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Abstract

This thesis shows how constraint programming can be applied to the process-

ing of Categorial Type Logics (CTL). It presents a novel formalisation of the

parsing task for categorial grammars as a tree configuration problem, and

demonstrates how a recent proposal for structural constraints on CTL parse

trees [11] can be integrated into this framework. The resulting processing

model has been implemented using the Mozart/Oz programming environ-

ment. It appears to be a promising starting point for further research on the

application of constraint parsing to CTL and the investigation of the practical

processing complexity of CTL grammar fragments.
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Chapter 1

Introduction

Categorial Type Logics [25] are an appealing framework for the formal de-

scription of human language grammar. Unfortunately, up to the present

day, no efficient parsers exist for them. This thesis suggests constraint pro-

gramming [23, 31] as a promising technique to change this situation. More

specifically, it provides answers to the following two questions:

Question 1. How can the problem of parsing Categorial Type Logics be

formulated such that constraint programming can be applied to it?

Question 2. Given such a formulation, can we formalise and implement

constraints that efficiently prune the search space of the problem?

The first question asks for a formulation of the parsing problem of Cat-

egorial Type Logics as a constraint satisfaction problem. Previous work has

focused on chart-based approaches [15, 18] or advanced theorem proving

techniques such as proof nets [27]. Both approaches have their shortcomings:

Chart-based techniques do not scale up to the general, multimodal form of

Categorial Type Logics; proof net algorithms have exponential complexity

and are therefore useful only for the development of small grammars. This

thesis presents a novel and efficient encoding of the parsing problem of CTL

grammars into the paradigm of constraint programming, drawing from cur-

rent research on constraint parsing with tree descriptions [10] and its appli-

cation to declarative flavours of dependency grammar [8, 7]. The encoding

opens up a whole range of new techniques and tools to the developer of

realistic parsers for Categorial Type Logics.
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1 Introduction

These techniques and tools are used to positively answer the second ques-

tion: This thesis shows that a recent proposal for constraints on Categorial

Type Logics [11] based on the methodology of abstract interpretation [6] can

be formalised within the proposed framework. The resulting implementa-

tion, which is integrated into the Mozart/Oz development environment,

can serve as a “workbench” for the study of the usage of constraints for cate-

gorial grammars, and a first step towards fully-fledged parsers. The only tool

currently available for this task is Richard Moot’s Grail system [26], which

bases on proof-net algorithms that cannot avoid the exponential complexity

that comes along with the parsing problem of arbitrary CTL fragments.

The remainder of this thesis is organised as follows:

Chapter 2 will introduce categorial type logics and review previous ap-

proaches to implementing them. The focus of the exposition will be on the

issue of structural control, the management of linguistic resources.

Chapter 3 introduces constraint programming. It shows the close links

between the central implementation technique of constraint propagation and

the formal work on abstract interpretation. It also reviews the high-level ab-

stractions for constraint programming provided by the Mozart/Oz system.

Chapter 4 shows how parsing categorial grammars can be formalised as a

constraint satisfaction problem, and demonstrates the integration of structural

constraints into this formalisation by an example. The implementation of this

formal framework is discussed in chapter 5.

Finally, chapter 6 concludes with a brief discussion of what has been

achieved by this project and which questions have been left unanswered.
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Chapter 2

Categorial Type Logics

This chapter introduces Categorial Type Logics (CTL) [25], a powerful frame-

work for the description of natural language grammar. From other categorial

formalisms, CTL are distinguished by their deductive view on grammatical

composition, based on a fully developed model and proof theory. Modern

flavours of CTL offer a fine-grained control over the permitted syntactic struc-

tures. The challenge that comes along with the descriptive power of CTL is

their potential computational complexity.

The plan of this chapter is as follows: In the first section, an informal over-

view of the basics of categorial grammars is given; for a more comprehensive

presentation, the reader is referred to the introductory survey of Wood [36].

Section 2.2 introduces the Lambek calculi, a family of logical systems that

stake off the logical landscape of Categorial Type Logics in terms of their re-

source sensitivity. An example for a multimodal CTL framework [14] is given

in section 2.3. Finally, section 2.4 presents previous work on parsing CTL and

discusses the complexity issues related to it.

2.1 Categories and combinations

The foundation of Categorial Grammar (CG) was laid in the seminal of Aj-

dukiewicz [1], which draws from earlier work by Lesniewski [22], Frege,

Husserl, and Russell. Ajdukiewicz’s original goal was the formalisation of

what he called the “syntactic connexion” – the well-formedness of syntactic

structures.

3



2 Categorial Type Logics

Categories

At the heart of CG there is a distinction between atomic and complex types of

linguistic signs: Atomic categories are “complete”, complex categories “in-

complete” types in the sense that they can combine with other signs. This

distinction is similar to the one between atomic and functional types present

in type theory, and by means of the Curry–Howard correspondence it is

indeed straightforward to assign semantic types to syntactic categories (see

section 2.4 for examples).

The set of assumed atomic categories differs from one author to the other,

but usually at least s (for sentences) and np (for noun phrases) are counted

hereunder. In type theory, these correspond to the type of truth values t and

the entity type e.

Complex categories are constructed inductively by means of a small set of

type-forming operators. Ajdukiewicz used a single, fraction-style operator;

two categories A
B and B could combine by “multiplication” to form the new

category A. Lambek [21] established a directed notation, distinguishing two

“slash operators” \ and / that differ in terms of the direction in which the

combination takes place. This gives rise to the following two combination

rules:1

B, B\A ⇒ A A/B, B ⇒ A

Typical examples of complex categories are verbs, which can be regarded as

being “incomplete” in that they require a number of noun phrases to become

a complete sentence. For instance, transitive verbs are usually assigned the

category (np\s)/np or np\(s/np).

1 Notice that here, as in the rest of this thesis, the original “result on top” notation
of Lambek for categories is used, rather than the “result leftmost” notation of
e. g. Steedman [34].
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2.1 Categories and combinations

s

np

Dan

np\s
(np\s)/np

likes

np

parsnips

Figure 2.1: AB grammar derivation of “Dan likes parsnips”

AB grammar

Given the two combination schemata from above and appropriate lexical

assignments, a number of simple English sentences can be derived (see fig-

ure 2.1 for an example). Turning a CG derivation upside down, one im-

mediately recognises the similarities to a parse tree in a context-free phrase

structure grammar. In terms of generative capacity, this most basic form of

categorial grammar, which after Ajdukiewicz and Bar-Hillel is called AB gram-

mar, is indeed equivalent to context-free grammars. Notice however, that CG

is highly lexicalised and comes with only two rule schemata, whereas a phrase

structure grammar normally involves a much larger inventory of rules.

It is well known that context-free grammars – and therefore, by equiva-

lence, AB grammar – are not powerful enough to describe many linguistic

phenomena. Within the research on categorial grammars, there have been

two strands of approaches to remedy this deficiency, referred to as the rule-

based and the deductive style of CG. The remainder of this section briefly

discusses a rule-based extension of AB grammar. The deductive approach

will be discussed in detail throughout the rest of this chapter.

Structural control

In rule-based extensions of AB grammar, the basic combination schemata of

CG are amended by other type-changing rules. To give a concrete example,

table 2.1 shows an (incomplete) set of the rules of Combinatory Categorial

Grammar CCG [34].
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2 Categorial Type Logics

X/Y, Y ⇒ X forward application (>)

Y, Y\X ⇒ X backward application (<)

X, conj, X ⇒ X conjunction (Conj)

X/Y, Y/Z ⇒ X/Z forward composition (>B)

Z\Y, Y\X ⇒ Z\X backward composition (<B)

X ⇒ Y/(X\Y) forward type-raising (>T)

X ⇒ (Y/X)\Y backward type-raising (<T)

(X/Y)/Z, Y/Z ⇒ X/Z forward substitution (>S)

Z\Y, Z\(Y\X) ⇒ Z\X backward substitution (<S)

Table 2.1: (Some of) the rules of CCG [34]

The selection of rules is a delicate matter: On one side, they must be

powerful enough to allow the derivation of the sentence structures one wants

to permit; this will increase the generative capacity of the grammar. On the

other side, the rules must not be too expressive, so that they do not allow

more structural analyses than wanted, and can be processed efficiently. This

tension, which will be the central theme of this chapter, may be referred to

as the issue of structural control.

At a first glance, the structural control regime of CCG seems to be to

permissive: Figure 2.2 shows an example of what the literature has called

“spurious ambiguities” – two analyses of the same sentence that (employing

s

np

Dan

np\s
(np\s)/np

likes

np

parsnips

(>)

(<)

(a) Dan (likes parsnips)

s

s/np

s/(np\s)
np

Dan

(>T)
(np\s)/np

likes

(>B)
np

parsnips

(>)

(b) (Dan likes) parsnips

Figure 2.2: “Spurious ambiguities” in CCG
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2.2 The Lambek calculi

the Curry–Howard correspondence) share the same semantics. Steedman

argues, however, that the two analyses indeed are different, when considered

on the level of information structure [34]. Take the following two sentences:

(1) Dan likes parsnips; I detest them.

(2) Dan likes parsnips, not swedes.

The first halves of both sentences are syntactically and semantically the same,

yet in a broader sense, they have different meanings: In (1), Dan carries a

focus; in (2), the focus is on the parsnips. Steedman’s framework for the

treatment of differences like this will derive (1) as in figure 2.2(a), and (2) as

in figure 2.2(b).

Thus, with regards to information structure, the “spurious ambiguities”

are no ambiguities at all. Nevertheless, for many applications, we might be

interested only in a traditional semantic analysis of a sentence. In this case,

it would be desirable to adjust the “granularity” of the structural control and

consider for example derivations modulo equal semantics (see section 2.4).

For rule-based approaches like CCG, this can only be done on the implemen-

tation level. The next section sets the stage for formalisms that allow a change

of granularity within the grammar itself.

2.2 The Lambek calculi

The basic rules of category combination, which in CCG are regarded as func-

tional applications, can also be seen as directed versions of the modus ponens:

A
B B\A

A
A/B B

To ease the reasoning about these elementary rules, the “slashed” premises

of a modus ponens will be called rides, and the “non-slashed” premises tickets.

The intuition behind this terminology is that if one has a ticket B, then one

can make the ride B\A to arrive at A.

7



2 Categorial Type Logics

Grammars as logics

Taking the modus ponens view on the basic combination rules, a series of other

rules naturally suggests itself in analogy to other logical calculi: The rules that

eliminate the slash operators can be complemented by rules that introduce

them. Additionally, the juxtaposition of ticket and ride can be made explicit

by introducing a binary concatenation or product operator •. This implies a

refinement of the notion of a category, which is formalised in definition 2.1

below.

Definition 2.1 (Lambek-style categories) Given a set of atomic types A, the

set CA of categories over A is defined by the following abstract syntax:

CA ::= A | CA • CA | CA\CA | CA/CA.

When A is arbitrary or obvious from the context, it is usually omitted.

The logical aspects of categorial grammar were first developed in Lam-

bek’s work in the late 1950’s [21], which became the foundation of the deduc-

tive style of categorial grammar, which emphasises the connections between

grammatical analysis and proof theory: The grammaticality of a sentence

can be proved by means of the inference rules of a categorial logic. Different

categorial logics are distinguished in terms of their structural control.

The rules of the most restrictive of these categorial logics, the non-associa-

tive Lambek calculus NL, is given in figure 2.3. The presentation is in Natural

Deduction format and uses sequents (Γ, C) according to definition 2.2.

Definition 2.2 (Sequent) A sequent is a pair (Γ, C) of a binary tree over cat-

egories Γ, called the antecedent, and a single category C, called the succedent.

In figure 2.3, sequents are written Γ ` C and can be read as “the grammat-

ical structure Γ licenses the category C”. The notation Γ[∆] in the conclusion

8



2.2 The Lambek calculi

A ` A
(Ax)

Γ ` A/B

(Γ, B) ` A
(/I)

(Γ, ∆) ` A

Γ ` A/B ∆ ` B
(/E)

Γ ` B\A

(B, Γ) ` A
(\I)

(Γ, ∆) ` A

Γ ` B ∆ ` B\A
(\E)

(Γ, ∆) ` A • B

Γ ` A ∆ ` B
(•I)

Γ[∆] ` C

∆ ` A • B Γ[(A, B)] ` C
(•E)

Figure 2.3: Non-associative Lambek calculus NL [25, p. 110 f.]

of the product elimination rule (•E) refers to a distinguished subtree ∆ in Γ,

which, reading the rule from its bottom to the top, in the premise gets re-

placed by the subtree (A, B).

Dimensions of structural control

Pentus proved that NL is context-free [29]. It is therefore interesting to no-

tice, that the CCG rule of type-raising can be derived as a lemma in NL (fig-

ure 2.4(a)), a “secondary rule” that does not need to be stipulated. This is

not possible in AB grammar, although AB grammar is context-free as well. If

we would be able to also proof functional composition, then the “spurious

ambiguities” of CCG could be replicated in NL. This proof fails, however:

(A/B, B/C) ` A/C

((A/B, B/C), C) ` A

failed

(/I)

The failure in the proof attempt sheds some more light on structural con-

trol in NL. After the (/I) rule, one would want to apply the (/E) rule, using

the C ticket for the B/C ride to obtain B, which could then be used as a

ticket for the A/B ride. But B/C and C do not lie in adjacent subtrees of the

antecedent structure. In order for the (/E) rule to be applicable, one would

first have to reorder the antecedent.

9



2 Categorial Type Logics

A ` B/(A\B)

(A, A\B) ` B

A ` A A\B ` A\B
(\E)

(/I)

(a) Forward type-raising

(A/B, B/C) ` A/C

((A/B, B/C), C) ` A

(A/B, (B/C, C)) ` A

A/B ` A/B (B/C, C) ` B

B/C ` B/C C ` C
(/E)

(/E)

(Ass2)

(/I)

(b) Forward functional composition

Figure 2.4: Lemmata in NL

Inference rules that accomplish such a reordering are the rules of associa-

tivity given in figure 2.5(a). As these rules operate only on the antecedent

structures, they are referred to as structural rules. Adding them to NL yields

the associative Lambek calculus L, which corresponds to the system originally

presented by Lambek [21]. In L, functional composition is provable as a

theorem (figure 2.4(b)). This shows that an associative structural regime is

crucial for the question of whether or not a logic will allow the derivation of

“spurious ambiguities” à la CCG.

A second relevant structural rule is permutation (figure 2.5(b)). It is needed

for example to explain scrambling phenomena in languages like German, in

which verb complements (within certain limits) can permute freely.

The four Lambek calculi resulting from the different combinations of the

associativity and permutation rules are shown in figure 2.6. These calculi

stake off the borders of the landscape of formalisms considered to be lin-

guistically relevant categorial logics. However, none of them is a realistic

formalism for the description of natural language. The Lambek–van Benthem

Γ[(∆1, (∆2, ∆3))] ` A

Γ[((∆1, ∆2), ∆3)] ` A
(Ass1)

Γ[((∆1, ∆2), ∆3)] ` A

Γ[(∆1, (∆2, ∆3))] ` A
(Ass2)

(a) associativity

Γ[(∆1, ∆2)] ` A

Γ[(∆2, ∆1)] ` A
(Per)

(b) permutation

Figure 2.5: Structural rules for permutation and associativity

10



2.3 Multimodal systems

−(Per) +(Per)

−(Ass) NL NLP

+(Ass) L LP

Figure 2.6: The Lambek calculi

calculus LP for example, which includes both associativity and permutation,

is far too permissive for linguistic applications: With every analysis of a sen-

tence, it also licenses all its permutations.

2.3 Multimodal systems

Multimodal categorial logics make use of a refined notion of grammatical

structure to overcome the deficiency of the classical Lambek calculi. Cat-

egories are now labelled by structural modes µ that correspond to different

structural layers or “granularities” of linguistic description: Structural rules

applicable to one mode need not necessarily be applicable to another. In the

sequent presentation of multimodal systems, an antecedent has the structure

(X, Y)µ, indicating that the substructures X and Y have been combined in

mode µ.

A hybrid Lambek calculus

One example for the multimodal approach is the hybrid system of Hepple

[14] given in figure 2.7. It consists of four different structural layers, corre-

sponding to the four different Lambek calculi NL, NLP, L, and LP. Each of

these modes µ has its own slash operators \µ and /µ and its own concate-

nation operator •µ. The inference rules of the system, which are the same

as in NL, apply globally. The structural rules do not: Permutation is only

available in the NLP and LP modes, associativity in the L and LP modes. A

11



2 Categorial Type Logics

mode-changing rule controls the interaction between different structural lay-

ers: Structures with a mode µ may be treated as structures with mode ν if ν

is accessible from µ through the accessibility relation ≺. Hepple defines ≺
as a partial order {NL} ≺ {NLP, L} ≺ {LP}, based on the intuition that if a

structure has been derived with strong structural restrictions, it can surely

be derived in a laxer regime. One can also assumes the exactly opposite or-

dering of modes, allowing less restricted structures to be moved to stricter

modes. Interestingly, both assumptions can be justified [25, p. 130].

To illustrate some of the benefits of the multimodal framework, consider

the following example sentence from Hepple [14], in which two “gapping”

constituents are coordinated before they find their (common) “filler”:

(3) Mary spoke and Susan whispered to Bill.

A partial derivation of this sentence is given in figure 2.8. It shows that Mary

spoke and (as the lexical categories are the same) Susan whispered can both be

derived as s/Lpp. If we assume and to have (s/Lpp)\((s/Lpp)/(s/Lpp)) among

its lexical categories, then this is just what they need to enter coordination

and finally combine with the pp to Bill to yield a grammatical sentence. Notice

that this would not have been possible if spoke could have only been used

in its original, non-associative mode NL, as the (Ass2) is not available there.

On the other hand, due to the mode-changing rule, there is no need for spoke

to have different lexical entries for each of the modes it is supposed to be

used in. The multimodal framework thus allows for economy in the lexicon

without giving up structural flexibility.

Extensions

Moortgat [25] extends the multimodal framework by introducing unary oper-

ators 3 and 2↓ that act as boundaries for “domains of locality”. A structure

can be “locked” and “unlocked” by rules introducing or eliminating unary

12



2.3 Multimodal systems

A ⇒ A
(Ax)

Γ ` A/µB

(Γ, B)µ ` A
(/I)

(Γ, ∆)µ ` A

Γ ` A/µB ∆ ` B
(/E)

Γ ` B\µ A

(B, Γ)µ ` A
(\I)

(Γ, ∆)µ ` A

Γ ` B ∆ ` B\µ A
(\E)

(Γ, ∆)µ ` A •µ B

Γ ` A ∆ ` B
(•I)

Γ[∆] ` C

∆ ` A •µ B Γ[(A, B)µ] ` C
(•E)

Γ[(∆1, ∆2)µ] ` A

Γ[(∆2, ∆1)µ] ` A
(Per), µ ∈ {NLP, LP}

Γ[(∆1, (∆2, ∆3)µ)µ] ` A

Γ[((∆1, ∆2)µ, ∆3)µ] ` A
(Ass1), µ ∈ {L, LP}

Γ[((∆1, ∆2)µ, ∆3)µ] ` A

Γ[(∆1, (∆2, ∆3)µ)µ] ` A
(Ass2), µ ∈ {L, LP}

Γ[∆ν]

Γ[∆µ]
(≺), µ ≺ ν

Figure 2.7: Multimodal CTL [cf. 14]

(np, (np\NLs)/NLpp)L ` s/Lpp

((np, (np\NLs)/NLpp)L, pp)L ` s

(np, ((np\NLs)/NLpp, pp)L)L ` s

(np, ((np\NLs)/NLpp, pp)L)NL ` s

(np, ((np\NLs)/NLpp, pp)NL)NL ` s

np ` np

Mary

((np\NLs)/NLpp, pp)NL ` np\NLs

(np\NLs)/NLpp ` (np\NLs)/NLpp

spoke

pp ` pp
(/E)

(\E)

(≺)

(≺)

(Ass2)

(/I)

Figure 2.8: Non-constituent coordination [cf. 14]

13



2 Categorial Type Logics

operators, and within locked structures, structural control may be more or

less constrained than in the unlocked case. Like their binary counterparts,

unary operators can appear in several modes, enabling a very fine-grained

structural control.

Another extension to multimodal CTL is to introduce a notion of dependency

[25, p. 129]. In the multimodal setting, each operator ◦µ would occur in two

variants, ◦�µ and ◦�µ , depending on whether the left or the right hand side

of the operator provides the head of the resulting structure in the sense of

dependency grammar. This additional dimension makes it possible to more

adequately describe situations in which a structure semantically acts as a

functor, while syntactically it would be regarded as a dependent.

2.4 Efficient structural control

This last section will present some previous approaches to parsing categorial

type logics. The deductive view on categorial grammar immediately suggests

the application of techniques known from automated theorem proving to

this problem. However, as many CTL formalisms are extremely expressive,

efficient implementations cannot always be obtained.

Gentzen presentation and Cut elimination

In the context of CTL, the parsing problem can be formulated as a problem

of proof search: To parse a sentence consisting of words w1, . . . , wn, find the

admissible derivations of the sequent c1, . . . , cn ` s, where ci refers to the

category of the word wi as specified in the lexicon.

The Natural Deduction presentation of the Lambek calculi that was given

in figure 2.3 is not suitable for proof search. The problem lies in the elimina-

tion rules. For example, to prove the sequent (Γ, ∆) ` A, one may pick any

“link formula” B and prove the premises Γ ` A/B and ∆ ` B. As there are

infinitely many such formulae, proof search will never terminate.

14



2.4 Efficient structural control

A ⇒ A
(Ax)

Γ[∆] ⇒ C

∆ ⇒ A Γ[A] ⇒ C
(Cut)

Γ ⇒ A/B

(Γ, B) ⇒ A
(/R)

Γ([A/B, ∆]) ⇒ C

Γ[A] ⇒ C ∆ ⇒ B
(/L)

Γ ⇒ B\A

(B, Γ) ⇒ A
(\R)

Γ[(∆, B\A)] ⇒ C

Γ[A] ⇒ C ∆ ⇒ B\A
(\L)

(Γ, ∆) ⇒ A • B

Γ ⇒ A ∆ ⇒ B
(•R)

Γ[A • B] ⇒ C

Γ[(A, B)] ⇒ C
(•L)

Figure 2.9: NL: Gentzen presentation [25, p. 106]

It is a well-known result from other logical calculi that such indeterminism

can be tackled by a Gentzen presentation of the calculus, in which the transitiv-

ity implicit in the elimination rules is localised into a new rule (Cut), and the

search space for link formulae is restricted to subformulae of the antecedent.

One then tries to show that each proof involving a (Cut) rule can be reduced

to a proof of the same sequent with all the (Cut) rules eliminated. This is

called the Cut elimination property. In the absence of any structural rules, Cut

elimination implies decidability, as all rules but (Cut) strictly decrease the

size of a sequence in terms of some simplicity metric.

The Gentzen presentation for NL is given in figure 2.9. To extend it to the

other Lambek calculi and the multimodal case, the same structural rules can

be used that were presented in the previous sections. Note that sequents are

now written Γ ⇒ C, and that the rules are labelled according to whether they

introduce an operator on the left ((/L), (\L), (• L)) or on the right hand side

of the sequent ((/R), (\R), (• R)).

To prove Cut elimination for NL [25, p. 109], one shows that a proof con-

taining (Cut) rules can be transformed into a Cut-free proof by subsequently

pushing the applications of (Cut) upwards in the proof tree. In an application

of (Cut) at the top of the proof tree, one of the premises is an axiom, and the
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2 Categorial Type Logics

x : A ⇒ x : A
(Ax)

Γ, ∆, Γ′ ⇒ u[t/x]C

∆ ⇒ t : A Γ, x : A, Γ′ ⇒ u : C
(Cut)

∆ ⇒ λx.t : A/B

∆, x : B ⇒ t : A
(/R)

Γ, f : A/B, ∆, Γ′ ⇒ u[ f (t)/x] : C

∆ ⇒ t : B Γ, x : A, Γ′ ⇒ u : C
(/L)

∆ ⇒ λx.t : B\A

x : B, ∆ ⇒ t : A
(\R)

Γ, ∆, f : B\A, Γ′ ⇒ u[ f (t)/x] : C

∆ ⇒ t : B Γ, x : A, Γ′ ⇒ u : C
(\L)

∆, ∆′ ⇒ 〈t, u〉 : A • B

∆ ⇒ t : A ∆′ ⇒ u : B
(•R)

Γ, z : A • B, Γ′ ⇒ t[π1(z)/x, π2(z)/y] : C

Γ, x : A, y : B, Γ′ ⇒ t : C
(•L)

Figure 2.10: L: Sugared Gentzen presentation with λ-terms [25, pp. 108, 117]

other premise will be identical to the conclusion of the (Cut), so that the rule

application can be discarded.

Normal form parsing

If as the goal of parsing, one considers to obtain a representation of the seman-

tics of the sentence via the Curry–Howard isomorphism, then the Gentzen

presentation is still not optimal for proof search.

Consider the associative Lambek calculus L, whose Gentzen rules, an-

notated with λ-terms and with (Ass1) and (Ass2) “compiled in” by using a

comma instead of the product operator, are given in figure 2.10. (Note that Γ

and Γ′ represent possibly empty sequences of categories.) Like CCG, L suffers

from the “spurious ambiguities” problem, as demonstrated in figure 2.11.

To avoid “spurious ambiguities”, König [18] put the search for normal form

proofs on the agenda of CTL parsing: If one would be able to construct an

equivalence relation that regards two proofs as equivalent if they yield the

same semantics, then one could try to restrict parsers for CTL to produce

only derivations corresponding to the representatives of that relation. These

representatives could then be considered as the normal forms of the class of

proofs they are representing.
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2.4 Efficient structural control

np, (np\s)/np, np⇒ s

np⇒ np np, np\s⇒ s

np⇒ np s⇒ s
(\L)

(/L)

(a) Dan (likes parsnips)

np, (np\s)/np, np⇒ s

np⇒ s/(np\s)
np, np\s⇒ s

np⇒ np s⇒ s
(\L)

(/R)
s/(np\s), (np\s)/np, np⇒ s

np⇒ np s/(np\s), np\s⇒ s

np\s⇒ np\s s⇒ s
(/L)

(/L)

(Cut)

(b) (Dan likes) parsnips

Figure 2.11: “Spurious ambiguities” in L

The semantic criterion for normal forms was formalised by Hepple [13],

who shows that βη-equivalence is an equivalence relation in the sense of

König.2 This result is partially suggested by Cut elimination, which, through

the Curry–Howard correspondence, is strongly linked to β-reduction: It turns

out that the semantics of two proofs that are equivalent modulo Cut elimi-

nation are equivalent modulo β-reduction. To illustrate this point, consider

the λ-terms associated to the proofs in figure 2.11, given in figure 2.12. While

the λ-term for the Cut-free proof in figure 2.12(a) is completely β-reduced,

the term for the proof using (Cut) (figure 2.12(b)) is not.

A calculus that only allows derivations whose proof-terms are βη-reduced

is given in figure 2.13 [12, 25]. Instead of trying to derive the sequent Γ ⇒ C,

this calculus tries to derive Γ ⇒ C?, where ? is a control label on categories

that governs the sequence of inference rule applications. It forces the deriva-

tion to first apply all right-rules, then apply the “mode-switching” rule (?R),

and then apply all left-rules. The resulting proofs are in βη-normal form [13].

2 Two λ-terms t1, t2 are equivalent modulo βη-reduction, t1 ≡βη t2, if they can both
be reduced to the same term t, using the following reduction rules: (λx.t)(u) →βη

t[u/x] (β-reduction), λx. f (x) →βη f (η-reduction).

17
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u : np, g : (np\s)/np, w : np⇒ (g(w))(u) : s

w : np⇒ w : np u : np, f : np\s⇒ f (u) : s

u : np⇒ u : np v : s⇒ v : s
(\L)

(/L)

(a) Dan (likes parsnips)

u : np, i : (np\s)/np, x : np⇒ (λ f . f (u))(i(x)) : s

u : np⇒ λ f . f (u) : s/(np\s)
u : np, f : np\s⇒ f (u) : s

u : np⇒ u : np v : s⇒ v : s

(/R)
h : s/(np\s), i : (np\s)/np, x : np⇒ h(i(x)) : s

x : np⇒ x : np h : s/(np\s), g : np\s⇒ h(g) : s

g : np\s⇒ g : np\s w : s⇒ w : s

(Cut)

(b) (Dan likes) parsnips

Figure 2.12: Lambda terms for the “spurious ambiguities” in figure 2.11

x : p? ⇒ x : p
(Ax/?L)

Γ, u : B, Γ′ ⇒ t : p?

Γ, u : B?, Γ′ ⇒ t : p
(?R)

∆ ⇒ λx.t : A/B?

∆, x : B ⇒ t : A?

(/R)
Γ, s : A/B?, ∆, Γ′ ⇒ t[s(u)/x] : C

∆ ⇒ u : B? Γ, x : A?, Γ′ ⇒ t : C
(/L)

∆ ⇒ λx.t : B\A?

x : B, ∆ ⇒ t : A?

(\R)
Γ, ∆, s : B\A?, Γ′ ⇒ t[s(u)/x] : C

∆ ⇒ u : B? Γ, x : A?, Γ′ ⇒ t : C
(\L)

Figure 2.13: Hendriks’ L? calculus [25, p. 164]
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2.4 Efficient structural control

((Z\W, W\Y), (Z\Y)\X) ` X

(Z\W, W\Y) ` Z\Y
([Z], (Z\W, W\Y)) ` Y

(([Z], Z\W), W\Y) ` Y

([Z], Z\W) `W

[Z] ` [Z] Z\W ` Z\W
(\E)

W\Y `W\Y
(\E)

(Ass1)

(\I)
(Z\Y)\X ` (Z\Y)\X

(\E)

(a) with hypothetical reasoning

(((Z, Z\W), W\Y), X) ` X

((Z, Z\W), W\Y) ` Y

(Z, Z\W) `W

Z ` Z Z\W ` Z\W
(\E)

W\Y `W\Y
(\E)

Y\X ` Y\X
(\E)

(b) without hypothetical reasoning

Figure 2.14: Example for Hepple’s compilation method [cf. 15]

Hypothetical reasoning

Besides the “spurious ambiguities”, another problem in parsing Lambek

grammars is the proper treatment of the (I) rules of the Natural Deduction

presentation (figure 2.3). Figure 2.14(a) shows a derivation in L in which an

assumption Z (marked with square brackets) is used to derive the category Y,

but then discharged by the (\I) rule. Traditional chart-based approaches to

parsing have difficulties with such hypothetical reasoning, as the hypothetical Z

category does not find a place on a linearly ordered chart.

Hepple [15] suggests a compilation method, in which higher-order as-

sumptions (such as (Z\Y)\X in figure 2.14(a)) are split up into a hypothet-

ical (Z) and a first-order residue (Y\X), leading to (I)-free derivations (fig-

ure 2.14(b)). This procedure requires an indexing regime that ensures that

each excised hypothetical must be used to derive the ticket of its associated

residue, and a modified form of β-reduction. The result of the compilation

can be parsed by an Earley-style predictive chart algorithm.
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Proof nets

Moot [27] shows how the NL3R calculus (NL amended by modes, unary

operators, and an arbitrary set of structural rules R) can be processed using

proof nets, a graph-based proof theory originally developed for linear logic.

Sequents are translated into proof nets, for which a graph-theoretic criterion

can be formulated that is satisfied if and only if the input sequent is derivable.

Discussion: The complexity of CTL

This section has presented solutions to various problems related to the ef-

ficient processing of CTL. From a practical point of view, the ultimate aim

would be to obtain polynomial time parsing algorithms, as they are avail-

able for other grammar formalisms, such as CCG or Tree Adjoining Grammar

(TAG). Unfortunately, for the linguistically interesting calculi discussed here,

this goal is either completely out of reach, or at least uncertain.

At the lower end of the scale, the actual complexity of the parsing prob-

lems for NL and L remains unknown. The Lambek–van Benthem calculus LP

has been shown to be NP complete by Kanovich [27, p. 154] – the formal-

ism resulting from Hepple’s compilation method for L that was discussed

earlier on can be parsed in polynomial time, but the compilation itself has

exponential complexity [15]. In the multimodal case, it is straightforward to

show that CTL with an unrestricted set of structural rules (Moot’s NL3R) are

undecidable [5]. If the structural rules are restricted to linear rules, that is,

rules that do not introduce new structure into the proof, then the resulting

CTL are still PSPACE complete, and their parsing problem is equivalent to

that of general context-sensitive languages [27].

The complexity problem can be addressed in at least two ways.

First, one could try to identify fragments of NL3R that can be parsed effi-

ciently. One such fragment, simulating the rules of CCG, has been proposed
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2.4 Efficient structural control

by Kruijff and Baldridge [20]. The derivational capacity of this fragment

is slightly above that of CCG, although its generative capacity is probably

the same (Jason Baldridge, p. c.). Moot presents a fragment of NL3R that is

strongly equivalent to TAG [27].

The search for manageable fragments is a walk on a thin line, as process-

ing efficiency and linguistic plausibility do not necessarily coincide. Note,

furthermore, that establishing equivalence results between fragments of CTL

and formalisms with efficient parsing algorithms does not necessarily imply

the applicability of these algorithms to CTL. The associative Lambek calculus

L for example has been shown to be weakly equivalent to context-free gram-

mars [29] – but up to the present day, no polynomial translation from L into

context-free grammar has been found.

The second way in which to handle the efficiency problem is to ignore

the theoretical complexity results and to investigate the practical behaviour

of CTL fragments. This can be a very viable thing to do, considering that

formalisms such as Head-driven Phrase Structure Grammar (HPSG), which

have been successfully put to practice, are undecidable in the general case.

The practical evaluation of CTL grammar fragments requires software

in which (a) new parsers can be assembled and re-assembled quickly, and

(b) general rather than formalism-specific techniques are used to tame the

potential complexity of the parsing problem induced by a new fragment.

These requirements were the main motivations for the application of con-

straint programming to the parsing of CTL explored in this project.
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Chapter 3

Constraint Programming

For many combinatorial problems, no efficient specialised algorithms exist,

and one has to fall back on generic techniques to solve them. One sufficient

but naïve method is to generate all possible combinations of values and to

check, for each combination, if it constitutes a solution to the problem. This

approach, which is known as “brute-force search” or “generate and test”,

cannot avoid the combinatorial explosion that goes along with NP-hard and

highly polynomial problems. In the presence of large search spaces (as they

usually occur in real-life applications), it is infeasible even for problems with

small polynomial complexity.

This chapter introduces constraint programming [4, 23] as an alternative to

the “generate and test” paradigm. Constraint programming tries to develop

efficient techniques and expressive programming metaphors to formulate and

solve constraint satisfaction problems (CSPs) (section 3.1). One of its central tech-

niques is constraint propagation (section 3.2), which can be regarded as an ap-

plication of abstract interpretation. In conjunction with domain-independent

constraint services like distribution and search, constraint propagation can yield

efficient solvers for combinatorial problems (section 3.3).

3.1 Constraint satisfaction

The different formalisations of constraint satisfaction problems that can be

found in the literature may be separated into two classes, depending on

the view that they take on constraints. Intensional definitions, like the one
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3 Constraint Programming

given here, emphasise the relation between constraint satisfaction and logic

by viewing constraints as formulae. In contrast, extensional definitions [2, 24]

consider constraints as sets of potential partial problem solutions. The exten-

sional view on constraints stresses the combinatorial complexity of constraint

satisfaction: Solving a CSPs amounts to generating all consistent combinations

of partial solutions.

Definition 3.1 (CSP) A constraint satisfaction problem CSP is given by a triple

〈V ,D, C〉, consisting of a set V := {x1, . . . , xn} of problem variables, a set D :=

{D1, . . . , Dn} of associated domains, and a set C of constraints. A domain

Di ∈ D is the set of values that the variable xi ranges over. A constraint C ∈ C
is a logic formula in some fixed first-order constraint language such that all its

free variables are problem variables.

The present definition leaves implicit a mapping dom ∈ V → D that

associates problem variables with their domains1 by assuming that they share

the same index.

To formalise the notion of a solution to a CSP, some notation is needed:

Borrowing from Apt [2], a scheme on n is supposed to mean an increasing

sequence s := s1, . . . , sk of different elements from [1, n]. Given an n-tuple

~v := (v1, . . . , vn) and a scheme s on n, let ~v [s] denote the k-tuple (vs1 , . . . , vsk).

A constraint C ∈ C is said to be with scheme s, if
{

xs1 , . . . , xsk

}
are its free

variables. Finally, if a constraint C is with scheme s, the notation C ~v [s] refers

to C with the relevant values of ~v substituted for its parameter variables.

Definition 3.2 (Solution to a CSP) A solution to a CSP 〈V ,D, C〉 is a tuple ~s ∈
D1 × · · · × Dn, such that for every constraint C ∈ C, if C is with scheme s,

C ~s [s] holds with respect to the intended interpretation of the constraint

language.

1 In the terminology of Müller [24], this mapping is called domain store.
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3.1 Constraint satisfaction

Example: Send More Money

As an example for a CSP, consider the following puzzle, which, according to

Knuth [19, p. 6], was first published in 1924 by H. E. Dudeney in volume 68

of the Strand magazine. The task is to find a different decimal digit for every

letter, such that the following represents a correct sum:

S E N D

+ M O R E

M O N E Y

As a side condition, the leading digits of every row must not be zero.

In terms of definition 3.1, the problem can be phrased as follows: The

set of problem variables is {s, e, n, d, m, o, r, y}. Each of them ranges over the

same domain, the set of decimal digits. The constraints are as follows:

– The values of the variables have to be pairwise distinct.

– Neither S nor M must be assigned the value 0: s 6= 0 ∧m 6= 0.

– The values of the variables must fit the sum:

1000× s + 100× e + 10× n + d +

1000×m + 100× o + 10× r + e =

10000×m + 1000× o + 100× n + 10× e + y.

The constraint language used in this problem is the linear arithmetic over

(a finite subset of) N, together with its standard interpretation. The problem

has a unique solution, which the reader is encouraged to puzzle out.2

2 Incidentally, the digits in the solution to this puzzle can be arranged to form the
date on which the United States of America passed the Alien Act, allowing the
president to deport dangerous aliens.
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Backtracking

What are efficient ways of obtaining one, all, or some solutions of a CSP?

The naïve “generate and test” approach suffers from the deficiency that

generation is uninformed: The information contained in the constraints is not

used before a new value assignment is generated.

Backtracking is a refinement of “generate and test”, in which a constraint

with scheme s is checked as soon as its parameter variables have been in-

stantiated. For example, if the problem variables are {x, y, z}, and x and y

have been instantiated to values a and b, all constraints with scheme x, y can

be checked before instantiating z. If any of them fails, x = a, y = b is no

longer a potential partial solution, and the algorithm can backtrack to the

point where it made the last instantiation for y. Backtracking is a significant

improvement over “generate and test”, as it might prune the search space

considerably. Its major deficiency is the fact that conflicts in the assignment

of values to variables are still not recognised before they actually occur. The

next section will present techniques by which this may be achieved.

3.2 Constraint propagation and abstract interpretation

The principal insight of constraint programming is that constraints can be

used as first-class computation objects. By analysing the constraints of a

problem, one might be able to reduce it to a simpler one, before doing any

solution search at all. This process, known as constraint propagation, can be

interleaved with search to yield an efficient technique for solving a CSP (sec-

tion 3.3).

Notions of consistency

The effect of constraint propagation is the elimination of inconsistencies in the

relation between domains and constraints. Different notions of consistency

are named with reference to the constraint graph of a CSP.
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3.2 Constraint propagation and abstract interpretation

Definition 3.3 (Constraint graph) The constraint graph of a CSP 〈V ,D, C〉 is

the graph (V, E) such that V = V and

E =
{

(x1, x2) ∈ V2 | ∃C ∈ C[ : C is with scheme x1, x2

}
,

where C[ refers to the set of binarised constraints from C.3

The most fundamental notion of consistency is node consistency, which

holds if every unary constraint of the CSP is satisfied.

An edge (x1, x2) in the constraint graph is arc consistent, if for every

value v1 in the domain of x1 there is a corresponding value v2 in the do-

main of x2 such that each constraint C ∈ C[ with scheme x1, x2 is satisfied.

Values v1 for which this condition is violated can be removed from their

corresponding domains, as they cannot possibly be part of any solution to

the CSP. The process of excluding inconsistent values is known as domain

reduction.

A number of algorithms have been proposed for domain reduction. One

example, AC-3, is given in figure 3.1. It manages a collection Q of potentially

inconsistent edges in the constraint graph G, and for each arc (xk, xl) checks

if the domains of the corresponding variables can be reduced. If this is the

case, all arcs (xi, xk) need to be reconsidered, as the removal of a value from

the domain of xk may have rendered them inconsistent. In the case of finite

domains, the algorithm terminates because new arcs are only added to the

agenda after the domain of one of their variables has been reduced.

Apt [2] develops chaotic iteration as a general formal framework for the

analysis of propagation algorithms. A chaotic iteration is a sequence of func-

tion applications in which each function is applied infinitely often. Apt shows

that the outputs of many of the standard constraint propagation algorithms

3 It can be shown that any CSP can be transformed into an equivalent CSP con-
taining unary and binary constraints only.
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Revise(x1, x2)
1 flag← false
2 for each v1 ∈ D1

3 do if ∀C ∈ C ∃v2 ∈ D2 : C(v1, v2)
4 then skip
5 else D1 ← D1 − {v1}
6 flag← true
7 return flag

AC-3(G)
1 Q ←

{
(xi, xj) ∈ arcs(G) | i 6= j

}
2 while Q 6= ∅
3 do (xk, xl) ← any arc from Q
4 Q ← Q− (xk, xl)
5 if Revise(xk, xl)
6 then Q ← Q ∪ { (xi, xk) ∈ arcs(G) | i 6= k, i 6= l }
7 else skip

Figure 3.1: AC-3
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3.2 Constraint propagation and abstract interpretation

can be regarded as the fixpoints of chaotic iterations employing constraint re-

duction or domain reduction functions. A constraint reduction function reduces

the number of potential partial solutions in the extension of a constraint. A

domain reduction function reduces the set of possible values for a problem

variable.

Domain reduction

Abstracting away from specific propagation algorithms, one can look for gen-

eral techniques of reasoning about the solutions of CSPs without actually

generating them. Consider the following problem:

x ∈ {1, 3} , y ∈ {2, 3} , z ∈ {2, 3, 4, 6, 9} , z = x + y

When the standard backtracking algorithm is applied to this problem, it will

generate all 2× 2× 5 = 20 different pairings of values, and check the con-

straint against each of them. Due to the mathematical properties of the ad-

dition operation however, several of the potential value assignments can be

recognised as inconsistent with the constraint before they are generated in the

first place.

Instead of the domains of the problem variables vi, one can consider the

intervals induced by their minimal and maximal elements, written as [v↓i , v↑i ].

As addition on integers is monotonic,

[z↓, z↑] = [x↓, x↑] + [y↓, y↑] = [x↓ + y↓, x↑ + y↑] = [1 + 2, 3 + 3] = [3, 6].

This calculation reveals that the previous domain for z was inconsistent with

the z = x + y constraint: z cannot possibly take the values 2 or 9, only values

between 3 and 6. Removing the inconsistency yields the new problem

x ∈ {1, 3} , y ∈ {2, 3} , z ∈ {3, 4, 6} , z = x + y,
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for which only 2× 2× 3 = 12 different value assignments would have to be

generated by backtracking. Notice that the new problem has the same set of

solutions as the old one.

Abstract interpretation

Looking at pairs of boundary values such as [z↓, z↑] instead of the set of

values within the boundaries is a typical example for abstract interpretation

[6]. Abstract interpretation was originally devised for the static analysis of

computer programs, but can be applied to a wide range of different problems.

A semantics or interpretation of a formal system F can be seen as a map-

ping I ∈ F→ D, where D is some domain of semantic values – for example,

finite sets of program execution states, or higher-order functions, as in the

semantics for the Lambda calculus. Abstract interpretation replaces the in-

terpretation mapping I by a mapping I ] ∈ F→ D], with D] being a (usually

finite) “abstract” semantic domain suitable for the problem. The concrete

domain and the abstract domain are then linked by an abstraction function

α ∈ D→ D]. Conversely, there also is a concretisation function γ ∈ D] → D.

In the above example, the concrete domain D of sets of integers was re-

placed by the abstract domain D] of integer intervals. The corresponding

abstraction and concretisation functions are straightforward:

α(N) = [min N, max N], N ⊆N, N 6= ∅, γ([x, y]) = { z | x ≤ z ≤ y } .

The abstraction is sound in the sense that, if +] is the addition on intervals,

α(X) +] α(Y) = α(Z) ⇒ Z ⊆ γ(α(Z)),

where X and Y are the domains of x and y, respectively; this follows from

the monotonicity of addition. (Notice that if both X and Y are convex, then

so is Z, and ⊆ can be replaced by = on the right hand side of the rule.)
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To obtain a possibly reduced domain Z′, we can therefore intersect Z with

γ(α(Z)). This technique is one instance of a general propagation paradigm

called bounds propagation.

Depending on the abstract domains, computations in D] can be consider-

ably more efficient than computations in D. This was the case in the example:

The interval [z↓, z↑] can be computed more easily from the intervals [x↓, x↑]

and [y↓, y↑] than the set Z of all possible sums of values from X and Y.

In spite of its relative computational inexpensiveness, bounds propagation

is quite expressive, however: Schulte and Stuckey show that in many sit-

uations, more expensive propagation methods can be replaced by bounds

propagation without increasing the search space for the CSP [32].

The benefits of abstract interpretation do not come without a price, though:

While the abstraction is required to be sound, it will not usually be complete –

every answer obtained from abstract interpretation is correct, but not all ques-

tions can be answered. With regard to interval abstraction, a set of integers

cannot in general be replaced by its boundary elements without loosing in-

formation: Two sets with the same boundaries need not necessarily be equal.

More formally, the concretisation function γ is not in general inversely related

to the abstraction function α.

In spite of this, abstract interpretation is a very powerful and well-founded

technique. Furthermore, in the context of constraint programming, the ex-

pressiveness of the constraint language in principle allows the simultaneous

application of different abstractions, which may be complete in combination,

or could at least lead to a strong propagation that only requires little search.

3.3 Propagation, distribution, and search

The present section deals with the question how constraint technology can

be integrated into an existing programming language. In its exposition it

follows the framework of Schulte [31], who develops computation spaces as
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New: Script→ Space creates a new space from a script

Inject: Space× Script→ Space injects an additional script into a space

Merge: Space× Space→ Space merges two spaces

Ask: Space→ Status asks the status of a space

Clone: Space→ Space clones a space

Commit: Space× int→ Space selects a daughter of a distributable space

Figure 3.2: Operations on spaces [31, section 4.8]

the central metaphors for constraint programming and shows that they are

seamlessly integrated into the Oz Programming Model [33], which has been

implemented in the Mozart/Oz system [28].

Computation spaces

Computation spaces are first-class programming objects providing conceptual

abstractions from the internals of a CSP and concrete propagation algorithms.

The possible operations on computation spaces are given in figure 3.2.

Definition 3.4 (Computation space) A computation space is composed of a

constraint store, which holds information about the currently possible values

for the problem variables, and a set of propagators. A propagator is a concur-

rent computational agent that contributes new information to the constraint

store.

The information in the constraint store is expressed in terms of a conjunc-

tion of basic constraints. The set of basic constraints available in a computation

space will typically depend on a number of factors, such as the programming

language used, the problem domain, and the efficiency with which the basic

constraints can be implemented. For problems involving finite sets of objects,

a natural choice would be to have only one basic constraint, x ∈ D.
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Propagation

In order to express more complicated relations between variables, non-basic

constraints are employed. For example, in the context of finite domain integer

problems, natural non-basic constraints are x < y or different(x1, . . . , xn).

Non-basic constraints are implemented by propagators, which act as trans-

lators into the language of the basic constraints. A propagator implementing

a non-basic constraint ψ can insert a new basic constraint β into the constraint

store φ if and only if this new constraint is adequate (φ∧ψ ⇒ β), new (φ 6⇒ β),

and consistent (φ∧ β 6⇒ ⊥). If φ ⇒ ψ, the propagator implementing ψ is called

entailed, and ceases to exist. If ψ is inconsistent with φ, its propagator is failed.

A computation space is called stable, if its propagators cannot add any

more information to its constraint store. A stable space containing a failed

propagator is itself called failed, as there can be no solution for the problem

that it encapsulates. A stable space that does not contain any propagators is

called solved or succeeded.

Computation spaces provide an interface for concrete propagation algo-

rithms: The implementation of propagators becomes an orthogonal issue that

depends on the architecture of the underlying programming language. Müller

[24] discusses the implementation of propagators in Mozart/Oz.

Distribution

Constraint propagation is no complete solution strategy for a CSP: A space

may become stable without being either solved or failed. Consider the fol-

lowing example:

x ∈ {1, 2} , y ∈ {1, 2} , x ≤ y.

Here, the propagator implementing the ≤-constraint is not able to add any

new domain-reducing information to the constraint store, but is not entailed,

either. A stable but unsolved space is called distributable.
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Distribution, which is also known as labelling or branching, is a way of

non-deterministically reducing the size of a constraint problem. To distribute

a computation space S with respect to a constraint β, S is cloned, resulting

in two spaces S1 and S2, whereupon β is injected into S1, and ¬β into S2.

Constraint propagation can then continue in both daughter spaces. Which

constraint β is chosen for distribution is a matter of heuristics: distributable

spaces are choice points in the solution of the problem.

An obvious distribution strategy is to reduce the size of some domain D

by picking an arbitrary element d from D and injecting d ∈ D into one space

and d 6∈ D into the other. As a refinement, one might want to pick the smallest

domain D, in the hope that propagation is stronger in smaller domains. The

first strategy is known as naïve distribution, the second as first fail. More

advanced distribution strategies base their decision on the result of a cost

function, which valuates a distributable space according to some measure in

order to decide which new constraints to inject.

Search

After a space has been distributed, it remains an orthogonal issue as to which

of its daughter spaces propagation shall proceed in first. This is determined

by a search strategy, which is implemented in a search engine. An overview of

standard search strategies can be found in standard AI textbooks [e. g., 30].

As an example for a search engine, an algorithm for simple depth-first

exploration (DFE) of the solutions of a computation space S is given in fig-

ure 3.3. DFE finds the first solved space for the problem encapsulated in S,

if any. The function Ask returns the status of a space, which can be either

failed, succeeded, or distributable. In the latter case, the distribution strategy

will determine two potential daughter spaces. Before the constraint solver

Commits to the first daughter by injecting the appropriate constraints, S is
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3.3 Propagation, distribution, and search

DFE(S)
1 status← Ask(S)
2 switch
3 case status = failed :
4 return none
5 case status = succeeded :
6 return S
7 case status = daughters :
8 C ← Clone(S)
9 Commit(S, 1)

10 status′ ← DFE(S)
11 switch
12 case status′ = none :
13 Commit(C, 2)
14 return DFE(C)
15 case status′ = T :
16 return T

Figure 3.3: Depth-first exploration [31, p. 45]

Cloned, so that the second daughter space can be recovered in case the

search in the first one should not yield any solutions.

Constraint services

Distribution and search are two examples of what Schulte calls domain-inde-

pendent constraint services – they do not rely on the concrete application area,

and one can imagine whole “factories” of general-purpose distribution and

search engines to be made available as libraries to a programming language

supporting the concept of computation spaces. Propagation, in contrast, is a

domain-dependent constraint service: Different groups of problems need dif-

ferent propagation algorithms.
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The interaction between the various constraint services is illustrated well

by best-solution search [31, section 6]. The objective of best-solution search

is to exhaustively explore the search space for a problem to eventually find

the best solution to that problem, according to some rating function. Brute-

force search cannot in general be applied to this problem, as the search space

may be immense. In the computation space framework, however, it is easily

possible to prune the search space by insisting, after finding a solution, that

all further solutions must be better than that last one. This condition can be

formulated as a constraint and injected into the problem space, which may

lead to stronger propagation, eliminating unnecessary branches of the search

tree.

Interactive tools

The task of assembling efficient solvers for constraint satisfaction problems

is of a highly experimental nature. Both the design and selection of domain-

specific propagators and the choice of a distribution and search strategy can-

not be considered independently from concrete problem instances. For a

constraint programming system, the availability of interactive development

tools therefore is essential.

The Mozart/Oz system [28] provides a range of such tools. One of the

most important ones is the Oz Explorer [31, chapter 8], with which the search

trees of CSPs can be displayed, and the status of the computation spaces

involved can be inspected. This enables the developer to see which additional

constraints may be imposed to increase propagation and decrease the need

for search, and if the distribution and search strategies can be improved.

To give an example, figure 3.4 shows the search tree for the “Send More

Money” problem from section 3.1, as returned from the “Oz Explorer”. Dif-

ferent kinds of computation spaces are represented by different symbols: Cir-

cles mark distributable, squares failed, and diamonds solved spaces.
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3.3 Propagation, distribution, and search

Figure 3.4: Search tree for the “Send More Money” problem

The distribution strategy applied here is “first fail”; the search strategy is the

default exhaustive depth-first search. Note that constraint propagation re-

duces the search problem, which normally would involve almost 100,000,000

choices, to 4 choices.

Discussion: The benefits of constraint programming

Constraint programming has become increasingly popular over the last few

years. This is due to three main reasons:

First, constraint programming is inherently declarative, and thus comes

very close to the ideal programming paradigm in which the programmer

merely states the requirements of the problem (in form of constraints), and

the programming language does all the rest [31].

Second, constraint programming enables the rapid prototyping of solu-

tions to problems for which no specialised algorithms exist or would be worth

implementing.

Finally, more and more programming languages support constraint pro-

gramming, either in form of libraries, or from within the core system (as in

Mozart/Oz). Propagation, distribution and search can be combined with

other features of the language to yield powerful applications.

These three features of constraint programming make it an ideal candidate

for the application to Categorial Type Logics: Rapid prototyping was one
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3 Constraint Programming

of the requirements for the CTL development tools mentioned at the end

of chapter 2, and as the next chapter will show, the declarative nature of

constraint programming allows an almost immediate translation from the

logical and structural properties of CTL into the constraint language.
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Chapter 4

Configuring Categorial Grammars

This chapter presents the principal results of this thesis. In section 4.2, a

novel formulation of the parsing problem for categorial grammars is given

that makes this task accessible to the application of constraint programming.

Section 4.3 demonstrates the usability of the new framework by integrating

into it a recent proposal for constraints on structural control [11].

4.1 Parsing as tree configuration

The result of a parse is a finite tree composed according to the rules of a

grammar. Parsing can therefore be viewed as a tree configuration problem: The

positions of components of the tree constitute the problem variables of a con-

straint satisfaction problem, the composition principles form the constraints.

Tree regions

Tree regions are a powerful concept to express the well-formedness conditions

of a tree configuration problem in a declarative way [10]: The position of

each node N of a tree is specified relative to a number of disjoint sets of

other nodes. For example, the region Nup would contain all nodes that lie

strictly above N on the path from N to the root node of the tree. A collection

of tree regions is complete, if it partitions the set of all nodes in the tree. A

node can then be uniquely identified by the tree regions associated to it. One

example for a complete set of tree regions is shown in figure 4.1.
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4 Configuring Categorial Grammars

Nup

Neq

NrightNleft
Ndown

Figure 4.1: Tree regions

Set constraints

If a node is identified by its associated tree regions, imposing restrictions on

the position of the node amounts to imposing restrictions on sets of nodes.

For example, writing Nodes for the set of all nodes in a tree, the completeness

condition can be written as

∀N ∈ Nodes : Nodes = Neq ] Nup ] Ndown ] Nside. (4.1)

In the context of constraint programming, restrictions like this are most

naturally expressed in terms of set constraints [10]. The declarative semantics

of a set constraint is its standard mathematical reading. Operationally, it is

implemented by a propagator as described in section 3.3. Constraint prop-

agation translates set constraints into basic constraints delimiting the lower

and upper bounds of a set [9]. For example, the constraint S1 ⊆ S2 can be

translated into the two basic constraints bS1c ⊆ S2 and S1 ⊆ dS2e, where

bS1c and dS1e are the most specific lower and upper bounds for S1 and S2

currently entailed by the constraint store:

bS1c =
⋃
{D | D ⊆ S } dS2e =

⋂
{D | S ⊆ D }

Constraint propagators for all of the standard set relations are implemented

in the Finite Set library of the Mozart/Oz System.
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4.1 Parsing as tree configuration

Constraints on trees

Using set constraints on tree regions, it is possible to state a number of well-

formedness criteria, which, taken together, will permit only tree structures as

solutions to the configuration problem. These criteria can all be derived from

three elementary graph-theoretic properties of trees:

1. Each node in a tree has at most one incoming edge.

2. There is exactly one node (the root) with no incoming edges.

3. There are no cycles.

To state the first property, two new tree regions containing the mothers and

daughters of a node are introduced, and the cardinality of the set of mothers

is constrained. The two regions are dual in the sense that if a node M is a

daughter of another node N, then N must be M’s mother.

∀N ∈ Nodes : 0 ≤ |Nmothers| ≤ 1 (4.2)

∀M ∈ Nodes : ∀N ∈ Nodes : M ∈ Ndaughters ⇐⇒ N ∈ Mmothers (4.3)

Condition 4.3 can be implemented by a propagator for a reified constraint:

When a constraint C is reified by an integer variable I ∈ {0, 1}, I takes the

value 1 if and only if C is satisfied. If we write [[·]] for the value of the variable

reifying a constraint, equation 4.3 could then be re-stated as

∀M ∈ Nodes : ∀N ∈ Nodes : [[M ∈ Ndaughters]] = [[N ∈ Mmothers]] (4.3′)

The sets of mothers and daughters of a node are linked with the other

tree regions such that the set of nodes strictly above a node N (Nup) is the

union of the sets of nodes weakly above any mother of N. Dually, the set

of nodes strictly below a node N (Ndown) is the union of the sets of nodes
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4 Configuring Categorial Grammars

weakly below any daughter of N. To formulate this condition, another pair

of additional tree regions Nequp and Neqdown is defined such that

Nequp = Neq ] Nup (4.4)

Neqdown = Neq ] Ndown (4.5)

Neq = Nequp ∩ Neqdown (4.6)

The linking constraints can then be stated in terms of selection constraints:

Nup =
⋃ {

Mequp | M ∈ Nmothers
}

(4.7)

Ndown =
⋃ {

Meqdown | M ∈ Ndaughters
}

(4.8)

Selection constraints were developed by Duchier [8, 9]. They have been

successfully used to model selectional ambiguity phenomena such as lexical

ambiguity, and will also be employed for the unfolding encoding developed

in section 4.2. Propagators for selection constraints are available as an add-on

package for Mozart/Oz.

To ensure the second tree property, one needs to make reference to the set

of the roots of a tree, Roots ⊆ Nodes:

|Roots| = 1 (4.9)

∀N ∈ Nodes : N ∈ Roots ⇐⇒ |Nmothers| = 0 (4.10)

Every node must be either a root, or the daughter of another node:

Nodes =
⊎ {

Ndaughters | N ∈ Nodes
}
] Roots (4.11)

Finally, in conjunction with the other constraints, cycles (property 3) can

be disallowed by stating that for each pair (M, N) of nodes, either M and N

are the same nodes (=), or one lies strictly above the other (�), or the two
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4.1 Parsing as tree configuration

lie in disjoint segments of the tree (‖):

∀M ∈ Nodes : ∀N ∈ Nodes : M = N ∨ M � N ∨ N � M ∨ M ‖ N (4.12)

The relation symbols =, � and ‖ are abbreviations for set constraints [10]:

M = N ⇐⇒ Meq = Neq

M � N ⇐⇒ Neqdown ⊆ Meqdown ∧Mequp ⊆ Nequp ∧Mside ⊆ Nside ∧M 6= N

M ‖ N ⇐⇒ Meqdown ⊆ Nside ∧ Neqdown ⊆ Mside

Adding grammatical structure

The conditions given so far are necessary and sufficient to restrict the solu-

tions of a tree configuration problem to some tree. The next step towards the

formalisation of the parsing problem is to restrict the solutions of the CSP to

trees that are licensed by the composition principles of categorial grammar.

Derivations in AB grammar are binary trees. A parse tree using n axioms

will therefore always have 2n− 1 nodes, n leaves and n− 1 inner nodes. To

formulate the parsing problem in terms of a CSP, a straightforward approach

would be to associate a category label with each of these nodes such that

a node is either (a) labelled with the category of a lexical entry for a word

in the input sentence or (b) labelled with a category that is the result of the

application of an (\E) or (/E) rule to the categories of the nodes of its two

daughters.

Unfortunately, a formulation like this leads to relatively weak constraint

propagation, as it contains a number of symmetries that allow several solu-

tions where only one is intended. Most obviously, the relative order of the

inner nodes is not fixed, so that each grammatical sentence will have (n− 1)!

different analyses. This problem can be compared to the “spurious ambigu-

ities” problem of traditional parsing methods for categorial grammar. One

solution would be to impose some (arbitrary) order on the inner nodes. An
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s

np np\s

(np\s)/np np

Figure 4.2: Unfoldings partition a proof tree

alternative approach that aims at reducing the total number of nodes will be

developed in the next section.

4.2 The unfolding encoding

This section presents the main theoretical result of this thesis, a novel for-

mulation of the parsing problem for categorial grammars, developing and

extending an original idea by Denys Duchier (p. c.). It builds on a formal

framework [8, 9] that has recently been employed in the implementation of

an efficient parser for Topological Dependency Grammar (TDG) [7]. The dis-

tinctive feature of the new formulation is that it assumes only one node per

word in the input sentence, enabling strong constraint propagation.

To illustrate the approach, consider figure 4.2, which shows the proof tree

for a simple English sentence (compare the derivation in figure 2.1). Notice

that each axiom induces a path towards the root of the tree on which its

sub-categories act as functors. The terminal node of such a path is either the

root node, or a node that is labelled with a category used as the ticket in the

application of an elimination rule. Intuitively, the set of these paths, which

will be called the unfoldings of their respective axioms, partitions the proof

tree into disjoint regions. Because every unfolding corresponds to exactly one

axiom, it should therefore be possible to use unfoldings instead of categories

as the labels of the nodes in the tree configuration problem. The remainder

of this section will formalise this idea.
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Proof paths and unfoldings

Proof paths are proof trees that can contain “holes”. Holes can be “plugged”

with other proof paths to eventually yield proper proof trees.

Definition 4.1 (Proof paths) The set of AB proof paths is the smallest set gen-

erated by the following inference rules, where A, B, C are categories:

C ` C
(⊥)

↓ ` C
(↓)

(P1 ` B)× (P2 ` B\A) ` A

P1 ` B P2 ` B\A
(×)

(P1 ` A/B)· (P2 ` B) ` A

P1 ` A/B P2 ` B
(·)

Given a proof path P ` C, C is called the head of P. A proof path of the

form C ` C is an anchor, one of the form ↓ ` C is a hole. A proof path is

called proper, if it contains exactly one anchor. The notation P[↓ ` C] refers to

a proof path P containing a designated hole ↓ ` C, and P[P′] then refers to

the proof path obtained from P by replacing this hole by a new proof path P′

with head C. This process will be called plugging.

Rules (×) and (·) express that two proof paths P1 and P2 can be composed

into a new path P if their heads can be composed according to the (\E) and

(/E) rules of the Natural Deduction presentation of the Lambek calculus given

in figure 2.3. This suggests the following lemma:

Lemma 4.1 Consider a proper proof path P ` C. If P′ ` C is the proof path

that is obtained from P by plugging all holes ↓ ` D with NL sequents ∆ ` D,

then there is a natural mapping from P′ to an NL sequent Γ such that Γ ` C.

Proof: The mapping is as follows:

[[∆]]PP = ∆

[[(P1 ` B)× (P2 ` B\A)]]PP = ([[P1]]PP, [[P2]]PP)

[[(P1 ` A/B)· (P2 ` B)]]PP = ([[P1]]PP, [[P2]]PP) (qed)
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(np\s)/np

(a) d = 0

np\s

(np\s)/np ↓np

(b) d = 1

s

↓np np\s

(np\s)/np ↓np

(c) d = 2

Figure 4.3: Three unfoldings of a transitive verb

The next definition will establish a designated set of proper proof paths

induced by the axioms of a proof tree. These unfoldings satisfy the conditions

of lemma 4.1 and can therefore be used to build valid proof trees.

Definition 4.2 (Unfoldings) The set of unfoldings of a category C is the small-

est set generated by the following inference rules:

C ` C
(⊥)

(↓ ` B)× (P ` B\A) ` A

P ` B\A
(×)

(P ` A/B)· (↓ ` B) ` A

P ` A/B
(·)

The same terminology as for proof paths will be used for unfoldings.

To give an example, figure 4.3 shows tree representations of the three

unfoldings of the transitive verb category (np\s)/np, where holes ↓ ` C are

written as ↓C. The anchor of these unfoldings is (np\s)/np ` (np\s)/np. From

left to right, the heads are (np\s)/np, np\s, and s.

Every AB proof tree can be composed of the unfoldings of its axioms:

Lemma 4.2 Let Γ ` C be any NL derivation using only (\E) and (/E) as its

rules. Then a hole-free proof path P ` D with [[P]]PP = Γ and D = C can be

obtained by choosing for each axiom in the derivation one of its unfoldings

and plugging them together.

Proof: Let T be a derivation tree that meets the requirements of the lemma,

and use induction over the height of T, h.
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If h = 0, then T is of shape C ` C and has the single axiom C. The only

unfolding of C is C ` C itself, and [[C]]PP = C.

Now suppose that the lemma holds for every proof tree of height h < n,

and consider a proof tree of height n. Without loss of generality, assume that

the last rule applied in T is (\E). Then the top of the tree is of the form

(Γ, ∆) ` A
Γ ` B ∆ ` B\A

(\E)

By the induction hypothesis, there are two hole-free proof paths PΓ ` B and

P∆ ` B\A such that [[PΓ]]PP = Γ and [[P∆]]PP = ∆. Furthermore, the proof

path for the ride category must be the result of the plugging of an unfolding

U = P∆ ` B\A of some axiom X. Then, by rule (×), U′ = (↓ ` B)× (P∆ `
B\A) ` A must also be among the unfoldings of X. Extending U to U′ and

plugging the hole ↓ ` B with the ticket derivation Γ ` B by lemma 4.1 yields

a new hole-free proof path

(Γ ` B)× (P∆ ` B\A) ` A,

which satisfies the proof obligation, as

[[(Γ ` B)× (P∆ ` B\A)]]PP = ([[Γ]]PP, [[P∆]]PP) = (Γ, ∆). (qed)

Lemmata 4.1 and 4.2 proof the initial intuition about unfoldings: Each

derivation tree with n axioms can be decomposed into n unfoldings, one for

each axiom. In a second attempt, the tree configuration problem can therefore

be stated as follows: For each word in the input sentence, (1) select one of its

unfoldings, and (2) find a tree that is composed of these unfoldings in a way

that is justified by the principles of the grammar. The first task is a problem

of selectional ambiguity that can be solved using selection constraints [8].

The second task will be formalised by the notion of the grid of a CG.
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Relation to partial proof trees

The unfolding encoding can be regarded as a constraint formalisation of the

context-free fragment of the partial proof tree system of Joshi and Kulick [17].

Partial proof trees (PPTs) essentially are unfoldings that, besides “plugging”

(called application by Joshi and Kulick), support two other operations, stretch-

ing and interpolation, which increase the generative capacity of PPTs beyond

context-freeness. In order to remain in the realm of mildly context-sensitive

languages, certain lexical restrictions on the unfoldings of a category have to

be imposed on PPTs. For example, an adverb category like (np\s)\(np?\s)
will not yield the “maximal” unfolding with the holes ↓ ` (np\s) and ↓ ` np?:

The ↓ ` np? hole is marked as “not selected” (?). Lexical restrictions like that

are unnecessary in the present framework.

Grids

Lemma 4.1 imposes the restriction that two unfoldings shall only be able to

plug together when the head of one matches a hole of the other. To formulate

this idea in terms of set constraints, the notion of the grid of a categorial

grammar will be introduced.

It will be useful to arrange some notation that allows switching the per-

spective between nodes, unfoldings, and the categories of their heads: Letters

like M, N will denote nodes. The unfoldings associated to them will be writ-

ten as UM, UN; the categories of their heads as CM, CN. Finally, the function

unfold is supposed to return the set of unfoldings of a node or category.

The left-to-right ordering of an unfolding’s holes induces a structure sim-

ilar to the subcat list of grammar formalisms like Head-driven Phrase Struc-

ture Grammar (HPSG). However, while in HPSG, subcat lists can be regarded

as mappings from integers to categories, in the present framework, each un-

folding U corresponds to a mapping subcat(U) from pairs of fields (left and

right in the context of standard categorial grammar) and positions within a

48



4.2 The unfolding encoding

field to a set of categories. The elements of the domain of this mapping will

be referred to as unfolding indices. To give an example, the subcat mapping

for the unfolding of figure 4.3(c) would be {〈�, 1〉 7→ {np} , 〈�, 1〉 7→ {np}},
expressing that both the first hole to the left (unfolding index 〈�, 1〉) and the

first hole to the right (〈�, 1〉) of the unfolding’s anchor are labelled with the

category np.

Definition 4.3 (Subcat mapping) Let U be an unfolding with its leaf word

being U1, . . . , Un. Then the subcat mapping of U is the unique solution of

subcat(U) = d1
i1

[[U1]]
d2
i2
∪ d2

i2
[[U2]]

d3
i3
∪ · · · ∪ dn

in [[Un]]dn+1
in+1

,

such that

�
1 [[⊥ ` C]]�1 = ∅

�
i+1[[↓ ` C]]�i = {〈�, i〉 7→ {C}}
�
i [[↓ ` C]]�i+1 = {〈�, i〉 7→ {C}} .

The grid of a categorial grammar is the union of the sets of unfolding

indices of all unfoldings possible in that grammar.

Definition 4.4 (Grid) Let C be a set of categories. The grid of C is defined as

G(C) = { I | ∃C ∈ C : ∃U ∈ unfold(C) : I ∈ dom(subcat(U)) } .

Continuing the example, the set of the three unfoldings in figure 4.3 would

have the grid {〈�, 1〉, 〈�, 1〉}.
The notion of the grid allows the straightforward embedding of the indi-

vidual subcat(U) mappings for a set C of categories, which have different

domains depending on U, into mappings subcatG(C)(U) defined on the com-

plete grid. For example, if the unfoldings from figure 4.3 would occur in
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a grammar with grid {〈�, 1〉, 〈�, 1〉, 〈�, 2〉}, their respective subcatG(C)(U)

mappings would be

4.3(a) → {〈�, 1〉 7→ ∅, 〈�, 1〉 7→ ∅, 〈�, 2〉 7→ ∅} ,

4.3(b) → {〈�, 1〉 7→ ∅, 〈�, 1〉 7→ {np} , 〈�, 2〉 7→ ∅} ,

4.3(c) → {〈�, 1〉 7→ {np} , 〈�, 1〉 7→ {np} , 〈�, 2〉 7→ ∅} .

Linking grids and tree regions

Grids and tree regions can be linked by introducing a function

plugged ∈ Nodes→ G(C) → P(Nodes)

that maps a node N ∈ Nodes and an unfolding index I ∈ G(C) to the set of

those nodes whose associated unfoldings have been plugged into UN at the

hole with the unfolding index I. As both G(C) and Nodes and are fixed for a

given grammar and input sentence, the plugged mapping can be constructed

by imposing two set constraints:

First, the set of daughters of a node N is the set of all nodes whose asso-

ciated unfoldings have been plugged into UN:

∀N ∈ Nodes : Ndaughters =
⋃
I

plugged(N)(I) (4.13)

Second, an unfolding UM can be plugged into an unfolding UN at a hole

with index I if and only if the hole in UN and the head of UM are labelled

with the same category:

∀M ∈ Nodes : ∀N ∈ Nodes : ∀I ∈ G(C) :

(M ∈ plugged(N)(I) ∧ CM ∈ subcat(UN)(I)) ∨

M 6∈ plugged(N)(I) (4.14)
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np s np

〈C, 1〉 〈B, 1〉

Figure 4.4: A dependency tree for figure 4.3(c)

These last two constraints conclude the presentation of the parsing prob-

lem for categorial grammars as a tree configuration problem: Taken together,

4.1–4.14 will permit those and only those tree structures as solutions to a CSP

that can be obtained from the words in the input sentence by the composition

principles of AB grammar.

Relation to TDG

It is interesting to see the similarities between the unfolding indices intro-

duced here and the “grammatical roles” in the framework of Debusmann

and Duchier [7, 9]. Unfoldings can indeed be presented as dependency trees

whose edges are labelled with unfolding indices (figure 4.4), a fact that en-

ables the application of techniques developed for constraint parsing declara-

tive dependency grammars to the parse problem for categorial grammars.

4.3 Stationary and transit constraints

The formalisation presented so far does allow neither for structural rules to

increase its generative power beyond context-freeness, nor for multimodality.

To test its extensibility, a recent proposal for structural constraints on Cate-

gorial Type Logics by Erk and Kruijff [11] was integrated into it. This section

briefly presents the proposal and discusses the additional concepts needed

for its implementation.

Not many methods are available for the processing of Categorial Type

Logics in the generality that was discussed in chapter 2. The proof search
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4 Configuring Categorial Grammars

algorithm for NL3R proposed Moot [27] follows a “generate and test” ap-

proach: Given a CTL grammar (a base logic plus a package of structural rules)

and an input sequence S = w1, . . . , wn of words,

– generate the set of AB derivations over all permutations of S, and then

– test for each such derivation, if by the structural rules of the grammar

it can be rewritten into a new derivation with the axioms in the order

actually encountered in S.

Erk and Kruijff [11] suggest two kinds of constraints to reduce the com-

plexity of the search problem involved in the proof search algorithm. Both are

obtained by an abstract interpretation of the rule set of the grammar: Station-

ary constraints impose restrictions on the generation phase by “locking” parts

of the tree that cannot possibly be restructured. Transit constraints restrict the

set of structural rules that can be applied to a given part of a generated tree,

thereby pruning the search space for the testing phase of the algorithm.

Stationary constraints

Stationary constraints are derived from stationary terms for structural modes.

A stationary term for a mode µ describes the effects that the application of

a structural rule R has on tree material below nodes labelled with µ. The

associativity rule

A ◦A (B ◦B C) → (A ◦A B) ◦B C (4.15)

for example does not affect the material in the left subtree of a node labelled

with mode A (represented by the variable A), but removes material (C) from

its right subtree: With respect to the rule, A is left stationary, but not right-

stationary. If a rule only reorders material below a node labelled with a

mode µ, but does not insert or remove any material, µ is called stationary with

respect to that rule. The following definitions will formalise these concepts.
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4.3 Stationary and transit constraints

Definition 4.5 (ID map) Let R = I → O be a linear structural rule such that

each node in I and O is labelled with a different mode or variable, and let DI

and DO be the tree domains associated to I and O. Then the ID map for R,

idmapR ∈ DI → DO, is the unique mapping that associates a node position

i ∈ Di with a node position o ∈ Do if and only if i and o carry the same label.

It will often be convenient to identify nodes of a tree and their positions in the

corresponding tree domain, and accordingly to treat idmapR as a mapping

between nodes of different trees.

The next two definitions are due to Erk and Kruijff [11]. Given a node u

of a tree τ, we write Lτ(u) and Rτ(u) for the subtrees rooted at u’s left and

right child, and Sτ(u) for the subtree rooted at u.

Definition 4.6 (Stationary terms) Let R be a structural rule, and let idmapR

be its ID mapping. If vi is a node of I labelled by a structural mode µ, and

vo = idmapRi(vi), then µ(cL, cR) is a stationary term for Ri, where

– cL = ⇓ (cR = ⇓) if and only if exactly the variables that occur in LI(vi)

(RI(vi)) also occur in LO(vo) (RO(vo)),

– otherwise cL = ⇔ (cR = ⇔) if and only if exactly those variables that

occur in SI(vi) still occur in SO(vo), and

– cL = ⇑ (cR = ⇑) otherwise.

Definition 4.7 (Stationary modes) Let R be a set of structural rules and let

ΣR(µ) be the set of stationary terms for rules in R with root µ. Then µ is

– stationary (for R) if and only if for all t ∈ ΣR(µ), no child is ⇑,

– left-stationary, if and only if for all t ∈ ΣR(µ), the left child is ⇓,

– right-stationary, if and only if for all t ∈ ΣR(µ), the right child is ⇓.
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4 Configuring Categorial Grammars

The effect of the stationary constraints is the elimination of impossible tree

configurations during the generation phase of the proof search algorithm. To

illustrate this issue, consider the sentence

(1) 1Dan 2likes 3parsnips,

where the words are assigned the same categories as in figure 2.1. Moot’s

proof search algorithm generates two AB derivations for this input sequence

(boxed letters mark modes of slash operators used in a derivation step):

A

1Dan B

2likes 3parsnips

A

3parsnips B

2likes 1Dan

The left derivation preserves the order of the words in the input sequence,

the right derivation is yielded by a permutation of this order.

Assume now that mode A is right-stationary. This means, that all structural

rules will apply either to material within the right subtree of the tree labelled

with A in the left derivation (shaded), or will move this subtree as a whole,

but will not remove any nodes from or add any nodes to it. In the right

derivation, this condition is violated, as the node 3parsnips has been removed

and replaced by the node 1Dan. Therefore, this derivation does not need to

be considered as a candidate for rewriting.

Transit constraints

Transit constraints impose restrictions on the second phase of the proof search

algorithm, the rewriting of the tree structures from the generation phase.

They are derived from the transit relation of the grammar fragment in ques-

tion, which describes how structural rules can affect tree fragments identified

by transit patterns.
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4.3 Stationary and transit constraints

Definition 4.8 (Transit pattern) LetM be the set of modes for a given gram-

mar fragment, and let trn be a special label not occuring in M, called the

transit label. A transit pattern then is a triple 〈p, d, c〉 where

– p and c are labels from the setM]{trn}, called the parent and the child

label, such that exactly one of them is the transit label, and

– d ∈ {�, �} is a direction.

Transit patterns will usually be written (trn)µ, (µ)trn (direction �) and

µ(trn), trn(µ) (direction �), where µ is a mode label, and the child label is

written in parentheses.

Definition 4.9 (Occurs at) A transit pattern 〈p, �, c〉 (〈p, �, c〉) occurs in a tree

at the node u if

– p = trn, and u has a left (right) child u′ labelled with c, or

– c = trn, and u is the left (right) child of a node u′ labelled with p.

In both cases, the node u is called transit node, the node u′ context node of the

occuring pattern.

To get an understanding of how the effects of structural rules are encoded

in the transit relation, consider again the associativity rule in 4.15:

A ◦A (B ◦B C) → (A ◦A B) ◦B C (4.15)

On its left hand side, the transit pattern A(trn) occurs at the node ◦B, on

its right hand side, (A)trn; in the transit relation, there would be an edge

between the two patterns.

To obtain the transit constraints, each transit pattern is annotated with the

labels of the nodes at which the pattern occurs in a tree generated during the

first phase of the proof search algorithm. The structural rules then license
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the “travelling” of these labels to other transit patterns along the edges of the

transit relation. The thus annotated transit relation is called a logical roadmap.

Trees resulting from the rewriting phase have to obey the constraint that

each transit pattern can only occur for labels that are licensed by a logical

roadmap. For a formalisation of these concepts, the reader is referred to the

original paper by Erk and Kruijff [11].

Transit constraints as abstract interpretation

The analysis of structural rules in terms of the effects that they have on

parts of trees identified by transit patterns is a typical example of abstract

interpretation. Similar to the interval abstraction presented in section 3.3, it

allows to draw conclusions potentially pruning the search space, without the

danger of losing solutions to the overall problem.

It is obvious that the abstraction from structural rules to the transit rela-

tion is not complete, as a structural rule in the general case modifies several

transit patterns at the same time. The consequence of the abstraction’s incom-

pleteness is that the constraints proposed by Erk and Kruijff license all valid

derivations, but not only valid derivations: The outcome derivations of the

constrained proof search algorithm are a superset of the derivations actually

licensed by the grammar.

Implementing stationary constraints

To give an example for how the framework presented in section 4.2 can be

extended by constraints like the ones proposed by Erk and Kruijff, the for-

malisation of stationary constraints will be demonstrated. The formalisation

of transit constraints [11] does not require any additional concepts.

The crucial additional concept needed to capture the effects of stationary

constraints in the unfolding encoding is the notion of the younger sisters of

an unfolding index and its associated subcat item.
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4.3 Stationary and transit constraints

s

〈C, 1〉 np\As

(np\As)/Bnp 〈B, 1〉

Figure 4.5: Example for definition 4.11

Apart from the “horizontal” dimension of the unfolding that is encoded

in the grid, there also is a “vertical” dimension: In the unfolding given in

figure 4.3(c), the hole with the index 〈�, 1〉 lies below the hole with the index

〈�, 1〉. With reference to a flattened tree like the one in figure 4.4, the left

subcat np will therefore be referred to as a younger sister of the right subcat

np. The definition of this concept is straightforward:

Definition 4.10 (Younger sister) Let U be an unfolding with two holes H1

and H2, and let I1 and I2 be the indices of these holes. Then I2 is called a

younger sister of I1 if the path from the root of the unfolding to H2 is longer

than the path from the root to H1.

Another relevant piece of information is the mode under which an un-

folding index/subcat item is linked to the anchor of its unfolding.

Definition 4.11 (Mode associated to an unfolding index) Let U be an un-

folding, and let I be an unfolding index in U. The mode associated to I is

the mode of the slash operator by which the category of the hole at I was

linked in U.

For example, in the unfolding shown in figure 4.5, the associated mode

for the unfolding index 〈�, 1〉 is A, while the associated mode for 〈�, 1〉 is B.

Assume that the input for the proof search algorithm is a sequence w1, . . . , wn

of words. Recall that in the present framework, every word corresponds to ex-

actly one unfolding. Therefore, each subtree of the derivation can be mapped
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4 Configuring Categorial Grammars

to a set of indices identifying those unfoldings/words that this subtree has

been composed of. This set will be called the yield of the corresponding sub-

tree. To say that a mode that labels a node u is stationary then amounts to

stating that the union of the yields of the daughters of u is convex – the com-

posing unfoldings can swap place, but no material can move out. Similarly,

if a mode labelling a node u is left-stationary (right-stationary), then the yield

of the subtree rooted at the left (right) daughter of u must be convex – the

unfoldings that it has been composed of must be adjacent.

To formalise these ideas in the unfolding framework, the tree configuration

problem is amended by three new functions:

yield ∈ Nodes→ P(N)

gridYields ∈ Nodes→ G(C) → P(N)

youngerSisterYields ∈ Nodes→ G(C) → P(N)

The yield yield(N) of a node N is a set of integers, giving the positions of

nodes weakly below N. The gridYields functions gives the yield of the the

daughters of a node at a given position in the grid:

∀N ∈ Nodes : ∀I ∈ G(C) : gridYields(N)(I) =

{ yield(M) | M ∈ subcat(N)(I) } . (4.16)

youngerSisterYields maps a node’s grid position to the yield of the younger

sisters (youngerSisters) at that position:

∀N ∈ Nodes : ∀I ∈ G(C) : youngerSisterYields(N)(I) =

{ yield(M1) | M1 ∈ { subcat(M2)(I) | M2 ∈ youngerSisters(N)(I) } } .

(4.17)
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4.3 Stationary and transit constraints

If a subcat item is attached to an anchor under a mode from the set

Stationaries of all stationary modes, then the yield of its associated node must

be a convex set of position indices. The function modes gives the modes

associated to a given set of nodes. The convexity constraint is realised by a

propagator convex.

∀N ∈ Nodes : ∀I ∈ G(C) : |Stationaries ∩modes(subcat(N)(I))| = 0 ∨

convex(youngerSisterYields(N)(I)) (4.18)

If a subcat item is attached to an anchor under a mode that is left- or right-

stationary (specified by the sets FieldStationaries(�) and FieldStationaries(�)),

then that part of the yield of its associated node that lies in the respective

field must be a convex set of positions.

∀N ∈ Nodes : ∀I ∈ G(C) : ∀F ∈ {�, �} :

|FieldStationaries(F) ∩modes(subcat(N)(I))| = 0 ∨ Ξ(N, I, F) (4.19)

where

Ξ(N, I, F) = convex(youngerSisterYields(N)(I) ∩ gridYields(N)(I))

if I is in field F ∈ {�, �}, and Ξ(N, I, F) = true otherwise.

Summary

Together with the restrictions formulated in section 4.2, the new constraints

4.16–4.19 constrain the generation phase of the proof search algorithm. Each

generated tree is the starting point for the application of structural rules. This

rewriting process is constrained by the stationary constraints and the transit

constraints and eventually yields a set of destination trees, corresponding to

potential derivations of the original sentence [11].
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Chapter 5

The Implementation

One of the central objectives of this project was the implementation of the

framework presented in the previous section, and the stationary and tran-

sit constraints proposed by Erk and Kruijff. This implementation has been

carried out using the Mozart/Oz programming system [28].

5.1 General architecture

The architecture of the implementation (figure 5.1) reflects the two-step strat-

egy developed in section 4.3:

1. In the first step, a grammar definition, given as an XML document,

is read in and analysed to obtain the stationary constraints and the

transit relation. The stationary constraints are used in a constraint solver

for the starting tree problem: Generate those AB derivations trees over

permutations of a given input sequence of words that are licensed by

stationary modes.

2. In the second step, the user can select a specific starting tree to obtain the

corresponding logical roadmap, which induces the transit constraints.

These constraints are then used in a second constraint solver to compute

the destination trees – those derivations that can potentially be obtained

from the starting tree by applying the structural rules to it.

The different components of the implementation can perhaps best be intro-

duced by a concrete example.
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Step 1

Step 2

Grammar Input sentence

Transit relation

Starting trees

Logical Roadmap Destination trees

?

?

?

-

Figure 5.1: Architecture of the implementation

5.2 Example

Consider the grammar fragment given in table 5.1, which is also used by Erk

and Kruijff [11]. The categories and structural rules of this fragment license

a number of sentences that illustrate an instance of word-order variation in

German:

(1) . . . , dass Maria verspricht einen Roman zu schreiben.

(2) . . . , dass Maria einen Roman verspricht zu schreiben.

(3) . . . , dass einen Roman zu schreiben Maria verspricht.

Assume that the system is initialised with the grammar fragment and

sentence (2). The initialisation starts the Oz Explorer [31], an interactive tool

that will display the search tree for the starting tree problem. The user now

has the choice between several “information actions” (figure 5.2) to inspect

the solutions of the problem:
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5.2 Example

A ◦con (B ◦dc C) → B ◦dc (A ◦con C) (R1)

A ◦sc (B ◦con C) → (A ◦sc B) ◦con C (R2)

A ◦con (B ◦dc C) → (B ◦dc C) ◦con A (R3)

dass : relc/relscon

Maria : np

verspricht : (np\scscon)/con(np\sczuinf)

einen : np/dnp

Roman : np

zu_schreiben : np\dc(np\sczuinf)

Table 5.1: Sample grammar fragment [11]

Figure 5.2: The Information Action menu
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5 The Implementation

trn(con)

trn(dc)

(con)trn

(dc)trn

dc(trn)

con(trn)

trn(sc)

(sc)trn

(trn)con

sc(trn)

Figure 5.3: The transit relation for the grammar fragment in table 5.1

Show transit relation This will show a graphical representation of the tran-

sit relation induced by the grammar, as rendered by the DaVinci graph

drawing software [3]. The transit graph for the example grammar frag-

ment is shown in figure 5.3.

Show starting tree This information action will show a tree representation

of the selected solution, using Guido Tack’s tree drawing widget [35].

The example grammar fragment licenses two starting trees, which are

given in figure 5.4.

Show destination tree description The selected starting tree is used to an-

notate the transit relation with the labels of the nodes that the transit

patterns occur at, eventually resulting in a logical roadmap that induces

the transit constraints. Transit constraints and stationary constraints

yield an underspecified description of the destination trees. A graph-

ical representation of this description will be shown in the DaVinci

window.
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rel

dass sc

Maria con

verspricht dc

d

einen Roman

zu_schreiben

(a)

rel

dass sc

d

einen Roman

con

verspricht dc

Maria zu_schreiben

(b)

Figure 5.4: Starting trees for the grammar fragment in table 5.1

The destination tree description for the starting tree in figure 5.4(a) is

shown in figure 5.5. The solid lines depict dominance constraints: The la-

bel at the end of the arrow must be attached to a node occuring strictly

below the node that carries the label at the source of the arrow. Dom-

inance constraints are obtained from the stationary constraints and the

transit constraints [11]. The dashed lines correspond to precedence con-

straints, which restrict the linear order of the leaves. These constraints

are obtained from the order of the words in the input sequence.

Solve destination tree description The destination tree description of the se-

lected starting will be sent to and solved by a new instance of the Oz

Explorer. For the starting tree in figure 5.4(a), there is one destination

tree, which is shown in figure 5.6. It can be obtained from its starting

tree by a single application of the structural rule R1.

? ? ?

The implementation has been released under the terms and conditions of the

GNU Public License and made publicly available through the Mozart Global

Users’ Library (MOGUL) under the ID mogul:/kuhlmann/concat.
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11 rel

10 sc 9 con 8 dc

7 zu_schreiben

6 d

5 roman

4 einen

3 verspricht

2 maria

1 dass

Figure 5.5: Destination tree description for the starting tree in figure 5.4(a)

rel

dass sc

Maria dc

d

einen Roman

con

verspricht zu_schreiben

Figure 5.6: Destination tree for the starting tree in figure 5.4(a)
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Chapter 6

Conclusions and Outlook

This thesis has shown how constraint programming can be applied to the

processing of Categorial Type Logics (CTLs). It has presented a novel for-

malisation of the parsing task for categorial grammars as a tree configuration

problem (section 4.2), and demonstrated the extensibility of this framework

by integrating into it a recent proposal for constraints on structural control

(section 4.3). The constraint framework is a promising foundation for detailed

studies on the real-world complexity of CTLs and the development of new

grammar fragments. One of its main advantages is its fundamentally declar-

ative nature, which allows a close correspondence between formalisation and

implementation. This property has been demonstrated by the prototype sys-

tem implemented during this project.

Several questions remain to be answered in order to make the present frame-

work a fully-fledged parser for CTLs.

Validation First, due to the incompleteness of the structural constraints

discussed in section 4.3, the prototype system still produces a superset of the

legitimate derivations. To allow the comparison with other systems, a valida-

tion component would be needed, that checks derivations for their validity.

The design and implementation of this component poses a challenge, as vali-

dation can easily become a “generate and test” step in disguise [11]. To avoid

this, one would probably need to make efficient usage of the information ac-

cumulated in the logical roadmap. However, the details of the validation step

require further investigation.
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6 Conclusions and Outlook

Coverage The time frame for this project did not allow the evaluation of

the proposed method on larger grammar fragments. To acquire such frag-

ments, it would be interesting, for example, to combine the idea of using

CTLs to simulate Combinatory Categorial Grammar (CCG) [20] with the re-

cent work of Hockenmaier and Steedman on the automated extraction of CCG

lexicons from large text corpora [16]. The evaluation of the constraint parsing

framework on such real-world data would hopefully provide us with a better

understanding of the practical efficiency of this approach.

Unary modalities An important extension of the framework proposed

here is the treatment of unary modalities. There are two ways in which

they could be integrated into the present formalisation: They could either be

modelled by additional nodes in the parse tree, or encoded at the existing

nodes as “structural features”. The former alternative would compromise the

non-redundant encoding and decrease the power of constraint propagation,

and is therefore undesirable. The features approach would have to take into

account that structures can be “locked” with several modes, and that the

order of these modes in general will matter for the applicability of structural

rules. With respect to the unfolding encoding, this would require a more

fine-grained notion of when two unfoldings can plug together.

Hypothetical reasoning The parsing framework presented here does

not currently allow hypothetical reasoning (cf. section 2.4). Furthermore,

considering that one of the crucial features of the unfolding encoding is the

bijection between words in the input sentence and nodes in the parse tree,

it is not at all obvious how it could provide for hypotheticals in the first

place. One possibility would be to adapt compilation techniques [15] to the

present framework. Another interesting direction would be to explore the

connections between the unfolding encoding and partial proof trees [17], in

which hypothetical reasoning is possible through the stretching operation.
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Parallelism A final proposal for further work concerns the general archi-

tecture of the processing itself: The current model is linear; it first generates

the starting trees and then for each of these starting trees produces the desti-

nation trees. It would certainly be interesting to investigate if they could be

executed in parallel, and if such an architecture could set free synergy effects,

such that the two processes would mutually constrain each other. A simi-

lar architecture is used in the parser for Topological Dependency Grammar

(TDG) [7], and has proven to be very successful.
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