Michael Mehl

The Oz Virtual Machine
Records, Transients, and Deep Guards

Michael Mehl

The Oz Virtual Machine
Records, Transients, and Deep Guards

Dissertation

zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Technischen Fakultat
der Universitat des Saarlandes

Saarbriicken
1999

Das Promotionskolloquium fand am 18. Mai 1999 statt.

Dekan: Prof. Wolfgang Paul
Gutachter: Prof. Gert Smolka
Prof. Peter van Roy

To MY FAMILY
BARBARA, LUKAS, AND JULIUS

Abstract

In this thesis we describe the design and implementation of a virtual machine
LVM for the execution of Oz programs. Oz is a concurrent, dynamically typed,
functional language with logic variables, futures, by-need synchronization, records,
feature constraints, and deep guard conditionals. The LVM supports light-weight
threads, first-class procedures, exception handling, transients as generalization of
logic variables, futures, and constraint variables, records and open records, and
multiple computation spaces to implement the deep guard conditional. We dis-
cuss the modular, open, and extensible design of the LVM. Techniques for the
efficient implementation of the store on standard hardware are shown. The LVM
subsumes well-known virtual machines for functional, logic, and imperative lan-
guages.

Zusammenfassung

In dieser Arbeit beschreiben wir das Design und die Implementierung einer vir-
tuellen Machine LVM fiir die Ausfiihrung von Oz Programmen. Oz ist eine
nebenldufige, dynamisch getypte, funktionale Sprache mit logischen Variablen,
Futures, by-need Synchronization, Records, Feature Constraints, und einer be-
dingten Anweisung mit tiefen Wichtern. Die LVM unterstiitzt leichtgewich-
tige Threads, Prozeduren als Datenstrukturen erster Ordnung, Ausnahmebe-
handlung, Transients als Verallgemeinerung von logischen Variablen, Futures
und Constraint-Variablen, Records und offene Records, sowie multiple Berech-
nungsraume zur Implementierung der bedingten Anweisung mit tiefen Wichtern.
Wir diskutieren ein modulares, offenes und erweiterbares Design der LVM und
zeigen Techniken zur effizienten Implementierung des Speichers auf aktuell ver-
fiigbarer Hardware. Die LVM subsummiert virtuelle Maschinen fiir funktionale,
logische und imperative Sprachen.

vii

viii

Extended Abstract

In this thesis we describe the design and implementation of a virtual machine
LVM for the execution of Oz programs. Oz is a concurrent, dynamically typed,
functional language. For didactical reasons we restrict the language to a subset,
called L.

The focus of this work is on non-standard extensions of functional languages.
These extensions include logic variables to represent unknown values and futures
as read-only views on variables. These kinds of unknown values are generalized
to transients.

Beside synchronization on determination of transients the language L supports
by-need synchronization which provides for lazy programming. For the repre-
sentation of data structures L. supports trees and their partial description with
records, feature constraints, and width constraints. L allows for multiple compu-
tation spaces, which are the foundation for implementing search engines. Compu-
tation spaces are introduced for the implementation of the deep guard conditional
operator which allows to decide entailment and disentailment.

We define the semantics of the language informally as a graph rewriting engine
on the language graph. The language graph defines a representation of the data
structures of the language. The language is defined as a small set of rewriting
operations on the language graph.

We show how the model of the language graph can be extended to explain mul-
tiple computation spaces. The extended graph model allows to explain concisely
how bindings of variables are propagated, how entailment and disentailment is
detected, and how two spaces are merged.

The LVM is a virtual machine which serves as an intermediate level between the
high-level language L and a concrete hardware. It hides the platform-specific
details and serves as a well defined target language for the compilation of L
programs.

In this thesis we present a modular, open, and extensible design and implemen-
tation of the LVM. The main modules of the virtual machine are the store and
the engine.

The store represents the data structures of the language. It is described with
a refined graph model which makes essential properties of the implementation
explicit, e.g. the usage of registers and heap memory.

The engine consists of a scheduler, a worker, and an emulator. The scheduler
maintains the runnable threads using a simple round robin scheduling policy.
The LVM supports extremely light-weight threads and thousands of threads can
be created and scheduled efficiently.

X

The LVM has a single worker to execute threads. The worker maintains the tasks
of a thread and implements exception handling. The state of the worker is lean
to allow for efficient context switches between concurrent threads.

The state of the worker is rich enough for the efficient execution of machine
programs through a threaded-code emulator. The byte-code of machine programs
is compact and adapted for emulation. The byte-code contains direct references to
nodes in the store, which allows for certain optimizations, e.g. avoiding dynamic
type tests.

Transients are defined in the LVM as a generalization of unknown values, includ-
ing logic variables, futures, and constraint variables. The common properties of
transients are the single-assignment property and automatic synchronization of
threads on their determination.

The LVM supports the representation of high-level symbolic data-structures with
gracefully degrading performance wrt. expressivity. Simple data-structure like
lists, integers, and literals are represented highly optimized. The performance
decreases smoothly only when more expressive primitives, like records with dy-
namic arities and feature constraints, are used.

The LVM is extensible in multiple ways. New data structures and transient
types can be integrated with varying degree of efficiency and complexity. At the
bottom layer a sophisticated tagging scheme allows to efficiently represent the
central data structures, which include integers, optimized variables and futures,
list elements, and literals. At a medium layer the vast majority of data structures
are represented, e.g. procedures, records, and objects. At the highest layer new
data types can be integrated easily using an object-oriented approach with late
binding.

The LVM design is open for experimentation with new features and concepts.
Beside the extension of data structures it also allows to easily extend the engine.
It is for example easy to integrate new functionality as built-in procedures and
byte-code instructions.

We show techniques for the efficient implementation of the store on standard
hardware. The representation of dynamically typed values in the store is im-
plemented as a hybrid mix of tagged pointers and tagged objects. We explain
the automatic memory management of the LVM, which is based on a free lists
and a stop-and-copy garbage collector. A liveness analysis performed during
the garbage collection allows to release memory which is referred from unused
registers of the LVM.

Erweiterte Zusammenfassung

In dieser Arbeit beschreiben wir das Design und die Implementierung einer vir-
tuellen Machine LVM fiir die Ausfiihrung von Oz Programmen. Oz ist eine ne-
benlidufige, dynamisch getypte, funktionale Sprache. Aus didaktischen Griinden
beschrankten wir uns auf eine Teilsprache von Oz, die wir L nennen.

Der Schwerpunkt unserer Arbeit liegt auf untypischen Erweiterungen von funktio-
nalen Sprachen. Diese Erweiterungen umfassen unter anderem logische Variablen
zur Reprisentation von noch nicht bekannten Werten und Futures, die nur-lese
Zugriffe auf Variablen definieren. Diese und andere Arten von unbekannten Wer-
ten werden generalisiert zu Transients.

Neben der Synchronization auf Transients, erlaubt L auch die by-need Syn-
chronization, die es unter anderem erlaubt, die Auswertung von Ausdriicken
zu verzogern, bis sie benotigt werden. Zur Reprisentation von Datenstruktu-
ren unterstiitzt die Sprache L. Bdume und ihre partielle Beschreibung durch
Records, Feature-Constraints und Width-Constraints. L erlaubt multiple Be-
rechnungsridume, die die Grundlage fiir die Implementierung von Suchmaschi-
nen bilden. Berechnungsrdume werden zur Implementierung von bedingten An-
weisungen mit tiefen Wichter eingesetzt, die es erlauben Erfiillbarkeit und Un-
erfiillbarkeit zu entscheiden.

Wir definieren die Semantik der Sprache informell als ein Graphersetzungssystem
auf dem Sprachgraphen. Der Sprachgraph definiert die Représentation der Da-
tenstrukturen der Sprache. Die Sprache wird definiert durch eine kleine Menge
von Ersetzungsregeln angewendet auf den Sprachgraphen.

Wir zeigen, wie das Model des Sprachgraphen erweitert werden kann, um multiple
Berechnungsriume zu erkldren. Das erweiterte Graphenmodell erlaubt es prézise
zu erkldren, wie die Bindung von Variablen propagiert wird, wie die Erfiillbarkeit
bzw. Unerfiillbarkeit entschieden wird, und wie zwei Berechnungsrdume ver-
schmolzen werden.

Die LVM ist eine virtuelle Maschine, die eine Abstraktionsebene zwischen der
Hochsprache L und einer konkreten Hardware realisiert. Sie verbirgt irrelevan-
te plattformspezifische Details und dient als wohldefinierte Zielsprache fiir die
Kompilierung von L Programmen.

In dieser Arbeit prisentieren wir einen modularen, offenen und erweiterbaren
Design sowie eine Implementierung der LVM. Die zentralen Module der virtuellen
Maschine sind der Speicher und die Verarbeitungsmaschine.

Der Speicher reprisentiert die Datenstrukturen der Sprache. Er ist beschrieben
als verfeinertes Graphenmodell, das wichtige Eigenschaften der Implementierung
explizit macht, zum Beispiel die Verwendung von Registern und dem Haldenspei-
cher.

xi

Die Verarbeitungsmaschine besteht aus einem Scheduler, einem Worker, und ei-
nem Emulator. Der Scheduler verwaltet die rechenfihigen Threads durch eine
einfache zyklische Warteschlange (round-robin). Die LVM erlaubt extrem leicht-
gewichtige Threads, wobei Tausende von Threads effizient erzeugt und verwaltet
werden kdnnen.

Die LVM hat einen einzigen Worker zur Ausfithrung eines Threads. Der Worker
verwaltet die Auftrige des Threads und implementiert die Ausnahmebehandlung.
Der Zustand des Workers ist sehr kompakt, um die effiziente Threadumschaltung
zu ermoglichen.

Der Zustand des Workers ist reich genug, um die effiziente Ausfithrung von Ma-
schinenprogrammen durch einen ,,threaded-code” Emulator zu erlauben. Der
Bytecode fiir Maschinenprogramme ist sehr kompakt und zugeschnitten auf einen
Emulator-basierten Ansatz. Der Bytecode enthélt direkte Referenzen auf Kno-
ten im Speicher, die bestimmte Optimierungen, wie zum Beispiel die Vermeidung
dynamischer Typiiberpriifungen, erlauben.

Transients werden in der LVM als Verallgemeinerung unbekannter Werte, wie zum
Bespiel logischer Variablen, Futures und Constraint Variablen, eingefiihrt. Die
wichtigsten Merkmale von Transients sind, daf} sie genau einmal gebunden werden
kénnen und Threads automatisch auf ihre Determiniertheit synchronisieren.

Die LVM unterstiitzt die Repréisentation von hochsprachlichen, symbolischen Da-
tenstrukturen mit einer Performanz, die sich an die gewiinschte Expressivitit an-
pafit. Auf der untersten Ebene steht ein elaboriertes Tag-Schema zur Verfiigung,
das die effiziente Repriisentation wichtiger Datenstrukturen, wie zum Beispiel
ganze Zahlen, optimierte Variablen und Futures, Listenelemente und Literale,
erlaubt. Auf der mittleren Ebene wird der grofite Teil der Datentypen, wie zum
Beispiel Prozeduren, Records und Objekte, realisiert. Auf der hochsten Ebene
erlaubt eine einfache Schnittstelle, basierend auf Objekten mit spiter Bindung,
die einfache Integration neuer Datentypen.

Das Design der LVM ist offen, um Experimente mit neuen Ideen und Konzepten
durchfiihren zu kénnen. Neben der Erweiterung von Datenstrukturen erlaubt
die LVM auch die Erweiterung der Verarbeitungsmaschine. Zum Beispiel ist
es einfach mdglich zusétzliche Funktionalitit durch eingebaute Prozeduren und
Maschinenbefehle zu realisieren.

Wir zeigen Techniken fiir die effiziente Implementierung des Speichers auf aktu-
ell verfiigbarer Hardware. Die Représentation von dynamisch typisierten Werten
im Speicher ist implementiert als eine hybride Mischung von markierten Zeigern
mit markierten Objekten. Wir erkléren die automatische Speicherverwaltung der
LVM, die auf Freispeicherlisten und einem ,,stop-and-copy” Speicherbereinigungs-
algorithmus basiert. Eine Lebendigkeitsanalyse wird wihrend der Speicherberei-
nigung durchgefiihrt, die es erlaubt den Speicher von nicht verwendeten Registern
freizugeben.

xii

Acknowledgments

I thank foremost the whole team of the Programming Systems Lab at DFKI and
at the University of Saarbriicken. The atmosphere was stimulating and a lot of
fruitful discussion took place over the years.

I thank my advisor, Prof. Gert Smolka, as a great source of inspiration and new
ideas and as a very knowledgeable expert in the field of programming languages.
[admire his competence to explain and analyze complicated topics in a precise
and clear manner. He communicated his insights and ideas to us, such that we
were able to convert them into a practical useful system.

For seven years I shared my office with my colleague Ralf Scheidhauer and we
developed many ideas presented in his and my thesis in close collaboration. I
especially thank him for his clear mind wrt. the concrete realization of interesting
but often too abstract and generic solutions of mine.

I thank Martin Henz, Denys Duchier, Ralf Scheidhauer, and Leif Kornstaedt for
reading and commenting early drafts of this thesis. They gave me valuable hints,
but I’'m to be blamed for not following them.

I thank my colleagues Prof. Seif Haridi, Prof. Peter Van Roy, Kostja Popov,
Per Brand, and Erik Klintskog for the international atmosphere in our project.
I enjoyed the workshops with you very much, because you showed me that there
is often more than one right opinion and how compromises can be found in a
friendly environment. Kostja was in the core team for the implementation of
Mozart from the beginning and it was always possible to discuss with him all the
nasty but nevertheless essential details of the implementation.

I thank my employer, the German Research Center for Artificial Intelligence
(DFKI), for supporting me and my work and for giving our project room for the
basic research on programming languages with no immediate practical applica-
tion. My work at DFKI was funded by the German Government (BMBF) under
grant ITW 9105 and ITW 9601. The German Telekom, my current employer,
gave me some support in the final stage of this work.

At the end, but not for the smallest part, I want to thank my family, especially
my wife, my parents, and my parents in law, for their help, support, and patience

xiii

during the very very time consuming preparation of this thesis. My kids, Lukas
and Julius, deserve thanks for their effort to show me that life is not only work.

Michael Mehl, January 1999

Xiv

Contents

1 Introduction

1.2
1.3
1.4

2 The
2.1
2.2
2.3

24

1

1.1 Concepts behind Oz 0oL 1
1.1.1 First-class functions 3
1.1.2 Transients: Logic variables, futures 3
1.1.3 Threads, exceptions, and by-need synchronization 3
1.1.4 Records and feature constraints 4
1.1.5 Cells and built-in abstract data types 4
1.1.6 Deep guard conditional and spaces 4
Contributions 5
Structure of the thesis 0L 8
Context of the thesis 9
language L 11
Overview o 11
Computation model oL o 14
The language graph oo 16
23.1 Values 18
2.3.2 Invariants for graph rewriting 19
Sequential execution 19
2.4.1 Datastructures 20
242 Functions 21
2.4.3 Pattern matchingo 21
2.4.4 Declarations Lo oo 22

XV

2.5

2.6

2.7
2.8

2.9

2.10

2.11

2.4.5 Core operators 22

2.4.6 Syntactic convenience 22
Exceptions 23
2.5.1 Exception handlers 24
2.5.2 Raising an exception 24
2.5.3 Discussion oo 24
Logic variables o 25
2.6.1 Unification 26
Futures 29
CONCurrency v v v it e e 30
2.8.1 Threads 30
2.8.2 Synchronization and suspension 31
2.8.3 By-need synchronization 32
284 Cells 33
2.85 Discussion o 35
Feature constraints L. 36
2.9.1 Constraints over trees 36
2.9.2 Openrecordso 37
SPACES « .« v v e e e 39
2.10.1 The multiple store graph model 39
2.10.2 Entailment oo 42
2.10.3 Disentailment oL 42
2.10.4 Mergingo 44
2.10.5 Deep guard conditionals 44
2.10.6 Other situated nodes 45
2.10.7 Discussion 46
Examples 47
2.11.1 Functional programming: Append 47
2.11.2 Concurrent lazy programming: Hamming 48
2.11.3 Feature constraints: Paths 49

xXvi

3 The virtual machine LVM 51

3.1

3.2

3.3

3.4

3.5

3.6

Overview L 51
3.1.1 Modules of the LVM, 52
3.1.2 Theengine 53
The machine language, D7
3.2.1 Pickles o7
3.2.2 Instructions oL 61
3.2.3 Addressing modes Lo 65
3.24 Discussion 66
A refined graph model Lo 67
3.3.1 Node classification 67
3.3.2 Records 71
3.3.3 Transients L 72
3.3.4 Unification 77
3.3.50 Discussion 78
Sequential execution L. 79
341 Worker 79
3.4.2 Storeoperations. 80
3.4.3 Control 82
3.44 Procedures.o o 83
3.4.5 Built-in procedures L. 87
3.4.6 Statusregister.o 90
3.47 Exceptions Lo 91
Threads 92
3.5.1 Thread model 92
3.5.2 Scheduler 93
3.5.3 Suspensions 95
354 Events 96
3.5.5 Discussiono 96
SPACES .« .« v e e 97
3.6.1 Overview of the extended engine 98

xXvil

3.6.2 Threads and spaces 99

3.6.3 The script technique 100
3.6.4 Binding windows and relative simplification 105

3.7 Other virtual machines 000 107
3.7.1 Prolog Abstract Machines 107
3.7.2 The abstract machine of AKL 108
3.7.3 LIFE 109
3.7.4 The Java Virtual Machine (JVM) 109
3.7.5 Functional languages 109
3.7.6 Erlang’s virtual machines (JAM, TEAM/BEAM) 111

3.8 Summary of the design principles 112
4 Implementation aspects 117
4.1 Storage representationso 117
4.1.1 Tagged objects L. 118
4.1.2 Tagged pointers L. 119
4.1.3 The LVM tag scheme 122
4.1.4 Discussion 123

4.2 Transients L 125
4.2.1 Referenceso 125
4.2.2 Representation of Transients 125
4.2.3 Variables. oo 126
4.2.4 Futures 126
4.2.5 By-need Futures 0. 127
4.2.6 Binding 127
4.2.7 SUSPENsions 128
4.2.8 Usage patterns 129
4.2.9 Unification oL o 132
4.2.10 Extending transients L. 134

4.3 Records 136
4.3.1 Literals 136

4.4
4.5

4.6

5 Conclusion

4.3.2 Record representations
4.3.3 Arity . ..o
4.3.4 The record interface
4.3.5 Discussion
Feature constraints L.
Extensions
4.5.1 Standard extensions
4.5.2 Virtual extensions Lo
Memory Management
4.6.1 Principleso
4.6.2 Primitives
4.6.3 The implementation of the garbage collector
4.6.4 Optimized transients
4.6.5 Liveness analysis L.
4.6.6 Lists

5.1 Summary e e
5.2 Engineering considerationso L.
5.2.1 CH++ vs. C as implementation language
5.2.2 The role of the target platform
5.3 Futureworko
5.3.1 Improve compilation
5.3.2 Reuse existing technology
5.3.3 Functional core oL
5.3.4 Distributiono Lo o
Bibliography
Index

Xix

163
163
164
164
165
167
167
167
168
168

169

179

XX

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3
3.4

Overview of the layers. 2
Expressions and core operators of L. 12
Syntactic sugar.o 13
Extensions. 15
Type names and the type hierarchy of L. 15
A computation space. 16
Unitsof L. oo 17
An example of a language graph. 17
Records and trees. o 19
A graph unification algorithm 27
Binding variables. oo 28
Unification with futures 29
By-need sychronization. o 0L 33
An example of an open record.o 37
Closing an open record. 38
A tree of computation spaces. L. 40
Propagation of a binding., 42
Entailment after propagation. 43
The modules of the LVM. 52
The engine of the LVM. 53
The state of the LVM. 55
The registers of the engine., o7

xxi

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

4.1
4.2
4.3
4.4

The main procedure of the engine. 58

The pickle format.o L. 59
From Oz source to the LVM. 60
Instructions (Part I) 62
Instructions (Part IT) 63
Instruction arguments. Lo 64
Instruction format oo 65
Classification of nodes. 68
Examples of node representations. 69
Tagged nodes. 69
Fields are glued with their heap node. 70
Binding transients with multiple references. 73
Tasks. o 80
Built-ins of the LVM. oo 87
Return codes. 88
The status register. L Lo 90
Thread states. 93
The extension of the engine for spaces. 98
Engine state with spaces. oL 99
Installation and deinstallation. 101
The LVM tag scheme., 122
Secondary tags. 123
A possible dereference bug. 0oL 130
Secondary tags. 150

XXil

Chapter 1

Introduction

In this thesis we explain the implementation of the language Oz. Oz is a multi-
paradigm programming language integrating concurrent constraint programming
with first-class functions, high-level constraint based data structures, concurrent
objects, powerful synchronization primitives, state of the art constraint systems,
and flexible search engines.

We present the implementation as a virtual machine LVM which adds an inter-
mediate abstraction between the high-level language Oz and the low-level details
of concrete machines.

1.1 Concepts behind Oz

The foundation for Oz was laid in the vy-calculus [94] for concurrent program-
ming, which integrates logic variables, names, first-class functions, and cells into
a formal calculus. Seminal contributions to the foundation of Oz are the intro-
duction of first class spaces and search combinators as a generalization of deep
guard combinators [93, 90] and the integration of spaces, search combinators, and
finite domain constraints into a constraint programming framework [91].

The full language Oz is defined and explained in [95, 96, 35, 36].

Mozart is the third release of the Oz system [72, 73, 66]. Mozart implements the
language Oz and provides additionally the infrastructure needed for application
development with Oz.

The structure of the Oz implementation is outlined as a pyramid in Figure 1.1.

To explain the implementation of the LVM we use a top down approach. Con-
cepts, techniques, and insights are introduced at the highest possible layer and
more and more details are added in lower levels.

The following paragraphs introduce basic concepts of Oz.

CHAPTER 1. INTRODUCTION

Threads Computation M odel

Spaces

Constraint Store

Core Store Extension\ | anguage

Functions Graph Transients

Declare Rewriting Features

Operators Spaces
Store Engine Deep guards Virtual Machine
Transients Pickle/Instruction Script
Records Worker/Emulator Trail
Chunks Threads Home

I mplementation

Figure 1.1: Overview of the layers.

1.1. CONCEPTS BEHIND OZ 3

1.1.1 First-class functions

Oz has first-class functions!. Functions are dynamically created closures encap-
sulating the environment in which they are defined. Functions can be passed as
arguments to functions and returned as values of functions; they can be stored
in data structures; and they even can be stored persistently on files.

First-class functions are a distinguishing feature of functional languages like Stan-
dard ML [63], Haskell [75], Lisp [50, 31|, and Scheme [51].

1.1.2 Transients: Logic variables, futures

Oz supports logic variables, which are not yet known values. A logic variable
can be assigned once and is than transparently replaced by this binding. Logic
variables are a powerful concept to express partial data structures, to synchronize
multiple threads, and to efficiently support call-by-reference output arguments.

A future is a read-only view on a variable, which allows to build safe partial
data-structures, which can be modified only by a producer and not by consumers.
Futures are transparently bound when their variable is bound.

Transients are defined as a generalization of unknown values, including logic
variables, futures, and constraint variables. The common properties of transients
are the single-assignment property and automatic synchronization of threads on
their determination.

The use of logic variables in programming languages starts with Prolog [55]. The
idea of futures occured in Multilisp [34] for expressing the results of parallel
computations.

1.1.3 Threads, exceptions, and by-need synchronization

Oz is a concurrent language with extremely light-weight threads. Thousands of
threads can be executed simultaneously. Threads in Oz are fair and preemptively
scheduled. Threads in Oz allow for coarse-grained concurrent programming, al-
though the implementation can handle thousands of threads.

Threads are a well-known concepts in operating systems, but their support in
programming languages is still in the early stages. Threads are now standard-
ized for the C/C++ language in the POSIX environment [43] and the language
Java [30] also support these POSIX-like threads.

'In the literature first-class functions are sometimes called higher-order functions.

4 CHAPTER 1. INTRODUCTION

The exception mechanism of Oz allows to raise and handle first class exceptions.
Exceptions offer a well-defined interface to handle errors. Exceptions are found
in all modern languages, e.g. Java [30], Standard ML [63], and C++ [16].

By-need synchronization integrates lazy concurrent programming into Oz. By-
need synchronization returns a future, which will be bound by a concurrent
thread. This thread is only created, when the value of the future is requested.
The future need not be explicitly requested, but when a thread synchronizes on
the value of the future it is implicitly requested.

A well-known lazy functional programming language is Haskell [75].

1.1.4 Records and feature constraints

Oz has records as powerful data-structures to describe rational trees. A rational
tree is a possibly infinite tree with labelled links and primitive values at the leaves.
A record is a description of a node and all its links. With logic variables records
allow to express trees where some nodes are unknown.

Feature constraints allow to express incomplete trees where not all links are
known. A feature constraint defines that a certain link exists, without defin-
ing all other links.

Oz supports several other constraint systems beside trees, e.g. finite domains and
finite sets, and it is extensible for other constraint systems. In this work we take

feature constraints as an example to show how constraint systems are integrated
with Oz.

Constraints over rational trees were introduced in Prolog IT [19]. The foundation
for records in Oz was laid in [98].

1.1.5 Cells and built-in abstract data types

State is introduced in Oz through a primitive entity called a cell. A cell is a
container for one value. The content of a cell may be accessed and exchanged
with a new value.

Records, cells, and first-class functions allow to build a state-of-the-art object
system [42]. In this work we will show how to integrate a restricted form of
objects as built-in abstract data types into the LVM.

1.1.6 Deep guard conditional and spaces

Oz supports multiple computation spaces to build powerful search engines. A
computation space encapsulates a computation. A computation space has a cer-

1.2. CONTRIBUTIONS 5

tain state, namely running, entailed, stable, or disentailed. Threads can synchro-
nize on this state. Two spaces can be merged together and a space can be copied
to create an independent clone.

We show the deep guard conditional as an instance of the general concept of
spaces, which allows to discuss how the synchronization on entailment and dis-
entailment works and how spaces are merged.

Deep guards were first introduced in AKL [48], which was the first language
implementing the concurrent constraint programming model [86]. Concurrent
constraint programming integrates the paradigms of concurrent logic program-
ming [92] and constraint logic programming [44, 45, 46]. In Oz deep guards
are generalized to first-class computation spaces, which allow to express many
different deep guard combinators and to build flexible search engines [90, 88, 89].

1.2 Contributions

In this thesis we present the design and implementation of a virtual machine
for a subset L of the full language Oz. L is a multi-paradigm language which
includes records, feature constraints, logic variables, futures, functions, threads,
exceptions, and conditionals.

This thesis presents idealizations of the real VM that we have implemented in
the Mozart system [66]. The thesis provides sufficient information to reconstruct
the implementation.

A huge amount of our work, beside the design described here, went into engi-
neering, coding, and supporting a practical, useful, and stable implementation.

The efficiency of the LVM is comparable to the implementation of modern high-
level languages, e.g. Standard ML, Java, Prolog, Lisp, Smalltalk. A detailed
evaluation of the LVM is given in [87].

An idealization of the LVM for rational tree constraints, first class functions, local
computations for deep guards, and preemptive and fair scheduling was published
in [62]. The integration of feature constraints and their gracefully degrading
representation was described in [108].

Modular and open design

The design of the LVM is modular and orthogonal to cope with the complexity.
The modules of the LVM correspond closely to the primitives of the language.
The modules define a regular lean interface.

The design is open in the sense that

6 CHAPTER 1. INTRODUCTION

1. Design decisions and possibilities, especially with respect to the trade-off
between efficiency and simplicity, are made explicit.

2. The hooks needed for the integration of new features, e.g. new data and
control structures, are identified.

The virtual machine of Oz subsumes well-known virtual machines for logic, func-
tional, and imperative languages.

The top-level modules of the LVM are the store, the engine, and spaces.

Store

The store implements the efficient representation of values, variables, futures,
and constraints. We describe the store with a refined graph model, which makes
central aspects of the design explicit. In this graph model different representations
with varying complexity and efficiency are expressible.

Records and feature constraints give the expressivity to define high-level data
structures. We show how this expressivity maps to a gracefully degrading rep-
resentation wrt. the expressivity. Closed records can be represented with an
efficiency similar to structures in the WAM. The performance overhead for the
creation, access, and decomposition of records with symbolic features is minimal
compared to structures in Prolog implementations. Only when the additional
expressivity provided by the dynamic creation of arities, first class features, and
feature constraints is used, a moderate cost has to be paid.

We show an abstraction, called transients, to support logic variables, futures,
and constraint variables. Transients are generalized to allow for the integration
of new types of unknowns. We analyze the cost of adding transients to a language
which only has determined values.

Records with named features allow to define abstract data-types. Abstract data-
types can be built into the LVM with a small interface. We describe a layered
approach to implement abstract data-types with varying performance and com-
plexity.

The store is subject to automatic memory management using a stop-and-copy
collector and elaborated techniques to reuse memory as soon as possible. We
explain the liveness analysis to ensure that unused registers are detected and
discuss the impact of the optimized representation of variables in fields to memory
management.

1.2. CONTRIBUTIONS 7

Engine

The engine takes care of the execution of machine programs. We present a com-
pact machine model consisting of the scheduler, the worker, and the emulator.

Threads are managed by a round-robin scheduler with priorities. The techniques,
which allow to create and maintain thousands of threads efficiently, are explained.

The LVM is a sequential implementation with a single worker to execute threads.
We describe the context switching overhead for the efficient installation and de-
installation of threads by the worker, which is due to a compact representation
of the state of the worker.

The worker executes first-class functions with call-by-reference arguments using
logic variables for passing output arguments. The worker implements exceptions,
where the trade-off between an efficient installation of exception handlers and an
efficient lookup for the handler in the case of an exceptional condition is discussed.

Although the state of the worker is compactly represented it is well-suited for an
efficient execution of the byte code by the emulator.

We present a classification of the machine instructions, which shows how much
support for various language concepts is required.

The idea of having pickles, which define an external representation of Oz data-
structures, allows for a novel account to byte code where instructions can directly
refer to data-structures in the store. The loader creates an internal representation
from a pickle. The transformation and optimizations of the byte code performed
by the loader at run time are explained.

Spaces

Spaces allow to express encapsulated computations with constraint propagation
and are an essential building block for constraint programming and search. We
use conditionals as an instance of the general concept of first class spaces to dis-
cuss the complexity introduced to the LVM for supporting first-class computation
spaces.

We define an extension of the single store graph model to a multiple store graph
model which allows to explain at an intermediate level between the high-level
constraint view and the low-level implementation the key aspects of spaces.

We show the hooks needed in the LVM to support spaces and the implementa-
tion of the script technique for representing multiple bindings of variables. We
compare the script technique with the binding window technique.

8 CHAPTER 1. INTRODUCTION

1.3 Structure of the thesis

The top of the pyramid is the computation model and an informal definition
of the subset of the full Oz language in Chapter 2. The computation model is
defined as a number of threads computing over a shared store. We introduce
the units represented in the store, i.e. values, variables, and futures, and the
operations performed on the store when executing threads.

The next step down the pyramid is the explanation of the VM in Chapter 3. Its
main parts are the store and the engine. At the virtual machine level a refined
graph model is defined which allows to discuss many aspects of the representation
of dynamically typed units.

We define a sequential imperative register-based machine for Oz, which consists
of a machine language, the scheduler, and the worker. The connection between
the high-level language and the machine language is explained by showing the
compilation of L expressions into machine programs.

The loader is presented as a translator for an external representation of machine
programs, called a pickle, into a internal graph and threaded-code representation.

The scheduler is the component which is responsible for the fair, preemptive
scheduling of the runnable threads. It selects a thread which is then executed by
a worker. The worker is responsible for switching contexts when a new thread
must be installed or deinstalled. The worker executes the tasks of a single thread
and emulates the instructions.

The issues introduced with the integration of spaces to the LVM are discussed
next. We identify the hooks required in the other parts of the VM, explain
the script and binding window technique for representing multiple bindings of
variables, the propagation of bindings, and the algorithm for deciding entailment.

Then we compare the LVM with other virtual machines for high-level languages
and summarize the main design goals.

After this discussion of the high-level aspects of the LVM we explain the imple-
mentation aspects in Chapter 4.

We explain how the different unit types are represented. The transient abstrac-
tion is introduced and its specialization to logic variables, futures, and constraint
variables. The next part defines record constraints and their gracefully degrading
implementation. We explain the extension mechanism for defining abstract data
types and explain how they can be integrated smoothly into the LVM.

This part on the description of the store is completed with an explanation of the
automatic memory management.

The thesis concludes in Chapter 5 with a summary, engineering considerations,
and some remarks about future work.

1.4. CONTEXT OF THE THESIS 9

1.4 Context of the thesis

The LVM was designed and implemented in close collaboration with my col-
league Ralf Scheidhauer. Many parts of my work overlap with his thesis [87]. He
describes the implementation of the core of the functional language L, which
is based on dynamically typed Standard ML extended by concurrency, logic
variables, and complex synchronization conditions for patterns. His focus is on
the efficient implementation of the core language, a performance analysis of the
Mozart implementation of L, discussion of complex synchronization conditions,
and the comparison of Mozart with a VM, based on functions. My focus is on
the non-standard extensions of the functional core and their gracefully degrading
integration into the VM.

Spaces and constraint inference engines which exploit the power of first class
computation spaces are introduced and discussed in [90, 88, 89]. The focus of my
work wrt. to spaces is their interaction with the different modules of the LVM
and an analysis of implementation techniques for maintaining multiple bindings
of variables.

The design of the object system for Oz is explained by Martin Henz [42]. The
focus of his work is on the impact of concurrency for the design and the usage
of an object system. Objects are a high-level abstraction built on top of the
low-level concept of extension interface-types, which is described in my thesis.

Finite domain variables are an instance of transients, which allow for the efficient
representation of constraints over finite domains of integers [91]. The applicability
of the constraint solving capabilities of Oz was demonstrated with the scheduling
workbench [116, 117, 118].

The addition of finite set variables [69, 68] as another instance of transients also
uses the extension interface to integrate finite set values as an abstract data type.

For the efficient implementation of constraints, which implement propagation
of information between constraint variables, propagators were introduced as a
refinement of threads, which are completely implemented in C++ to avoid the
overhead for the worker and the emulation [70].

Recently a distribution model [40, 107, 39] was developed and implemented, which
allows the transparent distribution of the store among multiple sites.

10

CHAPTER 1.

INTRODUCTION

Chapter 2

The language L

In this chapter we define the language L. L is a subset? of Oz, which contains
only a minimal core language and the extensions relevant for my work.

The syntax and semantics of L is based on Standard ML [63, 74]. A major
deviation is the replacement of the static type system of Standard ML by a
dynamic type system [97]. L extends Standard ML with logic variables and
futures, flexible records and feature constraints, concurrency, and deep guard
conditionals. The core of L is the same as the language described in [87].

2.1 Overview

We introduce the language in a concise and informal manner to show the re-
quirements for our implementation at a high-level. We assume basic knowledge
of Standard ML. We use evaluation rules and a graph rewriting model to define
the semantics of the language.

In the following sections we describe a computation model and a graph model
for the data structures of the language. After that we explain the semantics of
core language and of our extensions, namely logic variables, futures, threads, by-
need synchronization, record constraints, and deep guard conditionals. Finally
we show the expressiveness of the language by discussing selected examples.

The core language of L is given in Figure 2.1. We use some syntactic sugar which
is summarized in Figure 2.2.

In addition to the Standard ML syntax we use strings with ’ as delimiters to
denote atoms, which are first-class symbolic constants in L, e.g. * person’ .

!The name of L is spelled out as Language.
2The language we define is subset with minor modifications for a better idealization and to
simplify the explanation.

11

12

CHAPTER 2. THE LANGUAGE L

Expressions
e =y identifier
| ¢ constant
| {e1 = e, ..., en = en} record construction
| fna=>ce function definition
| eé application
| let din e end declaration
| case e of r|...|m pattern matching
d == val z =e¢ value declaration
| name N name declaration
c = 1 integer constant
| a atom constant
| M name identifier
r = p=>ce match rule
p == {e¢ =p, ..., ¢ = p,}t record pattern
| ¢ constant pattern
| variable pattern

Core operators

+,-, ...

<,<=
record
select

int * int -> int

int * int -> bool
(fea * T) list -> rec

: rec * fea > T

arithmetic
comparison
dynamic records
field selection

Figure 2.1: Expressions and core operators of L.

2.1. OVERVIEW

13

‘ Abbreviation ‘ Core syntax

True nane True boolean true

Fal se nane Fal se boolean false

O name () the singleton value
X:iy {Head = x, Tail =y} list element

[x2, ..., xn],n>0|xL::...::xn::nil list

(y1l, ..., yn) {1 =y1,, n=yn} tuple (n > 1)

let d; d in e end

let dinlet d in e end end

declaration sequence

e; e

let val z = e in ¢ end

GXpI'GSSiOIl sequence

if y then e else ¢

case y of True => ¢z => ¢

simple conditional

fnpl =>el fn x => case x of pl => el
| ... | ... functional pattern
| pn => en | pn => en
val x =
let val x =1lvar () in
fun x pl => el unif (x, fn pl=>el] .
| recursive functions
| X pn => en | pn => en);
X
end

Figure 2.2: Syntactic sugar.

14 CHAPTER 2. THE LANGUAGE L

We use capitalized identifiers N, M for names. Names in L are first class citizens,
which can be used as expressions and as field names of records. In the record
construction and in patterns the field names are integers, atoms, and statically
bound names.

Features are integers, atoms, and names used as field names of records.

Records can be dynamically constructed with the recor d operator. It takes a
pair-list of pairwise distinct features and corresponding field values and constructs
a record. Fields of records can be accessed with the sel ect operator, which takes
a record and a feature as arguments and returns the field value under the selected
feature.

In the syntax we use the letter x resp. NV for a binding occurrence of an identifier
and y resp. M for a free occurrence. L has the same scoping rules as Standard ML.
Patterns must be linear, i.e. all identifiers in binding position of record patterns
are pairwise distinct. The synchronization conditions for patterns are explained
in Section 2.8.

We use the usual Standard ML precedences and allow to use parentheses () to
group expressions.

The references of Standard ML are called cells in L. We use the name cell in this
thesis to avoid confusion with the reference nodes introduced at the LVM level
(see Chapter 3).

Most of the language primitives can be nicely factored out from the expression
syntax by using predefined functions, called operators. Figure 2.3 shows the
operators for implementing our extensions. These extensions will be explained in
the following sections.

The operators are shown with their type to guide the intuition of the reader. This
type language is not used in L and differs from the type language in Standard ML.
The type restrictions shown in Figure 2.3 are enforced at run time (dynamically)
and not statically. The type names and the type hierarchy are listed in Figure 2.4.

We assume a type T at the top of the type hierarchy, which allows for example
to use T list for lists of arbitrary values. Cells and other container types in L
can contain arbitrary values.

2.2 Computation model

Computation in L is organized in computation spaces (see Figure 2.5). A com-
putation space contains a number of threads executing over a shared store.

The store represents the data structures. The main focus of our work are the
operations performed on the store. The control aspects are basically the ones
known from Standard ML.

2.2. COMPUTATION MODEL 15
Exceptions
catch (O->’a)*x(’b—>’a)—>’a install handler
throw ’a => Db raise exception
Cells
ref : T -> ref new cell
= cref x T -> (O assign
! cref > T access
exchange : ref *x T > T exchange
Variables and futures
lvar O —>T logic variable
unif a x ’a > () unification
future a => ’a future
Threads
spawn 0O ->0) > 0 thread creation
waitOr : T x T -> (O synchronization
byNeed (O -> ’a) > ’a by-need synch.
Tree constraints
featureC : rec * fea * val -> () feature constraint
widthC : rec * int -> () width constraint
Deep guards
cond Ca—>0)*xCa—>’b)*(()->’b)->’b conditional

Figure 2.3: Extensions.

Type Description

T top

rec record T

int integer

fun function /\

ref cell _

lit literal (name or atom) rec nt fun

atom atom ‘

name name lit

O singleton

bool boolean value namom

fea feature (lit or int) /\

’a list | list of 'a bool ()

Figure 2.4: Type names and the type hierarchy of L.

16 CHAPTER 2. THE LANGUAGE L

Thread ... Thread

N/

Store

Figure 2.5: A computation space.

A thread is the sequential control for the evaluation of closures. A closure consists
of an expression of the language and an environment. The environment defines
how the free identifiers of expressions are bound to nodes in the store.

Threads are the only active entities in the computation model. The execution of
a thread happens in steps. A step is defined by an evaluation rule for a closure.
The evaluation rules for expressions and operators of the core language follow the
Standard ML semantics and they are summarized in Section 2.4.

Threads communicate only via shared nodes in the store. Threads can read from
and write into the store and they can synchronize on certain conditions of nodes.

The computation is interleaved and fair. Interleaved means that the execution
steps are atomic and do not overlap. Fairness requires that a possible execution
step of a thread will eventually happen.

2.3 The language graph

The semantics of our language is defined as a graph rewriting engine. The data
structures of the language are modeled as nodes in a directed graph with labelled
nodes and labelled directed links. This graph is called the language graph.

The language graph is built from units. A unit is a labelled node with a finite
number of links. Figure 2.6 shows all units of our language.

A unit can be added to a graph by connecting its open links to already existing
nodes in the graph. When a unit is added to a graph no dangling references
remain. Figure 2.7 shows an example of a graph.

In our language it is not possible to create a cycle in the graph by adding new
units. Cycles can be created through explicit graph rewriting steps, which are
cell assignment (see Section 2.8) and variable binding (see Section 2.6).

2.3. THE LANGUAGE GRAPH

17

® & 06 ¢
‘ f fn ‘

Integer Atom Name Record Function Cell
OO O ’

f R])Rxn
Variable Future Open Record By-need future

Figure 2.6: Units of L.

con N;

val y = lvar ();
val z=1::2:nil
vax={'a =(y, ref (2)),1=z,N=fnx =>z};

Nil

Figure 2.7: An example of a language graph.

18 CHAPTER 2. THE LANGUAGE L

2.3.1 Values

The graph represents wvalues. Values are stateless mathematical entities. The
values of L are primitive values (numbers and symbols), and (infinite) trees with
labelled directed edges. The leaves of these trees are the primitive values.

Primitive values Numeric values and symbolic values are primitive values of
L. For every primitive value a unit exists which is labelled with this value. With
these units leaf nodes of trees with no departing link are created.

The numeric values of L are integers 0,1, —1,2, —2, ... of arbitrary size, with the
usual mathematical meaning.

The symbolic values are atoms and names. Atoms are finite strings over a finite
set of characters. Names are an infinite set of distinct values with no further
structure.

An essential property of names is that they are only available through a generator.
Whenever a name unit is added to the store it obtains a fresh name, which is
distinct from all existing names in the store.

We consider in many aspects cells and functions (which are introduced later) also
as primitive values similar to names, e.g. cells and functions can be leafs of trees.

Records Compound trees are represented in the store using record units. A
record is a node with a finite number of departing links. These links are labelled
with pairwise distinct features. A feature is an integer, an atom, or a name.

The set of features is called the arity of the record. The number of features is
called the width of the record.

The pair of a feature and the node at the end of the link labelled with this feature
is called a field. The feature is then called the field name and the node is the
field value. The operation to traverse a link from a record is called field selection
or field access.

Records in our language are flexible records, which are very different from static
records of Standard ML. In L features are first-class values and it is possible to
select a field without knowing all the other features of the record. It is furthermore
possible to create records whose feature are not known at compile time, e.g.
feature passed as arguments to functions.

Figure 2.8 shows how a tree can be constructed from units.

2.4. SEQUENTIAL EXECUTION 19

;&%Qdoo
\/

Figure 2.8: Records and trees.

2.3.2 Invariants for graph rewriting

Exactly three graph rewriting operations are performed during the execution of
threads:

node creation New nodes can be created and added to the graph.

binding Transient nodes can be bound to other nodes. In the graph model
this operation superimposes the new node onto the transient nodes. This
makes the transient node transparent. The transient node disappears from
the graph and all incoming links are redirected to the new node. Another
metaphor for binding a node v to a node n is that all edges to v are redi-
rected to n (see Section 2.6).

assignment Cells can assigned to new values. In this case the content link of
the cell is redirected to a new node.

These strong invariants on graph rewriting simplify the reasoning about L pro-
grams. They are also very useful for building parallel and distributed implemen-
tations, but in our sequential and imperative implementation of the LVM these
invariants are not exploited.

2.4 Sequential execution

In this section we explain the execution of a single thread. A thread is the
sequential control for the evaluation of closures.

20 CHAPTER 2. THE LANGUAGE L

A closure of an expression e is a pair of an environment u and the expression e
written as (u,e). The environment is a mapping of every free identifier z in the
expression e to a node n in the store. In the following we use the notation x also
for the node bound to = in the environment u. Furthermore we use the notation
x also for the value of the node if it represents a primitive value. The context
allows usually to disambiguate the different meanings easily.

An execution step can side effect the store and evaluates a closure. The evaluation
of a closure has one of the following outcomes:

e [t evaluates to a node in the store.
e [t reduces to one or more new closures.

e [t raises an exception.

In the following we use formulations like “if x is a node of type ...” then this
means that

e The thread has to synchronize on x until it is no variable and no future.
Synchronization is explained in section 2.8 where threads are introduced.

e If the node z is of a different type an exception is raised. The exception
mechanism of L is introduced in section 2.5.

2.4.1 Data structures

Identifiers The closure (u,y) evaluates to the node bound to y in w.

Atoms The closure (u,a) adds an atom node with label a to the store and
evaluates to this node.

Integers The closure (u,i) adds an integer node with label i to the store and
evaluates to this node.

Record construction The evaluation of (u,{c1 = yi, ..., ¢, = yn}) tests
first if ¢q, ..., ¢, are pairwise distinct features.
If the test succeeds a record node with the arity {cy,...,¢c,} is added to the store.

Forall i € {1,...,n} the link labelled with the feature ¢; is connected to the node
y;. The record construction evaluates to this node.

If y1,...,y, are not pairwise distinct features the record construction raises an
exception.

2.4. SEQUENTIAL EXECUTION 21

2.4.2 Functions

A function is a closure of a function definition expression fn z => e. We use
abstractions Az/e as compact notation for the function definition.

Functions are represented with function units. A function unit is a node labelled
with a function definition and labelled links for the free identifiers in the function
definition.

Function definition The evaluation of the function definition (u,fn z => e)
adds a function unit to the store which labelled with the function definition. The
links for the free identifiers of the abstraction are connected to their binding in
u. The function definition evaluates to the just added function node.

Application The evaluation of the application (u,e €') first evaluates (u,e) to
y and then (u,e) to y'. Then it tests if the y is a function.

If y is a function labelled with an abstraction Axz/e” the application evaluates
to the closure (u',e”). The new environment u' contains the bindings of the free
identifiers of the abstraction and the binding of the formal argument x to the
actual argument 3'.

2.4.3 Pattern matching

The evaluation of (u,case y of r|...|r,) sequentially tests if y matches one
of the patterns pq,...,p, in the match rules rq,...,r,.

The record pattern{c; = p1, ..., ¢, = pn} => ematchesifyisa record with
the arity {cj,...,c,}. Then the field values are sequentially matched against
the patterns pq,...,p,. If all these matches are successful the case expression
evaluates to the closure (u',e), where u’ is derived from u by adding the bindings
for the binding identifiers in the patterns.

The constant pattern ¢ => e matches if the value of y is equal to the primitive
value c. Then the case expression evaluates to the closure (u,e).

The variable pattern z => e matches always and evaluates to the closure (u',e),
where ' is derived from u by adding the binding of the identifier to the node

Y.

22 CHAPTER 2. THE LANGUAGE L

2.4.4 Declarations

The evaluation of the value declarations (u,l et val z = e in ¢ end) creates
two new closures: the expression (u,e) and the abstraction (u,Az/e'). The ex-
pression (u,e) is evaluated first and then the abstraction (u,\x/e') is applied to
result of this evaluation.

Sequential execution of closures can be explained such that the thread has a stack
of closures to execute and the value declaration pushes the abstraction (u,Az/e’)
on this stack and evaluates first the expression (u,e). Only when this has finished,
the closure found on the stack is executed.

The evaluation of the name declarations (u, et name N in e end) adds a new
name node to the store and evaluates to the expression (u',e), where ' is derived
from u by adding the binding of N to the new name.

2.4.5 Core operators

The arithmetic operators +, —, x, div, nmod, <, <=evaluatewith their usual
mathematical semantics. We use the infix notation for these operators.

The sel ect operator takes two arguments a record and a feature and evaluates
to the field value of the record selected by the feature.

The r ecor d operator allows to create records dynamically. It takes a list of pairs
containing field names and field values as argument an creates a record.

2.4.6 Syntactic convenience

Sequences A sequences of declarations can be combined into one declaration
using a semicolon as separator.

let d; d in e endis an abbreviation forlet d in let d in e end end.

A declaration l et val z = e in ¢ end can be simplified into the sequence
e; ¢’ if the identifier x does not occur free in €’

Tuples A record with an arity of {1,...,n} is called a tuple. Tuples are em-
inent, because they are optimized in the LVM. A tuple {1 = y1,...,n = y,}
(n > 1) can be written as (y1, . . ., yn) - A tuple with two fields is called a pair.

2.5. EXCEPTIONS 23

Names We assume that the following identifiers are bound to distinct names
in every execution environment and cannot be redeclared:

e true and false for boolean values.
e () for the singleton value.

e Head, Tail, and Nil for constructing lists.

Lists As a convenient syntax for lists the notation x: :y is used for the record
written as {Head: x, Tail:y}. The empty list Ni | can be written as []. A list
with a fixed number of elements xy, ..., z, can be written as [z, ..., z,].

The tuples and list syntax is also allowed in patterns and expands to the corre-
sponding record pattern.

Functions The core syntax has only single argument functions. Multiple ar-
guments are passed as tuples. For convenience the syntax

fnpl=>el | ... | pn=>en

is an abbreviation for
fnx =>case x of pl =>el | ... | pn=>en

This allows for example to write a function with two arguments as
fn(x,y) => ...

Boolean conditional if y then e el se ¢ is an abbreviation for case y
of true => e| x => ¢/, where z is an identifier not occurring free in €’.

2.5 Exceptions

Exceptions are a powerful concept to handle errors and to built non-standard con-
trol structures [28, 29]. In this section we explain the semantics of the exception
mechanism in L.

An exception is a condition detected during the evaluation of an expression which
cannot be handled locally. In such a situation an exception is raised.

An exception handler can be installed for an expression. When an exception
is raised during the evaluation of the expression it is caught by the exception
handler. When an exception is caught the control is transfered to the handler.

24 CHAPTER 2. THE LANGUAGE L

Information can be passed from the point where an exception is raised to the
handler of the exception. This information is called the exception value, which is
usually abbreviated to “the exception”. In L the exception value is an arbitrary
node in the store. The handler is a function in L and when the exception is
caught this function is applied to exception value.

Exception handlers can be nested. In this case the innermost handler catches
the exception and calls its handler. The exception handler is deinstalled when it
catches an exception, i.e. further exceptions are caught by the next handler.

Threads install a default exception handler before evaluating an expression, such
that exceptions cannot escape their thread. The default exception handler typi-
cally prints a message®.

2.5.1 Exception handlers

The cat ch operator is applied to a pair of two functions (x,y). The application
of the handle operator installs the exception handler y during the evaluation of
the function x applied to the singleton value ().

When the evaluation of x returns a node n, the exception handler is removed and
the cat ch operator also evaluates to the node n.

When an exception is raised during the evaluation of z the exception handler
is removed and the cat ch operator evaluates to the application of the handler
function y to the exception value.

2.5.2 Raising an exception

The t hr ow operator has an exception value as argument. The evaluation of
this operators never returns, but transfers control and the exception value to the
innermost installed exception handler.

Exceptions are raised implicitly, when an error occurs, e.g. record construction
raises an error if its features are not pairwise disjoint and the application raises
an exception if the first argument is no function.

2.5.3 Discussion

The main problems and the design space for exception handling have been known
since a long time [28, 29]. The exception mechanism of L is similar to the one
defined in Standard ML.

3Failure exceptions in spaces are handled specially (see Section 2.10).

2.6. LOGIC VARIABLES 25

Typed exceptions Many languages like Standard ML [63], C++ [16, 53] and
Java [30] use typed exceptions and the exception mechanism is extended such
that an exception handler is only used if it matches the type of the exception
value.

In L this can be expressed by writing exception handlers such that they analyze
the exception value. In the case that they cannot handle an exception they simply
re-raise it.

Finally A finally expression allows to protect the evaluation of an expression
such that independent of the success or failure of this evaluation a cleanup ex-
pression is evaluated. This can for example be used to ensure that allocated
resources are released.

In L finally can be implement with the following function:
val finally = fn (body, final) =>
| et

nane Suc; nane Exc;

val result = catch (fn () => (Suc, body ()),

fn exc => (Exc, exc))

in

final ();

case result

of (Suc, value) => val ue

| (Exc, exc) => throw exc

end

The finally function is applied to a pair of two functions. The first function is
the body which is executed and might raise an exception. The second function is
the final cleanup which is applied regardless of the success or failure of the first
function.

2.6 Logic variables

A logic variable is a place holder for a not yet known value. Logic variables were
introduced as a language primitive with the language Prolog [55, 56, 71] as the
foundation for logic programming. Logic variables have been also recognized as
powerful concept for synchronization in concurrent languages [94]. For constraint
logic programming logic variables have been extended with attributes to represent
domain information.

A logic variable is represented with a variable unit in the store. A variable unit
is a node with no departing links. The | var operator adds a variable node to
the store and evaluates to it.

26 CHAPTER 2. THE LANGUAGE L

2.6.1 Unification

The graph rewriting operation on variables is binding. A variable can be bound
to another node of the store. Binding a variable makes it transparent, i.e. the
variable node disappears and all incoming edges are redirected to the node it is
bound to.

Binding is not a primitive operation in L, but it is implicitly performed by uni-
fication. Unification is a complex graph rewriting operation to make two nodes
equivalent wrt. to the equivalence relation defined below. If it is possible the
unification performs a minimal number of variable bindings until two nodes are
equal. If this is not possible the unification fails.

We first define an equivalence relation on nodes. Then we present an unification
algorithm.

Equivalence of nodes The equivalence relation of nodes is defined as the
greatest relation, which satifies the following conditions:

e Every node is equivalent to itself.
e Two primitive nodes are equivalent iff they represent the same value.

e Two record nodes are equivalent iff they have the same arity and if the
equivalence relation holds for every pair of corresponding field values.

The unification algorithm The unification algorithm implemented in the
LVM is a variation of the unification algorithm for rational trees resp. cyclic
structures [18, 98, 38]. An overview of the algorithm is given in Figure 2.9.

The unification algorithm maintains a todo stack and an explored set. The todo
stack contains pairs of nodes which must be unified. The explored set contains
pairs of already unified records. Initially the explored set is empty and the todo
stack contains the pair of the two nodes to unify. In every step of the unification
algorithm a pair of nodes is popped from the todo stack and processed. The
algorithm terminates if the todo stack is empty and returns a termination status,
which is either succeed or fail.

Two nodes are processed in the following ways

e If both nodes or their values are the same, or if they are in the explored set
the processing step succeeds and nothing needs to be done.

e If both nodes are records with the same label and arity, then they are added
to the explored set and corresponding pairs of fields are pushed on the todo
stack.

2.6. LOGIC VARIABLES

27

| NPUT:
node nl;
node n2;
OUTPUT:
enum {SUCCEED, FAIL} status;
I NIT:
todo = new stack();
t odo. push(nl, n2);
expl ored = new set();
st atus = SUCCEED;
LOOP
while (!todo.isEmty())
(a, b) = todo.pop();

if (a!=Db)
if (isvar(a))
bi nd(a, b)
else if (isVar(b))
bi nd(b, a)
el se if (menber({a, b}, expl ored))
// nothi ng
else if (isRecord(a) &&
i sRecord(b) &&
arity(a) == arity(b))
expl ored. add({a, b});
for (f inarity(a))
t odo. push(sel ect(a,f), select(b,f))
el se
expl ored. add({a, b});
status = FAIL

Figure 2.9: A graph unification algorithm

28 CHAPTER 2. THE LANGUAGE L

y .
vax=lvar (); . unif (x,y)
vay=(1,Xx,2); 2

Figure 2.10: Binding variables.

e If a node is a variable it is bound to the other node.

e In all other cases the nodes are put into the explored set and the unification
status is set to failed.

The algorithm terminates because in every step

1. the open set becomes smaller or
2. an element is added to the explored set or

3. a variable is bound.

The graph is finite and no new nodes are added during the unification. Therefore
the number of elements in the explored set must be finite and only finitely many
bindings of variables can be done. This means that eventually the open set must
be empty.

Note that the unification continues even in the case that failure is detected. We
do this to ensure that the unification algorithm is independ of the order in with
the fields of records are explored.

The uni f operator The unif operator is applied to a pair of nodes and
performs their unification. If the unification fails the evaluation of the uni f
operator raises an exception, else it evaluates to the singleton value.

The exception raised by the uni f operator is specially marked, because in nested
computation spaces it is treated in as disentailment condition (see Section 2.10).
The exception is called a failure exception.

Binding variables can introduces cycles into the graph. Figure 2.10 shows an
example of a record y with a variable x under feature 2 and the cycle introduced
by the unification of z and y.

2.7. FUTURES 29

f X f X
unif (x,1)
o & o
X f X y
o ‘ ‘ unif (x,y) ‘f‘ut "/
X) ;

Figure 2.11: Unification with futures

2.7 Futures

Futures are read-only views of logic variables. With futures the scope where a
variable can be bound can be statically limited.

When the variable is bound to a non-variable a future of this variable is bound
simultaneously to the same node as the variable. Futures are represented in the
store as a future unit and variables are extended with a link to their future.

Figure 2.11 shows some interesting cases for binding variables with futures. In the
first case when the variable is bound to a determined node both the variable and
its future are superimposed by this node. The second case show what happens
when a variable is bound to another variable: only the variable is bound the
future is unchanged except that it is now a future for a different variable. The
third case shows that if the variable is bound to another future f’ this future is
superimposed on the variable x and its future f.

The f ut ur e operator takes one argument. If this argument is a variable which
does not yet have a future, a future node is created. The future operator
evaluates to this future of the variable. If the argument is no variable the future
operator evaluates to its argument.

Extending unification Futures require to extend the unification algorithm.
When a future and a determined node are unified it is not allowed to bind the
future. In this case it is not yet decidable, if the future and the determined node
are equivalent or not. Therefore the unification has a termination status to signal
this case, which is called suspend.

30 CHAPTER 2. THE LANGUAGE L

A second aspect of futures is the extension of the equivalence relation such that
a future is equivalent to its variable, i.e. uni f (x, future (X)) must succeed.

To avoid that the semantics of unification depends on the order how the nodes are
processed the unification algorithm continues after detecting the suspend status.
Thus it is possible that later on failure is detected.

The pairs of nodes which could not be unified due to futures are collected and
when the unification does not fail they are saved to restart the unification, when
one of the futures is bound. The next section on threads explains how threads
are suspended and resumed.

An interesting case is uni f ((f, x), (1, 1)), where f is the future of x. In this
case the unification algorithm first discovers that the equivalence of f and 1 is
not decidable, but later x and simultaneously f is bound to 1. In this case the
unification is restarted and in this second run it returns successfully.

Transients and determined nodes We call variable and future nodes in the
store transients, because they are only temporarily visible and disappear when
they are bound. Non-transient nodes are called determined.

Discussion Futures are useful for example to implement ports [49] with safe
streams. A safe stream is a stream, where the open tail is a future, which cannot
be corrupted by readers. Only the writer has access to the variable behind this
future.

Note that the name future is used with various meanings in the literature. Our
futures are only concerned with the read-only aspect of logic variables. Futures
in the style of Multilisp [34] are related to futures with by-need synchronization
and they are discussed below.

2.8 Concurrency

In this section we explain how concurrency is integrated in L.

2.8.1 Threads

Multiple threads of control can be created with the spawn operator. The spawn
operator is applied to a function as only argument and creates a new thread
which has as the initial closure the application of this function to the singleton
value.

2.8. CONCURRENCY 31

After the creation of the new thread the spawn operator evaluates to the single-
ton value without any synchronization on the new thread. Communication and
synchronization only happens through nodes shared with the spawned function.
A thread can for example communicate with other threads through the binding
of variables and cell exchanges.

Threads are executed concurrently, they are independent, and they are scheduled
fairly. Concurrency in L means that the evaluation steps are interleaved, but do
not overlap. The threads are independent in the sense that the only connection
between them is through shared nodes in the store. Fairness requires that if an
evaluation step on a thread is possible it will eventually happen.

2.8.2 Synchronization and suspension

Threads synchronize on the determination of transients. We explain the synchro-
nization technique with the wai t O operator. The wai t O operator is applied to
two arguments and evaluates to the singleton value, if at least one of its arguments
is a determined node.

When both arguments are transients the wai t O operator cannot be evaluated
and blocks the further execution of its thread. The thread is said to suspend
on the transient arguments. The wai t O operator and the suspended threads
becomes executable if one of the transients is bound to a determined node.

The synchronization on transients is a monotonic condition. If an evaluation of
an expression is possible at a certain moment, it can be evaluated also after any
change in the store. This holds because the binding of a transient is a monotonic
operation®.

The wai t O operator allows for example to express timeouts. For example by
waiting concurrently on a thread producing a result and another thread producing
a timeout condition.

Wait The function wai t defined below is a simplification of the wai t Or oper-
ator which suspends on a single argument.

fun wait x = waitOr (x, lvar ());

Other suspensions Any operator which expects a determined value suspends
when it is applied to a transient, e.g. arithmetic operators suspend until both
arguments are determined and the application e ¢’ suspends until e is determined.

4In spaces bindings are retracted and the monotonicity might be violated, but it makes only
a difference when the space fails anyway (see Section 2.10).

32 CHAPTER 2. THE LANGUAGE L

In our language we use a very simple synchronization condition for pattern match-
ing. Pattern matching in our language is flattened out and suspends if one of
the sequential simple matches is not decideable. Scheidhauer [87] analyses more
complex synchronization conditions, where for example the match

case (Xx,X)
of (1,2) => el
|y => e2

reduces to e2 even when z is not determined. In our language this example is
equivalent to
case (X, Xx)
of (x1,x2) =>
case x1
of 1 =>
case x2
of 2 => el
| y => e2
|y => e2
|y => e2

2.8.3 By-need synchronization

A different kind of synchronization is by-need synchronization, which essentially
allows for lazy programming.

To explain it we first define the notion of a requested transient. A transient is
requested if a thread is suspended and waits until this transient is bound. For
example if = is a variable and a thread tries to evaluate x 4+ 1 then x is requested.

By-need synchronization is introduced with the byNeed operator. The byNeed
operator is applied to a function f and evaluates to a future for a newly created
variable . When this future is requested a new thread is spawned which unifies
the variable z with the result of the application of the function f to the singleton
value. Figure 2.12 shows how a by-need future is bound when it is requested.

Discussion The by-need synchronization in L is similar to the concept of fu-
tures in Multilisp [34, 26]. Multilisp distinguishes two operators for futures.
(future E) returns a future and starts the computation to evaluate E in a con-
current resp. parallel thread. With (delay E) the evaluation of E only starts
when the value of the future is requested.

Futures are proposed as extensions for C++ and Java [57, 85]. In these proposal
futures are not defined as transparent data types, but explicit operations are
required to cast a future into a determined value. A major problem of this

2.8. CONCURRENCY 33

f
f requested unif (X, 2)

y/unif(x,1+1)
Xg x‘

Figure 2.12: By-need sychronization.

approach is that for every function a decision has to be made if futures are
allowed or not. This especially requires to redesign all libraries.

By-need synchronization allows to easily express the lazy functional programming
style as promoted by lazy functional languages, e.g. Haskell [75]. In Section 2.11
the lazy creation of hamming numbers is shown as an example.

2.8.4 Cells

Cells are the only stateful data structures of L. In connection with concurrency
stateful nodes must be handled carefully, e.g. concurrent access and assign oper-
ations must be properly synchronized.

The exchange operator is a generalization of the assignment operator : = of
Standard ML. exchange assigns a new node to the cell and returns the old
content of the cell in a single atomic step. This extension is essential because it
provides a powerful synchronization primitive.

Locks The exchange operator with logic variables allows to express locks for
mutual exclusion. A lock is implemented as a cell where the content indicates if
the lock is free or not. The usage of the cell is defined such that the operation to
acquire the lock exchanges the content of the cell with a fresh variable and waits
until the old content is determined. When the lock is released the just created
variable is bound to the singleton value.

(* create a new | ock x)

fun newLock () = ref ();

(= aquire |l ock, execute body, release |ock x)
fun sync (Il ock, body) =
let val new = lvar ();
val old = exchange (I ock, new)
in
case old of () =>

34 CHAPTER 2. THE LANGUAGE L

let val result = body ()
in
unif (new, ());
result
end
end;

The function newlLock creates a cell with the singleton value as initial content.
The function sync takes a lock and a procedure as arguments. It exchanges
the content of the cell with a fresh variable and waits until the old content is
determined. The the body is executed and with the unification of the fresh
variable with the singleton value the lock is released.

Without logic variables the exchange primitive is already expressive enough to
implement locks, but the implementation does not have the following properties
of our implementation

e The implementation is simple.
e The thread which must wait for a lock needs no busy waiting.

e No starvation can happen. Every thread competing for the lock will even-
tually obtain it, when it is released properly.

Cell access With logic variables access can be expressed with the exchange
operation.
fun access cell =
let val new = lvar ();
val old = exchange (cell, new)
in
uni f (new, ol d);
new
end

In L access is a primitive operator, because it has a different semantics wrt.
multiple computation spaces. The content of a cell can be accessed, but not
changed when the cell is global in a space (see Section 2.10).

Abstract data types We consider cells in this thesis because we want to
explain how the VM supports built-in abstract data types, which are a gener-
alization of records and cells. The built-in abstract data types are for example
the data-structures on which the object implementation of Oz is built. Henz [42]
discusses how an object system can be build on top of a concurrent constraint
language with cells.

2.8. CONCURRENCY 35

An example of an such an abstract data type is a bit array. A naive implemen-
tation which represents a bit array as a list of cells with content 0 or 1 is given
below.

| et
nane BitArray;
fun unbox (b, i) =
nth (select (b, BitArray), i);
fun box (id, I) =
{id=(), BitArray =1 };
fun newl size =
if size>0
then ref 0::newl (size-1)
else [];
fun new size =
let con Id
in
box (1d, newl size);
end

fun set (b,i)
fun clear (b,i)
fun get (b,i)

exchange (unbox (b,i), 1);
exchange (unbox (b,i), 0);
' (unbox (b,i));

{’ new =new, 'set’ =set,
'clear’ =cl ear, ’'get’=get}
end

In Chapter 4 we show how efficient native C/C++ implementations of such ab-
stract data-types can be easily integrated into the LVM with a generic extension
mechanism.

2.8.5 Discussion

Java/POSIX threads Threadsin L are very different from threads in Java [30].
The semantics of threads in Java is driven by the available technology in mod-

ern operating system. These are typically based on the POSIX 1003.1 stan-
dard [15, 43].

The POSIX standard cares a lot about memory cache effects and makes explicit
that only when using sychronization primitives the (possibly cached) memory
is updated. In L no caching effects are visible at the language level. If an
implementation uses memory caches it has to guarantee that the illusion of a
unique store is not violated.

36 CHAPTER 2. THE LANGUAGE L

POSIX does not specify a scheduling policy. The standard allows but does not
require that conforming implementations support different scheduling methods.
This means that for example preemptive scheduling is platform dependent and
an application cannot rely on fairness assumptions.

Parallelism Concurrency does not prevent parallelism, but a parallel imple-
mentation has to preserve the invariant that overlapping evaluation steps are not
visible [80].

2.9 Feature constraints

In this section we extend records such that it becomes possible to represent
incomplete partial information about branches in trees.

With records and logic variables it is already possible to describe partial trees,
where some of the nodes are not yet known. Feature constraints extend this
model and allow to describe record nodes where the features are partially known.

Feature constraints allow to represent for example information about paths in a
tree without knowing the whole shape of tree, i.e. the arities of some record nodes
are underspecified. Feature structures in natural-language processing systems are
an example where this is useful.

Records and feature constraints in L. are based on records for logic program-
ming [98] and on the work done on -terms in LIFE [3, 78]. The implementation
of efficient record constraints for concurrent constraint programming in the Oz
system was described in [108]

In the following sections we first describe a generic set of constraints over trees
and show then how records and feature constraints of L fit into this model.

2.9.1 Constraints over trees

The structure underlying the tree constraint system [98] of L contains infinite sets
of features, integers, and rational trees. Rational trees are possibly infinite trees
with directed links labelled with features. The constraint system is closed under
conjunction and existential quantification of domain variables. The constraint
system has the following basic constraints.

e The feature constraint feature(t, f,t') states that ¢ is a rational tree with
a link to the tree ¢ which is labelled with the feature f.

2.9. FEATURE CONSTRAINTS 37

featureC(x,’a ,1)
featureC(x,’b’ ,x)
widthC(x,10)

Figure 2.13: An example of an open record.

e The width constraint width(t,n) (n € {1,2,...}) states that ¢ is a rational
tree with exactly n outgoing links.

e The equality constraint t = t' states that the trees ¢ and ¢’ are equal.

In full generality this constraint system is not analyzed yet [102, 103, 10]. In the
following we explain the implemented subclass of L.

2.9.2 Open records

Records as introduced in Section 2.3 above are an instance of the tree constraint
which is restricted to constraints of the form:

At ty,. .., tywidth(t,n) AVi € {1,...,n} feature(t, fi, t;).

The features f; and the number n in this constraint are constants and the features
must be pairwise distinct.

Open records are records where not all features are known. Open records are
described by the constraints width(t,n) resp. feature(t, f,t'), where the width n
and the feature f are constants.

In the store open records are represented as variables with attributes. Attributes
allow to attach information to a variable. The semantics of some operations, e.g.
unification, is extended for variables with attributes.

Variables representing open records have the attributes width and fields. The
width attribute if defined contains a number and the fields attribute contains a
set of pairs of a feature and a node (see Figure 2.13).

The constraints on the attributes of a variable are

e Every feature occurs at most once in the fields attribute.

38 CHAPTER 2. THE LANGUAGE L

widthC(x,2) X
WA ;/ "
@

Figure 2.14: Closing an open record.

featureC(x,’a,1)
featureC(x,’ b’ ,x)

e The number of elements in fields attribute is less than the value of the width
attribute.

An open record is automatically closed, when its width attribute becomes equal
to the number of elements in the fields attribute. Closing means that the variable
is bound to a record, where the fields of the records are exactly the elements of
the fields attribute (see Figure 2.14).

The featureC and wi dt hC operator implement the feature resp. width con-
straints and the unification is extended to support the equality constraint on
open records.

The f eat ureC operator The featureC operator is applied to three argu-
ments (z, f,y) and suspends until f is a feature and x is not a future. The
following cases occur

Condition Action

x is a variable which does not contain The feature f and the field value y are

the feature f in its field attribute. added. Implicitly the open record may
be closed.

x is a variable with the feature f and Then the f eat ur eC operator reduces
field value 3’ in its field attribute or x to the unification of y and /'.

a record with a feature f and the field

value 7/'.

Otherwise. A failure exception is raised.

The wi dt hCoperator The wi dt hCoperator is applied to two arguments (z, n)
and suspends until the first argument is no future and the second argument is a
positive integer.

2.10. SPACES 39

Condition Action

x is a variable which does not have the The width attribute with value n is
width attribute and not more than n added to the variable. Implicitly the
entries in the field attribute. open record may be closed.

x is a variable with width attribute Nothing needs to be done.
equal to n or x is a record with width
n.

Otherwise. A failure exception is raised.

Extending the unification algorithm The unification algorithm must be
extended to support open records. If an open record x is unified with another
node y, then it bound as usual and its attributes are imposed to the new binding.
Imposing means that the attributes of x are added to the node y as if the wi dt hC
and f eat ur eC operators for these attributes are applied.

e If x has a width attribute n, then wi dt hC (y, n) is executed.

e For all features fi with field values zi in the fields attribute of x the
operator featureC (y, fi, zi) is executed.

2.10 Spaces

Multiple computation spaces are the basis for building flexible search engines
in the concurrent constraint programming paradigm [90, 91, 88, 89]. In this
thesis we focus on the implementation of entailment, disentailment and merging
of spaces. Therefore we define one operator, namely the deep guard conditional,
which requires exactly the abilities to detect entailment and disentailment and
to merge spaces.

We first define a multiple store graph model with introduces situated nodes. After
that we explain the deep guard conditional operator.

2.10.1 The multiple store graph model

A computation space is a number of threads execution over a shared store. The
execution of a thread can create new subordinated computation spaces. The new
computation space is initialized with a copy of the current store and an initial
thread.

40 CHAPTER 2. THE LANGUAGE L

Space 1

Figure 2.15: A tree of computation spaces.

Every node in the copy is linked to its original. This is essential to define prop-
agation and merging. The basic invariant between spaces is that the graph in a
subordinated space is a extension of the graph in the store of its parent space. The
intuition should be that subordinated spaces see every change in their parent’s
store, but not vice versa.

With this construction a tree of computation spaces can be build (see Figure 2.15).
The figure shows how a graph and its copy in a subordinated space are linked
together. The top-most space is called root or toplevel space.

When a space is created a new variable is created in this space, which is called
the root variable. The root variable is used to communicate computation results
between a space and its parent space. The initial thread executes a function
which is applied to this root variable.

Situated nodes The theoretical foundation [95] of computation spaces is based
on a declarative semantics where the store is modeled as a constraint with existen-

2.10. SPACES 41

tially quantified variables. In the graph model we replace the notion of existential
quantification with the notion of situated nodes.

Transients and cells are situated nodes. The space where a situated node is
created is called the home space of a node. A situated node is called a local node
in its home space and a global node in subordinated spaces. Figure 2.15 shows a
global variable 2’ in the copy and its corresponding local variable x in the original
space.

In the following we restrict situated nodes to logic variables. Other types of
situated nodes are introduced later.

Store invariant The store invariant ensures the consistency of stores in a tree
of computation spaces. It is defined such that the graph in a subordinated space
is an extension of the graph in its parent:

e A subordinated graph contains all nodes and links of the graph of its parent.
When new nodes are added then these nodes are copied to subordinated
spaces. The copies preserve the connection to their original nodes.

e A subordinated graph can contain additional units and links.

e Global variables in spaces can be bound. Such a binding is called specula-
tive. A speculative bindinge can be retracted.

Binding and propagation When a variable is bound this binding is propa-
gated to all subordinated spaces. Propagation ensures that the first requirement
of the store invariant holds.

Propagating a binding retracts already existing speculative bindings in subordi-
nated spaces and replaces these speculative bindings with the new binding.

Retracting a binding means that an assumption made during a previous unifica-
tion is invalidated. To ensure that no information is lost a new thread is created
in the subordinated space which unifies the old and the new binding.

Figure 2.16 shows how a binding is propagated to a subordinated space.

Binding order When two variables must be bound and one is global and the
other is local, the local variable is bound to the global variable. This ensures that
a minimal number of speculative bindings are done per space.

42 CHAPTER 2. THE LANGUAGE L

unif (x,2)
R

unif (1,2)
—_—

1 Faeo \

Figure 2.16: Propagation of a binding.

2.10.2 Entailment

The distinction of local and global variables is essential to decide entailment of a
space. A space is entailed if

e all threads are terminated and

e the constraint represented in a store is entailed by the constraint of its
parent store.

The second part of the entailment condition expressed in terms of our graph
model means that no global variable is speculatively bound in the store.

Figure 2.17 shows a simple example how entailment is detected after propagation.
In step (1) the unification of a local variable z with a global variable = binds the
local variable. In step (2) a speculative binding of x to 1 is added. In step (3)
is bound in its home space to y. This binding is propagated to the subordinate
space. This requires a unification step, which leads to the speculative binding of
y to 1. In step (4) y is bound in its home space to 1. After the propagation of
this binding the subordinated space is entailed.

2.10.3 Disentailment

The detection of disentailment is build on top of the exception mechanism of L.
When the uni f or another constraint operator detects failure they raise a special
exception, called a failure exception.

2.10. SPACES

Space 1l
X. Yy X: Y5 X \Z x/y:

al var () @ @ @unif (%, y)
val x = lvar ();
valy = lvar (); z = lvar () .
val t=(x,y); unif (x, z) unif (x, 1)
z Z 7
2
Space ‘ x:& X: Xy’
Space 1l
xly: xly:
_—
unif (x, 1)
unif (x, 1) unif (1, 1)
""""""""" - R R S
V4 7 b
Space 2
X/y: x/y: x/y;

Figure 2.17: Entailment after propagation.

44 CHAPTER 2. THE LANGUAGE L

When such a failure exception reaches the default exception handler of a thread,
the space is marked as failed. A space marked as failed is disentailed. All sub-
ordinated spaces of a failed space are marked as canceled. The threads in failed
and canceled spaces are not further executed.

In L. we use records with the single feature name Fai | ur e as indication for failure
executions. The field value of this exceptions can contain an arbitrary value which
can be used for debugging purposes.

2.10.4 Merging

A space can be merged into its parent space. The purpose of merging is to make
the computation of a subordinated space available in its parent.

Merging involves the following operations

e New nodes and links are copied from the merged space to its parent. Local
nodes of the merged space become local nodes of their parent.

e The node of the root variable is typically made available (see conditional
below).

e All threads of the merged space are moved to its parent.
e All subordinated spaces of the merged space are merged to its parent.

e Speculative bindings in the merged space are turned into unification oper-
ations in the parent space.

For the deep guard conditional only the first two operations are relevant. When
a space is entailed it has no threads, no subordinated spaces, and no speculative
bindings.

2.10.5 Deep guard conditionals

The deep guard conditional cond is an operator which takes three functions
(guardF, thenF, el seF) as arguments. The evaluation of cond happens in
two steps.

In step one a new space is created as defined above. The new space has an
initial thread containing the application of the function guar dF to the root vari-
able. The second step of the evaluation happens when the space is entailed or
disentailed.

2.10. SPACES 45

If the space is entailed it is merged with its parent and the cond operator evaluates
to the application of the t henF function to the root variable.

If the space is disentailed the cond operator evaluates to the application of the
el seF function to the singleton value.

2.10.6 Other situated nodes

Cells in spaces Cells are situated nodes. When the content of a local cell is
changed this change is propagated to all subordinated spaces.

The content of a global cell can be accessed, but it cannot be modified. This is
the reason why L has two built-in operators for cells.

The exchange operator applied to a global cell raises an exception. An alterna-
tive design decision would be to suspend the exchange operation on global cells.
In L. we have choose exception, because it is easy to implement. Suspending the
thread does not seem really useful and would add an unnecessary complexity to
the implementation.

Futures in spaces Global futures loose the read-only protection and are treated
as logic variables. Speculative binding of global futures in spaces is allowed.

Only when a space is merged the speculative binding is redone in the parent space
using unification, which will suspend if the future is local. Note, that in L this
situation does not occur, because only entailed spaces are merged.

Treating global futures in the same way as local futures, i.e. every binding attempt
suspends has an unwanted effect. The problem which occurs is the following: as-
sume an expression uni f (x, 1); if x = 1 then ... isexecuted in a space
where z is a global variable. Later an expression uni f (x, f), where f is a
future is executed in the home space of x. In this situation the speculative bind-
ing of x must be retracted and a thread unifying f and 1 must be executed in
the subordinated space. This thread will of course correctly suspend, but the
decision based on speculative binding cannot be retracted.

A speculative binding forces the lazy computation of futures introduced with the
byNeed operator.

Feature constraints in spaces Feature constraints are represented as vari-
ables with attributes. These attributes play a similar role as variable bindings
wrt. to spaces.

Variables with attributes preserve the invariant that attributes in subordinated
spaces inherit all attributes from their parent. Global variables may have addi-
tional attributes not available in parent spaces.

46 CHAPTER 2. THE LANGUAGE L

Propagation of attributes is similar to the propagation of bindings. If an attribute
conflict occurs during propagation the attribute is replaced by the new one. The
old attributes are restated with the wi dt hC resp. f eat ur eC operator as in the
unification case.

A space is not entailed if the attributes of a global variable are stronger than the
attributes of the variable in the parent space.

2.10.7 Discussion

Stability, cloning and injecting With the deep guard conditional it is possi-
ble to synchronize on entailment or disentailment of a space. To express constraint
programming and flexible search engines spaces must support stability, cloning,
and injection.

Stability is the property that a space is neither entailed, nor disentailed, but it
has no threads which can execute and no change in the store of a parent space
can ever change this situation.

Injection allows to add a thread to a subordinate space. The injected thread
executes a user-defined function applied to the root variable. With injection it is
possible to add for example new constraints into a space.

Cloning of a space creates an independent copy. In a clone global nodes are still
linked to the corresponding nodes in the parent, but all local nodes are fresh.
For example a clone of a local cell is a new cell independent of it original. The
clone of a global cell on the other side is connected to the corresponding cell in
the parent space.

In this work we will not explain how stability, cloning, and injecting is imple-
mented. These concepts are discussed further in [90, 91, 89].

Pattern matching Pattern matching can be explained as an instance of the
conditional. The case expression

case y of {cl=x1,...,cn=xn} => e

can be expressed with the deep guard conditional as

cond (fn x =>1let val ... xi =1lvar () ... in
uni f(x, (x1, ..., xn)),
uni f(y, {cl = x1, ..., cn = xn})
end,
fnx =>1let val ... xi =1lvar () ... in
uni f(x, (x1, ..., xn));
e
end,

fnx =>throw...)

2.11. EXAMPLES 47

The case statement is well suited as a primitive of the core language. The case
statement can be explained without introducing spaces. Its implementation is
much simpler and much faster then with spaces.

Semantically it is convenient to define pattern matching with the deep guard
conditionals to have a single semantic foundation instead of two slightly different
models. Especially when using elaborated synchronization conditions for case
statements the semantics with deep guards has advantages. The major disadvan-
tage of this semantics is that a lot of effort has to but into the optimization of
the simple case [87, 14, 78§].

In [87] an extension of pattern matching is discussed which allows coreferences
in patterns and rejects matches of records with coreferences early, e.g. the eval-
uation of the expression val x = lvar (); case (x,x) of (a,b) => ...
would suspend in our language forever. This matching rule would be rejected
immediately in the extension of the case statement discussed in [87].

2.11 Examples

To show the usefulness of the language L. a few simple examples in different
programming paradigms are shown.

2.11.1 Functional programming: Append

As a language based on Standard ML it is trivial in L. to write functions like app
for concatenating lists or map for applying a function to all elements of a list.

Note that these function do not require any explicit code to synchronize on tran-
sients. The execution of the pattern matching on the input arguments blocks
automatically if an incomplete list is provided and resumes its execution if the
list is further instatiated. Furthermore the map function does not block, if the
list elements are transients.

(* Functional append x)

fun appF (nil, ys) = ys

| appF (x::xr, ys) = x::appF (xr,ys);

(* Functional nmap x)
fun map (nil, f) = nil
| map (x::xr, f) =f x :: map (xr,f);

A major extension of L are logic variables and futures. Beside their usage as
powerful communication primitives they allow to write an efficient tail-recursive
version of the list concatenation.

48 CHAPTER 2. THE LANGUAGE L

(x Tail—-recursive append with futuresx)

fun appFut (nil, ys, zs) = unif (zs, ys)
| appFut (x::xr, ys, zs) =
let val zr = lvar () in
unif (zs, x :: future (zr));

appFut (xr, ys, zr)
end;

This implementation is efficient because the tail-recursion does not need memory
for creating and unwinding the recursion stack. This approach of creating re-
cursive data structures top-down, can be also used in language with destructive
operations. It is unclear if a compiler can automatically transform a function like
appF into an equivalent function using destructive operations internally, which
are not visible. E.g. the following transformation of appFut to appD is safe,
because no intermediate undefined values are ever visible outside of the function:
fun appHelp (nil, ys, zs) =
replaceTail (zs, ys)
| appHel p (x::xr, ys, zs) =
l et val zr= x::Undefined
in
replaceTail (zs, zr);
appHel p (xr, ys, zr)
end;
fun appD (nil, ys) =ys
| appD (Xx::xr, ys) =
l et val zs= x::Undefined in
appHel p (xr,ys, zs);
zs
end;

An advantage of appFut as opposed to appD is that it can be used as an agent
in a concurrent application which consumes a stream xs and produces a stream
zs even in the case that xs is not fully determined and has an open end.

In this scenario appFut is furthermore safe, because the reader of the output

stream cannot corrupt the open tail, because it is always a future, which cannot
be bound.

2.11.2 Concurrent lazy programming: Hamming

The lazy generation of hamming numbers is a small example which shows how
by-need futures support lazy functional programming.

(* Hamm ng nunbers x)

2.11. EXAMPLES 49

(x A lazy stream nerger x)
fun m(xs, ys) =
byNeed (fn () =>
case xs of x::xr =>
case ys of y::yr =>
if X<y then x::m (xr, ys)
el se
if x>y then y::m(xs, yr)
el se x::m(xr, yr));

(x A lazy n times generator x)
fun t (xs, n) =
byNeed (fn () =>
case xs of x::xr =>

nxx :: t (xr, n));
(= hs is a lazy stream of Hanm ng nunbers x)
val hs = lvar ();
unif (hs, 1 :: m(m(t (hs, 2),
t (hs, 3)),
t (hs ,5)));

(* h is the 10000t h hanm ng nunber:
* 288325195312500000 =)
val h = nth (hs, 10000);

The example is also useful as a benchmark for threads in L, because for every
request of a by-need future a new thread is spawned.

2.11.3 Feature constraints: Paths

As an example for feature constraints we define a function to impose path con-
straints on trees. A path constraint defines that a certain path exists in a tree
and returns the node at the end of this path.

fun path (rs, p::pr) =

| et
val rr = lvar ()

in
featureC (rs, p, rr);
path (rr, pr)

end

| path (rs,[]) =rs;

(+x exanple x)
val r = lvar ();

50 CHAPTER 2. THE LANGUAGE L

val p = path (r, [1,2,3,4]);
unif (p,5);

The path equality used in a deep guard conditional tests if the node at the end
of two path starting at the same node are the same.
fun pathEq (n, pl,p2) =
cond (fn m=>
(unif (m path (n,pl));
unif (m path (n,p2))),
fnn=>n,
fn () => fal se);

The following examples shows how the path constraint and the path equality test
can be used.

(% entail ment of records x)

val z = lvar ();
val 'y = ((1, (z, z), 3), 1);
val v = pathEg (y, [1,2,1], [1,2,2]);

(x returns z x)

(* entail ment of open records x)

val y = lvar ();

val z = path (y,[1,2,1]);

unif (z, path (y,[1,2,2]));

val v = pathEq (y, [1,2,1], [1,2,2]);
(x returns z x)

(x disentail ment x)

val z = lvar ();
val 'y = ((1, (1, 2), 3), 1);
val v = pathEqg (y, [1,2,1], [1,2,2]);

(= returns fal se x)

Chapter 3

The virtual machine LVM

In this chapter we describe a virtual machine (LVM) for L.

3.1 Overview

The virtual machine is a refinement of the language model defined in the previous
chapter.

e The graph model of the store is refined to make essential aspects of the
representation explicit.

e The language of the LVM is defined as an imperative low-level machine
language, which is well suited for an emulator based approach.

e The machine language allows to integrate stateless data structures, i.e.
records and procedures, into the bytecodes of machine programs. An ex-
ternal format, called pickles, is defined to represent machine programs and
stateless data structures.

e The control for the execution of machine programs is defined as a single
threaded engine.

e The machine language supports procedures with multiple arguments. Func-
tions are implemented with a new variable as output argument.

e A compact representation of multiple computation spaces is defined us-
ing the script technique for maintaining multiple bindings of variables in
different spaces. As an alternate technique for this binding windows are
discussed.

ol

52 CHAPTER 3. THE VIRTUAL MACHINE LVM

Engine | Pickle| Spaces | Constraints| Objects

Library
Store

Distribution

Figure 3.1: The modules of the LVM.

3.1.1 Modules of the LVM

The LVM is modularized as follows (see also Figure 3.1):

store The store of the LVM is a high level abstraction for storing dynamically
typed values. It is at a high level compared to the linear storage model of
standard hardware, but it provides a good intermediate model for explain-
ing the design decision for representing data structures (see Section 3.3).

engine The engine is the sequential control for the execution of programs. The
engine has machine registers and stacks, and executes an imperative ma-
chine language. This part of the LVM architecture maps very well to com-
mon hardware architectures (see Section 3.4).

pickling Executable programs are stored in an external format, called a pickle.
A loader is responsible to transform a pickle into an internal representation,
which consists of a graph in the store and of the program code as threaded
code suited for emulation. Pickles can be created from the internal repre-
sentation of a graph (see Section 3.2).

spaces For the maintenance of multiple computation hooks are supplied in the
engine and store modules, e.g. when a thread terminates entailment must
be checked and when a global variable is bound the space management must
be involved (see Section 3.6).

constraints Other constraint systems are integrated into the LVM as extensions
of logic variables with attributes to represent domain information. For the
efficient implementation of constraint propagation a refinement of threads,
called propagators, is used, which allows to implement specialized threads
in C++.

3.1. OVERVIEW 53

terminate,preempt pop,push,raise

Scheduler

Figure 3.2: The engine of the LVM.

In this work we only consider the representation of open records. Other
aspects of the constraint extensions of Oz are discussed in [70, 69, 118].

distribution The LVM supports the transparent distribution of the store among
multiple sites. In this thesis we describe only the centralized system without
distribution. Aspects of distribution in Oz is explained in [40, 107, 39].

objects The support for objects in the LVM is only partially touched in our work
when we explain how to integrate new built-in abstract data-types. Other
parts e.g. the support for efficient first-class messages, the maintenance of
the self register, and the efficient access to attributes and object features is
not part of our work. Objects in Oz are discussed in [42].

library Other parts of the LVM are common libraries and functions, e.g. for
stacks, queues, characters, and strings, and an interface to the operating
system, e.g. for [/O and memory management.

The description of the LVM in this thesis is an idealization of the concrete im-
plementation Mozart [66]. The LVM is explained at such a level that the main
design decisions and design alternatives are made explicit. The description is
detailed enough to understand the Mozart implementation and it allows for the
reconstruction of the Mozart VM.

3.1.2 The engine

The engine is the sequential control for the execution of concurrent threads. The
main parts of the engine are the scheduler, the worker, and the emulator.

54 CHAPTER 3. THE VIRTUAL MACHINE LVM

A high-level object model of the engine, where the scheduler, the worker, and the
emulator are objects sending messages to each other, is shown in Figure 3.2. The
objects and messages are explained in the following paragraphs.

The LVM is a single threaded operating system process. The light-weight threads
of the language are implemented as user-level threads with a round robin schedul-
ing policy. The scheduler is responsible for the fair and preemptive scheduling
of concurrent threads. When bi runnable thread exists the scheduler runs in the
idle loop, typically waiting for I/O. When one or more threads are runnable the
scheduler selects one using a fair strategy and invokes the worker to run this
thread.

The worker executes a single thread until it is finished or until the preemption
condition is reached. In the first case the worker sents the terminate message to
the scheduler and in the second the preempt message.

A thread contains tasks, which are executed sequentially following a stack dis-
cipline. A task is a closure containing the bytecode, a procedure environment,
and a local environment. The environments are mappings from indices to nodes
in the store. The procedure environment is allocated per procedure and is acces-
sible through the G registers. The local environment is allocated per procedure
activation and is accessible through the Y registers.

The worker executes the tasks and sents the emulate message to the emulator
to execute the machine code of a task. The emulator interprets instruction per
instruction of the bytecode indicated with the next message, until it reaches the
end of the instruction sequence (pop), until a new task is created (push), or until
an exception is raised (raise). In these cases control is passed back to the worker.
Control is passed to the scheduler with the suspend message, when the execution
of an instructions must block, e.g. when a determined node is expected, but a
transient node is found.

The main parts comprising the state of the engine are shown in Figure 3.3 and
an overview of their role is given in the following paragraphs.

Store The graph store, the atom and arity table, and the operations on the
graph are discussed in Section 3.3. For the introduction of the LVM it is sufficient
to understand that the graph has labelled nodes, with directed labelled links. The
nodes in the store are referenced through machine registers and from the machine
code.

Instructions and built-in procedures The operations performed by the en-
gine are defined by the instruction set and by a number of predefined procedures,
called built-ins. The instructions have the advantage that they are part of the
worker with full access to the state of the LVM and with an efficient dispatch.

3.1. OVERVIEW

55

Thread

Atom table

Runnable

X

\

—

Global registers Graph store

Figure 3.3: The state of the LVM.

1: flower
2:a

3: bill

4. f

Arity table

L{a,b,1}
2:{1,2}
3:{N}

4: {Hd,TI}

Program store

definition(...)
calX(1)

putConst(n,1)

56 CHAPTER 3. THE VIRTUAL MACHINE LVM

Built-in procedures on the other side allow to factor out parts of the engine to
make the emulator lean. The overhead for built-in procedures is a function call
with the preparation of its arguments and the test of the return status.

X and SP A worker maintains the state for the execution of a single thread.
The worker has a fixed number of global registers X to store temporary references
to nodes and to pass arguments to procedures.

The register SP is the structure pointer which is used to read or write the fields
of record incrementally (see Section 3.4).

Threads and tasks A thread has a stack of tasks. A task consists of a triple
(PC,Y,G), where PC'is the address of the next instruction in the program store,
Y is a local environment with a number of registers, and G is a reference to the
current procedure. The tasks of the LVM are similar to stack frame in imperative
languages. The worker executes the tasks on the stack sequentially. A task is
executed by emulating the instruction at the PC using the local environment
and the environment defined by the current procedure. The local environment is
implemented as a node in the store with a fixed number of modifiable fields.

Program store The program store contains machine programs. A machine
program is a sequence of machine instructions. A machine instruction consists
if a bytecode and arguments. Every instruction has an address. The program
counter, which is stored in the PC register, contains the address of the currently
executed instruction.

The internal representation of the program store uses threaded code for an ef-
ficient emulation. This internal representation is not relevant for this overview
of the design of the LVM. In the following we use a readable assembler syntax
for instructions, which is summarized in Figure 3.8 on page 62 and Figure 3.9 on
page 63.

Implementation Implementing the model presented above directly in C++,
where the scheduler, worker, and emulator are objects sending messages to each
other, is not possible. It would create deeply nested recursion stacks, because the
C++ standard does not require tail-call optimization and only very few C/C++
compiler implement it.

The implementation is therefore broken down into a single procedure with la-
bels and gotos as outlined in Figure 3.5. The main registers of the engine are
summarized in Figure 3.4.

3.2. THE MACHINE LANGUAGE 57

type register name | description
Spacex space current space
Thr eadx runni ng running thread
Thr eadQueue runnabl e runnable threads
Pr ogr anCount er PC program counter
Tagged[] X global registers
Taggedx Y local environment
Procedur ex G procedure environment
vol atil e unsi gned SR status register
uni on {
Tagged excepti on; raised exception
Tagged suspendVar Li st; transients list
} retlnfo return info

Figure 3.4: The registers of the engine.

The scheduler is implemented with the entry points Schedul e, Suspend, Ter m nat e,
and Pr eenpt (see Section 3.5). The worker is implemented with the entry points

Rai se, Pop and Run. The push method to create a new task is directly imple-
mented in the corresponding instructions (see Section 3.4). The emulator uses
the threaded code technique [11, 21, 54] as an efficient method to dispatch on the
instruction!.

3.2 The machine language

The machine language of the LVM is an imperative language with instructions
and built-in procedures. A compiler translates the high-level language L into this
machine language.

3.2.1 Pickles

A pickle is a closed representation of a graph spawned by a node in the store.
Pickles contain stateless replicable nodes and code. Replicable nodes are nodes
which have no state. Records and procedures are replicable and cells and tran-
sients are non-replicable. If a graph spawned by a node contains a non-replicable
node it cannot be represented as a pickle.

!The GNU C++ compiler supports the nonstandard feature of computed labels, which
is need for threaded code generation. The implementation provides a compilation switch to
disable threaded code.

58 CHAPTER 3. THE VIRTUAL MACHINE LVM

engi ne() {
runnable = ... // initialize

Schedul e:
if (SR) handl eEvent s();
whil e (runnabl e—>enmpty()) idle();
runni ng = runnabl e—>get () ;
startTi mer(Ti neSlice);
got o Run;

Suspend:
runni ng—>saveX(X) ;
got o Schedul e;

Ter nmi nat e:
got o Schedul e;

Preenpt:
runni ng—>saveX(X) ;
runnabl e—>add(r unni ng);
got o Schedul e;

Rai se:
runni ng—>rai se(retlnfo.exception);
got o Run;
Pop:
got o Run;
Run:
if (statusReg) goto Preenpt;
if (running—>enpty()) goto Term nate;
(PC, Y, QG = runni ng—>popTask();
goto xPC, // threaded code enul at or

MOVE_X_X:
PC+=3;
got o xPC;
CALLX:
runni ng—>push(...);
got o Run;
RETURN
got o Run;

-}

Figure 3.5: The main procedure of the engine.

3.2. THE MACHINE LANGUAGE 59

e = int(s) integer
| atom(s) atom
| name(s) global name
| rec(n,e, €, ... e, e€l) record
| tup(n,e,... e,) tuple
| cons(e,€) list element
| proc(s,ler,...,ey],1bl,...) procedure
| bi(s) built-in procedure
| w:e labelled expression
| ref(v) reference
v = an identifier label of a node
s = astring
[bl = an identifier code label

Figure 3.6: The pickle format.

Pickles allow to create persistent representation of nodes and code. The creation
of such a representation is called pickling and the operation to internalize a pickle
is called loading. Pickling takes a node and creates the pickle representation of
the graph spawned by the node. The load operation reads the pickle descrip-
tion, creates an internal representation, and returns the node which was used for
pickling.

A pickle consists of two major parts: the representation of the nodes and the
representation of the bytecode. Figure 3.6 shows an overview of the representation
of the nodes v. The bytecodes are summarized in Figure 3.8 and Figure 3.9.

Integers, atoms, and records The representation of a node starts with a tag,
e.g. int, atom, followed by a number of arguments. Integers int(s) and atoms
atom(s) are represented using a string representation for their numeric resp.
symbolic value. Records are represented as rec(n,ej,€e},..., e,,el) with their
width n, their features ej,...,e, and the corresponding field values e,... e/ .
Tuples tup(n, ey, ..., e,) are represented as compact records without the features

and list elements cons(e, ') also without the features and the width.

Names For the representation of names as name(s) the LVM generates a
unique string s. This string s is build of several components: a unique iden-
tifier for the LVM process and a unique counter value which is choosen when a
new name is created.

The unique identifier for a LVM process is created from the internet address of
computer (ip address), the time when the LVM was started (timestamp), the

60 CHAPTER 3. THE VIRTUAL MACHINE LVM

—m Compiler ——p| Loader —® Machinee |—® Engine

Figure 3.7: From Oz source to the LVM.

process id (pid), and a random number. Under the assumption that all hosts
have a unique internet address this ip address, the timestamp, and the pid would
already give a unique identification of an LVM process, but many hosts do not
have a unique ip address therefor some form of randomness is added.

References Cyclesin the graph are represented using labelled nodes v : e. A la-
belled node is referred by a reference ref(v). For example v : tup(2, ref(v), ref(v))
is the representation of the tree generated by the expression

let val x = 1lvar () inunif (x, (x,x)); x end

Procedures The representation of a procedure proc(s, [eq,. .., e,],(bl,...) has
as first argument a globally unique string as defined above for names. The fol-
lowing argument contains the nodes ey, ...,e, stored in the G registers. The
last argument [bl is the code label of the start of bytecode for the procedure
body. A procedure has further arguments, e.g. a print name and other debugging
information, which are irrelevant here.

Built-in procedures are represented as bi(s), where s is a unique name of a built-in
procedure, e.g. 'record” or 'newName’.

Compiling and loading Pickles are created by the Oz compiler. The Oz
compiler translates an Oz source files using a given environment into a pickle
(see Figure 3.7). The pickles created by the compiler are functors. A functor?
is a data structure which consists of a specification of its dependency (imported
modules), a procedure, and a specification of the resulting module. When the
pickle is loaded into the LVM the import dependencies are resolved. Then the
procedure of the functor is applied to the nodes obtained by this resolution. The
application returns a module.

The loader converts the pickle format of the bytecode to the internal format
executing the following steps:

*We do not explain the details of functors here (see [22] for more information).

3.2. THE MACHINE LANGUAGE 61

e Create the graph representation.

e Internalize strings to atoms, static names, and integers.
e Internalize feature lists to arities.

e Convert the bytecode into threaded code [11, 21, 54].

e Initialize the inline caches of certain instructions.

e Internalize built-in names to built-in procedures.

e Internalize switch tables for the indexing instructions.
e Resolve optimized calls.

e Platform dependent byte order conversion.

3.2.2 Instructions

The instructions of the LVM are summarized in Figure 3.8 and Figure 3.9. The
number of instruction is less than 150, which is an indication that the bytecode of
the LVM is very compact. In this section we give only an overview of the existing
instructions. In the following sections we introduce them step by step.

The instructions are structured into the following categories

Store operations The creation and access of symbolic data structures is an es-
sential property of the LVM and it has a number of instructions to efficiently
maintain them.

The LVM does some optimizations for numeric data by implementing some
of the arithmetic operators as instructions, but we have not spent much
effort to compete with other languages wrt. numeric calculations.

Control The LVM has extensive support for simple tests and pattern matching
on records. Furthermore instructions for threads, exceptions, locks, and
deep guards are available.

Procedures Procedures are at the heart of the LVM. Many instructions support
the definition and application of procedures and the maintenance of the
local environment.

Unification The LVM has a number of instructions to support the efficient
compilation of unification. The major reason for optimized unification is
that the LVM uses variables to pass output arguments.

62

CHAPTER 3. THE VIRTUAL MACHINE LVM

Store operations (28)

nmoveXX(i,) [/XY/YX/GX]

moveMoveXYXY (i, 4,4, j') [/YXYX/YXXY]

put Recor dX(ar, i) [/Y]

put Li st X(z) [/Y]

put Const ant (ve, 1)

set Vari abl eX(i) [/Y]

set Voi d(n)

set Val ueX(7) [/Y]

set Const ant (vc)

sel ect (i, ve, j, ckey, cind)
creat eVari abl eX(7) [/Y]
createVari abl eMove(i, j)

register move

multiple register move
create record node
create list node

load node in register
put new var in field
put n new vars in fields
put value in field

put constant in field
field selection with caching
create new variable
...combined with move

i nl'i nePl us(s,j,k) addition
i nlinePlusl(i,j) add one
i nl'i neM nus (s, j, k) subtraction

subtract one
less than test
less or equal test

inli neM nusi(i, j)
testLT(s,j4,1)
t est LE(7, j,1)

Control (23)

mat chX(i, ht) [/Y]
get Vari abl eX(7) [/Y]
get Var Var XX(i, j) [/XY/YX/YY]

indexing
get value from field
...double value

get Voi d(n) skip fields
t est Const ant X(i,ve, 1) [/Y] equality test
t est Recor dX(i,ar,1) [/Y] test arity

test list element
test boolean
built-in application and test

test Li st X(4,1) [/Y]
t est Bool X(4,1,1) [/Y]
t est Bl (bi,loc,1)

try(l) install exception handler
popEX deinstall exception handler
I ock(l, 7) require lock

cond(l,1") conditional

branch(l) forward jump

Procedures (35)

procedure definition
...optimized

marker

first-class application
... tail-recursive
first-order application
... tail-recursive
built-in application
end of task
environment allocation
... with fixed size
environment deallocation
... with fixed size

def i ni tion(i, procBody)

def i ni ti onCopy (i, procBody, vcopy)
endDefinition(l)

cal | X(i,n) [/Y/G]

tail Call X(i,n) [/Y/G]

directCall (v,n)

directTail Cal | (v,n)

cal | Bl (v,loc)

return

al | ocat eL(7)

al l ocatelLl[/2/3/4/5/6/7/8/9/10]
deal | ocat eL(i)

deal | ocat elL1 [/2/3/4/5/6/7/8/9/10]

Figure 3.8: Instructions (Part I)

3.2. THE MACHINE LANGUAGE

63

Unification (17)

uni fyXX(s, 7) [/XY]

get Recor dX(ar,i) [/Y]
get Li st X(4) [/Y]

get Li st Val Var (i, 7, k)
get Const ant X(ve, 1) [/Y]
uni fyVari abl eX(7) [/Y]
uni f yVoi d(n)

uni fyVal ueX(z) [/Y]

uni f yVval Var X(z, 5) [/Y]
uni f yConst ant (vc)

unification

... with record

... with list

...combined

unification with constant
read/write variable in field
read/write variables in fields
read /write value in field
...combined

read /write constant in field

Objects (14)

get Sel f (7)

set Sel f (1)

i nli neAt (ve, i, ckey, cind)

i nli neAssi gn(ve,i, j, ckey, cind)
sendMsgX(v, i, ar, ckey, cval) [/Y]

t ai | SendMsgX(v, 1, ar, ckey, cval) [/Y]
appl Met hX(ami, ve) [/Y/G]

tai | Appl Met hX(ami, vc) [/Y/G]

read self register
write self register
attribute access
attribute assignment
message sending

... tail-recursive
method application
... tail-recursive

Debugging (9)

skip

rai seError (v,v,v",v")
debugEntry(...)
debugExit (...)

gl obal Var nane(vc)

| ocal Var nane(vc)

cl ear Y(7)

profil eProc

endO File

no operation

raise error exception
enter procedure

exit procedure

print name of G register
print name of Y register
mark register unused
start profiling

marker

Figure 3.9: Instructions (Part II)

64 CHAPTER 3. THE VIRTUAL MACHINE LVM

1,7,k register indices

n positive number

v a label of a node

ve label of a constant node
l code label

ar record arity

pri procedure info

dct direct call info

ami application method info
ht hash table
c cache

Figure 3.10: Instruction arguments.

Objects We will not explain the instructions which support objects. They are
listed here just to give an impression how much support is given for objects
in the LVM.

Debugging The compiler can generate extra code, which allows a debugger to
relate the bytecode to the source code and to profile the code.

The identifiers used for arguments are summarized in Figure 3.10. We explain
them when we introduce the instructions.

Direct nodes An unusal aspect of the Oz bytecode is the direct reference to
nodes in the store from the bytecode. In the instruction tables the arguments
containing such direct nodes are indicated with a v prefix.

Direct nodes in instructions provide for certain optimizations:

e Nodes can be accessed directly without an indirection through registers.
e Nodes need not to be stored in procedure environments.

e [t becomes possible to use unboxed representation of some data structures.
The optimized first-order application is for example transformed at run-
time into an internal instruction using an unboxed representation of the
procedure.

e Some data structures, e.g. strings, atoms, and names, can be created at
load time and need no resources at run time.

Direct nodes are inserted by the compiler. The compiler can create these nodes
at compile time, e.g. strings, atoms, and names. Direct nodes may be also taken

3.2. THE MACHINE LANGUAGE 65

void* | CodeLabel
int32 | Argl
int32 | ArgN

Figure 3.11: Instruction format

from the compiler environment, e.g. references to already loaded procedures for
first-order applications. When the compiler creates a pickle all nodes referred to
from the bytecode are pickled too.

The possibilities opened by using direct nodes in the compiler-VM interface are
not fully explored yet, but the current usage shows already that they are very
useful.

Internal format The program store is represented as an array of 32-bit words.
An instruction starts with a pointer to the native code implementing the instruc-
tion (threaded code). The following words are the arguments of the instruction
and their number depends on the type of instruction (see Figure 3.11). The
number of words needed for an instruction is called the size of the instruction.

In the internal format more instructions are supported than listed above. In the
following we will explain these extensions to the bytecode when they are needed.

3.2.3 Addressing modes

The instructions of the virtual machine can use three different addressing modes
for refering nodes in the graph store:

e The X addressing mode uses the global X registers, which are allocated
per thread.

e The Y addressing mode uses the local environment, which is allocated per
procedure invokation.

e The GG addressing mode uses the procedure environment, which is allocated
per procedure definition.

In the assembler notation the symbol R; represents one of these modes plus an
index. Register indices start with zero. For example the register G5 refers to the
sixth entry in the current procedure environment.

66 CHAPTER 3. THE VIRTUAL MACHINE LVM

Supporting all addressing modes for all instructions makes the instruction set very
regular, but a drawback is that too many opcodes are needed. Three opcodes
are for example necessary for instructions with one register argument and nine
opcodes are required for instructions with two register arguments.

The LVM instruction set is designed such that frequently used addressing modes
are directly supported, e.g. the cal | instruction supports all three addressing
mode. When an addressing mode is used infrequently at least the X addressing
mode is supported, because it is always possible to load any register into an X
register with additional moves.

3.2.4 Discussion

Threaded code Threaded code [11, 21, 54] is the state of the art method for a
very efficient dispatch on the bytecodes of instructions. Threaded code requires
that the implementation language supports computed jumps. In our case the
C++ language does not support computed jumps, but the GNU C++ compiler
has an extension which supports them.

A drawback of threaded code is that the emulator is one huge C++ procedure,
which makes it hard for the C++ compiler to generate highly optimized code.

An alternative which was recently proposed by Magnusson, et al. [61] is based on
the assumption that a C+-+ compiler does the tail call optimization and many
machine registers are available. In this case every instruction can be implemented
as a function which does a tail-call to the next instruction. The state of the
emulator is passed in the arguments of these functions.

Stack machines Many virtual machines use an operand stack instead of global
registers, e.g. the JVM [60]. A major advantage of a stack machine is that no
register allocation is necessary in the compiler. For these machines advanced
runtime optimizations resp. optimizations when translating the machine code to
native code are necessary [23, 24].

Closure conversion The G addressing mode can be removed using a compi-
lation technique called closure conversion [7]. The closure conversion adds addi-
tional arguments to every procedure through which the free variables are passed
when the procedure is applied. A drawback of closure conversion is that it may
be necessary to save the free variables from the additional arguments in the local
environment. This is not necessary in our approach, because the free variables
are stored in the global environment.

3.3. A REFINED GRAPH MODEL 67

Closure conversion could also be applied to our language. It would reduce the
number of instructions, but it would not give any speed up, because the G ad-
dressing mode does not incur an overhead in our emulator-based LVM.

3.3 A refined graph model

This part of the thesis describes a refined graph model for the store of the LVM.
The store is a module of the LVM which is independent of the execution model.
It provides hooks to support multiple computation spaces which are explained in
Section 3.6.

The level of detail exposed in the refined graph model is such that the key de-
sign decisions and optimizations of the implementation can be discussed, e.g.
optimized representation of variables in structures, usage of registers, storage
consumption, and memory management.

The refinements of the graph model which are explained below can be summarized
as follows

tagged nodes Units are represented as tagged nodes.

three-level tagging scheme A unit is either represented as a single tagged
node, a tagged node with a heap node, or a tagged node with a generic
node.

reference nodes Binding of variables is implemented with reference nodes.

efficient cycle check The cycle check in the unification algorithm is imple-
mented with a destructive operation on the graph.

3.3.1 Node classification

Figure 3.12 shows a classification of nodes in the LVM. In the following paragraphs
the properties of the different node types are defined.

The nodes in the LVM store can be classified into tagged nodes and heap nodes,
which are defined below.

Tagged nodes are small nodes. Tagged nodes have a label, called the tag. The
tag discriminates different kinds of units. Tagged nodes are small nodes,
because they must fit into one machine word of the real machine. All data
structures represented in the graph are referred to through a tagged node.

68 CHAPTER 3. THE VIRTUAL MACHINE LVM

Tagged Heap

Direct E Pointer } EUnIabeIIed} E Labelled } E Generic }

Figure 3.12: Classification of nodes.

Direct nodes are tagged nodes with an additional label. The tag and this
label is sufficient to represent a unit directly.

Pointer nodes are tagged nodes with have a single link to a heap node.
Pointer nodes store only the type information of a unit directly. Other
parts of the representation are stored in the heap node.

Heap nodes are nodes of arbitrary size. Heap nodes are only referred to through
pointer nodes. They represent those parts of a unit which does not fit in
the tagged node.

Unlabelled heap nodes are heap nodes with do no have a secondary tag.
The primary tag in the pointer node is sufficient to discriminate the
type of the unit.

Labelled heap nodes are heap nodes with a secondary tag. The and the
secondary tag together discriminate the type of the unit.

Generic heap nodes are heap nodes which hide the details of their rep-
resentation. These nodes are only accessible through a number of
interface functions.

A unit is either represented as a direct node or as a pointer node and a heap node
(see Figure 3.13).

Figure 3.14 shows an overview of the tags in the LVM. The concept of tagged
nodes is essential for the design, because:

1. Every tagged nodes needs the same amount of memory. This means a
memory cell storing such a node can be used and maybe updated to store
different nodes of this class. Especially for a dynamically typed language
this property is needed, because nodes of arbitrary types can for example
be passed as arguments and stored in fields.

3.3. A REFINED GRAPH MODEL 69

tagged node
INT

@

pointer node

O

CONS

unlabelled heap node

pointer node

REC

labelled heap node

O

pointer node

O

GEN

@UP

generic heap node

% vt: gc, type, ...

Figure 3.13: Examples of node representations.

Tag Direct pointer to

REF tagged reference

WREF tagged write reference
VAR space optimized variable
FUT space optimized future
TRANS labelled gen. transient
CONS unlabelled | list element

REC labelled record or tuple
LIT labelled atom or name
INT int value small integer
FLOAT unlabelled | float value

EXT labelled labelled extension
GEN generic generic extension

Figure 3.14: Tagged nodes.

70 CHAPTER 3. THE VIRTUAL MACHINE LVM

Tagged Heap Tagged Heap

I mplementation view

Figure 3.15: Fields are glued with their heap node.

2. The word size of tagged nodes is the natural size for operations of proces-
sors, e.g. load, store, and arithmetic instructions typically operate most
efficiently on words.

Fields Heap nodesin the LVM have a regular structure. They can have multiple
labels, e.g. a secondary tag or an arity, and a number of fields. The number of
fields is called the field width. The fields are ordered and they are accessed by
numbers {1,...,n}.

A field has a field value, which is a tagged node. In the LVM all field values can
be modified. When new heap nodes are created all field values are initialized to
the tagged zero, which is a special tagged node, with tag zero and pointer field
zero, used to indicate an exceptional value. The initialization of the heap nodes
updates this tagged zeros to useful values.

An essential aspect of fields is that a heap node with n fields has enough storage
to represent the n tagged nodes in the fields. When we draw a graph (see Fig-
ure 3.15) we use arrows between the heap node and its fields values, but these
arrows are special because they do not need any memory. A picture which gives
a better intuition is that of a heap node with directly glued tagged nodes.

Changes to the graph invariants A consequence of storing tagged nodes in
fields and registers is that these nodes can be overwritten and thus destroyed.
This is a major change with respect to the language graph, because in the refined
graph one has to be very careful when creating links to tagged nodes, that this
link is not broken unintentionally by overwriting the field resp. register.

To alleviate this problem no links to nodes in registers can be created and only
links to nodes in fields which are not modified are created in the LVM.

3.3. A REFINED GRAPH MODEL 71

Register nodes Register nodes are a subclass of tagged nodes which can be
stored in registers of the LVM. The unique property of register nodes is that
they can be replicated without changing the meaning of the unit they represent.
Except for transients (TRANS, VAR, FUT) all tagged nodes of the LVM have
this property.

This property is for example needed to make the register allocation independent
of the store. The compiler can move and copy nodes between registers freely.
Another example is the initialization of fields in new heap nodes. They can be
initialized by copying register nodes into the fields values.

3.3.2 Records

The LVM supports different representations for records: as names and atoms, as
list elements, as tuples, and as other records.

Literals Literals are names and atoms. They are represented as tagged pointers
with the tag LIT. Their heap node has a secondary tag to distinguish atoms and
names.

The heap node of an atom is labelled with the string of characters for the atom.
A string is internalized into the LVM through an atom table which guarantee
that every atom is represented with an unique node. The atom table maps a
string uniquely to an atom node in the store.

The heap node of a name is labelled with a number and its home space. The
number is used for generating a hash value for the efficient implementation of the
arity (see below). A second reason for a number is that names must be ordered
to simplify the creation of new arities. Names are situated in spaces and need
therefore a home space (see Section 3.6).

Non-primitive records List elements are represented as tagged pointers (CONS)
with an unlabelled heap node with fields for the head and tail of the list. List
elements obtain special optimizations because they are the most frequently used
kinds of records.

The representation of tuples and other records is not really different. Only the
representation of the arity (see below) is optimized in the case of tuples. Records
are represented as tagged pointers with the tag REC. The heap node has the
arity as label and fields. The number of fields of the heap node is equal to the
width of the record.

Records are always represented in a canonical form. This means that every
operation producing a record needs to normalize it, if it is a list element or a

72 CHAPTER 3. THE VIRTUAL MACHINE LVM

tuple. The reason for this is that the equivalence test in the unification algorithm
becomes simple. Two records are only equal if at least the tags in the tagged
nodes are the same and also the arities in the case of non-list records.

Arities A record arity is a partial function from the set of features to a integer.
The features {ci,...,c,} are mapped to the numbers {1,... ,n}.

The arity has the additional functionality to efficiently implement the member
function to test if a feature is in the domain of the arity function. The arity
function is therefore extended to a total function mapping the features not in the
domain to the index 0.

Arities are uniquely represented in the LVM. For every set of features a unique
entry in the arity table is used. The costs for creating resp. finding a unique arity
have to be paid when new records are created. In many cases the arity can be
created at compile resp. load time. Only when arities are created dynamically
the costs for creating a unique arity must be paid at run-time.

Unique arities allow to test the equality of two arities very efficiently. This is
for example necessary for inline-caching of field selections and for the efficient
unification and matching of records.

For the efficient compilation of record construction and record match (see Sec-
tion 3.4) a global order on all features must exist. This order must be consistent
with the mapping of the arities: if f < f’ wrt. to the global order then in every
arity containing f and f’ the mapping of f must be less than the mapping of f’.

3.3.3 Transients

An essential change in the refined graph model is the representation of transients.
In the language graph the binding of transients was explained as superimposition
of a new node on the transient. It is practically not possible to implement this
operation directly, because all links to the transient cannot be redirected to its
binding.

References Transients in the LVM use a variation of the representation intro-
duced in the WAM for logic variables. A transient is only accessible through an
indirection, called a reference. A reference is tagged pointer with the tag REF
where the pointer refers to another tagged node.

Transients are represented as tagged pointers with tag TRANS and a labelled
heap node, which contains a secondary tag for the different kinds of transients,
the home space, the suspensions, and possibly attributes.

3.3. A REFINED GRAPH MODEL 73

REF REF REF REF REF REF

unif (x, 1)

TRANS > INT

REF REF REF REF REF REF REF

unif (y, 2) REF

TRANS TRANS —> TRANS

VAR FUT FUT

Figure 3.16: Binding transients with multiple references.

Binding A transient is bound by overwriting its tagged node with a new tagged
node. Figure 3.16 shows a variable x with multiple references which is bound to
the number 1 and a unification of a variable y with a future z.

Dereferencing The reference nodes are not changed when a variable is bound
and remain in the graph. When binding a transient to another transient a chain
of references is created. A reference node can therefor refer to a transient node,
another reference node, or a determined node.

The LVM handles these cases by transparently dereferencing tagged nodes, before
using them. The dereference operation follows a chain of reference nodes until
the end. The dereference operation is performed whenever the type of a node is
needed.

Van Roy [104, 105, 106] uses an alternative design for dereferencing for high-
performance Prolog implementations. In this approach references are not deref-
erenced transparently, but an explicit operation to dereference a node is used.
This scheme is especially useful if the compiler finds out, e.g. with global analysis
techniques, where no references ever occur.

74 CHAPTER 3. THE VIRTUAL MACHINE LVM

In most cases the dereference operation is needless, because only very few ref-
erence nodes exist in typical programs. The LVM can circumvent the problem
of useless dereference operation, because it is dynamically typed. Whenever a
node of a certain type is expected, e.g. an integer in an arithmetic operation, a
type test has to be performed anyway to ensure that the node is of the expected
type. In the LVM the test for the expected type is done before the dereference
operation. Only if the node is not of the expected type a dereference operation
is performed and the type test is repeated.

The following program fragment shows the example of an operation to add one
to a node, which is expected to be an integer.
Tagged plusl(Tagged a) {
if ('islnteger(a)) {
a=deref(a);
if (lislnteger(a)) error;

}

// performoperation on integer node

Safe dereferencing As already pointed out transient nodes are no register
nodes and they cannot be duplicated. A problem which occurred frequently dur-
ing the implementation was the replication of transients after using dereferencing.
One has to be very careful that the node obtained by the dereference operator is
only stored in registers if it is no transient.

To circumvent this kind of bugs an alternative to the dereferencing until the end
of a reference chain is the safe dereferencing which guarantees that only register
nodes are returned. A reference node is only returned if it is the last reference in
a chain which points to a transient.

Shorten reference chains The virtual machine guarantees that no cyclic ref-
erence chain can be created, but reference chains can be arbitrary long. Possible
means to shorten reference chains® are:

e A heuristics which binds newer to older transients is useful for the functional
programming style, where two types of variables occur frequently: short
lived temporary variables which are bound quickly after their creation and
long lived variables which are for example bound at the end of a recursion.

3With spaces using the scripting technique the shortening of chains needs special care,
because it must be possible to undo bindings of transients.

3.3. A REFINED GRAPH MODEL 75

e When the garbage collector traverses the graph store it shortens the refer-
ence chains, such that only references to transient nodes remain.

e Nodes can be dereferenced before they are stored in a field. Under the
assumption that references are rare and most nodes are accessible without

a references the overhead for this technique is to high for a little gain and
is not used in the LVM.

e Similar is the technique to shorten reference chains when accessing a field,
which is also not performed in the LVM.

Transients in fields Transient nodes are not stored in the registers of the
LVM directly. They can be stored only on the heap and have to be referenced
indirectly with reference nodes in registers.

It is however possible to store transients directly in fields. This is useful to save
memory. Especially with the optimized representation explained below some
variables need no memory at all. Transients in fields are called direct transients.

When a transient in a field is accessed, e.g. to store it in another field or a
machine register, a complication occurs, because transients cannot be replicated.
The access to such a field needs to create a reference to this field which can then
be stored in registers and other fields.

To avoid that every field access introduces a sometimes superfluous reference node
a test is performed for every field access if the field contains a direct transient or
not. Allocating transients in fields requires special care in the copying garbage
collector to ensure that direct transients are not copied out from their fields (see
Chapter 4).

In the WAM representation of variables no such problem occurs because variables
are represented as self references and an access resp. copy of such a self referencing
pointer automatically turns it into a reference to the variable.

Transients cannot be stored directly in fields of cells, because these are overwritten
and potentially created references to this transient will refer to a wrong value after
an exchange.

Optimized variables The LVM supports an optimized representation of vari-
ables, with a single tagged pointer node with tag VAR. The pointer field of this
node refers to the home space of the variable (see Section 3.6).

The optimized variable is a variable with no suspensions and no attributes. When-
ever a suspension or attributes are added to this variables its representation is
transformed into the unoptimized transient representation.

76 CHAPTER 3. THE VIRTUAL MACHINE LVM

The major reason for the introduction of optimized variables is that the LVM
uses procedures with variables as call-by-reference parameters for returning out-
put and has no support for functions with a return value. Variables are thus
created frequently which are only introduced for the output argument and their
optimization has a real influence on the performance of almost every program.

The second effect of optimized variables is that they can be directly stored in
fields of records without requiring additional memory. In connection with the
call-by-reference ability this means that structures can be efficiently constructed
top-down with tail-recursive procedures.

In the following example of the append procedure app to concatenate two lists
the output list zs is constructed top-down. The temporary variable zr needs no
memory, because it can be directly allocated in the tail field of the list x: : xr.
The recursive application of app then gets a reference node to the tail field as
third argument.

fun app (nil, ys, zs) =unif (zs, ys)
| app (Xx::xr, ys, zs) =
let val zr = 1lvar () in
unif (zs, x :: zr);

app (xr, ys, zr)
end;

Optimized futures It is often useful to use futures instead of variables in
structures which are visible to concurrent threads to protect them. For example
in a consumer-producer application where the communication channel is imple-
mented as a stream it is usually desirable that only the consumer is able to write
to the stream. In this case the consumer would create a stream where the tail
is a future. The corresponding variable would be only visible to the consumer.
With the implementation of futures described above memory for a variable and
a future would be needed besides the memory for the stream.

The procedure appFut shows an append procedure with futures. The tail of the
list is the future of zr to avoid that a concurrent reader can write on the output
stream.

fun appFut (nil, ys, zs)
| appFut (x::xr, ys, zs)
let val zr = lvar () in
unif (zs, x :: future zr);
appFut (xr, ys, zr)
end;

uni f (zs, ys)

A variable with a future can be represented similarly to the optimized variables
described before. An optimized future is a tagged node with tag FUT and a

3.3. A REFINED GRAPH MODEL 77

pointer to the space. Similar to the optimized variable it is turned into the
transient representation when a thread suspends on it.

To represent the variable of this future we introduce a second kind of references,
namely write references, with the tag WREF. The variable of a future is then
represented as a write reference to the optimized future. When this variable
should be bound the dereference operation discovers that the reference is a write
reference to a future and the binding operations replaces the future with the new
binding.

A variable can be assigned only when the chain of references to the future contains
only write references. When a usual reference is found in the chain this means
that the variable represented with the write reference was already bound. Only
in the case that a transient must be bound the dereferencing operation has to be
extended to test that only write references are found.

When a field with an optimized future is accessed a usual reference is created.
When a field with an optimized variable is accessed a read-write reference is
generated.

3.3.4 Unification

The basic idea of a practical implementation of the unification algorithm is to
implement the equivalence classes by binding one structure to the other and
creating a reference similar to binding variables.

This algorithm has quadratic complexity, because the reference chains can grow
to the size of the tree, but for practical programs this does not occur and the
overhead for this implementation is much smaller compared to overhead for main-
taining the equivalence set.

This implementation of unification creates sharing of common structures. In
some cases this is a desired feature to reduce the memory consumption and it
also is a kind of memorization. To avoid problems with spaces the sharing must
be retractable. Therefore the unification algorithm trails every structure binding
and undoes all binding when the unification terminates (successfully or not).

The destructive unification is only possible because the LVM has a single worker
and unification is a non-interruptible atomic operation.

For an optimized implementation of unification it is essential to try the frequently
used cases first. Because the LVM implements output arguments of functions as
call-by-references parameters, it occurs very frequently that a variable is created
before a function application with is bound to a value inside the function. The
unify instruction therefore first tests for this very common case.

78 CHAPTER 3. THE VIRTUAL MACHINE LVM

3.3.5 Discussion

Three-layered representation scheme The LVM supports many built-in
data types, e.g. small integers, big integers, atoms, names, records, logic variables,
futures, cells, and procedures, and it is extensible to support even more types.
This is possible because it uses a scheme with three layers: tagged nodes, tagged
extensions, and generic extension.

The bottom layer are tagged nodes. Tagged nodes allow to implement frequently
used data types like small integers, lists, literals, variables and futures, efficiently.

Tagged extensions are not as efficient as tagged nodes, but there overhead is
very small compared to the cost of operations on the data they represent, e.g.
arithmetic on big numbers (see Chapter 4).

Generic extensions allow through a small set of interface function the integration
of arbitrary new data types. This interface is very convenient to experiment
with no types and to add data types where unbox, box, and type tests are not
performance critical (see Chapter 4).

The same layered approach is also used for transients, with optimized represen-
tations as tagged nodes for variables and futures, and a generic representation
as transient heap nodes. In Chapter 4 we show the virtual function interface for
transients which allows to integrate other types of transient values.

Other transient representations The representation of variables in the most
popular machine for Prolog, the WAM [110, 111, 1], inspired much of the represen-
tation of transients in the LVM. The representation of variables as self-references
from the WAM which is extremely useful for making the allocation of variables
in fields and their access efficient cannot be used in the LVM, because we support
multiple computation spaces and a variable needs to represent its home space.

The WAM allocates variables also in the registers of the environments. These
unsafe variables have to be treated carefully such that they are moved to the heap,
if they extend the lifetime of their activation record. In the LVM variables are
never allocated in registers, but it should be possible to integrate this technique
into the LVM. It is questionable what the gain of this optimization could be under
our assumption of an infrequent use of logic variables.

Return value placement Van Roy [105] proposes an optimized representation
of uninitialized variable for high-performance Prolog implementations. In the
LVM we do not use this technique because the number of variables used for
output arguments of functions which are not allocated in fields is very small. It
is furthermore unclear how to integrate spaces and uninitialized variables.

3.4. SEQUENTIAL EXECUTION 79

In logic programming and in the LVM return values are passed in memory using
logic variables as call-by value parameters. Functional languages typically use
machine registers to place return values. Both approaches have advantages and
disadvantages, e.g. the logic approach works very well for the tail-recursive top-
down construction of structures and the functional approach works very well for
numeric problems.

Bigot and Debray [13] discuss how to combine the placement of return values
in logic programming and functional programming and how to provide compiler
support for an optimal placement policy.

Scheidhauer [87] analyses the difference between the two placement policies for
Oz.

Taylor’s scheme Taylor [101] proposed a scheme to represent variables such
that no references remain after a variable is bound. This scheme was analyzed in
[59] and the authors came to the conclusion that for Prolog the gain is doubtful.

Taylors scheme is not compatible with the idea of tagged register nodes in the
LVM, because their essential property is that they are replicable and keeping
track of all valid replicas incurs to much overhead.

In the functional programming style references occur very infrequently and as
explained above the possibility of reference chains does not have an effect on the
efficiency of programs which do not have references.

3.4 Sequential execution

In this section we explain how a single thread is executed by the worker. We ex-
plain the instructions to create and access nodes, procedure definitions, procedure
applications, and pre-defined built-in procedures.

3.4.1 Worker

The worker executes the tasks of a thread in sequential order. The tasks on the
thread are of different types, namely continuations, save tasks, and handler tasks
(see Figure 3.17).

A continuation task (PC,G,Y) is a closure of a machine program starting at
the code address PC. G and Y are the environment for the execution of the
instructions. G is the reference to the procedure node in the store and Y is a
reference to the local environment.

80 CHAPTER 3. THE VIRTUAL MACHINE LVM

task type ‘ task content
continuation | (PC,G,Y)

save task save(Xy, ..., Xy)
handler task | ex(PC,G,Y)

Figure 3.17: Tasks.

The worker executes continuations by loading them into the corresponding task
registers PC', G, and Y. A continuation is then executed by an emulator in the
a fetch-decode-execute cycle. Instructions are fetched from the program store at
the address PC' and executed using the GG, Y and X registers to address nodes
in the store.

In the literature a continuation task is sometimes called procedure invocation or
activation record of procedures.

Saving X registers The worker maintains a single set of global registers X,
but it provides the illusion that every thread has its private set of X registers. The
illusion is preserved by saving all valid X registers when a thread is preempted
or suspended and restoring them when the thread is restarted.

A save task contains all currently valid nodes in the X registers. When the
worker restarts the execution of this thread the first task to execute is the save
task, which restores the values of the X registers.

The valid X registers are only approximated when a save task is created. The
LVM saves all X registers from zero to max X, where max X is the maximal num-
ber of X registers used in a procedure. This number is calculated by the compiler
and stored in the procedure definition instruction. During garbage collection the
exact number of used X registers is calculated using a liveness analysis algorithm
(see Chapter 4).

Exception handler task A handler task is created for exception handling.
They are never executed directly, but they are used as a marker on the stack of
a thread, when an exception is raised (see Section 3.4.7 below).

3.4.2 Store operations

In this section we give a brief overview of the instructions for creating and ac-
cessing nodes. An example for creating a record node is the function f as follows

fun f z =
l et val x=lvar ();

3.4. SEQUENTIAL EXECUTION 81

val y={"a’'=1, "b'=x, 'c¢’'=z}
in

end

It compiles into the following snippet of a pickle

v0: proc(s,[],Ibl,...)
vl: int(1)

% X[0] contains z

% X[1] contains x

% X[2] contains 'y

[bl :

createVari abl eX(1)

put RecordX(ar(’'a,’'b’,’c’), 2)
set Const ant (v1)

set Val ueX(1)

set Val ueX(0)

The createVari abl eX(1) instruction adds a variable node to the store and
puts a reference to it into the register X;. The put Recor dX instruction adds a
record node with arity {a,b, ¢} to the store and stores it into register Xo.

The fields of the record are not yet initialized. The structure pointer SP is set
to the first field of the record such that the following instructions can initialize
the fields of the record.

The instruction set Const ant(v1) writes the node represented at the pickle
label v1 (the integer one) into the first field and increments the structure pointer
(SP). set Val ueX(1) resp. set Val ueX(0) write = stored in X resp. z stored in
X into the remaining fields of the record.

The structure pointer (SP) is a generalization of the technique known from the
WAM to access the fields of tuples. In the LVM it allows to access the fields
of records. The insight here is that if the arity of a record is known at compile
time then the compiler can already compute the mapping of features to indices.
This mapping defines the order of the set instructions such that the fields can
be consecutively written.

Similar to the WAM the unification of records is optimized using get and uni fy
instructions. For example the function
fnx=>
l et val y=lvar()
in
unif(x, {"a:y 'b:y})
end

82 CHAPTER 3. THE VIRTUAL MACHINE LVM

is compiled into the bytecode
% X[0] contains x

% X[1] contains y

get RecordX(ar('a',’'b’),0)
uni fyVari abl eX(1)

uni fyVal ueX(1)

3.4.3 Control

In this section we briefly explain the basic ideas for compiling pattern matching.
In detail the control aspects of the core language are discussed in [87].

A case statement is compiled into a mat ch(i, ht) instruction, which contains a
hash table At which maps primitive values and record arities to code labels. We
use the notation ht(cy : li,...,cp t lyyoooyary 2 1y, .o ary, 2 1 celse : 1,) for a
hashtable which maps the constants ¢; to the labels [; and the arities ar; to the
labels /;. The match instruction has the else label [., which is used if no other
match is found in the hash table. The instruction suspends if the register X; is
a transient value*.

The following case expression

case x of {"a =x1,’b’=x2} => unif (o0, x1+x2)
| 1 => 2
| x => 3

is compiled to
v2: int(2)
v3: int(3)

% X[0] contains x
% X[1] contains o
mat chX(0, ht(1:11,ar("a ,’'b’):12,else:l3))
I 1:
get Constant(v2, 1)
return
| 2:
get Var Var (0, 2)
i nlinePlus(0, 2,0)
uni fyxX(0, 1)
return
| 3:
get Constant(v3,1)
return

4In mozart the match instruction is extended to support early failure for attributed variables.

3.4. SEQUENTIAL EXECUTION 83

To efficiently decompose records the mat ch instructions initializes the structure
pointer (SP) such that get Vari abl eX instructions can be used to read the field
values of records. The instruction get Var Var (7, j) is a combination of two get -
Var i abl eX instructions and reads the next two fields into the registers X; and
X

J

As optimization of the mat ch instruction with a single case the test instruc-
tions are provided, e.g. t est Const ant X(i, vc,) is equivalent to the instruction
mat chX(i, ht(vc : 1y, else : 1)), where [; is a label added to the directly following
instruction.

3.4.4 Procedures

Functions of the language L are represented as procedures in the LVM. Func-
tions are converted to procedures by adding an implicit argument, which is used
as call-by-reference argument for the result value. This means every function
fn x => e is transformed into a procedure with two arguments. In the our
syntax the resulting function would be fn (x, y) => unif (y, e).

In the LVM procedures with many arguments are allowed. The technique how
single argument functions can take advantage of the multiple argument calling
convention of the LVM is not discussed in detail here. Briefly every procedure
and every procedure application knows the expected resp. supplied arity and
during the application the proper conversions are done. When a procedure which
expects a single argument is called with multiple arguments these are packaged
into a single record. When a procedure which expects multiple arguments is
called with a single argument this is unpacked during the application.

Procedures are first class values and they are dynamically created. First class
value means that procedures are nodes in the graph store, which can for example
be passed as parameters to procedures and stored in other structures.

Dynamic creation means that procedures not only have a static part, the code,
but also a dynamic part, the procedure environment. The procedure environment
encapsulates the values of the free variables of a procedure at the moment of the
procedure definition.

To store temporary values during a procedure invocation a local environment can
be allocated (see below).

Procedure definition Procedures are created dynamically with the instruc-
tion defi nition(i,procBody). The procedure body procBody contains the
static information about the procedure. We use the notation pb(code : [bl, arity :
n,g:pe(ro:igy...,Tm:im), maxX : k,...) for the procedure body. The fields of
the procedure body are

84 CHAPTER 3. THE VIRTUAL MACHINE LVM

A code label [bl for the start of the bytecode of the procedure.
e The arity n of the procedure which defines the number of arguments.

e The procedure environment pe(rq : i, ..., "y : im), where . € {2’/ ') ¢'}
and 7; is an index. r; : 7, means that the [th entry of the procedure envi-
ronment is in register R;,, where R is X resp. Y resp. Z) if r; is 'x’ resp. 'y’
resp. 'z’. The node in R;, can be addressed with the G-addressing mode as
GG, in body of the procedure.

e The maximal number (maxX) of X registers used in the procedure. This
number is used for saving the X registers for context switches.

e Further static information, e.g. debug information like the procedure name,
the file, and line number.

The instruction def i ni ti on(i, pb) where pb is pb(code : lbl, arity : n, g : pe, maxX :
k,...) and pe is pe(ry : i1, ..., m i) creates a new procedure node in the graph
store with m fields, which are initialized with the nodes stored in R;,,..., R;, .
The procedure node is labelled with the procedure body pb. A reference to the
procedure node is written into the register Xj;.

As an example we show the compilation of the function f with argument x and
a free occurrence of c.

val c=1;
fun f x = x+c;

It is compiled to the pickle

vl: int(1)
-‘%ly-X[O] =c
%X1] =f

put Const ant (v1, 0)
definition(1, pb(code:lbl, arity:2,
g: pe(x:0), maxX=2,...))

| bl :

nmoveGX(0, 2)

i nlinePlus(0,2,0)

uni fyXX(0, 1)

return

Procedure application The procedure application cal | X(i,n) waits until X;
is a determined node. If X; is no procedure or the number of actual arguments n
does not match the expected number of formal arguments an exception is raised.

3.4. SEQUENTIAL EXECUTION 85

If R; is a procedure node with label pb(code : [bl,arity : n,g : pe,mazxX :
k,...) then a continuation (Ibl, —, R;) is created. The local environment in this
continuation is initially empty.

The worker saves the current continuation from the task registers on the task
stack and starts with the execution of this new continuation.

Return The code of a procedure is terminated with the r et ur n instruction.
The execution of this instruction informs the worker to execute the next task
from the thread.

Tail-call Tail-call optimization is essential in languages without loop constructs.
The compiler inserts the instruction t ai | Cal | X(i,n) for a sequence cal | X(i,n);
return of an application and a return instruction. When the worker executes
tail Cal | X(i,n) it creates a new continuation task as for the cal | X(¢, n) instruc-
tion, but does not save the current continuation from the task registers onto the
stack.

For tail-calls the task stack does not grow and therefore arbitrary deep recur-
sions are possible. Tail-call optimization is trivial in LVM, because there are no
inter-task references. In other words communication between tasks is done only
through the global X registers and the graph store. This is in contrast to many
other imperative languages, where references to local stack frames can be passed
as arguments or where stack frames are linked together.

Calling convention The LVM has a single calling convention for user-defined
procedures. A procedure has a fixed number of input arguments and no output
arguments. The arguments can be seen as call-by-reference parameters, because
only references to nodes in the store are passed as arguments.

The parameter are passed in the X registers, where Xg, ..., X, contain the actual
arguments. The content of the other X registers is undefined.

We use a caller-save model for registers which means that the caller is responsible
for saving X registers into the local environment before an application. After an
application the content of the X registers is undefined.

Optimized application The instruction di rect Cal | (v,n) is an instance of
the call-instruction where the compiler statically knows that the procedure is a
fixed value and will not change.

The virtual machine optimizes this case by using an unboxed representation for
the procedure. Furthermore the test if the number of actual and formal arguments

86 CHAPTER 3. THE VIRTUAL MACHINE LVM

match is performed only once. The details of these optimized calls are explained
in [87].

The performance difference between the optimized and the non-optimized appli-
cation is approximately a factor of two. A direct call is almost as efficient as a
jump. A small overhead has to be paid for the preemption test.

Local environment Local environments allow to store temporary values dur-
ing a procedure activation. A local environment which allows to store n references
to nodes is created with the instruction al | ocat e(n). Local environments are
addressed with the Y addressing mode.

In the virtual machine the allocation of the local environment is separated from
the creation of procedure tasks to allow for optimized allocations in different
branches of the computation, e.g. in many procedures no local environment is
needed in one of the branches of the computation.

Local environments have the property that they are single referenced, which is an
important invariant for memory management. After the deallocation the storage
of local environments can be immediately reused. This reuse provides for locality
of memory usage which maximizes the use of caches.

Local environments are explicitly deallocated with the deal | ocat e(n) instruc-
tion. The explicit deallocation allows to reuse memory as soon as possible. An
alternate design would be the implicit deallocation when the task terminates.
This design would limit the possibilities of a compiler to allocate and deallocate
many different environments on one paths of a procedure, e.g. to trim the envi-
ronment to the current need, and it would incur an overhead even for procedures
which do not need an environment.

Example As a very small example we show the bytecode generated for the
append function to concatenate two lists

fun app (nil, ys, zs) =unif (zs, ys)
| app (x::xr, ys, zs) =
let val zr = lvar () in
uni f (zs, x :: zr);

app (xr, ys, zr)
end;

The function app is compiled into the following pickle

VApp:
proc(s,[],!1bl)

definition(0,pb(code:lbl, arity:3, g;[],mxX3,...))

3.4. SEQUENTIAL EXECUTION 87

Name/In/Out description

record/1/1 dynamic record construction
select/2/1 field selection
newCell/1/1 cell creation
cellAccess/1/1 cell access
cellExchange/2/1 | cell exchange
newName/0/1 name generation
x,div,;mod/2/1 arithmetic

future/1/1 future

waitOr/2/0 synchronization
byNeed/1/1 by-need synchronization
featureC/3/0 feature constraint
widthC/2/0 width constraint
raise/1/0 raise an exception
spawn/1/0 fork a thread

Figure 3.18: Built-ins of the LVM.

| bl :

mat chX(0, ht(nil: 11, cons:12 else:l3))
I 1:

uni fyXX(1, 2)

return
| 2:

get Var Var (3, 0)

get Li st Val Var(2, 3, 2)

directTail Cal | (vApp, 3)
| 3:

rai seerror(...)

3.4.5 Built-in procedures

Similar to the usage of operators in the language definition the virtual machine
has built-ins. Built-ins implement core functionality of the LVM which is not
directly available through instructions. The built-ins of the LVM are summarized
in Figure 3.18.

Built-in procedures are a flexible extension mechanism for adding new function-
ality to the engine of the LVM.

The designer of the VM has the choice to implement operations as machine
instructions or as built-in procedures. The trade-off between these possibilities

88 CHAPTER 3. THE VIRTUAL MACHINE LVM

Return code | Explanation

PROCEED successful termination
SUSPEND block the thread

RAI SE raise an exception

other special purpose codes

Figure 3.19: Return codes.

is that the dispatch for instructions is much faster than the application of a
built-in. The number of instructions should be small to reduce the complexity
of the emulator. The overhead for calling a built-in procedure can, for example,
be tolerated if it is much smaller than the time spend for the operation itself,
e.g. dynamic creation of an arity. Built-in procedures are also well suited if the
functionality they provide is not time critical at all. They are very useful for
experimentation.

The instruction cal | Bl (vbi,loc) implements the application of built-in proce-
dures, where vbi is a reference to a node representing the built-in procedure and
loc is the mapping of the X registers to the input and output arguments. The
built-in procedure is called with the mapping as argument.

Return codes The result of the application of a buil-in function can be suc-
cessful, it may require to suspend the thread, or it raises an exception. These
conditions are signalled with a return code. The return codes are listed in Fig-
ure 3.19.

When a built-in procedure returns PROCEED it was successful and the next in-
struction is executed.

When a built-in procedure suspends, signaled with the SUSPEND return code, it
returns a list of transients in the field suspendVar Li st in the register r et I nf o.
In this case the worker saves the current task (PC,Y,G) and the X registers.
Then it creates a suspension to reschedule the thread when any of the transients
in the register r et | nf 0. suspendVar Li st is bound. The application of the built-
in procedure is retried when the thread is woken up. The suspension mechanism
is explained in Section 3.5.

When a built-in procedure raises an exception then the exception value is put
into the ret | nf 0. excepti onVal ue register. The worker is then responsible to
search for an exception handler as described in Section 3.4.7.

The cal | Bl instruction is a special case of the cal | instruction which is ex-
plained in Section 3.4. The compiler generates the optimized built-in call if it
statically known that a built-in procedure is applied.

3.4. SEQUENTIAL EXECUTION 89

The main difference between the generic application and the built-in application
is that the later is an inlined application. For inlined applications the compiler
does not generate code to save the global registers X; into the local environment,
because the built-in procedure only modifies the registers marked as output values
in the location mapping loc and leaves all other registers unchanged.

For example the compilation of the following two functions shows the difference
between the inlined compilation of select in f 1 and the non-inlined compilation
of a user-defined function in f 2.
fun f1 (x,y) =
let val z = select(Xx,y)
in
(x,2)

end

fun f2 (x,y) =
let val z = g(Xx,Vy)
in
(x,2)
end

The compilation of f 1 is short and straightforward.

% function f1
% X[0] =x
% X[1] =y and z
% X[2] =out put
| f1:
cal I Bl (vsel ect,loc([0,1],[1])
get RecordX(ar (1, 2), 2)
uni fyVal ueX(0)
uni fyVal ueX(1)
return

In the bytecode for f 2 a local environment is needed to save three registers before
the application of the function g.

% function f2

% Y[0] =x

% Y[1] =out put

% Y[2] =z

| f2:
al | ocatelL3
nmoveXY(0, 0)
nmoveXY(2, 1)
createVari abl eX(2)
nmoveXY(2, 2)
cal 1 ¢ 0, 2)

90 CHAPTER 3. THE VIRTUAL MACHINE LVM

Bit 0 1 2 3 4...31
Flag | NeedGC | PreemptThread | IOReady | Timer | unused
NeedGC Trigger a garbage collection. (see Chapter 4)
PreemptThread The time slice for a thread is expired.
IOReady An I/O channel is ready for new data. (see Chapter 4)
Timer The user timer is expired. (see also chapter Chapter 4)

Figure 3.20: The status register.

get RecordY(ar(1,2),1)
uni fyVal ueY(0)

uni fyVal ueY(2)

deal | ocat eL3

return

3.4.6 Status register

Before executing a task the worker checks if a bit in the status register is set
(see Figure 3.20). The status register signals events that have to be handled
synchronously to guarantee mutual exclusion for the store. These events are
asynchronously detected, e.g. in the memory management layer during the allo-
cation of new memory, when the operating system delivers Unix signals, when
preemption or user-defined timers expire, or when I/O channels are ready.

The worker preempts the execution of a thread when any bit in the status register
is set. The cost of the synchronization is: reading the status register, a test if it
is zero, and a conditional branch.

Discussion Various methods for the efficient integration of I/O are discussed
in [81, 5]. For an emulator-based approach our method seems to be well-suited.

One possible optimization is to lower the frequency of synchronization points by
using a counter stored in a native register. The counter is decremented at every
synchronization point, but the status register is only checked when the counter
is expired.

In an implementation of the LVM which supports multiple workers the status
register is obsolete. The techniques to synchronize the concurrent workers can be
also used to synchronize the asynchronous events.

Another alternative would be to give up fairness of threads and provide primitives
at the user level to preempt and yield a thread. This approach is for example
chosen for Java: the scheduling policy and fairness assumptions are not specified,

3.4. SEQUENTIAL EXECUTION 91

but these are implementation and platform specific. Oz is designed as a language
which supports efficient concurrency, which is scalable to thousands of threads.
Leaving fairness unspecified would lead to nonportable designs, which depend on
certain implementations resp. platforms.

3.4.7 Exceptions

Exception handling is implemented in the LVM with the instruction sequence as
follows

try(L)
...body ...
POpEX

The t ry instructions installs the exception handler during the execution of the
body and the popEx instruction removes the handler.

The t ry instruction first creates a handler task ex(L,G,Y"), where Y' is a copy
of the current local environment Y, and pushes this handler as a marker on the
task stack.

After the installation of the handler the following instructions are executed until
an exception is raised or the popEx instruction is executed. When no exception
is raised during the execution of the exception body the handler task is removed
from the top of the stack by the popEx instruction.

The generic compilation of catch (body, handl er) operator does not take
advantage of the local and procedure environment. Only if the compiler knows
the definition of the body resp. handl er procedure it can generate more efficient
code to reuse the environments.

Exceptions are first-class values and the built-in procedure rai se(i) raises the
exception with value X;. When a built-in procedure returns the exception status
code the worker searches for the topmost handler task on the task stack. If such
a task ex(PC,G,Y) is found all tasks including the handler task are removed
from the stack. Then the exception value is moved to X, and the handler task is
executed. If no handler is found on the task stack a default handler is executed,
which usually prints the exception and terminates the thread.

The main cost factors of the LVM exception handling are

e Two instructions must be executed to install and deinstall the handler if
no exception is ever raised.

e For the compiler the exception handler, and the code following r et ur n are
different tasks, i.e. nothing about the content of the X registers, except for
Xy in the exception body, can be assumed.

92 CHAPTER 3. THE VIRTUAL MACHINE LVM

e Optimizations which reorder instructions have to be very careful to respect
the exception semantics, e.g. moving constant expressions out of a procedure
is not allowed when this expression could possibly raise an exception.

Handler register A simple optimization of the mechanism to find an exception
handler is the introduction of a handler register per thread, which contains a
reference to the topmost exception handler task. To allow the efficient update of
the handler register all handler tasks are then linked together.

Tail-call optimization Exception handling prevents tail-call optimization for
the exception body, because the exception handler has to be explicitly deinstalled
with the instruction popEx.

It is possible to implicitly discard the exception handler whenever the worker sees
such a task at the top of the thread. This would allow to replace the sequence
popEx;return by a single return. A small drawback of this solution is that
the local environment cannot be shared between the exception body and the
exception handler, but it has to be explicitly copied.

Discussion The LVM exception mechanism is similar to the Standard ML of
New Jersey (SML/NJ) implementation of exception handling [7]. In SML/NJ
an explicit exception stack of handlers is maintained, which is updated whenever
the computation enters and exists the exception body. In the LVM the exception
stack and the task stack are integrated, which allows for the tail-call optimization.

In imperative languages, e.g. GNU C++ [99] and the JVM [60], exception han-
dling is implemented with tables, which map a range of program code to an
exception handler. When an exception is raised for each stack frame a lookup in
the exception table has to be performed. The advantage of exception tables is
that no instruction is executed at runtime when no exception is raised.

The LVM design does not use exception tables, because a design goal was that
raising an exception should be efficient and enables the use of exceptions as a

powerful programming construct for non local exits of recursive functions and
blocks.

3.5 Threads

3.5.1 Thread model

The LVM executes at most one thread at a time. A thread can be in one of three
states: runnable, running, or blocked (see Figure 3.21).

3.5. THREADS 93

wakeup blocked suspend

schedule terminate

o
L

create

runnable running

preempt

Figure 3.21: Thread states.

A new thread is created with the spawn built-in applied to a procedure. The
initial task on this thread is the application of the procedure. The new thread is
initially in the runnable state, which means that it has the potential to execute
its next task.

When a thread is selected for execution its state changes from runnable to running
and the worker starts its execution. In the LVM exactly one thread is in the state
running, because it has a singe worker.

An execution of a running thread can be preempted to guarantee fairness with
other runnable threads. In this case the status of the thread is changed from
running to runnable.

When the running thread suspends on one or more transients it becomes blocked.
A blocked thread is woken up when a transient on which it suspends is bound.

A running thread terminates when its task stack is empty.

3.5.2 Scheduler

The scheduler is responsible for maintaining the runnable threads and assigns
a thread to the worker for execution. The scheduler controls the preemption
of the thread executed by the worker to guarantees fairness among all runnable
threads. The runnable threads are stored in a queue and the scheduler uses a
simple round-robin policy to select a thread for the worker.

A preemption timer is started and the worker executes the thread. When the
preemption timer expires the time slice for the running thread is over and it
is preempted. Preemption of a running thread only happens when the worker
is active. During the emulation of instructions the preemption is ignored and
delayed until the next synchronization point.

94 CHAPTER 3. THE VIRTUAL MACHINE LVM

Preemptive scheduling The worker becomes active during the emulation at
certain synchronization points. The synchronization points are chosen such that
they are met frequently, but not too frequently.

§(t) << d The time between to synchronization points §(¢) should be much
smaller then the duration of the time slice d.

0 << §(t) The overhead at the synchronization points to check if the scheduler
requests preemption o should be much smaller than the time between two
synchronization points.

The LVM has two synchronization points. The first is the creation of new tasks,
e.g. when applying a procedure. The second is when a task is popped from
the stack. This scheme guarantees fairness, because unbound computations are
only possible through the creation of new tasks®. The synchronization point
when popping a task is necessary to avoid that the unwinding of a deeply nested
recursion does not impose an arbitrary delay on preemption.

Light-weight threads Threads in Oz are extremely light-weight, i.e. thou-
sands of threads can be created and scheduled. The major reasons for the ef-
ficiency of LVM threads are that no random preemption takes place and that
threads are implemented at the user level and not at the operating system level.
Fixed synchronization points for preemption ensure that the state of the engine
which has to be saved and restored when scheduling a thread is very small, i.e. the
X register, the self register, and the current task have to be saved and restored.
The overhead for testing the preemption condition at the synchronization point
is small.

Fairness The scheduler guarantees fairness for the execution of all runnable
thread by preempting the worker. The preemption condition can be a timeout
on a timer provided by the operating system or a timeout on the number of
instructions (or tasks) executed by the worker.

Preempting the worker means that the worker returns the thread to the scheduler.
It does so only after the execution of the current task is stopped. The fairness
condition is fulfilled, because the execution of every task is bound by an upper
limit.

One reason for delaying the preemption is that this gives a strong invariant for
atomicity: the execution of a task is never interrupted. While executing a task the

SExcept for naive procedures implemented through the LVM native API. The time for these
procedures is potentially unbound.

3.5. THREADS 95

virtual machine can be in an inconsistent state, e.g. undefined values in registers
and in the store, as long as it is consistent again when the execution of the task
stops.

The second reason is that the global X registers are shared among all threads.
To make this feasible a thread has exclusive access to them during the execution
of a task. Whenever a task stops the X registers are saved on the thread by
creating a save task, which restores the X registers when the thread is executed
again.

Discussion The scheduler is an orthogonal unit in the virtual machine. There-
fore it can be extended easily to support sophisticated scheduling techniques, e.g.
priorities or resource-based scheduling.

A disadvantage of this user-level thread package is that it cannot take advantage
of multiples processors. Two models are proposed to use multi-processors. One
model is a parallel implementation of the LVM [80] and the second model is a
distributed implementation of the LVM which uses shared memory as an efficient
communication layer [39].

3.5.3 Suspensions

Threads can suspend on transients. This means that the thread is removed from
the runnable queue of the scheduler until the transient is bound.

Suspending a thread on a transient involves the following steps
e A suspension is created, which contains a reference to the thread.
e This suspension is hooked onto the transient.
e The worker is informed that the current task is suspended.

A suspension is woken up when a transient is bound. Waking up a suspension
informs the scheduler that the thread is runnable.

Using suspensions as indirection between transients and threads is necessary be-
cause it is possible that a suspension is hooked to many transients. To explain
this we use the built-in wai t Or (z, 2'), which suspends the thread if both x and
2’ are transients. If one of these transients is bound the thread is woken up. In
this case the suspension has to be unhooked from the other transient to avoid
further wakeups.

To optimize the wakeup operation the unhook operation is done lazily. The
suspension is marked when the wakeup is done. It is not unhooked from the
other transients suspending on the disjunctive condition. Suspensions marked as
done are skipped during the wakeup.

96 CHAPTER 3. THE VIRTUAL MACHINE LVM

3.5.4 Events

The alarm mechanism of the operating system allows to trigger a signal handler
after a certain time. In the engine this alarm signal is used to execute a check
function at regular time intervals. This function serves different purposes:

e PreemptThread The expiration of the time slice of a thread is checked.
e IOReady I/O channels are watched for data.

e Timer User-defined timer events are handled.

The check function is triggered every 10 ms and sets the corresponding bits in the
status register. As explained above the engine eventually preempts the execution
of instructions and handles the events detected in the check function.

Threads are preempted at every Hth clock tick, which means that the time slice
of a thread is 50 milliseconds. This is implemented with an alarm timer which is
initialized when a new thread is scheduled.

In the LVM it is possible to block a thread on the ability to read resp. write
an I/O channel. The implementation maintains a list of all threads waiting for
I/O and their resp. I/O channels. During execution of the check function the
operating system is polled if one of these I/O channels is ready for read resp.
write.

An alternative approach to polling I/O would be asynchronous 1/0O, which has
the advantage that the operating system informs the engine when I/O is available.
The drawback of asynchronous I/O is that it is not portable between different
platforms.

The LVM supports soft real-time control with timers. A thread can be delayed
for a certain amount of time with the primitive del ay t where t is the time to
delay in milliseconds. This is implemented with a list of threads. This list is
sorted according to the time after the delay. During the execution of the check
function only the time after the first delay is tested for expiration.

3.5.5 Discussion

The thread model of L has the property that threads are explicitly created.
Before reaching this model we investigated two other approaches: the fine-grained
concurrency and jobs as an intermediate granularity.

In the fine-grained model the composition of two expressions is concurrent. Se-
quential execution can only be specified using data flow synchronization. In

3.6. SPACES 97

AKL [47] this concurrency model was used. It has the advantage that it supports
very well the declarative constraint programming style.

The fine-grained model introduces a huge burden on the implementation, because
many optimizations possible in a sequential environment are not possible, e.g.
the lifetime of X registers is much shorter. A major disadvantage of fine-grained
concurrency wrt. the language definition is that it is very difficult to combine
stateful programming with data flow-only synchronization.

A hybrid job model was designed, where a job is a sequence of expressions with
a sequential execution strategy. A program is a sequence of jobs, which are
also executed sequentially, but when an expression suspends a new concurrent
thread is created for the suspended job. This model was designed as a compro-
mise between the fine-grained concurrent constraint approach and the explicit
concurrency approach.

At the LVM level this job model has some nice properties, e.g. in most cases
the thread creation and scheduling overhead was saved, because jobs did not
suspend frequently. On the other side the maintenance of the jobs incurred an
overhead, because the tasks on the task stack had to be grouped into jobs. It
turned out that the implicit thread creation in the job model was to complicated
as a programming concept.

The compromise chosen in Oz is now such that threads must be explicitly created
and for constraint programming built-in light-weight threads called propagators
are used.

3.6 Spaces

In this section we introduce the extension of the virtual machine, which are
needed to support multiple computation spaces.

The basic services provided by the virtual machine are the execution of threads
situated in spaces and the detection of entailment and disentailed. The virtual
machine is extended with an additional storage area for spaces, with a trail, and
with a space register. A single instruction for the deep guard conditional is added
to create a new space and to synchronize on entailment or disentailment of this
space.

The main refinement of the space model introduced at the LVM layer is the
representation of multiple computation spaces multiplexed into a single store.
We introduce the script technique for maintaining multiple transient bindings
and compare it to the binding window technique.

98 CHAPTER 3. THE VIRTUAL MACHINE LVM

s ~. preempt
exit push,pop
discarded?
ok?
Scheduler instal| F=——————p{ \Worker
failed?
idle
fail

failure?

suspend

Figure 3.22: The extension of the engine for spaces.

3.6.1 Overview of the extended engine

The engine model is extended for spaces with hooks for the installation, termi-
nation, and suspension of threads and for the detection of failure exceptions as
outlined in Figure 3.22.

The hooks are drawn as boxes and have the following functions:

install When a thread is selected for execution its space is installed, i.e. the
script is executed.

exit When a thread is terminated the entailment and stability condition are
tested.

except The exception mechanism is extended to detect failure exceptions.

fail If a failure exception is raised and not handled by an exception handler or
the installation of the script fails, then the space is marked as failed and
considered as disentailed.

3.6. SPACES 99

Thread
Spaces
counter
¢ ¢ Home flags
script
root
thread

Space

Graph store

Figure 3.23: Engine state with spaces.

suspend When a thread is suspended a hook is needed for detecting stability,
which is not further explained in this thesis.

A new compartment of the engine is the store of spaces. Figure 3.23 shows a
store, where situated nodes and threads are labelled with their home space.

The LVM is extended with a space register space which contains the current
space. The trail keeps track of the installed speculative bindings.

A space has a reference to its parent space, a counter for the number of non-
terminated threads, a script containing the speculative bindings, a number of
flags, a reference to the root node, and a reference to the thread containing the
conditional which waits until entailment or disentailment of the space is detected.

3.6.2 Threads and spaces

Threads are situated in spaces. This is implemented in the virtual machine by a
references from the thread to its space. This means that the thread “knows” its
space. No references from the space to its threads are needed. The number of

100 CHAPTER 3. THE VIRTUAL MACHINE LVM

non-terminated threads is counted per space to decide one part of the entailment
condition.

When new threads are created they inherit the space from the current thread. In
this space the thread counter is incremented. A new space is equipped with an
initial thread.

Because the engine refers to the space of the current thread very often, this is
store in a space register. The space register is initialized from the thread when
its execution starts.

In the LVM all runnable threads are maintained by the scheduler in a global
thread queue. An alternate design to a global queue would be an organization of
the runnable threads per space. These local queues are used in AKL and have
the advantage that the locality of execution is exploited®.

When a space is failed all threads belonging to this space must be terminated.
To avoid references from a space to all its threads this is done lazily. Lazy means
that when a thread situated in a failed space or below is scheduled for execution
it is discarded during the installation, when the failed space is discovered.

3.6.3 The script technique

The basic problem of deeps guards is to efficiently represent speculative bindings.
In this section we describe the script technique for maintaining multiple bindings
of transients in different spaces.

Every space has a script. The script contains all speculative bindings of global
transients of a space. The script contains pairs of nodes: a global transient node
and its speculative binding.

To efficiently access the current binding of transients the space of a thread is
installed. A space is installed by installing its script. The installation of the script
makes all the speculative bindings active by executing the unification algorithm
with every pair of nodes in the script.

The speculative bindings have to be undone when the worker executes another
thread in a different space. For this purpose the speculative bindings are pushed
onto a stack, called the trail. Speculative bindings may be created during the
installation of the script and during the execution of a thread in a space.

The entries on the trail are pairs of a reference to the tagged node which was
speculatively bound and its old content, e.g. its old tag and pointer.

6This approach is taken for propagators, which implement built-in threads for constraint
propagation.

3.6. SPACES 101

Store Script Trail
)
Yy, Z
-- install
Store Script Trail

Figure 3.24: Installation and deinstallation.

When the worker leaves a space it is deinstalled. Deinstallation writes all specu-
lative bindings from the trail into the script and retracts the speculative bindings
in the store.

Bindings of local transients are not trailed and correspondingly never written into
the script. These bindings need not to be deinstalled, because the local transients
are not visible in the parent space.

Figure 3.24 shows the installation and deinstallation of a space. During the
installation the unifcations of x with 1 and of y with z are performed. We
assume that x was already bound globally and therefore the first unification is a
no op. The second unification speculatively binds u, which is trailed and during
the deinstallation this speculative binding is written to the script.

102 CHAPTER 3. THE VIRTUAL MACHINE LVM

Installation and deinstallation of paths L allows arbitrarily nested spaces
and the worker has to install the scripts in all spaces from the root of the com-
putation tree to the space of the thread.

The algorithm to install a path from the root space to a target space has two
phases: a collect phase and an activate phase. The collect phase starts from the
target space and collects all spaces on the path to the root of computation tree
on a stack. For this purpose every space needs a references to its parent space.
In the activate phase the spaces on the stack are installed.

The deinstallation of a path simply starts from the current space and deinstalls
all spaces up to the root space.

If the worker deinstalls a space and installs another space this can be optimized
by performing the deinstallation only until a common ancestor of both spaces is
reached. The installation of the path can started from this common ancestor. To
efficiently find the common ancestor spaces are marked when they are installed.
The collection phase starts as usual at the target space, but it stops when a space
is found which is marked as installed. This space is the common ancestor and
the deinstallation and installation procedure can proceed from there.

To write the local bindings into the script of the correct space during the dein-
stallation the trail has to be segmented with one segment per space on the path.
When the worker starts to install a space a new segment is allocated on the trail.
When a space is deinstalled the transients in the top segment are deinstalled and
this segment is removed from the trail.

The trail /script technique outlined above requires that the binding of a tran-
sient in the store can be undone. This implies that the virtual machine is not
allowed to shrink existing reference chains, while speculative bindings of tran-
sients are stored on the trail. This requires for example special care when doing
a garbage collection. In the LVM garbage collection is performed when all spaces
are deinstalled and no speculative binding is active.

Propagation The consistency condition for bindings in a tree of computation
spaces is that every transient is bound at most once on every path from its home
to any descendant space. To preserve this condition a binding is propagated to
all child spaces. Propagation removes the speculative bindings and reexecutes
the unification algorithm with the new and the old binding in the subordinated
spaces.

To find all speculative bindings the suspensions are extended for spaces. When a
space is deinstalled which has speculative bindings a suspension is created which
has a reference to the space. This suspension is hooked to every transient which
is speculatively bound in the space.

3.6. SPACES 103

The propagation of bindings is not done immediately when a new binding is
added, but it is done lazily. A wakeup thread is created in all spaces containing
local bindings. A wakeup thread has an empty task stack. The purpose of
the wakeup thread is to install its space and thereby performing the implicit
propagation of bindings.

The propagation happens implicitly during the execution of the script. As ex-
plained above the script contains pairs of nodes, which are unified during the
installation of the script. In the case of propagation both nodes are possibly
determined values. The application of the unification algorithm guarantees that
the equality of the two nodes is preserved or that the space is failed.

An interesting property of the installation technique is that constraint propaga-
tion is done lazily. Whenever a thread is executed in a space it is ensured that
all constraints are propagated to this space, because the script is installed before
the execution starts.

A little optimization is implemented in the LVM which ensures that for every
space a wakeup thread is only created if needed. When a thread enters the
running state its space is marked as propagated. If this mark is already set the
creation of the wakeup thread is omitted, because a runnable thread situated in
this space exists which ensures that the propagation takes place. The mark is
deleted when the space is installed.

Failure A space is failed when a failure exception is raised and not handled. The
failed space is deinstalled” and marked as failed to allow for the lazy termination
of its threads and the threads in child spaces.

Entailment The entailment condition for a space has two parts: it contains no
speculative bindings and and all threads are terminated. For the LVM the first
condition is equivalent to the test if the trail resp. script is empty.

The test that all threads are terminated can be implemented with a counter,
which is incremented for every new thread and decremented for every terminated
thread.

It is sufficient to check for entailment when a thread terminates. Both conditions
are only fulfilled together if the last thread terminates.

Merging The merge operation for entailed spaces consists of three parts: mak-
ing the merged space transparent, merging the script, and merging the thread
counter. Merging the thread counter simply adds the counter of the merged space
to the current space.

"Creating the script is not necessary, because the space will never be installed again.

104 CHAPTER 3. THE VIRTUAL MACHINE LVM

A merged space is marked as transparent, which means that all operations on
transparent spaces are redirected to the parent space. Spaces are made trans-
parent to avoid a complex machinery for updating all references from transients,
suspensions, and threads to the space. This is similar to the technique for binding
transients and has the same overhead for dereferencing.

The speculative bindings stored in the script of the merged space are added to
the current space through unification and thereby propagated to the subordinated
spaces.

Transient - transient bindings Bindings of transients to transients have to
be treated specially. The main reason for potential problems is that transients
are not ordered and the unification of two variables may bind them in any order.
For example when executing the following code fragment it may happen that in
the conditional (1) the transient x is bound to y and at position (2) y is bound
to X.

val x=lvar();

val y=lvar();

spawn fn () =>
cond (fn () =>unif (x, y), ..., ...); (x 1 %)

unif (y, x); (* 2 %)

In this situation the wakeup mechanism would not trigger propagation, because
in (1) a suspension is only added to x and in (2) only the suspensions of y are
woken.

Two possible symmetric solutions to fix this problem are:

1. Suspensions are added to both nodes if a transients is speculative bound to
another transient.

2. The suspensions of both transients are woken, when a transient is bound
to another transient.

The first solution is realized in the LVM. It has the advantage that, in the case
of binding a local transients to a value, it is not necessary to test that the bound
value is a transient. In this case work has to be done only when a speculative
binding is written into the script®.

Both solution have the problem that too many unnecessary wakeups may be
performed. Therefore we did an experimental implementation of special kinds

8 A second reason for this approach is that stability can be detected easily

3.6. SPACES 105

of suspensions for this case. These suspension allowed to perform the wakeup
exactly when needed. It turned out that the case of speculative bindings between
two transients occurs very infrequently and no optimization of this case is needed.

3.6.4 Binding windows and relative simplification

Many techniques are proposed in the literature to provide multiple views on
trees of constraint stores with shared variables. Especially in the context of OR-
parallel Prolog implementations sophisticated techniques are developed. Gupta
and Jayaraman [33] give an overview of the known techniques and classify these
according to three efficiency criteria: constant time access to the current binding
in a space, constant time thread creation, and constant time thread switching.
They show that at most two of these criteria can be simultaneously satisfied.

Beside of these three efficiency problems a virtual machine with deep guard op-
erators like the LVM must also implement the entailment test and the merge
operation of two spaces, which are not needed in Prolog implementations.

In the following paragraph we present two other techniques to represent multiple
bindings.

Binding arrays The binding array method was introduced in the context of
Prolog implementations by D. S. Warren [113]. The motivation for the binding
arrays was to allow for an exploration of the search tree using other strategies
than the built-in depth-first order of Prolog, but keeping the same performance
as backtracking. The technique was independently developed for OR-parallel
execution of Prolog by D. H. D. Warren [112].

The basic idea of the method is to allocate forwarder lists in every space. These
forwarder lists maintains the speculative bindings. When a global variable is
bound in a space an entry is added to the forwarder list, instead of modifying
the variable node and trailing it. To access the value of a variable a lookup in
all forwarder lists up to the home of the variable is executed, until a binding is
found or the home space is reached.

The lookup is optimized with a binding array. This is a structure allocated per
worker which contains all forwarders on the path from the current space of the
worker to the root space. The binding array allows to access variable values in
constant time®.

The complexity of this scheme for a single worker traversing the search space
depth-first is the same as for backtracking, because the overhead for dereferencing,
binding, and unbinding is constant.

9The binding array can be implemented as an array because in each path of the computation
tree the variables can be numbered consecutively.

106 CHAPTER 3. THE VIRTUAL MACHINE LVM

The overhead for switching the context is linear in the number of speculative bind-
ings which is acceptable because context switches are assumed to be infrequent
compared to the amount of work done in one space.

The binding scheme of Penny The binding scheme of the parallel AKL sys-
tem, Penny [65, 64], uses a simple forwarder list without binding arrays. The
authors argue that this simple scheme is very good for typical applications, be-
cause context switching can be done in constant time and the forwarder lists are
typically very short. Furthermore the trees of computation spaces are typically
flat and bushy and not deeply nested.

To efficiently find the suspended binding the forwarder list contains, beside spec-
ulative bindings, also local suspensions. The suspension for a binding is added to
the forwarder list in the parent space. If the parent is the home space suspensions
are added to the suspension list of the variable itself.

If a global variable is bound the forwarder list of the current space is searched for
suspensions. If a local variable is bound the suspension list of the variable are
woken up.

The beauty and the beast The beauty and the beast algorithm [78] is a
true incremental algorithm for deciding entailment for flat guards with feature
constraints. The basic idea is to avoid any kind of unnecessary recomputation by
creating a so-called beast storing all the work already done.

This algorithm was only studied in theory but a practical implementation is still
outstanding. Under the assumptions that speculative bindings are very infrequent
it is questionable if this approach leads to an improved algorithm.

Situated simplification A formalization of the entailment and disentailment
tests and proof of its correctness for rational tree constraints for deep guards is
given in [77].

The authors define the situated simplification as an extension of the unification
algorithm, which propagates bindings immediately. When the unification termi-
nates the path consistency condition holds, which states that at most one binding
for every variable on every path exists.

In the situated simplification and the beauty and the beast algorithm the equiv-
alence sets of structures discovered during the unification are recorded to avoid
their recomputation.

3.7. OTHER VIRTUAL MACHINES 107

Comparison The script technique as implemented in the LVM is a simple
binding method if the virtual machine has a single worker. It is also used in the
sequential implementation of AKL [47]. AKL only supports Prolog structures
and the extension of the script technique to records is defined in [98].

The reason for using the script technique for implementing multiple in LVM can
be summarized as follows:

e The virtual machine has a single worker. This implies that at every moment
only a single view on the bindings has to be efficiently supported.

e Spaces are used primarily for encapsulating computations for constraint
programming and search, where the vast amount of time is spent in prop-
agators and for cloning.

e The overhead for context switches for the worker, i.e. moving from one space
to another, is small compared to the execution time within a context. The
time slice for the execution of a thread is much longer then time needed to
switch the context. In constraint solving problems many threads run in the
same context.

e Only very few global variables are speculatively bound. The overwhelming
majority of bindings are for local variables. The overhead for implementing
a truly incremental algorithm is therefore not related to its benefits.

In our implementation a suspension is created for each deinstallation of the script.
This can be optimized by creating a single thread per space which has the role
of the wakeup thread and which is responsible for propagating bindings into this
space.

The script technique in the LVM has quadratic complexity for examples with
incremental bindings, because

e All bindings in the script are executed, even if a single binding must be
propagated.

e Structure-structure bindings are not stored in the script and must be reex-
ecuted for every installation of the script.

3.7 Other virtual machines

3.7.1 Prolog Abstract Machines

The design of LVM was influenced to a great extend by Warren’s design of the
abstract machine for Prolog, called WAM [110, 111, 1].

108 CHAPTER 3. THE VIRTUAL MACHINE LVM

The LVM uses the basic techniques developed for the WAM to represent symbolic
structures on a heap. This representation was adapted for records. The LVM uses
the same optimized representation of lists as found in many Prolog implementa-
tions. The optimizations for compiling unification into low level instructions can
be directly applied.

The LVM supports logic variables, but their representation could not be optimized
into self-references, because variables are situated in spaces and need to represent
their home pointer.

In the LVM variables are never allocated on the stack resp. in Y registers, but
only on the heap. Therefore no concept of unsafe variables is needed.

L does not support backtracking as primitive search strategy, but first class
spaces, which allow to efficiently program different search strategies [89]. The
major difference for the virtual machine is that many environments resp. spaces
are active simultaneously. Instead of generating choice points and trailing changes
the virtual machine supports cloning, i.e. copying, of spaces.

Like the WAM the virtual machine of L. has global resp. temporary registers X
and local resp. permanent registers Y. Arguments are passed through X registers
in both machines. To support first-class procedures the LVM has an additional
register G for addressing the procedure environment.

The design of the LVM is targeted for an emulator-based approach and not for
a high-performance native implementation. It is expected that the techniques
developed for high-performance Prolog implementation, e.g. Van Roy’s [105], or
Taylor’s [101], can be adapted.

3.7.2 The abstract machine of AKL

The Agents system [47] is the first implementation of AKL [27, 37] a deep guard
programming language. Many implementation techniques for deep guards were
pioneered in the Agents system.

L radically differs from AKL in its control strategy. Concurrency in AKL is fine
grained as opposed to L, which supports course grained concurrency. The im-
plementation concurrency for L requires to support preemption of computations
to guarantee fairness among threads and reactivity. Exception handling is not
supported in AKL, because it is only useful in the paradigm of threads.

Search in AKL is built-in and implicitly triggered. In L search is first-class [89].

The LVM supports a richer set of data types than AKL, e.g. names, records, and
first class procedures are essential parts requiring new implementation techniques.
The basic data type for stateful programming in AKL is a port. Compared to
cells in L. the implementation of ports is of a similar complexity.

3.7. OTHER VIRTUAL MACHINES 109

3.7.3 LIFE

The tree data structures realized in the LVM are based on the foundational work
on records [98] and features [4]. As part of the work on LIFE [2, 3, 78, 79]
record-like structures were analysed and implemented in a concurrent constraint
framework.

3.7.4 The Java Virtual Machine (JVM)

The Java Virtual Machine (JVM) [60] is a machine designed for the implemen-
tation of Java. Java is an imperative concurrent programming language using
the object-oriented imperative programming paradigm with automatic memory
management.

The JVM is designed to support a wide range of platforms including embedded
systems. The language requirements wrt. fairness and unsynchronized update and
access in Java are very weak. This weakness simplifies the implementation of the
JVM compared to the burden on the LVM to respect the interleaved semantics
of L.

The JVM is a stack based machine, i.e. it has no general purpose machine regis-
ters, but operands and arguments are passed through a data stack. This approach
compared to the register-based approach of LVM simplifies the compiler and the
implementation of the virtual machines in some aspects, but many optimizations,
e.g. using machine registers for passing arguments, requires non-trivial runtime
optimizations [23, 24].

The design of the exception mechanism in the JVM is optimized for the case that
exceptions are raised only in rare circumstances. An exception handler incurs
no overhead at runtime if no exception is raised. When an exception is raised
all stack frames are scanned to test if its PC refers to a region protected by an
exception handler. Using exceptions for non-standard control primitives is not
feasible with this approach.

The JVM does not support tail-call optimization, instead the usual loop con-
structs of imperative languages, e.g. while and for, are supported. The design
of the JVM does not prevent tail-call optimization, but it seems that tail-call
optimization has no priority for JVM developers.

3.7.5 Functional languages

Many ideas from the implementation of functional languages [7, 76] apply very
well to the LVM. First-class procedures in L are very similar to first-class functions

110 CHAPTER 3. THE VIRTUAL MACHINE LVM

and compilation techniques like closure conversion and continuation passing could
be easily adapted to the LVM.

Closure conversion transform procedures such that its free variables become addi-
tional formal arguments. To such a converted procedure the values of the closure
are passed as additional actual arguments. This technique makes the G' address-
ing mode obsolete and is especially useful for native implementations and for
elaborated compiler optimizations.

The continuation passing style is an alternative implementation to a stack based
implementation of threads. In this approach every procedure is converted into
a procedure with a continuation as additional argument. The continuation is
tail-called at the end of the procedure instead of returning from the procedure.
The continuation passed when calling a procedure is a closure representing the
code which follows the procedure call.

Using continuation passing style for the a virtual machine simplifies the repre-
sentation of threads, but requires to create a lot of closures. It pays off if the
compiler aggressively optimizes the creation of closures.

The convention for returning values differs between L and functional languages.
In L logic variables are used to pass values back to the caller of a procedure. In
the LVM this is optimized for creating symbolic data structures. In the imple-
mentation of functional languages values are usually returned through registers.
This typically avoids the overhead of creating and binding variables and often
leads to a better register usage. On the other side it can hinder the tail recursion
optimization, e.g. the L. procedure for concatenation app is tail recursive, whereas
the functional version is not.

Many functional languages have single argument functions. Multiple arguments
are realized with pairing. To get the same efficiency as possible with multiple
arguments a technique called deforestation [109] can be used. The basic idea of
deforestation is to delay the pairing as far as possible. If a pair for example is
passed as an argument to a procedure its fields are passed separately and they
are never combined into the structure if the procedure directly decomposes its
argument. In the LVM we use a similar technique for the implementation of
first-class messages in the object system.

A major difference between L and many functional language is the type system. In
L everything is dynamically typed, whereas functional languages, like Standard
ML and Haskell, have a strong type system. The dynamic type system of L
hinders many optimizations which take advantage of static type information, e.g.
avoiding dereferencing and dynamic type tests and representing values as unbox
and untagged data structures.

Reppy [81, 82, 83, 84| describes a concurrent extension (CML) of Standard ML.
The communication primitive of CML is a first-class channel with two syn-
chronous operations. accept reads from and send writes to a channel. Both

3.7. OTHER VIRTUAL MACHINES 111

operations block until a pair of threads meet at a channel where one performs an
accept and the other a send operation.

The implementation of CML is build on top of Standard ML using its primitives
for first-class continuations and asynchronous signals to implement light-weight
threads. When a signal occurs the current continuation is grabbed and passed to
a signal handler. This allows to preempt a thread with its state captured in the
current continuation.

3.7.6 Erlang’s virtual machines (JAM, TEAM/BEAM)

Erlang [9] is a concurrent functional language designed for telephony applications.
Two aspects of the language design are different compared to L: threads (which
are called processes in Erlang) have no shared memory and the language does
not support stateful data types.

As a functional language Erlang requires proper tail-call optimization. The com-
munication is based on a message queue per process and a wait primitive to
synchronize on messages in queue.

For Erlang two sequential virtual machines were designed: JAM [8] an emulator-
based stack machine and TEAM/BEAM [41] a high-performance native imple-
mentation with a register based intermediate language.

Both implementation use separate stacks and heaps for every thread. The Erlang
implementation is also influenced by the WAM, e.g. for the representation of data
structures they use tagged pointers and pattern matching is implemented with
indexing. Environments are allocated per pattern rule, which is similar to the
WAM where the environment is allocated per clause.

Similar to the LVM Erlang has light-weight processes with a well-defined seman-
tics. The implementation is a single threaded OS process with a round robin
scheduler and possible preemption when executing calls.

The memory management of Erlang is based on a copying garbage collector.
Garbage collection is performed on a per-thread basis, because every thread has
its own heap. A nice property of Erlang is that no cyclic data structures can be
created, which simplifies the garbage collection algorithm.

The overhead for garbage collection in Erlang is very high for examples with
many threads and a lot of communication. The problem occurs because threads
have no shared memory and the messages must be copied between the threads.
The problem is further enlarged by the fact that object oriented programming is
supported as active objects with a thread per object. Erlang has no stateful data
structures and hence no possibility to express objects without thread.

112 CHAPTER 3. THE VIRTUAL MACHINE LVM

As a summary the shared store for threads in the LVM has the advantage that no
data structures must be copied during the communication among threads. On
the other side the technique to allocate memory per thread in Erlang has the
advantage that independent and concurrent garbage collection for each thread
is possible. Furthermore the distribution of threads among many sites and the
mapping of threads to multiple processors becomes simpler.

3.8 Summary of the design principles

Intermediate level of abstraction The virtual machine hides irrelevant de-
tails of concrete machines. It provides sufficient high-level abstractions to avoid
unnecessarily complicated compilers. It provides enough low-level abstractions
to allow the compiler to generate code which can be efficiently emulated.

A virtual machine is a good implementation compromise for a new programming
language, which changes frequently and where experiments with new ideas are
performed. A virtual machine is not as flexible, wrt. changes, as an interpreter,
but its performance is much better.

Another advantage of a virtual machine is portability. The Mozart implementa-
tion, which is written in C/C++, has been adapted to many platforms.

Emulator-based implementation The machine language is designed for an
emulator-based implementation. This means that the emulation overhead should
be minimized. Therefor the instruction set is coarse-grained: many micro in-
structions are combined into one LVM instruction.

An intermediate language as target for native compilation has to be designed very
differently. The work of Van Roy [105] and Taylor [101] on high-performance
compilation of Prolog indicates that the intermediate language has to be at a
very low-level and close to the hardware to reach the speed of C/C++. This
is definitely not the case for the LVM, which has for example high-level graph
rewriting and synchronization instructions.

Using a simple macro expansion of the LVM machine code to native code will
surely give some speedup, but it is not the right track to reach a high-performance
implementation.

Single worker The virtual machine is designed to run on single processor ma-
chines. A simple scheduler for concurrent threads is built into the virtual machine.
The single processor model gives strong invariants for atomicity and simplifies the
implementation of the interleaved semantics of L.

3.8. SUMMARY OF THE DESIGN PRINCIPLES 113

Multiple worker architectures for concurrent constraint languages are studied
in [80] and [64]. In [80] the coarse-grained parallelism on the thread level of
L is exploited. [64] exploits fine grained parallelism in the language AKL. Both
projects show that a sequential virtual machine is a good starting point to explore
parallelism.

Shared memory architecture The graph store of the LVM is shared between
all threads. This differs from message passing architectures, where all threads
have their own memory and communication between threads is done by message
passing. The only means to communicate between threads in the LVM is through
shared nodes. The LVM has no message passing primitives built-in, but they can
be expressed efficiently using records, transients and cells.

A shared memory architecture has the advantage that data structures need not
to be copied when communicating between threads. Only a reference to a node
in the graph has to be actually sent from one thread to another.

For parallel and distributed implementations shared data structures require more
effort in the synchronization code of the implementation, but for programmers
shared data structures are very powerful.

Memory management in shared architectures is also more ambitious: to reclaim
the memory of nodes potentially many threads are involved and have to be syn-
chronized. In Erlang implementations [41, 8] every thread (called process there)
has its own memory management. Non-shared memory architectures allow for a
better real-time control, because threads are better decoupled. In the LVM (see
chapter Section 4.6) we use a stop and copy collector, which stops the execution
of all threads, reclaims the memory and after that restarts the execution of the
threads.

Automatic memory management The LVM provides automatic memory
management. Automatic memory management is well-understood and standard
in modern high-level languages [114, 115].

The basic garbage collection rule for the LVM is that only the nodes reachable
from the runnable threads and threads pending on I/O or the timer are live data.

In Section 4.6 the implementation issues for the automatic memory management
in the LVM is discussed.

First-class procedures The LVM has direct support for procedures with lex-
ical scope and infinite extend, so called first-class procedures. Basically this
means that the procedure application installs the environment captured at the
procedure definition. The virtual machine has an additional addressing mode for

114 CHAPTER 3. THE VIRTUAL MACHINE LVM

this environment. In an emulator-based implementation the support of first-class
procedures comes almost for free.

An alternative approach to compile first-class procedures is closure conversion [7].
This technique converts first-class procedures into procedures with an additional
argument containing the captured closure. The advantage of this technique is that
no additional addressing mode is needed. A disadvantage of closure conversion
is that it adds a level of indirection to address a node.

Tail call optimization The virtual machine has no loop constructs, but im-
plements tail call optimization, i.e. if the last instruction of a procedure is an
application, the stack frame of the caller is removed before the application. Tail
call optimization allows to implement loop constructs efficiently. It has additional
expressiveness, because any tail call is optimized and for example mutually tail
recursive procedures don’t need space on the stack of the thread.

In an emulator-based implementation tail calls can be implemented almost as
efficiently as jumps. Therefore it is not necessary to complicate the compiler and
engine with loop constructs.

Graph abstraction The graph abstraction is the canonical representation of
data-structures in high-level languages with automatic memory management. A
unit with links to other nodes is the single primitive abstraction for the repre-
sentation of a value. The unit itself contains type specific scalar information and
the links are directed and ordered connections to other nodes.

With this single concept all primitive language data types can be implemented
efficiently. The graph abstraction maps very well to imperative data structures
and automatic memory management is straightforward.

The store of the LVM is designed such that it provides for efficient representations
of dynamically typed values for an emulator based VM. The underlying assump-
tion is that the compiler does not compute static type information, e.g. an actual
argument of a procedure (user-defined or built-in) can be of an arbitrary type
and the VM has to handle it dynamically.

The store has to represent many different types of values. We use a layered ap-
proach. The core layer contains a few main data types, which are implemented
highly efficient using tagged pointers. The basic layer, which contains the ma-
jority of types, is implemented with tagged objects. The extension layer, which
opens the system to add new data types, uses objects with late binding.

The layered approach has the advantage that efficiency can be traded with sim-
plicity, e.g. experimental data-types can be added easily and the essential data-
types, e.g. integers, references, and transients, can be optimized.

3.8. SUMMARY OF THE DESIGN PRINCIPLES 115

Transient values are basically used for constraint programming and synchroniza-
tion of threads. The store is designed such that transient values are almost
gracefully degrading. If transient values do not occur in programs there should
be no penalty. The major reason why this could be achieved in the LVM is,
that all values are represented with dynamic type information and the test for
determination can be integrated at no cost with the type test.

Another design goal is modularity and orthogonality of data structures. Data
types are implemented in the LVM independently. The glue is the tagging scheme
at the core layer, the tagged objects at the basic layer, and a virtual function
interface at the extension layer.

I/0 as orthogonal concept Input and output is not integrated into the vir-
tual machine. I/O is modeled with ports as endpoints for communication with
the outside world. A port [49] is an abstraction for many many-to-one commu-
nication with a stream for the reader and a send procedure for the writer. Ports
can be easily expressed in L (see [96]).

Output is modeled as a port to which messages can be sent from MyOz and which
have some impact on the outside. Input is modeled as a port on which messages
arrive from the outside.

No limitations The virtual machine imposes no artificial limitations: the num-
ber of local registers Y is unlimited, arbitrary many threads can be created and
scheduled, the graph store is unlimited, arities and the number of subtrees can be
arbitrary large, an infinite number of new names can be generated, integers are
not limited. These requirements simplify the compilation of the high-level lan-
guage into the machine language, but they require some effort when implementing
the virtual machine.

Control-stack and data heap The stack of tasks in threads is solely a control
stack and the data structures of the language are stored on the heap. This setup
clearly separates control from data. This separation guarantees for example that
the tail-call optimization can be applied for every tail recursive application.

Built-in procedures Some of functionality of the LVM is implemented as
built-in procedures, where performance is not an issue. This allows to keep the
number of machine instructions small and focussed on the performance critical
aspects.

Built-in procedures can also be used as a flexible mechanism to extend the virtual
machine.

116 CHAPTER 3. THE VIRTUAL MACHINE LVM

With respect to compiler optimizations built-in procedures can be handled like
other machine instructions, e.g. an application of a built-in does not invalidate
the contents of X registers.

Chapter 4

Implementation aspects

In this chapter some aspects of the implementation of the LVM in C++ are
discussed. The main focus is on the representation of the data-structures in the
store.

4.1 Storage representations

In the LVM the type of every unit is available at runtime and the implementation
has to dynamically represent these types of units.

The main techniques for representing dynamic type information are tagged ob-
jects and tagged pointers. Typically an implementation has to find a compromise
using a hybrid mix to trade the simplicity of tagged objects vs. the efficiency of
tagged pointers.

The virtual machine supports more types than the language, because various
subtypes have optimized representations, e.g. lists and tuples. The LVM tag
scheme uses a representation, which allows for speed and memory optimizations
of frequently used data types.

The operations on dynamically typed values are type tests, boxing, and unbozing.
Types tests require the type of a unit and test if this unit is of a certain required
type. Boxing creates a dynamically typed unit. Unboxing extracts the raw
information from a dynamically typed unit.

In a language where virtually all units are dynamically typed, these operations
are executed most frequently and therefore every optimization contributes signif-
icantly to the performance of the whole system.

117

118 CHAPTER 4. IMPLEMENTATION ASPECTS

4.1.1 Tagged objects

Tagged objects are simple data structures which have a type field and additional
fields depending on the type. Tagged objects of a certain type can be implemented
as subclasses of the class TaggedObj ect.

cl ass TaggedObj ect {
prot ect ed:

int type;

TaggedObj ect(int t) : type(t) {}
public:

int getType() { return type; }

}

A list element Cons for example can be implemented trivially as a tagged object
with two additional fields for the head and the tail of the list.

class Cons : public TaggedObject {
prot ect ed:
TaggedObj ect xhead;
TaggedQObj ect xtail;
publi c:
Cons(Taggednj ect xh, TaggedObj ect x*t)
TaggedObj ect (CONS), head(h), tail(t) {}

TaggedObj ect xhead() { return head; }
TaggedObj ect xtail () { return tail; }

}

Similarly integers can be implemented as tagged object with an additional integer
valued field.
class Int : public TaggedObject {
pr ot ect ed:

int val;
public:

Int(int v)

TaggedObj ect (I NT), val (v) {}

int getlnt() { return val; }

}

The main advantage of the tagged object implementation is its simplicity and reg-
ularity, e.g. the memory management can use the invariant that all data structures
on the heap start with the type field.

In a system using only tagged objects the machine registers and the fields of struc-
tures, e.g. the head and tail in the class Cons, contain pointers to tagged objects.
This means that tagged objects are always referenced through an indirection.

4.1. STORAGE REPRESENTATIONS 119

The type test therefore requires not only a comparison but additionally a memory
access for the indirect access to the tagged object. Boxing and unboxing are trivial
casts with no runtime costs.

4.1.2 Tagged pointers

Tagged pointers are a data structure which fits into a word of the target architec-
ture (typically 32 bits). The word is split into the tag (4 bits) and data field (28
bits). The tag contains the type informations. And the data field contains the
value. If the value does not fit in the data, then additional storage is allocated
and the data field contains a pointer to this additional storage.

Pointers Pointers are encoded into the 28 data bits of a tagged pointer combin-
ing two techniques. First, every heap node is aligned to word size. This ensures
that the least significant two bits of a pointer are always zero, hence only 30 bits
must be stored. Second, only 230 bytes (1 GB) of the available virtual memory is
used. These two techniques allow to represent a pointer in 28 bits. The overhead
for tagging and untagging pointers is significant.

The class Tagged shown below is an implementation of tagged pointers. It has
initialization (Tagged constructors), update (set), and access (get) methods.

cl ass Tagged

{ M
private:
static const mask=15;
static const bits=4;
unsi gned int tagged,;
voi d checkTag(int tag) {
Assert(tag >= 0 && tag <= mask);
¥
voi d checkVal (int val) {
Assert((val & (mask<<(32-bits))) == 0);
¥
voi d checkPtr(voidx ptr) {
unsi gned int val =(unsigned int) ptr;
Assert ((val &3) ==0);
Assert ((val & 3<<30))==mal | ocBase) ;
}
publi c:
Tagged() { tagged = 0; }
Tagged(voi dx ptr,int tag) { set(ptr,tag); }

Tagged(unsigned int val,int tag) { set(val,tag); }

120 CHAPTER 4. IMPLEMENTATION ASPECTS

void set(voidx ptr,int tag) {

checkPtr(ptr);

checkTag(t ag);

tagged = (((unsigned int)ptr)<<(bits—2)) | tag;
¥
void set(unsigned int val,int tag) {

checkTag(t ag);

checkVal (val);

tagged = (val<<bits) | tag;

¥
unsi gned intx getRef() { return & agged; }
i nt tag() { return (tagged&mask); }
unsigned int getData(){ return tagged>>bits; }
voi dx getPtr() {

return (voidx«) (mal | ocBase|((tagged>>(bits—2))& 3));
}

h

Boxing The set methods implement boxing. They need one shift and one
logical OR operation. For the zero tag! boxing reduces to a single shift. This
optimization comes for free, when using an optimizing C++ compiler.

Unboxing The get methods implement unboxing. They need a single shift for
non pointer values. Pointers require a shift by two and a AND operation to put
zeros in the two least significant bits. Unboxing pointers can be compiled into a
single shift if the tag has the bit pattern xx00.

On some architectures, where the heap segment cannot be allocated at the bot-
tom of the memory, i.e. the two most significant bits of pointers are not zero,
an additional operation to add the segment start is required when unboxing a
pointer.

Type tests Type tests are done by masking out the bits of the tag and com-
paring this tag with the required tag. The zero tag is optimized by the C++
compiler, because the result of mask operation is already the negated result of
the type test: false (zero in C++), if the tagged pointer has the zero tag and
true (non-zero in C++) otherwise. When the result is immediately used in a
conditional the C++ compiler can remove the otherwise required negation and
normalization.

!The zero tag is used for representing references in the LVM tag scheme.

4.1. STORAGE REPRESENTATIONS 121

The check methods show how we implement method contracts in C++4 as a
mixture of comments and runtime checks: the Assert macro expands to the
empty statement in the production system and to an explicit test with an error
message in the development system.

The following code shows examples of a tagged pointer representation of list
elements and integers.

cl ass ConsData {

friend class Cons;

Tagged head;

Tagged tail;

¥

class Cons : public Tagged {
publi c:
Cons(Tagged h, Tagged t) : Tagged() {
set (CONS, new ConsData(h,t));

¥
Tagged getHead() { return (*(ConsData x) getPtr()).head; }

Tagged getTail () { return (x(ConsData %) getPtr()).tail; }
b

The list element does not fit into the tagged pointer and requires to allocate
additional data cl ass ConsDat a for the head and tail fields.
class SmallInt : public Tagged {
publi c:
Int(int i) : Tagged(INT,i) { }
int getint() { return getData(); }
¥

The integer type implementation is a straight-forward refinement of the Tagged
class with the limitation that only 28 bit integers can be stored.

The advantage of the tagged pointer scheme is the smaller memory footprint and
a better performance especially for type tests. Tagged pointers can be stored
in the fields of structures and in machine registers. For some values,e.g. small
integers, everything fits into the tagged pointer and does not need additional
memory. Compared to the tagged objects the type tests for tagged pointers
require no memory access, because the type information is stored directly in the
pointer.

The main drawback of tagged pointers is that they impose several restrictions.
Pointers must fit into the remaining bits of the data field. For integers the im-
plementation limits their range to [—227, +227 — 1]. The efficient implementation
of the arithmetic operators requires additional efforts [87].

122 CHAPTER 4. IMPLEMENTATION ASPECTS
Num | Bits | Tag Data Explanation
0 0000 | REF Taggedx reference
4 0100 | W\REF | Taggedx read-write reference
8 1000 | REF3 reserved
12 1100 | REF4 reserved
1 0001 | TRANS | Tr ansBodyx | transient
5) 0101 | UVAR | space optimized variable
9 1001 | FUT space optimized future
13 1101 | cC Taggedx garbage collection
2 0010 | CONS | ConsDat a*x | list element
3 0011 | REC Struct urex | record or tuple
6 0110 | I NT direct value | small integer
7 0111 | EXT Ext ensi onx | extension
10 1010 | VEXT | Ext Bodyx generic/virtual extension
11 1011 | FLOAT | Fl oat * floating point value
14 1110 unused
15 1111 | LT Literal x literal

Figure 4.1: The LVM tag scheme.

Furthermore the number of available tag bits limits the number of possible repre-
sentations for data-types. Instead of a fixed number of tag bits an implementation
with varying numbers bits is possible.

Another variant of tagged pointers used in the LVM is an encoding where two bits
are used for tagging and 30 bits are available for data. This allows to represent
arbitrary pointers to word aligned data. It is for example used for the secondary
tag to distinguish records and tuples.

4.1.3 The LVM tag scheme

Figure 4.1 shows the tag scheme of the LVM. The different types are explained
in the following sections. Pointer values are marked with a star, e.g. Tagged™ is
a pointer to a tagged pointer.

The LVM uses a hybrid scheme of tagged pointers and tagged objects: as much
as needed is encoded as tagged pointer (see Figure 4.1). One tag EXT is reserved
for tagged objects which have secondary tags as listed in Figure 4.2. Another tag
VEXT is reserved for virtual objects, which uses late binding instead of an explicit
tag. These virtual objects are explained in Section 4.5.

The tagged pointer with all bits zero, the TaggedNULL, is reserved for special
proposes, e.g. for signalling errors and exceptions.

STORAGE REPRESENTATIONS 123
Tag Explanation
PROC user-defined procedure
BUILTIN | built-in procedure
CLASS class
OBJECT | object
THREAD | first class thread
CELL cell

SPACE first class space
PORT port

CHUNK | chunk

ARRAY | array

DICT dictionary
LOCK lock

Figure 4.2: Secondary tags.

Integers Integers in the interval [—2%7 + 1, +2%7 — 1] are represented directly
in the data part of the tagged pointer using the | NT tag. Operations on these
integers are optimized such that no unboxing is needed.

Integers outside this interval are represented as extension with a secondary tag
(see Section 4.5). These integers use an external package, namely the GNU multi
precision library, version 2 to implement big integers and their operations.

Floats Floats are represented as tagged pointers using the FLOAT tag. They
refer to a heap node containing a IEEE floating point with double precision
representation of float values. These heap nodes are aligned to double word
boundaries on the heap, because floating point arithmetic requires it. It is then
possible that for every float a word is vasted on the heap for alignment.

4.1.4 Discussion

Gudeman [32] gives a good overview of techniques to represent values in dynam-
ically typed languages and defines basic notions.

The LVM tag scheme is a compromise which optimizes the case that dereferencing
and test for determination must be done at runtime. As explained above the zero
tag (REF in the LVM tag scheme) allows for optimized type tests, boxing and
unboxing operations.

We have also analyzed an alternative tag scheme, where no boxing and unboxing
is needed for the REF tag. In this scheme all tags (0,4,8, and 12) with the

124 CHAPTER 4. IMPLEMENTATION ASPECTS

two least significant bits of zero are used as REF tags. For small benchmarks
(tak, nrev) boxing and unboxing of REF tags, especially in conjunction with the
allocation of transients in structures (see Section 4.2), are done so frequently that
this optimization implies a performance difference of approximately ten percent.
In other applications, e.g. the compiler or the scheduler, the difference is not
significant.

The encoding of transients is such that if a tagged pointer is known to be no
reference then the test if it is a transient is very cheap: t is a transient if t &==0,
which is similar to the test for a reference.

Another optimization is the encoding of the CONS tag for the representation of
lists. The CONS tag is especially optimized, because lists are a convenient method
for representing dynamic data structures and list iteration occurs frequently in
applications. If it is known that a tagged pointer is no reference and no transient
then the test if £ is CONS is a single AND operation t &13==0.

Using tagged pointers has a drawback with respect to moving and copying values.
A tagged pointer representing transients can never be copied, because the identity
of a transient is represented by its location in memory. Therefore transients stored
in registers and record fields must be handled carefully.

In the LVM transients are never stored in registers. Registers can only contain
references to transients on the heap. This allows to copy and move nodes between
registers without danger of occasionally creating copies of transients by moving
tagged pointers. Furthermore this restriction of the implementation avoids the
problem of unsafe variables known from the WAM [1].

Oz has integers of infinite precision and in the implementation a subset called
small integers are represented efficiently. Lisp [100] optimize integers even more.
They use two tags: 0000 for positive and 1111 for negative values. Therefore no
tagging and untagging is needed and the overflow test simply checks if the result
of an operation has a valid integer tag.

The tag scheme of the LVM is optimized for a compiler which does no aggressive
static analysis to deduce static type information. Other tag schemes are needed
for a highly optimizing compiler. For example if it does static analysis to detect
determined and dereferenced values [12], then the optimization for references and
variables would loose their prominent role.

Other languages which have static type systems or where the compiler can extract
static type information can often avoid using run-time tags. Untagged values can
then for example be stored directly in registers. Dynamic types are still needed,
e.g. for doing garbage collection [6], but there overhead during the execution can
be often avoided. Possible type systems and type inference for Oz are analyzed
in [67]

4.2. TRANSIENTS 125

In the LVM procedures are represented as unboxed values when they are used in
first-class procedure applications, i.e. at compile time it is known that a appli-
cation is always applied to the same procedure. Another example of a unboxed
representation is the reference to self during the execution of methods, which is
stored as unboxed value in a LVM register.

4.2 Transients

4.2.1 References

A reference in the LVM is a tagged pointer with the REF tag and a pointer to a
tagged pointer.

class Ref : public Tagged {
publi c:

Ref (Tagged x«vPtr) : Tagged() { set(REF vPtr); }
Tagged xgetRef () { return (Tagged x)getPtr(); }

¥
Bool isRef(Tagged v) { return v.tag()==REF; }

4.2.2 Representation of Transients

The LVM supports three levels of representations for transients. At the bot-
tom layer a highly optimized representation for storing variables in the fields of
structures is implemented. The medium layer with a secondary tag is used to
implement the built-in transient types, i.e. free variables, futures, and kinded
variables. The medium layer uses a secondary tag to distinguish the different
types of transients. For experiments new transient types can be added (dynami-
cally) using a virtual layer, which uses late binding of a small number of interface
functions.
enum TransType {

FREE,

FUTURE,

KI NDED_FD,

Kl NDED_FS,

KI NDED_OR,

b

cl ass SusplList {
Thr eadx* t hread;
SuspLi st* next;

¥

126 CHAPTER 4. IMPLEMENTATION ASPECTS

cl ass TransBody {
TransType type;
SusplLi st susplLi st;
Spacex hone;
TransBody(TransType t, Spacex S)
type(t), suspList(0), home(s) {}
b
class Trans : public Tagged {
Trans(TransBodysx tb) : Tagged(tb, TRANS) {}
TransBodyx getBody() { return (TransBodyx) getPtr(); }

¥
Bool isTrans(Tagged v) { return v.tag() & 2 == 0; }

The standard representation of transients is a tagged pointer with the tag TRANS
and a pointer to a transient node. A transient node (TransBody) is a labelled
heap node which is labelled with the type, e.g. free, future, or kinded variable,
a space and a suspension list. The suspension list contains threads which are
suspended until the transient is bound.

4.2.3 Variables

A new variable is created with newvar (). newvar () returns a reference to the
variable.

cl ass FreeBody : public TransBody {
FreeBody(Spacex s) : TransBody(FREE, s) {}
}.

Tagged newVar (Spacex s) {
return Ref (new Trans(new FreeBody(s)));

¥
Bool isFree(Tagged t) {

return t.tag()==TRANS &&
((Trans)t). get Body() —>t ype==FREE;
¥

Note that the memory needed for a new variable is the memory for the body and
the memory for the tagged pointer. The reference does not use heap memory,
because the C++ compiler can store it in registers and fields.

4.2.4 Futures

A future is a read-only view on a transient. Futures are implemented as transient
nodes where the assignment operation blocks and suspends its thread until the
protected transient is bound. A future of a transient is created with f ut ur eCf .

4.2. TRANSIENTS 127

cl ass FutureBody : public TransBody {
Fut ur eBody(Spacex s) : TransBody(FUTURE, s) {}
}.

Tagged futureOf(Tagged v) {

Tagged t np=deref(v);

if (lisTrans(tnp)) return tnp;

Spacex s=((Trans)tnp).getBody(). hore;
TransBodyx* t b=new Fut ur eBody(s);
Trans *xt = new Trans(tbh);

addPr opagat or (t np, Ref (t));

return Ref(t);

}

This function first tests if the argument is a transient. If it is not the argument
is directly returned. If the argument is a transient a new future is created and a
propagator is installed to propagate the binding of the transient to the future.

4.2.5 By-need Futures

By-need futures are a specialization of futures. Additionally to the read-only
aspect, is has an associated function. The by-need future is implicitly assigned to
the result of the concurrent execution of the function, when its value is requested.
A by-need future is requested when a threads blocks on it.

The LVM supports an optimized by-need future for the case that the function is
a simple field selection of a record. When the by-need future is requested this
field selection is tried without spawning a concurrent thread. This optimization
is needed for the lazy loading of modules in Oz [22].

4.2.6 Binding

When a transient is bound the threads stored in the suspensions must be resumed
and then the transient node is destructively updated to the new value.

voi d bi nd(Tagged v1, Tagged v2)
{
Taggedx vPtr=derefPtr(vl);
TransBody x*tb=((Trans)vl). getBody();
wakeup(t b—>suspLi st);
xvVPtr = v2;
free tb;

}

The memory used for the transient body can be safely released, because after the
binding no reference to it exists any more.

128 CHAPTER 4. IMPLEMENTATION ASPECTS

In the LVM binding is more complicated, because hooks for handling spaces are
needed, e.g. bind has to decide if a transient is local or not and eventually trail
the binding (script model) or store the binding in a local binding frame (situated
model).

4.2.7 Suspensions

Operations expecting a determined value suspend if they are applied to tran-
sients. Suspending means that the thread executing the operation is stopped and
a suspension is hooked to the transient. A thread hooked onto a transient is
restarted when this transient is bound. More than one thread can suspend on a
single transient, i.e. a transient can be hooked with many threads. The structure
to store the threads is called suspension list.

The primitive operation to suspend on the determination of a single value is
voi d wait (Tagged). It simply tests if its argument is determined, if not it
blocks and suspends the current thread. When the transient is bound the thread
is resumed and the wai t operation is restarted and checks again if the new value
is now determined.

A thread can suspend on more than one transient. The primitive operation
for this case is voi d wai t O (Tagged, Tagged) . It suspends if both arguments
are transients. In this case the thread is added to the suspension list of both
transients.

In the LVM threads are never removed from a suspension list. This can lead
to spurious wakeup and memory leak. If a thread suspends on more than one
variable after a wakeup it potentially remains in the suspensions of the other
variable.

A spurious wakeup occurs for example in the following code
spawn fn () =>
(waitOr (X, Vy);
wait z)

The thread starts running and suspends on X and y. When x is bound and y is
not bound wai t O succeeds and the thread suspends on z. If y is now bound
the thread is woken up without need and retries wai t z, which suspends again.

An example of a memory leak is shown in the following example
spawn fn () =>
(waitOr (X, Vy);
wait)

When x is bound the thread cannot be garbage collected, because a reference to
it remains in the suspension list of y.

4.2. TRANSIENTS 129

Both problems can be solved using a shared suspension structure in the suspen-
sion lists. This suspension structure has a reference to the suspended thread and
is stored in both suspension lists. After a wakeup it can be marked, such that
further wakeups are inhibited [87].

4.2.8 Usage patterns

The major design goal for the implementation of transients is that they are grace-
fully degrading wrt. to determined values. Every operation has to be prepared
to handle transients, but if no transients are used no performance penalty should
be payed. This is only possible in the current design of the LVM because all
operations have to test the type of the node dynamically and transients are of a
distinguished type.

Therefore special attention has been payed to an optimized implementation of
references (REF) and transients (UVAR, FUT, TRANS). Every operation has to tests
its arguments at least for the following cases:

reference If the argument is a reference it has to be dereferenced.

transient If the argument is a transient the operation has to suspend until the
transient is bound.

Several variants of the dereference operation are useful. The simple der ef func-
tion follows the reference chain until the end.
Tagged deref(Tagged v) {
while (isRef(v)) {
v = x((Ref)v).getRef();
¥

return v;

}

This function is considered dangerous. Several hard to track bugs occured during
the implementation of Mozart. The problem is that this function makes it easy to
duplicate a transient by mistake. When the node returned by deref is a transient
and it is stored into a register or field the transient is duplicated (see Figure 4.3).

A variant of this function is saf eDer ef which guarantees that a register node
is returned, i.e. no transient is ever returned by saf eDeref. The result of
saf eDer ef can be stored safely into registers and fields.
Tagged saf eDer ef (Tagged v) {
while (isRef(v)) {
Tagged tmp = x((Ref)v).getRef();
if ('isRef(tnp) && isTrans(tnmp)) {

130 CHAPTER 4. IMPLEMENTATION ASPECTS

CONS CONS
X: y:
VARé INT 722 é 7
y field[0]=deref(x.field[0]) // BAD y field[0]=Ref (& x.field[0]) // OK

CONS CONS CONS CONS

x:;) y:; i X:
VAR INT VAR Yeds VAR

Figure 4.3: A possible dereference bug.

4.2. TRANSIENTS 131

return v;
}
v
}

return v;

:trrp;

}

The last variant is der ef Pt r, which returns a pointer to the last tagged pointer, if
the input is a reference. Furthermore it side-effects its call by reference argument
and leaves the dereferenced value there.
Tagged xderefPtr(Tagged &) {
Tagged xptr=0;
while (isRef(v)) {
ptr = ((Ref)v).getRef();
vV = xptr;
}

return ptr;

}

In the following we present some implementation patterns for handling dynami-
cally typed values and discuss their usage.

Optimistic pattern The optimistic pattern first tests if value is of the required
type. Only if it is not dereferencing and the transient case are handled.
if lis<T>(v)
v=saf eDeref(v);
if i sRef (v) suspend;
else if lis<T>(v) error;
doit;

This pattern is very good if transients and reference chains occur infrequently.
The LVM is optimized towards this case, because in the concurrent functional
programming style transients and references occur only for the synchronization
of concurrent activities.

Deref pattern The deref pattern ensures that the value is dereferenced before
any type tests are performed.

v=saf eDer ef (Vv)

i f i s<T>(v) doit
else if isRef(v) suspend
el se error

This pattern was used in the LVM before we had the insight that L. can be seen
as a functional language with extensions from logic programming rather than the

132 CHAPTER 4. IMPLEMENTATION ASPECTS

other way round. In the relational style of logic programming many references
occur only, because return values are passed as references to variables used as
containers for return values.

Optimized deref pattern The optimized deref pattern allows to slightly opti-
mize the deref pattern such that the transient case is more efficient. An invariant
of the LVM is that transients are never accessed directly but always through the
indirection of a reference. This can be used to test the transient case only when
dereferencing is needed.
if (isRef(v))
v=saf eDeref(v);
if isRef(v) suspend
if is<T>(v) doi t
el se error

Caller responsible pattern The caller responsible pattern only tests if the
argument is of required type. No dereferencing and transient test is done. If
the required type is no supplied an error is signalled to the caller. The caller is
responsible for dereferencing and suspending in the case of a transient. The caller
can ensure that dereferencing and the transient tests are performed before the
application or it can do it lazily, i.e. after the operation has signalled an error.

Non-monotonic pattern The non-monotonic pattern is used for non-monotonic
operations on transients, e.g. binding.
Tagged *vPtr=deref(v)
if isTrans(v) {
xvPtr = ...
el se error

When the dereferenced node is a transient the pointer vPt r refers to the transient
which can be bound to a new value.

4.2.9 Unification

The store abstractions allow to implement the WAM-like instructions for an op-
timized unification. As an example we show the compilation of the following
program
let Y=lvar() in

uni f (X, {a=Y, b=a});

unif (Z, {a=Y});

end

4.2. TRANSIENTS 133

into the following WAM-like code

get record [a b], X
uni fy_variable Y
uni fy_constant a
get record [a], Z
uni fy value Y

The implementation of the instructions can be outlined as follows:

get record(ar,R) {
if (isTrans(R)) {
node = WRI TE;
node n = newRecord(ar);
status = bind(R n);
} else {
node = READ,
if (arity(R) !'= ar) status = FAIL;
¥
sPoi nter = get ArgRef(R);
¥

uni fy_variabl e(R) {
if (nmode == READ) {
R = xsPoi nt er ++;
} else {
R = newVar (current Space) ;
xSPointer++ = R
}
¥

uni fyvalue(R) {
if (nmode == READ) {
status = uni fy(R, xsPoi nter++);
} else {
xSPoi nter++ = R
}

}

uni fy_constant (c) {
if (nmode == READ) {

node n = xsPoi nt er ++;

if (isTrans(n)) {
status = bind(n,c);

} elseif (n!=¢c) {
status = FAIL;

}

134 CHAPTER 4. IMPLEMENTATION ASPECTS

} else {
x*SPoi nter++ = c;
}

}

Note, that the compiler knows the mapping of the arity from the features to
the index and schedules the uni fy instructions for reading resp. writing the
arguments in the correct order.

The get _record implementation shows that record constraints can be imple-
mented as efficiently as prolog structures, if the arity is known at compile time.

4.2.10 Extending transients

In this section we explain a minimal and convenient interface to add new transient
types to the LVM.

The interface for adding new transient types is defined by the class Ext Body.
cl ass ExtBody : public TransBody {
publi c:

Ext Body(Space xs) : TransBody(EXTVAR s) {}

virtual int get1dV();

virtual TransBodyx gcV();
virtual void gcRecurseV() ;
virtual void di sposeV();

virtual ReturnCode bi ndV(Tagged*, Tagged);
vi rtual ReturnCode uni f yV(Taggedx, Taggedx);
virtual ReturnCode addSuspV(Tagged*, Threadx);

virtual Tagged statusV();
¥

Every transient has a type. The type is encoded as a unique id returned by the
method get | dV. A new unique id may be obtained from a generator.

The methods gcV, gcRecur seV, and di sposeV are used for memory manage-
ment. In the stop and copy garbage collector gcV is used to copy a variable and
gcRecur seVis used to update the reference after copying. These two methods
are separated to allow the garbage collector to detect and break cycles.

The method bi ndV is called when the LVM wants to bind a transient to a value.
This method succeeds if the binding is possible, fails if it is impossible, or suspends
if the binding is neither possible nor impossible.

4.2. TRANSIENTS 135

The LVM calls the method uni fyV if the value is a transient. The method
uni fyV calls its own bi ndV method or the bi ndV method of the argument.

With this technique it is possible to incrementally add new types, where only the
newer types need to know how to unify themselves with the transients of older
types. The unification of two variables uni f yM(x, y) calls bi ndV(x, vy) if x
“knows” how to unify with y else it calls bi ndV(x, y).

When a thread needs to suspend until a transient is bound the method addSuspV
is called to hook the thread to the function. For experimental purposes this
function can fail, e.g. to enforce a programming style where only suspensions on
futures are allowed.

The last function st at usV() allows to distinguish the status of a transient. The
status distinguishes variables, constraint variables, and futures.

As an example we show the by-need future implemented with the extension in-
terface.

cl ass ByNeed: public ExtBody {
private:
Tagged fun;
publi c:
ByNeed(Spacex s, Tagged fun) : ExtBody(s), fun(fun) {}

virtual int getldV() { return TRANS.BY_NEED; }

// nmenory managenent

Ext Bodyx gcV() { return new ByNeed(xthis); }
voi d gcRecurse\() { if (fun) collect(fun,fun); }
voi d di sposeV(void) { delete this; }

// al ways suspend bi ndi ng
Ret ur nCode bi ndV(Taggedx vPtr, Tagged t) {
return SUSPEND

=

// allowunification with variabl es, otherw se suspend
Ret ur nCode uni f yV(Taggedx vPtr, Taggedx tPtr) {
if (isFree(«tPtr))
return ((Trans)xtPtr).get Body() —>bi ndV(Ref (vPtr));
return bindV(Ref(tPtr));

}

// kick the by need conputation once
Ret ur nCode addSuspV(Taggedsx, Thread t) {
if (fun) kick(fun);
f un=0;

136 CHAPTER 4. IMPLEMENTATION ASPECTS

susplLi st=new SuspLi st(t, suspLi st);
ret urn SUSPEND;
¥

// a by need transient is a future

Tagged statusV() { return atom("future"); }
b
Tagged byNeed(Tagged fun) {

return Ref(new Trans(new ByNeed(current _space,fun)));

¥
Bool isByNeed(Tagged t) {

return t.tag()==TRANS &&
((Trans)t). get Body() —>t ype==EXTVAR &&
((Ext Bodyx) ((Trans)t). get Body())
—>get | dV==TRANS_BY_NEED;

4.3 Records

In this section we explain the implementation of literals, records, and arities.

4.3.1 Literals

Literals are tagged pointers using the LI T tag. The pointer refers to a node with
a secondary tag of an atom ATOMor a name NANE.

Atoms are allocated and stored in the atom table. The atom table? is another
memory area beside registers and the heap. Atoms have fields for the ATOM
tag, a print name, and the length of the print name.

New strings are internalized to atoms using hashing. The function newAt onf{ char x)
finds or allocates an entry in the atom table, by calculating a hash value over all
characters in the argument string. For every atom in a L. source program this is
done at compile or load time.

The hash value of atoms for selecting fields in records (see section 4.3.2) is done
by the function hashAt on{ Tagged). It uses the fixed memory address of the
atom in the atom table to efficiently generate a hash value.

Names are represented in the LVM either as named names or as free names.
Named names can be created statically. The compiler can optimize the usage of
named names similar to atoms.

2In other systems the atom table is also called symbol table.

4.3. RECORDS 137

Named name are further classified into unique names, copyable names, and opti-
mized names. Unique names are t rue, f al se and () which are unique in every
VM3, Optimized names are all other statically created names.

Named names are allocated and stored in the name table. The name table is
similar to the atom table. Named name are labelled with a hash value, a print
name, and their type, i.e. unique, copyable, or optimized.

Free names are dynamically created heap nodes which are labelled with a hash
value and a space. The hash value is needed for the efficient representation
of record arities (see Section 4.3.2) and can be extracted with the function
i nt hashName(Tagged) .

Names are situated in spaces to be consistent with procedures and objects which
must be situated*. The representation of a name thus contains a pointer to its
space.

The implementation of free names needs two words. The first word represents
the kind of literal, and the hash value. The second word contains the space.

The function Tagged newName() creates a new free name. It chooses a new
hash value by incrementing a global counter, allocates an object of cl ass Name
on the heap, initializes it, and creates a tagged pointer to this object with the
tag LI T.

A basic property distinguishing atoms and names is scalability. The number of
atoms is fixed at compile time®. In contrast free names are created at run time
and the number of names is unlimited. Therefore names are allocated from the
heap and they are subject to garbage collection.

Hashing

For implementing record arities (see below) a hash function mapping a feature
to a positive integer must be implemented for all types of features. For hashing
on small integers their absolute value is used. Big integers are not hashed in the
current implementation: all big integers are mapped to the same value.

The hash value of atoms is the unique address of their entry in the atom table.
It is very efficient to use the address because it avoids the calculation of a hash
value depending on the characters in the string.

A random hash value for names is computed when a name is created and it is
stored in the data structure representing the name.

3Unique names are needed for serialization and pickling.

4Situated names are required to simplify the decision if procedures and objects must be
copied when a space is cloned.

5Creating atoms dynamically is possible in full Oz, but it is depreciated. Strings or virtual
strings can be used instead of dynamically created atoms.

138 CHAPTER 4. IMPLEMENTATION ASPECTS

Another implementation techniques for getting a hash value for names is the
allocation of names in a separate memory area, where their address is fixed.
Using this fixed address as hash value reduces the memory consumption of names
dramatically: for a name generated in the top level space only one bit is needed.
The garbage collector has to be adapted to use a non-copying, e.g. mark and
sweep, collector for the new memory area instead of the implemented copying
collector for the heap.

To efficiently implement the arity table it should be possible to order names.
Using the fixed memory address a total order on names is trivially induced. Oth-
erwise the random hash values must be all distinct. In the current implementation
the distinctness is guaranteed by using a counter instead of a random number
generator®.

4.3.2 Record representations

The LVM uses four different representations for records with varying efficiency:
list elements, tuples, simple records, and open records. The representation of a
record is always normalized to its canonical representation. A record with the
features Head and Tai | is represented as list element. Records with consecutive
numeric features from 1 to n are represented as tuples. Other determined records
are represented as standard records. We use the name record also for the standard
representation if it is clear from the context what we mean.

Tuples and (standard) records The representation of tuples and (standard)
records are tagged pointers with tag REC where the pointer refers to a labelled
heap node. The label of the heap nodes contains a secondary tag for distinguish-
ing tuples and records. Furthermore the heap node is labelled with the tuple
width resp. the record arity (see below). The heap node has a field for every
feature.
class Structure {

ArityOWdth arity;

Tagged field[n];
}

The field ArityOr W dt h is a tagged pointer with an RECORD resp. TUPLE tag
and the arity of the record resp. the width of the tuple.

The only reason to support an optimized representation for tuples in the LVM
is that the dynamic creation of tuples is significantly (approximately a factor of
five) faster than the dynamic creation of records, because no lookup in the arity
table is needed.

6The implementation uses a 32 bit counter and effects related to counter overflow are not
handled.

4.3. RECORDS 139

List elements List elements are represented as tagged pointers (CONS) where
the pointer refers to an unlabelled heap node with one field for the head and one
for the tail of the list.

The operations on list elements are the creation of new lists and the field selection.
The class Cons implementing list elements was already shown in Section 4.1.

This representation saves a word, i.e. fifty percent, per list element, because the
arity required for records is represented in the tag. The test for a non-empty list is
more efficient then the test for a record with a certain label and arity, because only
the tag bits must be checked and additionally the CONS tag is chosen such that
the test for CONS needs only two native machine instructions (see Section 4.1.3).

A small issue with the list optimization is that the forwarding pointer has to
be stored in the field of the head or the tail, which are also subject to garbage
collection (see Section 4.6).

4.3.3 Arity

Efficient lookup The representation of an arity contains the hash table and
the hash mask.
cl ass KeyAndl ndex {

Tagged key;

int index;

}

class Arity {
Tagged featureli st;
int wdth;
i nt hashMask;
KeyAndl ndex t abl e[hashMask+1] ;

}

For an efficient access to the record width and the list of features both are stored
in the arity. An alternate design would be to compute them from the content of
the hash table on demand.

The size of the hash table is the next power of two which is greater than 1.5 times
the width of the arity. The hash mask is the size of the table minus one. The
size and hash mask are chosen such that the calculation of an index modulo the
table size is a bitwise AND with the hash mask.

The table is created as hash table with the open addressing scheme from Knuth [52].
The table contains pairs of features and indices (KeyAndIndex). The features
are stored as tagged pointer (Tagged key) and the indices (int index) are unique
indices of the field at the corresponding feature. The lookup function returns a
field index or —1 if the feature is not in the arity.

140 CHAPTER 4. IMPLEMENTATION ASPECTS

int Arity::lookup(Tagged feature)

{
int i = featureHash(feature) & hashMask;
int step = (i%/)%x2+1;
while (1) {
if (table[i].key == feature)
return table[i].index;
if ('table[i].key)
return -1;
i = (i + step) & hashMask;
}
¥

The size of the table is at least 1.5 times the width to have enough empty entries
to make the member test also efficient for the case that a feature is not found.

The function f eat ur eHash computes a hash value for a literal or an integer.

An implementation of arities using bucket lists instead of the open addressing
scheme would have fewer collisions, but the size required per arity would be larger.
For buckets 34 3 x width + size words are needed in a linked list implementation.
This is larger than 342 X size words for the open addressing scheme if we assume
that the size is between 1.5 x width and 2 X width.

Furthermore the access of the key resp. value of an entry requires one more
memory access if the bucket list is represented as a linked list.

The arity table The arity table is a hash table using hashing with bucket lists
to store all arities. The key used to access the arity table is the list of features
of an arity. The hash value of a feature list is the sum of the hash values of its
elements.

To compare a feature list with an entry of the arity table in linear time the
list of features should be sorted. A problem when sorting a list of features are
names, because they are not ordered in the Oz programming model. In the LVM
names are ordered using the hash value. The order of names is not a total order,
because the hash value is derived from a counter modulo the C++ word size. If
consecutive names in the feature list have the same counter value it is therefore
necessary to compare all there permutations’.

A better heuristics to compute a hash value for a list of features could compute a
hash value based only on the first k£ features. This optimization has no practical
relevance, because dynamic record and hence arity creation occurs too infre-
quently. Furthermore dynamically created arities are in many case new, i.e. not

"With the technique of allocating names in a separate memory area the ordering problem
of names disappears.

4.3. RECORDS 141

yet in the arity table, and the cost of their creation dominates the computation
of the hash value.

4.3.4 The record interface

The basic operations on records are the creation of new records, the selection of
fields, and pattern matching. The functions for creating and accessing tuples and
records are summarized in the following table

Struct urex newTupl e(i nt) allocate a new tuple
Struct urex newRecord(Aritysx) allocate a new record
Tagged Structure::setArg(int, Tagged) initialize a field
Tagged Structure:: mkeRecord() create a tagged pointer
Arity «Structure::getArity() access the arity

i nt w dt h(Tagged) access the width
Arityx arity(Tagged) access the arity
Tagged ar g(Tagged, i nt) select a field by index
Tagged fi el d(Tagged, Tagged) select a field by feature
Bool i sTupl e(Tagged) test if is tuple or record

Record creation Two kinds of record creations are distinguished static and
dynamic creation.

Static record creation is used when the arity is known at compile time. In this
case the arity is looked up and added to the arity table when the machine code
is loaded. This is similar to internalizing string into the atom table.

Static record creation allocates the memory for the record structure on the heap,
writes the label and arity into the record structure. The field values are written
into the field array without hashing. This can be done because the arity is known
at compile time and hence the index is also known at compile time. Of course
the compiler and LVM must agree on mapping of feature to index.

We present one example of a dynamic record creation which allows to adjoin one
feature and its field value to an existing record. This adjoin operation creates
a new record, which has the same fields and field values as the original record,
except that the new feature is added or that is value replaces an existing field.

e The new record has the same arity if the adjoined feature is already in its
arity.

e [f the adjoined feature is not yet in the record arity then a lookup in the
arity table is performed with the new feature inserted into the feature list.

142 CHAPTER 4. IMPLEMENTATION ASPECTS

Tagged adj oi nAt (Tagged rec, Tagged fea, Tagged val)
{
// find arity
Arity sxnewArity;
Arity xoldArity = arity(rec);
if (ol dArity—> ookup(fea)) {
newArity = ol dArity;

} else {
Tagged newLi st = insert(fea, ol dArity—>featurelList);
newArity = arityTable.find(newList);

}

// create record
Structure xnewRecord = newRecord(newArity);

// copy fields
Tagged | =ol dArity—>f eat urelLi st;
while (isCons(l)) {

f = head(l);
newRecor d—>set Arg(newAr i t y—> ookup(f),field(rec,f));
I =tail(1);

}

// new field
newRecor d—>set Ar g(newAri t y—> ookup(fea), val);
return newRecord—>normalize();

}

The cost of this adjoin operation has two parts: the test if the feature is already
in the arity and eventually the dynamic lookup of the new arity. The first part is
very efficient, because it uses the arity lookup function. The second parts requires
hashing a feature list in the arity table and eventually creation of a new arity.

Additional optimized adjoin functions are provided by the implementation to
adjoin more than one new feature at once and to create a new record from a list
of features.

Field selection Selecting the field at feature of a record first calls the lookup
function of the arity and if this is successful reads the corresponding entry of the
field array.
Tagged arg(Tagged rec, int i) {

Structure xstr = getStructure(rec);

Tagged val = str—>field[i];

return isDirectVariable(val) ? nakeRef(&str—>field[i]) : val;

}

4.3. RECORDS 143

Tagged fiel d(Tagged rec, TaggedRef fea) {
int i = arity(record)—> ookup(fea);
if (i<0) return O; // not found
return arg(rec,i);

}

The value stored in the field array cannot be used unconditionally. The problem
is the memory efficient representation of variables (see chapter Section 4.2). If a
variable is allocated directly in the array and not on the heap a reference to this
variable has to be returned by the field selection function. This means that an
additional test is required for every field access.

To optimize the field selection inline caching [20, 108, 87] is used. The instruction
fi el dCached caches the triple of last feature, arity, and index. If the same
feature is selected using the same arity then the index is directly taken from the
cache.
Tagged fi el dCached(Tagged rec, Tagged fea,

Arity x&cachedArity, Tagged &cachedFea

i nt &cachedl ndex)

{ . .

int i;

if (arity(rec) == cachedArity && fea == cachedFeature) {
i = cachedl ndex;

} else {
i = arity(rec)—> ookup(feature);
cachedArity = arity(rec);
cachedFeature = fea;
cachedl ndex = i;

}

if (i<0) return O; // not found
return arg(rec,i);

}

Pattern matching: tests and indexing Pattern matching deals with effi-
ciently decomposing records. The main techniques used to implement pattern
matching are tests and indexing. A test compares a record with one pattern and
indexing selects a matching pattern from a set of patterns.

The efficient compilation is based on the fact that the arity of the patterns are
known at compile time. When the test resp. indexing code discovers that a
pattern matches then the fields can be selected without hashing, because the
compiler can precompute the lookup of the index.

The function t est Recor d checks if a node is a record with a given arity. Beside
the type test the t est Recor d function reduces to exactly one comparison for the

144 CHAPTER 4. IMPLEMENTATION ASPECTS

arity. This is exactly the same number of comparisons as required for tuples. For
tuples only the width is compared instead of the arity.

Ret ur nCode test Record(Tagged rec, Arity xar)

{
Assert(ar !'= ArityEnpty);

| oop:
if (isRecord(rec)) {
return arity(rec) == ar ? PROCEED : FAI LED,
}

if (isCons(rec)) {
return ArityCons == ar ? PROCEED : FAI LED
}

// deref and test for variable

if (isRef(rec)) {
rec = deref(rec);
if (isTrans(rec)) return SUSPEND;
goto | oop;

}

return FAI LED,
}

Indexing consists of two parts. The arity is hashed into the indexing table (using
open addressing). The entries of the bucket list are then compared using the
same comparison technique as t est Recor d.

4.3.5 Discussion

Flexible field selection Subtrees of records can be selected with decreasing
efficiency numerically by an index if the feature and arity are statically known,
with a statically known feature, or with a built-in procedure.

Selection by index is supported well on standard hardware and is therefore fast.
The virtual machine has no instruction to support this select method for records,
because in an emulator-based approach the performance difference to the selection
by a statically known feature with inlining caching is negligible. The selection by
index is useful in optimized built-in procedures, e.g. for selecting fields of records
with known arities like tuples.

Arity The arity abstraction allows to separate the issues of field selection and
of mapping of features to the fields. This provides a uniform model of the graph
and an efficient mapping of the graph to standard hardware.

4.4. FEATURE CONSTRAINTS 145

To support the equality test of arities an arity table is maintained in the runtime
system which guarantees that every arity is represented exactly once.

Features The feature abstraction encapsulates two efficiency problems: the
equality test of two features and the mapping of features to indices through
arities.

Equality of features is implemented by the identity of nodes. Strings of characters
are made unique with an atom table, which guarantees that two equal strings are
mapped to the same atom. For names the runtime system maintains the invariant
that they are never duplicated, which makes the equality test trivial.

The efficient mapping of features to indices is done through hashing. Useful hash
functions are discussed in Section 4.3.2.

Representations Supporting three representations for determined records re-
quires in the implementation additional code, because code dealing with records
must be written such that all the representations are correctly handled. In cases
where efficiency is not the major concern it is possible circumvent this problem by
converting any record into the standard record representation and operate only
on this representation.

Furthermore the dynamic creation of records has the overhead that the repre-
sentation must be normalized. This basically means that list elements must be
detected and turned into their optimized representation.

4.4 Feature constraints

Representation Feature constraints are implemented as transients with a field
for the width attribute and a hash table for the fields attribute, which contains
pairs of features and field values.

class OFVar : public TransBody {
private:
int width;
DT =xdt;
publi c:
OFVar (Space xs,int n)
TransBody(OFVAR, s) {
wi dt h=—1;
dt = DT::allocate(n);

146 CHAPTER 4. IMPLEMENTATION ASPECTS

Tagged newOF(int n) {
TransBodyx* tb=new OFVar (space);
Trans *xt = new Trans(tbh);
return Ref(t);

}

The hash table cl ass DT, called dynamic table, contains an array of pairs
DTE t abl e[], the size of this array i nt size, and the number of elements
in the array i nt num The size of the array is a power of two to simplify open
hashing. When the array is filled up to 75 percent the array size is doubled.
// dynamic table entry
class DTE {

Tagged i dent;

Tagged val ue;

b
// dynamc table
class DT {
static:
DT =xal |l ocate(int n);
private:
int num
int size;
DTE tabl e[N ;
b

Feature constraints The feature constraint is implemented such that first a
test if the feature is already in the hash table is performed. If this is the case the
old and new feature are unified.
Ret ur nCode OFVar::featureC

(Tagged xvPtr, Tagged fea, Tagged val)

{
Tagged ol dval =dt —>get (f ea) ;

if (oldval) return unify(oldval, val);

if (dt—>isFull()) dt=DT::resize(dt);
dt —add(f ea, val) ;
if (width==dt—>num) return this—>toRecord(vPtr);
ret urn PROCEED,
¥

If a new feature is added then a test is performed if the table is up to 75 percent
filled and must be resized. Then the feature with the corresponding value is
added to the hash table.

4.4. FEATURE CONSTRAINTS 147

Finally a test has to be performed if the number of elements is equal to the
width attribute. In this case the open record is closed as shown in the method
t oRecord.

Return OFVar: :toRecord(Tagged *vPtr)

{
Tagged al i st=dt—>get ArityList();
Arity sarity=aritytable.find(alist);
Structure xnewec = newRecord(arity);
newr ec—>i ni t Args();
return this—>bi ndRecord(vPtr, newrec);

}

Closing an open record means to dynamically lookup resp. create an arity in
the arity table. To simplify the implementation the fields of the new record are
initialized with variables and the generic function to bind an open record to a
closed record is called.

Ret urn OFVar: : bi ndRecord(Tagged xvPtr, Structure xstr)

{
PairListx pairs = dt—>check(str);
if (!pairs) return FAI LED

Tagged saved=xvPtr;
xVPtr = str—>normalize());

Return ret = unifyPairs(pairs);

if (ret == PROCEED) {

t hi s—>checkSuspensi on();
} else {

xvPtr = saved;

}

return ret;

}

Binding an open record to a closed record first checks if every feature of the open
record is in the closed record. The check method returns the matching pairs of
field values in the open and closed record.

Pai rs *DT::check(Structure xstr)

{

Pai rs xpairs=new PairList();

for (int i=size; i—;) {
if (table[i].value) {
Tagged val =str—>field(table[i].ident);

148 CHAPTER 4. IMPLEMENTATION ASPECTS

if (tval) {
pai rs—>free();
return O;

}
pai rs—>addpai r(val, table[i].value);
}
}

return pairs;

}

If check was successful the second step in bi ndRecor d is to bind the open record
transient to the new record. This is necessary at this point to break a possible
cycle when unifying the fields. Then corresponding fields in the pair list are
unified. If all pairs are unified successful the suspensions are woken up.

Unification The merge method is the main part of the unification of two open
records. It merges the features of one dynamic table into the other table.

PairLi st *DT:: nerge(DTx &dt)
{

Pai r Li st xpai rs=new PairList();

for (int i=0; i<size; i++) {
if (table[i].value) {
Tagged val = dt—>get(table[i].ident);
if (val) {
pai rs—>addpai r(val, table[i].val ue);
} else {
if (dt—>isFull()) dt=DT::resize(dt);
dt—>add(table[i].ident, table[i].value);
}
¥
}

return pairs;

}

The ner ge method merges the features of the current table into its argument.
Merging means that a feature is added if it is not yet in the table. The field
values of features which are already in both tables are collected in a pair list for
later unification with the uni f yPai r s function.

Return uni fyPai rs(PairlList xpairs)
{

PairListx p = pairs;

TaggedRef t1, t2;

Return ret = PROCEED,

while (p—>getpair(tl, t2)) {

4.5. EXTENSIONS 149

Assert (! p—>i sempty());
ret = ozunify(tl, t2);
if (ret !'= PROCEED) break;
p—>next pair();

¥

pairs—>free();

return ret;

}

During the unification of two open records the following cases must be distin-
guished

e If both are local the largest dynamic table is used to merge in the smaller
one.

e [f one is local and the other is global, then the local variable is bound to
the global one and the table of the global one is merged into the table of
the local variable.

e If both are global then a copy of the largest table is created and the other
table is merged into the copy.

4.5 Extensions

In this section we describe two methods to add new datatypes to the LVM. Both
techniques use more memory for representing the type information and are slower
for type tests. They are used for datatypes which need more memory anyway,
e.g. arrays or for datatypes which are not frequently used.

4.5.1 Standard extensions

Standard extension nodes, have the head tag EXT and a secondary tag. Figure 4.4
lists the secondary tags.

The additional costs for these extension types are moderate. The type test has
to test the primary tag, unbox the extension and then test the secondary tag. In
the case of a successful test the already unboxed extension can be simply casted
to the proper type for applying an operation. The costs of successful type tests
is therefore amortized by the following operation on the datatype.

To create a new node a small overhead occurs only for storing the secondary tag.

The LVM knows all these types and can do some optimizations, e.g. inlining the
methods of the corresponding implementation classes. For gaining efficiency this

150 CHAPTER 4. IMPLEMENTATION ASPECTS

Biglnt big integers

UserProc | user-defined procedures
Builtin built-in procedures
Cell cells

Space first class reference to a spaces
Object user-defined objects
Port ports

Array multiple cells
Dictionary | hash table of cells
Lock lock

Class user-defined class
Chunk non-mutable object

Figure 4.4: Secondary tags.

is needed, but from a design point it would be nicer to have a small interface,
as provided by the virtual extension explained below. For every data-type a
performance analysis can be made and a design decision can be made on which
level to support it.

Procedures and objects are further optimized in the LVM. In the bytecode top
level procedures are represented directly. During a method application the un-
boxed representation of the current object, called self, is stored in a explicit
machine registers the LVM for immediate access.

In the following we describe some of the extensions.

Big integers The tag Bi gl nt allows to represent integers, which do not fit
into the small integer representation describe in Section 4.1.2. In the LVM the
GNU Multiple Precision Arithmetic Library (GMP) is used. The representation
and the operations are taken from the library. Only the memory management
is hooked to allocate big integers on the heap of the LVM using the free list
technique (see Section 4.6).

Procedures Procedures are represented as built-in procedures or user defined
procedures. Built-in procedures are native procedures typically written in C or
C++. User defined procedures are written in L and compiled into LVM bytecode.

Objects and classes Objects and classes allow for an efficient representation
of the object-oriented extension of Oz.

4.5. EXTENSIONS 151

Spaces Spaces allow for first class references to computation spaces. First
class space nodes are labelled with a reference to the internal representation of a
computation space.

Cells Cells have a modifiable field for the content of the cell. To allow for the
modification of the field only register nodes can be stored in it. The register node
restriction guarantees that there are no reference from other nodes directly to the
field. Cells are heap nodes which are labelled with their space.

A cell needs in addition to the secondary tag two words on heap. They are not
optimized, because they are rarely used. Their primary usage is to serve as a
theoretical foundation for objects. Objects are built into the LVM as optimized
datatypes. The representation of objects is converted to a cell based representa-
tion to simplify the distribution protocols.

Ports Ports are represented in the same way as cells. The only difference is that
the cell is not directly accessible. The update of the content is restricted to the
port send operation, which creates puts another element on a stream associated
with the port [49].

Locks Locks are another variant of cells, with a protocol to implement mutual
exclusion.

Arrays Arrays are a straightforward extension of cells to multiple cells indexed
by integers.

Dictionaries Dictionaries are more elaborate extension of multiple cells using
a hash table mapping features (integers and literals) to cells. The hash table
implementation of dictionaries is shared with the dynamic tables of the open
records implementation.

4.5.2 Virtual extensions

The major difference between the standard extensions described before and vir-
tual extensions is the usage of late binding for virtual extensions.

A virtual function interface defines all the hooks needed in the LVM to add new
data-types. It allows to add arbitrary many new built-in data types in a modular
way. It defines a small and simple interface for adding new types.

152 CHAPTER 4. IMPLEMENTATION ASPECTS

A drawback of virtual extensions is that a performance penalty has to be payed.
Late binding implies that no inlining optimizations can be performed, i.e. calling
a virtual method always needs a table access and a function call, which cannot
be inlined.
cl ass VExtension {
public:

virtual ~VExtension();

VExt ension() {}

virtual int get1dV();
virtual VExtensionx gcV();
virtual void gcRecurseV() {}
vi rtual Tagged printV(int = 10);
virtual Tagged typeV();
vi rtual Bool i sChunkWV()
virtual Tagged accessV(Tagged);
virtual ReturnCode eqV(Tagged);
vi rtual Bool mar shal V(voi d x);
Bool isLocal();

¥

The virtual extension has virtual methods for typing (get | dV), garbage collection
(gcV and gcRecur seV), inspecting (pri ntV, typeV), field selection (accessV),
equality test (eqV), and marshaling (mar shal V). The minimal effort to add an
extension is to implement the garbage collection and the get | dV() method.

The virtual methods are called by hooks in the memory management, printing,
unification resp. equality test, the sel ect operator, and the marshaling and
unmarshaling routines of the LVM.

Two kinds of virtual extension are possible: situated and non-situated. Situated
extensions are labelled with a space. They are handled correctly when spaces
are cloned, by calling the garbage collection methods if needed. Non-situated
extensions are never copied when spaces are cloned. New extensions need only
to specify if they are situated or not.

To differentiate extensions a unique id is used. Every type of extension chooses
a different id. New ids can be generated using a built-in id generator or ids can
be pre-registered in LVM.

The type test for a virtual extension involves the following steps: test the pri-
mary tag, unbox the virtual extension, call the virtual function to get the id and
compare it with the required id.

For operations on virtual extension the same argument as above holds: after type
test the unboxed value can be casted to the required type without additional costs.

To create a new node the storage must be allocated, the method table must be
initialized, if needed additional fields and labels must be initialized and finally

4.6. MEMORY MANAGEMENT 153

the extension must be boxed. The only difference between virtual extensions and
standard extensions is the initialization of the method table instead of storing
the secondary tag.

4.6 Memory Management

As usual for high-level languages L requires automatic memory management.
The mapping of the language graph to the memory is done transparently, with
no explicit requests to free or allocate memory at the language level.

4.6.1 Principles

The design goals of the memory management are similar to the design goals for
most other parts of LVM: simplicity, flexibility, extensibility, and efficiency.

Simplicity Simplicity is required because the resources for our research project
are limited and discovering elaborated memory management techniques was
not in the focus of our research. The system should be stable and practically
useful without too much effort for maintenance.

Flexibility For an explorative development, where new techniques and concepts
are tried out and often replaced by new and better ideas the primitives have
to be designed such that its easy to adapt them.

Extensibility The integration of new data-types must be simple.

Efficiency The performance of the system should, of course, not be degrading
because of a bad memory management.

Generic principles of automatic memory management are

e Find garbage as soon as possible and make it available for reuse. The LVM
supports free lists for data-structures which can be reused, e.g. the body of
transients can be reused when transients are bound.

e Follow the principle of locality of memory access. The memory hierarchies
of modern processors really pay off if the working set of the memory is not
scattered all over the available memory. In the LVM we use therefor stack
disciplines wherever possible.

e If none of the previous principles apply the graph representing the store has
to be scanned and partitioned into the used and unused nodes. The unused
nodes must then be made available.

154 CHAPTER 4. IMPLEMENTATION ASPECTS

In the LVM a stop and copy collector is used. All concurrent activities are first
stopped, such that the memory management has exclusive access to the memory.
The living parts of the graph are traversed and copied into new segments of the
memory. Finally the old segments are released for future use.

A stop and copy collector has the advantage that it is simple because it has exclu-
sive access to the memory. It behaves very well if the amount of living memory is
small compared to the garbage. The memory is compacted automatically, which
provides better locality. The node representation in the store can be very irreg-
ular, because their structure must be only known when a link is followed, e.g. no
run-time type information is needed if a link is statically typed.

A stop and copy collector has the disadvantage that it is not concurrent and
arbitrary delays of concurrent activities can occur during the execution of the
collector. The collector needs (temporary) much more memory as required for
the representation of the living graph.

4.6.2 Primitives

In this section we describe the primitives supplied in the LVM for maintaining
memory. C++ supports to overwrite the memory management functions per
class. In the LVM we use this to replace the operators new and del et e with
implementation to use heap resp. free list memory.

Heap memory

The heap memory is allocated from the operating system in chunks of memory
called segments. The LVM maintains a chain of allocated segments. When a seg-
ment is full a new segment is allocated. The size of the segments is configurable.

When the garbage collection starts a new chain of segments is allocated and
the living nodes are copied into the new chain. When the garbage collection is
finished the old chain is released to the operating system.

The memory in a segment is allocated in a stack fashion starting from the top-
most address down to the bottom. The LVM has two pointers for maintaining
the available memory in a segment: the segments current top and the segment
bottom. When new memory is requested the segments current top is decre-
mented until the segment bottom is reached. When it is reached a new segment
is allocated from the operating system.

Free list memory

A frequent case is that memory allocated for a structure can be released after
a certain operation was performed, but that some of these structures can be

4.6. MEMORY MANAGEMENT 155

released too because they are not longer reachable in the graph. For this case the
LVM supports free lists on top of the heap memory.

A typical case where a free list is useful are the body of transient values. When
a transient is bound the body can be safely released. Using only this condition
to release this memory is not sufficient: in the case of an unreachable transient
in the graph its body should be released too. Therefore it is essential to combine
the free lists with garbage collection.

Whenever a structure which was allocated from the heap can be safely released
it is put into a free list. A request for a new structure then checks if memory
is available from the free list. New memory is allocated from the heap when no
memory is available from the free list.

Technically it is a useful optimization to have different free lists for different
sizes of memory. This avoid problems with fragmentation and the release and
allocation can be done efficiently in constant time.

Stack memory

Stack memory is used for maintaining the tasks on threads. The problem which
arises here is that multiple concurrent threads exists and therefore multiple stacks
must be maintained. Another complication is that the size of these stacks should
be dynamically adaptable. Furthermore the conditions for deallocating the stack
depends on the reachability of transient nodes in the graph.

All these problems are solved by allocating the stacks of threads on the heap.
When a stack overflows a new stack is allocated and the old one it is copied to
the new one and released to the free list.

4.6.3 The implementation of the garbage collector

The garbage collector of the LVM starts traversing the graph of the store from the
roots. The roots for garbage collection are the threads in the runnable queue and
some global data-structures, e.g. global properties, the default exception handler,
etc.

For every living reference to a node the garbage collector performs the following
steps

copy The node is copied to the new chain and the reference to the node is
updated.

mark The original node is marked and a forward pointer is stored there. When
the node is visited again this is detected and the forward pointer is used to
update the reference to the new location.

156 CHAPTER 4. IMPLEMENTATION ASPECTS

collect The additional entry points reachable from the just collected node are
collected after copying and marking. The order of the mark and collect
steps is essential to avoid infinite recursion in the case of cyclic structures.

To avoid deep recursion on the runtime stack an explicit stack, the update stack,
is used to maintain the not yet collected entry points. The update stack contains
the type of the node and a pointer to the node. The LVM use the tagged pointer
technique for the entries on the update stack.

The LVM does not use pointer reversal [25] and Cheney’s breadth-first [17] tech-
niques to make the update stack obsolete. These techniques can be adapted easily
for the LVM.

Because many structures and nodes on the heap are implemented as C++ classes
it is straight-forward to implement the collection algorithm with the following
methods

cl ass Node {
Bool gcTest Mar k() test if node is marked
Nodex gcGet Forward() get the forward pointer if node is marked
voi d gcPut Mar k() mark the node
voi d gcPut Forwar d() put the forward pointer
Nodex gcCopy() copy an unmarked node
voi d gcCol | ect() collect the entry points
h

The implementation of the methods maintaining the mark and the forward pointer
is trivial. E.g. for tagged nodes one tag is reserved as garbage collection mark
and the data part is used as forward pointer.

The gcCopy method can simply use the C++ copy constructor, because the
memory management constructor newis overwritten to use the heap of the LVM:

Nodex Node:: gcCopy() { return new Node(=xthis); }

For nodes with an explicit tag the copy constructor depends on the tag:
TransBody« TransBody: : gcCopy() {
switch (this.type) {
case FREE: return new FreeBody(x(FreeBodyx) t his);
case FUTURE: return new FutureBody(*(Fut ureBodyx) t his);

}

The mark, forward, and copy methods are usually combined into one method
Node xgc(), which returns the forward pointer if the node is already collected,
else the node is copied and the new node is pushed onto the update stack for the
further collection of entry points.

The gcCol | ect method then simply updates its fields using the gc method.

4.6. MEMORY MANAGEMENT 157

voi d Node::gcCollect() {
this.nl = this.nl->gc();
this.n2 = this.n2-—>gc();

L

The main gc procedure first copies the roots, and pushes additional entry points
to the update stack. Then it loops until the update stack is empty to collect all
entries.
void gcMain() {

runnabl e=r unnabl e—>gc() ;

whi | e (!updateStack.isEmty()) {
GcNode n = updat eSt ack. pop() ;
switch (n.tag()) {
case GC.TRANS: ((Transx)n.getPtr())—>gcCollect();
case GC_THREAD: ((Threadx*)n.getPtr())—>gcCollect();

4.6.4 Optimized transients

To avoid that optimized transients allocated in fields of records are copied into
the heap, the collection of references to optimized transients is delayed until
the end of the garbage collection. When an optimized transient is found during
the collection of a record it is directly copied with this record. The collection
of transients found through a reference node is delayed because it may be that
this transient is allocated in a field of some record reached later in the garbage
collection.

The delayed updates are pushed onto an additional stack, called the var fix stack.
When the regular update stack is empty the var fix stack is processed. If the
reference is found to be marked as already collected, then the variable was in
a field and the forward pointer is used for the update. If the reference is not
marked the variable is copied to the new chain.

4.6.5 Liveness analysis

The X registers are allocated per thread, but in the implementation only one
shared register array is used. When a thread is preempted or suspended the living

158 CHAPTER 4. IMPLEMENTATION ASPECTS

X registers are saved in the thread and when the thread is scheduled again they are
restored. The number of X registers saved and restored is only an approximation
of the exact number of living X registers, i.e. the compiler calculates the maximal
number of registers used per procedure.

During the garbage collection an exact analysis of the liveness of the X registers
is performed to avoid that unreachable data in X registers is collected.

The base of the liveness analysis is the control flow graph of the bytecode. The
control flow graph of a code segment has a node for every instruction in the code
segment. The graph has a directed link from node A to node B if it is possible
that the instruction B is executed directly after the instruction A. The control
flow graph has no cycles.

The liveness analysis scans the control flow graph starting from the instruction
which is executed when the thread is rescheduled. It finds out which X registers
are never used. The algorithm works such that all possible paths in the control
flow graph are examined.

For every path in the data flow graph the liveness maintains a map of the current
register usage. The status of a register can be

written The first usage of the register in the path was an assignment operation.
In this case the register can be assumed to be dead.

read The first usage of the register was an access operation. In this case the
register must be saved.

unknown The register is neither assigned nor accessed. This is the initial status
of every register.

When two paths join at an instruction the maps of these paths have to be joined.
For every register the state of the two maps are compared and the result status
is computed as follows

e If both stati are the same the result status is also the same.
e If one status is unknown the other status is the result status.

e If one status is written and the other status is read the result status is read.

Two invariants of the LVM bytecode allow for an efficient implementation of
liveness:

e Branches are always forward branches to higher addresses. No backward
branches are allowed. This makes it easy to ensure that no instruction is
scanned more than once.

4.6. MEMORY MANAGEMENT 159

e For two paths starting at the same instruction no register is marked as
written on one path and marked as read on the other path. This allows to
maintain one status map for the whole liveness analysis, because two paths
never disagree on the status of a register.

Besides a register usage map the algorithm maintains an ordered list of addresses,
the todo list, and the address of the currently scanned instruction. The todo list
contains a list of increasing addresses.

For the current instruction one or more of the following actions are performed:

write If the instruction writes into a register and its status is unknown, the
status is changed to written.

read If the instruction reads a register and its status is unknown, the status is
changed to read.

branch If the instruction can branch the target address of the branch is inserted
into the todo list.

The main procedure for the liveness analysis has two loops: the outer loop it-
erates over the ordered todo list and the inner loop iterates over a sequence of
instructions until a break point is reached. Break points are instructions after
which no assumption about the liveness of X registers can be made, e.g. the
r et ur n instruction at end of a procedure or a non-inlined application.

Addresses on the todo list are skipped if they are less or equal than the current
address, because its guaranteed that the instruction at this address was already
scanned.

RegMap | i veness(ByteCode xstartAddr)

{
RegMap regvap[] = UNKNOWN
Todo t odo =nil;
Byt eCodex PC = 0,

t odo. add(st art Addr) ;

out er| oop:
while (!todo.isEmty()) {
Byt eCode xnewPC = t odo. pop();
// al ready scanned?
if (newPC <= PC) goto outerl oop;
PC=newPC,

i nner| oop:

160 CHAPTER 4. IMPLEMENTATION ASPECTS

while (true) {
switch (getOP(PC)) {
case MOVEXX(i,j):
if (regMap[i] == UNKNOWN)
regvap[i] = READ;
if (regMvap[j] == UNKNOWN)
regvap[i] = WRITE;
br eak;
case TESTx(..., addr1, addr2):

t odo. add(addr 1) ;
t odo. add(addr 2) ;
br eak;

case RETURN
goto outerl oop;

}
PC=PC+1;

goto i nnerl oop;
}
}
return reghap;

}

Y registers The liveness analysis is only performed for X registers, because
one array of X registers is saved per thread. This means for every thread found
during a garbage collection the liveness analysis has to be performed once.

No liveness analysis is performed for Y registers, because Y registers are usually
allocated per procedure application, i.e. per task. A liveness analysis for Y regis-
ters would be too expensive, because the number of tasks is under the assumption
that in the average ten tasks per thread are active an order of magnitude larger
than the number of threads. Furthermore non-inlined procedure applications are
no longer break-points for stopping the liveness analysis of Y registers.

4.6.6 Lists

Lists are frequently used data structures. With the generic collection algorithm
outlined above an entry is pushed onto the update stack and popped immediately
afterwards for every list element.

The solution is to use an iterative algorithm for collecting list elements. During
the collection phase the head is copied and eventually pushed onto the update

4.6. MEMORY MANAGEMENT 161

stack as usual, but the collection directly continues with the copying and collec-
tion of the tail while it is a list element.

The memory efficient representation of list elements has the consequence that the
forward pointer for the list element and its first element are shared. Coinciden-
tially this does no harm, because both forward pointers are equal.

162 CHAPTER 4. IMPLEMENTATION ASPECTS

Chapter 5

Conclusion

5.1 Summary

We have presented an efficient mapping of a concurrent functional programming
language L with logic variables, futures, record constraints, and deep guards to
an imperative virtual machine LVM.

The virtual machine is constructed using a modular and open design. The mod-
ules correspond closely to the language primitives and can be to a large extend
developed and explained independently. The open design allows for simplified
modifications and for an easy integration of extensions into the LVM.

The implementation of data structures uses a layered architecture with a highly
optimized tagged pointer scheme at the bottom, a medium level tagged object
scheme for many datatypes, and an extensible and open layer based on late
binding for experiments and easy integration of new data types.

We have shown that many well known ideas from different research communities
can be integrated into a single system. For example first-class procedures, logic
variables, deep guards, concurrency, records and feature constraints, and state-
full programming could be smoothly combined in the LVM.

Personal remarks Many parts of the implementation have an extremely minor
impact on the performance of the systems. If these parts can be integrated in
an orthogonal manner, then the lesson learned is: don’t invest too much time in
clever algorithms and design, but simply do it in the naive way quickly.

A lot of time during the work on the LVM went into the engineering of a stable
and useful system for users. Typically bugs found by users were corrected in less
than a day. New features could often be implemented before their specification
was finished due to the flexible design.

163

164 CHAPTER 5. CONCLUSION

The development of the LVM was highly explorative. New ideas for language
primitives came up frequently. As implementors we are eager to incorporate
them quickly to find out if they can be efficiently implemented and what are
their costs.

After some time of programming experience these ideas were typically refined and
sometimes replaced by more powerful concepts. One example of such a devel-
opment are threads. At the beginning we started with fine-grained concurrency
and we tuned and optimized the LVM to support them very well. Then we saw
that this fine-grained concurrency is not really wanted and needed. After an in-
termezzo based on jobs, which allowed for a semi-grained concurrency, we arrived
at the thread model.

Performing all these frequent changes throughout the LVM was a challenging
task. A major effort was to identify orthogonal pieces and to design interfaces
between them, such that further changes only effect small parts of the whole
system.

5.2 Engineering considerations

In this section we summarize some of our engineering experiences with respect
to the implementation language and hardware platforms.

5.2.1 C++ vs. C as implementation language

At the beginning of the project C++ was chosen as implementation language.
The main reason was that C++ has a lot of features which simplified the first
implementation and it allowed us to make many experiments.

Encapsulation of data structures using classes and methods was useful because
the implementation could be changed frequently, without too much influence on
the rest of the system.

During the development performance became an issue and it turned out that
because of the number of features supported by C++ it was difficult to predict
the performance directly from the source code.

One useful feature for high-performance implementations are inlined functions.
The compiler usually replaces the call of such a function during compile time
by its definition. This optimization avoids a function call and typically creates
larger basic blocks for other optimizations. The drawback of inlining is that it is
not a language requirement of C++ and the compiler can also decide not to do
it. This means that as an implementor one has to check what the compiler has
done.

5.2. ENGINEERING CONSIDERATIONS 165

C does not support inline functions and the basic concept for achieving a similar
result is to use macros. Macros are not as safe as inline functions, e.g. the com-
piler does not check the types of arguments, but there expansion is predictable
and does not depend on the compiler. A major trap of macros is that the pro-
grammer must be careful to that arguments are not evaluated twice.

Another source of optimization are virtual functions: in our implementation we
avoid virtual functions in many classes and implemented the dispatch to different
implementation in subclasses using explicit tags. Together with inlining this was
faster and less memory was needed per object. Only a small number of bits are
required for the tag bits to distinguish different subtypes and the memory for the
pointer to a virtual function table is saved.

In the current implementation we only use a small amount of features which are
not available in C. For optimizing the emulator it would be helpful to rewrite it
in C, because the optimizations done by the C compiler are better predictable.
The shear amount of features in C++ makes it extremely difficult to predict
if the compiler can optimize them. An example to illustrate this: recently we
found out that GCC 2.7.2 cannot optimize conditions if the second condition of
a conjunction (&&) contains a call to an inline function.

Another problem which occurs with C++ is that the size of header files is huge
and the dependency among them becomes quite complex for such a large project
as the LVM.

5.2.2 The role of the target platform

Implementing the emulator in C++ makes it easy to port it to different platforms,
because compilers for C++ are available on every platform and compilers are
almost compatible. The main effort when porting the Mozart system to a new
platform are the operating system dependent functions.

Porting the OS specific parts is not the only problem. A second problem is that
different hardware architectures require different kinds of optimizations at the
level of the C++ source code to gain maximal efficiency. This problem is not
specific to the implementation of virtual machines, but the performance of the
LVM depends to a large extended on the exact understanding of the mapping to
real hardware.

Dispatch One performance bottleneck is the threaded-code interpretation, which
needs to dispatch to the next instruction. RISC architectures have one or more
delay slots which can be executed in parallel with a jump. To use this slot the
increment of the program counter must be decoupled from the jump:

166 CHAPTER 5. CONCLUSION

#define DISPATCH_OPT(n)
void *1bl = *(PC+n);
PC += n;
goto *1bl;

This code allows the compiler to increment the PC in parallel to the jump, by
using the delay slot for the increment.

The following naive dispatch

#define DISPATCH_NAIVE(n)
PC += n;
goto *PC;

will stall the jump until the PC is incremented and if no other instructions could
be scheduled the delay slot remains empty.

When the emulator was ported to the INTEL x86 architectures we noticed that
the DISPATCH_OPT did not generate optimal code. For this architecture the
naive DISPATCH was better, because x86 processors have fewer registers and it
has an indirect jump instruction which can read an address directly from memory.

Machine registers A typical difference between CISC and RISC architectures
is the number of available assembler registers and the addressing modes. RISC
have many general purpose registers and CISC have few and some special purpose
registers. RISC only supports a limited number of addressing modes which are
typically based on registers. CISC supports a rich number of addressing modes.

As an example we analyzed the usage of the X registers in the LVM. The LVM
has a single set of the global X registers at a fixed address in memory.

For RISC architectures it is good to load this address into a local machine register
of the workers main procedure, because this address is frequently used and RISC
processors need two instructions to load an address.

CISC architectures support the direct addressing of every memory location and
it is better to use this direct addressing mode instead of storing the address in
one of the few available registers.

As an example accessing X[i] needs two RISC instructions if X is not in a register
compared to one if it is. On CISC processors the situation is swapped. CISC
needs two instructions if X is in a temporary variable and only one if the fixed
address is used.

5.3. FUTURE WORK 167

5.3 Future work

5.3.1 Improve compilation

A disadvantage wrt. a high-performance implementation is that every data struc-
ture is dynamically typed and type tests, unbox, and box operations have to be
performed frequently at runtime. If more type information would be available
at compile-time a better interface between the compiler and the LVM allows to
use unboxed representations for values, e.g. storing floating point values in float
registers for numeric calculations.

Another aspect of this problem are references and transients. It would be useful if
the compiler could derive information about reference chains and determination
of values. Implicit dereference operations and synchronization code all over the
LVM could then be replaced by explicit bytecode instructions.

5.3.2 Reuse existing technology

The Mozart system is self contained, which means that it has only few depen-
dencies on third-party tools and software. The development model was flexible,
because only few people had to coordinate their changes and no legacy problems
occur. A disadvantage of such a model is that new techniques, libraries, and tools
developed in other projects could not be easily reused.

Often it is possible to design and implement interfaces to third-party software,
e.g. for GUI programming we use an interface to Tcl/Tk. Typically such an
interface is not trivial and requires a lot of effort. Sometimes the wheel has to
be invented again for designing useful libraries, e.g. for OS services like sockets,
pipes, and files, database interfaces, etc.

For the future of Oz/Mozart I think it would be useful to investigate the pos-
sibility to add our ideas to existing systems and to reuse their technology and
infrastructure.

One promising candidate is Java and the Java Virtual Machine as a platform for
compiling Oz programs. The JVM is nowadays available on virtually all plat-
forms, including coffee machines and libraries and API for all kinds of applications
exist. It would be necessary to analyze the limitations of the JVM and how resp.
if it can be a target language for Oz.

Another option is to incorporate the Oz ideas into functional languages, like
Objective Caml, Standard ML, and Scheme. These languages are closer to the
language model of Oz than the imperative language Java. These languages have
not the commercial impact and the library base of Java, but they are well-known
in the academic community. Another advantage of this direction is that software

168 CHAPTER 5. CONCLUSION

developed in academic institutions is typically available freely and can thus be
adapted to the specific needs.

5.3.3 Functional core

The original design of the LVM was based on the relational model inherited from
logic programming. In many parts the current design described in this thesis
is based on the functional programming model. In the design some parts are
left over from the relational model. The LVM has only procedures and return
parameters are passed using logic variables as call-by-reference parameters. In
this design logic variables are at the core of the system.

An alternate design could be a VM based on functions, where logic variables and
other transient types can be introduced as fully orthogonal primitives.

5.3.4 Distribution

The LVM is implemented as a single-threaded operating system process with a
single worker for the execution of threads. It is useful to investigate how to take
advantage of the emerging multi-processor technology.

The directions currently investigated are parallelism and distribution. Paral-
lelism [80] starts with the idea of a single LVM and investigates which synchro-
nization is needed to allow for multiple workers in a single address space. Distri-
bution [39] starts with multiple LVMs and analyzes how to give the illusion of a
transparent distributed store, based on distributed access structures to nodes in
the store and protocols to implement graph rewriting steps.

It seems that the distributed approach dominates parallelism. Distribution allows
also to take advantage of multiple processors by starting two LVM on one com-
puter and it allows also to explore the computation power of computer clusters.
It seems that the amount of communication necessary for interesting parallel ap-
plications is small compared to the amount of computation. In this case a parallel
implementation has no advantage over a distributed implementation.

Bibliography

1]

2]

[10]

[11]

Hassan Ait-Kaci. Warren’s Abstract Machine - A Tutorial Reconstruction.
The MIT Press, 1991.

Hassan Ait-Kaci and Roger Nasr. Integrating logic and functional program-
ming. Lisp and Symbolic Computation, 2:51-89, 1989.

Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of LIFE. Jour-
nal of Logic Programming, 16(3 and 4):195-234, August 1993.

Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. A feature-based con-
straint system for logic programming with entailment. Theoretical Com-
puter Science, 122(1-2):263-283, January 1994.

Andrew W. Appel. A runtime system. Technical Report CS-TR-220-89,
Princeton University, May 1989.

Andrew W. Appel. Runtime tags aren’t necessary. Lisp and Symbolic
Computation, 19(7):703-705, July 1989.

Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, 1992.

Joe L. Armstrong, Bjarne O. Daicker, Robert Virding, and Mike C.
Williams. Implementing a functional language for highly parallel real time

applications. In Software Engineering for Telecommunication Systems and
Services, March 1992.

Joe L. Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams.
Concurrent Progamming in ERLANG (2nd Edition). Prentice Hall, 1996.

Rolf Backofen and Ralf Treinen. How to win a game with features. Infor-
mation and Computation, 142(1):76-101, April 1998.

James R. Bell. Threaded code. Communications of the ACM, 16(6):370—
372, 1973.

169

170

BIBLIOGRAPHY

[12]

[13]

[14]

[19]

[20]

[21]

[22]

Peter A. Bigot and Saumya K. Debray. A simple approach to supporting
untagged objects in dynamically typed languages. The Journal of Logic
Programming, 32(1):25-47, July 1997.

Peter A. Bigot and Saumya K. Debray. Return value placement and tail call
optimization in high level languages. The Journal of Logic Programming,
38(1):1-29, January 1999.

Per Brand. A decision graph algorithm for ccp languages. In Logic Pro-
gramming, Proceedings of the Twelfth International Conference on Logic
Programming, pages 433-447, Tokyo, Japan, June 1995. The MIT Press.

David R. Butenhof. Programming with POSIX Threads. Addison-Wesley,
1997.

International Standard ISO/IEC 1/882:1998, Programming Language -
C++, 1998.

C. J. Cheney. A non-recursive list compacting algorithm. Communications
of the ACM, 13(11):677-678, November 1970.

Alain Colmerauer. Prolog and infinite trees. In K. Clark and S. Tarnlund,
editors, Logic Programming, pages 231-251. Academic Press, New York,
1982.

Alain Colmerauer. An Introduction to Prolog III. Communications of the
ACM, pages 70-90, July 1990.

L. Peter Deutsch and Alan M. Schiffman. Efficient implementation of the
Smalltalk-80 system. In 11** ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 297-302. ACM Press, January
1984.

Robert B. K. Dewar. Indirect threaded code. Communications of the ACM,
18(6):330-331, June 1975.

Denys Duchier, Leif Kornstaedt, Christian Schulte, and Gert Smolka. A
higher-order module discipline with separate compilation, dynamic linking,
and pickling. Technical report, Programming Systems Lab, DFKI and
Universitat des Saarlandes, 1998. DRAFT.

M. Anton Ertl. Stack caching for interpreters. In SIGPLAN ’95 Confer-
ence on Programming Language Design and Implementation, pages 315—
327, 1995.

M. Anton Ertl. Implementation of Stack-Based Languages on Register Ma-
chines. PhD thesis, Technische Universitdt Wien, Austria, 1996.

BIBLIOGRAPHY 171

[25] Robert R. Fenichel and Jerome C. Yochelson. A Lisp garbage collector for
virtual memory computer systems. CACM, 12:611-612, 1969.

[26] Alessandro Forin. Futures. In Lee [58], chapter 9.

[27] Torkel Franzén, Seif Haridi, and Sverker Janson. An overview of the An-
dorra Kernel Language. In Proceedings of the 2nd Workshop on Extensions
to Logic Programming. Springer-Verlag, 1992.

(28] John B. Goodenough. Exception handling: Issues and a proposed notation.
Communications of the ACM, 18(12):683-696, December 1975.

[29] John B. Goodenough. Structured exception handling. In 2nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 204-224, Palo Alto, California, January 1975.

[30] James Gosling, Bill Joy, and Guy Steele. The Java language specification.
Addison-Wesley, 1997.

[31] Paul Graham. ANSI Common Lisp. Prentice Hall, 1997.

[32] David Gudeman. Representing type information in dynamically typed lan-
guages. Technical Report TR 93-27, Department of Computer Science,
University of Arizona, Tucson, AZ 85721, USA, October 1993.

[33] Gopal Gupta and Bharat Jayaraman. Analysis of Or-parallel execution
models. ACM Transactions on Programming Languages and Systems,
15(4):659-680, 1993.

[34] Robert H. Halstaed. Multilisp: A language for concurrent symbolic com-
putation. ACM Transactions on Programming Languages and Systems,
7(4):501-538, October 1985.

[35] Seif Haridi. A tutorial of Oz 2.0, 1997. Available from the web at
http://www.sics.se/"seif/oz.html.

[36] Seif Haridi. Tutorial of Oz, 1999. http://www.mozart-oz.org/.

[37] Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its Compu-
tation Model. In David H. D. Warren and Peter Szeredi, editors, Logic
Programming, Proceedings of the Tth International Conference, pages 31—
48, Cambridge, MA, June 1990. The MIT Press.

[38] Seif Haridi and Dan Sahlin. Efficient implementation of unification of cyclic
structures. In J. A. Campbell, editor, Implementations of Prolog, pages
234-249. John Wiley & Sons, Ltd., 1984.

172

BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Program-
ming languages for distributed applications. New Generation Computing,
1998.

Seif Haridi, Peter Van Roy, and Gert Smolka. An overview of the design
of Distributed Oz. In Proceedings of the Second International Symposium
on Parallel Symbolic Computation (PASCO °97), pages 176-187, Mauli,
Hawaii, USA, July 1997. ACM Press.

Bogumil Hausman. Turbo Erlang: Approaching the speed of C. In Evan
Tick and Giancarlo Succi, editors, Implementations of Logic Programming
Systems, pages 119-135. Kluwer Academic Publishers, 1994.

Martin Henz. Objects for Concurrent Constraint Programming, volume 426
of the Kluwer international series in engineering and computer science.
Kluwer Academic Press, October 1997.

IEEE. 9945-1:1996 (ISO/IEC) [IEEE/ANSI Std 1003.1 1996 Edition] In-
formation Technology - Portable Operating System Interface (POSIX) -
Part 1: System Application: Program Interface (API), 1996.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. Techni-
cal report, Department of Computer Science, Monash University, Australia,
June 1986.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
14" ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 111-119. ACM Press, 1987.

Joxan Jaffar and Michael J. Maher. Constraint logic programming: A
survey. Journal of Logic Programming, 19/20:503-582, May-July 1994.

Sverker Janson. AKL — A Multiparadigm Programming Language. PhD
thesis, Computer Science Department, Uppsala University, Sweden, 1994.

Sverker Janson and Seif Haridi. Programming paradigms of the Andorra
Kernel Language. In Saraswat and Ueda, editors, Logic Programming: Pro-
ceedings of the 1991 International Symposium. The MIT Press, 1991. Avail-
able as SICS RR R91:08.

Sverker Janson, Johan Montelius, and Seif Haridi. Ports for objects in
concurrent logic programming. In Gul Agha, Peter Wegner, and Akinori
Yonezawa, editors, Research Directions in Concurrent Object-Oriented Pro-
gramming. The MIT Press, 1993.

Guy L. Steele Jr. Common Lisp: the language (2nd ed). Digital Press,
1990.

BIBLIOGRAPHY 173

[51]

[52]

[53]

[58]

[59]

[60]

[61]

[62]

[63]

Richard Kelsey, William Clinger, and Jonathan Rees. Revised® Report on
the Algorithmic Language Scheme, 1998.

Donald Knuth. The Art of Computer Programming: Sorting and Searching
(Vol 3, 2nd Ed). Addison-Wesley, 1998.

Andrew R. Koenig and Bjarne Stroustrup. Exception handling for C++
(revised). In Proc USENIX C++ Conference, April 1990. Also in The
FEvolution of C++: Language Design in the Marketplace of Ideas, Journal
of Object Oriented Programming, 3(2), July/Aug 1990.

Peter M. Kogge. An architectural trail to threaded-code systems. Com-
puter, pages 22-32, March 1982.

Robert A. Kowalski. Predicate logic as a programming language. In
IFIP 74, pages 569-574, October 1974.

Robert A. Kowalski. Algorithm = Logic + Control. Communications of
the ACM, 22(7):424-436, 1979.

R. Greg Lavender and Dennis G. Kafum. A polymorphic future and first-
class function type for concurrent object-oriented programming. The Uni-
versity of Texas at Austin, 1992.

Peter Lee, editor. Topics in advanced language implementation. The MIT
Press, 1991.

Thomas Lindgren, Per Mildner, and Johan Bevemyr. On Taylor’s scheme
for unbound variables. Technical Report UPMAIL TR No. 116, Computing
Science Department, Uppsala University, October 1995.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison Wesley, 1996.

Peter S. Magnusson, Fredrik Dahlgren, Hkan Grahn, Magnus Karlsson,
Fredrik Larsson, Fredrik Lundholm, Andreas Moestedt, Jim Nilsson, Per
Stenstrm, and Bengt Werner. Simics/sun4m: A virtual workstation. In
Useniz Annual Technical Conference, New Orleans, Lousiana, June 1998.

Michael Mehl, Ralf Scheidhauer, and Christian Schulte. An Abstract Ma-
chine for Oz. Research Report RR-95-08, Deutsches Forschungszentrum fiir
Kiinstliche Intelligenz, Stuhlsatzenhausweg 3, D66123 Saarbriicken, Ger-
many, June 1995. Also in: Proceedings of PLILP’95, Springer-Verlag,
LNCS, Utrecht, The Netherlands.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

174

BIBLIOGRAPHY

[64]

[74]

[75]

[76]

[77]

Johan Montelius. Fxploiting Fine-grain Parallism in Concurent Constraint
Languages. PhD thesis, Computer Science Department, Uppsala University,
Sweden, 1997.

Johan Montelius and Khayri A. M. Ali. An And/Or-parallel implementa-
tion of AKL. New Generation Computing, Special issue on the Workshop
on Parallel Logic Programming, 14(1), 1996.

The Mozart Programming System. http://www.mozart-oz.org/, 1998.

Martin Miiller. Set-based Failure Diagnosis for Concurrent Constraint Pro-
gramming. Dissertation, Universitdt des Saarlandes, Fachbereich Infor-
matik, Saarbriicken, Germany, January 1998.

Tobias Miiller. Solving set partitioning problems with constraint program-
ming. In Proceedings of the Sixth International Conference on the Practical
Application of Prolog and the Forth International Conference on the Prac-
tical Application of Constraint Technology, pages 313-332, London, UK,
March 1998. The Practical Application Company Ltd.

Tobias Miiller and Martin Miiller. Finite set constraints in Oz. In 13.
Workshop Logische Programmierung, Technische Universitat Miinchen, 17—
19 September 1997.

Tobias Miiller and Jorg Wiirtz. Extending a concurrent constraint language
by propagators. In Jan Maluszynski, editor, Proceedings of the International
Logic Programming Symposium, pages 149-163. The MIT Press, 1997.

Richard A. O'Keefe. The Craft of Prolog. The MIT Press, 1990.

The DFKI Oz Programming System. http://www.ps.uni-sb.de/oz1/,
1995.

The DFKI Oz Programming System (version 2). Available from the web
at http://www.ps.uni-sb.de/0z2/, 1997.

Larry Paulson. ML for the Working Programmer (Second Edition). Cam-
bridge University Press, 1996.

John Peterson and Kevin Hammond. Report on the Programming Language
Haskell, Version 1.4, April 1997.

Simon L. Peyton-Jones. The Implementation of Functional Programming
Languages. Prentice Hall International, 1987.

Andreas Podelski and Gert Smolka. Situated simplification. Theoretical
Computer Science, 173:209-233, February 1997.

BIBLIOGRAPHY 175

78]

[79]

[83]

[84]

[85]

[86]

[87]

38

[89]

Andreas Podelski and Peter Van Roy. The beauty and the beast algorithm:
QQuasi-linear incremental tests of entailment and disentailment over trees.

In Proceedings of the International Logic Programming Symposium, pages
359 — 374, Ithaca, New York, November 1994. The MIT Press.

Andreas Podelski and Peter Van Roy. A detailed algorithm testing guards
over feature trees. In Manfred Meyer, editor, Constraint Processing, Se-
lected Papers, volume 923 of Lecture Notes in Computer Science, pages
11-38. Springer, 1995.

Kostja Popov. A parallel abstract machine for the thread-based concur-
rent language Oz. In Inés de Castro Dutra, Vitor Santos Costa, Fernando
Silva, Enrico Pontelli, and Gopal Gupta, editors, Workshop on Parallism
and Implementation Technology for (Constraint) Logic Programming Lan-
guages, 1997.

John H. Reppy. Asynchronous signals in Standard ML. Technical Report
TR 90-1144, Department of Computer Science, Cornell University, Ithaca,
NY 14853, August 1990.

John H. Reppy. CML: A higher-order concurrent language. In SIGPLAN
Conference on Programming Language Design and Implementation, 1991.
(revised 1993).

John H. Reppy. Higher-order Concurrency. PhD thesis, Cornell University,
1992.

John H. Reppy. Concurrent Programming with Fvents - The Concurrent
ML Manual. Bell Labs, 1993.

Clay Roach. Polymorphic futures in Java. The University of Texas at
Austin, May 1998.

Vijay A. Saraswat. Concurrent Constraint Programming. ACM Doctoral
Dissertation Awards: Logic Programming. MIT Press, 1993.

Ralf Scheidhauer. Design, Implementierung und Fvaluierung einer
virtuellen Maschine fir Oz Dissertation, Technische Fakultat der Uni-
versitat des Saarlandes, 1999. Submitted.

Christian Schulte. Programming constraint inference engines. In Gert
Smolka, editor, Proceedings of the Third International Conference on Prin-
ciples and Practice of Constraint Programming, Lecture Notes in Computer
Science, Schloss Hagenberg, Linz, Austria, October 1997. Springer-Verlag.

Christian Schulte. Constraint Inference Engines. Dissertation, Technische
Fakultat der Universitat des Saarlandes, 1999. To appear, preliminary title.

176 BIBLIOGRAPHY

[90] Christian Schulte and Gert Smolka. Encapsulated search in higher-order
concurrent constraint programming. In Maurice Bruynooghe, editor, Logic

Programming: Proceedings of the 1994 International Symposium, pages
505-520, Ithaca, New York, USA, November 1994. The MIT Press.

[91] Christian Schulte, Gert Smolka, and Jérg Wiirtz. Encapsulated search and
constraint programming in Oz. In Alan H. Borning, editor, Second Work-
shop on Principles and Practice of Constraint Programming, Lecture Notes
in Computer Science, vol. 874, pages 134-150, Orcas Island, Washington,
USA, May 1994. Springer-Verlag.

[92] Ehud Shapiro. The family of concurrent logic programming languages.
ACM Computing Surveys, 21(3):412-510, September 1989.

93] Gert Smolka. A calculus for higher-order concurrent constraint pro-
gramming with deep guards. Research Report RR-94-03, Deutsches
Forschungszentrum fiir Kiinstliche Intelligenz (DFKI), February 1994.

[94] Gert Smolka. A foundation for higher-order concurrent constraint program-
ming. In Jean-Pierre Jouannaud, editor, 1st International Conference on
Constraints in Computational Logics, Lecture Notes in Computer Science,
vol. 845, pages 50-72, Miinchen, Germany, 7-9 September 1994. Springer-
Verlag.

[95] Gert Smolka. The definition of Kernel Oz. In Andreas Podelski, editor,
Constraints: Basics and Trends, Lecture Notes in Computer Science, vol.
910, pages 251-292. Springer-Verlag, 1995.

[96] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,
Computer Science Today, Lecture Notes in Computer Science, vol. 1000,
pages 324-343. Springer-Verlag, 1995.

[97] Gert Smolka. Concurrent constraint programming based on functional pro-
gramming. In Chris Hankin, editor, Programming Languages and Systems,
Lecture Notes in Computer Science, vol. 1381, pages 1-11, Lisbon, Portu-
gal, 1998. Springer-Verlag.

(98] Gert Smolka and Ralf Treinen. Records for logic programming. Journal of
Logic Programming, 18(3):229-258, April 1994.

[99] Richard M. Stallmann. Using and Porting GNU CC. Free Software Foun-
dation, Cambridge, MA, 1988-1998.

[100] Peter A. Steenkiste. The implementation of tags and run-time type check-
ing. In Lee [58], chapter 1.

BIBLIOGRAPHY 177

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Andrew Taylor. High Performance Prolog Implementation. PhD thesis,
Basser Department of Computer Science, University of Sydney, June 1991.

Ralf Treinen. Feature constraints with first-class features. In Andrzej M.
Borzyszkowski and Stefan Sokotowski, editors, Mathematical Foundations
of Computer Science, Lecture Notes in Artificial Intelligence, vol. 711, pages
734-743, Gdansk, Poland, 30 August—3 September 1993. Springer-Verlag.

Ralf Treinen. Feature trees over arbitrary structures. In Patrick Blackburn
and Maarten de Rijke, editors, Specifying Syntactic Structures, chapter 7,
pages 185—-211. CSLI Publications and FoLLI, 1997.

Peter Van Roy. An Intermediate Language to Support Prolog’s Unification.
In Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings of the North
American Conference on Logic Programming, pages 1148-1164, Cleveland,
Ohio, USA, 1989.

Peter Van Roy. Can Logic Programming Ezxecute as Fast as Imperative
Programming. PhD thesis, Computer Science Division (EECS), University
of California, Berkeley, December 1990.

Peter Van Roy and Alvin M. Despain. High-performance logic programming
with the aquarius prolog compiler. COMPUTER, January 1992.

Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and
Ralf Scheidhauer. Mobile objects in Distributed Oz. ACM Transactions on
Programming Languages and Systems, 19(5):804-851, September 1997.

Peter Van Roy, Michael Mehl, and Ralf Scheidhauer. Integrating efficient
records into concurrent constraint programming. In International Sympo-
stum on Programming Languages, Implementations, Logics, and Programs,
Aachen, Germany, September 1996. Springer-Verlag.

Philip Wadler. Deforestation: transforming programs to eliminate trees.
Theoretical Computer Science, 73:231 — 248, 1990.

David H. D. Warren. Applied Logic — Its Use and Implementation as as
Programming Tool. PhD thesis, University of Edinburgh, 1977. Available
as Technical Note 290, SRI International.

David H. D. Warren. An abstract Prolog instruction set. Technical Report
309, Artifical Intelligence Center, SRI International, 1983.

David H. D. Warren. The SRI model for Or-parallel execution of Prolog:
Abstract design and implementation issues. In Proceedings of the 1987
International Symposium on Logic Programming, pages 92-102, 1987.

178

BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

[118]

David S. Warren. Efficient prolog memory management for flexible control
strategies. New Generation Computing, 2(4):361-369, 1984.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Interna-
tional Workshop on Memory Management, St. Malo, France, September
1992.

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dy-
namic storage allocation: A survey and critical review. In In International
Workshop on Memory Management, Kinros, Scotland, UKs, September
1995.

Jorg Wiirtz. Oz Scheduler: A workbench for scheduling problems. In Pro-
ceedings of the 8th IEEE International Conference on Tools with Artificial
Intelligence, pages 132-139, Toulouse, France, November 1996. IEEE Com-
puter Society Press.

Jorg Wiirtz. Constraint-based scheduling in Oz. In Symposium on Opera-
tions Research, Braunschweig, Germany, 1997. Springer-Verlag.

Jorg Wiirtz. Lésen von kombinatorischen Problemen durch Constraintpro-
grammierung in Oz Dissertation, Universitat des Saarlandes, Fachbereich
Informatik, Postfach 1150, D-66041 Saarbriicken, Germany, 1998.

Index

access,
— field, access
access, 34
activation record, 80
addressing, 56
mode, 65
Agents, 108
AKL, 5, 108
al | ocat e, 86
al | ocat eL, 62
al |l ocatelL1, 62
application, 12, 84
appl Met hX; 63
arity, 18, 72
table, 54
assign, 19
atom, 11, 18, 71, 136
table, 54
atom table, 136
attribute,
— variable, attribute

BEAM, 111
binding, 14, 19, 26, 73, 127

order, 41

speculative, 41, 100
binding window, 97
block,

— thread, block
boxing, 117
branch, 62
built-in procedure,

— procedure, built-in
by-need future,

— future, by-need
by-need synchronization,

179

— synchronization, by-need

byNeed, 32, 45
bytecode, 54

call, 66, 88

cal | Bl , 62, 88
cal |l X, 62, 84, 85
catch,

— exception, catch
catch, 24
cell, 4, 14, 33, 45
cleary, 63
clone,

— space, clone
close,

— record, close
closure, 14
communication, 16
computation model, 14
computation space,

— space
concurrency, 30, 53

fine-grained, 96
cond, 44, 45, 62
conditional

deep guard, 4, 44, 97
cons, 71
constraint,

— equality constraint,

— feature constraint,

— width constraint
continuation,

— task, continuation
control, 53, 82
copyable name,

— name, copyable

180

INDEX

core language, 11

creat eVari abl eMbve, 62
creat eVari abl eX 62
cycle, 16, 28

deal | ocat e, 86
deal | ocat eL, 62
deal | ocat elL1, 62
debugEntry, 63
debugExi t, 63
declaration, 12

name, 12

value, 12
deep guard,

— conditional, deep guard
definition, 12, 83
definition,62, 83, 84
definiti onCopy, 62
deinstall, 100
deref, 129
dereference, 73, 129
derefPtr, 131
determination, 30
direct node,

— node, direct
direct transient,

— transient, direct
directCall, 62, 8
directTail Call, 62
disentailment, 42, 97

emulator, 54
endDef i nition, 62
endO Fil e, 63
engine, 53

state, 54
entailment, 42, 97, 103
environment, 14

local, 54, 56, 79, 86

procedure, 54
equality constraint, 36
equivalence,

— node, equivalence

Erlang, 111
exception, 3, 23, 42, 80, 91
catch, 23
failure, 42
finally, 25
handler, 23
raise, 23, 54
value, 23
exchange, 33, 34, 45
execution
step, 16
expression, 12

failure, 103
fairness, 16, 31, 54, 93, 94, 100
feature, 14, 18
feature constraint, 4, 36, 45
feat ureC, 38, 39, 46
field, 18, 70
access, 18
name, 18
select, 12, 18
value, 18
fi el dCached, 143
finally,
— exception, finally
fine-grained concurrency,
— concurrency, fine-grained
first-class function, 3
frame,
— stack, frame
free identifier, 14
free name,
— name, free
function application,
— application
function definition,
— definition
future, 3, 29, 45, 126
by-need, 32, 127
future, 29

get Const ant X, 63

INDEX

181

get Li st Val Var , 63
get Li st X, 63
get Recor dX, 63
get Sel f, 63
get Vari abl eX, 62, 83
get Var Var , 83
get Var Var XX, 62
get Voi d, 62
global node,

— node, global
global register,

— register, global
gl obal Var name, 63
graph, 54, 67,

— language graph
graph rewriting, 16, 19

handler,

— exception, handler
handler task,

— task, handler
Haskell, 3, 4, 33
heap node,

— node, heap
home space,

— space, home

identifier, 12
name, 12

idle loop, 54
independence, 31
inject,

— space, inject
nl i neAssi gn, 63
nli neAt, 63
nl i neM nus, 62
nli neM nusl, 62
nl i nePl us, 62
nlinePl usl, 62
install, 100
instruction, 54
integer, 18
interleaving, 16

JAM, 111
Java, 3, 35, 109
job, 97

JVM, 109

language graph, 16
lazy, 4, 32, 48
leak,
— memory leak
light-weight thread,
— thread, light-weight

Lisp, 3

list, 71

literal, 71, 136
load, 57, 60

local environment,
— environment, local
local node,
— node, local
| ocal Var nane, 63
lock, 33
| ock, 62
logic variable,
— variable
 var, 25

machine program, 56
mat ch, 82, 83
matching,

— pattern matching
mat chX, 62, 83
memory leak, 128
merging, 44, 103

ML,

— Standard ML
modules

of the VM, 52
noveMoveXYXY, 62
noveXX, 62
Mozart, 1, 53

Multilisp, 3, 30, 32

name, 11, 18, 71, 136,
— field, name

182

INDEX

copyable, 136

free, 137

named, 136

optimized, 136

unique, 136
name declaration,

— declaration, name
name identifier,

— identifier, name
named name,

— name, named
node

classification, 67

direct, 64, 68

equivalence, 26, 29

global, 41

heap, 68

local, 41

pointer, 68

register, 71

situated, 40

tagged, 67
numeric value,

— value, numeric

open record,

— record, open
operator, 14

core, 12
optimized name,

— name, optimized

parallel, 36
pattern matching, 12, 31, 46
PC register,

— register, PC
persistent, 57
pickle, 57
pointer node,

— node, pointer
popEx, 62, 91, 92
port, 30
POSIX thread,

— thread, POSIX
preemption, 54, 93
primary tag,

— tag, primary
primitive value,

— value, primitive
procedure

activation, 54

built-in, 54, 87

invocation, 80
procedure application,

— application
procedure definition,

— definition
procedure environment,

— environment, procedure
profil eProc, 63
program counter,

— register, PC
program store,

— store, program
Prolog, 3, 4, 25, 73, 78, 79, 107
propagation, 41, 102
put Const ant , 62
put Li st X, 62
put Recor dX, 62

raise, 24,
— exception, raise
raise, 91
rai seerror, 63
rational tree,
— tree, rational
reactivity, 100
record, 4, 14, 18, 71, 71
close, 38
construction, 12
open, 37
record, 14, 22
record arity,
— arity
record width,
— width

INDEX

183

reference, 14, 72, 125

write, 77
reference chain, 73
register, 56

global, 56

PC, 56

SP, 56, 81

space, 99

status, 90

task, 79

X, 56
register node,

— node, register
replication, 57, 71
request, 32, 127
resume exception,

— exception, resume

return, 62, 85, 91, 92, 159

return code, 88
rewriting,

— graph rewriting
root space,

— space, root,
root, variable, 40
round-robin, 93
runnable thread,

— thread, runnable
running thread,

— thread, running

safeDeref, 129
save task,

— task, save
scheduling, 54, 93
scope, 14
script, 97, 100
secondary tag,

— tag, secondary
select,

— field, select
sel ect, 14, 22, 62, 152
sendMsgX, 63
set Const ant , 62

set Sel f, 63

set Val ueX, 62
set Vari abl eX 62
set Voi d, 62
situated node,

— node, situated

situated thread,

— thread, situated

ski p, 63
SP register,

— register, SP

space, 4, 14, 39, 97

clone, 46

home, 41

inject, 46

root, 40

stable, 46
toplevel, 40
transparent, 103

space, 99, 100
space register,

— register, space

spawn, 30, 31, 93
speculative binding,

— binding, speculative

spurious,

— wakeup, spurious

stable,

— space, stable

stack frame, 56
Standard ML, 3, 11
state, 4, 33,

— engine, state

status register,

— register, status

store, 14, 54, 67

invariant, 41
program, 56

structure pointer,

— register, SP

subordinated, 39
suspension, 31, 93, 95, 102, 128

list, 102

184

INDEX

wakeup, 95
symbolic value,
— value, symbolic

synchronization, 16, 31, 94, 97

by-need, 3, 32
syntactic sugar, 11

tag, 67

primary, 68

secondary, 68
tag scheme, 122
tagged

object, 117, 118

pointer, 117, 119
tagged node,

— node, tagged
tail Appl Met hX; 63
tail Call X 62, 85
tai | SendMsgX, 63
task, 54, 79

continuation, 79

handler, 80

id, 56

pop, 54

push, 54

save, 80
task register,

— register, task
TEAM, 111
terminate exception,

— exception, terminate
termination, 93,

— thread, termination
termination status, 26, 29
testBl, 62
t est Bool X, 62
t est Const ant X, 62, 83
test LE, 62
t est Li st X, 62
testLT, 62
t est Recor dX, 62
thread, 3, 14, 30, 53, 54, 92

block, 31, 54, 92

id, 56
in space, 99
light-weight, 3
light-weigth, 94
POSIX, 3
queue, 100
runnable, 92
running, 92
situated, 99
termination, 54
t hr ow, 24
toplevel space,
— space, toplevel
trail, 100
trail, 99
transient, 3, 30, 72, 125
direct, 75
transparent, 26,
— space, transparent
tree
rational, 4
try, 62,91
tuple, 71
type, 14
type test, 117

unboxing, 117
uni f, 28, 42
unification, 26
algorithm, 26, 29, 39
uni f yConst ant , 63
uni fyVal ueX; 63
uni f yVal Var X, 63
uni fyVari abl eX; 63
uni fyVoi d, 63
uni fyXX; 63
unique name,
— name, unique
unit, 16

value, 18,
— field, value
numeric, 18

INDEX

185

primitive, 18
symbolic, 18
value declaration,
— declaration, value
variable, 25, 126
attribute, 37
logic, 3
virtual machine, 51

wai t Or, 31, 95
wake up, 93
wakeup,

— suspension, wakeup
spurious, 128
thread, 102
WAM, 107
width, 18
width constraint, 36
wi dt hC, 38, 39, 46
worker, 54, 79
write reference,
— reference, write

X register,
— register, X

186 INDEX

This document was typeset with IXTEX at 12 point using the times font. The L
and C++ listings where processed with the listings package from Carsten Heinz.

