
Beta Reduction Constraints

Manuel Bodirsky Katrin Erk?

Alexander Koller] ∗∗ Joachim Niehren??

Programming Systems Lab ] Dept. of Computational Linguistics
Universität des Saarlandes, Saarbrücken, Germany

www.ps.uni-sb.de/~{bodirsky,erk,koller,niehren}

Abstract. The constraint language for lambda structures (CLLS) can
model lambda terms that are known only partially. In this paper, we
introduce beta reduction constraints to describe beta reduction steps
between partially known lambda terms. We show that beta reduction
constraints can be expressed in an extension of CLLS by group paral-
lelism. We then extend a known semi-decision procedure for CLLS to also
deal with group parallelism and thus with beta-reduction constraints.

1 Introduction

The constraint language for lambda structures (CLLS) [7, 6, 8] can model λ-terms
that are known only partially. The idea is to see a λ-term as a λ-structure: a
tree decorated with binding edges. One can then describe a λ-term partially as
one would describe a standard tree structure. CLLS provides dominance [13, 2,
5], parallelism [9] and binding constraints for this purpose.

This paper shows how to lift β-reduction to partial descriptions of λ-terms in
CLLS. We define beta reduction constraints, which allow a declarative description
of the result of a single β-reduction step. At first, this description is very implicit;
it is made explicit by solving the constraints. To this end, we show how beta
reduction constraints can be expressed as group parallelism constraints. Then
we adapt a known semi-decision procedure for CLLS to also deal with group
parallelism and thus with beta-reduction constraints.

Beta-reduction constraints lay the foundation for underspecified beta reduc-
tion, which is needed in the application of CLLS to semantic underspecification of
natural language [15, 17, 14]. Given a CLLS constraint describing many lambda
terms, the aim is to compute a compact description of all corresponding beta
normal forms efficiently. In particular, we want to avoid enumerating and in-
dividually beta-reducing the described lambda terms. (Enumerating is neither
efficient, nor is its result compact.) A recent proposal towards underspecified beta
reduction is described by the authors in a follow-up paper [4].
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Solving beta reduction constraints is very much different from higher-order
unification [10] in that CLLS constraints express α-equality rather than αβη-
equality. CLLS is closely linked to context unification [12, 16], and it can express
sharing as in optimal lambda reduction [11] or calculi with explict substitutions
[1] but can also describe several lambda terms at once.

Plan. We first recall the definition of CLLS restricted to dominance and λ-
binding constraints (Sec. 2); then we go through two examples to give an idea of
how one might lift β-reduction to partial descriptions (Sec. 3). We next define β-
reduction constraints (Sec. 4). Then we define group parallelism constraints and
show how they can express β-reduction constraints (Sec. 5). Finally, we present
a sound and complete semi-decision procedure for CLLS with group parallelism
(Sec. 6) and illustrate it with an example (Sec. 7).

2 CLLS with dominance and lambda binding constraints

We first introduce λ-structures and then a fragment of CLLS for their descrip-
tion. This fragment contains dominance and λ-binding constraints, but not par-
allelism and anaphoric binding constraints.

We assume a signature Σ = {f, g, . . . } of function symbols, each equipped
with an arity ar(f) ≥ 0. Symbols of arity 0 are constants, written as a, b, . . .
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Fig. 1. Tree struc-
ture for g(f(a, b)).

A tree θ is a ground term over Σ, e.g. g(f(a, b)). A node
of a tree is identified with a path from the root to this node,
expressed by a word over the naturals (excluding 0). ε is
the empty path, and π1π2 the concatenation of π1 and π2.
π is a prefix of a path π′ if there is a (possibly empty) π′′

s.t. ππ′′ = π′. The set of all nodes of a tree θ is defined as

Dθ(f(θ1, . . . , θn)) = ε ∪ {iπ | π ∈ Dθ(θi), 1 ≤ i ≤ n}

A tree θ can be characterized uniquely by the set Dθ of its nodes and a labeling
function Lθ : Dθ → Σ.
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Fig. 2. The λ-
structure of λx.f(x)

Now we can consider λ-terms as pairs of a tree and
a binding function that encodes variable binding. We as-
sume that Σ contains the symbols var (arity 0, for vari-
ables), lam (arity 1, for abstraction), and @ (arity 2, for
application), and quantifiers ∃ and ∀ (arity 1). The tree
uses these symbols to reflect the structure of the λ-term
and of first-order connectives. The binding function λ ex-
plicitly maps var-labeled nodes to binders. For example,
Fig. 2 shows a representation of the term λx.f(x). Here λ(12) = ε. Such a pair
of a tree and a binding function is called a λ-structure.

Definition 1. A λ-structure τ is a pair (θ, λ) of a tree θ and a total binding
function λ : L−1

θ (var) → L−1
θ ({lam, ∃, ∀}) such that λ(π) is always a prefix of π.
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A λ-structure corresponds uniquely to a closed λ-term modulo α-renaming.
We freely consider λ-structures as first-order structures with domain Dθ. As
such, they define relations of labeling, binding, inverse binding, dominance, dis-
jointness, and inequality of nodes. (Later we will add group parallelism and β-
reduction relations.) The labeling relation π:f(π1, . . . , πn) holds in a λ-structure
τ = (θ, λ) if Lθ(π) = f , ar(f) = n and πi = πi for all 1 ≤ i ≤ n. Dom-
inance /∗ is the prefix relation between paths of Dθ; inequality 6= is simply
inequality of paths; disjointness π⊥π′ holds if neither π/∗π′ nor π′/∗π. We will
also consider intersections, unions, and complements of these relations; for in-
stance, proper dominance /+ is /∗∩ 6=, and equality = is /∗ ∩ .∗. The relation
λ−1(π0)={π1, . . . , πn} states that π1, . . . , πn, and only those nodes, are λ-bound
by π0. Note that an element of a set can be mentioned multiply, i.e. {π, π} = {π}.

Now we can define dominance and binding constraints to talk about λ-
structures as follows; X,Y, Z are variables that denote nodes.

ϕ, ψ ::= XRY | X:f(X1, . . . , Xn) | ϕ ∧ ψ | false (ar(f) = n)
| λ(X)=Y | λ−1(X0)={X1, . . . , Xn}

R,R′ ::= /∗ | .∗ | ⊥ | 6= | R∪R′ | R∩R′

A constraint ϕ is a conjunction of literals (for dominance, labeling, etc). Set
operators in relation descriptors R [5] are mainly needed for processing pur-
poses. As above we also use /+,= to abbreviate set operators. The one lit-
eral that has not appeared in the literature before is the inverse binding literal
λ−1(X)={X1, . . . , Xn}, which matches the inverse binding relation.

We will also use first-order formulas Φ built over constraints. We write V(Φ)
for the set of variables occurring in Φ. Given a pair (τ, σ) of a λ-structure τ and
a variable assignment σ : G → Dτ , for some set G ⊇ V(ϕ), we can associate a
truth value to Φ in the usual Tarskian sense. We say that (τ, σ) satisfies Φ iff
Φ evaluates to true under (τ, σ). In this case, we write (τ, σ) |= Φ and say that
(τ, σ) is a solution of Φ. Φ is satisfiable iff it has a solution. Entailment Φ |= Φ′

means that all solutions of Φ are also solutions of Φ′, equivalence Φ |=| Φ′ is
mutual entailment.

lam

var var

X

X1 X2

Fig. 3. A constraint graph

We draw constraints as graphs with the nodes
representing variables. E.g. Fig. 3 is the graph of
λ−1(X)={X1, X2} ∧ X/∗X1 ∧ X/∗X2. Labels
and solid lines indicate labeling literals, while dot-
ted lines represent dominance. Dashed arrows indi-
cate the binding relation; disjointness and inequality
literals are not represented.

3 Examples

Before we begin with the formal investigation of beta reduction constraints, we
first go through two examples which illustrate how beta-reduction can be lifted
to descriptions of λ-structures in CLLS, and why the problem is nontrivial.
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Fig. 4. Underspecified representations of ‘Every student did not pay attention’ before
and after beta reduction.
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Fig. 5. Representation of ‘Peter and Marc do not sing’, wrong description of the reduct.

First, consider the left constraint in Fig. 4. The constraint contains just one
redex, and it is easy to see how to obtain a description of the reduced formulas.
We can essentially replace the bound variables with the argument description;
the result is shown on the right-hand side of Fig. 4.

Incidentally, the left constraint in Fig. 4 is an underspecified description of
the ambiguous sentence Every student didn’t pay attention. Its two readings are
given by the HOL formulas:

∀x (stud x→ (λy¬(payatt y)) x), ¬∀x (stud x→ (λy payatt y) x).

(These are the only models of the constraint that do not contain additional
material not mentioned in the constraint. We ignore this aspect of “solution
minimality” in this paper and always consider all solutions.)

The naive replacement approach, however, does not work in general. Fig. 5
shows an example (which describes the ambiguous sentence ‘Peter and Marc
do not sing.’) This constraint also describes a β-redex, this time one where the
binder binds two variables. Here it is no longer trivial to replace the bound
variables by the argument description, as we do not know what belongs to the
argument. There is no useful choice for the part of the constraint that should be
duplicated; for example, if we decide not to duplicate the negation, we get the
description on the right-hand side of Fig. 5, which lacks one solution. Describing
the reduct using β-reduction constraints solves this problem; the description is
correct even if it is not yet known which variables belong to the body and the
argument of the redex.

4 Beta Reduction Constraints

In this section, we add the β-reduction relation to lambda structures and extend
the constraint language by β-reduction constraints. The β-reduction relation on
nodes of a lambda structure corresponds exactly to traditional beta reduction
on lambda terms.
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Stated in the unfolded notation for λ-terms we use to build the λ-structures
(with application as an internal label @, etc.), β-reduction looks as follows:

C(@(λx.B,A)) →β C(B[x/A]) x free for A

π0

π2 π1

Fig. 6. The tree
segment π0/π1, π2 .

We call the left-hand side the reducing tree, the right-
hand side the reduct of the β-reduction. We call C the
context, B the body, and A the argument of the reduction
step.

Now an important notion throughout the paper are tree
segments. Intuitively, a tree segment is a subtree which may
itself be missing some subtrees (see Fig. 6). The context,
body, and argument of a beta reduction step will all be tree
segments.

Definition 2. A tree segment α of a λ-structure τ is given by a tuple
π0/π1, . . . , πn of nodes in Dτ , such that τ |= π0/

∗πi and τ |= πi(⊥∪=)πj for
1 ≤ i < j ≤ n. The node r(α) = π0 is called the root, and hs(α) = π1, . . . , πn is
the sequence of holes of α. If n = 0 we write α = π0/. The nodes between the
root r(α) and the holes hs(α) are defined as

b(α) =df {π ∈ Dτ | r(α)/∗π ∧
∧

π′∈{hs(α)}

π′¬/+π}

To exempt the holes of the segment, we define b−(α) =df b(α)− {hs(α)}.

Definition 3. A correspondence function between tree segments α, β in a
lambda structure τ is a bijective mapping c : b(α) → b(β) which satisfies for
all nodes π1, . . . , πn of τ :

1. The roots correspond: c(r(α)) = r(β)
2. The sequences of holes correspond:

hs(α) = π1, . . . , πn ⇔ hs(β) = c(π1), . . . , c(πn)

3. Labels and children correspend within the proper segments. For π ∈ b−(α)
and label f :

π:f(π1, . . . , πn) ⇔ c(π):f(c(π1), . . . c(πn)).

We next define the β-reduction relation on λ-structures to be a relation
between nodes in the same λ-structure. This allows us to see the β-reduction
relation as a conservative extension of the existing λ-structures. The representa-
tions both of the reducing and reduced term are part of same big λ-structure—
in Fig. 7, these are the subtrees rooted by r(γ) and r(γ ′) respectively.

A redex in a lambda structure is a sequence of segments (γ, β, α) that are
connected by nodes π0, π1 with the following properties.

hs(γ) = π0, π0:@(π1, r(α)), π1:lam(r(β)), and λ−1(π1) = {hs(β)}
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γ γ′
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β′

α
α′2α′1

Fig. 7. The beta reduction relation for a binary redex.

We call a sequence of segments (γ ′, β′, α′1, . . . , α
′
n) reductlike iff hs(γ ′) = r(β′),

and r(α′i) is the ith hole of β′ for all 1 ≤ i ≤ n.
Note that not every reductlike segment sequence is a potential reduct of a beta

reduction, since we cannot enforce that there is no binder from the argument
into the body (that would violate the freeness condition).

The lambda structure in Fig. 7 contains a redex (γ, β, α) and also its reduct
(γ′, β′, α′1, α

′
2). There, corresponding segments (γ to γ′, β to β′, α to both α′1

and α′2) have the same structure.

Definition 4 (Beta Reduction Relation). Let τ be a λ-structure. Then

(γ, β, α) →β (γ′, β′, α′1, . . . , α
′
n)

holds in τ iff first, (γ, β, α) form a redex and (γ ′, β′, α′1, . . . , α
′
n) are reductlike.

Second, there are correspondence functions cγ between γ, γ′, cβ between β, β′ and
ciα between α, α′i (for 1 ≤ i ≤ n), such that for each δ, δ′ among these segment
pairs with correspondence function c between them and for each π ∈ b−(δ), the
following conditions hold:

1. for a var-labeled node bound in the same segment, the correspondent is bound
by the c-corresponding binder node.

λ(π) ∈ b−(δ) ⇒ λ(c(π)) = c(λ(π))

2. for a var-labeled node bound in the context γ, the correspondent is bound by
the cγ-corresponding binder node.

λ(π) ∈ b−(γ) ⇒ λ(c(π)) = cγ(λ(π))

3. for a var-labeled node bound above the reducing tree, the corresponding node
is bound at the same place:

λ(π) /∈ b(r(γ)/) ⇒ λ(c(π)) = λ(π)

The β-reduction relation on λ-structures models β-reduction on λ-terms
faithfully. This even holds for λ-terms with global variables, although λ-
structures can only model closed λ-terms. Global variables correspond to var-
labeled nodes that are bound in the surrounding tree, i.e. above the root node
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of the context of the redex. Rule 3 of Def. 4 thus ensures a proper treatment of
global variables.

Capturing in β-reduction on λ-terms in classical λ-calculus is usually avoided
by a freeness condition. For instance, one cannot simply β-reduce (λx.λy.x)y
without renaming the bound ocurrence of y beforehand. Otherwise, the global
variable y in the argument gets captured by the binder λy. The following propo-
sition states that the analoguous problem can never arise with the β-reduction
relation on λ-structures.

Proposition 5 (No Capturing). Global variables in the argument are never
captured by a λ-binder in the body: with the notation of Def. 4, this means that
no var-labeled node in b(α′i) is bound by a lam-labeled node in b−(β′).

Proof. Assume there exists a node π′ in b(α′i) such that λ(π′) ∈ b−(β′). There
must be a corresponding var-labeled node π with ciα(π) = π′, which is bound
either in α, in γ or outside the reducing tree. In the first case property (1) leads
to a contradiction, in the second case property (2), and in the third case (3).

The β-reduction relation conservatively extends λ-structures. We extend our
constraint syntax similarly, by β-reduction literals, which are interpreted by the
β-reduction relation. Let a segment term A, B, C be given by the following
abstract syntax:

A,B,C =df X0/X1, . . . , Xn

Then β-reduction literals have the following form:

(C,B,A) →β (C ′, B′, A′1, . . . , A
′
n)

5 Group Parallelism

In this section, we extend dominance and binding constraints with group paral-
lelism constraints (Def. 6), a generalization of the parallelism constraints found
in CLLS [6, 9]. Then we show that CLLS with group parallelism can express
β-reduction constraints (Thm. 7).

Group parallelism relates two groups, i.e. sequences of tree segments. It re-
quires that corresponding entries in the two sequences must have the same tree
structures, and binding in the two groups must be parallel. The following defi-
nition makes this precise; all conditions but the last are illustrated in Fig. 8.

Definition 6. The group parallelism relation ∼ of a λ-structure τ is the greatest
symmetric relation between groups of the same size such that

(α1, . . . , αn) ∼ (α′1, . . . , α
′
n)

implies there are correspondence functions ck : b(αk) → b(α′k) for all 1 ≤ k ≤ n
that satisfy the following properties for all 1 ≤ i, j ≤ n and π ∈ b−(αi):
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lam
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α′
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α

β

α′

β′

(same.seg) (α, α) ∼ (α′, β′) (diff.seg) (α, β) ∼ (α′, β′) (outside) (α, β) ∼ (α′, β′)

Fig. 8. Possible bindings in a group parallelism.

(same.seg) for a var-labeled node bound in the same segment, the correspond-
ing node is bound correspondingly:

λ(π) ∈ b−(αi) ⇒ λ(ci(π)) = ci(λ(π))

(diff.seg) for a var-labeled node bound outside αi but inside αj , the corre-
spondent is bound at the corresponding place with respect to cj:

λ(π) ∈ b−(αj) ∧ λ(π) /∈ b−(αi) ⇒ λ(ci(π)) = cj(λ(π))

(outside) corresponding var-labeled nodes with binders outside the group seg-
ments are bound by the same binder node:

λ(π) /∈ ∪n
k=1b

−(αk) ⇒ λ(ci(π)) = λ(π)

(hang) there are no hanging binders:

λ−1(π) ⊆ ∪n
k=1b

−(αk)

On the syntactic side, we extend CLLS by group parallelism literals that
are interpreted by the group parallelism relation. Let A1, . . . Am, A

′
1, . . . , A

′
m be

segment terms, then group parallelism literals have the form

(A1, . . . , Am) ∼ (A′1, . . . , A
′
m)

Group parallelism extends ordinary parallelism constraints [6, 9], which are
simply the special case for groups of size one. This extension is proper; ordinary
parallelism constraints cannot handle the case where a node is bound in a dif-
ferent segment of the group, as illustrated in the (diff.seg) part of Fig. 8. From
the perspective of ordinary parallelism, the node is bound outside the parallel
segment, and thus the (outside) condition applies, and the corresponding node
must be bound by the same binder.

Another interesting observation in Fig. 8 is that the conditions (same.seg)
and (diff.seg) must be mutually exclusive. If (diff.seg) was applicable in the
leftmost case, it would enforce λ(c1(π)) = c2(λ(π)), which is clearly wrong.

Now we show how to encode beta reduction constraints in CLLS. First, we de-
fine the following formula to express that the segment term A = X0/X1, . . . , Xn

indeed denotes a tree segment:
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seg(A) =df ∧
n
i=1X0/

∗Xi ∧ ∧1≤i<j≤nXi(⊥∪=)Xj

Using this, we can axiomatize a redex in CLLS. For segment terms C = X ′/X0 ,
B = X3/X4, . . . , Xn and A = X2/ we set:

redexX0,X1
(C,B,A) =df seg(A) ∧ seg(B) ∧ seg(C)

∧ X0:@(X1, X2) ∧ X1:lam(X3)

∧ λ−1(X1) = {X4, . . . , Xn}

Next, we define reduct-like groups. Let C = X/X0, B = X ′
0/X

′
1, . . . , X

′
n and

Ai = Xi/ for 1 ≤ i ≤ n, then we define:

reductlike(C,B,A1, . . . , An) =df seg(A1) ∧ · · · ∧ seg(An) ∧ seg(B) ∧ seg(C)

∧X0=X
′
0 ∧X1=X

′
1 ∧ · · · ∧Xn=X ′

n

Theorem 7. Beta reduction constraints can be expressed in CLLS with group
parallelism via the following equivalence:

(C,B,A) →β (C ′, B′, A′1, . . . , A
′
n) |=| ∃ X0, X1 : redexX0,X1

(C,B,A)

∧ (C,B,A, . . . , A) ∼ (C ′, B′, A′, . . . , A′)

∧ reductlike(C ′, B′, A′1, . . . , A
′
n)

Proof. We will check the two-side entailment separately, first from right to left.
Let σ be a variable assignment into some λ-structure that solves the right hand
side. Properties (same.seg), (diff.seg), and (outside) of group parallelism (Def.
6) then subsume the corresponding properties of β-reduction (Def. 4).

For the other direction, let (τ, σ′) solve the beta-reduction literal on
the left hand side. According to (Def. 4) there exists a redex (γ, β, α)
in τ with nodes π0, π1 as in Sec. 4. Let σ be the variable assignment
σ′[π0/X0, π1/X1, α/A, β/B, γ/C]. It remains to check that (τ, σ) solves the group
parallelism literal on the right hand side.

We consider the symmetric relation ≈ which relates the group
(σ(C), σ(B), σ(A), . . . , σ(A)) to (σ(C ′), σ(B′), σ(A′1), . . . , σ(A′n)) and conversely.
We show that ≈ satisfies all conditions in the definition of group parallelism
(Def. 6), which means that ≈ is subsumed by the group parallelism relation ∼.

First of all, both above groups satisfy condition (hang). This is clear for the
group (σ(C ′), σ(B′), σ(A′1), . . . , σ(A′n)), which covers the complete subtree below
r(σ(C ′)). A similar argument applies to (σ(C), σ(B), σ(A), . . . , σ(A)), which cov-
ers the whole tree below r(σ(C)) exept the @-labeled node π0, the lam-labeled
node π1 and the var-labeled nodes hs(σ(B)). But these var-labeled nodes are
bound by π1.

By Def. 4 there exist correspondence functions cγ between segments σ(C),
σ(C ′), cβ between σ(B), σ(B ′) and ciα between σ(A), σ(A′i) for 1 ≤ i ≤ n. Since
≈ is symmetric, we have to check properties (same.seg), (diff.seg), and (outside)
of group parallelism (Def. 6) for the correspondence functions and their inverse
functions.
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(D.clash.ineq) X=Y ∧ X 6=Y → false

(D.dom.trans) X/∗Y ∧ Y /∗Z → X/∗Z

(D.lab.ineq) X:f(. . .) ∧ Y :g(. . .) → X 6=Y where f 6= g

(D.lab.dom) X:f(. . . , Y, . . .) → X/+Y

(D.distr.notDisj) X/∗Z ∧ Y /∗Z → X/∗Y ∨ Y /∗X

(D.distr.child) X/∗Y ∧ X:f(X1, . . . , Xm) → Y =X ∨
∨

m

i=1
Xi/

∗Y

Fig. 9. Saturation rules for dominance constraints

We only show the particularly interesting property (diff.seg) for a corre-
spondence function (ciα)−1 with 1 ≤ i ≤ n. Let π′ be a var-labeled node in
b−(σ(A′i)), and λ(π′) /∈ b−(σ(A′i)). There are three cases: λ(π′) ∈ b−(σ(C ′)), or
λ(π′) ∈ b−(σ(B′)), or λ(π′) ∈ b−(σ(A′j)) for some 1 ≤ j ≤ n. The second case
is impossible by Proposition 5. The third case is impossible as the holes of the
segment σ(B′) are disjoint or equal (Def. 2). We can thus concentrate on the
first case. Let π be the corresponding node of π′. i.e. ciα(π) = π′. The node π has
to be var-labeled by Def 3. Properties (same.seg) and (outside) of Def. 4 yield
λ(π) ∈ σ(C) (some computation is needed here). Thus, Property 2 of Def. 4 can
be applied. It implies λ(π′) = cγ(λ(π)), i.e. c−1

γ (λ(π′)) = λ(c−1
γ (π′)) as required.

6 Solving group parallelism constraints

We now turn to a sound and complete semi-decision procedure for CLLS with
group parallelism, which thus solves β-reduction constraints. To keep the pre-
sentation readable, we focus on the most relevant rules. The full procedure is
given in [3]. An illustrative example follows in Section 7.

The procedure is obtained by extending an existing semi-decision procedure
for CLLS [8] that is based on saturation. A constraint is freely identified with
the set of its literals. Starting with a set of literals, more literals are added
according to some saturation rules. Our saturation rules are implications of the
form ϕ0 → ∨n

i=1ϕi for some n ≥ 1. To write down rules more compactly, we will
also use arbitrary positive existential formulas on the left hand side. These can
be eliminated in a preprocessing step: ∃-quantified variables can be replaced by
arbitrary variables, and disjunction is eliminated by explosion into several rules.

A saturation rule of the above form is applicable to a constraint ϕ if ϕ0 is
contained in ϕ, but none of the ϕi is. A rule ϕ→ Φ is sound if ϕ |= Φ. Apart from
that, we have saturation rules of the form ϕ0 → ∃Xϕ1, which introduce fresh
variables. Such a rule is applicable to ϕ if ϕ0 is in ϕ, but ϕ1, modulo renaming of
X, is not. Given a set S of saturation rules, we call a constraint saturated (under
S) if no further rule of S applies to it. We say that a constraint is in S-solved
form if it is saturated under S and clash-free (i.e. it does not contain false).

Fig. 9 contains an (incomplete) set of saturation rules for dealing with
dominance constraints (the constraints of Sec. 2 without binding). A more
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(P.symm) A ∼ B → B ∼ A

(P.init) A ∼ B → seg(Ai) ∧ co(Ai, Bi)(X
j

i
)=Y j

i
where 1 ≤ i ≤ n, Ai =

X0

i/X1

i , . . . , Xmi

i
, Bi = X0

i/Y 1

i , . . . , Y mi

i
, and 0 ≤ j ≤ mi

(P.new) A ∼ B ∧ U ∈ b(Ai) → ∃V co(Ai, Bi)(U)=V where V fresh, 1 ≤ i ≤ n

(P.copy.lab)
∧m

i=0
co(A, B)(Xi)=Yi ∧ X0:f(X1, . . . , Xm) ∧ X0∈b−(A) →

Y0:f(Y1, . . . , Ym)

(P.copy.dom) U1 R U2 ∧
∧

2

i=1
co(A, B)(Ui)=Vi → V1 R V2

(P.distr.eq) ϕ → X=Y ∨ X 6=Y for X, Y ∈ V(ϕ)

Fig. 10. Saturation rules, where A = A1, . . . , An and B = B1, . . . , Bn

complete collection including a treatment of set operators can be found in [5,
8, 3]. To deal with parallelism, we first introduce some formulas that describe
membership in (proper) segments and groups. Let A = X0/X1, . . . , Xn.

X∈b(A) =df X0/
∗X ∧

∧
n

i=1
X(/∗∪⊥)Xi

X∈b
−(A) =df X∈b(A) ∧

∧
n

i=1
X 6=Xi

X 6∈b
−(A) =df X(/+∪⊥)X0 ∨

∨
n

i=1
Xi/

∗X

X∈b(A1, . . . , Am) =df

∨
m

i=1
X∈b(Ai)

X∈b
−(A1, . . . , Am) =df

∨
m

i=1
X∈b

−(Ai)

Note that the terms b(A), b−(A), b(A1, . . . , Am) are not given any formal
meaning, even though it would be correct to interpret them as the corresponding
sets of nodes.

We also want to be able to speak about correspondence functions. So we
extend our constraint language by auxiliary correspondence literals

ϕ ::= . . . | co(A,B)(X)=Y

where A and B are segment terms for segments with the same number of holes.
Such a literal states that A and B are parallel within some group parallelism,
that X∈b(A) and Y ∈b(B), and that X corresponds to Y with respect to the
correspondence function for A and B. We introduce two more formulas. Let
A = (A1, . . . , An), B = (B1, . . . , Bn), and 1 ≤ k ≤ n.

co−(A,B)(X)=Y =df co(A,B)(X)=Y ∧ X∈b−(A)
co−k (A,B)(X)=Y =df A∼B ∧ co−(Ak, Bk)(X)=Y

The second lets us talk about correspondence functions for a group paral-
lelism, picking out the k-th correspondence function. In that respect, co−k (A,B)
matches the ck of Def. 6 (except that co−k (A,B)(X)=Y additionally demands
X∈b−(Ak) for convenience).

The main rules for handling parallelism are given in Fig. 10. A complete
set can be found in [9, 8, 3]. The rules (P.init) and (P.new) introduce correspon-
dence literals; between them, they state that each node in a parallel segment
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(L.same.seg) λ(U1)=U2 ∧
∧

2

i=1
co−

k
(A, B)(Ui)=Vi → λ(V1)=V2

(L.diff.seg) λ(U1)=U2 ∧
∧

2

i=1
co−

ki
(A, B)(Ui)=Vi ∧ U2 /∈b

−(Ak1
) → λ(V1)=V2

(L.outside) λ(U)=Y ∧ co−
k

(A, B)(U)=V ∧ Y /∈b
−(A) → λ(V )=Y

(L.hang) λ(U1)=U2 ∧ A∼B ∧ U2∈b
−(A) → U1∈b

−(A)

(L.distr.1) λ(U1)=U2 ∧ A∼B ∧ U1∈b
−(A) → distr

A
(U2)

(L.distr.2) λ(U1)=U2 ∧ A∼B ∧ U2 ∈ b
−(A) → distr

A
(U1)

(L.equal) λ(X1)=X2 ∧
∧

2

i=1
Xi=Yi → λ(Y1)=Y2

(L.inverse) λ−1(X)=S1 ∧ co−
k

(A, B)(X)=Y ∧ co−(A, B)(S1)=S2 ∪ S3 ∧∧
V ∈S2

λ(V )=Y ∧
∧

V ∈S3
λ(V )6=Y → λ−1(Y )=S2

Fig. 11. Lambda binding rules for group parallelism

needs to have a correspondent. (P.init) states that in a correspondence func-
tion, root corresponds to root, and hole to hole, while (P.new) is responsible
for all other nodes. (P.copy.dom) and (P.copy.lab) between them ascertain the
structural isomorphism that Def. 3 demands for a correspondence function.

Fig. 11 shows saturation rules for the interaction of group parallelism and
lambda binding. The first four rule schemata directly express the conditions
of Def. 6. The rules (L.distr.gr.1) and (L.distr.gr.2) decide, loosely speaking,
whether variables occurring in a binding literal belong to some segment of a
group or not. This is necessary because we need to know which of the schemata
(L.same.seg), (L.diff.seg), (L.outside) and (L.hang) is applicable. This is ex-
pressed by using the following formula, where A = (A1, . . . , An):

distrA(U) =df

n∧

i=1

(U∈b−(Ai) ∨ U 6∈b−(Ai).

Finally, (L.inverse) deals with the copying of λ−1 literals. This is necessary
if we want to perform a second beta reduction step, where we need the λ−1

information again. The schema uses two more formulas. The first one is simple:

λ(X)6=Y =df ∃Z(λ(X)=Z ∧ Z 6=Y )

The second formula collects, for a finite set S1 of variables, all correspondents
with respect to A ∼ B. Let S1, S2 stand for finite sets of variables, and let
A = A1 . . . , An.

co−(A,B)(S1)=S2 =df

∧n
i=1

∧

X∈S1
(X 6∈b−(Ai) ∨

∨

Y ∈S2
co−i (A,B)(X)=Y )

∧
∧

Y ∈S2

∨

X∈S1

∨n
i=1 co−i (A,B)(X)=Y

So (L.inverse) collects all correspondents of all variables bound by X; for each
of these correspondents it must be known whether it is bound by Y or definitely
bound by something else. Then we can determine λ−1(Y ). The soundness of this
rule is not obvious: is it really sufficient to look among the correspondents of
λ−1(X) to compute λ−1(Y )? The following proposition shows that it is.
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Proposition 8 (Inverse lambda binding). Suppose (α1, . . . , αn) ∼ (α′1, . . . ,
α′n) holds with correspondence functions c1, . . . , cn. Then for all 1 ≤ k ≤ n and
all π ∈ b−(αk),

λ−1(ck(π)) ⊆
n⋃

i=1

{ci(π
′) | π′ ∈ λ−1(π) ∩ b−(αi)}

Proof. Let ω ∈ λ−1(ck(π)). The ”no hanging binders” condition (hang) of Def.
6 is critical here: it enforces ω ∈

⋃n
i=1 b−(α′i). If ω ∈ b−(α′k), then there exists

some π′ ∈ b−(αk) with ck(π′) = ω. π′ is var-labeled by Def. 3 and has a binder
since λ is total. So we must have λ(ck(π′)) = ck(λ(π′)) by condition (same.seg)
of Def. 6. Now λ(ck(π′)) = ck(π) and ck is a bijection, so π′ ∈ λ−1(π). If, on the
other hand, ω 6∈ b−(α′k) but ω ∈ b−(α′j), there is again a π′ with cj(π

′) = ω,

and λ(cj(π
′)) = ck(λ(π′)) by condition (diff.seg), so again π′ ∈ λ−1(π).

The rules we have presented are part of a sound and complete semi-decision
procedure for group parallelism constraints given in [3]. The omitted rules state
additional properties of dominance constraints, ensure that correspondence func-
tions are indeed bijective functions, and regulate the interaction between differ-
ent correspondence functions.

Theorem 9. There exists a saturation procedure GP which encompasses all in-
stances of the rule schemata in Fig. 9, 10, and 11, such that each rule of GP is
sound, and each GP-solved form of a constraint ϕ is satisfiable (soundness),
and for every solution (τ, σ) of ϕ, GP computes a GP-solved form of ϕ of which
(τ, σ) is a solution (completeness).

Proving that GP-solved forms are satisfiable can be done by constructing a
model and variable assignment explicitly. One then has to check that all literals
are indeed satisfied, which requires a tedious case distinction. Proving complete-
ness is nontrivial as well, but can be done along the lines of [9]. The proof is
largely independent of the particularities of the rule system we employ.

7 The procedure in action

We illustrate the procedure of the previous section by solving the constraint in
Fig. 12. It contains a non-linear lambda redex at (C,B,A) (similarly to Fig. 5)
and a lambda binder at Y1 which can either belong to the context C or argument
A. The group parallelism constraint (C,B,A,A)∼(C ′, B′, A′, A′′) describes a
beta-reduction step for the redex (C,B,A).

A record of the solving steps is given in Fig. 13 and 14. We only comment on
the main steps. In step (4), we have Y1/

∗Z ∧X0/
∗Z, and as trees do not branch

upwards, one of Y1, X0 must dominate the other. This step effectively guesses
whether Y1, Y2 are in C or in A. With choice (5c), we make two copies of Y1 and
Y2 each. This is because A is parallel both to A′ and A′′: because X` binds two

13



(C, B, A, A) ∼ (C ′, B′, A′, A′′)
with C = X/X0 ,
C ′ = X ′/X ′

0 ,
B = Xt/X1, X2 ,
B′ = X ′

0/X
′

1, X
′

2 ,
A = Xa/,
A′ = X ′

1/, and A′′ = X ′

2/.
λ−1(X`) = {X1, X2}, λ−1(Y1) = {Z}.

@

lam

f

var var

var

lam

X

Xt

X0

X`

X1 X2

Xa

Z

Y1

Y2

Fig. 12. A group parallelism constraint encoding a non-linear beta reduction step

variables, the argument is copied twice. On the other hand, with (7b) Y1 and Y2

are only copied once: they belong to the context C, which is parallel only to C ′.
In Fig. 14, we continue case (5c) of Fig. 13, applying the lambda binding rules.

All steps from (22) on prepare the determination of λ−1(Y ′
1) and λ−1(Y ′′

1 ) in (25)
and (26). We know λ−1(Y1)={Z}. Steps (22) and (23) determine S2 ∪ S3 to be
{Y ′

1 , Y
′′
1 } for both (25) and (26). After (24) we know λ(Z ′)6=Y ′′

1 and λ(Z ′′)6=Y ′
1 ,

so we have all we need to infer the correct λ−1 information in the last steps.

8 Conclusion and future work

We have introduced beta reduction constraints and have presented a semi-
decision procedure for processing them, in three steps: First, we have extended
CLLS by group parallelism constraints. Second, we have expressed β-reduction
constraints in this extension of CLLS. Third, we have lifted a known semi-
decision procedure for CLLS to also deal with group parallelism constraints.
It is an open question to what extent beta reduction constraints can conversely
express parallelism.

This gives us a framework for investigating the more general problem of
underspecified beta reduction [4]: How can we string together several reduction
steps, as described by beta reduction constraints, until we arrive at descriptions
of normal forms? In this broader setting, we can investigate properties such
as confluence and termination on the underspecified level. Another problem,
motivated by the application, is to modify the saturation procedure to perform
as few case distinctions as possible during underspecified beta reduction. Finally,
it will be interesting to find an efficient implementation of this operation, possibly
employing concepts such as sharing and constraint programming.
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, Y ′
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/∗X′

0
(P.copy.dom)

(20) Y ′
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2
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Continuing (5c)
(21) λ(Z ′) = Y ′

1 , λ(Z ′′) = Y ′′

1 (L.same.seg)
(22) Z 6∈b−(B) ∨ Z ∈ b−(B) (L.distr.2)

(22a) Z 6∈b−(B)
(23) Z 6∈b−(C) ∨ Z ∈ b−(C) (L.distr.2)

(22b) Z 6∈b−(B)
. . . false

(23a) Z 6∈b−(C)
(24) Y ′

1 6=Y ′′

1 ∨ Y ′

1=Y ′′

1 (P.distr.eq)
(23b) Z ∈ b−(C)
. . . false

(24a) Y ′

1 6=Y ′′

1

(25) λ−1(Z ′′) 6= Y ′

1

(26) λ−1(Y ′′

1 ) = {Z′} (L.inverse)
(27) λ−1(Y ′′

1 ) = {Z′′} (L.inverse)

(24b) Y ′

1=Y ′′

1

. . . false

Fig. 14. Inverse Binding in case (5c)
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A The procedure GP

In this section, we list all rule schemata of the saturation procedure GP for group
parallelism constraints.

We have said some words on saturation earlier, but have left things rather in-
formal. We remedy that now. The saturation rules we work with are implications
of the following form:

ϕ0 → ∨n
i=1∃Viϕi

where n ≥ 1 and V(ϕi) − V(ϕ0) ⊆ Vi for all 1 ≤ i ≤ n. A rule is called a
propagation rule if n = 1 and a distribution rule otherwise.

A saturation algorithm S is a set of saturation algorithms. A saturation step
→S consists of one application of a rule in S:

ϕ′ ⊆ ϕ ρ ∈ S

ϕ→S ϕ ∧ ∃Viϕi

if Cρ(ϕ) where ρ is ϕ′ → ∨n
i=1∃Viϕi

Let V be the set of all node variables. Given a set V of variables and a constraint
ϕ, we call a constraint ζϕ a V -variant of ϕ if ζ : V → V is some substitution of
the variables in V . Then we let Cϕ′→∨n

i=1
Viϕi

(ϕ) be true iff for all 1 ≤ i ≤ n and
for all Vi-variants ϕ′i of ϕi, we have ϕ′i 6⊆ ϕ. That is, we only apply a rule when
it can add something new.

Let S be a set of saturation rules. As mentioned before, we call a constraint
saturated (under S) if no further rule of S applies to it. We say that a constraint is
in S-solved form if it is saturated under S and clash-free (i.e. it does not contain
false).
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The rules we present here only make use of part of the language of CLLS
with group parallelism. We use /∗,⊥ and 6=, but we do not process literals of
the form X(R∪R′)Y or X(R∩R′)Y . Instead, we interpret ∪ as disjunction and
∩ as conjunction. So XRY becomes another constraint abbreviation.

The saturation procedure GP that we present consists of four modules: The
rule system D deals with constraints without parallelism and binding; rule system
B states properties of λ-binding, system P is concerned with parallelism, and rule
system L handles the interaction of parallelism and binding.

We first list the rule schemata of system D, which deals with Dominance Con-
straints, the sublanguage of group parallelism constraints which only comprises
dominance, labeling, disjointness, and inequality literals.

Solving dominance constraints: rule system D

(D.clash.ineq) X=Y ∧ X 6=Y → false

(D.clash.disj) X⊥X → false

(D.dom.refl) ϕ → X/∗X where X ∈ V(ϕ)

(D.dom.trans) X/∗Y ∧ Y /∗Z → X/∗Z

(D.eq.decom) X:f(X) ∧ Y :f(Y ) ∧ X=Y → ∧n
i=1

Xi=Yi

(D.lab.ineq) X:f(. . .) ∧ Y :g(. . .) → X 6=Y where f 6= g

(D.lab.disj) X:f(. . . Xi, . . . , Xj , . . .) → Xi⊥Xj for 1 ≤ i < j ≤ n

(D.prop.disj) X⊥Y ∧ X/∗X′ ∧ Y /∗Y ′ → Y ′⊥X′

(D.lab.dom) X:f(. . . , Y, . . .) → X/+Y

(D.distr.notDisj) X/∗Z ∧ Y /∗Z → X/∗Y ∨ Y /∗X

(D.distr.child) X/∗Y ∧ X:f(X) → Y =X ∨
∨n

i=1
Xi/

∗Y

The rule system B is all we need to deal with λ-binding in the absence of
parallelism. The rules state that λ is a function, that binders dominate their
bound variables, that binders go from var-labeled nodes to nodes labeled lam, ∃
or ∀, and that a λ−1 literal specifies all variables bound by a certain λ-binder.

Properties of λ-binding: rule system B

(B.func) λ(X)=Y ∧ λ(U)=V ∧ X=U → Y =V

(B.dom) λ(X)=Y → Y /∗X

(B.var) λ(X)=Y → X:var

(B.lam) λ(X)=Y → ∃Z (Y :lam(Z) ∨ Y :∃(Z) ∨ Y :∀(Z))

(B.inv) λ−1(X)={X1, . . . , Xn} →
∧n

i=1
λ(Xi)=X

(B.all) λ−1(X)={X1, . . . , Xn} ∧ λ(Y )=X →
∨n

i=1
Y =Xi
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System P contains rules for handling parallelism, and rules that describe the
interaction between different correspondence functions. We first list the rules
that deal with parallelism. Let A = X0/X1, . . . , Xn. As in Section 6, we use the
formula

seg(A) =df ∧
n
i=1X0/

∗Xi ∧ ∧1≤i<j≤nXi(⊥∪=)Xj ,

furthermore the formulas

X∈b(A) =df X0/
∗X ∧

∧n
i=1X(/∗∪⊥)Xi

X∈b−(A) =df X∈b(A) ∧
∧n

i=1X 6=Xi

X 6∈b−(A) =df X(/+∪⊥)X0 ∨
∨n

i=1Xi/
∗X

X∈b(A1, . . . , Am) =df

∨m
i=1X∈b(Ai)

X∈b−(A1, . . . , Am) =df

∨m
i=1X∈b−(Ai)

as well as

co−(A,B)(X)=Y =df co(A,B)(X)=Y ∧ X∈b−(A)
co−k (A,B)(X)=Y =df A∼B ∧ co−(Ak, Bk)(X)=Y

Let A = A1, . . . , An and B = B1, . . . , Bn.

Properties of parallelism literals: rule system P

(P.symm) A ∼ B → B ∼ A

(P.init) A ∼ B → seg(Ai) ∧ co(Ai, Bi)(X
j
i )=Y j

i where 1 ≤ i ≤ n, Ai =
X0

i/X1
i , . . . , X

mi
i , Bi = X0

i/Y 1
i , . . . , Y

mi
i , and 0 ≤ j ≤ mi

(P.new) A ∼ B ∧ U ∈ b(Ai) → ∃V co(Ai, Bi)(U)=V where V fresh, 1 ≤ i ≤ n

(P.copy.lab)
∧m

i=0
co(A, B)(Xi)=Yi ∧ X0:f(X1, . . . , Xm) ∧ X0∈b−(A) →

Y0:f(Y1, . . . , Ym)

(P.copy.dom) U1 R U2 ∧
∧

2
i=1

co(A, B)(Ui)=Vi → V1 R V2

(P.distr.eq) ϕ → X=Y ∨ X 6=Y for X, Y ∈ V(ϕ)

(P.distr.hole) A∼B ∧ X0
i /∗X → X ∈ b(Ai) ∨

∨mi
j=1

Xj
i /+X where 1 ≤ i ≤ n,

Ai = X0
i/X1

i , . . . , X
mi
i

In section 6 we have introduced correspondence literals co(A,B)(U)=V as
auxiliary literals to record correspondence. Actually, correspondence literals are
just an abbreviation; what we really use are path equalities. Informally speaking,
if a path equality p(π1

π2

π3

π4

) holds in a tree, that means that the path from π1 to
π2, including the node labels passed on the way, is the same as the path from π3

to π4. More precisely, the path equality relation p( .
.

.

.
) on a tree θ is the greatest

relation on node quadruples such that the following holds: p(π1

π2

π3

π4

) is true iff

there exists a path π such that π2 = π1π and π4 = π3π, and for each π′/+π,
Lθ(π1π

′) = Lθ(π3π
′). At the same time, suppose we have parallel tree segments

α and β and a node π ∈ b(α); then if the path equality p( r(α)
π

r(β)
π′

) holds, then
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π in α corresponds to π′ in β. That is,

co(Ai, Bi)(U)=V stands for A∼B ∧ p(X0

U
Y0

V
) ∧ U∈b(A)

for 1 ≤ i ≤ |A|, and Ai = X0/X1, . . . , Xn and Bi = Y0/Y1, . . . , Yn.
The main idea about path equalities is that, as they possess a semantics of

their own, they have properties that we can use, irrespective of which correspon-
dence function the path equalities in question come from. This is exploited by
the saturation rule schemata (P.path. . . ), (P.trans. . . ), and (P.diff. . . ). These
schemata ensure the correct interaction of correspondence functions. See [9] for
a comprehensive treatment of this topic.

Properties of Path Equality Constraints

(P.path.symm) p( X
U

Y
V

) → p(Y
V

X
U

)

(P.path.dom) p( X
U

Y
V

) → X/∗U ∧ Y /∗V

(P.path.eq.1) p(X1

X2

X3

X4
) ∧

∧
4
i=1

Xi=Yi → p(Y1

Y2

Y3

Y4
)

(P.path.eq.2) p(X
U

X
V

) → U=V

(P.trans.h) p(X
U

Y
V

) ∧ p(Y
V

Z
W

) → p(X
U

Z
W

)

(P.trans.v) p(X1

X2

Y1

Y2
) ∧ p(X2

X3

Y2

Y3
) → p(X1

X3

Y1

Y3
)

(P.diff.1) p(X1

X2

Y1

Y2
) ∧ p(X1

X3

Y1

Y3
) ∧ X2/∗X3 ∧ Y2/∗Y3 → p(X2

X3

Y2

Y3
)

(P.diff.2) p(X1

X3

Y1

Y3
) ∧ p(X2

X3

Y2

Y3
) ∧ X1/∗X2 ∧ Y1/∗Y2 → p(X1

X2

Y1

Y2
)

Rule system L describes the interaction between parallelism and binding. We
use the formula

distrA(U) =df

n∧

i=1

(
U∈b−(Ai) ∨ U 6∈b−(Ai)

)
.

in (L.distr.1) and (L.distr.2). (L.inverse) uses two more formulas, the first just
being

λ(X)6=Y =df ∃Z(λ(X)=Z ∧ Z 6=Y ).

As explained in Section 6, the second formula collects, for a finite set S1 of
variables, all correspondents with respect to A ∼ B. Let S1, S2 stand for finite
sets of variables, and let A = A1 . . . , An. Then

co−(A,B)(S1)=S2 =df

∧n
i=1

∧

X∈S1
(X 6∈b−(Ai) ∨

∨

Y ∈S2
co−i (A,B)(X)=Y )

∧
∧

Y ∈S2

∨

X∈S1

∨n
i=1 co−i (A,B)(X)=Y

Interaction between parallelism and binding: rule system L

(L.same.seg) λ(U1)=U2 ∧
∧

2
i=1

co−
k

(A, B)(Ui)=Vi → λ(V1)=V2

(L.diff.seg) λ(U1)=U2 ∧
∧

2
i=1

co−
ki

(A, B)(Ui)=Vi ∧ U2 /∈b−(Ak1
) → λ(V1)=V2
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(L.outside) λ(U)=Y ∧ co−
k

(A, B)(U)=V ∧ Y /∈b−(A) → λ(V )=Y

(L.hang) λ(U1)=U2 ∧ A∼B ∧ U2∈b−(A) → U1∈b−(A)

(L.distr.1) λ(U1)=U2 ∧ A∼B ∧ U1∈b−(A) → distr
A

(U2)

(L.distr.2) λ(U1)=U2 ∧ A∼B ∧ U2 ∈ b−(A) → distr
A

(U1)

(L.equal) λ(X1)=X2 ∧
∧

2
i=1

Xi=Yi → λ(Y1)=Y2

(L.inverse) λ−1(X)=S1 ∧ co−
k

(A, B)(X)=Y ∧ co−(A, B)(S1)=S2 ∪ S3 ∧
∧

V ∈S2
λ(V )=Y ∧

∧

V ∈S3
λ(V )6=Y → λ−1(Y )=S2

B Soundness and Completeness of GP

In this section, we show first the soundness, then the completeness of the proce-
dure GP we have presented in the previous section.

B.1 Soundness

We call a single saturation rule ϕ → Φ sound iff ϕ |= Φ. We call a saturation
procedure S sound iff each rule in S is sound and each S-solved form of a
constraint is satisfiable.

The soundness of all rule schemata except (L.inverse) is obvious. The sound-
ness of (L.inverse) is shown by Proposition 8.

In the rest of this section, we show that from every constraint in GP-solved
form, a solution can be read off. We proceed in two steps. First, we show that
a special class of GP-solved forms, called ”simple”, are satisfiable. Then we lift
the result to arbitrary GP-solved forms.

We only regard generated constraints, where each path equality either es-
tablishes a correspondence for some pair Ai, Bi of a group parallelism literal
(A1, . . . , An) ∼ (B1, . . . , Bn) or is the result of combining several such corre-
spondence statements by a (P.trans. . . ) or (P.diff. . . ) rule.

Definition 10. Let ϕ be a constraint.
A path equality p(U1

U2

V1

V2

) ∈ ϕ is correspondence-generated in ϕ iff there
exists some group parallelism literal (A1, . . . , An) ∼ (B1, . . . , Bn) and some
i ∈ {1, . . . , n} such that on the one hand, Ai = U1/ . . . and Bi = V1/ . . ., and on
the other hand either U2∈b(Ai) or V2∈b(Bi) is in ϕ.

Let CP (ϕ) be the set of correspondence-generated path equalities in ϕ, and
let ϕ0 be ϕ without all its path equalities, then a path equality is generated in
ϕ iff it is in the saturation of CP (ϕ) ∪ ϕ0 under the instances of (P.trans.h),
(P.trans.v), (P.diff.1), (P.diff.2).

ϕ is called generated iff each of its parallelism literals is.

Every GP-solved form of a parallelism constraint is generated, so we can
safely restrict our attention to generated constraints:

Lemma 11. Let ϕ be a constraint without path equalities, and let ϕ →∗
GP

ϕ′

with ϕ′ in GP-solved form. Then ϕ′ is generated.
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Proof. Let ϕ1, . . . , ϕ` be a sequence of constraints such that ϕ1 = ϕ, ϕ` = ϕ′,
and ϕi →GP ϕi+1 for 1 ≤ i ≤ `− 1. We show by induction on i that

1. each p(X
U

Y
V

) ∈ ϕi is generated in ϕ′,

2. alongside with p(Y
V

X
U

) and every p(X′

U ′

Y ′

V ′
) with X ′=X, U ′=U , Y ′=Y ,

V ′=V ∈ ϕ′.

ϕ1 contains no path qualities. So let ϕi →{ρ} ϕi+1, where ρ is an instance
of (P.init), (P.path.symm), (P.path.eq.1), (P.new), (P.trans.h), (P.trans.v),
(P.diff.1), or (P.diff.2).

Suppose ρ is an instance of (P.init). Then the lhs of ρ is some group
parallelism literal (A1, . . . , An) ∼ (B1, . . . , Bn) of ϕ, and there exists some
k ∈ {1, . . . , n} such that Ak = X0/X1, . . . , Xm, Bk = Y0/Y1, . . . , Ym, and
ϕi+1 contains one path equality p(X0

Xj

Y0

Yj
) (with j ∈ {1, . . . ,m}) that is not

in ϕi. As ρ has also inferred seg(Ak), we have Xj∈b(Ak) in ϕi+1. So p(X0

Xj

Y0

Yj
) is

correspondence-generated in ϕ′. Condition 2 from above holds by closure of ϕ′

under (P.path.symm), (P.path.eq.1), (D.dom.refl) and (D.dom.trans).
Suppose ρ is an instance of (P.new). Then the lhs of ρ has the form

(A1, . . . , An) ∼ (B1, . . . , Bn) ∧ U∈b(Ak) for some k ∈ {1, . . . , n}. Let Ak =
X0/X1, . . . , Xm and Bk = Y0/Y1, . . . , Ym, then ϕi+1 contains one path equal-
ity p(X0

U
Y0

V
) that is not in ϕi. Then p(X0

U
Y0

V
) is correspondence-generated in

ϕ′ by definition. Condition 2 holds by closure of ϕ′ under (P.path.symm),
(P.path.eq.1), (D.dom.trans) and (D.prop.disj).

If ρ is an instance of (P.trans.h), (P.trans.v), (P.diff.1) or (P.diff.2), and ϕi+1

has the form ϕi ∧ p(X
U

Y
V

), then p(X
U

Y
V

) is generated by definition. Concerning
condition 2, we just consider the case of (p.trans.h), the others are analogous.
Suppose ρ has the form p(X

U
Z
W

)∧p( Z
W

Y
V

) → p(X
U

Y
V

). Then p( Z
W

X
U

), p(Y
V

Z
W

) are
in ϕ′ by closure under (P.trans.h) and generated by the inductive hypothesis.

So p(Y
V

X
U

) ∈ ϕ′ is generated in ϕ′ as well. The case of a literal p(X′

U ′

Y ′

V ′
) where

X ′=X,U ′=U, Y ′=Y, V ′=V ∈ ϕ′ is analogous.
If ρ is an instance of (P.path.symm) or (P.path.eq.1) and ϕi+1 has the form

ϕi ∧ p(X
U

Y
V

), then p(X
U

Y
V

) is generated in ϕ′ because of inductive hypothesis 2.

B.2 Soundness: Simple constraints

Definition 12. A constraint ϕ is called simple if all its variables are labeled
and there exists some root variable Z ∈ V(ϕ) such that Z/∗X is in ϕ for all
X ∈ V(ϕ).

Proposition 13. A simple generated constraint in GP-solved form is satisfiable.

Proof. Let ϕ be a simple generated constraint in GP-solved form, and let ϕdom

be the maximal subset of ϕ that contains no group parallelism literals, no path
equalities, and no lambda binding literals. ϕdom is tree-shaped since each of its
variables is labeled. [9] gives an inductive construction of a solution (τdom, σ) for
ϕdom: Suppose Z is a root variable in ϕ. Since all variables in ϕ are labeled, there
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is a variable Z ′ and a term f(Z1, . . . , Zn) such that Z=Z ′ and Z′:f(Z1, . . . , Zn)
are in ϕ. Let

V = {X ∈ V(ϕ) | Z=X ∈ ϕ} and Vi = {X ∈ V(ϕ) | Zi/
∗X ∈ ϕ}

for all 1 ≤ i ≤ n. Then V(ϕ) = V ∪ V1 ∪ . . . ∪ Vn. For a set W ⊆ V(ϕ) we define
ϕ|W as the conjunction of all literals ψ ∈ ϕ with V(ψ) ⊆W . Then

ϕ |=| ϕ′ holds where ϕ′ := ϕ|V ∧ Z:f(Z1, . . . , Zn) ∧
n∧

i=1

ϕ|Vi

because ϕ is in D-solved form: Each literal in ϕ is entailed by ϕ′. Next note
that all ϕ|Vi

are simple D-solved forms. By the inductive hypothesis there exist
solutions (τi, σi) |= ϕ|Vi

for all 1 ≤ i ≤ n. If τi = (θi, λi), then the function λi

is undefined everywhere. Let λ′ be a function with empty domain, let θdom =
f(θ1, . . . , θn), and let τdom = (θdom, λ

′). Then (τdom, σ) is a solution of ϕ if
σ|Vi

= σi and σ(X) = σ(Z) is the root node of θdom for all X ∈ V . Note that by
this construction, if π ∈ Dθdom

, then there exists some X ∈ V(ϕ) with σ(X) = π.

Lambda binding. Now let ϕbase be ϕdom plus all lambda binding constraints in
ϕ. We construct a solution for ϕbase. First for the tree: we have to make sure
that every var-labeled node possesses a binder. Suppose ϕbase contains ` var-
labeled variables U1, . . . , U` without a binder. Then we construct the new tree
θ by adding ` lam-labeled nodes ”above” θdom: let θ = lam(. . . lam

︸ ︷︷ ︸

` times

(θdom) . . .).

Now we construct the λ function of the solution. We define λ : σ({X ∈ V(ϕ) |
X:var ∈ ϕ}) → σ({Y ∈ V(ϕ) | ∃Z.Y :lam(Z) ∈ ϕ}) ∪ {1i | 0 ≤ i ≤ ` − 1} as
follows: for all X,Y ∈ V(ϕ), λ(σ(X)) = σ(Y ) iff λ(X)=Y ∈ ϕ; furthermore, for
1 ≤ i ≤ `, λ(σ(Ui)) = 1i−1.

The function λ is well-defined: ϕ is saturated under (B.func) and by the
construction given above, if X=U is not in ϕ, then σ(X) 6= σ(U). Furthermore,
U1, . . . , U` do not have a binder in V(ϕ).

If σ(X) is in the domain of λ, then X is labeled var by closure of ϕ under
(B.var). If σ(Y ) is in the range of λ, then Y is labeled lam by closure of ϕ under
(B.lam) and by the construction of θ from θdom. As (τdom, σ) is a solution of
ϕdom, the domain of λ is L−1

θ (var), and its range is a subset of L−1
θ (lam). The

function λ is total on L−1
θ (var) because ϕ is simple and because we have added

binders for σ(U1), . . . , σ(U`).

Each var-labeled node is dominated by its binder because ϕ is saturated under
(B.dom).

Let τ = (θ, λ). Then (τ, σ) is a solution of ϕbase because (τdom, σ) is a solution
of ϕdom, and for every literal λ(X)=Y ∈ ϕ, we have λ(σ(X)) = σ(Y ) in the
lambda structure by the construction of the λ function.

In a last step, we move from ϕbase to ϕ, showing that all path equality literals
and all group parallelism literals of ϕ are satisfied in (τ, σ).
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Path equality literals. Let

ϕ′ = ϕdom ∪ {A ∼ B ∈ ϕ}∪

{p(X
U

Y
V

) ∈ ϕ | ∃f,m, i,X1, . . . , Xm. X:f(X1, . . . , Xm), Xi=U ∈ ϕ}.

We can restrict our consideration to the path equalities in ϕ′, i.e. ϕ |=| ϕ′: ϕ |= ϕ′

since ϕ′ ⊆ ϕ. The opposite direction, ϕ′ |= ϕ, can be seen from the fact that
(P.path.eq.1), (P.trans.h), (P.trans.v), (P.diff.1) and (P.diff.2) are sound.

Now it remains to show that each path equality in ϕ′ is satisfied by
(τ, σ). For any p(X

U
Y
V

) ∈ ϕ′, there exist literals X:f(X1, . . . , X`), Xj=U ∈
ϕ. Suppose we can show that in that case, there are Y1, . . . , Y` such that
Y :f(Y1, . . . , Y`), Yj=V ∈ ϕ. Then it is easy to show that p(σ(X)

σ(U)
σ(Y )
σ(V )

) holds

in τ : by the way we have constructed θ above, the subtree θX of θ with root
σ(X) is labeled f , as is the subtree θY of θ with root σ(Y ), and the path from
σ(X) to σ(Xi) = σ(U) in θX is i, as is the path from σ(Y ) to σ(Yi) = σ(V ) in
θY .

It remains to show that for any p(X
U

Y
V

) ∈ ϕ′, if X:f(X1, . . . , X`), Xj=U ∈ ϕ,
then there exist Y1, . . . , Y` such that Y :f(Y1, . . . , Y`), Yj=V ∈ ϕ. We show a

stronger claim: for any p(X
U

Y
V

) ∈ ϕ, we get the same sequence of labels on the
path from X to U as on the path from Y to V .

Let p(X
U

Y
V

) be a path equality literal in ϕ. As ϕ is simple, there exist
X0, . . . , Xm ∈ V(ϕ) for some m ≥ 0 such that X0=X,Xm=U ∈ ϕ and for all
0 ≤ i ≤ m − 1, Xi:fi(X

i
1, . . . , X

i
`i

) ∈ ϕ for some X i
1, . . . , X

i
`i
∈ V(ϕ) and fi ∈ θ

of arity `i, and Xi
ji

=Xi+1 ∈ ϕ for some ji ∈ {1, . . . , `i}. Note that m and the
fi, 1 ≤ i ≤ m, are unique as ϕ is clash-free and closed under (D.Distr.NotDisj),
(D.Distr.Child) and (D.Lab.Ineq). We show the following: for all 0 ≤ i ≤ m,
p( X

Xi

Y
Yi

) ∈ ϕ for some Yi ∈ V(ϕ) in such a way that for 0 ≤ i ≤ m − 1,

Yi:fi(Y
i
1 , . . . , Y

i
`i

) ∈ ϕ for some Y i
1 , . . . , Y

i
`i
∈ V(ϕ), and Y i

ji
=Yi+1 ∈ ϕ (for the

same ji as in Xi
ji

above). We use induction on the length of a proof of generat-

edness for p(X
U

Y
V

).

Suppose p(X
U

Y
V

) is correspondence-generated. That means that there ex-
ists some group parallelism literal (A1, . . . , An) ∼ (B1, . . . , Bn) and some
k ∈ {1, . . . , n} with Ak = X/ . . . and Bk = Y . . . such that U∈b(Ak) is in
ϕ. Then V ∈b(Bk) is in ϕ by (P.copy.dom). We proceed by induction on m.

Suppose m = 0. Then X=U ∈ ϕ by closure under (D.dom.trans). Also,
Y=V ∈ ϕ by closure under (P.copy.dom).

Now suppose m > 0. Suppose that Xm−1:f(Xm−1
1 , . . . , Xm−1

` ), Xm−1
j =U are

in ϕ. As p(X
U

Y
V

) is correspondence-generated, we must have Xm−1∈b(Ak) ∈ ϕ

as well as Xm−1
i ∈b(Ak) ∈ ϕ for 1 ≤ i ≤ `. Then we must have Xm−1∈b−(Ak) by

closure of ϕ under (D.lab.dom) and the clash-freeness of ϕ. Suppose further that
co(Ak, Bk)(Xm−1)=Ym−1. Then Ym−1∈b−(Bk) by the definition of co(Ak, Bk)
and by closure under (P.copy.dom). We must have co(Ak, Bk)(Xm−1

i )=Y m−1
i

for 1 ≤ i ≤ ` and Ym−1:f(Y m−1
1 , . . . , Y m−1

` ) in ϕ by closure under (P.copy.lab),
(D.eq.decom), and (P.path.eq.1), which makes sure that each variable ∈b(Ak)
has only one correspondent ∈b(Bk). The constraint ϕ contains p( X0

Xm−1

Y0

Ym−1

)
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and p( X0

Xm−1

i

Y0

Y m−1

i

) for 1 ≤ i ≤ ` by the definition of co(Ak, Bk). So by closure

of ϕ under (P.path.eq.1), if U=Xm−1
j , then p( X

Xm−1

j

Y
V

) ∈ ϕ; by the definition of

co(Ak, Bk), p( X
Xm−1

j

Y
Y m−1

j

) ∈ ϕ; and by closure under (P.trans.h), p(Y
V

Y
Y m−1

j

) ∈

ϕ. Hence by closure under (P.path.eq.2), V=Y m−1
j is in ϕ.

Now suppose p(X
U

Y
V

) is generated but not correspondence-generated, i.e.
there exists an instance ρ of (P.trans.h), (P.trans.v), (P.diff.1) or (P.diff.2) with
rhs p(X

U
Y
V

) such that all path equality literals in the lhs of ρ are generated.

Suppose ρ is an instance of (P.trans.h) and the lhs of ρ is p(X
U

Z
W

)∧p( Z
W

Y
V

). If
X=U ∈ ϕ then Z=W ∈ ϕ and thus also Y=V ∈ ϕ by the inductive hypothesis.
So suppose X=U 6∈ ϕ, and suppose we have sequences X=X0, . . . , Xm1

=U and
Z=Z0, . . . , Zm2

=W . Then by the inductive hypothesis, we must have m1=m2.
Now suppose ρ is an instance of (P.diff.2) and the lhs of ρ is p( X

U ′

Y
V ′

) ∧

p( U
U ′

V
V ′

) ∧X/∗U ∧ Y /∗V . If X=U ′ ∈ ϕ, then X=U ∈ ϕ by (D.dom.trans), and
by the inductive hypothesis Y=V ′ is in ϕ, thus Y=V is in ϕ by (D.dom.trans).
If U=U ′ ∈ ϕ, then V=V ′ ∈ ϕ by the inductive hypothesis, and p(X

U
Y
V

) ∈ ϕ
even without application of ρ. Suppose otherwise, and let X=X0, . . . , Xm1

=U ′

and U=U0, . . . , Um2
=U ′. By closure under (D.lab.dom), (D.dom.trans) and

(D.distr.notDisj), there exists a minimal i ∈ {0, . . . ,m1} with U0/
∗Xi ∈ ϕ.

ϕ is simple, so by (D.distr.child), we must have Xi=U0 ∈ ϕ, i.e. we can
choose the sequence X0, . . . , Xm1

such that it equals X0, . . . , Xi−1, U0, . . . , Um2
.

But then the inductive hypotheses already holds for p( X
U

Y
V

) and the sequence
X = X0, . . . , Xi−1, U0=U . The cases of ρ being an instance of (P.trans.v) or
(P.diff.1) are analogous.

Group parallelism literals. Let (A1, . . . , An) ∼ (B1, . . . , Bn) ∈ ϕ. We first con-
sider each pair Ak, Bk on its own (for 1 ≤ k ≤ n). Let Ak = X0/X1, . . . , Xm

and Bk = Y0/Y1, . . . , Ym. Then σ(X0)/
∗σ(Xi), σ(Y0)/

∗σ(Yi) hold in (τ, σ) for
all 0 ≤ i ≤ m because (τdom, σ) is a model of ϕdom, and X0/

∗Xi, Y0/
∗Yi ∈ ϕdom

by closure of ϕ under (P.init). So γ1 = σ(X0)/σ(X1), . . . , σ(Xm) and γ2 =
σ(Y0)/σ(Y1), . . . , σ(Ym) are segments of θ. We define a function ck : b(γ1) →
b(γ2) by

ck(σ(X))=σ(Y ) iff X ∈ b(Ak), p(
X0

X

Y0

Y
) ∈ ϕ.

ck is well-defined because if p(X0

X
Y0

Y
), p(X0

X
Y0

Z
) ∈ ϕ, then by closure under

(P.trans.h), (P.path.symm), (P.path.eq.1) also Y=Z ∈ ϕ.
|hs(γ1)| = |hs(γ2)| by the definition of group parallelism (and by closure under

(P.init)).
ck’s domain is b(γ1), and its range is b(γ2): first we show that the domain

of ck is a subset of b(γ1). Let X∈b(Ak) be in ϕ. As (τdom, σ) is a solution of
ϕdom, r(γ1)/

∗σ(X) and for all π ∈ hs(γ1), either σ(X)/∗π or σ(X)⊥π must
hold in τdom. So σ(X) ∈ b(γ1), i.e. for every X ∈ V(ϕ) for which X∈b(Ak)
is in ϕ, σ(X) is in the domain of ck.
Conversely, b(γ1) is a subset of the domain of ck: let π ∈ b(γ1). In moving
from θdom to θ, we have added nodes only above b(γ1). So, as noted above for
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θdom, there exists an X with σ(X) = π. We need to show that X∈b(Ak) is
in ϕ. ϕ possesses a root variable, call it R, and we have R/∗X0, R/

∗X in ϕ.
Let R′ be a /+-maximal variable such that R′/∗X0, R

′/∗X ∈ ϕ (i.e. there is
no R′′ such that R′/+R′′ and R′′ dominates both X0 and X). If R′=X ∈ ϕ,
then X/∗X0 by closure under (D.dom.trans), and ϕ must contain X=X0

by (P.distr.eq) because r(γ1)/
∗π. If R′=R′′, R′′:f(Z1, . . . , Zm) ∈ ϕ, then we

cannot have Zi/
∗X0, Zj/

∗X ∈ ϕ for 1 ≤ i 6= j ≤ m, since then X⊥X0 ∈ ϕ
by closure under (D.dom.trans), (D.prop.distr), which would mean r(γ1)⊥π
in τdom because τdom is a model of ϕdom. We cannot have Zi/

∗X0, Zi/
∗X ∈ ϕ

for some i ∈ {1, . . . ,m} since we have chosen R′ to be maximal. The only
remaining possibility is R′=X0 ∈ ϕ and Zi/

∗X ∈ ϕ for some i ∈ {1, . . . ,m}.
In any case, X0/

∗X ∈ ϕ. By closure under (P.distr.hole), we must have
chosen either X/∗Z or X⊥Z for each hole Z of Ak, otherwise we would have
σ(Z)/+π in τdom for the Z concerned.
By an analogous argument, one can see that the range of ck is b(γ2).

ck is a bijection: ck is one-to-one (injective) because if p( X0

X
Y0

Z
), p(X0

Y
Y0

Z
) ∈ ϕ

for X∈b(Ak), Y ∈b(Ak) in ϕ, then X=Y ∈ ϕ by closure under (P.copy.dom).
It is onto (surjective) by closure under (P.new).

ck is structure-preserving: Suppose ψ0 ∈ b−(γ1), and τ |=
ψ0:f(ψ1, . . . , ψm). Then as mentioned above, there exists a U0 ∈ V(ϕ)
with σ(U0) = ψ0 and U0∈b(Ak) in ϕ. Actually, ϕ even contains U0∈b−(Ak)
by the closure of ϕ under (P.distr.hole) and (P.distr.eq) and the fact that
τdom is a model of ϕdom. As ϕ is simple, U0 must be labeled: ϕ must
contain U0=U

′
0, U

′
0:g(U1, . . . , U`) for some U ′

0, U1, . . . , U`. In fact, we must
have f = g, m = `, and σ(Ui) = ψi for 1 ≤ i ≤ m. As U0∈b−(Ak) is in
ϕ, ϕ also contains Ui∈b(Ak) for 1 ≤ i ≤ m. By closure under (P.new),

ϕ contains p( r(A)
Ui

r(B)
Vi

), 0 ≤ i ≤ m, for some V0, . . . , Vm. By closure
under (P.path.eq.1) and (P.copy.lab), it contains V0:f(V1, . . . , Vm).
By the construction of ck, we have ck(ψi) = c(σ(Ui)) = σ(Vi)
for 0 ≤ i ≤ m, and as τdom is a model of ϕdom, we must have
(τdom, σ) |= σ(V0):f(σ(V1), . . . , σ(Vm)) = c(ψ0):f(c(ψ1), . . . , c(ψm)).
The opposite direction, starting from (τ, σ) |= c(ψ0):f(c(ψ1), . . . , c(ψm)), is
proved by an analogous argument.

The remaining conditions pertain to the interaction of different corre-
spondence functions with respect to binders. For 1 ≤ k ≤ n, let Ak =
Xk

0 /X
k
1 , . . . , X

k
nk

and Bk = Y k
0 /Y

k
1 , . . . , Y

k
nk

, and let σ(Ak) = γk
1 , σ(Bk) = γk

2 .

Conditions (same.seg), (diff.seg): Suppose ψ1 ∈ b−(γj
1) and ψ2 ∈ b−(γk

1 )
(for 1 ≤ j, k ≤ n), and λ(ψ1) = ψ2 in τ . Then, as shown above, there exist
U1, U2 ∈ V(ϕ) with U1∈b−(Aj), U2∈b−(Ak) in ϕ such that σ(Ui) = ψi, i =
1, 2. By the way we have constructed the λ function within τ , we must have
λ(U1)=U2 ∈ ϕ. By closure of ϕ under (P.new) and (P.copy.dom) there exist

V1, V2 with V1∈b−(Bj), V2∈b−(Bk) in ϕ such that p(X
j
0

U1

Y
j
0

V1

), p(Xk
0

U2

Y k
0

V2

) ∈ ϕ.

If j = k, then by closure of ϕ under (L.same.seg), we have λ(V1)=V2 ∈ ϕ.
Now suppose that ψ2 6∈ b−(γj

1). By closure of ϕ under (L.distr.1), either
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U2∈b−(Aj) is in ϕ or U2 6∈b−(Aj) is in ϕ, and as (τdom, σ) is a solution of
ϕdom, we must have U2 6∈b−(Aj). Then by closure of ϕ under (L.diff.seg), we
have λ(V1)=V2 ∈ ϕ. Hence, λ(σ(V1)) = λ(cj(ψ1)) = σ(V2) = ck(λ(ψ1)).
For nodes ψ1 ∈ b−(γj

2), ψ2 ∈ b−(γk
2 ) with λ(ψ1) = ψ2, the argument is

analogous.
Condition (outside): Let ψ ∈ b−(γk

1 ) be in the domain of λ, with λ(ψ) 6∈
⋃n

i=1 b−(γi
1). Then there exists a U with U∈b−(Ak) with σ(U) = ψ, and

by the construction of the function λ there exists some Z ∈ V(ϕ) such
that λ(U)=Z ∈ ϕ, and σ(Z) = λ(ψ). By closure of ϕ under (L.distr.1),
either Z∈b−(Aj) is in ϕ for some j ∈ {1, . . . , n}, or Z 6∈b−(Aj) is in ϕ for
all 1 ≤ j ≤ n. As (τdom, σ) is a solution of ϕdom, the latter must be the
case. Let ck(ψ) = ψ′. By closure of ϕ under (P.new) and (P.copy.dom) there

exists some V with V ∈b−(Ak) such that p(Xk
0

U
Y k
0

V
) ∈ ϕ, so σ(V ) = ψ′ by

the construction of ck. By closure of ϕ under (L.outside), we must have
λ(V )=Z ∈ ϕ, so λ(ψ′) = λ(ck(ψ)) = σ(Z) = λ(ψ) by the construction of
the function λ.
The case of ψ ∈ b−(γk

2 ) is again analogous.
Condition (hang) Let ψ ∈ b−(γk

1 ) be in the range of λ. Then there exists
an U with U∈b−(Ak) with σ(U) = ψ. For every ψ′ with λ(ψ′)=ψ′ there
exists a V ∈ V(ϕ) with σ(V ) = ψ′. By the construction of the λ function,
we must have λ(V )=U ∈ ϕ. By closure of ϕ under (L.hang), there is some
j ∈ {1, . . . , n} such that V ∈b−(Aj) is in ϕ. As (τdom, σ) is a solution of

ϕdom, we must have ψ′ = σ(V ) ∈ b−(γj
1).

The case of ψ ∈ b−(γk
2 ) is of course analogous.

B.3 Soundness: Non-simple constraints

X

Y Z=U

Y = X = Z

Fig. 15. Extension

Now suppose we have a generated non-simple con-
straint ϕ in GP-solved form. We want to show that
there is an extension ϕ ∧ ϕ′ of ϕ such that ϕ ∧ ϕ′ is
in GP-solved form as well as simple. We proceed by
successively labeling unlabeled variables X ∈ ϕ. Take
for instance the constraint in Fig. 15. The main idea
is to make all variables minimally dominated by X into X’s children, i.e. all vari-
ables V with X/+V such that there is no intervening W with X/+W/+V . So in
the constraint in Fig. 15, Y, Z, U are minimally dominated. However, we choose
only one of Z,U as we have Z=U . As there are two prospective child variables
left, we would like to label X by some function symbol of arity 2, extending the
constraint, for instance, by X:f(Y, Z). If there is no symbol of suitable arity in
θ, we can always simulate it by a constant symbol and a symbol of arity ≥ 2.
We formalize this as follows: Given a constraint ϕ we define an ordering ≺ϕ on
its variables such that X ≺ϕ Y holds iff X/∗Y ∈ ϕ but not Y /∗X ∈ ϕ.

Definition 14. Let ϕ be a dominance constraint and X ∈ V(ϕ) unlabeled.
Then we define the set conϕ(X) of variables connected to X in ϕ as follows:

conϕ(X) = {Y ∈ V(ϕ) | Y minimal with X ≺ϕ Y }
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For the constraint in Fig. 15, conϕ(X) = {Y, Z, U}.

Definition 15. We call V ⊆ V(ϕ) a ϕ-disjointness set if for any two distinct
variables Y1, Y2 ∈ V , Y1=Y2 6∈ ϕ.

The idea is that all variables in a ϕ-disjointness set can safely be placed at
disjoint positions in at least one of the trees solving ϕ. In our example, only one
of Z,U can be in any ϕ- disjointness set.

X Y

X X’

X Y

X  / X  ~ Y  / Y

1 1

2 2

2121

Fig. 16. Exten-
sion
and parallelism

We have to make sure that we preserve solvedness dur-
ing extension. For example, when adding X:f(Y, Z) to the
constraint in Fig. 15, we also add Y⊥Z so as not to make
(D.lab.disj) applicable. Specifically, we have to be careful
when labeling a variable like X1 in Fig. 16 (where grey arcs
stand for path equality literals): We have X1∈b(X1/X2),
and when we add X1:g(X) for some unary g, we also have
to add Y1:g(X

′), otherwise (P.copy.lab) would be applica-
ble. We formalize this in the notion of the copy set of a
labeling literal X:f(X1, . . . , Xn).

Definition 16. Let ϕ be a constraint with X, X1, . . . , Xn,
Y , Y1, . . . , Yn ∈ V(ϕ) and let f be a function symbol of arity n. Then we define
↪→ϕ by

X:f(X1, . . . , Xn) ↪→ϕ Y :f(Y1, . . . , Yn)

iff there exists some (A1, . . . , Am) ∼ (B1, . . . , Bm) ∈ ϕ such that X∈b−(Ak) and
X1, . . . , Xn∈b(Ak) are in ϕ for some k ∈ {1, . . . ,m}, and co(Ak, Bk)(X)=Y ,
co(Ak, Bk)(Xi)=Yi are in ϕfor 1 ≤ i ≤ n.

Furthermore,

copyϕ

(
X:f(X1, . . . , Xn)

)
:= {Y :f(Y1, . . . , Yn) |

X:f(X1, . . . , Xn) ↪→∗
ϕ Y :f(Y1, . . . , Yn)}

where as usual ↪→∗
ϕ is the reflexive and transitive closure of ↪→ϕ.

We show some properties of the concepts we have just introduced.

Lemma 17. Let ϕ be in GP-solved form, and let X ∈ V(ϕ). If V is a maximal
ϕ-disjointness set within conϕ(X), then for all Y ∈ conϕ(X) there exists some
Z ∈ V such that Y=Z ∈ ϕ.

Proof. If Y=Z 6∈ ϕ for all Z ∈ V , then {Y }∪V is a disjointness set; thus Y ∈ V
by the maximality of V .

Lemma 18. Let ϕ be a constraint in GP-solved form, and let Y :f(Y1, . . . , Yn) ∈
copyϕ

(
X:f(X1, . . . , Xn)

)
.

– If X is unlabeled in ϕ, then so is Y .
– If {X1, . . . , Xn} ⊆ conϕ(X), then {Y1, . . . , Yn} ⊆ conϕ(Y ).
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– If {X1, . . . , Xn} is a maximal ϕ-disjointness set in conϕ(X), then
{Y1, . . . , Yn} is a maximal ϕ-disjointness set in conϕ(Y ).

Proof. By well-founded induction on the strict partial order ⊂ on the set {S |
{X:f(X1, . . . , Xn)} ⊆ S ⊆ copyϕ

(
X:f(X1, . . . , Xn)

)
}.

The case of S = {X:f(X1, . . . , Xn)} is trivial. So suppose S is not a singleton.
Then it has the form S ′∪{Y :f(Y1, . . . , Yn)} and there exists Z:f(Z1, . . . , Zn) ∈ S ′

with Z:f(Z1, . . . , Zn) ↪→ϕ Y :f(Y1, . . . , Yn) (because X:f(X1, . . . , Xn) ∈ S, so if
there were no such Z:f(Z1, . . . , Zn) ∈ S ′, then S 6⊆ copyϕ

(
X:f(X1, . . . , Xn)

)
).

Let (A1, . . . , Am) ∼ (B1, . . . , Bm) ∈ ϕ and k ∈ {1, . . . ,m} such that
Z∈b−(Ak) and Zi∈b(Ak) are in ϕ for 1 ≤ i ≤ n. Let co(Ak, Bk)(Z)=Y and
co(Ak, Bk)(Zi)=Yi be in ϕ for 1 ≤ i ≤ n. Then Y ∈b−(Ak) and Yi∈b(A)k are in
ϕ for 1 ≤ i ≤ n by closure of ϕ under (P.copy.dom).

– Suppose Z is unlabeled. Then Y must be unlabeled too, as any labeling
literal would have been copied by (P.copy.lab).

– Suppose {Z1, . . . , Zn} ⊆ conϕ(Z). Then by closure under (P.copy.dom),
Y /∗Yi ∈ ϕ but Yi/

∗Y 6∈ ϕ for 1 ≤ i ≤ n. Assume that Yi is not minimal with
Y ≺ϕ Yi, i.e. there exists some W with Y ≺ϕ W ≺ϕ Yi. Then W∈b(Bk)
is in ϕ by closure under (D.dom.trans), (D.prop.disj), (P.distr.hole). So by
(P.new), there exists some W ′ with W ′∈b(Ak) and co(Ak, Bk)(W ′)=W . But
then Z/∗W ′/∗Zi ∈ ϕ by (P.copy.dom), but neither W ′/∗Z nor Zi/

∗W ′ is in
ϕ, so Zi is not minimal either, a contradiction.

– Suppose {Z1, . . . , Zn} is a maximal ϕ-disjointness set in conϕ(Z). Assume
that {Yi, Yj} is not a disjointness set for some 1 ≤ i 6= j ≤ n. So Yi=Yj ∈ ϕ.
But then by (P.copy.dom), Zi=Zj ∈ ϕ, a contradiction.

Assume {Y1, . . . , Yn} is not maximal, i.e. there exists some Y ′ 6∈ {Y1, . . . , Yn}
such that {Y1, . . . , Yn, Y

′} ⊆ conϕ(Y ) is a disjointness set. Let Ak =
U0/U1, . . . , U` and Bk = V0/V1, . . . , V`. We must have V0/

∗Y ′ by
(D.dom.trans) and either Y ′/∗Vi or Y ′⊥Vi or Vi/

+Y ′ is in ϕ for all 1 ≤ i ≤ `
by (P.distr.hole). But if Vi/

+Y ′ for some i ∈ {1, . . . , `}, then Y ′ 6∈ conϕ(Y )
because Y=Vi 6∈ ϕ. So Y ′∈b(Bk) is in ϕ. By closure under (P.new) and
(P.copy.dom), there exists a Z ′ with Z ′∈b(Ak) such that co(Ak, Bk)(Z ′)=Y ′

is in ϕ. By closure under (P.copy.dom), we have Z ′ ∈ conϕ(Z). Z ′ can-
not be in {Z1, . . . , Zn}: If Z ′=Zi ∈ ϕ for some i ∈ {1, . . . , n}, then
p(U0

Zi

V0

Y ′
), p(U0

Zi

V0

Yi
) ∈ ϕ by (P.path.eq.1), so Y ′=Yi ∈ ϕ by (P.path.eq.2).

Hence, {Z1, . . . , Zn, Z
′} is a ϕ-disjointness set in conϕ(Z) that is bigger than

{Z1, . . . , Zn}, a contradiction.

Now we have all the necessary tools to state the main lemma of our soundness
proof. It describes one extension step in which a previously unlabeled variable
is labeled.

Proposition 19. Every GP-solved form ϕ with an unlabeled variable X can be
extended to a GP-solved form in which X is labeled.
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Proof. Let {X1, . . . , Xn} be a maximal ϕ-disjointness set in conϕ(X). Let f be
a function symbol in Σ of arity n.1 W.l.o.g. we assume that Σ contains at least
one constant apart from var. Then we can assume that we do not add a function
symbol lam or var while extending ϕ. Now we define the extension ext(ϕ) of
ϕ ∧X:f(X1, . . . , Xn) as

ext(ϕ) := ϕ ∧
∧

Y :f(Y1,...,Yn)∈

copyϕ

(
X:f(X1,...,Xn)

)

(

Y :f(Y1, . . . , Yn) ∧
∧n

i=1 Y 6=Yi ∧
∧

Yi/
∗U,Yj/∗V ∈ϕ,

1≤i6=j≤n

U⊥V ∧

∧

Z:g(...)∈ϕ,
g 6=f ∨ ar(g)6=ar(f)

Z 6=Y
)

Note that X is labeled in ext(ϕ) since X=X ∈ ϕ by (D.dom.Refl). We con-
sider each rule of D in turn and show that it is not applicable to ext(ϕ).

(D.clash.ineq): ext(ϕ) contains no new dominance literals. If a new inequality
literal Y 6=Yi were to make (D.clash.ineq) applicable, then ϕ must contain
Y=Yi, but Y :f(Y1, . . . , Yn) ∈ copyϕ

(
X:f(X1, . . . , Xn)

)
, so Yi ∈ conϕ(Y ) by

Lemma 18.
If a new inequality Z 6=Y were to make the clash rule applicable, then Z:g(. . .)
and Y=Z must be in ϕ, but by lemma 18, Y is unlabeled because X is.

(D.clash.disj): The only new disjointness literals in ext(ϕ) have the form
U⊥V for Yi/

∗U, Yj/
∗V in ϕ with i 6= j. Assume U=V is in ϕ. Then by

(D.distr.notDisj), either Yi/
∗Yj or Yj/

∗Yi must be in ϕ. But {Xi, Xj} is a
disjointness set, and so, by Lemma 18, is {Yi, Yj}.

(D.dom.refl): No new variables have been added.
(D.dom.trans), (D.distr.notDisj): No new dominance literals have been

added.
(D.eq.decom): Suppose Y :f(Y1, . . . , Yn) ∈ copyϕ

(
X:f(X1, . . . , Xn)

)
and

Y=Z is in ϕ. Then Y and Z must be unlabeled by Lemma
18, so for (D.eq.decom) to be applicable, both Y :f(Y1, . . . , Yn) and
Z:f(Z1, . . . , Zn) must be in ext(ϕ)−ϕ, which means that Z:f(Z1, . . . , Zn) ∈
copyϕ

(
X:f(X1, . . . , Xn)

)
, too.

If copyϕ

(
X:f(X1, . . . , Xn)

)
is a singleton, then we must have Xi=Yi=Zi for

1 ≤ i ≤ n. So suppose otherwise. We first prove the following auxiliary claim:
Let U :f(U1, . . . , Un) ∈ copyϕ

(
X:f(X1, . . . , Xn)

)
. Then p( X

Xi

U
Ui

) ∈ ϕ
for 1 ≤ i ≤ n.

We use induction on the length of a ↪→ϕ sequence starting in
X:f(X1, . . . , Xn) and ending in U :f(U1, . . . , Un), and we start with a se-
quence of length 0. As copyϕ

(
X:f(X1, . . . , Xn)

)
is not a singleton, there

exists some (A1, . . . , Am) ∼ (B1, . . . , Bm) ∈ ϕ and some k ∈ {1, . . . ,m}
such that X∈b(Ak) and Xi∈b(Ak) are in ϕ for 1 ≤ i ≤ n. Let Ak =
W0/W1, . . . ,W` and Bk = W ′

0/W
′
1, . . . ,W

′
`. For 1 ≤ i ≤ n, the following

holds: by closure under (P.new), there exist X ′, X ′
i such that p(W0

X
W ′

0

X′
) ∈ ϕ

1 If there exists no suitable f , it is simulated using other function symbols.

29



as well as p(W0

Xi

W ′

0

X′

i

) ∈ ϕ; by (P.path.symm), p(W ′

0

X′

W0

X
), p(W ′

0

X′

i

W0

Xi
) ∈ ϕ, so by

(P.trans.h), p(W0

X
W0

X
), p(W0

Xi

W0

Xi
) ∈ ϕ; as X/∗Xi ∈ ϕ, closure under (P.diff.1)

yields p( X
Xi

X
Xi

) ∈ ϕ.

Suppose V :f(V1, . . . , Vn) ∈ copyϕ

(
X:f(X1, . . . , Xn)

)
with p( X

Xi

V
Vi

) ∈ ϕ for
1 ≤ i ≤ n, and V :f(V1, . . . , Vn) ↪→ϕ U :f(U1, . . . , Un). Then ϕ contains
some (A1, . . . , Am) ∼ (B1, . . . , Bm) and there exists some kın{1, . . . ,m}
such that V ∈b(Bk) and Vi∈b(Bk) for 1 ≤ i ≤ n and co(Ak, Bk)(V )=U ,
co(Ak, Bk)(Vi)=Ui for 1 ≤ i ≤ n. Then by closure of ϕ under (P.diff.1),
p( V

Vi

U
Ui

) ∈ ϕ for 1 ≤ i ≤ n, and so, by (P.trans.H), is p( X
Xi

U
Ui

). This con-
cludes the proof of the auxiliary claim.
By the auxiliary claim, p( X

Xi

Y
Yi

), p( X
Xi

Z
Zi

) ∈ ϕ. By closure under

(P.path.symm) and (P.trans.h), ϕ contains p( Y
Yi

Z
Zi

), and as Y=Z ∈ ϕ,

p( Z
Yi

Z
Zi

) ∈ ϕ by (P.path.eq.1). Thus by (P.path.eq.2), Yi=Zi ∈ ϕ already
(all for 1 ≤ i ≤ n).

(D.lab.ineq): Suppose Y :f(Y1, . . . , Yn) ∈ ext(ϕ) − ϕ. Then Z 6=Y is in ext(ϕ)
by definition for all Z labeled anything but f .

(D.lab.disj): Suppose Y :f(Y1, . . . , Yn) ∈ ext(ϕ) − ϕ. Since Yi/
∗Yi, Yj/

∗Yj ∈ ϕ
for 1 ≤ i ≤ n by closure under (D.dom.refl), Yi⊥Yj is in ext(ϕ) by definition.

(D.prop.disj): Suppose Y :f(Y1, . . . , Yn) ∈ copyϕ

(
X:f(X1, . . . , Xn)

)
and

U⊥V ∈ ext(ϕ) − ϕ for some Yi/
∗U , Yj/

∗V , j 6= i. If U/∗U ′ and V /∗V ′ are
in ϕ, then we also have Yi/

∗U ′, Yj/
∗V ′ ∈ ϕ by closure under (D.dom.trans),

so U ′⊥V ′ is in ext(ϕ).
(D.lab.dom): Suppose Y :f(Y1, . . . , Yn) ∈ ext(ϕ) − ϕ. We have Y /∗Yi ∈ ϕ by

Lemma 18. Y 6=Yi ∈ ext(ϕ) by definition.
(D.distr.child): Suppose Y :f(Y1, . . . , Yn) ∈ ext(ϕ)− ϕ and Y /∗Z ∈ ϕ.

If Z/∗Y ∈ ϕ, then (D.distr.child) is not applicable in ext(ϕ). Otherwise Y ≺ϕ

Z. If Z is minimal with Y ≺ϕ Z, then Z ∈ conϕ(Y ), and as {Y1, . . . , Yn}
is a maximal ϕ-disjointness set in conϕ(Y ), we have Z=Yi ∈ ϕ for some
i ∈ {1, . . . , n}. If Z is not minimal, there exists some Y ′ ∈ conϕ(Y ) such
that Y ′/∗Z is in ϕ. But then again, Yi=Y

′ for some i ∈ {1, . . . , n}, so Yi/
∗Z.

(B.. . . ) As mentioned above, we assume w.l.o.g. that we have not added any
var or lam labels. Also, we have not added any binding literals or λ−1 literals.
Thus, none of these rules are applicable.

(P.symm), (P.init), (P.path.symm), (P.path.dom), (P.path.eq.1),
(P.path.eq.2), (P.distr.hole): No new dominance, parallelism, or path
equality literals have been added.

(P.new): We have not added any new group parallelism or dominance literals.
If there is some (A1, . . . , An) ∼ (B1, . . . , Bn) ∈ ϕ such that Ak = X/ . . .
for some k ∈ {1, . . . , n} and X/∗U ∈ ϕ, then by the closure of ϕ under
(P.distr.hole) we have already decided whether U∈b(Ak) or not.

(P.copy.dom): Any dominance literal in ext(ϕ) is in ϕ already, so the case of
R = /∗ does not apply.

– We consider the case of R being ⊥. Let U⊥V be in ext(ϕ) − ϕ, where
for some Y :f(Y1, . . . , Yn) ∈ copyϕ

(
X:f(X1, . . . , Xn)

)
and some 1 ≤ i 6=
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j ≤ n, Yi/
∗U, Yj/

∗V ∈ ϕ. (This means that {Y1, . . . , Yn} 6= ∅.) Suppose
ϕ contains a group parallelism literal A ∼ B such that U, V ∈ b(A.k) for
some k ∈ {1, . . . , |A|}. By closure under (P.new), there exist U ′, V ′ such

that p( r(A.k)
U

r(B.k)
U ′

), p( r(A.k)
V

r(B.k)
V ′

) ∈ ϕ. So r(A.k)/∗U, r(A.k)/∗V ∈ ϕ,
and by closure under (D.dom.Trans), Y /∗U, Y /∗V ∈ ϕ. Hence by
(D.distr.notDisj), ϕ contains either Y /∗r(A.k) or r(A.k)/∗Y .

If ϕ contains Y /∗r(A.k) but not Y=r(A.k), then Y ≺ϕ r(A.k).
{Y1, . . . , Yn} is a maximal ϕ-disjointness set in conϕ(Y ) by lemma 18.
So if r(A.k) ∈ conϕ(Y ), then by lemma 17, r(A.k)=Yk is in ϕ for some
k ∈ {1, . . . , n}. If r(A.k) is not minimal with Y ≺ϕ r(A.k), then there
exists some Y ′ ∈ conϕ(Y ) such that Y ′ ≺ϕ r(A.k). Again by lemma
17, ϕ contains Y ′=Yk for some k ∈ {1, . . . , n} and hence, by closure
under (D.dom.Trans), Yk/

∗r(A.k) ∈ ϕ. But then we cannot have both
r(A.k)/∗U and r(A.k)/∗V in ϕ since at least one of Yi⊥Yk and Yj⊥Yk is
in ϕ, and ϕ is clash-free. So (D.distr.notDisj) must have made the choice
r(A.k)/∗Y ∈ ϕ.

ϕ is closed under (P.distr.hole), but the choice made cannot be W/∗Y
for any W ∈ hs(A.k), since Y /+U, Y /+V ∈ ϕ by closure under
(D.dom.Trans), (D.lab.Dom), (P.distr.eq) and on the other hand U, V ∈
b(A.k). So for all W ∈ hs(A.k), either Y /+W ∈ ϕ by (P.distr.hole)
and (P.distr.eq), or Y⊥W ∈ ϕ by (P.distr.hole). In the first case,
(P.distr.hole) must have chosen either Yi⊥W or Yi/

∗W for each 1 ≤
i ≤ n because all the Yi are minimal with Y ≺ϕ Yi. In the sec-
ond case, we have Yi⊥W ∈ ϕ for 1 ≤ i ≤ n by closure under
(D.Prop.Disj). In both cases, Y ∈ b−(A.k) and Y1, . . . , Yn ∈ b(A.k).
By closure of ϕ under (P.new), there are Z,Z1, . . . , Zn such that

p( r(A.k)
Y

r(B.k)
Z

) ∈ ϕ and p( r(A.k)
Yi

r(B.k)
Zi

) ∈ ϕ for 1 ≤ i ≤ n. Since

Y ∈ b−(A.k), Z:f(Z1, . . . , Zn) ∈ copyϕ

(
X:f(X1, . . . , Xn)

)
. By closure

under (P.copy.dom), Zi/
∗U ′, Zj/

∗V ′ ∈ ϕ, so U ′⊥V ′ ∈ ext(ϕ) by defini-
tion.

– It remains to consider the case of R being 6=. Let Y :f(Y1, . . . , Yn) ∈
copyϕ

(
X:f(X1, . . . , Xn)

)
.

Suppose Y 6=Yi ∈ ext(ϕ) − ϕ for some i ∈ {1, . . . , n}. (Again,
{Y1, . . . , Yn} 6= ∅.) Suppose further that A ∼ B ∈ ϕ with Y, Yi ∈ b(A.k)
for some k ∈ {1, . . . , |A|}. By closure under (P.new), there exist Z,Zi

such that p( r(A.k)
Y

r(B.k)
Z

), p( r(A.k)
Yi

r(B.k)
Zi

) ∈ ϕ.

We must have Y ∈ b−(A.k) by closure under (P.distr.hole), (P.distr.eq)
and the fact that Yi ∈ b(A.k). So Y1, . . . , Yn ∈ b(A.k) by closure under
(P.distr.hole).

So there are Z1, . . . , Zn such that p( r(A.k)
Yj

r(B.k)
Zj

) ∈ ϕ for 1 ≤ j ≤ n.

Y ∈ b−(A.k), so Z:f(Z1, . . . , Zn) ∈ copyϕ

(
X:f(X1, . . . , Xn)

)
. Hence,

Z 6=Zi is in ext(ϕ) by definition.

Now suppose Z 6=Y ∈ ext(ϕ)− ϕ, where Z:g(. . .) is in ϕ for some g with
either g 6= f or ar(g) 6= ar(f). Suppose further that A ∼ B ∈ ϕ with
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Y, Z ∈ b(A.k) for some k ∈ {1, . . . , |A|}. By closure under (P.distr.eq),
we have either Z=Y ∈ ϕ or Z 6=Y ∈ ϕ. Z=Y ∈ ϕ is impossible since Y
is unlabeled by lemma 18. So Z 6=Y must be in ϕ already.

(P.copy.lab): Let Y :f(Y1, . . . , Yn) ∈ copyϕ

(
X:f(X1, . . . , Xn)

)
with

Y :f(Y1, . . . , Yn) ∈ ext(ϕ) − ϕ. Suppose A ∼ B ∈ ϕ with
Y, Y1, . . . , Yn ∈ b(A.k) for some k ∈ {1, . . . , |A|}. Then there exist

Z,Z1, . . . , Zn such that p( r(A.k)
Y

r(B.k)
Z

) ∈ ϕ and p( r(A.k)
Yi

r(B.k)
Zi

) ∈ ϕ for
1 ≤ i ≤ n.
By closure under (P.distr.eq), either Y ∈ b−(A.k) or there exists some
W ∈ hs(A.k) such that Y=W ∈ ϕ. In the first case, Z:f(Z1, . . . , Zn) ∈
copyϕ

(
X:f(X1, . . . , Xn)

)
, so the labeling literal Z:f(Z1, . . . Zn) is in ext(ϕ).

If Y=W ∈ ϕ for some W ∈ hs(A.k), then (P.copy.lab) is not applicable since
it does not copy the label of the exception.

(P.distr.eq): No new variables have been added.
(T.Trans.H), (T.Trans.V), (T.Diff.1), (T.Diff.2): Now new path equali-

ties have been added.
(L.Distr.Lo), (L.Distr.Hi): We have not introduced any new group paral-

lelism literals or lambda binding literals. Also, we have not introduced new
dominance literals. So if r(A)/∗U ∈ ϕ already, then by the closure of ϕ under
(P.distr.hole) and (P.distr.eq) it is already decided in ϕ whether U ∈ b−(A)
or not.

(L.Same), (L.Copy), (L.Above): We have not added any lambda binding
literals. It remains to show that we have not recently acquired new infor-
mation on whether a binder or a bound variable is situated in a group or
not.
Suppose λ(U)=Y ∈ ϕ and U ∈ b−(A) in ext(ϕ). Then U ∈ b−(A) in ϕ
already, as pointed out above, and by closure of ϕ under (L.Distr.Hi), there
either exists a A′ ∼ B′ ∈ bp(A ∼ B) such that Y ∈ b−(A′), or Y ∈ b−(A′)c

for all A′ ∼ B′ ∈ bp(A ∼ B). So (L.Copy), or (L.Above), has been applied
to U and Y in ϕ already.

(L.Hang): We have not added any new parallelism literals, group parallelism
literals or lambda binding literals. Also, we have not introduced new domi-
nance literals. So if r(A)/∗U2 ∈ ϕ, then by closure under (P.distr.hole) and
(P.distr.eq) it is already decided in ϕ whether U2 ∈ b−(A) or not.

(L.Inv): We have not added any λ−1, group parallelism, dominance, or path
equality literals, and, as pointed out before, if X ∈ b−(A) in ext(ϕ), then it
is in b−(A) in ϕ already.
Concerning co(A,B)(Xi), (L.Distr.Lo) has decided in ϕ, for each 1 ≤ i ≤
|A|, whether Xi ∈ b−(A.i) or Xi ∈ b−(A.i)c. If Xi ∈ b−(A.i), then its
correspondent is already known in ϕ by closure under (P.new).
For each Z ∈ co(A,B)(Xi), there exists a literal λ(Z)=U for some U ∈ V(ϕ),
either by (L.Same) or by (L.Copy). This holds because Y ∈ b−(A) for some
A ∈ `(A ∼ B) and because ϕ is closed under (L.Distr.Hi). By closure of ϕ
under (P.distr.eq), either U=Y or U 6=Y ∈ ϕ. So we cannot have received
new information concerning coλA∼B(Xi, Y ) in ext(ϕ).
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Lemma 20. Every generated GP-solved form can be extended to a simple gen-
erated GP-solved form.

Proof. The construction in lemma 19 preserves generatedness, as it does not add
any new path equalities.

Theorem 21 (Soundness). A generated constraint in GP-solved form is sat-
isfiable.

Proof. By lemmas 13 and 20.

B.4 Completeness

[9] introduces a sub-procedure of GP and shows that it is complete for parallelism
constraints, which are like group parallelism constraints except that they only
have groups of size one and do not comprise binding constraints. Completeness
means that the procedure computes, for every solution (τ, σ) of a constraint ϕ, a
solved form from which a sub-λ-structure of τ can be read off. The only difficulty
in the completeness proof are the rules that introduce fresh variables. However,
the only rule in GP that is not present in [9] and introduces fresh variables is
(B.lam). It can only introduce one fresh variable per lam-labeled variable. So
the proof from [9] directly carries over to group parallelism constraints and the
procedure GP.

Theorem 22 (Completeness). For every solution (τ, σ) of ϕ, GP computes
a GP-solved form of ϕ of which (τ, σ) is a solution.
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