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Abstract

We study two problems that arise in the field of graph drawing. In both problems, we have
to optimize a function over the set of all embeddings of a planar graph. The algorithms we
have developed to solve the problems rely on the data structure SPQR-tree which represents
the set of all embeddings of a planar biconnected graph. The first problem we consider is
the problem of inserting an additional edge into a planar graph with the minimum number of
crossings. We have found a linear time algorithm to solve this previously unsolved problem
to optimality. The second problem is finding an orthogonal drawing of a planar biconnected
graph with the minimum number of bends. This problem is known to be NP-hard. Using the
SPQR-tree, we have developed an integer linear program that is constructed recursively and
represents all embeddings of a graph. By combining it with a linear program that describes
all orthogonal representations of a graph for a fixed embedding, we have constructed a mixed
integer linear program where an optimal solution corresponds to an orthogonal representation
with the minimum number of bends over all embeddings of the graph. Solving this program
with a commercial mixed integer solver is for large graphs faster than using a previously known
branch and bound algorithm for the bend number minimization problem.

Kurzzusammenfassung

Wir untersuchen zwei Probleme auf dem Gebiet des Zeichnens von Graphen. Bei beiden
Problemen geht es darum, eine Funktion iiber der Menge aller Einbettungen eines planaren
Graphen zu optimieren. Die Algorithmen, die wir fiir beide Probleme entwickelt haben, benut-
zen SPQR-Biume. Ein solcher Baum représentiert die Menge aller Einbettungen eines planaren
Graphen. Das erste von uns betrachtete Problem ist das Einfiigen einer zuséitzlichen Kante in
einen planaren Graphen mit mdoglichst wenigen Kreuzungen. Wir haben einen Algorithmus
mit linearer Laufzeit entwickelt, der dieses Problem optimal 16st. Das zweite Problem ist das
Berechnen einer orthogonalen Zeichnung mit der minimalen Anzahl von Knicken fiir einen pla-
naren zweizusammenhingenden Graphen. Es ist bekannt, dass dieses Problem NP-schwer ist.
Wir benutzen den SPQR-Baum, um ein ganzzahliges lineares Programm zu entwickeln. Die-
ses wird rekursiv berechnet und seine Losungen entsprechen den Einbettungen des Graphen.
Dieses ganzzahlige lineare Programm haben wir mit einem linearen Programm kombiniert, bei
dem eine optimale Loésung einer orthogonalen Reprisentation des Graphen mit der minimalen
Knickanzahl fiir eine feste Einbettung entspricht. Das Resultat ist ein gemischt-ganzzahliges
lineares Programm, bei dem eine optimale Losung einer orthogonalen Reprisentation des Gra-
phen entspricht, die knickminimal iiber alle méglichen Einbettungen des Graphen ist. Wir Lisen
dieses Programmes mittels eines kommerziellen Losers fiir gemischt-ganzzahlige Programme.
Unsere Experimente zeigen, dass dieses Vorgehen fiir grofle Graphen schneller zum Ziel fiithrt
als das Losen des selben Problems mit Hilfe eines bekannten Branch & Bound Algorithmus.
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Chapter 1

Introduction

A graph is a mathematical structure often used to model the relationships between objects. It
consists of vertices and pairs of vertices that are called edges. One way of defining a graph is as
a list of its vertices and edges. We can also describe it as a two-dimensional matrix indexed by
the vertices where the entries are the edges. But in most cases, a drawing of the graph conveys
the information stored in it much easier to a human than a textual representation.

The most common way of drawing a graph is the following: The vertices are drawn as
shapes in the plane and the edges as lines connecting these shapes. A point where two of the
lines meet is called a crossing if it is not the representation of a vertex. Graphs that can be
drawn in the plane without any crossings are called planar graphs and the drawings without
crossings planar drawings.

The set of different planar drawings of a planar graph is infinite, but it can be divided into
a finite set of equivalence classes of drawings called the embeddings of the graph. We say a
drawing realizes a certain embedding IT if it belongs to the equivalence class II. All drawings
that realize the same embedding are in a topological sense equivalent. One way of defining an
embedding is by the circular sequence of the edges around each vertex in clockwise order. See
Figure 1.1(a) and 1.1(b) for a small example of two different embeddings of a graph.

(a) (b)

Figure 1.1: Two different drawings of the same planar graph that realize different embeddings.
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The data structure SPQR-tree represents the decomposition of a planar biconnected graph
into its triconnected components. We can easily enumerate the embeddings of each of these
components. The combination of the embeddings of the components defines an embedding of
the original graph. Therefore, we can use the SPQR-tree to enumerate all embeddings of a
biconnected planar graph. By fixing only the embeddings of some of the components in the
SPQR-tree, the tree can represent a set of embeddings.

SPQR-trees are so useful because there are many interesting problems concerning planar
graphs that are easy to solve if the embedding of the graph is given but more difficult if the
embedding is not part of the input. These problems are also easy to solve for triconnected
graphs, because they have only two different embeddings that are mirror images of each other.
In contrast, a biconnected graph can have an exponential number of different embeddings.

Now assume that we want to solve a problem for biconnected planar graphs that we can
easily solve if the embedding is fixed. It follows that we can solve it for the triconnected
components of the SPQR-tree of that graph. If we can find a way to combine the solutions for
the components to construct a solution for the original graph, we have found an algorithm for
solving the problem for biconnected graphs where the embedding is not fixed.

We used this approach to solve the following problem: Given a planar graph G and an
additional edge e. Let G’ be the graph G together with the new edge e. We want to find a
drawing of G’ with the minimum number of crossings under the condition that edges of G do
not cross each other. This problem is part of the planarization method for drawing non planar
graph.

If the embedding of G is fixed, this problem can be solved quickly and easily by computing a
shortest path in the slightly modified dual graph of G. This graph is defined by the embedding
of G. Using the properties of SPQR-trees, we developed an algorithm for solving this problem
in the case where the embedding of G is not fixed. We use the algorithm for fixed embeddings
on the triconnected components in the SPQR-tree and then combine the solutions to construct
a solution for G. Our new method runs in linear time just like the method for fixed embeddings.

Here is another way of using the properties of SPQR-trees to solve a problem for biconnected
planar graphs if we can solve it for a fixed embedding: Assume that there is a linear program
or integer linear program L; that models the problem for the case where the embedding is
fixed. We have developed a method for computing an integer linear program Lo where the set
of solutions corresponds to the set of embeddings of a planar biconnected graph. If we combine
L; and Ls, we have an integer linear or mixed integer linear program that can be used to solve
the original problem for biconnected planar graphs if the embedding is not part of the input.

This is the approach that we used for the bend-minimization problem. The input for this
problem is a biconnected planar graph G and we want to find an orthogonal drawing of G where
the number of bends is minimal. In an orthogonal drawing, all edges are drawn as sequences
of horizontal and vertical line segments. A bend is a point where a vertical and a horizontal
segment of the same edge meet.

There is a well known algorithm for solving this problem if the embedding of G is fixed.
It has been shown that the problem is NP-hard if the embedding is not fixed. The algorithm
for a given embedding constructs a minimum cost flow network where the optimum solution
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corresponds to a drawing of G with the minimum number of bends. This minimum cost flow
network can easily be transformed into a linear program.

We combined this linear program with our new integer linear program that describes all
embeddings of a graph. The result is a mixed integer linear program where the optimum
solution corresponds to a drawing of G with the minimum number of bends over all embeddings.
We use a commercial mixed integer solver to compute the solutions. Our computational results
show that this approach outperforms the previously known branch & bound method if the graph
exceeds a certain size.

1.1 Graph Drawing

Graph drawing is the art of visualizing graphs. The goal is to generate a picture where the
user can easily read off which vertices are connected by an edge. This thesis deals with several
aspects in the field of automatic graph drawing, where the goal is to let the computer generate
a good picture of a graph. A good overview of algorithms used in graph drawing has been
written by Battista, Eades, Tamassia, and Tollis (1). Another survey on this topic has been
edited by Kaufmann and Wagner (36).

There are many fields of science where graph drawings are used to visualize relationships
between objects. The reason is that almost all scientific fields are dealing with complex sys-
tems of interacting entities. To understand these systems, it is necessary to understand the
relationships between the objects.

In social science, the researchers are often working on networks of people in a group like
the workers in a company. These relationships are usually visualized in a drawing where the
actors are drawn as shapes of different types, depending on their function. The relationships
are drawn as lines of different color and style, depending on the nature of the relationship.

There are also several applications of graph drawing in economic sciences. Business pro-
cesses are often visualized as graph drawings where the basic tasks are represented by the
vertices and there is an edge from one vertex to another if the task represented by the first
vertex has to be executed before the task represented by the second vertex.

Another application in the field of economic sciences is the drawing of organization charts
where the relationships between organizational units are visualized. A similar application are
diagrams that show the ownership relations between companies (see Figure 1.2).

In software engineering, graph drawing plays an important role in the design of information
systems and in reverse engineering. Examples are call graphs of functions and class diagrams.
The vertices in a call graph represent functions and there is an edge from one vertex to another
if the function represented by the first vertex calls the function represented by the second
vertex. In class diagrams, the vertices represent the classes in an object oriented design. The
edges can represent class inheritance or the fact that a method of one class calls the method
of another class.

Another area where graphs are drawn is in database design. In this field, designers use a
graphical language called entity relationship model (ERM). The objects in the database are
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Figure 1.2: A graph that shows ownership relations of Spanish companies (33).

drawn as different shapes and lines connecting these shapes show connections between the
objects.

There are many different ways to draw a graph. Depending on the application, a drawing
has to meet a set of requirements. A set of requirements is called a drawing convention. As
an example, we may want that all vertices have the same shape and size and that all edges are
drawn as straight line segments. Or we may allow different vertex sizes and all edges have to
be polylines consisting of a sequence of vertical and horizontal line segments.

Not every drawing that satisfies a drawing convention for a particular application is a good
drawing. To be easily readable, a graph drawing should satisfy aesthetic criteria, too. The
following criteria are the most important for almost all applications:

e Small number of crossings. If a drawing contains many points where edges that
are not connected to the same vertex meet, then it becomes quite difficult to follow
the edges. The reader needs more time to figure out which vertices are connected. For
most applications, this criterion is considered the most important. See Figure 1.3 for an
example that shows two drawings of the same graph, one with many crossings and one
with only one crossing.

e Small number of bends. If edges are drawn as polylines consisting of horizontal and
vertical line segments (like in Figure 1.2), it is desirable that each edge consists only of a
small number of segments. If an edge consists of many segments, the reader will find it
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Figure 1.3: Two drawings of the same graph with different number of crossings.

difficult to locate the vertices connected by the edge. Figure 1.4 shows two drawings of
the same graph with different number of bends.

Figure 1.4: Two drawings of the same graph with different numbers of bends.

e Small drawing area. If we generate a drawing that is to be displayed on a computer
screen or printed on a printer, then it is always drawn on a grid. The reason is that all
output devices of a computer have limited resolution. It is desirable that the smallest
rectangle that encloses the computed drawing covers a small number of grid points. When
we scale the picture to fit on the output device, a drawing with small area will show the
vertices and edges of the drawing larger then a drawing that covers a large area. This
effect is obvious in Figure 1.4. Although the drawing on the left takes up more area of
the page, the vertices in the drawing on the right can be drawn larger. The reason is
that the drawing on the right can be enclosed in a smaller rectangle when drawn on the
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same grid as the drawing on the left. We want to draw the edges and vertices as large as
possible. Therefore, it is important that the drawing can be enclosed in a small rectangle
on the grid.

e Small edge length. We want the edges to be short because this implies that related
objects are drawn close together. The average edge length should be small as well as the
length of the longest edge.

e Symmetry. Some graphs can be drawn in such a way that the drawing is symmetric.
A symmetric drawing can lead to a deeper understanding of the graph because the ge-
ometric symmetry in the drawing corresponds to an automorphism in the graph. It is
also desirable to draw a graph such that the drawing is almost symmetric if only a small
change in the graph is needed to make a symmetric drawing possible.

There are many other aesthetic criteria, but the ones mentioned above are considered the
most important for most applications. The problem is that all these criteria are difficult to
optimize and that some may contradict each other. Often, a symmetric drawing has a greater
number of crossings than the drawing with the minimum number of crossings. Figure 1.5 shows
a primitive example for this case.

Figure 1.5: Two drawings of the same graph. The drawing on the left maximizes symmetry
while the drawing on the right minimizes the number of crossings

In this thesis, we concentrate on the first two aesthetic criteria: the number of crossings
and the number of bends in an orthogonal drawing. In Chapter 3, we investigate the prob-
lem of inserting an edge into a planar graph such that the number of generated crossings is
minimized. The resulting algorithm can be used in a heuristic to draw arbitrary graphs such
that the number of crossings is small. In Chapter 4, we develop an algorithm for computing
an orthogonal drawing of a biconnected planar graph with the minimum number of bends.
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1.2 SPQR-Trees

SPQR-trees were introduced by Di Battista and Tamassia and represent the decomposition of
a biconnected graph into triconnected components. They can also be used for enumerating
all embeddings of a planar graph. Embeddings of a planar graph describe the topology of a
drawing without edge crossings. One way of describing an embedding is by the sequence of
incident edges around each vertex in clockwise order. The fact that SPQR-trees can enumerate
all embeddings of a biconnected graph motivated us to use them in our attempt to solve the
two problems investigated in this thesis.

Let us assume that there is an algorithm for solving a certain problem when the input is a
planar biconnected graph and a fixed embedding. Then we can solve the problem for the case
where the input is only the planar graph by enumerating all embeddings using the SPQR-tree
of the graph and applying the original algorithm to each embedding. The problem with this
approach is that the number of different embeddings of a planar graph can be exponential in
the size of the graph.

A configuration of the SPQR-tree of a graph G defines an embedding of G. If we only define
parts of the configuration of the tree, we can represent partial embeddings of G. A partial
embedding represents a subset of all embeddings of G. Assume that we want to optimize some
function over the set of all embeddings. If we can compute bounds for the value of this function
for the set of embeddings represented by a partial embedding, we can construct a branch and
bound algorithm for the optimization problem. This approach is used by Bertolazzi, Battista,
and Didimo (9) in the construction of a branch and bound algorithm for the bend minimization
problem in orthogonal drawings.

1.3 Application of SPQR-Trees in this Thesis

SPQR-trees decompose a biconnected graph into triconnected components. Assume that we
are investigating a problem that can be solved quickly using a certain algorithm for the case
where the input graph is triconnected. As we have already stated at the beginning of this
introduction, one way of solving such a problem for biconnected graphs is to apply the known
algorithm to the triconnected components of the graph and then to merge the obtained solutions
into a solution for the original graph using the structure of the SPQR-tree.

This is the approach we used for the problem of inserting an edge into a planar graph G
with the minimum number of crossings. If G is triconnected or the embedding of G is fixed, we
can use a well known linear time algorithm to solve the problem to optimality. This algorithm
finds a shortest path in a modified dual graph of G and translates this path into a list of
crossings that are needed to insert the edge.

The algorithm finds the optimum solution in the triconnected case because the embeddings
of a triconnected graph are all equivalent with respect to the insertion of a new edge. We do
not have to consider all possible embeddings to compute a solution with the minimum number
of crossings. This is not the case when the graph is not triconnected.
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Before we investigated the problem, there was no polynomial algorithm known to solve the
problem for the case where the original graph is not triconnected. Our result is that it suffices
to apply the algorithm for fixed embeddings to certain subgraphs of the original graph that are
defined by the SPQR-tree. This enables us to solve the problem in linear time.

The situation is similar for the bend minimization problem. If the embedding of a graph
is fixed, there is a well known algorithm based on network flows to compute an orthogonal
drawing of the graph with the minimum number of bends. Furthermore, it is known that the
problem is NP-hard if the embedding is not fixed (24).

As already mentioned, there is a branch and bound algorithm for solving the problem for
biconnected graphs in the case where the embedding is not fixed (9). We want to apply integer
linear programming methods to the problem.

Our first step was to find an integer linear program where the set of solutions corresponds
to the set of embeddings of the graph. We achieved this by first defining this integer linear
program for the triconnected components of the graph. Then we used the structure of the
SPQR-tree to recursively combine the programs into a program where the set of solutions
corresponds to the embeddings of the whole graph. This is the first integer linear program
formulation of the set of embeddings of a graph.

In the second step, we combined this integer linear program with a linear program where
the optimum solution describes an orthogonal representation of the graph with the minimum
number of bends for a fixed embedding. The result is a mixed integer linear program where an
optimum solution corresponds to an orthogonal representation of the graph with the minimum
number of bends over all embeddings of the graph. We solve this program using a commercial
mixed integer solver.

1.4 Inserting an Edge into a Planar Graph

One of the most important aesthetic criteria in graph drawing is the number of edge crossings.
A drawing with a large number of crossings is not easily readable. Unfortunately, it is in
general NP-complete to decide if a graph can be drawn with &k crossings for a positive integer k
(23). There is no algorithm known for computing the crossing number (the minimum number
of crossings in a drawing of the graph) even for graphs of moderate size (say 20 vertices) in
reasonable time.

Therefore, heuristics are used to compute drawings of graphs with few crossings. One of the
best methods is known as the planarization method. It works in two steps: First, a preferably
small number of edges is deleted from the graph to make it planar (drawable without crossings).
Then the deleted edges are inserted one by one, hopefully generating only a small number of
crossings.

The insertion step always inserts one edge into a planar graph such that the edges of the
planar graph do not cross in the resulting drawing. If crossings are generated, they all involve
the inserted edge. After inserting the edge, the crossings are replaced by dummy vertices of
degree four to produce a planar graph. An example for this step is shown in Figure 1.6. Then
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the next edge can be inserted in the same way. In a post-processing step, the dummy vertices
are replaced by real crossings.

Figure 1.6: Dummy vertices (drawn as grey disks) have been inserted into the graph to get rid
of crossings generated by inserting the edge connecting the vertices drawn as grey squares.

Before we investigated the problem, the edge insertion step was performed by choosing an
arbitrary embedding of the planar graph and then using a shortest path algorithm on the dual
graph. The resulting solution guarantees that the number of crossings generated is minimal
for the chosen embedding but not for all possible embeddings.

Our new approach consists of two algorithms. The first algorithm is used if the problem
graph is biconnected. The second algorithm is used if the graph is connected but not bicon-
nected. The algorithm for connected graphs calls the algorithm for biconnected graphs as a
subroutine. If the graph is not connected and the two vertices of the new edge are in different
connected components, it is easy to find an embedding where the new edge can be inserted
without producing crossings. Otherwise, we can use the algorithm for connected graphs.

Our algorithms do not in fact compute an embedding of the input graph, but they compute
a list of edges that have to be crossed by the new edge. We call this list of edges an edge
insertion path. To compute the embedding, a linear time post-processing step is needed: We
insert dummy vertices on all the edges in the computed list and connect them in the order given
by the list. The dummy vertex on the first edge of the edge insertion path is then connected to
the first vertex of the new edge and the dummy vertex on the last edge of the list to the second.
The result is a path that connects the first vertex of the new edge via the dummy vertices (see
Figure 1.6 for an example). Then we can call a linear time embedding algorithm for computing
a planar embedding of the resulting graph. Removing the added edges and dummy vertices
from this embedding results in an embedding of the original graph.

The algorithm for connected graphs first builds the block tree of the graph where the nodes
are the vertices and biconnected components of the graph. We use this graph to identify the
biconnected components whose embedding may have an influence on the number of crossings
when we insert the new edge. We also identify a pair of vertices in each of these components
that act as representatives for the two vertices that we want to connect. Then we call the
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algorithm for biconnected graphs for each of the components as if we wanted to connect the
representatives. In the last step, we just have to concatenate the resulting lists of edges to
produce an edge insertion path for inserting the new edge.

The algorithm for biconnected graphs works similar to the one for connected graphs. We
first compute the SPQR-tree of the graph. Every node in the tree is associated with a special
graph called the skeleton of the node. The embedding of a skeleton controls part of the
embedding of the original graph. By inspecting the SPQR-tree, we can identify the nodes in
the tree where the choice of the embedding for the skeleton may have an impact on the number
of crossings generated when inserting the new edge. These nodes are on the critical path in the
tree with respect to the two vertices we want to connect.

It turns out that only one of the four types of nodes in an SPQR-tree are important for
the number of crossings, so we can restrict our attention to the nodes of this type on the
critical path. For each of the skeletons of these nodes we compute a list of edges that have to
be crossed by the new edge. The process works as follows: First, we replace certain edges of
the skeleton by subgraphs of the original graph. Then we compute an arbitrary embedding of
the resulting graph. Since we have a fixed embedding, we can now compute the dual of this
graph. By computing a shortest path in the dual graph, we get the list of edges we want to
compute. When we have finished this operation for all the nodes on the critical path, we can
just concatenate the computed lists to produce an edge insertion path for inserting the new
edge with the minimum number of crossings into the graph.

An important element of the proof of correctness for this approach is that the necessary
crossings when inserting an edge into a planar graph only depend on the parts of the graph
that are subdivisions of triconnected graphs. A subdivision of a graph is generated by splitting
edges and inserting new vertices. If a graph does not contain a subdivision of a triconnected
graph, we can insert any edge without crossings.

Another fact about biconnected planar graphs that we use in our algorithm is the following;:
If a part of the graph, that is connected to the rest of the graph only via a pair of vertices,
does not contain any of the two vertices that should be connected, then the embedding of this
part has no influence on the number of necessary crossings. This can be seen as follows: If
there is an optimal way of inserting the edge such that it does not cross any of the edges in
the subgraph, it is obvious that the embedding of this subgraph does not matter. Otherwise,
the new edge has to cross a certain number of edges in the subgraph to traverse it. We show
via induction that the number of crossings necessary to traverse the subgraph is independent
of its embedding.

Using the two facts mentioned above, we can show that the edge insertion path computed
by our algorithm has the minimum length among all edge insertion paths. It follows that there
is no better way of inserting the edge than to cross all the edges in the computed edge insertion
path. This is true for all possible embeddings of the graph.

The running time of the algorithm is linear in the size of the input graph. We do not have
to distinguish between the number of vertices or edges in this statement because the number of
edges in a planar graph with more than two vertices is is at most 3n — 6 where n is the number
of vertices. Note that solving the problem for a fixed embedding by finding the shortest path
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in the dual graph needs linear time, too. The first reason for the linear running time is that
the graphs for which we compute shortest paths in the dual graph during the algorithm are
disjoint. The second reason is that the union of all these graphs is only by a constant factor
larger than the problem graph.

We wanted to know how the new algorithm performs when used in the planarization frame-
work. Note that although our algorithm inserts one edge optimally into a planar graph, it
can not guarantee that repeated use to insert several edges will result in a drawing with the
minimum number of crossings. Therefore, it is not self evident that replacing the standard
shortest path algorithm in the planarization method with our new algorithm will reduce the
number of crossings in the computed drawing if more than one edge has to be inserted.

Fortunately, our computational results on a set of benchmark graphs show that the new
algorithm performs better when used in the planarization method then the standard algorithm
that chooses an arbitrary embedding and inserts the edge by computing a shortest path in
the dual graph. On average, using our new algorithm results in 14 percent less crossings than
using the standard algorithm. There are a few graphs where the new approach results in
more crossings, but these cases are rare and the difference in the number of crossings is small.
Since the asymptotic running time for the standard planarization method is the same as the
asymptotic running time for our new approach, the new algorithm can be applied wherever the
standard method is used.

Our new algorithm does not solve the crossing minimization problem even if only one edge
has to be deleted from the graph to make it planar. Graham Farr (20) has found a graph where
inserting one particular edge destroys planarity and where our algorithm computes a drawing
where the crossing number is an arbitrary high multiple of the crossing number of the resulting
graph.

The reason for this fact is that our algorithm computes a drawing of the graph together
with the additional edge with the minimum number of crossings under the constraint that all
other edges in the graph do not cross each other. This means that removing the additional
edge from the computed drawing results in a planar drawing. If we remove this constraint, it
is sometimes possible to construct a drawing with fewer crossings by letting other edges in the
graph cross each other.

This is the case in the set of graphs found by Graham Farr. If the graph without the
additional edge must be drawn without crossings, we need a number of crossings that grows
with the size of the graph. If this constraint is removed, we can always construct a drawing
with just two crossings, independent of the size of the graph.

1.5 Bend Minimization in Orthogonal Drawings

In an orthogonal drawing of a graph, all edges are drawn as sequences of horizontal and
vertical line segments. An example is the drawing in Figure 1.2 on page 4 that shows the
relationships between Spanish companies. This is the preferred method for drawing graphs
like entity relationship models that are used in database design. The point where a horizontal
line segment meets a vertical line segment of the same edge is called a bend. In an orthogonal
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drawing with a high number of bends, it is difficult to follow the edges and to find out if two
vertices are connected by an edge. Therefore, it is important to draw a graph with a small
number of bends (see Figure 1.4 on page 5 for an example of a drawing with many bends and
a drawing of the same graph with a small number of bends).

It is well known that an orthogonal drawing of a graph with the minimum number of bends
is computable in polynomial time if the embedding is fixed. This can be done by transforming
the problem into a minimum cost flow problem. The first such algorithm was described by
Tamassia (47). If the embedding of the graph is not fixed, it is NP-complete to decide if the
graph can be drawn with a certain number of bends (24).

There is a branch and bound algorithm for finding an orthogonal drawing of a planar
biconnected graph with the minimum number of bends (9). In this thesis, we attack the same
problem using integer linear programming methods. To achieve this, we first developed an
integer linear program (ILP) where the solutions correspond to the set of all embeddings of a
planar biconnected graph. Then we combined this ILP with a linear program that describes
all orthogonal representations of a graph for a fixed embedding. The resulting mixed integer
linear program describes all orthogonal representations of a biconnected planar graph and can
be used to compute an orthogonal representation with the minimum number of bends.

Again, we use the property of SPQR-trees that they can represent all embeddings of a
planar biconnected graph. It is easy to construct ILPs that describe all embeddings of the
skeletons in an SPQR-tree. The reason is that skeletons are either triconnected or have a
simple structure. Therefore, we can easily describe the set of all embeddings of a skeleton as
the solutions of an ILP. The binary variables in these programs correspond to directed cycles
in the skeletons.

We have found a way of combining the ILPs computed for components of a graph. The
resulting ILP describes the set of all embeddings of the original graph. This enables us to
compute an ILP for the original graph recursively. We get the program for the original graph
by combining the ILPs for certain components of the graph recursively. The recursion stops at
the skeletons of the nodes in the SPQR-tree.

We combine the ILPs of the components by lifting their constraints. Lifting is the process
of computing the coefficients for the variables of a higher dimensional problem in a constraint
computed for a lower dimensional problem. This enables us to reuse constraints computed for
lower dimensional problems in a higher dimensional problem. In our case, we also need some
additional constraints when we combine the ILPs of subproblems to compute the ILP for the
original problem.

Another way of looking at this process is the following: First, we compute ILPs for the
skeletons of the nodes in the SPQR-tree of the graph. Then we combine these ILPs to form
the ILPs of larger units of the graph and repeat the process until we have constructed an
ILP for the whole graph. In each combination step, we have to lift all previously computed
constraints and add new constraints, that form the connection between the smaller ILPs. To
our knowledge, this is the first time that such a recursive approach was used to compute an
ILP.

An additional problem that we had to solve was that the set of embeddings for one particular
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type of skeletons in the SPQR-tree can be transformed into the set of all Hamilton tours in a
corresponding complete directed graph. Thus, we established a connection to the Asymmetric
Traveling Salesman Problem (ATSP). We used the same linear programming formulation often
used for the ATSP. Therefore, we have to deal with the problem that the number of constraints
may be exponential in the size of the graph.

To cope with this problem, we developed a mechanism that enables us to test efficiently for
any integer vector with the right dimension if it violates any of the constraints derived from
the ATSP-problem. So we do not have to add these constraints to the ILP. Instead, we test
for each solution that we compute, if it violates one of the constraints. If this is the case, we
add the constraint and compute a new solution. Our computational results show that this is
seldom necessary.

To solve our original problem of minimizing the number of bends in an orthogonal repre-
sentation, we combined the ILP that describes all embeddings of a graph with a linear program
that minimizes the number of bends in an orthogonal representation for a fixed embedding.
The linear program is derived from a formulation of the bend minimization problem for fixed
embeddings as a minimum cost low problem. The flow network was already used by Bertolazzi,
Battista, and Didimo (9).

Combining the linear program for bend minimization with the ILP describing all embed-
dings results in a mixed integer program where an optimal solution corresponds to an orthogonal
representation of the input graph with the minimum number of bends. We solve this program
using CPLEX (34), a commercial system for solving mixed integer problems.

Our computational results show that our new approach to bend minimization is superior
to the branch and bound approach described by Bertolazzi, Battista, and Didimo (9) for large
graphs with many embeddings. They also show that using an exact algorithm for minimizing
the bends in a drawing over all embeddings saves a significant number of bends compared with
picking an arbitrary embedding for almost half the graphs we tested.

1.6 Overview

Chapter 2 introduces the data structure SPQR-tree. In Section 2.1, we give a short overview
of the applications and features of the trees. Then we introduce some basic concepts that
are necessary for the formal definition (Section 2.2). Most of them are concerned with the
connectivity of a graph. The definition of SPQR-trees we give in Section 2.3 is slightly different
from the definitions used by other authors because we felt that we could get rid of an anomaly
in the definition of the root of the tree by first defining a data structure we called Proto-SPQR-
tree. The SPQR-tree is then defined as an extension of the Proto-SPQR-tree.

After giving an example for the construction of an SPQR-tree, we present a few properties
of the trees that are important in the rest of the thesis in Section 2.4. The topic of Section 2.5
is the connection between the embeddings of a graph and the embeddings of the skeletons of
its SPQR-tree. This is the basis for the algorithms presented in this thesis.

Chapter 3 deals with the problem of inserting an edge into a planar graph with the minimum
number of crossings. In Section 3.1, we give an introduction to the problem. We present
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the planarization method where the problem arises and give some results on related crossing
minimization problems.

Section 3.2 introduces some necessary concepts. We define edge insertion paths, a list of
edges that defines how to insert an edge into a planar graph by giving the sequence of existing
edges that the new edge crosses. Then we present the concept of traversing cost. These cost
are defined for subgraphs of the original graph that are connected to the rest of the graph via
two vertices. The traversing cost can be interpreted as the number of edges that have to be
crossed to get from one side of the subgraph to the other side.

In Section 3.3 we present the algorithm that inserts an edge into a planar graph with
the minimum number of crossings if the graph is biconnected and prove its correctness. The
running time of the algorithm is linear in the size of the original planar graph.

The topic of Section 3.4 is how to solve the problem for connected graphs. We intro-
duce block trees and present the algorithm. It determines the nodes in the block tree that
are important for the number of crossings and calls the algorithm for biconnected graphs for
the corresponding blocks. Again, we proof correctness and show that the running time of
the algorithm is linear. This section also contains the trivial generalization to non-connected
graphs.

Computational results are given in Section 3.5. We compare the performance of the stan-
dard planarization method with the modified planarization method where the edges are rein-
serted using our new algorithm. The results show that the new algorithm significantly improves
the performance of the planarization method.

In Section 3.6 we examine the difference between general crossing minimization and the
insertion of an edge into a planar graph with the minimum number of crossings. We present an
example graph that shows that optimal solutions to both problems can differ by an arbitrary
number of crossings for the same graph.

The topic of Chapter 4 is the minimization of the number of bends in an orthogonal drawing
of a graph. Section 4.1 gives an introduction to the problem with an overview of the chapter.
The integer linear program (ILP) describing the embeddings of a planar biconnected graph is
the topic of Section 4.2. First, we give an intuition of how the ILP is constructed. Then we
define its variables.

Next, we define the ILPs for the case where the SPQR-tree of the graph has only one inner
node. We distinguish three cases according to the type of the only inner node. We have to
deal with the special problems that occur if the only inner node is a so called P-node. In
this case, the set of embeddings can be formulated as the set of Hamilton-tours in a complete
directed graph and we use the same formulation as the ILP often used for solving instances of
the asymmetric traveling salesman problem.

After the definition of the ILPs for SPQR-trees with one inner node, we present the process
of computing the ILP for more complex graphs by first splitting the graph into smaller parts
and computing the ILPs for these parts. Then the ILPs are combined to construct the ILP for
the original graph. The first part of this process consists of our splitting operation that we use
to construct smaller SPQR-trees from a large SPQR-tree. This operation implicitly constructs
a number of small graphs from one large graph and is the basis of the recursive construction of
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the ILP. In the second part of the process, the ILP for the original graph is constructed from
the ILPs of the smaller graphs created by the splitting operation.

The proof of correctness of our recursively defined ILP uses structural induction on the
SPQR-tree to show that all solutions of the ILP represent embeddings and all embeddings of
the graph are solutions.

Section 4.3 deals with the linear program where the solutions correspond to the orthogonal
representations of a graph if the embedding is fixed. First, we give an intuition of the contents
of the section. Then we define the data structure orthogonal representation as an embedding
together with two functions that determine the angles between edges adjacent to the same
vertex and the bends on each edge. We also give an example for an orthogonal representation.

Orthogonal drawings realize orthogonal representations by assigning lengths to the edge
segments. We presents several styles of orthogonal drawings. They differ in the way they
treat vertices with degree greater than four. We introduce the podevsnef drawing style that
we use to draw our graphs. After the presentation of the drawing styles, we show how an
orthogonal representation can be formulated as a flow network. We describe how a flow in a
special network constructed for a graph and a fixed embedding corresponds to an orthogonal
representation of the graph. Then we present a linear program that is equivalent to the flow
network.

In Section 4.4, we combine the linear program that describes the orthogonal representations
of a graph for a fixed embedding with the ILP that describes all embeddings of a graph. The
result is a mixed integer linear program that describes the orthogonal representations of a
graph over all its embeddings.

To achieve this, we first have to extend the ILP that describes the embeddings of a graph
in such a way that each solution also defines which region of the embedding should be the
outer (unbounded) region in a corresponding planar drawing. Then we combine this ILP with
the linear program that describes orthogonal representations. This results in the mixed integer
linear program where the solutions correspond to all possible orthogonal representations of the
graph over all embeddings.

In Section 4.5, we present the algorithm we use to compute an orthogonal representation of a
graph with the minimum number of bends. After giving a high level overview of the algorithm,
we describe some modifications that speed up the computation. We also develop a preprocessing
step that transforms the original graph into a smaller graph. The solution computed for
the smaller graph is then transformed into an optimal solution valid for the original graph.
Section 4.6 contains the computational results obtained by applying the algorithm to a set
of benchmark graphs and comparing its performance with the performance of the algorithm
presented by Bertolazzi, Battista, and Didimo (9) and a heuristic. We also present two example
graphs together with the resulting drawings.

In Chapter 5, we provide a short overview of the results presented in this thesis and present
a few ideas for future research.
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Chapter 2

SPQR-Trees

2.1 Introduction

An SPQR-tree is a data structure that represents the decomposition of a biconnected graph
with respect to its triconnected components. The data structure was introduced by Battista
and Tamassia (3) and is a modification of the structure used by Bienstock and Monma (10).
SPQR-trees have been used in many graph algorithms with the main focus on planarity and
triconnectivity.

A striking feature of SPQR-trees is that their size is linear in the size of the graph they
represent and that they can be computed in linear time. The latter fact relies on the algorithm
by Hopcroft and Tarjan (32) for decomposing a graph into triconnected components. There
are some errors in the description of this algorithm and only recently Gutwenger and Mutzel
(27) succeeded in correcting them and in implementing a correct linear time algorithm for
computing SPQR-trees.

SPQR-trees can be made dynamic in the sense that they can be updated efficiently when
vertices or edges are added to the graph. Therefore, they have been used to solve on-line
problems that are connected with planarity and triconnectivity (5; 6). In (4), SPQR-trees are
used to maintain the minimum spanning tree and the transitive closure of a graph during edge
insertion and vertex insertion operations.

Some of the most interesting applications of SPQR-trees are in the area of graph drawing.
Algorithms in this area use the fact that an SPQR-tree implicitly represents all embeddings
of a graph and can be used to enumerate them. This property of SPQR-trees is used in a
branch and bound algorithm for computing an orthogonal drawing with the minimum number
of bends (9). We attack the same problem using SPQR-trees and integer linear programs in
Chapter 4.

Another interesting application of SPQR-trees in graph drawing is the symmetric drawing
of graphs in three dimensions. In (30), a polynomial algorithm for drawing planar graphs
symmetrically in three dimensions is presented. This algorithms uses SPQR-trees to determine
a drawing that displays the maximum number of symmetries.

17
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SPQR-trees have also been used in algorithms for clustered graphs. In a cluster planar
drawing of a clustered graph, the vertices of each cluster must be contained in a connected
region of the plane that does not contain the drawings of edges or vertices that do no belong to
the cluster. If such a drawing exists, the graph is called cluster planar. In (18), a linear time
algorithm is presented that tests planar connected clustered graphs for cluster planarity using
SPQR-trees.

Another area of graph drawing where branch and bound techniques on SPQR-trees have
been used is upward planarity. Bertolazzi, Battista, and Didimo (8) presented an algorithm

for computing a quasi upward drawing with the minimum number of bends.

2.2 Preliminaries

SPQR-trees are a rather complex data structure and so we first define some basic concepts
that are needed in the definition of the structure. Most of these concepts are concerned with
the connectivity of graphs.

A graph G is a pair G = (V, E) where V is the set of vertices and E C V x V is the set of
edges. A subgraph of a graph G is another graph G' = (V', E') with V! CV and E' C E. We
are usually dealing with undirected graphs, where the edges are unordered pairs of vertices.

A drawing of a graph T is a function that maps each vertex of G to a point in the plane
and each edge (u,v) to a simple open Jordan curve I'(u,v) with endpoints I'(u) and I'(v). A
drawing is planar if there exists no pair of edges e;, e2 with e; # ez such that I'(e;) N (e2) # 0.
A graph G is called planar if there exists a planar drawing of G.

We say the two vertices v1 and vy are connected by the edge e = (vi,v2). Both vertices
are incident to e, and e is incident to both vertices. The number of edges incident to a vertex
is called the degree of that vertex. If v; and vy are connected by an edge, we say they are
adjacent to each other.

A multi graph is a graph that may contain an arbitrary number of edges defined by the
same pair of vertices. Thus, the set E is a multi set because it contains several instances of the
same pair of vertices. Let v be a vertex in a graph. Then the edge (v,v) is called a self loop.
We usually do not allow them in the graphs we are dealing with. Unless stated otherwise, all
the graphs we use are undirected multi graphs without self loops.

A path P of length k£ in G is a sequence of the form P = (v1,e1,v2,..., ek, vg+1) Where
e; = (vi,vi+1) € E for ¢ € {1,...,k} and all the vertices v; to vy are pairwise different. We
say that v; and vg4, are connected by P. Sometimes, we also denote a path by giving just the
edges on the path (P = (e1,...,ex)) or just the vertices (P = (v1,...,vx+1)). Note that the
latter form can be ambiguous for multi graphs. A path P connecting the two vertices v and w
together with the edge (w,v) not contained in P is called a cycle.

We say that a graph is connected if all pairs of pairwise different vertices of the graph are
connected by a path. A connected graph that does not contain a cycle is called a tree. The
maximal connected subgraphs of a graph are called the connected components of a graph.

We will also need some stronger notions of connectivity of graphs. We say a graph is
k-connected for k > 0, if for any pair of vertices (u,v) there exist k different paths connecting
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u and v that are pairwise vertex disjoint. So any two of the k paths share only the vertices u
and v. If a graph is 2-connected, we call it biconnected and if a graph is 3-connected, we call it
triconnected. We call the maximal biconnected subgraphs of a graph the blocks of the graph.

If G is a graph, then any vertex v whose removal increases the number of connected compo-
nents of G is called a cut verter of G. Any unordered pair {u,v} of vertices with u # v whose
removal increases the number of connected components of a graph G is called a separation pair
of G. See Figure 2.1 for an example of cut vertices and separation pairs. From the definition of
k-connectivity it follows easily that a biconnected graph has no cut vertex and a triconnected
graph has no separation pair.

Figure 2.1: Cut vertices and separation pairs: Vertex 6 is a cut vertex while the pairs {5, 7}
and {8,9} are examples for separation pairs in the graph.

Theorem 2.1 If a graph G has no multiple edges than it is k-connected for k > 1 if and only
if it contains no set of k — 1 vertices whose remouval splits the graph into at least two connected
components.

Proof The proof follows from Menger’s theorem (two different proofs for Menger’s theorem
can be found in (19)). This theorem says that the minimum number of vertices separating two
vertex sets A and B in G is equal to the maximum number of disjoint A — B paths. A vertex
set C' separates two vertex sets A and B if after the removal of all vertices of C, there is no
path left in the graph connecting a vertex in A with a vertex in B.

We assume that A consists of vertex v; and B of vertex v,. First we show that if a graph
is k-connected, it does not contain a set of kK — 1 vertices whose removal splits the graph. If G
is k-connected, there are at least k vertex disjoint paths connecting v; and vy. By Menger’s
theorem, the minimum number of vertices separating v; and vo is k. Since this holds for any
pair of vertices v; and vs, there is no set of k£ — 1 vertices in G that separate any two vertices
in the graph from each other. This is the same as saying that there is no set of k& — 1 vertices
whose removal splits the graph.

Now assume that there exists no set of £ — 1 vertices that splits G. So for any two vertices
v1 and ve in G, at least k vertices are needed to separate them from each other. By Menger’s
theorem we know that there are at least k vertex disjoint paths connecting v; and vo. Since
this holds for any pair of vertices v1 and v9 in G, we know that G is indeed k-connected. [
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In the definition of SPQR-trees, we will also need the notion of a split pair. A pair {u,v} of
vertices in a biconnected graph G is a split pair, if {u, v} is a separation pair or (u,v) is an edge
in G. A split component of the split pair {u,v} is either an edge that connects u and v together
with the vertices u and v or a maximal connected subgraph G’ of G such that removing the
vertices u and v does not disconnect G’'. See Figure 2.2 for an example of the split components
of a split pair.

Figure 2.2: A biconnected graph (left) and the three split components of the split pair {1,4}
(right)

Observation 2.1 Let s = {v1,v2} be a split pair of a biconnected graph G and S1 = (V1, E1)
and Sy = (Va, E2) be two different split components of s. Then the following statements are
true:

VinVy = s (2.1)

EiNEy, = 0 (22)

Proof We start with Equation (2.1). First we show that each split component of s contains

s. Assume that S is a split component of s that does not contain both vertices in s. We assume

w.l.o.g. that it does not contain v;. Let v be any vertex in S and p = (v, uq,...,ux,v1) a path

in G connecting v and vy. Since G is biconnected, we can always choose p such that none of

the inner vertices u; of p is vo. We construct the graph S’ by adding all the edges and vertices
on p to S that are not contained in S.

S is a proper subgraph of S’ since S’ contains v;. Removing v; and vy from S’ does not
disconnect S’ since the path p that we added does not contain v; or v as an inner vertex. This
is a contradiction to our assumption that S is a split component of s because S is not maximal.

Now we show that no vertex except v; and vs is contained in more than one split component
of s. Assume the two different split components S; and S both contain vertex v ¢ s. Consider
the subgraph S that we get by computing the union of the two components S and Ss.

S is connected since both S; and Ss are connected and contain vertex v. Deleting v; and wvo
does not disconnect S because it does not disconnect any of the subgraphs S; and S of S and
both are connected via vertex v with v ¢ {vy,v2}. This is a contradiction to the maximality
of S; and Sy and completes the proof of Equation (2.1).

Now we prove Equation (2.2). Let e be any edge in G. If it connects v; and vy, the edge
gets its own split component by definition. Otherwise, at least one of the vertices of e is not
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contained in s. We just showed that each vertex except the vertices in s is contained in at most
one split component of s and it follows that e is contained in at most one split component of
s. This proves Equation (2.2). O

Using Observation 2.2, it is not hard to see that the split components of a biconnected
graph form a partition of the edge set. Each edge together with its incident vertices forms a
subgraph of G that cannot be disconnected by removing the vertices v1 and v5. Therefore, each
edge is contained in a maximal subgraph that has this property. So each edge is contained in
a split component and because of Observation 2.2 in exactly one split component.

In the definition of SPQR-trees, we will need the notion of the split graph of a split pair
with respect to some edge (s,t) in a graph G. The split graph of a split pair {u, v} is the union
of all the split components of G that do not contain the edge (s,t). Informally, the split graph
of the split pair {u,v} is the part of the original graph that can only be reached from (s,t) via
U Or v.

In Figure 2.2, the split graph of {1,4} with respect to (3,5) is the cycle consisting of the
three vertices 1,2 and 4 together with the incident edges. This is the union of the two split
components of {1,4} that do not contain edge (3,5).

We say that a split pair {u,v} is dominated by another split pair {z,y} with respect to an
edge (s,t) if the split graph of {u,v} with respect to (s,t) is a proper subgraph of the split
graph of {z,y} with respect to (s,t). So if a split pair dominates another split pair with respect
to an edge, the dominated split pair can only be reached from the edge by passing a vertex of
the dominating split pair.

In Figure 2.2, the pair {1, 3} is dominated by {1,4} with respect to (2,4) because the split
graph of {1, 3} with respect to edge (2,4) is defined by the vertices 1,3 and 5 and their incident
edges while the split graph of {1,4} with respect to (2,4) consists of the vertices 1,3,4 and 5
with their incident edges.

Observation 2.2 The dominance relation on split pairs with respect to an edge (s,t) in G is
not symmetric and not reflexive.

This observation follows from the fact that two graphs (in this case the split graphs) cannot
properly contain each other.

Observation 2.3 The dominance relation between split pairs in a graph G with respect to an
edge (s,t) is transitive.

This observation follows easily from the transitivity of the subgraph relation.

Using the dominance relation on split pairs, we can define a mazimal split pair with respect
to a certain edge (s,t) in a graph as a split pair that is not dominated by any other split pair
in the graph with respect to (s,t). There may be several maximal split pairs in a graph with
respect to a certain edge. Consider for example Figure 2.3. The split pairs {1,2} and {6,9}
are both maximal with respect to (4,5). Even split pairs whose split graph is a single edge can
be maximal. The split pair {5,9} for example is a maximal split pair with respect to (4,5).
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Figure 2.3: The split pairs {1,2} and {6,9} are maximal with respect to edge (4, 5).

2.3 Definition of SPQR-Trees

SPQR-trees are defined for any biconnected graph. The definition is recursive: We first define
the root 7 of the tree and a decomposition of the original graph into subgraphs. The roots of
the trees computed for these subgraphs are the children of r.

The definition in this thesis differs slightly from the definitions given in (27; 5; 6; 4) or
(9) because we first define a variant of the SPQR-tree called the Proto-SPQR-tree recursively.
Then we define the SPQR-tree as a modification of the Proto-SPQR-tree. The reason for
this modification is that we are not aware of a clean way to define the root of the SPQR-tree
recursively.

The vertices of the SPQR-tree are called nodes. The nodes have four different types (S,P,Q,
and R) that are explained in the definition below. Each node is associated with a special graph
which is called the skeleton of that node. We can think of each skeleton as a simplified version
of the original graph where some subgraphs have been replaced by single edges.

The tree is constructed by recursively decomposing the original graph into triconnected
components. This decomposition starts with an arbitrary edge of the graph which is called the
reference edge of the decomposition. The node in the SPQR-tree corresponding to this edge
will be the root of the tree.

Definition 2.1 (Proto-SPQR-tree) Let G = (V,E) be a biconnected multi graph (there
can be more than one edge connecting a pair of vertices) and e = (s,t) € E one of its edges.
Let G' be the graph G after deletion of edge e (G' = (V,E —{e})). Then the Proto-SPQR-tree
T with reference edge e is defined as follows:

e Trivial case: G' is a single edge. In this case, T consists just of one Q-node. The
skeleton of this node is G itself (so it consists of two vertices connected by two edges).

e Series case: G' is not biconnected and is not a single edge. So let v to vg_1 (with
k > 1) be the cut vertices of G'. Since G is biconnected, we know that the blocks of G’
must form a chain, so there are k blocks B1 to By such that v; is only contained in the
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two blocks B; and B;1q for 1 <i < k—1. We assume that s is contained in B1 and t in
By. The graph on the left in Figure 2.4(a) shows an example for a graph where the root
of the Proto-SPQR-tree is an S-node with k = 3. The grey areas in the figure represent
biconnected subgraphs.

The root of T is an S-node p where the skeleton S is a simple cycle containing the vertices
8,V1y..,Vk_1,t in that order. The edge (s,t) in S is the virtual edge of S. If we define vg
as s and v as t, then the edge e; = (vi_1,v;) represents the block B; in G for 1 <i < k.
The graph on the right in Figure 2.4(a) shows the skeleton of the S-node for the graph
on the left.

The children of p are defined by the graphs G; that are constructed from the B; by adding
edge e; for 1 <1 < k. FEdge e; is the reference edge of G;. The i children of p are the
roots of the Proto-SPQR-trees for the subgraphs G;.

e Parallel case: The vertices s and t are a split pair of G' with the split components
Cy,...,Cy where k is at least two. The graph on the left in Figure 2.4(b) shows an
example for the case where the root of the Proto-SPQR-tree is a P-node with k = 3. The
grey areas represent the split components of {s,t}. The root of T is a P-node p whose
skeleton S consists of the two vertices s and t and the edges ei,...,ex+1. Edge e; for
1 <14 < k represents subgraph C; while edge ey41 is the virtual edge of the skeleton. The
graph on the right in Figure 2.4(b) shows the skeleton of the P-node for the graph on the
left.

The children of u are defined by the graphs G, ..., Gy where G; is constructed from C;
by adding edge e;. The children of u are the roots of the Proto-SPQR-trees for the G
where the reference edge is e;.

e Rigid case: Neither of the previous cases is applicable. So the pair {s,t} is not a split
pair of G' with at least two split components and G’ is biconnected. Then the root of T
is an R-node p.

Let {s1,t1},...,{sk,t} be the mazimal split pairs of G with respect to (s,t). For each of
these mazimal split pairs {s;,t;}, we define the graph U; as the split graph of {s;,t;} with
respect to {s,t}. The graph on the left in Figure 2.4(c) shows an example for a graph
where the root of the Proto-SPQR-tree is an R-node. The grey areas represent the split
graphs of the mazimal split pairs.

The vertices in the skeleton S of u are the vertices s and t together with all vertices s;
and t; for 1 <1i <k. Apart from the virtual edge (s,t), S contains k edges where edge e;
connects the vertices s; and t;. Edge e; represents subgraph U; for 1 <1i < k. The graph
on the right in Figure 2.4(c) shows the skeleton of the R-node for the graph on the left.

The children of p are defined by the graphs Gi,..., Gy where G; is constructed from Uj;
by adding edge e;. The children of p are the roots of the Proto-SPQR-trees of the G; with
reference edge e;.
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(a) Case S-node (b) Case P-node (c) Case R-node

Figure 2.4: The structure of biconnected graphs and the skeleton of the root of the correspond-
ing Proto-SPQR-tree

Now we can define the SPQR-tree of a biconnected graph using the definition of the Proto-
SPQR-tree. We just add a Q-node to the Proto-SPQR-tree that represents the reference edge
of the graph and make it the root of the SPQR-tree.

Definition 2.2 (SPQR-tree) The SPQR-tree T of a biconnected planar graph G consists
of a Q-node representing the reference edge e whose child is the root of the Proto-SPQR-tree
for G with reference edge e.

We will now give an example for the construction of an SPQR-tree. The example graph G
is shown in Figure 2.5. We define the reference edge as the edge (10, 6).

Figure 2.5: Example graph for the construction of an SPQR-tree. The grey edge is used as the
reference edge.

If we delete edge (10,6), the remaining graph has cut vertices. These vertices are 9, 11,
5 and 1. So the root of the Proto-SPQR-tree will be the S-node S;. Its skeleton is a cycle
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consisting of the vertices 6,9,11,5,1 and 10 and six edges. Figure 2.6 shows the skeleton of
the S-node.

19
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Figure 2.6: The skeleton of the root of the Proto-SPQR-tree for the graph in Figure 2.5. The
grey edge is the virtual edge of the skeleton. The thick edges correspond to subgraphs of the
original graph.

The children of the S-node are defined by the graphs represented by the edges in the
skeleton. The edges (9,11),(11,5) and (1,10) correspond to edges of the original graph, so
the children for these edges are @-nodes. The edges (6,9) and (5,1) represent more complex
subgraphs of the original graph.

First we construct the Proto-SPQR-tree for the subgraph represented by the edge (5,1) in
the skeleton of the S-node. The graph we have to decompose is shown in Figure 2.7. It was
constructed by adding edge (5,1) to the subgraph of G that is represented by edge (5,1) in the
skeleton of S;. The reference edge of this graph is the edge (5,1).

(1)

O

Figure 2.7: The graph that defines the subtree of the SPQR-tree defined by edge (5,1) in the
skeleton of Figure 2.6. The grey edge represents the rest of the graph in Figure 2.5.

If we delete the reference edge, the split pair {1,5} has three split components. Therefore,
the root of the Proto-SPQR-tree for this graph is a P-node P;. The skeleton of P; consists of
the two vertices 1 and 5 and four edges (see Figure 2.11(b)). The children of P, are the Proto-
SPQR-trees for graphs that look like the one shown in Figure 2.8. The vertex z in the drawing
is either 2,3 or 4. It is not hard to see that each of these graphs result in a Proto-SPQR-tree
that consists of an S-node with two (Q-nodes as children. The skeleton of each of the S-nodes
So,S3 and Sy is isomorphic to the graph in Figure 2.8.
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Figure 2.8: The structure of the graphs that define the children of the P-node P;. The grey
edge represents the rest of the graph in Figure 2.5.

We continue with the decomposition of the subgraph represented by edge (6,9) in the
skeleton of S; (see Figure 2.11(a) for the skeleton of S1). So we have to build the Proto-SPQR-
tree for the graph that we get by adding edge (6,9) to the subgraph of G defined by the vertices
6,7,8,9 and 12 (this subgraph is shown in Figure 2.9). If we delete the reference edge (6,9), we
see that the pair {6,9} is not a split pair of the graph and that it has no cut vertex. Therefore,
the root of the Proto-SPQR-tree of this graph is an R-node R;.

Figure 2.9: The graph represented by edge (6,9) in the skeleton of the root of the SPQR-tree.
The grey edge represents the rest of the graph in Figure 2.5.

To compute the skeleton of R; and its children, we have to find the maximal split pairs
with respect to the edge (6,9). These are the split pairs in the graph whose split graph with
respect to edge (6,9) is not contained in the split graph of another split pair with respect to
(6,9). The split pairs that have this property are {7,6}, {7,9}, {8,9}, {6,8} and {7,8}. The
split pairs {7,12} and {8,12} are not maximal because their split graphs (the edge (7,12) and
the edge (8,12) respectively) are contained in the split graph of {7,8} (the split graph of {7, 8}
consists of the two edges (7,12) and (8,12)).

So the skeleton of R; is different from the graph in Figure 2.9 only in the fact that the
two edges (7,12) and (8,12) have been replaced by a single edge (7,8) (see Figure 2.11(c) for
a drawing of the skeleton of R;). All the edges in the skeleton except (7,8) represent edges
in the original graph. So four of the children of R; are Q-nodes. The fifth child is the root
of the Proto-SPQR-tree for the simple cycle containing the three vertices 7,12 and 8. This
Proto-SPQR-tree consists of the S-node S5 whose two children are two ()-nodes.

The computation of the Proto-SPQR-tree of G is finished and we construct the SPQR-tree
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of G by introducing a @-node for edge (10,6) and making it the root of the SPQR-tree. The
resulting tree is shown in Figure 2.10. The index of each Q-node is the edge number of the edge
in G that is represented by the node. These are the edge numbers shown in Figure 2.5. The
labels of the inner vertices of the tree are the ones used in the description of the decomposition
above. Figure 2.11 shows the skeletons of the inner nodes of the SPQR-tree.

Figure 2.10: The SPQR-tree for the graph shown in Figure 2.5 with reference edge (10, 6). The
skeletons of the inner nodes are shown in Figure 2.11.
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Figure 2.11: The skeletons of the inner nodes of the SPQR-tree in Figure 2.10. The grey edges
are the virtual edges of the skeletons. Since the skeletons of the nodes 55,53, Sy and S5 are
isomorphic, their structure is shown in Figure 2.11(d) without vertex numbers.

2.4 Properties of SPQR-Trees

In this section, we establish some properties of SPQR-trees that play an important part in the
rest of this thesis. All these properties are already mentioned in previous publications that
deal with SPQR-trees (see for example (5; 6; 4) and (3)). Here, we only mention the properties
that are important for our applications.



28 CHAPTER 2. SPQR-TREES

Observation 2.4 All leaves of an SPQR-tree T of a graph are Q-nodes.

This is a trivial observation since all node types except the ()-nodes are defined in such a
way that they have at least two children. The only nodes in the tree that have less than two
incident edges are the @)-nodes.

Observation 2.5 The skeletons of R-nodes are triconnected graphs.

The reason is that we replace all the maximal split pairs with single edges and add the
virtual edge. Therefore, there are no more separation pairs in the skeleton (there are still split
pairs since each edge forms a split pair) and so the skeleton is triconnected.

Proof Let G be a graph with reference edge e = (s,t) such that the root of the Proto-SPQR-
tree is an R-node p. Let G’ be the graph generated from G by deleting e. We know that G’
is biconnected and that {s,t} is not a split pair of G'. We construct the skeleton S of u by
first computing all maximal split pairs {s;,?;} with respect to {s,t}. For each pair {s;,t;}, its
split graph is replaced by a single edge. The edge {s,t} is added to the result to produce the
skeleton S of p.

First we observe that S is not a multi graph because we replace the split graphs of each
maximal split pair with a single edge. We do not produce parallel edges in the construction of
S. Any parallel edges contained in G are represented by the same edge in S.

So we construct S out of G’ by replacing certain subgraphs with edges and adding {s, t}.
Each subgraph G; of G we replace by an edge is the split graph of some split pair {s;,¢;} in G.
So G; is connected to the rest of G’ only via the two vertices s; and t;. Replacing each G; with
an edge (s;,t;) does not destroy the biconnectivity of G'. Therefore, S’ is also biconnected.

We want to show that S is triconnected. Since S has no multiple edges, we can use
Theorem 2.1 on page 19: To show that S is triconnected, it suffices to show that S does
not contain a pair of vertices whose removal splits the graphs into more than one connected
component (a separation pair).

Assume that {vi,v2} is a pair of vertices in S whose removal splits S into more than one
connected component. Since we do not add vertices in the construction of S, these vertices
must also be contained in G. The construction of S guarantees that {vq, v} is also a separation
pair in G. But a separation pair is always a split pair. So {v1,v2} is a split pair of G.

The definition of the skeleton of an R-node guarantees that {s,t} is not a separation pair
of G or S. Thus we can exclude that the two sets {v1,v2} and {s,t¢} are identical. Let G be
the split graph of {vi,ve} with respect to {s,¢}. We distinguish the following two cases:

1. {v1,v2} is a maximal split pair of G. In this case, the split graph G; was replaced
with a single edge in the construction of S. So {v1,v2} cannot be a separation pair of S.
This is a contradiction to our assumption.

2. {v1,v2} is not a maximal split pair of G. Then there exists a maximal split pair sp
such that the split graph of sp with respect to (s,t) properly contains the split graph of
{v1,v2} with respect to (s,t). So at least one of the vertices v; and vy must be contained
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in the split graph of sp. It follows that not both vertices v; and vy are contained in S.
This is a contradiction to our assumption.

This shows that the skeleton of an R-node in an SPQR-tree is always triconnected. O

Observation 2.6 Let G be a biconnected graph with reference edge e and T the corresponding
SPQR-tree. If T has only one inner node, then the skeleton of that node is isomorphic to G.

This observation is easy to verify by looking at the three possible types for the only inner
node p of 7. In all three cases, the graphs that are replaced by edges in the skeleton of u are
just single edges of G. Therefore, the skeleton of y is isomorphic to G.

Observation 2.7 Let G be a biconnected graph with at least two edges and let T be the Proto-
SPQR-tree of G with respect to reference edge e. Then there is exactly one Q-node q; in T for
each edge e; € E — {e} where e; is contained in the skeleton S; of g;.

When there is only one inner node in 7T, it follows easily from the definition of Proto-SPQR-
trees that there is one @-node for each non-reference edge in G. If 7 has more than one inner
node, it suffices to show that the graphs G; that define the children of the root node form
a partition of the non-reference edges, because by induction there will be a -node for each
non-reference edge in each G;. It is easy to verify that the G; indeed define a partition of the
non-reference edges by looking at the definitions of the G; for the node types S, P and R.

A corollary of observation 2.7 is that there is exactly one ()-node for each edge of a bicon-
nected graph in the SPQR-tree of the graph, independent of the choice of the reference edge.
The reason is that we explicitly create a Q-node for the reference edge when we construct the
SPQR-tree from the Proto-SPQR-tree.

The next observation shows that the choice of the reference edge is not important. The
reference edge defines only which @-node is the root of the tree. If we think of the SPQR-tree
as an unrooted tree, the choice of the reference edge has no impact whatsoever.

Observation 2.8 Let G be a biconnected graph and e; and es two of its edges. Let Ti be
the SPQR-tree of G with reference edge e1 and To the SPQR-tree of G with reference edge es.
Modifying T1 by making the Q-node that represents eo the root of the tree results in Ts.

So if we think of the SPQR-tree as an acyclic connected graph instead of a rooted tree, then
there is just one SPQR-tree for any biconnected graph. The SPQR-tree is a decomposition of
a graph that is determined by the split pairs of a graph. The reference edge is only the point
where we start the decomposition. The result of this decomposition will always be the same,
no matter which edge we choose as the reference edge.
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Lemma 2.1 The size of the data structure SPQR-tree for a biconnected graph G = (V, E) is
linear in the size of E.

Proof  We have shown that the leaves of the SPQR-tree are in one-to-one correspondence
with the edges in E. Since every inner node of the tree has at least two children, the total
number of nodes in the tree must grow linearly with the number of edges in G.

If a node of the tree has k children, there can be at most k41 edges in its skeleton, because
each edge except the virtual edge is associated with a child of the node. Thus, the sum of the
number of edges in all skeletons is bounded from above by a constant multiple of the number
of edges in the tree. So the number of all edges in all skeletons grows also linearly with the
number of edges in the graph.

For all four types of nodes we know that the number of vertices in the skeleton are either
constant (@Q- and P-nodes) or at most the number of edges (S- and R-node skeletons are
connected graphs without parallel edges). With the same argument used for the edges we can
show that the sum of the number of vertices in all skeletons grows linear with the number of
edges in the graph. O

Corollary 2.1 The size of the data structure SPQR-tree for a planar graph G is linear in the
number of vertices of G if G has no parallel edges.

This follows from Lemma 2.1 because a planar graph without parallel edges can have at
most 3n — 6 edges.

Theorem 2.2 Let G = (V,E) be a biconnected graph. Then the SPQR-tree of G can be
computed in time O(|E|).

The proof relies on the linear time algorithm for dividing a graph into triconnected com-
ponents by Hopcroft and Tarjan (32). Gutwenger and Mutzel corrected some mistakes in this
algorithm and presented the first linear time implementation of an algorithm for computing
the SPQR-tree for a biconnected graph (27). Their paper contains pseudo code and a proof of
the running time. The code is contained in the AGD-library (AGD).

2.5 SPQR-Trees and Combinatorial Embeddings

As already mentioned in Section 2.1, SPQR-trees can be used to enumerate all embeddings of
a planar biconnected graph. In this section, we want to show how this can be done. First, we
have to define the embeddings of a planar graph.

Definition 2.3 (Weakly Equivalent Drawings) Two planar drawings Dy and Do of a
graph G are weakly equivalent, if for every verter v in G, the circular order of the incident
edges around v in clockwise order is the same in D1 and Ds.

This is a statement about the topology of a drawing, it does not make any statements about
the length and shape of edges or the size and absolute position of vertices. Two drawings can



2.5. SPQR-TREES AND COMBINATORIAL EMBEDDINGS 31

look very different and still be weakly equivalent. On the other hand, two drawings can look
very similar and at the same time not be weakly equivalent.

Consider the four drawings in Figure 2.12. They show four different drawings of the same
planar graph. The two drawings 2.12(a) and 2.12(c) are weakly equivalent. The two drawings
look quite different, but the sequence of the edges in clockwise order around each vertex is the
same. This is also true for the two drawings 2.12(b) and 2.12(d).

The two drawings 2.12(a) and 2.12(d) look very similar but are not weakly equivalent. The
sequences of the edges around each vertex in clockwise order are mirrored in the two drawings.
In fact, the two drawings are mirror images of each other.

Figure 2.12: Four different drawings of the same planar graph

Definition 2.4 (Combinatorial Embeddings) The combinatorial embeddings of a planar
graph G are the equivalence classes of its planar drawings with respect to the weak equivalence
relation.

We often say a drawing realizes a combinatorial embedding IT if it belongs to the equivalence
class II.

To define planar embeddings, we first have to introduce the concept of the faces of a planar
drawing. A planar drawing partitions the plane into connected regions. These regions are
called faces. The unbounded face in the drawing is called the external face. The boundary of
a face f is the subgraph of G, whose image in the drawing forms the boundary of f. If we
consider Figure 2.12(a), then the boundary of the triangular face consists of the vertices 1, 2,
and 3 together with the edges connecting these vertices.

Definition 2.5 (Strongly Equivalent Drawings) Two drawings Dy and Dy are strongly
equivalent if they are weakly equivalent and the boundary of the external face is the same in
both drawings.

We use the strong equivalence relation for planar drawings to define planar embeddings.

Definition 2.6 (Planar Embedding) The planar embeddings of a graph are the equivalence
classes of its drawings with respect to the strong equivalence relation.
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The following theorem states the most important point in this section: SPQR-trees can be
used to represent every combinatorial embedding of a biconnected planar graph. This is the
main feature of SPQR-trees and has been described in most of the publications that use them.

Theorem 2.3 Let G be a biconnected planar Graph and let T be its SPQR-tree. A combina-
torial embedding I1 for G uniquely defines a combinatorial embedding of the skeleton of each
node in T. On the other hand, fizing the combinatorial embedding of the skeleton of each node
in T uniquely defines a combinatorial embedding of G.

Intuitively, it is very easy to see why the theorem holds. Imagine a planar drawing of the
original graph G. By replacing the drawings of certain subgraphs by the drawings of a single
edge we can obtain a planar drawing for any skeleton in the SPQR-tree of G. So it is not
hard to see that a combinatorial embedding of G defines a combinatorial embedding of each
skeleton.

Now assume that we have fixed a combinatorial embedding of each skeleton. We can always
merge two skeletons whose nodes are adjacent in the SPQR-tree by identifying the common
virtual edge in both skeletons and then deleting it. Thus we can turn two nodes of the SPQR-
tree into a single node. We can continue with this operation until there is only one node left
in the tree. The skeleton of this node is isomorphic to the original graph. It is not hard to see
that this merging operation can be used to construct a combinatorial embedding of the original
graph from the combinatorial embeddings of the skeletons.



Chapter 3

Inserting an Edge into a Planar
Graph with the Minimum Number
of Crossings

This chapter deals with the problem of inserting an additional edge into a planar graph under
the condition, that the edges of the original graph do not cross each other in the resulting
drawing. The goal is to minimize the number of crossings of the new edge with the original
edges. Alternatively, the problem can be stated as finding a combinatorial embedding of a
planar graph in which the given edge can be inserted with the minimum number of crossings.
Many problems concerned with the optimization over the set of all combinatorial embeddings
of a planar graph have been shown to be NP-hard. We found a conceptually simple linear time
algorithm based on SPQR-trees, which is able to find a crossing minimum solution. This result
was first published in (28).

3.1 Introduction to the Problem

Crossing minimization is among the most challenging problems in graph theory and graph
drawing. Although there is a vast amount of literature on the problem, so far no practically
efficient exact algorithm for crossing minimization is known even for small instances. Currently,
one of the most popular approaches for crossing minimization is based on planarization. In
the first step of the method, a small number of edges is deleted so that the resulting graph is
planar. Then, the edges are iteratively re-inserted into the planar subgraph in such a way, that
the number of crossings produced is small.

The last step of the planarization method is usually done in the following way: Fix an arbi-
trary combinatorial embedding II of the planar subgraph P and re-insert the first deleted edge
e1. Edge e; is re-inserted by solving a shortest path problem in the augmented (geometrical)
dual graph of P associated with II. Every crossing of e; with an edge f corresponds to using an
edge in the dual graph. Replacing the generated crossings by artificial vertices yields a planar
graph again. Now, the next edge can be inserted, and so on.

33
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One criticism of the planarization method is that when choosing a “bad” embedding in
the edge re-insertion phase, the number of crossings may get much higher than necessary (29).
Hence, the question arises whether there is a polynomial time algorithm for inserting an edge
into the planar graph P so that the number of generated crossings is minimized. Therefore,
the task is to optimize over the set of all possible combinatorial embeddings of P.

While it is possible to compute an arbitrary combinatorial embedding for a planar graph
in linear time (16; 41), it is often hard to optimize over the set of all possible combinatorial
embeddings. E.g., the problem of bend minimization can be solved in polynomial time for
a fixed combinatorial embedding (47), while it is NP-hard over the set of all combinatorial
embeddings (24). When a linear function of polynomial size is defined on the cycles of a graph,
it is NP-hard to find the embedding that maximizes the value of the cycles that are face cycles
in the embedding (43; 42). A sketch of a proof for this fact can also be found in Section 4.2.4
on page 74. Woeginger has shown that it is in general NP-complete to decide if there is a
combinatorial embedding of a graph with at least k face cycles of length at least five (50).

This chapter shows that the edge re-insertion problem can be solved in linear time, thus
solving a long standing open problem in graph drawing. We present a conceptually simple
linear time algorithm based on SPQR-trees which is able to solve the edge re-insertion problem
to optimality.

Figure 3.1 shows a simple case where the choice of the combinatorial embedding of the planar
subgraph has an impact on the number of crossings produced when inserting the dashed edge.
When choosing the embedding of Figure 3.1(a) for the planar subgraph (without the dashed
edge), we get two crossings, while the optimal crossing number over the set of all combinatorial
embeddings is one (as shown in Figure 3.1(b)).

Figure 3.1: The number of crossings when inserting an edge highly depends on the chosen
embedding

Formally, we define the edge insertion problem as follows: Given a planar graph G = (V, E)
and a pair of vertices (v1,v2) in G, find a combinatorial embedding IT of G such that we can
add the edge e = (v1,v2) to II with the minimum possible number of crossings among all
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combinatorial embeddings of G. We will present an algorithm that is able to solve the problem
in linear time.

Note that the solution produced by our algorithm does not necessarily lead to a drawing of
the graph G' = (V, E U {e}) with the minimum number of crossings. The reason is that there
may not always be a drawing with the minimum number of crossings where the edges of G do
not cross each other.

In section 3.2, we define some necessary concepts and introduce the traversing cost of an
edge in the skeleton of an SPQR-tree. Section 3.3 contains the algorithm for solving our problem
for planar biconnected graphs. We also prove the correctness in this section and discuss the
running time. In section 3.4 we present a generalization of the algorithm for arbitrary planar
graphs. Again we proof the correctness of the algorithm and give the running time. Section 3.5
gives our computational results on a set of benchmark graphs. The last section addresses the
difference between finding a drawing with the minimum number of crossings and the problem
discussed in this chapter.

3.2 Preliminaries

In this chapter, we describe an algorithm for solving the following problem: Given a planar
graph GG and two non-adjacent vertices, find an optimal edge insertion path and a corresponding
combinatorial embedding IT of G. So first we have to define what is meant by the term edge
insertion path.

In this definition, we need the term dual graph.

Definition 3.1 (Dual Graph) Let G be a planar graph and II a combinatorial embedding
of G. Then the dual graph Gy = (F, E) of G with respect to 11 is defined as follows:

1. The vertex set F' corresponds to the set of faces in II.

2. There is a one to one correspondence between the edges of G and the edges of Gr. Let e
be an edge of G and € the corresponding edge in E. Then & connects the vertices of Gr
that correspond to the faces of I that have e on their boundary.

Figure 3.2 shows an example of a planar graph and its dual graph. The vertices drawn
as squares and the edges drawn as straight lines represent the primal graph while the vertices
drawn as circles and the curved edges represent the dual graph. The dual vertices are drawn
into the faces that they represent. Each dual edge is drawn in such a way that it intersects the
corresponding edge of the primal graph.

Note that dual graphs are often multi graphs, since several edges can be on the boundary
of the same faces in the embedding of a planar graph. If G is not biconnected, the dual graph
of G may also contain self loops (as in Figure 3.2). This is the case if there exists an edge in G
that is on the boundary of only one face. The dual graph of a tree for example contains only
one vertex and a self loop for every edge in the tree because every embedding of a tree has only
one face.
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Figure 3.2: A planar graph and its dual graph

Now we can define edge insertion paths. Informally, an edge insertion path is a list of edges
with the property that we can insert an additional edge into a planar graph such that the new
edge crosses only the edges in the list in the sequence given by the list.

Definition 3.2 Let vy and vy be two non-adjacent vertices in a planar graph G and Il a
combinatorial embedding of G. Let Gu be the dual graph of G with respect to II. By e, we
denote the edge in G corresponding to edge e in G. With f we denote the vertex in Gn
corresponding to face f in II. Then the list L = (e1,...,ex) of edges in G is an edge insertion
path for vi and ve in G with respect to Il if either L is empty and v1 and vy are on the
boundary of the same face in II or the following three conditions are satisfied:

1. There is a face in I with e; and v1 on its boundary.

2. There is a face in II with e, and vy on its boundary.

3. L=(e1,...,e) is a path in Gy

This basically means that we can add the edge (v1,v2) to IT with k crossings, where the
i-th crossing involves edge (v1,v2) and edge e; for 1 < 7 < k. We call an edge insertion path
an optimal edge insertion path for v1 and v, when there is no shorter edge insertion path for
v1 and vo with respect to any combinatorial embedding of the graph.

Figure 3.3 shows three different edge insertion paths for v; and ve with respect to the
embedding realized by the drawing. The edge insertion paths are represented by grey lines
that connect v; and ve and cross the edges belonging to the edge insertion path that they
represent. The three paths are the empty path, the path (e1,e2,e3) and the path (eq4,es,es).
In this case, the empty path is the only optimal edge insertion path for v; and wvs.

One term that we will need in the description of our algorithm is the ezpansion graph of
an edge e = (u,v) in a skeleton. Intuitively, we can think of the expansion graph of an edge
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Figure 3.3: Three different edge insertion paths for v; and wvs

in the skeleton as the subgraph of G that is represented by that edge together with e. Each
skeleton is a simplified representation of the original graph G and defines a decomposition of
G into split components. Each edge in the skeleton represents one of these split components.

Definition 3.3 (Expansion Graph) Let e = (u,v) be an edge in a skeleton S of a node p
of the SPQR-tree T of G. Since e is an edge in a skeleton, the vertices u and v are a split-pair
of G. Then we define the expansion graph of e as follows:

1. If p is the Q-node for edge €' in G, then the expansion graph G(e) of e is defined in as
follows: if e is the virtual edge of p then we define G(e) as G(e) = (V, (E — {e'}) U{e}).
Otherwise, we define G(e) as G(e) = ({u,v},{e,e'}). So the expansion graph is either
isomorphic to G or to S.

2. If u is an R-node or S-node, then the expansion graph of e is the union of all the split
components of the split pair {u,v} in G that contain no vertices of S except u and v
together with edge e.

3. If p is a P-node, then there are at least three split components of the pair {u,v} in G.
In the construction of T, all edges e; of S except the virtual edge were associated with a
subgraph G; of G. So we define the expansion graph of each e; as the graph G; together
with edge e. The expansion graph of the virtual edge is defined as the split component
of {u,v} that contains the reference edge of T (the edge of G that was used to start the
decomposition) together with edge e.

The definition of the expansion graph is similar to our definition of the split graph of an
edge in a skeleton. The difference is that the split graph is defined with respect to an edge in
G while the expansion graph is defined by the structure of the SPQR-tree. Figure 3.4 shows
an example for this concept. Assume the graph on the right is a P-nodes skeleton in the
SPQR-tree of the graph on the left. So the three edges in the skeleton correspond to the three
split components of the split pair (0,1) in the graph on the left. The expansion graph of the
grey edge on the right is the subgraph of the graph on the left shown in grey.
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Figure 3.4: In the SPQR-tree for the graph on the left, the expansion graph of the grey edge
in the P-node skeleton in the middle is the graph on the right.

Now we need to define the traversing cost of the expansion graph of an edge in the skeleton
of a node in an SPQR-tree. Let e be an edge in a skeleton and G(e) the expansion graph of
e. Note that G(e) also contains the edge e as the virtual edge of the graph. Since G(e) is
biconnected, any edge of the graph is on the boundary of exactly two faces in every embedding
of G(e).

Let G(e)y; be the dual graph of G(e) with respect to an embedding IT of G(e) and v; and

vo the vertices in G(e);; representing the two faces separated by e. We define P(G(e)p,e) as
the shortest path in G(e); that connects v; and v, and does not use edge € (the representative
of edge e in G(e)y). In the proof for Theorem 3.1 we will show that the length of this path

is the same for every embedding of G(e) and so we do not have to denote the embedding for

which the shortest path was computed. Thus we define the traversing cost T'(e) of e in G(e)
as follows:

Theorem 3.1 For every inner node p in the SPQR-tree T and for every edge e in the skeleton
S of u, the traversing costs of G(e) are independent of the embedding of G(e).

Proof In this proof, we denote by é the edge in 7 that corresponds to edge e in the skeleton
of a node in 7. Edge é connects the two nodes of 7 that both contain e in their skeletons.
We prove the theorem using induction over the length of the longest path P in the SPQR-tree
from node p via edge é to a Q-node of 7. Note that this length is at least one since y is an
inner node of 7.

e k= 1: The node p' in the SPQR-tree that is connected to p via edge € is a -node. The
edge e corresponds to an edge €’ which is contained in the graph represented by 7. The
expansion graph of e consists of the two edges e and e’ together with the two incident
vertices. Therefore, the traversing costs of e are one.

e k > 1: We assume that the theorem is correct for the case that the longest path from
1 to a (Q-node using edge é has at most length n. We want to prove the correctness for
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k = n+ 1. Let p' be the node connected to u via edge é. Then p' is not a @-node,
otherwise the length of the longest path from u to a Q-node using edge é would be one.
So y' is an S-node, a P-node or an R-node.

The traversing costs for all edges in the skeleton S of u’ are independent of the embedding
of G(e) (the expansion graph of e) because for each of these edges €”, the length of the
longest path from p' to a @-node is at most n and by induction we know that the
traversing costs of e¢” are independent of the embeddings of G(e").

Let G(e) be the expansion graph of e in the skeleton of x. Let D(G(e)) be the set of all
dual graphs of G(e) with respect to all possible combinatorial embeddings of G(e). We
are looking for a shortest path among all the paths in the graphs D(G(e)) connecting the
face left of e with the face right of e that does not use edge e. Instead of looking at the
dual graphs in D(G(e)), we might as well look at the dual graphs of the skeleton S’ of p’
where we give the edges costs corresponding to the traversing costs of each edge. This is
true because the traversing costs of each edge e” in §' are independent of the embedding
of G(€¢") by induction.

Let D be the dual graph of S’ for an arbitrary embedding. We will show now how to
compute the shortest path in D connecting the faces left and right of e and that the
length of this path does not depend on the embedding chosen for S’.

We prove the claim by arguing over the three possible node types of node u'. Let
€1,...,em and e (the virtual edge) be the edges in the skeleton S’ of y'.

— u' is an S-node: There is only one embedding of S’ and the corresponding dual
graph D consists of two vertices v; and v2 connected by the dual edges eg,...,én
and e. The shortest path from v; to v9 that does not use é consists obviously of the
edge emin € {€1,...,en} with the smallest traversing costs. The costs of e, are
the traversing costs of e.

!

— p' is a P-node: Independent of the choice of the embedding of S, the dual graph
D of S is a cycle with m + 1 edges. Depending on the embedding, the sequence
of the edges in this cycle changes. This has obviously no influence on the shortest
path in D between the vertices connected by e that does not use . We always have
to use all edges except e. Thus, the traversing costs can be computed as the sum of
the traversing costs of the edges e; to e,.

— u' is an R-node: The skeleton S of y' is triconnected and has therefore only two

different combinatorial embeddings D; and Ds which are mirror images of each
other. Let di(e) be the edge in D; corresponding to edge e in S and da(e) the
corresponding edge in Dy. The function that maps d;(e) to dz(e) for each edge e in
S is a graph isomorphism from D; to D3. So when we give the edges in the dual
graph the costs defined by the traversing costs of the primal edges in S', we will get
the same shortest path from the face left of e to the face right of e in both dual
graphs.
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So the traversing costs of an edge e in a skeleton are independent of the embedding chosen
for its expansion graph G(e). This suggests a simple recursive algorithm for computing the
traversing costs of e:

Choose an arbitrary embedding IT of S’ and compute the shortest path in the corresponding
dual graph with respect to the edge weights given by the traversing costs of each edge in S'.
This algorithm is correct because the traversing costs of an edge in a skeleton are independent
of the embedding of its expansion graph.

Another term that we use in this chapter is face cycle. In a planar embedding II of a graph
G, a face cycle is a directed cycle such that in every drawing that realizes II, the region to the
right of all edges in the cycle does not contain any images of vertices or edges of G. So the face
cycles are the cycles of the graph that form the boundaries of the faces in an embedding.

In the next section, we will present an algorithm for computing an optimal edge insertion
path for a pair of non-adjacent vertices in a biconnected graph.

3.3 Solving the Problem for Biconnected Graphs

If a graph is biconnected, we can compute its SPQR-tree. So our new algorithm can work
directly on this tree to find a shortest edge insertion path for a pair of vertices. The resulting
algorithm is conceptually simple but the proof of correctness is rather complex.

First we will describe our algorithm. Then we will present the proof of correctness and
finally we will show that the running time of our algorithm is linear in the number of vertices
of the problem graph.

3.3.1 The Algorithm

Definition 3.4 Let v1 and ve be two vertices in the planar graph G and 11 be an embedding
of G. Let Gy be the dual graph of G with respect to embedding II. We say the graph G_HI has
been obtained by augmenting Gy with v1 and ve, if it was constructed by adding vy and vy to
G and inserting edges from v; to all vertices in Gr representing faces in II with v; on their
boundary for i € {1,2}.

Figure 3.5 shows a graph and its augmented dual graph augmented with v; and vo. The
original graph consists of the black edges and the square vertices. The dual graph is drawn
with grey edges and round vertices. The edges that were added to the dual graph to augment
it with v; and v are drawn as dashed lines.

Algorithm 1 on page 42 computes an optimal edge insertion path for a biconnected planar
graph and two non-adjacent vertices in this graph. The term allocation node of a vertex v in
a graph G used in the algorithm refers to a node in the SPQR-tree of G with v in its skeleton.
We say an edge e in a skeleton represents a vertex v of G if v is contained in its expansion
graph.
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Figure 3.5: A graph (drawn with black edges and square vertices), its dual graph (round
vertices and grey edges) and the additional edges added to augment the dual graph with v,
and vy (dashed edges)

In one of the steps of the algorithm, edges in the skeleton of a node of the SPQR-tree are
expanded. This operation works as follows: Let e be an edge in the skeleton S and G(e) its
expansion graph. We expand e by replacing it with the graph G(e)' obtained from G(e) by
deleting its virtual edge e.

3.3.2 Correctness

The proof of correctness has two parts. The first part consists of Theorem 3.2 and shows that
the list computed by the algorithm is an edge insertion path. In the second part, we show that
the edge insertion path computed by the algorithm is optimal (Theorem 3.3). The first proof
is quite involved while the proof of the second part is much shorter.

Theorem 3.2 If Algorithm 1 is given a planar biconnected graph G and two non-adjacent
vertices v1 and vy in G, then it computes a list of edges L that represents an edge insertion
path for vi and vy with respect to some embedding 11 of G.

Proof The proof centers on the nodes of 7 on path P,. The reason for not using P3 (the
list of nodes that the algorithm works on) is that the task of the algorithm is to compute the
edge insertion path L, while in this proof, we have to construct an embedding II and show that
the edge insertion path computed by the algorithm is valid for the II. To compute the edge
insertion path, we do not have to consider all the skeletons in 7 but if we want to define an
embedding of (G, we have to define an embedding for every skeleton.



42 CHAPTER 3. EDGE INSERTION INTO A PLANAR GRAPH

Algorithm 1: Algorithm OptimalBlockInserter for computing an optimal edge insertion
path for a pair of non-adjacent vertices in a biconnected planar graph
Input: A biconnected planar graph G, and two non-adjacent vertices v; and vo in G.
Result: An edge insertion path L for v; and vy with respect to some embedding IT of
G

begin

Compute the SPQR-tree T of G;

L+ ();

Find allocation nodes pq of v1 and us of vo;

Find the path P; in 7 starting at g1 and ending at uo;

Delete nodes from the start and end of P, until we have produced the shortest path

P, in 7 from an allocation node of v to an allocation node of vs;

Delete all nodes from P, except the R-nodes, producing the list P3 of nodes in T;

while P; is not empty do

Pop the first node u from P3 and let S be its skeleton;

if v1 is in S then

| T < V135

else
Split the edge representing vy in S by inserting a new vertex ¥ into the edge.;
Mark the two edges produced by the split;
T1 < Y13

if vy is in S then

| T < V2;

else
Split the edge representing vy in S by inserting a new vertex y9 into the edge;
Mark the two edges produced by the split;
T2 < Y2;

Expand all unmarked edges in S;

Compute an arbitrary embedding II for S;

Compute the dual graph St;

Augment St with z; and zo;

Compute the shortest path L' in Sy from z1 to zo;

Delete the first and the last edge in L';

Replace every dual edge in L' by its primal counterpart;

Append L' to L;

end

Let P, be given by the sequence P, = (p1,...,pg) of nodes in 7. The node p; is an
allocation node of v; and p; is an allocation node of vy. In other words: the skeleton of p;
contains v and the skeleton of py contains v9 (note that p; and py might be identical). By the
construction of P,, none of the nodes p; with 1 < ¢ < k has the vertex v1 or vs in its skeleton.
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We call these nodes the middle nodes of P;.

We construct an embedding II of G iteratively. The construction is done in k stages. We
build graphs G; for i € {1,...,k} and for each of these graphs we construct an embedding II;.
The graph G is G and the embedding II; is an embedding of G such that L is an edge insertion
path for v; and ve with respect to II;. Each graph G; for 1 <% < k can be constructed from
G;+1 by replacing a subgraph with a path of two edges. The inner vertex of this path is called
Tsi.

We will prove that for all ¢ € {1,...,k — 1}, the prefix L; of L with the property that
all edges of L; are contained in G; is an edge insertion path for v; and r; with respect to
IT; and that the suffix of L following L; does not contain any edges from G;. Each L; with
i€{l,...,k—1} is a prefix of L;;; (see Figure 3.6).

U1

v n-

Figure 3.6: The graph G; of stage ¢ in the proof for Theorem 3.2

We first look at the special case where there is only one node p on P,. This means that vy
and v9 are both contained in the skeleton S of p. We consider three sub-cases:

1. pis an S-node: Then v; and vy must be a separation pair of G as shown in Figure 3.7. A
separation pair of a planar graph can always be connected by an edge without producing
crossings independent of the chosen embedding. The list L computed by our algorithm
is empty. Thus, L is an edge insertion path for v; and ve with respect to any embedding
of G, and our algorithm calculates the correct result.

U1

V2

Figure 3.7: Example for the structure of G in the case where P» consists of a single S-node.
The grey areas represent biconnected subgraphs.
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2. p is a P-node: Again, v; and vy are a separation pair of G and we can use the same
argument as in the first case (see Figure 3.8).

n

V2

Figure 3.8: Example for the structure of G in the case where P consists of a single P-node

3. p is an R-node: In this case, the expansion done in our algorithm produces the original
graph G, because all edges are expanded. Therefore, the algorithm computes an edge
insertion path in G for v; and vo with respect to the embedding II computed in the
algorithm.

Now we will show the following fact for the case that P» has more than one node: Let G; for
i € {1,...,k — 1} be the graph that is constructed by expanding all edges in the skeleton of p;
except the representative eo = (u1,us2) of v and then replacing e, with a path of length two
linked by the new vertex r;. Then there is an embedding II; of G; such that the prefix L; of
L containing only edges in G; is an edge insertion path for v; and r; with respect to II; (see
Figure 3.6). The suffix of L following L; does not contain any edges from G;.

The last fact is true because our algorithm works through P (a subsequence of P) se-
quentially. In each execution of the loop of the algorithm, we consider a graph S’, constructed
from the skeleton of an R-node p; on P3 by expanding all edges of its skeleton except the
representatives of v; and vs.

The list L' appended to L after each loop execution consists only of edges in S’. But the
graphs S’ computed in each iteration of the while loop are edge-disjoint. The reason for this is
that we do not expand the representative of v; (so we cannot see the edges treated in previous
iterations) and we do not expand the representative of z2 (so we cannot see the edges treated
in future iterations).

We show by induction over ¢ that L; is an edge insertion path for v»; and r; in G; with
respect to some embedding II; of G;.

1. 4 =1: We consider four cases for p;:

(a) p1 is a @-node: This cannot happen since all @-nodes are leaves of 7 and the
adjacent node in 7 also has v in its skeleton. In the step from P; to P, in the
algorithm, we have discarded the node.

(b) p1 is a P-node: This cannot happen, because all nodes in 7 adjacent to p; have
v1 in their skeleton. Thus, we have deleted p; in the step from P; to Ps.
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(c) p1 is an S-node: In this case, v; forms a separation pair together with any of the
vertices adjacent to r1. This is the case because all these vertices are contained in
the skeleton of the S-node. It follows that v; and r; are a separation pair of G (see
Figure 3.9(a)).

Thus, we can insert the edge (v1,71) without any crossings independent of the em-
bedding of G1. So II; is just an arbitrary embedding of G; and the prefix of L that
is an edge insertion path for vy and r; with respect to II; is the empty list of edges.
Therefore, we define L; as the empty list of edges.

(d) p1 is an R-node: Our algorithm constructs G (note that r; is called y» in the
algorithm), computes an arbitrary embedding IT; for G; and an edge insertion path
L' for v; and 1 with respect to II; (see Figure 3.9(b)). L’ is the prefix of L where
all the edges are contained in G;. We define L as L'.

U1
U1

1

(a) p1 is an S-node (b) p1 is an R-node

Figure 3.9: Examples for the structures of graph G in the cases where p; is either an S-node
or an R-node

2. 1 <i < k: We assume 7 = [ and we know that our assumption is correct for all 7 < [.
Let z1 and x5 be the representatives of v; and vy in the skeleton S; of p;. We now look
at the graph G} that we get by expanding all edges in S; except for z; and z5 and by
splitting z; for j € {1,2} introducing the vertices r,_; and r; (r;—; splits 1 and r; splits
x2). We determine an embedding IT; for G} as follows, depending on the type of node p;:

(a) p; is a @-node: Again, this cannot happen for the same reason as in the induction
basis.

(b) p; is an S-node: In this case, we choose an arbitrary embedding ITj and set the list
L" to the empty list (see Figure 3.10).

(c) pi is a P-node: We choose an embedding for G where the vertices r;_; and r; are
on the same face. Such an embedding is easy to find, because the two vertices of
the split pair that defines p; are both adjacent to 7;_1 and r; (see Figure 3.11). We
define L"” as the empty list of edges.
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(d) p; is an R-node: We choose the embedding ITj for G} that has been used in the
algorithm to define the list L'. In this case, our list L” and the list L' computed by
the algorithm are identical (see Figure 3.12).

(L,

Figure 3.10: Example for the structure of the graph Gj in the case where p; is an S-node

Ti—1 'l

Figure 3.11: Example for the structure of the graph Gj in the case where p; is a P-node

Ti—1

Figure 3.12: Example for the structure of the graph G} in the case where p; is an R-node

Now we have a path L” that defines an edge insertion path in G} from r;_; to r; with
respect to II}. We know by induction that L;_; is a prefix of L and because L" is either
empty or was computed by our algorithm, the list L; defined as L; 1 concatenated with
L" is also a prefix of L. This prefix consists of the edges in L that are contained in the
graph Gj.

Now we have to construct an embedding II; for G; such that L; is an edge insertion path
for v; and 7; with respect to II;. It is clear that we get the graph G; by identifying the
vertices r;_; and the two incident edges in G} and G;—; and then deleting 7;_;. To get
the right embedding for the combined graph, we combine the two embeddings II;_; and
IT;.
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Let z1 be the last edge in L; 1 if I; 1 is non empty and v, otherwise. Let x5 be the first
edge in L" if it is non empty and r; otherwise. Then there is a face F in IT;_; with
and r;_; on its boundary. Additionally, there is a face F5 in II) with z and r;_; on its
boundary. This follows from the fact that L; 1 is an edge insertion path in G;_; for v;
and r;_; with respect to II;_; and the fact that L"” is an edge insertion path in Gj for
r1—1 and r; with respect to IIj.

We now want to construct an embedding II; for GG; such that there is a face in II; with z
and 5 on its boundary. Note that boundaries of faces are directed cycles and therefore
define a direction for each edge on the boundary (we assume that a face boundary is
always directed such that the face is to the right of the boundary). We consider two
different cases, according to the directions in which the face boundaries of F; and Fj
traverse the edges incident to r;_.

(a) The two directions are different. This situation is shown in Figure 3.13. In
this case, we can simply merge the embeddings IT; ; and II by identifying r; ;
together with the two adjacent vertices and then deleting r;_;. The corresponding
embedding II; contains a face F’ with 1 and x5 on its boundary that was constructed
by merging F} and Fj.

Fy
-1

Gi1 G

Figure 3.13: The case where r;_1 is passed in different directions by the boundaries of F} and
Fy

(b) The two directions are the same. This situation is shown in Figure 3.14. In this
case, we construct the mirror embedding of II; ; by reversing all face cycles. This
implies reversing for all vertices the list of incident edges in clockwise order. The
list L; ; is also an edge insertion path for v; and r;_; in the new embedding IT;_,,
because we just mirrored the embedding. But the boundary of face F} traverses
the edges incident to 7;_; in the opposite direction as F» and we can use the same
merging operation as in the first case.

We now look at the list L; that we get by concatenating L;_; and L”. This list is an
edge insertion path for v; and r; with respect to II;. The reason is that L;_; is an edge
insertion path for v; and r;_; in G;_1 while L” is an edge insertion path for r;_; and r; in
G}. By mirroring the embedding II;_; of G;_; if necessary, we make sure that the faces
F and F, get merged to a single face F' with the property that z; (either the last edge
in L; 1 or v1) and zo (either the first edge in L” or r;) are both on the boundary of F.
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'G,1 ' G

Figure 3.14: The case where r;_1 is passed in the same direction by the boundary of F; and F5

Thus, the concatenation of L;_1 and L”, which we now call L;, is an edge insertion path
for v; and 7, with respect to II; (see Figure 3.15 for an illustration).

Figure 3.15: The completed merger of II;_; and II;.

We can now show that L is an edge insertion path for v; and ve with respect to some
embedding IT of G. We know that a prefix Ly_1 of L (L = L) is an edge insertion path
for v and ry_; in Gx—; with respect to embedding IT;_;. We define G}, as the graph
that we get by expanding every edge in the skeleton S of p; except the representative
e1 = (u1,u9) of v1 and then replacing e; by a path of length two with vertex r;_; as the
middle vertex. With the same argument that we used when dealing with node p; we can
exclude the case that p; is a Q- or P-node. So there are only two cases left.

(a) pr is an S-node: In this case, our algorithm does not look at node pg. It will not

add any edges to L that are not contained in Li_;. Since we know that Lj_; is
the prefix of L containing the edges in L that are also contained in G_;, we can
conclude that L and Li_1 are in fact identical. We will show that every embedding
IT of G produced through an arbitrary extension of II;_; has the property that L is
an edge insertion path for v and vy with respect to II.

The graph G, shares only the vertex ry_; and its two neighbors with Gy_;. The
skeleton S of p; has only one embedding with the two faces F4 and Fp. The vertices
v9, Tk—1 and its two neighbors are on the boundary of both faces. The two edges
incident to r;_1 are also on the boundary of both faces. When we expand the edges
of S (the skeleton of pi) and construct an arbitrary embedding IIj for G}, the faces
F4 and Fp may get more edges and vertices on their boundary, but the four vertices
(v2, Tk—1 and its two neighbors) will stay on the boundary of the faces and the two
edges incident to 71 are still part of the boundary of the faces (see Figure 3.16).



3.3. SOLVING THE PROBLEM FOR BICONNECTED GRAPHS 49

V2

Tk—1

Figure 3.16: Example for the structure of the graph Gj, for the case that the last node on P,
is an S-node.

Again we define 1 as the last edge e in L1 if it exists or as v1 otherwise. There is
a face F' in II;_; with 1 and r;_1 on its boundary. So when we merge II;_; with
IT}, to produce the embedding IT of G, F will either be merged with F4 or Fg. In
both cases, z1 will be on the boundary of the same face as vy and we can be sure
that L is in fact an edge insertion path for v; and ve with respect to II.

(b) pr is an R-node: In this case, our algorithm will construct the graph Gj, by
expanding every edge in the skeleton S of p; except for the representative e; of
vy and splitting e; by inserting vertex y; (which we call 7,1 in this proof). The
algorithm will then compute an edge insertion path L’ for r;_; and v, with respect
to some embedding IT} of G..

Since Ly _1 is the prefix of L that contains the edges in L that are contained in Gj_1,
we know that the rest of L (called Ly_;) is L. We can use the same argumentation
as before to show that the merging of IT) with either II;_; or its mirror embedding
will result in an embedding IT with the property that the list L that we define as the
concatenation of Lj_; and L' is an edge insertion path for v; and vy with respect
to II.

O

When we have an edge insertion path L for the two vertices v; and vo, there is a simple way
for finding an embedding II such that L is an edge insertion path for v; and ve with respect
to II. We just split every edge e; in L by introducing a new vertex s;. Then we connect the
vertices v1, v and s; with new edges to form a path p that starts at v1, passes the vertices s1
to s; and ends at vertex wo.

Since L is an edge insertion path, the graph G’ generated by this operation is planar.
Therefore, we can compute a combinatorial embedding IT" for G'. Algorithms for computing
embeddings in linear time have been developed by Hopcroft and Tarjan (31) (the embedding
phase of the algorithm is also treated in (41) and (39) with improvements by Booth and Lueker
(13). When we delete the edges on p from II' and replace all the vertices s; and their incident
edges with the original edges, we get a combinatorial embedding II for G with the property
that L is an edge insertion path for v1 and vo with respect to II.
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What we have shown in the proof above is that the list of edges computed by Algorithm 1
is indeed an edge insertion path for v; and ve with respect to some embedding II of G. But we
still have to show that this edge insertion path has minimum length among all edge insertion
paths with respect to any embedding of G. Therefore, we need the following theorem.

Theorem 3.3 The edge insertion path computed by Algorithm 1 is optimal.

Proof We have already seen that Algorithm 1 computes an edge insertion path for v; and
ve, SO let L be the computed path with respect to embedding II. We have to show that each
edge insertion path for v; and v, has length at least |L|. Let L' be an optimal edge insertion
path and let II' be an embedding such that L' is an edge insertion path in II'. We show that
|L'| > |L| holds.

Consider one step of the while-loop in Algorithm 1. Let u be the R-node popped from
P; and S its skeleton. The algorithm marks the edges in S that are representatives of v; or
vg. Denote with G, the graph obtained from S by expanding all unmarked edges in S. The
embedding IT' implies an embedding HL of G,. Using this embedding, we can construct a dual
graph Siv of G, augmented with z; and x».

First we show that the edges of L' that are contained in G, form a subsequence of L'. If
both vertices v; and vy are contained in S, then all edges of L’ are edges of G, If L' does
not contain edges of G, our claim is also true. Now we assume that L’ contains edges of G .
If v; is not contained in S then it is represented by edge e; = (s1,t1). The expansion graph
G(e1) of e; contains v1. The same is true for v9. If it is not contained in S, it is represented
by edge ea = (s2,t2) and the expansion graph G(ez) contains vo. There are two faces F and
F in II' that contain edges of G(e;) and of G, on their boundary. This is true because G(e;)
is connected to G, via the separation pair {s,¢;}. This situation is depicted in Figure 3.17.
This Figure shows the graph G where G, is colored light grey and the two graphs G(e;) and
G(e2) are colored dark grey.

Lets assume that the edges of G, contained in L' do not form a subsequence of L’. There
are several different situations with this property. Here, we will only treat one of the cases,
the other cases can be treated similarly. We consider the situation shown in Figure 3.17. L’ is
represented by the dashed line. This line leaves G(eq), travels through G, reenters G(e;) and
then leaves it for good. So L’ looks as follows:

L'=L;-Ly-L3-Ly- Ls

The sub-path L is the part of L’ starting at v; and ending where L' leaves G(e;) for the first
time. The part between the first entry of L’ into G, and the re-entry into G(e1) is Lp. The
sub-path L3 is the last sub-path of L’ that contains edges of G(e1). The last sub-path of L’
that contains only edges of G, is L4. The last part of L' that contains only edges of G(e2) and
ends in vy is Ls.

The lists Ly and L3 contain only edges of G(e;) while the lists Ly and Ly contain only edges
of G,,. The list L5 contains only edges of G(ez). We claim that Ly - Ly - L5 is also an edge
insertion path for v; and ve in G. This is true because we can rotate G(e;) around the axis
given by the vertices s; and #; to produce an embedding of G where the last edge of L is on
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Figure 3.17: An edge insertion path where the edges of G, do not form a subsequence cannot
be an optimal edge insertion path.

the boundary of the same face as the first edge of Ly. Figure 3.18 shows G after the rotation
of G(el).

Figure 3.18: The situation of Figure 3.17 after rotating G(e1).

We can always shorten an edge insertion path that reenters G(e1) because there are exactly
two faces F; and F» whose boundaries contain edges of G, and edges of G(e;). So every edge
insertion path that starts in G(e;) and passes through G, must either pass through F; or F.
By rotating G(e1), we can always make sure that we still have an edge insertion path when we
remove a suitable sequence of edges from the original edge insertion path.

When applied to the edge insertion path L', we have a contradiction to our assumption
that L' is an optimal edge insertion path for v; and vy, because we can find a shorter edge
insertion path. It follows that the edges on L' that belong to G, must form a subsequence LL
of I'.

LL has the property that the corresponding dual edges plus two additional edges (one
starting at z1, and one ending at x2) form a path p in Sy from z1 to z2. We can assume that
p is indeed a path and thus contains no cycle, since the path obtained from deleting all edges
in a cycle would imply an even shorter edge insertion path for v; and vs.

Consider now an unmarked edge e € S with the property that p contains at least one edge
of the expansion graph G(e) of e. There are exactly two faces, say Fi(e) and Fy(e), in II),
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where the boundary contains edges of G, as well as edges from the rest of G(e). The dual
counterparts of the edges in L' N G(e) must form a sub-path ;z;(eJ) of p leading from Fj(e) to
Fy(e) (or vice versa). This follows from the optimality of L’ and the fact that p contains no
cycle.

If we denote with T'(e) the traversing costs of e, then ;t;ZeJ) must have length T'(e). Because
of this fact, we can simplify the rest of this proof by looking only at the dual graph of the
skeleton S of . where the weight of each edge is equal to the traversing costs of the edge. So
let S' be the dual graph of S augmented by z; and x5 where the weight of each unmarked
edge is given by the traversing costs of the corresponding edge in S. Note that we do not
have to specify a combinatorial embedding for which the dual graph was created since the two
embeddings of the triconnected graph S are mirror images of each other and the corresponding
dual graphs are isomorphic to each other.

We transform p into the corresponding path p’ in S’. This is done by replacing each ;Bze/)
for each unmarked edge e with & (the dual edge of €¢) and adding two edges that have been
introduced when we augmented S with z1; and zo. Now we have a path p' in the weighted
graph S’ connecting z; and z. Since the weights of the edges added during the augmentation
are zero, the total costs of p’ in S are |L,l-

On the other hand, the list L, of edges computed by Algorithm 1 (which is called L in the
algorithm and is appended to L at the end of the body of the while loop) implies a shortest
path p with the same length in the weighted graph S, which is obtained analogously to S'.
This is true, because the traversing costs of an edge are independent of the embedding of the
respective expansion graph by Theorem 3.1. Note that S and S’ are either identical or mirror
images of each other. Therefore, the length of p’ is at least the length of p, and |L},| > |L,|
holds.

The length of L is the sum of the length of all L,. Since all G, are edge disjoint, it follows
that the length of L' is at least 3, p |L},|, and therefore |L'| > |L| must hold. O

3.3.3 Running time

We show that the running time of our algorithm is linear in the size of the graph. First, we
clarify what is meant by this statement. A planar graph has at most 3n — 6 edges where n is
the number of vertices (if we assume that there are no multi-edges and no self loops). So there
can be no misunderstanding when we say that the running time of the algorithm is linear in
the size of the graph.

We look at Algorithm 1 line by line and show that each action can be performed in linear
time (linear in the size of the input graph). Computing the SPQR-tree of a biconnected planar
graph can be done in linear time (6; 27). Finding allocation nodes p1 and po for the vertices
v1 and vy can also be done in linear time by looking at all skeletons of all nodes of the SPQR-
tree. Note that the size of an SPQR-tree for a planar graph (including the skeletons) is linear.
Finding the path P; from p; to uo in the tree can be done in linear time using depth first
search.

We transform P; into P, by deleting nodes from both ends of the path until we have
produced the shortest path from an allocation node of v1 to an allocation node of v5. This can
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also be done in linear time. One scan through P; is necessary to delete all S- and P-nodes of
P, and for marking the representatives of the vertices v; and vy in the skeletons. This also
takes linear time.

To analyze the running time of the while-loop, it is important to note that all graphs
computed in the loop are disjoint except that they may share two vertices if the two R-nodes
in question are connected by an edge in the SPQR-tree. Constructing the union of all the
graphs will result in a subgraph of the original graph G (if we delete the artificial edges and
nodes generated by the splitting of edges performed in the algorithm). So the sum of the sizes
of all graphs considered in the algorithm is at most the size of the original graph plus at most
a linear number of vertices and edges introduced by the algorithm.

Now we look at a single iteration of the loop. If an edge splitting operation is necessary, it
can be done in constant time. Then we replace all unmarked edges by their expansion graphs.
If the current R-node treated in the loop is r, then we call the graph generated by the expansion
of the unmarked edges G,. Computing an arbitrary embedding for G, can be done in linear
time, using for example the algorithm described in (41). The same holds for the computation of
the dual graph and for augmenting the dual graph. Computing a shortest path in the extended
dual graph of G, can also be done in linear time using breadth first search. We do not have to
set the weights of the edges added in the augmentation step to zero, because each path from
z1 to xg has to use exactly two of these edges. Since all edges have weight one, we can use
breadth first search to find the shortest path.

Deleting the head and tail of the path to get the edge insertion path can be done in constant
time while the translation from dual edges to primal edges takes linear time in the size of G,.
Appending the resulting path to the result list is possible in constant time. Therefore the
running time of Algorithm 1 is linear in the size of the biconnected planar graph G. This is
also true in practice, as our computational results in Section 3.5 on page 60 show.

3.4 Generalization to Arbitrary Graphs

If we have an algorithm that works for connected graphs, it is very easy to extend the algorithm
to arbitrary graphs. If the two vertices that we want to connect are contained in the same
connected component, we can apply the algorithm used for connected graphs. If they do not
belong to the same connected component, we can always insert an edge between them without
losing planarity.

This can be seen as follows: Let G be the connected component containing vertex vy and
G, the component containing vertex vo. We can always construct a drawing of G; with v; on
the outer face and a drawing of G with vy on the outer face. Then we can connect v; and ve
with an edge through the global outer face of the graph.

So the missing link is the algorithm for connected graphs. This algorithm, a proof of
correctness and the running time are given in the rest of this section.
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3.4.1 The Algorithm For Connected Graphs

First we consider the case where G has more than one block (a block is a maximal biconnected
subgraph), but both vertices we want to connect are contained in the same block b. We claim
that all optimal edge insertion paths in G contain only edges of b.

Theorem 3.4 Let G be a connected planar graph and p an edge insertion path for (vi,ve)
with respect to some embedding 11 of G. If both v1 and vy belong to the same block b of G and
if p includes an edge contained in a different block b', than p is not an optimal edge insertion
path.

Proof Lets=b,bo,...,b; beasequence of all the blocks of G with the following properties:
1. b1 =0
2. The graph G; that we get as the union of the blocks b; to b; is connected for all 1 < ¢ < k.

Such a sequence must exist since G is connected. We define the embedding II; of G; as
the embedding that we get by deleting all blocks b; with 7 > ¢ from II. So II; and II are
identical. We will now prove the following fact by induction over 7: An optimal edge insertion
path connecting v1 and v in G; contains only edges in b.

e i = 1: The claim follows immediately since b is the only block in G;.

e ¢ > 1: We know that IT;_; differs from II; only in the fact that b; is missing. Since Gj; is
planar, adding b; to II;_; can only be done by inserting all the vertices and edges of b;
into a face F' of II;_;. This is true because b; is connected and inserting two vertices of
b; into different faces of II;_; must produce a crossing.

Let II;, be the embedding of b; that we get by deleting all vertices and edges of II that
do not belong to b;. Since G;_; is connected and II; is a combinatorial embedding, it

follows with the same argumentation as above that in IT;, IT; ; is embedded into a single
face F' of II,,.

From the construction of II; we know that its faces can be partitioned into three sets:

1. The set F; of faces of II;_; without F.
2. The set F» of faces of I, without F".
3. The face F' we get by merging F and F'.

By merging F' and F' we mean the following process: Let ¢, u1,us,. .., u; be the sequence
of vertices on the boundary of F such that F' is on the right of the directed cycle of
edges defined by this sequence. Vertex c is the cut-vertex separating G; 1 from b;. Let
¢, w1, wo, ..., w; be the sequence of vertices on the boundary of face F' such that F’ is
on the right of the directed cycle of edges defined by this sequence. Then the sequence of
the vertices on the boundary of Fis CoW1y Wy -« oy Wy Cy UL, U, - - -, Ug (AGAID F is to the
right of the cycle defined by the sequence). See Figure 3.19 for an example.
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Figure 3.19: Adding II;, to the embedding II;_; to get embedding II;

Now we look at the dual graph D; of II; augmented by v; and v2. How can we construct
D; from the augmented dual graph D;_; of II;_; and the dual graph D, of II;,? Since
we have one vertex in D; for every face and for v; and w9, the vertices of D; are v; and
v9 together with one vertex corresponding to each element in the sets F; and F5 and the
vertex representing F.

For simplicity, we define V7 as the set of vertices in D; representing faces in F} together
with the vertices v1 and vo, V5 as the set of vertices in D; representing faces in F5 and ©
as the vertex representing F'.

By construction of II; it is not hard to see that we construct D; from D;_; and Dy, by
merging the vertex corresponding to F' in D;_; and the vertex corresponding to F’ in
Dy, to produce the new vertex 9. Thus the following statements are true:

1. There is no edge in D; from a vertex in Vi to a vertex in Va.
2. All paths from a vertex in V; to a vertex in V5 must pass 9.

3. Every path in D; ; connecting v; and vo which does not include the vertex repre-
senting face F' is also present in D;.

4. If a path p connecting v; and ve in D;_; includes the vertex corresponding to face F,
we can construct a path of the same length connecting v; and ve in D; by replacing
the vertex representing F' in p by the vertex 0.

The last two facts guarantee that for every shortest path p in the augmented dual graph
D;_1 connecting v and ve, we can find a path of equal length in D; which does not use
any vertex in V5. The first two facts guarantee that there is no edge insertion path for
v1 and vy that uses vertices in V5 because the only way of getting from a vertex in V; to
another vertex in V; via a vertex in V5 is by passing ¥ twice. Thus we have proven our

claim.

O
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This proves that if we want to connect two vertices in the same block b of the graph, it
suffices to apply our algorithm for biconnected graphs to the block b.

Now we have to look at the case where v; and vy are in different blocks of the graph. In the
following algorithm, we use the function OptimalBlockInserter (Algorithm 1 on page 42) as
a subroutine. An important data structure used in the algorithm is the block tree of a graph.
This data structure was already used by Westbrook and Tarjan (49) and Tamassia (48). (5)
extended the tree by associating the SPQR-tree of each block with the corresponding nodes in
the tree. This tree has two types of nodes: b-nodes and c-nodes. There is one b-node for every
block in the graph and one c-node for every vertex. There is an edge connecting a c-node and
a b-node if and only if the block represented by the b-node contains the vertex represented by
the c-node.

Figure 3.20 shows a graph and its block tree. The graph in Figure 3.20(a) has five blocks
that are drawn as grey squares in the drawing of the block tree (Figure 3.20(b)). The cut
vertices in the graph are the c-vertices in the block tree with degree greater one.

B,
5 1
B B,
6)(0) (7 4) (3
B B

(a) (b)

Figure 3.20: A graph and its block tree. The b-vertices of the block tree are drawn as grey
squares.

Another important term the algorithm uses is the representative of vertex v in a block B.
We look at the shortest path P from the b-node corresponding to B in the block tree to the
c-node corresponding to v. Let ¢ be the first ¢-node on this path (as seen from the b-node
corresponding to B). Then the vertex corresponding to c is the representative of v in B. Note
that this vertex is v itself if v is contained in the block B. Our algorithm for treating connected
graphs works as follows:
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Algorithm 2: Algorithm for edge insertion in connected planar graphs

Input: Planar connected graph G = (V, E) and two non-adjacent vertices v; and vy in

G

Result: An edge insertion path L for v; and va.

begin

Build the block tree B of G;

Compute the path P form vy to vg in B;

Set B = (by,bs,...,bx) to the list of blocks on P;

Set L to an empty list of edges;

fori <+ 1tokdo
Let z1 and z9 be the representatives of v; and vy in By;
L' = OptimalBlockInserter (B;, 1, T2);
Append L' to L;

end

3.4.2 Correctness and Optimality

The proof of correctness and optimality of Algorithm 2 relies on the correctness and optimality
of Algorithm 1.

Theorem 3.5 Let G be a planar connected graph and let vi and vs be two mon adjacent
vertices in G. Then the list L of edges computed by Algorithm 2 is an optimal edge insertion
path for vi and vs.

Proof We use the same approach as in the correctness proof for the algorithm that works on
biconnected graphs (Theorem 3.2). We define G; as the graph that consists of the blocks by to
b; in Algorithm 2 and L; as the list L after iteration ¢ of the for-loop in the algorithm. We will
show by induction that L; is an optimal edge insertion path in G; for v; and the representative
y; of vo (in Gy, the representative of vy is vy itself).

We use induction over i. For each 7, we must show that there is an embedding II; such that
L; is an edge insertion path for v; and y; with respect to II; and that the path has minimum
length among all edge insertion path with respect to any embedding of G;.

1. ¢ = 1: The correctness follows directly from the correctness and optimality of Algorithm 1.
So we know that L; is indeed an optimal edge insertion path for v; and y;.

2. 14 > 1: We know that the theorem is correct for i < [ and we want to prove correctness
for 4 = I. Since Algorithm 1 is correct, we know that the list L' computed in iteration
[ of the algorithm is an optimal edge insertion path in b; for the representative x; of v;
(called z1 in the algorithm) and the representative y; of vo (called z in the algorithm).

Let II; be an embedding of b; such that L' is an edge insertion path with respect to II;.
The construction of the block tree guarantees that the vertex x; is a cut-vertex of G and
that z; and vertex ;1 in Gj_1 are identical. So the representative of vy in G;_1 is the
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Gi—1 O b

Figure 3.21: Merging the embeddings II;_; and II;

same vertex as the representative of v; in b;. Since both y;_1 and z; stand for the same
vertex, we will call this vertex c¢ in the rest of this proof.

By induction we know that L;_; is an optimal edge insertion path in G;_; for v; and ¢
with respect to II;_;. The way we construct G; from G;_1 and b; is by identifying the
vertex c¢ in both graphs. There is no other vertex or edge that both graphs share since b;
is a maximal biconnected subgraph of G.

How can we construct an embedding II; from II;_; and II; such that L;_; concatenated
with L' is an edge insertion path with respect to II;? We define a as the last edge in
L;_1 if the list is not empty and as v, otherwise. We define 3 as the first edge in L' and
as y; if L' is empty. Then there must be a face F in II;_; with ¢ and « on its boundary.
Additionally, there must be a face F in II} with ¢ and § on its boundary. We embed IT]
into face Fy of II;_; such that II;_; is embedded into face F of ITj. This is done just like
in the proof of Theorem 3.4 (see also Figure 3.21 on page 58).

So we get embedding II; by merging the faces F; and F of IIj_; and II}. Let F3 be the
face resulting from the merger of F; and F5. All other faces remain untouched. We do
not have to perform a mirror operation as in the proof of Theorem 3.2 because we do
not merge two faces that share a virtual edge. In our case, the faces only share a single

vertex.

We know that L; 1 is an edge insertion path in G for v; and ¢ with respect to II; and
that L' is an edge insertion path in G; for ¢ and y;. The merging operation guarantees
that « and B are both on the boundary of face F3 in II; and that L;_; and L' are still
edge insertion paths for the same pairs of vertices. We can get from « to 8 in II; without
crossing another edge. Thus, L; which is defined as the concatenation of L;_1 and L, is
an edge insertion path in G for v and y; with respect to II;.
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Now we assume that there is a shorter edge insertion path L for v, and y; with respect to
some embedding IT of G;. There is exactly one face F in II where the boundary includes
edges from G;_; as well as edges from b;. The sequence of the vertices on the boundary
of this face must include the vertex ¢ two times because c is a cut-vertex.

Let G bet the dual graph of G; with respect to embedding II. The edge insertion path L
defines a path L in G;. L passes the vertex of G; corresponding to F exactly once. The
path L must pass it at least once because this vertex is a cut-vertex in G; separating the
part of G; that contains v; and the part that contains v;. It cannot pass it several times,
because it is a path.

Therefore we can split L into the two parts L4 and Lp where the first part contains
only edges from G;_; and the second part contains only edges from b;. We define I14 as
the embedding for G;_; that we get by deleting all nodes and edges from IT that are not
contained in GG;_; and IIg as the embedding for b; that we get by deleting all nodes and
edges from II that are not contained in ;. In other words, 114 is the embedding of G;_;
defined by IT and Iz the embedding of b defined by II. Then L4 is an edge insertion
path in G;_4 for v; and ¢ with respect to II4 and L B is an edge insertion path in b; for ¢
and g; with respect to Ilp.

Since we assume that I is shorter than L;, at least one of the following statements must
be true:

(a) L, is shorter than L;_;.
(b) Lp is shorter than L'.

The first statement is a contradictions against the fact that L; ; is an optimal edge
insertion path for v; and c¢ in G;_;. The second statement is a contradiction to the
correctness and optimality of Algorithm 1 because we used it to compute the shortest
edge insertion path in b; connecting ¢ and y;. So L cannot be shorter than L; and we
know that L; is an optimal edge insertion path for v; and y; in Gj.

This concludes the induction where we have shown that L is an optimal edge insertion path
in Gy, for v; and vy with respect to some embedding II; of Gx. But Gy and G may not be
identical. Gy, contains only the biconnected blocks of G that belong to the path in the block
tree that starts at v; and ends in vo. We have to show that L is also an optimal edge insertion
path in G. To see this, we assume that we add the rest of the blocks one by one to Gy, such
that we always have a connected graph. Lets assume that the sequence of the graphs created
in this way is Gk, Gg+1, - - ., Gm where G, is G.

We can show with the same argument used in the proof of Theorem 3.4 on page 54 that
an optimal edge insertion path for v; and vo in G; with £ < ¢ < m is also an optimal edge
insertion path for v; and vy in G;11. When we add the next block b to some G; with ¢ > k,
we always do this by merging a face boundary of G; with a face boundary in b and leaving all
other faces untouched. So any two faces or vertices of G; that were on the boundary of the
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same face before the merger will also be on the boundary of the same face after the merger.
Thus, an edge insertion path for G; is also an edge insertion path for G;41.

Adding blocks to a planar graph G, cannot create a shorter edge insertion path for v; and
vg. This can be seen as follows: when we add a block to the graph G; with ¢ > k, we also
add a block to the dual graph. Let D; be the part of the dual graph of G;;; corresponding
to G; and Dy the part corresponding to b;1. D; is connected to Dy only via one cut-vertex.
Therefore, any path leaving D; in the dual graph must do so using this cut-vertex. The path
can never reenter D because the only way back is again via the cut-vertex and this is not
possible because a path can use a vertex at most once.

Hence, a path in the dual graph of G that connects two vertices in G uses only the duals
of edges in Gy. So a shortest path in the dual of G; will also be a shortest path in the dual
of G;4+1. And an optimal edge insertion path in G’ between two vertices in G will not contain
any edges of a block that does not belong to G. Thus, L is an optimal edge insertion path in
G for v; and vs. O

3.4.3 Running time

Again, we look at the algorithm step by step. Computing the block tree of a graph can be
done in linear time using an algorithm for finding biconnected components (such an algorithm
can for example be found in (15)). Since the tree has linear size, we can find the path P in
linear time using depth first search. In the for-loop, we execute Algorithm 1 for every block
on P. Each execution needs time linear in the size of the block (see Section 3.3.3 on page 52)
and since the blocks are edge-disjoint the whole algorithm needs only linear time.

3.5 Computational Results

We have implemented our algorithm using AGD (AGD), a library of algorithms for graph
drawing, that contains a state-of-the-art implementation of the planarization method and a
linear time implementation of SPQR-trees (27).

First we compared the performance of the following two algorithms that both insert an
edge e into a planar graph G:

e SPI: This algorithm is a heuristic. It chooses an arbitrary embedding II of G and
then inserts e by computing a shortest path in the dual graph with respect to II. The
abbreviation SPI stands for Shortest Path Inserter.

e OEI: This is the new algorithm we presented in this chapter. It inserts e with the
minimum possible number of crossings under the restriction that the edges of G do not
cross. The abbreviation OEI stands for Optimal Edge Inserter.

To compare the performance of the two algorithms, we used the set of 11529 graphs collected
by Battista, Garg, Liotta, Tamassia, Tassinari, and Vargiu (2). They either originate from
industry or are derived from such graphs. There are 8249 non-planar graphs in the benchmark
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set. Figure 3.22 shows how many graphs the set of non-planar graphs contains for each number
of vertices. Figure 3.23 shows the average number of edges in the non-planar graphs with the
same number of edges. It seems that the number of edges grows linearly with the number of
vertices, so the graphs are quite sparse on average.
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Figure 3.22: Number of non-planar graphs per number of vertices.
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Figure 3.23: Average number of edges for non-planar graphs with the same number of vertices.

For our first test, we generated test instances out of the non-planar graphs by executing
the following steps on each of them:

1. We computed a planar subgraph G’ of the graph G using the class SubgraphPlanarizer
of the AGD-library (see (author?) (AGD)). It finds a planar subgraph using PQ-trees
as described by Jinger, Leipert, and Mutzel (35). Note that the subgraph computed is
not necessarily a maximal planar subgraph.

2. Let L be the set of edges that are contained in G but not in G'. We insert the edges of L
into G’ one by one until the resulting graph is not planar anymore. This must happen at
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some point because G’ is planar while G is not planar. So this step computes a sequence
S = (Go,G1,...,Gy) of graphs where Gy = G’ and all graphs G; with i < k are planar
subgraphs of G while G, is a non-planar subgraph.

Let e be the edge of L we inserted to construct Gy from G_1. Note that G, has skewness
one, which means that the deletion of the single edge e results in a planar graph. The
test instance for the two algorithms consists of Gi_1 and e. So each algorithm is used to
insert edge e into the planar graph G_; thereby producing at least one crossing because
G}, is not planar.

Figure 3.24 shows the average size of the set L (the set of edges we delete to make the graph
planar) for each number of vertices. This number of deleted edges grows at least linearly with
the size of the graphs.
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Figure 3.24: Average number of edges deleted to produce a planar subgraph.

Applying the algorithm above to the 8249 non-planar graphs in the benchmark set produced
as many problem instances. Each instance consists of a planar graph and an additional edge
that makes the graph non-planar. We applied the algorithms SPI and OEI to each of the
instances.

Figure 3.25 shows for each number of vertices the average number of crossings produced for
problem instances with that number of vertices by the algorithms SPI and OEIL. The z-axis
shows the number of vertices while the y-axis shows for both algorithms the average number
of crossings produced using the algorithm on the graphs with the corresponding number of
vertices. The figure shows that OEI produces significantly less crossings than SPI.

Let ¢s be the number of crossings produced when applying SPI to an instance and c,
the number of crossings produced when applying OEI. For each instance, we computed the
absolute improvement I4 as I4 = ¢; — ¢,- This is the number of crossings we save if we use
OEI instead of SPI. We define the relative improvement Ir as the following value:

I
I = “2100%

Cs
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The average value of T4 over all instances is 0.28. So we can save (.28 crossings on average by
using OEI instead of SPI. That does not sound very impressive but the value of Iy is 12.15%.
So the average percentage of crossings saved is more than 12 percent if we insert just one edge.
The greatest number of crossings saved for an instance (the maximum value for I4) was three.
The maximum percentage saved for an instance (the maximum value for Ir) was 75%. Both
maxima occurred for the same problem instance. The graph in question had 66 vertices and 85
edges before the insertion of the additional edge. Inserting the edge with SPI produced four
crossings, while inserting the edge with OEI produced only one crossing.

16 - 8 o
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Figure 3.25: Average number of crossings produced by SPI and OEI over all graphs with the
same number of vertices.

We also measured for each instance the time used by both algorithms and computed the
average over all instances with the same number of vertices. Additionally, we measured for
each graph the time needed to compute an SPQR-tree for each of its non-trivial biconnected
components and again computed the average over all graphs with the same number of vertices.
The results are shown in Figure 3.26. The figure not only contains the points giving the average
time for each number of vertices for the two algorithms SPI and OEI but also the two straight
lines approxl and approx2. These lines show that the running time of both algorithms is
indeed linear. The algorithm SPT is much faster because it does not build SPQR-trees for
each graph. The figure shows that almost half the computation time of OEI is spent for the
computation of the SPQR-trees.

We also wanted to know how good the two algorithms SPI and OEI perform when used
in the planarization method. Algorithm 3 gives a short overview of the planarization method.

We programmed two versions of the planarization method that only differ in the method
they use for computing the edge insertion path in the while loop of Algorithm 3. In the
standard algorithm, this is done using SPI. In our modified version of the planarization method,
we used OEI instead of SPI. Note that our modified planarization method has the same
asymptotic running time as the standard planarization method since OEI has linear running
time.
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Figure 3.26: Average time used by SPI and OEI over all graphs with the same number of
vertices together with the time needed to compute the SPQR-trees.

Algorithm 3: The planarization method
Input: Connected graph G = (V, E)
Result: A drawing D of G with a small number of crossings

begin
Compute a preferably large planar subgraph G' = (V, E') of G;
Set £ M =FE— E';
while Ej; # () do
Let e = (v1,v2) be an edge in Fj;
Delete e from FEjy;
Find an edge insertion path p for v; and v in G';
Split the edges on p by inserting artificial vertices;
Insert a path into G’ from vy to vy via the artificial vertices;

Produce a planar drawing D of G';

Replace all artificial vertices in D by crossings;
end

For comparing the performance of the two versions of the planarization method, we use
the same 8249 non-planar graphs we used in the experiment where we only inserted one edge.
Again, we computed a planar subgraph using the AGD implementation of the algorithm by
Jinger, Leipert, and Mutzel (35). Notice that since we insert in general more than one deleted
edge in the second phase of the planarization method, the impact of optimally inserting a single
edge is not obvious.
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Figure 3.27 shows for each number of vertices and the two versions of the planarization
method using SPI and OEI the average number of crossings. The line representing the cross-
ings produced using SPI is clearly above the line for OEI.
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Figure 3.27: Average number of crossings produces by OEI and SPI for non-planar graph
with the same number of vertices.

Figure 3.28 visualizes the significant improvement achieved by our new algorithm. It dis-
plays for each number of vertices the average relative improvement Iz of the number of crossings
in percent. Let ¢; denote the number of crossings produced by the standard algorithm and
¢, denote the number of crossings produced by our modified algorithm. Then the value Iy is
computed as Ip = “ = 100%.

C

The z-axis in Figure 3.28 shows the number of vertices, while the y-axis shows the average
Ir-value over all graphs with the corresponding number of vertices. The average value of Ig
varies widely for small graphs because there is only a small number of these graphs in the
benchmark set. But for larger graphs, the average Ir value seems to stabilize at about 14%.

For 68% out of the 8249 tested non-planar graphs, the crossing number was smaller using
our new method and for only 8% it was greater. This can happen because inserting one edge
with the minimum number of crossings can lead to more crossings than necessary when the
next edge is inserted into the resulting graph. This is the same effect that occurs when the
greedy method is applied to hard problems.

The average relative improvement was 14.42% in total. The maximum improvement was
85.71%. This happened for a graph with 39 vertices and 56 edges. The standard algorithm
produced seven crossings whereas our new algorithm produced only one. The maximum neg-
ative improvement was —100% for a graph with 65 vertices and 76 edges. Here, the standard
algorithm produced two crossings and the new algorithm four crossings. The average number
of crossings produced by the standard algorithm grows from 1.29 for graphs with 11 vertices to
57.86 for graphs with 100 vertices, whereas the numbers grow from 1.29 to 49.83 for our new
algorithm.
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Figure 3.28: Average relative improvement for graphs with the same number of vertices when

using our new method.

Since the asymptotic running time of the standard planarization method is the same as the
asymptotic running time of our modified planarization method and the improvements using
the modified version are significant, it seems well worth using our modified version instead of
the standard version.

3.6 Crossing Number and Edge Re-Insertion

We have shown how to solve the following problem optimally: Given a planar graph G = (V, E)
and an additional edge e, find a drawing of G’ = (V, E U {e}) that has the minimum number
of crossings under the constraint that edges in £ do not cross each other. This section shows
that the number of crossings in this solution can be much higher than the number of crossings
in a drawing of G’ where the edges of E are allowed to cross.

To find such an example, we need a graph G’ which is not planar but can be made planar
by deleting just one edge. Since the number of edges in a graph that we have to delete to make
it planar is called the skewness of a graph, our graph G’ must have skewness one.

The example found by Farr (20) is shown in Figure 3.29(a). The grey areas in the graph are
subgraphs that look like the graph in Figure 3.29(b). We call these graphs walls. The vertices
vy and v (drawn as hollow circles) are called the poles of a wall and are adjacent to a chain of
n vertices (shown in grey). We call n the thickness of the wall. The first and the last vertex of
this chain are connected to the poles via a simple path of arbitrary length. A wall has certain
properties that are used in the example:

1. A wall is a subdivision of a triconnected graph and has therefore only two combinatorial
embeddings that are mirror images of each other. We call a graph with this property
rigid.
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2. Assume that a graph contains a ring of walls, each with thickness n such that the poles
of neighboring walls are identified. Then inserting an edge that starts at a node inside
the ring and ends at a node outside of the ring produces at least n crossings.

The graph in Figure 3.29(a) contains a ring of walls (as in Figure 3.29(b), the hollow vertices
are the poles of the walls). By making these walls thick enough, we can make sure that in any
drawing with the minimum number of crossings, there are no edges that start inside the ring
and end outside of the ring.

Cal

V2
(a) (b)

Figure 3.29: The graph G with skewness one on the left and an example of a wall with thickness
eight on the right.

We define the graph G = (V, E) as the graph shown in Figure 3.29(a) without the dashed
edge e and the graph G’ as G' = (V, E U {e}). We want to show that the drawing of G’ with
the minimum number of crossings where edges in £ do not cross does not have the minimum
number of crossings among all drawings of G'.

To show this, we have to define values for the parameter m (the number of non-wall edges
incident to vertex z) and the thickness of the walls. We choose m = 2 + p for some positive
integer p. We choose the thickness of the walls in the ring as (m + 5)? 4+ 1. This is the square
of the number of edges in G’ that are not contained in the walls plus 1 (the 5 edges are ¢, v, f,
g, and e). This makes sure that even a drawing where all the non-wall edges cross each other
has less crossings than any drawing where the ring of walls is crossed by an edge.

First we show that the drawing in Figure 3.29(a) has the minimum crossing number among
all drawings of G’ where edges of F do not cross. Each wall is rigid and the edges ¢, v, f,
and g make sure that we cannot flip a wall around the axis going through its poles without
producing crossings. Therefore the graph G’ itself is rigid. Since G’ is rigid, and crossing a
wall produces too many crossings, the best way of inserting e is to cross the edges hy to h,, as
shown in Figure 3.29(a). This results in m crossings.
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Figure 3.30 shows a drawing of G’ with only two crossings. This drawing is produced by
flipping the two walls that connect the vertices v, x and w around their poles. Now edge f
crosses edge ¢ while edge g crosses edge . So there are crossings between edges of F in this

drawing while there are no crossings that involve edge e.

u

Figure 3.30: A drawing of graph G’ with only two crossings

The parameter p is the difference of the number of crossings in Figure 3.29(a) and the
number of crossings in Figure 3.30. Since we can choose p as any positive number, the difference
in the number of crossings between the two drawings can be arbitrarily large.

This shows that inserting an edge into a planar graph, even if done in an optimal way,
does not necessarily produce a drawing of the resulting graph with the minimum number of
crossings. In fact, the difference to the optimal crossing number can be arbitrarily large.



Chapter 4

Computing Orthogonal Drawings
with the Minimum Number of
Bends

We study the problem of minimizing the number of bends in an orthogonal drawing over the
set of all combinatorial embeddings of a given planar graph. The motivation for studying
this problem is that the number of bends has a significant influence on the readability of an
orthogonal drawing of a graph.

We characterize the set of all possible embeddings of a given biconnected planar graph
G by means of a system of linear inequalities with {0, 1}-variables corresponding to the set
of those cycles in G that can appear in a combinatorial embedding. This system of linear
inequalities can be constructed recursively using SPQR-trees and a new splitting operation.
To our knowledge, this is the first characterization of embeddings as an integer linear program.
We published our findings in (42) and (43).

We also describe the concept of orthogonal representations and how an orthogonal repre-
sentation with the minimum number of bends can be found for a given embedding by solving
a minimum cost flow problem. We translate the minimum cost flow problem into a linear pro-
gram and combine it with the integer linear program that describes all embeddings of a graph.
This results in a mixed integer linear program that describes the orthogonal representations of
a graph.

The algorithm we use to compute a drawing of a biconnected planar graph with the mini-
mum number of bends involves computing the mixed integer linear program, finding an optimal
solution, separating constraints and re-optimizing if necessary. We also present some methods
we use to speed up the computation.

We present computational results on two different benchmark sets of graphs. There are
two main results of these experiments. The first result is that our new approach is faster for
large graphs with many embeddings than the previously known branch & bound approach for
solving the bend minimization problem. The second result is that the use of exact algorithms
reduces the number of bends significantly for almost half of the tested graphs.

69
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Figure 4.1: The impact of the chosen planar embedding on the drawing

4.1 Introduction to the Problem

The complexity of choosing an embedding of a planar graph has already received some at-
tention (10; 11; 12). These authors have given polynomial time algorithms for computing an
embedding of a planar graph that minimizes various distance functions on the faces of a graph
with respect to the outer face like the radius, the width, the outerplanarity and the depth.
Moreover, they have shown that computing an embedding that minimizes the diameter of the
dual graph is NP-hard.

In this paper we deal with the following optimization problem concerned with embeddings:
Given a planar biconnected graph, produce an orthogonal drawing of G that respects certain
drawing conventions and has the minimum number of bends among all possible drawings of the
graph that respect the conventions. This problem is NP-hard (24) and was already attacked
in (7) and (9). The authors use a branch and bound approach, while we attack the problem
using integer linear programming.

Our motivation to study this optimization problem and in particular an integer linear
programming formulation arises in graph drawing. Most algorithms for drawing planar graphs
need not only the graph as input but also a combinatorial embedding. The aesthetic properties
of the drawing often change dramatically when a different embedding is chosen as the input
for the algorithm.

Figure 4.1 shows two different drawings of the same graph that were generated using the
bend minimization algorithm by Tamassia (47). The algorithm used different combinatorial
embeddings as input. Drawing 4.1(a) has 13 bends while drawing 4.1(b) has only seven bends.
Note that both drawings have the minimum number of bends among all drawings that realize
the same combinatorial embedding. As the example indicates, it makes sense to look for the
embedding that will produce the drawing with the smallest number of bends.

In graph drawing it is often desirable to optimize some cost function over all possible
embeddings in a planar graph. In general these optimization problems are NP-hard. Garg and
Tamassia (24) show, that minimizing the number of bends in an orthogonal planar drawing is
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NP-hard. For a fixed planar embedding, this problem can be formulated as a flow problem in
the geometric dual graph. Once we have characterized the set of all feasible embeddings (via
an integer linear formulation on the variables associated with cycles), we can use this in an
integer linear programming formulation for the corresponding flow problem. The variables of
the resulting mixed integer linear program consist of ‘low variables’ and ‘embedding variables’.

In Section 4.2, we introduce an integer linear program whose set of feasible solutions cor-
responds to the set of all possible combinatorial embeddings of a given biconnected planar
graph. One way of constructing such an integer linear program is by using the fact that every
combinatorial embedding corresponds to a 2-fold complete set of circuits (see MacLane (40)).
The variables in such a program are all simple cycles in the graph; the constraints guarantee
that the chosen subset of all simple cycles is complete and that no edge of the graph appears
in more than two simple cycles of the subset.

We have chosen another way of formulating the problem. The advantage of our formulation
is that we only introduce variables for those simple cycles that form the boundary of a face
in at least one combinatorial embedding of the graph, thus reducing the number of variables
tremendously. Furthermore, the constraints are derived using the structure of the graph.
We achieve this by constructing the program recursively using SPQR-trees. A new splitting
operation makes the recursive construction possible.

The concept of orthogonal representations of planar graphs is defined in Section 4.3. Or-
thogonal representations describe the shape of orthogonal drawings of planar graphs without
determining the length of the edge segments. We introduce different types of orthogonal rep-
resentations that differ in the way they cope with high degree vertices. We present a minimum
cost flow problem that is equivalent to finding an orthogonal representation with the minimum
number of bends for a fixed embedding of a graph and formulate this problem as a linear
program.

In Section 4.4, we combine the linear program for orthogonal representations with a fixed
embedding and the integer linear program that describes the embeddings of a graph. This
results in a mixed integer linear program where every optimum solution corresponds to an
orthogonal representation with the minimum number of bends over all embeddings of the
graph.

In Section 4.5, we present the algorithm that we use to compute a drawing of a planar
biconnected graph with the minimum number of bends. This algorithm first computes an
initial mixed integer linear program and solves it using a mixed integer solver. Then we check
if the solution satisfies all the constraints that an orthogonal representation has to satisfy. If
this is not the case, we add a violated constraint and compute a new solution.

When all constraints are satisfied, we translate the solution into an orthogonal represen-
tation. This representation is then taken as the input for an algorithm that computes an
orthogonal drawing of the graph that realizes the representation.

Section 4.6 contains the computational results. They show that our new approach out-
performs the previously known branch & bound method if the graph is large and has many
embeddings. Another result is that compared with a heuristic often used for solving the prob-
lem, an exact solution saves a significant number of bends for almost half of the graphs we
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tested.

4.2 The Integer Linear Program Describing the Embeddings of
a Graph

4.2.1 Intuition

The SPQR-tree represents the decomposition of a biconnected planar graph with respect to its
triconnected components (see Chapter 2 for an introduction to SPQR-trees). All embeddings
of the graph can be enumerated by enumerating all possible embeddings of these components.
Our approach uses the fact that each skeleton of a node in the SPQR-tree represents a simplified
version of the original graph. By computing the integer linear programs (ILP) for these simple
graphs and using a lifting procedure, we can compute an ILP for the original graph.

When we take a closer look at the skeleton of a node in the SPQR-tree, we observe that
it can be constructed from the original graph by replacing one or several subgraphs by single
edges. Each edge in a skeleton connects two vertices that are a split pair in the original graph.
We can think of such an edge as representing a subgraph of the original graph that connects
the two nodes of the split edge. So every cycle in a skeleton represents a set of cycles in the
original graph that we get by replacing edges of the cycle by paths in the subgraph that they
represent.

The variables of our program correspond to directed cycles in the graph that are face cycles
in at least one planar embedding. We can guarantee this, because our recursive construction
computes the set of variables for the original problem using the sets of variables from sub-
problems for which the ILP has already been computed. So we construct cycles in the original
graph from cycles in the subproblems by replacing certain edges with paths in the subgraphs
that are represented by these edges.

4.2.2 The Variables of the Integer Linear Program

The skeletons of P-nodes are multi-graphs, so they have multiple edges between the same pair
of nodes. Because we want to talk about directed cycles in these skeletons, we can be much
more precise when we introduce half edges. We associate with each edge e = (v, w) in the
undirected graph G = (V, E) two directed half edges €1 = (v, w) and € = (w,v). We say that
€1 is the reversal of & and vice versa. We denote the reversal of € by r(€). The set of half
edges associated with the graph G is E.

A directed cycle in the undirected graph G = (V, E) is a sequence of half edges of the
following form: ¢ = ((v1,v2), (v2,v3),..., (vk,v1)) = (€1,€5,...,€) with the properties that
every vertex of the graph is incident to at most two half edges of ¢ and for each edge e of G,
at most one of the half edges of e is contained in c¢. A face cycle in a combinatorial embedding
of a undirected planar graph is a directed cycle of the graph, such that in any planar drawing
that realizes the embedding, the right side of the cycle is empty. Note that the number of face
cycles of a planar biconnected graph is m — n + 2 where m is the number of edges in the graph
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and n the number of vertices.

Now we are ready to construct an ILP, where the feasible solutions correspond to the com-
binatorial embeddings of a biconnected planar graph. The variables of the program are binary
and they correspond to directed cycles in the graph, so every binary variable z. corresponds to
a directed cycle c. In a feasible solution of the ILP, a variable z. has value 1 if the associated
cycle is a face cycle in the represented embedding and 0 otherwise. To keep the number of
variables as small as possible, we only introduce variables for those cycles that are a face cycle
in at least one combinatorial embedding of the graph.

4.2.3 The Integer Linear Program for SPQR-trees with One Inner Node

We know that a graph whose SPQR-tree has only one inner node is isomorphic to the skeleton
of this inner node. The ILPs for SPQR-trees with only one inner node are defined as follows,
depending on the type of the node:

e S-node: When the only inner node of the SPQR-tree is an S-node, the whole graph
is a simple circle. Thus it has two directed cycles and both are face-cycles in the only
combinatorial embedding of the graph. So the ILP consists of two variables, both of
which must be equal to one.

e R-node: In this case, the whole graph is triconnected. Every triconnected graph has
exactly two combinatorial embeddings, which are mirror-images of each other. So the
ILP we are looking for must have exactly two solutions.

Each of the two embeddings of the graph has m — n + 2 faces. We get the face cycles
of one embedding by reversing all the face cycles of the other embedding since the two
embeddings are mirror images of each other. There is no cycle in the graph that is a face
cycle in both embeddings. It follows that our ILP has exactly £ = 2(m —n +2) variables.
The constraints are given by the convex hull of the two points in k-dimensional space
that correspond to the two embeddings.

The computation of the cycles that are represented by the variables is easy: We just
compute an arbitrary embedding of the graph, and take its face cycles. The face cycles
of the other embedding are the cycles we get by reversing the face cycles of the first
embedding.

If we order the variables for the face cycles such that the variables with odd number
represent the face cycles of the first embedding and the variables with even number
represent the second embedding, the ILP has a very simple structure. Let the variables
of the problem be z; to zj (note that & is even since we have 2(m — n + 2) variables).
Then the ILP describing the embeddings is the following:
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Zoi1t+zr=1 for 1<i<k/2
z9i —xp =0 for 1<i<k/2-1
o >0 for 1<:1<k
o <1 for 1<i<k

Note that this is a complete description of the polytope that describes the combinatorial
embeddings of an R-node skeleton. There is no need to demand that the solutions are
integral.

e P-node: The ILP for graphs whose only inner node in the SPQR-tree is a P-node is
described in detail in the next section because this is where the connection to the asym-
metric traveling salesman problem (ATSP) is used.

4.2.4 P-Node Skeletons and the ATSP

A P-node skeleton P consists of two vertices v, and v, connected by & > 3 edges and has
therefore (kK — 1)! different combinatorial embeddings. The reason is that there are exactly
(k — 1)! different circular orderings of k objects. Every directed cycle in P is a face cycle in at
least one embedding of P. Each ordered pair of edges in P represents a face cycle, so we need

k
2 =k2 -k

variables in an ILP description of all combinatorial embeddings.

Let C be the set of variables in the ILP and ¢ : C — R a weight function on C'. We consider
the problem of finding the embedding of P that minimizes the sum of the weights of the cycles
that are face cycles. We will show that this problem can be stated as the problem of finding
a Hamiltonian Cycle with minimum weight in the complete directed graph with k vertices
or simply as the asymmetric traveling salesman problem (ATSP). The transformation we will
present here also works in the opposite direction thus showing NP-hardness of optimizing over
all embeddings. But here we only show the reduction to ATSP because this is what our
algorithm does when it computes the ILP.

The complete directed graph B has one vertex for every edge of P. Let e; and e2 be two
edges in P and v; and ve the corresponding vertices in B. Then the directed edge (v1,v2)
in B corresponds to the cycle in P consisting of half edge €11 = (vq4,vp) of e1 and half edge
€20 = (vp,vq) of ea. The edge (ve,v1) in B corresponds to the same cycle in the opposite
direction. It corresponds to the cycle consisting of half edge €12 = (vp,v,) and half edge
€29 = (vg,vp). In this way, we define a bijection b : C — FE from the cycles in P to the
edges in B. This bijection defines a linear function ¢’ : E — R on the edges of B such that
d(e) = c(b~1(e)).

Now it is not hard to see that each embedding of P corresponds to a Hamiltonian Cycle
in B and vice versa. If the Hamiltonian Cycle is given by the sequence (vi,vs,...,vx) of
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vertices, then the sequence of the edges in P in the corresponding embedding in clockwise
order around v, is (e1, €2, ..., ex). Figure 4.2 shows an example of a P-node skeleton with four
edges and the corresponding ATSP-graph. The embedding of the P-node skeleton on the left
corresponds to the Hamiltonian Cycle marked by thick edges in the ATSP-graph. The marked
edges correspond to the face cycles in the embedding of the P-node skeleton. The sequence of
the edges in P in counter-clockwise order around vertex v, corresponds to the sequence of the
vertices in the Hamiltonian Cycle of the ATSP-graph.

0)

)

Figure 4.2: A P-node skeleton and its corresponding ATSP-graph

The sum of the weights of all edges on the Hamiltonian Cycle is equal to the sum of the
weights of the cycles of P that are face cycles in this embedding. So finding an embedding of
P that minimizes the sum of the weights of the face cycles is equivalent to finding a traveling
salesman tour with minimum weight in B. Since we can easily construct a corresponding
P-node embedding problem for any ATSP-problem, we have a simple proof that optimizing
over all embeddings of a graph is in general NP-hard.

The equivalence of ATSP and the embedding problem for P-node skeletons enables us to use
the same ILP used for ATSP for the description of all combinatorial embeddings of a P-node
skeleton. The formulation for the ATSP ILP found in (14) has two types of constraints:

1. The degree constraints state that each vertex must have exactly one incoming edge and
one outgoing edge in a feasible solution.

2. The subtour elimination constraints state that the number of edges with both endpoints
in a nonempty subset S of the set of all vertices can be at most |S| — 1.

The number of degree constraints is linear in the number of edges in a P-node skeleton,
while the number of subtour elimination constraints is exponential. We want to use the ILP for
the ATSP problem to define the ILP that describes all combinatorial embeddings of a P-node
skeleton. Since the number of subtour elimination constraints is exponential in the number of
edges in the skeleton, we define the ILP as the set of degree constraints for the corresponding
ATSP-problem.

To cope with the subtour elimination constraints, we store for each P-node skeleton the
corresponding ATSP-graph. For each edge in the ATSP-graph we store the corresponding
cycle in the P-node skeleton. During the recursive construction of the ILP that represents all
combinatorial embeddings of a graph, the set of cycles represented by an edge in the ATSP-
graph may change, therefore we update the set of corresponding cycles for each edge in the
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ATSP-graph. By doing this, we make sure that we always know the list of cycles represented
by an edge in the ATSP-graph. This is done in the same way as the construction of the lifted
constraints in subsection 4.2.6.

When the construction of the recursive ILP is finished, we use a mixed integer programming
solver to find an integer solution. Then we check if any subtour elimination constraint is
violated. We do this by finding a minimum cut in the ATSP-graph for each P-node skeleton in
the SPQR-tree. The weight of each edge in the ATSP graph is defined as the sum of the values
of the variables representing the cycles associated with the edge. If the value of this minimum
cut is smaller than one, we have found a violated subtour elimination constraint and add it to
the ILP. As we will show in Section 4.6 where we describe computational results, separation
of the subtour elimination constraints is rarely necessary.

4.2.5 Splitting an SPQR-Tree

We know that by fixing a combinatorial embedding of the skeleton of each node in the SPQR-
tree, we fix a combinatorial embedding of the original graph. There are only two types of
nodes in the SPQR-tree whose skeletons have more than one combinatorial embedding: the
P-nodes and the R-nodes. The skeletons of S- and ()-nodes are simple circles and have only one
combinatorial embedding. So the embeddings we choose for the skeletons of R- and P-nodes
determine the embedding of the original graph. Therefore, these nodes will play an important
part in the recursive construction of the ILP and we call them the decision nodes of the SPQR-
tree.

We use a recursive approach to construct the variables and constraints of the ILP. There-
fore, we need an operation that constructs a number of smaller problems out of our original
problem such that we can use the variables and constraints computed for the smaller problems
to compute the ILP for the original problem.

This is done by splitting the SPQR-tree at some decision node v. Let e be an incident edge
of v whose other endpoint is not a )-node. Deleting e splits the tree into two trees 77 and T5.
We add a new edge with an attached @-node to both trees to replace the deleted edge and thus
ensure that 77 and T» become complete SPQR-trees again. Note that every SPQR-tree with
more than one inner node contains at least one decision node. The reason is that two S-nodes
can never be adjacent. This follows from the construction of the SPQR-tree.

For adjacent edges of v whose other endpoint is a (Q-node, the splitting is not necessary.
Doing this for each edge incident to v results in d + 1 smaller SPQR-trees, called the split trees
of v, where d is the number of inner nodes adjacent to v. Remember that the ()-nodes are the
leaves of an SPQR-tree and all other node types are inner nodes of the tree. Since the new trees
are SPQR-trees, they represent planar biconnected graphs which are called the split graphs of
v. We will show how to compute the ILP for the original graph using the ILPs computed for
the split graphs.
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Consider the graph shown in Figure 4.3 as an example for the splitting operation. Its
SPQR-tree is shown in Figure 4.4. We choose the P-node P;, shown in grey in the SPQR-tree,
as the split node. Note that P; is a decision node of the SPQR-tree.

Figure 4.3: Example graph for the splitting operation.

Figure 4.4: The SPQR-tree for the graph in Figure 4.3. The @-nodes are drawn as rectangles
and the split node is drawn in grey.

We get the split trees by removing the edges that connect P; to adjacent inner nodes of
the tree and then introducing new @-nodes to make sure that the resulting split trees are
SPQR-trees. This results in the three trees shown in Figure 4.5. The added ()-nodes are
drawn in grey. We call the tree that contains the split node the center split tree. This is the
tree shown in Figure 4.5(a). There are two added @Q-nodes in the tree and one @-node that
was already contained in the original tree (the node @1). The other two split trees shown in
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the Figures 4.5(b) and 4.5(c) have one added @Q-node each. The splitting operation guarantees
that each split tree except from the center split tree has exactly one added (-node. The center
split tree can have more than one.

Figure 4.5: The split trees of the SPQR-tree in Figure 4.4 when P; was chosen as the split
node. The added @-nodes are drawn in grey.

Figure 4.6 shows the split graphs that belong to the three split trees shown in Figure 4.5.
The edges that correspond to added @Q-nodes are drawn as grey lines. We call these edges split
edges because they are a result of the splitting process. Only the center split graph (the graph
that belongs to the center split tree) can have more than one split edge while all other split
graphs have exactly one split edge.

(a) (b) ()

Figure 4.6: The split graphs of the graph in Figure 4.4 when P; was chosen as the split node.
The split edges are drawn in grey.

As we have seen, the number and types of decision nodes in the SPQR-tree of a graph de-
termines the number of combinatorial embeddings. The subproblems we generated by splitting
the tree either have only one decision node or at least one less than the original problem. So
by splitting the SPQR-tree, we have produced sub-problems that are easier to handle than the
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4.2.6 Construction of the ILP for SPQR-trees with More Than One Inner
Node

We define how to construct the ILP of an SPQR-tree 7 from the ILPs of the split trees of a
decision node v of 7. Let G be the graph that corresponds to 7 and T1,. .., T} the split trees
of v representing the graphs G; to G. We assume that 7; is the center split tree of v. Now
we consider the directed cycles of G. We can distinguish two types:

1. Local cycles are cycles of G that also appear in one of the graphs Gy, ..., Gy.

2. Global cycles of G are not contained in any of the GG;. These are the cycles that have
been split into several smaller cycles by the splitting operation.

Every split tree of v except for the center split tree is a subgraph of the original graph G
with one additional edge (the split edge corresponding to the added @-node). The graph that
corresponds to the center split tree may have more than one split edge. Note that the number
of split edges in this graph is not necessarily equal to the degree of v, because v may have been
connected to (Q-nodes in the original tree.

For every split edge e, we define expand(e) as the subgraph of the original graph G that
is represented by e. The two nodes connected by a split edge always form a split pair p of G.
When e is the split edge of the graph G; represented by the split tree 7;, then expand(e) is
the union of all the split components of G that share no edge with G;. Consider for example
the split graph shown in Figure 4.6(b). The grey edge is the split edge of this graph. If we
define this edge as e, then expand(e) consists of the union of the black parts of the other split
graphs. The reason is that the graphs in Figure 4.6 represent the three split components of
the pair {0, 7} with the grey edges added. Building the union of the split components of {0, 7}
that share no edge with the graph from Figure 4.6(b) is the same as merging the two graphs
from the Figures 4.6(a) and 4.6(c) without the grey edges.

For every directed cycle ¢ in a graph G; represented by a split tree, we define the set R(c)
of represented cycles in the original graph. For local cycles ¢, we define R(c) = {c}. Let ¢ be a
cycle in a split graph that contains a half edge of a split edge. The cycle ¢’ in G is in R(c), if it
can be constructed from c by replacing every half edge of a split edge € = (v, w) in ¢ by a simple
path of half edges in expand(e) from v to w. Consider for example the cycle ¢ = (0,1, 3,6,7)
given as a sequence of vertices in the split graph of Figure 4.6(b). It contains a half edge of the
split edge (0,7). The set R(c) contains the following cycles of the original graph in Figure 4.3:

a = (0,1,3,6,7)
(0,1,3,6,7,10,9,2)
cs = (0,1,3,6,7,10,8,2)
¢ = (0,1,3,6,7,10,8,9,2)
(0,1,3,6,7,10,9,8,2)

Cy =

Cy; =
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Each variable z. in the ILP of a split tree that represents a local cycle ¢ will also be a
variable of the ILP of the original graph G. But we will also have variables that correspond
to global cycles of G. A global cycle ¢ in G will get a variable in the ILP, if the following
conditions are met:

1. There is a variable z., in the ILP of T} (the center split tree) with ¢ € R(cy).

2. For every split tree T; with 2 < ¢ < k where ¢ contains at least one half edge of G;, there
is a variable z., in the ILP of T; such that c € R(c;).

Now we have defined all the variables for the ILP of G. The set I of all constraints of the
ILP is given by
I=LUIcUlIg.

First we define the set I; which is the set of lifted constraints of the ILP. Each of the graphs
G1,...,Gy is a simplified version of the original graph G. They can be generated from G by
replacing some split components of one or more split pairs by single edges. When we have a
constraint that is valid for a split graph, a weaker version of this constraint is still valid for
the original graph. The process of generating these new constraints is called lifting because we
introduce new variables that cause the constraint to describe a higher dimensional half space
or hyper plane.
Let

!
Z ajZe; = R
i=1

be a constraint for a split graph, where = € {<,>, =} and C, be the set of cycles in G that
are represented by variables in the ILP of G. Then the lifted constraint for G is the following:

l

Zaj Z T, = R

j=1 CiER(Cj)ﬂCa;

We define I; as the set of lifted constraints of all the split graphs. The number of constraints
in [; is the sum of all constraints in all split graphs.

The set I is the set of choice constraints. Let ¢ be a cycle in the graph with |R(c)| > 1.
All the cycles in R(c) either share at least one half edge or they pass a split graph in the same
direction. Therefore, only one of the cycles in R(c) can be a face cycle in any combinatorial
embedding of G. Consider the two directed cycles in Figure 4.7. One is drawn in black while
the other is drawn in grey. Each pair of the vertex set {0,3,6} forms a split pair of the graph.
The two cycles pass all these split pairs in the same direction. It follows that they can never
be face cycles in the same embedding. In the embedding realized by the drawing, the black
cycle is a face cycle, while the grey cycle is not. The cycle that contains the reversals of the
half edges of the grey cycle is a face cycle and forms the boundary of the central face.
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(®)

Figure 4.7: Two cycles in a graph that can never be face cycles in the same embedding.

For each variable z. in the ILP of a split graph with |R(c)| > 1 we therefore have one
constraint that has the following form:

Z . <1

€R(c)NCy

The set I consists of only one constraint, called the center graph constraint. Let F' be the
number of face cycles in a combinatorial embedding of G (the center split graph), C¢ the set
of all global cycles ¢ in G and Cj the set of all local cycles in G1. Then this constraint is:

Z . =F

¢ € (CauC)NCy

This constraint is valid, because we can produce every drawing D of G by replacing all split
edges in a drawing D; of G; with the drawings of subgraphs of G. For each face cycle ¢; in
D, there will be a face cycle ¢ in D, such that ¢ and ¢; are either identical (if it was a local
cycle) or c is a global cycle. This defines the ILP for any biconnected planar graph.

4.2.7 Correctness

The proof of correctness works recursively like the construction of the ILP. We first proof
that the ILP is correct for the basic graphs and then show that it is correct for more complex
graphs.

Because the proof of the main theorem is quite complex, we split it into two lemmas. We
first define the incidence vector of a combinatorial embedding. Let C be the set of all directed
cycles in the graph that are face cycles in at least one combinatorial embedding of the graph.
Then the incidence vector xy of II is given as a vector in {0, 1}‘C| where the components
representing the face cycles in Il have value one and all other components have value zero.

In the following lemmas, we assume that the subtour elimination constraints are treated
like any other constraint. So we assume that they are included in the ILP for P-nodes and
that they are lifted when the ILP for larger graphs is computed. We do not do this in our
implementation because the number of constraints would grow too quickly with the size of the
graph. Instead, we do not include the subtour elimination constraints in the ILP and check
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for every computed solution if it violates any lifted subtour elimination constraint using the
ATSP-graphs computed for each P-node skeleton (see Section 4.2.4 on page 74). If we find
no violated lifted subtour elimination constraint, the solution is also valid for the ILP where
all lifted subtour elimination constraints are present. Otherwise, we add the violated subtour
elimination constraint that we have found to the ILP and re-optimize until there are no more
violated subtour elimination constraints. So we can assume in the following proofs that all
subtour elimination constraints are treated like the rest of the constraints and added to the
ILP from the beginning.

Lemma 4.1 Let Cy = {c1,¢2,...,cx} be the set of cycles that are face cycles in a combina-
torial embedding 11 of the biconnected planar graph G. Then the incidence vector x satisfies
all constraints of the ILP we have defined.

Proof We prove the lemma using induction over the number 7 of inner nodes in the SPQR-
tree T of G. The value x(c) is the value of the component in x associated with the cycle c. We
do not consider the case n = 0, because G is a simple cycle with two vertices and two edges in
this case and has only one combinatorial embedding.

n = 1: No splitting of the SPQR-tree is necessary, the ILP is defined directly by 7. Inspection of
the three different cases in Section 4.2.3 on page 73 verifies that x satisfies all constraints.

n > 1: Let p be the node in 7 we used in the construction of the ILP to split 7 into the split
trees 11,...,Ty. We split Cpp into two subsets Cg and Cr, such that Cg holds all global
cycles of Cr and Cf, the local cycles of Cr with respect to p (the sets of global and local
cycles depend on the choice of the split node). Then every cycle ¢ in Cf, is contained in
some split graph G; of y with 1 <37 <d.

The combinatorial embedding II uniquely defines a combinatorial embedding II; for each
G;. We define Cn; as the set of face cycles in II;. Every cycle in Cp; that does not
contain a half edge of the split edge of G;, is also contained in Cr. Apart from local
cycles that are contained in Cfy, every Cp; with 2 <¢ < d contains two more cycles that
are not contained in Cp. This is true because every G; has exactly one edge that is not
contained in G: the split edge of G;. In every embedding of a biconnected planar graph,
the two half edges of each edge are contained in different cycles, so there are two cycles
in Chy; that are not cycles in Cpy.

Consider now the choice constraints of the ILP for all cycles ¢ in a split graph G; of u
that include at least one split edge.

Z zo <1

c'€R(c)NCyq

As we have already pointed out in the definition of the choice constraints, any two cycles
in R, share at least one half edge of G or pass at least one split graph of y in the same
direction. So they cannot be face cycles in the same combinatorial embedding. Since II
is a combinatorial embedding, x; must satisfy all choice constraints of the ILP.
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We use this fact and the induction basis to prove that yp satisfies all lifted constraints.
Because our claim holds for n — 1, we know that the incidence vector xm, satisfies all
constraints of the ILP for G; with 1 < 5 < d. The lifted constraints of the ILP are
constructed out of the constraints for the G; by replacing each variable z. in the constraint
by the sum of the variables for G that are associated with cycles in R(c). The right side
of the constraint and the relation sign remain unchanged. So we have to show that the
left side of the constraint has the same value when we apply it to x1; as when we lift it
and apply it to xr1. Because the choice constraints hold, this is equivalent to the following
claim:

xi(c) = Z x(c') Vcycles ¢ in G; represented by a component of x;.
c'eCyNR(c)

If ¢ is a local cycle of G, this is obvious, because we have R(c) = {c} and c is a face cycle
in IT if and only if it is a face cycle in II;. Now we assume that ¢ contains a half edge
of a split edge of G;. Every split edge in G; represents a subgraph of G, and each face
cycle of 1I; was generated from a face cycle of II by collapsing some path into a single
half edge. So when yx;(c) is zero, there can be no face cycle in II that is in the set R(c)
and when x;(c) is one, there must be exactly one cycle in R(c) that is a face cycle of II.
So the left side of the constraint has the same value when we lift it and apply it to xi.
It follows that the constraint is satisfied.

The local cycles in (G are the cycles that consist only of edges contained in G. When [ is
the set of local cycles contained in Gy, Cg the set of global cycles in G, and F' the number
of face cycles in any combinatorial embedding of G, then the center graph constraint

Z T.=F

c € (CqUC)NCy

has the following form:

The graph G is the skeleton of the split node. So if ¢ is a face cycle of IT and belongs to
C, then it is also a face cycle of II;. And if ¢ is a global face cycle of II, the cycle ¢ in
(1 that was generated by replacing some path of half edges in ¢ by a single half edge is
a face cycle in IT;.

On the other side, every face cycle of II; is also a face cycle of II, if it contains no split
edge. For every face cycle ¢ of II; that contains at least one split edge, there is a global
face cycle in II that can be constructed from ¢ by replacing the split edges with paths in
the corresponding split graphs. Since the number of face cycles in II; is F', the equality
is satisfied by x.

O

Lemma 4.2 If G is a biconnected planar graph and x € {0, 1}‘C| a vector that satisfies all
constraints of the ILP, then x is the incidence vector of a combinatorial embedding 11 of G.

Proof Again, we use induction over the number n of inner nodes in the SPQR-tree 7 of G
and we disregard the case n = 0 because G is only a simple cycle with two vertices in this case.
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T has only one inner node, then it is easy to verify our claim by checking the three cases
in Section 4.2.3 on page 73.

The proof works in two stages: First we construct vectors y; for each split graph G; out
of x and prove that these vectors satisfy the ILPs for the corresponding split trees T;.
Therefore, the basis of the induction guarantees that each y; is the incidence vector of
an embedding II; of G;. In the second stage, we use the II; to construct an embedding II
for G and show that y is the incidence vector of II.

So first we construct the vectors y;. Let ¢ be a cycle in some G; that is a face cycle in at
least one embedding of G;. We set:

xi)= Y x() (4.1)

eCzNR(c)

Because the choice constraints are satisfied and all components of x are either zero or
one, the value of this sum is always zero or one and so all components in y; will be either
ZEero or one.

To show that y; is the incidence vector of a combinatorial embedding I1;, it is sufficient
to prove that x; satisfies all constraints of the ILP for T;, because the induction ba-
sis guarantees that x; is an incidence vector of an embedding when all constraints are
satisfied.

We know that y satisfies all constraints that are lifted from constraints in the ILP for T;.
The right sides of the constraints do not change during lifting. Consider the left side of
an arbitrary constraint lifted from the constraints of G;, when C; is the set of cycles in
G; that are associated with variables in the ILP for G;:

e Y. me) (A€ER)

ceC; ' €R(c)NCy

The left side of the original constraint in the ILP for G; is:

D (- xe)

ceC;

We constructed x; such that xi(c) = X vec,nr() x(c') and thus we know that all con-
straints of GG; are satisfied by x; and that it is the incidence vector of a combinatorial
embedding II; of G;.

We have completed stage one of the proof and proceed to stage two, so we want to
construct an embedding II for G from the II; and show that x is the incidence vector of
I1. We construct II as described in Theorem 2.3 on page 32. So every cycle ¢ in G; for
1 <4 < d which does not include a split edge is a face cycle in II if and only if it is a face
cycle in II;. Consider the way we have defined each x; in equation (4.1). Since ¢ does
not include a split edge, we have R(c) = {c}. And so we have that x(c) = 1 if and only
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if ¢ is a face cycle in II. We have now proven that y and II agree about the local cycles.
We still have to show that they agree about the global cycles.

First we show that the number of components with value one in x that are associated
with global cycles is equal to the number of global cycles in the set Cy (the set of face
cycles in IT). This is guaranteed by the center graph constraint:

Z T.=F

ce (CGuCl)ﬂCw

Here Cg is the set of all global cycles and C; the set of all local cycles in G; (the center
split graph). F is the number of face cycles in an embedding of G;. We have shown in
the previous lemma that this constraint is valid for every embedding of G. Since x and
IT agree on all local cycles, the number of global cycles whose associated component in x
is one is F' — |C; N Cp| which is equal to the number of global cycles in II. We will now
show that for all ¢, € C N C, we have x(cy) = 1 and thus prove the lemma.

Let ¢4 be any cycle in Cg N C. Then there is exactly one cycle c; in the center split
graph Gy with ¢, € R(cy). We can construct cj, from ¢, by replacing certain paths with
single edges. We have c; € Cq, (the set of face cycles in the embedding IT; of the center
split graph G1) which follows from Theorem 2.3 on page 32. From that we can conclude
that there is a cycle ¢y in G with ¢y € R(cj) such that x(cy) = 1 (from the construction
of x1 and II;). So we have to show that c’g’ = ¢4 holds.

Since {cp,cy} € R(cy), both cycles are represented by the same cycle ¢ in G1. ¢ contains
split edges and might also contain edges from G. When A; is the set of edges in ch that
are also edges in G and Ay the set of split edges in c;, then the edges in A1 must be
present in ¢, and c'; . So both cycles can only differ in the paths they take through the

split graphs represented by the split edges in Aj,.

Let e be an edge in Ay and G; be the split graph associated with this split edge. When p
is the path of ¢, that runs through Gj, then there is a face cycle ¢; in II; that consists of
p and a half edge of the split edge of G;. This follows from the construction of II. If c’,f
took a path p’ different from p through G;, we would have another face cycle in II; that
includes the same half edge of the split edge as ¢;. But in any embedding of G, there is
only one cycle that contains any given half edge of G;. Therefore, p and p’ must be the
same because the embedding of G; determines the path of every global cycle through G;.

Since we can apply this argument to all split edges in the cycle ch, we can show that cg
and cj are in fact the same cycle. Thus we have x(cgy) = 1 and it follows that x is indeed

the incidence vector of the combinatorial embedding II.
O

It may seem strange that the only constraints we explicitly mention in the proof of the

lemma are the choice constraints, the lifted constraints and the center graph constraints. The

reason is that all other constraints are computed once for split graphs that have only one inner
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node in their SPQR-tree and then lifted when the ILPs for the more complex subgraphs are
computed.

The only new constraints that are computed during the composition of the ILP for a
complex graph from the ILPs for its split graphs are the choice constraints and the center
graph constraint. We can think of them as the constraints that form the connection between
the ILPs computed for the subgraphs.

Now the two Lemmas 4.1 and 4.2 together imply the main theorem of this section. This
theorem says that the ILP we have defined to describe all combinatorial embeddings of a planar
biconnected graph is correct.

Theorem 4.1 FEuvery feasible solution of the generated ILP is the incidence vector of a com-
binatorial embedding of the given biconnected planar graph G and vice versa: The incidence
vector of every combinatorial embedding of G corresponds to a feasible solution for the generated
ILP.

4.3 The Linear Program Describing Orthogonal Representa-
tions for a Fixed Embedding

4.3.1 Intuition

In this section, we present a linear program that can be used to compute an orthogonal rep-
resentation with a minimum number of bends for a planar biconnected graph and a fixed
embedding. This linear program is based on a minimum cost flow formulation of the same
problem. So we will first introduce the flow network where a minimum cost flow corresponds
to an orthogonal representation with the minimum number of bends. But before we do that,
we have to define the concept of an orthogonal representation.

4.3.2 Orthogonal Representations

An orthogonal drawing of a graph is a drawing where all edges are sequences of vertical and
horizontal line segments. The points where two segments of the same edge meet are called
bends. Figure 4.8 shows an orthogonal drawing with four bends.

Figure 4.8: An orthogonal drawing with four bends.
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Orthogonal representations are equivalence classes of planar drawings, just as planar embed-
dings. The difference is that they are equivalence classes only for orthogonal planar drawings
of a graph and that they determine not only the topology of the drawing. An orthogonal
representation additionally defines the sequence of the bends on each edge and the angle be-
tween each edge and its successor in the circular list of incident edges at a vertex defined by an
embedding. An orthogonal representation always defines a planar embedding but there is an
infinite number of orthogonal representations for each planar embedding. This is true because
we can draw every graph with an arbitrary high number of bends.

An orthogonal representation does not define the length of the segments that connect the
vertices and bends in the drawing. Therefore, there is an infinite number of different drawings
that realize a certain orthogonal representation. The reason is that we can always stretch a
drawing to make it cover an arbitrary large drawing area.

Note that two different drawings that realize the same orthogonal representation cannot
always be constructed from each other by scaling the length of the edge segments. In fact, the
drawings can look very different and it is in general NP-complete to decide for an orthogonal
representation if it can be drawn on a grid with a fixed area (46).

The process of computing a drawing from an orthogonal representation of a graph is known
as compaction. The PhD thesis of Klau (37) gives a good overview of the state of the art in this
area. Klau, Klein, and Mutzel (38) present a comparison of different compaction algorithms.

First we define general orthogonal representations. The following definition is the same as
the one used in the AGD-library (AGD) because we used this library for the implementation of
our algorithms. Let G = (V, E) be a planar graph and II a planar embedding of G. Remember
that a planar embedding is a combinatorial embedding where one face is chosen as the outer
face. Let F' be the set of faces of IT and f, € F the outer face. Then an orthogonal representation
is defined as a triple Q = (II,a,b) where a and b are functions on the half edges of G. The
function a determines the angles between edges incident to the same vertex and b determines
the bends on the edges.

a: E—{0,90,180,270,360}
b: E— {0,1}*

The two functions must have certain properties. To make the description of these properties
easier, we introduce new terminology. Let s = (s1,...,s%) € {0,1}* be a string of zeroes and
ones. We define s as follows: s = ((1 — sg),...,(1 —s1)). So we get the string s by replacing
the zeroes with ones and vice versa and then reversing the sequence of the elements.

The function z : {0,1}* — Ny counts the number of zeroes in a string and the function
0:{0,1}* — Ny the number of ones. The set B(f) is the set of half edges on the boundary of
face f. So the edges in B(f) form a directed cycle such that f is on the right of each edge in
B(f). This enables us to give a compact description of the properties that the pair of functions
a and b must have to qualify as an orthogonal representation. This description is taken from
the paper of Tamassia (47). The same paper also contains the theorem that the functions a
and b can be realized in an orthogonal drawing if and only if they satisfy the four conditions



88 CHAPTER 4. BEND MINIMIZATION IN ORTHOGONAL DRAWINGS

given below.

> a@ =360 VueV (4.2)
e=(vu)cE
b@) =b(r(@) VeekE (4.3)
Y (@) —o0@+2-a(@)/9) =4 VfeF—{f} (4.4)
geB(f)
> (2(8) — 0(8) + 2 - a(&)/90) = -4 (4.5)
e B(/o)

Now we give an intuition what the functions a and b mean in the drawings that realize the
orthogonal representation. The value a(€) with € = (u,v) is the angle between the last segment
of edge e (the segment that ends in v) and the first segment of the next half edge in the same
face cycle as € (this segment starts in v). Note that each half edge of an embedded graph is on
the boundary of exactly one face in each embedding. The string b(€) defines the bends on half
edge €. A zero denotes a 90 degree bend to the right while a one denotes a 90 degrees bend to
the left (with respect to the direction of €).

Table 4.1 gives the values of the functions a and b for each half edge of the orthogonal
representation that is realized by the drawing in Figure 4.9. As usual, we assume that the face
bounded by a half edge is the face to the right of the half edge. Consider half edge (3,1) on
the boundary of face Fj. The value of the function b for this half edge is (1,0,0,1,0) because
the first bend on the half edge is a left bend followed by two right bends, a left bend and a
final right bend. The value of function a for the half edge is 90, because the angle between the
last segment of (3,1) and the first segment of the next half edge on the boundary of F; (the
half edge (1,2)) is 90 degrees.

Figure 4.9: Example drawing for an orthogonal representation.

So now we can interpret the properties 4.2 to 4.5 in terms of the shape of a drawing that
realizes the orthogonal representation. Equality 4.2 says that the sum of the angles around
each vertex is 360 degrees. Equality 4.3 says that the bends on each half edge must agree with
the bends on the reversal half edge. Equality 4.4 states that the sum of the angles in each
inner face must be 360 degrees. This means that the face can be drawn as a closed shape with
right angles. Equality 4.5 is the corresponding property of the outer face boundary.



4.3. THE LINEAR PROGRAM FOR ORTHOGONAL REPRESENTATIONS

halfedge | (1,3) | (3,1) |(1,2)](21)](23)]
a 270 90 180 | 270 | 0
b (1,0,1,1,0) | (1,0,0,1,0) | (0) (1) (1)
halfedge | (3,2 | (2,49 |42 ](3,49]43)]
a 90 90 90 | 270 | 90
b (0) 0 0 0 0
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Table 4.1: Values of the functions a and b for the orthogonal representation realized by the
drawing of Figure 4.9.

The values in Table 4.1 satisfy all these constraints and so there must be a drawing of the
corresponding graph that realizes the orthogonal representation given by the table. This is the
orthogonal representation realized by the drawing shown in Figure 4.9.

In our approach, we use a special kind of orthogonal representations that we call simplified
orthogonal representations . They were already used by Bertolazzi, Battista, and Didimo (9)
and we have chosen these special orthogonal representations because the formulation of an
orthogonal representation as a flow in a network is much easier than for general orthogonal
representations.

Simplified orthogonal representations satisfy two additional constraints:

1. If a vertex has degree greater than four, then the largest angle between two incident edges
is 90 degrees. So if the vertex is drawn as a square, at least one edge is incident to each
side of the square.

2. Let €1 = (w,v) and & = (z,v) be two half edges such that &, follows €] in the circular
sequence of incident edges of v in embedding II. If the angle between €; and é5 is zero
degrees, then the following two conditions hold:

(a) There is at least one bend on é.

(b) The last bend on &, when traveling from z to v is a bend to the left.

These properties are satisfied in the orthogonal representation realized by the drawing
shown in Figure 4.9. The only zero degree angle is at vertex 3. Half edge (2,3) follows half
edge (1,3) in the clockwise circular sequence around vertex 3 and the last bend on (2,3) is a
left bend.

4.3.3 Drawings of Orthogonal Representations

As we have already mentioned in the last section, the process of computing a drawing from an
orthogonal representation is called compaction. There are several styles of orthogonal drawings.
They differ in the approach they use to deal with vertices that have degree greater than four.
This is a problem because if all vertices are drawn as points on the grid, then we cannot draw
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all edges as paths on this grid if there are more than four edges incident to a vertex. In this
section, we present several styles of orthogonal drawings and an example drawing for each of
them. We use the graph in Figure 4.10 as our example graph.

Figure 4.10: The example graph for the different orthogonal drawing styles.

One solution is to draw the vertices with degree greater than four not as points on the grid
but as rectangles that cover several grid points. The size of the drawing of a vertex depends on
its degree. Figure 4.11 shows an example for such a drawing. The advantage of this approach
is that the edges are evenly spaced and that these drawings usually have a small number of
bends. The disadvantage is that the size of the drawing of a vertex depends on its degree.

Figure 4.11: An orthogonal drawing of the graph in Figure 4.10 where the size of the drawing
of a vertex depends on its degree.

Another approach is called the podevsnef approach. This is an abbreviation for “pla-
nar orthogonal drawings with equal vertex size and nonempty faces” and was introduced by
FoBmeier and Kaufmann (22). As the name suggests, all the vertices are drawn as shapes
(mostly squares) of the same size. To draw vertices with degree greater than four, the edges
and bends are placed on a finer grid than the vertices. The term “empty face” refers to the
drawing of a face such that we cannot fit a square of 1 — ¢ units width (the units are the grid
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units of the vertex grid) inside the drawing of the face.

Figure 4.12(a) shows an example for an empty face which is not allowed in a podevsnef
drawing. It is not possible to fit a square of width 1 — ¢ units into the drawing of the inner
face. Figure 4.12(b) shows the same graph drawn in the podevsnef model. In this drawing, we
can even fit two squares of width 1 — ¢ into the drawing of the inner face. Figure 4.13 shows a
drawing of the graph in Figure 4.10 in the podevsnef model.

(2) (b)

Figure 4.12: The drawing of an empty face (Figure 4.12(a)) and the same graph drawn in the
podevsnef model (Figure 4.12(b).

Figure 4.13: A podevsnef drawing of the graph in Figure 4.10.

The model for orthogonal drawings described by Bertolazzi, Battista, and Didimo (9) is
called the simple podevsnef model. It only produces drawings for simplified orthogonal rep-
resentations. The first difference to general podevsnef drawings is the following: When a set
of edges runs parallel on neighboring grid points of the finer edge grid, then the rightmost
edge bends away to the right from the parallel edges. We never have the case that an edge
bends away to the left from a set of parallel edges. Figure 4.14 shows an example of a simple
podevsnef drawing of the graph in Figure 4.10. The drawing in Figure 4.13 is not a simple
podevsnef drawing. The edge (3, 8) runs parallel to edge (0, 3) but then bends to the left. This
does not happen in Figure 4.14.
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The second difference is that all vertices with degree greater than four have at least one
incident edge on each side of the vertex. Again, this is not the case for general podevsnef
drawing. In Figure 4.13, vertex 6 has degree five but there is no edge incident to the bottom
of the square that represents vertex 6 in the drawing.

Figure 4.14: A simple podevsnef drawing of the graph from Figure 4.10.

The properties that distinguish general podevsnef drawings from simple podevsnef draw-
ings correspond to the properties that distinguish a general orthogonal representation from a
simplified orthogonal representation. An algorithm for drawing a general orthogonal represen-
tation can also be used to draw a simplified orthogonal representation and will produce a simple
podevsnef drawing. This is in fact what we did in our implementation, because there is already
an algorithm in the AGD-library (AGD) for drawing general orthogonal representations.

4.3.4 Describing an Orthogonal Representation by a Flow Network

Since Tamassia presented the first flow based algorithm for producing orthogonal drawings of
graphs (47), network flows have been used in various algorithms in the area of orthogonal graph
drawing (see for example Garg and Tamassia (25); Fofimeier and Kaufmann (22) and Berto-
lazzi, Battista, and Didimo (9)). While the approach used by Tamassia is designed to handle
only graphs where the maximum degree of a vertex is four, the algorithms by Foé8meier and
Kaufmann (22) and Bertolazzi, Battista, and Didimo (9) can handle graphs without restrictions
on the degree of the vertices.

We have chosen the flow network presented by Bertolazzi, Battista, and Didimo (9) in our
approach. The reason is that unlike the approach in Tamassia (47), it can deal with vertices of
arbitrary degree and the flow network is much simpler than the one by Foimeier and Kaufmann
(22), because it computes simplified orthogonal representations.

The network N = (Viy, E) is defined for a planar graph G = (V, F) and a planar embed-
ding II of G with face set F' and outer face f, € F. The edges of N are called arcs and the
vertices nodes to avoid confusion with the edges and vertices of the original graph. The arcs
of N have integer costs and capacities. We denote the cost of an arc e with cost(e) and the
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capacity by cap(e). Each node v in N supplies a certain amount of flow that we denote by
sup(v). If this value is negative, it is in fact a demand.

In the following definition, we say that the two faces fi and fs are adjacent, if there is a
half edge € on the boundary of f; with the property that 7(€) is on the boundary of f,. We
define the degree deg(f) of a face f as the number of half edges on its boundary.

We define the set L(V) as the set of all vertices in V' whose degree is at most four and
H(V) as the rest of the vertices in V. We call the vertices on L(V') the low degree vertices and
the vertices in H(V') the high degree vertices. In any orthogonal drawing of G, there must be
at least one zero degree angle at each vertex in H(V).

The network N = (Vy, Ey) with Exy = Eyy U Eyf U Ey, is defined as follows:

Vv = VUF
Efp = {(f1, f2) | f1 and f2 are adjacent}

Eyy = {(v,f)|v € L(V), v is on the boundary of f}
E¢, = {(f,v)|v € H(V), vis on the boundary of f}

cap(e) = 00 Vee€ Eyy
cap(e) = 4 —deg(v) V (v,f) € Eyf
cap(e) = 1 V (f,v) € Epy
cost(e) = 1 Vee Eff UEy,
cost(e) = 0 Vee€ Ey

The supply of each node is:

sup(v)= 4—deg(v) VveV
sup(f) = 4—deg(f) VfeF—{fo}
sup(fo) = —4 — deg(fo)

Note that the supply of a node in the network can be negative, and thus becomes a demand.
The sum of all supplies is:

> (4—deg(f) + Y (4 —deg(v)) — 4 — deg(f,)

feF—{fo} veV

To calculate the value of this sum, we use the following facts:
1. A planar connected graph has exactly |E| — |V| 4 2 faces.

2. Each edge is incident to exactly two vertices. Therefore, the sum of the degrees of all
vertices is 2|E]|.

3. Each edge is on the boundary of exactly two faces in each embedding of a planar bicon-
nected graph. Therefore, the sum of the degrees of all faces is 2|E)|.
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Using these facts, we can easily verify that the sum of the supplies in N is exactly zero, so the
supply is just as high as the demand.

This completes the definition of the Network V. A feasible flow in IV describes an orthogonal
representation and we will now show how to construct it from the flow values. Let fl: Exy — Ny
be a feasible flow in V. This means that it satisfies the following properties:

V veVy: S flleg = > fl(e) = sup(v) (4.6)

e=(v,w)EEN e=(w,v)EEN
V e€ Ey: fl(e) < capl(e) (4.7)
V ecEy: flle) >0

Equality (4.6) states that the difference of the amount of flow that leaves a node and the
amount of flow that enters the node is equal to the supply of the node. Inequality (4.7) states
that the flow on each arc is at most as large as the capacity of that arc. The last inequality (4.8)
guarantees that all flows are positive.

We will now show how a feasible flow fI in the network N can be translated to an orthogonal
representation for G where the number of bends is equal to the cost of fI. We cannot directly
compute the function b that assigns a bit string to each half edge (and thus the bends on each
edge) from the flow fI. Here are the reasons:

1. Let e = (f1, f2) be an arc in Efs. Then the flow on this arc determines the bends on all
the edges that separate fi and fo. If there are several edges on the boundary separating
the two faces, we can distribute the bends among these edges arbitrarily as long as the
sequence of the bends is preserved.

2. The flow on arc e = (f,v) in Ef, not only determines an angle between neighboring edges
incident to v but also causes a bend if it is equal to one. So the bend string for each edge
depends not only on the flow on the arcs in Ey; but also on the flow on the arcs in Ep,.

We will first show how to compute the function a that determines the angles between
neighboring half edges incident to the same vertex by looking at the flow on the arcs in F,;
and Ey,. The correspondence between flows in N and an orthogonal representation of G is the
same as described in (9). The flow on the arcs in Ey, additionally defines some of the bends.
We will later incorporate these additional bends into the bend strings we compute using the
flow on the arcs in Eyy.

o Let e = (v, f) be an arc in E,; and & = (w,v) € E be the half edge incident to v that
is on the boundary of f. Then we set

a(é1) =90(fl(e) +1)

e Let e = (f,v) be an arc in Ey, and €; = (w,v) € E be the half edge incident to v with
the property that f is to the left of . Let f’ be the face with the reversal () of €}
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on its boundary and let & = (x,v) be the predecessor of r(€1) on the boundary of f'.
Figure 4.15 shows this situation. Then we set

a(€2) = 90(1 — fi(e))

If fi(e) = 1, we place one bend each on half edge €; and half edge r(€1). The bend on
edge € is the last bend on the edge and is a bend to the left. Since €, and r(€;) are
drawn as the same edge in a drawing of G, the bend on 7(€7) is the first bend on r(é})
(remember that r(€}) is directed towards w) an is a bend to the right.

Figure 4.15: The half edges €1, r(€1) and € in the situation where there is an arc from f to v
in the flow network.

This defines the function a and the position and direction of the vertex bends. Now we want
to define the function b that assigns bit-strings to each edge of G. These bit-strings determine
the bends on the edges in a drawing that realizes the orthogonal representation.

We assume that the flow fl in network N is a flow with minimum cost. This implies the
following fact that holds for all pairs of adjacent faces fi and fo:

Fl((f1, f2)) =0 V fl((f2, f1) =0

The reason is that fI is a flow with minimum cost. If the flows on the arc (f1, f2) and (f2, f1)
were both positive, we would be able to construct another feasible flow with smaller cost as
follows: Assume w.l.o.g. fl((f1,f2)) < fl((f2,f1)). Then we can construct another feasible
flow fI' from fl by setting fl'((f1,f2)) = 0 and flI'((f2, f1)) = fU((f2, /1)) — fU((f1, f2)). For
all other arcs, the flow values of fl and fI’ are the same. It is easy to verify that the feasibility
of fI implies the feasibility of fI’ and that the cost of fI’ is smaller than the cost of fI by the
amount fI((f1, f2)).

A flow of value fl(e) on arc e = (fi, f2) € Efy causes fl(e) additional bends on the edges
that separate f; and fo (additional to the bends caused by flow on the arcs in Ey,). Let B be
the set of edges that separates fi and fo. Then the flow causes fl(e) bends to the right when
we traverse the edges in B such that we leave f; to the right.

If the size of B is greater than one, it does not matter how we distribute the fl(e) bends
among the edges of B. So we can put them all on a single edge. Since we want the flow to
define the function b in a unique way, we assume that all edges of G are numbered and that
we place all bends on the edge of B with the lowest number. If we look at the flow on all the
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edges in Fyy, and set the additional bends according to the flow, then this defines the function
b that assigns a bit string to each edge.

The function a and b together with the embedding II define an orthogonal representation
O of G. The reason is that the flow conservation constraints together with the supplies of the
vertices in the network make sure that the functions a and b satisfy the constraints 4.2 to 4.5
on page 88.

The number of bends in the orthogonal representation O is equal to the cost of the flow
because we create one bend for each unit of flow on arcs in Ey, and one bend for each unit
of flow on arcs in Ef;. A proof for the fact that each minimum cost flow corresponds to
an orthogonal representation with the minimum number of bends can be found in Bertolazzi,
Battista, and Didimo (9).

4.3.5 Translation of the Flow Network into a Linear Program

Standard network flow problems can easily be translated into linear programs. In fact, the
solution of a linear program representing a minimum cost flow network with integer capaci-
ties found by the simplex algorithm is always integer because the constraint matrix is totally
unimodular (see for example Theorem 2.11 in (44)).

Let N = (Vn,EnN) be the flow network from the previous section. We now present a
linear program where each optimal solution represents a flow in N with minimum cost. So our
objective function minimizes the flow on the arcs with cost one while the constraints guarantee
that each solution represents a feasible flow.

We introduce one variable f, € Q for each arc e in Ey. In a feasible solution of the ILP,
the variable f, represents the flow on arc e (the value of the function fI for arc e).

LP1
min Z cost(e) - fe

ecEyN

subject to

Z Je— Z fe= 4—deg(v) WYweV

e=(v,w)€EEN e=(w,w)EEN
Z fe_ Z fe: 4_deg(f) VfEF_{fo}
e=(f,w)EEN e=(w,f)EEN
Y. fem D fe= —A-deg(fo)
e=(fo;w)EEN e=(w,fo)€EN
fe < 4—deg(v) VGZ(’U,f) EEvf
Je < 1 Vez(f,’U)EEfU
fe > 0 Ve € En

It is easy to see that the constraints of LP 1 are equivalent to the properties 4.6 to 4.8 on
page 94 that describe a feasible flow. In the next sections, we want to combine this LP with the
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ILP from Section 4.2 that describes all embeddings of a biconnected graph. This will enable
us to construct a mixed integer linear program that describes all orthogonal representations of
a biconnected graph.

4.4 The Integer Linear Program Describing All Orthogonal
Representations of a Graph

In Section 4.2, we have introduced an ILP whose solutions are the combinatorial embeddings of
a planar biconnected graph. In the previous section, we have introduced a linear program where
an optimum solution corresponds to a simplified orthogonal representation with the minimum
number of bends for a planar graph and a fixed embedding. In this section, we want to combine
the ILP and the linear program. The result is a mixed integer linear program where an optimal
solution corresponds to a simplified orthogonal representation of a planar biconnected graph
with the minimum number of bends over all planar embeddings of the graph.

The first problem we have to tackle is that our ILP only describes the combinatorial embed-
ding of a graph and not the planar embeddings. But this is easily solved by introducing new
variables that determine the outer face of the embedding. This yields an ILP that describes
all planar embeddings of a planar biconnected graph.

The more challenging problem is that we do not know which cycles in the graph will be
face cycles in the solution. Thus, we have to introduce a new network similar to the network
from Section 4.3.4 where we do not have to know during the construction which cycles are face
cycles. When we have constructed the network, we will present a linear program that describes
the feasible flows in the network.

And finally, we merge the ILP that describes the planar embeddings of a planar biconnected
graph and the linear program that describes our new network and get an mixed integer linear
program where the optimum solution corresponds to a simplified orthogonal representation
with the minimum number of bends over all planar embeddings of a planar biconnected graph.

4.4.1 The Integer Linear Program that Describes All Planar Embeddings
of a Biconnected Planar Graph

The ILP in Section 4.2 describes all combinatorial embeddings of a planar biconnected graph.
If we want to determine an orthogonal representation, we need a planar embedding. Thus, we
also need to fix the outer face of the embedding.

In a combinatorial embedding, any face can be chosen as the outer face to produce a planar
embedding. Since the variables of the ILP of Section 4.2 correspond to the directed cycles in
a graph that are face cycles in at least one combinatorial embedding, we can just introduce an
additional binary variable for each variable in the original ILP. This binary variable is equal
to one if the corresponding cycle is chosen as the outer face cycle and zero otherwise.
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The new outer face variables must satisfy the following properties:

1. In every solution, exactly one outer face variable is equal to one and all others are equal
to zero. This models the fact that in each planar embedding, exactly one face is the outer
face.

2. An outer face variable can only be equal to one, if the corresponding face cycle variable
of the original ILP is equal to one. So a directed cycle can only be chosen as the outer
face cycle if the cycle is a face cycle.

3. Each outer face variable must either be equal to one or to zero.

So let o, be the outer face variable for the cycle c. We assume that ¢ belongs to the set C
of all cycles of G that are a face cycle in at least one embedding of G. It follows that there is a
cycle variable z. for cycle ¢. Then the constraints we have to add to the ILP from Section 4.2
to describe planar embeddings are the following;:

Yoo =1 (4.9)

ceC
xc—o, > 0 VceCl (4.10)

o € {0,1} VceC (4.11)

If every variable o, satisfies the constraints above, and the variables z. satisfy all constraints in
the ILP for combinatorial embeddings, then we can be sure that the solution indeed describes
a planar embedding of the graph.

4.4.2 The Flow Network for Orthogonal Representation for Arbitrary Em-
beddings

Again we assume that C' is the set of all cycles in G that are a face cycle in at least one
embedding of G. When we build the network N', we do not know which of the cycles really
are faces in the embedding that will determine the flow. Therefore, we have to introduce one
vertex in N’ for every cycle in C.

We define the network as N’ = (Vyr, Env) with Vyr = VUC (the set V is the set of vertices
in G). The arc set consists of the three sets F,., F, and E... These three sets are defined just
like in Section 4.3.4. The only difference is that we deal with cycles instead of faces.

Again we define L(V') as the set of vertices in V' whose degree is at most four and H (V) as
the set of vertices with higher degree. For each half edge e, the edge r(e) denotes the reversal
edge of e. We say that two cycles are neighbors, if there is a half edge e in the first cycle with
the property that r(e) is contained in the second cycle. Then we can define the three arc sets
as follows:

E.. = {(c1,¢2) | c1 is a neighbor of ¢co}
Ey, = {(v,c)|v€L(V), visonc}
En = {(c,v) |ve H(V), vison c}
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We assume that the chosen embedding is defined by the cycle variables z. and by the
variables o.. So there is one binary variable z. for each cycle in C'. The cycle is a face if and
only if this variable is equal to one and o, is equal to one if ¢ is the outer face.

What we want to achieve is that the capacity of all the arcs in N’ that start or end in a
cycle c that is not a face cycle is zero. This is done by defining the capacity as z. multiplied by
an upper bound for a feasible flow on this arc. If ¢ is not a face, the flow on the corresponding
arcs must be zero. This has the same effect as taking ¢ completely out of the network.

This is straight forward for the arcs in the sets F,. and E,, because the corresponding arcs
in the network of Section 4.3.4 have a fixed capacity. But there is no upper bound defined for
the arcs that connect two faces in the original network.

We use the fact that the overall flow in the network is bounded by the supply of all nodes. It
is not possible that the flow over an arc is greater than the total number of flow units produced
in the network. So we take a look at the supplies defined in the network for a fixed embedding:

sup(v) = 4 —deg(v) VveV
sup(f) = 4—deg(f) VfeF—{fo}
sup(fo) = —4— deg(f,)

We want to compute the sum of all low units produced in the network. Since G is bicon-
nected, each vertex of G has at least degree two. So any node in N’ corresponding to a vertex
of G produces at most two units of flow. Since the graph G contains no self loops, every face
in an embedding of G produces at most two units of flow. In every embedding of G, there are
exactly |E| — |V| + 1 inner faces (the outer face only consumes units of flow). Thus, the total
amount of flow produced in the network is at most

fmaz =2|V|+2(|E| — |V|+1) =2|E| + 2

It is not possible that a feasible flow assigns more than fy,,; units of flow to an arc. We
can use this value as the maximum capacity of arcs in E.. without excluding feasible flows. So
we define the capacities of the arcs in N’ as follows:

cap(e) = min{ frazTe,s frazTe,} Ve = (c1,c2) € Eff
cap(e) = -'If'c(4 - deg(v)) v (U’C) € Evc
cap(e) = T V (c,v) € Eg

The supply of the nodes in N’ that correspond to vertices in G is independent of the chosen
embedding. The supply of nodes that correspond to cycles in G is zero if these cycles have
not been chosen as face cycles. Otherwise, the supply depends on the value of the outer face
variable for the cycle. We define len(c) as the number of edges on the boundary of ¢ (we do
not use deg(c) to make clear that ¢ is a cycle and not a face). Then the supplies are defined as
follows:
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sup(v) = 4 — deg(v) VveV
sup(c) = z.(4—len(c)) —80, YVcel (4.12)

The interesting equality is Equality (4.12). It guarantees the following properties:

1. If the variable z. is zero, the supply of ¢ is zero. Note that the fact that x. equals zero
implies that o, is zero.

2. If the variable z. is one and the variable o, is zero (¢ was chosen as an inner face), the
supply of ¢ is 4 — len(c).

3. If the variable z. is one and the variable o, is one (¢ was chosen as the outer face), the
supply of ¢ is —4 — len(c).

The costs of the arcs arc defined in the same way as for network NV:

cost(e) = 1 Ve€ E,ULEj,
cost(e)= 0 Vee Ey

The network is constructed in such a way that if the variables z. and o. of a planar
embedding II of G are given, the network behaves exactly like the network in Section 4.3.4
constructed for II. The reason is that the nodes in the network that correspond to cycles that
are not face cycles in the embedding have supply zero and all incident arcs have capacity zero.
This has the same effect as taking them out of the network.

4.4.3 Formulation of the New Flow Network as a Linear Program

Just as the network N in Section 4.3.4 was translated into a linear program in Section 4.3.5,
we will now transform the network N’ from the previous section into a linear program. Just
as in the last section, we assume that we are given binary values z. and o, for each cycle ¢ in
C that represent a planar embedding of G.

We introduce flow variables f. for every arc e € En:. The objective function of the linear
program minimizes the cost of the flow. The constraints make sure that the difference between
the amount of flow that leaves a node and the amount of flow that enters it is always equal to
the supply of that node and that the flow on each arc does not exceed the capacity of the arc.

LP 2
min Z cost(e) - fe

ecEN

subject to

Z Je— Z fe= 4 — deg(v) YoeV
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N Y fe= m(d—len(c) — 8o, VeeC

e=(c,w)€EEN e=(w,c)€EN
fe < z.(4 — deg(v)) = (v,¢) € Ey,.
fe < Tc = (¢,v) € By
fe < Tey fmaz = (c1,¢2) € Eee
fe < Tey fmaz Ve = (c1,¢2) € Eec
fe > 0 Ve € En

The advantage of this linear program compared to the linear program for a fixed embedding
is that we can compute a minimum cost flow for any planar embedding of G without rewriting
the linear program. This enables us to combine the ILP for planar embeddings with the linear
program we have just given to produce an mixed integer linear program where an optimum
solution corresponds to a simplified orthogonal representation of the graph with the minimum
number of bends.

4.4.4 The Complete Mixed Integer Linear Program

In this section, we describe the mixed integer linear program (MILP) for a biconnected planar
graph where an optimal solution corresponds to a simplified orthogonal representation with
the minimum number of bends. There are three types of variables in the MILP:

1. The cycle variables are binary. They determine for each cycle in the set C' of potential
face cycles if they are indeed a face cycle in the simplified orthogonal representation
described by the solution.

2. The outer face variables are also binary. They determine if a cycle is the outer face cycle
in the simplified orthogonal representation.

3. The flow variables are continuous. They determine the flow on each arc in the network
N' from Section 4.4.2. These flow values determine the angles between edges incident to
the same vertex in the orthogonal representation and the number and directions of the
bends on each edge.

The objective function is the same as in the linear program that describes the flow network
for arbitrary embeddings in the previous section. So we minimize the units of flow on the arcs
that connect cycles of the graph and on the arcs that start in cycles and end in vertices. The
flow on these arcs is equal to the number of bends in the simplified orthogonal representation
that corresponds to the flow. Since there are only flow variables in the objective function, the
values of the binary variables have only indirect influence on the objective function value via
the constraints that connect them to the flow variables.

The constraint matrix can be separated into three parts. The first part contains all the
constraints in the ILP from Section 4.2 that describes combinatorial embeddings. These con-
straints contain only the cycle variables.
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The second part of the constraint matrix consists of the additional constraints that were
introduced in Section 4.4.1 to describe planar embeddings. These constraints contain cycle
variables and outer face variables and guarantee that exactly one of the cycles chosen as a face
of the embedding is chosen as the outer face.

The third and last part consists of all the constraints introduced in the last section. These
constraints contain all three types of variables and they are the only constraints that contain
the continuous flow variables. They guarantee that the flow computed in the optimization
process is consistent with the planar embedding described by the cycle variables and outer face
variables and that the flow describes the bends and angles of an orthogonal representation.

4.5 The Algorithm for Minimizing the Number of Bends

In this section, we describe how we actually compute orthogonal representations of graphs
with the minimum number of bends. In Section 4.5.1 we present a high level overview of our
algorithm. We compute a first MILP, and optimize it with a mixed integer solver. Then we try
to separate the constraints that we do not put into the initial MILP because of their exponential
number. If there are no more violated constraints, the optimization is finished and we compute
the orthogonal representation that corresponds to the solution. Otherwise, we throw in the
violated constraint and re-optimize.

In Section 4.5.3, we will describe some techniques we use to speed up the computation. We
will show that we can get rid of some variables and constraints by exploiting certain properties
of planar embeddings.

4.5.1 High Level Structure of the Algorithm

An important factor in our algorithm is that we cannot compute the complete MILP before
we optimize. The reason is that there is a potentially exponential number of subtour elimina-
tion constraints that have to be satisfied by any feasible solution for the ILP that describes
combinatorial embeddings.

We solve this problem as already described in Section 4.2.4 on page 74: During the recursive
construction of the embedding ILP we compute for each P-node a data structure that enables
us to check efficiently, if a solution satisfies the subtour elimination constraints for that P-node.
This data structure consists of a complete graph and a mapping from the cycle variables in the
ILP to the edges in this graph. The graph is the instance of the asymmetric traveling salesman
problem (ATSP) that is equivalent to the embedding problem of the P-node skeleton.

When we have found a solution, we look at all the data structures constructed for all P-nodes
and set the weights of the edges in the ATSP according to the values of the corresponding cycle
variables. Then we use a minimum cut algorithm to check if there are any violated subtour
elimination constraints. If this is the case, we can easily construct the subtour elimination con-
straint by looking at the edges contained in the minimum cut and the corresponding variables
of the MILP. Then we add the new inequality to the MILP and re-optimize.
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Input: A biconnected planar graph G
Output: A simplified orthogonal representation of G with the minimum number of

bends
Compute the embedding constraints CON 1;

Compute the constraints CON 2 for the outer face variables;

Compute the constraints CON 3 for the flow network;

Build the MILP from CON 1, CON 2, and CON 3;

repeat

Compute an optimal solution for the MILP;

if Solution violates any subtour elimination constraints;

then
Add the violated subtour elimination constraint to the MILP;
Mark the solution as infeasible;

else

L Mark the solution as feasible

until Solution is marked feasible;
Transform the solution into a simplified orthogonal representation;

To compute the constraints in CON 1, we first construct the SPQR-tree of the graph, then we
choose a split node and recursively compute the ILPs for the resulting split trees, as described
in Section 4.2.6 on page 79. Then the ILPs are merged into a single ILP that describes the
combinatorial embeddings of the graph.

After CON 1 is computed, we can easily compute the ILP for the outer face variables since
the set of cycles of the graph that are face cycles in at least one embedding of the graph
has been computed during the construction of CON 1. The outer face variables and the cycle
variables are then incorporated into the linear program that describes a simplified orthogonal
representation (the constraints of CON 3).

Together with the objective function that minimizes the number of bends in the orthogonal
representation, the constraints of CON 1, CON 2 and CON 3 are then used as input for the mixed
integer solver of CPLEX (34). The result is a solution where all variables are integer. This is
true because the capacities in the flow network described by the constraints in CON 3 are integer
and a linear program describing a min cost flow problem with integer capacities produces an
integer flow.

The solution produced in this way may violate subtour elimination constraints computed for
a P-node in the SPQR-tree for the graph. Therefore, we check the solution by testing for each
P-node skeleton, if one of the subtour elimination constraints of the skeleton is violated. When
we construct the ILP that describes the combinatorial embeddings of a graph, we also compute
a special graph for each P-node skeleton that enables us to check if a subtour elimination
constraint for the skeleton is violated by a solution (see Section 4.2.4 on page 74). If we find a
violated subtour elimination constraint, we add it to the ILP and re-optimize. Otherwise, we
have found an optimal feasible solution.
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In the final step, we have to transform the solution of the ILP into a simplified orthogonal
representation. Each feasible solution describes a flow in a network. If we delete from this
network all the vertices that correspond to cycles that are not face cycle in the solution, we get
the same network as in (9). Therefore, we can use the same approach used in (9) to translate
the flow in the network to an orthogonal representation for the problem graph (see Section 4.3.4
on page 92 for the details of the transformation of the flow to an orthogonal representation).

4.5.2 Modifications to Improve Performance

In our implementation, we use several methods to speed up the computation. They introduce
additional complexity into the algorithm but lead to significant improvements in performance.
In this section, we explain why they are useful and how they work.

In our computational experiments with benchmark graphs, we observed that it is quite rare
that the SPQR-tree of a graph has a P-node skeleton with more than four edges. Therefore, it
makes sense to speed up the computation of the ILP for the special cases of P-node skeletons
with three and four edges.

If we consider a P-node skeleton with three edges, it is not hard to see that it has only
two different combinatorial embeddings that are mirror images of each other. So we can treat
these skeletons in exactly the same way as we treat the triconnected skeletons of R-nodes. In
Section 4.2.3 on page 73, we have given the complete description of the polytope of combi-
natorial embeddings of a graph with only two embeddings that we use for R-nodes. In our
implementation, we use the same description for the combinatorial embeddings of a P-node
skeleton with three edges.

For P-node skeletons with four edges, we used a different approach. Such a skeleton has
six different combinatorial embeddings. So we used the PORTA system (17) to compute a
complete description of the polytope defined by the six embeddings of the skeleton of a P-node
skeleton with four edges. The constraints are contained in the code of our implementation and
so we do not have to compute them at run time. Another advantage is that we do not have to
separate any subtour elimination constraints if the SPQR-tree for a graph does not contain a
P-node whose skeleton has more than four edges.

Another fact that we use to speed up the computation of the solution is that we do not
need an outer face variable for each cycle variable. The reason is that for each directed cycle ¢
that is represented by a variable in the ILP, there is another variable in the ILP that represents
the directed cycle ¢ that we get by reversing all edges in c.

Let P be the set of all planar embeddings of the graph G where ¢ is chosen as the boundary
of the outer face. Let P be the set of planar embeddings of G where € is chosen as the boundary
of the outer face. There exists a bijection b : P — P that maps each planar embedding in
P to the planar embedding in P that we get by reversing all face cycles. So the embedding
b(II) is the mirror image of the embedding II. It follows that the number of bends in a bend
minimum orthogonal drawing that realizes II is the same as in a drawing of b(II) because the
two drawings are mirror images of each other.

We are interested in finding a single bend minimal embedding of G. As long as we can
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guarantee that the solution computed is the best among all possible solutions, it is not impor-
tant that we only optimize over a subset of all possible solutions. Therefore, we only introduce
outer face variables for half the cycles that are represented by cycle variables. We make sure
that there is exactly one outer face variable for each undirected cycle that is represented by a
cycle variable.

This makes the computation of a feasible solution easier, because we get rid of a quarter of
all integer variables. Without this optimization, we have one cycle variable and one outer face
variable for each directed cycle that is a face cycle in at least one embedding. Since we got rid
of half of the outer face variables, we saved a quarter of the integer variables (remember that
the flow variables are not declared as integer variables in the MILP because the integrality of
the cycle variables and the outer face variables together with the integer capacities of the arcs
in the flow network force the flow variables to be integer).

4.5.3 Preprocessing

In the preprocessing step, the original problem is transformed into a different problem of smaller
size. After this problem is solved, we transform the solution for the smaller problem into a
solution for the original problem.

This is done as follows: Assume that the edges e1, ... e form a path of maximal length in G
with the property that all inner vertices of the path have degree two. Paths with this property
are called primitive paths. We replace this path with a single edge connecting the vertex at the
start of the path with the vertex at the end of the path. This operation is called collapsing the
path. Collapsing all primitive paths results in the reduced graph G' of G. Figure 4.16 shows a
graph and its reduced graph.

Figure 4.16: A graph (left) and its reduced graph (right).

Note that collapsing a path in a biconnected graph only produces a self loop (an edge
that starts and ends at the same vertex), if the whole graph is a simple cycle. Producing an
orthogonal representation with the minimum number of bends for this case is easy. If the graph
has more than three nodes, we can easily produce an orthogonal representation without bends
by choosing four arbitrary vertices as the corners of the rectangle that will form the shape of
the drawing of the graph. If there are three vertices in G, we have to put one bend on one
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of the edges to produce a rectangle. So in the rest of this section, we assume that G is not a
simple cycle. Thus, the reduced graph of G does not contain self loops.

Collapsing all primitive paths does not alter the number of embeddings. The reason is
that embeddings can be defined by the circular sequence of the edges around each vertex. The
circular sequence of the edges around a vertex with degree two is always the same. All vertices
with degree greater than two still have the same degree after the collapsing step.

When we look at the SPQR-tree, collapsing a primitive path causes the set of ()-nodes
corresponding to the edges on the primitive path to merge into a single ()-node. All these
@-nodes are incident to the same S-node. This can be seen as follows: Let P be the set
of edges on the primitive path. If we choose any of these edges as the reference edge for
constructing the SPQR-tree, then the root of the Proto-SPQR-tree must be an S-node because
at least one of the end nodes of the path is a cut vertex of the graph when we delete the
reference edge. All edges in P produce a @Q-node attached to the S-node. As we have seen in
Section 2.4, the choice of the reference edge is irrelevant for the structure of the SPQR-tree.
So all the @-nodes representing the edges of P are adjacent to the same S-node.

When the ()-nodes merge, the adjacent S-node vanishes if its degree after the merger is
only two. In this case, the (-node produced by the merger is directly attached to the second
node adjacent to the S-node (note that this second node is not a @-node because the graph
is not a simple cycle). If the degree of the S-node after the merger is greater than two, the
S-node will not vanish. In any case, the number of R- and P-nodes in the tree does not change
and thus the number of embeddings stays the same.

Figure 4.17 shows the SPQR-trees for the graphs in Figure 4.16. The numbers of the
@-nodes correspond to the numbers of the edges in the graphs. Replacing the primitive paths
with single edges resulted in the removal of all S-nodes because the children of each S-node
were merged into a single ()-node.

@ [a] [e] [o] [o] [of Ta] e

(a) (b)
Figure 4.17: The SPQR-trees of the graphs shown in Figure 4.16.
Let P be the set of planar embeddings of G and P’ the set of planar embeddings of G'. Every

embedding in P’ can be constructed from the corresponding embedding in P by collapsing
all primitive paths. On the other hand, every embedding in P can be obtained from the
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corresponding embedding in P’ by replacing all edges corresponding to primitive paths in G
by the original paths.

So the translations of embeddings between the original graph and the reduced graph is not
difficult. Assume that we have produced an orthogonal drawing of the reduced graph. We can
transform this drawing into a drawing of the original graph by drawing the inner vertices of the
primitive paths on the drawings of the edges that replaced the primitive paths. The problem is
that an orthogonal representation with the minimum number of bends for the reduced graph
does not always define an orthogonal representation for the original graph with the minimum
number of bends.

(a) (b) (c)

Figure 4.18: Reducing the graph 4.18(a) results in graph 4.18(b). Orthogonal representa-
tion 4.18(c) has been obtained by translating a bend minimal orthogonal representation of the
reduced graph into an orthogonal representation for the original graph.

Consider the graph G in Figure 4.18(a). Its reduced graph G’ is shown in Figure 4.18(b).
If we only consider the problem of finding an orthogonal representation of G’, it is not hard to
see that we need at least four bends. We can pick two arbitrary edges of the graph and place
two bends on each of them to produce an orthogonal representation that looks like the one
represented in Figure 4.18(b).

Nothing keeps us from putting two of these bends on the edge that represents the edge
(0,1) in G. A drawing that represent a corresponding orthogonal representation of G is shown
in Figure 4.18(c). This is clearly not an orthogonal representation of G with the minimum
number of bends since it has two bends while it is obviously possible to draw G with no bends
at all (as shown in Figure 4.18(a)).

The problem is that reducing a graph destroys information that is needed in the optimiza-
tion process. An edge in the reduced graph that represents a primitive path in the original
graph should not be treated like an edge that represents an edge in the original path. The
reason is that an edge that represents a path can take a certain number of bends without
producing bends in the corresponding orthogonal representation of the original graph.
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Assume that the orthogonal representation O’ of the reduced graph G’ has k bends on edge
e. This edge represents a primitive path p with [ inner vertices in the original graph G. In
the translation of O’ into an orthogonal representation O for G, we will place min{k,(} inner
vertices of p on the bends of e to save bends.

When computing the reduced graph of G, we have to remember the number of inner vertices
on every primitive path we replace with a single edge. When we minimize the number of bends
for the reduced graph, we can use this information to place bends on edges that correspond to
primitive paths in the original path. This enables us to save bends where possible.

The idea is the following: If an edge in the reduced graph represents a primitive path in the
original graph with [ inner vertices, then we allow [ bends on this edge that have no cost. In
the network from Section 4.4.2 on page 98, the flow between two nodes that represent faces is
the number of bends on the boundary between the two faces. This is modeled by the costs of
the arcs that connect the two faces in the network. If some edges on the boundary between the
two cycles represent primitive paths in the original path, some units of flow should not produce
costs, because we can hide the corresponding bends by placing vertices on them. Therefore,
we introduce new arcs between the faces that have cost zero and whose capacity is equal to
the number of bends that can be hidden by placing vertices on them.

There is a rather elegant way to model this complication in the flow network from Sec-
tion 4.4.2. Let ¢; and ¢y be two cycles in a planar biconnected graph. We say that the edge
e in G’ separates c; and co, if one half edge of e belongs to ¢; and the other to co. The set
Sep(ci,c2) is the set of all edges that separate ¢; and co. In the network from Section 4.4.2,
there are two arcs (c1,¢2) and (co,¢1), if Sep(cy, o) is not empty.

Let ¢; and ¢y be directed cycles in the reduced graph G’ of G that are face cycles in at least
one embedding of G’ and where the set Sep(c1,co) contains at least one edge that represents
a primitive path in G. Then we insert an additional pair of arcs into the network. These arcs
are z1 = (c1,¢2) and 29 = (c2,c¢1). The costs of both arcs are zero. We call these arcs zero cost
arcs.

If the two cycles c¢; and co are chosen as face cycles of the embedding, the capacity of the
arcs z; and 23 is the sum z of the number of all inner vertices of primitive paths represented by
edges in Sep(ci,c2). This number z is the number of bends we can save by placing the inner
vertices of the primitive paths on the bends. If at least one of the cycles ¢; and co is not a face
cycle, the capacity of the arcs is zero.

We modify the linear program on page 100 using the same approach by introducing two new
variables f,, and f,, that model the flow on the zero cost arcs. These variables are included in
the flow conservation constraints for the nodes in the network that correspond to cycles in the
graph (Constraint (4.13) in the LP on page 100 of Section 4.4.3). Additionally, we need four
constraints that set the capacity of the arcs z; and z3. These constraints are as follows:

le chlz
le < Ty
fzz quz

fzz < Ty R
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These constraints guarantee that the flow on the zero cost arcs is zero if at least one of the
cycles that they connect is not chosen as a face cycle and that the flow is at most the number
of inner vertices on primitive paths on the boundary between the two cycles. Note that the
new variables do not appear in the objective function, since flow on the corresponding arcs in
the network does not produce cost.

To compute an orthogonal representation of the original graph G with the minimum number
of bends, we first compute the SPQR-tree for the reduced graph G’ of G. Then we use this
SPQR-tree to compute the ILP that defines all embeddings of G’. The next step is to compute
the flow network for G’ where we insert the additional zero cost arcs for the edges in G’ that
represent primitive paths in G. This flow network defines a linear program which is added to
the ILP that describes the planar embeddings of G’ to produce the MILP.

Now we have to address the problem of constructing an orthogonal representation of G
from the solution found for the MILP (we assume that the solution does not violate any
subtour elimination constraints). Let K be the value of the objective function. We first
compute an orthogonal representation for G’ with K’ > K bends and then use this orthogonal
representation for the reduced graph to compute an orthogonal representation for the original
graph G with K bends.

In Section 4.3.4, we have shown how to translate a minimum cost flow into an orthogonal
representation of the graph. Because we have introduced the zero cost arcs into the network,
we have to take more care when we assign the bends to the edges of the reduced graph. Let
c1 and ¢y be two cycles in G’ and B the set of separating edges of the two cycles. If there are
no zero cost arcs connecting ¢; and ¢z, we can proceed in the same way as in Section 4.3.4 to
assign bends to the edges in B.

Now assume that there are zero cost arcs connecting c¢; and co. It is clear that we cannot
have flow on the arcs with non-zero cost connecting ¢; and c¢o if there is no flow on the zero
cost arcs. This would be a contradiction to the minimum cost of the flow we have computed.
So if there is any flow between ¢; and ¢y, there is flow on the zero cost arcs.

We can assume that in any solution we find, the flow on at least one of the zero cost arcs
connecting c¢; and co is zero. We can transform any solution where this is not the case easily
into another feasible solution with the same cost where the flow on one of the zero cost arcs is
zero. Assume that the flow from ¢; to ¢z on the zero cost arc is z; and the flow from ¢y to ¢
is z9 with z; < z9. Then we can set the flow from ¢; to ¢o to zero and the flow from ¢y to ¢1 to
22 —z1. The solution obtained in this way is feasible. The maximum capacities are not exceeded
because we diminished the flow on the two zero cost arcs. The flow conservation constraints are
still satisfied because the flow entering and leaving c¢; and co via the zero cost arcs is still the
same. Since the flow on zero cost arcs does not influence the value of the objective function,
the new solution has the same objective function value as the original solution.

So we assume w.l.0.g. that the flow from c¢; to ¢2 on the zero cost arc is z with z > 0 while
the flow on the zero cost arc from cy to ¢; is zero. This implies that the flow on the non zero
cost arc from ¢y to cq is also zero. Otherwise, we could easily construct a feasible flow with
smaller cost. We assume that the flow on the non zero cost arc from ¢; to ¢y is k with & > 0.
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For each edge e on B, we define i(e) as the number of inner vertices on the primitive path
in G represented by e. If e does not represent a primitive path in G, i(e) is zero. We use the
following simple algorithm to assign bends produced by flow on zero cost arcs to the half edges
of the edges in B:

n = z;

for e € B do
k' = min{n,i(e)};
n=n—k;

Assign k' bends to the two half edges of e;

If all edges of the graph are numbered and the loop in the algorithm runs through the edges
of B in the corresponding sequence, the orthogonal representation O’ computed in this way is
uniquely defined. Note that the number of bends K’ in O’ is greater than the objective value
K of the MILP if flow variables for zero cost arcs are greater than zero. The reason is that the
flow on the zero cost arcs corresponds to bends that we can hide under vertices of the original
graph. These vertices are inner vertices of primitive paths and are therefore not contained in
G

As we have already seen in Section 4.3.4, not all bends on the edges in the orthogonal
representation are determined by the flow between nodes in the network corresponding to
cycles. Some bends, called vertex bends, are determined by the flow on the arcs in E.,. These
are arcs that start in a node of the network corresponding to a cycle of the original graph and
end in a node of the network corresponding to a vertex of the graph. The flow on these arcs
corresponds to zero degree angles between neighboring half edges incident to the vertex and
causes a bend on an edge incident to the vertex (a vertex bend).

One important observation is that we can’t hide vertex bends under vertices. The reason is
that the distance between edges that run parallel to each other because of zero degree angles
may be arbitrarily small (the distance shrinks with the number of parallel edges). Therefore,
the distance between a vertex bend and the next edge in the bundle of parallel edges can
be arbitrarily small. So there is no space for the drawing of a vertex at a vertex bend (see
Figure 4.19 for an example of vertex bends). To account for this fact, we set the vertex bends
in the orthogonal representation O’ of the reduced graph G’ just like we would set them if G’
was the original graph.

—

Figure 4.19: A vertex with two vertex bends in a podevsnef drawing.
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When we transform the orthogonal representation O’ computed for the reduced graph G’
of G into an orthogonal representation O for G, we have to pay attention that we do not put
a vertex of G that is not contained in G’ (a degree two vertex) on a vertex bend. To avoid
this, we have to mark these bends to distinguish them from regular bends in the orthogonal
representation O'. We define two functions sb and tb on the half edges of G’ in the following
way:

sb:E' — {0,1}, sb(@) =1 < the first bend on € is a vertex bend
th: E' — {0,1}, tb(é) =1 < the last bend on ¢ is a vertex bend

So we have computed an orthogonal representation O’ for the reduced graph G’ together
with the functions sb and tb. We have to transform this orthogonal representation into a
corresponding orthogonal representation of G with K bends. Transferring the embedding of
O' to G is easy, because we only have to copy the circular sequence of the incident edges from
the nodes of G’ to the nodes of G. The circular sequence of the incident edges for the vertices
of G that are not contained in G’ does not matter because there are only two edges incident
to these vertices.

After the transfer of the embedding, we transfer the angles between incident edges for each
vertex of G’ to the corresponding vertex of G. Remember that an orthogonal representation
defines for each half edge € a value a(€) € {0,90,180,270,360}, which is the angle between e
and the successor of e on the same face cycle.

First, we have to build a mapping em from the half edges of G’ to the half edges of G as
follows:

1. If e is contained in G (e does not represent a primitive path in G), we define em(€) as
the same half edge in G.

2. If e is not contained in G, there is a primitive path p in G that is represented by e. We
choose em(€) as the half edge on this path whose target is the same vertex as the target
vertex of €.

This defines a mapping from all half edges of G’ to the half edges of G. Note that em™!(é)
where € is a half edge in G is only defined for half edges whose target vertex is not an inner
vertex of a primitive path of G.

So let @’ be the function of O’ that assigns angles to the half edges of G'. We first define
the function a of O for the half edges € of G whose target is not a vertex with degree two (an
inner vertex of a primitive path, replaced by a single edge in G'). So let € be a half edge in G
with this property. Then we define:

a(é) = a'(em(8)) (4.13)

Now we have defined the function a for all half edges of G whose target is not the inner
vertex of a primitive path. To define the function a for the rest of the half edges, we need to
know about the bends on the edges in G’ that correspond to primitive paths in G. The next
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step is to look at the function &’ of O (the function that assigns bend strings to the half edges
of G') and to translate each bend either into an angle of a half edge on a primitive path of G
or into a bend on a half edge of G.

We go through all half edges € of the reduced graph G’. If € is also contained in G, the
string b(€) is the same as the string o'(€). If € is not contained in G’, it corresponds to one of
the two paths p7 and p5 of half edges that belong to a primitive path P in G. The path ps is
called the opposite path of p; and vice versa. We have not yet defined the function a for the
half edges on p; and P2 whose target vertex is an inner vertex of P (and thus has degree two).

We have to transform the bends defined by b(€) into angles and bends for the half edges on
p1 and ps. This means we have to define the function b for all the half edge on p; and ps and
the function a for the half edges of the two paths whose target vertex has degree two (is an
inner vertex of the primitive path). Doing this for all half edges representing primitive paths in
G completes the definition of the functions @ and b and thus of the orthogonal representation
O of G.

We exploit the following fact: If we have determined the functions a and b for the half edges
of p1, then the corresponding values for the half edges of ps is easy to compute. Let the two
paths be defined by the following sequences of half edges:

P1 = €1.1,€1.2,-..,€1.1

b2 = €21,€22,...,€2]

We assume that the target vertex of € ; is the source vertex of é; ;1 for i € {1,2} and for
1 <j <l—1. Then the two half edges €1; and é;41—; belong to the same edge e of G. See
Figure 4.20 for an example with [ = 4.

@4 @3 62 @1

Figure 4.20: The two paths p1 and ps of half edges for the case [ = 4.

We assume now that we have already defined the functions b and a for all the half edges of
p1- Then the definition of the function a for the half edges of p, is as follows:

a(é'g,l_i) = 360 — a(é’l_i) for 1 S 1 S -1

Note that €5; ; is not the half edge that belongs to the same edge e of G as €7 ; but the half
edge on ps that has the same target vertex as the half edge €};. Note also that the function a
is only set for the half edges whose target vertex is not an inner vertex of the primitive path.
The reason we set the angle to 360 minus the angle of the corresponding angle on 7 is that the
vertices on the path have degree two. Therefore, there are exactly two angles at each vertex
and we guarantee that the sum of the angles at each vertex is 360.

To set the function b for the half edges on p5, we use again the notation introduced in
Section 4.3.2. Let s = (s1,...,85) € {0,1}* be a string of zeroes and ones. We define § as
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follows: 5 = ((1 — sg),...,(1 —s1)). So we get the string s by replacing the zeroes with ones
and vice versa and then reversing the sequence of the elements. Now we can define the function
b for the edges on po:

b(é'2_1+1,i) = b(glz) for 1 S ) S l

This defines the functions a and b for the path p5 of half edges if the functions a and b for
the opposite path are already defined. Now we describe how to define the functions a¢ and b
for a path of half edges of a primitive path if the functions for the opposite path have not yet
been computed. Our algorithm must meet the following requirements:

e The shape of the path p; must be the same as the shape of the corresponding half edge
€in G'.

e As many bends as possible on € should be realized by angles at vertices on p; rather than
by bends on half edges of ;. This is meant by placing a vertex on a bend or hiding a
bend under a vertex.

e We cannot hide a vertex bend under a vertex.

Algorithm 4.5.3 computes the functions a and b for the edges on p.

s =V(8);
if sb(€) =1 then
Let z be the first letter of s;
Delete z from s;
| Set the first letter of b(€1.1) to z;
f tb(€) = 1 then
Let z be the last letter of s;
Delete z from s;
| Set the last letter of b(€1,) to z;
fori=1tol—1do
Set b(e1.5) = ();
if s is not empty then
Let z be the first letter in s;
Delete z from s;
if z = ‘0‘ then
‘ Set a(e1;) = 90;
else
| Set a(éy,) = 270;

o

else
| Set a(é1;) = 180;

Insert s at the beginning of b(e;);
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First, the algorithm makes sure that the vertex bends on half edge € are translated into
real bends on the path pi. If there is a vertex bend at the start of €, it is inserted as the first
bend on the first half edge of pj. If there is a vertex bend at the end of €, it is inserted as the
last bend on the last half edge of pj.

Then we go through all the half edges of 71 except the last half edge. We set the bend string
of each half edge to the empty string because we want to hide as many bends as possible under
vertices. The angle at the target of the current half edge is determined by the first remaining
bend on €. If there is no bend left on €, the angle is 180 degrees.

After the loop, we place all bends of € that have not yet been distributed on the last half
edge of p1. Note that we do not set the angle of the last half edge because the target of this
edge is not the inner vertex of a simple path. Therefore, the angle at this vertex has already
been set using rule 4.13 on page 111.

This defines how we can translate the orthogonal representation O’ of the reduced graph
G’ into an orthogonal representation O of G with the property that the number of bends in
O is the objective value of the solution of our MILP. Remember that the number of bends in
O' may be greater than this value because we can hide bends of O’ that are caused by flow on
zero cost arcs in the network under inner vertices of simple paths in G.

The algorithm above guarantees that as many bends as possible are hidden under vertices on
simple paths. The number of the inner vertices on the boundaries between two faces is modeled
by the zero cost arcs in the flow network. This ensures that the value of the minimum cost flow
computed by solving the MILP is the number of bends in the orthogonal representation O.

4.6 Computational Results

We wanted to test the performance of our algorithms and compare it with the performance
of the branch & bound algorithm developed by Bertolazzi, Battista, and Didimo (9). We also
compared the results of these exact algorithms with the results obtained using a heuristic.
Section 4.6.1 contains the descriptions of the algorithms we tested.

We used two different sets of biconnected planar graphs as our benchmark. Note that the
branch & bound algorithm, like the algorithms developed in this chapter, is limited to planar
biconnected graphs. Section 4.6.2 describes the origins of the two benchmark sets we used. We
call the first set the real world set, and the second the artificial set.

In Section 4.6.3, we present the results for the real world benchmark set. Our data shows
that our new approach performs better than the previously known branch & bound approach
for the larger graph of the set. Another result is that the exact algorithms produce significantly
better solutions than the heuristic for almost half of the graphs.

Section 4.6.4 contains the results for the artificial benchmark set. This is the set used by
Bertolazzi, Battista, and Didimo (9) to test the performance of their branch & bound algorithm.
On this benchmark set, our algorithm is about twice as fast as their algorithm.

We take a closer look at two graphs of the real world benchmark set in Section 4.6.5. One
of them is among the smallest of the real world set while the other is among the largest. We
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present drawings of the graph computed by the algorithms we tested and present some details
about the mixed integer linear programs produced by our algorithm.

4.6.1 The Algorithms We Tested

Using the benchmark graphs, we tested four different algorithms for computing orthogonal
representations:

1. B&B: This algorithm finds an orthogonal representation with the minimum number of
bends among all possible embeddings of the graph using a branch & bound approach (9).
We used the implementation in the GDToolkit library (see http://www.dia.uniroma3.it/ gdt/).

2. Mix: This algorithm uses our formulation of the set of all orthogonal representations of
a graph as a mixed integer linear program. The CPLEX mixed integer solver (34) is used
to find an optimum solution. If necessary, subtour elimination constraints are separated.

3. MixR: The difference to the Mix algorithm is that the mixed integer program is not
computed for the original graph but for the reduced graph. The result obtained for the
reduced graph is then transformed into a result for the original graph as described in
Section 4.5.3 on page 105.

4. Heuristic: This heuristic computes an arbitrary embedding of the graph and then
constructs the flow network from Section 4.3.4 on page 92 that describes all orthogo-
nal representations of a graph for a fixed embedding. A minimum cost flow algorithm
is used to find an orthogonal representation with the minimum number of bends for
the chosen embedding. We used the implementation in the GDToolkit library (see
http://www.dia.uniroma3.it/~gdt) in our experiments.

4.6.2 The Two Benchmark Sets

The three exact algorithms we tested can only deal with biconnected planar graphs. Most
graphs that come from commercial applications of graph drawing do not have these properties.
However, we wanted to find out how the algorithms perform when used on real world graphs
that have been modified to meet our requirements.

A method often used for drawing non-planar graph is the planarization method that we
already presented in Chapter 3. This method transforms a non-planar graph into a planar
graph with dummy vertices instead of crossings. A drawing of this modified graph can be
easily transformed into a drawing of the original graph by replacing the drawings of the dummy
vertices by crossings.

We used the planarization method to transform the non-planar graph in our real world
benchmark set into planar graphs. If the resulting graphs were not biconnected, we added
some edges to make them biconnected. This step is called planar augmentation. A drawing of
the resulting graph can be transformed into a drawing of the original graph by removing the
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drawings of the added edges. So we can produce a drawing of an arbitrary graph using our al-
gorithm by applying the planarization method and planar augmentation and then transforming
the resulting drawing back into a drawing of the original graph.

In more detail, we used the following approach to make graphs biconnected and planar:
First, we made each of the graphs planar by deleting edges if necessary. We used the class
SubgraphPlanarizer of the AGD-library to perform this task (see (author?) (AGD)). It
finds a planar subgraph using PQ-trees as described by Jinger, Leipert, and Mutzel (35). Note
that the resulting graph is not necessarily a maximal planar subgraph of the original graph.
Then we inserted the deleted edges one by one into the planar graphs, replacing crossings we
created by artificial vertices (Chapter 3 deals with this topic).

In the second step, we made the planar graphs produced by the first step biconnected. We
added edges such that the resulting graph is still planar but also biconnected. Again, we used a
class of the AGD to perform this task: The class PlanAug implements the algorithm presented
by Fialko and Mutzel (21). It does not guarantee that the minimum number of edges is added
to make the graph planar and biconnected but is usually very close to the optimum. For most
of the graphs subjected to these planarization and augmentation steps, the number of vertices
and edges increases significantly.

We applied this method to the 11529 graphs that were already used by Battista, Garg, Li-
otta, Tamassia, Tassinari, and Vargiu (2) to test the performance of graph drawing algorithms.
The resulting set of graphs is called real world benchmark set in the rest of this chapter.

The second benchmark set was used by Bertolazzi, Battista, and Didimo (9) in the paper
where they describe the branch & bound algorithm for computing the drawing of a biconnected
planar graph with the minimum number of bends (this is the algorithm we call B&B). These
graphs were produced using a randomized algorithm for generating biconnected planar graphs.

The algorithm starts with the triangle graph (three vertices and three edges). Two methods
are used to transform the graph:

1. Insert edge inserts a new edge connecting two vertices if the graph remains planar after
the operation and none of the two vertices has degree four. This guarantees that all the
graphs that are produced are planar, biconnected, and have a maximum vertex degree of
four. Since the algorithm does not check if the two vertices were already connected, the
resulting graph may be a multi graph.

2. Split edge replaces an edge with a path of length two by inserting a new vertex.

These operations are randomly executed until the desired number of vertices and edges is
reached. We call the resulting set of graphs the artificial benchmark set. It contains 500
graphs, 50 different graphs for each number of vertices from 10 to 100 in steps of 10.

Figure 4.21 shows how the graphs in the real world benchmark set are distributed according
to their number of vertices. Most of the graphs have around 50 vertices. The largest graph
had 273 vertices and 511 edges. Note that these graphs are much larger than the graphs in
the original set used in (2) where the largest graphs have only 100 vertices. Additional vertices
and edges were inserted during the planarization and augmentation steps to make the graphs
planar and biconnected.
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Figure 4.21: The graphs in the benchmark set broken down into sets according to the number
of vertices.

One interesting statistic is the number of combinatorial embeddings for the graphs in the
two benchmark sets. The computation of the number of combinatorial embeddings of a graph
is simple: we just compute its SPQR-tree and multiply the number of embeddings of each
skeleton. Since only R- and P-nodes have more than one embedding, we can ignore the S- and
(Q-nodes.

Figure 4.22 shows for each graph in the real world set its number of embeddings. There is
one cross for each graph. The z-value of each cross is the number of vertices in the graph and
the y-value the number of embeddings. The y-axis is logarithmic. This figure shows that the
number of embeddings varies a lot for graphs of the same size because it depends strongly on
the structure of the graph. If a graph of k vertices is a simple cycle, it has only one embedding.
If a graph with & vertices looks like the one in Figure 4.23, it has (k—3)! different combinatorial
embeddings.

Figure 4.24 shows the same diagram as Figure 4.22 for the artificial benchmark set. Again,
the y-axis is logarithmic. Like in the real world set, the number of embeddings for graphs of
the same size varies a lot. For all numbers of vertices except 100, there is at least one graph
that has only two embeddings. The graph with the most embeddings in the artificial set has
80 vertices and almost 37,748,736 embeddings, while the graph in the real world set with the
greatest number of embeddings has 136 vertices and 9,437,184 embeddings. On average, the
artificial graphs have more embeddings compared with the real world graphs of the same size.

We now take a look at the average number of embeddings in the benchmark sets for each
number of vertices. Figure 4.25 shows this data for the real world graphs. Note that the y-axis
is logarithmic again. As expected, the number of embeddings seems to grow exponentially with
the size of the graphs. There are only a few graphs with high vertex number and so points
scatter a lot for high z-values and the averages for graphs with more than 150 vertices are not
very meaningful.

Figure 4.26 shows the same data for the artificial benchmark set. In this set, the exponential
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Figure 4.23: An example for a graph where the number of embeddings is exponential in the

number of vertices.
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Figure 4.24: The number of combinatorial embeddings for each of the 500 graphs in the artificial

set.
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Figure 4.25: The average number of embeddings for graphs with the same number of vertices
in the real world set.

growth of the number of embeddings with the size of the graphs is much more obvious.
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Figure 4.26: Average number of embeddings for graphs with the same number of vertices in

the artificial benchmark set.
© Xg {?Vé: aaveegﬁegl ; msgntioned, the P- and R-nodes in the SPQR-tree of a graph determine

the number of combinatorial embeddings. Therefore, we were also interested in the average
number of these nodes in the graphs of the two benchmark sets.

Figure 4.27 shows the average number of P- and R-nodes of the graphs in the real world
benchmark set with the same number of vertices. The number of P-nodes grows roughly linear
with the number of vertices. The number of R-nodes grows until it reaches its peak at around
38 vertices and then slowly goes down until it is almost one. So large graphs have almost
always only one triconnected component. The reason for this structure of the benchmark set
is that the planarization method tends to turn non-planar graphs into planar graphs with big
triconnected components.

Figure 4.28 shows the same data for the artificial benchmark set. In contrast to the situation
for the real world graphs, both the number of P- and R-nodes grows linear with the size of the
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Figure 4.27: Average number of R- and P-nodes in the SPQR-trees of the graphs in the real
world benchmark set.
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Figure 4.28: Average number of R- and P-nodes in the SPQR-trees of the graphs in the artificial
benchmark set.

4.6.3 Results for the Real World Set

The first question we want to address is which of the three exact algorithms for optimizing over
all embeddings is the fastest. We executed our tests on an Enterprise 450 Model 4400 with 4
GB main memory and Sun UltraSPARC-IT processors running at 400 MHz.

Each of the three algorithms B&B, Mix, and MixR was allowed at most one hour to work
on each of the graphs in the benchmark set. If the algorithm was not finished after one hour,
it was terminated. Of the 11529 graphs in the real world benchmark set, B&B exceeded the
time limit for 197 graphs, MixR for 87 graphs and Mix for 25 graphs. This already gives an
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indication that Mix has the best performance of the three algorithms.

First we compare the performance of Mix and MixR. We restricted our attention to the
set of all graphs in the real world benchmark set that both algorithms were able to solve in
less than one hour. For each number k of vertices, we computed the average time needed by
both algorithms to compute an optimum solution. Figure 4.29 shows the diagram obtained by
plotting the number of vertices on the z-axis and the average time needed by each algorithm
on the y-axis. The data becomes less reliable for large graphs because there are so few of them
in the benchmark set (see Figure 4.21). But it is quite obvious that Mix outperforms MixR.
We will later present some additional diagrams that show why this happens.

800

700 |
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300
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Figure 4.29: Average time needed for finding the optimum solution for graphs with the same
number of vertices.

Figure 4.30 shows the average number of embeddings and the average time needed by Mix
in the same coordinate system (note that in contrast to Figure 4.29, the y-axis is logarithmic in
this figure). This diagram shows that the time needed for finding the optimum solution grows
in parallel with the number of embeddings of the graph.

Figure 4.31 shows the performance comparison between B&B and Mix. Again, we com-
puted for each number of vertices the average time needed by each algorithm. The figure shows
that for graphs of up to about 120 vertices, B&B is faster than Mix. For graphs with more
than 150 vertices, Mix seems to be faster than B&B. It looks like the time needed by Mix
grows slower with the size of the graphs than the time needed by B&B. There are not many
graphs with more than 150 vertices in the benchmark set, so the result is not as clear as we
would wish. In Section 4.6.4, we will see that the advantage of Mix over B&B is much more
obvious for the artificial graphs.
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Figure 4.31: Performance comparison between B&B and Mix.

Now we want to present some statistics that explain why Mix performs better than MixR.
The reason we constructed MixR. from Mix is that we hoped to save constraints in the mixed
integer program. The embeddings of the reduced graph are equivalent to the embeddings
of the original graph but its SPQR-tree is smaller than the SPQR-tree of the original graph
because some S-nodes are gone. If we only consider the integer linear program that describes
all embeddings of a graph, constraints can indeed be saved by working with the reduced graph.

Figure 4.32 shows the average number of constraints in the integer linear program that
describes the set of embeddings for the real world benchmark set. Note that the integer linear
program that describes the embeddings of a graph is part of the mixed integer programs
computed by Mix and MixR. The number of constraints grows linear with the number of
vertices in the graphs. The reason for the linear growth is that the size of the SPQR-tree grows
linear with the size of the graph.



4.6. COMPUTATIONAL RESULTS 123

Obviously, the number of constraints produced by Mix is always greater than the number
of constraints produced by MixR. The reason is that the SPQR-tree used in MixR is smaller
than the SPQR-tree used in Mix and the size of the embedding integer linear program depends
on the size of the SPQR-tree.
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Figure 4.32: Average number of constraints in the integer linear program that describes all
embeddings of the graph for the real world benchmark set.

Figure 4.33 shows the average time needed by Mix and MixR for computing the ILP
describing all embeddings of the graphs. We call this time ILP-time in the following discussion.
The ILP-time is never longer than 3.09 seconds (this can not be seen in the figure because it
only shows the average for each number of vertices). For larger problems, this is not significant
compared to the total time needed for computing a solution.

As we have seen in Figure 4.32, the embedding ILP of Mix has always more constraints
than the embedding ILP of MixR. So we expect the ILP-time of Mix to be always longer
than for MixR. This is clearly the case for the graphs with less than about 130 vertices, but
then the time needed by MixR is often longer than the time needed by Mix.

Our suggestion for the reason of this strange behavior relies on two facts:

1. The function used_time in the LEDA-library that we use for measuring the running times
is not very exact if the time measured is small.

2. The number of graphs in the benchmark set with a high number of vertices is small, so
the averages we compute for high vertex numbers are not very meaningful.

To check the first of these hypotheses, we took a graph of the benchmark set with 275 vertices
and 483 edges and measured for 30 runs of Mix the ILP-time. The ILP-time we measured
using used_time was between 1.62 seconds and 1.82 seconds, a difference of 12.35%.

In Figure 4.21 on page 117, you can see for each number between zero and 275 the number
of graphs in the benchmark set with the corresponding number of vertices. There are very few
graphs with more than 200 vertices.
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The greatest absolute difference between the average ILP-time for Mix and MixR was 0.9
seconds. This happens for the graph with 227 vertices (like for many numbers greater than
200, there is only one graph with 227 vertices) where MixR needs only 1.82 seconds and Mix
needs 2.72 seconds to build the ILP. We expect MixR to build the ILP quicker than Mix but
clearly a difference of almost 50% is rather high.

The greatest absolute time difference where Mix builds the ILP faster than MixR is 0.34
seconds (Mix needed 1.73 seconds to build the ILP and MixR 2.07 seconds). This happened
for the graph with 257 vertices. Again, there is only one graph with this number of vertices,
so the average is not meaningful. This is the same graph we used to test the accuracy of
the used_time function and where we observed that the ILP-time differs by 12.35% between
different runs of Mix. The difference between the ILP-time measured for MixR and Mix
on this graph is 19%, which is not much higher than the 12.35% difference we observed on
different runs of Mix. So the fact that the time measured for MixR is higher than the time
measured for Mix does not necessarily mean that the number of computation steps executed
by Mix in the generation of the ILP was really smaller than the number executed by MixR.
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Figure 4.33: Average time in seconds needed by Mix and MixR for computing the embedding
ILPs.

Figure 4.34 shows the average number of constraints in the mixed integer programs that
deal with the flow network. Except for a spike at 30 vertices (the reason for this spike will be
explained shortly), the number for these constraints grows linear with the size of the graph, too.
But contrary to the situation for the embedding constraints in Figure 4.32, MixR produces
more constraints than Mix. The reason is that the flow network for MixR contains more arcs
than the network for Mix. The additional arcs are the zero-cost arcs. Since there are bounds
on the amount of flow on these arcs they produce additional constraints in the mixed integer
program.

Note that the number of flow constraints is much higher than the number of embedding
constraints. The reason is the high number of arcs in the flow network. In any feasible solution,
the flow on most of these arcs is zero because they connect cycles that are not face cycles in
the embedding described by the solution.
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Figure 4.34: Average number of flow constraints in the mixed integer program that describes
all orthogonal representations of a graph.

From ten to about 38 vertices, the number of constraints in the mixed integer linear pro-
grams grows much faster than for graphs with a higher number of vertices. The same behavior,
albeit not as pronounced as for the flow constraints can also be found in the growth of the
number of constraints in the ILP that describes all embeddings of the graph (Figure 4.32 on
page 123) and in the number of binary variables in this ILP (Figure 4.36 on page 126).

Figure 4.27 on page 120 shows that the reason for this behavior is the structure of the
graphs in the benchmark set. The figure shows the average number of P- and R-nodes of the
graphs with the same number of vertices. The number P-nodes grows roughly linear with the
number of vertices but also has a spike at about 38 vertices. The number of R-nodes grows
until it reaches its peak also at around 38 vertices and then slowly goes down until it is almost
one. So large graphs have almost always only one triconnected component.

The reason for this structure of the benchmark set is that the planarization method tends
to turn non-planar graphs into planar graphs with big triconnected components. Because the
number of nodes in the SPQR-tree that determine the number of embeddings grows fast up to
about 38 vertices and then grows slower, the numbers of variables and constraints of our linear
programs have a spike in this area. This spike is more pronounced for the flow constraints,
because the flow network contains a pair of edges for each pair of cycles that could possibly be
neighbors in an embedding. All these edges produce constraints in the linear program and so
a small rise in the number of cycles that can be face cycles leads to a big rise in the number of
flow constraints.

Figure 4.35 shows that the total number of constraints behaves exactly like the number
of flow constraints because the number of embedding constraints is much smaller than the
number of flow constraints. The figure shows that the number of constraints is always greater
for MixR than for Mix. This is one part of the explanation why Mix performs better.

So we know that the mixed integer program for MixR has more rows than the program
for Mix. Now we want to take a look at the number of columns or variables of the program.
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Figure 4.35: Average number of all constraints in the mixed integer programs that describe all
orthogonal representations of a graph.

It is not hard to see that the reduced graph has the same number of cycles as the original
graph. Only the lengths of the cycles differ. Since the integer variables in the mixed integer
programs correspond to cycles in the graph, the number of integer variables is the same in the
programs of Mix and MixR. Figure 4.36 shows that the number of integer variables grows
roughly linear with the size of the graphs.
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Figure 4.36: Average number of integer variables in the mixed integer programs of Mix and
MixR for graphs with the same number of vertices.

Figure 4.37 shows the average number of all variables in the mixed integer programs of Mix
and MixR for each number of vertices. Since the number of integer variables is the same in
both programs, the difference in the number of variables is caused by the different number of
continuous variables. The figure shows that the mixed integer program for MixR has always
more continuous variables than the program for Mix.
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Each continuous variable corresponds to the amount of flow over a specific arc in the flow
network that describes the orthogonal representation. In the flow network for MixR, we have
more arcs than in the network for Mix, because we introduced additional zero-cost arcs. The
variables that model the flow on these arcs are responsible for the difference in the number
of variables. It follows that the mixed integer program for MixR has more rows and more
columns than the program for Mix.

By reducing the graph, we were able to reduce the number of constraints describing an
embedding. But we have to introduce zero-cost arcs that inflate the network flow part of the
mixed integer program. An increase in the number of variables and constraints does not neces-
sarily lead to longer optimization time for mixed integer linear programs (the constraints may
strengthen the formulation), but in this case it seems that the additional complexity introduced
with the zero-cost arcs outweighs the reduction of complexity achieved in the embedding part
of the mixed integer program.
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Figure 4.37: Average number of variables in the mixed integer programs that describes all
orthogonal representations of a graph.

Another interesting statistic is the number of constraints that have to be separated. For
the integer linear program that describes the embeddings of a P-node skeleton, we use the
same formulation that is used for the asymmetric traveling salesman problem (ATSP). This
formulation contains an exponential number of subtour elimination constraints. Therefore,
we decided to construct a polynomial size data structure that enables the separation of these
constraints.

When we have computed a solution for the MILP, we use the ATSP data structure to
check for violated subtour elimination constraints. If we find a violated subtour elimination
constraint, we add it to the MILP and re-optimize. Note that this can only happen if there is
a P-node skeleton in the SPQR-tree of the graph that has more than four edges. Otherwise,
we add all necessary inequalities to the program from the start.

When we applied the Mix algorithm to all the graphs in the benchmark set, the separation
of constraints was only necessary for six graphs (remember that there are 11529 graphs in the
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set). We never had to separate more than one constraint. As already mentioned on page 104,
we have hard-coded a complete polyhedral description for the case that a P-node skeleton has
four edges into our algorithm. Since there are few P-nodes in the SPQR-trees for graphs in the
benchmark set where the skeleton has more than four edges, this almost eliminates the need
for separation of subtour elimination constraints.

Figure 4.38 shows the average running time of Heuristic for the graphs in the real world
benchmark set. The running time grows faster than linear because a shortest path has to be
computed in the extended dual graph of the input graph. However, Heuristic is very fast and
takes just 1.26 seconds for the largest graph in the set.
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Figure 4.38: Average time needed by Heuristic to compute an orthogonal representation for
the graphs in the real world benchmark set.

The next question is: How many bends can we save if we optimize over all embeddings
instead of choosing an arbitrary embedding? So we applied the heuristic to all graphs in our
benchmark set and compared the number of bends with the optimum solutions.

Let h be the number of bends in the orthogonal representation computed by the heuristic
and o be the number of bends in an orthogonal representation with the minimum number of
bends. For each graph in the benchmark set, we computed the following value:

h=2100%

This is the percentage of the improvement we get using an optimal algorithm. We broke the
set of all graphs into ten subsets. The first subset containes the graphs where the improvement
is smaller than ten percent, the second subset the graphs with improvement between ten and
20% and so on. The last subset containes the graphs where the improvement is between 90
and 100%. Note that the improvement is 100% if the heuristic solution has bends while the
optimum solution contains no bends. Figure 4.39 shows the corresponding diagram. The
z-axis shows the improvement ranges while the height of the boxes corresponds to the number
of graphs that fall into that range.
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Figure 4.39: Number of graphs broken down into improvement ranges.

Exactly 5224 graphs had an improvement greater than ten percent. So almost half of all
graphs show significant improvements. Only 1354 graphs (about 12% of all graphs) show no
improvement at all. The greatest absolute difference in the number of bends that we observed
from the heuristic solution to the optimal solution was 16 bends. The graph in question had 130
vertices and 205 edges. The heuristic computed an orthogonal representation with 48 bends
while the optimum solution had 32 bends (see Section 4.6.5 on page 133 for the corresponding
drawings). The average number of saved bends per graph using the optimal algorithm was 3.8.
The average improvement over all graphs was 21.3%.

So the improvements achieved using the optimal algorithm compared to the heuristic are
significant. The main drawback is that solving the problem to optimality can be very time
consuming. The longest computation time for one graph that we observed for the heuristic was
one 1.26 seconds. On the other hand, there were 25 graphs that our fastest exact algorithms
was not able to solve in one hour. The average time needed per graph by the Mix algorithm
was just 56 seconds (excluding the 25 graphs that take more than one hour).

In many applications, the quality of a drawing is very important and the time needed to
generate the drawing is of secondary importance. For example, if the graph drawing will be
used as an illustration in a book, it should be no problem to wait a few minutes for the finished
drawing. For these applications, our optimal method is better suited than the heuristic (if the
graph is not too big) since it decreases the number of bends on average by about 20% compared
to the heuristic.

4.6.4 Results for the Artificial Benchmark Set

The results for the real world benchmark set have shown that Mix performs better than MixR.
Therefore, we only give results for Mix, B&B, and Heuristic for the artificial benchmark set.

We start with the comparison of the time needed by Mix and B&B for finding an optimal
solution. Figure 4.40 shows the average time needed by the two algorithms for each number
of vertices. The performance advantage of Mix is very obvious. B&B needs almost twice as
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long as Mix on average to find an optimal solution. While Mix failed to provide the solution
in one hour for only one of the 500 graphs, B&B failed for 43 graphs.

'B&B ——
Mix ---%---
200 - 1

150

Seconds

.
o
3

Number of vertices

Figure 4.40: Average time needed by B&B and Mix for finding the optimum solution for
graphs with the same number of vertices.

Figure 4.41 shows the average time needed by the heuristic to compute orthogonal repre-
sentations for the graphs in the artificial benchmark set. This time grows faster than linear
(because a minimum cost flow must be computed), but for the graphs with 100 vertices, the av-
erage time is still less then a quarter of a second. These running times are negligible compared
to the running times of Mix and B&B.
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Figure 4.41: Average time needed for Heuristic to compute an orthogonal representation for
the graphs in the artificial benchmark set.

Figure 4.42 shows for each number of vertices the average number of constraints in the ILP
computed by Mix that describes all embeddings of a graph and the time needed to compute
these constraints. The left hand scale shows the time in seconds while the right hand scale
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shows the number of constraints. It seems that the number of constraints grows roughly linear
with the size of the graph. Except for a bump at 90 vertices, the time needed for computing
the ILP grows parallel with the number of embedding constraints.
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Figure 4.42: Average number of constraints in the integer linear program (ILP) that describes
all embeddings of the graph and the average time needed to compute the ILP.

Figure 4.43 shows for each number of vertices the average number of integer variables in
the mixed integer linear program (MILP) computed by Mix. The average grows linear with
the size of the graph and for the graphs with 100 vertices, we needed on average less than 140
binary variables. This does not seem very high if we compare it with the average number of
embeddings of the graphs with 100 vertices, which is almost half a million.
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Figure 4.43: Average number of integer variables in the mixed integer programs of Mix for
graphs with the same number of vertices.

The average number of all variables and constraints in the MILP computed by Mix is shown
in Figure 4.44. Both averages grow in lockstep and roughly linear with the size of the graphs.
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Mix did not separate any subtour elimination constraints, because the maximum vertex degree
of the graphs in the artificial benchmark set is four. It follows that their SPQR-trees do not
contain P-node skeletons with more than four edges. The separation of subtour elimination
constraints can only be necessary for graphs that contain P-node skeletons with at least five
edges because we use complete descriptions of the embedding ILPs for the smaller P-node
skeletons.
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Figure 4.44: Average number of total variables and constraints in the mixed integer linear

programs computed by Mix for the artificial benchmark set.

Finally, we examine the improvements in the quality of the solutions achieved by using
exact algorithms instead of the heuristic for the artificial graphs. We define the improvement
in the same way as for the real world graphs. If A is the number of bends in the orthogonal
representation computed by Heuristic and o the number of bends in an orthogonal repre-
sentation computed by an exact algorithm (Mix or B&B), then we define the improvement
as

h—o
h

100%

which is the percentage of the improvement we get using an exact algorithm. We split the set of
500 graphs into ten sets according to the range of their improvement. Figure 4.45, that shows
the corresponding diagram, is very similar to Figure 4.39 on page 129, where the improvement
ranges for the real world graphs are shown. For almost half of the graphs we achieved an
improvement greater than 10 percent.

The maximum absolute difference we observed was 12 bends for a graph with 100 vertices
and 160 edges. The solution found by the heuristic had 54 bends while an optimal solution has
only 42 bends. There are 18 graphs where the optimum solution has no bends at all and the
heuristic solution contains bends.
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Figure 4.45: Number of graphs in the artificial benchmark set broken down into improvement
ranges.

4.6.5 Two Example Graphs

After presenting the big statistic picture, we now present the results for two example graphs
of the benchmark set and show the drawings produced by GDToolkit and our new algorithm.

GDToolkit contains a demo program called GRID. This is a graph editor that can also call
most of the algorithms in the GDToolkit library and display the drawings produced by them.
The implementation of our new algorithm uses GraphWin, the graph editor of the LEDA library
(see http://www.mpi-sb.mpg.de/LEDA) as a graphical user interface and for displaying the
drawings.

We present the drawings computed by three different algorithms. From the GDToolkit
library, we used Heuristic and B&B. The third algorithm is Mix that we implemented using
the LEDA library.

We have chosen two graphs out of the real world benchmark set where the solution computed
by the two optimal algorithms is significantly better than the solution computed by Heuristic.
As we have already mentioned, we made the graphs from the real world benchmark set planar
using the planarization method and then added new edges in an augmentation step to make
the graphs biconnected. The first graph we use in this section is derived from the graph called
grafo596.14. The original version of this graph is already planar, and we only had to add
two edges to make it biconnected and planar. The resulting graph, which we call small, has
14 vertices and 18 edges.

The second graph is derived from the graph grafo10131.98. This graph is not planar and
not biconnected, has 98 vertices and 126 edges. We first used the planarization method on the
graph and then added 13 edges to make it biconnected and planar. The resulting graph has
130 vertices and 205 edges and we call it BIG.

The following table shows the number of bends in the orthogonal representations computed
by the three algorithms for small and BIG.
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| | Heuristic | B&B | Mix |
small 4 0 0
BIG 48 32 32

It is not surprising that the two optimal algorithms produce the same number of bends. As
we have already mentioned, we have chosen examples where Heuristic performs badly. For
the graph small, it produced four bends while an optimum solution has no bends at all. For
the graph BIG, it produces 16 bends more than necessary. The next table shows the running
times in seconds for the three algorithms and the two graphs.

| | Heuristic | B&B | Mix |

small 0.01 0.42 0.3
BIG 0.42 5243.91 | 108.14

Heuristic is extremely fast compared with the optimal algorithms. Even for the BIG graph,
it needs only a fraction of a second. The graph small is somewhat atypical, because usually
B&B is faster on small graphs than Mix. But the difference is not significant. The difference
in the running time for the graph BIG is very significant. B&B needs almost 1.5 hours while
Mix needs less than two minutes. As the computational results in the last section have shown,
Mix is in general faster than B&B for large graphs but the difference is not usually as extreme
as for the graph BIG.

For both graphs, Mix does not have to separate any subtour elimination constraints. We
have inspected the two mixed integer linear programs (MILPs) computed by Mix and the data
CPLEX provided about the computation that produced the optimum solution.

The MILP for the graph small has 587 rows and 222 columns. The number of binary
variables is 24. These variables are the 16 cycle variables and the eight outer face variables.
CPLEX was able to eliminate 233 rows in its preprocessing step, but it could not eliminate
any columns. The resulting matrix has 1,110 non-zeroes. For this small problem, the branch
& cut tree has only three nodes. The total number of simplex iterations was 163.

One flow cover cut was used in the root node. This type of inequalities can be used for
mixed integer linear programs that describe a flow in a network where the capacity of arcs
depend on the value of binary variables. This is the case for our program because the arcs
that are incident to a node in the network representing a cycle in the original graph have zero
capacity if the cycle is not chosen as a face cycle. Flow cover cuts were introduced by Padberg,
Roy, and Wolsey (45). Gu, Nemhauser, and Savelsbergh (26) introduced an efficient way of
lifting the inequalities.

The MILP for the graph BIG has 10,059 rows and 3,473 columns. The number of binary
variables is 333. Of these variables, 222 are cycle variables and 111 are outer face variables. For
this problem, CPLEX was able to eliminate 4,920 rows and 544 columns in the preprocessing
step. The resulting matrix has 15,974 non-zeroes. The branch & cut tree has 282 nodes and
32,512 simplex iterations were needed to compute the solution. The number of flow cover cuts
generated in the root node was 20. Note that these cuts are valid for every node in the tree.
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Figure 4.46 shows the drawing of small computed using Heuristic while Figures 4.47
and 4.48 show the same graph drawn using B&B and Mix, respectively. Note that the
reproduction of the drawings produced using GDToolkit (Heuristic and B&B) is not as good
as the reproduction of the drawings that were produced using our new algorithm, because the
GraphWin graph editor we used to call our algorithm can export a drawing as a postscript file,
while the GRID editor of GDToolkit does not have this feature. Therefore, we had to use
screen grabs to produce a postscript file, which has a negative influence on the quality of the
resulting pictures.

Note that B&B and Mix have produced the same embedding for the graph small, but
they have found different orthogonal representations. The drawing produced by Heuristic
realizes a different embedding. This follows already from the fact that the drawings computed
by Heuristic have the minimum bend number for the chosen embedding.

Figure 4.49 shows the drawing of the graph BIG produced using Heuristic, while the
Figures 4.50 and 4.51 show the drawings produced using B&B and Mix. Observe that the
two optimal algorithms have chosen different embeddings for the graph BIG. This can be seen
by looking at the sequence of the edges around each vertex in clockwise order. If we look
for example at vertex number 40 in Figure 4.50, than the sequence of the edges around it is
46,93,18,126 (we identify the edges by the number of the other incident vertex). In Figure 4.51,
this sequence is 46,18,126,93. So there are at least two different embeddings of BIG for which
we can produce an orthogonal representation with the minimum number of bends.

Figure 4.46: Drawing of the graph small produced using Heuristic.
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Figure 4.47: Drawing of the graph small produced using B&B.

Figure 4.48: Drawing of the graph small produced using Mix.
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Figure 4.49: Drawing of the graph BIG produced using Heuristic.
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Figure 4.50: Drawing of the graph BIG produced using B&B.
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Figure 4.51: Drawing of the graph BIG produced using Mix.
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Chapter 5

Conclusion

In this thesis, we present two new applications for SPQR-trees in the field of graph drawing.
Both use the fact that the SPQR-tree of a planar biconnected graph can enumerate all em-
beddings of the graph. We use two different approaches to take advantage of the properties
of the SPQR-tree for solving problems where the right choice of the embedding for a graph is
important.

Both problems fit into the following framework: We have a function f: P — Ny where P
is the set of embeddings of a certain graph. This function assigns a non-negative integer value
to each embedding. We are looking for an embedding II where the value of f is minimal.

For both problems that we are looking at, the value of the function f can be computed in
polynomial time for a fixed II. Since triconnected graphs have only two different embeddings
that are mirror images of each other, we can also compute the value of f for the embeddings
of a triconnected graphs in polynomial time.

Our first approach works as follows: We use the SPQR-tree to compute the triconnected
components of the input graph G. We modify each of the components slightly such that
computing the value of f for each component and adding the resulting values results in the
minimum value fp,;, for f over all embeddings of G. In the process, we also compute additional
information that enables us to find in polynomial time an embedding IT such that f(II) is fiin-

The problem that we attacked with this approach is finding an embedding for a planar
graph such that a certain edge can be inserted into the embedding with the minimum number
of crossings. So the function f assigns to each embedding the number of crossings produced
when the additional edge is inserted into the embedding.

The second approach we use is more complex. We use it for a function f where the decision
problem if there exists an embedding IT of G where f(II) is smaller than k for a certain k is
NP-complete. Again, we want to compute the minimum value f,,;, over all embeddings of G.
For the problem we are dealing with, there is a linear program LP where the optimal solution
is f(II) for a fixed embedding II. We develop an integer linear program ILP where the set
of feasible solution corresponds exactly to the set P of embeddings of G. This program is
computed recursively using the structure of the SPQR-tree of G. By combining ILP and LP,
we get a mixed integer linear program where the optimal solution has value fpn-

141
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We used this approach for the problem of finding an orthogonal drawing with the minimum
number of bends for a planar biconnected graph G. There is a linear program for computing
the minimum number of bends necessary to draw G for a fixed embedding. We combined it
with our new integer linear program where the solutions correspond to the embeddings of the
graph. An optimal solution of the resulting mixed integer linear program corresponds to an
orthogonal representation of the graph with the minimum possible number of bends over all
embeddings.

5.1 Inserting an Edge with the Minimum Number of Crossings

Each instance of this problem consists of a planar graph G = (V, E) and a pair of vertices
e = (v1,v2) with e € E. The goal is to find a drawing of G’ = (V, E U {e}) with the minimum
number of crossings and the property that edges in E do not cross each other. This problem
is part of the planarization method for drawing non-planar graphs.

If the embedding is fixed, the solution for the problem is quite simple: We construct the
geometric dual of G with respect to the given embedding, add the vertices v; and vo and connect
them to all the vertices in the dual graph that represent incident faces. Then we only have to
find a shortest path from v; to v in the resulting graph. The edges used by the shortest path
are the duals of the edges that have to be crossed in an optimal solution to the edge insertion
problem.

Our new algorithm computes the optimal solution even when the embedding is not part of
the input. We first compute the SPQR-tree for G. Then we compute the set of R-nodes that
determine the number of edges to be crossed. The R-nodes of the SPQR-tree correspond to
subdivisions of triconnected graphs contained in G. In the skeletons of these nodes, we insert
new vertices that represent v; and vy if necessary. Then we replace some edges in the skeleton
with the subgraphs of G that they represent. On the resulting graph, we use the algorithm for
solving the problem in the case of a fixed embedding.

The concatenation of all the edge lists computed for each of the R-nodes by the algorithm
is the list of edges that have to be crossed by e in an optimal solution for the edge insertion
problem. The size of the SPQR-tree data structure is linear in the size of G and can be
computed in linear time. Our algorithm refers to each edge in the SPQR-tree and each edge in
G only a constant number of times. It follows that the running time for the algorithm is linear
in the size of G.

Our computational results show that using our new algorithm in the planarization method
reduces the number of crossings in the resulting drawings significantly compared to using the
heuristic that has formerly been used. On a benchmark set of real world graphs, the percentage
of crossings saved using the new method is 14% on average.
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5.2 Minimizing the Number of Bends in an Orthogonal Draw-
ing

In an orthogonal drawing of a planar graph, all the edges are drawn as sequences of horizontal
and vertical line segments. The points where two segments of the same edge meet are called
bends. The decision problem if there is an orthogonal drawing of a certain graph with less
than k£ bends is known to be NP-complete.

Our new exact algorithm for solving the problem has two main components. The first
component is a linear program that is constructed from a graph G and an embedding II.
An optimum solution for the program corresponds to an orthogonal representation of G that
realizes II and has the minimum number of bends. An orthogonal representation is a data
structure that describes the topology of an orthogonal drawing and the sequence of the bends
on each edge but does not fix the lengths of the edge segments that constitute the edges. The
linear program is derived from a previously known formulation of the problem as a minimum
cost flow network.

The second ingredient is our new integer linear program that can be constructed for any
planar biconnected graph. The set of solutions of this program corresponds exactly to the set
of embeddings of the graph. The program is constructed recursively using the SPQR-tree of
the graph.

We combined our new integer linear program that describes the embeddings of a graph
with the linear program that describes the orthogonal representations of a graph for a fixed
embedding to construct a mixed integer linear program where an optimal solution corresponds
to an orthogonal representation of the graph with the minimum number of bends among all
embeddings. The result is a mixed integer linear program where an optimum solution corre-
sponds to an orthogonal representation of the problem graph with the minimum number of
bends among all possible orthogonal representations realizing any embedding of the graph.

We solve this mixed integer linear program using the commercial mixed integer solver
CPLEX. We compared the performance of this approach with a known branch and bound
approach designed to solve the same problem. For real world graphs of up to about 120 vertices,
the branch and bound approach is faster. For larger graphs, our new approach outperforms
the branch and bound approach. For artificially generated graphs, that were already used in
the literature for testing the performance of the branch & bound approach, our new method
is almost twice as fast as the Branch & Bound method.

5.3 Possible Starting Points for Future Research

First we take a look at the area of crossing minimization. In this thesis, we presented a linear
time algorithm that inserts one edge into a planar graph with the minimum number of crossings
under the condition that the edges of the original planar graph do not cross in the solution.
It is an interesting problem if this can be done in polynomial time for more than one edge.
A description of the problem is as follows: Given a planar graph G = (V, E) and a set L of
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pairs of vertices of G where LN E = (), find a drawing of G’ = (V, E U L) with the minimum
number of crossings under the condition that edges in £ do not cross.

This problem can not be solved by iteratively calling our algorithm for all edges in L because
the number of crossings generated in this way depends on the sequence of the insertions of the
edges in L. To see this, we can use the same example already used in Section 3.6.

u

Figure 5.1: If we first insert first the edges f and g, the insertion of e generates m crossings.

We can assume that Figure 5.1 was constructed inserting the three edges e, f, and g
iteratively. We first inserted f and g with the minimum number of crossings. In both cases,
no crossings were generated. But then the insertion of edge e generates m crossings.

Figure 5.2: If we insert the edge e first and then the edges f and g, we only generate two

crossings.

We can interpret Figure 5.2 as the result of first inserting edge e and then the edges f and
g. This sequence of insertions produces only two crossings. It follows that any algorithm that
inserts more than one edge with the minimum number of crossings into a graph has to consider
all edges that have to be inserted at once.

In the field of bend minimization, an extension of our algorithm to connected graphs would
be a worthwhile endeavor. Until now, there is no algorithm known that finds a drawing with
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the minimum number of bends for a planar graph over all embeddings if the graph is not
biconnected.

One heuristic is to add dummy edges to the graph to make it biconnected and then assigning
zero costs to bends on the dummy edges for the optimization. But this still does not guarantee
that the resulting orthogonal representation has the minimum possible number of bends after
deleting the dummy edges. The reason is that inserting dummy edges decreases the number
of possible embeddings. So it may happen that the embeddings of the original graph that give
the minimum number of bends can not be realized when the dummy edges are added.

An optimal algorithm for the problem will probably work by splitting the graph into its
biconnected components. Then we have to find orthogonal representations with the minimum
number of bends for the components under the condition that we can later merge the result-
ing orthogonal representations into an orthogonal representation of the original graph. This
means that some information about the structure of the whole graph have to be used in the
optimization of the components.
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Appendix A

Deutsche Zusammenfassung

Ein Graph ist eine mathematische Struktur, die oft benutzt wird, um die Beziehungen zwischen
verschiedenen Objekten darzustellen. Ein Graph besteht aus einer Menge von Knoten und einer
Menge von Paaren dieser Knoten, den Kanten.

Man kann einen Graphen in Form einer zwei-dimensionalen booleschen Matrix angeben,
bei der der Eintrag (vi,ve) auf “wahr” gesetzt ist, wenn die Kante (v1,v2) in der Kantenmenge
enthalten ist. Auch kann man einen Graphen als Liste seiner Kanten angeben. Aber in den
meisten Fillen ist die in einem Graphen gespeicherte Information fiir einen Menschen am
einfachsten erschliefbar, wenn der Graph durch eine Zeichnung dargestellt wird.

Meistens wird ein Graph wie folgt gezeichnet: Die Knoten werden als Formen wie z.B.
Kreise oder Rechtecke gezeichnet wihrend die Kanten als Linien dargestellt werden, die diese
Formen verbinden. Ein Punkt, an dem sich zwei dieser Linien schneiden wird als Kreuzung
bezeichnet, wenn es sich nicht um die Darstellung eines Knotens handelt, der in den beiden
betroffenen Kanten vorkommt. Ein Graph heifit planar, wenn man ihn ohne Kreuzungen in die
Ebene zeichnen kann. Eine Zeichnung ohne Kreuzungen nennt man entsprechend eine planare
Zeichnung.

Die Menge der verschiedenen planaren Zeichnungen eines planaren Graphen ist unendlich
groB, aber man kann diese Menge in endlich viele Aquivalenzklassen einteilen, die man Einbet-
tungen des Graphen nennt. Ein Graph realisiert eine bestimmte Einbettung II, wenn er zu der
Aquivalenzklasse TI gehort. Alle planaren Zeichnungen, die die gleiche Einbettung realisieren,
sind in einem topologischen Sinne fdquivalent.

Die Datenstruktur SPQR-Baum reprisentiert die Zerlegung eines zweizusammenhéngenden
Graphen in seine dreizusammenhingenden Komponenten. Die Menge der Einbettungen einer
jeden Komponente ist leicht aufzidhlbar und die Kombination der Einbettungen aller Kompo-
nenten ergibt eine Einbettung des Originalgraphen. Deshalb kann man einen SPQR-Baum dazu
benutzen, alle Einbettungen eines planaren zweizusammenhéingenden Graphen aufzuzihlen. Le-
gen wir nur die Einbettungen eines Teiles der Komponenten des SPQR-Baums fest, so kénnen
wir eine Menge von Einbettungen des Originalgraphen darstellen.

Der Umstand, der den SPQR-Baum so interessant macht, ist dass es viele interessante
Probleme auf dem Gebiet der planaren Graphen gibt, die fiir Graphen mit einer festgelegten
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Einbettung einfach zu lésen sind, aber schwieriger werden, wenn die Einbettung nicht gegeben
ist. Diese Probleme sind ebenfalls einfach zu 16sen, wenn der Graph dreizusammenhingend ist.
Der Grund hierfiir ist, dass dreizusammenhingende Graphen nur zwei verschiedene Einbet-
tungen besitzen, die Spiegelbilder voneinander sind. Im Gegensatz dazu steigt bei zweizusam-
menhéingenden Graphen die Grofle der Menge von Einbettungen exponentiell mit der Grofle
des Graphen.

Nehmen wir nun an, wir wollen ein Problem fiir zweizusammenhéngende Graphen l6sen,
das einfach ist, wenn eine Kinbettung gegeben ist. Es folgt daraus, dass wir das Problem
auch einfach fiir die dreizusammenhingenden Komponenten im SPQR-Baum des Graphen
l6sen konnen. Falls es uns gelingt, einen Weg zu finden, die Losungen fiir die Komponenten
des Graphen zu einer Losung fiir den gesamten Graphen zu kombinieren, so haben wir einen
Algorithmus gefunden, der unser Problem fiir zweizusammenhéngende Graphen 16st, wenn die
Einbettung nicht Teil der Eingabe ist.

Wir haben diesen Ansatz benutzt, um das folgende Problem zu lésen: Gegeben ist ein
planarer Graph G und eine zusétzliche Kante e, die nicht in G enthalten ist. Wir bezeichnen
den Graphen, der durch Einfiigen von e in G entsteht mit G’. Wir suchen eine Zeichnung
fiir G’ mit moglichst wenigen Kreuzungen unter der Bedingung, dass Kanten von G sich nicht
kreuzen. Dieses Problem tritt in der Planarisierungs Methode zum Zeichnen von nicht-planaren
Graphen auf.

Falls eine Einbettung von G gegeben ist, in die wir die Kante e einfiigen sollen, so kénnen
wir das Problem schnell und einfach 16sen, indem wir einen kiirzesten Pfad in dem leicht mo-
difizierten geometrisch dualen Graphen von G beziiglich der gegebenen Einbettung berechnen.
Wir haben nun SPQR-Bidume benutzt, um einen Algorithmus zu konstruieren, der das Problem
16st, auch wenn die Einbettung des Graphen nicht festgelegt ist. Dieser Algorithmus hat lineare
Laufzeit beziiglich der Grofle des Eingabegraphen. Wir wenden den Algorithmus fiir feste Ein-
bettungen auf die dreizusammenhéingenden Komponenten an, die uns der SPQR-Baum liefert.
Dann kombinieren wir die erhaltenen Ergebnisse, indem wir die Struktur des SPQR-Baums
ausnutzen. Das Ergebnis ist eine optimale Lésung fiir das urspriingliche Problem.

Eine weitere Moglichkeit, die Eigenschaften von SPQR-Biumen auszunutzen, um Probleme
fiir planare Graphen zu 16sen, ist die folgende: Nehmen wir an, es existiert ein lineares Pro-
gramm L1, dessen Optimallésung der Lésung unseres Problems entspricht, falls die Einbettung
des Graphen festgelegt ist. Wir haben eine Methode entwickelt, mit der wir ein ganzzahliges
lineares Programm Lo konstruieren kénnen, dessen Losungen die Einbettungen eines planaren
zweizusammenhingenden Graphen sind. Wenn wir nun L; und Ly kombinieren, so erhalten
wir ein gemischt-ganzzahliges lineares Programm, dessen Optimallosung der Losung des ur-
spriinglichen Problems fiir Graphen ohne festgelegte Einbettung entspricht.

Diesen Ansatz haben wir benutzt, um das Knick-Minimierungsproblem zu l6sen. Eingabe
dieses Problems ist ein planarer zweizusammenhingender Graph und die gesuchte Losung ist
eine orthogonale Zeichnung des Graphen mit der geringstmoglichen Anzahl von Knicken. In
einer orthogonalen Zeichnung werden die Kanten durch Folgen von vertikalen und horizon-
talen Geradensegmenten dargestellt. Das Zusammentreffen eines horizontalen und vertikalen
Segmentes der gleichen Kante wird als Knick bezeichnet.
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Algorithmen, die dieses Problem l6sen, wenn die Einbettung festgelegt ist, sind schon
laingere Zeit bekannt. Es wurde auch schon gezeigt, dass das Problem NP-schwer ist, wenn
die Einbettung nicht Teil der Eingabe ist. Der Algorithmus zur Losung des Problems bei fester
Einbettung berechnet einen Flufl mit minimalen Kosten in einem speziellen Netzwerk, das von
dem Graphen und der Einbettung bestimmt wird. Dieses Netzwerk-Flufl Problem kann man
recht einfach als lineares Programm formulieren.

Wir haben dieses lineare Programm mit unserem neuen ganzzahligen linearen Programm
kombiniert, das alle Einbettungen eines planaren zweizusammenhéingenden Graphen beschreibt.
Das Ergebnis ist ein gemischt-ganzzahliges lineares Programm, bei dem eine optimale Losung
einer Zeichnung des Problemgraphen entspricht, die die kleinstmdgliche Anzahl von Knicken
aufweist. Dieses Programm benétigt nicht die Vorgabe einer Einbettung. Wir benutzen einen
kommerziellen Loser fiir gemischt-ganzzahlige Programme, um eine Optimallésung des so ge-
wonnenen linearen Programmes zu berechnen. Unsere experimentellen Resultate zeigen, dafl
dieser Ansatz fiir groe Graphen einem schon bekannten Branch & Bound Ansatz zur Losung
des gleichen Problems iiberlegen ist.

A.1 Zeichnen von Graphen

Das Ziel bei der Erstellung einer Zeichnung eines Graphen ist es, ein Bild zu erzeugen, indem
man moglichst einfach ablesen kann, welche Knoten durch Kanten verbunden sind. Diese Arbeit
beschéftigt sich mit zwei Problemen auf dem Gebiet des automatischen Zeichnens von Graphen.

Es gibt viele wissenschaftliche Gebiete, in denen Zeichnungen von Graphen benutzt werden,
um Beziehungen zwischen Objekten zu visualisieren. Der Grund ist, daf§ viele Wissenschaften
sich mit komplexen Systemen interagierender Objekte befassen. Um solche Systeme zu verste-
hen, ist es notig, die Beziehungen zwischen den Objekten zu verstehen.

Auf dem Gebiet der Sozialwissenschaften beschéftigen sich die Wissenschaftler oft mit Netz-
werken von Menschen in einer Gruppe, z.B. den Mitarbeitern in einer Firma. Die entsprechen-
den Beziehungen werden normalerweise in einer Zeichnung visualisiert, in der die Personen
durch unterschiedliche geometrische Formen repréisentiert werden. Die Beziehungen zwischen
den Personen werden durch Linien dargestellt, die die Formen verbinden. Zusétzliche Informa-
tionen sind durch Farb- und Formgebung der Linien und Formen kodiert.

Auch in den Wirtschaftwissenschaften gibt es Anwendungen fiir das Zeichnen von Graphen.
So werden z.B. Geschiftsprozesse oft als Graphen dargestellt, wobei die elementaren Aufgaben
die Knoten sind und eine Kante von einer Aufgabe zu einer zweiten aussagt, da} die erste
Aufgabe vor der zweiten ausgefiihrt werden mu$.

Eine weitere Anwendung in den Wirtschaftwissenschaften ist die Darstellung von Orga-
nigrammen. In diesen Diagrammen werden die Beziehungen von organisatorischen Einheiten
beschrieben. Eine dhnliche Anwendung ist die Visualisierung von Firmenbeteiligungen (siehe
Abbildung A.1).

Auch in der Informatik findet das Zeichnen von Graphen Anwendung. Besonders beim
Entwurf von groflen Software-Projekten und bei der Untersuchung bestehender Systeme. Ein
Beispiel ist hier der Aufrufgraph von Funktionen. Die Knoten sind hierbei die Funktionen und
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Abbildung A.1: Ein Graph, der die Firmenbeteiligungen zwischen verschiedenen spanischen

Firmen zeigt.

eine Kante von einer Funktion zu einer zweiten bedeutet, dass die erste Funktion die zweite auf-
ruft. Bei Klassendiagrammen entsprechen die Knoten den Klassen und die Kanten entsprechen
Vererbungsbeziehungen oder zeigen an, dass eine Klasse die Methoden einer anderen Klasse
benutzt.

Beim Entwurf von Datenbanken wird eine graphische Entwurfsprache benutzt, die “Entity
Relationship Model” genannt wird. Es handelt sich dabei auch um Graphen, bei denen die
Knoten Objekte der Datenbank sind und die Kanten die Beziehungen zwischen den Objekten
visualisieren.

Man kann einen Graphen auf viele verschiedene Arten zeichnen. Je nach Anwendung, muf}
eine Zeichnung aber meist gewisse Anforderungen erfiillen. Diese anwendungsspezifischen An-
forderungen bezeichnet man als Zeichen-Konventionen. In manchen Anwendungen miissen z.B.
alle Knoten als gleich grofle Rechtecke gezeichnet werden und die Kanten als Geradensegmente.

Aber nicht jede Zeichnung, die die Zeichen-Konvention fiir eine bestimmte Anwendung
erfiillt, ist eine gute Zeichnung. Um leicht lesbar zu sein, sollte eine Zeichnung auch bestimmte
dsthetische Anforderungen erfiillen. Die folgenden Anforderungen sind fiir die meisten Anwen-

dungen am wichtigsten:

e Geringe Anzahl von Kreuzungen: Enthélt die Zeichnung eines Graphen viele Kreu-
zungen, so ist es fiir den Betrachter meist schwierig zu erkennen, welche Knoten durch
eine Kante miteinander verbunden sind. Bei den meisten Anwendungen ist eine geringe
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Anzahl von Uberkreuzungen eine der wichtigsten Anforderungen. Abbildung A.2 zeigt
zwei Zeichnungen des selben Graphen, wobei die Zeichnung auf der linken Seite wegen
der vielen Kreuzungen sehr viel uniibersichtlicher wirkt als die Zeichnung rechts mit nur
einer Kreuzung.

Abbildung A.2: Zwei verschiedene Zeichnungen des selben Graphen mit unterschiedlicher An-

zahl von Kreuzungen.

e Geringe Anzahl von Knicken: Falls die Kanten als Folge von horizontalen und vertika-
len Geradensegmenten gezeichnet werden (wie in Abbildung A.1), ist es wiinschenswert,
moglichst wenige Segmente pro Kante zu verwenden. Einer Kante, die aus vielen Seg-
menten besteht und somit viele Knicke hat, kann das Auge nicht so gut folgen wie einer
Kante mit wenigen Knicken. Abbildung A.3 zeigt zwei Zeichnungen des selben Graphen,
einmal mit vielen Knicken und einmal mit wenigen Knicken.

Abbildung A.3: Zwei Zeichnungen des gleichen Graphen mit unterschiedlich vielen Knicken.
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e Kleine Zeichenfliche: Wenn wir eine Zeichnung auf einem Bildschirm darstellen oder
mit einem Drucker ausgeben, so haben wir nur eine begrenztes Gitter zur Darstellung
der Zeichnung zur Verfiigung. Dies liegt daran, dass diese Ausgabegerite nur eine be-
grenzte Auflosung besitzen. Deshalb ist es wiinschenswert, dass das kleinste Rechteck,
das die Zeichnung eines Graphen enthilt, wenige Gitterpunkte bedeckt. Wenn wir dann
die Zeichnung skalieren, um sie auf dem Ausgabegerit moglichst grofl wiederzugeben, so
werden die Knoten und Kanten gréfler dargestellt, als wenn das einschliefende Rechteck
eine grofle Fliche einnimmt.

Diesen Effekt kann man auch anhand von Abbildung A.3 erkennen. Es handelt sich bei
beiden Zeichnungen um Gitterzeichnungen, d.h. sowohl die Knoten als auch die Knicke
liegen auf Punkten eines Gitters. Obwohl die Zeichnung auf der linken Seite mehr Fliche
der Seite bedeckt, sind die Knoten bei der Zeichnung rechts gréfler dargestellt. Dies
liegt daran, dass fiir die Zeichnung links ein gréfleres Gitter notig ist. Wiirde man beide
Zeichnungen auf das gleiche Gitter zeichnen, so wire das einschliefende Rechteck fiir
die Zeichnung links deutlich grofler als fiir die Zeichnung rechts. Da wir die Knoten
und Kanten in der Zeichnung so gro wie moglich darstellen wollen, bevorzugen wir
Zeichnungen, die wenig Gitterfliche bené6tigen.

¢ Kleine Kantenléinge: Wenn Kanten kurz sind, folgt daraus, dass Objekte, die in Be-
ziehung zueinander stehen, geringen Abstand haben. Dies erleichtert das Verstindnis der
Zeichnung. Es ist wiinschenswert, dass sowohl die durchschnittliche Kantenlinge klein ist
als auch die Linge der lingsten Kante.

e Symmetrie: Manche Graphen kann man so zeichnen, dass die Zeichnung Symmetri-
en aufweist. Dies kann zu einem tieferen Verstindnis der Beziehungen der dargestellten
Objekte fithren, weil eine geometrische Symmetrie immer einem Automorphismus in dem
Graphen entspricht. Auch ist es wiinschenswert, einen Graphen fast symmetrisch zu zeich-
nen, falls eine kleine Anderung des Graphen eine symmetrische Zeichnung des Graphen
erlauben wiirde.

Es gibt noch viele andere Asthetische Kriterien, aber die hier aufgefiihrten gehéren zu den
wichtigsten fiir die meisten Anwendungen. Das Problem ist, dass all diese Kriterien schwer zu
optimieren sind und sich teilweise gegenseitig widersprechen. Zum Beispiel hat eine Zeichnung,
die die Symmetrien maximiert oft mehr Kreuzungen, als eine Zeichnung, die die Anzahl der
Kreuzungen minimiert. Abbildung A.4 zeigt ein triviales Beispiel fiir eine solche Situation.

In dieser Arbeit beschiftigen wir uns mit den ersten beiden #sthetischen Kriterien: der
Anzahl der Kreuzungen und der Anzahl von Knicken in einer orthogonalen Zeichnung. In
Kapitel 3 untersuchen wir das Problem, wie man eine neue Kanten in einen planaren Graphen
einfiigen kann, so dass moglichst wenige Kreuzungen entstehen. Der resultierende Algorithmus
kann in einer Heuristik verwendet werden, die nicht-planare Graphen mit wenigen Kreuzungen
zeichnet. In Kapitel 4 entwickeln wir einen Algorithmus, der fiir einen zweizusammenhéngenden
planaren Graphen eine orthogonale Zeichnung mit der kleinsten méglichen Anzahl von Knicken
berechnet.
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Abbildung A.4: Zwei Zeichnungen des selben Graphen. Die Zeichnung links maximiert die
Anzahl de Symmetrien, wihrend die Zeichnung rechts die Anzahl der Kreuzungen minimiert.

A.2 SPQR-Biume

SPQR-Bédume wurden von Di Battista und Tamassia eingefithrt und représentieren die Zerle-
gung eines zweizusammenhingenden Graphen in dreizusammenhingende Komponenten. Man
kann sie benutzen, um alle Einbettungen eines Graphen aufzuzihlen. Einbettungen beschreiben
die Topologie einer planaren Zeichnung eines Graphen. Man kann eine Einbettung definieren,
indem man fiir jeden Knoten die Reihenfolge der inzidenten Kanten im Uhrzeigersinn angibt.
Die Eigenschaft von SPQR-Bidume, alle Einbettungen eines Graphen aufzihlen zu konnen,
hat uns motiviert, sie bei der Losung der beiden Probleme, die hier betrachtet werden, zu
verwenden.

Nehmen wir an, es existiert ein effizienter Algorithmus A um ein bestimmtes Problem
fiir einen zweizusammenhéngenden Graphen zu lésen, falls die Einbettung des Graphen fest
steht. Dann kénnen wir dieses Problem auch fiir den Fall 16sen, dass die Einbettung nicht
vorgegeben ist, indem wir mittels des SPQR-Baums alle Einbettungen aufzéhlen und fiir jede
Einbettung den Algorithmus A aufrufen. Das Problem mit diesem Ansatz ist, dass ein zweizu-
sammenhingender Graph exponentiell viele verschiedene Einbettungen beziiglich seiner Grofie
haben kann.

Wenn wir fiir jede Komponente des SPQR-Baums eine Einbettung festlegen, so legen wir da-
mit auch eine Einbettung fiir den urspriinglichen Graphen fest. Wenn wir nur die Einbettungen
fiir einen Teil der Komponenten festlegen, so konnen wir damit eine Teilmenge von Einbettun-
gen des urspriinglichen Graphen definieren. Nehmen wir nun an, wir wollen eine Funktion iiber
alle Einbettungen des Graphen optimieren. Kénnen wir fiir eine Menge der Einbettungen, die
durch teilweise Festlegung der Einbettungen der Komponenten des SPQR-Baumes definiert ist,
Schranken fiir den Wert der zu optimierenden Funktion festlegen, so kénnen wir damit einen
Branch & Bound Algorithmus zur Optimierung der Funktion iiber alle Einbettungen konstru-
ieren. Dieser Ansatz wird von (9) verwendet um die Anzahl der Knicke in einer orthogonalen
Zeichnung zu minimieren.
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A.3 Anwendung von SPQR-Biumen in dieser Arbeit

SPQR-Biume zerlegen einen zweizusammenhingenden Graphen in seine dreizusammenhéngen-
den Komponenten. Nehmen wir an, es gibt einen effizienten Algorithmus, um eine bestimm-
te Funktion iiber den Zeichnungen eines Graphen zu optimieren, falls der Graph dreizusam-
menhéngend ist. Wie wir schon am Beginn dieser Zusammenfassung erwihnt haben, ist ei-
ne Moglichkeit, die Funktion iiber die Zeichnungen eines zweizusammenhéingenden Graphen
zu optimieren, den bekannten Algorithmus auf die dreizusammenhéingenden Komponenten im
SPQR-Baum anzuwenden und die erhaltenen Lsungen zu einer Losung fiir den urspriinglichen
Graphen zu kombinieren.

Dies ist der Ansatz den wir verwenden, um eine neue Kante mit méglichst wenigen Kreu-
zungen in einen planaren Graphen G einzufiigen. Falls G dreizusammenhéngend ist oder die
Einbettung fest steht, konnen wir das Problem mittels eines bekannten Algorithmus in linearer
Zeit 16sen. Dieser Algorithmus berechnet einen kiirzesten Pfad im leicht modifizierten dualen
Graphen beziiglich der gegebenen Einbettung. Dieser Pfad definiert die Kreuzungen, die zum
Einfiigen der neuen Kante nétig sind.

Bevor wir uns mit dem Problem beschéftigt haben, war kein polynomieller Algorithmus
bekannt, der das Problem optimal 16sen kann, wenn der Graph nicht dreizusammenhéngend ist.
Unser Resultat besagt dass es ausreicht, den bekannten Algorithmus auf bestimmte modifizierte
Teilgraphen des urspriinglichen Graphen anzuwenden, die durch den SPQR-Baum definiert
sind. Dadurch kénnen wir das Problem fiir beliebige planare Graphen in linearer Zeit 16sen.

Fiir das Knick-Minimierungsproblem ist die Situation &hnlich. Ist die Einbettung des Gra-
phen gegeben, so kann man eine knick-minimale Zeichnung in polynomieller Zeit berechnen,
indem man einen Fluss mit minimalen Kosten in einem speziellen Netzwerk berechnet. Au-
Berdem ist bekannt, dass das Problem NP-schwer ist, falls iiber alle Einbettungen optimiert
werden soll (Garg und Tamassia, 1995).

Wie schon zuvor erwihnt, existiert ein Branch & Bound Algorithmus, um die Anzahl der
Knicke in der Zeichnung eines planaren zweizusammenhingenden Graphen iiber alle Einbet-
tungen zu optimieren (9). Unsere Motivation war, Methoden der ganzzahligen linearen Opti-
mierung auf dieses Problem anwenden.

Der erste Schritt war, ein ganzzahliges lineares Programm zu entwickeln, dessen Lésungen
die Einbettungen des planaren zweizusammenhingenden Graphen sind. Wir haben dies er-
reicht, indem wir erst entsprechende ganzzahlige lineare Programme fiir die durch den SPQR-
Baum definierten Komponenten entwickelt haben. Dann haben wir die Struktur des SPQR-
Baums ausgenutzt, um aus diesen Bausteinen rekursiv ein ganzzahliges lineares Programm fiir
den Originalgraphen zu konstruieren. Dies ist die erste Beschreibung eines ganzzahligen linea-
ren Programmes, welche die Einbettungen eines planaren zweizusammenhingenden Graphen
beschreibt.

Im zweiten Schritt haben wir das erhaltene ganzzahlige lineare Programm mit einem li-
nearen Programm kombiniert, das fiir eine feste Einbettung die Menge aller orthogonalen
Représentationen des Graphen beschreibt. Das Resultat ist ein gemischt-ganzzahliges linea-
res Programm, bei dem eine Optimallésung eine orthogonale Repriisentation des Graphen mit
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der kleinstmdglichen Anzahl von Knicken iiber alle Einbettungen beschreibt. Dieses Programim

I6sen wir mit einem kommerziellen Loser fiir gemischt-ganzzahlige lineare Programme.

A.4 Das Einfiigen einer Kante in einen planaren Graphen

Eines der wichtigsten dsthetischen Kriterien auf dem Gebiet des Graphen Zeichnens ist die
Anzahl der Kreuzungen. Eine Zeichnung mit vielen Kreuzungen ist meist nicht gut lesbar.
Ungliicklicherweise ist es NP-vollstindig, fiir einen Graphen zu entscheiden, ob er mit weniger
als k Kreuzungen gezeichnet werden kann (Garey und Johnson, 1983). Selbst fiir relativ kleine
Graphen (z.B. fiir Graphen mit 20 Knoten), ist kein Algorithmus mit vertretbarer Laufzeit
bekannt, um die minimale Anzahl von Kreuzungen zu bestimmen, mit der man den Graphen
zeichnen kann.

Aus diesem Grund benutzt man Heuristiken um Zeichnungen von nicht-planaren Graphen
mit wenigen Kreuzungen zu berechnen. Eine der besten Methoden, die man hierfiir verwendet,
ist die Planarisierungs Methode. Diese arbeitet in zwei Schritten: Zuerst wird eine moglichst
kleine Anzahl von Kanten geléscht, um den Graphen planar zu machen (zeichenbar ohne Kreu-
zungen). Dann werden die geloschten Kanten einzeln in eine Einbettung des Graphen eingefiigt
und entstehende Kreuzungen durch kiinstliche Knoten ersetzt.

Beim Wiedereinfiigen der Kanten wird jeweils eine der Kanten in den planaren Graphen
eingefiigt, so dass sich die Kanten des planaren Graphen nicht schneiden und die neue Kante
moglichst wenige Kreuzungen erzeugt. Nach dem Einfiigen der Kante, werden die Kreuzungen
durch kiinstliche Knoten ersetzt, damit man wieder einen planaren Graphen hat, in den man
die néichste Kante einfiigen kann. Ein Beispiel fiir diesen Schritt ist in Abbildung A.5 zu sehen.
Nachdem alle Kanten eingefiigt sind, werden in der fertigen Zeichnung die kiinstlichen Knoten
wieder durch Kreuzungen ersetzt.

Abbildung A.5: Kiinstliche Knoten (hier als graue Kreise gezeichnet) wurden in den Graphen
eingefiigt, um die Kreuzungen zu beseitigen, die beim Einfiigen der neuen Kante entstanden
sind (die neue Kante verbindet die als graue Quadrate gezeichnete Knoten).

Bevor wir uns mit dem Problem beschiéiftigt haben, wurde das Einfiigen der Kanten wie folgt
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durchgefiihrt: Man wéhlt eine beliebige Einbettung des planaren Graphen und berechnet einen
kiirzesten Pfad in dem dualen Graphen, der durch die Einbettung definiert ist. Die erhaltene
Losung garantiert, dass die Anzahl der entstandenen Kreuzungen fiir die gewédhlte Einbettung
minimal ist. Allerdings kann es fiir andere Einbettungen bessere Lésungen geben.

Unser neuer Ansatz besteht aus zwei Algorithmen. Der erste Algorithmus wird benutzt,
wenn der Problemgraph zweizusammenhéingend ist. Der zweite Algorithmus kommt zur An-
wendung, wenn der Graph zusammenhéngend, aber nicht zweizusammenhéngend ist. Der Algo-
rithmus fiir zusammenhéngende Graphen benutzt den Algorithmus fiir zweizusammenhéngende
Graphen. Ist der Problemgraph nicht zusammenhéngend und die zu verbindenden Knoten be-
finden sich in unterschiedlichen Zusammenhangskomponenten, so kann man sehr einfach eine
Einbettung des Graphen finden, in die man die neue Kante ohne Kreuzungen einfiigen kann.
Ansonsten kann man den Algorithmus fiir zusammenhingende Graphen auf die Zusammen-
hangskomponente anwenden, in der sich beide Knoten befinden.

Unsere Algorithmen berechnen genau betrachtet keine Einbettungen des Eingabegraphen
sondern eine Liste von Kanten, die die einzufiigende Kante kreuzen muss. Wir nennen die
Liste dieser Kante einen Finfiigepfad fiir die neue Kante. Um die entsprechende Einbettung
zu berechnen, ist ein weiterer Schritt nétig, der aber in linearer Zeit ausgefithrt werden kann:
Wir fiigen kiinstliche Knoten ein, die jede Kante im Einfiigepfad in zwei Kanten aufteilen und
verbinden die Knoten durch neue Kanten in der durch den Einfiigepfad gegebene Reihenfolge.
Dann verbinden wir den kiinstlichen Knoten auf der ersten Kante des Einfiigepfades mit dem
ersten Knoten der einzufiigenden Kante und den kiinstlichen Knoten auf der letzten Kante
des Einfiigepfades mit dem zweiten Knoten der einzufiigenden Kante. Das Resultat ist ein
Pfad aus neuen Kanten, der beim ersten Knoten der einzufiigenden Kante beginnt und beim
zweiten Knoten der Kante endet (dies ist auch in Abbildung A.5 erkennbar). Dann rufen
wir einen Algorithmus auf, der in linearer Zeit fiir einen planaren Graphen eine Einbettung
berechnet. Wenn wir aus der so erhaltenen Einbettung die kiinstlichen Knoten und Kanten
16schen, erhalten wir eine Einbettung des urspriinglichen Graphen.

Der Algorithmus fiir zusammenhéngende Graphen konstruiert erst den Block Baum des
Eingabegraphen bei dem die Menge der Knoten aus der Knotenmenge des urspriinglichen Gra-
phen und den zweizusammenhingenden Komponenten (Blocken) des Graphen besteht. Wir
benutzen diese Datenstruktur, um diejenigen Blocke zu identifizieren, deren Einbettung einen
Einfluss auf die Anzahl der entstehenden Kreuzungen beim FEinfiigen der neuen Kante ha-
ben kann. In jeder dieser Komponenten identifizieren wir ein Paar von Knoten, welches die
beiden Knoten der einzufiigenden Kante reprisentiert. Dann rufen wir den Algorithmus fiir
zweizusammenhingende Graphen fiir jede dieser Komponenten auf, als wollten wir die beiden
Représentanten verbinden. Im letzten Schritt miissen wir nur noch die so erhaltenen Listen
von Kanten aneinander hingen, um einen Einfiigepfad fiir die neue Kante zu erhalten.

Der Algorithmus fiir zweizusammenhingende Graphen arbeitet dhnlich wie der Algorith-
mus fiir zusammenhingende Graphen. Zuerst berechnen wir den SPQR-Baum des Graphen.
Jeder Knoten in diesem Baum ist mit einem speziellen Graphen assoziiert, der Skelett des
Knoten genannt wird. Die Einbettung des Skelettes bestimmt einen Teil der Einbettung des
Originalgraphen. Durch Inspektion des SPQR-Baums kénnen wir diejenigen Knoten des Bau-
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mes bestimmen, bei denen die Einbettung des Skelettes einen Einfluss auf die Anzahl der
entstehenden Kreuzungen beim Einfiigen der neuen Kante hat. Wir sagen, die entsprechenden
Knoten liegen auf dem kritischen Pfad fiir das Einfiigen der Kante.

Es stellt sich heraus, dass nur einer der vier Knotentypen im SPQR-Baum Einfluss auf die
Anzahl der Kreuzungen beim Einfiigen einer neuen Kante hat. Deshalb brauchen wir uns nur
mit den Knoten dieses Typs auf dem kritischen Pfad zu beschéftigen. Fiir jeden dieser Knoten
berechnen wir nun eine Liste von Kanten, die beim Einfiigen der neuen Kante gekreuzt werden
miissen. Dies geschieht folgendermaflen: Erst ersetzen wir bestimmte Kanten des Skelettes des
betrachteten Knoten durch Teilgraphen des Originalgraphen. Dann berechnen wir eine belie-
bige Einbettung des resultierenden Graphen. Da nun die Einbettung dieses Graphen feststeht,
konnen wir den dualen Graphen berechnen. Indem wir einen kiirzesten Pfad in dem dualen
Graphen berechnen, erhalten wir die gesuchte Liste von Kanten. Haben wir diese Schritte fiir
jeden der Knoten auf dem kritischen Pfad durchgefiihrt, so héingen wir einfach die erhaltenen
Kantenlisten hintereinander, um einen Einfiigepfad fiir die Kante zu erhalten, die in den Ori-
ginalgraph eingefiigt werden soll. Diese Einfiigepfad gibt eine minimale Liste von Kanten an,
die man beim Einfiigen der neuen Kante kreuzen muss.

Ein wichtiges Element im Beweis der Korrektheit dieses Ansatzes ist, dass die Anzahl der
Kreuzungen, die beim Einfiigen einer Kante in einen planaren Graphen entstehen, nur von
den Teilen des Graphen abhingen, die Unterteilungen eines dreizusammenhéngenden Graphen
sind. Man erhélt eine Unterteilung eines Graphen, indem man Kanten durch Einfiigen von
neuen Knoten aufspaltet. Enthélt ein Graph keine Unterteilung eines dreizusammenhingenden
Graphen, so kénnen wir jede beliebige Kante ohne Kreuzungen einfiigen.

Eine weitere Eigenschaft von zweizusammenhingenden Graphen, die wir in unserem Algo-
rithmus ausnutzen, ist die folgende: Enthélt ein Teilgraph des Problemgraphen, der nur mittels
zweier Knoten mit dem Rest des Graphen verbunden ist, keinen der beiden Knoten, die zu der
neuen Kante gehoren, so spielt die Einbettung dieses Teilgraphen keine Rolle fiir die Anzahl
der Kreuzungen, die beim Einfiigen der Kante entstehen. Die Argumentation ist die folgende:
Gibt es einen optimalen Einfiigepfad fiir die neue Kante, bei dem keine Kante des betrachteten
Teilgraphen gekreuzt wird, so spielt die Einbettung des Teilgraphen offensichtlich keine Rolle
fiir die Anzahl der Kreuzungen in einer Optimallsung. Andernfalls kreuzt die neue Kante in
einer optimalen Losung eine gewisse Anzahl von Kanten in dem Teilgraphen, um ihn zu durch-
queren. Wir zeigen mittels vollstdndiger Induktion, dass die Anzahl der Kreuzungen, die notig
ist, um einen Teilgraphen zu durchqueren, unabhéingig von dessen Einbettung ist.

Indem wir die beiden eben erwidhnten Fakten benutzen, kénnen wir zeigen, dass der von
unserem Algorithmus berechnete Einfiigepfad fiir die neue Kante, die kleinste méogliche Linge
aller Einfiigepfade hat. Es folgt, dass es keine bessere Moglichkeit geben kann, die neue Kante
einzufiigen, als alle die Kanten zu kreuzen, die von unserem Algorithmus als Ergebnis berechnet
werden. Dies ist auch unter Beriicksichtigung aller méglichen Einbettungen des Graphen wahr.

Die Laufzeit unsere Algorithmus ist linear in der Gréfie des Eingabegraphen. Auch die bisher
verwendete nicht optimale Methode zum Einfiigen einer Kante in einen planaren Graphen hat
lineare Laufzeit. Der erste Grund, warum unser Algorithmus in linearer Zeit 14uft, ist dass die
Graphen, fiir die wir kiirzeste Wege im dualen Graphen berechnen, disjunkt sind. Der zweite
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Grund ist, dass die Vereinigung all dieser Graphen nur um einen Konstanten Faktor grofier
sein kann als der Originalgraph.

Wir wollten nun wissen, welche Vorteile es bringt, unseren neuen Algorithmus im Rahmen
der Planarisierungsmethode zu benutzen, im Vergleich mit dem bisher verwendeten Verfahren.
Obwohl unser Algorithmus eine einzige Kante optimal in einen planaren Graphen einfiigt, ist
es keinesfalls klar, dass dies beim Einfiigen mehrerer Kanten hintereinander von groflem Vorteil
ist. Wie wir im Kapitel 5 zeigen, ist das optimale Einfiigen von einzelnen Kanten keinesfalls
immer ein optimaler Weg um mehrere Kanten einzufiigen.

Glicklicherweise haben unsere Experimente auf einer Menge von Benchmark-Graphen ge-
zeigt, dass die Verwendung unseres neuen Algorithmus im Rahmen der Planarisierungsmethode
dem bisherigen Verfahren deutlich iiberlegen ist. Durchschnittlich werden durch Verwendung
unseres Algorithmus 14% weniger Kreuzungen produziert als bei der Verwendung des bisherigen
Verfahrens, bei dem die neue Kante jeweils in eine beliebige Einbettung des Graphen eingefiigt
wird. Es gibt einige wenige Félle, in denen die alte Methode weniger Kreuzungen produziert als
unsere neue Methode. Aber diese Fille sind selten und der Unterschied in der Kreuzungszahl
gering. Da die asymptotische Laufzeit unserer neuen Methode die gleiche ist wie bei der alten
Methode, halten wir die Verwendung unseres Algorithmus in der Planarisierungsmethode fiir
sinnvoll.

Unsere neue Methode kann nicht dazu verwendet werden, die minimale Kreuzungszahl
eines Graphen zu bestimmen, selbst wenn er nach dem Loschen einer einzigen Kante planar
wird. Graham Farr [2000], hat ein Beispiel gefunden, bei dem die Planarisierungsmethode mit
unserem neuen Algorithmus eine Losung berechnen kann, bei der die Kreuzungsanzahl um
einen beliebig grofen Faktor hoher ist als in einer optimalen Losung.

Die Ursache hierfiir ist, dass die von unserem Algorithmus berechnete Losung die minimale
Anzahl von Kreuzungen nur unter all den Lésungen besitzt, in der der planare Graph, in den
die Kante eingefiigt wird, kreuzungsfrei gezeichnet wird. Wenn sich nun in einer optimalen
Losung Kanten dieses planaren Graphen schneiden, kann unser Algorithmus sie nicht finden.

A.5 Knickminimierung in orthogonalen Zeichnungen

In einer orthogonalen Zeichnung eines Graphen werden die Kanten als Folgen von horizontalen
und vertikalen Geradensegmenten gezeichnet. Ein Beispiel ist die Zeichnung in Abbildung 1.2.
Diese Art von Zeichnungen wird zum Beispiel beim Entwurf von Datenbanken mit Hilfe des
Entity Relationschip Models bevorzugt. Der Punkt, wo ein vertikales Segment einer Kante sich
mit einem horizontalen Segment der gleichen Kante schneidet, wird Knick genannt.

In orthogonalen Zeichnungen mit einer grofen Anzahl von Knicken fillt es dem Betrachter
schwer, dem Verlauf von Kanten zu folgen. Deshalb ist es wichtig, orthogonale Zeichnungen mit
moglichst wenigen Knicken zu erzeugen. Abbildung A.3 auf Seite 151 zeigt zwei Zeichnungen
des gleichen Graphen mit unterschiedlich vielen Knicken.

Es ist schon linger bekannt, dass man fiir eine fixe Einbettung eines Graphen in polynomiel-
ler Zeit eine Zeichnung mit der minimalen Anzahl von Knicken berechnen kann. Dies geschieht,
indem man das Problem in ein Fluss-Netzwerk umwandelt, indem man dann einen Fluss mit
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minimalen Kosten bestimmt. Der erste Algorithmus dieser Art wurde von Tamassia entwickelt
(47). Ist die Einbettung eines Graphen nicht festgelegt, so ist es ein NP-vollstindiges Problem
fiir ein gegebenes k zu entscheiden, ob man den Graphen mit h6chstens & Knicken zeichnen
kann (Garg und Tamassia, 1995).

Es gibt einen Branch & Bound Algorithmus, um einen planaren zweizusammenhéngenden
Graphen mit der minimalen Anzahl von Knicken zu zeichnen (9). In dieser Arbeit 16sen wir das
selbe Problem mit Hilfe von Methoden der ganzzahligen linearen Programmierung. Um dies
zu erreichen, haben wir erst ein ganzzahliges lineares Programm (GLP) entwickelt, das wir fiir
jeden zweizusammenhéingenden planaren Graphen aufbauen kénnen und dessen Lisungen den
Einbettungen des Graphen entsprechen.

Im zweiten Schritt haben wir dieses GLP mit einem linearen Programm (LP) kombiniert,
das fiir eine feste Einbettung alle orthogonalen Représentationen eines planaren Graphen dar-
stellt. Eine orthogonale Reprisentation legt die Knicke einer orthogonalen Zeichnung fest aber
nicht die Linge der einzelnen Geradensegmente in der Zeichnung. Die Kombination aus dem
GLP und dem LP ist ein gemischt ganzzahliges lineares Programm, dessen Losungen fiir einen
planaren zweizusammenhingenden Graphen die Menge aller orthogonalen Représentationen
darstellt. Mit einem Loser fiir gemischt ganzzahlige lineare Programme kénnen wir eine knick-
minimale orthogonale Reprisentation fiir einen Graphen bestimmen.

Wieder nutzen wir die Tatsache aus, dass ein SPQR-Baum alle Einbettungen eines Graphen
repriasentieren kann. Wie schon vorher erwédhnt, ist jeder Knoten in dem Baum mit einem
speziellen Graphen, seinem Skelett, assoziiert. Es ist nicht schwierig, fiir jedes dieser Skelette
ein GLP zu konstruieren, welches die Einbettungen des Skelettes beschreibt. Der Grund ist die
einfache Struktur dieser Skelette. Die bindren Variablen dieser GLPs entsprechen gerichteten
Kreisen in den Skeletten.

Wir haben einen Weg gefunden, die GLPs fiir die Skelette miteinander zu kombinieren, um
die Einbettungen von gréfleren Teilgraphen des urspriinglichen Graphen zu beschreiben. Dies
konnen wir rekursiv weiterfithren bis wir ein GLP konstruiert haben, das die Einbettungen des
urspriinglichen Graphen beschreibt.

Wir kombinieren GLPs fiir Teile des Graphen, indem wir die Ungleichungen der Program-
me liften. Mit liften meinen wir das berechnen von Koeffizienten fiir Variablen eines hoher-
dimensionalen Problems fiir eine Ungleichung, die Bestandteil eines nieder-dimensionalen Pro-
blems ist. Ergebnis ist eine Ungleichung, die fiir das hoher-dimensionale System giiltig ist.
In unserem Ansatz miissen wir beim Kombinieren von GLPS noch zusitzlich Ungleichungen
einfithren, die als Verbindung zwischen den Teil-GLPs dienen.

Es stellte sich heraus, dass die Menge der Einbettungen fiir das Skelett einer bestimmten
Knotenart im SPQR-Baum sich als die Menge der Hamilton Touren in einem vollstéindigen
ungerichteten Graphen darstellen 148t. Eine Hamilton Tour ist ein Kreis in einem Graphen,
der jeden Knoten genau ein Mal besucht. Dadurch haben wir eine Verbindung zwischen dem
Asymmetrischen Handlungsreisenden Problem (AHP) und unserem Einbettungsproblem her-
gestellt. Beim AHP ist ein gerichteter vollstindiger Graph mit Kantengewichten gegeben und
es gilt, eine Hamilton Tour mit moéglichst kleinem Gesamtgewicht zu finden.

In unserem Ansatz verwenden wir die gleiche GLP-Beschreibung fiir die entsprechenden
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Skelette im SPQR-Baum, die auch zur Losung des AHP verwendet wird. Die Anzahl der Unglei-
chungen in dieser Formulierung ist aber exponentiell in der Gréfle des Skelettes. Deshalb haben
wir einen Mechanismus entwickelt, der auch nach der rekursiven Konstruktion des Einbettungs-
GLP effizient testen kann, ob ein bestimmter Vektor eine dieser Ungleichungen, die aus der
AHP-Formulierung stammen, verletzt. Dadurch miissen wir nicht alle AHP-Ungleichungen in
das GLP einfiigen. Wir testen fiir jede gefundene Losung, ob sie eine Ungleichung verletzt. Ist
das der Fall, so fiigen wir die betroffene Ungleichung in das GLP ein und suchen eine neue
Losung. Unsere Experimente haben gezeigt, dass dies sehr selten nétig ist.

Um nun unser urspriingliches Knickminimierungsproblem zu 16sen, kombinieren wir das
GLP, das die Einbettungen des Graphen beschreibt mit einem linearen Programm (LP), das
die orthogonalen Reprisentationen des Graphen fiir eine feste Einbettung beschreibt. Das LP
ist abgeleitet von der Formulierung des Knickminimierungsproblems fiir feste Einbettungen als
Netzwerk-Flul Problem. Das entsprechende Netzwerk wurde schon von (9) verwendet.

Die Kombination des GLP mit dem LP erzeugt ein gemischt ganzzahliges lineare Programm,
welches fiir einen planaren zweizusammenhingenden Graphen die Menge seiner orthogonalen
Représentationen beschreibt. Eine Optimallésung des Programmes entspricht einer orthogona-
len Reprisentation mit der minimalen Anzahl von Knicken. Wir 16sen das Programm mit Hilfe
von CPLEX, einem kommerziellen Loser fiir gemischt ganzzahlige lineare Programme.

Unsere Experimente zeigen, dass unser neuer Ansatz dem schon bekannten Branch & Bound
Ansatz von (9) fiir groBe Graphen mit vielen Einbettungen iiberlegen ist.

A.6 TUbersicht der Arbeit

In Kapitel 2 fithren wir die Datenstruktur SPQR-Baum ein. Zuerst geben wir in Abschnitt 2.1
einen Uberblick iiber die Einsatzgebiete des Baums und dessen Merkmale. Dann fithren wir
einige Konzepte ein und prisentieren formale Definitionen, die fiir die Definition des SPQR-
Baums nétig sind (Abschnitt 2.2). Meist geht es dabei um den Zusammenhang von Graphen.
Die eigentliche Definition des SPQR-Baum in Abschnitt 2.3 unterscheidet sich leicht von den
aus der Literatur bekannten Definitionen. Um eine Anomalie bei der Definition der Wurzel zu
vermeiden, fithren wir erst eine Datenstruktur namens Proto-SPQR-Baum ein und definieren
den SPQR-Baum als eine Erweiterung des Proto-SPQR-Baumes.

Nachdem wir ein Beispiel fiir die Konstruktion eines SPQR-Baums prisentiert haben, nen-
nen wir in Abschnitt 2.4 einige Eigenschaften von SPQR-Bédumen, die in dieser Arbeit wichtig
sind. Das Thema von Abschnitt 2.5 ist der Zusammenhang zwischen den Einbettungen des ur-
spriinglichen Graphen und den Einbettungen der Skelette der Knoten des SPQR-Baums. Dies
ist die Basis fiir die Algorithmen, die in dieser Arbeit vorgestellt werden.

Kapitel 3 beschiiftigt sich mit dem Problem des Einfiigens einer Kante in einen planaren
Graphen mit der geringstmoglichen Anzahl von Kreuzungen. In Abschnitt 3.1 geben wir eine
Einfiihrung in das Problem. Wir stellen die Planarisierungsmethode vor, in der das Problem
auftritt und prisentieren einige Resultate beziiglich verwandter Probleme.

In Abschnitt 3.2 fithren wir einige notwendig Begriffe ein. Wir definieren den Begriff Finfigepfad,
eine Liste von Kanten die angibt, welche Kanten beim Einfiigen einer neuen Kante gekreuzt
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werden miissen. Auflerdem fiihren wir den Begriff der Durchquerungskosten ein. Diese sind fiir
Teilgraphen definiert, die mit dem Rest des Graphen nur mittels zweier Knoten verbunden
sind. Man kann diese Kosten als die Anzahl der Kanten interpretieren, die man kreuzen muf,
um von einer Seite des Teilgraphen zu der anderen zu gelangen.

Der Algorithmus zum Einfiigen einer Kante in einen planaren zweizusammenhingenden
Graphen mit der kleinstmoglichen Anzahl von Kreuzungen ist das Thema von Abschnitt 3.3.
Dort beweisen wir auch seine Korrektheit und zeigen, dass die Laufzeit linear in der Gréfle des
Graphen ist.

In Abschnitt 3.4 beschreiben wir den Algorithmus fiir zusammenhéngende Graphen. Erst
fithren wir die Datenstruktur Block-Baum ein und stellen dann den Algorithmus vor. Dieser
bestimmt erst, welche Blécke im Block-Baum einen Einflul auf die Anzahl der Kreuzungen beim
Einfiigen der neuen Kante haben und ruft dann den Algorithmus fiir zweizusammenhéngende
Graphen fiir die entsprechenden Blocke auf. Wieder beweisen wir, dass der Algorithmus korrekt
ist und lineare Laufzeit hat. In diesem Abschnitt geben wir auch die sehr einfache Erweiterung
des Algorithmus auf nicht-zusammenhéingende Graphen an.

Die experimentellen Resultate finden sich in Abschnitt 3.5. Wir vergleichen die Resultate
der standard Planarisierungsmethode mit der von uns modifizierten Methode, die den neuen
Algorithmus benutzt. Die Resultate zeigen, dass unser Algorithmus die Anzahl der Kreuzungen
deutlich reduziert im Vergleich mit der standard Methode.

In Abschnitt 3.6 zeigen wir den Unterschied zwischen dem allgemeinen Kreuzungsminimie-
rungsproblem und dem Einfiigen einer Kante in einen planaren Graphen auf. Wir prisentieren
ein Beispiel, bei dem der Unterschied der Kreuzungsanzahl in optimalen Lésungen fiir beide
Probleme beliebig grof ist.

Das Thema von Kapitel 4 ist die Minimierung der Anzahl der Knicke in der orthogona-
len Zeichnung eines planaren Graphen. Abschnitt 4.1 gibt eine Einfithrung in das Problem
und einen Uberblick iiber das Kapitel. Das ganzzahlige lineare Programm (GLP), das alle
Einbettungen eines planaren zweizusammenhingenden Graphen beschreibt ist das Thema von
Abschnitt 4.2. Erst erkliren wir informell, wie das GLP aufgebaut wird. Dann definieren wir
die Variablen des Programmes.

Als nichstes definieren wir das GLP fiir den Fall, dass der SPQR-Baum eines Graphen
nur einen inneren Knoten hat. Wir unterscheiden hierbei drei Fille, je nach dem Typ des
einzigen inneren Knotens. Dabei gehen wir auf die speziellen Probleme ein, die auftreten,
wenn der einzige innere Knoten den Typ P-Knoten hat. In diesem Fall kann man die Menge
der Einbettungen seines Skelettes als die Menge der Hamilton-Touren in einem vollstdndigen
gerichteten Graphen interpretieren. Deshalb benutzen wir die gleiche GLP-Formulierung, die
auch zur Losung des Handlungsreisenden-Problems verwendet wird.

Danach zeigen wir, wie man das GLP fiir Graphen berechnen kann, deren SPQR-Baum
mehr als einen inneren Knoten besitzt. Dies geschieht indem man den Graphen in kleinere
Teilgraphen zerlegt und dann die GLPs fiir diese Teilgraphen rekursiv berechnet. Dann werden
die GLPs der Teilgraphen zu einem GLP fiir den gesamten Graphen kombiniert. Das Aufspalten
in Teilgraphen wird durch Aufspalten des SPQR-Baums an einem Knoten ausgefiihrt.

Wir zeigen die Korrektheit unseres rekursiv definierten GLPs mittels struktureller Induk-
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tion iiber dem SPQR-Baum. Dadurch beweisen wir, dass alle Losungen des GLP wirklich
Einbettungen des urspriinglichen Graphen darstellen und dass alle Einbettungen des Graphen
Losungen des GLPs entsprechen.

Abschnitt 4.3 beschéftigt sich mit dem linearen Programm, das fiir eine feste Einbettung
eines Graphen seine orthogonalen Reprisentationen darstellt. Nachdem wir eine Ubersicht iiber
den Abschnitt gegeben haben, definieren wir die Datenstruktur orthogonale Reprisentation
als eine Einbettung des Graphen zusammen mit zwei Funktionen, die die Winkel zwischen
adjazenten Kanten und die Knicke auf jeder Kante definieren. Auch geben wir ein Beispiel fiir
eine orthogonale Représentation.

Orthogonale Zeichnungen realisieren orthogonale Reprisentationen indem sie den Gera-
densegmenten der Kanten Liangen zuweisen. Wir stellen verschiedene Arten von orthogonalen
Graphenzeichnungen vor. Sie unterscheiden sich in der Art, wie Knoten mit Grad gréBer als vier
dargestellt werden. Wir fithren auch den podevsnef Stil zum orthogonalen Zeichnen ein, den wir
in unserem Algorithmus benutzen. Dann zeigen wir, wie eine orthogonale Représentation als
Fluss in einem Netzwerk formuliert werden kann. Das resultierende Netzwerk-Fluss-Problem
formulieren wir dann als lineares Programm.

In Abschnitt 4.4 kombinieren wir das lineare Programm, welches die orthogonalen Re-
préasentationen eines Graphen fiir eine feste Einbettung darstellt mit dem ganzzahligen linearen
Programm (GLP), das fiir einen Graphen die Menge seiner Einbettungen darstellt. Das Resultat
ist ein gemischt ganzzahliges lineares Programm, das fiir einen Graphen ohne feste Einbettung
die Menge seiner orthogonalen Représentationen darstellt.

Den Algorithmus, den wir benutzen, um orthogonale Reprisentationen mit der minimalen
Knickanzahl zu berechnen, stellen wir in Abschnitt 4.5 vor. Nach dem wir einen Uberblick iiber
den Algorithmus gegeben haben, prisentieren wir einige Modifikationen, die die Berechnung
einer optimalen Losung beschleunigen. Auch entwickeln wir ein Verfahren, das einen Einga-
begraphen in einen kleineren Graphen umwandelt und die Losung, die unser Algorithmus fiir
den kleineren Graphen gefunden hat, wieder in eine Losung fiir den urspriinglichen Graphen
iibersetzt.

In Abschnitt 4.6 stellen wir unsere experimentellen Resultate vor. Wir vergleichen zwei
verschiedene Versionen unseres Algorithmus mit dem Branch & Bound Algorithmus von (9).
Es zeigt sich, dass unser Verfahren fiir grofle Graphen mit vielen Einbettungen dem Branch &
Bound Algorithmus iiberlegen ist. Im selben Abschnitt prisentieren wir auch einige Zeichnun-
gen, die mit Hilfe unseres Algorithmus berechnet wurden.

In Kapitel 5 geben wir einen kurzen Uberblick iiber die Resultate der Arbeit. Auch stellen
wir mogliche Ansatzpunkte fiir zukiinftige Forschung vor.
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