
Generativity and Dynamic Opacity for Abstract Types
(Extended Version)

Andreas Rossberg
∗

Universität des Saarlandes

rossberg@ps.uni-sb.de

ABSTRACT
The standard formalism for explaining abstract types is ex-
istential quantification. While it provides a sufficient model
for type abstraction in entirely statically typed languages,
it proves to be too weak for languages enriched with forms
of dynamic typing, where parametricity is violated. As an
alternative approach to type abstraction that addresses this
shortcoming we present a calculus for dynamic type gener-
ation. It features an explicit construct for generating new
type names and relies on coercions for managing abstraction
boundaries between generated types and their designated
representation. Sealing is represented as a generalized form
of these coercions. The calculus maintains abstractions dy-
namically without restricting type analysis.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Abstract
data types; F.3.3 [Studies of Program Constructs]: Type
structure

General Terms
Languages, Theory

Keywords
abstract types, existential types, dynamic typing, generativ-
ity, opacity, encapsulation

1. INTRODUCTION
Type abstraction is an important tool for structuring pro-

grams and is a fundamental feature of most module systems.
Languages like Modula [33, 4], CLU [16] and ML [17, 13]
provide features for specifying abstract types, either directly

∗This research is funded by the Deutsche Forschungsgemein-
schaft (DFG) as part of SFB 378: Ressourcenadaptive kog-
nitive Prozesse, Project NEP: Statisch getypte Program-
mierumgebung für nebenläufige Constraints

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

or by means of their module systems. Generally speaking,
an abstract type is declared in two parts: its signature and
an implementation. The former usually allows to declare
a name for the abstract type and specifies the operations
available on values of that type, while the latter fixes a rep-
resentation type for those values and defines the signature’s
operations accordingly. The key property is that the rep-
resentation type remains private: the sole way to create or
access values of the abstract type from the outside is by
going through the operations listed in the signature.

For illustration purposes we will use (a subset of) the
Standard ML module language [17]. In SML, an abstract
type’s signature can be specified by a signature declaration.
Consider the common example of a complex number type:

signature COMPLEX =

sig

type complex

val mk : real * real -> complex

val re : complex -> real

val im : complex -> real

val mul : complex * complex -> complex

end

An implementation is provided by a structure declaration:

structure C :> COMPLEX =

struct

type complex = real * real (* polar *)

fun mk(x,y) = (sqrt(x*x+y*y), atan2(y,x)+pi)

fun re(a,th) = a * cos th

fun im(a,th) = a * sin th

fun mul((a1,th1), (a2,th2)) =

(a1*a2, rem(th1+th2, 2*pi))

end

An alternative implementation might use a cartesian repre-
sentation for complex numbers. In any case, the abstraction
operator :> hides the representation type real * real in
the sense that, to the outside, the type complex is different
from real * real — or any other type, for that matter.
The operations exported through the signature are the only
means to compose and decompose complex numbers.

The advantage of the encapsulation idea implemented by
type abstraction is twofold. First, the use of type abstrac-
tion enforces loose coupling: client code is compelled not
to depend on internals of an abstract type’s representation.
The implementation may thus be modified freely without
breaking any existing client code, as long as the signature
(and the semantics of its operations) remains the same.

Even more important is the second point: the type system
guarantees that values of abstract type cannot be forged
by clients. Such a guarantee is an essential prerequisite for
enabling implementations to maintain invariants on their
representations and their internal state. For example, our
complex implementation preserves the invariant that the ar-
gument θ (th) of the complex number is always normalized
to θ ∈ [0; 2π[. Type abstraction also prevents mixing values
stemming from different (incompatible) implementations of
the same siganture, e.g. a polar and a cartesian representa-
tion of complex numbers.

In their classic paper, Mitchell and Plotkin showed that
abstract types can be formalised naturally as existential
types [19], using the standard typing rules as found in con-
structive logic (e.g. System F [8]). We will review existential
types and their relation to abstract types in section 2.

1.1 Dynamic type analysis
Constructs for (dynamic) type analysis have been formu-

lated in different flavours. Examples are dynamics [1, 14]
and intensional type analysis [11] and extensional polymor-
phism [7]. They have in common that there is some form
of typecase expression that allows branching dependent on
a type that is determined dynamically.

Let us consider an extension of SML with typecase. In or-
der to simplify the presentation, we use a very simple variant
throughout this paper. Our typecase does not bind any type
variables, but merely allows the type of an expression to be
compared to a second type:

typecase exp1 : τ1 of x : τ2 then exp2 else exp3

The intuitive semantics of this expression form is that it
evaluates to exp2[x := exp1] iff τ1 = τ2 dynamically, to exp3

otherwise. That semantics will be made more precise in
section 2.3. An example for using a typecase might be a
simplistic polymorphic string conversion function:

fun ’a toString (x : ’a) =

typecase x : ’a of x’ : int

then Int.toString x’

else typecase x : ’a of x’ : real

then Real.toString x’

else typecase x : ’a of x’ : bool

then Bool.toString x’

else "_"

By applying this function to some arbitrary value v, the
polymorphic type variable ’a will be instantiated to a con-
crete (dynamic) type τ , the type of v. The function will
properly dispatch on that type and delegate the conversion
task to a suitable library function, if available.

How does typecase interact with type abstraction? What
happens, if we try to evaluate the following expression:

typecase C.mk(0.0, 1.0) : C.complex

of p : real * real

then print("theta = " ^ Real.toString(#2 p))

else raise CouldntAccessRepresentation

Or even more critical:

typecase (1.0, 1001.0*pi) : real * real

of z : C.complex

then z

else raise CouldntAccessRepresentation

It is obvious that in both cases the else branch should be
chosen. Or is it? Unfortunately, this is not the answer the
standard model of abstract types using existential quantifi-
cation will give! The reasons will become apparent in section
2.3. In fact, it is well-known that existential abstraction can
be broken in the presence of primitives for type analysis,
because the presence of the latter causes loss of the para-
metricity property [30, 26] its encapsulation power relies on.
Weirich demonstrated that in a non-parametric setting arbi-
trary values of existential type can be cast back and forth to
and from their actual representation type [32]. While such a
cast is still type-safe in the sense of not violating soundness,
it clearly undermines any of the previously mentioned guar-
antees the type system should make about abstract types
— the first expression above is coupled to internals of the
complex representation, while the second even breaks its in-
variant on the complex angle θ. Because type abstraction is
no longer sufficient to ensure encapsulation, it is practically
rendered useless.

1.2 Agenda
How can the conflict be solved? A simple possibility is

to forbid analysis of abstract types altogether. For exam-
ple, Harper and Morrisett curtly propose to distinguish be-
tween analyzable and non-analyzable types [11]. However,
this clearly is overly restrictive. For example, it would dis-
allow us to extend the string conversion function to handle
complex numbers, by rendering the following code illegal:

fun ’a toString (x : ’a) =

typecase x : ’a of x’ : C.complex then

Real.toString(C.re x’) ^

(if im x’ >= 0.0 then "+" else "-") ^

Real.toString(abs(C.im x’)) ^ "i"

else ...

Similarly, in a language with type dynamic, it would become
impossible to inject values with abstract type into dynamic

— or more precisely, to project them out again. Hence,
such a solution might seriously impair the usefulness of type
analysis as well as the applicability of type abstraction.

This paper thus aims to define a formal semantics for type
abstraction that is fully compatible with type analysis. In
short, we seek a semantics in which the interplay between
both features has the following characteristics:

1. dynamic opacity: an abstract type cannot be identified
with any other type through dynamic analysis,

2. full reflexivity: every type can be analyzed.

Dynamic opacity basically says that the key property of type
abstraction ought to carry over from the static type system
to dynamic typing: abstract types need to be unaccessible
and unforgeable even by means of dynamic type analysis.
The second property effectively means that any type must
be comparable (dynamically) to any other. We borrow the
term full reflexivity from Trifonov, Saha and Shao [31], who
introduced it in a slightly different context to express the ab-
sence of any restriction on the syntactic form of types that
are available for analysis (no such restriction is necessary for
the weak typecase used here). Taken together, both require-
ments imply that an abstract type must be different from
any other type in the language’s universe of types. It clearly
follows that type abstraction must have some sort of genera-
tive operational semantics: introduction of an abstract type

dynamically generates a new type. Without generativity,
type abstraction has no dynamic interpretation!

It should be noted that we solely discuss the requirements
of dynamic typing intended for programmatic use, i.e. as a
language feature available to the programmer in the external
language. There are different application domains for type
analysis, especially in language implementations for dealing
with specialised data representations in the compilation of
polymorphic functions (which was the motivation for Harper
and Morrisett’s work). Such internal use demands for differ-
ent, incompatible properties. In particular, dynamic opac-
ity is specifically not wanted under such circumstances. We
view external and internal use of dynamic typing as largely
independent issues, and will not further consider the latter.

1.3 Plan
In section 2 we give a short overview over abstract types

in the existential type encoding and investigate how it inter-
feres with dynamic type analysis. In section 3 we introduce
the basic features of the λN-calculus, which we propose as
an alternative model. Section 4 discusses the calculus and
its basic properties formally. In section 5 we look at its
higher-order generalization and an extension incorporating
an alternative, applicative notion of generativity. We review
some related work in section 6 and conclude in section 7.

2. ABSTRACTION BY EXISTENTIAL
QUANTIFICATION

In this section we will give a short recap of existential
types and their correspondence to abstract types. We then
discuss in more detail how this correspondence is destroyed
by adding dynamic type analysis. We write ≡ for syntactic
equivalence (modulo α-conversion). FV(e) denotes the set
of free term variables of e defined in the usual way, and
FTV(t) the free type variables of type or term t. For clarity,
we will sometimes use the notation (let x = e1 in e2) as
an abbreviation for the expression (λx:τ1.e2) e1, where τ1 is
the type of e1. Moreover, we sometimes use for don’t care
variables.

2.1 Existential types
Figure 1 shows the syntax, evaluation and typing rules for

existential types, as an extension to the plain polymorphic
lambda calculus [3]. A value of existential type is usually
called a package. It essentially is a pair 〈τ, e〉, encapsulating
a representation type τ and an implementation e. A pack-
age is assigned existential type ∃α.τ ′ if its implementation
matches the signature type τ ′, by replacing all occurrences
of α with the actual representation type τ . Unfortunately,
the signature type is not determined uniquely by the imple-
mentation and representation types alone, thus it has to be
annotated explicitly, as apparent from the syntax.1

In order to do anything interesting with a package, i.e. ac-
cess the encapsulated implementation, the existential quan-
tifier has to be eliminated. In the expression form (open 〈α, x〉 =
e1 in e2) the subexpression e1 denotes a package, whose
representation type and implementation can be referred to
through variables α and x within e2, respectively. Such an
open expression evaluates to its body e2, by substituting its

1Another common syntax for existential introduction is
(pack τ1, e as ∃α.τ2) and variants thereof.

(types) τ ::= . . . | ∃α.τ
(terms) e ::= . . . | 〈τ, e〉:∃α.τ ′ | open 〈α, x〉 = e1 in e2

open 〈α, x〉 = 〈τ, e1〉:∃α.τ ′ in e2 → e2[α := τ][x := e1]

(Pack)
Γ ` e : τ ′[α := τ]

Γ ` (〈τ, e〉:∃α.τ ′) : ∃α.τ ′

(Open)
Γ ` e1 : ∃α.τ ′ Γ, α, x:τ ′ ` e2 : τ

Γ ` (open 〈α, x〉 = e1 in e2) : τ
(α /∈ FV(τ))

Figure 1: Existential types

bound variables with the actual type and value found in the
package.2

2.2 Encoding Abstract Types
An abstract type declaration introduces a new type bun-

dled with a set of operations available on values of that
type. An encoding via existential types is relatively straight-
forward. Let us assume that the polymorphic lambda cal-
culus has been enriched further with product types and real
numbers. Then the SML signature COMPLEX from the intro-
duction can be represented by the type

COMPLEX ≡ ∃α.(real × real → α) × (α → real) ×
(α → real) × (α × α → α)

That is, the set of operations is mapped to a tuple of appro-
priate type, and this type is existentially quantified over the
type to be hidden by the abstraction. The structure C can
be modelled as (taking the freedom to use tuple patterns):

C ≡ 〈real × real ,

(λ(x, y) : real × real . (
�

x2 + y2, arctan(y/x) + π),

λ(a, θ) : real × real . a · cos θ,

λ(a, θ) : real × real . a · sin θ,

λ((a1, θ1), (a2, θ2)) : (real × real) × (real × real) .

(a1 · a2, rem(θ1 + θ2, 2π))

) 〉:COMPLEX

ML style module access does not map as directly, because
structure components are accessed using the dot notation,
while a package has to be opened explicitly to make its con-
tent available. However, Cardelli and Leroy have shown that
there exists a systematic translation from dot notation into
plain existential types [5]. Essentially, the package encoding
a structure is opened immediately. For our purpose,

val a = C.re(C.mk(0.0, 1.0))

might be encoded as

a ≡ open 〈α, (mk , re, ,)〉 = C in re (mk (0, 1))

The typing rules for open plus the standard hygiene conven-
tions for bound variables ensure that α is distinct from any
other type variable in the same scope and thus behaves like

2Often the existential elimination form is written
(unpack e1 as α, x in e2).

e ::= . . . | tcase e1 : τ1 of x : τ2 then e2 else e3

(Tcase)

Γ ` e1 : τ1 Γ ` τ2 : Ω
Γ, x : τ2 ` e2 : τ Γ ` e3 : τ

Γ ` (tcase e1 : τ1 of x : τ2 then e2 else e3) : τ

tcase e1 : τ of x : τ then e2 else e3 → e2[x := e1]
tcase e1 : τ1 of x : τ2 then e2 else e3 → e3 (τ1 6= τ2)

Figure 2: A typecase extension

a “fresh” type. Moreover, it behaves fully abstract because
in standard λ-calculi every expression is parametric [25] in
all type variables, meaning that reduction can proceed uni-
formingly for all possible instantiations. In particular, the
body e2 of an open expression is parametric with respect to
the bound variable α — evaluation will never depend on the
actual representation type τ of the package being opened,
although α is substituted by τ during reduction. That key
observation establishes the close correspondence between ex-
istential types and abstract types.

2.3 Interaction with dynamic type analysis
Figure 2 specifies the semantics of our typecase, as an ex-

tension to the lambda calculus.3 It provides only a simple
form of type analysis but suffices to demonstrate the funda-
mental problem.

We have seen that the encoding of abstract types via exis-
tentials crucially relies on the parametricity property. That
property breaks down in the face of operations for type anal-
ysis: if a polymorphic function is able to analyse its type
argument using typecase, it obviously will not evaluate inde-
pendently of any conrete instantiation. Similarly, a function
that is passed an argument of existentially quantified type
might inspect the type encapsulated by the quantifier — the
computation can be dependent on the actual representation
type. Recall the typecase expression from section 1.1 that
was incriminated to break the complex invariant. Expressed
with existential types (and ⊥) it may look like follows:

open 〈α, (mk , re, im ,mul)〉 = 〈real × real , . . . 〉 in
(. . . tcase (1, 1001π) : real × real of z : α

then z else ⊥ . . .)

But upon reduction of the open expression the type variable
α naming the abstract type will be substituted and reveal

→ (. . . typecase (1, 1001π) : real × real of z : real × real
then z else ⊥ . . .)

Both types in the typecase are now equal and the construct
returns z ≡ (1, 1001π) from its left branch having the same
static type α as proper complex values.

3Adding typecase to the polymorphic lambda calculus with-
out restricting the reduction relation breaks confluence.
Consider (Λα.λx:α.tcase x:α of y:int then 1 else 0) int 9.
Depending on which redex gets reduced first, this expression
yields 1 or 0. For simplicity, we hence assume a call-by-value
strategy.

3. TOWARDS A FORMAL SEMANTICS
FOR DYNAMIC TYPE GENERATION

Although well known, the interference between existential
types and type analysis has received only little attention in
prior work. Besides the proposal by Harper and Morrisett
mentioned in the introduction, Abadi, Cardelli, Pierce and
Rémy [1] already suggested generativity as a solution, ob-
serving that dynamic opacity can be achieved by simply re-
placing the type variable bound by open with a “fresh” type
constant during evaluation. Their idea amounts to changing
the corresponding reduction rule to:

open 〈α, x〉 = 〈τ, e1〉:∃α.τ ′ in e2 → e2[α := t][x := e1]

where t is a fresh type constant. Obviously, the represen-
tation type could no longer be analysed transparently. Un-
fortunately, this modification destroys type preservation, as
can easily be seen from the following example, which is a
simple η-expansion of the expression a given in section 2.2:

a′ ≡ open 〈α, (mk , re, ,)〉 = C in (λz:α.re z) (mk (0, 1))

This term is well-typed, but after applying the above reduc-
tion rule it becomes:

(λz:t. (λ(a, θ) : real × real . a · cos θ) z) ((λ . . .) (0, 1))

which is no longer typable — there is a clash between the
abstract type t and its respective representation type real ×
real , which is the argument type of function re.

Consequently, in order to make the idea of using genera-
tivity for abstraction work, we have to solve two problems:
the concept of dynamic type “freshness” must be fleshed
out formally, and transitions between abstract and concrete
type must be managed in a sound way.

3.1 Generativity
Formalisms for describing dynamic generation of fresh

value names are well developed. For example, the name
restriction form νn.P is a central feature of the π-calculus
[28] and can be viewed as an expression that generates a
new name n with local scope. Pitts’ λν-calculus [24] trans-
fers that idea to the λ-calculus, although with a different
implementation.

We introduce a similar construct, but for generating type
names instead of value names. We will use the notation

Nγ≈τ.e

(with N read as upper-case nu) to introduce a fresh type
name γ within expression e. N-bound names are subject to
standard α-conversion rules. Because having a fresh type
that is not inhabited by any values is not very interesting
on its own, the N-form also declares a representation type τ .
Within e the relation between the new type and its represen-
tation is known and can be used to construct and inspect
values of type γ. Outside the scope of the corresponding
N-expression that relation is not visible. We defer the dis-
cussion on how values are constructed to the next section.

How do we track generated type names? We chose to take
the path of the π-calculus, where ν-expressions never get
eliminated, but float outwards by special equivalence rules
for scope extrusion.4 In order to allow interaction between

4We also considered the alternative approach of introducing
an explicit type store or heap as in the λν-calculus, but that
choice would produce a more complicated system.

a N-expression’s body e and the expression’s context, we
incorporate reduction rules in a similar spirit, e.g.:

(Nγ≈τ.e1) e2 → Nγ≈τ.(e1 e2) (γ /∈ FTN(e2))
e1 (Nγ≈τ.e2) → Nγ≈τ.(e1 e2) (γ /∈ FTN(e1))

The side conditions on the free type names of subterms
(written FTN(e)) ensure that the context cannot capture
the type name γ.

The typing rule for N is straight-forward:

Γ, γ≈τ ` e : τ ′

Γ ` Nγ≈τ.e : τ ′
(γ /∈ FTN(τ ′))

We need to be able to record the type assertion γ≈τ in the
environment, so that γ is properly related to its represen-
tation. The side condition keeps γ from escaping its scope,
and is similar to the side condition of the (Open) typing
rule for existential types.

3.2 Coercions
What does it mean for a new type γ to be ‘represented’

by τ? It certainly cannot mean that both types are simply
equivalent (i.e. γ = τ), since such an interpretation would
not make γ particularly ‘new’ and inevitably bring us back
to a semantics that violates dynamic opacity. We always
have to be able to distinguish both types. Consequently,
in order to avoid running into type preservation problems,
we also need to be able to distinguish values of both types.
Hence we require appropriate coercions to go from the ab-
stract type to its representation and vice versa. We will use
the notation

{e}+
γ

for coercing a value e of representation type τ to the abstract
type γ. Dually, we have

{e′}−γ

for the inverse coercion. Coercions allow an implementa-
tion to perform appropriate type conversions for any value
of abstract type γ that crosses the abstraction boundaries
in either direction. Positive coercions can be seen as con-
structors for values of the new type. They are eliminated
only by negative coercions, the corresponding destructors.
Consequently, the only evaluation possible with coercions is
cancellation, implemented by a single reduction rule:

{{e}+
γ }−γ → e

The standard scoping rules guarantee that only coercions
belonging to the same abstract type can cancel out each
other.

The typing rules for coercions are obvious:

Γ ` e : τ γ≈τ ∈ Γ

Γ ` {e}+
γ : γ

Γ ` e : γ γ≈τ ∈ Γ

Γ ` {e}−γ : τ

Due to the side conditions in the rules, coercions are only
available within the lexical scope of the corresponding type
generator, thus the transition across abstraction boundaries
can only be triggered from within the abstraction.

3.3 Example
Recall the complex example from the introduction and

its encoding with existential types. Rewritten using type

generation it looks as follows:

C ′ ≡ Nγ≈real × real .

〈γ,

(λ(x, y):real × real . {(
�

x2 + y2, arctan(y/x) + π)}+
γ ,

λz:γ . let (a, θ) = {z}−γ in a · cos θ,

λz:γ . let (a, θ) = {z}−γ in a · sin θ,

λ(z1, z2) : γ × γ . let (a1, θ1) = {z1}
−
γ in

let (a2, θ2) = {z2}
−
γ in

{(a1 · a2, rem(θ1 + θ2, 2π))}+
γ

) 〉:COMPLEX

We still use an existential type. However, it is no longer
utilized for providing abstraction, but merely for closing the
signature of the abstraction (recall that γ itself may not ap-
pear in the signature). By putting the abstract type into a
package it becomes accessible from the outside. The signa-
ture of the abstraction is uniquely determined by the uses of
γ and corresponding coercions in its implementation. Hence
COMPLEX is the only possible type for the package.

The rewritten abstract type C ′ can be used as before, via
simply opening the package:

open 〈α, (mk , re, ,)〉 = C ′ in re (mk (0, 1))

The contained N-binder will be shifted outwards automati-
cally by the corresponding scope extrusion rules.

3.4 A-posteriori abstraction
So far, to build an abstraction its implementation has to

use coercions internally, in order to meet the intended signa-
ture type. We speak of a priori abstraction: an implementa-
tion must be tailored to a particular signature. On the other
hand, abstraction based on existential types happens a pos-
teriori: arbitrary parts of a given implementation’s type are
just hidden away without affecting the implementation it-
self, a construction sometimes called sealing in the context
of modules [6]. Can we recover that flexibility?

The answer is yes: given an abstract signature type and a
suitable implementation, we can systematically construct an
expression that coerces the whole implementation into the
desired signature type. Let e be an expression that shall be
sealed with signature τ ′, abstracting away some type τ as
γ. Assuming e : τ ′[γ := τ], the term produced by applying
the transformation {e : τ ′}+

γ≈τ defined in figure 3 will have
the desired signature type. The transformation is defined
inductively over the signature type τ ′. It constructs an η-
expansion of the original term e, wrapping all parts e′ that
are supposed to get type γ into a suitable coercion {e′}+

γ .
Function types require an inverse treatment of their argu-
ment, where e′ : γ is replaced by {e′}−γ instead. Since the
inverse transformation is completely dual, we use the nota-
tion ± to capture both directions in a single set of rules.
Coercion polarity is inverted for function arguments. The
following lemma captures the central invariants:

Lemma 1 (A-posteriori Abstraction Invariants).
Let e be an expression and Γ an evironment with γ≈τ ∈ Γ.

1. If Γ ` e : τ ′[γ := τ], then Γ ` {e : τ ′}+
γ≈τ : τ ′.

2. If Γ ` e : τ ′, then Γ ` {e : τ ′}−γ≈τ : τ ′[γ := τ].

{e : γ}±γ≈τ = {e}±γ
{e : γ′}±γ≈τ = e (γ′ 6≡ γ)
{e : α}±γ≈τ = e
{e : τ1 → τ2}

±
γ≈τ = λx:{τ1}

±
γ≈τ .{e {x : τ1}

∓
γ≈τ : τ2}

±
γ≈τ

{e : ∀α.τ1}
±
γ≈τ = Λα.{e α : τ1}

±
γ≈τ

{τ ′}+
γ≈τ = τ ′

{τ ′}−γ≈τ = τ ′[γ := τ]

Figure 3: A-posteriori abstraction

With this in mind we introduce another building block
of our calculus: in order to allow it to express sealing di-
rectly, we generalize coercion expressions to arbitrary types
and make the transformation rules from figure 3 built-in by
turning them into reduction rules. That is, coercions will
have the actual form

{e : τ ′}±γ≈τ

In this generalized form, coercions are reminiscent of the ab-
straction brackets by Grossman, Morrisett and Zdancewic [10].
We will discuss that connection in section 6. Using general-
ized coercions, first-class abstract types can be represented
by expressions of the form

Nγ≈τ.〈γ, {e : τ ′}+
γ≈τ 〉

where τ is the representation type, τ ′ the signature, and e
the implementation of the abstract type.

3.5 Polymorphic coercions
We have not yet given the typing rules for generalized

coercions. The lemma from the previous section suggests

Γ ` e : τ ′[γ := τ] γ≈τ ∈ Γ

Γ ` {e : τ ′}+
γ≈τ : τ ′

Γ ` e : τ ′ γ≈τ ∈ Γ

Γ ` {e : τ ′}−γ≈τ : τ ′[γ := τ]

Obviously, these rules generalize the typing rules for simple
coercions, for {e}±γ = {e : γ}±γ≈τ . Unfortunately, they are
not correct. First note that it is not possible to seal a value
twice with respect to the same type γ: in the sealing rule,
the type of e must be free of γ. Dually, unsealing always
delivers a γ-free type. Consequently, a complication arises
with polymorphic coercions. Consider the following term,
for example:

P ≡ (Λα.λx:α.{x : α}−γ≈τ) γ

Under the above rules, P would be assigned type γ → γ.
However, standard β-reduction yields

λx:γ.{x : γ}−γ≈τ

which has type γ → τ . Type preservation is violated. The
problem is, that turned into reduction steps, the abstraction
transformation is not static but interleaved with other re-
ductions. Hence, the typing rules must account for potential
substitutions. Intuitively, the γ-substitutions in the coercion
typing rules must be delayed until all free type variables in
τ ′ have been substituted. We deal with this by introducing
unsealed types of the form

{τ ′}−γ≈τ

that essentially perform a substitution on τ ′, as the following
set of special equivalence rules reveals:

{γ}−γ≈τ = τ
{γ′}−γ≈τ = γ′ (γ′ 6≡ γ)

{τ1 → τ2}
−
γ≈τ = {τ1}

−
γ≈τ → {τ2}

−
γ≈τ

{∀α.τ1}
−
γ≈τ = ∀α.{τ1}

−
γ≈τ

There is no equivalence rule for type variables, so that a type
of the form {α}−γ≈τ maintains the pending substitution for γ
until α is substituted. Using this setup, sound typing rules
can be given for coercions:

Γ ` e : {τ ′}−γ≈τ γ≈τ ∈ Γ

Γ ` {e : τ ′}+
γ≈τ : τ ′

Γ ` e : τ ′ γ≈τ ∈ Γ

Γ ` {e : τ ′}−γ≈τ : {τ ′}−γ≈τ

As long as no type variables occur in τ ′, they are equivalent
to the rules above under the stated type equivalence. How-
ever, for the term P they correctly allow derivation of the
type γ → {γ}−γ≈τ = γ → τ . Likewise, they prohibit dou-
ble sealing even in polymorphic cases. That implies that a
polymorphic sealing function like

Λα.λx:α.{x : α}+
γ≈τ

is not well-typed. It must be formulated as either

Λα.λx:{α}−γ≈τ .{x : α}+
γ≈τ : ∀α.{α}−γ≈τ → α

or

Λα.λx:α.{{x : α}−γ≈τ : α}+
γ≈τ : ∀α.α → α

In the former version, the function is not applicable to ar-
gumens that already contain occurrences of abstract type γ.
The latter version lifts this restriction by simply unsealing
any such potential values first.

4. THE λN-CALCULUS
We are now prepared to look at the calculus that we will

refer to as λN as a whole.

4.1 Syntax
The syntax of the λN-calculus is shown in figure 4. Es-

sentially, it is a polymorphic lambda calculus with recursive
functions, extended with the constructs introduced in the
previous section. It also contains a typecase expression, so
that it allows discussion of the issues raised by dynamic
typing. Values are defined in the usual way, but include ab-
stract values of the form {ˆ̂e : τ}+

γ≈τ ′ with the side condition
τ = γ. Further, we distinguish a second subclass of terms
called results, which is necessary to formulate deterministic
evaluation rules for scope extrusion.

We will write λx:τ.e for (fix x′(x:τ):τ ′.e) if x′ /∈ FV(e) and
τ ′ is the (unique) type of e. We also abbreviate {e : γ}±γ≈τ

to {e}±γ if τ is clear from context. We will use notation for
existential types in some examples, which can be encoded
in λN using universal types in the usual way [20]. Also,
we sometimes silently assume additional types like int , real ,
unit and respective constants, or cartesian products.

Environments are extended to include type assertions γ≈τ
for type names. They track the validity of coercions. We
take the liberty to treat environments as sets of the con-
tained assignments and assertions, or as finite functions map-
ping variables to types. We write Dom(Γ) to denote the set
of all names and variables bound by Γ.

(types) τ ::= α | γ | τ1 → τ2 | ∀α.τ | {τ}−
γ≈τ ′

(terms) e ::= x | fix x1(x2:τ2):τ1.e | e1 e2 | Λα.e | e τ |
Nγ≈τ.e | {e : τ}±

γ≈τ ′ |

tcase e1 : τ1 of x : τ2 then e2 else e3

(results) ê ::= ˆ̂e | Nγ≈τ.ê

(values) ˆ̂e ::= fix x1(x2:τ2):τ1.e | Λα.e | {ˆ̂e : τ}+
γ≈τ ′ (τ = γ)

(env’s) Γ ::= · | Γ, x:τ | Γ, α | Γ, γ≈τ

Figure 4: λN Syntax

4.2 Reduction
Figure 5 collects the one-step evaluation rules for λN.

They can be categorized into five groups: standard β-reduction
rules (1–2), coercion rules (3–6), type analysis rules (7–8),
scope extrusion (9–13), and structural rules (14–19). To-
gether, they specify a deterministic call-by-value evaluation
strategy. We will write = for convertibility with respect to
the corresponding equivalence relation generated from →.

Note that the coercion rules 4–6 are overloaded for both
polarities. At function type we use the following definition
for substituting type annotations depending on polarity:

{τ}+
γ≈τ ′ = τ

Reduction of coercions and typecase is type-directed. The
equivalence relation on types will be given in the next sec-
tion. In rules 5 and 6 we implicitly require the equivalent
types to be well-formed, i.e. ` τ2→τ1 : Ω and ` ∀α.τ1 : Ω,
respectively. For deterministic scope extrusion we have in-
troduced the syntactic class of results. A result is a value
prefixed by a sequence of N-binders. Scope extrusion only
applies to the outermost binder of a result; evaluation has
to proceed under a N-binder until its body has become a
result. Intuitively, a result may be thought of as an expres-
sion’s “return value” paired with the heap of type names
its evaluation allocated. The type names generated in dif-
ferent subexpressions will all accumulate in the heap of the
complete expressions’s result. For example, consider the fol-
lowing reduction sequence:

(λf :int→int .f (Nγ1≈τ1.f 4)) (λx:int .Nγ2≈τ2.x)
→ (λx:int .Nγ2≈τ2.x) (Nγ1≈τ1.(λx:int .Nγ′

2≈τ2.x) 4)
→ (λx:int .Nγ2≈τ2.x) (Nγ1≈τ1.Nγ′

2≈τ2.4)
→ Nγ1≈τ1.(λx:int .Nγ2≈τ2.x) (Nγ′

2≈τ2.4)
→ Nγ1≈τ1.Nγ′

2≈τ2.(λx:int .Nγ2≈τ2.x) 4
→ Nγ1≈τ1.Nγ′

2≈τ2.Nγ2≈τ2.4

Generation is fully dynamic, i.e. the number of type names
generated is not determined statically. The following non-
terminating expression will actually generate an infinite num-
ber of types:

(fix f(x:unit):unit .Nγ≈τ.f x) ()

4.3 Typing
The typing and well-formedness rules of the calculus are a

simple extension of the rules for the polymorphic λ-calculus.
We need the usual three judgment forms:

` Γ : � well-formedness of environments

Γ ` τ : Ω well-formedness of types

Γ ` e : τ well-typedness of terms

In comparison to the plain λ-calculus, λN adds the previ-
ously discussed typing rules for N, coercions, and typecase,
as well as extended well-formedness rules for dealing with
type names and type assertions. The presence of a non-
trivial type equivalence relation requires an additional struc-
tural typing rule (Equiv) for assigning of equivalent types
to a term. The type equivalence relation is defined in figure
7.

It is not difficult to show that type soundness properties
hold for λN:

Theorem 1 (Preservation). If Γ ` e : τ and e → e′,
then Γ ` e′ : τ .

Theorem 2 (Progress). If · ` e : τ (i.e. e is closed),
then either e ≡ ê for some result ê, or e → e′ for some e′.

Note that if ê is closed, then ê 6≡ {ê′}+
γ . We also have

Theorem 3 (Unique Types). Whenever Γ ` e : τ and
Γ ` e : τ ′ then τ = τ ′.

4.4 Opacity
To see how opacity is still preserved in the non-parametric

setting of λN let us go back to the λN-encoding of complex
numbers, as shown in section 3.3. It is safe with respect
to dynamic typing, as the reduction of the expression repre-
senting the second offending example from section 1.1 shows:

open 〈α, 〉 = Nγ≈real × real . 〈γ, . . . 〉 in
(. . . tcase (1, 1001π) : real × real of z : α then z else ⊥ . . .)

→ Nγ≈real × real . open 〈α, 〉 = 〈γ, . . . 〉 in
(. . . tcase (1, 1001π) : real × real of z : α then z else ⊥ . . .)

→ Nγ≈real × real .
(. . . tcase (1, 1001π) : real × real of z : γ then z else ⊥ . . .)

→ Nγ≈real × real . (. . . ⊥ . . .)

The variable z keeps an abstract type even after opening
the package, and the attempt to violate the abstraction via
typecase remains unsuccessful.

More generally, consider a closed, well-typed function of
the form Λα.λx:α.e (which may contain random uses of

typecase). Applied to an abstract type γ and value ˆ̂e : γ, its
result will be independent of γ’s respective representation
type, as well as of the concrete value ˆ̂e. Formally, we can
phrase the following property:

Theorem 4 (Opacity). Let e be an expression with

α, x:α ` e : τ . Assume a set of values ˆ̂ei (i = 1, . . . , n)

such that γi≈τi ` ˆ̂ei : γi. Let σi = [α := γi, x := ˆ̂ei] for all i.
If eσ1 is not a value then there is an e′ with α, x:α ` e′ : τ
such that eσi → e′σi for all σi.

Opacity subsumes value abstraction [10], but is slightly
stronger because it also implies type abstraction, i.e. inde-
pendence from abstract type representations.

4.5 Sharing
Despite opacity, λN still allows expressing (dynamic) shar-

ing between abstract types. For example, the following func-
tion checks if two given complex types are compatible and
mixes operations from both of them if that is the case:

λC1 : COMPLEX . λC2 : COMPLEX .
open 〈α1, (mk1, , ,)〉 = C1 in
open 〈α2, (, , im2,)〉 = C2 in
tcase im2 : α2 → real of im ′

2 : α1 → real
then im ′

2(mk1(0, 2)) else ⊥

(1) (fix x1(x2:τ2):τ1.e) ˆ̂e → e[x1 := fix x1(x2:τ2):τ1.e, x2 := ˆ̂e]
(2) (Λα.e) τ → e[α := τ]

(3) {{ˆ̂e : τ1}
+
γ≈τ ′ : τ2}

−
γ≈τ ′ → ˆ̂e (if τ1 = τ2 = γ)

(4) {ˆ̂e : τ}±
γ≈τ ′ → ˆ̂e (if τ = γ′ 6≡ γ)

(5) {ˆ̂e : τ}±
γ≈τ ′ → fix x1(x2 : {τ2}

±
γ≈τ ′) : {τ1}

±
γ≈τ ′ . (if τ = τ2→τ1; x1, x2 /∈ FV(ˆ̂e))

{ˆ̂e {x2 : τ2}
∓
γ≈τ ′ : τ1}

±
γ≈τ ′

(6) {ˆ̂e : τ}±
γ≈τ ′ → Λα.{ˆ̂e α : τ1}

±
γ≈τ ′ (if τ = ∀α.τ1)

(7) tcase ˆ̂e : τ1 of x : τ2 then e2 else e3 → e2[x := ˆ̂e] (if τ1 = τ2)

(8) tcase ˆ̂e : τ1 of x : τ2 then e2 else e3 → e3 (if τ1 6= τ2)

(9) (Nγ≈τ.ê) e → Nγ≈τ.ê e (γ /∈ FTN(e))

(10) ˆ̂e (Nγ≈τ.ê) → Nγ≈τ.ˆ̂e ê (γ /∈ FTN(ˆ̂e))
(11) (Nγ≈τ.ê) τ ′ → Nγ≈τ.ê τ ′ (γ /∈ FTN(τ ′))
(12) {Nγ≈τ.ê : τ ′′}±

γ′≈τ ′ → Nγ≈τ.{ê : τ ′′}±
γ′≈τ ′ (γ 6≡ γ′; γ /∈ FTN(τ ′, τ ′′))

(13) tcase Nγ≈τ.ê1 : τ1 of x : τ2 then e2 else e3 → Nγ≈τ.tcase ê1 : τ1 of x : τ2 then e2 else e3 (γ /∈ FTN(τ1, τ2, e2, e3))

(14) e e2 → e′ e2 (if e → e′)

(15) ˆ̂e e → ˆ̂e e′ (if e → e′)
(16) e τ → e′ τ (if e → e′)
(17) Nγ≈τ.e → Nγ≈τ.e′ (if e → e′)
(18) {e : τ ′}±γ≈τ → {e′ : τ ′}±γ≈τ (if e → e′)
(19) tcase e : τ1 of x : τ2 then e2 else e3 → tcase e′ : τ1 of x : τ2 then e2 else e3 (if e → e′)

Figure 5: λN Reduction

That is, we are able to find out dynamically whether ab-
stract types are compatible, although we cannot look at
their representation. This ability is important for dynamic
programming with abstract types. For example, consider a
scenario where a process retrieves values of abstract types
from different, statically undetermined locations. In order
to combine those values, the program must be able to dy-
namically verify their compatibility.

5. HIGHER-ORDER TYPES
The λN-calculus is equipped with a second-order type sys-

tem. That enables it to model generativity of proper types.
However, many programming languages allow the definition
of “polymorphic” abstract types. E.g. in SML, we can define
a polymorphic abstract stack:

signature STACK =

sig

type ’a stack

val empty : ’a stack

val push : ’a * ’a stack -> ’a stack

val pop : ’a stack -> ’a * ’a stack

end

structure Stack :> STACK =

struct

type ’a stack = ’a list

...

end

Such higher-order type abstraction can be captured by ex-
tending the calculus with higher-order types, allowing to

define

Nγ≈(λα:Ω.list α).e

(assuming existence of a type constructor list : Ω → Ω). The
essentials of the higher-order calculus are shown in figure 8.
Besides the standard modifications to typing rules that are
necessary when moving from System F to Fω (which have
been omitted for space reasons) [8, 20], typing has to deal
with higher-kinded type names. As a minor technicality, we
also add a kind annotation to N-binders that is not strictly
necessary in λω

N per se, but needed for the extension pre-
sented in the next section. We will omit this annotation
where obvious. The type equivalence relation (omitted) has
to be extended with β and η-rules as well as obvious rules for
pushing unsealed types through type abstraction and appli-
cation. Values of abstract type no longer need to have plain
type γ, but generally have a type of the form γ τ1 . . . τn

(with n ≥ 0), which we abbreviate as γ ~τ . For example,
in an encoding of the stack abstraction, integer stack values
have shape {ˆ̂e : γ int}+

γ≈λα:Ω.list α : γ int .
The primary complication in the higher-order extension

appears with the reduction rules for coercions: an abstract
type may have the form γ1 ~τ , and some γ2 may appear in ~τ .
For example, consider an expression

{ˆ̂e : γ1 γ2}
−
γ2≈τ2

How can the coercion be pushed inward, across the unrelated
abstract type γ1? Fortunately, the canonical forms lemma
for the calculus implies ˆ̂e ≡ {ˆ̂e′ : γ1 γ2}

+
γ1≈τ1

. We can hence
exchange both coercions, yielding simpler ones that can be

` · : �

` Γ : � Γ ` τ : Ω

` Γ, x:τ : �
(x /∈ Dom(Γ))

` Γ : �

` Γ, α : �
(α /∈ Dom(Γ))

` Γ : � Γ ` τ : Ω

` Γ, γ≈τ : �
(γ /∈ Dom(Γ))

` Γ : � α ∈ Γ

Γ ` α : Ω

` Γ : � γ≈τ ∈ Γ

Γ ` γ : Ω

Γ ` τ1 : Ω Γ ` τ2 : Ω

Γ ` τ1 → τ2 : Ω

Γ, α ` τ : Ω

Γ ` ∀α.τ : Ω

Γ ` τ1 : Ω γ≈τ2 ∈ Γ

Γ ` {τ1}
−
γ≈τ2

: Ω

(Id)
` Γ : � x:τ ∈ Γ

Γ ` x : τ
(App)

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

(Fix)
Γ ` τ1 : Ω Γ ` τ2 : Ω Γ, x1:τ2→τ1, x2:τ2 ` e : τ1

Γ ` (fix x1(x2:τ2):τ1.e) : τ2 → τ1

(Gen)
Γ, α ` e : τ

Γ ` Λα.e : ∀α.τ
(Inst)

Γ ` e : ∀α.τ Γ ` τ ′ : Ω

Γ ` e τ ′ : τ [α := τ ′]

(New)
Γ ` τ ′ : Ω Γ, γ≈τ ′ ` e : τ

Γ ` Nγ≈τ ′.e : τ
(γ /∈ FTN(τ))

(Seal)
Γ ` e : {τ}−

γ≈τ ′ γ≈τ ′ ∈ Γ

Γ ` {e : τ}+
γ≈τ ′ : τ

(Unseal)
Γ ` e : τ γ≈τ ′ ∈ Γ

Γ ` {e : τ}−
γ≈τ ′ : {τ}−

γ≈τ ′

(Tcase)
Γ ` e1 : τ1 Γ ` τ2 : Ω Γ, x:τ2 ` e2 : τ Γ ` e3 : τ

Γ ` (tcase e1 : τ1 of x : τ2 then e2 else e3) : τ

(Equiv)
Γ ` e : τ ′ τ ′ = τ Γ ` τ : Ω

Γ ` e : τ

Figure 6: λN Typing

coped with as usual (or by another step of the same sort):

{{ˆ̂e′ : γ1 γ2}
+
γ1

: γ1 γ2}
−
γ2

→ {{ˆ̂e′ : τ1 γ2}
−
γ2

: γ1 τ2}
+
γ1

In general however, γ1 can occur in τ2, or γ2 may occur in
τ1 (since type assertions cannot be circular, at most one of
these cases can actually arise at a time). Either way, the
reduct would not be well-typed. We hence have to insert an
auxiliary coercion, reducing to either

{{{ˆ̂e′ : τ1 γ2}
−
γ2

: τ1 τ2}
−
γ1

: γ1 τ2}
+
γ1

(γ2 /∈ FTN(τ1))

or

{{{ˆ̂e′ : τ1 γ2}
−
γ2

: τ1 {τ2}
−
γ1
}+

γ2
: γ1 τ2}

+
γ1

(γ1 /∈ FTN(τ2))

depending on which case actually applies. In a similar vein,
positive coercions have to be handled. The modified re-
duction rules for higher-order coercions are shown in figure
8. To keep side conditions readable we use the following
conventions: (1) γ 6≡ γ′; (2) {ˆ̂e:τ ′}±γ≈τ matches any term

{ˆ̂e:τ ′′}±γ≈τ with τ ′′ = τ ′ and · ` τ ′′ : κ; (3) γ ∈ FTN(τ)

τ = τ

τ ′ = τ

τ = τ ′

τ = τ ′ τ ′ = τ ′′

τ = τ ′′

τ1 = τ ′
1 τ2 = τ ′

2

τ1→τ2 = τ ′
1→τ ′

2

τ = τ ′

∀α.τ = ∀α.τ ′

τ1 = τ ′
1

{τ1}
−
γ≈τ2

= {τ ′
1}

−
γ≈τ2

{γ}−γ≈τ = τ {γ′}−γ≈τ = γ′
(γ 6≡ γ′)

{τ1→τ2}
−
γ≈τ3

= {τ1}
−
γ≈τ3

→{τ2}
−
γ≈τ3

{∀α.τ1}
−
γ≈τ2

= ∀α.{τ1}
−
γ≈τ2

(α /∈ FTV(τ2))

Figure 7: λN Type equivalence

means ∀τ ′.τ ′ = τ ⇒ γ ∈ FTN(τ ′). Reduction rule (4a) gen-
eralizes the previous rule (4), while rules (4b)–(4e) treat the
cases discussed above. They also handle γ ′ occuring in its
own argument vector ~τ .

Soundness results extend to λω
N in a straight-forward man-

ner. Opacity has to be reformulated as follows:

Theorem 5 (λω
N Opacity). Let e be an expression with

α, x:α~τ ` e : τ for some ~τ . Assume a set of values ˆ̂ei

(i = 1, . . . , n) such that γi≈τi ` ˆ̂ei : γi ~τ . Let σi = [α :=

γi, x := ˆ̂ei] for all i. If eσ1 is not a value then there is an e′

with α, x:α~τ ` e′ : τ such that eσi → e′σi for all σi.

5.1 Applicative generativity
A function containing a N-binder will produce a new copy

of the binder on every application. For example,

let f = λx:unit .Nγ≈int .〈γ, {13}+
γ 〉 in (f (), f ())

= Nγ1≈int .Nγ2≈int .(〈γ1, {13}+
γ1
〉, 〈γ2, {13}+

γ2
〉)

The standard α-renaming rules make γ1 and γ2 two incom-
patible types. That behaviour is analoguous to functors in
SML, where the following snippet declares two incompatible
types X1.t and X2.t:

functor F () :> sig type t; val x : t end

= struct type t = int; val x = 13 end

structure X1 = F ()

structure X2 = F ()

In other words, λN implements a fully generative type ab-
straction discipline. There are alternative approaches to
functors that make X1.t and X2.t equivalent types. Af-
ter Leroy, such functors are called applicative [12]. Dreyer,
Crary and Harper propose two alternative sealing operators
:> and :: to allow generative and applicative functors to co-
exist [6]. In their approach, replacing :> by :: in the above
example would yield compatible types X1.t and X2.t.

We can incorporate applicative generativity into λω
N by

extending it with a second form of N-binder, which we dis-
tinguish by marking it as follows:

Ňγ:κ≈τ.e

Typing for this binder is the same as for plain N, but it comes
with different reduction rules — the fundamental idea being
that it is lifted out of lambdas prior to β-reduction, avoiding

(kinds) κ ::= Ω | κ1 → κ2

(types) τ ::= . . . | ∀α:κ.τ | λα:κ.τ | τ1 τ2

(terms) e ::= . . . | Λα:κ.e | Nγ:κ≈τ.e

(values) ˆ̂e ::= . . . | Λα:κ.e | {ˆ̂e : τ}+
γ≈τ ′ (τ = γ ~τ)

(env’s) Γ ::= . . . | Γ, α:κ

γ≈τ ∈ Γ Γ ` τ : κ

Γ ` γ : κ

(New)
Γ ` τ ′ : κ Γ, γ≈τ ′ ` e : τ

Γ ` Nγ:κ≈τ ′.e : τ
(γ /∈ FTN(τ))

(3) {{ˆ̂e : γ ~τ}+
γ≈τ : γ ~τ}−γ≈τ → ˆ̂e

(4a) {{ˆ̂e : γ′ ~τ ′}+
γ′≈τ ′ : γ′ ~τ}±γ≈τ → {ˆ̂e : γ′ ~τ ′}+

γ′ (if γ /∈ FTN(~τ))

(4b) {{ˆ̂e : γ′ ~τ ′}+
γ′≈τ ′ : γ′ ~τ}+

γ≈τ → {{{ˆ̂e : τ ′ {{~τ}−γ }−
γ′}

−
γ : τ ′ {~τ}−

γ′}
+
γ : γ′ ~τ}+

γ′ (if γ′ /∈ FTN(τ); γ ∈ FTN(~τ))

(4c) {{ˆ̂e : γ′ ~τ ′}+
γ′≈τ ′ : γ′ ~τ}−γ≈τ → {{{ˆ̂e : τ ′ {~τ}−

γ′}
−
γ : τ ′ {{~τ}−γ }−

γ′}
+
γ : γ′ {~τ}−γ }+

γ′ (if γ′ /∈ FTN(τ); γ ∈ FTN(~τ))

(4d) {{ˆ̂e : γ′ ~τ ′}+
γ′≈τ ′ : γ′ ~τ}+

γ≈τ → {{{ˆ̂e : τ ′ {{~τ}−
γ′}

−
γ }+

γ′ : τ ′ {~τ}−
γ′}

+
γ : γ′ ~τ}+

γ′ (if γ′ ∈ FTN(τ); γ ∈ FTN(~τ))

(4e) {{ˆ̂e : γ′ ~τ ′}+
γ′≈τ ′ : γ′ ~τ}−γ≈τ → {{{ˆ̂e : τ ′ {~τ}−

γ′}
−
γ : τ ′ {{~τ}−

γ′}
−
γ }−

γ′ : γ′ {~τ}−γ }+
γ′ (if γ′ ∈ FTN(τ); γ ∈ FTN(~τ))

Figure 8: The λω
N-calculus (excerpt)

duplication. Figure 9 shows the extended syntax. For rea-
sons that will become appearent shortly, we call the class of
terms extended with Ň pre-terms. Again, we need an addi-
tional class of results, called pre-results, to get a determin-
istic evaluation relation. Pre-results are ordinary λω

N-terms
prefixed by a sequence of Ň-binders.

Figure 10 reveals the extended reduction relation. It con-
tains scope extrusion rules for Ň (20–29), structural rules
on pre-terms (30–40), and a single fixation rule (41). Un-
like plain N, the scope of Ň can be extruded across binders
like fix, Λ and plain N, as well as from the branches of a
typecase. Moreover, pre-term reduction may proceed under
all these constructs. The only interesting rules are (23) and
(25), where a Ň-binder has to be lifted out of a binder for
a type variable. Since that variable may occur free in the
respective representation type, special care has to be taken.
We borrow an idea from Russo [27], who models applica-
tive functors by representing abstract types in their result
signature as higher-order abstractions over all types of the
functor’s argument. In a similar vein, the aforementioned
reduction rules raise the type name γ to higher order by ab-
stracting over the respective type variable whose binding the
scope will be extruded from. As a simple example, consider
the following reduction:

let f = Λα:Ω.λx:α.Ňγ≈α.〈γ, {x : γ}+
γ≈α〉

in (f int 3, f int 4, f real 5.0)
= let f = Ňγ≈(λα:Ω.α).Λα:Ω.λx:α.〈γ α, {x : γ α}+

γ≈λα:Ω.α〉
in (f int 3, f int 4, f real 5.0)

= Ňγ≈(λα:Ω.α).let f = Λα:Ω.λx:α.〈γ α, {x : γ α}+
γ≈λα:Ω.α〉

in (f int 3, f int 4, f real 5.0)
= Nγ≈(λα:Ω.α).(〈γ int , {3}+

γ 〉, 〈γ int , {4}+
γ 〉, 〈γ real , {5.0}+

γ 〉)

The first two packages carry the same type γ int , while the
last one contains the different type γ real .

Since scope extrusion is the only actual evaluation tak-
ing place on non-plain pre-terms, the effect of reducing pre-
terms is lifting out all Ň-binders until the pre-term has be-
come a pre-result, i.e. its body is a plain term. Once that
form has been reached, the fixation rule (41) turns all its
now outermost Ň-binders into plain N-binders, leaving an
ordinary λω

N-term, for which evaluation proceeds as before.
In other words, evaluation happens in two phases: first, rules
(20–41) transform the pre-term into a plain term, then the

(pre-terms) ˇ̌e ::= x | fix x1(x2:τ2):τ1.ˇ̌e | ˇ̌e1 ˇ̌e2 | Λα:κ.ˇ̌e |
ˇ̌e τ | Nγ:κ≈τ.ˇ̌e | Ňγ:κ≈τ.ˇ̌e | {ˇ̌e : τ}±

γ≈τ ′ |

tcase ˇ̌e1 : τ1 of x : τ2 then ˇ̌e2 else ˇ̌e3

(pre-results) ě ::= e | Ňγ:κ≈τ.ě

Figure 9: Syntax of pre-terms

rules (1–19) perform proper evaluation. The first phase will
always terminate:

Theorem 6 (Finite Pre-term Reduction). Every
well-typed pre-term ˇ̌e reduces to a plain term e by a finite
reduction sequence (involving only rules (20)–(41)).

In this light, it is valid to view pre-terms as an exter-
nal language, which is transformed into the internal core
language of plain terms prior to evaluation via a static elab-
oration process.

6. RELATED WORK
Although being relatively simple in spirit, to our knowl-

edge there is no previous work that isolates the dynamic
aspect of type generativity for abstraction and formalises it
in a calculus. While module theories usually account for
generativity as well, they do so solely on the static level of
typing rules. In fact, all of the influential theories for ML
modules [12, 15, 27, 6] are not full calculi, but merely type
systems, that side-step the issue of reduction. The pres-
ence of ad-hoc typing rules encompassing type abstraction
precludes a type-preserving reduction semantics.

One notable exception is Sewell, who uses generativity for
modelling certain aspects of type abstraction [29]. However,
in his system generated abstract types are recorded as man-
ifestly equal to their representation in a global environment,
so that opacity is not properly maintained dynamically.

Glew presented a calculus for generating new tagged types
at runtime and dispatching on them [9]. His system is more
complex than ours in order to allow for hierarchical types,
but it is not fully reflexive since untagged types cannot be
analysed.

The work most relevant to ours is by Grossman, Mor-
risett and Zdancewic on proof techniques for abstraction

(20) fix x1(x2:τ2):τ1.Ňγ:κ≈τ.ě → Ňγ:κ≈τ.fixx1(x2:τ2):τ1.ě (γ /∈ FTN(τ1, τ2))
(21) (Ňγ:κ≈τ.ě) ˇ̌e → Ňγ:κ≈τ.ě ˇ̌e (γ /∈ FTN(ˇ̌e))
(22) e (Ňγ:κ≈τ.ě) → Ňγ:κ≈τ.e ě (γ /∈ FTN(e))
(23) Λα:κ′.Ňγ:κ≈τ.ě → Ňγ:κ′→κ≈(λα:κ′.τ).Λα:κ′.ě[γ := γ α]
(24) (Ňγ:κ≈τ.ě) τ ′ → Ňγ:κ≈τ.ě τ ′ (γ /∈ FTN(τ ′))
(25) Nγ′:κ′≈τ ′.Ňγ:κ≈τ.ě → Ňγ:κ′→κ≈(λα:κ′.τ [γ′ := α]).Nγ′:κ′≈τ ′.ě[γ := γ γ′]

(γ 6≡ γ′;α /∈ FTV(τ); γ /∈ FTN(τ ′))
(26) {Ňγ:κ≈τ.ě : τ ′′}±

γ′≈τ ′ → Ňγ:κ≈τ.{ě : τ ′′}±
γ′≈τ ′ (γ 6≡ γ′; γ /∈ FTN(τ ′, τ ′′))

(27) tcase Ňγ:κ≈τ.ě1 : τ1 of x : τ2 then ˇ̌e2 else ˇ̌e3 → Ňγ:κ≈τ.tcase ě1 : τ1 of x : τ2 then ˇ̌e2 else ˇ̌e3 (γ /∈ FTN(τ1, τ2, ˇ̌e2, ˇ̌e3))
(28) tcase e1 : τ1 of x : τ2 then Ňγ:κ≈τ.ě2 else ˇ̌e3 → Ňγ:κ≈τ.tcase e1 : τ1 of x : τ2 then ě2 else ˇ̌e3 (γ /∈ FTN(τ1, τ2, e1, ˇ̌e3))
(29) tcase e1 : τ1 of x : τ2 then e2 else Ňγ:κ≈τ.ě3 → Ňγ:κ≈τ.tcase e1 : τ1 of x : τ2 then e2 else ě3 (γ /∈ FTN(τ1, τ2, e1, e2))

(30) fix x1(x2:τ2):τ1.ˇ̌e → fix x1(x2:τ2):τ1.ˇ̌e
′ (if ˇ̌e → ˇ̌e′; ˇ̌e 6≡ ě)

(31) ˇ̌e ˇ̌e2 → ˇ̌e′ ˇ̌e2 (if ˇ̌e → ˇ̌e′; ˇ̌e 6≡ ě)
(32) e ˇ̌e → e ˇ̌e′ (if ˇ̌e → ˇ̌e′; ˇ̌e 6≡ ě)
(33) Λα:κ.ˇ̌e → Λα:κ.ˇ̌e′ (if ˇ̌e → ˇ̌e′; ˇ̌e 6≡ ě)
(34) ˇ̌e τ → ˇ̌e′ τ (if ˇ̌e → ˇ̌e′; ˇ̌e 6≡ ě)
(35) Nγ:κ≈τ.ˇ̌e → Nγ:κ≈τ.ˇ̌e′ (if ˇ̌e → ˇ̌e′; ˇ̌e 6≡ ě)
(36) Ňγ:κ≈τ.ˇ̌e → Ňγ:κ≈τ.ˇ̌e′ (if ˇ̌e → ˇ̌e′; ˇ̌e 6≡ ě)
(37) {ˇ̌e : τ ′}±γ≈τ → {ˇ̌e′ : τ ′}±γ≈τ (if ˇ̌e → ˇ̌e′; ˇ̌e 6≡ ě)
(38) tcase ˇ̌e : τ1 of x : τ2 then ˇ̌e2 else ˇ̌e3 → tcase ˇ̌e′ : τ1 of x : τ2 then ˇ̌e2 else ˇ̌e3 (if ˇ̌e → ˇ̌e′; ˇ̌e 6≡ ě)
(39) tcase e1 : τ1 of x : τ2 then ˇ̌e else ˇ̌e3 → tcase e1 : τ1 of x : τ2 then ˇ̌e′ else ˇ̌e3 (if ˇ̌e → ˇ̌e′; ˇ̌e 6≡ ě)
(40) tcase e1 : τ1 of x : τ2 then e2 else ˇ̌e → tcase e1 : τ1 of x : τ2 then e2 else ˇ̌e′ (if ˇ̌e → ˇ̌e′; ˇ̌e 6≡ ě)

(41) Ňγ:κ≈τ.e → Nγ:κ≈τ.e

Figure 10: Reduction for applicative generation

[10]. They present a calculus that uses annotated brackets
for marking abstraction boundaries during reduction. These
are similar to the generalized coercions in λN. However,
in their system abstraction brackets are not directed, i.e. it
does not distinguish between sealing and unsealing. Instead,
all directly nested brackets are collapsed on reduction and
annotated with the sequence of ‘principals’ that own the cor-
responding abstractions. That appears to be slightly more
complex, but avoids the need for the artefact of unsealed
types, as well as η-expansion during reduction. The latter
is advantegeous for proving a type erasure theorem. On the
other hand, in their system the definition of type equiva-
lence depends on an additional type assertion environment.
This complicates the operational semantics, because the en-
vironment has to be maintained dynamically to cope with
abstraction scoping. Furthermore, their calculus cannot ex-
press dynamic abstraction, but requires identifying a fixed
set of abstractions statically, since technically, the reduction
relation has to be extended for each occuring abstraction.
Both these aspects make it less suited as a simple opera-
tional model for type abstraction.

The λN-calculus also reveals close similarities to Pierce
and Sumii’s cryptographic lambda calculus [21]: N-binders
correspond to key generation and sealing/unsealing to en-
cryption/decryption operations in that calculus. However,
their type system is weaker in the sense that decryption
may fail dynamically. They present an encoding of type ab-
stracting polymorphism using ciphertext, but do not prove
anything about it.

None of the mentioned work considers higher-order types
and higher-order sealing, or applicative generativity.

7. CONCLUSION
The standard encoding of abstract types via existential

types relies on parametricity of polymorphism. If para-
metricity is not given, due to constructs for type analysis,
the encoding is inappropriate because it cannot warrant en-
capsulation. In non-parametric settings it is necessary to
capture generativity to achieve dynamic opacity and thereby
encapsulation.

As a solution we proposed a calculus whose core feature
is a syntactic treatment of dynamic generativity, using a
variation of name generation as known from π-calculus and
other systems. It relies on coercions as explicit transition
markers for abstraction boundaries. By generalizing these
coercions inductively over all types they can be used to ex-
press sealing. The calculus can be extended to higher-order
abstract types and augmented with support for applicative
generativity.

As future work, we would like to integrate aspects of λω
N

with recent module theories [6], in order to get a full theory
of modules with dynamic typing. For example, the language
Alice ML that is currently being developed [2] provides so-
called packages as a form of dynamics generalized to mod-
ules. A combined theory is needed to give a formal semantics
for that feature.

Full representation independence or extensionality [18, 22]
of abstract types in λN is a challenge to prove. There ap-
pears to be very little work on proof techniques for oper-
ational equivalence in non-parametric extensions of the λ-
calculus. It is not clear how techniques like logical relations
[18, 25, 23] can be applied in such a setting.

8. REFERENCES
[1] M. Abadi, L. Cardelli, B. Pierce, and D. Rémy.

Dynamic typing in polymorphic languages. Journal of
Functional Programming, 5(1):111–130, Jan. 1995.

[2] Alice Team. The Alice System. Programming System
Lab, Universität des Saarlandes,
http://www.ps.un-sb.de/alice/, 2003.

[3] H. Barendregt. Lambda calculi with types. In
S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume 2,
chapter 2, pages 117–309. Oxford University Press,
1992.

[4] L. Cardelli, J. Donahue, L. Glassman, M. Jordan,
B. Kalsow, and G. Nelson. Modula-3 language
definition. In G. Nelson, editor, System Programming
with Modula-3, chapter 2, pages 11–66. Prentice Hall,
1991.

[5] L. Cardelli and X. Leroy. Abstract types and the dot
notation. In IFIP TC2 working conference on
programming concepts and methods, pages 479–504.
North-Holland, Mar. 1990.

[6] D. Dreyer, K. Crary, and R. Harper. A type system
for higher-order modules. In 30th Symposium on
Principles of Programming Languages, New Orleans,
USA, Jan. 2003.

[7] C. Dubois, F. Rouaix, and P. Weis. Extensional
polymorphism. In 22nd Symposium on Principles of
Programming Languages, San Francisco, USA, Jan.
1995.

[8] J.-Y. Girard. Interprétation Fonctionnelle et

Élimination des Coupures de l’Arithmétique d’Ordre
Supérieur. PhD thesis, June 1972.

[9] N. Glew. Type dispatch for named hierarchical types.
In International Conference on Functional
Programming, Paris, France, Oct. 1999.

[10] D. Grossman, G. Morrisett, and S. Zdancewic.
Syntactic type abstraction. Transactions on
Programming Languages and Systems,
22(6):1037–1080, Nov. 2000.

[11] R. Harper and G. Morrisett. Compiling polymorphism
using intensional type analysis. In 22nd Symposium on
Principles of Programming Languages, pages 130–141,
San Francisco, USA, Jan. 1995.

[12] X. Leroy. Applicative functors and fully transparent
higher-order modules. In 22nd Symposium on
Principles of Programming Languages, pages 142–153,
San Francisco, USA, Jan. 1995. ACM.

[13] X. Leroy. The Objective Caml System. INRIA, 2003.
http://pauillac.inria.fr/ocaml/htmlman/.

[14] X. Leroy and M. Mauny. Dynamics in ML. Journal of
Functional Programming, 3(4):431–463, 1993.

[15] M. Lillibridge. Translucent Sums: A Foundation for
Higher-Order Module Systems. PhD thesis, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, USA, May 1997.

[16] B. Liskov, R. Atkinson, T. Bloom, E. Moss,
C. Schaffert, R. Scheifler, and A. Snyder. CLU
reference manual. Technical Report
MIT/LCS/TR-225, 1979.

[17] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
Definition of Standard ML (Revised). The MIT Press,
1997.

[18] J. Mitchell. On the equivalence of data
representations. In V. Lifschitz, editor, Artificial
Intelligence and Mathematical Theory of Computation:
Papers in Honor of John McCarthy, pages 305–330.
Academic Press, 1991.

[19] J. Mitchell and G. Plotkin. Abstract types have
existential type. Transactions on Programming
Languages and Systems, 10(3):470–502, 1988.
Preliminary version appeared in 12th Symposium on
Principles of Programming Languages, 1985.

[20] B. Pierce. Types and Programming Languages. The
MIT Press, Feb. 2002.

[21] B. Pierce and E. Sumii. Relating cryptography and
polymorphism. Technical report, July 2000.
http://www.yl.is.s.u-tokyo.ac.jp/~sumii/pub/.

[22] A. Pitts. Existential types: Logical relations and
operational equivalence. In 25th International
Colloquium on Automata, Languages and
Programming, volume 1443 of Lecture Notes in
Computer Science, pages 309–326. Springer-Verlag,
Berlin, 1998.

[23] A. Pitts. Parametric polymorphism and operational
equivalence. Mathematical Structures in Computer
Science, 10:321–359, 2000.

[24] A. Pitts and I. Stark. On the observable properties of
higher order functions that dynamically create local
names. In P. Hudak, editor, Workshop on State in
Programming Languages, pages 31–45, Copenhagen,
Denmark, 1993.

[25] G. Plotkin and M. Abadi. A logic for parametric
polymorphism. In M. Beeze and J. F. Groote, editors,
Typed Lambda Calculus and Applications, volume 664
of Lecture Notes in Computer Science, pages 361–375.
Springer-Verlag, Berlin, 1993.

[26] J. Reynolds. Types, abstraction and parametric
polymorphism. In R. Mason, editor, Information
Processing, pages 513–523, Amsterdam, 1983. North
Holland.

[27] C. Russo. Types for Modules. Dissertation, University
of Edinburgh, 1998.

[28] D. Sangiorgi and D. Walker. The π-calculus: a Theory
of Mobile Processes. Cambridge University Press, Dec.
2001.

[29] P. Sewell. Modules, abstract types, and distributed
versioning. In 28th Symposium on Principles of
Programming Languages, London, UK, Jan. 2001.

[30] C. Strachey. Fundamental concepts in programming
languages. In Lecture Notes, International Summer
School in Computer Programming. Copenhagen, Aug.
1967. Reprinted in: Higher-Order and Symbolic
Computation, 13(1–2):11–49, April 2000.

[31] V. Trifonov, B. Saha, and Z. Shao. Fully reflexive
intensional type analysis. In Fifth International
Conference on Functional Programming, pages 82–93,
Montreal, Canada, Sept. 2000.

[32] S. Weirich. Type-safe cast. In International
Conference on Functional Programming, pages 58–67,
Montreal, Canada, Sept. 2000.

[33] N. Wirth. Programming in MODULA-2.
Springer-Verlag, 3rd edition, 1985.

APPENDIX

A. PROOFS

A.1 Typing λN

The following basic lemmata are easy to show:

Lemma 1 (Type Equivalence Inversion).
1. If γ = γ′, then γ ≡ γ′.

2. If τ1→τ2 = τ ′
1→τ ′

2, then τ1 = τ ′
1 and τ2 = τ ′

2.

3. If ∀α.τ = ∀α.τ ′, then τ = τ ′.

4. If {τ1}
−
γ≈τ2

= {τ ′
1}

−
γ≈τ ′

2

, then τ1 = τ ′
1 and τ2 = τ ′

2.

Proof. By relating type equivalence to a confluent par-
allel reduction, see e.g. [20].

Lemma 2 (Canonical Types). For every type τ , ex-
actly one of the following equivalences holds:

• τ = γ

• τ = τ1→τ2

• τ = ∀α.τ1

• τ = α−

where α− is defined by the following grammar:

α− ::= α | {α−}−γ≈τ

Proof. By relating type equivalence to a confluent par-
allel reduction and proving strong normalisation.

Lemma 3 (Weakening). If Γ ` e : τ and ` Γ′ : � and
Γ′ ⊇ Γ, then Γ′ ` e : τ .

Proof. By induction on the derivation.

Lemma 4 (Strengthening). If Γ ` e : τ and Γ′ ⊆ Γ
with ` Γ′ : �, and FV(e, Γ′) ∪ FTV(e,Γ′) ∪ FTN(e, Γ′) ⊆
Dom(Γ′), then Γ′ ` e : τ .

Proof. By induction on the derivation.

Lemma 5 (Substitution).
1. If τ1 = τ2 then τ1[α := τ ′] = τ2[α := τ ′].

2. If Γ, α ` τ : Ω and Γ ` τ ′ : Ω, then Γ ` τ [α := τ ′] : Ω.

3. If Γ, α ` e : τ and Γ ` τ ′ : Ω, then Γ ` e[α := τ ′] :
τ [α := τ ′].

4. If Γ, x:τ ′ ` e : τ and Γ ` e′ : τ ′, then Γ ` e[x := e′] : τ .

Proof. Each by induction on the original derivation. For
the case of unsealed types in (2) and the (Seal) and (Unseal)
cases in (3) observe that if ` Γ, α : � and γ≈τ ∈ Γ then
α /∈ FTV(τ), hence γ≈τ [α := τ ′] ∈ Γ is equivalent to
γ≈τ ∈ Γ.

Lemma 6 (Type inversion).
1. If Γ ` α : Ω, then ` Γ : � and α ∈ Γ.

2. If Γ ` γ : Ω, then ` Γ : � and γ≈τ ∈ Γ.

3. If Γ ` τ1 → τ2 : Ω, then Γ ` τ1 : Ω and Γ ` τ2 : Ω.

4. If Γ ` ∀α.τ : Ω, then Γ, α ` τ : Ω.

5. If Γ ` {τ1}
−
γ≈τ2

: Ω, then Γ ` τ1 : Ω and γ≈τ2 ∈ Γ.

Proof. By induction on the corresponding derivation.

We formulate term inversion modulo type equivalence:

Lemma 7 (Inversion).
1. If Γ ` x : τ , then ` Γ : � and x:τ ′ ∈ Γ with τ ′ = τ .

2. If Γ ` (fix x1(x2:τ2):τ1.e) : τ , then τ = τ2→τ1 and Γ `
τ1 : Ω and Γ ` τ2 : Ω and Γ, x1:τ2→τ1, x2:τ2 ` e : τ1.

3. If Γ ` e1 e2 : τ , then there is a type τ ′ such that Γ `
e1 : τ ′→τ and Γ ` e2 : τ ′.

4. If Γ ` Λα.e : τ , then there is a type τ ′ such that τ =
∀α.τ ′ and Γ, α ` e : τ ′.

5. If Γ ` e τ ′ : τ , then there is a type τ ′′ such that Γ ` e :
∀α.τ ′′ and Γ ` τ ′ : Ω and τ = τ ′′[α := τ ′].

6. If Γ ` Nγ≈τ ′.e : τ , then Γ ` τ ′ : Ω and Γ, γ≈τ ′ ` e : τ
and γ /∈ FTN(τ).

7. If Γ ` {e:τ ′′}+
γ≈τ ′ : τ , then τ = τ ′′ and Γ ` e : {τ ′′}−

γ≈τ ′

and γ≈τ ′ ∈ Γ.

8. If Γ ` {e:τ ′′}−
γ≈τ ′ : τ , then τ = {τ ′′}−

γ≈τ ′ and Γ ` e : τ ′′

and γ≈τ ′ ∈ Γ.

9. If Γ ` (tcase e1 : τ1 of x : τ2 then e2 else e3) : τ , then
Γ ` e1 : τ1 and Γ ` τ2 : Ω and Γ, x:τ2 ` e2 : τ and
Γ ` e3 : τ .

Proof. By induction on the corresponding derivation.

Theorem 1 (Unique Types). Whenever Γ ` e : τ and
Γ ` e : τ ′ then τ = τ ′.

Proof. By induction on the derivation.

Lemma 8 (Validity).
1. If Γ ` τ : Ω, then ` Γ : �.

2. If Γ ` e : τ , then Γ ` τ : Ω.

Proof. Each by induction on the original derivation us-
ing the previous lemmas. We treat the most interesting cases
of (2):

• case Nγ≈τ ′.e′ : τ

1. by inverting (New), Γ, γ≈τ ′ ` e′ : τ and Γ ` τ ′ : Ω
and γ /∈ FTN(τ)

2. by induction, Γ, γ≈τ ′ ` τ : Ω

3. by strengthening, Γ ` τ : Ω

• case {e′ : τ}+
γ≈τ ′ : τ

1. by inverting (Seal), Γ ` e′ : {τ}−
γ≈τ ′ and γ≈τ ′ ∈ Γ

2. by induction, Γ ` {τ}−
γ≈τ ′ : Ω

3. by type inversion, Γ ` τ : Ω

• case {e′ : τ}−
γ≈τ ′ : {τ}−

γ≈τ ′

1. by inverting (Unseal), Γ ` e′ : τ

2. by induction, Γ ` τ : Ω

3. by type formation, Γ ` {τ}−
γ≈τ ′ : Ω

Theorem 2 (Preservation). If Γ ` e : τ and e → e′,
then Γ ` e′ : τ .

Proof. By induction on the generation of → using pre-
vious lemmas. Note that by validity, Γ ` τ : Ω. We treat
the basic cases:

• case e ≡ (fix x1(x2:τ2):τ1.e1) ˆ̂e

and e′ ≡ e1[x1 := (fix x1(x2:τ2):τ1.e1), x2 := ˆ̂e]

1. by inverting (App), Γ ` (fix x1(x2:τ2):τ1.e1) : τ ′ →

τ and Γ ` ˆ̂e : τ ′ for some τ ′

2. by inverting (Fix), τ ′→τ = τ2→τ1 and Γ ` τ1 : Ω
and Γ ` τ2 : Ω and Γ, x1:τ2→τ1, x2:τ2 ` e1 : τ

3. by type equivalence inversion, τ = τ1 and τ ′ = τ2

4. by rule (Equiv), Γ ` (fix x1(x2:τ2):τ1.e1) : τ2 → τ1

and Γ ` ˆ̂e : τ2

5. by substitution (4),

Γ ` e1[x1 := (fix x1(x2:τ2):τ1.e1), x2 := ˆ̂e] : τ1

6. by rule (Equiv),

Γ ` e1[x1 := (fix x1(x2:τ2):τ1.e1), x2 := ˆ̂e] : τ

• case e ≡ (Λα.e1) τ ′ and e′ ≡ e1[α := τ ′]

1. by inverting (Inst), Γ ` (Λα.e1) : ∀α.τ1 and Γ `
τ ′ : Ω and τ = τ1[α := τ ′] for some τ1

2. by inverting (Gen), Γ, α ` e1 : τ1

3. by substitution (3), Γ ` e1[α := τ ′] : τ1[α := τ ′]

4. by rule (Equiv), Γ ` e1[α := τ ′] : τ

• case e ≡ {{ˆ̂e : τ1}
+
γ≈τ ′ : τ2}

−
γ≈τ ′ and e′ ≡ ˆ̂e

(with τ1 = τ2 = γ)

1. by inverting (Unseal), Γ ` {ˆ̂e : τ1}
+
γ≈τ ′ : τ2 and

τ = {τ2}
−
γ≈τ ′

2. by inverting (Seal), Γ ` ˆ̂e : {τ1}
−
γ≈τ ′

3. by type equivalence, {τ1}
−
γ≈τ ′ = τ ′ = τ

4. by rule (Equiv), Γ ` ˆ̂e : τ

• case e ≡ {ˆ̂e : τ1}
+
γ≈τ ′ and e′ ≡ ˆ̂e (with τ1 = γ 6≡ γ′)

1. by inverting (Seal), τ = τ1 and Γ ` ˆ̂e : {τ1}
−
γ≈τ ′

2. by type equivalence, {τ1}
−
γ≈τ ′ = τ

3. by rule (Equiv), Γ ` ˆ̂e : τ

• case e ≡ {ˆ̂e : τ1}
−
γ≈τ ′ and e′ ≡ ˆ̂e (with τ1 = γ 6≡ γ′)

Similarly.

• case e ≡ {ˆ̂e : τ ′′}+
γ≈τ ′ (with τ ′′ = τ2→τ1)

and e′ ≡ fix x1(x2 : τ2) : τ1.{ˆ̂e {x : τ1}
−
γ≈τ ′ : τ2}

+
γ≈τ ′

1. by inverting (Seal), τ = τ ′′ and Γ ` ˆ̂e : {τ ′′}−
γ≈τ ′

and γ≈τ ′ ∈ Γ

2. by type inversion, Γ ` τ1 : Ω and Γ ` τ2 : Ω.

3. by type formation, Γ ` {τ2}
−
γ≈τ ′ → {τ1}

−
γ≈τ ′ : Ω.

4. by type equivalence, {τ ′′}−
γ≈τ ′ = {τ2}

−
γ≈τ ′ → {τ1}

−
γ≈τ ′

5. by rule (Equiv), Γ ` ˆ̂e : {τ2}
−
γ≈τ ′ → {τ1}

−
γ≈τ ′

6. by weakening, Γ′ ` ˆ̂e : {τ2}
−
γ≈τ ′ → {τ1}

−
γ≈τ ′ with

Γ′ ≡ Γ, x1 : τ2→τ1, x2 : τ2 (well-formed by validity)

7. by rule (Id), Γ′ ` x2 : τ2

8. by rule (Unseal), Γ′ ` {x2 : τ2}
−
γ≈τ ′ : {τ2}

−
γ≈τ ′

9. by rule (App), Γ′ ` ˆ̂e {x2 : τ2}
−
γ≈τ ′ : {τ1}

−
γ≈τ ′

10. by rule (Seal), Γ′ ` {ˆ̂e {x2 : τ2}
−
γ≈τ ′ : τ1}

+
γ≈τ ′ : τ1

11. by rule (Fix), Γ ` e′ : τ2 → τ1

12. by rule (Equiv), Γ ` e′ : τ

• case e ≡ {ˆ̂e : τ ′′}−
γ≈τ ′ (with τ ′′ = τ2→τ1)

and e′ ≡ fix x1(x2 : {τ2}
−
γ≈τ ′) : {τ1}

−
γ≈τ ′ .{ˆ̂e {x : τ1}

+
γ≈τ ′ :

τ2}
−
γ≈τ ′

Similarly.

• case e ≡ {ˆ̂e : τ ′′}+
γ≈τ ′ and e′ ≡ Λα.{ˆ̂e α : τ ′′′}+

γ≈τ ′

(with τ ′′ = ∀α.τ ′′′)

1. by inverting (Seal), τ = τ ′′ and Γ ` ˆ̂e : {τ ′′}−
γ≈τ ′

and γ≈τ ′ ∈ Γ

2. by type inversion, Γ ` τ ′′′ : Ω.

3. by type formation, Γ ` ∀α.{τ ′′′}−
γ≈τ ′ : Ω.

4. by type equivalence, {τ ′′}−
γ≈τ ′ = ∀α.{τ ′′′}−

γ≈τ ′

5. by rule (Equiv), Γ ` ˆ̂e : ∀α.{τ ′′′}−
γ≈τ ′

6. by weakening, Γ′ ` ˆ̂e : ∀α.{τ ′′′}−
γ≈τ ′ with Γ′ ≡ Γ, α

7. by rule (Inst), Γ′ ` ˆ̂e α : {τ ′′′}−
γ≈τ ′

8. by rule (Seal), Γ′ ` {ˆ̂e α : τ ′′′}+
γ≈τ ′ : τ ′′′

9. by rule (Gen), Γ′ ` e′ : ∀α.τ ′′′

10. by rule (Equiv), Γ ` e′ : τ

• case e ≡ {ˆ̂e : τ ′′}−
γ≈τ ′ and e′ ≡ Λα.{ˆ̂e α : τ ′′′}−

γ≈τ ′

(with τ ′′ = ∀α.τ ′′′)
Similarly.

• case e ≡ (Nγ≈τ ′.ê) e2 and e′ ≡ Nγ≈τ ′.ê e2

1. by inverting (App), Γ ` Nγ≈τ ′.ê : τ2 → τ and
Γ ` e2 : τ2 (*) for some τ2

2. by inverting (New), Γ, γ≈τ ′ ` ê : τ2 → τ and
γ /∈ FTN(τ2 → τ)

3. by weakening (*), Γ, γ≈τ ′ ` e2 : τ2

4. by rule (App), Γ, γ≈τ ′ ` ê e2 : τ

5. by rule (New), Γ ` Nγ≈τ ′.ê e2 : τ

• case e ≡ ˆ̂e (Nγ≈τ ′.ê) and e′ ≡ Nγ≈τ ′.ˆ̂e ê
Similarly.

• case e ≡ (Nγ≈τ ′.ê) τ and e′ ≡ Nγ≈τ ′.ê τ
Similarly.

• case e ≡ {Nγ≈τ ′′′.ê : τ ′′}+
γ′≈τ ′

and e′ ≡ Nγ≈τ ′′′.{ê : τ ′′}+
γ′≈τ ′

1. by inverting (Seal), τ ′′ = τ and Γ ` Nγ≈τ ′′′.ê :
{τ ′′}−

γ′≈τ ′ and γ′≈τ ′ ∈ Γ

2. by inverting (New), Γ, γ≈τ ′′′ ` ê : {τ ′′}−
γ′≈τ ′ and

Γ ` τ ′′′ : Ω and γ /∈ FTN({τ ′′}−
γ′≈τ ′)

3. by rule (Seal), Γ, γ≈τ ′′′ ` {ê : τ ′′}+
γ′≈τ ′ : τ ′′

4. by rule (New), Γ ` Nγ≈τ ′′′.{ê : τ ′′}+
γ′≈τ ′ : τ ′′

5. by rule (Equiv), Γ ` Nγ≈τ ′′′.{ê : τ ′′}+
γ′≈τ ′ : τ

• case e ≡ {Nγ≈τ ′′′.ê : τ ′′}−
γ′≈τ ′

and e′ ≡ Nγ≈τ ′′′.{ê : τ ′′}−
γ′≈τ ′

Similarly.

• case e ≡ tcase Nγ≈τ ′.ê1 : τ1 of x : τ2 then e2 else e3

and e′ ≡ Nγ≈τ ′.tcase ê1 : τ1 of x : τ2 then e2 else e3

1. by inverting (Tcase), Γ ` Nγ≈τ ′.ê1 : τ1 and Γ `
τ2 : Ω and Γ, x:τ1 ` e2 : τ and Γ ` e3 : τ

2. by inverting (New), Γ, γ≈τ ′ ` ê1 : τ1 and Γ ` τ ′ :
Ω and γ /∈ FTN(τ1)

3. by weakening, Γ, γ≈τ ′ ` τ2 : Ω and Γ, γ≈τ ′, x:τ1 `
e2 : τ and Γ, γ≈τ ′ ` e3 : τ

4. by rule (Tcase), Γ, γ≈τ ′ ` (tcase ê1 : τ1 of x :
τ2 then e2 else e3) : τ

5. by rule (New), Γ ` e′ : τ

• case e ≡ tcase ˆ̂e1 : τ1 of x : τ2 then e2 else e3

and e′ ≡ e2[x := ˆ̂e1] (with τ1 = τ2)

1. by inverting (Tcase), Γ ` ˆ̂e1 : τ1 and Γ, x:τ2 ` e2 :
τ and Γ ` τ2 : Ω

2. by rule (Equiv), Γ ` ˆ̂e1 : τ2

3. by substitution (4), Γ ` e2[x := ˆ̂e1] : τ

• case e ≡ tcase ˆ̂e1 : τ1 of x : τ2 then e2 else e3

and e′ ≡ e3 (with τ1 6= τ2)

1. by inverting (Tcase), Γ ` e3 : τ

The following lemma describes the shape of λN-values at
particular types:

Lemma 9 (Canonical values).
1. If Γ ` ˆ̂e : γ, then ˆ̂e ≡ {ˆ̂e′ : τ ′}+

γ≈τ (with τ ′ = γ).

2. If Γ ` ˆ̂e : τ2 → τ1 then ˆ̂e ≡ fix x1(x2:τ2):τ1.e.

3. If Γ ` ˆ̂e : ∀α.τ then ˆ̂e ≡ Λα.e.

Proof. By inspection of the cases for ˆ̂e.

N is a binder for type variables. Hence, in order to prove
progress by induction, a slightly stronger induction hypoth-
esis is necessary:

Theorem 3 (Progress). Let Γ be an environment con-
taining only type assertions (i.e. Γ ≡ γ1≈τ1, · · · , γn≈τn). If
Γ ` e : τ , then either e ≡ ê for some result ê, or e → e′

for some expression e′. Moreover, in the latter case, there
is exactly one applicable reduction rule, i.e. reduction is de-
terministic.

Proof. By easy induction on the typing derivations. We
show the most interesting cases:

• case e ≡ Nγ≈τ1.e1 with e1 6≡ ê1

1. by inverting (New), Γ, γ≈τ1 ` e1 : τ

2. by induction, e1 → e′1 (using Γ′ ≡ Γ, γ≈τ1)

3. by reduction rule (17), Nγ≈τ1.e1 → Nγ≈τ1.e
′
1

• case e ≡ {e1 : τ1}
+
γ≈τ ′

by canonical types, we have the following subcases:

– subcase e1 ≡ ˆ̂e1 and τ1 = γ

1. by definition, e is a result

– subcase e1 ≡ ˆ̂e1 and τ1 = γ′ (with γ 6≡ γ′)

1. by reduction rule (4), e → ˆ̂e1

– subcase e1 ≡ ˆ̂e1 and τ1 = τ2→τ3

1. by reduction rule (5), e → fix x1(x2 : τ2) :

τ3.{ˆ̂e1 {x : τ3}
−
γ≈τ ′ : τ2}

+
γ≈τ ′

– subcase e1 ≡ ˆ̂e1 and τ1 = ∀α.τ2

1. by reduction rule (6), e → Λα.{ˆ̂e1 α : τ2}
+
γ≈τ ′

– subcase e1 ≡ ˆ̂e1 and τ1 = α−

cannot occur since e1 is closed wrt. type variables.

– subcase e1 ≡ Nγ′≈τ2.ê1

1. by reduction rule (12), e → Nγ ′≈τ2.{ê1 : τ1}
+
γ≈τ ′

– subcase e1 6≡ ê1

1. by inverting (Seal), Γ ` e1 : {τ1}
−
γ

2. by induction, e1 → e′1
3. by reduction rule (18), e → {e′1 : τ1}

+
γ≈τ ′

• case e ≡ {e1 : τ1}
−
γ≈τ ′

by canonical types, we have the following subcases:

– subcase e1 ≡ ˆ̂e1 and τ1 = γ

1. by inverting (Unseal), Γ ` ˆ̂e1 : τ1

2. by rule (Equiv), Γ ` ˆ̂e1 : γ

3. as canonical value, ˆ̂e1 ≡ {ˆ̂e′1 : τ2}
+
γ≈τ ′ with

τ2 = γ

4. by reduction rule (3), e → ˆ̂e′1

– subcase e1 ≡ ˆ̂e1 and τ1 = γ′ (with γ 6≡ γ′)

1. by reduction rule (4), e → ˆ̂e1

– subcase e1 ≡ ˆ̂e1 and τ1 = τ2→τ3

1. by reduction rule (5), e → fix x1(x2 : {τ2}
−
γ≈τ ′) :

{τ3}
−
γ≈τ ′ .{ˆ̂e1 {x : τ3}

+
γ≈τ ′ : τ2}

−
γ≈τ ′

– subcase e1 ≡ ˆ̂e1 and τ1 = ∀α.τ2

1. by reduction rule (6), e → Λα.{ˆ̂e1 α : τ2}
−
γ≈τ ′

– subcase e1 ≡ ˆ̂e1 and τ1 = α−

cannot occur since e1 is closed wrt. type variables.

– subcase e1 ≡ Nγ′≈τ2.ê1

1. by reduction rule (12), e → Nγ ′≈τ2.{ê1 : τ1}
−
γ≈τ ′

– subcase e1 6≡ ê1

1. by inverting (Unseal), Γ ` e1 : τ1

2. by induction, e1 → e′1
3. by reduction rule (18), e → {e′1 : τ1}

−
γ≈τ ′

• case e ≡ tcase e1 : τ1 of x : τ2 then e2 else e3

– subcase e1 ≡ ˆ̂e1 and τ1 = τ2

1. by reduction rule (7), e → e2[x := ˆ̂e1]

– subcase e1 ≡ ˆ̂e1 and τ1 6= τ2

1. by reduction rule (8), e → e3

– subcase e1 ≡ Nγ≈τ ′.ê1

1. by reduction rule (13), e → Nγ≈τ ′.tcase ê1 :
τ1 of x : τ2 then e2 else e3

– subcase e1 6≡ ê1

1. by inverting (Tcase), Γ ` e1 : τ1

2. by induction, e1 → e′1
3. by reduction rule (19), e → tcase Nγ≈τ ′.e′1 :

τ1 of x : τ2 then e2 else e3

Deterministic reduction follows from the fact that all cases
are disjoint, and in each case no other reduction rule is ap-
plicable.

Corollary 4 (Progress for closed expressions).
If · ` e : τ , then either e ≡ ê for some result ê, or there is
an expression e′ such that e → e′.

A.2 Opacity

Lemma 10 (Result and value substitution). Let σ
be an arbitrary substitution.

1. êσ ≡ ê′

2. ˆ̂eσ ≡ ˆ̂e′

Proof. By trivial induction on the structure of the orig-
inal expression.

Lemma 11 (Name substitution). If σ = [α := γ] and
γ /∈ FTN(τ1, τ2) then

1. τ1σ = τ2 ⇒ τ2 ≡ τ3σ
(for some τ3 with γ /∈ FTN(τ3))

2. τ1σ ≡ τ2σ ⇔ τ1 ≡ τ2

3. τ1σ = τ2σ ⇔ τ1 = τ2

Proof.
1. By induction on the derivation.

2. By induction on the structure of τ1.

3. By induction on the derivation, using (2) in the re-
flexive case and (1) in the associative case of the “⇒”
direction.

Theorem 5 (Opacity). Let Γ be an environment con-
taining only type assertions (i.e. Γ ≡ γ ′

1≈τ1, · · · , γ′
n≈τn)

and e an expression with Γ, α, x:α ` e : τ . Assume a set
of values ˆ̂ei (i = 1, . . . , n) such that γi≈τi ` ˆ̂ei : γi with

γi /∈ Dom(Γ). Let σi = [α := γi, x := ˆ̂ei]. If eσ1 6≡ ˆ̂e then
there is an e′ with Γ, α, x:α ` e′ : τ such that

eσi → e′σi

for all σi.

Proof. By canonical values, ˆ̂ei ≡ {ˆ̂e′i : τ ′
i}

+
γi

(with τ ′
i =

γi). By progress, eσ1 → e′′ for some e′′. We can hence prove
the conjecture by induction on the derivation of →, using
lemmata 10–11.

• case (1): There are 2 possibilities:

– subcase e ≡ (fix x1(x2:τ2):τ1.e1) ˆ̂e
For all i we have

eσi ≡ (fixx1(x2:τ2σi):τ1σi.e1σi) (ˆ̂eσi)

→ (e1σi)[x1 := fix x1(x2:τ2σi):τ1σi.e1σi, x2 := ˆ̂eσi]

≡ (e1σi)[x1 := (fixx1(x2:τ2):τ1.e1)σi, x2 := ˆ̂eσi]

≡ (e1[x1 := fix x1(x2:τ2):τ1.e1, x2 := ˆ̂e])σi

Hence e′ ≡ e1[x1 := fix x1(x2:τ2):τ1.e1, x2 := ˆ̂e],
which is well-typed.

– subcase e ≡ (fix x1(x2:τ2):τ1.e1) x

The proof proceeds likewise, with ˆ̂eσi replaced by
xσi.

• case (2): Similarly.

• case (3): Due to the assumptions, γ 6≡ γi for any i.
Hence, there are 2 possibilities:

– subcase e ≡ {{ˆ̂e : τ1}
+
γ≈τ ′ : τ2}

−
γ≈τ ′

By substitution (1), τ1σi = τ2σi. Hence for all i
we have

eσi ≡ {{ˆ̂eσi : τ1σi}
+
γ≈τ ′σi

: τ2σi}
−
γ≈τ ′σi

→ ˆ̂eσi

Hence e′ ≡ ˆ̂e, which is well-typed by inversion.

– subcase e ≡ {{x : τ1}
+
γ≈τ ′ : τ2}

−
γ≈τ ′

Likewise.

• case (4): Due to the assumptions, γ ′ 6≡ γi for any i.
Hence, by inversion there is only one possibility:

– e ≡ {ˆ̂e : τ ′′}±
γ≈τ ′ (with τ ′′ = γ′)

By substitution (1), τ ′′σi = γ′σi = γ′ = τ ′′, hence
for all i we have

eσi ≡ {ˆ̂eσi : τ ′′}±γ≈τ ′σi
→ ˆ̂eσi

Hence e′ ≡ ˆ̂e, which is well-typed by inversion.

• cases (5)–(6): Similarly.

• case (7): By lemma 11, τ1σi = τ2σi, hence there are
only 2 possibilities:

– subcase e ≡ tcase ˆ̂e : τ1 of x : τ2 then e2 else e3

eσi ≡ tcase ˆ̂eσi : τ1σi of x : τ2σi then e2σi else e3σi

→ (e2σi)[x := ˆ̂eσi]

≡ (e2[x := ˆ̂e])σi

– subcase e ≡ tcase x : τ1 of x : τ2 then e2 else e3

Likewise.

• case (8): Similarly.

• case (9): There are only 2 possibilities:

– subcase e ≡ (Nγ≈τ ′.ˆ̂e) e′

eσi ≡ (Nγ≈τ ′σi.ˆ̂eσi) (e′σi)

→ Nγ≈τ ′σi.(ˆ̂eσi) (e′σi)

≡ (Nγ≈τ ′.ˆ̂e e′)σi

– subcase e ≡ (Nγ≈τ ′.x) e′

Likewise.

• cases (10)–(13): Similarly.

• case (14): We have eσ1 ≡ (e1σ1) (e2σ1) and e1σ1 → e′′1
for some e′′1 . By induction, e1σi → e′1σi for all σi. So

eσi ≡ (e1σi) (e2σi) → (e′1σi) (e2σi) ≡ (e′1 e2)σi

• cases (15)–(19): Similarly, using an extended environ-
ment Γ′ ≡ Γ, γ≈τ ′ for induction in case (17).

A.3 Typing λω
N

Figure 11 shows the complete syntax of λω
N, figure 12 gives

its typing rules and figure 13 the respective type equivalence
relation. Most lemmas from section A.1 still hold for λω

N, if Ω
is generalized to arbitrary κ at the right places. We restate
only the interesting ones:

Lemma 12 (Canonical Types). For every type τ : Ω,
exactly one of the following equivalences holds:

• τ = γ ~τ

• τ = τ1→τ2

• τ = ∀α.τ1

• τ = α−

where α− is defined by the following grammar:

α− ::= α | {α−}−γ≈τ

Proof. By relating type equivalence to a confluent par-
allel reduction and proving strong normalisation.

Lemma 13 (Type inversion).
1. If Γ ` α : κ, then ` Γ : � and α:κ ∈ Γ.

2. If Γ ` γ : κ, then ` Γ : � and γ≈τ ∈ Γ and Γ ` τ : κ.

3. If Γ ` τ1 → τ2 : Ω, then Γ ` τ1 : Ω and Γ ` τ2 : Ω.

4. If Γ ` ∀α:κ.τ : κ, then κ ≡ Ω and Γ, α:κ ` τ : Ω.

5. If Γ ` λα:κ1.τ : κ, then κ ≡ κ1→κ2 and Γ, α:κ1 ` τ :
κ2.

6. If Γ ` τ1 τ2 : κ1, then Γ ` τ1 : κ2→κ1 and Γ ` τ2 : κ2.

7. If Γ ` {τ1}
−
γ≈τ2

: κ, then Γ ` τ1 : κ and γ≈τ2 ∈ Γ.

Proof. By induction on the corresponding derivation.

We need the following lemma to prove preservation for
higher-order coercions:

Lemma 14 (Unsealing).
1. If γ /∈ FTN(τ ′), then {τ ′}−γ≈τ = τ ′.

2. If γ /∈ FTN(τ ′), then {{{τ ′′}−
γ′≈τ ′}

−
γ≈τ}

−
γ′≈τ ′ = {{τ ′′}−γ≈τ}

−
γ′≈τ ′ .

Proof. Each by easy induction on the structure of τ .

Lemma 15 (Non-circularity). Let ` Γ : � with γ≈τ ∈
Γ and γ′≈τ ′ ∈ Γ. If γ′ ∈ FTN(τ), then γ /∈ FTN(τ ′).

Proof. By induction on the derivation of ` Γ : �.

Theorem 6 (λω
N Preservation). If Γ ` e : τ0 and

e → e′, then Γ ` e′ : τ0.

Proof. By induction on the generation of →. We treat
the new cases (4a–4e):

• case e ≡ {{ˆ̂e : τ1}
+
γ′≈τ ′ : τ2}

+
γ≈τ and e′ ≡ {ˆ̂e : τ1}

+
γ′

(with τ1 = γ′ ~τ ′, τ2 = γ ~τ and γ /∈ FTN(~τ))

1. by inverting (Seal), τ0 = τ2 and Γ ` {ˆ̂e : τ1}
+
γ′ :

{τ2}
−
γ

2. unsealing (1), {τ2}
−
γ = τ2

3. by rule (Equiv), Γ ` {ˆ̂e : τ1}
+
γ′ : τ0

• case e ≡ {{ˆ̂e : τ1}
+
γ′≈τ ′ : τ2}

−
γ≈τ and e′ ≡ {ˆ̂e : τ1}

+
γ′

(with τ1 = γ′ ~τ ′, τ2 = γ ~τ and γ /∈ FTN(~τ))

1. by inverting (Unseal), τ0 = {τ2}
−
γ and Γ ` {ˆ̂e :

τ1}
+
γ′ : τ2

2. unsealing (1), {τ2}
−
γ = τ2

3. by rule (Equiv), Γ ` {ˆ̂e : τ1}
+
γ′ : τ0

• case e ≡ {{ˆ̂e : τ1}
+
γ′≈τ ′ : τ2}

+
γ≈τ

and e′ ≡ {{{ˆ̂e : τ ′ {{~τ}−γ }−
γ′}

−
γ : τ ′ {~τ}−

γ′}
+
γ : γ′ ~τ}+

γ′

(with τ1 = γ′ ~τ ′, τ2 = γ ~τ and γ′ /∈ FTN(τ))

1. by inverting (Seal), τ0 = τ2 and Γ ` {ˆ̂e : τ1}
+
γ′ :

{τ2}
−
γ

2. by inverting (Seal), τ1 = {τ2}
−
γ and Γ ` ˆ̂e : {τ1}

−
γ′

3. by type equivalence, {τ1}
−
γ′ = {{τ2}

−
γ }−

γ′ = τ ′ {{~τ}−γ }−
γ′

4. by rule (Equiv), Γ ` ˆ̂e : τ ′ {{~τ}−γ }−
γ′

5. by rule (Unseal), Γ ` e′′′ : {τ ′ {{~τ}−γ }−
γ′}

−
γ with

e′′′ ≡ {ˆ̂e : τ ′ {{~τ}−γ }−
γ′}

−
γ

6. by unsealing (2), {τ ′ {{~τ}−γ }−
γ′}

−
γ = {τ ′}−γ {{{~τ}−γ }−

γ′}
−
γ =

{τ ′}−γ {{~τ}−
γ′}

−
γ = {τ ′ {~τ}−

γ′}
−
γ

7. by rule (Equiv), Γ ` e′′′ : {τ ′ {~τ}−
γ′}

−
γ

8. by rule (Seal), Γ ` e′′ : τ ′ {~τ}−
γ′ with e′′ ≡ {e′′′ :

τ ′ {~τ}−
γ′}

+
γ

9. by rule (Equiv), Γ ` e′′ : {γ′ ~τ}−
γ′

10. by rule (Seal), Γ ` e′ : γ′ ~τ

11. by rule (Equiv), Γ ` e′ : τ0

• case e ≡ {{ˆ̂e : τ1}
+
γ′≈τ ′ : τ2}

−
γ≈τ

and e′ ≡ {{{ˆ̂e : τ ′ {~τ}−
γ′}

−
γ : τ ′ {{~τ}−γ }−

γ′}
+
γ : γ′ {~τ}−γ }+

γ′

(with τ1 = γ′ ~τ ′, τ2 = γ ~τ and γ′ /∈ FTN(τ))

1. by inverting (Unseal), τ0 = {τ2}
−
γ and Γ ` {ˆ̂e :

τ1}
+
γ′ : τ2

2. by inverting (Seal), τ1 = τ2 and Γ ` ˆ̂e : {τ1}
−
γ′

3. by rule (Equiv), Γ ` ˆ̂e : τ ′ {~τ}−
γ′

4. by rule (Unseal), Γ ` e′′′ : {τ ′ {~τ}−
γ′}

−
γ with e′′′ ≡

{ˆ̂e : τ ′ {~τ}−
γ′}

−
γ

5. by unsealing (2), {τ ′ {~τ}−
γ′}

−
γ = {τ ′}−γ {{~τ}−

γ′}
−
γ =

{τ ′}−γ {{{~τ}−γ }−
γ′}

−
γ = {τ ′ {{~τ}−γ }−

γ′}
−
γ

6. by rule (Equiv), Γ ` e′′′ : {τ ′ {{~τ}−γ }−
γ′}

−
γ

7. by rule (Seal), Γ ` e′′ : τ ′ {{~τ}−γ }−
γ′ with e′′ ≡

{e′′′ : τ ′ {{~τ}−γ }−
γ′}

+
γ

8. by rule (Equiv), Γ ` e′′ : {γ′ {~τ}−γ }−
γ′

9. by rule (Seal), Γ ` e′ : γ′ {~τ}−γ
10. by rule (Equiv), Γ ` e′ : τ0

• case e ≡ {{ˆ̂e : τ1}
+
γ′≈τ ′ : τ2}

+
γ≈τ

and e′ ≡ {{{ˆ̂e : τ ′ {{~τ}−
γ′}

−
γ }+

γ′ : τ ′ {~τ}−
γ′}

+
γ : γ′ ~τ}+

γ′

(with τ1 = γ′ ~τ ′, τ2 = γ ~τ and γ′ ∈ FTN(τ))

1. by validity, ` Γ : �

2. by non-circularity, γ /∈ FTN(τ ′)

3. by inverting (Seal), τ0 = τ2 and Γ ` {ˆ̂e : τ1}
+
γ′ :

{τ2}
−
γ

4. by inverting (Seal), τ1 = {τ2}
−
γ and Γ ` ˆ̂e : {τ1}

−
γ′

5. by unsealing (2+1), {τ1}
−
γ′ = {{τ2}

−
γ }−

γ′ =

{{{τ2}
−
γ′}

−
γ }−

γ′ = {{τ ′ {~τ}−
γ′}

−
γ }−

γ′ = {τ ′ {{~τ}−
γ′}

−
γ }−

γ′

6. by rule (Equiv), Γ ` ˆ̂e : {τ ′ {{~τ}−
γ′}

−
γ }−

γ′

7. by rule (Seal), Γ ` e′′′ : τ ′ {{~τ}−
γ′}

−
γ′ with e′′′ ≡

{ˆ̂e : τ ′ {{~τ}−
γ′}

−
γ }+

γ′

8. by rule (Equiv), Γ ` e′′′ : {τ ′ {~τ}−
γ′}

−
γ

9. by rule (Seal), Γ ` e′′ : τ ′ {~τ}−
γ′ with e′′ ≡ {e′′′ :

τ ′ {~τ}−
γ′}

+
γ

10. by rule (Equiv), Γ ` e′′ : {γ′ ~τ}−
γ′

11. by rule (Seal), Γ ` e′ : γ′ ~τ

12. by rule (Equiv), Γ ` e′ : τ0

• case e ≡ {{ˆ̂e : τ1}
+
γ′≈τ ′ : τ2}

−
γ≈τ

and e′ ≡ {{{ˆ̂e : τ ′ {~τ}−
γ′}

−
γ : τ ′ {{~τ}−

γ′}
−
γ }−

γ′ : γ′ {~τ}−γ }+
γ′

(with τ1 = γ′ ~τ ′, τ2 = γ ~τ and γ′ ∈ FTN(τ))

1. by validity, ` Γ : �

2. by non-circularity, γ /∈ FTN(τ ′)

3. by inverting (Unseal), τ0 = {τ2}
−
γ and Γ ` {ˆ̂e :

τ1}
+
γ′ : τ2

4. by inverting (Seal), τ1 = τ2 and Γ ` ˆ̂e : {τ1}
−
γ′

5. by rule (Equiv), Γ ` ˆ̂e : τ ′ {~τ}−
γ′

6. by rule (Unseal), Γ ` e′′′ : {τ ′ {~τ}−
γ′}

−
γ with e′′′ ≡

{ˆ̂e : τ ′ {~τ}−
γ′}

−
γ

7. by rule (Equiv), Γ ` e′′′ : τ ′ {{~τ}−
γ′}

−
γ

8. by rule (Unseal), Γ ` e′′ : {τ ′ {{~τ}−
γ′}

−
γ }−

γ′ with

e′′ ≡ {e′′′ : τ ′ {{~τ}−
γ′}

−
γ }−

γ′

9. by unsealing (2+1), {τ ′ {{~τ}−
γ′}

−
γ }−

γ′ =

{τ ′}−
γ′ {{{~τ}

−
γ′}

−
γ }−

γ′ = {τ ′}−
γ′ {{~τ}

−
γ }−

γ′ = τ ′ {{~τ}−γ }−
γ′

10. by rule (Equiv), Γ ` e′′ : τ ′ {{~τ}−γ }−
γ′

11. by rule (Seal), Γ ` e′ : γ′ {~τ}−γ
12. by rule (Equiv), Γ ` e′ : τ0

Lemma 16 (Canonical values). For any value ˆ̂e and
environment Γ :

1. If Γ ` ˆ̂e : γ ~τ , then ˆ̂e ≡ {ˆ̂e′ : τ ′}+
γ≈τ (with τ ′ = γ ~τ).

2. If Γ ` ˆ̂e : τ2 → τ1 then ˆ̂e ≡ fix x1(x2:τ
′
2):τ

′
1.e.

3. If Γ ` ˆ̂e : ∀α.τ then ˆ̂e ≡ Λα.e.

Proof. By induction of the cases for ˆ̂e and induction on
the derivations.

Theorem 7 (λω
N Progress). Let Γ be an environment

containing only type assertions (i.e. Γ ≡ γ1≈τ1, · · · , γn≈τn).
If Γ ` e : τ0, then either e ≡ ê for some result ê, or e → e′

for some expression e′. Moreover, in the latter case, there
is exactly one applicable reduction rule.

Proof. By easy induction on the typing derivations. We
treat just the cases that are different from λN:

• case e ≡ {e1 : τ1}
+
γ≈τ

by canonical types, we have the following subcases:

– subcase e1 ≡ ˆ̂e1 and τ1 = γ ~τ

1. by definition, e is a result

– subcase e1 ≡ ˆ̂e1 and τ1 = γ′ ~τ (with γ 6≡ γ′)

1. by inverting (Seal), Γ ` ˆ̂e1 : {τ1}
−
γ≈τ

2. by rule (Equiv), Γ ` ˆ̂e1 : γ′ {~τ}−γ≈τ

3. as canonical value, ˆ̂e1 ≡ {ˆ̂e′1 : τ ′
1}

+
γ′≈τ ′ with

τ ′
1 = γ′ ~τ ′

4. if ∃~τ ′ = ~τ.γ /∈ FTN(~τ ′), then by reduction rule

(4a), e → {ˆ̂e′1 : τ ′
1}

+
γ′

5. else if ∃τ ′′ = τ.γ′ /∈ FTN(τ ′′), then by reduc-
tion rule (4b),

e → {{{ˆ̂e : τ ′{{~τ}−γ }−
γ′}

−
γ : τ ′{~τ}−

γ′}
+
γ : γ′~τ}+

γ′

6. else by reduction rule (4d),

e → {{{ˆ̂e : τ ′{{~τ}−
γ′}

−
γ }+

γ′ : τ ′{~τ}−
γ′}

+
γ : γ′~τ}+

γ′

– subcase e1 ≡ ˆ̂e1 and τ1 = τ2→τ3

1. by reduction rule (5), e → fix x1(x2 : τ2) :

τ3.{ˆ̂e1 {x : τ3}
−
γ : τ2}

+
γ

– subcase e1 ≡ ˆ̂e1 and τ1 = ∀α.τ2

1. by reduction rule (6), e → Λα.{ˆ̂e1 α : τ2}
+
γ

– subcase e1 ≡ ˆ̂e1 and τ1 = α−

cannot appear since e1 is closed wrt. type variables.

– subcase e1 ≡ Nγ′≈τ2.ê1

1. by reduction rule (12), e → Nγ ′≈τ2.{ê1 : τ1}
+
γ

– subcase e1 6≡ ê1

1. by inverting (Seal), Γ ` e1 : {τ1}
−
γ

2. by induction, e1 → e′1
3. by reduction rule (18), e → {e′1 : τ1}

+
γ

• case e ≡ {e1 : τ1}
−
γ≈τ

by canonical types, we have the following subcases:

– subcase e1 ≡ ˆ̂e1 and τ1 = γ ~τ

1. by inverting (Unseal), Γ ` ˆ̂e1 : τ1

(kinds) κ ::= Ω | κ1 → κ2

(types) τ ::= α | γ | τ1 → τ2 | ∀α:κ.τ | {τ}−
γ≈τ ′ |

λ:κ.τ | τ1 τ2

(terms) e ::= x | fix x1(x2:τ2):τ1.e | e1 e2 | Λα:κ.e | e τ |
Nγ:κ≈τ.e | {e : τ}±

γ≈τ ′ |

tcase e1 : τ1 of x : τ2 then e2 else e3

(results) ê ::= ˆ̂e | Nγ:κ≈τ.ê

(values) ˆ̂e ::= fix x1(x2:τ2):τ1.e | Λα:κ.e |

{ˆ̂e : τ}+
γ≈τ ′ (τ = γ ~τ)

(env’s) Γ ::= · | Γ, x:τ | Γ, α | Γ, γ≈τ

Figure 11: λω
N Syntax

2. as canonical value, ˆ̂e1 ≡ {ˆ̂e′1 : τ2}
+
γ≈τ

3. by inverting (Seal), τ2 = γ

4. by reduction rule (3), e → ˆ̂e′1

– subcase e1 ≡ ˆ̂e1 and τ1 = γ′ ~τ (with γ 6≡ γ′)

1. by inverting (Unseal), Γ ` ˆ̂e1 : τ1

2. by rule (Equiv), Γ ` ˆ̂e1 : γ′ ~τ

3. as canonical value, ˆ̂e1 ≡ {ˆ̂e′1 : τ ′
1}

+
γ′≈τ ′ with

τ ′
1 = γ′ ~τ ′

4. if ∃~τ ′ = ~τ.γ /∈ FTN(~τ ′), then by reduction rule

(4a), e → {ˆ̂e′1 : τ ′
1}

−
γ′

5. else if ∃τ ′′ = τ.γ′ /∈ FTN(τ ′′), then by reduc-
tion rule (4c),

e → {{{ˆ̂e : τ ′{~τ}−
γ′}

−
γ : τ ′{{~τ}−γ }−

γ′}
+
γ : γ′{~τ}−γ }+

γ′

6. else by reduction rule (4e),

e → {{{ˆ̂e : τ ′{~τ}−
γ′}

−
γ : τ ′{{~τ}−

γ′}
−
γ }−

γ′ : γ′{~τ}−γ }+
γ′

– subcase e1 ≡ ˆ̂e1 and τ1 = τ2→τ3

1. by reduction rule (5), e → fix x1(x2 : {τ2}
−
γ) :

{τ3}
−
γ .{ˆ̂e1 {x : τ3}

+
γ : τ2}

−
γ

– subcase e1 ≡ ˆ̂e1 and τ1 = ∀α.τ2

1. by reduction rule (6), e → Λα.{ˆ̂e1 α : τ2}
−
γ

– subcase e1 ≡ ˆ̂e1 and τ1 = α−

cannot appear since e1 is closed wrt. type variables.

– subcase e1 ≡ Nγ′≈τ2.ê1

1. by reduction rule (12), e → Nγ ′≈τ2.{ê1 : τ1}
−
γ

– subcase e1 6≡ ê1

1. by inverting (Unseal), Γ ` e1 : τ1

2. by induction, e1 → e′1
3. by reduction rule (18), e → {e′1 : τ1}

−
γ

Deterministic reduction follows from the fact that all cases
are disjoint, and in each case no other reduction rule is ap-
plicable. In particular, at most one of the rules (4a)-(4e)
can ever apply.

A.4 Reduction of λω
N

The reduction rules (4b)-(4e) for higher-order coercions
replace two nested coercions by three. We have to prove
that this cannot lead to diverging sequences of coercion re-
ductions. We assign suitable weights w ∈ � to types of kind
Ω and show that the total weight of non-value coercions in
an expression decreases with each reduction step. Higher-
order types are mapped to higher-order functions over � ,

` · : �

` Γ : � Γ ` τ : Ω

` Γ, x:τ : �
(x /∈ Dom(Γ))

` Γ : �

` Γ, α:κ : �
(α /∈ Dom(Γ))

` Γ : � Γ ` τ : κ

` Γ, γ≈τ : �
(γ /∈ Dom(Γ))

` Γ : � α:κ ∈ Γ

Γ ` α : κ

Γ ` τ : κ γ≈τ ∈ Γ

Γ ` γ : κ

Γ ` τ1 : Ω Γ ` τ2 : Ω

Γ ` τ1 → τ2 : Ω

Γ, α:κ ` τ : Ω

Γ ` ∀α:κ.τ : Ω

Γ, α:κ ` τ : κ′

Γ ` λα:κ.τ : κ → κ′

Γ ` τ1 : κ′ → κ Γ ` τ2 : κ

Γ ` τ1 τ2 : κ

Γ ` τ1 : κ γ≈τ2 ∈ Γ

Γ ` {τ1}
−
γ≈τ2

: κ

(Id)
` Γ : � x:τ ∈ Γ

Γ ` x : τ
(App)

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

(Fix)
Γ ` τ1 : Ω Γ ` τ2 : Ω Γ, x1:τ2→τ1, x2:τ2 ` e : τ1

Γ ` (fix x1(x2:τ2):τ1.e) : τ2 → τ1

(Gen)
Γ, α:κ ` e : τ

Γ ` Λα:κ.e : ∀α:κ.τ
(Inst)

Γ ` e : ∀α:κ.τ Γ ` τ ′ : κ

Γ ` e τ ′ : τ [α := τ ′]

(New)
Γ ` τ ′ : κ Γ, γ≈τ ′ ` e : τ

Γ ` Nγ:κ≈τ ′.e : τ
(γ /∈ FTN(τ))

(Seal)
Γ ` e : {τ}−

γ≈τ ′ γ≈τ ′ ∈ Γ

Γ ` {e : τ}+
γ≈τ ′ : τ

(Unseal)
Γ ` e : τ γ≈τ ′ ∈ Γ

Γ ` {e : τ}−
γ≈τ ′ : {τ}−

γ≈τ ′

(Tcase)
Γ ` e1 : τ1 Γ ` τ2 : Ω Γ, x:τ2 ` e2 : τ Γ ` e3 : τ

Γ ` (tcase e1 : τ1 of x : τ2 then e2 else e3) : τ

(Equiv)
Γ ` e : τ ′ τ ′ = τ Γ ` τ : Ω

Γ ` e : τ

Figure 12: λω
N Typing

such that in general types are mapped to terms in a simply
typed lambda calculus with natural numbers given by the
following grammar:

T ::= � | T1 → T2

W ::= n | W1 + W2 | x | λx:T.W | W1 W2

Equality on these terms is defined by βη-equivalence plus
the obvious rule for addition.

The following function defines the mapping from λω
N-types

and kinds to W -terms and types. We assume there is an in-
jective mapping from type variables α to W -variables, which
we write as xα. The mapping is defined relative to an λω

N-
environment Γ that records the necessary type assertions for

τ = τ

τ ′ = τ

τ = τ ′

τ = τ ′ τ ′ = τ ′′

τ = τ ′′

τ1 = τ ′
1 τ2 = τ ′

2

τ1→τ2 = τ ′
1→τ ′

2

τ = τ ′

∀α:κ.τ = ∀α:κ.τ ′

τ = τ ′

λα:κ.τ = λα:κ.τ ′

τ1 = τ ′
1 τ2 = τ ′

2

τ1 τ2 = τ ′
1 τ ′

2

(λα:κ.τ1) τ2 = τ1[α := τ2] λα:κ.τ α = τ
(α /∈ FTV(τ))

τ1 = τ ′
1

{τ1}
−
γ≈τ2

= {τ ′
1}

−
γ≈τ2

{γ}−γ≈τ = τ {γ′}−γ≈τ2
= γ′

(γ 6≡ γ′)

{τ1→τ2}
−
γ≈τ3

= {τ1}
−
γ≈τ3

→{τ2}
−
γ≈τ3

{∀α:κ.τ1}
−
γ≈τ2

= ∀α:κ.{τ1}
−
γ≈τ2

(α /∈ FTV(τ2))

{λα:κ.τ1}
−
γ≈τ2

= λα:κ.{τ1}
−
γ≈τ2

(α /∈ FTV(τ2))

{τ1 τ2}
−
γ≈τ3

= {τ1}
−
γ≈τ3

{τ2}
−
γ≈τ3

Figure 13: λω
N Type equivalence

abstract types.

W (Ω) = �
W (κ1 → κ2) = W (κ1) → W (κ2)

WΓ(α) = xα

WΓ(γ) = 1W (κ) +W (κ) 2 ·W (κ) WΓ(τ)

(with γ≈τ ∈ Γ and Γ ` τ : κ)

WΓ(τ1 → τ2) = 1 + WΓ(τ1) + WΓ(τ2)

WΓ(∀α:κ.τ) = 1 + (λxα:W (κ).WΓ,α:κ(τ)) 1W (κ)

WΓ({τ ′}−γ≈τ) = (λxα:W (κ).WΓ,α:κ(τ ′[γ := α])) WΓ(τ)

(with α fresh and Γ ` τ : κ)

WΓ(λα:κ.τ) = λxα:W (κ).WΓ(τ)

WΓ(τ1 τ2) = WΓ(τ1) WΓ(τ2)

By lemma 17 the definition for unsealed types is β-equivalent
to

WΓ({τ ′}−γ≈τ}) = WΓ(τ ′[γ := τ])

but is more suitable to inductive proofs. The definitions
also use constants and addition at higher types, which are

defined by lifting as follows:

n � = n

n(T1→T2) = λx:T1.nT2

W1 +Ω W2 = W1 + W2

W1 +(T1→T2) W2 = λx:T1.W1 x +T2
W2 x

2 ·T W = W +T W

The weighting is defined such that the following equivalences
hold. We hence do not need to distinguish between equiva-
lent types:

Lemma 17 (Weight equivalence).
1. WΓ(τ [α := τ ′]) = WΓ(τ)[xα := WΓ(τ ′)]

2. τ1 = τ2 ⇒ WΓ(τ1) = WΓ(τ2)

3.

Proof.
1. By induction on the structure of τ .

2. By induction on the derivation of τ1 = τ2, using (1).

We define a a family of orderings on weights as follows:

W1 ≤Ω W2 ⇔ W1 ≤ W2

W1 ≤(T1→T2) W2 ⇔ ∀W : T1, W1 W ≤T2
W2 W

Each ordering in the family is a partial order with a smallest
element:

Lemma 18 (Partial order on weights).
Let W, W1, W2, W3 : T .

1. W ≤T W

2. W1 ≤T W2 ∧ W2 ≤T W3 ⇒ W1 ≤T W2

3. W1 ≤T W2 ∧ W2 ≤T W1 ⇒ W1 = W2

4. 0T ≤T W

Proof. Each by induction on the structure of T .

All W -functions are monotonic with respect to the ordering:

Lemma 19 (Weight monotonicity).
Let W, W1, W2 : T and W ′ : T → T ′.

1. W1 ≤T W1 +T W2 and W2 ≤T W1 +T W2

2. W1 ≤T W2 ⇒ W [x := W1] ≤T W [x := W2]
(assuming W [x := Wi] well-typed)

3. W1 ≤T W2 ⇒ W ′ W1 ≤T ′ W ′ W2

4. W1 ≤T W2 ⇒ W1 +T W ≤T W2 +T W

Proof.
1. By induction on the structure of T .

2. By induction on the structure of W .

3. Follows immediatetly from (2).

4. By induction on the structure of T , using (3).

Let <T be the quasi order corresponding to ≤T , i.e.:

W1 <T W2 ⇔ W1 ≤T W2 ∧ W1 6= W2

Obviously, it is well-founded with 0T being the smallest el-
ement. Moreover, we have:

Lemma 20 (Weight increase). Let W : T .

1. W <T 1T +T W

2. 0T <T 1T +T W

Proof.

1. From monotonicity it follows that W ≤T 1T +T W . It
hence suffices to show that W 6= 1T +T W , by induction
on the structure of T .

2. Follows directly from (1) and transitivity.

A direct consequence is that the weighting function only
assigns non-zero weights:

Lemma 21 (Non-zero weights). If Γ ` τ : κ and
∀α:κ′ ∈ Γ, 0W (κ′) <W (κ′) xα, then 0W (κ) <W (κ) WΓ(τ).

Proof. By induction on the structure of τ , using a slightly
stronger induction hypothesis with the additional assump-
tion ∀γ:κ′≈τ ′ ∈ Γ, 0W (κ′) <W (κ′) WΓ(τ ′). The conjecture
then follows by straight-forward induction on the structure
of Γ.

The weight of an abstract type is always larger than that
of its representation:

Lemma 22 (Weight of abstract types). Let γ≈τ ∈
Γ and Γ ` τ : κ, and Γ ` τ ′ : κ′. Assume ∀α:κ′ ∈
Γ, 0W (κ′) <W (κ′) xα.

1. WΓ(τ) <W (κ) WΓ(γ)

2. WΓ(τ ′[γ := τ]) ≤W (κ′) WΓ(τ ′)

3. WΓ({τ ′}−γ≈τ) ≤W (κ′) WΓ(τ ′)

Proof.

1. By monotonicity and weight increase:

WΓ(τ)≤W (κ) 2 ·W (κ) WΓ(τ)
<W (κ) 1W (κ) +W (κ) 2 ·W (κ) WΓ(τ)
= WΓ(γ)

2. By induction on the structure of τ ′. We show the case
for unsealing:

• case τ ′ = {τ1}
−
γ′≈τ2

:

WΓ({τ1}
−
γ′≈τ2

[γ := τ])

= WΓ({τ1[γ := τ]}−
γ′≈τ2[γ:=τ])

= (λxα:κ2.WΓ(τ1[γ := τ][γ′ := α])) WΓ(τ2[γ := τ])
= (λxα:κ2.WΓ(τ1[γ

′ := α][γ := τ])) WΓ(τ2[γ := τ])
≤W (κ′) (λxα:κ2.WΓ(τ1[γ

′ := α])) WΓ(τ2)
= WΓ(τ ′)

3. Using (2) and lemma 17 (1):

WΓ({τ ′}−γ≈τ) = (λxα:κ.WΓ(τ ′[γ := α])) WΓ(τ)
= WΓ(τ [γ := α])[xα := WΓ(τ)]
= WΓ(τ [γ := τ])
≤W (κ′) WΓ(τ ′)

The coercion weight of λω
N-expressions can now be defined

as follows:

WΓ(x) = 0

WΓ(fix x1(x2:τ2):τ1.e) = WΓ(e)

WΓ(e1 e2) = WΓ(e1) + WΓ(e2)

WΓ(Λα:κ.e) = WΓ,α:κ(e)

WΓ(e τ) = WΓ(e)

WΓ(Nγ:κ≈τ.e) = WΓ,γ≈τ (e)

WΓ({e : τ ′}+
γ≈τ) =

�
WΓ(e) if τ ′ = γ ~τ
WΓ(e) + WΓ(τ ′) otherwise

WΓ({e : τ ′}−γ≈τ) = WΓ(e) + WΓ(τ ′)

WΓ(tcase e1:τ1 of x:τ2

then e2 else e3) = WΓ(e1) + WΓ(e2) + WΓ(e3)

where

WΓ(τ) := WΓ(τ)σ (with σ = [xα := 1W (κ) | α:κ ∈ Γ])

Note that coercions of the form {e : γ ~τ}+
γ do not add any

weight, we only weigh non-value coercions.

Theorem 8 (Coercion convergence). There are no
infinite sequences of reductions using only the coercion rules
(3), (4a)–(4e), (5) and (6).

Proof. In each of the rules the redex (left-hand side)
has non-zero weight. Simultanously, each reduct (right-hand
side) has less weight than the corresponding redex, which

can be shown with the previous lemmata (we write ~W (~τ)
for the vector of weights of types ~τ):

• case (3):

WΓ(LHS) = WΓ(ˆ̂e) + WΓ(γ ~τ)

> WΓ(ˆ̂e)
= WΓ(RHS)

• case (4a):

WΓ(LHS) = WΓ(ˆ̂e) + WΓ(γ ~τ)

> WΓ(ˆ̂e)
= WΓ(RHS)

• case (4b):

WΓ(LHS) = WΓ(ˆ̂e) + WΓ(γ′ ~τ)

= WΓ(ˆ̂e) + WΓ(γ′)(~WΓ(~τ))

= WΓ(ˆ̂e)+

(1W (κ) +W (κ) 2 ·W (κ) WΓ(τ ′))(~WΓ(~τ))

> WΓ(ˆ̂e) + (2 ·W (κ) WΓ(τ ′))(~WΓ(~τ))

= WΓ(ˆ̂e) + 2 · (WΓ(τ ′)(~WΓ(~τ)))

= WΓ(ˆ̂e) + WΓ(τ ′)(~WΓ(~τ))

+WΓ(τ ′)(~WΓ(~τ))

≥ WΓ(ˆ̂e) + WΓ(τ ′)(~WΓ({{~τ}−γ }−
γ′))

+WΓ(τ ′)(~WΓ({~τ}−
γ′))

≥ WΓ(RHS)

The last line is an inequation because τ ′ ~τ ′ may be
equivalent to γ ~τ ′′, in which case it is not weighed for
the right-hand side.

• cases (4c)–(4e): Likewise

• case (5):

WΓ(LHS) = WΓ(ˆ̂e) + WΓ(τ1 → τ2)

= WΓ(ˆ̂e) + WΓ(τ1) + WΓ(τ2) + 1

> WΓ(ˆ̂e) + WΓ(τ1) + WΓ(τ2)
≥ WΓ(RHS)

The last line is an inequation because τ1 and τ2 may
each be equivalent to γ ~τ .

• case (6):

WΓ(LHS) = WΓ(ˆ̂e) + WΓ(∀α:κ.τ1)

= WΓ(ˆ̂e) + WΓ(τ1)[xα := 1W (κ)] + 1

> WΓ(ˆ̂e) + WΓ(τ1)[xα := 1W (κ)]
≥ WΓ(RHS)

The last line is an inequation because τ1 may be equiv-
alent to γ ~τ .

A.5 Opacity for λω
N

The lemmata on substitutions from section A.2 easily ex-
tend to λω

N. Opacity itself needs to be restated as follows:

Theorem 9 (λω
N Opacity). Let Γ be an environment

containing only type assertions (i.e. Γ ≡ γ ′
1≈τ1, · · · , γ′

n≈τn)
and e an expression with Γ, α:κ, x:α~τ ` e : τ for some ~τ .
Assume a set of values ˆ̂ei (i = 1, . . . , n) such that γi≈τi `
ˆ̂ei : γi ~τ with γi /∈ Dom(Γ). Let σi = [α := γi, x := ˆ̂ei]. If

eσ1 6≡ ˆ̂e then there is an e′ with Γ, α:κ, x:α~τ ` e′ : τ such
that

eσi → e′σi

for all σi.

Proof. Note first that by validity, Γ, α:κ ` α~τ : Ω. By
canonical values, ˆ̂ei ≡ {ˆ̂e′i : τ ′

i}
+
γi

(with τ ′
i = γi ~τ). By

progress, eσ1 → e′′ for some e′′. We can hence prove the
conjecture by induction on the derivation of →. Only cases
(3)–(4e) are new:

• case (3): Due to the assumptions, γ 6≡ γi for any i.
Hence, there are 2 possibilities:

– subcase e ≡ {{ˆ̂e : τ1}
+
γ≈τ ′ : τ2}

−
γ≈τ ′ with τ1 = τ2 =

γ ~τ ′

By substitution (1), τ1σi = τ2σi = γ ~τ ′σ. Hence
for all i we have

eσi ≡ {{ˆ̂eσi : τ1σi}
+
γ≈τ ′σi

: τ2σi}
−
γ≈τ ′σi

→ ˆ̂eσi

Hence e′ ≡ ˆ̂e, which is well-typed by inversion.

– subcase e ≡ {{x : τ1}
+
γ≈τ ′ : τ2}

−
γ≈τ ′

Likewise.

• case (4a): Due to the assumptions, γ 6≡ γi and γ′ 6≡ γi

for any i. Hence 2 subcases:

– subcase e ≡ {{ˆ̂e : τ1}
+
γ′≈τ ′′ : τ2}

±
γ≈τ ′

(with τ1 = γ′ ~τ ′
1 and τ2 = γ′ ~τ ′

2 and γ /∈ FTN(~τ ′
2))

By substitution, τ1σi = γ′ ~τ ′
1σi and τ2σi = γ′ ~τ ′

2σi

and γ /∈ FTN(~τ ′
2σi), hence for all i we have

eσi ≡ {{ˆ̂eσi : τ1σi}
+
γ≈τ ′σi

: τ2σi}
±
γ≈τ ′σi

→ {ˆ̂eσi : τ1σi}
+
γ≈τ ′σi

≡ ({ˆ̂e : τ1}
+
γ≈τ ′)σi

Hence e′ ≡ {ˆ̂e : τ1}
+
γ≈τ ′ , which is well-typed by

inversion.

– subcase e ≡ {{x : τ1}
+
γ′≈τ ′′ : τ2}

±
γ≈τ ′

(with τ1 = γ′ ~τ ′
1 and τ2 = γ′ ~τ ′

2 and γ /∈ FTN(~τ ′
2))

Likewise.

• cases (4b)–(4e): Similarly. We mainly need to verify
that each side condition is invariant under each substi-
tution σi, which is easy to see.

A.6 Typing λω
Ň

For λω
Ň
, the higher-order calculus extended with Ň, the

typing rules from figure 12 must be lifted to pre-terms (by
substituting all occurences of e by ˇ̌e) and a rule for Ň-binders
must be added:

(Snew)
Γ ` τ ′ : κ Γ, γ≈τ ′ ` e : τ

Γ ` Ňγ:κ≈τ ′.e : τ
(γ /∈ FTV(τ))

Proofs for most lemmas from the previous section scale to
λω

Ň
trivially when replacing ˇ̌e for e. The cases for Ň proceed

as for plain N. Inversion needs to be extended:

Lemma 23 (Ň Inversion). If Γ ` Ňγ:κ≈τ ′.e : τ , then
Γ ` τ ′ : κ and Γ, γ≈τ ′ ` e : τ and γ /∈ FTN(τ).

In the main text we have omitted some technical detail
with respect to name substitution in terms: obviously, the
notation e[γ := τ] substitutes free type names in proper
type terms only. It does not substitute occurences of γ in
coercion subscripts, i.e. the subscript left-hand side in {e :
τ ′}±γ≈τ . The corresponding substitutions have been left out
in the reduction rules (23) and (25) as given in figure 10.
In order to make these rules precise, we need to define a
representation substitution, written e[γ :≈ τ], that replaces
coercion subscripts as defined by the closure of the equation

({e : τ1}
±
γ≈τ)[γ :≈ τ ′] = {e : τ1[γ :≈ τ ′]}±γ≈τ ′

The precise formulation of the reduction rules with repre-
sentation substitution is given in figure 14. The following
lemma holds:

Lemma 24 (Representation substitution).
If Γ, γ≈τ1 ` γ : κ and Γ, γ≈τ2 ` γ ~τ : κ for some κ, and
Γ, γ≈τ1 ` ě : τ , then Γ, γ≈τ2 ` ě[γ :≈ τ2][γ := γ ~τ] : τ [γ :=
γ ~τ].

Proof. By induction on the derivation.

Using the adapted lemmata and rules, preservation can
be proved:

Theorem 10 (λω
Ň

Preservation). If Γ ` ˇ̌e : τ and
ˇ̌e → ˇ̌e′, then Γ ` ˇ̌e′ : τ .

Proof. By straight-forward extension of the inductive
proof for theorem 6. The only non-obvious new cases are:

• case ˇ̌e ≡ Λα:κ′.Ňγ:κ≈τ.ě
and ˇ̌e′ ≡ Ňγ:κ′→κ≈(λα:κ′.τ).Λα:κ′.ě[γ :≈ λα:κ′.τ][γ :=
γ α]

1. by inverting (Gen), τ = ∀α:κ′.τ ′ and Γ, α:κ′ `
Ňγ:κ≈τ.ě : τ ′

2. by inverting (Snew), Γ, α:κ′ ` τ : κ and Γ, α:κ′, γ≈τ `
ě : τ ′ and γ /∈ FTN(τ ′)

3. by kinding, Γ ` λα:κ′.τ : κ′→κ

4. by kinding, Γ, α:κ′, γ≈(λα:κ′.τ) ` γ α : κ

5. by representation substitution, Γ, α:κ′, γ≈(λα:κ′.τ) `
ě[γ :≈ λα:κ′.τ][γ := γ α] : τ ′

6. by rule (Gen), Γ, γ≈(λα:κ′.τ) ` Λα:κ′.ě[γ :≈ λα:κ′.τ][γ :=
γ α] : ∀α:κ′.τ ′

7. by rule (Snew), Γ ` ˇ̌e′ : ∀α:κ′.τ ′

• case ˇ̌e ≡ Nγ′:κ′≈τ ′.Ňγ:κ≈τ.ě
and ˇ̌e′ ≡ Ňγ:κ′→κ≈(λα:κ′.τ [γ′:=α]).Nγ′:κ′≈τ ′.ě[γ :≈
λα:κ′.τ [γ′:=α]][γ:=γ γ′]
Similarly.

Theorem 11 (λω
Ň

Progress). Let Γ be an environment
containing only type assertions (i.e. Γ ≡ γ1≈τ1, · · · , γn≈τn).
If Γ ` ˇ̌e : τ0, then either ˇ̌e ≡ ê for some result ê, or ˇ̌e → ˇ̌e′

for some expression ˇ̌e′. In the latter case, if ˇ̌e ≡ e then
ˇ̌e′ ≡ e′.

Proof. By straight-forward extension of the proof for λω
N

with the cases for ˇ̌e 6≡ e, using the slightly stronger induction
hypothesis. For example,

• case ˇ̌e ≡ {ˇ̌e1 : τ1}
−
γ≈τ ′

– subcases ˇ̌e1 ≡ ˆ̂e1

as for λω
N

– subcase ˇ̌e1 ≡ Nγ′≈τ2.ê1

as for λω
N

– subcase ˇ̌e1 ≡ e1

1. by inverting (Unseal), Γ ` e1 : τ1

2. by induction, e1 → e′1
3. by reduction rule (18), ˇ̌e → {e′1 : τ1}

−
γ≈τ ′

– subcase ˇ̌e1 ≡ Ňγ′≈τ2.ě1

1. by reduction rule (12), ˇ̌e → Ňγ′≈τ2.{ě1 : τ1}
−
γ≈τ ′

– subcase ˇ̌e1 6≡ ě1

1. by inverting (Unseal), Γ ` ˇ̌e1 : τ1

2. by induction, ˇ̌e1 → ˇ̌e′1
3. by reduction rule (37), ˇ̌e → {ˇ̌e′1 : τ1}

−
γ≈τ ′

A.7 Termination of Pre-term Reduction
Let W be a weight function on pre-terms inductively de-

fined as follows:

W (x) = 0

W (fix x1(x2:τ2):τ1.ˇ̌e) = 2W (ˇ̌e)

W (ˇ̌e1 ˇ̌e2) = 2(W (ˇ̌e1) + W (ˇ̌e2))

W (Λα:κ.ˇ̌e) = 2W (ˇ̌e)

W (ˇ̌e τ) = 2W (ˇ̌e)

W (Nγ:κ≈τ.ˇ̌e) = 2W (ˇ̌e)

W (Ňγ:κ≈τ.ˇ̌e) = 1 + W (ˇ̌e)

W ({ˇ̌e : τ}±γ≈τ ′) = 2W (ˇ̌e)

W (tcase ˇ̌e1 : τ1 of x : τ2

then ˇ̌e2 else ˇ̌e3) = 2(W (ˇ̌e1) + W (ˇ̌e2) + W (ˇ̌e3))

Lemma 25 (Term Weights). A pre-term ˇ̌e has weight
W (ˇ̌e) = 0 if and only if ˇ̌e ≡ e for some plain term e.

(23) Λα:κ′.Ňγ:κ≈τ.ě → Ňγ:κ′→κ≈(λα:κ′.τ).Λα:κ′.ě[γ :≈ λα:κ′.τ][γ := γ α]
(25) Nγ′:κ′≈τ ′.Ňγ:κ≈τ.ě → Ňγ:κ′→κ≈(λα:κ′.τ [γ′ := α]).Nγ′:κ′≈τ ′.ě[γ :≈ λα:κ′.τ [γ′ := α]][γ := γ α]

Figure 14: Revised reduction rules for applicative generation

Proof. Both directions by induction on the structure of
ˇ̌e.

Lemma 26 (Weight Reduction). For a pre-term ˇ̌e with
ˇ̌e → ˇ̌e′, either W (ˇ̌e) = W (ˇ̌e′) = 0, or W (ˇ̌e) > W (ˇ̌e′).

Proof. By induction on the derivation of ˇ̌e → ˇ̌e′.

Lemma 27 (Phase Separation). For a pre-term ˇ̌e with
ˇ̌e → ˇ̌e′, if ˇ̌e ≡ e then the reduction step involves only rules
(1)-(19), otherwise reduction involves only rules (20)-(41).

Proof. By easy extension of the inductive proof for progress
(theorem 11).

Theorem 12 (Finite Pre-term Reduction). Every
well-typed pre-term ˇ̌e reduces to a plain term e by a finite
reduction sequence involving only rules (20)–(41).

Proof. If ˇ̌e is a plain term then the conjecture holds im-
mediately. Otherwise, W (ˇ̌e) > 0 by lemma 25. By progress,
there is a reduction ˇ̌e → ˇ̌e′. By phase separation, the re-
duction uses only rules (20)–(41). By weight reduction,
W (ˇ̌e′) < W (ˇ̌e), so that there cannot be an infinite reduction
sequence without reaching a plain term.

