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Kurzzusammenfassung

In dieser Doktorarbeit stellen wir eine Ansatz vor, mit dessen Hilfe eine Zelle in einem
Arrangement von quadratischen Flichen exakt und effizient berechnet werden kann.
Alle Berechnungen basieren auf exakten algebraischen Methoden und fiihren selbst in
degenerierten Fallen zu mathematisch korrekten Ergebnissen. Durch Projektion kann
das raumliche Problem darauf reduziert werden, planare Arrangements von Kurven
zu bestimmen. Es gelingt uns, alle Ereignispunkte dieser planaren Arrangements ein-
schliefllich der tangentialen Schnitte und singulidren Punkte zu lokalisieren. Die nicht
singuldren tangentialen Schnitte bestimmen wir, indem wir eine zusatzliche Kurve, die
wir Jacobi Kurve nennen, betrachten. Durch eine Verallgemeinerung der Jacobi Kurve
sind wir in der Lage, in beliebigen planaren Arrangements nicht-singulare tangentiale
Schnitte zu bestimmen. Wir zeigen, dass die Koordinaten der singularen Punkte in
unseren speziellen, durch Projektion entstandenen, planaren Arrangements Nullstellen
von quadratischen Polynomen sind. Die Koeffizienten dieser Polynome sind in den
meisten Fallen rational und benétigen maximal eine einzelne Quadratwurzel. Eine
prototypische Implementierung zeigt, dass unser Ansatz in der Praxis zu einem guten
Laufzeitverhalten fiihrt.

Abstract

In this thesis, we present an approach for the exact and efficient computation of a cell
in an arrangement of quadric surfaces. All calculations are based on exact rational al-
gebraic methods and provide the correct mathematical results in all, even degenerate,
cases. By projection, the spatial problem can be reduced to the one of computing pla-
nar arrangements of algebraic curves. We succeed in locating all event points in these
arrangements, including tangential intersections and singular points. By introducing an
additional curve, which we call the Jacobi curve, we are able to find non-singular tan-
gential intersections. By a generalization of the Jacobi curve we are able to determine
non-singular tangential intersections in arbitrary planar arrangements. We show that
the coordinates of the singular points in our special projected planar arrangements are
roots of quadratic polynomials. The coefficients of these polynomials are usually ratio-
nal and contain at most a single square root. A prototypical implementation indicates
that our approach leads to good performance in practice.
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Chapter 1

Introduction

1.1 Problem

Figure 1.1: Ellipsoids are defined by quadratic polynomials

In this dissertation we consider arrangements induced by quadric surfaces in 3-
dimensional space. Quadric surfaces, or quadrics for short, are defined as the set of
roots of quadratic polynomials. For example, the red, green, and blue ellipsoids R, G,
and B in Figure 1.1 are defined by the following polynomials:
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R(z,y,2) = 27x*+62y* +2492% — 10

G(z,y,2) = 88x*+45y* +672% — 667y — 2522
+12yz — 24z + 2y + 292 — 5

B(z,y,2) = 1392° +141y® 4+ 712° — 157zy

+97zz — 111lyz — 32 — 6y — 172 — 7.

On the surface of a given quadric p, the intersection curves of p with the remaining
quadrics build a 2-dimensional subarrangement. In our example, the blue and the
green ellipsoid intersect the red ellipsoid. This leads to two intersection curves on the
surface of the red ellipsoid, a blue one and a green one (Figure 1.2). Vertices of this
subarrangement are common points of two intersection curves, or rather intersection
points of three quadrics.

Figure 1.2: The blue and the green ellipsoid intersect the red one in two spatial curves
running on the surface of the red ellipsoid

Independ of the special information about the arranged quadrics one may be interested
in, for example the topological description of a cell, the basic computation that has
to be done in nearly all cases is: For each quadric p, locate and sort all vertices along
the intersection curves on the surface of p. This problem is particularly difficult in
case one is interested in exact mathematical solution, even for degenerate cases. The
coordinates of common points of three quadrics are not expressible as nested square
roots of rational numbers. Instead, one has to deal with algebraic numbers. We want
to develop an algorithm that is

1. ezxact in the sense that it always computes the mathematical correct result, even
for degenerate inputs, and
2. efficient in practice concerning its running time.

Moreover, we search for an approach that conceptually is extendible to more compli-
cated surfaces.
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In general there is no rational parameterization of the intersection curve of two surfaces
in space. Therefore we project for each quadric p all its intersection curves with the
other quadrics and additionally its silhouette into the plane. This projection step
applied to our example proceeds like shown in Figure 1.3.

We have to compute the planar arrangements resulting from the projection. All curves
of the planar arrangements turn out to be defined by polynomials of degree at most 4.
For example, the green curve is the set of roots of the polynomial

408332484z* + 51939673y* — 66477920423y — 2410150693
+564185724x2y? — 25001940623 + 1776764413
422112096422y — 123026916y%z + 1669191922 + 4764152y
114441004y + 10482900z + 2305740y — 1763465.

In such arrangements of projected curves singular points and tangential intersections
appear quite frequently as can be seen in the last picture of Figure 1.3. The main
question with respect to exactness and efficiency is how to locate these points. In this
thesis we propose a solution to this problem.

1.2 Motivation

Computing arrangements of curves and surfaces is one of the fundamental problems in
different areas of computer science like computational geometry, algebraic geometry,
and solid modeling. As long as arrangements of lines and planes defined by rational
numbers are considered, all computations can be done over the field of rational numbers
avoiding numerical errors. In this case algorithms are available that are exact and
efficient.

As soon as higher degree algebraic curves and surfaces are considered, instead of linear
ones, things becomes more difficult. In general the intersection points of two planar
curves or three surfaces in 3-space defined by rational polynomials have irrational co-
ordinates. That means instead of rational numbers one now has to deal with algebraic
numbers. One way to overcome this difficulty is to develop algorithms that use floating
point arithmetic. These algorithms are quite fast but in degenerate situations they
can lead to completely wrong results because of approximation errors, rather than just
slightly inaccurate outputs. Assume for example that for two planar curves one is in-
terested in the fact whether they intersect or not. If the curves only have tangential
intersection points, numerical inaccuracies can lead to the wrong result “no, they do
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Figure 1.3: Project all intersection curves and the silhouette of p into the plane
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not intersect”.

A second approach besides using floating point arithmetic is to use exact algebraic com-
putation methods. Then of course the results are correct, but the algorithms in general
are very slow. So when dealing with curved surfaces it is difficult to find algorithms
that are both: exact and efficient.

We consider 3-dimensional arrangements of surfaces defined by quadratic polynomials.
For this special class of curved surfaces we develop an approach for computing the
topological description of a cell in the arrangement. Our algorithm is exact and efficient
when compared with existing exact algebraic computation methods. As an application
we show how to use our results in order to compute the convex hull of ellipsoids.

1.3 Previous work

As mentioned, methods for the calculation of arrangements of algebraic surfaces are an
important area of research in different branches of computer science.

1.3.1 Solid modeling

Arrangements of curved surfaces typically arise in solid modeling, see for example [37],
when performing boolean operations for quadric surfaces, which play an important
role in the design of mechanical parts. Most mechanical parts are build by union
and difference of linear and quadratic surfaces. The algorithms in CAD systems have
the advantage that they are quite fast. They profit from floating point arithmetic and
often use numerical procedures for tracing the intersection curves and then approximate
them as spline curves. But just this makes them very sensitive to approximation and
rounding errors. Thus they achieve the good running time at the expense of exactness in
degenerate situations which are nevertheless frequent in the design of geometric objects.
None of these systems are exact. Recently some efforts have been made towards exact
and efficient implementations:

MAPC [44] is a library for exact computation and manipulation of algebraic points and
curves. It includes an algorithm for computing the arrangement of curves in the plane.
Degenerate situations like tangential intersections of two curves or self-intersections of
one curve through which another curve cuts through are explicitly not treated. For such
cases the use of the gap theorem [15] or multivariate Sturm sequences [53] is proposed.
Both methods are not very efficient.

ESOLID [43] performs exact boundary evaluation of low-degree curved solids. It is
stated that degenerate cases cannot be handled. For a more detailed description of
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MAPC and ESOLID consider the PhD thesis of Keyser [45].

1.3.2 Computational geometry

Also in computational geometry there is a great focus on computing arrangements, but
mainly on arrangements of linear objects. For a good and brief overview consider the
articles of Halperin [35] and Agarwal and Sharir [2]. The geometric methods have the
drawback that nearly all of them are based on an idealized real arithmetic provided by
the real RAM model of computation [61]. The assumption is that all, even irrational,
numbers are representable and that one can deal with them in constant time. More
precisely, it is assumed that the roots of any polynomial of constant degree can be
computed exactly in constant time. This postulate is not in accordance with real
computers. Mulmuley’s algorithm for computing the partition of the plane induced by
a set of algebraic segments of bounded degree [55] is based on this model. The same
holds for the algorithms of Dobkin and Souvaine [25] and of Snoeyink and Hershberger
[70]. The first authors approximate planar curves by what they call splinegons. The
second authors provide a sweep line algorithm for arrangements of curves. Further
examples for geometric algorithms that are founded on the real RAM model are the
convex hull algorithms for planar objects by Bajaj and Kim [8] and by Nielsen and
Yvinec [58]. In three dimensions Schwarzkopf and Sharir construct the arrangement of
curved surfaces also relying on idealized real arithmetic [67].

Algorithms coping with arrangements of lines can be implemented with exact rational
arithmetic and with a good performance, because they only deal with linear algebraic
primitives, see for example the implementations in LEDA [48] and CGAL [29]. For
general curves the situation is more difficult. Several authors have looked into the
question of using restricted predicates to report or compute segment intersections,
[12], [11], and [16]. The restriction used in these papers is on the degrees of the
predicates used by the algorithms. By restricting to low-degree predicates, one can
generally achieve more robust computations. Predicates for arrangements of circular
arcs are treated by Devillers et al. in [24]. Recently Wein [76] extended the CGAL
implementation of planar maps to conic arcs and Berberich et al. [10] made a similar
approach by extending the Bentley-Ottmann sweep-line algorithm [9].

For computing planar arrangements of arbitrary curves very little is known. Milenkovic
[49] uses floating point arithmetic in order to compute arrangements of curves. Neagu
and Lacolle [57] consider piecewise convex parametric curves and approximate them by
polygons. Both approaches cannot handle all degenerate cases.

In higher dimensions Collins [19] introduced the concept of cylindrical algebraic decom-
position. Although it is also used and developed further in computational geometry,
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we will treat it in the next section about computer algebra methods. The special case
of quadric surfaces in three dimensions has been studied extensively. The section after
the next is separately dedicated to this subject.

1.3.3 Algebraic geometry

Computational real algebraic geometry studies algorithmic questions dealing with real
solutions of a system of equalities, inequalities, and inequations of polynomials over
real numbers, see for example the overview article of Mishra [54]. Geometrically, a
predicate P < 0, P =0, or P > 0, with P € R[z1,...,%4] a polynomial, partitions the
set of d-dimensional points into three different subsets. For a set of polynomials the real
solutions to the Boolean combination of such predicates is called a semi-algebraic set.
A cell in an arrangement of surfaces defined by rational polynomials can be interpreted
as the connected component of a semi-algebraic set. A cell has the property that the
sign of all polynomials is constant for all points of the cell.

In the one-dimensional case, the real roots of univariate polynomials partition the real
line in sign-invariant intervals. A generalization of this decomposition to higher dimen-
sions was first provided by Collins [19] as an improvement of the results obtained by
Tarski [71] for quantifier elimination. The cylindrical algebraic decomposition (CAD) of
Collins partitions the d-dimensional Euclidean space IR? into connected subsets com-
patible with the zeros of the polynomials. This is done by projecting all “relevant”
points to the lower-dimensional space IR*~!. Relevant points are, for example, inter-
section points of two surfaces defined by the polynomials or the points of one surface
that have a tangent plane parallel to the direction of projection. A CAD is computed
recursively for the resulting polynomials in IRe~!, and this result is extended to a CAD
for the polynomials in IR?. Collins introduced the CAD as part of a new quantifier elim-
ination method. Arnon, Collins, and McCallum [4] give an equivalent definition but
with more emphasis on the geometric aspect. The CAD construction was extended to
reporting pairs of adjacent cells in IR? [5] and IR? [6]. The construction of Collins leads
to O(n2d*1) cells. This doubly exponential size was improved to singly exponential size
by Edelsbrunner et al. [17].

In principle the cylindrical algebraic decomposition can be implemented and our algo-
rithm is based on this method. The problem is that after the projection steps one has
to compute the roots of univariate polynomials. This cannot be done explicitly but
only by computing isolating intervals, each containing exactly one real root. One has
to work with these algebraic numbers during the final extensions to the original space.
It is an open problem how to really perform the necessary algebraic primitives in an
exact and efficient way. Of course one could use the gap theorem introduced by Canny
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[15] or multivariate Sturm sequences discussed by Pedersen [60] and Milne [53] but, as
mentioned before, the running time of both methods is quite high.

For bivariate polynomials defining curves in the plane, some specific work has been
done. Arnborg and Feng [3] discuss the algebraic decomposition of one regular curve
that has no self-intersections, cusps, or isolated points. Arnon and McCallum [7] check
whether a curve is non-singular and if so, they compute their topological type. Ab-
hyankar and Bajaj [1] give a polynomial time algorithm that determines the genus of a
plane algebraic curve. Their algorithm is based on the real RAM model assuming that
common roots of polynomials can be computed explicitly. The only exact approach is
the one by Sakkalis [64]. He uses rational arithmetic to compute the topological con-
figuration of a single curve. He determines isolating boxes for the singular points with
the help of negative polynomial remainder sequences. This last approach, although it is
exact, is not very efficient, at least if singular points occur frequently. Another problem
is that it deals only with one single curve. One could interpret intersection points of
two curves as singular points of the curve that is the union of both, but this would lead
to a loss of important information.

Mathematical algebraic geometry also deals with curves and surfaces. The perspective
is more theoretical in the sense that the focus is mainly on classification of points in
projective complex space and not on locating them in affine space. Nevertheless some
important theorems like the one of Bézout are very useful also from the more practical
computational point of view. For a good survey about the geometry of algebraic curves
consider the book of Gibson [33].

Of course, in algebraic geometry and computer algebra some effort was made in devel-
oping software. For example, LiDIA [59] is a library for computational number theory.
APU is [63] a tool for real algebraic numbers. Core [41] and LEDA [48] are libraries
that address the issues of robust numerical and geometric computation.

1.3.4 Quadric surface intersection

Quadric surfaces, quadrics for short, are surfaces defined by a quadratic polynomial.
They are of great importance because they are the simplest of all curved surfaces and
they are widely used in the design of mechanical parts. Levin [46], [47] introduced a
pencil method for computing an explicit parametric representation of the intersection
between two quadrics. Arguing that Levin’s method does not take advantage of the fact
that degenerate intersection curves admit a rational parameterization, Farouki, Neff,
and O’Connor [28] made a complete study of degenerate cases for arbitrary quadric
surfaces.

Miller [51] and Goldman and Miller [50] noticed that Levin’s algorithm is numerically
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sensitive because it is based on solutions of polynomials of degree 4. They developed
an approach for natural quadrics, that means spheres, cylinders, cones, and planes,
that does not require solutions to polynomials of degree higher than 2. Later they used
the pencil method to detect and compute conic intersections between pairs of natural
quadrics [52]. The same problem was considered by Shene and Johnstone [69].

For three quadric surfaces, Chionh, Goldman, and Miller [18] used multi-resultants to
determine a univariate polynomial of degree at most 8, the real roots of which are the
z-coordinates of the common intersection points of the three quadrics.

Wang, Joe, and Goldman [74] investigated the different parameterizations of irreducible
quadrics and the relation between them. Later, the same authors computed the inter-
section curve of only two quadrics [75]. Their algorithm is based on the result that the
intersection of two quadrics is birationally related to a plane cubic curve.

Interval arithmetic is used by Geismann, Hemmer, and Schomer [31] to keep track
of all occurring rounding and approximation errors that appear in Levin’s algorithm
while computing a cell in an arrangement of quadrics. If the input does not lie too
near to a degenerate configuration, the algorithm will succeed in predicting the correct
topological structure of the intersection. Otherwise it can detect the existence of a
critical situation.

Recently, Dupont, Lazard, Lazard, and Petitjean [26] improved Levin’s method for
computing parameterizations for the intersection of two arbitrary implicit quadrics.
Their parameterization is nearly as rational as possible, meaning that its coefficients are
contained in the smallest possible field extension, up to a unique perhaps unnecessary
square root.

1.4 Our contribution

Computing the mathematical correct topology of a cell in an arrangement of curved
surfaces efficiently in any case, even a degenerate one, is a challenging task. As far as
we know, we are the first who provide such an algorithm for a set of quadric surfaces
in 3 dimensions [31]. Our algorithm uses exact rational algebraic computation and
it can handle each degenerate input. A prototypical implementation shows that the
theoretical results promise a good performance in practice.

The 3-dimensional problem of computing arrangements of surfaces defined by quadratic
polynomials is more complicated than the corresponding problem in the plane. In the
plane transversal intersections of two arbitrary curves can be detected with a known
tool called box hit counting. It fails for singular points of one curve and for tangential
intersection points of two curves. But a quadratic curve can have at most 1 singular
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point and two such curves intersect tangentially in at most 2 points. The algorithms in
the plane benefit from the fact that the coordinates of these points can be computed
as roots of univariate polynomials of degree at most 2. This makes them quite easy to
handle. In 3 dimensions the situation is different. A spatial intersection curve can have
up to 4 self-intersections and two curves can touch each other in 4 points. Although
explicit solutions for univariate polynomials of degree at most 4 exist, the ones for
polynomials of degree greater than 2 are based on solving the problem of dividing an
angle into three different equal parts (casus irreducibilis). This is known to be not
exactly solvable with algebraic methods, and thus the real solutions of polynomials of
degree greater than 2 cannot be computed any longer as nested square roots of rational
numbers. This makes the problem in 3 dimensions difficult to solve with exact algebraic
computation, at least in degenerate cases.

Our approach operates similarly to the cylindrical algebraic decomposition [19]. It
reduces the 3-dimensional problem to the one of computing planar arrangements of
algebraic curves of degree up to 4. During the calculation we use algebraic techniques
like resultants and root separation of univariate polynomials. The reduction is alge-
braically optimal in the sense that it does not affect the algebraic degree of the problem
we consider.

Our contribution, and what is new, is that we succeed in determining all event points
in the planar arrangement, including tangential intersection points and singular points,
while keeping the running time low. The curves in the planar arrangements can have 6
singular points and two of them intersect tangentially in up to 8 points. Locating the
event points in the planar arrangements works for two reasons:

1. We show that determining non-singular tangential intersection points can be re-
duced to the problem of locating transversal intersection points. For the latter we
know that simple box hit counting is a suitable tool. This is done by introducing
a new curve to the arrangement. To the best of our knowledge we are the first
who consider an auxiliary curve in order to solve tangential intersections. We ad-
ditionally prove that our construction based on auxiliary curves can be extended
to general planar arrangements.

2. We succeed in factoring univariate polynomials in a way that the coordinates of
singular points are roots of quadratic rational polynomials. Only in the case that
a curve consists of four lines, computing the coordinates requires a second square
root.

In one sense the work recently done by Dupont, Lazard, Lazard, and Petitjean [26]
leads to the same result as ours, namely that computing with quadric surfaces can
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be done exactly and efficiently in all cases, just working over the rationals with only
few additional square roots. But their approach directly works in space and searches
for a parameterization of the intersection curves. This way of solving the problem is
not extendible to more complicated surfaces. The methods presented in our work can
also be applied to arbitrary curved surfaces. Only for computing singular points in the
planar arrangement we make use of the fact that we consider quadric input surfaces.
In that sense our work is a first and important step towards an efficient and exact
algorithm for computing arrangements of arbitrary curved surfaces.

1.5 Outline

The organization of the remaining chapters is as follows:

e In Chapter 2 we provide the notation and mathematical tools we need for our
approach. This includes resultants, subresultants, and root separation.

e In Chapter 3 we sketch the overall structure of our algorithm for computing a
cell in an arrangement of n quadrics. We show how to reduce the 3-dimensional
problem to n planar ones. We introduce simple box hit counting as a tool for
determining transversal intersections of two curves.

e Chapter 4 first provides a method for distinguishing transversal intersection points
from tangential intersection points and from singular points. Afterwards, we
define an auxiliary curve, resulting in a new method for determining non-singular
intersections called extended box hit counting. Finally, we prove how to extend
this argumentation to non-singular intersections of arbitrary curves.

e Chapter 5 deals with the singular points of the curves we obtain from the reduc-
tion. We classify them in two different groups. We prove that one of the groups
contains more than 2 singular points only in the case that the spatial intersection
curve of two quadrics consists of two lines and another conic curve. The pencil
method of Levin is introduced to solve this special case.

e In Chapter 6 we prove our main theorem, namely that every event point in the
planar arrangement can be determined.

e Throughout the previous chapters some generality assumptions concerning the
planar curves are made. In Chapter 7 we explain how to test and achieve these
assumptions for general input.

e In Chapter 8 we show how to apply our results via duality to the convex hull
problem of a set of ellipsoids.

11
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e Finally, in Chapter 9 we discuss the results we obtained from a prototype imple-
mentation of determining the event points in the plane and give the prospects for
further research.

12



Chapter 2

The mathematical tools

In this chapter we will introduce the algebraic concepts that are behind our compu-
tations and that enable us to deal with algebraic surfaces and curves. First, we will
clarify the main algebraic terms. Afterwards, we introduce the concept of resultants
and subresultants. Finally, we give a short description of the algorithm of Uspensky
for root isolation of univariate polynomials. All the ideas presented are fundamental
in algebraic geometry and computer algebra, see for example [22], [72], and [77]. We
will give some further references to books and articles on this subject in the context.
This chapter mainly deals as an introduction of basic algebraic tools, collected from
the aspect of computing arrangements of quadric surfaces.

2.1 Notation

2.1.1 Curves and surfaces

The objects we consider and manipulate in our work are algebraic surfaces and curves
represented by rational polynomials. More generally, we define an algebraic hypersur-
face in the following way: Let f be a polynomial in Q[z1,...,z4]. We set

zERO(f) := {(a1,...,aq) € R¢ | f(a1,...,aq) = 0}

and call ZERO(f) the algebraic hypersurface defined by f. We reserve the terms algebraic
surface and algebraic curve for the special cases d = 3 and d = 2, respectively.

For example, the red, green, and blue ellipsoids R, G, and B in Figure 2.1 are defined
by the following polynomials:
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Figure 2.1: Ellipsoids are defined by quadratic polynomials

R(z,y,z) = 27z° 4 62y 4 2492° — 10

G(zr,y,2) = 88122 + 45y + 6722 — 662y — 252
+12yz — 24z + 2y + 292 — 5
B(z,y,z) = 1392% 4 141y® + 712* — 157y

4972z — 111lyz — 3z — 6y — 172 — 7.

The total degree of an algebraic hypersurface is the highest degree of all monomials of
its defining polynomial. Thus, ellipsoids are degree 2 algebraic surfaces. We call degree
2 algebraic surfaces quadric surfaces, or quadrics for short. Our attention is focused
on computing with quadric surfaces although some of our ideas can be transfered to
algebraic surfaces of arbitrary degree.

If the context is unambiguous, we will often identify the defining polynomial of an
algebraic hypersurface with its zero set. For simplification we will speak of the hyper-
surface f when we mean the hypersurface defined by the polynomial f. We also say
that the point (a1,...,aq) in d-dimensional real space lies on the hypersurface defined
by f € Q[z1,...,z4] if (a1,-..,aq) is a root of f.

For a hypersurface f the gradient vector of f is defined to be

of o 0
Vo= (a_jl a—fo’ T a_a';];) € (Qfor -, za))".

14
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With the help of the gradient vector we characterize a point a = (ai,...,aq) € R? lying
on the hypersurface f. It is named a singular point of f if Vf(a) = 0, otherwise it is
non-singular. In our work, as we will see later, the main task is computing arrangements
of curves in the plane, so consider d = 2. Informally speaking, the tangent line at a
non-singular point (a, b) of a curve f is perpendicular to V(f)(a,b). The singular points
of f are exactly the ones that do not admit a unique tangent line to the curve.

Let (a,b) be a non-singular point of f, i.e. there exists a well defined tangent line in
that point. Under certain assumptions we do a further classification of (a, b):

1. We speak of (a,b) having a wvertical tangent in the case Vf(a,b) = c¢- (1,0) with
¢ being a non-zero constant.

2. The point (a,b) is called a turning point of the curve if the tangent of f at (a,b)
crosses f in (a,b). At a turning point the curvature of f changes sign. A necessary
condition is that the polynomial

filz,y) == (fwwf; = 2fzfyfzy + fyyfg)(may) € Qz,y]
has a root at (z,y) = (a,b): fi(a,b) =0.

3. If (a,b) is a turning point that additionally has a vertical tangent, then we call it
a vertical turning point. In our work we consider curves of degree at most 4. A
point (a,b) is a vertical turning point of a curve f of degree at most 4 iff

fy(a,b) =0 and fyy(a,b) =0 and fyyy(a,b) #0 and fi(a,b) #O0.

4. We call (a,b) an extreme point if it has a vertical tangent but is not a turning
point.

Assume that we want to sweep a planar curve with a sweep-line parallel to the y-axis
from left to right. For an introduction to sweep-line algorithms see for example [23].
Then, informally speaking, extreme points are the ones where a new branch of the
curve starts or ends. At a vertical turning point a vertical tangent coincides with a
change of sign of the curvature. For example consider Figure 2.2. The green curve
has three real points with a vertical tangent: two blue extreme points by, b and one
red vertical turning point 7. Also the yellow point y is a turning point, but without a
vertical tangent.

Next, we consider common roots of two polynomials f,g € Q[z1,...,z4]. A point
a = (a,...,aq) € R¢ is called an intersection point of two hypersurfaces f and g if

15
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b,?

Figure 2.2: The curve has two blue extreme points b1, b2, one red vertical turning point
r, and a yellow turning point y.

it lies on the hypersurface f as well as on the hypersurface g. It is called a tangential
intersection point of f and g if additionally the two gradient vectors V f(a) and Vg(a)
are linearly dependent in a. Otherwise we speak of a transversal intersection point. If
a is an intersection point of f and g and simultaneously a singular point of f, then
of course Vf(a) = 0 and a is a tangential intersection point of f and g. We call an
intersection point (a,b) non-singular, if (a,b) is neither a singular point of f nor of g.

The set of all intersection points of two surfaces p and ¢ that do not share a common
surface patch in 3-space is named intersection curve. A point (a, b, ¢) on the intersection
curve is a tangential intersection point of p and ¢ if and only if the two gradient vectors
(fz, fys f2)(a,b,c) and (gz, gy, 92)(a, b, c) are linearly dependent, which can be expressed
algebraically as:

fygz - fzgy 0
f29: — [292 (a,b, C) = 0
f:cgy - fygcc 0

For two planar curves f and g an intersection point (a,b) is tangential if and only if

(f29y = fy9z)(a;b) = 0.

We are interested in real singular, extreme, and vertical turning points of one curve f
and also in real intersection points of two curves f and g. But IR is not algebraically
closed and most of the time we have to work over its algebraic closure C. Therefore we

16
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transfer all notations and definitions we made for real points also to points in complex
d-dimensional space.

2.1.2 Arrangement of quadrics

Consider a set P = {p1,...,pn} of quadric surfaces. The quadrics form a 3-dimensional
arrangement and partition the affine space in a natural way into four different types
of maximal connected regions of dimensions 3, 2, 1, and 0, respectively. To state this
more formally let sign: IR — {—1,0,1} be the function:

-1, ifa<0
sign(a) = 0, ifa=0
+1, ifa > 0.

Then every point (a,b,c) € IR® has a well defined sign sequence:

(Sign(pl (a'a ba C)), Sign(pZ(a’, ba C))a R Sign(pn(a'a b, C))) € {_1, 07 +1}n_

The sign sequence defines an equivalence relation on the set of points in space. We
say that two points (a1,b1,c1) and (ag,bs,c2) are equivalent, if they have the same
sign sequence. Of course the set of points of an equivalence class is not necessarily
connected. But every connected subset has a unique sign sequence in {—1,0,+1}%. A
maximal connected set of equivalent points is called cell, face, edge, or verter, depending
on its dimension:

1. A cell is of dimension 3 and on either side of each quadric. It is a connected
subset of an equivalence class with no 0-entry in its sign sequence.

2. A face is of dimension 2 and has at least one 0-entry in its sign sequence. It lies
on the surface of one quadratic.

3. An edge is a region of dimension 1 and has a sign sequence containing at least
two O-entries. It is part of the intersection curve of two quadrics.

4. A wvertez is 0-dimensional and has a sign sequence with at least three 0-entries. It
is the intersection point of three or more quadrics or rather the intersection point
of at least two intersection curves.

When dealing with arrangements of quadric surfaces there is one basic operation that
has to be at our disposal, independent on the kind of information we are interested

17
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in: We have to locate intersection points of two or more intersection curves unambigu-
ously along the curves. Algebraically speaking, for two trivariate rational polynomials
defining an intersection curve we want to compute common real roots with other poly-
nomials. Our approach for providing this operation is based on a projection step, as
it also occurs in the cylindrical algebraic decomposition [19]. We do not deal with the
intersection curves of two quadrics directly in space. Instead we project them into the
plane. The way the projection is computed will be explained in the next section about
resultants. For the moment we only want to clarify some notation.

From the point of view of the (z,y)-plane a quadric p consists of three different parts:
the lower part, the silhouette, and the upper part.

upper part

silhouette

lower part

@ OO

Figure 2.3: A girl observing an ellipsoid in the night

For illustration imagine the following: assume an observer stands at the point z =
—oo and looks upwards to a quadric in the sky directly above him, like the girl in
Figure 2.3. Then the lower part of the quadric consists of all points that can be seen
from the observer, but we exclude the border. The border is called the silhouette. The
set of points that cannot be seen from the observer is called the upper part. More
mathematically, we define the three parts of a quadric p the following way:

1. The lower (upper) part of the quadric p consists of all points (a,b,c) € IR? such
that

(a) p(a,b,z) € IR[z] has two different real roots and
(b) c is the smaller (bigger) root.

2. The silhouette of the quadric p consists of all points (a, b, c) € IR? such that

18
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(a) p(a,b,z) € IR[z] has one root of multiplicity 2 and
(b) ¢ is this root.

Now, after we have introduced the most important terms, we will answer the question
how to project the intersection curve of two quadrics into the plane. Besides the
intersection curves we will also project the silhouette of each quadric. As we will see,
both projections can be algebraically realized by the same tool: resultants.

2.2 Resultants

The intersection curve of two quadrics is given by the set of common roots of their
defining polynomials. So we are interested in common roots of two polynomials.

2.2.1 Resultants of univariate polynomials

Let us first consider univariate polynomials. Let k denote an arbitrary field. Most of
the time we work with polynomials over the rational numbers or their algebraic closure.
So imagine k = Q or k£ = C in the following. We will denote the degree of a polynomial
f € k[x] by deg(f) and its leading coefficient by 1dcf(f). If f is the zero polynomial, we
write f = 0. The degree of the zero polynomial is equal to —oo: deg(0) = —oo. We call
a polynomial h € k[z] a factor of f if there exists another polynomial f; € k[z] with
f = h- fi. In particular, if f is the zero polynomial, then every h € k[z] is a factor
of f.

For every two univariate polynomials f and g each constant number ¢ € k is a common
factor of f and g. But when do two univariate polynomials f and g of positive degree
have a non-constant common factor?

Theorem 2.1: Let f,g € k[z] be two polynomials of degrees deg(f) = n > 0 and
deg(g) =m > 0. Then f and g have a non-constant common factor if and only if there
are polynomials A € k[z] and B € k[z] with deg(A) < m and deg(B) < n which are
not both zero such that Af + Bg = 0.

Proof. First assume that f and g have a non-constant common factor A. Then we can
write f = hf; and g = hgi, where f1,91 € k[z]. It is easy to check that A = ¢g; and
B = — f1 fulfill the required properties. Conversely assume that there are polynomials
A and B of degree at most n—1 and m—1 which are not both zero such that Af = —Bg.
Then all irreducible factors of A(x)f(x) divide B(z)g(z). But B has degree at most
n — 1 and therefore cannot contain all factors of f with their multiplicities. O

19



CHAPTER 2. THE MATHEMATICAL TOOLS

Now in order to determine the existence of a common factor of

f(z) = faz"+ forz® 14+ fo, frn#0,n>0 and
g(x) = gmz™ + gmo12™ g0, Gm A0, m >0

we have to decide whether two polynomials A and B with the required properties can
be found. This questions can be answered with the help of linear algebra: A and B are
polynomials of degree at most m — 1 and n — 1, and therefore there are all in all m +n

unknown coefficients a,—1,...,a0,bn-1,...,bp of A and B:
A(z) = amo1z™ '+ 4 a1z +ag
B(z) = bp_12" 4+ bz + bo.

The polynomial A(z)f(z) + B(z)g(z) has degree at most n +m — 1 in z. Each of its
coeflicients has to be zero in order to achieve Af + Bg = 0:

Frn@m—1 + Imbn_1 = 0 (coefficient of z™"~1)
0

fn—lafm—l + fnam—Q + gm_lbn_l —+ gmbn—Q — m+n—2)

(coefficient of x

foao + gobo = 0 (coefficient of z9).

We get n+m linear equations in the unknowns a;, b; with coefficients in f;, g;. Written
in matrix style this system of linear equations has the form:

fo fam1 oo fo
fa far oo fo
(@mtr- 2 30,b 1. bo) - L L U
Gm Gm-1 .- G0
9m  Gm-1 --- 90
Gm Gmo1 - G0 )

where the empty places are filled with zeros. We know from linear algebra that this
system of linear equations has a non-zero solution if and only if the determinant of the
coefficient matrix is equal to zero. This leads to the following definition:
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Definition 2.2: The (m + n) X (m + n) coefficient matrix with m rows of f-entries
and n rows of g-entries

fo far o fo \
fn fnfl fO
S¥LS9) = gm Gm-1 .- chz Pt
9m  Gm-1 --- go
9m Gm-1 --- 9o )

where the empty spaces are filled by zeros is called the Sylvester matriz of f and g. The
determinant of the matrix is called the resultant of f and g: res(f,g) := det(SYL(f, g))-

From the above observations we immediately obtain a criterion for testing whether two
polynomials f and g have a non-constant common factor.

Proposition 2.3: Given f,g € k[z] of positive degree, the resultant res(f,g) € k is
equal to zero if and only if f and ¢ have a non-constant common factor. For kK = C the
equality res(f,g) = 0 holds if and only if f and g have a common complex root.

So far we have only considered polynomials f and g of positive degree. What about
exactly one of them having degree 0 or —oo? In this case we can analogously derive the
resultant of f and g. If f has degree n > 0 and g = g¢ is constant (possibly 0), then
the Sylvester matrix of f and g is the n X n matrix with gyp on the main diagonal and
0’s elsewhere. From that we conclude res(f, go,z) = g If f = fo is constant and g of
positive degree m then res(fy, g,«) = fi*. The case that both polynomials are constant
is of no interest for the following considerations.

2.2.2 Properties of resultants

There are some useful properties of resultants. For an arbitrary field k let k¥ denote its
algebraic closure.

Lemma 2.4: Let f,g € k[z] and « € k.

1. For deg(f) > 0 and deg(g) = m > 0 we have res(a - f,g) = o™ - res(f, g)-

2. If deg(g) > 0, then res((z — a) - f,g9) = g(a) -res(f,g).
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Proof. 1. With deg(f) = n and deg(g) = m we have

o f(z) = afpr™ 4+ afn_ 12" 4o+ afo.

It is clear from the definition of the resultant of f and g that one can extract
from each of the first m rows of the Sylvester matrix a factor «, leading to the
stated result.

. Again let f(z) = Y&, fiz® and g(z) = Y.7*,giz". Then the coefficients of

(x — ) f in order of decreasing powers of x are

(fns focr—afn, fao—afu1, ..., fo—afi, —afy).

We do some transformations with the Sylvester matrix of (z — «)f and g. First
we add « times column ¢ to column (i 4 1) for all4 = 1,...,m + n. This puts the
rows with the f-entries into the right form:

fo a1 .. fo 0
fn fnfl fO 0

fo fac1 .. fo O

Each non-zero entry of the last (n+ 1) rows is now equal to g(«)/a’ for a suitable
i. By g(a)/o’ we mean the substitution of o for z into the integral part of
g(z) divided by z'. For example, the former entry b; is replaced by g(a)/a* =
Gm@™ 4 giiatg;, for all 1 <4 < m. To simplify the matrix we subtract o
times row j from row j—1 for j = m+2,...,n+m+1. This leads to the following
matrix, which has the same determinant as the Sylvester matrix of (z — «)f and

g:

( fn fnfl s fO 0 \
o fao1 ... fo 0
In fn-1 fo 0
9m 9Gm-1 - go
9m  9Gm—-1 - -- g0
gm 9m—1 g0 0

gl@)/a™ ... gla)/a" g(a) )
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The last column has only one non-zero entry g(«) and the cofactor of this entry
is equal to the resultant of f and g. This proves our claim.

O

The Lemma leads to the following important characterization of resultants:

Theorem 2.5: Let f,g € k[z], fr, = ldcf(f), g = ldcf(g), deg(f) = n > 0, deg(g) =
m > 0, with roots

aty ..y, B, B € k.

For the resultant of f and g the following holds:

res(f,9) = ‘g [T TL(ei = 8y).

Proof. Writing f(z) = fa - [[{_o(z — i) and g(z) = gm - [[j2o(z — B;) we get from
Lemma 2.4

res(f, g) = fTTL”res (H(.’E - ai)ag)
=1
= fa'g(on)res (H(w - ai),g)
1=2

= faglar)...g(an)

= fitam [T (i = B5)-

i=1j=1

A direct conclusion is that the resultant is multiplicative:

Corollary 2.6: Let f,g,h € k[z] be polynomials with positive degree. Then the equal-
ities res(f - h,g) = res(f, g) - res(h, g) and res(f,g - h) = res(f,g) - res(f, h) hold.

Another immediate surprising consequence is that the resultant of two polynomials is
invariant under translation:

Corollary 2.7: Let f,g € k[z] with deg(f) > 0 and deg(g) > 0. For a number ¢ € k
we define f(z) := f(z + ¢) and §(z) := g(z + ¢). Then res(f,g) = res(f,j) € k.
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2.2.3 Computation of resultants

The computation of resultants can be performed more efficiently than using the obvious
determinant computation. This whole section is taken from [77]. Let f(z) = ¢(z)g(z)+
r(z) where deg(f) = n, deg(g) = m, deg(r) =1, and n > m > [. The basic idea is the
following: One can show that

(x) res(f,g) = (=1)™" Vg tres(r,g) (g9m = 1dcf(g))

nm n—I

= (—=1)""gy, 'res(g,r).

Thus, the resultant of f and g can be expressed in the terms of the resultant of g and
r. Since r is the remainder of f divided by g, we can apply a Euclidean-like algorithm:
Given f and g, we construct the Euclidean remainder sequence

so=f,s1=9g, ..., Sp

where s;11 = (s;—1 mod s;) and sp11 = 0. If deg(sy) is non-constant, then res(f,g) =
0. Otherwise, we can repeatedly apply the formula (x) above until the basic case given

deg(sh_l)

by res(sp—1,sp) = ), . This computation can be sped up further as shown in [66].

So far we have seen that resultants are related to the question whether two polynomials
f and g share a common factor. Sometimes this information is not enough and we are
also interested in the degree of their greatest common divisor. For this we take a glance
at subresultant theory, which is a generalization of the theory of resultants.

2.2.4 Subresultants of univariate polynomials

The underlying Theorem 2.1 of the previous section can be generalized to

Theorem 2.8: Let f,g € k[z] be two polynomials of degrees deg(f) = n > 0 and
deg(g) = m > 0. Then f and g have a common factor of degree greater than [ > 0 if and
only if there are rational polynomials A and B with deg(A) < m —1[ and deg(B) < n—1
which are not both zero such that Af + Bg = 0.

Proof. Theorem 2.1 treats the case [ = 0. For every other [ > 0 the proof works the
same way. O

As an immediate consequence we obtain a statement about the degree of the gcd of f
and g:
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Corollary 2.9: The degree of the ged of two polynomials f,g € k[z] is equal to the
smallest index A such that for all rational polynomials A and B with deg(A4) < m —h
and deg(B) <n —h: Af + Bg # 0.

This Corollary can be reformulated the following way:

Corollary 2.10: The degree of the ged of two polynomials f,g € k[z] is equal to the
smallest index h such that for all rational polynomials A and B with deg(A) < m — h
and deg(B) < n — h: deg(Af + Bg) > h.

Proof. Corollary 2.10 follows from Corollary 2.9, because gcd(f,g) is a generator of
the ideal (f,g) defined by f and g. For every two rational polynomials A and B
the polynomial Af + Bg is a member of (f,g). That means either Af + Bg = 0 or
deg(Af + Bg) > deg(ged(f,g)) = h. O

We are interested in determining the degree of the greatest common divisor of two
polynomials f and g. According to Corollary 2.10 we have to test in succession whether
for 1 =1,2,3,... there exist polynomials A and B, with the claimed restriction of the
degrees such that the degree of Af 4+ Bg is strictly smaller than /. The first index h, for
which this test gives a negative answer, is equal to the degree of the gcd. How can we
perform such a test? We have seen in the previous section that the test for [ = 0 can
be made by testing whether the resultant of f and g is equal to zero. For [ =1,2,3,...
we proceed in a similar way. Let [ be a fixed index and let

fx) = faz"+ foaz™ P4+ fo, fu#0, and
9(z) = gma™ + gm-17"" "+ -+ g0, gm #0.

Alz) = amflflxm_l_l‘k

B(z) = bpy13" "7 4 4 iz + by,

o+ a17 +ag

such that deg(Af + Bg) < [. There are m + n — 2l unknown coefficients
Qpp—{—15---500,bp_11,...,bp. The polynomial A(z)f(z)+ B(z)g(x) has degree at most

I+1
5.

n+m —1—1. The m + n — 2! coefficients of z!, z .., z™"==1 have to be zero in

order to achieve deg(Af + Bg) < [. This leads to a linear system

(amflfla"' 305 0n 11, 'abO) ' Sl = (0’ . aO)
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where §; is the submatrix of the Sylvester matrix of f and g obtained by deleting the
last 2[ columns, the last [ rows of f-entries, and the last [ rows of g-entries. We call
sres;(f,g) = det S; the Ith subresultant of f and g. For [ = 0 the equality res(f,g) =
sreso(f,g) holds. In fact, S; is a submatrix of S; for [ > 7 > 0. So here is our main
Proposition:

Proposition 2.11: Two polynomials f and g of positive degree have a gcd of degree
h if and only if h is the least index [ for which sres;(f,g) # 0. If we work over the
complex numbers, then f and g have exactly h common roots if and only if h is the
least index [ for which sres;(f,g) # 0.

Also for subresultants it is true that they are invariant under translation. A proof can
be found in [38]. There the more general case of arbitrary composition is discussed.

Proposition 2.12: Let f,g € k[z] with deg(f) > 0 and deg(g) > 0. For a number
c € k in the algebraic closure of k we define f(z) := f(z + ¢) and §(z) := g(z + ¢). For
0 <1< deg(f,g) we have

sres(f, g) = sresi(f, g).

It is an open question whether a direct proof of this Proposition exists, reasoning with
roots as in Theorem 2.5 and Corollary 2.7 for resultants. Unlike the resultant case, no
nice expression of subresultants in terms of roots is known.

Our next task is to adapt the theory of resultants and subresultants to the case of
multivariate polynomials f, g € k[z1, o, .., z4] of positive degree in z4. For our com-
putations we are especially interested in the cases d = 3 and d = 2.

2.2.5 Resultants of multivariate polynomials

Suppose we are given f,g € Q[z1,...,z4] with positive degree in z4. We write

fn$g+"'+f0w3a fanZO
= 9m$:1"+"'+90$37 gn Z 0.

Thus we regard f and g as polynomials in z4 with coefficients f; and g; that are
polynomials in k[z1,...,z4 1]. We define the resultant of f and g with respect to z4
similarly to the one in Definition 2.2:
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fn fn—l fO
fn fn—l fO
I“eS(f,g,:Cd) = det o S Jo € k‘[il?l,...,.’ltd_l].
9m Im—-1  --- go
Im gm—-1 --- go
9m 9m-1 --- 90

For the resultant of two complex univariate polynomials f and g we have seen that
its vanishing is a necessary and sufficient condition for the two polynomials to have a
common root. What can we say about the resultant of multivariate polynomials?

Proposition 2.13: Given f,g € C|z1,..., 4] regarded as polynomials in z; with co-
efficients in C[z1,...,24 1] and leading coefficients f, and g, not equal to the zero
polynomial. If (ci,...,¢q) € €% is a common root of the multivariate polynomials f

and g, then the equality res(f, g, z4)(c1,...,c4—1) = 0 holds.

Proof. Let ¢ := (c1,...,¢4—1) and let us denote f(ci,...,cq-1,24) =: f(c,z4). In the
case that neither f, nor g,, vanishes at ¢, the determinant

fn (C) P f() (C)

fn (C) ‘e f() (C)

res(f, g,2q)(c) = det gm(c) .. go(c)

gm(c) ... golc)

is equal to the resultant of the univariate polynomials f(c,z4) and g(c,z4). By as-
sumption c¢g is a common root of f(c,z4) and g(c,z4) and therefore by Proposition
2.3 we have res(f,g,z4)(c) = 0. In the case f,(c) = gm(c) = 0 it is easy to verify
that res(f,g,z4)(c) = 0. The last case we have to consider is that either f, or g,
vanishes at ¢, without loss of generality g,,,. Then, up to a multiple of the factor f,(c),
res(f, g,zq)(c) equals res(f(c,zq),9(c,z4),24) and by assumption the latter is equal to
Z€ro. ]

So the vanishing of the resultant of f and g with respect to z4 at a point
(c1y---,cq-1) € 04 1isa necessary condition for the extendibility to a common so-
lution (c1,...,¢4-1,¢4) € C¢ of f and g. Does this criterion is also sufficient, like in the
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case for univariate polynomials? Does each root (cy,...,c4_1) € €41 of res(f, g, z4)
extend to a common root (ci,...,c4_1,¢q4) € C¢ of f and ¢g? Not in all cases:

Proposition 2.14: Given f,g € C[z1,...,z4) regarded as polynomials in z4 with co-
efficients in C[z1,...,z4-1] and leading coefficients f, and g, not equal to the zero
polynomial. If res(f, g, £4) vanishes at (ci,...,cq—1) € €L, then either

1. fn or g, vanishes at (¢1,...,c4—1), Or

2. there is a number ¢4 € € such that f and g vanish at (cy,...,cq) € C%
Proof. Let c:=(c1,...,cq—1) and let us denote f(c1,...,cq-1,24) =: f(c,z4). It suffices

to show that f(c,z4) and g(c, z4) have a common root when f,(c) and g,,(c) are both
non-zero. To prove this look at

fle,za) = folc)zg + -+ filc)za + folc)
g(c;zd) = gm(c)zg + -+ g1(c)za + go(c).

By hypothesis we know that the resultant res(f, g, z4) of the multivariate polynomials
f and g vanishes at c:

fale) .o fole)

= res zq)(c) = de fale) .. fole)
0 = res(f,g,za)(c) = det gm(c) ... gole)

\ gm(c) ... go(c)
By assumption we have f,(c) # 0 # gm(c) and because of that the resultant of the
univariate polynomials f(c, z4) and g(c, z4) is exactly the same determinant. It follows

res(f(c,zq),g9(c,z4)) = 0 and Proposition 2.3 implies that f and g have a common root
(c1y...,C4-1,¢q) for some ¢4 € C. O

We easily derive the following statement:

Corollary 2.15: Let f,g € C[z1,...,z4] be two polynomials with constant leading

coefficients when regarded as polynomials in z4. Then a point (c1,...,cq_1) € €41
is extendible to a common solution (ci,...,cq—1,cq) € €% of f and g if and only if
(c1,...,¢4—1) is a root of the resultant res(f, g, zq)-

In our application we are interested in the intersection curve of two quadrics. We just
derived the geometric result that the resultant of two multivariate polynomials f and
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g can be interpreted as the projection of their intersection curve. The set of roots of
res(f, g, zq) corresponds, with some exceptions, to the set of (x1,...,z4_1)-coordinates
of common complex roots of f and g. This is a very useful result but the drawback is
that it is a statement over the complez numbers and we are only interested in common
real roots: The intersection curve of two quadrics p and ¢ is defined as the set of
common real roots. It can happen that a real root of res(p, ¢, z) derives from a complex
common root of p and q. For example let

p(z,y,2) = (@-1/47+(y—1/49*+2° -1
d(@y.2) = (z+1/9*+(y+1/49°+2" - 1.

Then res(p,q,2) = (z+y)? and the point (1, —1) in the real plane is a root of the resul-
tant. But p and ¢ have the common complex roots (1, —1,74/9/8) and (1, —1,i+/9/8).

The polynomial res(f,g,z4) is a polynomial in k[z1,...,2Z4 1] and a natural question
is to bound its degree. Let deg(f) denote the total degree of a multivariate polynomial
f. The total degree of res(f,g,zq) can be bounded from above in terms of the total
degrees of f and g.

Proposition 2.16: Assume that f and g are polynomials with deg(f) = n and
deg(g) = m. Then res(f,g,z4) is a polynomial of total degree at most n - m.

Proof. We first homogenize the polynomials f and g by introducing a new variable z.
Then each monomial of the resulting homogeneous polynomials F' and G has degree n
or m, respectively:

F = Foalj+ Fo133 4+ + Fizg + F
G = Gzl +Gp 1zl '+ + Gizq + Gy.

Each Fj is a homogeneous polynomial in k[z1,...,z4 1, 2] of degree n — i and each G
is homogeneous of degree m — j.

We will show that res(F, G, z4) € k[z1,...,Z4-1, 2] either is the zero polynomial or it is
homogeneous of degree mn, see also [73]. Then we can conclude, by substituting z = 1,
that res(f,g,z4) Z 0 is a polynomial of total degree at most n - m.

It is easy to see that a non-zero polynomial H(x1,...,z4) is homogeneous of degree n
if and only if H(tz1,...,txg) = t"H(x1,...,x4) for every t € k

Now look at the resultant of the two homogeneous polynomials F,G € k[z1,...,zq, 2]:
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res(F,G,xq)(tz1,...,txq-1,12)

F, tF,, ... {"F
F, tF,_y ... t"F,
= det
Gm G 1 ... 1"Gy
Gm tGmy ... t"Gy )

Multiply the ith row of F’s by ¢* and the jth row of G’s by /. We obtain

tP -res(F, G, xq)(tzy, ... ,tx4—1,t2)

tF, t*F,_4 "t Ry
t2F, t3F,_; - t"t2F,
det tmE, t"tE,_, ... t"tME,
= de
tGm Gt ... tmt1Gy
G, t3Gp_1 ... ™20,
\ "G G 1 ... TG,
= t9-res(F,G,zq)(Z1,...,%q-1,2)

where p = m(m +1)/2 4+ n(n+1)/2, and ¢ = (m +n)(m + n + 1)/2. Hence

res(F,G,zq)(txy1,. .., txqg_1,tz) = t""res(F,G,zq)(x1,...,T4-1,2).

O

The last proposition bounds the degree of the resultant of two polynomials from above.
Under what circumstances does the resultant of f and g become the zero polynomial?
What does the vanishing of the resultant at any point (ci,...,cq 1) € k%! mean
geometrically?

Proposition 2.17: Let f,g € k[z1,...,z4] be two polynomials with positive degrees
in z4. The resultant res(f, g, z4) is equal to the zero polynomial if and only if f and ¢
have a common factor in k[z1, ..., z4] that has positive degree in zg4, i.e. if and only if
there exist three polynomials h, f1,g91 € k[z1,...,z4], deg(h) > 1, with

f=h-fi and g=h-g.
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Proof. In the last sections about resultants of univariate polynomials we worked with
polynomials in one variable with coefficients from an arbitrary field. Since f and g
are polynomials in z4 with coefficients in k[z1,...,z4-1], the field these coefficients
lie in is the field extension k(z1,...,z4—1) of k. Then Proposition 2.3, applied to
f,9 € k(z1,...,z4-1)[z4], tells us that res(f,g,z4) = 0 if and only if f and g have

a common factor in k(z1,...,z4-1)[z4] with positive degree in z4. What remains to
prove is that this is equivalent to having a common factor in k[z1, ...,z of positive
degree in z4. This will be shown in the next proposition. O

Proposition 2.18: Suppose that f,g € k[z1,...,z4] have positive degree in z4. Then

f and g have a common factor in k[z1,...,z4] of positive degree in z4 if and only if
they have a common factor in k(z1,...,24—1)[z4] of positive degree in zg4.
Proof. One direction is easy: If f and g have a common factor in k[z1,...,z4] of

positive degree in x4, then of course they have a common factor in the larger ring
k(z1,...,24-1)[zq]. For the other direction suppose that f and g have a common
factor h € k(z1,...,24-1)[z4)- Then there exist f1,g1 € k(z1,-..,Tq4-1)[xq] with

f=h-fi and g=h-¢.

But the h, fi, and g; may have denominators in the field k(z1,...,z4-1). Let d €
k[z1,...,z4-1] be a common denominator of them and look at the polynomials h = dh,
fi = dfi, and §, = dgy in k[z1,...,z4]. If we multiply the above equations by d? we
obtain

Pf=h-fieklzy,...,xq and d’g=h-§ €klzi,...,z4q).

Now let Ay be an irreducible factor of h of positive degree in z4. Irreducible means
that h; is not the product of two non-constant polynomials in k[zy,...,z4]. Since
h = ﬁ/ d has positive degree in z4, such an hi must exist. Then h; divides d2f. Since
hq is irreducible, one can proof that it either divides d? or f. The former is impossible
because d? € k[z1,...,24 1] and that is why hi must divide f in klz1,...,zq4]. A similar
argument shows that hy divides g and thus hy is the required common factor. U

We have shown in Corollary 2.6 that the resultant of two univariate polynomials is
multiplicative. This remains true for multivariate polynomials:

Corollary 2.19: Let f,g,h € k[z1,...,z4] be polynomials with positive degree when
regarded as polynomials in z4. Then the equalities res(f - h,g,z4) = res(f,g,zq) -
res(h, g,zq) and res(f, g - h,zq) = res(f,g,zq) - res(f, h,z4) hold.

Proof. All polynomials f,g,h € k[zi,...,z4] can be interpreted as univariate poly-
nomials in the larger ring k(zi,...,z4 1)[z4). From Corollary 2.6 we know that
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in this larger ring the equalities res(f - h,g,zq) = res(f,g,zq) - res(h,g,z4) and
res(f,g - h,zq) = res(f,g,zq) - res(f,h,zq) hold. But in both equalities the factors
on the right side are elements in k[z1,...,z4] and therefore the equalities also hold in
k[:vl,...,:r;d] . ]

For resultants and subresultants of univariate polynomials we have proven that they
are invariant under translation, remember Corollary 2.7 and Proposition 2.12. This
nice property can be extended to resultants of multivariate polynomials:

Corollary 2.20: Given f,g € k[z1,...,z4] regarded as polynomials in z; with co-
efficients in k[z1,...,z4-1] and leading coefficients not equal to the zero polyno-
mial. For a number ¢ = (c1,...,¢4) € k% in the algebraic closure of k we define
f(z):= f(z1+c1,...,zq+cg) and §(z) := g(z1 + €1, ..., Tq+ cq). Then the following
equality holds:

res(.fagaa;d) = res(f,g,zq)(z1 +c1,.--,Ta—1 + C4—1)-

Proof. A translation along the vector ¢ can be split into d translations z; — z; + ¢;
along the coordinate axes z1,...,z4. The resultant is invariant under translation along
the xg4-axis, because we can apply Proposition 2.12 for univariate polynomials. A
translation of res(f, g, z4) along one of the other axes z;, i € {1,...,d — 1}, by a factor
c; causes a translation of each coeflicient entry in the Sylvester matrix of f and g. Since
the translation does not decrease the total degrees of the coefficients of f and g, the
determinant of this matrix is equal to the resultant of f and g with respect to z4. U

2.2.6 Subresultants of multivariate polynomials

The same way as for resultants we also transfer the notion of the Ith subresultant to mul-
tivariate polynomials. We consider two polynomials f, g € k[x1, ..., z4] as polynomials
in one variable, for example in z4. Their coefficients are polynomials in k[z1, ..., Z4_1].
We delete the last 2] columns of the Sylvester matrix of f and g and the last I rows
of f entries and the last [ rows of g entries. The determinant of this matrix is again
a polynomial in k[z1,...,24—1] and we call it the Ith subresultant of f and g with re-
spect to zq4: sres(f,g,zq) € k[x1,...,24—1]. For univariate polynomials we have shown
that the subresultants can help us to determine the degree of the greatest common
divisor of two polynomials. In Corollary 2.15 we have derived an important fact for
two multivariate polynomials f and g that have a constant leading coefficient when
regarded as polynomials in z4: The vanishing of the resultant of these two polynomials
over C is a necessary and sufficient condition for extending a (d — 1)-dimensional point
(c1,...,c4-1) to a common solution (c1,...,¢cq) of f and g. Analogously the vanishing
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of the first h subresultants for (c1,...,cq-1) € Célisa necessary and sufficient condi-
tion for the existence of h complex numbers ¢y, , ..., cq, , not necessarily different, with

f(cla' e acd—lacdi) =0= g(cla cee 7cd—1acdi):

Lemma 2.21: Given f,g € C[z1,...,z4] regarded as polynomials in z4 with coeffi-
cients in C[z1,...,z4-1] and constant leading coefficients f,, and g,,. The polynomials
fler, ... c4-1,2q) € Clzg] and g(c1,--.,c4-1,24) € C[zq] have a greatest common di-
visor of degree h for a point (ci,...,cq 1) € C¥1 if and only if A is the least index [
for which sres;(f, g, z4) does not vanish at (ci,...,¢4 1).

Proof. The proof works in the same way as for the resultant of two multivariate poly-
nomials. 0

The subresultant of two multivariate polynomials f and g with respect to x4 is invariant
under translation along the z4-axis. Or, more precisely:

Corollary 2.22: Let f,g € k[z1,...,z4] be two polynomials with leading coefficients
not equal to the zero polynomial when regarded as polynomials in z; with coefficients
in k[z1,...,74 1]. For a number ¢ = (c¢1,...,¢4) € k% in the algebraic closure of k
we define f(m) = f(z1 + c1y-.-,2q + cq) and §(z) := g(z1 + c1,...,2q + ¢q). For
0 <1< deg(f,g) we have

sres;(f,g) = sres;(f,g)(z1 +c1,. ., Ta—1 + ca—1)-

Proof. The proof works in the same way as for the resultant of two multivariate poly-
nomials in Corollary 2.20. O

Another important statement is as follows: If for an index h € IN all indices 1 <[ < h
lead to sres;(f,g,zq) =0, then f and g have a common factor of degree at least h.

Corollary 2.23: Let f,g € k[z1,...,z4] be two polynomials with positive degree in
zq4. The first h subresultants res;(f,g,z4), 0 <1 < h, are equal to the zero polynomial
if and only if f and g have a common factor in k[z1,...,z4] which has degree at least
h in z4.

Proof. Also this proof works analogously to the one for resultants of multivariate poly-
nomials. Since f and g are polynomials in z4 with coefficients in k[zi,...,z4-1],
the field the coefficients lie in is k(z1,...,24-1). We apply Proposition 2.11 to
fr9 € k(z1,...,x4-1)[zq]: sres;(f,g,24) =0 for 0 <! < hif and only if f and g have a
common factor in the ring k(z1,...,z4-1)[z4] over the field extension k(z1,...,24_1)
with degree at least h in x4. What again remains to prove is that this is equivalent to
having a common factor in k[z1,...,z4] of degree at least h in z4. This immediately
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follows from Proposition 2.18 by induction on the degree of the common factor of f
and g and by successively factoring the two polynomials. O

2.3 Root isolation

In the previous section we have developed a method to project the intersection curve
of two quadrics into the plane. Let p, ¢, and r be quadrics in space. Projecting
the intersection curves of several pairs of quadrics leads to a planar arrangement of
algebraic curves. For example we may obtain the two curves f = res(p,q,z) and
g =res(p, T, z). Again with the help of resultants we can project the intersection points
of f and ¢ onto the z- and y-axis. This yields univariate polynomials X = res(f,g,y)
and Y = res(f,g,z) in = and y, respectively. We are interested in the real roots of X
and Y because they are the candidates for z- and - coordinates of intersection points
of f and g. The two curves f and g are projected intersection curves of p with ¢ and
with 7. Therefore the roots of X and Y are also the candidates for z- and y-coordinates
of common intersection points of p, ¢, and r.

2.3.1 Algebraic numbers

Consider a rational polynomial u(z) = Y1 ;a;z'. We are interested in the real roots
of u. That means we want to solve the equation u(x) = 0 and find real numbers «
with u(a) = 0. By definition, an algebraic number is a root of some polynomial u €
Q[z]. The Fundamental Theorem of Algebra states that every non-constant polynomial
u(z) € C[z] has a root @ € C. The question is to find these roots. For deg(u) > 2 there
is no general way via radicals to explicitly compute the roots in every case. But we are
only interested in the real ones and, as we will see, it is sufficient to know an isolating
interval for each real root a of u. That means we compute two rational numbers a and
b such that « is the one and only real root of u in [a,b]. There are various methods of
determining these isolating intervals like the algorithm of Uspensky, Sturm sequences,
Kronecker’s Algorithm, or isolation by differentiation. For a good survey see [21]. We
will just quote Uspensky’s algorithm because it is quite fundamental and often used in
praxis.

2.3.2 Uspensky algorithm

First let us state a basic tool for real root counting, namely Descartes’ rule of sign. Let
(u1,...,us) be a sequence of real numbers and (uf,...,u}) the subsequence of all non-
zero real numbers. Then var(uy,...,us), the number of sign variations, is the number
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of indices 4, 1 <4 < ¢, such that wju; ; < 0. With this notation Descartes’ rule of signs
is as follows:

Theorem 2.24: The sign variation var(u) in the sequence (up,Up—1,...,u1,ug) of
coefficients of the polynomial u(z) = > u;z’ exceeds the number of positive real
roots of u(z) by some non-negative even number.

Let u(z) be a squarefree polynomial. This can be achieved by factoring out the gcd of
u and its derivative u/. Since the negative real zeros of u(z) are the positive real zeros
of u(—z), and since u(0) = 0 iff uyp = 0, we can restrict ourselves to isolate the positive
zeros of u. From Descarte’s rule of signs we can conclude that if var(u) = 0, u has no
positive zeros, and if var(u) = 1, u has exactly one positive zero. Uspensky shows that
after a finite number of transformations v(z) = u(z+1) and w(z) = (z+1)"u(1/(z+1))
one arrives at polynomials having sign variation 1 or 0. This is the basic idea of his
algorithm. His method, however, suffers from an exponential computing time since
the bisection into subintervals is not balanced. This drawback was eliminated in the
modified Uspensky algorithm by Collins and Akritas [20] using bisection by midpoints.

2.3.3 Decreasing the width of an interval

Once we have an isolating interval [a, b] of a root of a polynomial u € Q[z], we can
easily decrease its width using bisection by midpoints. Let us assume without loss
of generality that u is squarefree. We know that u has exactly one root in [a,b], so
atb
2

u(a) - u(b) < 0. For the rational midpoint ¢ := of the interval there are two

possibilities:

1. either u(c) = 0, in which case we are lucky because we have found a rational root,

2. or exactly one of the intervals [a,c| or [c,b] contains a root of u and the other
one is empty. The one containing the root can simply be determined by testing
u(a) - u(c) < 0. If the inequality is true, the root is contained in [a, c|, otherwise
it is in [c, b].

2.3.4 Pairwise root separation

Sometimes it is necessary to pairwise separate the root isolating intervals of two poly-
nomials u,v € Q[z]. We want to achieve that a root isolating interval [a, b] of a root «
of u and a root isolating interval [c,d] of a root 8 of v either are identical, in the case
a = f, or disjoint otherwise. Again assume without loss of generality that u and v are
squarefree. Of course, we can compute such isolating intervals by applying Uspensky’s
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algorithm to the polynomial u - v. This has the disadvantage that we deal with a poly-
nomial of higher degree than u and v. After computing the isolating intervals for u - v,
we have to assign each interval to u or v or to both. Another problem is that in the case
we already know isolating intervals for 4 and v, we do not use this information. We
can avoid this by computing ¢ := ged(u,v), @ :=u/g, and 0 := v/g. We first determine
the intervals of u and v that contain a root of g. An interval [a,b] can again be tested
by computing g(a) - g(b) < 0. The intervals [a,b] of u and [c,d] of v containing the
same root of g are replaced by [a,b] N[c,d]. The remaining intervals of v and v have
to be shrunk until they are pairwise disjoint using bisection by midpoints as described
before.
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Chapter 3

The basic algorithmic ideas

We consider the arrangement A(P) of a set of quadric input surfaces P = {p1,...,p}-
For example A(P) for the set P = {R, G, B} of ellipsoids in Figure 3.1.

Figure 3.1: Arrangement of three red, blue, and green ellipsoids R, B, and G, respec-
tively

Our initial question is how to compute the topological description of a cell in the
arrangement. But independent of the special information and application one may be
interested in, the basic computation that has to be done in nearly all cases is: Given
a quadric p, locate and sort all vertices along the intersection curves running on the
surface of p. Each such curve is an intersection curve of p with another quadric gq.
A vertex is an intersection point of p and two other quadrics ¢ and r. Equivalently
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we can say that it is an intersection point of two spatial intersection curves, namely
the intersection curve of p and ¢ and the one of p and r. If, for each quadric p, we
can compute the 2-dimensional subarrangement on its surface, combining these results
to the desired description of the cell is a problem of discrete combinatorics and data
structures. We are mainly interested in the aspect of exact algebraic computation and
therefore do not treat this last step.

For each quadric p we want to compute the 2-dimensional sub-arrangement that is
induced by A(P) on the surface of p. For example, consider the red ellipsoid R and
the blue ellipsoid G. Their intersection curve is the blue spatial curve lying on the red
ellipsoid and consisting of two connected components, see Figure 3.2. Its intersection
points with the remaining quadrics, in our example simply the ones with the green
ellipsoid GG, divide the blue curve into edges of the arrangement. The green curve is
the intersection curve of the red and the green ellipsoid. We want to locate and sort
the intersection points of the blue curve with the green ellipsoid along the different
branches of the blue curve, or equivalently the intersection points of the blue and the
green spatial intersection curve. We have marked their intersection points by small
arrows.

3.1 Reduction to planar arrangements

3.1.1 The projection phase

The question we have to answer is how to locate and topologically sort, for a fixed
quadric p, the intersection points of curves running on its surface. The bad news
is that in general there is no rational parameterization of the intersection curve of
two quadrics, see [28]. Moreover, our aim is to develop an approach that might be
extendible to more general surfaces. Therefore we cannot work directly in space. But
we can reduce the problem to one of computing intersection points of planar algebraic
curves of degree at most 4 by projecting the intersection curves into the plane. As
we have seen in the previous chapter, under some assumptions the projection can be
algebraically realized via resultants. This reduction also works for arbitrary surfaces.
Only the algebraic degree of the resulting curves differs. All ideas developed in this
chapter are applicable to arbitrary surfaces.

In our example in Figure 3.2, the polynomial

408332484z + 51939673y* — 66477920423y — 2410150643z + 5641857242212
—25001940623 + 17767644y3 + 221120964z%y — 12302691672z
+1669191922 + 4764152y% + 14441004zy + 10482900z + 2305740y — 1763465
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Figure 3.2: Project the intersection curves into the plane

defines the projected green curve. We project the blue and the green intersection curve
into the plane.

In order to correctly interpret the resultant as the projected intersection curve, we
assume throughout this and the next chapters that the quadratic input polynomials are
squarefree and generally aligned, and that each two of them have a disjoint factorization.
These terms are defined as follows:

Definition 3.1: 1. A polynomial f € Q[z1,...,x4] is squarefree if the resultant
res(f, fey» d) is not equal to the zero polynomial. That means f and f;, do not
share a common factor, or, in other words, the factorization of f is squarefree.

2. A polynomial f € Q[z1,...,zq] is generally aligned if it has a constant leading
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coefficient when regarded as a polynomial in one variable 4. This removes the
negative effect that the resultant of two polynomials f and g with respect to
x4 may vanish for a point a = (a1,...,a4—1), although a is not extendible to a
common solution of f and g.

3. Two polynomials f, g € Q[z1,...,z4] have a disjoint factorization if res(f, g, z4) #
0, i.e. if f and g do not share a common factor.

These assumptions constitute no restriction on the input quadrics. In Chapter 7 we
will show how to realize them for each kind of input.

During the projection we loose the spatial information. Points of intersection curves
on the upper part of p and on the lower part of p are projected on top of each other.
This can cause self-intersections. The two branches of the blue curve, one running on
the upper and one on the lower part of the red ellipsoid, are projected on top of each
other generating two self-intersections, see Figure 3.2. Moreover, in space the green
and the blue curve had 2 intersection points. The projected curves in comparison have
6 intersection points, 4 of them resulting from the loss of spatial information.

7z

Figure 3.3: Only projecting the intersection curves is not sufficient

Another negative side effect of the projection is the following: Look at the green and
red spatial curves in Figure 3.3. The red curve is the silhouette of the red ellipsoid in
the example above. The green curve is again the intersection curve of the red and the
green ellipsoid. The latter consists of one connected closed branch, bounding a face
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F colored pink and yellow. The pink portion of F' lies on the upper part of the red
ellipsoid, the yellow portion on the lower part. The projected green curve also consists
of one connected closed branch bounding the yellow region Y. But not all points of F’
are projected onto points of Y. The points on the pink portion of ' and the ones lying
vertically underneath on the yellow portion are projected onto points of the pink—yellow
region P. P is bounded by the green and red curve. The example makes clear that only
projecting the intersection curve into the plane is not sufficient. We have to identify
the region P and for that we additionally need the projection of the silhouette of p.

The projection of the silhouette can be computed with the help of the partial derivative
p, := Op/0z of p with respect to z. The interpretation of the resultant res(p, p,, z) as
the projection of the silhouette is permissible because p is generally aligned:

Proposition 3.2: Let p € C[z,y, 2] be a polynomial with leading coefficient a not
equal to the zero polynomial when regarded as polynomial in z with coefficients in
C[z,y]. If res(p, p., 2) vanishes at (¢, c,) € C?, then either

1. a vanishes at (cz,cy), or

2. there is ¢, € C such that ¢, is a root of multiplicity 2 of p(cg, ¢y, 2).

Proof. We have shown in Proposition 2.14 that p(c,,cy,z) and p,(cg,cy,z) have a
common root when a(cz,cy) is non-zero. So p(cg,cy,2) has a root of multiplicity 2
when a(cg, ¢y) is non-zero. O

A third problem, which we already mentioned in the last chapter, is the following: It
can happen that a point of a curve f = res(p,q, z) in the real plane originates from a
complex common point of p and q. While examining the planar curves we will not take
care of this event. Such projected non-real intersection points just refine the planar
arrangements of all projected real spatial intersection curves we are interested in.

The algorithmic part of projecting intersection curves of quadrics and the silhouette into
the plane we call projection step or projection phase. It is easy to see that the projection
step makes no sense for linear input polynomials. For a linear one we just substitute
its coefficients into all other input quadrics and directly compute the arrangement of
the rational quadratic intersection curves lying on this plane. Because each resulting
bivariate polynomial has total degree at most 2, computing their planar arrangement
is much easier than the problem we will discuss in the next two chapters. So we will
ignore it in the following. Of course, our method can also be applied to this kind of
arrangement.

The whole projection step for our example proceeds like shown in Figure 3.4.
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Figure 3.4: Project all intersection curves and the silhouette of p into the plane
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3.1.2 The planar arrangement

In the planar arrangement, we obtain from the projection phase, there are two different
types of planar curves and exactly one curve is of the first type:

silhouettecurve: The projection of the silhouette of p. The planar curve is the set of
roots of res(p, p,,z) and its algebraic degree is bounded from above by deg(p) -
deg(p,) = 2. This is the red curve in our example.

cutcurve: The projection of the spatial intersection curve of p with another quadric gq.
The planar curve is the set of roots of res(p,q,z) and its algebraic degree is at
most 4.

3.2 Computing planar arrangements

We have to compute the planar arrangements we obtain from the projection phase. As
we have seen, each arrangement consists of one silhouettecurve and a set of cutcurves.

3.2.1 Event points

Figure 3.5: A trapezoidal decomposition of the planar arrangement
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One way of representing the arrangement would be to store its trapezoidal decompo-
sition [56]. The motivation and mathematical definition for such a decomposition is
as follows: The curves decompose the plane into several regions. Unfortunately, the
regions can have complicated shapes. It is convenient to refine this partition further,
as in Figure 3.5, by passing a vertical attachment through all

1. intersection points of two curves,

2. singular points of one curve, for example self-intersection points,

3. and extreme points.
Each vertical attachment extends upwards and downwards until it hits another curve,
and if no such curve exists, then it extends to infinity. Of course we cannot explicitly
compute the vertical attachments because in general they have irrational endpoints.
But we are interested in the topology of the trapezoidal decomposition and this infor-
mation does not depend on the exact computation of the attachments. The important

step is to determine and locate all intersection points, extreme and singular points,
consider Figure 3.6.

g

N

Figure 3.6: Intersection, singular, and extreme points

In the mathematical preliminaries we also defined vertical turning points. At such a
point only the sign of the curvature changes, but it does not cause a vertical line of the
decomposition. Because of that, there is no need to consider them. Why did we define
them nevertheless? Because we would like to interpret also singular and extreme points
of a curve f as intersection points of two curves, namely of f and f,. The two curves f
and f, intersect in singular, extreme, and unfortunately also in vertical turning points.
The good news is that these three kinds of points remain the only intersection points:

Theorem 3.3: The singular points and the points with a vertical tangent are exactly
the intersection points of f and f,.

Proof. By definition a point (a, b) is a point with a vertical tangent or a singular point
of f if and only if f(a,b) = 0 and fy(a,b) =0, i.e if (a,b) is an intersection point of f
and fy. O
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We would like to reduce the question of determining points causing a vertical line of the
trapezoidal decomposition to the question of locating intersection points of two curves.
This algorithmic aim has the consequence that we include vertical turning points to
the set of event points, although there is no geometric need to do that.

Definition 3.4: The event points of a planar arrangement induced by a set F' of planar
curves are defined as the intersection points of each two curves f,g € F and the
intersection points of f and f, for all f € F'.

For illustration of the definition above consider Figure 3.7. The singular and extreme
points of f are marked by the small boxes. In our special example the singular points
are all self-intersections and there is no vertical turning point. In the second picture of
Figure 3.7 one can see that the magenta curve g = f, exactly cuts through the singular
points and the points with a vertical tangent of f.

g=fy

Figure 3.7: Singular and extreme points of f are common roots of f and g = f,

3.2.2 Computing intersection points of two curves

With our last observations we have reduced the problem of computing the event points
in the planar arrangement to the question of determining intersection points of two
curves f and g. For F being the set of all algebraic curves of the planar arrangement,
we have to locate the intersection points of all pairs of algebraic curves f and g, whereby
either f,g € F or f € F and g = f,. Remember that our planar arrangements result
from the projection phase. Therefore the set F' consists of exactly one silhouettecurve
and a set of cutcurves. Keeping this in mind, we can distinguish four different types of
pairs of curves, the intersection points of which we want to locate:

1. f € F and g = f,, whereby f is the silhouettecurve.
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2. f € F and g = f,, whereby f is a cutcurve.

3. f,g € F and one of the two curves is the silhouettecurve and the other one is a
cutcurve.

4. f,g € F and both curves are cutcurves.

For illustration look at our small example in Figure 3.8.

)%

Figure 3.8: Compute all intersection points between (r and ry), (b and by), (g and gy),
(r and b), (r and g), and (b and g)

We want to compute the intersection points of two curves f and g. In general common
points of f and g will have irrational, or even complex, coordinates. We are only
interested in the real common roots, so we face two problems:

1. Although all mathematical tools work over C, we have to distinguish real roots
from complex roots.

2. Although the intersection points will have irrational coordinates, we have to locate
and characterize them exactly and unambiguously.

Our solution again works in the spirit of cylindrical algebraic decomposition. With the
help of resultants we compute the two univariate polynomials X = res(f,g,y) € Q[z]
and Y = res(f,g,z) € Q[y]. Their real roots contain the z- and y-coordinates of
all intersection points, respectively. Like in the projection phase from space to the
plane, we assume in the following that all polynomials f € F are generally aligned
and squarefree and that each two polynomials f,g € F have a disjoint factorization.
That means each polynomial f € F has a constant leading coefficient regarded as
a polynomial in y as well as regarded as a polynomial in z. Furthermore, for two
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polynomials f and g, whereby either f € F and g = f, or f € F and g € F, their
resultants with respect to y and x are not equal to the zero polynomial. In Chapter 7
we describe how to establish these conditions.

Let R(X) be the set of real roots of X and R(Y’) be the ones of Y. Each real intersection
point of f and g is a member of the grid

GRID(X,Y) = R(X) xR(Y) = {(rz,1y) | 7z € R(X) , ry € R(Y)}.

We conclude that the search for real intersection points is limited to examining only the
points on the grid GRID(X,Y’). But the coordinates of the points on the grid are only
given as roots of the polynomials X and Y. The degrees of each of these polynomials can
be 16. Therefore we cannot compute the points of GRID(X,Y) explicitly. Instead, with
the help of a root isolation algorithm, we determine rational interval representations
for the real algebraic numbers of R(X) and R(Y). For the z-axis this gives us rational
intervals, each containing one real root of X. Every interval [a,b], a,b € Q, can be
vertically extended to a stripe in the plane consisting of all points (z,y) witha <z <b
and y € IR. The same way each interval on the y-axis can be extended to a horizontal
stripe. So the intervals on the z- and on the y-axis define narrow rational stripes
parallel to the y- and parallel to the z-axis, respectively. The intersection of the stripes
yields disjoint boxes with rational corners containing the points of GRID(X,Y’). Each
box contains at most one real intersection point of f and g.

We want to avoid that a box entirely contains a loop of one of the curves like in Figure
3.9. Therefore we additionally choose all boxes small enough to guarantee that at most
one intersection point between f, f, and g, g, takes place. This can easily be done
by pairwise separating the real roots of X, res(f, f,,v), and res(g, gy,y), and of Y,
res(f, fy,z), and res(g, gy, z). Now the isolated roots of X and Y define boxes that
contain at most one intersection point of f and g and at most one singular or extreme
point of f and of g. In the case that two of these event points take place in one box,
they take place in the same point.

YN
()

Figure 3.9: We want to avoid the case that the box entirely contains the red loop
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It remains to test each box for a real intersection point. Unfortunately, the number of
boxes is nearly quadratic in the number of intersection points. In the example in Figure
3.10 we have to distinguish the empty yellow boxes from the red ones that contain an
intersection point.

y

[1]
[

[1
9]

-

1
]

[
[

[
[

Figure 3.10: Distinguish the empty yellow boxes from the red ones

3.2.3 Testing a box for an intersection point

We have to answer the question whether a box with rational corners contains an inter-
section point of f and g or not. This reduction from a problem in the complex plane to
one that is locally limited to a small box in the real plane answers our first question how
to distinguish real roots from complex ones. The root isolation algorithm applied to
res(f,g,y) and to res(f, g, z) separates their real roots and therefore is responsible for
the distinction. We only consider boxes in the real plane and ask for intersection points
inside them. The second problem we formulated is that intersection points can have
irrational coordinates and this of course is still true. We have no information about
what is happening inside the box. The only thing we can obtain is some information
about the boundary of the box. We compute the sequence of hits of the curves with
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the boundary: Let [a,b] and [c,d] be the defining intervals of the box on the z- and
y-axis, see Figure 3.11. Then the box has the rational corners (a,c), (a,d), (b,d), and

(b, ¢).

(a,d) (b,d)
dr
Cc L
(ac) (b,c)
= ]
a b

Figure 3.11: A box with its rational corners

We substitute the rational number a for z in f and g, yielding two polynomials
fla,y),g(a,y) € Qy]. For these polynomials we pairwise isolate the real roots in
the interval [c,d] and determine the multiplicity of each root. This leads to the se-
quence of hits of the curves with the left edge of the box, counted with multiplicities.
We analogously do the same for the upper, right, and lower edge of the box.

Can the sequence of hits of the curves with the boundary of the box help us to determine
the behavior of the curves inside the box? If there are exactly two hits with each curve,
counted with multiplicities, and the hits alternate, then we can be sure that there is an
intersection point inside the box at which the two curves cross each other, see Figure
3.12. This method of locating for example transversal intersection points we call simple
boz hit counting. It is also discussed in [44].

Figure 3.12: Transversal intersections can be solved with simple box hit counting
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Simple box hit counting:
begin
determine sequence of hits of f and g with the box
while (#hits(f) >= 2) or (#hits(g) >= 2)
shrink the box
determine sequence of hits of f and g with the box
if (#hits(f) < 2) or (#hits(g) < 2)
output: 0 // empty box
else
if (hits alternate)
output: 1 // intersection point
else
output: 77?7

end

It is easy to see that simple box hit counting has the output 1 if and only if the box
contains an intersection point at which f and g cross each other:

Proposition 3.5: Let f and g be two curves in the plane. Let furthermore B be a
box with rational corners such that there is at most one point inside the box that is an
intersection point of f and g, or an intersection point of f and fy, or an intersection
point of g and g,. The point can be an intersection point of several of these curves.
Moreover assume that f and g have exactly two hits with the boundary of B, counted
with multiplicities.

The hits of f and g on the boundary of B alternate if and only if B contains an
intersection point at which f and g cross each other.

Proof. The Fundamental Theorem of Algebra implies that for a fixed real number z
the roots of f(zg,y) € IR[y| are either real or occur in complex conjugate pairs. We
can count the real roots along this line z = zy. By continuously moving z, along the
z-axis also the roots of f(xg,y) change continuously. We call the union of all i-th real
roots the i-th level of f. For example consider the curves in Figure 3.13. In both cases
the red points form the first level of f.

As can be seen in the examples, the levels of f may be non-differentiable at some
points, they may have discontinuous jumps or even may disappear completely. There
is a non-differentiable point if and only if two real roots of f coincide. A level makes a
jump or disappears if and only if two real roots change to two complex ones. Between
such points every level of the curve is the graph of a differentiable real function.

Due to our assumptions, a box contains at most one intersection point of f and f,, so
there is at most one non-differentiable point of the levels inside the box. If the curve f
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Figure 3.13: The red points form the first level of f

hits the boundary of the box exactly twice, then inside the box these points are either
continuously connected by the same level or they are part of two distinct levels that
obtain a common point and make discontinuous jumps to points outside the box or
disappear completely. For illustration consider Figure 3.14.

i i+1

o e

Figure 3.14: Either the points on the boundary are connected by the same level or by
two distinct levels that have a common point inside the box.

In both cases the two points on the boundary are connected by a single real branch of
the curve f. This branch divides the box into two regions. Assume that the hits of f
with the boundary of the box alternate with the ones of a second curve g. Also the two
points of g are connected by a branch and the two points lie on different sides of the
branch of f. So f and g have to cross inside the box.

The other direction is even more easy. If f and g cross inside the box, then locally
around this intersection point the curves appear in alternating order. Due to our
assumptions, except in the intersection point of f and g all levels are graphs of differ-
entiable functions and there is no further intersection point of f and ¢ inside the box.
So the order the branches does not change any more and we obtain alternating order
of the hits of f and g at the boundary of the box. O
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The problem of simple box hit counting is that it cannot detect non-singular tangential
intersection points of f and g, see Figure 3.15. In the first box f and g have a non-
singular tangential intersection, in the second box they have not. But the sequence
of hits is identical in both cases. For non-singular tangential intersections our simple
box hit counting algorithm ends up with the output ???. Both scenarios shown in
Figure 3.15 can actually arise. Look at the two curves in Figure 3.16. The isolating
intervals on the two coordinate axes lead to 4 boxes. In the upper left box there is
a tangential intersection point of the two curves, whereas in the lower left box there
is none. At the boundary of the boxes both situations lead to the same sequence of
intersections.

Figure 3.15: Tangential intersections cannot be solved with simple box hit counting

L

Figure 3.16: In the upper left box there is a tangential intersection whereas in the lower
left box there is none

Other problematic events are self-intersections or isolated points of f, i.e. intersection
points of f and g = f, that are singular points of f. For example consider Figure 3.17.
In the first box the blue curve has a self-intersection, whereas in the second box it does
not. The sequence of hits of f and f, with the boundary of the box is the same in
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both cases. In the third box the two curves f and f, intersect in an isolated blue point,
but there are no hits of f with the boundary of the box. For self-intersections the first
while-loop of the simple box hit counting algorithm runs forever. For the isolated point
it gives the wrong answer empty box.

Figure 3.17: Some singular points cannot be solved with simple box hit counting

That means concerning the examination of the boxes we have to solve two problems in
the following:

1. Find a method to avoid applying simple box hit counting to boxes that contain
a tangential intersection in order to avoid infinite loops and wrong results.

2. Find methods to solve

(a) non-singular tangential intersections and

(b) singular points.

The answer to these two questions is crucial, because, as one can see in Figure 3.18,
non-singular tangential intersections and singular points appear quite often in our ar-
rangements. This is the reason why classical methods like the gap theorem [15] or
multivariate Sturm calculation [53] are too expensive. In the next two chapters we will
develop a new method that treats these cases in a fast and robust way.

Figure 3.18: Tangential intersections and self-intersections appear quite often
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Chapter 4

Intersection points of general
curves

In this chapter we will give a first answer to the question, how to determine whether
two curves f and g intersect inside a given box under the assumption that there is
no singular point of one of the curves inside the box. Remember, that we obtain the
boxes from computing the resultants of f and g on both coordinate axes and then
separating their real roots. We will show how to predict the case that a box cannot
contain a tangential intersection. With this pre-information, simple box hit counting
is a suitable tool to obtain the correct result. This will answer our first question we
posed at the end of the last chapter.

Next, we give a solution for determining non-singular tangential intersections inside a
box. Thereby we assume that we know in advance that there is no singular point inside
the box. This is a necessary and of course big assumption. The method we will develop
for non-singular tangential intersections uses modified box hit counting.

At last, we describe a method how to factor the resultants on the coordinate axes. If
any kind of factorization leads to polynomials on the z- and y-axis of degree at most 2,
we can explicitly compute whether there are intersection points on their corresponding
grid points or not.

All results in this chapter do not only apply to our special arrangements we obtain from
projecting quadric intersection curves into the plane, but to arbitrary arrangements of
planar curves. We can locate each intersection point between two arbitrary planar
curves inside a box, but only if we know in advance that it is not a singular point of
one of them.



CHAPTER 4. INTERSECTION POINTS OF GENERAL CURVES

4.1 Transversal intersections

In this section we will first provide some mathematical foundations and then answer
the question of how to avoid applying simple box hit counting to boxes that contain a
tangential intersection. The boxes are defined by the roots of the resultants on the z-
and on the y-axis. The roots can have different multiplicities. Do these multiplicities
have a geometric interpretation? The answer is positive. There is a strong connection
between the kind of intersection two planar curves f and g have at a common point
(a,b) and the multiplicity of the root a of the resultant X = res(f,g,y). Of course, the
considerations symmetrically hold for a root b of the resultant Y = res(f, g, z).

4.1.1 Multiple roots of the resultant

For two curves f and g we want to investigate the roots of X = res(f,g,y) € Q[z] and
especially their multiplicities. Remember our overall assumptions that the polynomials
f and g are generally aligned and squarefree and that they have a disjoint factorization.
We assume that this is valid in the whole chapter. Therefore we know that a € C is
a root of X if and only if there exists a complex number b with f(a,b) = g(a,b) = 0.
Under what circumstance does the factor (x —a) of X has a multiplicity greater than 17?

Without loss of generality let us in the following assume (a,b) = (0,0). According
to Corollary 2.20 this is not a restriction, because the multiplicities of the roots of
X are invariant under translation of f and g¢: a translation of the two curves in z-
direction only causes the same translation of the roots of the resultant. A translation
in y-direction keeps the resultant unchanged.

Let f and g be of total degree n and m, respectively:

= foy" + fooy" e iy + fo, fa #O
= gy + gm-1y™ -+ g1y + 90, gm ZO.

Each f; and g; is a polynomial in z of degree at most n —4 and m — j. By successively
taking the partial derivative of f with respect to y and substituting y = 0, we get the
equalities

fi = Z_l'fy’(a:ao)

for all 0 < i < n. By f,i € Q[z,y] we denote the polynomial we obtain from f by
computing i-times the partial derivative with respect to . Substituting y = 0 leads to
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the polynomial f,:(x,0) € Q[z]. We know that each f; is a polynomial in x of degree
at most n — ¢ and therefore

n—i

Ji(@) = 3 = Ly (0,0) - a7,

10
1-7:
=0

The same considerations hold for the polynomial g with deg(g) = m. For the sake of
simplicity let in the following f,i,; denote f,:,;(0,0) and g,i,; denote g,i,;(0,0). Then
especially fo, f1, go, and g1 are of the form

folz) = z?- (polynomial of degree < n —0—2) + fr1,0z + fro.0
—tAo(z)

= 2’ Ao(x) + faz + f

fi(z) = = (polynomial of degree <n —1—1)+ fro,1
—: Ay (z)

= zAi(z)+ fy
go(z) = 2°Bo(z) +gzz+g
gi1(z) = zBi(z)+ gy

The resultant of f and g with respect to y is the determinant of the following (m +

n) X (m + n) matrix:

* * 0 0 \
* * 0 0

* x 2 Ao(x) + fox + f 0

A 2A
X = res(f,gy) = det| * zdi@)+fy 2 A(2) + for + f

* * 0 0

¥ ... % 0 0

... % 2°Bo(z) + gzz+g 0

... % zBi(z) + gy 2By(z) + gz + g

We are interested in the multiplicity of  as a factor of the resultant. Because f and g
vanish at (0,0), in the last column of the resultant f = 0 = g holds and we can factor
out z. That means z is a factor of X. Equivalently we can say that 0 is a root of the
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resultant. This of course is what we expect. Under which conditions does this root has
a multiplicity greater than 17

We know that X is a polynomial of degree at most mn and z is a factor of X. That
means X has the following form:

mnfl)

X = res(f,g,y) = fL'(Oél‘f’OéQ.’L'—l----—i-amn:L‘

for some rational ¢;, 1 < 7 < mn. The resultant has a root of multiplicity greater than
1 in z = 0 if and only if the coefficient «; is equal to zero. When does this happen?
Let us look what the coefficient a1 looks like.

Lemma 4.1:

a1 = (=1)" - (fagy — fygz) - sresi(f,9,4)(0)

Proof. We have

X = res(f,9,y) = z(01 + sz + -+ + Qppz™ )

~

=: v(z)

and a3 = v(0). Moreover, because f(0,0) = g(0,0) = 0, we have

( * * 0 0
* * 0
* * x2Ao(7) + fox 0

X = z-det * * o wAiz)+ Fy 2Ao(2) + fa =: z-detV.

* * 0 0
* * 0 0
* ... * x2By(T) + gu 0
* ... *x zBi(z)+gy xBo(z)+g,

We conclude v(z) = det V' and therefore a; = det V(0). By substituting z = 0 into V'
and applying the definition of the first subresultant, we obtain the statement we want
to prove:
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0 0
A Do
0 0
0 0
a = detv(o) = | * foy Jg”
B Do
0 0
0 0
\ * ... * g gz )

= (_1)n : (fccgy - fygcc) - det ( g )

= (=" (fmgy - fygx) -sres1(f, g,9)(0).

The Lemma immediately leads to the following statement:

Corollary 4.2: Let f,g € Q[z,y] be two generally aligned and squarefree polynomials
with disjoint factorizations. Let furthermore a € C be such that a is no common root
of res(f,g,vy) and sresi(f, g,y). Then res(f,g,y) has a root of multiplicity > 2 at z = a
if and only if there exists a point b € C such that (a, b) is a tangential intersection point
of f and g.

Under the assumption ged(sresi(f,g,y),res(f,g,y))(a) # 0 we can conclude that the
multiple root £ = a of the resultant is caused by a tangential intersection of f and g.
The tangential intersection of course may be complex. What can we say in the other
case that a € C is a common root of the resultant as well as the first subresultant?
Then we know that the two polynomials f(a,y) € Cly] and g(a,y) € C[y] have at least
two common roots:

(a) Either there are at least two different common roots of f(a,y) and g(a,y)
(b) or all common roots of f(a,y) and g(a,y) coincide.
In the second case (b) there exists one complex number b with ged(f(a,y),g(a,y)

. ) =
(y — b)* for some 7 > 2. Then of course (y — b) is a factor of ged(fy(a,y),g9y(a,v))-
We conclude fy(a,b) = 0 and gy(a,b) = 0 and because of that f(a,b) = g(a,b) =
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(fz9y — fy9z)(a,b) = 0. That means also in this case (a,b) is a tangential intersection
point of f and g.

What we would like to do in advance is excluding case (a) that two distinct intersection
points of f and g share the same z-coordinate.

Definition 4.3: We say that two polynomials f and g are in general relation with re-
spect to x, if they have no two common roots with the same z-value. If two polynomials
f and g are in general relation with respect to z as well as with respect to y, they are
in general relation.

We call a pair of polynomials f and g well-behaved, if they are generally aligned and
squarefree and if they have disjoint factorizations and are in general relation.

With this notation we obtain our desired characterization of multiple roots of the
resultant:

Theorem 4.4: Let f and g be two well-behaved polynomials. Then every multiple
root of X =res(f,g,y) is in 1-1 correspondence to one tangential intersection point of
the curves defined by f and g.

Like general alignment, squarefreeness, and disjoint factorization, also general relation
can always be realized and we describe the corresponding algorithm in Chapter 7. In
the following we assume that each two polynomials f and g we consider during our
computation are well-behaved.

4.1.2 Simple box hit counting

Now let us have a look at how we can use this result in order to determine transversal
intersections. From Theorem 4.4 it easily follows:

Corollary 4.5: Let f and g be two well-behaved polynomials and (a, b) an intersection
point of the curves defined by f and g. This point is a transversal intersection point of
f and g if and only if (z — a) divides res(f, g,y) and (z — a)? does not.

a,b)

Figure 4.1: A transversal intersection
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Transversal intersections are exactly the ones that cause simple roots of the resultants.
We have shown in the Chapter 3 that transversal intersections can be solved with the
help of simple box hit counting. So here is our criterion for how to distinguish boxes
that can be solved by simple box hit counting from the ones for which this tool is not
suitable. The only thing we have to do is factoring the resultant X = res(f, g,y) of two
curves f and g into one polynomial u; containing all simple roots and one polynomial ug
containing all multiple roots: X = u;-ug. The same has to be done for Y = res(f, g, y):
Y = v - v9. We will explain in Section 4.3 how to achieve this. The boxes defined by
the real roots of u; and vy can be solved by simple box hit counting. This answers our
first question.

4.2 Non-singular tangential intersections

In the last section we saw that the resultant of two bivariate well-behaved polynomials
f and g has a root of multiplicity > 2 at z = a if and only if there exists a point b € C
such that f and g have a tangential intersection in (a,b). We concluded that a simple
root of the resultant originates from a transversal intersection point of f and g. Boxes
defined by simple roots of the resultants on the z- and y-axis can be solved with simple
box hit counting.

Next we have to consider boxes that are defined by the intervals of two multiple roots.
We know that both intervals are caused by tangential intersection points of f and
g. What can we say about tangential intersection points? First of all, there are two
situations that cause (a,b) to be a tangential intersection point:

1. either both curves have the same uniquely defined tangential line in (a, b)

2. or the intersection point (a,b) is a singular point of f or g.

(&b (ab)

> N ) 72N

Figure 4.2: Non-singular tangential intersection and a slight move of the red curve f

For a real non-singular tangential intersection point it is easy to visualize informally
that it causes a root of multiplicity > 2 of the resultant. If f and g touch with the
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same tangent in the real point (a,b), as in the left box of Figure 4.2, then moving the
red curve f in negative y-direction causes two intersection points of f and g, see the
right box of Figure 4.2. The two intersection points are responsible for two roots of
the resultant. Now by continuously moving the curve back to its starting position, the
two roots of the resultant on the z-axis become closer and closer. The resultant is, as a
determinant of polynomial coefficients, continuous and because of that we end up with
a double root of the resultant.

4.2.1 The Jacobi curve

We are interested in tangential intersection points of two curves f and g. By definition
a point (a,b) is a tangential intersection of f and g if and only if (a,b) is a root of the
polynomial fzgy — fygz- This polynomial and the curve it defines will play an important
role in our future investigations. Therefore we will give it a name:

Definition 4.6: Let f € Q[z,y] and ¢ € Q[z,y] be two bivariate polynomials. We
define a third polynomial h € Q[z,y] by

h = fxgy_fyga:-

The set of real roots of this polynomial h we call Jacobi curve of f and g.

We remark that the algebraic degree of h is bounded from above by deg(f)+deg(g) —2.
With the help of the Jacobi curve we reformulate:

Corollary 4.7: Let f,g € Q[z,y] be well-behaved polynomials. The point a € C is a
root of multiplicity > 2 of the resultant res(f, g,y) if and only if there exists a number
b € C such that (a,b) is a common root of f, g, and h = frg9y — fy9az-

The Jacobi curve cuts exactly through all tangential intersection points of f and g.
We will see that this fact leads to a new test for non-singular tangential intersections
inside a given box. The drawback of this test will be that it works only if we know in
advance that the tested box contains no singular point of f or g. So in the following
we assume that there exists an oracle that works in the following way:

input: Two curves f and g, a coordinate axis z or y, and an isolating interval [a, b] of
a multiple root of the resultant on this axis,

output: Answer to the question, whether the root inside [a, b] originates from a non-

singular tangential intersection of f and g.

Next we will show how to test a box that is defined by two intervals for which the oracle
gives a positive answer. These considerations are valid for general curves. Singular
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points and the way the oracle works for curves that originate from quadric intersection
are treated in detail in the next chapters.

We promised that the Jacobi curve h will help us to detect non-singular tangential
intersections. What can we say about the behavior of & in the non-singular tangential
intersection point (a,b) of f and g7 There are two possibilities:

1. Either h cuts transversally through f

2. or h and f have a tangential intersection.

This characterization of h is made with respect to f. It is easy to see that we can
exchange f by g¢:

Corollary 4.8: Let (a,b) be a non-singular tangential intersection point of f and g.
The Jacobi curve h = f;gy — fyg, cuts f transversally if and only if it cuts g transver-
sally.

Proof. By assumption, there exists a number 0 # ¢ € Q with Vf(a,b) = c¢- Vg(a,b).
The Jacobi curve h cuts f transversally if and only if V f(a,b) and Vh(a,b) are not
linearly dependent or, equivalently, if ¢ - Vf(a,b) = Vg(a,b) and Vh(a,b) are not
linearly dependent. U

Do tangential intersections of f, g, and h (as shown in the first picture of Figure 4.3)
differ form transversal intersection of f and h and g and h (shown in the second picture
of Figure 4.3) in the way that they cause different multiplicities in res(f,g,y)? The
following Theorem gives the answer:

Figure 4.3: The Jacobi curve h either cuts tangentially or transversally through a
non-singular tangential intersection point of f and g.

Theorem 4.9: Let f,g € Q[z,y] be two well-behaved bivariate polynomials, the pla-
nar curves of which have a non-singular tangential intersection in the point (a,b). Then
the Jacobi curve h intersects f as well as g transversally in (a,b), or a is a root of mul-
tiplicity > 3 of res(f, g,v)-
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The Theorem immediately leads to the statement that will serve as a basis for testing
boxes that are defined by roots of multiplicities exactly 2 and candidates for non-
singular tangential intersections:

Corollary 4.10: Let f,g € Q[z,y] be two well-behaved bivariate polynomials the
planar curves of which have a non-singular tangential intersection in the point (a,b).
If res(f, g,y) has a root of multiplicity exactly 2 in z = a, then the Jacobi curve cuts
transversally through f and g in (a,b).

Proof. (of Theorem 4.9) We again assume without loss of generality that (a,b) = (0,0).
Further let f be a polynomial of total degree n and g be a polynomial of total degree
m. Remember our remarks on resultants in the last section:

@) = fa@y" + fa1(@)y ™ + -+ fi(@)y + fo(z)
9(z,y) = gn(@)y" + gm 1 (@)™ + -+ g1(2)y + go()
with
fz(x) = Z%fyy y 0<i1<n
j=0
gz(x) = Z %gyy s 0<1<m
j=0

where fi,; denotes the rational number fi,; (0,0) for all indices i and j and analogously
Guiyi = Ggiyi (0,0). Let us look at the resultant res(f,g,y) of f and g. We only write
down the important parts of the (m + n) x (m + n) matrix we need for our proof:

res(f,g,y) = det
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z(*) 0 0
z(+) + fy 22 (%) + fox 0
= z-det ‘T(*)-i_%fyy $2(*)+fwyx+fy $2(*)+%fwwx+fw
x (%) 0 0
(*) + gy 22 (%) + g 0
z(*) + %gyy 372(*) + gy T + gy 552(*) + %gmw + 9z
=: z-detV

= z-(0q + 0z + -+ appr™ ).

Note that all other entries in the last three columns of the determinant are zero. We
know from the previous chapter that a; = 0, because f and g intersect tangentially in
(0,0). It remains to show that e = 0 if h does not intersect f and g transversally. If
h does not intersect f and g transversally, then all three gradient vectors

f2(0,0) _ [z 9:(0,0) _ [ Y= h4(0,0) — hy
fy(0,0) fy ’ 94(0,0) Gy ’ hy (0,0) . hy

are linearly dependent. With

hz = (fzgy - fygz)z = fngy + fmgzy - fzygz - fygacac
hy = (facgy - fyg:c)y = fsvygy + fwgyy - fyygw - fygacy

we obtain the three properties

1) 0 = det(‘;: Z:) = [29y — [y9x

hI x
2) 0 = det( hy ;y > = hefy —hyfs
= fy(faczgy - fygww) + zfy(fzgwy — fsvygw) - fx(fwgyy - fyygac)

hy g
3) 0 = det(hz gz) = hggy — hygs

= gy(fmmgy - fygmm) + 29y(fzgmy - fzygac) - gm(fzgyy - fyygm)-
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We will show that under these three conditions ap = 0 holds. We have detV € Q[z]
and we know that ay = (det V)'(0). Let V; be the matrix we obtain by taking the
derivative of each polynomial entry in the i-th column of V. It is easy to see that

n+m

(det V) = Z det V;
i=1

and we conclude
n+m

ay = Y detV;(0).
=1

Let us first have a look on det V;(0) for i = 1,...,n+m — 2. For such a V; we take the
derivative of a column of V' that is not one of the last two. For all these determinants
there exist submatrices A; and B; with

0 0
A; Do
0 0
(det V)(0) = det| * * Ay
0 0
B; Do
0 0
* ... % gy Yo
A,
= (_1)n'(f:cgy_fygw)'det BZ>
13
= 0.
by our assumption 1). It follows
Qg = det Vm+n—1 (0) + det Vm+n (0)
Iy fz 0 Iy 0 0
— det Qlufyy foy [z 4 det %fyy fy %fmm
9y 9z O g 0 0

519yy Gzy Yz %gyy Gy %gzz
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with all other entries in the last 3 columns being 0. Let us have a look at these last 3
columns of V1,1 and V4. For an n x n matrix M let M(i, 4, k) denote the 3 x 3
submatrix the entries of which are taken from the last 3 columns and the rows ¢, j,
and k of M. If the determinant of each of these submatrices is equal to zero, that
means if for each triple (7,,k) with 1 < i < j < k < n we have det M(i,5,k) = 0,
then we can easily conclude det M = 0. The two matrices Vy,4n—1 and Vi, 1, are of the
same size and all columns are identical, except the last 2. So a similar argumentation
about developing the two determinants with respect to the last 3 columns leads to the
following: If det V,4pn—1(%,7, k) + det Vipin(i,5,k) =0forall1 <i<j <k <n+m,
then ay = det Vi, 1y,—1 + det Vi1, = 0. In order to finish the proof it remains to show

det Vo104, 7, k) + det Vi (4,5, k) =0 forall1<i<j<k<n+m.

Remember our properties 1), 2), and 3) we made before.

L. {’l,j,k} ¢ {m_ laman+m_ 1,n+m}
In this case we know that both matrices V,;,4n—1 and V4, have one row with

only zero entries.

2. (i,5,k) =(m—1,m,n+m—1)

fy fz O fy 0 0
det %fyy fwy fz + det %fyy fy %f&vx
9y gz 0 Gy 0 0

= —fu(fy9x — fagy) — %fzz(fy 0—-0-gy)

0

=
=

3. (4,4,k) =(m —1,m,n+m)

det %fyy fﬂﬂy fz + det %fyy fy %fzz
%gyy Jzy Yz %gyy gy %gmm

1 1
= fy((fzyga: - fmga:y) - Efz(fyygm - fmgyy) =+ ify(fy.‘]mm - f:m‘gy)
_% (fy(f:c:cgy - fygww) + 2fy(f:cgwy - fwygw) - fw(fwgyy - fyyg:c))

0

12
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4. (i,5,k)=(m—1L,n+m—1,n+m)

det 9y 9z O + det gy 0 0
%gyy Gzy Yz %gyy 9y %gm

= gw(fygz - f:ugy) +0
0

—
~

5. (Zajak) = (m1n+m_lan+m)

%fyy Joy fo %fyy Ty %f:c;c
det 9y 9z O + det gy O 0
%gyy 9ry Yz %gyy Gy %gww

1
= _gy(f:vyg:v - f:vgccy) + %gw(fyygw - f:cgyy) - igy(fygww - f:wgy)

1
= ) (gy(fmcgy - fygsm) + 29y(fw9xy - fwygz) - gz(fzgyy - fyygw))

0

IS

0

For illustration have a look at the red silhouettecurve f and the green cutcurve g in
Figure 6.4. The resultant with respect to ¢ leads to the polynomial

res(f,g,y) = (252780252 — 13063152z> + 707600z> — 252960z + 17120)2.

The polynomial X has two real roots, each of multiplicity 2. The multiplicities arise
from the two non-singular tangential intersections at the points marked with circles.
The last theorem implies that the Jacobi curve cuts the red and the green curve
transversally in both points. So we additionally consider the Jacobi curve h. This
is the blue one consisting of four connected components. And indeed, the Jacobi curve
has transversal intersections with f as well as with g in both marked points.

Based on this result, the Jacobi curve h leads to a new test for tangential intersection
points.

4.2.2 Extended box hit counting

The idea is the following: In order to determine the intersection points of two curves
f and g, we partially factor their resultant X = res(f,g,y) into one polynomial u
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Figure 4.4: Introduce the Jacobi curve in order to solve simple tangential intersections

containing all simple roots, one polynomial us containing all double roots, and one
polynomial u3 containing the rest: X = wuj - u3 - u3. The same has to be done for
Y =res(f,g,y): Y = v1 - v3 - vs. For the factorization we again refer to Section 4.3.
Then the boxes defined by the real roots of u; and v; can be solved by simple box
hit counting. For the boxes defined by us and vs we know that, if they contain an
intersection point, then it is a tangential one. If moreover the oracle says that there is
no singular point inside the boxes, we can test with simple box hit counting whether f
and h and whether g and A intersect transversally in the same box. If both answers are
positive, we would like to conclude that there is a non-singular tangential intersection
inside the box.

In order to get a correct result, we first have to make the box small enough to guarantee
that there is exactly one intersection point between f, g, and h inside the box. See
for example the left upper box in Figure 4.5. In this box the red curve f and the
green curve g have no tangential intersection point. If we simply test f and the blue
Jacobi curve h and the curves g and h for transversal intersections, then both answers
are positive. The Jacobi curve intersects transversally through f as well as through ¢
inside the box. So applying simple box hit counting to f and h and to g and h and
combining the two results would lead to a wrong positive answer. In the right upper
box f and g have a tangential intersection through which A transversally cuts through.
But the points of f and A on the boundary of the box do not alternate. The same holds
for the points of g and h. So simple box hit counting does not detect the transversal
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intersection points.

2N T N

(f/\ & ﬁ\\'.

Figure 4.5: Eventually the box has to be shrunken

The problem in both cases is that there is more than 1 intersection point between f,
g, and h inside the box. The box is defined by an isolating interval of a root a € IR of
X =res(f,g,y) and a root 5 € IR of Y = res(f,g,z). To avoid multiple intersection
points between f, g, and h inside the box, we additionally compute X; := res(f, h,y)
and Xy := res(g,h,y). Then we separate pairwise the roots of X, X;, and X, as
described in Chapter 2. The root a now potentially has a smaller isolating interval than
before. We do the same with the resultants Y, Y7 := res(f, h,z), and Y5 := res(g, h, z)
on the y-axis and determine the isolating interval of 8. The box that is defined by these
two new subintervals contains at most one intersection point between f, g, and h.

In our example in Figure 4.3 the pairwise root separation leads to the grey horizontal
and vertical stripes shown in the lower two boxes. The ones containing the root of
X =res(f,g9,y) and Y = res(f, g, ), respectively, are bordered in black leading to the
new yellow box with which we can proceed. Notice that the box we consider is only
a small fraction of the arrangement of the two curves. So possibly the roots a and 8
arise from two different tangential intersection points of f and g leading to a yellow
box that contains no intersection point of f and g.

So here is our test:
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Extended box hit counting algorithm:

begin
if (# different intersection points f,g,h >1)
make box small enough

1
1)

output: 1 // tangential intersection

if ( simple box hit counting (f,h)

& simple box hit counting (g,h)

else
output: O
end

We have shown that for a non-singular tangential intersection of f and g the Jacobi
curve cuts transversally through f if and only if it cuts transversally through g. In the
extended box hit counting algorithm we nevertheless have to test both intersections,
because we do not know whether f and g intersect at all.

4.2.3 Generalization of the Jacobi curve

Until now, we have two results on how the roots of the resultant res(f, g, y) indicate the
kind of intersections f and g have in the plane. If there is a root of multiplicity 1, then
we know that f and g have a transversal intersection. If the multiplicity is at least 2,
we know that both curves have a tangential intersection. In case of non-singular points,
multiplicity exactly 2 tells us that the Jacobi curve h cuts transversally through f and
g. Can we generalize this concept of the Jacobi curve in the way that for each kind of
non-singular intersection point of two curves f and g we can find a third curve that
cuts f as well as g transversally?

For real intersection points, and this are in particular the ones we are interested in, we
will give a positive answer to this question with the help of real Analysis, the Theorem
of Implicit Functions. Of course, such considerations are only necessary if f and g
intersect the boundary of the box not in alternating order. Otherwise simple box hit
counting is a suitable tool.

Let (a,b) € IR? be a real intersection point of f,g € Q[z,] that neither is a singular
point of f nor a singular point of g. We will iteratively define a sequence of polynomials
hi,ha, hs, ... such that hy cuts transversally through f in (a,b) for some index k. If f
and g are well-behaved, the index k is equal to the degree of a as a root of res(f,g,y).
This last observation will easily lead to a generalization of extended box hit counting
to arbitrary non-singular tangential intersection points.
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Definition 4.11: Let f and g be two planar curves. We define generalized Jacobi
curves the following way:

ial = g
ilz'+1 = (BZ)mfy_(i%)yfm

Here is our main Theorem that will provide all necessary mathematical tools:

Theorem 4.12: Let (a,b) be an intersection point of two different curves f and g, that

means f(a,b) =0 = g(a,b). Furthermore let (f;, fy)(a,b) # (0,0) and (g, gy)(a,b) #
(0,0). There exists an index k > 1 such that hy, cuts transversally through f in (a,b).

Proof. In the case g cuts through f in the point (a,b), especially if (a, b) is a transversal
intersection point of f and g, this is of course true for hy = g. So assume in the
following that (g;fy — gyfz)(a,b) = izg(a,b) = 0. From now on we will only consider
the polynomials h; with i > 2.

Our assumption is that (a,b) is a non-singular point of f: (fg, fy)(a,b) # 0. We
only consider the case fy(a,b) # 0. In the case fy(a,b) # 0 and fy(a,b) = 0 we
would proceed the same way as described in the following by just exchanging the two
variables z and y. The property fy(a,b) # 0 leads to ({’_: gy)(a,b) = gz(a,b) and because
(925 9y)(a,b) # (0,0) we conclude gy(a,b) # 0. From the Theorem of Implicit Functions
we derive that there are real open intervals I, I, C IR with (a,b) € I, x I, such that

L. fy(wo,90) # 0 and gy(zo,y0) # 0 for all (zo,yo) € I x Iy,

2. there exists a continuous function F' : I, — I, with the two properties

(a) f(z,F(z))=0forallz €I,
(b) (z,y) € Iy x I, with f(z,y) = 0 leads to y = F(z),

3. and there exists a continuous function G : I, — I, with

(a) g(z,G(z)) =0forall z € I,
(b) (z,y) € I; x I, with g(z,y) = 0 leads to y = G(z).

Locally around the point (a,b) the curve defined by the polynomial f is equal to the
graph of the function F. The same holds for ¢ and G. Especially we have b = F(a) =
G(a). Moreover, the Theorem of Implicit Holomorphic Functions implies that F as
well as G are holomorphic and thus developable in a Taylor series around the point
(a,b) [34].

In the following we will sometimes consider the functions h; : I; x I, — IR, i > 2, with
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hy = 9o _fo _ b
9y fy gyfy

= ()= (i) 2
Y

instead of the polynomials h;. Each h; is well defined and for (z,y) € I x I, we have

The kernel of h; is equal to the set of roots of h; inside the interval I, x I,,. So locally
around the point (a,b) the polynomial h; and the function k; define the same curve.
Let us assume we know the following proposition:

Let k > 1. If F%)(a) = G (a) for all 0 < i < k—1, then hy1(a,b) = F®)(a) — G*)(a).

We know that the two polynomials f and g are different. That means the Taylor series
of F and G differ in some term. There is an index k such that F()(a) = G (a) for all
0<i<k—1and F¥(a) # G¥)(a). According to the statement we have hy(a,b) =
F*=D(a) — G*=D(a) = 0, that means h, intersects f in (a,b). This intersection is
transversal if and only if

((h)afy — (hi)yfz)(ab) = hyir(a,b) #0.
This follows easily from hj1(a,b) = F®)(a) — G¥)(a) #£ 0. O

It remains to state and prove the proposition:

Proposition 4.13: Let k¥ > 1. If F®(a) = G (a) for all 0 < i < k — 1, then
hi41(a,b) = F®)(a) — G¥)(a).

Proof. For each ¢ > 0 we define a function H; : I, — IR by

For z = a we derlve H;(a) = h;(a,b). So in terms of our new function we want to prove
that Hy11(a) = F®)(a) — G*(a) holds if F)(a) = G (a) for all 0 <i < k — 1.
By definition f(z, F(z)) : I, & IR and f(z,F(z)) = 0 for all z € I,. That means

f(z,F(z)) is constant and therefore its derivative is equal to zero:
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We conclude

_ fa(z, F(2))

F@ = = e F@)

For the functions H; the equality H}(x) = H;;1(z) holds, because

Hl(z) =

i (hi)o(z, F(z)) + F'(z) - (hi)y(z, F())
o oy @ E@)
= hiti(z, F(z))

= Hi-l—l (.'I,')

Inductively we obtain Hy(z) = Hék)(w) for all £ > 0 and Hg(z) = Hékq) (z) for all
k > 2. In order to prove the proposition it is sufficient to show the following: Let k& > 1.
If for all 0 < i < k — 1 we have F)(a) = GO)(a), then HS* V(a) = (F' — ")~V (a).
We will derive this result by induction on k.

1. Let K = 1. Our assumption is F(a) = G(a) and we have to show Hy(a) =
(F' — G")(a). We have

i e 0@ F@)  fule, Fl)
@) = eln @) = e P @) hye Fla)
G _F _ 9z (z, G(7)) _ fo(z, F(z))
G0 = @ 6@) R @)
and both functions just differ in the functions that are substituted for y in %.

In the equality of Hy(z) we substitute F(z), whereas in the one of (G' — F') we
substitute G(z). But of course F(a) = G(a) leads to

)  2@F@) o0 F@) _ 9:(0.6@) f@F@) _ o oo
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2. Let k > 1. We know that F()(a) = G)(a) for all 0 < i < k — 1. We again use
the equations

@ F@)  fule,F@)

o) = @ @) i@ F@)
ey 0e@.0@)  fule.Fla)
(@ =) = @@ herF@)

and the fact that Ho(z) and (G’ — F') only differ in the functions that are sub-
92 (2:y)
9y(z,y) "

By taking (k — 1) times the derivative of Hy(z) and (G’ — F'), we structurally
obtain the same result for both functions. The only difference is that some of the
terms F()(z), 0 <i < k — 1, in Hy are exchanged by G (z) in (G' — F'). But
due to our assumption we have F()(a) = G (a) for all 0 < i < k — 1 and we

stituted for y in

obtain

2 Ya) = (@ - F)*D(a).

O

We have proven that for every non-singular tangential intersection of f and g, not only
the ones causing a double root of the resultant like in the previous section, there exists
a curve hy that cuts both curves transversally in this point. The index k£ depends
on the degree of similarity of the functions that describe both polynomials in a small
area around the given point. The degree of similarity is measured by the number of
successive matching derivatives in this point. A useful result would be the following: If
k is the multiplicity of a in the resultant res(f, g,y), then hj, cuts transversally through
f in the corresponding point (a,b). We have shown this for k¥ = 1 and k¥ = 2. For
arbitrary k it follows as a consequence of the previous theorem:

Corollary 4.14: Let f,g € Q|z,y]| be two well-behaved polynomials and let (a,b) be
a non-singular intersection point of the curves defined by f and g. If k is the degree of
a as a root of the resultant res(f, g, y), then hy cuts transversally through f and g.

Proof. In Chapter 2 we have seen that the resultant of two univariate polynomials is
equal to the product of the differences of their roots. So if we compute the resultant
X =res(f,g,y) for two bivariate polynomials f and g, the value of X for each fixed z
equals the product of the differences of the roots of f(z¢,y) and g(zo,y).

In the previous theorem we have proven that, in a region I, x I, locally around the

point (a,b), we can develop f and g in Taylor series y = F(z) = ) 2, W(x —a)
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and y = G(z) = >0, GW(a) (z — a)*, respectively. The index 4 for which h; cuts

il
transversally through f and g equals the index for which F(®)(a) # G®(a) holds the
first time.

For a point zg € I, we know the root F(z) of the univariate polynomials f(z¢,y) and
the root G(zg) of g(zg,y). So for all zy € I, the term F(xg) — G(x) is a factor of
X (zp). We conclude that all roots of F(z) — G(z) in I, are roots of X, together with
their multiplicities. By assumption (a, F'(a)) is the only intersection point of f and g
at £ = a. That means the degree k of (x — a) in X equals the degree of (x — a) in
F(z) — G(z). We obtain our desired result that hj cuts transversally through f and
g. U

Finally, we give a generalized extended box hit counting algorithm for determining all
non-singular tangential intersections of f and g. We first apply simple box hit counting
to f and g in order to test whether g cuts through f. If this test fails, we compute
extended box hit counting of f, g, and hg. Thereby k is the degree of the root that
defines the box on the coordinate axes.

Generalized extended box hit counting:

begin
if (simple box hit counting (f,g) = 1) return 1;
k := deg(root);
extended box hit counting (f,g,hk)

end

4.3 Partial factorization

In the last sections we used partial factorization of univariate polynomials with respect
to the multiplicities of their roots. We will now describe how to realize this factorization.

4.3.1 Multiplicity factorization

When we deal with a univariate polynomial u € Q[z], we can partially factor it ac-
cording to the multiplicities of its roots by using multiple differentiation and division
of polynomials. Without loss of generality we assume ldcf(u) = 1. For example the
polynomial

u(z) =2 — 2" — 25 + o3
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can be partially factored into three polynomials

ui(z) = z?2+1
ug(z) = 22 -1
us(z) = «x

such that

1 2 3

u(z) = ur(z)" - ug(x)” - ug(x)

and each u; only has simple roots. This can be done by iteratively computing

w; = U

wiv1 = ged(w;,wh)

until ged(w;, w}) is a constant. Let this happen for ¢ = d. In each step the multiplicity
of the roots of u is decreased by 1. Therefore each polynomial w; contains exactly
all roots of u of multiplicity at least 7. A root of multiplicity j > ¢ of u is a root of
multiplicity 7 — i+ 1 of w; and vice versa. We compute the polynomials u; that exactly
contain all roots of u of multiplicity 7 as simple roots in order i =d... 1:

S L) R—
i) H?:z’ﬂ“;'_zﬂ(ﬂﬁ)

Of course, we can apply multiplicity factorization to the two polynomials X =
res(f,g,y) and Y = res(f,g,z) on the z- and the y-axis. One advantage of this fac-
torization is that afterwards we deal with polynomials of smaller degree than before.
Another advantage is the one we already mentioned before, namely we know that boxes
defined by the simple roots of X and Y can be solved with simple box hit counting and
double roots with extended box hit counting.

4.3.2 Bi-factorization

We want to compute whether a box contains an intersection point or not. The boxes
are produced by the rational interval representations of the real roots of the resultants
on the z- and on the y-axis. For a clarification of our terms, we repeat and complete a
notation we introduced in Chapter 3:
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Definition 4.15:

1. Let u € Q[z] and v € Q[y]. By R(u) we denote the set of real roots of u. By
GRID(u, v) we mean the grid R(u) x R(v).

2. Let f,g € Q[z,y], X =res(f,g,y), and Y = res(f, g,z). We call the pair (X,Y)
the bi-resultant of f and g.

For both resultants we can make a multiplicity factorization as described in the section
before. For example look at figure 4.6. There are transversal intersections of f and g
and self-intersections of f through which also g cuts through, i.e tangential intersections
of f and g.

Figure 4.6: A multiplicity factorization

We can factor both resultants according to multiplicities

res(f,g,y) = X = U1u2
res(f,9,7) = Y = vy

such that u; and v, contain exactly all simple roots of X and Y and u9 and vy contain
all roots of multiplicity at least 2. The simple roots cause the light grey stripes and
the multiple roots cause the dark grey stripes. We have seen that for two well-behaved
curves, transversal intersections exactly give rise to simple roots whereas tangential
intersections cause roots of multiplicity at least 2. That means all transversal intersec-
tions are contained in the light grey stripes and tangential intersections are contained
in the dark grey stripes. We have to test all boxes that are intersections of two light

78



4.4. EXPLICIT SOLUTIONS

grey stripes for transversal intersections and all boxes that are intersections of two
dark grey stripes for tangential intersections. We do not need to consider boxes that
are intersections of light grey with dark grey stripes. For illustration see also Figure
4.7.

Figure 4.7: The first box is a candidate for a transversal intersection point, the second
one for a tangential intersection point, and the last two ones are no candidates for event
points

Of course the idea of distinguishing boxes by factoring the resultants can also be applied
to other criteria than the multiplicity of the roots of the resultants. Therefore our
notation is in a more general way:

Definition 4.16: Let ui,us € Q[z] and v1,ve € Q[y]. The expression (u1,v1) - (u2, v2)
is called bi-factorization of the bi-resultant (X,Y) = (res(f,g,y),res(f,g,z)) iff

1. XZU1"LL2,Y:U1'U2,

2. and all intersection points of f and g lie on GRID(u1,v1) U GRID(ug, v2).

The pairs (u1,v1) and (ug,v2) are called bi-factors.

4.4 Explicit solutions

In this last section we give a criterion how to determine general intersections, including
singular points, of two curves under special circumstances. Let again f and g be two
bivariate polynomials. Let additionally (u,v) be a bi-factor of (res(f,g,vy),res(f,g,x)),
u and v being polynomials of degree at most 2:

w(r) = auz®+byz+cy
U("E) = avy2 + byy + cy.

We assume that some kind of bi-factorization gave us these two rational polynomials
u and v. The roots 12 of u and y; 2 of v define four points (z;,y;), 4,5 = 1,2, in the
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complex plane. We can give explicit terms for them involving only one square root per
coordinate. We are only interested in real intersection points. That is why we only
have to consider solutions with a non-negative term under the square root.

1
Ty = —%-(bu + /b2 —4daycy))
1
= 5 (b + Va)
Gy
1
Y2 = _—'(bv + Vb12;_4avcv))
= —— (b, £ Vb).

Assume we know a bi-factor (u,v) of (X,Y’) describing the two self-intersection points
in Figure 4.8. If both polynomials v and v have degree 2, then we can explicitly compute
their roots. The self-intersections lie on the grid points GRID(u,v).

]

]

Y2

Y1

X1 X2

Figure 4.8: We can explicitly compute the grid points of GRID(u, v)

Substituting the terms z; and y; into f and g reduces the question whether f and g
intersect at one of the real points to the question whether two terms involving only

simple square root expressions both evaluate to zero:

? ?

f(zi,y5) = 0 = g(z4,y;)-
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Both tests can be made by using root separation bounds, for example realized in the
LEDA real class [48].

Another way is the following: The expressions f(z;,y;) € IR and g(z;,y;) € IR we have
to test for zero are of the form

ava + Vb +yVa - b+ 6.

with a, 8,7,9,a,b € Q. Let sign : IR — {—1,0,1} denote the function with

-1 ,ifa<0
sign(a) = 0 ,ifa=0
+1 ,ifa>0.

Now the following equivalence relations hold:

ova+BVb+yVa-b+45 = 0
oa+pVh = —yVa-b—14
sign(av/a + BVb) = sign(—yVa-b—4) and
o?a+2aBVab+ 5% = ~*ab+ 2y6Vab + 62
< sign(ava + BVb) = sign(—yVa-b—4) and
o?a+ B —4%ab— 6% = (—2a8 + 2v6)Vab
< sign(av/a + VD) = sign(—yVa-b—4) and
sign(a?a + 520 — v%ab — 6%) = sign(—2af + 2v6) and
(?a + % — y%ab — 6%)? = ab(—2ap8 + 2v6)?

11

The last two equations only involve rational numbers and therefore are easy to test. In
principle, the first one can be solved by computing the sign of a real number /c + d
for rational numbers ¢ and d. We have

+1 , ifsign(d) = +1
. +1 , if sign(d) = —1 and sign(c — d?) = +1
d) =
sign(ve + d) 0 ,if sign(d) = —1 and sign(c — d2) = 0
—1 , if sign(d) = —1 and sign(c — d?) = —1

and all computations can be done over the rational numbers.

Next, consider the case that the two univariate polynomials 4 and v that define the
grid points are not polynomials over @, but over a field extension Q(,/p) for p € Q:
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u,v € Q(y/p)[z]. Then all considerations so far also hold for these polynomials with
a,B,7,0,a,b,c,d € Q(y/p). The remaining tests are either comparing two numbers in
Q(y/p) or comparing their signs. But of course, sorting and squaring the involved terms
again reduces also this problem over Q(,/p) into a rational one.

Allin all, if there are quadratic polynomials u,v € Q or u,v € Q(,/p) the roots of which
define boxes in the plane, then by only using rational computations we can explicitly
test each box for an intersection point. We call this method ezxplicit solutions. We will
see in the next two chapters that computing explicit solutions is the last missing tool
for computing singular points in our arrangements of silhouettecurves and cutcurves.
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Chapter 5

Singular points of cutcurves

In the last chapter we have seen how to locate non-singular intersection points of
general curves in planar arrangements with box hit counting methods. For non-singular
tangential intersections we need in advance the information that the box contains no
singular point of one of the curves. What remains to do is

1. distinguishing in advance the boxes that potentially contain singular points from
the ones that cannot contain such a point and

2. determining singular points inside the boxes.

We will attack the two problems only for the curves in our arrangements we obtain
from projecting quadric intersection curves into the plane. The focus is on singular
points of cutcurves, because, as we will see in the next chapter, singular points of
silhouettecurves pose no problem.

5.1 The origin of singular points

We want to investigate the singular points of cutcurves. As in the previous chapters we
will assume that all pairs of quadrics we consider are generally aligned and squarefree
and have a disjoint factorization. Moreover we assume that all pairs of curves are well-
behaved. Consider Chapter 7 for the exact definitions. Let us first have a look at the
origin of cutcurves. They are a result of the projection phase, namely they are given
by the resultant of two input quadrics as described in Chapter 3. We only consider
input polynomials of total degree 2, because intersecting a plane with a quadric leads
to a planar quadratic curve that can be handled the same way as a silhouettecurve.
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So let p € Q[z,y,2] and ¢ € Q|z,y, 2] be two trivariate quadratic polynomials. The
polynomials are of the form

p = Z2+piz+po
= Z2+qz+q

with p1,p0,91,90 € Q[z,y]. The polynomials are generally aligned and therefore we
know that p and ¢ have a constant non-zero coefficient of 22. Without changing the
set of roots of the polynomials we can assume that this leading coefficient is equal to
1. The resultant of p and g with respect to z is of the form

1 p1 po O
0 1 p1 po

= res(p,q,z) =
f (p,q,2) 1 @ @ 0
0 1 ¢ qo

(poq1 — p190) - (@1 — p1) + (o — @0)?
= (pofh —pl%) 'SreS1(P, q, Z) + (Po - QO)Q-

That means each cutcurve in our planar arrangements is defined by a polynomial of
this special form. We want to avoid applying box hit counting to boxes that contain

a singular point. Which situations in space cause a point (a,b) to be a singular point
of f?

If (a,b) € €2 is a point on the cutcurve f := res(p, ¢, z), then general alignment of p and
g guarantees the existence of a number ¢ € C with p(a,b,c) = g(a,b,c) = 0, remember
Corollary 2.15. We will show next that (0,0) is a singular point of f only

e if p and ¢ share another common root (a, b, ') # (a,b,c)

e or if p and ¢ intersect tangentially in (a, b, c).

For illustration first have a look at Figure 5.2. The blue spatial curve running on the red
ellipsoid is the intersection curve of the red and the blue quadric in our overall example.
The spatial curve has well defined tangents in every point. It consists of two branches,
one on the upper and one on the lower part of the red ellipsoid. The two branches are
projected on top of each other causing two singular, namely self-intersection, points.

In Figure 5.2 the red and the green ellipsoid have a tangential intersection in space,
that means the spatial intersection curve already has a singular point. This singular
point will be projected into the plane.
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5.1. THE ORIGIN OF SINGULAR POINTS

Figure 5.1: Top-bottom points result from the projection

We will show that these two events are the only ones that cause singular points. Due
to this distinction we classify singular points in the plane:

Definition 5.1: Let p,q € Q[z,v,2] be quadratic polynomials and (a,b) € C? be
a point on the cutcurve defined by f = res(p,q,z). If the two complex numbers ¢
and ¢ are the roots of p(a,b,z) € C[z] and we have p(a,b,c) = q(a,b,c) = 0 and
p(a,b, ) = q(a,b, ') = 0, then we call (a, b) a top-bottom point. If (a,b) is the projection
of a tangential intersection point of p and ¢, we call it genuine.

Top-bottom points are common roots of f = res(p, ¢, z) and sresi(p,q, z) as shown in
Lemma 2.21. Here is our theorem:

Theorem 5.2: Every singular point of a cutcurve which originates from two generally
aligned quadrics is top-bottom or genuine.

Proof. Let (a,b) be a singular point of a cutcurve f = res(p, g, z) and let (a,b,c) be the
corresponding common root of p = 22 + p1z + pg and g = 2% + g1z + qo in space. We
assume without loss of generality that (a,b,c) = (0,0,0). As shown in Corollary 2.20,
the resultant computation is invariant under translation along the z-axis. A translation
of p and q along the z- or y-axis just causes the same translation of the resultant.

It suffices to show the following: If (0,0) is a singular point of f and sres; (p, g, 2)(0,0) #
0, then p and ¢ intersect tangentially in (0,0,0). So we want to show that f,(0,0) =
f4(0,0) = 0 and sresi(p, ¢, 2)(0,0) # 0 imply
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Figure 5.2: Genuine points are caused by tangential intersections in space

0 = (prz_szy)(anaO) = (p:CQz_pZQw)(anaO) = (szy_prz)(anao)-

For the coefficients of p and ¢ we know the equalities

po = p(z,9,0) = pl.—o @ = ¢(z,9,0) = q|.—0
p1 = pAx,9,0) = pli=0o @ = ¢(z,9,0) = g|.—0.

We just computed the resultant of p and ¢ in terms of their coefficients and conclude

f = res(p,q,2) = (pg; — p2q)|.—0 - sres1(p, ¢, 2) + ((p — q)]2=0)*

For a polynomial p € C[z,y, 2] it is obvious that taking the partial derivative with
respect to a variable  # z and then substituting z = 0 is the same as first substituting
z = 0 and then taking the partial derivative:

(Pz)lz=0 = (Pl2=0)z-

This leads to
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fo = ((pg: — P2a)|s=0 - sresi (p,q,2) + (P — 9)|:=0)?)s
= (P29z — P29z)|2=0 - sresi(p, q, 2) +
(PQwz — Pw2q)|2=0 - sresi(p, ¢, 2) +
(Pg: — P2q)|2=0 - (sresi(p,q,2))x +

2(p - Q)|z:0 : (pac - q$)|z:0-

z
z

Due to our assumptions we have f5(0,0) = 0 and p(0,0,0) = ¢(0,0,0) = 0. This leads
to

0 = f:(0,0) = ((peq: — P2qz)|.=o0 - sresi(p, g, 2))(0,0).

Analogously, because of 0 = f,,(0,0), we get

0 = f4(0,0) = ((pyg. — p2ay)|z=0 - sres1(p, ¢, 2))(0,0).

We assumed sres; (p, ¢, 2)(0,0) = (¢, — p2)|.=0(0,0) # 0 and conclude

0= (prz_szw)(anaO) = (prZ_szy)(OaﬂaO)-

It remains to show that also 0 = (p.qy — Pyq.)(0,0,0) holds. In the case that at least
one of ¢, or p, does not vanish at (0,0,0), without loss of generality p,, this is easy
to see: From ¢,(0,0,0) # 0, 0 = (pzq: — p292)(0,0,0), and 0 = (pyq. — P.qy)(0,0,0) it

follows
_ Dz

p,(0,0,0) = <&qy> (0,0,0).

This immediately leads to

(mey - prm)(Oa 0, O) = <%Q$Qy - %qul‘) (Oa 0, 0) =0.
2 z

If the case p,(0,0,0) = 0 = ¢,(0,0,0) occurs, then the first subresultant of p and
g vanishes at (0,0), but we excluded this case in the assumptions. This proves our
claim. ]
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We have seen that every singular point of a cutcurve is top-bottom or genuine. But
also the other inclusion holds:

Corollary 5.3: Every top-bottom and every genuine point is a singular point.

Proof. Without loss of generality let (0,0) be a top-bottom point of f = res(p,q, z).
That means there exist numbers ¢, ¢’ € C, again without loss of generality ¢ = 0, with
p(0,0,0) = ¢(0,0,0) and p(0,0,¢') = ¢(0,0,c) = 0. So (0,0) is a root of the first
subresultant sres;(p, ¢,2). We have to show f;(0,0) = f,(0,0) = 0. From the previous
proof we know

((Pgz — p=q)|2=0 - sresi (p, ¢, 2) + (P — ¢)|2=0)*)2) (0, 0)
(P2qz — P29z)|z=0 - sresi(p, ¢, 2))(0,0) +

(P4zz — P22q)|2=0 - sresi(p, ¢, 2))(0,0) +

(Pg: — P2q)|2=0 - (sresi(p, g, 2))z)(0,0) +

2(p — @)|2=0 - (Pz — 42))(0,0).

(+) f2(0,0) =

(
(
(
(
(

With our assumptions sres; (p, g,2)(0,0) = 0 and p(0,0,0) = 0 = ¢(0,0,0), we immedi-
ately derive f;(0,0) = 0. The proof for f,(0,0) works analogously.

If (0,0) is a genuine point, then by definition

(pwq,z_pz%c)(oaoao) = 0= (prz_pZQy)(OaOaO)
p(0,0,0) = 0 = ¢(0,0,0)

and again from equation () it easily follows f;(0,0) = f,(0,0) = 0. O

5.2 Classification of singular points

Projecting two intersection points in space on top of each other or projecting a tan-
gential intersection point in space are exactly the events that cause singular points of a
cutcurve. Of course, a singular point can be top-bottom as well as genuine. We will see
next that under our assumptions of general alignment and squarefreeness a cutcurve
can have at most 2 top-bottom points and at most 4 genuine points.
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5.2.1 Top-bottom points

We will first prove that under our conditions of general alignment and squarefreeness
a cutcurve f can have at most 2 top-bottom points. These 2 points can be determined
using explicit computation as described in the previous chapter.

Theorem 5.4: Let f € Q[z,y] be a generally aligned and squarefree polynomial. The
cutcurve defined by f can have at most 2 top-bottom points.

Moreover, one can compute two at most quadratic polynomials u,, € Q[z] and vy, €
Q[y] such that the top-bottom points lie on GRID(u,, vy)-

Proof. Let p € Q|z,y,2] and ¢ € Q[z,y, 2] be two quadratic polynomials and f =
res(p, g, z). Without loss of generality we denote

p = Z2+pz+po
g = Z2+qz+q

where p; € Q[z,y] and ¢; € Q[z,y] are polynomials of degree at most 2 — . The first
subresultant of p and ¢ with respect to z is of the form:

sresi(p,q,2) = q— 1.

That means sres; (p, g, z) is a polynomial of degree at most 1. The case sres;(p,q,z) =0
is impossible, because then every point of the cutcurve f would be top-bottom and
therefore singular. The curves f and f, would have infinitely many intersections, con-
tradicting our assumption of f being squarefree. So the first subresultant is not equal
to the zero polynomial. That means

1. either it is constant and non-zero, in which case there is no top-bottom point,

2. or [ :=sresi(p, g, z) is a polynomial of total degree 1 defining a line.

In the first case nothing has to be done. In the second case all common roots of f and
[ are top-bottom and therefore singular points. We assume without loss of generality
that [ is generally aligned. The resultant res(f,l,y) € Q[z] has degree at most 4. It
cannot be the zero polynomial, because otherwise [ would be a factor of f and all points
on | would be singular points of f. Therefore [ would also divide f,, contradicting f
being squarefree.
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Each root of the resultant res(f,l,y) has multiplicity > 2, because it results from a
singular point of f through which also [ cuts, see Theorem 4.4. We conclude that the
resultant has at most 2 different roots. Therefore f can have at most two top-bottom
points. The polynomial

d
Uy = gcd(res(f, la y)7 %TGS(]‘I, l7 y))

has degree at most 2 and contains the z-coordinates of the top-bottom points. Analo-
gously one can compute the polynomial vy, using res(f, [, z). U

We have classified the singular points of a cutcurve f into top-bottom and genuine
ones. Each singular point gives rise to a root of multiplicity at least 2 of the resultant
X = res(f, fy,y). The degree of X is at most 12, so a cutcurve can have at most 6
singular points. We have just shown, that at most 2 of them are top-bottom. Moreover
we are able to determine a quadratic bi-factor (us,vy) of the bi-resultant of f and
fy. With the help of this bi-factor explicit solutions for top-bottom points can be
computed. What about the genuine points? We will prove next that their number is
bounded by 4 and give the algorithmic ideas how to determine them.

5.2.2 Genuine points

The genuine points of a cutcurve f = res(p, g, z) arise from tangential intersections of
p and ¢. Have again a look at Figure 5.2. The two quadrics intersect with the same
tangential plane to both quadrics, causing a self-intersection of the spatial intersection
curve. Generally, the tangent vector to a point on the spatial intersection curve is
embedded in the tangential planes to both quadrics. The vector is well defined if
the tangential planes are different. The tangential intersection points of p and ¢ are
exactly the singular points of the spatial intersection curve. For a classification of
spatial intersection curves of two quadrics in projective space have a look at the one
given in [28]:
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—
w

a conic and two lines, intersecting pairwise in 3 points

1) | a non-singular space quartic
2) | a nodal space quartic
3) | a cuspidal space quartic
4) | a space cubic and a line, intersecting in 2 distinct points
5) | a space cubic and a line, touching at 1 point
6) | two conics intersecting in 2 distinct points
7) | two conics, touching at 1 point
8) | a conic and two lines, all intersecting in 1 point
9) | a single conic counted twice
10) | two lines, each counted twice
11) | a conic and a line counted twice
12) | three lines, one counted twice
)
)

—
B

four lines intersecting pairwise in 4 non-coplanar points

Each of the 14 cases is illustrated in the Figures 5.3 up to 5.9. The pictures are taken
from [36].

Figure 5.3: A non-singular space quartic 1) and a nodal space quartic 2).

We are interested in the maximal number of genuine points and in a method to locate
them. In the following theorem we will provide the upper bound. The proof will
explicitly lead to the result that only in the cases 13) and 14) of the classification the
cutcurve has more than 2 genuine points. In the situations

1) - 8) the cutcurve has at most 2 genuine points. This will lead to a quadratic bi-
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Figure 5.4: A cuspidal space quartic 3) and a space cubic and a line, intersecting in 2
distinct points 4).

factor solvable with explicit solutions.

9) - 12) the cutcurve is not squarefree, against our assumptions. It can be factored
into two bivariate rational polynomials of total degree < 2. Singular points of
quadratic curves are easy to handle using explicit solutions.

13), 14) there are 3 or 4 discrete genuine points. These cases are the most complicated
ones, because explicit solutions cannot be applied. The next section is dedicated
to the subject of separating the genuine points in two groups. This will again
lead to the problem of solving quadratic polynomials only.

But first we prove the upper bound on the number of genuine points:

Theorem 5.5: Let p € Q[z,y,2] and ¢ € Q[z,y, 2] be two generally aligned and
squarefree quadratic polynomials with disjoint factorization such that f := res(p,q, z)
is squarefree and generally aligned. The cutcurve defined by f can have at most 4
genuine points. If it has more than 2 genuine points, f consists of two distinct lines
and another quadratic curve, all of them not necessarily rational.

Proof. Let A = (o, y,;), B = (Bz, By, Bz), and C = (7z,7y,7-) be three distinct
tangential intersection points of p and q. We will show that f = res(p, g, z) consists of
two lines and another quadratic curve and has at most 4 genuine points.
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5.2. CLASSIFICATION OF SINGULAR POINTS

Figure 5.5: A space cubic and a line, touching at 1 point 5) and two conics intersecting
in 2 distinct points 6).

There exists a plane defined by a polynomial h € C[z,y, z] through these three points
A, B, and C. If they do not lie on a single line /, plane h is uniquely defined.

A, B, C collinear

Let us first consider the case that the three points A, B, and C are collinear. Let [
be the line passing through them. We will prove that in this case each point on [ is
a tangential intersection point of p and ¢q. That means every point on the projection
of [ is genuine and therefore a singular point of f. We conclude that f and f, have
infinitely many intersections. This can only happen if f and f, share a common factor,
but this is against our assumption of f being squarefree. So due to our assumptions it
is impossible that A, B, and C lie on a common line /.

We have to show that each point on [ is a tangential intersection point of p and ¢q. For
this investigation, the location of [ in space is not important. So we assume without loss
of generality that the line [ passing through the three points is the z-axis: A = (ay,0,0),
B = (54,0,0), and C = (7;,0,0). We are interested in the points D = (z,0,0) on [
and want to prove

0 = (szy_prz)(D) = (szz_pZQw)(D) = (prZ_pZQy)(D)'

We already know three different roots of the quadratic univariate polynomials p(z, 0, 0)
and ¢(z,0,0), namely oy, B;, and 7v,. We conclude p(z,0,0) =0 = ¢(z,0,0). It easily
follows py(z,0,0) = 0 = ¢z(x,0,0). That means every D = (z,0,0) is a root of p, g,
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Figure 5.6: Two conics, touching at 1 point 7) and a conic and two lines, all intersecting
in 1 point 8).

pz, and ¢, leading to

0 = (mey—prm)(D) = (pEQZ_szm)(D)'

The univariate polynomial (p,q, — p.gy)(z,0,0) € Q[z] has degree at most 2. We again
know three roots: oy, 35, and ;. So also (pyq, — p.qy)(,0,0) is the zero polynomial
and of course

(prZ _pz(Iy)(D) = 0.
Every D is a tangential intersection point of p and gq.

A, B, C not collinear and h is a factor of p or q

Next consider the case of A, B, and C not being collinear. What happens if  is a factor
of p or ¢7 It cannot be a factor of both, because by assumption p and g have disjoint
factorizations. Assume without loss of generality p = h - h. The spatial intersection
curve consists of the two quadratic curves embedded in h and h, respectively. Corollary
2.19 leads to

f = res(h,q,z) : res(iz,q,z) = fl'fZ-

By assumption f is squarefree. Therefore fi and fo are squarefree and have a disjoint
factorization. The singular points of f are either intersection points of f; and fo or
singular points of f; or singular points of fs.
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5.2. CLASSIFICATION OF SINGULAR POINTS

Figure 5.7: A single conic counted twice 9) and two lines, each counted twice 10).

At most 2 intersection points of f; and fo are genuine points of f. This can be eas-
ily seen, because an intersection point (a,b) of fi and f, is genuine if there exists a
point (a,b,c) € €3 such that h(a,b,c) = ﬁ(a, b,c) = q(a,b,c) = 0. The set of points
{(z,y,2) € C* | h(z,y,2) = h(z,y,z) = 0} defines a line in space. A line intersects a
quadric in at most 2 points.

The curve f has 3 genuine points, so we conclude that at least one of fi or fo must
have a singular point. We will show that a planar quadratic curve has a singular point
if and only if it consists of two intersecting lines. We conclude that

1. f can have at most 4 genuine points, because each planar curves fi and fs has at
most 1 singular point and at most 2 intersection points of f; and fy are genuine
points of f.

2. f consists of two intersecting lines and another quadratic curve.

We still have to show that a planar quadratic curve has a singular point if and only
if it consists of two intersecting lines. One direction is easy: If a curve consists of
two intersecting lines, then of course it has a singular point. For the other direction
assume that there exists a quadratic planar curve g not consisting of two lines that
has a singular point a = (az,ay). We can find two points b = (bs, by) and ¢ = (cz, ¢y)
lying on g such that a, b, and ¢ are not collinear. We choose a line /; cutting through
a and b and a line /5 cutting through a and ¢. By assumption /; - [, and g have a
disjoint factorization and res(lils, g,y) # 0 has degree at most 4. We know the roots
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Figure 5.8: A conic and a line counted twice 11) and three lines, one counted twice 12).

of the resultant, namely a,, b;, and c;. But (az,ay) is a singular point of g as well as
of [1ls. Therefore a, is a root of multiplicity at least 4 of the resultant, leading to a
contradiction.

A, B, C not collinear and h is neither a factor of p nor of q

The case we have not discussed so far is that the tangential intersection points A =
(o, 0y, ), B = (Be,By,B2), and C = (7z,7y,72) of p and g are not collinear and h
is neither a factor of p nor of ¢q. Then the spatial intersection curves of A and p and
of h and ¢ are quadratic. So on h there are two quadratic planar curves that have 3
tangential intersection points. This can only happen if both curves are identical:

{(z,y,2) | p(z,y,2) =0=h(z,y,2)} = {(z,y,2) | ¢(z,y,2) =0=h(z,y,2)} = S.

We easily conclude that p and ¢ intersect in quadratic spatial curves, the number of
which is at most two.

Under our assumption of f = res(p,q,z) being squarefree, at least one of the two
quadratic spatial curves consists of two lines. We will prove this via contradiction by
showing that otherwise p and ¢ would have the same tangential plane in every point of
S. Then f would have infinitely many singular points, contradicting the squarefreeness
of f. That means p and ¢ intersect in two quadratic curves, at least one consisting of
two lines. So there are at most 4 genuine points of f. This leads to our desired result.

It remains to prove the following: If the spatial intersection curve of p and h (and this
is equal to the one of ¢ and h) does not consist of two lines, then p and ¢ have the
same tangential plane in every point of S. For the proof, the location of A in space is
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Figure 5.9: A conic and two lines, intersecting pairwise in 3 points 13) and four lines
intersecting pairwise in 4 non-coplanar points 14).

not important. So we assume without loss of generality that A is the (z,y)-plane, i.e.
a,=p,=7=0.

Let ﬁ(xay) = p(-’E,y,O), q(x,y) = p(x,y,O), and D = (-’E,y,O) with p(D) =0 an
arbitrary point on the spatial intersection curve of p and h. We already know that p

and ¢ define the same quadratic planar curve. It easily follows (pzdy — PyGz) = 0 and
therefore

(szy_pr:c)(D) = 0.

What can we say about (p,qy — pyq.)(D) and (p,q; — pzq.)(D)? Remember that p
and ¢ define the same curve, so there exists a constant ¢ € IR such that cp(z,y) =

ep(z,9,0) = §(z,y) = q(z,y,0):

hl(xay) = (pzqy _pyqz) (:v,y,O)
= py(2,9,0) - (cp. — ¢.)(2,9,0)
hao(z,y) = (P29z — P2q.)(z,y,0)

= pz(2,9,0) - (ep2 — q2) (2,9, 0).

We know that (ag, ), (Bz, By), and (vz,7,) are roots of hy and hy. The polynomial
p does not define two lines, so no point among them is a singular point of p. We
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conclude that we have three non-collinear points on the line defined by the polynomial
(ep, — q2)(x,y,0). That means hy and hy both are equal to the zero polynomial and
all D = (z,y,0) with p(D) = 0 are tangential intersection points of p and gq. O

The statement of the theorem is that in most cases a squarefree cutcurve has at most 2
genuine points. Bad things only happen in the situations 13) and 14) resulting in one
of the two cutcurves shown in Figure 5.10. There are at least 3 genuine points, marked
by the red circles. The remaining singular points are top-bottom points and marked
by the blue squares. What remains to do is further classifying the genuine points in a
way that computing explicit solutions becomes a suitable tool also in these cases.

13) 14)

Figure 5.10: The cutcurve consists of two intersecting lines and another quadric

A close look at the proof of the theorem leads to the following statement: A cutcurve
f consists of two lines and another quadratic curve if and only if the corresponding
quadrics p and ¢ in space intersect in two lines and another quadratic spatial curve,
each embedded in a plane. Let A and h be these two planes and r := h - h. For h and
h we have that

a) at most 2 tangential intersection points lie on the intersection line [ of h and h,
b) at most 1 lies on A and not on [ and
¢) at most 1 lies on /& and not on I.

It would be quite useful to know r, because the line defined by the polynomial
res(r,r,,2) is the projection of . It cuts through the genuine points caused by the
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tangential points in a). With the help of this line the genuine points could be classified:
the ones that lie on the line and the ones that do not. Each group has at most two
members. As we did for top-bottom points we could factor the resultants on the z-
and y-axis according to this distinction leading to quadratic polynomials as desired.

In the rest of this chapter we show that we really can compute r. The polynomial
r either is rational or its coefficients are in Q(,/p) for some p € Q. The way the
different factorization criteria just developed fit together and lead to an algorithm for
determining singular points will be described in details in the next chapter.

5.2.3 Quadric pencils

We want to prove that, in the case the cutcurve f = res(p, ¢, z) consists of two lines and
another quadratic curve, we can compute a quadric r consisting of two planes such that
f =res(p,r,z). This result is not new. It is part of the theory of quadric pencils and
can be found for example in [28]. The following survey about quadric pencils leading
to our desired result is taken from this article. Here is the statement we want to prove:

Theorem 5.6: Let p and g be two quadrics in space.

1. If f = res(p,q, %) consists of two lines and another quadratic curve not equal to
two lines, then there exists a polynomial r € Q[z,y, z] defining two planes such
that f = res(p,r, 2).

2. If f = res(p,q,z) consists of four lines, then there exists a polynomial r €
Q(\/p)[z,y, 2], for some p € Q, defining two planes such that f = res(p,r, 2).

In both cases we can compute r.

For the proof we have to clarify some notation. Up to now we used the implicit
description of a quadric: we defined a quadric to be the set of roots of a rational
polynomial

p(z,y,2) = az® +by? + c2? + 2dzy + 2exz + 2fyz + 29z + 2hy + 2kz + 1.

Another way of representing p is just to give the symmetric matrix

R 0o Qe
S~ O &
O = 0
~ x>
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Of course both notations are equivalent:

b= (‘Tayaza 1) - P- (x,y,z,l)T.

For a quadric p let the capital P denote its matrix representation. The determinant
A = det P is called the discriminant of the quadric surface. A quadric surface with
A =0 is classified singular and called a cone. If moreover A = 0 and P only has rank
2, the quadric cone degenerates into two distinct real or complex conjugate planes. If
the rank of P is 1, the two planes are rational and identical. That means the quadric
is not squarefree.

Two distinct squarefree quadric surfaces Py and P; define an infinite linear family of
quadrics, or quadric pencil, given by

Py = (1-MNDP+ AP,

for —00 < A < o00. In particular, if C' denotes the intersection curve of Py and P,
then any two distinct members P, and P; (r # s) of the pencil also have C for their
intersection. Like in traditional approaches to computing quadric intersections ([46] and
[47]), we will search the pencil for a simple member which facilitates our calculation.
We are interested in a A such that P, defines a surface consisting of two planes.

Consider the 4 x 4 determinant of a generic member of the pencil:

AN = det((1 — NPy + AP

= A+ AN+ Agdo + A+ Ay

This rational polynomial in Q[)\] is called the discriminant of the pencil. Its distinct
roots identify the cones of the pencil. Let A1,..., Ay, n < 4, denote the different roots
of A(X) and let mq,...,m, be their multiplicities, so that

n

n
A(N) = cH()\—Ai)mi, where ZmZ < 4, c#0.

=1 =1

A quadric pencil may be uniquely characterized by at most 4 sequences of positive
integer numbers, one sequence for each root A; of A(A). This classification is called Segre
characteristic [14]. If A; is a simple root, the sequence contains exactly one element:
(1). For a multiple root, however, there may be more elements in the sequence. From
the 4 x 4 determinant P, we may form sixteen 3 x 3 first minors by deleting single rows
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and columns, thirty-six 2 x 2 second minors by deleting pairs of rows and columns, and
finally sixteen 1 X 1 third minors by deleting triples of rows and columns. These first,

second, and third minors are generally cubic, quadratic, and linear in X. If ); is a root
;II
first, second, and third minor, respectively, and compute the differences

of multiplicity m; > 2 we ascertain its multiplicities m}, m}, and m]" as a root of every

i B = m" —m

1 _ . ! 2 !
d; = m; —my, di = m; i ; i i -

] 1) i i~ m
The sequence associated with the multiple root J; is given by the sequence of differences
d’, terminating when a zero is encountered. The table of classification we have just
seen is according to this Segre characteristic.

In the cases we are interested in, namely the spatial intersection curve consists of two
lines and a cone intersecting in projective space in 3 or 4 points, the Segre characteristic
is as follows:

13) | a conic and two lines, intersecting pairwise in 3 points | [(2), (1,1)]
14) | four lines intersecting pairwise in 4 non-coplanar points | [(1,1), (1,1)]

With the help of this characterization we can proof our theorem:

Proof. (of Theorem 5.6)

1. Let f =res(p,q,z) define two lines and another quadratic curve not equal to two
lines. That means the two quadrics P and () have a spatial intersection curve as
described in 13). The first information we obtain from the Segre characteristic is
that the discriminant of the pencil has 2 roots: A; and As.

The sequence for \; is (2). That means di = m; —m} = 2 and m} = 0. We
conclude m; = 2 and )1 is a double root of the discriminant of the pencil, but not
a common root of all first minors of A(A). The quadric Py, = (1 — A\)P + \1Q
is a non-degenerate cone because it has rank 3.

The second root Ag has the sequence (1,1). We have my = 2 and m{, = 1 and
therefore Py, = (1 — A2)P + A2(Q has rank 2.

The two roots A\; and Ay of A(A) both have multiplicity 2 and are the only roots
of the degree 4 polynomial A()). Moreover Ag is a root of each 3 X 3 minor of P
and )A; is not. So by computing gcd’s of the discriminant and the first minors we
obtain the rational value of As. We conclude that there exists a rational quadric
R = P,, that consists of two planes such that P and () have the same spatial
intersection curve as P and R.
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2. Let f = res(p,q, z) define four lines. The two quadrics P and @ have a spatial
intersection curve as described in 14). The discriminant of the pencil again has
two roots A1 and Ao of multiplicity 2. In this case we cannot distinguish them,
because they both are roots of every first minor of Py. So we only know that
they are roots of the degree 2 polynomial gcd(A(N), a%A(z\)) € Q[\. But we
can compute A\; and Az as elements of Q(,/p) for some p € Q. We determine
a quadric R = Py, with implicit representation r € Q(y/p)[z,y, 2] such that R
consists of two distinct planes and the intersection curves of P and ) and P and
R are identical.
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Chapter 6

Computing the planar
arrangements

In this chapter we consider arrangements that arise from projecting the silhouette of
a quadric as well as all its intersection curves with other quadrics into the plane. We
will prove our main theorem, namely that we can determine all extreme and singular
points of the resulting planar curves. Additionally, all intersection points of every pair
of curves can be located. As we have already seen, we can compute boxes with rational
corners such that each real event point is contained in such a box. The number of boxes
exceeds the number of real event points. We show how to distinguish the boxes that
contain a real event point from the empty ones.

Each planar arrangement we obtain consists of exactly one silhouettecurve and of many
cutcurves. The restriction to one silhouettecurve is only a result of our algorithmic
approach in three dimensions. Our algorithm can be easily extended to arrangements
with additional silhouettecurves.

Let F be the set of curves in a planar arrangement. As we have already seen, in order to
compute the planar arrangement we have to locate for all f € F the intersection points
of f and g = f,. Furthermore we have to compute all intersection points between two
curve f € F and g € F. According to the distinction of silhouettecurve and cutcurve
we obtain four different kinds of pairs of curves f and g:

1. f is the silhouettecurve and g = fy,

2. f is a cutcurve and g = fy,

3. f is the silhouettecurve and g is a cutcurve, and

4. f and g are both cutcurves.



CHAPTER 6. COMPUTING THE PLANAR ARRANGEMENTS

We have to show that, in each case, we can locate all intersection points. This is the
main topic of this chapter and we will use the mathematical tools developed earlier.
But first we state our main theorem:

Theorem 6.1: Let P = {p1,...,pn} be a set of trivariate quadratic polynomials. For
an arbitrary 1 < ¢ < n let furthermore

Fi = {res(pi, (pi)z,2)} U U {res(pi,pj,2)}-
i#]

For each pair of polynomials f and g, either f,g € F; or f € F; and g = f,, we can
compute a set of k 4-tuples of rational numbers (a;,bj,¢;,d;), 1 < j < k, that is in
1-1 correspondence to the set of real intersection points of the curves defined by f and
g. The jth real intersection point (a;,[;) is the only one for which a; < o < b;
and c¢; < Bj < dj holds. Moreover we can determine whether the intersection point
represented by (aj,b;, cj,d;) is transversal or tangential and whether it is a singular
point of one of the curves.

The theorem states that all boxes containing real intersection points between two curves
f € F and g = fy and between f € F and g € F can be determined. In the next
four sections we will give the proof. We show that in all four cases listed before either
applying box hit counting arguments or partially factoring the bi-resultant of f and g
and computing explicit solutions leads to the desired result. We are able to distinguish
empty boxes from the ones that contain a real intersection point.

We assume without loss of generality that all pairs of curves are well-behaved. That
means all curves are generally aligned and squarefree and every pair has a disjoint
factorization and is in general relation. The way these conditions are tested and realized
is described in the next chapter.

Let in the following X :=res(f,g,y) and Y :=res(f, g, z).
6.1 f is the silhouettecurve and g = f,

If f is the silhouettecurve and g = f,, then we know that both resultants X and Y
have degree at most 2:

A
Do
—

deg(X) < deg(f)-deg(g) <
deg(Y) < deg(f) - deg(g)

IN
N
—

That enables us to compute explicit solutions. Consider also Figure 6.1.
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Figure 6.1: We can compute explicit solutions
6.2 f is a cutcurve and g = f,

In the case f is a cutcurve and g = f, is its partial derivative, the resultants X and Y’
have degree at most 12 because deg(f) < 4 and deg(g) < 3.

We compute a multiplicity bi-factorization (u1,v1) - (u2,v2) of (X,Y) such that all
intersection points with multiplicity 1, i.e. all transversal intersection points, lie on
GRID(u1,v1). All intersection points with multiplicity > 2, i.e. all tangential intersec-
tion points, lie on GRID(ug,v2). For illustration have a look at Figure 6.2.

The light grey boxes around GRID(u1,v1) can be handled with simple box hit counting
as shown in Chapter 4.

The dark grey boxes around GRID(ug,v3) are the candidate boxes for tangential in-
tersections. Each root of uy and vy occurs with multiplicity at least 2. Using mul-
tiplicity factorization, we compute rational polynomials u}, and v} such that uf, and
vh only have simple roots and R(uz) = R(u)) as well as R(vy) = R(v}). Then
GRID(ug,v2) = GRID(u),v,) and we have to test the boxes defined by w) and v
whether they contain a tangential intersection or not.

What does a tangential intersection of f and g = f, geometrically mean? By the
mathematical definition, a point (a,b) € €2 is a tangential intersection of f and g if
and only if f(a,b) =0, g(a,b) = fy(a,b) =0, and

(fzgy_fygm)(aab) = (fzfyy_fyfwy)(aab) = (fxfyy)(a’ab) = 0.
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Figure 6.2: Transversal intersections lie inside light grey boxes, tangential intersection
points lie inside dark grey boxes. The yellow line cuts through the top-bottom points.

The last equation is equal to zero if and only if f;(a,b) = 0 or fy(a,b) = 0. We
conclude that there are two kinds of tangential intersections:

1. Singular points of f, that means f;(a,b) = 0, and

2. non-singular points of f with fy,(a,b) = 0. We call these points vertical flat
points. A vertical flat point is either a vertical turning point of f (fyyy(a,b) # 0)
or an extreme point of f (fyyy(a,b) =0).

According to Theorem 5.4 we compute a bi-factor (us, vy) of (uh,vh) splitting off the
top-bottom points of f: (uh,vh) = (um,vw) - (ug,vg). Both polynomials in (usy,ve)
have degree at most 2 and therefore it is possible to compute explicit solutions. In our
example all tangential intersection points are top-bottom. The yellow line /, which is
the first subresultant of the involved spatial quadrics, cuts through them, see Figure
6.2.

In the case that u, as well as v, are at most quadratic polynomials, as in our example,
everything is fine and we compute explicit solutions also for (ug,v4). Of course it can
happen that a tangential intersection point (a,b) we computed explicitly this way is a
vertical flat point instead of a singular point. In order to recognize this, we substitute
(z,y) by (a,b) in fp and explicitly test fz(a,b) for zero. If fi(a,b) = 0, (a,b) is a
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singular point of f. Otherwise it is a vertical flat point and we explicitly test fyy,(a,b)
for zero in order to distinguish vertical turning points of f from extreme points of f.

Now consider the case that u, or vy or both have degree > 2. We assumed that all
curves we consider are squarefree. We conclude according to Theorem 5.5 that

1. either the cutcurve consists of two intersecting lines and another quadratic curve

2. or the cutcurve has at least one vertical flat point.

We first test whether the cutcurve consists of two intersecting lines and another
quadratic curve. Let py and p; be the quadrics with f = res(po,p1,2) and let Py and
P be their matrix representations introduced in the previous chapter, respectively. We
compute the discriminant

A()\) = det((l - )\)P() + )\Pl) = det(P)\).

and determine whether the discriminant has two roots, each of multiplicity 2. We
compute these roots A; and Ao explicitly. If for at least one root A; the matrix Py, has
rank less than 3, the cutcurve consists of two intersecting lines and another quadratic
curve. The statement of Theorem 5.6 is as follows: If exactly one root fulfills this
property, without loss of generality A;, then A; is rational. Moreover @) := P, is the
matrix representation of a rational polynomial ¢ € Q[z,y, 2] such that g defines two, not
necessarily rational, planes ¢; and q9, ¢ = ¢1-q2, and res(pg, p1, 2) = res(po, ¢, z). If both
roots fulfill the property, we cannot distinguish them and we have ¢ € Q(\/p)[z,¥, 2]
with p € Q.

Let [ denote the projected intersection line of ¢; and ¢o. In the discussion after the
proof of Theorem 5.5 we noticed that at most 2 genuine points lie on / and at most 2
genuine points do not lie on [. Although we do not know ¢; and g2 explicitly, we can
compute [:

1> = res(q,qz,2)-

We know that [ is a bivariate polynomial in Q[z, y] or in Q(,/p) [z, y] and it cuts through
at most two genuine points. As in the case of top-bottom points, we use [ to factor off
these points: (ug,vy) = (ug1,vg1) - (g2, vg2) With

U’?]l = res(l,f, y) U_Zl = res(l,f,x)
Ugs = Ug/Ug1 Vg2 = Vg/Vg1-
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The polynomials us; and vy are at most quadratic and again we compute explicit
solutions. We additionally test f, for zero in order to distinguish singular points from
the ones with a vertical tangent. What remains is the bi-factor (ug2,vg2). If both
polynomials are at most quadratic we are fine: compute explicit solutions and test f,
for zero in order to distinguish singular points from the ones with a vertical tangent. In
the later case we additionally test fy,, for zero. If at least one of ug2 or vy has degree
> 2, we know that this is caused by vertical flat points.

At this time of our algorithm, we have partially factored the bi-polynomial (u},v5) in
such a way that the grid of each bi-factor (up;, vs;) covers at most two singular points.
If there is still a bi-factor (up;,vp;) with one of the polynomials up; or vy; having degree
greater than 2, we know that this is caused by vertical flat points. If we detect this,
we apply a random shear to the curves f and g in order to get rid of this situation
and restart, see Chapter 7 for further information on this subject. What we obtain at
last is a bi-factorization of (u),v}) into < 3 at most quadratic bi-factors for which we
compute explicit solutions.

For illustration let us again have a look at the cutcurves consisting of a pair of lines
and another quadratic curve in Figure 6.3.

Figure 6.3: The cutcurve consists of two intersecting lines and another quadric

In the first picture the cutcurve, consisting of a pair of lines and a quadratic curve, has 5
singular points. The z- and y-coordinates are simple roots of a polynomial of degree 5,
respectively. Two of the singular points are top-bottom, resulting from the projection
phase. They are marked by the blue boxes and we know the line that passes through
them: the first subresultant of the corresponding spatial quadrics. The remaining 3
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singular points marked by the red circles are genuine. We compute a third rational
quadric for which we know that it consists of two planes. We project the common
line of these two planes and obtain a rational line running through 2 of the genuine
points. With the help of the two lines we factor the polynomial of degree 5 in three
polynomials: two of degree 2 and one of degree 1.

In the second picture the cutcurve consists of four lines intersecting pairwise in 6 sin-
gular points. Now the z- and y-coordinates are simple roots of a polynomial of degree
6, respectively. Again two points are top-bottom and we know a rational line through
them. For the 4 genuine points we compute a third quadric in space that consists of two
planes. Projecting their common line results in a linear polynomial with coefficients in
Q(/p), p € Q, for which 2 of the genuine points are roots. Again with the help of the
two lines we partially factor the polynomial of degree 6 in three polynomials, each of
degree 2.

6.3 f is the silhouettecurve and g is a cutcurve

Figure 6.4: Consider the Jacobi curve in order to solve simple tangential intersections

Let f be the silhouettecurve and g be a cutcurve. Then the algebraic degree of f is
at most 2. The degree of g is at most 4. Therefore the polynomials X and Y have
degree at most 8. This implies that there are at most two roots of multiplicity > 3. We
compute a bi-factorization (u1,v1) - (u2,v2)? - (u3,v3) of (X,Y) such that u;,v; contain

109



CHAPTER 6. COMPUTING THE PLANAR ARRANGEMENTS

all simple roots, uo, v all roots of multiplicity 2, and ug, vs all roots of multiplicity > 3.

All transversal intersections points lie on GRID(u1,v1) and can be solved with simple
box hit counting.

The ones lying on GRID(usz, v2)

1. either are singular points of f or g

2. or transversal intersections of the Jacobi curve h = f;g9, — fy9, and f and of h
and g, according to Corollary 4.9.

We would like to apply extended box hit counting to these boxes, but first we have to
be sure that there is no singular point inside the tested box. In the last section we have
shown how to compute quadratic bi-factors (usw,ve), (ug1,vg1), and (ug2,vg2) for all
singular points and compute explicit solutions. If any of these bi-factors has a common
bi-factor with (ug,v2), we split off this common bi-factor. What remains is a bi-factor
(uh, vh) with only non-singular tangential intersections of f and g on its grid. We apply
extended box hit counting to the boxes defined by uf, and v}.

Because of the degree of X and Y the bi-polynomial (u3,vs) has at most two different
roots. With the help of gcd-computation we compute two at most quadratic polynomial
us and v containing them and apply explicit solutions.

6.4 f and g both are cutcurves

Let f and g both be cutcurves. They are the result of intersecting a quadric p with
other quadrics ¢ and r, respectively. Each cutcurve has algebraic degree < 4 and
therefore the polynomials X and Y have degree at most 16. We would like to compute
a bi-factorization (X,Y) = (us, vs) - (ug, vs) such that all polynomials ug, vs, ug, v, have
degree at most 8 and the polynomials us; and u, and the polynomials vs and v, share
no common factor. For example consider Figure 6.5. There are two at most 8 x 8 grids,
one covered by light grey and the other covered by dark grey stripes.

Let us assume we have such a bi-factorization. Then for (us,vs) and for (uq,v,) we can
proceed exactly like in the case of a silhouettecurve and a cutcurve described in the
previous section. We perform a bi-factorization according to the multiplicities 1, 2, and
> 3. Again a polynomial of degree 8 can have at most two roots of multiplicity > 3.
According to the assumption that us,u, and vs,v, have no common roots, the boxes
belonging to multiplicity 1 can be handled with simple box hit counting. The boxes
defined by roots of multiplicity 2 are solved with extended box hit counting, after we
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Figure 6.5: A bi-factorization of (X,Y’) such that each bi-factor has degree < 8

split off the singular points of f or g. The remaining bi-factor belonging to roots of
multiplicity > 3 defines at most 4 grid points that are solvable with explicit solutions.

What remains to do is to establish the bi-factorization (X,Y’) = (us,vs) - (ta,va) such
that each involved polynomial has degree < 8. As for singular points, we can distinguish
two different types of intersection points f and g have: spatial and artificial.

Definition 6.2: Let (a,b) € €2 be an intersection point of two curves f = res(p, ¢, z)
and g = res(p,r, z) with p, ¢,r being quadratic trivariate polynomials. We call (a,b)
spatial, if for a root ¢ of p(a,b,z) € C[z] we have p(a,b,c) = q(a,b,c) = r(a,b,c) = 0.
If p(a, b, z) € C[z] has the two roots ¢ and ¢’ and it holds p(a,b,c) = g(a,b,c) = 0 and
p(a,b,d') =r(a,b,c') =0, then we call (a,b) artificial.

Spatial points are projected common intersection points of p, ¢, and r. Equivalently
we can say that they are projections of common intersection points of the spatial
intersection curves of p and ¢ and of p and r. Of course also the intersection curve of ¢
and r cuts through this common point. Artificial points are a result of the projection
phase. One spatial intersection curve, for example the one of p and ¢, runs on the
upper part of p, whereas the other one of p and r on its lower part. Both space curves
are projected on top of each other causing an intersection point. For illustration have
a look at Figure 6.6. The green and blue spatial intersection curves are as always
the intersection curves of the red and the green and the red and the blue ellipsoids in
our permanent example, respectively. They have two common points, marked by the
arrows. Projecting both curves into the plane results in a green and a blue cutcurve
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Figure 6.6: Projections of common intersection points of the red, green, and blue curve
are called spatial.

that have 6 real intersection points: 2 spatial and 4 artificial. The light blue curve
k is the projection of the intersection curve of the blue and the green ellipsoid. We
know that it cuts through the spatial points. Of course it can happen that points are
both spatial and artificial. For example if the spatial intersection curves of p and ¢ and
of p and r intersect transversally in a point (a,b,c) on the silhouette of p. Then the
projected point (a,b) is a tangential intersection point of the projected curves. The
multiplicity 2 is caused by the meeting of a spatial and an artificial point.

The question is how many spatial and artificial intersection points two cutcurves can
have, counted with multiplicities. Both numbers have to be bounded by 8 in order
to make this distinction suitable for our bi-factorization into polynomials of degree at
most 8. In the next theorem we will show that this is really true:

Theorem 6.3: Two cutcurves have at most 8 spatial and at most 8 artificial intersec-
tions, counted with multiplicities.

Proof. Let as before f = res(p,q,z) and g = res(p,r, z) be the cutcurves. The bound
for their spatial intersections immediately follows by the theorem of Bézout. Three
quadrics in space can have at most 8 discrete common intersection points, counted
with multiplicities.
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ZA

Figure 6.7: Projections of common intersection points of the red, green, and blue curve
are called spatial.

The idea of proving the second bound is the following: We mirror ¢ parallel to the z-axis
at the plane p, = 0. For illustration have a look at the four pictures in Figure 6.7. In
the first picture, there are the two ellipsoids p and ¢ and the coordinate axes. Assume
that the z-axis is the vertical one. In the next picture, additionally p, is shown, which
exactly cuts through the points of vertical tangency of p and separates the lower part
of p from its upper part. Now we take every point on the green ellipsoid ¢ and move
it vertically to the other side of p,, keeping the vertical distance to p, the same. Let
g be the resulting surface. We will show that ¢ again is a rational quadric, in our
example again an ellipsoid. As one can see in the last picture, this transformation has
the effect that all intersection points of p and ¢ have the same (z,y)-coordinates as
the intersection points of p and ¢q. That means res(p, ¢, z) = res(p, g, z) holds. But the
intersection points of p and ¢ that lie on the top of p now lie on its bottom and vice
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versa. So the spatial and artificial intersections have changed place and we can again
apply the theorem of Bézout to p, r and q.

Now here is the technical part of the proof. Without loss of generality let the polynomial
p be of the form
ple,y,2) = 22+ pi(z,9) - 2 + po(x,y).

All quadrics we consider are generally aligned and therefore have a constant leading
coefficient. We are looking for a function f : €* — C? that mirrors points (a,b,c)
vertically at the plane p, = 2z+p1 (z,y). We want a vertical translation of (a, b, ¢), so we
move the point along a line [ parallel to the z-axis through the point (a, b) on the (z,y)-
plane. The intersection point « of [ and p, is the root of p,(a, b, z) = 2z+p1(a,b) € Q[z]:
a = (a,b, —p1(a,b)/2). The point (a,b,c) has to be moved along [ to the other side of
«, keeping the distance |c + p1(a, b)/2| the same. All in all we obtain
fla,b,¢) = (a,b,—pi(a,b) —c).

If we apply this function to every point of a quadric

q(z,y,2) = 22+ q1(z,9)z + qo(z,y),

this leads to

i(z,y,2) = (—pilz,y) — 2)> + qlz,y) - (—pi(z,y) — 2) + qo(z,y)
= 224 2p1(x,9) — @ (@, 9)z + (F — pr1a1 + @) (x, y).

This is again a quadric. For ¢ = p we obtain § = p. That means mirroring p vertically
on p, leads to p again. It remains to show for g # p that

res(p,q,2) = res(p,q,2).

We know that

res(p,q,2) = (pog1 —P1go)(q1 — p1) + (po — QO)Z-

On the other hand we have
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res(p,§,z) = (podi — p1do)(@ — p1) + (o — Go)”

= (prgo + P (p1 — @1) + Poqr — 2p1po) (p1 + a1 — 2p1)
+(po — g0 — p1(p1 — @1))?

= ((poq1 — P19o) + (2p1q0 + Pi(p1 — @1) — 2p1p0)) (@1 — p1)
+((po — q0) — pr(p1 — @1))?

= (pog1 — p190)(q1 — p1) + (Po — q0)”
+(—2q0 — p1(p1 — q1) + 2po)p1(P1 — q1)
+2(q0 — po)p1(p1 — q1) + Pi(p1 — 1)’

= res(p,q, z).

This ends our proof. O

Now we know that there at most 8 spatial and artificial intersection points, we would
like to compute a bi-factorization (us, vs)-(uq, v4) of (X,Y") according to this distinction.
We want the roots of us to be the z-coordinates of common intersection points of p,
q, and r. A first idea is to additionally compute the resultant & = res(q,r,z) and to
perform a greatest common divisor computation between X, res(f, k,y), and res(g, k, y)-
But caused by the projection from space to the plane it can happen that k£ cuts through
an artificial intersection point of f and g. Then the z-coordinate of this artificial point
would be a root of ug, contradicting our goal. This would not disturb our following
algorithm as long as the degree of us would still be at most 8. Otherwise, similar to
the methods described in the next chapter, we could shear the spatial arrangement in
order to remove this effect. But an alternative, correct, and even more efficient way to
compute u; is to use the results of [18]. There a method for computing u, directly from
the spatial quadrics p, g, and r with the help of multivariate resultants is provided.
Of course all the considerations symmetrically hold for vs. As a result we obtain a
bi-factorization (X,Y) = (us, vs)(uq,vs) and the degree of each involved polynomial
is bounded by 8. In the case the bi-factors us, u, and vs, v, have no common root we
already saw how to locate the intersection points of f and g.

The remaining problem is that the polynomials u, = gcd(us, uq) and v, = ged(vs, vg)
might have a positive degree. In this case we handle the boxes defined by u. and v,
separately. The roots of these polynomials are z- and y-coordinates of points that are
spatial as well as artificial, respectively. By definition a point (a,b) is both spatial and
artificial if for the roots ¢ and ¢’ of p(a,b,z) € C[z] we have p(a,b,c) = q(a,b,c) =
r(a,b,c) = 0 and p(a,b,c) = q(a,b,c) = 0 or p(a,b,c) = r(a,b,/) = 0. There
are two situations that cause a point to be spatial and artificial. If we have ¢ = ¢,
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the common intersection point takes place on the silhouette of p. If we have ¢ # ¢,
at least one of the planar curves has a top-bottom point in (a,b). We know how
to compute explicit solutions for top-bottom points of a curve. So what remains to
do is determining projections of common intersection points of p, ¢, and 7 on the
silhouette of p. These points are projected common intersection points of p, g, r,
and p, or equivalently common intersection points of the quadratic curves res(p, p,, z),
res(q, p,, 2), and res(r, p,, z). The resultant of two quadratic curves is a polynomial of
degree at most 4 and therefore common intersection points can be easily computed by
simple box hit counting or by computing explicit solutions.

This finishes the proof of our main theorem. We considered planar arrangements that
are the result of projecting intersection curves and silhouettes of spatial quadrics into
the plane. We are able to determine every event point of such an arrangement exactly
and unambiguously by only using rational arithmetic.
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Chapter 7

Establishing the generality
assumptions

In the previous chapters we made some assumptions on the location of the quadrics
in space and the curves in the plane in order to simplify the argumentation. The as-
sumptions were general alignment, squarefreeness, disjoint factorization, and general
relation. A pair of bivariate polynomials that fulfills all these criteria we have called
well-behaved. For each criterion we will present a method for detecting whether it is
violated or not. We will give randomized shear algorithms that accomplish all assump-
tions with probability at least 1/2.

A troublesome side-effect of the resultant computation of two rational polynomials f;
and fo with respect to a variable x; is that there can be roots of the resultant which
only appear because the leading coefficient of f; or fo vanishes. This problem does
not occur if both polynomials are generally aligned, because then they have a constant
leading coefficient. We will generate this condition for each trivariate and bivariate
polynomial we consider.

A second problem that we encounter is that two polynomials f; and fo might share
a common factor. We have seen in Proposition 2.17 that this is the case if and only
if res(f1, f2,24) = 0. For example consider the two quadratic bivariate polynomials
f =h-fiand g = h- g1 where h(z,y) = (z —vy), fi(z,y) = (%m —y+5), and
91(z,y) = (2¢ — y — 12). They define the red and the blue curve consisting of two
lines each in Figure 7.1. The resultant res(f,g,y) is equal to the zero polynomial. Tt
gives no information about event points in the planar arrangement, although there are
interesting intersection points, namely the intersection points of A and fi, A and g,
and finally the ones of f; and ¢g;. We will show how to avoid this problem and achieve
squarefreeness for each polynomial f and disjoint factorization for each two polynomials
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f1 and fo we consider.

Figure 7.1: The resultant of f and g is equal to the zero polynomial

For a pair of planar curves f and g we want to draw conclusions from the multiplicities
of the roots of the resultant res(f,g,y) € Q[z] to the kind of intersection point f and
g have. Especially we want to state that a root of multiplicity at least 2 derives from
a tangential intersection point of f and g. But if there are two intersection points
with the same x-coordinate, then this conclusion is not valid. We will show how to
overcome the problem of common z- or y-coordinates. Afterwards each pair of bivariate
polynomials is in general relation.

At last a curve f may have vertical flat points that prevent characterizing its singular
points by at most quadratic polynomials. We will see how to avoid such a situation.

Let P be the set of input quadrics and F' the set of planar curves we obtain from the
projection phase. The questions we have to answer are:

1. How can we achieve general alignment for each p € P when regarded as a poly-

nomial in z?

2. Analogously we would like each f € F' to have constant leading coefficients in z
as well as in y.

3. What shall we do if the silhouettecurve res(p,p,,z) for p € P or the resultant
res(f, fy,y) for a curve f € F is the zero polynomial? How can we achieve that
each p € P and each f € F is squarefree?
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4. How can we deal with res(p,q,z) = 0 or res(f,g,y) = 0 for p,q € P and f,g €
F?7 That means what can we do when two polynomials do not have a disjoint
factorization?

5. When determining the intersection points of two planar curves, how can we man-
age to do the computation with both defining polynomials being in general rela-
tion?

6. If we detect a vertical flat point, what can we do to remove it?

7.1 General alignment for trivariate polynomials

Let P C Q[z,y, z] be a set of n quadrics. We want each trivariate polynomial to have
a constant non-zero coefficient of z2. This of course is easy to test by just examining
the coefficient of 22 for each p € P. If the coefficient is non-constant for at least one p,
we will shear all quadrics. The main idea of a shear method is described in [62].

Let us assume that we can find a vector u = (u1,uz) € Q? which fulfills the following
property: The total degree of each input polynomial p € P equals the degree of the
polynomial p(ui - z,us - 2, z) € Q[z].

For such a vector u, we consider the shear function

¢(:c,y,z) = (x+u1 "2,y +ug- Z,Z)
and compute p o ¢ for each p € P. Substituting £ = z 4+ u1z and y = y + uez in p
cannot increase the total degree of p. We conclude
deg(p) > deg(p © ¢).

Analogously, substituting z =0 and y =0 inpo ¢(z,y,2) = p(z + uy - 2,y + ug - 2, 2)
cannot increase the total degree of p o ¢:

deg((po ¢)(w,y,2)) = deg(p (z+wu1-2,y+uz-22))
> deg(p

= deg((p)(z,y,2))-

(u1 - z,us - 2, 2))

We conclude that the affine transformation does not change the total degree of the
polynomial at all:
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deg(po ¢) = deg(p).

By assumption we have deg(p) = deg(p(u12,u2z,2)). So each sheared polynomial po ¢
has a constant leading coefficient when regarded as a polynomial in z and that was our
aim.

The remaining question is how to find the vector u. Let us look at the leading coef-
ficients of the n input polynomials p € P when substituting (z,y, z) by (u12,u2z, 2).
The leading coefficients are at most quadratic polynomials in Q[u1, us], let us call them
l1,...,1n € Q[uy,usz]. The polynomials /; define at most quadratic planar curves and the
point u we choose shall not lie on any of these curves. If we substitute u; = a € @ in the
polynomials /;, 1 < ¢ < n, then it might happen that a leading coefficient /; becomes the
zero polynomial. This happens if (u; —a) is a factor of ;. But each /; has total degree at
most 2 and because of that this unwelcome effect can occur for at most 2n values of u1.
If we choose by random a value from the set {—2n,...,2n}, then with probability at
least % we have a good choice for u;. Now we have found a value u; = a, we substitute
it into the /; and obtain n univariate polynomials /1 (a, u2),. .., (a,u2) € Q[usz]. Each
li(a,u2) has at most 2 roots, so there are all in all < 2n values we are not allowed to
choose for uy. Again a random choice from the set {—2n,...,2n} gives us a good value
b for uo with probability > % Of course we can increase the probability by choosing a
larger range.

Now each input polynomial has a constant non-zero coefficient of z2. The resultant of
two polynomials p and ¢ with respect to z defines a planar curve such that each point
(a,b) on this curve gives rise to a, maybe complex, intersection point of p and ¢g. The
drawback is that we have to buy for this operation with a slightly larger coefficient size.
This can have an impact on all following resultant and root isolation algorithms. The
geometry of the spatial arrangement is not effected by the shear. Intersection points of
quadrics remain intersection points. They only change their z- and y-coordinate.

7.2 General alignment for bivariate polynomials

We also want to have the property that all bivariate polynomials we consider have a
constant non-zero leading coefficient with respect to each variable. Let F' be the set of
bivariate polynomials defining the curves in a planar arrangement. For all f € F the
property can again be easily tested by examining the coefficients. If it is violated for
at least one f, we will apply a shear to all curves in F'. Of course another approach
would be to go back to space, shear the quadrics, and start all the computation leading
to the bivariate polynomials from the beginning.

120



7.3. SQUAREFREENESS

Let us look at the polynomials in F' as polynomials in the variable y. Like in the case for
the trivariate polynomials, we assume that we can find a rational number v € @ such
that deg(f(z,y)) = deg(f(v-y,y)) for all f € F. Applying the affine transformation

Y(z,y) = (r+v-y,y)

to each polynomial f € F will result in a set of polynomials that have a constant
leading coefficient of y.

For each f € F the leading coefficient of the polynomial f(v - y,y) is a polynomial in
Q[v]- It should not vanish for our choice of v. Let li,...,l, € Q[v] be the leading
coefficients. In our application, all bivariate polynomials f € F have total degree at
most 4 and we conclude deg(l;) < 4 for 1 < i < n. So all in all there are at most 4n
different roots of the /; which we shall not use for our choice of v. Again a random
choice from the set {—4n,...,4n} gives us a good value for v with probability > %

We also want to have a constant leading coefficient of z. So in the same way, we
randomly choose a rational number w and apply the shear

Q/}(may) = (x,y-l—'w:v)

to each polynomial. It is easy to see that the constant leading coefficient of y is not
effected by this shear and so the second shear does not destroy the effect of the first
shear.

7.3 Squarefreeness

We want all polynomials p € P and f € F to be squarefree. Let us first consider the
trivariate polynomials p € P. If the resultant res(p, p,, z) of an input quadric p becomes
the zero polynomial, we know that p = (p,)2. The surface defined by p consist of two
equal planes. We want to compute the topology of the arrangement. The result does
not change if, instead of two identical planes, we consider only one of them. So we
delete p from the set P of input quadrics and insert p,.

We also want to establish squarefreeness for all polynomials f € F. For a polynomial
[ € Qz,y] we recognize the lack of squarefreeness if the resultant of f and f, with
respect to y equals the zero polynomial. In this case we even know that f and f, share
a common rational factor h as shown in Proposition 2.17. In order to compute h, we
apply the Euclidean gcd-algorithm using pseudo division to f and f, as described in
[42). The polynomial f = f/h is squarefree and has the same set of roots as f. We
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delete f from F and insert f. The new polynomial f needs the attribute silhouettecurve
or cutcurve. It inherits this attribute from f.

Of course if f and h have a common factor, one could further factor f with the help of
h. This would lead to polynomials of smaller degrees and therefore faster computations.
We omit the details.

7.4 Disjoint factorization

We have shown how to achieve squarefreeness for each polynomial p € P and f € F.
What about disjoint factorization for each pair of squarefree polynomials p,q € P and
f,g € F7 We proceed the same way as shown in the previous section. If for two
polynomials f,g € Q[z1,...,z4) their resultant with respect to any variable vanishes,
we compute h = ged(f,g). We obtain f = h- f; and g = h - g1 where f; = f/h and
g1 = g/h. By assumption f and g are squarefree and therefore also h, f1, and g1 are
squarefree.

Now we remove f and g from P respectively F' and insert the polynomials A, fi, and
g1 in the case they are non-constant. We keep in mind that the polynomial f; derives
from f, g1 from g, and h from both f and g.

For d = 3 the defining polynomials of two input quadrics share a common non-constant
rational factor if they are equal up to a non-zero constant factor or if they have a
common factor of degree 1. Geometrically the polynomials define the same surface or
both surfaces share a common plane. In the first case we delete one of the quadrics
from the set P. In the second case we delete both quadrics and instead insert the three
rational planes. In Chapter 3 we already mentioned that dealing with linear input
polynomials is much easier than dealing with quadratic input polynomials.

In the plane the polynomials that will be inserted into F' need the attribute silhou-
ettecurve or cutcurve. If both polynomials f and g are cutcurves, then of course all
factors inherit this attribute. If one curve f is the silhouettecurve, then f; and h get
the attribute silhouettecurve and ¢; will be marked as a cutcurve.

7.5 General relation of two planar curves

In our algorithm we want to compute planar arrangements of curves we obtain from
the projection phase. Let F' be the set of curves of such a planar arrangement. In order
to compute the arrangement we have to determine all intersection points between pairs
of curves f and g with either f,g € F or f € F and g = f,. So the main computation
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is the following: given two curves f and g, determine all their intersection points. The
polynomials f and g are defined to be in general relation if there are no two common
roots with the same z- or y-value. In this case we can draw conclusions from the
multiplicity of a root of the resultant res(f,g,y) to the kind of intersection of f and g.
How can we guarantee general relation of the polynomials?

The first observation is that common coordinates of intersection points are not intrinsic
to the two curves. We can avoid it by choosing a different direction of projection or by
equivalently shearing the curves. For example look at the red and the blue curve in the
left picture of Figure 7.2. There a two pairs of points having the same z-coordinate and
two pairs sharing the same y-coordinate. But if f and g are slightly sheared along the
z-axis, like in the right picture, then all intersection points have different z-coordinates.

So if there are common z-coordinates, we will choose a shear in z-direction. If there are
common y-coordinates, we do a shear along the y-axis. We have to choose the shears
such that afterwards the curves are in general relation, but without destroying general
alignment. Then we compute the intersection points of the sheared polynomials as
described in the previous chapters. As a result we obtain rational boxes around each
real intersection point. By applying the inverse shears we transform the curves together
with the computed boxes back to the starting position. The sheared boxes are no longer
parallel to the coordinate axes. So for each sheared box we have to compute another
one parallel to the coordinate axes such that both boxes contain exactly the same
intersection point. Proceeding this way we only have to shear a pair of curves that is
not in general relation. We avoid shearing the whole planar arrangement.

y y

Figure 7.2: A shear along the z-axis
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Before going into details on how to test for general relation and how to choose the
shears, we will first do some helpful remarks on the way the multiplicities of the roots
of res(f, g,y) change when we shear the two curves along the z-axis. A similar algorithm
to the one we we will explain is described in [65].

7.5.1 Multiplicity of intersection points

We will prove that every intersection point (a, b) is responsible for a fixed multiplicity 4
of the root z = a of the resultant. This number i is not effected by a shear. If there are
exactly two intersection points (a,b) and (a,b') at z = a with associated multiplicities
1 and j, then the multiplicity of a as a root of the resultant is equal to 7 + j. It makes
sense to definite the following (remember also Corollary 4.14):

Definition 7.1: Assume that for two curves f and g no two intersection points share
the same z-coordinate. Furthermore let f and g have constant leading coefficients
when regarded as polynomials in y. Then we define the multiplicity of a common root
(a,b) € €? of f and ¢ to be the multiplicity of the root a of res(f,g,y).

We will show next that the multiplicity of an intersection point is invariant under a
shear along the z-axis

Y(z,y) = (z+vy,y).

Proposition 7.2: Assume that for two curves f and g no two intersection points share
the same z-coordinate. Furthermore let f and g have constant leading coefficients when
regarded as polynomials in y. Let v € IR such that both assumptions also hold for

f(zy) = flz+oyy)

9" (z,y) = glz+vy,y).
Then the multiplicity of a common root (a,b) € C? of f and g is equal to the multiplicity
of (a — vb,b) of f and g¢".

Proof. Let (a1,b1),--.,(a;,b;) be all complex intersections points of f and g and let
i1,...,1; be their corresponding multiplicities. Then by definition we have

X = res(f,g,9) = (x—a) ... (z—a)".

We regard fY and g as polynomials in the three variables z, y, and v. By assumption
the polynomials f = f° and ¢ = ¢° have constant non-zero leading coefficients with
respect to the variable y. Then the leading coefficients of f¥ and g are polynomials in
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v with only finitely many roots. Let R be the set of these roots. By definition of the
resultant of two multivariate polynomials we obtain for all vy € R

X" = res(f”, 9", y) = res(f",9",y)lv=0o = (x_al‘f"UObl)jl(vO)'...-(:E—al—l—’l)obl)jl(vo).

It remains to prove i1 = ji(vg),...,% = ji(vo) for all vy € R.

Of course for some vg it can happen that a; — vob; = aj — vob; for some 1 < 4,5 < [.
But this set of points is obviously finite and we denote it by S. For all vg € S the
two curves defined by the polynomials f%0 and ¢g” have no two intersection points with
the same z-coordinate or equivalently the roots a; — vgb; of the resultant are pairwise
different.

The sets R and S are finite and we conclude that RUS is finite. Due to our assumptions
that f = f° and g = ¢° have constant leading coefficient and no two intersection points
share the same z-coordinate we have 0 € RU S. Then there exists a § > 0 such that
for all |vg| < § we have vg ¢ RU S. That means for all small vy we have vy ¢ R and
therefore

X" = (x—a1 + ’U()bl)jl(vo) cev(—a+ ’U()bl)jl(vo).

Moreover for every |vg| < § we have vy ¢ S and all roots a; — vob;, 1 < ¢ < [, are

pairwise different. For vy = 0 we know j;(0) = 41,...,;(0) = 4;. The resultant X" is as
a polynomial in z and v continuous in both variables. We conclude 41 = ji(vg),...,4 =
Ji(vg) for all vy < §. But then of course it must hold for every vy & R. O

For illustration have a look at Figure 7.3.

In the first picture there are two plotted curves. Namely the ones defined by the
polynomials

f = 422 —20y+2c—7
= 4+ 7% —Szy+x—y+1/8.

On the z-axis the roots of the resultant res(f, g,y) = 72z3 — 2242% — 221/2x + 2801/64
are marked by the filled dots. Now let us look how these dots move when we shear the
curves along the z-axis. The sheared polynomials are of the form
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Figure 7.3: The z-coordinates of intersection points of two curves change linearly during
the shear.

ffo= P4 (@+oy)’ -2 +uy)y+2z+vy) -7
= (V¥ =204+ 1)y* + 2uz — 22+ 20)y + (22 + 22— 7)
9" = yY¥+Tz+vy)? -8 +vy)y+(z+vy) —y+1/8

= (147 —8v)y* + (14vz +v — 1)y + (T2 — Tz +1/8).

In the second picture the bivariate polynomial res(f,g",y) € Q[z,v] is plotted. At
each horizontal line one can see the z-coordinates of the intersection points at one time
during the shear. We have chosen a linear shear and so the roots of the resultants move
along lines. Of course, if an intersection point has multiplicity ¢, then the complex
polynomial defining its moving-line is a factor of multiplicity 7 of res(f", ¢",y). There
are intersection points of these lines when the z-coordinates of intersection points coin-
cide. In our example there is a horizontal line for vg = 1. This line occurs because the
leading coefficients of f¥ and g” when regarded as polynomials in y vanish for v = 1.

We will see in the next section that these considerations enable us to test whether there
are two intersection points with the same z-coordinate.
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7.5.2 Testing for general relation

We want to develop a test that answers the question whether two curves f and g have
two distinct intersections with the same z-coordinate. Of course a first and easy test is

ged(res(f, g,y),sres1(f, 9,y)) = constant ?

If the answer is “yes”, then there exists no a € € with f(a,y) and g(a,y) having two
common roots. That means the two curves are in general relation and nothing has to
be done. But if the answer is negative we unfortunately cannot conclude that there
are two intersection points with the same z-coordinate. Look at the two examples in
Figure 7.4. If the resultant and the first subresultant have a common root a, then we
know that f(a,y) and g(a,y) have a common factor c¢(y) of degree at least 2. In the
first picture we have c(y) = (y — b1)(y — b2) and the intersections points (a,b;) and
(a,b2) have the same z-coordinate. In the second picture we have c(y) = (y — b)? and
the curves are in general relation.

Figure 7.4: A degenerate case and a non-degenerate one, both effecting the vanishing
of the first subresultant

So a non-constant ged of the resultant and the first subresultant does not permit deci-
sion. But we saw in the last section that each intersection point has a fixed multiplicity
that does not change when we shear the arrangement. For the two curves f and g we
again define the polynomials

[z, y) = flz+vy,y)
9" (z,y) =gz +vy,y)

and regard them as polynomials in Q[z,y,v]. Of course f© = f and ¢° = g. The
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resultant res(f”,¢”,y) € Q|z,v] defines an arrangement of lines the z-coordinates of
the intersection points of f and g walk along during the shear. That means the resultant
factors over C in linear parts l1,...,l; € C[z,v] with k being an upper bound on the
number of intersection points of f and g:

res(f?,g%,y) = ... Itk

For each intersection point (a,b) € €2 of f and g there is an index j such that during
the shear a moves along the line /;. The multiplicity of /; in the factorization of the
resultant is exactly the multiplicity of (a, b) as we have shown in the proof of Proposition
7.2. The two curves f = f0 and g = ¢° have no two intersection points with common
z-coordinates if and only if there is no intersection point of two of the lines on the
z-axis. This is equivalent to the statement that there are no factors [, and [; in the
complex factorization of res(f?,¢"%,y), a # b, with l,(z,0) = ly(z,0). The polynomials
f and g are both generally aligned and because of that

(I‘eS(fU,gv,y)”v:O = res(f,g,y).

There is an intersection point on the z-axis if and only if substituting v = 0 in the
factorization of the resultant (I3 - --- - [}¥)|,—¢ differs from the factorization over C of

res(f,9,y)-

In practice we cannot perform a complex factorization of res(f?, g¥,y). But we can com-
pute its multiplicity factorization over @ analogously to the one described in Chapter 4
for univariate polynomials. Only gcd-computations are performed and they can also be
realized for bivariate polynomials using pseudo-division as mentioned before. And of
course we can do a multiplicity factorization of the univariate polynomial res(f,g,y).
With our previous remarks it is easy to see that f and g are in general position if and
only if both rational factorizations are equal.

Now we have a test that answers the question of disjoint z-coordinates of all intersection
points. What can we do if our test gives the answer “no, f and g are not in general
relation with respect to the z-coordinates”?

7.5.3 Shearing the pair of planar curves

The remaining question is how to choose a shear in order to establish general relation
with respect to the z-coordinates and at the same time not to destroy general alignment.
For our two curves f and g we are looking for a vy such that
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1. all leading coefficients of f¥ and g” regarded as polynomials in y do not vanish
for vy and

2. no two intersections points of f¥ and ¢* have the same z-coordinate.

In our application the polynomials f¥ and g” have total degree at most 4. The leading
coefficients of them are polynomials in v of degree at most 4. The curves f and g
can have at most 16 intersection points. So there are at most (126) = 120 different
shears that make two of them get the same z-coordinate. All in all there are at most
4 + 120 = 124 values which should not be chosen for vy. By randomly taking a value

from the set {—124,...,124} we have a good one with probability at least 1/2.

We also want to establish different y-coordinates for all intersection points and analo-
gously a random shear 1 from the set {—124,...,124} realizes it with probability 1/2.
By definition it is clear that the shear v prevents the < relation of the y-coordinates
of all points. Analogously 1 prevents the < relation of the z-coordinates and therefore
the second shear does not destroy the effect of the first shear. That is why applying
both affine transformations results in polynomials that are in general relation.

7.6 Avoiding vertical flat points

At last we have to consider the situation that for a curve f the bi-resultant of f and
[y cannot be factored into quadratic bi-factors because of the existence of vertical flat
points. Every vertical flat point of f is an intersection point of f and f; = fis fﬁ —
2fsfyfoy + fyyf2. Because deg(f) < 4 and deg(f1) < 8 we conclude that f and f; can
have at most 32 intersection points. We use the notation introduced in the last section.
We want to determine a shear factor vg such that

1. the leading coefficient of f? regarded as polynomials in y does not vanish for vy,
2. no two intersections points of f” and f,° have the same z-coordinate, and
3. f" has no vertical flat point.
There are at most 4 + (122) + 32 = 102 shears that violate one of the conditions. By
randomly taking a value for vy from the set {—102,...,102}, we have a good one with

probability at least 1/2. The shear prevents the < relation of the y-coordinates and
therefore has no effect on the general relation concerning the y-coordinates.
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Chapter 8

The convex hull of ellipsoids

Computing the convex hull of a set of points in any dimension d is a well known area
of research, see for example the overview article of Seidel [68]. A few results are about
the convex hull of algebraic curves in IR?, see for example [8] and [25]. But very little is
known about the convex hull of algebraic surfaces and surface patches in space. In 1993
Boissonat et al. [13] discovered a method for computing the convex hull of a set of n
spheres even in d-dimensional space. They showed that the same method applies to a set
of n homothetic convex objects in IR? of constant complexity. In the previous chapters
we have presented a method of computing the topology of a cell in an arrangement of
quadric surfaces. We will show how to use this result via duality for computing the
topology of the convex hull of n ellipsoids in space. The dual correspondence between
the convex hull of quadric surface patches and computing the arrangement of quadrics
has first been considered by Hung and Ierardi [39]. For an animated illustration of our
algorithm have a look at the video [32].

An ellipsoid is defined by a quadratic polynomial in Q[z1, . .., z4] with special properties
on the coefficients:

Definition 8.1: In d-dimensional space an ellipsoid e is the set of roots of the poly-

nomial
e(z) = (z— C)TM($ —c¢)—1 € Rlz,..., x4
Thereby M is a positive definite and symmetric real d x d matrix and ¢ € IR? is a vector

of translation.

We are interested in the convex hull of a set of ellipsoids defined by rational polynomials.
So we only consider ellipsoids for which all entries of M and ¢ are rational numbers.
Generally, the convex hull of a point set is defined in the following way:

Definition 8.2: A set of points X C IR? is said to be convez, if for every two points
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T1,T9 € X all the points

)\1.771 + )\2.’132

with A1 > 0, A2 > 0, Ay + A2 = 1 also belong to X.
If X is any set of points in IRY, then by the convez hull of X, denoted CH(X), we
mean the set of points in the intersection of all the convex sets that contain X.

By induction we immediately derive the following well known characterization for the
convex hull of a set of points:

Proposition 8.3: Let X ¢ IR?. For any finite set {z1,...,zr} C X and parameters
Ayeeay A > 0 with Ay + -+ + A\ = 1, the convex hull of X must contain the point
Mz + -+ Az

k
CH(X)I{)\l.'L'l—i----—l-Akxk | {.’L‘l,...,.’lfk}CX,Ai 2072)\1':1}-

i=1

The convex hull of one ellipsoid e consists of all points z € IR¢ for which e(z) < 0. So
computing the convex hull of a set of ellipsoids ey, ..., e, is equivalent to computing
the convex hull of the sets X; = {z | e;(z) < 0} for 1 < i < n. Each X; is closed and
bounded.

Proposition 8.4: The convex hull of a set X = {X1,...,X,} of closed bounded sets
X; C IR consists of all points that are in the intersection of all closed halfspaces
containing X.

A halfspace is bounded by a plane. Each such plane A is uniquely determined by three
real numbers z; = (a,b,c) € IR, namely the ones for which h = {(z,y,2) | z =
ax + by + c¢}. For each plane h tangential to the convex hull, we define a vector
ot = (v}, ... vP) € {0,1}" with

ho_ 1 , if h has a tangential intersection point with ellipsoid e;
N 0 , otherwise.

We say that two tangential planes k' and B” are equivalent if v" = v"". Moreover we
define them to be strongly equivalent, if additionally there exists a continuous function

¢: [0’ 1] - ]R3 ) ¢(0) =ZTp , ¢(1) = Tpr

such that h' is equivalent to all planes represented by ¢(7), 7 € [0, 1].
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Figure 8.1: The convex hull of the three ellipsoids contains red triangular planar facets,
green tunnel facets, and grey elliptical facets.

The boundary of the convex hull of a set of n ellipsoids {ej,...,e,} in 3-dimensional
space consists of 2-dimensional facets, 1-dimensional edges, and 0-dimensional vertices.
With the help of the equivalence relation we can distinguish three different kinds of
facets:

1. A planar facet is embedded on one plane h to which no other plane is strongly
equivalent. In this one-elementary case, h has at least 3 tangential intersection
points with different ellipsoids. The planar facet consists of all points in the
relatively open convex hull of these intersection points.

2. A tunnel facet is build by a set of strongly equivalent planes, each contributing a
line segment to the convex hull. The endpoints of each line segment are tangential

133



CHAPTER 8. THE CONVEX HULL OF ELLIPSOIDS

intersection points of the plane and the ellipsoids. The relatively open union of
all these line segments forms the tunnel facet.

3. An elliptical facet is defined by a set of strongly equivalent planes, each plane
intersecting exactly one ellipsoid. The relatively open union of the intersection
points lies on one ellipsoid building an elliptical facet.

For illustration let us have a look at Figure 8.1. The convex hull of the three ellipsoids
consists of red planar facets, green tunnel facets, and grey elliptical facets.

We have defined facets to be relatively open sets of points. An edge is a maximal open
connected subset of points in the intersection of the closure of two facets. Analogously
a vertex is a common point in the closure of two edges.

8.1 A short remark on the lower bound of the complexity

Before applying our previous results to compute the convex hull of a set of ellipsoids,
we will first make a short remark on the topological complexity of the convex hull of
ellipsoids in space. We will show that 3n disjoint ellipsoids can have a convex hull of
complexity Q(n?), measured without loss of generality in the number of facets.

Theorem 8.5: The convex hull of 3n disjoint ellipsoids can have ©(n?) facets.

The construction we work out for the proof seems to be extendible to arbitrary dimen-
sion d. This would lead to the statement that the convex hull of n(2¢" ! — 1) disjoint
ellipsoids can have Q(n?1) facets.

In the following we will interpret points as ellipsoids: degenerate ellipsoids with in-
finitesimally small extension. The same way we say that a (d — 1)-dimensional ellipsoid
is also a d-dimensional ellipsoid with infinitesimally small extension in xzg4-direction.
This does not fit algebraically in our definition of ellipsoids, but topologically this is no
loss of generality.

8.1.1 A lower bound in 3-space

Our constructive proof works in the spirit of the one for a set of spheres described in
[13]. We choose n points on a circle ¢, see the dashed circle in Figure 8.2. The convex
hull of these n disjoint ellipsoids is a polygon with n sides. We move one copy of this
polygon along the z-axis in positive direction and one copy in negative direction. This
gives us 2n points in IR3, the convex hull of which is a cylinder with n lateral facets,
one top facet, and one bottom facet.
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Figure 8.2: Construction of a cylinder with n + 2 facets

We perform an auxiliary construction. Imagine a 3-dimensional ellipsoid e with center
at the origin and orthogonal axes such that e intersects the (z,y)-plane in the circle
¢. While building the convex hull, we will not take account of e. Of course, e breaks
through every facet of the cylinder near the (z,y)-plane and then, in both directions
along the z-axis, continuously dives into the cylinder, see Figure 8.3.

z N y

Figure 8.3: The auxiliary ellipsoid e and the cylinder: side view and top view

Inscribe n tangential ellipsoids to e with center on the strictly positive z-axis such that

1. the intersection of each ellipsoid with a plane parallel to the (z, y)-plane is a circle
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and

2. each ellipsoid breaks through every facet of the cylinder. That means each inter-
section of an ellipsoid with a facet is an ellipse.

e
0 0

0 0

0 0

Figure 8.4: Each inscribed ellipsoid cuts through every face of the cylinder

For illustration have a look at Figure 8.4.

Cutting the convex hull of the 3n ellipsoids parallel to the (z,y)-plane through the
center of one of the inscribed ellipsoids yields a situation as in Figure 8.5. The convex
hull consists of n vertices belonging to the edges of the cylinder, n arcs that are parts of
the ellipsoid, and 2n connecting segments. Every arc contributes to the 3-dimensional
convex hull as a part of an elliptical facet. This is guaranteed by tangentially inscrib-
ing the ellipsoids in the convex ellipsoid e. So every inscribed ellipsoid contributes
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Q(n) facets to the convex hull. Notice that the elliptical facets and the tunnel facets
connecting two inscribed ellipsoids are entirely contained in the auxiliary ellipsoid e.

Figure 8.5: The convex hull cut by a plane parallel to the (z,y)-plane

All in all we have arranged 3n disjoint ellipsoids. Each of the n inscribed ellipsoids
contributes Q(n) facets to the convex hull. So the convex hull of this set has the
complexity Q(n?).

8.2 Reduction by means of Duality

We want to construct the incidence graph of the convex hull of a set of n ellipsoids in
3-dimensional space. We solve this problem by means of duality. We reduce it to the
problem of constructing the intersection cell containing the origin in an arrangement
of n ellipsoids, paraboloids, and two sheet hyperboloids. In the previous chapters we
have shown how to perform the basic algebraic primitives in order to compute a cell in
an arrangement of quadrics.

There are some terms that need to be explained. First we define what we mean by the
dual of a set of points, see also [27]. Next we show that the convex hull of a point set
and the intersection cell of the dual set are topologically equivalent. At least we show
how to dualize a set of ellipsoids.

8.2.1 The dual of a point set

We want to dualize sets of points:
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Definition 8.6: Let X C IR? be a set of points. We define the dual of X to be the set

X* = {yeR? | 2Ty <1VzeX}.

If X consists of a single point not equal to zero, then X* is a closed halfspace. The dual
of X = {0} is the whole space X* = IR%. Since the dual of U;c; X; is the intersection of
the duals of the sets Xj, it follows that for any X, X* is a convex set. It is clear from
definition that for every set X the dual contains the origin and that if y € X™ so does
Ay, 0 <A<

By proceeding in a similar way, we can define the dual of X* as a subset X** € IR,
We are interested in the relationship between X and X** on the one hand and X* and
X*** on the other hand:

Theorem 8.7: For a subset X C IR? let X denote its closure. The following equalities
hold for X:
X* =CH(XU{0}) and X" =X*

Proof. The proof proceeds in two steps. In a first one we will show that the dual sets
of X and of CH(X U {0}) are equal. In a second one we proof the equality X** = X
for every closed convex set X that contains 0. The theorem follows easily from these
two statements.

1. X*=CH(XU{0})*
The inclusion “D” is clear. For “C” let y be a point of X*, that means 27y < 1 for
all z € X. We have to prove that 27y < 1 for all z € CH(X U0) or equivalently

)\w?y—k---—l— Akxzy <1

for all {z1,...,z1} € X U {0}, \; > 0, Zle A; = 1, according to Proposition
8.3. The inequality is true for {z1,...,zx} C X by assumption. If some of the
xz; € X are replaced by 0, then the inequality certainly remains true. How about
the limit points of X? Let p be a limit point of X: p € X\X. Since there is no
z € R? for which 27z < 1 for all z € X and pTz > 1, this is especially valid
for z = y for our special point y. We conclude p”y < 1 and this proves the first
assumption.

2. X* = X for a closed convex set X that contains 0
If £ € X, then 27y <1 for all y € X* and so £ € X** and this proves X** O X.
If on the other hand a € IR? does not belong to X, there exists a hyperplane that
strictly separates a from X. This hyperplane does not contain the origin since
the origin lies in X. Then we can find y € IR? such that

zfy<1 VzeX and ofy>1.
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We conclude y € X* and thus a ¢ X™*. It follows X** C X and we have X** = X.

O

It is sometimes convenient to regard duality as one between points and hyperplanes. If
z # 0 is a point of IR%, then the dual set z* is a halfspace bounded by a hyperplane
which may be denoted by hg: hg(z,y) = 27y — 1. We can say that this hyperplane
is dual to z. Similarly, if h is a hyperplane in IR?, its dual is a segment joining 0 to
a point z of IRY, unless h passes through the origin. In the latter case its dual is an
infinite line. If we exclude this last case, then we can say that z is the dual of A and
write it as xp,.

If X is a closed bounded and convex set with the origin as an interior point, then
the points on its boundary are dual to tangential hyperplanes to X* and vice versa.
Similarly, the points exterior to X are dual to hyperplanes that intersect X*. The ones
interior to X are dual to hyperplanes that have no common point with X*.

8.2.2 Convex hull versus intersection cell

Let X1,...,X, C IR? be closed bounded and convex sets and let the origin be inside
an X;. For X = U} ; X; we know by Theorem 8.7 that

We are interested in the convex hull CH(X) = (X*)*. The set X* is closed bounded
and convex and it contains the origin. Exactly the points on the boundary of X* are
dual to tangential hyperplanes to CH(X). A boundary point of X* that is a boundary
point of XF and X7 for 1 <4,j < n dualizes to a plane that supports the convex hull
and is tangential to X; and X;. So if we know the topology of X*, then we know the
one of CH(X). What we have to do is computing the topology of the boundary of X*.

We want to compute the boundary of the intersection cell build by X7,..., X}. Un-
fortunately, the origin is not necessarily contained in each X;. Not every dual point
of a tangential hyperplane to X; is a member of X7. A hyperplane not containing
the origin that supports a point of X; in the interior of (CH(X; U {0}) dualizes to a
point in the exterior of X. But we know that X contains the origin and is closed
bounded and convex. So even if we dualize for each set X; each supporting hyperplane
not containing the origin and call these set of points X, then the topology of the cell in
the arrangement of X7{,..., X/ containing the origin is equal to the one of X7,..., X}.
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So here is our algorithm for computing the topology of the convex hull of a set of
ellipsoids ey, ...,e,: First make sure that at least one ellipsoid contains the origin.
This is easily done by a rational translation. Next for each ellipsoid e; take each
tangential plane not containing the origin and dualize it. We will show that this set is
again a quadric. We compute its defining polynomial. Depending on the location of
the origin with respect to e;, the resulting quadric is an ellipsoid, an elliptic paraboloid,
or a two sheet hyperboloid. Then with the help of our previous results we compute the
topology of the cell containing the origin. This directly gives us our desired result: the
topology of the convex hull of eq,...,e,.

8.2.3 The dual of an ellipsoid

Let a be a point on the ellipsoid e. We want to dualize each tangential hyperplane to e
not containing the origin. So first we have to think about a formula for the tangential
plane at e in the point a, denoted by Ty(e). All the following considerations about
tangential planes and duality generally hold for ellipsoids in d-dimensional space. So
we will state all results for the general case but keep in mind that we are interested in
d=3.

Theorem 8.8: Let e = (z — ¢)'M(a — ¢) — 1 be a d-dimensional ellipsoid and a =

(a1,...,aq) € R? a point with e(a) = 0. Then we have

Tu(e) = {z€R?| (z—c)TM(a—c)—1=0}.
Proof. The tangent space T,(e) is given by the variety

0 0
To(e) = {o € R | 75 (@) (@1 — @) + -+ 3= (a) (aa — ag) = O},
see for example [22]. In order to simplify the formula we first look at the derivative

aa—éc(a) for k =1,...,d. A short calculation leads to

d
ﬁ(a) = 2kaj(aj—0j)-

oxy,

with m;; and ¢; being the entries of M and c, respectively. This yields the result

d d
T,(e) = {zeR?| szkj(aj—cj)(wk—ak)zo}

k=1j=1
= {zeR | (z—a)TM@—-c) =0}
= {zeR| (z—c)TM(a—c)—1=0}.
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We conclude the last equality from

0=(@—cTM@a-c)-1=a"M@—-c)—c"M(a-c)—1.
U

Due to our observations in the last section we want to dualize for each ellipsoid e =
(xr — )T M(z — c) — 1 every tangential plane not containing the origin. For simplicity
we call this set of points the dual of e although it does not fits precisely the definition
we gave before.

Theorem 8.9: The dual of an ellipsoid e = (z — )T M (z — ¢) — 1 is the quadric surface
defined by the polynomial

g =y (M —ccy+2"y—1 = y" My —(1-cTy)

Proof. Let a € IR? be a point on e such that the tangential plane at a does not contain
the origin: 0 # (0 —¢)"M(a —c¢) =1 — ¢’ M(a — ¢) — 1. The tangential hyperplane in
a is of the form:

M(a —¢)

= 1.
1+cI'M(a—c)

(z—c)TM@a-c)=1 & 2T

By the choice of a, the denominator 1+ ¢! M (a — c) is not equal to zero. Thus the dual
set of all tangential planes not containing the origin is equal to

M(a—-c)
1+c'M(a—c)

= {y|y"Mly—(1-c"y)?=0}.

| (@a—c)'M(a—c)=1, —c'M(a—c) #1}

{

It remains to show that the last equality holds:

"C” Let a be such that (a —¢)' M(a —c) =1 and —c'' M (a — ¢) # 1. Then we have

M(a—-c¢)
1+cT'M(a—c)

M(a —c) Y mt M(a —c)
1+c'M(a—c) 14+c'M(a— ¢
(a—¢c)TM(a—c)—1
(F Mo~ )P
= 0.

( (1= )’
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">" Let y be such that y" M~y — (1 —c"y)? = 0. It cannot happen that additionally
'y = 1, because then yT M1y = 0 would imply y = 0 because of M and M ™!

being positive definite. This is a contradiction to ¢y = 1. So we are allowed to
define

M1y
1= Ty Ty +c.

The point a is chosen in a way that (M (a —c))(1 + ¢’ M(a —c)) = y. It is easy
to prove that a fulfills both criteria (a — c¢)" M(a —c¢) =1 and —c' M (a —c) # 1.

O

Now we know that all dual sets are again quadrics, we are done and can use our previous
algorithm in order to compute the intersection cell in 3-space.

8.2.4 Classification of the dual of ellipsoids

At last we make a short remark on the kind of quadrics that arise as the dual sets of
ellipsoid. For an ellipsoid e = (z — ¢)T M (xz — ¢) — 1 the dual quadric is defined by a
polynomial of the form

g=y" (M7 —cc")y + 2"y — 1.

Due to the classification of quadrics in d-dimensional space given in [40], the kind of ¢
is determined by the sign of the eigenvalues of (M ~! — cc”) and the relation between

the rank of the following two matrices:

T

Ml
rank e and  rank(M ™! — ccl).
e’ -1

It is easy to see that the first matrix always has rang d + 1. That means the kind of
the dual set is only determined by the eigenvalues of (M~ — cc!'). The eigenvalues

depend on the vector of translation c. If we start with ¢ = 0 and then continuously
move e away from the origin, the dual set behaves in the following way:

1. As long as the origin is situated in the interior of e, e(0) < 0 & ¢! Mc < 1, the
dual is again an ellipsoid, because all eigenvalues of (M~ — cc!') are positive.
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2. The dual is a paraboloid if the origin is on e, e(0) = 0 < ¢/ Mc = 1, because then
one of the eigenvalues becomes zero, the others are positive.

3. In the case the origin is outside e, e(0) > 0 < ¢! Mc > 1, the dual is a hyperboloid,
because one eigenvalue is negative, the others all positive.

If the origin is not on e, that means ¢! Mc # 1, the matrix (M ~! — ccT) is invertible:

M+ Mcc"M — M(cf'Mc)
N 1—-cT'Mc '

(M1 —¢ech) !
All eigenvalues are non-zero. They are strictly positive if and only if (M ! — ¢cT)™!

is positive definite, that means if for all y # 0 the inequality y” (M~ —ccT)~ 1y > 0
holds. This is true for ¢!’ Mc < 1:

1
y T (Mt —ech) ly = m(yTM (1-c'Mc)y —i—yTMccTMy) > 0.
—r >0 (T My)?>0

In the case ¢! Mc > 1 at least one eigenvalue is negative: by assumption the matrix
M only has positive eigenvalues and thus the signs of the eigenvalues of (M~ — ccl)
are the same as for M(M ! — cc) = (E — Mcc™). The vector c is an eigenvector of
(E — cc” M) with eigenvalue 1 —cf' Mc < 0: (E—cc' M)c=c—cc' Mc = c(1-c'MC).
In the case ¢! Mc = 1 we know that Mc is an eigenvector of (M ~! — ccT) with corre-
sponding eigenvalue 0: (M ! — ccT’)Mc = ¢ — cc’ Mc = ¢ — ¢ = 0. That means the
matrix has rank < d. If we can show that in this case the rank is equal to d — 1, we
are done. By a continuity argument all other eigenvalues, as for ¢! Mc¢ < 1, have to be

positive and so do the remaining ones in the case of ¢/ M¢ > 1.

What remains to do is proving that for ¢/ Mc = 1 the matrix (M~! — ¢c”), or equiva-
lently (E — cc” M), has rank at least d — 1:
d d d
L—c1)poqckmpr  —C1D j_y CkME2 .. —CL ) j_q CkMyg
d d d
—Cco ) _qckmpr 1l —c2) i kMg .. —Co > 41 CkMd
(B—cc™ M) = 'kl 'lcl .kl
~d ~d d
—Cd ) k=1 CkMk1  —Cd D gy CkMk2 - 1 —Ca) g CkMkd
By assumption the vector ¢ = (c1,...,¢q) is not equal to the zero-vector, so assume

without loss of generality ¢4y # 0. For all 1 < i < d — 1 multiply the last row by ¢1/cq
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and subtract it from the i-th row. The rank of the matrix does not change and we
obtain a matrix of the form

The upper left (d — 1) x (d — 1) matrix is the unit matrix and the rank of the whole
matrix therefore at least d — 1.
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Chapter 9

Summary and outlook

In this thesis we have developed a method for computing a cell in an arrangement of
quadric surfaces. It uses exact algebraic computation and provides the correct mathe-
matical result in every case, even a degenerate one.

9.1 Theoretical results

The most important problem we faced was founded in the algebraic degree of the
intersection curve of two quadrics. In general, the intersection points of such a curve
with a second one cannot be computed as nested square roots of rational numbers.
So we cannot access the coordinates of common intersection points of three quadrics
explicitly. Instead, we have to deal with algebraic numbers implicitly.

The analogous quadric intersection-problem in 2-dimensional space does not bring up
this problem. As implied in our investigations, the problematic event points in a planar
arrangement of curves are singular points of a curve and tangential intersection points
of two curves. For quadratic curves the coordinates of both kinds of event points are
computable as simple square root expressions.

In order to solve the 3-dimensional problem we have chosen an approach that works
by reduction to planar arrangements. Our aim was to find a method that can also be
applied to more general surfaces. Usually no rational parameterization of the intersec-
tion curve of two spatial surfaces exists. So there is no hope for general surfaces to do
the computation directly in space.

With the help of resultants we have projected the silhouette of each quadric and all in-
tersection curves between two quadrics into the plane. This reduction is degree optimal
in the sense that the projection does not change the algebraic degree of the intersection
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curves. The prize we have to pay for the projection is an increase of the number of
singular points and of tangential intersections.

Using partial derivatives, resultant computation, and root isolation, the problem of
computing the planar arrangements has been reduced to the problem of answering
questions of the following form: Given two curves f and g and a box with rational
corners, determine whether f and g have an intersection point inside this box. It
turned out that transversal intersection points are easy to compute by determining the
sequence of hits of the curves with the boundary of the box. This previously known
method we have called simple box hit counting. The more difficult points are tangential
intersections and singular points. For these points the sequence of hits provides no
information about the behavior of the curves inside the box.

We have presented a new method to test boxes for non-singular tangential intersection
points by introducing an additional curve, which we have called the Jacobi curve, to
the arrangement. The Jacobi curve reduces the problem of determining tangential
intersections to the one of testing transversal intersections inside the box.

We have generalized our method of introducing a new curve to the arrangement. This
has led to an algorithm for arbitrary planar arrangements that determines all boxes
containing tangential intersections. The drawback of the whole approach is that it
works only in the case where we know in advance that a box contains no singular point
of one of the curves.

For computing the singular points we have taken advantage of the fact that the curves
in the planar arrangements are projected intersection curves of two quadrics. We have
proven that at most two singular points can result from the projection in the sense
that two non-intersecting branches of the spatial intersection curve are projected on
top of each other. We have shown how to compute the coordinates of these singular
points as roots of quadratic rational polynomials. In most cases we have succeeded
in expressing the coordinates of the remaining singular points as roots of quadratic
rational polynomials. Only in the case that the spatial intersection curve consists of
four lines, computing the coordinates requires a second square root.

9.2 Experimental results

We claimed that our theoretical results for computing arrangements of quadric surfaces
promise a good performance in practice. In order to justify this statement, we made
some experiments in implementing and testing our ideas. Our prototypical implemen-
tation determines event points in the planar arrangements induced by three quadrics.
It uses the basic data types of LEDA [48] and the rational polynomial class as well as
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the resultant and Sturm sequence computation of MAPC [44].

Consider the screen shots in Figures 9.1 — 9.6 we made from the output for computing
the event points for the three input quadrics

p(z,y,2) = 721627 — 110222y — 1222022 + 15624y + 15168y2
+111862% — 1000

q(z,y,2) = 4854z% — 3560xy + 4468z2 + 658z + 5040y2 + 32yz + 1914y
+102442% + 32422 — 536

r(z,y,z) = 8877x% —10488zy + 9754xz + 1280z + 16219y% — 16282y~
—808y + 1015222 — 1118z — 796.

The running time of our implementation for this special example on an Intel Pentium
700 is about 18 seconds. Of course the running time mainly depends on the number of
decimal digits of the three input quadrics as can be seen in the following table:

number of digits 51101520 | 25| 30
running time in seconds | 18 | 33 | 56 | 92 | 126 | 186

The only mathematical tools that are used during the calculation are resultants and
subresultants, root separation, gcd of univariate and bivariate polynomials, and solving
quadratic univariate polynomials. The size of the coefficients of the polynomials has
a great impact on the behavior of all these computations. In our example about half
of the running time is spent on computing all necessary resultants. Isolating the real
roots on the coordinate axes with Uspensky’s algorithm is quite fast. The rest of the
time is needed to test the more than 100 boxes for intersection points.

In order to judge the running time of our algorithm, we have run our example in Maple
[30] using the plot_real_curves function in the algcurves package. As can be seen in the
screen shots in Figures 9.1-9.6, our program outputs a plotting of the real branches
of the curves and marks their extreme and singular points and all intersection points
between two curves by small boxes. The plot_real_curves function applied to a bivariate
polynomial nearly does the same. It also plots the defined curve and inter alia marks all
extreme and singular points. Computing and plotting the bivariate resultants defining
the silhouettecurves and cutcurves in our example with Maple took 60 seconds on an
Intel Pentium ITT with 850 MHz. Thereby Maple missed the isolated point of res(p, g, z).
Computing the intersection points of two curves was even slower. We have tested the
plot_real_curves function with the input res(p, g, z) -res(p, r, z) and it ran for 70 seconds.
Of course the comparison is not really fair, because Maple makes no use of the fact
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that the algebraic curves, as projected intersection curves of quadrics, have a special
form. But it nevertheless shows that locating singular points and intersection points of
two curves is difficult and time-consuming and that our approach leads to promising
running times.

So far our implementation cannot handle all degenerate cases, especially it cannot
detect genuine points. But, as shown before, all singular points, either top-bottom or
genuine, conceptually are treated the same way. A line cutting through two of them
is computed that helps to factor the univariate resultants. The remaining polynomials
are at most quadratic and explicit solutions can be calculated. So we have proven in
the previous chapters that degenerate cases definitely do not increase the running time
of our algorithm.

9.3 Further research

The prototypical implementation shows that our algorithm is a first and important step
towards exact and efficient computation of arrangements of curves and surfaces. Until
now we have made no special efforts to optimize the running time of our implementation.
Choosing the algorithms for the mathematical computations more carefully and making
use of filtering techniques will surely lead to a better performance. Above that, of
course, there is still some work in practical as well as in theoretical sense. So far our
implementation only determines event points in the plane. Part of our future work will
be to implement a sweep line algorithm that computes the trapezoidal decomposition
of each planar arrangement and to combine the results to an overall description of the
arrangement in space.

Our approach provides an efficient and exact algorithm for computing a cell in an
arrangement of quadric surfaces, even in degenerate cases. It is general in the sense that
it could be applied to every kind of spatial surfaces defined by rational polynomials.
Ounly at one point we made use of the fact that the input surfaces are restricted to
ones defined by at most quadratic polynomials. Computing the singular points of the
planar arrangements was restricted to this assumption. So another topic of our future
research will be locating singular points of arbitrary planar curves in order to enlarge
our approach to more general algebraic surfaces.
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Figure 9.1: The blue ellipses are the projected silhouettes of the input ellipsoids p, g,
and 7. We denote them by sil, = res(p, p,, 2), sily = res(q, gz, ), and sil, = res(r,r,, z),
respectively. An extreme point of a blue silhouettecurve is an intersection point with
the green line. The green line is defined by the partial derivative with respect to y. All
extreme points are determined correctly and marked by small boxes.
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o

Figure 9.2: The cutcurve cutp, = res(p,q,z), besides extreme points, has two top-
bottom singular points. In the left picture the extreme points of cut, , are determined
by simple box hit counting. In the right picture one can see that our program locates
two singular points. This is done by computing explicit solutions. One singular point
is a self-intersection point of cut, . The second one is an isolated point that leads to
two complex common points of p and gq.

Figure 9.3: The cutcurves cut,, = res(p,r,z) and cuty, = res(q,r, z) have no singular
points. Their extreme points are determined correctly.
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Figure 9.4: For each projected intersection curve of two quadrics p; and py our program
has to locate the tangential intersection points with the projected silhouettes of p;
and of py. The green cutcurve cuty, has tangential intersection points with the blue
silhouettecurve sil, in the left picture and with the blue silhouettecurve sil, in the
right picture. The additional blue curve in each picture is the Jacobi curve we need for
applying extended box hit counting.

<\)w‘\

Figure 9.5: The cutcurve cut,, has intersection points with the silhouettecurve sil,,
consider the left picture. There are no intersection points with sil,. Also the cutcurve
cutq, has tangential intersections with sil,, see the right picture. There are no inter-
section points of cut,, and sil,.
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[T

7

Figure 9.6: At last, artificial and spatial intersection points between two cutcurves have
to be computed. In the first 3 pictures one can see the artificial intersection points of
cutpq and cuty,,, of cuty, and cuty,, and of cuty, and cuty,, respectively. Spatial
intersection points are common intersection points of cut, 4, cut, ,, and cut,,. They
are shown in the lower right picture.

152



Bibliography

[1] S. Abhyankar and C. Bajaj. Computations with algebraic curves. In Proc. Internat.
Sympos. on Symbolic and Algebraic Computation, volume 358 of Lecture Notes
Comput. Sci., pages 279-284. Springer-Verlag, 1989.

[2] P. K. Agarwal and M. Sharir. Arrangements and their applications. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 49—
119. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

[3] S. Arnborg and H. Feng. Algebraic decomposition of regular curves. J. Symbolic
Comput., 15(1):131-140, 1988.

[4] D.S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic decomposition
I: The basic algorithm. SIAM J. Comput., 13(4):865-877, 1984.

[5] D.S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic decomposition
IT: The adjacency algorithm for the plane. SIAM J. Comput., 13(4):878-889, 1984.

[6] D. S. Arnon, G. E. Collins, and S. McCallum. An adjacency algorithm for cylin-
drical algebraic decomposition in three-dimensional space. J. Symbolic Comput.,
5(1-2):163-187, 1988.

[7] D. S. Arnon and S. McCallum. A polynomial time algorithm for the topological
type of a real algebraic curve. J. Symbolic Comput., 5:213-236, 1988.

[8] C. Bajaj and M. S. Kim. Convex hull of objects bounded by algebraic curves.
Algorithmica, 6:533-553, 1991.

[9] J. L. Bentley and T. Ottmann. Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput., C-28:643-647, 1979.

[10] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and E. Schomer.
A computational basis for conic arcs and boolean operations on conic polygons.
submitted to ESA, 2002.



BIBLIOGRAPHY

[11]

[14]

[15]

[16]

[17]

[18]

[19]

[22]

[23]

J.-D. Boissonat and J. Snoeyink. Efficient algorithms for line and curve segment in-
tersection using restricted predicates. In Proc. 15th Annu. ACM Sympos. Comput.
Geom., pages 370-379, 1999.

J. Boissonnat and F. P. Preparata. Robust plane sweep for intersecting segments.
SIAM Journal on Computing, 23:1401-1421, 2000.

J.-D. Boissonnat, A. Cérézo, O. Devillers, J. Duquesne, and M. Yvinec. An algo-
rithm for constructing the convex hull of a set of spheres in dimension d. Comput.
Geom. Theory Appl., 6:123-130, 1996.

T. J. Bromwich. Quadratic forms and their classification by means of invariant
factors. Cambridge Tracts in Mathematics and Mathematical Physics, No. 3, 1906.
Reprint. Hafner, New York.

J. Canny. The Complezity of Robot Motion Planning. MIT Press, Cambridge,
MA, 1987.

T. Chan. Reporting curve segment intersection using restricted predicates. Com-
putational Geometry, 16:245-256, 2000.

B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. A singly exponential
stratification scheme for real semi-algebraic varieties and its applications. Theo-
retical Computer Science, 84:77-105, 1991.

E. Chionh, R. Goldman, and J. Miller. Using multivariate resultants to find the
intersection of three quadric surfaces. Transactions on Graphics, 10:378-400, 1991.

G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Proc. 2nd GI Conf. on Automata Theory and Formal Languages,
volume 6, pages 134-183. Lecture Notes in Computer Science, Springer, Berlin,
1975.

G. E. Collins and A. G. Akritas. Polynomial real root isolation using descartes’
rule of signs. In SYMSAC, pages 272-275, 1976.

G. E. Collins and R. Loos. Real zeros of polynomials. In B. Buchberger, G. E.
Collins, and R. Loos, editors, Computer Algebra: Symbolic and Algebraic Compu-
tation, pages 83-94. Springer-Verlag, New York, NY, 1982.

D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer, New
York, 1997.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2000, 2nd rev. edition.

154



BIBLIOGRAPHY

[24] O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Exact predicates for
circle arcs arrangements. In Proc. 16th Annu. ACM Symp. Comput. Geom., 2000.

[25] D. P. Dobkin and D. L. Souvaine. Computational geometry in a curved world.
Algorithmica, 5:421-457, 1990.

[26] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. A new algorithm for the robust
intersection of two general quadrics. submitted to Solid Modelling, 2002.

[27] H. G. Eggleston. Convezity. Cambridge Tracts in Mathematics and Mathematical
Physics, Cambridge University Press, 1958.

[28] R. T. Farouki, C. A. Neff, and M. A. O’Connor. Automatic parsing of degenerate
quadric-surface intersections. ACM Trans. Graph., 8:174-203, 1989.

[29] E. Flato, D. Halperin, I. Hanniel, and O. Nechushtan. The design and implemen-
tation of planar maps in cgal. In Proceedings of the 3rd Workshop on Algorithm
Engineering, Lecture Notes Comput. Sci., pages 154-168, 1999.

[30] F. Garvan. The MAPLE book. CRC Press, 2001.

[31] N. Geismann, M. Hemmer, and E. Schémer. Computing a 3-dimensional cell in
an arrangement of quadrics: Exactly and actually! In SOCG, 2001.

[32] N. Geismann, M. Hemmer, and E. Schémer. The convex hull of ellipsoids. In
SOCG wvideo track, 2001.

[33] C. G. Gibson. Elementary Geometry of Algebraic Curves. Cambridge University
Press, 1998.

[34] R. Gunning and H. Rossi. Analytic functions of several complex variables. Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1965.

[35] D. Halperin. Arrangements. In J. E. Goodman and J. O’'Rourke, editors, Handbook
of Discrete and Computational Geometry, chapter 21, pages 389-412. CRC Press
LLC, Boca Raton, FL, 1997.

[36] M. Hemmer. Realiable computation of planar and spatial quadric arrangements.
Universitat des Saarlandes, Saarbriicken, 2002. Master Thesis.

[37] C. Hoffmann. Geometric and Solid Modeling. Morgan-Kaufmann, San Mateo, CA,
1989.

[38] H. Hong. Subresultant under composition. Journal of Symbolic Computation,
23(4):355-365, 1997.

155



BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

C.-K. Hung and D. Ierardi. Constructing convex hulls of quadratic surface patches.
In Proc. 7th Canad. Conf. Comput. Geom., pages 255-260, 1995.

K. 1t6. Encyclopedic Dictionary of Mathematics. MIT Press, Cambridge, Mas-
sachusetts and London, England, 1996. Second Edition.

V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. The CORE Library Project,
1.2 edition, 1999. http://www.cs.nyu.edu/exact/core/.

G. L. Keith O. Geddes, Stephen R. Czapor. Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992.

J. Keyser, T. Culver, M. Foskey, D. Manocha, and S. Krishnan. Esolid - a system
for exact boundary evaluation. submitted to Solid Modeling, 2002.

J. Keyser, T. Culver, D. Manocha, and S. Krishnan. MAPC: A library for efficient
and exact manipulation of algebraic points and curves. In Proc. 15th Annu. ACM
Sympos. Comput. Geom., pages 360-369, 1999.

J. C. Keyser. Ezact boundary evaluation for curved solids. Univ. of North Carolina
at Chapel Hill, Chapel Hill, 2000. Ph.D. dissertation.

J. Levin. A parametric algorithm for drawing pictures of solid objects composed
of quadric surfaces. Commun. ACM, 19(10):555-563, Oct. 1976.

J. Levin. Mathematical models for determining the intersections of quadric sur-
faces. Comput. Graph. Image Process., 11:73-87, 1979.

K. Mehlhorn and S. Naher. LEDA — A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

V. Milenkovic. Calculating approximate curve arrangements using rounded arith-
metic. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 197-207, 1989.

J. Miller and R. Goldman. Combining algebraic rigor with geometric robustness for
the detection and calculation of conic sections in the intersection of two quadric
surfaces. In Proceedings of the Symposium on Solid Modeling and Applications,
pages 221-231, 1991.

J. R. Miller. Geometric approaches to nonplanar quadric surface intersection
curves. ACM Trans. Graph., 6:274-307, 1987.

J. R. Miller and R. Goldman. Geometric algorithms for detecting and calculating
all conic sections in the intersection of any two natural quadric surfaces. Graphical
Models and Image Processing, 57:55—66, 1995.

156



BIBLIOGRAPHY

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

P. S. Milne. On the solutions of a set of polynomial equations. In Symbolic and
Numerical Computation for Artificial Intelligence, pages 89-102. 1992.

B. Mishra. Computational real algebraic geometry. In J. E. Goodman and
J. O’'Rourke, editors, Handbook of Discrete and Computational Geometry, chap-
ter 29, pages 537-558. CRC Press LLC, Boca Raton, FL, 1997.

K. Mulmuley. A fast planar partition algorithm, II. J. ACM, 38:74-103, 1991.

K. Mulmuley. Computational Geometrie. Prentice Hall, Englewood Cliffs, NJ,
1994.

M. Neagu and B. Lacolle. Computing the combinatorial structure of arrange-
ments of curves using polygonal approximations. In Proceedings of the European
Workshop on Computational Geometry, 1998.

F. Nielsen and M. Yvinec. An output-sensitive convex hull algorithm for planar
objects. Technical Report 2575, Institut nationale de recherche en informatique at
en automatique, INRIA Sophia-Antipolis, 1995.

T. Papanikolaou. LiDIA Manual - A Library for Computational Number Theory.
Universitidt des Saarlandes, Saarbriicken, 1995.

P. Pedersen. Multivariate sturm theory. In Proceedings of Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes, pages 318-323, 1991.

F. P. Preparata and M. I. Shamos. Computational geometry and introduction.
Springer-Verlag, New York, 1985.

D. Prill. On approximations and incidence in cylindrical algebraic decomposition.
Siam J. Comput., 15(4):972-993, 1986.

A. Rege. A Toolkit for Algebra and Geometry. Univ. of California at Berkely,
Berkely, California, 1996. Ph.D. dissertation.

T. Sakkalis. The topological configuration of a real algebraic curve. Bulletin of
the Australian Mathematical Society, 43:37-50, 1991.

T. Sakkalis and R. T. Farouki. Singular points of algebraic curves. Journal of
Symbolic Computation, 9:405-421, 1990.

J. T. Schwartz. Fast probabalistic algorithms for verification of polynomial iden-
tities. J. of the ACM, 27:701-717, 1980.

O. Schwarzkopf and M. Sharir. Vertical decomposition of a single cell in a three-
dimensional arrangement of surfaces and its applications. Discrete Comput. Geom.,
18:269-288, 1997.

157



BIBLIOGRAPHY

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

R. Seidel. Convex hull computations. In J. E. Goodman and J. O’'Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 19, pages 361-375.
CRC Press LLC, Boca Raton, FL, 1997.

C.-K. Shene and J. K. Johnstone. On the planar intersection of natural quadrics.
In Proc. ACM Sympos. Solid Modeling Found. CAD/CAM Appl., pages 233-242.
Springer-Verlag, 1991.

J. Snoeyink and J. Hershberger. Sweeping arrangements of curves. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 6:309-349, 1991.

A. Tarski. A Decision Method for Elementary Algebra and Geometry. Univ. of
California Press, Berkely, 1951. second ed., rev.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, 1999.

R. J. Walker. Algebraic curves. Springer—Verlag, New York, Heidelberg, Berlin,
1978.

W. Wang, B. Joe, and R. Goldman. Rational quadratic parameterizations of
quadrics. Internat. J. Comput. Geom. Appl., 7:599-619, 1997.

W. Wang, B. Joe, and R. Goldman. Computing quadric surface intersections based
on an analysis of plane cubic curves. submitted to Trans. on Graphics, 2000.

R. Wein. High-level filtering for arrangements of conic arcs. submitted to ESA,
2002.

C. K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University
Press, New York, Oxford, 2000.

158



Summary

Computing arrangements of curves and surfaces is one of the fundamental problems in
different areas of computer science like computational geometry, algebraic geometry,
and solid modeling. As long as arrangements of lines and planes defined by rational
numbers are considered, all computations can be done over the field of rational numbers
avoiding numerical errors. In this case, algorithms are available that are efficient in
practice concerning their running time, and ezact in the sense that they always compute
the mathematical correct result, even for degenerate inputs.

When higher-degree algebraic curves and surfaces are considered instead of linear ones,
things are more difficult. In general, the intersection points of two planar curves or three
surfaces in 3-space defined by rational polynomials have irrational coordinates. That
means, instead of rational numbers, one has to deal with algebraic numbers. One way
to overcome this difficulty is to develop algorithms that use floating point arithmetic.
These algorithms are quite fast but can, because of approximation errors introduced
in the floating point computations, produce not just slightly inaccurate output but
completely wrong results. A second approach is to use exact algebraic computation
methods. Then of course the results are correct but the algorithms are in general very
slow.

Computing the mathematically correct topology of a cell in an arrangement of curved
surfaces efficiently is a challenging task. As far as we know, we are the first who
provide such an algorithm for a set of quadric surfaces in 3 dimensions [31]. Our
algorithm uses exact rational algebraic computation and it can handle every degenerate
input. A prototypical implementation shows that the theoretical results promise good

performance in practice.

Our approach operates similar to the cylindrical algebraic decomposition [19]. By
projection, it reduces the 3-dimensional problem to the one of computing planar ar-
rangements of algebraic curves of degree up to 4. The reduction is algebraically optimal
in the sense that it does not affect the algebraic degree of the problem we consider.
The curves in the planar arrangements can have 6 singular points and two curves can
intersect in up to 16 points. The coordinates of these event points are given as algebraic
numbers. The most important problem we face is founded in the high degree of these
polynomials.

Using partial derivatives, resultant computation, and root isolation, the problem of
computing the event points of the planar arrangements is reduced to the problem of
answering questions of the following form: Given two curves f and g of degree at most
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4 and a box with rational corners containing at most one intersection point of f and
g, determine whether f and g have an intersection point inside the box. Transversal
intersection points are easy to compute by determining the sequence of hits of the curves
with the boundary of the box. The more difficult points are tangential intersections and
singular points. For these points the sequence of hits provides no information about
the behavior of the curves inside the box.

We present a new method to test boxes for non-singular tangential intersections. This
is done by introducing an additional curve, which we call the Jacobi curve, in the
arrangement. To the best of our knowledge, we are the first who consider an auxiliary
curve in order to solve tangential intersections. We prove that at an intersection point
of multiplicity 2, the Jacobi curve cuts transversally through both involved curves. This
fact enables us to reduce the problem of detecting tangential intersections of multiplicity
2 to the one of locating transversal intersections.

We generalize our method of introducing a new curve to the arrangement. This leads
to an algorithm for arbitrary planar arrangements that determines all boxes containing
tangential intersections. The drawback is that it works only if we know in advance that
a box contains no singular point of one of the curves.

For locating the singular points of the curves we make use of the fact that we consider
projected intersection curves of quadrics. We prove that at most two singular points
result from the projection, in the sense that two non-intersecting branches of the spatial
intersection curve are projected on top of each other. We show how to compute the
coordinates of these singular points as roots of quadratic rational polynomials. In most
cases we also succeed in expressing the coordinates of the remaining singular points as
roots of quadratic rational polynomials. Only in the case that the spatial intersection
curve consists of four lines does computing the coordinates require a second square
root.

In one sense the work recently done by Dupont, Lazard, Lazard, and Petitjean [26]
leads to the same result as ours, namely that computing with quadric surfaces can be
done exactly and efficiently in all cases, by working over the rationales with only few
additional square roots. But their approach directly works in space and searches for
a parameterization of the intersection curves. This way of solving the problem is not
extendible to more complicated surfaces. The methods presented in our work can also
be applied to arbitrary algebraic curved surfaces. Only for computing singular points
in the planar arrangement do we make use of the fact that we consider quadric input
surfaces. In that sense, our work is a first and important step towards an efficient and
exact algorithm for computing arrangements of arbitrary algebraic surfaces.

160



Zusammenfassung

In verschiedenen Bereichen der Informatik, wie zum Beispiel der Algorithmische Ge-
ometrie, der Computer Algebra und des Solid Modelings, ist das Berechnen von Ar-
rangements, die von Kurven und Flichen erzeugt werden, ein grundlegendes Problem.
Solange Arrangements von Linien und Ebenen, die durch rationale Zahlen definiert sind,
betrachtet werden, konnen alle Berechnungen iiber dem Korper der rationalen Zahlen
durchgefithrt werden. Das verhindert das Auftreten numerischer Fehler. In diesem Fall
sind Algorithmen bekannt, die sowohl effizient bezuglich ihrer realen Laufzeit sind, als
auch ezakt das jeweils richtige mathematische Ergebnis berechnen, selbst fiir degener-
ierte Eingaben.

Das Problem wird schwieriger, falls man statt linearer Kurven und Fliachen solche mit
hoéherem algebraischen Grad betrachtet. Im Allgemeinen haben Schnittpunkte von
zwel Kurven oder drei Fliachen, selbst wenn sie durch rationale Polynome definiert
sind, irrationale Koordinaten. Anstelle rationaler Zahlen muss man mit algebraischen
Zahlen rechnen. Eine Moglichkeit, das Problem zu losen, stellt die Verwendung von
FlieBkomma-Arithmetik dar. Algorithmen, die auf dieser Grundlage arbeiten, sind sehr
schnell. Aber in degenerierten Situationen kann es passieren, dass sie statt einer leicht
ungenauen Ausgabe sogar ein falsches Ergebnis liefern. Ein zweiter Ansatz basiert auf
exakten algebraischen Berechnungen. Algorithmen, die darauf basieren, berechnen alle
Ausgaben korrekt, sind aber im allgemeinen sehr langsam.

Die mathematisch korrekte Topologie einer Zelle in einem Arrangement von
gekriimmten Flachen effizient zu berechnen, stellt ein schwieriges Problem dar. Soweit
uns bekannt ist, sind wir die ersten, die dieses Problem fiir eine Menge von quadratis-
chen Flichen im Raum 16sen [31]. Unser Algorithmus basiert auf exakten algebraischen
Berechnungen und kann jede degenerierte Eingabe behandeln. Eine prototypische Im-
plementierung zeigt, dass unsere theoretischen Ergebnisse eine gute Laufzeit in der
Praxis versprechen.

Unser Ansatz arbeitet dhnlich wie die zylindrische algebraische Zerlegung [19]. Durch
Projektion wird das 3-dimensionale Problem auf mehrere 2-dimensionale reduziert,
jedes bestehend aus der Berechnung eines planaren Arrangements algebraischer Kurven
vom Maximalgrad 4. Die Reduktion ist also algebraisch optimal in dem Sinne, dass der
algebraische Grad des Problems nicht verandert wird. Die Kurven in einem planaren
Arrangement konnen bis zu 6 singulire Punkte aufweisen und zwei Kurven kénnen sich
in bis zu 16 Punkten schneiden. Wir kennen die Koordinaten dieser Punkte nur als
algebraische Zahlen. Der hohe Grad der auftretenden Polynome stellt dabei das grofite
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Problem dar.

Durch das Berechnen von partiellen Ableitungen, Resultanten und isolierenden Inter-
vallen von Nullstellen kann die Berechnung der Ereignispunkte eines planaren Arrange-
ments reduziert werden auf die Beantwortung von Fragen folgenden Typs: Gegeben sind
zwei Kurven f und g vom Maximalgrad 4 und ein Rechteck in der Ebene mit rationalen
Eckpunkten, das hochstens einen Schnittpunkt von f und g enthilt. Bestimme, ob f
und g einen Schnittpunkt in dem Rechteck haben. Transversale Schnittpunkte kénnen
leicht erkannt werden, indem man die Reihenfolge bestimmt, in der die Kurven den
Rand des Rechtecks schneiden. Tangentiale Schnitte und singulire Punkte sind weit
schwieriger zu bestimmen. Fiir diese Punkte sagt die Reihenfolge der Kurven auf dem
Rand des Rechtecks nichts tiber ihr Verhalten im Inneren aus.

Wir prisentieren eine neue Methode, mit deren Hilfe man Rechtecke auf nicht singulire
tangentiale Schnitte iiberpriifen kann. Dieses wird durch das Hinzufiigen einer neuen
Kurve, die wir Jacobi Kurve nennen, zu dem Arrangement realisiert. Soweit wir wissen,
sind wir die ersten, die eine zusitzliche Kurve betrachten, um tangentiale Schnitte zu
l6sen. Wir zeigen, dass in einem Schnittpunkt der Multiplizitit 2 die Jacobi Kurve beide
an dem Schnitt beteiligten Kurven transversal schneidet. Dieses Ergebnis erlaubt es,
die Bestimmung tangentialer Schnitte der Multiplizitat 2 auf die transversaler Schnitte
zuriickzufiihren.

Wir verallgemeinern das Prinzip, tangentiale Schnitte anhand einer zusitzlichen Kurve
zu bestimmen. Dieses fiihrt zu einem Verfahren, mit dessen Hilfe man in allgemeinen
planaren Arrangements algebraischer Kurven alle Rechtecke mit tangentialen Schnitten
bestimmen kann. Unser gesamter Ansatz hat jedoch einen Nachteil. Er ist nur dann
anwendbar, wenn man ausschliefen kann, dass das zu untersuchende Rechteck einen
singuldren Punkt einer der Kurven enthalt.

Um die singularen Punkte der Kurven zu bestimmen, benutzen wir die Tatsache, dass es
sich um projizierte Schnittkurven von Quadriken handelt. Wir zeigen, dass hochstens
zwei singuliare Punkte von der Projektion herrithren, in dem Sinne, dass zwei sich
nicht schneidende Aste einer raumlichen Schnittkurve iibereinander projiziert werden.
Wir zeigen, wie man die Koordinaten dieser singuldaren Punkte als Nullstellen von
quadratischen rationalen Polynomen berechnet. In fast allen Fallen kénnen wir auch
die Koordinaten der iibrigen singuliaren Punkte als Nullstellen von quadratischen ra-
tionalen Polynomen angeben. Nur fiir den Fall, dass die rdumliche Schnittkurve aus
vier Geraden besteht, ben6tigen wir zum Berechnen der Koordinaten eine zusétzliche
Quadratwurzel.

In gewisser Hinsicht fithrt das kiirzlich von Dupont, Lazard, Lazard und Petitjean [26]
vorgestellte Resultat zu dem gleichen Ergebnis wie unsere Arbeit. Man kann Berech-
nungen mit quadratischen Flachen exakt und effizient in allen Fallen nur unter Ver-
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wendung weniger Quadratwurzeln durchfithren. Der Ansatz der Franzosen arbeitet im
Raum und bestimmt die Parametrisierungen der Schnittkurven. Diese Vorgehensweise
ist nicht auf kompliziertere Flichen verallgemeinerbar. Die von uns vorgestellten
Methoden konnen auf beliebige gekriimmte algebraische Fachen angewandt werden.
Lediglich fiir das Berechnen der singuliren Punkte haben wir Gebrauch von der Tat-
sache gemacht, dass es sich bei der Eingabe um Quadriken handelt. In diesem Sinne ist
unsere Arbeit ein erster und wichtiger Schritt in Richtung eines effizienten und exakten
Verfahrens zur Berechnung von Arrangements beliebiger algebraischer Flichen.
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