Cancellative Abelian Monoids in Refutational
Theorem Proving

Uwe Waldmann

Dissertation
zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften (Dr.-Ing.)

der Technischen Fakultat
der Universitat des Saarlandes

Saarbriicken
1997

Dekan: Prof. Dr. Alexander Koch
Gutachter: Prof. Dr. Harald Ganzinger

Dr. Michaél Rusinowitch
Tag des Kolloquiums: 28. Juli 1997

Meinen Eltern,
fiir alles

Contents

Abstract oL vii
Zusammenfassung oL oL oL oL vii
Extended Abstract o ix
Ausfithrliche Zusammenfassungo xiii
Acknowledgmentso xvii
1 Introduction 1
2 Superposition-Based Theorem Proving 5
2.1 Logical Foundations 5
2.2 Rewrite Systems Lo 11
2.3 Saturation and Redundancy 13
2.4 Resolution and Superposition 16
2.5 Theory Reasoning 23
3 Cancellative Superposition 31
3.1 Preliminaries Lo o e 31
3.2 Ideasand Concepts 36
3.3 The Inference System 45
4 Refutational Completeness 51
4.1 TIdeasand Concepts oo i ittt 51
42 Redundancy 59
4.3 Lifting 64
4.4 Rewriting on Equations 67
4.5 Model Construction 69
4.6 Confluence o 72
4.7 Completeness e e 89

5 Refinements and Applications

5.1 Simplification Techniques

5.2 Cancellative Superposition as a Decision Procedure
5.3 Eliminating Unshielded Variables
5.4 The Standard Case: T ={1}
5.5 The Torsion-Free Case: ¥ =N~0
5.6 Divisible Torsion-Free Abelian Groups

5.7 Ordered Abelian Monoids

6 Conclusions

A Cancellative Monoids

Bibliography
List of Symbols
Index

vi

95

95
102
107
111
118
124
135

137

139

Abstract

We present a constraint superposition calculus in which the axioms of cancella-
tive abelian monoids and, optionally, further axioms (e.g., torsion-freeness)
are integrated. Cancellative abelian monoids comprise abelian groups, but
also such ubiquitous structures as the natural numbers or multisets. Our cal-
culus requires neither extended clauses nor explicit inferences with the theory
axioms. The number of variable overlaps is significantly reduced by strong
ordering restrictions and powerful variable elimination techniques; in divisible
torsion-free abelian groups, variable overlaps can even be avoided completely.
Thanks to the equivalence of torsion-free cancellative and totally ordered
abelian monoids, our calculus allows us to solve equational problems in to-
tally ordered abelian monoids without requiring a detour via ordering literals.

Zusammenfassung

Wir stellen einen Constraint-Superpositionskalkiil vor, in den die Axiome kiirz-
barer abelscher Monoide und weitere optionale Axiome (z. B. Torsionsfreiheit)
eingebaut sind. Kiirzbare abelsche Monoide umfassen abelsche Gruppen, aber
auch so allgegenwirtige Strukturen wie die natiirlichen Zahlen oder Multi-
sets. Unser Kalkiil erfordert weder erweiterte Klauseln noch explizite Inferen-
zen mit den Theorieaxiomen. Durch verschirfte Ordnungseinschrankungen und
leistungsfihige Variableneliminationstechniken erzielen wir eine deutliche Ein-
schrinkung von Uberlappungen mit Variablen; in dividierbaren torsionsfreien
abelschen Gruppen werden Variableniiberlappungen sogar génzlich iiberfliissig.
Dank der Aquivalenz torsionsfreier kiirzbarer und total geordneter abelscher
Monoide bietet unser Kalkiil die Mdglichkeit, Gleichungsprobleme in total ge-
ordneten abelschen Monoiden ohne Umweg iiber Ordnungsliterale zu 16sen.

vil

viii

Extended Abstract

In practical applications of theorem proving one is usually confronted with
uninterpreted function and predicate symbols that are specific for a particular
domain of application, as well as with standard algebraic structures or theories,
such as the natural numbers, or abelian groups, or orderings. As a naive
handling of axioms like commutativity or associativity leads to an explosion of
the search space, it is crucial to the performance of a prover that it incorporates
specialized techniques to work efficiently within standard algebraic theories.

Typical examples of such techniques can be found in the superposition [12]
and the AC-superposition calculus [9, 100]. The former may be considered
as the result of incorporating the equality axioms into the resolution calcu-
lus; the latter extends superposition further by integrating associativity and
commutativity, using AC-unification and extended clauses. In both cases, in-
ferences with the theory axioms and certain inferences involving variables can
be shown to be superfluous. Together with strengthened ordering restrictions
and redundancy criteria, this leads to a significant reduction of the search
space.

Although the AC-superposition calculus allows to avoid inferences with
the associativity and commutativity axioms, it is by no means efficient. The
extended clauses are responsible for a huge increase of the number of inferences,
and minimal complete set of AC-unifiers may have doubly exponential size.
Using constraints, the enumeration of unifiers can be avoided [69, 97]; it is still
necessary, though, to solve the unifiability problem, which is NP-complete [53].

A radical improvement can be observed when we switch over from the
abelian semigroup axioms AC (or the abelian monoid axioms ACU) to the
axioms of abelian groups. We get a first impression when we compare the
uniform word problem, which is EXPSPACE-complete for abelian semigroups
or monoids [29, 64], but polynomial for abelian groups [52]. The operational
difference between these theories in a rewrite or superposition-based calculus
becomes apparent when we consider the two unit clauses uq + - + up =~ s
and v1 + - -+ + v; & t. There is an AC-superposition inference (via extended

X

clauses) between these clauses whenever some u; is unifiable with some v;. In
the presence of the inverse axiom, the number of inferences is dramatically re-
duced: Only if the maximal u; is unifiable with the maximal v, a superposition
inference is required [63, 96].

The group axioms imply both the existence and the uniqueness of the
difference of any two elements. Operationally, the second property is much
more important than the first one. We can thus employ similar techniques for
cancellative abelian monoids, that is, for abelian monoids in which the cancel-
lation axiom z +y %z + z V y = z holds. Cancellative abelian monoids are in
some sense the most general algebraic structure allowing “abelian-group-like”
reasoning. They comprise not only abelian groups, but also such ubiquitous
structures as the natural numbers or multisets. We present a refined constraint
superposition calculus for sets of clauses including the axioms of cancellative
abelian monoids, that uses the cancellative superposition rule

D'Vnuttet C'"Vmut+s~s
D'vC'V(m—nu+s+t s+t

Our refutational completeness proof for this calculus is based on the model
construction technique of Bachmair and Ganzinger [12], using a novel kind of
rewriting relation on equations, that allows to use an equation mu + s ~ s’ as
a rewrite rule to transform mu + ¢ ~ ¢ into s’ +t = t' + s.

As in the abelian group case described above, inferences are restricted to
overlaps of maximal summands in maximal literals, and explicit inferences
with the theory axioms and extended clauses are superfluous. In particular,
superpositions with shielded variables are unnecessary. While inferences with
unshielded variables can not generally be avoided, the number of literals with
unshielded variables can be reduced using suitable simplification techniques.
Furthermore our calculus offers the possibility to integrate the torsion-freeness
axioms Yz % Yy V x ~ y for all » € N”? (or even generalized forms of
torsion-freeness, where ¢ ranges over some subset ¥ C N”?). Torsion-freeness
complicates certain cancellative superposition inferences; on the other hand,
it makes it possible to eliminate all unshielded variables occurring only posi-
tively. Since an abelian monoid is cancellative and torsion-free if and only if
it can be totally ordered, our calculus allows us to solve equational problems
in ordered abelian monoids or groups without having to derive intermediate
clauses containing ordering literals.

In divisible torsion-free abelian groups (e.g., the rational numbers or ra-
tional vector spaces), the abelian group axioms are extended by the torsion-
freeness axioms, the divisibility axioms Vz Jy: ky ~ x for all k € N0, and the
non-triviality axiom Jy: y % 0. In such structures unshielded variables can be
eliminated completely. The variable elimination algorithm is not necessarily

a simplification in the superposition calculus, though: some ground instances
of the transformed clause may be too large. It turns out, however, that all
the critical instances can be handled by case analysis. The resulting calculus
requires neither variable overlaps nor explicit inferences with the theory ax-
ioms. Furthermore, even AC unifications can be avoided, if clauses are fully
abstracted eagerly.

xi

xii

Ausfiihrliche Zusammenfassung

In praktischen Anwendungen wird ein Theorembeweiser iiblicherweise sowohl
mit uninterpretierten Funktions- und Priadikatsymbolen konfrontiert, die spe-
zifisch fiir ein bestimmtes Anwendungsgebiet sind, als auch mit algebraischen
Standardstrukturen und Theorien, wie etwa den natiirlichen Zahlen, abel-
schen Gruppen oder Ordnungen. Eine naive Behandlung von Axiomen wie dem
Assoziativ- oder Kommutativgesetz fithrt zu einer Explosion des Suchraumes.
Es ist daher entscheidend fiir die Leistungsfihigkeit eines Beweisers, daf} er
iiber spezielle Mittel verfiigt, um effizient in algebraischen Standardtheorien
zu arbeiten.

Typische Beispiele solcher Techniken findet man im Superpositions- und im
AC-Superpositionskalkiil [9, 12, 100]. Ersterer kann als Resolutionskalkiil mit
eingebauten Gleichheitsaxiomen betrachtet werden, letzterer erweitert den Su-
perpositionskalkiil um Assoziativitdt und Kommutativitdt mittels erweiterter
Regeln und AC-Unifikation. In beiden Fallen werden Inferenzen mit den Theo-
rieaxiomen und gewisse Inferenzen mit Variablen {iberfliissig. Zusammen mit
verstdrkten Ordnungseinschrénkungen und Redundanzkriterien bewirkt dies
eine signifikante Suchraumverkleinerung.

Obgleich der AC-Superpositionskalkiil Inferenzen mit dem Assoziativitéts-
und Kommutativitdtsaxiom unnotig macht, ist er doch keineswegs effizient. Die
erweiterten Klauseln sind fiir eine Vielzahl von Inferenzen verantwortlich; iiber-
dies kénnen minimale vollstdndige AC-Unifikatormengen doppelt exponentielle
Grofle besitzen. Durch Verwendung von Constraints ist es zwar moglich, das
Aufzihlen von Unifikatoren zu vermeiden [69, 97]; es bleibt aber erforderlich,
das Unifizierbarkeitsproblem zu lésen, welches NP-vollstandig ist [53].

Die Situation verbessert sich grundlegend, wenn wir von den Axiomen
abelscher Halbgruppen (AC) oder abelscher Monoide (ACU) zu den Axio-
men abelscher Gruppen iibergehen. Einen ersten Eindruck erhalten wir beim
Vergleich der uniformen Wortprobleme: Einem EXPSPACE-vollstdndigen uni-
formen Wortproblem fiir abelsche Halbgruppen oder Monoide [29, 64] steht ein
polynomielles fiir abelsche Gruppen gegeniiber [52]. Der operationale Unter-

xiii

schied zwischen diesen Theorien in einem auf Termersetzung oder Superpo-
sition basierenden Kalkiil wird am Beispiel der beiden Einheitsklauseln u; +
---+up = sund vy + --- + v; = t deutlich. Zwischen diesen kommt es zu einer
AC-Superpositionsinferenz (mittels erweiterter Klauseln), sobald irgendein u;
mit irgendeinem v; unifizierbar ist. Anders in Gegenwart des Inversenaxioms:
Nun ist eine Superposition nur noch erforderlich, wenn das maximale u; mit
dem maximalen v; unifizierbar ist [63, 96].

Aus den Gruppenaxiomen folgt sowohl die Existenz der Differenz von je
zwei Elementen, als auch ihre Eindeutigkeit. Operational ist die zweite dieser
beiden Eigenschaften ungleich wichtiger als die erste. Wir kénnen daher dhn-
liche Techniken auch fiir kiirzbare abelsche Monoide anwenden, d. h., fiir abel-
sche Monoide, in denen das Kiirzungsaxiom z +y % ¢ + z V y = z gilt. Kiirzba-
re abelsche Monoide sind in einem gewissen Sinn die allgemeinste algebraische
Struktur, in der man dhnlich wie in abelschen Gruppen rechnen kann. Sie um-
fassen nicht nur abelsche Gruppen, sondern auch so allgegenwirtige Strukturen
wie die natiirlichen Zahlen oder Multisets. Wir prisentieren in dieser Arbeit
eine Variante des Constraint-Superpositionskalkiils mit der Hauptinferenzregel

D'Vnu+txt C'Vmu+s~s
D'vC'V(m—nu+s+t =s +1t

Zum Beweis der Widerlegungsvollstdndigkeit dieses Kalkiils benutzen wir
die Modellkonstruktionstechnik von Bachmair und Ganzinger [12]. Dabei ver-
wenden wir eine neuartige Ersetzungsrelation auf Gleichungen, die es erlaubt,
mittels einer Regel mu + s &~ s’ die Gleichung mu +t~t' ins' +t~t'+ s zu
iiberfiihren.

Ebenso wie im oben beschriebenen Fall abelscher Gruppen erfordert un-
ser Kalkiil keine expliziten Inferenzen mit den Theorieklauseln oder erweiterte
Klauseln; Inferenzen sind auf Uberlappungen maximaler Summanden in ma-
ximalen Literalen beschrinkt. Insbesondere sind damit Superpositionen mit
geschiitzten Variablen unnétig. Auf Inferenzen mit ungeschiitzten Variablen
kann im allgemeinen nicht verzichtet werden, jedoch existieren Simplifikations-
techniken, um die Anzahl von Literalen mit ungeschiitzten Variablen zu ver-
mindern. Zusétzlich bietet unser Kalkiil die Moglichkeit, die Torsionsfreiheits-
axiome Yz % Yy V x ~ y fiir alle » € N”° (und auch verallgemeinerte
Formen der Torsionsfreiheit mit ¢» € ¥ C N0) zu integrieren. Durch die
Torsionsfreiheit werden zwar gewisse Superpositionsinferenzen komplizierter;
jedoch wird es nun moglich, ungeschiitzte Variablen, die nur positiv vorkom-
men, ginzlich zu eliminieren. Da ein abelsches Monoid genau dann kiirzbar
und torsionsfrei ist, wenn es total geordnet werden kann, ermoglicht es unser
Kalkiil, Gleichungsprobleme in geordneten abelschen Monoiden zu lésen, ohne
in Zwischenschritten Klauseln mit Ordnungsliteralen ableiten zu miissen.

xiv

Dividierbare torsionsfreie abelsche Gruppen (z.B. die rationalen Zahlen
oder rationale Vektorrdume) erweitern die Axiome abelscher Gruppen um die
Torsionsfreiheitsaxiome, die Dividierbarkeitsaxiome Va Jy: ky ~ z fiir alle
k € N> und das Nichttrivialititsaxiom Jy: y % 0. In diesen Strukturen ist es
moglich, ungeschiitzte Variablen vollstdndig zu eliminieren. Der Variableneli-
minationsalgorithmus ist allerdings nicht notwendigerweise eine Simplifikation
im Sinne des Superpositionskalkiils. Dies liegt daran, dafl gewisse Grundinstan-
zen der transformierten Klauseln moglicherweise die fiir eine Simplifikation
notwendigen Ordnungsbedingungen verletzen. Jedoch zeigt es sich, dafl alle
kritischen Instanzen durch Fallunterscheidung behandelt werden kénnen. Der
resultierende Kalkiil erfordert weder Variableniiberlappungen noch explizite
Inferenzen mit den Theorieaxiomen. Falls alle Eingabeklauseln frithzeitig voll
abstrahiert werden, ist es iiberdies moglich, auch auf AC-Unifikation zu ver-
zichten.

XV

xvi

Acknowledgments

I am grateful to my thesis advisor Harald Ganzinger, who has supported me
and my work for more than eleven years. The central idea underlying this thesis
is due to him. I want to thank my colleagues at the Max-Planck-Institut fir
Informatik for a great working atmosphere, for their support and friendship. In
particular I would like to thank Michaél Rusinowitch, who agreed to referee this
thesis, an anonymous CADE-13 referee for pointing out to me a generalization
of Thm. A.6, Leo Bachmair, Alexander Bockmayr, Ullrich Hustadt, Deepak
Kapur, David Plaisted, Georg Struth, Jirgen Stuber, and Sergei Vorobyov for
valuable discussions and literature pointers, and Jiirgen Stuber and especially
Georg Struth for proof reading parts of this thesis.

xvil

xviil

1 Introduction

Most applications of theorem proving make it necessary to deal with uninter-
preted function and predicate symbols that are specific for a particular domain
of application, as well as with standard algebraic structures or theories, such as
the natural numbers, or abelian groups, or orderings. Unfortunately, axioms
like associativity or commutativity are difficult for a general-purpose theo-
rem prover, as they allow a huge number of inferences and tend to generate
numerous equivalent formulae. A sophisticated treatment of the standard the-
ories is therefore crucial to the performance of the prover. For this purpose,
mathematical and meta-mathematical techniques have to be combined.

There have been some attempts to integrate (fragments of) first-order logic
into mathematical systems, for instance by Shostak [87], who has demonstrated
that decision procedures for universally-quantified Presburger arithmetic can
be extended to universally-quantified function symbols. A proposal to build
a theorem prover within a computer algebra system can be found in (Buch-
berger [25]). More often, however, the problem has been tackled from the other
side, by integrating mathematical knowledge into a general-purpose theorem
prover.

It is rarely possible to couple a decision procedure for a decidable theory to
a prover as a black box: The requirement of sufficient completeness (Bachmair,
Ganzinger, and Waldmann [17]) practically excludes uninterpreted function
symbols; and even in situations where sufficient completeness is not a too
restrictive requirement, insufficient communication between the general prover
and the external decision procedure makes the latter almost useless (Boyer and
Moore [21]). Consequently, the integration has to be achieved on the level of
the inference system and simplification techniques.

The superposition calculus (Bachmair and Ganzinger [12]), which can be
seen as the result of building-in the equality axioms into the resolution cal-
culus, illustrates the advantages of such an integration: Superposition makes
resolution inferences with the equality axioms unnecessary. Compared with
ordered resolution, the ordering restrictions and the redundancy criterion are

strengthened; besides, superposition inferences at or below variables can be
shown to be superfluous.

Similar techniques as for the equality axioms can be use for other theories.
Bachmair and Ganzinger [9] and Wertz [100] have integrated the associativity
and commutativity axioms into superposition using AC-unification and ex-
tended clauses, developed for the equational case by Peterson and Stickel [77].
In this way, inferences with the AC axioms become superfluous. New sources
of inefficiency emerge, however, as a minimal complete set of AC-unifiers may
have doubly exponential size. Using constraints, the enumeration of unifiers
can be avoided (Nieuwenhuis and Rubio [69], Vigneron [97]); it is still neces-
sary, though, to solve the unifiability problem, which is NP-complete (Kapur
and Narendran [53]).

The problem can be mitigated by integrating more axioms. If our theory
contains also the identity law, then AC-unification can be replaced by ACU-
unification (Boudet, Contejean, and Marché [19], Jouannaud and Marché [51]),
which is only simply exponential (Kapur and Narendran [54]), and even uni-
tary for the special case that sums of variables are to be unified. We observe
a much more radical improvement when switching over from the abelian semi-
group axioms AC or the abelian monoid axioms ACU to the axioms of abelian
groups. To see the operational difference between these theories in a rewrite
or superposition-based calculus, consider the two unit clauses u; + - - -+ up = s
and vy + - - - + v; = t. In AC-superposition, there is an inference between these
two clauses (via extended clauses), whenever some wu; is unifiable with some
vj. In the presence of the inverse axiom, extended rules become superfluous,
and the number of AC-unifications (and unifiers) is dramatically reduced, as a
superposition inference is required only if the maximal w; is unifiable with the
maximal v;. This technique can be found for instance in normalized rewrit-
ing (Marché [63]) and in Stuber’s extension of the superposition calculus for
abelian groups [96].

The group axioms yield both the existence and the uniqueness of the dif-
ference of any two elements. Operationally, the second property is much more
important than the first one. We can thus employ similar techniques for can-
cellative abelian monoids, that is, for abelian monoids in which the cancellation
axiom z +y # =+ 2z V y = z holds. Cancellative abelian monoids are in some
sense the most general algebraic structure where such an “abelian-group-like”
reasoning is possible. They comprise not only abelian groups, but also such
ubiquitous structures as the natural numbers or multisets. In this paper, we
present a refined constraint superposition calculus for sets of clauses including
the axioms of cancellative abelian monoids. As in the abelian group calculi
above, ordering restrictions can be strengthened and explicit inferences with
the theory axioms and extended clauses are superfluous. The restriction to

overlaps of maximal summands in maximal sides of maximal literals implies
in particular that there are no superpositions with shielded variables. While
inferences with unshielded variables can not generally be avoided, the number
of literals with unshielded variables can be reduced using suitable simplifica-
tion techniques. Furthermore our calculus offers the possibility to integrate the
torsion-freeness axioms Yz % Yy V z ~ y for all 1 € N”0 (or even generalized
forms of torsion-freeness, where 1) ranges over some subset ¥ C N~?). Torsion-
freeness complicates negative superposition inferences, but it also makes new
variable elimination techniques applicable. Since an abelian monoid is can-
cellative and torsion-free if and only if it can be totally ordered, our calculus
allows us to solve equational problems in ordered abelian monoids or groups
without having to derive intermediate clauses containing ordering literals.

In divisible torsion-free abelian groups (e.g., the rational numbers), the
abelian group axioms are extended by the torsion-freeness axioms, the di-
visibility axioms Ve Jy: ky ~ « for all ¥ € N”°, and the non-triviality axiom
Jy: y % 0. In such structures every clause can be transformed into an equivalent
clause without unshielded variables. The variable elimination algorithm is not
necessarily a simplification in the superposition calculus, though: some ground
instances of the transformed clause may be too large. It turns out, however,
that all the critical instances can be handled by case analysis. The resulting
calculus requires neither variable overlaps nor explicit inferences with the the-
ory axioms. Furthermore, even AC unifications can be avoided, if clauses are
fully abstracted eagerly.

The outline of this work is as follows: In Chapter 2, we provide the pre-
requisites of this work. We summarize the foundations of first-order logic,
equational rewriting, and saturation-based theorem proving, and fix the nec-
essary notations. Then we present the historical background of our calculus,
from resolution to theory superposition. In Chapter 3, we present and explain
the inference rules of the cancellative superposition calculus. The refutational
completeness proof for this calculus, which follows in Chapter 4, is based on the
model construction technique of Bachmair and Ganzinger [12], using a novel
kind of rewriting on equations. Chapter 5 starts with a presentation of sim-
plification techniques. An immediate consequence of some of these techniques
is that the cancellative superposition calculus can be used as a decision proce-
dure for various word problems. We discuss several refinements of the cancella-
tive superposition calculus and its application to theorem proving in ordered
abelian monoids. The conclusions follow in Chapter 6. In Appendix A, we pro-
vide some algebraic background information concerning cancellative (abelian)
semigroups and monoids and their relationship to abelian groups.

Some of the results of this paper have been previously published in (Gan-
zinger and Waldmann [42, 43]). Section 2.3 is a modified version of (Bachmair,

Ganzinger, and Waldmann [17], Sect. 3). The result of Section 5.6 has been
discovered shortly after submission of this thesis; Section 5.6 has been added
in the final version in agreement with the referees.

2 Superposition-Based Theorem Proving

2.1 Logical Foundations

We start this chapter by briefly summarizing the logical foundations of refu-
tational first-order theorem proving. For a more detailed introduction the
reader is referred to Fitting’s book [39]. Some differences between Fitting’s
presentation and ours are due to the fact that we develop our calculus not in
a single-sorted but in a many-sorted framework (without subsorts or overload-
ing) and that we restrict ourselves to clauses over the single predicate symbol
~, rather than dealing with arbitrary first-order formulae over arbitrary sets
of predicate symbols.

We assume a signature (S,) consisting of a set of sorts S and a set of
function symbols ¥, and a set of variables V. The sets ¥ and V are disjoint.
Every function symbol f € ¥ comes with a unique arity n € N and a unique
declaration f:S;...S, — Sp,! every variable £ € V comes with a unique
declaration z : Sy, where Sy,...,S, € S.

DEFINITION 2.1 The set of terms of sort S is the least set containing x when-
ever ¢ : S € V, and containing f(t1,... ,t,) whenever each t; is a term of sort
S;and f:51...5, > S €X.

Throughout this paper we assume that function symbols and variables are
declared appropriately such that all syntactic objects (terms, equations, etc.)
are well-formed.

The set of variables occurring in a syntactic object @ is denoted by var(Q).
If var(Q) is empty, then @ is called ground. We require that for every sort
there exist infinitely many variables and at least one ground term (i.e., that
every sort is inhabited).

!This includes constant declarations b : — Sp. The set of natural numbers (starting
with 0) is denoted by N, the set of positive integers (starting with 1) by N”°. A list of the
symbols used in this paper can be found on page 157.

DEFINITION 2.2 An equation e is an ordered pair (t,t') of terms, usually writ-
ten ast ~ t', where t and t' have the same sort.

The left-hand side and right-hand side of an equation are denoted by lhs(e)
and rhs(e).

To simplify the presentation we confine ourselves to equality as the only
predicate of our logical language. This does not restrict its expressivity:
A predicate P different from = can easily be coded using a function sym-
bol p, so that P(t1,...,t,) is to be taken as an abbreviation for the equation
p(t1,...,tn) = truep, where p(ti,...,t,) and true, have a new sort Sp.

DEFINITION 2.3 A literal is either an equation e (also called a positive literal)
or a negated equation — e (also called a negative literal). A clause is a finite
multiset of literals, usually written as a disjunction.

The symbol [—] e denotes either e or —e. Instead of ~¢ = t/, we sometimes
write t % t'. The submultiset of all negative literals of a clause C is abbreviated
by neg(C). We use the symbol | to denote the empty clause, i.e., the empty
multiset of literals.

To assign a semantics to a set of formulae we need the concept of a model.

DEFINITION 2.4 An interpretation 9 for the signature (S,X) is a mapping
that assigns to every sort S € S a non-empty set S™, to every function symbol
f:81...8, = Sy € ¥ a function f™ : ST x ... x ST — S and to the
equality predicate ~ a binary relation ~™ C | ses SM x 8™ We assume that
the sets S7' and S3" are disjoint for any S1,S2 € S, S1 # Ss. The union
Uses S™ is called the domain of the interpretation.

DEFINITION 2.5 An 9M-assignment o is a mapping from the set of variables V
to Uges S™ such that a(z) € S™ for every z : S.

Every assignment o can be homomorphically extended to a mapping o*
from terms to (Jgog S™° by defining recursively o*(z) = o(z) if # € V and
(f(te, .-, tn) = f(a(t1),... ,a*(tn)) if f € 8. Usually, the assignment
and its extension are denoted by the same symbol. For a ground term ¢, a(t)
depends only on 91, but not on a. To emphasize this point we often write
M(t) instead of a(t).

DEFINITION 2.6 An interpretation 90t is called term-generated, if for every
element m of some S™ there is a ground term t of sort S such that m = 9 (t).

DEFINITION 2.7 Let 9 be an interpretation and o be an assignment. A pos-
itive literal t ~ t' is called true with respect to 9 and a if a(t) &M a(t'), A

negative literal ~t = t' is called true with respect to 9 and a if a(t) #™ a(t').
A clause C is called true with respect to 9 and « if at least one of its literals
is true. If a literal or clause is not true, it is called false with respect to M
and a.

It is clear that the empty clause L is false with respect to all interpretations
and assignments.

DEFINITION 2.8 An interpretation 90U is a model of a clause, if the clause is
true with respect to 9 and a for every 9M-assignment «. It is a model of a set
of clauses, if it is a model of every clause in the set.

If 91 is a model of a set of clauses, we also say that it satisfies the set. A
set of clauses is called satisfiable if it has a model, and unsatisfiable, otherwise.

First-order logic enjoys the compactness property. This means that every
set of clauses (or even more generally, every set of first-order formulae) is
satisfiable whenever each of its finite subsets is satisfiable:

THEOREM 2.9 A set of clauses is unsatisfiable if and only if it contains a finite
subset that is unsatisfiable.

In refutational theorem proving, one is primarily interested in the question
whether or not a given set of clauses is satisfiable. For this purpose we may
confine ourselves to term-generated models: Let 9y be any model of a set of
clauses. Then we can construct a term-generated model 9 by taking as S™
the subset of elements of S™° that are images of ground terms of sort .S, and
by restricting f™ and ~™ accordingly.? Consequently, we obtain the following
lemma.

LEMMA 2.10 A set of clauses has a model if and only if it has a term-generated
model.

A substitution ¢ is a mapping from V to the set of terms over ¥ and V, such
that z and o(z) have the same sort for every . Substitutions can be considered
as a particular kind of assignments, namely assignments into an interpretation
M, where S™ is the set of terms over ¥ and V and f™ is the function that
maps t1,...,t, to f(t1,...,t;). As any other assignment, a substitution can
be homomorphically extended to a function from terms to terms. Note that
we have o(t) = 9(t) = t for every ground term ¢. It is customary to use
postfix notation for substitutions, i.e., to write to rather than o(t); oo’ is the
substitution that maps every z to (zo)o’.

*Recall that we require every sort to be inhabited, so the sets S™ of a term-generated
interpretation are in fact non-empty.

The set Dom(o) = {z € V| zo # z } is called the domain of the substitution
o. A substitution with domain {1, ..., z,} that maps the variables z1,...,z,
to the terms t1,...,t,, respectively, is denoted by {z1 — t1,...,2, — tp}. If
o1 and o2 have disjoint domains, then we write o1 U o9 for the substitution
that maps every € Dom(o;) to zo; for i € {1,2}. A substitution o is said to
be idempotent, if oo = 0, i.e., if Dom(o) and |J,cpom(y) var(zo) are disjoint.
If o and o’ are substitutions and V' C V, we say that o = ¢’ over V' if xo = zo’
for every x € V'.

A term 5 is called an instance of a term s if so = 5 for some substitution o.
This terminology can be extended to equations by defining that € is an instance
ofeife = s~ 1t and € = so = to; in an analogous way it can be extended to
other syntactic objects, such as clauses. A ground object that is an instance
of some syntactic object @ is called a ground instance of Q.

A substitution o is called a unifier of the terms t1,...,t,, if ;0 = t;o for
alli,j7 € {1,...,n}. A unifier o of ¢1,...,%, is called a most general unifier, if
for every unifier 0 of ¢4,...,t, there exists a substitution p such that 8 = op
over var({t1,...,t,}). Every set of terms {¢1,...,%,} that has a unifier has an
idempotent most general unifier.

If 9 is a term-generated interpretation, then for every assignment o there
is a substitution o mapping variables to ground terms such that a(z) = M(z0),
and hence a(t) = M(to). This fact gives rise to the following lemmas:

LEMMA 2.11 A term-generated interpretation is a model of a clause C' if and
only it is a model of all ground instances of C.

As a consequence of Thm. 2.9, Lemma 2.10, and Lemma 2.11, we obtain
the following corollary:

COROLLARY 2.12 A set N of clauses is unsatisfiable if and only if there exists
an unsatisfiable finite set of ground instances of clauses in N.

As long as we restrict ourselves to term-generated models (which is possi-
ble thanks to Lemma 2.10), we may think of a non-ground clause as a finite
representation of the set of all its ground instances. Generalization of this idea
leads to the concept of a symbolic constraint: a formula that restricts the set
of instances to be represented by a clause.

DEFINITION 2.13 A constraint is a first-order formula. A constrained clause
C [T] is a pair consisting of a clause C' and a constraint T'.

The first-order language in which the constraints are formulated comes
with a fixed interpretation of the non-logical symbols. For instance, a typical
constraint language might consist of all quantifier-free formulae built over true,

false, A, and the binary predicate symbols = and >, where = is interpreted as
equality of terms and > as some ordering on terms. A substitution € satisfies a
constraint T, if T'0 evaluates to true in this fixed interpretation. A substitution
that satisfies T' is also called a solution of T'. If for some substitution 8, C9
is ground and 7@ = true, then the clause C6 is called a ground instance of
the constrained clause C [T']. A term-generated interpretation is said to be a
model of a constrained clause C [T7], if it is a model of all ground instances of
C[T]. Sometimes we identify an unconstrained clause C' with the constrained
clause C [true]. We say that a constraint 7' is satisfiable, if there exists a
substitution 6 such that 70 = true. A constrained clause whose constraint
is unsatisfiable is a tautology: is has no ground instances and is thus true in
every interpretation.

We obtain a particularly important class of term-generated interpretations
if we take the set of ground terms as domain:

DEFINITION 2.14 An interpretation 9 is called a Herbrand interpretation, if
for every S € S and f € %, the set S™ is the set of ground terms of sort S
and the function f™ is the function that maps t1,...,t, to f(ti,...,t,).

In a Herbrand interpretation, every ground term is interpreted by itself,
that is, MM(¢t) = t. As S™ and f™ are fixed, every Herbrand interpretation is
completely characterized by the interpretation ~™ of the equality predicate .
For any set Egy of ground equations there is exactly one Herbrand interpreta-
tion 91 in which the equations in Egy are true and all other ground equations
are false. We will usually identify the Herbrand interpretation 91 with the set
Egn. A positive ground literal e is thus true in Egy, if e € Egy; a negative
ground literal — e is true in Eyy, if e ¢ Egy.

According to Lemma 2.10, we may confine ourselves to term-generated
models for refutational theorem proving. The following theorem shows that
this result can still be strengthened.

THEOREM 2.15 A set of (constrained) clauses has a term-generated model if
and only if it has a Herbrand model.

So far, we have considered equality as an arbitrary binary predicate sym-
bol, to be interpreted by an arbitrary binary relation. However, when one
uses the equality symbol ~ in a logical language, one is usually interested in
interpretations in which the relation represented by ~ actually is equality. We
refer to such interpretations as normal.

m

DEFINITION 2.16 An interpretation 9 is called normal, if the relation =" is

the equality relation on the domain of 9, i.e., ifa ~™ o' if and only ifa = a'.

It is easy to show that Lemma 2.10 holds also for normal models, that is,
that a set of clauses has a normal model if and only if it has a term-generated
normal model. Theorem 2.15, on the other hand, cannot be extended to nor-
mal interpretations: For any signature there is exactly one normal Herbrand
interpretation, and this interpretation is trivial inasmuch as any two terms are
different. If we want to recover the intuitive semantics of the equality symbol
while working with Herbrand interpretations, we have to encode the intended
properties of the equality symbol explicitly.

DEFINITION 2.17 The clauses

TRT (Reflexivity)
zRyVyxr (Symmetry)
z#yVykzVerz (Transitivity)
)

1Y V...Ve, Ey, V f(z1,...,2n) = f(y1,---,yn) (Congruence

(for every n-ary function symbol f € ¥) are called equality axioms.

DEFINITION 2.18 An interpretation that is a model of the equality axioms is
called an equality interpretation. If N is a set of clauses, then an equality
interpretation that is a model of N is called an equality model of N.

Term-generated normal interpretations and equality Herbrand interpreta-
tions are equivalent in the following sense:

LEMMA 2.19 For every term-generated normal interpretation 91, there exists
an equality Herbrand interpretation 9y (and vice versa), such that any ground
literal is true in 9 if and only if it is true in Ms.

PRrROOF. If 9, is given, let s be the Herbrand interpretation where ¢ LY
if and only if M (t) = My (¢).

Conversely, if My is given, define My as the normal interpretation where
S™ is the set of all congruence classes of ground terms of sort S with respect

to the relation ~™2, and f™ maps the congruence classes [t1],...,[tn] to

[f(tl,...,tn)]. 0O

As an interpretation is a model of a (constrained) clause if and only if it is
a model of all its ground instances, this lemma can be generalized to clauses:

LEMMA 2.20 For every term-generated normal interpretation 91; there exists
an equality Herbrand interpretation 9y (and vice versa), such that for any
(constrained) clause, M is a model if and only if My is a model.

10

THEOREM 2.21 A set of (constrained) clauses has a term-generated normal
model if and only if it has an equality Herbrand model.

DEFINITION 2.22 Let N and N’ be sets of constrained clauses. If every equal-
ity Herbrand model of N is a model of N’ we say that N entails N' modulo
equality and abbreviate this by N =5 N'.

By Lemma 2.20, we could equivalently define = using term-generated
normal interpretations:

THEOREM 2.23 If N and N' are sets of constrained clauses, then N = N' if
and only if every term-generated normal of N is a model of N'.

In the rest of the paper, we will almost exclusively work with (equality) Her-
brand interpretations and models, or more precisely, with the set Egy of equa-
tions corresponding to a Herbrand interpretation 9. For simplicity, we will
usually drop the attribute “Herbrand”. The dualism between term-generated
normal models and equality Herbrand models will only be exploited in Sec-
tions 5.3 and 5.7.

2.2 Rewrite Systems

To prove the completeness of our calculus, we have to construct Herbrand
interpretations and to check whether a given equation is contained in such an
interpretation. Rewriting techniques are our main tool for this task. The rest
of this section serves mainly to fix the necessary notations; for more detailed
information about rewrite systems we refer to Dershowitz and Jouannaud’s
survey [33].

As usual, positions (also known as occurrences) of a term are denoted by
strings of natural numbers. The set of all positions of a term ¢ is pos(t). If o
is a position of ¢, then t|, is the subterm of ¢ at o, ¢(0) is the function symbol
of t at o, and t[t'], is the result of the replacement of the subterm at o in ¢ by
t'. We write t[t'] if o is clear from the context.

DEFINITION 2.24 We say that a binary relation — over terms is stable under
contexts, if t1 — to implies s[t1], —> $[ta], for all terms t1, ta, and s, such
that s[t1], and s[tz], are well-formed. It is called stable under substitutions,
if t1 — to implies tyo — too for all terms t1, to and all substitutions o. It is
called a rewrite relation, if it is stable under both contexts and substitutions.

For a binary relation —, we commonly use the symbol < for its inverse
relation, ¢+ for its symmetric closure, —* for its transitive closure, and —*

11

for its reflexive-transitive closure (and thus <»* for its reflexive-symmetric-
transitive closure).

A binary relation — is called noetherian (or terminating), if there is no
infinite chain ¢; — t2 — t3 — ---. We say that ¢ is a normal form (or
irreducible) with respect to — if there is no ' such that ¢ — #'; ¢ is called a
normal form of s if s —* ¢ and ¢ is a normal form. We say that — C II x II is
confluent on IT' C I, if for every ¢to € Il and ¢y, ¢y € IT such that ¢; <* tg —* t5
there exists a t3 € IT such that ¢; —* t3 <* to; the relation — is called confluent,
if it is confluent on its carrier set II.

DEFINITION 2.25 A binary relation > is called an ordering, if it transitive
and irreflexive. An ordering on terms is called a reduction ordering, if it is a
noetherian rewrite relation.

We use the symbol > to denote the reflexive closure of an ordering »>. If
(ITy, =) is an ordered set, IT C Iy, and s € Iy, then II"® is an abbreviation for
{t €I |t > s}; the sets [T™*, [I**, and I1** are defined analogously.

In the sequel, we will need the following variation on the familiar “diamond
lemma”.

LEMMA 2.26 Let > and — be two binary relations over II, such that > is a
noetherian ordering and — C ». Let s and r be two elements of II, such that
r is irreducible with respect to — and define II$ = {t € I1 | s = ¢, t =»* r}. If
for every tg,t1,t2 € Il such that s > ty and t; < tg — t3 —* r there exists a
t3 € TI such that t; —* t3 <* t3, then — is confluent on II$ and TI¢ is closed
under —.

PROOF. It is obviously sufficient to prove that for every to € IIf and ¢} € II,
to —™ ¢} implies ¢} € II$. We show this by noetherian induction over the size of
to. Let to € TIS and ¢} € II such that to —* ¢|. If this derivation is empty, there
is nothing to show, so suppose that tg — t; =™ t|. As to € II¢ is reducible, it
is different from =, hence there is a non-empty derivation tg — to —* r. By
assumption, there exists a t3 € II such that t; —™* t3 <™ to. Now o > t5 and
ta € II7, hence by the induction hypothesis, t3 € II{ and thus ¢; € II{. Since
to > t1, we can use the induction hypothesis once more and obtain t| € II? as
required. O

DEFINITION 2.27 A rewrite rule e is a pair of (t,t') of terms, usually written
ast — t', where t and t' have the same sort. A rewrite system is a set of
rewrite rules.

If R is a rewrite system, then the rewrite relation — p associated with R is
the smallest rewrite relation containing t —g t' for every rule t — ¢ € R.

12

If E is a set of equations, then the rewrite relation <>g is the smallest
rewrite relation containing ¢t <> t' and t’ <>p t for every equation t ~ t' € E.
The reflexive-transitive closure <»% of E is also denoted by =p.

2.3 Saturation and Redundancy

Most automated theorem provers for first-order logic are refutational provers.
To show that a formula C’ is a logical consequence of another formula C,
they negate C' and try to show that C A = C' is contradictory. Often the
formula C A = C' is further normalized, for instance by skolemization and
transformation into clause form. The problem to prove arbitrary theorems is
thus reduced to the problem to refute some set of clauses. The prover is called
refutationally complete, if it finds a refutation whenever the set of formulae is
inconsistent.

Theorem proving methods such as resolution or superposition aim at deduc-
ing a contradiction from a set of formulae by recursively inferring new formulae
from given ones. The deductive inference system that computes these new for-
mulae is the central part of a saturation-based theorem prover. We may think
of an inference system as a function Inf that maps a set N of formulae to a
set of inferences

L Cy ... 4
= =
where {C1,...,Cr} C N. The formulae Cy,...,C; are called premises of ¢.
The formula Cj is called conclusion and is denoted by concl(:). For instance,

Inf might map N to the set of all ground resolution inferences

D' ve C'V -e
D'v C

with premises D' V e and C' V — e in N. Typically, an inference system is
sound with respect to a given semantical consequence relation |, that is,
{C1,...,Cx} E {Ch}, for all inferences . The consequence relation = may
for example be the relation =4 introduced in Section 2.1, or any other binary
relation with the properties (i) Ny U Ny |= Ny, (ii) if Ny = Ny and N; = N,
then N1 IZ N2 U N3, and (111) if N1 |: N2 and N2 |: Ng, then N1): N3.

A theorem prover computes one of the possible inferences of the current
set of formulae and adds its conclusion to the current set, until a “closed”
(or “saturated”) set N* is reached, where the conclusion of every inference
in Inf(N*) is already contained in N*. The concept of saturation allows to
define refutational completeness as a static property, rather than a dynamic
one: An inference system is said to be refutationally complete, if saturated

13

sets of formulae are unsatisfiable if and only if they contain a contradictory
formula, say the empty clause L.

In practice, inference rules are equipped with strong local restrictions to
keep the search space as small as possible. Nevertheless, the majority of the
generated formulae are not actually needed for deriving a contradiction, and
saturated sets tend to be very large, often infinite. Thus, techniques are em-
ployed to discard redundant formulae and a weaker notion of saturation is
needed. For that purpose, we introduce a global concept of redundancy that
applies to both formulae and inferences. Let Red© be a mapping from sets of
formulae to sets of formulae and Red! be a mapping from sets of formulae to
sets of inferences. The sets Red ©(N) and Red!(NN) are meant to specify for-
mulae and inferences, respectively, deemed to be redundant in the context of a
given set N. Under certain conditions, formulae in Red ©(N) may be removed
from N, while inferences in Red!(IN) may be ignored. For instance, Red ©(NV)
may consist of all tautologies and formulae subsumed by N. (We emphasize
that Red“(N) need not be a subset of N and that Red!(N) will usually also
contain inferences whose premises are not in N.)

The following conditions characterize a reasonable notion of redundancy
for refutational theorem proving:

DEFINITION 2.28 A pair Red = (Red', Red) is called a redundancy criterion
(with respect to an inference system Inf and a consequence relation |=), if the
following conditions are satisfied for all sets of formulae N and N':

(i) N\ Red®(N) = Red®(N).
(ii) If N C N', then Red®(N) C Red®(N’) and Red'(N) C Red!(N").

(iii) If N' C Red®(N), then Red®(N) C Red®(N \ N') and Red!(N) C
Red!(N \ N").

(iv) If « € Inf(N') and concl(t) € N, then ¢ € Red'(N).

Inferences in Red!(N) and formulae in Red ©(N) are said to be redundant with
respect to IN.

Condition (i) requires that redundant formulae logically follow from the
non-redundant ones. Condition (ii) and condition (iii) indicate that redun-
dant formulae and inferences must remain redundant if formulae are added
or if redundant formulae are deleted. Finally, condition (iv) states that an
inference is redundant with respect to NV if its conclusion is already present in
N (regardless of whether or not the premises are in N).

14

DEFINITION 2.29 A binary relation - on sets of formulae is called a derivation
relation (with respect to an inference system Inf, a redundancy criterion Red ,
and a consequence relation =), if it satisfies the following properties for all
sets of formulae N and N':

(i) If N N', then N |= N'.
(ii) If N - N', then N\ N’ C Red ©(N").
(iii) If v € Inf(N), then N - N U {concl(¢)}.

Note that N = N’ implies N’ = N by condition (i) of Def. 2.28.

A derivation relation extends an inference system in such a way that we
can not only compute inferences and add their conclusions but that we are also
allowed to delete or to simplify formulae or to add lemmas. This is possible as
long as all removed formulae are redundant and all new formulae are logical
consequences of the old ones.

DEFINITION 2.30 A triple (Inf, Red,t) consisting of an inference system Inf,
a redundancy criterion Red, and a derivation relation &~ is called a theorem
proving calculus.

DEFINITION 2.31 A set N of formulae is called saturated with respect to a
theorem proving calculus (Inf, Red ,F), if Inf(N) C Red!(N).

In other words, a set of formulae is saturated if all inferences from it are
redundant.

A finite or infinite sequence Ng - N1 - Ny | ... is called an (Inf, Red ,I-)-
derivation, or simply derivation, if the theorem proving calculus is clear from
the context. The set Noo = |J;[;>; IV; of all persisting formulae is called the
limit of the derivation. In particular, the limit of a finite sequence Ny F* N,
equals Vg.

LEMMA 2.32 For every derivation Ny - N1 - Ny + ... and every set N;
occurring in this derivation, we have Red©(N;) C Redc(Uj N;) = Red®(Ny)
and Red!(N;) C RedI(U]- N;) = Red'(Ny).

PROOF. Suppose that a formula C is contained in |J; Nj \ Neo. Since C
has been deleted at some point of the derivation, there must exist some k
such that C € Ni \ Npy1 C Red®(Nyiq) C RedC(U]— N;). In other words,
U; Nj \ Noo C RedC(U]- Nj;). By property (iii) of redundancy criteria we
get Red®(U; Nj) € Red®(U; Nj \ (U; Nj \ Noo)) = Red©(Noo) and similarly
RedI(Uj N;) C RedI(Uj N\ (U; Nj \ No)) = Red'(Ny). Furthermore, by

15

property (ii) of redundancy criteria, Red ©(NN;) C RedC(Uj N;), Red®(Ny) C
RedC(Uj N;), Red'(N;) C RedI(Uj N;), and Red!(Ny) C RedI(Uj N;). O

COROLLARY 2.33 For every derivation No - N1 - Ny ... and every set N;
occurring in this derivation, N; C Ny U Red ©(Nyo).

PRrROOF. If C € N; \ N, then there is a £ > i such that C € Nj \ Ng41 C
Red®(Np41) C Red®(Nyo). O

DEFINITION 2.34 A derivation Ny - N1 - No b ... is called fair, if

Inf(Ny) C URedI(Nj) .

LEMMA 2.35 If a derivation is fair, then its limit is saturated.

PROOF. If the derivation No - Ny - ... is fair, then Inf(Ns) C U; Red!(N;).
By Lemma 2.32, Red'(N;) C Red'(Ny), hence Inf(Ny) C Red'(No). O

DEFINITION 2.36 A theorem proving calculus (Inf, Red,t) is called refuta-
tionally complete, if for every saturated set N of formulae we have N |= {1}
ifand only if 1 € N.

Like the notion of saturation, most results on theorem proving calculi do
not depend on the particular choice of a derivation relation. In such cases, we
will omit the derivation relation and write (Inf, Red) instead of (Inf, Red,}).

2.4 Resolution and Superposition

Resolution. The forefather of our method is Robinson’s resolution calcu-
lus [83]. It is based on a single inference rule,® ultimately a form of modus
ponens, which can be written for ground clauses as follows:

D' Ve C'vV —e
D'v C'

Resolution (ground)

It allows to derive a new clause whenever the current clause set contains clauses
with complementary literals e and —e.

In this ground form, the rule has already been used by Davis and Put-
nam [31]. The fundamental difference comes when we want to check the

3In (Robinson [83]), clauses are sets of literals, rather than multisets. In our framework,
in which multisets are employed, an additional factoring rule is necessary.

*Davis [30] gives an survey of the history of logic and automated deduction from the seven-
teenth century to 1967. The time from 1965 to 1970 is covered in (Wos and Henschen [101]).

16

unsatisfiability of a non-ground clause set. Davis and Putnam did this by sim-
ply enumerating all possible ground instances of the given clauses and testing
the first n instances (for n =1,2,...) for unsatisfiability. By Cor. 2.12, a set of
clauses N is unsatisfiable if and only if a finite subset of instances of clauses in
N is unsatisfiable. Since this finite set is eventually subsumed when n reaches
a sufficiently large value, the program is guaranteed to stop whenever N is
unsatisfiable.

Robinson’s fundamental achievement was to extend the inference rule to
non-ground clauses in such a way that the computation of appropriate in-
stances became a by-product. By unifying the complementary literals, the
variables of the clauses involved in the inference are instantiated as much as
necessary for soundness, but no more:

D'V ey C'V —e
(D'v Co

Resolution

where ¢ is a most general unifier of e; and es.

In contrast to earlier approaches it is no longer necessary to guess the right
ground instances beforehand. Instead, the instantiations can be computed.

Resolution constituted such a significant improvement over previous calculi
that some researchers even thought that the problems of automated theorem
had essentially been solved. Soon it became obvious, however, that these high
expectations were unwarrantable. Resolution was still by far too inefficient for
solving practically interesting problems. This insight has been the motivation
for developing numerous strategies and refinements of the resolution calculus.
One of the first improvements is due to Robinson himself [82], who discovered
that it is sufficient to consider only resolution inferences in which the first of
the two premises contains only positive literals. By iterating inferences of this
form,

Dy Ve C'"V —e3V ey Ve
Dy V e9 D VC'V-—e3V e
D3 V e3 Dy V Dy VC'V —eg
D3V Dy VvV Dy VvV C!

we obtain a new derived inference rule, called hyperresolution, in which one
clause with n negative literals (and possibly positive ones) reacts with n clauses
with only positive literals and produces a new clause with only positive literals.

D, Ve, Dy Ve ClVﬁen\/...V—'e1
D,V ...VDyVvC(C

17

The non-ground version of the inference rule is obtained in a similar way as
for resolution, the difference being that now ¢ must be a unifier of every pair
of complementary literals.

Another important refinement of the resolution calculus results from the
introduction of literal orderings (Slagle [92], Kowalski and Hayes [58]): In
ordered resolution, only such inferences are necessary in which each of the
two complementary literals is maximal in its premise. Both hyperresolution
and ordered resolution lead to a significant reduction of the search space while
preserving refutational completeness.

Paramodulation. Whereas techniques such as hyperresolution and ordered
resolution are aimed to improve the efficiency of resolution in general, other
extensions of resolution are focussed on specific application domains. Equa-
tional problems are one such domain where the weakness of resolution becomes
particularly apparent. By Lemma 2.20, a theorem prover can reason in equa-
tional logic by including the equality axioms in the set of formulae. For a
resolution-based prover, however, naive use of the equality axioms turns out
to be fatal: The symmetry axiom allows a resolution step with any other clause
C' vV [-]t = t' that contains a (possibly negated) equality literal, producing
the clause C' V [=] ' = t. A clause with n equality literals can thus be trans-
formed into 2" variants. This exponential increase is already bad enough, but
it is harmless compared to the growth caused by the transitivity and congru-
ence laws. Starting from a clause C' V t % t/, iterated resolution steps with
the transitivity axiom may produce infinitely many clauses

C'Vigy Vuy#t
C'Vitgy Vyr#y Vyrt
C'Vidy Vyr#y: Vy#ys VysEt

" may involve

This corresponds to the fact that an equational proof for ¢t =~ ¢
arbitrarily many intermediate steps t ~ t1, t; ~ t3, ..., t, ~ t'. Similarly, as
an equation t = t’ allows to prove s[t], ~ s[t'], where t occurs arbitrarily deep
in s, infinitely many clauses can result from iterated resolution steps with the
congruence axiom. Few of these clauses are actually needed as intermediate
steps to derive a contradiction; most only clutter the search space.

Several techniques have been proposed to dispense with explicit equality
axioms and to integrate equality into the set of inference rules, for instance
Brand’s modification method [22] and Digricoli and Harrison’s resolution by
unification and equality [34]. The paramodulation calculus of Robinson and
Wos [81] turned out to be the most influential. The paramodulation rule

18

embodies the ideas of the resolution calculus and the operation of “replacing
equals by equals” that is fundamental for term rewriting. Whenever a clause
contains a positive literal ¢ ~ ¢, the paramodulation rule allows to rewrite a
subterm t occurring in some literal [—] e[t], of another clause to t'.

D'vimt C' V [] elt]o
D' v C'"V [e[t']o

Paramodulation (ground)

For non-ground clauses, this rule is modified in a similar way as the reso-
lution rule above. Equality is replaced by unifiability, so that the resulting
rule is essentially a combination of non-ground resolution and Knuth-Bendix
completion [57].°

D'vitxt C' Vv [] e[w],
(D' v C'V [~ e€[t'o)o

Paramodulation

where ¢ is a most general unifier of ¢ and w.

If we add the paramodulation rule to the resolution calculus, inferences with
the equality axioms (except for resolution with the reflexivity axiom®) are
unnecessary for refutational completeness. Paramodulation produces far less
intermediate formulae than resolution with the equality axioms. This allows
not only significantly shorter refutations, it also reduces the problem that the
intermediate results spawn more and more useless consequence clauses.

Superposition. We have mentioned above that paramodulation combines
resolution and Knuth-Bendix completion. Both resolution and completion are
(or can be) subject to ordering restrictions: In the Knuth-Bendix completion
procedure,” only overlaps at non-variable positions between the maximal sides
of two rewrite rules produce a critical pair. Similarly, the resolution calculus
remains a semidecision procedure if inferences are computed only if each of
the two complementary literals is maximal in its premise. It is natural to

SEssentially the same rule (usually restricted to equational unit or Horn clauses) occurs
in narrowing calculi (Fay [38]) used for theory unification.

8In their original proof, Robinson and Wos required additionally a so-called functionally
reflexive axiom f(z1,...,Zn) =& f(21,...,2n) for any function symbol f. They conjectured
that these axioms are unnecessary for completeness; the conjecture was verified by Brand [22]
and Peterson [76].

"Or rather: in its unfailing variant (Bachmair [6]), which is a semidecision procedure for
purely equational logic.

19

ask whether paramodulation may inherit the ordering restrictions of both its
ancestors. More precisely: Let a paramodulation inference between clauses
D=D"Vit=xtand C=C"V []s[w], = s be given as

D'vitmt C'V [] s[w], = ¢
(D'v C'V [] s[t]o = s')o

where ¢ is the most general unifier of ¢ and w. Does the calculus remain
refutationally complete if we require, as in completion, that (i) w is not a
variable, (ii) to A t'o, (iii) (s[w],)o A s'o, and, as in ordered resolution, that
(iv) (t = t')o is maximal in Do, and (v) (s[w], = s')o is maximal in Co ?

A first result in this direction was obtained by Peterson [76], who showed
the admissibility of restrictions (i) and (ii). It was extended to (i), (ii), (iii)
for positive literals, and (v) by Rusinowitch [85], and to (i), (ii), (iv), and (v)
by Hsiang and Rusinowitch [46]. The final answer was given by Bachmair and
Ganzinger [7, 8, 12]: All five restrictions may be imposed on the paramodula-
tion rule (which is named superposition then), however, an additional inference
rule becomes necessary to cope with certain non-Horn clauses. If a clause C
has the form

C'vitxt vsx~s

where s & s’ is a maximal literal and s and ¢ have the most general unifier o
and are maximal in their respective literals, then we need either an equality
factoring rule that allows to derive

(C'"vs#t vzt

from C, or a merging paramodulation rule, i.e., a rule allowing paramodula-
tions of another clause into the non-maximal term s’ of the maximal literal of
C. The resulting inference system (on which our own system will be based)
is the basis of the superposition calculus; it consists of the rules superposition,
equality resolution (i.e., ordered resolution with the reflexivity axiom), and
either equality factoring or ordered factoring and merging paramodulation.
The superposition calculus does not only combine the ordering restrictions
of resolution and completion; it can also be equipped with simplification tech-
niques that subsume those of resolution and those of completion. The definition
of redundancy introduced by Bachmair and Ganzinger [12] basically states that
clauses are redundant if they follow from smaller clauses and equality, and that
an inference is redundant if its conclusion follows from clauses that are smaller

8The version using the merging paramodulation rule appeared first in (Bachmair and
Ganzinger [7, 8]). The equality factoring rule is due to Nieuwenhuis [66].

20

than the maximal premise and equality. Usual strategies for resolution-like
calculi such as clause subsumption are encompassed by this definition, just as
the simplification steps and critical-pair criteria [6] that can be found in com-
pletion procedures. Superposition can also be enhanced by selection functions,
so that hyperresolution-like strategies become applicable.

Basic Calculi and Constraints. To explain what “basic” means in para-
modulation-like calculi, we first have to define the skeleton of a clause. Let
Ny N1 k... be a derivation. For each of the initially given clauses in Ny we
define the skeleton as the set of all its non-variable positions. If a clause in IV;
(i > 0) is the result of a paramodulation inference®
D'vit=t C'V [-] s[w], = '
(D'v C'V [] s[tl]o = s')o

then we define its skeleton as the set of all non-variable positions of D' vV C' Vv
[-] s[t']o = s’ that correspond to skeleton positions of one of the premises. In
other words, a non-variable position in the conclusion is not part of the skele-
ton if it has been introduced either by the unifying substitution o, or by the
unifying substitution at a previous derivation step where one of its ancestors
has been created. A paramodulation-like calculus is called basic, if we require

that the position o in the paramodulation inference above must be contained
in the skeleton of the second premise. The basic strategy was first developed
by Degtyarev [32] for paramodulation and by Hullot [48] for equational nar-
rowing. Bachmair, Ganzinger, Lynch, and Snyder [14] and Nieuwenhuis and
Rubio [67] proved independently that basic restrictions are compatible with the
superposition calculus. Although redundancy criteria for basic superposition
are somewhat less powerful than their counterpart for standard superposition,
the considerable reduction of the number of possible inferences leads to a sig-
nificantly smaller search space.

Basic superposition calculi can be implemented in several ways. A clause

Cp = f([z])#b Vv h([9@)][c]) ~ £ B),

where the non-skeleton parts are indicated by boxes, can be coded as a closure,
i.e., a pair C - p consisting of a clause C' = f(z1) 2 b V h(z2,23) =~ f(b) and a
substitution p = {z1 — z, z2 — g(z), z3 — ¢}. Using this representation, the
superposition rule has the form
(D' Vt=t):po (C"V [1] s[w]o = &) - ;1
(D' v C'V []s[t']o = 8') - (p2 U p1)o

where ¢ is a most general unifier of £p2 and wpl.10 The usual requirement that

9 Analogously for other inferences such as factoring.
"We assume that D' V t &~ t' and C' V [-] s[w], = s’ have no common variables.

21

w is not a variable ensures that the superposition takes place at a skeleton
position of (C' V [-] s[w], ~ s")p1.

Alternatively, we can code the clause Cp above by a constrained clause
C [T'], where the equality constraint T' has the solution p. One possible can-
didate is of course the constraint z; = x A z3 = g(x) A 23 = ¢, but any equality
constraint with the same solution will do. In particular, when we compute the
superposition of two clauses D' V t ~ t' [T] and C' V [-] s[w], = s’ [T1], there
is no need to compute the most general unifier of £ and w. Rather we can add
the constraint ¢ = w to the constraints of the premises:

D' v t=t T3] C'V [1] s[w], ~ §' [T1]
D'v C'VI[Hs[tex s [To NTh At =w]

We may simplify the constraint immediately to some solved form by computing
a unifier of ¢ and w, but we may also delay the computation of unifiers until
we have derived L [T'], the empty clause with some constraint 7. Ounly then
it becomes necessary to check T for satisfiability, so that we can see whether
1 [T] actually has the instance L.

Equality constraints are not the only kind of constraints that are useful
in superposition theorem proving. Syntactic ordering constraints, originally
introduced by Kirchner, Kirchner, and Rusinowitch [55], allow to propagate
ordering restrictions from one superposition inference to another one. To see
the benefit of this technique consider the clause D = f(z,y) = f(y,z). There
is a superposition inference ¢ from D and g(f(z,b)) ~ b, namely

flz,y) = fly,2) g(f(2,b) =b
g(f(b,2)) = b

There is another superposition inference ¢/ from D and the conclusion of ¢,

namely

flz,y) = fly,z) g(f(b,2)) =b
9(f(z,b)) = b

However, the ordering conditions of these two inferences are incompatible: We
have to perform ¢ only if f(z,b) = f(b,z), and ¢/ only if f(b,2z) = f(z,b).
If the ordering condition is inherited by the conclusion of an inference as a
constraint, the cycle is broken: The inference ¢’ becomes impossible, when its
second premise is changed to g(f(b,z)) = b[f(z,b) = f(b,z)]. Nieuwenhuis
and Rubio [68, 70] have shown that the same techniques that are used in
the completeness proof for basic superposition allow to show the completeness

of superposition with ordering constraints, and that ordering and equality
constraints can be combined in a single calculus.

22

2.5 Theory Reasoning

The Problem. Superposition is a refutationally complete calculus: When-
ever a set of input clauses entails a contradiction, any fair superposition deriva-
tion will eventually produce the empty clause. Of course, this is a purely
qualitative result. As first-order logic is only semi-decidable, the number of
inference steps that are necessary to detect the contradiction is uncomputable
and may be arbitrarily large.!! Thus it is not surprising that there are many
refutable inputs for which superposition needs more time to find a contradic-
tion than a user is willing to wait. What is disappointing, however, is that
superposition (just as other general-purpose theorem proving methods) often
fails to find a contradiction, even if the input is almost trivial from a human’s
point of view.

Algebraic theories are typical examples for such a behaviour. Let us con-
sider abelian groups. Whereas the word problem in abelian groups is efficiently
solvable, it is very difficult for a usual general-purpose theorem prover to work
in such a structure. The left and right-hand sides of the associativity and com-
mutativity axioms contain few function symbols and relatively many variables.
Such formulae are extremely prolific, allowing paramodulation inferences with
every clause containing a subterm ¢ + t'. Even worse, the left and right-hand
side of the commutativity axiom are incomparable with respect to any reduc-
tion ordering, so that the paramodulation inferences above are not necessarily
simplifications. Together, these effects lead to an explosion of the search space.

In general it can be said that automated theorem provers are competitive
for two classes of problems: The first one consists of puzzles, mostly unstruc-
tured collections of formulae. The second one contains those problem formu-
lations that are adapted to the way of reasoning of the prover, that are, for
instance, sufficiently close to programs in a functional or logic programming
language. In other words, automated theorem provers can beat humans, if ei-
ther there is no structure, or if the structure of the problem can be exploited.
If the problem is structured in some way, but the prover does not recognize or
cannot make use of the structure, it will usually fail.

The Solution. What conclusion do we have to draw from the preceding
paragraph? If we want a prover to work efficiently in a structured domain, we

'More precisely: For every computable total function ¢ : N — N there exists an m € N
and an inconsistent set of clauses N, such that the number of occurrences of function symbols
and variables in N does not exceed m and every refutation of N by superposition requires
more than ¢(m) derivation steps. The same is true for resolution and other saturation-based
calculi, provided that for every finite set No of clauses the set { N1 | No F N1 } is finite and
computable.

23

have to enable it to exploit that structure: We have to build in domain-specific
knowledge. This can be done in several ways. Sometimes, the deductive sys-
tem of the prover can be left unchanged and mere preprocessing is sufficient to
make the input better suited (or suited at all) for a theorem prover. Sometimes
external (semi-)decision procedures can be linked to the prover in a black-box
manner, so that the deductive system must be modified but the modification
is independent of the particular theory. In other cases, even such a hierarchic
approach is impossible and domain-specific changes of the inference rules or
deduction strategies are necessary. We call the first kind of methods trans-
formation techniques, the second one hierarchic techniques, and the third one
integrating techniques.

Transformation Techniques. The first and still most important example
of the transformation approach predates the first automated theorem provers
by several decades: Skolemization [90, 91] serves to transform first-order formu-
lae with arbitrary quantifications into formulae in which all variables are uni-
versally quantified. To obtain an even more restricted class of formulae skolem-
ization can be combined with clause normal form transformation. Improved
skolemization techniques have been presented for instance by Andrews [1] and
Ohlbach and Weidenbach [74]. The differences between several clause normal
form transformations and the consequences of the choice of such a transforma-
tions for a clausal theorem prover have been investigated by Baaz, Fermiiller,
and Leitsch [5], Boy de la Tour [20], Egly [36], and Egly and Rath [37].

Transformation methods allow us to extend the range of logics a prover
can handle. Gabbay and Ohlbach [40] have shown that quantifier elimina-
tion techniques can be used to translate certain formulae of second-order logic
into first-order logic. Translations from various modal logics to first-order
predicate logic have been described by Auffray and Enjalbert [2], Nonnen-
gart [71], Ohlbach [72], and Ohlbach, Schmidt, and Hustadt [73]. Other ex-
amples include Ganzinger’s translation from order-sorted equational specifica-
tions into many-sorted logic [41], and the boolean ring method to deal with
first-order predicate logic in an equational completion framework (Hsiang [45],
Zhang [103]).

While transformation methods are the most important tool to make exten-
sions of first-order logic digestible for a first-order theorem prover, applications
for algebraic structures are less frequent. One such transformation that will
be useful in our context is the replacement of the axioms of totally ordered
abelian monoids by the axioms of torsion-free cancellative abelian monoids.
By Thm. A.13, this replacement is possible if the ordering predicate appears
only in the total ordering axioms and nowhere else. It allows us to prove equa-

24

tional problems in an equational framework without a detour via the ordering
axioms.

Hierarchic Techniques. The transformation approach is obviously not a
panacea. For many domains, no suitable preprocessing technique is available,
so theory knowledge must be integrated into the deductive system. This can
be done in two ways: Either an external (semi-)decision procedure for the
theory is linked in a modular way as a subroutine to the prover, or theory
knowledge is coded by means of new inference rules and deduction strategies.
From an implementor’s point of view, the first possibility is obviously more
attractive. If the external procedure is added to the prover as a black box, then
the modification of the deductive system can be independent of the particular
theory. If suffices to change the prover in such a way that all formulae the
external procedure can handle are forwarded to the external procedure.

In the context of logic programming, hierarchic techniques have been ex-
tremely successful (Jaffar and Lassez [50]). They work also for resolution the-
orem proving with theory unification (Biirckert [27, 28]) or certain instances
of theory resolution (Stickel [95]). If we are dealing with equational theo-
rem proving, however, their applicability is severely limited: Suppose that
the external (semi-)decision procedure can handle formulae over some base
vocabulary Ypase € 3. Then Bachmair, Ganzinger, and Waldmann’s hierar-
chic superposition calculus requires that the function symbols from ¥ \ Xpase
are defined in a sufficiently complete manner on top of the base vocabulary
YBase [17]- Sufficient completeness is not as restrictive as the conditions re-
quired for combinations of decision procedures (Baader and Schulz [4], Nelson
and Oppen [65], Ringeissen [80]), but nevertheless, in an algebraic context,
it practically excludes uninterpreted function symbols. If we want to avoid
sufficient completeness, we have to admit junk (Avenhaus and Becker [3]), and
this is still less acceptable.

Even in situations where sufficient completeness is not a too restrictive
requirement, a strictly hierarchic approach has a second drawback, which is
due to insufficient communication between the external decision procedure and
the general prover. This observation was made by Boyer and Moore [21] when
they integrated a decision procedure for linear arithmetic into an inductive
prover: Unless mathematical routines are tightly interwoven with the rest of
the prover, they have few chances to contribute to the proof. If a decision
procedure is really a “black box”, it is mostly useless.

Integrating Techniques. If the domain-specific knowledge that we want to
build into a prover can be handled neither by preprocessing nor by linking an

25

external decision procedure, then we have no other choice than integrating it
into the deductive system, usually by fine-tuning the set of inference rules.

We have already seen one example of this technique, namely the paramodu-
lation calculus: the result of integrating the equality axioms into the resolution
calculus. Paramodulation and its refinements illustrate what can be reached by
incorporating theory axioms into a deductive system: Using paramodulation,
all resolution inferences with the equality axioms become superfluous, with
the only exception of resolution with the reflexivity law. The theory axioms
can be integrated into the redundancy criterion, such that it is sufficient for
redundancy if a clause follows from smaller clauses and (arbitrarily large in-
stances of) the equality axioms. Compared to ordered resolution, the ordering
restrictions can be strengthened: While ordered resolution requires only that
inferences involve maximal literals, they must involve maximal sides of max-
imal literals in the superposition calculus. Finally, superposition inferences
at or below variables can be shown to be unnecessary. This is particularly
important, since unification with a variable succeeds always, so that without
the variable restriction any clause could be superposed at a variable position.

The chaining rule for handling orderings is a second example for the inte-
gration of a theory into a general theorem prover. As we have already seen in
the equality case, unrestricted resolution inferences with the transitivity axiom
—r<yV -y<zV x<zmay produce arbitrarily many consequences. Selec-
tion functions (or hyperresolution) can be used to avoid this: If we select the
two negative literals of the transitivity axiom, then the only possible sequences
of inferences in which it can be used have the form

Cc'vs<s —r<yV-oy<zVz<z
D'vit<t C'V-zx<sVae<s
(D' V C'Vt<s)o

where o is a most general unifier of ¢’ and s, and ¢t < ¢’ and s < s’ are maximal
in the respective clauses.

We can thus dispense with inferences with the transitivity axiom, if we use
the chaining rule, introduced by Slagle [93], instead:

D'vit<t C'vs<s
D'V C'Vt<s)o

where o is a most general unifier of ¢ and s.

As in the equational case, we gain the possibility to furnish the chaining
rule with additional restrictions: We may not only require that ¢ < ' and
s < s' are maximal literals, but also that ¢’ and s are maximal terms in the
premises. Besides we have the chance to exploit further information about

26

the ordering. In particular, if < is a dense total ordering without endpoints,
then chaining inferences where either ¢’ or s is a variable z can be completely
avoided: If z is shielded, that is, if some term w[z] occurs in the clause, then
w(z] > , so cannot be maximal. If = is unshielded, then the literal in which
x occurs can be eliminated using for instance the denseness axiom (Bachmair
and Ganzinger [11, 13]).

If our set of theory axioms consists of unit equations, then one way to avoid
inferences with them is to work with normal forms or equivalence classes. A
typical example is the theory of associativity and commutativity, commonly
abbreviated as AC. The integration of the AC axioms into the paramodulation
calculus has been investigated already by Plotkin [78]; among his successors, we
find Slagle [94], Rusinowitch and Vigneron [86], and Paul [75]. Wertz [100] and
Bachmair and Ganzinger [9] have integrated the AC axioms into the superpo-
sition calculus, using the idea of extended clauses developed for the equational
case by Peterson and Stickel [77]. All these approaches have in common that
standard unification has to be replaced by unification modulo an equational
theory.

The use of AC-unification algorithms has severe consequences for the ef-
ficiency of the prover: A minimal complete set of AC-unifiers may have dou-
bly exponential size (Domenjoud [35], Kapur and Narendran [54]), so that
computing all inferences between two clauses may not only require doubly ex-
ponential time, but may also produce doubly exponentially many conclusions.
Under these circumstances, the possibility offered by the constraint framework
to delay the unification becomes particularly valuable. As the enumeration of
unifiers can be avoided, the number of generated conclusions is drastically re-
duced. Only if L [T] has been derived, it is necessary to solve T, that is, to
decide the unifiability problem (Nieuwenhuis and Rubio [69], Vigneron [97]).
This is still NP-complete, though (Kapur and Narendran [53]).

It appears that problems caused by the integration of algebraic structure
can be mitigated by integrating more algebraic structure. If our theory con-
tains also the identity axiom, then we can replace AC-unification by ACU-
unification!? (Boudet, Contejean, and Marché [19], Jouannaud and Marché
[61]), which is only simply exponential (Kapur and Narendran [54]) and even
unitary for the special case where sums of variables are to be unified.

A much more radical improvement can be observed when we switch over
from the abelian semigroup axioms AC or the abelian monoid axioms ACU to
the axioms of abelian groups. We get a first impression of the fundamental dif-
ference between these structures when we compare the uniform word problems:

12That is, unification modulo AC and identity. In the literature, the abbreviations ACU
and AC1 are used interchangeably.

27

Whereas the word problem for abelian semigroups or monoids is EXPSPACE-
complete (Cardoza, Lipton, and Meyer [29], Mayr and Meyer [64]), the word
problem for abelian groups can be solved in polynomial time (Kandri-Rody,
Kapur, and Narendran [52]).

To see the operational difference between abelian semigroups and abelian
groups in a rewrite or superposition-based calculus consider the following ex-
ample: Let s ~ s’ and t ~ t' be two equations, where s = uj + -+ + uy and
t = v+ .-+ v;. We suppose without loss of generality that u; is maximal
among the u; and v; is maximal among the v;. In AC-completion or AC-
superposition, there is an inference between these two equations (via extended
rules), whenever s and ¢ are maximal in the respective equations and some wu; is
unifiable with some v;. The result is a new equation (u1 + -+ 4+ uj—1 + w41 +
cotup+tox (v + -+ vjo1 + V41 + -+ u + §')o. In the presence of
the inverse axiom, however, the equations s ~ s’ and ¢ ~ t' can be equivalently
written as uy & 8’ + (—ug) + -+ + (—ug) and vy &t + (—v2) + -+ + (—v;). As
the new equations do not have sums on their left-hand sides, extended rules
become superfluous. Hence the two equations allow a superposition inference
only if u; is unifiable with v;. This technique, known as symmetrization (Le
Chenadec [61]), can be found for instance in Zhang’s work on distributivity
and abelian groups in rewriting [102], in normalized rewriting (Marché [63]),
in Stuber’s extension of the superposition calculus for abelian groups [96], and
in Grobner bases and related theorem proving calculi [10, 15, 23, 24, 26]. Its
superiority over pure AC-rewriting techniques is exemplified by Marché [63],
who notes that his AG-normalized completion procedure, applied to a set of
three equations taken from [60], produces only 11 critical pairs. On the other
hand, for AC-completion of the same equations plus the abelian group axioms,
REVEAL computes 183 and RRL even 837 critical pairs.

The group axioms yield both the existence and the uniqueness of the dif-
ference of any two elements. Operationally, the second property is much more
important than the first one. It is the uniqueness, the fact that each term in
the equation > u; ~ t' is determined by the others, that makes it sufficient
to consider only overlaps of the maximal terms in a sum. This insight allows
us to employ similar techniques for cancellative abelian monoids, that is, for
abelian monoids in which the cancellation axiom z +y % ¢+ 2 V y = 2
holds, or in other words, for submonoids of abelian groups.'* Cancellative
abelian monoids are in some sense the most general algebraic structure where
such an “abelian-group-like” reasoning is possible. They encompass not only
abelian groups, but also such ubiquitous structures as the natural numbers or
multisets.

13Some basic facts about cancellative monoids can be found in Appendix A.

28

In the rest of this paper we will present and explain a refined superposition
calculus for sets of clauses including the axioms of cancellative abelian monoids.
Our calculus requires neither explicit inferences with the theory axioms nor ex-
tended clauses. It generalizes the usual constraint superposition calculus and
inherits its ordering restrictions, so that inferences involving non-maximal lit-
erals or non-maximal sides of equations are superfluous. Furthermore, similar
to the calculi for abelian groups mentioned above, overlaps at non-maximal
parts of a sum become unnecessary. As in the chaining calculus, this means in
particular that there are no overlaps with shielded variables. While inferences
with unshielded variables can not generally be avoided, we present several
simplification techniques that allow us to reduce the number of literals with
unshielded variables. Optionally, we can also integrate the torsion-freeness
axioms Yz % Yy V = ~ y for 9p € N0 into our calculus. Since an abelian
monoid is cancellative and torsion-free if and only if it can be totally ordered,
we get in this way the chance to solve equational problems in ordered abelian
monoids or groups without having to derive intermediate clauses containing
ordering literals.

29

30

3 Cancellative Superposition

3.1 Preliminaries

Throughout the paper we assume that the set of sorts S contains a sort Scaym
and that ¥ contains function symbols 0 and + with the declarations 0 : — Scam
and 4 : ScamScam — Scam- There is no scalar multiplication in our signature;
if ¢t is a term of sort Scay and m € N, then mt is merely an abbreviation for
the m-fold sum ¢ + - - - + ¢. (As usual we define 0t = 0 and 1t =t¢.)

DEFINITION 3.1 Let ¥ C N>, The clauses

(z+y)+z~z+(y+2) (Associativity)
rt+y~xy+z (Commutativity)
r+0~z (Identity)

rt+yder+zVyxz (Cancellation)
vrEYy Vaexy (U-Torsion-Freeness)

(for every ¢ € ¥) are the axioms of ¥-torsion-free cancellative abelian monoids.
The first four clauses are denoted by A, C, U, and K, the set of ¥-torsion-
freeness axioms by Tg. We write ACUKTy for the whole set of clauses and
AC, ACU, ACK, ACUK for the respective subsets.

By Lemma A.17, we assume always without loss of generality that ¥ con-
tains 1 and is closed under multiplication and factors. In practice, ¥ will usu-
ally be either {1} (so ¥-torsion-freeness is void) or N”0 (so ¥-torsion-freeness
is ordinary torsion-freeness).

DEFINITION 3.2 The symbol =,¢y denotes the congruence generated by ACU.
The ACU-congruence class of a term t is [t]acy = {t' | t =acu t' }.

DEeFINITION 3.3 A function symbol that is different from 0 and + is called a
free function symbol. A term is called atomic, if it is not a variable and its top

31

symbol is different from +. A term t is called a proper sum, if t = t; + to and
t1 7’éACU 0; t2 #ACU 0.

The set of all terms is the disjoint union of the three sets {¢ | Jz: z is
a variable, t =xcy z }, {t | Js: s is atomic, t =pcu s}, and {t | Is: s is a
proper sum, t =,cy § }. We can therefore extend the terminology above to
ACU-congruence classes and say that [t|,cu is a variable (an atomic term, a
proper sum), if there is some s € [t]scy with this property.

We say that the term ¢ occurs in the term s at the top, if there is a position
o € pos(s) such that s|, = t and s(0') equals + for every proper prefix o’ of o.
We say that ¢ occurs in s below a free function symbol, if there is a position
o € pos(s) such that s|, = ¢ and s(0') is a free function symbol for some
proper prefix o' of o; if additionally |o'| + 1 = |o|, we say that ¢t occurs in
s immediately below a free function symbol. We extend this terminology to
ACU-congruence classes, and say that [t]scy occurs in [s]acy at the top or
(immediately) below a free function symbol, if there are some ¢’ € [t]scy and
s’ € [s]acy with this property. For instance, [2b]scu and [f(2¢) + b]acu occur at
the top of [c + 2b + 3f(2¢)]acu; [¢]acu occurs both at the top and below a free
function symbol, but not immediately below a free function symbol; [2¢]acu
occurs immediately below a free function symbol.

A substitution o is called an ACU-unifier of the terms ¢1,...,t,, if t;0 =acu
tjo for all 4,5 € {1,...,n}. A set U of ACU-unifiers of t1,...,t, is called
complete, if for every ACU-unifier 8 of t4,...,%, there exists a ¢ € U and
a substitution p such that 6 =,cy zop for all z € var({t1,...,t,}). ACU-
unification is finitary: for every set of terms {#1,...,t,} there exists a (possibly
empty) finite minimal complete set of idempotent ACU-unifiers.

DEFINITION 3.4 A reduction ordering > is called ACU-compatible, if s' =,cy
§ >t =acu t' implies s’ > t'.

Every ACU-compatible reduction ordering extends naturally to a reduction
ordering on ACU-congruence classes.

As observed by Jouannaud and Marché [51], we can obtain an ACU-
compatible reduction ordering for ground terms from an AC-compatible or-
dering:

LEMMA 3.5 Let >=1 be an AC-compatible reduction ordering, such that 0 is
minimal with respect to >1. Let > be the ordering defined by s >t if s| >1 t|,
where s|. denotes the normal form of s under rewriting with the rulesxz +0 — x
and 0 + ¢ — x. Then > is an ACU-compatible reduction ordering on ground
terms.

32

We can lift this ordering to non-ground terms by defining s > ¢ if s6 > t0
for all ground instances sf and t6. However, as shown by Jouannaud and
Marché [51], it happens quite frequently that > orders a pair of terms in
an operationally undesirable way, or that s[z|, and ¢[z], are uncomparable
because s[0], = t[0], but s[u], < t[u], for all non-zero ground terms w.!4
This is a serious problem, if one is interested in classical rewriting. It is not
a hindrance, though, for calculi like superposition or unfailing completion,
which are preferably implemented using constraints. In fact, Jouannaud and
Marché’s method can be considered as a variant of unfailing completion with
constraints.

DEFINITION 3.6 We say that an ACU-compatible ordering has the multiset
property, if whenever a ground atomic term u # 0 is greater than t; for every
i in a finite index set I, then u >), t;.

From now on, > will always denote an ACU-compatible reduction ordering
that has the multiset property, is total on ACU-congruence classes,'® and
satisfies ¢ i s[t], for every term s[t],.1% An example of an ordering with these
properties is obtained from the recursive path ordering with precedence f,, >
... > f1 >+ > 0 and multiset status for + by comparing s/ and ¢| as described
in Lemma 3.5. On the other hand, polynomial orderings (Ben Cherifa and
Lescanne [18]) are unsuited, since they violate the multiset property.

CONVENTION 3.7 For the remainder of this paper, we will work only with
ACU-congruence classes, rather than with terms. To simplify notation, we
will omit the [_]acy and drop the subscript of =,qy. So all terms, equations,
substitutions, inference rules, etc., are to be taken modulo ACU, that is, as rep-
resentatives of their congruence classes. Furthermore, we will use the equality
predicate as a symmetric operator, thus ignoring the difference between t ~ t'
and t' ~ t.

DEFINITION 3.8 Let t be a ground term, then the maximal atomic subterm
of t (with or without multiplicity) is defined in the following way:

e Ift is a term of the form nu +), ; v;, where u and v; are atomic terms,
n > 1, and u > v; for all i € I then mt(t) = u and mty (t) = nu.

Jouannaud and Marché’s statement that “AC1-rewrite orderings cannot really exist” [51]
should be taken with a grain of salt, however.

51n practice, it is sufficient if the ordering can be extended to a total ordering.

18T a many-sorted framework like ours this property does not follow automatically from >
being total and noetherian. As an example consider S ={S,8'}and X ={b:— S, f: S — S’}
with the ordering b > f(b).

33

e Ift does not have sort Sgam, then mt(t) = mt4(t) = ¢.

If e is a ground equation t ~ t', then mt(e) = max{mt(t), mt(¢')} and mt(e) =
max{mty(¢), mtx(¢')}.

DEFINITION 3.9 The symbol ms(t) denotes the multiset of all non-zero atomic
terms occurring at the top of a ground term t, i.e.,

e ms(t) ={v; | j € J}, ift = 3 ;c;v; and all vj are non-zero atomic
terms. (In particular ms(0) = 0, as J may be empty.)

e ms(t) = {t}, if t does not have sort Sgam.

If e is a ground equation t =~ t', then ms(e) is the multiset union of ms(t) and
ms(t').

DEFINITION 3.10 The ordering > on terms is extended to an ordering >, on
literals as follows: Every ground literal [-] s = t is mapped to the quadruple

(mt(s ~ t), pol, ms(s = t), {s,t}),

where pol is 1 for negative literals and 0 for positive ones. Two ground literals
are compared by comparing their associated quadruples using the lexicographic
combination of the ordering > on terms, the ordering > on N, the multiset
extension of > and the multiset extension of ». The ordering is lifted to
possibly non-ground literals in the usual way, so [-] e1 > [] ez if and only if
[-] €18 =1 [] e26 for all ground instances [—] e10 and [—] e26. In order to use
the ordering = to compare equations, the latter are identified with positive
literals.

The ordering > on clauses is the multiset extension of the literal order-
g >i,.

As >, and > are obtained from noetherian orderings by multiset exten-
sion and lexicographic combination, they are noetherian, too. Furthermore,
they are total on ground literals/clauses, thanks to the last component of the
associated quadruples.

DEFINITION 3.11 For a non-empty ground clause C, the maximal literal of C
with respect to >, is denoted by ml(C).

Our constraint language consists of all quantifier-free formulae built over
true, false, A, and the binary predicates >, >, >¢ (to be interpreted as the
respective orderings), and = (to be interpreted as ACU-equality).

If N and N’ are sets of constrained clauses, we write N |=¢ N’ if N U
ACUKTy = N/, that is, if every equality model of N and ACUKTy is a

34

model of N'. In other words, |=¢ denotes entailment modulo ACUKTy and
equality. If C is a constrained clause, N |=¢ C is a shorthand for N =g {C}.
For a set of ground equations E, its ACUKTg-closure clg(E) is the set of all
ground equations e such that E =y {e}.

In theorem proving without constraints, a prover has succeeded in prov-
ing an inconsistency once it has derived the single contradictory formula L.
In constraint theorem proving, things are slightly more complicated. A con-
strained clause | [T] may have a model: if the constraint 7' is unsatisfiable,
then L [T7] is a tautology. Only if T is satisfiable, the constrained clause L [7']
has the ground instance | and is thus contradictory. Consequently, if we have
derived | with some constraint, the analysis of this constraint can no longer
be delayed — we have to test whether it is satisfiable or not.

It is convenient to make a distinction between essential and non-essential
constraints. Intuitively, a constraint is essential when it is necessary for the
correctness of the calculus. A constraint is non-essential when we might just
as well have derived the same formula without this constraint. Non-essential
constraints can be considered as pure annotations that may be dropped ad
libitum.

DEFINITION 3.12 Let Ng - N1 F+ Ny F ... be a theorem proving derivation;
let C[T AT'] be a constrained clause in Ny. Then the (sub-)constraint T" is
called non-essential, if Ny =g C [T'], and essential, otherwise.

The inference rules of our calculus will have the property that all ordering
constraints that they introduce during a derivation are non-essential. Hence
when we encounter a clause L [T' A T'] where T is an equality constraint and 7"
is an ordering constraint, we may replace this clause by L [T']. It is therefore
sufficient to test the equality constraint T' for satisfiability, rather than the
mixed equality /ordering constraint 7' A T".

Testing the equality constraint s = ¢ for satisfiability amounts to checking
s and t for ACU-unifiability. We say that o is an ACU-unifier of the constraint
s1=t1 A--- A sp =ty if it is an ACU-unifier of s; and ¢; for every i € {1,...,n}.
We can extend the terminology of unification to equality constraints, speaking
of complete sets of unifiers of a constraint. Note, however, that in constraint
calculi it is often unnecessary to compute complete sets of unifiers — as long
as we are only interested in the satisfiability of a constraint, we may stop as
soon as we have found a single solution.

To every idempotent substitution ¢ with finite domain we can associate
an equality constraint EQ(c). Let o = {z1 — t1,...,2, — t,}, then EQ(0) is
the constraint ©1 =3 A --- A &, = t,. Every substitution op is a solution of
EQ(o); conversely, if € is a solution of EQ(o), then 8 = o6.

35

DEFINITION 3.13 Let = be a variable occurring in a literal or (sub-)clause. We
say that x is shielded in the literal or (sub-)clause, if it occurs at least once
below a free function symbol. Otherwise, x is called unshielded.

9(2),

Q

For example, the variables z and z are shielded in z + y + f(z)
whereas y is unshielded.

The importance of unshielded variables stems from the fact that they may
correspond to maximal atomic subterms in a ground instance. If a variable x
is shielded in a clause or literal, then the clause or literal contains an atomic
subterm ¢[z]. As 26 < (t[z])6, an atomic subterm of 6 cannot be maximal.

We assume to be given a selection function that assigns to every clause a
(possibly empty) submultiset of its negative literals.

DEFINITION 3.14 A variable x occurring in a clause C is called eligible, if
has sort Scan and either C has no selected literals and x is unshielded in C,
or x occurs in some selected literal and x is unshielded in the selected literals
of C. The set of all eligible variables of a clause C' is denoted by elig(C).

3.2 Ideas and Concepts

We will describe a refutationally complete theorem proving method for first-
order theories that include ACUKTy, the axioms of ¥-torsion-free cancellative
abelian monoids. As the precise rules, to be given in Section 3.3, turn out
to be rather complex, we will start with a somewhat informal step-by-step
presentation of the essential ideas.

Our goal is to develop a superposition-like calculus for ¥-torsion-free can-
cellative abelian monoids that makes superpositions with the ACUKT g axioms
superfluous.

Cancellative Superposition. Let us first restrict to the case that + is the
only non-constant function symbol and that ¥ = {1} (i.e., Ty is void). In
a cancellative abelian monoid, the congruence law and the cancellation law
are in a certain sense complementary. The congruence law states that adding
equal terms on both sides of an equation preserves truth, and conversely, that
dropping equal terms on both sides of an equation preserves falsity. The can-
cellation law states that dropping equal terms on both sides of an equation
preserves truth, and that adding equal terms on both sides of an equation
preserves falsity. Hence, if we have an equation u + ¢t =~ t where the atomic
term u is larger than ¢ and ¢, then we can infer t' + u + s =~ u + t + s’ from
u + s &~ s' by congruence, and t' + s &~ t + s’ by cancellation. Similarly, we can
infer t' + u+s® u+t+s from u+ s % s’ by cancellation, and ' + s %t + s’

36

by congruence. Intuitively, this means that rather than replacing the left-hand
side of a rewrite rule by the right-hand side, we replace the maximal atomic
summand by the remainder: We rewrite u to ¢’ while adding ¢ to the other
side of the (possibly negated) equation.

The method can be generalized to equational clauses. Taking into account
that u might occur more than once in a sum we get the ground inference rule

D'Vnu+t+tet C'Vmu+s~s
D'vC'V(m—nu+s+t =s +1t

Pos. Canc. Superposition

where m >n > 1.17

If the equation mu + s = s’ occurs negatively in the second clause, the rule
is similar. In fact, in this case we have to perform an inference only if, by
repeated replacement of nu, mu is eliminated completely. In other words, an
inference is only necessary if m = yn for some x € N”0.

D'Vnu+txt C'V-mu+s~s
D'VC'V s+ xt =s +xt

Neg. Canc. Superposition

where m = yn, n > 1, y € N0

Together with the cancellation, equality resolution, and cancellative equal-
ity factoring rules, these rules are refutationally complete for sets of ground
clauses, provided that + is the only non-constant function symbol.

C'V [-]mu+s=m'u+s

Cancellation C'V [-] (m—m)u+ s~ s'

where m > m/ > 1.

. . C'V-0x0
Equality Resolution'® —

C'"Vmu+txet Vmuts=s
C'V -t+s=t+sVmut+t=xt

Canc. Eq. Factoring

The inference system remains refutationally complete if we add ordering re-
strictions, such that inferences are computed only if the literals involved are

17Recall that we are working with terms modulo ACU. In particular, this implies that s
and t may be missing (i. e., zero).

18 As the cancellation rule transforms C' V -~ s = s into C' V =0 = 0, it suffices to handle
only the latter by equality resolution.

37

maximal (or selected) in their clauses!® and u is atomic and strictly larger than
/ /
s, s, t,and t'.

ExaMPLE 3.15 Suppose that the ordering on constant symbols is given by
b~0b = c > d > d. We will show that the following four clauses are
contradictory with respect to ACUKT(yy. (The maximal parts of every clause
are underlined.)

4b+c~4d (1)
20 + ¢~ 2d (2)
2d~d (3)
4b % oW @)
Cancellative superposition of (1) and (4) yields
4d # 2V +c (5)
Cancellative superposition of (2) and (5) yields
4d+c#2d +¢ (6)
By cancellation of (6) we obtain
4d % 2d' (7)
Cancellative superposition of (3) and (7) produces
2d’ % 2d’ (8)

which by cancellation and equality resolution yields the empty clause.

Speaking in terms of AG-normalized completion (Marché [63]), we can work
directly with the symmetrization (if it exists); Marché’s ¥, and ©,¢ have no
counterpart in our framework. Consequently, the number of overlaps that have
to be considered is reduced. On the other hand, we lack an inverse, which will
lead to certain problems once free function symbols are introduced.

Torsion-Freeness. Until now, we have only considered the case ¥ = {1}.
What has to be changed if ¥ is an arbitrary subset of N”0 closed under mul-
tiplication and factors? Nothing, as far as positive cancellative superposition,
cancellation, and equality resolution inferences are concerned. The main modi-
fication is necessary for the negative cancellative superposition rule. So far, we

9Except for the literal mu + ¢t &~ t' in the cancellative equality factoring rule.

38

had to perform an inference between D' V nu+t~t and C' V ~mu+s~ s
only if m = yn. However, by U-torsion-freeness and congruence, the literals
—mu+ s~ s’ and = mu + s ~ s’ are equivalent for each ¢ € ¥. Therefore,
an inference between D' V nu+t~t and C' V ~mu + s =~ s’ is now necessary
whenever ¢ym = yn for some 1 € ¥ and y € N”0. The general version of the
inference rule is thus:

D'Vnu+tt C'V-mu+s~s
D'V C"V = ps+ xt' = s’ + xt

Neg. Canc. Superposition

where Yym = xn, n > 1, ¢ € ¥, y € N7,

It is fairly easy to see that we may restrict to values of ¥ and yx such that
ged(v, x) = 1. With this additional condition, there exists at most one pair
(v, x) for any given combination of m and n: If n/gcd(m,n) € ¥, then ¢ =
n/ged(m,n) and x = m/ged(m,n); otherwise, no ¢ and x with the desired
properties exist.

The only further change that becomes necessary applies to the cancellative
equality factoring rule.

C'"Vnuttxenut+t Vmu+s~s'
C'V -yYt+xs'=yt'+xsVnut+t=nut+t

Canc. Eq. Factoring

where 1(n—n') =xm,n—n'>1,4% € ¥, x c N70,

Again, the additional restriction that gcd(+, x) = 1 ensures that there exists
at most one pair (1, x)-

The Non-Ground Case (I). So far, we have confined ourselves to ground
clauses containing + as the only non-constant function symbol. Giving up
these restrictions, we have to find a way to lift the inference rules developed
above to clauses that contain variables and possibly non-trivial constraints.
In the standard superposition calculus, for lifting one simply needs to replace
equality in the ground inference by equality constraints (or by unification). As
long as all variables in our clauses are shielded, the situation is similar here:
In a clause C = C' V [1] 1, the maximal equation e; need no longer have the
form mu + s ~ s’, where u is the unique maximal atomic term. Rather, it may
contain several (distinct but ACU-unifiable) maximal atomic terms uy with
multiplicities mj,, where k ranges over some finite non-empty index set K. We
obtain thus e; =), mjur + s = s'. In the inference rule, the constraints
that state that all uy (and the corresponding terms v; from the other premise)
are equal are added to the previously existing constraints of the premises.

39

For instance, the positive cancellative superposition rule has now the following
form:

D' V ea |[T2]] Cl V ep [[Tl]]
D'V C'V e |[T2 ATy NTg /\To]]

Pos. Canc. Superposition

where
sel = Y exgMpup+srs.
° e = Yepnjuttrt.
* M = Dhex™Mi 2 N = Dlerm
e u is one of the ug or v; (k € K, [€ L).
ecpg = (m—n)Jut+s+t' =t+s'.
*Te = Mexuwe=u A Nepur=u
eTo = u=sAu~=s ANu=-tANux>t.

The other inference rules can be lifted in a similar way, again under the
condition that all variables in the clauses are shielded. If unshielded variables
occur, the situation becomes significantly more complicated. This case will be
treated below.

Free Function Symbols. As soon as the clauses contain non-constant free
function symbols, and possibly other sorts, we also have to use the inference
rules of the traditional superposition calculus, i.e., equality resolution, stan-
dard superposition, and standard equality factoring. But this is not sufficient,
as shown by the following example.

ExXAMPLE 3.16 Suppose that the ordering on constant symbols is given by
b>"b>c>d>d. Inevery ACUKTy-model of the three clauses

4b+c~ 4d (1)
20 + ¢~ 2d' (2)
2d ~ d' (3)

the terms 4b and 2b' are equal (independently of ¥). As we have shown in
Ex. 3.15 we can thus refute the set of clauses (1)—(4).

4b 7 20’ (4)

40

If 2 € U, we can even refute the set of clauses (1), (2), (3), and (9).
2b % b 9)

However, the cancellative superposition rule is limited to superpositions at
the top of a term. There is no way to perform a cancellative superposition
inference below a free function symbol, hence there is no way to derive the
empty clause from the clauses (1), (2), (3), and (10).

f(4b) # £(20') (10)

Neither is it possible to derive the empty clause from the clauses (1), (2), (3),
and (11), if 2 € ©.

f(2b) # f(b') (11)

If we were working in groups, we could simply derive f(4d — c¢) % f(2b)
from clause (10). But first, our framework is more general than groups, and
second, even this method would not be usable to refute clause (11).

Hsiang, Rusinowitch, and Sakai [47, 84] have solved this problem by intro-
ducing the following inference rule:

D'Vu+sxs' C'Vv+sws
D'VvVC'Vuxvwv

In the example above, this rule allows to derive 4b ~ 2b' from the first three
clauses, which can then be applied to (10) by standard superposition. However,
before we can apply the rule of Hsiang, Rusinowitch, and Sakai, we have to
use clause (3) to replace 4d by 2d’ in (1). Since the term 4d is not maximal
in (1), the rule can be only used in conjunction with ordered paramodulation
(where inferences involving smaller parts of maximal literals are required),
but does not work together with strict superposition (where such inferences
are unnecessary).2’ Furthermore, this method would again be limited to the
U = {1} case.

The concept of abstraction yields another solution for the problem, which
fits more smoothly into the superposition calculus. Abstracting out an occur-
rence of a term w in a clause C|w] means replacing w by a new variable y and
adding y % w as a new condition to the clause. In our case, we have to abstract
out a term w of sort Scay occurring immediately below a free function symbol,
if there is some other clause D' V nu + t ~ t' such that u occurs at the top
of w.

20This has been pointed out to me by Leo Bachmair.

41

D'Vnut+t=t C'V[-]smu+gqlrs
C'V-oymmutqV[-]sly = s [mu+tq>y]

Abstraction

The abstraction rule has some peculiar properties that distinguish it from
the other rules of our calculus. It is the only inference rule whose conclusion is
non-ground and has a non-trivial constraint, even if the premises are ground.
We emphasize that the new variable y is shielded in the resulting clause. Be-
sides, it should be noted that the first premise is completely irrelevant for the
correctness of the inference: whenever the second premise is true in some in-
terpretation, the conclusion is true. The first premise serves only to determine
whether an abstraction inference is necessary, it does not influence the result
of the inference.

Using the abstraction rule, the set of clauses (1), (2), (3), and (11) of
Ex. 3.16 (assuming 2 € ¥) can be refuted as follows:

EXAMPLE 3.17 Abstraction of (1) and (11) yields

y# 20V fy) # f() [2b - y] (12)

By (non-ground) cancellation of (12) with the equality constraint f(y) = f(b')
we obtain

y#2bV0%0[20-yAf(y)=f(V)] (13)
At this point, y has become unshielded. We can either use the inference rules
of the calculus for unshielded variables, to be presented in the sequel, or we
can eliminate the unshielded variable by partially solving the constraint and

applying the solution (the substitution {y — b'}) to the rest of the clause. In
the latter case, we obtain

B 5 2b V020 [2b = V] (14)

Cancellative superposition of (1) and (14) and simplification of the constraint
yields

c+2b % 4d vV 0 % 0 [true] (15)

which can be refuted in the same way as clause (5) in Ex. 3.15.

42

The relationship between the coefficients m and n in the abstraction rule
above is not completely obvious. Intuitively, an abstraction inference between
clauses D = D'V nu+t =t and C = C' V [-] sfmu + ¢] = s’ is necessary,
if there is some clause Dy such that (i) Dy is entailed by D and some other
clauses, (ii) Dy is not derivable using the inference rules, (iii) a standard su-
perposition of D into C is impossible, (iv) if Dy were contained in the clause
set, a standard superposition of Dy into C would be necessary. In Ex. 3.16,
this clause Dy is either 4b = 2b' (for arbitrary ¥) or 2b = b’ (if 2 € V); it
follows from clauses (1)-(3), but is not derivable. A detailed analysis shows
that it suffices to consider the case that Dy = D}y V m'u + r = r’ has the same
maximal term u as D, that ¥m’ = xn for some ¥ € ¥, x € N0 and that
m' < m (otherwise, Dy could not be superposed on s[mu + g]).

The abstraction rule is extended to non-ground premises in essentially the
same way as the cancellative superposition rule. The new question that arises
here is: Do we have here a similar situation as for the standard superposition
rule, where superpositions at or below variable positions are superfluous? Can
we avoid an abstraction if the maximal term of D overlaps with a variable in
C, rather than with an atomic term? The answer is negative, in general. This
is due to the fact that, even if D overlaps only at a variable, the “hypothetical
superposition” with the entailed clause Dy may take place at a non-variable
position. As an example, consider the clauses D = b+ ¢ =~ d and C =
f(z+) = g(c'). The maximal term b of D overlaps only with the variable z
in C. However, D, together with some other clause, may entail Dy =b+c ~ d',
allowing a superposition on C' at a non-variable position. Only if the variable
x occurs immediately below the free function symbol or if it occurs in a sum
z + t1[z] + - -+ + t,[z], where every other summand contains z as a proper
subterm, we can be sure that the hypothetical superposition would take place
at a variable position. This is therefore the only situation where an abstraction
inference is superfluous.

The Non-Ground Case (IT). When we discussed the lifting of the inference
rules to non-ground clauses, we left out the handling of unshielded variables.
Recall that a variable z is shielded in a clause C, if it occurs at least once below
a free function symbol, i.e., if C contains some atomic subterm ¢[z]. Shielded
variables are easy to handle because they cannot correspond to maximal terms
in a ground instance C@. An unshielded variable z, on the other hand, can be
instantiated with an atomic term x6 = @ that is maximal in C8. Even worse,
it can be instantiated with a sum z6 = pu + 5 that contains an unknown
number of occurrences of the maximal term @ and a likewise unknown sum §
of non-maximal atomic terms. Now uu may be involved in a ground positive

43

cancellative superposition or similar inference from C8. How can we represent
this ground inference on the non-ground level without introducing second-order
variables?

The solution for this problem is to map the variable x to a sum of two fresh
variables, £ + &. The variable Z is meant to subsume the maximal part of x8,
that is u#, the second variable & is meant to subsume the rest, that is 5. As y
is unknown, it is now no longer possible to count the number of occurrences of
the maximal terms in the respective clauses in order to compute the difference
in the positive cancellative superposition rule. We can, however, use ACU-
unification to “subtract” the terms: Suppose that the maximal literal of the
left premise contains the unshielded variables y; and y and that the maximal
literal of the right premise contains the unshielded variable z; and the maximal
terms uy and 2us, where u10 = u260 = 4. The variables §1, 2, and &1 represent
the occurrences of @ in y10, y»0, and £160.2! To compute the difference k@ of
(Z1 + u1 + 2u2)0 and (g1 + Y2)0, we introduce a new variable z and compute
a complete set U of ACU-unifiers of &1 + u1 + 2us and z + 41 + ¢2. For one
o € U, we have 8 = op over var(u;) U var(uz) U {Z1, 91, 92, 2}, thus k2 is an
instance of zo.

In general, we may assume that a literal e has the form

Zmixi—l—Zm}guk—i—szs',

el keEK

where every x; is an unshielded variable for ¢ € I and every uy is a maximal
atomic term for k& € K. Then the sum), ; m&; + >, mpux takes the
role of mu in the ground inference rule; the sum), ; m;#; is joined with
s. We may leave out unshielded variables that occur also in the right-hand
side of e or in some negative literal — if the maximal atomic term (on the
ground level) occurred also on the right-hand side, then the positive cancellative
superposition rule would not be applicable, if it occurred in some negative
literal — €', then — ¢’ would be even larger than e.

The lifting of the negative cancellative superposition rule happens in a
similar way. Again, every unshielded variable z; is mapped to &; + &;, such
that &; represents the occurrences of the maximal atomic term of the ground
clause and &; represents the rest of the term. The additional problem that
arises here is that we can no longer compute a unique pair (v,x). There
is no universal solution for this problem. The general form of the negative
cancellative superposition rule, that we will give in the sequel, may therefore
produce infinitely many inferences for a given pair of premises. In Chapter 5,

2INote that it is not required that the maximal term occurs in all unshielded variables. It
is thus possible that §:10, 920, or 10 is zero.

44

we will show how the general system can be refined to specialized finitely
branching systems for the two most important cases of ¥, that is ¥ = {1} and
T =N0.

Redundancy. The inference rules described so far are only one of the com-
ponents of the cancellative superposition calculus. The other one is the asso-
ciated redundancy criterion. Since understanding the latter requires to some
extent understanding the idea of the completeness proof, we will postpone its
definition until Chapter 4.

3.3 The Inference System

Let us start the presentation of the inference rules with a few general conven-
tions.

Every term occurring in a sum is assumed to have sort Scay. The let-
ters u and v, possibly with indices, denote atomic terms unless explicitly said
otherwise; x, y, and z denote variables. In an expression like), ; m;z; +
Y kex Mpur + 8, both I and K are finite sets of indices; I and K may be
empty, s may be 0, unless explicitly said otherwise. The coefficients m; and
m/, are elements of N”0.

We use the phrase “most general ACU-unifier of s and ¢’ to denote some
member of a fixed complete set of ACU-unifiers of s and ¢. Without loss of
generality we assume that all unifiers in this complete set are idempotent.

If a literal of a clause is selected, then an inference must not involve non-
selected literals of this clause. We use the symbol TCI;it to denote the con-
junction of the following ordering constraints: (i) If an inference involves a
non-selected literal, then it must be maximal in the respective clause (except
for the literal v ~ v’ in standard equality factoring and the literal es in can-
cellative equality factoring). (ii) If an inference involves a selected literal, then
it must be maximal among the selected literals of this clause. (iii) A posi-
tive literal that is involved in a superposition or abstraction inference must
be strictly maximal in the respective clause. (iv) In all superposition and ab-
straction inferences, the left premise is smaller than the right premise. (v) In
standard superposition and abstraction inferences, if s[w] is a proper sum, then
w occurs in a maximal atomic subterm of s.

INFERENCE SYSTEM 3.18 The inference system CS-Infy of the cancellative
superposition calculus consists of the inference rules cancellation, equality res-
olution, standard superposition, negative cancellative superposition, positive
cancellative superposition, abstraction, standard equality factoring, and can-
cellative equality factoring, as described below.

45

Cancellation

C'V [H] e [T1]
C'V [-] ey [Ty AN T ANTO]

if the following conditions are satisfied:

o e = Zmixi+2m,’;uk+sz2mgxi+ Z myu + .

icl keK il keK!
® ¢y = za+2m,¢i‘,’ + s~ Zm;:i', + 5.
el el

e JUK #0and I' UK’ # 0.
e If [-] e1 is a positive literal:

{z;|i €I} =celig(C'Ver)Nvar(lhs(er)) \ var(neg(C")),

{z;|i eI} =elig(C'Ver)Nvar(rhs(e;)) \ var(neg(C")).

Otherwise:

{z;i|i eI} =elig(C’'V —er)Nvar(lhs(er)),
{z;|i €I} =elig(C'V —er) Nvar(rhs(er)).

o If KUK' # 0, u is one of the uy (k € K U K'), otherwise, u is a new
variable.

e o is a most general ACU-unifier of ;. ;mi&; + (X pcxm})u and z +
Sier miti + (Cgegr mi)u.

b TE = /\iEIUI’ Ty :"i'l +i'z A /\kEKUK’ Uk =u A EQ(O’)

oT0:u>s/\u>s'/\/\z-elupu>i7iATgit'

Equality Resolution

Cl V ﬂuzu' |IT]_]]
(o [[Tl NTg /\To]]

if the following conditions are satisfied:
e Either Tx = u=u'=0 or v and u' do not have sort Sgay and Tg = u =1u'.

o To = T§E.

46

Standard Superposition
D' v t=t T3] C' Vv [-] slw] = §' [T1]
D'v C'V[-]s[t|=s [T NTy ANTe ANT0]

if the following conditions are satisfied:

e w is not a variable.
e If s has sort Scan, then w occurs below a free function symbol in s.
[TE =t=w.

o To =s[w] =8 ANt=t ATE®

Negative Cancellative Superposition

D'V ey |[T2]] C'V e [[Tl]]
D'v C'V =g |[T2 ATy NTg /\To]]

if the following conditions are satisfied:
e el = Zmixi + Zm,’;uk—l-s ~ 8.

i€l keK

® e — Zn]y] + Zn;‘vl +tt.
jeJ leL

® e = Z@bm,ﬁ:i + s+ xt' = Z xn;¥; + xt + s’
i€l jeJ

e TUK # () and JU L # 0.

o {z;|ieI}=elig(C'V —er)Nvar(lhs(er)) \ var(rhs(ey)),
{yj | j € J} =elig(D'V ez) Nvar(lhs(ez)) \ var(rhs(ez)) \ var(neg(D")).

e lhs(e;) is not a variable (i.e., either Y, ;m; > 1or), miug +s#0).

e If I = {i1}, m;, =1, and K = (), then lhs(ez) is not an atomic term. If
additionally ¥ = {1}, then J # 0 or ¢ # 0.

e 1 € ¥ and x € N”0 such that ged(w, x) = 1.

o If KUL # 0, u is one of the ug or v; (k € K, | € L), otherwise, u is a
new variable.

o Tp=MNjcrzi =2 +&; A /\jEJyjiﬁj-f-gj AN Npexk=u A Nepvr=u A
Dier Ymudi + Do per Ympu =310 X105 + D X0 U-

o To=u>sANuxs ANuxt ANurxt' A Nepu=&; A N\jeyu-9; ATE

47

Positive Cancellative Superposition

D' V ez [[Tg]] C’ V ep |[T1]]
D'v C'V e [[Tz /\Tl/\TE/\To]]

if the following conditions are satisfied:

e = Zmixi—i— Zm,’;uk—i—szs'.

i€l keK
ey = anyj —I—Zn;‘vl +t=t.
jed leL

ey = zcr—l—Zmi.i:i—i-s—l—t'zangjj—i-t—i-s'.
icl jeJ

TUK # 0 and JUL # 0.

{z;|i €I} =elig(C'"Ver)Nnvar(lhs(e1)))\ var(rhs(ey)) \ var(neg(C")),
{y; | j € J} =elig(D'V ez) Nvar(lhs(ez)) \ var(rhs(ez)) \ var(neg(D")).

If KUL # 0, u is one of the ug or v; (k € K, Il € L), otherwise, u is a
new variable.

o is a most general ACU-unifier of >, ; mi#; + (> ,cx m})u and z +
Y jernidi + (Xiernf)u-

EQ(o0)

To=u=sAur=s Au=t Au=t' A Njcru=& A Njegur7; A TS

Abstraction

D'V ey [T5] C' V [1] slw] = &' [T1]
C'VymwV [‘!]S[y] ~ s |IT1/\TE/\T0]]

if the following conditions are satisfied:

w = Zm,-:z:,-+ Zm,’;uk-i-q.

i€l kEK
ey = anyj +Zn2‘vl +tat.
jed leL

TUK # 0 and JUL # 0.

48

None of the variables x; occurs in the non-variable terms uj or at the
top of q.

{y; | j € J} =elig(D'V ez) Nvar(lhs(ez)) \ var(rhs(ez)) \ var(neg(D")).
w occurs in s immediately below some free function symbol.
¥ € ¥ and x € N”0, such that ged(y, x) = 1.

If KUL # 0, u is one of the ug or v; (k € K, l € L), otherwise, u is a
new variable.

Te = Nicr T =2i + & A /\jeJyjig)j—i—gjj AN Nieg W=t A Nicpvi=u A
Doicr YMiZi + D g Ympu =Pz + EjeJ Xni¥; + D e XN u-

If I ={i1}, my; =1, and K = (), then ¢ = ¢1 + g2, where ¢; is a non-zero
atomic term not containing z;, as a subterm.

There exists a substitution p such that Tgp = true and lhs(es)p is not a
subterm of wp.

To=w>y A sw =8 Au=tAus=t AT

Standard Equality Factoring

C'Vomv Vurd [Ti]
C'V-u=v Vo [[Tl/\TE/\TO]]

if the following conditions are satisfied:

! /
e u, u', v, and v’ do not have sort Sgay-

e Tg =u=w.

eTo=u>u ANu=v.

Cancellative Equality Factoring

C'"Ve Ve [[Tl]]
C'V —ey V ey ’ITl /\TE/\T()]]

if the following conditions are satisfied:

0o e = E m;x; + E mipug + s~ s'.
i€l keK

49

e ey = anxj—FZn;‘vl—i—tz Zn;xj—i—Zn;"vl—l—t'.

JjeJ leL jeJ! lel!
e ey = Z Ynji; + Yt + xs' &~ Z XM L; + xs + Z @bn;-i"j + Yt
JjeJ i€l jeJ’

e JTUK # 0 and JUL # 0.

o {z;|iel}=elig(C'VeaVer)Nvar(lhs(er))\ var(rhs(er))\ var(neg(C")),
{zj|jeJ}=elig(C'VesVer)Nvar(lhs(ez)) \ var(neg(C")),
{zj|jeJ }=elig(C'VeyVer)Nvar(rhs(ez)) \ var(neg(C’)).

e ¢p € ¥ and x € N”°, such that ged(y, x) = 1.

e If KULUL'#(, u is one of the uy or v; (k € K, € LUL'), otherwise,
u is a new variable.

* T = Niequgur @i = & + & N Npegue = u A Nepopvt = u A
Dier xmiti + EjEJ’ @bn;a%j + (ZkEKXmZ + Yer d)n’f’)u =
Djer ¥nits+ (Ciep vny)u.

eTo=u>sAu>=s Au=tAu=t' A Neoopu > & A TGS

THEOREM 3.19 The inference rules of the cancellative superposition calculus
are sound with respect to ACUKTy, i.e., for every inference rule

Ck [Tk] --- Ci [T1]
Cy [To]

we have {C [Tk], - .., C1[T1]} FEv Co[To].
PROOF. By routine computation. O

The inference rules remain sound if we ignore the ordering constraints of
the premises and the conclusion. For every inference rule

Cy [Tk A Té]] ... C4 I[Tl /\Tll]]
Cy [[T() A Té]]

where Tj,..., T} are equality constraints and Tj,...,T} are ordering con-
straints, {Cy [Tk], ..., C1 [T1]} Ew Co [To] holds. In other words, if the order-
ing constraints of the premises are non-essential in a given theorem proving
derivation, then so are the ordering constraints of the conclusion. For the ab-
straction rule, an even stronger result can be obtained: It remains sound, even
if all its conditions are ignored.

50

4 Refutational Completeness

4.1 Ideas and Concepts

In the previous chapter we have presented the inference system of the cancella-
tive superposition calculus. We will now define the associated redundancy cri-
terion and demonstrate that the resulting calculus is refutationally complete.
Again, we start with an informal explanation of the ideas of the proof, before
we present the formal details.

Constructing an Interpretation. A theorem proving calculus is refuta-
tionally complete, if every saturated set of formulae either contains a contra-
dictory formula or is consistent, i.e., has a model. If the formulae in ques-
tion are constrained clauses, then contradictory formulae have the form L [T7,
where T is satisfiable. In other words, contradictory formulae are constrained
clauses that possess the empty clause as a ground instance.

It is obvious that a set N of clauses does not have a model if the empty
clause is among the ground instances of clauses in N. Our task is to show
the reverse: Whenever N is saturated and does not contain a contradictory
formula, then we will construct a model for N. The essential idea is due to
Bachmair and Ganzinger [12]. Let N be saturated and let N be the set of all
ground instances of clauses in N. We inspect all clauses in N in ascending
order and construct a sequence of interpretations, starting with the empty
interpretation. If a clause C' € N is false in the current interpretation and has
a positive and strictly maximal literal e, and if some additional conditions are
satisfied, then a new interpretation is created extending the current one in such
a way that e becomes true. We say that the clause is productive. Otherwise,
the current interpretation is left unchanged. In this way we generate a sequence
of interpretations with the following monotonicity properties:

(i) If an atom is true in some interpretation, then it remains true in all
future interpretations.

51

(ii) If a clause is true at the time where it is inspected, then it remains true
in all future interpretations.

(iii) Ifa clause C = C' V e is productive, then C remains true and C’ remains
false in all future interpretations.

It is clear from (ii) and (iii) that every clause in N is true in the limit interpre-
tation, if it is either true at the time where it is inspected or if it is productive.
It remains to show that, by saturation, every ground instance in N falls into
one of these two classes.

Standard Superposition. The scheme described so far characterizes most
model construction proofs for superposition-like calculi. Before we explain our
own refinements, let us recapitulate the standard superposition calculus. Here
the interpretations are the sets of all equations ¢ ~ t', such that the terms ¢
and ' can be rewritten to a common term t”, using the previously collected
maximal literals as rewrite rules. A clause C' V e may be productive only if
the left-hand (i.e., larger) side of e is irreducible with respect to the current
set of rules, and if C’ remains false after e has been included in the rewrite
system. If the clause C = C' V e is productive, then the left-hand side of e
is larger than every term occurring in negative literals of clauses smaller than
C or in positive literals of productive clauses smaller than C. Consequently,
the rule e cannot be used to rewrite such literals. This guarantees that the
above-mentioned properties (ii) and (iii) hold. Furthermore, as every newly
added rule is irreducible with respect to the old rules, and as its left-hand
side is larger than the left-hand sides of the old rules, the resulting rewrite
systems are confluent and terminating, hence the interpretations are equality
interpretations.

According to the redundancy criterion of Bachmair and Ganzinger [12],22
a ground clause Cy is redundant with respect to a set of clauses N, if there
are ground instances Di,...,D, of clauses in N such that Cj is entailed
by Di,...,D, and each D; is smaller than Cj. Similarly a ground infer-
ence is redundant with respect to a set of clauses N, if there are ground
instances D1,...,D, of clauses in N such that the conclusion Cy is entailed
by Di,...,D, and each D; is smaller than the maximal premise C;. These
definitions guarantee that Cy is true in an interpretation whenever the clauses
Dy,...,D, are true.

If the non-maximal premises (if any) of a redundant inference are produc-
tive and Dy, ..., D,, are true at the time where C; is inspected, we can show

*?Note that “redundancy” is called “compositeness” in [12]. In later papers the standard
terminology has changed.

52

even more: As above, the conclusion Cj is true in the current interpretation.
Furthermore, by property (iii), the subclause C’ of a productive clause C' V e
is false, hence all literals of Cy that are copied from a non-maximal premise
are false in the current interpretation. Together, these two facts allow us to
prove that the maximal premise C; must be true in the current interpretation.

EXAMPLE 4.1 Consider the set of ground clauses (1)—(5):

v ~d (1)

brc (2)

f(d)#d (3)

(b,) # g(c, b/) fe) (4)
fo)=b (5)

If the ordering on terms is the lexicographic path ordering induced by the
precedence f = g = b = b = ¢ = ¢ = d, then these clauses are ordered by
(1) <c (2) <c (3) <c (4) <o (5)-

We start the model construction with the empty set of rewrite rules. Clause
(1) is false in the empty interpretation, its only (thus maximal) literal is pos-
itive, and ' is irreducible with respect to (). Hence we add the rewrite rule
b — .

Clause (2) is again false, b is irreducible with respect to {b' — ¢'}, hence
the clause is productive and we add the rewrite rule b — c.

Clause (3) is true in the current interpretation, so the interpretation is left
unchanged.

Clause (4) is false in the current interpretation, as both g(b, ') and g(c, b')
can be rewritten to g(c,c’) using the set of rewrite rules {6’ — ¢/, b — ¢}, We
add the maximal literal as a rewrite rule f(c) — ¢'.

Finally we consider clause (5). As f(b) — f(c) — ¢ « b, this clause is
true in the current interpretation.

It is easy to verify that the set of three rewrite rules {6/ — ¢/, b — ¢, f(c) —
'} generates a model of all clauses (1)—(5). In fact, this set of clauses is satu-
rated: It allows only one inference, namely a standard superposition inference
from (2) and (5); this inference is redundant because its conclusion f(c) ~ b’
follows from (1), (2), and (4), all these clauses being smaller than clause (5),
the maximal premise.

Let us now see what happens if we replace clause (5) by

f) 7V (6)

(2) <c¢ (3) <c¢ (4) <c¢ (6), so we start

The ordering on clauses is (1) <¢
again by checking clauses (1) to (4), which produces the set of rewrite rules

53

{t =, b—¢, f(c) > ¢'}. When we inspect clause (6), it turns out that this
clause is false in the current interpretation. However, it is now impossible to
extend the rule set because the only literal of (6) is negative. Consequently,
the set of clauses (1)—(4) and (6) can not be saturated. There must exist a
non-redundant inference.

Which inference is this? Let us have a closer look at clause (6). It is false
in the current interpretation because f(b) — f(c) — ¢’ < b'. The first rewrite
step in this derivation uses the rewrite rule b — ¢, that has been produced by
clause (2). Indeed it is the standard superposition inference from clause (2)
and clause (6), which violates saturation.

The Theory Axioms. Cancellation is an operation that inherently involves
both sides of an equation. To adapt the model construction depicted above to
the cancellative superposition calculus, we generalize the notion of rewriting
in such a way that simultaneous changes on the left and right-hand side of an
equation become possible. We do not rewrite each side of the equation by its
own any longer, using a rewrite relation on terms,

t t

|, |

* [/ *

t" t”
Rather we use a rewrite relation on equations:
txt

™

t” ~ tlI

In this way, we can not only replace equals by equals in one side of the equation,
we can also transform an equation u + ¢ &~ u + t' into the equivalent ¢ ~ t'.
Even more important, we can use a “rewrite rule” mu + s ~ s’ to transform
an equation mu +t ~ t’ into s’ +t ~ t' + s. The interpretation induced by a
set R of “rewrite rules” is now the set of all equations that can be rewritten
to 0 = 0 using R.

The technique sketched so far would be sufficient to prove the completeness
of our calculus, if + were the only non-constant function symbol and ¥ =
{1}. In the presence of free function symbols and the torsion-freeness axioms,
however, additional problems arise.

54

EXAMPLE 4.2 Suppose that the rules 2b + ¢ ~ d and 2b’ + ¢ ~ d are elements
of our set of rewrite rules. Then we can, for instance, rewrite 2b ~ 2b’ to 0 =~ 0.
This is possible by first applying the first rule, yielding d ~ 2b’ + ¢, then by
applying the second rule, yielding d + ¢ = d + ¢, and finally by cancelling d
and ¢, yielding 0 ~ 0.

However, there is no way to rewrite f(2b) =~ f(2b') to 0 = 0, although this
equation is a consequence from the two rewrite rules and the theory axioms,
just as 2b =~ 2V’ is.

Similarly, if 2 € ¥, then 3b = 3b' follows from the current set of rules and
ACUKTy, hence it should be true in the current interpretation. Nevertheless,
even our generalized form of rewriting is not powerful enough to rewrite 3b ~ 3b’'
to 0 = 0.

A two-step approach solves the problem. Rather than constructing one
set of rewrite rules to determine the truth or falsehood of an equation, we
construct two such sets. Let us call the elements of these sets primary and
secondary rules, respectively. In the beginning of the model construction both
sets are empty. We use the current set of secondary rules to check whether
some clause is true. If it is false, and if the other conditions for productivity are
satisfied, then two things happen: First we turn the maximal positive literal
e of the clause into a primary rule. Afterwards, we determine a certain set of
rules s = s’ such that s ~ 1s’ can be rewritten to 0 ~ 0 using the primary
rule e and all the current secondary rules. This set of rules is added to the
current set of secondary rules.

EXAMPLE 4.3 Let ¥ = N”0 and consider the set of ground clauses (1)—(4)

26 + e~ d (1)
2b+c~d (2)
3b~ 30’ (3)
£(2b) ~ £(2b") (4)

ordered by (1) <¢ (2) <¢ (3) <c (4)-

We start the model construction with empty sets of primary and secondary
rules. Clause (1) is false in the empty interpretation, so 2b' + ¢ ~ d is turned
into a primary rule. As this rule can be rewritten to 0 = 0 by itself, it is also
added to the set of secondary rules.

Clause (2) is false in the interpretation generated by the current set of
secondary rules. So 2b+ ¢ ~ d becomes a primary rule and, again, a secondary
rule. Furthermore, it is now possible to rewrite 2b ~ 2b' to 0 ~ 0 using the

55

primary rule 2b + ¢ &~ d and the secondary rule 2b' + ¢ ~ d, therefore b ~ b’
becomes a secondary rule.??

Since b = b’ is now a secondary rule, both 3b = 3b’' and f(2b) =~ f(2b') have
a derivation to 0 = 0 using the secondary rules. Clauses (3) and (4) are thus

true in the current interpretation.

The integration of the theory axioms allows a small generalization of the
redundancy criterion. In the definition of redundancy, we can replace the
usual entailment relation =5 by the theory entailment relation =g. A clause
is therefore redundant with respect to NV, if it follows from smaller ground in-
stances of clauses in N and from ground instances of the equality and ACUKTy
axioms (analogously for inferences).?4

It remains to show that the interpretations generated this way are in fact
equational models of the given clauses and the theory axioms. To this end,
we prove first that the generalized rewrite relation is confluent on the set of
all equations that allow a derivation to 0 ~ 0 (by the usual analysis of various
kinds of critical pairs). As an easy corollary we obtain that the interpretations
satisfy the equality axioms and the theory axioms ACUKTg. Finally, we can
demonstrate that the limit interpretation is a model of the ground instances in
N whenever N is saturated and does not contain the empty clause. This proof
proceeds in essentially the same way as for standard superposition: Whenever
we encounter a clause that is neither true in the current interpretation nor pro-
ductive, then we can show that there is some non-redundant ground inference
with this clause, which violates saturation.

Lifting. The refutational completeness proof that we have sketched so far
is based not on the clauses in N but on their ground instances: The inter-
pretation is constructed from the set of ground instances, the proof that it is
in fact a model proceeds by inspecting the ground instances. When we en-
counter a ground instance that it neither true in the current interpretation
nor productive, we can show that some non-redundant ground inference with
this clause is possible. In the calculus, however, we want to work with non-
ground, even with constrained clauses, each of whom may represent an infinite
number of ground instances. To connect these two worlds, we have to extend
the definition of redundancy (and hence, of saturation) to non-ground clauses,

23These two rules are not the only new secondary rules generated but the only ones that
are relevant for this example. In fact the sets of secondary rules that are added in each step
are usually infinite.

%4In some theory superposition calculi, for example in AC-superposition (Wertz [100],
Bachmair and Ganzinger [9]), there are ordering conditions not only for the instances of
clauses of N, but also for the instances of the theory axioms. In our case there are no such
requirements; the instances of the equality and ACUKTy axioms may be arbitrarily large.

56

and we have to relate inferences between clauses in N with inferences between
instances of these clauses.

We have already defined ground instances of clauses, and we can do the
same for inferences. If there is an inference from non-ground clauses and an
inference from ground instances of these clauses, then the latter is called a
ground instance of the former. The redundancy of non-ground clauses and
inferences can now be defined via lifting: We say that a non-ground clause or
inference is redundant, if all its ground instances have this property.

It is important to note that not every inference from ground instances
C0,...,C10 is a ground instance of an inference from Cy, . .., Cy. For example,
ifCy = bmec, C = f(z,z) =z, 0§ = {x — b}, and b > c, then there is a
standard superposition inference from the ground instances C20 = b =~ ¢ and
C16 = f(b,b) ~ b. However, there is no inference from Cs> and C; themselves,
since the standard superposition rule prohibits overlaps at (or below) a variable
position of Cy. Similar restrictions exist for other inferences, for instance for
negative cancellative superposition inferences. The purpose of the so-called
lifting lemmas is to show that all ground inferences that are actually needed in
the refutational completeness proof are in fact ground instances of inferences
from clauses in N.

Handling Constraints. While theory axioms add only little to the difficulty
of the redundancy concept, things become significantly more complicated when
we turn to constraint superposition. Let us return to the example mentioned
in the previous paragraph. If Co = b~ c and C; = f(z,z) = x are clauses in
N, then there is a standard superposition inference ¢ from the ground instances
(260 = b~ cand C10 = f(b,b) = b, namely

brc f(b,b) = b
f(bye) = b

However, there exists no inference from C> and C; themselves. Saturation
means closure up to redundancy of non-ground inferences, or equivalently,
redundancy of ground instances. The inference 7 is not a ground instance from
an inference from clauses in N, hence it is not covered by saturation.

If we are working with unconstrained clauses, it turns out that this is not a
problem. Let the equality interpretation E be a model of all ground instances
of clauses in N that are smaller than C160. In the completeness proof, we have
to show that E is also a model of the conclusion of 7. We can do this without
resorting to saturation: Let 8’ = {z + ¢}, then E is in particular a model of
020 = b=~ c and C10' = f(c,c) = c. As the conclusion of 7 follows from these
two clauses and the equality axioms, it is also true in E.

57

If we work with constrained clauses, this argument fails. If we replace the
unconstrained clause C; with Cy [T] where T is the equality constraint z = b,
then the original substitution @ satisfies T', but the new substitution ¢ does
not. As C16’ is not a ground instance of C; [T7], it need not be true in the
interpretation E.

The problem can be solved as follows. Let x be a variable of C' and let £
be an interpretation. We say that x is E-variable minimal?® in C#, if there
exists no term 7’ such that 6 > 7’ and 2z ~ r' € E.2® An instance C9 is
called E-variable minimal, if all variables of C' are variable minimal in C6. The
rules of the model construction are modified in such a way that an instance
C9 is allowed to be productive only if it is variable minimal with respect to
the current interpretation. In this way, instances like C16 = f(b,b) = b above,
which might allow non-liftable inferences, are ignored.

For unshielded variables that occur only positively, the definition of variable
minimality has to be slightly weakened. With the definition given above, it
might happen that an instance f(b) + ¢ = d V f(b) + ¢ = d’' of a clause
x ~dV r =~ d is variable minimal with respect to the current interpretation
and productive, but adding its maximal literal f(b) + ¢ = d to the current
interpretation destroys variable minimality. For such variables x, we may only
require that the non-maximal subterms of 6, here b and ¢, are minimal in
E.2" This requirement is still necessary, though. Without it, it would be
impossible to show that the conclusions of inferences from variable minimal
ground instances are again variable minimal.

The limit interpretation E obtained this way is a model of the instances of
clauses in N that are E-variable minimal. If we want to show that it is a model
of all ground instances of clauses in N, we need an additional property, called
model generalizability. We will show that, if a theorem proving derivation
starts from a set of unconstrained clauses, then every set of clauses occurring
in the derivation is model generalizable.

The definition of redundancy for superposition with constraints is changed
accordingly. In the standard superposition calculus, a non-ground clause is
redundant with respect to IV, if every ground instance follows from smaller
ground instances of clauses in N. In the constraint case, we have to demand
that every E-variable minimal ground instance follows from smaller E-variable

25The traditional name for this property is “irreducible”, rather than “variable minimal”.

We use the latter to avoid a clash of nomenclature and reserve the adjective “irreducible” to
refer to the rewrite relation on equations introduced earlier.

26This explanation is slightly simplified. The exact definition refers to the set of rewrite
rules R that induces the interpretation E, rather than to E itself.

*TFor variables that do not have sort Scawm there is a stronger condition that refers to the
size of rules used to rewrite z6.

58

minimal ground instances of clauses in NV, and possibly from sufficiently small
equations in E. Of course, we have the problem here that F, that is the limit
interpretation computed during the model construction, is not known. For
this reason, we must require that the above condition holds not only for the
limit interpretation E, but for all possible results of our model construction.
We refer to such interpretations, or more precisely to the rules that generate
them, as stratified.

4.2 Redundancy

DEFINITION 4.4 A set R of ground equations is called stratified, if for all
ground equations ey and e; with mt(eg) > mt(e;) we have R =g e; implies
R7LTE0 =y .
LEMMA 4.5 Let R be a stratified set of ground equations. Then we have for
all ground equations ey and e;: If mt(eg) > mt(e1), then R =g e; implies
R<L60 IZ\II €1.

PROOF. As R is stratified, we know that R =g e; implies R™L7°! =g e;. If
mt(eg) > mt(e;), then eg >, — e, hence R™L7€t C R=L€0, O

DEFINITION 4.6 Let C6 be a ground instance of a clause C [T]. Then z €
var(C) is called a positive maximal variable of C and 0, if x is unshielded in
C, occurs only in positive literals, and x6 > mt(ef) for all equations e that
contain .

DEFINITION 4.7 Let R be a stratified set of ground equations, let C8 be a
ground instance of a clause C [T'], and let x be a variable in var(C). Then
is called R-variable minimal in C9, if

e there is no term 7' such that 6 > r' and 20 ~ r' € clg(R); or

e x is a positive maximal variable of C' and 6; x does not have sort Scau;
there is no subterm r of 6 such that r ~ ' € clg(R) and mt(z8) = r = r';
there is no literal x ~ r" of C and 0 ~ r' € R such that 20 > r' and
™8 - r'; or

e x is a positive maximal variable of C and 0; x has sort Scay; there is no
subterm r of x6 such that r = r' € clg(R) and mt(z8) = r = r'.

The clause C0 is called an R-variable minimal ground instance, if all variables
in var(C) are R-variable minimal in C6.

59

The set of all R-variable minimal ground instances of C [T'] is denoted by
ving(C [T]). If N is a set of constrained clauses, ving(N) is the union of all
ving(C [T]) for C [T] € N. In particular, if R =), then every ground instance
of a clause is R-variable minimal,?® hence vmg(N) equals N, the set of all
ground instances of clauses in N.

DEFINITION 4.8 Let N be a set of constrained clauses. We say that a con-
strained clause C [T'] is ACUKTg-redundant with respect to N, if for every
stratified set of ground equations R and every R-variable minimal ground in-
stance C8, R*t™(CO) U ymp(N)=cC? =y C6.

To obtain a definition of redundancy for inferences, we need the concept
of a ground instance of an inference. Here a slight complication is due to the
fact that the conclusion of an abstraction inference is not ground, even if the
premises are.

DEFINITION 4.9 Let Cq [To],C1 [T1],--- ,Ck [Tk] be constrained clauses and
let 8 be a substitution such that C;0 is ground and T;0 = true for all i €
{0,...,k}. If there are inferences (other than abstraction inferences)

Cp [Th] - C1[TH]
Co [To]

and

Cio ... C10
Cob

then the latter is called a ground instance of the former. It is called R-variable
minimal, if additionally C;6 is an R-variable minimal ground instance of C; [T']
for all i € {0,... ,k}.

DEFINITION 4.10 Let Cy [Ty], Ci1 [T1], C2 [T2] be constrained clauses and let
0 be a substitution such that C10 and C56 are ground and T10 = T560 = true.
If there are abstraction inferences

Cs [T%] C:1 [Th]
Co [To]

and

C20 Ci6
Cof [To9]

2 Note that 0 is stratified and that clg(0) is the set of all ground equations ¢ & ¢ (modulo
ACU).

60

then the latter is called a ground instance of the former. It is called R-variable
minimal, if additionally C;6 is an R-variable minimal ground instance of C; [T]
fori € {1,2}.

Whenever we talk about instances of inferences, we assume that in the
ground clauses exactly those literals are selected that correspond to selected
literals in the non-ground clauses.

DEFINITION 4.11 Let N be a set of constrained clauses. A cancellation, equal-
ity resolution, or equality factoring inference
C [T1]
Co [To]
is called ACUKTg-redundant with respect to N if for every stratified set of
equations R and every R-variable minimal ground instance
ce
Co

R1ml(CO) VmR(N)<CCG Fe Cof.

DEFINITION 4.12 Let N be a set of constrained clauses. A superposition in-
ference

D' V ey [T3] C [T1]
Co [To]
is called ACUKTg-redundant with respect to N if for every stratified set of
equations R and every R-variable minimal ground instance
D' V ey co
Cob
where e38 € R, R*™UCP) Jymp(N)*cC? =y Cyf.

DEFINITION 4.13 Let N be a set of constrained clauses. An abstraction infer-
ence
D'V ey [T%] C [T1]
Co [To]
is called ACUKTy-redundant with respect to N if for every stratified set of
equations R, every R-variable minimal ground instance

DOV e 8
Cof [Tof]

where es0 € R, and every substitution p such that Cyfp is an R-variable
minimal ground instance of Cy [Tp], R C0) Uvmp(N)3cCl =y Cyhp.

61

DEFINITION 4.14 Let N be a set of constrained clauses. The set of all clauses
that are ACUKTg-redundant with respect to N is denoted by CS-Red$(N).
The set of all inferences that are ACUKTy-redundant with respect to N is
denoted by CS-Red%,(N).

LEMMA 4.15 The pair CS-Redy = (CS-RedY,, CS-Red$) is a redundancy cri-
terion with respect to the inference system CS-Infg and the consequence re-
lation =yg.

PROOF. We have to show that CS-Redy satisfies the conditions (i)—(iv) of
Def. 2.28. Condition (ii) is obvious. To show condition (i), let N be a set of
constrained clauses, let C [T] be some clause in CS-Red $(IN) and let C8 be an
instance of C [T]. We have to prove that N \ CS-Red$(N) ¢ C6. Let R =0.
We know that vmg(N) is the set of all ground instances of clauses in N. As
C[T] € CS-Red§(N), we have ving(N)*c¢¢% =g C8. By the compactness of
first-order logic there exists a finite subset of vmg(N)*c? that entails C. Let
Ny be the minimal finite subset of vmg(N)*c“? (with respect to the multiset
extension of >¢) such that Ng =g C8. If some clause D in N were a ground
instance of a clause in CS-Red$(N), then there would exist Di,...,D, €
vmg(N)=¢P such that {D1,... ,D,} Fe D and NoU {Ds,... ,D,}\ {D} Fu
C#é. This is impossible, however, as it contradicts the minimality of Ny. Thus
N\ CS-Red$(N) ¢ CS-Red§(N).

Let N and N’ be sets of constrained clauses such that N’ C CS-Red $(IN),
let C[T] be a clause in CS-Red${(N). To prove condition (iii), we have to
show that C[T] is also ACUKTy-redundant with respect to N \ N'. Let
R be a stratified set of ground equations and let C8 be an R-variable min-
imal ground instance of C[T]. As C[T] € CS-Red$(N), we know that
R=wmlC0) Yymp(N)*cC? =y C. By the compactness of first-order logic there
exists a finite subset of R<:™!(C0) and a finite subset of vmp(N)*¢“? that en-
tail CH. Let N be the minimal finite subset of vmp(N)<c¢? (with respect to
the multiset extension of >) such that R¥tm(C8) y N, e CO. If some clause
D in N, were a ground instance of a clause in CS-Red$ (), then there would
exist Di,...,D, € vmg(N)*°P such that R¥v™(P) y {Dy,... ,D,} =g D
and thus Rv™(C0) y Ny U {Dy,...,D,} \ {D} =¢ C6. This is impossi-
ble, however, as it contradicts the minimality of Ng. Therefore, R=<L™1(C) |
vmpg(N \ CS-Red$(N))=c%? |=¢ C8, which implies that C [T] is ACUKTg-
redundant with respect to N \ CS-Red$(NN). The second part of condition
(iii) is proved analogously.

It remains to prove that condition (iv) is satisfied. Let ¢ be an arbitrary
inference whose conclusion Cy [Tp] is contained in a set of clauses N. We have
to show that . € CS-Red%,(N). Let R be a stratified set of ground equations.

62

If ¢ is not an abstraction inference, let :6 be an R-variable minimal ground
instance of + with maximal premise C@ and conclusion Cyf. As Cyf <o C8
and as Cpf is an R-variable minimal ground instance of Cy[Ty] € N, we
have R=v™C) U ymp(N)cCl e Cpf, which proves that ¢ is ACUKTy-
redundant. The proof for abstraction inferences is similar, using the fact that
if 10 is a ground instance of an abstraction inference with maximal premise C6
and conclusion Cy8 [Tp8] and if To6p = true, then Cofp < C6. O

DEFINITION 4.16 Let C [T] be a constrained clause. A variable x € var(C) is
called lower bounded, if there are substitutions 6 and p mapping all variables
of C[T] to ground terms such that z6 < xzp, yd = yp for every variable y
different from z, and Tp = true, T # true.

DEFINITION 4.17 A constrained clause C [T'] is called lower bounded, if some
variable & € var(C) is lower bounded in C [T7].

DEFINITION 4.18 We say that a set of constrained clauses N is model gener-
alizable, if for every stratified set R of equations, clg(R) is a model of ving(N)
whenever clg(R) is a model of vimg(N).

LEMMA 4.19 If N does not contain a clause that is lower bounded, then N is
model generalizable.

PROOF. Suppose that R is a stratified set of equations such that clg(R) is a
model of vimg (V). Consider an arbitrary ground instance Cp of a clause C [T']
in N. Let 0 be the substitution that maps every variable x € var(C) to the
minimal term ¢ such that zp ~t € clg(R) and every variable z € var(T') \ var(C)
to zp. Since C [T is not lower bounded and z6 < zp for every z € var(C), we
have T8 = Tp = true, so C6 is a ground instance of C [T]. Moreover, C8 is
R-variable minimal, hence clg(R) is a model of C8. As clg(R) is also a model
of zp = z0 for every z € var(C), it must be a model of Cp. O

LEMMA 4.20 If Ng - Ny - Ny = ... is a (finite or infinite) derivation of the
cancellative superposition calculus and Ny is model generalizable, then the
limit N, of the derivation is model generalizable.

PROOF. Let R be a stratified set of equations such that clg(R) is a model of
ving(Ny). Let C[T'] be an arbitrary clause in Ny with a ground instance C¥6
in vimg(Ng). As Ng C Ny, U C’S-RedS(Noo), we distinguish between two cases.
If C[T] € N, then C8 in ving(Ny), so it is true in clg(R) by assumption.
Otherwise C [T] € CS-Red$(Nwo), so R¥L™UCO) Uvmp(Ny)*0C? =g C8. As
clg(R) is a model of R and ving(N), C8 is true in clg(R). This proves that

63

clg(R) is a model of vmg(Np). Since Ny is model generalizable, clg(R) is a
model of vmg(Ny). Now Ny ¢ Noo, hence clg(R) is a model of vmg(N)-
a

4.3 Lifting

Under which conditions is an inference from ground clauses C;0 a ground
instance of an inference from C;? This question will be answered by the so-
called “lifting lemmas”.

LEMMA 4.21 Let R be a stratified set of equations. Let D [T3] and C [T1] be
two constrained clauses (without common variables) and let 6 be a substitution
such that T50 = T160 = true and D and C6O are ground R-variable minimal
instances. If there is a positive cancellative superposition inference from D6 and
C9, then the inference is an R-variable minimal ground instance of a positive
cancellative superposition inference from D [T3] and C [11].

PROOF. We may assume that C8 and D@ have no selected literals and C0 >
Df. Let D = D'V e; and C = C' V ey, such that e2f and e16 are strictly
maximal in D@ and C6. Suppose that e10 = mu + 5~ &, e = nu +t =~ t,
where 4 is an atomic ground term, @ > 5,4 >~ §, @ >~ t, @~ t,and m > 7 > 1.
Then these clauses allow a positive cancellative superposition inference

DoV au+t~t C'ov mu+s~éd
DoV COV (m—n)u+s+t' ~t+§

that we denote by 7. By the ordering conditions above, @ > y@ for every
variable y that is not eligible or occurs in the right-hand sides of e; or es or
in negative literals of C or D. Let {z; | i € I} = elig(C) N var(lhs(e1)) \
var(rhs(e1)) \ var(neg(C)) and {y; | j € J} = elig(D) N var(lhs(ez)) \
var(rhs(ez2)) \ var(neg(D)). We may assume that

el = Zmimi+ Z miug + s~ s
icl keK
such that

zi0 = p;u+5; for i € I, where y; € N and u > §;,
upd =u for k € K,
M= ier Miki + D e Mi

and analogously

64

ey = anyj—l—Zn;‘vl—l—tzt'

jeJ leL
such that

yj0 =vju+t; for j € J, where v; € N and @ > ¢,
vye=1u forl e L,

=D jes Vi + 2ier ™
t'6.

Hllhﬂ

Let z, &;, &;, §j, and 9; be new variables for : € I and j € J. We define a
substitution 6’ by

9,:9U{§Jil—>u1’ﬂ,§:il—>§1’,QjI—)I/jﬂ,,gjl—>fj,zi—>(m—’r_l)ﬁ|i61,j€¢]}.

Let u be any of the ug or v; (k € K, l € L), or a new variable, if K U
L = 0. Obviously ¢ is an ACU-unifier of Y ,.; mi&; + (3 pcx mf)u and
2+ Y jerni9i + (Xiep nf)u, therefore there is an idempotent most general
ACU-unifier o and a substitution p such that ¢ = op over Dom(é’). Define
0" =opU{ur u},if KUL =0, and 8" = op, otherwise. There is a positive
cancellative superposition inference ¢

D' V ez |[T2]] Cl V e [[Tl]]
D'V C'V e |[T2 ATy ANTg /\To]]

where the equation ey and the constraints Tg and T are defined by

e =20+ Y migi+s+t~Y ngtt+ts
i€l jeJ
Te = Nier @i =&+ & A Njeg¥i =95 + 9
AN Nperg e =u N Nepvi =u A EQ(o)
To=u>sAu>=s ANu=t ANux>t
AN Nieru = & A /\jeJu>gj /\T(I)ait.

As 0" = 6 over var(C [T1]) U var(D [T2]), we have C8" = C6, D8" = D@,
T16" = T16 = true, and 140" = T»0 = true; furthermore, it is easy to check
that Tr#" and To#" are true. As egf” = (m—n)a+ 5+t ~t+ 7, we see that
z = 10" is a ground instance of .

It remains to show that ¢ is an R-variable minimal ground instance. The
premises are R-variable minimal by assumption. To prove that the conclusion
Cy of 7 is R-variable minimal, too, let us first consider a variable z € var(eg).

65

If z occurs in s, s, t, or #, then is shielded or occurs also in some negative
literal of C' or D’. Hence it is neither positive maximal in Cy nor in C (or D).
As z is R-variable minimal in the latter, it must be R-variable minimal in the
former.

If z is one of the &; (or one of the g, this is proved analogously), then ;0"
is a subterm of z;0”, furthermore @ > 5; = #;0". Therefore, #; is R-variable
minimal, no matter whether z; is positive maximal in C or not.

If z € var(zo), then z occurs also in var(Z;o0) for some i € I, or in var(uo),
if K is nonempty. This is obvious from the fact that o is an ACU-unifier of
Sictmidi + (XCpex mi)uand 2+ > jes il + (3er mf)u. If K is nonempty
and z € var(uo), choose some variable y € var(u) such that z € var(yo), Then
68" = xp is a subterm of yop = yf, and as y is R-variable minimal in C6 = C#",
sois z in Cpf”. On the other hand, if z € var(#;0) for some i € I, then 26" = zp
is a subterm of #;0p = #0' and thus a subterm of ;6. If mt(26") < @, then
there is no subterm r of 6" such that r = r’ and r ~ ' € E. Otherwise, if
mt(z0") = @, then z is positive maximal and there is no subterm r of 26" such
that mt(z6") = @ > r = 7' and r = ' € E. In both cases, z is R-variable
minimal in Cy8".

It remains to consider a variable z € var(Cy) \ var(ep). In this case, z
occurs in the same literals in Cy and in one of the premises; hence it is positive
maximal in the latter if and only if it is in the former. Consequently, £ must
be R-variable minimal. O

The following two lemmas are proved in a similar way as the preceding one.

LEMMA 4.22 Let R be a stratified set of equations. Let C[Ti] be a con-
strained clause and let 6 be a substitution such that T10 — true and C8 is a
ground R-variable minimal instance. Then every cancellation, equality reso-
lution, standard equality factoring, or cancellative equality factoring inference
from C0 is an R-variable minimal ground instance of an inference from C [T1].

LEMMA 4.23 Let R be a stratified set of equations. Let D [T3] and C [11] be
two constrained clauses (without common variables) and let 6 be a substitution
such that T50 = T160 = true and D and CO are ground R-variable minimal
instances. Let D = D' V ey such that esf is strictly maximal in D6 and
e € R; let C=C"V []ey.

If there is a negative cancellative superposition inference

D’G \ 629 C’9 \% —|619
Co

(where the maximal atomic subterms of 1hs(e28) and lhs(e16) are overlapped),
and lhs(e;) is not a variable, then the inference is an R-variable minimal

66

ground instance of a negative cancellative superposition inference from D [T5]
and C IITl]]
If there is a standard superposition inference

D'6 Vv exb c'o v [‘!] e16
Co

(where lhs(e26) and some subterm of lhs(e16) are overlapped), then the in-
ference is an R-variable minimal ground instance of a standard superposition
inference from D [T5] and C [T1].

If there is an abstraction inference

D'8 Vv el c'ov [—1] 619[771’5 + (ﬂ
Co [To]

such that
e Chequals C'0 V ~y~=mv+q V [-] e10]y],
e M + § = wh for some subterm w of lhs(ey),
e T + § is not a subterm of y'6 for any y' € var(lhs(ey)),
e the maximal atomic subterm of lhs(e20) equals v,

e ifw=u1x+ q and v occurs in x6, then q = q1 + g2 and ¢, is a variable or
a non-zero atomic term not containing x,

then the inference is an R-variable minimal ground instance of an abstraction
inference from D [T5] and C [T1].

4.4 Rewriting on Equations

When we want to show that the inference system described in Chapter 3 is
refutationally complete we have to demonstrate that every saturated clause set
that does not contain the empty clause has a model. To construct this model
we need a rewrite relation on equations.

DEFINITION 4.24 A ground equation e is called a cancellative rewrite rule
with respect to >, if mt(e) does not occur on both sides of e.

For simplicity, we will usually drop the attributes “cancellative” and “with
respect to =7, speaking simply of “rewrite rules”.

Every rewrite rule has either the form mu + s ~ ', where u is an atomic
term, m € N”0 u = s, and u > ', or the form u ~ s’, where u (and thus s')

67

does not have sort Scay. This is an easy consequence of the multiset property
of >.

At the top of a term, we will use rewrite rules in a specific way: Application
of a rule mu + s ~ s’ to an equation mu + t ~ t' means to replace mu by s’
and simultaneously to add s to the other side, obtaining s’ +t ~ t' + 5.2°

DEFINITION 4.25 Given a set R of rewrite rules, the three binary relations
—+,R, —4,R, and —, on ground equations are defined (modulo ACU) as follows:
e muttrt —,r s+txt +s,
ifmu+ s~ s’ is a rule in R.
o tls|x=t —sp ts] =T,
if (i) s = ' is a rule in R and (ii) s does not have sort Scay Or 8 occurs
in t below some free function symbol.
cuttmutt —, txt,
uru =, 0=0,

if u is atomic and different from 0.

The union of —., g, —+s g, and — is denoted by —g.30

We say that an equation e is y-reducible, if e —, €

and k). It is called reducible, if it is -, -, or k-reducible.

(analogously for ¢

Unlike k-reducibility, v- and d-reducibility can be extended to terms: A
term ¢t is called +-reducible, if ¢t ~ t' —., €/, where the rewrite step takes place
at the left-hand side (analogously for §). It is called reducible, if it is - or
d-reducible.

LEMMA 4.26 Let R be a set of rewrite rules, s a term of sort Scay, m € N0,
Then s is §-reducible with respect to R if and only if ms is; s ~ s’ is §-reducible
(k-reducible, dk-reducible), if and only if ms ~ ms' is.

PROOF. The “only if” part is trivial, the “if” part follows from the fact that
d-steps can only take place at or below a free function symbol. O

LEMMA 4.27 The relation — g is contained in -, and thus noetherian.

®While we have the restriction w > s, u > s for the rewrite rules, there is no such
restriction for the equations to which rules are applied.

30 As we are dealing only with ground terms and as there are actually no non-trivial contexts
around equations, this operation does indeed satisfy the definition of a rewrite relation, albeit
in an unorthodox way.

68

DEFINITION 4.28 Given a set R of rewrite rules, the truth set tr(R) of R is the
set of all equations s ~ s' for which there exists a derivation s = s' =5 0~ 0.
The U-truth set trg(R) of R is the set of all equations s = s', such that either
s = s’ € tr(R) and s does not have sort Scam or ¥s = s’ € tr(R) for some
Yev,

LEMMA 4.29 Let e be a rewrite rule and R be a set of rewrite rules. If e is
contained in tr(R), then mtx (e) is reducible with respect to R.

PROOF. Suppose that e = mu + s ~ s', where u = mt(e), m € N°0 u » s,
and u = s’. Then there is a derivation

mu+s=~s —5 0=0.

During this derivation, all occurrences of u are deleted eventually. As s and s’
are smaller than w, it is impossible to derive an occurrence of u on the right-
hand side. Therefore, the occurrences of u cannot be deleted by k-steps, but
only by - or é-steps, so mu is reducible.

The case that e = u =~ s’ and u does not have sort Sgay is proved in the
same way. O

4.5 Model Construction

DEFINITION 4.30 A ground clause C' V e is called reductive for e, if e is a
cancellative rewrite rule and strictly maximal in C' V e.

DEFINITION 4.31 Let N be a set of (possibly non-ground) constrained clauses
that does not contain the empty clause with a satisfiable constraint. Let N be
the set of all ground instances of clauses in N. Using induction on the clause
ordering we define sets of rules R¢, Rg , Ec, and Eél’ , for all clauses C € N.
Let C be such a clause and assume that Rp, Rg , Ep, and El‘)I’ have already
been defined for all D € N such that C ¢ D. Then the set R¢c of primary
rules and the set R(‘JI’ of secondary rules are given by

Rc = U Ep and Rg: U Eg
D<cC D<cC

E¢ is the singleton set {e}, if C is a clause C' V e such that (i) C is reductive
for e, (ii) C is false in tr(RY), (iii) C' is false in trg(RJ U {e}), (iv) mty(e)
is irreducible with respect to RY, and (v) C = C8 is Ro-variable minimal.
Otherwise, E¢ is empty.

69

The set EY is non-empty only if Ec = {e}. In this case, ES is the set
of all rewrite rules €’ € trg(RS U E¢) such that mt(e') = mt(e) and €' is
dk-irreducible with respect to Rg' .

Finally, the sets Ry, and RY are defined by

Ry = U Ep and RO‘IC',: U Eg’.
DeN DeN

Our goal is to show that tr(RY) is a model of the axioms of W-torsion-free
cancellative abelian monoids and, for certain clause sets NV, also a model of N.
To this end, we will first put together some basic properties of R(‘JI' and RY.
In Section 4.6 we prove that the rewrite relations associated with RY and Ry
satisfy a restricted confluence property. The equality and ACUKTy axioms
follow as easy corollaries. Then we show in Section 4.7 that tr(RY) is in fact
a model of N, provided that N is saturated and does not contain the empty
clause.

LEMMA 4.32 For every C € N, Ryx™(©) ¢ r, c r3L™NO).

PROOF. To prove the first inclusion, take any e € R;Lml(c). Then e € Ep
for some clause D € N. Assume that D > C, then, by the definition of the
clause ordering, e = ml(D) > ml(C). This is impossible, hence D < C and
e € Ep C Rc. The second inclusion is obvious. O

LEMMA 4.33 If Ec = {mu + s = '}, then there exist terms r and r’ such that
mu +r ~ r' is contained in ES. If Ec = {u ~ s'} and u does not have sort
Scawm, then there exists a term ' such that u ~ r' is contained in E(}I’ .

PROOF. We prove the first part of the lemma, the second one being similar.

Let mu + r = r’ be the result of dx-normalizing mu + s ~ s’ with respect to
RY.
c

mu+s~s'

@ dUK

™

mu+r 7

Then u = s = r and u > s’ > r’. Starting from mu + r ~ r’ we can now
construct a derivation

70

where (2) uses mu + s =~ s’ and 3) simulates (). Hence mu + r =~ ' is contained
in trg(RY U E¢) and thus in EJY. O

The following lemma is proved in a similar way.

LEMMA 4.34 For every C € N we have Ec UEY C tr(Rf UEJ) C tr(Ry%)
and Rc URZ C tr(RY) C tr(Ry).

LEMMA 4.35 Let C and D be two clauses from N such that C =o D. If
e;1 € Ec U EC',I’ and es € Ep U EI‘)I’, then mt(ey) > mt(e2).

PROOF. As mt(e') = mt(e”) for any two rules €/, e’ € Ec U EZ, it suffices to
consider the case that e; € E¢ and e3 € Ep. Suppose that mt(e;) < mt(ea).
Then either mty(e;) < mty(ez), so by the definition of the clause ordering,
we would have C <¢ D. Or mt(e;) = mt(e2) and mtx(e;) > mty(ez), then
mt (e1) could be ¥- or §-reduced using E C RY, due to Lemma 4.33. This
is impossible, however. O

LEMMA 4.36 Let u be an atomic term. If mu is «y-reducible with respect to
Ec‘? for some m € N”% and C € N, then nu is §-irreducible with respect to
EJ for every n € N°% and D € N.

PROOF. If mu is y-reducible, then there exists a rule ku +r =~ r' € EC‘? , where
k < m. Suppose that nu were d-reducible by arulet ~t' € £ 1‘)1’ . We distinguish
between three cases:
If D < C, then t would have to be a subterm of u. Consequently, u would
be reducible with respect to R(‘;I’ , which is impossible by the definition of E.
If D > C, then t is strictly larger than k'u for every k' € N”°, hence nu
cannot be §-reduced by t ~ t'.

71

If D = C, then t has the form k'u + s, and a d-reduction using t ~ t'
may take place only below a free function symbol. Again, it is impossible to
d-reduce nu by t ~ t'. O

46 Confluence

It is easy to see that the relations —p ¥ and —py are in general not confluent:

EXAMPLE 4.37 Let N = N = {D,C} where D is the clause 2¢ ~ d and C is
the clause b % 0. Given the ordering b > ¢ > d, we obtain Ep = {2¢ = d},
Ec =0,and Ej = RY = R} = {2mec ~ md | m € N”%}. Now the equation
2¢ =~ ¢ can be rewritten to d = ¢, using a ~y-step, and also to ¢ =~ 0, using a
k-step. Both equations are irreducible.

We can merely show that —p ¥ is confluent on tr(R(‘}'), that is, that any two
derivations starting from an equation e can be joined, provided that there is a
derivation e —+1 0 ~ 0. In fact, this will be sufficient for our purposes. Let us
start with some technical lemmas.

By definition, for every rewrite rule ku + r ~ 7’ in some Eg' there is a
¥ € ¥ and an (RZ U E¢)-derivation from ¢ku + ¢r ~ 9r' to 0 =~ 0. The
purpose of the following lemma, is twofold: First, it shows that we may enforce
a particular structure upon this derivation. Second, it shows that for every
finite set of rules from E(}I’ we may choose a single ¥ € ¥ for all rules.

LEMMA 4.38 Let Ec = {mu+ s = s'}, let I be a finite set of indices, and for
every i € I, let kju + r; = r} be a rule from Eg’ Then there is a ¥ € ¥ such
that for every i € I there is an (RY U E¢)-derivation

Ykiu + Py = pr;
OIR
b+
xis + Yr; ~ 1/)7": + Xi$
©)
V*
0=0

where 1k; = x;m. This derivation starts with ;-fold application of mu + s ~ s’
(D); the remaining steps use only rules from R&I’ ®.

72

PROOF. By definition of EC‘,I’ , for every ¢ € I there exists a ¢; € ¥ and an
(RZ U Eg)-derivation (3.

Yikiu + Piri & hir
®
b+
0=0

As ¥ is closed under multiplication, 9 = [];c; %; is contained in ¥. From (3)
it is easy to construct an (RY U E¢)-derivation (@.

zﬁkiu + 1/17',' I~ zbr;

&L

@ Xis' +pri = pri + xis

During @ all occurrences of u are deleted eventually. As k;u + r; = 7} is dk-
irreducible with respect to Rg , this can only happen by y;-fold y-application
of mu + s = s', where yk; = y;m. These ~-steps are independent of any
preceding rewrite steps. We can thus shift them to the front, obtaining a new
derivation (D-(2). As the remaining terms in the equation are smaller than wu,
the rewrite steps of 2) can only use rules from Rg’ . O

The next two lemmas state that every equation that is dx-irreducible and
contained in the ¥-truth set of RS (or RY U E¢) is either 0 ~ 0 or a rewrite
rule in RS (or RS UEY), provided that sufficiently many peaks can be joined.

LEMMA 4.39 Let C be a clause in N. If e € trg(RJ) is ék-irreducible with
respect to RS, and — e is confluent on tr(RY) N {e' | mt(e) > mt(e')},
then e € RZ U {0 ~ Of. Similarly, if e € trg(Ry) is 6k-irreducible with
respect to RY, and — gy is confluent on tr(Ry) N{e | mt(e) > mt(e') }, then
e € RY U{0=~0}.

73

PROOF. We will prove the first part of the lemma, the proof of the second one
being similar. Suppose that e is different from 0 ~ 0 and let v = mt(e). By
assumption, e is dk-irreducible. If v did not have sort Scay, then it would
also be y-irreducible, so it could not be contained in trg(RJ). Hence we may
suppose that e has the form kv +t ~ t, where v = ¢t and v = t'. By definition
of trg(RY), there is a derivation

Wm+¢%zWﬂ—%gOz0

for some ¢’ € ¥. During this derivation all occurrences of v are deleted
eventually. As e is dx-irreducible, this can be done only by (possibly several)
y-rewriting steps, using a sequence of rules e; = k;v +7; &~ 7} in R‘CI’ for i € 1.
By Lemma 4.35 all ¢; are contained in the same E; for some D < C. Since
Y'kv is deleted completely, we have Y k; = ¢'k. (Here and in the rest of this
proof, the summations range over all ¢ € I.) The remaining subterms in the
equation are smaller than v. We may thus assume without loss of generality
that the derivation has the form

Pkv + 't =~ Pt
@ |~
+
Sri+ ot =yt + >
®\
0~0

where the rewrite steps of (2) use only rules from R .
Let Ep = {nv + s = s'}. According to Lemma 4.38, there exists a ¢ € ¥
and for every i € I an (R} U Ep)-derivation

Ykiv + Yr; &= Y
® |
Y+
Xis' + Pri = ri + xis
@
0=0

™

starting with yx;-fold application of nv + s ~ s’ where ¥k; = x;n.

74

We will now construct a new derivation that combines (2) and (@): By -
fold repetition of the steps of (2 and by application of the steps of (@ for
every i € I, we obtain an R -derivation (§) that starts from % (3 7} + ¥'t) +

2(xas' + i) =Y (W + 0 r) + 209+ xas)-

Y rm Yt () s Y i m Yt i+ Y+ (o xi) s
®

K

*

® Yt + (T x) s =Yt + (X xi) s

Alternatively, we can cancel ¢ r; and ¢) 7 in the starting equation of
(®), resulting in a derivation (6). By confluence, there is a derivation (7) which

closes the diagram.

Noticing that ¥’k =Y k; =n Y xi, we see that it is possible to rewrite
' kv + 't = P't’ to the starting equation of) by > x;-fold application
of nv+s=~s € Ep ®.

V' kv + 't = Yyt
Pt + (o xi) 8" =t + (X xa) s
o|
0~0

*

As ¢! € ¥ and kv +t =~ t' is dk-irreducible with respect to Rp C Ré’,
kv +t ~ t' is contained in By C RY by Def. 4.31. O

LEMMA 4.40 If C is a clause in N, e € trg(RJ U E¢) is ék-irreducible with
respect to RS U Ec, and — v is confluent on tr(RY) N {e' | mt(e) = mt(e') },

theneeRC‘I'UEc\I’U{OQO}.C

75

PROOF. If e is contained in trg(RY), then e € RY U {0 =~ 0} by Lemma 4.39.
Otherwise, let Ec = {nv+ s~ s'} and e = ku + ¢t = t/, such that u = mt(e).
By definition of trg (RS U Ec), there is a derivation

Yhu+ Yt Pt Sha g, 0R0

for some 1 € ¥. During this derivation all occurrences of u are deleted eventu-
ally. If u were larger than v, then this would be impossible, as u is §-irreducible
with respect to Ré’ U E¢. If u were smaller than v, then nv + s ~ s’ could not
be used during this derivation, hence e would be contained in trg(RJ). Thus
u = v, and by Def. 4.31, e € Eél’ O

Intuitively, the following two lemmas show that the “difference” of two
rewrite rules from R(‘JI’ is either 0 =~ 0 or also a rewrite rule from Rg’ , provided
that sufficiently many peaks can be joined.

LEMMA 4.41 Let {C,D, D1} C N, such that C =¢ D ¢ D;. Let kv +ro =
rh€EY, kiv+ri=r] € Egl, where ko > 0 and ko > k1.3 Let w be the common
part of g and rq, let w' be the common part of ry and r}, and for i € {0, 1}, let
ri=w+g; andr, = w' + ¢, If — g w is confluent on tr(RZ)N{e'|v>mt(e)},
then (ko — k1)v + (g0 + ¢}) = (g6 + ¢1) € Ef URP U{0 =~ 0}. (Analogously
for C replaced by oc.)

PROOF. Suppose that Ep = {nv +t =~ t'}. Then there are a » € ¥ and
(RE U Ep)-derivations

pkov + Yry = Prg Yri = YPr; + Ykiv
O 7 ®
I+ ol
Xot' + pro &= PYry + xot xit +¢ry = Pry + xat'
® , ,@
0~0 0=0

Each derivation starts with y;-fold application of nv + t ~ t/, where ¥k; =
xin. If D1 = D, this follows from Lemma 4.38; if D; <¢ D, it follows from
Lemma 4.38 and Lemma 4.34.

Consider the two starting equations of @) and @. If we add the left-hand
sides and right-hand sides, respectively, we obtain a new equation that can be
rewritten to 0 =~ 0 using a combination () of @ and (®.

31Deviating from our standard notational convention we allow ki = 0 (if and only if
D1 <¢ D) so that we can handle the cases D1 <c¢ D and D; = D simultaneously.

76

Xot' + x1t + ¥(ro+r}) = ¥(rg+r1) + xot + xat'

®

K

*

® (xo—xu)t' +¥(q+4i) = Y(gp+ar) + (xo—x1)t

@)

Above, we have defined w as the common part of ry and r;, w' as the
common part of vy and rj, and g¢;, ¢; as the respective remainders. We can
therefore construct an alternative derivation (6) by cancelling x1t, x1t', and
¥(w + w') in the starting equation of (5). By confluence, there is a derivation
(@ which closes the diagram.

Since (ko — k1) = n(xo — x1), it is possible to rewrite ¥ (ko—k1)v +
Y(qo+q1) = ¥(gy+g1) to the starting equation of @) by (xo—x1)-fold application
of nv+t~t € Ep (®.

Y(ko—k1)v + P(go+qi) = ¥(gy+aq1)
\,7

(xo—x1)t' + ¥(go+4q1) = P(gp+a1) + (xo—x1)t

As kov + o =~ ry and kiv + r1 = r| are dk-irreducible with respect to
Rp UEp, sois (ko—k1)v + (go+4}) =~ (gh+¢1)- By Lemma 4.40, it is contained
in Rp UEZ U{0~ 0}. m

LEMMA 4.42 Let {C,D} C N, such that C =¢ D. Let v ~ r{ and v =~ 7}
be rules in El‘)l’ , where v does not have sort Scam. If —p ¥ is confluent on
tr(RZ)N{e | v > mt(e')}, then ry = ri. (Analogously for C replaced by c0.)

PROOF. Suppose that Ep = {v = t'}. As v = rj and v ~ r] are dx-irreducible

with respect to R and v does not have sort Scawm, there are (Rp U Ep)-
derivations

7

@|s 5@

t' =~ t'~r]

@|s 5| ®
* *

Th N T o~

Ol K

0=0 0~0

where (D) and (@ use v =~ t' and (@ and () use rules from Rp. As all J-steps
take place only on the left-hand sides of the equations, we can use the same
rules as in () and () to rewrite t' = t' to rj = r] @.

On the other hand, we can rewrite ¢’ =~ t' immediately to 0 =~ 0 (8. By
confluence, there is a derivation (9). As r and r{ are d-irreducible and do not
have sort Scam, ® must consist of a single s-step, hence ry = r]. a

THEOREM 4.43 The relation — 5 ¥ is confluent on tr(RY) for every C € N.
The relation —py is confluent on tr(R2).

PROOF. Let us consider the relation — RE- (The case of — RE is similar.) The
traditional way to establish the confluence of a noetherian relation proceeds in
two steps. First, one proves by induction that the confluence of a noetherian
relation follows from local confluence. Second, one shows that local confluence
is implied by the convergence of certain critical pairs. The situation is similar
here, with one important exception: We need the induction hypothesis not
only to show that local confluence implies confluence, but even to prove local
confluence. Consequently, we have to embed the analysis of the critical pairs
within the inductive confluence proof.

To show that the relation — RY is confluent on tr(RJ) it is sufficient to
show that it is confluent on tr(Rc) N{e| ey = e} for every ey € tr(RY). We

78

will do this by induction on the size of ey with respect to >. According to
Lemma 2.26, we have to prove that for any peak

€
(] i 762

such that ey > e and either e; or es can be reduced to 0 = 0, there exists an

e such that
€1 €2
€3

For ey > e, this follows immediately from the induction hypothesis, so we
may assume that ey = e.

Case 1: Trivial peaks.

As in the traditional term rewriting framework, every peak converges if the
two rewrite steps take place at disjoint redexes. Furthermore, local confluence
is obvious, if one step is a k-step, and the other one is a - or a x-step. Finally,
Lemma 4.36 shows that - and é-steps can only take place at disjoint redexes.
It remains thus to consider v/v-peaks, v/k-peaks, and §/J-peaks.

Case 2: y/~-peaks.

If two v-steps take place at non-disjoint redexes, then both rewrite rules must
be derived from the same Ep = {nv + ¢ ~ t'}. Consider the two rules
kov + 1o = rh and kjv+r ~r} from EJ. Without loss of generality, let
ko > ki. If the two rules are applied to an equation kgv + s ~ s’ we ob-
tain a peak

kov+s~ s

@ ©
~ ’Y ’Y ~
ro+s~s +rg (ko—ki)v+ri+s~s+r

Let w be the common part of 79 and 71, let w’ be the common part of rj and r{,
and for i € {0,1}, let 7; = w+ ¢; and r; = w' + g;. By the induction hypothesis,
—py is confluent on tr(RY)N{e| e =y e} for every €' that is smaller than
kov + s = s'; therefore, it is confluent on tr(R¥) N {e | v = mt(e) }. We can
thus apply Lemma 4.41, which yields that the equation (ko — k1)v + (g0 + ¢}) =
(gh + q1) is either 0 ~ 0 or a rule in E;J URJ. If it is 0 ~ 0, there is nothing
to show: the peak is trivial. Otherwise, we distinguish between two cases.

79

If ko > k1, we can close the peak by y-application of (ko — k1)v + (g0 + ¢}) =
(g6 + q1) ® and by cancellation of g1 + ¢} @.

— s

(ko—ki)v+q+w' +s~s'+q+w
@ “rL@
ptrtatgtuw tsxs'tagtwtqtqg

kov + s =~ s’

K
. ®
gtuw +s=s+qg+w

Otherwise, ko = k1. Let mu = mtx(qo + ¢; ~ ¢ + ¢1). Without loss of
generality assume that mu occurs on the left-hand side of this equation (the
other case is proved analogously), hence let go + ¢} = mu + ¢2. Consider the
equation ¢f + gy +w' + s= s’ +w+ go + ¢j. We can construct two derivations
starting from here: one by cancelling ¢] (), the other one by applying mu +
g2 ~ gy + ¢1 ® and cancelling g2 + gy @.

tegtuw+s=s+w+q+4q

—e

®|» pt+a+gptuv+s=sdtwtet+gta
1)
V% * |
gt+uw +sx~s+w+qo g+w+s~s+w+q

The derivations (5) and (6)-(7) lead to the same equations as @) and 2). By
assumption, one of these two equations can be reduced to 0 ~ 0. As kgv + s~ s’
is larger than ¢} + ¢ + w' + s = s’ + go + w + ¢}, we can use the induction
hypothesis to show that () and (6)-(7) can be joined. The joinability of () and
(@ follows immediately.

Case 3: v/k-peaks.

Closing a peak between a x-step and a y-step is trivial if the latter takes place
at some free function symbol. It suffices therefore to consider the situation
where a rewrite rule kv +r ~r' € Ej C Ré’ with k£ > 2 is applied at the top
of an equation kv + s ~ v + s'. This yields a peak

80

kv+s~v+s

&

r+scv+s +r

e

(k—1v+s=s

where either 7’ + s~ v+ s+ 7 or (k—1)v + s = s’ can be rewritten to 0 ~ 0
by Rél’.

Case 3.1: r+s=~v+s+r—->*0=0.

At some step of the RJ-derivation ' + s ~ v + s’ + 7 —* 0 = 0 the term
v must be eventually deleted. By Lemma 4.36 v is é-irreducible, so this can
happen only by a v-step or a k-step.

Case 3.1.1: v is deleted by a +y-step.

Suppose that the deletion happens by application of a rule kyv+ 7 ~r] € E g’ .
Such a step requires the presence of k; — 1 further occurrences of v. As r and
r' are smaller than v, these occurrences can only be derived from s or s’. We
may thus assume without loss of generality that the derivation has the form

®-®-©:

kv+s~v+s

@
3 v
r+sx=v+s+r
®
r+tro+t' + (ki —1Lv+r
@ |

rirttxt)+

T

Y *

T

(k—1v+s=s
Jo
(k—1v+t=(ks—1v+t
':/
(k—k)v+trt

=

® g+ +t=t' +4q+¢q

Let w be the common part of r and 7, let w' be the common part of ' and
ri,andlet r =w+gq, 1 =w+q,r =w +¢, and r{ =w' + ¢}|. We can

81

thus use k-steps (6 to cancel w + w' in r + 7'+t = t' + r{ + 7, obtaining
g1 +¢ +t =t +q] +q As the steps @ take place only at s and s, we
can simulate them by (7). Now we have to distinguish between two cases. If
k # k1, then we can first cancel the smaller of (k; — 1)v or (k — 1)v (8. Let us
assume that k& > kp, the case of k1 > k is proved similarly. By Lemma 4.41,
(k —k1)v+ (¢ + ¢}) ~ (¢' + q1) is contained in EJ; y-application @ of this
rule closes the diagram.

If K = ky, then by Lemma 4.41, (¢ + q}) =~ (¢’ + q1) is either 0 = 0 or
contained in Rj. If it is 0 & 0, then the derivations (6) and (?) end at the same
equation, so the peak is already joined. Otherwise, let mu = mt4(q + ¢} ~
q' + q1). Without loss of generality assume that mu occurs on the left-hand
side of this equation, i.e., ¢+ ¢] = mu + g2 (the other case is similar). We can
thus close the diagram by ~v-application of mu + g ~ ¢’ + ¢1 followed by
cancellation of g2 + ¢1 + ¢’ @ on the one side, and by cancellation of (k — 1)v
® on the other side.

kv+s=~uv+s

e

Pt sruts 4o (k—1)v+s=~s
®| o
r+t=ov+t'+(k—1v+r k—1lw+t=((k—-1v+t
O

r+r+txt 4

T

® gi+qd +t=t +mu+qo x| @
0~0 etat+td+it=t+¢d +q+¢
K
@ -
t=t

Case 3.1.2: v is deleted by a k-step.

The deletion of v by a k-step requires the existence of another occurrence of v
on the left-hand side. Again, this occurrence can only be derived from s or s'.
We may thus assume that the derivation has the form @)-@-@):

82

kv+s~v+s

B

r+s~v+s+r (k—1v+s=s
® ®

V* *
r+t+omv+t +r (k—1lv+t+o=xt

Y
" %

Pttt +r
®
¥
0=0

As the steps @ take place only at s and s’, we can simulate them by @9).
Finally, we can close the diagram using ~y-rewriting @ by kv + r ~ r'.

Case 3.2: (k—1)v+s~s -*0~0.

If the R -derivation of (k — 1)v + s & s’ to 0 = 0 consists only of x-steps, then
(k — 1)v + s is identical to s’, so joining the peak is trivial. If the derivation
contains at least one - or §-step, then it has the form (9-@9-¢€9.

kv+s=~v+s
y \@
¥ K
ué
r+s~cv+s +r 7@ (k—1Dv+s=s
x| @

es es

Step is independent of the preceding x-steps, hence we can shift it to
the front, obtaining a derivation €0)-¢2-€0. It remains to join the peak between
(@ and €). This is done as in Case 2 if (1) and &0 are y-steps with overlapping
redexes, it is trivial if €0 is a 7y-step at a disjoint redex or a J-step.

83

Case 4: §/6-peaks.

It remains to show that every d/§-peak converges. Suppose that the first
rewrite step uses a rule ¢y ~ r{ from some Eg , and that the second rewrite
step uses a rule ¢t; = r{ from some Ebl’l, where D > D;. If the redexes are
disjoint, there is nothing to show. As all rules in El‘)l’ are d-irreducible with
respect to Rg , the two rules cannot overlap below a free function symbol.
We may thus suppose that the two rules rewrite the same redex or overlapping
parts of a sum in the equation eg. If ¢g and ¢; have sort Scawm, let v =mt (¢ ~ ()
and let ¢; = kjv + r; for ¢ € {0,1}. Deviating from our standard notational
convention we allow k; = 0 (if and only if D > D;) so that we can handle
the cases D >¢ D; and D = D; simultaneously. If D = D;, we assume by
symmetry that kg > k;. Let w be the common part of 7y and 71, let w’ be the
common part of 75 and 7}, and for i € {0,1}, let 7; = w+ ¢; and r; = w' + ¢.
The peak has the form

eolkov + w + o + ¢1]

/\

eo[(ko—k1)v + go + g1 + '] eolgp + a1 + ']
By Lemma 4.41, (ko — k1)v + (g0 + ¢1) = (gg + ¢1) is either 0 = 0 or a rule in
Ej URJ. If it is 0 ~ 0 the peak is trivial; otherwise, we can join the peak
between (D) and (@) as follows:

eo[ko’v +w +qo + Q1

/\

[(ko kl)v+qo+q1+w - > q0+Q1+w]

where step @) uses (ko — k1)v + (g0 + ¢}) = (g0 + ¢1)-
It remains to show that the peak can be joined if 3 and ¢; do not have sort
Scam- This is proved similarly, using Lemma, 4.42 rather than Lemma 4.41.
a

COROLLARY 4.44 For every C € N, tr(RJ) and tr(RY,) are models of the
equality axioms.

PROOF. We consider only tr(RJ); the proof for tr(Ry) is similar. It is obvious
that s ~ s € tr(RY) for every term s, and that s ~ t € tr(RJ) implies
t ~ s € tr(RY). For the transitivity axiom, consider two equations r ~ s and
s~ tin tr(RY).

84

If r, s and ¢ have sort Scam, we can combine the derivations (D) and (2) and
obtain a derivation (3):

On the other hand, we can use k-steps (@ to cancel s on both sides of the
equation. By Thm. 4.43, there is a derivation (), hence r = t € tr(R&I').
If r, s and t do not have sort Sgau, the derivations () and (@) must have

the form (6)-@) and (8)-(9):

TS st
ol: o
uUu~u VRV
@/« ~[@
0~0 0~0

As the J-steps in (6) and (8) rewrite each side of the equations separately,
we can use the same rules to rewrite both s =~ s @ and r = ¢ @ to u = v.

S S ret
é)
O~ =@
® |« U v

85

On the other hand, we can rewrite s =~ s immediately to 0 =~ 0 @. By
confluence, there is a derivation @ and r ~ t € tr(RJ).

To prove the congruence axiom we have to show that s ~ ¢ € tr(RJ) entails
r[s] = r[t] € tr(RY). If s does not have sort Sca, or if there is no free function
symbol in r above s, this is trivial, so let us assume that s occurs in r below
a free symbol. Consider the derivation (D:

0=0

We can dk-normalize s = t, first by d-rewriting s to w + wg and ¢ to w' + wy
(@), then by cancelling (3) the common part wgy. According to Thm. 4.43, there
exists a derivation (9. The equation w ~ w' is dk-irreducible with respect to
Rg’, hence it is contained in Rg U {0 =~ 0} by Lemma 4.39. Without loss
of generality we assume w > w’. This allows us to construct the following
derivation:

r[s] ~ r[t]

®|s
rfuw + wo] ~ rfu + w
®|s
rlw’ + wo] = rjw’ + wo)

@ | &
0

where step () simulates (2) and step (6) uses w ~ w' (if different from 0 = 0).
Summarizing we get 7[s] & r[t] € tr(R). O

COROLLARY 4.45 For every C € N, tr(RJ) and tr(RY) are models of the
theory axioms ACUKTy.

86

PROOF. The proof of the cancellation axiom is analogous to the proof of the
transitivity axiom; the W¥-torsion-freeness axiom is proved in a similar way as
the congruence axiom (Cor. 4.44). The associative, commutative, and identity
axioms are obvious. O

COROLLARY 4.46 For every clause C € N, trg(RJ) = tr(RJ) = cle(Rc) and
tr\p(Ro‘Ié) = tl‘(Ro‘I;) =cly (Roo)

COROLLARY 4.47 Let e be a rewrite rule in tr(Ry), such that mv = mt(e)
is y-reducible with respect to E. Then Ep = {nv +t ~ t'} and there is a
X € N>% and a + € ¥ such that ym = xn and gcd(+, x) = 1.

PROOF. By Lemma 4.36, mv is d-irreducible with respect to Ry.. Hence 6x-
normalization of e = mv + s ~ s’ yields an equation mv + r = r', which
is contained in tr(RY) since — gy is confluent on tr(Ry). By Thm. 4.43,
Lemma 4.39, and Lemma 4.35, mv + r ~ 7’ is a rule in El‘%’. According to
Lemma 4.38, there is a xo € N”? and a vy € ¥ such that ¥ym = xon. Define
X = Xo/ gcd (%o, xo) and ¢ = o/ ged(vo, Xo), then x € N0, ¢ € ¥, ¢ym = xn,
and ged(v, x) = 1. O

COROLLARY 4.48 Let C = C" V ey V e; be reductive for e; = mu + s =~ s'.
Suppose that mu is irreducible with respect to Rg and that ey is contained in
trg (RS U {e1}) \ tr(RY). Then ey has the form nu+t ~ n'u +t' with n > n'
and n > 0, and there exists a ¥ € ¥ and x € N~ such that ged(¢,x) = 1,
xm +¢n' = ¢n, and Yt + xs' = xs + ¢t' € tr(RT).

PROOF. Let v = mt(ez) and e = nv+t = n'v+t withn > n'’ > 0 and
n > 0. As ey = e, it is obvious that u > v. Choose ¥y € ¥ such that
Yonv + Yot = on'v + ot has an (RF U {e1})-derivation to 0 ~ 0 that
contains at least one rewriting step using e;. If v were smaller than u, this
would be impossible, hence v = u.

We have required mu to be irreducible with respect to R(‘JI’ . During the
derivation of Yonu + ot = Yon'u + Pot’ to 0 = 0, the occurrences of u can thus
only be eliminated by x-steps or by y-steps using e;. Without loss of generality
the derivation starts with k-fold k-rewriting (O for some £ € N. Then all
remaining u’s are removed by -steps; the rule e; is applied xo times on the
left-hand side and y; times on the right-hand side), where on — k = xom
and YPon' — k = xgm.

87

Yonu + Yot = '(/)()n”u + ’l,bot’
@ |«

Y *

(Yon—k)u + ot = (Yon'—k)u + ot
@ |~

b+
x08' + Yot + X0 ~ Xps' + tot’ + Xos
Ol

Yot + xo8' = xp8 + Yot
®

0=0

Y%

All remaining terms in the equation all smaller than u, hence the following
rewrite steps can only use rules from Ré’. By confluence of — RY> We may
assume that the derivation of xos' + 9ot + xgs = xps’ + %ot’ + xos to 0 = 0
starts with yp-fold cancellation of s + s’ 3). Define x5 = xo — Xg, then
Yot + x§s' = xgs + Yot' € tr(RY) and xgm + Yon’ = ton @.

We still have to show that n > n’ and xj > 0. Assume that n = n’.
Then xqy = 0, and we could immediately rewrite ¥onu + ot = hon'u + ot’ to
ot = 1hot’ using k-steps, and then continue as in (@). Hence nu +t ~ n'u +t'
would be contained in RY, contradicting our assumptions.

We can now define x = xg/gcd(vo, xg) and ¥ = 1o/ ged(vo, xg).- Then
Yt+xs' = xs+yt' € tr(RY) as tr(R) satisfies Ty; furthermore ged (¢, x) = 1
and xym + ¥n' = Yn. O

The following corollary is proved analogously.

COROLLARY 4.49 Let C = C' V ey V e1 be reductive for ey = u ~ s', where
u does not have sort Scay. Suppose that u is irreducible with respect to R‘CI’
and that ey is contained in trg(RY U {e1}) \ tr(RY). Then e, has the form
umt,and s ~t' € tr(RY).

COROLLARY 4.50 The set Ry, is stratified.

PROOF. We have to show that for all ground equations eg and e; with mt(eg) >
mt(e1), Roo Fw €1 implies RZL7 =g e;. Without loss of generality let us
assume that R, # RZF7®. Let C be the minimal clause in N such that
Ec ¢ R3L7. Then Rc = R3L7 and E¢ = {€'} with €’ 1, — e, and therefore
mt(e') = mt(ep) = mt(e;). By assumption, e; € clg(Rs) = tr(RY). As for all

88

e € RY\ RY we have mt(e) = mt(e') = mt(e;), the RE-derivation from e to
0~ 0 can only use rules from R, hence e; € tr(RY) = clg(R¢) = clg (R T®),
as required. O

4.7 Completeness

If a rewrite rule e is used in a derivation ¢/ —1 0 ~ 0, then its maximal
term mt(e) can not be larger than mt(e’). The following three lemmas are
consequences of this fact.

LEMMA 4.51 Let CO be a clause from N. If C is true in tr(R>), then it is
also true in tr(Ry) and tr(Rp,) for any DO ¢ C6.

LEMMA 4.52 Let C8 = C'§ V ef be a clause from N such that Ece = {e}.
Then C9 is true and C'8 is false in tr(RY) and tr(Rpy) for any D8 = C6.

LEMMA 4.53 Let C8 be an Rgg-variable minimal ground instance of a clause
C[T] € N such that Ecg = {ef}. Then C8 is an Ry -variable minimal ground
instance of C [T1].

LEMMA 4.54 Let N be a set of constrained clauses that is saturated up to
ACUKTg-redundancy and does not contain the empty clause. Then we have
for every variable minimal ground clause C8 € ving,_ (N) with C [T1] € N and
T,6 = true:

(i) If C has selected literals, then C8 is true in tr(R>).

(ii) Ece = 0 if and only if C8 is true in tr(R%p).

(iii) C8 is true in tr(RY) and in tr(Rp) for every D = C6.

PROOF. We use induction on the clause ordering > and assume that (i)-(iii)
are already satisfied for all clauses in vmpg_ (/N) that are smaller than C6.
Note that the “if” part of (ii) is obvious from the model construction and that
condition (iii) follows immediately from (ii), Lemma 4.52, and Lemma 4.51.

Case 1: C contains a selected or maximal negative literal.

Suppose that CO = C'8 V - e;6, where — e;6 is either maximal among the
instances of selected literals in C' (if C has selected literals), or maximal in C6
(otherwise). If 18 ¢ tr(Ry,), there is nothing to show, so assume that there
is an R Y, -derivation from e10 to 0 &~ 0. Let & = mt(e16).

89

Case 1.1: u occurs on both sides of e18.

If €10 equals 4 =~ u where u either does not have sort Sqay or equals 0, then
there is an equality resolution inference

C'OV -uxua
c'é)

As shown in Lemma, 4.22, this is an R,-variable minimal instance of an equality
resolution inference from C [T}]. By saturation up to ACUKTg-redundancy,
it is ACUKTg-redundant, hence Raz™ (% vmp, (N)*c“ =y C'9. By
the induction hypothesis, all clauses in vmpg_ (N)°? are true in tr(R%);
furthermore Rar™ (“?) c Rey C tr(Rgy). Thus C'6 and CO are true in tr(RJ,).

If e16 equals @ + 5 ~ m'u + 5’ with m > m' > 1, then there is a cancellation
inference

C'0v -~mu+s~mu+ 5
CovV - (m—m)u+s~§

By Lemma 4.22, this is an Ry-variable minimal instance of a cancellation

inference from C[T1]. By saturation up to ACUKTg-redundancy, the in-

ference is ACUKTg-redundant, hence Rax™(©® Uvmp_ (N)<cC? =g C'8 Vv

- (m—m')@ + 5 ~ 5. By the induction hypothesis, all clauses in ving_ (N)<c¢¢

and thus C'8 V = (m—m')u + 3 ~ & and C§ are true in tr(R%).

Case 1.2: u occurs on only one side of e16.

If @ occurs only on one side of €16, then e;0 has either the form mu + 5 ~ &
or & ~ % and @ does not have sort Scay. We write e;0[q] if the distinction
between these two cases is irrelevant.3? By Lemma 4.29 we may assume that
the reduction from e16 to 0 =~ 0 starts with a 7- or d-application of a rule
e" € Ep, C R, at (or inside) mu or 4. (Without loss of generality we
assume that C [T1] and D [T:] are variable disjoint, so that we can use the
same substitution 0.) Let DO = D'0 V e20 with T20 = true and Epg = {e26}.
By part (i) and (ii) of the induction hypothesis, Lemma 4.52, and Lemma 4.53,
D has no selected literals, D'6 is false in tr(RY,), and D6 is an Ro-variable
minimal ground instance of D [T5].

Case 1.2.1: mu is y-reducible by €".

If the reduction from e;6 to 0 ~ 0 starts with a ~y-application of e" at mu,
then, by Cor. 4.47, e20 is a rewrite rule 7@ + £ ~ t' and there are y € N~ and
¥ € ¥ such that ¥m = y7n and ged(v, x) = 1.

32Recall that M4 is merely an abbreviation for the m-fold sum @ + --- + @. If e1 =
i + 5 & §, then the hole in e16[] is the position of one of the m u’s.

90

Consider the negative cancellative superposition inference

DOV anu+t=t C9vV -—mu+s5~35
Do v C'0 vV =35+ xt' = xt + 3

As mi+ 5 = § € tr(R%y) C clu(Reo) and ma + 5 > &, the left-hand side
of e; cannot be a variable — it would not be R, ,-variable minimal otherwise.
By Lemma 4.23 the inference is a Ry-variable minimal ground instance of a
negative cancellative superposition inference from D [T3] and C[T1]. As N
is saturated, it is ACUKTg-redundant, thus its conclusion is true in tr(RJ,).
Both D'6 and — 95 + xt' ~ xt + 1§ are false in tr(RJ,), so C'6 and C§ must
be true in tr(Rg).

Case 1.2.2: u is d-reducible by €".

Otherwise, the reduction from e;6 to 0 =~ 0 starts with a d-application of e”
at or inside . We distinguish between two cases, depending on whether % is
also d-reducible by e26 or not.

Case 1.2.2.1: @ is §-reducible by both €' and e3.

Suppose that @ is also §-reducible by es6 =t ~ #'. Then ¢ does not have sort
Scam Or t occurs in % below a free function symbol. Consequently, there is a
standard superposition inference

D'ovixt C'OV -eblult]
D9V C'0 V = e 0[ult']]

which is an Ry-variable minimal ground instance of a standard superposition
inference from D [T3] and C[T}]. Again, by saturation, its conclusion is true
in tr(RJ,); and since D'6 and — e18[u[f']] are false in tr(RJ,), both C'6 and
C0 must be true.

Case 1.2.2.2: @ is §-reducible by €' but not by es#.

By the definition of Ej,, €” and esf have the same maximal term. If 4 is
d-reducible by €’ but not by e26, then we may assume that esf = nv + ~ ¢
and e’ = mv + 7 ~ 7, such that there are ¥ € N~ and ¢ € ¥ with yn = ym
and ged(¢,x) = 1. We may further assume that ;0 = e16[a[mov + 7 + |,
where m¢ > m and mov + 7 + ¢ occurs in 4 immediately below a free function
symbol. As @ is d-irreducible by e28, nv + t is not a subterm of Mmoo + 7 + q.
Consequently, there is an abstraction inference

DOV Az +i~t C'9V —ebla[imgs + 7+ g
Co [To]

91

where Cj equals C'0 V ~y ~mot+7+q V —e10[ufy]] and T is the constraint
Ymev =Yz + xnv A Myt + 7+ q > y. Let wy be the smallest term such that
Wy = Mod + 7+ § € tr(RJ). Obviously, Mot + 7 + g = (mo—m)s + 7' + § = Wo.
We define a substitution p = {z — (m¢—m)v, y — wWp}. It is easy to check
that Tpp = true and Cyp is ground.

If mv + 7 occurred in e10 at or below a variable position of C, then C@
could not be an Ry.-variable minimal instance, as e/’ = mv + 7 ~ 7 is contained
in cly (R)- Hence let e; = eq[u[w]], where u[w]@ = 4 and w8 = myv + 7 + .
Assume that w had the form z + Zje 744, where all g; are non-zero atomic
terms containing x and ¥ occurs in 6. Then z6 could be written as myv +
7+ 7", since v > 7. This is impossible, though, as Mo + 7 must not occur at
or below a variable position. Therefore, by Lemma 4.23, the inference is an
R-variable minimal ground instance of an abstraction inference from D [T5]
and C |[T1]]

By saturation, the clause Cyp, that is

C'0 vV =Wy = met + 7+ q V — e10[E[wo]]
is true in tr(RJ,); and since wy = mo? + 7 + @ € tr(RY), C6 must be true
likewise.
Case 2: C does not contain a selected or maximal negative literal.

Suppose that C8 does not fall into case 1. Then C can be written as C' V ey,
where €16 is a maximal literal of C6. If Ecg = {e10} or C'8 is true in tr(RJ,),
then there is nothing to show, so assume that Ecy = 0 and that C’'8 is false in
tr(R5,). Let & = mt(eq6).

Case 2.1: u occurs on both sides of e16.

If €16 has the form @ = 4, then C8 is a tautology and thus true in tr(R5,). If
e18 equals mu + 5 ~ m'u + 5 with m > m' > 1, then there is a cancellation
inference from C#. As in case 1.1, we can show that C8 is true in tr(RJy).

Case 2.2: u occurs on only one side of e16.

If % occurs only on one side of €16, then either e10 = mu+35~ 5, ore;f =u~ 5
and % does not have sort Sqay-

Case 2.2.1: e10 is maximal in C6, but not strictly maximal.

If 10 is maximal in C6, but not strictly maximal, then C'@ can be written as
C"0 V e20 V e10, where e10 = e2f. In this case, there is either a cancellative
equality factoring inference

C"6 vV mu+s~3s Vv
C”0v—|s—|—_’~s+.§'v 7

\
~

:I

+
U

wi | R
VAl

Q
)

S
+

92

(if @ has sort Scam), or a standard equality factoring inference

C'"OvViu~s Vuxs
C"9V -5 ~5Vauxsg

(if @ does not have sort Scay). This inference is an R -variable minimal
ground instance of an inference from C [73]. By saturation, its conclusion is
true in tr(R5,). As 3+ 38 ~ 5+ § or & ~ & are contained in tr(RJ,), C6 must
be true in tr(RJy).

Case 2.2.2: e10 is strictly maximal in C@ and mty(e10) is reducible.

Suppose that e;0 is strictly maximal in C# and mt(e;6) is reducible by some
rule ¢” € Ejy, C Ry, Let D§ = D' V e30 and Epg = {e20}. By part
(i) and (ii) of the induction hypothesis and Lemma 4.52, D has no selected
literals and D' is false in tr(RJ,). Depending on whether mt(e16) is -
or d-reducible by e’ and whether mt(e;6) is reducible or irreducible by es6,
there is either a positive cancellative superposition inference, or a standard
superposition inference, or an abstraction inference from D8 and C@. Using
essentially the same techniques as in case 1.2 we can thus show that C8 is true
in tr(R5,).-

Case 2.2.3: e10 is strictly maximal in C0 and mty(e10) is irreducible.

Suppose that e;6 is strictly maximal in C# and mtyx(e;6) is irreducible by
RZ2,. Then either C9 is true in tr(R>,), or C'8 is true in trg(R5, U {e160}), or
Eco = {e16}. In the first and the third case, there is nothing to show. Let us
therefore assume that C8 is false in tr(Rg,) and C' is true in tra (Roy U {€18}).
Then C'8 = C"6 V ey, where the literal esf is not larger than e;6 and is
contained in trg(R%, U {e10}) \ tr(RZ,)-

Case 2.2.3.1: 4 has sort Sqau-

If % has sort Scay, we know by Lemma 4.48 that esf equals na +t ~ n'u + t'
where ym + ¥n' = 1n for some ¢ € ¥ and x € N”0 with ged(v,x) = 1,
and that ¥t + x5 ~ x5+ ¢Yt' € tr(Rgo). Consequently, there is a cancellative
equality factoring inference

C"OV nu+t=nu+t Vmit+s~s
C'"OV —t+ x5 ~xs+¢t' Vau+t~nu+t

which is an Ry.-variable minimal ground instance of a cancellative equality fac-
toring inference from C [T1]. By saturation, its conclusion is true in tr(RY).
As Yt + x5 ~ x5+ ' € tr(R3,), C"0 V At +t ~ n'u + ¢ and thus C9 must
be true in tr(Rge). This contradicts our assumption above.

93

Case 2.2.3.2: u does not have sort Sgau-

If 4 does not have sort Sgay, we know by Lemma 4.49 that esf = 4 ~ t' and
Fxte tr(Rgo). Hence there is a standard equality factoring inference
C"¢Vu=t Vauxsd

C'ov -5 =tVaxt

whose conclusion is true in tr(R>y). Again, Cf must be true in tr(RJ,),
contradicting our assumption. This concludes the proof of the lemma. o

COROLLARY 4.55 Let N be a set of constrained clauses that is saturated up to
ACUKTy-redundancy. Then ving,(N) U ACUKTy is equality unsatisfiable
if and only if N contains the empty clause with a satisfiable constraint.

PROOF. If N contains the empty clause with a satisfiable constraint, then
the set vimg_ (V) contains the empty clause and is unsatisfiable. Otherwise,
tr(Ry) is a model of the equality axioms (by Cor. 4.44), of ACUKTy (by
Cor. 4.45), and of ving_ (N) (by part (iii) of Lemma 4.54). O

We can now prove the two central theorems of this paper.

THEOREM 4.56 Let N be a set of constrained clauses that is model gener-
alizable and saturated up to ACUKTg-redundancy. Then N U ACUKTy is
equality unsatisfiable if and only if N contains the empty clause with a satis-
fiable constraint.

PROOF. Suppose that N does not contain the empty clause with a satisfiable
constraint. So the previous corollary shows that vmg (N) U ACUKTy has
the equality model tr(RY) = clg(Rwxo). As N is model generalizable, clg(Roo)
is an equality model of ving(N) U ACUKTy. The reverse direction of the proof
is trivial. O

THEOREM 4.57 Let NgF N1+ Nyt ... be a fair derivation of the cancellative
superposition calculus, such that no clause from Ny is lower bounded. Let Ny,
be the limit of the derivation. Then Ny U ACUKTy is equality unsatisfiable if
and only if N, contains the empty clause with a satisfiable constraint.

PROOF. Suppose that Ny, does not contain the empty clause with a satisfiable
constraint. By fairness, N, is saturated up to ACUKTg-redundancy. As no
clause from Nj is lower bounded, Ny and thus N, is model generalizable.
Therefore the previous theorem shows that Ny, U ACUKTy has an equality
model. As Ny C Ny, U CS—Redg(Noo), this model is also an equality model of
NoUACUKTy. The reverse direction of the proof is obvious since Ny =g Neo.

a

94

5 Refinements and Applications

5.1 Simplification Techniques

Simplification. In any practicable saturation-based theorem prover meth-
ods to keep the current set of formulae as small as possible are indispensable.
By Def. 2.29, formulae may be deleted during a theorem proving derivation
only if they are redundant. If they do not become redundant accidentally, we
still have the chance to make them redundant. This process is called simplifi-
cation.

DEFINITION 5.1 Let N be a set of clauses. We say that M C N is simplified
to a set M' of clauses, if N =¢ M' and if M is redundant with respect to
NuUM'.

LEMMA 5.2 If M C N is simplified to M', then N -+ (N U M')\ M is an
admissible derivation step according to Def. 2.29.

PROOF. As N ¢ M', we have N |=¢ (N U M')\ M, so condition (i) of
Def. 2.29 is satisfied. To prove condition (ii), we note that N\ ((V U M)\
M) = M, and M C CS-Red§(N U M') by assumption, and CS-Red§(N U
M') C CS-Red$((N U M')\ M) by part (iii) of Def. 2.28. O

In the sequel we discuss some techniques that are specific for the cancella-
tive superposition calculus.

The easiest simplification rules are those which transform a clause into
an ACUKTg-equivalent smaller one. For example, independently of N every
clause C' V [] s+t~ s+t' [T] with s >0 can be simplified to C V [~]t =t [T];
every clause C' V [-] ¥t =~ ot' [T] with ¢ € ¥\ {1} can be simplified to
CV[-]t=t [T].

Demodulating a clause C[so] means rewriting it to C[s'c] using another

clause s = s', where so > s'oc and C[so] »¢c s = s'. In calculi without

95

constraints, it is almost trivial to show that demodulation is a simplification.
In the constraint case, however, it becomes more complicated. Even if the
constraint of the demodulated clause entails the constraint of the demodulating
clause, we have to take into account that redundancy is defined via variable
minimal instances.

The following example is due to Nieuwenhuis and Rubio [67]. Let R be
a stratified rewrite system such that clg(R) contains an equation b =~ ¢ with
b~ t. Then the clause D [T;] = g(z) = ¢ [z = b] does not have any R-variable
minimal ground instances. Consequently, we cannot use D [T] to demodulate
f(g(b)) = c to f(c) = c. If we want to simplify f(g(b)) = ¢, we first have to
weaken D [T»], that is, we must derive the clause g(b) = c¢. The situation is
different if variables in the demodulating clause D [7T5] correspond to variables
in the demodulated clause C [T1]. For example, we may use g(z) = ¢ [z =]
to simplify f(g(z)) = ¢ [z = b]. Here, depending on R either both the ground
instances g(b) ~ c and f(g(b)) = ¢ are R-variable minimal, or none of them. In
both cases, the redundancy criterion is satisfied — in the second case vacuously.

LEMMA 5.3 Let R be a stratified set of ground equations, let D [T'] be a clause,
and let V' be a subset of var(D). Let D6 be a ground instance of D [T'], such
that no z € V' is lower bounded in D [T], and such that all z € var(D) \ V'
are R-variable minimal in D6. Let 6' be the substitution that maps x to =6
for z € var(D[T]) \ V' and to the minimal t with £ ~ t € clg(R*t™(D9)) for
xz € V'. Then D' is an R-variable minimal ground instance of D [T].

PROOF. As no variable in V' is lower bounded in D [T'], D6’ is obviously an
instance of D [T]. It remains to show that all variables occurring in D are
R-variable minimal in D¢'. Let z be such a variable.

Suppose that z € var(D) \ V'. Then z6 = z6', and z is R-variable minimal
in DO. If x is a positive maximal variable of D and 6, then it is a positive
maximal variable of D and €', and the literals of D containing = are not larger
in D@’ than in D@. From this, it follows that x is R-variable minimal in D§'.

Suppose now that z € V'. Then z6#' is the minimal ¢t with z6 ~ t €
cly (R*tml(D9)) " If there exists no s such that z6' > s and z8' ~ s € cly(R),
then z is R-variable minimal in D#'. Otherwise, we know that z6' ~ s €
clg(R) and 26’ = s ¢ clg(R**™(P9). We have assumed R to be stratified.
By Def. 4.4 and Lemma 4.5, this implies that either ml(D#) is negative and
mt(z8') = mt(z' =~ s) > mt(ml(DF)), or ml(DE) is positive and mt(z6') =
mt(z8' ~ s) > mt(ml(DF)). Obviously, mt(z6') cannot be strictly larger
than mt(ml(D@)), hence ml(D#) is positive and mt(z8') = mt(ml(DE)). We
conclude that must be a positive maximal variable of D and &'.

To prove that z is R-variable minimal in D#’, we still have to show that

96

(i) there is no subterm r of z6’ with r = ' € clg(R) and mt(z0') = r > 7/,
and (ii) = has sort Scay, or there is no literal z ~ 7" in D and z6' =~ 7' € R
with z6' >~ 7’ and r"6' > r’. We prove this by contradiction: If condition (i)
were violated, then 7 ~ r’ € clg (R*1™(P9)) as R is stratified. If condition (ii)
were violated, then z8' ~ r' € R*v™UD?) Tn both cases, z8' could not be the
minimal term ¢ with 26 ~ t € cly(R=t™I(D9)), O

THEOREM 5.4 Let C[T1] and D [T3] be two clauses in N and let o be a
substitution, such that

e D=D'Vvit=mt,C=DoV Cto],
e every solution of Ty is a solution of Tho A C ¢ Do A to = t'o,

e for every variable x occurring in D, either x is not lower bounded in
D [T3], or zo is a variable of C, or zo = 0,

e every variable of t'o occurs either negatively in C, or it is shielded in C,
or it occurs in C and is not lower bounded in C [T}], and

e if to is a variable and does not have sort Scau, then it occurs either
negatively in C, or it is shielded in C, or C contains a literal to = s' and
every solution of Ty satisfies s' > t'c.

Then C [T1] can be simplified to Cy [T1] = D'c v C'[t'g] [T1].

PROOF. Let R be an arbitrary stratified set of ground equations. We have to
show that every R-variable minimal ground instance C follows from R=Lml(C6)
and R-variable minimal ground instances of D [T3] and Cy [71] that are smaller
than C6. Define a substitution 6’ that maps every variable z € var(C) that is
not lower bounded in C [71] to the minimal ¢ with 26 = g € cly (R<Lml(09)), and
every other variable z to 26. Obviously, R*:™C0) U {C¢'} =g C9, furthermore
C#¢' is again an R-variable minimal ground instance of C [T1] by Lemma 5.3.

We will first demonstrate that Cpé’ is an R-variable minimal ground in-
stance of Cy[T1], that is, that all variables of Cy are R-variable minimal
in 0091.

For a variable x not occurring in t'c, this is obvious: Whenever x occurs
in a literal [-] eg of Cp, then it occurs also in a literal [-] e of C such that
[-] €08 =<y [—] ef'; hence if z is a positive maximal variable of C' and ', then
it is a positive maximal variable of Cy and ¢'.

If x does occur in t'o, then two cases have to be distinguished: If there
is no term 7’ such that 6’ > r’ and z6' = r’ € clg(R), then z is R-variable
minimal in Cy#’. Otherwise the R-variable minimality of C#' implies that x is

97

a positive maximal variable of C' and ¢'. Since z occurs neither negatively nor
shielded in C, it may not be lower bounded in C[T}]. By construction of ',
26’ is the minimal ¢ with 26 ~ ¢ € clg(R*2™(C)). On the other hand, 26’ > '
and 20’ = ' € clg(R). Since R is stratified, we can conclude that either ml(C#6)
is negative and mt(z6’ = r') > mt(ml(C¥)), or ml(C0) is positive and mt(z6' =
') = mt(ml(CH)). Now mt(ml(C8)) = mt(xf) = mt(z0') = mt(z6' = '), thus
it follows that ml(C#é) is positive, that mt(z6') = mt(z6) = mt(ml(C8H)), and
that x is a positive maximal variable of C' and 6. Furthermore, we know that
tof occurs in C and tof = t'o6 = x6. If x did not have sort Scay, this would
be impossible, since it would imply mt(ml(C8)) > mt(tof) > mt(z6). Hence
x has sort Sgay- It is now easy to check that z is R-variable minimal in Cyf.

Let us now consider D [T3]. In a similar way as above, we can show
that all variables in Do are R-variable minimal in Do#’. From this we may
conclude that all variables of D that o maps to 0 or to a variable of C
are R-variable minimal in Do@’. Define a substitution #” that maps ev-
ery variable z of D that is not lower bounded in D [T5] to the minimal ¢’
with zo6' ~ ¢ € clg(R*"™(DP9¢)) and every other variable z to zo6'. By
Lemma 5.3, D" is an R-variable minimal ground instance of D [T3]. Now
Ruml(C0) 4 {Cy8', D"} =g C8, as required. O

We can extend demodulation from the traditional kind of rewriting to
cancellative rewriting:

THEOREM 5.5 Let C[I1] and D [T2] be two clauses in N and let o be a
substitution, such that

e D=D'Vt+wrw,C=DoVCVI[]st+to=xs,

e every solution of Ty is a solution of Tho A C =¢ Do N s +to ~ s =
s+ w'o =~ s +wo,

e for every variable x occurring in D, either x is not lower bounded in
D [T3], or zo is a variable of C, or zo = 0,

e every variable of wo and w'c occurs either negatively in C, or it is
shielded in C, or it occurs in C' and is not lower bounded in C [T1].

Then C [T] can be simplified to Cy[T}] = D'a V C' V [-] s + w'o = s’ +
wo |[T1]]

PROOF. Analogously to the proof of Thm. 5.4. O

98

For example, if D is the inverse axiom (—z) + ~ 0, then every clause
C' V [-] (=s) +t = t' [T1] that is larger than (—s) + s = 0 can be simplified
to C' V [-]t = t' + s [T1]. Similarly, if a (cancellative) superposition inference
from unconstrained ground unit clauses produces a conclusion with a true
constraint, then its larger premise follows from the smaller premise and the
conclusion; hence any such inference constitutes a simplification of the larger
premise.

Quasisimplification. When a set of clauses is simplified, then the ground
instances of the removed clauses follow from smaller ground instances of other
clauses. What happens, if we relax “smaller” to “smaller or equal”? Consider
the following example.

ExXAMPLE 5.6 Consider the set of clauses (1)—(5):

flz)#bV g(x) = b (1)
fld)~b (2)
f)# bV f(h(z)) = b (3)
fle)=b (4)

g(c) # b (5)

If we define > as the lexicographic path ordering over the precedence f > g >
b > c> h > d, then d is the minimal ground term, hence every ground instance
of clause (1) is an instance of either clause (6) or (7):

fld)#bV g(d)=b (6)
f@)#bV g(x) = b [z~ d] (7)

As one of these two clauses (namely clause (6)) can be further simplified using
clause (2) to

g(d) = b (8)

it is tempting to replace clause (1) by clause (7) and (8). But this is not a
simplification — for a good reason: The clauses (2) and (3) entail f(h"(d)) =~
for every n € N. As h(d) is the minimal ground term larger than d, we might
again replace clause (7) by

f(h(d) # bV g(h(d)) ~ b (9)
fle) #b Vv g(x) = b [z > h(d)] (10)

99

followed by a simplification of clause (9) to

g(h(d)) = b (11)

And so on. Eventually, we derive every clause of the form

fl@) bV g(x) = b [z > h"(d)],

and delete it immediately afterwards. None of these clauses is persistent,
hence fairness does not require to perform the superpositions with clauses (4)
and (5), which would lead to a contradiction. In other words, although the set
of clauses (1)—(5) is contradictory, there exists a fair derivation that does not
produce the empty clause: Refutational completeness is destroyed.

In spite of this problem, such operations on clause sets, which we will
call quasisimplifications in the sequel, have their uses in automated theorem
proving.

DEFINITION 5.7 Let M, M', and N be sets of constrained clauses. We say
that M is quasisimplified to M' with respect to N, if N UM ¢ M' and
for every stratified set of ground equations R and every R-variable minimal
ground instance C8 of C [T] € M, R*v™(C0) Uymp(N U M')3cC0 =y CH. We
denote this by M ~»n M'.

LEMMA 5.8 If M is quasisimplified to M' with respect to N, then
(i) NUM' |=¢ M.
(ii) CS-Red$(N U M) C CS-Red§(N U M").
(iii) CS-Red,(N UM) C CS-Red,(N U M').
(iv) If N U M is model generalizable, then N U M' is model generalizable.

PROOF. Part (i) is follows immediately, if we set R = () in Def. 5.7.

To prove part (ii), let C [T] be a clause from CS-Red$(N U M), let R be a
stratified set of ground equations, and let C'8 be an R-variable minimal ground
instance of C [T]. As C[T] is redundant, R~t™CO) ymp(M)3cCl =y C6.
Now for every Dp € ving(M)3¢¢? we have R*L™UDPP) Uymp(N U M")3cDP =y
Dp. Since R*t™!(Pp) ¢ R=51m(CO) and vmp (N U M')3ePP C ymp(N U M')<C?,
this implies R¥™(C0) U ymp(N U M')3? =y C0, hence C [T] is redundant
with respect to N U M'.

Part (iii) is proved analogously to part (ii).

It remains to show part (iv). Let R be a stratified set of ground equations
such that clg(R) is a model of vimg(N U M'). Let C[T] be a clause in N U

100

M with a ground instance C8 € vmgp(NUM). If C[T] € N, then CO €
vmg(N U M'), so it is true in clg(R). Otherwise C [T] € M, then R=x™1(C?)
vmp(N U M')3¢C =g C8. As clg(R) is a model of both R and ving(N U M'),
C0 is true in clg(R). This proves that clg(R) is a model of vimg(N U M).
Since N U M is model generalizable, clg(R) is a model of vimg(N U M), and
as NUM g N UM, it is also a model of ving(N U M"). O

The preceding lemma implies that we can mix derivation steps of the can-
cellative superposition calculus with quasisimplification steps, provided that
the latter occur only finitely often in a derivation. Consider a fair mixed
derivation Ny, N1, Ng,..., where N;_; = N; or N;_1 ~»¢ N; for every i > 0. If
the number of quasisimplification steps is guaranteed to be finite, then there is
an index n such that the subderivation starting with N, is a pure derivation of
the cancellative superposition calculus. By Lemma 2.32 and part (ii) and (iii)
of Lemma 5.8, clauses and inferences that have become redundant in some set
N; of the derivation remain redundant in all following sets. Every inference
that is redundant with respect to some N; with ¢ < n is therefore redundant
with respect to V,. Consequently, the subderivation starting with N, is fair
and its limit is saturated. Furthermore, due to Lemma 4.20 and part (iv) of
Lemma 5.8, N, is model generalizable whenever Ny has this property.

While unrestricted quasisimplifications of the whole clause set may endan-
ger refutational completeness, it is always permissible to quasisimplify those
clauses that are added during an inference step with respect to the remaining
ones:

LEMMA 5.9 If N+ N’ is an admissible derivation step and N'\ N ~>ynnt M/,
then N+ (N N N')U M’ is an admissible derivation step.

PROOF. We must show that N\ (N N N')U M') is a subset of CS-Red $((N N
N'YUM"). Tt is easy to check that N\ (NN N')UM') equals N\ (N'UM'),
which is a subset of N\ N’. As N - N’ is an admissible derivation step, we
have N \ N' C CS-Red§(N'). Splitting N’ into (N N N') U (N'\ N), we see
that CS-Red$(N') equals CS-Red $((N N N') U (N’ \ N)), hence by part (ii)
of Lemma 5.8, CS-Red$(N') C CS-Red$((N N N') U M'). Combining these
inclusions, we get the desired result. a

To ensure fairness, every inference from persistent clauses has to be made
redundant at some point of the derivation. If we cannot prove that an inference
¢ is already redundant, we have to make it redundant, for instance by adding
its conclusion to the current set of clauses. The following lemma shows that
we may alternatively quasisimplify concl(¢) to M’ with respect to the current

101

set N of clauses before adding it. The inference ¢ becomes redundant, whether
we add the conclusion itself or its quasisimplification.

LEMMA 5.10 Let ¢ be an inference and let N be a set of constrained clauses.
If {concl(t)} ~»n M', then t € CS-Red%,(N U M').

PROOF. By condition (iv) of Def. 2.28, we have ¢ € CS-Red %, (N U {concl(¢)}).
Now part (iii) of Lemma 5.8 implies ¢ € CS-Red (N U M'). O

An important kind of quasisimplifications is case splitting. If T} V T5 = true,
we may replace a clause C [T'] by the two clauses C [T A Ti] and C [T A T3].
This operation is particularly useful if one of the two new clauses can be
simplified further.

Partial solution of a constraint is another quasisimplification technique.
If T is an equality constraint and U a complete set of ACU-unifiers of T,
the clause C'[T1 A T3] can be quasisimplified to the set of clauses Cp [T2p]
for all p € U. Since we assume that all ordering constraints are non-essential
anyway, this technique allows us to eliminate constraints completely, if needed,
or to transform a clause into another one in which for example all unshielded
variables are unconstrained.

The last example that we want to mention here is subsumption. If C [T']
is a constrained clause and o a substitution such that no variable of Dom(o)
is lower bounded in C [T, then, by Lemma 5.3, C' V Co [To] can be qua-
sisimplified to) with respect to C [T']. In fact, if C' is non-empty, this is not

only a quasisimplification, but a simplification.3?

5.2 Cancellative Superposition as a Decision Procedure

The Ground Unit Case. We have seen in the previous section that some
cancellative superposition inferences are actually simplifications. It is an easy
consequence of this observation that cancellative superposition is a decision
procedure for certain sets of clauses.

CONVENTION 5.11 Whenever we talk about ground clauses and ground in-
ferences in Section 5.2, we consider only clauses with a true constraint and
inferences whose premises and conclusion have a true constraint.

33 As long as xo contains a free function symbol for some z € Dom(c) N var(C), it can
be turned into a simplification even if C' is empty. However, for this purpose, we must
base the definition of redundancy on a more complicated ordering that compares not only
ground instances but also the non-ground clauses from which the ground instances have been
produced. Details of this technique can be found in (Bachmair and Ganzinger [12]).

102

LEMMA 5.12 Let ¢ be a CS-Infy-inference from ground unit clauses over +
and constants. Then the conclusion of v is either the empty clause, or again a
ground unit clause over 4+ and constants. Furthermore, the largest premise of ¢
follows from the conclusion and the smaller premise (if any), hence ¢ simplifies
its largest premise.

PROOF. The only inferences that are possible from ground unit clauses over +
and constants are cancellation, cancellative superposition, and equality resolu-
tion inferences. The conclusions of the first two are again unit clauses, equality
resolution produces the empty clause. None of these inference rules introduces
variables or new free function symbols. Routine computation shows that in all
cases the largest premise is simplified. O

We recall that for ground clauses there is always at most one pair (1, x)
such that the constraint Tg of the negative cancellative superposition inference
rule is satisfiable.

LEMMA 5.13 If membership in ¥ is decidable, then the cancellative super-
position calculus is a decision procedure for the satisfiability of finite sets of
ground unit clauses over + and constants with respect to ACUKTyg.

PROOF. Let N be a finite set of ground unit clauses over + and constants.
Starting from Ny = N, we construct iteratively a sequence Ny, N1,... of sets
of clauses in the following way:

Suppose that N; has already been defined. If there are CS-Infg-inferences
from Nj, let ¢; be such an inference (otherwise stop). Let C; be the conclusion
of ¢j, let C} be its maximal premise. Then define N; 1 = N; U{C;} \ {C}}.

Note that in every iteration Cj is again a ground unit clause over + and
constants and that C’J’- becomes redundant by adding C}. Since the conclusion
of a ground inference is always smaller than its maximal premise, the sequence
of sets Ny, Ny, ... is strictly decreasing with respect to the multiset extension
of the clause ordering >c. As this ordering is noetherian, the derivation Ny -
N1 F .-+ must terminate; by fairness, its last element NN is saturated. The
sets Ny, Ny, ..., N are unsatisfiable with respect to ACUKTy if and only if
1 € Ny. O

Lemma 5.13 is limited to unit clauses. This is not a severe restriction,
however: If C = C; V Cs is a non-unit ground clause, then N U{C} is satisfiable
if and only if N U{C1} or N U{C5} is satisfiable. It is therefore easy to reduce
the decision problem for non-unit ground clauses to the decision problem for
unit ground clauses by splitting every non-unit clause and checking all possible
combinations of unit subclauses.

103

It is crucial for Lemma 5.13 that all free function symbols are constants.
Lemma 5.13 is thus weaker than Marché’s Theorem 5.7 [63]. If the set of
clauses contains non-constant free function symbols, then standard superpo-
sition and abstraction inferences have to be taken into account. While the
former are harmless, the latter are not: As the conclusion of an abstraction
inference from ground unit premises is neither ground nor a unit clause, the
subsequent inferences are no longer guaranteed to be simplifications. To use
cancellative superposition as a decision procedure for arbitrary ground unit
clauses, a significantly more elaborate strategy would be necessary; and it is
not known whether such a strategy exists.

Word Problems. As a special case of Lemma 5.13 we can decide the word
problem for ¥-torsion-free cancellative abelian monoids whenever membership
in ¥ is decidable. That means that we can check whether some equation

e = miby + -+ mib; ® nicr + - + njcj

holds in every U-torsion-free cancellative abelian monoid in which the finite
set of equations

ck

ex = miby + -+ mibf mnfcf + -+ nkc)

J

for k € K hold. All we have to do is to negate the first equation and check
the set of unit clauses {—e} U {e; | k € K } for unsatisfiability with respect to
ACUKTy.

Can we also solve the word problem for ¥-torsion-free abelian groups?
Consider the equation

e = miby +--- +mibi + ni(—ecy) +--- + nj(—c;) =0
and the finite set of equations
e = miok 4+ mbbf 4 nf(—ch)+- +nf(=f) ~0

for k € K. We want to know whether €’ holds in every ¥-torsion-free group in
which the equations e, hold, or equivalently, whether

{-elu{e, |ke K}U{(—z)+z=~0} UACUKTy

is unsatisfiable. It turns out that the word problems for ¥-torsion-free can-
cellative abelian monoids and for ¥-torsion-free abelian groups are essentially
the same:

104

LEMMA 5.14 Let the equations e, ey, €, e, be defined as above, let N =
{~e}u{er|k€cK}and N'={-€}U{e, | k€ K}. Then NUACUKTYy is
satisfiable if and only if N' U{(—z) + z = 0} U ACUKTy is satisfiable.

PROOF. By the inverse axiom (—z) + « =~ 0, the clause — €’ is equivalent to
— e and each e}, is equivalent to e;. Hence N'U{(—z)+ 2 = 0} UACUKTy
is satisfiable if and only if N U {(—z) + ¢ =~ 0} U ACUKTYy is satisfiable.
We check satisfiability of this set of clauses using the cancellative superpo-
sition calculus. Obviously, the inverse axiom cannot take part in any can-
cellation, equality resolution, or equality factoring inference. As the subterm
—z is strictly maximal in the inverse axiom, and the negation function occurs
in no other axiom, the inverse axiom does not take part in any cancellative
superposition inference. Furthermore, abstraction and standard superposition
inferences are excluded since the term occurring below the negation function
is a variable. Hence there are no inferences at all with the inverse axiom. This
implies that there is a CS-Infg-derivation from N U{(—z) + z ~ 0} producing
L if and only if there is such a derivation starting with N. In other words,
NU{(—z)+ =~ 0} UACUKTy is satisfiable if and only if N U ACUKTy is.

O

GCD Superposition. The following example illustrates a useful optimiza-
tion for unit ground clauses that we have not yet mentioned.

EXAMPLE 5.15 Consider the two clauses

b+ crd 1)
9+ ~d 2)

By cancellative superposition of (2) and (1) we obtain
150+ c+d =d+ (3)
and may delete (1). By cancellative superposition of (2) and (3) we obtain
6b+c+2d ~d+ 2 (4)
and may delete (3). Now cancellative superposition of (4) and (2) yields
3b+3c +d=3d +c (5)
followed by deletion of (2). From (5) and (4) we derive

3b+ 2c+5d' ~ 2d + 5¢ (6)

105

and may delete (4). Finally, cancellative superposition of (5) and (6) produces
3c+8d' ~ 3d+ 8¢ (7)

and allows us to delete (6).

It is evident that the sequence of steps we have performed is nothing else
than Euclid’s algorithm. Starting from two clauses (1) and (2) with the same
maximal term b, we get in the end clause (7), in which b has been erased
completely, and clause (5), in which the coefficient of b is the greatest common
divisor of the coefficients of b in (1) and (2). All other clauses, including (1)
and (2), have become redundant eventually.

A refinement of positive cancellative superposition for ground unit clauses
allows us to derive the clauses (5) and (7) of the example above directly,
bypassing the intermediate clauses (3), (4), and (6). This operation is called
ged superposition in (Stuber [96]):

Suppose we have ground clauses C; = mu+s~s and Cy = nu+t~t
such that u is larger than s, s', ¢, and t/, C; =¢ Co, and thus m > n. If m is
divisible by n, we can obviously simplify C; to s+ (m/n)t’' = s' + (m/n)t.

Otherwise, we can make use of an algorithm of Knuth [56] that allows to
compute natural numbers A, p, and v such that either (i) pm —vn = X =
ged(m,n) or (ii) vn — um = XA = ged(m, n). We will demonstrate that both
C1 and (9 may be simplified to two new clauses Dy and D>, where

Dy = Mu+pus+vt =~ us' + vt
in case (i), or
Dy = Mu+ps' +vt = ps+ vt
in case (ii), and
Dy = (n/N)s+ (m/ANt = (n/\)s' + (m/N\)t.

Let us assume case (i); case (ii) is similar. First we show that both D; and
D5 follow from C; and C3. Observe that we obtain D; if we multiply the
left and right-hand side of Cy by v, flip sides, multiply C; by u, add left and
right-hand sides, respectively, and cancel vnu. Similarly, if we multiply Cs by
m/ A, flip sides, multiply C; by n/\, add left and right-hand sides, respectively,
and cancel (mn/A)u, we obtain D,.

To prove that Dy and Dy make Cy and Cs redundant we have to show
that both Dy and D> are smaller than C; and C5, which is clear since A <
n < m, and we have to show that D; and D, entail C; and C5. To show that

106

{D1, Dy} v C1, we note that we obtain C4 if we multiply D2 by v, flip sides,
multiply D; by m/\, add left and right-hand sides, respectively, and cancel
(vm/XN)(t +t') + (vn/A)(s + §'). In the same way, we can multiply D2 by
u, flip sides, multiply Dy by n/A, add left and right-hand sides, respectively,
cancel (un/X)(s+s') + (vn/X)(t +t'), and get Cs.

Similarly to the Gaussian elimination algorithm, every set of n positive
ground unit clauses over + and constants can be saturated using only gcd
superposition and simplification by cancellation. At most n(n—1)/2 gecd su-
perpositions are necessary. The resulting set of clauses is in triangular form:
no two clauses have the same maximal term.34

The gcd superposition rule can be extended to non-ground non-unit clauses
C; Vmu+s=s[Th] and C§ V nu +t = t'[T:]. Provided that mu + s = &
and nu +t ~ t' are strictly the largest literals in the respective clauses, u is
larger than s, s', ¢, and ¢/, and C] = C} and Ty = Tb, it is again a simplification
of both the original clauses.

5.3 Eliminating Unshielded Variables

Let us now return to non-ground cancellative superposition. As we have seen,
the ordering conditions of our inference rules make cancellative superposition
inferences into shielded variables superfluous. Cancellative superposition in-
ferences into unshielded variables cannot generally be avoided, however. As
an example, consider the clauses b+ ¢ =~ d and z + ¢ % d with the ordering
b = ¢ > d. Since unification is not an effective filter, clauses with eligible
variables are extremely prolific. In this section, we will concentrate on simpli-
fication and quasisimplification techniques that help to reduce the number of
clauses with eligible variables. As we will show, certain clauses with eligible
variables can be removed from the clause set. Others can not be removed, but
at least, they can be equipped with more restrictive constraints.

LEMMA 5.16 Let C[T'] be a clause
\/ n;x + 8; ~ i |[T]]
i€l
where x occurs neither in one of the t; nor in T, and T is satisfiable. Then in

every term-generated normal model 9 of {C [T]} U ACK, the set S2.,, is a
group under the operation +™.

34This algorithm is very similar to Kandri-Rody, Kapur, and Narendran’s procedure to
solve the word problem in finitely presented abelian groups [52]. Essentially the same con-
struction can also be found in algorithms to compute canonical structures of abelian groups,
for instance in (Iliopoulos [49]).

107

PROOF. Let 0 be a substitution that satisfies T80 = true and maps all variables
in C except x to constants. Let 991 be a term-generated normal model of
{C[T]} U ACK, with S2%, being the set corresponding to the sort Scaw.
Since 9 satisfies ACK, S2t,, is a cancellative abelian semigroup under +™".
Furthermore, 9 satisfies CH, hence for every m € S2.,, there is an i € T
such that m +™ (n; — 1)m +™ a(s;0) = a(t;0), where « is the assignment
mapping « to m. As t;0 is ground, «a(t;6) = M(t;6) is independent of a. Now
{9M(;0) | i € I} is finite, hence by Thm. A.6, SX%, is a group. O

LEMMA 5.17 Let C[T] be a clause

C' v \/niz+ s~ t; [T]
el

where x occurs neither in C’', nor in the t;, nor in T. Then for every term-
generated normal model M of {C [T]} U ACK, either M is a model of C' [T,

or S?,J;M is a group under the operation +™".

PROOF. If T is unsatisfiable, then this is obvious since neither C' [T'] nor C' [T]
have any instances. Otherwise suppose that there is a term-generated normal
model M1 of {C [T]} U ACK that is not a model of C' [T']. Let 6 be a substitu-
tion that satisfies 70 = true and maps all variables in C except x to constants,
such that the ground clause C'6 is false in 9i. Consequently,

\/ n;x + $;0 ~ t;0
i€l

must be true in M. By Lemma 5.16, S2.,, is a group. O

In its most general form, we can use this lemma to split one theorem
proving derivation into two branches in a tableaux-like manner (cf. [16]). It is
particularly useful if one of the two branches can immediately be seen to fail.
This happens in two situations: First, if C' is empty and T is satisfiable, then
the first branch can be closed immediately. In this case C implies the identity
and inverse axioms, and, although it not required by fairness, it may be wise
to add them to find an easier proof. Second, if some subset N’ of N implies
that, for every model 9N, Sg{iM is not a group, the second branch can be closed
immediately. (For instance, N’ might consist of the single clause y +a % b.) In
this case, C' [T'] can be simplified to C' [T]. In “non-groups” it is thus always
possible to get rid of unshielded variables that occur only positively.

A similar lemma holds for torsion-free cancellative abelian monoids:

108

LEMMA 5.18 Let ¥ = N0 and let C [T] be a clause

v nx + s; = t; [T
el

where x occurs neither in one of the s; or t; nor in T, and T is satisfiable.
Then in every term-generated normal model 9 of {C [T]} U ACUKTy, the
set S8, is a singleton.

PROOF. Let 0 be a substitution that satisfies T8 = true and maps all vari-
ables in C except z to constants. Let 91 be a term-generated normal model
of {C[T]} U ACUKTgy, with S2¢ being the set corresponding to the sort
Scam- By Lemma 5.16, S2t,, is an abelian group with addition +™, and
since M satisfies ACUKTy, it is torsion-free. Let —™ denote the implicitly
given inverse operation of the group S2¢,. The model 9 satisfies C#, hence
for every m € SX . there is an i € I such that nym +™ a(s8) = a(t;0),
where «a is the assignment mapping z to m. As s;8 and t;0 are ground,
a(s;f#) = M(s;0) and a(t;f) = M(t;0) are independent of «, hence for ev-
ery m € S2:,, there is an i € I such that n;m = IM(t;0) +™ (=7 M(s6)).
Now { M(t:0) +7 (—"M(s;8)) | i € I} is finite, hence by Cor. A.11, S2¢ is
a singleton. O

LEMMA 5.19 Let ¥ = N0 and let C [T] be a clause

c'v \/nix-i-s,- ~t; [T]
i€l

where x occurs neither in C', nor in the s; or t;, nor in T. Then for every
term-generated normal model I of {C [T']} U ACUKTy, either M is a model
of C'[T], or S, is a singleton.

PRrROOF. This is proved analogously to Lemma 5.17. O

In the presence of a non-triviality axiom3?

a®0 (Non-triviality)

(which excludes singleton models), Lemma 5.19 allows us to eliminate every
literal with unshielded variables that are unconstrained and occur only posi-
tively in a clause.® If a variable is unshielded but constrained, we can either

35Tn non-skolemized form: Jy: y % 0.
36We assume that variables occurring on both sides of an equation are cancelled immedi-
ately.

109

drop the constraint (if it is an ordering constraint, thus non-essential), or solve
the constraint partially as mentioned earlier (if it is an equality constraint).
This is done in the beginning for all initially given clauses, and later once for
every clause that is added as the result of an inference. In Section 5.5 we will
exploit this possibility to construct a finite branching variant of the inference
system CS-Infg for ¥ = N0,

If a non-triviality axiom is not initially given, then Lemma 5.19 suggests
to prove theorems in torsion-free cancellative abelian monoids in two steps:
Before checking whether some set N U ACUKTy of clauses has an equality
model, we inspect the extended set N' = N U {z = 0}. If N'U ACUKTy
has a model, then so has N U ACUKTy. Otherwise, N U ACUKTy has no
term-generated normal model in which S2% is a singleton, so we may consider
N" = N U {a % 0} and continue as above.

Unshielded variables occurring negatively are somewhat harder to handle
than positive ones. If an unshielded variable occurs neither in the constraint
nor in positive literals, and only in one negative literal, we can eliminate it,
provided that the coefficient of the variable is 1 and that the inverse axiom

(—z)+z=0 (Inverse)
has been derived: In a group, every clause of the form
CV-z+s=~s [T],

where & does not occur in C and T', can be simplified to C [T']. If the coefficient
is different from 1, the inverse axiom alone does not yield enough information
to eliminate the literal. In this case, we need additionally division operators

divided-by,, and divisibility axioms®’

n divided-by,(z) = (Divisibility)

(for n € N”9). This will be further investigated in Section 5.6.

So far we have presented ways to deal with unshielded variables that occur
either only positively (in “non-groups” and torsion-free cancellative abelian
monoids) or negatively and in only one literal (in groups). There is a variant
of “rewriting with equations of conditions” which can sometimes be applied
if an unshielded variable occurs in more than one literal and at least once
negatively. Consider a clause Cp [T] of the form

C'V-nx+s=~s V[]me+t=t[T],

37In non-skolemized form: VYn € N”° Ve Jy: ny =~ .

110

where every variable of Cy occurs either negatively in Cp, or it is shielded in
Cy, or is not lower bounded in Cy [T']. If m > n > 1, then Cy [T] is equivalent
to

C'V-nz+s~s V[(m-n)z+t+s ~t+s][T].
If n/ gcd(m, n) € ¥, then it is also equivalent to
C'V-nz+s~s V[-|yt+xs' =t +xs [T].

where ¢ = n/gcd(m,n) and x = m/ged(m, n). Exploiting the first and then
the second equivalence repeatedly until they are no more applicable we obtain
a clause Ci [T] in which z occurs only in one negative literal kz + w ~ w'
and, if ¥ # N”% possibly in some positive literals (with coefficients smaller
than k). Unfortunately, a ground instance C10 of the resulting clause is not
necessarily smaller than the corresponding instance Cyf. This transformation
is therefore not a simplification.

One way to cope with this problem is to use case splitting, that is, to replace
Co [T] by the two new clauses Cy [T A C1 =¢ Cp] and Cy [T N C1 < Co],
where only the latter can be simplified to Cy [T' A C1 <¢ Cp]- It should be
noted that Cy < Cp is satisfied in particular by all substitutions 6 for which
mt(z0) > max{mt(sh), mt(s'9), mt(¢6), mt(¢'8)}. Thus even though the simpli-
fication is only partial, it renders all superposition inferences with Cy redun-
dant that involve only x but no subterm of s, s, ¢, or t/. An alternative method
to integrate this kind of variable elimination into cancellative superposition will
be presented in Section 5.6.

5.4 The Standard Case: ¥ = {1}

It is easy to see that the inference system CS-Infg is more or less unusable
as soon as clauses with unshielded variables have to be handled. Even if we
restrict to the special case ¥ = {1}, the negative cancellative superposition and
cancellative equality factoring rules may produce infinitely many inferences for
a given premise or pair of premises. However, if ¥ = {1}, the system CS-Inf
can be refined to a finitely branching system WCS-Inf(1y. In WCS-Inf (13, the
inference rules negative cancellative superposition, abstraction, and cancellative
equality factoring are replaced by new rules whose names are distinguished
from the old versions by the prefix weak. As saturation with respect to the weak
rules implies saturation with respect to the original rules, the completeness
proof of the previous chapter carries over to the new calculus.

The main idea behind the weak negative cancellative superposition rule
is very simple. If we have ground clauses D = D'6 V nu +t ~ t' and

111

CH=C9V ~miu+5~ 5, where m = yn and x € N”0, then a negative
cancellative superposition inference ¢ produces the clause Co = D'§ vV C'6 Vv
-5+ xt' = xt + 5. The premise C# contains x copies of ni; these are replaced
by x copies of ¥, and x copies of ¢ are added to the right-hand side. If we
replace only one copy of 7niu, rather than all y copies, we obtain the clause
Cy=D0V COV -~(m—n)u+35+t ~t+ 5. Just as Cp, the clause Cj
is smaller than the premise C8; furthermore, together with D@, it implies (Y,
making the inference ¢ redundant. The new inference

Dé Cceo
Co
is independent of y, therefore it can be lifted to non-ground clauses in the
same way as the positive cancellative superposition rule.
To see how a finitely branching variant of the cancellative equality factoring

rule can be obtained, we consider the size of the literals in a ground cancellative
equality factoring inference

~

CoVnu+tx=n'u+tVmut+s~xs
COV —t+ 8 ~xs5+t Vau+t

Q
pail
S
+

where ym + 7' = 7 and x € N7, As ym + 7' = 7, we have 7 > m. On
the other hand, the literal mu + 5 ~ § must be maximal, implying m > 7.
It follows that m = 7, 7' = 0 and x = 1. With these additional restrictions,
the lifted rule becomes finitary branching; furthermore, as 7' = 0, unshielded
variables occurring in rhs(es) in the cancellative equality factoring rule can be
ignored.

As we have already mentioned, the abstraction rule differs from the other
inference rules in that the validity of its conclusion depends only on the validity
of its second premise. For a given second premise C' V [-] e;[w] [T1] and
term w to be abstracted out, several distinct conclusions can be derived, but
these conclusions differ only in constraints which are irrelevant for correctness
anyway. It is plausible here to content oneself with an inference rule that
produces only a single conclusion with a slightly weaker constraint, subsuming
all conclusions of the original rule. To obtain such a rule, we note that the
constraint Ty of the abstraction rule is always satisfiable whenever the first
premise D’ V ey contains an unshielded variable in lhs(ez). Similarly, it is not
worth spending time in equality constraint solving, if w has the form mx + ¢
and either m > 1, or m = 1 and ¢ = g1 + ¢2 where ¢; is a variable or a non-zero
atomic term not containing = as a subterm. It remains to consider the case
that eo = Y. nfo +t =t and w = Y, ., mjug + ¢ with atomic terms uy,
and v;. In this case the equality constraint 7x boils down to checking that all
uy, and v; are ACU-unifiable and) ;.- mp > >, cp 0y

112

INFERENCE SYSTEM 5.20 The inference system WCS-Inf(;) consists of the
inference rules cancellation, equality resolution, standard superposition, pos-
itive cancellative superposition, and standard equality factoring of Inference
System 3.18, and of the inference rules weak negative cancellative superposi-
tion, weak abstraction, and weak cancellative equality factoring, as described
below.

Weak Negative Cancellative Superposition

DI \% €2 [[Tg]] C’ \% - ée1 [[Tl]]
D'v C'V =g |[T2/\T1 /\TE/\T()]]

if the following conditions are satisfied:

e e = E miaci—}—ZmZuk—l—szs'.

iel kEK

!/

o ey = E njyj+g nju+t=t.
j€d €L

o ¢y = za+Zmiii+s+t'%angj—l—t—ks'.
iel jeJ

e IUK#0 and JUL # 0.

o {z;|ieI}=celig(C'V—er)Nvar(lhs(e1)) \ var(rhs(e1)),
{y;j | j € J} =elig(D'V ez) Nvar(lhs(ez)) \ var(rhs(ez)) \ var(neg(D")).

e lhs(e;) is not a variable (i.e., either Y, ., m; > 1or Y, miug +s#0).
o If I ={i1}, my, =1, and K =0, then J # 0 or ¢t # 0.

o If KUL # 0, u is one of the ug or v; (k € K, | € L), otherwise, u is a
new variable.

e 0 is a most general ACU-unifier of), ; m;Z; + (ZkeK m,’;)u and z +
jer b+ (Cier) u.

o T = Njes Ti=&i+&; N /\jEJyjig)j+gjj A Niex W=t A Nicpvi=u A
EQ(o).

e To=u>=sAu=s Au=tAu=t' AN Njcru=2 A \jc u>7; A TEit.

113

Weak Abstraction

D'V ey [T5] C' V [1] s[w] = §' [T1]
C'V —y=wV [1]sly] = s [TL ANTo]

if the following conditions are satisfied:

e w occurs in s immediately below some free function symbol and has sort

Scau-

o Either:

— elig(D' V e3) N var(lhs(eq)) \ var(rhs(ez)) \ var(neg(D')) # 0.

— w is not a variable.

or:

— ey = Zn?vl+tzt'.
leL

— L#0.
— Either:
* W = m—+q.

*x Either m > 1, or m = 1 and ¢ = ¢1 + g2 where ¢; is a variable
or a non-zero atomic term not containing z as a subterm.

* lhs(e2) is neither an atomic term nor a subterm of w.

* There is a ground instance (D’ V e2)0 of the first premise such
that v;0 > t6, v;0 - t'6 for all [€ L.

or:
¥ w o= Zm,’;uk-i-q.

% p is a most general ACU-unifier of all ug and v; (k € K, € L).

* Dkek Mk 2 2iier ™ -
* lhs(e2)p is not a subterm of wp.

* There is a ground instance (D' V ez2)pf of the first premise such
that v;pd > tpl, vl = t'pf for all | € L.

e To=w>y A sfw] =s" A TEE

114

Weak Cancellative Equality Factoring

Cl V €2 V €1 [[Tl]]
c'v —eg V en [[Tl/\TE/\To]]

if the following conditions are satisfied:

e = Zmi:ci—i— ZmZuk+s ~ s

icl keK
ey = E njxj+anvl+tzt'.
jed leL

ey = an:f}j +t+s~ Zm,:i‘, +s+t.
jeJ i€l

TUK #0and JUL # 0.

e I} = elig(C'
(neg(§)l
g(
)-

V ez V e1) N var(lhs(ey)) \ var(rhs(er)) \

j € J} = elig(C' Vex V er) N var(lhs(ez)) \ var(rhs(ey)) \

If KUL # 0, u is one of the ug or v; (k € K, l € L), otherwise, u is a
new variable.

T = Nierug @i = &i + & N Npeg e =u A Njepvi =u A Y iermidi +

(ZkeK m,*c)u = ZjeJ n;i; + (ZIEL n;‘)u

To=u>sAu>=s Aus=tAu=t A Nepogu>= 2 A TS

Instances of weak negative cancellative superposition, weak abstraction, and

weak cancellative equality factoring inferences are defined as previously in

Def. 4.9 and 4.10. With these implements, we obtain again lifting lemmas:

LEMMA 5.21 Let R be a stratified set of ground equations. Let D [Tz] and
C [T1] be two constrained clauses (without common variables) and let 6 be a
substitution such that T560 = T160 = true and D6 and C0 are ground R-variable
minimal instances. Let D = D' V ey such that esf is strictly maximal in D6
and eof € R; let C =C' V [-] ;.

If there is a weak negative cancellative superposition inference

D'6 v e C'OV —eb
Co

115

(where the maximal atomic subterms of l1hs(e26) and lhs(e16) are overlapped),
and lhs(ey) is not a variable, then the inference is an R-variable minimal ground
instance of a weak negative cancellative superposition inference from D [T»] and
If there is a weak abstraction inference
D'§ Ve C'0V [-]eflmv+ q]
Co [To]

such that
e Chequals C'0 V ~y=mv+q V [-] e10]y],
e MU + § = wh for some subterm w of lhs(ey),
e M + 7 is not a subterm of y'8 for any y' € var(lhs(ey)),
e the maximal atomic subterm of lhs(e20) equals v,

e ifw=1x+ q and ¥ occurs in x0, then q = q1 + q2 and q; is a variable or
a non-zero atomic term not containing z,

then the inference is an R-variable minimal ground instance of a weak abstrac-
tion inference from D [T3] and C [T1].

LEMMA 5.22 Let R be a stratified set of ground equations. Let C [Ti] be a
constrained clause and let @ be a substitution such that T10 = true and C0 is
a ground R-variable minimal instance. Then every weak cancellative equality
factoring inference from C@ is an R-variable minimal ground instance of a weak
cancellative equality factoring inference from C [T1].

The definitions of redundancy (Def. 4.12 and 4.13) are extended verbatim
to the new kinds of inferences. It is easy to show that Lemma 4.15 holds also
for Inference System 5.20, i.e., that CS-Red 1y is also a redundancy criterion
with respect to WCS-Inf (1}.

LEMMA 5.23 Let N be a set of constrained clauses. If every weak megative
cancellative superposition inference from clauses in N is redundant with respect
to N, then every negative cancellative superposition inference from clauses in
N is redundant with respect to N.

PROOF. Let D[I3] = D' V es [T3] and C [T1] = C' V — ey [T1] be two clauses
in N and let ¢ be a negative cancellative superposition inference
D[] C[n]
Co [To]

116

By definition of the inference rule we know that lhs(e;) is not a variable. Let
R be a stratified set of ground equations and let 0 be an R-variable minimal
ground instance

DOV au+txt C'ov —mu+s~gd
DOV COV -5+ xt =xt+5

such that m = x7 and e26 € R. Then there exists a ground weak negative
cancellative superposition inference ¢’ from D@ and C, namely
D'V nu+t=t COV-mu+s~s
DOV COV-~(m—n)u+s+t~t+3§

By Lemma 5.21, 7’ is an R-variable minimal ground instance of a weak negative
cancellative superposition inference ' of the form

D[] C[1]
Gy [T3]

As ¢ is redundant with respect to N, R¥:™(C0) U ymp(N)*cC? =g C}0.
Furthermore, 7t + ¢t ~ t' and - (m—A)u + 5+t =~ t+ & entail -5+ xt' =
xt + &, hence {D8,Ch8} =g Cob. Since DO € vmpg(N) ¢ we obtain
Ruml(C0) | ymp(N)*c®? |=y Cyf. This proves that ¢ is redundant with
respect to V. O

The following two lemmas are proved analogously.

LEMMA 5.24 Let N be a set of constrained clauses. If every weak abstrac-
tion inference from clauses in N is redundant with respect to N, then every
abstraction inference from clauses in N is redundant with respect to N.

LEMMA 5.25 Let N be a set of constrained clauses. If every weak cancellative
equality factoring inference from clauses in N is redundant with respect to
N, then every cancellative equality factoring inference from clauses in N is
redundant with respect to N.

The following theorem is now obvious.

THEOREM 5.26 If a set of clauses if saturated with respect to WCS-Inf 1y and
CS-Red (1}, then it is also saturated with respect to CS-Inf (1} and CS-Red (1}.

This means that we can obtain a CS-Inf()-saturated set of clauses not
only as the limit of a fair CS-Inf()-derivation, but also as the limit of a
fair WCS-Inf (1y-derivation. Theorem 4.57 can therefore be extended from
CS-Inf (1y-derivations to WCS-Inf (1}-derivations.

117

5.5 The Torsion-Free Case: ¥ = N~V

In Section 5.3 we have shown that in the N”%-torsion-free case all unshielded
variables that occur only positively can be eliminated. We will now construct
a finitely branching inference system that is equivalent to CS-Infy>o, provided
that the elimination of unshielded variables is performed eagerly. Again, we
replace the inference rules negative cancellative superposition and abstraction
by new rules, whose redundancy implies the redundancy of the old rules.

Let us consider a negative cancellative superposition inference ¢ from ground
clauses D8 = D'6 V nu+t ~t and CH = C'9 V —mu + 5 =~ &, producing
the clause Co = D'0 vV C'0 V =5 + xt' = xt + %5, where vm = xn, ¥ € ¥,
and y € N”0. Provided that 7 > 71, we can use the same trick as in the case
¥ = {1}: By replacing 7t by ¢’ in ma + 5§ = § and by adding ¢ to the right-
hand side, we obtain a clause Cj = D' V C' V - (m—n)u +5+t =t+ 5.
This clause is smaller than the premise C'8; together with D6, it implies Cj.
Hence, if m > 7, then the inference ¢ is redundant whenever the inference

DoVanut+trt C'OV -mu+3s5~§
DoV COV-(m—nu+s+t~t+35

is redundant. We call inferences of this kind weak negative cancellative super-
position (I) inferences; they can be lifted in the same way as in Section 5.4.
It remains to consider ground inferences

DoV nu+txt C'9vV ~mu+s~§
D6V C'8 VvV -5+ xt' = xt + 3§

where ¥m = xn, ¥ € ¥, and ¥ € N~ and additionally 0 < m < fn. We call
such inferences weak negative cancellative superposition (II) inferences. Lifting
them in a finitely branching manner to the non-ground level becomes possible
by virtue of the fact that we restrict to clauses C and D without unshielded
variables occurring only positively. If nu + ¢t ~ t' is the ground instance of
an equation Y, ; njv; +t ~ t', then @ does not result from instantiations of
variables. Every @ is the instance of some v;, hence 7 =), .; n;. In other
words, even for non-ground clauses, the number 7 of the occurrences of the
maximal atomic subterm in the ground instance is known. As 0 < m < n,
this leaves only finitely many possibilities for 7 as well. Since there exists at
most one pair (¢, x) for given 7 and m, it is no problem anymore to lift the
inference in a finitely branching way.

The weak abstraction rule that we present below is constructed according
to the same principles as the corresponding rule of Inference System 5.20. The
differences are, on the one hand, due to the fact that unshielded variables
occurring only positively can be excluded. On the other hand, for ¥ = N~0,

118

a clause D8 = D'0 V nu +t ~ t' makes the abstraction of a term mu + ¢
necessary, even if n > m.

Making the cancellative equality factoring rule of Inference System 3.18
finitely branching turns out to be almost trivial: In the absence of unshielded
variables occurring only positively, the constraint T of this rule can have a
solution only if x = n*/gcd(m*,n*) and ¢ = m*/ged(m*,n*), where m* =
2kex My and n* =3 e nf =D ey’

INFERENCE SYSTEM 5.27 The inference system WCS-Infy>o consists of the
inference rules cancellation, equality resolution, standard superposition, positive
cancellative superposition, standard equality factoring, and cancellative equality
factoring of Inference System 3.18, and of the inference rules weak negative
cancellative superposition (I), weak negative cancellative superposition (II), and
weak abstraction, as described below. (Below we also present the inference rule
cancellative equality factoring. This is not a new rule but only the obvious
specialization of the corresponding rule of Inference System 3.18 to clauses
without unshielded variables occurring only positively.)

Weak Negative Cancellative Superposition (I)

DI \% €2 |[T2]] C’ \% € [[Tl]]
D'v C'V —e |[T2/\T1 /\TE/\T()]]

if the following conditions are satisfied:

0o e = g m;x; + E miug + s~ s'.
el keK

® £y = Zn;’l)l—i-t%tl.
leL

o ¢y = za+Zmii:i+s+t'zt+s'.
el

TUK # 0 and L # 0.

{z;i|ieI}=elig(C'V —e)Nvar(lhs(e;)) \ var(rhs(ey)).

Ths(e;) is not a variable (i.e., either > ;. ; m; >1or), p miug +5#0).

If I ={i1}, my; =1, and K =0, then ¢t # 0.

e u is one of the u; or v; (k€ K, 1 € L).

119

e 0 is a most general ACU-unifier of), ; m;Z; + (ZkeK m,*;)u and z +

(i ni)u
¢ To = Ny Ti=2i + & N Npeg v =u A Njep v =u A EQ(o).

eTo=u>=sAu=s Au=tAu=t' A Nggu= & ATEE

Weak Negative Cancellative Superposition (II)

D'V ey |[T2]] C'V e [[Tl]]
D'v C'V —eg [[Tg /\Tl/\TE/\TO]]

if the following conditions are satisfied:

e e = g m;T; + E miug + s~ s'.
iel keK

o ey = Zn}‘vl+t%t'.
leL

= Zzbmi:i'i + s + xt' ~ xt + s’
iel

e JUK #0 and L # 0.

o {z;|ie€I}=celig(C'V —e)Nvar(lhs(e1)) \ var(rhs(e))-

e lhs(e;) is not a variable (i.e., either > ;. m; >1or Y, p miug +5#0).
o If I = {i1}, m;, =1, and K = (), then lhs(ez) is not an atomic term.

e 0<m<n*=) 1.

o x = m/ged(m,n*), ¥ = n*/ged(m,n*).

e u is one of the ug or v; (k € K,l € L).

¢ Tg = Nicr®i =i + T A Npexte =u A Njervr =u A D mi®y +
. =
D okex MEU = Mmu.

eTo=u>=sAu=s Au=tAu=t A Ncgu= & AT

120

Weak Abstraction

D'V ey [T5] C' Vv [-] s[w] = §' [T1]
C'V~y=wV []s[y] = s [Ty NTo]

if the following conditions are satisfied:
e w = mu-+gq.
e ey = nuttxt.
e w occurs in s immediately below some free function symbol.
e If u is a variable:

— Either m > 1, or m = 1 and ¢ = g1 + g2 where g; is a variable or a
non-zero atomic term not containing u as a subterm.

— lhs(ez) is neither an atomic term nor a subterm of w.

— There is a ground instance (D' V e2)0 of the first premise such that
v0 is a maximal atomic subterm of (nv + t)8 and v6 >~ t'6.

e If u is not a variable:

— u and v are atomic terms and have a most general ACU-unifier p.
— lhs(ez)p is not a subterm of wp.

— There is a ground instance (D' V e3)pf of the first premise such
that vp# is a maximal atomic subterm of (nv + t)pf and vpé = t'ph.

e To=w>y A sfw] = s A TE".
Cancellative Equality Factoring

Cl \Y €9 V €1 |[T1]]
C'"V —ey V ey [[T1 /\TE/\To]]

if the following conditions are satisfied:

o e = g miug + s ~ s'.

kEK
ey = Zn;‘vl +tr Zn}”vl +¢.
leL ler

o ey = Yt + xs' ~xs+yt.

121

* __ * * __ * */

X =n*/ ged(m*,n*), % = m*/ ged(m*, n*).

e u is one of the ug or v; (k€ K,l € LUL").

* Te = Npex wh = u N Niepop vt = u.
eTo=u>=sAu=s Au=tAu=t ATEE

Instances of weak negative cancellative superposition (I)/(II) and weak ab-
straction inferences are defined as previously in Def. 4.9 and 4.10. Again, this
allows us to prove a lifting lemma:

LEMMA 5.28 Let R be a stratified set of ground equations. Let D [T2] and
C [T1] be two constrained clauses (without common variables), such that nei-
ther of them contains an unshielded variable that occurs only positively. Let
0 be a substitution such that T»0 = T10 = true and D6 and CO are ground R-
variable minimal instances. Let D = D' V es such that esf is strictly maximal
in D6 and e20 € R; let C = C' V [] e;.

If there is a weak negative cancellative superposition (I) inference

D'g V esf C'V —eb
Co

(where the maximal atomic subterms of 1hs(e28) and lhs(e16) are overlapped),
and lhs(ey) is not a variable, then the inference is an R-variable minimal ground
instance of a weak negative cancellative superposition (I) inference from D [T5]
and C [T1].

If there is a weak negative cancellative superposition (II) inference

D'8 V el8 C'OV —eb
Co

(where the maximal atomic subterms of lhs(e26) and lhs(e;8) are overlapped),
and lhs(ey) is not a variable, then the inference is an R-variable minimal ground
instance of a weak negative cancellative superposition (II) inference from D [Ts]
and C [T1].

If there is a weak abstraction inference

DOV e C'0V [-] e8]t + q
Co [To]

such that

e Chequals C'0 V ~y~=mv+q V [-] e10]y],

122

e M + § = wh for some subterm w of lhs(ey),

e U + @ is not a subterm of y'8 for any y' € var(lhs(ey)),

the maximal atomic subterm of lhs(e26) equals ,

if w =z + q and v occurs in x6, then ¢ = q1 + q2 and ¢, is a variable or
a non-zero atomic term not containing x,

then the inference is an R-variable minimal ground instance of a weak abstrac-
tion inference from D [T3] and C [T1].

The definitions of redundancy (Def. 4.12 and 4.13) are extended verbatim
to the new kinds of inferences. It is easy to show that Lemma 4.15 holds also
for Inference System 5.27, i.e., that CS-Red >0 is also a redundancy criterion
with respect to WCS-Infy>o.

LEMMA 5.29 Let N be a set of constrained clauses. If every weak negative
cancellative superposition (I)/(II) inference from clauses in N is redundant
with respect to N, then every megative cancellative superposition inference
from clauses in N is redundant with respect to N whenever the premises do
not contain unshielded variables that occur only positively.

PROOF. Let D[Ty] = D' V ey [T2] and C [T1] = C' V —e; [T1] be two clauses
in N that do not contain unshielded variables occurring only positively. Let ¢
be a negative cancellative superposition inference

D[] C[1r]
Co [To]

By definition of the inference rule we know that lhs(e;) is not a variable. Let
R be a stratified set of ground equations and let ¢ be an R-variable minimal
ground instance

DoV nu+txt C9vV ~mu+s~3d
DOV C'6 VvV -5+ xt' =~ xt + ¢s

such that ¢¥m = xn and e2f € R.

Now have to distinguish between two cases. If m > n, then there exists a
ground weak negative cancellative superposition (I) inference ¢’ from D and
C#0, namely

DoV anut+tt C'9V —mu+35~3§
DOV COV-~(m—nu+s+t~t+35

123

By Lemma 5.28, 7’ is an R-variable minimal ground instance of a weak negative
cancellative superposition (I) inference ¢’ of the form

D[1n] C[1]
Gy [T7]

As ¢/ is redundant with respect to N, R*t™{C) U ymp(N)*cC? =g Cho.
Furthermore, it + ¢t ~ t' and = (m—n)u + 5§+t =~ ¢t + § entail - ¢5+ xt' ~
xt + %38, hence {Df,C}6} Ew Cob. Since DO € vmp(N)*cC we obtain
R*eml(C) ymp(N)*c¢C? =y Cof. This proves that ¢ is redundant with
respect to V.

Otherwise m < 7. In this case, (0 is a weak negative cancellative super-
position (II) from DO and C6. By Lemma 5.28, (6 is an R-variable minimal
ground instance of a weak negative cancellative superposition (II) inference ¢'.
Again, as ¢/ is redundant with respect to N, we can show that ¢ is redundant
with respect to V. O

Analogously we can prove the following lemma.

LEMMA 5.30 Let N be a set of constrained clauses. If every weak abstraction
inference from clauses in N is redundant with respect to N, then every ab-
straction inference from clauses in N is redundant with respect to N whenever
the premises do not contain unshielded variables that occur only positively.

Theorem 5.31 is now obvious.

THEOREM 5.31 If a set of clauses if saturated with respect to WCS-Infx>o0
and CS-Redn>o and none of the clauses contains unshielded variables that
occur only positively, then it is also saturated with respect to CS-Infy>o0 and

CS-Red n>o.

5.6 Divisible Torsion-Free Abelian Groups

Variable Elimination. In Section 5.3, we have shown that certain un-
shielded variables can be eliminated in the presence of the torsion-freeness
axioms, the non-triviality axiom, the inverse axiom, or the divisibility axioms.
We will now investigate the effect of the combination of these axioms.

Let us denote the union of the set of divisibility axioms, the inverse axiom,
and the non-triviality axiom by DivInvNt. Algebraic structures that satisfy
the axioms ACUKTpy>o U DivinvNt are called divisible torsion-free abelian
groups. Typical examples are the rational numbers and rational vector spaces.
It is well-known that the theory of divisible torsion-free abelian groups allows

124

quantifier elimination, that is, that for every formula over 0, 4+, and = there
exists an equivalent quantifier-free formula. In particular, every closed formula
over this vocabulary is either true in all divisible torsion-free abelian groups or
false in all divisible torsion-free abelian groups. In the presence of free function
symbols (and possibly other sorts), there is of course no way to eliminate
all variables from a clause, but we can at least give an effective method to
eliminate all unshielded variables. Using this elimination algorithm, we will
then construct a new inference system that is closed under clauses without
unshielded variables.

The integration of the variable elimination algorithm demands some restric-
tions of the cancellative superposition calculus. We have mentioned already in
Section 5.3 that variable elimination works only for unconstrained variables, so
that if a variable is unshielded but constrained, the constraint either has to be
dropped (if it is an ordering constraint, thus non-essential), or partially solved
(if it is an equality constraint). To simplify the presentation, we restrict our-
selves in this section to completely unconstrained clauses: We assume that all
satisfiable constraints are immediately dropped or solved when a constrained
clause is generated, so that an inference

Ck [true] ... Ci [true]
Co |[T() A Té]]

where Tj is an equality constraint and T} is an ordering constraint, and Ty A T
is satisfiable, is effectively replaced by inferences

Cp ... (1
Coo

where o ranges over a complete set of ACU-unifiers of 7. In other words,
we assume that the ground inference system is lifted to non-ground clauses by
unification. Furthermore, we have to dispense with selection functions. The
reason for this restriction is rather technical in nature and will become clear
later.

Let = be a variable of sort Sgam. We define a binary relation —, over
clauses by

CancelVar C'V [mlmz+sxcm'c+s —; C'V [-](m—m)z+s~ ¢

fm>m'>1.

ElimNeg C'V-mr+s~s —, C

if m > 1 and x does not occur in C', s, s'.

125

ElimPos C'Vmz+simsiV...Vmpr+sprs, — C

if m; > 1 and « does not occur in C', s;, s}, for 1 < i < k.

Coalesce C'V-mz+s~s V[nc+txt
=z C'V mz+s=x~s V[t + xs' = t' + xs
ifm>1,n>1 ¢¥=m/ged(m,n), x =n/ged(m,n), and z does
not occur at the top of s, s’ ¢,¢.

LEMMA 5.32 IfCy —4 C1, then {C1} =n>0 Co and {Co } UDivInvNt |=n>0 Cy.
If Cy0 is a ground instance of Cy, then {C16} FEn>o0 Cob.

PRrOOF. If Cy —, Ci by CancelVar, the equivalence of Cy and C; modulo
ACUKTy>o follows from cancellation; for Coalesce, from cancellation and
torsion-freeness. The soundness of ElimNeg follows from the divisibility and
and inverse axiom, for ElimPos it is implied by torsion-freeness and non-
triviality (see Lemma 5.19). O

LEMMA 5.33 IfCy —, Ci, then every variable or atomic term occurring (neg-
atively) in Cy occurs also (negatively) in Cy.

COROLLARY 5.34 IfCy —, C1, x occurs in both Cy and C1, and x is unshielded
in Cy, then x is unshielded in C.

LEMMA 5.35 The relation —, is noetherian.

LEMMA 5.36 If x occurs unshielded in C, then C' is reducible with respect to
—p-

COROLLARY 5.37 If C; is a normal form of Cy with respect to —,, and x
occurs unshielded in Cy, then x does not occur in Ci.

The binary relation — ¢y, over clauses is defined in such a way that Cy —eim
C1 if and only if Cy contains an unshielded variable and Cj is a normal form
of Cy with respect to —.

Combining Lemma 5.33 and Cor. 5.37, we see that Cy —em C1 implies
var(C1) C var(Cp). As the number of variables in a clause is finite, we obtain
the following corollary:

COROLLARY 5.38 The relation —ejy is noetherian.

For a clause C, elim(C') denotes some (arbitrary but fixed) normal form of
C with respect to the relation —gjim.

126

COROLLARY 5.39 For every clause C, elim(C) contains no unshielded vari-
ables.

COROLLARY 5.40 For every clause C, every variable or atomic term occur-
ring (negatively) in elim(C') occurs also (negatively) in C. For every ground
instance C, every atomic term occurring (negatively) in elim(C)0 occurs also
(negatively) in C6.

COROLLARY 5.41 For every clause C, {C} U DivInvNt |=n>0 elim(C) and
{elim(C)} [=n>0 C. For every ground instance C0, {elim(C)8} =n>0 CO.

Using the technique sketched so far, every clause Cy can be transformed
into a clause elim(Cp) that does not contain unshielded variables, follows from
Cy and the divisible torsion-free abelian group axioms, and implies Cy mod-
ulo ACUKTy>o. Obviously, we can perform this transformation for all ini-
tially given clauses before we start the saturation process. However, the set
of clauses without unshielded variables is not closed under the inference sys-
tem CS-Infy>o, 1. €., inferences from clauses without unshielded variables may
produce clauses with unshielded variables. To eliminate these clauses during
the saturation process, logical equivalence is not sufficient: We have to re-
quire either that the transformed clause elim(Cp) makes the original clause Cy
redundant, or at least that it makes the inference producing Cy redundant.

The second condition it slightly easier to satisfy: Let ¢ be an inference
with maximal premise C' and conclusion Cjy. For the redundancy of Cy it is
necessary that each of its ground inferences Cyf follows from ground instances
of clauses in N that are smaller than Cyf. For the redundancy of ¢, it is
sufficient that for each ground instance of ¢, Cy68 follows from ground instances
of clauses in N that are smaller than Cf. As demonstrated by the following
example, however, even the latter property is not guaranteed for our variable
elimination algorithm.

EXAMPLE 5.42 Let the ordering on constants be given by b > ¢ and consider
the clause

C =3x%cVzzt+fz)=0V f(z)+b= f(y).
A cancellation inference ¢ from C yields
Cy =3z#cVae+fz)x0Vb=0.

The conclusion Cy contains the unshielded variable z. Eliminating « from Cj,
we obtain

elim(Cp) = c+3f(z) =0V b=0.

127

Now let 8 = { — b, z — b}, then
elim(Cy)0 = c+3f(b)=0V b=0
is not only strictly larger than
Cof = 3bcVb+fb)=0VbxO,
but even strictly larger than
Co =3becVb+fby=0V f(b)+b= f(b).

Hence the clause elim(Cj) makes neither Cy nor the inference ¢, which produces
Cy, redundant.

To integrate the variable elimination algorithm into the cancellative super-
position calculus, it has to be supplemented by a case analysis technique.

Pivotal Terms. Let C,...,C} be clauses without unshielded variables and
let ¢ be an inference

We call the unifying substitution o that is computed during ¢ and applied to
the conclusion the pivotal substitution of ¢. (For abstraction inferences and all
ground inferences, the pivotal substitution is the identity mapping.) If [-] e is
the last literal of the last premise of ¢, we call [-] ec the pivotal literal of ..
Finally, if ug is the atomic term that is cancelled out in ¢, or in which some
subterm is replaced or abstracted out,3® then we call ugo the pivotal term of ¢.

Two properties of pivotal terms are important for us: First, whenever an
inference ¢ from clauses without unshielded variables produces a conclusion
with unshielded variables, then all these unshielded variables occur in the
pivotal term of ¢. Second, no atomic term in the conclusion of ¢ can be larger
than the pivotal term of .

LEMMA 5.43 In every ground inference, the pivotal term is maximal among
the atomic terms occurring in the premises, and the pivotal literal is maximal
among the literals of the premises.

Notice that Lemma, 5.43 does not hold in the presence of selection functions.
Neither does it hold for the merging paramodulation rule of Bachmair and
Ganzinger [12].

38 More precisely, uo is the maximal atomic subterm of s containing ¢ (or w) in standard
superposition or abstraction inferences, and the term u in all other inferences.

128

LEMMA 5.44 Let ¢ be an inference from clauses without unshielded variables,
let 10 be a ground instance of «. Then the pivotal term of .0 is a ground
instance of the pivotal term of ¢.

Whenever we talk about a ground instance (6 of an inference ¢, we assume
without loss of generality that 0 is defined on all variables of the pivotal term
ug of ¢, and that the pivotal term of ¢80 is ug6.

LEMMA 5.45 Let ¢ be an inference from clauses without unshielded variables;
let Cy be the conclusion and o be the pivotal substitution of ¢. Let C be some
premise of v (if v is an abstraction inference: the second premise). If t is an
atomic term that occurs in Co, but not in Cy, then t is a subterm of the pivotal
term of ¢.

COROLLARY 5.46 Let ¢ be an inference from clauses without unshielded vari-
ables. Then every variable that is unshielded in the conclusion of ¢ occurs in
the pivotal term of .

LEMMA 5.47 Let + be a non-abstraction inference with maximal premise C
and conclusion Cjy; let Dy = elim(Cy). Let 16 be a ground instance of , and let
[—] e be the pivotal literal of 16. If CO < Dy, then the multiset difference
D6 \ Cof contains a literal [-] e16, such that [—] e10 has the same polarity as
[—] €6 and the pivotal term of 18 occurs in [—] e16.

PROOF. In every ground inference, the conclusion consists of the literals of
the last premise, minus the pivotal literal, plus possibly other literals that are
smaller than the pivotal literal. As the clause ordering is the multiset extension
of the literal ordering, the conclusion is thus smaller than the last premise.

Let us consider the ground inference ¢8. Its conclusion Cy@ is smaller than
C6. If all literals in Dyf \ Cyf are smaller than [—] ef, then we can conclude
analogously that C8 > Dg6.

Conversely, if CO < D8, then some literal [-] e;6 in Dy \ Cof is greater
or equal than [—] ef. Under which circumstances is this possible? The literal
ordering depends first on the maximal atomic terms in the literals to be com-
pared, hence [—] e18 =, [] ef implies mt(e;0) = mt(ef)). On the other hand,
every atomic term in D8 occurs also in Cyf, and is thus not greater than the
pivotal term of (@, that is mt(ef). Consequently, mt(e;6) = mt(ef).

If the maximal atomic terms in the literals to be compared are equal, then
the literal ordering compares the polarity of the literals, so [-] e10 >y [-] ef
and mt(e;6) = mt(ef) implies that either both [—] €10 and [—] ef are negative,
or both are positive, or [-] e16 is negative and [—] ef is positive. We will show
that the last of these three cases is impossible: Suppose that [—] e16 is negative.

129

Then mt(e;0) = mt(ef) occurs in a negative literal of Dyf = elim(Cy)@, and
hence also in a negative literal of Cyf. If [—] ef, that is, the pivotal literal of
18 is positive, however, then mt(ef) does not occur negatively in C6. So CO
would be smaller than Cy6, which is impossible. Hence, [—] 16 and [—] ef have
the same polarity. O

LEMMA 5.48 Let ¢ be a non-abstraction inference from clauses without un-
shielded variables with maximal premise C, conclusion Cy, pivotal literal [-] e,
and pivotal term u; let Dy = elim(Cy). Let 0 be a ground instance of v. If
C8 <¢ Dy, then the multiset difference Dy \ Cy contains a literal [—] e1, such
that:

o [—] e; has the same polarity as [e,
e there is an atomic term u; occurring at the top of eq,

e for every minimal complete set U of ACU-unifiers of u and uy, there is a
7 € U such that Cy6 is a ground instance of CyT.

Furthermore, for every T € U, Cy7 has no unshielded variables.

PROOF. By the previous lemma, we know that the multiset difference Dy \
Cyf contains a literal that has the same polarity as [—] e and that contains
the pivotal term @ = uf of (6. It is easy to see that this literal is an instance
[-] €10 of some literal [—] e; in the multiset difference Dy \ Cy.

Assume that the term @ in e;6 results from instantiating a variable x
occurring at the top of e;. We will show that this is impossible: Let 26 = mu +
5. As Dy has no unshielded variables, some atomic term v[z] must occur in Dy
and, by Cor. 5.40, in Cy. Consequently, the term v[z]6 = v8[mu + 5] occurs in
Cof. But v8[mu + §] is larger than the pivotal term @ of (6, contradicting the
fact that Cpf < C8.

As @ in e10 cannot result from instantiating a variable x of e;, there must
be an atomic term w; occurring at the top of e;, such that u10 = @. On the
other hand, we know that u8 = 4. As 0 is an ACU-unifier of u and wug, it is
clear that every minimal complete set U of ACU-unifiers of u and u; contains
a 7 such that @ is an instance of 7. Therefore, Cyf is a ground instance of Cy7.

It remains to prove that Cy7 has no unshielded variables for any 7 € U. For
every variable y occurring in Cy7 there is a variable x occurring in Cy such that
y € var(xT). Assume that y is unshielded in Cy7. Then z must be unshielded in
Cy- By Cor. 5.46, x occurs in the pivotal term u. As ur = u;7, 7 is a subterm
of u;7. The atomic term u; occurs in Dy = elim(Cy) and, by Cor. 5.40, also in
Cy. Consequently, the atomic term uy7 occurs in Cy7. Hence every variable
in var(z7) is shielded in Cy7, contradicting our assumption. O

130

A similar lemma, can be proved for abstraction inferences.

LEMMA 5.49 Let + be an abstraction inference with maximal premise C and
conclusion Cy =y % w V C}; let Dy = elim(Cy). Let 8 be a ground instance
of ¢, and let [—] ef be the pivotal literal of 16. Let p be a substitution that
maps y to a ground term smaller than wé. If CO <. Dy8p, then the multiset
difference Dy8p \ Cobp contains a literal [-] e10p, such that [—] e16p has the
same polarity as [—] ef and the pivotal term of 10 occurs in [-] e10p.

LEMMA 5.50 Let ¢ be an abstraction inference from clauses without unshielded
variables with maximal premise C, conclusion Cy = y # w V Cj, pivotal
literal [—] e, and pivotal term w; let Dy = elim(Cy). Let (0 be a ground
instance of t. Let p be a substitution that maps y to a ground term smaller
than wh. If C6 < DyBp, then the multiset difference Dy \ Cyy contains a literal
[-] e1, such that:

e [—] e; has the same polarity as [—] e,
e there is an atomic term wu; occurring at the top of eq,

e for every minimal complete set U of ACU-unifiers of u and uy, there is a
7 € U such that Cy8 is a ground instance of CyT.

Furthermore, for every 7 € U, Cy7 has no unshielded variables.

Integration of the Elimination Algorithm. Using the results above, we
can now transform the inference system CS-Infy>o into a new inference system
that is closed under clauses without unshielded variables. The new system
DS-Inf is given by two meta-inference rules:

Eliminating Inference

Cn, ... (4
elim(Cy)
if the following condition is satisfied:

C, ... (4
o T cc- U1
Co

is a CS-Infp>o inference.

131

Instantiating Inference

C, ... 4
CoTt

if the following conditions are satisfied:

o % is a CS-Infx>o inference with pivotal literal [-] e and piv-
0

otal term wu.

e The multiset difference elim(Cj) \ Cp contains a literal [-] e; with the
same polarity as [—] e.

e An atomic term uq occurs at the top of eq.

e 7 is contained in a minimal complete set of ACU-unifiers of v and u;.

LEMMA 5.51 Let N be a set of clauses without unshielded variables. If every
DS-Inf inference from clauses in N is redundant with respect to N, then every
CS-Infn>o inference from clauses in N is redundant with respect to N.

PROOF. This follows from the definition of DS-Inf, Lemmas 5.48 and 5.50,
and Cor. 5.41. O

EXAMPLE 5.52 Let us consider once more the cancellation inference ¢ from
Ex. 5.42:

3zEcVa+f)=0V flz)+b= f(y)
3zbcVa+fz)=0Vbx0

We denote the premise of + by C' and the conclusion by Cy. The conclusion
contains one unshielded variable, namely z, which occurs in the pivotal term
f(z). Eliminating z from Cy, we obtain

elim(Cy) = c¢+3f(z) =0V b=0.

The multiset difference elim(Cy) \ Cp equals {c¢ + 3f(z) ~ 0}; the pivotal term
f(z) and f(z) are ACU-unifiable. The singleton set containing the substitution
7 ={z — 2z} is a minimal complete set of ACU-unifiers. Applying 7 to Cy we
obtain the clause

Cor = 3z%cVz+f(z) =0V b=x0.

The clause elim(Cjp) makes all ground instances ¢ redundant that satisfy
CO ¢ elim(Cy)@, that is, in particular, all ground instances with z6 > z6.
The only remaining ground instances are those where 6 = 20; these are made
redundant by Cyp7.

132

THEOREM 5.53 If a set of clauses is saturated with respect to DS-Inf and
none of the clauses contains unshielded variables, then it is also saturated
with respect to CS-Infy>o.

Of course, the calculus DS-Inf is sound only for sets of clauses that con-
tain the axioms of non-trivial divisible torsion-free abelian groups, that is
ACUKT >0 UDivInvNt. The axioms ACUKTy>o are already integrated into
the cancellative superposition calculus; hence, no inferences with these axioms
are required. Does the same hold for DivInvNt? If there are no clauses with
unshielded variables, then a non-abstraction inference with, say, the inverse
axiom is only possible if the maximal atomic term —x of the inverse axiom
overlaps with a maximal atomic term in another clause, that is, if the negation
function occurs in another clause. Similarly, for a non-abstraction inference
with one of the divisibility axioms k divided-byx(xz) ~ x it is necessary that
some other clause contains the function symbol divided-byg. The only infer-
ences that are possible if the negation function or the symbol divided-by;, does
not occur otherwise are abstraction inferences where the theory axiom is the
first premise. Note that in this case the conclusion does not depend on the
first premise; so, although there are infinitely many divisibility axioms, it suf-
fices to compute one such inference. In fact, as we will show in the sequel,
by performing abstraction eagerly, abstraction inferences and inferences with
DivInvNt during the saturation process can be avoided completely.

Abstraction. A clause C is called fully abstracted, if no non-variable term
of sort Sgam occurs below a free function symbol in C. Every clause C can
be transformed into an equivalent fully abstracted clause abs(C) by iterated
rewriting

Clf(...t,..)] = z#tVCOlf(..,z,...)],

where x is a new variable and ¢ is a non-variable term of sort Scay occurring
immediately below the free function symbol f in C.

Let us define a new inference system DS%S-Inf that contains exactly the
inference rules of DS-Inf except of the abstraction rule. As abstraction infer-
ences from fully abstracted clauses are impossible, the following theorem is an
obvious consequence of Thm. 5.53.

THEOREM 5.54 If a set of fully abstracted clauses is saturated with respect
to DS®s-Inf and none of the clauses contains unshielded variables, then it is
also saturated with respect to CS-Infy>o.

133

The following two lemmas show that, for effective saturation of a set of
clauses with respect to DS%s-Inf, it is sufficient to perform full abstraction
once in the beginning.

LEMMA 5.55 Let C be a fully abstracted clause. Then elim(C) is fully ab-
stracted.

LEMMA 5.56 Let ¢ be a DS%*-Inf (or more generally, DS-Inf) inference from
fully abstracted clauses without unshielded variables. Then the conclusion of
¢ is a fully abstracted clause without unshielded variables.

If we replace every clause C' in the input of the inference system by the
logically equivalent clause elim(abs(C')) before we start the saturation process,
then all the clauses produced by DS%%-Inf inferences are again fully abstracted
and do not contain unshielded variables.

Full abstraction is not unproblematic from an efficiency point of view. It
increases the number of variables and the number of incomparable terms in a
clause, which both add to the number of inferences in which this clause can
participate.3?

On the other hand, the cancellative superposition calculus requires many
abstraction inferences anyway, Furthermore, full abstraction has several impor-
tant advantages for an implementation: First, if all clauses are fully abstracted,
then the terms that have to be compared or unified during the saturation have
the property that they do not contain the operator +. For such terms, ACU-
unification and syntactic unification are equivalent. Thus we may reformulate
DS [nf in terms of syntactic unification. In an implementation of the cal-
culus, this means that efficient indexing techniques for non-AC calculi become
available again. Secondly, full abstraction greatly enlarges the assortment of
orderings with which the calculus can be parameterized: We are no longer
restricted to the small number of known ACU-orderings, but may use an arbi-
trary reduction ordering over terms not containing + that is total on ground
terms and for which 0 is minimal: As every ordering of this kind can be ex-
tended to an ordering that is ACU-compatible and has the multiset property
(Waldmann [98]), the completeness proof is still justified. In particular, full
abstraction allows us to use classes of orderings that are more efficient in prac-
tice than LPO or RPO, for instance the Knuth-Bendix ordering. Finally we
note that, if all clauses are fully abstracted, then the negation function or the
symbols divided-by; can occur only at the top of a clause. In this case, it is
easy to eliminate them initially from all non-theory clauses, so that there is

%9Note that equality resolution inferences with the new variables that are introduced by
abstraction are prohibited by the ordering restrictions, though.

134

no need for further inferences with the theory clauses DivInvNt during the
saturation.

5.7 Ordered Abelian Monoids

Torsion-freeness is defined by an infinite set of first-order axioms

YrEYy Vrxy

(for every 1 € N”9). While these axioms may be explicitly given in schematized
form in the (finite) input of a theorem prover, they may also be given implicitly
using the total ordering axioms.

DEFINITION 5.57 Let < be a binary predicate symbol.*® The clauses

—x<yV-oy<zVze<z (Transitivity)
—r<w (Irreflexivity)
r<yVy<zVazz=y (Totality)
“x<yVret+z<y+z (Compatibility)

are the compatible total ordering axioms, they are denoted by TotOrd.

By Thm. A.13, an abelian monoid is cancellative and torsion-free if and
only if it can be extended to a totally ordered abelian monoid. We can use
this fact to prove certain theorems in a totally ordered abelian monoid without
actually using the ordering axioms.

LEMMA 5.58 Let N be a set of clauses in which the predicate < does not
occur. Then N U ACU U TotOrd is satisfiable if and only if N U ACUKTy>o0
is satisfiable.

PROOF. To show the “if” part, let 91 be a term-generated normal model of
N UACUKTp>o. Then (82, +™,0™) is a torsion-free cancellative abelian
monoid. By Thm. A.13, there exists a binary relation = over S2:,,, such that
(S, +7,0M) is a totally ordered abelian monoid. Define the function
<™ and the constant true® in such a way that for all m,m’ € S2:,, we have
<M(m, m’) = true? if and only if m C m’. The resulting structure is a term-
generated normal model of N U ACU U TotOrd.

To show the “only if” part, let 9 be a term-generated normal model N U
ACU U TotOrd. By Thm. A.13, (S2%,,, +™,0™) is a torsion-free cancellative
abelian monoid, hence 9 is a normal model of N U ACUKTy>o. O

“0Recall that t < t' is to be taken as an abbreviation for <(¢,t') & true<.

135

As a consequence of this lemma, we can use the cancellative superposition
calculus to prove theorems in totally ordered abelian monoids, as long as the
ordering predicate occurs only in the ordering axioms but nowhere else in the
theorem. To see the effect of this transformation, consider the two clauses 2b ~
2c and b % c. Using the calculus CS-Infy>o0, the only possible inference from
these two clauses is a negative cancellative superposition inference. It yields
2¢ % 2¢, which allows to derive | by cancellation and equality resolution. On
the other hand, to refute { 2b =~ 2¢, b % ¢ } UACU U TotOrd using the standard
superposition calculus, the prover SPASS (Weidenbach, Gaede, and Rock [99])
derived 10509 clauses; the proof that was found has length 13 (excluding the
premises). If we replace the first clause by 3b = 3¢, the improvement is still
more drastic: While the proof by means of CS-Infy>o requires again 3 inference
steps, SPASS had to derive 54069 clauses to find a proof of length 19.

136

6 Conclusions

We have presented a calculus for first-order equational theorem proving in
the presence of the axioms of cancellative abelian monoids and, optionally,
the torsion-freeness axioms. The calculus is refutationally complete without
requiring extended clauses or explicit inferences with the theory clauses. Com-
pared to the conventional superposition calculus, on which it is based, the or-
dering constraints are strengthened in such a way that we may not only restrict
to inferences that involve the maximal side of the maximal literal, but even to
inferences that involve the maximal summands occurring in the maximal side.

In traditional AC-superposition, extended rules show a rather prolific be-
haviour, since they produce an inference between two clauses whenever two
summands in the maximal sides of the respective maximal literals are unifi-
able. This is already bad enough if all summands are ground, and it has truly
fatal consequences for the search space, if one of the summands is a variable.
In our approach, cancellative superposition makes extended rules superfluous,
and the ordering constraints mentioned above allow to exclude overlaps with
shielded variables altogether. The degree to which removal of unshielded vari-
ables is possible depends on additional algebraic structure: Certain elimination
techniques for unshielded variables are applicable in the presence of the non-
group axiom, the inverse axiom, the non-triviality and torsion-freeness axioms,
or the divisiblity axioms.

In divisible torsion-free abelian groups, unshielded variables can be elimi-
nated completely. We have presented two calculi that integrate this variable
elimination algorithm into the cancellative superposition calculus, rendering
all variable overlaps superfluous. The two calculi differ in the way they han-
dle abstraction. The first one contains an explicit abstraction inference rule
with the usual ordering restrictions. By contrast, for the second one, it is re-
quired that all input clauses are fully abstracted in advance. Full abstraction
is detrimental to the search space, as it increases the number of inferences in
which a clause can participate. On the other hand, it allows us to dispense
with ACU-unification and ACU-orderings. Both these operations are costly

137

likewise, and being able to avoid them greatly simplifies the integration of the
calculus into existing theorem provers, whose performance depends crucially
on efficient indexing data structures. It remains to be investigated whether
full abstraction is generally advantageous in practice.

The integration of the torsion-freeness axioms makes the cancellative super-
position calculus also applicable to theorem proving in totally ordered abelian
monoids, as long as the ordering predicate occurs only in the ordering ax-
ioms but nowhere else in the theorem. To relax this restriction, cancellative
superposition must be combined with an ordered chaining calculus for total
orderings [11]. This is a matter of further investigation.

At the time of writing this paper, we cannot yet report about practical ex-
periences with our calculus. An implementation within the SPASS system [99]
is planned.

138

Appendix A Cancellative Monoids

We summarize some basic facts about cancellative semigroups and monoids.
Most of this material is part of the algebraic folklore; it can be found for
instance in the books of Lang [59] and Gilmer [44]. Theorems A.6 and A.10
are new (to the best of my knowledge).

DEFINITION A.1 A semigroup is an algebraic structure consisting of a non-
empty set G and a binary function + : G X G — G that is associative:
z+(y+z2)=(x+y)+zforalzyzecd.

A semigroup (G, +) is said to be abelian (or commutative), ifz+y=y+
forall z,y € G.

Let (G,+) be a semigroup. An element 0 € G is called a left identity
element if 0 + x = z for all x € G (analogously for right identity). It is called
an identity element if it is both a left and right identity element. A monoid
(G,+,0) is a semigroup (G, +) with an identity element 0.

Let (G,+) be a semigroup. If x € G and m € N then mz is an
abbreviation for the m-fold sum x + --- + z. In a monoid, Oz is defined as 0.

DEFINITION A.2 A semigroup (G,+) or monoid (G,+,0) is called left-can-
cellative, if for all x,y,z € G, * + y = x + z implies y = z. (analogously for
right-cancellative). It is called cancellative, if it is left- and right-cancellative.

DEFINITION A.3 A monoid (G, +,0) is called a group if for every € G there
is a left and right inverse —z € G such that (—z)+ z =z + (—z) = 0.

In fact, it is already sufficient to require a right identity element and a right
inverse:

LEMMA A.4 Let G be a semigroup. Then G is a group if and only if G has a

right identity element Ogr and for every x € G a right inverse (—z) with respect
to Or, i.e., x + 0gr = z and ¢ + (—z) = Og.

139

Cancellative abelian semigroups and abelian groups are closely related: If
(G, +,0) is an abelian group and G’ C G is closed under addition, then (G', +)
is a cancellative abelian semigroup; if furthermore 0 € G’, then (G, +,0) is a
cancellative abelian monoid. Conversely, every cancellative abelian semigroup
(G',+) or monoid (G',+,0) is isomorphic to a subset of an abelian group G,
namely its Grothendieck group. The group (G, +,0) can be constructed as
follows: Consider the set G' x G' with componentwise addition. We define an
equivalence relation = on G' x G' by (z,y) = (',y') & z+¢ =2 +y.
Then G is the quotient of G' x G’ under = the identity element is [(z, z)]~ for
an arbitrary z € G', and the inverse of [(z,y)]~ is [(y,z)]~. The embedding
homomorphism of G’ into G given by = — [(2z,)]~ has the universal property
with respect to homomorphisms of G’ into abelian groups. In particular, if G’
itself is already a group, then G and G’ are isomorphic.

LEMMA A.5 Let (G,+) be a left-cancellative semigroup. Let H be a finite
subset of G, such that for every x in G thereisay in G withx +y € H. Then
G has a left identity element 01, and right inverses with respect to Oy, i.e., for
allz in G,0, +x =z and ¢ + (—z) = Or.

PROOF. Let H be the set of all finite subsets of G with the same property
as H above. As H € H, H is non-empty. Let H' be an element of H with
minimal cardinality.

For all z € H and y € G, ¢ +y € H' implies z + y = . This can be
easily shown by contradiction: Assume there are b € H' and ¢ € G such that
b+ce H and b+ c # b. For every z in G such that there is a y in G with
z+y=>b, there is a ' (namely y + ¢) in G with z + y' = b+ c. Hence H'\ {b}
is an element of H, contradicting the minimality of H'.

We can furthermore show that H' is a singleton {b}. Assume that b,c € H'.
As H' € H, there is a d € G such that b+ b+d € H'. By the previous paragraph,
b+b+d=">b. Hence b+ b+ d+ c=b+ c, and by left-cancellation b+ d + c=c.
Therefore, ¢ = b.

As H' € H, there is a ¢ € G such that b+ b+ ¢ = b. Let = be an arbitrary
element of G. Then b+ b+ c+ x = b+ x, and by left-cancellation b+ ¢ + = = x;
Define 0, = b+ ¢. As O, + x = x, O, is a left identity element.

It remains to show that G has right inverses. Let z be an arbitrary element
of G. There is a y € G such that x +y = b, hence ¢ +y+ ¢ = b+ c = 0.
Define (—x) = y + ¢, then z + (—x) = 0y, as required. O

The conditions of the previous lemma are not sufficient to deduce that G is

a group. As a counterexample consider the so-called right-zero semigroup with
two elements, that is the semigroup ({0,1}, ®) where @ is defined by z Dy =y

140

and H = {0,1}. We have to require one more property: either that G has a
right identity, or that G is right-cancellative, or that G is abelian. (The first
two properties are actually equivalent.)

THEOREM A.6 Let (G,+) be a left-cancellative semigroup. Let H be a finite
subset of G, such that for every x in G there isay in G withx+y € H. If
additionally (i) G has a right identity, or (ii) G is right-cancellative, or (iii) G is
abelian, then G is a group.*!

PROOF. (i) According to the preceding lemma G has a left identity element
Or, and right inverses with respect to Oy,. If G has also a right identity Or, then
0, = Or, + Or = Or. Therefore, every right inverse with respect to O, is also a
right inverse with respect to Og. By Lemma A .4, G is a group.

(ii) As O, is a left identity, O, = Op, + Or,. Consequently, for every d € G,
d+ 0, =d+0p + 0. If G is right cancellative, d = d + O, so O, is a right
identity. By (i), G is a group.

(iii) If G is abelian, the left identity Oy, is also a right identity. By (i), G is
a group. a

DEFINITION A.7 Let (G,+,0) be an abelian group. An element x € G is
called a torsion element, if kx = 0 for some positive integer k. If G' is the set
of all torsion elements of G, then (G',0,+) is a subgroup of G, the so-called
torsion subgroup of G. We say that G is torsion-free, if G' = {0}, that is, if
for all k € N”0 and = € G, kx = 0 implies x = 0.

DEFINITION A.8 A cancellative abelian semigroup (G,+) is called torsion-
free, if its Grothendieck group is torsion-free.

LEMMA A.9 A cancellative abelian semigroup (G,+) is torsion-free, if and
only if for all k € N”° and z,y € G, kx = ky implies ¢ = y.

If should be noted that the conditions (i) “kz = ky implies z = y for all
k€ N9 and (ii) “kz = 0 implies = = 0 for all K € N”°” are not equivalent for
cancellative abelian semigroups, or even for cancellative abelian monoids. As
an example consider the monoid (N x (Z/2Z)) \ {(0,1)} with addition defined
componentwise.

“'Part (iii) of this theorem appeared in a draft of [43] submitted for CADE-13 and in
[42], with a different proof. An anonymous CADE-13 referee pointed out to me that the
theorem holds also in the non-abelian case (without giving me the proof). Independently,
the extension to non-abelian cancellative semigroups, that is, part (ii) of this theorem was
found by Préhle [79].

141

(1,1)(2,1)[(3,1)[(4,1)|(5,1) |(6,1) | (7, 1) |---

(0,0)[(1,0)|(2,0)((3,0)|(4,0)|(5,0)|(6,0)|(7,0)]|---

Here kx = (0,0) implies z = (0,0) for every ¥k € N”% On the other hand,
2-(1,0) = (2,0) = 2-(1,1). The Grothendieck group of this monoid is
(isomorphic to) Z x (Z/2Z).

THEOREM A.10 Let (G,+) be a cancellative abelian semigroup. Let H be a
finite subset of G, such that for every z in G there is a k € N”° with kx € H.
Then G is an abelian group and every x € G is a torsion element.

PRrROOF. For every z € G, there is a k € N7 such that z + (k — 1)z € H.
Hence G is an abelian group by Thm. A.6.

To show that every x € G is a torsion element, let H be the set of all finite
subsets of G with the same property as H above. As H € H, H is non-empty.
Let H' be an element of H with minimal cardinality. Obviously, 0 € H'.

We will first prove that for all y € H' and k € N”°, ky € H’' implies ky = y.
Assume that b € H', k € N”% such that kb € H' and kb # b. For every z in
G such that there is an n in N”? with nz = b, we have knz = kb. So H'\ {b}
is an element of H, contradicting the minimality of H'.

Let y € H' be arbitrarily chosen. By assumption, there is an n € N”° such
that n - 2y € H'. By the previous paragraph, 2ny = y, thus (2n — 1)y = 0. As
2n —1 € N”% and 0 € H', we have y = 0, and therefore H' = {0}. Since for
each = € G there is a k € N”0 with kz € H', each z € G is a torsion element.

O

COROLLARY A.11 Let (G,+) be a torsion-free cancellative abelian semigroup.
Let H be a finite subset of G, such that for every x in G there is a k € N0
with kz € H. Then G is a singleton.

DEFINITION A.12 A totally ordered abelian semigroup (G, +, <) is an abelian
semigroup (G, +) together with a binary relation < that is (i) transitive: © <y
and y < z implies ¢ < z for all z,y, z € G, (ii) irreflexive: there exists no z € G
such that x < z, (iii) total: for all z,y € G, either z <y ory < xz or z =y,
and (iv) compatible: for all z,y,z € G, ifz <y, thenz + z < y + z.

Totally ordered abelian monoids and groups are defined in an analogous
way.

The following theorem due to Levi [62] gives the connection between totally

ordered and torsion-free cancellative abelian semigroups. A proof can be found
in (Gilmer [44]).

142

THEOREM A.13 For an abelian semigroup (G,+) (or monoid, or group), the
following two properties are equivalent:

e (G,+) is cancellative and torsion-free.

e There exists a binary relation < over G such that (G,+,<) is a totally
ordered abelian semigroup.

To be able to present the general and the torsion-free case in a uniform
way, we generalize torsion-freeness to W-torsion-freeness.

DEFINITION A.14 Let U be a subset of N°°. We say that a cancellative
abelian semigroup is Y-torsion-free, if for all Y € ¥ and z,y € G, Yr = Py
implies x = y.

LEMMA A.15 Every cancellative abelian semigroup (G, +) is {1}-torsion-free.

LEMMA A.16 A cancellative abelian semigroup (G,+) is torsion-free if and
only if it is N”0-torsion-free.

LEMMA A.17 Let (G,+) be an abelian semigroup, let ¥ be the set of all
¥ € N”0 such that vz = 1y implies x = y for all z,y € G. Then ¥ contains 1
and is closed under multiplication and factors, i.e., for all ¥, 1)’ € N0

YeTAY €T ifand only if Yy’ € T.

PROOF. If 9 € ¥ and ¢’ € U, then yyp'x = ¢op'y implies 'z = ¢'y and z =y
for all z,y € G; hence ¥y’ € .
If o' ¢ U, then there exist z,y € G such that z # y and 'z = 'y, hence

Y’z = py'y and Py’ ¢ . O

143

144

Bibliography

[1]

[6]

Peter B. Andrews. An Introduction to Mathematical Logic and Type
Theory: To Truth through Proof. Academic Press, Orlando, FL, USA,
1986.

Yves Auffray and Patrice Enjalbert. Modal theorem proving: An equa-
tional viewpoint. Journal of Logic and Computation, 2(3):247-295, 1992.

Jirgen Avenhaus and Klaus Becker. Conditional rewriting modulo a
built-in algebra. SEKI Report SR-92-11, Fachbereich Informatik, Uni-
versitat Kaiserslautern, 1992.

Franz Baader and Klaus U. Schulz. Combination of constraint solving
techniques: An algebraic point of view. In Jieh Hsiang, ed., Rewrit-
ing Techniques and Applications, 6th International Conference, RTA-
95, Kaiserslautern, Germany, April 5-7, 1995, LNCS 914, pp. 352-366.
Springer-Verlag.

Matthias Baaz, Christian G. Fermiller, and Alexander Leitsch. A non-
elementary speed-up in proof length by structural clause form trans-
formation. In Ninth Annual IEEE Symposium on Logic in Computer
Science, Paris, France, July 4-7, 1994, pp. 213-219. TEEE Computer
Society Press.

Leo Bachmair. Canonical Equational Proofs. Birkhduser, Boston, MA,
USA, 1991.

Leo Bachmair and Harald Ganzinger. Completion of first-order clauses
with equality by strict superposition (extended abstract). In Stéphane
Kaplan and Mitsuhiro Okada, eds., Conditional and Typed Rewriting
Systems, 2nd International Workshop, Montreal, Canada, June 11-14,
1990, LNCS 516, pp. 162-180. Springer-Verlag.

145

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Leo Bachmair and Harald Ganzinger. On restrictions of ordered
paramodulation with simplification. In Mark E. Stickel, ed., 10th Inter-
national Conference on Automated Deduction, Kaiserslautern, Germany,
July 24-27, 1990, LNAT 449, pp. 427-441. Springer-Verlag.

Leo Bachmair and Harald Ganzinger. Associative-commutative super-
position. In Nachum Dershowitz and Naomi Lindenstrauss, eds., Con-
ditional and Typed Rewriting Systems, 4th International Workshop,
CTRS-94, Jerusalem, Israel, July 13-15, 1994, LNCS 968, pp. 1-14.
Springer-Verlag.

Leo Bachmair and Harald Ganzinger. Buchberger’s algorithm: A con-
straint-based completion procedure. In Jean-Pierre Jouannaud, ed., Con-
straints in Computational Logics, Munich, Germany, September 7-9,
1994, LNCS 845, pp. 285-301. Springer-Verlag.

Leo Bachmair and Harald Ganzinger. Ordered chaining for total order-
ings. In Alan Bundy, ed., Twelfth International Conference on Auto-
mated Deduction, Nancy, France, June 26-July 1, 1994, LNAT 814, pp.
435-450. Springer-Verlag.

Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem
proving with selection and simplification. Journal of Logic and Compu-
tation, 4(3):217-247, 1994.

Leo Bachmair and Harald Ganzinger. Rewrite techniques for transitive
relations. In Ninth Annual IEEE Symposium on Logic in Computer
Science, Paris, France, July 4-7, 1994, pp. 384-393. TEEE Computer
Society Press.

Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Sny-
der. Basic paramodulation. Information and Computation, 121(2):172-
192, September 1995.

Leo Bachmair, Harald Ganzinger, and Jirgen Stuber. Combining al-
gebra and universal algebra in first-order theorem proving: The case
of commutative rings. In Egidio Astesiano, Gianna Reggio, and Andrzej
Tarlecki, eds., Recent Trends in Data Type Specification, 10th Workshop
on Specification of Abstract Data Types Joint with the 5th COMPASS
Workshop, S. Margherita, Italy, May 30-June 3, 1994, LNCS 906, pp.
1-29. Springer-Verlag.

Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Superposition
with simplification as a decision procedure for the monadic class with

146

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

equality. In Georg Gottlob, Alexander Leitsch, and Daniele Mundici,
eds., Computational Logic and Proof Theory, Third Kurt Gédel Col-
loquium, Brno, Czech Republic, August 24-27, 1993, LNCS 713, pp.
83-96. Springer-Verlag.

Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational
theorem proving for hierarchic first-order theories. Applicable Algebra
in Engineering, Communication and Computing, 5(3/4):193-212, April
1994.

Ahlem Ben Cherifa and Pierre Lescanne. Termination of rewriting sys-
tems by polynomial interpretations and its implementation. Science of
Computer Programming, 9(2):137-159, 1987.

Alexandre Boudet, Evelyne Contejean, and Claude Marché. AC-
complete unification and its application to theorem proving. In Harald
Ganzin ger, ed., Rewriting Techniques and Applications, 7th Interna-
tional Conference, RTA-96, New Brunswick, NJ, USA, July 27-30, 1996,
LNCS 1103, pp. 18-32. Springer-Verlag.

Thierry Boy de la Tour. An optimality result for clause form translation.
Journal of Symbolic Computation, 14(4):283-301, October 1992.

Rlobert] S. Boyer and J S[trother] Moore. Integrating decision proce-
dures into heuristic theorem provers: A case study of linear arithmetic.
In Jean E. Hayes, Donald Michie, and Judith Richards, eds., Machine In-
telligence 11: Logic and the acquisition of knowledge, ch. 5, pp. 83-124.
Oxford University Press, 1988.

D. Brand. Proving theorems with the modification method. SIAM Jour-
nal on Computing, 4(4):412-430, December 1975.

B[runo] Buchberger. A critical-pair/completion algorithm for finitely
generated ideals in rings. In Egon Borger, Gisbert Hasenjaeger, and
Dieter Rodding, eds., Logic and Machines: Decision Problems and
Complexity, Proceedings of the Symposium “Rekursive Kombinatorik”,
Minster /Westfalen, Germany, May 23-28, 1983, LNCS 171, pp. 137-
161. Springer-Verlag.

Bruno Buchberger. Basic features and development of the critical-
pair/completion procedure. In Jean-Pierre Jouannaud, ed., Rewrit-
ing Techniques and Applications, [1st International Conference], Dijon,
France, May 20-22, 1985, LNCS 202, pp. 1-45. Springer-Verlag.

147

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Bruno Buchberger. Symbolic computation: Computer algebra and logic.
In Franz Baader and Klaus U. Schulz, eds., Frontiers of Combining Sys-
tems, First International Workshop, Munich, Germany, March 26-29,
1996, Applied Logic Series, Vol. 3, pp. 193-219. Kluwer Academic Pub-
lishers.

Reinhard Biindgen. Simulating Buchberger’s algorithm by Knuth-
Bendix completion. In Ronald V. Book, ed., Rewriting Techniques and
Applications, 4th International Conference, Como, Italy, April 10-12,
1991, LNCS 488, pp. 386-397. Springer-Verlag.

Hans-Jirgen Biirckert. A resolution principle for clauses with con-
straints. In Mark E. Stickel, ed., 10th International Conference on Au-
tomated Deduction, Kaiserslautern, Germany, July 24-27, 1990, LNAI
449, pp. 178-192. Springer-Verlag.

Hans-Jiirgen Biirckert. A Resolution Principle for a Logic with Restricted
Quantifiers. LNAT 568. Springer-Verlag, Berlin, Germany, 1991.

E[dward] Cardoza, R[ichard] Lipton, and A[lbert] R. Meyer. Exponential
space complete problems for petri nets and commutative semigroups:
Preliminary report. In Eighth Annual ACM Symposium on Theory of
Computing, Hershey, PA, USA, May 3-5, 1976, pp. 50-54.

Martin Davis. The prehistory and early history of automated deduction.
In Siekmann and Wrightson [88], pp. 1-28.

Martin Davis and Hilary Putnam. A computing procedure for quan-
tification theory. Journal of the ACM, 7:201-215, 1960. Reprinted in
Siekmann and Wrightson [88], pp. 125-139.

A[natoli] Degtyarev. The monotonic paramodulation strategy [in rus-
sian|. In Proceedings of the 5th All-Union Conference on Mathematical
Logic, Novosibirsk, USSR, 1979. Cited in Bachmair et al. [14].

Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In
Jan van Leeuwen, ed., Handbook of Theoretical Computer Science, vol.
B: Formal Models and Semantics, ch. 6, pp. 243-320. Elsevier Science
Publishers B.V., Amsterdam, The Netherlands, 1990.

Vincent J. Digricoli and Malcolm C. Harrison. Equality-based binary
resolution. Journal of the ACM, 33(2):253-289, April 1986.

148

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Eric Domenjoud. A technical note on AC-unification. The number of
minimal unifiers of the equation az; + --- + azp, =ac By1 + -+ + By,
Journal of Automated Reasoning, 8(1):39-44, February 1992.

Uwe Egly. On different structure-preserving translations to normal form.
Journal of Symbolic Computation, 22(2):121-142, August 1996.

Uwe Egly and Thomas Rath. On the practical value of different defini-
tional translations to normal form. In Michael A. McRobbie and John K.
Slaney, eds., Automated Deduction — CADE-13, 13th International Con-
ference on Automated Deduction, New Brunswick, NJ, USA, July 30-
August 3, 1996, LNAT 1104, pp. 403-417. Springer-Verlag.

M. Fay. First-order unification in an equational theory. In Fourth Work-
shop on Automated Deduction, Austin, TX, USA, February 1979, pp.
161-167. Academic Press.

Melvin Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, New York, NY, USA, 1990.

Dov Gabbay and Hans Jiirgen Ohlbach. Quantifier elimination in second-
order predicate logic. In Bernhard Nebel, Charles Rich, and William
Swartout, eds., Principles of Knowledge Representation and Reasoning,
Proceedings of the Third International Conference, KR’92, Cambridge,
MA, USA, October 25-29, 1992, pp. 425-435. Morgan Kaufmann Pub-
lishers.

Harald Ganzinger. Order-sorted completion: the many-sorted way. The-
oretical Computer Science, 89:3-32, 1991.

Harald Ganzinger and Uwe Waldmann. Theorem proving in cancellative
abelian monoids. Technical Report MPI-1-96-2-001, Max-Planck-Institut
fur Informatik, Saarbriicken, Germany, January 1996.

Harald Ganzinger and Uwe Waldmann. Theorem proving in cancella-
tive abelian monoids (extended abstract). In Michael A. McRobbie and
John K. Slaney, eds., Automated Deduction — CADE-13, 13th Interna-
tional Conference on Automated Deduction, New Brunswick, NJ, USA,
July 30-August 3, 1996, LNAT 1104, pp. 388-402. Springer-Verlag.

Robert Gilmer. Commutative Semigroup Rings. Chicago Lectures in
Mathematics. The University of Chicago Press, Chicago, IL, USA, 1984.

Jieh Hsiang. Refutational theorem proving using term-rewriting systems.
Artificial Intelligence, 25(3):255-300, 1985.

149

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Jieh Hsiang and Michaél Rusinowitch. Proving refutational completeness
of theorem-proving strategies: The transfinite semantic tree method.
Journal of the ACM, 38(3):559-587, July 1991.

Jieh Hsiang, Micha€l Rusinowitch, and Ko Sakai. Complete inference
rules for the cancellation laws (extended abstract). In John McDermott,
ed., Proceedings of the Tenth International Joint Conference on Artifi-
cial Intelligence, Milan, Italy, August 23-28 1987, vol. 2, pp. 990-992.
Morgan Kaufmann Publishers.

Jean-Marie Hullot. Canonical forms and unification. In Wolfgang Bibel
and Robert Kowalski, eds., 5th Conference on Automated Deduction, Les
Arcs, France, July 8-11, 1980, LNCS 87, pp. 318-334. Springer-Verlag.

Costas S. Iliopoulos. Worst-case complexity bounds on algorithms for
computing the canonical structure of finite Abelian groups and the Her-
mite and Smith normal forms of an integer matrix. SIAM Journal on
Computing, 18(4):658-669, August 1989.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Fourteenth Annual ACM Symposium on Principles of Programming Lan-
guages, Munich, Germany, January 21-23, 1987, pp. 111-119.

Jean-Pierre Jouannaud and Claude Marché. Termination and completion
modulo associativity, commutativity and identity. Theoretical Computer
Science, 104(1):29-51, October 1992.

Abdelilah Kandri-Rody, Deepak Kapur, and Paliath Narendran. An
ideal-theoretic approach to word problems and unification problems over
finitely presented commutative algebras. In Jean-Pierre Jouannaud, ed.,
Rewriting Techniques and Applications, [1st International Conference],
Dijon, France, May 20-22, 1985, LNCS 202, pp. 345-364. Springer-
Verlag.

Deepak Kapur and Paliath Narendran. Complexity of unification prob-
lems with associative-commutative operators. Journal of Automated
Reasoning, 9(2):261-288, October 1992.

Deepak Kapur and Paliath Narendran. Double-exponential complexity of
computing a complete set of AC-unifiers. In Seventh Annual IEEE Sym-
posium on Logic in Computer Science, Santa Cruz, CA, USA, June 22—
25, 1992, pp. 11-21. IEEE Computer Society Press.

150

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Claude Kirchner, Héléne Kirchner, and Michaél Rusinowitch. Deduction
with symbolic constraints. Revue d’Intelligence Artificielle, 4(3):9-52,
1990.

Donald E. Knuth. The Art of Computer Programming, vol. 2: Seminu-
merical Algorithms. Addison-Wesley, Reading, MA, USA, 1969.

Donald E. Knuth and Peter B. Bendix. Simple word problems in uni-
versal algebras. In J. Leech, ed., Computational Problems in Abstract
Algebra, pp. 263-297. Pergamon Press, Oxford, United Kingdom, 1970.
Reprinted in Siekmann and Wrightson [89], pp. 342-376.

R|obert] Kowalski and P. J. Hayes. Semantic trees in automatic theorem
proving. In Bernard Meltzer and Donald Michie, eds., Machine Intel-
ligence 4, pp. 87-101. Edinburgh University Press, Edinburgh, United
Kingdom, 1969. Reprinted in Siekmann and Wrightson [89], pp. 217-
232.

Serge Lang. Algebra. Addison-Wesley, Redwood City, CA, USA, second
edition, 1984.

Dlallas S.] Lankford, G. Butler, and A. [Michael] Ballantyne. A progress
report on new decision algorithms for finitely presented abelian groups.
In Robert E. Shostak, ed., 7th International Conference on Automated
Deduction, Napa, CA, USA, May 14-16, 1984, LNCS 170, pp. 128-141.
Springer-Verlag.

Philippe Le Chenadec. Canonical forms in finitely presented algebras.
In Robert E. Shostak, ed., 7th International Conference on Automated
Deduction, Napa, CA, USA, May 14-16, 1984, LNCS 170, pp. 142-165.
Springer-Verlag.

F. Levi. Arithmetische Gesetze im Gebiete discreter Gruppen. Rend.
Circ. Mat. Palermo, 35:225-236, 1913. Cited in Gilmer [44].

Claude Marché. Normalized rewriting: an alternative to rewriting mod-
ulo a set of equations. Journal of Symbolic Computation, 21(3):253-288,
March 1996.

Ernst W. Mayr and Albert R. Meyer. The complexity of the word prob-

lems for commutative semigroups and polynomial ideals. Advances in
Mathematics, 46(3):305-329, December 1982.

151

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Greg Nelson and Derek C. Oppen. Simplification by cooperating de-
cision procedures. ACM Transactions on Programming Languages and
Systems, 1(2):245-257, October 1979.

Robert Nieuwenhuis. First-order completion techniques. Technical re-
port, UPC-LSI, 1991. Cited in Nieuwenhuis and Rubio [67].

Robert Nieuwenhuis and Albert Rubio. Basic superposition is complete.
In Bernd Krieg-Briickner, ed., ESOP’92, 4th European Symposium on
Programming, Rennes, France, February 26-28, 1992, LNCS 582, pp.
371-389. Springer-Verlag.

Robert Nieuwenhuis and Albert Rubio. Theorem proving with ordering
constrained clauses. In Deepak Kapur, ed., 11th International Confer-
ence on Automated Deduction, Saratoga Springs, NY, USA, June 15-18,
1992, LNAI 607, pp. 477-491. Springer-Verlag.

Robert Nieuwenhuis and Albert Rubio. AC-superposition with con-
straints: no AC-unifiers needed. In Alan Bundy, ed., Twelfth Inter-
national Conference on Automated Deduction, Nancy, France, June 26—
July 1, 1994, LNAT 814, pp. 545-559. Springer-Verlag.

Robert Nieuwenhuis and Albert Rubio. Theorem proving with ordering
and equality constrained clauses. Journal of Symbolic Computation,
19(4):321-351, April 1995.

Andreas Nonnengart. Resolution-based calculi for modal and temporal
logics. In Michael A. McRobbie and John K. Slaney, eds., Automated
Deduction — CADE-13, 13th International Conference on Automated
Deduction, New Brunswick, NJ, USA, July 30—August 3, 1996, LNAI
1104, pp- 598-612. Springer-Verlag.

H[ans] J[iirgen] Ohlbach. Semantics-based translation methods for modal
logics. Journal of Logic and Computation, 1(5):691-746, 1991.

H[ans| J[irgen| Ohlbach, R[enate A.] Schmidt, and U[llrich] Hustadt.
Translating graded modalities into predicate logics. In H. Wansing, ed.,
Proof Theory of Modal Logic, Applied Logic Series, Vol. 2, pp. 253-291.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

Hans Jiirgen Ohlbach and Christoph Weidenbach. A note on assumptions
about Skolem functions. Journal of Automated Reasoning, 15(2):267-
275, 1995.

152

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

Etienne Paul. A general refutational completeness result for an infer-
ence procedure based on associative-commutative unification. Journal of
Symbolic Computation, 14(6):577-618, December 1992.

Gerald E. Peterson. A technique for establishing completeness results in
theorem proving with equality. STAM Journal on Computing, 12(1):82—
100, February 1983.

Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions
for some equational theories. Journal of the ACM, 28(2):233-264, April
1981.

Gordon D. Plotkin. Building-in equational theories. In Bernard Meltzer
and Donald Michie, eds., Machine Intelligence 7, ch. 4, pp- 73-90. Amer-
ican Elsevier, New York, NY, USA, 1972.

Péter Préhle. Which of the cancellative semigroups are groups? Semi-
group Forum. Accepted for publication in 1996.

Christophe Ringeissen. Cooperation of decision procedures for the satis-
fiability problem. In Franz Baader and Klaus U. Schulz, eds., Frontiers
of Combining Systems, First International Workshop, Munich, Germany,
March 26-29, 1996, Applied Logic Series, Vol. 3, pp. 121-139. Kluwer
Academic Publishers.

Gleorge] Robinson and L[arry] Wos. Paramodulation and theorem-
proving in first-order theories with equality. In Bernard Meltzer and
Donald Michie, eds., Machine Intelligence 4, ch. 8, pp. 135-150. Edin-
burgh University Press, Edinburgh, United Kingdom, 1969. Reprinted
in Siekmann and Wrightson [89], pp. 298-313.

J[ohn] A[lan] Robinson. Automatic deduction with hyper-resolution.
International Journal of Computer Mathematics, 1:227-234, 1965.
Reprinted in Siekmann and Wrightson [88], pp. 416—423.

J[ohn] A[lan] Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23-41, January 1965. Reprinted in
Siekmann and Wrightson [88], pp. 397-415.

Michaél Rusinowitch. Démonstration Automatique: Techniques de Ré-

écriture, chapitre 7: Ensembles complets de régles d’inférence pour les
axiomes de régularité, pp. 111-127. InterEditions, Paris, France, 1989.

153

[85]

[86]

[87]

[83]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Michael Rusinowitch. Theorem-proving with resolution and superposi-
tion. Journal of Symbolic Computation, 11(1&2):21-49, January/Febru-
ary 1991.

Michagl Rusinowitch and Laurent Vigneron. Automated deduction with
associative-commutative operators. Applicable Algebra in Engineering,
Communication and Computing, 6(1):23-56, January 1995.

Robert E. Shostak. A practical decision procedure for arithmetic with
function symbols. Journal of the ACM, 26(2):351-360, April 1979.

Jorg Siekmann and Graham Wrightson, eds. Automation of Reasoning,
vol. 1: Classical Papers on Computational Logic 1957-1966. Springer-
Verlag, Berlin, Germany, 1983.

Jorg Siekmann and Graham Wrightson, eds. Automation of Reasoning,
vol. 2: Classical Papers on Computational Logic 1967-1970. Springer-
Verlag, Berlin, Germany, 1983.

Thoralf Skolem. Logisch-kombinatorische Untersuchungen iiber die Er-
fullbarkeit oder Beweisbarkeit mathematischer Siatze nebst einem The-
orem iiber dichte Mengen. Videnskopsselskapits skifter, I. Matematik-
naturvidenskabelig klasse, 4, 1920. Cited in Davis [30].

Thoralf Skolem. Uber die mathematische Logik. Norsk matematisk
tideskrift, 10:125-142, 1928. Cited in Davis [30).

James R. Slagle. Automatic theorem proving with renamable and se-
mantic resolution. Journal of the ACM, 14(4):687-697, October 1967.
Reprinted in Siekmann and Wrightson [89], pp. 55-65.

James R. Slagle. Automatic theorem proving with built-in theories
including equality, partial ordering, and sets. Journal of the ACM,
19(1):120-135, January 1972.

James R. Slagle. Automated theorem-proving for theories with simpli-
fiers, commutativity, and associativity. Journal of the ACM, 21(4):622—-
642, October 1974.

Mark E. Stickel. Automated deduction by theory resolution. Journal of
Automated Reasoning, 1(4):333-355, 1985.

Jurgen Stuber. Superposition theorem proving for abelian groups rep-
resented as integer modules. In Harald Ganzinger, ed., Rewriting Tech-
niques and Applications, 7th International Conference, RTA-96, New

154

[97]

(98]

[99]

[100]

[101]

[102]

[103]

Brunswick, NJ, USA, July 27-30, 1996, LNCS 1103, pp. 33—47. Springer-
Verlag.

Laurent Vigneron. Associative-commutative deduction with constraints.
In Alan Bundy, ed., Twelfth International Conference on Automated
Deduction, Nancy, France, June 26-July 1, 1994, LNAT 814, pp. 530-
544. Springer-Verlag.

Uwe Waldmann. Extending reduction orderings to ACU-compatible
reduction orderings. http://www.mpi-sb.mpg.de/ uwe/paper/
ACUExt.ps.gz. Submitted, 1997.

Christoph Weidenbach, Bernd Gaede, and Georg Rock. SPASS & FLOT-
TER, version 0.42. In Michael A. McRobbie and John K. Slaney, eds.,
Automated Deduction — CADE-13, 13th International Conference on
Automated Deduction, New Brunswick, NJ, USA, July 30-August 3,
1996, LNAT 1104, pp. 141-145. Springer-Verlag.

Ulrich Wertz. First-order theorem proving modulo equations. Technical
Report MPI-1-92-216, Max-Planck-Institut fiir Informatik, Saarbriicken,
Germany, April 1992.

L[arry] Wos and L[awrence] Henschen. Automated theorem proving
1965-1970. In Siekmann and Wrightson [89], pp. 1-24.

Hantao Zhang. A case study of completion modulo distributivity and
Abelian groups. In Claude Kirchner, ed., Rewriting Techniques and
Applications, 5th International Conference, RTA-93, Montreal, Canada,
June 16-18, 1993, LNCS 690, pp. 32—46. Springer-Verlag.

Hantao Zhang. A new method for the boolean ring based theorem prov-
ing. Journal of Symbolic Computation, 17(2):189-211, 1994.

155

156

List of Symbols

1,6 —R, 12, 68
-, 6 —6,R, 08
[_']’ 6 —9,R» 68
+, 31 —k,R)» 68
—, 99, 110 —z, 125
a*, 6 —, 11
C-p, 21 ~, 11
U, 8 g, 13
2

=, 13 i3 8
—ACU) 31 ~n, 100
o=oao over V, 8
=, 9, 34 E, 13
~, 67 33 |:%, 11
~, 6 —y, 34
#, 6 F, 15
<, 135 [—]ACU, 31
>, 9,12, 33 [, 8
-, 34
—1, 34 0, 31
-, 12 Or, 140
TI=s, 12 Ogr, 139
I1=s, 12
s, 12 o (assignment), 6
=2, 12 7, 68

5, 68
—, 5,11 6 (substitution)
—¥ 11 ¢ (inference), 13
-7, 11 K, 68
—elim, 126 A (natural number), 106

157

g (natural number)
v (natural number)
IT (ordered set), 12
p (substitution)

o (substitution)

X
T

(set of function symbols), 5

(substitution)
o, 23

X (natural number), 37

¥ (element of ¥), 31
T, 31

A, 31

abs, 133

AC, 31

ACK, 31
ACU, 31
ACUK, 31
ACUKTy, 31

b (constant symbol)

¢ (constant symbol)
C (formula or clause)
C, 31

cly, 35

concl, 13

CS-I’I’qu;, 45
CS-Red g, 62
CS-Red§, 62
CS-Red?,, 62

d (constant symbol)
D (formula or clause)
divided-by,, 110
DivInvNt, 124

Dom, 8

DS-Inf, 131
DS%s_Inf, 133

e (equation), 6
E (set of equations)

158

Ec, 69
EZ, 69
Eon, 9
elig, 36
elim, 126
EQ, 35

f (function symbol)
7,6
false, 9

g (function symbol)
G (semigroup or group), 139

h (function symbol)
H (subset of a semigroup), 140
H, 140

i (index or natural number)
I (set of indices)
Inf, 13

J (index or natural number)
J (set of indices)

k (index or natural number)
K (set of indices)
K, 31

! (index or natural number)
L (set of indices)
lhs, 6

m (natural number)

m (element of an interpretation)
M (set of clauses)

9 (interpretation or model), 6
Mm(_), 6

ml, 34

ms, 34

mt, 31

mt, 33

mty, 33

n (natural number)

N (set of formulae or clauses)
N, 51

N, 15

N, 5

1\]’>07 5

neg, 6

o (position), 11

p (function symbol), 6
P (predicate symbol), 6
pos, 11

g (term)
Q (syntactic object), 5

r (term)

R (set of rewrite rules), 12
Rc, 69

Ry, 70

RY, 69

RY, 70

Red (redundancy criterion), 14
Red©, 14

Red!, 14

rhs, 6

s (term)

S (sort), 5

Scawm, 31

S 6

S (set of sorts), 5

t (term)

t(o), 11

t|o, 11

¢, 11

t[t'],, 11

T (constraint), 8
TS, 45

Ty, 31

tr, 69

tr\p, 69
true, 8
truey, 6

u (atomic term)
U (set of substitutions), 32
U, 31

v (atomic term)

V (set of variables), 5
var, 5

vmpg, 60

w (term)
WCS—Inf{l}, 111
WCS-Inf x>0, 119

z (variable)
44
44

8 &

y (variable)

z (variable)

159

160

Index

abelian, 139
abelian group, 23, 27
abelian monoid, 27
abelian semigroup, 27
abstraction, 41, 48, 50, 112, 118,
133
AC-paramodulation, 27
AC-superposition, 27
AC-unification, 27
ACU-compatible, 32, 134
ACU-unification, 27, 32, 134
ACUKTg-closure, 35
assignment, 6
associative, 23, 27, 31
atomic term, 31

basic superposition, 21
below, 32
black box, 25

cancellation, 31, 37, 46

cancellative, 139

cancellative abelian monoid, 28

cancellative equality factoring, 37,
39, 49, 119, 121

cancellative rewrite rule, 67

cancellative superposition, 36

cancellative superposition calculus,
45

CancelVar, 125

case splitting, 102

161

chaining, 26

clause, 6

clause normal form transformation,
24

clause ordering, 34

Coalesce, 126

commutative, 23, 27, 31, 139

compact, 7

compatible, 135

complete set of unifiers, 32, 35

completion, 19

conclusion, 13

confluent, 12, 72

congruent, 10

constant symbol, 5

constrained clause, 8

constraint, 8, 57

constraint language, 34

current interpretation, 51

decision procedure, 102

d-reducible, 68

d-rewriting, 68

demodulation, 95

derivation, 15

derivation relation, 15

divisible, 110

divisible torsion-free abelian group,
124

domain (of a substitution), 8

domain (of an interpretation), 6

eligible, 36, 107
eliminating inference, 131
ElimNeg, 125

ElimPos, 126

empty clause, 6
entailment, 11, 35

equal, 9

equality axioms, 10
equality constraint, 22
equality factoring, 20
equality interpretation, 10
equality model, 10
equality resolution, 37, 40, 46
equation, 6

essential, 35

Euclid’s algorithm, 106
EXPSPACE, 28

extended clause, 27

fair, 16

false, 7

free function symbol, 31
full abstraction, 133
function symbol, 5

~-reducible, 68

~-rewriting, 68

Gaussian elimination, 107

ged superposition, 105

Grothendieck group, 140

ground, 5

ground instance, 8, 9

ground instance (of an inference),
57, 60

group, 139

Herbrand interpretation, 9
hierarchic technique, 25
hyperresolution, 17

162

idempotent, 8

identity, 27, 31

identity element, 139
immediately below, 32
inference, 13

inference rule, 13
inference system, 13
instance, 8

instantiating inference, 132
integrating technique, 25
interpretation, 6

inverse, 110

irreducible, 12, 58
irreflexive, 135

k-reducible, 68
Kk-rewriting, 68
Knuth-Bendix completion, 19

left identity element, 139
left-cancellative, 139
lifting, 39, 43, 56, 64
limit, 15

literal, 6

literal ordering, 34

lower bounded, 63

maximal atomic subterm, 33
maximal literal, 34

merging paramodulation, 20
model, 7, 9

model construction, 69
model generalizable, 58, 63
monoid, 139

most general unifier, 8
multiplication, 31

multiset property, 33, 134

negative cancellative superposition,
37, 39, 47, 111, 118

negative literal, 6

noetherian, 12

non-essential, 35, 50
non-group, 108

non-trivial, 109

normal form, 12

normal interpretation, 9
normalized completion, 28, 38

occurrence, 11

ordered abelian monoid, 29, 135
ordered resolution, 18

ordering, 12, 26

ordering constraint, 22

paramodulation, 18

partial solution, 102

persisting, 15

pivotal literal, 128

pivotal substitution, 128

pivotal term, 128

position, 11

positive cancellative superposition,
37, 40, 48

positive literal, 6

positive maximal, 59

predicate, 6

premise, 13

primary rule, 55, 69

productive, 51

proper sum, 32

U-torsion-free, 31, 143

U-truth set, 69

quantifier elimination, 125
quasisimplification, 99

reducible, 68

reduction ordering, 12

reductive, 69

redundant, 14, 20, 45, 52, 56, 60, 95

reflexive, 10

refutationally complete, 13, 16, 51,
89

163

resolution, 16

rewrite relation, 11, 67
rewrite rule, 12, 54, 67
rewrite system, 12

right identity element, 139
right-cancellative, 139

satisfiable (constraint), 9

satisfiable (set of clauses), 7

satisfy, 7, 9

saturated, 15

secondary rule, 55, 69

selection function, 36, 61

semigroup, 139

shielded, 36, 40, 107

signature, b

simplification, 95

skeleton, 21

skolemization, 24

solution, 9

sort, 5

sound, 13, 50

stable, 11

standard equality factoring, 20, 40,
49

standard superposition, 19, 40, 47

stratified, 59, 88

substitution, 7

subsumption, 102

sufficiently complete, 25

superposition, 19

superposition calculus, 20

symmetric, 10

symmetrization, 28

syntactic object, 5

term, 5

term-generated, 6
terminating, 12

theorem proving calculus, 15
theory reasoning, 23

top occurrence, 32

torsion element, 141

torsion-free, 29, 38, 108, 135, 141

total, 135

total ordering axioms, 135

totally ordered abelian group, 142

totally ordered abelian monoid, 142

totally ordered abelian semigroup,
142

transformation technique, 24

transitive, 10, 135

true, 6

truth set, 69

unifier, 8
unsatisfiable (set of clauses), 7
unshielded, 36, 43, 107

variable, 5
variable elimination, 107, 124
variable minimal, 58, 59

weak, 111, 118

weak abstraction, 112, 114, 118, 121

weak cancellative equality factoring,
112, 115

weak negative cancellative superpo-
sition, 111, 113, 118-120

word problem, 28, 104

164

