
Dynamic Opacity for Abstract Types

Andreas Rossberg
∗

Universität des Saarlandes

rossberg@ps.uni-sb.de

ABSTRACT
Existential types are the standard formalisation of abstract
types. While this formulation is sufficient in entirely stati-
cally typed languages, it proves to be too weak for languages
enriched with forms of dynamic typing: in the presence of
operations performing type analysis, the abstraction barrier
erected by the static typing rules for existential types is no
longer impassable, because parametricity is violated. We
present a light-weight calculus for polymorphic languages
with abstract types that addresses this shortcoming. It fea-
tures a variation of existential types that retains most of
the simplicity of standard existentials. It relies on modified
scoping rules and explicit coercions between the quantified
variable and its witness type.

1. INTRODUCTION
Type abstraction is an important tool for structuring pro-
grams and is a fundamental feature of most module systems.
Languages like ML [20, 16], Modula [36, 4], CLU [19] and
Ada [13] provide features for specifying abstract types, ei-
ther directly or by means of their module systems. Generally
speaking, an abstract type is declared in two parts: its sig-
nature and an implementation. The former usually allows
to declare a name for the abstract type and specifies the
operations available on values of that type, while the latter
fixes a representation type for those values and implements
the signature’s operations accordingly. The key property is
that the representation type remains private: the sole way to
create or access values of the abstract type from the outside
is by going through the operations listed in the signature.

For illustration purposes we will use (a subset of) the Stan-
dard ML module language. In SML, an abstract type’s sig-
nature can be specified by a signature declaration. Consider

∗This research is funded by the Deutsche Forschungsgemein-
schaft (DFG) as part of SFB 378: Ressourcenadaptive kog-
nitive Prozesse, Project NEP: Statisch getypte Program-
mierumgebung für nebenläufige Constraints

the common example of a complex number type:

signature COMPLEX =

sig

type complex

val mk : real * real -> complex

val real : complex -> real

val imag : complex -> real

val mul : complex * complex -> complex

end

An implementation of a corresponding abstract type is pro-
vided by a structure declaration:

structure C :> COMPLEX =

struct

type complex = real * real (* polar *)

fun mk(x,y) = (sqrt(x*x+y*y), atan2(y,x)+pi)

fun real(a,th) = a * cos th

fun imag(a,th) = a * sin th

fun mul((a1,th1), (a2,th2)) =

(a1*a2, rem(th1+th2, 2*pi))

end

An alternative implementation might use cartesian repre-
sentation for complex numbers. In any case, the abstraction
operator :> hides the representation type real * real in
the sense that to the outside, type complex is different from
real * real — or any other type, for that matter. The op-
erations exported through the signature are the only means
to create and compose complex numbers.

The advantage of the encapsulation idea implemented by
type abstraction is twofold. First, the use of type abstrac-
tion enforces loose coupling between an abstract’s type im-
plementation and any client code: client code is compelled
not to rely on internals of the representation. The imple-
mentation may thus be modified freely without breaking any
existing client code, as long as the signature (and the seman-
tics of its operations) remains the same. Even more impor-
tant is a second advantage: the type system guarantees that
values of abstract type cannot be forged by clients. Such a
guarantee is an essential prerequisite for enabling implemen-
tations to maintain invariants on their representations and
their internal state. For example, our complex implementa-
tion preserves the invariant that the argument θ (th) of the
complex number is always normalized to θ ∈ [0; 2π[. The
number of cases that must be handled in the implemen-
tation of some operations is reduced. Other examples of
abstract types might be impossible to implement correctly

at all without the ability to ensure invariants. Consider an
abstract time stamp type.

In their classic paper, Mitchell and Plotkin showed that
abstract types could be formalised naturally as existential
types [23], using the standard typing rules for existential
types as found in constructive logic (e.g. System F [9]). Re-
cent theories for ML-style module systems [29, 6] also cap-
ture type abstraction by existential quantification. We will
review the basic rules of existential types and their relation-
ship to abstract types in section 2.

1.1 Dynamic type analysis
Constructs for (dynamic) type analysis have been formu-
lated in different flavours. Examples are dynamics [1, 17],
intensional type analysis [12] and extensional polymorphism
[8]. They have in common that there is some form of type-
case expression that allows branching dependent on a type
that is determined dynamically.

Let us consider an extension of SML with typecase. In or-
der to simplify the presentation we use a very simple variant
throughout this paper. Our typecase does not bind any type
variables, but merely allows the type of an expression to be
compared to a second type:

typecase exp1 : τ1 of x : τ2 then exp2 else exp3

The intuitive semantics of this expression form is that it
evaluates to exp2[x := exp1] iff τ1 = τ2 dynamically, to exp3

otherwise. That semantics will be made more precise in sec-
tion 3. A simple example for using a typecase might be a
simplistic polymorphic string conversion function:

fun ’a toString (x : ’a) =

typecase x : ’a of x’ : int

then Int.toString x’

else typecase x : ’a of x’ : real

then Real.toString x’

else typecase x : ’a of x’ : bool

then Bool.toString x’

else "_"

By applying this function to some arbitrary value v the poly-
morhic type variable ’a will be instantiated to a concrete
(dynamic) type τ , the type of v. The function will properly
dispatch on that type and delegate the conversion task to a
suitable library function, if available.

Now, the interesting question is, how does typecase interact
with type abstraction? What happens, if we try to evaluate
the following expression:

typecase C.mk(0.0, 1.0) : C.complex

of p : real * real

then print("theta = " ^ Real.toString(#2 p))

else raise CouldntAccessRepresentation

Or even worse:

typecase (1.0, 1001.0*pi) : real * real

of z : C.complex

then z

else raise CouldntAccessRepresentation

It is obvious that in both cases the else branch should be
chosen. Or is it? Unfortunately, this is not the answer the

standard model of abstract types using existential quantifi-
cation will give! The reasons will become appearent in sec-
tion 3.1. In fact, it is well-known that existential abstraction
can be broken in the presence of primitives for type anal-
ysis, because the presence of the latter causes loss of the
parametricity property [33, 28, 2] its encapsulation power
relies on. Weirich demonstrated that in a non-parametric
setting arbitrary values of existential type can be cast back
and forth to and from their actual representation type [35].
While such a cast is still type-safe in the sense of not vi-
olating soundness, it clearly undermines any of the pre-
viously mentioned additional guarantees the type system
should make about abstract types — the first expression
above is coupled to internals of the complex representation,
while the second even breaks its θ-invariant. Because type
abstraction is no longer sufficient to ensure encapsulation,
it is practically rendered useless.

1.2 Requirements
How can the conflict be solved? A simple possibility is to for-
bid analysis of abstract types altogether. That approach has
been suggested by Harper and Morrisett, who curtly propose
using the kind system to distinguish between analyzable and
non-analyzable types [12]. However, this not only represents
a considerable complication of the type theory (besides sub-
kinding, kind polymorphism is probably required to regain
a useful level of flexibility for higher-order types), it also is
too restrictive. For example, it would disallow us to extend
the string conversion function to handle complex numbers,
by rendering the following code illegal:

fun ’a toString (x : ’a) =

typecase x : ’a of x’ : C.complex then

Real.toString(real x’) ^

(if imag x’ >= 0.0 then "+" else "-") ^

"i" ^ Real.toString(abs(imag x’))

else ...

Similarly, in a language with type dynamic, it became im-
possible to inject values with abstract type into dynamic —
or more precisely, to project them out again. Hence, such a
solution might seriously impair the usefulness of type anal-
ysis as well as the applicability of type abstraction.

This paper thus aims to define a simple formal semantics for
type abstraction that is fully compatible with type analysis.
In short, we seek a semantics in which the interplay between
both features has the following characteristics:

1. Dynamic Opacity: an abstract type cannot be identi-
fied with any other type through dynamic analysis.

2. Full Reflexivity: every type can be inspected dynami-
cally.

Dynamic opacity basically says that the key property of type
abstraction ought to carry over from the static type system
to dynamic typing — abstract types need to be unaccessible
and unforgeable even by dynamic type analysis. The second
property effectively means that any type must be compara-
ble (dynamically) to any other type. We borrow the term
full reflexivity from Trifonov et.al. [34], wo introduced it in
a slightly different context to express the absence of any re-
striction on the syntactic form of types that are available for

analysis (no such restricition is necessary in the weak form
of typecase we use in this paper).

Taken together, both requirements imply that an abstract
type must be different from any other type in the language’s
universe of types. It clearly follows that type abstraction
must have some sort of generative semantics: introduction
of an abstract type dynamically generates a new type. With-
out generativity, type abstraction has no dynamic inter-
pretation! In this paper we present the light-weight λup-
calculus that features a variation of existential types that
can model type abstraction with the desired properties. Ab-
straction in that calculus relies on explicit coercions between
an abstract type and its representation and incorporates a
simple syntactic treatment of generativity.

With respect to the stated requirements it should be noted
that we solely discuss dynamic typing intended for program-
matic use, i.e. as a language feature available to the pro-
grammer in the external language. There are different ap-
plication domains for type analysis, especially in language
implementations for dealing with specialised data represen-
tations in the compilation of polymorphic functions (which
was the motivation of Harper and Morrisett’s work). Such
internal use demands for different, incompatible properties.
In particular, dynamic opacity is specifically not wanted un-
der such circumstances. We consider external and internal
use of dynamic typing as largely independent issues, so that
the latter will not be considered in this paper.

1.3 Plan
In section 2 we give a short overview of the polymorphic λ-
calculus with existential types and review how it can encode
type abstraction. In section 3 we add type analysis and in-
vestigate how it interferes with this encoding. In section 4
we introduce the λup-calculus as an alternative, state its ba-
sic properties, and discuss how it achieves dynamic opacity
and models generativity. In section 5 we look at the ex-
pressiveness of that calculus in comparison to the standard
model for existential types. We review some related work in
section 6 and conclude in section 7.

2. EXISTENTIAL TYPES
Figure 1 specifies syntax, typing rules and basic reduction
rules of λ∃, the polymorphic lambda calculus with existential
types. The typing and type well-formedness rules of the
calculus use an environment Γ which is a set of type variables
α, β, γ, . . . and type assignments x : τ such that all x are
disjoint (i.e. it contains a partial function from identifiers
to types). We write Γ, α and Γ, x : τ for disjoint extension
of environments, i.e. these notations are only considered
well-formed if α or x do not occur in Γ, respectively. We
always assume well-formedness of given environments and
contained types.

The one-step reduction relation → is the compatible [3] clo-
sure of the primitive rules given in figure 1. The many-step
reduction relation →∗ is the reflexive transitive closure of →.
We will write ≡ for syntactic equivalence of λ∃-terms and
types (modulo α-conversion), and = for convertibility with
respect to the corresponding congruence relation generated
from →.

In addition to the standard syntax and rules for plain poly-
morphic lambda calculus, the λ∃-calculus features an intro-
duction and an elimination form for existential types. An
existential type is introduced by an expression of the form
〈α = τ1, e : τ2〉.

1 It encapsulates a type τ1 and a value of
some type τ ′

2 (which usually contains occurences of τ1) into
an existential type ∃α.τ2. The type τ2, which we will call
the signature type, is obtained from τ ′

2 (the implementation
type) by replacing some or all occurences of the represen-
tation type (or witness) τ1 with the type variable α. Note
that the signature type is not determined uniquely by the
implementation and representation types alone, thus it has
to be specified explicitly. We will speak of a value of exis-
tential type as a package and call the encapsulated value e
its implementation, respectively.

In order to do anything interesting with a package, i.e. access
the encapsulated implementation, the existential quantifier
has to be eliminated. In the expression form (open 〈α, x〉 =
e1 in e2) the subexpression e1 denotes a package, whose
representation type and implementation can be referred to
by the variables α and x within e2, respectively.2

The package expression 〈α = τ1, e : τ2〉 is a binder for the
type variable α (which can occur within τ2). The expression
(open 〈α, x〉 = e1 in e2) binds x and α (within e2). Both
expression forms are subject to standard α-conversion rules
for term and type variables. Rule (Open) demands that the
type variable bound by the existential quantifier and the one
bound by open are the same. This can always be achieved
via appropriate α-renaming. Likewise, the respective reduc-
tion rule may safely assume that the type variables bound
by open and by the corresponding package are the same.

For clarity, we will sometimes use the notation (let x =
e1 in e2) as abbreviation for the expression (λx : τ1.e2) e1,
where τ1 is the type of e1. Moreover, we sometimes use for
don’t care variables.

2.1 Encoding Abstract Types
An abstract type declaration introduces a new type bundled
with a set of operations available on values of that type.
A direct encoding of abstract types via existential types is
relatively straight-forward. Let us assume that λ∃ has been
enriched with product types and real numbers. Then the
signature COMPLEX from the introduction can be represented
by the type

COMPLEX ≡ ∃γ.COMPLEX ′(γ)

where

COMPLEX ′(γ) ≡ (real × real →γ) × (γ→real) ×

(γ→real) × (γ × γ→γ)

That is, the set of operations is mapped to a tuple of appro-
priate type, and this type is existentially quantified over the
type to be hidden by the abstraction. The structure C can
be modelled as (taking the freedom to use tuple patterns as

1Another common syntax for existential introduction is
(pack τ1, e as ∃α.τ2) and variants thereof.
2Often this expression form is written as
(unpack e1 as α, x in e2).

(types) τ ::= α | τ1 → τ2 | ∀α.τ | ∃α.τ
(terms) e ::= x | λx :τ.e | e1 e2 | Λα.e | e τ |

〈α=τ1, e :τ2〉 | open 〈α, x〉 = e1 in e2

Syntax

α ∈ Γ

Γ ` α : �

Γ ` τ1 : � Γ ` τ2 : �

Γ ` τ1 → τ2 : �

Γ, α ` τ : �

Γ ` ∀α.τ : �

Γ, α ` τ : �

Γ ` ∃α.τ : �

(Id)
x :τ ∈ Γ

Γ ` x : τ
(Abs)

Γ ` τ1 : � Γ, x :τ1 ` e : τ2

Γ ` (λx :τ1.e) : τ1 → τ2

(App)
Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

(Gen)
Γ, α ` e : τ

Γ ` Λα.e : ∀α.τ
(Inst)

Γ ` e : ∀α.τ Γ ` τ ′ : �

Γ ` e τ ′ : τ [α := τ ′]

(Seal)
Γ ` τ1 : � Γ ` e : τ2[α := τ1]

Γ ` 〈α=τ1, e :τ2〉 : ∃α.τ2

(Open)
Γ ` e1 : ∃α.τ ′ Γ, α, x :τ ′ ` e2 : τ

Γ ` (open 〈α, x〉 = e1 in e2) : τ
(α /∈ FV(τ))

Typing

(λx :τ.e1) e2 → e1[x := e2]
(Λα.e) τ → e[α := τ]

open 〈α, x〉 = 〈α=τ1, e1 :τ2〉 in e2 → e2[α := τ1][x := e1]

Reduction

Figure 1: The λ∃ calculus

λ-parameters):

C ≡ 〈γ =real × real ,

(λ(x, y) : real × real . (
√

x2 + y2, arctan(y/x) + π),

λ(a, θ) : real × real . a · cos θ,

λ(a, θ) : real × real . a · sin θ,

λ((a1, θ1), (a2, θ2)) : (real × real) × (real × real) .

(a1 · a2, rem(θ1 + θ2, 2π))

) :COMPLEX ′(γ)〉

It is easy to see that the type of C will be COMPLEX
according to the typing rules of λ∃.

ML style module access does not map as directly to λ∃,
because structure components are accessed using the dot
notation, while the package has to be opened explicitly to
make its content available. For example, in SML one just
writes

val a = C.real(C.mk(0.0, 1.0))

while the λ∃-encoding requires an open expression, so that
one can access the contained type and value and to have the
abstract type properly shared:

a ≡ open 〈γ, (mk , real , ,)〉 = C in real (mk (0, 1))

However, Cardelli and Leroy have shown that there exists a
systematic translation from dot notation into plain existen-
tial types [5]. The basic idea is to insert an open expression
around the innermost expression containing all occurences
of C and replace access by references to the variables bound
by that open expression. When applied to ML structures
it is always possible to open the package directly after its
introduction. Consequently, we may refine the encoding of
ML structures such that for C it yields

open 〈γ, (mk , real , imag ,mul)〉 =

〈γ=real × real , (. . .) :COMPLEX ′(γ)〉

in p[C .complex := γ][C . := ε]

where p is the encoding of the remainder of the program.
Dot access is deleted as indicated by the substitution nota-
tion (boldly ignoring namespace issues). The declaration of
a can now simply be represented as

real (mk (0, 1))

The typing rules for open plus the standard hygiene conven-
tions for bound variables ensure that γ is distinct from any
other type variable in the same scope and thus behaves like a
“fresh” type. Moreover, they behave as fully abstract types
because in the standard λ-calculi every expression is para-
metric [27, 25] in any type variable in scope, meaning that
reduction can proceed uniformingly for all possible instanti-
ations. That is particularly true for the body e2 of an open
with respect to the variable α bound by open — its evalu-
ation will never depend on the actual representation type τ
of the package being opened, although α is substituted by τ
during reduction. That key observation establishes the close
relation between existential types and abstract types.

A polymorphic λ-calculus with existential types can encode
most aspects of the SML module system, as has been shown
by Russo in a slightly different way [30]. In general one will
need to extend it to higher-order types, though. But λ∃ is
more expressive, since it allows passing around packages,
and thus abstract types (as opposed to values of abstract
types), in a first-class manner. Several distinct types can
be ‘generated’ from the same package, because elimination
need not be coupled with introduction:

let M = 〈α= int , 0〉 in

open 〈α, x〉 = M in

open 〈β, y〉 = M in

open 〈γ, z〉 = M in

· · ·

All types α, β, γ are distinct.

3. DYNAMIC TYPE ANALYSIS
As mentioned in the introduction, we consider only a sim-
ple form of type analysis throughout this paper. It still is
general enough to demonstrate the fundamental problem.

e ::= . . . | typecase e1 : τ1 of x : τ2 then e2 else e3

(Typecase)

Γ ` e1 : τ1 Γ ` τ2 : �
Γ, x : τ2 ` e2 : τ Γ ` e3 : τ

Γ ` (typecase e1 : τ1 of x : τ2 then e2 else e3) : τ

typecase e1 : τ of x : τ then e2 else e3 → e2[x := e1]
typecase e1 : τ1 of x : τ2 then e2 else e3 → e3 (τ1 6≡ τ2)

Figure 2: A typecase extension

Figure 2 specifies the semantics of our typecase, as an ex-
tension to the λ∃-calculus.3

Note that simply adding typecase to λ∃ without modify-
ing the reduction relation breaks confluence. Consider the
following term for example:

(Λα.λx : α.typecase x :α of y : int then 1 else 0) int 9

Depending on whether the Λ or the typecase redex gets re-
duced first, reduction will terminate in 1 or 0, respectively.
Clearly, the types τ1 and τ2 in a typecase expression must be
“evaluated” in a strict manner to avoid this, i.e. all potential
type substitutions stemming from surrounding redexes must
have been performed before applying the typecase reduction
rules. For simplicity, we hence assume a deterministic call-
by-value reduction strategy in the remainder of this section.
We omit the straight-forward details of the reduction rela-
tion’s refinement.

3.1 Interaction with existentials
We have seen that the encoding of abstract types via exis-
tentials crucially relies on the parametricity property which
holds in standard λ-calculi. However, that property breaks
down in the face of operations for type analysis: if a poly-
morphic function is able to analyse its type argument it
obviously is not the case that it will evaluate independently
of any conrete instantiation. Similarly, a function that is
passed an argument of existentially quantified type might in-
spect the type encapsulated by the quantifier — the compu-
tation can be dependent on the actual representation type.
Consider for example the following function:

sneak ≡ λx : (∃α.α) . open 〈α, y〉 = x in
(typecase y : α of y′ : int then 1 else 0)

Let x1 ≡ 〈α= int , 5 :α〉 and x2 ≡ 〈α= string , ”Moo” :α〉 be
two values of appropriate existential type ∃α.α. Although
f does not even depend on its argument’s implementation,
application yields sneak x1 = 1 and sneak x2 = 0, respec-
tively. In general, sneak e will evaluate to 1 if and only if the
package e uses int as its representation type. That of course
violates the requirement for dynamic opacity formulated in
the introduction.

3The displayed rules do not preclude any redundant (i.e.
statically determined) applications of typecase. Ruling
those out is not particularly difficult but orthogonal to the
issues discussed here.

For a more realistic example recall the offending typecase
expression from section 1.1 that was incriminated to violate
the invariant of the complex representation. Expressed in
the λ∃-calculus it may look like follows (assuming existence
of a ⊥ value):

open 〈γ, (mk , real , imag ,mul)〉 = 〈γ =real × real , . . .〉 in
typecase (1, 1001π) : real × real of z : γ

then z else ⊥

But upon reduction of open the type variable γ naming the
abstract type will be substituted and reveal the actual im-
plementation type:

→ typecase (1, 1001π) : real × real of z : real × real
then z else ⊥

Both types in the typecase are now equal and the construct
returns z = (1, 1001π) from its left branch having the same
static type γ as values properly generated by the complex
implementation.

The source of the loss of dynamic abstraction clearly is the
reduction rule for open, which substitutes the type variable
representing the abstract types with its representation. Ob-
viously, the correspondence between type abstraction as a
feature for encapsulation on one side and existential quan-
tification on the other is of purely static nature. Dynam-
ically, there is no encapsulation at all performed by mere
introduction of an existential type.

The interference between existential types and type analysis
has received only little attention in prior work. Besides the
proposal by Harper and Morrisett mentioned in the intro-
duction, Abadi, Cardelli et.al. [1] suggested that dynamic
opacity can be achieved by simply replacing the type vari-
able bound by open with a “fresh” type constant during
evaluation. This amounts to changing the corresponding
reduction rule to:

open 〈α, x〉 = 〈α=τ1, e1 :τ2〉 in e2 → e2[α := t][x := e1]

where t is a fresh type constant. Obviously, the representa-
tion type could no longer be analysed transparently. Unfor-
tunately however, this modification destroys type preserva-
tion, as can easily be seen from the following example, which
is a simple η-expansion of the expression a given in section
2.1:

a′ ≡ open 〈γ, (mk , real , ,)〉 = C in (λz :γ.real z) (mk (0, 1))

This term is well-typed, but after applying the above reduc-
tion rule it becomes:

→ (λz : t.R z) (M (0, 1))

with

R ≡ λ(a, θ) :real × real . a · cos θ

M ≡ λ(x, y) :real × real . (
√

x2 + y2, arctan(y/x) + π)

which is no longer typable — there is a clash between the
abstract type t and its respective representation type real ×
real , which is the argument type of function R. Another
problem with their suggestion is that a proper formalisation
of the meta-concept of dynamic “freshness” requires intro-
ducing a notion of state.

4. THE λup-CALCULUS
We will take the suggestion by Abadi, Cardelli et al. as a
starting point for developing a sound variation of existential
types that provides dynamic opacity by implementing gen-
erativity. The calculus we present does not incorporate type
analysis by itself but is merely aimed at being “compatible”
with it. We will discuss the addition of typecase and dy-
namic opacity later on. In particular, we put no restrictions
on evaluation strategies yet.

4.1 Ideas
Looking at the approach taken by Abadi, Cardelli, et al. one
question is: how can the type clash witnessed be avoided?
Abstract type and representation type cannot be made equal
during reduction when we want to guarantee dynamic opac-
ity. The only alternative then is to insert appropriate coer-
cions at the boundaries of the abstraction that allow going
from the abstract type to its representation and vice versa.
For example, if a package of the form 〈α= int , . . .〉 is meant
to export an integer i under abstract type α, it must do so
using an explicit upward coercion, which we write as (upα i).
Likewise, if some function of type α → τ is part of the pack-
age’s signature, the implementation of this function must
perform a downward coercion (dnα x) on its parameter x
to get back its concrete value at type int . These coercions
shall only be available within the package’s implementation,
a restriction that can be enforced trivially by means of scop-
ing. Using this approach the substitution of an abstract type
variable by the package’s representation type can be avoided
in the reduction rule for open without losing type preserva-
tion.

However, since implementations now contain coercions and
those coercions refer to an abstract type variable α, how
can we avoid α going out of scope upon elimination of the
existential? There needs to be a binder, thus we also have
to modify the scoping rules for existentials. The second idea
of the λup-calculus thus is to extrude the scope of a package
upon opening it, instead of elimination. Doing so we essen-
tially have modelled generativity, because the type variable
introduced by the package will never disappear (except if
the package is discarded altogether).

4.2 The calculus
Figure 3 shows the rules of the calculus we will refer to as
λup, which implements the aforementioned ideas. Modifi-
cations relative to λ∃ have been high-lighted for easier ref-
erence. The calculus uses slightly generalised environments
Γ, recording pairs α. τ instead of plain type variables (with
pairwise disjoint α), which we call type assertions. They rep-
resent a function mapping abstract type variables to their
corresponding representation type. Type assertions are used
to type coercions. Coercions are the special function sym-
bols upα : τ → α and dnα : α → τ , where α is an abstract
type and τ the corresponding representation type. Since
the typing rule (Seal) for packages is the only place that
extends the environment with non-trivial type assertions,
coercions are only available within the implementation of
the corresponding package (note that unlike λ∃, the λup-
calculus allows an package’s type variable α to occur free in
its implementation e). All other type variables, in particular
those bound by open, are mapped to themselves in the envi-
ronment. The side conditions in the typing rules (Up) and

(Dn) thus ensure that they are not available for coercions.

Coercion functions allow an implementation to perform ap-
propriate type conversions for any value of abstract type
α that crosses the abstraction boundaries in either direc-
tion. Upward coercions can be considered markers, or con-
structors, for values of abstract type. They are eliminated
only by downward coercions, the corresponding destructors.
Consequently, the only evaluation possible with coercions is
cancellation: in an expression of the form dnα(upαe) they
cancel out each other and the expression can be reduced to
e. The standard hygiene convention for type variables —
i.e. all bound variables are pairwise disjoint — guarantees
that only coercions belonging to the same abstract type can
cancel out each other.

The use of coercions will also uniquely determine the pack-
age’s signature, so that the explicit annotation necessary in
λ∃ can be dropped. The typing rule (Seal) for packages
just adds the quantifier, no substitution is taking place. We
will see in section 5.1 that an implementation expression
can always be constructed such that it possesses the desired
signature type.

Recall the complex example. Rewritten in λup (augmented
with product types and reals) it looks as follows:

C ′ ≡ 〈γ=real × real ,

(λ(x, y) :real × real .

upγ(
√

x2 + y2, arctan(y/x) + π),

λz :γ . let (a, θ) = dnγ z in a · cos θ,

λz :γ . let (a, θ) = dnγ z in a · sin θ,

λ(z1, z2) : γ × γ .

let (a1, θ1) = dnγ z1 in

let (a2, θ2) = dnγ z2 in

upγ (a1 · a2, rem(θ1 + θ2, 2π))

) 〉

Instead of explicitely annotating the desired signature type
COMPLEX ′(γ), it is uniquely determined by the uses of γ,
upγ and dnγ in the implementation.

The crucial change that will make analysis of a package’s
representation type impossible, is that the substitution of
the bound type variable α that was present in λ∃’s reduction
rule for open expressions has simply been removed in λup.4

To obtain a valid binding structure, the reduction rule for
open incorporates the second aforementioned change: the
reduct of an open expression is again a package, retaining
the binder from the eliminated one. The same type variable
is bound, so the reduct is closed with respect to that variable
and the attached coercions. This is also reflected in the
typing rule (Open). We will discuss the implications of this
semantics in section 4.5.

4.3 Basic properties
4Effectively, type variables naming abstract types are no
longer true variables since they never get substituted. For
simplicity and closer correspondence to λ∃ we refrained from
introducing a separate notion of type names, nevertheless.

(types) τ ::= α | τ1 → τ2 | ∀α.τ | ∃α.τ
(terms) e ::= x | λx :τ.e | e1 e2 | Λα.e | e τ | 〈α=τ, e 〉 |

open 〈α, x〉 = e1 in e2 | upα e | dnα e

Syntax

α .τ ∈ Γ

Γ ` α : �

Γ ` τ1 : � Γ ` τ2 : �

Γ ` τ1 → τ2 : �

Γ, α .α ` τ : �

Γ ` ∀α.τ : �

Γ, α .α ` τ : �

Γ ` ∃α.τ : �

(Id)
x :τ ∈ Γ

Γ ` x : τ
(Abs)

Γ ` τ1 : � Γ, x :τ1 ` e : τ2

Γ ` (λx :τ1.e) : τ1 → τ2

(App)
Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

(Gen)
Γ, α .α ` e : τ

Γ ` Λα.e : ∀α.τ
(Inst)

Γ ` e : ∀α.τ Γ ` τ ′ : �

Γ ` e τ ′ : τ [α := τ ′]

(Seal)
Γ ` τ ′ : � Γ , α . τ ′ ` e : τ

Γ ` 〈α=τ ′, e〉 : ∃α.τ

(Open)
Γ ` e1 : ∃α.τ ′ Γ, α .α , x :τ ′ ` e2 : τ

Γ ` (open 〈α, x〉 = e1 in e2) : ∃α. τ

(Up)
Γ ` e : τ α . τ ∈ Γ

Γ ` upα e : α
(τ 6≡α)

(Dn)
Γ ` e : α α . τ ∈ Γ

Γ ` dnα e : τ
(τ 6≡α)

Typing

(λx :τ.e1) e2 → e1[x := e2]
(Λα.e) τ → e[α := τ]

open 〈α, x〉 = 〈α=τ, e1〉 in e2 → 〈α=τ, e2[x := e1]〉

dnα(upαe) → e

Reduction

Figure 3: The λup calculus

It is fairly standard to show that the following properties
about typing hold for λup:

Proposition (Unique Types) Whenever Γ ` e : τ and
Γ ` e : τ ′ then τ ≡ τ ′.

Proposition (Preservation) If Γ ` e : τ and e →∗ e′,
then Γ ` e′ : τ .

We define λup-values as follows:

v ::= λx :τ.e | Λα.e | 〈α=τ, v〉 | upαv

Using that definition we can state progress:

Proposition (Progress) For every expression e such that
∅ ` e : τ for some τ (i.e. e is closed and well-typed), then
either e ≡ v for some value v, or e → e′ for some expression
e′.

Note that if v is closed w.r.t. type variables, then v 6≡ upαv′.

Taken together, Preservation and Progress establish type
soundness for λup. Reduction properties are not difficult to
show either:

Proposition (Termination) There are no infinite reduc-
tion sequences.

Proposition (Confluence) Whenever there are expressions
e, e1, e2 such that e →∗ e1 and e →∗ e2, then their exists an
expression e′ with e1 →∗ e′ and e2 →∗ e′.

Proofs of all propositions can be found in the appendix.
As an example, here is how evaluation can proceed for the
example a′ manifesting a type clash in section 3.1:

open 〈γ, (mk , real , ,)〉 = C in (λz :γ.real z) (mk (0, 1))

= 〈γ =real × real , (λz :γ.R′ z) (M ′ (0, 1))〉

= 〈γ =real × real , (λz :γ.R′ z) (upγ(1, π/2))〉

= 〈γ =real × real , R′ (upγ(1, π/2))〉

= 〈γ =real × real , let (a, θ) = dnγ(upγ(1, π/2)) in a · cos θ〉

= 〈γ =real × real , 1 · cos(π/2)〉

= 〈γ =real × real , 0〉

with

R′ ≡ λz :γ.let (a, θ) = dnγ z in a · cos θ

M ′ ≡ λ(x, y) :real × real .upγ(
√

x2 + y2, arctan(y/x) + π)

Obviously, every intermediate expression is well-typed.

4.4 Opacity
The motivation for the λup-calculus was to achieve dynamic
opacity for abstract types. To make opacity observable it
is necessary to again leave the parametric setting by con-
sidering the addition of a type analsyis construct like the
one from figure 2. As before, we have to stick to a more
rigid evaluation strategy such as call-by-value to preserve
confluence in the presence of typecase.

To see how opacity is still preserved in a non-parametric
modification of λup we take a look at the evaluation of func-
tion sneak from section 3.1. Consider:

sneak 〈α= int ,upα5〉
= open 〈α, y〉 = 〈α= int , upα5〉 in

typecase y : α of y′ : int then 1 else 0
= 〈α= int , (typecase upα5 : α of y′ : int then 1 else 0)〉
= 〈α= int , 0〉

Although the argument uses representation type int , evalu-
ation delivers a result of 0.

Likewise, the λup-encoding of complex numbers is safe with
respect to dynamic typing, as the reduction of the expression
representing the second offending example from section 1.1

shows:

open 〈γ, . . .〉 = 〈γ =real × real , . . .〉 in
typecase (1, 1001π) : real × real of z : γ then z else ⊥

→ 〈γ =real × real ,
typecase (1, 1001π) : real × real of z : γ then z else ⊥〉

→ 〈γ =real × real ,⊥〉

The variable z keeps its abstract type even after opening
the package and the attempt to violate the abstraction via
typecase remains unsuccessful.

Types can be abstracted multiple times, introducing a dis-
tinct type with every abstraction. Consider:

open 〈α, x〉 = 〈α= int , λx : int .upαx〉 in

open 〈β, y〉 = 〈β=α, λx :α.upβx〉 in

open 〈γ, z〉 = 〈γ =α, λx :α.upγx〉 in

· · ·

Values of types int , α, β, γ will have the following shapes,
respectively:

i : int

upαi : α

upβ(upαi) : β

upγ(upαi) : γ

Abstractions can only be cancelled in the opposite order
they have been constructed — there is no way of going from
a value of type β back to int without coercing to α first.
Both coercions can only be performed by the corresponding
implementations. Neither can β be coerced to γ without
either abstraction providing suitable operations that allow
going through α. So as one would expect, abstractions nest
properly on the type and term level.

4.5 Generativity
The reduction rule for open expressions may appear a bit
odd. Strictly speaking, open is no longer an elimination form
in the modified version. It should rather be interpreted as
providing a manual form of scope extrusion, shifting exis-
tential binders outwards. Each evaluated open expression
generates a new package, which can never be eliminated if
the expression is not discarded altogether (i.e. not relevant
to the result of the computation). All packages actually ac-
cessed to compute the result accumulate in it. Consider the
following expression, for example:

let p = 〈α=τ1, e1〉 in

let q = 〈α=τ2, e2〉 in

open 〈α, x〉 = p in

open 〈β, y〉 = q in

open 〈γ, z〉 = p in

e

Its normal form is the value

〈α=τ1, 〈β=τ2, 〈γ =τ1, v〉〉〉

where v is the normal form of e. Every open expression
“generates” a new type name. In particular, opening the
same package multiple times generates multiple types, which
also shows up in the result type:

∃α.∃β.∃γ.τ

with τ being the respective type of e (and v). Thus the
calculus captures pretty nicely the generative aspect of type
abstraction: abstraction dynamically creates new types, and
this generativity is modelled syntactically. However, there
are some serious implications we will discuss in the next
section.

5. EXPRESSIVENESS
The λup-calculus features modifications like the requirement
for coercions and the change in typing of open expressions
that make it non-obvious how its expressiveness relates to
the original λ∃-calculus. In this section we show that the
former does not pose a restriction, while the latter obviously
does.

5.1 A-posteriori abstraction
At first it may look as if the modified form of existential for-
mation featured in λup is less flexible than the original one,
because the injected expression e is required to have the
right type τ a priori, instead of being sealed a posteriori.
However, we can systematically construct suitable expres-
sions e : τ from any given expression e′ : τ [τ ′/α]. This is
achieved by the transformation rules shown in figure 4.

The transformation is defined inductively over the signature
type τ . It recursively constructs an η/open-expansion of
the original term e′, replacing all subterms e′′ of type α
with (upαe′′). Function types require an inverse treatment
of the argument, where e′′ : α is replaced by (dnαe′′) instead.
The following lemma captures the central invariants of the
translation algorithm:

Lemma (A-posteriori Abstraction Invariants) Let e
be a λup-expression and Γ ≡ Γ′, α . τ ′ an evironment with
τ ′ 6≡ α.

1. If Γ ` e : τ [α := τ ′], then Γ ` de : τeα.τ ′ : τ .

2. If Γ ` e : τ , then Γ ` be : τcα.τ ′ : τ [α := τ ′].

Using the transformation we can encode any abstraction in
λup that can be written in the original λ∃-calculus. We can
hence view the λ∃ form of existential formation as syntactic
sugar in λup. As an example, it is straight-forward to verify
that the λ∃-encoding C of structure C exactly transforms to
the λup-expression C ′ as given in section 4.2, when adding
adequate transformation rules for tuples:

de : τ1 × τ2eα.τ ′ = (de.1 : τ1eα.τ ′ , de.2 : τ2eα.τ ′)

be : τ1 × τ2cα.τ ′ = (be.1 : τ1cα.τ ′ , be.2 : τ2cα.τ ′)

The transformation procedure is similar in spirit to Leroy’s
boxing/unboxing transformations [14]. The similarity may
suggest that it also imposes potential operational overhead
similar to the one observed for unboxing operations [21]. In
particular, it looks like it implies (at least partial) copying
of all data structures that cross abstraction boundaries in
either direction. However, it is important to note that coer-
cions are required solely for typing reasons and are identity
functions operationally. A type erasing translation of type
analysis [7] could reasonably erase all abstractions and their

〈α=τ ′, e :τ〉 ; 〈α=τ ′, de : τeα.τ ′〉 where

de : αeα.τ ′ = upαe
de : α′eα.τ ′ = e (α′ 6≡ α)
de : τ1 → τ2eα.τ ′ = λx :τ1.de(bx : τ1cα.τ ′) : τ2eα.τ ′

de : ∀α′.τeα.τ ′ = Λα′.de α′ : τeα.τ ′

de : ∃α′.τeα.τ ′ = open 〈α′, x〉 = e in dx : τeα.τ ′

be : αcα.τ ′ = dnαe
be : α′cα.τ ′ = e (α′ 6≡ α)
be : τ1 → τ2cα.τ ′ = λx :τ1[α :=τ ′].be(dx : τ1eα.τ ′) : τ2cα.τ ′

be : ∀α′.τcα.τ ′ = Λα′.be α′ : τcα.τ ′

be : ∃α′.τcα.τ ′ = open 〈α′, x〉 = e in bx : τcα.τ ′

Figure 4: Transforming a-posteriori abstraction

corresponding coercions. In the erased form an expression
generated by the abstraction transformation could thus be
collapsed back into its original shape (by a specialised pro-
cess of partial evaluation). Or, if erasure is performed di-
rectly on the sugared version, then the transformation need
not be applied at all. In both cases any runtime overhead
for coercions is completely avoided.

5.2 Incompleteness
The possibility of a-posteriori abstraction shows that any
package expression of λ∃ can be represented in λup — as
long as its original implementation is representable. A valid
question to ask now is whether λup is complete in the sense
that every λ∃-term has a representation in it. It is easy to
see that this is not the case, due to the modified typing of
open expressions. For example, the following terms have the
same type τ = (∃α.α × int) → int in λ∃, but not so in λup:

f1 ≡ λx : (∃α.α × int) . open 〈α, (x1, x2)〉 = x in x2

f2 ≡ λx : (∃α.α × int) . 3

Consequently, λup does not allow us to formulate a function
that can be applied to both these terms. Put more generally,
we find that the λup-calculus is less expressive with respect
to λ-abstraction than λ∃.

The expressiveness gap becomes even more obvious when we
add a fixpoint operator. With recursion, λ∃ enables us to
perform an arbitrary, dynamic number of abstractions:

f3 ≡ µf :τ.λx : (∃α.α × int) . open 〈α, (x1, x2)〉 = x in

if x2 = 0 then 0 else f 〈α′ =α, (x1, x2 − 1) :α′ × int〉

Obviously, there is no way at all to express such a function in
λup with recursion, because every used abstract type shows
up as an existential quantifier in the result type und hence
has to be statically determined.

5.3 A complete fragment
But not all is lost. By closer inspection of both calculi we
find that the typing of a term in λup will differ from the
typing of a similar term in λ∃ only by the potential presence
of additional existential quantifiers, introduced by the mod-
ified open rule. As a consequence, we can specify inductive

translation rules that are able to translate a significant sub-
set of the language. Moreover, we can isolate an interesting
enough sublanguage of λ∃ that is fully representable in λup.

Figure 5 defines the respective translation. It recursively
inserts appropriate open expressions whenever it is neces-
sary to shift additional existential quantifiers generated by
inner λup-open terms. Packages are translated using the
a-posteriori abstraction transformation. Generated quanti-
fiers are marked like ∃̂ to distinguish them from other quan-
tifiers in the rules. We write sequences of such quantifiers as
∃̂~α. If the translation succeeds, it does so with a well-typed
λup-term, and it succeeds only for well-typed λ∃-terms:

Proposition (Correctness of Translation) Let e be a
λ∃-term. If Γ ` e ; e′ : τ ′ for some well-formed λup-
environment Γ and λup-type τ ′, then

1. Γ `λ∃
e : τ ′

2. Γ `λup e′ : τ ′

Here, τ is obtained from τ by erasing all generated quan-
tifiers ∃̂α and Γ is obtained from Γ by simplifying all type
assertions α.α to plainly α and replacing assumptions x : τ
by x : τ .

There are two points where the translation may fail: at func-
tion applications, if the type of the argument’s translation
contains inner quantifiers at negative positions (as is the
case with the examples from the previous section), or at
package formation, when the implementation type contains
negative quantifiers. Based on this observation, we can de-
fine a fragment of λ∃ where both these cases cannot occur,
by stratification of the language into small types and terms,
that may not introduce existentials, and large ones, where
use of existentials is allowed, but which cannot be used as
function arguments.

More precisely, define the syntax of small and large types as
follows:

τS ::= α | τS
1 → τS

2 | ∀α.τS

τL ::= α | τS
1 → τL

1 | ∀α.τL | ∃α.τL

Small and large terms are defined correspondingly:

eS ::= xS | λxS :τS .eS | eS
1 eS

2 | Λα.eS | eS τS

eL ::= xp | λxS :τS .eL | eL
1 eS

2 | Λα.eL | eL τS |

〈α=τS
1 , eL :τL

2 〉 | open 〈α, xp〉 = eL
1 in eL

2

The metavariable p stands for either S or L. As an addi-
tional restriction, we need a side condition to rule (Open)
enforcing that size is respected (we define S < L, L 6< S):

Γ ` e1 : ∃α.τ ′p1 Γ, α, xp2 :τ ′p1 ` e2 : τ

Γ ` (open 〈α, xp2〉 = e1 in e2) : τ

(

α /∈ FV(τ)
p1 ≤ p2

)

Note that the language of large terms is restricted to first
order in the sense that the domain of the function space
is small. Similarly, type variables can only be instantiated
with small types. The small types are contained in the large,
likewise for terms. We say an environment Γ is small (large)
if it only contains small (large) types.

The restriction to small arguments precludes any of the ex-
amples from the previous section: the generativity of a func-
tion’s body cannot depend on its argument. Thus the num-
ber of abstract types generated during reduction is statically
determined for all terms. As a consequence, we can state
the following result about the translation with respect to
the λ∃-fragment of large terms:

Proposition (Completeness of Large Translation) Let
e be a λ∃-term with Γ `λ∃

e : τ . If e and Γ are large, then

Γ′ ` e ; e′ : τ ′ for some Γ′, τ ′, e′ such that Γ = Γ′ and
τ = τ ′.

In the large sublanguage of λ∃, existentials, and thus ab-
stract types, are degraded to second-class citizens. The
stratification between small and large is very similar to the
design of the ML language: small types and terms corre-
spond to the core language, while large types and terms mir-
ror signatures and modules. Like the fragment, ML does not
support first-class abstract types. Because universal poly-
morphism still is first-class in the fragment, it should be
possible to encode the module and type abstraction machin-
ery of Standard ML (which is first-order), along the lines of
Russo [30], provided a generalisation to higher-order types.

Developing a theory that can cope with higher-order mod-
ules or even first-class use of existential packages is an in-
teresting direction for future research.

6. RELATED WORK
Although being simple in spirit, to our knowledge there is no
previous work that isolates the aspect of type generativity
for abstraction and formalises it in a calculus. While module
theories usually account for generativity as well, they do
so solely on the static level of typing rules. In fact, all of
the most influential theories for ML modules [15, 18, 29, 6]
are not full calculi, but merely type systems, that side-step
the issue of reduction. The presence of ad-hoc typing rules
encompassing type abstraction precludes a type-preserving
evaluation strategy — for similar reasons as the problematic
suggestion by Abadi et.al. discussed in section 3.1.

One notable exception is Sewell, who uses generativity for
modelling certain aspects of type abstraction [32]. How-
ever, in his system generated abstract types are recorded
as manifestly equal to their representation in the global en-
vironment, so that opacity is not properly maintained dy-
namically. Moreoever, his system requires a lot of additional
type annotations on terms.

Glew presented a calculus for generating new tagged types
at runtime and dispatching on them [10]. His system is more
complex than ours in order to allow hierarchical types being
generated, but it is not fully reflexive since untagged types
cannot be analysed.

The work most relevant to ours is by Grossman et al. on
proof techniques for abstraction [11]. They present a cal-
culus that uses annotated brackets as special syntax for
marking abstraction boundaries during reduction. These
are somewhat similar to coercions in λup, but are not di-
rected and not restricted to individual values of abstract
type. Moreoever, nested brackets may be collapsed, al-

Γ(x) = τ ′

Γ ` x ; x : τ ′

Γ, x :τ1 ` e ; e′ : τ ′

2

Γ ` λx :τ1.e ; λx :τ1.e′ : τ1 → τ ′

2

Γ ` e1 ; e′1 : ∃̂~α1.τ2 → τ ′

1 Γ ` e2 ; e′2 : ∃̂~α2.τ2

Γ ` e1 e2 ; (open 〈~α1, x1〉 = e′1 in

open 〈~α2, x2〉 = e′2 in x1 x2) : ∃̂~α1.∃̂~α2.τ
′

1

Γ, α . α ` e ; e′ : τ ′

Γ ` Λα.e ; Λα.e′ : ∀α.τ ′

Γ ` e ; e′ : ∃̂~α.∀α.τ ′

2 Γ ` τ1 : �

Γ ` e τ1 ; (open 〈~α, x〉 = e′ in x τ1) : ∃̂~α.τ ′

2[α :=τ1]

Γ ` e ; e′ : τ ′

2[α :=τ1] Γ ` τ1 : �

Γ ` 〈α=τ1, e :τ ′

2〉 ; 〈α=τ1, de
′ : τ ′

2eα.τ1
〉 : ∃α.τ ′

2

Γ ` e1 ; e′1 : ∃̂~α.∃α.τ ′

1 Γ, α . α, x :τ ′

1 ` e2 ; e′2 : τ ′

2

Γ ` (open 〈α, x〉 = e1 in e2) ;

(open 〈~α, x′〉 = e′1 in open 〈α, x〉 = x′ in e′2) : ∃̂~α.∃̂α.τ ′

2

where for ~α = α1, . . . , αn:

open 〈~α, x〉 = e1 in e2 :≡ open 〈α1, x1〉 = e1 in

open 〈α2, x2〉 = x1 in

. . .

open 〈αn, x〉 = xn−1 in e2

Figure 5: Translation of λ∃ into λup

though that does not seem to be essential to their system.
However, their calculus requires identifying a fixed set of ab-
stractions statically, since technically, the reduction system
has to be extended for each occuring abstraction. Further-
more, the definition of type equivalence is complicated by
its dependence on an additional type environment. This
also complicates the operational semantics, because the en-
vironment has to be maintained dynamically to cope with
abstraction scoping. Their calculus hence seems less suited
as a simple operational model for type abstraction.

7. CONCLUSION
The standard encoding of abstract types via existential types
relies on parametricity of polymorphism. If parametricity is
not given, due to constructs for type analysis, the encoding
is inappropriate because it cannot warrant encapsulation.
We might go as far as saying that the similarities between
type abstraction in the strong sense of encapsulation on one
hand, and existential abstraction on the other are purely su-
perficial. In non-parametric settings it is necessary to cap-
ture generativity to achieve dynamic opacity and thereby
encapsulation.

We presented a calculus for abstract types with syntactic
treatment of dynamic generativity. It uses a variation of

standard existentials that builds on coercions and seems ex-
pressive enough to encode SML’s first-order modules. One
obstacle for adoption of dynamic opacity along the lines of
λup into a module theory is the calculus’ reliance on ex-
plicit existential elimination. Module languages and calculi
usually do not require this, but keep existential elimination
implicit [18]. For a module calculus it is desirable to have
projection built in instead of going through a translation to
insert the necessary scope extrusion constructs. It is com-
pelling to automize extrusion and use a different approach
to model generativity by adopting an expression form like
the ν-binder present in π-calculus [31] or the ν-calculus [26].
While these bind term names, though, we needed to bind
type names. Such an “uppercase ν” raises interesting issues
about typing and reduction.

Developing proof techniques to show representation inde-
pendence or extensionality [22, 24] of λup-existentials looks
like an interesting challenge. There appears to be very lit-
tle work on proof techniques for operational equivalence in
non-parametric extensions of the λ-calculus. It is not obvi-
ous how techniques like logical relations [22, 27, 25] can be
applied in such a setting.

Finally, it should be noted that, despite being insufficient for
modelling encapsulation, standard existential types are still
useful in a language with type analysis. In particular, they
provide a straight-forward formulation of dynamics. Both
kinds of existentials are thus complementary.

8. REFERENCES
[1] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and

Didier Rémy. Dynamic typing in polymorphic
languages. Journal of Functional Programming,
5(1):111–130, January 1995.

[2] E.S. Bainbridge, Peter Freyd, Andre Scedrov, and
Philip Scott. Functorial polymorphism. Theoretical
Computer Science, 70(1):35–64, 1989. Corrigendum in
71(3):431, 1990.

[3] Henk Barendregt. Lambda calculi with types. In
Samson Abramsky, Dov Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, chapter 2, pages 117–309. Oxford
University Press, 1992.

[4] Luca Cardelli, James Donahue, Lucille Glassman,
Mick Jordan, Bill Kalsow, and Greg Nelson.
(Modula-3) language definition. In Greg Nelson,
editor, System Programming with Modula-3, chapter 2,
pages 11–66. Prentice Hall, 1991.

[5] Luca Cardelli and Xavier Leroy. Abstract types and
the dot notation. In IFIP TC2 working conference on
programming concepts and methods, pages 479–504.
North-Holland, March 1990.

[6] Karl Crary, Robert Harper, and Derek Dreyer. A type
system for higher-order modules. In 29th Symposium
on Principles of Programming Languages, Portland,
USA, January 2002.

[7] Karl Crary, Stephanie Weirich, and Greg Morisett.
Intensional polymorphism in type-erasure semantics.

In International Conference on Functional
Programming, Baltimore, USA, September 1998.

[8] Catherine Dubois, François Rouaix, and Pierre Weis.
Extensional polymorphism. In 22nd Symposium on
Principles of Programming Languages, San Francisco,
USA, January 1995.

[9] Jean-Yves Girard. Interprétation Fonctionnelle et

Élimination des Coupures de l’Arithmétique d’Ordre
Supérieur. PhD thesis, June 1972.

[10] Neal Glew. Type dispatch for named hierarchical
types. In International Conference on Functional
Programming, Paris, France, October 1999.

[11] Dan Grossman, Greg Morrisett, and Steve Zdancewic.
Syntactic type abstraction. Transactions on
Programming Languages and Systems,
22(6):1037–1080, November 2000.

[12] Robert Harper and Greg Morrisett. Compiling
polymorphism using intensional type analysis. In 22nd
Symposium on Principles of Programming Languages,
pages 130–141, San Francisco, USA, January 1995.

[13] Ada reference manual. Technical Report ISO/IEC
8652:1995(E), International Organization for
Standardization, December 1994.

[14] Xavier Leroy. Unboxed objects and polymorphic
typing. In 19th Symposium on Principles of
Programming Languages, pages 177–188, New York,
USA, January 1992. ACM Press.

[15] Xavier Leroy. Manifest types, modules, and separate
compilation. In 21st Symposium on Principles of
Programming Languages, pages 109–122, Portland,
USA, January 1994. ACM.

[16] Xavier Leroy. The Objective Caml System. INRIA,
http://pauillac.inria.fr/ocaml/htmlman/, July
2001.

[17] Xavier Leroy and Michel Mauny. Dynamics in ML.
Journal of Functional Programming, 3(4):431–463,
1993.

[18] Mark Lillibridge. Translucent Sums: A Foundation for
Higher-Order Module Systems. PhD thesis, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, USA, May 1997.

[19] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot
Moss, Craig Schaffert, Robert Scheifler, and Alan
Snyder. CLU reference manual. Technical Report
MIT/LCS/TR-225, 1979.

[20] Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. Definition of Standard ML (Revised). The
MIT Press, 1997.

[21] Yasuhiko Minamide and Jacque Garrigue. In the
runtime complexity of type-directed unboxing. In
International Conference on Functional Programming,
Baltimore, USA, September 1998.

[22] John Mitchell. On the equivalence of data
representations. In Vladimir Lifschitz, editor,
Artificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of John McCarthy,
pages 305–330. Academic Press, 1991.

[23] John Mitchell and Gordon Plotkin. Abstract types
have existential type. Transactions on Programming
Languages and Systems, 10(3):470–502, 1988.
Preliminary version appeared in 12th Symposium on
Principles of Programming Languages, 1985.

[24] Andrew Pitts. Existential types: Logical relations and
operational equivalence. In 25th International
Colloquium on Automata, Languages and
Programming, volume 1443 of Lecture Notes in
Computer Science, pages 309–326. Springer-Verlag,
Berlin, 1998.

[25] Andrew Pitts. Parametric polymorphism and
operational equivalence. Mathematical Structures in
Computer Science, 10:321–359, 2000.

[26] Andrew Pitts and Ian Stark. On the observable
properties of higher order functions that dynamically
create local names. In Paul Hudak, editor, Workshop
on State in Programming Languages, pages 31–45,
Copenhagen, Denmark, 1993.

[27] Gordon Plotkin and Mart́ın Abadi. A logic for
parametric polymorphism. In Marc Beeze and
Jan Friso Groote, editors, Typed Lambda Calculus and
Applications, volume 664 of Lecture Notes in
Computer Science, pages 361–375. Springer-Verlag,
Berlin, 1993.

[28] John Reynolds. Types, abstraction and parametric
polymorphism. In R.E.A. Mason, editor, Information
Processing, pages 513–523, Amsterdam, 1983. North
Holland.

[29] Claudio Russo. Types for Modules. Dissertation,
University of Edinburgh, 1998.

[30] Claudio Russo. Non-dependent types for Standard ML
modules. In International Conference on Principles
and Practice of Declarative Programming, Paris,
France, September 1999.

[31] Davide Sangiorgi and David Walker. The π-calculus: a
Theory of Mobile Processes. Cambridge University
Press, December 2001.

[32] Peter Sewell. Modules, abstract types, and distributed
versioning. In 28th Symposium on Principles of
Programming Languages, London, UK, January 2001.

[33] Christopher Strachey. Fundamental concepts in
programming languages. In Lecture Notes,
International Summer School in Computer
Programming. Copenhagen, August 1967. Reprinted
in: Higher-Order and Symbolic Computation,
13(1–2):11–49, April 2000.

[34] Valery Trifonov, Bratin Saha, and Zhong Shao. Fully
reflexive intensional type analysis. In Fifth
International Conference on Functional Programming,
pages 82–93, Montreal, Canada, September 2000.

[35] Stephanie Weirich. Type-safe cast. In International
Conference on Functional Programming, pages 58–67,
Montreal, Canada, September 2000.

[36] Niklaus Wirth. Programming in MODULA-2.
Springer-Verlag, 3rd edition, 1985.

APPENDIX
A. PROOFS
A.1 Typing
We omit well-formedness of types. Adding corresponding
proofs is straight-forward. The following basic lemmata are
easy to show along the lines of [3]:

Lemma 1 (Weakening). If Γ ` e : τ and Γ′ ⊇ Γ is
another basis, then Γ′ ` e : τ .

Proof. By induction on the derivation of e : τ .

Lemma 2 (Inversion).

1. If Γ ` x : τ , then x :τ ∈ Γ(x).

2. If Γ ` upα e : τ , then τ ≡ α and there is a type τ ′ such
that Γ ` e : τ ′ and α . τ ′ ∈ Γ.

3. If Γ ` dnα : τ , then Γ ` e : α and α . τ ∈ Γ.

4. If Γ ` (λx : τ ′.e) : τ , then there is a type τ ′′ such that
τ ≡ τ ′→τ ′′ and Γ, x :τ ′ ` e : τ ′′.

5. If Γ ` e1 e2 : τ , then there is a type τ ′ such that Γ `
e1 : τ ′→τ and Γ ` e2 : τ ′.

6. If Γ ` Λα.e : τ , then there is a type τ ′ such that τ ≡
∀α.τ ′ and Γ, α . α ` e : τ ′.

7. If Γ ` e τ ′ : τ , then there is a type τ ′′ such that Γ ` e :
∀α.τ ′′ and τ ≡ τ ′′[α := τ ′].

8. If Γ ` 〈α = τ ′, e〉 : τ , then there is a type τ ′′ such that
τ ≡ ∃α.τ ′′ and Γ, α . τ ′ ` e : τ ′′.

9. If Γ ` (open 〈α, x〉 = e1 in e2) : τ , then there are types
τ ′, τ ′′ such that τ ≡ ∃α.τ ′′ and Γ ` e1 : ∃α.τ ′ and
Γ, α . α, x :τ ′ ` e2 : τ ′′.

Proof. By induction on the length of the corresponding
derivation.

Lemma 3 (Substitution). If Γ, x : τ ′ ` e : τ and Γ `
e′ : τ ′, then Γ ` e[e′/x] : τ .

Proof. By induction on the generation of Γ, x : τ ′ ` e :
τ .

Lemma 4 (Specialisation).

1. If Γ, α . α ` τ : � and Γ ` τ ′ : �, then Γ, α . τ ′ ` τ : �.

2. If Γ, α . α ` e : τ and Γ ` τ ′ : �, then Γ, α . τ ′ ` e : τ .

Proof.

1. By induction on the generation of Γ, α . α ` τ : �.

2. By induction on the generation of Γ, α.α ` e : τ , using
1. The side conditions of the typing rules (Up) and
(Dn) ensure that e does not contain any occurences of
upα or dnα.

Proposition 5 (Preservation). If Γ ` e : τ and e →∗

e′, then Γ ` e′ : τ .

Proof. By induction on the generation of →∗ using lem-
mas 1–3. We treat the cases of basic one-step reduction not
occuring in plain λ-calculus:

• Consider e ≡ (open 〈α, x〉 = 〈α = τ ′, e1〉 in e2) and
e′ ≡ 〈α = τ ′, e2[e1/x]〉. From the inversion lemma it
follows that τ ≡ ∃α.τ2 and Γ ` 〈α= τ ′, e1〉 : ∃α.τ1 and
Γ, α.α, x :τ1 ` e2 : τ2 (*) for some τ1, τ2. From a second
application of the inversion lemma it follows that Γ, α.
τ ′ ` e1 : τ1. By the specialisation lemma judgement (*)
can be specialised to Γ, α . τ ′, x :τ1 ` e2 : τ2. Therefore
by the substitution lemma Γ, α . τ ′ ` e2[e1/x] : τ2.
With rule (Ex) we can derive Γ ` 〈α=τ ′, e2[e1/x]〉 : τ .

• Consider e ≡ dnα(upαe1) and e′ ≡ e1. From the inver-
sion lemma it follows that α.τ ∈ Γ and Γ ` upα e1 : α.
Repeated application of the same lemma then yields
Γ ` e1 : τ .

Proposition 6 (Unique Types). Whenever Γ ` e : τ
and Γ ` e : τ ′ then τ ≡ τ ′.

Proof. By induction on the derivation.

A.2 Progress
The following lemma describes the shape of λup-values at
particular types:

Lemma 7 (Canonical forms). For any value v:

1. If Γ ` v : α then v ≡ upα v′ (and α.τ ∈ Γ with τ 6≡ α).

2. If Γ ` v : τ1 → τ2 then v ≡ λx :τ1.e.

3. If Γ ` v : ∀α.τ then v ≡ Λα.e.

4. If Γ ` v : ∃α.τ then v ≡ 〈α=τ ′, v′〉.

Proof. By inspection of the cases for v.

Package values are binders for type variables. Hence, in
order to prove progress by induction, a slightly stronger in-
duction hypothesis is necessary:

Proposition 8 (Progress). Let Γ be an environment
containing only type assertions (i.e. it is of the form {α1 .
τ1, · · · , αn . τn}). Then for any expression e such that Γ `
e : τ , either e ≡ v for some value v, or e → e′ for some
expression e′.

Proof. By easy induction on the typing derivations. We
treat the most interesting cases:

• Consider e ≡ 〈α = τ, e′〉: If e′ is a value the state-
ment follows immediately. Otherwise by induction us-
ing Γ′ = Γ, α . τ there is an applicable reduction rule
e′ → e′′ and thus e → 〈α=τ, e′′〉.

• Consider e ≡ (dnα e′): Inversion implies Γ ` e′ : α.
If e′ is a value then from the canonical forms lemma
it follows that e′ ≡ (upα e′′) and the coercions can be
cancelled, i.e. e → e′′. Otherwise there is a reduction
e′ → e′′ by induction and thus e → dnα e′′.

Corollary 9 (Progress for closed expressions).
If ∅ ` e : τ , then either e ≡ v for some value v, or there is
an expression e′ such that e → e′.

A.3 Termination
We prove termination (strong normalization) for λup by sim-
ulating reduction in the second-order lambda calculus λ2,
which is terminating [3]. We use the translation shown in
figure 6, which is a variation of the standard encoding of ex-
istential types into polymorphic lambda calculus. Note that
we need to insert additional type annotations, thus trans-
lation of expressions has to be defined on type derivations
instead of plain terms. We assume there are distinct and
unique identifiers upα and dnα for every type variable α.
Occurences of β and f are meant to denote fresh variables.
Moreover, we take the liberty to abbreviate some environ-
ments in the derivations.

If type translation is extended to environments as follows:

[[Γ]] = {x : [[τ]] | x :τ ∈ Γ} ∪ {α | α . τ ∈ Γ}

then the following lemma holds:

Lemma 10 (Well-definedness of Translation). If
Γ `λup e : τ , then [[Γ]] `λ2 [[Γ ` e : τ]] : [[τ]].

I.e. type and term translation are consistent and translation
yields well-typed λ2 terms.

Proof. By induction on the derivation Γ ` e : τ .

The translation is consistent w.r.t. reduction and yields re-
dexes as translation of redexes. It is thus suitable as a basis
for simulation:

Lemma 11 (Simulation). Let e1, e2 be λup terms with
Γ `λup e1 : τ and e1 →λup e2 (by preservation this implies
Γ `λup e2 : τ).

1. [[Γ ` e1 : τ]] 6≡ [[Γ ` e2 : τ]].

2. There exists a reduction sequence [[Γ ` e1 : τ]] →∗

λ∃

[[Γ ` e2 : τ]].

Proof. Simultanously by inspection of the cases for →λup .

Proposition 12 (Termination). There are no infinite
reduction sequences for any given λup term.

Proof. By lemma 10 every λup term e can be translated
into a well-formed λ2 term e′. By lemma 11 any reduction
of e can be simulated in e′ and the simulation gives an upper
bound to the number of reduction steps for e. There are no
infinite reduction sequences in λ2, hence all reductions in
λup are finite as well.

A.4 Confluence
The reduction rules for λup are mostly orthogonal to plain λ
and do not perform substitution on type variables. Conflu-
ence can hence be proved by extending in a straight-forward
way the proof by Barendregt [3] for the (untyped) λ-calculus
(which also works for the typed λ-calculus).

Proposition 13 (Confluence). Whenever there are
expressions e, e1, e2 such that e →∗ e1 and e →∗ e2, then
their exists an expression e′ with e1 →∗ e′ and e2 →∗ e′.

Proof. Extend the definition of underlined terms in [3]
to open expressions and cancelling coercions. After adapting
the definition of underlined reduction and underline con-
traction appropriately, the remainder of the proof of the
Church-Rosser property (and thus confluence) goes through
with only minor adjustments. We refer to [3] for details of
the proof.

A.5 A-posteriori abstraction
The abstraction transformation (figure 4) is well-formed:

Lemma 14 (A-posteriori Abstraction Invariants).
Let e be a λup-expression and Γ ≡ Γ′, α . τ ′ an evironment
with τ ′ 6≡ α.

1. If Γ ` e : τ [α := τ ′], then Γ ` de : τeα.τ ′ : τ .

2. If Γ ` e : τ , then Γ ` be : τcα.τ ′ : τ [α := τ ′].

Proof. By simultanous induction on the structure of τ .
We only show two of the more interesting cases:

• Consider τ ≡ α:

1. The premise simplifies to Γ ` e : τ ′. Using rule
(Up) we can derive Γ ` upα e : α, which asserts
the conjecture.

2. Likewise.

• Consider τ ≡ τ1 → τ2:

1. The premise becomes Γ ` e : τ1[α := τ ′] → τ2[α :=
τ ′]. Lemma 1 allows weakening to Γ, x : τ1 ` e :
τ1[α := τ ′] → τ2[α := τ ′] (*) for some x /∈ Dom(Γ).
For this x we trivially have Γ, x : τ1 ` x : τ1, which
gives Γ, x : τ1 ` bx : τ1cα.τ ′ : τ1[α := τ ′] by in-
duction. Together with judgement (*) rule (App)
enables us to derive Γ, x : τ1 ` e(bx : τ1cα.τ ′) :
τ2[α := τ ′]. Again by induction it follows that
Γ, x : τ1 ` de(bx : τ1cα.τ ′) : τ2eα.τ ′ : τ2. A fi-
nal derivation using rule (Abs) yields Γ ` (λx :

[[α]] ≡ α

[[τ1 → τ2]] ≡ [[τ1]] → [[τ2]]

[[∀α.τ]] ≡ ∀α.[[τ]]

[[∃α.τ]] ≡ ∀β.(Eα
β [[τ]] → β)

[[x :τ ∈ Γ

Γ ` x : τ

]]

≡ x

[[Γ ` e : τ α . τ ∈ Γ

Γ ` upαe : α

]]

≡ upα[[Γ ` e : τ]]

[[Γ ` e : α α . τ ∈ Γ

Γ ` dnαe : τ

]]

≡ dnα[[Γ ` e : α]]

[[Γ ` τ1 : � Γ′ ` e : τ2

Γ ` (λx :τ1.e) : τ1 → τ2

]]

≡ λx : [[τ1]].[[Γ
′ ` e : τ2]]

[[Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

]]

≡ [[Γ ` e1 : τ ′→τ]] [[Γ ` e2 : τ ′]]

[[Γ′ ` τ : �

Γ ` (Λα.e) : ∀α.τ

]]

≡ Λα.[[Γ′ ` e : τ]]

[[Γ ` e : ∀α.τ Γ ` τ ′ : �

Γ ` e τ ′ : τ [α := τ ′]

]]

≡ [[Γ ` e : ∀α.τ]] [[τ ′]]

[[Γ ` τ ′ : � Γ′ ` e : τ

Γ ` 〈α=τ ′, e〉 : ∃α.τ

]]

≡ Λβ.λf :Eα
β [[τ]].

f [[τ ′]] ((Λα.λupα : [[τ ′]]→α.λdnα :α→ [[τ ′]].[[Γ′ ` e : τ]]) [[τ ′]] id [[τ ′]] id [[τ ′]])
[[Γ ` e1 : ∃α.τ ′ Γ′ ` e2 : τ

Γ ` (open 〈α, x〉 = e1 in e2) : ∃α.τ

]]

≡ Λβ.[[Γ ` e1 : ∃α.τ]] (Eα
β [[τ]] → β) (Λα.λx : [[τ ′]].λf :Eα

β [[τ]].f α [[Γ′ ` e2 : τ]])

where Eα
β (τ) ≡ ∀α.(τ → β)

idτ ≡ λx :τ.x

Figure 6: Translation of λup into λ2

τ1.de(bx : τ1cα.τ ′) : τ2eα.τ ′) : τ1 → τ2, the conjec-
ture.

2. Similarly.

A.6 Translation
The generative projection of a λ∃-type τ is defined as follows:

τ∃ =

{

{τ} if τ small

{∃̂~α.τ ′ | τ ′ ∈ τ [∃]} otherwise

α[∃] = {α}

(τ1 → τ2)
[∃] = {τ1 → τ ′

2 | τ ′

2 ∈ τ∃

2 }

(∀α.τ)[∃] = {∀α.τ ′ | τ ′ ∈ τ∃}

(∃α.τ)[∃] = {∃α.τ ′ | τ ′ ∈ τ∃}

The inverse erasure of generated λup-types is:

α ≡ α

τ1 → τ2 ≡ τ1 → τ2

∀α.τ ≡ ∀α.τ

∃α.τ ≡ ∃α.τ

∃̂α.τ ≡ τ

Erasure can be generalised to environments, yielding λ∃-
environments:

Γ, α . τ ≡ Γ, α

Γ, x :τ ≡ Γ, x :τ

Correctness of the translation is not difficult to show:

Proposition 15 (Correctness of Translation). Let
e be a λ∃-term. If Γ ` e ; e′ : τ ′ for some well-formed λup-
environment Γ and λup-type τ ′, then

1. Γ `λ∃
e : τ ′

2. Γ `λup e′ : τ ′

Proof.

1. By easy induction on the derivation.

2. By induction on the derivation, using the a-posteriori
abstraction lemma 14 in the case of packages.

Smallness of types is invariant under substitution:

Lemma 16 (Small Type Substitution). If τ1 is a small
(large) type and τ2 is a small type, then τ1[α := τ2] is a small
(large) type.

Proof. By trivial induction on the structure of τ1.

Small terms are typed by small types in λ∃:

Lemma 17 (Small and Large Typing). If Γ `λ∃
e :

τ , and e and Γ|FV(e) are small (large), then τ is a small
(large) type.

Proof. By induction on the derivation, using lemma 16
in cases (Inst) and (Seal). Note the use of a modified
(Open) rule with an additional side condition on the size of
the term variable (see section 5.3).

Translation of small terms is the identity relation:

Lemma 18 (Small Term Translation). If Γ = Γ′ for
some λup-environment, and Γ `λ∃

e : τ , and e, τ and
Γ|FV(e) are small, then Γ′ ` e ; e : τ .

Proof. By easy induction on the derivation of Γ `λ∃
e :

τ , using lemma 17.

To prove completeness of the translation for large terms we
require the following simple lemmas on generated types:

Lemma 19 (Type Generation).

1. For all τ , τ ∈ τ∃.

2. If τ ′ ∈ τ∃ then τ ′ ≡ τ .

3. If τ1 is a small type and τ3 ∈ (τ2[α := τ1])
∃ for some

τ2, then τ3 ≡ τ ′

2[α := τ1] such that τ ′

2 ∈ τ∃

2 .

Proof. Each by easy induction on the definition of τ∃.

Translation is complete with respect to the λ∃-fragment of
large terms:

Proposition 20 (Completeness of Large Translation).
If Γ = Γ′ for some well-formed λup-environment, and Γ `λ∃

e : τ , and e and Γ are large, then Γ′ ` e ; e′ : τ ′ such that
τ ′ ∈ τ∃.

Proof. By induction on the derivation of Γ `λ∃
e : τ .

Note that by lemma 17, τ is a large type.

• case Γ `λ∃
x : τ

1. by inversion, Γ(x) = τ

2. by lemma 19.1, τ ∈ τ∃

• case Γ `λ∃
λx :τ1.e2 : τ1 → τ2

1. by inversion, Γ, x :τ1 `λ∃
e2 : τ2

2. by induction, Γ, x : τ1 ` e2 ; e2 : τ ′

2 such that
τ ′

2 ∈ τ∃

2

3. (τ1 → τ ′

2) ∈ (τ1 → τ2)
∃

• case Γ `λ∃
e1 e2 : τ1

1. by inversion, Γ `λ∃
e1 : τ2 → τ1 and Γ `λ∃

e2 : τ2

2. by induction, Γ ` e1 ; e1 : τ ′

3 such that τ ′

3 ∈ (τ2 →
τ1)

∃

3. by definition of •∃, τ ′

3 ≡ ∃̂~α.τ2 → τ ′

1 such that
τ ′

1 ∈ τ∃

1

4. by definition of large terms, e2 is small

5. by lemma 18, Γ ` e2 ; e2 : τ2

6. ∃̂~α.τ ′

1 ∈ τ∃

1

• case Γ `λ∃
Λα.e1 : ∀α.τ1

1. by inversion, Γ, α `λ∃
e1 : τ1

2. Γ, α = Γ, α . α

3. by induction, Γ, α . α ` e1 ; e1 : τ ′

1 such that
τ ′

1 ∈ τ∃

1

4. ∀α.τ ′

1 ∈ (∀α.τ1)
∃

• case Γ `λ∃
e1 τ2 : τ1[α := τ2]

1. by inversion, Γ `λ∃
e1 : ∀α.τ1

2. by induction, Γ ` e1 ; e′1 : τ ′

3 such that τ ′

3 ∈
(∀α.τ1)

∃

3. by definition of •∃, τ ′

3 ≡ ∃̂~α.∀α.τ ′

1 such that τ ′

1 ∈ τ∃

1

4. by definition of large terms, τ2 is a small type

5. by lemma 19.3, ∃̂~α.τ1[α := τ2] ∈ (τ1[α := τ2])
∃

• case Γ `λ∃
〈α=τ1, e2 :τ2〉 : ∃α.τ2

1. by inversion, Γ `λ∃
e2 : τ2[α := τ1]

2. by induction, Γ ` e2 ; e′2 : τ ′

3 such that τ ′

3 ∈
(τ2[α := τ1])

∃

3. by definition of large terms, τ1 is a small type

4. by lemma 19.3, τ ′

3 ≡ τ ′

2[α := τ1] such that τ ′

2 ∈ τ∃

2

5. by lemma 19.2, τ ′

2 ≡ τ2

6. ∃α.τ ′

2 ∈ (∃α.τ2)
∃

• case Γ `λ∃
open 〈α, x〉 = e1 in e2 : τ2

1. by inversion, Γ `λ∃
e1 : ∃α.τ1 and Γ, α, x : τ1 `λ∃

e2 : τ2

2. by induction, Γ ` e1 ; e′1 : τ ′

3 such that τ ′

3 ∈
(∃α.τ1)

∃

3. by definition of •∃, τ ′

3 ≡ ∃̂~α.∃α.τ ′

1 such that τ ′

1 ∈ τ∃

1

4. by lemma 19.2, τ1 ≡ τ ′

1

5. Γ, α, x :τ1 = Γ, α . α, x :τ ′

1

6. by induction, Γ, α . α, x : τ ′

1 ` e2 ; e′2 : τ ′

2 such
that τ ′

2 ∈ τ∃

2

7. ∃̂~α.∃̂α.τ ′

2 ∈ τ∃

2

