
Non-Structural Subtype Entailment
in Automata Theory

Joachim Niehren Tim Priesnitz

Programming Systems Lab, Universität des Saarlandes, Saarbrücken, Germany
www.ps.uni-sb.de/˜{niehren,tim}

Abstract. Decidability of non-structural subtype entailment is a long standing
open problem in programming language theory. In this paper, we apply automata
theoretic methods to characterize the problem equivalently by using regular ex-
pressions and word equations. This characterization induces new results on non-
structural subtype entailment, constitutes a promising starting point for further
investigations on decidability, and explains for the first time why the problem
is so difficult. The difficulty is caused by implicit word equations that we make
explicit.

1 Introduction

Subtyping is a common concept of many programming languages (including C++ and
Java). A subtype relation τ ′≤τ means that all functions in a program that expect an
argument of type τ are sufficiently polymorphic so that they can also be applied to
values of the subtype τ ′. Thus, one can safely replace values of a type τ by values of
subtype τ ′.

Subtype constraints are systems of inequations t≤t′ that talk about the subtype re-
lation. Terms t and t′ in subtype constraints are built from type variables and type con-
structors. Two logical operations on subtype constraints were investigated: satisfiability
and entailment [6, 12, 1, 4, 18, 20]. Subtype satisfiability can be checked in cubic time
for many type languages [9, 16]. A quadratic time algorithm for the variable free case
is presented in [10].

Interest in subtype entailment was first raised by practical questions on type infer-
ence engines with subtyping [5, 21, 19]. The efficiency of such systems relies on the
existence of powerful simplification algorithms for typings. Such operations can be for-
mulated on the basis of algorithms for subtype entailment.

It then turned out that subtype entailment is a quite complex problem, even for
unexpressive type languages where types are ordinary trees. Rehof and Henglein [22]
clarified the situation for structural subtyping. This is a tree ordering that relates trees of
the same shape only. It is induced by lifting an ordering on constants. If trees are built
over the signature {int, real,×,→}, for instance, then structural subtyping is induced
by the usual axiom int≤real which says that every integer is a real number. Rehof and
Henglein showed that structural subtype entailment is coNP-complete [7] for finite trees
(simple types) and PSPACE-complete [8] for possibly infinite trees (recursive types).

Subtyping becomes non-structural if the constants ⊥ and > are admitted that stand
for the least and greatest type. Now, trees of different shapes can be related since all



trees τ satisfy ⊥≤τ≤>. Several cases are to be distinguished: one can consider only
finite trees or admit infinite trees, or one may assume that all function symbols are co-
variant (such as×) or that some are contra-variant (as the function type constructor→
in its first argument). One can also vary the number of type constructors of each arity.

Decidability of non-structural subtype entailment (NSSE) is a prominent open prob-
lem in programming language theory. Only a PSPACE lower bound is known which
holds in both cases, for finite trees and for infinite trees [8]. The signature {⊥, f,>} is
enough to prove PSPACE hardness if f is a type constructor of arity at least 2. But this
result does not explain why finding a decision procedure for NSSE is so difficult. On
the other hand, only a fragment of NSSE could be proved decidable [15] (and PSPACE-
complete).

The idea behind the approach of this paper is to first reformulate Rehof and Hen-
glein’s approach for structural subtype entailment in automata theory and second to lift
it to the non-structural case. We have carried out both steps successfully but report only
on the second step.

A similar automata theoretic approach is already known for satisfiablity but not for
entailment [9, 16]. Our extension to entailment yields a new characterization of NSSE
that uses regular expressions and word equations [11, 17]. Word equations raise the real
difficulty behind NSSE since they spoil the usual pumping arguments from automata
theory. They also clarify why NSSE differs so significantly from seemingly similar
entailment problems [13, 14].

2 Characterization

We now formulate the main result of this paper and discuss its relevance (Theorem
1). This is a new characterization of NSSE which is based on a new class of extended
regular expressions: cap set expressions that we introduce first.

A word over an alphabet A is a finite sequence of letters in A. We denote words
by π, µ, or ν and the set of words over A with A∗. The empty word is written as ε and
the free-monoid concatenation of words π and µ by juxtaposition πµ, with the property
that επ = πε = π. A prefix of a word π is a word µ for which there exists a word ν

such that π = µν. If µ is a prefix of π then we write µ ≤ π and if µ is a proper prefix
of π then we write µ < π. We define regular expressions R over alphabet A as usual:

R := a | ε | R1R2 | R
∗ | R1∪R2 | ∅ where a ∈ A

Every regular expression R defines a regular language of words L(R) ⊆ A∗. We next
introduce cap set expressions E over A. (Their name will be explained in Sec. 5.)

E ::= R1R
◦
2 | E1 ∪ E2

Cap set expressions E denote sets of words L(E) ⊆ A∗ that we call cap sets. We have
to define the cap set operator ◦ on sets of words, i.e we must define the set S◦ ⊆ A∗

for all sets S ⊆ A∗. Let pr be the prefix operator lifted to sets of words. We set:

S◦ = {π | π ∈ pr(µ∗), µ ∈ S}



A word π belongs to S◦ if π is a prefix of a power µ . . . µ of some word µ ∈ S. Note
that cap set expressions subsume regular expressions: indeed, L(R) = L(R ε◦) for
all R. But the cap operator adds new expressiveness when applied to an infinite set:
there exist regular expression R such that the language of the cap set expression R◦ is
neither regular nor context free. Consider for instance (21∗)◦ which denotes the set of
all prefixes of words 21n 21n . . . 21n where n ≥ 0. Clearly this set is not context-free.

We will derive appropriate restrictions on cap set expressions (Def. 27) such that
following theorem becomes true.

Theorem 1 (Characterization). The decidability of NSSE for a signature {⊥, f,>}
with a single function symbol of arity n ≥ 1 is equivalent to the decidability of the
universality problem for the class of restricted cap set expressions over the alphabet
{1, . . . , n}. This result holds equally for finite and for possibly infinite trees.

The theorem allows to derive the following robustness result of NSSE against vari-
ations from automata transformations (Sec. 12).

Corollary 2. All variants of NSSE with signature {⊥, f,>} where the arity of f at
least n ≥ 2 are equivalent. It does not even matter whether finite or infinite trees are
considered.

Theorem 1 can also be used to relate NSSE to word equations. The idea is to express
membership in cap sets in the positive existential fragment of word equations with
regular constraints [23]. The reduction can easily be based on the following lemma that
is well known in the field of string unification.

Lemma 3. For all words π ∈ A∗ and nonempty words µ ∈ A+ it holds that π ∈ pr(µ∗)
if and only if π ∈ pr(µπ). Thus, all sets S ⊆ A+ of nonempty words satisfy:

π ∈ S◦ ↔ ∃µ∃ν (µ ∈ S ∧ πν=µπ)

We can thus express the universality problem of cap set expressions E in the positive
∀∃∗ fragment of the first-order theory of word equations with regular constraints.

Corollary 4. NSSE with a single function symbol of arity n ≥ 1 can be expressed
in the positive ∀∃∗ fragment of the first-order theory of word equations with regular
constraints over the alphabet {1, . . . , n}.

Unfortunately, even the positive ∀∃3 fragment of a single word equation is undecid-
able [3] except if the alphabet is infinite [2] or a singleton [24]. Therefore, it remains
open whether NSSE is decidable or not. But it becomes clear that the difficulty is raised
by word equations hidden behind cap set expressions R◦, i.e. the equation πν=µπ in
Lemma 3.

Theorem 1 constitutes a promising starting point to further investigate decidability
of NSSE. For instance, we can infer a new decidability result for the monadic case
directly from Corollary 4.

Corollary 5. NSSE is decidable for the signature {⊥, f,>} if f is unary.



Plan of the Paper. We first recall the precise definition of NSSE (Sec. 3) and then
prove Theorem 1 in 5 subsequent steps. This covers most of the paper (Sec. 4 – 11).

First, we express NSSE by a so called safety property for sets of words (Sec. 4).
Second, we introduce cap-automata – a restricted version of P-automata as introduced
[15] – which can recognize exactly the same languages as cap set expressions (Sec. 5).
Third, we show how to construct cap automata corresponding to entailment judgments.
This construction encodes NSSE into universality of cap automata (Sec. 6). We prove
the soundness (Sec. 7) and completeness (Sec. 8) of our construction. Fourth, we infer
restrictions that are satisfied by all constructed cap automata and define corresponding
restrictions for cap set expressions (Sec. 9 and 10). Fifth, we give a back translation
(Sec. 11) that reduces universality of restricted cap automata into NSSE.

Finally, we present transformations on restricted cap automata that allow us to de-
rive Corollary 2 from Theorem 1 (Sec. 12), and conclude.

3 Non-Structural Subtype Constraints

In this paper we investigate non-structural subtype constraints over signatures of func-
tion symbols Σ = {⊥, f,>} with a single non-constant function symbol f that is
co-variant. We write arg for the arity of a function symbol g ∈ Σ, i.e ar⊥ = ar> = 0
and arf ≥ 1.

The choice of such signatures imposes two restrictions: first, we do not allow for
contravariant type constructors. These could be covered in our framework even though
this is not fully obvious. Second, we do not treat larger signature with more than one
non-constant function symbol. This is a true restriction that cannot be circumvented
easily.

3.1 Non-Structural Subtyping

We next define finite and infinite trees over Σ. We consider trees as partial functions
τ : N

∗
 Σ which map words over natural numbers to function symbols. A tree τ is

finite if its domain Dτ is finite and otherwise infinite. The words in Dτ ⊆ N
∗ are called

the nodes or paths of the tree. The idea is to identify a node with the path that addresses
it relative to the root. We require that every tree has a root ε ∈ Dτ and that tree domains
Dτ are always prefix closed and arity-consistent. The latter means for all trees τ , nodes
π ∈ Dτ , and naturals i ∈ N that πi ∈ Dτ if and only if 1 ≤ i ≤ arτ(π).

We will freely interpret function symbols in Σ as tree constructors. To make clear
distinctions, we will write =Σ for equality of symbols in Σ and = for equality of trees
over Σ. Given g ∈ Σ and trees τ1, . . . , τarg we define τ = g(τ1, . . . , τarg ) by τ(ε) =Σg

and τ(iπ) =Σ τi(π) for all π ∈ Dτi
and 1 ≤ i ≤ arg. We thus consider ground terms

over Σ as (finite) trees, for instance f(⊥,>) or ⊥. Thereby, we have overloaded our
notation since a constant a ∈ Σ can also be seen as tree ε 7→ a. But this should never
lead to confusion.

Let <Σbe the irreflexive partial order on Σ that satisfies ⊥ <Σ f <Σ > and ≤Σ its
reflexive counterpart. We define non-structural subtyping to be the unique partial order



on trees which satisfies for all trees τ1, τ2 over Σ:

τ1≤τ2 iff τ1(π) ≤Στ2(π) for all π ∈ Dτ1
∩Dτ2

3.2 Constraint Language

We assume an infinite set of tree valued variables that we denote by x, y, z, u, v, w. A
subtype constraint ϕ is a conjunction of literals with the following abstract syntax:

ϕ, ϕ′ ::= x≤f(y1, . . . , yn) | f(y1, . . . , yn)≤x | x=⊥ | x=> | ϕ ∧ ϕ′

where n = arf . We interpret constraints ϕ in the structure of trees over Σ with non-
structural subtyping. We distinguish two cases, the structure of finite trees or else of
possibly infinite trees. We interpret function symbols in both cases as tree constructors
and the predicate symbol ≤ by the non-structural subtype relation. Again, this over-
loads notation: we use the same symbol ≤ for the subtype relation on trees and the
predicate symbol denoting the subtype relation in constraints. Again, this should not
raise confusion.

Note that we do not allow for formulas x≤y in our constraint language. This choice
will help us to simplify our presentation essentially. It is, however, irrelevant from the
point of view of expressiveness. We can still express x≤y by using existential quanti-
fiers:

x≤y ↔ ∃z∃u (f(x, u, . . . , u)≤z ∧ z≤f(y, u, . . . , u))

As in this equivalence, we will sometimes use first-order formulas Φ built from con-
straints and the usual first-order connectives. We will write VΦ for the set of free vari-
ables occurring in Φ. A solution of Φ is a variable assignment α into the set of finite
(resp. possibly infinite) trees which satisfies the required subtype relations; we write
α |= Φ if α solves Φ and say that Φ is satisfiable.

Example 6. The constraint x≤f(x) is satisfiable, even when interpreted over finite
trees. We can solve it by mapping x to⊥. In contrast, the equality constraint x≤f(x) ∧
f(x)≤x is unsatisfiable over finite trees. It can however be solved by mapping x to the
infinite tree f(f(f(. . .))).

A formula Φ1 entails Φ2 (we write Φ1 |= Φ2) if all solutions α |= Φ1 satisfy
α |= Φ2. We will consider entailment judgments that are triples of the form (ϕ, x, y)
that we write as ϕ |=? x≤y. Non-structural subtype entailment (NSSE) for Σ is the
problem to check whether entailment ϕ |= x≤y holds for a given entailment judgment
ϕ |=? x≤y.

Note that entailment judgments of the simple form ϕ |=? x≤y can express general
entailment judgments, where both sides are conjunctions of inequations t1≤t2 between
nested terms or variables (i.e. t ::= x | f(t1, . . . , tn) | ⊥ | >). The main trick is to
replace a judgment ϕ |=? t1≤t2 with terms t1 and t2 by ϕ ∧ x=t1 ∧ y=t2 |=

? x≤y

where x and y are fresh variables. Note also that the omission of formulas u≤v on the
left hand side does not restrict the problem. (Existential quantifier on the left hand side
of an entailment judgment can be removed.)



Example 7. The prototypical example where NSSE holds somehow surprisingly is:

x≤f(y) ∧ f(x)≤y |=? x≤y (yes)

To see this, note that all finite trees in the unary case are of the form f . . . f(⊥) or
f . . . f(>). Thus, x≤y ∨ y<x is valid in this case. Next let us contradict the assump-
tion that there is a solution α |= y<x ∧ x≤f(y) ∧ f(x)≤y. Transitivity yields
α(y)≤f(α(y)) and then also f(α(x))≤f(α(y)). Hence α(x)≤α(y) which contradicts
α(y)<α(x).

4 Entailment via Safety

We now characterize NSSE by properties of sets of words that we call safety properties.
Appropriate safety properties can be verified by P-automata as we will show in Section
6.

We use terms x(π) to denote the node label of the value of x at path π. Whenever
we use this term, we presuppose the existence of π in the tree domain of the value of x.
For instance, the formula x(12) ≤Σ> is satisfied by a variable assignment if and only
if the tree assigned to x contains the node 12.

We next recall the notion of safety from [15]. Let ϕ |=? x≤y be an entailment
judgment and π a word in {1, . . . , arf}∗. We call π safe for ϕ |=? x≤y if entailment
cannot be contradicted at π, i.e. if ϕ ∧ y(π) <Σx(π) is unsatisfiable. Clearly entailment
ϕ |= x≤y is equivalent to that all paths are safe for ϕ |=? x≤y.

For a restricted class of entailment judgments it is shown in [15] that the above
notion of safety can be checked by testing universality of P-automata. Unfortunately,
it is unclear how to lift this result to the general case. To work around, we refine the
notion of safety into two dual notions: left (l) safety and right (r) safety.

π is l-safe for ϕ |=? x≤y iff ϕ |=







x(π) =Σf

∨
∨

π′≤π x(π′) =Σ⊥
∨

∨

π′≤π y(π′) =Σ>

This means that ϕ |=? x≤y cannot be contradicted by a solution α of ϕ that maps the
left hand side x at node π to >, i.e. where α(x)(π) = >. The notion of r-safety is
analogous, expect that one tries to contradict at the right hand side with ⊥.

π is r-safe for ϕ |=? x≤y iff ϕ |=







y(π) =Σf

∨
∨

π′≤π x(π′) =Σ⊥
∨

∨

π′≤π y(π′) =Σ>

We define a variable assignment α to be l-safe or r-safe for α |=? x≤y by replacing ϕ

literally with α in the above definitions.
We first illustrate these concepts by a judgment with a unary function symbol:

z=> ∧ f(z)≤y |=? x≤y (no)

Here, ε is r-safe but not l-safe. All other paths π ∈ 1+ are both l-safe and r-safe. There
is a variable assignment α which contradicts entailment: α(x) = >, α(z) = >, α(y) =
f(>). This shows that ε is indeed not l-safe for α |=? x≤y.



Proposition 8. Entailment ϕ |= x≤y holds if and only if all words π ∈ {1, . . . , arf}∗

are l-safe and r-safe for ϕ |=? x≤y.

Proof. We first assume that entailment does not hold and show that either l-safety or
r-safety can be contradicted for some path. As argued above, there exists an unsafe path
π such that ϕ ∧ y(π) <Σx(π) is satisfiable. Let α be a solution of this formula.

1. If α(y)(π) =Σ⊥ then α(x)(π) ∈ {f,>} and π fails to be r-safe.
2. Otherwise α(y)(π) =Σf . Thus α(x)(π) =Σ> which contradicts that π is l-safe.

For the converse, we assume entailment ϕ |= x≤y and show that all paths are l-safe
and r-safe for ϕ |=? x≤y. We fix a path π and solution α of ϕ, and show that π is
l-safe and r-safe for α |=? x≤y. Let π′ be the longest prefix of π which belongs to
Dα(x) ∩Dα(y).

1. If α(x)(π′) =Σ⊥ then π satisfies the second condition of both l-safety and r-safety
for α |=? x≤y.

2. Suppose α(x)(π′) =Σ>. Since α |= ϕ and ϕ |= x≤y, we know that α |= x≤y.
Since π′ is a node of both trees it follows that α(x)(π′) ≤Σ α(y)(π′) and thus
α(y)(π′) =Σ >. Thus, π satisfies the third condition of l-safety and r-safety for
α |=? x≤y.

3. The last possibility is α(x)(π′) =Σf . We can infer from entailment that α(y)(π′) ∈
{f,>}. If α(y)(π′) =Σ > we are done as before. Otherwise, α(y)(π′) =Σ

α(x)(π′) =Σ f such that the maximality of π′ and arf ≥ 1 yields π = π′. Now, π

satisfies the first conditions of l-safety and r-safety for α |=? x≤y.

Example 9. The surprising effect of Example 7 seems to go away if one replaces the
unary function symbol there by a binary function symbol:

x≤f(y, y) ∧ f(x, x)≤y |=? x≤y (no)

Now, all words in 1∗∪2∗ are l-safe and r-safe, but 12 is neither. Entailment can be con-
tradicted by variable assignments mapping x to f(f(⊥,>),⊥) and y to f(f(>,⊥),>).

Example 10. This example is a little more complicated. Its purpose is to show that
entailment in the binary case can also be raised by a similar effect as in Example 7.
How to understand this effect in general will be explained in Section 6.

x≤f(y, y) ∧ f(z, z)≤y ∧ f(u, u)≤z ∧ u=> |=? x≤y (yes)

5 Cap Automata and Cap Sets

We now restrict the class of P-automata introduced in [15] to the class of so called cap
automata1. We then show that the class of languages recognized by cap automata is
precisely the class of cap sets, i.e. those sets of words described by cap set expressions.

1 Cap automata are the same objects as P-automata, i.e. finite automata with a set of P-edges.
The difference between both concepts concerns the corresponding language definitions only.
Both definitions coincide for those automataP that satisfy the following condition (the proof is
straightforward): if P ` q1

π
−→ q2

µ
−→ q3 q1 then q2 is a final state in P . This condition

can be assumed w.l.o.g for all cap automata, since it is satisfied by all those constructed in the
proof of Proposition 12. Thus, cap automata are indeed properly subsumed by the P-automata.



q0

q1

2

1

O O

O O O

O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O

A

A

A

A

A

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

A

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

C∗

Fig. 1. A cap automaton with a non context-free language (21∗)◦.

A finite automaton A over alphabet A consists of a set Q of states, a set I ⊆ Q

of initial states, a set F ⊆ Q of final states, and a set ∆ ⊆ Q × (A ∪ {ε}) × Q of
transitions. Note that ∆ permits ε transitions and single letter transitions. We will write
A ` q if q ∈ Q is a state of A,A ` q if q ∈ F is a final state of A, and A ` q if q ∈ I

is an initial state of A. The statement A ` q
π
−→ q′ says that A started at q permits a

sequence of transitions consuming π and ending in q′. Note that A ` q
ε
−→ q holds for

all states q ∈ Q. We callA complete if for every word π ∈ A∗ there exists states q0 and
q1 such that A ` q0

π
−→ q1.

Definition 11. A cap automaton P over alphabet A consists of a finite automaton A
over A and a set of P-edges P ⊆ Q × Q. We write P ` q q′ if P has a P-edge
(q, q′) ∈ P . A cap automaton P over A recognizes the following languageL(P) ⊆ A∗:

L(P) = {π | P ` q0
π
−→ q1} ∪ {πµ′ | µ′ ∈ pr(µ∗), P ` q0

π
−→ q1

µ
−→ q2 q1}

The first set is the language of the finite automaton underlying P . The second set add
the contribution of P-edges: if a cap automaton traverses a P-edge P ` q2 q1 then it
must have reached q2 from q2 of some word µ, i.e. P ` q1

µ
−→ q2 q1; in the sequel

the automaton can loop through µ∗ and quit the loop at any time.
Fig. 1 contains a cap automaton over the alphabet {1, 2} that recognizes the non-

context free cap set from the introduction, i.e. described by the cap set expression
(21∗)◦. We generally draw cap automata as one draws finite automata but with addi-
tional dashed arrows to indicate P-edges.

The tree on the right in Fig. 1 represents the language recognized by this cap au-
tomaton. The language of a cap automaton P with alphabet {1, . . . , n} is drawn as
a n-ary class tree. This is a complete infinite n-ary tree whose nodes are labeled by
classes A, P, and C. Each node of the class tree is a word in {1, . . . , n}∗ that is labeled
by the class that P adjoins to it. We assign the class C to all words in the complement
of L(P) of a cap automaton P . The words with class A are recognized by the finite
automaton underlying P . All remaining words belong to class P. These are accepted by
P but not by the underlying finite automaton.



A1 A2q1 q2
ε ε ε

Fig. 2. Construction of a cap automaton for the language L(A1)L(A2)
◦.

We now explain the name cap: it is an abbreviation for the regular expression ( C∪
A+P∗ )∗. Branches in class trees of cap automata always satisfy that expression. This
means that all nodes of class P in a class tree have a mother node in either of the classes
A or P. To see this, note first that root nodes of class trees can never belong to class
P Thus, all P nodes must have a mother. Furthermore, the mother of a P node cannot
belong to the C class due to the cap property.

Proposition 12. Cap set expressions and cap automata recognize precisely the same
class of languages. Universality of cap set expressions and cap automata are equivalent
modulo deterministic polynomial time transformations.

Proof. For the one direction, let Rq1,q2
be a regular expression for the set {π | P `

q1
π
−→ q2} then the language of a cap automaton is equal to the union of ∪P` q0

∪P`q1

Rq0,q1
and ∪P` q0

∪P`q1
∪P`q2 q1

Rq0,q1
(Rq1,q2

)◦. The needed regular expres-

sions can be computed in polynomial time
For the converse, we first note that the class of languages recognized by cap au-

tomata is closed under union since cap automata may have several initial states. There
thus only remains to built cap automata for expressions R1R

◦
2. Let A1 and A2 be finite

automata that recognize R1 respectively R2. W.l.o.g. we can assume that both automata
have a unique initial and a unique final state. Multiple initial or final states of finite au-
tomata (but not of cap automata) can be eliminated by introducing new ε-transitions.
We now composeA1 andA2 into a new cap automaton that recognizes the language of
R1R

◦
2 as illustrated in Fig. 2: we add two fresh final states q1 and q2 and link A1 and

A2 over these states. This requires 3 new ε-edges and a new P-edge from q2 to q1. To
account for the prefix closure within the ◦ operator, we finally turn all states of A2 into
additional final states.

6 Automata Construction

We now construct cap automata that test l-safety and r-safety of entailment judgments.
The same construction applies for finite trees and possibly infinite trees. The only dif-
ference between both cases is hidden in different application conditions required for
completeness. The appropriate conditions for both cases can be ensured by different
preprocessing steps and satisfiability tests (as Prop. 21 will explain).

The automata construction is given in Table 1. For each entailment judgment ϕ |=?

x≤y we construct a left automaton Pl(ϕ |=
? x≤y) and a right automaton Pr(ϕ |=

?



alphabet AΣ = {1, . . . , arf}
states Pθ ` (s, s′) if s, s′ ∈ Vϕ ∪ {x, y, }

Pθ ` all

initial state Pθ ` (x, y)

final states Pl ` (u, s) if u≤f(u1, . . . , un) in ϕ

Pr ` (s, v) if f(v1, . . . , vn)≤v in ϕ

descend Pθ ` (u, s)
i

−→ (ui, ) if u≤f(u1, . . . , un) in ϕ, i ∈ AΣ

Pθ ` (s, v)
i
−→ ( , vi) if f(v1, . . . , vn)≤v in ϕ, i ∈ AΣ

Pθ ` (u, v)
i
−→ (ui, vi) if

{
u≤f(u1, . . . , un) in ϕ,

f(v1, . . . , vn)≤v in ϕ, i ∈ AΣ

bot Pθ ` (u, s)
i

−→ all if u=⊥ in ϕ, i ∈ AΣ

top Pθ ` (s, v)
i
−→ all if v=> in ϕ, i ∈ AΣ

reflexivity Pθ ` (u, u)
i

−→ all if u ∈ Vϕ ∪ {x, y}, i ∈ AΣ

all Pθ ` all
i

−→ all if i ∈ AΣ

P−edges Pl ` (u, s) (v, u)
Pr ` (s, v) (v, u)

Table 1. Construction of the cap automata Pθ = Pθ(ϕ |=? x≤y) for both sides θ ∈ {l, r}.

x≤y). The left automaton is supposed to accept all l-safe paths for ϕ |=? x≤y, and the
right automaton all r-safe paths (up to appropriate assumptions). Entailment then holds
if and only if the languages of both cap automata are universal. Note that it remains open
whether the set of simultaneously l-safe and r-safe paths can be recognized by a single
cap automaton. The problem is that cap automata are not closed under intersection
(proof omitted).

The left and right automaton always have the same states, transitions, and initial
states. When testing for ϕ |=? x≤y the only initial state is (x, y). A state (u, s) of the
left automaton is made final if there is an upper bound u≤f(u1, . . . , un) in ϕ, which
proves that the actual path is l-safe. The descend rule can also be applied in that case.
The safety check then continues in some state (ui, s

′) and extends the actual path by
i. It can chose s′ = while ignoring the right hand side, or if s is also a variable
descend simultaneously on the right hand side. There are three rules that prove that the
actual path and all its extensions are l-safe: bot, top, and reflexivity. Finally there is a
single rule that adds P-edges to the left automaton. The rules for the right automaton
are symmetric.

When drawing the constructed left and right automata (Fig. 3 and 4), we always
share the states and transitions for reasons of economy. Different elements of the two
automata carry extra annotations. Final states of the left (right) automaton are put into
a left (right) double circle. If a state is final for both automata then it is drawn within a
complete double circle. We annotate P-edges of the left automaton by l and of the right
automaton with r.



x y y x1

l, r AA

PP

PP

P∗P∗x≤f(y) ∧ f(x)≤y |=? x≤y

Fig. 3. Automata construction for Example 7. Entailment holds.

x y y z u all
1,2 1,2 1,2

l
1,2 O

O O

O O O O

O O O O O O O

AA

PA PA

A∗A∗ A∗A∗A∗A∗ A∗A∗x≤f(y, y) ∧ f(z, z)≤y ∧ f(u, u)≤z ∧ u=> |=? x≤y

Fig. 4. Automata construction for Example 10. Entailment holds.

We first illustrate the automata construction for the unary Example 7, recalled in
Fig. 3. The alphabet of both automata is the singleton {1}. The relevant states are
{(x, y), (y, x)}; all others are either unreachable or do not lead to a final state. The
constraints x≤f(y) and f(x)≤y let both cap automata descend simultaneously by the

transition (x, y)
1
−→ (y, x) and turn (x, y) into a final state of both automata. There

are P-edges (y, x) (x, y) for both cap automata. Note that we ignore the symmet-
ric P-edges (x, y) (y, x) in the picture since they don’t contribute to the respective
languages.

Fig. 3 also contains the class trees for both cap automata but in an overlaid fashion.
The languages of both cap automata are universal due to their P-edges. Given that our
construction is sound (see Sec. 7) this proves entailment.

We now consider the more complex binary Example 10 in Fig. 4 where the alphabet
is {1, 2}. The constraint f(u, u)≤z permits to descend from (y, z) while ignoring the

variable y on the left hand side; this justifies the transition (y, z)
1,2
−→ ( , u). Since

the left hand side is ignored, the state (y, z) is only put to the final states of the right

automaton. The top rule can be applied to u=>; hence there are transitions ( , u)
1,2
−→

all where ( , u) and all are universal states according to the all rule. Finally, there is
a P-edge (y, z) (x, y) for the left cap automaton. We again ignore the symmetric
P-edge (x, y) (y, z) since it does not contribute to the language. The languages of
both automata are again universal, in case of the left automaton because of a P-edge.

Theorem 13 (Reduction). NSSE for a signature {⊥, f,>} can be reduced in polyno-
mial time to the universality problem of cap automata over the alphabet {1, . . . , arf}.
This holds equally for finite or possibly infinite trees.

The automata construction is proven sound in Sec. 7 and complete in Sec. 8.



7 Soundness

In this section, we prove the soundness of the automata construction. The proof is non-
trivial and requires a new argument compared to [15]. This argument (see the proof of
Proposition 20) is based on Lemma 3 from the introductory Sec. 2.

Proposition 14 (Soundness). For all ϕ, variables x, y, and sides θ ∈ {l, r} it holds
that all paths accepted by Pθ(ϕ |=

? x≤y) are θ-safe for ϕ |=? x≤y.

We only consider the left side θ = l. We proceed in two steps: we first treat accepted
words in class A (Proposition 17) and second in class P (Proposition 20). For both
steps, we have to give meaning to the transitions of the constructed finite automata. For
variables x, and paths π ∈ {1, . . . , arf}∗, we define path terms π(x) recursively such
that we can interpret path constraints of the form x≤π(y) and π(y)≤x.

ε(x) =def x and iπ(x) =def f(>, . . . , π(x)
︸︷︷︸

i-th position

, . . . ,>)

Lemma 15 (Semantics of transitions). For all constraints ϕ, variables x, y, u, v, to-
kens s, s′ ∈ Vϕ ∪ {x, y, }, and words π ∈ {1, . . . , arf}∗:

if Pl(ϕ |=
? x≤y) ` (u, s)

π
−→ (v, s′) then ϕ |= u≤π(v).

Proof. This can be shown by induction on paths π. Note that the considered transitions
are built by the descend rule exclusively.

Lemma 16 (Path constraints and safety). If α |= x≤π(u) then all proper prefixes of
π are l-safe for α |=? x≤y.

Proof. Let π′ be a proper prefix of π. Every solution α |= x≤π(u) satisfies either
α(x)(π′) =Σ f or there exists a path ν < π′ with α(x)(ν) =Σ⊥; thus all π′ are l-safe
for α |=? x≤y.

Proposition 17 (Soundness for class A). For all ϕ, variables x, y it holds that all
paths π with class A accepted by Pl(ϕ |=

? x≤y) are l-safe for ϕ |=? x≤y.

Proof. We have to consider all recognizing transitions of the constructed finite automa-
ton. For illustration, we treat the case where π is accepted in a state to which the final
states rule applies, i.e. π is recognized by a transition of the following form:

Pl(ϕ |=
? x≤y) ` (x, y)

π
−→ (u, s)

i
−→ (u′, s′).

Lemma 15 yields ϕ |= x≤πi(u′). Thus π is l-safe for ϕ |=? x≤y by Lemma 16.

We now approach the soundness of P-edges. It mainly relies on Lemma 18 in com-
bination with Lemma 3 from the introduction.



x y z x1 1

l CA

CA

CP

C∗P∗f(x)≤z ∧ z≤f(z) ∧ f(z)≤y |=? x≤y

Fig. 5. Entailment holds even though the language of the left cap automaton is empty.

Lemma 18 (Safety and word equations). Let π 6= ε be a path, u, v variables, and
α |= u≤π(v). All words π′ with π′ ∈ pr(ππ′) are l-safe for α |=? u≤v.

Proof. We distinguish two cases depending on whether π′ belongs to Dα(v) or not.

a. Case π′ ∈ Dα(v). It follows in this case from α |= u≤π(v), that α |=

∃v′(u≤ππ′(v′)). By Lemma 16 all proper prefixes of ππ′ are l-safe for α |=? u≤v.
Thus π′ has this property since π′ is a prefix of ππ′ and π 6= ε by assumption.

b. Case π′ 6∈ Dα(v). Let π′′ be the maximal prefix of π′ in Dα(v). Hence, α(v)(π′′) ∈
{⊥,>}. First we assume the case α(v)(π′′) =Σ > which implies that all paths
σ with π′′ ≤ σ, in particular π′, are l-safe. Second we assume the left case
α(v)(π′′) =Σ ⊥. Since α |= u≤π(v), there exists a path π′′′ with π′′′ ≤ ππ′

such that α(u)(π′′′) =Σ⊥. Both together, π′′′ ≤ ππ′ and the assumption π′ ≤ ππ′

show that the paths π′′′ and π′ are comparable: if π′ ≥ π′′′ then π′ is l-safe ac-
cording to the definition of l-safe. Otherwise, π′ < π′′′ holds and α(u)(π′) =Σ f

implies π′ to be l-safe.

Lemma 19 (Composing safety). If α |= x≤π(u), α |= π(v)≤y, and π′ is l-safe for
α |=? u≤v then ππ′ is l-safe for α |=? x≤y.

Proposition 20 (Soundness for class P). For all ϕ and variables x, y, all paths of
class P accepted by Pl(ϕ |=

? x≤y) are l-safe for ϕ |=? x≤y.

Proof. A path ν of class P can only be recognized by using a P-edge. Thus, there exists
words µ, µ′, π such that ν = πµ′, µ′ ∈ pr(µ∗) and for some u, v ∈ Vϕ ∪ {x, y} and
s ∈ Vϕ ∪ {x, y, }:

Pl(ϕ |=
? x≤y) ` (x, y)

π
−→ (u, v)

µ
−→ (v, s) (u, v)

Lemma 15 yields ϕ |= x≤π(u), ϕ |= π(v)≤y, and ϕ |= u≤µ(v). We fix an arbitrary
solution α |= ϕ and show that ν is l-safe for α |= x≤y. Note that µ 6= ε since ν

would belong to class A otherwise. We can thus apply Lemma 3 on word equations
to our assumption µ′ ∈ pr(µ∗) to derive µ′ ∈ pr(µµ′). This verifies the assumptions
of Lemma 18 which shows that µ′ is l-safe for α |=? u≤v. Finally, the composition
Lemma 19 show that πµ′ is l-safe for α |=? x≤y as required.



reflexivity ϕ ` x≤x if x ∈ Vϕ

transitivity ϕ ` x≤z if ϕ ` x≤y and ϕ ` y≤z

decomp. ϕ ` xi≤yi if 1≤i≤n, ϕ ` x≤y, f(x1, . . . , xn)≤x ∧ y≤f(y1, . . . , yn) in ϕ

Table 2. Syntactic support.

closure 1a f(x1, . . . xn)≤y in ϕ if f(x1, . . . xn)≤x in ϕ and ϕ ` x≤y

closure 1b y≤f(x1, . . . xn) in ϕ if x≤f(x1, . . . xn) in ϕ and ϕ ` y≤x

closure 2a f(y1, . . . yn)≤x in ϕ if f(x1, . . . xn)≤x in ϕ and for all 1 ≤ i ≤ n : ϕ ` yi≤xi

closure 2b x≤f(y1, . . . yn) in ϕ if x≤f(x1, . . . xn) in ϕ and for all 1 ≤ i ≤ n : ϕ ` xi≤yi

Table 3. Closure rules.

8 Completeness

In this section, we state the completeness of the automata construction. Its proof is non-
trivial but can be obtained as a straightforward extension of the completeness proof in
[15].

We first note that completeness depends on additional assumptions. For instance,
entailment holds in Fig. 5 even though the corresponding left cap automaton does not
accept any word. The problem is that the constraint on the left f(x)≤z ∧ z≤f(z)
entails x≤z which has to be derived by decomposition at before hand. Otherwise, it
will not be taken into account by the automaton construction. The closure under these
rules can also be used for satisfiability checking and can be imposed in polynomial time
w.l.o.g.

We define the notion of syntactic support ϕ ` x≤y in Table 2 (rather than admit-
ting inequations x≤y on the left hand side of entailment judgments). The definition is
based on three standard rules expressing reflexivity, transitivity, and the decomposi-
tion property. We then call a constraint ϕ closed if it satisfies all closure rules in Table
3. The constraint in Fig. 5 is not closed. Its closure contains x≤f(z) in addition.

Proposition 21 (Completeness). Let ϕ be a closed constraint, x, y variables and θ ∈
{l, r} a side. If ϕ ∧ x≤y is satisfiable for finite (resp. infinite) trees. Then Pθ(ϕ |=

?

x≤y) accepts all paths that are θ-safe for ϕ |=? x≤y.

The proof of Proposition 21 covers the rest of this section. By symmetry, it is suf-
ficient to treat the case θ = l. We prove it by contradiction. Let ϕ be closed con-
straint with x, y ∈ Vϕ such that ϕ ∧ x≤y is satisfiable, and ν a minimal path in
A∗Σ \ Pθ(ϕ |=

? x≤y). We prove that ν is not l-safe, i.e. there exists a variable assign-
ment α satisfying:

α |= ϕ ∧ x(ν) 6=Σf ∧
∧

ν′≤ν

x(ν ′) 6=Σ⊥ ∧
∧

ν′≤ν

y(ν′) 6=Σ>.



ϕ ` x≤ε(y) if ϕ ` x≤y

ϕ ` ε(y)≤y if ϕ ` x≤y

ϕ ` x≤πi(y) if ϕ ` x≤π(z), z≤f(z1, . . . zi . . . , zn) in ϕ, ϕ ` zi≤y

ϕ ` πi(x)≤y if ϕ ` π(z)≤y, f(z1, . . . zi . . . , zn)≤z in ϕ, ϕ ` x≤zi

Table 4. Additional Syntactic Support.

a. ϕ in sat(ϕ, ν)

b. for all qz
π ∈ W(ϕ, ν) : qz

π≤f(qz
π1, . . . , qz

πn) ∧ f(qz
π1, . . . , qz

πn)≤qz
π in sat(ϕ, ν) if π < ν

c. qy
ν≤f(qy

ν1, . . . , qy
νn) ∧ f(qy

ν1, . . . , qy
νn)≤qy

ν in sat(ϕ, ν)

d. qx
ν=> in sat(ϕ, ν)

e. for all qz
π ∈ W(ϕ, ν), u ∈ Vϕ, i ∈ AΣ : qz

π≤i[u ] in sat(ϕ, ν) if ϕ ` z≤πi(u)

f . for all qz
π ∈ W(ϕ, ν), u ∈ Vϕ, i ∈ AΣ : i[ qz

π ]≤u in sat(ϕ, ν) if ϕ ` z≤iπ(u)

g. for all qz
oπ, qz′

o′π∈W(ϕ, ν), i∈AΣ : qz
oπ≤i[ qz′

o′π ] in sat(ϕ, ν) if ∃v.ϕ ` z≤o(v), ϕ`o′i(v)≤z′

Table 5. Saturation sat(ϕ, ν) of a constraint ϕ at path ν.

Every solution of ϕ ∧ x(ν) =Σ> ∧ y(ν) =Σ f has this property. It remains to show
that such a solution exists. We will define a constraint sat(ϕ, ν) in Definition 23 that is
satisfaction equivalent to ϕ ∧ x(ν) =Σ> ∧ y(ν) =Σf and prove that it is satisfiable.

The definition of sat(ϕ, ν) requires an additional notion of syntactic support given
in Table 4. Furthermore, we write x≤i[ y ] as a shortcut for x≤f(y1, . . . , yn) where
y1, . . . , yn are fresh variables except for yi = y.

Definition 22. We call a set D ⊆ {1, ..., n}∗ domain closed if D is prefixed-closed and
satisfies the following property for all π ∈ {1, ..., n}∗: if i, j ∈ {1, ..., n} and πi ∈ D

then πj ∈ D. The domain closure dc(D) is the least domain closed set containing D.

Definition 23 (Saturation). Let ϕ be a constraint over Σ = {⊥, f,>} which contains
variables x, y. Let ν ∈ A∗Σ where AΣ = {1, . . . , arf}.

For every z ∈ {x, y} and π ∈ dc({ν1, . . . , νn}) let qz
π be a fresh variable and

W(ϕ, ν) the collection of these fresh variables. The saturation sat(ϕ, ν) of ϕ at path ν

is the constraint of minimal size satisfying properties a.–g. of Table 5.

Lemma 24. If ϕ is closed, ϕ ∧ x≤y is satisfiable (over finite resp. possible infinite
trees), and ν is the minimal word in A∗Σ \ L(Pl(ϕ |=

? x≤y)) then the saturation
sat(ϕ, ν) is satisfiable.

Proof. We have to prove that the saturation sat(ϕ, ν) satisfiable. First note that sat(ϕ, ν)
is closed. We omit the proof for lack of space. We will exploit the fact that a closed
constraint is satisfiable if and only if it does not contain any clash according to Table



label clash 1 x=> ∧ y=⊥ in ϕ and ϕ ` x≤y

label clash 2 x=> ∧ x≤f(x1, . . . , xn) in ϕ

label clash 3 x=⊥ ∧ f(x1, . . . , xn)≤x in ϕ

cycle clash x1=xn+1 and forall i ≤ n : xi≤f(..., xi+1, ...) ∧ f(..., xi+1, ...)≤xi in ϕ

Table 6. Clashes: the cycle clash has to be omitted in the case of infinite trees

6. Beside of the usual label clashes, there is a cycle clash expressing the finiteness of
trees, which has to be removed in the case of infinite trees.

For illustration, we elaborate one of the more interesting cases of the proof of clash-
freeness. Assume that there were a label clash containing qx

ν=> that was introduced
by saturation (rule d. of Table 5). Such a clash must of the form label clash1 or label
clash2. We treat the second case only. There exist w, w1, . . . , wn ∈ Vsat(ϕ,ν) such that:
qx

ν=> and qx
ν≤f(w1, . . . , wn) in sat(ϕ, ν).

We have to distinguish all possible rules of Definition 23 which may have added
qx

ν≤f(w1, . . . , wn) to sat(ϕ, ν); the candidates are b, e, and g. Rule b cannot be ap-
plied since it requires π < ν. Rule e imposes ϕ ` x≤νi(wi); thus π is l-safe which a
contradiction to our assumption ν 6∈ L(Pl(ϕ |=

? x≤y)). Finally consider rule g. This
rule requires that there is a variable v in Vϕ with: ϕ ` x≤o(v) and ϕ ` o′i(v)≤z′.

– Case z′ = y and o = o′i: We have ϕ ` x≤o(v) and ϕ ` o(v)≤y. The reflex-
ivity rule in the automaton construction yields o ∈ L(Pl) and thus ν ∈ L(Pl) - a
contradiction.

– Case z′ = y and o = o′iσ where σ 6= ε: We have ϕ ` x≤o′iσ(v) and ϕ `

o′i(v)≤y. We can identify a transition Pl ` (x, y)
o′i
−→ (s, v)

σ
−→ (v, t), where s

and t are arbitrary tokens. According to the automaton construction there is a left
P-edge which validates all paths o′i σ′ with o′i σ′ < o′i σσ′ to be in L(Pl). Since
o′i≤ν and o′iσ≤ν it holds ν ∈ L(Pl) - a contradiction.

– The remaining cases where z′ = x or o 6= o′iπ are analogous.

9 Restrictions of Constructed Automata

Constructed cap automata satisfy restrictions that we need to translate back (Sec 11).

Definition 25. We call a cap automaton P over A restricted if it is strictly epsilon free,
gap universal, strictly cap, and shuffled.

strictly epsilon free: P has a unique initial state and no ε-transition.

gap universal: For all transitions P ` q1
i
−→ q2, i ∈ A from a non-final state q1 it

holds that q2 is universal: for all π ∈ A∗ there is q3 with P ` q2
π
−→ q3.

strictly cap: If P ` q2
π
−→ q3 q1 with π 6= ε then q2 is a final state.

shuffled: If there are transitions P ` q
π
←− q0

π
−→ q′ q where P ` q0 is the

initial state and q 6= q′ then the language {π′ | ππ′ ∈ L(P)} is universal.



q0

q1 q2

x y x x

y y ally x u v

1
2

1

1

12
1,2

1,2

1

1,2

1

l, r

x≤f(y, u) ∧ f(x, v)≤y

∧ x≤f(x, u) ∧ f(y, v)≤y

}

|=? x≤y

Fig. 6. An unshuffled cap automaton (on the left) and a shuffled extension (in the middle).

We conjecture that these restrictions don’t truly restrict the universality problem of
cap automata but cannot prove this so far. Indeed, every cap automaton that is built
on top of a deterministic finite automaton can be made restricted. Again, this is not
obvious. The proof exploits that “deterministic” cap automata are always shuffled. But
unfortunately, the usual determination procedure fails for cap automata.

A cap automaton where the word 1 violates the shuffle condition is given on the
left-hand of Table 6. A shuffled extension of this automaton is displayed in the middle
of Table 6. This automaton is constructed from an entailment judgment displayed to the
right. This example illustrates that shuffling simulates the interaction between multiple
lower and upper bounds in constraints.

Proposition 26. Constructed cap automata Pθ(ϕ |=
? x≤y) are restricted.

Proof. Let Pl = Pl(ϕ |=
? x≤y) be a constructed cap automaton for the left side. Pl is

clearly strictly epsilon free, as it has a unique initial state (x, y) and no ε-transitions. To
see that it is gap universal, suppose that there is a transition from a non-final to a final
state in Pl. The second form of the descend rule is the only rule which may licence

such a transition. It thus has the form Pl ` (s, u)
i
−→ ( , v) for some u, v ∈ Vϕ, and

s ∈ Vϕ ∪ { }. The only rule which can turn ( , v) into a final state is the top rule, but
this rule turns ( , v) directly into a universal state. (The final states rule does not apply
because of the underscore on the left.)

To prove that Pl is shuffled, we assume a path π and two different states q and q′

with Pl ` q
π
←− q0

π
−→ q′ q. We unify the states q0, q, q

′ with the rules of Table 1
and get Pl ` (v, u)

π
←− (x, y)

π
−→ (u, s) (v, u) for some u, v ∈ Vϕ ∪ {x, y} and

s ∈ Vϕ ∪ {x, y, }. By construction of the automaton (Table 1), Pl ` (x, y)
π
−→ (u, u)

must also hold. By reflexivity and all, the language {π′ | ππ′ ∈ L(Pl)} is universal.
We finally prove the strict cap property. All P-edges of Pl are of the form P `

(u, s) q for some state q. The last transition in all transition sequences reaching

(u, s) must be licenced by the descend rule, and thus is of the form P ` (v, s0)
i
−→

(u, s). Now, the final states rule applies to (v, s0). Repeating this argument inductively
shows that all states leading to (v, s0) are final too.

10 Restricted Cap Set Expressions

We now formulate corresponding restrictions for cap set expressions. Thereby, we ob-
tain the restrictions needed for Theorem 1 to hold.



Definition 27. We call a cap set expression over alphabet A restricted if it is a shuffled
expression generated by the following grammar, where R1, R2, R range over regular
expressions over A:

F ::= pr(R1R
◦
2) | RA∗ | F1 ∪ F2

A cap set expression of sort F is called shuffled if all its components of the form
pr(R1R

◦
2) satisfy:

shuffle: for all word π ∈ L(R1) ∩ L(R1R2) it holds that πA∗ ⊆ L(R1).

Proposition 28. Universality of restricted cap set expressions and restricted cap au-
tomata are equivalent modulo deterministic polynomial time transformations.

Proof. It is easy to see that the cap automata that are constructed for restricted cap
expressions (proof or Proposition 12) are gap-universal, strictly cap, and shuffled. They
can be made strictly ε-free by a post-processing step (Lemma 30).

Conversely, given a restricted cap automaton P , we can express the regular part of
P by a restricted cap set expression pr(R1ε

◦) ∪ R2A
∗, because of P is gap universal.

The cap automaton P is also strictly cap, so we can translate every P-edge of P in
a restricted cap set expression pr(R1R

◦
2). All build restricted cap set expressions are

shuffled since P is shuffled.

Our next goal is to make cap automata strictly ε-free. We call a state q of a cap
automaton P normalized if q has no in-going transitions and no out-going P-edges.

Lemma 29. If a cap automaton P has a unique initial state, then this state can be
normalized (while preserving the language gap-universality, strict cap, and shuffle).

Proof. Let P be a cap automaton with one initial state q0. We construct a new automa-
ton P ′ by adding a state q′0 to P which inherits all out-going ∆-transitions and in-going
P-edges from q0. We let q′0 be the unique initial state of P ′. This state is normalized.

Lemma 30. Every cap automaton can be made strictly ε-free in polynomial time, while
preserving the language and the properties: gap-universal, strictly cap, and shuffle.

Proof. First, we eliminate ε-edges in the underlying finite automaton. This yields a cap
automaton which may have more than one initial states. W.l.o.g. we assume w.l.o.g that
this automaton consists of n independent parts where each part has exactly one initial
state. Second, we normalize all n initial states according to Lemma 29.

Third, we unify all n initial states into a single initial state. The unified initial state
inherits all P- and ∆-edges of the unified initial states. It is final if and only if one of the
previous initial states was. Since all initial states are normalized this step does neither
change the language of P , nor gap-universal, the strict cap nor the shuffle property.

11 Back Translation for Restricted Cap Automata

We now encode universality of restricted cap automata over alphabet {1, . . . , n} back
to NSSE over the signature {⊥, f,>} where arf = n. Again, our construction applies
to both finite and possibly infinite trees.



left l(q)≤f(l(q1), . . . , l(qn)) in ϕP if P ` q
i

−→ qi for all 1 ≤ i ≤ n.

right f(r(q1), . . . , r(qn))≤r(q) in ϕP if P ` q
i

−→ qi for all 1 ≤ i ≤ n

top r(q′)=> in ϕP if P ` q
i

−→ q′, q not final

P-edges l(q)≤i[ r(q2) ] in ϕP if P ` q
i

−→ q1 q2, q1 6=q2

Table 7. Back translation: the constraint ϕP of a restricted cap automaton P .

x≤f(y) |=? x≤y x y y1 p q1

l
l(p)≤f(l(q))

∧ f(r(q))≤r(p)
∧ l(p)≤f(r(p))






|=? l(p)≤r(p)

Fig. 7. A judgment, its pair of cap automata, and the back translation of the left cap automaton.

Definition 31. Given a restricted cap automaton we assume two fresh variables l(q)
and r(q) for each state P ` q. The judgment J(P) of a restricted cap automaton P with
initial state P ` q0 is ϕP |=

? l(q0)≤r(q0) where ϕP is the least constraint with the
properties in Table 7.

The judgment J(P) is defined such that P recognizes exactly the set of l-safe words
for J(P) whereas the set of r-safe words for J(P) is A∗.

Proposition 32 (Correctness). Every complete and restricted cap automaton P with
initial state P ` q0 over alphabet A satisfies:

L(P) = L(Pl(J(P)) and A∗ = L(Pr(J(P)).

Proof. 1. The language L(Pr(J(P))) is universal: Since P is complete such that the
right rule implies for all words π ∈ A∗ that there exists a state P ` q satisfy-
ing ϕP |= π(r(q))≤r(q0). Thus, Pr(J(P)) ` (l(q0), r(q0))

π
−→ ( , l(q)) by the

second case of the descend rule, i.e. π is accepted by Pr(J(P)).
2. We omit the proof for L(P) ⊆ L(Pl(J(P))) which only requires the completeness

of P and the strictly cap property.
3. The remaining inclusion L(Pl(J(P))) ⊆ L(P) is most interesting. We start with

an auxiliary claim: If P provides transitions

Pl(J(P) ` (l(q0), s0)
π
−→ (l(qn), sn)

i
−→ (l(q), s)

then there exist transitions P ` q0
π
−→ qn. This claim can be proved as fol-

lows: All transitions must be licensed by a constraint in ϕP which is of the form
l(qi)≤f(. . . , l(qi+1), . . .) where 1 ≤ i ≤ n. Such constraints can only be created
by the left rule. There thus exist transitions P ` q0

π
−→ qn such P ` qi for all

0 ≤ i < n. We can infer P ` qn as required.
We now come back to the main proof. Suppose π ∈ L(Pl(J(P))). There are three
kinds of transitions by which π can be recognized.



(a) We first consider transitions using the reflexivity rule to recognize π. These
contain a transition sequence of the following form for some prefix π′ ≤ π:

Pl(J(P)) ` (l(q0), r(q0))
π′

−→ (r(qn), r(qn))

Either π′ = π or this sequence can be continued to recognize π in the state all.
The first continuation step is by the reflexivity rule itself and all subsequent
steps are due to the all rule.
Note that n ≥ 1. We first consider the descendants on the left hand side, which
starts from state l(r0) and continues over l(ln−1) to r(qm). The last step must
be induced by a constraint in ϕP that is contributed by the P-edges rule. This
and the preceding claim yield the existence of the following transitions for
some state q 6= qn:

P ` q0
π′

−→ q qn

We next consider the descendants on the right hand side. They must be induced
by constraints in ϕP that are inherited form the following transition sequence:

P ` q0
π′

−→ qn

Now we can apply that P is shuffled which shows that the language {π′′ |
π′π′′ ∈ L(P)} is universal (since q 6= qn)). Thus, π ∈ L(P) as required.

(b) Second, we consider transitions using the top rule. These contain a part of the
following form for some prefix π′ ≤ π and such that r(qn)=> in ϕP .

Pl(J(P)) ` (l(q0), r(q0))
π′

−→ (sn, r(qn))

Again, either π′ = π or this sequence can be continued to recognize π in the
state all. The first continuation step is by the top rule itself and all subsequent
steps are due to the all rule.
The above transitions of Pl(J(P)) are induced by the following transition se-
quence in P where qn−1 is not final:

P ` q0
π′

−→ qn

The gap universal property which holds for P by assumption yields that {π′′ |

P ` qn
π′′

−→ qn} is universal. Thus, π ∈ L(P).

(c) Third, we consider the last case where the class of π is A in Pl(J(P)). The
recognizing transition has to apply the rule for final states:

Pl(J(P)) ` (l(q0), r(q0))
π
−→ (l(qn), sn))

i
−→ (θ(q), p(π))

All transitions except the last one must be contributed by the left rule. The P-
edges can only apply at the end. In this case however, we can freely exchange



the last transition by another using the left rule as well. Given this, we can
apply our initial claim which yields:

P ` q0
π
−→ qn

Thus, we have shown that π ∈ L(P) for this case too.
(d) Finally, we have to consider transitions that recognize π through P-edges of
Pl(J(P)). Here we have transitions where π is a prefix of π1π

k
2 for some k ≥ 0:

Pl(J(P)) ` (l(q0), r(q0))
π1−→ (l(qi), r(qi))

π2−→ (r(qn), sn) (l(qi), r(qi))

The P-edges rule in the construction of Pl requires qn = qi. The automaton P
thus has the following transitions for some state q:

P ` q0
π1−→ qi

π2−→ q qi

This transition and the strictly cap property allows P to recognize all prefixes
of π1π

k
2 for all k ≥ 0, i.e. π ∈ L(P).

For illustration, we reconstruct an entailment judgment for the cap automaton
Pl(x≤f(y) |=? x≤y) given in Table 7. Before we start we rename the states of

Pl(x≤f(y) |=? x≤y) to p and q. We translate the edge p
1
−→ q to the constraint

l(p)≤f(l(q)) ∧ f(r(q))≤r(p) (rule left and right of Table 7). The rule P-edges maps
the P-edge q p to the constraint l(p)≤f(r(p)). If we now construct the left automa-
ton of the computed constraint, we get the original automaton back.

Lemma 33. Let P be a restricted cap automaton with initial state P ` q. The con-
structed constraint ϕP is then closed and ϕP ∧ l(q)≤r(q) is satisfiable over finite and
infinite trees.

Theorem 34 (Back translation). Universality of restricted cap automata over the al-
phabet {1, . . . , arf} can be reduced in polynomial time to NSSE with signature
{⊥, f,>} (both over finite or possibly infinite trees).

Proof. LetP be complete and restricted cap automaton. Universality ofL(P) is equiva-
lent to universality of both languages: L(Pl(J(P))) and L(Pr(J(P))) (Proposition 32).
Since ϕP is closed and clash-free (Lemma 33), the latter is equivalent to that NSSE
holds for the judgment J(P) (Theorem 13).

12 Equivalence of Variants of NSSE

We prove Corollary 2 which states that all variants of NSSE over the signature
{⊥, f,>} are equivalent if the arity of f is at least 2. Given the characterization of
NSSE in Theorem 1 it remains to prove a corresponding result for restricted cap au-
tomata:

Proposition 35. The universality problems of restricted cap automata over the alpha-
bet {1, . . . , n} are equivalent for all n ≥ 2 modulo polynomial time transformations.



Proof. We first show how to extend to alphabet. Consider a restricted cap automaton P
and an alphabet A = {1, . . . , n−1}. We construct another restricted cap automaton P ′

with an alphabet A′ = {1, . . . , n} in linear time. The cap automaton P ′ is identical to
P up to the addition

P ′ ` q0
1,...,n
−−−→ q1

1,...,n
−−−→ q1

n
−→ q2

1,...,n
−−−→ q2

where q0 is the initial state of P and P ′ and q1, q2 are two fresh states. This construction
imposes:

L(P ′) = { πσ | π ∈ L(P), and σ ∈ n(1, . . . , n)∗ }.

We now consider alphabet restriction. Let P be a restricted cap automaton with alpha-
bet A = {1, . . . , n2} where n2 ≥ 3. We can assume w.l.o.g that A is of that form.
Otherwise we can increase A by the previous construction until this form is reached.

We next construct a restricted cap automaton P ′ with alphabet A′ = {1, . . . , n} in
polynomial time such that L(P) is universal iff L(P ′) is universal. We encode a letter
of A in two letters of A′ to the base n via the standard encoding d : A→ A′ ×A′:

d(i) = ( d1(i) , d2(i) ) =

(⌊
i

n

⌋

, i mod n

)

.

The cap automaton P ′ has two states q and q′ for every state q of P . The states q and q′

are final in P ′ if q is final in P , i.e.

P ′ ` q1 and P ′ ` q′1 if P ′ ` q1.

The cap automaton P and P ′ share the same initial state and the same P-edges. We
define the transitions of P ′ by

P ′ ` q1
d1(i)
−−−→ q′1

d2(i)
−−−→ q2 if P ` q1

i
−→ q2.

We can show by induction that the word i1 . . . im is in L(P) iff the words
d1(1) d2(1) . . . d1(m − 1) d2(m − 1) d1(m) and d1(1) d2(1) . . . d1(m) d2(m) are in
L(P ′).

Conclusion and Future Work

We have characterized NSSE equivalently by using regular expressions and word equa-
tions. This explains why NSSE is so difficult to solve and links NSSE to the area of
string unification where powerful proof methods are available. Given that NSSE is
equivalent to universality of restricted cap set expressions, one cannot expect to solve
NSSE without treating word equations.

We have also shown that all variants of NSSE with a single non-constant function
symbol are equivalent modulo polynomial time transformations. One might also want
to extend the presented characterization to richer signatures. For instance, it should be
possible to treat NSSE with a contra-variant function symbol. But how to deal with
more than one non-constant function symbol is much less obvious. We finally note that
cap automata seem to be related to tree automata with equality tests (tuple reduction
automata).



Acknowledgements. We would like to thank Zhendong Su, Klaus Schulz, Jean-Marc
Talbot, Sophie Tison, and Ralf Treinen for discussions and comments on early versions.

References

1. R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on Program-
ming Languages and Systems, 15(4):575–631, September 1993.

2. F. Baader and K. Schulz. Unification in the union of disjoint equational theories: Combining
decision procedures. In Journal of Symbolic Computation, volume 21, pages 211–243, 1996.

3. V. Durnev. Unsolvability of positive ∀∃3-theory of free groups. In Sibirsky mathematichesky
jurnal, volume 36(5), pages 1067–1080, 1995. In Russian, also exists in English translation.

4. J. Eifrig, S. Smith, and V. Trifonow. Sound polymorphic type inference for objects. In ACM
Conference on Object-Oriented Programming: Systems, Languages, and Applications, 1995.

5. J. Eifrig, S. Smith, and V. Trifonow. Type inference for recursively constrained types and its
application to object-oriented programming. Elec. Notes in Theor. Comp. Science, 1, 1995.

6. Y. Fuh and P. Mishra. Type inference with subtypes. Theo. Comp. Science, 73, 1990.
7. F. Henglein and J. Rehof. The complexity of subtype entailment for simple types. In Pro-

ceedings of the 12th IEEE Symposium on Logic in Computer Science, pages 362–372, 1997.
8. F. Henglein and J. Rehof. Constraint automata and the complexity of recursive subtype

entailment. In 25th Int. Conf. on Automata, Languages, & Programming, LNCS, 1998.
9. D. Kozen, J. Palsberg, and M. I. Schwartzbach. Efficient inference of partial types. Journal

of Computer and System Sciences, 49(2):306–324, 1994.
10. D. Kozen, J. Palsberg, and M. I. Schwartzbach. Efficient recursive subtyping. Mathematical

Structures in Computer Science, 5:1–13, 1995.
11. G. Makanin. The problem of solvability of equations in a free semigroup. Math. USSR

Sbornik, 32, 1977. (English translation).
12. J. C. Mitchell. Type inference with simple subtypes. The Journal of Functional Program-

ming, 1(3):245–285, July 1991.
13. M. Müller, J. Niehren, and R. Treinen. The first-order theory of ordering constraints over

feature trees. In IEEE Symposium on Logic in Computer Science, pages 432–443, 1998.
14. J. Niehren, M. Müller, and J.-M. Talbot. Entailment of atomic set constraints is PSPACE-

complete. In 14th IEEE Symposium on Logic in Computer Sience, pages 285–294, 1999.
15. J. Niehren and T. Priesnitz. Entailment of non-structural subtype constraints. In Asian

Computing Science Conference, LNCS, pages 251–265. Springer-Verlag, Berlin, 1999.
16. J. Palsberg, M. Wand, and P. O’Keefe. Type Inference with Non-structural Subtyping. For-

mal Aspects of Computing, 9:49–67, 1997.
17. W. Plandowski. Satisfiability of word equations with constants is in PSPACE. In Proc. of

the 40th IEEE Symp. on Found. of Comp. Science, pages 495–500, 1999.
18. F. Pottier. Simplifying subtyping constraints. In Proceedings of the ACM SIGPLAN Interna-

tional Conference on Functional Programming, pages 122–133, 1996.
19. F. Pottier. A framework for type inference with subtyping. In Proc. of the third ACM SIG-

PLAN International Conference on Functional Programming, pages 228–238, 1998.
20. F. Pottier. Type inference in the presence of subtyping: from theory to practice. PhD thesis,

Institut de Recherche d’Informatique et d’Automatique, 1998.
21. J. Rehof. Minimal typings in atomic subtyping. In ACM Symposium on Principles of Pro-

gramming Languages. ACM Press, 1997.
22. J. Rehof. The Complexity of Simple Subtyping Systems. PhD thesis, DIKU, Copenh., 1998.
23. K. U. Schulz. Makanin’s algorithm for word equations – two improvements and a general-

ization. In Word Equations and Related Topics, LNCS 572, pages 85–150, 1991.
24. Y. Vazhenin and B. Rozenblat. Decidability of the positive theory of a free countably gener-

ated semigroup. In Math. USSR Sbornik, volume 44, pages 109–116, 1983.


