition and W(M) ⊆ E∞(W(M)) = Ŵ(M). The
right-to-left inclusion holds by the definition of traces.

Proposition 5.17. Let M and M ′ be Moore machines. Then W(M) ⊆ W(M ′)
if and only if Ŵ(M) ⊆ Ŵ(M ′).

Proof. Recall that E∞(W(M)) =
⋃
{E∞(w) | w ∈ W(M)}, so by Lemma 5.16,

W(M) ⊆ W(M ′) implies Ŵ(M) = E∞(W(M)) ⊆ E∞(W(M ′)) = Ŵ(M ′). The
reverse direction holds because again by Lemma 5.16, Ŵ(M) ⊆ Ŵ(M ′) implies
W(M) = W ∩ Ŵ(M) ⊆ W ∩ Ŵ(M ′) = W(M ′).

In partial trace languages, composition corresponds to intersection. More pre-
cisely, the partial trace language of the parallel composition of two compatible
Moore machines is the intersection of the two partial trace languages.

78 INSTANTIATIONS

Proposition 5.18. Let M1 and M2 be two compatible Moore machines. Then
Ŵ(M1 ‖M2) = Ŵ(M1) ∩ Ŵ(M2).

Proof. Let M1 = 〈I1, O1, S1, ι1, δ1, ρ1〉 and M2 = 〈I2, O2, S2, ι2, δ2, ρ2〉 and note
that O1 ∩ O2 = ∅. Let M1 ‖M2 = 〈I, O, S, ι, δ, ρ〉. Let w ∈ Ŵ and let r ∈ S∗,
r1 ∈ S∗1 and r2 ∈ S∗2 with len(w) = len(r) = len(r1) = len(r2) such that ri =
〈r1

i , r
2
i 〉 for all i < len(r). We prove the claim Ŵ(M1 ‖M2) = Ŵ(M1) ∩ Ŵ(M2)

by showing that r is run of w in M1 ‖M2 if and only if r1 and r2 are runs of
w in M1 and M2, respectively. If len(w) = 0 then this equivalence is trivial, so
assume len(w) > 0. We have to show the three conjuncts of the second case of
the definition of runs.

• ι = ι1 × ι2 by definition of M1 ‖M2, so 〈r1
0, r

2
0〉 ∈ ι iff r1

0 ∈ ι1 and r2
0 ∈ ι2.

• Fix an arbitrary i ∈ {0, . . . , len(r)− 2}. By definition of M1 ‖M2, we have
δ(〈r1

i , r
2
i 〉, wi|I) = δ1

(
r1
i ,

(
wi|I O ρ2(r

2
i)

)
|I1

)
× δ2

(
r2
i ,

(
wi|I O ρ1(r

1
i)

)
|I2

)
. We

can simplify the right-hand side of this equation since

δ1
(
r1
i ,

(
wi|I O ρ2(r

2
i)

)
|I1

)
= δ1

(
r1
i , wi|I1∩I O ρ2(r

2
i)|I1

)
= δ1

(
r1
i , wi|I1\O2 O ρ2(r

2
i)|I1

)
= δ1(r

1
i , wi|I1\O2 O wi|I1∩O2)

= δ1(r
1
i , wi|I1),

where the third equality holds because wi|O2 = ρ2(r
2
i), and the second

equality holds because

I1 ∩ I = I1 ∩
(
(I1 ∪ I2) \O

)
=

(
(I1 ∩ I1) \O

)
∪

(
(I1 ∩ I2) \O

)
= I1 \O = I1 \ (O1 ∪O2) = I1 \O2

With similar arguments, we get δ2
(
r2
i ,

(
wi|I O ρ1(r

1
i)

)
|I2

)
= δ2(r

2
i , wi|I2). So,

〈r1
i+1, r

2
i+1〉 ∈ δ(〈r1

i , r
2
i 〉, wi|I) iff r1

i+1 ∈ δ1(r1
i , wi|I1) and r2

i+1 ∈ δ2(r2
i , wi|I2).

• Fix an arbitrary i ∈ {0, . . . , len(r)−1}. We have ρ(〈r1
i , r

2
i 〉) = ρ1(r

1
i)Oρ2(r

2
i)

by definition of M1 ‖M2. Therefore

wi|O E ρ(〈r1
i , r

2
i 〉) iff wi|O1 O wi|O2 E ρ1(r

1
i) O ρ2(r

2
i)

iff wi|O1 E ρ1(r
1
i) and wi|O2 E ρ2(r

2
i),

where the second equivalence holds because O1 ∩O2 = ∅.

Next, we show how partial trace languages resolve the problem with blockingness
from Example 5.8. We prove that the partial trace languages of compatible Moore
machines do never block each other.

Proposition 5.19. Let M1 and M2 be Moore machines. If M1 and M2 are
compatible then 〈Ŵ, Ŵ(M1), Ŵ(M2)〉 ∈ NB, i. e., Ŵ(M1) and Ŵ(M2) do not
block each other.

FOR MOORE MACHINES 79

Proof. Let M1 = 〈I1, O1, S1, ι1, δ1, ρ1〉 and M2 = 〈I2, O2, S2, ι2, δ2, ρ2〉 and assume
that M1 and M2 are compatible, i. e., O1 ∩ O2 = ∅. By Proposition 4.8, we have
to show that every completely join-irreducible element of LW is contained in
Ŵ(M1) or in Ŵ(M2) whenever Ŵ(M1) ∩ Ŵ(M2) is an upper bound of its strict
downward-closure.

By Lemma 5.13, J (LW) is the set of principal ideals in 〈Ŵ,E∞〉. We choose
an arbitrary w ∈ Ŵ with the property that Ŵ(M1)∩Ŵ(M2) is an upper bound of
{E∞(v) | v ∈ Ŵ, v C∞ w}, the strict downward closure of E∞(w) in 〈J (LW),⊆〉.
We have to show that E∞(w) ⊆ Ŵ(M1) or E∞(w) ⊆ Ŵ(M2). As Ŵ(M1) and
Ŵ(M2) are downward-closed by Lemma 5.16, it suffices to show that w ∈ Ŵ(M1)
or w ∈ Ŵ(M2). Case distinction.

• w = ε. Then w ∈ W(M1) ⊆ Ŵ(M1) by Proposition 5.7 and Lemma 5.16.

• w 6= ε. Then C∞(w) is non-empty and, by Lemma 5.11, finite, so there
exists a maximal element v in C∞(w). Because of our assumption that
Ŵ(M1) ∩ Ŵ(M2) is an upper bound of the strict downward closure of
E∞(w), we know that E∞(v) ⊆ Ŵ(M1) ∩ Ŵ(M2). Lemma 5.10 provides
more information about v, which leads to another case distinction.

– w = v⊥.
As v ∈ Ŵ(M1) there exists a run r ∈ S∗1 of v in M1. We will show
that r can be extended to a run r′ ∈ S∗1 of w in M1. This requires yet
another case distinction.

∗ len(r) = 0. Then v = ε and w = ⊥. As ι1 6= ∅, we can construct
r′ ∈ S∗1 with len(r′) = 1 such that r′0 ∈ ι1. Obviously, r′ is a run
of w in M1, so w ∈ Ŵ(M1).

∗ len(r) > 0. Let n = len(r). Then len(w) = n + 1. Since wn−1

is not the last letter of w, we have wn−1 ∈ Σ by the definition of
partial words, so the second argument of δ1(rn−1, wn−1|I1) is de-
fined. And as δ1(rn−1, wn−1|I1) 6= ∅, we can construct r′ ∈ S∗1 with
len(r′) = n+1 and r = r′0 . . . r

′
n−1 such that r′n ∈ δ1(r′n−1, wn−1|I1).

Obviously, r′ is a run of w in M1, so w ∈ Ŵ(M1).

– There are u ∈ Σ∗, a, b ∈ Σ̂ and x ∈ dom(b) such that v = ua, w = ub
and a = b|dom(b)\{x}.
Let n = len(w). As O1 and O2 are disjoint, there is i ∈ {1, 2} such
that x /∈ Oi. Because v ∈ Ŵ(Mi), there exists a run r ∈ S∗i of v in
Mi. And as a = b|dom(b)\{x} and x /∈ Oi, we have wn−1|Oi

= b|Oi
=

a|Oi
= vn−1|Oi

E ρi(rn−1). Therefore, r is also a run of w in Mi, so
w ∈ Ŵ(Mi).

Now, we are ready to instantiate the A-G rule AGc
2 from Section 4.6 to our lattice

LW in order to derive a circular A-G rule for partial trace languages. To this end,

80 INSTANTIATIONS

we introduce the binary relation MCW, which will function as the side condition
of the derived rule.

Definition 5.20 (Moore-compatibility).
We say that two elements S1, S2 ∈ LW are Moore-compatible (in LW) if and only
if there are compatible Moore machines M1 and M2 such that S1 = Ŵ(M1) and
S2 = Ŵ(M2). We define the binary relation MCW on LW by 〈S1, S2〉 ∈ MCW if
and only if S1 and S2 are Moore-compatible (in LW).

Recall the variables S1, S2,P1,P2 ∈ V from Section 4.6.

Theorem 5.21. The A-G rule AGMoore
W is weaker than AGc

2 and sound, where

AGMoore
W :

P2 u S1 v P1 P1 u S2 v P2

S1 u S2 v P1 u P2

if MCW[P1,P2].

Proof. That AGMoore
W is an A-G rule is obvious. We show that AGMoore

W is weaker
than AGc

2 using Corollary 3.36. As substitution we take id|{S1,S2,P1,P2}. Then the
conditions 1 and 2 are trivially true. And as MCW[P1,P2] |=LW NB[>,P1,P2] by
definition of Moore-compatibility and Proposition 5.19, condition 3 is also true.

By Proposition 3.39, soundness of AGMoore
W follows from soundness of AGc

2, see
Theorem 4.37. Note that soundness of AGc

2 requires LW to be well-approximable,
which it is according to Proposition 5.14.

Though AGMoore
W is a circular A-G rule for Moore machines, it is unsatisfactory

for two reasons. One reason is the use of a non-standard semantics for Moore
machines, the partial trace languages; specifications are usually given w. r. t. the
standard semantics, i. e., (in the linear-time setting) as trace languages. The
other reason is that AGMoore

W does not involve parallel composition of systems but
only the intersection of partial trace languages. For these reasons, it is not im-
mediately clear whether the rule AGMoore

W could be used for verification, when the
goal is to establish that a parallel composition of two systems refines a parallel
composition of two specifications, where refinement means trace language con-
tainment. Fortunately, AGMoore

W can be used to prove soundness of the following
more useful rule, which involves parallel composition and standard semantics,
i. e., trace languages.

Corollary 5.22. Let M1, M2, M
′
1, M

′
2 be four Moore machines such that M ′

2

and M1, M
′
1 and M2, M1 and M2 as well as M ′

1 and M ′
2 all are compatible. Then

(5.1) is well-defined and sound.

W(M ′
2 ‖M1) ⊆ W(M ′

1) W(M ′
1 ‖M2) ⊆ W(M ′

2)

W(M1 ‖M2) ⊆ W(M ′
1 ‖M ′

2)
(5.1)

FOR MOORE MACHINES 81

Proof. As all compositions occuring in premises and conclusion of (5.1) exist due
to the stated compatibilities, (5.1) is well-defined. We reduce soundness of (5.1)
to soundness of AGMoore

W (Theorem 5.21). Assume that the premises of (5.1)
hold. By Proposition 5.17, the first premise implies Ŵ(M ′

2 ‖M1) ⊆ Ŵ(M ′
1),

which implies Ŵ(M ′
2) ∩ Ŵ(M1) ⊆ Ŵ(M ′

1) by Proposition 5.18 because M ′
2 and

M1 are compatible. With similar arguments, the second premise of (5.1) implies
Ŵ(M ′

1) ∩ Ŵ(M2) ⊆ Ŵ(M ′
2) (because M ′

1 and M2 are compatible). And as M ′
1

and M ′
2 are compatible, Ŵ(M ′

1) and Ŵ(M ′
2) are surely Moore-compatible in LW,

so by soundness of AGMoore
W , we can deduce Ŵ(M1)∩Ŵ(M2) ⊆ Ŵ(M ′

1)∩Ŵ(M ′
2).

This implies Ŵ(M1 ‖M2) ⊆ Ŵ(M ′
1 ‖M ′

2) by Proposition 5.18 because M1 and
M2 as well as M ′

1 and M ′
2 are compatible. And as Ŵ(M1 ‖M2) ⊆ Ŵ(M ′

1 ‖M ′
2)

implies the conclusion of (5.1) by Proposition 5.17, we are done.

Frequently, the specification machines M ′
1 and M ′

2 are viewed as abstractions of
the system machines M1 and M2, respectively. If this is the case, it is reasonable
to demand that every output port of M ′

i is also an output port of Mi for all
i ∈ {1, 2}, for abstractions should rather exhibit less functionality than more.
Under this assumption, we can relax the well-definedness condition of (5.1), so
that only compatibility of the system machines M1 and M2 is required. Note
that this compatibility of the systems is not artificial but very desirable usually
because it also ensures realizability (i. e., absence of deadlocks) of the composition
M1 ‖M2.

Corollary 5.23. Let M1, M2, M
′
1, M

′
2 be four Moore machines and let O1, O2,

O′
1, O

′
2 be their respective sets of output ports. If M1 and M2 are compatible and

O′
1 ⊆ O1 and O′

2 ⊆ O2 then (5.1) is well-defined and sound.

Proof. Assume that O′
1 ⊆ O1 and O′

2 ⊆ O2. Then compatibility of M1 and M2

(i. e., O1 ∩ O2 = ∅) implies compatibility of M ′
2 and M1, M

′
1 and M2 as well as

M ′
1 and M ′

2. Hence (5.1) is well-defined and sound by Corollary 5.22.

5.1.3 Branching-Time Semantics

Besides linear-time semantics, Moore machines may be given branching-time se-
mantics, for instance by associating with a Moore machine the set of finite trees
which it generates. In this section, we will show that our assume-guarantee frame-
work can be instantiated to such a branching-time setting in exactly the same
way than to the previous linear-time setting. One by one, we will adapt all the
definitions, lemmas and propositions from Section 5.1.2 to trees. All the proofs
in this section are rather similar to their linear-time counterparts, and we have
replaced proofs by references to Section 5.1.2 if the respective proofs were in exact
one-to-one correspondence.

Definition 5.24 (Tree).
A tree is an element of ΣN. We denote the set of all trees by T.

82 INSTANTIATIONS

Definition 5.25 (Run Tree, Trace Tree, Trace Tree Language).
Given a Moore machine M = 〈I, O, S, ι, δ, ρ〉 and a tree t ∈ T, we call r ∈ SN a
run tree of t in M if and only if

• dom(r) = dom(t) = ∅ or

• dom(r) = dom(t) 6= ∅ and

– rε ∈ ι,
– rwn ∈ δ(rw, tw|I) for all 〈w, n〉 ∈ N∗ × N with wn ∈ dom(r), and

– tw|O E ρ(rw) for all w ∈ dom(r).

We call t a trace tree of M if and only if there is r ∈ SN such that r is a run
tree of t in M . We define the trace tree language (or just tree language) of M ,
denoted by T(M), as the set of all trace trees of M .

Note that tw|O = ρ(rw) for all nodes w of a run tree r of t in M . The use of the
order E instead of equality in the above definition will become handy later when
we define partial trace trees.

The tree language of a Moore machine is never empty, as the empty tree λ is
a run tree of the empty tree λ.

Proposition 5.26. Let M be a Moore machine. Obviously, λ ∈ T(M).

Analogously to Section 5.1.2, we introduce partial trees whose leaf nodes are
labeled by partial assignments in Σ̂.

Definition 5.27 (Partial Tree).
We call t ∈ Σ̂N a partial tree if and only if tw ∈ Σ for all non-leaf nodes w of t.
We denote the set of all partial trees by T̂.

Note that T ⊂ T̂ ⊂ Σ̂N ⊂ Σ̂M and recall that EM is the order on Σ̂M which
originates from lifting E.

Notation. We use the same symbol EM to denote the order on T̂ which is induced
by the order EM on Σ̂M. We denote the corresponding strict order on T̂ by
CM. Given t ∈ T̂, we may write EM(t) to denote the downward closure of t
in 〈T̂,EM〉, i. e., EM(t) = {s ∈ T̂ | s EM t}. By CM(t), we denote the strict
downward closure of t, i. e., CM(t) = EM(t)\{t}. Given S ⊆ T̂, we may also write
EM(S) to abbreviate the order ideal generated by S, i. e., EM(S) =

⋃
t∈S EM(t).

Recall that EM(S) is the least order ideal containing S, i. e., we have the equality
EM(S) =

⋂
{X ∈ O(〈T̂,EM〉) | S ⊆ X}.

The following two lemmas examine the downward closures of partial trees; the
first lemma characterizes the maximal elements in the strict downward closure of
a partial tree, which is finite by the second lemma.

FOR MOORE MACHINES 83

Lemma 5.28. Let s, t ∈ T̂. Then s is maximal in CM(t) if and only if

1. there is w ∈ dom(t) such that s = t|dom(t)\{w} and tw = ⊥, or

2. dom(s) = dom(t) and there are w ∈ dom(t) and x ∈ dom(tw) such that
sw = tw|dom(tw)\{x} and sv = tv for all v ∈ dom(t) \ {w}.

Proof. To prove the forward direction, assume that s is maximal in CM(t), so
s EM t, i. e., dom(s) ⊆ dom(t) and sw E tw for all w ∈ dom(s), and s 6= t. Case
distinction.

• dom(s) 6= dom(t). Then there is w ∈ dom(t) \ dom(s). By maximality of
s, dom(s) = dom(t) \ {w}, otherwise there were r ∈ T̂ with r = t|dom(t)\{w}
such that s CM r CM t. Again by maximality, sv = tv for all v ∈ dom(s);
otherwise there were v ∈ dom(s) and x ∈ dom(tv) \ dom(sv), so we could
construct r ∈ T̂ with dom(r) = dom(t), rv = tv|dom(tv)\{x} and ru = tu for
all u ∈ dom(r) \ {v} such that s CM r CM t. Thus, we have s = t|dom(t)\{w}.

Finally by maximality of s, tw = ⊥, otherwise there were r ∈ T̂ with
dom(r) = dom(t), rw = ⊥ and rv = tv for all v ∈ dom(r) \ {w} such that
s CM r CM t. Thus, 1 holds.

• dom(s) = dom(t). Then there is w ∈ dom(s) such that sw 6= tw, i. e., there
is x ∈ dom(tw) \ dom(sw). By maximality of s, dom(sw) = dom(tw) \ {x},
otherwise there were r ∈ T̂ with dom(r) = dom(t), rw = tw|dom(tw)\{x} and
rv = tv for all v ∈ dom(r) \ {w} such that s CM r CM t. As sw E tw,
this yields sw = tw|dom(tw)\{x}. Moreover by maximality of s, sv = tv for
all v ∈ dom(t) \ {w}; otherwise there would exist v ∈ dom(t) \ {w} and
y ∈ dom(tv)\dom(sv), so we could construct r ∈ T̂ with dom(r) = dom(t),
rv = tv|dom(tv)\{y} and ru = tu for all u ∈ dom(r)\{v} such that s CM r CM t.
Thus, 2 holds.

To prove the reverse direction, assume that 1 or 2 holds. Then obviously, s CM t
and there is no r ∈ T̂ such that s CM r CM t. Hence, s is maximal in CM(t).

Lemma 5.29. Let t ∈ T̂. Then EM(t) is finite.

Proof. By induction on the cardinality of dom(t), which is finite.

• |dom(t)| = 0. Then t = λ and EM(t) = {λ} is finite.

• |dom(t)| > 0. Then t 6= λ and as every non-empty finite tree has leaf
nodes, the set L = {w ∈ dom(t) | w leaf of t} is finite and non-empty. We
decompose EM(t) according to the equation

EM(t) =
⋃
w∈L

EM(t|dom(t)\{w}) ∪ {s ∈ T̂ | dom(s) = dom(t) and s EM t}.

84 INSTANTIATIONS

Thus, it suffices to show finiteness of each of the sets in the union above. By
induction hypothesis, EM(t|dom(t)\{w}) is finite for all w ∈ L. To show that

the last of the above sets is finite, note that for all s ∈ T̂ with dom(s) =
dom(t), s EM t if and only if s|dom(t)\L = t|dom(t)\L and sw E tw for all

w ∈ L. Hence, the cardinality of {s ∈ T̂ | dom(s) = dom(t) and s EM t} is
bounded by the product of the cardinalities of L and X .

In order to instantiate the assume-guarantee rules from Chapter 4 we need a
complete and well-approximable lattice. Again, we obtain this lattice via an
ideal completion and then show that the completely join-irreducible elements
generate a well-founded approximation.

Definition 5.30 (Ideal Completion of Partial Trees.).
We denote the ideal completion of 〈T̂,EM〉 by LT, so formally LT = 〈LT,⊆〉
where LT = O(〈T̂,EM〉).

Lemma 5.31. J (LT) = {EM(t) | t ∈ T̂}.

Proof. Analogous to the proof of Lemma 5.13.

Proposition 5.32. LT is well-approximable.

Proof. Analogous to the proof of Proposition 5.14.

Now, we extend the definition of trace trees to partial trees, thus obtaining partial
trace trees and partial trace tree languages.

Definition 5.33 (Partial Trace Tree, Partial Trace Tree Language).
Given a Moore machine M = 〈I, O, S, ι, δ, ρ〉, we call t ∈ T̂ a partial trace tree of
M if and only if there is r ∈ SN such that r is a run tree of t in M . We define
the partial trace tree language of M , denoted by T̂(M), as the set of all partial
trace trees of M .

Observe that the underlying definition of run tree need not be extended as it is
already general enough to cope with partial trace trees. Given a run tree r of a
partial trace tree t in M , tw|O = ρ(rw) for all non-leaf nodes w of r, but there
may be leaf nodes w of r with tw|O C ρ(rw). This explains why we use of the
order E in the definition of run trees.

The partial trace tree language is the order ideal generated by the trace tree
language, and the trace tree language consists of exactly those partial trace trees
that happen to be trees. Thus, trace tree language containment is equivalent to
partial trace tree language containment.

Lemma 5.34. Let M be a Moore machine. Then T(M) = T ∩ T̂(M) and
T̂(M) = EM(T(M)).

FOR MOORE MACHINES 85

Proof. Let M = 〈I, O, S, ι, δ, ρ〉. We prove the claim T̂(M) = EM(T(M)) first.
Recall that EM(T(M)) =

⋃
{EM(t) | t ∈ T(M)}. Given t ∈ T̂(M), there is a run

tree r ∈ SN of t in M . Obviously, there exists t′ ∈ T with dom(t′) = dom(t)
and t EM t′ such that r is run tree of t′ in M . Thus t′ ∈ T(M), and therefore
t ∈ EM(t′) ⊆ EM(T(M)). Now given t ∈ EM(T(M)), there is t′ ∈ T(M) such that
t EM t′. There exists a run tree r ∈ SN of t′ in M . Then obviously, r|dom(t) is a

run tree of t in M , so t ∈ T̂(M).
Now, we show that T(M) = T ∩ T̂(M). The left-to-right inclusion holds

because T(M) ⊆ T by definition and T(M) ⊆ EM(T(M)) = T̂(M). The right-
to-left inclusion holds by the definition of trace trees.

Proposition 5.35. Let M and M ′ be Moore machines. Then T(M) ⊆ T(M ′) if
and only if T̂(M) ⊆ T̂(M ′).

Proof. Analogous to the proof of Proposition 5.17.

In partial trace tree languages, parallel composition corresponds to partial trace
tree language intersection.

Proposition 5.36. Let M1 and M2 be two compatible Moore machines. Then
T̂(M1 ‖M2) = T̂(M1) ∩ T̂(M2).

Proof. Let M1 = 〈I1, O1, S1, ι1, δ1, ρ1〉 and M2 = 〈I2, O2, S2, ι2, δ2, ρ2〉 and note
thatO1∩O2 = ∅. LetM1‖M2 = 〈I, O, S, ι, δ, ρ〉. Let t ∈ T̂ and let r ∈ SN, r1 ∈ SN

1

and r2 ∈ SN
2 with dom(t) = dom(r) = dom(r1) = dom(r2) such that rw =

〈r1
w, r

2
w〉 for all w ∈ dom(r). We prove the claim T̂(M1 ‖M2) = T̂(M1) ∩ T̂(M2)

by showing that r is run tree of t in M1 ‖M2 if and only if r1 and r2 are run trees
of t in M1 and M2, respectively. If dom(t) = ∅ then this equivalence is trivial, so
assume dom(t) 6= ∅. We have to show the three conjuncts of the second case of
the definition of run trees.

• ι = ι1 × ι2 by definition of M1 ‖M2, so 〈r1
ε , r

2
ε 〉 ∈ ι iff r1

ε ∈ ι1 and r2
ε ∈ ι2.

• Fix arbitrary 〈w, n〉 ∈ N∗×N with wn ∈ dom(r). By definition of M1 ‖M2,
δ(〈r1

w, r
2
w〉, tw|I) = δ1

(
r1
w,

(
tw|I O ρ2(r

2
w)

)
|I1

)
×δ2

(
r2
w,

(
tw|I O ρ1(r

1
w)

)
|I2

)
. We

can simplify the right-hand side of this equation since

δ1
(
r1
w,

(
tw|I O ρ2(r

2
w)

)
|I1

)
= δ1

(
r1
w, tw|I1∩I O ρ2(r

2
w)|I1

)
= δ1

(
r1
w, tw|I1\O2 O ρ2(r

2
w)|I1

)
= δ1(r

1
w, tw|I1\O2 O tw|I1∩O2)

= δ1(r
1
w, tw|I1),

where the third equality holds because tw|O2 = ρ2(r
2
w), and the second

equality holds because

I1 ∩ I = I1 ∩
(
(I1 ∪ I2) \O

)
=

(
(I1 ∩ I1) \O

)
∪

(
(I1 ∩ I2) \O

)
= I1 \O = I1 \ (O1 ∪O2) = I1 \O2

86 INSTANTIATIONS

With similar arguments, δ2
(
r2
w,

(
tw|I O ρ1(r

1
w)

)
|I2

)
= δ2(r

2
w, tw|I2). Hence

〈r1
wn, r

2
wn〉 ∈ δ(〈r1

w, r
2
w〉, tw|I) iff r1

wn ∈ δ1(r1
w, tw|I1) and r2

wn ∈ δ2(r2
w, tw|I2).

• Fix an arbitrary w ∈ dom(r). We have ρ(〈r1
w, r

2
w〉) = ρ1(r

1
w) O ρ2(r

2
w) by

definition of M1 ‖M2. Therefore

tw|O E ρ(〈r1
w, r

2
w〉) iff tw|O1 O tw|O2 E ρ1(r

1
w) O ρ2(r

2
w)

iff tw|O1 E ρ1(r
1
w) and tw|O2 E ρ2(r

2
w),

where the second equivalence holds because O1 ∩O2 = ∅.

The partial trace tree languages of compatible Moore machines do not block each
other.

Proposition 5.37. Let M1 and M2 be Moore machines. If M1 and M2 are
compatible then 〈T̂, T̂(M1), T̂(M2)〉 ∈ NB, i. e., T̂(M1) and T̂(M2) do not block
each other.

Proof. Let M1 = 〈I1, O1, S1, ι1, δ1, ρ1〉 and M2 = 〈I2, O2, S2, ι2, δ2, ρ2〉 and assume
that M1 and M2 are compatible, i. e., O1 ∩ O2 = ∅. By Proposition 4.8, we
have to show that every completely join-irreducible element of LT is contained
in T̂(M1) or in T̂(M2) whenever T̂(M1) ∩ T̂(M2) is an upper bound of its strict
downward-closure.

By Lemma 5.31, J (LT) is the set of principal ideals in 〈T̂,EM〉. Let t ∈ T̂
and assume that T̂(M1) ∩ T̂(M2) is an upper bound of {EM(s) | s ∈ T̂, s CM t},
the strict downward closure of EM(t) in 〈J (LT),⊆〉. We have to show that
EM(t) ⊆ T̂(M1) or EM(t) ⊆ T̂(M2). As T̂(M1) and T̂(M2) are downward-closed
by Lemma 5.34, it actually suffices to show that t ∈ T̂(M1) or t ∈ T̂(M2). Case
distinction.

• t = λ. Then t ∈ T(M1) ⊆ T̂(M1) by Proposition 5.26 and Lemma 5.34.

• t 6= λ. Then CM(t) is non-empty and, by Lemma 5.29, finite. Therefore,
there exists a maximal element s in CM(t). Because of our assumption
that T̂(M1) ∩ T̂(M2) is an upper bound of the strict downward closure of
EM(t), we know that EM(s) ⊆ T̂(M1) ∩ T̂(M2). Lemma 5.28 provides more
information about s, which leads to another case distinction.

– There is w ∈ dom(t) such that s = t|dom(t)\{w} and tw = ⊥.

As s ∈ T̂(M1) there exists a run tree r ∈ SN
1 of s in M1. We will show

that r can be extended to a run tree r′ ∈ SN
1 of t in M1. This requires

yet another case distinction.

∗ w = ε. Then dom(r) = dom(s) = ∅, and therefore dom(t) = {ε}.
As ι1 6= ∅, we can construct r′ ∈ SN

1 with dom(r′) = {ε} such that
r′ε ∈ ι1. Obviously, r′ is a run tree of t in M1, so t ∈ T̂(M1).

FOR MOORE MACHINES 87

∗ w 6= ε. Then there are v ∈ N∗ and n ∈ N such that w = vn.
As v is a non-leaf node in t, the definition of partial trees forces
tv ∈ Σ, so the second argument of δ1(rv, tv|I1) is defined. And as
δ1(rv, tv|I1) 6= ∅, we are able to construct r′ ∈ SN

1 with dom(r′) =
dom(r) ∪ {vn} = dom(s) ∪ {w} = dom(t) and r′|dom(r) = r such
that r′vn ∈ δ1(r

′
v, tv|I1). Obviously, r′ is a run tree of t in M1, so

t ∈ T̂(M1).

– dom(s) = dom(t) and there are w ∈ dom(t) and x ∈ dom(tw) such
that sw = tw|dom(tw)\{x} and sv = tv for all v ∈ dom(t) \ {w}.
As O1 and O2 are disjoint, there is i ∈ {1, 2} such that x /∈ Oi.
Because s ∈ T̂(Mi), there is a run tree r ∈ SN

i of s in Mi. And
as sw = tw|dom(tw)\{x} and x /∈ Oi, we have tw|Oi

= sw|Oi
E ρi(rw).

Therefore, r is also a run tree of t in Mi, so t ∈ T̂(Mi).

Now, we derive a circular A-G rule for partial trace tree languages by instantiating
the A-G rule AGc

2 from Section 4.6 to the lattice LT. To this end, we introduce
the binary relation MCT, which will function as the side condition of the derived
rule.

Definition 5.38 (Moore-compatibility).
We say that two elements S1, S2 ∈ LT are Moore-compatible (in LT) if and only
if there are compatible Moore machines M1 and M2 such that S1 = T̂(M1) and
S2 = T̂(M2). We define the binary relation MCT on LT by 〈S1, S2〉 ∈ MCT if
and only if S1 and S2 are Moore-compatible (in LT).

Theorem 5.39. The A-G rule AGMoore
T is weaker than AGc

2 and sound, where

AGMoore
T :

P2 u S1 v P1 P1 u S2 v P2

S1 u S2 v P1 u P2

if MCT[P1,P2].

Proof. Analogous to the proof of Theorem 5.21. The proof rests on the fact that
MCT[P1,P2] |=LT NB[>,P1,P2] (Proposition 5.37), so AGMoore

T is weaker than
AGc

2, which is sound because LT is well-approximable (Proposition 5.32).

As in Section 5.1.2, we can use the A-G rule AGMoore
T for partial trace tree lan-

guages to derive a more useful rule (5.2) for trace tree languages. Note that the
well-definedness conditions for the trace tree language rule (5.2) are exactly the
same than for the trace language rule (5.1). Therefore, they can be relaxed in the
same way if the specification machines are abstractions of the system machines.

Corollary 5.40. Let M1, M2, M
′
1, M

′
2 be four Moore machines such that M ′

2

and M1, M
′
1 and M2, M1 and M2 as well as M ′

1 and M ′
2 all are compatible. Then

(5.2) is well-defined and sound.

T(M ′
2 ‖M1) ⊆ T(M ′

1) T(M ′
1 ‖M2) ⊆ T(M ′

2)

T(M1 ‖M2) ⊆ T(M ′
1 ‖M ′

2)
(5.2)

88 INSTANTIATIONS

Proof. Analogous to the proof of Corollary 5.22.

Corollary 5.41. Let M1, M2, M
′
1, M

′
2 be four Moore machines and let O1, O2,

O′
1, O

′
2 be their respective sets of output ports. If M1 and M2 are compatible and

O′
1 ⊆ O1 and O′

2 ⊆ O2 then (5.2) is well-defined and sound.

Proof. Analogous to the proof of Corollary 5.23.

Note that given two Moore machinesM andM ′, T(M) ⊆ T(M ′) implies W(M) ⊆
W(M ′) because every trace can be viewed as a (degenerate) trace tree. However,
the reverse implication is not true in general, as the following example shows. As
a consequence, the rules (5.1) and (5.2) are not equivalent, despite their similarity.

Example 5.42. Let x ∈ X be a port and assume that the three distinct values 0,
1, 2 are contained in the domain of valuesD. LetM = 〈∅, {x}, {◦,}, ∗}, {}}, δ, ρ〉
and M ′ = 〈∅, {x}, {◦,}, ∗,~}, {},~}, δ′, ρ′〉 be Moore machines, where the tran-
sition and output functions are defined by the following equations:

δ(},⊥) = {◦, ∗} ρ(})(x) = 0 δ′(},⊥) = {◦} ρ′(})(x) = 0

δ′(~,⊥) = {∗} ρ′(~)(x) = 0

δ(◦,⊥) = {◦} ρ(◦)(x) = 1 δ′(◦,⊥) = {◦} ρ′(◦)(x) = 1

δ(∗,⊥) = {∗} ρ(∗)(x) = 2 δ′(∗,⊥) = {∗} ρ′(∗)(x) = 2

It is easy to see that W(M) = W(M ′), as for all words w ∈ W, w ∈ W(M) resp.
w ∈ W(M ′) iff w = ε or w0(x) = 0 and w1(x) = · · · = wn−1(x) ∈ {1, 2}, where
n = len(w). However, T(M) 6⊆ T(M ′), as the tree t ∈ T with dom(t) = {ε, 0, 1},
tε(x) = 0, t0(x) = 1 and t1(x) = 2 is a trace tree of M but not of M ′.

5.1.4 Comparison to Other Work

A number of circular assume-guarantee rules for Moore machines and similar
transition system based formalisms have been developed in the past. Many of
these rules can be proven to be instances of our assume-guarantee framework
using similar techniques than for the rules (5.1) and (5.2). We support this claim
in more detail now.

In [HQRT02, Theorem 3], Henzinger et al. prove soundness of a circular
rule for Moore machines with simulation [Mil71] as refinement. They require
their machines to be finitely non-deterministic, which implies that simulation is
equivalent to trace tree containment, cf. Rajamani’s thesis [Raj99]. Thus, their
rule is slightly less general than our rule (5.2) — actually the two rules are the
same except that (5.2) does not require finite non-determinism.

Moore machines can be extended in various ways. For instance, we can admit
the value of an output port to depend on the current state and on the current
input values, which results in Mealy machines [McM97]. This new definition

FOR MOORE MACHINES 89

of the output function induces a dependency relation on the ports of a Mealy
machine, more precisely, an output port y depends on an input port x if there
exists a state in which the value of the output function for y actually depends
on the current value of x. Compatibility is redefined to take into account this
dependency relation — two Mealy machines are compatible if their sets of output
ports are disjoint and the union of their dependency relations is acyclic. The
parallel composition of two compatible Mealy machines is again a Mealy machine
which is, like in the case of Moore machines, defined by cross-wiring inputs and
outputs. Alur and Henzinger [AH99, Proposition 5] as well as McMillan [McM97,
Theorem 1] both develop circular assume-guarantee rules for Mealy machines
(termed ‘reactive modules’ in [AH99]), with trace containment as refinement. The
structure of the rule by Alur and Henzinger is the same than that of our rule (5.1),
and in fact, (5.1) can be generalized to Mealy machines. The key observation is
that one can define a partial trace language for Mealy machines in much the same
way than for Moore machines, only one has to take into account the dependency
relation; technically speaking, the last letter of a partial trace must be a partial
assignment whose domain is downward-closed w. r. t. the order induced by the
dependency relation. With this definition, partial trace languages for Mealy
machines inherit all the properties from those languages for Moore machine, in
particular, the partial trace languages of two compatible Mealy machines do
not block each other. Thus, we can instantiate the A-G rule AGc

2 in the same
way than we have done for Moore machines in Theorem 5.21. Analogously to
Corollary 5.22, we can then derive a rule for trace containment, similar to (5.1).

Another extension of Moore machines are timed systems [TAKB96]. In a
timed system, each state is a pair consisting of a location, i. e., a value from
a (usually finite) discrete set of locations, and a vector of real-valued clocks.
Transitions can only change the location part of the state and possibly reset some
clocks, the other clocks increase continuously at a fixed speed. Also, the value
of an output port may only depend on the location part of the state, not on the
clocks. Because of the latter requirement, the computations of such a system may
be described as timed traces, i. e., as finite sequences of pairs 〈δ, a〉 (called timed
events) where a is an assignment of values to the input and output ports and δ is
a positive increment of the clocks. The idea of a timed trace 〈δ0, a0〉, 〈δ1, a1〉, . . .
is that at first a0 is observable on the input and output ports for δ0 time units,
then a1 is observable for δ1 time units, and so on. Compatibility and parallel
composition of timed systems are defined analogously to the respective notions
for Moore machines. Tasiran et al. [TAKB96, Proposition 8] present a circular
assume-guarantee rule for timed systems, with trace containment as refinement.
The structure of their rule is similar to that of our rule (5.1), and as the structure
of timed traces is similar to the structure of traces of Moore machines, it seems
plausible that (5.1) can be generalized to timed systems with trace containment
by instantiating the assume-guarantee framework to partial trace languages of
timed systems along the lines of Section 5.1.2.

90 INSTANTIATIONS

Kripke structures are a well-known representation of transition systems. They
differ from Moore machines in giving up the distinction between input and output
ports (in the terminology of Moore machines, a Kripke structure has only output
ports) and in the definition of parallel composition, which is a total operation
on Kripke structures. Two Kripke structures running in parallel synchronize and
communicate via their shared ports, so Kripke structures are appropriate for
modeling shared-memory systems. Note that the value of a port must be well-
defined at every moment in time. Thus, in a situation where the two structures
cannot agree on a common value for some port, deadlock arises. In [Mai01], we
prove soundness of a circular assume-guarantee rule for Kripke structures with
trace containment as refinement, similar to the rule (5.1). The rule is restricted
to compatible Kripke structures, where compatibility is a condition on a pair of
structures that ensures their product to be free of deadlocks. Note that, unlike
in the case of Moore and Mealy machines, compatibility of Kripke structures
is a semantic condition, i. e., checking compatibility involves inspection of the
reachable state space.

Recently, Rajamani and Rehof [RR01] have designed a trace language for
CCS processes [Mil89] and proven soundness of a circular assume-guarantee rule
for such processes with trace containment as refinement. Their rule bears some
structural similarities to our rule (5.1), however, we do not see a way how to
generalize their trace language to a partial trace language. Therefore, we cannot
generalize (5.1) to CCS processes. Yet, the third premise of the rule in [RR01,
Theorem 1] puts non-blockingness constraints on the communication channels of
parallel processes. Roughly, a channel x is non-blocking for a process P which
interacts with a process Q if, after any sequence of joint transitions of both
processes, a send (resp. receive) action by P on x can be matched by Q with
the corresponding receive (resp. send) action on x. This vaguely resembles non-
blockingness as we have defined in Section 4.2 (see also Example 4.9), more
precisely, it resembles an asymmetric version of non-blockingness where, after
any sequence of joint transitions, one distinguished process (P in this case) is not
blocked from communicating with the other process via x. Whether this view
admits instantiating our assume-guarantee framework to CCS processes needs to
be investigated still.

It should be said that there is work on circular assume-guarantee reasoning for
proving refinement, which probably cannot be covered by our assume-guarantee
framework because of the use of structure beyond what is expressible in our
semilattice based setting. For instance, Alur and Grosu [AG00] combine the
reactive modules of [AH99] with formalisms for structured, hierarchical specifi-
cation of sequential behavior, inspired by Statecharts [Har87] and also present in
object-oriented modeling languages such as UML [BRJ98]. In a similar fashion,
Henzinger et al. [HMP01] present a language which allows arbitrary nesting of
parallel and sequential compositions of hybrid systems. Both papers introduce
notions of refinement and prove soundness of corresponding assume-guarantee

FOR MOORE MACHINES 91

rules. Because of the use of sequential composition, which is a non-commutative,
non-idempotent operation, we doubt that it is possible to reformulate these ap-
proaches as A-G rules with side conditions in the style of Chapter 3, where
premises and conclusion are restricted to formulas involving only the order and
the (commutative and idempotent) meet of a meet-semilattice.

92 INSTANTIATIONS

5.2 Rules for Assume-Guarantee Specifications

Systems are usually designed to operate in specific environments, and they may
badly malfunction when exposed to an unsuited environment. Therefore, the
specification of a system should not only state what the system does but also
what the world around it must (or must not) do. According to this view, every
specification falls naturally into two parts, a specification how the system assumes
its environment to act and a specification what the system guarantees provided
the environment acts as assumed. Such a two-part specification is commonly
termed an ‘assume-guarantee specification’.

In the realm of discrete concurrent systems, based on the distinction between
system and environment, it is natural to assume interleaving execution, i. e., the
environment and the system take turns in executing atomic steps of their re-
spective behavior. In this setting, for a system to satisfy an assume-guarantee
specification, the system’s steps must satisfy the guarantee whenever the pre-
ceding steps of the environment did satisfy the assumption. I. e., along every
sequence of atomic steps, the guarantee must hold at least one step longer than
the assumption.

When verifying a complex system, say a parallel composition of two subsys-
tems, we may compose the assume-guarantee specifications of the two subsystems
in such a way that the assumptions are mutually discharged, so the complex sys-
tem satisfies the conjunction of both guarantees. Despite the apparent circularity,
a number of papers, for example [AP93, JT96], have shown this composition prin-
ciple to be sound. All soundness proofs require induction and make use of the
special property of assume-guarantee specifications, that the guarantee must hold
at least one step longer than the assumption.

In this section, we are going to establish soundness of this composition princi-
ple by showing it to be an instance the assume-guarantee framework from Chap-
ter 4. To this end we introduce a (fragment of a) linear-time temporal logic whose
models are both finite and infinite sequences of observations. We develop the log-
ical operators that are needed for circular assume-guarantee reasoning, namely
conjunction, implication and the formation of assume-guarantee specifications.
The properties expressible in this logic form our complete and well-approximable
lattice, for which we then derive A-G rules from the family of rules {AG′

n | n ∈ N},
see Section 4.5.

5.2.1 (Linear-Time) Behaviors And Properties

Definition 5.43 (Observation, Behavior).
We fix an alphabet Σ whose cardinality is at least 2. The elements of Σ are called
observations . A behavior is a finite or infinite sequence of observations, i. e., a
behavior is a word over Σ, and the set of all behaviors is denoted by Σ∞. We say
that a behavior σ is finite resp. infinite if and only if σ ∈ Σ∗ resp. σ ∈ Σω.

FOR ASSUME-GUARANTEE SPECIFICATIONS 93

Recall from Chapter 2 that �, the prefix relation, is an order on Σ∞. When we
view a behavior σ as a sequence of observations observed at discrete successive
events in time then the prefix order � characterizes the past in the following
sense. A behavior τ with τ � σ corresponds to how the behavior σ did look some
time in the past before it has gradually evolved into the σ of now.

We will view temporal properties as the sets of behaviors that satisfy them.
To be consistent with the metaphor of behaviors being evolving sequences of
observations, we demand that when a behavior σ satisfies a property P then all
its past behaviors also satisfy P . Thus, a property must be prefix-closed, or in
other words: an order ideal in 〈Σ∞,�〉.

Definition 5.44 (Property, Truth, Entailment).
A property is a non-empty order ideal in 〈Σ∞,�〉. We say that a property P
holds true of a behavior σ (or σ satisfies P) if and only if σ ∈ P . We say that a
property P entails a property Q if and only if P ⊆ Q.

For technical reasons we require properties to be non-empty. This is not a loss
of expressiveness because with respect to sequences of observations, ∅ and {ε}
are indistinguishable since the empty behavior ε corresponds to a nil sequence of
observations, i. e., to no observations.

Definition 5.45 (Ordered Set of Properties).
We denote the set of all properties by LAG, i. e., LAG = O(〈Σ∞,�〉) \ {∅}. By
≤, we denote the order on LAG which is induced by the order ⊆ on O(〈Σ∞,�〉).
We write LAG to abbreviate the ordered set 〈LAG,≤〉.

Note that for all P,Q ∈ LAG, P ∧ Q and P ∨ Q exist and P ∧ Q = P ∩ Q
and P ∨ Q = P ∪ Q. Thus, LAG inherits the distributive lattice structure from
〈O(〈Σ∞,�〉),⊆〉. Actually, for every subset S ⊆ LAG,

∧
S exists and

∧
S =

⋂
S,

and furthermore,
∨
∅ = {ε} and for every non-empty subset S ⊆ LAG,

∨
S exists

and
∨
S =

⋃
S. Hence, LAG is complete.

Proposition 5.46. LAG is a complete distributive lattice.

We already know that the entailment relation on properties is the order of LAG.
With meet and join, the lattice structure provides two logical operators on prop-
erties, namely conjunction and disjunction. For our purposes conjunction is much
more relevant than disjunction, so we will state only relatively few propositions
involving disjunction. Note that {ε} and Σ∞, the least resp. greatest element
in LAG, play the roles of the logical constants false and true, respectively. Note
also that the set of finite behaviors Σ∗ is a property whereas the set of infinite
behaviors Σω is not.

In order to instantiate the assume-guarantee rules from Chapter 4, we must
show LAG to be well-approximable. To this end, we investigate the completely
join-irreducible elements and show that they generate a well-founded approxima-
tion.

94 INSTANTIATIONS

Lemma 5.47. J (LAG) =
{
�(σ) | σ ∈ Σ∞ \ {ε}

}
.

Proof. To prove the left-to-right inclusion, let P ∈ J (LAG). Then P 6= {ε} as
{ε} =

∨
∅ is not completely join-irreducible. As P =

∨{
�(σ) | σ ∈ P \ {ε}

}
, by

complete join-irreducibility there is σ ∈ P such that P = �(σ). And as P 6= {ε},
we have σ ∈ Σ∞ \ {ε}. To prove the other inclusion, let σ ∈ Σ∞ \ {ε} and let
S ⊆ LAG with �(σ) =

∨
S. Then S 6= ∅ and �(σ) =

⋃
S, so there is P ∈ S such

that σ ∈ P , so �(σ) ⊆ P . And as P ⊆
⋃
S = �(σ), we get �(σ) = P . Hence,

�(σ) is completely join-irreducible.

Proposition 5.48. LAG is well-approximable.

Proof. Let J be the suborder of LAG which is generated by the completely join-
irreducible elements, i. e., J = J (LAG) =

{
�(σ) | σ ∈ Σ∞\{ε}

}
by Lemma 5.47.

We are going to show that J is a well-founded approximation of LAG. Obviously
P =

∨{
�(σ) | σ ∈ P \ {ε}

}
for all P ∈ LAG, so J is join-dense in LAG. It

remains to show that J satisfies DCC, so let σ0, σ1, σ2, · · · ∈ Σ∞ \ {ε} such that
�(σ0) ≥ �(σ1) ≥ �(σ2) ≥ . . . is an infinite descending sequence. Either we have
σ0 = σj for all j > 0, i. e., the sequence stabilizes immediately, or there is j > 0
such that σ0 6= σj. The latter implies that σj ∈ Σ∗, so the sequence must stabilize
because the set {P ∈ J | P ≤ �(σj)} ⊆ {�(τ) | τ ∈ �(σj)} is finite.

5.2.2 Implication

So far, the distributive lattice structure of LAG has supplied us with the logical
operators conjunction and disjunction with their usual (classical) properties. In
fact, LAG possesses more structure; it is a Heyting algebra. This induces a notion
of implication, although not in the classical but in the intuitionistic sense.

Proposition 5.49. LAG is a Heyting algebra.

Proof. Let P,Q ∈ LAG be two arbitrary properties. We must show that the set
of properties S = {R ∈ LAG | P ∧ R ≤ Q} has a greatest element. We define
the set I = {σ ∈ Σ∞ | �(σ) ∧ P ≤ Q}. Evidently, I is a non-empty order ideal
in 〈Σ∞,�〉, i. e., I ∈ LAG is a property. It is also easy to see that P ∧ I ≤ Q,
so I ∈ S. To show that I is the greatest element of S, choose any R ∈ S. We
have to show that R ≤ I, so let σ ∈ Σ∞ with σ ∈ R. Then �(σ) ≤ R, so
�(σ) ∧ P ≤ P ∧R ≤ Q, hence σ ∈ I.

Definition 5.50 (Implication).
Given two properties P and Q, we call the relative pseudo-complement P ⇒ Q
an implication.

Notation. As operators on properties, we assume that conjunction and disjunc-
tion bind tighter than implication, e. g., given the properties P , Q, R and S, we
may omit parentheses in the expression (P ∧Q)⇒ (R ∨ S).

FOR ASSUME-GUARANTEE SPECIFICATIONS 95

The proof of Proposition 5.49 does not only reveal that implication is a well-
defined binary operation on properties, it also provides a characterization of im-
plication in terms of prefixes. Given two properties P andQ, a behavior σ satisfies
the implication P⇒Q iff all prefixes of σ which satisfy P do also satisfy Q. This
is formalized by the proposition below.

Proposition 5.51. Let P,Q ∈ LAG. Clearly, P⇒Q = {σ ∈ Σ∞ | �(σ)∧P ≤ Q}.

The following proposition states a number of useful facts about implication, in
particular about monotonicity and the interaction with conjunction. Note that
the statements 8 and 9 express the well-known reasoning principles Modus Ponens
and Cut , which we will use later on in proofs.

Proposition 5.52. Let P,Q,R ∈ LAG. The following statements are true.

1. P ≤ Q⇒R if and only if P ∧Q ≤ R.

2. If Q ≤ R then P ⇒Q ≤ P ⇒R.

3. If P ≤ Q then Q⇒R ≤ P ⇒R.

4. P ⇒ P = Σ∞.

5. Σ∞⇒ P = P .

6. P ⇒Q ∧R = (P ⇒Q) ∧ (P ⇒R).

7. P ∧Q⇒R = P ⇒ (Q⇒R).

8. P ∧ (P ⇒Q) ≤ Q.

9. (P ⇒Q) ∧ (Q⇒R) ≤ P ⇒R.

Proof. Direct consequences of the laws of Heyting algebras, see Chapter 2.

It remains to be shown that our implication is not classical but genuinely intu-
itionistic. We do so by an example demonstrating that LAG is not a Boolean
algebra.

Example 5.53. Recall that in the Heyting algebra LAG, the pseudo-complement
¬P of a property P ∈ LAG is defined by ¬P = P ⇒ {ε}. Let a ∈ Σ. Note that
the cardinality of Σ is at least 2, so ¬(a∗) = (Σ \ {a})Σ∞ ∪ {ε}. The behavior
aω witnesses that the law of excluded middle fails, for aω 6∈ a∗ and aω 6∈ ¬(a∗).
For this reason, L cannot be a Boolean algebra. As a consequence, linear-time
temporal logic interpreted over finite and infinite behaviors, unlike LTL, is not
classical.

Due to the model theoretic connection between Heyting algebras and intu-
itionistic logic, see [Gol84], linear-time temporal logic over finite and infinite

96 INSTANTIATIONS

behaviors is intuitionistic. In fact, the intuitionistic flavor of this logic arises
directly from viewing behaviors as sequences of observations evolving over time.
According to this view, we can not certify (in finite time), that the behavior aω

does not satisfy the property a∗, which is why excluded middle fails.

5.2.3 Safety And Liveness

In our temporal logic, which admits speaking about finite and infinite behaviors
at the same time, we can give a neat characterization of safety and liveness.
According to [AS85], the difference between a safety and a liveness property is in
its reaction to a violating infinite behavior σ. For a safety property P , already
some finite prefix of σ must have violated P , whereas for a liveness property Q,
no finite prefix of σ may violate Q.

Definition 5.54 (Safety Property, Liveness Property).
Given a property P , we call P a safety property if and only if for all σ ∈ Σω,
�(σ)∧Σ∗ ≤ P implies σ ∈ P . We call P a liveness property if and only if for all
σ ∈ Σ∗, σ ∈ P .

As a direct consequence of the above definition, checking entailment becomes
easier if the right-hand side is known to be a safety resp. liveness property. In
the light of the following proposition, we can also characterize safety properties
as constraining finite behaviors only whereas liveness properties constrain infinite
behaviors only.

Proposition 5.55. Let P,Q ∈ LAG. Clearly, the following statements are true.

1. If Q is a safety property then P ≤ Q if and only if Σ∗ ∩ P ⊆ Q.

2. If Q is a liveness property then P ≤ Q if and only if Σω ∩ P ⊆ Q.

The following proposition provides an algebraic characterization of safety resp.
liveness properties, which we then will use to examine how safety resp. liveness
properties can be constructed using conjunction and implication.

Proposition 5.56. Let P ∈ LAG. Obviously, the following equivalences are true.

1. P is a safety property if and only if Σ∗⇒ P ≤ P .

2. P is a liveness property if and only if Σ∗ ≤ P .

Proposition 5.57. Let P,Q ∈ LAG. The following statements are true.

1. If P and Q are safety properties then P ∧Q is a safety property.

2. If P and Q are liveness properties then P ∧Q is a liveness property.

FOR ASSUME-GUARANTEE SPECIFICATIONS 97

3. If Q is a safety property then P ⇒Q is a safety property.

4. If Q is a liveness property then P ⇒Q is a liveness property.

Proof. We show the four claims one by one.

1. Assume that P and Q are safety properties. Then we have Σ∗⇒ P ∧Q =
(Σ∗⇒ P) ∧ (Σ∗⇒Q) ≤ P ∧Q, so P ∧Q is a safety property.

2. Assume that P and Q are liveness properties. Then we have Σ∗ ≤ P ∧Q,
so P ∧Q is a liveness property.

3. Assume that Q is a safety property. Then we have Σ∗ ⇒ (P ⇒ Q) =
Σ∗ ∧P⇒Q = P ∧Σ∗⇒Q = P⇒ (Σ∗⇒Q) ≤ P⇒Q, so P⇒Q is a safety
property.

4. Assume that Q is a liveness property. Then we have Σ∗ ≤ Q = Σ∞⇒Q ≤
P ⇒Q, so P ⇒Q is a liveness property.

As an immediate consequence of the definition of safety properties, �(σ) is a
safety property for all σ ∈ Σ∞. Note that Σ∞ is the only property which is
both a safety and a liveness property. Many properties are neither safety nor
liveness properties. For instance, if a ∈ Σ then {ε} ∪ aΣ∗ and a∞ ∪ aΣ∗ both are
neither safety nor liveness properties. However, every property is expressible as a
conjunction of a safety and a liveness property. To this end, we define the safety
(liveness) closure of a property, i. e., the strongest safety (liveness) property which
the property entails.

Definition 5.58 (Safety Closure, Liveness Closure).
Given a property P , we define the safety closure of P , denoted by safe(P), as
the property Σ∗ ⇒ P . We define the liveness closure of P , denoted by live(P),
as the property Σ∗ ∨ P .

As the following proposition shows, safe(P) resp. live(P) is in fact the least
safety resp. liveness property which is entailed by P . Using this knowledge, we
are able to prove that every property is the conjunction of its safety and liveness
closures.

Proposition 5.59. Let P ∈ LAG. The following statements are true.

1. safe(P) =
∧
{Q ∈ LAG | P ≤ Q and Σ∗⇒Q ≤ Q} is a safety property.

2. live(P) =
∧
{Q ∈ LAG | P ≤ Q and Σ∗ ≤ Q} is a liveness property.

Proof. To show 1, note that safe(P) is a safety property which is entailed by P
as Σ∗ ⇒ (Σ∗ ⇒ P) = Σ∗ ∧ Σ∗ ⇒ P = Σ∗ ⇒ P and P = Σ∞ ⇒ P ≤ Σ∗ ⇒ P .
It remains to prove that safe(P) is the least such property, so choose any safety
property Q with P ≤ Q. Then we have safe(P) = Σ∗⇒ P ≤ Σ∗⇒Q ≤ Q.

98 INSTANTIATIONS

To show 2, note that live(P) is a liveness property which is entailed by P
as Σ∗ ≤ Σ∗ ∨ P and P ≤ Σ∗ ∨ P . It remains to prove that live(P) is the least
such property, so choose any liveness property Q with P ≤ Q. Then we have
live(P) = Σ∗ ∨ P ≤ Σ∗ ∨Q = Q.

Proposition 5.60. Let P ∈ LAG. Then P = safe(P) ∧ live(P).

Proof. live(P)∧safe(P) = (Σ∗∨P)∧safe(P) =
(
Σ∗∧safe(P)

)
∨

(
P ∧safe(P)

)
=(

Σ∗ ∧ (Σ∗⇒ P)
)
∨ P = P .

To end our investigation of safety and liveness properties, we examine how the
safety and liveness closures interact with conjunction and implication.

Proposition 5.61. Let P,Q ∈ LAG. The following equalities are true.

1. safe(P) ∧ safe(Q) = safe(P ∧Q).

2. live(P) ∧ live(Q) = live(P ∧Q).

3. safe(P)⇒ safe(Q) = P ⇒ safe(Q) = safe(P ⇒Q).

4. live(P)⇒ live(Q) = P ⇒ live(Q).

Proof. We show the four claims one by one.

1. safe(P) ∧ safe(Q) = (Σ∗⇒ P) ∧ (Σ∗⇒Q) = Σ∗⇒ P ∧Q = safe(P ∧Q).

2. live(P) ∧ live(Q) = (Σ∗ ∨ P) ∧ (Σ∗ ∨Q) = Σ∗ ∨ (P ∧Q) = live(P ∧Q).

3. For proving the first equality, note that by monotonicity, P ≤ safe(P)
implies safe(P)⇒ safe(Q) ≤ P ⇒ safe(Q) To show the reverse entailment,
let σ ∈ Σ∞ with σ ∈ P ⇒ safe(Q). By Proposition 5.51, we have to show
�(σ)∧ safe(P) ≤ safe(Q), so choose any τ ∈ Σ∞ with τ ∈ �(σ)∧ safe(P).
If τ ∈ Σ∗ then τ ∈ Σ∗ ∧ (Σ∗ ⇒ P), so τ ∈ P by Modus Ponens. Thus
τ ∈ P ∧ (P ⇒ safe(Q)), so τ ∈ safe(Q) by Modus Ponens again. If τ /∈ Σ∗

then τ ∈ Σω and�(τ)∧Σ∗ ≤ safe(P), so�(τ)∧Σ∗ = �(τ)∧Σ∗∧(Σ∗⇒P) ≤
�(τ) ∧ P by Modus Ponens. As τ ∈ P ⇒ safe(Q), we get �(τ) ∧ Σ∗ ≤
�(τ) ∧ P ≤ safe(Q) by Proposition 5.51, which implies τ ∈ safe(Q) since
τ ∈ Σω and safe(Q) is a safety property. In both cases, we get τ ∈ safe(Q),
so we have proven �(σ) ∧ safe(P) ≤ safe(Q).

The second equality holds since P⇒safe(Q) = P⇒(Σ∗⇒Q) = P∧Σ∗⇒Q =
Σ∗ ∧ P ⇒Q = Σ∗⇒ (P ⇒Q) = safe(P ⇒Q).

4. By monotonicity, P ≤ live(P) implies live(P) ⇒ live(Q) ≤ P ⇒ live(Q).
To show the reverse entailment, let σ ∈ Σ∞ with σ ∈ P ⇒ live(Q), i. e.,
�(σ) ∧ P ≤ live(Q) by Proposition 5.51. Then we have �(σ) ∧ live(P) =
�(σ)∧ (Σ∗ ∨P) = (�(σ)∧Σ∗)∨ (�(σ)∧P) ≤ Σ∗ ∨ live(Q) = live(Q), i. e.,
σ ∈ live(P)⇒ live(Q) by Proposition 5.51.

FOR ASSUME-GUARANTEE SPECIFICATIONS 99

5.2.4 Assume-Guarantee Specifications

So far, our temporal logic has not made use of any temporal operators. Now, we
are going to introduce the only temporal operator that is required for circular
assume-guarantee reasoning, namely an operator that combines two properties
into an assume-guarantee specification.

Informally, an assume-guarantee specification with assumption P and guar-
antee Q holds true of all behaviors that satisfy the guaranteed property Q at
least one step longer than the assumed property P . This is formalized by the
following definition.

Definition 5.62 (Assume-Guarantee Specifications).
Given two properties P and Q, we define the assume-guarantee specification (or

just A-G spec) consisting of assumption P and guarantee Q, denoted by P
+→Q,

as the property {σ ∈ Σ∞ | ∀τ ∈ Σ∗ with τ � σ : ≺(τ) ⊆ P implies τ ∈ Q}.
By P

+⇒ Q, we denote the strong A-G spec which is defined as the property

(P
+→Q) ∧ (P ⇒Q).

It is straightforward to prove that the set P
+→ Q is a non-empty order ideal in

〈Σ∞,�〉, i. e., P
+→Q and P

+⇒Q are in fact properties. Note that the set ≺(τ)
occuring in the above definition need not be a property because ≺(ε) = ∅. For
this reason, we had to use the inclusion ≺(τ) ⊆ P instead of entailment in the
above definition.

Notation. We assume that conjunction and disjunction bind tighter than the

operator
+→, i. e., given the properties P , Q, R and S, we may omit parentheses

in the expression (P ∧Q)
+→ (R ∨ S). The same applies to the operator

+⇒.

The operator
+→ satisfies similar monotonicity properties than implication, i. e.,

it is also monotone in the second argument and anti-tone in the first.

Proposition 5.63. Let P,Q,R ∈ LAG. Obviously, the statements below are true.

1. If Q ≤ R then P
+→Q ≤ P

+→R.

2. If P ≤ Q then Q
+→R ≤ P

+→R.

3. P
+→ Σ∗ = Σ∞.

The operator
+→ supports a variant of Modus Ponens restricted to finite behaviors.

Proposition 5.64. Let P,Q ∈ LAG. Then Σ∗ ∧ P ∧ (P
+→Q) ≤ Q.

Proof. Let σ ∈ Σ∞ with σ ∈ Σ∗ ∧ P ∧ (P
+→ Q). Then ≺(σ) ⊆ �(σ) ⊆ P , so

σ ∈ Q follows by the definition of A-G specs.

100 INSTANTIATIONS

Note that
+→ does not support full Modus Ponens reasoning. As a counter-

example, take for instance Σ∞ ∧ (Σ∞ +→ Σ∗) 6≤ Σ∗.
The following proposition shows that A-G specs are safety properties that

essentially ignore the liveness parts of their arguments and depend on the safety
closures only. Furthermore, an A-G spec entails the corresponding implication if
the guarantee is a safety property.

Proposition 5.65. Let P,Q ∈ LAG. The following statements are true.

1. P
+→Q is a safety property.

2. P
+→Q = safe(P)

+→Q = P
+→ safe(Q).

3. P
+→Q ≤ P ⇒ safe(Q).

Proof. We show the three claims one by one.

1. To show that P
+→Q is a safety property, let σ ∈ Σω with�(σ)∧Σ∗ ≤ P

+→Q.

We have to show that σ ∈ P +→Q, so choose any τ ∈ Σ∗ with τ � σ. Then

τ ∈ �(σ) ∧ Σ∗, so τ ∈ P
+→ Q. By definition of A-G specs, we find that

≺(τ) ⊆ P implies τ ∈ Q. Thus, we conclude σ ∈ P
+→ Q by definition of

A-G specs again.

2. For proving the first equality, note that by monotonicity, P ≤ safe(P)

implies safe(P)
+→Q ≤ P

+→Q. To show the reverse entailment, let σ ∈ Σ∞

with σ ∈ P
+→ Q. We have to show that σ ∈ safe(P)

+→ Q, so choose any
τ ∈ Σ∗ with τ � σ and ≺(τ) ⊆ safe(P). Then we have ≺(τ) ⊆ Σ∗∧safe(P),
and as Σ∗ ∧ safe(P) = Σ∗ ∧ (Σ∗ ⇒ P) ≤ P , we get ≺(τ) ⊆ P . Because

σ ∈ P
+→ Q, this implies τ ∈ Q by definition of A-G specs. Thus, we

conclude σ ∈ safe(P)
+→Q by definition of A-G specs again.

Instead of the second equality, we are going to prove P
+→Q = P

+→safe(Q).

Note that by monotonicity, Q ≤ safe(Q) implies P
+→Q ≤ P

+→safe(Q). To

show the reverse entailment, let σ ∈ Σ∞ with σ ∈ P +→safe(Q). We have to

show that σ ∈ P +→Q, so choose any τ ∈ Σ∗ with τ � σ and ≺(τ) ⊆ P . By
definition of A-G specs, we get τ ∈ safe(Q). So τ ∈ Σ∗ ∧ safe(Q), and as

Σ∗∧ safe(Q) ≤ Q by Modus Ponens, τ ∈ Q. Thus, we conclude σ ∈ P +→Q
by definition of A-G specs.

3. By 2 and the restricted variant of Modus Ponens, we have Σ∗∧P∧(P
+→Q) =

Σ∗ ∧ P ∧
(
P

+→ safe(Q)
)
≤ safe(Q). By Proposition 5.55, this is equivalent

to P ∧(P
+→Q) ≤ safe(Q), which is equivalent to P

+→Q ≤ P⇒safe(Q).

FOR ASSUME-GUARANTEE SPECIFICATIONS 101

Note that unless the guarantee is a safety property, the operator
+⇒ does not

construct safety properties in general. As a counter-example, take for instance,

Σ∞ +⇒ Σ∗ = (Σ∞ +→ Σ∗) ∧ (Σ∞ ⇒ Σ∗) = Σ∞ ∧ Σ∗ = Σ∗, which is not a safety
property.

We end this section with a proposition which connects assume-guarantee spec-
ifications to our central notion of non-blockingness. In fact, we show that under
certain conditions, if a system satisfies an A-G spec then the assumption and the
guarantee do not block each other relative to the system. Note that a system is
nothing else than a property, so by ‘a system satisfies an A-G spec’ we mean that
the system entails the A-G spec.

Proposition 5.66. Let S, P1, P2 ∈ LAG. If at least one of the Pi is a safety

property then S ≤ P1
+→P2 implies 〈S, P1, P2〉 ∈ NB, i. e., P1 and P2 do not block

each other relative to S.

Proof. Assume that there is i ∈ {1, 2} such that Pi is a safety property. More-

over, assume that S ≤ P1
+→P2. We have to show 〈S, P1, P2〉 ∈ NB using Proposi-

tion 4.8. Recall that by Lemma 5.47, J (LAG) is the set of those principal ideals
in 〈Σ∞,�〉 which are generated by non-empty behaviors. We choose an arbitrary
σ ∈ Σ∞ \ {ε}. Assume that �(σ) ≤ S and for all τ ∈ Σ∞ \ {ε}, �(τ) < �(σ)
implies �(τ) ≤ P1∧P2. We have to show that �(σ) ≤ P1 or �(σ) ≤ P2. Actually,
we can simplify the first assumption to σ ∈ S and the second one to τ ∈ P1 ∧ P2

for all τ ∈ Σ∞ \ {ε} with τ ≺ σ. Furthermore, we can strengthen the second
assumption to τ ∈ P1 ∧ P2 for all τ ∈ Σ∞ with τ ≺ σ, because ε ∈ P1 ∧ P2

trivially. Now, we have to show that σ ∈ P1 or σ ∈ P2. We distinguish two cases.

• σ ∈ Σ∗ \{ε}. Then there exists τ ∈ Σ∞ with τ ≺ σ such that ≺(σ) = �(τ).

By the first assumption, we get σ ∈ P1
+→ P2. By the second assumption,

we get �(τ) ≤ P1 ∧ P2 ≤ P1. Thus, we have ≺(σ) = �(τ) ⊆ P1, which by
definition of A-G specs implies σ ∈ P2.

• σ ∈ Σω. Then �(σ) ∧ Σ∗ ≤ P1 ∧ P2 by the second assumption since τ ≺ σ
for all τ ∈ Σ∞ with τ ∈ �(σ)∧Σ∗. Thus, we have �(σ)∧Σ∗ ≤ P1∧P2 ≤ Pi,
which implies σ ∈ Pi because Pi is a safety property.

5.2.5 Assume-Guarantee Rules

Now, we are ready to instantiate the family of A-G rules {AG′
n | n ∈ N} from

Section 4.5 to our lattice of properties LAG in order to derive A-G rules for
reasoning about assume-guarantee specifications. To this end, we introduce the
ternary relation NBAG, which will function as the side condition of the derived
rules.

102 INSTANTIATIONS

Definition 5.67 (Entailment of Non-Blocking A-G Specs).
Given three properties S, E and M , we say that S entails the non-blocking A-G

spec E
+→M if and only if

• S ≤ E
+→M and

• E is a safety property or M is a safety property.

We define the ternary relation NBAG on LAG by 〈S,E,M〉 ∈ NBAG if and only if

S entails the non-blocking A-G spec E
+→M .

Given n ∈ N, we derive soundness of the instantiated rules AGAG
n from soundness

of the stronger rule AG′
n. Recall the variables S,A1, . . . ,An,G1, . . . ,Gn ∈ V from

Section 4.5, and remember that
dn

i Ai and
dn

i Gi are abbreviations for A1u. . .uAn

and G1 u . . . u Gn, respectively.

Theorem 5.68. For all n ∈ N, the A-G rule AGAG
n is weaker than AG′

n and
sound, where

AGAG
n :

A1 u S v G1 . . . An u S v Gn

dn
i Gi u S v

dn
i Ai

S v
dn

i Gi

if
∧

1≤i≤n

NBAG[S,Ai,Gi].

Proof. Let n ∈ N. That AGAG
n is an A-G rule6 is obvious. We show that AGAG

n

is weaker than AG′
n using Corollary 3.36. As substitution we take id|var(AG′

n).
Then the conditions 1 and 2 are trivially true. Condition 3 is also true, as for
all i ∈ {1, . . . , n}, NBAG[S,Ai,Gi] |=LAG NB[S,Ai,Gi] by definition of the ternary
relation NBAG and Proposition 5.66.

By Proposition 3.39, soundness of AGAG
n follows from soundness of AG′

n, see
Theorem 4.34 and Proposition 3.43. Note that soundness of AG′

n requires LAG

to be well-approximable, which it is according to Proposition 5.48.

The above A-G rules AGAG
n do not use all of the structure that LAG offers; in

particular, implication is not used. The following corollary essentially reformu-
lates the rules AGAG

n into a more convenient form, using implication in premises
and conclusion, while still retaining the side condition.

Corollary 5.69. Let n ∈ N, σ ∈ Σ∞ and E,E1, . . . , En,M,M1, . . . ,Mn ∈ LAG.

If for all i ∈ {1, . . . , n}, σ ∈ Ei
+→Mi and at least one out of {Ei,Mi} is a safety

property then (5.3) is sound.

σ ∈ E1 ⇒M1 . . . σ ∈ En ⇒Mn σ ∈ E ∧
∧n

i=1Mi ⇒
∧n

i=1Ei ∧M
σ ∈ E⇒M

(5.3)

6Concerning the last premise, which is not in strong normal form, see the comment following
the Definition of AG′

n in Section 4.5.

FOR ASSUME-GUARANTEE SPECIFICATIONS 103

Proof. Assume for all i ∈ {1, . . . , n}, σ ∈ Ei
+→Mi and there is P ∈ {Ei,Mi}

such that P = safe(P). We will reduce soundness of (5.3) to soundness of AGAG
n

(Theorem 5.68). Assume that the premises of (5.3) hold. For every i ∈ {1, . . . , n},
by monotonicity Ei ⇒Mi ≤ Ei ∧ E ⇒Mi, so the i-th premise implies �(σ) ≤
Ei∧E⇒Mi, which is equivalent to Ei∧ (�(σ)∧E) ≤Mi by Proposition 5.52(1).
Similarly, the last premise implies

∧n
i=1Mi∧(�(σ)∧E) ≤

∧n
i=1Ei∧M ≤

∧n
i=1Ei

by Proposition 5.52(1) and monotonicity. Moreover for every i ∈ {1, . . . , n}, we

have 〈�(σ) ∧ E,Ei,Mi〉 ∈ NBAG because σ ∈ Ei
+→ Mi implies �(σ) ∧ E ≤

Ei
+→Mi.
We define the valuation α ∈ V (LAG) with dom(α) = var(AGAG

n) by α(S) =
�(σ) ∧ E and for all i ∈ {1, . . . , n}, α(Ai) = Ei and α(Gi) = Mi. Then
LAG, α |=

dn
i Gi u S v

dn
i Ai and for all i ∈ {1, . . . , n}, LAG, α |= Ai u S v Gi

and LAG, α |= NBAG[S,Ai,Gi], i. e., premises and side condition of AGAG
n are true

under α. By soundness of AGAG
n , we infer LAG, α |= S v

dn
i Gi, so �(σ) ∧ E ≤∧n

i=1Mi, which is equivalent to �(σ) ≤ E⇒
∧n

i=1Mi by Proposition 5.52(1).
The last premise of (5.3) implies �(σ) ≤ E ∧

∧n
i=1Mi ⇒

∧n
i=1Ei ∧ M ≤

E∧
∧n

i=1Mi⇒M =
∧n

i=1Mi⇒(E⇒M) by monotonicity and Proposition 5.52(7).
Together with the entailment that originates from the conclusion of AGAG

n , by
Cut we get �(σ) ≤ (E⇒

∧n
i=1Mi)∧

(∧n
i=1Mi ⇒ (E⇒M)

)
≤ E⇒ (E⇒M) =

E ∧ E⇒M = E⇒M . This is equivalent to the conclusion of (5.3).

Note that the above corollary restricts circular reasoning to safety properties
only. Circular reasoning with liveness properties is not possible because for each
A-G spec, either the assumption or the guarantee (or both) must be a safety
property. Contrary to the literature [AL95, JT96, VV01], however, we do not a
priori confine the assumptions to be safety properties.

Subsequently, we focus on variants of (5.3) specifically tailored for composing
assume-guarantee specifications. These rules need not employ a side condition
because their premises express all relevant constraints in our logic using (strong)
assume-guarantee specifications and safety resp. liveness closures. Still, sound-
ness of these variants is derived via Corollary 5.69 from soundness of (5.3).

Corollary 5.70. Let n ∈ N and E,E1, . . . , En,M,M1, . . . ,Mn ∈ LAG. Then
(5.4) is sound.

E ∧
∧n

i=1 safe(Mi) ≤
∧n

i=1Ei Σ∞ ≤ E
+→ (

∧n
i=1Mi ⇒M)∧n

i=1(Ei
+→Mi) ≤ E

+→M
(5.4)

Proof. Assume that the premises of (5.4) hold. We have to show that the con-

junction of A-G specs
∧n

i=1(Ei
+→Mi) entails the A-G spec E

+→M , so choose an

arbitrary σ ∈ Σ∞ with σ ∈ Ei
+→Mi for all i ∈ {1, . . . , n}. Then we have to show

that σ ∈ E +→M .

104 INSTANTIATIONS

For every i ∈ {1, . . . , n}, Ei
+→ Mi = Ei

+→ safe(Mi) ≤ Ei ⇒ safe(Mi) by
Proposition 5.65, so we have σ ∈ Ei ⇒ safe(Mi). Moreover by the first premise,
�(σ) ∧ E ∧

∧n
i=1 safe(Mi) ≤

∧n
i=1Ei ∧

(∧n
i=1 safe(Mi)

)
, so by Proposition 5.51

we get σ ∈ E ∧
∧n

i=1 safe(Mi)⇒
∧n

i=1Ei ∧
(∧n

i=1 safe(Mi)
)
. Thus, the premises

of (5.3) hold. By Corollary 5.69, (5.3) is sound since σ ∈ Ei
+→ safe(Mi) for all

i ∈ {1, . . . , n}. Hence, we get σ ∈ E ⇒
∧n

i=1 safe(Mi), which is equivalent to
�(σ) ∧ E ≤

∧n
i=1 safe(Mi) by Proposition 5.51. For this reason, �(σ) ∧ E =

�(σ) ∧ E ∧
∧n

i=1 safe(Mi) ≤
∧n

i=1Ei by the first premise.

To prove that σ ∈ E
+→M , choose any τ ∈ Σ∗ with τ � σ and ≺(τ) ⊆ E.

Then we have ≺(τ) ⊆ �(σ) ∧ E ⊆
∧n

i=1Ei. So for every i ∈ {1, . . . , n}, we have

≺(τ) ⊆ Ei, and as σ ∈ Ei
+→Mi, we get τ ∈ Mi by the definition of A-G specs.

Thus, we have τ ∈
∧n

i=1Mi. As σ ∈ E +→(
∧n

i=1Mi⇒M) by the second premise, we
also have τ ∈

∧n
i=1Mi⇒M . By Modus Ponens, (

∧n
i=1Mi)∧(

∧n
i=1Mi⇒M) ≤M ,

so we get τ ∈ M . Thus, we conclude σ ∈ E
+→ M by the definition of A-G

specs.

Note the second premise of (5.4). Σ∞ on the left-hand side of the entailment

means that the property E
+→ (

∧n
i=1Mi⇒M) on the right-hand side is true of all

behaviors, i. e., it is equivalent to the logical constant true. Also note that (5.4)
essentially confines the guarantees Mi to safety properties, as the first premise
only takes into account their safety closure. For the other occurrences of the Mi,
it follows from the propositions 5.65 and 5.61 that their liveness part is irrelevant
anyway.

Rule (5.4) admits to derive an A-G spec from the conjunction of n A-G specs.
Now, we show that a slight strengthening of the premises enables us to derive
even a strong A-G spec from the same composition.

Corollary 5.71. Let n ∈ N and E,E1, . . . , En,M,M1, . . . ,Mn ∈ LAG. Then
(5.5) is sound.

E ∧
∧n

i=1 safe(Mi) ≤
∧n

i=1Ei ∧ live(M) Σ∞ ≤ E
+→ (

∧n
i=1Mi ⇒M)∧n

i=1(Ei
+→Mi) ≤ E

+⇒M
(5.5)

Proof. Assume that the premises of (5.5) hold. We have to show that the con-

junction of A-G specs
∧n

i=1(Ei
+→Mi) entails the strong A-G spec E

+⇒M , so

choose an arbitrary σ ∈ Σ∞ with σ ∈ Ei
+→Mi for all i ∈ {1, . . . , n}. Then we

have to show that σ ∈ E +→M and σ ∈ E⇒M .
By the first premise, we have E ∧

∧n
i=1 safe(Mi) ≤

∧n
i=1Ei, so from this and

the second premise, we obtain
∧n

i=1(Ei
+→Mi) ≤ E

+→M by (5.4). Thus, we have

proven σ ∈ E +→M and also, by Proposition 5.65, σ ∈ E⇒ safe(M).

For every i ∈ {1, . . . , n}, Ei
+→ Mi = Ei

+→ safe(Mi) ≤ Ei ⇒ safe(Mi) by
Proposition 5.65, so σ ∈ Ei ⇒ safe(Mi). Moreover, by the first premise we have

FOR ASSUME-GUARANTEE SPECIFICATIONS 105

�(σ)∧E ∧
∧n

i=1 safe(Mi) ≤
∧n

i=1Ei ∧ live(M), which, by Proposition 5.52(1), is
equivalent to σ ∈ E ∧

∧n
i=1 safe(Mi)⇒

∧n
i=1Ei ∧ live(M). Thus, the premises of

(5.3) hold. By Corollary 5.69, (5.3) is sound because σ ∈ Ei
+→ safe(Mi) for all

i ∈ {1, . . . , n}. Hence, the conclusion of (5.3) yields σ ∈ E⇒ live(M). Together
with σ ∈ E⇒ safe(M), this implies σ ∈ E⇒M for by the propositions 5.52(6)
and 5.60,

(
E⇒safe(M)

)
∧

(
E⇒live(M)

)
= E⇒safe(M)∧live(M) = E⇒M .

As strong A-G specs are stronger than A-G specs, the soundness of a variant
of (5.5) for composing strong A-G specs is an immediate consequence of Corol-
lary 5.71.

Corollary 5.72. Let n ∈ N and E,E1, . . . , En,M,M1, . . . ,Mn ∈ LAG. Then
(5.6) is sound.

E ∧
∧n

i=1 safe(Mi) ≤
∧n

i=1Ei ∧ live(M) Σ∞ ≤ E
+⇒ (

∧n
i=1Mi ⇒M)∧n

i=1(Ei
+⇒Mi) ≤ E

+⇒M
(5.6)

Proof. Soundness of (5.6) follows from soundness of (5.5) because of the entail-

ments E
+⇒ (

∧n
i=1Mi ⇒M) ≤ E

+→ (
∧n

i=1Mi ⇒M) and Ei
+⇒Mi ≤ Ei

+→Mi for
all i ∈ {1, . . . , n}.

To end this section, we present a rule for composing strong A-G specs which
confines the assumptions to safety properties instead of the guarantees. In large
parts, the following proof of soundness will be very similar to the proof of Corol-
lary 5.70.

Corollary 5.73. Let n ∈ N and E,E1, . . . , En,M,M1, . . . ,Mn ∈ LAG. Then
(5.7) is sound.

E ∧
∧n

i=1Mi ≤
∧n

i=1 safe(Ei) Σ∞ ≤ E
+⇒ (

∧n
i=1Mi ⇒M)∧n

i=1(safe(Ei)
+⇒Mi) ≤ E

+⇒M
(5.7)

Proof. Assume that the premises of (5.7) hold. We have to show that the conjunc-

tion of strong A-G specs
∧n

i=1(safe(Ei)
+⇒Mi) entails the strong A-G spec E

+⇒M ,

so choose an arbitrary σ ∈ Σ∞ with σ ∈ safe(Ei)
+⇒Mi for all i ∈ {1, . . . , n}.

Then we have to show that σ ∈ E +→M and σ ∈ E⇒M .
For every i ∈ {1, . . . , n}, safe(Ei)

+⇒Mi = (safe(Ei)
+→Mi)∧(safe(Ei)⇒Mi), so

we have σ ∈ Ei⇒ safe(Mi). Moreover by the first premise, �(σ)∧E∧
∧n

i=1Mi ≤∧n
i=1 safe(Ei)∧(

∧n
i=1Mi), so we get σ ∈ E∧

∧n
i=1Mi⇒

∧n
i=1 safe(Ei)∧(

∧n
i=1Mi)

by Proposition 5.51. Thus, the premises of (5.3) hold. By Corollary 5.69, (5.3)

is sound since σ ∈ safe(Ei)
+→ Mi for all i ∈ {1, . . . , n}. Therefore, we get

σ ∈ E⇒
∧n

i=1Mi, which is equivalent to �(σ)∧E ≤
∧n

i=1Mi by Proposition 5.51.
For this reason, �(σ) ∧ E = �(σ) ∧ E ∧

∧n
i=1Mi ≤

∧n
i=1 safe(Ei) by the first

premise.

106 INSTANTIATIONS

To prove that σ ∈ E +→M , choose any τ ∈ Σ∗ with τ � σ and ≺(τ) ⊆ E. Then
we have ≺(τ) ⊆ �(σ) ∧ E ⊆

∧n
i=1 safe(Ei). So for every i ∈ {1, . . . , n}, we have

≺(τ) ⊆ safe(Ei), and as σ ∈ safe(Ei)
+→Mi, we get τ ∈Mi by the definition of A-G

specs. Thus, we have τ ∈
∧n

i=1Mi. As E
+⇒(

∧n
i=1Mi⇒M) ≤ E

+→(
∧n

i=1Mi⇒M),

the second premise yields σ ∈ E
+→ (

∧n
i=1Mi ⇒M), and so ≺(τ) ⊆ E implies

τ ∈
∧n

i=1Mi ⇒M . By Modus Ponens, (
∧n

i=1Mi) ∧ (
∧n

i=1Mi ⇒M) ≤ M , so we

get τ ∈M . Thus, we conclude σ ∈ E +→M by the definition of A-G specs.
To prove σ ∈ E⇒M , note that we obtain σ ∈

∧n
i=1Mi ⇒ (E⇒M) from the

second premise as E
+⇒(

∧n
i=1Mi⇒M) ≤ E⇒(

∧n
i=1Mi⇒M) =

∧n
i=1Mi⇒(E⇒M)

by Proposition 5.52(7). Recall that we have already proven σ ∈ E ⇒
∧n

i=1Mi.
Hence, σ ∈ E⇒M follows since by Cut,

(
E⇒

∧n
i=1Mi

)
∧

(∧n
i=1Mi⇒(E⇒M)

)
≤

E⇒ (E⇒M) = E ∧ E⇒M = E⇒M .

5.2.6 Comparison to Other Work

Quite some amount of work has been devoted to the development of rules or
proof systems that deal with composing assume-guarantee specifications. Some
of these rules look strikingly similar to the rules from the corollaries 5.70 to 5.73.
Yet, subtle differences exist.

Close to ours comes the work of Abadi and Plotkin. Like we do, they develop
a composition principle for assume-guarantee specifications in an intuitionistic
temporal logic [AP93, Theorem 1], which looks very similar to a variant of (5.4).7

However, they interpret their logic over finite behaviors only, so they confine
their whole work to safety properties. Also, their semantics is an interleaving
semantics, which explicitly records which steps are executed by the system and
which by the environment. In this setting, presuming that an assumption E
constrains only the steps of the environment whereas a guarantee M constrains

only the steps of the system, the A-G spec E
+→M is equivalent to the implication

E⇒M . For this reason, [AP93] adopts intuitionistic implication as their operator
for constructing assume-guarantee specifications.

Abadi and Lamport present the composition principle in classical temporal
logics, where formulas are interpreted over infinite behaviors. In [AL93] they
use an interleaving semantics similar to the one in [AP93], whereas [AL95] es-
tablishes the composition principle for TLA, Lamport’s Temporal Logic of Ac-
tions [Lam94], which does not force interleaving semantics. In this later work,

they define an operator
+_ for constructing assume-guarantee specifications in

essentially the same way than we have defined our operator
+⇒ except they use

classical instead of intuitionistic implication. Still, their composition rule [AL95,
Theorem 3] resembles closely (5.7). To see how closely, note that Abadi and
Lamport presume the assumptions Ei always to be safety properties. Thus, the

7Drop the second premise of (5.4) and replace M in the conclusion by
∧n

i=1 Mi.

FOR ASSUME-GUARANTEE SPECIFICATIONS 107

first premise of (5.7), which by the propositions 5.55 and 5.61 is equivalent to
safe(E) ∧

∧n
i=1 safe(Mi) ≤

∧n
i=1 safe(Ei), corresponds to condition 1 of [AL95,

Theorem 3]. Furthermore, the second premise of (5.7) can be split into two
premises that correspond to the conditions 2(a) and 2(b) there, because

E
+⇒

(n∧
i=1

Mi⇒M
)

=

(
safe(E)

+⇒
(n∧

i=1

safe(Mi)⇒safe(M)
))
∧

(
E⇒

(n∧
i=1

Mi⇒M
))

by the propositions 5.65 and 5.61. Interestingly, Abadi and Merz [AM95] re-prove
soundness of the composition principle in TLA by embedding TLA into an intu-
itionistic logic interpreted over well-founded Kripke frames. In that logic, they

define their assume-guarantee operator exactly like we have defined
+→, and they

reduce soundness of the TLA composition principle for safety properties [AM95,
Theorem 4] to soundness of a variant of (5.4).

Similar to [AL95] is the work of Jonsson and Tsay [JT96, Tsa00], only they
do not work in TLA but in linear-time temporal logic (LTL) with past temporal
operators [MP92]. This enables them to give a syntactic definition of Abadi’s

operator
+_ (which they denote by .) for constructing A-G specs instead of a

semantic one. Just like [AL95], Jonsson and Tsay confine assumptions to safety
properties, and not surprisingly, their composition rule [JT96, Theorem 11] is
in direct analogy to the one of Abadi and Lamport (even the structure of the
premises is the same) and hence also to our rule (5.7) — except for the use of
classical instead of intuitionistic implication, again.

The Viswanathans [VV01] generalize assume-guarantee specifications. As
properties they adopt least and greatest fix points of ω-continuous and ω-co-
continuous functions on properties, respectively, where properties are just sets of
computations (and computations can be anything — sequences, trees, et cetera).
They define the assume-guarantee operator via the chain of iterative approxi-
mations that converges to the fix point; notice that (co-)continuity ensures con-
vergence within at most ω steps. More precisely, they say that a computation
satisfies an assume-guarantee specification if for all k ≥ 0, whenever σ satisfies
the k-th approximation of the assumption then it must satisfy some strictly later
approximation of the guarantee. If the guarantee is a greatest fix point then the
above definition can actually be strengthened to: σ satisfies the A-G spec if for
all k ≥ 0, whenever σ satisfies the k-th approximation of the assumption then
it must satisfy the (k + 1)-st approximation of the guarantee. In this setting,
the authors present a number of generic rules for composing A-G specs, whereby
the premises of the rules depend on whether assumptions resp. guarantees are
least or greatest fix points — truly circular rules are possible only when the as-
sumptions are confined to greatest fix points. They show the generality of their
rules by proving several known assume-guarantee rules, one for A-G specs in
LTL [McM99] and one for trace tree containment of Moore machines [HQRT02],
to be special instances of their rules.

108 INSTANTIATIONS

McMillan [McM99] presents an assume-guarantee rule for establishing LTL
formulas of the form Gϕ, with ϕ being an arbitrary LTL formula. The premises
of his rule are assume-guarantee specifications constructed via negation and the
until operator U. In fact, as [VV01] observes, in LTL the formulas ¬(ϕ U ¬ψ)
and Gϕ.Gψ are equivalent, where . denotes the LTL-equivalent to our assume-

guarantee operator
+→. Thus, McMillan has found one more way to define the

assume-guarantee operator syntactically, even without recurring to past opera-
tors. Moreover, his rule does not confine assumptions or guarantees to safety
properties, i. e., liveness properties are admitted everywhere. The same applies
to the rules in [VV01] as the authors prove McMillan’s rule to be an instance of
their rules. Whether our assume-guarantee framework can also be instantiated
to McMillan’s rule needs to be investigated still.

Finally, it should be noted that assume-guarantee specifications do not require
full temporal logic. A number of proof systems for proving (partial) correctness
of concurrent or distributed programs are built around so called assumption-
commitment or rely-guarantee specifications. These are triples consisting of a
program (fragment) P , an assumption A about P ’s environment and P ’s guar-
antee G, frequently written in a notation like {A}P{G} which resembles Hoare
triples [Hoa69] for specifying pre- and post-conditions of sequential programs. (In
deed, one may think of A and G as pre- and post-condition, respectively, of each
atomic step of the program P .) The underlying model of concurrency of such
approaches is interleaving execution of program and environment. Thus, the as-
sumption A typically is a predicate over the state space of the system expressing
in which states the program P expects to find the system (after a step of the
environment). The guarantee G is a predicate over the possible transitions of
P , so the reading of {A}P{G} is: Whenever P finds the system in a state that
satisfies A then the atomic step which P (maybe non-deterministically) chooses
to execute must satisfy G. A detailed account on these formalisms (along with a
very extensive list of references) can be found in the recent book by de Roever
et al. [dRdBH+00], which also includes several proof systems that admit circular
reasoning with assumption-commitment resp. rely-guarantee specifications.

Bibliography

[AG00] Rajeev Alur and Radu Grosu. Modular refinement of hierarchic
reactive machines. In Proceedings of the 27th ACM Symposium
on Principles of Programming Languages (POPL), pages 390–402.
ACM Press, 2000.

[AH99] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal
Methods in System Design, 15(1):7–48, 1999. A preliminary version
appears in 11th IEEE Symposium on Logic in Computer Science
(LICS), 1996.

[AL93] Mart́ın Abadi and Leslie Lamport. Composing specifications. ACM
Transactions on Programming Languages and Systems, 15(1):73–
132, 1993.

[AL95] Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM
Transactions on Programming Languages and Systems, 17(3):507–
534, 1995.

[AM95] Mart́ın Abadi and Stephan Merz. An abstract account of compo-
sition. In 20th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS), LNCS 969, pages 499–508.
Springer, 1995.

[AP93] Mart́ın Abadi and Gordon D. Plotkin. A logical view of composi-
tion. Theoretical Computer Science, 114(1):3–30, 1993.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Informa-
tion Processing Letters, 21:181–185, 1985.

[BRJ98] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley, 1998.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Auto-
matic verification of finite-state concurrent systems using temporal
logic specifications. ACM Transactions on Programming Languages
and Systems, 8(2):244–263, 1986.

110 BIBLIOGRAPHY

[CLM89] Edmund M. Clarke, David E. Long, and Ken L. McMillan. Compo-
sitional model checking. In 4th Symposium on Logic in Computer
Science (LICS), pages 353–362. IEEE Computer Society, 1989.

[Dav93] Brian A. Davey. Duality theory on ten dollars a day. In I. G. Rosen-
berg and G. Sabidussi, editors, Algebras and Orders, volume C 389
of NATO ASI Series, pages 71–111. Kluwer Academic Publishers,
1993.

[DG84] William F. Dowling and Jean H. Gallier. Linear-time algorithms
for testing the satisfiability of propositional Horn formulae. Journal
of Logic Programming, 1(3):267–284, 1984.

[DP90] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices
and Order. Cambridge University Press, 1990.

[DP99] Giorgio Delzanno and Andreas Podelski. Model checking in CLP.
In 5th International Conference on Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS), LNCS 1579, pages
223–239. Springer, 1999.

[DP01] Giorgio Delzanno and Andreas Podelski. Constraint-based deduc-
tive model checking. International Journal on Software Tools for
Technology Transfer (STTT), 3(3):250–270, 2001.

[dRdBH+00] Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef
Hooman, Yassine Lakhnech, Mannes Poel, and Job Zwiers. Con-
currency Verification: Introduction to Compositional and Noncom-
positional Methods. Cambridge University Press, 2000.

[FFQ02] Cormac Flangan, Stephen N. Freund, and Shaz Qadeer. Thread-
modular verification for shared-memory programs. In 11th Euro-
pean Symposium on Programming (ESOP), LNCS 2305, pages 262–
277. Springer, 2002.

[GL94] Orna Grumberg and David E. Long. Model checking and modular
verification. ACM Transactions on Programming Languages and
Systems, 16(3):843–871, 1994.

[Gol84] Robert Goldblatt. Topoi: The Categorical Analysis of Logic, vol-
ume 98 of Studies in logic and the foundations of mathematics.
North-Holland, 1984.

[Har87] David Harel. Statecharts: A visual formulation for complex sys-
tems. Science of Computer Programming, 8(3):231–274, 1987.

BIBLIOGRAPHY 111

[HLQR99] Thomas A. Henzinger, Xiaojun Liu, Shaz Qadeer, and Sriram K.
Rajamani. Formal specification and verification of a dataflow pro-
cessor array. In International Conference on Computer-Aided De-
sign (ICCAD), pages 494–499. IEEE Computer Society Press, 1999.

[HMP01] Thomas A. Henzinger, Marius Minea, and Vinayak Prabhu. As-
sume-guarantee reasoning for hierarchical hybrid systems. In 4th In-
ternational Workshop on Hybrid Systems: Computation and Con-
trol (HSCC), LNCS 2034, pages 275–290. Springer, 2001.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[HQR98] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You
assume, we guarantee: Methodology and case studies. In 10th Inter-
national Conference on Computer Aided Verification (CAV), LNCS
1427, pages 440–451. Springer, 1998.

[HQR00] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani.
Decomposing refinement proofs using assume-guarantee reasoning.
In International Conference on Computer-Aided Design (ICCAD),
pages 245–252. IEEE Computer Society Press, 2000.

[HQRT02] Thomas A. Henzinger, Shaz Qadeer, Sriram K. Rajamani, and
Serdar Tasiran. An assume-guarantee rule for checking simula-
tion. ACM Transactions on Programming Languages and Systems,
24(1):51–64, 2002.

[Joh82] Peter T. Johnstone. Stone spaces, volume 3 of Cambridge studies
in advanced mathematics. Cambridge University Press, 1982.

[Jon81] Cliff B. Jones. Development Methods for Computer Programs In-
cluding a Notion of Interference. PhD thesis, Oxford University,
1981.

[JT96] Bengt Jonsson and Yih-Kuen Tsay. Assumption/guarantee specifi-
cations in linear-time temporal logic. Theoretical Computer Science,
167(1–2):47–72, 1996.

[Kur94] Robert P. Kurshan. Computer-aided Verification of Coordinating
Processes. Princeton University Press, 1994.

[KV00] Orna Kupferman and Moshe Y. Vardi. An automata-theoretic ap-
proach to modular model checking. ACM Transactions on Pro-
gramming Languages and Systems, 22(1):87–128, 2000.

112 BIBLIOGRAPHY

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions
on Programming Languages and Systems, 16(3):872–923, 1994.

[LP85] Orna Lichtenstein and Amir Pnueli. Checking that finite state con-
current programs satisfy their linear specification. In Proceedings of
the 12th ACM Symposium on Principles of Programming Languages
(POPL), pages 97–107, 1985.

[Mai01] Patrick Maier. A set-theoretic framework for assume-guarantee rea-
soning. In 28th International Colloquium on Automata, Languages
and Programming (ICALP), LNCS 2076, pages 821–834. Springer,
2001.

[Mai02] Patrick Maier. A framework for circular assume-guarantee rules.
In Symposium on the Effectiveness of Logic in Computer Science,
Saarbrücken, Germany, March 2002. http://www.mpi-sb.mpg.de

/conferences/elics02/index.html.

[Mai03] Patrick Maier. Compositional circular assume-guarantee rules can-
not be sound and complete. In 6th International Conference
on Foundations of Software Science and Computation Structures
(FOSSACS), LNCS 2620, pages 343–357. Springer, 2003.

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of pro-
cesses. IEEE Transactions on Software Engineering, 7(4):417–426,
1981.

[McM97] Ken L. McMillan. A compositional rule for hardware design refine-
ment. In 9th International Conference on Computer Aided Verifi-
cation (CAV), LNCS 1254, pages 207–218. Springer, 1997.

[McM98] Ken L. McMillan. Verification of an implementation of Tomasulo’s
algorithm by compositional model checking. In 10th International
Conference on Computer Aided Verification (CAV), LNCS 1427,
pages 110–121. Springer, 1998.

[McM99] Ken L. McMillan. Circular compositional reasoning about liveness.
In 10th IFIP WG 10.5 Advanced Research Working Conference on
Correct Hardware Design and Verification Methods (CHARME),
LNCS 1703, pages 342–345. Springer, 1999.

[Mel93] Thomas F. Melham. Higher Order Logic and Hardware Verification,
volume 31 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1993.

BIBLIOGRAPHY 113

[Mil71] Robin Milner. An algebraic definition of simulation between pro-
grams. In Proceedings of the 2nd International Joint Conference on
Artificial Intelligence (IJCAI), pages 481–489. William Kaufmann,
1971.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall
international series in computer science. Prentice Hall, 1989.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification. Springer, 1992.

[MP95] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive
Systems: Safety. Springer, 1995.

[NT00] Kedar S. Namjoshi and Richard J. Trefler. On the completeness
of compositional reasoning. In 12th International Conference on
Computer Aided Verification (CAV), LNCS 1855, pages 139–153.
Springer, 2000.

[Pnu85] Amir Pnueli. In transition from global to modular temporal rea-
soning about programs. In K. R. Apt, editor, Logics and Models
of Concurrent Systems, volume F 13 of NATO ASI Series, pages
123–144. Springer, 1985.

[Pod00] Andreas Podelski. Model checking as constraint solving. In 7th
International Symposium on Static Analysis (SAS), LNCS 1824,
pages 22–37. Springer, 2000.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verifica-
tion of concurrent systems in CESAR. In 5th International Sympo-
sium on Programming, LNCS 137, pages 337–351. Springer, 1982.

[Raj99] Sriram K. Rajamani. New Directions in Refinement Checking. PhD
thesis, University of California, Berkeley, 1999.

[Rog87] Hartley Rogers. Theory of Recursive Functions and Effective Com-
putability. MIT Press, 1987.

[RR01] Sriram K. Rajamani and Jakob Rehof. A behavioral module sys-
tem for the pi-calculus. In 8th International Symposium on Static
Analysis (SAS), LNCS 2126, pages 375–394. Springer, 2001.

[SS03] Viorica Sofronie-Stokkermans. Representation theorems and the se-
mantics of non-classical logics, and applications to automated the-
orem proving. In M. Fitting and E. Orlowska, editors, Theory and
Applications of Multiple-Valued Logic, Studies in Fuzziness and Soft
Computing 114, pages 59–100. Springer, 2003.

114 BIBLIOGRAPHY

[TAKB96] Serdar Tasiran, Rajeev Alur, Robert P. Kurshan, and Robert K.
Brayton. Verifying abstractions of timed systems. In 7th Inter-
national Conference on Concurrency Theory (CONCUR), LNCS
1119, pages 546–562. Springer, 1996.

[TB97] Serdar Tasiran and Robert K. Brayton. Stari: A case study in com-
positional and hierarchical timing verification. In 9th International
Conference on Computer Aided Verification (CAV), LNCS 1254,
pages 191–201. Springer, 1997.

[Tsa00] Yih-Kuen Tsay. Compositional verification in linear-time tem-
poral logic. In 3rd International Conference on Foundations of
Software Science and Computation Structures (FOSSACS), LNCS
1784, pages 344–358. Springer, 2000.

[Val98] Antti Valmari. The state explosion problem. In W. Reisig and
G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models,
LNCS 1491, pages 429–528. Springer, 1998.

[Var95] Moshe Y. Vardi. On the complexity of modular model checking.
In 10th IEEE Symposium on Logic in Computer Science (LICS),
pages 101–111. IEEE Computer Society, 1995.

[VV01] Mahesh Viswanathan and Ramesh Viswanathan. Foundations for
circular compositional reasoning. In 28th International Colloquium
on Automata, Languages and Programming (ICALP), LNCS 2076,
pages 835–847. Springer, 2001.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic ap-
proach to automatic program verification. In Proceedings of the
Symposium on Logic in Computer Science (LICS), pages 332–344.
IEEE Computer Society, 1986.

List of Symbols

P(A), Pfin(A), 20
J (X), 19
O(X), 21
A _ B, 21
A→ B, 22
dom(f), 21
rng(f), 22
E, 22
⊥, 22
f O g, 22
f |X , F |X , 22
g ◦ f , 22
g[f1, . . . , fn], 22
N, 22
ω, 22
Σ∞, Σω, Σ∗, Σ+, 22
len(w), 22
w(i), wi, 23
ε, 22
uv, UV , 23
�, 23
prf (L), prf (w), 23
wn, wω, 23
w∗, w+, w∞, 23
ΣM, ΣN, 23
t(w), tw, 23
λ, 23
V , 25, 47
T , 25
>, 25
t u t′, 25
t− t′, 25
var(t), var(T), 25
var(ϕ), var(Φ), 27
var(Γ[t1, . . . , tn]), 27
var(Λ), 27
var(〈Φ, ψ, α〉), 34
var(R), 34
size(t), 25

size(ϕ), size(Φ), 27
V (S), 26
α̂(t), α(t), 26, 31
S, 26
σ−1, 26
id, 26
F , Fn, FN, 27
t v t′, 27
R(S), 27
Γ[t1, . . . , tn], 27
True, 27
S, 〈S,≤〉, 28, 33
S, α |= Φ,Γ[t1, . . . , tn], 28, 29
Λ |=S

α Λ′, 30
Λ |=S Λ′, 30
Φ |= Φ′, 32
Λ ≡S

α Λ′, 30
Λ ≡S Λ′, 30
Φ ≡ Φ′, 32
I (S), 33
R(S), 34
Ī, 34
R : Φ/ψ if Γ[t1, . . . , tn], 34
R : Φ/ψ, 34
I (R), 35
x→Φ y, 44
x→+

Φ y, 45
〈Z>

⊥,≤〉, 48
〈R>

⊥,≤〉, 49
L, 〈L,≤〉, 50
NBA, NB, 50, 52dn

i Pi, 56dn
i6=k Pi, 56

AG2, 53
AGn, 56
AG′

n, 61
AGc

2, 63
AGc

2
′, 65

X , 72

116 LIST OF SYMBOLS

D, 72
Σ, 72, 92
Σ̂, 72
W, 73
Ŵ, 75
E∞, C∞, 75
LW, 76
W(M), 74
Ŵ(M), 77
MCW, 80
AGMoore

W , 80
T, 81
T̂, 82
EM, CM, 82
LT, 84
T(M), 82
T̂(M), 84
MCT, 87
AGMoore

T , 87
LAG, 93
P ⇒Q, 94

P
+→Q, 99

P
+⇒Q, 99

safe(P), 97
live(P), 97
NBAG, 102
AGAG

n , 102

Index

A-G rule, 42
circular, 42

A-G spec, 99
non-blocking, 102
strong, 99

ACC, see chain condition
alphabet, 22
assignment, 72

partial, 72
assumption

global, 42
local, 42
of a formula, 42
of a schema, 42
of an A-G spec, 99

behavior, 92
finite, 92
infinite, 92

blockingness, 50
relative, 50

Boolean algebra, 20
bound

greatest lower bound, see meet
least upper bound, see join
lower bound, 18
upper bound, 18

chain condition
ascending, 21
descending, 21

closure
liveness closure, 97
safety closure, 97

compatible, 72
Moore-compatible, 80, 87

complement, 20
completeness, 40

backward, 40
forward, 40

full, 39
of the side condition, 40

completion, 19
composition

parallel, 72
compositional, 63

in the premises, 63
in the side condition, 63

conclusion
of a schema, 34
of an inference, 33

Cut, 95

DCC, see chain condition
dependency relation, 44

cyclic, 45
downward closure, 21

strict, 21
downward-closed, see ideal

element
greatest, 18
least, 18
maximal, 18
minimal, 18

embedding, 17
entailment

of formulas, 32
of properties, 93
of sequents, 30

equivalence
of formulas, 32
of sequents, 30

factoring, 26
forest-like, 21
formula, 27

guarantee
global, 42
local, 42

118 INDEX

of a formula, 42
of a schema, 42
of an A-G spec, 99

Heyting algebra, 20

ideal
order ideal, 21
principal ideal, 21

identity, 26
implication, 94
inference, 33

associated, 35
inference rule, 34

induced, 34
inference schema, see schema
inverse, 26
invertible, 26
isomorphism, 17–19

join, 18
join-dense, 19
join-irreducible, 19

completely, 19

label, 23
language

partial trace language, 77
partial trace tree language, 84
trace language, 74
trace tree language, 82

lattice, 19
bounded, 19
complete, 19
distributive, 19

lifting, 22
to trees, 24
to words, 23

liveness, see property

map
partial, 21
total, 22

maximal, see element

meet, 18
minimal, see element
Modus Ponens, 95
Moore machine, 72

named relation, see relation
node, 23

leaf node, 23
non-blockingness, 50
normal form, 27

strong, 27

observation, 92
order, 17

dual, 18
linear, 17
strict, 17

ordered set, 17
trivial, 17

output function, 72

ports, 72
input ports, 72
output ports, 72

prefix, 23
prefix-closed, 23
premise

of a schema, 34
of an inference, 33

property, 93
liveness property, 96
safety property, 96

pseudo-complement, 20
relative, 20

relation, 27
restriction

of an inference, 33
run, 74
run tree, 82

safety, see property
satisfaction

of properties, see truth

INDEX 119

satisfiability
of formulas, 29
of relations, 28
of sequents, 29

schema, 34
empty, 35
syntactic, 34

semilattice, 18
bottomed, 19
topped, 19

sequent, 27
finite, 27

side condition
of a schema, 34

soundness
full, 38
of a schema, 37
of a variable, 38
of an inference, 37
of an inference rule, 37
syntactical, 37, 38

state, 72
initial, 72

stronger-than relation
on inference rules, 34
on schemas, 36

substitution, 26
Substitution Lemma, 31

subterm, see term

term, 25
trace, 74

partial, 77
trace tree, 82

partial, 84
transition function, 72
tree, 23, 81

empty, 23
finite, 23
finite depth, 23
finitely branching, 23
infinite, 23
partial, 82

tree-like, 21
truth

of properties, 93
of sequents, 29

valuation, 26
values, 72
variable, 25

auxiliary, 42

weaker-than relation
on inference rules, 34
on schemas, 36

well-approximable, 48
well-founded approximation, 48
well-founded induction, 21
word, 22, 73

empty, 22
finite, 22
infinite, 22
partial, 75

